electronics

A MCGRAW-HILLPUBLICATION•PRICE75CENTS

MaY 1, 1957 州 29

COLOR TEST SIGNAL

Analyzing Ignition
page 150
Design Against Radiation . .page 155

NEW HERMETIC POWER COMPONENTS

Listed below are just a few of the 50 new stock items in the United hermetic power series. These MIL-T-27A power components add to the 200 other hermetic stock items of filter, audio, and magnetic amplifier types. Through the use of proven new materials and design concepts, an unparalleled degree of life and reliability has been attained, considerably exceeding M/L-T-27A. requirements. Test proved ratings are provided, not only for military applications but for industrial, broadcast, and test equipment service ($55^{\circ} \mathrm{C}$. ambient).

For complete listing of these new items, write for Catalogue $\# 56$.

MIL.T.27A RATINGS IN REGULAR TYPE
TYPICAL POWER TRANSFORMERS, PRI: 115 V ., $50-60$ cycles.

$\begin{gathered} \text { Type } \\ \text { No. } \end{gathered}$	HV Sec. C.J.	Approx* DC volts		$\begin{aligned} & \text { DC } \\ & \text { MA } \end{aligned}$	$\begin{aligned} & \text { Fil. } \\ & \text { Wdg. } \end{aligned}$		prox* volts	$\begin{gathered} \text { MA } \\ \text { DC } \end{gathered}$	Fil. Wdg.	$\begin{gathered} \text { MIL } \\ \text { Case } \end{gathered}$
H-81	500	L	180	65		L	170	75	$\begin{gathered} \text { 6.3VCT-3A } \\ 5 \mathrm{~V}-2 \mathrm{~A} \end{gathered}$	HA
		C	265	55	6.3VCT. 3 A	c	240	65		
	550	L	200	60	5 V -2A	L	190	70		
		c	300	50		c	280	60		
H-84	700		255	170			240	210		KA
		c	400	110	6.3 V -5A	C	360	150	6.3V-6A	
	750	L	275	160	$6.3 \mathrm{~V}-1 \mathrm{~A}$	t	260	200	6.3V-1.5A	
		C	420	105	5 V -3A	c	380	140	$5 \mathrm{~V}-4 \mathrm{~A}$	
H-87	730	L	245	320		L	210	420		NB
		C	390	210	6.3V-6A	c	350	310		
	800	L	275	300	$6.3 \mathrm{~V} \cdot 2 \mathrm{~A}$	1	245	400	6.3V-2A	
		C	440	200	5 V .4 A	C	400	300	$5 \mathrm{~V}-4 \mathrm{~A}$	
H.93	1000	L	370	280	$6.3 \mathrm{~V}-8 \mathrm{~A}$	1	340	340	6.3V-10A	OA
	1200	L	465	250	$\begin{aligned} & 6 \mathrm{BV}-4 A \\ & 5 V-6 A \end{aligned}$	L	455	300	$6.3 V \cdot 5 A$	

-After appropriate H series choke. L ratings are choke input filter, C ratings are condenser input.

HIGHEST RELIABILITY FOR MILITARY AND
INDUSTRIAL USE

United " H " series power trans. formers are available in types suited to every electronic application. Proven ratings are listed for both high voltage outputs...condenser and choke input filter circuits... military and industrial applications.

United "H" series filter reactors are extremely flexible in design and rating. Listings show actual inductance at four different values of $D C$. Bold type listings are industrial applica. tion maximums.

TYPICAL FILAMENT TRANSFORMERS, PRI: $105 / 115 / 210 / 220 \mathrm{~V}$., $50-60$ cycles.

Type No.	Sec. Volts	Amps. (MIL)	Amps. (Ind)	Test Volts RMS	MIL Case
H.121	2.5	10	12	10000	JB
H. 124	5	3	3	2000	FB
H. 127	5	20	30	21000	NA
H. 131	6.3CT	2	2.5	2500	FB
H-132	$\begin{aligned} & 6.3 C T \\ & 6.3 C T \end{aligned}$	6	7	2500	JA
H. 136	14, 12, 11CT	10	14	2500	LA

United "H" series filament transfcrmers have multi-tapped primaries, good regulation, and are rated for industrial as well as military service.

United "H" series plate transformers incorporate dual high voltage ratings and tapped primaries to provide versatile units for a wide range of military and intustrial electronic applications. Large units have terminals opposite mounting for typical trans. mitter use.

TYPICAL PLATE TRANSFORMERS, PRI: 105/115/210/220V., $50-60$ cycles.

*After filter choke. All ratings are for choke input filter.

UNITED TRANSFORMERCO.

electronics

A McGRAW-HILL PUBLICATION
 H. W. MATEER, Publisher
 W. W. MacDONALD, Editor

Managing Editors
VIN ZELUFF
JOHN M. CARROLL
Feature Editor JOHN MARKUS

Associafe Edifors
ALEXANDER A. McKENZIE
JOHN M. KINN, Jr.
FRANK LEARY
MICHAEL F. TOMAINO
HOWARD K. JANIS
SYLVESTER P. CARTER
Assistant Editors
WILLIAM P. O'BRIEN
WILLIAM G. ARNOLD
DAVID A. FINDLAY
HAIG A. MANOOGIAN
GEORGE SIDERIS
LAWRENCE KAMARCK
EDWARD DeJONGH
JOHN F. MASON
Pacific Coost Editor (Los Angeles) HAROLD C. HOOD

Midwestern Editor (Chicago) HAROLD HARRIS

New England Editor (Bosion) ROLAND J. CHAREST

HARRY PHILLIPS, Art Director ROY THOMPSEN
BARBARA ELLWOOD
JOHN C. WRIGHT, Jr., Production
JEAN L. MATIN
Editorial Assistants
GLORIA J. FILIPPONE
ARLENE SCHILP
BERNICE DUFFY
BARBARA HEARST
NOREEN HENNESSY
PHYLIS A. CRONIN
BARBARA M. SHAW
JAMES GIRDWOOD, Adv. Sales Mgr. R. S. QUINT, Assistant Adv. Sales Mgr. and Buyers' Guide Mgr.
FREDERIC STEWART, Promotion Mgr.
FRANK H. WARD, Business Mgr.
G, E. POMEROY, Classified Mgr
JEAN W. HEIGES, Research
WALLACE B. BLOOD, Market Consultant
New York
DONALD H. MILLER
HENRY M. SHAW
MARTIN J. GALLAY
Boston
WM. S. HODGKINSON
Philadelphic JAMES T. HAUPTLI

Chicago BRUCE WINNER WALTER M. LUCE

Cleveland
WARREN H. GARDNER
San Francisco T. H. CARMODY R. C. ALCORN

Los Angeles CARL W. DYSINGER R. ANTLES

Atlanta M. MILLER

Dallas
GORDON L. JONES
London
HERBERT LAGLER

KEITH HENNY, Consultant

FLIP-FLOP PENETRATES TEMPERATURE BARRIER-Successful operaation of printed-wiring multivibrator circuit on red-hot charcoal demonstrates ability of GE-developed components to operate above critical temperature barrier of supersonic aircraft and missiles (see p 158) . COVER
SHOPTALK 2
FIGURES OF THE MONTH 6
INDUSTRY REPORT 7
More Computers Go To College. . Military Electronics 18
Mobile Radio Dials Phone Calls..., 7 More Railroads Use Tubes. 20
Scores Missile On The Spot...... 8 Military Spending Rises. 20
Nations Plan N. Atlantic Link... 10 Magnetics Gain 22
Air Force Expands Modernization. . 10 FCC Actions 22
TV's Second Set Market Large. . . 10 Radar Tracks in 3D 24
Scientists Look at Switching
Business Briefs
Behind Military Turnover 24
24Assembly-Line Machine-Gun12 Console Guides Missiles. 26
Military Spis Camper Wo. 16
Military Spis Camper Wo. 16 Military Spurs Computer Work. Irons Build Computers. 26
Electrons Sterilize Army Foods. Meetings Ahead 26
Picture Tube Renewal Sales. 18 Industry Shorts 26
CROSSTALK 141
FEATURES
Bathythermometer Telemeters Ocean Data 142
By James M. Snodgrass and John H. Cawley, Jr.Simultaneous Color-TV Test Signal146
By Ralph C. KennedyCounter Circuits Analyze Ignition.150
By E. F. Weller, Jr., N. W. Schubring and M. E. FitchDesigning Electronics to Resist Nuclear Energy155By Harvey L. MorganHigh-Temperature Subassembly Design158
By R. Bruce Kieburtz
Voltage-Tuned Magnetron For F-M Applications 162
By T. R. Bristol and G. J. Griffir, Jr.
Preset Gating Unit for Aeroballistic Testing 164
By Samuel E. Dorsey
Electronic Organ Uses Shared Oscillators 167
By Thomas J. George and Stanley Cutler
Missile Telemeter Uses Transistor Amplifier 170
By John H. Porter
Noise Gating Tube for AGC and Sync 172
By John G. Spracklen, Walter J. Stroh and George C. Wood

contents		
continued		
Power Amplifier for Servo Testing 176		
By Joseph M. Diamond		
Tristable Gate Moves CRO Line Drawings................... 178		
Flattening Response of Crystal Pickups.................. 181		
By A. L. Cleland		
VLF Oscillator Keys VHF Generator 184		
By Leon H. Dulberger		
Electronic Shutter for TV Kinescope Recorder 186		
Speed Indicator Has Expanded Scale.................. 188		
Temperature Conversion Chart (Reference Sheet) 192		
ELECTRONS AT WORK. 194		
Air-Ground Data Link............ 194Plonograph Preanplifier By R. Page BurrRadio Printer For Ait................ 204		
Selector Chooses C-W Phase..... $202 \begin{gathered}\text { By I. Dlugatch } \\ \text { By Martin D. Belfeld } \\ \text { Starting Point } 220\end{gathered}$		
PRODUCTION TECHNIQUES . 226		
Drilling Holcs in Servos........ 226	Spool Cuard Stops Suarls.	23.
NEW PRODUCTS 256		
LIterature 350		
PLANTS AND PEOPLE. 364		
NEW BOOKS 388		
THUMBNAIL REVIEWS 394		
BACKTALK ... 398		
INDEX TO ADVERTISERS....................................... . . 449		

talk

ELECTRONICS' staff is impressive quantitatively as well as qualitatively. Ninety percent of the men listed on our masthead
attended this recent planning session

- RELIABILITY . . . One of the editors recently made a field trip into the land of baked beans and brown bread. He gathered much data on current engineering problems and their solutions and was exposed to lots of highly accurate and precise equipment that also involved high reliability and resistance to extremes of temperature and moisture.

Preparing to return to New York by air, associate editor Kinn was faced with an environment problem, It seems spring had sprung a leak over New York and vicinity, closing all the airports. Reporting to the railroad, he got home at $2: 30 \mathrm{a} . \mathrm{m}$. instead of 7:00 p.m., rather wide tolerance compared to those to which he had just been exposed.

There was no electronic equivalent to one situation, though. He
was pleasantly surprised to find two lovely airline stewardesses in his car taking care of sun-burned passengers who were returning from Bermuda and were forced to bypass New York and land in Boston.

- INFORMATION CIRCLE . . .

Like all magazines, we get a lot of inquiries for technical and business information. We try to help in every case, but sometimes get more puzzled ourselves.

A Mr. X phoned frantically recently and said that we had published an article a few months ago and that he wanted to locate the issue. It was written by a Mr. A of company B and mentioned a development by still another company C.

Search of authors' names on recent articles showed none by Mr. A.

Only recourse was to find out if any editor had any recollection of a mention of development C.

Finally we located something on the development. It was not, however, written by Mr. A but by Mr. M and not affiliated with company B, but company N .

To further our dismay, it hadn't yet been published, so Mr. X couldn't have seen it yet.

- BEST SOURCE . . . During one of the lectures in a course at the City College of New York on principles of missile guidance, assistant editor Manoogian was pleasantly surprised.

Almost all of the references recommended by the instructor, a Bell Labs man, were circuit articles that had been published in recent issues of Electronics.

 San Francisco t: McGraw-Hill House. Lonton E. C. 4: National Press Elde.
 St., St. Louis 8: 350 Yark Square Bldg., Boston 16 ; 1321 Rhodes ${ }^{1}$ Pagerty Blde Atlanta 3, Ga. 1125 West Sixth St., Los Angeles $17: 919$ Oliver Building, Pittsburgh 23. FLAETHONICS is indexed regularly in The Engineering Index.

[^0]

ACTUALLY THREEREGULATORS IN ONE-PLUS MULTIPLE SENSING!

The APR 1010 combines many new regulation and sensing systems in one versatile package. Here's flexibility of operation never before possible . . . saves space, eliminates instrument duplication, means greater economy in engineering operations.

- RMS VOLTAGE REGULATION
- AVERAGE REGULATION
- PEAK REGULATION
- FIVE PRINCIPAL SENSING ARRANGEMENTS 1. internal 2. external 3. remote 4. Constant current 5. oc electrical characteristics:

Input Output	$95-1150 \mathrm{VAC}, 1 \phi(50$ or $60 \mathrm{cps} \pm 10 \%)$
Regulation adi. $110-120 \mathrm{~V}$	
accuracy	$\pm 0.1 \%$ against line
(RMS, average,	
or peak, switch	
selected)	
Distortion against load	3% max.
Load	$0-1000 \mathrm{VA}$
P.F. range	Unity to 0.7 lagging
Recovery time	0.1 sec.

Write for complete fechnical data.

[^1]

The Muirhead-Pametrada Wave Analyser

Analyser covers the frequency range encountered in vibration tests of aircraft engines-whether pure jet,

Complete tests of airframes and airscrews for unwanted noise and vibration, and the tracing of spurious frequencies in aircraft electrical systems, are just normal applications for the analyser in the aircraft

Learn more about the Muirhead-Pametrada Wave Analyser and how it is applied in the aircraft, automobile, electrical supply and shinbuilding industries. Write for our Brochure 'Vibration Measure-

MUIRHEAD

Write for the brochure

MUIRHEAD INSTRUMENTS INC. 677 FIFTH AVE • NEW YORK 22,N.Y. • U.S.A. MUIRHEAD INSTRUMENTS LIMITED • STRATFORD • ONTARIO • CANADA MUIRHEAD \& CO. LIMITED • BECKENHAM • KENT • ENGLAND

FIGURES OF THE MONTH

	Lotest Month	Previous Month	Year Ago		Latest Month	Previous Month	Year Ago
RECEIVER PRODUCTION				BROADCAST STATIONS			
(Source: RETMA)	Feb. ${ }^{5} 57$	Jan. '57	Feb. '56	(Source: FCC)	Feb. '57	Jan. '57	Feb. '56
Television sets, total	464,697	450,190	576,282	TV stations on air.	515	513	485
With UHF	68,219	67,079	78,956	TV stations CPs-not on air	123	120	106
Color sets	nr	nr	nr	TV stations - new requests	56	62	22
Radio sets, total	1,264,765	1,085,529	1,093,506	A-M stations on air....	3,031	3,014	2,841
Auto sets ...	522,859	521,624	437,611	A-M stations CPs-not on air	+133	+123	2,841 123
				A-M stations-new requests	303	288	247
				F-M stations on air....	529	527	539
RECEIVER SALES				F-M stations CPs-not on air	23	24	13
				F-M stations - new requests	10	8	4
(Source: RETMA)	Feb. '57	Jan. '57	Feb. '56	COMMUNICATION AUTHORIZATIONS			
Television sets, units	525,437	623,359	530,554				
Radio sets (except auto)	525,029	563,363	454,867	(Source: FCC)	Feb. '57	Jan. '57	Feb. '56
				Aeronautical	50,859	54,243	44,570
				Marine	61,246	60,774	54,63)
RECEIVING TUBE SALES				Police, fire, etc.	22,500	22,450	19,971
				Land transportation Amateur	33,879 9	33,456	28,054
Receiv. tubes, total units $44,460,000$ Receiv. tubes, value.... $\$ 36,631,000$ Picture tubes, total units 728,363 Picture tubes, value. ... $\$ 13,134,778$		$\begin{array}{r} 37,571,000 \\ \$ 31,170,000 \end{array}$	37,754,000		158,232	157,275	145,427
		\$30,756,000	Amateur Citizens radio	23,888	23,155	15,563	
		760,860	Citizens radio Disaster	343	331	327	
		\$13,594,525	\$17,136,695	Experimental Common carrier	$\begin{array}{r}735 \\ \hline 2666\end{array}$	721	652
		2,666			2,618	2,176	

INDUSTRIAL TUBE SALES			
	Latest	Previous	Year
	Quarter	Quarter	Ago
(Source: NEMA)	4th '56	3rd '56	4th'55
Vacuum	\$12,408,371	\$8,895,012	\$9,967,411
Gas or vapor	\$3,223,612	\$2,936,765	\$3,251,621
Magnetrons and velocity modulation tubes ..	\$15,890,681	\$14,948,477	\$13,726,323
Gaps and T/R boxes...	\$1,242,745	\$1,196,369	\$1,578,767

EMPLOYMENT AND PAYROLLS

(Source: Bur. Labor Statistics)	Jan. '57	Dec. '56	Jan. '56
Prod. workers, comm. equip.	400,200-p	410,500-r	389,600
Av. wkly. earnings, comm. . .	\$79.15-p	\$79.15	\$74.70
Av. wkly. earnings, radio	\$75.64-p	\$75.76 -r	\$70.80
Av. wkly hours, comm.	40.1 -p	40.8	40.6
Av. wkly, hours, radio	39.6 -p	40.3 -r	40.0

SEMICONDUCTOR SALES ESTIMATES			
	Feb. '57	Jan. '57	Feb. '56
Transistors, Units $\ldots \ldots$	$1,785,300$	$1,436,000$	618,000

MILITARY PROCUREMENT

(Source: Defense Dept.)	4th '56	3 rd '56	4th '55
Army	\$56,185,000	\$23,107,000	\$48,477,000
Navy	\$34,210,000	\$22,273,000	\$20,378,000
Air Force	\$145,962,000	\$84,952,000	\$131,938,000
Total-Electronics	\$236,357,000	\$130,332,000	\$200,793,000

STOCK PRICE AVERAGES

(Source: Standard and Poor's)	Feb. '57	Jan. '57	Feb. '56	
Radio-tv \& electronics	\ldots	330.6	336.3	323.2
Radio broadcasters	\cdots	\ldots	489.6	439.9
p-provisional	r-revised	nr-not reported		

FIGURES OF THE YEAR
Television set production Radio set production
Television set sales
Radio set sales (except auto)
Receiving tube sales
Cathode-ray tube sales

TOTALS FOR THE FIRST TWO MONTHS
1956
19571956 Percent Change Total
914,887 1,164,629 -21.4 7,357,029
$2,350,294 \quad 2,172,130+8.2 \quad 13,981,800$
$1,148,796 \quad 1,144,767+0.4 \quad 6,804,756$
$1,088,392 \quad 986,073+10.4 \quad 8,332,077$
$82,031,000 \quad 77,895,000+5.3464,186,000$
$\begin{array}{llll}1,489,223 & 1,790,448 & -16.8 & 10,987,021\end{array}$

More Computers Go To Colleges

Four more universities will use digital types to free brain-power for more creative assignments

DIgital computer MISTIC, the Michigan State integral computer, will be solving mathematical problems at Michigan State University before the year is up. The device is similar in logic and general construction principles to the computer developed at Princeton Universities Institute for Advanced Study.

Similar machines now are in operation at the Argome National Laboratory, Oak Ridge National Laboratory, Los Alamos Scientific Laboratory, the Rand Corporation of Santa Monica, Cal., and the University of Illinois. Others are under construction at lowa State College and the University of Sydney. Australia.

- Logic-To solve 40 simultaneous equations. which would take weeks to do by other means, the computer would need only 193 seconds: four seconds for the problem to be introduced, 181 seconds to solve it, and eight seconds for the answer to be produced.

Composed of thousands of miles of wire and hundreds of electronic tubes and transistors, the computer will have four essential sections: input, arithmetic and control, memory and output.

Information and problems will be introduced to the machine on perforated paper tape. Answers are on tape or a page.

NEW radiotelephone system, manufactured by Du Mont, operates automatically when

Mobile Radio Dials Phone Calls

Vehicle phone calls can be relayed automatically through local telephone company facilities
AUTOMATIC dial-direct mobile twoway radiotelephone system is in operation in Richmond, Indiana and is now available nationwide through Allen B. DuMont Laboratories. Designed and developed by DuMont rep Ramsey McDonald. the system allows phone calls to-and-from vehicles to be relayed completely unattended through a local telephone system.

Calls are made from a vehicle by dialing a number within a local telephone system. Anyone within that system can call the vehicle in the same manner as in making a
house-to-house call. Only when placing a toll call must the long distance operator be contacted.

- How it works-The system consists of a dial radiotelephone in a vehicle, employing a two-way radio system as a carrier to the local telephone company installation. A transmitter-receiver base station is interconnected with the local telephone system. Termination and switching equipment at the base station automatically transfers the radio calls to the telephone system and telephone calls to the radio system.

Calls can also be made from vehicle to vehicle. Two telephone lines are required to interconnect
the base station equipment with the telephone company's central office. One line is utilized for calls from telephone to radio; the other for radio to telephone.

- Market-Substantial sales of the systems are expected to be made to independent telephone companies. There are 4,500 such independents and 69 percent of their service is dial.

The system presently used by Richmond Radiotelephone, headed by McDonald, provides mobile radio telephone service for subscribers in Richmond and surrounding areas.
-Cost-Interconnected with the Richmond Home Telephone Co., the system provides dial-direct service of 24 calls per day for $\$ 40$ per month per unit with the lease of DuMont equipment. Using privately owned mobile equipment costing about $\$ 500$, the service would run about $\$ 25$ a month. For a company that wants to go into business to operate the service the cost of the equipment including base station (transmitter and receiver), two antennas, termination and switching equipment, would run about $\$ 7,000$.

Scores Missile

 On The Spot

Direct calibration and immediate evaluation of the performance and behovior pattern of guided missiles is handled by this new instrumentation radar system developed by RCA. Antenna pedestal shown is designed for mounting on a separate tower to minimize vibration

PROPOSED air-ground communications network connecting Newfoundland, Greenland, Iceland and the United Kingdom-Ireland will use forward propagation-by-ionospheric-scatter stations to help eliminate transmission blackouts as . .

Nations Plan N. Atlantic Link

Twelve IACO nations chalk out framework for scatter stations that will cure bad signals
DURING the summer of 1956 , more than half of the flights across the North Atlantic suffered radiocommunication blackouts caused by sub-Arctic auroral disturbances, which affect existing highfrequency radioteletype circuits.

A decision by the Canadian government to build a $\$ 650,000$ vhf forward-propagation-by-iono-spheric-scatter station near Gander airport, Newfoundland will implement a new chain using high-power transmitters, 50 to 100 kw , working in the very-high frequency band, between 30 and 60 mc. Highly directional antennas will be used.

Signals are scattered by the highly-ionized layer of air 55 miles above the earth and are reflected to ground receiving stations a distance away.

The International Civil Aviation Organization (IACO) recommended the network to facilitate flight-information transmission and the Canadian government agreed to contribute to joint financing of stations in Greenland and Iceland.

- Links - The IACO plan envisages the use of three links, one between Newfoundland and Greenland, a second between Greenland and Iceland and a third from Iceland to the United Kingdom and Ireland. All of these would be integrated as a single system and provide four teletypewriter channels and one telephone channel between the points served.

As an alternative to the link between Iceland and the United Kingdom-Ireland, Iceland proposed an undersea telephonetelegraph cable that would provide similar channels to be integrated with the vhf forward-scatter system between Iceland and North America.
-Service-The principal concerns of the proposal have to do with the reliability and quality of serv. ice that can be expected and the methods of organization necessary to ensure full coordination in the implementation of the entire plan.

Further response to the recommendations offered by IACO will be received, not later than May 1st from twelve ICAO nations and two international organizations: the International Air Transport
(Continued on page 10)

AS SMALL AS $3 / 4^{\prime \prime} \times 34^{\prime \prime} \times 13 / 8^{\prime \prime}$ AS LIEHT AS 114 OUNCES

Designed and tested to specification \#MIL-T 26985

Supplied in two principal case sizes:

1. For RDB channels 1 through 6 , case size is $3 / 4 \times 11 / 2 \times 2 \frac{1}{4}$ inches high; weight: 4 ounces.
2. For channels 7 and up, case size is $3 / 4$ inches square and $13 / 8$ inches high; weight: $11 / 4$ ounces.
These cases are generally equipped with a 4 -pin plug to match the small Winchester socket.
attenuation characteristics
Impedance: 100 K ohms in and out.
Insertion loss: less than 6 db .
At $\pm 7.5 \%$ band width is less than 3 db .
At $\pm 25 \%$ band width is greater than 15 db .
At 1.75 f attenuation is 40 db or more.
At .57 f attenuation is 40 db or more.

Association (IATA) and the lnternational Frequency Registration Board (IFRB).

- Tropo Scatter-In Alaska, an additional link between Kenai and Homer, Alaska was added to the White Alice system that combines service for the military and commercial communications (Electronics, p 192, Jan., 1957). This broad-band tropospheric radio equipment was designed and manufactured by Radio Engineering

Laboratories for Western Electric.
Another wide-band link that will accommodate a tv channel and 120 telephone conversations is scheduled for cutover by AT\&T in late summer. Equipment will be shipped soon from Federal Telecommunication Laboratories for the FloridaCuba circuit.

Equipment recently completed by Philco for the Air Force also uses the tropospheric transhorizon phenomenon at about 8 kmc .

COMPLEX radar control, the brain of F-94 interceptor planes guarding the North American continent, is checked and installed by Hughes technician while

Air Force Expands Modernization

Intricate modern weapons require more dollars to rework existing electronic systems
Modernization costs for aircraft systems have risen 67 percent in the past three vears. The figure is expected to reach $\$ 1.4$ billion for the fiscal year 1957, compared to $\$ 992$ million for fiscal year 1954.

Of this total, a substantial portion, possibly $\$ 200$ million annually, goes to modernize electronic equipment. The total includes all major maintenance performed at Air Force depots or contractor's plants, as well as modification of in-service aircraft and component
equipment. As demand for higher combat effectiveness continues, the work and expense required for modernization will continue to increase proportionately.

- Units-During fiscal 1957, the Air Force has scheduled about 8,500 aircraft for major maintenance and modification, of which about 6,500 jobs are to be accomplished by contractors. The increased number of complex, high performance jet aircraft require many more man-hours of maintenance and modification than their World War II predecessors.

Active military aircraft inven-
tory has increased in number and by far more complex weapon systems. For example. in the F-94 interceptor plane shown, the control equipment manufactured by Hughes Aircraft Co. has as many different parts as 200 television sets.

Labor costs for total maintenance and modification have risen from around $\$ 20,000$ for a World War Il bomber to over $\$ 500,000$ for a modern jet bomber. The Defense Department estimates that there are over 150,000 civilian and military persomel in electronic maintenance work.

- Bombers - Lockheed has been working on a Box-Kite modification program since last year. Additional Air-Force business came to its Georgia Division plant at Marietta for early delivery of 21 quality-modified B-47 Stratojets. Latest engineering and electronics improvements will be added at the same time the aircraft are undergoing major overhaul. Thus, within two weeks a total of 113 aircraft were added to current B-47 modernization projects at the plant.
- Future - To maintain an inventory of weapon systems in the condition necessaly to keep ahead of potential enemy airpower, the Air Force must continue to modernize existing aircraft, according to Aircraft Industries Association, or to incorporate new weapon systems in its inventory. The cost trend of modernization tends to follow the cost of the new weapon systems.

TV's Second Set Market Still Looms Large

Homes with two sets represent only 4 percent of total but portables are making inroads
Television set producers have pushed sales possibilities of two tv sets to each home but not until last year did such sales finally take hold. According to Commerce Department figures, the number of homes with two sets went from 2
(Continued on page 12)

high speed transistors for computer switching circuits

Sprague 2N240 Transistors with their fast response time - in the millimicrosecond range-give reliable operation in switching circuits up to 20 megacycles. The ideal electrical characteristics of these surface barrier transistors permit direct coupling for faster operation than any alloy junction type.
And the 2N240 gives you:
O low saturation resistance
O low saturation voltage
O extremely fast rise and fall time
O absolute hermetic seal
O availability
Among these features, the most important to you may well be availability. Sprague is manufacturing 2N240 Transistors Now in production volumes. You can answer today's transistor needs today by specifying Sprague Surface Barrier Transistors!

Write for complete data sheets on Sprague 2N240 Germanium Surface Barrier Transistors and on Sprague General Purpose High-Frequency Surface Barrier Types 2N344/SB101, 2N345/SB102, 2N346/ SB 103 . All are available on letterhead request to the Technical Literature Section, Sprague Electric Co., 35 Marshall Street, North Adams, Massachusetts.

percent to 4 percent of total households between June '55 and August '56.

- Reason-Compactness and lower price seem to be the keys to the second set market. History seems to be repeating. Not until the compact table model radio, styled for each room and priced right, was introduced did the multiple radio set market really reach its full potential.

The rise in portable tv sales began in the second half of 1955 and coincides with the rise in second set households. TV cabinets are now multicolored to fit any decor and compactness along with low price are featured.

- Effect of size?-The 110-degree tube permits sets to be six inches shorter. Sylvania reports that its February tv set sales achieved a new record of more than double February 1956 sales.

Business Briefs

- Acquisition of Radio Receptor by General Instrument involved purchase by GI of 80 percent of the outstanding stock of Radio Receptor. Of RR current production, 80 to 85 percent is for industrial and military purposes, 15 to 20 percent for radio and tv
- Sales in Australia, Italy and Mexico for Admiral Corp. totaled $\$ 9$ million in 1956. Sales target for the three counties in 1957 is $\$ 20$ million and the company will undertake additional foreign manufacturing operations in the next two years
- Expenditures for expansion of facilities in 1956 by GE amounted to $\$ 205.2$ million, more than $\$ 34$ million higher than any previous year in the firm's history: Total of $\$ 1.4$ billion has been invested by the company in its expansion and modernization program since World War II
- Six U.S. airlines, 13 foreign commercial airlines and the Royal Australian Air Force purchased RCA weather radar during 1956
- Ten percent of total sales of High Voltage Engineering was devoted to research and development in 1956. The firm's backlog reached $\$ 6$ million with approximately half that amount representing orders from abroad
- Net sales of Minnesota Mining have climbed by about 100 million in the past two years, reached $\$ 330.8$ million last year. Electrical products accounted for 17 percent of 1956 sales

Scientists Look Into Future Of Switching

Discussions at Harvard show

 trends in such fields as chemical and cryogenic switchesCore of the remarkable progress achieved in the field of computers and mechanization is the science of switching which deals with the on-off, high-low and conducting-non-conducting states of mechanical and electronic devices.

Recently, approximately $\mathbf{1 , 0 0 0}$ scientists gathered at Harvard to discuss the progress of work in this field and much light was shed on present thinking and planning.
-Chemical-It was shown that chemical reactions, such as take place when light-sensitive or photochromic materials are exposed to the proper wavelength of light causing the material to change color, can provide the two stable states required for switching. It was explained by B. K. Green of National Cash Register Co. that tiny droplets of these materials when enclosed in a structure, consisting of cells two and a half microns in diameter, would produce a device with 100 -million switches per square inch.

- Superconductor-A woven memory device made of strands of superconducting wire woven through coils and immersed in liquid helium was discussed by A. E. Slade of Arthur D. Little, Inc. Each strand of wire has a unique path through the coils thereby making it one word in the memory. By properly combining 10,000 wires and 20 coils, a 10,00020 -bit word catalog memory of pencil size becomes feasible.
- Magnetics-A method of increas-
(Continued on page 14)

In BOBBIN CORES, you need PRECISION and precision is the word for ARNOLD

Ultra-thin tape for bobbin cores is rolled to high precision standards for thickness and finish on our own 20 -high Sendzimir cold reducing mill, beta-ray controlled.

Write for bulletin tc-108 "TAPE-WOUND BOBBIN CORES FOR COMPUTER APPLICATIONS"'
 Includes essential data on applications and properties, fabrication and testing of Arnold Bobbin Cores; lists standard sizes, etc. ADDRESS DEPT. E-75

ployed are Deltamax, Permalloy and Supermalloy, in standard thicknesses of $.001^{\prime \prime}, .0005^{\prime \prime}$, and $.00025^{\prime \prime}$. Core properties include quite rectangular hysteresis loops, relatively low coercive values and high saturation densities, plus the ability to shift in a few microseconds from negative remanence to positive saturation, and vice versa, under conditions of pulse excitation. - Let Arnold supply your requirements for Bobbin Cores-or other tape-wound cores, powder cores, permanent magnets, erc.-from the most complete line of magnetic materials in the industry.
wsw 6399

For use in shift registers, coincident current matuix systems, pulse transformers, static magnetic memory elements, harmonic generators and similar equipment, Arnold Bobbin Cores meet the most exacting requirements.

Quality and uniformity? You'll find ther no problem-because, as a fully incegrated producer with highly modern facilities, we're able to maintain close control over every step.

Arnold Bobbin Cores are available in a wide tange of sizes, tape thicknesses, widths and number of wraps depending on the ultmate use of the core. Magnetic materials usually em-

CLC

Arnold Engineering
Company
Main Office \& Plant: Marengo, Illinois
Repath Pacific Division Plant: 641 East 61st Sreet, Los Angeles, Callf.
District Sales Offices
Boston: 200 Berkeley St.
los Angeles: 3450 Wilshire Bivd.
New York: 350 Fifth Ave. Washington, D.C. 1001.15 th Sf., N.W.
ing computing times to the millimicrosecond region through the reversal of magnetic spins occuring in thin ferromagnetic films led H. Callen of the University of Pennsylvania to conclude that these films would make satisfactory switches and increase computing time a thousand-fold.

- Microwaves - Another possible way of increasing computer speeds was discussed by W. D. Lewis of Bell Telephone Laboratories who described a possible combination of microwave components, some of which are still in the laboratory stage, to perform logical functions. High speed is attained because bandwidths of 700 mc and pulse rates of 160 mc can be obtained using microwaves.

Three methods were mentioned as ways to increase speed: detection followed by modulation; frequency conversion and sequential logic; and maintaining the basic pulse rate higher than the reciprocal of the delays in the closed loops.

- Theory only-In all the above it should be emphasized that the devices mentioned are in the think-ing-and-laboratory stage rather than concrete pieces of hardware.

Assembly-Line Machine-Gun

Ammunition belt feeds 3,000 semiconductors into machine that staples them into electronic circuits at Hughes Aircraft. A special machine was developed to fabricate the belts

FLIGHT simulators are used by United States Air Lines. In addition

Simulators Enter New Markets

Commercial and military aircraft account for largest volume. New markets boost sales

Mushrooming costs of increasingly complex commercial and military equipment have boosted the importance of the growing flight simulator business and the dozen companies in the field.

There are now an estimated 1,000 flight simulators in use in the U.S. The figure does not include the increasing number of units that simulate missiles, radar, navigation and naval equipment. Sales to airlines abroad are also growing. The units range in price up to $\$ 1$ million.

- Commercial -- The airlines are important customers for flight simulators. One airline has 15 units in use. American Airlines recently ordered electronic flight simulators from Curtiss-Wright for its forthcoming fleet of Lockheed Electra propjets and Boeing 707 turbojets.

United Airlines at its flight training center in Denver, Colorado consolidated the radio communications and navigation facilities for five simulators into a radio control center. Only three sets of communications and navigation units are required in contrast with the five which otherwise would be needed. The control center was designed and built by

United's flight simulator engineering group. The equipment includes more than 80 miles of wire and some 100 specially developed switches.

- Military - Today nearly every type of multi-engine aircraft that the Air Force has in use has its counterpart in a simulator. Now even some single engine jet fighters have simulators. In many cases, the simulators are built for crew training even before the actual planes to be flown are off the drawing boards.

Strength of the military part of the business is indicated by the fact that Erco division of ACF Industries recently had to terminate commercial orders for jet simulators because of military simulator contract priorities.

- Companies-Two years ago there were only about eight manufacturers in the flight simulator field, plus a few aircraft companies that built units for their own use. Today, according to Aircraft Industries Association, there are a dozen firms in the field commercially.
- Future-Simulators for guided missiles are gaining in importance as missiles take over more of the assignments of manned aircraft. Bendix computer division now makes a simulator for testing flght controls and guidance systems for missiles and aircraft. The new sys(Continued on page 16)

need semiconductor production equipment?

KAHLE'S
MACHINE DESIGN, DEVELOPMENT AND FABRICATION

SERVICES

ARE THE NO-RISK ANSWER

When you work with Kahle, the end result is assured . . . because all Kahle Machines are tested under your actual production conditions before shipment. In addition each machine is the result of

Kahle's continuous experience which dates back to the days of the old carbon lamp.
But Kahle is modern, too ... having already manufactured machines for every semiconductor production process. Their outstanding production records achieved for leading companies are available for your inspection. Economy is another mark of a Kahle machine . . . hundreds of standard models can help solve your problems . . . when required, a specia! design is quickly and effectively created. Relieve your engineering staff . . . assign the design, development and fabrication of production machinery and equipment to Kahle.
For an individual analysis of your problem, write outlining details.

KAMㅌ틀

GENERAL OFFICES: 1310 SEVENTH STREET NORTH BERGEN, N, J.

ENGINEERINGCOMPANY

PLANTS:
SEVENTH STREET, NORTH BERGEN, N. J
hUDSON AVE., UNION CITY, N.J.
tem reduces or eliminates the need for expensive trial flights in the evaluation and debugging of airborne systems.

Simulators are gaining in use in the Navy. A ship's characteristics demonstrator developed by Teletronics Laboratory for the
U.S. Naval Training Device Center is to be used at naval training schools and reserve training centers for demonstration and exercise in the art of ship handling. The device consists of a control unit, two self-powered radio-controlled ship models and the tank.

TRANSPORTABLE midget recomp computer recently developed is one way . . .

Military Spurs Computer Work

Many specifically military units also applicable to business problems

OVERLAP areas wherein computers can be used for both military and business purposes are becoming more apparent as information becomes available on the newer units developed for the military.

- Mini-computer-The first model of a general-purpose, all-transistor digital computer called RECOMP has been delivered to ARDC by the Autonetics division of North American Aviation. It was designed to perform in the field and to provide as nearly equal capabilities as units costing $\$ 250,000$ installed. It is a serial, single-address, internally binary computer using a rotary disk memory with a capacity of 2048 40 -bit words.

Information can be fed in by
decimal entry of mixed numbers, electric typewriter, paper tape reader or control panel keyboard while output may be decimal, octal or binary.

- Applications - Specific uses for the RECOMP show that business needs are identical to military needs as in surveying, where it can reduce data on elevations and plane tables; in construction work, to determine material strengths, grades, water flow and earth-rock movements; in navigation, to make calculations from data derived from loran-radar sources.
- Analog-A special-purpose, tran-sistor-magnetic analog computer originally developed for industrial data processing systems will now find use in testing of guided missiles. The first of a series of ten such units costing a total of $\$ 109,-$

000 and produced by Beckman Instruments will be used in ballistic missile test stands developed for Martin by Baldwin-Lima-Hamilton.

- Statistics - Adaptation of the "lag correction method" used in business statistics was recently introduced at the Missile Test Project at Patrick Air Force Base to aid in the solution of the problem of tracking guided missiles. It enables both photographic and radio information to be programmed for the computers resulting in increased accuracy in the answers.

Electrons Sterilize Army Foods

Army will spend $\$ 7.5$ million on pilot plant to preserve foods by electron bombardment
Use of particle accelerators for food preservation takes another step forward with announcement the army will build a $\$ 7.5$ million food irradiation pilot plant at Stockton, Calif. Research and Development Command of the Army Quartermaster Corps will direct the project.

- Operation-Four Varian Associates klystron tubes will power the accelerator. Output will be 24 million electron volts ($24-\mathrm{mev}$) at peak current of 420 milliamperes. The klystrons are a version of the VA-87's made for radar.
- Use-Packaged food will be sterilized by irradiation, allowing unrefrigerated storage. Lower power will inhibit sprouting, deinfest or pasteurize. Varian believes army success would lead to approval of commercial food sterilization by the Food and Drug Administration.
- Customers-Varian now has $\$ 1$ million in accelerator contracts. It is also building a one-klystron machine for a chemicals company and a two-klystron model for physics and weapons research.
Research—Stanford Research In-
(Continued on page 18)

CUT

YOUR DRAFTING TIME AND COSTS WITH CLEARPRINT "FADE-OUT" PAPER

Leading engineers and designers report that Clearprint Fade-Out Paper speeds up their drafting 10 to 15%. . cuts their costs proportionately. And Fade-Out Paper gives them prints which are sharper and easier to read, because grid lines do not reproduce.

Clearprint's perfect working surface invites pencil and pen - lines are sharp and clean. It withstands repeated erasures, too, without the slightest ghosting.

See how Clearprint Fade-Out Paper can solve your drafting problems. Order a trial roll now, and apply it to your various drawing needs.

Available with grids ruled $4 \times 4,5 \times 5,8 \times 8$ and 10×10

 lines to the inch.

Please send me sample Clearprint "Fade-Out" sheets, with prices. Send me Clearprint samples, with prices, for the following uses:

[^2]Name
Firm
Address
I

THIS IS A PRINT . . .
the grid lines disappear completely, giving sharp, easy-to-read copies.

stitute is adding a $1-\mathrm{mev}$ GE resonant transformer electron-beam generator. SRI has a $2-$ mev Van de Graaf accelerator and a cobalt-60 source. It expects to spend over $\$ 1$ million this year studying irradiation effects on plastics, polymerization, initiation of chemical reactions, effects on materials, instruments and foods.
-Competition-Electronized Chemicals Corp. is building the commercial prototype of its $\mathrm{Ca}-$ pacitron (March, 1948, ElectronICS for experimentation details). The new machine is designed for high-power assembly-line food and drug sterilization and de-infestation, plastics and petrochemical work. Average output of the Capacitron will be 30 kw . It utilizes several hundred capacitors which are charged in parallel and discharged in series 60 times a second.

Picture Tube Renewal Sales Increase

Tube makers find replacement sales of tv picture tubes cushion tv set sales declines
Although the replacement business for tv picture tubes has its problems, it represents one of the more stable parts of the volatile tv manufacturing business. Although tube makers have to continually adjust for volume changes in the initial equipment market,

Military Electronics

- Missile guidance system contract worth $\$ 6$ million for submarine launching of the Navy's Regulus missile has been awarded to Stavid Engineering. One of the new atomic submarines now on order has been designed to house, launch and guide Regulus
- Voodoo supersonic fighters, Air Force's new F-101B interceptors, will be equipped with Minne-apolis-Honeywell MB-5 electronic automatic flight control systems under a $\$ 15.5$-million contract let to the firm by the Air Material Command
- Backlog of defense production contracts for two divisions of American Bosch Arma is estimated at $\$ 300$ million. The firm is in production on the defensive system for the B-52 intercontinental jet bomber and in development and production on the guidance system for one of the intercontinental missiles
- Work on airborne electronic armanent control systems will be done by Hughes Aircraft under two Air Force contracts totaling $\$ 15.4$ million
- Radio-frequency spectroscope has been developed at Republic Aviation to detect interference in the electronics systems of newly-built jet fighterbombers. It reduces to half a day the three or more days it has taken to check aircraft electronic equipment on the production line, according to officials of the company
- Contract worth $\$ 83$ million for work on the guidance system for the Atlas intercontinental ballistic missile has been awarded to GE

they can, to a large degree, count on renewal sales volume at predicted rates. One of the biggest variables in the replacement picture tube business is competition, as it is in most other businesses.
- Growth-Size of the renewal picture tube business today and its growth since 1947 is indicated in the chart. Approximately 25 percent of the total tube business is represented by renewal sales and the percentage grows larger each year. That will continue to be the case until the picture tube itself replaced by a new development. Until that time however, tube re-

here are a few of the tubes customers asked us to create . . .
* Raytheon excels in tailoring special tube designs to meet the most critical applications of missile, aircraft, communication, computer and industrial usage
\star Thirty-four years of special tube development and manufacture
* Completely separate development and engineering facilities
\star Engineering control exłending from development "hrough production
\star Complefe environment control of all critical manufacturing operations
\star Over 250 Raytheon developed fube fypes now in use

CK6832

Reliable low noise, low drift twin triode for DC amplifiers

CK6932

Filamentary pentode (CK6088) with separate suppressor

CK6872

Semi-remote cutoff CK5702WA

CK 1050

Light indicator for transistorized computers

CK 1051

Hard glass rectifier, $P I V=2800$, $I_{\circ}=8 \mathrm{~mA}$

6AH6WA

Reliable video pentode

Consult Raytheon for your special tube requirements

SPECIAL TUBE DIVISION

RELIABLE MINIATURE AND SUBMINIATURE TUBES • VOLTAGE REFERENCE TUBES
YOLTAGE REGULATOR TUBES . PENCIL TUBES . NUCLEONIC TUBES
newal business will keep growing at the rate of nearly a half million units a year.

- Size-The 21-inch picture tube is estimated to account for over 50 percent of total tv tube renewal business. In 1952 the portion was only 8 percent. Despite the high percentage of 21 -inch tubes, however, tube makers continue to
make picture tubes for nearly every size tube that was ever produced with the possible exceptions of the 3 -inch and 7 -inch sizes.
One major tube maker produces within one year some 140 different kinds of crt's for replacement sales. Enough of these types are usually run off at one time in the year to take care of total annual requirements.

ACCOUNTANTS of Santa Fe Railroad cluster around computers while

More Railroads Choose Electronics

Santa Fe and Southern Pacific install computers as aids for boxcar and statistical control

Railroads are switching more and more to electronics to help speed up routine. Two recent entries are Southern Pacific and Santa Fe.

- Freight cars-Southern Pacific uses data processors and a computer to mastermind its boxcar distribution. Some 70,000 car records will be sifted daily to promote car handling efficiency. The system, result of three years study, will be in full operation in July. SP expects it will help whip car supply problems.
- Reservations-Santa Fe is planning electronic installations to ex-
pedite passenger reservations. Tieins with eastern railroads will handle coast-to-coast ticket sales. Last year, Santa Fe bought an IBM 650 computer to handle its payroll and business data.

Other railroads are spending millions for electronic gear to centralize traffic controls, keep goods moving swiftly through freight yards.
-Standbys-Railroads have made gigantic investments in line communication equipment, according to a survey made last year by the Association of American Railroads communications section.
Reports from 104 railroads with a total mileage of 259,485 miles, show that 237,968 pole line miles were in operation. Wires strung
included 455,135 miles of telephone carrier circuits and 1,160 ,000 miles of carrier telegraph circuits. Carrier equipment includes 4,538 voice carrier terminals, 1,043 voice carrier repeaters, 7,623 carrier telegraph terminals and 185 carrier telegraph repeaters.

Other equipment used in bulk includes paging units, 11,568 ; talkback units, 7,927; intercommunication systems, 1,104 , with 3,273 master units and 3,209 substations. The railroads have $13,800 \mathrm{em}$ ployes assigned to communication work.

- Meeting-Association of American Railroads, communications section, holds its annual session May 21-23 in Toronto, Canada. Railroaders will hear talks and reports on new electronic development, microwave planning, highspeed communications, recorders and government actions.

Military Electronics Spending Rises

Expenditures for aircraft and communications rise sharply ars missiles decline
Defense military electronics expenditures increased nearly 50 percent in the second quarter of fiscal 1957 over the first quarter.

RETMA reports total expenditures rose from $\$ 632.6$ million in the first quarter to $\$ 903.7$ million

(Continued on page 22)

How to Meet Tougher Specifications for Shock and Vibration Protection in Jets and Missiles

You've got to design to tougher specifications for combined shock and vibration isolation if you're going to protect the reliability of electronic controls in today's high-performance jets and missiles. Faster accelerations, zerolength launching, and extreme maneuverability combine to impose shock and vibration loads far beyond current MIL specs. These severe operating conditions must be reduced to a predictable environment suitable for electronic equipment.

Isolator Requirements

Higher shock inputs require more stiffness in the isolator, to store more energy for a given deflection, so there will be less energy to dissipate if the isolator bottoms. Higher vibration amplitudes call for greater clearances and minimum transmissibility at resonance. And vibration protection under high-g sustained acceleration demands a combination of these characteristics.

Use of Performance Curves

The characteristics of an isolator having the stiffness necessary for handling the shock and sustained accelerations of jet and missile take-offs is shown by the curves of Figure 1. These curves can be used in choosing the proper isolator for operation under the expected service conditions, since they show both the deflection of isolators under a wide range of loadings and the maximum allowable deflection due to the combination of static load, sustained acceleration, and vibration amplitude.

A transmissibility at resonance well below three -- considered exceptionally low - is shown by the curves of

Figure 2. The measurements for these curves were made with a 27 -pound load supported on four 10 -pound isolators, with double-amplitude vibration input of 80 mils. These curves, showing performance for both base and bulkhead mounting, also indicate that the isolator satisfies the need for consistent operation in every attitude of flight, launching, and maneuvering.

Figure 3 illustrates the construction of the B64 isolator that provides the performance characteristics shown by the curves, yet is dimensionally interchangeable with MIL-size mounts of comparable load ratings.

The following example shows how Figure 1 aids in the choice of an isolator to give vibration protection under sustained accelcration. The straight part of the curves shows that the working range for each isolator allows about 190 mils maximum deflection (for axial loads). This occurs at about

SALES REPRESENTATIVES IN ALL PRINCIPAL CITIES
in the second. Total electronics spending for the first half reached over $\$ 1.5$ billion.

The RETMA figures include that portion of military expenditures for electronics from such major defense procurement categories as aircraft, ships, combat vehicles, guided missiles, electronics and communications, and research and development. They are intended primarily to be used to depict trends, and subject to later revision. The trend in each category is shown in the chart.

- Rise - Percentage-wise, the $\$ 353.0$ million expended for aircraft electronics represents a 39.1 -percent portion of the total spent for electronics in the second quarter of the fiscal year.

In the first quarter, 33.7 percent of the electronics budget went for aircraft electronics.

In the electronics and communications field, the $\$ 236.0$ million spent by the Defense Department in this category for electronics represents 26.1 percent of the total spent for electronics in the second quarter, an increase of about six percent over the amount expended in the first quarter.

For guided missiles, 23.9 percent, or $\$ 216.0$ million, of the total spent for electronics was expended during the second quarter, compared to nearly 33 percent in the first quarter.

FCC Actions

- Decided to study frequency allocations between 25 and 890 mc for the first time since 1944. This will supplement current vhf-uhf tv survey
- Added fourth vhf to Miami, a third vhf each to Charleston, S. C., Duluth-Superior and Norfolk-Portsmouth-Newport News areas
- Received petition from transit-mix concrete group for more frequencies in the region from 152 to 162 mc
- Designated hearing for AT\&T and RCA Communications relative to radiotelephone service between San Francisco and Hawaii. AT\&T requests renewal; RCAC wants a new station
- Considered tariff schedules applicable to off-air pickup and relay for television programs
- Took request to permit railroads to furnish radio communication to transportation services under contract now in existence
- Received bid to liberalize radiation and power-line interference limits for one year on tv, $f-m$ and other receivers

Asked by users in petroleum radio service to allow sharing of 27 frequencies between 30.86 and 47.38 mc

- Warned prospective users of industrial, scientific and medical or radio operations against investment in equipment for 915 mc since reallocations may be effected
- Continued consideration of toll-ty
- Revealed total of 24 translators now on air, 17 grants and 54 pending

Magnetic Cores Add Volume, Ferrites Gain

Most core types show increase in sales. Ferrite figures now available

In 1956 some 201-million powdered iron cores were shipped compared to 195 million in 1952.

In addition, the use of ferrites in electronics has also reached substantial proportions. Now the Metal Powder Association keeps score on how much is used each year. The first compilation, for

1956, shows that about $55-m i l l i o n$ ferrite units were shipped last vear.

- Core-The bulk of the 200 -million cores shipped last year to electronic manufacturers was made up of threaded and insert cores. Some 115 -million threaded cores were shipped in 1956 compared to 80 million in 1952, practically a 50 -percent increase in volume.
(Continued on page 24)

SOME TYPICAL MESC日E APPLICATIONS

1. INDUSTRIAL CONTROL
2. InSTRUMENTATION
3. COUNTERS
4. COMPUTERS
5. MILITARY ELECTRONIC indicators
6. CHANNEL INDICATOR
7. INDICATOR BOARDS
8. DIGITAL VOLTMETERS
9. PAGING SYSTEMS
10. Elevators
11. RADAR

ANY NUMBER SELECTED IS INSTANTLY READABLE

The first mass-produced all electronic readout tube ... NIXIE IS NOW IN VOLUME PRO. DUCTION at the Burroughs Corporation Electronic Tube Division...
NIXIE is a gas-filled, cold cathode tube which contains all the numerical digits 0 to 9 , any individual number can be simply selected and displayed in a common viewing area, the ideal method for converting electro-mechanical or electronic signals directly to readable characters.

NIXIE Design Advantages include: Unlimited Rate of Change, Lawest cost in-line Indicator. Lowest Power in-line Indicator. Operation Unaffected by Temperature Changes. Multiple Remote Indications From One Driving Circuit. Production Uniformity From Tube to Tube and Number to Number. Human Engineered for Performance, Appearance, and Reliability.

Electronic Tube Division

Plainlield. New lersey

Insert cores, which represented a volume of 80 million in 1952 , dropped about 30 million last year. Insert cores are those in which a metal insert is molded cemented in one or both ends.

Other core shipments in 1956 totaled 55 million units. The figure tuning cores which are side or end molded iron cores for continuous permeability tuning with an insert cemented or molded into it, the coil form which is an iron core formed with wire leads at both ends, and special and miscellaneous types of cores.

- Ferrites-Of the 55-million ferrite units shipped last year, about 20 million went into yokes and some 12 million into flyback cores. The remainder went into miscellaneous uses including applications where pondered iron cores are used.
- Growth-Importance of metallurgy in electronics is indicated by the growing number of electronics manufacturers who have become part of the Metal Powder Association. Today over 15 companies in the field are members compared to nine two years ago. MPA holds its 13 th annual meeting and the 1957 Metal Powder Show April 30 and May 1 in Chicago.

Radar Tracks in 3D

Plug-in type camputer uses printed circuits, 1,500 transistors and 11,000 diodes as part of radar track-whilescan system that automatically tracks up to 72 targets in three dimensions. Developed by Westinghouuse, the system presents three-dimensional information from a single-radar source

Whats Behind Military Turnover?

Military services have been unable to retain the people they train long enough for them to gain the experience required to meet the qualitative needs of the services. This is especially true in the military electronics field. To help, Defense Secretary Wilson organized the Defense Advisory Committee On Professional \& Technical Compensation. The chart represents part of the study and conclusions of the committee.

- Why - As the graph indicates, military compensation for radioradar systems technician with three dependents compares favorably for the beginner and stays fairly close to the civilian hourly worker during the first few years. The gap begins to widen at the point of decision on reenlistment.

The chart shows that regardless of dependency status, the serviceman concluding his first tour of duty can normally expect higher

pay and greater promotional opportunity in a starting civilian job.

The study also showed that in the new expanding technologies such as electronics where skilled manpower is at a premium, there are greater than normal opportunities available, and young workers can expect to progress rapidly.

Console Guides Airborne Missiles

Central control point for ground piloting the X-10 and other Navaho test vehicles in North American's missile pilot console. An f-m/f-m radio-command system, the console enables continuous control: take-off, turns, pitch and landing.

Coder permits simultaneous sending of 30 different signals over one frequency. Weight and size of receiving equipment is reduced by half.

Standard installation incorporates two uhf transmitters which share a common antenna. A carrier guardian circuit monitors the output of each transmitter, and automatically shifts transmitters if trouble should develop in one. Energy is radiated by an omnidirectional, circularly polarized antenna.

- Rates - On-off commands are coded by controlling the repetition rate of each subcarrier and the possible combinations of repe-

Dials show telemetered information from in-flight $X-10$ or other Navaho test vehicle while controls direct flight
tition rates of the two subcarriers. When no switch commands are actuated, each subcarrier is deviated at a repetition rate of 100 cps. This combination establishes home position, or condition of no command in airborne decoder.

A total of 29 available on-off commands and a home position satisfy the requirements for flight

NOW...200, 300, 400 \& 500 AMPERE

DC POWER SUPPLIES

with wide continuously adjustable

24 "IO 32 VOLT RANGE

by DTATRTM!

APPLICATIONS:

- Centralized Laboratory or Plant DC Power. - Missile Check-Out and Launching
- Aircraft Engine "Soft" Starting and Testing. - Battery Charging \& Standby Service
... and other heavy duty 28 volt DC Power applications.

immediate delivery!

OUTSTANDING FEATURES:

Automatic Magnetic Amplifier Regulation to $\pm 1 / 2 \%$...Nc Tubes, Moving Parts or Vibrating Contacts . . . Renote Voltage Sensing to Provide Regulation at Remote Loads... Wiłe 24 to 32 Volt Output Range to Compensate for Voltage Drop in Output Cable ...Fast Response (0.1 to 0.2 seconds) With No Hurting or Drift. ..AC line Voltage Stabilization...No Disturbing Radio Interference ... Higher Efficiency, Maintenance-Free and No WarmUp Time as Compared to M-G Sets...MIL-Type Workmanship \& Conservative Design.
There are over 15,000 Perkin units in operation in industry today.

ADDITIONAL SPECIFICATIONS:

Regulation: $\pm 1 / 2 \%$ for any combination of line and load changes.
AC Input: 208,230 or $460 \mathrm{~V}, \pm 10 \%, 3$ phase, 60 cps . Ripple: 1% RMS.
All units available with dollies for mobility.

AVAILABLE MODELS:

MR2432-200A, $200 \mathrm{amps} \cdot \mathrm{MR2432-300A}, 300 \mathrm{amps} \cdot \mathrm{MR2432-400A}, 400 \mathrm{amps}$
MR2432-500A, 500 amps
When you require a power supply, SPECIFY PERKIN,
for a wider range of standard models and immediate delivery from stock. Wire factory collect for prices. For a prompt reply on your application, write factory on your letterhead.

PERKIN

PERKIN ENGINEERINGCORPORATION

 345 KANSAS STREET, EL SEGUNDO, CALIFORNIA - OREGON 8.7215Leader in Tubeless Magnetic Amplifier Regulation
Immediate Delivery on standard models available from factory and:
New York area office: Sales and Warehousing: 1060 Broad St., Newark 2, N.J., MArket 3-1454 Chicago area: Loren F. Green \& Associates, 5218 W. Diversey Ave., Chicago 39, III., PAlisade 5.6824

28 Volt Models

Model	Volts	Amps	Reg.	AC Input (60 cps)	Ripple rms
28-5VFM	0.32 V	5	$\begin{aligned} & 15-20 \% \\ & (24-32 \mathrm{~V} \\ & \text { range) } \end{aligned}$	$\begin{gathered} 115 \mathrm{~V} \\ 1 \text { phase } \end{gathered}$	2\%
28-10wX	24-32 V	10	$\pm 1 / 2 \%$	$\begin{gathered} 100-125 \mathrm{~V} \\ 1 \text { phase } \end{gathered}$	1\%
MR532-15A	2-36V	15	$\pm 1 / 2 \%$	$\begin{aligned} & 105-125 \mathrm{~V} \\ & 1 \text { phase } \end{aligned}$	1\%
28-15VFM	0.32 V	15	$\begin{aligned} & 15-20 \% \\ & (24-32 \mathrm{~V} \\ & \text { range) } \end{aligned}$	$\begin{aligned} & 115 \mathrm{~V} \\ & 1 \text { phase } \end{aligned}$	5\%
M60V	0.32 V	25	$\pm 1 \%$	115 V 1 phase	1\%
MR1040-30A	5-40V	30	$\pm 1 \%$	$\begin{gathered} 100-130 \mathrm{~V} \\ 2 \text { phase } \end{gathered}$	1\%
28-30WXM	24-32V	30	$\pm 1 / 2 \%$	$\begin{gathered} 100-125 \mathrm{~V} \\ 1 \text { phase } \end{gathered}$	1\%
28.50wX	$\begin{aligned} & 24-32 y \\ & \pm 10 \% \end{aligned}$	50	$\pm 1 / 2 \%$	$\begin{aligned} & 230 \mathrm{~V}^{\circ} \\ & 3 \text { phase } \end{aligned}$	1\%
$\begin{gathered} \text { MR2432- } \\ 100 \times A \end{gathered}$	24-32V	100	$\pm 1 / 2 \%$	$\begin{gathered} 208 / 230 V^{*} \\ 3 \text { phase } \end{gathered}$	1\%
$\begin{gathered} \text { MR2432- } \\ 200 \end{gathered}$	24-32 V	200	$\pm 1 / 2 \%$	$\begin{gathered} 208 / 230 V^{*} \\ 3 \text { phase } \end{gathered}$	1\%
$\begin{gathered} \text { MR2432. } \\ 300 \end{gathered}$	24.32 V	300	$\pm 1 / 2 \%$	$\begin{gathered} 208 / 230 \mathrm{~V} \\ 3 \text { phase } \end{gathered}$	1\%
$\begin{gathered} \text { MR2432- } \\ 500 \end{gathered}$	24.32 V	500	$\pm 1 / 2 \%$	$\begin{gathered} \text { 208/230V } \\ 3 \text { phase } \end{gathered}$	1\%
$\pm 10 \%$. Also available in $460 \mathrm{~V} \pm 10 \%$ AC input. Will be supplied with $230 \vee$ input unless otherwise specified.					

6, 12, 115 Volt Models

	Model	Volts	Amps	Reg.	AC Input (60 cps)	Ripple pms
	6.5WX	$\begin{gathered} 6 \\ \pm 10 \% \end{gathered}$	5	$\pm 1 \%$	$95 \cdot 130 \mathrm{~V}$ 1 phase	1\%
$\underset{0}{\stackrel{\rightharpoonup}{0}}$	6.15wx	$\begin{gathered} 6 \\ \pm 10 \% \end{gathered}$	15	$\pm 1 \%$	95.130 V 1 phase	1\%
	6-40wx	$\begin{gathered} 6 \\ \pm 10 \% \end{gathered}$	40	$\pm 1 \%$	95.130 V 1 phase	1\%
	12-15wx	$\begin{array}{r} 12 \\ \pm 10 \% \\ \hline \end{array}$	15	$\pm 1 \%$	$95-130 \mathrm{~V}$ 1 phase	1\%
	115-5wx	$\begin{gathered} 125 \\ \pm 10 \% \\ \hline \end{gathered}$	5	$\pm 1 / 2 \%$	$95 \cdot 130 \mathrm{~V}$ I phase	1\%
\approx	MR15125-5	15-125	5	$\pm 1 \% \dagger$	$95-130 \mathrm{~V}$ 1 phase	1\% ti
	6125-25**	115-125	25	$\pm 11 / 2.4 \%$	$\begin{array}{c\|} \hline 230 / 460 \mathrm{~V} \\ 3 \text { phase } \end{array}$	5\%
**Germanium Rectifier Unit itlncreases to 4\% @ 25 V . †\|ncreases to 2% @ 15 V .						

test of the missile，as well as for recovery and range safety．

Telemetering equipment reports to the ground the strength of the signal the missile is receiving． When the signal fades due to dis－ tance，the ground operator turns the vehicle over to a control cen－ ter nearer the missile．

Financial Roundup

Compary	Nut Iratit	
	1：106	195．
Admiral 12 m	\＄1，0：2．274	\＄3．9：32．14t
Americath borial		
1 211	4，69－6，3，57	\％．38．3．56\％
АС1\％	5，958，404	6，005，9111
AN゙＊1－2m	＜．621，001	4，408，600
13nmoumhs 12m	14.147 .021	$11.8: 31.504$
Clarostat 1 Ön	シ2－ 421	164.3 \％
Consolidated		
E1P0tr 12か	1，28：3，2f：	80： 693
DuMont 1－m	＊：SSさ7．004	＊3．674．040
Fimerson 12 m	84．8\％${ }^{\text {a }}$	2，468．013
		2.294 .145
Cieneral Flectric 1 －m	$21: 200.01141$	2018,9411000
Fioth Voltagt 1？ 1 m	$167.85-1$	106.45 \％
Totfman 12m	1．61） 1.37	1．510．5\％
$\underset{12 \mathrm{~m}}{\text { Indiana }}$	764．3．3f	
バintel prodlatis 1 12m	－25．167：	＊ $1 ., 25.4$
Minmpruta		
Mining 12m	：88437．684	
Notombla 12 m	7．966．817	
1＇hileo 1－m	$394.613+4$	
RCA 12 m	10，10\％1，（0100	17．525．61013
Servomechan－ iswn： 2m		$447, \therefore$ ¢ 7
Spragur Filectide $12 \mathrm{~m}$	2.176 .297	3，0113，12．
	6．fi32，3！ 5	$6.163,217$
	$13,7116.18 .1$	1：3，812．970
Texas Instru－ ments 19 m	2，3＋4．70．？	1．581，790
Tum』 Sul 1－14	2.909 .347	106.459
Zenith 12m	$6.17 \times .717$	$8.10: 4.491$

Soldering Irons Build Computers

Nearly 500 small GE soldering irons of the type shown are used to salder about a halt－million joints needed to make one IBM 705 function．Joints soldered in the magnetic core memory unit alone total nearly 9,000

Industry Shorts

－Noncommercial educational tv stations on the air now number 24 ， according to the Joint Council On Educational Television．Seven more stations are expected on the air during the year．
－Sales of special－formula waxes made by Dennison Manufacturing for use in the production of tran－ sistors are rising steadily．Waxes are used to hold germanium metal in position during precision ma－ chining of the metal into tran－ sistor crystals．The material is not carried in inventory because pro－

May 20－23： 1957 Electronic Parts Distributors Show，Con－ rad Hilton Hotel，Chicago，Il1，

May 22－25：URSI Spring Meet－ ing，Hotel Willard，Washing－ ton，D．C．
May 27－29： 1957 National Tele－ metering Conference，AIEE， ISA，IAS，Hotel Cortez，EI Paso，Texas．
June 6－7：First National Sym－ posium On Production Tech－ niques，IRE，Willard Hotel， Washington，D．C．
June 10－11：Second RETMA Symposium On Applied Re－ liability，Mature Design／Reli－ able Design，Hotel Syracuse， Syracuse，N．Y．
June 17－19：First National Meet－ ing Of PGMIL of IRE，Shera－ ton Park Hotel，Washington， D．C．
June 19－21：Twelfth Annual Meeting，Association For Computing Machinery，Uni－ versity Of Houston，Houston， Texas．
June 27－29：Thirteenth anmual meeting．Institute Of Naviga－ tion，Sheraton－Park，Hotel， Washington，D．C．
June 27－July 1 ：British IRE Convention，＂Electronics In Automation＂，University of Cambridge，England．
Aug．20－24： 1957 WESCON， IRE，WCEMA，Cow Palace， San Franciseo，Calif．
duction techniques in electronics change too rapidly，according to the company．
－Electronic color photography system that would provide perma－ nent prints of pictures taken less than five seconds earlier at points thousands of miles away is fore－ seen by Irving Wolff of RCA．
－Weather Bureau awarded a 1.2 － million contract to Servo Corp．to develop a radiotheodolite for au－ tomatically tracking a balloon－ born radiosonde transmitter of 50 milliwatts for a distance of 100 miles．

Mega-Sweep
 MODEL MARKER

NOW - A Kay MEGA-SWEEP with markers

Basically, the MEGA-SWEEP, MODEL MARK. $E R$ is a Mega-Sweep, 111-A. In addition, the unit employs harmonics of a crystal-controlled oscillator at 5 mc and 50 mc to provide two series of marks at harmonic frequencies over the entire range of the Mega-Sweep. The crystal calibrators may be switched to either 5 mc or 50 mc ; the 5 mc crystal may be used to measure bandwidth, the 50 me frequency crystal may be used for determining center frequencies.

See us at the Armed Forces
Communications \& Electronics
Convention
May 20-22 Washington, D. C. Booth 46

- A broad-band high frequency sweeping oscillator with built-in crystal calibration.
- Combines flexibility of MegaSweep with accuracy of harmonic crystal oscillator.
- Meets the demand for accurate high frequency band pass alignment.
- Provides continuously variable sweep widths and center frequencies from 50 Kc to 40 mc .
- Provides crystal-controlled birdie type marks over the entire range.

[^3]

START OF SLUMP TEST

SUPRAMICA* 560 ceramoplastic insulation (Left) is to be compared with SUPRAMICA* 555 ceramoplastic (Center) and MYCALEX 410* glassbonded mica - the best available materials with comparable properties.

30 MINUTES AT $550^{\circ} \mathrm{C}$
SUPRAMICA 560 is unaffected - SUPRAMICA 555 shows a slight tendency to slump - MYCALEX 410 shows a marked slump.

SUPRAMICA 560 ceramoplastic

LIGHTWEIGHT MATERIAL CAN BE MOLDED WITH FRAGILE INSERTS

SUPRAMICA 560 ceramoplastic will free your designs from many of the functional limitations imposed by conventional insulating materials. Manufactured exclusively by Mycalex Corporation of America, SUPRAMICA 560 has the electrical and physical properties to meet exacting high-temperature insulation specifications - in applications where no other material can be used!

Proof of this high temperature performance is shown by these unretouched photographs of an actual "slump" test (Above). The characteristics listed at the right dem. onstrate the versatility of SUPRAMICA 560 ceramoplastic.

Lighter in weight than any comparable material specific gravity similar to that of aluminum or mineralfilled polyesters - SUPRAMICA 560 is the perfect insulation for relay bases, connectors, tube sockets and many other parts in high-temperature components.

MYCALEX CORPORATION OF AMERICA precision molds this revolutionary new material for your product needs. Send for complete information.

SPECIFICATIONS: SUPRAMIEA 560 ceramoplastic	
dISSIPATION FACTOR, 1 MEG.	0.003
dielectric constant, 1 MEg	6.8
LOSS FACTOR, 1 MEG.	0.020
VOLUME RESTIVITY, OHM-CM	10.14
SPECIFIC GRAVITY	2.8 (Comparable to Aluminum
SAFE OPERATING TEMP.	
CONTINUOUS	$500^{\circ} \mathrm{C}$
SHORT-TIME	$600^{\circ} \mathrm{C}$
WATER ABSORPTION	NIL
HARDNESS, ROCKWELL M	125
THERMAL EXPANSION	12.4×10^{-7} (Same as SAE 1010 Steel)
Flexural Strenget, PSI	15,000
INSERTS	WILL ACCEPT ALL
	MOLDED-IN VARIETIES

-SUPRAMICA, MYCALEX, and 410 are registered trade-marks of MYCALEX CORPORATION OF AMERICA.
555 is a trade-mark of the MYCALEX CORPORATION OF AMERICA
SYNTHAMICA is a trade-mark of SYNTHETIC MICA CORPORATION, a subsidiary of MYCALEX CORPORATION OF AMERICA.

75 MINUTES AT $550^{\circ} \mathrm{C}$
SUPRAMICA 560 remains unaffected - SUPRAMICA 555 has cracked and shows a definite slump - MYCALEX 410 shows foaming and complete slump.

75 MINUTES AT 550° PLUS 15 MINUTES AT $650^{\circ} \mathrm{C}$
SUPRAMICA 560 ceramoplastic still shows NO NOTICEABLE EFFECT SUPRAMICA 555 has completely cracked through - MYCALEX 410 has foamed and collapsed.

