electronics

A MCGRAW.HILLPUBLICATION• 75 CENTS

APRIL 1956

TELEMETERING
Electronic Data
Transmission
28-page SPECIAL REPORI on latest techniques

Systems Development L-put Transducers Sgnaling Methods

Commutating Devices
Output Indicalors

Also in this issue
Correction Circuits
for Color TV...p 130
Noise: Part 2 ... 134

Leaders in MINIATURIZATION FOR OVER tWENTY YEARS

MINIATURIZED TRANSFORMER COMPONENTS SROM

Items below and 650 others in our catalog A

HERMETIC SUB-MINIATURE AUDIO UNITS

These are the smallest hermetic audios made. Dimensions
$1 / 2 \times 11 / 16 \times 29 / 32 \ldots$ Weight. 8 oz .

TYPICAL ITEMS

Type No.	Application	MiL Type	Pri. Imp. Ohms	Sec. Imp. Ohms	DC in Pri MA	Response $\pm 2 \mathrm{db}$ (Cyc.)	Max. ievel
H-30	Input to grid	TFIA1OYY	50*	62,500	- 0		
H-31	Single plate to single grid, 3:1	TF1A15YY	10,000	90,000	0	300-10,000	+13 +13
H-32	Single plate to line	TF1A13YY	10,000*	200	3		
H. 33	Single plate to low impedance	TFIA13YY	30,000	50	1	300-10,000	+13 +-15
H-34	Single plate to low impedance	TFIA13YY	100,000	60	. 5	300-10,000	+6
H.35	Reactor	TFIA2OYY	100 Henries O DC, 50 Henries-1 Ma. DC, 4,400 ohms.				
H-36	Transistor Interstage	TF1A15YY	25,000	1,000	. 5	300-10,000	$\frac{+10}{+10}$

*Can be used with higher source impedances, with corresponding reduction in frequency range and current

COMPACT HERMETIC AUDIO FILTERS

UTC standardized filters are for low pass, high pass; and band pass application in both interstage and line impedance designs. Thirty four stock values, others to order. Case $1 \cdot 3 / 16 \mathrm{x}$ $1-11 / 16 \times 1-5 / 8-2.1 / 2$ high . Weight 6.9 oz.

HERMETIC MINIATURE HI-Q TOROIDS

MQE units provide high Q, excellent stability and minimum hum pickup in a case only. $1 / 2 \mathrm{x}$ $1-1 / 16 \times 17 / 32 \ldots$ weight $1.50 z$.

TYPICAL ITEMS

OUNCER(WIDE RANGE) AUDIO UNITS

Standard for the industry for 15 yrs., these units provide $30-20,000$ cycle response in a case $7 / 8 \mathrm{dia} . \times 1-3 / 16$ high. Weight 1 oz .
TYPICAL ITEMS

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	Pri. Imp	Sec. Imp
0.1	Mike, pickup or line to 1 grid	$\begin{aligned} & 50,200 / 250, \\ & 500 / 600 \end{aligned}$	50,000
0-4	Single plate to 1 grid	15,000	60,000
$0-7$	Single plate to 2 grlds, D.C. in Pri.	$15,000$	95,000
0.9	Single plate to line, D.C. in Pri.	$15,000$	50, 200/250, 500/600
0.10	Push pull plates to line	$30,000 \mathrm{ohms}$ plate to plate	50, 200/250, 500/600
$\frac{0.12}{0.13}$	Mixing and matching	50,200/250	50, 200/250, 500/600
0.13	Reactor, 300 Hys.-no D.C.;	50 Hys. -3 MA .	.C., 6000 hmms

LET US MINIATURIZE YOUR GEAR. SEND DETAILS OF YOUR NEEDS for SIZES and PRICES

SUB-SUBOUNCER AUDIO UNITS

UTC Subouncer and sub-

 $\begin{array}{clc}\text { Type } & \text { Application } & \text { Level } \\ { }^{\text {SSSO-1 }} & \text { Input } & +4 \text { V.U. }\end{array}$

SSO-2	Interstage $/ 3: 1$	$+4 \mathrm{V.U}$.
	SSO-3	Plate to Line
	$+20 \mathrm{~V} . \mathrm{U}$.	

$\begin{array}{ll}\text { SSO.4 } & \text { Output } \\ \text { SSO.5 } & \text { Reactor } 50 \text { HYat } \\ +20 \text { V.U. }\end{array}$
SSO-5 Reactor 50 HY at $1 \frac{1}{2 l} \mathrm{mil}$ D.C. 4400 ohms D.C. $\quad 30,000$
$\begin{array}{lll}\mathbf{S S O . 6} & \text { Output } & +20 \text { V.U. } \\ { }^{* S S O-7} & \text { Transistor } & +10 \text { V.U. }\end{array}$
interstage
Impedance ratio is fixed, 1250.1 for SS
Impedance ratio is fixed, 1250:1 for SSO:-1,1:50 for SSO-3
Any impedance between the values shown may be employed

HERMETIC
VARIABLE INDUCTORS

These inductors provide high Q from $50-10,000$ cycles with exceptional stability. Wide inductance range ($10 \cdot 1$) in an extremely compact case $25 / 32 \times 1-1 / 8 \times 1-3 / 16 \ldots$ Weight 2 oz .

TYPICAL ITEMS

| TYPE No. Min. Hys. Mean Hys. Max. Hys. | DC | Ma | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| HVC-1 | .002 | .006 | .02 | 100 |
| HVC-3 | .011 | .040 | .11 | 40 |
| HVC-5 | .07 | .25 | .7 | 20 |
| HVC-6 | .2 | .6 | 2 | 15 |
| HVC-10 | 7.0 | 25 | 70 | 3.5 |
| HVE-12 | 50 | 150 | 500 | 1.5 |

UNITED TRANSFORMER CO.
150 Varick Street, New York 13, N. Y. - Export division: 13 E. 40th St., New York 16, N. Y. CABLES: "ARLAB"

A McGRAW-HILL PUBLICATION
H. W. MATEER, Publisher
W. W. MacDONALD, Editor

VIN ZELUFF, Managing Editor
JOHN MARKUS, Associale Editor ALEXANDER A. MCKENZIE, Associale Editor JOHN M. CARROLL, Associate Editor WILLIAM P. O'BRIEN, Assistant Editor WILLIAM G. ARNOLD Assistanf Editor DAVID A. FINDLAY, Assistant Editor HAIG A. MANOOGIAN, Assistant Editor GLORIA J. FILIPPONE, Editorial Assistant ARLENE SCHILP, Editorial Assistant CAROLE A. MORRIS, Editorial Assistant GLADYS T. MONTGOMERY, Washington Editor HARRY PHILLIPS, Art Director

WALLACE B. BLOOD, Manager R. S. QUINT, Buyers' Guide Manager

FRANKH. WARD, Business Manager GEORGE E. POMEROY, Classified Manager DONALD H. MILLER, New York JAMES GIRDWOOD, New York thOMAS B. VOUGHT, New York WM. S. HODGKINSON, New England JAMES T. HAUPTLI, Philadelphio CHARLES WARDNER, Chicago BRUCE WINNER, Chicago WALTER M. LUCE, Chicago HENRY M. SHAW, Cleveland
T. H. CARMODY, San Francisco
R. C. ALCORN, San Francisco

CARL W. DYSINGER, Los Angeles
WILLIAM KEARNS, Atlonta
GORDON L. JONES, Dallas
DOUGLAS BILLIAN, Dailas
HERBERT LAGLER, london

KEITH HENNEY, Consultanf

GUIDED MISSILE TAKES OFF-Regulus, built by Chance-Vought for Navy, launched on test at Point Mugu in California, is controlled by electronic equipment shown in insert (see p 154)

COVER
SHOPTALK 2
FIGURES OF THE MONTH 6
INDUSTRY REPORT 7
Designers Deal Tubes Out.
Dielectric Heating Up-Swing. 16
Transistor Shipments Rise
Transistor Shipments Rise Low-Power TV Gains Ground Electronics In Graphic Arts.....
New Business Computer Appears 20
22
Salaries Rise With Fxperience 10 Silicon Sources To Increase
Synthetic Quartz On Market.22
Radar Boosts Missile WorkElectronics Aids Mechanics24
24Military TV Gets Off Ground 14
Businessinen Appraise Computers. . 14 TV Sets In Use Increase. 26
Radio Detects Interfcrence 16 Future Mectings 26
Diode Registrations Rise 16 Industry Shorts 26
CROSSTALK 121
FEATURES
New Applications for Beam Switching Tubes 122
By John Bethke
Vibration Meter Uses Transistors 127
By John F. Kinkel and M. Carr Wilson
Correction Circuits for Color TV Transmitters 130
By K. E. Mullenger and R. H. McMann, Jr.
Equipment for Generating Noise-Part II 134
By W. R. Bennett
Radar AFC System Uses Mechanical Tuning 138By John L. Confalone and William R. Rambo
Testing Hardness with Flux Gate Magnetometer 142
By J. P. Isaacs and Geoffrey Grey
Using Traveling-Wave Tubes
By Roger E. White
contents
Signal-Triggered Sweep Magnifies Pulse Widths 146
By Rudalph L. Kuehn
Permanent-Writing Cathode-Ray Recorder 148
By L. N. Heynick, R. J. Wohl and D. H. Andrews
Balanced-Capacitance Fence Alarm System 150By Glenn H. Browning
TELEMETERING-Electronic Data Transmission 153
By Alexander A. McKenzie ond Haig A. Manoogion
Storage-Tube Device Simulates Radar Net 181
By Saul Shenfeld and Manuel FinklePower Transformer Design Charts184By Reuben Lee and N. E. Mullinix
ELECTRONS AT WORK 188

Transistor Receiver Powered By Sun. 188 Army's First Semiconductor Gear. . 188 Brane Guides Bomber. 188 Infrared Oil-Filin Camera. 190 Lenticular Film For Color Kines. . . 190 Gunfire Control Tracks Jets. 190 Low Capacitance Probe For Video. 194

By Howard L. Roberts
Reconnaissance TV.
Reconnussance TV 202
Tube Interchangeability 20
Hurricane Prediction............. 204

Power Tube Assembly. 204
Mobile Tower For TV Remotes. . . 206 By Joseph Mitchell
Sceniosoluc TV 'Tube.
210
Transistor Two- W/ay Portable. 210
Phonetic Alphabet Changes....... 214
Tube Information Service. 214
Microanmeter Measures Frequency. 216
Plate Photocontrol 216
FM Transistor Transmitter........ 220
Hot Dials.

PRODUCTION TECHNIQUES

Glue-Drying Machine for TV Sets. 224 Cutting and Clinching Machine.. 224 Cabinet-Finishing Techniques..... 226 Gear-Operated Alignment Setup. . 228 Squarc-Corner Conveyor 230 Solenoids Connect Wiring Board, 230 Take-Apart Tape Spools...... 232 Plug Assembly Conveyor. 236 Etched Wiring Board Resistivity . . 238

By L. I. Martin and M. J. Vavra Short-Rini Cable Machine. 240

Mounting Etched Wiring Boards. $2+2$
Changing Insertion Heads. $24+4$
Checking Resistor Cards. . $2+6$
Cutting and Forming Leads 250
Intensity Markers Aid TV Alignment

254
By L. W. Dixon
Turn-Finding Welder for Pot Taps 258
Connector Assembly Jig........... 260
Spraving Resistance Cards26t
Ilorseshoe Bends in Line
NEW PRODUCTS 268
LITERATURE 360
PLANTS AND PEOPLE 378
NEW BOOKS 432
THUMBNAIL REVIEWS 442
BACKTALK 444
INDEX TO ADVERTISERS 503

TALK

figure. Then told us he got it from our Industry Report, published some months earlier.

- ELECTRONIC AUTHORING . . .

As most contributing authors have found out, the mechanics of putting a manuscript together varies all over the lot. Raw material such as circuits, graphs and other data may be worked on at the office or lab, at home, or enroute.

At odd times over a period of several months associate editor Carroll collected data for one article. Many of the notes accumulated at home while cleaning out his pockets after visits to engineers using electronics in various industries.

Beleaguered by the mounting pile of old envelopes, billheads and ordinary paper, he dictated his notes into his home recorder. Bit by bit, the tape grew, to a final length of 3,600 feet.

Translation of the information bits to manuscript draft was done at the office. He listened to sections of tape, then dictated text into another machine. Disks from that machine were transcribed to copy by a service department.

The final article, Electronics in the Process Industries, will appear next month.

AUDIO CUTOFF . . . Man is said to have survived by adapting to his environment. McKenzie and

DUAL-TRANSDUCER Jack Carroll listens to playback of his rough notes, dictates draft to second recorder from whose disks a stenographer later produced typed sheets of copy for an article

Manoogian turned out the 28-page special report on telemetering, appearing in this issue, by use of survival techniques. One of the techniques they selected has intrigued other members of the editorial staff and may be useful to electronics engineers as well.

When they began the assignment, reading, studying and writing in the hubbub of a busy editorial office at first seemed impossible. However, they soon acquired several sets of rubber ear
plugs and devices for inserting them efficiently. From there on, concentration became simple.

There was one embarrassing interlude when the chief editor suddenly confronted them and began a friendly conversation in his customary gentle tones. Forgetting their ear plugs, the pair wondered for a few moments if he was suffering from a case of severe laryngitis.

What he wondered may be cleared up when he reads this.

 N. Y. Longacre $4-3000$ Publacation Ompe. 9 Mont dent: Joseph A. Gerardi, Vice-President and Treasurer: tohn J. Cooke, Secredary vison Hond, Precutive Vice-President. P'blications Division, Ralph B. Smith Vice-President and Editorial Director: Joseph H Allen. Vice-President and Director of A
Subscriptions: Address correspondence to Electronics-Subscription Service. 330 W. $42 \pi \mathrm{~d}$ St.. New York 36 i . N. Y, Allow one month tor change af address. Suthscriptions are solicited only from persons engaged in theory, research. design, oro duction. maintenance and uss of erectronity and products. Position and company coneticn must he indicated on subscription orders.

[^0]
 C. 01% regla-se JC supply; 6 cnd 2 volt cutputs.
electrostatic genERATOR io lab or incustrial hiçh \% otoge application:-

MAIOOOS - vibeless, dependable 10CO/AA iegulator, ides ior -natienced estallatons.

MA1000;

NEW PRODUCTS . . . BROADER ENGINEERING HORIZONS FROM SORENSEN
MR3215 5-32VDC AT 0-15 AMPS new, tubeless, magnetic amplifier

WIDE RANGE REGULATED DC POWER SUPPIY

for versatile, trouble-free performance in countless design \& test applications

Different outside ... and inside! The latest design in magnetic amplifier regulation. A silicon diode is used as reference element and a transistor amplifier provides the control current for the magnetic amplifier. Wide range, continuously adjustable voltage at high current. Regulation $\pm 0.5 \%$ against line or load, ripple 1% RMS. Versatile, dependable, rugged, economical.

Write today for detailed specifications, performance data, and quotations.

$$
\begin{aligned}
& 10 \text {. the enemy } \\
& \text { of industry }
\end{aligned}
$$

Mechanical vibration wave. forms can now be measured and analyzed with the greatest accuracy, using the revolutionary MUIRHEAD.PAMETRADA Model D. 489 Wave Analyzer. Complex vibration waveforms can now be isolated and measured within a wide frequency range, overcoming amplitude and frequency fluctuation and the proximity of component frequencies.

The MUIRHEAD Wave Analyzer operates as a negative feedback, tuned band-pass filter insuring constant selectivity at all frequencies, and simplifying frequency selection. Output voltage is available at tuned frequency for viewing or recording.

This highly versatile instrument has a wide diversity of applications in many industries: aviation, automotive and manufacturing, shipbuilding and electric power generation, to name only a few.

FEATURES

- No internal oscillator - eliminates drift
- R/C-tuned circuits - reduces hum and noise pickup
- Choice of 4 bandwidth characteristics: In-tune High, In-tune Medium, Narrow Band and $1 / 3$ Octave.
- High selectivity characteristic (1\% bandwidth for greatest discrimination)
- Auxiliary pre-amp permits use of high-impedance pickups or transducers.

SPECIFICATIONS

- Frequency range- $19 \mathrm{c} / \mathrm{s}$ to 21 kc (extendable down to $2 \mathrm{c} / \mathrm{s}$)
- Frequency Stability - $\pm 0.3 \%$ over most of range
- Measurement Accuracy- $\pm 1 \mathrm{db}$ over several days
- Output Voltage-10 v
- Input Voltage - 1 mv to 300 v rms (FSD)
- Input Impedance - 0.1 megohms
- Hum and Noise Level-Equivalent to 05 mv input at maximum gain
- Power Supply (external) - $100 / 120$ v, 60 or 400 cycles, 130 w
- Dimensions-123/4" $\times 131 / 2^{\prime \prime} \times 171 / 2^{\prime \prime}$
- Weight - 55 pounds

Write TODAY for your FREE brochure on Vibration

MUIRHEAD

MUINHEAD INSTRUMENTS, Inc. 677 Fifth Ave., New York 22,N.Y.

FIGURES OF THE MONTH

	Lotest Month	Previous Month	Yeor Ago		Latest Month	Previous Month	Yeor Ago
RECEIVER PRODUCTION				BROADCAST STATIONS			
(Source: RETMA)	Jan. '56	Dec. '55	Jan. '55	(Source: FCC)	Feb. '56	56	Feb '55
Television sets, total	588,347	604,626	654,582	TV stations on air.	485	484	Feb. 54
With UHF	82,107	604,626 89,606	117,095	TV stations CPs-not on air	485	484 105	448 130
Color sets	$\stackrel{\mathrm{nr}}{\square}$	nr	nr	TV stations - new requests	106	105 26	130 17
Radio sets, total	1,078,624	1,786,330	1,068,146	A-M stations on air....	2,841	2,834	2,692
With F-M Home sets	nr nr	40,305 396535	16,568	A-M stations CPs-not on air	123	120	101
Home sets	$n r$ $n r$	396,535 343330	280,121	A-M stations - new requests	247	242	186
Portable sets	$n \mathrm{r}$	182,204	166,885 47,303	F-M stations on air... $F-M$ stations CPs-not on air	539	538	542
Auto sets	519,648	864,261	573,837	F-M stations-new requests	4	16	11

RECEIVER SALES

(Source: RETMA)
Television sets, units ...
Radio sets (except auto)

Jan. '56
614,213
531,206

Dec. '55
Jan. '55
647,585 474,947

RECEIVING TUBE SALES

| (Source: RETMA) | Jan. '56 | Dec. '55 | Jan. '55 |
| :--- | ---: | ---: | ---: | ---: |
| Receiv. tubes, total units | $40,141,000$ | $38,049,000$ | $37,951,000$ |
| Receiv. tubes, value | $\$ 31,314,000$ | $\$ 30,673,000$ | $\$ 26,879,000$ |
| Picture tubes, total units | 892,385 | 881,465 | 866,956 |
| Picture tubes, value $\ldots . . \$ 17,016,391$ | $\$ 17,533,105$ | $\$ 17,661,018$ | |

SEMICONDUCTOR SALES ESTIMATES

Germanium diodes, units Silicon diodes, units	Dec. '55 $2,690,000$	Nov. '5 2,575,000-r	$\begin{array}{r} \text { Dec. '54 } \\ 1,800,000 \end{array}$
	- Quarterly Figures		
INDUSTRIAL TUBE SALES	Latest Quarter	Previous Quarter	Year Ago
(Source: NEMA)	3rd'55	2nd'55	3rd'54
Vacuum (non-receiving)	\$9,027,845	\$8,933,453	\$8,803,740
Gas or vapor	\$3,438,835	\$3,365,008	\$3,570,586
Magnetrons and velocity modulation tubes	\$10,998,967	\$13,193,395	\$13,112,244
Gaps and T/R boxes...	\$1,421,138	\$1,677,574	$\$ 13,12,244$ $\$ 1,476,407$

(Source: FCC)	Jan. '56	Dec. '55	Jan. '55
Aeronautical	44,331	44,836	41,868
Marine	54,276	53,950	48,751
Police, fire, etc.	19,757	19,885	17,148
Industrial	27,599	27,269	23,223
Land transportation	8,576	8,481	7,289
Amateur	143,841	142,819	129,258
Citizens radio	14,920	14,426	-9,579
Disaster	326	321	310
Experimental	644	674	649
Common carrier	2,137	2,093	1,810

EMPLOYMENT AND PAYROLLS

(Source: Bur. Labor Statistics)	Dec. '55	Nov. '55	Dec. '54
Prod. workers, comm. equip.	$404.0-\mathrm{p}$	$406.0-\mathrm{r}$	379,000
Av. wkly. earnings, comm...	$\$ 75.53-\mathrm{p}$	$\$ 75.53-\mathrm{r}$	$\$ 70.70$
Av. wkly. earnings, radio...	$\$ 71.81-\mathrm{p}$	$\$ 71.81-\mathrm{r}$	$\$ 69.49$
Av. wkly. hours, comm....	$41.5-\mathrm{p}$	41.5	40.4
Av. wkly. hours, radio....	$40.8-\mathrm{p}$	$40.8-\mathrm{r}$	40.4

STOCK PRICE AVERAGES

| (Source: Standard and Poor's) | Feb. '56 | Jan. '56 | Feb. '55 |
| ---: | ---: | ---: | ---: | ---: |
| Radio-tv \& electronics $\ldots . .$. | 426.8 | 435.6 | 437.0 |
| Radio broadcasters $\ldots . . .$. | 489.8 | 500.5 | 496.8 |
| p-provisional; r-revised | | | |
| nr-not reported | | | |

FIGURES OF THE YEAR
Television set production Radio set production Television set sales Radio set sales (except auto) Receiving tube sales
Cathode-ray tube sales

TOTALS FOR FIRST MONTH

(856	M		1955
1956	1955	Percent Change	Total
588,347	654,582	-10.1	7,756,521
1,078,624	1,068,146	+ 1.0	14,894,695
614,213	647,585	- 5.2	7,421,084
531,206	474,947	+11.8	6,921,384
40,141,000	37,951,000	+ 5.8	479,802,000
892,385	866,956	+ 2.9	10,874,234

electronics—April • 1956

GUIDED missile's brain looks like a small filing cabinet when

Designers Deal Tubes Out

> Transistors and magnetic amplifiers share spotlight as prime computer elements

"Any engineer who designs an electron tube into a new computer will have to tell me why." This word went out recently from the chief engineer of a large west coast electronics firm. It typifies contemporary thinking among computer designers.