INSULATION FOR CONTINUOUS OPERATION AT $500^{\circ} \mathrm{C}$

TEMPERATURE ENDURANCE TEST ON MOLDED COMPONENTS

MYCALEX CORPORATION OF AMERICA

[^4]SALES OFFICES:
CHICAGO - DAYTON LOS ANGELES - MIAMI WASHINGTON

Solve core problems quickly, economically with

 FERRITE COMPONENTS by General ceramics```
HUNDREDS OF STANDARD PARTS
plus CUSTOM DESIGNING TO SPECIFICATIONS
```



STANDARD ANTENNA RODS


THREADED TUNING CORES


STANDARD
El CORES


RECORDING
HEADS


#  <br> PHIICO 60V o.t 80V Power Trunsistors 

## Designed for servo, confrol, power converter and power supply applications.

Here are extremely reliable, moderately priced, high voltage power transistors-immediately available in production quantities. These transistors perform with a typical thermal drop of only $11 / 2^{\circ} \mathrm{C}$ per watt . . . with storage temperature of $100^{\circ} \mathrm{C}$. They have high beta at high currents . . improved alpha cut-off . . . low surface leakage currents . . . low saturation resistance . . . low distortion. Both transistors operate at power load of 12.5 watts. The unique knee-action between the aluminum mounting clamp and the copper mount assures maximum dissipator contact at all times.


Philco cold-welding process permits hermetic sealing in controlled atmosphere... assuring exceptional transistor life and performance!


Philco transistors, after vacuum baking, emerge into a controlled atmosphere ... where they are welded to insure perfect sealing for life. This process eliminates contamination of the transistor elements by moisture or atmosphere. Uniformity and quality control are strictly maintained throughout.

## 3H M115

## SILICONE RUBBERTFIBERGENS

Silicone rubber insulations are recogylzed for forir resistance to degradation under heat. But when co many pigments react with the silicone to destroy the effect for of the insulation. With BH " 1151 " Fiberglas* Silicone Elastomeric Sleeving you have color and positive pfoduct pfotection.
Whether you use Natural (Offwhite), Red, Yellow/Blue, Green, Brown, Orange or Violet, the superior insulation benefits are the same. And, with tracer stripes avalable in all colors, 64 combinations are at your command.

The precisely compounded coating of BH " 1151 " produces a Class "H" sleeving that easily meets MIL-I-18057 specifications. It offers product protection through a continuous operation range of $-90^{\circ} \mathrm{F}$. to $400^{\circ} \mathrm{F}$., with no adverse effects from high spot soldering temperatures. The resiliency and strength of the sleeving permit expansion to cover irregularities and terminals.
Send for data sheets and production testing samples of BH " 1151 " . . . testing is believing!

Bentley, Harris Manufacturing Company
1305 Barclay Street
Conshohocken, Pa. - Telephone: TAylor 8-0634

2647288) "Farris process (U.S. Pat. N

# Hectron Tube News -from SYLVANIA 

## Meeting industry's basic needs-everywhere in electronics

## - IN STACKED TUBES

## Sylvania and Industry team up to evaluate "Tubes of the Future"

Handmade samples of Sylvania stacked tubes are being made available to interested military equipment manufacturers. These potential users are conducting experiments which provide them with basic experience in the application of these radically new vacuum "tubes of the future."

In turn they are supplying Sylvania with analyses of their findings on the potential advantages of stacked tubes, their resistance to heat, shock, vibration, altitude and humidity. This teamwork, the interchange of data and ideas, will benefit the entire electronics industry. It will speed the full-scale avail-

## -IN TELEVISION



Type 6CZ5
for $110^{\circ}$ vertical deflection
The Sylvania Type 6CZ5 is a beam pentode intended primarily for use as a vertical amplifier or audio amplifier and has controlled heater warm-up for series string operation.

## Vertical Deflection Ratings (pentode connection)

Plate V .
.315 V max.
Peak Positive Plate V... 2200 V absolute max. Plate Dissipation. . . . . . . . . . . 10 Watts max. Grid No. 2 V. . . . . . . . . . . . . . . 285 V max. Grid No. 2 Dissipation. ....... 2 Watts max.


## Type 6DQ6A

for $110^{\circ}$ horizontal deflection
The type 6DQ6A has been upgraded for higher screen dissipation to meet the need for a horizontal deflection tube in $110^{\circ}$ circuits. For series string circuits the type 12DQ6A features controlled heater warm-up time and 600 ma heater current.

## Design Center Ratings

Peak Positive Plate V. . 6000 volts abs. max. Plate Dissipation................. 15 W max. Grid No. 2 Dissipation............ 3 W max. Zero bias plate current.............. 300 ma

Internal view and completely assembled ceramic stacked tube.
ceratita


Exploded view of stacked tube demonstrates its rugged planar mount construction utilizing ceramic element spacers assembled on a ceramic stem. Note that element spacings are independent of the tube envelope.
ability of stacked tubes and make possible refinements in design which will take full advantage of the inherent potentials of the stacked tube.

Presently, experimental sampling includes single cathode double triodes and ar audio power pentode. Development is underway to include double cathode dual section tubes and RF and audio pentodes in the basic complements planned for military application.



## -IN GUIDED MISSILES

## New Guided Missile Line "giant step" in the evolution of tube reliability

Sylvania offers the first line of tubes specifically designed and tested for guided missile application to meet the industry's need for greater reliability where severe conditions of environmental temperature and vibration exist.


Visual inspection-visual inspection criteria as outlined in MIL-E-1C is applied to Guided Missile Tube production. This highly stringent and definitive spec helps to insure optimum reliability.


This line of tubes and the new levels of reliability it achieves represent the newest step in Sylvania's continuing program of tube reliability.

The Guided Missile Tube Line, developed under a Buship contract, is the result of thorough investigation of the missile field and emphasis in design has been placed on those tube parameters most critical to missile requirements.

Features of the line include new reliability tests such as "white noise," more severe flicker short tests, and more stringent fatigue test.

Of equal significance is the manufacturability of the Guided Missile Tube Line. It is capable of being mass produced on present facilities to meet military requirements in time of need.

## 7 types meet the <br> basic requirements for Guided Missile applications

| Sylvania exp. type | Description | Nearest Protorype |
| :---: | :---: | :---: |
| SN1774A | Sharp cuteff RF pentode | 05 |
| SN1775A. | Semi-remote cutoff RF pento | . 6206 |
| SN1776A |  |  |
| (6788) | Pentode audio voltage amp | er. |
| SN1777A. | Audio beam power pentode | . 5902 |
| SN1778A. | Medium mu single triode | 5977 |
| SN1802A. | Double, medium mu triode | 6021 |
| SN1803A. | Double, high mu triode. | 6112 |

## -IN FACILITIES

Subminiature plant combines "area cleaning" with "point cleaning" to help achieve greater tube reliability.
Sylvania's plant at Burlington, lowa, is the most modern plant ever designed, built, and equipped for the exclusive production of "Gold Brand" premium subminiature tubes.

The recent installation of complete air conditioning and air purification adds a new measure of control in the manufacture of the world's most reliable tubes.


"area cleaning"-new installation of complete air conditioning and air filtering keeps areas, such as mounting department, relatively free from dirt and dust.

"point cleaning"-immediate work areas are kept spotlessly clean as in mount assembly. Air currents under hooded tables isolate the mounting area from outside air.

temperature control-plays an important factor in manufacturing processes, such as heater preparation. Makes it possible to control the manufacture of small diameter 26.5 volt heaters for maximum uniformity and dependability.

## -IN COMMUNICATIONS

## New Subminiature Types for 26.5 Volt Systems

Sylvania now offers the designer a line of subminiature tubes designed with 26.5 volt heaters for systems operating from 26.5 volt power supplies. Mechanical and electrical design are combined with a proved quality control program to assure a high degree of reliability. "Burn-in" period before test improves the life expectancy rated at 5000 hours under life test conditions.

In addition to types rated for 26.5 volts on all elements, other types are provided for higher plate voltage operation. Thus the designer will find greater circuit design flexibility through appropriate selection of types to meet his equipment needs.


| Type | Description | Heater Voltage | Plate Voltage |
| :---: | :---: | :---: | :---: |
| 5903 | . Double diode with. . separate cathodes | $26.5$ | Detector |
| 5904. | . Medium Mu Triode | 26.5 V | 26.5 V |
| 5905. | . Sharp cutoff RF pentode | 26.5 V | 26.5 V |
| 5906. | . Sharp cutoff RF pentode | . 26.5 V | 100 V |
| 5907. | . Remote cutoff RF pentode | . 26.5 V | 26.5V |
| 5908. | . Pentode mixer | . 26.5 V . | .26.5 V |
| 5916. | Pentode mixer | .26.5 V. | . 100 V |

## - IN CATHODE-RAY TUBES

## Lightweight $17^{\prime \prime}$, $90^{\circ}$ tube is TV's newest picture tube development

Following closely on the heels of the $110^{\circ}$ picture tube, Sylvania announces a $17^{\prime \prime}$ tube with $90^{\circ}$ deflection and standard neck diameter for portable TV application. The new $17^{\prime \prime}$ tube is three pounds lighter than the currently popular $17^{\prime \prime}$, $90^{\circ}$ types.

Types are offered with either a 450 ma or 600 ma heater, for use with or without ion-trap. This new development makes it possible to design lighter portables while using readily available deflection yokes and existing circuitry.



## New Flying Spot Scanner Tube

The new Sylvania Type 5BNP16 flying spot scanner tube is a typical development in Sylvania's rapidly expanding special purpose cathode-ray tube program.
It is an inexpensive tube with shorter overall length ( $105 / 8^{\prime \prime}$ ). It employs low voltage electrostatic focus, an aluminized screen, and operates without ion-trap for simplified installation.


## -IN TUNER AND IF TYPES



## 6 BN4

Medium mu triode designed for amplifier use in VHF tuners. Characteristics are similar to one section of the 6BZ7. 3BN4 and 2BN4 are series string versions with controlled heater warm-up.

## -IN RECTIFIERS



Type 12DF5

The 12DF5 is a T $61 / 2$ full wave rectifier with separate cathode connections and center tapped heater. Its ratings are comparable to the type 12 BW 4 . Unique construction adds flexibility in rectifier or doubler use and permits operation from 6 - or 12 -volt heater supply.

## 6 CY 5

Sharp cutoff tetrode designed particularly for amplifier service in VHF tuners. Types 4 CY5, 3CY5, and 2CY5 offer controlled heater warm-up for series string circuits.

6DK6
7-pin miniature sharp cutoff pentode. High transconductance at low plate and screen potentials make them especially useful as TV IF-amplifiers. Types 3DK6 and 4DK6 are series string versions.

## - IN COMMUNICATIONS

Type 407A Type 408A
Type 407A is a T6 $1 / 2$ double triode with separate cathodes and a center-tapped heater for 20 - or 40 -volt operation. Its useful range extends to VHF for use as an amplifier, oscillator, multi-vibrator, or clamper.

Type 408A is a 7 -pin, T5 $1 / 2$ pentode for 20 -volt heater operation. High Gm makes it desirable for amplifier service from audio through VHF ranges.



Here is a chart designed to fit your notebook or hang conveniently on the wall. It is a complete listing of all 600 ma and 450 ma tube types designed for series string operation.

Sylvania Electric Products Inc.
1740 Broadway, New York 19, N. Y. In Canada: Sylvania Electric (Canada) Ltd. Shell Tower Bldg., Montreal

LIGHTING• RADIO• TELEVISION• ELECTRONICS• ATOMICENERGY

Please send additional information on the items checked below.


Use this handy business reply card to request additional information on these important new Sylvania developments

Address
Company
$90^{\circ}$ Lightweight $17^{\prime \prime}$ Picture Tube
$110^{\circ}$ Deflection
6AW8A-6BA8A5BNP16 6DK6 Series String Chart Tuner Types
12 DF 5 407A - 408A


## The MARCONI Dielectric Test Set Type TF 704B

The Marconi TF 704B Dielectric Test Set allows precise evaluation of the permittivity and phase defect of dielectric materials in the frequency range 50 kc to 100 Mc .

The principle of measurement is to introduce the sample under test into a tuned circuit and then, by means of a square-law voltmeter with high-discrimination mirror galvanometer, note the changes in circuit conditions.

The heart of the Test Set is the jig holding the sample under test. There is one jig for solid specimens and another for liquids. The jigs are masterpieces of the instrument maker's art ; their high-quality construction is a blend of precision and ruggedness, which ensures accuracy and stability.


Dielectric Test Set Type TF 704B
The equipment includes two interchangeable oscillator units and a full range of jig loading coils.


In addition to the investigution of dielectrics, the highfrequency performance of resistors, capacitors, cables, etc., can be determined over a wite range.

## Marconi-since 1897

44 NEW STREET • NEW YORK 4
CANADIAN MAREONI COMPANY.
6035. COTE DE LIESSE. montreal 9. canada.


## How Transicoil servos help aerial camera take clear stills even from low fast planes

It's one thing to take a picture of a moving object. But it's quite another to get good clear shots of the ground from low altitude aircraft moving at today's jet speeds. Universal Camera Control System (UCCS) is the latest development in aerial reconnaissance and photography to solve this problem. Designed and engineered by the Bill Jack Scientific Instrument Co., this novel system actually moves the film through the camera to compensate for image movement during the brief exposure time.

Accuracy of the system is dependent on the airborne DC analog computer having absolute dependability and precision under all the environmental conditions of aircraft
flight. Extremes of altitude, temperature and vibration cannot impair its effectiveness.

Transicoil servo assemblies are used extensively in the computer to convert inputs of altitude, ground speed, camera depression angle, and focal length into the correct "film movement" signal.

The UCCS application is typical of the way Transicoil rotating components and complete servo assemblies are achieving high orders of accuracy and dependability in countless applications. Transicoil can solve your servo problems with comparable success. A Transicoil Sales Engineer can help you to get off to a good start. A letter from you outlining your servo problem will bring him to your desk.


Raytneon - World's Largest MWanfacturer of Magnetrons ard Kiystrons


## FULL LINE DEPTH

Magnetrons from 1 to $5,000,000$ Watts - Klystrons from 600 to $60,000 \mathrm{Mc}$ Backward Wave Oscillators from 1,000 to $15,000 \mathrm{Mc}$. Plus, a broad line of special tubes including storage tubes, rectifiers, square law and traveling wave tubes. Write for complete data booklet on the most complete line in the industry.



IRON \& PHENOLIC COIL FORMS (also in ferrite)

## Moldife COIL FORMS

Moldite Coil Forms provide simpler coil assemblies-smaller coils, point-to-point wiring, minimum of solder connections and are inexpensive.

WAyerly 6.2123


Send for Catalog \#150
1410 Chestnut Avenue Hillside 5, New Jersey


# NOW . . . ONLY 3-WEEK SHIPMENT* on General Electric's full-line of sealed relays 

Improved production techniques now make it possible for General Electric to offer its complete line of standard-listed hermetically sealed relays-including the amazing micro-miniature-on only 3 -week shipment from order date!
And, what's more General Electric is equipped to provide you rapid service on samples and prototypes.

## FOR ALL ELECTRONIC SYSTEMS

G-E miniature, sub-miniature, and micro-miniature relays combine small size with unusual reliability under severe temperature, shock, and vibration conditions making them ideal for all radio, radar, fire control, navigational equipment, and industrial electronics jobs.

Though initially designed for military applications, more and more G-E sealed relays are being used for industrial jobs. Their extreme reliability and small size now are utilized by industrial designers. Resistance welding and other industrial electronic circuitry is being simplified and miniaturized with $G-E$ sealed relays.

## WIDE RANGE OF COIL RATINGS, HEADER TYPES, AND MOUNTINGS

Whatever your small sealed relay needs -you'll find the answer with one of the many forms of these three models:
Miniafure: Standard, current-sensitive, and voltage-sensitive models; in 2-, 3-, or 4 -pole double-throw and 6 -pole normally open forms. Rated 5 amps at 28 volts $\mathrm{d}-\mathrm{c}$ at 85 C . 3 -amp make-before-break forms and 125 C forms available.
Sub-miniature: 2 amps ; 651 in . in diameter, 1.6 in . long; weighs one ounce. Unaffected by vibrations of 10 to 55 cps at .12 in . maximum excursion or 55 to 500 cps at 15 Gs acceleration. Withstands shock tests in excess of 40 Gs . Operates in ambients of 125 C .
Micro-miniature: Weighs only 0.5 oz , measures .36 in . by .80 in . by .88 in . Rated 2 amp resistive at $28 \mathrm{v} \mathrm{d}-\mathrm{c}$ or 115 v a-c. Also available in current-sensitive models. Standard relays withstand ambients of 125 C , and 20 Gs acceleration at 50 to 500 cps . Contact your G-E Apparatus Sales Office, or mail coupon. Specialty Control Dept., Waynesboro, Va.
*Average shipment time for all standardlisted relays. Actual time: MICROMINIATURE (up to 100 units- 2 weeks, 100 to 1000 units-4 weeks); SUBMINIATURE (up to 100 units- 3 weeks, 100 to 1000 units- 5 weeks); MINIATURE (up to 100 units-1-2 weeks, 100 to 1000 units- 3 weeks).

## MAIL TODAY FOR G-E RELAY DATA

General Electric Co., Seci. E792.6,

Schenectady 5, N. Y.
$\square$ Miniature-Bulletin GEA-6213
2PDT Sub-miniature-Bulletin 6412
$\square$ Micro-miniature Bulletin 6346
$\square$ HAVE G-E SALES ENGINEER CALL

## NAME

COMPANY
ADDRESS
CITY
STATE

TAYLOR FIBRECO.
Plants in Norristown, Pa. and La Verne, Calif.
PHENOLIC-MELAMINE-SILICONE-EPOXY LAMINATES •COMBINATIONLAMINATES • COPPER-CLAD LAMINATES •VULCANIZEDFIBRE

## Tips for designers



Back plate on an automobile headlight switch, punched and machined from Taylor Grade XP paper base laminate, has low moisture absorption and good dielectric strength.


Vise jaw caps, made of Taylor Grade C phenolic laminate, are easily cut and machined to shape. Marring of precision or delictete parts is eliminated.


Self-balancing servo motor has stator case insulator which is cold-punched from $1 / 64^{\prime \prime}$ thick Taylor Paper Base Phenolic Laminate sheet.


Flippers for loose-leaf binders are made of economical Taylor Vulcanized Fibre . . . affording added rigidity and good protection for the paper pages.

## TAYLOR SUPERIOR

## COPPER-CLAD LAMINATES

Taylor GEC (glass epoxy) Copper-Clad and Taylor XXXP242 cold punching (paperphenolic) Copper-Clad. Taylor uses high purity rolled copper on base materials with outstanding electrical properties.


Time switch, made by the Tork Clock Co., uses two Taylor products . . . the deadfront is made of vulcanized fibre for its insulating properties, shock protection and printability . . . the mounting panel of the clock is made of Taylor laminate XP-1-231, chosen for high strength and good punchability.

## Have an Insulation Problem? <br> Taylor will provide the answer . . .

Select from Taylor's complete line of materials-laminates and vulcanized fibre-to get the right combination of electrical, physical and machining properties for your product. And, if you have a unique problem, Taylor will develop a special material to meet your requirements.

For example, rigid requirements for insulation materials in the Tork Clock Company's Time Switch were met by two Taylor materials-a laminate and vulcanized fibre. The mounting panel is made of Taylor laminate XP-1-231, especially formulated for the high strength and good punchability requirements of this application. In addition, Taylor vulcanized fibre serves as the dead-
front-a shockproof cover removed only for installation and service. Fibre was chosen for its insulating properties, shock protection, and printability.

Taylor materials are developed to meet the need for dependable, moisture-resistant insulation. They have high dielectric and mechanical strength, and maintain original characteristics over long periods of time, under severe operating conditions. When you choose-and use - Taylor products, you'll have performance with stability.

Taylor application engineers can help you obtain the Taylor material that matches the exact requirements of your product. Contact your nearest Taylor sales office.

## Transitron

# military 

## silicon diodes

TRANSITRON'S Military type silicon diodes are designed to meet the requirements of MIL-E-1, and are characterized by reliability under the most severe operating conditions.
Their subminiature size and rigid specifications make them ideal for a wide range of applications. Types 1N457, 1N458, and IN459 are intended for low and medium frequency uses, requiring voltage ratings up to 175 V . Type 1N251 is a high frequency diode especially designed for detector and high speed pulse units.

In addition to these four military types, silicon diodes meeting many other application requirements are also available. These include high conductance types, as well as fast switchinghigh voltage diodes.

| Type | Minimum Forward Current at $+1 v$ (ma) | Inverse Current at Specified Voltage ( $\mu \mathrm{a}$ ) | Maximum Operating Inverse Voltage (volts) | $\begin{aligned} & \text { MIL-E-1 } \\ & \text { TSS } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 N457 | 20 | . 025 @ -60V | 60 | 1026 |
| 1N458 | 7 | . 025 @-125V | 125 | 1027 |
| 1N459 | 3 | . 025 @-175V | 175 | 1028 |
| 1N251* | 2 | . 2 @-10V | 30 | 1023 |

* Inverse recovery time under .15 micreseconds

SEND FOR<br>BULLETIN TE 1350

## TTAT

electronic corporation wakefield, massachusetts
TME
Germanlum Diodes



Sillicon Rectifiers


WHERE RUGGEDNESS COUNTS...

## LINDE BAPPEIBE. . .SPACERS

## FOR ELECTRON GUN STRUCTURES

A mong the fine products of Sylvania Electric Products Inc. are high-quality traveling wave tubes for airborne equipment. In these tubes, electron gun structures are built with Linde single-crystal sapphire rods - selected by Sylvania because of their ruggedness sorely needed for this application.
Linde sapphire rod can be supplied to close tolerances, providing for precise alignment of parts and making quantity production of identical units possible. It is easily brazed and metallized. Linde sapphire is non-porous
. presents no outgassing problems. Assemblies made with it are rugged . . . stand up under adverse conditions such as shock and vibration.
Linde sapphire is also available as tubes, balls, windows, and domes, and in special shapes. It has strength at high temperatures, and excellent ultra-violet and infra-red transmission characteristics. Detailed information on physical and electrical properties of Linde sappliire is yours for the asking. Please write 10 "Crystal Products Dept. BD-5."


Visit us in Booth No. 1005 ut the Design Engineering Show, May 20-23.

## LINDEAIR PRODUCTS COMPANY

A Division of Union Carbide and Carbon Corporation
30 East 42 nd Street एIL New York 17, New York
In Canada: Linde Air Products Company, Division of Union Carlide Canada Limited, Toronto The term "Linde" is a registernd trade-mark of Union Carbide and Carbon Corporation.

## A DEPENDABLE SUPPILER FOR 61 YEARS

Specialized Technical Skills1500 job-łrained, class-łrained specialists . . . with a world-wide reputation for delivering variable resistors exactly as specified.

Tremendous Production Facilities $-323,000$ sq. ft. plant devoted to variable resistors.

Your changing Requirements An-ticipated-continuous research develops new materials, designs and methods to meet your new requirements.

Economical Uniform Assemblyon a precision mass production basis.

Dependable Delivery-exceptionally good delivery cycle.

Complete Line-variable resistors for military, color and black and white TV, radio, and other commercial applications.

A CTS control can be tailored to your soecific requirement. Consult CTS S 3 ECIALISTS on your current variable resistor problems. Ask for 62 page catalog.

EAST COAST OFFICE 130 N. Broadway Canden 2, New Jersey Phote: Wooclawn S-1668 TWE No. Camden RJ 380 Phile. Phone: Market 7-3129 SOU-HWESTERN U.S.A. Johth A. Green Company 137 3arkhouse Dalles 7, Texas Phore: Riverside 3266

SOUTH AMERICA
Jose luis Ponter
Buenos Aires, Argentina
Montevidea Uruguay
Rio de Janciro, Brazil
Sao Paulo, Brazil
OTHER EXPORT
Sylvan Ginabury 8 West 40rl Street New York 18, New York Phone: Penr sylvania 6-8239

Variable resistors shown 2/3 actual size

## WEST COAST MANUFACTURERS:

Many types of variable resistors now in production at our South Pasadena plant. Your coil, transformer and compression molding business also invited. Prompt delivery. Modern versatile equipment. L. A. phone Clinton 5-7186.

The Exclusive Specialists in Precision Mass Production of Variable Resistors

## YOUR ONE BEST SOURCE FOR ALL RELAYS

Here are only five of the more than 40 basic $P$ \& $B$ relays. Each of the 40 can be modified in a wide variety of ways. This means there is a $P$ \& $B$ relay for nearly every conceivable application. Custom modification of relays to exact specification is a P \& B specialty-thus you have one dependable source for ALL your relay needs. P\&B offers you:

1. PROVEN DESIGN. Twenty-five years of relay experience.
2. LOW COST. Modern engineering, production and testing methods keep cost down.
3. FAST DELIVERY. Many basic relay models are shipped from stock.

## - KRP SERIES

Versatile, multi contact arrangemenis. Enclosed in polystyrene dust cover. Contacts: rated 5 amperes. Dimensions: $113 / 3 z^{\prime \prime} \times 113 / 32^{\prime \prime} \times 2^{\prime \prime}$ high (above standard 8 or 11 pin octal style socket.) Weight: 3 oz .

Extremely fast acting and long life DC models available ap to 10 500 cps vibration and 30 g Available 4 form and 30 g shock. Available 4 form $C$ contacts and variety of mig. arrangements. Maximum size $15 / 6^{\prime \prime} \times 2 / 32^{\prime \prime} \times 1 \% / 6^{\prime \prime}$ high.


## 4 PR SERIES

Heavy duty relay with serew fierminal for all industrial control applications. All AC models can corry UL label. Size: $21 / 2^{\prime \prime}$ wide $x$ $3 \% 8^{\prime \prime}$ long $\times 27 / 6^{10}$. Mounting: Two holes $3_{6}{ }^{\prime \prime}$ dia. on $1 / \mathrm{a}^{\prime \prime}$ centers. Contacts: Capacity, if amperes siingle break and 20 amps double break.


in magnetic seals, too

## CRUCIBLE PERMANENT MAGNETS

## mean maximum energy-minimum size

The consistently higher energy product of Crucible Alnico magnets allows smaller parts - greater compaciness in special applications like this magnetic shaft seal. What's more, the superior corrosion and wear resistance of Crucible Alnico insures far greater service life.

You can regularly get Crucible permanent

Alnico magnets sand cast, shell molded, or investment cast to exact size, shape or tolerance requirements . . . and in any size from a mere fraction of an ounce to hundreds of pounds. Crucible Steel Company of America, The Oliver Building, Mellon Square, Pittsburgh 22, Pa.

## CRUCIBLI

first name in special purpose steels

CAPACITORS
Announcing
of high quality line of paper capacitors.
General Electrics molded PVZ tubular capacitors.



General Electric's molded PVZ* tubular capacitors operate from -55 C to +125 C ... yet are moderately priced

The new General Electric molded PVZ paper tubular capacitors meet the electronic designer's need for a high-quality line that offers, at a moderate price, characteristics similar to " $K$ " of MIL-C-25A.

- Price of the units is less than one-half that of a comparable metal-clad tubular.
- They are designed for a minimum of one year's life, operating at 125 C , rated voltage.
- Insulated bodies are easy to locate in the chassis, and provide protection from other parts or ground.
- They are smail, both physically and electrically, in order to aid equipment miniaturization.
- They are solid-resistant to shock and vibration.

In general, you will find these molded PVZ paper tubular capacitors suitable for use where you might normally expect to find either 85 C or 125 C metal-clad tubular capacitors; in computers, missiles, telephone equipment, and
other high-grade military and commercial electronic equipment.

Microfarad ratings extend down to .00047 uf - 100 to 400 volts; $u p$ to .15 uf - 100 volts, .1 uf - 200 volts, .068 uf- 300 volts, and .022 uf - 400 volts. Capacitance ratings are available with $\pm 20 \%, \pm 10 \%, \pm 5 \%$ tolerances.

In many instances, the units are physically smaller than equivalent metal-clad tubulars, especially if the metal-clads are insulated. PVZ capacitors range in size from .175" diameter $\times 5 / 8^{\prime \prime}$ long to $.375^{\prime \prime}$ diameter $\times 1 \frac{1}{16}{ }^{\prime \prime}$ long. Nine different sizes are offered to accommodate the various ratings.
READY NOW: Stocks of most sizes and ratings of General Electric's new PVZ capacitors are on hand, ready for shipment. If you would like to receive technical data on the new line get in touch with your local G-E Apparatus Sales Office or write to the General Electric Company, Section 442-43, Schenectady 5, N. Y. *A General Electric Trade-mark.


OPERATES FOR 1 YEAR AT 125 C Molded PVZ capacitors are designed for a minimum of one year's life at rated voltage and 125 C operation. Curves shown above are typical of performance.


EXCELLENT HUMIDITY CHARACTERISTICS Molded PVZ capacitors withstand stringent humidity tests, thanks to a combination of high-grade case material and carefullycontrolled molding techniques.


HIGH LEAD BEND RESISTANCE The new capocitors withstand one-pound-vertical-pull test moving the body of the unit $90^{\circ}$, then $180^{\circ}$ in the opposite direction, then back $90^{\circ}$, to the original vertical position.

Progress /s Our Most Important Product

## Hallicraters. ........ revolutionary, mass produced cooling unit for girborne electronics. Dissipation up to $\mathbf{7 , 0 0 0}$ watts . . . $20 \%$ less costly . . . 30\% lighter.

Tested, proven, set for mass production - Hallicrafters new Models CR-2, CR-5 and CR-7 airborne cooling units meet environmental conditions of MIL-E-5272 specification. Revolutionary design permits use of standard racks (CR-7 dimensions: $153 / 8^{\prime \prime} \times 199 / 16^{\prime \prime} \times 105 / 8^{\prime \prime}$ ) and also accommodates whatever auxiliary gear, such as relays and switches, you may desire.

Vital weight factor is another advantage. For instance: the CR-5 weighs just 30 lbs ., is $30 \%$ lighter than conventional 5,000 watt units. And your choice of cooling fluids gives great flexibility of application: silicone oil; ethylene-glycol solution; hydraulic fluid.

Only Hallicrafters fits rated dissipation to your needs. Three stock units available $-2,000,5,000$, and 7,000 watts. Design adaptable to intermediate ratings with comparable advantages in cost, weight and performance.

INVESTIGATE NOW! If you design, build, purchase, or fly military aircraft . . if you provide, install or specify airborne electronics . . . write today for complete details.

Tested and proven in many airborne installations of Hallicrafters electronic equipment.

## hallicrafters <br> Company

.4401 W. Fifth Avenue, Chicago, Illinois

## 1947

## CERAMAG 2

The first ferrite used commercially in TV flybacks since Stack pole pioneered this application


## 1948

## CERAMAG 5 and 5N

Boosted flyback voltages without increasing transformer size. Denser, higher permeability materials with greatly improved tem-
 perature characteristies.

## 1950

## CERAMAG 7 and $7 A$

ONE AFTER ANOTHER, succeeding Stackpole Ceramag developments have set higher and still higher quality standards for ferromagnetics.

And the search never stops . . . for new grades, new manufacturing and quality control techniques that will provide tomorrow's TV receivers with Ceramag cores that are fully as far advanced as these previous Stackpole "firsts."


## CERAMAG

Look to Stackpole for the latest ferromagnetic developments that will set the pace in terms of higher efficiency . . . greater elecfrical and mechanical uniformity.
Permitted larger picfure tubes and even higher anode voltages thanks to their higher permeability under
 high flux conditions.

## 1953

## CERAMAG 20

This is the famous Stackpole grade that shrank TV transformer size while maintaining high performance. Hysteresis losses were
 about $50 \%$ of previous grades. Permeability was approximately $60 \%$ higher.

## NEXT!




## 1000 WATTS

Rugged, versatile general purpose H.F. transmitter-Aerocom's 1046 packs 1000 watts of power and high $.003 \%$ stability under normal operating conditions ( $0^{\circ}$ to $+50^{\circ} \mathrm{C}$.). Excellent for point-to-point or ground-toair communications.

Multi-channel operation on telegraph A1, or telephone A3 with GM-8A modulator... new Aerocom 1046 can be remotely controlled with TMC-R at control position and uses only one pair of telephone lines. In A3 operation, the local dial control panel is located in modulator cabinet.

Transmitter cabinet has $83 / 4$ inch panel space available for either local dial control panel or frequency shift keyer.

Model 1046 operates on 4 crystal-controlled frequencies (plus 2 closely spaced frequencies) in the band $2.0-24 \mathrm{Mcs}$. Operates on one frequency at a time; channeling time 2 seconds. Operates into either balanced or unbalanced loads. Operates in ambient $-35^{\circ}$ to $+50^{\circ} \mathrm{C}$. Power supply: nominal 220 volts, $50-60$ cycles, single phase.

Complete technical data on request
Now! Complete-package, 192 channel, H. F., 75 pound airborne communications equipment by Aer-O-Com! Write us today for details!

WITH
.003\% STABILITY


AER(-D-)COM


In all phases of planning for ceramic-to-metal sealsfrom design to finished assembly-you can rely on ALITE for the know-how and "do-how" required to produce highest quality ceramic-metal components for critical applications.
High alumina Alite is the ideal material for making rugged, high performance hermetic seals and bushings. It has superior mechanical strength, high temperature and thermal shock resistance, plus reliable electrical characteristics. Our complete high temperature metalizing and bonding facilities assure delivery of the finest seals available-mass-spectrometer tested for vacuum-tightness.
Please contact us for valuable performance data and information regarding ceramic-to-metal applications . . . no obligation.

## INSIDE LOOK AT ALITE-



Fact-packed, illustrated Bulletins A. 20 and A.7R iust off the press. Give vital technical data and product information, Write today.

## ALITE DIVISION

# Ac/miral. develops military TV CAMERA with mid-day vision in deep twilight 

...on land
...in the air
... even under water


The image orthicon may not be pictured for reasons af security. However, the monitor on which the picture is cisplayed is commercially available. Designed for the Armed Forces, it is a unit of unsurpassed quality cffering superb resalution, extremely good linearity and such unusual features as control of size independent of limearity and the ability to reverse the phase of the signal. Write for detailed description and price.

The human eye is a remarkably sensitive instrument. But it is no match for the image orthicon TV camera developed by Admiral for the Armed Forces. Light from an ordinary match reveals as much to this TV camera as a man with $20 / 20$ vision sees in the light of a 150 watt bulb. Obviously, the armed services will find countless ways to use this sharp-eyed observer for reconnaissance under adverse conditions.

Admiral developed the special circuitry that gives the image orthicon its amazingly keen "eye-sight." For all its extreme sensitivity, there is no penalty in excess bulk or weight.
Admiral has also "packaged" the unit to permit its use not only for land-based and airborne reconnaissance, but evien under water. Development of the image orthicon again demonstrates Admiral"s engineering capabilities in the firld of military electronics. Inquiries are invited.

## LOOK TO Admirel FOR

research - development - pruduction in the fields of: military television COMMUNICATIONS UTF AND VHF - RADAR radar beacons and IfF - radiac TELEMETERING - DISTANCE MEASURING MISSILE GUIDANCE - CODERS AND DECGDERS CONSTANT DELAY LINES - TEST EQUIPMENT ELECTRONIC COJNTER MEASURES
ENGINEERS: The wide scope of work in prog. ress at Admiral creates challenging opportun. ities in the field of your choice. Write Director of Engineering and Research, Admiral Corporafion, Chicogo 47, Illinois.


## the electrolytic capacitor you need . . . in the mounting style you want



You can get Sprague self-mounting electrolytic capacitors in every one of the four standard combinations of terminals and mounting rings.
The Sprague DFP series of electrolytics includes not only the time-tested Type 25D Twist-Lok ${ }^{\text {® }}$ design, but also three new styles intended for printed wiring boards-the Type 28D Push-Lok* with its snap-action mounting lugs and circular ground ring, the Type 26D

snap-action terminal design, and the Type 27D with terminals designed for wire-wrap production wiring techniques.

You will find the complete story on these dependable capacitors for entertainment electronics and allied applications in a new Sprague Engineering Bulletin. Write for your copy today to Sprague Electric Company, 35 Marshall Street, North Adams, Mass.

> Sprague on request will provide you with complete application engineering service for optimum results in the use of electrolytic capacitors.

CAPACITORS • RFSISTORS • MAGNETIC COMPONENTS
TRANSISTORS • JNTERFERENCE FILTERS • HIGH TEMPERATURE
the trademark of reliability


## nemy stymelnieo

- 250 hour life at $400^{\circ} \mathrm{F}$.
- Unprecedented $-65^{\circ} \mathrm{F}$ to $+400^{\circ} \mathrm{F}$ operating temperature range.
- Unique lubrication method.
- Special alloy for electrical connections.

Type 11-4133-01 is a size 11 torque transmitter synchro with 115 V 400 cycle input. Accuracy is $\pm 15^{\prime}$, null voltage 175 mv , stator output 90 volts and phase shift $6.5^{\circ}$. Impedances are $\mathrm{Z}_{\mathrm{RO}}=315+\mathrm{J} 1590, \mathrm{Z}_{\mathrm{SO}}=290$ $+J 773$ and $Z_{R S S}=520+J 286$.

This is another Oster "first." Write for further information today.

Engineers for Advanced Projects:
Interesting, varied work on designing transistor circuils and servo mechanisms. Conlacl Mr. Zelazo, Direclor of Research, in confdence.

MANUFACTURINGCO.
Your Rotating Equipment Specialist

Avionic Dlvision
Racine, Wisconsin

Other products include actuators, servos, AC drive motors, servo mechanism assemblies, DC motors, motor-gear-trains, fast response resolvers, servo torque units, reference and tachometer generators and motor driven blower and fan assemblies.


## flexible comnections..

why waste time with


# Interlo ok PLUGS 

Provide Automatic LockingQuick Disconnect, Vibration Proof Terminals
for Connecting


Wire to Wire


Wires to Terminal Strips



TYPE "A" PLUGS, JACKS AND EYELETS Nylon Insulated and Non-Insulated. Current Capacity:
10 amps. Wire Sizes: \#14 to \#18


TYPE "S" PLUGS AND JACKS Nylon Insulated. Current CaNylon Insulated. Current Ca
pacity: 15 amps. Wire Sizes: pacity: 15 am
$\# 14$ to $\# 18$
$G \square 00$ C
TYPE "B" PLUGS AND JACKS Nylon Insulated and Non-Insulated. Current Capacity: 5 amps. Wire Sizes: \#18 to \#22

## $0=1$

TYPE "cC" SUB-MINIATURE PLUGS AND EYELETS CuIrent Capacity AND EYELETS Current Capacity;
1 amp. Wire Sizes: $\# 20$ to $* 22$ or smaller
TYPE "A" ANGLE PLUGS
AND DOUBLE ENDED JUMPER CORDS Current Capacity: 10 amps.


TYPES "A" AND "B" LAMINATED TERMINAL STRIPS AND TYPE "B" FLEXIBLE TERMINAL
STRIPS

The automatic locking - quick disconnect feature, exclusive with all Interlock Plugs, makes them ideal for use wherever frequent rearrangement of circuitry is necessary. Designed to stay locked, even when subjected to tremendous vibration and temperature changes, Interlock Plugs disconnect quickly and easily from their jacks or eyelets when intended. Interlock has been specified by manufacturers of aircraft, computers, machine control devices, printed circuits and other electronic equipment. Write for complete information.

HARVEY HUBBELL, INC.
Interlock Electronic Connector Dept. - Bridgeport 2, Conn.


## WESTON <br> CORMAG ${ }^{\text {® }}$ PANEL INSTRUMENTS

Weston's core-magnet instrument mechanism has made a big difference in panel meters . . . a big difference in instrument reliability, mounting facility, and instrument costs. The core-magnet construction is extremely simple, yet it provides measurement reliability meeting Weston's exacting standards. It is self-shielding, thus permitting the instruments to be used interchangeably on magnetic or non-magnetic panels; as well as mounting close together without intereffect. The final difference is their cost. Due to design simplification, they are yours for less than you pay for conventional panel in-

- struments. For complete specifications and prices, consult your nearest Weston representative or write Weston Electrical Instrument Corp., Newark 12, N. J.


## A Touch here does so much



## LIGHT UP...SPUTTER OUT:..

A touch of 'aquadag' between the lead-in wires to the electrode shell and the screen grid of the patented Grid-Lite lamp manufactured by the Ideal Lighting Company eliminates sputter, increases lamp life and improves luminosity by eliminating blackening of the end of the tube caused by metal deposits.
'Aquadag' acts as a "printed" resistor, lowering screen-grid potentials so that electrons are repelled and the narrowed beam focused in the electrode shell. The electric arc occurs in the heel of the electrode shell, dispersing its heat throughout the lengtin of the shell. 'Aquadag', a colloidal dispersion of graphite in water, replaces
silver and platinum, which not only are more expensive, but so conductive that they soon burn out. 'Aquadag' can be painted on, a faster and more economical method than the soldering of wire.
'dag' ${ }^{(6)}$ dispersions of colloidal graphite also have good electrical conductivity, are low in photo-electric sensitivity and resistant to electron bombardment.

An Acheson Service Engineer will gladly discuss the many uses for 'dag' colloidal dispersions in electrical and electronic applications. Write for Bulletin No. 433 "Electronic and Electrical Applications." Address Dept. E-5.


## GRANT INDUSTRIAL SLIDES

IF it's important to keep your electronic equipment functioning with as brief interruptions as possible...IF even minor testing and replacement takes undue time because of the nuisance of getting at the equipment mechanically... IF certain components must be accessible for on-the-spot servicing in seconds...THEN you should investigate Grant Industrial Slides.

Grant Industrial Slides provide built-in accessibility, without effort or costly loss of operating time. Unlimited varieties of standard and custom types are available and Grant offers complete
engineering services including at-your-plant discussions regarding the development of slides that fit your requirements perfectly.


Five seconds to put chassis in testing position. Slides smoothly out of rack, locks. Pivoting mechanism brings underchassis parts to easiest working angle. Functioning of unit need not be interrupted!

Write for Grant Industrial Slide technical data. Free copy will be mailed on request.

Grant Pulley \& Hardware Corporution, 31 -73 Whitestone Parkway, Flushing 54, N. Y., 944 Long Beach Avenue, Los Angeles 21, Calif.



## DIFFERENT AND BETTER!

Simplified phasing! Exiernal independent phasing of each cup, without affecting relationship of others To phase, loosen nut, adjust cup, tighten nut. That's all. Adjustments can be made before or after mounting. Elimination of clamping ring reduces overall diameter.

Wew and better variable, singlefurn precision potentiometers. In single and ganged units. Mounting as per A. I. A. (Aircraft Industries Associated); other mountings available.

Clarostat Vari/Phase Potentiometers meet or exceed A.I.A electrical and mechanical requirements. Materials selected for lightest weight consistent with rugged construction. Design assures highest performance. In five sizes $-7 / 8^{\prime \prime}$. $1-1 / 16^{\prime \prime}, 1-5 / 8^{\prime \prime}, 2^{\prime \prime}$ and $3^{\prime \prime}$ diameters.
Technical Details On Request. LET US QUOTE.


CLAROSTATMFG.CO., INC. DCVER, NEW HAMPSHIRE

## Data-Readout Counter

## Provides 100,000 <br> Distinct Circuit Arrangements



FUNCTIONS
Analog to Digital Conversion Serial or Parallel Circuit Transmission
Continuous or On Demand
Electrical Readout
Continuous Visual Readout
Visual and Electrical Data Storage
Predetermining
Repeat Predetermining
Sequential Programming

Veeder-Root's new series of Data Readout Counters combines visual indication with electrical readout for remote indication, recording, and controlling applications. Electrically or mechanically driven and provided with manual or electric reset, these counters present a positive display of accumulated totals and automatically create specific control circuit contact closures for each number visually displayed. Each instrument, with its five figure capacity, provides 100,000 distinct circuit arrangements which lend themselves to the most exacting control and transmission requirements. The counters are compatible with standard data processing equipment and offer a wide variety of applications in the industrial control and data processing fields.

Electrically actuated data readout counter with electric reset.
Form B-1538 for $110 \mathrm{VAC} / \mathrm{DC}$.

## VeedermRooflinc.

"THE NAMETHAT COUNTS"
Härfford, Conn. - Greenville, S. C. - Chicago - New York - Los Angeles San Francisco - Montreal - Offices and Agents in Principal Cities

## OAK

## rotary solenoids*

*Mfd. under license from G. H. LELAND, INC.

## built for you separately or in remote-controlled subassemblies



## meet the most severe MIL specifications

In converting a straight pull to rotary motion, Oak rotary solenoids give a high-torque, positive action, even under severe mechanical operating conditions. Oak rotary solenoids are compact, also, and help economize in wiring and mechanical linkage on remote-control devices. Three standard sizes in many variations cover a wide range of switching and light mechanical tasks. Oak also can supply any component needed to accompany rotary solenoids. Because Oak engineers know the application possibilities of rotary solenoids inside and out, consult them early in the design stage. They can save you valuable time. Write for a copy of Oak's rotary solenoid bulletin that includes time-saving layout sheets.


OAK MFG. CO., Dopt. G, 1260 Clybourn Ave., Chicago 10, III.
Phener MOhawk 4-2222

# Industry's <br> Highest Power Transistors 

Combine stability with long life


Delco Radio's 2N173 and 2N174 alloy junction germanium PNP transistors have unusual stability and reliability. These superior characteristics are retained by hermetic seal and proper internal atmosphere.

In addition, normalizing processes contribute to the high output power, high gain and low distortion characteristics that were designed into them. Delco Radio High Power transistors, ideal for your audio as well as general power applications, are produced by the thousands every day. Write for information and engineering data.

| TYPICAL CHARACTERISTICS |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 2N173 | 2N174 | 2N277 |
| Properties $\left(25^{\circ} \mathrm{C}\right)$ | 12 Volts | 28 Volts | 12 Volts |
| Maximum current | 12 | 12 | 12 amps |
| Maximum collector valtage | 60 " | 80 | 40 volts |
| Saturation voltage (12 amp.) | 0.7 | 0.7 | 0.7 volts |
| Power gain (Class A, 10 watts) | 38 | 38 | 38 db |
| Alpha cutoff frequency | 0.4 | 0.4 | 0.4 mc |
| Power dissipation | 55 | 55 | 55 watts |
| Thermal gradient from junction to mounting base | $1.2{ }^{\circ}$ | $1.2^{\circ}$ | $1.2{ }^{\circ} \mathrm{C} /$ watt |
| Distortion (Class $\mathrm{A}, 10$ watts) | 5\% | 5\% | 5\% |

## EPOXY COATED

## A BETTER DISC CAPACITOR BECAUSE IT'S PROTECTED FOR LIFE with Good-All's

 tough, durable Epoxy coating.HIGH VOLTAGE BREAKDOWN STRENGTH
Epoxy bonds securely to the ceramic edge and blocks leakage or actual breakdown.

MOISTURE RESISTANT
Complete encapsulation in Epoxy keeps moisture out. Lead entries are tightly sealed.

This tough, durable coating is a glossy red color. No - wax is needed to add further protection.

COMPETITIVE COST
Good-All Epoxy coated discs are available at no premium cost over types with conventional coating.


# FENWAL'S THERMOSTATS NOW CIGARETTE SIZE 

## Some Units Smaller Still

Take Little More Room Than Sugar Lump

ASHLAND, MASS. - If you want to control temperatures in tight spots, you should see Fenwal. Fenwal has cut the size of thermostats way down.

You can fit one of their Midget THERMOSWITCH units anywhere a cigarette will fit. And, if you're working with even less space, one of their Miniature thermoswitch units is what you're looking for. The Miniatures are little bigger than a lump of sugar, and some are even smaller.

The Midgets and Miniatures use the same unique principle used in Fenwal's bigger thermoswitch controls. They use it with the same high degree of success.

The principle of all Differential Expansion thermoswitch units, large or small, is this: a single metal shell expands or contracts with temperature changes, making or breaking totally enclosed electrical contacts.

The smallness of the Midget and Miniature units does not deprive them of any of the performance characteristics that have made larger thermoswitch units famous. They have тнínmoswitch ruggedness, THERMOSWITCH accuracy, and reasonable thermoswitch prices.

Temperature range of the Midget series: $-50^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$. Range of the still smaller Miniature series: $-20^{\circ} \mathrm{F}$ to $275^{\circ} \mathrm{F}$. ${ }^{\text {w }}$

Midgets and Miniatures, all in stainless steel, come in a variety of mountings. Hermetic sealing is also available.

These Fenwal thermoswitch units are precision-engineered to give optimum temperature control with minimum-sized devices. They remain


THERMOSTATS FOR TIGHT SPOTS - A Fenwal Midget THERMOSWITCH ${ }^{\circledR}$ unit and a Fenwal Miniature thermoswitch unit - two good answers to the question, "How can you install an accurate, reliable thermostat where there's almost no room?"' Actual sizes of these particular models - $1 / 4^{\prime \prime} \times 2^{25 / 32^{\prime \prime}}$ for the Midget; $1^{\prime \prime} \times 1 / 2^{\prime \prime}$ for the Miniature.
accurate under the most severe operating conditions.

You should have details on this advance in temperature control at your fingertips. Write for information to Fenwal Incorporated, 205 Pleasant Street, Ashland, Massachusetts.


CONTROLS TEMPERATURE ...PRECISELY

## Signal Sources and Receivers

What a tankful of gasoline is to the automobile, the klystron tube is to the microwave system - a reliable and efficient power source.
Internal and external cavity type kly strons are used in PRD microwave oscillators. Both types belong to the reflex klystron group which is usually preferred because it provides easy tuning over a relatively wide frequency range and easy frequency or amplitude modulation.
The coaxial cavity is most often used for broadband oscillators since its principal mode is the TEM. This permits greater frequency coverage than either the $T E$ or $T M$ modes of rectangular waveguide sections.

PRD's line of signal sources is conveniently operated through the use of PRD Klystron Power Supplies. Electronically regulated beam, grid, and reflector voltages provide ex. tremely stable klystron output signals.
A spectrum analyzer is a special type of self-contained receiver. It presents an instantaneous display of the power spectrum of the input r-f pulse on an oscilloscope screen. Basically, it is a superheterodyne receiver with a frequency modulated local oscillator.
While the analyzer delivers an accurate envelope of the pulse frequency spectrum, it does not necessarily display each frequency component since the frequency separation between adjacent spectral lines on the screen is a function of the local oscillator sweep rate, $f_{s}$, as well as the PRF, $f_{R}$. Actually, the number of lines produced on the screen is $f_{R} / f_{s}$. By varying $f_{s}$, the operator can control the spectrum detail presented.
Data such as that contained in the foregoing paragraphs are available in our PRD Reports. Published periodically, these reports give practical information on virtually every aspect of microwave research and engineer. ing. Mathematical derivations, graphs, and charts are always included. If you'd like to receive these reports (there's no charge of course), we'll be happy to add your name to our mailing list. Please address your request to: Reports Dept. R-3.

For additional details on PRD 809 Klystron Power Supply, contact your local PRD Engineering Representative or write to Technical

202 Tillary Street - Brooklyn 1, N. Y. - Tel: UL 2-6800<br>Cable Address: MICROWAVE, NEW YORK



## Sola regulated power supply transformers stabilize low voltage and filament supply for analysis of radioactive isotopes

Radiation Instrument Development Laboratory enjoys a world-wide reputation for product performance and reliability. The Sola Regulated Power Supply Transformer (Type CVE)--as a chassis-mounted component in many of RIDL's radiation instruments - is an important contributor to this exceptional reputation.

The Sola voltage stabilizer is the ideal power supply transformer for many types of electronic equipment. It provides a single, compact source of plate and filament supply voltages regulated $\pm 3 \%$, even though line voltage varies from 100-130 volts. It replaces conventional, non-regulating power transformers and voltage regu-
lating circuit or components. Use of the CVE contributes not only to stable performance and extended tube life, but also to compactness and economy.

Sola Type CVE transformers are available in standard models ( $\pm 3 \%$ regulation), or in special designs with regulation of one winding as close as $\pm 1 \%$. They have no moving parts or tubes, and regulation is completely automatic, instantaneous, and continuous.

Your area representative is listed below. He'll be happy to give you specific information on Sola Regulated Power Supply Transformers as a component in your electronic equipment.

[^5]

ALLEN-BRADLEY ceramic capacitors

The new "no run-down" coated capacitors will soon be made available in all these sizes.

Now you can dip solder these Allen-Bradley capacitors on printed boards . . . and be assured of proper solder flow. A new coating material, applied by a new process, prevents all "run-down." Lead wires are clean without scraping.

Allen-Bradley quality ceramic capacitors are available in a wide variety of types to meet different requirements. General purpose capacitors are furnished in nominal capacitance values from 10 to $20,000 \mathrm{mmf}$, with various temperature characteristics and tolerances. There are also dual type, temperature compensating, intermediate voltage, and other special capacitors in this quality line. The consistent reliability of these Allen-Bradley capacitors is confirmed by approvals from the leading electronic, electrical and telephone lahoratories.

Call your nearest Allen-Bradley office 222 W. Greenfield Ave., Milwaukee 4, Wis. In Canada-Allen-Bradley Canada Ltd., Galt, Ont. for complete specifications, today.


## ar $150^{\circ}$,

## AMBIENT



RADIO, ELEGTRONIC, AND
TELEVISION COMPONENTS

Allen-Bradley ceramic encased capacitors are especially designed for continuous operation in ambient temperatures up to $150^{\circ} \mathrm{C}$ at full voltage ( 500 volts $\mathrm{d}-\mathrm{c}) .$. as compared with the $85^{\circ} \mathrm{C}$ limitation on conventional capacitors. And their temperature coefficient is low. . .variation from the given value at $25^{\circ} \mathrm{C}$ is less than $+30 \%$ and $-20 \%$ over the temperature range from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.

The physical uniformity of Allen-Bradley ceramic encased capacitorsalso, the absence of wax-makes them ideal for use in automatic assembly machines. And because there is no resin on the leads, it is possible to solder closer to the dielectric disc-reducing the series inductance.

Allen-Bradley encased capacitors can be supplied with long or short leads for manual or automatic assembly operations-in RETMA and MIL values from 2.2 to 3300 mmf . Write for data on these superior high-temperature capacitors, today.

## MEETS THE REQUIREMENTS OF MIL-C-19683 (Ships)

4 March, 1957

## Allen-Bradley Co.

222 W. Greenfield Ave., Milwaukee 4, Wis. In Canada-Allen-Bradley Canada Ltd., Galt, Ont.

Allen-Bradley feed-thru and stand-off capacitors provide outstanding filtering service in the VHF and UHF ranges. These Allen-Bradley discoidal capacitors exhibit no parallel resonance effects at frequencies of 1000 mcs or less a problem normally encountered with tubular types. Both types are furnished with solder tabs or screw-thread mounting. Stand-off type can also be had with self-tapping threads. Available in standard nominal values from 4.7 to 1000 mmf . It will pay you to investigate these rugged miniature components.


## new and unique!

## Breadboard Layout! Speed Design of Transistor Circuits With the SPRAGUE TRANSIMULATOR

Bring transistor circuits to life in a matter of minutes with the Sprague LF-1 Transimulator. This new instrument lets you simulate any amplifier stage, a-c or direct-coupled, short of high power audio output; also multivibrator, switching, phasing, push-pull, Class A and B , and many others using cross-coupled Transimulators. . . whether the circuit is common or grounded emitter, base, or collector ... whether the transistors are PNP, NPN, or Surface Barrier. You can simulate circuits stage-by-stage for cascade operation... or use a separate Transimulator for each stage to get simultaneous multi-stage operation.

## Bring Circuit Diagrams To Life In Minutes

Everything you need for RC amplifier circuits is built right into the LF-1, including coupling capacitors... bias and load resistors . . . battery voltage supplies . . . Base Collector-Voltage Divider stabilization circuits . . 5-way binding posts for transformer coupling and metering.

Whether you're designing audio circuits or switching circuits, you'll get a true picture of operating parameters minutes after you've drawn the circuit diagram... without wasting valuable time with breadboard and soldering gun.

## Pays For Itself In A Matter Of Weeks

An ideal laboratory instrument, Transimulators are inexpensive enough to justify several on every bench. You can even use the LF-1 to test transistors in the circuit...the only real proof of design parameters. And a complete step-by-step instruction manual makes operation fast, simple, and easy.

## FEATURES OF THE LF-1 TRANSIMULATOR

- TRANSISTORS - PNP and NPN Junction, and Surface Barrier - CIRCUITS - Common or Grounded Emitter, Base, Collector.
- RANGE-Audio, up to 100 ke .
- TRANSISTOR POWER - Through medium poweraudiooutput
- BATTERY SUPPLY-Separate bias and load. 1.5, 3, 4.5 6 volts d-c. Polarity Reversing Switch.
- COUPLING-2 $\mu \mathrm{f}$ and $20 \mu \mathrm{f}$ Direct, and Ext. C. posts, on both Input and Output.
- BIAS RESISTANCE-Up to 555,000 ohms continuously variable.
- LOAD RESISTANCE-Up to 277,500 ohms continuously variable.
- EMITTER RESISTANCE-Up to 2,500 ohms variable. Series resistor and bypass capacitor can be added.
- BASE COLLECTOR STABILITY - Up to 250,000 ohms
variable. Series resistor and bypass capacitor can be added.
- VOLTAGE DIVIDER STABILITY - Up to 50,000 ohms variable.
- 5-WAY BINDING POSTS-For meters, transformer coupling, external supply voltage, degeneration, bypass, coupling, signal input and output, almost any connection required.


## SPRACUE

SPRAGUE PRODUCTS COMPANY, NORTH ADAMS, MASSACHUSETTS

Subject: MEASUREMENT OF RADIAL RUNOUT


ECCENTRICITY $\Delta$

FIG. 1 - Measuring eccentricity of bore with respect to inner raceway.

Occasionally questions are raised about the methods of measuring "radial runout" and "out-of-round". In order to define "radial runout" properly, a discussion of "eccentricity" and "out-ofround" is necessary.

The amount of out-of-round, or lack of roundness of a given part (inner or outer ring or ball) is the difference between the maximum and the minimum diameter of the part in question.

Eccentricity refers to the distance between the centers of two circles. Concentricity refers to the exact coincidence of the centers of two or more circles. In high grade instrument bearings there is a very small tolerance on the permissible eccentricity between the bore and the inner ring raceway, and likewise between the outside diameter and the outer ring raceway.

Inner raceway out-of-round is measured by forcing the ring between the rounded edges of two discs, one of which is fixed and the other of which is mounted on the indicating mechanism. The difference between the maximum and minimum readings reveals the amount of out-of-round. Out-ofround of the outer ring raceway is measured by placing the ring over two rounded points which engage the raceway. One point is fixed and the other actuates an indicating mechanism. As the ring is rotated, the dif-


FIG. 2 - Inner raceway is out-ofround, although concentric with bore.
ference between the maximum and minimum readings indicates the degree of out-of-round.
The true amount of eccentricity between the bore and the inner ring raceway can be measured, providing these circles are not out-of-round, by mounting the assembled bearing on a slightly tapered arbor, applying a calibrated indicator on the center of the


[^6]stationary outer ring, and then slowly rotating the arbor. The eccentricity is the difference between the minimum and maximum gage reading as the arbor is rotated through one revolution. Similarly, the eccentricity of the outer ring is measured by the difference in the dial readings with the arbor and inner ring held stationary while the outer ring is rotated one revolution. Fig. 1 shows the set-up with an inner raceway which is eccentric with respect to the bore.

In the case above it has been stipulated that the bore and inner raceway must not be out-of-round, for only under these conditions is the true eccentricity measured.

If the raceway is out-of-round, while being either eccentric or concentric with respect to the bore, the out-ofround will be transmitted to the indicator, thereby influencing the reading. A condition in which the inner raceway is out-of-round although concentric is shown in Fig. 2.

In view of the fact that the majority of bearing rings will unavoidably be somewhat out-of-round and eccentric, however slightly, it is obvious that the measurement described above indicates neither true eccentricity nor true out-of-round but a summation of the two quantities. Hence the measurement is more correctly termed radial runout.

## DESIGNERS HANDBOOK OFFERED FREE TO ENGINEERS

If you work with miniature bearings, you'll find this new, 70-page authoritative publication a great help in solving problems in designing instruments or small electro-mechanical assemblies.

It will be sent free to engineers, draftsmen and purchasing agents. Write to: New Hampshire Ball Bearings, Inc.
 Peterborough 1, N.H.

## SHIELDING'S Umiversal enclosjre

 PROVIDES MAIIIMUM SHIELDING EFFECT VENESS ... FOR COMPLYING WITH ALL APPLICABLE MILITARY SPECIF CATIONS.

Shielding has the procitical solution to all your electro-magn titic suppression problers - the Shielding Universal Enclosure. Milti-Celle design features sithe-single or double shielding in cell or isolated -ype er closure . . . interchangeable stardard panels of solid and/or mesh mapariol... a wide variety of erIlcsures zes both stardarf "and custom-buit. A :omplete test report, performed by independent consultirg engineers in accordance with m litary specifica-ionz, hes jus been completel -evalua-ing designs and di'fere רt types of nateral used. For your copy cf th s refort anc the neve St ielding folder givirg all design defails, writs jojay to:


IS RESEPVE S-REET FE VERSIDE. NEW IERSEY

SALES O=FICES:

EMICAGO - M. REWARD STEMM - enver - willbams associates

SOB AWEELIS - CARL A. STONE ASSOCBATES
EOKT WORTK - MIVENELL SPIARS COMPAUY
PRATTLE - 0. Na, QMLETT COMPANY
EAMADA - MJs ELECTMONICS, SLES LTO gMaK, ONTARIO


Cun


When you make Sylvania your headquarters for tungsten and molybdenum, you gain in several very important ways: Sylvania can supply metals to your exact specification because every step of the process is performed in Sylvania's own plants.

By maintaining complete control over every manufacturing step, the process can be altered at any point along the way to secure the characteristics you require. In addition, Sylvania can assure you the uniformity of specification required for modern automated equipment. For example, the continued improvement in tensile strength, elongation, and length of molybdenum wire has permitted more efficient operation of automatic grid winding equipment. To obtain these improvements, modifications have been not only to actual wire drawing
operations but, also, to practically every step as far back as the production of metal powder.

As another example, a special tungsten rod had to be developed that could be cut and punched into ventilated contact disks without shattering. Here, each manufacturing step affected the end properties of the rod and even modifications through each chemical processing step had to be made to produce exactly the type of rod required. Obviously, complete integration was necessary.

Your Sylvania sales engineer will be glad to discuss your tungsten and molybdenum requirements. For technical data and specifications write to:

Sylvania Electric Products Inc. Tungsten and Chemical Division, Towanda, Penna.

collins Mechanical Filters


Auailable Ouly From

COMMUNICATION ACCESSORIES CO
World's Largest Manufacturer of Toroidal Filters and Coils Lee's Summit, Missouri


"G-E SILICON Low Current RECTIFIERS cover the field from $1 / 4 \mathrm{amp}$ up to $18 \mathrm{amps} \dagger$... really stay on the job... and the price doesn't hurt"

Every engineer who works with d-c power supplies for assemblies or components of moderate current demand finds a valuable source in the General Electric rectifier line. G-E Silicon Rectifiers-whether the Axial Lead or the Stud Mounting models in single cells, or in Stack assemblies with their remarkable range of current and voltage ratings - are part of our extensive range of
rectifier or other semiconductor devices.
The table on output and performance figures only suggests the range of specifications available. For further data, or exact information on rectifiers for your specific needs, call your General Electric Semiconductor representative. Or write General Electric Company, Semiconductor Products, Section S2557, Electronics Park, Syracuse, N. Y.

# More Watts per Dollar with the NEW High-Power Nof Wso ariacs 

- New Designs . Ratings up 25\%
- DURATRAK Brush Track
for First Time in High-Power Models
- Lower Losses . Smaller . Lighter
- 5 KVA to 26 KVA Ratings . Lowered Costs
- UL Approved . Optional Ball Bearings and Motor Drives

The newly designed Types W50 and W50H VARIAC Series replaces the popular Types 50A and 50B with many electrical and mechanical improvements.

Current ratings for the new 115 -volt and 230 -volt models are 50 and 25 amperes, against 40 and 20 for the older types. A built-in protector prevents damage from sustained overloads exceeding $160 \%$ of rating. This extra safety feature is available when the normal load fusing or breaker is inoperative.

The basic design of the new Type W50 Variacs is along the lines of the other new "W" models in the smaller sizes. Mounting holes and layouts are the same as the old Type 50 for ready interchangeability.

## Type

 W50HVariac 230 -Volt Input, 7.5 KVA, 32.5 Amp. Max. Current.

Type W50 similar except for number of terminals and dial. 115 -Volt Input, $5.75 \mathrm{KVA}, 50 \mathrm{Amp}$. Max. Current. Type 50H VARIACS are equipped with 7 combination screw-solder terminals. Can be used on either 230 - or 115 -volt lines. Type W50's have 5 terminals. Note engraved wiring diagram on terminal board, showing voltage between terminals.

Essential Dimensions
50 Amperes 115 -Volt Models


ABCDEGHJKLMNPRSTUWX



Specifications
32.5 Amperes 230-Volt Models

| 32.5 Amperes 230-V | Models W50 Uncased | w50M Cased | W50H Uncased | W50HM Cased |
| :---: | :---: | :---: | :---: | :---: |
| Inpul Vollage | 115 | 115 | $230^{\circ}$ | 230* |
| Load Raling (kvo) | 5.75 | 5.2 | 7.5 | 7.1 |
| Output Vollage | 0.135 | 0.135 | 0.270 | 0.270 |
| Raled Current (amp) | 50 | 40 | 25 | 20 |
| Maximum Current (amp) | 54 | 45 | 32.5 | 31 |
| No. Load loss at 60 c . (w) | 50 | 50 | 50 | 50 |
| Dial Calibrations | $\begin{aligned} & 0.115 \\ & 0.135 \end{aligned}$ | $\begin{aligned} & 0.115 \\ & 0.135 \end{aligned}$ | $\begin{aligned} & 0.230 \\ & 0.270 \end{aligned}$ | $\begin{aligned} & 0.230 \\ & 0.270 \end{aligned}$ |
| Angle of Rotation (deg.) | 320 | 320 | 320 | 320 |
| No. Turns on Winding | 191 | 190 | 298 | 298 |
| D.C Resistance of Winding (!!) | . 075 | . 075 | . 3 | . 3 |
| Driving Torque ( 02. -in.) | $200 \cdot 400$ | $200-400$ | 200.400 | $200 \cdot 400$ |
| Replacement Brushes | $\begin{aligned} & \$ 5.90 \\ & \text { per set } \end{aligned}$ | $\begin{aligned} & \$ 5.00 \\ & \text { per set } \end{aligned}$ | $\begin{aligned} & \$ 5.00 \\ & \text { per set } \end{aligned}$ | $\begin{aligned} & \$ 5.00 \\ & \text { per set } \end{aligned}$ |
| Net Weight (lbs.) | 51 | 57 | 53 | 60 |
| Code Word | GATAL | GATER | NITAL | NIPER |
| PRICE | \$120 | \$145 | \$120 | \$145 |
| Ball-Bearing Surcharge | \$15 | \$15 | \$15 | \$15 |

# GENERAL RADIO Company 



Banked winding is of \#7 or \#11 AWG wire! Duratrak brush track (for the first time in these high-power VARIACS) is on face of toroidal winding.


Type W50G2 two-gang Type W50: 100 Amp. Max. Current (with parallel windings) Note 2 -piece base stamped from plate stock, in all W-type VARIACS stronger than cast or die-cast construction
W5OHG 2 similar; 230 -Volt Input, 15 KVA, 65 Amp. Maxımum Current


Six brushes in multiple, pligtail-equipped brush holders, readily removed for servicing or replace ment - copper radiator nose and brush holder conducts current and heat to painted radiator, for maximum heat dissipation.


Wall-mounted Type Wsom. Four $11 /{ }^{\prime \prime}$ conduit knockouts provided for convenience in wiring. Four bolts thiough comers of base and case hold cover firmly in pare - captive radiato permits shaft to be eatended either way for panel or wall moun irg without upsetting radiator and brush setings. Note accessibility of terminal board for tasy wiring.

Type W50G2M Completely enclosed 2 -gang Type W50 for 115-Volt Input.

W50HG2M similar:
for 230 -Volt Inpút

Type W50G3M
Type W50G3
115-Volt Input, 17.25 KVA 150 Amp. Max. Current (with parallel windings) W5OHG3 similar; 230 -Volt Input, 22.5 KVA, 97.5 Amp. Max. Current
nclosed 3-gang Type W50 for 115 -Volt Input

WSOHG 3 M similar:
230 -Volt Input

TYPE W50
Typical Ganged Variac@ Assemblies
 interceptor, high impedance circuits are coated with Silastic RTV for protection against moisture and vibration at low temperatures. Easily applied, this silicone rubber compound vulcanizes at room temperature.

## RTV seals, cushions delicate circuits

Sensitive electronic components can be both cushioned and sealed against moisture by encapsulating with Silastic RTV*, Dow Corning's silicone rubber that vulcanizes at room temperature. A single coating provides protection, and in addition improves electrical properties of the unit, especially surface resistivity. Silastic RTV cures in 24 hours, and remains resilient from -100 F to 350 F . Write for complete data.

Dow Corning Corporation, Dept. 4817
Midland, Michigan
Please send me latest data on Silastic


## Typical Properties of Silastic for Encapsulating and Potting

- Temperature range, ${ }^{\circ} \mathrm{F}$
- Dielcetric strength, volts/mil
- Surface resistivity at $\mathbf{5 0 \%}$ relative humidity, ohms
- Dielectric constant, $10^{\circ}$ eycles per second
- Dissipation factor, $10^{2}$ cycles per second
- Moisture absorption after 7 days
at room temperature, $\%$
-100 to 350 F
300 to 500
$2.8 \times 10^{1 / 3}$
2.95 to 3.05
0.01
+3 to +5

If you consider ALL the properties of a silicone rubber, you'll specify SILASTIC.

## IIIIIIIIIIIIIIIIII



## Shaped RF Pulse, 30 KW Peak Power Output for 955-1220 mc Air Navigation Systems

Designed for air navigation systems, the Eimac X676 three cavity, air cooled klystron will deliver 30 KW peak power output in the 955 to 1220 mc range. With a power gain of 35 db , this tube has an efficiency of 40 per cent.

A typical air navigation systems requirement is a shaped RF pulse output to eliminate spectrum interference in adjacent channels. The Eimac X676 conservatively meets the 60 db requirement of the CAA's air navigational system without using critically tuned, expensive filters in the RF output transmission line. The modulating anode permits pulsing the beam current while keeping the accelerating voltage constant. Also, the modulator circuit for this application is quite simple.

The RF cavities are external to the vacuum system and detachable from the klystron. The user may purchase spare tubes without buying additional tuning and focusing assemblies.

For the design engineer, the features of the X 676 simplify circuitry - for the equipment operators the $\times 676$ provides reliable, long-lived performance at moderate cost.

For further information about the Eimac X676 Modulating Anode Klystron, consult our Application Engineering Department. Also available are two highly informative booklets; "The Care and Feeding of Klystrons" and "Klystron Facts... Case Four".

EITEL-MCCULLOUGH, INC.
Eimac First in $^{\text {ing }}$ higher amplifier klystrons
DC Beam Voltage $\ldots \ldots .24 \mathrm{kV}$

| DC Beam Current |
| :--- |
| Power Input |$\ldots . . .3 .3 \mathrm{Amps}$

DC Beam Current Power Input
3.3 Amps 80 KW

Power Output
Driving Power
Efficiency

## Power Gain. Average Power

35 db
1 kw

## New, compact, convenient!



## All new -hp- 560A DIGITAL RECORDER



Figure 1. Frequency stability vs. line voltage; 150 MC oscillator

## Continuous

## Prints 11-digit information at 5 lines per second Controlled by electronic or mechanical devices

## Direct print-out from

 all -hp- counters
## Analog output for strip-chart recorder

## Expanded scale; full scale can represent $1 / 10^{7}$

Accuracy identical to that of counter used

## SPECIFICATIONS

Accuracy: Identical to that of basic counter used.
Printing Rate: Controlled by counter, 5 lines $/ \mathrm{sec}$. max.
Digit Capacity: 11 digits per line (also 6 digits per line)
Driving Source: Parallel entry staircase voltages derived from standard digital frequency counters such as HewlettPackard types. Staircase descends from +135 v to +55 v as the count progresses from 0 to 9 . Internal impedance of staircase source should be approximately 700,000 ohms.
Paper Required: Standard 3" roll or folded paper.
Line Spacing: Single or double, adjustable.
Analog Signal: Any three consecutive digits may be selected by selector switch. Output is function of selected digits. For example, if consecutive digits were 3,8 , and 6 , output voltage would be 38.6 millivolts or 0.386 ma .

Print Command Signal: $1 \mu \mathrm{sec}$ or greater, positive or negative pulse, 15 volts p-p or greater.
Output Available: 1 milliamp for galvanometer strip-chart recorders. 100 millivolts for potentiometer strip-chart recorders.
Power: $105 / 125$ volts, 60 cycles, 250 watts.
Dimensions: Cabinet Mount: $201 / 2^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $181 / 2^{\prime \prime}$ deep. (Rack Mount available.)
Weight: Net 60 lbs . Shipping 100 lbs .
Accessories Available: 1052-24, 3" folded paper, 48/carton. Price:
-hp-560A, Cabinet Mount, 11-digit operation, $\$ 1,390.00$
-hp- 560AR, Rack Mount, 11-digit operation, \$1,375.00
$-h p-560 \mathrm{~A}$, Cabinet Mount, 6-digit operation, $\$ 1,265.00$
-hp-560A, Rack Mount, 6-digit operation, \$1,250.00
Data subject to change without notice. Prices f.o.b. factory

## World leader in electronic

## digital record for frequency counters!

Here-ready to save your time now - is a totally new kind of digital recorder designed from the chassis up for maximum speed and convenience and utmost versatility.

The new -hp-560A works directly with all -bp-counters; no intermediate equipment is required. It will provide a complete record of the full output of any counter up to a speed of 5 times per second. Thus it is possible to have a complete written record of all kinds of test data, plus a convenient graphic record of very small data variations through the analog feature.

## Analog Output

The 560A's analog output for driving a strip chart recorder is a voltage or current proportional to the number represented by any three consecutive digits of recorded data. The instrument permits expanded scale strip chart recording and the strip chart can never be driven off scale since range variation for the 3 -digit scale is 0 to 999. Wider variation results merely in a repetition of the 0 to 999 sequence.

## Counter Accuracy

Model 560A is a complete electronic measuring instrument normally controlled by staircase voltages and a print command pulse from an - $h p$-counter. It may also be controlled by other electronic or electro-mechanical devices. Since - $h p-560 \mathrm{~A}$ is literally a slave to its associated counter, accuracy is identical with that of the counter. Printing speed of five, 11-digit lines per second is available; and secondary or coding data may be entered simultaneously with primary data.

A modified version of $-h p-560 \mathrm{~A}$ with a print capacity of five, 6-digit lines per second is also offered.

## Operation

In operation, a command pulse initiates a scanning cycle during which the number wheels are positioned by staircase voltages from the counter decades (see Figure 2). At the end of the scan cycle, a print of the data is made, and the paper automatically advanced to display the count.


Figure 2. Principle of recorder operation. At the end of each counting period, the staircase voltage generated comes to rest on a step corresponding to the digit displayed by that decade. The number wheel rotates, generating its own staircase. At voltage coincidence, the number wheel is positioned by comparator and solenoid.

For complete details, see your -hp- representative or write direct
HEWLETT-PACKARD COMPANY 4276A PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A. CABLE "HEWPACK" • DAVENPORT 5-4451 field representatives in all principal areas

## test instrumentation



General Plate alcuplate is a clad metal made by bonding solid copper on one or both sides of aluminum.
The copper surfaces of G. P. alcuplate have all of the properties of solid wrought copper, but when bonded to the aluminum, there is a substantial reduction in overall weight, with cost savings of up to $30 \%$.
G. P. Alcuplate is available in coils or cut lengths, in thicknesses up to $1 / 16^{\prime \prime}$ and widths up to $14^{\prime \prime}$. Thick-
ness ratios can be supplied up to $10-90$ in single clad, or 10-80-10 in double clad.
G. P. alCuplate is an excellent thermal and electrical conductor. It is easily formed, deep drawn, or spun, and it offers ideal surfaces for fine finishing.

Write today for complete details on versatile G. P. alcuplate - ask for Bulletin 702E.

You Can Profit By Using General Plate Clad Metals

## METALS \& CONTROLS

General Plate Division
field offices: new york, chicago, detroit

## CORPORATION

1305 Forest Street, Attleboro, Mass.
milwaukee, los angeles


## What's YOUR Electronic

## Solderability?... <br> Temperature?...

Unusual Shapes?...
Space?...

## Here are five proven solutions to



THERMALEZE
A Class "B" 130 C epoxide-polyester film wire for higher temperafure windings.


A polyurethane-coated wire-solders at low temperature - without stripping!


Modern black enamel with uniform O.D. high tensile for layer-wound coils.

## Coil Problem?...

Phelps Dodge can supply the right answer to your particular magnet wire problem from its complete, up-to-date line. The products shown here have varied electronic applications. These magnet wires are the result of Phelps Dodge research and development of new materials, combined with practical experience in application engineering.

The complete line of Phelps Dodge magnet wire includes:
Enamel • Formvar • Sodereze ${ }^{\circledR}$ • Bondeze ${ }^{\circledR}$. Thermaleze ${ }^{\circledR}$ • Grip-eze ${ }^{\circledR}$ • Sylkyd
Daglas ${ }^{\circledR}$. Daglas ${ }^{\circledR}$ Silicone • Paper • Cotton • Multiple Combinations

## lower-cost electronic coils




Wire packaged in Phelps Dodge special "Pakeze" containers if required.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!


## PHEIPS ODODE EOPPEEP PROOUCTTS CORPORATION

## INGA MANUFAGTURING DIVISION <br> FORT WAYNE, INDIANA



Heavy resistance to torque is a big feature of Ucinite miniature banana pius. The springs are mechanically riveted over and the large area aronnd the tip of the pin is bonded by solder.

Pins are available in a variety of types, for assembly by staking . . . with nuts and washers . . . with soldered tails . . . with multiple plug-in features. Springs are designed to fit .093 sockets.

Built to withstand rough usage, Ucinite miniature banana pins are available in cadmium, silver or gold plate.

For further information, call your nearest United-Carr representative or write directly to us.



Specially designed to hold die-cast or cold-forged name plates, emblems and trim against sheet metal surfaces . . . DOT'S unique T.C.F. can be used in many other applications which require a spring take-up fastener that pulls up tight without backup on flat or contoured surfaces.
It cuts clean, deep threads on unthreaded studs, even those that are chrome plated. When used with its preassembled plastic sealer, T.C.F. makes a water-tight seal. The sealer precedes the fastener onto the stud so that it is not damaged by the thread-cutting process.
Available in quantity, with or without sealer, to fit $1 / 8^{\prime \prime}$ and $3 / 16^{\prime \prime}$ studs. Drawings available on request for magnetic tool or simple hand tool.


| Nominal Sizes | A | B | C | D | E | F | Driving Torque | Ultimate Strength |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 8{ }^{\prime \prime}$ | . 560 | . 170 | . 480 | $68 / 4$ | $\begin{aligned} & 085 \\ & 085 \end{aligned}$ | $\begin{aligned} & .130 \\ & .125 \\ & \hline \end{aligned}$ | $\begin{gathered} 7.10 \\ \text { heth lbe. } \end{gathered}$ | 200 168. |
| 3/16 | . 705 | . 200 | . 450 | $8 / 39$ | $\begin{array}{r} 1.60 \\ .150 \\ \hline \end{array}$ | $\begin{array}{r} 192 \\ .18 .4 \\ \hline \end{array}$ | $\begin{aligned} & 20-30 \\ & \text { nesh lbs. } \end{aligned}$ | 400 lbs |



Manufactured by MONADNOCK MILLS SUBSIDIARY San Leandro, Cal. DOT SES C.

Manufactured by Carr fastener co. division Cambridge, Mass.

FASTEN E R C O R P O R A T IO N

## YOUR SOURGE OF SUPPLY for CONDENSER PRODUGTS equivalents

## POLYSTYRENE CAPACITORS

Glass cased capacitors for A.C. applications such as bridge arm elements, filter network components, standards of capacitance; for R. F. tank circuit applications, for D.C. applications in storage circuits, electronic computers, and other critical circuitry.

Equivalent to Condenser Products Series LSG and PAG

Hermetically sealed can type capacitors for A.C. and D.C. applications listed above.
Equivalent to Condenser Products Series PAC

## HIGH VOLTAGE CAPACITORS

Glass cased capacitors for D.C. applications.
Equivalent to Condenser Products Series ASG

Hermetically sealed can type Mylar ${ }^{\text {B }}$ dielectric capacitors for D.C. applica. tions. © DU PONt taADE MARK
Equivalent to Condenser Products Series AOC


## TEFLON

CAPACITORS
The inevitable choice for critical circuitry in computers. Highest insulation resistance... lowest error due to dielectric adsorption. The only capacitor available for operation at temperatures up to $200^{\circ} \mathrm{C}$ with ultra-high insulation resistance and low power factor and dielectric adsorption.
Equivalents available for Condenser Products Series TAC, TACM and TAG



If your installation requires a workhorse electrical connector, and there isn't room for a mouse, don't wring your hands and sob. Perk up and smile, because there's a giant-hearted midget that'll do the job... a Deutsch Push-Pull Miniature Connector.

Tiny, trustworthy and tamperproof, the Push-Pull is the connector of choice where the problem is size . . . where the connection is blind, remote or ballistic . . . where the installation is crowded.

Operation's as simple as it's positive. Simply push in to connect, automatically lock and seal. Pull back for instant disconnect. No twisting, turning or lockwiring. Just push-pull . . . all in a straight line.

We've a brand new catalog (Bulletin 501) that describes and illustrates our complete line of miniature connectors. If you let us know where, we'd be pleased to send you a copy.


electrical connectors - FITTINGS CLAMPS BLIND RIVETS hydraulic fittings / industrial fittings gas valves 5n of ose


Section of department making stators for Bendix synchros ond motors


## EXTERNAL SLIP RING AUTOSYNS®

Bendix external slip rings replace ordinary fixed leads where it is desired to rotate the stator in oddition to, or instead of, the rotor. Individual mechanical and electrical requirements determine location
and configuration of these external rings.
As can be seen from the few examples below, many voriations are possible in Bendix External Slip Ring Autosyns.


Fast delivery of practically any type synchro at minimum cost. Isn't that what you want from your synchro supplier?

If so, consider how well Bendix fills the bill. First, as a virtuad "supermarket" for synchros, we maintain mass production that means minimum unit prices, even to small-quantity buyers. Second, we produce virtually all types of synchros as standard items, meaning you can get delivery fast -immediately, in most cases.

Finally, Bendix synchros are built to exacting precision standards that equal or excced . . . those of any other synchros made.
Let our vast experience and mass production facilities go to work on your synchro needs, too!

[^7]
# Remarkable properties of Du Pont TEFLON® resins provide rugged, low-loss insulation for wiring 

## Use of TEFLON ${ }^{\circledR}$ promotes miniaturization of electronic parts

Owing to the high dielectric strength of Du Pont Teflon-ratings are 500 to 4,000 volts per mil-insulation on wires can be exceedingly thin. Hence the heating due to current overload, which is always a critical factor with thin conductors, has less of an effect on Teflon than on any other wiring insulation. Because Teflon can operate hotter, it permits many miniaturization projects which would not be feasible without it. Minialurization of coils, capacitors, brushes and other components is frequently possible because of the remarkable properties of wire insulated with Teflon. Teflon has opened up new fields of use for magnet wire, hookup wire, lead wire, coaxial cable and resistance wire. Tubing of Teflon is available down to hairlike diameters. The coupon will bring more information.


These small capacitors use TEFLON as the dielectric. Their degree of miniaturization is shown by comporison with end of lead pencil.

"Datatron" solves the complex numerical problems of modern industry and commerce. Intricate wiring of the electronic computer is protected by slip-on insulation of Du Pont

Designers of the Datatron high-speed digital computer took no chances with ordinary wiring insulation. Heat generation in this equipment cannot damage or age the sleevings of Du Pont Teflon used to protect the conductors. Teflon retains its toughness, flexibility and electrical characteristics to a rated $500^{\circ} \mathrm{F}$. Soldering-iron temperatures will not burn or melt insulation of Teflon. In assembly operation, Teflon does not undergo shrinkage during soldering.

Other properties of this remarkable engineering material are often equally valuable in electronic devices. The arc resistance of Teflon tetrafluoroethylene resin is outstanding. Its power factor of less than 0.0003 from 60 cycles to 3,000 megacycles guarantees low dielectric losses in high-

TEFLON 6 tetrafluoroethylene resin. (Computer by ElectroData Corporation, Pasadena, Calif., "spaghetti" fubing supplied by Pennsylvania Fluorocarbon Co., Inc., Philodelphio, Po.)
frequency equipment. The volume resistivity of Teflon is greater than $10^{18} \mathrm{ohm}-\mathrm{cm}$, even after prolonged soaking in water. Surface resistivity is greater than $10^{17}$ ohms at $100 \%$ relative humidity. Applications are often based on the exceptionally low coefficient of friction of Teflon. For example, "spaghetti" tubing is easily slipped over long conductors. Parts made of Teflon will pass any saltspray test. In fact, Teflon is one of the most chemically inert materials known. Many electronic products depend on Teflon to meet stringent MIL specifications.

The components you specify or design may well be improved by the use of protective, durable Teflon. Further information can be obtained by mailing the coupon.

## TEFLON ${ }^{\text {® }}$

is a registered frademark... TEFLON is the registered trademark for Du Pont tetrafluoroethylene resins, and should not be used as an adjective to describe any other product or any component part; nor may this registered trademark be used in whole, or in part, as a trade name for any product.

## SEND FOR

 INFORMATIONFor additional property and application data on Du Pont TEFLON tetrafluoroethylene resins, mail this coupon.
E. I. du Pont de Nemours \& Co. (Inc.), Polychemicals Dept. Room 1751, Du Pont Building, Wilmingtan 98, Delowore.
Please send me more information on Du Pont TEFLON tetrafluoroethylene resins. I am interested in evaluating this material for

## Name

Company_____Posifion_
Street
City State_
Type of Business
Type of Business
In Canada : Du Pont Company of Canada (1956) Limited, P. O. Box 660 . Montreas, Queboc


# "We find BUSS Fuses provide the dependable electrical protection we must have for our equipment". . . 

Gearge 7hole, chiff control desion neaneer

D. W. ONAN \& SONS INC., MINNEAPOLIS, MINNESOTA
"Our automatic line transfer units are used to transfer the electrical load from the normal commercial service to the Onan Standby Generating Set should a power failure occur.
"It is essential that our units operate properly in this emergency otherwise there would be a plant shut-down and the possibility of damaged equipment and property. In some cases human lives would be in danger.
"You can see why all the components used in our equipment must meet the very highest standards for dependability
"Fuses are an integral part of the battery charging circuit which is incorporated into our line transfer controls.
"In fuses, we have found by experience that BUSS Fuses
can be depended upon to meet the standards of reliability that are required by our stand-by power units."

## You,too, can profit bystandardizing on BUSS fuses.

The unfailing dependability of BUSS fuses helps keep equipment operating properly. Whereas, faulty fuses might cause needless burnouts or useless shutdowns,-BUSS fuses can be relied on to operate properly under all service conditions.

To meet your needs, there is a complete line of BUSS and Fusetron fuses, .. . plus a companion line of fuse clips, blocks and holders.

For more information on BUSS and FUSETRON Small Dimension fuses and fuseholders . . . Write for bulletin SFB. Bussmann Mfg. Co. (Division of McGraw-Edison Co.) University at Jefferson, St. Louis 7, Mo. thustworthr mamis in 357

## BUSS

## WELL I'LL BE DIPPED...better because the NEW ExiP SNAPIN

- Gets leads to the printed circuit board in one assembly operation;
- Eliminates an investment in expensive auto. mation equipment;
- Can be applied to solid or stranded wires;
- Eliminates danger of shorts due to "solder-bridging" of insecure leads;
- Has construction details that promote good capillary flow of solder during the dipping process;
- Is self-retaining, with no damage to the printed circuit board during preassembly operations;
- Is self-aligning-no further positioning or deformation is required.

Write today for additional information on the NEW A-MP SNAPIN, the AMP-EDGE Connector and other A-MP products designed for printed circuit applications.

## AMP INCORPORATED



## for кау LAB products

The same company, the same engineering and manufacturing facilities, the same world-wide staff of field engineers, but a new name more descriptive of the Company and its products.

## LOOK FOR KIN TER ON:



On these and many other electronic products the name KIN TEL means outstanding instruments and television equipment.

FOR DRIFT-FREE DC INSTRUMENTATION


The KINTEL Model 111 amplifier provides maximum stability and the lowest drift of any commercially available broadband d-c amplifier. It is the end result of years of research in the field of chopper stabil zed broadband d-c amplifiers. Thousands of KINTEL amplifiers are in daily use.
The Model 111 incorporates KINTEL's proven chopper amplifier circuitry and provides ten extremely precise, feedback controlled gain ranges. Several feedback loops assure high accuracy, stability and uniform frequency response. The completely new and unique circuit provides rapid recovery from severe overloading and unsurpassed dynamic perfor nance - unaffected by load or gain changes.
The Model 111 is available in a single-unit cabinet or in $\varepsilon$ six-unit rack-mountable module. The amplifiers are extremely compact; the six-unit module occupies only a 19 -inch rack width.
APPLICATIONS: The Model 111 is ideal for permanent lov level d-c instrumentation, telemetering; or as a strain gage amplifier; transducer amplifier, scope preamplifier, recorder driver amplifier, or general jurpose laboratory amplifier.

S PECIFICATIONS

| Gain | $\begin{aligned} & 0,20,30,50,70,100,200,300 \\ & 500,700,1000 \end{aligned}$ |
| :---: | :---: |
| Gain Accuracy | $\pm 1 \% \mathrm{DC}$ to 2 KC |
| Input Impedance | 100,000 |
| Output Capability at DC | 0 to $\pm 35 \mathrm{~V}$ where RL> $1000 \Omega$ <br> 0 to $=40 \mathrm{MA}$ where RL is 10 to $400 \Omega$ |
| Output Impedance | Less than $1 \Omega$ in series with 25 uh |
| Equivalent Input Drift | $\pm 2 \mu \mathrm{vith}$ regulated line |
| Equivalent Input Noise | 0 to 3 cps , less than $5 \mu \mathrm{y}$ peak to peak 0 to 750 cps , less than $5 \mu \mathrm{VMS}$ 0 to 50 kc , less than $12 \mu \mathrm{v}$ RMS |
| Chopper Intermodulation | Less than 0.1\% |
| Linearity | Better than 0.1\% to 2 KC |
| Frequency Response | $\pm 3 \%(0.3 \mathrm{db}) \mathrm{DC}$ to 10 KC . |

Power Requirements Amplifier
Cabinet
6 Unit Rack Adaptor
Dimensions: Amplifier Unit Rack Adaptor for 6 Units Net Weight - Amplifier
PRICE: Amplifier Unit
19.inch Rack Adaptor for 6
amplifier (with fans and con
Cabinet for single amplifier
(with fan and connector)
is available

$117 \mathrm{~V}-60$ cycles - 70 VA
$117 \mathrm{~V}-60$ cycles -15 VA
$117 \mathrm{~V}-60$ cycles - 45 VA
$27 /{ }^{\prime \prime}$ wide, $75 / 8^{\prime \prime}$ high, $145 / 8^{\prime \prime}$ deep $19^{\prime \prime}$ wide, $83 / 4^{\prime \prime}$ high, $181 / 4^{\prime \prime}$ deep 11 pounds
$\$ 550.00$
20000
[ KAY LAB]
Representatives in all major cities.
5725 KEARNY VILLA ROAD.SAN DIEGO 11, CALIFORNIA. BROWNING 7-67OO.

## PROVE IT YOURSELF!

## ULTRA-HIGH POLYSTYRENE PRECISION CAPACITORS

## as low as $0.1 \%$ tolerances in most values!

Leading engineers know that S. E. C. pioneered the current polystyrene capacitors in Guided Missiles and Analog Computers. S. E. C. test data and engineering experience is based on years of research and constant improvement of product.
S. E. C. products have proved the answer to many tough engineering problems by such leading analog computer manufacturers as; Electronic Associates, Reeves Instrument, Beckman Instrument, Mid-Century Instrumatic, Goodyear Aircraft, Donner Scientific, Boeing Airplane Company and such military contractors as Northrop Aircraft, Gilfillan Brothers, North American Aviation, Convair, Motorola, Farnsworth Electronics, Bendix Aviation, Federal Tele-Communications and many others.
R. \& D. establishments as M.I.T., Jet Propulsion Labs, Cornell Aeronautical Labs, Battele Memorial Inst., Sandia Corp., and many others have chosen S. E. C. engineered components for their prototypes.

## Check these outstanding features for yourself:

- Tolerances as close as $0.1 \%$
- Insulation Resistance as HIGH as $1 \times 10^{12}$
- Dielectric Absorption as LOW as . 0001
- Dissipation Factor as LOW as . 0002
- Temperature Coefficient... 100 PPMper ${ }^{\circ} \mathrm{C}$.
- Stability as close as $.05 \%$ drift in 1 yr.
- Voltage derating. . . none to $170^{\circ} \mathrm{F}$.
- Hermetically sealed for enduring accuracy!


For your most exacting requirements-always specify S. E. C.


150 West Cypress Ave.
Burbank, California
pIoNeErs in custom precision capacitor engineering

## KIENNEDY INTRODUCES

## the 28 foot "TUF-SCAI" anternew



I
his new scatter antenna is specifically designed for the world's toughest weather conditions Recently static load tested with over 32 tons ( $105 \mathrm{lbs} . / \mathrm{sq} . \mathrm{ft}$.) on its surface, this big dish and tower have been carefully engineered and constructed to withstand winds in excess of 150 M.P.H. Even a $6^{\prime \prime}$ layer of ice won't disturb its per. formance. It is, in fact, the most rugged aluminum antenna ever built. Yet, its light weiglst, sectionalized aluminum construction keeps shipping costs down, makes assembly easy.

## nEW northern radio REGENERATIVE

 REPEATER
## Type 207 Model 1

 the most advanced in the industry!

The new Northern Radio Regenerative Repeater is designed for use in telecommunication circuits to re-shape and re-time distorted signals for local use or retransmission. Special provision has also been made for use of this unit on half duplex circuits - where it will not only regenerate the ordinary teleprinter signals but also faithfully reproduce such special signals as "break" signals and "mark restoration" information.

Further provision has been made for use of this Regenerator with synchronous binary signals on either single channel circuits or multi-channel time division multiplex systems. Provision is made to synchronize this unit from an external source.

- Maximum Acceptable Signal Distortion: new circuitry accepts up to $47 \%$ mark or space distortion.
- "Floating" Input \& Output Circuits: completely electronic output, no relays.
- Greater Timing Circuit Stability: time base derived from highly stabilized L-C oscillator.
- Switch Selection of Speeds: 60, 75, 100 words per minute.
- Adaptable to Any Speed: low-pass filter \& frequency-determining elements are plug-in units.
- Completely Self-contained: includes power supply and line battery.


## - OTHER OUTSTANDING FEATURES:

- faithfully reproduces "break" signals
- transmits "break" signal in case of line failure
- protected against "space lock-out"
- output can be open-circuited with no excessive rise in line voltage \& no harm to the Repeater
- 22 front panel test points for equipment function and 8 jacks for input \& output line, equipment, current and voltage measurements

Input Keying
Signal
Requirements:

Oułput Distortion:

Power
Requirement:
Mounting:
Frequency
Stability of Time
Base Generator:

Sampling Time:

Output:
(1) Neutral keying, positive or negative sense (a) on-off 60 ma pulses (b) on-off voltage pulses $10-100 \mathrm{~V}$ into 100K ohms
(2) Polar keying
(3) Dry contact keying

Less than 1 point range loss for $\pm 10 \%$ line voltage variation or $\pm 20^{\circ} \mathrm{C}$ ambient change from $25^{\circ} \mathrm{C}$
Approximately 50 microseconds
Electronic tube outputs:
(a) neutral 85 ma max. into 2 K ohms
(b) polar 33 ma (max.) into 2 K ohms
(a) Signal bias distortion less thon 0.5\%
(b) Signal element random jitter less than $1 \%$
(c) Signal history (duty cycle) distortion less than 0.5\%
(d) Total distortion less than 2\%
125 watts approx: $110 /$ $220 \mathrm{~V}, 50 / 60 \mathrm{cps}$
Standard $19^{\prime \prime}$ rack mounting, $51 / /^{\prime \prime}$ panel

Write for free 67-page catalog.


## having your ups and downfor

# DALOHM hastreansuer 

All Dalohm components are carefully designed and skillfully made to assure you of supreme quality and dependability, plus the widest versatility of application. These recent additions to the Dalohm line already have met with wide acceptance and enthusiasm:

you can depend on DALOHM


Mil-E-Trized A10-W TRIMMER POTENTIOMETER Wire Wound, High Temperature, Humidity-Proof, Ruggedized
This Dalohm Trimmer is designed to meet the ever-increasing requirements of such specifications as MIL-E-5272A and MIL-R-12934. It provides precision adjustments in critical electronic circuits under extreme environmental conditions. It has an extended winding surface and assures high precision resolution without sacrificing sub-miniature design. Size is $.220 \times .310 \times 1.250$; weight is 2.25 grams.

- Resistance values 10 ohms to 100,000 ohms; standard tolerance $5 \%$; power rating 0.8 watt; temperature coefficient of wire $0.00002 /$ Deg. C. Other resistances, tolerances, leads available on special order.
- Completely sealed; housing of thermosetting, glass filled material with heat resistance of $200^{\circ} \mathrm{C}$ continuous. Precious metal plating on all terminals; air evacuated and filled with silicone grease.
- Unique new type sliding contact; unique safety clutch.
- Unit holds set resistance values
- Mounting flexibility provided for either stacked or multiple arrangements.
Write for Bulletin R-32B


## Mil-E-Trized DP-12 POTENTIOMETER

Built to Surpass JAN-R-19

## Hermetically Sealed, Moisture-Proof, Ruggedized

Completely protected from arctic cold or tropic damp, from shock, vibration, salt-laden air and ultra-high altitude. Powered at 4 watts, the DP-12 has a power rating of $100 \%$ at $40^{\circ} \mathrm{C}$, derated to 0 at $125^{\circ} \mathrm{C}$. Housing and shaft of black anodized aluminum with back plate of corrosive resistant aluminum Unit designed for back panel mounting with integral threaded base.

- Operating temperature range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Minimum rotational life is 25,000 mechanical cycles.
- Standard resistance range 100 ohms to 40 K ohms with standard tolerance of $5 \%$. Other ranges and tolerances available on special order.
- Precision winding gives excellent linearity with $3 \%$ maximum deviation.
- Temperature coefficient of wire $0.00002 /$ Deg. C on values of 500 ohms and up; $0.00050 /$ Deg. C on values below 500 ohms.
- Sensitive shaft adjustment.


## JUST ASK US!

Write for the complete Dalohm catalog of precision resistors, potentiometers, and collet-fitting knobs.
If none of our standard line fills your need, our staff of able engineers and skilled craftsmen, equipped with the most modern facilities, is ready to help you solve your problem in the realm of development, engineering, design and production.
Just outline your specific situation.

## DALE PRODUCTS INC.

I300 28th Ave Columbus, Nebraska, U.S.A.

## - In Canada:

Charles W. Pointon, Ltd
6 Alcina Ave
Toronto, Ont.

- Export Dept:

Pan Mar Corp.
1270 Broadway.
New York I, N.Y


## Step Up Performance, Cut Costs of Motors and Transformers with ARMCO Di-MAX M-15

Where high efficiency is required, you can cut the production costs of equipment (from high horsepower machinery to walt-hour meters and TV transformers) with laminations made of DI-MAX M-15 coils. The reason: this special, non-oriented, low core loss Armco Steel has a unique combination of good magnetic and fabricating properties.

## Advantages Offered by Di-max m-15

Punchability-Uniform high ductility enables you to design punched laminations of any size and shape, yet retain low core loss. DI-MAX proper̃ties extend die-life, simplify production in the shop.
Better Permeability-At high inductions the permeahility of DI-MAX M- 15 is better than that of the standard M- 15 gratle.

Improved Space Factor-Better flatness and smoother surface combine to eliminate lost space, enable you to design for maximum performance.
Available in Coils With DI-MAX M-15 welded coils you can use all the advantages of continuous production methods. Gage is more uniform than regular M-15. And ductile, annealed butt welds are within sheet gage limits. Punching and core assembly of small or large laminations proceed as though the material had no welds.

Consider the outstanding magnetic and fabricating properties of Armco Tran-Cor DI-MAX M-15 to lower cosis and step up the performance of your products. For complete data on this special Armco Electrical Steel, write us at the address below or call the nearest Armco sales office.

# ARMCO STEEL CORPORATION 

1197 Curtis Street, Middletown, Ohio
Sheffield Steel Division, Armco Drainage \& Metal Products, Inc., The. Armco International Corp.


# TUEE <br> DESICM MEMTS 

## 7329 G-E 5-Star 6414's in IBM SAGE Computer Still Show No Opens, Shorts or Mechanical Defects after 3000 Hours Service



This huge computer, only a small part of which is illustrated, was engineered and buila by IBM to serve as heart of the Semi-Automatic Ground Environment (SAGE) air defense system. G-E 5-Star 6414's in the computer had a perfect record of NO opens, shorts or mechanical defects.

## Special G-E Welding Technique Makes Possible Pumpless Ignitrons with Sealed-for-Life Vacuum

No shorts, no opens, no mechanical defects ... this is the history of 7329 5-Star 6414's that have performed in excess of 3000 hours in IBM's first XD-1 computer, engineered and manufactured for the experimental sub-sector of the USAF SAGE system.
"Out of electrical tolerance" has been the sole removal cause. In contrast: $17 \%$ of removals of another twin triode of earlier design tested in this giant computer, have been for one of the three reasons above-shorts, opens, mechanical defects-any one of which can render a tube inoperative.

General Electric's 5 -Star 6414 was one of the first high-reliability tubes developed expressly for computers . . . just as G.E. previously had pioneered special tubes for commercial computers.

Experience not found elsewhere enters into the design, manufacture, and lesting of the three General Electric 5-Star, and seven commercial computer types now available. Ask any office on the next page for further information!

General Electric pumpless ignitrons are helping industry convert a-c to d-c more economically than ever before. A continuous welding process developed by G.E. seals off the vacuum inside the tubes permanently. No pumps are needed once the tuhes are installed. Doing away with vacuum pumping equipment gives cleaner installations, and leads to important savings.

One of a long series of G-E ignitron advancements, pumpless ignitrons are a General Electric "frist". Today G.E. builds and offers types with the highest ratings in the field-fully able, in multiple groupings, to meet the power requirements of aluminum producers and others who are massive users of d-c.
(Continued on Page 2, Column I)


LEFT: a continuous air-tight weld of ignitron covers to tanks is formed by rotating the big tubes in motorized jigs. RIGHT: showing a large rectifier installation of G-E Pumpless ignitrons. Note the clean layout, free fron vacuum pumping equipment, headers, gages, and connections. Eliminating these components saves substantially in equipment, power, and maintenance costs.

# Improvements in G-E Horizontal-Amplifier Tubes Assure Full Picture Sweep, Lengthen Tube Life 



Trigger circuit goes into action whenever radar output tube receives an overload-
actuales the ignitron, which instantly radar output tuhe receives an overload-
actuates the ignitron, which instantly becomes a current bypass ("crowhar") in order $t o$ short out the threatened tube.

## "Crowbar" Circuit Featuring G-E Ignitron Protects Radar Output Tubes From Overioad Damage

Valuable use is being made of General Electric ignitrons to shield costly radar output tubes from overloal damage. The ignitron is triggered to short out the tube in the event of a dangerous power surge.
Such action, of course, must be virtually in the event of a dangerous power surge.
Such action, of course, must be virtually instantaneous-and an ignitron operates with split-second rapidity, far faster than any conventional switch.

Moreover, an ignitron will conduct
Moreover, an ignitron will conduct
current in the large amounts called for by overload protection. Type GL-6228/506, used increasingly for this work, conducts up to $60,000 \mathrm{amp}$-yet will not fire until triggered at $65,000 \mathrm{v}$. This high hold-off voltage assures that normal variations in power will not cause circuit interruptions.

For low-power radar and broadcast stations, General Electric's GL- 5630 Ig -
nitron is a more economical, and equally nitron is a more economical, and equally popular, "crowbar-tube" investment.

## Pumpless General Electric Rectifier Ignitrons

(Continued from Page 1)
A typical grouping of twelve General Electric 20 -inch pumpless ignitrons, for example, will furnish up to 5000 kw of $\mathrm{d}-\mathrm{c}$ power at 850 v . See the listing of 20 -inch and 16 -inch sizes under "New Tube-Product Briefs" at right. Consult further with any General Electric office below.

## EASTERN REGION

General Electric Company, Tube Sales 200 Main Avenue, Clifton, N. J.
Phones: (Clifton) GRegory 3-6387
(N.Y.C.) Wlsconsin 7-4065, 6, 7, 8
make for better low-line-voltage operation.
Design improvements that increase tube service life and stahilize performance include specially-processed screen grids to dissipate more heat . . . new beam plates which prevent glass deterioration from bulb bombardment . . . mica slots and mica spraying that combat interelement leakage and arcing.

Rigid General Electric performance lests and life tests promote uniform quality for all horizontal-amplifier tubes that are built and shipped.

## NEW TUBE-PRODUCT BRIEFS

## Receiving Tubes

25EC6. New G.E beam power pentode for TV. Horizontal sweep type for 110 -degree-deflection picture zontal sweep type for $110-\mathrm{degree-deflection} \mathrm{picture}$
tubes. High performance at low line voltages. Physically shorter than $25 C D 6$-GB, and has controlled heater warm-up for $600-\mathrm{ma}$ series-string circuits.

## Power Tubes

GL-6963, GL-6964. New General Electric 16 -inch pumpless ignitrons for power rectification. Single-grid and double-grid respectively. Sealed-for-life vacuum.

## CENTRAL REGION

General Electric Company, Tube Sales 3800 North Milwaukee Avenue

Chicago 41, III.
Phone: SPring 7.1600

GL-6965, GL-6966. New G-E 20~inch pumpless ignitrans, for power-rectification service Single-grid and double-grid, with sealed-for-life vocuum.

## Cathode-Ray Tubes

3ACP 1, 3ACP7, 3ACPI 1. New G-E 3-inch flat-face C-R types for radar and oscilloscope applications. Electrostatic deflection and focus. Post-acceleration gives moximum deflection sensitivity with o high degally shielded-this improves beam accuracy and minimizes interaction.

## WESTERN REGION

General Electric Company, Tube Sales 11840 West Olympic Boulevard Los Angeles 64, Calif.
Phones: GRanite 9.7765; BRadshaw 2.8566

## for highest accuracy ...



REEVESINSTRUNIENT CORPORATION
A SUBSIDIARY OF DYNAMICS CORP. OF AMERICA, 201 EAST 91ST ST., NEW YORK 28, N.Y.

## Here is CONTROL!

May 1. Important news to engineers concerned with industrial control is announcement of standardized high permeability magnetic control devices now available from "Control," a division of Magnetics, Inc., Butler, Pennsylvania.
"Control's" first products are standard lines of saturable reactors. Twenty-two catalogued reactor assemblies will be stocked and are ready for rapid delivery.

Establishment of "Control" is a major step forward in permitting engineers to take full advantage of long life and ruggedness features of high permeability magnetic devices. It takes these units from the custom-order to the mass production stage with important benefits in engineering convenience and dependability.

In recent years, high permeability magnetic devices have made real inroads in the industrial control field. CONTROL reactor assemblies may be used for such diversified applications as motor control, voltage regulation, automatic battery charging, are welding control and power amplification of the minute outputs from many types of transducers.

Engineering sales representatives are located in many key areas in the United States. Advertising appears in leading trade publications in May, based on the theme"Reliability Begins With CONTROL."


## Now-CONTRROI offers you standardized saturable reactors

If you're a design engineer who would be delighted with industrial components which are sensitive and, under normal operation, last virtually forever with no maintenance or servicing, then you'll welcome Control's standard lines of saturable reactors.
With Control reactor assemblies and magnetic amplifiers, you know complete physical and operating characteristics -a copy of our Catalog R-10 awaits your request. And, delivery is fast because sub-assemblies of these units are stocked, awaiting your control-winding specifications.
Control reactors are available for both 120 - and 240 -volt 60 -cycle operation. There are eleven standard sizes in each voltage range. They have extremely high gain. Six ampereturns control nearly 2,000 watts in the largest size. Power outputs range from 50 to 2000 watts, with only 2 ampereturns required for control of the smallest units.

In addition to higher gain, smaller exciting current, and fewer ampere-turn characteristics, Control reactors have a 40 to 1 cut-off ratio. They are totally enclosed so that the high performance toroidal cores used are protected, and the entire assembly has the ruggedness required for long life.
Control offers the same convenience of standardization in use of high permeability magnetic devices that you've enjoyed with other components. Add to this convenience ruggedness and freedom from maintenance which is unmatched, and you'll welcome Control to your design picture. Write for complete details and literature today, CONTROL, Dept. E-36, Buller, Pennsylvania.


"A regular schedule in the business editions as well as in the established technical edition"




MEMO TO: Sales Representatives
From : Frank H. Rockett
Subject: Current Advertising
November 26, 1956

This (the geographic distribution of inquiries from electronics*) indicates that the quality of inquiries from electronics. because they come proportionally from all market centers, is high. The tabular results also show that the circulation of electronics reaches as representative a cross section of the electronic market as do the other magazines combined. For this reason, we will continue to use electronics as the main stay of our advertising in 1957. This will include a regular schedule in the new business editions as well as in the established technical editions.
*These conclusions of Mr. Rockett, Advertising Director for Airpax Products Company, result from an analysis of inquiries from advertisements and press releases over an 18 -month period (January, 1955 through June, 1956).


## SYSTEMS ENGINEERS and SCIENTISTS experienced in

## RADAR • COUNTER MEASURES • MISSILE GUIDANCE • DATA REDUCTION <br> AIR DEFENSE - COMMUNICATIONS • UNDERWATER ORDNANCE CHECKOUT AND GROUND SUPPORT



DFI's modern headquarters for engineering research and development.

## Electronic and Mechanical Personnel

For trained, experienced men (advanced degree preferred) with creative ability, Desiqners for Industry offers challenging work and an unusual opportunity.
We are looking for those who have grown into the systems field via the equipment research and development road - and who have the ability to conceive completely new approaches to highly difficult problems . . . men who can spearhead major technical break-throughs . . . and who can coordinate all phases of project effort.

## In return we offer permanent career opportunities at DFI where:

You will work in an independent research and development organization incorporated in 1935 and showing a history of steady growth serving both military and commercial clients
the employees own the corporation (over 1.00 senior employee-stockholders)
a pension trust and a merit bonus return $62 \frac{1}{2} \%$ of all profits to the employees in a combination of annuities, cash and stock
the "fringe" benefits include such things as a very liberal paid vacation schedule and an educational refund plan. Leading educational centers nearhy professional freedom, mutual trust, challenging work and a dynamic, growing organization are combined into the proper atmosphere for stimulating creative development.
If you are interested write to James E. Burnett, Vice President, giving pertinent professional information. All information will be treated in complete confidence.


## Sperry radar test set <br> rides early warning picket ships

## AN/UPM-44B unit checks S-band radar in flight

Checking the performance of search radar aboard Navy WV-2 and Air Force RC-121D radar planes is the job of the Sperry AN/UPM-44B combination test set. While these Lockheed Super Constellations patrol both coasts 24 hours a day, their radars are constantly monitored by AN/UPM-44B test equipment to assure peak efficiency at all times.
Developed by Sperry in cooperation with the Navy's Bureau of Aeronautics to meet all requirements of MIL-T-945A, this new S-band test set combines in a single unit the multiple functions of a frequency meter, power meter, signal generator, spectrum analyzer and synchroscope.
Compact and portable, the AN/UPM-44B provides direct reading of peak or average
transmitted power and frequency. It instantly detects any deterioration in performance, and pinpoints the source of trouble for crewmen to take corrective action. Sensitivity, stability and bandwidth measurements are made with pulse or frequency modulated signals produced by the test set. A gating circuit permits spectrum analysis of any selected pulse from a multi-pulse system.
Write our Microwave Electronics Division for additional information covering test sets in the frequency range of 400 mc through $40,000 \mathrm{mc}$.

MICROWAVE ELECTRONICS DIVISION


GYROSGOPE COMPANY
Great Neck, New York
DIVISION OF SPERRY RAND CORPORATION

[^8]
## ABOVE THE SEA LORAN

## ON THE SEA

## $\infty$

.
$x+2$


## HIGH-PERFORMANCE EQUIPMENT BY

SONAR, RADAR, LORAN and other related equipment designed and built by Edo serves commerce and national defense below the sea, on the sea, above the sea.

- Newly introduced Edo airborne LORAN puts this overocean navigation aid in the pilot's cockpit, so compact is its design, so simple its direct-reading capability.
- Edo RADAR, with close-in definition heretofore unheard of, provides safe, accurate navigation in the thickest weather for vessels, large and small, in open sea or the narrow confines of river, harbor or channel.
- Edo SONAR-active or passive-is in production for a wide range of commercial and naval applications from fish finding to long range submarine detection.

Whether it involves equipment for use below the sea, on the sea or above the sea, Edo's unique 33 years of work in aerodynamics, hydrodynamics and electronics gives the company a unique background of experience that is reflected in the superior performance of equipment bearing Edo's famed flying fish emblem.

# MAXIMUM BROADBAND MICROWAVE 

 Signal Sources provide a maximum power output 10 to 20 db greater than comparable signal generators. They are excellent for standing wave determinations, antenna and transmission loss measurements, and testing microwave components on the production line. These units are direct reading and continuously tuned with Polarad's UNI-DIAL control that automatically tracks the reflector voltage as the klystron cavity is being tuned. There are no slide rule interpolations, no mode charts needed. The frequency range of these signal sources is approximately $2: 1$ except for the $X$ band unit.

Maximum power output is assured throughout the entire range of each instrument by means of a power set control. For improved stability a temperature compensated klystron tube is utilized in an external precision cavity. All Polarad Signal Sources can be externally modulated with either square wave or $F M$ signals. Polarad Modet KX Klystron Power Supply is especially designed to work with all 5 Models of the Polarad Signal Sources. Has special $1,000 \mathrm{cps}$ square wave output for modulating purposes. Available on the Equipment Lease Plan. Contact the Polarad representative in your locality for complete information.
MINIMUM POWER AVAILABLE FROM POLARAD SIGNAL SOURCES IN THE RANGE OF 650 TO $10,750 \mathrm{MC}$

| FREOUENCY RANGE |  | $\begin{aligned} & \text { MODEL SSR } \\ & 650.1300 \mathrm{MC} \end{aligned}$ | $\begin{aligned} & \text { MODEL SSL } \\ & 1050.2250 \mathrm{MC} \end{aligned}$ | $\begin{aligned} & \text { MODEL SSS } \\ & 2140.4600 \mathrm{MC} \end{aligned}$ | MODEL SSM 4450.8000MC | $\begin{gathered} \text { MODEL SSX } \\ 7850-10,750 \mathrm{MC} \\ \hline \end{gathered}$ | $\begin{aligned} & \text { MODEL SSXA } \\ & 7850-11.500 \mathrm{MC} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| minimum | (LOW RANGE | 100 | 80 | 50 | 15 | 13 | Available on Special Ordar |
| POWER | \{ middle range | - 400 | 150 | 100 | 45 | 35 |  |
| AVAILABLE (mw) | ( high range | 400 | 150 | 60 | 15 | 20 |  |

A complete line of Extremely High Frequency Microwave Signal Sources also available in a range of 12.4 to 50.0 KMC

ELECTRONICS CORPORATION<br>43-20 34th Street, Long Island City 1, N. Y.

[^9]
## METER-RELAYS: Construction and Operation

Adjustable pointer with plate contact, foreground, is mounted in bracket. Moving pointer, with contact, is part of conventional D'Arsonval-type meter movement. The moving coil and pointer assembly is pivoted in cushioned jewels, and rotates in the flux of a permanent magnet. The coil is connected to hairsprings.
Since the torque of the moving coil is too low for reliable contact operation, locking coil (wound on the moving coil) develops additional torque to close contacts with 1 to 3 grams pressure. Reset can be manual or automatic. It consists of opening the locking circuit. Built-in spring action kicks contacts apart forcibly. Meter-relays can be built with two adjustable pointers for high-low control.

Write for 40-page Catalog 4B for circuitry, specifications and prices.


Model 255.C
Single Contoct, High limit $0-100$ Microamperes, D.C. Price $\$ 46.00$

## AUTOMATIC CONTROL

Control action is initiated when the indicaling pointer makes contact with the adjustable pointer. Many different functions or conditions, such as pressure, heat, speed, radiation, current, voltage, etc. can be controlled with better than $2 \%$ accuracy. Prices range from $\$ 30$ to $\$ 110$. Used in atomic installations, radar warning (DEW LINE), and hundreds of industrial applications. Ranges from 0-5 Microomperes to 0.50 Amperes; 0.5 Millivolts to 0.500 Volts; -400 to $+3000^{\circ} \mathrm{F}$.

ASSEMBLY PRODUCTS, INC. Mail Address: Chesterland 4, Ohio

## Wilson Mills Road <br> Chesterland 4, Ohio

Telephone (Cleveland, Ohio)
HAmilton 3-4436
Booth 1323, DESIGN ENGINEERING SHOW May 20-23, Colise 4-3133 or 4.2453

## MIIL-AC Custom Air Conditioning



## Condition: Military Mobility



Mobile electronic systems can function under the most difficult environmental conditions (MIL-E-5272*), by using highly specialized mobile air conditioning equipment.
Custom air conditioning is our business at Ellis and Watts. For example, we recently designed and built MIL-AC air conditioning equipment for trailer-mounted F-11-F operational flight trainer simulators. They develop 10 tons of cooling capacity at $130^{\circ} \mathrm{F}$., using no water. These units are only $24^{\prime \prime}$ wide and can be mounted anywhere to suit specific space requirements. This equipment is designed for an unusual 3 -zone air distribution system to maintain constant temperature and humidity in computer, instructor and trainee sections-each with a different varying load condition.
MIL-AC units are self-contained, compact, lightweight, readily air transportable. They can be designed to cool, heat, humidify, dehumidify, filter, and can incorporate air-cooled or watercooled condensers. Units are manually or automatically controlled. We are staffed with specialists who will analyze your requirements, submit a proposal, complete your installation promptly and to your complete satisfaction.
Write for helpful load calculating Nomograph and other technical data for use in making time-saving preliminary calculations.
*Military specification dealing with the following climatic and environmental conditions: Temperature, humidity, altitude, salt spray, vibration, fungus, sunshine, rain, sand and dust, explosive atmosphere, acceleration and shock.

Typical MIL-AC Unit. MIL-AC configurations, fealures and functions to suit your specific requirements.

## Euls min wans panucis. IIC.


P.O. Box 33, Cincinnati 36, Ohio.

Ellis and Watts also design and build custom
air conditioners, liquid coolers and heaters, dehumidifiers, wave guide dehumidifiers, laboratory temperature and humidity conirol units.


## specifications but only ONE standard quality

Midland frequency control units are on the job in two-way communications on land, sea and in the air throughout the world. Now they're playing a leading role in color television. The range of applications Midland serves is wide, but every Midland crystal has one thing in common: a single level of quality.

That one quality is simply the highest that modern methods and machines can produce. It's assured by Midland's system of critical quality controlexacting inspection and test procedures through every step of processing.

Result: Your Midland crystal is going to give you the best possible service in frequency control -with stability, accuracy, and uniformity you can stake your life on... as our men in the armed forces and law enforcement do every day.

Whatuer your Coital med, conventional or highly specialized When it has to be exactly right, contact MANUFACTURING COMPANY, INC.
3155 Fiberglas Road, Kansas City, Kansas



EACH PULSE PACKAGE INCLUDES CHARGING REACTOR, PULSE FORMING NETWORK AND PULSE TRANSFORMER SPECIFICALLY DESIGNED FOR THIS APPLICATION.

FILTRON TRIGGER PULSE PACKAGE N-191
For $5949 / 1907$ and $5948 / 1754$ thyratrons
Size: $13 / 16^{\prime \prime} \times 21 / 2^{\prime \prime} \times 41 / 4^{\prime \prime}$ high ( $434^{\prime \prime \prime}$ overall)
Input: 550 VDC @ 26 MA max.
Output (thyratron grid disconnected)
Pulse Width: $2 \mu \mathrm{sec}$ min at $70 \%$ amplitude
Amplitude: 1000 V peak positive
Rise Time: $0.35 \mu \mathrm{sec}$ max. 26-70\%
Impedance: 70 ohm nominal
Repetition Rate: 0-1500 pps

FILTRON TRIGGER PULSE PACKAGE N-185
For 1257 thyratron
Size: $21 / 4^{\prime \prime} \times 53 / 4^{\prime \prime} \times 51 / 2^{\prime \prime}$ high ( $7^{\prime \prime}$ overall)
Input: 4 KVDC @ 82 MA max.
Output: (thyratron grid disconnected)
Pulse Width: $2 \mu \mathrm{sec} \mathrm{min}$. at $70 \%$ amplitude
Amplitude: 2500V peak positive
Impedance: 15 ohm nominal
Repetition Rate: 0-1250 pps
*There is no MIL specification for the 1257 type thyratron, but the pulse package characteristics conform to the latest extant specifications for this tube.


## The expert choice

The British Electronics Industry is making giant strides with new developments in a variety of fields. Mullard tubes are an important contribution to this progress

## for



British high fidelity experts know that for medium powered equipment there is no finer tube than the EL84. A pair of these tubes provide a power output of IoW at a distortion level of less than $1 \%$ while their transconductance value of 11,300 $\mu$ mhos results in exceptional sensitivity. The EL84 may also be used for higher powers. For example, two tubes in push-pull will provide outputs of up to 17 W at an overall distortion of $4 \%$.

A single EL84 has a maximum plate dissipation of 12 W . It provides an output of $5-6 \mathrm{~W}$ for an input signal of less than 5 V r.m.s. at plate and screen voltages of 250 V .

Supplies of the EL84 for replacement in British equipments are available from the companies listed.
medium
power,
high
fidelity
equipment


Principal Ratings
Heater .... .... .... 6.3V, 0.76A
Max. plate voltage .... .... .... 300 V
Max. plate dissipation .... .... 12 W
Max. screen voltage .... .... 300V
Max. screen dissipation (max. signal) 4W
Max, cathode current .... .... 65 mA

## Base

Small button noval 9-pin

Supplies available from:-
In the U.S.A.
International Electronics Corporation, Dept., E5, 81 Spring Street, N.Y. I2, New York, U.S.A

In Canada
Rogers Majestic Electronics Limited, Dept. IE., II-19 Brentcliffe Road, Toronto 17, Ontario, Canada.

MEY 43


## Can you use the talent that built

 1,500 Y-4 bombsights on schedule?These General Mills technicians are representative of the production talent that built more than 1,500 Y-4 bombsights, 1,500 coordinate converters, 1,400 azimuth and sighting angle indicators and 1,400 amplifier and power supply units-and, delivered them to the Air Force on time. Here the men inspect a bombsight before it progresses to the nexi stoge of production.

Because we have the highly skilled men-and the men have the specialized tools and machines-we produce precision piece parts or complete, complex assemblies to meet the most exacting requirements.
While building the Y-4 bombsight, we improved original design, exceeded USAF specifications. In addition, our thorough testing facilities assured delivery of only perfect instruments.

Such performance has come to be expected of us and has benefited many ather customers. We'd like to help with your production problems too.


Booklet Tells More, explains mechanical and electro-mechanical production facilities. Send to Dept. EL-5, Mechanical Division, General Mills, 1620 Central Ave. N.E., Minneapolis, Minn.


No slow-downs for the B-47 - Bombsights ready in advance! During production of the B-47 Stratojet, not a one was kept from the ready-line for lack of a bombsight. The same developmental, engineering and production skills that gave the Air Force on-time delivery are available to speed production of your products.

## General Mills

## 6 NBW ANSWERS 10 TODAYS



nsulated Composition Resistors * Deposited and Boron Carbon Precistors - Power Resistors • Voltmeter Multipliers - Ultra HF and Hi-Voltage Resistors
Wherever the Circuit Says -
Low Wattage Wire Wounds Resistance Strips and Discs Selenium Rectifiers and Diodes Hermetic Sealing Terminals Insulated Chokes - Precision Wire
 Wounds - Potentiometers

IRC PLANTS - Asheville, N.C. - Boone, N.C. Burlington, lowa - Philodelphia, Pa,

Hycor Division, Sylmar, California

## INTERNATIONAL RESISTANCE COMPANY

Depl. 233, 401 N. Broad St., Philadelphia 8, Pa.
In Canada: International Resistance Co., Ltd., Toronfo, licensee
Send complete information on $\square$ Selenium Dual Diades, $\square$ Delay Lises, $\square$ Hermetic Sealing Terminals, $\square$ Power Resistors, $\square$ Molded Deposited Carbon Resistors, $\square$ BW Wire Wound Resistors

## Name

## Company

Address
Circuit Insiruments Inc., St. Petersburg, Fla. (subsidiary)
City

## "HIGHLY DEPENDABLE,"



## says Z'Pemaragtour Zhaurel 7 rivare*

## of the

## REVERE

# ROLLED COPPER 

## used in its Printed Circuits

A learler in the manufacture of digital computing systems, Remington Rand Univac utilizes the latest manufacturing techniques because computing systems require printed circuit boards completely free of defects.

In examining copper-clad laminated boards made with Revere rolled copper Remington Rand Univac said, "We found even the finest lines were freer from pits, pinholes and other imperfections. In addition, there were no detectable lead inclusions. Also, the rolled copper thickness is uniform. We get what we specify."

Designed and developed by Remington Rand Univac, digital computers use hundreds of printed circuits. Each one must operate according to specifications at alt times. There can be no sacrifice of conductivity. Because of more uniform etching qualities Revere Rolled Copper is capable of producing better edge definition, allowing closer spacing of lines. A uniform solder coat under normal or automatic soldering operations is possible because the copper is free from surface delects. Fluxes wet readily hecause of this clean surface. These fact ors combine to make Revere Rolled Copper the ideal medium for these printed circuit boards.
And they are the very reasons why you should insist that Revere Rolled Copper be specified by you when ordering blanks from your laminator

It is available in unlimited quantities in standard coils of 350 lbs. in widths up to $38^{\prime \prime}$ and in $.0014, .0028$, and .0042
gauges, weighing approximately $1 \mathrm{oz} ., 2 \mathrm{oz}$. and 3 oz . per square foot; or hemer if required. Many users have found that because of its unique characteristics 1 oz . Revere Rolled Copper can be used instead of the 2 oz . required when other kinds of copper are used, thus effecting still greater savings in material cost. Revere Rolled Copper exceeds requirements of standard specifications and meets ASTM B5 specifications for purity with $99.9 \%$ minimum.
Consult your laminator regarding the use of Revere Rolled Copper for your printed circuits, br contact the Revere Representative nearest you through the yellow pages of your local telephone directory.

Reverc does no laminating of printed circuit boards, making only rolled copper. Revere Rolled Copper can also be furnished rolled down to $\mathbf{0 0 0 6}$ for coil winding applications.
*Reg. U.S. Pat. Office


UNIVAC FILE COMPUTER

# REVERE COPPER AND BRASS INCORPORATED 

Founded by Paul Revere in 1801
230 Park Avenue, New York 17, N. Y.

[^10]


CTC family of kollet knobs makes set screws unnecessary - unique locking device gives them firmer holding power under vibration and continued use. Circumferential pressure on shaft eliminates scoring or marring. Tremendous holding power whether on shafts of soft brass, aluminum or stainless steel. Kollet knobs left to right for $1 / s^{\prime \prime}$ shaft, $3 / /^{\prime \prime}$ or $3^{\prime \prime}$ and $1 / 8^{\prime \prime}$ or $1 / 4^{\prime \prime}$.

## Three who'll dress to please you

C'TC's family of kollet knobs is carefully made of prime materials, as are all CTC components. And they have this added feature, being in the open as they are: They're good-looking and adaptable.

Made of molded Tenite II in matte finish their metal face plates snap into place, completing the design and covering the kollet locking device. You have a choice of ten color inserts for instrument panel coding, and can have the knobs with or without skirts or indicating lines.

Reliability is the key characteristic of every component CTC makes. Every component is unconditionally guaranteed in quantities from one to millions. Other CTC components include coil forms, coils, terminal boards, terminals, diode clips, insulated terminals and hardware.

For sample specifications and prices, write now to Sales Engineering Dept.,

Cambridge Thermionic Corporation, 437 Concord Ave., Cambridge 38, Mass. West Coast stocks maintained by E. V. Roberts Associates, Inc., 5068 West Washington Blvd., Los Angeles 16, and 61 Renato Court, Redwood City, California.

CTC Panel Hardware meets or betters government specifications. Typical quality hardware shown: oval handle, adjustable handle, folding
handle, thumb screw, plug and jack, shaft lock. handle, thumb screw, plug and jack, shaft lock. minal boards, diode clips, dial locks. Variety of finishes available.


## CAMBRIDGE THERMIONIC CORPORATION

makers of guaranteed electronic components custom or standard

## Square RE-USABLE Metal

## Pad-Kaging Containers

## :LIMINATE

handling and storage problems REDUCE stipiping
weights and cubic footage


These RE-USABLE Metal Pad-Kaging Containers were developed by PETERS-DALTON for the U.S. Armed Forces. They have been approved and are in use for shipping and storing innumerable items.

P-D Containers eliminate the storing of many cumbersome and highly inflammable materials-they also eliminate the excess labor usually required in packaging such items as delicate radar instruments. Older methods caused finished packages to be heavy and bulky. They were susceptible to breakage and penetration to moisture and fungus. They were wasteful because of their excessive use of man-hours and materials, culminated by the eventual scrapping of the expensive packaging. Also, when reshipping was required, old fashioned containers after having once been opened, were seldom satisfactory for adequate repackaging of the materials endangering them to damage while in transit. These inadequacies and limitations have been virtually eliminated through P-D RE-USABLE Metal Shipping Containers:

Features include: Lightness: Completed packs weigh far less than older style types. Compactness: The P-D RE-USABLE Metal Containers frequently save more than $50 \%$ of cubic footage. Economy: Material and man-hour outlays for packaging are reduced $25 \%$.
Special Featuresi Containers are equipped with air fill valves to eliminate dangers of fungus or moisture and dial type humidity indicators. Drop handles furnished for containers weighing less than 200 lbs .-heavier containers have been designed for fork truck lifting. Extremely simple to close, only ordinary bolts ( 4 on the smallest container to 14 on the largest) are required; the simplest of hand tools perform the closing or opening operations. Optional: Pressure relief valves to equalize inside to outside pressures.

These RE-USABLE Metal Containers were manufactured by PETERS-DALTON for items ranging from aircraft engines, electronic parts, to large A-N containers in all types and sizes for shipping purposes. Complete engineering and manufacturing facilities are at your disposal for design, testing and fabricating. We'll be glad to tell you more-just write, wire or phone.


Materials formerly used in packaging one light military electronic item.


Only two parts to handle.


## for low voltage power supply...

## GANGAMO Type Dom Electrolytic Capacitors

In computers, calculators, electronic controls, and related equipment-wherever capacity stability with long life is a must-count on Sangamo Type DCM Electrolytic Capacitors.
They minimize ripple voltage and insure steady, stable DC voltage. They save space by eliminating any need for heavy, bulky choke components with their substantial and often-varying load voltage drops.

## Maximum Voltage Rating: 450 VDC

Sangamo DCM Electrolytic Capacitors provide exceptionally low equivalent series resistance ... assure extremely high capacity for case size in low voltage ranges ... and are specially designed to permit high ripple current without overheating. They can be supplied in maximum energy content rating of 80 -watt seconds in voltage ratings from 15 to 450 VDC. Maximum capacity value of $33,000 \mathrm{mfds}$. can be supplied at 15 WVDC.

Write to-day for your file copy of Sangamo Engineering Bulletin TS-114.


Sangamo DCM Electrolytic Capacttors are housed in seamless, drown aluminum containers with gasketehermosetting plastic covers Detail of cover construction insures minimum contact resistance in current carrying members and provides an adequate safety vent in case of heavy overload.


CAPACITY CHART

| Rated Voltage DC | Surge Voltage | Max. Cap. in $21 / 8 \times 45 / 8$ Can | Max. Cap. in $25 / 4 \times 41 / 2$ Can | Max. Cap. in $31 / 2 \times 41 / 2$ Can |
| :---: | :---: | :---: | :---: | :---: |
| 15 | 20 | 12,500 | 20,000 | 25,000 |
| 30 | 40 | 9,000 | 15,000 | 20,000 |
| , 50 | 75 | 4,800 | 8,000 | 10,000 |
| 100 | 125 | 2,000 | 3,500 | 5,000 |
| 150 | 175 | 1,500 | 2,500 | 3,500 |
| 200 | 250 | 1,000 | 1,500 | 2,500 |
| 250 | 300 | -800 | 1,250 | 1,750 |
| 300 | 350 | 700 | 1,000 | 1,500 |
| 350 | 400 | 600 | 1,000 | 1,250 |
| 400 | 475 | 400 | -500 | 1,000 |
| 450 | 525 | 350 | 400 | , 800 |
| For additional capacity and voltage eambinations, write us. |  |  |  |  |

## B) WID VINYL COVERED CABLE

## gIVES RH TV CAMERAS

## SHARPER VISION

COMPLETE FLEXIBILITY
TOP PERFORMANCE


Brand vinyl-coated multi-conductor cable, custom manufactured for RCA, provides sharp pictures, deadens noise interference and adds flexibility to RCA television cameras. Running from camera to control point, this cable often is used in lengths of 1000 feet. It is a 25 wire cable (three groups of six, one group of four and three shielded leads). Brand vinyl ccating is pugged, much tougher, in fact, than old-style rubber coverings and allows use of larger cenductors while maintaining the same O.D. requirements.
Brand's highly-skilled engineering department welcomes the opportunity to work with you on solving design problems or making up prototypes. Brand leadership and know-how is yours without obligation.
Write for complete information. If quotations or samples are desired, include specifications.

## WILLIAM BRAND \& COMPANY, INC.

 WILLIMANTIC 3 CONNECTICUT


When railroad traffic gets too heavy or complex, a train will be switched onto a siding until the tracks are clcar. However, high-specd aircraft in busy traffic patterns over metropolitan areas cannot wait ...

## THERE ARE NO RAILROAD SIDINGS IN THE SKY

Hughes, a leader in the development of highly advanced data processing techniques, is doing research on air traffic control systems which can continuously monitor a high volume of air traffic and precisely control each individual airplane. With this system the time delays, inefficiency and inaccuracies present in manual control are practically eliminated.

Air traffic control represents only one of many projects underway. Confidential new projects . . many infinitely more complex . . . promise an unlinited future to scientists and engineers in the Hughes Ground Systems Division.

If your experience is in electronic circuit design, logical design, electronic packaging, and radar systems, we invitc you to investigate these outstanding opportunities.
the West's leader in advanced electronics

## HUGHES

sCientific staff relations
RESEARCH AND
DEVELOPMENT LABORATORIES
Hughes Aircraft Co., Culver City, Califormin

First, a high conductance series designed for operation up to $150^{\circ} \mathrm{C}$ and featuring forward conductance of at least 200 mA at 1 volt, together with excellent reverse characteristics. Like all other Hughes diodes, these are packaged in our famous glass body for complete protection from contamination and moisture penetration. And like all other Hughes diodes, they conform to published specifications under a varicty of operating conditions. Here, then, are specifications for representative types in the series.
Second, a related high conductance series in the Hughes glass package with somewhat different characteristics.
*Currently these competitive types are not registered with retma; hence their specifications are subject to change. When they are registered, diodes now designated as hD types will be supplied as 1 N types according to the registered specifications.

HIGH CONDUCTANCE SILICON DIODES


|  | Comparable Competitive Types * | Max. DC <br> Inverse <br> Operating Voltage (volts) | MaximumAverageForwardCurrent(mA)(23 $25^{\circ} \mathrm{C}$ @ $150^{\circ}$ |  | Maximum Forward Voltage @1 100 mANA a $3^{\circ} \mathrm{C}$ (volts) | Inverse Current At Specified DC Test Voltage |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HD-6132 | 1N482B | 36 | 200 | 50 | 1.0 | 0.025 | 5 | 30 |
| IID-6133 | 1N483B | 70 | 200 | 50 | 1.0 | 0.025 | 5 | 60 |
| HD-6134 | 1N484B | 130 | 200 | 50 | 1.0 | 0.025 | 5 | 125 |
| HD)-6135 | 1 N 485 B | 180 | 200 | 50 | 1.0 | 0.025 | 5 | 175 |
| HD)-6136 | 1N486A | 225 | 200 | 50 | 1.0 | 0.05 | 25 | 22.5 |

## SEMICONDUCTOR DIVISION • HUGHES PRODUCTS

International Airport Station, Los Angeles 45, California

## HUGHES PRODUCTS

() 1957. HUGHES AIRCRAFT COMPANY

## HUGHES



# EEs, MEs can 

## FILLOUTAND MAILTODAY

## Collins Radio Company Confidential Application for Technical Employment



## collins in Aviation

Collins completely oufits airline, military and business aircraft with the most advanced communication, navigation, flight control and instrumentation systems in aviation. Many new lightweight; reducedsize versions are now boing delivered. Collins designed the original Integrated Flight System, leads in combining comm/nav/ident units into a single compact "CNI" package for new military aircraft, and continues to pace the industry in developments in airborne radar, ADF ILS, VOR, HF and VHF communication.

## collins in Ground Communication

Collins engineers, designs and supplies the equipment, installs, and puts into operation integrated point-to-point communication systems of any scope. The Collins system engineering staff is backed by the finest equipment in the world, whether standard MF, HF or VHF, Transhorizon "scatter," microwave relay and multiplex or single sideband HF. Typical of Collins communication progress is "Kineplex" a high speed data transmission system doubling communication capacity.

## Send your application to:

L. R. Nuss

Collins Radio Co.
Cedar Rapids, Iowa

Fred Aiken
Collins Radio Co.
2700 W. Olive Ave. Burbank, California

Harold McDaniel
Collins Radio Co.
1930 Hi-Line Drive
Dallas, Texas

## as a Collins engineer?

 You've got to be good to$\checkmark$ Command highest salary
$\checkmark$ Advance rapidly in a strong, growing company $\checkmark$ Work with highest caliber development groups $\checkmark$ Use the world's finest engineering facilities $\checkmark$ Maintain Collins creative reputation

Collins depends on its engineers. That's why you have to be good to earn a place on a Collins Research and Development team. Collins hard earned reputation was built on a solid foundation of engineering talent. The sales growth of the Company has justified Collins emphasis on engineering. Sales have increased 10 fold in the last 10 years. And employment of research and development personnel has more than kept pace. Collins growth
will continue, and you can be a part of this growth.
Send the application form printed on the opposite page as an expression of your interest in knowing more about the opportunities at Collins. Your application will be held in the strictest confidence and will be answered immediately by a personal letter. Take only a few minutes now to fill out the application and mail to one of the addresses listed. This can be the turning point in your career.

## COLLINS in

Amateur Radio
In the early 1930's Collins set the standard in Amateur radio and, through continuous design and development, has raised this standard to its present single sideband station - the most honored and prized in the Amateur fraternity. This station is the top performing rig on the air with its kilowat KWS-1 transmitter and highly selective 75A-4 receiver. Many of the leaders in the electronics industry became acquainted with Collins through the Company's superior Amateur equipment.


## COLLINS in <br> Broadcast

Collins supplies a complete new. AM státion from mike to antenna or modernizes existing facilities. Besides the superior line of transmitters, Collins supplies the broadcaster's needs with such advanced additions as TV.STL microwave relay system, the lightest 4 -channel remote amplifier on the market, phasing equipment and audio consoles. Collins field service organization has built an enviable reputation in assisting the broadeaster in installation or in times of emergency.

## POTENTIOMETER Vs. RHEOSTAT



Potentiometer Vs. Rheostat. Potentiometers should be used whenever possible to reduce systems error and excessive cost. Here's why.

## POTENTIOMETER as a POTENTIOMETER

Definition: A potentiometer is a voltage divider.
Accuracy - Potentiometer accuracy is determined by the ratio of $\mathbf{R}_{1}$ to $\mathbf{R}_{2}$ for any given position of the control shaft (Fig. 1). Potentiometer accuracy is independent of total resistance. Commercial precision potentiometers are designed for use as voltage dividers. Therefore, the total resistance is $\pm 5 \%$. However, the output voltage is the ratio of $\mathbf{R}_{1}$ to $\mathbf{R}_{2}$ and provides a linearity accuracy of $0.1 \%$ (Fig. 1). Linearity accuracy in commercial precision potentiometers is $0.1 \%$.

## POTENTIOMETER as a RHEOSTAT

Definition A rheostat is a variable current control. Accuracy - When used as a rheostat (2 wire hookup) the accuracy of the potentiometer is determined by the absolute resistance $\mathrm{R}_{3}$ for any given position of the control shaft (Fig. 2).
Rheostat accuracy is dependent upon the absolute resistance at any point.
Commercial precision potentiometers, when used as rheostats, have an absolute ohmic resistance $\mathbf{R}_{3}$. It may deviate from zero to $5 \%$ from theoretical over the range of zero to $100 \%$ of shaft rotation (Fig. 2). Errors in distribution of this resistance (comparable to potentiometer linearity tolerance) must be added to this error to ascertain the "total ohms per degree conformity", the true measure of rheostat accuracy.

Consider the possibility of a closer total resistance tolerance to provide greater accuracy when used as rheostats. Commercial tolerance on fixed resistance is $5 \%$ with special selected values to $1 \%$. This selected accuracy, if duplicated in a rheostat, would still be 10 times greater than the standard $0.1 \%$ accuracy of the commercial potentiometer. Factors which contribute to the difficulty in tight total resistance tolerances in fixed resistors are: resistance stability, temperature coefficient, and the absolute ohmic value of commercially available resistance alloys.
These limiting factors apply to potentiometers used as rheostats. This increases the cost of such units just as the cost of tight tolerance fixed resistors is considerably greater than standard tolerances.
We have found, through years of building potentiometers, designing equipment and in consultation with customers, that when systems can be designed to use potentiometers in place of rheostats, greatly increased accuracy results and usually the cost is reduced.

Write for Complete Engineering Data - CATALOG BED-A56

## BORG EQUIPMENT DIVISION the george w. borg corporation

## Waldes Truarc grip rings used on die-cast studs eliminate threading, tapping, other costly machining



Mark Simpson Manufacturing Co., Long Island City, N. Y., uses Waldes Truarc series 5555 Grip Rings to secure parts to studs of the zinc die-cast base of its "Masco 500 " portable tape recorder.
The rings -which need no grooves-replace nuts; screws, cotter pins and other types of fastening devices which require threading, tapping, drilling and other expensive machining operations. Because a single cracked or broken stud would render the entire cast base useless-and with it, all assembly completed to that point-the rings also eliminate extremely costly rejects.


Pivot Assembly of shift lever (A) is secured by a single Waldes Truarc Grip Ring and washer: Because the washer must be installed over the shifs level in a sliding fit, critical tolerances would have to be maintained if a screw or cotter pin were used. The Truarc Grip Ring eliminates that problem: it requires no groove and may be seated over the washer af any point on the stud, outomatically compensating for accumulated tolerances in the parts. BRAKE ASSEMBLLES (B and C) use Grip Rings to secure the brake wheel and spring subassemblies. Here again problems of critical tolerances are avoided and expensive rejects eliminated.

Whatever you make, there's a Waldes Truarc Retaining Ring designed to improve your product... to save you material, machining and labor costs. They're quick and easy to assemble and disassemble, and they do a better job of holding parts together. Truarc rings are precision engineered and precision made, quality controlled from raw material to finished ring.
36 functionally different types... as many as 97
different sizes within a type... 5 metal specifications and 14 different finishes. Truarc rings are available from 90 stocking points throughout the U. S. A. and Canada.
More than 30 engineering-minded factory representatives and 700 field men are available to you on call. Send us your blueprints today... let our Truare engineers help you solve design, assembly and production problems... without obligation.

For precision internal grooving and undercutting... Waldes Truarc Grooving Tool!


Waldes Kohinoor, Inc., 47-16 Austel Place, L.I. C. I, N.Y. Please send the new supplement No. 1 which brings Truare Catalog RR 9.52 up to date.
(Please print)
Name
Title
Company
Business Address
City
Zone .....State
sers are protected by one or more of the following U. S. Patents: 2,382,948; 2,411,426; 2,41 ,761; $2,416,852 ; 2,420,921 ; 2,428,341 ; 2,439,785 ; 2,441,846 ; 2,455,165 ; 2,483,379 ; 2,483,380 ; 2,483,383 ; 2,487,802 ; 2,487,803 ; 2,491,306 ; 2,491,310 ; 2,50,081 ;$ $2,544,631 ; 2,546,616 ; 2,547,263 ; 2,558,704 ; 2,574,034 ; 2,577,319 ; 2,595,787$, and other U.S. Patents pending. Equal patent protection established in fore
See the Truarc Exhibit at the Design Engineering Show, New York Coliseum, May 20th to May 23rd. Booth No. 1010.


## uuf for $u u f$, the smallest, most stable, fixed capacitors you can buy-Here's why...

These are glass capacitors-probably as much as one-third smaller than those you're used to; certainly much lighter.
Though made with glass, they are not fragile. In fact, the layers of glass dielectric, the metal foil plates and the leads are fused into a surprisingly rugged, inseparable unit.

This unusual construction, developed at Corning offers you these advantages:
Small size, light weight. If you're at work on guided missiles, fire controls, computors, and similar devices, you can cut valuable ounces and inches from your assemblies with these capacitors. See table above for some indications.
Exceptional stability. After a load life test at $50 \%$ more than rated voltage at

## Capacitance in uuf

| Size | $\mathbf{3 0 0} \mathrm{V} .-85^{\circ} \mathrm{C}$. | $500 \mathrm{~V} .-125^{\circ} \mathrm{C}$. |
| :---: | :---: | :---: |
| $\mathrm{CY10}$ | 1.240 | 1.150 |
| CY 15 | 57.1200 | 57.510 |
| CY 20 | 200.5100 | 200.3300 |
| CY30 | $470.10,000$ | $470-6200$ |

$85^{\circ} \mathrm{C}$., the average change in capacitance of these units is less than $0.4 \%$ after 1,000 hours, less than $0.6 \%$ after 10,000 hours.
Very low drift. This drift is so slight that it's generally within the normal error of measurement. Taking MIL-C-11272A as a standard, capacitance drift is less than $0.1 \%$ or 0.1 uuf (whichever is greater)
Predictable, retraceable TC. The difference in TC between any units at any given temperature is less than $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. It is well within the limits of $140 \pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. from $-55^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. and referred to $25^{\circ} \mathrm{C}$.
Low loss. Even at elevated temperatures, the dielectric loss is relatively low. Dissipation factor at 1 kc . and $25^{\circ} \mathrm{C}$. is about $0.055 \%$ and independent of capacitance.

Bulletin shows performance charts. Bulletin CD-1.00 contains charts and other data on these capacitors. Circle this magazine's service card for a copy or write us direct at Corning.

## Ask for information on these other Corning Capacitors:

Medium Power Transmitting CY60 and CY70. Ideal for mobile RF transmitters. Canned High Capacitance-Provide the advantages of rugged glass design to your specifications.
Subminiature Tab-Lead-Up to $90 \%$ less volume compared to pigtail types. To your specifications.
Special Combinations-The performance and benefits of glass in infinite shapes, sizes and leads. To custom order.

Other electronic products by Corning Components Department: Glass Film Type Resistors*. LP, LPI, H, R, N, S, HP and Water Cooled Styles. Direct Traverse and Midget Rotary Trimmer Capacitors*. Metallized Glass Inductances, Delayline Coil Forms, Bushings, Enclosure Tubes, Rectifier Tubes and Attenuator Plates.
*Distributed by Erie Resistor Corporation

## How many microseconds apart is "almost simultaneous"?

## Here is how magnetic tape gets the answer

When things happen in the front of a jet engine, other occurrences in the rear follow in a flash - no pun intended, we mean in a fraction of a millisecond. Those who test jet engines have found that magnetic tape recording can be used to make a millisecond look enormous - and to show even fifteen microseconds as a significant interval. Transducers in key points in the front and rear of the engine feed parallel tracks on the tape. The amount of offset between parallel signals provides a measure of their relative timing.
from 60 cycles. Servo Speed Control holds a precision signal on the tape in step with a precision time source. At any instant these signals will be in phase within a millisecond or less (depending on tape speed).

Maybe you like your data recordings referred to the time of day. In any of several forms of digital coding, such information fits nicely on a timing track. The time code designates hours, minutes, seconds and even the milliseconds between. Commercial equipment is available for search and control. It can run the tape quickly to any minute and second you designate - handy if your recordings accumulate by tens or hundreds of thousands of feet.

If quick, accurate measurement of time intervals from a fractional second to a few seconds in length are your interest, magnetic tape recordings can make the problem as easy as counting to $1,254,391 \ldots$ on an electronic counter. A series of pulses or sinewave oscillations are recorded on a

For time correlation the head stacks on an Ampex Tape Recorder are like an "electronic tee-square." All of the gaps are in line within $1 / 10,000$ th inch. And gap azimuth is accurate to a minute of arc. Tape moves past the head at speeds up to 60 inches per second and multiplies the track-to-track timing accuracy accordingly. (But consult us at Ampex before you rely on simple arithmetical conclusions).

To read these time differences off in measurable form, the tape is reproduced at a small fraction of its original speed ( $1 / 32 \mathrm{nd}, 1 / 100 \mathrm{th}$, etc. according to machine). It can be recopied onto another tape - be slowed down again - and then be recopied onto a visual recording on which small time intervals are magnified as much as 10,000 times.

If to you this particular example is more spectacular than useful, note that it is only one of numerous talents that magnetic tape has in tying together data and time. Perhaps some of these others fit your needs.

Are you interested in reproducing data in precise real time? Ampex Servo Speed Control can reproduce data with original timing held within two parts in 100,000 . It doesn't matter if the tape stretches a little, or if your input power fluctuates


Microscopic precision of gap alignment and azimuth enables magnetic tape to tecord extremely accurate track-to-track time relations. time track parallel to the data tracks. As many as rately and reliably. Electronic counting of these pulses measures time intervals to a required precision. There is no strain on your patience or your eyesight.


Ampex
Servo Speed Control equipment as used on the FR-100 Recorder


$\leftarrow 23$ milliseconds $\rightarrow$
Electronic counting on a timing track measures time intervals between data

If you are concerned with accurate timing of data and would like to know further of magnetic tape's advantages, we will be glad to furnish additional information. Others of magnetic tape's capabilities will be discussed in this continuing series. Would you like copies mailed direct? Write Dept. E-5.


Series BOC Mobile ond Airbarne
 Model Fiz-200 Digital


Topioloop Recorder


Series Fñol100


## How RIM Teflon: Tape improves electronic component design

Certain coils in a modern electronic computer required a special kind of insulator. Problem: to design an insulator of the high dielectric strength required-even in thin sections-and conforming to the contours of the small circular coils.

R/M "Teflon" Tape provided the ideal solution to the problem. "Teflon" has unusually high dielectric strength. It is completely unaffected by the many adverse conditions to which electronic components are frequently subjected-corrosive elements (including ozone) in atmospheres, high temperatures, and the like. R/M "Teflon" Tape is relatively easy to applyeven on intricate shapes, such as the ferrite coil shown above.

Here are some of the electrical properties of R/M "Teflon" products:

1. Power factor - less than 0.0003 over entire spectrum from 60 cycles to 30,000 megacycles.
2. Volume resistivity - greater than 1015 ohm-cm, even after prolonged soaking in water.
3. Surface resistivity $-3.6 \times 10^{12}$ ohms, even at $100 \%$ humidity.
4. Good arc-resistance - on exposure to an arc, the material vaporizes, leaving no carbonized path.
5. High short-time dielectric strength values range from 1000 to 2000 volts per mil, depending upon thichness.
6. Resists high temperatures - electrical properties are essentially unchanged up to at least $400^{\circ} \mathrm{F}$.
Raybestos-Manhattan has extensive experience in developing $R / M$ "Tef-
lon" products for use in the electrical and electronics industries. Let us fabricate R/M "Teflon" products to your specifications or supply the material in rods, sheets, tubes and tape. Write for your free copy of our bulletin " $\mathrm{R} / \mathrm{M}$ Teflon Products."


## RAYBESTOS-MANHATTAN, INC.

## PLASTIC PRODUCTS DIVISION, MANHEIM, PA.

## Centralab 35 <br> 19221957

Since 1922, industry's No. 1 source of standard and special electronic components

## VarIable resistors

Miniature

Radio and TV

Transistor Circuits
( )

Wirewound
${ }^{\prime \cdots \prime *}$

## ELECTRONIC SWITCHES

Miniature Rotary

Rotary-Action Flat

 shorting or non-shorting. Meets all your requirements for transmitters, industrial test equipment, military and commercial applications where you want low-loss operation at high frequencies, high voltages, and highpower levels.


## 



Switching configurations up to 24 positions,
The most versatile multiple-circuit rotary power switch available

## Centralab Series 3 A-280

## Rotary Power Switch

## Handles a kilowatt with ease

## Smallest, most versatile,

multiple-circuit
rotary switch

## Centralab Series 100

An ultra-small switch that measures less than $1^{\prime \prime}$ in diameter - weighs less than an ounce - yet has the electrical rating of larger, heavier switches.

Available up to 12 positions. Make and break, resistance load, .5 ampere at 6 volts d.c.; 100 milliamperes at 110 volts, a.c.; current-carrying capacity, 5 amperes.

Ideal for band switching in subminiature electronic equipment, transistor circuits, aircraft instruments, and guided missiles.

Maximum voltage flashover

Features not found in phenolic-type switches

High Q - Low loss
Minimum inter-circuit capacity Maximum circuit flexibility

## Centralab

A DIVISION OF GLOBE-UNIION INC.
962 E. Keefe Ave. Milwaukee 1, Wis.
In Canada: 804 Mt. Pleasant Road Toronto, Ontario

## New 36-page Switch Catalog

Provides specifications on the complete line of CRL switches capable of handling power from a kilowatt to a microwatt. Write for this catalog today.


## GERAMIG GAPAGITORS



High-voltage

pagkaged
elegtronic aliguits


Radio and
TV Circuits TV Circuits

englineered geramios


Extruded Parts


Hundreds of standard components are carried in stock by your nearby Centralab distributors.

Discuss your special requirements with the Centralab representative.

## NEW

## UNIVERSAL

SYSTEMS


## meet $\mathbf{9 0 \%}$ of magnetic tape data recording needs

You get all the precision and accuracy of a custom design and the off-the-shelf availability and dollar savings of a "package" design in Davies new Universal Tape Systems.

Every component has been designed to provide maximum flexibility consistent with overall system accuracy. Interchangeable electronics match the system to your individual requirements.... now and for years to come. Specify a Universal System that satisfies your immediate requirements . . . adding tracks of data capacity as requirements grow.

Any one of the maximum of fifteen tracks provided can carry data recorded by any one of the three major techniques. Interchangeable Direct, FM, and PWM electronics assure you a vital data recording system ... able to handle each new job as it arises. Standard options are also available to meet the special needs of telemetering and multiplexed data.

Among the features of a Davies Universal Tape System never before available in "package" equipment are six tape speeds at the flip of a switch... automatic switching discriminators that match tape speed at the transport . . . precise phase coincidence of data among
all tracks . . . and facilities for electronic flutter-and-wow compensation. Every item has been proved through years of service in jets, missiles, and on the ground.
Here's a brief rundown of the options available to you when specifying a Davies Universal Tape System that will grow with your recording requirements:
Transport: Standard transport offers up to six speeds, selectable at the flip of a switch. Precision $101 / 2^{\prime \prime}$ or $14^{\prime \prime}$ reels available for $1^{\prime \prime}$ or $11 / 2^{\prime \prime}$ tape. Three-speed transport optional for PWM systems.
Heads: In-line multitrack heads permit up to 15 tracks on $11 / 2^{\prime \prime}$ tape, assure precise time and phase coincidence of data among all tracks. Separate record and playback heads provided. Interleaved head stacks permitting up to 30 tracks on $11 / 2^{\prime \prime}$ tape, optional for telemetering, other applications not requiring data coincidence. Direct Recording electronics record and playback data from 100 to 100,000 cps. Ideal for high frequency data, also for recording complex wave forms made up of many frequency multiplexed signal channels. Bandpass type discriminators provided for recovering multiplexed data.
$F M$ electronics frequency modu-
late a stable carrier with the data, to provide extremely accurate data reproduction, independent of tape variations.
Pulse Width Modulation (PWM) electronics permit up to 90 channels of quasi-static data on each tape track. All PWM electronics are compatible with standard keyers and decoding equipment. Flutter-And-Wow Compensation electronically eliminates the effects of tape speed variation. Included as standard equipment whenever discriminators are used for data recovery, they can be accommodated by every Universal Tape System. Compensation permits FM channels of a Universal Tape System to preserve a high signal-to-noise ratio-better than 50 db at 30 ips , for example.
Complete information on Davies new Universal Tape Systems, and how they can satisfy your magnetic tape data recording needs is provided in Bulletin 2701. Write for your copy to MinneapolisHoneywell Regulator Co., Davies Laboratories Division, 10721 Hanna Street, Beltsville, Maryland. Or call Webster 5-2700.

## Honeywell

DAVIES LABORATORIES DIV.


## Over 200 MICRO SWITCH

## Wide variety of switch types in the Hercules

## Series VA Enclosed Switches

These combine the features of sealed construction and high electrical capacity. They are available with roller arm or lever actuators.

## Series V3 Basic Switches

These have the highest electrical capacity for their size of any switch available. Are available in wide variety of terminal designs, contact arrangements and operating characteristics.

## Series SE Sealed

Subminiature Switches
These are the smallest and lightest completely environment-free precision switches available. They are built to give trouble-free operation in a temperature range of from $-65^{\circ} \mathrm{F}$ to $+22^{\circ} \mathrm{F}$.

## Series DT Double-Pole <br> Double-Throw Switches

These switches simultaneoŭsly make and break two independent circuits. The double-pole double-throw switches are rated for 10 amps .125 or 250 v ac; $1 / 2$ amp .125 v dc; $1 / 4 \mathrm{amp} .250 \mathrm{v}$ dc. Temperature rise limits maximum continuous current to 10 amperes per pole.

## Precision Switches help make Lockheed's C-130 Hercules a superb military plane

micro switch Engineering Service cooperated with Lockheed engineers of the Georgia Division, Marietta, Ga., for five years in the designing, planning and manufacturing of this planethe first propjet transport accepted by the U.S. Air Force.

Over 200 precision switches at strategic points perform important functions in the operation of this superb aircraft. Other micro switch precision switches are employed in components for this plane supplied by other manufacturers. Still others provide important controls for the machine tools used in the building of the C-130 itself.

Whatever your design - be it aircraft, machine tools, or any type of industrial equipment-micro switch components and micro switch Engineering Service may help you make a good design even better.

MICRO SWITCH reputation for reliability, precision and performance is written in the success of such products as the Lockheed Hercules and thousands of fine industrial products. micro switch Engineering Service is as close as your telephone. Why not call the nearest branch office today?

# Switches have uses unlimited 

Here's a tough switch

## to take the roughest going



The micro switch sealed Type en switch was designed to meet tough aircraft problems. Its many unusual features are now meeting many exacting industrial design requirements.
How good is this switch? Check your requirements against tests like these:

- Precise performance at minus $65^{\circ} \mathrm{F}$ or heated to plus $180^{\circ} \mathrm{F}$. (Operating force to 20 lbs . available to facilitate ice breaking.)
- Precise performance after 100 hours in salt brine spray.
- Precise performance after hours of immersion under 36 in . head of alternating iced and heated water.
- Precise performance unaffected by 30 days' operation at $104^{\circ} \mathrm{F}$ and $95 \%$ humidity.
- No chattering of contacts-or loosening of parts-during vibration tests of 10 to 500 cycles per second.
(Send for Catalog No. 77)


## Hermetically sealed basic switch

## insures constant performance



This small micro switch Type hs precision switch is truly hermetically sealed. (glass to metal and metal to metal) to insure constant operating characteristics under any environmental condi-tions-for example, no condensation problem.
The switch shown has a lever type actuajor for inline motion operation. The switch is also available with
a roller-lever actuator suitable for actuation by cams, slides or other mechanical means.

[^11]
micko switci, a Dicision of Honeywell, pioneered the manufacture and development of precision snap-action sutiches

## Sealed-Reliable-VersatileGive millions of operations

The micro switch Type ls is a small two-circuit switch which meets a wide variety of industrial design requirements. It is extremely reliable, ruggedly housed and can be mounted in almost any location. Actuator head may be removed in the field and rotated to permit actuation from any of the four quad. rants. The roller-arm actuator is field
adjustable through $360^{\circ}$. It may operate in either direction, or one direction only.
The electrical rating is: 10 a mperes 120 , 240 or 480 volts ac; $1 / 2$ H.P. 120 volts ac; 1 H.P. 240 volts ac; . 8 ampere 115 volts dc; . 4 ampere 230 volts dc; . 1 ampere 550 volts dc. Pilot duty rating is 600 volts ac maximum.
(Complete information in Catalog 83)

## MICRO SWITCH

A DIVISION OF MINNEAPOLIS-HONEYWELL REGULATOR COMPANY
In Canoda, Leaside, Toronta 17. Ontario - FREEPORT, ILLINOIS

# Can We Afford a $\$ 71.8$ Billion Budget? 

The budget submitted to Congress by President Eisenhower for the year beginning July 1 proposes federal spending of $\$ 71.8$ billion. In only four years, three during World War II and one during the Korean War, has the government spent more. Under the proposed budget the government expects to collect $\$ 73.6$ billion, mostly through individual and corporation income taxes. $\dagger$

The principal reason for the size of the budget and for this year's increase is an expanding defense program. About $60 \%$ of all budget expenditures in the coming fiscal year will be for national security programs. Moreover, this area accounts for about $90 \%$ of the proposed increase in federal spending. In addition, as the chart shows, there are large expenditures proposed for purposes other than defense.

Continued budgets of this size, some contend, will lead to inflation and wreck our economy. It has been suggested that they might lead to "a depression that will curl your hair." Yet many insist that the budget, large as it is, still is inadequate in many respects - for defense, schools, agriculture, small business, health, research, indeed, for almost every activity in which the government has become involved.

## Is It Really Too Big?

Actually, the proposed budget would place no greater burden on the economy than any budget in the last six years, because our economy has been growing. Federal spending per capita under the proposed

[^12]budget will be about $\$ 416$, or $\$ 10$ more than this year; but our per capita income rose almost $\$ 80$ last year. And, because of our increasing population, next year's expenditures will, in fact, amount to less per capita than in 1954 when federal spending was $\$ 4$ billion lower.

Another way of measuring the burden of govermment expenditures on the economy is to compare the purchases of goods and services of all branches of government - federal, state and local - with the total output of the nation. The share of our national product taken by government this year will be about the same as in the past two years and, furthermore, about the same as the average for the past 28 years.

By the standard of any recent year, the budget is within the means of the American economy. In this sense, we can "afford" it. But the pros-

## FEDERAL BUDGET EXPENDITURES


pect of steadily increasing budgets, requiring $20 \%$ or more of our national income, introduces another threat.

## The Real Threat

Large and rising budgets that do not balance government spending with higher tax collections clearly would be inflationary and would destroy the value of the savings and income of all who lagged in the race with climbing prices. But serious dangers will still exist even if our budget continues to be balanced, as this year's is.

- Budgets that require a large take in taxes eat up the savings required to finance private industry. What the taxpayers must give the government they cannot save. This deprives private industry of the savings and resources needed to expand and modernize producing facilities.
- High tax rates also undermine the incentive to save and invest in normal business enterprises by taking such a large share of any income gained. Taxes on corporation income now take $52 \%$ of all income over $\$ 25,000$. And taxes on individual incomes can take as much as $90 \%$ of earnings that remain after this $52 \%$ bite.
- High taxes encourage, on the part of both individuals and corporations, the search for "gimmicks" and special treatment. As a leading character in Cameron Hawley's novel Executive Suite observed: "To a far greater degree than most people realize, income tax has become a primary governing factor in corporation management." Indeed, it is only because of the numerous gimmicks and special provisions now available that high tax rates have not already inflicted greater damage to economic incentives.

These dangers comprise the real threat of large and rising federal budgets. It is a threat to continued growth of our economy, and it is no less a threat merely because the budget is technically in balance.

## What Should Be Done?

In attempting to hold government spending within reasonable bounds, we should not hold back on needed civilian programs. The heavy
demands now being urged at all levels of government for roads and schools, for instance, are largely the result of failure to keep pace with the growth of the country. Furthermore, we cannot cut provisions for national security below the minimum level of safety. And unhappily, defense in the rocket and missile age is fantastically and ever increasingly expensive.

What we can do is enforce some financial discipline on our military leaders, and hold down our defense expenditures by making sure their demands are justified and by requiring efficiency. In the civilian prograns, though some need to be increased to serve a growing economy, we can eliminate the outright waste.

## A More Difficult Job

We must also do something far more difficult, and that is to reduce federal programs of aid to special groups at the expense of all the taxpayers. The new budget calls for over $\$ 5$ billion for veterans, and another $\$ 5$ billion for farmers. A number of industries and areas stand to receive aid in large amounts based less on necessity than on political pressure. These demands for increased aid, year after year, must be resisted if we are to have any hope of stopping a relentless rise in our budget.

Then, as our national income increases, we can look forward to reducing tax rates and providing greater incentives for the private sector of the economy. Only in this way - by keeping government spending in line with economic growth - can we prevent our federal budget from being a crippling burden.

> This message is one of a series prepared by the McGraw-Hill Department of Economics to help increase public knowledge and understanding of important nation-wide developments. Permission is freely extended to newspapers, groups or individuals to quote or reprint all or parts of the text.


ROUND-TRIP MISSILES ANSWER


## ENGINEERS' QUESTIONS AT VOUGHT

## "Old Indestructible" Paid a \$3 Million Dividend in Data

When a missile can be flown... recovered ... and flown again, it becomes an acquaintance. When a single Regulus I missile came home 15 times, it got a name.
"Old Indestructible" began her career by returning flight test information to Vought engineers. The missile gave the acid test to new launching methods, guidance principles, performance maximums and telemetering channels. Three flights, and the bird had paid for herself in fat data installments.

When the missile had been picked clean by Vought reliability and systems men, she joined the Navy. Fleet submariners and surface seamen were ready to operate Regulus as a target drone and nuclear weapon. Old Indestructible was chosen to teach them.
The missile qualified six Navy teams in Regulus
tactics, logistics and maintenance. Repeated launchings at 70,000 pounds thrust stretched her airframe. Flight and ground-run time on some components mounted above 1,000 hours. Operationally, however, the missile was sound when time came for her 16 th and final flight, a shipboard launching in a simulated nuclear attack.

Thanks to Old Indestructible's dogged returnability, Vought engineers could design its reliability standards into every Navy-bound Regulus. Results were unprecedented. With the Fleet, Regulus I has completed its 500 th successful flight with outstanding on-target success probability.

Today, Vought missile men are using the recovery concept to foolproof a mightier missile. Their Regulus II has completed 13 flights to date. Significantly, six of these flights were made by one missile.

Guidance Engineer. Develop and design radar, magnetic, inertial, infrared, animal and other guidance and recognition systems beyond present state of art. Requires ingenuity and analytical ability, with degree and experience in development engineering or physics.

Package Designer for Electronic Equipment. Mechanical or Electrical Engineer to design the package and structure of stabilization systems, antennas and other high reliability electronic equipment. Requires engineering degree or equivalent. Related experience desirable.

## 4. IMMEDIATE OPENINGS FOR ENGINEERS

Electronics Production Engineer. To coordinate between engineering and manufacturing during the fabrication of electronic equipment. Requires E.E. or M.E. degree, or equivalent, with 1 year of design or shop experience.

Senior Sysfems Design Engineer. To evaluate and design inertial navigation systems for piloted and pilotless aircraft. Requires degree in either electrical or mechanical engineering or in physics. 3 years experience required.


Your income goes further in Dallas No state income tax. No local or state sales taxes. Low school and property taxes, and a favorable cost of living. That's Dallas . . . where tax savings mean better living.

To arrange for a personal interview, or for a prompt report on these or other current openings, return coupon to:

Mr. C. A. Besio
Supervisor Engineering Personnel Chance Vought Aircraft
Dallas, Texas
I am interested in a detailed report ( ) personal interview ( )
on opening for
Naine
Adclress
City and State
$\qquad$


## A Transformer becomes a precision device with Allegheny Magnetic Materials in the core



Write for your Copy "TRANSFORMER LAMINATIONS"

84 pages of valuable technical data on standard and custom-made laminations from all grades of Allegheny Ludlum magnetic core materials. Prepared from carefully checked and certified laboratory and service tests -includes standard dimensions, specifications, weights, etc. Sent free on request ...ask for your copy.

ADDRESS DEPT. E-89

## $\star$ ALLEGHENY SILICON STEEL <br> * ALLEGHENY 4750 <br> * ALLEGHENY MUMETAL

The operation of a transformer is no better than the magnetic core around which it is built. With Allegheny magnetic materials in the core, you get the best-uniformly and consistently.
Sure there are reasons why! For one thing, there's the long experience of a pioneer in development and quality control of electrical alloys. But most important, the A-L line offers complete coverage of any requirement you may have, any service specification. It includes all grades of silicon steel sheets or coil strip, as well as Allegheny Silectron (grain-
oriented silicon steel), and a wide selection of special high-permeability alloys such as Allegheny 4750, Mumetal, etc.

In addition, our service on magnetic materials includes complete lamination fabrication and heat treatment facilities. What's more, this extensive experience in our own lamination stamping department is a bonus value for all users of A-L electrical sheets or strip. Let us supply your needs. Allegheny Ludlum Steel Corporation, Oliver Bldg., Pittsburgh 22, Pa.

## THE HEART

## of this

 Differential Voltmeter
## is an <br> Airpax Chopper

A chopper amplifier extends the range of this nullreading VTVM down to $0 \pm 0.01 \mathrm{DC}$ volt. An Airpax Type 175 chopper modulates the input signal at 60 CPS so that it can readily be amplified and then the chopper synchronously rectifies the signal and returns it to the DC portion of the meter.

Here is another example of how a reliable chopper helps provide the stability essential to modern electronic equipment. This particular instrument is one of the precision laboratory meters developed by John Fluke Manufacturing Co., Seattle, Washington.

Type 175 chopper is one of the Airpax family of miniature choppers. For full details just write to

## CHARACTERISTICS OF TYPE 175 CHOPPER <br> Drive <br> Frequency - - - $60 \pm 3$ CPS <br> Voltage - - $6.3 \pm 0.6$ RMS volts

## Contacts

Dwell Time - $167 \pm 10$ electrical deg.
Balance - - within 15 electrical deg.
Phase angle - $20 \pm 5$ electrical deg.
Voltage - - up to 100 DC volts
Current - - - - - up to 2 MA
Noise - - 50 microvolts average
Life - - - - - - 2,000 hours
Hermetically sealed for trouble-free operation in any atmosphere, humidity, or altitude.



# how Westinghouse stretches transformer life through R-F studies in ACE enclosure 

R-F interference which often occurs in power transformers comes under strict regulation by both the FCC and military authorities. Standardized tests have been set up to check this interference against allowable limits. But at Westinghouse Electric Company's new Transformer Test Center at Sharon, Pa., engineers go on to use these measurements of radio frequency to actually improve the life of transformers.

When r-f generation occurs in a transformer, it releases ionized gasses which have a deleterious effect on the transformer windings. Reducing, or eliminating the cause of gas ionization, indicated by the generation of r-f interferance, greatly increases transformer life.

To make the accurate radio frequency measurements required, both the transformers and the delicate test instruments must be isolated from all sorts of outside radiations. A large Ace shielded enclosure-measuring 28 feet long, 32
feet wide, and 25 feet high-fulfills this requirement by providing a guaranteed attenuation of over 100 db for all frequencies from 14 kc to 1000 mc .

This Ace enclosure is constructed of prefabricated galvanized steel panels and frames (RFI-Design)* which assures permanent warp-free protection. A unique feature of the enclosure is its 16 - by 20 -foot electrically operated vertical lift door. Air-operated contact fingers around the periphery completely seal the door against $r$-f leakage.

This example of Ace enclosures for r-f shielding is just one of the many "rooms" Ace has designed and supplied to meet the requirements of industry, military, and medical work. If you have a shielding problem in your plant, an Ace Engineer would be glad to discuss it with you and outline an effective, yet economical solution. Or write for a free catalog on Ace standard enclosures.

- Lindsay Structure


NEARLY 500 G-E MIDGET SOLDERING IRONS are helping to speed assembly of IBM's giant 704 and 705 "electronic brains" by providing fast, efficient heat to thousands of intricate joints. Each complex data processing machine demands perfectly soldered joints to assure dependable operation. IBM found that the G-E Midget irons provide excellent heat recovery, even with
repetitive soldering. Result: uniform temperature with minimum loss of heat from joint to joint. Heat can be varied by simply setting transformer taps. In addition, the G-E Midget is multi-purpose, since tips are interchangeable. Its maneuverable, light-weight design speeds soldering, even in almost inaccessible areas, with reduced risk of damage to adjacent parts.

# 500 General Electric midget irons speed assembly of giant IBM "Electronic Brains" 



IRONCLAD tip needs no filing. And by actual production-line test, a General Electric Midget soldering iron tip lasts up to ten times longer than an ordinary tip.


RAPID HEAT TRANSFER is achieved through a tubular heater located in the copper tip. Result: the General Electric Midget's heat efficiency is $90 \%$


FOUR-IN-ONE IRON with $1 / 8^{\prime \prime}, 1 / 4^{\prime \prime}, \frac{3 " \prime}{16}$ tip sizes. Weighing less than three ounces, the General Electric Midget iron speeds production by reducing operator fatigue.

For more information, write for GED-2243, G-E Midget Soldering Iron, Section 724-6, General Electric Co., Schenectady 5, New York.

## GENERAL (3) ELECTRIC

## $N_{e_{W}} M_{i_{\eta_{i a t}}}$ <br> Mallory Quality <br> at <br> Moderate Cost

Here's the newest addition to the Mallory capacitor line-a complete array of low-cost metal tubular aluminum electrolytic capacitors in miniature. Especially designed for the ever-widening field of miniature circuitry, these components are excellent for such equipment as transistorized pocket radios, midget recorders, and similar portable electronic gear.
Available in an extremely wide range of capacity and voltage ratings, these miniature capacitors are built to the same high standards of Mallory quality known the world over. Featured are the extremely small physical sizes and exceptionally low leakage current ratings-the latter, a very important factor in the design of battery powered equipment where battery drain must be held to a minimum.
The container for these miniature electrolytic capacitors is made of aluminum, with silicone rubber hermetic end seals. Capacitors can be supplied with vinyl insulating sleeves, if required. The leads are of No. 22 gauge bare tinned copper, $13 / 4$ inches long. These capacitors have an operating range of -20 to $+65^{\circ} \mathrm{C}$. Actual size ranges from as little as $3 / 16^{\prime \prime}$ diameter by $1 / 2^{\prime \prime}$ long - to the largest, $3 / 8^{\prime \prime}$ diameter by $3 / 4^{\prime \prime}$ long.
Complete data is available from Mallory-ask our representative, or write direct. Mallory engineers are available to assist on your capacitor
application problems.

Expect more. . . get more from
Serving Industry with These Products:
Electromechanical-Resistors - Switches - Tuning Devices - Vibrators
Electrochemical - Capacitors . Mercury and Zinc-Carbon Batteries
Metallurgical - Contacts - Special Metals . Welding Materials
Parts distributors in all major cities stock Mallory
standard components for your convenience.


## CROSS

CRYSTAL BALL . . . Electronics' 22 editors were asked at a home office meeting just before deadline to look into the immediate future of the industry. Here, unadorned, is what they said:

- The industry will continue to expand; no radical spurt, but steady upward progress.
- Money for missile control systems will be plentífol, but there may be losses in other military business.
- This will steadily increase interest in the commercial market.
- Pre-design market research will become more commonplace; manufacturers want to be more centain proposed new products will sell.
- More money will come into the field.
- One route will be via merger between electronic companies.
- Another will be continued acquisition of eectronic companies by other groups seeking diversification into growth industries.
- This will make the going tougher for some small companies, but subcontracting will keep most of them in business and technical developments will bring new ones into the field.
- There probably will be more mortality among tv receiver makers.
- The year ahead may be generally distinguished by closer attention to operating costs.

On the technical side, the staff sees it this way:

- Increased application for transistors will probably be the year's most noticeable trend.
- Along with this trend will come further miniaturizing of component parts, and components suited to higher-temperature operation.
- There will be increasing emphasis upon mechanized wiring of all kinds.
- Pre-packaged circuits of the plug-in type will return to the news.
- Continuing pressure for equipment reliability will lead to more environmental testing of complete assemblies.
- Use of electronic machine control will be further stimulated by rising labor costs.
- Data processing systems for large business organizations will move forward at a rapid rate.
- Instrumentation for nuclear application will shape up importantly in dollars.
- New methods of communicating, and improvemont of older methods, will return the spotlight to this branch of the electronics industry.

Now, let's see how this crystal-balling pans out.


Editor


FIG. 1-Outputs of depth and temperature sensing systems are separated in high and low-pass filters for X-Y chart recorder

# BATHYTHERMOMETER 


#### Abstract

CUMMARY — Two-unit transistorized system lowered from ship gives plot of temperature against depth. Absolute accuracy in depth is better than $\pm 0.25$ percent and temperature sensitivity of 0.05 degree C can be obtained. Vibrating wire transducer and thermistor Wien-bridge oscillator provide depth and temperature data, respectively


OCEAN temperature as a function of depth provides valuable information for oceanographic studies. Previous methods of measurement by mechanical means provided an accuracy of $\pm 0.5 \mathrm{C}$ and $\pm 5 \mathrm{ft}$ in depth.
Resolution of the order of 1 ft in 1,000 in depth and 0.1 C in temperature are required in presentday oceanographic work. In addition, continuous profile recording is desirable. The system described here is one approach to this problem.

In the block diagram of Fig. 1, frequency variation of a thermistor Wien-bridge oscillator is used to measure temperature. Depth information is provided by monitoring the frequency change of a vibrating wire connected to a flexi-
ble diaphragm. Both signals are sent over a single conductor to the ship where they are separated by high-pass and low-pass filters for recording.

## Depth Measurement

A Vibrotron is a vibrating-wire transducer in which a mechanical displacement is converted into a frequency change of a vibrating wire. The wire is connected at one end to a pressure-sensing diaphragm. A displacement of the diaphragm changes the tension in the wire thus changing the frequency of vibration. Frequency range of the unit used in this equipment is approximately 9,600 to $11,240 \mathrm{cps}$.

Electrically, the vibrating wire is similar to an electrically driven
tuning fork. The wire is of nonmagnetic material and is placed in a fixed magnetic field at right angles to the axis of the wire. When the wire vibrates at its natural frequency, it becomes an a-c generator, generating a voltage that can be amplified by conventional means. If some of the amplified voltage is fed back to the ends of the wire in phase with the generated voltage, vibration is sustained.
An age circuit is added to the amplifier to control the amplitude of vibration. The output frequency of the system is a pure sine wave, controlled by the axial displacement of the wire. The output frequency is thus nearly a linear function of the pressure applied to the pres-sure-sensing diaphragm.


Research ship equipped with boom for raising and lowering bathythermometer to measure temperature gradient of ocean water


Depth sensing unit with cover removed to show vibrating-wire transducer (center)

## Telemeters Ocean Data

Figure 2 illustrates the circuitry for the three-stage transistor amplifier used with the vibrating wire transducer. Because the vibrating wire and static wire impedances are relatively low, a step-up transformer is utilized. The groundedemitter first stage is resistance-capacitance coupled to the groundedemitter second stage, which in turn, is directly coupled to the groundedcollector output stage. A properly phased positive-feedback loop is fed from the low-impedance emitter of $Q_{3}$ to the center-tap of two resistances bridged across the primary of the input transformer.

An automatic-gain-control net-
work is necessary to drive the Vibratron at constant amplitude. Because the relationship between amplitude and frequency of vibration is exponential, it is necessary to maintain the amplitude constant for a given stability. A voltage of between one and two millivolts measured across the vibrating wire is considered satisfactory.

Under the operating conditions chosen, gain of the first groundedemitter stage is essentially dependent upon the value of $r_{0}$. If $I_{\theta}$ is varied over a range of 75 to $20 \mu a$, the graph of Fig. 3A shows the variation in voltage gain of the first stage versus input voltage.


FIG. 2-Transistor amplifier for vibrating wire transducer uses agc to maintain output level at constant amplitude

The measured value of $r$, at one milliampere for the type 202 transistor used is 33 ohms. The variation in the measured and computed values results in part from assumptions made in deriving the equation for voltage gain.

The graph of Fig. 3B plots output voltage as a function of input voltage for the three-stage amplifier. Also plotted is emitter current of the first stage as a function of input voltage. The overall result of the automatic gain control action is less than $\frac{1}{2}-\mathrm{db}$ change in output voltage for a $3-\mathrm{db}$ change in the input voltage at values over one millivolt input.

## Temperature Stability

The temperature stability of the amplifier is considered adequate for this application. Sea-water temperature generally is found in the range of 0 to 28 C . Bias stabilization is generally established by the large emitter resistors and the voltage dividers in the base circuits of the first two stages. The degree of temperature stability was measured in actual tests from 5 to 55 C . Fig. 3C shows the results of out-


FIG. 3-First stage gain (A), output and agc response (B) and frequency response curve (C) for transistor amplifier used for depth measurement


FIG. 4-Wien-bridge oscillator circuit used to measure water temperalure. Units encapsulated in epoxy resin and sealed in pressure tight housing.
put voltage against temperature. Only minor distortion was noticed over this range.

The output voltage is approximately 0.5 volt when working into a loaded 500 -ohm line.

## Temperature Sensing Circuits

The temperature sensitive oscillator is of the Wien bridge type, with 6014 A thermistors as resistive elements in the reactive arms of the bridge. This type oscillator was chosen because of its simplicity and dependable performance. Its one disadvantage is that separate filament batteries are necessary when using filament type tubes. The circuit is shown in Fig. 4.

The bridge balance and oscillator frequency is set by

$$
\begin{aligned}
R_{1} & =2 r \\
f_{o} & =\frac{1.59 \times 10^{2}}{\sqrt{C^{2} R^{2}}}
\end{aligned}
$$

where $f_{0}=$ frequency of oscillation, $R_{1}=$ negative feedback resistor,
$r=$ lamp resistance, $R=$ thermistor resistance and $C=$ capacitance in each half of positive feedback arm.

The temperature coefficient of resistance for the thermistor chosen is -3.9 percent per deg C. Unfortunately, the resistance versus temperature characteristic is nonlinear as shown by the following equation:
$R=R_{o} e \exp B\left[(1 / T)-\left(1 / T_{o}\right)\right]$ where $R_{0}$ is resistance at reference temperature in deg K , and $B$ is a constant dependent on thermistor material.

When the resistance of the reactive arms is allowed to vary according to this relationship, the frequency - temperature graph of Fig. 5 is formed. An average sensitivity of about 40 cps per deg $C$ is established.

## Battery Supply

The tubes chosen use 40-ma filaments, making economic battery operation feasible. The grounded-
collector transistor output stage serves to isolate the output circuit from the oscillator section. An output voltage of 0.5 volt is available when loaded by a 500 -ohm line.
The temperature stability of this oscillator is satisfactory for this application. When properly adjusted, a frequency variation of one to two cps over an eight-hour period at constant temperature is normal.

Over a temperature range of 5 to 50 C , a frequency change of four to five cps was observed in laboratory tests.

Speed of response is important since the instrument is lowered and raised through the water at a rate of 2.5 feet per second. A thermal time constant of one second or less is necessary to resolve all the detail present. A step-function change in temperature will result in a frequency equilibrium within two seconds in sea water. This time has been cut to the order of one second on occasion by grinding down the glass surface of the thermistor beads.