Engineers look with jaundiced eye on the 4,000 -odd electron-tube filaments that must be heated to incandescence when a big brain goes to work. Rusticating the tube would save power and cut down on space requirements. Cooling and air-conditioning problems would likewise evaporate.

- On The Bench - An attractive alternative to the electron tube is
the transistor. An airborne digital computer developed by North American Aviation's missile people uses 1,000 transistors in etched circuits. The three-cubic-foot, $\mathbf{1 2 5 - 1 b}$ brain is four times lighter than its electron-tube counterpart. It consumes 100 watts instead of 3,000 for the tube job. The computer can generate continuous solutions for differential and trigonometric problems. It can do 93 integrations at once. General Electric 2N43 transistors are used.

Pbilco is working on at least three Transacs. Introduced last year, this digital computer uses surface-barrier transistors in direct-coupled circuits. At least one of the units under development is for airborne computing.

IBM has already shown a transistorized electronic calculator, the model 608. This computer is designed for business and industry.

- Dark Horse - Although most computer designers are fondly eyeing the transistor Sperry Rand is betting on the magnetic amplifier. Magnetic components are not strange to the computer field. Fer-rite-core internal memories and tape-wound-core shift registers are extremely important. Word, however, was that magnetic amplifiers were just too slow for high-speed stored-program digital computers.

A break came from Sperry Rand's South Norwalk, Conn. operations in the form of the $\$ 12,500$ Ferractor magnetic-amplifier computer. However, this unit was still relatively slow.

Then from Philadelphia came the Univac engineering calculator, an all-magnetic computer adapted from a device developed for the Air Force's Cambridge Research Center. This computer uses 1,500 magnetic cores, the magnetic clock drives magnetic amplifiers at 660 kc.

Transistor Shipments In Sharp Rise

Unit shipments tripled during 1955; 400 million sales figure seen for 1965

SNowballing sales by transistor manufacturers reflect their wholehearted acceptance by equipment manufacturers in both entertainment and nonentertainment fields.

Sales for 1955 were $3,646,802$ units, almost triple the 1954 figure of $1,317,327$. Value in 1955 was $\$ 12,252,741$ against $\$ 5,122,266$ for 1954.

The upswing is continuing on a

month-to-month basis. December 1955 sales were 479,968 units at $\$ 1,614,805$ while for January 1956, 572,674 transistors worth $\$ 1,893$,250 were sold.

Total transistor sales for 1956 should reach 10 to 11 million units. For 1957 this is expected to double. By 1965 the transistor business should be well established at 400 million annually.

- Breakdown-Half of 1956 production will be for entertainment use, largely in portable radios and some auto sets. For the rest: 1.4 million will go into computers and digital devices, 1.3 into communications equipment and 2.8 into other applications, including hearing aids.
The 5.5 million transistors for nonentertainment use will include silicon and military-type units.
- Applications - For the short haul, entertainment uses are expected to take a high of 75 percent of production. Contributing factors will be 100 -percent transistorization of portable, table and clock radios. Even the clocks may be transistorized. Almost every auto radio will be transistorized. The transistorization of tv sets will probably come about through introduction of transistors first in special circuits, for example, color decoders.
-Shifting Balance-For the long haul, the entertainment share may decline to about 66 percent as transistors in computers, industrialcontrol equipment and communica-
tions gear multiply. Transistors are already important in special communications, airborne control and navigation and missile-guidance equipment.
- Production - The predicted increase for transistor sales depends entirely on the market. Capacity
of manufacturers to produce transistors is more than sufficient to meet the predicted demand. Today, the combined production facilities of three of the larger transistor manufacturers total nearly $\frac{3}{4}$ million units a month. General Electric plans to double its production capacity by the middle of the year.

Low-Power TV Gains Ground

Philco and RCA introduce equipment for the field. Other companies eye the new market

ANOTHER broadcast equipment manufacturer has entered the lowpower tv station market created last June when the FCC amended its rules to permit uhf and vhf stations to operate with a minimum visual effective radiated power of minus 10 dbk (decibels below 1 kw or 100 watts) at any antenna height. Philco announced new low-power tv broadcasting packages chiefly for the estimated 800 small communities where tv has been unavailable because of high costs of conventional equipment. RCA is beginning production on a new 100 watt vhf transmitter.

- Military - Several broadcast equipment makers have been in the low-power ty field for some time. The equipment gained impetus when the military began establishing low-power tv stations for troops in isolated areas in the U.S. and abroad. There are now some 15 of the military stations in operation. About 75 are possible if all potential areas are equipped. So far, equipment for these stations has been supplied by various manufacturers with Dage and RCA supplying the bulk.
- Firms-With Philco's entry into the field and RCA's new equipment, other broadcast equipment manufacturers are watching the field more closely. Du Mont has not yet introduced equipment for lowpower use but plans to move into the field if it develops successfully. GE is also watching the field closely but has not as yet announced low-
power gear. RCA has had lowpower tv station equipment available through its International Division and has equipped one commercial station in Guatemala with an 18-watt transmitter.
-Stations-There are no 100 -watt commercial ty stations in operation in the U.S. at the present time. Lowest power stations now operating in the U.S., according to FCC ,

New Philco low-power tv equipment
are KINY-TV at Juneau, Alaska operating at 263 watts and KSHOTV at Las Vegas, Nevada which began operating on March 9. Construction permits granted to WJMSTV at Ironwood, Mich. to operate at 794 watts and KZIT-TV at Santa $\mathrm{Fe}, \mathrm{N} . \mathrm{M}$. with 490 watts constitute present lowest power permits.

- Equipment - The new Philco package includes a transmitter, monitoring equipment, high-gain antenna and transmission line and local program originating facili-
(Continued on page 10)

Sylvania NPN transistors

MATCHED
 for high
 audio output

With low
 Cistortion

Whatever the front-end design in your transistor audio circuits, Sylvania offers a highly efficient audio transistor line-up for driver and push-pull stages. Controlled driver characteristics and a matched push-pull pair assure maximum power output with minimum distortion.

DRIVER STAGE

Sylvania's 2N35 for Class-A driver use has linear characteristics at high current levels, thereby insuring maximum input to the push-pull stage with minimum distortion.

PUSH-PULL MATCHED PAIR

Output transistors in Sylvania's audio line-up are
matched to within 10% on collector current characteristics. The close tolerances to which the 2 N 35 push-pull pair is produced permit maximum power gain with minimum distortion as plotted in Figure 1.

Power output of the 2 N 35 pair is rated for a minimum of 100 mw at $50^{\circ} \mathrm{C}$. Dissipation is rated at 50 mw , per unit, with higher rated counterparts available.

The all-important facilities - Sylvania is equipped to supply you with production quantities, so why not call your Sylvania Representative for samples. Or write for complete data. Address dept. D20R.
ties for transmission of slides, films and local live shows.

Two types of studio buildings and towers can be included in the packages. The final power amplifier provides 150 -watt peak visual power and 75 -watt aural power output to the transmission line. The program
originating equipment consists of film and live camera chains, video monitoring and switching facilities, and audio facilities. The frequency band used in battlefield surveillance, 470 to 500 mc , can be covered by the transmission equipment.

Salaries Rise With Experience

Electronics industry among the top paying fields both in starting salary and raises

How engineers in the electronics industry fare salarywise as they gain work experience is shown in a national survey by the Los Alamos Laboratory of the University of California of professional scientific salaries in 1954.
The data are based on completed questionnaires submitted by 221 contributors reporting the salaries of more than 50,000 research and development scientists. Administrative and supervisory officials and scientific employees not holding academic degrees are excluded.

Profit sharing plans, production bonuses, cost-of-living allowances and other similar adjustments to base salaries have been added to the reported monthly averages wherever possible. Research and development, as used for the survey, is defined as any activity requiring formal technical training and the exercise of scientific judgment in selecting and applying techniques for the solution of problems related to the improvement of existing
products, services or methods and includes pure research.

The engineers classified under B.S. degrees in the chart include those with bachelor's or master's degrees in science or engineering who are engaged in research and development work.

- Bachelors - The survey shows that the monthly salaries of engineers with B.S. degrees in the electronics industry are higher at the start than those of engineers in eight other industries. And, although enginers in other industries may move ahead in salary at different times as experience is gained, engineers in the electronics industry with over 20 years experience were also the highest paid of the eight industries surveyed.

Compared to the next three highest paying industries, starting salary of engineers in electronics was $\$ 5$ higher than in the machinery field, $\$ 7$ higher than in the petroleum industry and $\$ 10$ higher than salaries in the aeronautical field. More than 20 years after receiving their B.S. degrees, engineers in electronics were earning $\$ 127$ more a month than comparable engineers
in the aeronautical and petroleum fields and $\$ 243$ more than engineers in the machinery field.

- Doctors-Engineers with Ph.D. degrees in the electronics industry were not as well paid for experience as were engineers in some other industries, according to the survey. Three years after degree, Ph.D.'s in electronics were earning $\$ 595$ a month and ranked below those in the rubber industry who earned an average monthly salary of $\$ 635$.

More than 20 years after degree, Ph.D.s in electronics earned $\$ 959$ per month ranking behind Ph.D.'s in the machinery field earning $\$ 1,064$ per month and those in the instruments field earning $\$ 1,058$, In both of these industries, however, the number of Ph.D.'s surveyed or available for survey was small while the number in the electronics industry was among the highest of all industries surveyed.

Synthetic Quartz Now on Open Market

Though priced higher than
natural crystals, yield is greater, labor costs lower

Availability of synthetic quartz on the open market at $\$ 52.50$ a pound for the past eight months has resulted in many orders on a sampling basis, but as yet Brazilian natural quartz continues to fill production needs.

Chief reason for slowness of sales is believed to be the need for more time to develop new production techniques that take advantage of the greater perfection of the synthetic crystals. Of the total of over two tons already grown in the pilot plant of Clevite Research Center under Signal Corps contract, about 85 percent has been electronic grade, with this figure approaching 100 percent if experimental runs are neglected.

- Cost Factors-Yield per pound is higher because the synthetic is (Continued on page 12)

三XTEMDED ELECTEOLMTIC CAFACITORS

now available for
 military electronics computers
 laboratory test insiruments industrial controls other electronic applications

HERE ARE CAPACITORS OF THE SAME MAXIMUM RELIABILITY which Sprague has long supplied to the telephone systems . . . now available for your own high reliability electronic applications.

The use of especially high purity materials . . . utmost care in manufacture, constant observation and quality control of all operations have made Sprague Extended Life Capacitors outstanding for their long life and faultless performance.

Type 17D Extended Life Electrolytics have turret terminals and twist-mounting lugs. A special vent construction is molded right into the cover, as are the numbers identifying each terminal. The aluminum cans are covered with a corrosion-resisting insulating coating.

Nineteen standard ratings, all characterized by low maximum leakage current and remarkable life test capabilities are available in the new series. Complete technical data are in Engineering Bulletin 340, available on letterhead request to the Technical Literature Section, Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.
SPARGUE
an almost perfect material having few flaws for discard. The synthetic bars are grown to practically the exact cross-section of the resonators being cut, minimizing cutting waste.

The crystals are grown in exactly the desired orientation, so that the cutting saw travels a shorter distance through the material; this permits use of a thinner saw without reducing cutting accuracy, thereby giving more plates per crystal.

Labor costs are reduced because inspection of raw materials for flaws is eliminated, orientation prior to cutting is simplified by the regularity of the grown crystal faces, and the large flat areas simplify cementing operations. Uniform size and shape of the grown crystals also suggests the possibility of mechanizing the entire cutting and finishing operations when producing one size of oscillator plate in high volume.

Where long quartz bars are required, as for low-frequency flexural units, synthetic quartz is actually cheaper on the basis of material cost alone, because of the premium prices on natural quartz long enough to give the required dimensions that are parallel to the Y axis.

[^1]- Future-A new type of autoclave under consideration is expected to permit a substantial cost reduction in the grown crystals, chiefly
through savings in labor for loading and unloading. Expansion of production facilities will follow market demands. None is planned.

Radar Chain Boosts Missile Work

Ten million dollar system will help speed development of intercontinental missiles

Further aid in the current international race to develop an effective intercontinental missile and other supersonic weapons is forthcoming as the world's largest chain radar tracking system nears completion off the coast of Florida.

The system is capable of checking the flight of the newest supersonic rockets and missiles over the full length of the U.S. Air Force Air Research and Development Command's Florida Guided Missile Range. It enables engineers to understand certain problems in aerodynamics that have hampered missile progress.

- Timetable -The first installation on the Florida Range was made at the test range's central control near Cocoa Beach, Fla. in January of last year. The Grand Bahama station was completed shortly thereafter and other installations followed at the other islands shown on the map. The chain is now complete except for St. Lucia and that installation will be finished early in 1956.
- Equipment - The radar chain was designed and built by Reeves Instrument Corp., a subsidiary of Dynamics Corp. of America. Value of the job was $\$ 10$ million.

The chain comprises 21 radar installations. Sixteen of the radars are installed in pairs on each of eight islands.

The dual installations provide standby equipment. One installation checks on the other and can take over in case of failure. The island installations are in air-conditioned buildings. The remaining five installations are located in mobile vans.

- Functions - The five-ton radar systems are almost fully automatic. One operator is required at each installation for missile acquisition. Once the radar locks onto the missile the operation is carried on automatically. The radars record and report back position, course, velocity and acceleration. Accuracy is within 0.02 deg .

Tracking continues to the end of the test run. If the missile deflects from course or becomes erratic, a control to destroy it can be actuated. There have been no accidents from runaway missiles.
(Continued on page 14)

IRON POWDER CORES to meet your highest requirements \star For Quality \star For dimensignal accuracy

Here are the essential facts to keep in mind about iron powder coresand Arnold. As illustrated above, we make a wide selection of cores, from simple cylinders to special cores of complicated design. That includes all standard types and sizes of threaded cores, cup, sleeve, slug and cylindrical insert cores you may require: for use in antenna and RF coils, oscillator coils, IF coils, perm tuning, FM coils, television RF coils, noise filter coils, induction heating and bombarder coils, and other low frequency applications. Also, a standard series of iron powder toroids is being engineered at this time, which will conform to the standard sizes proposed by the Metal Powder Association. - We'll appreciate the opportunity to supply your needs . . let us quote on your requirements.
wsw 6044

The Arnold Engineering Company
 SUBSIDIARY OF ALLEGHENY LUDLUM STEEL CORPORATION General Office \& Plant: Marengo, lllinois DISTRICT SALES OFFICES . . New York: 350 Fifth Ave.
 Los Angeles: 3450 Wilshire Bivd
 Boston: 200 Berkeley St

APPROACHING aircraft can be watched on one of three control-tower monitors at Alameda Naval Air Station (left). Tactical television camera (right) gives Army more eyes. And new f-m gear will help when

Military Television Gets Off The Ground

New air-surface system supplements existing closed-circuit and walkie types

Increased use of television techniques in defense operations is highlighted by three different systems for seeing at a distance. Navy has installed traffic control tv at NAS Alameda; the Signal Corps has developed a walkie-peepie and is testing an f-m airborne reconnaissance link.

- Airborne Scout-In contrast to commercial to broadcasting, Army's new air-ground picture transmitter uses frequency modulation instead of amplitude modulation. Admiral Corporation engineers who built the equipment say that a plane flying at 1,000 feet could send back pictures to a command post receiver 25 or 30 miles away.

Not mentioned, but technically possible would be the relaying of such information through one or more intermediate aircraft to posts 100 or 200 miles distant.

- Expendable Robot-For the foot soldier, the Signal Corps has an 8pound camera that sends out picture signals from a back-pack transmitter weighing 47 pounds with power supply.

A standard hand-held radio transmitter supplies the sound channel. Receiver is normally mounted in a jeep. The camera
could be left in a hazardous location, connected by cable with the receiver.

- Visual Radar-A closed-circuit system using three cameras, installed by Kay Labs, gives Navy airfield operators at Alameda positive control of runway operations a half mile distant. Intervening
buildings formerly blocked the view. Vehicular traffic on the airfield perimeter road that crosses the end of the runway is likewise visible.

Coming of the jet age, with longer runways, presages increased use of similar closed circuits at costs in the order of $\$ 50,000$ each.

Businessmen Appraise Computers

Uses continue to multiply; several new employment opportunities are created

NFarly everything from electric bills to Holy Scripture is grist for the electronic computer's mill. Recent months have seen groups such as the American Management Association and the Society of Applied Antropology seriously discussing electronics.

- Applications-It has been estimated that a stored-program computer is profitable when it can take over the duties of 90 or more cherks. Users of computers in the life insurance field were numerous at the AMA conference. They included John Hancock with 2 million policies in force; Franklin Life with $\frac{1}{2}$ million policies; and Mutual Life of Los Angeles with 350,000 policies. All these firms have Univacs.

Consolidated Edison of N. Y. will use a Univac for customer account-
ing and an IBM 705 for payroll and general accounting. Chrysler has an IBA 702 for inventory control in its Parts Division and an IBM 650 doing payroll work at Plymouth. Dodge Truck division expects to have a Univac File Computer.

An unusual application of the Univac was preparing a concordance of the Holy Bible. Over 800,000 words were listed alphabetically with context and indexed by book, chapter and verse.

- Installation-Putting in a computer takes, on the average, 9 to 12 months and requires 20 to 35 manyears. At John Hancock, initial studies required 10,000 hours costing $\$ 50,000$ while MinneapolisHoneywell reports its study cost $\$ 42,000$.

Preparation of the site cost John Hancock $\$ 200,000$ while overall installation at Franklin Life came to $\$ 250,000$.

- Personnel - An average computer crew has been estimated at
revolutionary development in vocuunns $\ldots \ldots \ldots$

SINCE 1650 A. D.

The Mayde $\begin{aligned} & \text { urg } \\ & \text { Hemispheres Test was the first }\end{aligned}$ demonsration of creating a vacuum. That was in 1650 ever. 300 years ago . . . today Kahle tas demonstrated a revolutionary new concept in vacuum . . . a valve-less rotary Exhaust Mashine.
This rapid-speed, rotary-in-line, automatic Exhaust Machine features a continuous all-metai vacuum path from port through diffusion pump ©meletely eliminates the conventional slide velve . . . individual automatic leak detector and shut-off valve on each port . . water zooled compression chucks are automaticaly operated . . . automatic tipping torch and automatic tubulation remover are also employed.
Ultra-high vacuum is achieved with the unique design and rugged construction of Kahle's automafic Exhaust Machine. Ideal for exhausting catiode ray tubes, transmitting tubes, receiving tubes, x-ray tubes, and all other highreliabiliy types.
The type Machine illustrated is one of a wide selection of sizes and ranges available at Kahle.

Write today for valuable File Folder containing complate specifications and in=ormation.

ENGINEERING COMPANY 1310 SEVENTH STREET NOKTH BERGEN, N. J.

17 men. John Hancock's team numbers 19. Franklin Life estimates a 70 -man staff including clerks and typists for a 7 -day 24 -hour operation.

Although some manufacturers recommend only 1 or 2 mathematicians and engineers, Franklin Life, which does its own maintenance, employs a chief engineer and senior engineer, both with previous computer experience, 2 junior engineers and 4 technicians. Franklin has 10 programmers but feels the company should have set its sights on 20 to 25.

For all-week round-the-clock operation, Franklin estimates need for 25 clerical coders, 15 engineers, technicians, operators and tape handlers, 20 typists and 10 programmers.

- Outlook-One major change that computers may cause is shift work for white collar workers. Another is creation of a new profession, the information engineer, as programmers have been called. They organize the sequence of control of information and understand operation of the machine. Within the next decade 17,000 programmers may be needed.

This new group is already in short supply. As a consequence, they are well paid and turnover is high in some installations.

Transistorized Radio Detects Interference

Exploring trouble sources in electrical equipment is a new use for pocket-sized transistor radios, according to Raytheon

Crystal Diode Registrations Rise

Over 270 types have been registered with JETEC since 1946

Growing use of crystal diodes in electronic equipment is indicated by the growing number of types registered by manufacturers. Although registrations do not always mean that production of the device is underway, it usually indicates that the type has reached production level either by the company that sponsored its development or by licensees of the device.

- Progress - According to the Joint Electron Tube Engineering Council's summary of registered crystal diodes, in 1955 some 107 types were registered representing nearly 40 percent of total diode registrations since 1946. In 1954, 65 types were registered and in 1953 the total was 43. Until 1953 the number of diode registrations ranged between 2 and 20 each year for an annual average of 8 registrations.
- Makers - Some 16 electronics manufacturers have been active in the development of crystal diodes since 1946. Sylvania has been the leading sponsor of the devices, according to registration records, with about twice as many regis-
tered as any other company.
- Material - Silicon diodes have forged ahead in number of registrations. Of the more than 272 types that have been registered since 1946 , some 57 percent have been silicon types. In 1955 only 15 of the 107 total registered were germanium types. The remainder were silicon diodes.
- Use - Although full details on the use for each type of diode registered is not given in the summary report, it shows that about 60 of the types were for general purposes. Four types were specifically indicated for use in computers, two for tv and six as power rectifiers.