## Instrument Housings

Both the pressure sensitive transistor amplifier and the temperature sensitive oscillator are encapsulated in a silica-filled epoxy resin. Plug-in construction is used to simplify


FIG. 5--Plot of oscillator frequency variation with temperature


FIG. 6-Zero set circuit used with recorder. Variable resistor and potentiom. eter are helical type
maintenance and construction.
The instrument is divided into pressure and temperature units and individually housed so that they might be used separately if desired.

The cases are of 5 in . inside diameter, 0.312 in. stainless steel tube. The end plates are of 1-in. brass with O-ring pressure seals. Packing glands are used pass the instrument leads to the surface.

The two instrument housings are pressure tight and designed for a maximum pressure of $5,000 \mathrm{lb}$ per sq in., with an adequate safety factor.

The outputs of the pressure and? temperature units are coupled on one side to the instrument case and the other to a single-wire polyethy-lene-insulated cable. The cable is a 19 -strand steel wire with a tensile strength of about 2,800 pounds. The polyethylene jacket brings the overall diameter of the cable to approximately 0.32 inch. The polyethylene jacket also performs the extremely important job of giving the cable buoyancy. This allows the cable to support much greater instrument loads at greater depths, since the cable itself is almost weightless in sea-water.

At the surface the signal is taken off the research vessel's winch via slip-rings. A sea return to the instrument is used with a zinc plate serving as the ground-return connection.

## Surface Instrumentation

Surface instrumentation, as shown by the block diagram, consists of a broad-band amplifier capable of handling frequencies up to 15 kc . The frequencies are then separated by a high-pass and a lowpass filter and passed to a demodulator. The resulting d-c outputs are functions of pressure and temperature.

To make these parameters suitable for recording on an X-Y function plotter, a circuit to set zero bias and scale factor is a necessity. It is shown in Fig. 6. This zero offset method is used to set at center scale on the recorder the midrange of both the temperature and pressure functions.

Pressure signal is applied to the X -axis and temperature signal to the Y-axis. This makes it possible
to roll the chart manually after each successive run, thus completing a family of bathythermometer curves.

The two channels are also recorded on magnetic tape. A dual channel recorder is used with the combined temperature and pressure information recorded on one channel and a constant $5,000-\mathrm{cps}$ signal on the other. The advantages of this type data storage and playback are self-evident and work is
the overall depth-measuring system is therefore of the order of 0.3 inch. Absolute accuracy in depth is better than $\pm 0.25$ percent or $\pm 2.5 \mathrm{ft}$ in 1,000 .

The temperature sensitivity is approximately 40 cps per deg. C. When these parameters are converted to direct current and applied to the function plotter with a ten-inch chart width, a depth variation of $\pm 2.5 \mathrm{ft}$ per 1,000 can easily be read. If ten degrees of tempera-


FIG. 7-Typical family of temperature-depth curves obtained with bathythermometer off the ccast of San Diego. California
being continued to perfect this phase of the instrumentation problem.

## Test Results

This instrument has been used at sea with good results. Fig. 7 is a continuous bathythermometer plot taken at sea off San Diego, California. The research vessel was drifting very slowly. Over the narrow range covered, the temperature seale is nearly linear. Small positive and negative temperature gradients are readily apparent and possible sound channels are indicated.

The vibrating-wire transducer has an absolute resolution of approximately 0.003 inch at the 2.5 ft lowering rate generally used. The overall system is limited by the time constant of the frequency meter. The resulting resolution of
ture are applied to ten inches of chart, a temperature variation of 0.050 deg C can be accurately plotted.

Reproduction of pressure and temperature plots takes place without significant hysteresis effects. This was checked while at sea, where surface temperature and pressure can be accurately measured.

This work was carried out at the Special Developments Division of the Scripps Institution of Oceanography and was supported by funds from the Office of Naval Research and the Bureau of Ships, United States Navy. The authors extend their gratitude to all who took part in this problem, and in particularly to G. T. Barlow and R. M. Blei for their help and assistance in the construction of the equipment.

# Simultaneous Color-TV 

> C UMMARY Differential gain, phase characteristic, flag burst and chroma amplitudes can be determined on monitors or home receivers using test signal that is transmitted simultaneous with program. Waveforms occupy three horizontal lines, one line displaced above top of picture

FOR several years there has been need for some type of information that can be transmitted during a television program to establish levels of sync, setup and peak white. With the introduction of color broadcasting, there has developed the necessity for determining differential gain and phase characteristics of the system as well as the amplitude of flag burst and chroma.

Considerable progress has been made by the use of such signals as
windows, stairsteps, multiburst and variable-duty-cycle bars. These may be transmitted during the station breaks and provide much valuable information concerning system performance. Since they do not appear during program transmission time, it is impossible to appraise the performance of a system while it is in use.

## Picture Quality

Departures from normal, either steady state or transient, can not
be apprehended until the system has degenerated to the extent of causing noticeable impairment of picture quality. The extent of such impairment may produce only slight picture degradation or it may ruin the picture completely. Needed is a signal that may be transmitted concurrently with the television program, one that does not produce adverse effects upon the picture and yet is of such nature as to suffer the same distortions as the picture. The signal to be described


FIG. 3-Block diagram of the complete test signal equipment

By RALPH C. KENNEDY
National Broadcasting Co.
New York, N. Y.
meets all the above requirements.
Figure 1 shows the test signal for three different oscilloscope sweep times. In Fig. 1A, the signal appears after the second set of equalizing pulses during the vertical blanking time. The signal, which occupies three horizontal lines, is located close to the top of the picture. As shown in Fig. 1B and 1 C , only one inactive line separates the test signal and the top of the picture.

This location has been found es-



FIG. 1-Test signal for three sweep speeds. Signal appears after second set of equalizing pulses (A) in vertical blanks


FIG. 2-Signal inserted in color program (A). Test signal inserted in monochrome program (B) shows no flag burst
sential. If the signal appears earlier in the blanking interval, some receivers and monitors show retrace lines where the half-white and white bars appear.

Figure 1 also shows that each of the three lines is the same and consists essentially of three pedestals having amplitudes of 50,0 and 100 units respectively on the IRE scale corresponding to half white, sync and white.

Starting with sync and proceeding from left to right, there are the usual breeze-way, color-flag-burst and back-porch intervals. About $1 \mu \mathrm{sec}$ after the color flag burst, there appears $20 \mu \mathrm{sec}$ of half-white amplitude bar having a rise time of $0.1 \mu \mathrm{sec}$. Centered and superimposed on this bar is $10 \mu \mathrm{sec}$ of $3.579-\mathrm{mc}$ sine-wave phased 180 deg from the flag burst.

This bar is followed by $2 \mu \mathrm{sec}$ of sync pedestal after which appears $10 \mu \mathrm{sec}$ of $3.579-\mathrm{mc}$ sinewave phased to magenta and superimposed on the pedestal.

Two microseconds of sync pedestal separates the magenta sine-wave and the next bar. This has a duration of $20 \mu \mathrm{sec}$ and an amplitude of 100 IRE units, which corresponds to white. The rise time of this bar is $0.1 \mu \mathrm{sec}$. Centered on
this bar is $10 \mu \mathrm{sec}$ of 3.579 mc sine wave phased to cyan. The sine waves are depressed into the pedestal so that the positive crests correspond to 100 IRE units. This is done so as to have no part of the signal exceed white level, which represents the maximum acceptible negative modulation level for the transmitter.

The amplitudes of the three sinewave portions are 40 IRE units, peak-to-peak. The a-c axis of the cyan data is therefore at 80 IRE units.

## Choice of Signal

It is well to consider various aspects of the signal and the conclusions that lead to the present wave form. Initially, it was desired to create a signal indicating the proper values for white level, chroma and burst amplitudes. Transmission of white level alone has no meaning if nonlinearities exist anywhere in the system since stretching or clipping of the white bar will not reveal the amount of departure from the original.

The half-amplitude bar is used to establish all other levels. It is assumed that this bar can be sent undistorted through the circuit under test. Since it closely approx-


FIG. 4-Cir=uit diagram of the simulianeous color test signal generater
imates the a-c axis of the signal, it should suffer a minimum of distortion in transmission.

The white bar has twice the amplitude of the half-amplitude bar and any stretching or compressing of white is easily detected from the ratio of the two amplitudes that can be quickly determined.

Placing the two bars at the left and right of the screen is desirable to reduce halation in the top center of the picture. The three sinewave signals placed on the pedestals makes possible the evaluation of the differential gain and phase distortion.

The choice of burst +180 deg for one of the sine-wave phases was made for two reasons. It is easy to see if it is properly adjusted when viewed on a vectorscope since it and the flag burst vector should form a straight line. It also provides a ready reference when used with a monochrome signal that has no flag burst.

## Color Choice

Since the eye is most sensitive to cyan and magenta hue variations, it was decided to use these two phases for the other sine-wave signals. There appears to be some possibility that these colors may aid in adjusting receivers and monitors.

The amplitudes of the three sine waves are made identical to aid in measuring differential gain distortion. The flag burst and the three sine-wave signals should have the same amplitude and lie on the same axis when the signal is passed through a high-pass filter having a 1 -me cutoff frequency. Departures from this condition are caused by differential gain distortion.

When a color program containing the test signal is viewed on a vectorscope, the three sine waves produce vectors that are quite apparent. These change their positions when they are passed through a system having differential phase distortion. The amount of distortion can be read to one degree on a vectorscope.

The $10-\mu \mathrm{sec}$ duration of the sine-wave signals may seem long. However, severe distortion of the
flag burst may occur owing to bandwith limitations in the transmission system. This effect has been termed footballing from the shape of the flag burst suffering this distortion. For large distortions of this type, it is impossible to tell what the received amplitude of flag burst really should be. The $10 \mu \mathrm{sec}$ of sine wave is long enough to permit several cycles having the same amplitude to appear in the middle of the interval even for gross bandwidth limitations.

## Pedestal Signals

The pedestals are made longer in time than their associated sine waves for several reasons. Compression or clipping of white level will cause the a-c axis of the sine wave to be bowed. The amount of bowing can be compared to the pedestal.
The pedestal also shows a rounded shape on the leading edge (integration) or a spike (differentiation) when the low-frequency ( 15 kc to a few-hundred kilocycles) region suffers phase-vs-frequency distortion. This form of distortion is evident as a tilt in the pedestal or smear in the picture. It also causes an apparent loss in resolution. Hence, it is possible with the test signal to appraise the low-frequency transient conditions in the system.

## Measurements

In addition to the data available in an oscilloscope presentation as is shown in Fig. 1, there are also those obtained from a vectorscope screen such as is found in Fig. 2A and 2B. In Fig. 2A, the signal is inserted in a color program. The flag burst vector appears as a horizontal line to the left of the origin. The vector representing the sine wave in the test signal phased 180 deg away from the flag burst is apparent as a horizontal line to the right of the origin. The magenta vector is about 120 deg clockwise from the flag burst while the cyan vector is 103 deg counterclockwise from the flag burst.

Figure 2B shows the test signal inserted in a monochrome program. Since no flag burst is present, the
vector to the left of the origin is missing. However, the three vectors representing burst +180 deg , magenta and cyan are clearly presented. This indicates the possible utility of the signal on testing a monochrome circuit prior to its being used for color by the broadcaster.

The signal has been used on the air for a number of months following FCC authorization. No adverse affects have been noted either in monitors or receivers. It has materially aided in making various adjustments necessary for color transmissions.

## Generator

Figure 3 is a block diagram while Fig. 4 is the complete circuit diagram of the generator. Development of the complete waveform requires four phantastrons used as multivibrators and four open-circuit delay lines to control pulse width. Three phase shifters control the phases of the three sine-wave signals. These are continuously variable through 360 deg .

Two multivibrators are used to establish the number and location of the lines comprising the signal in the vertical blanking interval. The signal is added on the feedback loop of a line amplifier connected in cascade with the $Y$ channel delay line of the colorplexer.

The half-white and white pedestals are combined and clipped at horizontal line rate after which they are gated at the vertical rate. The magenta pedestal is gated at horizontal line rate, reduced to an a-c axis signal and then gated at vertical rate. The two parts of the signal are combined at this time This procedure is used to permit clipping of the half-white and white pedestals, which adjusts their amplitudes, without clipping the magenta sine wave.

The author is indebted to A. L. Hammerschmidt, Vice President and Chief Engineer of the National Broadcasting Company and Howard C. Gronberg of the NBC Engineering Department for valuable suggestions and encouragement given during the course of this investigation.

# COUNTER CIRCUITS 

|  |
| :---: |
| CUMMARY - Peak pressure distribution counter quantizes a sixty-degree sector of crank angle into three-degree intervals or channels to study igniCtion characteristics of various fuels for auto engines. Two-decade counter in each channel is gated by 21 -stage ring counter to register possible pulses occurring at time of peak compression pressure. Equipment uses plug-in subassemblies wherever possible |


#### Abstract

CUMMARY - Peak pressure distribution counter quantizes a sixty-degree sector of crank angle into three-degree intervals or channels to study ignition characteristics of various fuels for auto engines. Two-decade counter in each channel is gated by 21 -stage ring counter to register possible pulses occurring at time of peak compression pressure. Equipment uses plug-in subassemblies wherever possible




FIG. 1-Part of normal combustion sequence (upper two rows) as viewed through a quartz-headed engine and complex pattern resulting from particle-induced ignition (bottom rows). Numbers represent crank-angle position in degrees during power stroke


FIG. 2-Block diagram shows how crank angle is quantized into 20 channels that register distribution of peak pressure pulses occurring during ignition

PARTICLE-INDUCED IGNITION has received considerable attention in the past few years. 1 It may be detected by engine roughness caused by wild ping, preignition or postignition. Recent studies indicate that use of higher compression ratios in the near future may be limited by this phenomena rather than by fuel octane requirements.

A number of methods ${ }^{2,3,4,5,6}$ have been proposed for measuring and evaluating particle ignition, but these methods give qualitative rather than quantitative results. This article discusses an instrument developed to provide a rapid and accurate method of rating fuels.

## Combustion

Under normal operating conditions, the engine cylinder combustion processes proceed as a smooth-burning flame front. Particle ignition, on the other hand, causes erratic fuel burning, resulting in preignition, etc. In Fig. 1, two different types of combustion are shown, for normal operation and for particle ignition.

The method for rating fuels consists of determining the difference in position of peak pressure for

[^13]
# ANALYZE IGNITION 



Information obtained from peak pressure distribution counter on racks at left, used with single-cylinder test engine at right, enables engineers to determine particle ignition characteristics of many fuels in a relatively short period of time


Extensive use of plug-in subassemblies is evident in this view of the counter. Duct at right distributes power to assemblies

Thus, a constant delay is introduced, but one which may be readily compensated.

The instrument can be started at any point in the engine cycle when obtaining a normal distribution. However, when testing for the effects of particle-induced ignition it is necessary to actuate the counter by a cam, turning at camshaft speed, that permits the control valve to operate only during the low-pressure portion of the engine cycle prior to the compression

The deposits are injected into


FIG. 3-Simplified timing chart. Pulse generated at peak pressure is gated through synchronized ring counter. Decade counters register coincidence between peak pressure and an open ring slage


FIG. 4-Timing-pulse circuit. Negative pulses at 3 -degree intervals are generated from capacitance variations between timing wheel and displacement pickup that are amplified and shaped to trigger the blocking oscillator output stage
the combustion chamber by highpressure nitrogen. When the valve opens, a signal is transmitted to the gating circuit, opening the gate and permitting the peak-pressure pulses to pass on to the totalizer and coincidence gates. Operation of the counter is more easily understood by referring to the timing diagram in Fig. 3.

## Reset Pulse

The reset pulse occurs once per engine revolution and synchronizes the ring counter prior to the operation of the ring by the timing pulses. The Capacagage signal, an electrical analog of the capacitance variation between the displacement pickup and a stud in the timing wheel, is fed to a twin-triode amplifier. The output from this stage is differentiated and the negative portion removed by diode clipping. A small capacitor across the output of a second amplifier filters the out-
put and helps prevent oscillations which tend to be generated in this stage.

At this point the signal level is sufficient but of the wrong polarity. The first section of the next amplifier inverts the signal to drive a pulse amplifier. The output from the pulse amplifier is a 150 -v negative pulse with a duration of 90 $\mu \mathrm{sec}$.

## Timing Pulses

Timing pulses are also generated from the timing wheel with a Capacagage and displacement transducer. There are 21 of these pulses separated by $3-\mathrm{deg}$ increments that can be adjusted to occur anywhere in the engine cycle by angularly shifting the wheel with respect to the pickup. The wheel is located so that channel 1 begins at or near top dead center. The circuit for the timing pulses is shown in Fig. 4. The detector output is fed to ampli-
fier $V_{5}$ and then through diode clipper $V_{B, A}$. Only the signal variations which occur on top of the signal pedestal are desired, to amplify the entire signal in $V_{7}$ would result in blocking this amplifier. The output from $V_{i}$ is differentiated, amplified in $V_{8}$ and clipped by $V_{B B}$. The signal at this point is negative and is used to drive amplifier $V_{0}$. The output of $V_{8}$ is differentiated and drives trigger $V_{10}$.

To obtain sufficient drive for blocking oscillator $V_{10}$ it was necessary to use cathode follower stage $V_{u}$. The output of the blocking oscillator is a negative $1.5-\mu \mathrm{sec}$ pulse, 120 volts in amplitude.

## Peak Pressure Circuit

Low-frequency amplifier $V_{13}$ shown in Fig. 5, amplifies and inverts the signal, after which it is fed to a clipper having an adjustable clipping level. The clipping level is normally set to pass the por-


FIG. 5-Capacitor-type transducer detects cylinder pressure variation to drive peak pressure pulse circuit to produce output pulse
tion of the signal corresponding to all pressures just above the compression pressure at top dead center. The resulting signal has a flat baseline and only one other position of zero slope and thus lends itself to differentiation to provide a baseline crossing point at the time corresponding to peak pressure. Since the clipped signals assume a variety of waveshapes and have a wide dynamic amplitude range, regenerative differentiator $V_{15}$ was developed

The differentiated signal from $V_{15}$ which crosses the baseline at the peak pressure time is amplified by $V_{18}$. The $120-\mu \mu \mathrm{f}$ capacitor from output to ground prevents oscillation. Stage $V_{17}$ is an overdriven amplifier normally biased near cutoff to provide a signal approaching a rectangular pulse. The leading edge corresponds to time of peak pressure. This signal is differentiated and the negative spike is removed by clipping the stage $V_{14 \beta}$. The positive spike triggers oneshot multivibrator $V_{18}$ to provide a 16 -millisec rectangular pulse. This insures that any retriggering resulting from oscillation in the amplifiers is precluded and a spurious peak-pressure pulse cannot occur until the active channels have been passed.

To supply the proper waveform to trigger the counters, the $16-\mathrm{mil}-$ lisec rectangular pulse is again differentiated and the leading spike made to trigger one-shot multivibrator $V_{10}$. The output rectangular pulse width of $V_{10}$ is normally set
to $20 \mu \mathrm{sec}$ by the pulse width control. This pulse is inverted by $V_{20, A}$ and applied to cathode-follower $V_{2 O B}$ where the impedance is transformed to a value sufficiently low to drive the connecting coaxial cables.

## Ring, Gate and Counter

The reset pulse and timing pulses control a 21-stage ring counter or electronic commutator. The channel decade counters and the coincidence gates register a count when coincidence exists between an active channel and a peak pressure pulse. The peak pressure pulses at this point have been gated and inverted by the control circuit to permit counting during a specified interval.

Each counter stage is essentially an Eccles-Jordan circuit. The cathodes of all left sections in each stage are tied to a common $1,000-$ ohm potentiometer while the cathodes of the right sections are tied to a common 20,000 -oh'm potentiometer. When these common cathode resistors are adjusted to have a ratio of approximately 1 to 20 , the quiescent state will be such that 20 of the left sections of the 21 stages will be conducting while the right section of the remaining stage must be conducting to end up with equal cathode potentials. The negative timing pulses are applied to all of the left-section cathodes simultaneously. The one stage in which the left section had not been conducting will be forced into conduction by the negative timing pulse. Each successive timing pulse

that is normally set to $20 \mu \mathrm{sec}$ by the pulse width control
indexes the ring one step forward.
Orientation of the ring is assured by a reset pulse which conditions the ring such that the first channel gate from the ring in each cycle is generated by the first stage.

The successive positive gates from ring stages 1 through 20 are each applied to one control grid of separate coincidence gate stages for each of the 20 channels. The other control grids of each of the 20 coincidence gate stages are connected in common and are fed the positive-gated peak pressure pulse. When the gated peak pressure pulse is coincident with the positive gate from a ring stage the coincidence-gate stage conducts, giving a negative signal. This negative pulse is reinverted and amplified and subsequently fed to the units decade counter ${ }^{\ominus}$ for that channel. When the units counter completes the registration of a decade, a count is transmitted to the tens counter. In this way a total of 99 counts per channel is possible.

## Control and Totalizing

The control and totalizer circuits shown in Fig. 6 initiate and terminate the active counting period. Opening the reset bus resets all counters including the totalizer to zero. When the total number of peak pressure pulses reaches the preset value of the totalizer counter the counting stops.

Thyratron $V_{156}$ energizes the solenoid control valve, permitting injection of powdered engine deposits into the combustion chamber. The thyratron firing time is interlocked by cam-actuated contacts on the engine to insure injection during the intake stroke only, thus precluding the possibility of backfire through the injection valve. The control grid of $V_{156}$ normally has a fixed negative bias. Pressing the start button energizes the relay, provided that the interlock is open. If the interlock happens to be closed at that instant, the relay is shortcircuited through its normally closed contact but as soon as the interlock breaks, the relay energizes.

The next time that the enginedriven interlock closes, the grid of $V_{150}$ is grounded through a $10,000-$ ohm resistor, overcoming


FIG. 6-Control and totalizer circuits show how peak pressure pulses are gated when particle control valve is actuated. Output is obtained when three-decade totalizer counter reaches its preset value which may ho any multiple of 10 up to 10,000
the bias, and the thyratron fires. The injection-valve solenoid in the plate circuit is energized, permitting compressed nitrogen to blow deposits into the combustion chamber. The grid of the thyratron is grounded once every engine cycle until the start button is released but the $47,000-\mathrm{ohm}$ and $8 \mu \mathrm{f}$ time constant in the $B$ supply to the thyratron insures that the valve is energized only once.
The negative signal taken from the plate of the thyratron is squared by trigger $V_{155}$, differentiated and clipped, and the negative pulse at the leading edge applied to one input of flip-flop $V_{158}$. If selector switch $S_{1}$ is in the normal automatic position, $V_{1589}$ is initially conducting. The negative pulse from trigger $V_{257}$ cuts off $V_{1584}$ and its plate goes positive. This positive signal is applied to coincidence gate $V_{169}$. Both control grids of $V_{159}$ are now in position for $V_{150}$ to conduct. The negative peak pressure pulses applied to the control grid result in positive pulses at the plate of $V_{150}$ as long as the flip-flop maintains conduction in $V_{1888}$. The gated peak pressure pulses taken from
the plate of $V_{\text {洞 }}$ are strengthened by cathode follower $V_{1004}$ and applied to the ring, gate and counter circuits.

Simultaneously, the gated peak pressure pulses are fed to the 3 decade preset totalizer counter. The totalizer may be preset to any multiple of 10 up to 1,000 since only the tens and hundreds decades may be preset. Upon reaching preset, simultaneous positive voltages are delivered to coincidence gate $V_{187}$ by both the tens and hundreds decade. When this occurs, a nega-tive-going output taken from $V_{187}$ is strengthened by cathode follower $V_{1084}$ and applied to flip-flop $V_{158}$. The cathode follower is employed because the totalizer and gate $V_{187}$ are on another chassis remote from that of the rest of the circuit of Fig. 7.

The negative pulse from cathode follower $V_{1884}$ causes $V_{158 B}$ of the flip-flop to cut off and $V_{1584}$ to conduct. When $V_{1554}$ conducts, the negative-going plate closes gate $V_{158}$ and peak pressure pulses are no longer passed. In operation, the channel counter readings would now be recorded and the reset but-
ton pushed to prepare for another run.

A manual peak pressure gate is provided by selector switch $S_{1}$. This may be used to start or stop counting. Thanks are due to F. W. Bowditch and R. Stebar for many helpful consultations and to E. A. Hanysz, W. Colcer and H. McClow for designing and assembling certain components.

## References

(1) F. W. Bowditch, R. E. Wilson and G. J. Nebel, Some Aspects of Particle Ignition, paper presented 19th Meeting. American Petroleum Institute, 1954 .
(2) C. A. Hall, J. A. Warren and J. D. McCullough, Practical Yardsticks for Deposit Effects, $S_{A} A^{2}$ Trans, 63, p 53, 1955 . (3) $R$ Meagher, R. L. Johnson and $K$. G. Parthemore, Correlation of Engine Noise with Combustion Phenomena, $S A E$ Trans, 63, p 481, 1955.
(4) R. C. Bowens and A. R. Isitt, The Observation of Automotive Preignition and Knock, paper No. 324, $S^{A} E$ Summer (5) ${ }^{\text {J }}$, 1954 .
ame Landis, Detection of Abnormal Flame Fronts in Road Tests with an Enpaper No. 324 ependent ionization Gaps. 1954.
(6) J. A. Warren and J A. Hinkamp, New Instrumentation for Engine Combustion Studies, paper No. 682, S A E Annual Meeting, Jan. 1956 .
(7) A. F. Welch, E. F. Weller, E. A. Hanysz and J. W. Bergstrom, Auxiliary Equipment for the Capacitor-Type Transducer, Jour $I S A$ 2, p 548, Dec. 1955
(8) Y. T. Sihvonen, G. M. Rassweiler, A. F. Welch and J. W. Bergstrom, Recent Improvements in a Capacitor-Type Pres${ }_{1955}$ Transducer, Jour IS A 2, p 497, Nov. (9) P. Cheilik, Glow Transfer Tubes for Counting, Tele-Tech., 13, p 84, Dec. 1955.

FIG. 1-Hypothetical arrangement of nu-clear-powered aircraft shows relative radiation at distances in radii from reactor


# Designing Electronics to Resist Nuclear Energy 

By harvey l. morgan

Project Electrical Engineer
Research Laboratory
Motorola, Inc.
Phoenix, Arizona


#### Abstract

( UMMARY - Nuclear power for aircraft and ships requires electronic equipment designed to operate in areas of high nuclear radiation. To obtain reliability, materials and components must be selected that will function properly under these conditions. Low susceptibility to secondary radiation is essential to permit servicing of equipment


DEVELOPMENT of nuclear-powered aircraft will result in nuclear radiation becoming an additional environmental factor for electronic equipment.

The components of nuclear radiation of concern to designers of electronic equipment are fast neutrons, slow or thermal neutrons and gamma rays. The radiation rates of each is a function of the power being generated, shielding and distance between the reactor and the equipment.

Considerable distance is likely to separate the electronic equipment from the reactor in a nuclear-powered aircraft. Radiation intensity is inversely proportional to the square of the distance from the source, or down to 1 percent at 10 radii and 0.1 percent at 30 radii of the reactor as illustrated in Fig. 1. As an order of magnitude, the
nuclear reactor could easily have a radius of less than two feet.

## Radiation Effects

Each type of nuclear radiation affects materials differently. Slow neutrons are captured by atoms in activation reactions. This induced artificial radioactivity will generally produce secondary gamma rays, as with cadmium. Boron absorbs slow neutrons and emits alpha particles. Of the two, the alpha particles are more desirable since they are easily stopped. The amount of artificial radioactivity induced by slow neutrons is a function of the cross-section for capture possessed by the material. Some metals, notably cadmium, cobalt and manganese have very large cross-sections for slow neutrons as can be seen in Table 1.

Secondary radiation adds to the
general radiation problem and makes difficult the servicing of equipment once, exposed to nuclear radiation.

Shielding against slow neutrons is a simple and inexpensive procedure. A quarter-inch shield of boron carbide-aluminum alloy will attenuate the slow neutron flux by a factor of $10^{5}$.
Fast neutrons do not have the large cross-section for capture possessed by slow neutrons, but they have a large kinetic energy. A nuclear reactor will produce neutrons with energy up to 15 mev but the bulk of those to be contended with are around 1 or 2 mev . Fast neutrons damage by elastic collision with atoms in a crystal structure or chemical compound.

Gamma rays have far smaller cross-sections for reaction than fast neutrons, so cause little radio


FIG. 2-Residual activation (A), radioactivity at shutdown (B) and relative radiation (C) of materials as a function of half-life
activation. Ionization of gas by gamma rays is less than for an equal number of fast neutrons possessing the same energy. Except for ionization and reactions with electrons, gamma rays are not particularly damaging to electronic equipment in quantities of the order of magnitude used here ( $1 \times 10^{15}$ per $\mathrm{cm}^{2}$ ). Appreciable damage may begin to show at $10^{18}$ gamma rays per $\mathrm{cm}^{2}$.

## Two Techniques

Design factors to be contended with by the engineer are radio activation, ionization, and structural damage. Radioactivation will restrict the serviceability of any equipment. Two techniques are possible: Materials with large cross-sections for capture of slow neutrons with gamma secondaries should be avoided or reduced to a minimum: and materials with short half-lives should be used for structure. An example of the first consideration is use of nickel or tin in place of cadmium plating. In the second instance, aluminum has a very short half-life (2.4 minutes) where as iron has a 2.06 year half-life. Iron activation would build up throughout the life of the equipment, but aluminum activation would be reduced to 0.017 percent of peak value in 30 min utes.

Figure 2A illustrates build-up of induced radioactivity during an operating period of 40 hours. Less than 1 percent of the total activation of aluminum would remain at the end of the irradiation period. On the other hand, the secondary radiation rate at shut-down would be much higher for aluminum than for iron, as is shown in Fig. 2B.

Figure 2C compares the half-life parameter on a basis of radiation rate and time after shut down.

Both aluminum and iron are almost invariably used in the form of alloys. In considering an alloy for use in a nuclear radiation environment, the properties of all components must be evaluated. Cobalt is a component of alumi-num-alloy magnets, generally, and has a large secondary radiation.

If the equipment is to be serviced, then cobalt-containing materials should be shielded with boron alloy.

## Gas Problems

Ionization is not generally a problem in metals or in ionic-bond materials. However, in air, gases or in insulators it can be a severe problem. In waveguides, ionization will reduce the maximum power that can be maintained with-

Table I-Nuclear Properties of Materials

| Material |  | Atoms per cc $\times 10^{22}$ | Cross-Section in Barns |  |  | Jercent absorbed per cm | Half-Life of Isotopes | |
|---|---|---|---|---|---|---|---|---|
|  |  | Slow neulrons | Maximum | Fast neutrons |  |  |
| Aluminum | Al |  | 6.03 | $1.5 b$ | 10h | 3b | 10 | 2.4 min |
| Barium | Ba | 1.53 | 10-18b | 80 b at 80 ev | 6-12b | 14 | 86 min |
| Beryllium | Be | 12.3 | 6-8b |  | 6b |  | $2.7 \times 10^{6}$ yrs |
| Cadmium | Cd | 4.61 | $20-8 \mathrm{~kb}$ |  | 4-7b | 25 | 5.1 yrs <br> 2.5 days |
| Chromitum | Cr | 8.22 | 6-28b |  | 3.5 b | 29 |  |
| Cobalt | Co | 9.09 | 13-40b | 7000 b at 140 ev | 3-20b | 100 | $\begin{gathered} 10.4 \mathrm{~min} \\ 5.28 \mathrm{yrs} \end{gathered}$ |
| Copper | Cu | 8.46 | 8-35b |  | 2-6b | 34 | $\begin{aligned} & 5.14 \mathrm{~min} \\ & 12.8 \mathrm{hrs} \end{aligned}$ |
| Germanium | Ge |  | 10b | 100 b at 100 ev | 3-10b |  | 57 sec <br> 82 min <br> 12 hrs |
| Gold | Au | 5.89 | 30-450b | 30 kb at 5 ev | 4.5-10b | 43 | 2.7 days |
| Iron | Fe | 8.48 | 10b |  | 3-7b | 42 | 2.96 yrs |
| Lead | Pb | 3.30 | 10b |  | 10b | 33 | 3.2 hrs |
| Magnesium | $\mathbf{M g}$ | 4.31 | 3.56 | 22 b at 90 kev | 5b | 22 | 9.5 min |
| Manganese | Mn | 7.89 | 4.5-20b | 2000 b at 300 ev | 50 b | 100 | 2.6 hrs |
| Mercury | Hg | 4.07 | 45-450b | 500 b at 34 ev | 5-10b | 30 | 47 days |
| Molybdenum | Mo | 6.4 | 6.5-15b | 900 b at 40 ev | 4-10b |  | 67 hrs |
| Nickel | Ni | 9.13 | 25-30b | 80 b at 16 kev | 6 b | 55 | 5.3 yrs |
| Oxygen | $\bigcirc$ | $5 \times 10^{19}$ | 4-12b | 14 b at 0.44 mev | 4b |  |  |
| Platinum | Pt |  | 10-20B | 2 kb at 12 ev | 6-10b |  |  |
| Selenium | Se |  | 10-60b | 90 b at 27 ev | 3.5-10b |  | 67 sec |
| Silicon | Si | 5.19 | 3b | 11 b at 0.2 mev | 3b |  | 2.6 brs |
| Silver | Ag | 5.67 | 18-100b | 12 kb at 40 kev | 4-7b | 31 | $\begin{aligned} & 24 \mathrm{sec} \\ & 2.3 \mathrm{~min} \end{aligned}$ |
| Tantalum | Ta | 5.53 | 10-25b | 13 kb at 4 ev | 5-10b |  | 16.4 min <br> 111 days |
| Tin | Sn | 2.92 | 2-5b | 60 b at 100 ev | 4-7b | 16 | 250 days |
| Titanium | Ti | 5.64 | 4-10b | 100b | 5b | 28 | 5.8 min |
| Tungsten | W | 6.31 | 8-28b | 14 kb at 20 ev | 5-10b | 45 | 24 hrs <br> 77 days |
| Vanadium | V |  | 6-20b | 70 b | 6 h |  | 3.9 min |
| Yenon | Xe |  | $10^{4}-3 \times 10^{6} b$ |  |  |  | $\begin{aligned} & 5.3 \text { days } \\ & 9.13 \mathrm{hrs} \end{aligned}$ |
| Zinc | $\mathbf{Z n}$ | 6.58 | 4b | 140h at 500 ev | 3-10b | 36 | 250 days |

out breakdown. This problem can be solved by pressurization.

Gaseous tubes, which depend on ionization for operation, are not particularly affected by presence of nuclear radiation. However, gasamplification phototubes are severly affected. Thyratrons require a grid-cathode ionization intensity several orders of magnitude greater than the probable radiation could cause, so no false-firing is likely.

High-voltage supplies and pulse modulators require additional insulation over usual requirements due to presence of ionization. Where air pressure can be used, pressurization is as effective as in waveguide. Where pressurization is impractical, immersion in silicone oil or encapsulation by plastics might be used. Leakage resistance of plastics and other insulators will be reduced by a factor dependent on radiation rate, but possibly as large as $10^{3}$. The battery effect is also due to ionization. A conductor insulated from ground will acquire an appreciable potential with respect to ground due to unidirectional travel of ionizing radiation. However, the current is very small and constant, so that the potential developed drops rapidly with decreasing resistance to ground.

Probably the most serious effect of fast neutrons is on semiconductor devices. Data available in the form of test results is somewhat contradictory, but apparently failure may be expected in the interval of $10^{13}$ to $10^{18}$ fast neutrons per $\mathrm{cm}^{2}$. Germanium diodes tend to fail by going ohmic while silicon diodes increase in resistance in both directions.

Some tests indicate the silicon diodes last longer under irradiation than germanium diodes, while other tests indicate the opposite. Only limited data is available on transistor tests. It is likely that transistors are more susceptible to irradiation than diodes.

## Shielding

Shielding against fast neutrons is mainly a matter of moderating (slowing down by collision) and capture at the thermal energy level. Neutrons lose energy in the largest

Table [I—Radiation Resistance of Electronic Materials

| Low | Medium | High |
| :---: | :---: | :---: |
| Cellulose acetate | Phenolic, organic filler | Ceramics |
| Cellulose acetate butyrate | Polyester resin | Epoxy resins, mineral filled |
| Cellulose Nitrate | Allyl diglycol carbonate | Glass |
| Fluorothene | Polyethylene | Glass-bonded mica |
| Melamine-formaldehyde |  | Mica |
| Methyl Methacrylate |  | Phenol formaldehyde |
| Phenolic |  | Polyester resin, mineral filled |
| Polyamide |  | Polyethylene terephthalate |
| Polychlorotrilluoroethylene |  | Polystyrene |
| Tetrafluoroethylene |  | Polyvinyl carbazole |
| Urea formaldehyde |  | Porcelains ${ }_{\text {Silicone rubbers }}$ |
| Vinyl chlorid <br> Vinylidene chloride |  | Silicone rubbers |

increments when colliding with objects of equal mass, so the best moderators are materials containing large quantities of hydrogen.

Water is used as a moderator, but 24 cm of $\mathrm{H}_{2} \mathrm{O}$ is required for a 10-to-1 attenuation of fast neutrons. Certain plastics are more effective, but the best according to data available is polyethylene, which requires 15.6 cm .
A material known as tetramethyl - ammonium - boro - hydride will attenuate fast neutrons by 10 -to- 1 in 3.5 inches, and the included boron will soak up the thermalized neutrons. Its density is listed as 0.813 and it is reported stable to 300 F .

If fast neutron shielding is used, it probably will be used only for semiconductor devices.

## Threshhold Point

In general, little or no change in physical or electrical properties of plastic materials have been observed at $1 \times 10^{15}$ neutrons per $\mathrm{cm}^{2}$. However, that amount of radiation appeared to be a threshold point for damage to be detectable for many materials.

The effect of radiation on plastics and other insulators appears in capacitors and inductors, principally. Paper, being a complex organic material with low radiation resistance, will have to be replaced by materials such as mica, glass, ceramics, mylar and silicone materials depending on the application. Magnetic properties of metals and ferrites appear to be unaffected by radiation dosages far beyond anything contemplated here.

Components are available that can operate at high temperature and for extended periods in a radiation environment. Glass capacitors and fused-oxide resistors appear very good. Monolithic ceramic capacitors are in the same class. Some mica capacitors have operated with little modification of properties through extended periods of irradiation, but others have failed due to structural failure of the encapsulating plastic. Ceramic encased disc ceramic capacitor should be good and mineralfilled epoxy resin on disc ceramics should also be good.

Metals are very little affected by nuclear radiation in their physical or electrical properties at the radiation flux levels dealt with here. Wire-wound resistors, however, may fail because of insulation failure. A continuous, flexible ceramic coating, if possible, would be highly desirable. Metal film, or other film-type resistors, appear to have good radiation resistant properties.

Inductors wound of foil (preferably aluminum rather than copper for activation reasons) appear advantageous for several reasons. Space factor is better and heat conduction is considerably better. If aluminum with its natural oxide and auxiliary insulation, such as mylar, is used, the maximum mylar temperature will be reduced for given surface temperature. Life, hence reliability, will be increased. Electromechanical devices such as relays, motors and selysns fall in the same class as inductors in their electrical design.


FIG. 1-Effect of temperature on 225,000 . ohm GE carbon film resistor


FIG. 2-Effect of temperature on typical mica capacitor unit


FIG. 3-Two coupling capacitors decrease effect of d-c leakage on grid bias

> PUMMARY-Component-by-component survey of problems involved and progress to date in achieving reliable operation in 500 C temperature range. Enough components of various types are now produceable to permit construction of subassemblies for multivibrators, pulse preamplifiers, amplifiers and other circuits. Some withstand nuclear radiation, shock and vibration as well as high temperature

# HIGH-TEMPERATURE 

STEADY PROGRESS is being made toward the product design stage of electronic subassemblies capable of operation in the 500 C range. Although such subassemblies are not yet off-the-shelf items, specialized circuits for particular applications can and have been built. Resistance to both high temperature and nuclear radiation is demonstrated by the new components and subassembly approaches.
Components are available now for the production of basic circuits such as amplifiers, multivibrators and clippers capable of operating satisfactorily at 500 C . These components are in general prototypes of what will eventually follow. Their mechanical design in particular is by no means optimized. In most cases physical size and weight are high in relation to electrical performance. Housings and terminations are often crude. Most are semi-handmade.

It is certain that present designs will be refined and desirable that they be standardized. With time,
the limitations and gaps will be filled. Perhaps it is significant that vacuum tubes, which might seem to be the most difficult components to design for high-temperature operation, are in fact the most highly developed at this time.

A number of vacuum tubes capable of operation at 500 C are in various development and pilot production stages for defense applications. These generally use titanium and a thermally matching ceramic of the Forsterite type in stacked co-planar construction. Connections may be made to the tubes by socketing, by direct spotwelding or by brazing wires to the tube electrodes.

## Tubes

The new high-temperature GE tube line comprises a medium-mu triode, a high-mu triode, a defense applications uhf r-f amplifier and a power triode with 12.5 -watt plate dissipation capability. The specific external shape of these new tubes is not yet finalized. It is expected
that the final design will provide for multiple-point mounting directly to a printed wiring board. This construction will extend the inherent ruggedness of the tube to the subassembly.

## Resistors

Resistors capable of operation at 500 C are already available in sample quantities for experimental use in some applications. GE resistors utilize a resistive film deposited on the inside of a hollow ceramic tube. The resistors are sealed by using a metal-ceramic sealing technique at high temperature and low pressure. Resistor values to above 1 megohm are available. Although new and improved resistive films are under development, the presently-available resistors exhibit a negative temperature coefficient which varies with resistor value much as in Fig. 1. A temperature coefficient of 0.06 percent per deg $C$ is not uncommon for a 250 K carbon film resistor, and this represents a 29 -percent


FRONT COVER: Operating tests in 500 C oven and on charcoal fire show that printed ceramic chassis using silver conductors performs equally as well as above metal-chassis subassembly with inset ceramic terminal strips, both using metallized resistor, mica capacitor and ceramic tube shown at right


# SUBASSEMBLY DESIGN 

change in resistance for a temperature rise from 25 C to 500 C .

The effect on gain of such resistance changes can be reduced by using large amounts of feedback, and this will surely be the technique used for the time being. Meanwhile, extensive efforts are being made to reduce the temperature coefficients of high-value resistors. Other research is being aimed at development of badly needed carbon-film power resistors (about 10 watts), resistors in the 10-megohm range, high-frequency resistors, precision resistors, variable resistors and potentiometers for operation at 500 C .

## Capacitors

At present, capacitors for the 500 C range are in pilot production, based on a stacked mica design. This utilizes 1 -mil stainless steel electrodes, phlogopite mica splitings for the dielectric, an Inconel case and stainless steel leads. The present case provides mechanical protection and mounting provi-
sions, but not a hermetic seal. Capacitors are available in sizes from 0.001 to $0.05 \mu \mathrm{f}$ at a nominal 250 $v$ d-c rating. Typical electrical characteristics are: $60-\mathrm{cps}$ power factor at room temperature-3 percent; $60-\mathrm{cps}$ power factor at 500 C-40 percent; change in capacitance from room temperature to 500 C -plus 33 percent at 60 cps , as shown in Fig. 2.

For plate coupling and grid blocking applications, d-c and lowfrequency leakage resistance is a problem in high-temperature capacitors. Essentially, the difficulty is one of keeping the plate supply voltage of one stage off the grid of the next. Figure 3A illustrates the problem caused by leakage through the plate coupling capacitor. One way of getting around the trouble is to use another capacitorresistor network, as in Fig. 3B. If the capacitors are not larger in the second case, low-frequency response will be sacrificed.

Another need in the high-temperature capacitor line is for large-
value high-voltage capacitors. Until one is developed, such basic units as d-c power supplies will be difficult of achievement. The same capacitors are needed in screen bypass and cathode bypass applications. One special requirement here is resistance to nuclear radiation. In resistors and tubes this is achieved naturally because of the nature of the materials used.

Frequency-controlling capacitors and variable capacitors of any kind are also needed, although at first glance it would appear that these offer less of a problem, particularly where air is used as the dielectric.

## Transformers

Few, if any, inductors are commercially available. Developers having need for inductors usually wind their own from silver or aluminum wire. Air cores have been used mostly, although certain magnetic materials and ferrites are useful at 500 C. Although power and high-voltage transformers have not been produced, filament


Subassembly encapsulated in alumina sand has high resistance to shock, vibration and nuclear radiation along with 500 C temperature rating. Component leads are welded to wire terminals cemeated into holes in ceramic chassis
transformers using Ceroc or other ceramic-insulated copper conductors and iron cores have been successfully built and tested.

## Wiring

Hook-up wire for high-temperature circuits should not be a problem for single uninsulated conductors. Nickel or Inconel-clad copper are two of several possibilities. A ceramic-coated copper wire is useful in some applications.

## Subassembly Research

The high-temperature component art has progressed to the point where certain specialized and useful subassemblies can be constructed for operation in high-temperature environments. More work is required in component development before a wide variety of conventional subassemblies can be operated reliably, however.

Of every bit as much importance as component development is work in the area of subassembly designs. Besides standardization of component cases, lead configuration and mounting provisions, this work includes development and design in four fields: Connection methods (component to component, component to chassis, chassis to cable, etc) ; high-temperature printed wiring; suitable chassis or base materials; total subassembly mechanical design, including chassis, rack and shock-mounting provisions, and simplified assembly and test techniques.

For commercial system manufacturers or military weapons system manufacturers who require complete control or communication systems of proven reliability for operation at high ambients, the high-temperature component and subassembly art has not progressed to a point where it is directly usable. But simple devices must be built before complex ones, and the only way to achieve system operation at high ambients is to start by building useful and successful subassemblies.

The problem in connection development is to find a substitute for soldered joints. The desirability of 500 C printed wiring has resulted in evaluation of metallizing techniques, mechanical strength, ease of making connections and simplicity of the process.

## Breadboard Example

Work during the past year has led to subassembly configurations which are feasible for operation in high temperature and high nuclear radiation environments. In addition, one of the configurations is also suited to high shock and vibration conditions.

The first design resulting from subassembly research is an adaptation of conventional techniques to high-temperature requirements. A conventional sheet aluminum chassis can be used. In place of the conventional terminal strip made of phenolic laminate and tinned brass, a ceramic block is used.

Nickel wire tie points are set into the ceramic and anchored with a high-temperature inorganic cement. Connections between components and the tie points on the ceramic block are made by spot welding. Another connection technique which has shown considerable promise is wire-wrapping.
Most light components can be suspended between the tie points on the ceramic blocks by the strength of their own leads. This method would be used for resistors and some light capacitors. For heavier components, such as stacked mica capacitors, the electrical connection and mechanical mounting are separated. Larger capacitors can be bolted or riveted directly to the chassis.
If bolt and nut construction is used, the nuts may be drawn up loosely to allow for thermal expansion, then held in place with a drop of Saureisen cement. Another method is to utilize high-temperature spring lock washers made of Inconel $X$ and draw the nut up tight against the washer.

## Tube Mount

A novel method for mounting tubes of the metal-ceramic type is shown in Fig. 4. Using a special welding fixture, lead wires about 2 inches long are welded across the tube electrodes. Next the tube is placed on a grooved ceramic mounting block with nickel tie points suitably located on the block.

By bending the tie point wires in
toward the tube and spot-welding to the wire straddling the tube while the tie-point wires are under a flexural stress, a resilient harness is formed which serves as both the electrical connection to the tube and as a mechanical restraint.

The ceramic tube blocks can be mounted either above or below the top surface of the chassis. External connections for filament and plate power, signal input and signal output can be made by spot-welding wires directly to the appropriate tie points. Where necessary, woven glass tubing may be used to insulate one wire from another.

One advantage of the spot-welding connection technique is the extreme ease with which connections can be made and remade. Spot welding works best on materials of moderately high resistivity and most of the lead materials for hightemperature components now being developed fall into this category. Nickel lead wires spot-weld most easily. Even copper wires, if they are nickel-plated, spot-weld satisfactorily.

## Encapsulated Example

The second high-temperature subassembly design, based on a modular approach, is intended for high shock and vibration levels. The base plate is a molded or fabricated ceramic base plate into which a number of nickel tie points are cemented with inorganic Saureisen cement, as in Fig. 5. The tie points are set along the two longer edges


FIG. 4 - Construction of 500 C socket for ceramic tube
of the base plate at incremental distances corresponding to the minimum spacing between small components. At the present time, this is on a 0.200 -inch grid system.

The nickel tie points extend all the way through the ceramic base plate. Again, components including tubes can be assembled and spotwelded on one side of the base plate. On the other side additional components can be placed, or overhead or printed wiring connections can be made to the input and output terminals at the end of the base plate.

After complete assembly and test of the module, which could consist of one or two stages of amplification, a multivibrator or the like, the base plate is inserted into a mounting can which is fitted with locating tracks made of sheet spring material. The tracks serve to locate the base plate within the can and provide some degree of shock mounting.

The bulk of the shock mounting is provided by the next stage in the assembly operation, which consists of filling the air space between the base plate and the can with finely divided alumina powder. During the filling or potting operation the subassembly can is gently shaken so as to tamp down the sand. Assembly is completed by placement of a resilient gasket and a top mounting plate on the can.

## Applications

The first subassembly configuration described features a tolerance to nuclear radiation as well as to temperatures above 500 C . The second design would be useful under high temperature, nuclear radiation, high shock or high vibration conditions, or any combination of them. Drawbacks of the designs are considerably higher cost per subassembly, much higher weight (especially in the second design), and the ever-present restriction imposed by the limited number of components presently available.

A typical application of such construction techniques includes pulse preamplifiers for nuclear pile instrumentation. The preamplifiers are designed to take the output of a radiation level gage such as an ionization chamber, amplify the


FIG: 5-Terminal arrangement in ceramic submodular chassis
signal and match the output impedance to that of a coaxial cable. The circuits could be extended to logarithmic flux amplifiers when suitable electrometer tubes and logarithmic diodes become available.

Another application would be blast instrumentation at short range during nuclear detonations. A timing oscillator and several f-m oscillators built along the lines of the second design could furnish extensive temperature, pressure and shock data at extremely close distances to the fireball. Numerous other applications in both military and commercial systems exist now and more are sure to materialize in the future.

In general, any circuit or device whose operation is limited by thermal, nuclear, shock or vibration considerations stands to be improved significantly by using such designs.

The study described was carried on under subcontract from the GE Aircraft Nuclear Propulsion Dept. in Cincinnati, which is engaged in development work for the Atomic Energy Commission and the U. S. Air Force. Other GE departments participating in high-temperature component and subassembly development work are: ceramic tubesReceiving Tube Dept., Owensboro, Ky.; resistors-Specialty Electronic Components Dept., Auburn, N. Y.; mica capacitors-Capacitor Dept., Hudson Falls, N. Y.; printed wiring subassemblies - Research Laboratory, Schenectady (frontcover multivibrator built by Dr. Walter Grattidge).


FIG. 1-Waveshapes show power output against anode voltage during wide-band operation in balun-ridge waveguide (A), tapered wave-guide ( $B$ ) (breaks in $C$ and $D$ are from too-low control voltag ${ }^{\text {g }}$ ) and during narrow-band operation in tapered waveguide (C)

# Voltage-Tuned Magnetron 

CUMMARY - Stacked metal-ceramic miniature magnetron operating in 2 -kmc to 4 -kme range has average output power capabilities up to ten watts. Effects of operation in tapered S-band waveguide and ridged waveguide are given and normal operating characteristics together with present and future applications are discussed

By T. R. BRISTOL and G. J. GRIFFIN JR.

VOLTAGE-TUNABLE magnetrons are capable of instantaneously changing frequency over almost a two-to-one range. The characteristics of the vtm make it suitable for application in a number of existing types of equipment and permit the development of new types.
The vtm tubes to be described have been designed for low lower output and are suitable for use in test equipment such as swept signal generators and spectrum analyzers. Other applications where their low power output can be used effectively are in measuring equipment such as $f-m$ altimeters and $\mathrm{f}-\mathrm{m}$ telemetering equipment.
Their use as local oscillators in receivers is another potential application but depends upon their
noise output that, while not yet fully evaluated, appears to be comparable to that of reflex klystrons. When used in conjunction with broad-band power amplifiers, such


FIG. 2-Typical power supply require: ments for the vtm
as traveling-wave tubes, the vtm may be applied in radar, communications and countermeasures equipment where the ability to change frequency rapidly is a necessity.

## Characteristics

The vtm acts essentially as a constant-current generator as far as r-f power generation is concerned. While the frequency of oscillation is a linear function of the applied anode voltage, power output is a function of the r-f impedance presented to the tube by the external circuit. The impedance presented to the tube by nar-row-band high-Q circuits can be made large resulting in the highest obtainable power output from the tube. Wide-band circuits inherently have low impedance and thus


The voltage-tuned magnetron is shown inserted in the balun-ridge waveguide (left) while hand (right) demonstrates size of unit


Magnet is shown in operating position over vtm inserted in tapered waveguide

# For F-M APPLICATIONS 

wide band operation of the vtm produces relatively low power output.

The power output-frequency characteristic of the tube in the balun-ridge waveguide wide-band cavity, with an anode center voltage of $1,350 \mathrm{v} \mathrm{d-c}$ and anode current of 15 to 20 ma , is shown in the oscillograph in Fig. 1A. Power output for various control voltages is shown in Table I. Power output variation results from the change in impedance with frequency of the balun-ridge waveguide circuit. Since the frequency is a linear

## Table I-Output Power Characteristics

|  | Cuntrol <br> electrode <br> Traltage <br> Fin volts | Average <br> power <br> output <br> in watts |
| :---: | :---: | :---: |
| Fig. 1A |  |  |
| $A$ | 600 | 3.7 |
| $B$ | 500 | 2.9 |
| $C$ | 400 | 1.0 |
| Fig. 1B |  |  |
| $A$ | 600 | 2.1 |
| $B$ | 500 | 1.5 |
| $C$ | 400 | 1.0 |
| $D$ | 300 | 0.6 |
|  |  |  |
| Fig. 1C | 600 | 6.5 |
| $A$ | 500 | 4.6 |
| $B$ | 400 | 3.4 |
| $C$ | 300 | 2.1 |
| $D$ |  |  |

function of the anode voltage, the abscissa may also be used for voltage scale. The dependence of the r-f power output upon the control electrode voltage is readily apparent.

The same tube inserted in a tapered S-band waveguide circuit produces an oscillograph as shown in Fig. 1B. It shows the wideband power output characteristic as a function of frequency for various control electrode voltages. The applied voltages are identical to those used in the ridge-waveguide circuit measurements.

For the narrow-band operation shown in Fig. 1C, the modulation voltage is reduced and the impedance raised by adjusting the back cavity shorts. Since the power generated by the magnetron is a direct function of the impedance presented to it, the power output of the circuit adjusted for narrowband operation is much higher than that of the broad-band circuit.
The ridge-waveguide wide-band circuit consists essentially of a ridge guide tapered to present an impedance match to a coaxial line. This circuit allows the tube to tune from $2,500 \mathrm{mc}$ to $4,000 \mathrm{mc}$. Since this circuit is totally enclosed, little r-f shielding is required to adapt it to systems.

Power supply, modulator requirements and tube connection
are shown in the block diagram of Fig. 2.

## Future Types

It is expected that the vtm and circuit soon will be packaged with a magnet in a manner similar to that of packaged pulse magnetrons.

Work now under way in frequency ranges adjacent to that of this vtm will provide similar tubes for extended frequency coverage. To make them more suitable for military use, future tubes will be produced with high-temperature metal-ceramic sealing techniques that will enable them to be operated at higher ambient temperatures. These tubes also will be designed to withstand high levels of shock and vibration and will be capable of operating unpressurized at altitudes of $60,000 \mathrm{ft}$, thus making them suitable for airborne applications.

The authors are grateful to D. A. Wilbur, P. H. Peters and E. Turrentine. Their research work was supported by the Signal Corps under Contracts DA-36-039-SC42699 and DA-36-039-SC-32279.

## References

(1) P. H. Peters, Jr. and D. A. Willbur, Magnetron Voltage Tuning in the S-Band, Proc NEC XI. Oct. 1955
(2) D. A. Wilbur and P. H. Peters, Jr., (2 Magnetron Principles, Symposium on Nowera Advances in Microwave Techniques, Brooklyn Polytechnlc Inst., New York, N. Y., Nov., 1954.


Ordnancemen load one of guns on mound outside laboratory. Projectile is fired through rectangular hole into Aeroballistics Laboratory, shown at right, in which range stations are located


#### Abstract

CUMMARY ——Multiple-photoflash technique for determining free-flight aerodynamic and ballistic characteristics of missile models uses predeter-mined-counter gating unit to control photographic exposures. Down-range increasing pulse rate for flash lamps properly spaces photographs of rapidly accelerating rockets under test. Exact number of flash bursts are set with toggle switches on control panel


## By SAMUEL E, DORSEY

U. S. Naval Ordnance Test Station

China Lake, California

## PRESET GATING UNIT

STUDY of rapidly accelerating missiles in the NOTS Aeroballistics Laboratory necessitated redesign of the gating units ${ }^{1}$ which control the multiple-flash lamps that are used to photograph the missile models during free flight. ${ }^{2}$ The new gating units provide a down-range increasing trigger pulse rate for the flash lamps so that satisfactorily spaced photographs can be made of burning, therefore rapidly accelerating, missile models now under test.

Two new features are incorporated in the redesigned unit: provision for dividing the frequency of the master timing pulses by one, two, four or eight as determined by the selector-switch setting on the panel; and determination of the number of pulses to be passed in gating action by electronic counters preset by toggle switches on the
panel of each unit. The previous units had no means of dividing the frequency of the master timing. The number of pulses passed was determined by elapsed time after the start signal from the photoelectric unit; the time interval was generated by a phantastron.

## Sysfem Operation

Figure 1 is a block diagram of the gating unit. Rectangles containing $X$ numbers represent plugin units.

The pulses from master timing, intensified by the pulse-stretcher amplifier, feed the timing-monitor amplifier and Schmitt trigger $X_{1}$. The Schmitt trigger feeds the chain of three high-speed binary counters, $X_{2}, X_{3}$ and $X_{4}$, which divide the frequency of master timing by two, four and eight. Positive pulse or square-wave output
from either $X_{1}, X_{2}, X_{3}$ or $X_{\star}$ may be selected by the timing-rate-divider switch which chooses a signal for gating either at the frequency of the master-timing signal or at $\frac{1}{2}$, $\frac{1}{4}$ or $\frac{1}{8}$ that frequency.

Not shown in the block diagram, but mechanically coupled with the timing-rate-divider switch, are switches which turn off the plate supply voltage to $X_{2}, X_{3}$ or $X_{4}$ when these counters are not needed. Pulses at the frequency chosen by the timing-rate-divider switch form the signal input to gate $X_{10}$.

The gate is constructed around a 6AS6 pentode. The gating line is connected to the suppressor grid that forms the second control element. If the voltage on the gating line is held more negative than a certain value, the value depending on the constants of the remainder of the circuit, the tube will not pass


FIG. 1 -Gating unit makes extensive use of plug-in circuits marked $X$ in diagram. Panel of indicator box used for local monitoring is illustrated at upper right; lamp numbers correspond to outputs in block diagram

## for Aeroballistic Testing

pulses. When the negative voltage is removed from the gating line, the tube will pass positive pulses applied to the signal grid, amplifying and inverting them. The output of gate $X_{10}$ drives blocking oscillator $X_{12}$ which in turn forms the output to the driver unit.

Blocking oscillator $X_{11}$ also feeds, through Schmitt trigger $X_{12}$, the predetermined counter chain made up of binary counters $X_{5}, X_{6}$ and $X_{7}$. The output of this chain triggers binary counter $X_{8}$, whose function is to stop the action of the gate. A pulse from the photoelectric unit, intensified by amplifier $V_{2}$, trips binary counter $X_{9}$ and starts the gate.

## Gating Sequence

The desired number of pulses to be passed by the gate, from one to eight, is set with the toggle
switches of the predetermined counter. Bý resetting all binary counters, except those in the tim-ing-rate divider, the predetermined counter is set in such a way that the gate will accept the preset number of pulses before impinging a negative pulse on the input of stopgate binary counter $X_{8}$.

Reset also raises the output of $X_{8}$ to a high d-c value while output of start-gate binary counter $X_{0}$ is put at a low d-c value. When a pulse is injected into the binary circuit at the proper point, resetting results. A relay in the power supply, controlled either locally or remotely, generates the reset pulse.

The voltage on the gating line results from the outputs of startgate driver $X_{9}$, stop-gate driver $X_{8}$, and the negative-bias supply fed through $R_{1}, R_{2}, R_{3}$ and $R_{4}$. The values of these resistances are pro-
portioned so that under conditions of reset, the voltage on the gating line is held so far negative that the gate tube cannot pass pulses. The increase of output voltage from binary counter $X_{9}$, when it is triggered, brings the voltage on the gating line to a positive value and the gate starts passing pulses. When the preset number is passed by the predetermined counter, it triggers stop-gate binary counter $X_{8}$. The resultant drop in output voltage of $X_{8}$ again brings the voltage on the gating line to a value so highly negative that the gate does not pass any more pulses.

## Remote Monitoring

All five of the binary counters which are affected by rest and the negative-bias supply are tied together through resistances $R_{5}$ to $R_{\mathbf{n}}$ to the grid of $V_{3}$ the remote moni-
tor amplifier. The resistances are connected and proportioned so that only with all five binary counters properly reset is the voltage on the grid of $V_{3}$ held near or beyond the plate current cutoff value for the tube.

If one or more of the five binary counters are not properly reset, the voltage on the grid of $V_{3}$ becomes positive, causing the plate to draw current at its saturation value. Zero or low plate current in $V_{\mathrm{a}}$, with resultant high plate voltage, occurs only when everything is properly reset. The voltage at the plate of $V_{s}$ forms the remote monitor signal.

## Local Monitoring

Local monitoring is achieved through the small test box which is plugged into the local monitoring connector on the front of each gating unit. This box is included in the block diagram, Fig. 1. One neon lamp monitors the master timing input and is lit only when the timing pulses are of sufficient amplitude and proper polarity.

Three neon lamps monitor the status of conduction of the three predetermined binary counter stages. When the gating unit is reset each of these three lamps lights if the toggle switch associated with the binary counter chain is in its maximum or add position. These three neon lamps flicker on and off during the gating action, then remain on after the action is completed.

A fifth neon lamp is provided for monitoring the start-gate binary counter and a sixth, for the stopgate binary counter. These two lamps are lit when their counters are reset.

A seventh neon lamp is a local over-all monitor and is lit only when all binaries are properly re-


FIG. 4-Typical plug-in predeterminedcounter stage


FIG. 2-Functional diagram of Schmitf trigger used in gating unit


FIG. 3-One of three high-speed binary circuits used in gating unit
set. Its operation parallels that of the remote monitor.

## Circuits

Standard NOTS plug-in units are used with the exception of the blocking oscillator which is a special design for this installation.

Master timing pulses arrive at the gating unit in balanced form in a twin conductor coaxial connector and are converted to unbalanced form (one side grounded) by a pulse transformer. A single stage of pulse-stretching amplification (first half of $V_{1}$ ) is more than sufficient for driving the Schmitt trigger $X_{1}$. Separate amplification is provided by the second half of $V_{1}$ for driving the timing monitor neon lamp in the local monitoring unit.

Schmitt triggers $X_{1}$ and $X_{12}$ (Fig. 2) are connected to operate on a negative input signal by having their input grid returns tied


FIG. 5-Combined function diagram of plug-in gate and blocking oscillator
to the tap on the cathode resistance. Both positive and negative outputs of $X_{1}$ are employed. The positive output is routed to position 1 on the timing-rate divider switch; the negative output drives the first of the three binaries that make up the timing-rate divider. The positive output of $X_{12}$ is not used while the negative output drives the first of the three binaries that make up the counter.

Each of the three units in the timing-rate divider chain is a highspeed binary counter (Fig. 3). Input coupling is provided by a capacitor and two crystal diodes. In each of these binaries, the signal output to the timing-rate-divider switch is taken off the plate circuit not used to drive the next stage.
For aid in understanding the operation of the toggle switch, monitor and reset circuits concerned with each of the predetermined counter binaries, a functional diagram of $X_{5}$, the first of the chain, is given in Fig. 4. The left or right reset input is chosen for the reset function by the toggle switch.

The reset voltace pulse is passed through a small internal neon lamp before it is apl,ied to the toggle switch. The neon lamp acts as conductor for the high-voltage reset pulse. This lamp is a nonconductor at all times other than at reset.

The other side of the toggle switch connects with either the left or right-hand plate circuit for remote monitoring. The connection for local monitoring is made at the plate circuit not used to drive the succeeding binary stage.

A functional diagram of the gate and blocking oscillator is shown in Fig. 5. The square waves or pulses on the signal input line from the timing-rate-divider switch are differentiated before they are fed into the control grid of the 6AS6 gate tube. The plate of the gate tube is directly connected to the plates of the 6 J 6 blocking oscillator. The pulse output of the blocking oscillator is obtained by passing the plate current through $R_{\mathrm{r}}$.

## References

[^14]
# ELECTRONIC ORGAN Uses Shared Oscillators 

By THOMAS J. GEORGE<br>Organ Designer and Builde<br>North Hollywood, Calif.

and

STANLEY CUTLER<br>Director of Engineering<br>Pacific Mercury Television Corp.<br>Director of Engineerino<br>Sepulveda, Calif.


#### Abstract

CUMMARY - Low-cost organ design reduces number of tone oscillators required from 61 to 16 by sharing oscillator for three adjacent keys and by reducing keyboard range by one octave. Solo control provides attenuation to accentuate low or high end of keyboard


I- an electronic organ, accepted musical practice establishes the boundaries of design and performance and electronic techniques must provide the musical effects desired within these boundaries.

To lower the cost, there are a number of musical limitations which may be imposed. Among these are; provision for only one manual instead of two; use of a self-contained amplifier and speaker instead of a tone cabinet; use of a manual having four octaves of playing keys instead of the more usual five octaves and conservation of tone generator requirements by the use of shared oscillators.

Of these four limitations, only the last two noticeably affect the
musical facility of the instrument. One of the most expensive items in any electronic organ is the tone generator. This will include the oscillators and/or frequency dividers required to generate all the musical frequencies of the organ. In an instrument where an oscillator is provided for every playing key of the manuals and pedal board, the number of oscillators and their cost will be a major item.

## Shared Oscillators

One way of reducing the number of oscillators is to reduce the number of playing keys. The standard organ manual has five octaves of keys. In the organ described here the manual has been reduced to four octaves by omitting the high-
est seven keys from the top octave, and the lowest five keys from the lowest octave. This leaves four octaves of keys plus one key, in the most used range of the keyboard.

Another way of reducing the number of oscillators is by oscillator sharing, in a circuit which permits any one of three adjacent playing keys to selectively cause the shared oscillator to generate the frequency associated with that particular key. The three keys are connected in a sequence circuit, so that if any two of the keys are depressed at the same time, only the higher note will be heard. It is seldom musically necessary to play two adjacent notes separated by a whole tone or less, and it is upon this point that the economy of the
design is justified. This four octave organ requires 16 oscillators as compared to 61 for a conventional five octave organ.

The same sharing principle may be applied to the pedal keys by using a single oscillator arranged to generate selectively any one of thirteen consecutive notes, to provide one octave of pedal bass. Here the sharing is not a musical limitation because it is not customary to play more than one pedal note at a time. The keyboard system is shown in block form in Fig. 1.

## Tone Generator

The grid of the Hartley oscillator, shown in Fig. 2, connects to
the highest of a series of three switches forming a sequence circuit. Cathode bias normally holds the grid cutoff through $R_{1}$ and the coil, to ground. When the switch for note $C$ is closed a high positive potential is applied through variable resistor $R_{5}$ to the grid initiating oscillation. Simultaneously capacitor $C_{3}$ is connected across $C_{1}$ and the oscillator inductor to lower the oscillator frequency by a selected amount, in this case two semitones. Capacitor $C_{4}$ is a blocking capacitor. Potentiometer $R_{5}$ serves as a fine-frequency adjustment by operating as a voltage divider in conjunction with $R_{1}$ and the input conductance of the tube,
to vary the positive voltage applied to the grid. Oscillator constants are chosen to provide a suitable frequency with respect to grid-bias sensitivity. If the C-sharp switch is simultaneously operated, the sequence is interrupted and $C_{2}$ is connected across the coil in place of $C_{3}$ to increase the frequency approximately one semitone, while $R_{4}$ becomes the fine-tuning adjustment. When the $D$ switch is operated, breaking the sequence to the two lower keys, no additional capacitor is connected across the tuned circuit, and $C_{1}$ determines the frequency of oscillation, with $R_{3}$ now acting as the tuning control.

A six-cps vibrato signal is superimposed upon the d-c keying potential. This causes the voltage at the grid to fluctuate periodically to produce a small change in the oscillator frequency for a musical vibrato. The amplitude of this sixcps signal controls the degree of vibrato.

Two output circuits are taken from each oscillator. The flute signal is derived from the tuned circuit and is relatively free of harmonics. Additional filtering of this signal is provided by low-pass networks at the output of each oscillator and in the voice control panel. The complex signal from which all other voice qualities are derived is taken from the plate circuit of the oscillator and is rich in harmonic content. Isolation is provided by resistors $R_{6}$ and $R_{7}$ so that the respective output circuits of all oscillators may be connected together to provide common flute and complex output busses.

## Voicing and Expression

The voicing control potentiometers which vary the output of each voice network, are continuously adjustable and are located on the control panel of the instrument. These permit the player to mix together a great variety of the five available voices while playing. The diapason voice is obtained from a low-pass circuit following the complex signal while the reed uses the complex signal without modification. The string filter emphasizes the higher harmonics, and the horn uses a peaked-response circuit, with the
maximum output at about 1,000 cycles. The outputs of all voicing circuits are combined in a passive mixer circuit together with the signal from the bass-pedal oscillator and fed to the input of the amplifier.

The expression control varies loudness with capacitor $C_{5}$ providing bass compensation to complement the loudness characteristic of the human ear.

## Bass Pedal

The single pedal-oscillator of the organ is tuned by a cathode-follower reactance control tube. The thirteen pedal key switches are each a pair of single-make switches, the upper contacts controlling the tuning, and the lower contacts connecting the oscillator output signal to the amplifier. The tuning contacts are arranged to connect the signal from the oscillator inductor to the grid of the control tube through a resistance of selected value. This resistance may include one or more of the thirteen tuning controls which are connected in series. The amount of resistance controls the amplitude of signal voltage reaching the grid of the control tube. This signal has the same phase as the tuned circuit voltage at $C_{8}$, and consequently appears again in the same phase at the cathode of the tuning tube. Since the cathode voltage is in series opposition with the inductor voltage, the voltage across the capacitor is reduced. This reduces the current in the capacitive arm of the resonant circuit, thus making its apparent capacitance smaller, raising the resonant frequency of the oscillator. The amplitude of the voltage applied to the grid of the control tube through the tuning


FlG. 3-Attenuation characteristic for solo control in its three positions


Rear view of organ shows tone generator chassis at top for keyboard. Chassis at bottom supplies pedal notes using single oscillator for the 13 tones
potentiometers, therefore, determines the frequency of the oscillator.

## Power Supply and Regulators

Musical demands regarding organ tuning impose rigid requirements on the frequency stability of the oscillators, and voltage regulation is used for both the common cathode bias and the 70 -volt keying potential. Both regulators are cathode followers whose cathode voltages are held constant by applying fixed positive potentials from a gas reference tube to their grids. Resistor $R_{0}$ provides additional correction voltage signals to the grid of the cathode bias regulator as a function of increased oscillator plate current, when several notes are played simultaneously.

The vibrato oscillator, whose 6cycle output is fed to the grid of the keying regulator may be controlled by the organist by potentiometer $R_{10}$ located on the control panel of the organ.

A conventional power supply provides plate power to the power amplifier and gas regulated power to the oscillators. The plate current for the oscillators is small, each oscillator drawing approximately one milliampere when one of its
associated keys is operated. Therefore when a full eight-note chord is played, only 8 ma are needed.

The amplifier output stage uses a pair of 6 V 6 tubes, which deliver ten watts to a ten-inch permanent magnet speaker.

## Solo Control

The solo control provides a choice of three conditions of manual output level from the complex signal voices, as follows: left-hand end of keyboard accentuated, equal loudness from all keys (normal) and right-hand end of keyboard accentuated.

The left hand is attenuated approximately 9 db in the right-hand solo position, while the right hand is attenuated approximately 12 db in the left-hand solo position. The transition between the two levels is accomplished gradually in 3 equal steps of attenuation, over an intervening range of 8 notes by separating the outputs of 4 adjacent oscillators in the middle of the keyboard and attenuating each a different amount. Figure 3 shows the attenuation characteristics of the solo control.

The authors wish to acknowledge the contribution to the final product made by Mr. Donald Bonham.


FIG. l-Block diagram of transistorized chopper system utilizes synchronous modulation of d-c input and demodulation of output from a-c amplifier


FIG. 2-Basic full-chopper d-c amplifier was adapted to missile instrumentation

> CUMMARY - Chopper-type d-c amplifier uses available channels to indicate missile temperatures in an airborne telemetering system. Unit has voltage gain of 1,000 with 5 -volt d-c output and linearity within 2 percent over the full output range. Input impedance is 100 ohms and response is flat from zero to 10 cps . Stability is within 2 percent up to 10 g vibration at $1,000 \mathrm{cps}$ or over temperature range from -65 C to 85 C

## MISSILE TELEMETER

IN an airborne telemetering system, the thermocouple may be far physically separated from the telemeter and make the thermocouple appear as a generator of finite, but not necessarily constant, internal impedance. Typical impedances may be 10 to 50 ohms and may vary as much as 20 percent due to temperature changes.
Terminal emf of this generator may vary from 0.1 to 50 or more
millivolts, depending on the application. While response time of a thermocouple is generally considered rather low, the amplifier should pass faithfully a range from 0 to 10 cps . The reference junction can be considered as a source of bucking voltage in series with the couple.

Most telemetering systems operate from voltage actuated devices, with the possible exception
of transistorized subcarrier oscillators, or the ptm or pwm systems and a load of $250,000 \mathrm{ohms}$ is typical. An amplifier with a basic voltage gain of 1,000 is adequate to supply up to 5 volts d-c output. A simple attenuator in the amplifier input or output can be used to adjust the output level for less gain.

Power available in most instances is 115 v at 400 cps , with a


FIG. 3-Line frequency variation for 380 , 400 and 420 cps at 6.3 volts rms


FIG. 4-Chopper drive variation for 5, 6 and 7 volts rms at 400 cps


FIG. 5-Generator impedance variation at 3, 53 and 133 ohms


FIG. 6-Power supply voltage variation at 24 to 30 volts


FIG. 7-Typical d.c amplifier circuit. The system employs three iterated common. emitter stages

Compact amplifier unit weighs less than eight ounces. All connections are made to nine-pin connector shown at top left


# Uses Transistor Amplifier 

$\pm 5$ percent tolerance on both parameters and d-c between 24 and 30 from a generator or transformerrectifier combination.

Transistorized telemeters to generate enough r-f power for successful ground station operation still require vacuum tubes in the output stage. This implies a B+ voltage of 180 to 350 or more, as well as a low voltage filament supply, generally and nominally 6.3 at 400 cps .

Vibration surveys within the airframe necessitate a $B+$ voltage for associated a-c amplifiers. However rapidly advancing transistor development may soon produce a unit whose input impedance is high enough to be compatible with vibration pickups and obviate the need of a plate power supply.

Dissipation of heat is becoming more of a problem and highest possible efficiencies must be sought in the amplifier. Other major problems are space limitations and vibration isolation facilities.

All of these considerations, resulted in the development of a transistorized adaptation of a full-
chopper amplifier having a linearity of 2 percent or less over full output range and stability of less than 2 percent change in characteristics in an environment of up to 10 g vibration at $1,000 \mathrm{cps}$, or over the temperature range from -65 C . to +85 C .

## System Chosen

The block diagram in Fig. 1 shows the transistorized system adapted from the full-chopper d-c amplifier in Fig. 2. Typical performance of the system is shown in Figs. 3 through 6.

The chopper portion employs two surface barrier transistors in the grounded-collector configuration. Matching of chopper units was found necessary; however 20 pairs were obtained from a random lot of 50 transistors, by selecting a pair for equal emitter currents.

Chopper output is a particularly clean square wave with no switching transients, as it alternately connects the amplifier input to the signal source and to ground.

Input impedance appears to be a
minor function of generator impedance but for source impedances of up to several hundred ohms is in the vicinity of 2,000 ohms.

Overall open-loop gain of 100 db is realized by the amplifier, which consists of three iterated commonemitter stages.

A typical stage is shown in Fig. 7. Component values produce a stability factor $S=1.1$ and each stage is designed to operate with 10 volts at 1-ma collector current. To provide partial isolation against variations in power supply impedance, a decoupling filter is used in the supply to the first stage. Output of the third stage is capacitively coupled to a voltage doubling rectifier circuit, using miniature selenium diodes, permissible in this application due to the high load impedance and is smoothed by a capacitive filter. The output return is common to the negative of the $28-\mathrm{v}$ supply.

Efficiency of such a network is nearly as high as that of a synchronous demodulator and is considerably more economical of transistors and other components.

By JOHN G: SPRACKLEN, WALTER J, STROH and GEORGE G. WOOD- Zenith Radio Corp.<br>General Electric Co.

Owensboro, Kentucky


#### Abstract

CUMMARY - Single miniature tube performs entire functions of sync clipping, generating age voltage and giving high degree of noise immunity to both these sections of a television receiver. Type 6BU8 contains common cathode, grid and screen with separate plates and number three grids


NOISE GATING-discriminating against noise pulses on the basis of their amplitude-is combined in the system to be described with a good sync clipper and age circuit in simple form.

## Unprofected Circuit

The effect of impulse noise on automatic gain control and sync separating circuits can best be considered by first examining a simple unprotected circuit such as that of Fig. 1. One triode is employed as


FIG. 1-Simple unprotected circuit for agc and sync separation


FIG. 2-Impulse noise is time gated but vertical sync output suffers
a self-biased sync clipper. Another triode is used for automatic gain control of the r-f and i-f amplifiers of the receiver in response to the output of the video amplifier.

The video amplifier output has positive-going syncs and includes the d-c component of the composite video signal. A portion of this output is applied to the age tube grid, by a resistive divider. The grid is biased beyond cutoff by the positive potential of the cathode. The agc delay control setting determines


FIG. 3-Triode clipper replaced with pentagrid tube in amplitude gating


FIG. 4-Relationships at various tube electrodes for circuit of Fig. 3
the level at which the video amplifier output will stabilize.

A resistive divider between anode and a high negative supply of 75 volts provides zero or a slightly positive voltage at the agc output and establishes the no-signal anode potential. With signal the anode draws current, its d-c potential falls, causing the age control point to go negative and thus reduce the receiver gain. The positive-going sync pulses of a signal of moderate strength extend to about the center of the grid-control characteristic.

A portion of the video output is applied through a coupling capacitor to the grid of the sync clipper triode. The sync output amplitude is limited by the low plate voltage provided. The depth of clipping is determined by the grid leak resistance and by the amplitude of the applied signal. The clipped sync output goes through suitable networks to the vertical and horizontal synchronizing circuits.

Noise will cause havoc in such an unprotected circuit. Noise pulses are generally of greater amplitude than sync pulses and produce plate current pulses over twice as large as the sync pulses; they can bias the agc severely.

In the sync clipper output the noise pulses are as large as the sync pulses. With high noise levels the grid coupling capacitor may charge up and cause complete loss of sync for a period following a noise pulse until normal bias is restored.
One system that has been used with reasonable success to reduce the effect of impulse noise is the

# for AGC and SYNC 

New type 6BU8 tube (left) shows two separate anodes. Shield and third grid structure are visible in stripped-down version removed from envelope at right
time gated age shown in Fig. 2. Time gating means turning the agc tube on only during the brief interval when it is needed. Since the triode must conduct current only during the horizontal sync pulse, it is turned on a short period before the occurrence of the sync pulse and turned off soon afterwards.

This action prevents any anode current in response to noise for the periods between gating intervals. Since the gate pulse is taken from the horizontal sweep circuits, these circuits must be in synchronism before the agc can produce the proper receiver gain and contrast level. In the circuit shown in Fig. 2 the triode is operated as a gated diode, with the agc voltage produced by rectification of the gate pulse.

Such a circuit gains a certain degree of noise protection for the agc. But for the sync clipper, time gating proves impractical. Vertical sync output would suffer. Pullin of the horizontal sweep would be slow, since until synchronism is established there is no output.

If time gating is not suitable for a sync clipper circuit, amplitude gating can prove useful. Noise pulses, if they are large enough to impair reception, generally show a greater amplitude than the sync tips and a number of circuits have been devised to utilize this difference.

In Fig. 3 the triode clipper is replaced with a pentagrid tube such as the 6BE6. The sync clipper grid is grid 3. The anode is operated



FIG. 5-Second type 6BE6 pentagrid tube is added for agc amplifier

FIG. 6-Comparison of various gating systems in presence of noise
at a low voltage through a resistive divider to limit the sync output amplitude. The output of the second detector is applied through a 47,000 -ohm series resistor to grid 1.

This grid is made to operate near zero bias by connecting it through a high resistance to a positive potential. As a result, considerable grid current flows, reducing the resistance between grid and cathode to a few thousand ohms. Video and sync portions of the signal, applied through the 47,000 -ohm resistor, are nearly shorted out and have little effect on the anode current.


During negative noise pulses, however, the grid current is reduced to zero, the short-circuit is removed and a pulse of sufficient amplitude will easily cut the tube off as indicated in Fig. 4. A positive replica of a noise pulse appears simultareously at the clipper grid 3 but it is rendered harmless since there is no current available for the duration of the pulse.

Strictly speaking, a slight disturbance may come through, because noise pulses do not rise or fall with infinite speed and there is an intermediate region where grid 3 is


FIG. 7-New type 6BU8 tube simplifies circuit shown in Fig. 5


FIG. 8-Average plate characteristics for one section only
already turned on and grid 1 not yet cut off. For this reason a brief transient appears at the beginning and at the end of each noise pulse. In practice these transients are too short to cause significant harm.

## Fringe Signals

For maximum noise protection noise pulses should be gated out slightly beyond the sync tips. The gating level is made adjustable by the so-called fringe lock control, which varies the amount of grid current flowing into grid 1. For weak fringe-area signals maximum protection is desired; this corresponds to a maximum resistance position of the control.

However, for moderately strong signals, such a setting gives rise to an instability that has been dubbed split-phase hang-up. To avoid this, the noise gating level must be raised somewhat, corresponding to a lower resistance position of the fringe lock control.

Split-phase hang-up can be traced to the use of an amplitudegated sync clipper in combination with a time-gated automatic gain control. For example, if the channel selector is switched from a weak to a strong signal, the agc and clipper circuits will sometimes find a stable condition where the picture is
split; the horizontal syncs appear as a black stripe near the center of the picture and the contrast level is too high. This occurs when, at the instant of switching, the horizontal sweep is about 180 deg out of phase.

Since no agc bias level has been built up, the signal gain is quite high. This causes the sync clipper to treat the sync pulses like noise pulses and gate them out. Around the center of the horizontal period, some portion of the video may cause the clipper to conduct and produce output. The horizontal frequency control system accepts this output as sync pulses and becomes synchronized in an out-of-phase condition. This causes the time gate for the agc to continue in the wrong phase thus suppressing the real sync pulse.

## Hang-Up

The signal level then stabilizes at a point where the video portion previously mentioned is raised to the level where the sync tips should be. This finally perpetuates the condition that started it all-the gain is so high that the sync tips are treated like noise pulses.

This chain of errors cannot occur with weak signals, because even a slight age voltage tends to push the video level down low enough. In areas where all signals are weak the control may thus be set for maximum protection. But where stronger channels exist, it must be set to accommodate the strongest.

In Fig. 5 a second 6BE6 pentagrid tube is added for use as age amplifier. The time gating is removed and the anode is then connected, as in the original $d-c$ circuit, through a network to a high negative supply point, so the age take-off point is at zero or slightly positive potential for no signal. The first grid, screen and cathode are in parallel with the sync clipper tube. This provides the same noise gating for both circuits.

Since it is desirable to get high d-c gain for the agc, the cathode is grounded. This allows the anode to operate at a lower potential with less dividing-down in the output coupling network. The age control
grid is biased negatively with respect to ground to be beyond cutoff for the no-signal condition. It is accomplished by returning a high resistance divider network to a high negative supply point.

A variable portion of the divider resistance is used to set the bias level and becomes the age delay control. This is set for the desired contrast with a fairly strong signal. The divider resistance must be high to prevent excessive loading of the negative supply that in practice is derived from the bias developed across the discharge tube grid resistor.

To prevent the loss in high response caused by coupling the video anode to the grid through a high resistance, a small capacitance connects the grid to the junction between the minimum contrast resistor and the contrast control. For best operation the ratio of a-c and d-c components on the age grid should be about unity.

In the sync clipper circuit, the fringe-lock control has been eliminated. In the absence of time gating in the age the conditions for split-phase hang-up no longer exist. The grid resistor can therefore be chosen for best noise protection. Also, a coupling capacitor has been added between the second detector and grid 1. This is necessary to prevent the detector from ever biasing off the age circuit for any extended period.

## Advantages

With this new circuit, an improvement in age performance is noticed, particularly under heavy noise conditions. Strong interference does not back off the agc as much as it does when time gating is used; some types of noise actually deprive the agc anode of current. When this happens, the negative control voltage drops and the signal becomes stronger, an effect that is beneficial in maintaining synchronism and apparent contrast under adverse conditions. Moderate to weak noise pulses are gated out cleanly whereas with time gating the anode would receive extra current during the entire gate periods.

Figure 6 illustrates the difference
between the results of time and amplitude gating in the agc. Line (A) shows the original signal, clean on the left and with various levels of impulse noise on the right. Line (B) shows how in an unprotected agc large currents are produced by each noise pulse. In line (C) a large percentage of the noise current pulses has been eliminated. But the largest improvement appears in line (D) where mly a few transients reveal that there was any noise present in the input.

It was questionable whether pentagrid tubes were essential for this circuit. High plate impedance seemed unnecessary. Dual control tubes with only three grids such as the 6 AS 6 , or some experimental pentodes with lower current and


FIG. 9-Average plate characteristics (one section) with plate voltage plotted as abscissa


FIG. 10-Average transfer characteristics for one section of 6BU8 tube


FIG. 11-Plate current plotted against grid-1 voltage shows transfer characteristics of the new tube
suitable grid characteristics, built for the specific purpose, served just as well. These considerations led to the development of the 6 BU 8 , which combines in one structure the functions of these two dualcontrol pentodes.

Because of the common gating requirement for both circuits the cathode, grid and screen are made one structure in the 6BU8. The third grid and anode have been split and are positioned on each side of the screen. The two halves have identical characteristics. Grid 3 and anode on one side serve the agc and on the other side serve the sync clipper.

Alternatively, the second control grids might also be common. Both grids require a similar composite video signal. If conditions could be so arranged that, when the sync tips extended about to the center of the transfer characteristic of the age side, peak anode current flowed on the sync clipper side, then such a circuit would work.

It would require, however, that the bias on grid 3 be lowered under extremely weak signal conditions; otherwise the syncs would be lost completely. This would require some carefully designed automatic bias correction, which is not easily found. An expensive alternative would be to increase the i-f gain to a point where the peak video output could be maintained all the way down to the noise level.

A self-biased sync clipper, on the other hand, easily provides sync output down to the very weakest signal; thus there is considerable advantage in keeping it divorced from the agc.

The circuit shown in Fig. 7, using the new type 6 BU 8 , has been used successfully in production sets.

A time-gated age tends to obstruct horizontal pull-in if it responds too fast. This effect does not apply here and a time constant shorter than usual can be used, making the sets unusually resistant to rapid fading and airplane flutter.

## Tube Characteristics

In the new tube two separate electron streams leaving the cathode may pass through grids number 3 to each of the plates. As grid

3 of either section is made negative, the anode current of that section is reduced and the unaccepted current returned to the screen grid and the shield. The two halves operate independently of each other except for grid 1 and screen grid.

A shield being connected to the screen grid has a threefold purpose. It prevents electrons from flowing around grids 3 to the anodes, it catches the electrons that might otherwise bombard the bulb and it prevents occurrence of Barkhausen oscillations.

Figure 8 represents the plate characteristics for either section plotted against grid 3 voltage. The age section of the tube normally operates with low plate voltage, not far from 20 volts; however, the sync clipper section may work with higher voltages on the plate. Curves are shown for 20,40 and 80 volts.

A video signal with sync pulses going toward the right, increases the plate current to the maximum level, producing only the sync pulse in the output. In the agc section the sync pulses extend to about the center of grid 3 control characteristic.

Essentially the same information is shown in Fig 9 except plate voltage has been replotted on the abscissa.

## Negative Grid

What happens to the electron streams when grid 3 is made negative to block the flow of plate current is shown in Fig. 10. Most, if not all, of this current appears on the screen and shield so that a negative transconductance exists from grid 3 to these electrodas. Since the screen is common to both sections, the effect of both grids 3 shows up simultaneously in the screen current.

Figure 11 shows how the plate current in either section is controlled by the voltage on the first grid. In normal operation the screen is at about 70 volts and grid 1 is at about zero volts. A noise pulse of about -2.4 volts will cut off the tube entirely.

The writers acknowledge the help of W. T. Millis and Claude Hopper, Jr. of the Tube Division, General Electric Co., and of Robert Adler of Zenith Radio Corp.



Chassis of 90 -watt power amplifier indicates the simplicity and economy of construction, made possible because of the limited frequency applications

Laboratory oscillator connected to the 90 watt power amplifier provides drive signal for testing transformer on the right

By JOSEPH M. DIAMOND<br>Development Engineer<br>United Transformer Co.<br>New York, N. Y.


#### Abstract

CUMMARY - Economical design of efficient oscillator-driven power amplifier uses pentode cathode follower to supply 90 watts at 400 to 2,600 cycles for testing aircraft and shipboard servo systems. Regulated bias and screen voltages permit stable output independent of line fluctuation


WIDESPREAD use of 400 to 2,600 cycle power in electronic equipment has raised a problem of supplying this power for testing transformers, magnetic amplifiers, servo devices, circuits and complete pieces of equipment. Since rotating machines have a number of disadvantages, a power amplifier was designed to produce 90 watts in the frequency range of interest, driven by a laboratory oscillator.

The specific requirements of this application have led to a specialized and unusual design. Since a substantial power output is required, efficiency is a prime consideration. Therefore, a true pentode output connection is desirable, rather than a triode or intermediate, screentap, connection.

The pentode connection of most beam power tubes is also preferable, in that higher plate voltages
are permitted. Other requirements are good waveform and good regulation, which means that a substantial amount of feedback is involved.

## Cathode Follower

These considerations suggest a cathode-follower output stage. Figure 1 shows how an output transformer with two identical, interleaved $500-\mathrm{ohm}$ windings permit true pentode cathode-follower operation, since the screens are exactly in phase with the cathodes. The screen-cathode bypass capacitors maintain this condition at high frequencies, and equally important, they effectively parallel the windings over the whole frequency range, thus reducing both copper loss and leakage reactance. The commercially available transformer used is intended for line-to-line-to-
voice coil use and is rated only 20 watts for the full audio band. Since the present application does not require frequencies much below 400 cps , it is permissible to raise the voltage applied to the 500 -ohm windings from the normal rating of 100 v rms to the $650 \mathrm{v} \mathrm{rms} \mathrm{re-}$ quired by this output stage, without core saturation.

The distortion curves, Fig. 2, show that full power is available down to 150 cps . The nominal 20 ohm output tap is then convenient for 117-v output, though other taps may be used, depending upon the voltage and power required.

Aside from the screen problem, the usual difficulty of the cathodefollower power stage is the driving voltage required. In this case, the restricted frequency range permits a small output transformer to supply the necessary 350 -volts rms to


FIG. 1-Output transformer with two identical, interleaved 500 ohm windings permit true pentode cathode-follower operation, since the screens follow in exact phase with the cathodes. Bypass capacitors maintain this condition at high frequencies


FIG. 2-Distortion curves were taken at 117 -v output, using the 20 -ohm output tap. Performance shows frequency response

# FOR SERVO TESTING 

each output grid. A pair of 6W6GT's, triode connected, drive the usual $500-\mathrm{ohm}$ winding of the transformer, while the 5,000 -ohm plate winding is used for the output, achieving a 3.2 -to- 1 step-up. The $30-\mathrm{ohm}$ winding provides local feedback to the 6W6 cathodes to reduce distortion and extend the frequency response.

Thus the limited frequency range
of the application permits a simple, economical design which is adequate for the given requirements, but which would be much less practical for the full audio band. Performance is indicated by the distortion curves shown in Fig. 2, which were taken at 117-v output, using the 20 -ohm tap.

Power level was varied by changing loading. Under these condi-


FIG. 3 - Power supply for the 90 -watt power source. Supply used for the final screens maintains constant screen voltage with a highly variable screen current
tions, hum is 70 db down, frequency response is flat and regulation is 4 percent from no load to 70 watts.

## Power Supply

The regulated power supply, shown in Fig. 3, used for the final stage screens, maintains constant voltage and also supplies the lower level stages without the necessity of decoupling.

The regulator circuit is controlled by the regulated bias source, so that both bias and screen voltage are proportional to $\mathrm{v}-\mathrm{r}$ tube voltage. This permits fixed resistors to be used in the regulator circuit, while allowing for a reasonable variation of $v$-r tube voltage.

Since the pentode cathode-follower output stage is highly immune to variations in plate supply voltage, the result of regulating the bias and screen voltages is to make the amplifier output independent of moderate line fluctuations.

An overload relay in the final plate supply protects the output stage from excessive loading and dissipation. The reset circuit is arranged to prevent chattering.


Smiling face produced on screen of standard oscilloscope


Cutouts added in advertising display based on face generator

## TRISTABLE GATE MOVES

ELECTRONIC circuits are used to generate waveforms such that when applied to the vertical and horizontal deflection amplifiers of any conventional oscilloscope, the resulting trace has the appearance of a comic face. Potentiometers control the features of the generated face to make the lips smile, frown or move, assimilating an


FIG. 1-Diode gating circuit


FIG. 2-Generation of face contour signals

## By PAUL A. RYAN

Ryan Electronios Columbus, Ohio
actual conversation. The relative position of each component of the face can also be adjusted.

## Circuit Description

Two generators form the elements of the face; one generator forming the outer ellipse or contour of the face and the other generator forming the mouth. The eyes and nose are created by properly locating the electron spot on the oscilloscope screen. Diode gating circuits operating in conjunction with electronic switching circuits alternately display each element of the face.

Initially the face contour gate is opened and the electron spot on the oscilloscope follows an elliptical path. It requires $1 / 60$ second for the spot to traverse the elliptical path once. The face contour gate is therefore held open by the electronic switch for $1 / 60$ second. During one-fourth of this time interval ( $1 / 240$ second) the electron spot is positioned to form the eye on the
right of the screen and during the next $1 / 240$ second the spot is rapidly moved to a position to form the other eye. The remaining time ( $1 / 120$ second) of this gating period is required for the spot to form the nose.

The face contour gate is closed and the eyes-nose gate is opened for a period of $1 / 60$ second.

The eyes-nose gate now close and the mouth gate instantly opens. The mouth generator has a period of $1 / 60$ second; that is, it

## Table I-Initial Adjustment

[^15]

Fig. 3-Mouth generator waveforms, smiling $(A)$ and frowning ( $B$ )


FFIG. 4-Circuits for generating mouth contour


FIG. 5-Method of generating eyes and nose

# CUMMARY - Wave forms applied to deflection circuits of a conventional oscilloscope produce visual patterns, such as alphabets and textile designs. UUseful in entertainment and advertising fields is device generating curved contours and appropriate gates to form a mobile face 

# CRO LINE DRAWINGS 

requires $1 / 60$ of a second for the electron spot to trace the mouth contour a single time. By successive repetition of the above process, the face is formed on the oscilloscope screen.

Figure 1 illustrates the operation of the diode gating circuits. If the electronic switch increases the anode potential of one of the diodes to a value greater than the anode potentials of either of the two remaining diodes, then only the diode having the highest anode potential will conduct. As a result, the output signal will vary in accordance with the signal voltage associated with the conducting diode. In this manner the desired signal voltage is selected.

## Contour Generators

The elliptical face contour can be formed by applying two sine waves, displaced by 90 deg , to the vertical and horizontal amplifiers of the oscilloscope. These signals are derived directly from the $60-$ cycle power line source as shown by Fig. 2.

If a rectified sine wave is applied to the vertical amplifier and a sine wave shifted by 90 deg is applied
to the horizontal amplifier of the oscilloscope, the resulting pattern will have the appearance of a mouth. Such waveforms together with the resulting patterns are illustrated in Fig. 3.

The alternate cycles of the rectified waveform have different peak amplitudes that result in two traces representing the upper and lower lips of the mouth. The polarity of the rectified waveform determines whether the mouth is smiling or frowning.

The circuits for generating the mouth waveforms are shown in Fig. 4. Each waveform is again derived from the $60-\mathrm{cps}$ power-line source. The status of unequal alternate amplitudes of the rectified waveform is accomplished by the


FIG. 6 - Connection of tristable switching circuit
asymmetrical voltage dividers supplying signals to the diode rectifiers. The 1,000 -ohm control in the circuit varies the symmetry of the voltage dividers and thereby varies the distance between the upper and lower lips.

By varying this control, the face can give the appearance of talking. The 25,000 -ohm control is bridged between the two rectified waveforms having opposed polarity. Adjustment of this control determines the degree of which the lips are smiling or frowning.

The $90-\mathrm{deg}$ signal required for the horizontal amplifiers is derived from the same phase-lag network used in forming the face contour. A voltage divider is used between the face contour and mouth circuits following the $90-\mathrm{deg}$ phaseshift network that fixes the width of the mouth at one-half the width of the face.

The waveforms used to trace the eyes and nose are shown in Fig. 5. The generation of these waveforms will be explained later since they are closely associated with the operation of other circuits.

Tubes $V_{1}, V_{2}$ and $V_{s}$ shown on the block diagram (Fig. 6) form the
electronic switching circuit that is used alternately to open and close the three gates. This circuit consists of three bistable flip-flop circuits that are coupled into a closed ring. The three flip-flops are interconnected in such manner that only one (B) section (the right-hand section) of the three tubes can be nonconducting at any time.

## Gate Operation

The plate potential of the nonconducting right-hand section will exceed the plate potentials of the other two right-hand sections by approximately 75 volts. Since the three right-hand sections of the flip-flops are connected directly to the three gates, increased anode potential of the nonconducting righthand section will operate the gate to which it is connected. Since only one right-hand section can be nonconducting at any time, only one gate can be open at any given time.

These flip-flops are triggered at a $60-\mathrm{cps}$ rate by the negative pulses
from a trigger circuit. The flipflops are coupled in such manner that the trigger pulses successively transfer the nonconducting righthand state around the ring.

## Schmitt Trigger

Driven by a 60 -cycle sinusoidal signal, the Schmitt circuit produces trigger pulses for the operation of the electronic switch. This circuit also controls waveforms needed for the generation of the eyes and nose. The top waveform shown in Fig. 5 appears at the first anode (left-hand section) of the Schmitt trigger and the second waveform appears at the second anode.

The delay multivibrator is used to produce a positive pulse approximately $1 / 240$ second in duration. This pulse has the appearance of the bottom waveform in Fig. 5 and is used to generate the eye on the right-hand side of the screen. The delay multivibrator is triggered by a signal taken from the cathode of the Schmitt trigger.

The vertical and horizontal output terminals connect respectively to the vertical and horizontal deflection amplifiers of any conventional oscilloscope. After sufficient warm-up of the instruments the pattern on the oscilloscope screen is adjusted for proper centering. Oscilloscope gain is set so no portion of the pattern exceeds the limits of the screen.

The Schmitt trigger sensitivity control $R_{20}$ is adjusted until all the elements of the face are visible on the screen. This control will only have a limited range where all the face elements will appear. With the control set at the middle of this range no further adjustment should be necessary.
A list of the functions of the remaining controls is shown in Table I in the sequence that should be followed for initial adjustment of the electronic face.

The distance between the upper and lower lips give the appearance of talking.


FIG. 7-Schematic diagram of the face generator used with standard oscilloscope


FIG. 1-Crystal response (A) shows effect of capacitive shunt that creates capacitive voltage divider


FIG. 2-Network formed when crystal is terminaied with resistance and response for constant input voltage (A); equivalent generator circuit of crystal with terminating resistance and response (B)

# FLATTENING RESPONSE of CRYSTAL PICKUPS 

By A. L. CLELAND*

Radio Corporation of America
Semiconductor Division
Somerville, N.J.

## CUMMARY —— Knowing equivalent capacitance and low-frequency limit

 of crystal phonograph pickup, terminating network can be designed to produce flat frequency response at output. Typical design problem is worked out and application of crystal pickups to transistor amplifiers is discussedFLAT FREQUENCY RESPONSE can be obtained from a crystal pickup by using a matching network between the pickup and the following amplifier stage. This article analyzes the characteristics of crystal pickups in terms of their equivalent circuits and describes a simple method for designing the required matching network.

## General Considerations

The open-circuit response of a typical medium-output crystal pick-up, obtained from a frequencytest record, is shown as the solid curve in Fig. 1A. The dashed curve shows the response obtained when the same crystal is shunted by a $510-\mu \mu \mathrm{f}$ capacitance.

The resemblance of the two curves indicates that addition of the shunt capacitor creates a capacitive voltage divider (Fig. 1B). The crystal, therefore, is equivalent to a generator of zero internal resistance in series with a capacitance (Fig. 1C). The $3-\mathrm{db}$ difference between the open-circuit output and the output with $510 \mu \mu \mathrm{f}$ of shunt capacitance indicates that the equivalent capacitance of the crystal, including associated stray capacitance, is about $1,000 \mu \mu \mathrm{f}$.

## Terminating Resistance

The effect of various values of terminating resistance on the response of the crystal is shown in Fig. 2. Figure 2A shows the re-
sulting R-C network and its response for constant input voltage and different values of $R$. Figure 2B shows the response when the constant-voltage source is replaced by the equivalent circuit of a crystal having an ideal open-circuit response.

The overall response to the RIAA recording characteristic is not flat and depends upon the value of $R$. For $R=5$ megohms, the $3-\mathrm{db}$ bandwidth is approximately 250 to 1,000 cps; for $R=100,000$ ohms, the response with respect to $1,000 \mathrm{cps}$ is down 3 db at 500 cps , but extends through $10,000 \mathrm{cps}$ at the high end; for $R=10,000 \mathrm{ohms}$, the response

[^16]

FIG. 3-Networks providing required frequency correction in low, crossover and highfrequency regions (A). Composite network (B) provides all-over correction shown in $A$
with respect to $1,000 \mathrm{cps}$ is down 13 db at 100 cps and up 13 db at $10,000 \mathrm{cps}$. For $R=10,000 \mathrm{ohms}$, the output at $1,000 \mathrm{cps}$ is also 20 db less than that for $R=100,000$ ohms.

## Network Design

Flat system response is achieved if the crystal is terminated by a network having a response which is the inverse of that of the opencircuited crystal. A response which approximates this inverse characteristic is shown by the solid curve of Fig. 3A. The equivalent network circuits for the low-frequency, crossover and high-frequency regions are shown in the inserts.

In the low-frequency region, the termination must appear to be a resistive divider such that the output voltage is 13 db below the generator voltage. In the crossover region the termination must appear to be an R-C combination such that the output has a positive slope of 6 db per octave. In the high-frequency region the termination must appear to be a resistance such that the output voltage is equal to the generator voltage.

Figure 3B shows a circuit which, with the proper parameters, will provide the type of response described to a good approximation. The crystal is terminated in capacitance $C_{1}$ so that the source seen by terminating network $C_{2} R_{1} R_{2}$ is 'a generator delivering a voltage directly proportional to that of the equivalent crystal generator throughout the frequency range.

The reactance of $C_{2}$ in the low-
frequency region should be large in comparison to $R_{2}$. The equivalent circuit for this region is then a generator delivering an output voltage $e_{0}$, terminated by $R_{1}+R_{2}$, which should be chosen so voltage $e_{0}$ across $R_{z}$ is 13 db below $e_{q}$.

In the crossover region, the reactance of $C_{2}$ is no longer large in comparison to $R_{1}$ and generator $e_{p}$ is terminated by the series combination $R C R_{2}$. The resulting $e_{0}$ has a positive slope of 6 db per octave. In the high-frequency region, the reactance of $C_{2}$ is small in comparison to both $R_{1}$ and $R_{2}$ and the generator appears to be terminated only by $R_{2} ; e_{o}$ is essentially equal to $e_{9}$.
The requirements of such a network are met if: (1) the reactance of $C_{1}$ at the lowest frequency desired is small in comparison to the sum of $R_{1}$ and $R_{2}$, and $C_{1}$ is large in comparison to $C_{c}$ so normal variations of $C_{c}$ among individual pickups can be neglected in calculations; (2) the values of $R_{1}$ and $R_{2}$ are such that at low frequencies $e_{0}$ is 12 db below generator output $e_{g}$; (3) the reactance of $C_{2}$ at the $3-\mathrm{db}$ down point of the crossover region is equal to $R_{2}$.

## Design Procedure

Crystal - terminating networks having the desired characteristics can be designed by the following procedure, if equivalent crystal capacitance $C_{0}$ and the low-frequency limit $f_{1}$ are known
(1) Assume a value $K$ for $R_{1}+$ $R_{2}$. Because $X_{c 1} \leqq K$ at $f_{1}, C_{1} \geqq$ $1 /\left(2 \pi f_{1} K\right)$.
(2) From the measured opencircuit response of the crystal, determine attenuation $n$ in db required at $f_{i}$. Then $e_{0} / e_{0}=\log ^{-1}$ $(n / 20)$. Because $e_{0} / e_{g}=R_{2} / K, R_{2}$ $=K\left[\log ^{-1}(n / 20)\right]$ and $R_{1}=$ $K-R_{2}$.
(3) $C_{2}=R_{1}$ at the $3-\mathrm{db}$ down point in the crossover region ( $\approx 700 \mathrm{cps}$ ).
Therefore $C_{2}=1 /[(2 \pi)(700)$ $\left.\left(R_{1}\right)\right]$.

## Design Example

As an example, design a network for a crystal having an equivalent capacitance ( $C_{c}$ ) of approximately $1,000 \mu \mu \mathrm{f}$ and the open-circuit response shown by the dashed curve in Fig. 2B. The low-frequency limit $f_{1}$ is to be 50 cps and the value of $R_{1}+R_{2}$ is to be 100,000 ohms.
(1) $K=R_{1}+R_{2}=100,000$ ohms.
(2) $C_{1} \approx 1 /\left[\begin{array}{lll}2 \pi & (50) & 10^{5}\end{array}\right]=$ $0.0319 \mu \mathrm{f}$.
(3) Fig. 3A indicates that an average attenuation of approximately 12 db is desired in the low-


FIG. 4-Calculated parameters of terminating network for RCA 75476 pickup and resulting overall response


FIG. 5-Derivation of equivalent circuit for crossover region in Fig. 3A
frequency region. This $12-\mathrm{db}$ figure will aid in compensating for crystal and/or stylus resonances. Therefore $e_{0} / e_{\rho}=\log ^{-1}(12 / 20) ; e_{g} / e_{0}=$ $\operatorname{og}^{-1}(20 / 12)=4 ; R_{2}=K / 4=$ $\mathbf{0 0}, 000 / 4=\mathbf{2 5 , 0 0 0}$ ohms and $R_{7}=$ $100,000-25,000=75,000$ ohms.
(4) $C_{2} \approx 1 /[2 \pi(700) \quad(75 \mathrm{x}$ $\left.\left.10^{3}\right)\right]=0.00304 \mu \mathrm{f}$.

This network and the resulting response characteristics are shown in Fig. 4.

Volume peaks on RCA 45 -rpm and long-playing records are recorded at 8 db above average level Since the average-level $1,000-\mathrm{cps}$ output of the pickup to be used here is 0.7 v rms , the corresponding signal across the 25,000 -ohm terminating resistor, $R_{2}$, has an average value of 6 mv and reaches approximately 42 mv on volume peaks.

## Equivalent Circuit

Figure 5 shows how the terminating network and crystal may be converted by Thevenin's theorem so the equivalent circuit shown above the crossover region in Fig. 3 A .

In this equivalent circuit the generator output is attenuated by the amount $\dot{C}_{c} /\left(C_{c}+C_{1}\right)$ and is applied to frequency dependent series network $R C$ and $R_{2}$, the load resistance of the terminating network. Resistance $R_{2}$ may consist only of the input resistance of the first amplifier stage or include additional resistance elements in series or parallel with the amplifier input resistance. In any case, the effective value of $R_{2}$ must be that calculated from the design considerations.

If the network is coupled directly to the input of the first amplifier stage, an additional blocking capacitor should be used in the output lead so that no d-c is applied to the crystal. The reactance of this capacitor at the lowest desired frequency should be not more than one-tenth the value of $R_{2}$.

## Overall Response

Figure 6 shows the over-all response of a system employing a RCA Stock No. 75476 medium-output pickup, a network of the type


FIS. 6-Crystal pickup is matched through network to transistor preamplifier. Over all response is shown for various amounts of treble cut


FIG. 7-Degenerative transistor preamp(ifier has higher input impedance and signal-to-noise ratio, with less distortion, than circuit shown in Fig. 6. Gain, however, is less
described above and a transistor amplifier. The curves include the effects of the RIAA recording characteristic, the crystal, the terminating network and the complete amplifier. They show the response for various amounts of treble cut.

At low frequencies, the effective load seen by the collector of the preamplifier is approximately 3,900 ohms because of the large reactance of the $0.01-\mu \mathrm{f}$ capacitor, $C_{5}$. At high frequencies, however, the collector effectively sees $R$ in parallel with the 3,900 -ohm load resistor and the high-frequency response falls off as the value of $R$ is reduced.

The resistance and capacitance values used in the terminating network of Fig. 6 were chosen to compensate for the crystal and/or stylus resonances of a particular pickup and may be quite different when another type of crystal pickup is used.

Thus far system response has been treated in a general manner
and no attempt has been made to emphasize the advantages of transistors over tubes as preamplifiers. Transistors, however, have no hum problems, are nonmicrophonic and can provide higher signal-to-noise ratios than tubes.

## Transistor Preamplifier

The common-emitter preamplifier stage shown in Fig. 6 has an input impedance of approximately 8,000 ohms and a voltage gain of 60 . The crystal-terminating network used for this amplifier has an output of approximately 1.7 mv , so that approximately 102 mv of signal are delivered to the following amplifier stage.

A common-collector preamplifier stage, on the other hand, may have substantially higher input impedance (approximately 100,000 ohms), but a maximum voltage gain of only about 0.9 . The voltage output of a crystal-terminating network for such a stage would be about 6 mv and the voltage at the base of the following stage $=(0.9)$ (6) $=5.4 \mathrm{mv}$, or 96.6 mv less than that for the common-emitter circuit.

## Low-Impedance Loads

Another factor requiring consideration is that crystal-terminating networks designed to work into low-impedance load circuits require relatively large capacitance values, adding to their size and cost. Consequently, choice of the best tran-sistor-circuit configuration for a particular application must be determined by the design engineer.

In many cases, a good compromise may be obtained by the use of a degenerative common-emitter circuit such as that shown in Fig. 7. In this circuit the load resistor for the crystal-terminating network is the input resistance of the transistor and is approximately equal to current gain, $a_{a b}$, of the transistor times resistance $R$ 。 in the emitter lead.

Although this circuit has less gain than the nondegenerative com-mon-emitter circuit shown in Fig. 6, it has higher input resistance, a better signal-to-noise ratio and produces less distortion.

## VLF OSCILLATOR KEYS

# CUMMARY - Two transistor multivibrators control relay system to key signal generator at either 4 or 6 pps . Either modulation or carrier can be controlled with accuracy of $\pm 5$ percent by simple system requiring only minor modification of signal generator 

DEVELOPED to replace an electromechanical keying arrangement, the transistor multivibrator described here drives a groundedemitter direct-coupled relay amplifier to pulse either the modulation or carrier of a vhf signal generator at very low frequencies. Figure 1 shows pulse widths and repetition rates required in this application.

A transistor multivibrator was chosen for long trouble-free equipment life and the other attendant advantages of transistors, small size, low power needs and low heat dissipation. Type 2N104 junction units were chosen. These are smallsignal $p n p$ audio-frequency types. The basic circuit developed is shown in Fig. 2.

## Operation

Considering $Q_{1}$ conducting and $Q_{2}$ cut off, $C_{2}$ is charged to the supply voltage while $C_{1}$ is discharging through $R_{1}$. When the charge on $C_{1}$ is low enough to allow $Q_{2}$ to conduct, the decrease in voltage at the collector will be coupled by $C_{2}$ to $Q_{1}$.

This will cause $Q_{1}$ to conduct less heavily bringing its collector to a more negative value. The action is cumulative and results in $Q_{1}$ cut off and $Q_{2}$ conducting. At this point the charge begins to leak off $C_{2}$ and at the proper point the action repeats itself providing a series of pulses.
The time of discharge of either capacitor, and the resultant off time
of the transistor it affects is equal to

$$
T_{1}=R_{1} C_{1} \log \epsilon \frac{E_{u}+E_{i}}{E_{u}+E_{c o}}
$$

Where $E_{u}=$ voltage base resistor $R_{1}$ is returned to, $E_{\iota}=$ voltage


FIG. l-Pulse times for four $(A)$ and six pps repetition rates (B)


FIG. 2-Basic transistor multivibrator circuit for generator keyer
base must recover from (equal to battery $E$ minus collector $E$ ) and $E_{\text {oo }}=$ voltage level of base when transition occurs. This may be taken as zero.

Twice this time is the total period of a symmetrical multivibrator where $R_{1}=R_{2}$ and $C_{1}=C_{2}$.

For the asymmetrical case, each off time is calculated separately. Emitter resistors were added to provide convenient output points for direct coupling the relay amplifier. If resistors of small value are chosen they raise the natural frequency only slightly and can be neglected in the equation. To achieve the required results and still maintain temperature stability large values of capacitance and small collector and base resistors are required. A compromise was sought that would allow one circuit to produce both of the required outputs with simple resistance adjustments. The arrangement developed is shown in Fig. 3.

## Stability Control

Maximum stability is retained by restricting the range of adjustment of the collector load when using it for frequency adjustment. While a ganged potentiometer can be used, fine balance of the transistors is obtained through single unit setting. Symmetry of waveform is controlled by the 100,000 ohm potentiometer in the base return.

These controls allow a minimum of a 2-to-1 frequency range, with

# VHF GENERATOR 

## By LEON H. DULBERGER

Test Equipment Engineer
Electronic Division Electronic Division
Div. of General Dynamics Corp. Rochester, N. Y.
a four-to-one asymmetrical setting, without changing coupling capacitors. Drift of frequency with temperature is $\pm 5$ percent. Shortterm stability can be improved through the use of temperature controls.

Direct coupling of the output transistor amplifier saves components, and provides sufficient amplification to operate an ordinary 5,000 -ohm plate relay. While a


Compact keying unit contains all components except relays, which are mounted in signal generator cabinet
small residual current flows at all times through the relay coil, it is below the level that will provide pull-in. A negative voltage applied to the amplifier base initiates a current gain in the output stage clos-


FIG. 3-Transistor multivibrators pulse r-f or a-f modulation at either 4 or 6 pps rate through relays installed in signal generator
ing the relay. The relay contacts pulse the carrier or modulation. All transistors are operated well within their dissipation ratings. Total current drain for each multi-vibrator-amplifier circuit is about 5.6 ma .

## Adjustment

Adjustment to either repetition rate is accomplished on a calibrated oscilloscope. The symmetry potentiometer is set midway and the required frequency is obtained by adjusting first one collector resistor and then the other. Symmetry is obtained by balancing the base return.

There is slight interaction between the symmetry control and the frequency potentiometers, but setting is achieved with little effort.

Final adjustment is made on a time-interval meter. The multivibrator not in use is allowed to continue operation to maintain junction temperatures as maximum frequency drift was noted when the circuit was switched on.

The final circuit was adjusted to the relay contact on-off time shown in Fig. 1. This allows relay operate time to be compensated. Packaging was planned to allow the full advantage of the transistor's small size.

# Electronic SHUTTER for 

By DAVID C. CROCKER

Instrumentation Laboratory
Massachusetts Institute of 'Iechnology
Cambridge, Mass


#### Abstract

CUMMARY - Multivibrators and gates in simple control circuit blank video-recording kinescope during pulldown of film, then allow exactly 525 scanning lines to appear on tube screen for exposure of next frame. Switch on movie camera delivers starting pulse for electronic shutter after each film advance, or 24 times per second. Technique gives one complete tv frame on each film frame despite frame-rate difference




FIG. 1-Pulse from film camera initiates action by unblanking kinescope; multivibrator chain blanks screen after next 525 lines of television picture. Here $H$ represents time of one horizontal line of picture


FIG. 2-Experimental version of control shutter. Most studio kinescopes will require additional triode input and output stages

Commercially available video recorders with electronic shutters generally use binary counting circuits ${ }^{1}$, with a correspondingly large number of stages. Where extreme precision of timing is not a dominant consideration, a simpler arrangement using oneshot multivibrators will often prove equally satisfactory. In breadboard tests, the simpler circuit arrangement to be described fully came up to expectations.

An electronic shutter is desirale for blanking the picture from the face of a kinescope during recorded film pulldown, because it allows an exposure of exactly one complete television frame for each film frame regardless of slight timing differences between the film camera and the television system.

## Theory of Operation

The main sections of the electronic shutter are shown in Fig. 1. With no camera exposure pulses coming from the film camera, the input gate is closed, the steering gate directs pulses to the open side of the flip-flop, the four one-shot multivibrators are in their stable positions and the output flip-flop is in the shutter-closed position.

The first film exposure pulse (derived from contacts in the film camera) triggers mvbr 4 to its unstable state. This multivibrator then opens the input gate, allowing the next following horizontal drive or $H$ line pulse to trigger

## TV Kinescope Recorder



Breadboard version of electronic shutter under test. Author adjusts audio oscillator to deliver $24 \cdot \mathrm{cps}$ signal to squaring amplifier at rear on bench whose 24 -cps squarewave output simulates film exposure pulse. Another square-wave generator, on shelt thight, delivers $\mathbf{1 5 . 7 5 0} \mathrm{pps}$ to simulate tv $H$ pulses


FIG. 3-Waveforms covering time of one horizontal line, one horizontal blanking period and start of next line. Circuit test points are shown in Fig. 2
mvbr 1 to its unstable state. Now mvbr 1 triggers mvbr 2, which in turn triggers mvbr 3, both to their unstable state. The 0th pulse from mvbr 3 is routed through the steering gate to the open side of the shutter flip-flop. This pulse triggers the flip-flop to the shutteropen position and thus unblanks the kinescope.

As long as mvbr 4 remains in its unstable state, subsequent pulses 1 through 6 will be routed to the open side of the flip-flop and will therefore have no effect. The timing of mvbr 4 is such that it will return to its stable state sometime between the 6 th and 7 th pulses from mubr 3. This sets the steering gate so that when the 7 th pulse arrives, it will be routed to the shutter-closed side of the flip-flop. The flip-flop is triggered to the shutter-closed position and reblanks the kine.

The input gate was opened by mivr 4 and held open by the shut-ter-open position of the flip-flop. When the shutter closes, the input gate also closes.

The kinescope was unblanked on the 0th pulse from mvbr 3 and reblanked on the 7 th pulse. This means that the kine is unblanked for a period of seven times that of the 75 H pulse train from mvbr 3 , or 525 H - one television frame.

## Steering Gate

The circuit diagram of the electronic shutter is given in Fig. 2. Of particular interest here is the steering gate circuit. If the control voltage from mubr 4 is low (normal state), the 1 N63 diode is blocked and the input to the flipflop is symmetrical. The input pulses will then alternately trigger the flip-flop from open to close and vice versa. If the control voltage is high (triggered state), the diode conducts and blocks all pulses to the shutter-closed side of the flip-flop so that the pulses can only trigger the open side.

Initially the flip-flop is in the shutter-closed position. The 0th pulse from mvbr 3 is supposed to open the shutter. If the diode is conducting, the pulse must go to
the open side as desired. If the diode is blocked, the pulse will trigger the flip-flop to its opposite state, so that in either case the shutter opens.

For the 1st through the 6th pulses the diode is definitely conducting, so all pulses are routed to the open side and lost. After the 6th pulse, the diode is blocked so that the 7 th pulse will trigger the flip-flop to the shutter-closed position. Waveforms corresponding to this action are shown in Fig. 3 for various points in the circuit.

Some studio applications will require use of a preamplifier stage ahead of the electronic shutter to boost the voltage of the control pulses. Here a single triode section will usually suffice.

Acknowledgement is extended to Frank W. Harvey, director of engineering at WGBH-TV in Boston, for his encouragement during this investigation.

## Reference

(1) F. N. Gillette, G. W. King and R. A. White, Video Program Recorder, ELECTronics, p. 90 , Oct. 1950.

## SPEED INDICATOR



Speed indicating unit (left) is designed for rack mounting. Rear of chassis (right) shows plug-in units for squaring circuit, pulse amplifier and multivibrator at center of chassis. This design reduces instrument-repair downtime
> ©UMMARY —— Multivibrator triggered by shaped signal from a-c tachometer provides speed indication within 1 percent over range from 500 to $5,000 \mathrm{rpm}$. Regulated bucking voltage provides scale expansion to indicate deviations from operating speed with accuracy of 0.1 percent on 500 -rpm full-scale indication

LABORATORY measurement of hydraulic motor speeds requires a method of indicating and recording accurately both the operating speed and deviations from this speed. This is the case in a closedloop hydraulic servo system where a constant speed is to be maintained under various load condiflection in the meter.

A speed indicator developed for

## By P. J. POLLARD

Instrument Development Engineer Vickers, Inc. Detroit, Mich.
this purpose provides a means of indicating speed within an accuracy of 1 percent, with expandedscale deviations as small as 0.1 percent being easily read. The stability and repeatibility of an in-


FIG. 1-Block layout of speed indicator, showing waveforms at various points in circuit
strument of this type is dependent to a large extent upon plate-voltage regulation on the multivibraor tubes. Use of regulated transformers and electronic regulated plug-in power supplies insures stability.

Plug-in units are used for the major circuit components. These are the squaring circuit, pulse amplifier, monostable multivibrator and positive and negative regulated power supplies. By using plug-in units, instrument down time is greatly reduced. Detailed service operations are thus confined to the bench and need not interfere with scheduled use of the instrument.

## Operation

The block diagram of the speed indicator is shown in Fig. 1. An a-c frequency-sensitive tachometer provides an electrical signal whose frequency is proportional to the

# HAS EXPANDED SCALE 



FIG. 2 Squaring circuit, pulse amplifier and multivibrator are constructsd as plug-in units for rapid servicing
speed of the system to be measured. This signal is then squared, differentiated, clipped and fed to a pulse amplifier. The output is a pulse of proper amplitude and duration to trigger the one-shot multivibrator.

The multivibrator output is fed to a cathode follower. The final stage consists of a 1-percent accuracy meter, filter circuit and ex-panded-scale circuit. The expanded scale provides an accurate method of studying small deviations in speed from some nominal value Two ranges are provided, allowing as small as 10 percent of the mainscale reading to produce full deflection in the meter.

## Input Signal

Input voltage may be sinusoidal, triangular or square without affecting the accuracy of the instrument. Likewise, amplitude may vary or be variable ranging from

10 to 100 volts. This makes possible the use of a comparatively inexpensive a-c tachometer to obtain accurate speed measurements.

## Wave Shaping Circuif

In the schematic diagram, (Fig. 2), an overdriven two-stage amplifier employing regenerative cathode feedback is used to obtain a square wave from the incoming signal.

This is the key to the versatility of the input signals since the only requirement of the squaring circuit input is sufficient amplitude to drive $V_{1}$ into saturation. The resultant waveshape, having a rise time of 2 microseconds, is then differentiated and the negativegoing pulse clipped. The quality of the resulting pulse is dependent upon the efficiency of the differentiating circuit and the blocking action of the diode.

To illustrate this more clearly, the operation of the differentiator on the exponent $e^{j \omega t}$ will be considered. The amplitude response of the differentiating circuit

$$
\frac{e_{o}}{e_{i}}=\frac{R}{R+1 /{ }^{i} \omega C}
$$

which may be written as

$$
e_{o}=\left[\begin{array}{c}
j \omega R C  \tag{1}\\
1+{ }_{j \omega} \omega R C
\end{array}\right] e^{j} \omega_{t}
$$

Since the differential of

$$
e^{j \omega t} \text { is } d / d t e^{j \omega t}=j \omega e^{j \omega t}
$$

Eq. 1 will be proportional to the derivative of $e^{j \omega t}$ if $\omega R C$ becomes much less than one.

However, this results in a considerable loss in amplitude response, since $R C$ must be very small in magnitude. For this reason, a pulse amplifier stage is inserted between the clipper stage and the oneshot multivibrator. The result is a pulse of constant amplitude having


FIG. 3-Triggering pulse (A), time constant (B) and output wavetorms of single-shot multivibrator used in expanded scale tachometer
a fixed rise time of 2 microseconds, over a frequency range of 100 to 1.000 cps .

## Multivibrator

The multivibrator is triggered by a positive pulse. A stable state, with no input signal, is such that tube $V_{0}$ is cut off and tube $V_{30}$ is saturated. Capacitor $C_{1}$ has a voltage across it dependent upon the plate-supply voltage and the amount of grid current drawn by $V_{10}$ A positive pulse, as shown in Fig. 3A, on the grid of $V_{8}$ drives that tube into conduction. This pulse must be of sufficient amplitude to produce a positive bias on $V_{0}$.

The shape of this pulse must be sharp enough so as to be instantaneously transmitted to the grid of $V_{10}$ from the plate of $V_{8}$. Thus, the rise time of the triggering pulse in the coupling capacitor will affect the sharpness of the leading edge of the multivibrator output square wave.
More important is the effect of pulse width on the multivibrator linearity. The optimum 2-microsecond constant-amplitude pulse achieved between the clipper stage and the one-shot multivibrator insures near-perfect output waveshape, hence optimum multivibrator linearity.

The d-c component of the multivibrator triggering pulse is a function of frequency. Therefore, the bias level of $V_{3}$ is likewise a function of frequency. When the bias level is shifting, the negative voltage, from which the grid of $V_{10}$ must recover, also shifts.

## Waveforms

The oscillogram in Fig. 3B of the $V_{10}$ grid circuit shows that a
shift in the voltage level at which the capacitor begins to discharge will have a direct effect on the time required before $V_{10}$ reverts to its steady-state condition. This results in a nonlinear output-versus-frequency characteristic. A change in the triggering pulse amplitude would have the same effect. By narrowing the pulse width to approximately 2 microseconds and controlling the amplitude, any nonlinearity with respect to frequency becomes virtually undetectable.

Power supply fluctuations also have an adverse affect on the accuracy of the multivibrator. This is eliminated by an electronically regulated power supply and a special regulator transformer to minimize the effect of line voltage fluctuations.

A discharge of capacitor $C_{1}$ through resistor $R_{1}$ may be seen in the oscillogram (Fig. 3B). The instant $V_{10}$ begins to conduct, $V_{8}$ is cut off through the regenerative action of the common cathode.

During this time the capacitor must recharge itself. The charging is from the common cathode resistor to the grid of $V_{30}$, to the capacitor and finally to the plate load of $V_{0}$. The forward resistance of the diode action resulting between the grid and cathode of $V_{10}$ produces a small positive voltage on the grid of $V_{10}$.

Figure 3C illustrates the effect of this voltage on the trailing edge of the multivibrator output square wave. Since this effect is also fre-quency-sensitive, it must be minimized sufficiently to prevent any detectable nonlinearity in output voltage vs frequency. This may be accomplished by reducing the plate load of $V_{s}$ and the common cathode resistor. In this manner, the charge
time for the capacitor may be made very short for the lowest frequency to be considered.

## Scale Expansion

The expanded-scale circuit provides a well regulated d-c voltage to match the output signal when the selector switch is in position 1. Therefore, any voltage appearing at the cathode of the cathode follower output stage may be matched by the voltage obtained on the arm of the 5,000 -ohm 10 -turn potentiometer.

If these two voltages are equal, there is no current flow in the circuit between them and the range selector switch may be turned to either of the expanded ranges.
Thus, by manipulating the 10 turn potentiometer in the bucking voltage circuit, any output signal or portion of an output signal may be suppressed. Normally, to use the expanded scale, the initial reading should be reduced to 10 percent of full scale, after which the respective expanded ranges may be engaged. Any commercial recording equipment may be connected to the recorder output terminal.

## Applications

In use, the servo system to be tested is brought up to test speed as indicated by the rpm scale. The desired expanded scale is selected and various loads are applied to the system. By utilizing the recorder output jack on the instrument, it is possible to determine how well the system compensates for load fluctuations, the damping factor of the system and other servo design information of similar nature.

The particular instrument described here is the latest of three units that have been built. This model has a range of 500 to 5,000 rpm and will expand any speed within this range to obtain fullscale deflection for a $500-\mathrm{rpm}$ change in speed. Two earlier models were designed for 2,000 to $10,000 \mathrm{rpm}$ and have been used successfully in checking speed fluctuation in an aircraft alternator drive system.

## CANNON D SUB-MINIATURE, DPA and DPX SERIES CONNECTORS

## D SUB-MINIATURES:

Standard Pin and Socket Inserts.


FRACTIONS $\pm 1 / 4$ Tolerance DECIMALS $\pm 0.005$ Tolerance

| size | A | C | 0 | 1 | R | 5 | X | weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DA-15P | 11/4 | 13/4 | 23/4 | 117\%0 | 1.312 | 31/64 | 5/16 | . 013 |
| DA-15S | $13 / 80$ | 13/4 | 5/66 | 11720 | 1.312 | 31/64 | 5/16 | . 014 |
| D8-25P | 1\%18 | 15/64 | 23/64 | 2\%/6 | 1.852 | 31/64 | 5/6 | . 023 |
| DB-25S | 133/64 | 15/64 | 5/66 | 2 \%/4 | 1.852 | 31/84 | 5/h6 | . 031 |
| DC-37P | 213/4 | 15/64 | 23/64 | 233/80 | 2.500 | 31/44 | $5 / 16$ | . 035 |
| DC-37S | $2^{11 / 64}$ | 15/6 | S6\% | 231/50 | 2.500 | ${ }^{31 / 54}$ | 5/16 | . 035 |
| DD-50P | 2\%/4 | 15/64 | $15 / 50$ | $2 \mathrm{~s} / 8$ | 2.406 | 30/64 | 5/16 | . 035 |
| DD.SOS | 2\%/4 | 15/4 | 27/64 | $25 / 8$ | 2.406 | $39 / 64$ | 5/16 | . 040 |
| DE-9P | 45/64 | 15/64 | 23/64 | 113/4 | . 984 | 31/64 | 5/16 | . 011 |
| DE-9S | 1/64 | 15/64 | 5/16 | $113 / 84$ | . 984 | 31/64 | 3/18 | . 012 |

PA 32-34P


Shell with retaining plate. Pin and Socket Inserts.


For your connestor requirements-you can depend on CINCH .
Centrally located plants at Chicago, Illinois; Shelbyville, Indiana; LaPuente, Californio; St. Louis, Missouri.

Manufacfured by Agreement with

More than thirty years experience in the design and manufacture of standard electronic components insure Cannon Connectors by CINCH to be of the highest quality materials, fabricated to specifications to maintain consistent quality of product; highest standards throughout all operations.

## D SUB-MINIATURE SPECIFICATIONS:

Shell, including flange - steel or brass; Finish Cadmium plate or Irridite. Contacts - No. 20, 5 ampere rating - Copper base alloy, gold plate finish.

Insert arrangements - 5 plus coaxials in 9, 15, 25, 37 and 50 contacts.

Insulation material - Zytel 101 or DIALL.
Polarization - Keystone cornered shell.
Operating temperature $-67^{\circ}$ to $+310^{\circ} \mathrm{F}$.

Send for illustrated Catalog No. 157 with defails of " $D$ " Sub-Miniature, "DPA" and "DPX" Series.

## DPX CONNECTORS:

Split shell. Pin and Socket Inserts.


## TEMPERATURE Conversion Chart



# Mallory Printed Circuit Type Controls Now Available With Push-Pull Line Switch 



Solve Problems-and Save

Also available - new, low-
 cost secondary controls, mounted singly or in multiples on phenolic strips. Another Mallory contribution to the rapidly advancing art of printed circuitry.

Now your printed circuit assemblies can be turned on and off the new way-PULL, it's on, PUSH, it's off-giving your design an extra, modern merchandisable touch. There are other features, too. Equipment can be turned on independent of volume control rotation-no more groping for the correct setting while it warms up-no more accelerated wear on the lower end of the volume control resistance element.
Mallory's push-pull line switch* features a unique principle in switch contacts. Heart of the unit is a free floating ring of Mallory contact alloy. This ring is self-aligning-rotating slightly with each use so that new contact surfaces are constantly being presented and wear is evenly distributed. (Only the ring carries the switched current-never the actuating pin or spring.) Service life is prolongedswitch action is clean and sharp!
Investigate these Mallory printed circuit type controls with the new push-pull line switch for your new printed circuit radio, television or electronic component design. A wide range of mechanical and electrical specifications to fit every need.... including current ratings suitable for auto radios, color and monochrome TV. Low actuating forces suitable for small radio sets are also available. This same switch action is also available on conventional controls.

## Missile Guidance Systems

Experience and facilities for electronic subassemblies. Write for descriptive brochure.

## Air-Ground Data Link To Cut Stacking



Five monitor consoles and address board (right) used for assigning identities to aircraft at Tacan data-link ground station. Each console displays complete information for a selected aircraft as well as ordered condition

SOLUTION of the conflict between VOR-DME and Tacan having been resolved in the adoption of combined Vortac, it is now possible to implement the military system (Tacan) with additional communication of intelligence that may one day be of great use to commercial flying.
The Tacan data link equipment developed for the Navy by Fed-
eral Telecommunication Laboratories provides service for 120 aircraft on any of the 126 Tacan channels in less than 3 seconds. Individual orders of bearing, distance, heading, altitude and speed can be transmitted to each aircraft. Any one of 31 standard messages can likewise be sent from computers or manual control positions.

## Radio Printer For Air Commands



Airborne teletypewriter developed for Air Research and Development Command by Kleinschmidt Laboratories, Inc. is compared with standard machine (upper left). Printer section of the new machine is shown at left with control box (center) and keyboard (right). Terminal unit, which is the heart of the new teleprinter is at upper right. The new machine uses a type wheel and hammer on a pressuresensitive paper

Each of the 120 aircraft automatically encodes a report of its bearing, speed, altitude and other pertinent data and this is sent to the ground where it is used by computers or for visual displays. In addition, 31 standard messages can be transmitted by pushbutton control from air to ground.

- Link Capacity-The data link handles 45 ground-air and 45 airground, or a total of 90 messages a second. Since each Vortac installation has a capacity of 120 aircraft simultaneously, each $2 \frac{2}{3}$ seconds every aircraft can receive a private-line order and transmit an automatic report. These limitations are arbitrary and not inherent in the system.
The basis of the Tacan system has been described (Electronics, p 174, Oct. 1955). In summary, a complex rotating pattern is transmitted from the ground antenna on a 1 -mc band over channels in the region of 962 through 1,213 mc. The pattern can be described as a 9 -lobed cog wheel combined with a cardioid.

In addition to an omidirectional north pulse transmitted each time the cardioid component rotates through north, a different, characteristic reference pulse is transmitted each time a $\operatorname{cog}$ of the 9 toothed wheel passes through north.
Physical rotation of the Tacan antenna occurs at a 15 -rps rate. To the airborne observer there is an appearance of a fundamental component at 15 cps and a 9 th harmonic component at 135 cps . In each antenna revolution, one north pulse is generated and 8 reference pulses. Time between successive reference pulses is $1 / 135$ th second.

- Rotational Modulation-The rotating directional pattern of the ground beacon antenna modulates signals presented to it by the transmitter. The fine grain structure of the transmitted signal is



## featuring



## Output voltage within $0.5 \%$ during recovery time for line transierts 105-125 volts.

Short circuit will not damage supply.

## Full current may be drawn at any voltage from 2-36 volts.

OUTPUT VOLTAGE DC: $2-36$ volts continuously variabse. OUTPUT CURRENT DC: $0-15$ amperes continuous duty

REGULATION: In the range $2-36$ volts the output voltage variation is less than $0.5 \%$ for line fluctuation from 105-12E volts, and less than $0.5 \%$ or 25 millivolts, whichever is greatsr, for load variations from minimum to maximum current.
RIPPLE VOLTAGE: Less than $0.5 \%$ or 25 millivolts EMS, whichever is greater.
FUSE PROTECTION: Input fuses on front panel.
OVERLOAD PROTECTION: An automatic current liming device allows direct shorting of the output terminals with uut damage to the supply.

POWER REQUIREMENTS: $105-125$ volts, $57-63$ cycles.
OUTPUT TERMINATIONS: DC terminals are clearly marked on the front panel. Either positive or negative terminal $0^{-}$the supply may be grounded. DC terminals are isolatec from the chassis. A binding post is available for connecting to the chassis. All terminals are also brought out at the rear of the chassis. Two terminals are mounted at the rear of the chassis tc provide for picking up the error signal directly at the load. This connection compensates for the voltage drop in the wires connecting the power supply to the load.
METERS: Ammeter: $0-15$ amperes, $4^{\prime \prime}$ rectanqular
Voltmeter: $0-15$ volts, $4^{\prime \prime}$ rectangula-
CONTROLS: Power on-off switch, DC on-off switch, semote error signal on-off switch, coarse and fine voltage controis.
PHYSICAL SPECIFICATIONS: Rack panel construction. Panel height $12 \frac{1}{4^{\prime \prime}}$, width 19 ", depth $17^{\prime \prime}$ Color Kapco standard gray hammertone. This unit is designed for relay rack mounting or bench use. Carry handles are provided.
operational characteristics: This regu ated unit consists of a ferro-resonant line regulator followed br a magnetic amplifier regulator. The ferro-resonant line regulator furnishes well regulated transient free $A C$ power. The high gain magnetic amplifier is used to regulate the DC output voltage to compensate for voltage changes in the power unit for varying load currents. The response time for pulse loads is leas than 0.2 seconds.

## KEPCO LABORATORIES, INC.

131.38 SANFORD AVENUE • FLUSHING55, N.Y. © INDEPENDENCE 1.7000



FIG. 1-Data-link beacon transmission
composed of pulses, averaging 5,400 transmitted each second. Exact pulse positions carry distance and data link information.

Aircraft transmit a pair of interrogating pulses having 12 $\mu$ sec spacing that are received at
the ground beacon. Automatic reply from the beacon provides an elapsed time to indicate distance of the aircraft from the beacon. Since the airborne receiver is effectively gated for reception of the desired signal only, about 50 percent of the pulses received do not affect Tacan operation.

The basic Tacan synchronizing signal occurs at a $135-\mathrm{cps}$ rate and the same signal is used for the data link. Forty-five times a second the surface equipment stops transmission of standard pulses and inserts a burst of pulses with special configuration that conveys the entire ground-air transmission to a single craft. Such a pulse burst is about 3 milliseconds long. Immediately following, the desired aircraft transmits a reply comprising discrete data and telemetered reports of its status,

Rounded pulse pairs are sent in an appropriate form of modulation. Instrument dial readings employ analog codes of pulse po-


Flight trainer installation of data link. Canned messages are displayed on dial right center, They are sent from box lower right
sition modulation. Digital-type data, such as predetermined messages, employ digital codes.

- Message Structure-The method of sending pulse pairs is shown below where such pair is represented, for simplicity, by a single line. Digital data indicating aircraft identity, predetermined messages, mode of operation and procedural information is sent first,


Tacan data-link code structure for ground-air and air-ground messages uses digital and analog codes

When you're playing with a hot system and the stakes are high . . . raise !

Raise as high as $150^{\circ} \mathrm{C} \ldots$ and HELIPOT ${ }^{(1)}$ series 5000 precision potentiometers will still operate continuously with 1 watt dissipation.

Although it's only $1 / 2$ inch in diameter and weighs but 0.3 ounce, on this pot Fou can bet the limit. You'll hold the winning hand with these five high cards off the top of the Helipot deck :

- stainless steel construction
- excellent linearity ( $\pm 0.25 \%$ best practical, $\pm 0.5 \%$ standard)
- 15,000 to 50,000 ohms standard resistance range
- one-piece housing
- all-metal card for uniform heat dissipation

When the chips are down, these three standard models will strengthen your hand : the bushing-mount precision 5001, the servo-mount precision 5002, the trimming-type 5016.

There's a house full of specs the series 5000 meets or beats: JAN-R-19(7), MIL-E-5272A, NAS-710, MIL-R-12934A, MIL-E-5400, MIL-R-19518, MIL Std 20.
The straight inside story on the new series 5000 is available in data file 521 .

## Beckman ${ }^{\circledR} /{\underset{\text { Newbort Beach, California }}{\text { Helion }}}^{\text {Corportion }}$

a division of Beckman Instruments, Inc.

followed by five pulse-position analog-type telemetered control orders.

After receipt of complete order sequence from the ground, the aircraft then transmits air-surface information as shown.
Figure 1 shows radio output
received due south of a ground beacon. The r-f envelope indicates relative depth of modulation for 15 and $135-\mathrm{cps}$ frequencies and the heavy lines show referencepulse bursts at 40-deg points. These two modulations are for bearing indications. By limiting,
only the unmodulated central section is extracted for distance measurement. There are 3,600 pairs of pulses transmitted each second on the average, including bursts of more closely spaced reference pulses. The datal link is not yet available for civil aircraft.

## Transistor Beta Tester

## By G. Franklin Montgomery

Electronic Scientist
Nutional Bureau of Standards Washington, D. C.

The instrument described in this article is designed to measure the common-emitter short-circuit current gain of npm or $p m p$ junction transistors at low audio frequency.

In operation, the transistor is plugged into the instrument and a dial is adjusted to the point where audio oscillation just begins, as evidenced by a loudspeaker tone. The current gain $\beta$ is then read directly from the dial. Properly calibrated, the instrument will measure $\beta$ with an accuracy of a few percent. Inexpensive parts are used in its construction.


FIG. 1-Simplified form of beta tester (A) and tube analog (B)

A simplified diagram of the tester is shown in Fig. 1A. It is first assumed that $R_{0}$ is small compared with the transistor output impedance and that $R$ is large compared with $1 / N^{2}$ times the transistor input impedance, where $N$ is


Transistor beta tester with calibrated and engraved dial
the turns ratio of the transformer. In practice, these assumptions are easily realized for most transistors. Then, for the value of $R$ at which oscillation just begins, the base current is

$$
\begin{equation*}
I_{b}=-\frac{I_{o} R_{o}}{N\left(R_{o}+R\right)} \tag{1}
\end{equation*}
$$

where $I_{0}$ is the collector current and therefore

$$
\begin{equation*}
\beta=-I_{c} / I_{b}=N\left(1+R / R_{o}\right) \tag{2}
\end{equation*}
$$

Variable resistor $R$ can thus be calibrated to read $\beta$ directly and in the range where $R / R_{o} \gg 1$ the calibration will be linear if a linear potentiometer is used for $R$. The circuit of Fig. 1A will be recognized as similar to that of Fig. 1B, an arrangement that was used by


FIG. 2-Complete circuit of the transistor beta tester
L. R. Philpott at NRL in 1940 for measuring vacuum-tube transconductance.

- Controls-To reduce the number of controls to a minimum, the circuit is arranged so the transistor will adjust itself to a specified d-c operating point. The complete circuit diagram is shown in Fig. 2, wherein the resistances have been chosen to fix the operating point at about 5 V collector potential and 1 ma collector current. For any transistor whose $\beta$ is within the measuring range of the instrument, these d-c values will be approximated closely.

The frequency at which oscillation begins will depend upon the characteristics of the transformer and the phase shift of $\beta$. The current ratio of the usual transformer has a broad maximum centered at 1 or 2 kc and if the phase shift of the transistor is sufficiently small, oscillation will begin at a frequency near this maximum.

For transistors having a larger phase shift, the oscillation frequency will be reduced. The amplitude of $\beta$ required to produce oscillation for a given dial setting, however, is not a particularly sensitive function of frequency, so

## TECHNIQUES and DEVELOPMENTS in oscillographic recording

## FROM GANBORN

RECORDING METHOD USED IN SANBORN DIRECT WRITERS, AND A REVIEW OF THEORETICAL AND

## ACTUAL ERROR FACTORS

Figure 1 shows the basic scheme by which Sanborn oscillographic recording galvanometers protuce graphic records of electrical signal values. If the rapid deflection action of the heated ribbon tip stylus is visualized when current flows in the coil, it can be seen that a straight line at right angles to the charl length is recorded on the chart, at the point where the chart is drawn over a knife edge. The trace, therefore, is a true rectangular co-ordinate graph.

Since this is essentially a process of expressing coil (or stylus) deflection angles in terms of dislances on a chart, the trigonometry of the situation (Fig. 2) must be examined to ascertain the accuracy of the method. Initially, and when $\theta$ is small, the tangent and the angle are almost equal numerically. The expression $\mathrm{D}=\Omega$ lan $\theta$ can, therefore, be rewritten $\mathrm{D}=\mathrm{l} \theta$ (ipprox.). To the extent this latter expression is true, deflection distances (rather than deflection angles) are an accurate measure of signal values. But to determine the extent of error resulting from using this approximation, the following data have been calculated*, using a chart width of 25 mm either side of zero ("D" in Fig. 2) and effective stylus length of 100 mm ("R" in Fig. 2) in the series expansion for the tangent func-
tion. Error as a function of deflection then becomes:

| D mms | Radians | Theoretical <br> Error $\epsilon$ | Corrected <br> Error $\delta$ | Corrected <br> Error iri mms |
| :---: | :---: | :---: | :---: | :---: |
| 10 | .10 | .0033 | 0 | 0 |
| 15 | .15 | .0075 | .004 | .05 |
| 20 | .20 | .0133 | .010 | .20 |
| 25 | .25 | .0209 | .018 | .45 |

When the recording system is calibrated, that calibration is often made on the basis of a one centimeter deflection from the charl center, or by means of a two centimeter deflection starting one centimeter below chart center and finishing one centimeter above chart center. In either case the deflection at one centimeter from chart center is accepted as the standard, and, therefore, is without error. The foregoing table can therefore be corrected by subtracting . 0033 from each of the error terms to show the error, $\delta$, to be expected in actual use. The final column in the table shows this error in mms.

Since the active length of the stylus increases as $\theta$ increases, deflection D increases more rapidly than 0 . All positive error terms in the series expansion bear this out, but the error terms would occur as predicted only if the galvanometer produced deflections exacily pronortional to coil currents (that is, ideal spring properties in the torsion rods and uniformity of magnetic field). Pole tips in Sanborn galvanometers are proportioned so that in maximum deflections, galvanometer sensitivity decreases slightly, the compensation resulting in aclual linearity better than that predicted in the table.

* The mathematics involved here, as well as a discussion of fixed length slylii, design paramelers affecting over-all galvanomeler performance, elc., are conla ined in an article by Dr. Athur Miller "Sanborn Recording Galvanomgalvanometer performance, elc., are containe RIGllT ANGLE. Copies are available on requesi.



## Designed for 



The No. 61455
ADJUSTABLE COUPLING-HIGH Q MINIATURE IF TRANSFORMER
Extremely high $Q$ : Variable Coupling(under, critical, and over) with all adjustments on top. Small size $11 / 16^{\prime \prime} \times 1916^{\prime \prime} \times$ $17 / \mathrm{a}^{\prime \prime}$. Molded terminal base. Air capacitor tuned. Coils mounted in special powdered iron assemblies. Tapped primary and secondary. Rugged construction. High electrical stability. No. $61455,455 \mathrm{kc}$ universal transformer. No. $61453,455 \mathrm{kc}$. BFO. No. $61160,1600 \mathrm{kc}$. transformer and No. $61163,1600 \mathrm{kc}$. BFO.

## JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY MALDEN MASSACHUSETTS
measurements accurate to within a few percent can be expected.

- Measurements-For simple comparative measurements, the dial can be roughly calibrated in accordance with Eq. 2 and the known values of $N$ and $R$. For a more accurate calibration, the procedure outlined in Fig. 3 should be followed.

A voltage generator having an output of 10 to 50 volts at $1,000 \mathrm{cps}$ is connected in series with a 100 ,000 -ohm resistor between the shorted battery leads and the collector terminal of the transistor socket. A 1,000 -ohm resistor is connected between the base and emitter socket terminals and the voltage developed across it is measured with a sensitive voltmeter. Then

$$
\begin{equation*}
\beta=\frac{E / 10^{5}}{V / 10^{3}}=\frac{E}{100 \mathrm{~V}} \tag{3}
\end{equation*}
$$

## Scatter Circuits

Tower foundations are being built for the AT\&T over-horizon link between Florida City, Fla, and Cuba. Construction will include a concrete block building and three towers. Work was to be completed during April.

- Transatlantic - Canada will build a forward-scatter station in Newfoundland near Gander Airport at a cost of $\$ 650,000$. It will constitute one link of a network recommended by ICAO to connect Gander, Narssarsuak in Greenland, Reykjavik in Iceland with Shannon and Prestwick in Ireland and Scotland, respectively. Four teleprinter channels and one voice channel will be provided.
-Scandinávia - Ionosphericscatter propagation research was started in 1954 by the Norwegian Defense Research Establishment. Rhombic and Yagi antennas were used with a transmitter power of 5 kw . Path length of the experimental, one-way circuit was about 700 miles. Since July 1956 experiments have been carried out on another one-way $50-\mathrm{mc}$ circuit between Tromso in northern Norway and Kjeller in the south. This path is about 750 miles long.


FIG. 3-Circuit shows procedure necessary for accurate calibration
and the dial may be calibrated from a series of measurements of $E$ and $V$. With the circuit constants given in Fig. 2, the measurable range of $\beta$ is 10 to 170 .

- Obstacle Gain-As a result of diffraction, radio signals on the far side of a sharp-edged mountain range may actually be strengthened (Electronics, p 196, May 1954). Experience in the Korean terrain indicated many cases in which radio reception was improved. Although this phenomenon is different from scatter transmission, it was observed at frequencies above 50 mc . Improvements in the order of 80 db have been experienced.


## Delay-Line Audio

Producing a sensation of location in audio recording and reproduction has been accomplished through binaural techniques. Owing to the expense of a double audio system another aspect of subjective sound has recently been exploited to give the listener a sense of more than one source

Since reverberation is a characteristic of large auditoriums, engineers of Radio Craftsmen division, Precision Radiation Instruments, Inc., have recently demonstrated a sound system that combines a sound source with one



Write for FREE samples and catalog on your firm's letterhead.

El-Menco Dur-Mica DM15, DM20 and DM30 Capacitors Mean:

1. LONGER LIFE
2. POTEMT POWER
3. SMALLER SIZE

In addition to longer life, El-Menco Dur-Mica Capacitors with tougher phenolic casing assure greater stability over wide temperature range.


WITH NEW CRIMPED LEADS. Crimped, parallel leads simplify application in television, printed cirsuits, electronic brains, computors, guided missiles and other civlian and military uses.

THE ELECTRO MOTIVE MFG. CO., INC. WILLIMANTIC CONNECTICUTT - molded mica - mica trimmer - tubular paper - ceramic - silvered mica films.

Arco Electronics, Inc., 64 White 5t., New York 13, N. Y.
Exclusive Supplier To Jobbers and Distributors in the U.S. and Canada


## TI MIL-Line Precision Resistors HOLD TOLERANCE ... EVEN WHEN DRIPPING WET!

Soaking wet, dricd out, or 'shookup' - TI MIL-Line deposited carbon resistors still far exceed MIL-R 10509B . . . emerge from one acceptance test after another - by major electronics manufacturers - with performance records that have not been equalled. It's the seal that makes the difference...an exclusive Texas Instruments process that snugly wraps these precision resistors in tough jackets of a special coating with high dialectric strength.
For ease in design, production, and maintenance. . for improving the reliability and salcability of your products, the moisture resistance of TI deposited carbon MIL-Line resistors is just one field-proven factor. You also get a choice of 1,2 , or $5 \%$ tolerances . . high stability over wide temperature ranges and under full load . . . low negative temperature coefficients. . . negligible voltage coefficient and noise levels . . . long shelf life $\ldots$ wide selection of sizes and resistance values ... reasonable prices
and, if desired, reel-type packaging for automation.

Here is a iypical II reel pack designed to speed production. TI precision deposifed carbon resisfors are mass produced and packaged in five sizes from $1 / 2$ watt to 2 wafts with resisfance values from 25 ohms to 30 megohms.

For complete dafa, write for Bulletin OL-C 539 .
delayed about $1 / 20$ second. The overall effect is said to produce, even in a small room, the effect of sound in a concert hall.

- Delay Mechanism-After considering the impracticability of an electrical $L C$ delay line and the expense of magnetic tape storage, it was finally decided to employ an acoustic pipe about 50 feet long, with an input driver unit and sensitive microphone detector.

Because the power contained in the reverberated sound should be less than that of the main sound, a low-power amplifier shown in the circuit diagram is used. Only unusual feature of the design is the floating paraphase phase inverter. This circuit, which utilizes nega-


Amplifier for the delayed channel
tive feedback from plate to grid (right-hand half of 12AX7 tube) has been described in Seely's "Electron Tube Circuits".

The so-called Xophonic unit uses a large diameter cylinder for back loading of the loudspeaker. The audio delay pipe is coiled around the cylinder.

## Selector Chooses C-W Phase

By Martin D. Belfield
Diamond Ordnance Fruze Labs
Washington, D. C.
During circuit analysis or development it is often desirable to employ a c-w signal that can be triggered with a known starting-phase. This type of signal is particularly useful for evaluation of integrator networks. At present a variety of circuits is being used to accomplish this requirement.

## Flush-Mount Antenna



An 18 by 24 -in. grid of transverse parallel wires spaced regularly over a conducting sheet comprises a flush-mount antenna developed for the Air Force by Stanford Research Institute. Used for radar, the antenna has a pencil-beam pattern with low side lobes, Mounted horizontally, it can be scanned over 40 degrees by changing frequency between 7 to 13 kmc

Some of these circuits use multivibrators as electronic switches or gates. The starting point for the first cycle and the length of the wave train to follow, can be predetermined by proper circuit design. In none of this equipment, however, is the starting point made variable.

The circuit to be described offers ease of selecting a new startingphase for the first cycle of a wave train by the simple adjustment of a calibrated dial.

The circuit shown is used in conjunction with a signal generator that provides a continuous-wave, constant-amplitude signal. With a manually operated switch, the time duration of the $\mathrm{c}-\mathrm{w}$ can be controlled by the operator. The circuit provides at the output terminal a. signal with a controlled starting phase for the first cycle. Considering one cycle equal to 360 electrical degrees, the operator can select for the first cycle any desired starting point from 0 to 360 deg simply by adjusting a potentiometer.

Closing switch $S_{1}$ applies the sine-wave signal to transformer $T_{1}$. The secondary windings of the transformer are connected so the signal applied to the control grid of thyratron $V_{1}$ will be 180 deg out of phase with the signal applied to


## How will tape wound core users be affected by new size standards?

If toroidal core winding is a familiar sight in your plant, you'll welcome news that standard sizes for tape wound cores have been proposed by the A.I.E.E.* You are going to benefit from a high in consistency of core performance, brought about by our being able to concentrate on your most important sizes.
Magnetics, Inc. is now stocking all of the proposed standard core sizes in both aluminum and phenolic core boxes for immediate delivery. Consistency of core performance is increased because each size is made in large lots taken from the same alloy batch and dry hydrogen anneal. They all bear our exclusive Performance-Guarantee.
You can find all specifications for these AIEE-standardized tape wound cores in Catalog TWC.200, a new publication
which, incidentally, is the most comprehensive tape wound core text published anywhere by anybody. Your copy of this Catalog-Design Manual may be obtained by writing on your letterhead to Magnetics, Inc., Dept. E-35,, Butler, Pa.

## MAGMETICS inc.

[^17]

Infinite resolution and absolute dependability distinguish CIC ultra-precise' Potentiometers: In the generation of the sine wave CIC Pots provide smooth, reliable performance, distortion free at all angles of rotation.
CIC carbon film Sine-Cosine Pots, the proven product of a unique research program, provide greater accuracy in smaller case sizes. Sizes range from $1^{\prime \prime}$ to $5^{\prime \prime}$ diameter with corresponding best conformities from $.3 \%$ to $.03 \%$. Compensation for loading can be provided with no loss of performance.

At speeds in excess of 1,000 r.p.m. CIC guarantees life in excess of two million revolutions.

Many firms with critical specifications for industrial instrumentation, military fire control and flight guidance equipment rely only on CIC Potentiometers.

Our highly qualified engineers are ready to discuss your specific requirements with you. Call us today.

## "For Precision Performance ... specify CIC"



Want more information? Use post card on last page
the control grid of thyratron $V_{2}$.
Switch $S_{1}$ will be closed at some unknown point ( 0 to 360 electrical degrees) along the first cycle of the incoming signal. The first positive half-cycle, or part of a positive half-cycle, will fire $V_{1}$. The voltage drop across $R_{1}$, the cathode resistor of $V_{1}$, supplies the plate voltage for thyratron $V_{2}$.

The signal applied to the control grid of $V_{2}$ is 180 deg out of phase with the signal appearing at the control grid of $V_{1}$. Tube $V_{2}$ will fire on the half-cycle immediately following the firing of $V_{1}$. With suitable negative bias voltage and signal applied to the control grid of $V_{a}$, the firing point of $V_{2}$ is accurately established.

The voltage divider and cathode resistor, $R_{3}+R_{i}$, of $V_{2}$ supplies a positive charging voltage for the $R_{5}+R_{6}$ and $C_{1} R C$ network. Resistor $R_{8}$ is a 10 -turn potentiometer and any adjustment will increase or decrease the charging rate of $C_{1}$. As $C_{1}$ charges, the voltage rise will eventually exceed the bias applied to the grid of thyratron $V_{3}$ and fire the tube. The firing of $V_{s}$ is delayed to suit the operator.

The full voltage drop across the series cathode resistor, $R_{10}$ and $R_{11}$, of $V_{3}$ is applied to the screen grid of a $6 \mathrm{SJ7}, V_{4}$. Signal is applied to the control grid of $V_{8}$ for as long as $S_{1}$ is closed. However, no signal appears at the plate of $V_{4}$ until the screen voltage is applied. Potentiometer $R_{6}$ controls the firing of $V_{3}$ and hence the screen voltage of $V_{4}$. As a consequence, the starting position of the signal appearing at the plate of $V_{4}$ is also controlled.

If the circuit is used at one frequency only, the indicator on $R_{8}$ can be calibrated in electrical degrees delay from 0 to 360 . For use over a wide frequency range it will be preferred to calibrate $R_{\mathrm{s}}$ in milliseconds.

The 6C4, $V_{5}$, conducts only when $V_{\text {}}$ is not conducting. The variable plate load resistor $R_{18}$ of $V_{5}$ is adjusted to duplicate the plate current flow of $V_{1}$, when $V_{1}$ is conducting, preventing a change in the $d-c$ voltage level that would otherwise mar the quality of the output signal. Operation of $V_{5}$ is simple. Self bias is obtained from a part of the


Starting-phase selector for c-w signal
cathode resistor $R_{11}$ of $V_{3}$. When $V_{3}$ fires, the cathode voltage of $V_{3}$ rises to a high value making the grid negative enough to cut off the tube.

When closed, $S_{1}$ applies the incoming signal and the $B+$ voltage to the tubes. When the switch is opened the incoming signal is cut off and the $\mathrm{B}+$ removed from $V_{1}$. $V_{2}$ and $V_{\mathrm{s}}$, extinguishing the thyratrons. A third section is added to the switch to discharge $C_{1}$, permitting the operator rapid repeat operation of the instrument without the possibility of $C_{1}$ remaining partially charged to cause errors.

Variable resistor $R_{12}$ in series with the plate of $V_{s}$ is used to adjust the screen voltage of $V_{s}$ and the cutoff bias voltage of $V_{\mathrm{s}}$.

Frequency response of this circuit is 20 to $2,000 \mathrm{cps}$. The frequency response can be extended if necessary by replacing the input transformer with a phase inverter and altering the values of the circuit components.

An added feature is a trigger output that can be used to trigger the trace of an oscilloscope simultaneously with the start of the c-w oscillation.

## Transistor Phonograph Preamplifier

By R. Page Burr*
Burr-Brown Research Corp. Cold Spring Harbor, N. Y.

Designed for use with low-impedance magnetic phonograph pickup cartridges of which the vari-able-reluctance type is a popular example, the battery-powered transistor amplifier described below is comparable to vacuum-tube am-

[^18]

Rugged, low-loss AlSiMag Alumina ceramics permanently bonded to appropriate metals to produce superior high temperature seals.

Outstanding electrical and mechanical characteristics over wider temperature and frequency ranges.

Excellent heat shock resistance. High softening temperatures. Vacuum tight. Improved glaze with superior surface resistivity. Greater impact and tensile strengths. Resistant to chipping and spalling. Precision tolerances.

Complete facilities for volume production. Uniform . . . piece to piece. Standard or custom designs. To assure optimum performance of the latter, our engineers cooperate in establishing proper specifications and configurations. Low temperature metal-ceramic combinations available.

For complete information on AlSiMag MetalCeramic Seals for either low or high temperature applications, send blueprint with planned installation and operating temperatures, electrical requirements or other relevant data. CHATTANOOGA S., TENN. $36 T M$ YEAR OF EERANHC LEADERSHI:
 (see your logal selophont dy resigy) Arlảnt, C
Buffolo. N. Y. Chicago III. Cincinnath
 N. 1. Philàdelohiay Pa. PillsEurg, Pa . St, Lovisa ako. St Paul, Minn. So San Francisco, Calif. Sentrle, Wash Caydatainne. Ots Minning \& Manufactur. ing of Conada, ltd.. 0 , Bos 757 . London, Ont, All other exportz Mumesala


Cparate at $200^{\circ} \mathrm{C}$ ! amphenol - the first manufacturer ts successfully axiude Teflon ciecectric cable and leader in approved RG-U Teflon ca oles-presenis for the first time Subianax Teflon caacial cables. Availatile in fise types and in three impecances ( 50,75 and 9 Jhms), amphencli Submin ax cables meet the combned needs of miniaturized hish temperature epplica ons. Utilizing beth extruded Teflen fie ectrics and jecrets, these nex cables w thstand a continuous op-e-ating femperature of $200^{\circ} \mathrm{C}$ have higher piver hat dling sapabiliies than carresponding polyethyiene types andean be eacily so dered mor feld condi ons wi aout flowing"

| TG-/U No. | AMPHEMOL NO. | $\begin{aligned} & \text { IMFEDANEE } \\ & \text { O-IMS } \end{aligned}$ | $\begin{aligned} & \text { O. D. } \\ & \text { MAX. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 187 | 421-1)6 | 75 | 110" |
| 188 | 421-1.35 | 50 | .110* |
| 195 | 421-1.1 | 95 | .155* |
| 196 | 421-109 | 50 | . 080 |
| - | \$21.337 | 75 | . 150 |

Imostaut to users is the fact that ANPMENDL jubmiaer Teflen Cablis have been engineorsd -o patret on existing t ne of proved R.s ron lectors, Anonit voi's reliable subrinax contectors.

AM PHENOL ILEGIRONICS COPPORATION


ELECTRONS AT WORK
plifiers now widely used for this purpose in high-fidelity systems.

To improve linearity of the amplifier and to stabilize the operating gain negative feedback is used. A midband voltage gain in the order of 40 db is a reasonable figure for a phonograph pickup amplifier. Stage gain of approximately 40 db is readily obtainable from junction transistors with base-to-collector current multiplication of about 40 times. Use of liberal feedback in a two-stage amplifier is therefore feasible. The two junction transistors developed a voltage gain of approximately 78 db with feedback inoperative. When the loop is closed, the gain at approximately 1 kc is close to 40 db .

When voltage feedback is taken from the output anode circuit of an electron tube and is returned to the cathode of the input tube, the advantages of simultaneously raising the input impedance and lowering the output or source impedance of the system result. Low output impendance is desirable because preamplifiers of this type are often used to feed long shielded cables having high total shunt capacitance.

- Amplification-The gain needed for a phonograph preamplifier may be calculated using representative input and output signal levels. Most consumer-goods high-fidelity ap-

Dictating Machine


Working portion of a transistor portable dictating machine shows turntable driven by rotating dog (above). Magnetic head (upper right) moves across paper magnetic disk to record in spiral pattern. Built by Tokyo Tsushin Kogyo, L.td., the unit employs four transistors and runs from four flashlight cells. The microphone is also used as a playback receiver

## Atlas built plotting board



## 

T-he plotting board designed by Melpar Inc.scoreboard of the new U.S. Air Force supersonic simulator for F-100A planes-is another example of Atlas marufacturing ingenuity at work. Atlas specializes in "precisioneering" electromechanical assemblies from the pilot stage to production efficiency. Furnishes the practical engineering step and the facilities between the idea and the production line.

Bring your electro-mechanical designs to us. Our design, production and methods engineers,
tool makers and skilled mechanics are ready to work on your project on a job basis . . . as many men, machines and hours of work it requires and no more. Every modern tool and cost cutting technique is at your service to save you time and labor on a complete electro-mechanical assembly or a special part for electronic equipment. Write today for your copy of "Precisioneering Electro-Mechanical Equipment." ATLAS PRECISION PRODUCTS CO., Philadelphia 24, Pa.
(Div. Prudential Industries).


# VERY LOW PREQIENCY Voltage Measurements 

with this

## BALLANTINE VOLTMETER MODEL 316

SPECIFICATIONS
FREQUENCY RANGE
0.05 cps to 30 KC
down to 0.01 cps with corrections
VOLTAGE RANGE
0.02 to 200 V peak to peak
lowest reading corresponds to
7.07 mv rms of a sine wave

ACCURACY
$3 \%$ throughout ranges and for any point on meter

IMPED ANCE
10 megohm by an average capacitance of 30 uff

OPERATION
Unaffected by line variation 100 to $130 \mathrm{~V}, 60$ cyele, 45 watt


## FEATURES

- Pointer "flutter" is almost unnoticeable down to 0.05 cps , while at 0.01 cps the variation will be small compared to the sweep observed when employing the tedious technique of measuring infrasonic waves with a de voltmeter.
- A reset switch is available for discharging "memory" circuits in order to conduct a rapid series of measurements.
- The reading stabilizes in little more than 1 period of the wave.
- Meter has a single logarithmic voltage scale and a linear decibel scale.
- Accessories are available for range extension up to 20,000 volts and down to 140 microvolts.

For further information on this and oher Ballantine instruments write for our new catalog.
paratus is satisfactorily operated by a signal level in the order of 1 volt rms. A magnetic pickup cartridge, such as the widely used General Electric variable-reluctance unit, will produce an output voltage of approximately 10 millivolts for a lateral stylus velocity of 4.8 cm per sec. This velocity corresponds roughly to the average recorded velocity of many commercial longplaying $33 \frac{1}{3} \mathrm{rpm}$ recordings. Instantaneous program peak velocities are approximately 10 db higher than average. Accordingly, a preamplifier voltage gain of 40 db (1 volt/ 10 millivolts) appears to be a reasonable choice.

Two identical grounded-emitter stages shown in the circuit diagram are connected in cascade and op-


Schematic circuit diagram of the transistor preamplifier with RIAA equalization
erate from a collector supply potential of -22.5 volts. A substantial portion of the battery voltage is dissipated in the large emitter supply resistors. This practice insures good d-c stability of the circuit against variations in temperature and a high degree of circuit immunity to varying transistor parameters. Almost any junction transistor having a base-to-collector current multiplication of 30 or greater will operate satisfactorily in the circuit. Suitable types include $2 \mathrm{~N} 43,2 \mathrm{~N} 104,2 \mathrm{~N} 105$ and 2N175.

Battery voltage limits the output voltage swing of the amplifier. For all units tested, limiting occurs at an output level of approximately 4 v rms. Since the gain is 40 db , the maximum allowable input signal at 1 kc is 40 mv rms , or 56 mv peak. Total battery drain is 1.2 ma .
Equalization-The feedback cir-


1952 Germanium crystals average many of these triangular "dislocations" or imperfections, here magnified 200 diameters.

1954 Processing improvements are bringing dis locations under better control, but density can be further reduced.

1857 Mechanized growing of CBS single crystals has uniformly minimized dislocations. Density is that of purest diamonds.

## How more-perfect crystals improve transistor performance



## (a) semiconductors

EETA Note the higher Beta or current goin (other factors being equal) derived from today's perfected CBS germanium crystals. Beta is used as just one concrete example of many important performance factors improved by CBS-Hytron's better crystal processing methods.

How does CBS grow uniformly dislocation-free crystals with uniform resistivity? By precise checking of the "seed" for orientation and dislocation density. By growing the single crystal in smoothly operating, shock-proof mechanized furnaces. By automatic temperature control and a uniform temperature gradient throughout the growing period. Research and development advances like these are constantly at work to make CBS transistors better.
And you can see the difference in quality that is built not tested into CBS transistors: In crystal photomicrographs. In Beta and other figures of merit. And in actual performance. Try CBS transistors and see for yourself.

Reliable products through Advanced-Engineering


## CBS - HYTRON

Semiconductor Operations, Lowell, Mass.
A Division of Columbia Broadcasting System, Inc.


TRANSISTORIZED RADAR PERFORMANCE CHECKER


A child can operate this small, lightweight performance checker of already-installed radar equipment. It is ideally suited to rapid, on the spot, pre-flight testing. Normally, inaccessible apparatus can be checked in less than 60 seconds.
Performance is measured by comparing standard ring-time with echo box ring-time. The echo box is coupled to the radar transmission line at the directional coupler or, with a pickup horn, to the antenna. The ring-time provides a direct measure of standard performance.
A multivibrator with a variable pulse width is incorporated into the radar checker and set to match the required standard ring-time. The difference, if any, between this ring-time and actual ring-time is automatically related in decibels to standard overall performance.

## COMPLETE LINE OF COAXIAL AND WAVEGUIDE INSTRUMENTS INCLUDES:

DIRECTIONAL COUPLERS
TERMINATIONS
FREQUENCY METERS
HORNS
TUNERS
ECHO BOXES

SLOTTED LINES
DETECTOR MOUNTS
ATTENUATORS
STANDARD REFLECTIONS BOLOMETERS THERMISTORS

FREE ILLUSTRATED CATALOG
contains much valuable data

cuit consists of the elements shown in the lower part of the diagram. If the amplifier were designed for uniform frequency response the feedback impedance would comprise a pure resistor. This amplifier is intended to reproduce phonograph recordings from a magnetic pickup that is essentially a velocity sensitive device.

- Standard - Under these conditions amplifier transmission as a function of frequency should correspond to the present standard playback curve for lateral disc recordings as specified by the Record Industry Association of America. This nonuniform frequency characteristic compensates the pre-emphasis employed by the record manufacturer in the original recording. The curve is specified by three time constants ( $3,180,318$ and $75 \mu \mathrm{sec}$ ) affecting the low, middle, and high frequency regions of the audio spectrum. It can be synthesized in the feedback amplifier by proper arrangement of the components in the feedback path.
The $318-\mu \mathrm{sec}$ time constant is provided by $C_{1}$ and $R_{\text {f }}$. The 3,180 $\mu \mathrm{sec}$ time constant is the product of $C_{3}$ and $R_{2}$. The high-frequency time constant of $75 \mu \mathrm{sec}$ is obtained by placing the appropriate value of resistive loading $R_{1}$ across the input connection to the amplifier so the series inductance of the pickup causes the desired amount of highfrequency roll-off. For a GE cartridge this resistance value should be 15,000 ohms as shown.
- Performance-Two preamplifier characteristics of interest are sig-


## Micropotentiometer



Invented by Myron C. Selby of NBS Boulder Laboratories, the radio-frequency micropotentiometer shown can be used to measure a microvalt at I kmc

# LEACH BALANCED-ARMATURE RELAYS 

## outperform all other types in resistance

## to shock, acceleration and vibration



## LEACH

 CORPORATION $/$ LEACACH RELAY DIVISION DISTRICT OFFICES AND REPRESENTATIVES IN PRINCIPAL CITIES OF U. S. AND CANADA
nal-to-noise ratio and harmonic dis. tortion.

In audio-frequency apparatus it is customary to specify noise output with respect to some reference output level appropriate to the particular equipment. For this amplifier the reference level is taken as 3 v rms . This is an output signal approximately equivalent to the peak instantaneous program level from an average long-playing recording reproduced by the typical pickup cartridge.

Relative to this $3-v$ reference level the average rms noise voltage for a sampling of 16 transistors of various types was 80 db down or 0,3 $m v$ at the output of the preamplifier. The noise output of the preamplifier was therefore 70 db below the 1-v average signal level from a long-playing record. Such dynamic range is quite satisfactory for the reproduction of the usual recordings whose range is limited by surface noise to approximately 50 db . It is particularly true because no hum voltage need be generated in the preamplifier.

Harmonic distortion data were taken for the preamplifier at four frequencies and at three levels of signal output. In every case, distortion was less than 1 percent, ranging from 0.95 at 40 cps to a low of 0.12 at 400 cps with 1 v output.

The author acknowledges the assistance of friends at the Hazeltine Corp. in constructing, testing and describing laboratory models.

## Radio Light

Transformation of radio waves into luminous power has been reported from Rome, being attributed to Mario Cutolo of the University of Naples. A glass globe filled with rarefied air was placed between two metal plates, one connected with a receiving wire and the other with ground. The assembly was enclosed in a magnetic field formed by two magnets. Pulsed power of about 100 watts was transmitted at vhif a distance of 700 meters.

- False Dawn-The experiment is


> Hudson's "1-2"' punch for closure problems!

1. PRECISION QUALITY You can count on Hudson for the highest degree of quality . . . precision components that eliminate the problem of rejects and speed your assembly line operations.
2. ECONOMICAL PRICES Hudson offers custom quality at prices that reflect the savings accomplished by standardized designs and mass production manufacture. Skilled tool makers, the finest machines and technicians familiar with your problems mean that Hudson will meet your specifications and your production schedules, on every order!


Call or write for illustrated literature -
Complete information on the Hudson line will be supplied promptly on request. Check your requirements with Hudson for precision drawn closures, metal stampings and sub-assemblies of aluminum, steel, stainless steel, copper, brass and mu metal includ. ing certified spot welding and silver soldering.

## HUDSON <br> TOOL \& DIE CO • INC

18:38 MALVERN ST., NEWARK 5, N. J.


## Makers of CLEVELITE* . . .

 the QUALITY name for Phenolic Tubing
## CLEVELAND'S NYLON FORMS . . .

. . . are a one-piece precision molded, high temperature form for use with threaded cores.
eliminate costly assembly operations as they can be had with the collar as an integral part of the form.
collars are notched to prevent slipping turns, speeding winding operations.
edges are serrated to provide greater friction when engaged with winding arbor.
. . . have six internal ribs enabling cores to be pressed into the form, eliminating time consuming, hand threading operations.
... have unique patented chassis lock, eliminating costly mounting clips.
. . . resist electrolysis indefinitely.
. . available in all R.E.T.M.A. standard colors, for easy identification ... in certain lengths to fit $8 / 32$ and $1 / 4-28$ core sizes.
*Reg. U. S. Pat. Off.
the
CLEVELAND CONTAINER
6201 BARBERTON AVE.
COMPANY PLANTS AND SALES OFFICES:
CHICAGO - DETROIT • MEMPHIS • PLYMOUTH, WIS. - DCDENSBURG, N.Y. • IAMESBURG. NJ. • LOS ANGELES
Abrasive division af Cleveland, ohio
Cleveland Container Canada, Itd., Prescoft and Toronto, Ont.

NEW YORK AREA: R. T. MURRAY, 604 CENTRAL AVE., EAST ORANGE, N. J.
NEW ENGLAND: R. S. PETTIGREW \& CO., 62 LA SALLE RD., WEST HARTFORD, CONN Chicago area: WEST COAST:
said to have followed the artificialdawn hypothesis of V. A. Bailey of the University of Sidney, Australia, as a consequence of the theory of gyro-interaction in the ionosphere. Experiments in Italy are claimed to have shown that artificial dawn might be produced with even less power than had been supposed. Peak power emitted by the test transmitter was a matter of several kilowatts. The light produced was not obtained from fluorescent materials.

## Low Power Drives P-A

By I. Dlugatch
Senior Engineer
Hycon Mfg. No.
Pasadena, Calif
INCREASED use of semiconductor devices has resulted in attempts at driving an r-f power amplifier with a transistor. No problem exists normally except where large power outputs are sought. Use of the transistor implies an intended conservation of prime power, which requires high efficiency in the power-amplifier stage. The latter requires high power sensitivity if there is to be any possibility of success for the design.

Plate efficiencies in the order of 80 percent can be achieved without


FIG. I-Comparison of class $C$ and new system
difficulty in a class C amplifier but higher efficiencies are desirable. The chief disadvantage of the class $C$ amplifier is the necessity for high levels of driving power to achieve high efficiency. This is indicated by the dotted curves of Fig. 1. The transistor as a driver is generally limited by low power


Bell Laboratories engineer Cyril A. Collins, B.S. in E.E., University of Washington, demonstrates new TV switching control panel for black and white or color. Complex switching connections are set up in advance; in a split-second a master button speeds dozens of programs to their destinations all over the nation. Special constant-impedance technique permits interconnection of any number of hroadband circuits without picture impairment.

## Telephone science speeds TV enjoyment

Telephone science plays a crucial part in your TV entertainment. An interesting example-one of many -is the latest TV switching center developed at Bell Telephone Laboratories.
Switching centers control the transmission of programs which come to your local TV station over Bell System facilities. To be available exactly on cue, programs must be switched at high speed and with very great accuracy.

To create the new switching center Bell Laboratories engineers borrowed from the switching control art which handles your dial telephone calls. They developed a special control panel which puts complex switching patterns within the easy grasp of one man. By pushing buttons, he sets up-and double-checks-forthcoming network changes far ahead of time. On cue he presses a master button which sends the programs racing to their
respective destinations around the nation.
To connect the broadband circuits, the Laboratories engineers developed a new video switch which operates on a constant-impedance principle. The new switch permits the interconnection of any number of circuits, without the slightest impairment of transmission quality.
Thus the technology which serves your telephone also works for your TV enjoyment.


make your disha "spectacular"

...go"king•size" tube•wise
... and
you could

...perch it on a peak

pour on the coal

## But. . . whydo it

the hard way when
 in smaller space . . . for pennies instead of kilobucks, (\$12.50 in quantity) . . without changing your existing system or equipment.

The IN23E at X and C band and the 1N2IE at $S$ and L band provide a typical receiver noise figure of 7.0 db .

## Send for technical bulletin and prices

## MICROWAVE ASSOCIATES INC.

Burlington, Mass.
BUrlington 7-2711

output particularly at frequencies above 5 mc .

Present day transistors are usable for this application by means of the system described below. The scheme involves negatively modulating the p-a grid with a frequency several times higher than that being amplified, as shown in block diagram form in Fig. 2.

This method attains the goal of reduction in driving power and increases the efficiency of the p-a stage. Evaluation of the scheme is simplified by making several as-


FIG. 2-Negative modulation of grid with high frequency
sumptions. First, assume that all plate current pulses discussed will have the shape of half a sine wave. Second, in the class $C$ operation used as a basis of comparison, assume that its bias is twice cutoff so the result operating angle is 120 degrees.

In the suggested system of Fig. 2, a half-wave rectifier changes the output of the bias oscillator to produce a negative, half-sine wave pulse of sufficient amplitude to cut off the $p-a$. This bias pulse appears at the grid of the power amplifier with a repetition rate of $n$ times the frequency of the driver stage. It permits the p -a to conduct during only half the time it would normally conduct.

Assume the p-a to be biased at cutoff and plate current pulse amplitude maintained at the same level as for the class C system as shown by the solid lines of Fig. 1. The mean effective operating angle is now 90 degrees, mean referring to variations with phase shifts,

If a pentode is used for the $\mathrm{p}-\mathrm{a}$, plate supply voltage can be increased to maintain the same d-c input as for the class $C$ system

## Spliting Solat Seands <br> THE WORLD'S MOST ACCURATE and RUGGED

## FOR ACCURATE MEASUREMENT of elapsed time. AS CIOSE AS 0.001 OF A SECOND

## THE STANDARD PRECISION TIMER

is the indispensable STOP watch in laboratory and test cell, on experimental nuclear projects, precision production, check and final inspection. Many important applications in almost every industrial plant and research laboratory.

Built in many different advanced designs - both panel mounted and portable case - to meet almost every conceivable need for the precise measurement of time. Synchronous motor drive. Electric clutch controlled by manual switch, automatic switch or output of electronic tubes. Manual or electric zero reset.

time measuring instrument...
THE STANDARD PRECISION TIMER


- Timing photo-cell controlled exposures in automatic photo printing machine at Eastman Kodak Co.

- Timing test action in automatic transmission research at one of world's largest automotive manufacturers.


A At General Electric Co. - Trumbull Division measuring operating time of circuit breakers.


4 At American Brass Co. indicating metallurgical analysis in Direct Reading Spectroscope by Baird Associates.


At Yucca Pass. Nevada A Proving Grounds - help. ing maintain split-second control of atomic bomb tests.


A Timing elements required to complete telephane connections in Bell Telephone offices across the United States.

Send Today for Bulletin No. 198


- Gray-to-binary code conversion with new EECO Computer-Series plug-in (Y-103).
- Small Engineering Company Organization-a philosophy and method for tailoring operating procedures.


## Gray-to-binary Code Converter

Included among the many functional circuits available in EECO's new Com-puter-Series plug-ins is a Flip-Flop Shift Register Element (Y-103) that is

Y. 103

adaptable for use as a composite Gray-to-binary code converter and shift register. For this use, the Gray number is read into the shift register in parallel form (for example, from a code wheel or flip-flop register), converted internally to a binary number, and then shifted out in serial form.

In the schematic illustration, the input Gray number is 1110 , corresponding to decimal 11 and binary 1011. The Gray-to-binary conversion is based on the rules that:

1. The most significant digit is identical in each code system.
2. Each succeeding Gray digit is complemented if the preceding binary digit is a 1 , or repeated if the binary digit is a 0 .
Trigger clock (conversion) pulses cause the Gray-to-binary conversion and must be one less in number than the number of digits in the Gray code. After conversion, the binary number is shifted out serially by shift clock pulses.

More detailed information on this and other applications of EECO Standard-Series and new Computer-

Series plug-ins is available in Catalog No. 856 -A. Write for your copy.

## Tailor-Making a Company Organization

Each of the two classical types of company organization - "Project" and "Departmental" - has weak as well as strong points. By combining the strong and eliminating the weak points of the two (insofar as practicable within the limits imposed by the type of company activities and objectives involved) it is possible to evolve a third system superior to either of the original two.

This complete analysis and integration process is described in detail in the reprint of a talk delivered by T. W. Jarmie, president of Engineered Electronics Co. and a director of Electronic Engineering Co. of California, before the Professional Group on Engineering Management of the IRE. The final operation chart developed by this process (illustrated below') reflects the operating procedure that has proven so successful at EECO.


Although this talk was first delivered in 1955, so much recent interest has been shown in the subject that reprints of the paper have again been made available. Ask for Reprint J-2.

ELECTRONIC ENGINEERS AND PHYSICISTS: EECO offers career opportunities in challenging systems design and related projects. Send resume to R. F. Lander, Dept. DS.

Electronic Engineering Company of California
506 EaSt first street • Santa ana, california
without negating previous assumptions.

Calculations can then be made using

$$
\begin{aligned}
I_{\mathrm{av}} & =\frac{2 I_{\max } t}{\pi T} \\
\text { and } I_{\mathrm{rms}} & =I_{\mathrm{max}} \sqrt{\frac{t}{2 T}} \\
\text { where } t & =\text { pulse width } \\
T & =\text { pulse period }
\end{aligned}
$$

For class C

$$
\begin{aligned}
\text { d-c power } & =I_{\mathrm{av}} E_{B B 1} \\
& =\frac{2 I_{\mathrm{max}} 120^{\circ} E_{B B \mathrm{I}}}{36^{\circ} \pi} \\
& =\frac{2 I_{\max } E_{B B 1}}{3 \pi}
\end{aligned}
$$

For the new system

$$
\begin{aligned}
\text { d-c power } & =\frac{2 I_{\max } 90^{\circ} E_{B B 2}}{360^{\circ} \pi} \\
& =\frac{I_{\max } E_{B B 2}}{2 \pi}
\end{aligned}
$$

Since the two powers are equal

$$
E_{B B 2}=\frac{4 E_{B B 1}}{3}
$$

That is, the d-c voltage for the new system needs to be 33 percent higher. Likewise, for the power outputs

$$
\frac{P_{1}}{P_{2}}=\frac{I_{\mathrm{rms}} E_{B B 1}}{I_{r \mathrm{ma} 2} E_{B B 2}}
$$

or the power output for the new system is

$$
\begin{aligned}
P_{2} & =\frac{\left(I_{\max } \sqrt{\frac{90}{720}}\right)\left(\frac{4}{3} E_{B B 1} P_{1}\right)}{\left(I_{\max } \sqrt{\frac{120}{720}}\right) E_{B B 1}} \\
& =\frac{4 \sqrt{90} P_{1}}{3 \sqrt{120}}=1.15 P_{1}
\end{aligned}
$$

That is, 15 percent more power output has been realized.

The higher efficiency now possible, though extremely desirable, is not the most significant factor favoring this plan. Class C amplifiers are theoretically capable of 100 -percent efficiency and can achieve practical values of 90 percent. The additional prime power to operate the bias signal source may further decrease the advantage.

- Driving Power-The real merit of the proposed system is in the reduction in driving power required


## MEASURE microvolts without pre-amplification!



FEATURING
AMPLIFIERS: Direct coupled amplifiers with single-ended or bal. anced input.
EXTREME SENSITIVITY: 5 millivolt to 500 volts full scale, continuously variable. Additional sensitivity for short term measurements, with resolution down to 20 microvolts.
FREQUENCY RANGE: DC to 300 KC .
Y AMPLIFIER CALIBRATION: 5\%.
SWEEPS: 19 calibrated linear sweeps, $0.5 \mathrm{sec} / \mathrm{cm}$ to 0.5 usec/cm. Calibrating accuracy, 5\%
EXPANDED SWEEP: Any 10 cm portion of 50 cm sweep may be expanded 4 times and positioned on screen.

Puce $\$ 58000$
Slightiy mighes in 50 cycle areas
TYPE 403R Rack mounted version, electrically identical to Type $403 \$ 595.00$
Complete Details On Request...

## TECHNICAL SALES DEPARTMENT,

 Allen B. Du Mont Laboratories, Inc., Clifton, N. J.The Type 403 is the most sensitive oscilloscope commercially available. It permits direct measurements from low output transducers such as strain gages, pressure pickups, accelerometers, and others that normally require preamplifiers.

When used as a direct reading voltmeter, the Type 403 offers stability of better than 1 millivolt per hour for all ranges from 500 volts all the way down to 5 millivolts full scale. A super sensitive range is available of 1 millivolt full scale ( 100 microvolts per scale division) for short term measurements.

This outstanding performance is wrapped in the nicest package in the industry. The 403 features "human engineering" resulting in easier operation, complete accessibility and unsurpassed reliability backed by a 5 -year guarantee.


## GUARDIAN POWERLOID

For control of 230 V . A.C. loads up to 3 H.P. Motors and 8400 Watt Heater loads. Totally enclosed. Low prised!


White - on your company letterhead to arrange for a Production Sample of Guardian's Reloid. Get literature on Guardian Relays, Steppers, Solenoids, Switches.
to obtain such high plate efficiencies. This is demonstrated in Fig. 1. With this method it is now possible to utilize transistors as drivers and oscillators where their power capabilities previously prevented it.

Audio modulation at the grid of a power amplifier is an obvious comparison. Such modulation will increase the efficiency of the stage just as the negative bias described above but this is only in terms of the modulated wave. The carrier efficiency is actually reduced by a factor of two. That is, twice as much driving power is necessary as with the unmodulated class $C$ stage.
The proposed system does not preclude the modulation of the $\mathrm{p}-\mathrm{a}$ by any of the known modulation methods.

The bias oscillator, since it is not required to provide substantial power, can be a transistor, if frequency limitations permit, to minimize its prime power requirements. High stability is not vital except that rapid variations in frequency are to be avoided to prevent possible audio-frequency modulation. Deliberate sweeping of this oscillator could provide tone modulation if so desired. In some cases, the oscillator is not necessary because a high-frequency signal is avail-

## Starting Point



Developed by John Ambrose Fleming in 1904, the diode shown above constitutes the first practical application of the Edison effect and became the forerunner of basic detectors and rectifiers. It is part of a display by International Rectifier Corp.


able elsewhere in the equipment.
No particular value of $n$ is preferred but the same precautions are to be observed that would apply in any mixer application where beats may cause difficulties.

Excessive sideband generation might reduce the efficiency to a point at which this method would be impractical. Therefore, the Q of


FIG. 3-Typical circuil showst the now sys.cm


FIG. 4-Alternate circuit that eliminates rectifier
the p-a tank circuit must be high to increase the rejection. The use of harmonic filters is definitely recommended as a preventive measure. The choice of as high a value for $n$ as possible will reduce this disadvantage.

Figure 3 is a typical circuit for the system described. Components $L_{1}, L_{2}$ and $C$ comprise a harmonic suppression filter. Applications are not limited to transistors, alone, either for the bias oscillator or the driver.

Figure 4 is an alternate scheme eliminating the rectifier. Other circuits will suggest themselves for


## Roving reporter, half mile under the sea

Exploring at the bottom of a 2000 -foot coaxial cable, "Project Fisheye" now roams the ocean depths collecting information for our Navy about sunken vessels, currents, and mysterious undersea life. Its findings are televised to observers on the surface.

Such information from underseas may well prove as valuable to man as the facts radioed from our manmade satellites in outer space.

Like the electronic age itself, this submarine marvel just couldn't work without the best of electrical insu-lations-the kind CDF is famous for ... insulations designed and made for outstanding performance under critical conditions.

FOR SPECIFIC INFORMATION on CDF products, see Sweet's, Electronics Buyers' Guide, and other directories. Then send us your print or your problem, and we'll return free samples and technical literature.
CDF MAKES Dilecto Laminated Plastics - Celoron and Polyester-Glass Molded Plastics - Micabond Mica Products • Diamond Vulcanized Fibre • Vulcoid • Flexible Tapes of Teffon*, Silicone, and Micabond

- Resin-Impregnated Spiral Tubing - Complete Fabrication Facilities.
*duPont trademark for its tetrafluoroethylene resin



In the overall picture of a rocket launching, a cable may appear to be a rather small detail, but as every design engineer knows, the success of the project depends on the inter-connecting cable system ... and here's where the value of Vector's engineering staff and modern manufacturing facilities have been established.

Vector has been serving the electronics industry for more than ten years . . . with custom-designed cable assemblies that range from only a few feet in length to more than a mile, and with up to 130 concentrically laid conductors. Today, more than 41,000,000 feet of Vector cable are in use under the severest conditions imaginable. They are sheathed in continuously extruded rubber, neoprene, or thermoplastic jackets which enable them to withstand extreme temperatures, constant handling and flexing, and even towing stresses.

Contact one of our representatives today. Whatever you're designing . . . if there's an interconnecting cable problem involved, Vector will supply a custom-designed cable system guaranteed to meet your requirements.
applying this idea toward reduction of the operating angle without increasing the drive.

## D-C Transformer

Voltage step-up from storage battery to potential suitable for average electron-tube plate supply is generally accomplished using a vibrator power pack. An interesting function for certain types of transistors is that of generating an alternating voltage that can be


Circuit of the d-c/d-c converter
stepped up and subsequently rectified by semiconductor diodes.

Low saturation voltage of the type shown in the circuit diagram reduces the internal power dissipation in the converter application. The resultant small amount of self-heating permits a small heat sink and small size of the package.

Circuit and information have been furnished by Delco Radio Division of Kokomo, Ind.

## Standard Calls

Call letters have been assigned for new standard frequency stations of the National Bureau of Standards, Boulder Laboratories. A frequency of 10 kc is proposed for transmission from a location near Boulder, Colorado using the call sign WWVL.

Another call sign WWI is for the frequency of 30 mc , an experimental c-w transmission from a station at Havana, Illinois.

# Three voltage ranges: 0-200, 125-325, 325-525 VDC 

### 1.5 AMPERE MODELS NEED ONLY $8^{31 / 4}{ }^{\prime \prime}$ OF PANEL HEIGHT!

(metered)
MODEL C. $1580 \mathrm{M}: \quad 0.209$ VOC, $0.1500 \mathrm{MA} \quad 580.00$ MODEL C.1581M: 125.325 VDC, 0.1500 MA.... 605.00 MODEL C. 1582 M : 325.525 VDC, 0.1500 MA..... 680.00
(unmefered)
MODEL C-1580: 0.200 VDC, 0.1500 MA..... 550.00 MODEL C-1581: 125.325 VDC, $0-1500 \mathrm{MA...}$. MODEL C-1582: 325.525 VOC, 0.1500 MA.... 650.00


800 MA MODELS NEED ONRY $7^{\prime \prime}$ OF PANEL HEIGHT!

## (metered)

MODEL C.880M: 0-200 VOC, 0.800 MA 370.00 MODEL C-881M: $125-325$ VDC, 0.800 MA.... 345.09 MODEL C-882M: 325.525 YOC, $0-800$ MA 390.00
(unmetered)
MODEL C-880: 0-200 VDC, 0.800 MA........ 340.00 MODEL C-881: $125-325$ VDC, 0.800 MA $\quad 3 . . . .315 .00$ MODEL C-882: $325-925$ VOC, $0-800$ MA........ 360.00


400 MA MODELS NEED ONLY 51/4" OF PANEL HEIGHT!
(metered)
MODEL C.480M: 0.200 VOC, D-400 MA $\mathbf{1 8 9 . 5 0}$ MODEL C.481M: $125-325$ VDC, 0.400 MA... 174.50 MODEL C-482M: $325-525$ VOC, 0.400 MA..... 289.50

MODEL C.489: 0.200 VDC, $0.400 \mathrm{MA} \ldots \quad 259.50$ MODEL C-481: 125.325 VDC, $0.400 \mathrm{MA} . . . . . .244 .50$ MODEL C.482: 325.525 VDC, $0.400 \mathrm{MA} \ldots \ldots \ldots . . .259 .50$


## 200 MA MODELS NEED ONLY 51/4" OF PANEL HEIGHT

## (metered)

MODEL C-280M: $0.260 \mathrm{VDC}, 0.200 \mathrm{MA} \ldots 214.50$ MODEL C-281M: 125.325 VDC, 0.200 MA..... 189.50 MODEL C-282M: 325-523 VDC, $0-200$ MA..... 199.50

MODEL C.280: 0-200 VDC, 0.200 MA 184.50 MODEL C.287: $125-325$ VDC, 0.200 MA......... 159.50 MODEL C.282: 325.525 VDC, 0.200 MA......... 169.50


4LAMBDA Electronics Corp.

11-11131 5TREET, COLLEGE POINT 56, NEW YORK

For all power supply needs through 1.5 amperes:

## LAMBDA

 COM-PAK
## Less space! Improved performance! <br> Long, trouble-free service! <br> Transient free output!

Fills the need for compact, regulated DC power supplies. Economy of panel space, functional simplicity, new quick-service features.

Wiring, tubes and other components readily accessible. You can reach them easily, service them fast.
$400 \mathrm{MA}, 800 \mathrm{MA}$, and 1.5 ampere models include new, high-efficiency, long-life, hermetically-sealed semi-conductor rectifiers. All Com-Pak models are constructed with hermetically-sealed transformers, chokes and capacitors.

## Condensed Data

LiNe regulation ........ Better than $0.15 \%$ or 0.3 Volt, whichever is greater.
LOAD REGULATION . ..... Better than $0.25 \%$ or 0.5 Volt, whichever is greater.

INTERNAL IMPEDANCE
C- 200 Series $\ldots$. . Less than 6 ohms.
C. 400 Series $\ldots$ Less than 3 ohms.
C- 800 Series $\ldots$.. Less than 1.5 ohms.
C- 1500 Series... Less than 0.75 ohms.

RIPPLE AND NOISE. . . . . . . . Less than 3 millivolts rms.
POLARITY ................ Either positive or negative may be grounded.
AMBIENT TEMPERATURE. . . . Continuous duty at full load
ac output
(unregulated) .. .........6.5 VAC (at 115 VAC Input).

> C- 200 Series ..... 10 AMP
> C- 400 Series $\ldots . .15$ AMM
> C- 800 Series.$\ldots .20$ AMM

C-1500 Series ..... 30 AMP
ac input 105-125 VAC, 50-400 CPS

OVERLOAD PROTECTION. . . AC and DC fuses; built-in blown-fuse indicators.

## Send for complefe COM-PAK data

LAMBDA Electronics Corporation
11-11 131st Street, College Point 56, New York
By return mail, send complete specifications on Lambda Com-Pak Power Supplies.

Name
Title
Company
Address
City $\qquad$ State

## Drilling Holes in Servo Housings Three-at-a-Time



Three No. 56 holes are simultaneously drilled 120 degrees apart in the stainless steel housing of a servo motor while the operator holds the housing in position on a centering fixture, in a drilling setup developed by the Mechatrol Div. of Servomechanisms, Inc., Westbury, N. Y. The new setup has cut drilling time to one-third and greatly reduced breakage of the small drills.
Brackets hold three automatic drill heads (made by the Dumore Co., Racine, Wisc.) on a cast iron sheet which serves as the top for the drilling table. A push button energizes the electric drills of all three motors simultaneously to drive the drill chucks and drive the fans of the air-actuated drill feeds. The drills advance automatically through hardened bushings in the locating fixture.

A lever bolted to the feed slide of one of the motors actuates a counter to indicate the number of holes drilled. The drills are changed routinely after 125 motor housings have been drilled.

Operator holds motor housing in locating fixture with left hand while pressing start button to initiate drilling of three holes simultaneously in type 303 stainless steel. Motor fixture is adaptable to take BuOrd housing sizes 11 to 20

## Waveguide Bender Uses Clockspring-Steel Mandrel

By R. R. Palmisano Mechanical Engineer and<br>A. Sherman Model Shop Foreman Diamond Ordnance Fuze Labs Washington, D. C.

Waveguide tubing bent to an inside radius as small as $\frac{1}{l}$ inch is often needed in guided missiles and other applications where space is critical. The device is capable of bending waveguide tubing in either plane through a range of $\frac{4}{4}$ inch to 24 inches inside radius while maintaining the internal dimension
tolerances of the original tubing.

- Requirements-To be able to form sharp bends that will hold their shape after removal of forming stresses, the flow must take place within the plastic range of the material. The material must have an ample plastic range or region between the yield point and breaking point, and the waveguide tubing must be properly prepared prior to forming. Preparation involves two operations: (1) Drawing a broach through the tubing as
in Fig. 1 to square the inside corners of the tubing and to size it, thus permitting a flexible mandrel to be later drawn through the tubing without obstruction; (2) an-


Typical H-plane and E-plane waveguide bends formed on machine

"We are sold on Kester '44' Resin-Core Solder, Jim. It's the fastest acting solder we have ever seen."

"Nothing like Kester Solder, Fred, for keeping costs in line."

"Our work goes much faster now, Bill, since we switched to Kester Solder."

"Been using Kester Flux-Core Solder for almost half a century, Tom; nothing like it."

"Our girls swear by Kester, Bert; they claim soldering is much easier."

"We had a tough soldering job, Harry, but Kester engineers licked it in a hurry."

"Kester Solder spools are always marked with the exact alloy, Joe; no code markings."

"Kester 'Resin-Five" Core Solder is the choice for our production, Paul."


## HOW THE WORD GETS AROUND

You hear comments like these everywhere informed people in the electronics industry get together to "talk shop." It's a fact . . . there is nothing quite like Kester Solder. And that's why it's so universally popular.

# KESTERSOLDER Qmpany 4204 Wrightwood Avenue - Chicago 39, Illinois 

 Newark 5, New Jersey • Brantford, Canadanealing the tubing to extend its plastic range ( 2 S aluminum tubing is annealed at 700 F , and $90-10$ commercial bronze or brass tubing is annealed at $1,100 \mathrm{~F}$ in an inert gas atmosphere).

- Mandrels-In forming radii of 6 inches or larger, fine-grain foundry sand is rammed into the tubing to prevent the thin walls from collapsing. Low-temperature fusible alloys or rosin may also be used as internal support. For bends


FIG. l-Cable at right pulls sizing broach through waveguide tubing in preparation for bending. Vise clamp having six knurled screws holds tubing
of less than 6 inch radius, a mandrel made up of the proper number of leaves of 0.005 -inch thick clockspring steel is used to fill the inside of the tubing. With the piece to
be bent held in the vise clamp as in Fig. 2, the spring-steel mandrel is oiled and crawn throagh the tubing by means of a cable fastened to the broach-pulling head of the

## Design of the Month: MISSILE-LOCATING BEACON



Compact uhf transmitter in sardine-can housing is combined with antenna opened automatically by explosive charge, to give beacon for locating and recovering guided missiles test-fired over water. Collapsed height is only 12 inches. After missile hits water, timer sets off explosive squib in combustion chamber at bottom of antenna, producing gases that force out telescoping antenna and ground plane tubes. Open 3 .ft antenna has omnidirectional pattern, with cone of silence overhead for pinpointing location from search plane. Battery pack in separate case gives 24 hours of operation from 1.5 v and 7.5 v units. Sardine can is silver-plated


Etched coil and wiring on both sides ot Kel-F laminate give high-efficiency modified Colpitts oscilator having range of 25 miles at 280 to 322 mc . Subminiature 6 6 29 triode oscillator operates from transistorized power smpply using two 2N132 transistors and toroidal power transformer (set into large hole in laminate). Resulting $1,000 \mathrm{cps}$ unfiltered square-wave output is applied directly to tube to give tone modulation. Kel-F or Teflon pieces center unit in sardine com, cover of which is soldered in place. Beacon was developed by Electronics Division of Fairchild Controls Corp.r subsidiary of Fairchild Camera and Instrument Carp.


As recently as ten years ago it was just becoming evident that digital techniques in electronics were destined to create a new and rapidly growing field. Today, incorporated in electronic computers and other equipment, they constitute one of the most significant developments in scientific computation, in electronic data processing for business and industry, and in electronic control systems for the military. In the near future they are expected to become a major new factor in industrial process control systems.
The digital computer for scientific computation is becoming commonplace in research and development laboratories. Such machines range from small specialized units costing a few thousand dollars, to large general purpose computers costing over a million dollars. One of these large computers is a part of the Ramo-Wooldridge Computing Center, and a second such unit will be installed the latter part of this year. The digital computer has not only lightened the computation load for scientists and engineers, but has made possible many calculations which previously were impracticable. Such computers have played a major role in the modern systems engineering approach to complex problems.
Electronic data processing for business and industry is now well under way, based on earlier developments in electronic computers. Data processors have much
in common with computers, including the utilization of digital techniques. In this field, teams of RamoWooldridge specialists are providing consulting services to a variety of clients on the application of data processing equipment to their problems.
The use of digital techniques in military control systems is an accomplished fact. Modern interceptor aircraft, for example, use digital fire control systems. A number of Ramo-Wooldridge scientists and engineers have pioneered in this field, and the photograph above shows a part of an R-W-developed airborne digital computer.
These, then, are some of the aspects of the rapid growth which is taking place in the field of digital techniques. Scientists and engineers with experience in this field are invited to explore openings at The Ramo-Wooldridge Corporation in:

Automation and Data Processing
Digital Computers and Control Systems
Airborne Electronic and Control Systems
Guided Missile Research and Development Electronic Instrumentation and Test Equipment Communication Systems

## The Ramo-Wooldridge Corporation

5730 ARBOR VITAE STREET - LOS ANGELES 45, CALIFORNIA



FIG. 2-Drawing mandrel through sized tubing held in vise clamp. Mandrel is made up of number of lengths of clock-string steel


FIG. 3-Setup for bending tubing
horizontal broaching machine supplying the force.

- Forming Procedure-After disconnecting the drawing cable and removing the mandrel-filled piece from the holding vise, it is clamped against a form of desired radius as in Fig. 3. The shoe fills the unsupported area opposite the pressure clamp, thus supporting the material on the side opposite the point of greatest pressure. The two 0.015 -inch-thick spring-steel filler strips on either side of the material serve to prevent scoring or marring the outer walls of the tubing and to span any gap which may exist between the shoe and the form.

In forming, there is no relative motion between the form, the part being formed and the holding clamp as they move about the center of the table. The stationary pressure clamp takes the thrust of the free end of the tubing being formed, forcing the tubing to take the shape of the form as it rotates. The shoe and top plate in Fig. 4 help insure smooth bends by backing up the thin-walled material. Since the material has been annealed to a high degree of ductility, there is very little springback in


FIG. 4-At the start of bending operation, moving arm at right foreground is manually moved clockwise to bend tubing held down by circular top plate at center of Table

efforts of ens The Garrett Corporation has become a leader in many outstanding aircraft component and system fields.
Among them are:
air-conditioning
pressurization
heat transfer
pneumatic valves and controls
electronic computers and controls
turbomachinery
The Garrett Corporation is also applying this engineering skill to th vitally important missile system fields, and has made importarí advances in prime engine development and in design of turbochargers and other industrial products. Our engineers work on the very frontiers of present day scientific knowledge. We need your creative talents and offer you the opportunity to progress by making full use of your scientific ability. Positions are now open for aerodynamicists ....mechanical engineers ....mathematicians . . . specialists in engineering mechanics... electrical engineers . . electronics engineers. For further information regarding opportunities in the Los Angeles,

Phoenix and New York areas, write today, including a resume of your education and experience. Address Mr. G. D. Bradley

9851 So. Sepulveda BIvd. Los Angeles 45, Calif. divisions
AiResearch Manufacturing, Los Angeles AiResearch Manufacturing, Phoenix
AiResearch Industrial. Rex - Aero Engineering Airsupply - Air Cruisers
AiResearch Aviation Service

## Airesearch missile AUXILIARY



This AiResearch auxiliary power package operates the vital electrical and hydraulic systems in a missile.

Gases from a solid propellant spin the unit's turbine wheel at 50,000 rpm. The turbine's shaft drives the following: a 650 watt generator which supplies electrical power to run the missile's guidance system; a 35 watt generator which runs the missile's gyros; a hydraulic pump which in turn powers the servos that control
the movable flight surfaces of the missile's airframe.
The hydraulic system features drilled passages which eliminate the need for potentially troublesome plumbing. It includes reservoir, filters, temperature compensator, relief valve, check valve, and squib valve within a single housing.

This auxiliary power system is an example of AiResearch capability in the missile field. Inquiries are invited

Los Angeles 45, California . . Phoenix, Arizona

Designers and manufacturers of aircraft and missile systems and components: refrigeraton systems - pneumatic valves and controls - templature comtros chain air compressors . turbine motors - cas turbine engines - cabin pressure controls - heat transfer equipment - electromechanical equpment - electromic computers and controls

## onco PRINTED CIRCUIT CHEMICALS <br> mean:

## Faster Production

... Minimum Rejects
...... Better Circuits
Choose Lonco, the Most Complete Line of Soldering and Fluxing Chemicals Available, for:

## (1) Pre-Soldering Protection

Coat with Sealbrite No. 230-10. This thin, clear liquid coating provides 3 important advantages over other products of this type: 1) longer protection against oxides, carbonates and hydrates; 2) greatly increased solderability; 3) instant displacement of water and moisture from metal surfaces.

Masking
Coat with PC No. 33 Solder Resist. This is an extremely easy to apply masking coating which can be silk screened onto the circuit panel, if desired. It effectively minimizes bridging, saves solder and produces a neater circuit. Solder Resist has a short time low temperature cure of 20 to 30 minutes and resists high solder pot temperatures up to $650^{\circ} \mathrm{F}$. It may be used as received or thinned to any working viscosity.
Fluxing and Soldering
Spray, dip or roller coat Fluxcote 21XR onto the circuit panel. This promotes quick and quiet soldering - whet her area, spot or other automatic tinning or soldering systems are used. The bright, varnish-like residue is completely dry and tackfree and acts as a protective coating against leakage or breakdown.
If insulating fluxes are preferred, Lonco Insulating Rosin Flux or fast taking Rosin Flux No. 160 are recommended. Special fluxes are also available for individual applications.

## (4) After Soldering

Use Lonco Flux Removers to insure fastest possible removal of flux residue and complete safety to personnel, the electrical circuit itself, plastic parts, color coding, decals, etc. Four types are available in varying degrees of solvency. Special removers can be furnished to order.
All Lonco Flux Removers are rated as non-flammable or as safety solvents..toxicity is always in the least toxic range of commercial solvents.
Get complete information and literature now. Request technical bulletin, Soldering of Printed Circuits.

Want more information? Use post card on last page.


FIG. 5 -Rectangular waveguide tubing formed into 180 -deg bend. with top plate removed after bending to show bend
forming (only about 1 deg ).
After the arm bearing the holding clamp is swung around to the desired degree of bending, as in Fig. 5, it is locked in position by means of a cam lock on its underside. The steel mandrel is then withdrawn from the tubing by a cable which connects the mandrel clamp to the broach-pulling head of the horizontal broaching machine supplying the necessary force for extraction, as in Fig. 6. Upon releasing the pressure and holding clamps and sliding them free of the work, the completed bend can be removed from the machine.

- Accuracy-Internal dimensions throughout the bends are held to within the original $\pm 0.003$-inch commercial tolerance. The critical internal surfaces are not marred or scored due to bending. Consistent and small springback makes possible accurate angular reproducibility.

The electrical performance of waveguide bends formed by this machine is satisfactory. Sections of waveguide containing various E and H -plane bends generally showed a vswr of 1.04 or less over a frequency range of $1,000 \mathrm{mc}$. The maximum vswr encountered was 1.08 , which occurred only in some isolated cases and within a very narrow frequency band.


FIG. 6-Pulling mandrel out of tubing after 90 -deg bend with $1 / 4$ inch-rodius

Although this waveguide bender is not at present intended for high production requirements, it can produce accurate bends through a wide range of radii and a variety of angles. It is possible to bend rectangular waveguide tubing accurately in either plane up to 120 deg for $\frac{1}{4}$ inch to 1 inch radius and 180 deg for 1 to 24 inch radius.

## Chrome-Plated Mold for Connector Potting

Chrome-plated steel molds solved a major problem in connection with potting of electrical connectors on missile and aircraft wiring harnesses at Chance Vought Aircraft. A mold of aluminum was used
formerly to form the polysulphide plastic resin base around the connectors. The resin either stuck to the metal and had to be scraped off or, if a petrolatum coating was smeared inside the mold, this had

# ESSEX ENGINEERED 

## WIRE and CABLE


...laboratory-developed to meet the unique requirements of your specific application!

The Essex "Extra Test" approach to the development of quality wire products has gained the confidence of engineers in every industry where electrical wire products are a factor! The full line of lead, appliance, automotive and refrigeration wires ... plus submersible pump cable and $200^{\circ} \mathrm{C}$. Sil- $\mathrm{X}^{\oplus}$ insulations are outstanding examples of the versatility of "Essex Engineering." Thorough engineering, from conductor to covering, has made available a wire of type and size with vital properties that assure you outstanding performance.

Unusual wire or cable specifications need not trouble today's engineer. By investigating the complete line of SX Wires and Cables, most wiring requirements can be quickly met by one or more of the Essex "Standards"; thus hastening delivery, affecting far greater economies, and guaranteeing an Essex Engineered "Industry Proven" product.

ESSEX WIRE CORPORATION FORTWAYNE G. INDIANA

GENERAL PURPOSE RELAYS
A.C. or D.C. General Purpase Multipale relays. Far circuit switching of electrical interlocking remote control devices. Features special crass-bar contacts for low-voltage, low current circuits or button type contacts for power switching sircuits. Request Bulletin No. 1060.

R-B-M "Contral" Division
Logansport, Indiana


COILED CORDS
Coiled Cords autamatically synchronize with moving companents that are electrically powered. There are no looping, tangling cards in the way... because Coiled Cords extend and retract as needed. Camplete line of cord sets and power supply cords. Write for new liferature.

Cords Limited Division DeKalb, Illinois


The complete line of "Essex Engineered" in ternal, lighting circuit, heater and lead wire . . . plus flexible conduit, power supply cords and thermostat cables, are approved by UL and CSA.

Wire and Cable Division Fort Wayne, Indiana


Specialists in the control field for more than 30 years, AEMCO offers you fresh, new ideas . . . ideas that save you money in automatic control . . . ideas that save you valuable time. Your inquiries are invited write for complete information.

Af AEMCO we specialize in both the design and manufacture of relays to your mechanical and electrical specifications. Should one of hundreds of stock AEMCO relays fail to meet your specialized requirements exactly, we will be happy to build a unit not only to meet, but to exceed those specifications.

industrial TIME CONTROLS

Now control that vital operation automatically! Available in many different models with automatic or manual re-set, AEMCO industrial time controls help eliminate waste . . . help speed up production. Variations are available on standard cycling models.... dials are easy to read, easy to set.

## Write Today

For detailed information on
AEMCO Relays or the complete AEMCO Industrial Time Control line


INCORPORATED
12 State Street - Mankato, Minn. Want more information? Use post card on last page.


After cable wires have been connected to connector at center, assembly is placed in chrome-plated mold at left and resin is poured to give final potted unit at right
to be wiped off after each operation.
The resin does not stick to the new molds. To keep the molten resin from leaking through the mold and fouling up the electrical contacts on the open face of the connector, the mold with the connector in it was dipped in cellulose
acetate butyrate plastic. This formed a cap which sealed off the exposed portion and could be easily peeled off and remelted after each operation.

The new method of potting the connectors saves 10 minutes work on each dipping and eliminates messy molds.

## Spool Guard Stops Snarls on Wire Rack

Strips of sheet aluminum pressing lightly against the rims of spools on wire racks solved the
problem of tangles in Lenkurt's San Carlos, Calif. plant. Formerly, when an operator at a cable har-


Strips of aluminum over rows of spools stop overrun and prevent wire from slipping over rim onto adjacent spool when operator reaches over harness board to pull down and cut off length

## The oscilloscope that holds traces indefinitely



SINGLE OR SUCCESSIVE writings can be retained as permanent transients by the 104 MEMO-SCOPE Oscilloscope until permanent transients by the intentionally erased. Stored traces may be almost inslantaneously erased by front panel push button or external switch.

TYPICAL APPLICATIONS
Study of transient electrical phenomena.
Presentation of tube or transistor characteristics without necessity of repetition.
Display of frequency response curves without the need of a repetitive sweep generator.
Spectrum analysis.
Shock testing.
Detection and measurement of relay bounce oricontact noise. High-speed or low-speed X-Y plotting.
Investigation of transient behavior of power supply regulation.
Study of camera shutter curves.


For additional information or demonstration of the new Model 104, write to HUGHES PRODUCTS - MEMO-SCOPE OSCILLOSCOPE
International Airport Station, Los Angeles 45, California

[^19]THE 104 MEMO-SCOPE Oscilloscope is available in the portable model (illustrated in shock test application), $13^{\prime \prime}$ wide. $14^{\prime \prime}$ high, $20^{\prime \prime}$ deep, or in rack-mounted model with standard $14^{\prime \prime} \times 19^{\prime \prime}$ relay panel. Optional plug-in preamplifiers are available for increased flexibility.

Now you can leisurely view, analyze and compare electrical phenomena lasting no longer than microseconds or minutes... without resorting to photography!
The new Hughes-developed memo-scope instrument is a self-contained storage-type oscilloscope which combines the distinct advantage of information retention with the features of a superior quality laboratory oscilloscope. Because of the high visibility of its brilliant displays, the MEMO-SCOPE Oscilloscope can be used in a well-lighted room without the aid of a viewing hood... where single transients or any number of successive waveforms may be studied at will and photographed as desired.
A hinged camera mount swings photographic apparatus aside for direct-display views.


## Satest Design VOLT=OHM=MILLIAMMETER

The Model 455 is a new portable multimeter that incorporates the latest engineering advancements including the new technique that protects both meter and the entire internal circuit against accidental burn-outs. In fact, any high voltage or current may be applied directly across any function, including ohms, without danger to the meter movement or associated components.
This instrument is available in two models: Industrial Model 455 . . . has a sensitivity of 20,000 ohms per volt AC or DC; Audio Model 456 . . . has a sensitivity of 20,000 ohms per volt $D C$ and 1,000 ohms per volt $A C$. The 456 also includes DB ranges and provision for output measurements.

## the hickok electrical instrument co.

10527 Dupont Avenue - Cleveland 8, Ohio

Ask for a demonstration of this most practical VOM from your Radio-Electronic Parts Jobber today! . . . Or write direct for technical details.

## DESCRIPTIVE DATA

- sIZE: 1 inch diameter $\times 21 / 4$ inches long
- WEIGHT: 3.8 ozs.
- FULL SCALE RANGE: 40 to 400 degrees/second
- LINEARITY: $0.1 \%$ of full scale to $1 / 2$ range, within $2 \%$ to full range
- RESOLUTION: 0.01\% full scale
- DAMPING: Fluid damped, temperature compensaled
- PICKOFF: Variable Reluctance type, 400-6,000 cps
- MOTOR EXCITATION: 6.3 volts . $400 \mathrm{cps}, 26$ volts $400 \mathrm{cps}, 9$ volls . $1,000 \mathrm{cps}$


## GOLDEN GNAT

 Miniature Rate Gyros for Missiles and AircraftHere is a precision, minature rate gyro. It's tiny . . . measures only 1 inch in diameter and $21 / 4$ inches in length. It's rugged ... withstands 100 G shock and 10 G vibration to $2,000 \mathrm{cps}$. It has a record of proven performance.
Even under the-most severe environmental conditions the Golden Gnat will perform as required. To make this possible many unique design details have been incorporated. One such detail is the Gnat's gold plated steel housing for improved corrosion resistance and positive hermetic sealing.

Wherever the need exists for high performance miniature rate gyros such as for autopilot stabilization in missiles and aircraft, antenna stabilization and fire control applications, the Golden Gnat is ideally suited. Write for Bulletin GN . . . Minneapolis-Honeywell, Boston Division, Dept. 7, 1400 Soldiers Field Road, Boston 35, Mass.

BOSTON<br>D|VISION



# DELAY LINE WITH BUILT-IN OVEN PROVIDES HIGH STABILITY PERFORMANCE IN MEMORY CHANNEL UNITS 

BLILEY TYPE SDL-25T TEMPERATURE CONTROLLED DELAY LINE FOR USE IN MEMORY CHANNEL UNITS, IS SUPPLIED TO SPECIPICATIONS IN DELAY TIME RANGE 100 TO 1000 MICROSECONDS WITH STABILITY $\pm .01 \%$ FROM $0^{\circ} \mathrm{C} . \mathrm{TO}^{\circ}+60^{\circ} \mathrm{C}$. CARRIER FREQUENCY: 10 mc TO 40 mc . OVEN HBATER VOLTAGE: 110 V ; POWER, 30 WATTS.

## BLILEY <br> ELECTRIC COMPANY <br> UNION STATION BUILDING ERIE, PENNSYIVANIA



Rolling out Bondmaster M620 adhesive on palette just as it comes from can, to give uniform coating on application roller. Alnico magnets and lamination stack to be joined for Westinghôuse recording wattmeter are shown in background
fering expansion coefficients of the two metals, the danger of changing magnetic qualities because of the heat and unrelieved mechanical strains, and possible entrapment of corrosive soldering flux in the joints.

- Advantages of Adhesive-The limitations and potential hazards of soldering or brazing temperatures can be eliminated substantially by the use of heat-curing epoxy adhesives with their relatively low bonding temperatures ( 260 F to approximately 535 F ). The use of adhesives for metal bonding also makes it possible to simplify an entire phase of mass production by eliminating the critical application techniques demanded for truly efficient soldering operations.

Although two-component epoxy adhesives have long been used for


[^20]

Keller "Wire-Wrap" tools play an important part in assembly of these well-known products: TV sets, computers, electric motors, radios.

## Why solderless connections with

## Keller <br> "Uire- Clrafo" Tools are fast . . . reliable

Keller "Wire-Wrap" tool is fast operatingonly seconds per connection. It automatically wraps wire around terminals to make solderless, permanent connections. No additional operations required. Tool weighs just one pound . . . no operator fatigue to slow down production schedules.
There are no faulty connections requiring expensive hand repair work. To date, well
over 700 million connections have been made with "Wire-Wrap" tools without a reject. The exclusive controlled-tension compresses wire into terminal to assure permanent metal-tometal contact. Either air or electric models.
Possibly you can step up production with "Wire-Wrap" tools while reducing assembly costs. Consult with your Gardner-Denver Industrial Specialist.

## 2.7 to 3 seconds to make a connection



ENGINEERING FORESIGHT——PROVED ON THE JOB
IN GENERAL INDUSTRY, CONSTRUCTION, PETROLEUM AND MINING



Double sealing . . . inorganic construction make New 'Diamond H' Series S
Relays Doubly Dependable

in dry circuits

Separately sealed coils isolated from completely inorganic switches within their hermetically sealed cases make these new "Diamond H" Series S aircraft type 4PDT relays supremely reliable in dry circuits.

Physically and electrically jnterchangeable with "Diamond H" Series $R$ relays, widely used in guided missiles, ${ }^{3}$ computers, jet èngine controls, automation controhsystems and similar critical applications because of their broad range of performance characteristics, Series S relays will permit intermixing of dry and wet circuits safely.

Contacts are specially processed and cleaned before assembly; subsequent contamination from gases off the coil insulation is prevented by the coil seal. The switch mechanism has been simplified and is completely inorganic to eliminate other possible causes of malfunctioning.

Standard contact ratings include 30 V., D. C.; 115 V., A. C.;

2, 5, 7-1/2 and-10 $A$, resistive; 2 and 5 A., inductive, with special ratings available to 350 V ., D. C., 400 MA , of other combinations inclữing very low voltages and amperages, or amperages up- to 20 for short life requirements. Coils are available with resistances of 1 ohm to 50,000 ohms. Operating time of 24 V . models is 10 ms . or less; dropout less than 3 ms .

Vibration resistances range from $10-55$ cycles at $1 / 16^{\prime \prime}$ double amplitude to $55-2,000 \mathrm{cy}$ cles at 20 " G "; operational shock resistances to 50 " $G$ " plus, and mechanical shock resistance up to 1,000 " $G$ ". Nine standard mounting arrangements, plus a ceramic plug-in socket, are available. The unit displaces only 1.6 cubic inches, excluding terminals.
"Diamond $H$ " engineers will be happy to work out a variation to meet your specific requirements. Tell us your needs . . . or write for bulletin on new "Diamond $H$ " Series S relays.

# THE HART MANUFACTURING COMPANY 

202 Bartholomew Avenue, Hartford, Conn.



Applying cement to laminated core


Assembling parts to be bonded in special jig. Thumbscrews on side and at far end provide all the contact pressure needed
bonding in the aircraft industry, the need for mixing components immediately before use was a serious drawback for mass production. The recent development of a single-component 100 -percent solids epoxy adhesive overcame the physical difficulties involved. Although not as strong as the best available aircraft adhesives in peel strength and in its ability to withstand continuous service at high heat, the new adhesive development offers an excellent balance of good strength properties which appear to be more than sufficient for conventional metalworking use.
The new one-part epoxy paste adhesives can be applied right from the shipping container as an easily-spread paste, about the

# Fast, convenient, dependable precision wave analyzers frequency-selective voltmeters 



Sierra 121 A Wave Analyzer

Sierra now offers exactly the instruments you need for wave analysis, wire carrier and microwave subcarrier applications.
Sierra 121A Wave Analyzer is a highly selective, double superhetcrodyne receiver covering frequencies from 15 KC to 500 KC and providing wave analysis data directly in voltage and dbm at 600 ohms. The instrument offers the selectivity required for use with new single sideband carrier systems.
Sierra 158A Wave Analyzer is similar but covers frequencies from 500 KC to 10 MC .
Both analyzers have high selectivity, accuracy of $\pm 2 \mathrm{db}$, spurious response at least 50 db down, and a signal measurement range of $77.5 \mu \mathrm{v}$ to 97.5 volts. The instruments are supplied in cabinet mountings which are readily adaptable to relay rack mounting.

## SPECIFICATIONS - SIERRA VOLTMETERS

| Model | Frequency Range- $k$ e | Selectivity |  | Aceuracy |  | Direct Reading in dbm |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Down 3db | Down 45db | Frequency | Measuring | Balanced | Unbalanced |
| 1016 | 20-500 | $\pm 550 \mathrm{cps}$ | $\pm 2900 \mathrm{cps}$ | Note A | $\pm 3 \mathrm{db}$ | Note D | 600 ohms |
| 103B $\dagger$ | 3-40 | $\pm 400 \mathrm{cps}$ | $\pm 3000 \mathrm{cps}$ | $\pm 0.5 \mathrm{kc}$ | $\pm 3 \mathrm{db}$ | Note D | 600 ohms |
| 104 A | 5-150 | $\pm 300 \mathrm{cps}$ | $\pm 1500 \mathrm{cps}$ | $\pm 1 \mathrm{hc}$ | $\pm 3 \mathrm{db}$ | Note D | 600 ohms |
| 108B | 15.500 | $\pm 550 \mathrm{cps}$ | $\pm 2900 \mathrm{cps}$ | $\pm \begin{gathered} \pm \mathrm{kc} \\ \text { Note } \end{gathered}$ | $\pm 2 \mathrm{db}$ Note C | $\begin{aligned} & 135 \text { ohms } \\ & \text { Note D } \end{aligned}$ | 600 ohms |
| 114A | 100-800 | $\pm 550 \mathrm{cps}$ | $\pm 2900 \mathrm{cps}$ | Note A | $\pm 3 \mathrm{db}$ | Note D | 600 ohms |

All Sierra Carrier Frequency Voltmeters feature built-in calibration ascillators and circuits for level calibration, have aural monitoring jacks, and (except 103B) are furnished with Sierra Model 149A Precision Spiral Scale Dials.
$\dagger$ Contains carsier re-insertion osciltator for monitoring suppressed carrier systems. Furnished with planetary drive dial. Note $A$. Ranges from $\pm 2 \mathrm{KC}$ at low end of dial to $\pm 3 \mathrm{KC}$ ot upper end. Note B. $\pm$ : KC in the 48 KC 0256 KC region. Note C . $\pm 1 \mathrm{db}$ for +30 db to -40 db attenuator steps on 135 ohm balanced measurements Note D. All models may be converted for 135 and 600 ohm balanced line measurements by convenient plug-in bridging transformer, Model 130D.


Sierra 101 C Carrier Frequency Voltmeter
For carrier system and other field or laboratory work between 3 kc and 800 kc , Sierra offers 5 accurate, stable, tuned vacuum tube voltmeters. All are direct reading in voltage and dbm at 600 ohms from - 80 dbm to +42 dbm .


Line Bridging Yransformer
Model 130D Dual Impedance Line Bridging Transformer converts VTVM and wave analyzer inputs from singleended to balanced operation. Covers 3 kc to 500 kc , bridges both 135 and 600 ohm balanced lines.


Impedance Meter, Line Fault Analyzer Sierra 166 Impedance Meter (at left) measures impedance on high noise circuits, 30 kc to 300 kc ; measures on "hot" lines through coupling capacitor.
Sierra 124 Line Fault Analyzer pin points shorts, opens or grounds on open wire lines. Direct reading, range $1 / 2$ to 200 miles, accuracy $1 / 4$ mile.

Data subject to change without notice

Sierra Electronic Corporation
A Subsidiary of Philco Corporation
3885 Bohannon Drive
DAvenport 6-2060 Menlo Park, California, U.S.A.
Sales Representatives in Major Cities
Canada: Allas Radia Carparatian, Ltd., Taronta, Montreal, Vancouver, Winnipeg Expart; Frazar \& Hansen, Ltd., Son Francisca, New Yark, Los Angeles

# FREE BOOKLET ...tels daut working with "the leaders" on exciting, advanced projects 

We're proud of the men and of the work they do. We'd like you to become better acquainted with the setting in which they work, live and play.
With your permission, we'd like to send you a booklet describing their activities and your opportunities at the Mechancial Division of General Mills.
No need to write a letter for your copy. Just send the coupon below. We'll not bother your further, and of course, we'll send the booklet in complete confidence.
If, after reading the booklet, you'd like still more information or see a chance to do big things with the type of company you've always wanted to be with, we'll gladly send you more facts. Or, perhaps we can get together for a personal visit.

## capsules from the Mechanical Division "OPPORTUNITY BOOKLET"

recognition we help our people realize their fullest capabilities - pay accordingly. Deserving persons advance rapidly.
FINANCIAL SECURITY We're one of the nation's largest most diversified companies. (We've paid dividends without reduction since 1929.)
TIME FOR FUN . . . and hundreds of places to have it, the year around, in the land of 10,000 lakes.
CONGENIAL ASSOCIATES Our people tell us they like their work. Our extremely low rate of turnover says so too. They're friendly, ordinary people (with extraordinary talents) who like to see a job well done.
COST OF LIVING IS LOWER ... shops are complete, easy to get to.
delightful residences And inexpensive too. Many General Mills families own "dream" homes in resort-like settings only minutes from work.
SUPPLEmENTARY BENEFITS . . . all the usual ones and more besides.
schools are excellent . . . with low pupil-to-teacher ratio.

## MECHANICAL DIVISION OF

Minneapolis 13, Minnesota

For a copy of this interesting, informative booklet, complete the coupon and mail today.
booklet tels about EXCITING OPPORTUNTIIES IN THESE FIELDS:

## Missiles

Applied Mechanics
Geophysics
Underwater Ordnance
Electronic CounterMeasures
Digital \& Analog Computers
Instruments \& Controls
Solid State Physics
Microwaves \& Antenna
Infrared Systems
Inertial Systems
Systems Analysis \& Design
Servomechanisms
Balloon Systems
Upper Atmosphere Research
Fine Particle Technology
Surface Chemistry
Optics
Mechanical Design
Airborne Early Warning
Radar Systems
Information Theory
Production Engineering
consistency of moderately firm cold cream. It may be spread by spatula, brush or even by roller squeegee.

- Curing-A wide range of possible curing cycles is available, depending upon a maximum temperature which may be tolerated or available for making the assembly or, conversely, upon the required speed of application if curing time is a limiting factor in production. Alternative cure cycles are:
Temperature in Minimum Curing Bonding Layer

Time
$535 \mathrm{~F} \quad 7$ to 10 minutes
$500 \mathrm{~F} \quad 12$ to 15 minutes
$450 \mathrm{~F} \quad 20$ to 25 minutes
$400 \mathrm{~F} \quad 40$ to 50 minutes
$350 \mathrm{~F} \quad 1 \frac{1}{2}$ to 2 hours
$300 \mathrm{~F} \quad 4$ to 5 hours
$260 \mathrm{~F} \quad 20$ to 24 hours
Only low contact pressures, on the order of 5 to 15 psi , are required.

Once applied, the adhesive does not flow or drip during the curing cycle. Thus, normal post-cleaning operations involved in soldering, brazing and conventional cementing, are completely eliminated. The new material will not drip or run regardless of the curing cycle used. This unique thixotropic characteristic makes this type of paste adhesive particularly effective for poor-fit and similar void-filling applications.

- Cost Factors-Silver solders, as an average, currently sell within a range of $\$ 11$ to $\$ 18$ per pound. As opposed to this, M620 in pro-


Placing jig in oven for curing bond


This new Size 4 A.C. solenoid contactor is ideal for use in motor starters and controllers for main line, accelerating and reversing purposes and for resistance heating and lamp loads as well.

It's the new Bulletin 4454 -incorporating many advanced design features found on Ward Leonard's Sizes 0 to 3 contactors. Check these outstanding features:

New sintered-silver-cadmium-oxide contacts -can repeatedly handle high inrush currents without a sign of contact welding, excessive pitting or other damage.

Simple, compact solenoid design-excellent for modern metal control panels using accessible front-of-board wiring, particularly useful where panel space is limited.

Available with two or three main poles and up to 4 side-mounted auxiliaries. Also with provision for mechanical interlocking and addition of overload relays.

Completely described in Bulletin 4454. Write for your copy today. The Ward Leonard Electric Co., 30 South Street, Mount Vernon, New York. (In Canada: Ward Leonard of Canada Ltd., Toronto.)

The ratings listed are those recommended by the National Electrical
Manufacturers Association.
-*These ratings apply to open or enclosed contactors.

ENGINEERING DATA
Size 4 A.C. Contactor Ratimgs*

| Service | 8-Hour Ampers Rating |  | Enclosedf Power Rating |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Volts ${ }^{\text {Three }}$ |  | H.P. |
|  | Open | Enclosed |  |  |  |
| Across-the-Line Starting | 150 | 135 | $\begin{gathered} 110 \\ 220 \\ 440-550 \end{gathered}$ |  | 25 50 100 |
| Across-the-Line Plug-Stop or Jogging | 150 | 135 | $\begin{gathered} 110 \\ 220 \\ 440-550 \end{gathered}$ |  | 15 30 60 |
| Service | B.Hour Ampere <br>  | Single Phase <br> Volts <br> K.W. |  | Three Phase <br> Volts K.W. |  |
| Resistive Heating Load** | 150 | 310 220 440 550 | 15 30 60 75 | 110 220 440 550 | 26 52 105 130 |
| Tungsten Lamp <br> Lighting or Infrared Heating Load** | 120 Amperes for 250 Volt Circuits or Less |  |  |  |  |



To concentrate on whittling pennies from a quotation sometimes may be a money-saving effort. But when it comes to buying springs it can be a costly practice, too.
A quoted price means little if basic cost factors haven't been fully explored. For instance:

Is the spring designed most efficiently for the job, in its simple form, without unnecessary multiple operations?
Have exact and complete specifications been available as a quotation basis?
Were delivery requirements and production schedules taken into account?
Were production-line and assembly details considered from the point of spring packing and shop handling?
Was the design and production experience of the spring supplier used to save time, costs and headaches?
If all the above basic factors weren't considered in reducing spring costs to a minimum - you can't save money even with a sharp pencil. Lewis offers you these services . . . and to help you solve a new product problem, will prepare machine-made samples for you, working closely with your design, engineering and production staff.

## LEWIS SPRING \& MANUFACTURING COMPANY 2656 W. North Avenue, Chicago 47, Illinois




Pencil points to extremely tine glue line achieved in finished assembly
duction quantities is priced as less than $\$ 2.00$ per pound at present. Additional savings accrue for greater uniformity in all aspects of application, along with ultimate production simplification.

- Procedure-The adhesive is first rolled out on a palette to enable the operator to obtain a uniform coating on his application roller. The adhesive is transferred by applying the roller over the magnet face, then over the laminated core.

The next step involves the mating of the parts to be bonded in a specially designed jig. Tightening of thumb screws holds the sections in position during heat cure. No pressure beyond mere contact and positioning pressure is required to effect the bond, so the need for costly pressurizing equipment is avoided.

The simple jig is placed in any standard oven for curing at any of the standard cycles. The jig is then removed from the oven


Completed wattmeter movement employing epoxy adhesive bonds in magnetic system

# Now a standard line <br> $\rightarrow$ - Finlin $^{\circ}$ <br> warlable tipansformeiss for cIGCH Fifzerlancy applicaitones 

## - $1 / 3$ the weight $-1 / 2$ the size of 60 cycle units

Designed for use in high frequency control systems where weight and space must be minimized, these POWERSTATS are ideal for ship, aircraft, guided missile and other $400 / 800$ cycle applications.

Listed are some of the standard line of POWERSTATS for high frequency applications. However, many high frequency requirements necessitate designing to individual needs. The Superior Electric Company will be pleased to work with you on the design of POWERSTATS to satisfy new or unusual needs.

| INPUT |  | OUTPUT |  |  | MANUALLY.OPERATED MODELS |  |  |  |  | MOTOR-DRIVEN MODELS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VOLTS |  | VOLTS | MaX. <br> AM- <br> PERES | $\begin{array}{\|l\|l\|} \operatorname{MAX}- \\ \operatorname{IMUM} \\ \text { KVA } \end{array}$ | $\begin{gathered} \text { TYPE } \\ \text { OF CON- } \\ \text { STRUCTION } \end{gathered}$ | TYPE | $\begin{aligned} & \text { METHOD } \\ & \text { TURNING } \end{aligned}$ |  | $\begin{aligned} & \text { ROX. } \\ & \text { GHH } \\ & \text { NOSHP. } \\ & \text { SHP. } \end{aligned}$ | TYPE | STANDARD MOTOR. DRIVES | $\left\|\begin{array}{c} \text { SPEED } \\ \text { SR } \\ \text { TRAVL } \\ \text { IN } \\ \text { SCONDS } \end{array}\right\|$ | APP WE POU NET | $\begin{aligned} & \text { ROX. } \\ & \text { GHI } \\ & \text { NDI) } \\ & \text { SHIP. } \end{aligned}$ |
| simgle phase |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 28 | 400/800 | 0-28 | 2.0 | 056 | Open | 3HS02UK | Knob | 0.5 | 0.9 |  |  |  |  |  |
| 28 | 400/800 | 0-28 | 4.0 | . 112 | Open | 3HSO4UK | Knob | 0.3 | 1.2 |  |  |  |  |  |
| 120 | 400/800 | $\begin{aligned} & 0-120 \text { or } \\ & 0-140 \end{aligned}$ | 1.0 | 14 | Open | 1HSDIUK | Knob | 0.9 | 1.3 |  |  |  |  |  |
| 120 | 400/800 | 0-28 | 2.6 | . 073 | Open | 1RHSO3UK | Knob | 0.5 | 1.0 |  |  |  |  |  |
| 120 | 400/800 | $\begin{array}{\|l\|} \hline 0-120 \text { or } \\ 0-140 \end{array}$ | 3.0 | 42 | $\begin{aligned} & \text { Open } \\ & \text { Square } \\ & \text { frame } \end{aligned}$ | IHMSD3UK | Kпо b | 2.4 | 2.8 | OWIHMSO3U | 28 voll D.C | 60 | 4.5 | 5.1 |
|  |  |  |  |  |  |  |  |  |  | Aminmsozu | $\begin{aligned} & 120 \text { Voll A-C } \\ & 400 \text { Cycles } \end{aligned}$ | 60 | 4.5 | 5.1 |
| 120 | 400/800 | $\begin{aligned} & \left.\begin{array}{c} 0-120 \\ 0-147 \\ 0 \end{array}\right) \end{aligned}$ | 7.5 | 1.0 |  | Ihms07uk | Knab | 3.4 | 3.8 | OM 1 HMSOTU | 28 Volt D.C | 60 | 5.5 | 6.1 |
|  |  |  |  |  |  |  |  |  |  | AM1hms07U | $\begin{aligned} & 120 \text { Volt A-C, } \\ & 400 \text { Cycles } \end{aligned}$ | 60 | 5.5 | 6.1 |
| $-120$ | 400/800 | $\begin{array}{l\|} 0-120 \\ 0-140 \end{array}$ | 15.0 | 2.1 | Open | 1HL15UK | Knob | 114 | 14.0 | OMMLILISU | 28 Voll D.C | 60 | 13.2 | 16.2 |
|  |  |  |  |  |  |  |  |  |  | AM1HLI5U | 120 Volt A-C, 400 Cycles | 60 | 13.2 | 16.2 |
| 240 | 400/800 | $\begin{array}{\|l\|} 0-240 \text { or } \\ 0-230 \end{array}$ | 3.0 | . 84 | Open Square Frame | 2HMSO3UK | Knob | 3.4 | 3.8 | OM2HMSO3U | 28 Volt D.C | 60 | 5.5 | 6.1 |
|  |  |  |  |  |  |  |  |  |  | AM $2 \mathrm{HMSO3U}$ | $\begin{aligned} & 120 \text { Volt A.C, } \\ & 400 \text { Cycles } \end{aligned}$ | 60 | 5.5 | 6.1 |
| 240 | 400/800 | $\begin{aligned} & 0-240 \text { or } \\ & 0-280 \end{aligned}$ | 9.0 | 2.5 | Open | 2HLO日UK | Knob | 12.8 | 15.4 | OM2 2 LO90 | 28 voll 0-C | 60 | 14.6 | 17.6 |
|  |  |  |  |  |  |  |  |  |  | AM2HLOSU | 120 Volt A.C, 400 Cycles | 60 | 14.6 | 17.6 |
| three phase |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 240 | 400/800 | $\left.\right\|_{0-2400} ^{0-200}$ | 3.0 | 1.5 | Open | 2HMSO3UK-3Y | knob | 76 | 8.5 | Dm 2Hwso3u-3y | 28 Volt D.C | 60 | 9.3 | 10.5 |
|  |  |  |  |  |  |  |  |  |  | Am2HMSO3L-3Y | 120 Voll A.C. 400 Cycles | 60 | 9.3 | 10.5 |
| 240 | 400/800 | $\begin{array}{\|l\|} \hline 0-240 \text { or } \\ 0-280 \end{array}$ | 7.5 | 3.6 | Open | 2HMSOTUK.3Y | knob | 10.6 | 11.6 | Om2HMS07U-3Y | 28 Volt D.C | 60 | 12.3 | 13.6 |
|  |  |  |  |  |  |  |  |  |  | AM2HMSO7U-3Y | 120 Volt A.C. 400 Cyctes | 60 | 12.3 | 13.6 |
| 240 | 400/800 | $\begin{aligned} & 0-240 \\ & 0-280 \\ & 0-280 \end{aligned}$ | 15.0 | 7.3 | Open | 2HLI5UK.3Y | Knob | 34.5 | 41.0 | OM2 2 HL15U-3Y | 28 Volt D-C | 60 | 38.0 | 45.0 |
|  |  |  |  |  |  |  |  |  |  | AM2HL15U.3Y | 120 Volt A.C. 400 Cycies | 60 | 38.0 | 45.0 |
| 480 | 400/800 | $\begin{aligned} & 0-480 \text { or } \\ & 0-560 \end{aligned}$ | 3.0 | 2.9 | Open | 4HMSO3UK.3Y | Knob | 16.6 | 11.6 | OM4HMSO3U-3Y | 28 volt 0.C | 60 | 12.3 | 13.6 |
|  |  |  |  |  |  |  |  |  |  | AM4HMSO3U-3Y | 120 Volt A-C. 400 Cycles | 60 | 12.3 | 13.6 |
| 480 | $400 / 800$ | $\begin{array}{\|l\|} \hline 0-480 \text { or } \\ 0-560 \end{array}$ | 9.0 | 87 | Open | 4HL09UK-3Y | Knob | 39.0 | 45.5 | OM4HLOSU.3Y | 28 Volt D.C | 60 | 42.5 | 49.5 |
|  |  |  |  |  |  |  |  |  |  | AM4HLOSU-3Y | 120 Volt A-C, 400 Cycles | 60 | 42.5 | 49.5 |

HS SERIES


Be sure to see SUPERIOR ELECTRIC'S Mobile Display when it is in your area

Offices: Los Angeles, California - San Froncisco, Californial. Taronto, Ontorio, Canoda: Miami, Florida - Chicag, illinois Boltimore, Marylond - Detroit, Michigon New York, New York Cleveland, Ohio Dallos, Texas - Seotle, Washington

THE
SUPERTORETECTRIC COMPANY
205 bRADLEY AVENUE, BRISTOL, CONNECTICUT
Send new Bulletin $\mathrm{P} 257 \mathrm{H} \square$ Have your representative call $\square$

## Name. .

Company . .
Address .
City

## BIG PLUS in PRECISION POTS <br> RL-270A-15/8 Precision Poten. tiometer... one of five :izes from $11 / 4^{\prime \prime}$ to $5^{\prime \prime}$ dianster. Nonmetallic housing has it dimensional stability, withat=nds -70 F to +300 F . <br>  <br> RL-270B-2 shows ganging which is ovailable on all RL-270B models. Gamewell design re quires only $3 / \mathbf{s}^{\prime \prime}$ per section, and external clamps provide unlimited phasing. <br>  <br> Gamewell Blue Line RL-270 A\&B series

RL-270A-5 is the largent in the Blue Line series. As with others, it is usually supplied with 3 -hale mounting. Serva anc threaded bushing type mountings are available. Also many special ieatures . . send us your requirements.
and allowed to cool. The finished assembly has an extremely fine glue line. The thickness of this glue line was predetermined at the time the adhesive was rolled onto the components to be asembled, since the adhesive is thixotropic and does not flow during cure.

## Grinding Servo Stators

Plunge grinding of assembled stator stacks for servo motors is monitored automatically by an Arnold grinding caliper coupled with a Federal Dimensionair gage


Assembled stator on 16-pin fixture is inserted in mating hales of fixture located in headstock chuck and held by springloaded tail stock


Operator brings grinder up to work with right hand while watching pointer of air gage which indicates outside diameter. Adjustable strips of black tape on dial window show tolerance range. Flexible air line runs from gage to air leak valve at overhead pivot of caliper arm which rides against stator


## The first family of 600 ma Series-String TV Tubes

In 1953, Tung-Sol became the leading proponent of 600 ma series heater tubes for TV receivers. This program was made possible through advanced designs in heater and cathode structures that would permit controlled heater warm-up time.

The success of this pioneering led further to the development of series-string tubes for 450 and 300 ma currents. These are designed for sets using smaller numbers of tubes.

In all, nearly one hundred of these types have been introduced, indicating the complete success of the
series-string design principle.
Tung-Sol is currently supplying all of the seriesstring tube types required for replacement service as well as for initial equipment production.


## ${ }^{5}$ TUNG-SOL

ELECTRON TUBES


# Bourns TRIMPOT ${ }^{\circledR}$ MODEL 230 HUMIDITY-PROOF 

## Guaranteed to meet MIL Specs

This completely sealed TRIMPOT is manufactured and tested to meet Military Humidity Specification MIL-E-5272A (10 days).
Model 230 features a power rating of 0.4 watt at $50^{\circ} \mathrm{C}$ and a maximum operating temperature of $135^{\circ} \mathrm{C}$. It is available from stock in standard resistance values from 10 ohms to 20,000 ohms.
In addition to reliable performance under severe humidity and salt spray conditions, this instrument will maintain accurate settings during extreme vibration, acceleration and shock encountered in aircraft and missiles.
Each TRIMPOT is individually inspected for compliance to guaranteed specifications, and is subjected to rigid quality control sampling tests to verify conformance to all specifications. 25 -turn screwdriver adjustment, self-locking shaft, space-saving rectangular configuration and subminiature size are features also found in other Bourns TRIMPOT models. (Size: $516 \times 3 / 8 \times 1 \frac{11212}{}$ ).
Send for catalog sheet 230 .


LABORATORIES, INC.
General Offices: 6135 Magnolia Ave., Riverside, Calif. Plants: Riverside, California-Ames, Iowa

[^21]mounted on a Brown \& Sharp No. 13 universal grinding machine in the Mechatrol Division plant of Servomechanisms, Inc. The gage frame bearing against the stator actuates a precision airprobe which controls the amount of air leakage in the gage system. The gage dial is calibrated to read directly to 0.00005 inch, so that the machine operator can grind to a precise outside diameter without stopping frequently to caliper the work manually.

## Ferrule-Applying Tools For Shielded Wire

Two special tools supplement a conventional crimping tool in the procedure used at Ford Instrument Co. for applying ferrules inside and outside the braided shielding of polystyrene-insulated wire.

As the first step, the blue-vinyl outer jacket is removed conventionally with a wire stripper. The outermost of the two ferrules is then pushed over the exposed shield and back over the remaining vinyl where it is temporarily


Pushing inner ferrule under shielding. Outer ferrule is temporarily over vinyl jacket, with two grounding wires under it. Grounds are made at the ferrules rather than at the connecting plugs


# Boxed in? 

## Give your ideas (and yourself) a chance to develop... at Western Electric

Your career-to thrive-must be rooted in the good earth of opportunity. And few, if any, other companies offer this in the same degree as you'll find with us.

Give yourself this chance to grow . . . in a company that promotes from within. It's significant that of the 11,000 management positions we'll have ten years from now, 8,000 must be filled by newly promoted people.

Engineers at Western Electric participate in the planning and actions inherent in the broad management of the company. Here they become more than engineers since they acquire knowledge of production, handling of people, accounting, merchandising, etc. Fifty-five percent of the college graduates in our upper levels of management have engineering degrees.

Or look at the opportunity this way. Our job - in which engineers are key figures-is to make, distribute and install equipment needed by the Bell System. There's a constant need for new products, new processes, new facilities... new ideas. It's work that runs the gamut: electronic switching, printed circuits, miniaturization, automation, etc., (We're a natural incubator for automation since many of the things we make are needed by the millions.)

Besides our telephone job we've handled a continuous flow of defense contracts over the years . . . major projects like producing the Nike guided missile systems. Our joint telephone-defense job demands that young engineers and scientists develop as rapidly as possible. A full-time engineering education program is given new engineers during working hours to aid them to more easily assume a full engineering role in the company. Also, a tuition refund plan is provided for out-of-hours study at nearby colleges.

Check the career openings for which you may be qualified (mechanical, electrical, chemical and civil engineers; physicists and mathematicians). Send resume of education and experience to Engineering Personnel, Room 1066, Western Electric Co., 195 Broadway, New York 7, N. Y.


Manufacturing plants in Chicage, Ill.; Kearny, N. J.; Baltimore, Md.; Indianapolis, Ind.; Allentown and Laureldale, Pa.; Burlington, Greensboro and Winston-Salem, N. C.; Buffalo, N. Y.; North Andover, Mass.; Lincoln and Omaha, Neb.; St. Paul and Duluth, Minn. Distributing Centers in 30 cilies and Installation headquarters in 16 cities. Also, Teletype Corporation, Chicago 14, Illinois.

out of the way. If additional leads are to be connected to the ferrule termination, their stripped ends are pushed under the outer ferrule at this time.

- Installing Ferrules-The shielding is pushed back with the fingers to spread it out, then cut away with scissors about $\frac{1}{4}$ inch from the blue-vinyl jacket. The inner ferrule is pushed over the polystyrene insulation and worked under the remaining exposed shielding as far as possible with the fingers.

On wires having a tight shielding weave, a tubular shield-spread-


Telescoping ferrules together with modified pliers. In background is tubular tool used for reaming out shielding
ing tool is slipped over the polystyrene and used to ream out the braid before pushing in the ferrule.

Modified pliers are used to push the outer ferrule over the inner ferrule until the outer ferrule is just off the blue vinyl and is entirely over the shielding. Notches in the ends of the pliers correspond to the insulation diameters, so the wire projects through each notch when telescoping the ferrules. The inner ferrule is $3 / 32$ inch longer than the outer, so projecting strands of shielding cannot pierce the polystyrene. A pin inserted in one plier jaw acts as a stop, insuring uniform application.

Finishing Operations-The two


# How measure the impact of micro-meteorites on the first "Earth Satellite"? 

When physicists at the U.S. Naval Research Laboratory consider an instrument or a material to record accurately the secrets of outer space-it's not size alone that counts, but dependable, reliable precision.

The strip of "Nichrome"* evaporated on glass ("A" in the photo above) which may be fitted to the outer skin of the Satellite, measures only $1 / 4^{\prime \prime}$ wide x $1 \frac{1}{2 \prime \prime}$ long. Its thickness: 100 Angstrom units $(1 / 10,000 \mathrm{~mm})$. Its function: to measure

The surface erosion caused by the impact of micro-meteorites. The resistance of the Nichrome ribbon increases as the film becomes pitted by meteor particles.
"Nichrome is being considered for making this gage," states the Naval Research Laboratory, "because it supplies electrical resistance in a desirable range; adheres satisfactorily to glass in thin film form; and has a very low thermal coefficient of resistance."
There'll be no one on hand, 300 miles
out in space, to check on or supervise the performance of the Nichrome strip. Nichrome needs no one. It will do its job dependably there-just as it will in your electronic or electrical equipment, after it is in your customers' hands.

And remember, Nichrome is only one of the 132 special purpose alloys developed by Driver-Harris since 1899 for electrical heating, resistance, and electronic applications. Do you need a special alloy? Send us your specifications.
*T. M. Reg. U.S. Pat. Off.
Driver-Harris
HARRISON, NEW JERSEY


WHEN MOTOROLA designed this 10 inch air-borne radar indicator to operate at $60,000 \mathrm{ft}$. they eliminated high voltage arc-over by pressurizing the unit. But this created excessive heat.
TO DISSIPATE HEAT an air-to-air heat exchanger, using three Joy Axivane fans was built in. Two external fans blow outside air between two plates separated by aluminum tubing. Another Joy fan, sealed inside the pressurized radar unit circulates hot inside air thru this tubing.

THESE JOY FANS must operate in the wide temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. . . tough treatment.
Joy has over 250 models and 1300 designs of these high performance fans ready to solve your toughest air-moving problem . . . be it electronic cooling, de-icing and defogging or ventilation. Write Joy Manufacturing Company, Oliver Building, Pittsburgh 22, Pa, In Canada: Joy Manufacturing Company (Canada) Limited, Galt, Ontario.

Write for FREE Bullotin 143-39



Shearing exposed strands of shielding with modified end mill after crimping ferrules


Placing identifying sleeves on leads. Ad-hesive-faced cardboard in front of operator serves as tote tray for sleeves
ferrules are now crimped together with a standard hand-operated crimping tool. Projecting ends of shielding are then sheared off with a modified Pratt \& Whitney eightflute end mill. This is hollow so it can slip over the polystyrene and the inner ferrule, after which a fraction of a turn shears off the strands flush against the outer ferrule. Terminations of this type are used on a wiring harness for a U.S. Navy computer.
-Identifying Leads-After applying the ferrules, each termination is identified with its own numbered laminated vinyl sleeve. These sleeves are made by Duramark, Inc., Port Washington, N. Y., by printing the identifying numbers on white vinyl, then laminating with a transparent vinyl to protect

## Simpson

## WIDE-VUE

## panel instruments



## in styling and visibility

The clean, graceful lines of these "Wide-Vue" panel instruments add two plus values to your equipment. First. style-ultramodern beanty that blends with the advanced design of today's panels. Second, functionalism-longer scales together with wide-angle readability. The $21 / 2^{\prime \prime}$ size, for example, has the same scale length as a conventional $31 / 2^{\prime \prime}$ panel instrument. The durable, plastic cover is formed in one piece, and can be supplied with hlack or color finishes. Custom-built in $21 / 2^{\prime \prime}, 31 / 2^{\prime \prime}$, and $41 / 2^{\prime \prime}$ sizes. External magnet type movenient or self shielded core magnet meter movement.

# HIGH TEMPERATURES 


for applisations requiring prolonged heat endurance at temperatures up to $260^{\circ} \mathrm{C}$.
Varglas Silicone tubing and sleeving were developed by Varflex for applications involving continuous operating temperatures up to $260^{\circ} \mathrm{C}$. Exceptional stability is combined with the following qualities ...
FLEXIBILITY... sharp turns and $90^{\circ}$ bends cause no cracking or peeling - no loss of dielectric strength.
DIELECTRICAlly-STRONG-All grades conform to NEMA and MIL-I-3190 standards.
MOISTURE-RESISTANT-including resistance to salt water, mild alkalis and acids.
flame-resistant - Standard burning test is 45 seconds to burn 1 inch. Can be made selfextinguishing on special order.
COLD-RESISTANT-Excellent resistance to chafing and abrasion, flexible to $-35^{\circ} \mathrm{C}$.*
*For temperatures down to $-65^{\circ} \mathrm{C}$, and for applications requiring extraordinary flexibility, we recommend our new Varglas Silicone Rubber sleeving and tubing. Inquiries invited.

## Send for SAMPLES


Mail coupon today for free folder containing 25 different test samples of Varflex insulating sleeving, rubing, lead wire and tying cord.

## VARFLEX SALES CO., INC., 308 N. Jay St., Rome, N.Y. <br> (For Silicone Products Only)

Please send me free folder containing samples of your electrical insulating tubing and sleeving.
I am particularly interested in insulation for $\qquad$
Name
Street
City
7one

# Now...an accomplishment so far reaching if will change the sights of all rectifier users 

RADIO<br>RECEPTOR'S<br>improved new<br>vacuum process

# * PETTI-SEL <br> * High Current Density Industrial type SELENIUM RECTIFIERS 

Developed by the famous Siemens Organization of West Germany and now manufactured by Radio Receptor Co. in the U. S. A.


Estimated life 100,000 hours
Much smaller cell sizes than conventional units of the same ratings

## Lower forward voltage drop

## Suitable for high temperature applications

TYPICAL FORWARD CHARACTERISTICS


Far smaller in size than other rectifiers of the same current ratings, the new Radio Receptor HCD Petti-Sel units are manufactured under laboratory controlled conditions with fully automatic machinery, assuring new standards of product uniformity.
Field experience extending over several years with these rectifiers indicates an estimated life of 100,000 hours. This is largely attributable to the special precess requiring no artificial barrier layer. Low forward voltage drop and low aging rate make the new Petti-Sel Rectifiers applicable to magnetic amplifiers and other control applications.

TYPICAL AGING CHARACTERISTIC
Cell size $4^{\prime \prime} \times 4^{\prime \prime}$, single phase bridge (4-5-1-B) operated at 130 volts $A C$ input, 8 amperes DC output current, resistive load, $35^{\circ} \mathrm{C}$ ambient temperature.


Warch for further announcements of unique developments on these history-making rectifiers. If you would like our new bulletin as soon as it is available, write today to Section E-5R.

## Semiconductor Division

## RADIO RECEPTOR COMPANY, INC.

Subsidiary of General Instrument Corporation

# 99 New Products and 60 Manufacturers' Bulletins Are Reviewed <br> . . . Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered 

## BALANCED MIXER

operates over 7,800-8,200 mc
Sage Laboratories, Inc., 30 Guinan St., Waltham 54, Mass. This microwave mixer has been designed to operate over a frequency band from 7,800 to $8,200 \mathrm{mc}$ in RG-51/U size ( 14 by $\frac{5}{8} \mathrm{o}-\mathrm{d}$ ) waveguide. As illustrated, the mixer is supplied with standard UG-51/U flanges and employs the new 1N23E type crystal diodes. The i-f outputs are solder lugs for this unit; however, these can readily

be modified to any standard or special fitting. An input vswr of 1.25 to 1 can be assured; recent measurements indicate a vswr of 1.15 to 1 is obtainable.

Balanced mixers of this type can be designed and supplied in many waveguide sizes and frequency bands to solve the particular problem at hand. The unit can be provided in either brass or aluminum; crystals can be supplied in place with the unit. Further data available from company. Circle P1 inside back cover.

## WIRE PROCESSER

## an automatic machine

Eubanks Engineering Co., 260 N. Allen Ave., Pasadena, Calif., has

announced a new automatic wire cutting and stripping machine with features designed to meet specific needs of the electronics industry.

The machine is designed to cut single-conductor, solid or stranded wire of from 32 ga to 12 ga in lengths of from 1 to 300 in . and to remove the insulation from one or both ends without scraping or cutting strands. The strip lengths may be varied from $\frac{z}{8}$ in. to 1 in .

Wire travels through the machine at speeds up to 150 ft per
minute, with split-second stops for cutting and stripping. Production rates at top speed range from approximately $350300-\mathrm{in}$. pieces per hr to more than 8,0001 -in. pieces per hr.

The machine is semiportable, can cut and strip tough insulation and can be synchronized with accessory equipment, such as a marking device or an induction heating unit for reflowing the tin on stranded wires before cutting and stripping.

Additional information about the model 810 machine is available. Circle P2 inside back cover.

## ERECTOR SET CABINETS

## to house electronic equipment

Elgin Metalformers Corp., 630 Congdon Ave., Elgin, Ill. Industry now can select from 75 standard building-block components and 125 subparts to create consoles and cabinets to house equipment used in instrumentation, automation, automatic controls and
electronics. Mass-produced modular units have been placed on the market.

Using the components and skeleton frames (foreground) results in the completed units (background) : (1) At left, background, a universal equipment cabinet.
(2) Second from left, background,
the sloped front console, designed for reading instrumentation and



When you specify Cornell-Dubilier capacitors you can be sure that nothing is left to chance. Production procedures, test and inspection operations and quality control are in full compliance with Cornell-Dubilier high-quality standards and your specifications. Quality and Reliability are talents we have cultivated since 1910 . That's why you can count on the consistently dependable facilities of C -D's 16 plants!

## Typical C-D paper tubulars:

TIGER CUB*: Cardboard-cased paper tubular with Polykane ${ }^{(1)}$ end-fill. Vikane-impregnated for excellent capacitance stability. High moisture resistance. Operating temperature range: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
TINY CHIEF*: Small, all-purpose paper tubular, molded in extra-hard thermosetting plastic for long-lasting all-around satisfaction, Available with high temperature wax impreg-
nant far operating temperature range $-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ and Vikane or Polykane* impregnant for $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ operation.
ROYAL CUB*: Cardboard-cased paper tubular with Polykane* end-fill. Tough, durable, withstands rough handling, vibration, shock, soldering iron heat. Operating temperature range: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
BUDROC*: Steatite-cased paper tubular. Polykane* end-fill for extra protection against heat and humidity. High temperature wax impregnant for operating temp. range $-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ and Vikane impregnant for $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
${ }^{(1)}$ Polykane: A development of the C-D laboratories. A solid thermosetting compound will not crack, soften or flow. Write for catalog to Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey.

SOUTH PLAINFIELD, N. J.; NEW BEDFORD. WORCESTER a CAMBRIDGE. MASS.; PROVIDENCE A HOPE VALLEY, R. I.: INDIANAPOLIS, TND.: SANFORD, FUQUAY SPRINGS a VARINA, N, C.: VENICE, CALIF: a SUB.I THE RADIART GORP., CLEVELAND, OHIO: CORNELL-DU日ILIER ELECTRIC INTERNATIONAL, N. Y.
electronic controls, (3) Rack cabinet frame, background, shown with turret and writing top; this basic cabinet has a wide variety of uses for installation of equipment for automation and instrumentation. (4) The combination console, right background, which can be arranged from any number
of varied basic units, is shown assembled in a side-to-side installation for a master central control station. Factory subassembled, the cabinets are merely bolted together with a Phillips-head screw driver, Tinnerman fasteners and screws, which are supplied with each cabinet.

One of the more elaborate consoles, factory subassembled from 30 component modules, sells for $\$ 600$; a comparable custom-built model of the same type would cost over $\$ 1,500$. The smallest EMCOR unit, a 13 -in. instrument cabinet, sells for $\$ 24$. Circle P3 inside back cover.

## STRIP PACKAGE

for electronic components


Erie Resistor Corp., Erie, Pa., has developed an electronic component packaging system which has been designed and tooled for production. It is engineered to provide ease of assembly and ease of servicing.

The process uses a phenolic board with automatically inserted continuous metal terminals. These terminal connections are automatically cut out in accordance with the required circuitry leav-
ing connecting jumpers where needed. Crossover connections are made through the use of jumper wires on the face of the board or through the use of printed wiring on the back of the board when desired.

Components and lead-off wires are then easily inserted in the terminal strips, either automatically or manually without costly lead preparations. Spacing of the metal strips may be varied, depending on the required length of the components. Circle P4 inside back cover.

## NONLINEAR POTS

## in variety of sizes

Ace Electronics Associates, Inc., 103 Dover St., Somerville 44, Mass. A new line of nonlinear, precision wire-wound potentiometers in standard and subminiature sizes for sine-cosine and square-law functions is now available in prototype and production quantities.


Standard sine-cosine Acepots are available in sizes 30 and 20 with tolerances of $\pm 0.5$ percent peak to peak and $\pm 1.0$ percent peak to peak respectively. Standard square-law Acepots are available in sizes 30 and 20 with tolerances of $\pm 0.25$-percent and $\pm 0.75$-percent independent conformity respectively. Nonlinear Acepots meet military specs. Circle P5 inside back cover.

## CONTROL AMPLIFIER

diminutive, transistorized
Packard Bell Electronics Corp., 12333 W. Olympic Blvd., Los Angeles 64, Calif., announces a diminutive transistorized control amplifier that has become the vital element in regulating power for an entire military aircraft fire control system. Weighing but 11 oz the new control amplifier is expected to become a standard module adaptable to many and varied uses in electronics.


The custom component has a life expectancy of $10,000 \mathrm{hr}$ or more, with ripple less than 50 mv from peak to peak, operating tem-
perature of -65 C to +125 C and is adaptable to voltages of $\pm 50$ to $\pm 1,000$. Its regulation is $\pm 1$ percent, with circuit gain of 60 to 80 db . Circle $\mathbf{P} 6$ inside back cover,

## RIBBON TYPE CABLES

for missiles and aircraft
Mildan, Inc., a subsidiary of the Paul Omohundro Co., Paramount, Calif., has available three new


## DUAL RANGE TRAISSISTORIFED RECULATED POWER SUPPLY

- Dual Range, Low Voltage Output
- Continuously Variable 0-Max.
- High Conversion Efficiency
- Low Heat Dissipation
- Instant Warm-Up Time
- Small Size, Light Weight
- Non-Microphonic
- Rugged, Long Lifte Design

ERA's compact modol 501M/10 power supjly is a somi-sonductor, regulated transistorized, dual range design intonded for all low voltage applications. Two conveniont varnior voltage ranges are available 0-10 VDC and 5-50 VDC, which makes those units particularly applicable for battery substitution, transistor biasing, low voltage roference use, and similar laboratory and industrial applications.

|  | TIONS |
| :---: | :---: |
| Input | 105-125 VAC, 60 or 400 cps |
| DC Output | Range 1-0.10 VDC . . . Range $2-5.50$ VDC |
| Current | 0.150 ma |
| Ripple | Less than $0.02 \%$ or 5 milivolts, whichever is areater |
| Type of Regulator | Semi-conductor Transistor Type |
| Regulation (Input) | Less than $\pm 0.5 \%$ Change in Output for 105-125 VAC Input |
| Regulation (Output) | Better than $\pm 0.5 \%$ Change in Output for Load Change $\mathbf{1 0 - 1 0 0 \%}$ or 0.1 ohm Internal DC |
|  | Impedance whichever is greater. |
| -Size ( $\mathrm{H} \times \mathrm{L} \times \mathrm{W}$ ) | $31 / 2 \times 93 / 8 \times 91 / 2$ Inches |
| Metering | $21 / 2^{\prime \prime}$ Output Voltage Meter Automatic Range Switching For Each Voltage Range |

ERA manufactures a variety of transistorizod power supplios, miniciurized power packs and special purpose units. Wrise for defcils on standard and special models.

> Electronic Research Associates, Inc. 67 East Centre Street, Nutley 10, N. J. Nutley 2.5410

cable types for electronic systems of missiles and aircraft.
A Teflon encapsulated color coded flat cable provides the inertness of Teflon insulation in a transparent Teflon bonding that permits visual identification of separate wires at any point. MilStd 104 insulation colors are provided, with two and three-color striped insulation also available. Wire sizes range from 16 to 26 gage and cables may have any number of wires up to a maximum of 2 in . in width.

Etched circuit type conductors are molded in pliable silicone rubber with fanned wire terminations to make a second cable of great flexibility and minimum thickness, ranging down to 0.008 in . where voltage requirements are low.

A subminiature Teflon cable, identified as type $T B$, is the third item in this cable line. Wires of 1 mil diameter, or similar flat ribbon conductors, are imbedded in Teflon 0.008 in. thick. Type TB cables are made to design length for each customer, design length being limited to about 12 in . Circle $\mathbf{P} 7$ inside back cover.

## PLUG-IN COMPONENT

packaged design
Eastern Precision Resistor Corp., 675 Barbey St., Brooklyn 7, N. Y., has developed a plug-in component package (Comp-Plug), especially designed for use with the new AMP shielded patchcord programming system. These versatile com-


## ONLY SCHAEVITZ ENGINEERING HAS THE EXACT TYPE OF LVDT TO MEET YOUR REQUIREMENTS

## scrincevi是に

## 

P. O. BOX 505

CAMDEN 1, NEW JERSEY Phone: Merchantville 8-5353 • TWX MERCHANTVILLE NJ 386


Progress Plus! Producing precision resistance alloys for electronics goes far beyond melting and drawing techniques. Of even greater importance is quantitative analysis of the metal. All Wilbur B. Driver resistance alloys are subjected to thorough analysis. Thirty-five years experience plus ultra-modern production and laboratory facilities, assure quality that exceeds specifications. Whenever you see the WBD label, you can look for
BETTER PERFORMANCE!

[^22]ponents can be used to patch an entire program into a computer, telemetering equipment or testing equipment.
The Comp-Plug (in this case a precision wire wound resistor) is encapsulated in a package measuring approximately $\frac{5}{5} \mathrm{in}$. by 1 in . with one end terminated in an AMP male pin. The other end can be furnished as a solder terminal, a female receptacle or a cable to facilitate patching to other components on the board.

Diodes, capacitors, R-C networks are but a few of the components that can be supplied to specifications. Specific inquiries are invited. Circle $\mathbf{P 8}$ inside back cover.


## VARIABLE RESISTOR

for tv printed circuits
Chicago Telephone Supply Corp., 1142 W. Beardsley Ave., Elkhart, Ind. Series U52 is a two-section side-by-side variable resistor which snaps instantly into place on printed circuit panels or on separate supporting brackets without need for mounting hardware or additional operations. It mounts parallel to the printed circuit panel with shafts perpendicular or can be mounted on separate supporting brackets with shafts parallel to the printed circuit board.

The control is quickly removed for servicing due to specially designed clip-off mounting supports and terminals. The $\frac{z}{4}$ in. diameter molded phenolic shafts for finger or screwdriver adjustment are


## Creative Engineers:

## Work where the breakthroughs are being made in every major field of Electro-Mechanics <br> As a creative engineer, you belang at the front-line of your field . . . where tomorrow's scientific battles are being won... where you can help win them. <br> For more than a decade, Autonetics has <br> Today, our programs are gathering speed, broadening scope. New engineering methods have been developed to cut lead time. System and component evaluation is being accelerated with automatic checkout

been at the forefront of electro-mechanical technology...building up the unique stockpile of experience and developing the advanced techniques and tools that can make your professional victories possible at Autonetics today.

Just a few specific results of Autonetics' pioneering are: the MG-4 Fire Control System for NATO's F-86K Sabre Jet; Flight Control elements for the F-100 Super Sabre; Numill, a new magnetic-tape controlled machine-tool system capable of performing complex milling and drilling operations automatically; Recomp 1, a new portable, high-speed, completely transistorized digital computer; and inertial guidance systems for both airplanes and missiles.
equipment. Packaging is being designed and systems micro-minaturized to fit the cramped confines of sleek missiles and jets.
your opportunity exists at every level of creative engineering from Preliminary to Performance Test-because Autonetics is one of the few companies in the world that can design and quantityproduce complete automatic control systems for both the military and industry.

LET US KNOW what kind of creative engineering interests you (please include highlights of your education and experience). Write today to: Mr. A. N. Benning, Administrative and Professional Personnel, Dpt. 358-EL-5, Autonetics, 9150 E. Imperial Highway, Downey, California.

## Autonetics <br> A Division of North American Aviation, Inc.



Assistant Chief Engineer Norman F. Parker joined Autoretics in 1948 after receiving his DSc from the Carnegie Institute of Technology. Dr. Parker has been recognized nationally for his work in Inertial Navigation, and was chosen recently to present a poper on that subject at a NATO conference in ltaly.


Jack Wittkopf was Associate Professor of Electrical Engineering at Oregon State for 6 years before he joined Autonetics in 1951. Now Group Leader in computers and electronics, Jack lives with his wife and four children in Autonetic's home town of Downey, California, where his spare time activities inclade photography ond ham tadio.

## Standard types of COMMUNICATION EQUIPMENT

Radio Engineering Products is currently producing a number of types of equipment, electrically and mechanically interchangeable with standard Bell System apparatus. Complete equipments of the following types, and components for these equipments are available for early delivery.

## CARRIER-TELEPHONE EQUIPMENT

C5 Carrier-Telephone Terminal (J68756). A kit for adding a fourth standard toll-grade channel to existing $C$ systems is available.
Cl Carrier-Telephone Repeater (J68757)
121A C Carrier Line Filter and Balancing Panel
H Carrier Line Filter and Balancing Panel (X66217C)

## CARRIER-TELEGRAPH EQUIPMENT

40C1 Carrier-Telegraph Channel Terminal (J70047C)
140A1 Carrier Supply (J70036A1, etc.)
40AC1 Carrier-Telegraph Terminal
Grid Emission Test Set (J70047D1)

## VOICE-FREQUENCY EQUIPMENT

V1 Telephone Repeater (J68368F)
Power Supply (J68638A1)
V1 Amplifiers (J68635E2 and J68635A2)
V3 Amplifier (J68649A)
V-F Ringers (J68602, etc.)
Four Wire Terminating Set (J68625G1)
1C Volume Limiter (J68736C)

## D-C TELEGRAPH EQUIPMENT

16B1 Telegraph Repeater (J70037B)
10E1 Telegraph Repeater (J70021A)
128B2 Teletypewriter Subscriber Set (J70027A)
Composite Sets, several types

## TEST EQUIPMENT

2A Toll Test Unit (X63699A)
12B, 13A, 30A (J64030A), and 32A (J64032A)
Transmission Measuring Sets
111 A2 Relay Test Panel (J66118E)
118C2 Telegraph Transmission Measuring Set (J70069K)
163 A2 Test Unit (J70045B)
163 Cl Test Unit (J70045D)

## COMPONENTS AND ACCESSORIES

255A and 209FG Polar Relays
Repeating Coils, several types
Retard Coils, several types
184, 185, 230A and 230B Jack Mountings

## VACUUM TUBES

| 101D, F \& L | 323A \& B | 396A |
| :--- | :--- | :--- |
| 102D, F \& L | $328 A$ | $398 A$ |
| 104D | $329 A$ | $399 B$ |
| 205D | $336 A$ | $400 A$ |
| 274A \& B | $350 A \& B$ | $408 A$ |
| 281A | $355 A$ | $120 A$ Ballast Lamp |
| 305A | $393 A$ | $121 A$ Bailast Lamp |
| 310A \& B | $394 A$ |  |

[^23]available in three styles. Resistance range is 250 ohms through 10 megohms and rotation angle $300 \pm$ 5 deg.


## R-F SOURCES

feature high output
Weinschel Engineering, 10503 Metropolitan Ave., Kensington, Md., has introduced models MS-1 ( 50 to 250 mc ) and MS-2 ( 250 to 900 mc ) modulated r-f sources. They feature high output-at least $200-\mathrm{mw}$ peak power into 50 ohms, 100 -percent square-wave modulated internally at $1,000 \mathrm{cps}$. Amplitude stability is $\pm 0.2 \mathrm{db}$ per hr for constant load; using internal feedback circuit with external probe or coupler, $\pm 0.02 \mathrm{db}$ per hr .

An external directional coupler in conjunction with internal feedback holds the incident power constant over a wide range of load impedances, thereby simulating a constant impedance source equal to the coupler impedance. If a voltage probe is used instead, the voltage is kept constant simulating a zero impedance source. Circle P9 inside back cover.


## SWEEP GENERATOR

## for timing measurements

Radionics, Inc., Burlington, Mass. Model TWM-2A timing generator has been designed to generate triangular waves of high precision with respect to time period, symmetry and linearity of waveform. Its principal use will be that of


## COMPONENTS

DEMAND
QUALITY

## SEALS

Whether you're a designer of transformers, relays, capacitors, rectifiers, diodes, crystals, or any component that needs glass-to-metal sealing . . . insure positive end performance with Constantin Glass-To-Meral Seals.
At Constantin quality comes first. Each and every glass-to-metal seal is manufactured to the closest engineering tolerances . . . and six, separate production line check points maintain these tolerances thru final assembly. Constantin's precision production is versatile . . . a most complete line of both standard and custom-designed all. in-one assemblies, end seals, transistor mounts, crystal covers, connectors, and unit headers is maintained to fulfill your most exacting demands.
Engineering is of prime importance at Constantin, too . . . over many years Constantin has built up an outstanding reputation for working with designers and delivering many unique and unusual designs.
These many-sided Constantin services can be yours for the asking.
Write for complete design information . . today!
"Quality With Confidence"

Route 46, Lodi, N. J. - 187 Sargeant Ave., Clifton, N. J.


## and now

## RUGGEDIZED

 micro-miniature Continental Connectors

SERIES MM-22, designed for use in miniaturized equipment requiring extremely rugged and compact components, offers the ultimate in miniaturization without sacrifice of performance. No wiring problems are presented by SERIES MM-22, which uses \#22 AWG wire, the standard for larger connector types. This Series surpasses the requirements of MIL specifications.

## ELECTRICAL AND MECHANICAL RATINGS

Voltage Breakdown: At sea level $\qquad$ .. 1800 Volts $R M S$ At $60,000 \mathrm{ft}$. $\qquad$ 450 Volts RMS
Current Rating
Solder Cup $\quad$ H22 AWC.................... Amps.
.\#22 AWG Wire

Maximum creepage path between contacts Minimum air space
between contacts ..........................s/64" Contacts, center to center ...................3/32" Pin Diameter $\qquad$ 030 inches


[^24] SALES DIV., DEJUR-AMSCO CORPORATION, 45-OI NORTHERN BLVD., LONG ISLAND City I, n. Y.
establishing a crystal-controlled time base sweep raster for oscilloscopic presentation of one-shot phenomena in hypersonic shock tubes, ballistics research, aerodynamic systems research and allied fields.

Marker signals are generated at a frequency exactly 10 times the triangle frequency and are intended primarily for Z-axis modulation so that each triangle period is punctuated accurately by 10 marker dots. Signal phenomena may now be timed to 2 percent of a triangle period and, with several triangles appearing in the sweep raster, this technique allows a much higher time measurement accuracy than is attainable with conventional single-saw-tooth sweeps. Triangle periods are 1,000 , 500, 100 and $50 \mu \mathrm{sec}$; marker periods are $100,50,10$ and $5 \mu \mathrm{sec}$.
Reliability of time accuracy is guaranteed by scaling-circuit dividers counting down from a crystal reference system. Circle P10 inside back cover.


## BEAM POWER PENTODES

vertical deflection amplifiers
CBS-HYTRON, a division of Columbia Broadcasting System, Inc., Danvers, Mass., has announced two new tubes designed for use as 110-deg vertical-deflection or audio amplifiers.

A special feature of the miniature 6DB5 and 12DB5 when pen-tode-connected in suitable circuits and operated from a $250-\mathrm{v}$ supply is their ability to deflect vertically a $110-\mathrm{deg}$ picture tube.

The new tubes are nine-pin miniature beam power pentodes. Because of their compactness and


Moloney manufactures a line of quality components for electronic applications that comply in detail to ASA, RETMA, Mil-T standards . . . or to your particular requirements. Moloney manufactures for electronics the following products

Plate and Filament Transformers • Chokes • Unit Rectiflers - Modulation Transformers and Reaciors Pulse Transformers and Charging Chokes • Developmental Magnetic Components - HyperCores for Magnetic Components

Moloney utilizes industry's finest test facilities for rhe testing of magnetic components in unlimited KVA and voltage ratings.

## 

 Manufacturers of Transformers for Utilities, Industry, and Electrowic ApplicationsSALES OFFICES IN ALL PRINICPAL CITIES FACTORIES AT ST. LOUIS 20, MO. AND TORONTO, ONT., CANADA




#### Abstract

Smaller toroids facilitate new designs open new channels to the coil winding industry


Think of the space . . . weight . . . design problems solved by this machine. Coils with IDs of just $1 / 66^{\prime \prime}$. . . maximum ODs of $3 / 4^{\prime \prime}$. . . heights to $1 / 2^{\prime \prime}$ wound automatically with wire sizes as finc as \#50! Winding speed is continuously variable from 0 to 800 turns per minute and machine equipment includes every accessory you'll need. Reversing mechanism, wire spacing and core rotation direction controls, wire tension device, automatic linear counter, for example, are just a few of the "custom extras" included as basic parts on Boesch SM. The flexibility offered by this revolutionary machine opens fresh new horizons to the coil winding industry. Get complete details on this Subminiature and all Boesch machincry now. Write today for Catalog 57A.

All Boesch Toroidal Winders . . . Fully-Automatic TW 200, Semi-Automatic TW 201 and Subminiature SM feature modern, adaptable design, easy operation, high speed and life-time parts lubrication.

Comparison is the best test of excellence. See for yourself why Boesch manufactures the world's most superior winding machines.
single-ended construction, they are ideally suited to small tv sets or to equipment using printed boards. The tubes are identical except for heater characteristics. The 12DB5 incorporates a $600-\mathrm{ma}$ heater with warm-up control characteristics for use in series strings. Engineering data are given in bulletin E-271. Circle P11 inside back cover.

## LOW PRESSURE SWITCHES <br> have high accuracy

Technology Instrument Corp., 531 Main St., Acton, Mass., is offering a new line of sensitive low pressure switches designated the 26000 series. These instruments have pressure ranges up to 100 psi and accuracies of better than 1 percent can be expected. They have been designed to minimize the effects of vibrations, shock and acceleration. Circle P12 inside back cover.


## RATIO METER

measures d-c voltage ratios
Allegany Instrument Co., Inc., 1091 Wills Mt., Cumberland, Md. Model 10 ratio meter can be used to measure d-c voltage ratios (in the range of 0 to 100 percent) for such devices as potentiometers used in aircraft and missile telemetering and measuring systems. Wherever voltage or resistance ratios are more important than

## NOW! A PORTABLE,

## PRECISION DIGITAL

## VOLTMETER



This newest E-I instrument provides the perfect general-purpose voltmeter for both laboratory and field use.
Operation is completely foolproof; no manual adjustments or calibrations are required. Measurements are made automatically and results presented digitally with easy-to-read, $1^{\prime \prime}$-high numerals, arranged in line.

A new electronic amplifier design (reducing the number of tubes to only eight!) and advanced miniaturization techniques have reduced the overall size of the new Mark IV to only $7 \frac{1}{2}$ " $\times 9^{\prime \prime} \times 11^{\prime \prime}$, and cut the weight to 28 pounds.

Ask your local E-I representative to give you the complete story, or write direct for our new brochure.


The complete line of digital instruments

True Hermetic Sealing assures Maximum Stability AMPFITIE RFLAYS ond REGULATORS


PROBLEM? Send for Bulletin No. TR-81

Simplest • Most Compact • Most Economical Thermostatic DELAY RELAYS

## 2 to 180 Seconds

- Actuated by a heater, they operate on A.C., D.C., or Pulsating Current.
- Hermetically sealed. Not affected by altitude, moisture, or other climate changes.
- SPST only - normally open or normally closed. Amperite Thermostatic Delay Relays are compensated for ambient temperature changes from $-55^{\circ}$ to $+70^{\circ} \mathrm{C}$. Heaters consume approximately 2 W . and may be operated continuously. The units are most compact, rugged, explosion-proof, longlived, and - inexpensive!
TYPES: Standard Radio Octal, and 9-Pin Miniature
Also - Amperite Differential Relays: Used for automatic overload, under-voltage or under-current protection.


## BALLAST REGULATORS

Amperite Regulators are designed to keep the current in a circult automatically regulated at a definite value (for example, 0.5 amp .) ...For currents of 60 ma , to 5 amps . Operate on A.C., D.C., Pul. sating Current.


Hermetically sealed, they are not affected by changes in altitude ambient temperature ( $-55^{\circ}$ to $+90^{\circ} \mathrm{C}$.) , or humidity ... Rugged, light, compact, most inexpensive.

Write for 4-page Technical Bulletin No. AB-51 AMPERITE CO., Inc.
561 Broadway, New York 12, N. Y. Telephone: CAnal 6.1446

absolute values, the model 10 can be conveniently employed.

Very often in aircraft circuitry, potentiometers are used to indicate position, liquid level and the like. The electrical position of the sliders on these potentiometer coils do not always correspond to their linear positions and the model 10 will locate the electrical position to an accuracy of 0.05 percent. Circle P13 inside back cover.


## KLYSTRON TUBE

ruggedized, all ceramic
Polarad Electronics Corp., 43-20 34th St., Long Island City, N. Y. A ruggedized, all ceramic klystron tube, Velocitron ZV1009-a physical and electrical replacement for klystron tubes 6BL6 and 5836has been announced. It is designed for high temperature, vibration and mechanical shock. The tube is completely hard-soldered and is equipped with standard four-pin connections. Circle P14 inside back cover.


## MISSILE BEACONS

feature high reliability
Telerad MFg. Corp., 1440 Broadway, New York 18, N. Y., an-

## any eye can und ristand...




MODEL 1400


MODEL 451


MODEL 312


MODEL 460

It's as simple as 1,2,3, for even untrained personnel to clearly and accurately make electrical measurements with NLS digital meters. Inch-high numerals are legible from 30 feet away. NLS originated the automatic digital voltmeter and now manufactures a broad range of these and other precise, related instruments for both laboratory and industry. Accuracy, ruggedness, and dependability are proven features of these digital meters for measuring resistance or voltage. Automatic data recording on Clary printer, electric typewriter, card, or paper punching equipment is available. Whatever your need for high speed, completely reliable electric measurement instruments, you'll find your answer in the NLS complete line. Write on your letterhead for the name and address of your nearesi NLS representative, who will be glad to discuss your needs, or mail the coupon for full information on these high precision instruments.

MODEL 1400 Wide Range Volt meter-Utilizes mercury wetted meter-Utilizes mercury wetted
relays for maximum life and reliability.
MOOEL 451 General Purpose MOOEL 451 General Purpose Voltmeter-For display or recording of
MODEL 312 High-Speed VoltMODEL 312 High-Speed Volt-
meter-For airborne analog-to-meter-For airborn
MODEL 460 Hiuh Sensitivity
Moder 460 High Sensitivity and strain gare systems.

One of the many ExCLUSIVE FEATURES pioncered by NLS FEATURES pioneered ing nuithers stepping shithes that insure trouble-free life and dependable operation.

Originators of the Digital Voltmeter
non-linear systems, inc.
Del Mar, Calif. P Phone: SKyline 5-1134

Digital Ohmmeters. AC-DC Converters • Data Reduction Systems. Ligital Readouts. Peak Reader Systems.

- Binary Decimal Converters. Digital Recording Systems

NON-LINEAR SYSTEMS, INC. Dept. D-547 Del Mar Airport, Del Mar, Calif. Please send technical information on: $\square$ AC or DC voltmeters $\square$ ohmmeters $\square$ AC or DC voltmeters $\square$ ohmmeters
$\square$ analog-to-digital $\quad \square$ automatic testing $\square \begin{aligned} & \text { analog-to-digital } \\ & \text { converters }\end{aligned} \square$ automat

NaME $\qquad$
COMPANY
ADDRESS
CITY $\qquad$ ZONE__STATE


## another example of liferman pioneering..

The SAR PULSESCOPE, model S-4-C, is JANized (Gov't Model No. OS-4), the culmination of compactness, portability, and precision in a pulse measuring instrument for radar, TV and all electronic work. An optional delay of 0.55 microseconds assures entire observation of pulses. A pulse rise time of 0.035 microseconds is provided thru the video amplifier whose sensitivity is $0.5 \mathrm{~V} p$ to p/inch. The response extends beyord 11 mc . A and S sweeps cover a continuous range from 1.2 to 12,000 microseconds. A directly
calibrated dial permits $R$ sweep delay readings of 3 to 10,000 microseconds calibrated dial permits $R$ sweep delay readings of 3 to 10,000 microseconds in three ranges. In addition, $R$ sweeps are continuously variable from 2.4 to 24 microseconds; further expanding the oscilloscope's vasefulness. Built-in crystal markers of 10 or 50 microseconds make its time measuring capabilities complete. The SAR PULSESCOPE can be supplied directly calibrated in yards for radar type measurements. Operation from 50 to 400 cps at 115 volts widens the field application of the unit. Countless other outstanding fea-
tures of the SAR PULSESCOPE tures of the SAR PULSESCOPE round out its distinguished performance.

## WATERMAN PRODUCTS CO., INC.

PHILADELPHIA 25, PA.
CABLE ADDRESS: POKETSCOPE


## MANUFACTURERS OF

## PANELSCOPE*

saf.c sar puliescore* S-5.C LAB PULSESCOPE* S-11.A INDUSTEIAL POCKEISCOPE* S.12-B JAMIXOA RAKSCOPE S-12-C SYSTEMS RAKSCOPE* S-14.A MIGH GAIN POCKETSCOPE* S-14-B WIDE BAND POCKETSCOPE s-14.C COMFUER POCKETSCOPE* S.15-A TWIN TVBE POCKETSCOPE* RAYONIC* Caithode Ray Tuber ond Other Auseriatod Equipment
nounces reliable guided missile beacons available in $S$ and L band. The units have successfully completed $1,000-\mathrm{hr}$ tests including all environmental conditions: salt spray, dust, vibration, hot and cold cycling as required under the new Missile Reliability Program. These beacons and related power supplies are presently in use by aircraft and missile manufacturers. Further information is available from the company. Circle P15 inside back cover.

## HEAVY TEFLON TAPES

in thicknesses to $3 / 16 \mathrm{in}$.
Enflo Corp., Airport Circle, Route 38, Pennsauken, N. J. Based on a new fabricating method, Teflon continuous-roll tapes in thicknesses to $\frac{3}{16}$ in. have been developed. Lengths from 40 ft to several-hundred feet are available in thicknesses of ${ }^{\frac{3}{3}} \mathrm{in}$., $\frac{1}{8} \mathrm{in}$., $\frac{5}{32}$ in. and $\frac{3}{18}$ in. Maximum width varies from 6 in . to 12 in . depending on thickness.

The tapes are available in virgin Teflon, TFMC (mechanicalchemical) and Enflon (filled Teflon) and also in cementable or pressure-sensitive types. Samples as well as a copy of the complete Teflon products catalog are available. Circle P16 inside back cover.


## WAVE ANALYZER

a carrier frequency voltmeter
Mack Electronics Division, Inc., 1120 South Second St., Plainfield, N. J. The CF-83 is a precision harmonic wave analyzer capable of measuring the amplitude of signals and harmonies from 10 kc to 500 kc . It is essentially a highly tuned frequency selective detector


## BUILDS JOB INTEREST at BEL苼

Bell's activities are widely diversified - experimental and vertical rising aircraft, rockets and rocket engines, missiles and guidance systems, electronics, servomechanisms and nucleonics to name only a few. Such diversity means broad fields of interest for engineers and technical per-sonnel-insurance against boredom and assignments too limited in scope to let you go as fast and as far as you are capable.

Bell is progressing, growing and expanding. There are openings at all levels and in all fields as listed at the right. If you are looking for a move that offers every opportunity for a permanent career with professional growth and recognition and capalle, congenial associates, contact Bell.

For further information regarding employment opportunities in the Weapon Systems Division or the Aircraft Division of Bell Aircraft, write today: Manager, Technical Employment, Dept. H22, Weapon Systems Division. bell alrcraft corporation, p. O. Box One,


- Aerodynamicists
- Aeronautical Engineers
- Automatic Control Designers
- Chemical Engineers
- Combustion Research Engineers
- Communications Engineers
- Design Checkers
- Development Engineers
- Digital Computer Development Engrs.
- Dynamic Engineers
- Electronic Engineers
- Electronic Standards Engineers
- Engineering Computors
- Environmental Specialists
- Field Test Engineers
- Flight Test Engineers
- Flight Test Programmers
- Fuel Injection Specialists
- Gear Designers
- Guidance Engineers
- Gyro Specialists
- Heaf Transfer Engineers
- Hydraulic Engineers
- IBM Programmers
- Instrumentation Specialists
- Laboratory Test Engineers
- Magnetic Amplifier Specialists
- Mathematical Analysts
- Mechanical Engineers
- Microwave Engineers
- Miniturization Engineers
- Nuclear Physicists
- Operations Analysts
- Physicists
- Power Plant Designers
- Pressure Vessel Designers
- Project Engineers
- Publication Engineers
- Radar Systems Engineers
- Reactor Designers
- Reliability Engineers
- Rocket Test Engineers
- Servo Systems Engineers
- Servo Valve Engineers
- Statisticians
- Stress Engineers
- Structures Engineers
- Specification Writers
- Technical Writers
- Test Equipment Engineers
- Transformer Design Specialists
- Transisior Application Engineers
- Thermodynamic Engineers
- Telemetering Engineers
- Turbine Pump Designers
- Vibration \& Flutter Analysts
- Weapons Systems Engineers
- Wave Guide Development Engineers
- Weights Engineers

FAMED FOR PRECISION SINCE 1875


## NEW ST-73X

## "SHOCK MOUNTED" QUARTZ CRYSTAL

The Bulova ST-73X need never be babied. Effective new shock mounting and traditional Bulova manufacturing precision xesult in a rugged, extremely stable, frequency determining element for missiles, fircraft and other applications involving extreme en fronmental problems.
Where frequencies must be maintained with ultra-reliable stability under high shock and temperature conditions, you'll find no adequate substitute for Bulova quality.
THE ST-73X FEATURES: Frequency Range from 16 KC through 350 KC , with lower frequencies possible in holders of different configuration; Shock Tests of 100 G ; Dynamic vibration tests met per MIL-T-5422, MIL-E-5272 and MIL-E-5400 without adverse results; Storage Temperatures over a range of $-65^{\circ} \mathrm{C}$. to $+135^{\circ} \mathrm{C}$. can be coupled with an operation temperature range of $-55^{\circ} \mathrm{C}$. to $+100^{\circ} \mathrm{C}$.; Low excursions of frequency ( $\pm .015 \%$ ) over this range.
Precision Bulova Quartz Crystals are now available in quantity for frequencies from 16 KC and lower to 100 MC and above.

## Bulova

watch company

Electronics Division
Woodside 77, N.Y.

Write Dept. A-738 For Full Information and Prices on Quartz Crystals
designed for voltage measurements on carrier telephone systems as well as precise measurement of the harmonic content of various types of waveforms. The linearity of response is sufficient to permit measurements of harmonics at least 60 db below the fundamental.

The instrument features an r-f attenuator that insures accurate measurements down to the microvolt region. The tuning oscillator utilizes a precision tuning capacitor ruggedly mounted on an aluminum casting for high stability with rough usage. A rugged $12-$ to-1 antibacklash gear reduction system allows for ease of tuning with no sacrifice in resetability. Circle P17 inside back cover.


## ALIGNMENT INSTRUMENT

for 10 to 145 mc range
Kay Electric Co., 14 Maple Ave., Pine Brook, N. J., has announced the Vari-Sweep Model Radar, a complete new alignment instru-ment-sweeping oscillator, calibrated variable-frequency marker and fixed crystal controlled mark-ers-designed for the 10 to 145 mc range.
The fundamental-frequency sweeping oscillator is continuously variable in six overlapping bands accurately calibrated on a direct-reading dial. Sweep widths variable to 60 percent of center frequency below $50 \mathrm{mc}, 30$ percent above 50 mc are provided. R-F output voltage is 1.0 v rms into 70 ohms, with agc for $\pm 0.5-\mathrm{db}$ flatness over widest sweep and tuning range. The variable marker is a birdie pip marker generated by a separate c-w oscillator continuously variable from 5 to 170 mc in six overlapping bands and calibrated to $\pm 1$ percent on a


## MICROWAVE RESEARCH EXTENDED TO $140,000 \mathrm{MC}$ !

## now you can enter Ultramicrowave* research with this <br> complete new line of D-B test instruments

Now microwave engineers can plunge into new research territory. With this 140 KMC Crystal Multiplier (harmonic generator) to provide higher frequencies, and eleven other instrument sizes available for testing, researchers can experiment with $50 \%$ more latitude.
For example, you can build working models only $1 / 10$ actual size. You can get better resolution with these higher frequencies - better by 10 to $\mathbb{1}$.
Here are crpstal mounts, precision attenuators, variable stub tuners, standing wave detectors, phase shifters, frequency
meters - every type of instrument used from 2.6 KMC to 90 KMC . All are now available in continuous coverage to 140 KMC !
No matter what your research field, it will pay you to consider the application of ultramicrowaves to your problems. De Mornay-Bonardi will help your staff plan special systems, and set up test equipment. You'll be receiving experienced assistance, too-14 years of leadership in microwave instruments.
WRITE FOR FURTHER INFORMATION


AEROVOX makes them all.. . from the largest capacitors for heavy-duty high-voltage applications to micro-miniature units for cr tical requirements in guided missiles. And ... capacitors need not conform to conventional shapes, but can run the gamut of physical configurations. Illustrated here are just a few of the many unusual capacitors Aerovox tas been called on to design and produce in recent months.
 mounting assembly for a standard bathtub capacitor.

##  <br> SMALL . . . only . $175^{\prime \prime}$ <br> $x / 16$ L L. this hermetically. <br> sealed metal cased unit is rated at 01 mfd at 200 vdc .



Maybe these unusual shapes and designs offer suggestions for your capacitor requirements. If so, write.

## AEROVOX CORPORATION

In Canada: AEROYOX CANADA, LTD., Hami ton, Ont.
Expert: Ad. Auriema., 89 Broad St., New York, N. Y. - Cgble: Auriema, N. Y.
separate direct-reading dial. Eleven individually switched, crystal-controlled pulse type markers at customer specified frequencies over the bandwidth are provided for both separate and simultaneous operation. Circle P18 inside back cover.


## PNP TRANSISTORS

for high-speed switching
General Transistor Corp., 91-27 138th Place, Jamaica, N. Y., has developed three high speed switching transistors. The new pnp computer transistors, the $2 \mathrm{~N}-315,2 \mathrm{~N}$ 316 and $2 \mathrm{~N}-317$ are germanium alloy types intended primarily for applications where high-speed, high-current switching is of paramount importance.

The $2 \mathrm{~N}-317$ has, with only a minimum of drive current, a typical switching speed of $0.3 \mu \mathrm{sec}$ at 400 ma of collector current. The series resistance of these transistors when conducting is $\frac{1}{2}$ ohm. The nonconducting series resistance is as high as 10 megohms with a result that approaches optimum efficiency at high current levels. Circle P19 inside back cover.

## SERVO AMPLIFIER

## for computer use

Belock Instrument Corp., 110-01 14th Ave., College Point, N. Y., has designed and developed a new transistor servo amplifier for use in electronic and electromechanical computers that requires no expensive preamplifier or power amplifier components. This servo amplifier plugs into a standard octal socket and occupies a volume of only 9 cu in . It is completely encased, providing high immunity from shock and hu-

Expensive rejects of sealed electronic products can be reduced by leak testing housings before assembly with the new General Electric mass spectrometer leak detector. It offers:

EXTREME SENSITIVITY—detects leaks of $1 \times 10^{-10}$ standard cubic centimeters of air per second ( $9 \times 10^{-6}$ micron cubic feet per hour).

FAST RESPONSE-as low as 2 seconds for small, hermetically sealed electronic components.
HIGH RESOLUTION which helps eliminate the possibility of response to elements other than the tracer gas.

THESE EASY MAINTENANCE FEATURES HELP REDUCE DOWN-TIME
SIMPLIFIED DESIGN of the vacuum system and use of plug-in components gives excellent accessibility and saves maintenance time. The easily removed spectrometer tube greatly reduces down-time when the tube needs cleaning or filament replacement.

NC SPECIAL TRAINING is needed to operate the General Electric M-2 leak detector. After starting, the M-2 is operated simply by opening and closing one valve. The leak will show up on the leak rate indicator of the operator's panel. An audible alarm is also available
FOR FURTHER INFORMATION, contact your nearest General Electric Apparatus Sales Office or write for descriptive bulletin, GEC335, to Section 585-63, General Electric Co., Schenectady 5, N. Y.


DOWN-TIME IS REDUCED through easy access and removal of the spectrometer tube (right) and by a simplified vacuum system design.


A special porcelain body is used in the production of Lapp Resistor Cores. It provides a flawless surface of such nature as properly to receive a uniform deposit of carbon or borocarbon. It also has a temperature coefficient of expansion matched to that of the deposited film . . . to provide a constant resistance against temperature change. These resistor cores are produced in close tolerances for straightness, roundness and length . . . they reflect the same quality of workmanship and materials long associated with Lapp. Write for complete information on Lapp Resistor Cores. Lapp Insulator Co., Inc., Radio Specialties Division, 130 Sumner St., LeRoy, N. Y.
midity. It operates instantly, requiring no warmup time. The elimination of auxiliary filament and plate power has been achieved.

The amplifier is ideally suited for airborne application since it operates on 28 v d-c. Its performance is equal to a complete 4 or 5 tube servo amplifier with no heat dissipation problem. Circle P20 inside back cover.


CABLE HARNESS
known as Spiral Wrap
Illumitronic Engineering, 680 E. Taylor, Sunnyvale, Calif., announces a new product known as Spiral Wrap, that is designed to simplify the harnessing of loose wires into neat cables. Made from polyethylene tubing in $\frac{1}{4} \mathrm{in}$. and $\frac{3}{3}$ in. diameters, and cut into a spiral pattern, it will wrap easily around loose wires to make cables in any diameter up to 2 in . Wires may be pulled out at any desired position.

Spiral Wrap offers great flexibility, whether used in prototype lab work or mass production. It is initially low in cost and will save many hours of labor. Circle P21 inside back cover.

## POWER SUPPLY

with excellent regulation
Deltron Inc., P. O. Box 192, Glenside, Pa. Model H-3615 power supply is a versatile laboratory source of variable $\mathrm{d}-\mathrm{c}$ voltage, capable of supplying large load currents up to 15 amperes. It features an output voltage range continuously variable from 2 to 36 v with regulation accuracy of $\pm \frac{1}{2}$ percent for combined variations of line

# 15kw S-Band Amplifier Klystron has no heavy magnets 

## Exclusive Space-Charge Focus cuts weight to only $6 \frac{1}{2}$ lbs.

SAS-61 SPECIFICATIONS
Frequency Range . . . . . 2700 to 2900 mc
Heating Time. . . . 90 sec.
Peak Power Output . . 15 kw
Maximum Drive Power . 30 w
Power Gain. . . . . . 30 db 30 db

Available for immediate delivery, Sperry's new S-band transmitting tube is a 3-cavity pulse amplifier of high gain and extra-long service life.
Exclusive Sperry Space-Charge Focusing design eliminates heavy, cumbersome magnetic structures-a feature of prime importance in equipment design. Although the SAS-61 weighs only $61 / 2 \mathrm{lbs}$., its sturdy construction withstands extreme vibration and environmental conditions.

Main applications for the SAS-61 are as an output tube in low-power radars, or as a driver for higher-powered klystrons in radar and linear accelerator systems. Its unusually long service life, however, makes it highly desirable for any application requiring 15 kw in the S-band. The SAS-61
with its internal tunable cavities is a complete microwave unit. No external equipment is required.
Sperry can deliver SAS-61 tubes in quantity at once. Write or phone your nearest Sperry district office.

## ELECTRONIC TUBE DIVISION <br> GYROSCOPE COMPANY

Great Neck, New York
DIVISION OF SPERRY RAND CORPORATION CLEVELAND - NEW ORLEANS • BROOKLYN • LOS ANGELES • SAN FRANCISCO - SEATTLE - IN CANADA: SPERRY GYROSCOPE COMPANY OF CANADA, LIMITED, MONTREAL, QUEBEC


Biq Fehay Peybonanaee!
...crystal can size
Elgin's new MV rates superior to other high performance relays, yet is less than an inch long and weighs less than half an ounce. It meets military specifications and is designed for continuous use in the $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range. The MV has a life
rating of 100,000 operations minimum at rated load. This new relay is in production now and prompt delivery is assured. For computers, control systems and every installation that requires dependable performance AND miniature size . . specify MV.

## SPECIFICATIONS



## ELECTRONICS DIVISION

ELGIN NATIONAL WATCH COMPANY
107 National Street. Elgin, Illinols
2433 N. Naoml Street, Eurbank, Callfornia

from 105 to 125 v and load from 0 to 15 amperes.

It has less than 0.25 -percent ripple making the unit ideal for laboratory and test applications. Completely overload protected, the unit has a unique overload voltage feature which prevents voltage rise above the value set by the operator.

Model H-3615 has a response of better than 0.2 sec and is adaptable to computer, laboratory, aircraft and other critical applications. The unit is completely self-contained and is provided with large $4 \frac{1}{2} \mathrm{in}$. meters. It can be used either bench mounted or rack mounted. The instrument operates from either 50 or $60-\mathrm{cps}$ power. Circle P22 inside back cover.


## ELECTROLYTICS

## tiny aluminum-foil type

Cornell-Dubilier Electric Corp., South Plainfield, N. J. Designed expressly for transistorized and printed circuits, and other compact or miniaturized low-voltage d-c equipment, the new Electomite type NL electrolytics meet the demand for ultracompactness in bypass, filter and coupling applications.

Available in d-c working voltages of $1,3,6,10,15,25$ and 50 v , in capacitances from 1.0 to $200 \mu$ f,


## Systems engineering-38th parallel style

Here's the challenge we received from the Korean Civil Assistance Command and the U. S. Army Signal Corps:

Build a telephone communications system to their specifications that will function over mountainous terrain. Cost to be within reasonable limits . . . upkeep minimum. . . equipments compatible with the experience and background of the population.

The answer is the system now being installed in South Korea.

Manually operated telephones, central offices and PBX switchboards, suited to a civilian population unfamiliar with dial methods.

Wire lines for basic country-wide linkage, augmented with many channels of Carriet, wherever estimated traffic warrants it.

And-delivery on schedule.


Used in designing, improving and production testing:

Ball bearings
Jet and reciprocating engines
Electric motors Home appliances Business machines Pumps
Blowers and fans Compressors Air frames
Tire performance Any rotating or oscil lating machinery
dred
provides high-speed visual analysis of sounds, vibrations and electrical waveforms ....identifies mechanical and electrical defects or variations.

Versatile, flexible, fast. In only one second the LP-1a depicts the frequencies and amplitudes of sound or vibration waveform components, eliminating tedious, complicated point by point measurements, Makes possible observation of changes in energy distribution while the waveform itself varies or while design constants are altered.

Data presented graphically for direct reading. Optional companion recorder permits permanent recordings of waveform content over extended periods. Tuning control and three-step scanning range allow sharp, detailed analysis. A valuable aid designwise or productionwise.


10 S. Second Avenue, Mount Vernon, New York
Phone: MOunt Vernon 4.3970

## Cables: Panoramic, Mt. Vernon, New York State

These organizations have found Panoramic equipment PROVED PERFORMERS:-Allis-Chalmers Mfg. Co., Bell Aircraft Corp., Bell Telephone Co., Boeing Airplane Co., California Institute of Technology, Chrysler Corp., Convair, Cornell University, Curtiss Wright, Dept. of Defense, E. 1. Dupont de Nemours \& Co., Aircraft Corp. Massachusetts Institute of Technology, Philco Co. Pratt \& Whitney Aircraft, Radio Corporation of America, Sperry-Gyroscope Co., U. S. Jesting Co., Inc., Western Electric.
and in sizes from 部 in. by $\frac{1}{2} \mathrm{in}$. to $\%$ in. by 1 in., these units can be operated within the temperature range of -20 to +85 C .

Electomite capacitors are com-pression-sealed and resistant to moisture and humidity. Terminal leads are tinned copper wire. The positive lead is connected to the anode through the rubber bushing of the compression seal and the negative lead is grounded to the aluminum can.

They are also available with outer plastic insulating sleeves where physical contact with adjacent components is a design requirement. Bulletin 533 gives complete specifications. Circle P 23 inside back cover.


## MICROWAVE DIODE

for X-ray circuitry
Microwave Associates, Inc., Burlington, Mass., has available a new high-sensitivity microwave silicon diode for use as a low-level detector in X-band video receiver circuitry. Typical applications for the MA-408B are missile guidance, radar beacon, telemetering and low-level video receivers. Minimum figure of merit for this video diode is 220 . Theoretical tangential sensitivity is -53 dbm at $9,000 \mathrm{mc}$ for a receiver bandwidth of 10 mc . For highest sensitivity performance a d-c bias of $+50 \mu \mathrm{a}$ is recommended.

The MA-408B is interchange-

## PORTABLE LOW VOLTAGE TESTER



The newest development in the Nothelfer line, is this portable low voltage tester for on-the-field use. It is used for testing of motor transformer relays or other electrical components under full load.

The unit illustrated here has an output of 15 KVA , 3 phase, and also 5 KVA , single phase, in voltage output and input of 120 to 480 volts. The unit can also be made to put out 2 phase power if required.

For over 30 years NWL has designed and mannufactured custom transformers for every application. Only high standard materials and most reliable manufacturing methods are used. NWL coils are vacuum impregnated with the best of varnishes. Joints over 10 amperes are silver plated. All laminations and grain-oriented core steels, and most silicon steels are annealed in controlled nitrogen atmosphere electric furnaces.


Day in, day out . . . in aircraft, refinery vessels, fire protection systems, furnaces, molding presses . . . under extremes of heat and cold, moisture, chemicals and abrasion, Revere thermocouple wires stand up because they're tailor-made for each application.

Solid or stranded chromel-alumel, iron-constantan and cop-per-constantan conductors available in various gauge sizes. Wrapped, carded or extruded insulations include polyethylene, vinyl, nylon, Revcothene*, Teflon $\dagger$, fiber glass, asbestos and pure silica glass fiber. Outer braids treated with flame and abrasion resistant saturants. Metallic braids for severe service. L \& N, SAMA or NBS calibration. Wires constructed to Military Specifications MIL-W-5845, MIL-W-5846 and MIL-W-5908.

Whether your application requires extreme flexibility, chemical inertness or resistance to temperature, flame, abrasion, moisture, acids or solvents, a standard or special Revere thermocouple wire will meet your specific need.

[^25]†E. I. DuPont trademark

Send for Engineering Bulletin No. 1701 describing Revere Thermocouple Wires and Exfension Leads.

able with other cartridge type diodes of the IN23 series. An average improvement of 4 to 5 db is indicated when the MA-408B replaces IN23C mixer crystals in low-level video circuitry. The new crystal is approximately 2 db more sensitive than the MA-408A. Circle P24 inside back cover.


## WIRE-WOUND RESISTORS

for use in small spaces
The Daven Co., 530 West Mt. Pleasant Ave., Livingston, N. J., has available two new toothpicktype wirewound resistors, specially designed for use in applications where minimum space is a prime factor, such as in guided missiles and airborne radar and communications equipment.

Standard tolerance of both of these resistors is $\pm 1$ percent, but certain values can be obtained as close as $\pm 0.1$ percent. The smaller resistor (type 1288) measures 1 in. long by $\frac{1}{8}$ in. diameter; its maximum resistance is 100 K and it dissipates 0.15 w . Type 1289 measures 2 in . in length by $\frac{1}{8} \mathrm{in}$. diameter. Its maximum resistance is 200 K and it dissipates 0.20 w .

Both are noninductive. These units will pass all environmental requirements of MIL-R-93-A, Amendment 3. Circle $\mathbf{P} 25$ inside back cover.

## STEP ATTENUATOR

d-c to 1,000 -mc unit
Weinschel Engineering, 10503 Metropolitan Ave., Kensington, Md. Model 64 is a precision step attenuator designed for $\mathrm{d}-\mathrm{c}$ to $1,000 \mathrm{mc}$. Impedance is 50 ohms from 0 to 64 db in $0.1-\mathrm{db}$ steps. Maximum vswr from d-c to 400 mc is 1.10 ; from d-c to $1,000 \mathrm{mc}$, 1.15. Accuracy of insertion loss at d-c from 1 to 5 db is 0.02 db ;

the problem: Use six (6) Westinghouse 5082 diodes in a 3 -phase full-wave bridge for an are welder - the most rugged,
most challenging application that can be found. See how they stand up under this rigorous duty cycle, high short-circuit peaks, alternate heating and cooling, and transient voltage spikes. Compare the performance with other types of rectifiers.
the performance: Hundreds of these arc welders are today successfully performing for satisfied customers. Over 100,000 grueling duty cycles in industrial use have proved the value of Westinghouse Semiconductor Department's High Power Laboratory where this application was pretested round-the-clock with 35,000 duty cycles.
the conclusion: Westinghouse Silicon Rectifiers provide important advantages to builders and specifiers of rectifier assemblies . . . improve equipment design and operational efficiency with:

- More power in less space
- Higher temperature operation
- Lowered installation costs
- Unlimited life span
- Minimum maintenance expense - Reduced power loss


## Get the facts first hand:

The coupon will bring you complete engineering experience ... suggested circuits . . . positive proof of new reliability, efficiency and economy.

## WESTINGHOUSE ELECTRIC CORPORATION

P. O. Box 868, Pittsburgh 30, Pa.

Please send me data on the new Westinghouse WN-5082 Silicon Diode.
Please send me data on other Westinghonse Silicon Diodes. (Describe types or applications)

YOU CAN BE SURE...IFIT'S

## Westinghouse

FIGHT VIBRATION WITH VIBRATION

## How many jobs can a vibration exciter do?

Shaker systems can help you in at least five important ways.

Fatigue testing. Shakers have both the range and capacity to determine fatigue limits of structural members, assemblies, aircraft wing and tail structures. Peak forces of up to 25,000 pounds are now obtainable with MB Exciter Systems.

Environmental vibration testing to MIL-E-5272 and other government specifications. This is most important now for assuring reliability of performance in military production. But the same techniques can be used also to improve all types of products.

Noise. Just where in a product does it come from and how to eliminate it? An MB shaker helps pinpoint the disturbance by letting you vibrate the product through a whole range of frequencies with the twist of a dial.

Complex wave testing, including random motions. This is something new! It subjects a specimen to the same kind of vibration as that encountered in actual service. MB electrodynamic shaker systems offer the frequency range, high acceleration, and freedom from distortion needed for this kind of job.

Production and Quality Control. Your ideas are needed here. For example: Someone discovered that size of fine powder particles which sift readily through a screen varies with the screen's frequency of vibration. Permitting easy control of frequency, an MB shaker is capable of working on a production line! Tubes too are being productiontested with MB Exciters.

If you need help in putting vibration exciters to work, get in touch with MB . . . leading producer of vibration test equipment.


## manufacturing company

A DIVISION OF TEXTRON INC.
1075 State Street, New Haven 11, Conn.
headouarters for products to isolate . . excite . . And measure vibration


from 6 to $10 \mathrm{db}, 0.05 \mathrm{db}$; from 20 to $50 \mathrm{db}, 0.1 \mathrm{db}$. Maximum change of incremental insertion loss from 1 to 10 db is 0.1 db ; from 20 to $50 \mathrm{db}, 0.1 \mathrm{db}$ per 10 db . Calibration accuracy from 1 to 30 db is $\pm 0.1 \mathrm{db}$; from 40 to 50 $\mathrm{db}, \pm 0.2 \mathrm{db}$. Price is $\$ 1,950$. Circle P 26 inside back cover.


## LITTLE CONNECTORS

for aircraft-type uses
DE.JUR-AMSCO Corp., 45-01 Northeril Blvd., Long Island City 1 , N. Y. Series 22 precision Continental connectors are suited for applications where space is at a premium, as in aircraft and instrumentation. The 11-contact series 22 connector illustrated has an overall length of 0.78 in .; width 0.27 in ; center-to-center mounting dimensions on mounting studs, 0.532 in .

Polarization is assured with a reversed guide pin and guide socket made of stainless steel. Floating contacts insure positive self-alignment of each contact. The precision machined phosphor bronze contacts are gold plated over silver for low contact resistance and soldering ease.
Microminiature series is available in $7,11,14,20,26,29$ and 34 contacts, with or without aluminum hoods.

Complete information, specifi-


TOOLS FOR ENGINEERS


BURROUGHS CORP. - ELECTRONIC INSTRUMENTS DIV. Department C • 1209 Vine Street - Philadelphia 7, Penna.

## converting Gray code to binary equivalents

Here is a simple method for converting Gray code to true binary equivalents. It was put into operation in minutes just by interconnecting Burroughs Pulse Control Units in accordance with the engineer's block diagram, without detailed specifications or complicated circuit designs. With pulse control equipment at his disposal, the engineer was able to turn immediately to other important problems awaiting his attention.

The majority of engineers solving logical problems are badly in need of such tools. Most are bogged down by equipment of limited use that must be redesigned and rebuilt for every new project ... that clutters the path to a working solution instead of clearing and shortening it.

The smallest discrete units with which such a man can work are logical concepts . . . the basic logical operations. The ideal tools for him are these same operations, packaged for convenient and immediate use by simple interconnections-like the blocks in his block diagram. Such tools are Burroughs Pulse Control Units, which bring block diagrams to life in a matter of hours rather than weeks. Wherever logical problems are being solved with pulses they have earned the title "Tools For Engineers" by eliminating intermediate steps to a proof, obsoleting the frustrations and complexities of breadboarding.
Why not lift the burden of proof from your shoulders by passing pulse problems on to us? We'll gladly show you how Burroughs Pulse Control Units can bring your logical problems closer to a neat working solution . . . at no cost. Or, write for Bulletin 236.



You no longer have to wait months while enthusiasm cools for the high alumina ceramic parts to build the pilot and test models of your projects.

Thanks to Diamonite's unique Off-the-Shelf Service with its large, constantly maintained inventories of hundreds of precision high alumina rings, tubes and rods, your small quantity requirements of such items can be at the airport and on their way to you in a matter of hours after your order is received.

Wherever it is possible to design your projects around these instantly-available shapes, you can not only save weeks of development time but will also be in a position to enjoy better deliveries, better costs and better quality when you are ready to go into production.

Write or Wire for a copy of the Diamonite Off-the-Shelf Inventory and Price List. You'll find it a helpful guide to your planning for getting your product to market quicker.

manufacturing company pioneers in
the development of high alumina ceramics

Canton 3, Onio
cations and diagrams are available. Circle P27 inside back cover.


## VOLTAGE REGULATORS

three new series
Transitron Electronic Corp., Melrose 76, Mass., has available three new series of silicon voltage regulators designed to satisfy a full range of power requirements. They are available with ratings of $250 \mathrm{mw}, 75 \mathrm{mw}, 10 \mathrm{w}$ and are encapsulated in small hermetically sealed axial mounting packages. All classes have standard types covering the voltage range 4.3 to 27 v . Close tolerance and higher voltage regulators are available in assemblies.

Specifications, ratings and applications are found in bulletin TE-1352. Circle P 28 inside back cover.


## ULTRASONIC GENERATOR

 for research laboratoriesRadionics, Inc., Burlington, Mass. Model PUG3 is a research-grade instrument designed to deliver closely controlled r-f power to quartz-plate transducers in medical, industrial or academic re-


# AT Thompson Products 

THE DECISION IS PRECISION... AND THE DECISION WAS PAA/CE

Another example of major industry breaking through the problem barrier: The New Device Research Department, a privately owned laboratory of Thompson Products, Inc., recently placed in operation one of the country's largest analog computing systems devoted to the solution of aeronautical control and nuclear control problems.
This PACE Computing System developed by Electronic Associates, Inc. will also be applied to industrial control problems.
The combination of non-lincar and linear computing equipment enables wide-range simulation of electrical, mechanical, and pneumatic systems to be accomplished.
In research and simulation as vital as those at Thompson Products, the major decision is precision. And the high standard of accuracy of EAI Equipment sets the PACE for precision in the industry.
For a demonstration or for rental of time, contact our Computation Centers. There's a Center serving Eastern Industry in Princeton, N. J-one serving Western Industry in Los Angeles, Calif. For equipment information, write Electronic Associates, Inc., Long Branch, N. J., Depr. EL-5.


## EAISETSTHE



A
$\underset{\text { computino }}{\boldsymbol{E}} \underset{\text { EaUIPMENT }}{\text { ® }}$

## LONG BRANCH • NEW JERSEY



Here's the first step toward lifetime reliability in electronic gear - the conversion from vacuum tubes to rugged, lightweight, small size Berkeley FERRISTORS*.
Berkeley FERRISTORS* consist of simple wire-wound coils on a ferro-magnetic core, encapsulated in epoxy resin. Costing less than comparable vacuum tubes, they offer these advantages:


## 1. Continuous-duty reliability

2. Unaffected by vibration, shock, high overloads, humidity changes, temperature extremes
3. Total weight only $1 / 2$ ounce; small as a cube of sugar

## TYPICAL APPLICATIONS

FERRISTORS* are now used as oscillators, multi-vibrators, bi-stable elements, one-shots and various linear amplifiers including coincidence amplifiers, balanced amplifiers and differential amplifiers.
Why wait for your competitor to use FERRISTORS* and offer electronic gear with lifetime reliability? Investigate now and beat him to the punch - write for Data File 110, "Electronic Design with FERRISTORS*." Please address Dept.G5


Model 470 RF Power Supply has dual outputs to supply 1.7 mc to drive up to 4 ring-of- 10 bi-stable elements and to supply 10 mc to power at least 10 linear amplifiers, Ideal for preliminary investigations of circuits using the Berkeley FERRISTOR*. Price $\$ 95.00$ f.o.b. factory.

Berkeley Division
Richmond 3, California
a division of Beckman Instruments. In
search laboratories. Frequency range is 700 kc to 6 mc and power is available at odd harmonics of the fundamental frequency of the transducer crystal. The r-f crystal driving voltage is variable from zero to $3,000 \mathrm{v}$ rms. With suitable transducers, (quartz only) outputs of 150 acoustic watts are available, either $c-w$ or pulsed. Calibration stability is a primary consideration and extensive means are provided for presetting the controls so that any prescribed intensity level may be established.

Pulse duration is 0.005 to 2.0 sec in precise steps, up to 90 percent duty; pulse period, 0.1 to 10.9 sec , in $0.1-\mathrm{sec}$ steps. Preset pulse count is 1 to 99,999 ; crystal vtrm, (four ranges) - 100,300 , $1,000,3,000 \mathrm{v}$. Circle P 29 inside back cover.


## STABILITY TESTER

takes microwave readings
Laboratory for Electronics, Inc., 75 Pitts St., Boston 14, Mass, Changes in the frequency of microwave oscillators can be measured to a new high degree of precision with the model 5004 microwave stability tester. At Sband the change that can be indicated is less than 2 cps .

The instrument measures the drift and rate of drift of oscillators and, for this reason, it has many applications where the determination of stability is important. It is adaptable to take readings at S, L, C or X-band. Stability measurements may be taken at 30 mc and from 30 kc to 230 kc .

An important feature of the instrument is that readings can be taken instantaneously and monitored continuously. The device is


New 65,000 sq. ft. plant at Wapakoneta, Ohio. Completely modern in every respect. Close to the Mid-U.S. electronics industry.


Main plant at Norristown, Pa. Where most of the cathodes used in this country for more than 20 years have been made.

# Two Modern Plants 

## FOR SEAMLESS NICKEL CATHODES

 OFFER YOU DOUBLE DELIVERY ASSURANCEJust like a second source of supply for every cathode order you place-without the inconvenience of dealing with two suppliers or worrying about product uniformity.

Each of these two big Superior Tube cathode plants follows exactly the same manufacturing methods and quality control procedures. Each employs the same laboratory checks on materials and finished cathodes. So cathodes can be produced at either plant and exactly meet the specifications.

Now there's more reason than ever to make Superior Tube your regular source for electron tube cathodes. Get complete technical information in the new Catalog 51. Write Superior Tube Co., 2500 Germantown Ave., Norristown, Pa.
*Manulactured under U. S. patents


Superior Tube cathodes. Typical examples. Seamless, Lockseam,* and Weldrawn ${ }^{(8)}$ cathode sleeves are available in a wide variety of lengths and cross-section shapes. New Cathaloy ${ }^{(R)}$ cathode materials offer new propertics and superior performance.


NORRISTOWN, PA.
Johnson \& Hoffman Mfg. Corp., Mineola, N.Y.-an affiliated company making precision metal stampings and deep-drawn parts


Vibration... with frequencies up to 500 cycles per second and up to 15 G's...might prove to be a shattering experience for some servo motors. But not for a G-M Servo!
a laboratory type instrument of semimilitary construction. Circle P30 inside back cover.


CRYSTAL \& OVEN PACKAGE
for 4 kc to 125 mc
Bliley Electric Co., Union Station Bldg., Erie, Pa. The BTC-2 is a crystal and oven package. Combined into a single hermetically sealed plug-in unit is an all-glass vacuum mounted crystal, plus integral temperature stabilizers for high-precision frequency control at 75 C or 85 C . High reliability over the frequency range of 4 kc to 125 me is assured. Request bulletin No. 497. Circle P31 inside back cover.


## SUBMINIATURE RELAY

for high precision work
Elgin national Watch Co., Elgin, Ill., has announced a new high precision subminiature relay in the popular crystal can size. Designed to meet the most severe military specifications, the new relay will be marketed under the code name MV and will be available with both solder-lug and plug-in terminals.
It is a rotary action dpdt relay


## 22,000 hours without a tube failure

Eitel-McCullough
San Bruno, Calif.
Gentlemen:
"Just thought you might like to know that I have had to replace one of your 4-250A's in our FM transmitter today. This tube had 21,972 hours and 19 minutes on it. Its mate, installed at the same time, is still rumning strong." *

## Ed Howell

Technical Supervisor
WMIX, Mount Vernon, Illinois
*Its mate, from recent reports, is still rumning strong after 25,000 hours of service.

EITEL-MCCULLOUGH, INC. sangruno california Eimac Finst $^{\text {with power for } F M}$

Eimac tubes have always been "front runners" in the field of commercial broadcasting. In fact, Eimac development, design and production, have opened new vistas in all fields of electronic design, from glass tubes to ceram-ics-from simple triodes to complex klystrons. Engineers, in increasing numbers, have discovered that Eimac delivers the big three: quality - longevity-performance!

Additional information on Eimac's complete line of tubes for broadcasting and communications is available from our Application Engineering Department.

## Your Demands Created HIGH VOLTAGE SIIICON POWER RECTIFIERS



Sarkes Tarzian series type SM silicon rectifiers provide the practical, low cost solution to the high voltage silicon rectifier problem. Stable characteristics inherent in low voltage junctions are carried over to this series. If your application calls for high temperature and high voltage, send for complete information.

ELECTRICAL RATINGS

| $\begin{aligned} & \text { S.I. } \\ & \text { Type } \end{aligned}$ | Max <br> Peak <br> Inverse <br> Volts | Max. <br> RMS <br> Volts | Current Ratings-Amperes |  |  |  |  |  |  |  | Jetec No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Max. D.C. Laod |  | Max. RMS |  | Max. Recurrent Peak |  | Surge 4MS Max. |  |  |
|  |  |  | $100^{\circ} \mathrm{C}$ | $150^{\circ} \mathrm{C}$ |  |
| 80SM | 800 | 560 | 450 | 225 | 1.12 | 560 | 4.5 | 2.25 | 27.0 | 13.5 | 1N1108 |
| 120SM | 1200 | 840 | 425 | . 212 | 1.06 | 530 | 4.25 | 2.12 | 25.5 | 12.7 | 1 N1109 |
| 160SM | 1600 | 1120 | 40 | 200 | 1.00 | . 500 | 4.00 | 2.00 | 24.0 | 12.0 | 1N1110 |
| 200SM | 2000 | 1400 | . 375 | 187 | 840 | . 470 | 3.75 | 1.87 | 22.5 | 11.2 | 1N1ll |
| 240SM | 2400 | 1680 | . 35 | 175 | . 875 | . 437 | 3.50 | 1.75 | 21.0 | 10.5 | 1N1112 |
| 280SM | 2800 | 1980 | 325 | 162 | 812 | . 405 | 3.25 | 1.62 | 19.5 | 9.7 | 1N1113 |

DIMENSIONS


Figure 1

## RECTIFIER DIVISION

415 N. College Ave., Dept. D-T, Bloomington, Ind

IN CANADA: 700 WESTON RD., TORONTO 9, TEL. ROGERS 2.7535 EXPORT: AD AURIEMA, INC., NEW YORK CITY
designed to operate in a temperature range of up to +125 C with a contact rating at 2 amperes resistive at 28 v d-c or 115 v a-c. Vibration is rated at 10 to 80 cps at maximum excursion of 0.06 in . and from 80 to $2,000 \mathrm{cps}$ at $20-\mathrm{g}$ acceleration.

The relay is slightly less than an inch long by ${ }_{3} \mathrm{in}$. wide and in. thick. It weighs only 0.44 oz. Circle P32 inside back cover.


## VTVM

priced at $\$ 145$
General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Type $1800-\mathrm{B}$ vtvm has an accuracy better than $\pm 2$ percent on all a-c and d-c voltage ranges. Its completely shielded diode probe is designed for use into the uhf range. Other features include a high input impedance, d-c polarity switch, illuminated meter scale with mirror and knife-edge pointer. All input terminals are insulated from the panel allowing the panel to be grounded at all times.
Stability has been achieved through advanced circuit design, power-supply regulation and the use of long-term stable precision components. Price of the unit is $\$ 415$. Circle P33 inside back cover.

## DETECTOR METER <br> shows up interference

Interference Testing and Research Laboratory, Inc., 150 Causeway St., Boston 14, Mass. Model 2A interference detector meter has been developed for the purpose of quickly and simply detecting the presence of inter-

## expand your

## with the

## needs demand ...



The 700C oscillograph will fill your minimum recording needs, yet will readily expand to cover your broadest requirements. For instance:

- You can start with a minimum-budget recording oscillograph and equip it for one-channel recording if you like. But this same instrument can easily be expanded to a 60 -channel instrument as it takes on its full complement of five magnet assemblies holding twelve galvanometers each.
- It's easy to insert more galvanometers as needed. Each Heiland magnet assembly is completely pre-wired with galvanometer and heater connections. When several more traces are needed, another magnet assembly can be installed without special tools in less than 15 minutes. Neither model requires dummy galvanometers; there is no need for a full complement of galvanometers.

Panel for 115 volt 50.10 .400 cycle AC power input

The 708 C , using 8 -inch paper, will record one phenomenon or 36. The 712 C , using 12 -inch paper, records from 1 to 60 phenomena. Both models will also operate on any width paper down to $2^{\prime \prime}$. Paper speeds are from 03 to 144 inches per second. - Use the same instrument on DC or AC... just specify the proper power supply panel.

- Use either instrument on the work bench, in a relay rack, or in airborne or mobile installations.
For complete details, write for Bulletin No. 700-EK


## Honejwell

5200 E. EVANS AVE., DENVER 22, COLORADO

*Circuits should allow for header pins
to carry arc suppression items externally
these standard hermeically sealed enclosures are now avallable for ledex
Hermetically sealed Ledex switches are moisture-proof, dust-proof and protected from the effects of salt-spray, fungus and humidity. Also, many of the hermetically sealed Ledex selectors qualify for the requirements of MIL-E-5272A. Ledex selectors simplify installation problems, reduce wiring time to a minimum and prevent damage caused by tampering.
Many switching combinations are available with the standard models. If the standard models do not answer your specific requirements, send the salient facts of your special hermetically sealed selector switch problem to us for our recommendations.


For best delivery specify one, ten or fifteen pin headers. (IIlustrated)

WRITE FOR COMPLETE INFORMATION TODAY! 123 WEBSTER STREET, DAYTON 2, OHIO

[^26]
ference within electronic and electrical equipment and on secondary power lines. It will detect interference, between 0.075 mc and 35 mc , of sufficiently high intensity to cause malfunctioning of critical equipment, or to be a potential cause of malfunctioning. It may be used on production lines to compare the order of intensity of interference given off by samples of the same type and thus serve as a means of quality control.
By the use of broadband-conducted techniques of measurement, is can be used in high ambient level areas where screen rooms would otherwise be required. An antenna is available, as an accessory, to make radiated tests of interference with an intensity of 1 mv or more. Price is $\$ 250$ with one accessory. Circle P34 inside back cover.


## INSULATING CONNECTORS

 for h-f coax serviceJoclin Mfg. Co., North Haven, Conn., has developed a new idea in insulating connectors for h-f coaxial service in radio, radar and other electronic equipment. Connectors are available with an insulation material that is nonflammable, will not carbonize under

## Type 316 PORTABLE

This interesting new instrument combines a dc-to- 10 mc passband, high sensitivity and wide sweep range in a handsome container that weighs only 35 pounds and measures only $8^{1 / 2^{\prime \prime}}$ wide, $12^{\prime \prime}$ high and $191 / 2^{\prime \prime}$ deep. It offers marked improvements in performance, reliability and accessibility over the popular Type 315 D , which it replaces in the Tektronix oscilloscope family.

In spite of its small size, the Type 316 is an excellent laboratory oscilloscope. Compactness can be advantageous there, as well as out in the field. It's as rugged as a light-weight oscilloscope of high precision can be, able to take much more than the normal field environment without a pause in its accurate operation.


ENGINEERS - interested in furthering the advancement of the oscilloscope? We have openings for men with creative design ability. Please write Richard Ropiequef, Vice President, Engineering.


VERTICAL AMPLIFIER
Deflection Characteristics- 12 colibrated steps from $0.01 \mathrm{v} / \mathrm{div}$ to 50 v/div.
2 cycles to $9 \mathrm{mc}-0.01,0.02$ and 0.05 $v /$ div.
de to $10 \mathrm{me}-0.1,0.2,0.5,1,2,5,10$. 20 and $50 \mathrm{v} / \mathrm{div}$.
Continuously variable from $0.01 \mathrm{v} / \mathrm{div}$ to $125 \mathrm{v} / \mathrm{div}$.
Transient Response- $0.035-\mu \mathrm{sec}$ riselime from 0.1 to $125 \mathrm{v} / \mathrm{div}, 0.04-\mu \mathrm{sec}$ from 0.01 to $0.1 \mathrm{v} / \mathrm{div}$.
Signal Delay-balanced $0.25-\mu \mathrm{sec}$ delay network.

## TIME BASE

Sweep Range - 22 calibrated steps from $0.2 \mu \mathrm{sec} / \mathrm{div}$ to $2 \mathrm{sec} / \mathrm{div}$, continuously variable from $0.2 \mu \mathrm{sec} / \mathrm{div}$ to $6 \mathrm{sec} / \mathrm{div}$.
Magnifier-accurate $5 \times$ magnification, increasing calibrated sweep range to $0.04 \mu \mathrm{sec} /$ div.

Triggering-internal, external, lineac or dc coupled, automatic triggering and high-frequency sync. PRESET or MANUAL stability control for all triggering modes.

## OTHER FEATURES

1.85-KV Accelerating Potential-new Tektronix precision $3^{\prime \prime}$ cathode-ray tube provides 8 -diy by 10 -div linear viewing area.
Square-Wave Voltage Calibrator $0.05 \times$ to $100 \vee$ in 11 steps, frequency aboul 1 kc .
Electronically-Regulated Power Supplies
Warning Indicators for Uncalibrated Settings
Size— $81 / 2^{\prime \prime}$ wide, $12^{\prime \prime}$ high, $191_{2}^{\prime \prime}$ overall depth.
Weight- 35 pounds.

## Tektronix, Inc.

P. O. Box 831 - Portland 7, Oregon

Phone CYpress 2-2611 - TWX-PD 265 • Cable: TEKTRONIX



617

|  |  | Type $6350$ | NEW BULLETIN L-19B contains full specifications for each instrument. For your copy write to: SHALLCROSS MANUFACTURING COMPANY. 522 Pusey Avenue, Collingdale, Pa. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Model Number | Measurement Accuracy | Maximum Setting | Minimum Setting | Circuit | Special Features |
| 6100 | $\mid=0.1 \%+0.01 \Omega$ | 1.011 Meg § | 0.0018 | Fault LocationWheatstone | Fault Location by Murray, Varley, Hilborn \& Fisher Loop Tests. |
| 6101 | $\begin{array}{\|l\|} \hline \pm 0.1 \% \\ (1 \Omega \text { to } 11.11 \mathrm{Meg} 2) \end{array}$ | $11.11 \mathrm{Meg} \Omega$ | $0.001 \Omega$ | Wheatstone | Four dial rheostat usable as decade box. |
| 6320 | $\frac{ \pm 0.02 \%}{(12 \text { to } 11.11 \text { Meg } \Omega)}$ | 111.11 Meg ${ }^{\text {a }}$ | $0.00001 \Omega$ | Wheatstone | Most accurate five dial Shallcross bridge for direct resistance measurement. <br> Rapid "GO-NO GO" percent limit testing. Built-In adjustable comparison standard. |
|  | $\pm 0.05 \%$ to $\pm 20 \%$ on separate " + " and "-_" percent selectors. ( $1 \Omega$ to $10 \mathrm{Meg} \Omega$ ) | 11.111 Meg 8 | $0.0001 \Omega$ | Percent Limit |  |
| 638-R | $\begin{array}{\|l\|} \hline \pm 0.75 \% \text { or better } \\ (.001 \Omega 2 \text { to } 18) \\ \hline \end{array}$ | 11.118 | 0.000001) | Kelvin | Overlapping Kelvin and Wheatstone ranges selected with single ratio dial. |
|  | $\begin{aligned} & \pm 0.2 \%+0.01 \Omega \\ & (1 \Omega \text { to } 11.11 \mathrm{Meg} \Omega) \end{aligned}$ | 11,11 Meg? | . 0019 | Wheatstone |  |
| 6350 | $\begin{aligned} & \pm 1 \%,(100 \text { to } 10 \mathrm{Meg}) \\ & \pm 2 \%,(1 \mathrm{Meg} \mathrm{M} \text { to } \\ & 10,000 \mathrm{Meg}) \\ & \pm 5 \%,(\mathrm{bove}) \\ & 10,000 \mathrm{Meg} \Omega) \end{aligned}$ | $\underset{\text { Meg? }}{1.11 \times 106}$ | 0.018 | Wheatstone with d-c Amplifier | Modular construction dual range power supply, null indi-cator-amplifier, for 115 V . 60 cycle operation. |
| $\begin{aligned} & 617 \\ & \text { Series } \end{aligned}$ | $\pm 0.1 \%$ to $\pm 20 \%$ on sep. arate " + " and "-" selectors from a minimum resistance consistent with number of dials in use to the maximum settings. | $\begin{aligned} & 111,111 \Omega \\ & 1,111110 \Omega \\ & 11,111,100 \Omega \end{aligned}$ | $\begin{gathered} 0.18 \\ 1 \Omega \\ 10 \Omega \end{gathered}$ | Percent Limit | For rapid "GO-NO GO" percent limit testing. Hand or foot operated for production testing. All models also usable for direct resistance measure-ments. Binding post for external d-c power supply. |
|  | $\dagger \pm 0.2 \%+0.019$ frem a minimum consistent with number of dials in use to the maximum setting. | $\begin{aligned} & 111,111 \Omega \\ & 1,11,110 \Omega \\ & 11,111,100 \Omega \end{aligned}$ | $\begin{gathered} 0.18 \\ \times 1 \Omega \\ 108 \end{gathered}$ | Wheatstone |  |

$\dagger$ Except 6178 and $6171 \pm 0.1 \% \pm 0.01 \Omega$.
... 1 micro-ohm to $10^{6}$ megohms

Among the many bridges manufactured by Shallcross, these six have become virtually "standards" for general-purpose resistance measurements. Each is easy to operate and ruggedly constructed to maintain accuracy and stability in every kind of field and laboratory service. Switch decks are inside the case for minimum maintenance.

Of special interest are the 617 Series Limit Bridges. These provide direct "GONO GO" production line resistor testing for any percent tolerance spread from $\pm 0.1 \%$ to $\pm 20 \%$.

NEW BULLETIN L-19B contains full specifications for each instrument. For your copy writeto: SHALLCROSS MANUFACTURING COMPANY. 522 Pusey Avenue, Collingdale, Pa.

Except 617G, 0.012.
arcing, and is indestructible in the face of the roughest handling on assembly lines.

The insulating body is molded of Du Pont Teflon, a chemically inert compound with high dielectric strength that is serviceable at temperatures from -100 to +500 F. Simplicity of design and manufacturing is ideal for miniaturization work. Circle P35 inside back cover.


## 4

## LOAD ISOLATOR

designed for microwave use
Cascade Research Corp., 53 Victory Lane, Los Gatos, Calif. Model X -125 Uniline is a miniaturized ferrite microwave load isolator having a total length of only 1 in. and weight of only 9 oz . It operates over the frequency range of 8.5 to 9.6 kmc .

Isolation is 10.0 db over the band with an insertion loss of 1.0 db . Peak power is 100 kw , average power is 100 w into a 2 -to- 1 mis match. The vswr is 1.15 into a matched load. Waveguide size is RG-52/U, flanges UG-39/U. Circle P36 inside back cover.

## MICROWAVE TUBE

broadband amplifier type
Raytheon Mfg. Co., Waltham 54, Mass. The Amplitron, a new highpower broadband microwave amplifier tube, operates without mechanical or electrical adjustments and may be used as the output stage of a high-power broadband chain. Its combined high-power, broadband and coherent operation are essential to advanced radar


## MARCONI'S HAND IN THE HISTORY OF ELECTRONICS

In 1896, at the age of 22, Marconi demonstrated the 'wireless telegraph' equipment he had invented in his family home near Bologna to British Post Office and Forces chiefs. The initial possibilities of his enterprise were grasped. 'Radio' had arrived.
In 1897 a company, headed by him, now known as Marconi's Wireless Telegraph Company, Ltd., was founded in England to develop his ideas. Over the past 60 years that company has remained in the forefront of both the practical application of electronic principles and further pure research into them. It has been a pioneer in Radio and Radio/Telephone Communications, in Maritime Radio, Airborne and Airport Radio, Broadcasting and Television, Radio Aids to Navigation and Radar.

The achievements of the engineers and physicists whom Marconi gathered about him, and of their successors, have laid a foundation of unsurpassed experience on which to base future activities. A tradition of resourcefulness, enterprise, foresight and persistence characterises the Marconi Company today.
Information about the Marconi Company's latest equipment is available to American radio and electronic engineers for the asking.

The bust of Guglielmo Marconi unveiled in the Hall of Fame of the Institute of Electrical Engineers, by his daughter in October, 1955.

## DO YOU HAVE A PRODUCTION PROBLEM?

## Are You Looking For A Sub-contractor Who Can Meet Your Requirements?

## LET US HELP YOU WITH YOUR PRODUCTION PROBLEMS and you will be assured of <br> Stehedco Quality and Service <br> We are frequently called upon to develop and manufacture parts for the Electronics field. Typical of such a problem is our development of capacitor tab material of high quality aluminum with controlled tensile strength. Available in sizes to $3 / 4^{\prime \prime}$ and from $.0035^{\prime \prime}$ thick, it features rounded, burr-free edges and absolutely smooth surface, tightly wound on endless, non-telescoping coils to 3400 feet long. <br> Take Advantage of Our Excellent Facilities For Supplying You With

## WIRE ROLLING

METAL STAMPING
PRECISION MACHINING

TOOL AND DIE WORK<br>PLASTIC FABRICATION

## ASSEMBLY FACILITIES

SCREW MACHINE PRODUCTS
ELECTROPLATING
hard industrial chrome, decorative chrome cadmium, copper, nickel and zinc.

## STEEL HEDDLE MFG. CO.

2100 WEST ALLEGHENY AVENUE • PHILADELPHIA 32, PA. TELEPHONE SAGAMORE 2-2460

and countermeasures systems.
Practical applications include electronic scanning of radar beams without moving reflectors, rapid shifting of frequency to avoid r-f interference and coherent MTI systems. Specifications are available. Circle P37 inside back cover.


TRANSISTOR FURNACE
with high accuracy
BTU Engineering Co,, 440 Somerville Ave., Somerville 43, Mass., has announced a new type electric furnace specifically designed for alloying, brazing and soldering of transistors and other semiconductor products.

These Transheat furnaces feature: unique muffle design for controlled temperature profile; longlife heaters; controlled atmosphere and curtains; variablespeed drive; easily accessible parts; noncontaminable stainless steel belt. The temperature control system incorporates strategically located thermocouples for quick response, multiple temperature controlled zones for heating

## Speed completion of your project...

## with

## Electronik

 special span and range instrumentsEliminate much of the guesswork and bother of laboratory and test cell work with these ElectroniK special range and span instruments. They measure and record or indicate variables quickly, accurately, conveniently . . . are particularly valuable where precise evaluation and good resolution are needed.

Your nearby Honeywell sales engineer will be glad to help you select and apply these and other ElectroniK instruments for research. Call him today . . . he's as near as your phone.

Minneapolis-Honeywell Regulator Co., Industrial Division, Wayne and Windrim Avenues, Philadelphia 44, Pa. - in Canada,
Toronto 17, Ontario.

Honeywell
BROWN INSTRUMENTS


ElectroniK EXTENDED RANGE RECORDER—Simplifies measurement of any linear variable whose values change over a wide range. Particularly suitable to the measurement of forces in conjunction with a strain gage bridge. Typical application: Projectile stress testing in wind tunnels. Write for Instrumentation Data Sheet 10.0-18.


ElectroniK NARROW SPAN RECORDERS—Accurately measure dec potentials as low as 0.1 microvolt and spans as narrow as 100 microvolts. Available as precision indicator, circular chart recorder, and strip chart recorder. For measuring differential temperatures and slight variations in temperatures of small objects through radiation pyrometry. Write for Instrumentation Data Sheet 10.0-8


ElectroniK ADJUSTABLE SPAN RECORDER -Measures spans and magnitudes of a variety of emf's. Instrument calibration can be in terms of any variable reducible to $d$-c voltage Car be used with thermocouples, steam gages, tachometers, and other transducers. Write for Instrumentation Data Sheet 10.0-10a.


ElectroniK EXTENDED RANGE INDICATOR-Incorpciraies extended scale and automatic range changing, serves in same applications as Extended Range Recorder. Resolution greater than one part in five thousand can be obtained, with use of a linear secle. As many as 10 ranges available. Write for Instrumentation Data Sheet 10.0-3.


accurately monitor
transmitter output
Built into major military communications and ballistic missile programs. MicroMatch Directional Couplers provide simple but precise means of continuuously monitoring RF power and VSWR. Independent of frequency over a very wide range, these directional couplers are available for use at frequencies between 3 and 4000 megarycles.

These low-cost, compact units are adjusted to produce full scale meter deflection at power levels of 1.2 watts to 120 KW . Accuracy of power measurement is $\pm 50$ of full scale. For positive confirmation of transmitter performance, make sure that MicroMatch Directional Couplers are built in.

WRIte for our 50-page catalogOR SEE PAGE 323 OF ELECTRONICS BUYERS GUIDE FOR MORE INFORMATION


WHEN MICROMATCH ${ }^{\circledR}$ IS BUILT WYOU KNOW WHAT'S GOING OUT
*U. S. Patent Letterr NiNa. 2,588,390
and cooling rates and self-balancing input controls that maintain temperatures to within $\pm 0.25$ percent of full scale range. Circle P38 inside back cover.


## FERRITE ISOLATOR

for lab and test bench
Kearfott Co., Inc., 14844 Oxnard St., Van Nuys, Calif., announces a new ferrite isolator designed for maximum frequency stability and engineered to small size ( $2 \frac{1}{2}$ in. long, weighing only $1 \frac{1}{2} \mathrm{lb}$ ).

Illustrated is the model W177$2 \mathrm{C}-1$ laboratory or test bench ferrite isolator for broad band, usable from 8.2 to 10.2 kmc . With high isolation, a minimum of 25 db over the band with less than 1-db insertion loss, the isolator is a highly stable instrument.

Made with cover-type flanges to mate with UG39/U flanges, it will absorb up to 10 -w reflected power. Circle P39 inside back cover.


## NULL DETECTOR

isolated from power lines
Industrial Test Equipment Co., 55 E. 11th St., New York 3, N. Y. Model 60B null detector is battery operated to provide complete isolation from power lines. It is well shielded against external fields

Which one of these Genisco centrifuges meets your requirements for testing components under simulated operational G-loadings?
... as required by Mil 5272A, procedure II

Genisco G-Accelerators provide a quick, precise means of testing components in an acceleration environment similar to that encountered in actual operation.

They are extremely accurate machines, easy to operate and built to withstand years of hard use.

These features particularly suit them for large volume testing programs, as well as for precise laboratory prototype development.

More than 100 Genisco G-Accelerators of various capacities are now in use throughout the world.

Complete technical information on all models and accessories is available. Please direct your inquiry to: Contracts Manager, Genisco, Inc., 2233 Federal Avenue, Los Angeles 64, California.
model cise The larger capacity of this machine permits whole system components and complete packages to be tested. Two objects, each weighing 100 pounds and $24^{\prime \prime}$ $\times 24^{\prime \prime} \times 18^{\prime \prime}$ in size, can be accommodated simultaneously. G-range of the machine is 0.024 G to 75 G's. Maximum centrifugal capacity is 2000 G pounds. Nominal radius of gyration $48^{\prime \prime}$.

MODEL D184 A high-speed machine, designed to test accelerometers and other instruments under acceleration forces from 1 to 850 G's. Full centrifugal capacity is 1000 G -pounds. Nominal radius of gyration $12^{\prime \prime}$.
model el 185 This newest and largest Genisco centrifuge was recently built for the U.S. Air Force. Two mechanical or electronic packages, each weighing up to 300 pounds, can be subjected to an acceleration environment of up to 65 G's simultaneously. Nominal radius of gyration of the machine is six feet. An automatic dynamic balancing system automatically compensates for any excessive unbalance in the machine during test runs.

MODEL B 78 Used primarily for testing relays, switches, tubes, motors, valves, and other small components, and to calibrate and evaluate accelerometers. Accommodates objects weighing up to 25 lbs.; has G-range of 0.017 G to 120 G*s. Maximum centrifugal capacity is 1200 G -pounds. Nominal radius of gyration $24^{\prime \prime}$.


ACCESSORIES ADD TO OPERATING EASE A number of accessories including a strobe system, air system, optical system, tub cover, access doorway, and slip ring systems, designed to give greater operating convenience, are available for Genisco G-Accelerators, Models B78 and C159.
Modifications in any basic machine or accessories to meet your particular requirements will be carefully considered.


Now You Can specify a Waters pot for miniaturized designs that require potentiometers up to 250 K . In the reliability-proved construction of the AP- $1 / 2$, these new, higher values give you:

- Resistances - 10 ohms to 250 kilohms
- Ganging - up to four units
- Three mounting styles - plain-bushing, split-bushing, or servo
- Three terminal styles - radial, axial, or wire-lead
- Automation model's - for printed circuits

General specifications: Centerless-ground, stainless-steel shaft can be sealed with 0 -ring; gold-plated, fork-type terminals standard; $2 \%$ standard linearity for 50 K and above - $5 \%$ for lower values; temperature range -55 to +105 C , to 125 C on order; 2 watts at 80 C ; anodized aluminum body $1^{\prime \prime} 2^{\prime \prime}$ diameter $\times 1 / 2^{\prime \prime}$ long - $5 / 8^{\prime \prime}$ long for 100 K and 250 K ; corrosion-resistant-alloy bushing; all electrical connections spot-welded or soldered; furnished with stops or for continuous rotation. Write for data sheet on these dependable 1/2" potentiometers.


and is ideally suited for Schering and other bridges. The sensitivity is $3 \mu \mathrm{~V}$ for 1 -percent deflection. Built-in tuned circuits permit a sharp balance even when the null is complicated by harmonics. Circle P40 inside back cover.


## GEARHEADS

for standard servomotors
Feedback Controls, Inc., 899 Main St., Waltham, Mass., have designed models G-11, G-15 and G-18 precision gearheads to withstand the severe mechanical and thermal environments encountered in military and industrial applications. A special flush-collar mounting insures permanently accurate mesh of motor pinion and first gear.

Exacting quality control of parts, ABEC-5 ball bearings and careful selection of materials combine to make these gearheads top-performance, long-lived components. They are available from stock in ratios from 10 -to- 1 to more than 4,000-to-1. Circle P41 inside back cover.


## ANTENNA HORNS 1,000 to $40,000 \mathrm{mc}$

J. V. M. Engineering Co., 4633 Lawndale Ave., Lyons, Ill., has available a complete line of cus-


for Super-Fine Cutting of Hard, Brittle Materials... the Cfllbhite

## Industrial Airbrasive Unit

This delicate cutting job was done with our Industrial Airbrasive Unit ... just to show you how its high-speed, gas-propelled stream of abrasive particles produces a fast . . . cool . . . shockless cutting action.
New industrial uses for the S. S. White Industrial Airhrasive Unit are being discovered every day. Developed from the Airdent ${ }^{\text {m }}$ equipment made by S. S. White for the dental profession, the unit can be used in wire-stripping . . . calibrating . . . to remove surface deposits . . etch glass ...cut germanium and other crystalline forms . . . or to etch, drill or light-debur almost every hard, brittle material.

The Airbrasive Unit does these, and many other jobs that used to be difficult - or downright impossible - to accornplish by previously known methods. Think of your own product. Do you have a process that our unit can solve? Send us a sample and let us try out the unit for you. Or, for further information, just write to


First Name in Airbrasive Cutting


[^27]Western Office: 1839 West Pico Blvd., Los Angeles 6, Calif.
tom-built antenna horns, ranging from 1,000 to $40,000 \mathrm{mc}$, in standard or special designs. Beam width and antenna gain can be provided to individual specifications. Comparative dimensions are illustrated. The small horn, measuring 0.280 in . by 0.140 in ., is for short range communication, laboratory use or as a field testing device for radar or similar equipment.

All horns can be supplied with quick disconnect for ease of installation and interchangeability. Silver and rhodium are used for all internal electrical working surfaces to provide maximum resistance to corrosion. Silver brazed assembly provides high mechanical strength. Circle P42 inside back cover.


## A-C MILLIVOLTMETER

a portable unit
Fisher Research Laboratory, Inc., 1961 University Ave., Palo Alto, Calif. A new portable, bat-tery-operated transistorized millivoltmeter makes a-c measurements to $50 \mu \mathrm{v}$ accurately. It is useful for in-the-field measurements for telephone and carrier equipment, for marine, aircraft and other mobile equipment, for general laboratory use and as a broadband amplifier. Floating voltages are easily measured. Difficulties due to line voltage fluctuations and $60-\mathrm{cps}$ beating are completely eliminated.

Twelve full-scale ranges between 0.001 and 300 v a-c are provided as well as decibel coverage between -80 and +52 dbm . Usable frequency coverage is provided between 1 cycle and 5 mc . Accuracy is $\pm 3$ percent between 5 cps and 1 mc . Input impedance is 22 megohms.

Battery power provides 400

## world-wide approval

Pye Telecommunications Limited are now marketing the widest and most modern range of V.H.F. fixed and mobile radio-telephone equipment available in the world. This range of equipment has been designed to expand the application of Pye Radio-Telephones already in constant use in 77 different countries.

Pye Ranger V.H.F. equipment has now received approval from the British G.P.O. for Land, Marine and International Marine applications employing A.M. or F.M. systems, type approval from the Canadian D.O.T., and type acceptance of the F.C.C. of the United States of America.

No other Company holds so many approvals for this range of equipment, which now covers every conceivable requirement.

We can offer
FREQUENCY RANGE
All frequencies from 25 to $174 \mathrm{Mc} / \mathrm{s}$
POWER RANGE

All powers up to I Kilowatt.

## CHANNEL SPACING

All channel spacings including 20 and $25 \mathrm{kc} / \mathrm{s}$ in full production.

## MODULATION

A.M. or F.M.

No matter what your V.H.F. requirements are, Pye Telecommunications Ltd., can fulfil them. Your enquiries are invited.

Pye Canada Lid., 82 Northline Road, Toronto, Canada
Pye Corporation of America, 270 Park Avenue, Building A, New York 17, N. Y., U. S. A.


COIL CHARACTERISTICS
Operating voltage: up to 200 volts D.C. Resistance: up to 16000 ohms Single or double wound
Operating time: 0.050 sec., max. $0.003 \mathrm{sec} .$, min.

## CONTACT ASSEMBLY

All forms $A, B$, or $C$ Single or double pile-up Code * 4 Palladium contacts, standard
Other contacts available

## MOUNTING

Two No. 4-40 tapped holes, standard Other mountings available

## VARIATIONS

Plug-in mounting and terminals Printed circuit terminals Taper tab terminals Metal enclosures Hermetically sealed

## your problem

hard-boiled? Type 4C was developed for coddling those requirements of maximum sensitivity and long life in a minimum space. It possesses a highly efficient magnetic circuit operating on a minimum of power. The armature backstop on Type 4C is stainless steel for maximum strength while the armature is fixed to a precision-ground stainless steel pin. A standard Phillips Type 4 contact spring assembly is used, however, all variations in contact arrangements and contact materials are available. Type 4 coils are available single or double wound, with time delay slugs and special windings for high-temperature and/or high humidity.

Let the "man from PHILLIPS" resolve your relay circuit problems.
hours of continuous operation. The instrument measures 5 in. by 8 in . by 4 in . Weight is 5 lb . Price is $\$ 225$. Circle P43 inside back cover.


## CONNECTOR

rack and panel type
Scintilla Division, Bendix Aviation Corp., Sidney, N. Y. Type SR rack and panel connector incorporates a solid shell and resilient insert to facilitate pressurization and to give maximum protection against the harmful effects of vibration. Other features include closed entry sockets, cadmiumplated irridite finish and operation in the temperature range of -67 to +250 F . Insert patterns will be available to mate with existing equipment now in service. Circle P44 inside back cover.


## ANTENNA TESTER <br> quick and accurate

American-Eastern Electronics Co., Ltd., Box 66, Rishon-Le-Zion, Israel, has developed an antenna impedance and harmonic power measuring instrument designed for making quick, accurate measurements and tests of antennas and feeder systems in the lower r-f spectrum.

Model 90 consists of a variable $r$-f generator capable of delivering

## HERMETIC SEALS, MULTI-CONTACT. POWER, HERMETICALLY SEALED RELAYS, ACTUATORS <br> <br> PHILLIPS

 <br> <br> PHILLIPS}PHILLIPS CONTROL CORPORATION . . . JOLIET, ILLINOIS

## IMPORTANT DEVELOPMENTS AT JPL



## Weapons Systems Responsibility

The Jet Propulsion Laboratory is a stable research and development center located north of Pasadena in the foothills of the San Gabriel mountains. Covering an 80 acre area and employing 1700 people, it is close to attractive residential areas.

The Laboratory is staffed by the California Institute of Technology and develops its many projects in basic re. search under contract with the U.S. Government.

Opportunities open to qualified engineers of U.S. citizen. ship. Inquiries now invited.

In the development of guided missile systems, the Jet Propulsion Laboratory maintains a complete and broad responsibility. From the earliest conception to production engineering-from research and development in electronics, guidance, aerodynamics, structures and propulsion, through field testing problems and actual troop use, full technical responsibility rests with JPL engineers and scientists.

The Laboratory is not only respon sible for the missile system itself, including guidance, propulsion and airframe, but for all ground handling equipment necessary to insure a complete tactical weapons system.

One outstanding product of this type of systems responsibility is the "Corporal," a highly accurate surface-to-surface ballistic missile. This weapon, developed by JPL, and now in production elsewhere, can be found "on active service" wherever needed in the American defense pattern.

A prime attraction for scientists and engineers at JPL is the exceptional opportunity provided for original research afforded by close integration with vital and forward-looking programs. The Laboratory now has important positions open for qualified applicants for such interesting and challenging activities.

## JET PROPULSION LABORATORY

A DIVISION OF CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA - CALIFORNIA

## LIFE IS NO PROBLEM

## WITH


before


Take for instance a recent test report on the TIC Type ST20, a 2-inch, low-torque, ballbearing precision potentiometer. The life test was conducted on a standard 6500 ohm
 unit. At 30RPM the ST20 was subjected to 700,000 cycles, reversing direction every 30 minutes. The lincarity graphs shown above show the before and after of the ST20's indcpendent linearity. As can be seen, the linearity ahange is imperceptible.

Some of the change in linearity after the life cycling can be atatributed to change in effective resolution duc to contaet wear. Other results from the life test indicate less than 100 ohm equivalent noise resistance except for one spot, where it was less than 1000 ohms. The 1000 ohm spot was of such short duration that the linearity recording did not pick it up. Test Summary: The ST20 will perform with only infinitesimal degradation for over 700,000 cycles. If it's long life at full precision performance, that you want, specify precision potentiometers by TIC.

# IfCHNOLOGY INSTRIMENT CORP. 

569 Main Street, Acton, Mass. COlonial 3-7711
West Coast Mail Address, Box 3941, No. Hollywood, Calif. POplar 5-8620
up to 3 w of power, a matching section composed of adjustable inductors, an output current meter and an accurate R-C bridge with a sensitive null indicator. Among its features are a logarithmic current meter and a logarithmic amplifier (almost 100 db on a single scale) for the null indicator. The instrument is completely self-contained, designed for simplicity in operation and intended for use in laboratories and receiving stations. Circle P45 inside back cover.


## DELAY LINE

with 10 pickup coils
Deltime, Inc., 608 Fayette Ave., Mamaroneck, N. Y., has announced a modified model 103 delay line with 10 pickup coils instead of the previous four. Range is from 2 to $40 \mu \mathrm{sec}$ with 10 continuously adjustable outputs. Each pickup coil slides along the calibrated slot and is locked in place by its knurled thumbscrew. As many as 20 pickup coils can be accommodated in the standard design and case without noticeable reduction of output due to loading.

The closest juxtaposition is about $2 \mu \mathrm{sec}$. Input impedance is 50 ohms; output, 500 ohms.

The delay line is based on the magnetostrictive principle utilizing a nickel element. Only 12 in . by 2 in. by 3 in., the delay lines are available as individual lab instruments or as built-in equipment for an assembly. Circle P46 inside back cover.

## PAPER CAPACITOR <br> upright mounting type

Aerovox Corp., New Bedford, Mass., has available a new, economical, upright mounting ca-


# Novel Inchworm Motor positions work to 0.000,005-inch accuracy 

New heavy-duty micro-feed relies on Magnetostrictive nickel

Place nickel in a magnetic field and it shrinks.

Remove it, and it snaps back to size.

Magnetostriction is the reason. And nickel exhibits large magnetostrictive length change . . . added to its rugged mechanical properties and moderate cost. Result: a reliable, versatile engineering material.

Take, for example, the novel "Inchworm" motor manufactured by Airborne Instruments Laboratory, Inc., Mineola, N. Y. An extremely accurate feed mechanism for center-
less grinders, this device uses a coordinated pair of clamps to convert the magnetostrictive expansion and contraction of a nickel rod into linear incremental motion. Powerful motion, too . . . the "Inchworm" will move a 350 -pound load in steps variable up to $0.000,060$-inch.

You can see the mechanics of The Inchworm in the illustration above. Electronic controls include standard timing and power circuits to energize the coil and operate the clamps for forward and backward steps. An optional gauge and feedback circuit
allow full automatic control.
Magnetostrictive transducers made of nickel have many industrial uses today . . . as sonar, vibratory drills, ultrasonic cleaners, homogenizers, soldering devices.

Maybe you would like to explore this growing design field. For recommended materials, get in touch with us. Write for our booklets, Magnetostriction, or Design of Nickel Mag netostrictive Transducers. They're yours for the asking.
The INTERNATIONAL NICKEL COMPANY, Inc. 67 Wall Street New York 5, N. Y.

## THE OFFNER DYNOGRAPH

. . . rectilinear recording .. . curvilinear recording ... heat sensitive recording ... electric recording ., ink recording IN A SINGLE OSCILLOGRAPH!


Write for 12 page, 2 color catalog-gives specifications and detalls.

pacitor designed especially for use in printed-wiring assemblies. Type P-156 consists of the standard paper tubular capacitor adapted for upright mounting by an outer insulating sleeve.

Provision is made at the base of the capacitor to permit free circulation of air. The outer lead always indicates outside foil. Standard packaging includes a new styrofoam pad to keep all leads clean and straight and to facilitate handling on assembly lines. Complete details are available. Circle P47 inside back cover.


## LIMIT CONTROLLER

for transformer transducers
Daytronic Corp., 216 S. Main St., Dayton 2, Ohio. Highly accurate automatic inspection, monitoring and/or control of size, weight stress, pressure, flow, acceleration or any other quantity measurable by differential-transformer transducers is accomplished using the new model 561 limit controller.

Any desired control point in the range of a standard transducer can be preset on a 10 -turn dial. Thereafter, an output relay closes whenever the input quantity equals or exceeds the preset limit and opens when it falls below the limit. Operating time is approximately 0.05 sec . Relay contacts operate panel lamps and external

## "now I can service

## our Sphygmomanometer*

 thanks to Formica ${ }^{\oplus}$ XXXP-36"