Dielectric Heating On Up-Swing

Sales of sealing units increased by demands of fast-moving plastics industry

Growth in the dielectric heating business is accelerating due to demands for more and varied consumer products made from thermosetting plastics. Such sealing units
(Continued on page 20)

All in One Millivolimeter Micro-microammeter Mega-megohmmeter

The G-R Type 1230-A D-C Amplifier and Electrometer represents a new and important contribution to the field of elec-trical-measuring equipment.

A low-cost instrument of high performance for the measurement of extremely small d-c voltages, currents and charges has not been hitherto available. As if not enough, this device is also a completely self-contained megohmmeter with provision for measuring higher resistances than possible with many instruments specializing in this measurement. Output jacks, at the rear, permit use as a sensitive d-c amplifier to drive 1 -ma or 5-ma recording equipment such as the Esterline Angus Recorders.

Superior performance is obtained through a carefully thought-out design. An electrometer tube is used in the first of three direct-coupled stages to keep grid current effects truly negligible. The stringent stability requirements necessary for an instrument such as this are met through use of excellent supply regulation, insulation of the highest quality, shock mounting, wire-wound resistors at all critical locations, and aging of both tubes and components . . . in short, through adherence to the high standards of engineering and manufacture which have come to be expected of the General Radio Company.

The Type 1230-A Amplifier and Electrometer has many applications in industrial-process control and in physical and chemical research, in addition to its obvious uses in the electronics laboratory. The instrument may be used: to operate from strain gauges; to indicate or record time-current curves of capacitors under charge or discharge; to record life tests on vacuum tubes and other components; to measure semi-conductor resistance, piezo-electric potentials, electrostatic fields, ph indications, contact potentials, grid currents in tubes, and insulation resistance of motors, generators and appliances; and, in general, to measure any physical or chemical reaction where a d-c voltage or current proportional to the change is available.

This instrument is a truly versatile device . . . one we're proud to present, and one every laboratory will want to own.

Six Voltage Ranges: $\pm 30 \mathrm{mv}, 100 \mathrm{mv}, 300 \mathrm{mv}, 1 \mathrm{v}, 3 \mathrm{v}$, and $10 \mathrm{v} \mathrm{d-c}$, full scale - accuracy, 2% of full scale on all five higher ranges, 4% of full scale on lowest $30-\mathrm{mv}$ range.

Twenty Current Ranges: from $\pm 1 \mathrm{ma}$ to $\pm 3 \times 10^{-13}$ amp $\mathrm{d}-\mathrm{c}$, full scale - accuracy, 3% of full scale from $\pm 1 \mathrm{ma}$ to $\pm 3 \times 10^{-9} \mathrm{amp}$ and $10 \% \mathrm{to} \pm 3 \times 10^{-13} \mathrm{amp}$.

Sixteen Resistance Ranges: direct reading $300 \mathrm{k} \Omega$ to 10 MM Ω, full scale; $5 \times 10^{14} \Omega$ at smallest meter division - accuracy, 3% from $3 \times 10^{5} \Omega$ to $10^{10} \Omega$ and 8% to $10^{13} \Omega$ - with external 300 v batteries in place of the internal $9 v$ source, resistance range can be extended to read $6 \times 10^{18} \Omega$ at smallest meter division.
Since resistance is easily measured with different voltages applied to the unit under test, voltage coefficients are readily obtained.
internal Resistance Standards: 10^{4} and 10^{5} ohm steps accurate to $0.25 \%: 10^{6}, 10^{7}$ and 10^{8} ohms accurate to $1 \% ; 10^{9}, 10^{10}, 10^{11}$ ohms accurate to 5% and have been treated to prevent adverse humidity effects. 0 and: ∞ steps also available.
Switch provided for checking higher resistance standards in terms of more precise 10^{4} and 10^{5} ohm wirewound units (makes possible working back ta high basic accuracy over the complete range).

High Input Resistance: determined by setting of resistance standards switch; 10^{14} ohms at "open" position; input insulation is entirely teflon and siliconized glass, insur ing reliable operation under high humidity conditions.

Drift: less than 2 mv per hour after initial warm up.
Tem,wiature, Humidity, Line-Voitage Effects: all negligible-

Output: panel meler indicates voltage, current and re sistance; output jack provided for connecting recorder havieg resistance up to 1500 .

Guard Terminalst three terminals in addition to input and output provide versatility in ground and guard connec.tions.

Imputt Switch Discannects Unknown: without upsetting unknovn or electrometer input circuit.

Power Suppiy: 105-125v (210-25Cv), 50-60 eycles.

Useful Accessories:

Estertine Angus 5 -ma or 1 -ma Graphic Recorder G-R Type $1230-\mathrm{P}_{1}$ Eomponent Shieid at $\$ 40$ provides a fully shielded chamber for measurement of very high resistance camponents.

WE SELL DIRECT

GENERAL RADIO Company

172 Nessachusatts Avenue, Cambridge 39, Massachusefts, U. 5. A.
90 West Street NEW YORK 6
8055 13th St., Silver Spring, Md. WASHINGTON, D. C
1150 York Road, Abington, Pa. PHILADELPHIA
920 S. Michigan Ave. CHICAGO 5
1000 N. Seward St. LOS ANGELES 38
admittance
amplifiers
coaxiat Elememis distortion metiers frequenct hak suring frequenct meparatus apparatus
freouency standards impedance briders H/Ght metieks hisht meters
motulation meters motor controts null detectors ascilators Aats a accessories polariscopis prieision capacitols pulse generators a-t-c decades R-l-g oftandardos

Signal einerators soumo a viatation meets strobseopes
va grondcast mentions U-Hf measuging ecuipment unir instrumenys variacs $\mathrm{v}-\mathrm{i}$ voitmetiks wave anatmzers Wave fiteeas

FIRST PLACE for TRANSISTORS

antion

Raytheon's three million dollar Semiconductor Division plants devote 180,000 square feet (over 4 acres) of floor space exclusively to semiconductor research, engineering and manufacturing. Raytheon's semiconductor operations employ 1500 people, including over a hundred scientists and engineers.

Raytheon Transistors possess the improved electrical performance, reliability and mass production advantages of Raytheon's fusion-alloy process - proved superior by the successful production of millions of transistors - more than all other makes combined.

SUBMINIATURE LOW FREQUENCY TRANSISTORS

		Type	Collector			Emitter Current mA	BaseResistanceohms		Max. Noise Facto db	Alpha Freq. Cutoff mc .
		Volts	Meg. ohms	$\underset{\mu \mathrm{A}}{\text { Cutoff }}$						
		2N130	-6	2.0	6	-1.0	350	22	25	0.6
		2N131	-6	2.0	6	-1.0	700	45	22	0.8
		2N132	-6	2.0	6	-1.0	1500	90	20	1.2
		2N133	-1.5	1.0	6	-0.5	700	45	10	0.8
		2N138	-6	2.0	6	-1.0	1800	140	25	1.2

LOW FREQUENCY TRANSISTORS

RAYTHEON TRANSISTORS

more in use than all other makes combined

the prime source of

CK6611 CK6612

6AN5WA
Reliable Miniature Tube combining high perveance and long life with low interface resistance.

CK6533
Heater Cathode Subminiature tube featuring extremely low microphonics over the audio range.
Here are a fow recent additions to the comprehensive range of tubes originated by Raytheon. They are representative of over two bundred active miniature and subminiature types out of the many developed and produced by Raytheon.

SPECIAL TUBE DIVISION

RELIABLE MINIATURE AND SUBMINIATURE TUBES - vOLTAGE REFERENCE TUBES VOLTAGE REGULATOR TUBES

PENCIL TUBES
NUGLEONIC TUBES

For application information write or call the Home Office or:

New York: 589 Fifth Ave., PLaza 9-3900
Chicago: 9501 Grand Ave., Franklin Park, TUxedo $9-5400$ Los Angoles: 622 S. La Brea Ave., WEbster 8.2851
are made by over twenty companies in the U. S.

- Sales - For individual companies, volume of sealing unit sales for 1955 ranged from $\$ 50,000$ to the 1.2-million announced by the Thermatron Division of Radio Receptor Corp.

The trend in sales has been up, with many companies experiencing a ten-fold increase within the past five years.

- Prices-Power output and application determine the price of sealing units. The range is from about $\$ 1,000$ to $\$ 50,000$ a machine. The average machine is rated at 3 kw and sells for about $\$ 2,000$
- Example-Kabar Manufacturing of N. Y. produces 1 through 6, 8, 10,15 and $20-\mathrm{kw}$ units. Price increases in the 3 to 6 -kw group average $\$ 500 / \mathrm{kw}$, while those in the 8 to 20 -kw group average $\$ 750 / \mathrm{kw}$. The power required for a given operation depends on the number of linear inches of seal and the thickness of the material.
- Problem - Fulfilling the radiation requirements set by the FCC is a major problem to manufacturers. Although units are engineered for minimum radiation, the user's setup may allow considerable radiation. The only sure way to eliminate the problem is to operate the equipment in a shielded room.
- Uses--Sealers are used in such applications as curing rubber, dehydrating, pre-heating plastics before moulding, making padded safety equipment for autos and sterilizing beer after bottling. Manufacturers feel that units now being produced are not aimed for a replacement market but result from stimulating new manufacturing fields.
- Other-Tappan Stove of Ohio is producing dielectric ranges for the home (see Industry Report, p 12, Dec. 55).

GE and its subsidiary Hotpoint have already announced definite plans to produce high frequency ranges for the home. Raytheon has had commercial units available for some time.

PHOTOGRAPHIC enlorger that uses high voltage is an important step as ...

Electronics Invades Graphic Arts

Electronic printing and special crt's to aid printing business

Indications are that the electronics industry which has already become part and parcel of countless diverse businesses from railroading to brewing beer may become an important factor in the printing industry. Printing is the third largest industry in U.S. in number of establishments. Gross sales for 1952 were $\$ 8.5$ million. Related to printing are blueprinting, office duplication and photo reproduction.

- Navy "Blueprinter"-The Electrofax machine shown was built by RCA for the Navy's aircraft overhaul and repair facility in Alameda, Calif. It produces 15 engineering drawings a minute from microfilm originals. It sells for $\$ 85,000$.

The printing paper is automatically sensitized by a high-voltage field. A light image is then projected onto it. The latent image is developed by a magnetic brush. This consists of a mass of iron filings held by a magnet. The iron filings carry positively charged pigmented resin powder. The powdered
ink clings to the negatively charged areas of the exposure. The image is fixed by heat.

- Other Printers - Other electrostatic printers include the Xerographic process of Haloid and the Electrographic process under development by Burroughs. A recent development by Haloid has been preparing printed circuits by Xerography. Smoke printing, a Standard Register process is essentially electrostatic. However, the pigmented material is in the form of a fine mist.

General Electric and IBM have experimented with electromagnetic dry printing processes.

- Future-Ultimate in electronic printing would be to display data as alphabetic and numeric characters on the face of a cathode-ray tube and produce permanent copy by electronic printing.

The Charactron, developed by Convair, uses special beam-forming plates to provide an electron-image beam that can display characters on the crt screen. Charactrons are used for reading data out of airdefense computers in Sage.
(Confinued on page 22)

HOW to CHOOSE VIBRATION MOUNTS

For Jet and Missile Applications

Use our free engineering data sheets on All-Angl Barrymount ${ }^{(6)}$ Isolators. They describe and illustrate the operating principle of the Ali-Angl Barry Mount, telling how it works to control shock and high-trequency vibration. They give

you load-deflection curves, transmissibility curves, and load-versus-natural-frequency curves that show how these isolators perform under various loads and vibration inputs and for different directions of applied acceleration. They explain how these curves can be used to evaluate isolator performance. And they contain detailed drawings that show all necessary dimensions and clearances.

Because of their proved efficacy in protecting delicate electronic apparatus through every flight attitude, All-Angl Barry Mounts give the designer valuable aid in cramming the most instrumentation into the least space. They make it practicable to mount equipment on any available surface - upright on a deck or shelf, hung from above, attached to a bulkhead, or at any angle necessary to fit a unit into limited space. Regardless of mounting position, All-Angl Barry Mounts give protection against high-frequency vibration through every operational maneuver of the most modern aircraft.

Barry engineering data sheets are free on request. Write for your copies today.

WIII MIL-SPEC MOUVTS WORK when you need protection most - at steep-angle attitudes?

ALL-ANGL Bmavil ISOLATORS

 give vital in-flight reliability protectionSure, you can meet the specification with a mount that only has to work at a 10 -degree tilt. But what happens when the aircraft climbs at steep angles or goes into a 90 -degree turn or dive?

That's where you need ALL-ANGL Barrymount Isolators. You can mount 'em and fly 'em at any cock-eyed angle you choose. And they give the same sure protection to vital instruments and cortrols from take-off through every twist, turn, and dive of the aircraft's most violent maneuvers. These curves show why.

Write now for data sheets AA-0-1 containing detailed performance data. And remember - when your problem is protection thru every flight attitude, your answer is ALL-ANGL Barry Mounts. For recommendations, call your nearest Barry Sales Representative.

> BARRY CONTROLS

> H NCORPORATED

SALES REPRESENTATIVES in all principal cities

A project is reported underway by Convair, Haloid, IBM and East-man-Kodak to combine electronic printing with Charactron readout. One important application would be instantaneous printing of data from high-speed computers

RCA has a so-called typesetter tube. A font of characters is im-
aged onto a photoemissive cathode. This forms the electron image beam that produces characters on the face of the cathode-ray tube. The company is looking into combining Electrofax with the crt typesetter. An initial application might be high-speed readout-perhaps for the Bizmac computers.

THREE-INCH wide magnetic tape is used as

New Business Computer Appears

Fourth manufacturer builds giant machine. More activity evident throughout industry

Progeny of Raytheon and Min-neapolis-Honeywell, DATAmatic Corp. of Newton Highlands, Mass. last month became the fourth firm to offer a large-scale digital computer for business and industry.

The DATAmatic 1000 sells for $\$ 1.5$ million. The computer is planned in building blocks. For example, up to 100 magnetic files can be utilized. Running at 100 in . a second, each file can handle up to 60,000 decimal digits a second.

- Wide Tape-The machine is notable for use of a 3 -in. wide tape with 31 parallel recording channels. Bits comprising the words are handled serially. Each numeric word consists of 11 decimal digits and sign. The tape is a plastic
sandwich to protect the magnetic recording surface. Tape reels are $2,700 \mathrm{ft}$ long and store more than 37 million decimal digits.

The machine uses a three-address code. Another feature is automatically controlled scanning of up to 10 tapes at once. This gives a scanning rate of 600,000 decimal digits a second.

The input converter handles 900 punched cards a minute. Output is to punched cards-6,000 an hour, or printed records-either 150120 character lines or 600 to 900120 character lines a minute.

Other makers of large-scale computers are IBM with the 700 series, Sperry Rand with Univacs and RCA with Bizmac. A Bizmac was recently delivered to Army Ordnance in Detroit. A second machine is reported under development for business use.

- Other Machines - National Cash

Register, which took over Computer Research and its CRC-102 machines some time ago, expects to offer a medium-sized digital computer for business and industry-perhaps this summer. Electronics Corp, of America is showing the Magnefile, a special-purpose machine designed for inventory work. A model is undergoing field trial in a New York department store.

- Special Machines - In the spe-cial-purpose machine field, Sperry Rand's St. Paul operation recently announced an order from Northwest Airlines for a computer to control airline reservations. Teleregister of Stamford, Conn. has been active in this field serving American Airlines, United Air Lines, N. Y. Central Railroad, National Airlines, Braniff, the Santa Fe and the New Haven.

Transistor-Silicon Sources To Increase

One refiner to enter

 supply market by mid-1956. Others may join in soon afterAt LEAST five companies have been investigating silicon processing techniques which will permit them to enter the market as suppliers. One, Sylvania, has successfully developed a zinc-reduction process and expects to be producing 300 pounds of high-purity silicon within three to five months. Sample quantities of 100 grams, refined by this process, are available now.

- Prices - Since November 1954, high-purity silicon has been selling for $\$ 380$ a pound. Before that time, the price was $\$ 430$ a pound. These high prices are partially attributed to the fact that silicon production has been and is today on a semi pilot-plant basis.
- Specifications - What constitutes transistor-grade silicon has been a continual source of confusion. Percentage values of purity are meaningless, since impurities are present of the order of 1 part in 10^{6} (Continued on page 24)

A research engineer at the General Electric Microwave Laboratory, Palo Alto, California, measures the output-cavity tuning characteristics of G.E.'s new $15-\mathrm{kw}$ high-gain klystron that features single-knob tuning.

Four knurled knots (top of picture), one for each cavity-plus a fifth, master knob that gang-tunes the klystron-control the tuning adjustment through precision mechanical linkage. In normal band switching, only the master knob is used by the operator.

G-E klystron research originates single-knob tuning for rapid band switching . . . for flat power output!

More efficient use of klystrons for radar-military and commercial-is a direct result of single-knob tuning pioneered by General Electric research. Band switching, whether to counter enemy jamming, to avoid friendly signal interference, or for other purposes, now is fast and sure - entails no loss of power.
One control knob tunes the new G-E klystron over its full $200-\mathrm{mc}$ frequency range . . and this control can be remotely actuated by cable or other device.
The operator rieeds no special knowledge or training to switch the General Electric klystron from one band to another - the four cavities are pre-tuned, and their alignment is preserved at all times. Power outpot of the klystron stays flat and high over the entire frequency range, varying less than 1 db .
General Electric has led in klystron research and development, applying major resources in order to
realize the full potential of these long-life, high-gain microwave tubes. G-E single-knob tuning advances klystron design still further. Ask for full information! Consult with G-E tube engineers on any problem which involves klystron choice and application! Tube Department, General Electric Company, Schenectady 5, New York.

CHARACTERISTICS OF NEW G-E KLYSTRON:

Progress/s Our Most Important Product GENERAL
electric
to 10°. At these values, normal methods of chemical analysis to determine purity are totally unsuitable making it necessary to measure the resistivity of single crystals grown from each batch.

To help establish a standard, the Industrial Mobilization Activity has prepared a specification for tran-sistor-grade silicon. It is believed that commercial production of silicon to meet these specifications will raise the quality of silicon to be sold and will aid in the development of various transistor devices.

ENGINE performance of sports car is rapidly checked out as.

Electronics Aids Ignition Mechanics

Dynamic engine analyzer

developed by oil company is marketed by electronics firm

Relatively inexperienced personnel can now analyze automotive engine troubles in only a few minutes with the help of an electronic engine analyzer. Developed over a period of years by Socony-Mobil Oil Co., for use in its laboratories and for field work, the prototype version of the instrument has been redesigned by Du Mont for volume production.

The commercial version of the instrument sells for $\$ 725$ and is aimed at the automotive servicing market.
-What It Does - When connected to a car engine by two clip-on leads, the instrument shows simultaneous waveform presentations of the behavior of each cylinder of the engine. The condition of the capacitor, spark coil and plugs can be determined from the waveforms.

TV Screen Sizes Start To Shrink

Smaller picture tubes gain as lightweight portables for second set market increase

Public preference for larger to screens seems to have reached saturation. Now smaller tubes under 15 inches are making a comeback. A year ago, the set industry was still pushing larger screens, the 24 -inch and 27 -inch set and wondering how far the large screen trend would go. Now the question seems to be how small a screen can be sold.

- New Model-RCA is now in production on a portable set with an $8 \frac{1}{2}$-inch screen. It measures $10 \frac{1}{4}$ inches high, 9 -inches wide and 103^{3}-inches deep. The new tube incorporates an electrostatic focus gun and its length has been reduced to $10 \frac{3}{4}$ inches by using wide-angle 90 -degree deflection. The chassis has 10 tubes plus kinescope, four crystals, one tube rectifier and a double selenium rectifier. Seven of the 10 tubes are double purpose.

General Electric triggered the trend to smaller screens when it introduced its 14 -inch portable tv sets last year. Sales exceeded expectations and now the firm has three new 14 -inch portables on the market. (Electronics, p. 20, Feb. 1956).

New RCA portable tv receiver with $81 / 2$ inch screen

- Why-In addition to the lower retail prices that the smaller sets make possible, their success is generally attributed to the growing replacement and second set markets which are estimated to account for half of all tv set sales.
- Market-Rise in sales of smallersized picture tubes as a result of the trend to portables does not yet show up in available RETMA statistics. But past sales trends of tubes under 15 inches indicate how far small-tube business has dropped. Even with increased sales of 14 inch sets last year, all tubes under 15 -inches accounted for less than 3 percent of total picture tube sales.

Banks Extend Services By Facsimile Link

Two Boston banks use service to tie branches to central bookkeeper

Two RECENT installations of facsimile equipment in Massachusetts have put into action the interest that banking companies have shown in electronics as a labor-saving device.

In both the Provident Institution for Savings in Boston and the Worcester County Institution for Savings, teller's cages in the main office and branches are tied to a central bookkeeping department by high-speed facsimile units. Copies of bank balance cards and signatures are transmitted to the teller on request in 5 to 6 seconds.