HIGH OPERATING TEMPERATURES
are a matter of fact

Then it's time to face the facts. Just any insulated wire or cable won't meet the test. But you can be sure that there's a Continental heat-resistant wire or cable that will. And when you meet high operating temperatures combined with moisture and corrosive vapor problems, the fact of the matter is ONE Continental wire that offers insulated advantages to meet your requirements all ways.

## ELECTRONIC INSTRUMENT INSULATED WIRE

600-3000 volt service. Sizes: 32 AWG to 6 AWG inclusive. CONSTRUCTION: stranded tinned copper, polyvinyl insulation with or without nylon jacket. Maximum operating temperature: $100^{\circ} \mathrm{C}$.
CONFORMS TO: MIL-W-16878B
COLOR CODED: 1, 2, or 3 spiral stripes over polyvinyl insulation.

alarm or control devices.
A unique null-balance principle gives stable repeatability of 0.000025 in. or 0.1 percent of transducer span. Linearity is 0.1 percent. Weight is 13 lb . It is available portable or rack mounted. Price is $\$ 345$. Circle P48 inside back cover.


QUARTZ CRYSTAL
for high reliability uses
Bliley Electric Co., Union Station Bldg., Erie, Pa. Type BG6A vacuum-mounted quartz crystal unit features an AT-cut element produced with newly developed process techniques which reduce aging to a minimum, insuring high reliability. Tolerance of the unit is $\pm 0.0005$ percent of nominal fitequency at 25 C ; stability ${ }^{3} \mathrm{~s}$ $\pm 0.0015$-percent maximum deviation from measured frequency y ${ }^{2}$ 25 C over the ambient range from -55 C to +90 C ; aging is 2.0 ppm maximum during the first year of seryice under low drive conditions. The overall dimension $2 \frac{1}{3}$ in., vacuum mounted in a T-5 $\frac{1}{2}$ bulb, small button miniature base.

Complete design specifications are given in bulletin 496. Cirele P49 inside back cover.

## DEMODULATOR

for airborne applications
atlas Electro-Mechanical Laboratories, Inc., 14734 Arminta St., Panorama City, Calif. Model ED551 electronic demodulator compares an a-c signal input to a fixed reference. Variations in phase and amplitude between the input and reference furnish a

## Making drawing board dreams come true!

 to help translate ideas into reality you need extra special components, such as Radio Receptor Gold Bonded Diodes. Right now they are being used successfully by many top-flight companies whose circuits require high forward conductance coupled with other stringent characteristics - and the ability to take a beating under grueling conditions.

A complete range of RRco. diode types is available - and if you haven't found the type your circuit calls for, no doubt we can make it specially for you. So, if diodes can possibly help your project, consult our engineers without obligation. Write Dept. E-5

## Semiconductor Division



d-c voltage output which is a direct measurement of the phase and amplitude difference between the input and the fixed reference.

Input voltage is 0 to 15 v rms ; reference voltage, 0 to 25 v rms ; output voltage, 0 to 10 v d-c ; frequency response, 30 cps to 100 kc ; size, $1^{\frac{1}{4}} \mathrm{in}$. diameter by $3 \frac{1}{4} \mathrm{in}$. long.

The demodulator may be supplied with either a plug-in or solder-type header. Its ruggedness together with its stability versus extreme temperature variations characteristics, permit its use for missile and other airborne applications. Circle P50 inside back cover.


## BRUSHLESS ALTERNATOR

faster, smaller, lighter
Bekey Electric Co., Inc., 1327 S. Main St., Los Angeles 15, Calif. A new synchronous alternator was developed for high speed application. This machine operates
without rotating windings. The illustration shows the smooth metallic cylinder which replaces the salient poles. Tests were performed at speeds up to $60,000 \mathrm{rpm}$ with excellent results. The machine can operate as a synchronous motor, alternator or
 the WE 215 , and similar relays.

## fomorrow is here foday!

Botanists who have long wondered if a plant growth accelerator was possible are now flabbergasted by an amazing new chemical development-Gibberellic Acid. A dose as small as .000001 gram can induce a plant to phenomenal growth and flowering... four to five times its normal height, maturing ahead of schedule. What effect would Gibberellic Acid have on humans? . . . scientists will soon have the answer!

## new series 402 PRECISION

## direct reading frequency meters

(XA) SERIES 402 new line of temperature compensated Precision Direct Reading Frequency Meters provides simplified operation with improved accuracy. The SERIES 402 is designed for maximum scale legibility to increase the efficiency of frequency measurements.
features:

- Direct reading over full waveguide frequency range
- High resolution and accuracy
- Hermetically sealed Invar cavity
- Rugged mechanical construction
- Reaction type coupling; $35 \%$ nominal dip
- Non-contacting funing plunger
- High Q: approximately 8,000

SERIES 402 PRECISION DIRECT READING FREQUENCY METERS

| $\begin{array}{\|c\|} \hline \text { TYPE } \\ \text { NO. } \\ \hline \end{array}$ | FREQUENCYRANGE (KMc/s) | $\begin{gathered} \text { WAVEGUIDE } \\ \text { SIZE } \\ \hline \end{gathered}$ | FLANGE TYPE | absolute accuracy* |  | SMALLEST SCALE DIVISION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ROOM TEMP. | $-40^{\circ}$ to $+55^{\circ} \mathrm{C}$ |  |
| C402A | 5.85 to 8.20 | $11 / 2 \times 3 / 4$ | UGG-344/u | 0.01\% | .03\% | 1.0 Mc |
| X402A | 8.20 to 12.40 | $1 \times 1 / 2$ | UG.39/u | 0.015\% | .03\% | 2.0 Mc |

*Dial connection chart intregal with unit.


Representatives: Los Angeles. J. C VanGroos Co.; Denver: Hytronic Measurements Inc.; Chicago: KaDell Sales Assoc.; Export: Szucs Int'I Co., N. Y.
 ...a one-inch diameter, 400 cycle precision motor, engineered for Jong life and high efficiency. Where minimum size and weight are essential, use this versatile unit. Modifications include high


For efficient cooling and air change in small electronic equipment. Driven by EAD's $1^{\prime \prime}$ dia. motor. No brushes, no arcing, no interference.


MINIATURE RING MOUNTED FANS
For peak performance, compactness, dependability. Blade dia. small as $2^{\prime \prime}$ - air del. greater than many neavier blowers. Uses EAD's $1^{1 /}$ dia, motor.


## miniature sine wave alternators

For very pure sine wave voltage, high power output. Low distortion, light weight, permanent magnet fields. Frame sizes begin with 1 " diameters.

SUBMINIATURE CENTRIFUGAL BLOWERS
For spot cooling. Moves 9 CFM at 1.35 S.P. Powered by EAD's $1^{\prime \prime}$ dia. motor.


MINIATURE GEAR MOTORS
Servo, synchronous or induction units, primarily for 400 cycle and var. freq operation. Gear ratios up to 10,000 to 1. Basic types use EAD's $1^{\text {" dia. motor. }}$

Complete specifications available on request.

## EASTERN Alr Devices. /Ne.

SOLVING SPECIAL PROBLEMS IS ROUTINE AT EAD 387 Central Ave., Dover, New Hampshire
doubly fed motor. A bulletin describing operation and sizes is available. Circle P51 inside back cover.


## SLOTTED LINE

for waveguides
I-T-E Circuit Breaker Co., 601 E. Erie Ave., Philadelphia 34, Pa. Developed to fill a need in the field of lower frequency radars and scatter communications systems, this slotted line for waveguide, size WR-2100, features bolted and dowled aluminum construction with probes tunable over the entire frequency band. It has an inherent vswr of less than 1.02 over the entire applicable band. Slope is less than 1.005 vswr. Sizes currently being supplied to military and commercial installations range from WR-770 through WR2300. Circle P52 inside back cover.


## T-R TEST SET

for $190 \mathrm{kc}-400 \mathrm{mc}$ range
Trad Electronic Corp., Asbury Park, N. J. The RT-500 trans-mitter-receiver performance test set analyzes weakness and predicts possible in-flight failures of electronic equipment on aircraft. The portable unit is designed to furnish all necessary performance measurements on t-r equipment in

# the reason for your answer is your reason for choosing the 

 Amperex 6800 20 KW INDUSTRIAL TRIODEThe AMPEREX 6800 has been designed from the ground up for brute force and ruggedness. That's what you need for industrial loads. It does not require the characteristics of a communications tube designed for performance at high frequencies. As a result, it costs considerably less to produce. The difference in engineering and manufacturing costs has been passed on to you. The 6800 costs incomparably less than communications-type tubes of similar power capabilitiesyet it will deliver over 20 kilowatts with outstanding performance into industrial loads in induction heating and similar applications.

So-don't buy a racing car when you need a heavy-duty truck. Send for spec sheets on the Amperex 6800.

Net user price: $\$ 35000$
(3) Rugged econemical tube for induction and dielectric heating op to 30 megacyeles.

- Heary wall, high-heat-capacity anode is capable of cabsorbing intermittent overloads.
636 Thoriated zung:tem filament for longer life and low filament power.
(0. Proven relíability in ectual industrial use in the field.

MAXIMUM RATINGS AND TYPICAL OPERATING CONDITIONS RF Power Amplifier and Oscillator - Class C Maximum CSS RATINGS, ABSOLUTE VALUES

| D.C Plate Voltage | 15,000 volis | O.C Grid Current ................. 0.50 mmps |
| :---: | :---: | :---: |
| D.C Grid Vollage | -1,800 volis | Plate Input ................................ 45 kw |
| D.C Plate Current | 3.5 omps | Plate Dissipation ........................ 20 kw |

## TYPICAL OPERATION

| D-C Plate Voliage | 12,500 volts | D.C Grid Current (opprox.) ... 0.25 mmps |
| :---: | :---: | :---: |
| D.C Grid Voltage | -1,200 volts | Driving Power (approx.).......... 500 watts |
| Peak R-F Grid Voltage | 2,000 volts | Plate Power Output .................... 33 kw |
| D.C Plote Current | 3.5 mps | Industrial Load Output (approx.).. 22 kw |

> *In induction heating applications, the tube will deliver
in exsess of 20 kw measured as BTU equivalent in the load.
Amperex has a rube for all of your industrial requirements-including power oscillator tubes, rectifiers, ignitrons, thyratrons, and others. Write far the condensed Amperex tube catalag - a complete listing of all Amperex products.
 230 Duffy Avenue, Hicksville, Long Istand, N. Y.
in Canado: Rogers Electronic Tubes \& Components, !1.19 Brantclife Rood, Leoside, Toronto 17


## Sealed-in Reliability

## IN SMALL SIZES

## FIECTRA

DEPOSITED CARBON R\#sISTORS

HERMETICALLYSEALED

Eleven Sizes to Choose From
Get all the facts on Electra's complete line of Hermetically Sealed Deposited Carbon Re. sistors. Eleven sizes from $1 / 8$ through 2 watt, with a wide resistance range in all sizes. We'll be happy to send you information too, on Electra's complete line of Standard Deposited Carbon Resistors and our Molded (plastic encapsulated) Deposited Carbon Resistors. Write today. 4051 Broadway, Phone: WE. 1-6864 Kansas City, Mo.

If you're an engineer whose future is being held up...

## TAKE A LOOK AT THE FUTURE

YOU CAN ENJOY RIGHT NOW

## AS A DOUGLAS ENGINEER!

It's important that you use your full talents now... if you are to expand in your job. This requires assignments of the scope you will find at Douglas... assignments that allow you to accomplish more and gain rich rewards. Many opportunities exist for career-minded engineers in modern Douglas plants and testing facilities across the nation. For example...

## THERMODYNAMICISTS ARE PEEDED NOW:

Mechanical Engineers work on all phases of analysis, design and installation of equipment involved in heating, cooling and air distribution at high speeds.

For important career opportunities in your field, write:
c. C. Lavene
douglas aircraft company, box n-gzo



Miniature relay applications are getting hotter all the time-and many of them call for self-contained AC relays.

To meet these needs, UNION has developed AC relays incorporating silicon rectifier assemblies. They'll withstand temperatures from $-65^{\circ} \mathrm{C}$. to $125^{\circ} \mathrm{C}$. The size is the same as the $85^{\circ} \mathrm{C}$. UNION AC Relay.

New Hi-Lo Contacts, too! These contacts permit switching loads of two amperes or dry-circuitry level in the one relay. Or, you can get gold alloy contacts for dry-circuitry use.

## OTHER ADVANTAGES

Vibration resistance up to 1.000 cycles at 15 G's and shock in excess of 50 G's.
Life expectancy. Tested through $1,000,000$ operations.
Coil resistance. 3,700 ohms:
Small size, lightweight. Measures only $1 / 2{ }^{2}$ higher than our DC relays and weiglis about 5 oz . All other construction features are the same as the DC relay.

Types and Mountings. Available in 6 PDT or 4 PDT madels, plug-in or solder-lug connections and all the usual mountings.
Meets or eaceeds all requirements of MIL R-5757-C, MIL-R-25018, and MIL-R-6106B.
Write for complete information. Ask for Bulletin 1012.
new multistage centrifugal blowers allow delivery of 25 to 350 cfm at static pressure of 10 to 55 inches water column ( 2 psi ) on suction or pressure. These blowers incorporate three to nine cascaded pressure stages. They have no wearing parts and are directcoupled (no belts) to a 4 to 2 -hp induction motor which is an integral part of the unit. The shaft speed of the blower being only $3,400 \mathrm{rpm}$, noise levels are rela. tively very low.

The peculiar construction of the model $L$ blowers results in small size and light weight as required by electronic, instrument and computer applications. This unit was primarily designed for computer tape slack control. Catalog sheets 40302-1 and 40302-2 give complete dimensional and performance specifications. Circle P55 inside back cover.


## UFH TRANSMITTER

operates from 240-v source
Levinthal Electronic Products, INC., 760 Stanford Industrial Park, Palo Alto, Calif. The complete 375 to $750-\mathrm{mc}$ model PC57 transmitter utilizes an Eimac X-564-B klystron to produce $15-\mathrm{kw}$ peak power with maximum duty cycle of 0.1 Pulse length continuously variable from 4 to $3,000 \mu \mathrm{sec}$ and repetition rate is continuously variable from 5 to 500 pps . Pulse

## How to keep informed on the

 "with what" part of your businessAt your finger tips, issue after issue, is one of your richest veins of job information - advertising. You might call it the "with what" type - which dovetails the "how" of the editorial pages. Easy to read, talking your language, geared specifically to the betterment of your business, this is the kind of practical data which may well help you do a job quicker, better - save your company money.

Each advertiser is obviously doing his level best to give you helpful information. By showing, through the advertising pages, how his product or service can benefit you and your company, he is taking his most efficient way toward a sale.

Add up. all the advertisers and you've got a gold mine of current, on-the-job information. Yours for the reading are a wealth of data and facts on the very latest in products, services, tools . . . product developments, materials, processes, methods.

You, too, have a big stake in the advertising pages. Read them regularly, carefully to keep job-informed on the "with what" part of your business


## G-E GLOW LAMP PROVIDES NEW, LOW-COST CIRCUIT CONTROL

Before a G-E Glow Lamp starts, it is essentially an open circuit. When the lamp is biased to a point just below its starting voltage, the application of a pulse sufficient to raise the applied voltage to that which is required for starting causes the lamp to conductand the pulse to be transmitted to the other components. Apply reverse pulse and the lamp is extinguished, the circuit broken.

## A Single G-E Glow Lamp May Serve As A:

RELAXATION OSCILLATOR - LEAKAGE INDICATOR SWITCH • VOLTAGEREGULATOR • VOLTAGE INDICATOR

If you'd like more information on the amazing G-E Glow Lamps, send today for your free copy of the folder, "G-E Glow Lamps for Pilot and Indicator Use". Write: General Electric Co., Miniature Lamp Dept. E-4, Nela Park, Cleveland 12, Ohio.

## Progress /s Our Most Important Product

rise and fall time are both less than $1 \mu \mathrm{sec}$.

Equipment consists of a 15 -kv d-c 0.15 -ampere power supply; a $500-\mathrm{v}$ focus-electrode supply; a 6 -v 40 -ampere klystron filament supply; three 150 v 5 -ampere focus-ing-magnet power supplies and a special modulator unit. Circle P56 inside back cover.


SIGNAL CONVERTER for telemetering uses

Dynalysis Development Laboratories, Inc., 11941 Wilshire Blvd., Los Angeles 25, Calif. Model 4-1103 high-level instrument signal converter is a three-channel instrument designed for telemetering applications. The system converts signals from 400 cps transducers to $0-5 \mathrm{v}$ d-c for telemetering inputs.

Conversion by a crystal diode demodulator eliminates all amplifiers from the signal circuits, assuring gain stability and zero stability. Frequency and voltageregulated power is supplied to the transducers. Linearity of the demodulated signal output is 0.5 percent. Circle P57 inside back cover.

## PROGRAMMER

multichannel device
Photographic Products Inc., 1000 No. Olive St., Anaheim, Calif. Type MPR-13 multichannel programmer provides up to 13 channels for any type of electrical programming, either of a repeat cycling or a random nature. It weighs only 3 lb 10 oz and meas-


## "I'M WITH

 UNIVAC""I'M WITH UNIVAC"@... your password to a new and exciting world of opportunity. A career with Univac takes you behind the scenes of important developments in national defense, scientific research, business and industry. The tremendous advances made by Univac in automatic data processing and automation vitally affect. all of these fields.
Become a member of the team that designs and builds the world-famous Univac electronic computers. Build a future for yourself in the most fascinating, fastestgrowing industry of our times. Investigate the outstanding opportunities now open to you at Univac - world leader in this industry.

You'll be proud to say: "I'M WITH UNIVAC."

## Themingtove Renmed Thaisuc.

DIVISION OF SPERRE RAND CORFORATION

## Check the following openings at any of these three locations

[^28]
## SO. NORWALK, CONN.

Mechanical Engineers (graduates BS and MS levels), Design Engineers ${ }_{i}$ with or without formal degree, if qualified. Send complete resumé to Mr. Robert Martin, Dept. NMy-2, Wilson Ave., South Norwalk, Conn.

## ST. PAUL, MINN.

Electronics Engineers, Mechanical Engineers, Electronic Design Engineers, Engineering Writers, Physicists, Mathematicians. Send complete resumé to Mr. R. K: Patterson, Dept. SMy-2, Univac Park, St. Paul 16, Minn.


## Do YOU Know

...the field of ELECTRONICS is the most advanced and fastest growing in the world, offering the largest range of jobs for technicians and engineers in history?

## Do YOU Know

PHILCO TechRep is the world's largest Field Service organization and because of this leadership can offer you-

- unlimited advancement
- opportunity to work any place in the world
- experience in the most advanced fields of electronics and guided missiles
- personal security, real challenge, top salary and compensation for your skills


## Do YOU Know

- Philco electronic experts help prepare you for your TechRep Service career
- Philco's especially written Home Study Course keeps you posted on latest electronic techniques, including radar, guided missiles and transistors
- Philco provides financial assistance to continue your education


## Do YOU Know

Philco not only will help you select the position in Electronics best suited to you but can and will provide you with periodic reports as to the openings in our world-wide organization for which you may be qualified.

Get The FACTS About Your Future With Philco: Send Now to Dept. 19-A
for The Complete Story on What Makes The Philco TechRep Division -
> "Finst 9n Employment Opportundies" PHILLCO TECHREP DIVISION

ures 2 in . by 3 in . by 6 in .
The device has an accuracy of the order of one part in approximately 50,000 even though it was designed to withstand the rigors of missile and aircraft usage. For utmost ruggedness it is manufactured to extremely close tolerances and is housed in a magnesium casting for a high degree of strength and resistance to shock and vibration without imposing a high weight penalty.

Additional information and prices are available. Circle P58 inside back cover.


## SLOTTED LINE KIT with universal carriage

Diamond Antenna \& Microwave Corp., 7 North Ave., Wakefield, Mass. The D1C-6207 slotted lines and universal carriage are designed to provide a maximum of flexibility and accuracy for standing wave measurements in the 1.7 to $5.85-\mathrm{kmc}$ region. The basic design consists of a rugged universal carriage which will accept interchangeable precision slotted sections in five different waveguide sizes (RG-104/U, 112/U, $48 / \mathrm{U}, 49 / \mathrm{U}$ and WR-229.)

Other features include a stationary spinner knob for vernier control of probe position, a pushbutton release control for rapid probe positioning, a scale vernier with zero reference at the plane of
the load flange and low residual vswr. Circle P59 inside back cover.

## METAL FILM RESISTORS

in values through 1 megohm
Weston Electrical Instrument Corp., Newark 12, N. J. The company's line of Vamistors (precision metal film resistors) is now available in resistance values up through one megohm. They have special resistance alloys fused into the inner surface of a moisture sealed ceramic tube in a dispersed form which renders the unit virtually impervious to the effects of abrasion, thermal shock and temporary overloads. In addition to having a temperature coefficient better than $\pm 50 \mathrm{ppm}$ per $\operatorname{deg} \mathrm{C}$, the Vamistor is noise free with excellent h-f performance. Circle P60 inside back cover.


HARNESS ASSEMBLY
multi-breakout type
Pacific Automation Products, Inc., Los Angeles 17, Calif., has available engineered cable systems developed to meet the exact physical, electrical, environmental requirements of electronic systems, using neoprene-jacketed, multiconductor, custom-built cable. Circle P61 inside back cover.

## TERMINALS

hermetic seal units
International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa., now offers miniature units for superior hermetic sealing of all types of electrical components. Known as type LT, the terminals are designed to meet all military

## PHILCO

protects transistor quality " 3 -D

From quality control on automated assembly lines to final inspection, Bausch \& Lomb Stereomicroscopes assure precision production at the Lansdale Tube Company, Division of Philco Corporation. Inspectors see clear, sharp magnified views of tiny transistor components barely visible to the
 unaided eye. Work is seen right-side-up, in natural 3-dimensional relief. Freedom from eyestra in and discomfort increases efficiency. The result: precision standards that assure distortion-free sound in Philco-equipped transistor radios ... speed and reliability in Philco-equipped computers.

## MAIL COUPON TODAY FOR VALUABLE 3-D MICRO-VISION DATA BOOK




The heart of any ceramic capacitor or trimmer is its dielectric. In the ceramic dielectric are developed the electrical properties of the capacitor or trimmer. ERIE can provide any type of ceramic for dielectric use currently on the market. ERIE also makes many special ceramic dielectrics with unusual qualities, which are not available elsewhere.
Through constant research and development in its Ceramic Department, ERIE has maintained leadership in production of highest quality ceramic capacitors and trimmers, outstanding for their excellent stability and fidelity to specifications.

Quality Control in the production of ceramic bodies is of the utmost importance. At ERIE control starts with rigid testing of raw materials. Further control is maintained by testing at various stages throughout the production process.

ERIE is enlarging its facilities through the construction of a modern new ceramic plant at State College, Pa. Included in the new plant will be a thoroughly equipped research and testing laboratory and the most efficient production machinery, most of which has been designed by ERIE engineers.

If you desire quality ceramic parts contact the ERIE representative in your area. We have modern facilities to accommodate your requirements.


## ERIE ELECTRONICS DIVISION

ERIE RESISTOR CORPORATION
Main Offices and Factories: ERIE, PA.
Manufacturing Subsidiaries
MOLIY SPAINGS, mississippi - LONDON, ENGIAND - taENTON, ONTARIO
and commerical application requirements.

A body of molded Fluorocarbon plastic insulates the solder seal ring from the feed-through lead. Type LT's are unaffected by high humidity and are chemically inert to organic solvents, acids, alkalies, oils and fumes. They successfully overcome electrolysis under high d-c voltage, low corona breakdown voltage, low operating temperatures, inconsistent hermetic seals and similar limitations.

The terminals are specifically designed for requirements such as superior insulation resistance, zero moisture absorption, high arc-over resistance, wide temperature range, thermal shock and miniaturization. Circle P62 inside back cover.


## ADF

weighs less than 30 lb
The Magnavox Co., Fort Wayne 4, Ind., has designed a new lightweight automatic direction finder for use in aircraft. The complete system, including cables, weighs less than 30 lb , in contrast to the $80-1 \mathrm{lb}$ weight of currently used equipment. The space requirement has been reduced by a factor of two-thirds.

The system includes a new loop antenna that is electrically interchangeable with the AS-313B loop commonly used. The loop has been streamlined to the extent that it protrudes only $2 \frac{1}{2}$ inches from the aircraft fuselage and readily permits flush mounting as required for supersonic aircraft.

The adf operates from any radio signal between 190 and $1,750 \mathrm{kc}$ and automatically displays the compass bearing of the received
signal with respect to the aircraft heading. The radio set of the system also serves as a communications receiver. The system has satisfactorily passed rigid operational and environmental test programs. Circle P63 inside back cover.


SLIDE-RULE CALCULATOR
for circuit computing
Electrons, Inc., 127 Sussex Ave., Newark, N. J., has available a convenient slide rule type calculator for computing rectifier and thyratron circuits. The calculator makes it possible to readily determine design parameters for all of the most frequently used circuits. To obtain one, send 25 cents for handling and mailing. Circle P64 inside back cover.


## OSCILLOSCOPE

response d-c to 300 kc
Allen B. DuMont Laboratories, Inc., 750 Bloomfield Ave., Clifton, N. J. Type 403 is a sensitive commercial oscilloscope which features a full-scale amplitudemeasuring range of 1 mv to 500 v in 17 steps and is capable of resolving a $20-\mu \mathrm{v}$ signal. Frequency response extends from d-c to 300 kc. It is capable of reading directly microvolt outputs of strain gages, pressure pickups, accel-

## another

 New'oncept in component packaging ...FEATURING:

- Automatic clip assembly
- Automatic connector cutting
- Automatic component soldering


## RESULTS:

- Lower production costs
- Higher reliability in solder connections
- Easier servicing

ERIE supplies the customers' complete component package: electronic components, molded plastic parts, metal stampings, and embossed wiring boards available from various ERIE divisions; as well as other components purchased from other manufacturers.

For more complete information regarding the ERIE 3976 Strip Package, For more complete information regarding the ER1E 3976 Strip Package, and its practical application in the solution of your individual problems, write to
Resistor Corporation.



AVAILABLE IN FORMS FOR INDUSTRIAL APPLICATIONS When you think of INDIUM, think of The INDIUM Corporation of America as your first source of supply.
Through years of research and experimentation, we have developed the techniques of producing INDIUM in quantities for use by industry. Along with our ability to supply INDIUM in various forms, we also offer technical help in its applications to your own product development.
Our experience is at your service.

## WRITE FOR

New Indium Bulletin . . "Nomographic Charts of Pellets and Spheres . . Weights per Thousand in Grams - with Alloy Analysis Equation."

## INDIUM

 CORPORATION OF AMERICA 1676 LINCOLN AVENUE UTICA, NEW YORK Since 1934 ... Pioneers in the Development and Applications of Indium for Industry.erometers and other transducers without the normally required preamplification.

Front panel controls permit selection of 19 accurately calibrated linear sweeps extending from 0.5 sec per cm to $0.5 \mu \mathrm{sec}$ per cm . Overall accuracy of amplitude measurement on the $Y$-axis is within 5 percent of full scale, which includes errors in linearity of the amplifier, input attenuator and crt. Circle P65 inside back cover.


## TERMINAL BLOCKS

have Mylar insulation strip
Kulka Electric Mfg. Co., Inc., 638 S. Fulton Ave., Mt. Vernon, N. Y. The Seal-Back terminal block features a Mylar insulation strip on the back completely covering and sealing in all counterbores having screw ends. Top view shows the exposed holes on back of regular terminal block; in the bottom view, all holes are covered except the two mounting holes at each end. This improvement eliminates the need for and use of separate insulation and marker strips, with extra pieces and extra handling. It also simplifies mounting and wiring work.

The Mylar used is one mil thick, plus $1^{\frac{1}{2}}$ mils for cement, making the overall thickness $2 \frac{1}{2}$ mils. Dielectric strength is $5,000 \mathrm{v}$. Circle P66 inside back cover.

## IMAGE ORTHICON

for industrial applications
Radio Corp. of America, Harrison, N. J., has announced a tv camera tube designed especially for use in industrial and scientific-research tv applications involving ex-
tremely low light levels. Because the 6849 combines extremely high sensitivity with a spectral response approaching that of the eye, it can extend the range of human vision by amplifying lowintensity light images so that the eye can see details in the amplified images when they are brightly displayed on a tv picture tube.

When used in a standard tv system and with proper low-noise amplifiers, the 6849 can produce signal information with illumination on the photocathode as low as 0.00001 foot-candle. Circle P67 inside back cover.


THERMAL RELAY
with spdt contacts
Curtiss-Wright Corp., 631 Central Ave., Carlstadt, N. J. The thermal memory relay is a bistable timedelay relay with spdt snap-action contacts. The relay is thermally operated, having two separate heater circuits. Each heater serves to transfer a movable arm from one contact to the other. The relay, being bistable, remains in either of the two contact positions until operated by the appropriate heater circuit. A time delay is associated with each operation.

Operating time of the unit is factory preset for either 20 or 30 seconds on both transfers. The relays are temperature compensated from -55 C to +100 C and have standard voltage ratings of 6.3 , 26.5 or 117 v . Other voltages are available on request. Heater

ROA ELECTRONIC INSTRUMENTS


Here's a DC Null Voltmeter built to quality standards with six superior features:

- Flexible input. It can be positive, negative, or neither side grounded.
- Calibrated voltage output for external recorder amplifier, sensitive laboratory galvanometer, etc.
- Simplicity of operation.
- Infinite impedance ar null.
- Long-life Mercury battery.
- Both cabinet and rack models.

Let our representative show you how RCA Precision Electronic Instruments can mean increased productivity. No obligation.

Just write to RCA Department S-46, Building 15-1, Camden, New Jersey.

[^29]
## SPECIFICATIONS

## VOLTAGE RANGES:

$0-10,0-100,100-200,200-$ 300, 300-400, 400-500, $500-600$ volts DC. Positive, negative, or neither side grounded.

## ABSOLUTE ACCURACY:

$0.1 \% \pm 10$ millivolts beiween 0 and 10 volts. $\pm 100$ millivalts between 10 and 600 volts.

## RESOLUTION:

At least 5 millivolts between 0 and 10 volts, 50 millivolts between 10 and 600 volts.

## INPUT IMPEDANCE:

Infinite af null. Greater than 2.5 megohms per volt of $1 / 4$ division off null.

POWER REQUIRED:
100-135 volts, $50-60$ cycles, 24 wotts.





## CHECK THESE FEATURES:

Broad Band -Usable from 8.2 to 10.2 KMC
High Isolation-A minimum of 25 db over the band
insertion Loss - Less than 1 db
Small \& Compact - Only $21 / 2$ inches long - weighs only $11 / 2 \mathrm{lbs}$.
Flanges-Cover type. Mates with UG39/U flanges. Will absorb up to 10 watts reflected power
Price - $\$ 135.00$ each f.o.b., Van Nuys, Calif.
Delivery-From stock
Order-Model W177-2C-1
For custom-made isolators for specific radar \& microwave application, you can depend on the skill of the Kearfott organization.
Kearfott, Western Division, has complete facilities for waveguide production, with qualified experts to assist in solving your problems. Let us help you.
for a pressure ratio transmitter unit developed by MinneapolisHoneywell for airborne applications. The specialized mounting system incorporates pressure and electrical connectors as part of the supporting structure of the mounting. This provides ease of installation and in effect combines the equipment and mounting into an integral package.

Constructed of aluminum and steel throughout, the model 1323 lightweight mounting system is unaffected by adverse operating conditions. Natural frequency of the model 1323 is between 6 to 11 cps while the amount of vibration isolation provided is approximately 90 percent at 40 cps . The system is readily adaptable to military applications. Modifications are available upon request. Circle P70 inside back cover.


## CHECK-OUT SYSTEM

for automatic missiles
Electro Instruments, Inc., 3794 Rosecrans, San Diego, Calif., has developed a new, automatic system for obtaining absolute d-c and a-c voltage and frequency values, as well as go/no-go checks. The system consists of three basic groups: program, control and measurement.

The program units include an input scanner, a programmer and computer, as well as the punch card memory and printer. The control unit consists of visual indicators and necessary circuitry for utilizing the measurement

## profile of a

## very special guy

... the Lenkurt
engineer

- Special, because with Lenkurt leading specialist in telecommunications - he has found the challenges and inspirations, the responsibilities and recognition that add up to. a truly satisfying coreer.
- Special, because he is planning and building the communications systems of tomorrow.

Special, because at San Carlos, on the sunny San Francisco peninsula, he has found the ultimate in what is known the world over as "California living."

A few very special guys whose field of interest is communications will find these opportunities at Lenkurt most attractive:

Project Engineers - High level positions requiring at least 3 years professional history in communications equipment design, component development, or systems planning. Graduate study desirable.

Electronics Engineers - Knowledge of circuir design including amplifiers, oscillators, modulators, and regulators, utilizing tubes and transistors. Good background in test procedures and test equipment; BSEE with communications option desirable.

Assistant Electronics Engineers - Graduate
engineers who have an interest in circuit analysis and experimentation and want to gain experience as members of an engineering team working on advanced development projecis.

Son Carlos 3, Californio

Please send your resumé to Dan Foster, Engineering Placement Manager

## MEASURE NOISE AND FIELD INTENSITY FROM 150 KC TO 1000 MCWITH ONE METER!

## Quickly • Accurately•Reliably



Empire Devices Noise and Field Intensity Meter Model NF-105 permits measurements of RF interference and field intensity over the entire frequency range from 150 kilocycles to 1000 megacycles. It is merely necessary to select one of four individual plug-in tuning units, depending on the frequency range desired. Tuning units are readily interchangeable...can be used with all Empire Devices Noise and Field Inténsity Meters Model NF-105 now in the field.

Each of the four separate tuning units employs at least one RF amplifier stage with tuned input. Calibration for noise measurements is easily accomplished by means of the built-in impulse noise calibrator. With this instrument costly repetition of components common to all frequency ranges is eliminated because only the tuners need be changed. The same components...indicating circuits, calibrators, RF attenuators, detectors and audio amplifier.. and power supplies ... are used at all times.
Noise and Field Intensity Meter Model NF-105 is accurate and versatile, it may be used for measuring field intensity, RF interference, or as an ultra-sensitive VTVM. A complete line of accessories is available.

For complete periormance data, send for Catalog No. $\mathbf{N}-356$


## 熙MPIRE DEVICES

 PRODUCTS CORPORATION38-15 BELL BOULEVARD - BAYSIDE 61 . NEW YORK manufacturers of
FIELD Intensity meters - distortion analyzers - impulse generators - coaxial attenuators - crystal mixers
units for monitoring junctions under test. Measurement units are the model 45P a-c/d-c digital voltmeter and the model 265P time interval meter.

Complete details on the system are available from the manufacturer. Circle P71 inside back cover.


## MINIATURE RELAY <br> with snap action

Magnecraft Electric Co., 3350 W. Grand Ave., Chicago 51, Ill. Enclosed snap-action contact is a feature of the class 22SA open type relay. The new relay has contact rating of 10 amperes at 115 v a-c, noninductive load. It can be furnished with one snap action switch for spdt contacts or with two switches for dpdt contacts. It is also available with plug-in mounting.

The relay is furnished for d-c operation to 230 v ; 60 -cycle a-c to 440 v . Approximate overall dimensions are $2_{8}^{3} \mathrm{in}$. long, $1 \frac{7}{8} \mathrm{in}$. high and $1 \frac{1}{16}$ in. wide. Circle P72 inside back cover.

## RUGGED, LIGHT TWT'S

cover 2 to $12-\mathrm{kmc}$ range
Geisler Laboratories, Menlo Park, Calif. Covering the range 2 to 12 kme, a new line of eight travelingwave tubes offers a specially designed, rugged, lightweight construction ranging from 5 to 7 -1b total weight including a combined capsule and solenoid which not only permits size and weight reduction but also minimizes power

requirements for the solenoid.
Four of the tubes cover the 2 to 4 -kme range with power outputs from 10 to 30 dbm and smallsignal gains from 28 to 34 . Two of the tubes cover the band from 4 to 8 kmc with 10 and $30-\mathrm{dbm}$ outputs and small-signal gains of 30 to 32 . Two more cover the range 8.2 to 12.4 kmc with power outputs of 20 and 30 dbm and smallsignal gains of 25 to 30 db .

A parallel series of eight tubes in the encapsulated, separatesolenoid type is available to cover the same operating specifications with total weights ranging from $10 \frac{3}{4} \mathrm{lb}$ to $20{ }^{3} \mathrm{lb}$ over the range. Circle P73 inside back cover.


## PREAMPLIFIER

a transistorized unit
Allen B. DuMont Laboratories, INC., 750 Bloomfield Ave., Clifton, N J. Type 407 differential preamplifier is a transistorized unit offering a common-mode rejection ratio of a million to one. Designed for use with any general-purpose oscilloscope, the instrument amplifies low-level outputs from many transducers, such as strain gages and pressure pickups. It is com-

a happy face with 2 ble? Precision IITHOGRAPHY on METALS

Designs for dials, instrument plates, bezels, panels and others reproduced with hairline register accuracy


Clean cut lettering and markings . . . close color register printing and embossing, free from blurs or smudges . . plus, smooth over-all finishing and blanking with burr-free edges are what you can expect on your parts from Leyse.
Such lithography is but one of several methods employed by us in the production of decorative metals. Exacting letterpress and silk screen printing, along with a full range of finishing and production processes are also available
Since 1903, America's leading industries have recognized Leyse's exacting workmanship and experience for producing quantity units with constant production economy and quality. Write for samples and send your blueprints for quotation. Your inquiry will receive our prompt attention.

## LEYSE PRODUCTION FACILITIES INCLUDE:

- lithographing
- sunburst finishing
- letterpress printing
- silk screening
- BRONZING
- silk screning
- embossing
- stamping
- forming
- spraying
- SPINNING
- satin finishing
- drawing
- circular brush finishing
- debossing
- horizontal brush finishing

Dials and Instrument Plates--Special Contract Products

## ALUMINUM COMPANY

## FOR DATA

 PROCESSING COMPONENTS AND SYSTEMS
## SPECIFY POTTER

Potter instruments and systems are unexcelled in reliability, accuracy and flexibility. The equipment shown is typical of many more available as individual components or in integrated systems to meet specific requirements.

Write for brochure describing these and other Potter units, including special products. For detailed technical specifications on any of the Potter Products listed above, contact your Potter Representative or the factory.

"Quick Look" Recorders


RecordPlayback Head Assemblies


PRESET INTERVAL GENERATORS


HIGH SPEED ACCESS REGISTERS


Output (serial Input) Using Magnistors


## NEW PRODUCTS

(continued)
pletely self-contained and can be powered by ordinary flash-light batteries. The amplifier circuit, no larger than an ordinary playing card, amplifies input signal by a factor of 10. Circle P74 inside back cover.

## FERRITE CORE CHOKES

 with high $Q$National Co., 61 Sherman St., Malden 48, Mass., has announced a complete set of high-Q ferrite core choke coils offering 14 inductances from $150 \mu \mathrm{~h}$ to 1 mh in MIL-SPEC inductance values. The compact chokes are intended for use in networks and filters at frequencies from 50 to $1,500 \mathrm{kc}$ and may also be used as resonant elements in i-f and r-f circuits.

Typical $Q$ values are 142 at 240 kc and 182 at 460 kc for a $1-\mathrm{mh}$ choke. Coil form length is $\frac{5}{8} \mathrm{in}$. with $1^{\frac{1}{2}} \mathrm{in}$. pigtail leads. Overall diameters range from ${ }^{2} \mathrm{in}$. for the $10-\mathrm{mh}$ choke to ${ }^{\frac{7}{3}}$ in. for 150 $\mu \mathrm{h}$ units.

The entire unit is impregnated with fungus-proof varnish per MIL-V173A to provide maximum protection under tropical heat and humidity conditions. Circle P75 inside back cover.


## SUBMINIATURE POT

is $1 / 2 \mathrm{in}$. in diameter
DeJur - Amsco Corp., $45=01$ Northern Blvd., Long Island City 1, N. Y., has developed Model C-050, a precision $\frac{1}{2}$-in. diameter potentiometer, without sacrificing design features found in larger types.

- Features-Included are a onepiece nickel-plated bronze case
and bearing, sealed silicone fiberglass cover with end-mounted terminals and $O$ ring sealed shaft if required. Voltage breakdown between shaft and terminals is a full $1,000 \mathrm{v}$ a-c.

Standard electrical rotation is 320 deg ; mechanical rotation, 325 deg with stop or continuous 360 deg. Threaded bushing mounting designs are standard; servo or other mounting arrangements, on order. Standard shifts are 0.125 diameter ground and passivated stainless steel.

Technical literature is available on request. Circle P76 inside back cover.


## SINE-COSINE POT

two separate voltage outputs
DeJur-Amsco Corp., 45-01 Northern Blvd., L. I., N. Y., has announced the model C-300, a high precision sine-cosine function potentiometer. Two separate voltage outputs may be obtained in this single three-in. enclosed unit. Independent brush contacts are mounted on a common shaft 90 deg apart to produce accurate sine and cosine voltages. Function accuracies of 1 percent are standard; function angle is 360 deg .
Technical literature is available on request. Circle P77 inside back cover.

## VOLTAGE CONTROL

tests a-c aircraft equipment
Opad Electric Co., 69 Murray St., New York 7, N. Y., has announced production of a new compact voltage control unit for testing a-c operated aircraft equipment and


Advances in High Vacuum equipment and technology are significant in many industries... but none more than in Electronics. And, KINNEY High Vacuum Pumps, Complete Systems and Component Parts, play a particularly important role in these advances . . . important to you from the standpoint of: Product Improvement, Increased Production and Sound Economy.

Today, the KINNEY line represents the broadest selection of High Vacuum Pumps in the world. In performance, KINNEY Pumps deliver ultimate pressures to 0.10 micron. Thus, with KINNEY you can provide a Prescription Answer to Your Vacuum Problem.
What is true of Pumps is also true of new developments in complete High Vacuum Systems for research, pilot plant or full production.

The KINNEY Mechanical Booster Pump delivers ulti-



IKMNEMMFG.DIVISION
THE NEW YORK AIR BRAKE COMPANY
3565E WASHINGTON STREET - BOSTON 30 - MASS.
Kindly send me full information on new developments in
$\square$ KINNEY High Vacuum Pumps
$\square$ KINNEY High Vacuum Components
$\square$ KINNEY High Vacuum Systems for Electronics

[^30]

## The 301 PRINTED CIRCUIT

## "7rímuer"

For circuits with "no room to spare" the minute Model 301 plug-in trimming potentiometer packages pinpoint precision in thumbnail size.

SIZE: $1 / 2^{\prime \prime} \times 1 / 2 " \times 1 / 4$ "
WEIGHT: 2 grams maximum
STANDARD RESISTANCE VALUES: 10 ohms to 50 K
ADJUSTMENT RATIO: 45:1
immediately available in production quantities.

Openings exist for highly qualified engineers

components. The unit operates on $115-\mathrm{v} 400$-cycle single-phase power and provides a continuously adjustable output from zero to 115 v under a maximum load current of 15 amperes. Standard instrumentation includes a $3 \frac{1}{2}$-in. 21reed $\frac{1}{2}$-percent accuracy frequency meter and a 2 -percent accurate a-c voltmeter.
The unit weighs only 12 lb and is housed in a ventilated enclosure 12 in . wide by 6 in . deep by 7 in . high. A 6 -ft rubber-covered input cord is supplied. Circle P78 inside back cover.


## TINY COMPONENTS

meet applicable MIL-SPECS
Ace Electronics Associates, Inc., Somerville, Mass., has available some new subminiature components. Included are: a $\frac{1}{2}$-in. Acepot precision wirewound pot with a 10 to 250,000 -ohm resistance range, $\pm 0.3$-percent standard linearity; a high-temperature $\frac{1}{2} \mathrm{in}$. X-500 Acepot which operates in the temperature range of -55 C to 150 C ; a subminiature Acetrim trimmer with a resistance of 10 to 150,000 ohms; new nonlinear Acepots for sine-cosine and square-law functions featuring highly specialized design and precision construction; new Aceohm 35 -turn trimmer with a resistance
range of 10 to $50,000 \mathrm{ohms}$ for high temperature or other severe conditions; and the hermetically sealed Acerelay, featuring ultracompact size together with outstanding reliability for both power and dry circuit work. Circle P79 inside back cover.


## P-C CONNECTOR

many contacts, small space
Elco Corp., M St. below Erie Ave., Philadelphia 24, Pa., has introduced the 7000 series printed circuit Varicon connector. Contacts are staked directly into printed circuitry providing independent mechanical bond.

Current rating is 7 amperes; withstanding voltage (sea level), $2,000 \mathrm{v} \mathrm{rms}$; contact resistance, 0.002 ohm (unchanged after thousands of matings). Spacing at 0.100 centers provides maximum number of contacts in minimum space. It is available in 17 contact units. Other sizes are under development. Circle P80 inside back cover.


## COIL FORMS

for printed circuits
Cambridge Thermionic Corp., 445 Concord Ave., Cambridge 38. Mass., has developed new hori-zontal-mounted printed circuit coil forms. They come in a single


It has been definitely established that the value of Teflon can be considerably enhanced by the use of fillers in certain applications. Laboratory and field experience has demonstrated that the use of fillers permit Teflon to be more readily tailored to a wide variety of chemical, electrical and mechanical applications. Also, some mechanical properties can be improved. These include:

1) resistance to deformation under load
2) resistance to wear
3) thermal conductivity
4) compressive strength
5) hardness

By thus improving its properties, Teflon now offers even greater industrial potential. This is the reason filled Teflon has become an important item in the "John Crane" Chemlon ${ }^{\text {® }}$ line of better Teflon products.

Chemlon is available with such fillers as glass fiber, carbon, graphite, copper and bronze, talc, calcium fluoride and other inorganic materials.
Tell us about your requirements. We'll tell you the advantages you can get from filled Chemlon. Request Bulletin T-104.

Crane Packing Company, 6402 Oakton Street, Morton Grove,
Illinois, (Chicago Suburb). In Conado Crone Pocking Co., LId. Homilton. Ont



## EBELL

TYPE 1401－A RECEIVER




## NEMS－CLARKE <br> INCORPORATED

919 JESUP－BLAIR DRIVE SILVER SPRING，MARYLAND Write Dept．N－1 for further information
style，available in two lengths． Type 2270 is $\frac{5}{8} \mathrm{in}$ ．long overall and mounts on 0.500 in ．by 0.200 in ． mounting casters．The 2271 is $⿰ ⿳ ⿰ ㇒ 一 一 七 ⿱ 夂 口 又 寸 。 ~$ in．long overall and mounts on 0.700 in．by 0.200 in．centers．

Both are made with $\frac{1}{4}$ in．o－d internally threaded ceramic tub－ ing，grade $L 5$ silicone impreg－ nated．The units are slug tuned by a powdered－iron core．Both types have four solder terminals and two silicone fibreglass collars． The terminals for soldering are attached to the fibreglass collars and are so designed that coil leads can be attached to them sepa－ rately from the printed circuitry or the leads may be attached to the circuitry with the terminals． Circle P81 inside back cover．

## PHOSPHOR BLENDS <br> for tv picture tubes

E．I．Du Pont de Nemours \＆Co．， Wilmington，Del．Development and availability of new，brighter phosphor blends for tv picture tubes have been announced．

Designated P－4，the new phos－ phor blends are a light－body color type particularly suited for use in the manufacture of aluminized tv picture tubes．They are the brightest（at a given energy level） which the company has made available．Circle P82 inside back cover．


## WIREWOUND RESISTOR microminiature in size

General Resistance，Inc．， 577 E． 156th St．，New York 55，N．Y．The HA00 encapsulated wirewound re－ sistor is $\frac{3}{3} \mathrm{in}$ ．in diameter by $\frac{5}{8} \mathrm{in}$ ． in length．The HA33 resistor shown for comparative purposes is $\frac{3}{8}$ in．in diameter by 1 in ．in length．The microminiature re－
sistor is available in the resistance range of 0.1 ohm to 25,000 ohms. Standard tolerance is $\pm 1$ percent (with tolerances as low as 0.1 percent available on special order). Wattage rating is $1_{1}^{\frac{1}{0}} \mathrm{w}$ full load at 85 C . This resistor will meet the environmental conditions of MIL-R-93A. Circle P83 inside back cover.


## PULSE GENERATOR

has new input standardizer
Navigation Computer Corp., 1621 Snyder Ave., Philadelphia 45, Pa., has incorporated a new standardized preamplifier input into the type 100B pulse generator in its transistorized pulse programming line of logic units. The unit generates standard $2.5-\mathrm{v}$ system pulses and $25-\mathrm{v}$ variable amplitude pulses of both polarities, with digitized pulse interval selection. The new input standardizer section will trigger on any waveform with a positive rise time of at least $1 \mu \mathrm{sec}$ and 10 v amplitude. This provides additional versatility for system applications.

Complete technical description and applications are available. Circle P84 inside back cover.

## PARTS CLEANER

is specially purified
Tect, Inc., Cortland and Erie St., Dumont, N. J., has announced Vy-thene-E, a highly refined grade of 1, 1, 1-Trichloroethane. Because of the low percentage of residue in the product, Vythene- $E$ is finding wide acceptance in special uses, such as highly sensitive electronic parts. Recent tests have shown it to be an excellent cleaner for precious metal contacts used in radio and tv transmitting.

Vythene-E is approximately 20

# NEW EAGLE STEP SWITCH SIMPLIFIES CIRCUIT SEQUENCING 

. . . for machine fools, presses, conveyors, processes


These 3 basic ideas are yours
for simplified interlocking or sequencing of multiple load circuits. Any and all three will eliminate many other electrical components, and cut your initial cost.

## Operating load circuits in sequence:

A limit switch on a machine or indexing device closes and opens upon each operation to advance the Eagle step switch. Or a timer may be used to operate each load circuit for a predetermined time.


Interlock sequence: Two limit switches are operated alternately. This provides a safety feature. It insures that the movement of the machine has been completed before the Eagle step switch advances.


Interlock sequence with several limit switches: Each limit switch advances the Eagle step switch one position. Switches must operate in sequence or the step switch won't advance.


Send for new Eagle Bulletin 850. Simply write to Eagle Signal Corporation, Industrial Timers Division, Moline, Illinois, Dept. E-557.


Get the facts on CONVAIR POMONA in sunny California - first fully-integrated missile plant in the U.S.A. designer and builder of the Navy's terrier supersonic, surface-to-air missile.

Naturally, you'll work with the most modern electronic equipment known. Better yet, you'll work with the kind of engineering talent that creates such equipment...that is pacing the advance of science into outer space.
You'll have the scope and help to show what you can do ... and top pay at every step you progress. You and your family will live (California-style) in the lush Pomona Valley at the foot of the snow-capped Sierra Madre. No commuting problems. Ample housing. True country living just 30 minutes from downtown Los Angeles.

Openings now in:

## Electronics

Aerodynamics
Dynamics
Thermodynamics

Operations Research Hydraulics
Mechanical Design
Laboratory Test

Generous travel allowance to Engineers accepted.
Write now, enclosing complete resume to:

Engineering Personnel Dept. 3-G
times less toxic than carbon tetrachloride and has no flash point. In addition, the product is highly stabilized to all metals including aluminum and can be successfully reclaimed by distillation in the company's automatic Teeter-Still. It is available in drum quantities. Circle P85 inside back cover.


## DELAY LINE

in open type housing
Underwood Corp., Electronic Computer Div., 35-10 36th Ave., Long Island City 6, N. Y. Type 4D92 lumped-parameter electrical delay lines possess a total delay of 300 $\mu \mathrm{sec} \pm 1$ percent with taps available at every one $\mu \mathrm{sec}$ or any multiple thereof. They feature a maximum attenuation of only 4 db and a delay-to-rise time ratio of 75 to 1 over their entire length. Maximum rise time is $4.0 \mu \mathrm{sec}$ while impedance is $1,000 \mathrm{ohms} \pm 5$ percent. Use of the ferrite core construction enables the 4D92 to be efficiently packaged in an opentype housing measuring only $165 / 8$ in. by $2 \frac{13}{2 \frac{1}{2}}$ in. by $2 \frac{15}{8}$ in. Circle P8G inside back cover.

## MAGNETIC HEADS <br> for use in computers

Thomas A. Edison Industries, Instrument Div., West Orange, N. J., has developed a new series of custom designed magnetic recording heads for use in computers in aircraft and industrial applications. Available in both single and multihead styles with up to 15 tracks, these heads are specially laminated for better h-f response. Track positions and straightness are held to extreme accuracies. Impedance between tracks is only $\pm 10$ percent on standard units,
$\pm 5$ percent on custom units, Circle IP87 inside back cover.


Burroughs Corp., Electronic Tube Division, Plainfield, N. J. The Nixie read-out tube is a small, low-cost electron device which converts electronic signals directly to readable characters. It contains all the numeric digits, any one of which can be selected and displayed in a common viewing area. It can be triggered by beam switching tubes or any suitable voltage source requiring approximately $1 / 4 \mathrm{w}$.

Applications for the Nixie tube include computer read-out, industrial control, electronic instrumentation, military electronic control and channel selectors. Circle P88 inside back cover.


## V-T VOLTMETER <br> low-frequency unit

Millivac Instrument Corp., P. O.
Box 997, Schenectady, N. Y. The


Tried-tested-proven! In countless severe-service assemblies such as guided missiles, jet planes, radar,
 communications receivers, electronic computers, etc. Insist on Sealectro "Press-Fit" terminals-the original and genuine press-fitted terminals-if you seek to

- Eliminate carbonization and and fussy sealing.
- Eliminate threads, nuts, washers, lock-washers, and other hardware, reducing labor to a minimum. arcing by minimizing surface. moisture accumulation.

Eliminate voltage breakdowns with an extra-generous safety factor.


- Eliminate thermal, chemical, mechanical, climatic, fungus and other problems.

And Sealectro offers the outstanding selection-over 600 standard types-minlature and sub-miniature stand-offs and feed thrus; breakaway connectors; test point jacks-in a choice of eight RETMA code colors.

SAMPLES AND LIYERATURE . . Write on business stationery for "Press-Fit" samples and literature. Let us collaborate on your terminal requirements.
*Trademark of the original Teflon terminal manufacturer
$\dagger$ Reg. Trademark, E. I. Du Pont de Nemours \& Co.



## Exciting News About The Revolutionary

 "PARABALIOOT"

The Original Paraballoon was mounted on a metai support. Only the antenna and balloon protector were air supported.


Now ... The Paraballoon is completely air supported - even lighter and more easily erected. Air sup. ported structures as large as 65 ft . in diameter and over 100 ft . high are under study.

Westinghouse-Baltimore Engineers Have Adapted This Radical Antehna For Use In Scatter Communications Just a few short months after the development of the Paraballoon by WestinghouseBaltimore engineers, these same engineers have developed an entirely new application for it . . which promises to revolutionize "over-the-horizon" scatter communications. The new Paraballoon application is just one more example of the pioneering leadership synonymous with the name Westinghouse-Baltimore.
From Westinghouse-Baltimore comes an exciting new book every engineer's family should read.
"New Dimen-sions"-a book of engineering career opportunitiestells you what you and your family want to know about job opportunities, growth possibilities, attractive benefits and a rich, full life in a progressive community.

For a copy of "NEW DIMENSIONS" write to WESTINGHOUSE Medwin, Dept. 664
P. O. BOX 746, Baltimore 3, Marylond

Please indicate your degree, year of graduation and field of interest.
For a confidential interview, please send a complete resume of your education and experience.


## Westinghouse-baLtimore

Advanced Electronics Systems, Ordnance, X-Ray, Carrier Microwave, and Induction' Heating Equipment for Military, Industrial, and Commercial Purposes.

MV-02B a-c vacuum-tube voltmeter has a frequency range of 2 cps to 250 kc and a full scale voltage range of 3 mv to 1 kv . The instrument is equipped with galva-nometer-attenuation switch which makes it possible to obtain fast needle response on all measurements above 20 cps , while the necessary slow response is being maintained between 2 cps and 20 cps.

High accuracy and calibration stability are obtained through a fully electronically regulated plate current supply and individual calibration controls for all 12 ranges of the instrument. Circle P89 inside back cover.

## R-F COAX CONNECTOR eliminates extra switching

Tru-Connector Corp., 416 Union St., Lynn, Mass. Now available is a new r-f coaxial connecter which eliminates the need for extra switching in many r-f and video applications. Known as the TRU862, this QDS (quick-disconnect small) connector incorporates a spdt switch without increasing the size of the connector. Circle P90 inside back cover.


## NETWORK SWITCHER

handles high voltages
Bomac Laboratories, Inc., Salem Road, Beverly, Mass. The BL-148 is a high-voltage, hermetically sealed, armature type relay developed for switching radar pulse-
forming networks. It consists of one set of spst h-v switch elements and two sets of $\mathrm{l}-\mathrm{v}$ spst elements, simultaneously operated from a 26.5 v d-c source.

The $h$-v elements are rated to handle $7,500 \mathrm{v}$ ( $15,000 \mathrm{v}$ test) and 90 amperes (peak) 3.0 amperes rms; the low voltage elements are designed to safely handle $1,000 \mathrm{v}$ and 1.6 amperes d-c. Switching time is less than 0.1 sec. The switch portion is immersed in Dow-Corning Silicone oil during h-v operation.

The BL-148 weighs 3.6 oz and has overall outline dimensions of 3 in. (maximum) length and $1 \frac{1}{18}$ in. (maximum) diameter. Circle P91 inside back cover.


## TV CAMERA TUBES

with low image persistence
Nucleonic Products Co., Los Angeles, Calif., has available three new Resistron (Vidicon type) tv camera tubes. Type 135 is only $\frac{1}{2}$ in. in diameter and 34 in. long. It features 300 -line resolution and is designed for use in miniature cameras. Type 255 is a standard size which features 600 -line resolution, excellent sensitivity, good edge focus and low flare. Type 350 is a special large size capable of 1,000 -line resolution. This tube has a diameter of $1_{8}^{3} \mathrm{in}$. and is slightly larger than type 255.

Also available is a new Vidicon


Here is another new development from Ace . . . sub-miniature precision wire-wound trimmers especially for printed circuits. Designed and produced to meet your tightest specifications, the new Acetrim has flat or round tabs to facilitate production assembly. Just plug into printed circuit board, secure, and dip solder.

## Ace delivers reliability

## Featuring

- $1 / 2^{\prime \prime}$ size
- 10 ohms to 150 K
- weight $1 / 4$ ounce
- power 2 w . @ $60^{\circ} \mathrm{C}$. max.
- temperature to $125^{\circ} \mathrm{C}$.
- sealed, moistureproofed, anti-fungus treated
- withstands severe shock, vibration, acceleration
- meets applicable Military specs

Modern mass production techniques assure delivery to meet your schedules . .. rigid quality controls assure highest standards of performancereliability.

Acetrim - write for Technical Data Unit \#563.
Acepot - $1 / 2^{\prime \prime}$ sub-miniature precision wire-wound linear potentiometers from 10 ohms to $250 \mathrm{~K} . \pm .3 \%$ standard. Write for Technical Data Unit \#564.
Nonlinear Acepor - precision wire. wound nonlinear potentiometers for
sine-cosine and square-law functions and other applications. High resolution, close conformity. Write for Tecbnical Data Unit \# 572.
X-500 Acepot - $1 / 2^{\prime \prime}$ sub-miniature precision potentiometers for extreme temperatures of $-55^{\circ}$ C. to $150^{\circ}$ C. 10 ohms to 250 K . Write for Technical Data Unit \#571.

*trademarks applied for

# ACE ELECTRONICS ASSOCIATES, INC. 

Dept. E, 101 Dover St. - Somerville 44, Massachusetts
Telephone: SOmerset 6-5130 • Engineering Representatives in Principal Cities
See the newest and latest at Booths 56-57-the Pacific Northwest Instrument Show.


Shown in the chart are typical ranges available in these units. Special ranges frequently can be supplied to meet specific requirements.


## The

 AOWHAYDON Company
## 235 NORTH ELM STREET, WATERBURY 20, CONNECTICUT

Design and Manufacture of Electro-Mechanical Timing Devices preferred where performance is paramount.
type tube sensitive in the infrared region from 8,000 to 22,000 Angstroms. Circle P92 inside back cover.


## POWER SUPPLIES

subchassis type
The Reflectone Corp., Stamford, Conn., has introduced two new electronic subchassis power supplies. They are similar, but have different output voltage ranges. Output for model PS-S150 is 150 $\mathrm{v}, 150 \mathrm{ma}$ d-c, $6.3 \mathrm{v}, 6$ amperes a-c ; for model PS-S300, 300 v d-c.

Input is $115 \mathrm{v}, 60 \mathrm{cps}$. The d-c regulation is 0.5 percent for 10 percent lines, 1.0 percent for noload to full-load. Construction is rugged and the units are easily mounted on the chassis with four screws. Easy adjustment can be made for any operating voltage within the limits specified. Circle P93 inside back cover.


## BAND PASS NETWORK

 low insertion loss featuredOrtho Filter Corp., 196 Albion Ave., Paterson 2, N. J. The series

2090 unIFilter is a band-pass interstage network featuring exceptional frequency attenuation characteristics with low insertion loss. Units are available with bandwidths ranging from 6 kc to 35 kc at a center frequency of 455 kc . Typical adjacent channel rejection is 85 db at $\pm 40 \mathrm{kc}$. The unIFilter series includes types suitable for use in triode or pentode mixer plate circuits eliminating the need for additional selectivity.

High stage gain is achieved through the combination of low pass band transmission loss and high input and output impedance. Field tests indicate no observable ringing is introduced by the incorporation of the unIFilter in standard receivers.

Other available center frequencies range from 50 kc to 40 mc . Circle P94 inside back cover.


LOAD ISOLATOR
for X-band radar
Litton Industries; 5873 Rodeo Road, Los Angeles 16, Calif. Model X10/S132 ferrite load isolator is especially designed for new X-band radar where space and weight are at a premium. Weighing only 1 lb it provides a minimum of $10-\mathrm{db}$ isolation over 8,500 to $9,600 \mathrm{mc}$ with a maximum of $0.6-\mathrm{db}$ insertion loss over the whole band. Isolation in the middle of the band is approximately 13 db .

The isolator is only 2 in . long and 2 in. wide. Vswr is 1.15 maximum. Designed to operate at 10 -kw peak and 10 -w average power, the isolator is also available for use at higher power.

Utilizing the resonance absorption characteristics of ferrites,

## electronic RF filters



As specialists in the design and manufacture of RF filters since 1922, TOBE has accumulated a vast wealth of data covering filtering techniques. When it comes to filtering problems, TOBE can solve them.
TOBE Filterettes in both single and multiple circuits, are available in several hundred standard designs to meet any conceivable application. All types are engineered to operate under the most severe environmental conditions.
For further data or engineering aid, write TOBE DEUTSCHMANN Corporation, Norwood, Mass.

## Tobe Exclusives:

- Miniaturization with maximum
- quality.
- Guaranteed attenuation character-
- istics under full-load operating conditions.
- Current ratings up to 350 amps.,
- AC and DC voltage ratings up to
- 5000 volts.
- Maximum insertion loss at all fre.
- quencies from 14 kc to $15,000 \mathrm{mc}$.
- Each type available in a variety of
- mounting styles.


## specify <br> (10BE)

## for airborne equipment



## Leak-proof, Light-weight, Needs No Lubrication

DYNACOR, 400 cycle, leak-proof pumps can cut your maintenance costs by as much as $90 \%$. Compactly constructed without seals or stuffing boxes they positively prevent costly fluid losses. No. lubrication is required.

DYNACOR pumps can eliminate over-heating of expensive airborne electronic equipment. Lightweight and space saving, these pumps are ideal for circulation of coolants in airborne radar and other heat-generating electronic equipment. Other applications include missile launching apparatus and fire control mechanisms. DYNACOR pumps are especially suitable for pumping flammable liquids.
DYNACOR pumps can be supplied in several models. Of these, the Model G includes an expansion chamber. This feature plus the unitized construction prevents leakage at any altitude or temperature. In this model the rotor and stator are encased in a suitable metal cartridge, which can be changed readily without special tools.
The Model GG is a compact unit with its rotor and stator immersed in the fluid being pumped. Centrifugal, gear and vane types are available for special applications.
DYNACOR pumps are available for single or three-phase AC input. $1 / 20$ horsepower motor draws approximately 1 ampere. Other power inputs can be supplied on special order.
Efficient over a wide temperature range, DYNACOR pumps operate effectively from minus $60^{\circ} \mathrm{F}$ to plus $165^{\circ} \mathrm{F}$.

## NO SEALS NO STUFFING BOXES MINIMUM MAINTENANCE

> Write today for literature on unique DYNACOR pumps
the isolator offers a small and light solution to long-lines and other magnetron loading problems caused by lengthy transmission lines or excessive vswr's. Circle P95 inside back cover.

## FREQUENCY METER

allows 20 -channel servicing
allen B. Dumont Laboratories, Inc., 750 Bloomfield Ave., Clifton, N. J., has developed a frequency meter capable of servicing multiple transmitter installations operating on from one to twenty channels in mobile radio communications systems.

Type 5890-A is portable and features transistorized circuitry. It can be utilized with any transmitter operating within the complete land-mobile services' frequency bands- 25 mc to 470 mc .

The case housing the instrument measures 8 in . wide by 7 in . deep by 7 in . high. It weighs only 8 lb . Further information is available from the company. Circle P96 inside back cover.


## MOTOR CONTROLLER

for accurate acceleration
Gerald K. Heller Co., 1819 Industrial Road, Los Vegas, Nevada. The CX25 electronic controller provides accurate acceleration and speed control of shunt-wound d-c motors ranging from $1 / 50$ th to 4 hp . Using the acceleration control, the motor can be brought up to any speed from 1 to $2,200 \mathrm{rpm}$ in a short time or gradually over a half-minute interval. This fea-
ture has wide application and is especially important in the winding of fine wire and filaments that break readily when subject to sudden tension.

The fine-speed adjustment works in conjunction with the coarsespeed control. Motor speed may be accurately and steplessly varied through a $220-\mathrm{rpm}$ range with 270 degrees of rotation of the finespeed control pot.

The controller uses one C3J thyratron tube. This automatically increases voltage to compensate for additional loading of the motor armature. Thus the speed of the motor is maintained with good regulation. The CX25 is available for use in original equipment. Circle P97 inside back cover.


## DELAY RELAY

new miniature type
T'homas A. Edison Industries, West Orange, N. J., has developed a new miniature thermal delay relay (shown at the left). This vibration resistant unit is specifically designed for applications in both missiles and jet aircraft. Among its many design features are: virtual elimination of contact chatter up to $1,500 \mathrm{cps}$ at 10 g 's ; no resonance to 500 cps ; good ambient compensation between -65 C and +85 C -operation at higher temperatures when necessary; contacts rated for 1 ampere at 27.5 v d-c or 3 amperes at 115 v a-c and extra-rigid construction for exceptionally high contact pressure.

Seated height is 2 in.; diameter,㶳 in.; weight, 1 oz maximum. Further information is available from the company. Circle P98 inside back cover.


Whether it's a complex 10 winding magnetic amplifier or a simple choke . . . at Celco each toroid is precision-made. New core materials are used in Toroidal magnetic amplifiers, reactors and transformers to achieve maximum performance.

At Celco, the proper matching of cores, winding, handling, impregnation, encapsulation and electrical history of the final assembly is carefully controlled to maintain the original design characteristics.
Our years of design, development, and production know-how are available for application to your specific TOROIDAL problems.

* For immediate attention, call DAvis ${ }^{7}-1123$ - or write today.

duPont Polytetreforoethylene


## NEED THEABOVE?

NEED IT FAST?
SEEUS FIRST!
Send for Our Catralog

For Technical Information, Prices \& Deliveries Call
American Superteup Wires, Inc.
West Canal St., Winooski, Vt. Burlington 2-9636

[^31]
## New Literature

Linear Scale A-C Ammeter. Beckman/Helipot Corp., Newport Beach, Calif. Details of the company's newly developed linear scale a-c ammeter are given in data sheet 839. Easily read linear scales plus high accuracy are two of the features stressed.

The dial markings on the ammeter described are evenly spaced, thus eliminating crowded divisions at one end of the scale. The deflection of the needle is always directly proportional to the amperage.
The data sheet points out that accurate performance is assured by a series of rigid tests which qualified the unit for use in military aircraft. Circle L1 inside back cover.

Silicon Rectifiers. Sarkes Tarzian, Inc., Rectifier Division, 415 N . College Ave., Bloomington, Ind. Design Notes No. 15 covers the SM series of silicon rectifiers which provide a voltage range from 800 to $2,800 \mathrm{v}$ peak inverse and current ratings that range from 325 to 450 ma .

The compact package design for the power rating described makes the $S M$ series ideal for use in transmitter and other types of $h-v$ medium current power supplies. Circle L2 inside back cover.

Speed Reducers. Western Gear Corp., P.O. Box 182, Lynwood, Calif. Bulletin 5616 covers a new line of double and triple-reduction speed reducers, with ratings up to 50 hp and efficiency ranges from 97 percent or better. The speed reducers described bear the trade name "Strait Line" and are immediately available in all models. Circle L3 inside back cover.

Converters and Inverters. Electronic Research Associates, Inc., 67 E. Center St., Nutley 10, N. J., has available two new literature pieces covering the line of transistorized semiconductor converters and inverters. Available is a two-color catalog sheet listing full technical details and pricing in-
formation covering d-c to d-c converters and $d-c$ to a-c inverters.

Also available is a seven-page technical bulletin which provides operational characteristics, design data and technical description on these converter and inverter units. Circle L4 inside back cover.

Time Delay Relays. Elastic Stop Nut Corp. of America, AGA Division, Elizabeth, N. J., has issued a four-page illustrated bulletin, SR-5R, containing selection information for hermetically sealed Agastat time delay relay models whose light weight and reduced dimensions make them specially suitable for aircraft applications.

The bulletin includes a selection chart which gives terminal type, contact and terminal arrangement, and dimensions for the five basic SF type Agastat models. Three illustrations provide supplementary information about contact and terminal arrangements, and four diagrams show mountings and enclosures. Operation of the models is described and coil data and contact specifications are given. Circle L5 inside back cover.

TV Transmitter Monitor. General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Volume 31 No. 4 of the Experimenter illustrates and describes a new tv transmitter monitor. Illustrations, basic principles, design features and specifications are included. Circle L6 inside back cover.

Temperature Indicators. Leeds \& Northrup Co., 4934 Stenton Ave., Philadelphia 44, Pa. Data sheet ND46-33 (23) contains concise information about the electronic Speedomax $G$ potentiometer instruments which indicate thermocouple temperatures at the flick of a switch on a drum-type scale $25 \frac{1}{2}$ in. long. The sheet lists features, specifications and ranges for (1) a standard-case instrument with door-mounted switches, (2) a small-case instrument used with separately-mounted switches
and (3) a console instrument for desk-top mounting, for as many as 200 thermocouple points. Circle L7 inside back cover.

Impulse Counters. Landis \& Gyr, Inc., 45 W. 45 th St., New York 36, N. Y. A feature of the new Sodeco bulletin describing electric reset impulse counters is a discussion of the shape of impulses recommended to activate the counters.

Also included in the bulletin are illustrations, drawings and descriptions of 4,5 and 6 -digit electric zero reset counters, including descriptions of the various auxiliary contact options available. Circle L8 inside back cover.

Facilities Brochure. Laboratory for Electronics, Inc., 75 Pitts St., Boston 14, Mass., has published a 12-page brochure describing its facilities. The company is engaged in the manufacture of electronic test equipment component parts for the electronic industries, in the custom manufacture of complex electronic devices and in electronic research and development. The booklet now available describes and illustrates these facilities. Circle L9 inside back cover.

Engineering Guide on Teflon Wire. Alpha Wire Corp., 200 Varick St., New York 14, N. Y., has released the two-color four-page Catalog $\mathrm{T}-1$ describing all the engineering characteristics of its Altemp Teflon high-temperature insulated hook-up wire which uniquely suit it for high-frequency, high-temperature, miniaturizing, weatherizing and ruggedizing applications. Both the extruded and spiral-wrapped insulation types are available in put-ups of 10 ft , $25 \mathrm{ft}, 50 \mathrm{ft}, 100 \mathrm{ft}, 250 \mathrm{ft}, 500 \mathrm{ft}$, and $1,000 \mathrm{ft}$ and are detailed as to conductor sizes, conductor strands, insulation thickness, voltage rating, outside diameter and stock colors. The catalog also includes a series of special constructions of this wire available-toorder. Circle L10 inside back cover.

Subminiature Teflon Terminals. Tri-Point Plastics, Inc., 175-177

## BIRD Model 43 चhruline DIRECTIONAL WATTMETER

## Reads Directly .. WATTS FORWARD WATTS REFLECTED...7x 500 hm Coaxtal Limes

Measures POWER into the antenna in the actual operating circuit. Continuous monitoring if desired.
Measures reflected power, direct reading. In antenna matching work, results show directly in lower reflected power. Ideal for mobile equipment.
Tests 50 ohm r-f lines, antenna connectors, filters-quickly. ACCURATE because of high directivity and small frequency error.
DIRECT READING - no calibration charts, no full scale meter adjustments needed. Meter scale reads directly for all ranges and is expanded for better down-scale reading. CONVENIENT - does not require reversal of r-f connections. No auxiliary power required.
Negligible power loss and insertion VSWR.
Full scale power range and frequency range are determined by the selection of plug-in elements from the following list.
Frequency Range-25-1000 megacycles in five ranges vis, 25-60 Frequency Range-25-1000 megacycles in five ranges vis,
$\begin{aligned} & \text { (A), } 50.125 \text { (B), 100-250 (C), 200-500 (D), } 400-1000 \text { (E). }\end{aligned}$ Pawer Range-10,25,50,100,250, and 500 watts full scale. Available in most frequency ranges.
 that the currently expanding activities of The W. L. Maxson Corporation offer the creative engineer a limitless range of assignments for career fulfillment.
 in operating position. Dimen-
sions: $7^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$ Weight, sions: $7^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$ Weight 4 pounds.
SO239 jackz for PL259 plugs ovailable.


Responsible positions now available in the fields of research and development. Kindly send resume and salary requirements to:

Mr. L. W. Albright
Technical Placement Manager

THE W. L. MAXSON CORPORATION
460 W. 34th St., New York 1, N. 'Y.


Hycor band-pass and low-pass felemetering filters are produced in exact accordance with accepted military standards. In addition 10 designs which conform to Applied Physics laboratory specifications, miniature units are available.
Hycor telemtering filters are potted for complete protection against vi. bration and humidity. The finest components are used to minimize oging effects on characteristics.

Send for Bulletin TF which describes standard types available.
Hycor engineers will be pleased to quole on your most exocting specifications.

## - Representatives to

 Principal CitiesDivision of International Resistance Co. 12970 Bradley Ave., Syimar 1, Calif.

Willets Road, Albertson, L. I., N. Y. Subminiature, Tefion-insulated terminals that can be installed in seconds and used under severe conditions are described in two technical bulletins. The bulletins provide terminal dimensions, capacitance and flash-over ratings. Four stand-off and five feed-through subminiature Trinseel terminals are described. Sizes range from 0.148 in . to 0.218 in . diameter, all with $0.040-\mathrm{in}$. diameter brass conductor pins with a variety of solder finishes available. Installation is by simply pressing or corking the terminal into drilled or punched holes, a permanent hold and seal being effected by resilient Teflon insulation.

Copies of Trinseel bulletins MT-157-S (standoff terminals) and MT-757-F (feedthrough terminals) are available. Circle L11 inside back cover.

Resistance Measuring Bridges. Shallcross Mfg. Co., Collingdale, Pa . Seven bridges covering d-c resistance measurements from 1 $\mu \mathrm{ohm}$ to 1 -million megohms to tolerances as close as $\pm 0.02$ percent are described in bulletin L-19B. Types illustrated range from general-purpose Wheatstone bridges for laboratory and field use, and Kelvin-Wheatstone and Megohm-Wheatstone bridges for precise measurements of extremely low or extremely high resistances, to special purpose per-cent-limit bridges that make resistance measurements within preset tolerance on a fast go, no-go type of production line basis. Circle $\mathbf{L 1 2}$ inside back cover.

Lighted Pushbutton Switch. Micro Switch, A Division of MinneapolisHoneywell Regulator Co., Freeport, Ill. Data sheet 116 covers the 52PB7-T2 turn-to-lock-down lighted pushbutton switch. The dual-purpose switch described functions as a conventional pushbutton when pushed straight down; when pushed and turned 30 deg clockwise, the switch is held maintained in the operated position; when turned counterclockwise from this position, the button
pops up and returns the switch to the unoperated position. Included in the catalog sheet are dimensional drawings, electrical rating and prices. Circle L13 inside back cover.

Metal Film Precision Resistors. International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa. The four-page catalog data bulletin B-3 contains comprehensive data on construction, applications, characteristics, identification, tolerance and dimensions of a line of metal film precision resistors. Detailed performance charts and graphs are included. Circle L14 inside back cover.

Analytical Instruments. PerkinElmer Corp., Norwalk, Conn., has published a 16-page catalog of laboratory analytical instruments. It describes the company's line of infrared and ultraviolet spectrophotometers, monochromators, flame photometers, vapor fractometers, as well as accessories and instrument components available for use with them.

Also included is a brief description of P-E's process control instruments. Circle L15 inside back cover.

Instruments Catalog. Humphrey Inc., 2805 Canon St., San Diego 6, Calif., has published a new 24page catalog with photos, descriptions, general specifications and test data on 21 of its standard precision guidance and control instruments.
The catalog contains information on free gyros and rate gyros, linear and angular accelerometers, and rectilinear and rotary potentiometers. It includes an outline drawing and connection diagram for each instrument in addition to specifications and description. One section is devoted to a description of the company's test procedures set up to assure quality performance of each individual instrument produced. Circle L16 inside back cover.

Bobbin Winder. Geo Stevens Mfg. Co., Inc., Pulaski Rd. at Peterson, Chicago 30, Ill. A newly issued catalog page pictures and fully


## How would you

 match this curve
## to shaft rotation?

The VERNISTAT Adjustable Function Generator will do it for you! Here it is:


The VERNISTAT Adjustable Function Generator-a variation of the VERNISTAT a.c. potentiometerpermits quick and easy alteration of any nonlinear function. The adjusting mechanism provides a graphic display of the function which may be mathematical or empirical, including those with multiple slope reversals.

## CHARACTERISTICS:

- 100-transformer taps connected to 31pole, 100-position printed circuit switch.
- any pole can be switched to any tap.
- size: $61 / 4^{\prime \prime} \times 77 / 8^{\prime \prime} \times 27 / 8^{\prime \prime}$.
- potential of each pole adjustable to $\pm 0.5 \%$.
- mininum slope of voltage output curve: zero.
- maximum voltage between adjacent poles: 12.
- frequency rating: 400 or $60 \mathrm{cps} @ 130$ volts depending on model.
- output impedance: 130 ohms maximum.
division
PERKIN-ELMER CORPORATION Norwalk, Connecticut
describes the model 312-AM highspeed, direct-drive, adjustable winding length, bobbin winder in which gear changing is eliminated. Complete technical data include description and dimensions of coils and wire sizes wound, tension equipment selector, winding speeds and range, slow-start, reduced setup time, motor equipment, counter, brake, mounting, time-saving resettable wire guide and carriage, reversing magnetic clutches, output end of spindle, emergency safety stop button, single shot lubrication and tailstock. Circle L17 inside back cover.

Instruments Catalog. Brush Electronics Co., 3405 Perkins Ave., Cleveland 14, Ohio, has released a new condensed catalog, illustrating and describing its complete line of Bruel \& Kjaer instruments for sound, strain, vibration and acoustical measurements. The 24 page literature contains more than 60 photographs. It is sectioned for ease of reference and includes instruments for production testing, chart paper and accessories.

A brief description accompanies a photograph of each of the instruments covered. The catalog also includes a list of the company representatives, including their territories, where additional information can be obtained. Circle L18 inside back cover.

Comprehensive Engineering Service. Briggs Associates, Inc., 10 DeKalb St., Norristown, Pa. A four-page folder covers the company's available engineering service in electronics, mechanisms and materials. Development work; systems, subprojects or product ideas; surveys undertaken and facilities available are discussed. Circle L19 inside back cover.

Vinyl Compounds. Bakelite Co., A Division of Union Carbide \& Carbon Corp., 30 E. 42nd St., New York 17, N. Y. Issue No. 95 of Kabelitems covers a line of vinyl wire and cable insulating and jacketing compounds. Included are charts showing suggested uses,


Stromberg-Carlson's new type " $E$ " relay combines the time-proven characteristics of the type " $A$ " relay with a mounting arrangement common to many other makes.

As the sketch above shows, our new frame mounting holes and coil terminal spacing allow you to specify these relays-of"telephone qual-ity"-interchangeably with brands you have been using. Costs are competitive and expanded production means prompt delivery.
Welcome engineering features of the new " $E$ " relay are-
$\star$ Contact spring assembly: maximum of 20 Form A, 18 B, 10 C per relay.
$\star$ Coil: single or double wound, with taper tab or solder type terminals at back of relay.
$\star$ Operating voltage: 200 volts DC maximum.
You may order individual can covers in a choice of 3 sizes for the new relay, as well as for our type "A" and "C" relays.

For complete details and specifications on the " $E$ " relay and other Stromberg-Carlson relays, send for your free copy of Catalog T-5000R.

## STROMBERG-CARLSON <br> A division of general dynamics corporation

 telecommunication industrial sales 114 CARLSON ROAD, ROCHESTER 3, N. Y.

CUT TOOLING COSTS!
Over 3,000 high precision tools and dies available to reduce your initial tooling time and costs.

Our facilities are geared to meet your production and engineering needs for components of any description. Unusually Complete Tool Room. Press Shop * Hydrogen Annealing, Machining and Polishing Operations - Glass-to-Metal Hermetic Sealing. Production of completed parts ready for assembly in your own plant.

Call on us for free consultation and quotations.

## ZALL PRODUCTS CORP.

 279 Main Street, Norwalk, Conn
## Electrical Engineer for Digital Computers

The Electronics Division of Curtiss-Wright Corporation has an opening in New Jersey for MS or Ph.D in EE for study and analysis of the applications of digital computer techniques to current and future equipment used in flight simulation. He will be responsible for the analysis, application, design and development of circuits, systems and equipment with initial emphasis on simulation of aircraft radio and navigational aids. To the right man this position will lead to supervisory responsibility for the digital computer program. Consequently, this presents an excellent opportunity for growth. High starting salary with unusual employee-benefits program. Write in complete confidence to:

## R. G. CONRAD

MGR. ENGINEERING RECRUITMENT, DEPT. ET-3 CURTISS-WRIGHT CORPORATION, WOOD-RIDGE, N.J.

UL designations and technical data sheets on ten types of Bakelite vinyl compounds. Circle L20 inside back cover.

High Reliability Capacitors. Sprague Electric Co., North Adams, Mass. Engineering bulletin 2900 and specification PV-100 contain complete technical information on the Hyrel $Q$ subminiature metal-clad paper capacitors which are hermetically sealed with compression-type glass-tometal solder-seal terminals. The units described are available in both conventional tubular and screw-neck mounting styles, are vitamin $Q$ impregnated and designed for operation from -55 C to +125 C. Voltage ratings of 200 , 300,400 and 600 v d-c are standard. Circle L21 inside back cover.

Magnetizers. The Indiana Steel Products Co., Valparaiso, Ind. A two-page bulletin offers two principal types of magnetizers-the electromagnetic and the perma-nent-magnet type. The magnetizers discussed meet the requirements of most applications and offer many advantages.

The publication includes data and charts on the magnetizers as well as information and pictures of both types and also includes directions on how to use the magnetizers. Circle L22 inside back cover.

Microlimit Control Cable Gage. Industrial Gauges Corp., West Englewood, N. J. A new brochure describes continuous, noncontact diameter measurement and control equipment for insulated wire and cable, extruded tubing and shapes.
The equipment described spans the range of 0.4 to 3.0 in . in two standard sizes and up to 12 in . in special sizes. Measurement, control and recording sections are offered in a variety of combinations to suit specific objectives. Circle L23 inside back cover.

D-C Motors. Induction Motors Corp., 570 Main St., Westbury, L. I., N. Y. Engineering data on the special-purpose 2000 series d-c motors are presented in a new de-
sign specification sheet. Units discussed are available in a variety of input voltages, output powers and windings and are offered with gear speed reducer and/or speed governor. Performance curve and engineering drawings of units are included. Circle L24 inside back cover.

D-C Supply for Large Currents. Dynamic Controls Co., 1955 Massachusetts Ave., Cambridge, Mass. Bulletin DC T-157 presents the transient performance and other electrical and mechanical features of these well-regulated thyratron supplies. Oscillographic recordings show the response of the output voltage for a 150 -v 50 -ampere supply upon the application of step functions of a-c line voltage and large increments of load. Features discussed are as follows: Response time is less than 10 millisec and recovery is completed within 20 millisec. Voltage regulation is within $\pm 0.15$ percent. Unusual features included are adjustability of output voltage with a single knob from 110 percent of rated to 20 percent of rated, full current rating at all voltages, close regulation throughout the operating region and an efficiency of more than 80 percent at full load. Circle L25 inside back cover.

Environmental effects on Precision Pots. Helipot Corp., Newport Beach, Calif., has available free copies of the illustrated technical paper 762 which discusses the effects of extreme temperatures, vibration and shock, humidity, altitude and acceleration on precision potentiometers. Included in the discussion are an analysis of applicable specifications, potentiometer characteristics affected by the various environments and a detailed description of each environmental condition. Circle L26 inside back cover.

Testing Equipment. Cal-Tronics Corp., 11307 Hindry Ave., Los Angeles 45, Calif., has published a brochure detailing its specialized electronic testing equipment products. In addition to testing equipment information for guided missiles, radar and fire control, the
 highly skilled engineers. They are able to exercise unusually rigid quality controls because all production operations are carried out in Zell's own completely equipped, ultra modern plant. ZELL Hermetic Seals Enjoy These Desirable Characteristics: * High resistance to mechanical and thermal shock.

* A stable finish that protects seals against corrosive atmospheres. zell's gold plate withstands the most stringent transistor ETCH IESTS DEVISED.
$\star$ Excellent electrical properties. $\quad$ Tight dimensional tolerances * Easy weldabilit! and solderability.


## Specialists w STAMPING AND DRAWING kOVAR - RODAR - THERLO FERNICO AMD OTHER MLOYS

ALL FACILITIES UNDER ONE ROOF

- Complete tool room facilities.
- Double stage annealing-fusing furnaces.
- Doubanced plating facilities for Nickel, Gold, Tin, Cadmium, copper, Silver, efc. Completé glass facilities.
- Mass Spectrometer leak testing. ZELL engineers control every process every and performance.


> NOW....ANY MICROWAVE COMPONENT CAN BE bullt and engineered TO YOUR PARTICULAR APPLICATION

Regardless of complexity, design or tolerance problems-you can get UHF or microwave components that are job-engineered to your application. All units are delivered, electrically tested and proven, ready for immediate operation.

Components can be built from your prints or can be designed and built to integrate with the application. Close and confidential coordination is maintained from drawing board stage to installation.

Range of assemblies is practically unlimited-from dc. to over $40,000 \mathrm{mc}$., military or industrial. Typical examples are these components, delivered ready for field use:
Telemetering.

## Tuneable

S-Band
Transmifter Cavity -re-entrant type, pulse output 150 w ., operates at extreme altitudes and under extreme conditions of temperature, humidity and salt spray.

Improving signal-to-noise ratio . . selectivity.

## Tuneable <br> UHF

Pre-Selector-
Pre-Selector-
relatively low frequency
relatively low frequency coaxial resonator with very low insertion loss, extreme selectivity and very high signal-to-noise ratio. Especially adapted to use in aircraft or in crowded communication bands.
 complent type, calibret with thermistor mount and quency range 2700 to 3400 mc .

Get the facts on our complete design, engineering and mechanical fabrication facilities. Have us quote on your needs-cavities, mixers, duplexers, multipliers, rotary joints, twists, bends and other components or assemblies.
Contact us today. Request catalog.
J-V-M ENGINEERING COMPANY
4631 lawndale avenue, tyons, illinois
(Chicago Suburb)
new literature
(continued)
brochure contains information on engineering, designing and planning personnel.

Foto-Etch Circuits, a division of Cal-Tronics, is also featured. This division provides complete service in printed circuitry including artwork, engineering and design. Circle L27 inside back cover.

Direct-Writing Recording Systems. Brush Electronics Co., 3405 Perkins Ave., Cleveland 14, Ohio, has released a six-page folder illustrating and describing its di-rect-writing recording systems.

Covered in the profusely illustrated literature is the company's line of oscillographs, amplifiers and its penmotor, plus accessories and supplies used with the basic instrumentation. In total, five oscillograph models and six amplifier models are pictured and more than a dozen are described.

The folder also lists application information, plus application and design features of many of the instruments covered. Circle L28 inside back cover.

Silicon Power Rectifiers. Hughes Products, A Division of The Hughes Aircraft Co., International Airport Station, Los Angeles 45, Calif. Data sheet DS40 contains physical and electrical characteristics for a series of 10 new silicon power rectifiers. For information not appearing on the data sheet, sales engineers are available to discuss specific requirements. Circle L29 inside back cover.

Infrared-Sensitive Photoconductors. Electronics Corp. of America, One Memorial Drive, Cambridge 42, Mass. Infrared-sensitive lead-sulfide photoconductors for detection and guidance systems are described in a new bulletin.

Technical specifications and ordering information are given for four general cell types having a wide range of performance characteristics. Charts for cell response as a function of both wavelength and source temperature are shown.

The bulletin tells how lead sulfide semiconductive surfaces have advantages over other radiation-


## "ALL-WEATHER"'

## Molded Resistors Withstand Temperature and Humidity

FIXED RESISTANCE VALUES RANGE FROM 1000 OHMS TO $10,000,000$ MEGOHMS!

## 65X Molded Resistor - 1 watt <br> 80X Molded Resistor - 3 watts

While bargain buys in resistors are wearing out and being replaced, durable S.S. White "All-Weather" Molded Resistors are still giving top performance in hundreds of commercial, industrial and scientific applications.
Our resistors are characterized by low noise level... precision . . stability . . have negative temperature and voltage coefficients. Compact , excellent stability and mechanical strengih ...values do not deteriorate due to age.
We'll be glad to cooperate with you in applying these high-quality resistors to your product. For our Bulletin 5409, just drop a line to Dept. R.


INDUSTRIAL DIVISION
10 East 40th Street
New York 16, New York
sensitive materials in terms of response, sensitivity, response time, and signal-to-noise ratio. Their applications include missile guidance, fire control, aerial mapping, data reduction and spectroscopy. Circle L30 inside back cover.

Ultrasonic Equipment. Branson Instruments, Inc., 37 Brown House Road, Stamford, Conn., has available a pamphlet describing a line of ultrasonic equipment for thickness testing, flaw detection and metal cleaning. Instruments covered include the Vidigage and Audigage thickness testers, the Sonoray ultrasonic transmission tester, the Coatingage magnetic thickness gage and the Sonogen ultrasonic power generators. Circle L31 inside back cover.

Integrating Gyro. Reeves Instrument Corp., 215 E. 91st St., New York 28, N. Y. Technical data sheet 202 illustrates and describes the 201 G integrating gyro. Included are design features, dimensional drawings and typical specifications. Circle L32 inside back cover.

Pressure Sensing Devices. Clark Electronic Laboratories, Box 165, Palm Springs, Calif. Bulletin 276 illustrates and describes Celab pressure cells and devices. Included is information on force, vacuum and tension cells; stud mounted pressure contactors; high pressure load cells; microminiature pressure cells; and paints, liquids, plastics and powders for research and design engineers. Purchasing information and prices are given. Circle L33 inside back cover.

Aircraft Equipment Mounting. Lord Mfg. Co., Erie, Pa. Bulletin No. 705 illustrates and describes Radiofocal mounting bases for aircraft electronic equipment. Included are a resonance curve and a table of natural frequencies. Availability of the company's engineering staff is also discussed. Circle L34 inside back cover.

Electronic Tracking Systems. Cubic Corp., 5575 Kearny Villa Rd.,

Why "CHOKE" your soldering iron?

- just "CRADLE" it with a
HEXACON
HATCHET SOLDERING IRON

The operator has to "choke" the conventional straight iron to hold it, whereas the HEXACON HATCHET IRON "cradles" in the hand with no perceptible grip whatsoever - thus relieving hand strain and eliminating the "heavy hand", the cause of poorly soldered joints. Eecause HEXACON HATCHET IRONS are perfectly balanced in weight, they enable the operator to solder in a natural position and relieve fatigue of arm and back.
Send for new circular No. 70 H giving more details and comparative competitive performance data.

HEXACON ELECTRIC COMPANY 130 West Cay Ave., Roselle Park, New Jersey
A COMPLETE LINE OF HATCHET IRONS BY HEXACON Ond Pioneer

| CAT. NO. | WATTS | TIP DIA. | PRICE |
| :---: | :---: | :---: | ---: |
| 25 H | 25 | $1 / 8^{\prime \prime}$ | $\$ 6.50$ |
| 26 H | 30 | $3 / 16^{\prime \prime}$ | 6.50 |
| 30 H | 60 | $1 / 4^{\prime \prime}$ | 6.75 |
| 70 H | 80 | $3 / 8^{\prime \prime}$ | 11.00 |
| 100 H | 100 | $3 / 8^{\prime \prime}$ | 12.00 |
| 150 H | 150 | $3 / 8^{\prime \prime}$ | 12.75 |
| 151 H | 175 | $1 / 2^{\prime \prime}$ | 13.50 |
| 200 H | 200 | $5 / 8^{\prime \prime}$ | 14.00 |
| 300 H | 300 | $7 / 8^{\prime \prime}$ | 18.25 |

## HEXACIIN SOLDERING IRON




# IT'S POWRARM RIGHT DOWN THE LINE 

. . . At Power Products Co.r Grafton, Wis.

Wilton PowRarms, placed every two feet on a $100^{\prime}$ long conveyor, help Power Products Corporation assemble six gasoline engine models on a single line PowRarms, which can be moved to any ongle in all three planes, and locked in position, enable operators to adjust wark pieces to any convenient angle of approach. The result is an exceptionally high rate of production on all models. PowRarms come in a wide range of automatic and manual models.

Attach this ad to your letterhead for a free demonstration or literature!

# WILTON Tioul Mrb. co., IIC. 

SCHILLER PARK, ILLINOIS Sold by Leading Distributors The World Over

## This OWE instrument checks RF, IF, and AF performance of receivers.



MODEL 82

## SPECIFICATIONS

FREQUENCY RANGE: 20 cycles to 200 K c. in four ranges. 80 Kc . to 50 Mc . in seven ranges.
OUTPUT VOLTAGE: 0 to 50 volts across 7500 ohms from 20 cycles to 200 Kc 0.1 microvalt to 1 valt across 50 chms over most of range from 80 Kc . to 50 NEc .
MOOULATION: COntinucusly variable 0 to $50 \%$ from 20 cycles to 20 Kc

POWER SUPPLY: 117 volts $50 / 60$ cycles. 75 walt.
DIMENSIONS: $15^{\prime \prime} \times 19^{\prime \prime} \times 12^{\prime \prime}$. Weight, 50 lbs .

> Standard Signal Generator

> 20 cycles $-\mathbf{5 0} \mathrm{mc}$.

## FEATURES:

- Continuous frequency coverage from 20 cycles to 50 mc .
- Direct-reading individually calibrated dials.
- Low harmonic content.
- Accurate, metered output.
- Mutual inductance type attenuator for high frequency oscillator.
- Stray field and leakage negligible.
- Completelyself-contained.

San Diego 11, Calif. Document B-571 is a 16-page brochure describing the company's tracking systems designed and produced for the U.S. Air Force. Anglemeasuring equipment (AME) and distance-measuring equipment (DME) are discussed and their applications are given. Circle L35 inside back cover.

Component Machining and Testing. Paraplegics Mfg. Co., Inc., 10068 Franklin Ave., Franklin Park, Ill., has prepared a new eight-page booklet giving full description of its facilities for machining and testing of electrical and electronic components. Circle L36 inside back cover.

Copper-Clad Laminate. Formica Corp., 4411 Spring Grove Ave., Cincinnati 32, Ohio. "New Formica Cirprint" is the title of a four-page, two-color brochure describing the characteristics of Cirprint, the new copper-clad laminate specifically developed for the printed circuits used in the radio and tv industries.

Cirprint meets military specification MIL-P-3115B for type PBE-P. Copies of brochure No. 755 are available. Circle L37 inside back cover.

Radar Reflectors. Millcraft Inc., 1119-21 Merriam Blvd., Kansas City 3, Kansas. A four-page folder illustrates and describes a line of radar reflectors which have had thorough testing and are currently in use by several agencies of the Department of Defense. Included are the $360 \mathrm{Multi-Unit}$ series for airborne radars, the 10 series of calibration reflectors for ground radar and the 200 series for maritime applications. Circle L38 inside back cover.

Aluminum Plugs and Sockets. The Plessey Co., Ltd., Kembrey St., Swindon, Wilts., England, has published a brochure listing the entire range of soldered and solderless Mk. 4 aluminum plugs and sockets and indicating correct outlet fittings for every size and type of cable in normal use. The connectors listed have a wide field of application, particularly in
communications equipment and aircraft. Complete cross referencing is included.

The brochure is available to design engineers. Circle L 339 inside back cover.

Measurement. The Sheffield Corp., Dayton 1, Ohio. A pictorial story of measurement covering 66 centuries is given in "Manufacture and Measurement for Mankind," a four-page brochure. The electronic amplifier is among the modern measurement methods discussed and illustrated. Circle L40 inside back cover.

Batteries for Transistor Applications. Ray-O-Vac Co., 212 E. Washington Ave., Madison 10, Wisc., has issued a new engineering handbook section on the subject of batteries for transistor and electronic applications. Individual specification sheets on the physical dimensions of the batteries and charts showing discharge characteristics and potentials are included. The introduction to the specification sheets points out that the metal clad, sealed-insteel construction used on several of the unit cell batteries is especially advantageous where problems of leakage or a long shelf life requirement might arise. Circle L41 inside back cover.

Parabolic Antennas. Prodelin Inc., 307 Bergen Ave., Kearny, N. J. Bulletin No. 436 covers parabolic antennas for line-of-sight and tropospheric scatter services. Specifications, features and ordering information are included. Circle L42 inside back cover.

Flexible Couplings. Naugler Engineering Inc., 19 Madison Ave., Beverly, Mass., has available a new four-page bulletin on flexible couplings which are designed to provide maximum flexibility combined with high torque capacity and zero backlash. The bulletin gives complete details on the $\frac{1}{2} \mathrm{in}$., $\frac{3}{4}$ in., 1 in . and $1 \frac{1}{2} \mathrm{in}$. diameter models with dimensions and graphs for lateral and torsional deflection. The couplings discussed feature dynamic balance and low inertia and require no


- Variations from 100 to 50,000 ohms resistance.
- Standard tolerances $\pm 3 \%$ resistance, $\pm 0.3 \%$ independent linearity.
PRM 123
Rotary type, single gang. 1-5/16"dia., bushing mounted, sleeve bearing.
- Exceeds MIL -R-12934,-E-5272A Specs
- Explosion-proof, or dust-tight seals.
- Operating temperatures are $-65^{\circ} \mathrm{F}$. to $275^{\circ} \mathrm{F}$.
- Special Spec. Models Available. Write for 1956 Catalog!


## GENERAL CONTROLS

POTENTIOMETER DIVISION Glendale 1, California
Factory branch offices serving all principal cities of the United States and Canada



These ceramic-soldered Johnson Type " $L$ " capacitors are an ideal choice for applications requiring extreme stability and strength. Rotor bearings and stator support rods are actually soldered directly to the heavy 3 "/6" thick steatite ceramic end frames. Impervious to shock and vibration, parts can't break loose... capacity can't fluctuate.

## SPECIFICATIONS

Plate spacing is $.030^{\prime \prime}$ rated at 1500 volts peak at sea level; over 300 volts at 50,000 feet altitude. Plating is heavy nickel . . . other platings available on special order. Requires $13 / 8^{\prime \prime} \times 13 / 8^{\prime \prime}$ panel mounting area.

- For complete information on Johnson Type "L" Air Variables or other quality Johnson components-write for your free copy of our newest catalog today!

E. Fi Tolumsom Comparmy 2009 SECOND AVE. S.W. - WASECA, MINN.
lubrication. Circle L43 inside back cover.

Glass Products. Corning Glass Works, Corning, N. Y. A product directory folder gives a broad view of the 35,000 products made yearly by the company. Many electronic and allied products are listed. Circle L44 inside back cover.

Magnetizers. The Indiana Steel Products Co., Valparaiso, Ind., has released a two page bulletin on magnetizers. The company offers two principal types of magnetizers -the electromagnetic and the permanent-magnet types.
The publication includes data and charts on the magnetizers as well as information and pictures of both types and also includes directions on how to use the units. Circle L45 inside back cover.

Teflon Rod. Tri-Point Plastics, Inc., 175-177 I. U. Willets Road, Albertson, L. I, N. Y. Bulletin T-257-R contains information on properties, specifications and price reductions of TSI Teflon rod. It covers the 40 diameters now available, ranging from 0.125 in. to 1.000 in., in increments of from 0.003 in. in popular diameters, to 0.014 in . and 0.032 in . in others. Supplied in lengths of 10 and 12 ft , rod diameters discussed are within $\pm 0.002 \mathrm{in}$. of those indicated. Circle L46 inside back cover.

Motors, Fans and Blowers. Ashland Electric Products, Inc., 32-02 Queens Blvd., Long Island City 1, N. Y. Catalog No. 83 is a 16page booklet showing illustrations, physical specifications and electrical characteristics of a line of specialty motors, fans and blowers. All units discussed are manufactured to order and can be delivered in a few weeks. Circle L47 inside back cover.

Electrodynamic Recorders. Massa Laboratories, Inc., Hingham, Mass. A single-sheet bulletin covers two electrodynamic recorders-models GA-1023 and M-133.

Features of the units described

# Using Thermistors 

## Edited by <br> FENWAL ELECTRONICS

Thermistors, with their almost incredible sensitivity to temperature change, now get a news column all their own.

The cases in point for the first column: temperature measurement and temperature control.

Three basic circuits for temperature measurement with thermistors:


The first is a battery, a thermistor, and a micro-ammeter. The second, more sensitive, has a thermistor as one leg of a bridge circuit. The third incorporates two thermistors in a bridge, making possible even more precise temperature differential measurements.

Two basic circuits for temperature control with thermistors:


The first has a thermistor in series with a relay, a battery, and a variable resistor. By adjusting the resistor, it is possible to make the relay operate at any desired temperature of the thermistor.

The second is more sensitive, and has a thermistor as one leg of a bridge circuit, a variable resistor in another leg, and a polarized relay across the output. Even more sensitive control can be had by applying AC to the bridge and placing a highgain amplifier between the bridge and the relay.

Designers: if you are not already familiar with the tremendous possibilities of thermistors, write for details to Fenwal Electronics, Inc., 24 Mellen St., Framingham, Massachusetts.


Makers of Precision Thermistors
are true rectilinear motion, critical acoustic damping and wider frequency range. Performance characteristics and prices are included. Circle L48 inside back cover.

Computing Digital Indicator. Dynac, Inc., A Subsidiary of Hew-lett-Packard Co., 395 Page Mill Road, Palo Alto, Calif. A singlesheet loose-leaf perforated bulletin covers model DY- 2500 computing digital indicator. Features, illustrations, uses, specifications and prices are included. Circle L49 inside back cover.

Epoxy Shells. Epoxy Products, Inc., 137 Coit St., Irvington, N. J., has available complete catalog information on their new molded epoxy N-Case shells. The shells described are ideal for the encapsulation of resistors, coils, capacitors and other electronic components.
The N-Case shells discussed make it possible to insert the component directly into the shell, pour epoxy casting compound in after it and end up with a completely encapsulated component, resistant to humidity, temperature variations and corrosive influences. Circle L50 inside back cover.

Analag Computer. Donner Scientific Co., 888 Galindo St., Concord, Calif., announces its new fourpage engineering data sheet for the model 3000 analog computer.

The computer's building-block design, problem-handling capacity and accessories are discussed in a comprehensive, but easy-to-read manner. Complete prices, typical module combinations and recommended computing facilities are also included. Circle L.51 inside back cover.

Floated Rate Gyros. Norden-Ketay Corp., Commerce Road, Stamford, Conn. A four-page folder illustrates and describes new floated rate gyros which feature novel temperature control volumetric thermostat, signal pickoff, ruggedness, reliability and precision. The gyros discussed in bulletin No. 419 have been designed to



NO OTHER RELAY IS SO VERSATILE

| SPECIF\|CATIONS |  |  |  |
| :---: | :---: | :---: | :---: |
| CONTACTS | RATINGS | COILS | MOUNTING BASE |
| single-and-double pole | 20 amp . at 115 V | AC \& DC to 230 V | Metal strap or bakelite. |
| Single-and-double throw | 60 Cy . AC or 24 VDC | (Interchangeable) | Base can be rotated 90 degrees either direction |
| Aux. DT contacts available | U.L. Approved | Power-2 watts | for mounting convenience. |
|  | DIMENSIONS | ase-1" $\times 378^{\prime \prime}$ |  |
|  | quest complete dat | on Series 130 Re |  |


meet the performance requirements of modern missile programs. Circle L52 inside back cover.

Products Catalog. Anderson Controls, Inc., 2777 Mannheim Road, Des Plaines, Ill., announces availability of its new complete multicolored product catalog. The publication gives in complete detail, pictures and diagrams with pertinent information on solenoids, coils and electrical components. Circle L53 inside back cover.

WWV and WWVH. Shasta Division, Beckman Instruments, Inc., P.O. Box 296, Station A, Richmond, Calif. An eight-page twocolor brochure describes the function, applications and recent improvements of National Bureau of Standards radio station WWV and WWVH. The brochure (Data File No. 10) also describes the new model 905 WWV receiver. Circle L54 inside back cover.

Electrical Connectors. The PyleNational Co., 1334 North Kostner Ave., Chicago 51, Ill. The fourpage bulletin No. 637 announces a new line of compact, lightweight electrical connectors for military and industrial applications.

Known as the Pyle-Star-Line, the new plugs and receptacles described are impervious to water, moisture, oil, gas, dust, pressure, vibration and shock. These connectors meet and exceed performance requirements of class $\mathrm{A}, \mathrm{B}$, C and E of military specifications MIL-C5015B.

The bulletin illustrates and describes the new line, with environmental data and electrical capacities. Circle L55 inside back cover.

Coil Winding Machine. Geo. Stevens Mfg. Co., Inc., Pulaski Road at Peterson, Chicago 30, Ill., has released a 62 -page catalog, No. 57 , illustrating and completely describing 48 coil winding machines of which 18 are newly developed models. The various machines wind virtually all types of coils including bobbin, repeater, resistor, solenoid, transformer, variable pitch, armature, field, to-
roidal, space wound, lattice-wound universal, continuous resistance and deflection yoke coils. In addition, a newly developed wire scraper, wire insulating equipment, a new tension safety attachment, four counters and six pages of various accessories and optional equipment are pictured and full technical details given. Also included is a page of time-saving, helpful winding formulas. Circle L56 inside back cover.

Transformers. Triad Transformer Corp., 4055 Redwood Ave., Venice, Calif. General catalog TR-57 describes and illustrates over 700 transformers of which 117 are new items. New items include toroids, pulse, transistor, hermetically sealed, geophysical, power, filament and audio transformers, chokes and tv components. Circle L57 inside back cover.

Wide-Band Oscilloscope. Laboratory for Electronics, Inc., 75 Pitts St., Boston 14, Mass. Bulletin 411A illustrates and describes the 411 A wide-band oscilloscope which features d-c to $10-\mathrm{mc}$ bandwidth; 20 mv per cm sensitivity; $0.035-\mu \mathrm{sec}$ rise time and directreading delay, calibrated in microseconds. Complete specifications are included. Circle L58 inside back cover.

Electrodynamic Recorder. Massa Laboratories, Inc., Hingham, Mass. A four-page reprint from Electronics describes the Massa electrodynamic recorder, a direct inking, nonresonant recording milliammeter incorporating numerous exclusive basic design features. Title of the article reprinted is "Pen Motor for Rectilinear Recording." Circle L59 inside back cover.

Thyratron D-C Power Supplies. Dynamic Controls Co., 1955 Massachusetts Ave., Cambridge 40, Mass. Bulletin DC T-157 covers the $150 \mathrm{~V}-25 \mathrm{~A}$ highly regulated, fast response thyratron d-c power supplies. Performance, electrical and mechanical features are listed. Circle L60 inside back cover.


## for service and Jab. work

## \#eathkit PRINTED CIRCUIT OSCILLOSCOPE KIT <br> FOR COLOR IV!

(1)Check the oustanding ensineering design of this modern printed circuit Scope. Designed color TV work, ideal for critical Laboratory ap. plications. I Frequency response essentially flat from 5 cycles 105 Mc down only $11 / 2 \mathrm{db}$ at 3.58 Mc (TV 5 cycles to 5 Mc down only $11 / 2 \mathrm{db}$ at 3.58 Mc at color burst sync frequency). Down only 5 db at 5 Mic. New sweep generator $20-500,000$ cycles, 5 times the range usually offered. Will sync wave form display up to 5 Mc and better. Printed circuit boards stabilize performance specifications and cut assembly time in half. Formerly available only in costly Lab type Scope. Features horizontal trace expansion for type Scaion of pulse derail - rerrace blanking am. observation of pulse detail - retrace blanking amplifier - voltage regulated power supply - 3 step frequency compensated vertical input - low capacity nylon bushings on panel terminals - plus a host of other fine features. Combines peak performance and fine engineering features with low kit cose!

## Heathkit TV SWEEP GENERATOR KIT

## ELECTRONIC SWEEP SYSTEM

(2)A new Heathkit sweep generator covering all frequencies encountered in TV service work color or monochrome). FM frequencies too! 4 Mc - 220 Mc on fundamentals, harmonics up to 880 Mc. Smoothly controllable all-electronic sweep systerm. Nothing mechanical to vibrate or wear out. Crystal controlled 4.5 Mc fixed marker and separate vatiable marker 19-60 Mc on fundamentals and 57. 180 Ms on calibrared harmonics. Plug-in crystal in cluded. Blanking and phasing controls - automatic cluded. Blanking and phasing controls - automatic
constant amplitude output circuit - efficient atten uation - maximum RF output well over . 1 volt vastly improved linearity. Easily your best buy in sweep generators.


WRITE FOR FREE CATALOG .COMPLETE INFORMATION

Industry technical associations and societies honor outstanding engineers and executives. Manufacturers in electronics enlarge plant expansion plans with new construction, acquisitions or lease arrangements. Engineers move to new positions and duties

## RETMA Medal of Honor Goes To Max Balcom

Max F. Balcom, former chairman of the board of directors of Sylvania Electric Products and now a director and consultant, was chosen recipient of the 1957 RETMA "Medal of Honor" by the RETMA board of directors. He will receive the award at the RETMA industry banquet in Chicago during the annual convention.
The award, established in 1952, provides industry recognition of the person, company or organization which has made outstanding contributions to the advancement of the industry-the industry's
highest award.
The nomination of Balcom was made by Paul V. Galvin, recipient of the 1956 "Medal of Honor" in his capacity as chairman of the annual awards committee.

Balcom was president of RETMA in 1947-48, and in 1954-55 served as chairman of the board. He has been a director of RETMA since 1942. He served as chairman of the tube division for eight years and headed a number of important committees such as television, educational tv, and surplus disposal.

His knowledge of the radio tube
and allied electronics fields-including production, sales, finance, and legal problems-has been developed over more than three decades with Sylvania.
Balcom was elected treasurer of Sylvania in 1944, and in 1950, following the death of Walter E. Poor, was elected chairman of the board. He relinquished the treasurership in 1951 to devote his full time to the chairmanship assignments. In 1953, after completing 35 years of service, he retired as board chairman and is now serving as a director and consultant.

## Packard-Bell Shows Simple Set, Forms Computer Affiliate

Dr. Robert S. Bell, president of Packard-Bell Electronics, and Richard B. Leng, vice-president in charge of the firm's technical products division, presented a common component radio receiver, containing but one type of tube, to Major General Preston W. Corderman, Deputy Chief Signal Officer of the Army.

The new receiver is designed to reduce spare parts requirements from nineteen to seven. Only one tube is required where formerly five different types of tubes in various sizes were used, resistor spares are reduced from nine to three, and capacitor spares from five to three.
Commenting on the receiver and its importance General Corderman pointed out that "common, standardized components can greatly simplify the spare parts supply problem in the Military services and wherever possible it is desirable that one type of component perform the same function as several. This new receiver appears to be a step in the right direction".


Major General Preston W. Corderman, right, Packard-Bell president Dr. Robert S. Bell, left, and Richard B. Leng, center.

According to Dr. Bell, the "common component" receiver, in addition to reducing the spare parts inventory, simplifies servicing and maintenance in the field since non-
technical personnel can be used in many instances to reduce technical staff.

- Firm - Packard Bell Computer Corp. has been formed as an affili-


Technicall management of electronics systems is the primary responsibility of Lockheed＇s Electronics and Armament Systems Division．
Engineers in the division supervise and participate in conceiving advanced systems and then performing re－ search，development and evaluation up to production stages on all Lockheed aircraft－radar search planes， high－speed fighters，propjet cargo and passenger trans－ ports，small turbojel transports，bombers，jet trainers and other significant classified projects．
Technical management positions are open in fields of： Fire control，radar，countermeasures，inertial systems， weapons，communications，infrared，optics，sonics，mag． netics，antennas and microwaves．
Inquiries are invited from Electronics Engineers and Physicists possessing experience or keen interest in technical management．Address E．W．Des Lauriers， Technical Management．

California Division エ○○モエF円円D

Packard-Beli Electronics Corp.
The new facility has launched a research and development program in the digital computer field.

Max Palevsky, formerly with Bendix Aviation, computer division, will serve as vice-president and director of the subsidiary.

Palevsky has designed several digital differential analyzers, as well as general purpose computers for missile impact prediction.

## Radio Club Elects Officers And Directors For 1957

The Radio Club of America reelected Frank A. Gunther president of the organization for 1957. Serving with him are Walter A. Knoop, Jr., vice-president; O. James Morelock, corresponding secretary; Joseph J. Stantley, treasurer; and John H. Bose, recording secretary.

Directors for the coming year include: Ernest V. Amy, Ralph R. Batcher, George E. Burghard, Harry W, Houck, Fred A. Klingenschmitt, Renville H. McMann, Jr., Jerry B. Minter, Harry Sadenwater, Francis H. Shepard, Jr., and Albert F. Toth.
The Radio Club of America was organized in New York City on


Frank A. Gunther
January 2, 1909, making it the oldest group of its kind in this
country. Membership includes outstanding men in the field of radio engineering and invention both in this country and abroad.
Frank A. Gunther is vice-president of sales and production of Radio Engineering Laboratories, Inc., in Long Island City.
Walter A. Knoop is a professional engineer in the firm of Gawler-Knoop Co. O. James Morelock is a radio consultant in Millington, N. J. Joseph J. Stantley is with Continental Sales Co., Inc., of Newark, N. J. John H. Bose is engaged in research at the Electronics Research Laboratories of Columbia University.

## Raytheon Establishes New Laboratory In California

Raytheon Manufacturing Co. is building a $42,000 \mathrm{sq} \mathrm{ft}$ electronics laboratory at Santa Barbara, Calif. The Pacific Mutual Life Insurance Company of Los Angeles will own and finance the property, leasing it to Raytheon long-term.

Estimated completion date of the laboratory is mid-June, with occupancy tentatively scheduled
for the following month.
The new structure will house about 200 employees of the firm's government equipment division, who will specialize in the design and development of communications, colntermeasures, infrared and radar equipments. About half this group is currently working in temporary quarters located
in the city of Santa Barbara.
The new laboratory will be a completely integrated unit with its own supporting shops and other services. It will be able to provide complete prototype models of its new electronic devices.

The laboratory will be built on a 15 -acre site adjacent to the Santa Barbara airport.

## Lockheed Integrates Missile Branches On The West Coast

Engineering and research branches of Lockheed's Missile Systems division will be integrated to facilitate work on several large government programs recently awarded the division.

One of these projects is the Navy Polaris, an intermediate-range ballistic missile for which Lockheed is prime contractor.

Head of the new research and development branch will be Dr. Louis N. Ridenour, now director of research.

Willis M. Hawkins, present director of engineering, will be an assistant general manager of the division for one year on a training


Louis N. Ridenour


Willis M. Hawkins


From radar antennas to "readout" equipment...

## AMF has experience you can use

- Giant search antennas made by AMF form a vital part of the nation's air surveillance network - And converting the incoming radar signals into instantly understandable information are brain-like AMF Electronic Data Display Systems. The ulfimate in "readout" equipment, these compact console units accept either analog or digital information, instantly convert, coordinate, and display the data on the face of a cathode-ray tube. Incoming signals can be interleaved with synthetic symbols for immediate reference, and any segment

Don't miss booths 148-49 at the AFCEA Convention of the display can be offset and enlarged whenever desired. - See for yaurself why, for radar control of air, ground, and harbors, or for general-purpose computer reading, AMF has the experience and equipment you can use.

- Armament
- Ballistics - Radar Antennas - Guided Missile Support Equipment - Auxiliary Power Supplies - Control Systems



## Defense Products Group

## AMERICAN MACHINE \& FOUNDRY COMPANY 1101 North Royal Street, Alexandria, Va.



## LAUDS A LEADER!

Here's a distinguished member of the Royal Family of Fine Factory Seatingthe popular Model 515, used in hundreds of laboratories and industrial plants for comfort, convenience, endurance.
Rust-resisting, telescopic legs lock at $1^{\prime \prime}$ intervals for $17^{\prime \prime}$ to $25^{\prime \prime}$ or $24^{\prime \prime}$ to $32^{\prime \prime}$ seatheight adjustment. Back rest adjusts four ways-up, down, forward, backwardto give the 515 many healthful qualities of the finest office posture-type seating. Here's a chair really built to serve the sitter, speed work, save you money.


Mail ye coupon for full information on Royal Seating for Modern Industry.


ROYAL METAL MANUFACTURING COMPANY 175 N. Michigan Ave., Chicago 1, III., Dept. 30-F Please send me free 24 -page Catalog No. 7001, "Royal Seating for Modern Industry;" Complete information on Royal Verti-File Vertical Filing.
Individual
Company
Street
City \& State
*...***.......................***..................*
Want more information? Use post card on last page.
basis. Then Ridenour will take over the assistant general manager's post for a similar training period, and Hawkins will head the research and development branch.

A newly-created product planning branch of the division will be headed by Wilbur D. Snow, previously in charge of management planning for the Lockheed Corp. This branch will be responsible for long-range planning activities, including facilities, manpower and capital investment.

Among other missile projects under way at Lockheed in addition to Polaris are the Air Force's X-17, a giant test ballistic missile; and the X-7, a cruise missile for testing ramjet engines and other missile components.
Lockheed's missile systems division, which started operations at Van Nuys, Calif. in 1954, last year established two large facilities in the San Francisco Bay Area-a missile plant at Sunnyvale and research laboratories at Palo Alto.

## Beverage to Receive Lamme Medal

Harold H. Beverage, vice-president of RCA and director of the RCA Laboratories, has been awarded the 1956 Lamme Gold Medal by the AIEE. Presentation of the Medal will be at the Summer General Meeting of the Institute in Montreal June 24.
Dr. Beverage, 29 th recípient of the Medal, was awarded it "for his pioneering and outstanding engineering achievements in the conception and application of principles basic to progress in national and world-wide radio communications".
He holds more than 40 patents in the field of radio communications and is co-inventor of the wave antenna and the diversity system for high frequency reception. He has been awarded the Medal of Honor from the IRE, the Morris Liebmann Memorial Prize from IRE and the Armstrong Medal from the Radio Club of America.

His first employment was with General Electric Company in the radio laboratory of Dr. E. F. W. Alexanderson. When Dr. Alex-


Harold H. Beverage
anderson was named first chief engineer of the newly formed Radio Corporation of America in 1920, Dr. Beverage was transferred to that organization to head a laboratory investigating radio propagation and development of transoceanic radio receiving systems. He was appointed chief research engineer of RCA in 1930 and became vice president in charge of research and development in 1940. He joined RCA Laboratories in 1942.

## General Precision Elects Link

E. A. Link, founder and chairman of Link Aviation, Inc., has been elected to the newly-created post of vice-chairman of the board and also to the executive committee of General Precision Equipment Corp.
Link's new position is an indication that GPE, which has been active in these fields, will expand activities, through its subsidiaries, particularly Link Aviation, General

Precision Laboratory, Kearfott Company, and Librascope, in the design and production of various kinds of equipment such as automatic self-contained and accurate systems of aerial navigation.

Link, originator of aerial trainers and simulators, received the U. S. Air Force's highest civilian award, the Exceptional Service Award in 1954. His other honors

E. A. Link
include: the Potts Medal from the Franklin Institute of Philadelphia in 1945 ; the Wakefield Gold Medal from the Aeronautical Society of London; and honorary degree of Doctor of Commercial Sciences from Tufts College in 1952.

He is a representative of the joint panel of test and training equipment of the guided missiles committee research and development board and a member of the USAF Air Training Command Advisory Board. In 1953-54 he was president of the Institute of Navigation.

## RCA Appoints Semiconductor Head

E. V. Space has been named to the newly created position of manager, equipment and production development, RCA semiconductor division.

He joined the RCA tube division in 1943, as a development engineer. After 30 months in the armed forces he returned to receiving tube development in 1946. Following seven years in that position he was made manager of production engineering in the transistor department.

In 1956, he was appointed manufacturing manager of the newly formed RCA semiconductor division and continued in that post until his current appointment.

## Datascan Opens New Plant

Datascan, Inc., manufacturers of components and equipment for the industrial control and data handling field, opened a manufacturing


Unique design of the two-dimensional Model D-2 features - Single micrometer adjustment controls vertical depth of cut, and adjusts height of copy table and pantograph.

Range of ratios from 2 to 1 to infinity!
Accessibility on three sides permitting panels up to $30^{\prime \prime}$ diameter to be engraved, milled or profiled. Vertical range over $10^{\prime \prime}$ allowing operations on complete chassis, cabinets or other bulky objects. Ruggedness, stability and precise accuracy inherent in construction.
Mounted on the ruggedly constructed heavy duty steel Green Engraver Bench. All functional parts are conveniently within reach of the operator while seated. Accessibility of master type sets stored in lower cabinet trays, tools and accessories contribute to productive capacity.

A brochure with full details is yours upon request.
Literatare a'so available on the smaller Model 106 three-dimensional engraver.

## GREEN INSTRUMENT COMPANY 363 Puinam Ave., Cambridge, Mass.




## Beckman

## Servomotor.

## Rate Generator

Snug as two bugs in their unitized stainless steel housing, motor and generator work hand-in-hand on the same shaft . . . to improve response characteristics of suffering servo systems.

Where the trouble is in the dynamics of your system components, watch this purposeful pair roll up their sleeves and go to work. The high torque-to-inertia motor, for instance, responds quickly and accurately to error signals . . . with acceleration at stall up to 100,000 radians $/ \mathrm{sec}^{2}$. Signal-tonoise ratio of the linear generator is $25: 1$ or better. Aiding and abetting each other in their dedicated mission, they'll operate continuously at stall and at total unit temperature from $-55^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$.

Right now, our corrosionresistant,completely encapsulated Servomotor-Rate Generators are available in sizes 11,15 and 18 . (We'll soon add size 8 ; eventually, other sizes.) We've got descriptive literature available too. It's data file 531.


Newport Beach, California a division of Beckman Instruments, Inc. Engineering representatives in principal cities
Want more information? Use post card on last page.
operation in Little Falls, N. J.
The corporation manufactures a line of delayed signal memory devices. It designs, develops, and constructs data monitoring and processing systems, industrial control systems, and automatic high speed testing-sorting systems.

Morton S. Levin has been appointed director of engineering of the firm. Formerly, he was associated for five years with Tung-Sol where he served as head of the electrical equipment research and design department. Prior to this association, he was employed by the industry service labs of RCA.

M. S. Levin

## Federal Selects Semiconductor Chief

Max Enderlin has been appointed chief engineer of the semi-conductor division of IT\&Ts Federal Telephone and Radio Co. The appointment was announced by Frank M. Viles, Jr., vice-president in charge of manufacture of semiconductors.

Enderlin, who had been aircraft
program director for Federal, joined the company in 1943 as senior engineer of rectifier stack design and application engineering. In 1947 he became chief equipment engineer and in 1953 he was promoted to the position of chief engineer of the rectifier equipment department.

## Motorola Produces Power Transistors



Paul V. Galvin, left, and Daniel E. Noble of Motorola

The one-millionth power transistor produced by Motorola's semi-conductor division was presented to Paul V. Galvin (left) founder and chairman of the electronics company by Daniel E. Noble (right),
executive vice-president of the C\&IE division. Last year Motorola converted the major share of its car radio output to transistor use. The company will add diffused base, radio frequency and silicon
rectifiers to its line in 1957．Power transistors are now being sold to other users．

## Edo Expands <br> In Canada

Edo（CanAdA）Ltd．，a wholly owned subsidiary，was formed by Edo Corp．of College Point，L．I．， New York，manufacturers of elec－ tronic equipment and aircraft com－ ponents．

The company has purchased 10 acres of property two miles east of Cornwall，Ontario，and plans to erect a medium－size production facility，capable of eventual expan－ sion to $400,000 \mathrm{sq} \mathrm{ft}$ ．Plans call for the completion of the new plant by September， 1957.

## Otis Selects

## Chief Engineer

Otto Krauer was appointed chief engineer of the electronics divi－ sion of the Otis Elevator Co．He succeeds Phillip L．Finn who has been assigned to the staff of the division manager for special as－ signments．

He joined Otis in 1928 as a speci－ fier．Since 1929 he has served in various capacities in the engineer－ ing department in both the Yonkers works and the executive offices in New York．

## Braun Joins <br> California Firm

V．J．Braun joined the system de－ velopment division of the RAND Corp．in Santa Monica，Calif．He has been actively engaged in the fields of electrical engineering and electronics since 1935．He has held positions with RCA，Lockheed， Western Electric，and most recently with the guided missile labora－ tories of Hughes Aircraft．

## Philbrick Appoints Technical Director

Bruce Seddon was appointed tech－ nical director of George A．Phil－ brick Researches．

His background includes：circuit

## SPECIFY Thot METERS



No． 653 Illestratel
for

## EVERY

## APPLICATION

NEW1 $21 / 2,31 / 2,4,41 / 2$ inch，anti－static treated，AC or DC meters with clear poly－ styrene cases for modern installations．Fea－ ture standard or matched colors on lower frosted panel for appearance and functional identification．

Be sure of the highest accuracy，dependability，and readability PLUS economy with HOYT precision AC and DC instruments－ the complete line of Panel Meters．Moving coil，rectifier，and repulsion types available in a wide variety of sizes，ranges，cases， and colors．Also，custom－designed to meet your most rigid specifications for a quality instrument．

Write for NEW literature containing descriptions，en－ gineering data，and prices．


ELECTRICAL INSTRUMENTS
Sales Div．：BURTON－ROGERS COMPANY 42 Carleton Street，Cambridge 42，Mass．，U．S．A．


Positions are open for engineers able to manage advanced infrared systems programs－from conception of the system up to production．Assignments cover radar search planes，high－speed fighters，propjet cargo and passenger transports，bombers，jet trainers，small turbojet transports and other significant classified projects．
Inquiries are invited from those possessing infrared experience and strong interest in technical management．Address E．W．Des Lauriers， Technical Management．
California Division 工○○飞耳卫卫卫
AIRCRAFT CORPORATION
GUFBANK，CALIFORNIA

## The Most Miniature Molded Choke Coila



Here is a Standardized Series of Molded RF Choke Coils that make other coils look like giants-take up less than half of the space of the next smallest molded coil. Yet these midgets do a big job! Current ratings range to 1800 milliamperes; inductance ranges from 0.15 to 22.0 mi crohenries. 23 distinct coils (All RETMA standard values). All electrical perimeters are exactly defined.
These coils are more than merely satisfactory - they meet or excel exacting specifications, including MIL-C15305A. Each is tested to crystal accuracy. All are encapsulated in Alkyd providing maximum environmental protection. Standardized production brings you substantial savings and "off-theshelf" shipments.
Write for complete specifications on these "most miniature" choke coils. Custom coils available upon request. Address Dept. E-2.
application and systems design in the magnetic amplifier field, development of the first high performance all-magnetic amplifier computing control system for jet
engine integrated power control; investigation of internal mechanisms of semi-conductors and the reduction of the solid state theory to engineering practice.

## Martin Missile Plant to Expand

Three new structures, costing a total of $\$ 2$ million, will be added this year to the just completed Glenn L. Martin missile plant southwest of Denver.
The three structures will add $160,000 \mathrm{sq} \mathrm{ft}$ to the present facilities, which cost in excess of $\$ 10$ million.
The new construction includes a new engineering laboratory, an ex-
tension to the administration-engineering building and an addition to the plant cafeteria.

The company has been working since the first of the year on $\mathbf{a} \$ 358$ million government contract for the design, fabrication and testing of an intercontinental ballistic missile called the Titan. There are 2,500 persons at work. The number will be doubled by 1958 .

## Magnetic Research Adds Another Plant

Magnetic Research Corp. opened its second facility, the engineering and special products division, in Hawthorne, Calif. The $20,000 \mathrm{sq} . \mathrm{ft}$. plant represents a four-fold increase in area for the company.

MRC is retaining its original building in El Segundo, Calif. which now serves as engineering and production facility for the firm's commercial products division.

Activity of the new plant is to
produce and expand the line of allmagnetic components, power supplies, amplifiers, systems and other related products.
The enlarged engineering department, housed in the newly opened plant, covers 10,000 sq. ft. Remaining space is devoted to increased production facilities. The move, including plant remodeling and new equipment, involved an expenditure in excess of $\$ 300,000$.

## Fairchild Selects Engineering Manager

Charles A. Nuebling was appointed manager of engineering of the electronics division of Fairchild Controls Corp., subsidiary of Fairchild Camera and Instrument Corp.
The former director of electronics at the Arma division of American Bosch Arma, ran his own business, Nuebling Engineering Associates, from 1953 to 1955. Prior to this he was director of electronics at W. L. Maxson for five years. He has also been with Sperry Gyroscope Company and has served as a technical editor for McGraw-Hill.


Charles A. Nuebling

## Sperry-Phoenix Starts Building

Sperry-Phoenix Co., a division of Sperry-Rand, has signed agreements for a $\$ 1$ million plant at Phoenix, Ariz., first phase of an industrial development on a 480-
acre site northeast of the Arizona capital.

The building will contain 81,000 sq ft of floor space.
The contract calls for completion
of the building by June 10 .
Sperry has moved its electrical computer division to Phoenix. More than $\$ 1.5$ million in machinery will be installed in the $\$ 1$ million plant.

## Varian Associates

 Appoint TwoAt Varian Associates Robert Moog, formerly supervisor of production control, tube division, transferred to the instrument division as manager of instrument manufacturing.

He joined Varian in 1956, after two years in charge of all manufacturing operations at Berkeley division of Beckman Instruments. Previously he was production manager for Bendix radio division and before that, industrial engineer for the Glenn L. Martin Company.

Robert Belville was promoted from staff assistant to supervisor, production control for Varian's tube division. In this capacity he is responsible for all production control activities at San Carlos and for production control activities for the engineering job shop at Palo Alto.

Before joining Varian Associates in December 1955, he was manager of special products for Enterprise Engine and Machinery Co.

## General Radio <br> Expands Plant

General Radio Co. of Cambridge, Mass., electronic test equipment manufacturer, is building an 80,000 sq ft addition to its Concord, Mass. branch manufacturing plant.

When complete, the Concord branch will employ about 400 . There will be an equal number at the Cambridge headquarters.

## Synthetic Mica <br> Elects V-P

W. D. Kleppinger has been elected a vice-president of Synthetic Mica Corp., a subsidiary of Mycalex Corp. of America. Kleppinger, who has been assistant to the president of Mycalex since March, 1956, will assume complete charge of all operations at the Caldwell Township,

PURE TUNGSTEN

* MOLYBDENUM
thoriated tungsten
$\star$ SPECIAL ALLOYS

New Jersey, plant of Synthetic Mica while retaining many of his duties with Mycalex.

Synthetic Mica's manufacturing facilities in New Jersey, were established in 1955 to provide a domestic source of mica for electrical and electronics use. The natural sources of electrical grade mica are mostly in India, Madagascar and Brazil.
Prior to his association with Mycalex Kleppinger was a vicepresident of General Ceramics Corp. and a resident engineer for Ford, Bacon \& Davis.

## Fansteel Spurs <br> Expansion Plans

Fansteel Metalurgical Corp. will construct one new building and a third story addition to another at its North Chicago plant.

Their combined cost will be about $\$ 665,000$. The new structure will contain $21,500 \mathrm{sq} \mathrm{ft}$ of floor area and will be at the firm's South plant. It will be used for production of sintered powder metallurgy products.

The third-story addition will have an area of $24,500 \mathrm{sq} \mathrm{ft}$. It will be built on Fansteel's North plant metallurgical building and will be used for research laboratory offices, laboratories, pilot plant facilities and a library.

## Electro-Instrument

## Adds Space

Electro-Instruments, Inc. of San Diego will consolidate its operations in a $30,000 \mathrm{sq}$ ft plant and office structure to be built in San Diego at a cost estimated between $\$ 350,000$ and $\$ 400,000$. Plans call for building to start in June with occupancy by Sept. 1 for an expected 150 employees.

The $2 \frac{1}{2}$-year-old plant produces digital voltmeters, recorders, inline assemblies and precision resistors.

## Milwaukee Resistor Names Chief Engineer

Geo. D. RaEburn will serve as chief engineer and plant superin-


## SUPER VIDEO AMPLIFIER

Gain of $70 \mathrm{db}-50 \mathrm{MC}$ bandwidth!
The Model 395 Super Video Amplifier has become the Super-Versatile unit in the lab. Among its many uses: an external preamp to increase the sensitivity of frequency counters (input signals as low as 15 microvolts may be used) ... M395 can also be used to increase power output of signal generators over the entire 50 MC bandwidth.
For more details on the 395 and IFI's entire range of Wideband and IF Amplifiers write for Catalog No. 150.

P.S. We're looking for engineers of all shapes and sizes who have these things in common 1. A rich background in Broadband Amplification. 2. A desire for freedom of expression and
individuality. Call Mr. T. C. villa, PI 2-5300.

154 Glen Cove Rd., Mineola, N. Y. • Pioneer 2-5300
tendent of Milwaukee Resistor. He was formerly with the Centralab division of Globe Union in Milwaukee in the production and engineering development department.

## Polytechnic Research Appoints Finke


H. A. Finke

Herbert A. Finke has been advanced to general manager of Polytechnic Research \& Development Co. of Brooklyn, N. Y.

He will be responsible for all phases of operation of the company, which designs and manufactures microwave and electronic test equipment and components.

He has been with the company since 1946, serving as director of engineering and manager of operations. Before that he was with RCA Laboratories and United Aircraft Corp.

## Radioplane Names Vice-President

M. W. Tuttle, vice-president of operations at Radioplane Company, has been appointed vice-president and general manager.

He will report to William Larrabee, executive vice-president of the company.

Tuttle became associated with Radioplane in 1951 as director of military relations. He was elected vice-president in 1952 and in 1954 was appointed vice-president of operations.

A native of Los Angeles, M. W.


Send for samples to fit your wire, today!

## HEYMAN

 MANUFACTURING COMPANY KENILWORTH 2, NEW JERSEY

HEY MAN!
...SAY HEYMAN


## New McGraw-Hill Books to give yoy

## 1. MAGNETIC-AMPLIFIER CIRCUITS

Logically develops the various kinds of basic and more complex magnetic-amplifier circuit arrangements without extended use of mathematics. Descriptive and graphical methods are used to give qualitative and quantitative interpretation of essential facts. Material is systematically classified according to circuit functions so you can select solutions best suited to your special problems. By W. A. Geyger, U. S. Naval Ord. Lab. 2nd Ed. 277 pp., 135 illus., $\$ 7.00$

## 2. TRANSISTOR CIRCUITS AND <br> APPLICATIONS

Provides circuit designers with a handy source of detailed information on how to apply transistors in military, industrial, and home-entertainment equipment. Covers typical transistor operating characteristics, important circuit parameters, transistor types, problems of temperature and gain stabilization, and a large number of typical transistor circuits with component values. Edited by J. M. Carroll, Assoc. Editor, Electronics. 285 pp., illus., \$7.50.

## 3. HANDBOOK OF SEMICONDUCTOR ELECTRONICS

A thorough, comprehensive guide and reference for all concerned with the design and application of semiconductor devices. Prepared by 13 specialists. Explains principles of operation
 of semiconductor devices, describes their fabrication, and deals extensively with circuit design and applications. Edited by Lloyd P. Hunter, IBM Corp. 604 pp., 484 illus., $\$ 12.00$

## 4. TRANSISTORS IN RADIO AND

## TELEVISION

A simple, comprehensive guidebook for electronic technicians and radio and TV servicemen. Concisely presents facts about transistor circuits-their design, use, and maintenance. Takes you from a concise, sound explanation of modern electron theory to such subjects as point contact and junction transistors, transistor oscillators and amplifiers, transistor circuits, and servicing transistor circuits. By Milton S. Kiver, author of Color Television Fundamentals and other books on electronics. 322 pp., 238 illus., $\$ 6.50$

## 5: PULSE AND DIGITAL CIRCUITS

Tested methods of working with all types of pulse and digital circuits, to help meet the engineering requirements of today's electronic equipment. Expert, down-to-earth guidance helps you analyze every circuitshows how each is designed -how it functions-how it is best applied in modern electronic fields. Covers the full range of circuits used in such systems as analog and digital computers, radar, television, telemetering, etc. By Jacob Millman, Columbia Univ., and Herbert Taub, C. C. N. Y. 687 pp., 872 illus., $\$ 12.50$.

## 6. BUILDING AN ENGINEERING CAREER

Brings you helpful guidance in choosing the kind of engineering career in which you will be successful. Plainly and thoroughly explains the scope of each engineering branch, the kind of work involved, the chief accomplishments of each, the relationships between the different branches, their income and job possibilities. Much specific and practical information is included on the preparation necessary for an engineering career, including pointers on how to get the most value out of such preparation. By C. C. Williams, 3rd Ed. revised by E. A. Farber, U. of Fla. 297 pp., 60 illus., $\$ 4.75$

Tuttle has been active in the field of target drones and missiles, both in the U.S. Navy and in industry, since 1942.

Radioplane Company, with headquarters and main plant at Van Nuys, also operates a division at El Paso, Texas. The company specializes in the development and production of complete target drone and missile systems for the Armed Forces.

## Norden-Ketay <br> Appoints Pierce

Wayne M. Pierce, Jr. was appointed vice-president for engineering and manufacturing of NordenKetay Corporation. He joined the firm in 1951. He planned the operations layout of several of the firms plants.

In the newly created post, he will represent the president directly for all matters regarding engineering and manufacturing. He is responsible for the corporation's engineering and manufacturing plans, policies and procedures.

## Altec Names

## Engineering Director

John K. Hilliard has been appointed director of advanced engineering at the Beverly Hills, Calif., plant of Altec Lansing. He had been acting for some time as chief engineer of sound systems.

Hilliard's new duties provide for activities in the special products field of electronics and electro acoustics, including instrumentation equipment for high intensity noise studies associated with jet aircraft and missiles, microphone systems for sound measurement, and powerful speaker-amplifier systems for reproducing these particular sound findings.

## NCR Selects

## Director Of Research

Wilbur C. Myers was appointed director of research for The National Cash Register Company electronics division in Hawthorne, Calif.

Myers, who moves up from the position of senior research engineer has specialized in investiga-

[^32]and application of ferroelectric materials for use as components in digital computers. Prior to joining NCR, he was manager of the ceramic department of Brush Electronics Co., in Cleveland, Ohio, where he headed engineering and production of barium titenate piezoelectric ceramics. He has also served as an engineer with the Carbide and Carbon Chemicals Corp. of South Charleston, West Virginia, and as a development chemist with the Lubrizol Corp. in Cleveland, Ohio.

## Branson Moves <br> Into New Quarters

BRANSON INSTRUMENTS and its subsidiary, Branson Ultrasonic Corp. moved into a brand new plant in Stamford, Conn. This gives the company some $24,000 \mathrm{sq} \mathrm{ft}$ of working floor space, more than twice that available in two old plants.

This latest move is another in a series of expansions for Branson. Starting in two rooms of an old frame house, a little over ten years ago, the company has been rapidly and continually growing ever since. Whereas it was a two-man organization when it started ten years ago Branson employs more than sixty today.

## Daystrom California Selects Taylor



Charles F. Taylor
Charles F. Taylor joined the systems division of Daystrom, Inc., as a systems engineer.

He was with the United States Air Force Cambridge Research


SPURS - HELICALS - WORM AND WORM GEARS - STRAIGHT BEVELS LEAD SCREWS - RATCHETS - CLUSTER GEARS - RACKS - INTERNALS - ODD SHAPES


## 1021 . PARMELE, STREET, ROCKFORD, ILLINOIS



Positions are open for engineers able to manage advanced countermeasures systems programs-from conception of the system up to production. Assignments cover radar search planes, high-speed fighters, propjet cargo and passenger transports, bombers, jet trainers, small turbojet transports and other significant classified projects.
Inquiries are invited from those possessing countermeasures experience and strong interest in technical management. Address E. W. Des Lauriers, Technical Management.

## 

AIRCRAFT CORPORATION
GUREANK, CALIFORNIA

# TRANSFORMERS ros ELECTRONICALIY REGULATED POWER SUPPIIES Now... over the counter Avoid delay in making your breadboards, 

 no waiting for a special when a
## STERLING 2K SERIES

transformer will meet your requirements exactly. Stock STERLING 2 K units are available for supplies

$$
\begin{aligned}
& \text { from } 100 \text { milliamperes at } 100 \text { volis } \\
& \text { to } 400 \text { milliamperes af } 300 \text { volis }
\end{aligned}
$$

## Each $2 K$ transformer provides:

- plate voltage allowance for pass tube voltage drop
- rectifier fllament power
- regulator circuit filament power.
- auxilary fllament power for.o.io.ots
- regulator circuit plate power. $\qquad$
- APPLICATION BULLETIN WITH EACH UNIT

Mllitary versions of each of these units is also avaifable. Technical data on the complete line is available on requast.

The $2 K$ series is only one of the many types we make. We specialize in custom-built transformers to your spacifications. Let our engineering staff help solve all your fransformer problems.

Samples delivered in 1 to 3 weeks.
$\qquad$
................................ 5.0V 3 A
 typical unit of this family of transformers for use in a 300 volt 200 milliampere de regulated power supply with 90 to 130 V AC input:

## ST2010

Primary:
115 Volts AC, 50 to 1000 eps
 570-0.570V 240 madc* $6.3 V \quad 3$ A 6.3V 1.2A 6.3VCT 6 A
*Note 40 ma provided
Size: $51 / 2 \times 45 / 8 \times 51 / 2 \mathrm{H}$ Mitg. Centers: $31 / 2 \times 31 / 2$ Weight 15 lbs .
Associated Choke: 5T2009 4 Henrles at 240 madc.

Center at Bedford, Mass., where he worked on the formulation of the BADGE development plan and served on the data processing guidance and control sub-committee of General Powers' long range planning group.

While at Cambridge, Dr. Taylor investigated nonlinear techniques for sampled-data systems as applied to "track-while-scan" radar and weapon control computers. Prior to that, at Varian Associates, he worked on pulse circuits design and theoretical electromagnetics.

## Dalmo Victor

## Promotes Walters

Glenn A. Walters, director of research at Dalmo Victor Co,, has been named a vice-president of the firm.

He will continue his present duties in the company's engineering division where he heads the research laboratory staff of 75 employees.

Walters joined Dalmo Victor in 1947 as an electrical design engineer and was appointed director of research in 1950. Before joining DV he was a research associate at Stanford University where he climaxed his study of networks with construction of a wave guide simulator.

## Boeing Sells

## Computer to Western

An analog computer enterprise developed by the Boeing Airplane Co. has been sold to Western Electronic Supply Co. of Seattle.

Boeing first manufactured the computer in 1949 for company use when machines of the type needed were not commercially available. Western Electronic Supply now has full rights to manufacture and sell the machine.

## Aarons Joins

## Bjorksten Labs

Melvin W. Aarons joined the technical staff of Bjorksten Research Laboratories as senior physicist in the solid state physics section.

He was previously associated with


Over 100 varieties are furnished as standard. This includes a full range of types, sizes, body materials and plating combinations. Specials can be supplied to any specification. The Whitso line is complete to the fullest extent of every industrial, military and commercial requirement.
Standoff terminals include fork, single and double turret, post, standard, miniature and sub-miniature body types-male, female or rivet mountings-molded or metal base. Feed through terminals are furnished standard or to specification.

Whitso terminals are molded from melamine thermosetting materials to provide optimum electrical properties.

Body Materials: Standard as follows-melamine, electrical grade (Mil-P-14, Type MME); melamine impact grade (Mil-P-14, Type MMI); and phenolic, electrical grade (Mil-P-14, Type MFE).
Plating Combinations: Twelve terminal and mounting combinations, depending on electrical conditions, furnished as standard.

Specials: Body materials and plating combinations, also dimensions, can be supplied to any custom specifications.
PROMPT DELIVERY IN ECONOMICAL QUANTITY RUNS
Get facts on the most com. plete, most dependable source for terminals and custom molded parts. Request catalog.


9328 Byron Streef, Schiller Park, Illinais IChicago Suburb!
Want more information? Use post card on last page

## PLANTS AND PEOPLE

(continued)
Armour Research Foundation and Battelle Memorial Institute. His work with these organizations included direction of research in transistor metallurgy, surface passification problems with germanium and silicon, and properties of crystal imperfections in silicon and certain inorganic explosive crystals. He is also experienced in electron paramagnetic absorption and infrared polariscope techniques.

## Magnetic Amplifiers Opens Western Plant

Magnetic Amplifiers of New York City, formed a new West Coast division. The new plant is located in El Segundo, Calif. Engineering and production of magnetic and transistor servo amplifiers, power supplies, voltage regulators and airborne servo systems will be accomplished at the west coast facility.

The West Coast Division is headed by Morris R. Beard, general manager, William J. Muldoon, chief engineer and Harry A. Remer, sales manager.

## Ortman Named Stanford Director

Fred B. Ortman has been appointed associate director of Stanford Research Institute.

Recently retired as chairman of the board of Gladding, McBean and Co., Ortman is a member of the board of the Air Pollution Foundation, and also will continue to serve as a member of the board of directors of SRI.

He became vice-president of Gladding, McBean in 1923, president in 1938, and chairman of the board in 1953.

## New Firm Formed In Waltham, Mass.

Neutronics Research Co., NRC, has been formed in Waltham, Mass. It is engaged in research and development of scientific equipment in the general field of physics with particular emphasis on electronics.

The key personnel of the new firm include the three partners who own it. They are Harry Stockman, H.


## W. C. Walker, Engineering Employment Mgr Pacific Division, Bendix Aviation Corp.

 11608 Sherman Way, North Hollywood, Calif.I am interested in this engineering field I am a graduate engineer with ___ degree. I am not a graduate engineer but have years experience.

## CEN-TRI-CORE ${ }^{\circledR}$ <br> for critical electrical applications



Cen-Tri-Core consists of a solder wire coated with either an energized or plastic rosin flux over which is formed an outer sleeve. It exceeds Federal
Specs. QO. $\mathrm{S}-57 \mathrm{l}$ and MII $\mathrm{S}-6872$ Specs. QQ.S-571b and MIL S-6872.

## How 3 part construction of Alpha's CEN-TRI-CORE solder

safely ends cold joints . . . cuts waste!

You'll find every inch of Cen-Tri-Core solder, thanks to its core within a core construction, firmly filled with a fast acting, non-conducting, non-corrosive flux, ending once and for all cold joints resulting from skip spots. Naturally, a perfect joint every time reduces waste substantially.
It makes good sense to specify Alpha Cen-Tri-Core. You know reliability above all is vital. Cen-Tri-Core offers that and proves it by exceeding all government specifications. Speed is essential too. A fast flowing, close-to-the-surface flux is the answer and Cen-Tri-Core has it.

Want more facts? Write Dept. CU today.


## OTHER ALPHA PRODUCTS

Wide Range of Fluxes
High Purity Metals . . Soft Solder Preforms
Want more information? Use post card on last page.

Philip Hovnanian and Edward J. Johnston. Their combined experience includes work in the fields of
counter measures, communications, medical electronics educational devices, instrumentation and control.

## Convair-Astronautics Becomes A Division


J. R. Dempsey

Convair-Astronautics is now a full operating division of Convair division of General Dynamics Corp.

The Astronautics operation, which stems from a ballistic missile research program started by Convair and the Air Force 11 years ago, is doing research in the field of space travel as well as on the Air Force missile program. It's major propect at present is the Atlas intercontinental ballistic missile.

Later this year Astronautics will move into a $\$ 40$ million plant under construction north of San Diego. It now occupies part of the ConvairSan Diego plant. Payroll for the Astronautics operation includes 6,000 workers at San Diego plus sev-

K. J. Bossart
eral hundred at test sites at Sycamore Canyon and Edwards Rocket Base, Calif. and Patrick Air Force Base, Fla.
J. R. Dempsey, who has headed the Atlas program since 1954, is manager of the new Astronautics division.
K. J. Bossart, formerly chief engineer, was moved up to technical director. Mortimer Rosenbaum becomes chief engineer, and H. R. Friedrich, former chief flight mechanics engineer, takes over Rosenbaum's former post of assistant chief engineer, development. Krafft A. Ehricke, who was chief of preliminary design and systems analysis, is now assistant to the technical director.

## Mincom Moves To New Plant

The Mincom division of Minnesota Mining and Manufacturing Company, makers of wide-band magnetic tape systems, completed its move to new quarters in West Los Angeles.

Mincom division, formerly the electronics division of Bing Crosby Enterprises, is a recent addition to the growing list of subsidiaries of the 3M Company. Mincom designs and manufactures specialized machines capable of a recording and reproducing the high frequency signals of radar, spectrum monitor-


New Mincom plant
ing, telemetering and closed circuit television in color or black and white.
In addition the division has served as a testing laboratory for new types of magnetic instrumentation tape.

## Borg Selects <br> New President



Byron C. Booth
Byron C. Booth has been elected president of The George W. Borg Corp. of Delavan, Wisc. and G. Marshall Borg was elected vice-chairman of the board of directors.

George W. Borg, who previously held the offices of chairman of the board and president, will devote more of his time to corporate policies of the company. He will be assisted by G. Marshall Borg.

Booth joined The George W. Borg Corp. in 1945 as division manager of the Borg equipment division and in 1954 was elected division president and a member of the board of directors. Previously he was vicepresident of the Doyle Manufacturing Co. of Syracuse, New York and has been associated with the Norge division of the Borg-Warner Corp.

## Sperry Forms <br> New Divisions

Two new divisions of Sperry Gyroscope Co.-an Air Armament division and a Surface Armament division have been formed.

The new divisions will continue their engineering and manufacturing activities at the company's main Nassau plant at Lake Success, N. Y. and at supplementary facilities scattered over Long Island

-
NULL DETECTORS

IMPEDANCE COMPARATORS

POWER
OSCILLATORS FREQUENCY STANDARDS AUTOMATIC HI-POT
-
Other Electronic Test Equipment

## INDUSTRIAL TEST EQUIPMENT CO. 55 EAST 11th STREET - NEW YORK 3, N. Y.



## EUCKBEE MEARS COMPANY

TONI BUILDING
SAINT PAUL I, MINN.

ETCHEDAND ELECTRO-FORMED PRECISION PARTS

- Electric shaver combs, metal reticles for optical instruments, fine tube mesh and code discs. These are but a few of the variety of parts that can be quickly produced to precise tolerances by our process. Send your specific problem and specifications to our engineers.




## SANDERS

$\bar{\pi}$ 風川II

## VARIABLE ATTENUATOR

## with a new type of printed circuit transmission line developed by Sanders Associates, Inc.

This small, compact attenuator is used in the frequency range of 1000 to 6000 mc Designed for use with a coaxial cable con nection, it has low external leakage and gives broad-band performance.
Maximum Attenuation - linear function of frequency ( 20 db at $4,000 \mathrm{mc}$ )
Insertion loss - less than 1.5 db
Maximum VSWR - less than 1.25 at $4,000 \mathrm{mc}$.
Characteristic Impedance - 50 ohms
Average Power Rating - 2 watts
Dimensions- $5^{\prime \prime} \times 5^{\prime \prime} \times 1 / 4^{\prime \prime}$
Weight-8 ounces
Other Tri-Plate products such as transitions, directional couplers, hybrid rings and special antennae can also be supplied.

Microwave systems will be engineered for conversion to TRI-PLATE and produced to your requirements.
For detailed specifications,
write to Dept. E-5
(R) Sanders Associates


Want more information? Use post card on last poge.
and other sections of the country.
Samuel Agabian, former works manager, was named as manager of the air armament division and Myron D. Lockwood, former engineering director of surface sys-
tems, was named as manager of the surface armament divisions. Both groups list classified guided-missile projects among current development and production assignments in air and surface categories.

## Eitel-McCullough Appoints Welch

James R. Welch has been named manager of application engineering for Eitel-McCullough of San Bruno, California, manufacturer of Eimac electron power tubes.

Welch joined Eimac in 1950 as a research engineer in the firm's laboratory, transferring to the application engineering in 1955. Prior to joining Eitel-McCullough, he spent two years as a maritime radio operator, worked seven years as transmitting engineer for Press Wireless and Globe Wireless in San Francisco, was a specialist in radio direction finding during three year's Coast Guard Service and


James R. Welch
was employed for five years in the radio broadcasting field.

## Sylvania Forms New Lab and Division

A NEW reconnaissance systems laboratory has been established at Mountain View, Calif. by Sylvania Electric.

The new laboratory will be engaged in research and development work on new techeniques and electronic systems for intercepting radio signals.

Concurrent with the formation of the new laboratory, the new activity and two existing laboratories have been organized as the Mountain View systems laboratories. Included in the new organization are the electronic defense laboratory and the microwave physics laboratory.
A fourth facility at Mountain View, the microwave tube laboratory, continues as a separate activity of the electronic systems division.
"The establishment of the reconnaissance systems laboratory and
the reorganization of the Mountain View facilities reflect the rapid growth of our systems activities on the West Coast," Mr. Lehne said. He noted that about 50 professional scientists and engineers will be employed in the reconnaissance systems laboratory during the first year.

Samuel A. Ferguson, formerly head of the electronic defense laboratory, has been named manager of the Mountain View systems laboratories.

Walter Serniuk, who was previously manager of the engineering development department of the electronic defense laboratory, has been appointed manager of the reconnaissance systems laboratory. Jesse R. Lien is the new manager of the electronic defense laboratory, in which he was formerly manager of the systems and projects department.

## Bendix to Enlarge Friez Facilities

Friez Instrument division of Bendix plans to build a new manufacturing, engineering and re-
search facility, part of a milliondollar expansion program.

The new facility will add 66,000
sq ft to the present $100,000-$ sq-ft plant. It is being built to meet the increased demand for precision products, including meteorological and aircraft flight instruments, electro-mechanical missile components, light amplifiers and closed circuit TV systems, such as the Lumicon, as well as other complex airborne equipment.

The building is to be ready for occupancy in December, 1957.

## Gavitt Wire

## Builds Plant

Gavitt Wire and Cable Co., a division of the American Hard Rubber Co., plans to construct a 35,000 sq ft wire and cable manufacturing plant in Escondido, Calif. Construction on the 12 acre plot is scheduled for completion in June, 1957, at a cost of some three quarters of a million dollars. The firm makes precision fine wire and cable.

## Teller Appoints

 Research Consultant

Albert G. Thomas
Albert G. Thomas has been appointed research consultant of The Teller Co. of Butler.

Previously he served as head of the department of engineering research and development of the Industrial Research Institute of the University of Chattanooga.

His new assignment is directed toward patent work and research projects related to Digitork, a control system for automation.

Thomas is the inventor of the motor around which the Digitork system is built. Teller has been

## SILVER PAINT AND SILVER PASTE

Take the "bugs" out of the application of conductive silver coatings. Use Drakenfeld silver paint and silver paste tailored to meet your needs. We formulate special compositions for glass and ceramic bodies and other materials. Let us know your specific requirements. Samples will be supplied to fit them. Your inquiry will receive prompt attention.

## B. F. DRAKENFELD \& CO., INC. <br> Box 519. Washington, Pennsylvania

YOUR PARTNER IN SOL VING CONDUCTIVE COATING PROBLEMS

for Military Equipment Commercial Applications


- Meet MIL R-5757C and MIL R-25018 specifications.
- Sensitivity down to 6 mw .
- Coil Resistances to 20,000 Ohms.
- Switching Capacities up to 5a., 28 v., d.c.
- Standard contact arrangements to DPDT.
- Same long life and reliability in relays for commercial applications.
All relays may be purchased in a wide variety of terminals and mounting means to suit most applications.
Early delivery of relays built to standard specifications.
write for relay data bulletin


## ses <br> BASO INC.

formerly
MILWAUKEE GAS SPECIALTY CO. Dept. RE-I, Milwaukee I, Wisconsin Want more information? Use post card on last page.
awarded exclusive manufacturing and sales rights for this new system for the Industrial Controls Corp. of Chattanooga, Tenn.
He was in charge of patent work for division 4 of the Office of Scientific Research and Development prior to his association with the University of Chattanooga. During the course of his work there, he aided in the development of the radio proximity fuse.

## Bell \& Howell Add Space

Bell \& Howell Co., Chicago, manufacturer of tape recorders, phonographs, radios and photographic equipment will build a $\$ 1.7$ million addition to its main plant.
The $160,000 \mathrm{sq} \mathrm{ft}$ addition is near completion. It will be used for manufacturing and warehousing.

## Ronette Moves

To Lynbrook Plant
Ronette Acoustical Corp. have acquired a building in Lynbrook, N. Y. and will move there from the present location in New York City.

The $10,000 \mathrm{sq} \mathrm{ft}$ plant is now being refurbished for the assembly of phonograph cartridges, tone arms and microphones.

## Royal Plans <br> Plant Expansion

Royal Electric Corp. in Pawtucket, R. I., newly acquired subsidiary of IT\&T has signed a contract for the construction of an additional $90,000 \mathrm{sq} \mathrm{ft}$ of space to its existing plant.

## Electrodata Names Quality Manager

John F. Hinchey has been appointed quality assurance department manager for the ElectroData division of Burroughs Corp. in Pasadena, Calif.

He will be responsible for the testing, inspecting and quality control of high-speed electronic data processing systems, during the entire manufacturing operation.

Prior to joining ElectroData in

## NEW CHRISTIE SILICON

 POWER REGTIFIERS

## For Top Reliability

- A standard line from 30 to 1000 amps
- Closely regulated by magnetic control
- Voltages: 8-16-32-36
- Stationary or Mobile Types
- For Missile, Aircraft, Lab \& Factory

Write for Latest Bulletins on
Silicon \& Selenium Power Rectifiers

## CHRISTIE ELECTRIC CORP.

Dept. EL, 3410 W. 67 th St., Los Angeles 43
Over a Quarfer Century of
Rectifier Manufacturing

## I Bought My Wife a

 Sports Car with the EXTRA MONEY 1 earned in Mobile-Radio Maintenance! Sure, on onginaar's pay good-but mine fust to give my famlly all the nice things they deserve. So in my spare time I'm servicing commersial moblle-radios in my home town. And I'm mighty proud to think of my wife driving that new Thunderbird!
This can be your story, too. Send coupon for your free copy of "HOW TO MAKE MONEY IN MOBILE-RADIO MAINTENANCE." Published by Lampkin Laboratories, Inc., monufacturers of the 105-B Micrometer Frequency Meter a 205-A FM Modulation meter. Easy monthly payment plan ovailablel


LAMPKIN LABORATORIES, INC. Instruments Div., Bradenton, Fla.

At no obligation to me please send "HOW TO MAKE MONEY IN MOBILE-RADIO MAINTENANCE."
Name
Address
City
Want more information? Use post card on last page May 1, 1957 - ELECTRONICS Better And Faster

boardmaster visual control
A Gives Graphic Picture - Saves Time, Saves Money, Prevents Errors
is Simple to operate - Type or Write on Cards, Snap in Grooves
is Ideal for Production, Traffic, Inventory, Scheduling, Sales, Etc.
A Made of Metal Compact and Attractive. Over 150,000 in Use
Full price $\$ 4950$ with cards
FREE 24AAGE Bookier no. cso Without Obligation Write for Your Copy Today
GRAPHIC SYSTEMS
55 West 42nd Street - New York 36, N. Y.


# NI $\cap T[$ Metallized <br> NCOIE Ceramic Coating 

- Now for the first time you can successfully use a single metallic coating for refractory ceramic bodies which provides a surface for applying either hard or soft solders with melting points between $275^{\circ}$ and $1600^{\circ}$. With Nicote, no expensive preliminary processing is necessary. It's ideal for hermetic and mechanical seals and vacuum applications. Bulletin 155 contains complete details. Write for a copy.


## frenchtown

6 Muirhead Avenue - Jrenton 9, N. J. National Representatives: Lundey Associates 694 Main St., Waltham 54, Massachusetts
Want more information? Use post card on last page.

1956, Hinchey was assistant director of quality control for Consolidated Electro-dynamics Corporation since 1953. From 1947 to 1953, he worked for Fairchild Aerial Surveys as an electrical engineer, and before this for one year was an assistant project engineer for Sperry Gyroscope.

## New Firm Formed In California

A NEW electronic manufacturing firm, the Kelvin Electric Company has begun operations in recently completed facilities in Van Nuys, California.

Products of the newly organized company are precision wire-wound resistors and resistive networks.

Heading the firm are William I. Elliott and Kenneth T. Eckardt, formerly president and vice-president, respectively, of Hycor Co., Inc.

## Ruge Names Chief Engineer

Warren E. Jackson has been appointed chief engineer of A. C. Ruge Associates. In his new capacity, he will direct the Cambridge, Mass. company's expanding program of new product development.

He formerly worked as a product development engineer in a design and development group at Arthur D. Little.

## Daystrom Creates Reactor Center

A nuclear reactor center has been established in West Caldwell, N. J. by Daystrom Nuclear, a division of Daystrom, Inc.
The division's research and administrative staff will move into a $36,000 \mathrm{sq} \mathrm{ft}$ laboratory, where an "Argonaut" reactor is to be installed. Here college and university faculty members can be trained in the peacetime use of nuclear reactors. Daystrom Nuclear will go into quantity production on a 10 kw Argonaut research reactor that will be avail-


ONE OF GUDEBROD'S
MANY
LACING
TAPES
MEETS
YOUR
SPECIFIC
REQUIREMENTS
OR WE'LL

## MAKE ONE

THAT WILL!

Gudebrod flat braided lacing tapes hold harness securelyno bite-through or slip, yet are easy on the hands. Some resist high temperature, some are color-coded . . . and they come wax-coated or wax-free . . . rubber-coated $\ldots$. or with special coating. Gudebrod makes many tapes for many purposes, including défense work. Send us your lacing problems or your specifications . . . we can supply the answer to both.

## GUDELACE • GUDE-NYLACE GUDELACE H • TEFLACE

GUDEBROD BROS. SILK CO., INC.

## ELECTRONICS DIVISION

225 W. 34th St., New York 1, N. Y.

## executive offices

12 South 12th St., Philadelphia 7, Pa

## KP-125, KP-135, KP-145 Indicators Monitor Transistor Circuits



KP.1.25, Actual Size

The first family of Indicator Tubes is now available in production quantities at low prices. The KP-125, already in computer transistor monitor service, is complemented by the new KP-135 and KP-145. These tubes satisfy differing needs for end-viewing (tip-glow), and visual brightness consistent with circuit power limitations. All tubes are grid-controlled gas triodes with 1.4 v ( AC or DC ) filaments, are operable from the 120 v AC line, consume low power (milliwatts), are specifically designed, and in production for transistor monitor service. Mountable in three ways for high density read-out, the KP-125, KP-135, and KP-145 eliminate the use of several components (relays, lamps, etc.) which require large voltage swings with heavy current drains which load the test circuit. The KIP Indicator Tubes take small signals ( 4 v ), draw negligible grid current (less than 1 uA ), provide visual indication, and are AVAILABLE IMMEDIATELY for all transistor monitor applications. For details on these and other special purpose tubes write:

## KIP ELECTRONICS CORPORATION

Dept. ME-2, Stamford, Connecticut


able to colleges, universities and industry. General manager of the division is Dr. Stephen Malaker.

## Kay Lab Changes Trade Name

Kay Lab, San Diego electronic manufacturing company, has adopted a new trade name, "Kin Tel".

The new name, derived from the company's two product lines, instruments and television equipment, was made to avoid possible trademark conflict with another firm.

## GE Converts TV Tube Plant To Transistors

GE will convert its $175,000 \mathrm{sq} \mathrm{ft}$ Buffalo, N. Y., tv picture tube plant to the manufacture of transistors early in 1957.

In addition to the $175,000 \mathrm{sq} \mathrm{ft}$ building in Buffalo which will be devoted wholly to transistor production, General Electric will continue to manufacture transistors at Electronics Park. The Semiconductor Products Department headquarters and engineering function will also remain in Syracuse. Production of tv picture tubes will be consolidated and ultimately expanded in the cathode ray tube department's facility at Electronics Park.

## ESC Names

## Research Chemist

ESC Corp. of Palisades Park, N. J. specialist in delay lines, appointed Benno Heinemann as chief research chemist.

Dr. Heinemann's responsibilities will include direct supervision of the ESC encapsulation department. Previous to joining the firm, he was associated with Standard Rolling Mills. (Division of Revere Copper and Brass, Inc.), Brooklyn, N. Y.

## California Firm Moves East

The electronics division of Elgin National Watch Co. is closing its American Microphone plant at

## OPHAR <br> --WAXES <br> --COMPOUNDS

Zophar Waxes, resins and compounds to impregnate, dip, seal, embed, or pot electronic and electrical equipment or components of all types; radio, television, etc. Cold flows from $100^{\circ} \mathrm{F}$. to $285^{\circ} \mathrm{F}$. Special waxes noncracking at $-76^{\circ} \mathrm{F}$. plain or fungicidal. Let us help you with your engineering problems.

For immediate service contact
L. E. Mayer, Sales Manager
A. Saunders, Technical Director
H. Saunders, Chemical Laboratory Phone SOuth 8-0907

ZOPHAR MILLS, INC. 112-130 26rh Street, Brooklyn 32, N. Y.

## IWCREASED IUSULaTION BETIER COMWECTIONS JONES BARRIER Terminal Strips Leakage path is in-creased-direct shorts from frayed terminal wires prevented by bakelite barriers placed between terminals. Binder head screws and terminals brass, nickel plated. bakelite. <br> 

## Hallamore Opens <br> Branch Operation

Hallamore Electronics Co. of Anaheim, Calif., opened a branch at Denver to supply electronic components to the newly-opened Glenn L. Martin guided missile plant.

## Electronic Specialty Appoints Martin

The Elecronic Specialty Co. appointed William R. Martin as chief engineer and product manager of the RF systems and components division.

He comes to the Electronic Specialty Co. from Lockheed Aircraft Corp., where from 1950, he has been in charge of the complete radiating systems group.

From 1945-1950 he was a project engineer of Airborne Instruments Laboratory.

## Stanford Research Selects Ortman

Fred B. Ortman has been named associate director of Stanford Research Institute.

He recently retired as chairman of the board of Gladding, McBean and Co .

He is a past director of the National Association of Manufacturers (Los Angeles), and is currently a member of the board of the Air Pollution Foundation. He will also continue to serve as a member of the board of directors of SRI.

| Model | TEST <br> Voltage | RANGE |  | POWER Consumption | PRICE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Low | High |  |  |
| L.2A | 200 fixed | 1 meg . | 100,000 meg. | 40 watts | \$200 |
| L.4A | $\begin{aligned} & 200 \text { and } \\ & 500 \text { fixed } \end{aligned}$ | $\left\|\begin{array}{l} 1 \text { meg. } \\ 2.5 \text { meg. } \end{array}\right\|$ | $\begin{aligned} & 100,000 \mathrm{meg} . \\ & 250,000 \mathrm{meg} . \end{aligned}$ | 52 watts | \$230 |
| L.68 | $\begin{aligned} & 100 \text { to } \\ & 600^{\circ} \end{aligned}$ | 1 meg . | 100.000 meg . | 82 watts | \$295 |
| 1.7 | $\begin{aligned} & 100 \text { to } \\ & 600^{\circ} \end{aligned}$ | 1 meg . | $5 \times 10^{17} \mathrm{hmms}$ | 75 watts | \$365 |

Continuously variable, built-in voltmeter for accurate setting.

Write today for complete catalog of Electrical Test Equipment manufactured by ...



## New Books

## Mathematics for Electronics with Applications

By Henry M. Nodelman and Firedericis W. Smith
McGraw-Hill Book Co, Inc., New York, 1956, 376 p, \$7.00.
ALTHOUGH a considerable number of books on mathematics for engineers and physicists have appeared in recent years, this book probably represents the first comprehensive attempt at an exposition on an elementary level of those branches of mathematics which have been the most useful in engineering electronics.

The subjects covered are quite large in number and include elementary calculus, dimensional analysis, determinant and matrix theory, the theory of series, differential equations, Laplace transforms and the elements of Boolean algebra. However, other subjects which are certainly of importance in electronics such as vector analysis, probability and statistical methods have been omitted.

- Approach - The authors use a pragmatic approach, whereby the applications of the various subjects are emphasized rather than their mathematical development. Thus most of the mathematics is stated without proof and augmented by numerous examples of their use.

For instance, in the exposition of linear algebra, one chapter is devoted to determinant theory and another to matrix theory. Each of these is then followed by a considerably longer chapter dealing with network analysis wherein the stated theory is illustrated.

An extensive and excellent bibliography is included and much practical information such as tables of transfer functions of R-C networks and matrices of various vac-uum-tube configurations is presented. The appendix covers tables of logarithms, exponential and trigonometric functions and a list of 108 indefinite integrals. A large number of elementary problems are given at the end of each chapter.

Unfortunately the text is very sketchy in its development. Several errors were noted, such as the discussion on p 100 to 101 , on how to
choose mesh currents. In particular, the statement that "sufficient cyclic currents will have been introduced when some cyclic current appears in every network element or branch" is false and the subsequent discussion on network topolocy on p 117 to 124 does not resolve this matter.

Other examples of errors are the following: the statement on $p 125$ that passive two-terminal pair networks need only three independent parameters for their complete representation on a matrix basis is false. On p 137 the authors confuse dual with inverse networks, which are related but not the same.

- Uses-Except for these shortcomings, this book may be useful as an introduction to the mathematics which is encountered in electronics for those with mathematical training includes college algebra and elementary calculus.

Although its scope is too wide and its approach too elementary for it to be suitable as a text book for a college course in electrical engineering mathematics, it may be used successfully in technical schools. It should also be excellent for supplementary reading and as a source book for further study in the technical literature on the mathematics of electronics.ARMEN H. ZEMANIAN, College of Engineering, New York University.

## Introduction to SolidState Physics

By Charles Kittel
John Wiley \& Sons, New York, 1956, 617 p, \$12.00.
THE preface to the first edition of this text contained the statement that it "is intended for senior and beginning graduate students in physics, chemistry, and engineering." Many a "student" who considered himself beyond that stage has had occasion to wonder what university contained classes of this caliber. In this second edition, experience and a laudable caution has eliminated the estimate as to

## ¿TRANSMITTER <br> - small size <br> - low distortion - high reliability <br> E • high frequency stability

Model 3021 Transmitter



An extremely rugged unit designed for high-shock impact and extreme environmental conditions. Subminiaturized and crystal-stabilized.

Frequency Range: 215-235 mc Power Output: 2 watts Weight: 1.7 pounds

Write for complete data and prices.
the level of students for which it can be useful; while a hundred pages of more careful explanation of basic concepts have been added. This new material, as well as considerable rearrangement of that already in the book, has immensely increased its usefulness to the learner, particularly in engineering and chemistry.

- Rearrangement of MaterialFor example, in place of the original first chapter of 27 pagescovering the three fundamental topics, types of solid binding, crystal structures and x-ray diffraction, about equally-there is now a sizeable chapter for each and in fact, the crystal structure chapter is more complete than anything else in the book. The approach in this chapter through two dimensions is excellent, but this reviewer would have been satisfied with a less complete treatment of actua! crystal symmetries (although this material is not as conveniently available elsewhere). Another example of salutary rearrangement is that of the chapter on free electron theory of metals. In the first edition this followed the chapter on superconductivity! It began abruptly with the quantum theory of particles in a box and only mentioned ohmic conductivity in a few brief paragraphs somewhere in the middle. The present arrangement has been found to be far more satisfactory.
- Background Needed-These improvements help, but have still not completely eliminated the tendency in the first edition to start from what often appeared to the beginner to be the middle of the subject. In fact, this book will still be hard-but not impossiblegoing for those without some understanding of modern physics. For those who do already have this understanding, this edition, like the first, is a treasuretrove of unexpectedly simple and physical approaches to a difficult subiect. With the addition of a hundred pages of extra material, it also continues to increase its standing as a necessary reference for those already in solid state work.

The need remains for a really elementary treatment of basic ideas in solid-state physics. Meanwhile. this greatly improved book will

RF POWERz

- rugged - compact - reliable

Model 3052 Amplifier


Provides 50 watts output from 2 watts input. Rugged construction and the use of a stacked ceramic tube makes this amplifier stable and reliable over a wide range of environmental conditions:

Temperature: $-55^{\circ}$ to $+75^{\circ} \mathrm{C}$ Shock: $\quad 100 \mathrm{~g}$
Vibration: $20 \mathrm{~g}, 20-2000 \mathrm{cps}$
Altitude: 0-70,000 feet
Write for complete data and prices.


Personnel Inauiries Invited Want more information? Use post card on last page.

## HIGH QUALITY • HIGH POWER TRANSISTOR POWER SUPPLIES




 \begin{tabular}{|llllll|}
\hline 0.35 \& 0.15 \& .25 \& GR 35.15 \& Germ. \& $\$ 380$ <br>
\hline 0.35 \& 0.15 \& 03 \& CS 35.15 \& Cerm. \& 395 <br>
\hline

 

0.35 \& 0.15 \& .03 \& GS 35.15 \& Germ. \& 395 <br>
\hline 0.90 \& 0.8 \& 2. \& GP 90.1 \& Germ. \& 360 <br>
\hline 0.90 \& 0.8 \& .1 \& GP 90. \& Germ. \& 396 <br>
\hline
\end{tabular} PROMPT DELIVERY

WRITE FOR COMPLETE CATALOG AND QUOTATION
ON CUSTOM UNITS TODAY


MODEL REGTIFER CORPORATION
1065 UTICA AVE., BKLYN. 3, N. Y.

have to satisfy this need, as well as the one it does fill well for a single book through which one can become acquainted with most of the modern ideas in the field, so many of which are taking on increasing technical importance. There is little prospect that any book will replace it in this respect, whether for physicists or electronic engi-neers.- $P$. $W$. Anderson, Bell Telephone Labs., Inc., Murray Hill, N. J.

## Transistor Engineering Reference Handbook

By H. E. Marrows
John F. Rider Publisher Inc., New York, 1956, 288 p, \$9.95.
THE rapid growth of transistor technology has led to an increase in transistor literature. "The need to assemble and coordinate information on all the commercial aspects of the industry under a single cover" led to the writing of the Transistor Engineering Reference Handbook. To achieve his purpose the author has divided his book into five sections.

- Context-The first section (32 p) is a brief general survey of transistors that includes a chronology of transistor developments, a presentation of device characteristics of junction transistors and a review of transistor materials, structures and techniques of fabrication. The next section, by far the major portion of the book ( 202 p ) contains specification sheets on commercial transistors. The third section (16 p) has reference data on transistor auxiliary equipment. Here transformers, capacitors, batteries, thermistors and test sets are briefly collected and described. The fourth section ( 22 p ) attempts to review the commercial applications of transistors, while the last section is a four-page directory of manufacturers.
The material covered in the book is quite recent. The transistors covered are to mid-1956 and the components seem to be up-to-date to early 1956.

The student or engineer just beginning to look into the transistor field will find much material normally gathered by contacting the

## TO THE ONE MAN IN THREE who will qualify as a Raytheon Engineer

Making the right choice is important to you-and to us. Experience proves that capable, well-trained engineers do exceptionally well at Raytheon. Individual initiative and originality are recognized and encouraged. Salaries are high. Areas of interesting, advanced work include Guided Missiles, Radar, Communications, Semiconductors, Microwave Tubes, Electron Tubes. See the following pages.

See Space 1648, N. Y. Coliseum, May 20-23

every tracing's a top tracing in a ...

## Hamilton. Shallow Drawer Unit

This remarkable, ten drawer file safely stores 1000 tracings, yet any one of them is instantly available.

There's a patented tracing
lifter in each file drawer. Just raise the lifter,

locate the desired drawing,
and fold back all the sheets
above it.


The
tracing you want is now on top -easy to slip out
 and replace
 with no danger of wrinkling or tearing.

Here's a fast and safe way to handle your valuable active tracings -and only Hamilton Shallow Drawer Units have it!

## Hamilton

## dRAFTING EQUIPMENT

- hamilton manufacturing company

TWO RIVERS, WISCONSIN
Want more information? Use post card on last page. 392
various manufacturers. The engineer in the field will have acquired most of the material in the course of his work.-F. Bronstein, Design Engineering Dept., Ford Instrument Co., Long Island City, N. Y.

## Applied Electrical Measurements

By Isaac F. Kinnard with 14 contributors.
John Wiley \& Sons, New York, 1956, $600 \mathrm{p}, \$ 15.00$.
Covering many aspects of modern measurements, Dr. Kinnard has written a book which should make good reading for the advanced engineering student and the newcomer to the phase of electrical engineering activity which is concerned with measurements. In the preface the author states that he intended his book to be useful to the scientist, engineer, technician, and student alike whenever they have a measurement problem. Appealing uniformly to such a heterogeneous group of readers is difficult, however.
"Applied Electrical Measurements" covers broadly many of the commonly employed electrical measurement devices and their applicatimon to the measurement of alectrical and nonelectrical quantities.

- Electrical Quantities - Part I, consisting of slightly more than one half of the book, is devoted to the measurement of electrical quantities. The author presents some historical material and then delves into systems of units. In addition to electrical units, mechanical and thermal units are discussed.
The instruments and techniques used for the measurement of the basic electrical quantities (current, potential difference, resistance, etc.) are treated and, in addition, such topics as phase angle, power factor, synchronism and frequency, waveforms and magnetism are covered. High-frequency and microwave measurements are not included in the book.

Dr. Kinnard explains many alectronic instruments by reference to block diagrams and simplified

## WHEN ELECTRONIC PRODUCTION CALLS DINO COILS

## ANSWER!

Day after day, year after year, Dano has been continuously answering production's call for coils to customer specifications; . . .
"Can you make a series of spacially treated coils to these specifications . . ."
"We need a quantity of vacuum impregnated coils to our detailed specifications enclosed . . ."
"Enclosed is our order for 10,000 coils to be made to our high termperature specifications ..."
"Our production department must have encapsulated coils for a new electrical device .... Please quote per enclosed blueprint."
Each a different coil requirement and each answered by Dino with the exact type of coil needed.
If you need coils, try Dino for Bobbin, Form Wound, Paper Interleave, High Temp and Encapsulated Coils.
Also, Transformers Made To Order.
TEE DAN ELECTRIC CO.
6 MAIN ST., WINSTED, CONN.


WECKESSER COMPANY
5701 Northwest Highway - Chicago 30, III.
schematics. His expositions are lucid and a reader without much background in electronic circuits will gain insight into the basic working principles of common laboratory instruments. This reviewer felt that more extensive references to commercially available instruments of different manufacturers would have made the book more useful.

- Nonelectrical Quantities - Part II is devoted to the measurement of nonelectrical quantities by electrical means. With the increasing application of electronic control systems in many industries the monitoring of nonelectrical quantities by electrical means has become widespread. The chapter headings, light, heat, sound, statics and kinetics, liquids and gases and time convey best the nature of the material covered.

As in previous chapters the author covers only the basic measurement methods. Typically, a major topic is introduced by a discussion of applicable physical laws followed by a critical examination of units of measurement as well as standards.

Coverage of several measurement techniques and instruments followed by a bibliography might conclude the chapter. The bibliographies which are presented in each of the 18 chapters provide a convenient guide to further reading matter.

Dr. Kinnard's well-written book offers a comprehensive introduction to many important measurement methods.-Henry J. Bickel, Columbia University, Electronic Research Laboratories, New York, N. Y.

## Professional Engineer's Examination Questions and Answers

By William S. La Londe, Jr. McGraw-Hill Book Co., Inc., New York, 1956, 462 p, $\$ 6.50$.
Вотн the recent graduate and the practicing engineer, in all branches of the profession, will find this book useful in reviewing engineering fundamentals for professional engi-

ENGINEER OPPORTUNITIES AT RAYTHEON

at radar antenna in observation tower overlooking Raytheon's Flight Test Facility at Bedford, Mass., engineers work on vital missile projects in an informal atmosphere that stimulates creativity.

## Advanced work with prime contractor for Army Hawk and Navy Sparrow III

The caliber of Raytheon engineering is an indication of the quality of our staff. Raytheon is the only electronics manufacturer with prime contracts involving complete systems responsibility for both air-to-air and surface-to-air missiles.
As an engineer in our Missile Systems Division, you associate with men of top national reputation in stimulating small groups. Our expanding development has created interesting openings in:

```
CIRCUIT DESIGN
ELECTRONICS PACKAGING
SYSTEMS
MICROWAVE
ANTENNA DESIGN
TUBE APPLICATIONS
```


## SPECIFICATIONS <br> INFRA-RED AERODYNAMICS <br> STRUCTURES <br> MECHANICAL DESIGN <br> HEAT TRANSFER

Send brief outline of experience and educational background to G. P. O'Neil, Raytheon Missile Systems Division, Bedford, Mass.

## RAYTHEON MANUFACTURING COMPANY

Missile Systems Division
Bedford, Massachusetts

Are you the
AAYTHEOD


Excellence in Electronics
MAN IN THREE?

## Thes PILOT LIGHTS givie you $180^{\circ}$ VISIBILITY

for the most effective indication plus BUILT-IN RESISTORS (a patented Dialco feature) for operation on 105-125V. or 210-250V.

The required RESISTOR is an integral part of the unit - BUILT IN (Pat. No. 2,421,321). Also, simple external resistors for all higher voltages. Every assembly is available complete with lamp.
SAMPLES ON REQuest at once - no charge

Brochure on "Selection and Application of Pilot Lights" Also write for our latest Catalogues.


For NEON Lamps
Choice of fluted or clear caps; binding screws or soldering terminals.

Available for both $9 / 16^{\circ}$ and 11/16" mounting Clearance holes.


Inc., New York, 1956, 431 p, $\$ 1.95$ Examination of more important aspects of integral and differential calculus in terms of questions and answers. Practical aspects rather than theoretical are stressed.

Proceedings of the Conference on Radio Interference Reduction, Vol. I and II. Armour Research Foundation, Dept. E, Chicago, 1954 and 1956, $\$ 6.00$ per set. Material of interest to both manufacturers and research and development laboratories includes measurements, design techniques, practical suppression measures and component development. Equipment and systems covered encompass radio, radar, aircraft, missiles, vehicles and electrical devices.

Das Ohr Als Nachrichtenempfanger (The Ear as a Receptor of Information). By Richard Feldtkeller and Eberhard Zwicker, S. Hirzel, Stuttgart, 1956,86 p. An attempt to assemble all the known data on the subject into one volume. An excellent discussion is given of the perception of frequency by the ear and of the ability of the ear to distinguish sounds of nearly identical pitch.

Radio Valve Data, Fifth Edition. Iliffe \& Sons Ltd, London, 1956, 126 p. Characteristics and base connections, in tabular form, of approximately 2,500 British and American tubes and 37 transistors, with index and table of British-American equivalents. May be ordered from British Radio Electronics, Ltd., 1833 Jefferson Pl., N. W., Washington 6, D. C.

Radio-Television and Basic Electronics. By R. L. Oldfield, American Technical Society, Chicátgo, 1956, 342 p, $\$ 4.95$. Textbook for technicians, servicemen and amateurs covers range from basic theory to circuitry, including f-m; sound systems; $b$ \& w and color tv; transistors; etc. Glossary, conversion table, letter symbols and electronic symbol table are included.

Subcontracting Policy in the Airframe Industry. By John S. Day, Harvard Business School, Division of Research, Boston, 1956,327 p, $\$ 4.00$. Growth of subcontracting in airframe industry, legal and nonlegal connotations in being subcontractor, possible substitutes for subcontracting and problems in formulating a subcontracting policy.

Asymptotic Expansions. By A. Erdelyi, Dover Publications, Inc., New York, $1956,108 \mathrm{p}, \$ 1.35$. Short tract on asymptotic expansions and their applications to the solutions of ordinary linear differential equations based on lecture notes given to graduate mathematics students. Subjects cov-


FLIGHT TEST READY TO START as Raytheon engineer conducts final check. He works with some of our country's top design engineers on aircraft navigational and guidance systems.

## Help design new coherent radar systems for aircraft navigation and guidance

Small project groups with full systems responsibility, working on the most interesting and advanced radar and navigational problems of the day - this is the atmosphere at Raytheon's Maynard Laboratory.
A company with many engineer-managers-experienced executives with young ideas-tends to create an exceptional environment for your professional development. Other Raytheon benefits: excellent starting salaries, regular reviews for merit increases; town or country living in beautiful New England.
We now have opportunities for men at all experience levels in:

```
CIRCUIT DESIGN
ENGINEERING PHYSICS
ELECTRONIC PRODUCT DESIGN
SYSTEMS ANALYSIS
MAGNETIC COMPONENT DESIGN
```


## MICROWAVE DESIGN RELIABILITY ENGINEERING RADAR SYSTEMS TEST EQUIPMENT DESIGN SPECIFICATIONS WRITING

For more information on any of the above or other related fields, contact J. J. Oliver, P.O. Box 87, Raytheon Maynard Laboratory, Maynard, Mass.

RAYTHEON MANUFACTURING COMPANY Maynard, Massachusetts

Are you the ONE MAN IN THREE?


AATTHEOD
Continued


## .. Electrical Coil Windings <br> For 40 years . . . specializing in all types of coils to customers' specifications. Design or engineering assistance available on request. <br> COTO-COIL CO., INC. <br> 65 Pavilion Avenue Providence 5, Rhode Island

IMPREGNATING
SEALING
DIPPING
INSULATING
BLENDING

> POTTING
> HEAT CONDUCTING MOISTURE PROOFING FUNGUS PROOFING ENCAPSULATING

## WAXES BIWAX COMPOUNDS

Standard compounds available from stock, Samples and specifications on request.
Modifications developed and produced to meet specific requirements. Information relating to your problem will enable us to make recommendations. Write to
BIWAX CORPORATION
3445 HOWARD ST SKOKIE
ered are asymptotic expansion of functions defined by integrals, singularities of differential equations and the solutions of second order differential equations having a parameter whose values are large.

Introduction to Distributed Amplification. By Harry Stockman, Ser Co., 543 Lexington Avenue, Waltham, Massachusetts, $1956,240 \mathrm{p}, \$ 2.90$. General principles of distributed amplifiers, analysis of its operation including cutoff prediction and filter theory, and synthesis considerations including parameter calculations, use of transistors, cascading of stages and general network synthesis methocls. Fairly large appendix is concerned with many fundamental considerations upon which previous discussion was based.

Transistor Techniques. Gernsback Library, Inc., New York, 1956, 96 p, $\$ 1.50$ (soft cover). Practical information for transistor users on identification of unknown transistors, measuring transistor characteristics, ete. Several circuit applications are covered.

Electronic Metal Locators. By Harold S. Renne, Howard W. Sams \& Co., Inc., Indianapolis, $1956,117 \mathrm{p}, \$ 2.50$ (soft cover). Operation and application of various types of metal locators in prospecting and in industry. How to build your own section is included.

Servicing TV AFC Systems. By John Russell, Jr., John F. Rider Pub., Inc., New York, 1956, 128 p, $\$ 2.70$. Troubles, location and repair of afc circuits for tv technicians.

Pictorial Microwave Directory. By V. J. Young and M. W. Jones, John F. Rider Pub., Inc., New York, 1956, 116 $\mathrm{p}, \$ 2.95$. Derivation, explanation, definition and illustration of various microwave terms for engineers, students and technicians.

Fundamentals of Electrical Engineer-ing-Vol. II: Alternating Current Engineering. By Hans Teuchert, Fachbuchverlag, Leipzig, East Germany, 1956, 371 p, DM12.80. Reference book covering phenomena and interrelations of a-c engineering and determinative factors in a-c circuits. Available through bookstores only.

Proceedings of the RETMA Symposium on Reliable Applications of Electron Tubes. Engineering Publishers, GPO Box 1151, New York 1, N. Y., $1956,105 \mathrm{p}, \$ 5.00$. Compilation of 15 technical papers presented at Philadelphia on May 21 and 22, 1956.

Relaxation Methods in Theoretical Physics, Vol. II. By R. V. Southwell, Oxford University Press, New York, 1956, 522 p, $\$ 8.80$. Final volume of series of two covers equations of or-
ders higher than second, equations with three independent variables and nonlinear equations. Three-dimensional relaxation, heat conduction and other transient problems are also covered.

The Gramaphone Handbook. By Percy Wilson, Methen \& Co Ltd, London, $1957,227 \mathrm{p}, 15 \mathrm{~s}$. Introduction to highfidelity equipment for nontechnical readers covering individual components, complete systems and general philosophy.

Repairing Television Receivers. By Cyrus Glickstein, John F. Rider Publisher, Inc., New York, 1957, 212 p, $\$ 4.40$. How to diagnose and troubleshoot faulty television receivers by localizing defective sections and components.

Handbook of Basic Circuits. By Matthew Mandl, Macmillan Co., New York, $1956,365 \mathrm{p}, \$ 7.50$. Circuits used in $\mathrm{a}-\mathrm{m}, \mathrm{f}-\mathrm{m}$ and tv applications are listed alphabetically in dictionary style. Each of 136 listings includes circuit diagram, characteristics, function and applications.
Resonant Circuits. Edited by Alexander Schure, John F. Rider Publisher, Inc., New York, 1957, 72 p, $\$ 1.25$ (paper). Introduction to series and parallel resonant circuits for engineering students and technicians.

L-C Oscillators. Edited by Alexander Schure, John F. Rider Publisher, Inc., New York 1957, 72 p, $\$ 1.25$ (paper). Introduction to L-C oscillator circuits for engineering students and technicians.

Electronic Digital Computing and Information Processing. Edited by Johannes Wosnik, Friedr. Vieweg \& Sohn Verlag, Braunschweig, 1956, 229 p. A collection of papers presented at the International Computer Conference held in Germany in October 1955. Majority of papers are in German with a few in Freneh and English. Topics considered include computer developments, circuitry, storage techniques, programming and numerical methods.

The United States Air Force Dictionary. Edited by W. A. Heflin, Air University Press, 1956, $578 \mathrm{p}, \$ 4.00$. Order from Supt. of Doc., U. S. Govt Printing Office, Washington, D. C. Covers that part of the English language related in some significant way to the Air Force, including airborne electronic terms and guided missile terms.

Hi-Fi Handbook. By William F. Boyce, Howard W. Sams \& Co., Inc., Indianapolis, $1956,224 \mathrm{p}, \$ 3.00$. Theory, equipment selection considerations and system arrangement are the general areas of coverage of this book for audio enthusiasts.

## ENGINEER OPPORTUNITIES AT RAYTHEON



EXTENDING THE RANGE of radar is a constant challenge to Raytheon engineers. This 40 -foot high-gain L-band antenna was designed to increase the range of existing radar and for use with new radar under development.

## At Wayland - newest military projects plus country living you'll enjoy

Here's a laboratory with over 5 acres of ultra-modern working area devoted exclusively to the development and design of advanced electronic equipment.
There are four independent creative departments:
COMMUNICATIONS-scatter, radio relay, T.V. terminal and message circuit multiplex equipment.
COUNTERMEASURES - radar countermeasures equipment, advanced countermeasures systems and techniques study.
RADAR - pulse radar equipment including ground-based, airborne, long range search, air traffic control, weather and commercial marine.
SONAR - submarine, ship and airborne sonar equipment.
To participate in any part of this advanced development work and enjoy New England living, please contact Donald E. Stillman, Staff Assistant to Manager, Wayland Laboratory, Wayland, Mass.

## RAYTHEON MANUFACTURING COMPANY

Wayland Laboratory
Wayland, Massachusetts

Are you the ONE MAN IN THREE?


Excellence in Electronics


COSSOR (Canada) are now supplying precision deflection yokes to many of the largest laboratories and defence project industries in the U.S.A. Yokes are available to customer's specification, in Nickel Iron, Ferrite, Class A, Class H insulation.


Linearity - standard $\pm 1 \%$, cus. tom build to $\pm .1 \%$.

Orthogonality $\pm 1 / 2^{\circ}$,

Half-axis colinearity $\pm 1 / 2^{\circ}$.

Mutual interaxis coupling . 0025 or as specified by customer.

Differential capacity unbalance 3.5 uuf max.

High Altitude Performance is limited only by flashover point of the terminals, which can be specified by customer.

Temperature Range -
Standard deflection yokes will operate as specified from $10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Class $H$ insulated deflection yokes will operate from $-50^{\circ} \mathrm{C}$ to + $160^{\circ} \mathrm{C}$.

Humidity: The yoke is unaffected by humidity.

Meet JAN and MIL Specs.

For further information write:


Want more information? Use post card on last page. 398

## Backtalk

## New Gravitation Theory Proposed

## Dear Sirs:

Various stabs at gravitation have been made in this corner of science and it is natural that most readers of Electronics are inclined to use electromagnetic fields as the basis for their considerations. Possibly, this attitude is correct, possibly not. and to introduce a different train of thought excerpts from the paper "Report on Fundamental Physics" published by the writer three years ago are presented below:

The general opinion exists that gravitation results from attraction which supposedly is inflicted by every object upon all other objects in the universe. In other words, the smallest, as well as the largest object of the universe is supposed to draw toward itself all other objects with the help of a certain something which it conceivably possesses.
No logical explanation of this something, and of its mode of action has been published so far and nothing could be found representing a satisfying answer in regard to "attraction", despite search throughout many years. The supposition of attraction as the cause of gravitation was therefore discarded and it was investigated what effect a force field, filling the entire universe, could have in regard to gravitation. This led to the conception of "appulsion" which is supposed to be an occurrence causing the drifting of one object toward another object.
The conception of appulsion presupposes the existence of a field of free quanta, filling the entire universe, which might be considered either as matter quanta or, as energy quanta, which move in a generally straight line, which penetrate all agglomerations of matter and which are absorbed by matter agglomerations in small quantities without noticeably raising their temperature. This latter restriction is intended to express that so far no contribution to the preservation
or to the increase of the heat content of the large bodies of the universe was attributed to the cause of gravitation. It is possible that the lightether field represents this required field of quanta. On the other hand, a field of a still lower order may exist and in justice to all possibilities, the here presupposed field will be designated as the "field of protoquanta".

If the field of protoquanta exists, then the endeavour of two objects towards unification is caused by common action between the field of protoquanta and the objects.

This common action between the field of protoquanta and the objects derives from the absorption of protoquanta by the objects.

This absorption of protoquanta by the objects is accompanied by pressures upon the objects in the direction of the motion of the absorbed protoquanta.

The difference of absorption pressures acting upon the same object in opposite directions is the magnitude of the appulsion, acting upon the objects. Sole recognition was given so far to the effect of absorption. It is however possible that a certain percentage of the invading protoquanta is subject to reflection. Should this prove right then, a common action of absorption and reflection could generate additional appulsion.

The possibility of explaining the conception of appulsion in a simple, correct and popular manner seems hardly to exist. Therefore a false example will be used which has the advantage of simplicity and popularity, and should satisfy superficial purposes.

Lifeless objects float well apart on a pond and boys with slingshots surround this pond hurling steadily peas toward the objects. Should this procedure be choiceless then the boys will hit more often the objects closer to them than the objects farther away. This should consequently cause the objects to drift together. This latter occur-

## MONOTONY

## NO FUTURE

## NEW HORIZONS

## OLD SALT MINE

## INTERESTING WORK



RAYTHEON MANUFACTURING CO.
Government Service Department 100 River Street, Waltham 54, Mass.


## PRECISION ATTENUATION to 3000 mc !

## SINGLE "in-the-line" <br> ATTENUATOR PADS and 50 ohm COAXIAL TERMINATIONS



PROTECTED UNDER STODDART PATENTS
This new group of pads and terminations features the popular Types C and N connectors, and permits any conceivable combination of the two styles.


## six-position

TURRET ATTENUATOR

- Frequency Range: dc to 3000 mc .

Characteristic Impedance: 50 ohms
Available Attenuation: Any value from 1 db to 60 db .

- Accuracy: $\pm 0.5 \mathrm{db}$.
- Power Rating: One watt sine wave power dissipation.
rence is here designated as appulsion.

The flying peas present a field of energy quanta, or a field of mobile matter quanta which, in conjunction with the resiliency of the objects, causes their appulsion.

Carl P. Heintze Amityville, $N . Y$.

## Special Components

Dear Sirs:
In the experimental research work of this laboratory and in the $r$ and d work I do as an outside consultant in electronics, I have continuously found the need for a service which I feel Electronics could ideally provide.

The small volume user (and there are many in this industry of high quality and low quantity) is faced with a problem the large mass producer does not have. We find a need for a special component. We know just what it should look like and what it should do. We also feel that there ought to be a profitable market for such an item with other users.

There may be several score of manufacturers capable of fabricating this item. For various reasons only certain ones would be interested. We don't know who they might be and can't contact them all.

Moreover, someone may have already done preliminary work on the project but hadn't publicized it and hadn't received any interested inquiries, but we don't know who he is. Someone may even manufacture the component but not list it in the catalog; this happens frequently.

I feel I know the component industry very well, indeed, but I don't know everything (nor does anyone else). The large manufacturer does not face this problem. If he guarantees to purchase enough, anyone would be interested.

What is needed is a common meeting ground; a "marriagebroker", if you wish. I should like to elect Electronics . . . For example, we are currently in need of a multi-turn noninductive pot of decent linearity ( $50,000 \mathrm{ohms}$ ) for
use in an exponential waveform generator. Is anyone interested? Perhaps some manufacturer has wondered the same.

We hear much about the engineer shortage. It is real. Any manufacturer would be happy to at least consider the free engineering suggestions and ideas he would obtain from such a service.

For example, I have long wondered why no one combined the resistance element idea in the molded carbon pot with the long rectangular case style as used in the trimmer potentiometers. The wirewound types are badly lacking in resolution and the carbon film ones won't handle any power. A molded carbon element ought to be good for at least twice as much as well as being adaptable to manufacture in low resistances.

The above is only an example. I have others. Any $r$ and d engineer has many ideas that neither he nor his employer is either capable or interested in carrying through. They would be glad to pass them on in the hope that they would be able to buy the product. This could be a stimulus to the whole industry if someone would provide the forum.

> GEorge P. Anderson Providencew, Rhode Inversity

## Sinor Poesy

Dear Sirs:
Mr. Fellhauer's lyric in the January 1, 1957 issue of Electronics was fine; let's use the "phasor", but what about its poor cousin the "sinor", which is a special form of the phasor. The sinor is the one that really needs a shot in the arm, the sooner the better.

My only claim about the following lines is that they are original with me.

After many long years we have sharpened our ears to the learned voices of science:

To eject from steady-state with frustration and hate the vector, to show defiance!

In throwing it out


For information regarding
Engineering Positions
in the
Microwave and Power Tube Operations
Write D. Hamant

## RAYTHEON MANUFACTURING COMPANY

Waltham 54, Massachusetts

Are you the ONE MAN IN THREE?

Excellence in Electronics

let's not put in doubt
the new term to take its place,
if unwisely chosen
blessed, authorized, and frozen,
it yields another confusing case,
for in nine of ten cases
the engineer in his paces
cares little or nothing about the winner,
what he needs is the SINOR,
'though still a minor,
standardization not reaching the sinner
(i.e. the sinor).

The most useful definition of the phasor appears to be a generalized one; variational or constant length, variational or constant angular velocity, so that it can be used for transients. Otherwise we will soon have to introduce still another quantity for that purpose.

The sinor is then a natural for a-c engineering, particularly if its length is the maximum value, not the rms value.

Harry Stockman Neutronics Research Co. Waltham, Massachusetts
Editor's Note:
Not being a poet,
and readers all know it,
We like the word sinor,
Congrats to the rhymer!

Fast Duplicator


Prototype system developed by Stanford Research Institute duplicates from origi. nal text at the rate of 17,000 characters of elite type a second. Signals received on a cathode-ray tube charge a paper ribbon. When dusted with black powder, a sufficient amount clings to the charged areas. The powder is then heated and pressed into the paper to give a permanent record

## MANUFACTURERS' REPRESENTATIVES

## IN THE ELECTRONIC INDUSTRY

As a service to readers, ELECTRONICS presents the advertisements for some of the leading manufacturers' representatives in the electronic industry. These firms are qualified to help the Manufacturer with his distribution problems; the Buyer with his product needs.


MANUFACTURERS' REPRESENTATIVES!
Plan to use the "Manufacturers' Representatives" Section of the ensuing 1957 Mid-June Electronics Buyers' Guide to sell your products; attract new lines. For Information, write:

Classified Adv, Division Posi Office Box 12 New York 36, N. Y.

HEWETT-PACKARD CO SORENSON \& COMPANY INC. VARIAN ASSOCIATES BETA ELECTRIC CORP. ELECTRO-MEASUREMENTS INC. GERTSCH PRODUCTS INC.

## REPRESENTING -

## SERVING

 DELAWARE, MARYLAND, DISTRICT OF COLUMBIA ARLINGTON AND FAIRFAX COUNTIES IN VIRGINIA TELETYPE NO. WA-559SENSITIVE RESEARCH INST. CORP. SANBORN COMPANY KINTEL (formerly KAY LAB) JOHN FLUKE MANUFACTURING CO. BUDD STANLEY COMPANY, INC WEINSCHEL ENGINEERING CO.

# Professional Services 

The BOSTICK LABORATORY, INC.
Pulse Transformers-Inductors
Complete Service-Consulting, Also Production Orders
Main Plant
yngsboro,
Mass.
Business Office
P. O. Box 167

BRIGGS ASSOCIATES, INC.
Engineering Services
ELLECTRONICS
MECHANICAL
Development - Manufacturing - Consulting Special Machimes - Instrumentation Aubility 10 DeKalb St. Broadway 9-2120 Norristown, Pa,

CROSBY LABORATORIES, INC Murray G. Crosby \& Staff Radio - Electronics
Research Derelopment \& Manufacturing Communications, FM \& TV Robbins Lane, Hicksville, N. Y.

## DELAWARE PRODUCTS CO.

Analog Voltage to Digital Conversion Digital Voltage Recording Systems

Design-Development-Manufacturing 300 Broadway

Camden 3, N. J.

ELECTRONIC RESEARCH ASSOCIATES, INC.
"TRANSISTORIZE" YOUR PRODUCT' Complate Serrice in consulting, research, development, and production on Translstor clrcuitry, products and instrumentation.
67 East Contre Street

$$
\text { NUtley } 2-5410
$$

## ERCO RADIO

LABORATORIES, INC.
Radio Communications Equipment Fagineering - Design - Development - Production Communications and Radio Beacons Garden City - Lrong Island © New York

## ALBERT PREISMAN

Consulting Engineer
Television, Pulse Techniques, Video Amplifiers, Patent technical consultation. 616 St. Andrews Lane, Silver Spring, Maryland. JUniper 5-6307


Measurements Corporation
Research \& Manufacturing Engineers
Harry w. hodok martial A. Honnidle Specialists in the Design and
Development of Electronic Test Instruments Boonton, New Jorsey

NIAGARA ELECTRON LABORATORIES CONSULITATION - DESIGN - CONSTRUCTION MFG. THE THERMOCAP RELAY
Suecializing in solution of problems of electronio and electro-physical tnstrumentation for the re-
search or analytical laboratory. Industrial plant problems also invited.
Andover, New York Cable Address: Nitmontad

PICARD \& BURNS, INC.
Consulting Electronic Engineers
Analysis and Fvaluation
Research Development and Production
249 Highland Ave. Needham 94, Mass.


| TRANSISTOR CONSULTANTS, INC. <br> TRANSISTOR ENGINEERING <br> Consultant; cost analysis; training programs. <br> Engineering systems and Design Studies, <br> Instrumentation; Prototype Construction. <br> New Processes and Component Designs for Transis torized Computers; Servos; Radios. <br> Laboratory Investigations; "Idfe-Test"; "Fringe <br> P. O. Box 333 Area" Evaluations. <br> Morris Plains, N. J. |
| :---: |

WHEELER LABORATORIES, INC.
Radio and Electronics
Consulting - Research - Development
R-Fircuits - ISines - Antennas
Microwave Components - Test Equipment
Harold A. Wheeler and Engineering Staff
Great Neek, N. Y. HUnter 2-7876

Harold A. Wheeler and Engineering Staff HUnter 2-7876

# ENGINEERING and 

# From the Chart... DETALLS DESCRIBING SOME OF THE PROFESSIONALLY SIGNFICANT POSITIONS 


#### Abstract

SENIOR COMPOMENT apPLICATION SPECIALSTT


Salary to \$12,000
This position requires an Electrical Engineering Degree with at least six years' electronic design experi. ence. This experience should include the application of components, such as: transformers, relays, resistors, capacitors, semiconductors and rotary equipment. You must have the ability to cuunse! and guide young engineers lacking broad technical experience. The position is located adjacent to Philadelphia in pleasant suburban Moorestown, New Jersey

## AERONAUTICAL ENGINEER

Salary to $\$ 13,000$

fruteresting, creative position with a small, advanced development group for a senior aeronautical engineer with experience in aerody. namics, thermodynamics, and guid. ance of missiles. Must be capable of participating in weapons systems planning. Experience necessary in project engineering: specifically in relating aeromechanics to electranics. Aeronautical engineering degree necessary. Location Camden, New Jersey, convenient to neighboring Philadelphia.

## MECHANICAL ENGINEER BROADCAST STUDIO

## Salary to \$10,000

Television Studio design group has opening in the mechanical design of projection equipment such as film and tape hardling mechanisms and positioning devices. Assignments require considerable ingenuity in solving problems $t$ elated to high speed, intricate, precision mechanisms and their control components. Minimum of 4 to 5 years ${ }^{\circ}$ experience. Investigate your place in this team of electronic and mechanical engineers at Camden, New Jersey.

## test encineer

## Salary to $\$ 10,000$

Interesting position in statistical evaluation of test data and design of experiments relating to recelving tube development. Assist design and development engineers in setting up statistically designed and controlled tests and development programs. Must have BS in Engiprograms. Must have BS in Engineering, Physics or Mathematics.
Also theoretical and working hnowl. Also theoretical and working hnowl-
edge of statistical meihods as related to design of experiments and statistical quality conirol. Must be mature, capable of independent action. Location at Harrison, N.J., near mid-town Manhattan.

## ENGINEERING LEADER digital communication <br> Salary to $\$ 15,000$

Assume the responsibility of superWising the development of modern digital communication systems involving multiplex, bandwidth compression, data transmission and porm applications. Work inmolves transistor digital circuits as well as logic and systems aspects. Five years of development experience necessary and a good background in information and communication theory essential. BS or advanced degree in EE or Physics required. Position with develop. ment on advanced projects. Camden. New Jersey.

## MACHINE DESIGNER

## Salary to $\$ 12,000$

Develop and design automatic precision equipment and intricate mechanisms for the fabrication of parts and the assembly of semi conductor devices. Heavy experience in the mechanization of manufacturing processes through the development of aukomatic machinery. ME degree required. Some background in liaison with equipment manuiacturers desirable. Position available at RCA's new Semiconductor Headquarters in suburban Somerville, Nev Jersey Convenient to New York City and New Jersey shore points.

## TRANSMITTER DESIGN SUPERVISOR

## Salary to $\$ 14,000$

This position requires a BSEE and eight to ten years' experience in High Power UHF or VHF television transmitter design. You should be capable of supervising a small group of design engineers and providing technical and administrative direction for the group. If you prossess this experience and are looking for an opportunity to ad vance, you are invited to visit RCA, in suburban Moorestown, N.J.

## ELECTROMICS CIRCUTT ENGINEER - MiCROWAVE

Salary to \$11,000
Design and development on a top creative level of electronic test equipment for evaluation of magnetrons and traveling-wave tubes. Microwave and pulse circuit background essential. Work involves developing measurement techniques and adapting them to devel. opmental and production tube testing. Abundant opportunity for advancement. Location is Harrison, N.J., only 30 minutes from the shopping and entertainment centers of Manhattan.

# SCIENCE at 

STARTING SALARIES: NON-MANAGERIAL T0 ${ }^{\$ 15,000 \ldots \text {...MANAGERIAL OPEN }}$


Locations: C-Camden, N. J. F-Cocoa Beach, Fla. H-Harrison, N. J. L-Lancaster, Pa. M-Moorestown, N. J. N-New York, N. Y. S-RCA Service Co. (Cherry Hill, N. I.; Alexandria, Va.; Twcson, Ariz.; Dayton, Ohio; San Francisco, Cali.) V-Somerville, N. J. W-Waltham, Mass. X-West Los Angeles, Calif. Y-Marion, Ind Z-White Sands, N.M.

## EMPLOYMENT OPPORTUNITIES

The Advertisements in this-section include all employment opportunities-executive, management, technical, selling, office skitiod, manual, eto.


## TEST ENGINEERS

## WILL YOU REACH YOUR MAXIMUM POTENTIAL?

No matter what your ability, you MUST HAVE the job opportunity and the BEST of TOOLS and FACILITIES to develop your talents to the fullest.
Investigate the Environment created at AC for its Advanced Development Programs on Missile Guidance and Aircraft Fire Control Systems.

## OUR ENVIRONMENTAL LABORATORY

is one of the most versatile laboratories in the country and we are in the process of a Major, Permanent Expansion. 225,000 square feet plant being added in suburban Milwaukee.
Our men enjoy working with the finest of test equipment and lab facilities and with the top men in the field

We are currently engaged in the following types of Test Acrivities.

- vibration testing
- COMPLEX WAVE ANALYSIS
- LOW TEmperature -altitude
- high temperature
- reliability evaluation
- Instrumentation

Mr. Cecil E. Sundeen, Supervisor of Technical Employment
THEELECTRONICS DIVISION
GENERAL hotors corporation



## ENGINEERS \& PHYSICISTS -

Getting lost in a large organization?
Are your engineering talents being wasted?
Interested in a company owned and operated by engineers?
Expansion of GEL facilities in Cambridge, Mass., and Silver Spring, Md., offers excellent opportunities to individualists who desire professional growth, responsibility, and good salary. Educational programs are available at nearby universities for advanced study.
Positions now open at all levels for elecłronic and mechanical engineers in the following fields:
Servos - Antennas - Microwaves - Pulse Circuitry - Receivers Countermeasures Electronic Packaging - Pedestal Design

For further information-contact: L. Billig, Chf. Eng.
GENERAL ELECTRONIC LABORATORIES, INC.
18 Ames Street Cambridge, Mass.

REPLIES (Box No.): Address to offce nearest you c/o This publication Classified Adv. Div. NEW YORK: P. O. Box 12 (s6)

CHICAGO: 520 N . Hichigan Ave. (11)
SAN FRANCISCO: 68 Post \&t. (4)

## POSITION VACANT

Want Salesman for mobile communication equipment in Denver area, selling major line equipment for established engineering, sales and maintenance company. Radio Specialists Co., 2620 Larimer, Denver, Colorado.

## POSITION WANTED

Sales-Graduate Electrical Engineer with 4 years sales engineering experience desires position with firm seeking to open New York sales office. PW-4837, Electronics.

## SELLING OPPORTUNITY WANTED

Lines wanted-Mechanical engineer will give RA-4509 New England sales representation RA-4509, Electronics.

## EXPERIMENTAL PHYSICIST

 START \$12,000. (FEE PAID)A growth com many offer unlibitited possiblities to
a man with 2 or a man with 2 or 3 yrs. exp.p in experiniental
physics. Master degree very hel velopment of instruments and solving of instrumentation problems in industrial measurement and pro. cessing related experience will qualify. Contact in
strict
confidence. ${ }_{28}$ Es. Jackson

MONARCH PERSONNEL

## ENGINEERS

If you have been looking for an Rmployment Agency
that is shilled in the STATE OF that is slilled lit the sTATE RMployment Agency
Technical Recruitment and RELIABILE ART Of Technical Recruitment and RELIABILITY OF IN. municate with us at oncel ALI Positions FEE
PAID. PAID.
1218 Chisstnut St PERSONNEL SERVICE
Sporialiats in Aviation and Plechlia. 7. Pa.
Speoialists in Aviation and Electronics

ELECTRONICS ENGINEER
$\$ 14$ to $\$ 18,000 \mathrm{Yr}$.
Well known company seeks Supervisory Engineer Whould have Executive ability, \& Technical devices
ground. For Conffential \& Prompt Service Send resume to:
202 S. Stato-Suite Ill6 COOPER
Chicago, Illinois: Harrison 7-6337

## ELECTRICAL ENGINEERS

FOR U. S. OR OVERSEAS
Large expanding firm needs several men for field ongineering, of navy electronlcs. Cholce of $\mathbf{U}$. S. or $50 \%$. S. and $50 \%$ overseas, with part of pay
taxiree. Start $\$ 9,100$ with regular 6 mo. increases.
For fuil particulars. For fuil particulars. contactW. DREFFIN

64 E. Jackson
Chicogo 4, III.
WAbash 2.1977

## PRODUCTION ENGINEERS

TO \$12,000
Now. midwestern plant of reeognized leader needs
production engineors at all production engineers at all levels. Experience
should be in gyros, fire controt, Should be in gyros, fire control, translstors, servos
or missides. Every opportunity for a top future will be offered. Contaet in strictest conflidence.
6 N. Michigan F. CARTER
Chicago 2, III.


## Goodyear Engineers develop an escape capsule to bring jet airmen down alive

Here's a good example of what imagination and enterprise can do-given the opportunity that's offered bright young engineers at Goodyear Aircraft.
Above you see an escape device. It enables pilot and crewmen to leave an aircraft in distress-even while flying at supersonic speed-then float safely to earth in a watertight, airtight capsule.
Ingenious as it is, this innovation is no more than typical of the achievements pouring out of Goodyear Aircraft -in airship design, electronics, radar structures, metals engineering and countless other projects. In all of them there is need for tadent, training and unlimited vision.
If you have faith in your ideas and confidence in your ability to make them work, a rewarding career can be yours at Goodyear Aircraft. Dur continued growth and diversification have required expansion of our engineering staffs in all specialties at both Akron, Ohio, and

Litchfield Park, Arizona. Available for your use are the most modern engineering and research laboratories, including a large computer laboratory.
Salaries and benefits are, of course, liberal. And if you wish to continue your academic studies, company-paid tuition courses leading to advanced degrees are available at nearby colleges.
For further information on your career opportunities at Goodyear Aircraft, write: Mr. C. G. Jones, Personnel Dept., Goodyear Aircraft Corporation, Akron 15, Ohio.



## FOR THE FINEST JOB OPPORTUNITIES IN THE GUIDED MISSILE FIELD!

Yes, it's a fact. At Bendix Guided Missiles you'll enjoy living in an attractive community convenient to metropolitan areas and recreational centers, with experiencing job opportunities unrivalled in the guided missile industry.
As prime contractor for the vitally important Talos Missile, Bendix engineers are engaged in the widest possible range of missile work and enjoy unusual advancement opportunities.
There is no question about it-guided missile engineering is definitely the newest and most modern business, and, logically, the best future for engineers is working with a prime contractor on one of the nation's most important missile projects.

So that you may inivestigate thoroughly the many advantages of becoming a Bendix Guided Missile engineer, we
have prepared a thirty-six-page booklet giving the detailed story of the function of the various engineering groups, such as ram-jet propulsion and hydraulics, guidance, telemetering, steering intelligence, component evaluation, missile testing, environmental testing, test equipment design, system anaiysis, reliability, and other important engineering operations.
If you'd like to combine the advantages of living in the Middle West and an unparalleled chance for professional growth with one of the wrien's foremost missile builders, just mail the coupon today for your copy of the booklet "Your Future in Guided Missiles".


## ORO ANNOUNCES Challenging Openings in <br> OPERATIONS RESEARCH

Operations research is a fast growing and practical science attracting some of the best brains in the country. Its future is unlimited. If you want to join a group of pioneers in this exciting field, we invite you to investigate the openings on our staff.

## ON OUR PART WE OFFER:

1. A record of experience in operations research, out-distanced by perhaps no other organization.
2. A scrupulously maintained professional approach and atmosphere.
3. The team approach to problem solving. On each team are representatives of varied disciplines-sometimes three, occasionally as many as a dozen.
4. Fully equipped digital and analog computing facilities.
5. ORO occupies several buildings in Chevy Chase, Maryland, one of America's mostattractive suburbs. Pleasant homes and apartments in all price ranges are available. Schools are excellent. Downtown Washington, D. C., with its many cultural and recreational advantages is but a 20 -minute drive.
6. Favorably competitive salaries and benefits, extensive educational programs, unexcelled leave policy.
[^33]
# EVER TRYTO ADD TWO 22-DIGIT NUMBERS IN 5 MICROSECONDS? 

## Or multiply them - in 10 microseconds?

Well, that's exactly what Sylvania is doing - or to be more accurate, Sylvania is building a large-scale digital computer to do just that. It seems there is no existing computer that operates fast enough to simulate the flight of today's supersonic jets.

These special specds call for a number of other important engineering developments. For example, into this new computer must be built a magnetic core memory system with a 5 microscond repetitive random access time!

Two avenues of advancement open to Systems Engineers are Systems Management or Scientific Systems Specialties with parallel salary scales for both.

Check the list of current openings. Decide which interests you most, and then let us hear from you.

## SYSTEM ANALYSTS, <br> ENGINEERS, MATHEMATICIANS, <br> AND PHYSICISTS <br> ELECTRONiC DEsign \& development engineers

## RESEARCH ENGINEERS

\& PHYSICISTS

PROJECT ENGINEERS

DIGITAL COMPUTER DESIGN ENGINEERS

## MECHANICAL ENGINEERING,

 PACKAGING \& PHYSICAL TEST ENGINEERS
## ANTENNA ENGINEERS

Interested in the analysis and block diagram design of systems. Interests in such subjects as radar analysis and design, antenna design, error analysis, statistics, communication theory; network theory, real-time computation, time varying and non-linear control systems, logistics, operations rescarch, data transmission and missile analysis including aerodynamics, struc. tures and heat transfer are desired.

Openings at all levels in ECM systems and other circuitry. Work involves video, pulse and timing circuits, radar, digital radar processing equipment, advanced receiver and special transmission line techniques, with utilization of new as well as orthodox component types.

Primarily interested in conducting research of new techniques which will lead to new electronic systems of the future. Experience in communications theory, automatic controls, airborne interceptor radar, infra-red systems, radar simulators, missile electronics, data processing, applicd mathematics, or related ficlds is desirable.

General responsibility for ECM, large scale general purpose digital computers, and other clectronic systems including internal projects coordination and technical relations with contracting agencies.

Responsible for all phases of development on scveral large scale computer and data processing projects; systems analysis and logical design; advanced circuit work on transistorized switching circuits, unusually high-speed core memory systems and input-output equipment; breadboard design and test prototype design and systems evaluation and testing.

Group supervisors responsible for mechanical engineering, design and product development of advanced airborne, missile borne, and ground electronic and electro-mechanical equipments. Responsible engineers for design of test facilities, equipment and instrumentation for complex physical and cnvironmental testing of electronic equipment and antenna and radar components.

Design of array clements, power dividers, RF linkages, and other general transmission problems.

## WALTHAM LABORATORIES Electronic Systems Division

If you are interested in any of these positions, please send your resume immediately (in strict confidence) to:
erling mostue 100-J 10 First Avenue Waltham, Massachusetts


## SHOOTS THE MOON

A rocket to the moon within 10,000 working hours! This is the prediction of experts in the new science of astronautics... and Martin engineers are already working on the problem.

As a result, Martin electronics offers some of the most challenging opportunities today in the space systems development of tomorrow.

If adventure is your dish, and you're willing to shoot the moon: Contact J. J. Holley, Department E-05, The Martin Company, Baltimore 3, Maryland.

## ENGINEERS <br> AND <br> SCIENTISTS <br> with degrees in <br> E.E., M.E., Ch.E., or PHYSICS

## Honeywell <br> GROWN INSTRUMENTS

# Finst in Contrals 

LEADS THE WAY IN
A WORID OF OPPORTUNITIES

[^34]- ASSIGNMENTS - Diversified permanent, non-routine, in the newest scientific field of NUCLEAR INSTRUMENTATION and AUTOMATION. The bulk of our work is for industrial use.
- COMPENSATION-Rewarding
salaries are competitive with those offered in other industries. Our benefits include free group health insurance, hospitalization and surgical benefits, as well as an excellent retirement plan. Relocation assistance.
- GROWTH - Unlimited . . . your performance and salary is re-evaluated twice yearly. Our policy to promote from within is responsible for present management.
- EDUCATION-Excellent . . . financial assistance for those desirous of furthering their education at one of several renowned Philadelphia colleges or universities.
- Men with the vision to create and the will to act can find an abundant outlet for their creative talent in either RESEARCH, DESIGN and DEVELOPMENT APPLICATION, or SYSTEMS ENGINEERING. Whatever the choice, you and only you will be able to control and measure your progress with this company, which leads the way in a world of opportunities

Write to D. R. GARVEY Manager Employment, Dept. E

Honeywell
brown instruments div.
Wayne \& Windrim Aves. Philadelphia 44, Pa.

## we're in

Milwaukee so we ought


## An AC* ENGINEER TELLS HIS STORY



Working at AC, THE ELECTRONICS DIVISION OF GENERAL MOTORS is exciting . . . challenges every inch of my engineering ingenvity, currently I am working on a phase of the Inertial Guidance System Program. A month or two ago I was equally absorbed in our Jet Engine Fuel Control Program. I am certainly growing ENGINEERING "KNOW-HOW-WISE" and my salary checks reflect it. I started at a good salary . . . have had regular increases in salary and position . . . gosh, I like it here.

AND, I enjoy AC's MASTER'S DEGREE PROGRAM, University of Wisconsin-Milwaukee. I attend evening classes and $A C$ is paying my tuition and with no strings attached.

My family enjoys Milwaukee too. Here in cool, southern Wisconsin we have endless miles of swimming beaches, parks, playgrounds that are ours for the asking. We have the cultural and shopping advantages of the big city in a community long known for its small town hospitality.
P.S. AC's Permanent Expanding Electronic Program provides openings for more

Mechanical, Electrical Engineers and Engineering Technicians. Even "square pegs"


Write today in strictest confidence to my friend,
Mr. Cecil E. Sundeen, Supervisor of Technical Employment

* AC THE ELECTRONICS DIVISION general motors corporation

Milwaukee 2, Wisconsin
-
Flint 2, Michigan

# To Help Meet Tomorrow's Challenges Today BURROUGHS 

## The Freemost Name in Compulation

## Invites Special Inquiries from Engineers Qualified as Follows: ELECTRICAL ENGINEERS Senior \& Junior Levels

- . for study and evaluation of reliability program with emphasis on failure analysis of components.
-     - to design circuits and set-up design criteria for advanced solid-state digital computing systems.
- . to design specific portions of large transistorized digital computer working from logical diagrams.
- . to determine actual circuit configurations and packaging requirements.
* *o design and develop coincident core memories.
- . to define and develop specialized test equipment for large digital computer.
- . for spec writing relating to materials, components and equipment.
-. with some experience in Mechanical Engineering, 10 coordinate in the interconnection area between equipment and mechanical design groups working on large digital computers.


## MECHANICAL ENGINEERS Senior \& Junior Levels

- . for study and evaluation of component reliability, with emphasis on plug-in packages and test results.
-     - to develop packaging techniques for components and assemblies of large digital computers.
- . to work in the area of Structure and Vibration analysis on components, sub-assemblies and packaging.


## MATHEMATICIANS

Data as related to electronic circuits and and evaluation of Reliability digital computer. to prepare and program problems for solution by logical design of digital system basic logical requirements and detailed logical design of digital systems.

- . skilled in mathematical analysis as related to programming, systems and design of large digital computer.
-     - to do analysis and report writing in areas of "operations research", systems analysis and engineering mathematics.
-     - to perform systems engineering "operations research," knowledge of probability required, for work in fields of aerodynamics, radar, computers, fire control, missiles and air defense.
In Addition to Pay Commensurate With Your Ability you can receive cooperative educational aid, liberal pension plan and all the usual health and hospitalization benefits for you and your family, PLUS delightful suburban surroundings and an ideal communify life for your children, only 30 minutes from Philadelphia.

For Defails, Write M. E. Jenkins, Placement Manager BURROUGHS CORPORATION Research Center
PAOLI, PA.
PAOLI 4700


# Electronics Engineers 

How well can you design a circuit that meets these requirements?

Can you meet the challenge of designing this airborne transmitter that must endure extremely high acceleration loads and high ambient temperatures-in the smallest and lightest package possible?

The men we're looking for are the kind who can effeclively translate requirements like these into circuits. If you are that kind of man, you'll find your lifetime career in the Electronics Division of Stromberg-Carlson. The rewards here are great - in terms of advancement, recogni-
tion, salary, and job salisfaction.
In our magnificent new Electronics Center you'll have plenty of elbow room and superb equipment. In Rochester you'll enjoy abundant facilities for happy living: fine homes, outstanding schools, and unsurpassed opportunities for leisure-time activities in the heart of the New York State Finger Lakes region.

Please study the list of assignments at the right, choose your field, and send a letter or resumé to:
R. W. Holmes, Electronics Engineering

## Communication Systems

Components and Specifications
Countermeasures
Data Systems
Digital Techniques
Field Engineering
Microwave Circuits
Missile Guidance Systems

## Radar

Sales Engineering
Systems Test
Equipment
Transistor Engineering
Writers-Technical

## engineers . . . physicists BIG opportunities at MOTOROLA in the WEST

PHOENIX, Arizona-and RIVERSIDE, California

work in a VACATIONLAND (your family will love year-round outdoor living) WHILE YOU ADVANCE YOUR CAREER
Here are the country's newest and most complete Electronic Laboratories, offering outstanding career advantages (see listing below).
 And here you'll get in on the ground floor of a swiftly expanding company. You'll enjoy working in air conditioned comfort in the most modern and well instrumented laboratories . . . with liberal employee benefits, including an attractive profit sharing plan and association with men of the highest technical competence.
To top it off, you'll be moving to a spot where there's room to grow (moving and travelling expenses paid for family)... where there are planned communities, with modern shopping centers, advanced schools, and many fine buys in homes available. Living will be easier, more relaxed and more fun in Phoenix or Riverside. "Go West" never had greater appeal (or greater rewards) than
 it does TODAY!

## PHOENIX NEEDS:

Electronic Engineers, Mechanical Engineers, Physicists, Metallurgists and Chemists.
RESEARCH LABORATORY
Microwave Antennas
Pulse and Video Circuitry Radar Systems Design Circuit Design
Electro-Mechanical Devices Systems Test
Transistor Applications
For above positions write:
Mr. R. Coulter
3107 N. 56th St., Dept. A
Phoenix, Ariz.

## EXCELLENT OPPORTUNITIES

Challenging positions in Two-Way Communications, Microwave, Radar and Military equipment, Television (Color), Radio Engineering and Field Engineering.

## RIVERSIDE NEEDS:

Electronic Engineers, Mechanical Engineers, Physicists and Mathematicians.
RESEARCH LABORATORY Military Operation Analysis - Analog Computor Flight Simulation • Digital Computor Analysis - Digital Computor Design - Dynamics Analysis Microwave Systems. Missile Systems - Circuit Design - Servo Mechanisms. Aerophysics.

For above positions write:
Mr. C. Koziol Dept. A
8330 Indiana Ave., Riverside, Calif.
ransistor Application Transistor Devices Solid State Physics Physical Chemistry Metallurgical Engineering Production Engineering
For above positions write: Mr. V. Sorenson 5005 E. McDowell Rd., Dept. A

## IN CHICAGO, TOO

write to:
Mr. L. B. Wrenn, 4501 Augusta Blvd. Dept. A Chicago 51, III.

## MOTOROLA

## $I B M$

## growth

## promoted

 this manComputer Programmer: Before his recent promotion, this man was a research programmer working with a giant IBM 704 electronic computer. He was engaged in the preparation of research problems of an engineering, scientific, business, and industrial nature for machine solution. His work entailed advanced diagnostic and application program development, including the modification of existing systems and proposed new systems. "This work has the same fascination as a game of chess," he'll tell you, "and the variety of constant, challenges makes it absolutely absorbing!"

## Could you handle his responsibilities?

Jobs like these continually open up at IBM-due to rapid expansion. If you are an engineer or scientist -or have equivalent experience-you may qualify for such a position. Innumerable opportunities exist in:

- Computer systems planning
- Computer systems testing
- Electronic circuit design and packaging
- Electrostatic phenomena
- Manufacturing process control
- Numerical analysis and programming
- Photo and magnetic device memory
- Real time systems engineering
- Semi-conductor research, development and manufacturing
- Test equipment design

For the facts about an engineering career with IBM, just write, outlining background and interests, to:
R. A. Whitehorne

Mgr. of Engineering Recruitment, Department 405 International Business Machines Corporation 590 Madison Avenue, New York 22, N. Y.

The electronic computer field offers one of the best ground-floor opportunities today. Eeonomic experts rank it with automation and nucleonics in growth potential. Sales at IBM, the recognized leader in this fast-growing field, have doubled, on the average, every five years since 1930. Engineering laboratory personnel has quintupled in the past five years. IBM's excellent salaries and employee-benefit programs are instrumental in achieving an employee turnover rate far below the national average.

## Where would you like to work for IBM?

 IBM plants and laboratories are located in: Endicott, Kingston, New York City, Owego, Poughkeepsie, N. Y.; Burlington, Vt.; San Jose, Calif.; Washington, D. C.; Greencastle, Ind.; Lexington, Ky.; Rochester, Minn.; Sherman, Texas.

World's largest collegiate sladium--University of Michigan.

## Now's the time to get a 50 yaro line sear

The Bendix Systems Division is the newest division of Bendix Aviation Corporation. It is located adjacent to the University of Michigan in Ann Arbor. Its function is to integrate Bendix skills and facilities for systems planning, development and production.

This new organization is being expanded rapidly. It is a fine opportunity to get in on the ground floor of this big and important new part of Bendix, especially for men who feel their present chances for growth are not good.

Specifically, we need men with experience in:
SURVEILLANCE \& RECON: radar, infrared, acoustics.
WEAPONS: missiles, aircraft subsystems, guidance and control.
DATA PROCESSING: analog and digital computers, displays.
NUCLEAR: reactors, propulsion, special weapons.
COMMUNICATIONS: radio, digital, data links.
NAVIGATION: radio, inertial, ground-controlled.
COUNTERMEASURES: ECM, decoys, electronic warfare.
OPERATIONS ANALYSIS.
For an interview, write or call (NOrmandy 5-6111) Bendix Systems Division, Ann Arbor, Michigan.


ENGINEERS

## PARTS APPLICATION

(Reliabflity)
ME or EE degree with design experience and/or application experience. Job will be to recommend types of parts to be used and how these parts shall be used.

Qualified men will become a vital part of a Reliability Group:

GM
INERTIAL GUIDANCE SYSTEM PROGRAM

- ELECTRONICS DIV.,

Milwaukee 2, Wis. Flint 2, Mich.
Enjoy Challenging Opportunities in- the most versatile Laboratories in the country. Work with the top men in the field and with the finest test, research and development facilities. We are in the process of a Major, Permanent, Expansion Program. New Plant facilities being added in suburban Milwaukee area.
To aid you in your professional advancement AC will provide financial assistance toward your Master's degree. A Graduate Program is available evenings at the University of Wisconsin, Milwaukee.
GM's Electronics Division aggressive position in the field of manufacture and GM's long-standing policy of decentralization creates individual opportunity and recog. nition for each Engineer hired.

## Recent EE,ME Graduate Inquiries Also Invited

Milwaukee offers ideal family living in a progressive neighborly community in cool, southern Wisconsin where swimming, boating, big league baseball and every shopping and cultural advantage is yours for the taking.
To arrange personal, confidential interview in your locality send full facts about yourself today to

Mr. Cecil E. Sundeen
Supervisor of Technical Employment


Electronics Div. General Motors Corp. FLINT 2, MICHIGAN MILWAUKEE 2, WISCONSIN



## COMPUTERS

If you are an experienced computing analyst -or if computing and data reduction are new to you but you are a qualified engineer - there is interesting work as well as a bright future for you in Northrop Aircraft's growing Computer Center at Hawthorne, California.
Applied mathematicians and engineers are needed as computing analysts for assignment to Northrop's analogue computing facility, as well as the newly expanded digital electronic computer department which provides unparalleled service in the practical solution of complex engineering problems.

Northrop has many openings on its other profects having to do with jet aircraft and missile de sign. They include positions for electronics and electro-mechanical engineers and lab technicians. In addition to attractive compensation, Northrop offers benefits unexcelled in the airframe industry as well as helpful cooperation by forefront engneers for your professional advancement.

You'll like the comfortable working conditions, friendly people and modern equipment at Northrow. And you and your family will be living in Southern California where sea, mountains and desert offer year 'round recreation.

If you qualify for any phase of computer research, design or application, we invite you to contact the Manager of Engineering Industrial Relations, Northrop Aircraft, Inc., ORegon 8-9111, Extension 1893, or write to: 1015 East Broadway, Department 4600-T, Hawthorne, California.


NORTHROP
NORTHROP AIRCRAFT, INC., HAWTHORNE, CALIFORNIA
Producers of Scorpion F-89 Interceptors and Snark SM -62 intercontinental missiles

## FOR RATES

OR INFORMATION
About Classified Advertising,

Contact
The McGraw-Hill Office Nearest You.

ATLANTA, 3
1301 Rhodes-Haverty Bldg.
JAckson 3-6951
M. Miller

BOSTON, 16
350 Park Square
HUbbard 2-7160
H. J. SWEGER

CHICAGO, 11
520 No. Michigan Ave.
MOhawk 4-5800
w. HIGGENS
W. RIGGERS

CINCINNATI, 37
1825 Yorktown Road
Swifton Village, Apt. 2
G. Miller

CLEVELAND, 15
1510 Hanna Bldg.
SUperior 1-7000
w. Sullivan

DALLAS, 2
Adolphus Tower Bldg.,
Main \& Akard Sss.
Riverside 7-5117
G. JONES

DETROIT, 26
856 Penobscot Bldg.
WOodward 2-1793
w. STONE

LOS ANGELES, 17
1125 W. 6 St.
MAdison 6-9351
C. DYSINGER

NEW YORK, 36
330 West 42 St.
LOngacre 4-3000
S. HENRY
R. LAWLESS

PHILADELPHIA, 3
17th \& Sansom St.
Rlttenhouse 6-0670
h. bozarth

ST. LOUIS, 8
3615 Olive St.
JEfferson 5-4867
w. higgins

SAN FRANCISCO, 4
68 Post St.
DOuglas 2-4600
R. ALCOR

## Flectronic Systems Fingineers:



Why you should give serious thought to SYLVANIA'S NEW

## electronic research \& development lab in Buffalo...

If you want all the advantages of a career in the fast-growing electronics industry, you should know the facts about Sylvania's new nulti-million dollar Electronic Research and Development Center...opezing late in 1957, the newest development ir the compeny's phenomenal growth as a prodacer of complex military electronic systems.

Engineers who join us now will find ofportunities for advancement that are impressive eren for the young electronics industry. The company helps its men get ahead by sponsoring graduate study at the University of Bufalo's fine engineering school.

The location permits you to live and vork in a nost attractive suburb-Amherst, a choice residential ares, only 7 miles from downtown. Buffalo, second only to New York Zity in New Yort State, is progressive and alert, famed for its friendliness, and boasts an excellent pablic school system. The gateway to Canada, next door to Niagara Falls, it offers $\epsilon$ asy access to famous Eastern and Great Lakes resorts.

## Immediate Openings in Applied Research <br> adVanced circuits specialists

With ingenuity, ability and interest to create operable circuits required to bring to fruition radically new theoretical concepts in the field of communications. Requires 10 years experience and proven ability to supervise work of a group of engineers creating original circuit designs. Techniques include: transistor applications, digital computer design, and a variety of novel video-radio frequency circuits, as well as modulation in unconventional dimensions.

## ELECTRO-MAGNETIC PROPAGATION SPECIALIST

Should have 10 years experience and ability to supervise the work of a group of advanced research engineers searching for the solutions to problems in multipath transmission as a function of frequency; vector scatter propagation, broad band antenna design, etc., which are necessary in the utilization of new communications systems.

## COMMUNICATIONS SYSTEMS SPECIALIST

Opening for an engineer with vision and creative ability to derive and direct applications of new techniques developed in Buffalo Engineering Laboratory to existing and newly developed systems. These techniques now permit solution of many long-standing problems which exist in fields ranging from radio to radar or sonar from radio teletype to DME. Should have at least 10 years experience in communications field and an interest in system synthesis and analysis. Advanced degree in Electrical Engineering, Physics, Mathematics or equivalent in course work on a graduate level is desirable.


There's a pressing need for split-second, ground-to-air control of defense aircraft. "DATA LINK" is the answer to the problem. The Light Military Electronic Equipment Department of General Electric is responsible for developing the airborne portion of "DATA LINK"
To enable several hundred fighter aircraft to receive individual intercept messages simultaneously on cockpit indicators - all on one radio channel requires the most advanced digital and communications techniques.
Right now, there are positions with exceptional promise for engineers with three to five years' experience in the design of receivers. E.E. or M.E. required; M.S. preferred.

If you are well qualified in either digital or communications techniques, fill out the coupon below and mail to us.

Mr. John Sternberg
Light Military Electronic Equipment Dept.
General Electric Company, French Road, Utica, N. Y.

Name $\qquad$ Degree

Address


IGHT MILITARY ELECTRONIC EQUIPMENT DEPARTMENT GENERAL


ELECTRIC

## EMPLOYMENT PROBLEM?

When you are in need of specialized men for specialized jobs, contact them through an employment ad in a McGraw-Hill Publication.

Management, Engineering, Production, Maintenance, Selling . . . these represent broadly the principal functions in business and industry. And it is principally to the men and executives who fill key jobs in these important divisions that McGraw-
Hill publications are directed.

## McGraw-Hill Domestic Publications

AMERICAN MACHINIST
AVIATION WEEK
BUSINESS WEEK
CHEMICAL ENGINEERING
CHEMICAL WEEK
COAL AGE
CONTROL ENGINEERING
CONSTRUCTION METHODS AND EQUIPMENT
ELECTRICAL CONSTRUCTION AND MAINTENANCE
ELECTRICAL MERCHANDISING
ELECTRICAL WHOLESALING
ELECTRICAL WORLD
ELECTRONICS
ENGINEERING AND MINING JOURNAL
ENGINEERING NEWS-RECORD
FACTORY MANAGEMENT AND MAINTENANCE
FLEET OWNER
FOOD ENGINEERING
NATIONAL PETROLEUM NEWS
NUCLEONICS
PETROLEUM PROCESSING
PETROLEUM WEEK
POWER
PRODUCT ENGINEERING
TEXTILE WORLD
THE MEN YOU NEED ARE
the men who read the
McGRAW-HIIL PUBILCATIONS
330 West 42 nd St.,
New York 36, N. Y.

## P H 0 PHOENIX N I

At the crossroads of opportunity for men with vision in Electronic Engineering

## GOODYEAR AIRCRAFT CORPORATION

# ELECTRONIC LABORATORY 

Arizona Division
Litchfield Park, Arizona
A Subsidiary of the

## GOODYEAR TIRE \& RUBBER CO

## We have OPENINGS IN OUR MODERN LABORATORIES FOR ADVANCED ENGINEERS IN ELECTRONIC RESEARCH

Long range research and development projects

University of Arizona graduate studies available under company financed evening courses.

Leisure Living At Its Best "In the Valley of the Sun"

Modern Inexpensive Housing

Send resume to: A. E. Manning

## Engineering and Scientific Personnel

## GOODYEAR AIRCRAFT

LITCHFIELD PARK PHOENIX, ARIZONA

Similar opportunities available in our
Akron, Ohio Laboratory

## WHICH OF THESE 18 CAREER POSITIONS at ARMA INTERESTS YOU MOST?

New long range projects assure not only challenging, highlevel creative work, but security and job stability as well. Excellent starting salaries plus all the resort and cultural advantages of suburban Long Island living. Moving allowances arranged.
A partial listing follows. Information on many more positions may be obtained by contacting Robert Burchell at the address below.
transducer development engineer
Perform basic development on transducer for use in precision electronic computer field. system evaluation engineer
Establish engineering requirements and investigate design approaches. Plan and direct the preparation of specifications for special in-plant test and evaluation facilities on centrifuges, scorsbys, complex wave simulators, sidereal tables and digital computers. Liaison between subcontractors and company.
design engineer - ground equipment
Design and development of production test and field test equipment where specific objectives and general requirements are known in the electrical and mechanical engineering fields. Must have cxperience on design or development of electromechanical instruments.
data processing and reduction engineer
Responsible for establishing overall data reduction procedures. Direct the activities in specifying and procuring all components of standard automatic cigital and analog data handing and processing equipment of special dat a processing equipment.
FUNCTIONAL ENGINEERS - MISSILE SYSTEMS
Develop inertial guidance systems including gyro, accelerometers, integrators, servo systems and computers. Analyze functional problems arising during development and evaluation of said system.
electro-mechanical engineer
Conduct investigation on special electromagnetic and electromechanical devices including evaluation and /or design of transduccrs, servo systems and related devices.

## ground equipment engineer

Plans and performs engineering studies, basic electrical and mechanical design, development and evaluation of production test and field test equipment where specific objectives and general requirements are known. Must be familiar with electromechanical instrumentation.

## transistor circuit engineer

Puise application of high speed transistors used in airborne digital computers. Cir cuit design applications requiring knowledge of latest transistors such as tetroids and superficial barriers.
digital computer engineer
Basic research and development including logical design, dynamic analysis. component development, hardware and packag ing, system and component reliability, and laboratory and ferd control and guidance computers for fire control and guidance systems.
field evaluation engineer
Perform overall planning functions for field evaluation of missile guidance systems. Direct activities in scheduling the field operations. Liaison with field test site agencies and formulating overall operating procedures at test site on missile project.
project engineer - airborne equipment Project engineering of computers, pro and anti submarine fire control equipment, airborne navigation plotting equipment and similar equipment. Preparation and proposals on equipment of such types.
product engineer
Initiate, compile and maintain design standards on electrical, electronic and mechanical design subjects pertinent to fire control nents. Must have considerable responsible experience on product desion standards covering areas indicated in job studies.

DEVELOPMENT ENGINEER - RADAR
Research and development engineering of new radar, navigation and guidance syslaboratory phases of research and development of radio frequencies and pulse opment of radio frequencies and pulse perience in modulator, intermediate frequency amplifier, indicator, synchronizer, or R.F. component design is applicable.

## dynamics test engineer

To conduct vibration, shock and acceleration tests on electromechanical components and systems. Analyze results and develop equipment to conform with specification requirements.
environmental test engineer
To plan, conduct and report on environmental tests of electromechanical and electronic components.
Environmental engineer
To plan, conduct and report upon development studies of finishes, materials and processes. which will be incorporated into the design of electromechanical and electronic components and systems.
operational analysis engineer
To plan, conduct and report upon environmental tests of electromechanical and electronic systems. Must be capable of redesigning components or systems to correct any deficiencies encountered during the evaluation program in the computer, servo systems and missile field.
LIAISON ENGINEER - AIRBORNE PROJECTS
Technical assistance to AF in maintenance of various AF contracts. Knowledge of AF procedures and specifications desirable.

Clip the job (or jobs) you're interested in and mail, with your confidential resume. No reference contact without your permission. You'll receive a prompt reply, and your copy of "Your Engineering Career with Arma," full of detailed information about this company.

Mr. Robert Burchell
Technical Personnel Dept. E-674
Roosevelt Field, Garden City, L. I., N. Y.


Utilizing the resonance frequency of cesium*, National's electronics engineers \& scientists have developed the ultimate in atomic clocks-the Atomichron-which promises to become the primary frequency standard much as the $\lambda$ of cadmium's red line has become the standard of length.

Problems in the development of precision frequency standards are some of the ones you will meet at National. Others lie in the design and development of tropospheric and ionospheric scatter systems, high information density receivers, classified signal processing equipment, and in applied physics.

At National you can work with the best of associates, with the latest in equipment-on some of the most pressing and intriguing problems in communications, atomic and molecular physics.

If you are the sort of engineer who cares more for the solidity of good work and professional reward, rather than for the frills of mahogany desks and landscaped surroundings, you owe it to yourself to contact National.

Send your resume to John Bigelow. It will be read by engineers and you will get a reply from an engineer.
*9192.6818s0 $\pm 0.000010 \mathrm{mc} / \mathrm{sec}$. The atomic beam technique as used in the Atomichron has already resulted in an accuracy of 1 part in $10^{-1}$ - in terms of time, 1 second in 900 years; and it promises to vield even better results by orders of magnitude.


NATIONAL COMPANY, INC.
61 Sherman St., Malden, Mass.

## SALES ENGINEERS



An exceptional opportunity is ovailable to electronic engineers interested in the field of component sales. Previous sales experience is not essential. The position is at our home office in Wakefield.
Our products are semi-conductor components including - transistors, rectifiers, and diodes. As one of the largest manufacturers in this young and rapidly growing field, there are unlimited opporlunities for advancement.
Here is your chance to work with stimulating, congenial associates in a company almosphere that is informal and free of red tape. You will be located in pleasant, suburban Boston, where cultural, educational and recreational advantages are found for you and your family.

In a few short years Transitron has carved out a leading position in the field of semi-conductors. Today approximately 1500 people are employed in two plants having over 300,000 square feet.
Write or Call

## Transitron <br> electronic corporation

 Wakefield, Mass.CRystal 9.4500


RCA offers an opportunity for you to apply your engineering skill to its Missile Test Project at Patrick Air Force Base, Florida"Launching Site of the Satellite."
Here at the world's longest missile testing range, extending from Florida far across the South Atlantic, you can realize professional status with the world leader in Electronics. Unprecedented growth opportunities are offered in many phases of data acquisition, transmission and processing, including Radar-Communications -Optics-Computers-Timing-Telemetry.

At RCA's Missile Test Project you will enjoy engineering advancement combined with ideal Florida climate. Your family will appreciate year 'round outdoor activities.
Let the Missile Test Project become your symbol of the future. Join in our assault on the frontier of space!
Send for our brochure "You and MTP." Our Engineering Managers will arrange a confidential interview at your convenience. Write to:

Mr. H. N. Ashby, Employment Manager, Dept N-10E, RCA Service Co., Inc., P. O. Box 1226, Melbourne, Florida.


States the underlying factors relating to the choice of color television standards, and the effect of the standards on practical broadcasting and receiving equipment. Covers NTSC color TV standards and ter and regulations. Selected Papers and Records of the Natlonal Television System Committee. Edited by Donald G. Fink, Vice-chalrman NT5C 1950-52), Dlrec tor of Research, Philco Corporation, 520 pp., 290
Illus., $\$ 8.50$

## INTRODUCTION TO ELECTRONIC ANALOGUE COMPUTERS

Covers principles, operation, and design of analog cornputers. Gives descriptions of components, computfor analog computation. Emphasizes the effects of imperfections in computing elements, and means for reducing these factors. By C. A. A. Wass, Supt. of the ment, Farnborough, England 237 pp. 149 Illus. \$6.50

Melpar's work on the earth satellite is one of many diversified projects.

## Melpar's more than 90 projects give

## wider scope to men of talent

At Melpar the problems posed by our more than 90 current projects allow you to work in the area of your choice and make contributions on advanced levels.
Our dynamic growth (we've doubled in size every 24 months for the past 11 years) constantly creates new middle and top level openings; our policy of individual recognition allows you to compete for them strictly on merit, and to receive financial compensation limited only by your ability.

As a member of a Melpar project group you'll enjoy freedom and a team spirit found only in a young organization of our size. Each project group is charged with responsibility for solving problems from conception to prototype. This means that you gain invaluable experience in inter-related spheres, essential to eventual directorship responsibility.

Living is relaxed and good in the Washington, D. C. area with its mellow climate and spacious suburbs. Our new air-conditioned laboratory is well-instrumented with an eye to future needs and is situated on a wooded 44 -acre tract.

> DUE TO OUR DIVERSIFICATION, OPENINGS EXIST IN PRACTICALLY EVERY PHASE OF ELECTRONIC RESEARCH \& DEVELOPMENT Qualified engineers will be invited to visit Melpar at company expense:

For defailed information on openings, the laboratory, and the industry-free area in which we're located, write:

Technical Personnel Representative

## TRANSMISSION-LINE THEORY

Systematio, rigorous, and thorough trestment of theory
of transmission lines of various types. Proceeds from of transmission lines of various types. Proceeds from basic electromagnetio princlples and derives the conventonal transmission-line equatlons together With the volved. Formulation is sufficiontily general to permit anvlysis of end effects and discontinuties as well asmit
more usually treated properties. By R. W. P. Kine Gordon Mokay Prof. of Anplled Physics, Harvard Univ.
525 pp., 629 ilfus.: $\$ 12.00$


McGraw- Hill Book Co., Inc., Dept. FL-5-1
327 West 4 Ist St., New York 36, N. Y.
Send me book(s) checked below for 10 days ex-
amination on approval. In 10 days I will remit for amination on approval. In 10 days I will remit for book(s) I keep, phus few cents for delivery costs, and return unwanted book(s) postpaid. (We pay return priflege.)
$\square$ Fink-Color TV Standards- 88.50 $\rho$ Wass-Elec. Analogue Computers- $\$ 8.50$ King-Transmission-Line Theory- $\$ 12.00$
LaLonde-Prof. Engr. Ques, \& Ans.- 6.50
(Print)
Nanie .
Address
City
Zone, ..... State.
Company
I'osition
For price and terms outside U. S.
Write McGraw. Hill int'I, N, Y.


That's right! The stamp on your letter asking for more information about MEMCO opens the door of opportunity

- to use your creative engineering talents.
- to work on all phases of your projects.
- to be appreciated as an engineer, not as a replaceable cog in a big machine.
- to get top pay and many benefits.
- to build a sound, worthwhile future.

So, if you are tied up in red tape the scope of your work is limited the scope of your work is limited. if you can't use your creative engineering welcome escape from stagnation and monotony.

For full details please write 10 : Mr. J. E. Richardson, Personnel Director

MARYLAND ELECTRONIC

MANUFACTURING CORPORATION 5009 Calvert Road
College Park, Maryland
(A suburb of Washingion, D. C.)

## SBRVO Disice

 .nsSYSTVEV Eweminens


We need an experienced servo design engineer to assume a prime responsibility in a new systems activity. Other attractive engineering opportunities are also available in this new program.

Enjoy challenging opportunities in the analysis and design of electro-mechanical servo loops, including laboratory experimentation and system development.

Work with the top men in the field and with the finest test, research and development facilities. New plant being added in suburban Milwaukee as a part of Major, Permanent, Expansion Program.

AC will provide financial assistance towards your Master's Degree. A Graduate Program is available evenings at the University of Wisconsin-Milwaukee

GM's long-standing policy of decentralization creates individual opportunity and recognition for each Engineer hired.

You will enjoy, as will your family, Milwaukee's "small town" friendliness and metropolitan shopping and cultural advantages.


For immediate, confidential interview in your area or an invitation to visit Milwaukee-see our plant-talk with our engineering heads and discuss your possibilities, contact:

Mr. Cecil F. Sundeen,
Supervisor of Technical Employment

AC the Electronics Division

## GENERAL MOTORS Corporation

Flint 2, Mich.<br>Milwaukee 2, Wis.



One of the remarkable achievements of the revolutionary GPL Doppler air navigation systems is that they reduce drift to zero. We believe that GPL can reduce your personal "career drift" to zero, too.

GPL was formed in 1945 with a nucleus of 25 engineers from MIT's famed wartime Radiation Laboratory. Today GPL employs 2,000 people, most of whom work at our beautiful 69 -acre estate at Pleasantville, just 35 miles north of New York City.

With two new engineering buildings under construction, a hefty backlog of orders, recognized leadership in several
fields of electronics and research going on into many new ones, the future of GPL is extremely bright.

Besides the top pay and beautiful suburban environment, GPL engineers enjoy many other benefits: a professional atmosphere, small working groups that ensure individual recognition, and the finest facilities that money, can buy They benefit, too, from GPL membership in the nationwide GPE Group.

If you are interested in a "drift-free" career - a career that keeps moving ahead along a straight line of accom-plishment-why not call or write to us today?

We have openings in the following categories:

## re: DOPPLER \& INERTIAL Air Navigation and Guidance Systems

## Radar:

?roject Engineering, Research, Design Field Engineering at Military Sites and Airframe Mfrs' Plants

Research • Design • Development - Applications Systems Analysis • Systems Test Mechanical Design - Test Engineering Microwave Techniques - Servos Magnetic Amplifiers - IF Amplifiers Pulse Circuitry - Transistorization

For interviews call Mr. Richard E. Hoffman,
ROgers 9-5000 (ext. 435) or write:


General Precision Laboratory Incorporated
63 Bedford Road, Pleasantville, New York

## LOOKING FOR ENGINEERS TECHNICIANS?



Write for free copy of

## "RESERVOIR of ENGINEERS and TECHNICAL MEN"

The engineers and technicians you want to reach are gathered in convenient, compact groups-as this 16 -page booklet points out.

It keys the job titles these men hold to the McGraw-Hill publications they read for on-the-job information. It explains how you can make contact . . . channel, concentrate your employment advertising to just the men with the job qualifications you want . . . without wasting advertising money for higher-priced space in publications with general circulation, in which you pay for perhaps 999 unqualified readers for every 1 who may meet your job requirements.

Write for your free copy to
Classified Advertising Division
McGraw-Hill Publishing Co., Inc.
P. O. Box 12, N. Y. 36, N. Y.

# TITANUUM METALS CORPORATION <br> OF <br> America 

Openings for RESEARCH ENGINEERS at company's facilities in Henderson, Nevada, (located 11 miles east of Las Vegas, Nevada).
BS or MS in ELECTRICAL ENGINEERING or PHYSICS.
Pasitions open in Melting Research Division of Technical Department, for fundamental and applied research on melting are characteristics and CONTROL SYSTEMS APPLICATIONS. Previous experience desirable but not necessary.
Salary commensurate with ability, experience and education.

Send resumes to:
Industrial Relations Department titanium metals corporation OF AMERICA
P. O. Box 2128 Henderson, Nevada

ENGINEERS \& PHYSICISTS Electronics

# The Johns Hopkins University Applied PhysicsLaboratory 

## ANNOUNCES

. . . important openings on our guided missile research and development staff for men who wish to identify themselves with an organization whose prime purpose is scientific advancement.

Because the Applied Physics Laboratory (APL) exists to make rapid strides in science and technology, staff members require and receive freedom to inquire, to experiment, to pursue tangential paths of thought. Such freedoms are responsible for findings that frequently touch off a chain reaction of creativity throughout the organization.

As a staff member of APL you will be encouraged to determine your own goals and to set your own working schedule. You will associate with leaders in many fields, all bent on solving problems of exceptional scope and complexity. The resources of our 350,000 sq. ft. laboratory are complemented by those of the 18 universities and industrial organizations who are working under our technical direction on prime contracts.

Equidistant between Baltimore, Md., and Washington, D. C., our new laboratory allows staff members to enjoy suburban or urban living and the rich cultural, educational and research facilities offered by both cities.

## Openings Exist In These Fields:


#### Abstract

ANALYSIS: Dynamic analysis of closed-loop control systems, analysis and synthesis of guidance systems; counter-countermeasures systems; electrical noise and interference. DESIGN: Control and guidance circuitry; telemetering and dataprocessing equipment; microwave components, antennas, and radomes; transistor and magamp applications; external missile systems. TEST: Prototype engineering and field test evaluation.


SEND NOW FOR OUR NEW 30-PAGE PUBLICATION DESCRIBing in detail the scope of the laboratory's programs and the unique environment in which staff members work and live.

WRITE:
Professional Staff Appointments
The Johns Hopkins University
APPLIED PHYSICS LABORATORY
8609 Georgia Avenue - Silver Spring, Maryland


The key to Missile performance is its "Heart Beat" . . . the electronic system that directs and guides its unerring flight. The Crosley Division of AVCO Manufacturing Corporation is expanding its programs in this important field. We have top positions for engineers in many different categories.

- ADVANCED RESEARCH ENGINEERS
- PROJECT ENGINEERS

Computer \& Analytical Systems
Guided Missile Programs

- SENIOR RESEARCH ENGINEERS
Airborne Defense Systems

There are also openings in:

- GUIDED MISSILES
- COMPUTER AND ANALYTICAL SERVICES
Design and Development Design ond Development
Programning ond Aplication
- GROUND RADAR
- ANTENNA AND MICRO-WAVE EQUIPMENT
- SERVO-MECHANISMS
- COMMUNICATIONS Airborne Transmitters and Receivers
- AIRBORNE FIRE CONTROL SYSTEMS
- TRANSISTORIZED EQUIPMENT

Write us and find out where you can fit into the major programs now being started. Write for literature and we will also give you information about the advantages of family living in Cincinnati-the "Queen City of the West-closest to the Heart of America". There are numerous company benefits and you will be paid generous relocation expenses. Please send a resume to Mr. Nick M. Pagan, Manager Technical and Professional Employment Office, Dept. U.

## AVCO manufacturing corporation <br> Crosley Division

1329 Arlington Street, Cincinnati 25, Ohio

## To

EMPLOYERS who advertise for MEN:

When there are many applicants for $\alpha$ single position it frequently happens that the only letters acknowledged are those of the most promising candidates. Others may not receive any indication that their letters have even been received by a prospective employer much less given consideration. These men often become discouraged, will not respond to future advertisements, and sometimes question their bona fide character.

Every advertisement printed in the Employment Opportunities Section is duly authorized.

It will help to keep our readers interested in this advertising if you will acknowledge every application received, even if you merely return the letters of unsuccessiful applicants with, "Position filled, thank you" written or stamped on them.

We suggest this in a spirit of cooperation between employers and the men replying to employment advertisements.

Classified Advertising Division
Mc Craw-Hill Publishing Co.,Inc.

For your immediate use the 6 most vital assets
to insure your

## EXECUTIVE SUCCESS

 SUCOESSFUL executives Will tell you this simplefract: certain key fact: certain key allow a man to write his own paywrite his own paydoesn't have to be

The six books comprising this Library have been selected have been selected by successful exec
utive as the ones mos $\dagger$ useful in de veloping the six qualities of executive success. born with these proven executive qualities-they can be self-developed to a degree you may never have thought possible easily, and without long years of study. You can help yourself acquire them with this specially selected Library of practical executive techniques.
Helps you develop these 6 suscess qualities:
Hourself Handing Peopia Managing Yourself Speaking



THE LIBRARY of

Library contains these books: Managing Yourself by Wright nique of Getting Things Done by the Lairds How to Develop Your Thinking Ability by Keyes The Technique of Clear Writing by Gunning Talk Well by ender The Technique of Handling People by the Lairds

PRACTICAL EXECUTIVE TECHNIQUES

- 6 volumes - 1633 pages - $\$ 20.00$ - payable $\$ 4.00$ in 10 days, then $\$ 4.00 \mathrm{a}$ month

You'il find here the best thinking in a variety of important execu ive techniques ou like getting the best out of your associates, and forcefully on paper. speaking with authority in front of people,
thinking a job through logically, thinking a job through logically
and getting it done most eftient and getting it done most efficient 19. All in a 1, you have a store-
house of information on dolng best
every fob the successful exeutlve every job the successful
must know how to handle.

SAVE \$4.00. Bought one at a time, the total price of these books would be $\$ 24.00$. Under this special offer, the complete Library is available for only $\$ 20.00$-a cash saving of $\$ 4.00$. And you on easy terms, while you use them.

## SEE THIS LIBRARY 10 DAYS FREE



## If you're seeking a top career in a UNIQUE location-

Look to FTL . . . where you work, live and relax in beautiful suburban New Jersey . . . only minutes away from New York City's wealth of scientific, cultural and entertainment facilities

Mountains, lakes; ocean beaches, fishing, boating, golfall the things a man and his family enjoy - are within easy reach of the "FTL Community."

At FTL you work in country-like atmosphere . . . in one of America's great research and development centers . . . with leaders in electronics . . . with every opportunity to build a stable and rewarding career . . . as a member of the world-wide IT\&T Engineering Team.
FTL provides group insurance, company-paid medical and pension plans, tuition refund and many other employee benefits.

Write today for information on any of the following interesting assignments now open at Federal Telecommunication Laboratories, Nutley, New Jersey:

Radio Communication Systems • Traveling Wave Tubes Electronic Countermeasures * Air Navigation Systems Antennas • Missile Guidance • Computers Transistors and other Semiconductor Devices Telephone and Wire Transmission Systems


# SHOOT FOR THE TOP! with <br> <br> Chrysler Missile Operations 

 <br> <br> Chrysler Missile Operations}

Detroit, Michigan
WHATEVER YOUR GOAL IN ENGINEERING
MISSILE OPERATIONS OFFERS CHALLENGING CAREER OPPORTUNITIES IN

DESIGN LABORATORIES and
MANUFACTURING for Engineers with Experience in

STRESS • WEIGHT • MECHANICS HYDRAULICS • METALLURGY ELECTRONICS • AERONAUTICS QUALITY CONTROL•PNEUMATIC TESTING• GUIDANCE AND CONTROL ELECTRO-MECHANICAL PACKAGING PRESSURE AND TEMPERATURE TEST PLANNING • PLANT ENGINEERING TELEMETRY • INSTRUMENTATION ANTENNA • TRANSFORMER ENGINEERING

## TOP

## CHRYSLER FRINGE BENEFITS

These are permanent positions in suburban Detroit, Michigan. Moving and relocation expenses paid.

WATCH YOUR LOCAL NEWSPAPER'S CLASSIFIED ADS FOR WORD OF MISSILE OPERATIONS RECRUITERS IN YOUR AREA

## or write

## CHRYSLER CORPORATION

 Missile Operations,Personnel Dept.
P.O. Box 2628,

Detroit 31, Michigan


## ON OUR STAFF



[^35]
## DO YOU NEED ECliNEFPS WTH ExPFRIEICE III:

Research<br>Development<br>Design<br>Instrumentation<br>Servomechanisms<br>Missiles<br>Audio Systems<br>Control Systems<br>Radar<br>Computers<br>Transistors

Place an "ENGINEERS WANTED" advertisement in this EMPLOYMENT SECTION of ELECTRONICS. It's an inexpensive, time saving method of selecting competent personnel for every engineering job in the electronics industry. The selective circulation of ELECTRONICS offers you an opportunity to choose the best qualified men available throughout the industry.

For Rates and Information Write:

CLASSIFIED ADVERTISING DIVISION Mc GRAW-HIIL PUBLICATIONS

$$
\text { P. O. Box } 12
$$

New York 36, N. Y.


## Watch your

## interests to this check list of

 ENANEERRNG OPPORTUNTITES
## with

## Admiral.

Research and development projects, now in progress, have gained for Admiral a commanding lead in certain broad areas of military and civilian electronics. A number of challenging opportunities exist, and one of them may closely match your special interests and past experience. Examine the following check list.

RADAR-L band radar, beacon coding and decoding, pulse train generating and processing circuits. Airborne radar in X band range.
ELECTRONIC COUNTERMEASURES—Analysis, development and design, employing advance radar techniques.
MILITARY TV-Airborne and ground systems, including receivers, transmitters, cameras, antennas, sync generating systems and displays.
TELEVISION, VHF AND UHF-Tuner design, deflection circuitry, design of low noise wide band front ends and I.F. circuits.

NUCLEAR ENGINEERING-Evaluation of nuclear radiation damage to electronic components. Work involves experimentation with reactors and 20,000 curie cobalt source. Development of radiac techniques and instrumentation.
PALO ALTO RESEARCH-Development of new technologies opens door on a program of advanced research in aeronautical electronics. Experienced and intermediate level engineers send resume and salary requirements to R. M. Jones, Admiral Corporation, 901 California Ave., Palo Alto, Cal. ... for California openings only.

Current openings offer excellent income and opportunity for rapid advancement. Complete employee benefit program includes retirement plan, paid group insurance, college tuition refund plan and ideal working conditions. On-the-job training for junior and intermediate engineers. Write, summarizing your education and experience to W. A. Wecker, Personnel Division.


Just shoot us a line if you feel like blasting ahead. We offer real opportunities with individual recognition only possible in a small organization. Challenging positions open for Physicists, Principal, Senior and Project Engineers in the new field of light intensification, closed circuit TV, X-ray and other related products.
Experience in design of pulse, sweep or video circuitry is preferred.
Newly organized group located in beautiful northern suburb of Baltimore.
Call, wire or write
Mr. R. A. Lee


## DIVISION OF BENDIX AVIATION CORP. TOWSON 4, MARYLAND


a level of enjoyment reached in the professional life of engineers participating in Sanders'
forward-thinking environment.

Please address inquiries to D. H. Johnson
SANDERS ASSOCIATES, INC.
NASHUA NEW HAMPSHIRE


## ambitious?

## OPPORTUNIIIES WHICH LEAD TO MANAGEMENT

As an independent leader in the field of high permeability magnetics, we are expanding our creative engineering leadership. These are "threshold to management"positions for which we need

## ELECTRICAL AND

 ELECTRONIC ENGINEERSChoose your own avenue of development or application work in instrumentation, magnetic circuitry and magnetic materials.

If you can qualify for a really bright future, send experience summary to
Mr. Keith Krewson, Migr. of Personnel
MAEMETICS inc.

BUTLER 3, PA.
(near metropolitom Pittsburgh) 4. HAVE THE ENGINEERING FUTURE

Great combination .. your ability and the opportunities only a pioneer and leader in commercial electronics can offer! Join this team of creative-minded engineers and your ability wins first the recognition and then the responsibility it deserves in a small-group engineering organization.
The future looks practically limitless, speaking from our position today in the vanguard of precedent-shattering electronics developments. Current and appealing openings exist in:
$\begin{array}{ll}\text { Data Handling and Computers } & \text { Scientific and Industrial Equipment } \\ \text { Broadcast Equipment } & \text { Sound Products }\end{array}$

## Communications

Attractive salaries to start . . advancement on merit. Liberal company-paid benefits make your future even more secure.
Senior or Junior EE's or ME's . . . men who will accept no measurements for their future except their own achievements . . you are invited to send a complete resume to

Class. Adv. Div., P. O. Box 12, N. Y. 36, N. Y.

## ENGINEERS

Find out the full scope of

## opportunities

in

Practically any professional interest an electronics engineer may have will find a creative outlet at General Electric's Electronics Park, as you will see by the fields in the coupon on the right. But no mere listing can give you a complete picture of the scope of work at our operation here.

Electronics Park is a birthplace of new concepts and ideas in electronics. Engineers here are continually working on new problems...creating new components, systems, equipment... from which whole new product lines are developed. And as new lines are created, new independent G-E departments are formed. The nucleus of such new departments are often drawn from the development staff at Electronics Park... and the engineer may either follow his "brain-child" or begin anew on the spark of another idea.
Why not check your special professional interest on the coupon and send it to us at Electronics Park. A bachelor's or advanced degree in Electrical or Mechanical Engineering or Physics, and/or experience in electronics is necessary to qualify for current openings here.

GENERAL
ELECTRIC

TO GENERAL ELECTRIC
Electronics Park
Syracuse, N. Y.
ATT.: Technical Personnel Dept.
I AM INTERESTED IN
Advanced Development Design
Field Service
Technical Writing Sales

IN THE FIELD OF...
Military Radio \& Radar
Multiplex Microwave Moblle Communications Semiconductors Electronic Components Computers
Tubes
Television Receivers
Industrial Television Antennae

FROM:
NAME

ADDRESS

DEGREE

# electronic engineers <br> - DESIGN - DEVELOPMENT <br> - field engineering - technical writing 



STAVID is engaged in design, development, modification, installation, testing and evaluation of military electronic and electro-mechanical equipment.
STAVID ENGINEERS possess an enviable reputation and are noted for their competence and diversification. You can fulfill your professional ambitions at STAVID.
(New Plant now under construction65,000 square feet)
PERMANENT LOCAL AND FIELD ASSIGN. MENTS NOW AVAILABLE AT MORE THAN 30 DESIRABLE LOCATIONS THROUGHOUT THE U.S.

Opportuntties avallable in the following flelds for those persons with ED or
$M E$ degree with minimum of. $s$ years, experionce or equivalent:

- Fire Control Radar
- Missile Electronics
- Coils, Transformers
- Filter Networks
- Instrumentation
- Microwave
- Servos
- Antennas
- Computers
- Simulators

Match these opportunities with your plans for your future

Salaries from $\$ 8,000$ to $\$ 17,000$ physics research managerSolid state \& nuclear ADVANCED DEVELOPMENT EN-GINEER-Microwave tubes CHIEF ENGINEER-Generators \& fractional motors MICROWAVE TUBE APPLICATIONS ENGINEER
RESEARCH MANAGER-Fluid flow \& heat transfer
SR PRODUCTION ENGINEERMagnetrons
RESEARCH ENGINEER - Mierowave fubes
In our 33 years of confldential serv. ice, we have attained national recognition by the foremost comsbanies as the personnel representaadministrative people. The abore is only a partial listing of the many fine positions we have avallable. all expenses and your weply will be held strictly confidential Please send detailed resume to Mr. George S. Sandel. Director


EMPLOYMENT SPECIALISTS 333 Washington St. Boston 8, Mass.
Call for interview arrangement or send complete resume to: Personnel Dept.

Aircraft Radio Corp., the industry's leader in avionics for over 30 years, has openings on its staff for forward thinking engineers in the following fields:

## TRANSISTOR CIRCUIT PROJECT ENGINEER PROJCT ENGINEER

## - SERVO AND INSTRUMENT ENGINEER

WRITE OR CALL COLLECT: Personnel Manager

## AIRCRAFT RADIO CORPORATION

BOONTON, NEW JERSEY Deerfield 4-1800 Ext. 238
BOONTON, NEW JERSEY Deerfield 4-1800 Ext. 238



## ENGINEERING OPPORTUNITIES

## - TECHNICAL WRITER <br> - CHIEF ENGINEER TO HEAD SERVO AND INSTRUMENT DEPT.

## need engineers

Place an "Engineers Wanted" advertisement in this EMPLOYMENT OPPORTUNITIES section. It's an inexpensive, time saving method of selecting competent personnel for every engineering job in the Electronics industry. The selective circulation of ELECTRONICS offers you an opportunity to choose the best qualified men available throughout the industry.

## COMPUTER ENGINEERS and SCIENTISTS

# You are invited to participate in an integrated attack on all types of computer problems 

## AT GENERAL ELECTRIC'S COMPUTER DEPARTMENT IN PHOENIX, ARIZONA

At General Electric's new Phoenix operation, engineers and scientists are working to solve the many "bottleneck" problems now ljmiting computer performance. New concepts in procedures, systems configurations and methods of data flow are being formulated. Radical improvements in costs, reliability and flexibility of operation are being made. Both analog and digital computer investigations are under way in the following areas: Data Processing Systems Information Storage and Retrieval Systems • Automation for Industry and Business - Scientific Computation - Systems Analysis and Synthesis. Is this the sort of pioneering work - in a rapidly advancing field - that appeals to you? It so, take advantage of one of the openings that exist at both our Phoenix, Arizona and Menlo Park, California installations for men with experience in: System Integration • Logical Design • Electronic Design • Peripheral Equipment Development

- Product Packaging - Components and Instrumentation - Advanced Programming.

Send your reply in strict confidence to: Mr. James Torrey COMPUTER DEPARTMENT - GENERAL ELECTRIC CO. Orange Street at Van Ness Avenue - Tempe. Arizona


## YOUR ORGANIZATION

Is is complete?
Are you expanding it?

Making Replacements?

Naturally, you are anxious to secure the most suitable man or men available. You want men with the special training that will make them an asset to your organization. You can contact such men through an advertisement in this Employment Opportunities Section of ELECTRONICS.

Classified Advertising Division

## ELECTRONICS

P. O. BOX 12

New York 36, N. Y.


Positions are open for engineers able to manage advanced radar systems programs-from conception of the system up to production. Assignments cover radar search planes, high-speed fighters, propjet cargo and passenger transports, bombers, jet trainers, small turbojet transports and other significant classified projects.
Inquiries are invited from those possessing radar experience and strong interest in technical management. Address E. W. Des Lauriers, Technical Management.


AIRCRAFT CORPORATION
BUREANK, CALIFORNIA

## HATMNAL REAGTOR TZSTHG STATION Career Opportunities ELECTRICAL ENGINEERS ELECTRONIC TECHNICIANS

- Phillips Petroleum Company will soon be operating seven reactors, and excellent openings exist in Development, Re. search. Operations and Maintenance.
- Opportunities also exist for Physicists, Chemists, Metallurgists, and Chemical and Mechanical Engineers at all levels of academic training.
- Enjoy the benefits of a rapidly expanding organization, opportunities for graduate and undergraduate study, and the finest of modern plant facilities, as well as superb trout fishing and Sun Valley skiing.

Write to: Atomic Energy Division Phillips Petroleum Company Box 1259AG, Idaho Falls, Idaho Att'n: Persongel Administration

COMMUNICATIONS
ENGINEERS and TECHNICIANS
EXCELLENT SALARIES MINIMUM PREREQUISITES
ENGINEER EE Graduates with 3 years TECHNICIAN $\quad \begin{gathered}2 \text { years technical school in } \\ \text { communications and }\end{gathered}$ communications and
years experience
Require installation adjustment and maintenance experience with communication receivers and associated terminal equipment. Also, neen with similar expelience wision hines.
nas, transmission lime

Must be willing to travel in
Overseas
Page Communication Engineers, Inc 710 Fourteenth St., N.W., Washington 5, D.C.

## Engineers-Teaching

All rank appointments-depending upon back grounds-needed at undergraduate college located in small resort area city. Electrio Power and degrees preferred. Will assist B.S. degree men in financing advanced degrees. Investigate better than average salary offers.

Electronics,
520 N. Michigan Ave., Chicago 11, Ill.

An employment advertisement in this EMPLOYMENT OPPORTUNITIES section will help you find the engineers you need. It's an inexpensive, time saving method of selecting competent personnel for every engineering job in the electronic field.
casshrite SEARCHIGHT
BUSINESS OPPORTUNITIES

## SECTION <br> aovertisne

 EQUIPMENT - USED or RESALE
## MAGNETS:

MAGNETRON MAGNETS-Heavy Duty PM Rams
 - $11 / /^{\prime \prime}$ Gap. Removed from New Radar Equipment
-Prices: Large: $\$ 12.95$-Small: $\$ 9.95$ HORSESHOE TYPEMAGNETS AS US HORSESHOE TYPE MAGNETS AS used with Mag-
 of 3 ................1/2, 1/4. 11. Asst. $\$ 1.50$ 115 V. 60 CYCLE BLOWERS: At Left: 115 VAC 60 Cycle
SINGLE TYPE $100{ }^{\text {CFM }}$ 21/4
1/tete intake; $2^{\prime \prime}$ outlet. Com-
plete lyete size: $5^{\prime \prime} \times 6^{\prime \prime}-\$ 9.95$
No. 1 C 939
15 VAC 60 Cycle DUAL TYPE Each SFM-4" intake; $2^{\prime \prime}$ Dis. 8. ${ }^{2}{ }^{6^{\prime \prime}} 1 \mathrm{C} 880 \ldots . . . . \$ 14.95$ 115 VAC 60 cycle FLANNGE TTPE- 140 CFM; $31 /{ }^{1 / 2}$
 115 VAC 60 cycle FIANGE TWIN--275 CFM: ${ }^{41 / 2^{\prime \prime}}$
intake; $312^{\prime \prime} 3^{\prime \prime}$ Dis. Complete size: $1134^{\prime \prime} \mathbf{W}^{\prime \prime}$ $2 \% " H \mathrm{x} 8$
No. 2C069.



## 

TUBES
Magnetrons . . . Rectifiers . . . Ruggedized
Klystrons . . . Regulators . . . 5,000 Series
Thyratrons . . . Lighthouse . . Receiving
Photo Tube . . . Cathode Ray . . Transmitting

Prompt attention to export and industrial inquiries. Write, wire or phone foday.
Lowest prices with reliable quality-guaranteed.
METRO ELECTRONICS CORP.

# CLASSIFIED SEARCHLIGHT SECTION <br> ADVERIISING 

## GUSINESS OPPORTUNITES

EQUIPMEN - USED or RESALE

## UNDISPLAYED RATE

$\$ 2.40$ a line, minimum 3 lines. To figure advance payment count 5 average words as a line.
BOX NUMBERS count as one line additional in undispilayed ads.
DISCOUNT of $10 \%$ if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposols.)
of undisplayed ads (not including proposols.)
Send NEW ADS or inquiries to Classified Adv. Div. of Electronics P. O. Box 12, N. Y. 36, N. Y., for June 1 st issue closing May 3rd

## DISPLAYED RATE

The odvertising rate is $\$ 21.75$ per inch for all advertising appearing on ther than a contract basis. Contract rates quoted on request.
AN ADVERTISING INCH is measured $1 / 8$ inch vertically on one column, 3 columns-30 inches-to a page.
EQUIPMENT WANTED or FOR SALE ADVERTISEMENTS acceptable only in

## ENGINEERING DEGREES

(Under and Postgraduate) E. E. Option Electronics Earned Through HOME STUDY RESIDENCE CLASSES ALSO AVAILABLE PACIFIC INTERNATIONAL UNIVERSITY 5719-G Santa Monica Blvd. Hollywood 38. Calif.

## Superior Vacuum Tube Patents

 Eleven U. S. Patents for sale or license. Cover superior, practical, standard vacuum tubes for UHF, VHF, FM, TV, Radio, Power, Transmitting, Industrial Applications.BIINEWEG TELEVISION

## TS-89 VOLTAGE DIVIDER

Of new production, the TS-89 Voltage Divider pronorma means of measuring high impedance puise normally included in radar and ranging between 200 to 20,010 volts. Meashing $4^{\prime \prime} \times 5^{\prime \prime} X 9^{\prime \prime}$ and
weighing just under + lls. this instrument is avail able from new production at......... $\$+5.00$ each


## ELECTRONIC COMPONENTS

002-600 Volt conilensers, 14.0
Precision resistors one \& two wat IAN BOXED TUBES
$\underset{\text { VR150-OD3 }}{ }$
$V 8150-$
$12 S F 7$
$6 S G 7 G T$
6SG7GT
2C21
2 C 21
9006
98
9006
6 S 7
Insulated carbon resistors all sizes in stock, $1 / 2$ watt $\$ 10.00 \mathrm{M}, 1$ watt $\$ 15.00 \mathrm{M}, 2$ watts $\$ 25.00 \mathrm{M}$. Micro switches normally closed types, WZ7RQT,
RRS, RR36, WZ2RLTCI ( 2,000 each type price 15c ea.)
10.7 M . Ratio Detector IFs @ $20 火$.
STOP slide switches 25,000 pes @ $4 / 24$ nitg lugs bent down.
BELVISION
BA 7-6063
254 Greenwich St.
New York, N, Y.

## "TELETYPE EQUIPMENT"

80 Perforators, Morse Tape Weathstone 3/ISS. 125 Line Units BE77A New. Unused.
50 Keyboards Model 15 No. 22JX. Unused.

50 Rectifiers No. 11 Input 105-125v.
20 Rectifiers RĀ-30 and RA-43B New. Unused.
Various other Teletype material.
SUPLEX LAMPS LTD. 239, High Holborn, W.C.L. England Cables: Suplexlamps, London

## ELECTRON TUBES <br> AT SENSIBLE PRICES!

SPECIALISTS IN JAN, W.E., SUBMINIATURE, 5000/6000 SERIES AND RECEIVING TYPES
GUARANTEED ○ UNUSED - BOXED - Ist QUALITY - WRITE FOR COMPLETE LIST

| 1 AD4. | \$1.24 | 3B28 . . . . . 4.00 | 12AT7WA | 350B | 2.00 | 902P 1 | 2.50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1824 | 5.50 | 3B29 ... 4.75 | 6201 . . . . 3.00 | 354A | 2.50 | 918 | 1.10 |
| $1 \mathrm{B24A}$ | 15.00 | 3C23 ... 3.95 | 15E . . . 1.20 | 355A | 11.00 | 927 | 1.00 |
| 1832 | 2.00 | 3C24/24G... 2.00 | FG-27A . . . 10.00 | 371B/V7166. | . 75 | 954 | 40 |
| 1835 | 3.35 | 3C45 .... 7.00 | FG-32 . . . . 4.35 | 375A | 10.00 | 958/958A | 35 |
| 1840 | 2.00 | 3E29 . 8.50 | 357 TG (surp) . 2.00 | 393A | 4.50 | CK1007 | 45 |
| 1,863A | 19.00 | $3 \mathrm{~J} 30 \quad 25.00$ | VC50/32 (cap.)8.00 | 396A/2C51 | 2.25 | CK 1026 | 2.35 |
| 1N21 | . 22 | 3K20000LK . Write | QK60 .... 20.00 | 401A/5590 | 2.75 | R1130B | 11.50 |
| 1 V23B | . 90 | 4-65A (Surp) 15.00 | QK61 . 21.50 | 403A/6AK5 |  | R161 (5C22) | 35.00 |
| 1 N34 | . 45 | 4-125A ... 30.25 | RK65/5D23 . 7.50 | (WE) | 1.20 | HY-1269 | 3.35 |
| 1N65 | . 85 | 4-250A . . 35.00 | FG-81A.... 3.25 | 403B/5591 | 3.25 | 1622 | 1.75 |
| 1N70 | 1.50 | 4B24/EL3C . . 4.50 | 1007H (surp). 5.00 | 404A/5847 | 12.50 | 1626 | . 25 |
| 1 P 23 | 1.75 | 4C35 . . 13.50 | 10071 (surp). 11.69 | 408A | 2.20 | 1629 | 15 |
| 1 P 37 | 3.50 | 4 J21 . . . . . 75.00 | FG-105 ... 11.00 | 412A | 3.50 | 1635 | 1.60 |
| 1941 | 2.50 | 4J36 . . . . . 70.00 | F-123A .... 3.95 | 416B | 39.00 | 1654 | 2.25 |
| 122 | 1.50 | $4 \mathrm{3} 37 . . .70 .00$ | F-128A . . . . 10.00 | 417A/5842 | 12.00 | 1850A (U-1) | 39.50 |
| CE2C | 2.00 | 4PR60A . 30.00 | VXR-130,... 1.50 | 421A/5998 | 4.95 | $1850 \mathrm{~A}(\mathrm{~N}-1)$ |  |
| Gl-2 | 10.00 | 4X150A (surp)19.00 | FG-166 .... 13.50 | GL434A | 5.00 | RCA. | 150.00 |
| 2C39A | 11.00 | 4X500A (surp)75.00 | FG-172 . . 17.50 | UE578 | 7.00 | 5517 | 1.35 |
| 2 C 43 | 8.00 | 4X500F . . . 45.00 | QK-181.... 12.50 | KU610. | 3.50 | 5528/C6L | 5.00 |
| 2C51/396A | 2.25 | 58P4 ...... 3.95 | QK-185 ... 90.00 | Z666/5J30 | 5.00 | 5559/FG57 | 10.00 |
| 2053.... | 9.75 | EL5B/4B22 . . 5.50 | QK-202.... 195.00 | GL-673 | 12.50 | 5636A | 2.95 |
| 2D21W/5727 | 95 | 5C22 ... 27.00 | 249B . . . . . 3.50 | 726A | 5.00 | 5638/SD828A | 3.00 |
| 2E24.. | 2.35 | SCP1A . . . 7.00 | HK253. 5.00 | 726 B | 14.00 | 5639 | 8.50 |
| 2 E 25 | 2.75 | 5D21.... 6.25 | HK-257B/4E27 7.50 | 726 C | 13.00 | 5642 | 1.00 |
| 2526 | 3.20 | 5D23/RK65 , . 7.50 | 262A . 6.00 | 75071. (surp) | 32.50 | 5721 | 40.00 |
| 2E35 | 1.95 | 5JP2 . . . . . 5.00 | FG-271/5551. 37.50 | 800 | . 90 | 5726/6AL5W |  |
| 2J21A | 4.00 | 5JP5 . 6.00 | 287 A . . . . . 2.20 | 805 | 4.00 | WL5736. | 10.00 |
| 2 J 22 | 4.00 | 5J30/Z666 . . 5.00 | 3047L . . . . . . 10.50 | 807 W/5933 | 1.75 | 5744 | 1.25 |
| 2 J 37 | 10.00 | 5R4WGY.... 3.00 | 307A . . . . . 60 | 809 | 2.50 | 5787WA | 6.50 |
| 2 J 54 | 25.00 | 5Y3WGI .... 1.50 | 311A . . . . . 5.50 | 814 | 2.50 | 5802 | 4.50 |
| 2K25 | 13.50 | 6AK5W 1.40 | 313C...... 2.70 | 826 | . 60 | 5812 | 1.00 |
| 2K30/410R | 90.00 | 6BA6W/5749 1.25 | 313CC. . . . 1.70 | 829 B | 8.50 | 5814 | 1.00 |
| 2K45. | 35.00 | 6BM6 ...... 30.00 | 313CD.... . 4.00 | 832 A | 6.75 | 5819 | 25.00 |
| 2V3G | . 80 | 6C4W ..... . 4.00 | WE315A | 833A | 36.00 | 5829 | 1.00 |
| 3824 | 1.50 | C6L/5528 ... 5.00 | (575A) ... 15.00 | 837 | 1.25 | 5840A | 5.50 |
| 3824WA | 10.50 | 6C21/4507t. . 13.50 | QK 319 . . . 100.00 | 869B | 22.00 | 5876 | 8.00 |
| 3825 | 5.00 | 6SN7WGT.... 1.75 | 328A . . . . . 3.50 | 872-A | 1.00 | 5879 | 1.40 |
| 3826 | 3.95 | 8D21 . . . . . 175.00 | 338A . . . . . 3.75 | 872-A (GE) | 2.75 | 5998/421A | 4.95 |

TUBE CARTONS • STACKERS



## FLEOTRONIO

WAR TERMINATION INVENTORES

WRITE OR WIRE FOR INFORMATION ON OUR COMPLETE LINE OF SURPLUS ELECTRONIC COMPONENTS. ALL PRICES NET F.O.B. PASADENA, CALIFORNIA

## C\& <br> SALES CO.

$2176 . \mathrm{E}$ East Calorado St. asadena 8, Califo
RYan 1.7393

VAFIABLE SPEED BALL DEC INTEGRATORS

Forward \& Reverse 4-0.4. Input s7aft $5 / 16^{\prime \prime}$ dia. $\times 3 / 4^{\prime \prime}$
long. Output shaft $15 / 64^{\prime \prime}$ dia. " $9 / 16^{\prime \prime}$ long. Control shaft $11 / 64^{\circ \prime}$ dia. X $11 / 16^{\prime \prime}$
long. Cast aluminum con-
0042-1-A Bendix


DC Input 14 volts; output: 115 volts; $\$ 300$ cycles. 1-phase; 50 watt
2116-2-A Bendix
Output: $115 \mathrm{VAC} ; 400 \mathrm{cyc}$; single phase; 45 amp. Input:
217 Bendix
Output: 26 volts; 400 cycles, 6 volt amperes, 1 phase. Input: 24 VDC ; 1 amp. $\$ 15.00$ 12121 Bendix

Input: 24 volt D.C. 18 amp. 12000 r.p.m.
Output: 115 volts, 400 cycle, 3 -phase, 250 volt amp, 7 pf.
2123 Bendix
Output: $115 \mathrm{~V} ; 3$ phase; 400 cycle; amps. 12126-2-A Bendix
Output: 26 volts; 3 phase; 400 cycle; 10 Output: 26 volts; 3 phase; 400 cycle; 10
VA; 6 PF. Input: 27.5 volts $D C ; 1.25$ amps. 2130-3-B Bendix
Output: 125.5 VAC; 1.5 amps. 400 cycles single phase, 141 Va . Input: $20-30$ VDC. $18-12$ amps. Voltage and frequency regulated.
Output 250 VA, 115 volts, 3 phase, 400 cycle, 1.25 amp., 0.8 pf. Input 27.5 volt 2142-1-A Bendix
Oufput: 115 volts, 3 phase, 400 cycle, 250 VA. Input: 27.5 VDC, 22 amps. Vóltage and frequency regulated
2147-1 Pioneer
Output: 115 VAC 400 cycles; single phase. Input: 24-30 VDC; 8 amps. $\$$ Price $\$ 39.50$ each 778 Bendix

Output: 115 volt 400 cycle; 190 VA; single phase and 26 volt, 400 cycle, 60 VA, single phase. inpu
Output: 115 volts AC; 750 VA, 3 phase, 400 Output: 115 volts $A C ; 750$ VA, 3 phase, 400 cycle, .90 pf and 26 volts. 0 pot: 27.5 VDC phase, 400 cycle, 40 pf . Input: Valtage and 60 amps. cont. duty, 6000 rpm . Voltage and
frequency regulated.
Output: 115 volts; 190 VA; single phase; 400 cycle, .90 pf and 26 volts; 60 VA; 400 cycle, 40 pf. Input: 27.5 volts DC, 18 amps. cont. duty, voltage and freq. regu-
$\$ 49.50$ 0486 Leland
Output: 115 VAC; 400 cycles; 3-phase; 175 VA: 80 pf. Input: 27.5 DC; 12.5 amps.; cont. duty.
0563 Leland 115 VAC, 400 cycle; 3 phase; 115 Output: 115 VAC; 400 cycle; 3 -phase; 115
VA; 75 pf. Input: 28.5 VAC; 22 amps. VA; 75 pf. Input: 28.5 VAC; 12 amps. $\$ 35.00$
PE109 Leland
Output: 115 VAC, 400 cyc .; single phase, $1.53 \mathrm{amp} . ; 8000 \mathrm{rpm}$. Input: $13.5 \mathrm{VDC} ; 29$ PE218
Output: 115 VAC; single phase of. 90 30uput: 115 VAC; single phase pf. 90 ; 92 amps.; 8000 rpms.; Exc. Volts 27.5 BRAND NEW 800 rpms.; Exc. Volts $\$ 30.00$
MG149F Holtzer-Cabot Output: 26 VAC @ 250 VA; 115 V. @ 500 VA; single phase; 400 cycle. Input: 24 VDC @ 36 amps.
MG153 Holtzer-Cabot Input: 24 VDC; 52 amps. Output: 115 volts 400 cycles, 3 -phase, 750 VA. Voltage and frequency regulated.
DMF2506M Continental Electric
$24-30$ volts input; $5.5-45 \mathrm{amps}$.; cont. duty. Output: 115 volts; .44 amps.; 400 cyc.; 1 phase; pf. 1.0; 50 watts
Anput. 27.5 volts at 9.2 amps. AC. Output: 115 volts 400 cycles, 3 phase 100 voltamp. continuous duty. Price $\$ 39.50$ each
struction approx. size $41 / 2^{\prime \prime} x$
struction ap

Forwerd \& Reverse 21/4-0-21/4. Input shaft spline gear 12 teeth $9 / 32^{\prime \prime}$ dia. $3 / 9^{\prime \prime}$ long. $15 / 32^{\prime \prime}$ long. Control shaft $11 / 32^{\prime \prime} \times 3 /{ }^{\prime \prime}$ long. Cast aluminum construction. Approx.
(All Shafts on Both Ball Bearing Supported)

## SELSYNSSYNCHROS



ICT Cont. Trans. $90 / 55 \mathrm{~V} 60 \mathrm{cy}$. DG Diff. Gen $90 / 90 \mathrm{~V} 60 \mathrm{cy}$. IG Jen. 115 V 60 cy . isf Syn. Mtr. $115 / 90 \mathrm{~V} 400 \mathrm{cy}$. 2 JIFI Gen. $115 / 57.5 \mathrm{~V} 400 \mathrm{cy}$. 2J $1=3$ Gen. $115 / 57.5 \mathrm{~V} 400 \mathrm{cy}$.
$2 ग 1 / 2 \mathrm{Al}$ Gen. $115 / 57.5 \mathrm{~V} 400 \mathrm{cy}$. $2 \mathrm{JIj1} 57.5 / 57.5 \mathrm{~V} 400 \mathrm{cy}$. 2 JlHI Diff. Gen. 575 V 400 cy 2 J 531 Cont. Trans. $105 / 55 \mathrm{~V} 60 \mathrm{cy}$. $2 J 5=1$ Cont. Trans. $105 / 55 \mathrm{~V} 60 \mathrm{cy}$ $2 J 5 \mathrm{II}$ Gen. $115 / 105 \mathrm{~V} 60 \mathrm{cy}$. 2 JIJMl Gen. $115 / 57.5 \mathrm{~V} 400 \mathrm{cy}$.
5 CT Cont. Trans. $90 / 55 \mathrm{~V} 60 \mathrm{cy}$. 50 Jiff. Mtr. $90 / 90 \mathrm{~V} 60 \mathrm{cy}$. 500 G Diff. Gen. $90 / 90 \mathrm{~V} 60 \mathrm{cy}$. 5 F Jyn. Mtr. $115 / 90 \mathrm{VAC} 60 \mathrm{cy}$. 5 G Syn. Gen. 115/90VAC 60 cy . 5 H CT Cont. Trans. $90 / 55 \mathrm{~V} 60 \mathrm{cy}$. 5SDG Diff. Gen. 90/90V 400 cy . 60G Diff. Gen. $90 / 90 \mathrm{~V} 60 \mathrm{Cy}$. 7G Syn. Gen. 115/90VAC 60 cy . R11J-2A Kearfot Cont Mtr
R11J-2A Kearfo
115 V 400 cy
R2 $\sigma^{-1-1}$ A Kearfott Cont. Trans.
2/11.8V 400 cy
R2 10-1-A Kearfott Trans.
$2 \mathrm{z} / 118 \mathrm{BV} 400 \mathrm{cy}$.
R200-T-A Kearfott
2b/118V400 cy.
R2 $25-1 \mathrm{~A}$ Kearfott Resolver colll 8 V 400 cy

Rep. 115
C6S405-2 Type 1-1 Transm
115 V 60 cy .
Cos 406 Syn. Transm. 115 V 60 cy
C6S406-1 Type $11-2$ Rep. 115 V 60 cy C7e 166 Volt. Rec. 115 V 60 cy . C7E 248 Syn. Transm. 115 V 60 cy . C7E249 Syn. Diff. 115 V 60 cy .
 $55^{-} 3$ ransm. Type 1.4 is 60 cy. 20.00
 40 Kollsman Autosyn. Mtr. 32 V 60 cy . FPE-25-11 Diehl Servo Mfr FPE. 13 -1
FPE-43-1 Resolver 400 cy .
FJE-43-9 Resolver 115 V 400 cy . $90-0411$ Kollsman 26 V 400 cy .
13.70410 Kollsman 26 V 400 cy $15 \cdot 5 \mathrm{~B}-0410$ Kollsman 26 V 400 c 10 m -2-A Bendix 26 V 400 cy . 2900 Transicoil 115 V 400 cy .
15 CX . 22 MOD 1

No. 146
$\$ 17.50$ ea.


No. 145 \$17.50 ea.

$\$ 37.50$
37.50
3 37.50
3 37.50
37.50 37.50
12.50 12.50
7.50 7.50
10.00 10.00
7.50 7.50
5.00
7.50 $\begin{array}{r}5.00 \\ 7.50 \\ \hline 7.50\end{array}$ 7.50

17.50 | 17.50 |
| :--- |
| 17.50 | 17.50 17.50

34.50 34.50
34.50 34.50
34.50 34.50
34.50 34.50 34.50
42.50 42.50 12.50
25.00 25.00
34.50 34.50
$\mathbf{4 2 . 5 0}$

## SIMPLE DIFFERENTIAL

1:1 reverse ratio, 60 teeth on large gear $1 / 4^{\prime \prime}$ shaft. Size: $3^{\prime \prime}$ long with 1-15/16' dia.
$\$ 3.95$ ea.

## DIFFERENTIAL



Size $2-11 / 16^{\prime \prime}$ long
$1-11 / 16^{\prime \prime}$ dia. $1-1$ reverse ratio. $1 / 4^{\prime \prime}$ shaft on each end; one shaft $25 / 32^{\prime \prime}$ long, one shaft 15/32" long. Input $15 / 16^{\prime \prime}$ dia. 60 teeth
\$3.50 ea.

## LINK COLLIMATOR Projects infinite light in alignment of precision optical instru <br>  Nav. Trainer. 5' <br> acromat 2 Siock cemented lons, approx 04

 length. Includes first-surface mirror reflector length. Includes first-surface mirror reflector.Also serves as telescope Size: $141 / 2^{\prime \prime} \mathrm{L}$. $x$. $73 /$ B $^{\prime \prime} \mathrm{W}$. Used, excellent cond. Originally over $\$ 200$ \$25.00 F.O.B. Pasadena.

POWERSTAT, 400 CYCLE, 3 PHASE Mfgd. by Superior Electric, (Type S1308) 115 volts. Maximum output: 0-130 volts, 15 amp. Motor driven by 24 volt DC. Gear head motor with limit switches.

## 3800 CYCLE INVERTER

Mfgd. by Eclipse-Pioneer \#12144-1-A input: $24-30$ volts DC, 10 amps $A C$. Output: 115 volts, .95 amps, 3800 cycle, single phase. Approx. weight $21 / 2 \mathrm{lbs}$

## UTILITY RECTIFIER

27 volt DC, 40 amps, intermittent duty. Input: 220 volts, 60 cycle, single phase, 9 amps. Mfgd, by Strong Electric Corp. Model \#16200-8. Dimensions: $12 \times 18 \times 20 \quad$ Priced at $\$ 75.00$

## SMALL DC MOTORS


(approx. size overall $33 / 4^{\prime \prime} \times \quad 11 / 4^{\prime \prime}$ dia.:.)
Governor Controlled $\quad \$ 15.00$ ea 5069600 Delco PM 27.5 VDC $250 \mathrm{rpm} \quad 12.50$ 5069230 Delco PM 27.5 VDC 145 rpm 15.00 5068750 Delco 27.5 VDC 160 rpm w, brake 6.50 5068571 Delco PM 27.5 VDC 10,000 rpm ( $1 \times 1 \times 2{ }^{\text {" }}$ )
5069625 Delco 27.5 VDC
$120 \mathrm{rpm} w /$ governor
5069790 Delco PM, $27 \mathrm{VDC}, 100$ RPM, VOC, 100 Governor Controlled 5BA10AJ52 27 VDC 145 rpm reversible 1250 5BA10AJ50, GE 12 VDC I 40 R.PM. 15.00 206-1001 PM Planetary Gear Reduced Motor with Magnetic Brake. Mfgd. by Air Equipment 26 volts 600 ma 145 5BA1OFJ33, G.E., 12 VDZ, 56 R.P.M., reversible
806069 oster series reversible $1 / 50 \mathrm{~h} . \mathrm{p}$. $10,000 \mathrm{rpm} 27.5 \mathrm{VDC} 15 / \mathrm{g}^{\prime \prime} \times 31 / 2^{\prime \prime}$ C-28P-1A 27 VDC $1 / 100$ h.p. $7,000 \mathrm{rpm}$ $7100-B-P M$ Hansen 24 VDC 160 rpm SSFD-6-1 Diehl PM 27.5 VDC 10,000 6 -volt PM motor mfgd. by Hansen 5,000 $\mathbf{r p m}$ 11/4" in dia., 2" long overall

| 50 MICROAMPERE WONDER RELAY <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  $\qquad$ <br>  $\qquad$ <br>  <br>  $\qquad$ |
| :---: |

GET NEW FREE RELAY CATALOG SEE INFRA-RED!



## VHF CHECKER WITH SCOPE DISPLAY 150.240 MC <br> Brand new unit made for Alr Forees, so you know that it is made rigit. Signai generator, fects     A $\$ 1200$ set. BRAND NEW With all tubes and instuction book. TS-182. <br> \begin{tabular}{|c|} \hline \multirow[t]{3}{*}{$$
\stackrel{\pi}{c}
$$

 <br>\hline <br>
\hline <br>
\hline
\end{tabular}

GO/NO-GO TEST SET X-BAND WAVEMETER ECHO BOX


FRONT END FOR
HARMONIC AND NOISE ANALYZER


WIDE RANGE RECEIVER:

 input and so coax anttenna
fideo output loscope and for ouscil
to a pantadapter. $2^{u \prime \prime} 0.1$ ma meter fortuning. IF and AF gain eontrols,
Excellent condition anil
atecell $\$ 129.50$
at only.

PANADAPTER FOR ABOVE: ${ }_{1}$ Navy suply buit in. 30 mc
Exelelientil con $\$ 75.00$
dition, only.

All prices Fi.O. B. subb Items subj. to prior sale

## FOR MORE QUALITY-PER-DOLLAR, BUY RECONDITIONED TESE = OUM - M = M

WE WILL QUOTE ON NEW AND USED TOP-QUALITY COMMERCIAL BRANDS AND SELECT MILITARY SURPLUS ITEMS IN OUR GHOICE STOCK, TO YOUR NEEDS.


## AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to $4,000 \mathrm{Mc}$; wideband discone and other antennas, wavetraps, mobile accessories, 100 page technical manual, etc. Versatile accurate, compact-the aristocrat of lab receivers in this ange. Write for data sheet and quotations.

SIGNAL GENERATORS IN STOCK INCLUDE:
TS-437 SG-47/USM-16, $10.440 \mathrm{Mc}$. , (see "BJ-75A", p. 578, 1956 TS - $033 / \mathrm{U}$ AN/URM- $611800-4,000 \mathrm{Mc}$. (Hewlett-Packard 616A) TS.497A/URR 2-400 Mc. (Measurements Model 80)
TS. 600 (XA) /U 100.1 .000 Mc . (Allen D. Cardwell)


ENGINEERING ASSOCIATES
434 PATTERSON ROAD

is back! With bigger bargains ever!' INDUSTRIAL CONDENSERS 00 volts B) 100 mid . 4,000 volis C) 120 mifi. 3.000 volts. $\$ 19.95$ 䍡
$\$ 69.95$ 圆
$\qquad$ 1-222 SIGNAL GENERATOR-MICROVOLTER
 schematic. Cost the Gort. approx. $\$ 49.95$
$\$ 700.00$ Brand New.................
RCATV CamERA
NEW Surplus 100's SOLD!
Only few left
Only few left
at this price!

mit Tons. medics-" mechantcal ave", for closed

- fler and coipper THE REEAL THING! Send for

SOLD At FRACTION OF REAL $\$ 197.50$

- Test Equipment $\mid$ Radar Equioment

AN/UPM-1, $-7,-8,-10$
AN/GPM-14
TSE-10C
TS-19, $-15,-1$
TS-19
TS-24
S
TS-28
TS. $32 ;-33,-34,-35$
TS-36,
TS-47,
TS
TS
TS
TS 89,
TS
UHF Miero-Volter
Model 10
TS-125, -143
TS-182,
TS 204,
2184
TS-234, -235
TS-251, -261
TS $\mathbf{~ 2 6 8 ,}$-294C
TS-488
TSX-45E
$1-56$
$1-122,-166$
$1-222$

| $\mid-222$ |
| :--- | :--- |
| IE-12 |
| I- |



 APS $-4,-6,-15$
SCR-717, -720 SLAPQ-13 APT-5A ART-26
GROUND
ELECTRONICS ARB ART-13 BC-34

BC-191 $\begin{array}{ll}\mathrm{BC}-191 & \mathrm{BC}-348 \\ \mathrm{BC}-222 & \text { BC-375 } \\ \mathrm{BC}-224 & \mathrm{CRT}\end{array}$ | $\begin{array}{ll}\mathrm{BC}-312\end{array}$ | $\begin{array}{l}\text { CRT-3 } \\ \text { TCS-12 }\end{array}$ |
| :--- | :--- |
| $\mathrm{BC}-314$ |  |

| Electronics |  |
| :---: | :---: |
| ARC-1 | ARC-27 |
| ARC-3 | MN-62 |
| ARC-4 | MN-55 |
| ARC-5 | [P-21 |
| ARC-12 | [P-31 |
| ARN-6 | A5313-B |
| APN-9 SCR $718 \mathrm{Cl} \mathrm{C}^{\text {RTA }}$ |  |
|  |  |
| INVERTERS <br> PIONEER 12142-1A |  |
|  |  |
|  |  |
|  |  |
| Pioneer 12117Pioneer 12123 |  |
|  |  |
| Pioneer 12123Pioneer 12133 |  |
| DY-11, -12, -17 |  |
|  |  |
| PE-206 | 21NJ3A |



SAVE 90\%
PORTABLE WIRE RECORDER
$\square$
rype $\mathbf{I C} / \mathbf{V R W}$ - - Manufactured hy CRS volts DC at 70 W . for complete operation.
Ideal for recording conversations between pilot and tower. Has two inputs for mike mately $\$ 350.00$ (Can be used on 6 and boats, etc. with smat cars.\$3500
WE NEED \& PAY TOP MONEY FOR:

$\underset{\text { RT- } 13}{\text { RC-3 }}$
APN-9
Alt Typer of Military, Test, and Com88

$$
\begin{aligned}
& \text { ation EHuip, TS } \\
& \text { TS-147D. TS-148, ete. }
\end{aligned}
$$

ALVARADIO INDUSTRIES
Maining Address
P.O. Box 151-E, No. Hollywood, Calif. Office-Warehouse
5523 Satsuma Ave., No. Holly wood, Calif.


SPECIAL PURPDSE TURES

all tubes are new, individually carioned, fully guaranteed
western engineers
Prices are $F O B$
shipping point

Orders for less than
ELK GROVE, CALIFORNIA
SUPPLIERS OF TUBES SINCE 1932

810 cannot b
processed

## SEARCHLIGHT SECTION



Manufacturers, exporters, and large quantity users-Inquire on your letterhead for our inventory listing of receiving tubes, special purpose tubes, resistors, condensers, and other radio and television parts.


##  <br> 418 Broome St., N. Y. 13, N. Y. <br> Telephone CAnot 6-8404



All boxed and fully guaranteed. Special
quantity discount- $10 \%$ on 100 or more of same type. Minimum order $\$ 10.00$. Thousands of other types in stock. Send us
your requiremients. F.O.B. New York $25 \%$ your requiremients. F.O.B. New York 25\%
deposit with order or if paid in advance save C.O.D. charges. Rated firms net 10 days. Prices sublect to change without
notice. For fast service ask for Sy .


831R

M359A

831AD

## SENSITIVE RELAYS

 10,0000 Sigma $5 R$ J hermet sealed SPDT..... 53.95 $12,000 \Omega$ Sigma 22RIC spdt sealed minlature ixixl-
 2,500 Sipma 22RJCC, sealed, dpdt........... $\$ 6.95$
4,5002 Allied LKHX sealed $2 \pi .0 .1$ in.c. or conneot

 $6 \mathrm{vdc}^{12} \mathbf{v o}$ ohm Clare K , mnlature 6 vdo 3pdt Clare Herm. sealed 2pd............. $\$ 1.95$ TIME DELAY relay Haydon, $i 10$ v. 60 oy. add.
5 sec. steps to 40 sec. max.................. $\$ 6.95$
 $71023,500 \Omega$ prices on request.

 Many other industrial ttems avalleblo-now excese invontory materlal sold with movey back guarantes. Inquities invited.

EMPIRE ELECTRONICS COMPANY
74 Cortlandt St., N. Y. 7, N. Y. WOrth $2-5272$

WE ARE NOW AT OUR NEW PLANT ADDRESS

## COMMUNICATION EQUIPMENT

for all TYPES of SIGNAL CORPS, MARINE and INDUSTRIAL USE . . . IN STOCK
AN/PRC-10; AN/GRC-13; SCR-300
All complete with spares, plus our regular stock of other communications equipment and accessories. All available in quantities.
COMMUNICATION DEVICES CO.
COMMUNIDEV, GREATNECK N. Y.
269 EAST SHORE ROAD, GREAT NECK, N. Y. HUNTER 2-2320, 1, 2

\section*{NEED METERS? STANDARD or SPECIALS <br> any quantity-NEW-mllitary <br> | $0 R$ | electronic-mlitiary AIRCRAFT-HAMS |
| :---: | :---: |
|  | MAKESS-MODELS ranges-SIZES |
|  | $\text { ERS } \begin{gathered} \text { Repalired } \\ \text { ReSccaled } \\ \text { Recalibrated } \end{gathered}$ |

WRITE - PHONE - WIRE
INSTRUMENT SERVICE
76-14 Woodside Ave.
Elmhurst 73, N. Y.
CAA No. 4264 Ltd. HA 9-2925


IF THERE IS

## Anything you want

that other readers of this paper can supply

## OR-

## Something you don't want

that other readers can use, advertise it in the

SEARCHLIGHT SECTION

TUBES $\star$ Brand New! Guaranteed! $\star$ Gigantic savings! Act now! $\star$ Lowest open-market quotes!

| BROADCAST TUBES |  |  |  |
| :---: | :---: | :---: | :---: |
| AIR COOL | LED | 1619 | 5.30 |
| 2 H 21 | \$50.00 | 1620 | 3.50 30 |
| 3 C 33 | 15.00 | 1625 | . 30 |
| 3 E 29 | 8.25 | w. E. TUBES |  |
| 4 E 27 | 7.00 |  |  |
| 4-400A | 44.00 | 251 A | 4.00 |
| 4-1000A | 150.00 | 2678 | 4.95 |
| 5023/RK65 | 7.00 | 272 A | 57.25 |
| ${ }_{15 \mathrm{C}}^{61}$ | 15.00 1.20 | 3008 $305 A$ | 5.00 2.75 |
| 24 G | 2.00 | 310A | 3.50 |
| HK24 | 2.00 | 3118 | 3.75 |
| 53 A | 5.00 | 313 C | 1.75 |
| HY65 | 1.40 | 316 A | . 40 |
| 100 TH | 5.00 | 327 A | 3.50 |
| VT127 | 1.50 | ${ }_{3} 328 \mathrm{~B}$ | 5.00 7.50 |
| VT-127A | 2.50 | 337 A | 4.75 |
| F-128A | 7.25 9.50 | 348 A | 4.75 |
| 211 | . 40 | 349A | 5.00 |
| 227 A. | 3.75 | 354AWE. | 19.00 |
| 250TH | 21.00 | 3568 B | 3.25 |
| 250 TL | 12.00 | 359A. | 1.50 |
| 450TH | 40.00 | 371A. | 1.00 2.10 |
| ${ }^{471 A}$ | 4.00 | 374A. | 3.25 |
| HK 654. | 15.00 | 381A | 5.00 |
| 750 TL . | 30.00 35 |  |  |
| 801 A | . 35 | AIR COO |  |
| 883. | 8 | $3 \times 250043$. | 150.00 |
| 814 | 2.00 | $3 \times 2500 \mathrm{~F} 3$. | 150.00 |
| 815 | 1.25 | $4 \times 1504$. | 18.50 |
| 828 | 8.00 | 4×150D... | 20.00 |
| 829 | 3.50 | 4×150G... | 28.50 |
| 8298 | 8.00 | 4×2508... | 38.00 |
| 830B | . 45 | 5680. | 130.00 |
| 832A | 5.75 | 5736 | 110.00 |
| 838. | . 70 |  |  |
| 838 W | 4.00 | COOLE |  |
| 8845 | .35 3.00 | F129B. | 145.00 |
| 852 | 4.00 | 2208 ... | 55.00 |
| 864 | . 25 | 508 | 190.00 |
| 1611 | 1.00 | 858 | 140.00 |
| 1613 | . 90 | 880 | 200.00 |


| 5.000 SERIES 8 UP |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5517 | \$1.00 | 5719 | 51.50 |  | 33.00 |
| 5588 | 75.00 | 5719A | 2.75 | 59774.... | 3.00 |
| 5610 | 1.00 | 5722 | 3.25 | 5995 | 9.75 |
| 5633 | 5.75 | 5725 | 2.00 | 5992 | 12.00 |
| 5635 | 6.00 | 5726 | . 70 | 5993. | 9.00 |
| 5636 | 2.85 | 5726/6097/ |  | 5995. | 1.60 |
| 5637 | 3.75 | 6AL5W | 3.00 | 6005 | 1.75 |
| 5639 | 5.75 | 5744 | 1.00 | 6021. | 3.85 3.95 |
| 5640 | 5.85 | 5744 WA | 5.50 | 6073 | 2.95 |
| 5641. | 4.75 | 5749 | 1.20 2.25 | 6073. | 4.75 |
| 5642 | 1.00 | 5750 | 2.25 2.00 | 6080 Ẅ | 6.50 |
| 5643 | 4.50 6.25 | 5751 Wä | 3.50 | 6087.... | 4.00 |
| 5645 | 5.75 | 5763. | 1.10 | ${ }_{6096 .}$ | 1.30 1.90 |
| 5646. | 4.50 | 5783. | 4.25 | ${ }_{6099} 609$ | 1.90 |
| 5647 | 4.50 140 |  | 4.75 7.00 | 6100. | 2.00 |
| 5651 | 1.40 | ${ }_{5787}{ }^{\text {5784 }}$ WA | 7.00 | 6100. | 2.00 |
| 5651 WA . | 3.25 | 5787\% Wa' | 4.50 5.50 | 6106. | 8.50 |
| 5654 | 1.00 | 5794... | 5.60 | 6110. | 5.50 |
| 5654/6A |  | 5814 | , 50 | 6111 | 3.95 4.50 |
| 6096. | 2.95 | 5814A. | 1.50 3.00 | 6112 | 4.50 3.00 |
| 5658. | 6.75 | 5814 WA | 3.00 | 6147 | 3.00 6.00 |
| 5663 5670 | 1.20 | ${ }^{5829} 5$ | $\underline{1.50}$ | 6159 | 6.00 3.00 |
| 5670 5670 | 1.00 4.25 | 5889 58. | 3.50 | 6161 | 45.00 |
| 5672.... | 1.25 | 5840 A | 4.75 | 6201/ ${ }^{\text {atiwa }}$ |  |
| 5677 | 5.00 | 5844 | 1.40 | g211 ${ }^{\text {12ATIWA }}$ | 1.50 |
| 5678. | 1.00 1.70 | ${ }_{5851}^{584}$ | 1.00 3.50 | 6263. | 11.50 |
| 5686. 5687 | 1.70 2.40 | 5854 | 1.30 | 6279/5C22 | 27.00 |
| 5687 Ẅ' | 4.75 | 5876. | 7.00 | 6280/416B.. | 35.00 |
| 5691.... | 4.75 | 5896 | 3.00 | 6386. | 5.00 |
| 5692 | 5.00 | 5898 | 7.50 | 7193. | 1.00 |
| 5693 | 4.25 | 5899 5899 | 4.00 5 | 80125A | 1.75 |
| 5696. | 1.00 | 58992.... | 5.85 4.00 | 9001. | . 75 |
| 5702 W\% ${ }^{\text {570 }}$ | 1.50 | 5931/5U4iwc | G4.75 | $9002 . . . .$. | . 50 |
| 5703WA | 4.00 | 5932...... | 3.50 | 9003 | 1.00 |
| 5704. | 1.50 | 5933. | 1.50 | 9004 | 2.75 |
| 5718. | 1.75 | 5967 | 10.00 | ${ }_{9006}^{9005}$ | $\begin{array}{r}2.25 \\ \hline\end{array}$ |
| 5718A | 4.00 | 5969 | 10.00 |  |  |
| RECTIFIERS \& REGULATORS |  |  |  |  |  |
| OB2. | \$ . 60 | 5R4GY | \$1.25 | 314 A | \$80.00 |
| OB3 | . 75 | 5R4WGY | 2.75 | 371 A | 1.00 2.50 |
| OC3. | . 60 | 5Y3WGT | 1.50 | 3718 B RCA | 13.50 |
| OD3. | . 55 | $5 \times 3$ | 2.20 | 515A RCA | 13.50 |
| SB | 2.00 | 6-4....... | 1.00 | 575A |  |
| SC | 1.95 | 6-7 ${ }^{\text {6-11 }}$. . | 1.00 1.00 | 816 | 1.40 |
| ${ }_{2}^{1 V}{ }^{\text {C }} 3$ | 12.90 | 7-11. | 1.00 | 836 | 1.20 |
| $2 \times 2$. | 12.25 | 15R | . 30 | 8664 | 1.20 |
| $2 \times 2 \mathrm{~A}$. | 1.00 | RX21. | 5.00 | 869 B | 12.50 1.15 |
| 3824. | 1.35 | 100R 24980 | 1.75 3.00 | 876. | 1.75 |
| 3B24W. | 4.75 | 249 C | 3.00 | 878 | 50 |
| 3B28. | 4.00 | 250 R | 4.95 | 5931/5U4 W | G 4.00 |
| 3B29 | 5.95 | 267B..... | 4.95 | 8013 | 0 |


| SCOPE TUBES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2AP1 | \$2.75 | 3EP1 | \$1.25 | ${ }^{5} \mathrm{JP1A}$. | 525.00 |
| 28P1 | 5.95 | 58P1A | 8.50 | 5NP1. | 2.00 |
| 3AP1 | 2.75 | 58 PP 4 | 2.25 | 78P1A. | 15.00 |
| 3 CP 1 | 1.75 | 5CP1 | 1.75 | 7CP1. |  |
| 3DP1S2 | 4.75 | SCP1A | 7.00 | 9LP7. | 10.00 12.00 |
| 3FP7. | 2.50 | ${ }_{5} 5$ CP11 ${ }^{\text {d }}$ | 8.00 |  |  |
| $3 \mathrm{GP1}$. | 2.00 | 5CP11A | 8.50 2.50 | 902P1.... | 2.25 |
| $3 J P 1$ $3 W 2 P 1$ | 7.50 50.00 | 5JP1. | 8.75 |  |  |


| KLYSTRONS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1K015 XA/ K481 | $2 K 55$ | \$14.00 | 7264 | \$4.75 |
| $\text { B,C,D } 540.00$ | $\mathbf{3 K} 30$ | 95.00 | 7268 | 14.00 13.00 |
| SRX16... 100.00 | 68L6 | 24.00 | ${ }_{5611}$ | 40 |
| $2 \mathrm{~K} 25 . . .{ }^{12.00}$ | 6BM6 | 29.50 32.50 | ${ }_{5721}$ | 135.00 |
|  | $\mathrm{V}_{45}^{68 \mathrm{M}}$. | P.0.R. | 5981/5650 | . 60.00 |
|  | $\checkmark 50$ | 80.00 | 6116. | 90.00 |
| 2K48...... 50.00 | $\checkmark 82$ | P.O.R. | 6236 | 160.00 |
| $2 K 54 . \ldots . . .14 .00$ | 723A/B | 7.00 |  |  |


| LIGHTHOUSE TUBES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2C39A | \$10.00 | 3 C 22 | \$60.00 | 464A | \$1.90 |
| 2 C 40 | 7.00 | 4 C 27 |  |  | 1.400 |
| 2 C 42 | 8.75 7.75 | 446 A | 1.24 | $8014{ }^{\text {8 }}$ | 60.00 |
| 2 C 43 $2 \mathrm{C46}$ | 7.75 5.00 | 4468 | 1.24 | 8014 A | 6.00 |


| TR. AND ATR. TUBES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1824 | 55.50 | $1 \mathrm{B47}$ | 57.00 | 532A |  |
| 1824A | 12.50 | 1B63A | 18.50 | 709A | . 65 |
| 1835 | 3.50 | 1858 | 45.00 | 7248... | ${ }^{6} .65$ |
| 1B35A. | 8.00 | 1922... | 40.00 | $6232 \ldots \ldots$ | 17.00 |
| 1837. | 7.00 | 1923... | 50.00 |  |  |
| $1 \mathrm{B4} 4$ | 2.00 | GA4. | 4.00 |  |  |
| DIODES |  |  |  |  |  |
|  |  |  |  |  |  |
| 1N21. | \$ .45 | 1N25 | \$2.15 | 1N38A..... |  |
| 1N21C | 2.00 | 1N32. | 8.75 | 1 N 44. |  |
| 1 N 23 B | . 80 | 1N34A | . 45 | CK705. |  |
| 1N23C. | 2.25 | 1N38.. | . 50 | 6006 ......P | .O.R. |
| COMPUTER TUBES |  |  |  |  |  |
|  |  | 6AN5WA. | \$4.75 | 6211 | \$1.10 |
| 6AN5 | 2.75 | 5965.... | 1.20 |  |  |

All items fOB. Las Angeles, subject to prior sale and change of price without notice. Write for unlisted fitems or call
REpublio 5-0215

Cable VHRADELECT. Belf Teletype:

## SEARCHLIGHT SECTION




## UNEQUALED COVERAGE!!!

The SEARCHLIGHT SECTION offers advertisers unequaled coverage of the three fields which ELECTRONICS penetrates.
The first being the designers, manufacturers, and users of electronic and allied equipment.

The second field, Communications, Electronics serves the operation and main tenance engineer in every type of wireless and wire communication.
In Electronics third field, namely the industrial, there is horizontal penetration to all types of industry where users of industrial electronic equipment for control,
measurement and safety are found.
The SEARCHLIGHT SECTION can be used at a small cost to announce all kinds in the Electronic and needs to other men in the Electronic industry.
for more information write to the
Classified Advertising Division,
ELECTRONICS
Post Office Box 12 New York 36, N. Y.

## AN CONMECTORS <br> FAST DELIVERY <br> FROM STOCK <br> Let us quote on your requirements. <br> LOW PRICES

All comply with government specifications


Cadmium or olive drab finish.

RADAR
P.P.I. REMOTE REPEATERS vo Z", Upright
E.7" Taphent Type
 VG. $24^{\prime \prime}$, 110ting
K-12" Unomitht
VLilit Upitht R.H.I. IND.
AN/APR-4
38-4000 MC RECEIVER


## RDO

NAVY SEARCH RECEIVER The RDO is a very elaborate radar
search receiver greatly improved ver the APR-4, The set uses
 APR-4 tuning, units, but is much $\begin{gathered}\text { more versatile, having input metering. D.B. output }\end{gathered}$ more versatile, having input metering. D.B, output
moter, automatic noise limiter and greater selectivity and sensitivity. The RiDo is recomniended when only

AN/ASQ-1 AIRBORNE MAGNETOMETER
This is an airborne chart recording magnetometer. The set consists of an amplifier, oscillator, detector head has a sensitivity of 2 gamma. The AN/ASQ-1 records on an Esterline angus recorder disturbance in the earth's magnetic field. An indicator is provided that gives a bearing on a magnetic disturhance. Input is $28 \%$ DC. Weight about l30 Ws.

## SHORAN

## AN/APN-3-AN/CPN-2

The AN/APN-3 and AN-CPN-2 are Precision distance measuring installations. This equipment operates, on 225 mc . The range is 250 miles with an accuracy of 25 teet. This equipment is widely used by geological com panies for prospecting a
110 v 400 cyc and 28 v D.

## 

87-17 124th St., Richmond Hill 18, New York, N. Y. Phone VIrginia 9-8181-2-3
overseas customers call us directiy by telex overseas TELETYPE TWX N. Y. *4-4361

## AN/GSQ-1 SPEECH SCRAMBLER

 equipment utilizes cosed cards in each terminal equlp
 This provides an excellent prin
put. Mft. Western EElectic.

## AN/TPS-1B

200 MILE AIR SEARCH RADAR The TPS.II is a very late type Livand monile or portationar search raar. to to.000 tt. The set is com-



## GROUND INSTRUMENT LANDING SYSTEM

This set consists of a AN/CRN-10 localizer and a AN/CRN-2 glide path ground station. This equipment can be set up at an airport to provide a compiete RC. 103 airborne I.L.S. system to provide blind approach facitities. This system can be installed permanently or transported. Each station has complete monitoring taeil. Input power is 110 V 60 cyc

## AN/TRC-1-3-4

100 MC RADIO-RELAY EQUIPMENT The AN/TRC series is a mobilite eortabie set for duplex or simplex radio eelephone point to point communica.
tion. This set will operate with the CF series carrier



## WILCOX 602A

## 30-200 MC CRYS. CONT. RECEIVER

 The 602A receiver is a fixed freq orystal controlled freq. in the range of $30-200 \mathrm{MC}$ by simply changing the crystal and retuning the front end. There are no coils to change. The $30-200 \mathrm{MC}$ range is covered in oneband. Sensitivity is 5 microvolts. A squelch and automatio noise limiter is provided. Mounts in a 19 " rack manel. Input llov 60 cyc 60 watts.


## MAR <br> POINT TO POINT RADIO SET

Portable $225-398$ me point to point 10 chan. crystal controlled voice and mew radio set. This is a very late radio set used for point to poniter output is 8 watts on 10 pre-set crystal controlled channels instantly selected by a band switch. The RFC is also crys. controlled on the trans. freq. The set is inclosed in 3 water proof shock proof cabinots that may be set up in a few minutes on location. This equipment is ideal where a rellaber input is link easily transported is needed. Power input is
either $24 \vee D C \quad 115 / 230 V$ AC or $D C$. Complete sets avail. Write

## MISC. EQUIP.

SCR-931-A $1.5-20 \mathrm{mc}$ direction finder SCR-399 $1.5 \mathrm{mc}-18 \mathrm{me}$ mobile radio SCR-499 $1.5 \mathrm{mc}-18 \mathrm{mc}$ field radio SCR-508-528 28 mc . FM field radio SCR-608-628 30 me FM fleld radio SCR-505-A field radi
AN/APA-II pulse analyzer
AN/APA-11 pllse analyzer
AN/APR-5 $1,000-3,100 \mathrm{mc}$ receiver
AN/ARC-1 $100-156$ radio set
AN/GRC-9 field radio
AN/TXC-1 page printing facsimito
AN/TRC $7100-156 \mathrm{mc}$ walkie talkio

Noise and fleld strength measuring equipment
Test sets TS-I THRU 800

## COMMUNICATIONS

## \& TEST EOUIPUENT

Top quality communications and test equipment at low prices.
Here are a few leaders.
APR-4-Laboratory recelver w/TN16, 17 \& 18
ARC-1 \& ARC-27-Transmitter-re ceivers
ARN-6 \& 14-Radio compass recelv--r
ART-13-100 W Transmitter Air BC-375-Unused surplus, original packing, transmitters and tuning
I-208-FM Signal Generator
SCR-508
transmitter-receiver push-button transmitter-receiver
TS-147D/UP-X band test equipment
TS-323/UR-Frequency meters w/ erystal calibration book. Frequency coverage 20-450 Mc. Accuracy
TS-155A
Prices on request only Immediate Delivery

We buy clean communications and test equipment unmodifled. Top prices.

MONTGOMERY EQUIPMENT CO.
14315 Bessemer St. Van Nuys, Celifornia Telephone: STate 6-4657 Cable Address MONTEQUIP

## 

400-CYCLE PRECISION CHOPPERS


## RUMPLE ClO2

 Freq.: 380 to 420 cps; Drive: 6.3volts $\pm 10 \%:$ Imp. 38 ohms $\pm 25 \%$ at 400 cps ; Dwell Time: $135^{\circ} \pm 20$ ( 0.81 min. to 1.15 max. millisec);
Symmetry: Positive and negative Symmetry: positive and heycles do not differ hyore than $15^{\circ}$ : Bounce: Less than and last $15^{\circ}$ of dwell time: Phase lag between coil reference voltages at $90^{\circ}$ or $270^{\circ}$ points and center of developed square wave: $65^{\circ} \pm 15^{\circ}$; Contacts: SPDT, 100 volts max. and 2 ma max Noise: Less than millivolts peak-to-peak menal connected to ground through a one terminal connected to ground through a one $+85^{\circ}$ C; Units tested al absolute pressure equal to 1.3 inches of mercury $(70,000 \mathrm{ft}$
altitude): Vibration: $10 \mathrm{~g}, 10$ to 55 cps ; Not damaged by 30 shocks of 30 g : Dielectric Withstands 280 volts DC or 200 volts rms between contacts and coil or resistance as measured with 500 volt source is at least 100 megohms between each contact terminal and case, and at least 10 megohms between coil terminals and case Conforms to MIL-E-57578, MIL-E-5272, and others; Weighs less than six ounces; $2 / 8{ }^{1}$ \#R1303

## AIRPAX A580-4

Freq: 400 cyc $\pm 20 \%$ Drive: 120 V ; through external network to produce $0^{\circ}$ phase; Rugged construction in accordance With MILspers; ${ }^{25 \%}$ 1. X $11 / 2$ d. Standara*

## ALL MERCHANDISE IS GUARANTEED AND

MAY BE RETURNED FOR FULL CREDIT
Prices listed with asterisk (*) are subject to
QUANTITY DISCOUNTS QUANTITY DISGOUNTS

$.15 \%$

## THE LARGEST STOCK OF RELAYS IN THE WORLD



Allied's types BO, BN and $\mathbf{P O}$ are sturdy, compact highly efficient, competitively priced relays made with bakelite insulation throughout. Contacts are siver wites for double break contacts (U, W) at 24.710 and 110 VAC . Operat: time at 2 .
B09D35; $24 \mathrm{VDC} ; 3 \mathrm{PDT}(3 \mathrm{C})$; 230 ohm; BO6D35: 24 VDC ; DPDT (2C), 15 Amp 230 ohm; \#R491, © Bo6D33: \# 1483 VDC; DPDT (2C), is Amp 90 olim; \#R1067 2.50 Bo13032: 12 VDC ; SPST (iUj); 25 Amp 702.25 Bo13033, 14 V VC; SPST'(iU), 25 Amp 90 Bo15032: 12VDC; SPDT (iW), 25 Amp $70{ }^{\text {ohm }}$ 2.50* BolsD33: 14 VDC ; SPDT(iw), $25 \mathrm{Amp} 90^{2} 50$ B07031: 9.6VDC; ЗPST (3A), 15 Amp 373.00 po9034: \#R1070; 3PDDC (3C); 230 ohm: ${ }^{3.00 *}$ PO12D34: 24 VDC \#PDT (4C); $230^{\circ} \mathrm{ohm}{ }^{3.00}{ }^{\text {* }}$ PO11034. 24 VDC, $1 A, 3 C$ ' 230 ohm; 4.25 \#R631 4.00* BN18D33: $24 V D C ; 6 P D T(6 C) ; 175$ ohm; 4.75* Send for latest Circular.

## NEW YORK TUBE \& TEST EQUIPMENT



NEW UNUSED SURPLUS AN/APR 4 LABORATORY

COMPLETE WITH FIVE TUNING UNITS 38 TO $4,000 \mathrm{MC}$

## Special! TS45 X BAND GENERATOR_sgg 00

## SPECIAL! 5,000 V. POWER SUPPLY <br> For IP25 Infrared Image NEW, Converter with RCA 1654 Tube..................y Source.

AIIW MICROWAVE TEST EQUIPMENT
TS148/UP SPECTRUM ANALYZER STI47UP SIGNAL GENERATOR
Field Type X-Band Spectrum Analyzer. Band 8430-9580 MegaWill Check Frequency and Operatlon of various $X$ Band equlp. ment such as Radar Magnetrons, Klystrons. FR Boxes. it wili also measure pulse width, c-w spectrum wldth and Q. or reson. ant cavities. Will also check frequency of signed generators in Generator ote. Availablo new complete with ad accessories. In carrying cases.

OTHER TEST EQUIPMENT USED CHECKED OUT SURPLUS

| TSK1/SE | T35/AP | TS108 | 7\$226 | SURPLUS EQUIP. |
| :---: | :---: | :---: | :---: | :---: |
| TS3A/AP | TS36/AP | TS110/AP | TS239A-TS 239 C | APA10 |
| RF4/AP | 1-96A | TS125/AP | T\$251 | APA38 |
| TS12/AP | TS ${ }_{\text {TS }}$ | TS126/AP | TS258 | APS3/APS4 |
| TS14/AP | TS69/AP | TS174/AP | TS418 | APR4 |
| TS33/AP T\$34/AP | TS100 | TS175/AP | TF890/1 | APT2-APTS |



## APR-4 RECEIVERS <br> Tuning units covering 38 to $4,000 \mathrm{MC}$. ALLTRONICS-HOWARD CO. <br> Box 19, Boson 1, Mass. Richmond 2.0048

## For Sale

One General Radio 1107-A and one Gen eral Radio 617-C Interpolation Oscillator. Both in good condition.

> PETERSEN RADIO CO., INC. 2800 WEST BROADWAY COUNCIL BLUFFF, IOWA

## A BARCAIN FOR YOU in a ... <br> SOLA Constant Volatge End Fluctuating Line Voltage

WANTED

wake up!

ARROW PAYS TOP \$\$\$!
for an AN/ARN-6. AN/ARC-3 or cany of their components also: AS-313 LOOP
Phone us collect STanley 7.0406 on above items.

SIMILAR FABULOUS PRICES FOR:
APR-9 . . ARC-1 ...ARN-7 ...ART-13 PARTS. BC-788-C $\because 1-152-C^{\circ} \therefore$ LP-21AM, LM, or MO-18A or MC-507 from these TS-117, -125,-147, -148, -488. What else do you have in electronics?
ARROW SALES, INC. Dept, E. 7460 VARNA AVE., NO. HOLIYWOOD, CAL.

CASH PAID! Sell your surplus elecunused, clean transmitting, special purpose unused, clean tronsming, TV types, magnetrons, Klystrons, Broadcasf, efc. Also want military \& commercial lab test and communications gear. We swap too, for fubes or chaice equipment. Send specitio detalls in first letter. For falr deai
write, wirs or telephone: WAlker 5.7000
Barry, 512 Broadway, New York 12, N. Y.


## TO GET MOST DOUGH-

 SELL TO HARJO!WE'RE BUYING: BC-224 \& BC-348 RECEIVERS, ARC-3 ART-13 BC-788 R5/ARN-7
ash or trade. Quick action. Top money HARJO SALES CO. Dept. B
503 N. Victory Blve. Burbank, Cali

## WANTED TO BUY SCRAP RADIO TUBES <br> RADIO \& ELECTRONIC MATERIALS <br> ARCO METALS REFINING COMPANY 75 Knickerbocker Ave. Paterson, 3, New Jersey ARMORY 4 -4750

## wanted

Silicon Power Rectifiers For Export We are looking for a contact with a manu facturer of Silicon diodes or complete rectifier sets.

INGENIÖRSFIRMAN MYRÉN \& CO
Box 288
Gothenburg, Sweden

New Advertisements
received by May 3rd will appear in the June issue subject to space limitations. Classified Advertising Division ELECTRONICS
P. O. Box 12 New York 36, N. Y.

## COMMUNICATIONS EQUIPMENTCO.

PULSE TRANSFORMER


2-715 1000 ohms. $12,000 \mathrm{~V}$. 12.0 Amp . Pulse: $\frac{1}{}$ or $\frac{1}{2}$ usec. at .001 duty ratio. Fitted with magnetron well AGNETBON PULSE TRAONS. $\$ 32.50$ Prim. imp. 30 ohms, 1600 v , pulse.
Secondary imp. is 1250 ohms, 12 KV pulse Turns ratio sec:pri. is $7.5: 1$. Duty ratio RAYTHEON WX 4298E: Primary 4KV., 1.00 USEC. FLL TRANS 'BUILT-IN" ondary; 28 KV , 450 ohms. Pulse length: $1.05 / 5$ usec. E \# K-2748-A, 0.5 useo @ 2000 Pps. Pk....... $\$ 62.50$ 32 KW impedance $40: 100 \mathrm{ohm}$ output. Pri. volts 2.3 Amp. Fitted with magnetron well............ $\$ 24.50$ K-2745 Primary: $3.1 / 2.8 \mathrm{KV}$, 50 ohms Z Secondary: 14/12.6 KV 1025 ohms Z. Pulse length; $0.25 / 1.0$
usec @ $600 / 600$ PPS. Pk. Power $200 / 150 \mathrm{KW}$, Bifilar: 1.3 Amp. Has "tuilit-in" magnetron well.
ondary $14 / 11.5 \mathrm{KV}-1000$ ohms $\mathbf{Z}$. ohms ( Pulse). Secusec @ 600/600 PPS. Pk. Power 200/150 KW, Biflar:

## MICROWAVE ANTENNAS

CM ANTENNA ASSEMBLY: Uses $17^{\prime \prime}$ paraboloid dish, operating from 24 vdc motor. Beam pattern: 5 deg. in both Azimuth and eleration. Sector Scan:
over 160 deg. at 35 scans per minute. Elevation Scan. over 2 deg. Tilt, Over 24 deg.. $300-3300 \mathrm{MC}$, Type AT49/APR-Broadband Conical, $300-3300 \mathrm{MC}$, Type ${ }^{\mathbf{N}}$
 supported with type "N" Connecter.
ASI4A/AP, 10 CM pick up dipole ass length of coaxx and ' $N$ '" connectors. AS46A/APG ${ }^{4}$ Yagi Antenna, 5 element arriy . $\$ 4.50$ $30^{\prime}$ Parabolic Reflector Spun Aluminum dish ${ }^{5}$ element array. $\$ 22.50$ AN/APA: Complete Kit ............................... $\$ 37.50$ L. P 24 Alford loop, for use with glide-path transmitters 18" PARABOLIC DISHES, spun aluminum. Focus ap10 CM ANTENNA ASSY (Airborne), 8 inches dish with coax. dipole feed. Focal length is $101 / 2^{\prime \prime}$ Horiz. polari-
zation 350 deg. aztmuth. Titt: plus and minus 20

## OVERTONE CRYSTALS

These unils are mounted in FT243 holders, and are designed to operate at the 9th overtons. Thus the out-
put of a 16 mc crystal would be 145 mc . Fundamental freqequencies are as follows: (In mes/sec)
$\qquad$


Price

| ec |
| :---: |
| 17. 173 |
| 17.43 |


| 493 |
| :--- |
| .533 |
| 573 |
| 73 |

## 3000 MC WAVEMETER

Mifd. by GE for Armed Services. Calibrated directly
in mes/sec. from 2200 to 4800 mc . Comes furnished with variable attenuator, coax. adaptor cord, and pickup antenna. Has output jack for external meter 20 microamp meter. Brand new, In \$75.00

## 10 CM R.F. HEAD

Complete R.F. Head and Modulator delivers 50 KW
Peak R.F. at 3000 MC . Pulser delivers 12 KV pulse at 12 Amp. to magnetron of 5 , 1 , or 2 microsec, duration at duty cycle of .001 . Unit requires 115 V , $400-2400$
cycies, 1 phase @ 8.5 A . Also $24,28 \mathrm{VCC} 2 \mathrm{~A}, \mathrm{EX}$ Cycdes, 1 phase @ 8.5A, Also 2428 VOC @ 2A, EX
ternal sync. Pulse of 120 V Req'd. Brand new. Com. plete with magnetron, magnet, plumbing and all
tubgs

## TEST SET

TS.146/UP, Radar Test Set, 9285-9465 me. F-M 725A/B osc attenuators. frea, meter, thermistor brige, saw tooth generator, etc. in one convenient package. Power $50-1200$ cy. Measures transmitter spectrum width, freq. power, recovery time of T-R and $\mathbf{R - T}$ cavities, checks magnetron pulling, tunes radar receivers, tunes
$T-R$ and $R-T$ cavities, measures receiver sensitivity and T-R and R-T cavities, measures receiver sensitivity and hand width
dition. Price

## THERMISTORS

D. 164699 Bead Type DCR, 1525-2500 Ohms @ 75 Deg. F. Coeffcient: $\%$ Per. Deg. Fahr. Max. Current 25 D-167332 Bead Type DCR is $2525-2550$ ohms. Rated 0.167613 Disk Type DCR ; 355 Ohms @ 75 Deg. F.P.M.

420-500 MC TRANSCEIVER
BC645 - NAVY ABA-1
Two ay rig lor mobile or fixed station covering the VHF band for amateur or CiTizaNs radio. (See com-
plete conversion details in Dec. issue 56 of $\mathbf{C o}$ magazine) Brand New, in original factory cartons. Complete with 12 -volt dynamotor, PE101, shock mounting, and for only you can get this super value $\$ 32.50$

ARC. 42 METER RIG. Transmitter-receiver unit is xtal Makes a beaut of a rig for mobile or home station. Used, excellent, but less tubes and dynamotor. Winf for use on 110 vea or $\$ \mathbf{4 . 5 0}$
verslon infor battery

ARC-5 EQUIPMENT
T-19/ARC-5, $3-4 \mathrm{mc}$, used, exc, all tubes. . . . . . . $\$ 4.95$
T-15/ARC-5, $500-820 \mathrm{KC}$. New................... $\$ 7.49$
X SAND - 1" $\mathrm{I}^{\prime \prime}$ wAVEGUIEE
 Tairofs "Built-in" Di-Coupler, 20 DB., with PARABOLOID DisiH., is" diam. Spun Aluminum. $8^{\prime \prime}$ 3 CM. DIPOLE and Feed Assembly. (May be used FLEXIBLE SECTION 9 in. long, Cover to-Cover. $\$ 5.50$ ROTARY JOINT (APS-6.) Sperry PT \# 658275,180 deg.
 MITRED ELBOW, Cast aluminum, 114" CM ANTENNA ASSEMBLY: USes 17 , dish operating from 24 vde motor. Beam pattern: 5 dish, operating from de both azimuth elevation. Sector Scan: over 160 deg. at 35 seans per minute. Elevation Scan. over 2 deg. Tilt. Over ${ }^{24}$ deg.... UG-40 output flange. Main Guide is 6" Long, With 90 Deg. "E" Plane bend at one end, and is flanges. Coupling figure: 20 db Nominal., $\$ 22.50$ Rotating-Joints supplied either with mountings. With UG40 fianges Bulkhead Feed-thru Assembly. 15 ..........
Pressure Gauge Section with 15 ib. gaite Pressure Gauge Section with 15 lb . gauge. ib
Directional Coupler, UG-40/U Take of 20 db MAGNET AND STABILIZER CAVITY FOT 2 Iíii Migg netron

## 343 Canal St.,New York IB, M.Y. Dept. E5 Chas.Rosen Phone:CAnal6-4882

R 77 /ARC-3-Certificated
168 /ARC-3-Certificated.
2 Motors for J $68 /$ ARC-3
C]118/ARC-3.
C87/ART-13-New.
BC 788 AM-New.
EEs Field Phones-Used
RM 29 with GM 38 etc.-New. No Case
BC 611 Handie
TS 35 A/AP with Cables.
TS 45A/AP
TS 146/UP.
TS 270/UP.

## 4J51 Tube.

BD89 SWBD.
TS9-Handsef New
MC 131 Ringer Coils
EE 65 Test Sets
F-1 Transmitter Capsules-Used
310 WE Plug-Used.
SCR 206 Direction Finder Complete ARC-3 Receiver Certified
ARC-3 Control Box $\rfloor 68$ with 2 Motors
Wilcox Receivers 602 -New
National N. C 100 Receivers-Used. TC 132 Coast Guard Transmitters
FMT 25-30-50-Link Transmitters.
APN-1 Sets Completo-New
BC 375 Sets with TU-New
R9B Receivers
$\$ 375.00$
50.00
40.00 40.00
5.50 2.75 2.75
2.75
5 50:00 12.50 5.50
9.50 9.50
75.00 75.00
55.00 55.00
17.50 50.00
27.50 50.00 8.50
.25 .25
85.00 3.50
.20 .15
11.50
89 ARN 5 Receivers
AS 27 A/ARN-5
BC 1000
ARN 7 Complete Circuit Diagram SCR 269 -Instruction Manual
SCR 284 -Instruction Manua
4 J 51 Tube.
38111 A Tube
TS 13 A AP with H 22 Handset New

TALLEN CO. INC.
159 Carlion Ave. TR 5-8241 Brooklyn 5, N. Y.


See our ad on page 79

## 24 HOUR DELIVERY OF THESE TYPES

> Standard Telephone Relays Short Telephone Relays Midget Relays Timers
> Aireraft Contactors Rotary Relays Type "E" Relays

$\star$ Immediate Delivery
$\star$ Hundreds of Types
$\star$ All Standard Makes

* New-Inspected-Guaranteed