- Permanent Records - Advantages claimed for the facsimile method of connecting branches with the main office are the lower maintenance costs and the production of a permanent record.
- Cost-The $\$ 8,000$ system is serviced by Alden Electronic and Impulse Recording Equipment Co. The facsimile is used with a punch-
(Continued on page 26)

IN THE

 10 KC TO 540 KC RANGE...
SP-600-VLF

 communications receiverThe new SP-600-VLF is more than just a receiver-it is a precision communications instrument that operates over the entire range from 10 KC to 540 KC with outstanding stability and precise calibration. It offers features and quality found in no other receiverseven those costing twice as much. As a commun cations receiver, the SP-600-VLF is ideal for applications in AM radio telephone, CW telegraph, AM-MCW telegraph signals and carrier-shift radio teletype signals, as well as many military communication requirements. As a laboratory instrument, the SP-600-VLF may be used in making measurements of low-frequency null detector devicas, sonar equipment, and any other appication where a stable, prezisely calibrated very-low-frequency demodulating instrument is required. The SP-600-VLF offers continuous tuning over the entire range from 10 KC to 540 KC in 6 bands. Exceptionally fine tun ng mecharism plus a vernier dial provides continuous expanded scales over each frequency band for accurate logeing and resetability. All components
have characteristics equivalent to military component specifications as is practical.
Whether you need a really good VLF communications receiver, or a precise VLF laboratory instrument-you'll find there is no equal to the SP-600-VLF at any price.

FEATURES

- 50:1 ratio between tuning control and main dial. 6:1 ratio between main dial and vernier.
- Provision for crystal-controlled fixed frequency reception.
- Extremely low drift-between $.05 \%$ and 1.0% depending upon frequency.
- Noise limiter circuit reduces pulse type interference.
- Send-receive switch eliminates warm-up time between messages.
- 2-stage RF amplification provided on all bands.
- Taps provided for operation on 90 to 270 Volts, 50/60 cycle.

SEND FOR COMPLETE TECHNICAL SPECIFICATIONS BULLETIN E456

Branch teller gets depasit card in 5 secands via facsimile
tape bookkeeping system that reduces time on a deposit transaction to about 30 seconds.

Television Set Penetration Deepens

Television receivers in the U.S., both color and monochrome, totalled 36.9 million on Jan. 1, 1956 and may reach 39.8 million by the beginning of next year, according to new NBC estimates. Nearly 71 percent of the 48.6 million homes in the country are now to equipped and penetration is expected to reach nearly 74 percent by the first of 1957.

- Markets-At the beginning of the year, there were 1.5 million secondary sets in homes. The number may increase to 2 million by the first of 1957. The figures indicate that 4.2 percent of all ty homes now have more than one set. It may soon go over 5 percent.

Sets in hotels, motels and institutions of all kinds are estimated at 1 million and are expected to total 1.3 million by 1957 .

- Replacement - Growing proportion of new set sales are replacements for sets being scrapped. At the end of 1953 accumulated scrappage was about 800,000 .

In 1955 about 40 percent of the 7.4 million sets sold replaced sets scrapped. Total set scrappage now is estimated at over 6 million.

FUTURE MEETINGS

April 2-4: Harvard University, Air Force Cambridge Research Center, IRE Symposium on Microwave Properties and Applications of Ferrites, Harvard University, Canıbridge, Mass.

APRIL 5-6: IRE, AIEE, ISA, Magnetic Amplifier Conference, Hotel Syracuse, Syracuse, N. Y.

April 11-13: 1956 IRE 7th Region Technical Conference, Hotel Utah, Salt Lake City.

April 13-14: Tenth Annual Spring Television Conference, IRE, Engineering Society Building, Cincinnati, Ohio.

APRIL 16-18-19: NARTB Tenth Annual Broadcast Engineering Conference, Conrad Hilton Hotel, Chicago, Ill.

April 23-24: New England Radio Engineering Meeting, IRE, Sheraton Plaza, Boston.

April 23-25: International Conference on Electron Physies. NBS, College Park, Md.

April 25-27: Symposium On Nonlinear Circuit Analysis, II, Polytechnic Institute of Brooklyn, New York, N. Y.

April 26-27: Conference On Recording and Controlling Instruments, AIEE, ASME, ISA, Bradford Hotel, Boston.

April 29-May 3: Fourth Annual Semiconductor Symposium, Electrochemical Society, Mark Hopkins Hotel, San Francisco.

April 30-MAY 3: URSI Spring Meeting, NBS, Wash., D. C.
APRIL 30-May 4: SMPTE 79th semiannual convention and exhibit, Hotel Statler, New York, N. Y.

May 1-3: The 1956 Electronic Components Symposium, U.S. Department of Interior Auditorium, Washington, D. C.

May 14-16: National Aeronautical \& Navigational Conference, PGANE, Biltmore Hotel, Dayton, Ohio.
May 14-17: The Design Engineering Show and Conference, Philadelphia, Pa.
May 15-16: Industrial Nuclear Technology Conference, NUCLEONICS, Armour Research, Museum of Science andIndustry, Chicago, Ill.

May 17-19: Thirtieth Engineering Industries Exposition and Annual Convention, New York State Society of Professional Engineers, Statler Hotel, New York, N. Y.

MAY 21-24: Electronics Parts Distributors Show, Conrad Hilton Hotel, Chicago, Ill.

May 21-22: RETMA Symposium on Reliable Applications of Electron Tubes, Irvine Auditorium, University of Penna., Philadelphia, Pa.

May 23-26: Annual meeting, National Society of Professional Engineers, Ambassador Hotel, Atlantic City, N. J.

Industry Shorts

- Electronics industry will grow by some 66 percent in the next eight years to reach a volume of $\$ 18$ billion, according to an announcement by RCA.
- Motorola has entered auto-radio after-market with eight-tube plus one-transistor hybrid set that will fit a number of 1956 models.
- Million mark in color tv sales may not be reached until 1958 and it may be 1959 or 1960 before color equalizes with black and white in total units sold, according to Dr, W. R. G. Baker of GE.
- Royal Air Force has created a new aircrew category of air electronics officers, primarily for Britain's V-bomber force.
- Navy awarded a $\$ 2.7$ million contract to Westinghouse for the Aero 13 fire-control system to be installed in the Douglas F4D Skyray.
- Plan whereby one share of Burroughs common stock will be issued for each two shares of outstanding Electrodata stock is in the works.
- Estimated 1,100 tons of metal powder was used for magnetic cores in 1955.

- Continususly Tunable Thru Video VHF and UHF Frequencies, 50KC-950MC Range

- Sweep Widths to 40 MC

- Single Dial Tuning

Used with a standard cathode ray oscilloscope, the Kay Calibrated Mega-Sweep will display the response characteristic of wide band circuits over the frequency range of approximately 50 kc to 950 mc . It features a calibrated dial indication of the approximate output frequency. The center frequency of the sweeping output voltage may thus be set to an accuracy of about 10%. The calibrated Mega-Sweep is the ideal instrument for use in alignment of amplifiers and filters ... also as an FM source of wide range for instructional and lab purposes.

SPECIFICATIONS

Freq. Range: 50 kc to 1000 mc .
Freq. Sweep: Sawtooth, adjustable to 40 mc . Repetition rate, 50 to $100 \mathrm{c} / \mathrm{s}$.
rf Output: High, approx. 100 mv max. into open circuit. Low, 5 mv into open circuit.
RF Output Control: Microwave attenuator continuously variable to 26 db .
Output Waveform: Less than 5\% harmonic distortion at max. output.
Meter: Provides crystal detector current for peak output.
Regulated Pcwer Supply: $105-125 \mathrm{v}$., 50 to 60 cps. Power Input, 100 watts.
Send for Catalag 110.A
$\$ 495$ f.o.b. factory

KAY Mega-Sweep

 Widest range of the Kay line of sweeping oscillators. Provides continuous frequency coverage up through U1IF-TV bands 50 kc to 1000 mc . Widely used in radar system development and in alignment and testing of TV and FM systems and components, as well as wide band IF and RF amplifiers and filters. Freq. range, 10 mc to 950 mc . Write for Catalog 100-A. Price, $\$ 465$ f.o.b. factory.

Higher output model calibrated Mcga-Swecp, with zero level baseline. Higher output facilitates frequency response testing of UHF converters or tuners. Wider sweep width permits multi-channel response viewing. Zero level baseline is convenient means of measuring gain of test circuit.

Frequency Range	SPECIFICATIONS Output Impedance	Output Voltage (Into Load)
1. $10 \mathrm{mc}-950 \mathrm{mc}$ 70 ohms unbalanced 0.15 Volts 2. $450 \mathrm{mc}-900 \mathrm{mc}$ 300 ohms balanced 0.3 Volts Sweep Width: Continuously variable to approx. 40 mc max. Write for Cafalog $111-\mathrm{A}$ Price, $\$ 575$ f.c.b. factory		

kay 112-a calibrated Mega-Sweep

Same as 111 -A, except total frequency range is 800 mc to 1200 mc . Catalog 112-A. Price, $\$ 575$ f.o.b. factory.

ELECTRONIC DESIGN AND PRODUCTION SIMPLIFIED

Plug-in Unit Construction Using Alden Terminal Card System Speeds Output, Eliminates Prototypes, Simplifies Trouble-Shooting and Servicing

NOT THIS - Typical "rat's nest" wiring results from point-to-point construction techniques traditional to the electronics industry.

Once the electronic circuitry has been worked out, the construction of a piece of equipment or a system becomes a production engineering problem that is primarily mechanical in nature.

Alden's recognition of this fact has made possible a mass-production system of assembly to the electronics industry. Alden Products Company's timeproven Terminal Card System-based on modular, plug-in unitized construction of functional groupings of circuitry-brings new economies to production runs ranging from 100 to 100,000 pieces.

adVantages of the alden TERMINAL CARD SYSTEM

First, you can lift experimental circuits right from the bread board onto the Alden Terminal Mounting Cards, utilizing the components layout you plan on Alden Full-Scale Planning Sheets. Thus, your production is organized immediately on a function-by-function basis on terminal cards mounted in compact vertical planes.

Second, circuitry organized on Alden Terminal Cards snaps into open-sided Alden Basic Chassis which provide a protective housing and convert each function into a compact plug-in unit.

BUT THIS-Neat, compact vertical "planes of circuitry" result from construction based on Alden Terminal Card Mounting System.

Third, the finished equipment is easy to "trouble-shoot". You can include Aiden "tell-tales" on the front panel of each chassis to indicate any defect instantly. Unskilled personnel spot trouble and replace the plug-in unit within 30 seconds.

Fourth, the Alden Back Connectors mounted on the chassis provide a single, readily accessible point of check for all "in" and "out" leads. These are easily numbered and color-coded so that the layman can make accurate first-level tests.

ELEMENTS OF THE ALDEN TERMINAL CARD SYSTEM

In the Alden System, you get all the elements you need to functionalize your production. Your assemblies are noade up on a block diagram basis, as opposed to the normal circuit diagram point-to. point wiring method.

Terminal Cards: These cards are precut to size, in lengths up to 3 feet. They are pre-punched with $0.101^{\prime \prime}$ holes on $\frac{1^{\prime \prime}}{4}$ centers for maximum flexibility in chassis layout.

Mounting Sockets: Available for 7, 8, 9 pin connections, miniature and stand-

Electronic Construction and Servicing Are 4 Ways Better

ALDEN PRODUCTS COMPANY

Manufacturing Product Engineers
Brockton, Mass.

ard octal, tube sockets are furnished for stud mounting or with right-angle brackets for mounting directly to the terminal card.

Miniature Ratchet Terminals: Stake into terminal card and provide positive grip for feed-through or single-end connections for all pigtail-lead components. Soldering serves only to establish the electrical connection. Lead dress is sim-plified-excess pigtails are snipped off at the terminal.

Jumper Strips: Stake under terminals for either jumper or common wiring. These strips and other wiring can be readily replaced with printed or etched wiring.

WHEN YOU USE THE ALDEN SYSTEM, you enable your production organization to build "custom" products on a true mass-production basis. Production planning is simplified, for at the design stage it becomes natural to break down equipment into simple sub-assemblies of extreme accessibility and ease of manufacture. You can use the Alden Full Scale Planning Sheets and have a cus. tom design tailored to your needs but laid out to use standard components that are simple to procure and go together by the simplest assembly methods.

Procurement is made easy because all information comes to your purchasing department from the laboratory beautifully organized on the Planning Sheets. The standard items that are involved help eliminate the headaches of expediting, yet you have custom tailored features which do not delay procurements.

Sub-contracting becomes simpler because you can farm out your work, specifying Alden techniques or supplying Alden parts, and be sure of getting sub-units of satisfactory quality.

WRITE TODAY on your company letterhead for information on this improved system of designing, manufacturing and servicing.

WANT TO TRY THE ALDEN SYSTEM? Send for this complete basic assortment of Alden Circuit Packaging Components. Includes all the elements you'll need to assemble a variety of complete chassis based on the Alden Terminal Card Sys tem. Price- $\$ 249.50$. Ask for Kit $\# 37$.

$\pm 1 / 2 \%$ Stabilization MAKES YOUR EQUIPMENT PERFORM BETTER

RAYTHEON VOLTAGE STABILIZERS

These curves demonstrate one simple fact-that if the satisfactory operation of your equipment depends on a well regulated power supply, Raytheon voltage stabilizers are your assurance of top performance under virtually all conditions.

How these curves were made These curves were traced simultaneously by identical recording voltmeters. The left hand chart indicates input voltage, and the other, output of a standard Model

VR-6110 Raytheon voltage stabilizer. Region AB results from actual line variations caused by motor-driven machines. The wider fluctuations, BC, are produced by a variable transformer in the stabilizer input.

26 Models

Raytheon voltage stabilizers are available in a wide variety of input and output voltages from 15 to 2000 watts and, where needed, harmonic filtered models for 250 , 500 and 1000 watts.

CHECK THESE IMPORTANT FEATURES

- Guaranteed stabilization to $\pm 1 / 2 \%$
- Stabilized voltage increases tube life as much as 50%
- Close regulation with temperafure and frequency changes
- Response time within 3 cycles
- Compact, rugged, dependable, low-cost

For full information see your electronic supply house or write Dept. 6120-please request bulletin 4-260.

12 years of test data aack your selection of General Electric pulse-forming networks

Capacitor service life requirements from 10 to 10,000 hours filled for hundreds of radar and guided missile applications by accumulated data

Whatever service life your application calls for and whatever the conditions of operation, General Electric can deliver a capacitor pulse-forming network that will give the finest performance for your radar and missile needs.
The reason is the wealth of data accumulated by G-E engineers through twelve years of continuous life tests carried out on capacitor pulse-forming networks of practically every type, operating under widely varying conditions of temperature, voltage, and other service factors. From this data and experience, General Electric has established life limitations that enable networks to be produced that will match almost any specification - whether it calls for a service life of 10 hours or 10,000 hours. In addition, to the exacting needs regarding pulse width, rise time, number of pulses per second, and ripple, special requirements also can be met. These include multiple width networks and size reductions based on forced air circulation.

The secret of G-E network performance lies in quality manufacture. Capacitor sections are constructed of low-loss kraft paper and high purity aluminum foil. Inductance coils are wound on threaded forms for stability of inductance throughout the life of the unit. Highest quality mineral oil is used for impregnation. Rugged, hermetically sealed cases help protect all components.

G-E pulse-forming networks have already proved their dependability in thousands of military installations on aircraft, ships, and on the ground, as well as in highly specialized missile applications. The engineering facilities of the Capacitor Department, Hudson Falls, N. Y., are at your disposal. Your local G-E Apparatus Sales Office will see that you receive application assistance with your network problems. Or write for bulletin GEA-4996 to the General Electric Company, Section 442-32, Schenectady 5, N. Y.

Progress /s Our Most Important Product GENERAL (3) ELECTRIC

A FULL LINE OF CAPACITORS FOR THE ELECTRONICS INDUSTRY

METAL-CIAD TUBLUAR CAPACITORS for all d-c uses where utmost reliability is required. Ratings: 001 to 1.0 uf, $100-600 \mathrm{v}$. d-c. Tol: $\pm 5 \%$. $\pm 10 \%$, or $\pm 20 \%$. Temp. range: -55 C to +125 C with solic impregnant: -55 C to +85 C with mineral oil. Write for GEC-987.

125 C TANTALYTIC* CAPACITORS for high speed aircraft and missile systems where quality, long life, and small size are main requirements. In plain or etched foil, and rectangular or tubular designs. Ratings: .25 to $180 \mathrm{uf}, 10$ to 100 volts. Tolerance: $+20 \%$ (plain foil), -15 to $+75 \%$ (etched). Temp. range: -55 C to +125 C . Write for GEA-6258. *Reg. trade-mark of General Electric Co.

MIL-C-25A CAPACITORS-for filter, by-pass, and blocking in military equipment. Built to MIL-C-25A specifications. Ratings: . 05 to 15 uf at 100 to $12,500 \mathrm{v}$. d-c in case styles CP50, CP60, CP70 series. Temp. range: -55 C to +85 C , and -55 C to +125 C. Write for GEC- 810 .
 electrical insulating systems subjected to high temperatures and mechanical stress.
When you specify BH-1151 Fiberglas Silicone Elastomeric Sleeving, it meets these high standards. Supported by long record of service in both military and industrial applications.
BH-1151 combines the superior qualities of Silicone Elastomer - extreme low temperature and high temperature flexibility, resistance to degradation when exposed to high temperature, chemical inertness, and resistance to crazing - with the support, resistance to cut-through and dimensional stability offered by the basic Fiberglas braid.
All of these properties are required by MIL-I-18057 and proof of BH-1151's ability to meet these standards is established by data obtained in each of the prescribed test methods. These data sheets are available on request.

Bentley, Harris Manufacturing Co.
1304 Barclay Strcet

Conshohocken, Pa.
Telephone: TAylor 8-0634

testimonial to a productive society...
 factories, homes . . . the manufactured items contributing to our way of life . . . all attest to the quality and speed of American production. Aiding efficiency by eliminating fatigue, are famous Royal stools and adjustable chairs like these shown. It will pay you to personally inspect the

To meet your every industrial seating problem.

(a) 515-S... ADJUStABLE HEIGHT CHAIR-Standard equip(a) ment in hundreds of leading industrial plants. Back rest adjusts up, down, forward and back. 15 -inch wide scroll shaped steel seat fitted with tempered Masonite panel. Construction is all-welded tubular steel. Gray enamel finish. Telescopic legs lock at 1 -inch intervals, $17^{\prime \prime}$ to $25^{\prime \prime}$.
(b)
513...ADJUSTABLE CHAIR-Engineered to encourage proper seating habits - help eliminate backache and fatigue. All-welded tubular steel frame, large shaped back adjusts up, down, forward and back. Steel seat has Masonite panel. Patented leg extensions adjust at 1 -inch intervals from $17^{\prime \prime}$ to $25^{\prime \prime}$.
(c) 625-T . . . SWIVEL CHAIR-One of the finest factory chairs Backrest fully adjustable up, down, forward and back. Scroll-shaped Masonite panel in seat. Rubber-cushioned
floor glides. All-welded construction. Equipped with famous Royal MICRO-HITE seat height adjustment, from $27^{\prime \prime}$ to $33^{\prime \prime}$. Also $625-\mathrm{M}, 22^{\prime \prime}$ to $28^{\prime \prime}$.
(d) 668...SWIVEL CHAIR-Exceptionally comfortable with extra-thick foam rubber $17^{\prime \prime} \times 16^{\prime \prime}$ cushion mounted on a heavy-gauge steel seat pan. Form-shaped tilting back rest is wellpadded, fully adjustable 4 ways. Has MICRO-HITE seat height mechanism, channel footrest. Model $668-\mathrm{M}$ adjusts $21^{\prime \prime}$ to $27^{\prime \prime}$. Model 668-T, $26^{\prime \prime}$ to $32^{\prime \prime}$.

511 ... ADJUSTABLE STOOL-All-welded tubular steel con(e) struction. 14-inch diameter seat has Masonite panel. Patented leg extensions lock securely at 1 -inch intervals. Available in two models: 511-S adjustable from $17^{\prime \prime}$ to $25^{\prime \prime}$, and 511-T adjustable from $24^{\prime \prime}$ to $32^{\prime \prime}$. Popular in both office and factory.

Royal Metal Manufacturing Co., Dept. 294 175 N. Michigan Ave., Chicago 1, III. Please send information on complete line.
___Please have representative call.

Name

Address

City
ity \qquad Zone \qquad State

FURNITURE SINCE '97 royal metal manufacturing company 175 N. Michigan Ave., Chicago 1, Ill. Fuctories: Los Angeles • Michigan City, Ind. Plainfield, Conn. - Warren, Pa. - Galt, Ontario

Showrooms: Chicago - Los Angeles San Francisco - New York City Auhorized Dealers Everywhere.

The
 NEWPERMM

MODEL MR532-15A with $\pm 1 / 2 \%$ REGULATION IMMEDIATE DELIVERY!

Now... for Your Laboratory... the most versatile TUBELESS, Regulated and Filtered Power Supply

$\left.\begin{array}{cccc} & \text { OTHER STANDARD MODELS } \\ \text { AVAILABLE: }\end{array}\right]$

Ripple on all above models: 1% rms 6,12 and 115 V models also available. Write for complete specificatons on all models listed above.