```
Keyed Relays
Hermetically Sealed Relays Voltage Regulators and Cutouts Polarized Relay Polarized Relay Special Relay
```

Antenna and Ceramic Relays Motor and Control Relays Relay Assemblies
atching and Interlocking Relays
Mechanical Action Relays Ratchet and Stepping Relays Time Delay Relays

## Write for New Relay Sales Catalog, C-7

P. O. Box 186-AA, West Chicago, Ill.

Phone West Chicago 1100

## SEARCHLIGHT SECTION

## "TAE" <br> TMAT'SABuy

DYNAMOTOR SPECIAL


 FINEST HI-FI RECORDING TAPE 1200 Fi.-7" Reel
Money Back Gid. $\$ 1.45$ Lots
of 12


 NEW G.E. PHONO CARTRIDGES

 Gid PHONO Replacement NEEDLE
All Makes \& Cartridges LP\&78 One Dismond s8.49
Diampnd
One SAPPIIRE 59.49 Plesae send cartridge name $\alpha$ nimbier
LINE FIITERS /to 1000 mes/JAN $10 A M P$ © $130 V A C D C 51.49$ @



SNOOPERSCOPE TUBE
 INFAARED SEE IN DARK,
IMAGE Converter HiSenitiv,
 PS2002K POWER 4500 UBUILD NEW VIBRATORS 6812VDC GId.


?

 Allkits contain most popular Values
35 Precision Resistors
18 Power Resistors

 36 Tube sockets
500 Tublar Cond's 500 Tubutar Cond's
50 Eups
Eyelets


 DUMONT" TV-Hi-Fi-LAB
 HiV Testing. Delivers 20 os.
30 KV fully regulated $\$ 3$ anut-




## SINGE 1945 CERTIFIED TUETESTING AGEINGK PRESELECT FACIIIIES WRITE!



New Variable
SUPERIOR-GR-STACO


100 n
300 B
1500
3000
8

Write For Qty. Prices \& Catalog

SYNCHROS SERVOS SELSYNS





## -0e- TEKAP-TABPAK®




 TR 5005100 A TR $\dagger$
18
Volt
indit 18 Vorgs in series at Ratings show
2X Current intag
2-9-15-18.

| 'TABTRAN' Rectifier |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| CE156M 6000MFD 15V... 52 Gi, $2 / 53$; $10 / \mathrm{S1}$ <br>  |  |
|  |  |
|  |  |
|  |  |
| Brackots for espacitora 25 Fe (4), 5 for $\$ 1$. |  |
| NEW DC "TEKPAK" ${ }^{(R)}$ POWER SUPPLY TGOVIACC |  |
|  |  |


|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



## INDEX TO ADVERTISERS

Ace Electronics Associates, Ine.
Ace Engineering \& Machine Co.
Acheson Colloids Co.
Admiral Corp.
Aemco, Tres Communications Equipment, Inc.
Aerovox Corp.
Airpax Products Co.
Alforil Mfg. Co., Ine
Allegheny Ludium Steel Corp.
Allen-Hradley Co.
Allies Products Corporation
64A, $64{ }^{13}$
Alpha Metals, Inc.
American Lava Corporation
American Machine \& Foundry Co.
Anerican Molded Products Co.
American Super-Temp Wires, Inc.
Amperex Electronic Corp.
Amperite Co., Inc.
AMP, Incorporated
Ampex Corporation
Amphenol Electronice Corp.
Applied Dynamics Corp.
Armeo Steel Corp.
Arnold Engineering Co.
Assembly Products, Inc.
Atlas Precision Products Co
Augat Ibros., Inc.
Autonetics, A Div. of North American Aviation, Inc.

Ballantine Laboratories, Inc.
Barry Controls, Ine.
IBaso, Inc.
Sausel \& Lomb Optical Co Beaver Gear Works, Inc.
Bell Aircraft Corp.
Bell Telephone Laboratories
Bendix Aviation Corp.,
Eclipse-Pioneer Div.
Pacitic Division
Bentley. Harris Mifg. Co.
Berkeley Div., ISeckman Instruments
Bind \& Co. Ine., Richard H.
Bird Elertronic Corp.
Biwax Corporation
Bliley Electric Co.
Boesel Mfs. Co., Inc.
Borg Corporation. George W
Bourns Laboratories, Inc.
Brand and Co.. Inc.. William
Buckbee Mears Co.
Hulova Watch Company
Burnell \& Co., Inc.
Bussmann Mfg. Co.

CBS Ifytron. A Div, of Columbia I3roadcasting System, Inc.

Constantin \& Co.. L. L.
Continental-Diamond Flbre Div. of The 223 Budd Company, Inc.

Convair A Div, of General Dynamics Corp.

Corning Clas Works .... 256
Cornish Wire Co., Inc. . . .............. 363
Cornish Wire Co., Lime. ............................ 398
Coto-Coil Co., Inc. . . . . . . . . . . . . . . . . . . 396
Crane Packing Co. . . . . . . . . . . . . . . . . . . . . 339
Cross Co., H. ............................... 374
Crucible Steel Company of America...... 43
Curtiss-Wiright Corp. .................... . . . 354

Inale Frotucts Inc
Dano Electric Co.
Daven Company
Brd Cover
Dayst rom Inst rument . . . . . . . . . . . . . . . . . 22

Daystrom Pacific Corb., A Subsidiary of
DeJur-Amsco Corporation
Idelco Radio, Div, of General Motors
Delevan Electronics Corp.
DeMornay-IBonardi ... 275
Designers for Industry
Deutech Co.
Dialight Corporation
Diamonite Products Mig. Co.
Douglas Aireraft Co., Inc.
Dow Corning Corp.
Drakenfeld \& Co.. Inc., B. IF
Driver Co., Wilbur B .
Driver-Harris Company
dnI'ont de Nemours \& Co. (Inc.) F. I. Polychemicals Dejet.

Kagle Fignal Corb., Indnstrial Timer Division
Eastern Air Devices, Inc
Edo Corporation
Eitel-McCullough, Inc 318

Fles Corporation
Electro Manutacturing Co
Electro Instraments Ine
Electro Motive Mfr. Co.. Ins
Electro Tec Corporation
Electronic Issociates, Inc
Electronic Instrument Co., Inc., (EICO)
Electronic Kestarch Asso*iates, Inc.
Electronic Tube Division, Burroughs Corp. Electronics
orp.
Elgin National Wateh Co., Electronics
EHia © Watts Proulucts, Inc.
Empire Devices Products Corporation
Engineered Electronics Connpany ........
Erie Electronics Division, Eric Kesistor 329
Hissex Wire Corp., Wire \& Cable lliv.... . 233
F-R Machine Works, Inc.
Fenwal, Inc.
317
Film Cnpucitors, lne.
Filtron Co., Ine.
Ford Radio and Mica Corp.
Formica Corporation
Fremehtown Porcelain Co.
the specs are the proof
the BEST BUYS are EICD

## or COLOR \& Monochrome TV servicing



Flat from DC-4.5 me, usable to 10 mc . EAT. AMPL.: sens. 25 rms mv/in; input $Z 3$ mags: direct-coupled \& push-pull thruout; K-tollower coupling bet, stages; 4-step freq
compensated attenuator up to $1000: 1$. SWENP: perfectly linear $10 \mathrm{cps}-100 \mathrm{kc}$ (ext. cap. for range to 1 cps); pre-set TV V \& $H$ mositions; auto. sync. ampl. \& 1 im . PLUS: direct or cap. coupling; bal. or unbal inputs; edge-lit engraved lucite graph screen; dimmer, filter bezel fis sta photo equipt. Pushpull hor. ampl., flat to 400 kc , sens. 0.6 rms mv/in. Built-in volt. calib, Z-axis mod. Sawtocth \& 60 cps outputs. Astig. control. Retrace blanking. Pliasing control.


Entirely electronic sweep circuit (no mechanical devices) with accurately-biased increductor for excellent linearity Exiremedy flat RF output: new acc oust ont on each band with min. asnpl. variations. Exceptional tuning accuracy: edge-lit liairlines eliminate parallax. Swept Osc. Kange $3-216 \mathrm{mc}$ in fumd. bands. Variable Marker Range $2-75 \mathrm{mo}$ in 3 fund. Imands: $60-225 \mathrm{mac}$ on harmonic band. 4.5 me Xtal Marker Ose, xtal supplied.
Ext. Marker provision. Sweep Width $0-3 \mathrm{mc}$ Ext. Marker provision. Sweep Width o-3 me dev. 2-way blanking Narrow range phasing. Attenuators: Marker Size, RF Fine, RF Coarse (4-step decade). Cables: output, 'scope horiz., 'scope vertical.


COMPLETE with steel cover and handle.

SPEED, ease, unexcelled accuracy \& thoroughness, Tests all receiving tubes (and picture tubes with adapter). Gip \& peak emission. Simultaneous sel. of any 1 of 4 combinations of 3 plate voltages. 3 screen voltages, 3 ranges of continuously variable grid voltage (with $5 \%$ accurate pot). New series-string voltages: for $600,450.300 \mathrm{ma}$ types. Sensitive 200 ua
meter. 5 ranges meter scinsitivity ( $1 \%$ shunts meter. 5 ranges meter scisitivity (
$\& \quad 5 \%$ shunts
pot.) $10 ~ \$ I X-m o s i t i o n ~ l e v e r ~ s w i t e h e s: ~$ free-point connection of earh tube pin. 10 push-buttons: rapid insert of any tube element in leakage test circuit \& speedy sel, of individual sections of multi-section tubes in merit tests. Direqt-reading of inter-element eakage in ohms. New gear-driven rolichart Checks n-p-n a p-n-0 lector leakare current \& Beta using internal de power supply. CRA Alupter $\$ 4.50$

See the 50 EICO models IN
STOCK at your neighbor-
hood distributor. Write for
FREE Catalog $\mathbf{E}_{-5}$
Prices $5 \%$ higher on West Coast

## IF IT'S NEW...IF IT'S NEWS...IT'S FROM



## Wow! single chassis punchout for 7 and 9 PIN RUGGEDIZED MINIATURE TUBE SOCKETS!

ELCO's new 7-pin ruggedized sockets have the standard 9-pin mounting, making it possible to use a common tool for both sockets! Sockets are available with general purpose or mica filled phenolic insulators; and brass, phosphor bronze or beryllium copper contacts. RMA type made in either top or bottom mounting style; JAN type in top mounting. A variety of models can be supplied to meet JAN or RETMA test specs.
What do you know about Varicon

For Detailed Bulletins: ELCO CORPORATION, M below Erie, Phila. 24, Pa., CU 9.5500


## WORRIED ABOUT PRECISION PIVOTS? Call K

Steel, chromium plated, or carbide precision pivots to . $013^{\prime \prime}$ diameter. 1 RMS or finer surface finish. Diameter tolerances to $.000010^{\prime \prime}$. Chamfers, radii, lapped ends, ecc.
Also volume production lapping of flat or round production parcs.

Submit your specifications
THE VAN KEUREN COMPANY
176-D WALTHAM STREET WATERTOWN, MASS.

The proographer's nighemare at the left consists of a lump of sagar
and four VK Precision Parts. The "eyes" are $0.080^{\prime \prime}$ long.

## Immediate Delivery TANTALYTIC (36) CAPACITORS

Over 250 Types in Stock in 85 and 125 degree Send for complete Inventory and Bulletin

G-M Laboratories, Inc ..... 292
Gamewell Co. ..... 246
Gardner-Denver, Keller Tool Div. ..... 239
Garrett Corporation ..... 230, 231
General Ceramics Corp. ..... 30
General Controls Potentiometer Div. ..... 359
General Electric co.
Apparatus Dept.
37, 44, 45, 139, 27
37, 44, 45, 139, 27Electronics Components Div. .....96A, $\mathbf{9 6 8}$
Míniature Lamp Dept. .............. 324Miniature Lamp Dept. $\mathbf{S e m i c o n d u c t o r ~ P r o d u c t s ~ D e p t . ~ . . . . . . . . . . . . . ~} 71$
General Mills, Mechanical Div. ......111, 242
General Radio Co. ..... 72, 73
Genisco, Ine. ..... 303
Good-all Electric Mfg. Co. ..... 61
Grant Pulley \& Hardware Corp. ..... 56
Graphic Systems ..... 385
Green Instrument Co. ..... 369
Gries Reproducer Corp ..... 362
Guardian Electric Co. ..... 220
Gudebrod Bros. Silk Co., Ine. ..... 385
Hallicrafters Company ..... 46
Hamilton Manufacturing Co ..... 392
Hart Manufacturing Co. ..... 240
Harvey Hubbell, Inc ..... 53
Haydon Company, A. W. ..... 346
Heath Company ..... 363
Heiland. A Div. of Minneapolis-Honey-
well ..... 295
Helipot Corp., Div. of Beckman Instrus ments, Lnc. . . . . . . . . . . . . . . . . . . . . . 197, 370
Hewlett-Packard Company ..... 76, 77
Hexacon Electric Co. ..... 357
Heyman Mannfacturing Company ..... 375
Hickok Nectrical Instrument Co. ..... 236
Hoplins Fingineering Co. ..... 396
Horman Associates, Inc. ..... 403
Hoyt Electrical Instruments ..... 455
Hudson Tool \& Die Company, Inc..... ..... 213
Highes $\mathbf{P}$ ..... 235
Hughes Fesearch \& Development Labora-torles120
Hycor, Division of International Resist- ..... 352
Indium Corp. of America ..... 330
Industrial Instruments, Inc. ..... 
Instruments for Industry, Inc. ..... 375
International Electronic Research Corp.. 451 International Resistance Co. ..... 112,113
J-V-M Engineering Co. ..... 356
Jet Propulsion Laboratory ..... 309
Johnson Company, E. $\mathcal{F}$ ..... 360
Jones Electronics Co.. Inc., M. C. ..... 302
Joy Manufacturing Co. ..... 252
Kahle Engineering Co. ..... 16
Kay Electric Co. ..... 27
Kearfott Co., Inc ..... 332
Kennedy \& Co., D. s. ..... 93
Kepco Laboratories, Inc. ..... 195
Kester Solder 00. ..... 227
Kinney Mfg. Div., New York Alr Brake ..... 337
Kintel (Kay Lab) ..... 90, 91
KIP Electronics Corp. ..... 386
Kraeuter \& Co., Inc ..... 455
Lambda Electronics Corp. ..... 228
Lampkin Laboratories, Lnc. ..... 384
Lapp Insulator Co., Inc ..... 278
Leach Corporation ..... 211
Lenkurt Electric Co. ..... 2
Lewis Spring \& Mfg. Co. ..... 244
Leyse Aluminum Company ..... 335
Linde Air Products Co. ..... 40
Lockheed Aircraft Corp. California Division ..... 232
M F Electronics Co. ..... 455
MacDonald, Inc., Samuel K. ..... 403
Magnetics, Inc ..... $.98,99,203$
Mallory and Co.. Inc., P. P. ..... 1
Marconi Wireless Telegraph Co., Ltd. . ..... 299
Maxson Corp., W. L. ..... 351 McGraw-Hill Book Co. ..... 376
Measurements Corp. ..... 358
 ..... 78
Micro Switch, A Division of Minneapolis- ..... 131
Microwave Agsociates, Inc. . .............. 21
Mldand Mfy. Co.. Ine. ..... 108
Millen Mfg. Co., Inc., James. ..... 200
Minneapolis-Honey
Boston Division ..... 237
Davles Laboratories ..... 390
Moloney Electric Co. ..... 267
Mullard Orerseas, Ltd. ..... $.28,29$
Narda Corporation ..... 210
National Moldite Co ..... 36
rems-Clarke, Inc. ..... 340
New Hampshire Ball Bearings, Inc. ..... 66
Ney Company, J. M. ..... 369
Non-Linear Systems, Inc ..... 271
Northern Radio Co., In ..... 283

## NOW-increase

 electron tube life *12 TIMES!

## Exclusive IERC Tube Cooling Effectiveness Provides Greatly Extended Tube Life And Reliability !

Though electronic engineers know that even the slightest tube temperature reduction improves tube life, the greatest success enjoyed in obtaining extended tube life has been when IERC Heatdissipating Tube Shields have been specified and used. Results show that extensive gains in tube life and reliability are easily achievedthat tube operating temperatures are reduced as much as $150^{\circ} \mathrm{C}$ that IERC's Military Type "B" shield is the only effective answer to obtain these benefits in your new equipment. Positive shock and vibration protection plus electrostatic shielding is provided. Graphs show temperature reductions when IERC " $B$ " and "TR" shields are used with 6005 tube operating at full plate dissipation. Meets or exceeds Mil-S-9372B (USAF).


## Retrofit For Maximum Tube Life

No modification is required with IERC "TR" Type Heat-dissipating tube shields! TR's fit easily to existing JAN sockets-greatly extend tube life through excellent cooling and retention against shock and vibration.

Complete IERC literature and Technical Bulletins sent on request. WRITE TODAY!

electronic research corporation
145 West Magnolia Boulevard, Burbank, California


## WITH YOUR <br> TRANSIT CASE AND REUSABLE CONTAINER PROBLEMS

Take them to Skydyne. Skydyne engineers will assume complete responsibility of your transit case, and reusable container problems from design to delivery, insuring absolute protection against shock, vibration, pressure changes, fungus, shipping or storage. No outer case or other protection is necessary with Skydyne's custom built cases.

If your equipment needs a case, it will pay you to learn more about Skydyne's exclusive service and how it can help you. Write to Skydyne Inc., River Road, Port Jervis, New York.

Quality And Service<br>Quality In Service



Want more information? Use post card on last page.

Oak Mfg. Co. . . . . . . . . . . . . . . . . . . . . . . . 59
Ocala, Florida, Committee of 100......... 454
Offner Wectronies . . . . . . . . . . . . . . . . . . . . 312
Oster Mnnufacturing Co., John . . . .monen 52
Steel Fedd
Sterling Transformer Corp. ............... 378
Stevens Amold, Inc. . . . . . . . . . . . . . . . . . 458
Stoddart Aircraft Radio Co., Inc. . . . . . . 400
Stromberg-Carlson Company ........281, 353
Superior Electric Company . . . . . . . . . . . 245
Superior Tube Co. ......................... . . 291
Svlvania Lectric Producte, Inc. . $32 \mathrm{C}, 32 \mathrm{~A}, 32 \mathrm{~B}, 68$
Panoramic Radio Products. Inc........... 282
Perkin-Elmer Corp. . . . . . . . . . . . . . . .... . . . 353
Perkin Engineering Corp. . . ................. 25
Peters-Dalton, Inc. . . . . . . . . . . . . . . . . . . 11\%
Phelps-Dodge Copper Products Corp.
Inca Mfg. Div. ..................... 81
Plitico Corporation ....................... 31
Ihilco Techrey Division, Pliteo Corpora-
tion ..............................
Phillips Control Corp. . . . . . . . . . . . . . 308
Pix Manufacturing Co., Inc. . . . . . . . . ..... 378
Politad Electronics Corporation ........ 105
Polytechnic Researrhis Development Co., ne. ........................................... 6
I'otter dirnmfield. Inc. . . . . . . . . . . . . . . 42
lotter Instrument Co.. Inc. . . ............ 336
I'recision Apparat us Co., Ine. .4.......... 456
Precision Capacitors, Inc. . . . ............... . 394
I'ye Telecommmications Lta. ........... 307

Radiation, Ine. . . . . . . . . . . . . . . . . . . . . . 389
Ritlio Corporation of America, 331, 4th Cover
Radio Enginerring Products . . . . . . . . . . . 264
Radio Frequency Iaboratories, Inc...... 222
Radio Receptor Co., Inc.. ................255, 315
Ramo-Wooldridge Corp. . . . . . . . . . . . . . . 289
Raybestos-Manhattan, Inc. . . . . . . ..... 128
Kaytheon Mfg. Company ....39, 35, 391, 393
Reever Instrument Corp. ................. . . 97
Relay Sales, Inc. . . . . . . . . . . . . . . . . . . . . 79
Remington Ritnd Univate Div. of Sperry
Rind Cory. ................................ 325
levere Copper and Ibrass, Inc........ 114, 115
Revere Corporation of America.......... 284
Rex Rherstat Cu. . . . . . . . . . . . . . . . . . . . . 390
Royal Metal Mig. Co. . . . . . . . . . . . . . . . . . . 368

## Sanburn Company . . . . . ................... . . 199

Sanders Associates, Inc. . . . ............ . . 382
Sangamo Electric Co. . . . . . . . . . . . . . . . . 118
Sarkes Tarzian Inc. . . . . . . . . . . . . . . . . . . 294
S•hatevitz Enginev-ring . . . . . . . . . . . . . . . . . 261
Schweler Electronics . . . . . . ................ . 450
Sealectro Corporation ............. . . . . . . 343
Shalleross Mfg. Corp. . . . . . . . . ... . . . . . . . 298
Shielding, Lnc. . . . . . .... . . . . . . ... . . . . . . 67
Sierra Electronic Corp. . . . . . . . . . . .v. . . 241
Sigma Instruments, Inc. ................. $\mathbf{3 1 6}$
Simpson Electric Company . . . . . . . . . 253
Skydyme, Inc. . . . . . . . . . . . . . . . . . . . . . . . : 452
Sola Electric Co. . . . .......................... 64
Sorensen \& Co., Ine. . . . . . . . . . . . . . . . 4
Southern Electronic Corp. . . . . . . . . . . . . 92
Sperry Gyroscope Company, Division of
Sperry Rand Corp. .............103, 279, 383
Sprague Electric Co. ...................... 51
Sprague Products Co. . . . . . . . . . . . . . . . 65
Stackpole Carbon Co. . . . . . . . . . . ....... . 47
Staudard Electric Time Co................. 217

Ucinite Co. . . . . . . . . . . . . . . . . . . . . . . . . . 82
Union Switch \& Signal Div. of Westinghouse Air lirake Company ............ 822
United-Carr Fastener Corp. . . ........... 83
U. S. Stoneware . . . . . . . . . . . . . . . . . . . . . 49

United Transfomer Co. ........... $2 n d$ Cover


Waldes Kohimoor, Inc. ..... 125
Ward Leonard Electric Co. ..... 243
Waterman Products Co.. Inc. ..... 272
Waters Manufacturing. Inc. ..... 304
Weckesser Co. ..... 392
Western Electric Co. ..... 249
Westinghouse Electric Corp ..... 285, 344
Weston Electrical Instrument Corp., A Subsidiary of Daystrom, Inc.......... 5
Wheelock Signals, Inc. ..... 362
White Dental Mfg. Co., S. S ..... 306, 350
Whitso, Inc. ..... 379
Wilton Tool Mfg. Co., Inc. ..... 358
Zell Products Corp. ..... 354, 355

MANUFACTURERS
REPRESENTATIVES

CLASSIFIED ADVERTISING
F. J. Eberle, Business Mgr.

EMPLOYMENT OPPORTUNITIES..404*436
$\qquad$

EQUIPMENT
(Used or Surplus New)
For Sale ............

WANTED
Equipment

EMPLOYMENT OPPORTUNITIES ADVERTISERS INDEX

Abbott's Employment Specialists....... 422, 434 Admiral Corp ...........................412, 431 Aircraft Radio Corp......................... 434 Arma, Div of American Bosch Arma Corp. 421 Avco Manufacturing Corp, Crosley Div.... 428

[^36]

## The

 Pulser pulse.Technitrol Variable

* Wide pulse repetition frequency range from 20 cps . to 2.0 mes.
* Pulse rise and fall times are symmetrical at $0.05 \mu \mathrm{~s}$.
* Duration of pulse variable from $0.2 \mu \mathrm{~s}$ to $5.0 \mu \mathrm{~s}$ in steps of $0.1 \mu \mathrm{~s}$.
* Stable pulse duration controlled by electric delay lines.
* Low impedance output, amplitude continuously variable from 0 to 40 volts without distortion.
* Trigger pulse precedes output


This reliable and versatile instrument, developed for our own use, has wide possibilities for application in many laboratories.

"MANUFACTURERS OF PULSE TRANSFORMERS, DELAY LINES, AND ELECTRONIC TEST EQUIFMENT"

## WANTED:



Electronics Plant, whose employees want to LIVE in SUNNY FLORIDA. Alert, alive, Ocala, in Central Florida, wants light industry-electronics preferred. Good supply of skilled and unskilled labor, favorable taxes, excellent transportation. Plenty of room for expansion, ideal living conditions year-round. Convenient to University of Florida research facilities, new Glenn L. Martin Plant, Cape Canaveral Project. Confidential assistance on surveys.

## COMMITTEE OF 100

Box 838, Room 16 OCALA, FLORIDA A닐 (1)

## PRODUCTS CORPORATION

## P. O. Box 188 , Kendall Branch, Miami, Florida

## PRECISION CARBON DÉPOSITED RESISTORS

Tolerance ranges from $\pm .1 \%$ to $\pm 30 \%$, depending upon resistor type. Brochure supplied upon request.

STANDARD RESISTOR, AND RESISTOR INSULATED TO WITHSTAND $100 \%$ RELATIVE HUMIDITY.

VALUES and SIZES

| RESISTOR | WATTS | OHMS |
| :---: | :---: | :---: |
| APT-5 | 5 | 50 ohms to 5 meg. $\pm 1 \%$ |
| APT-2 | 2 | 20 ohms to 20 meg . $\pm 1 \%$ |
| APLT-1 | 1 | 50 ohms to 100 meg . $\pm 1 \%$ |
| APT-1 | 1 | 5 ohms to 10 meg. $\pm 1 \%$ |
| APCT-1* | 1 | 10 ohms to 10 meg. $\pm 1 \%$ |
| APBT-0.5 | $1 / 2$ | 10 ohms to 20 meg. $\pm 1 \%$ |
| A PZT-1/10 | 1/10 | 10 ohms to 100 K . $\pm 1 \%$ |
| APST-1/2** | 1/2 | 1 ohm to 10 meg. $\pm 1 \%$ |
| APXT-1/2* | 1/2 | 5 ohms to 2 meg. $\pm 1 \%$ |
| APYT-1/4 | 1/4 | 5 ohms to 1 meg. $\pm 1 \%$ |

[^37]

Typlcal temperature coerficient haracterlstics for Allies' Products
cirton depost resistors.


Typical derating curve for 1 watt Allies'
Products carbon deposit resistors.

Carter, F.
Chrysler Corp, Missile Operations. . . . . . . . . 430
Cooper, J. J

Dreffin, W
Federal Telecommunications Laboratories... 429
Fidelity Personnel Service.................... . 406
General Electric Co
Syracuse, N. Y... Temple, Ariz ..... 433 ..... 420
General Electronic Laboratories, In ..... 406
AC Electronics Div.
.406 ..... 426
Goodyear Aircraft Corp Akron, Ohio ..... 407
Hoffman Electronics Corp ..... 417
Honeywell Brown Instruments Division. ..... 410
International Business Machines Corp.... ..... 415
Johns Hopkins University Applied
Johns Hopkins University, Operations Re.search Office (ORO)408
Lockheed Aircraft Corp.435
Magnetics, Inc. ..... 433
Martin Co., Glenn L. (Baltimore Div).... ..... 410
Maryland Electronics Manufacturing Corp. ..... 425
Melpar, Inc. ..... 424
Monarch Personne ..... 406
Motorola, Inc. ..... 414
National Co., Inc ..... 422
Northrop Aircraft Inc ..... 418


- If you are looking for new ways and means to improve your product, and save money too, here's an idea source guaranteed to spark your imagination and give you a wealth of hints, tips, and suggestions.

This 20 -page fact-filled Star catalog contains complete descriptive and engineering data on the full line of Star Ceramics. A big selection chart, complete with mechanical and electrical properties, makes the job of selecting the right Star material for your product a cinch. Like a free copy? Write today for Catalog 57.

## the <br> 

porcelain company
42 Muirhead Avenue, Trenton 9, N. J.

## TRANSISTOR ASSEMBLIES SEALED AND POTTED

Subminiature


- Amplifiers, flip-flops, sawtooth generators, multivibrator, oscillators
- Units may be used as plug-in elements or wired directly into circuits
- Operating temperature: $-25^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
- Operation underwater
- Truly subminiature - Iess than onefifth of a cubic inch


## M. F. ELECTRONICS CO.

122 East 25th St., New York 10, N.Y. GRamercy 3-5899

## Western representative:

Heim \& Scheer, 11168 Santa Monica Blvd. Los Angeles 25, Calif., GRanite 7-3208

Want more information? Use post card on last page.


Phillips Petroleum Co.................... . . . . 436

Radio Corp of Annerica. . . . . . . . ..... 404, 405
RCA Service Co., Inc. . . . . . . . . . . . . . . . . . 423

Sanders Associates, Inc. . ................... . . 432
Spengler, Silas . . . . . . . . . . . . . . . . . . . . . . 414
Stavid Engineering, Inc................... 434
Stromberg-Carlson Co
A Div. of General Dynamics Corp........ 413
Sylvania Electric Products Inc.
Buffalo, N. Y. ........................... . . . 419
Waltham, Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Titanium Metals Corp. of America.......... 427
Transitron Electronics Corp................ . 423

SEARCHLIGHT SECTION ADVERTISERS INDEX

Alltronics-Howard Co. ....................... . . 446
Alvaradio Industries ........................ . 440
Arco Metals Co............................. . . 446
Arrow Sales Inc. ......................... . 440, 446

Barry Electronics Corp................. 437, 446
Belvision, Inc. ............................... . . . 437
Bimneweg Television ...................... 437
Blan ........................................... . . 442
Bolton Laboratories, Inc. . . . . . . . . . . . . . . . . 437

[^38]

You can depend on reachability and cutting power with Kraeuter's \#1781 Long Chain Nose Pliers. And your reach will be tight and sure for those hard-to-get-at jobs with the extra long milled jaws of these pliers.
Buy the right line. It's the Kraeuter line for electronic and electrical work. Kraeuter tools are unreservedly guaranteed.
Send for catalog \#25 illustrating complete Kraeuter line.
BUY THE FINEST
BUY KRAEUTER BUY AMERICAN

## kraeuter \& co.inc

FOR 100 YEARS THE FINEST IN MAND TOOLS $1860-1260$ NEWARK,N. J. Want more information? Use post card on last page.

Fair Radio Sales ..... 436
Fay-Bill Distributing Co. ..... 442
Finnegan, H . ..... 446
Harjo Sales Co ..... 446
Hershel Radio Co ..... 443
Instrament Service Corp ..... 443
JSH Sales Co. ..... 438
Lectrenic Research Laboratories ..... 444
Lilerty Electronics, Inc ..... 446
Metro Electonics Corp ..... 436
M. R. Co., The ..... 446
Montgomery Equipment Co ..... 445
Pacific International University ..... 437
Peterson Radio Co., Inc. ..... 446
Radalab, Inc. ..... 445
Radio \& Electronics Surplus ..... 444
Relay Sales, Inc. ..... 447
Rex Radio Supply Co. ..... 443
Suplex Lamps, Ltd. ..... 437
"TAB" ..... 448
Tallen Co. Inc ..... 447
Western Engineers ..... 441
Wilgreen Industries ..... 444
Universal Relay Corp
(Formerly Universal General Corp) ..... 445
V\&H Radio Electronics ..... 443

[^39] to make it accurate, but ELECTRONICS assumes no responsibility for errors or ommissions.

## electronics READER SERVICE CARD

## FOR ADDITIONAL INFORMATION ON ADVERTISEMENTS, NEW PRODUCTS AND LITERATURE Additional postage MUST be added to cards for all FOREIGN MAALINGS <br> Here Is How to Use the Card! <br> WANT MORE INFORMATION ON ADVERTISEMENTS? <br> WANT MORE INFORMATION ON NEW PRODUCTS?

For more information on an advertisement, circle page number of advertisement in section A on the reader service card (below).
If there is more than one advertisement on the page, the position of the ad will be indicated by letters following the page number. The letters following the page number will indicate the ad's positions: P-Right, RT-Right Top, RB-Right Bottom, L-Left, LT-Left Top, LB-Left Bottom, M-Middle, MT-Middle Top, BM-Middle Bottom, (i.e. 230L). Diagrams on back of this page show how to use the key.
On pages with no number such as bleed pages, count from last numbered page to find the number. Inserts are numbered using last numbered page plus A, B, etc. If you are not sure of a page number, consult the advertisers index.

Each New Product item in ELECTRONICS has a number (P1, P2, etc.) Circle the corresponding number in section B of the Reader Service Card (Below).

## WANT AVAILABLE LITERATURE?

Each Literature item in ELECTRONICS has a number (L1, L2, etc.) Circle corresponding number in section C of the Reader Service Card (Below).

## YOUR ACCURACY ASSURES CORRECT REPLIES

Remember to carefully print your name, title, company and address and check the numbers on the card carefully. Then tear off the reader service card and mail. We are unable to process cards where the name and address is illegible.

See Fractional Page Diagram on Other Side of This Page!

FILL IN NAME POSITION, COMPANY \& ADDRESS HERE

\author{

- Please Print Carefully
}

FOR
ADDITIONAL INFORMATION
ON AN
ADVERTISEMENT CIRCLE CORRECT MUMBER IN SECTION A


SECTION A

- electronics - reader service card

Please Print Carefully
NAME POSITION

## COMPANY

ADDRESS

| 4 | 320 | 53 | 71 | 91 | 112 | 137 | 212 | 236 | 280 | 282 | 303 | 328 | 350 | 3828 | 379L | 3907 | 452 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 33 | 54 | 72 | 92 | 113 | 138 | 213 | 237 | 261 | 283 | 304 | 329 | $351 T$ | 363 T | 380 | 390M | 4635 |
| 8 | 34 | 55 | 73 | 93 | 114 | 139 | 214 | 238 | 262 | 284 | 305 | 330 | 352 | 363 B | 3817 | 392. | 4538 |
| 11 | 35 | 56 | 74 | 94 | 115 | 140 | 216 | 239 | 264 | 285 | 306 | 331 | 353 L | 367 | 3818 | 392RT | 454T |
| 13 | 36 | 57 | 75 | 95 | 116 | 191 | 217 | 240 | 265 | 286 | 307 | 332 | 353R | 368 | 382 | 392RB | 4548 |
| 15 | 37 | 58 | 76 | 96 | 117 | 193 | 218 | 241 | 266 | 287 | 308 | 333 | 354T | 3697 | 3837 | 394 T | 455LT |
| 17 | 38 | 59 | 77 | 96 A | 118 | 195 | 219 | 243 | 267 | 288 | 310 | 334 | $355 T$ | 3698 | 384L | 394M | 455LB |
| 19 | 39 | 60 | 78 | 96B | 119 | 197 | 220 | 244 | 268 | 289 | 311 | 335 | 3558 | 370 | 384RT | 394B | 455R |
| 21 | 40 | 61 | 79 | 97 | 121 | 199 | 221 | 245 | 269 | 290 | 312 | 336 | 356L | $371 T$ | 384RB | 396 T | 456 |
| 23 | 42 | 62 | 80 | 98 | 124 | 200 | 222 | 246 | 270 | 291 | 313 | 337 | 356R | 372 | 385LT | 396M | 2nd Cover |
| 25 | 43 | 63 | 81 | 99 | 125 | 201 | 223 | 247 | 271 | 292 | 314 | 338 | 357 T | 373T | 385LB | 3968 | 3rd Cover |
| 27 | 44 | 64 | 82 | 103 | 128 | 202 | 224 | 248 | 272 | 293 | 315 | 339 | 3578 | 373B | 385R | 398 | 4th Cover |
| 28 | 45 | 64A | 83 | 104 | 127 | 203 | 225 | 250 | 274 | 294 | 316 | 340 | 358 T | 374T | 386T | 400 |  |
| 29 | 46 | 648 | 84 | 108 | 128 | 204 | 227 | 251 | 275 | 295 | 317 | 341 | 358B | 3748 | 386B | 402 T |  |
| 30 | 47 | 65 | 85 | 106 | 128A | 205 | 229 | 252 | 276 | 296 | 318 | 343 | 359 T | 375L | 387LT | 402B |  |
| 31 | 48 | 66 | 86 | 107 | 1288 | 207 | 231 | 253 | 277 | 297 | 318 | 345 | 3598 | 375R | 387LB | 449 |  |
| 32 | 49 | 67 | 87 | 108 | 129 | 208 | 232 | 254 | 278 | 298 | 320 | 348 | 360 L | 378 | 387R | 450T |  |
| 32A | 50 | 68 | 88 | 109 | 130 | 209 | 233 | 255 | 279 | 299 | 322 | 347 | 360R | 3771 | 388 | 450M |  |
| 32 B | 51 | 69 | 89 | 110 | 131 | 210 | 234 | 257 | 280 | 300 | 324 | 348 | 3615 | 378 T | 389 L | 450B |  |
| 32 C | 52 | 70 | 90 | 111 | 138 | 211 | 235 | 259 | 281 | 302 | 327 | 349 | 362 T | 378 B | 389R | 451 |  |

SECTION B

$\begin{array}{llllllllllllllllllll}\text { P1 P6 } & \text { P11 } & \text { P16 } & \text { P21 } & \text { P26 } & \text { P31 } & \text { P36 } & \text { P41 } & \text { P46 } & \text { P51 } & \text { P56 } & \text { P61 } & \text { P66 } & \text { P71 } & \text { P76 } & \text { P81 } & \text { P86 } & \text { P91 } & \text { P96 }\end{array}$ $\begin{array}{lllllllllllllllll}\text { P2 } & \text { P7 } & \mathrm{P} 12 & \mathrm{P} 17 & \mathrm{P} 22 & \mathrm{P} 27 & \mathrm{P} 32 & \mathrm{P} 37 & \mathrm{P} 42 & \mathrm{P} 47 & \mathrm{P} 52 & \mathrm{P} 57 & \mathrm{P} 62 & \mathrm{P} 67 & \mathrm{P} 72 & \mathrm{P} 71 & \mathrm{P} 82 \\ \mathrm{P} & \mathrm{P} 7 & \mathrm{P} 92 & \mathrm{P} 97\end{array}$ $\begin{array}{llllllllllllllllllll}\text { P3 } & \text { P8 } & \text { P13 } & \text { P18 } & \text { P23 } & \text { P28 } & \text { P33 } & \text { P38 } & \text { P43 } & \text { P48 } & \text { P53 } & \text { P58 } & \text { P63 } & \text { P68 } & \text { P73 } & \text { P78 } & \text { P83 } & \text { P88 } & \text { P93 } & \text { P98 }\end{array}$ | P4 | P9 | P14 | P19 | P24 | P29 | P34 | P39 | P44 | P49 | P54 | P59 | P64 | P69 | P74 | P79 | P84 | P89 | P94 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



## SECTION C

CIRCIE FOR literature herei

| 11 | 16 | LI | L16 | L21 | 126 | L31 | 136 | L | 4.4 | L | Ls6 | L61 | 66 | 41 |  |  | , | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 17 | 112 | 117 | 122 | 127 | 132 | 137 | 142 | 147 | 152 | 157 | 162 | 167 | 172 | 176 | 182 | 187 | 192 | 197 |
| 13 | 18 | 1.3 | 118 | 123 | 128 | L33 | 138 | 143 | 148 | 153 | 158 | 163 | 168 | 173 | 178 | 183 | 188 | 193 | 198 |
| 4 | 19 | 114 | 119 | 124 | 129 | 134 | 139 | 144 | 149 | L54 | 159 | 164 | 169 | 174 | 179 | 184 | 189 | 194 | 199 |
| L5 | L10 | L1 | 120 | 125 | L30 | 35 | 140 | 145 | 150 | L55 | 160 | 165 | L0 | L75 | 180 | 185 | 190 | 195 | L10 |

## DIAGRAMS BELOW SHOW HOW TO USE THE KEY ON PAGES WITH MORE THAN ONE ADVERTISEMENT



NOTE: additional postage MUST be added for mailings from FOREIGN COUNTRIES
On pages with more than


4¢ Postage Will Be Paid By
ELECTRONICS
Reader Service Dept.
330 West 42nd Street
New York 36, N. Y. one advertisement, the page number PLUS the correct letters (as shown above) are necessary to indicate the POSITION of the advertisement.

You must circle the page number with the correct letters after it (i.e. 240 L , which means page 240 Left).

USE THIS KEY:
R-Right
RT-Right Top
RB-Right Bottom
L-Left
LT-Left Top
LB-Left Bottom
M-Middle
MT-Middle Top
MB-Middle Bottom

# electronics READER SERVICE CARD 

FOR ADDITIONAL INFORMATION ON ADVERTISEMENTS, NEW PRODUCTS AND LITERATURE Additional postage MUST be added to cards for all FOREIGN MALLINGS

## Here Is How to Use the Card!

## WANT MORE INFORMATION ON ADVERTISEMENTS?

For more information on an advertisement, circle page number of advertisement in section $A$ on the reader service card (below).
If there is more than one advertisement on the page, the position of the ad will be indicated by letters following the page number. The letters following the page number will indicate the ad's positions: R-Right, RT-Right Top, RB-Right Bottom, L-Left, LT-Left Top, LB-Left Bottom, M-Middle, MT-Middle Top, BM-Middle Bottom, (i.e. 230L). Diagrams on back of this page show how to use the key.
On pages with no number such as bleed pages, count from last numbered page to find the number. Inserts are numbered using last numbered page plus $A, B$, etc. If you are not sure of a page number, consult the advertisers index.

WANT MORE INFORMATION ON NEW PRODUCTS?
Each New Product item in ELECTRONICS has a number (PI, P2, etc.) Circle the corresponding number in section B of the Reader Service Card (Below).

## WANT AVAILABLE LITERATURE?

Each Literature item in ELECTRONICS has a number (L1, L2, etc.) Circle corresponding number in section C of the Reader Service Card (Below).

## YOUR ACCURACY ASSURES CORRECT REPLIES

Remember to carefully print your name, title, company and address and check the numbers on the card carefully. Then tear off the reader service card and mail. We are unable to process cards where the name and address is illegible.

See Fractional Page Diagram on Other Side of This Page!
FILL IN NAME
POSITION, COMPANY
\& ADDRESS AERE

- Please Print Carefully

SECTION A


Please Print Carefully
NAME POSITION

COMPANY

ADDRESS

## FOR

ADDITIONAL INFORMATION ON AN ADVERTISEMENT CIRCLE CORRECT NUMBER IH SECTION A

SECTION B
CIRCLE FOR NEW PRODUCTS HEREI

| P1 | P6 | Pll | P16 | P21 | P26 | P31 | P36 | P41 | P46 | P51 | P56 | P61 | P66 | P71 | P76 | P8! | P86 | P91 | P96 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P2 | P7 | P12 | P17 | P22 | P27 | P32 | P37 | P42 | P47 | P52 | P57 | P62 | P67 | P72 | P77 | P82 | P87 | P92 | P97 |
| P3 | P8 | P13 | P18 | P23 | P28 | P33 | P38 | P43 | P48 | P53 | P58 | P63 | P68 | P73 | P78 | P83 | P88 | P93 | P98 |
| P4 | P9 | P14 | P19 | P24 | P29 | P34 | P39 | P44 | P49 | P54 | P59 | P64 | P69 | P74 | P79 | P84 | P89 | P94 | P99 |
| P5 | P10 | P15 | P20 | P25 | P30 | P35 | P40 | P45 | P50 | P55 | P60 | P65 | P70 | P75 | P80 | P85 | P90 | P95 | P100 |
| SECTION C CIRCLE FOR LITERATURE HERE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| L1 | 16 | L11 | 116 | L21 | 1.26 | 131 | 136 | 141 | 146 | 1.51 | 156 | 161 | 166 | 171 | 176 | 181 | 186 | 191 | 196 |
| L2 | 17 | L12 | 117 | L22 | 127 | L32 | 137 | L42 | 147 | 152 | L57 | 162 | 167 | 172 | 176 | 182 | 187 | 192 | 179 |
| L3 | L8 | L13 | 118 | 123 | 128 | 133 | 138 | 143 | 148 | 153 | L58 | 163 | 168 | 173 | $L 78$ | 183 | 188 | 193 | 198 |
| 14 | 19 | L14 | 1.19 | L24 | 129 | L34 | 139 | L44 | 149 | 154 | L59 | 164 | 169 | 174 | 179 | 184 | 189 | 194 | 199 |
| L5 | L10 | L15 | L20 | L25 | 130 | 135 | L40 | 145 | L50 | L55 | 160 | 165 | 170 | L75 | 180 | 185 | 190 | 195 | 1100 |

## DIAGRAMS BELOW SHOW HOW TO USE THE KEY ON PAGES WITH MORE THAN ONE ADVERTISEMENT



NOTE: additional postage MUST be added for mailings from FOREIGN COUNTRIES


On pages with more than one advertisement, the page number PLUS the correct letters (as shown above) are necessary to indicate the POSITION of the advertisement.

You must circle the page number with the correct letters after it (i.e. 240 L , which means page 240 Left).

USE THIS KEY:
R-Right
RT-Right Top
RB-Right Bottom
L-Left

LT-Left Top
LB-Left Bottom
M-Middle
MT-Middle Top
MB-Middle Bottom


## for accurate attenuation over a wide frequency range... RF Attenuators by DA®EN

These units are used in signal generators, wide-band amplifiers, pulse generators, field intensity meters, micro-wave relay systems, and repeater stations. They find application as laboratory standards, test equipment, and for checking out all types of instruments.

Daven RF Attenuators are available, in combination, with losses up to 120 Db in two Db steps; or 100 Db in one Db steps. Due to their internal circuitry and construction, they have a zero insertion loss over the frequency range from $D C$ to 225 megacycles.

Standard impedances are 50 and 73 ohms, with special impedances available on request. Resistor accuracy is within $\pm 2 \%$ at DC. An unbalanced circuit is used which provides constant input and output impedance. The units are supplied with either UG-58/U or UG-185/U receptacles or Coaxial lead terminations. Individual units with single-section cavities can be obtained.

Many of these types are available for delivery from stock.


Write for complete information

| TYPE | LOSS | TOTAL <br> Db | STANDARD <br> IMPEDANCES |
| :---: | :--- | :---: | :---: |
| RFA \& RFB 540 | $1,2,3,4 \mathrm{Db}$ | 10 | $50 / 50 \Omega$ and $73 / 73 \Omega$ |
| RFA \& RFB 541 | $10,20,20,20 \mathrm{Db}$ | 70 | $50 / 50 \Omega$ and $73 / 73 \Omega$ |
| RFA \& RFB 542 | $2,4,6,80 \mathrm{Db}$ | 20 | $5050 \Omega 2$ and $73 / 73 \Omega$ |
| RFA \& RFB 543 | $20,20,20,20 \mathrm{Db}$ | 80 | $50 / 50 \Omega$ and $73 / 73 \Omega$ |
| RFA \& RB 550 | $1,2,3,4,10 \mathrm{Db}$ | 20 | $50 / 50 \Omega$ and $73 / 73 \Omega$ |
| RFA \& RFB 551 | $10,10,20,20,20 \mathrm{Db}$ | 80 | $50 / 50 \Omega$ and $73 / 73 \Omega$ |
| RFA \& RFB 552 | $2,4,6,8,20 \mathrm{Db}$ | 40 | $50 / 50 \Omega$ and $73 / 73 \Omega$ |

Other Db loss combinations are available.


526 West Mt. Pleasant Ave.
Route 10, Livingston, N. J.


## He "reads" his radar data... IN BRIGHT DAYLIGHT

No hood needed for this presentation, because the RCA-6866 Display Storage Tube pictured here produces an average display brightness of 2750 foot-lamberts -brilliant enough to view directly in bright daylight!
In addition to its application in military electronics, RCA-6866 offers many exclusive features of special interest to equipment designers in the field of electronic data processing. For example, RCA-6866 can present non-flickering display of electronic information-for as
long as 60 seconds after writing stops. It can "write" at speeds as high as 300,000 inches per second-fast enough to "freeze" microsecond transients for visual or photographic examination.

Are you working with airplane-cockpit radar-fire-control radar-airport sur-veillance-transient studies-data transmission, including half-tones-visual communications via narrow-bandwidth transmission? If you are, then don't overlook the unique advantages of the RCA-6866.

Fortechnical bulletin on the 6866 , write RCA Commercial Engineering, Section E-19-Q-1, Harrison, N. J. For sales information on this and on other RCA display storoge tubes now in development...contact the RCA Field Office nearest you.

East: HUmbaldil 5.3900
744 Broad Street
Newark 2, N. J.
Midwest: WHitehall 4-2900
Suite 1181
Merchandise Mart Plaza
Chicago 54, Illinois
West: RAymond 3-8361 6355 East Washington Bird. Los Angeles 22, Calif.


[^0]:    Subscriptions: Address corresnondence to Sulnscription Manager. Elec tronics, 330 W .42 nd St., New York 36, N. Y Altow one month io solicited only from persons engaged in theory. research. desion. production, maintenance and use of electronic and inilustrial control components, parts and products. Position and company connection must be
    indicated on subscription orders.
    

[^1]:    In Europe, contact Sorensen-Ardag, Eichstrasse 29, Zurich, Switzerland, for all products including 50 cycle, 220 volf equipment.

[^2]:    $\square$ Have your representative call at my office.

[^3]:    ## SPECIFICATIONS

    FREQUENCY RANGE: Two bands; $10-500 \mathrm{mc}$ and $400-950 \mathrm{mc}$. SWEEP WIDTH: Continuously variable $50 \mathrm{Kc}-40 \mathrm{mc}$.
    SWEEP RATE: Variable around 60 cps . Locks at line frequency.
    RF OUTPUT VOLTAGE: High-approx. 0.15 volts rms into nom. 70 ohms. Low-approx. 0.07 volts rms into nom. 70 ohms.
    AMPLITUDE MODULATION: Less than $0.1 \mathrm{db} / \mathrm{mc}$ over frequency sweep.
    OUTPUT WAVEFORM: Less than $5 \%$ harmonic distortion at full output. Less than $2 \%$ at half output.
    RF OUTPUT CONTROL: Uncalibrated microwave attenuator, continuously variable to 26 db . Attenuation characteristic flat over output frequency range.
    FREQUENCY MEASUREMENTS: By use of a precision micrometer-controlled wavemeter, the mid-point frequency of sweep may be pre-set or frequency at any point on oscilloscope display determined to within $\pm 5 \mathrm{mc}$.
    SWEEP VOLTAGE: Regular sawtooth approx. 20 volts.
    DIMENSIONS: $101 / 2^{\prime \prime} \times 18 \frac{1}{2^{\prime \prime}} \times 14 \frac{1}{2}{ }^{\prime \prime}$.
    POWER SUPPLY: Input approx. 110 watts, $117-\mathrm{V}$ ( $\pm 10 \%$ ), 50-60 cps. ac. B+ electronically regulated.
    CRYSTAL CALIBRATOR OUTPUT: Mixed directly with output of MegaSweep.
    OSCILLATORS: Internally coupled providing a marker demonstration directly on sweep.
    STABILITY: Maintained through electronically regulated power supply. ACCURACY: Crystal— $\pm .01 \%$.
    CRYSTAL CALIBRATOR FREQUENCY: Fundamental at 5 mc and 50 mc . HARMONICS: Over whole of usable swept range of Mega-Sweep. WEIGHT: 45 lbs .
    PRICE \$745.00 F.O.B. Pine Brook, N. J.

[^4]:    GENERAL OFFICES AND PLANT
    CLJFTON BOULEVARD CLIFTON. NEW JERSEY

[^5]:    CONSTANT VOLTAGE TRANSFORMERS - FLUORESCENT LIGHTING BALLASTS -MERCURY VAPOR LIGHTING TRANSFORMERS SOLA ELECTRIC CO., 4633 West 16th Street, Chicago 50, Hlinois, Bishop 2-1414 - NEW YORK 35: . 103 E. 125 th St., TRafalgar 6-O464 PHILADELPHIA: Commercial Trust Bldg., RIttenhouse 6-4988. BOSTON: 272 Centre Street, Newton 58, Mass... BIgelow 4-3354 CLEVELAND 15: 1836 Euclid Ave, PRospect 1.6400 - KANSAS CITY 2, MO.: 406 W. 34h St.. Jefferson 4382 . LOS ANGELES 23: 3138 E. Olympic Blvd., ANgelus 9836 Euclid AVer, PROSPect (CANADA) ITD., TORONTO 17, ONTARIO: 102 Loird Drive, Moyfair 4554 - 9431 ROLA ELECTRIC (CANADA

[^6]:    FIG. 3 Radial Runout is the result of eccentricity in the bearing parts. Principal factors producing it are eccentricity between bore and raceway of inner ring (left) and between raceway and outer diameter of outer ring (right). Out-of. round balls offer negligible effect, since effect tends to cancel out as balls roll.

[^7]:    District Offices: Surbank, Calif., Dayton, Ohio, Seattle, Wash. Export Sales and Service: Bendix Internation al Division, 205 E. 42 nd St., New York 17, N, Y

[^8]:    BROOKLYN • CLEVELAND - NEW ORLEANS • LOS ANGELES • SEATTLE • SAN FRANCISCO IN CANADA: SPERRY GYROSCOPE COMPANY OF CANADA, LIMITED, MONTREAL, QUEBEC

[^9]:    REPRESENTATIVES: Albany, Atlanta, Baltimore, Boston, Chicago, Cleveland, Dayton, Denver, Englewood, Fort Worth, Kansas City, Los Angeles, New York, Philadelphia, Portland, Rochester, St. Louis, San Francisco, Schenectady, Stamford, Syracuse, Washington, D. C., Winston-Salem, Canada; Arnprior, Ontario.

    Resident Representatives in Principal Foreign Cities

[^10]:    Mills: Rome, N. Y, Baltimore, Md.; Chicago, Clinton and Joliet, Ill.; Detroit, Mich.; Los Angeles and Riverside, Calif.; New Bedford, Mass.; Brooklyn, N. Y.; Newport, Ark.; Ft. Calhoun, Neb. Sales Offices in Principal Cities, Distributors Everywhere.

[^11]:    Characteristics of Switch Shown
    Operating force-10 to 22 oz .; Release force- 4 oz . min.; Overtravel-. 010 min .; Differential travel.020 in. max.; Weight- 1.5 oz .
    Electrical Characteristics- 28 volts dc-inductive 10 amperes; resistive 25 amperes; 125 volts ac-inductive 1 ampere; resistive 1 ampere. (Send for Catalog No. 77)

[^12]:    $\dagger$ These figures refer to the regular federal budget and do not include operations of trust funds, primarily for social security programs and the new federal aid program for highways. which are financed by special taxes.

[^13]:    * Now with Scientific Laboratory, Ford Motor Co., Dearborn, Mich.

    This article is based on a paper pre sented at NEC, Oct. 1956 and appearing in Vol. 12, Proc NEC.

[^14]:    (1) S. Dorsey, Counters Control High Speed Flash, ELectronics, p. 160, Aug.
    (2) E. Barkofsky, R. Hopkins and $S$. $\underset{\text { Dorsey, }}{\text { (2) }}$ E. Markofsky, R. Hopkins and $\underset{\text { P. }}{\text { Hosecond }}$. Dorsey, Microsecond Photography of
    Rocket in Flight, ELECTRONICS, p. 142,

[^15]:    $R_{2}$-Adjust for horizontal centering of the month within the face contour
    $R_{4}$-Adjust for proper vertical position of mouth within face contour
    $R_{5}$-Adjust for proper vertical distance between the nose and eyes
    $R_{T}$-Adjust for proper horizontal distance between the nose and the eye on the left hand side of the screen
    $R_{6}$-Adjust for proper horizontal distance between the two eyes
    $R_{4}$-Adjust for horizontal centering of the eyes and nose within the face contour
    $R_{3} \rightarrow$ Adjust for proper vertical centering of the eyes and nose

[^16]:    * Now with Aircraft Radio Corp., Boonton, N. J.

[^17]:    *Paper 57-206, Froposed Size Standards for Toroidal Magnetic Tape Wound Cores. Reqort of the Magnetic Amplifiers Material Sub-Committee, at the 1957 W'inter General Meeting, A.I E.E.

[^18]:    * Work described was performed white the aththor was emploged loy Hazeltine

[^19]:    *Trademark of Hughes Aircraft Company

[^20]:    Applying cement io face of Alnico magnet

[^21]:    trimpot - linear motion potentiometers - pressure transoucers and accelerometers

[^22]:    For Over Thirty-five Years Manufacturers of Dependable Electrical, Electronic, Chemical and Mechanical Alloys

[^23]:    RADIO ENGINEERING PRODUCTS
    1080 UNIVERSITY ST., MONTREAL 3, CANADA
    UNiversify 6-6887

    CABles
    MADENPRO, MONTREAL

[^24]:    FOR SPEGIAL DESIGNS AND TEGHNIGAL DATA SHEETS ON THESE CONNECTORS WRITE ELEGTRONICS

[^25]:    *Revere trade name

[^26]:    IN CANADA: MARSLAND ENGINEERING LTD., KITCHENER, ONTARIO IN EUROPE: NSF LTD., 31-32 ALFRED PLACE, LONDON, ENGLAND

[^27]:    S. S. White Industrial Division, Dept. EU

    10 East 40th St., New York 16, N. Y.

[^28]:    PHILADELPHIA, PA.
    Electronic Engineers, Logical Designers, Physicists, Programmers, Mathematicians. Send complete resumé to MI. James Drumm, Dept. PMy-2, 1900 W. Allegheny Ave., Philadelphia, Pa.

[^29]:    *Price in U.S.A. f.o.b. Comden. Subject to change without notice.

[^30]:    | Name
    Company
    1 Address
    | City

[^31]:    GENERAL SALES OFFICE
    194 Nassau St., Princeton, N. J; Phone Princeton 1-4450

[^32]:    McGraw-Hill Book Co., Dept. L-5, 327 W. 41st St., New York 36
    Send me book(s) checked below for 10 days' examination on approval. In 10 days $I$.will remit for book(s) I keep, plus few cents for delivery costs, and return unwanted book (s) postpald. (We pay delivery costs if you remit with this coupon-same return privilege.) $\square$ Geyer-Magnetic-amplifier Circ., $\$ 7.00$ G Kiver-Transistors in Radio Selev., $\$ 6.50$ $\square$ Hunter-Hdbk of Semiconductor Elect., Millman \& Taub-Pulse \& Digital Circ,
    (PRINT)
    $\square$ Williams-Building an En
    Name.
    Address
    City....
    Zone.
    
    

[^33]:    FOR DETAILED INFORMATION, WRITE:
    Dr. L. F. Manson
    OPERATIONS RESEARCH OFFICE ORO

    The Johns Hopkins University<br>7100 Connecticut Avenue<br>Chevy Chase, Maryland

[^34]:    - THE COMPANY-Judging a company on its past performance constitutes sound logical thinking. Looking over BROWN INSTRUMENTS records of accomplishment tells a reassuring story of continuous growth during nearly a century of pioneering in the industrial instruments and contral field.

[^35]:    Write • Phone
    TECHNICAL WRITING SERVIC:
    McGraw-Hill Book Co., Inc:
    330 W. 42nd St., N. Y. 36, N. Y. LOngacre 4-3000

[^36]:    Bendix Aviation Corp.
    Bendix-Freiz Division
    Products Division-Missiles ................ 432
    Systems Division Missiles .................. 408
    York Division ……....................... 414
    Burroughs Corp, Research Center......... 412

[^37]:    *Distributar Stock, RMA Values
    **Sales Office \& Distributor stock, RMA values.

[^38]:    C\&H Sales Co............................... 439
    Communications Devices Co............... 442
    Communications Equipment Co............. . 447
    Compass Electronics Supply Co....,....... 441

    Empire Electronics Co....................... 442
    Engineering Associates ..................... 440

[^39]:    This index is published as a service. Every care is taken