- REMOTE SENSING - VERNIER VOLTAGE CONTROL
- NO TUBES, MOVING PARTS OR VIBRATING CONTACTS

Specifications
REGULATION: 5-32V Range: $\pm 1 / 2 \%$ for combined line changes of $105-125 \mathrm{VAC}$ and load of 0.15 A . DC.
2-5V Range: $\pm 2 \%$ for combined line changes of $105-125 \mathrm{VAC}$ and load changes of 0-15A. DC.
$32-36 \mathrm{~V}$ Range: $\pm 2 \%$ for combined line changes of $110-125 \mathrm{VAC}$ and load changes of $0-15 \mathrm{~A}$. DC.
RIPPLE: 7% rms max. @ 36 volts and full load. Increases to 2% @ 2 valts and full load AC INPUT: 105 to 125 volts, 1 phase, 60 cps. $(8$ amps, Input)
RESPONSE TIME: 0.1 to 0.2 seconds maximum.
DIMENSIONS: $191 / 2^{\prime \prime}$ wide $\times 151 / 2^{\prime \prime}$ deep $\times 131 / 4^{\prime \prime}$ high with cabinet, ($19^{\prime \prime}$ wide $\times 143 / 4^{\prime \prime}$ deep $\times 12 \frac{1}{4}$ " high rack panel construction)
FINISH: Gray Hammertone WEIGHT: Approx. 135 Ibs.

Bepresentatives in principal cities throughout the country.
Wire collect for complete price information.

One-quarter turn ...

LION QUARTER-TURN FASTENERS

QUICK TO INSTALL

Lion Fasteners can be installed rapidly. Studs simply slip through drilled hole and are retained by a grommet. Springs are riveted or spot-welded in place.

RUGGED

Lion Fasteners stand up under the most rugged conditions of shear, tension, and vibration ... meet or exceed the exacting requirements of Army-Navy-Air Force Specifications MIL-F-5591A (ASG) and have Civil Aeronautics Administration approval for civilian aircraft use.

LIGHTWEIGHT

Made of cadmium-plated steel to provide a high strength-low weight ratio, No. 5 Fasteners weigh only 12 to 14 lbs . per $1000 \ldots$ No. 2 Fasteners $33 / 4 \mathrm{lbs}$. per 1000 . . . No. H Fasteners approximately 35 lbs . per 1000.

VIBRATION-PROOF

This group of fasteners is particularly suited to metal fastening conditions where vibration is an im-
portant factor. Lion Fasteners can't shake loose. can't open by themselves.

FULL RANGE OF HEADS...

The Lion No. 5 Fastener is available with flush, oval, ring, wing, knurled, or notched head and key; No. 2 Fastener is available with flush, oval, or wing type head; the No. H Fastener comes with an oval head.

For complete information on Lion Quarter-Turn Fasteners, as well as on the complete Southco line, write today to Southco Division, South
one of the $50 \mathbb{V}^{(B)}$ FCO
(c) 1956 Chester Corporation, 233 Industrial Highway, Lester, Pa.
 along cathode axis. 500 g . in

Exceptional frequency stability, .05Mc. $/{ }^{\circ} \mathrm{C}$
Magnetron's
Actual Size

Challenging Characteristics FOR YOUR NEW EQUIPMENT DESIGNS

For specifications on the extraordinary QK 362 write today. Ask for copies of latest bulletins listing most of our unclassified Magnetrons and Klystrons and special tubes. Call on us for
help in your microwave tube problems. There is no cost or obligation, of course.
Similar tubes at other frequencies and power levels are available.

project for' $56 . .$. Join the

Aircraft-Marine Products, Inc.

"EnP
 taper

parade

 Are you in step with the more progressive manufacturers of BUSINESS MACHINES-AIRCRAFT—GUIDED MISSILES-ELECTRONIC EQUIPMENT - who have approved and are profiting by the use of A-MP TAPER TECHNIQUE?There is still room on the A-MP TAPER TECHNIQUE Band Wagon for you to join the leaders. You, too, can increase speed of assembly, improve reliability, and save money by using A-MP TAPER PINS, TAPER TAB

RECEPTACLES, TAPER BLOKS and TAPER TIPS.
And you'll be "cheered on" by the many alert manufacturers of electrical and electronic components who have modified their standard products to help you enjoy the advantages of A-MP TAPER TECHNIQUE.
 Make it a MUST to specify A-MP TAPER TECHNIQUE in your PROJECTS for 1956.

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA

[^2]

LARGE - includes two control units with 200 pots, 80 amplifiers, corresponding number of multipliers, function generators, etc., plus digital voltmeter with printed readout, two 4 -channel recorders, timing matrix and spectal interconnecting panel. Price range, $\$ 100,000$ to $\$ 200,000$.

Whether your computer needs are small, medium or large -

You Can't Beat An EASE*For

,

MEDIUM - includes control unit with 100 pots, 40 amplifiers, 14 electronic multipliers, function generator set-up unit with 1 pushbutton and 5 manual set generators, 2 servo multipliers, preset timer control unit, power supplies. Price range, $\$ 30,000$ to $\$ 65,000$.

SMALL-includes control unit with 50 pots, 30 amplifiers, 2 electronic multipliers, 10 initial condition voltage sources, power supplies. Price range, $\$ 12,000$ to $\$ 25,000$

Want the most for your computer dollar? Investigate EASE* now! Our consalting service will supply sample solutions to your typical computer problems, recommend the type of EASE* computer best s uited to your work For complete information. please address Dep't G4

ONLY THE LEADER

 dlways points the wayPointing up progress in capacitor manufacturing is an old tradition at Cornell-Dubilier. Our list of new capacitor developments for every use began in 1910with a record of consistent dependability and outstanding field performance, ever since.

righ voltage cry etecrolytic sapacitors.

C•D..45 YEARS OF FAMOUS FIRSTS

Typical of these "famous firsts" are the three examples shown here... proof that whatever your capacitor equirements may be, your needs can befflled by - -D. Write to Cormell-Dubilier Electric Corp., Dept. K-i6, South Plainfield, N. J.
O ONSISTENTLY EPENDABLE
CORNELIDUBBLILR CAPACITIORS

FIRST-

If you need to control machine operations, it'll pay you to use Adlake memmens

Adlake relays require no maintenance whatever...are quiet and chatterless... free from explosion hazard. Dust, dirt, moisture and temperature changes can't affect their operation. Mercury-to-mercury contact gives ideal snap action, with no burning, pitting or sticking. Time delay characteristics are fixed and non-adjustable.

For more information about Adlake Relays, write The Adams \& Westlake Company, 1171 N. Michigan, Elkhart, Indiana.
The Adams \& Westlake Company Estathished 1857 - ELKHART, INDIANA • New York • Chicago the original and largest manufacturers of mercury plunger-type relays

Textolite

LOW COST-HOT OR COLD

Punching Grade Laminates

DESIGNED FOR AUTOMATIC PRODUCTION

EXCEEDS NEMA
STANDARDS

G-E TEXTOLITE punching grade laminates have been designed to provide low-cost hot or cold punching laminates with excellent electrical and mechanical properties, geared to meet the requirements of today's high-speed production techniques.
These hot or cold punching grade laminates, engineered by General Electric, have been developed to meet the varied requirements of electrical and electronics manufacturers. Among the wide selections available are:

IEXIOLITE HOT PUNCH 2053 - High mechanical strength and electrical properties at low cost.
textolite cold punch 11561 - Can be cold punched to $1 / 8^{\prime \prime}$ thick. Has good mechanical strength.

TEXIOLITE 11562 - Warm punch grade with a good combination of mechanical strength and electrical properties. NEMA grade P.

TEXTOLITE 11563 - Hot punch grade with stable electrical properties under humidity conditions. NEMA grade XXP.

TEXTOLITE 11564 - Best electronic insulation grade for high dielectric strength, low cold flow, and best humidity resistance. Hot punching NEMA grade XXXP.
These standard industrial grade laminates have a uniform color and appearance, and offer a new ease of fabrication. They CONSISTENTIY exceed NEMA values.
All textolite punching grade laminates are available with copper foil on one or both surfaces, in flat sheets, for printed circuitry.
when the properties have to be right specify g-e textolite

Progress Is Our Most /mporiant Product
GENERAL
ELECTRIC

Insulating Varnishes - Irrathene - Sealing and Filling
Compounds Mica \& Mica Mat Insulation Varnished Cloth and Tapes - Silicone Insulation - G.E Jextolite Laminated Sheets, Rods \& Tubes.

General Electric Company
Laminated and Insulating Products Department
Section EL - 4-6,
Coshocton, Ohio
() Please send me your TEXTOLITE INDUSIRIAL LAMINATE catalog M-CDL-245.
() Please have your representative call.
Name
Firm
Street
City
ity _-___ Zone_ State

Aboard Uncle Sam's mighty new Flat Tops...

RADIO RECEPTOR SELENIUM RECTIFIERS

used in the power supplies for

BATTERY CHARGERS

For complete dependability Ther's 10 KW battery chargers use Radio Receptor Selenium Rectifiers.

Huge aircraft carriers like the USS Saratoga and Forrestal demand complete reliability from a vast network of men, machines and components working together under all kinds of stress. Aboard these new fleet giants are power conversion units made by our customer, Ther Electric and Machine Works, Chicago, Ill. . . . and key component in each unit is a Radio Receptor Selenium Rectifier.

Because of their ruggedness, Radio Receptor rectifiers were selected to meet the severe service and environmental conditions requiring long life and dependability.

RRco. rectifiers constantly meet the stiffest requirements of government and industry. If your circuitry involves a problem in rectification, submit your specs to our engineering department. We'll be glad to make recommendations, without obligation of course. Write today to Dept. E-15.

Semiconductor Division

[^3]
the new approach to large scale computations

 in research and development!

Four sizes of shielded coil forms cover a wide range of design requirements. Dimensions when mounted, including

Where shock treatment doesn't work

CTC miniaturized shielded coil forms are highly shock resistant. With mechanically enclosed, completely shielded coil windings, they bring all the ruggedness and dependable performance you require for your "tight spot" applications - IF strips, RF coils, oscillator coils, etc.

C'TC combines quality control with quantity production to supply exactly the components you need, in any amount. CTC quality control includes material certification, checking each step of production, and each finished product. And CTC quantity production means CTC can fill your orders for any volume, from smallest to largest.

For samples, specifications and prices, write to Sales Engineering Dept., Cambridge Thermionic Corporation, 437 Concord Ave., Cambridge 38, Mass. On the West Coast contact E. V.

Roberts and Associates, Inc., 5068 West Washington Blvd., Los Angeles 16, and 61 Renato Court, Redwood City, Cal.

TYPE SPC phenolic and ceramic printed circuit coil forms can be soldered after mounting. Phen$.219^{\prime \prime}$ and $.2855^{\prime \prime}$. Ceramic forms: $1 / 4^{\prime \prime}$ diametors in mounted heights of $5 / 8^{\prime \prime}$ and $13 / 16^{\prime \prime}$, with $10 / 32^{\prime \prime}$ powdered iron core. and collars of silicone fibreglas. Forms come with threaded slug and terminal collar. Units mount through two to four holes, as required. Available as forms alone or wound as specified.

CAMBRIDGE THERMIONIC CORPORATION

makers of guaranteed electronic components
custom or standard

130A Low Frequency Oscilloscope
High sensitivity, de to 300 KC .
Sweeps $1 \mathrm{usec} / \mathrm{cm}$ to $15 \mathrm{sec} / \mathrm{cm}$.

150 A High Frequency Oscilloscope
 Dc to 10 MC . Plug-in preamplifiers.
 Sweeps $0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $15 \mathrm{sec} / \mathrm{cm}$.

A new standard of versatility, a new kind of operating simplicity, and real, long-term dependability-these characteristics make Models 130A and 150 A the most outstanding oscilloscope values ever offered
A totally different oscilloscope design philosophy is followed in these instruments.
Specifications on the following pages indicate the broad measuring versatility that has been achieved. The instruments' greater convenience and dependability is inherent in such unique features as

Circuits are unitized and can be isolated conveniently for testing or scrvice Most circuits are etched and mounted on translucent plastic for "see-through" serviceability: All circuits and tubes are completely accessible. Components are of highest quality. Design is ultra-conservative, with circuits operated well below rated capacity. Controls are concentric, color-coded, grouped by function and much simplified. Sweep time selection is direct without interpolation or mental gymnastics. The high-frequency unit has a new "pen-sized" low capacitance probe with miniature clip-on alligator jaws, serving as a $10: 1$ voltage divider.

Both oscilloscopes have a "universal" automatic friggering system wherein one presef adjustment provides optimum triggering for almost all conditions.

Truly, with these two instruments, hp-adds to the oscilloscope field the two new dimensions of CONVENIENCE and RELIABILITY!

 tion make it a practical production instrument. The instrument also serves as a millivoltmeter or voltmeter.
Horizontal and vertical amplifiers are similar. Sensitivity is $1 \mathrm{mv} / \mathrm{cm}$ or 10 mv full scale deflection. Amplifiers have wide pass bands from dc to 300 KC . Input circuits are balanced on the five most sensitive ranges. Single ended input is also available, either ac or dc coupled. Both amplifiers are highly stable, and their gain may be standardized by an internal 1,000 cycle square wave source. These features, together with

-hp- 130A Low Frequency Oscilloscope

Sweep Range: $1 \mu \mathrm{sec} / \mathrm{cm}$ to $15 \mathrm{sec} / \mathrm{cm}$.
Calibration: 21 sweeps: $1-2-5-10$ sequence, $1 \mu \mathrm{sec} / \mathrm{cm}$ to $\mathrm{s} \mathrm{sec} / \mathrm{cm}$. 5% accuracy.
Triggering: Internal, line voltage or external 2 v or more. Pos or neg. slope, +30 to - 30 v trigger range.
Preset Trigger: Optimum setting for automatic stable triggering.
Input Amplifiers: (Similar Vert. or Horiz. Amps). Sensitivity $1 \mathrm{mv} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm} ; 14$ ranges plus continuous vernier. Pass band de to 300 KC .
Amplitude Calibration: 1 KC square wave. 5% accuracy.
Price: $\$ 450.00$.
the instrument's precision input attenuator, permit use of the oscilloscope as a millivoltmeter or voltmeter accurate within 5%.
21 sweep times may be set and read directly. Horizontal sweeps are calibrated from $1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$. Accuracy is within 5%, and sweeps are highly linear.
In most cases, -hp-130A will accept signals direct from a standard transducer without preamplification, presenting findings as a brilliant, high resolution trace visible under

BRIEF SPECIFICATIONS

 -hp- 150A High Frequency OscilloscopeSweep Range: $0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $15 \mathrm{sec} / \mathrm{cm}$.
Calibration: 24 sweeps: $1-2-5-10$ sequence, $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$. 3% accuracy.
Triggering: Internal, line voltage or external 0.5 v or more. Pos. or neg. slope, +30 to -30 v trigger range.
Preset Trigger: Optimum setting for automatic stable triggering
Horizontal Amplifier: Magnification 5, 10, 50, 100 times. Vernier selects any 10 cm part of sweep. Pass band dc to over 500 KC . Sensitivity $200 \mathrm{mv} / \mathrm{cm}$ to $25 \mathrm{v} / \mathrm{cm}$.

Now, more than ever, (tip) means "Complete

Real Dependablity day after day!
 $h p$

 OSCILLOSCOPES

 OSCILLOSCOPES Revolutionary Convenience Broadest Possible Usefulness

any light. A special feature of the instrument is the "universal" automatic triggering system - one preset condition which provides optimum triggering with almost any input signal.
-hp- 150A High Frequency Oscilloscope employs plugin vertical preamplifiers. These include -hp-151A, a high gain unit with $5 \mathrm{mv} / \mathrm{cm}$ sensitivity and frequency response from de to 10 MC ; and -hp-152A, a dual amplifier permitting two phenomena to be presented on the CRT simultancously
Model 150A's vertical amplifier has good transient response and less than $0.035 \mu \mathrm{sec}$ rise time, pass band dc to 10 MC A $0.25 \mu \mathrm{sec}$ delay line permits viewing the leading edge of the signal triggering the sweep.
A direct reading panel control selects any of 24 calibrated sweeps. The instrument includes the "universal" triggering adjustment providing optimum triggering for almost all conditions. Model 150A also features a single-shot sweep circuit which, after "firing", remains locked out until rearmed.
The instrument's horizontal amplifier provides sweep magnification of $5,10,50$ and 100 times. "Reminder" lamps indicate when the circuit is in use, or the combination of sweep time and magnification exceeds the maximum calibrated sweep time. The amplifier's sensitivity is $50 \mathrm{mv} / \mathrm{cm}$ to $25 \mathrm{v} / \mathrm{cm}$, pass band dc to 500 KC .

Vertical Amplifier: Pass band dc to 10 MC . Optimum transient response and rise time less than $0.035 \mu \mathrm{sec}$. Signal delay of 0.25 $\mu \mathrm{sec}$ permits leading edge of triggering signal to be viewed
Amplitude Calibration: 18 calib. voltages, $2-5-10$ sequence, 0.2 mv to 100 v peak-to-peak. Accuracy 3%. Approx. 1 KC square wave, rise and decay approx. $1.0 \mu \mathrm{sec}$.
Prices: -bp-150A High Frequency Oscilloscope, $\$ 1,000.00$ -hp-151A High Gain Amplifier, $\$ 100.00$ -hp-152A Dual Channel Amplifier, $\$ 200.00$.
Data subject to change withowt notice. Prices f.o.b. factory.

15° turn removes bezel for filt ter replacement, or quick CRT interchange. Bezel provides solid camera base. Top access door permits direct CRT connections.

Unitized construction. Basic cir cuit elements assembled as sep arate units. Translucent mount ing boards, hinged sub-chassis for maximum accessibility.

Voltage divider probe. New 10 $\mu \mu \mathrm{f}$ capacitance probe has exclusive clip-on nose; 10 meg ohm input impedance.

GET THE COMPLETE STORY! SEE YOUR -hp- REPRESENTATIVE OR WRITE DIRECT!

HEWLETT-PACKARD COMPANY
3636 Page mill road - palo alto, california, u. S. A Field engineers in all principal areas
Cable "HEWPAEK" - DAVENPORT 5-4451

Coverage" in electronic test instruments!

"Reliability where it counts,"

WL-5736 POWER TUBE

"We hure been using the WL-5736 for seven rears," says Mr. Harris. "We have faund it to be highly retiante ard to give tongs life. Tropical Radio Telegraph Company requirements are strenuous, espectally in hot, humid, tropical climutes. Our radio network is vital to Middle-American tele-communications service, and the WL-5736 has given us relichility where it connts."

Reports from dozens of other users echo the experience of Tropical Radio Telegraph. For the W L-5736 has long set the 6ET-4106

YOU CAN BE SURE...IF IT'S
 Westinghouse

standard of excellence in communications and RF heating equipment of all types.
Wherever you need 2.5 kilowatus RF in a small, dependable package, you too will find its perfornance untaatable.* Write today for full design data. Commercial Engineering Dept., Westinghouse Electric Corporation, Elmira, N. Y. ENGINEERS: For challenge, security. grouth potential, investigate career opportunities now being offered by Westinghouse Electronic Tube Division. Write Tecmical Flacement Director today.

* Where conling by low-pressure blower is lesirable, spectify the new WL-6623 with extra-large radiator and "ftring lerads."

RELIATRON TUBES

WESTINGHOUSE ELECTRIC CORPORATION, ELECTRONIC TUBE DIVISION, ELMIRA, N. Y.

from the
 102-year
 world leader
 THE BRAINS

 in elevatoring...\cdot

INTEGRATED
for defense electronics.

the brawn

THE VIIION

the skills

THE
EXPERIENCE
a proven source for research, development, manufacture and
maintenance of large-scale equipment and systems in the fields of:

- missile guidance and control
- gunfire control
- radar and counter measures
- simulators and training aids
- communication
- special electronic devices
- computers
- ultrasonics
- servomechanisms
- magnetic amplifiers
- testing instrumentation
- electro-mechanical components

For engineering achievements, rely on engineeringminded management - rely on Otis.
Write on your letterhead for 32-page history and facilities report.

Principal Ratings

Heater
6．3V，0．2A
Max．plate dissipation
IW
Max．screen dissipation
0.2 W

Max．cathode current
6 mA
Characteristics
Plate voltage
Screen voltage
250 V

Grid voltage
Plate current
Screen current $\quad 0.6 \mathrm{~mA} \quad$ Transconductance $1800 \mu \mathrm{mhos}$
Base
Small button noval 9－pin

Supplies available from：－
In the U．S．A．International Electronics Corporation，
Dept．E4， 81 Spring Street，N．Y．I2，
New York，U．S．A．

In Canada Rogers Majestic Electronics Limited，
Dept．IH，II－I9 Brentcliffe Road，
Toronto 17，Ontario，Canada．

菛召召

Another

Mullard contribution

to high fidelity

The Mullard EF86 audio frequency pentode is one of the most widely used high fidelity tubes in Britain today．It has been adopted by the leading British manufacturers whose sound reproduc－ ing equipment is enjoying increasing popularity in the United States and Canada．
The marked success of this tube stems from its high gain，low noise and low microphony characteristics．
By careful internal screening，and by the use of a bifilar heater，hum level has been reduced to less than $\mathrm{I} .5 \mu \mathrm{~V}$ ． Over a bandwidth of 25 to $1,000 \mathrm{c} / \mathrm{s}$ equivalent noise input approximates $2 \mu \mathrm{~V}$ ．
When operated below $1,000 \mathrm{c} / \mathrm{s}$ ，in－ ternal resonances of the EF86 are virtually eliminated．Even at higher frequencies chassis and tube socket damping are usually sufficient to make vibration effects negligible．
Supplies of the EF86 are now available for replacement purposes from the companies mentioned here．

Mullard

[^4] dependence or reliance.

This one definition sums up what we at Leach feel is the most important single thing we can build into a relay, be it a simple motor-starter type or a complex, hermetically sealed unit destined to help guicle a missile. It's the starting point of our design thinking, the basis for all manufacturing and quality-control practices.

Reliability of any component is basically the probability
of its successful operation during a given task. And in a relay, there's no halfway operation... it's either working or useless. So we say only this: whatever your relay needs, look to Leach first; then test Leach against any make on the market. You'll see why, for years, it has been a habit throughout industry to specify LEACH where complete system reliability is a must.

LEACH . . standard of relay quality for over 30 years . . . offers a broad line for industrial, electronic and aircraft use... and, special types on order.

commercial controls

 and contactors

This is NEWS at LEACH

A new group of system designed relays, designed to insure system reliability in electronic, aircraft and missile work. Their square shape makes it possible to place 20% more relays in a given space . . . they have optional lead arrangements ... are hermetically sealed, shock-resistant, can operate dependably at $120^{\circ} \mathrm{C}$ ambient. Complete specifications available on request.

LEACH

Send for the latest Leach Relay Catalog. . . your best starting point when selecting any relay.

COMMUNICATIONS

Performance of electronic equipment depends on proper voltage Help assure customer satisfaction; Install G-E Inductrols* on your equipment

A G-E INDUCTROL FOR EVERY NEED

AUTOMATIC INDUCTROL Applied where constant voltage is desired, as on radar equipment, electronic computers, induction heaters, rectifiers, welders. Available for singleor three-phase circuits, 600 volts and below.

HAND. OR MOTOR-OPER. ATED INDUCTROL - Provide stepless variable-valtage ourput over any desired range. For testing, heating, or illumination control, and similar applications. Single and three-phase- 600 volts and below.

INDUCTROL POWER PACK-
 This is a load center unit substation for a-c power and lighting service. Unit includes a transformer, Inductrol, circuit breakers, and distribution panel board. Generally applied in three-phase circuits600 volts and below-indoor service.

Yes, even small variations in the voltage supplied to sensitive electronic equipment can result in inaccurate operation, inefficiency, and drastically reduced life (a 10% overvoltage can reduce vacuum tube life by 70% !). However, many users do not realize they have a voltage problem, and when their electronic equipment fails to operate properly, the reputation of the original equipment manufacturer usually suffers.
G-E Inductrols (induction voltage regulators) provide a reliable, economical means of maintaining rated utilization voltage without introducing harmful waveform distortion. Installed on your equipment, G-E Inductrols assure proper operation even under adverse voltage conditions. Inherent high short-circuit strength and elimination of brushes make G-E Inductrols a simple, economical solution to voltage problems.

For complete information and application assistance, contact your nearest General Electric Apparatus Sales Office, or write Section 425-2, General Electric Company, Schenectady 5, N. Y. *G-E induction Voltoge Regulators

Progress/s Our Most Important Product

 General (6) electric
TUNING FORK

RESONATORS

THE ULTIMATE

IN PRECISION
AUDIO
FREQUENCY

CONTROL

PHONE OR WRITE for complete information regarding
component type Tuning Fork Resonators, or variously packaged Tuning Fork Frequency Standards.

IT'S HERE! wide-range microwave

 Attenuator, Directional Couplers, Waveguide Crystal Detectors and Load (simulated by Short),

SPECIFICATIONS

-hp. 416A RATIO METER

METER PRESENTATION: (0) As o Reflectometer Percent reflection (magnitude of reflection coefficient). Four ranges, full scale values of $100 \%, 30 \%, 10 \%, 3 \%$ reflection. $1.00,0.30$, vsw, 0.03 reflection coefficient.) (b) As a VSWR Indicator Voltage Standing Wave Ratio. Four ronges, 1 to 3, 3 to 10,10 to 30 , 30 to 100 VSWR. (c) Decibel scale for either application: 0 to $10 \mathrm{db}, 40 \mathrm{db}$ total, ronges spoced exactly to db.
ACCURACY: $\pm 3 \%$ of full-scale value for 20 to 1 range of incident or reference r-f power.
CALIBRATION: Square-law, for use with Crystal Defectors or barretters.
FREQUENCY: $1,000 \mathrm{cps}$. $\pm 40 \mathrm{cps}$
3 Ny the
$3 \mathrm{~m} v$ to 100 mv rms. Reflected or Probe Chan
nel: 0.3 mv to 100 mv rms. (Square-wave or
INPUT IMPEDAN
EXCESS COUPLEE: Approximately 75 K ohms creasing sensifivity of the incident mode for in 10 db for reflectometer setuos employing by plers with different coefficients. Under certain circumstances, accuracy can be impraved by this procedure
OUTPUT: Connectors for ascilloscope and recorder ADJUSTMENTS: Set to Full Scale" control for initia calibration with 100% reflection, or at VSWR peok.
INTERNAL CHECK: "Eye" fube continuously mon itors input amplitude (and frequency indirectly to assure proper operoting range for instrument and for crystol detectors.
PRICE: $\$ 365.00$
-hp- 670HM shf OSCILLATOR
FREQUENCY RANGE: 7.0 kme to 10.0 km
FREQUUNCY RANGE: 7.0 kmc to 10.0 kmc .
OUTPUT POWER: APproximately 10 mw entire ATtENUATOR RANGE: 100 db .

MODUIATION: (o) Grid Modulation for ontimum swept-frequency performanice. (b) Reflector Modulation for optimum single-frequency per ormance. Modulating signals must be pro vided from external source (normally the hhp 717 A Power Supply). Pulses as short as 3 mi croseconds can be produced
MECHANICAL SWEEP: Fully adiustable to cover any 10% or larger partion of the 7.0 kmc to 0.0 kmc spectrum. Sweep rate approximately 2 to 60 complete cycles per minute depend ing on swept frequency range. (Spesial sweep rates available at additional charge.)
SWEEP VOLTAGE PROVIDED: Linear voltage proportional to mechanical sweep. (Approxmately 100 volts change provided for 7 to 10 kmc swept frequency range.)

-hp- 717A KLYSTRON POWER SUPPLY

 BEAM SUPPLYVOLTAGE RANGE; 800 to 1,000 volts.
CURRENT: 25 mo, maximum.
REGULAIION: (o) For constant lood, Jess than $\pm 0.1 \%$ autput voltage change for $+10 \%$ variations from 115 -volt line. (b) Less than $\pm 1 \%$ output voltage change for output currents from 0 to 25 ma
HUM: Less than 10 millivolts.
REFLECTOR SUPPIY:
VOLTAGE RANGE: 0 to 600 volts in 3 ranges. CURRENT: 1 ma maximum; saurce resistance approximately 300 K ohms
REGUIATION: For constant load, less than $\pm 0.05 \%$ change far $\pm 10 \%$ variations from 115 -volt line.
HUM: Less than 10 millivolts.
sQuare wave modulation: (a) Amplitude adiustoble 0 to 60 valis peak-to-peak. (b) Rise and decay times less than 10 microseconds. (c) Frequency adjustable from 400 to $1,000 \mathrm{cps}$.

SINE WAVE MODULATION FOR FM'ing: (o) Amplitude odjustable from 0 to 300 volts peak-to-peak. (b) Frequency: line voltoge requency. (c) Oscilloscope horizontal sweep voltage: 15 volts peak-to-peak, phase adiustable $\pm 45^{\circ}$ with respect to modulating voltage.
EXTERNAL: Terminals avaitable for opplying external modulating voltage. System will GRIC SUPPIY: microsecond pulses.
ROUPPL
VOLTAGE RANGE: 0 to +30 volts, open circuit, referred to cathode porential
SQUARE WAVE MODULATION: (a) Amplitude adiustable o to 60 volts peak-to-peak. (b) ise and de econds. (c) Frequency adiustable from 400 EXTERNA $1,00 \mathrm{cps}$.
external miminals available for applying externa modulating valtage. System will IAMENT Srosecond pulses.
PRICE: $\$ 375.00$.
-hp- X421A CRYSTAL DETECTOR
FREQUENCY RANGE: 8.2 kmc to 12.4 kmc .
SENSITIVITY: Appraximately $1 \mathrm{mv} / 0.01 \mathrm{mw}$ (av. eroge value).
VSWR: Less than 1.5 entire frequency range. FREQUENCY RESPONSE: Flat within $\pm 2 \mathrm{db}$ entire PRICE 575 range.

ICE: $\$ 75.00$. (Includes IN26 Silicon Diade and
matched video-load resistor.)
-hp- 752 DIRECTIONAL COUPLERS
COUPLING: $X 752 \mathrm{C}=10 \mathrm{db}$ coupling WaVECuIDE $\times 752 \mathrm{D}=20 \mathrm{db}$ coupling
FREQUENCY RANGE (kme): $\quad \begin{aligned} & 1 \times 1 / 2\end{aligned}$
DIRECTIVITY: Betfer than 40 db full range.
PRICE. PRICE:

All prices f.o.b., Palo Alto,
Data subject to change without notice

reflectometer system for impedance measurement

Reflection coefficient or SWR measured instantly over wide frequency range

Direct, continuous swept-frequency oscilloscope presentation

Higher accuracy than slotted lines for single frequency measurement

Now -hp-offers a fast, accurate and practical reflectometer system that eliminates long hours of engineering previously required for microwave impedance measurements. The system provides direct meter readings of reflection coefficient, and is so simple to operate it can be used by non-technical personnel. An output is also available for oscilloscope or recorder presentation. The system eliminates the need for measuring forward and reverse power separately, and does away with tedious adjustments to correct for source amplitude varia tions. At present the equipment is available for X band operation only but components for other frequency ranges will be offered soon. The system includes several completely new -hp-instruments:
-hp-416A Ratio Meter automatically combines forward and reverse signals and displays their ratio directly, irrespective of amplitude variations. Reflection coefficient may be read directly on the front pancl meter. A signal at a rear terminal is provided to operate an oscilloscope or recorder. Model 416A contains an rf power monitor indicating proper power level. Obtainable accuracy for single frequency measurement is ± 0.005 reflection coefficient; for swept frequency measurement, ± 0.015 reflection coefficient.
Model 416A may also be used to measure SWR in connection with slotted lines. A reference voltage from the system power source applied to the ratio meter eliminates error due to amplitude variation

Figure 1. Reflectometer system. Swepf rf power is provided by Oscillator. Directional Couplers sample forward and reverse power. Waveguide Detector Mounts terminating both Couplers demodulate power and present a $1,000 \mathrm{cps}$ signal to Ratio Meter. Oscilloscope presents continuous visual study of reflection coefficient over the swept frequency range.

Abstract

Ends tedious point-by-point checking; system unaffected by amplitude variation

Ideal for fast production checks, system alignment, laboratory work checking waveguide components, antenna and rotary joint performance, etc.

-hp- 670HM Swept Frequency Oscillator operates over a frequency range of 7 to 10 KMC . It may be manually tuned or motor driven to sweep any portion of this frequency band automatically. Sweep is at a velocity which is constant and sufficient to insure a clear trace on a long-persistence cathode ray oscilloscope. - $b p$ - 670 HM has a direct-reading frequency dial, and a waveguide-beyond-cutoff attenuator. It is normally grid modulated for sweeping, but also has reflector modulation for both fm and pulsed output. The oscillator requires an external power supply.
-hp- 717A Klystron Power Supply provides 800 to 1,000 volts beam voltage with regulation better than 0.1%, and 0 to 600 volts reflector voltage with regulation better than 0.05%. Model 717 A also includes square wave modulation for both grid and repellor, as well as sine wave modulation for fm'ing. It is specifically designed as a companion instrument to -bp- 670 HM .
-hp- 752 Series Directional Couplers are high directivity units consisting of two waveguides joined on their broad faces. Coupling is obtained through a series of precisely matched, graduated holes. In the system pictured, two couplers (with 10 db and 20 db directivity respectively) are joined back to back. Power flow is then as indicated in Fig. 1.
-hp- 421 A Waveguide Detectors have square-law characteristics and demodulate the rf signal for use by - $h p-416 \mathrm{~A}$ Ratio Meter

Brief specifications of major instruments in the -hp-reflectometer system are given here. Complete specifications on all instruments in the system will be sent on request. For a comprehensive discussion of reflectometer measurements with these instruments, see -hp-Journal, Volume 6, Number 1-2, or write direct.

HEWLETT-PACKARD COMPANY

3150A Page Mill Road - Palo Alto, California, U.S.A. Cable: "HEWPACK"
Field Representatives in all principal areas

"Steelmaker to the Electrical Industry" is a title we have earned the hard way .. by the sweat of research and pioncering development. In this modern world of gauges and instrunsents, of automation, electronics and atomics, the heart of the design is so often some silicon steel, highpermeability alloy, or other special electrical material that we produce. When you need a steel to do what ordinary steels cannot do - whether electrically or in resisting corrosion, heat, wear or great stress, call on us. Allegheny Ludlum Steel Corparation, Oliver Bldg., Pittsburgh 22, Pa.

STEELMAKERS to the Electrical Industry Allegheny Ludlum

[^5]

Electronic age

Meters

tell the tale

but
SPECLIL ELECTRICAL
Alloys

do the

work

Sea sentinels

A key factor in the nation's defense is the Air Force's oceanic chain of Texas Towers now under construction. For comnunicating their findings, these radar stations-like those in the continental North-rely upon the forvard propagation tropospheric scatter systems developed by REL. In this case, REL has supplied the transuitter exciters and diversity receivers which make possible long range tower-to-shore and shore-to-tower communication without booster stations. Performance and dependability quite naturally exhibit $R E L$'s world-famed standard of excellence.

Radio Engineering Laboratories•Inc.

NOW...the accepted standard

Varian's high performance relay klystron

It's the VA-220, another outstanding example of Varian design leadership ... research and product engineering that brings you optimum reliability plus performance characteristics unsurpassed by any other relay klystron.

UNSURPASSED
FOR EVERY RELAY APPIICATION

THESE ADVANTAGES MEAN TOP PERFORMANCE

Microwave relay system designers and equipment buyers have long known that Varian relay klystrons are unmatched for frequency stability, power to override noise, reliability and long life. The VA-220 gives you performance that even exceeds the high standards set by Varian X-26 klystrons... at half the cost.

In the 6000-8000 megacycle band, VA-220 klystrons will consistently outperform all others. Here are six reasons why this sensational new klystron is your best buy for all relay applications:

- Greater Power-VA-220 high power klystrons are conservatively rated. They will deliver more than rated power without failure.
- Greater Frequency Stability-VA-220 klystrons have negligible frequency drift.
- Greater Uniformity - Varian mass production techniques assure uniformity-every klystron is as reliable as a nut and bolt.
- Longer Life—VA-220 klystrons can be operated at full power for thousands of hours.
- Less Distortion, Less Noise-FM distortion and inherent noise are negligible - 60 db below a 1-megacycle deviation.
- Lower Cost-VA-220 klystrons cost far less than any other relay klystron with comparable performance characteristics.

TYPE	frequency range	RESONATOR Voltage	POWER	BANDWIDTH	MODULATION SENSITIVITY
VA.220*	5925-7425 mc	750 v	1.2 watts	35 mc	$375 \mathrm{kc} / \mathrm{v}$

and technical data on the VA-220 and other Varian klystrons, write to the Varian Application Engineering Department today.

klystrons, traveling wave tubes, backward wave oscillators, linear accelerators, microwave system components, R. F. SPECTROMETERS, MAGNETS, MAGNETOMETERS, STALOS, POWER AMPLIFIERS, GRAPHIC RECORDERS, RESEARCH AND DEVELOPMENT SERVICES

TO MEASURE A PRECISION BEARING ...

which would you choose?

- The micrometer, naturally. Engineers designing precision electronic equipment make the same choice when they select SIE test instruments . . . that's why you'll find SIE's Model M-2 Oscillator and R-1 Voltmeter in many of the country's leading laboratories.
The M-2 Oscillator covers the audio, geophysical and ultrasonic range with excellent stability and extremely low distortion. The Model R-1 Voltmeter, with its flat response D-C Amplifier and extremely wide range, provides a matching teammate for accurate circuit analysis.

Where precise measurements are required... SIE precision instruments are ESSENTIAL.

SIE Model M-2 OSCILLATOR

- Range: 1 to 120,000 cycles per second.
- Dial Calibration: within $11 / 2 \% \pm .1$ cycle per second.
- Amplitude Stability: within $1 / 2 \mathrm{db}$. throughout range.
- Frequency Stability: within . 1% after warmup.
- Harmonic Distortion, Hum and Noise: less than . 2% at any level within audio range.
- Output: 20 volts at 20 milliamperes.

SIE Model R-I VOLTMETER

- DC: 1 mv . to 1000 volts full scale, accurate to $1 \frac{1}{2} \%$.
- AC: 1 mv . to 1000 volts full scale, accurate to 3%.
- Balanced D-C Amplifier: flat to 100 kc, gain of 200x.
- Ohms: 0 to 500 megohms, with scale expansion.
- Distended DC Scales: for reading changes as small as one part in 10,000 .

SIE

SOUTHWESTERN INDUSTRIAL ELECTRONICS COMPANY Industrial Instruments Division
P. O. Box 13058 - 2831 Post Oak Road . Houston 19, Texas

Make this test yourself and prove "Dutch Boy" Solder with Activated Rosin Flux* gives you 50-100\% faster soldering $50-60 \%$ more soldering "mileage"

Set test up like this! Place one-inch, doubled-up samples of ordinary rosin core and "Dutch Boy" activated rosin core solders on sheet of clean copper. (In these pictures, "Dutch Boy" sample is on your right.)

Keep the heat on! A second or so later, the ordinary solder starts to melt. But look at the "Dutch Boy" sample. See how it has spread . . . thanks to superior wetting properties of the activated flux.
"Wutel Boy" rosin core wire solder with activalted flux sold under trade names "NUAX" and "HYAX".

Look to National Lead for . . .

1. Solders and fluxes . . . all "standard" and "specification" types, forms, and pre-forms.
2. Solder application help . . . National Lead specialists in metal-joining jobs are at your service ... literally. They have the "backing" of plant laboratories all over the country and of the central Research Labs in New York.

Center torch flame under the copper sheet! Notice how the flux runs out - "Dutch Boy" a little ahead. All at once, the "Dutch Boy" sample melts, the special flux helping to conduct heat through the solder.

Stop the clock when the ordinary solder reaches maximum spread (two to four seconds). No need to measure. "Dutch Boy", with activated flux, covers over 60% more area.

What do users say?

Major producers of electronic equipment report "Dutch Boy"solder with "Dutch Boy" activated flux gives them 50 to 60% more joints per pound. Piece workers swear by it. Costs move down.

But don't take anybody's word for it. Try it yourself. Send for free samples. Write National Lead Company, 111 Broadway, New York 6, N. Y.
"Dutch Boy" solders and fluxes

Now! designed specifically for PRINTED CIRCUTTS

SNAPS INSTANTLY INTO PLACE-REMAINS FIRMLY LOCKED

Illustrations are actual size-note compact multiple units
CONSERVES PANEL SPACE-REDUCES HANDLING COSTS

EAST COFST OFFICE
130 N. Eroadway
Camder 2, New Jersey
Phone: Woodlawn 6-166.8
TWX Nכ. Camden NJ 330
Phila. Phore: Market 7-3299
WEST COAST OFFTCE 928 S. Rubettson Blvd. Los Angele; 35, Calif.
Phone: Crestview 4-5931
TWX Nכ. EEV H 7666
SOUTHWESTERN U.S.A.
John A. Green Company
6815 Oriole Drive
P.O. Bo $\mathbf{~ 7 2 0 4}$

Dallas 9 Texas
Phone: Dixoon 9918
CANALIAN DIVISION
C. C. Merecith \& Co.. Lid.

Streetswille Ontario
Phone: 310
SOUTH AMERICA
Jose Lu s Pontet
Buenos Air 3 s, Argentina
Montevidec, Uruguay
Rio de Laneiro, Brazil
Sao Paulo, 3razil
OTHER EXPORT
Sylvan Ginsbury
8 West 40th Street
New Yo:k $\mathbf{1 8}^{8}$, New York
Phone: Pencsylvanic €-32\%9

A NEW TOTALLY FUNCTIONAL DESIGN CONCEPT

1. Snaps instantly into place with full length sturdy spring supports that lock control rigidly to printed panel.
Wide shoulders provide rugged support.
No mounting hardware, no separate support needed
2. Compact multiple units conserve panel space, reduce handling costs and number of automatic assembly stations.
3. The only variable resistor with external contour designed specifically for mechanized handling and feeding into a printed panel.
4. Exclusive clip-off mounting supports and terminals for easy removal by service man without a solder pot.
5. Mounts uprigh.t with shafts parallel to printed panel, eliminating need for shaft protection during panel solder immersion.
6. Available in \check{c}-control units (Series X52) or 3 -control units (Series X53) as illustrated.

Many other types of controls available for your printed circuit and automation needs.
A CTS control can be tailored to your specific requirement. Let CTS SPECIALISTS help solve your current control problems. Write or phone today.

TIGKET TO THE MOON?

Not just yet... but electronic products, for which Moloncy presently manufactures magnetic components, are as advanced today as trips to the moon will be tomorrow.

And for these modern electronic applications, Moloney magnetic com. ponents prove superior in every respect ... because Moloney's ability to design and fabricate efficient and dependable magnetic components is the result of more than 60 years experience in transformer manufacturing. Unsurpassed testing facilities certify the performance dependability of every Moloney magnetic component and assure complete satisfaction of industry requirements.... or your own particular requirements. mesc.4
Get Dependability at its Best... Specify Moloney

Write for Cotalog SR 206 "HyperCores for Magnetic Components" and Catalog ST 3506 "Magnetic Components for Electronics"

MOLONEYELECTRICCOMPANY

HyperCores for Magnetic Components Plate and Filament Transformers. Chokes. Unil Rectifiers Modulafion Transformers and Reactors - Pulse Trans. formers and Chorging Chokes - Power and Disfribution Transformers

General Electric "Thru-Con" Boards Eliminate Eyelets, Have Circuits Both Sides, Reduce Size and Weight

Aspirin can't help a product improvement headache-but a good design idea can! Printed circuitry, for example. A recent study shows that 7 out of 10 electronic and electric products may gain immediate improvements using printed circuits.

Circuits on Two Sides If Needed
Two-sided boards eliminate heavy metal parts, make miniaturization possible. Product is improved by simpler construction and more compact assembly design.

Printed Circuits Now In Many Products
G-E "Thru-Con" Boards are being
used now in lamps, fans, street lighting systems, kitchen appliances, radios, television, and control equipment of many kinds. In addition, General Electric engineers are working with other industries in the development of design improvements with "Thru-Con" Boards.
G-E "Thru-Con" Man Has The Answers Your G-E "Thru-Con" man can guide you along the road to better product design. He will analyze present designs, study assembly methods, discuss your market needs. Then, he will show you how "ThruCon" Boards may help smooth the way for product improvements. Call him in, or, write: General Electric Co., Electronic Components Dept., Section X446, Auburn, N. \mathbf{T}.

Progress /s Our Most Important Product GENERAL ELECTRIC

 what have you? Write for TRUFLEX Thermostat Metal Catalog and engineering assistance.

TV EQUIPMENT FOR
STUDIO and LABORATORY

The Polarad Wide Band Video Amplifier offers an extremely wide band coverage: flat within $\pm 11 / 2 \mathrm{db}$ from 10 cycles to 20 megacycles per second. It has a time delay of 0.02 microseconds and assures extreme stability because of its associated electronically regulated unit. A low capacity input probe is provided.
available on equipment lease plan
FHELD MAINTENANCE SERVICE AVAILABLE
THROUGMOUT TME COUNTRY

TV

STUDIO MONITOR MODEL M-105

MODEL M-105
The Polarad Model M•105 is portable comes in sturdy aluminum case, can be rack mounted as well! And it is one of the finest instruments available to check the picture quality of video signals. Equipped with $121 / 2^{\prime \prime}$ aluminized kinescope, capable of presenting highest definition transmitted pictures with exceptionally good "sync" stability over a wide range of operating conditions.

PORTABLETV

 WAVE FORM MONITOR

MODEL TO-1

EXCELLENT FOR SUBCARRIER MEASUREMENTS LOOK AT THESE FEATURES:

1. Can be rack mounted.
2. Can be used for both color and black and white TV.
3. Vertical Amplifier Bandwidth Switch for 2MC, 4MC, 6MC.
4. Special TV Sync. Circuits.
5. Horizontal Sweep Magnification 20 Tube Diameters.
6. Compact and Rugged.

VERTICAL MOUNT REGULATED POWER UNITS

Here are elactronically regulated power units =ompletely accessible, from the frort and back because of their vertical mount design. They have extremely fine regulation, low ripple content and ampreciable quantities of D. C. powe.

MODEL
PT-110

MODEL PT-112
spenifications made PT. 1110 Dasal pwer unit, gach slee provides:

outfut cirrent

Regulation
Ripple
Ren

Ripple vollage
Serics opecration
outpui power
Paralel opectation
output Power
 Berer tian 0.2% s
 50e-600 Volts

50 C .500 Volts
$100-9,00 \mathrm{ma}$

$2543 n 0$ Votis

These features assure dependable,
highest qualits pe-formance:

- Precise electronic voltage regulatioń
- Low ripple content
- Does not utilizeelectrolytic condensers
- Sturdy construction
- Provisions fer rack mounting.

Polarad manufactures a complete line of color TV equipment including a Color Slide Scanner, Sync Generator, Bar Generator and Color Monitors.

ELECTRONICS CORPORATION 43.20 34th STREET, LONG ISIAND CITY 1 , N. Y.

REPRESENTATIVES - Albuquerque - Atlanta - Baltimore - Boston - Buffato - Chicago - Dayton - Englewood - Fort Worth - Los Angeles - New York Philadelphia - San Francisco - Syracuse - Washington, D. C. . Westbury - Winston-Salem - Canada, Arnprior, Toronto-Export Recke International Corporation

The Year Advertising Helped

IN 1954 we had a business recession in the United States. Sales fell about 4\% during the year. If management had followed the historic pattern of business ups and downs, advertising volume would have fallen much further.

But in 1954 the volume of advertising did not fall. It increased over 5\%. Every effort was made to stimulate sales when sales were needed to sustain prosperity.

This was something entirely new under the sun. It had a powerful influence in making the recession of 1953-54 one of the mildest on record. It helped greatly to speed business on to the record-breaking levels it has attained today.
There are several reasons why America's business management attacked this decline in sales with more advertising. One of them grew out of the greatly strengthened position of the American consuming market. Consumers' income after taxes has been rising an average of over $\$ 10$ billion a year since 1946 , and this rising income is more widely distributed than ever before. Furthermore, consumers have piled up reserves of about $\$ 215$ billion in cash or its
equivalent. These reserves offer a new and powerful inducement to increased selling and advertising effort even in the face of a possible decline in consumer income.

Taking the Longer Vieu

However, the principal reason why a sales decline was attacked with increased advertising is management's new-found conviction that good advertising is essentially an investment in the development of a market. Successful development requires sustained investment. The inclination of business management to take this longer view, is, of course, motivated by the fact that the American market, with over 3 million consumers being added annually, is growing at a prodigious rate.

Ten years ago only a handful of companies had plans for investment in new producing facilities extending beyond the current year. Today almost all leading companies have investment programs running some years ahead. And keeping pace with these long-range business investment plans has been the development of sales and advertising programs to

McGraw-Hill

PUBLISHING COMPANY, INC. 330 West 42nd Street, New York 36, N. Y.

BUSINESS INFORMATION

Kill a Business Recession

reach tomorrow's greatly expanded markets.
This crucial role of advertising in providing driving power for our economy is gaining greater recognition every day. In his recent book, "People of Plenty," Professor David M. Potter of Yale University remarked: "Advertising is not badly needed in an economy of scarcity, because total demand is usually equal to or in excess of total supply, and every producer can normally sell as much as he produces. It is when potential supply outstrips demand-that is, when abundance prevailsthat advertising begins to fulfill a really essential economic function."

Advertising's Key Role

Today abundance so completely prevails in the United States that it has been conservatively estimated that as much as a third of everything offered for sale falls in the realm of "optional consumption." That is, consumers can "take it or leave it" without any immediate personal inconvenience. But it they decide to "leave it," a terrific economic depression will not be far behind. In such circumstances, advertising - in
which, in all of its forms, we are now investing about $\$ 9.2$ billion annually-clearly is of crucial importance to our continued prosperity.

In performing its key role in past years, American advertising never realized its full potential. It successfully promoted sales. But it never was called upon to promote an overall economic stability as a direct outgrowth of increased sales.

By successfully promoting both sales and economic stability, as it did in 1954, advertising surely has added new strength to the American economy. It has also added a great new and constructive dimension to advertising itself. This accomplishment gave great significance to the celebration of the first National Advertising Week in February, 1956

One of the surest means of expanding your sales volume in today's $\$ 150$ billion industrial market is through dominant advertising in the publications directly serving your major customers and prospects.

McGraw-Hill's business and technical publications can give you quick access to the men who initiate, specify and approve the purchases of industrial products and services. Because all are leaders in their respective fields, you are assured a maximum return on your investment when you specify a McGraw-Hill publication to carry your advertising to your most im. portant markets.

You'll quickly find the right fuse for the job everytime $=$ when you turn to BUSS Fuses

The complete BUSS fuse line includes: standard types, dual-element (slow blowing), renewable and one-time types - available in all standard sizes, and many special sizes and designs. Plus a companion line of fuse clips, blocks and holders.

Simplify your purchasing, stock handling and records - by standardizing on this one, reliable source for fuses.

BUSS Trademark is your assurance of "trouble-free" protection

BUSS fuses are electronically tested to make sure they will operate as intended under all service conditions. A sensitive device auto-
matically rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

Save engineering time on electrical protection problems. The BUSS fuse engineers are at your service to help you determine the fuse or fuse mounting best suited to your needs If possible, they will suggest a fuse or fuse mounting already available in local wholesalers' stocks, so that your device can be easily serviced.

For more information on BUSS and FUSETRON small dimension fuses and fuseholders, write for bulletin SFB.

Would Smallest Transideer

Hermetically sealed,
. resistance-welded

metal case

... leads sealed in glass.

* Exceedingly low noise.

4 Uniformity of electrical characteristics.

- Maximum reliability and long life.
- Impervious to moisture and humidity.

Opens the way to new advances in space-saving audio design

A new achievement from Philco laboratories, the M-1 "Audio Mite" Transistor is smaller than any transistor now in production! It retains all the desirable electrical characteristics, all the mechanical features, all the performance of the Philco 2N47...the transistor proved in the field to be without equal in hearing aid "applications. The "Audio Mite" is hermetically sealed in metal the unique Philco way : . the design that has earned a reputation as the most reliable hermetic seal in the industry. A wide new field in low level audio applications is opened to design engineers by this tiny PNP alloy junction transistor.

For complete technical information write to Dept. E-2
LANSDALE TUBE COMPANY
A DIVISION OF PHILCO CORPORATION
Lansdale, Penna.

PHILCO CORPORATION

 LANSDALE TUBE COMPANY DIVISION

opportunities unlimited at UNIVAC

At Univac® you will learn and grow with men who evolved much of the basic knowledge of computers . . . who designed and produced components being used by other manufacturers in the field . . . who set the standards that the others follow. All of the positions listed below offer a unique opportunity for advancement because of Univac's expansion ... our present facilities are running to capacity . . . new plants and laboratories are under construction.

1. Computer Sales Engineers
2. Technical Liaison Engineers
3. Proposal and Quotation Experts
4. Metallurgists
5. Product Planning Engineers
6. Field Location Engineers
7. Contract Administration Engineers
8. Electronic Engineers
9. Mechanical Engineers
10. Mathematicians
11. Physicists
12. Programmers
13. Logical Designers
14. Production Engineers
15. Instrumentation and Component Sales Engineers

A man doesn't advance very far or very fast from experience alone . . . that experience must be coupled with professional development and recognition by superiors . . and a man who is only "holding his own", while others are advancing, is actually losing ground.

Professional advancement is dependent upon many factors such as association with recognized technical leaders . . . recognition of individual contribution through merit review, publication of technical papers and technical society membership . . . participation in management decisions and planning . . . the availability of a continuing formal educational program . . . the guidance of a young, technically trained management.
Now is the time to come to Remington Rand Univac where ambition and professional skill find their reward . . . advancement comes quickest in an expanding organization.
(B) Registered in U.S. Patent Office

Send complefe resume to

From sensitive components to brawny launchers...

AMF has missile experience you can use

- "Precisioneering" power supplies for electronic control systems and developing complex launchers are two of AMF's many important contributions to our nation's missile programs - Today, AMF plays a part in more than half the missile programs now under way - And its activities cover practically every stage of design, development, and production . . . including mechanical, hydraulic, pneumatic and electronic test equipment . . . auxiliary power supplies . . . field and depot handling equipment . . . launchers . . . ground and flight control systems - See for yourself why AMF's experience in missiles, as well as in a host of other fields, has made it the "can do" company.

ANNOUNCING A NEW HIGH in magnet permanency

Unique Ceramic Permanent Magnets are extremely resistant to demagnetization... Are virtually electrical non-conductorsUse no critical materials . . . Cost materially less

A LOW COST ceramic permanent magnet material developed by the Stackpole Carbon Company, St. Marys, Pa. combines adequate energy product with high coercive force, low residual induction, virtually 100% electrical resistivity and exceptional resistance to demagnetization. These unique characteristics plus the low cost and the non-critical nature of the ceramic make magnets of this material ideally fitted for all ordinary uses as well as highly critical applications such as those where the magnets may be exposed to strong demagnetizing fields.

No "Keepers"' Needed

Known as Stackpole Ceramagnet* permanent magnets, the new units retain their energy even when used without "keepers" or other closedcircuit conditions, and in the presence of opposing fields.

As an example, Ceramagnet cannot be demagnetized by another magnet of a force up to 2,000 gauss.

Ceramagnet magnets are practically non-conductors. Electrical resistivity is 6×10^{10} ohm- cm , making them ideally suited for highfrequency and high-voltage circuits. They can be placed in the direct path of electro-magnetic energy to rotate the polarization plane, to focus cathode ray tube beams or for similar purposes.

Unaffected by Strong Opposing Fields

Their magnetism is unaffected by their surroundings. They themselves exert little or no proximity effect on nearby circuitry.

Another feature that may offer interesting possibilities in some applications is the fact that Ceramagnet temperature characteristics are linear, including retrace, to $400^{\circ} \mathrm{C}$.

Typical Ceramagnet applications range from magnetic focusing of cathode ray beam tubes to use on door latches, magnetic drives, instruments, oil filters, meters, toys, relays, magnetic attenuators, cou-

A TYPICAL GROUP of Stackpole Ceramagnet* ceramic permanent magnets. Practically any size or shape within the range of modern molding equipment can be supplied.
plings, magnetic seals, motors, small generators, H-F alternators, magnetos, ion traps and others.

Cost Less, Weigh Less Than Metallic Magnets

Made of non-critical, inexpensive barium and iron oxides, the new Stackpole permanent magnets are blended, molded and sintered by much the same processes that have made Stackpole iron and ferromagnetic processes pre-eminent in the core fields for many years.

Ceramagnet is classed among the hard magnetic materials.

Cost is materially less than metallic magnets. Weight is also less . . . only $4.85 \mathrm{gms} / \mathrm{cm}^{3}$.

Although the energy product $\left(0.915 \times 10^{6}\right.$ gauss-oersteds) is less than that of metallic permanent magnets, the important point is that Ceramagnet's full energy is available
under practically any condition, even without "keepers".

Even in cases where it might be necessary to use a larger Ceramagnet magnet, the cost factor would still be in its favor.

Units are machineable by wet grinding and may be machined after magnetizing.

Highest energy product is obtained by magnetizing across thinner sections although units can be magnetized in any direction.

Write for New Ceramagnet Data Bulletin

Complete engineering data on Ceramagnet including graphs of essential properties appears in the new Stackpole Ceramagnet Bulletin RC-10A. Copies are available on request to Electronic Components Division. Stackpole Carbon Company, St, Marys, Pa.

G-M Sewv Motore

GUARANTEED

TO MEET ALL MIL.

 ENVIRONMENTAL SPECIFICATIONSWhen reliability under extreme conditions is essential-specify G-M Servo Motors! G-M has long specialized in supplying precision servo motors to the Military Avionic Industry, especially designed to meet
military specifications for humidity, salt spray, temperature, vibration and altitude. Whatever your needs, let G-M build a servo motor with the right characteristics to perform to your specifications.

By specializing in servo motors only-not systems - G-M gives you these advantages...

- A broader line of servo motors in sizes and types to meet a wide range of applicatians.
- Servo motors available in all the standard sizes.
- Standard sizes specially modified to meet specific circuit requirements - available on a quick-service basis.
- Creative engineering in designing special motors with special characteristics.
- Faster production-better service.

COLD-EONDED OOMRUTER DIODES

now

available for immediate deliverw. .

ADDITIONAL DIODES AVAILABLE

High Conductance Types
High Temperature Types
High Resistarce Types
\section*{JAN Types}

For high forward conductance . . . for high inverse resistance for fast pulse recovery . . . for low impedance and fast forward switching time . . . whatever you require in a subminiature gold bonded glass diode, Clevite Transistor Products can deliver the diode you need in the quantity you want, when you want it . . . and at competitive prices!

Contact us for Prices and Specifications.

CHEEVITE
 TRE
 CLEVITE

 TRANSISTOR PRODUCTS 241 Crescent St., Waltham 54, Mass. TWinbrook 4.9330| CHARACTERISIIC5 | | | | |
| :---: | :---: | :---: | :---: | :---: |
| TYPE | Forward Current at +IV \qquad | Inverse Current at Specified V ua. Max | Continuols Inverse Operating Noltage | DESHRIPT/ON |
| CTP-301 | $41)$ | 25 @-50V $100 @-20 \mathrm{~V}$ @ $75^{\circ} \mathrm{C}$ | 60 | Invarse Fecovery Timie Tested. |
| CTP-320
 (Equal to
 1N67A) | 5 | 50 (1) -50V | 89 | Invarse Fecovery Tirre Tesied. |
| CTP-319 | 154 | 500 K between -20 and -90 V | 90 | Inverse Rixcovery Time Tested. |
| CTP-318 | 50 | 500 K between -10 V and -50 Y | 60 | Forward and liverse Recovery Tested. |
| CTP-307 | 300 | 20 @-30V | 40 | Invarse fiecovery Tested. |
| 1N270 | 200 | 100@-50V | 60 | Lov: Impedance Fast Forward Switthing Time, |
| 1N283 | 200 | 20 @ -10V | 20 | ¢ . |
| 1 1273 | 100 | 20@-20V | 30 | " * |
| CTP-316 | 10. | $\begin{array}{r} 20 @-50 \mathrm{~V} \\ 2 @-10 \mathrm{~V} \end{array}$ | 60 | Hi Resistance
 Hi Condur:tance: |
| 1N198
 JAN Typo | 4 | $\begin{aligned} & 50 @-50 \mathrm{~V} \\ & 10 @-10 \mathrm{~V} \end{aligned}$ | 80 | Hi Temperature Diode |

Standard Chrono-Tach shoum front and conter in "deep frecie" engine testing laboratory. (Courtesy of Thompson Produrts, Inc.)

LOOK TO THE INSTRUMENTS USED FOR DEPENDABLE END RESULTS

In alnost every research and testing laboratory the information needed to obtain a specific end result depends upon knowing, to an accurate degree, the speed of revolving shafts, motors, governors or other rotating equipment.

And it's a well-known fact that the end result can be no more reliable than the instruments that are used.

That's why the Standard Chrono-Tachometer plays suck an important role in so many indastrial, governmental and educational laboratories. Built for continuous service, it is a test instrument of extreme accuracy, invaluable wherever the precise measurement of speed of rotation is required.

PROBLEM-In the initial stages of a missile program, Seeburg was approached by the Bureau of Ordnance, Department of the Navy, to develop telemetering equipment . . . equipment which would transmit information while the missile was in flight.

SOLUTION - Now in production at Seeburg, and reliably performing the job for which it was intended, this Seeburg designed equipment is today checking and testing over 20 important channels of information.

Solving highly complex electronic and electro-mechanical problems is a specialty with Seeburg, where a major portion of facilities Servo Systems Azalar Assemblies
 and talents are permanently devoted to engineering and production of defense products. It's the reason why more and more procurement agencies and defense contractors are making it a practice to see Seeburg first!

ENGINEERS-You are invited to write us for complete information on challenging

High and Low Frequency R.F. Transmission and Receiving Sets Guided Missile Etectronic Units Airborne Radar Antennas Micro Wave Equipment Magnetic Tape Reccrders Telemetric Equipment Electranic Computers Music Systems

All these features-plus many more-have moved Heiland 119 Amplifier Systems into leadership in the field!

FOR ADDITIONAL
DETAILS WRITE FOR

BULLETIN 101K back panel for handy relay rack or test bench mounting without modification.

The 119 System is flexible to meet present or future needs, since al 6 individual amplifier units within the system are easily removable. You can build your system from the ground up, adding new individual units as your need expands.

In addition, linear-integrate and carrier units are interchangeable within the system case.

FOR PERFORMANCE AND CONVENIENCE-CHOOSE THE HEILAND 119 AMPLIFIER SYSTEM.

5 Waldes Truarc Rings simplify assembly, eliminate parts, bring big over-all savings to new design low-cost camera

Ansco, Binghamton, N. Y., uses the latest technical advances in construction to produce an economical, easy-to-use reflex camera. 5 Waldes Truarc Rings are used in this new design to save material and labor costs, eliminate parts, simplify assembly and reduce rejects.
Whatever you make, there's a Waldes Truarc Retaining Ring designed to improve your product . . . to save you material, machining and labor costs. They're quick and easy to assemble and disassemble, and they do a better job of holding parts together. Truare rings are precision engineered and precision made, quality con-
trolled from raw material to finished ring.
36 functionally different types... as many as 97 different sizes within a type... 5 metal specifications and 14 different finishes. Truarc rings are available from 90 stocking points throughout the U. S. A. and Canada.

More than 30 engineering-minded factory representatives and 700 field men are available to you on call. Send us your blueprints today... let our Truarc engineers help you solve design, assembly and production problems... without obligation.

For precision internal grooving and undercutting... Waldes Truarc Grooving Tool!

MECHANICAL SPECIFICATIONS

MECHANICAL SPECIFICATIONS										ELECTRICAL SPECIFICATIONS contact\|contact coll dafa			
Allied TYPE	TYPE OF TERMINAL		Line d	DIMENS		wT. (0z.)	MOU D	NTING SIONs E	type mounting				
ASH	SOLDER	$27 / 6$	21/6	13/4	1\%6	3.5	. 938	1.187	(3) $: 0.32$ Studs	5	SPDT	$\frac{3500}{3485}$	AC DC
ASHO	PLUG.IN	3	27/6	13/2	17/6	4			Octal Plug-in	5	SPDT	$\frac{3500}{3485}$	AC $D C$
BJHR	SOLDER	$33 / 12$	$237 / 2$	138\%	111/2	7.5	. 875	1.625	(3)74-32 Studs	5	DPDT	$\frac{3700}{5000}$	AC DC
BJHRO	PLUG-IN	33/2	31/6	1\%\%9	11/28	7.5			Ostat Plug in	5	DPDT	$\frac{3700}{5000}$	AC DC
BOH	SOLDER	$31 / 12$	$2^{31 / 22}$	23/6	dIA.	7.5	1.856	1.856	(4) 206 Dia. Moles	10	DPDT	$\frac{2675}{5000}$	AC DC
BOHO	PLUG-IN	3\%/16	3	23/6	DIA.	8			Octol Plug-in	5	DPDT	$\frac{2675}{5000}$	AC DC
BOHR	SOLDER	31/16	211/16	1\%\%4	$121 / 4$	8.5	1.250	1.250	(3) $=8.32$ Studs	10	DPDT	$\frac{2675}{5000}$	AC $D C$
BOHRO	PLUG-IN	$3^{17 / 2}$	23/20	1.1\%4	14/64	8.5			Ocial Plug in	5	DPDT	$\frac{2675}{5000}$	AC DC
BOYH	SOLDER	$3^{11 / 22}$	$2^{31 / 2}$	23/6	DIA.	8.5	1.856	1.856	(4) 200 Dic. Ho'es	10	DPDT	10,000	DC
BOYHO	PLUG.IN	3916	$3^{\prime \prime}$	2\%/6	dia.	85			Octal Plug in	5	DPDT	10,000	C
BOYHR	SOLDER	3/16	211/16	[19\%/4.	$14 / 81$	8.5	1.250	1.250	(3) 8 -8-32 Studs	10	DPDT	10,000	DC
BOYHRO	PLUG.IN	317/2	$2^{3} 1 / 2$	10\%\%4	141/61	8.5			Ocial Plug-in	5	DPDT	10,000	DC
CNAH	SCrew	41/2	33/6	$2^{17 / 2}$	$2^{21 / 1 / 2}$	22	17/8	$2 "$	$(3)=10.32$ Studs	50	SPST	$\frac{600}{4460}$	AC DC
DSH	SOLDER	$3^{37 / 22}$	311/2	31/2	11/8	13	1.375	3.125	14) 206 Dio. Holes	5	DPDT	8,000	DC
DSHR	SOLDER	31/8	31/6	21/4	113/2	9.5	. 68	1.750	(3) $=8-32$ Studs	5	DPDT	8.000	DC
KH-3-10	PLUG-IN	13\%4	53\%4	27\%60	4\%	0.33			7 Pin Plug-in	$1 / 2$	$\begin{gathered} \text { SPDT } \\ \text { SPST NO } \end{gathered}$	1,500	DC
KH-3-2D	Plug.In	1\%。	33/4	23/4,	$4 \% / 4$	0.33			7 Pin Plug:in	1/2	$\begin{gathered} \text { SPDT } \\ \text { SPST NC } \end{gathered}$	1,500	DC
KH-6D	Plug.in	1/4/4	5\%/4	396	. 800	0.33			8 Pin Plug in	1/2	DPDT	5,000	DC
LKH-6C	SOLDER	37/16	33/16	17/8	1/8/	8.5	1.375	1.500	(3) $\mathbf{1}$ 6.32 Studs	2	6 6DT	11,000	DC
LKH-4C	Solder	3)16	211/16	13\%	17/16	\bigcirc	. 938	1.187	13):6.32 Studs	2	4 PDT	11,000	DC
LKHO	PIUG.in	39\%6	$3^{\prime \prime}$	13/8	17/6	5.5			Octal Plug-in	2	DPDT	11.000	DC
MEH-6	SOLDER	21/8	$123 / 2$	1\%	-	3	. 672	1.047	(3)\%6.32 Studs	5	DPDT	$\frac{1330}{2930}$	AC DC
MEHG	PLUG-IN	21/21	12\%/2	1\%	$1 "$	3.5	. 750	1.125	Note 1 (3)t6.32 Studs	5	DPDT	$\frac{1330}{2930}$	AC DC
MEHX	SOLDER	23/6	2,160	13/6	17i6	5.3	938	1.187	Note 2 (3)* 6.32 Studs	5	4PDT	7260	ACDC
MH-6D	SOLDER	13\%4	12364	4/64	DIA.	1	Ctrictr	. 875	(2) Holes 125 Dio.	2	DPDT	15.900	DC
MH.12	SOLDER	123/2	123/4.4	13\%4	dia.	2.5	CTR/CTR	1.406	Note 3 (2)*6-32 Studs	2	4 PDT	18.000	DC
M $\mathrm{H}-18$	SOLDER	123/20	123/64	13/6	dia.	4	CTRCCTR	1.562	Note 3 (2)46-32 Studs	2	6^{6} PDT	22,100	DC
M MT- 12	SOLDER	$21 / 4$	17316	1\%/4	dia.	3	Ctr Ctr	. 625	Note 3 (2)=6.32 Studs	2	4 PDT	18.000	DC
MHT-18	SOIDER	21/8	113/16	13/6	dia.	4.5	CTR CTR	. 625	Note 3 (2) =0.32 Studs	2	6PDT	22,100	DC
M HK - 12	SOIDER	1\%	11/2	13/4	DIA	3.5	. 938	1.187	(3) $=6.32$ Studs	2	APDT	16,000	DC
M MUU .12	PLUG-IN	13/4	$1{ }^{212 / 4} 4$	13/4	DIA.	2.5	CTR CTR	1.408		2	4 PDT	16,000	DC
MHIO-12	Plug.in	13/4	$123 / 4$	13/4.	dia.	2.5	CTR CTR	1.531	Nole $4(2)=10.32 \mathrm{Thd}$	2	4 APD	16,000	DC
MHUO. 18	PLUG-1N	$13 / 4$	123/4	13/6	DIA.	4.0	CTR CTR	1.562	Note 4 (2) $\ddagger 6.32$ Thd.	2	6 PDT	22,100	DC
MHLO-18	PLUG-IN	13/4	12]/64	1\%160	dia.	4.0	CTR CTR	1.687	Note 4 (2) $\ddagger 10.32$ Thd	2	GPDT	22,100	DC
* MHJ-12	SOLDER	123/2	123/4	1\%,	dia.		CTR CTR	1.406	(2) 70.32 Studs	2	4PDT	16,000	DC
*MHJ-18	SOLDER	$123 / 3$	123/4	13/6	DIA.		CTR CTR	1.562	(2) $=6.32$ Studs	2	${ }_{\text {GPDT }}$	22,100	DC
MHY-6	SOLDER	11/6	123/4	13/4	dia.		CTR CTR	1.400	(2) \#\#6.32 Studs	10	DPDT	16,000	DC
MHY-12	SOLDER	10\%4	${ }^{123 / 4}$	13/16	DIA.		CTR CTR	1.562	(2)1+6.32 Studs	10	4 PDT	22,100	DC
PBHW-6	SOLDER	2\%	21/4	$14 \% 4$	11/64	6	CTR, CTR	1.468	Note 3 (2):6.32 Studs	10	DPDI	$\frac{380}{4800}$	AC DC
PBH-6	SOLDER	23/4	21/4	$14 \% / 4$	14/4.4	6	1.218	1.218	(4) ${ }^{\text {/6-32 }}$ Studs	10	DPDT	$\frac{380}{4800}$	AC
PBH-9	SOLDER	277/2	21/4	14\%4.4	$14 / 4$.	6	1.218	1.218	(4):8-32 Studs	10	3 3PD	$\frac{380}{4800}$	AC d
PBM-12	SOLDER	22/21	21/4	$10 \% 4 *$	12/64	6.5	1.218	1.218	(4)*6.32 Studs	10	4 PDT	$\frac{380}{4800}$	AC
Pbin. 6	PIUG IN	3/12	2\%	14\%4.	$121 / 4$	9	Note		'AN' CONNECTOR	10	DPDT	$\frac{380}{4800}$	AC
Pbin-9	PIUG.IN	31/2	23/2	14\%4	14/6.	9	Note	3	'AN' CONNECTOR	10	3PDT	$\frac{380}{4800}$	AC DC
PBHN-12	Plug in	35/2	21/4	14\%6	14\%4.	9.5	Nore	3	an connector	10	4 PDT	$\frac{380}{4800}$	AC DC
PDH. 6	SOLDER	21/16	21/16	13/8	17/60	\bigcirc	938	1.187	13) 0.3 .32 Studs	2	DPDT	$\frac{475}{4800}$	AC DC
PDH-9	SOLDER	21/16	21/16	13/4	17/10	6	938	1.187	(3) 40.32 Studs	2	3 PDT	$\frac{475}{4800}$	AC DC
PDM. 12	SOLDER	21/16	21/6	1\%	1\%	6.5	. 938	1.187	(3) $\times 6.32$ Studs	2	4 PDT	$\frac{4800}{4800}$	AC DC
PDHG	plug.in	2\%/6	21/6	13/8	1/1/6	6.5	Note		14 Pin Plug (3)\#6.32 Studs	2	4 4PDT	$\frac{475}{4800}$	AC
POHR. 9	SOLDER	31/20	31/2	1\%	1\%/	12	1.375	1.437	(3) $\times 8.32$ Studs	10	3PDT	$\frac{870}{5000}$	AC DC
POHR-12	SOLDER	32\%/4	31/22	21/4	21/6	13.5	1.625	1.812	(3) $=8.32$ Studs	10	${ }^{4 P D T}$	$\frac{870}{5000}$	AC DC
POHRO-12	PLUG-IN	41/16	$31 / 2$	$21 / 4$	21/6	13.5			14 Pin Plug-in	5	4 APDT	$\frac{870}{5000}$	AC DC
PRH	SOLDER	3\%/2	$2^{22 / 72}$	31/8	$1313 / 2$	9.5	CTR. CTR	2.687	12) .161 Dia. holes	10	4PDT	620	DC
RSH-3D	SOLDER	$2 \% / 4$	$14 / 64$	3/4 D		2.0	CTR CTR	. 973	(2). 125 dia. cleorance holes	2	SPDT	14,000	DC
RSH. 6 D	SOLDER	2\%.	$14 / 4$			2.0	CTR CTR	. 973	(2). 125 dia. cleorance holes	2	DPDT	14,000	DC
RSHO-6D	8 PIN PLUG-IN	23\%/	$16 / 4$			2.0	CTR CTR	. 973	8 pin plug-in + keyway (2).125 dia cleoronce holes	2	DPDT	14,000	DC
RSH-3D	7 PIN PLUG-IN	21/6	155/4			2.0			7 Pin Plug-in	2	SPDI	14,000	DC
SKH	SOLDER	25/9	21/6	15/4	1\%16	4.5	. 938	1.187	(3) 8 - 32 Studs	2	4 PDT	4,500	$D C$
SKHO	PIUG-IN	3	27/16	13/4	17/60	5			Octal Plug-in	2	DPDT	4,500	DC
SKHW	SOLDER	2\%/4	21/6	13/4	17/60	4.5	938	1.187	Note 3 (3)\#6-32 Studs	3	4PDT	4,500	$D C$
SKHG	plug-in	2\%/4	2\%/2	15/2	17/0	5	Note		14 Pin Plug-in(3)\#\#-32 Studs	2	4 PDT	4,500	$D C$
SKHN	Plug.in	3\%2	2	13/4	17/4.	6.8	Note		"AN" CONNECTOR	2	4 PDT	4,500	DC
SWHO	plug.in	211/6	21/6	13/2	17/4	5.5			Octal Plug-in	2	DPDT	13,800	$D C$
SWH	Solder	2\% ${ }^{1 / 2}$	21/6	15/4	17/10	5.5	938	1.187	(3)\#6.32 Studs	-	DPDT	13,800	DC
7RH	SOLDER	$513 / 6$		5	$4^{11 / 2}$	17	4	3.812	(6). 157 Holes	$\begin{gathered} 2 \text { Amp } \\ 0 \text { ot } \\ 16000 \mathrm{~V} . \end{gathered}$	SPDT	$\frac{110}{2830}$	AC DC

TYPES OF MOUNTINGS AND TERMINALS

TYPES OF HOUSINGS

OUTLINE DIMENSIOMS:

octacon

gouno

side view

TYPE TERMINALS:

soider terminal octal b pin'piug
"AN" CONNECTOR

14 PIN PIUG-IN

MOUNTING DIMENSIONS:

ACCESSIBILITY

 COMPACTNESS

The Grant Industrial Slide Catalogue-on the pressoutlines principles, details, of more than 100 standard and custom made slides. A working manual on built-in acces. sibility. Ask us to reserve your free copy.

Grant Industrial Slides are essential to the solution of most problems centering on these design factors-so highly emphasized in this automation era. Grant Slides provide skillfully developed, competently engineered sliding, pivoting mountings for nearly all types of assemblies-electronic, hydraulic, pneumatic, mechanical.

Grant engineers and representatives are located in all important industrial centers-their valuable store of specialized experience is yours for the asking.

Grant Pulley and Hardware Corporation 31-85 Whitestone Parkway, Flushing 54, N. Y. 944 Long Beach Avenue, Los Angeles 21, California

KINNEY COMPOIND HIGH VACUUM PUMPS

SPECIFICATIONS	MODEL KC-2	MODEL KC-3	MODEL KC-5	MODEL KC-8	MODEL KC-15	MODEL KC-46
Free Air Displacement . . .	2.0 CFM	3.0 CFM	5.1 CFM	8.2 CFM	15.2 CFM	46.0 CFM
Free Air Displacement . .	56.5 Liters/min.	85.0 Liters/min.	144. Liters/min.	232. Liters/min.	430 Liters/min.	1300 Liters/min.
Free Air Displacement.	. 95 Liters/sec.	1.41 Liters/sec.	2.4 Liters/sec.	3.9 Liters/sec.	7.2 Liters/sec.	21.7 Liters/sec.
RPM	755	1135	630	1000	525	500
Motor H.P.	1/4	1/3	1/3	1/2	1	3
Motor RPM (syn.) . . .	1800	1800	1800	1800	1800	1800
Oil Capacity	6 oz .	6 oz .	$11 / 3 \mathrm{pt}$.	$11 / 3 \mathrm{pt}$.	2 qt .	1 gal .
Shaft Diam. . . .	3/4"	3/4"	$3 / 4{ }^{\prime \prime}$	$3 / 4{ }^{11}$	3/4"	$11 / 8^{\prime \prime}$
Inlet Connection .	3/4" Screwed	3/4" Screwed	1"Screwed	1"Screwed	2"Screwed	$3^{\prime \prime}$ Screwed
Outlet Connection	None	3/4/ Screwed	1"Screwed	1"Screwed	11/4" Screwed	$11 / 2^{\prime \prime}$ Screwed
Net Weight, Complete . .	70 lb .	78 lb .	140 lb .	148 lb .	300 lb.	585 lb .

SUMMATION

- Reliable High Vacuum (Cam and piston displacement)
- Rapid Recovery of Vacuum
- Simple to Maintain
- Dynamically Balanced
- Standard Small Motors
- Gas Ballasted (optional)
- Economical
- Dependable
- Small, Compact Design

KINNEY ${ }_{\text {urf }}$ oursion
THE NEW YORK AIR BRAKE COMPANY (1)

- Please send Bulletin 403 giving complete data on Kinney Compound Pumps Our vacuum problem involves

VERDICT

Your verdict will be FAVORABLE when you review all the facts. Request Bulletin 403 for additional data or contact one of our competently staffed district offices in Baltimore, Chicago (LaGrange), Cleveland, Los Angeles, New York, Philadelphia, San Francisco, or St. Louis. Qur

Name.

Company.
Street
City

Some of the young fellous on our staff have been analyzing our files of personal data regarding scientists and engineers here at Hughes. What group characteristics would be found?

With additional facts cheerfully contributed by their colleagues they have conve up with a score of relationships - some amusing, some quite surprising. We shall
chart the most interesting restlts for you in this series.

The above chart represents the number of positions held prior to employment at Hughes - by academic degrees (and by lack or a degree). The F . D. has changed lobs the least. Data obengineers and scientists of Hughes Research and Development Laboratories.

Education and Job Change

In our laboratorics here at Hughes, more than half of the engineers and scientists have had one or more years of graduate work, one in four has his Master's, onc in is his Doctor's. The Hughes research program is of wide varicty and scope, affording exceptional frecdom as well as exceptional facilities for these people. Indeed, it would be hard to find a more exciting and rewarding human climate for a career in science. Too, the professional level is being stepped up continually to insure our future
success in comenercial as well as military work.

Hughes is pre-eminent as a developer and manufacturer of airborne electronic systems. Our program includes military projects in ground and airbornc clectronics, guided missiles, automatic control, synthetic intelligence. Projects of broader commercial and scientific interest include research in semiconductors, electron tubes, digital and analog computation, data handling, navigation, and production automation.

```
RESEARCH
AND DEVELOPMENT
LABORATORIES
```

Culver City, Los Angeles County, Califomia

Right now the Laboratories
have positions open for engineers with experience in the design of electronic circuits in all areas mentioned it this advertisement.

HUGHES

SAVE

VALUABLE TIME,
WASTED
FILM
Transients need not be photographed unless a file record is needed. When such a record is required, photography is greatl γ simplified, because all displays occur at a constant, uniform brightness regardless of difference in writing speeds. Therefore, a single camera exposure setting is sufficient.

VOMo. VTVM
 DOUBLEUSE...HALF
 when you need it. THEPRICE

 TRIPLETT MODEL 631-In one year accepted as the standard COMBINATION VOM-VTVM

By using the Volt-Ohm-Mil-Ammeter for all general testing (90% of your testing) and the Vacuum Tube Voltmeter only when you need it, you have the advantage of a VTVM with extremely long battery life. Batteries are used only about one-tenth as much as in the ordinary battery-operated VTVM. Features: Ohms, $0-1500-15,000$ ($6.8-68$ center scale. First division is 0.1 ohm.)

Megohms: 0.1.5-150 ($6,800-680,000$ ohms center scale.) Galvanometer center mark "-0+" for discriminator alignment.
RF Probe permits measurements up to $250 \mathrm{MC} . \$ 7.00$ net extra.
Featured by leading electronic parts distributors every. where.

Double check the Core Manufacturer with the low price and quick delivery promises, which do not permit intelligent engineering and careful production.

Long established firms like MOLDITE, with their vast contributions to research and development of new cores and core materials, with their advanced production and testing techiqiques, are greatly responsible for raising the worlds standards for quality cores, molded coil forms, and ferrites. Every business has its Johnny-come-lately's without the backround and goodwill that we at MOLDITE cherish and protect every day.

When you want cores you can trust, that will guarantee the high quality of your equipment,

MOLDITE
is ready to serve you.

ALWAYS DELIVERS A HIGH QUALITY PRODUCT

IRON CORES • FERRITES • MOLDED COIL FORMS • E E CORES

William A. Franklin 3 Holly Road North Syracuse, N. Y

Jose Luis Ponte Cardoba 1472 Eivenos Aires

Air fed to oven by Lectrodryer* contains only $1 / 10$ th grain of water per cubic foot
In expanding facilities for building the giant power transformers demanded by industry today, Moloney Electric Company added this Dry air oven at their St. Louis, Missouri plant. Dry, constant temperature air is circulated through it at $25,000 \mathrm{cfm}$. to speed insulation drying.

The extra Dryness of insulation obtained in this oven improves the performance of their transformers,
increases dependability and assures longer useful life.
Lectrodryers are being used elsewhere in the electrical industry to equal advantage, speeding production, safeguarding materials in storage, improving quality. Some of the newer precision electronic products couldn't be made without the extreme Dryness provided by Lectrodryers. For advice on where you may use them, write Pittsburgh Lectrodryer Company, 359 32nd Street, Pittsburgh 30, Pennsylvania (a McGraw Electric Company Division).

LECTRODRYERS DRY With activated aluminas

LECTRODRYER
 * registered trademark u s pat off.

PRECISION CONNECTORS with KEL-F plastic parts have high RF insulation and dimensional stability. Plastic's high impact and compressive strength permit rough
handling without chipping, cracking, or deforming. Zero moisture absorption and anti-adhesive surface prevent formation of conductive residue.

KELD-E Finorocarbon plastic

permits components to operate over a wider temperature range . . . under highly humid and corrosive atmospheres

KEL-F plastic's unique combination of properties can help your product meet more rigid performance specifications. Because of the extreme stability of the fluorocarbon plastic molecule, this dense, tough thermoplastic has superior dielectric properties, excellent resistance to corrosive chemicals, outstanding thermal and dimensional stability, and zero moisture absorption.

Molded and extruded parts operate over an extremely wide range of temperatures $\left(-320^{\circ} \mathrm{F}\right.$. to $390^{\circ} \mathrm{F}$.) ... are unaffected by humidity or operational vibration. Metal inserts, lugs and contacts are held

HERMETICALLY-SEALED TERMINALS with KEL-F plastic insulation handle high voltage without flash-over or tracking. Won't shrink, swell, age or lose hermetic seal at high and low operating temperatures. Can be used in contact with highly corrosive chemicals.
firmly, forming a hermetic seal.
KEL-F plastic is available from Kellogg as a molding material, or in sheets, rods, strips, tubing, film and "spaghetti" from qualified fabricators and molders throughout the country. For further information, write: The M. W. Kellogg Company, Chemical Manufacturing Division, P. O. Box 469, Jersey City 3, N. J.

The M. W. Kellogg Company for its fluorocarbon products.

TUBE SOCKETS of tough KEL-F plastic. Hermetic seal defies thermal cycling, aging and humidity. Withstands high shock loads without chipping or cracking insulation. Plastic's high dielectric strength prevents shorting or arc-over at high altitudes.

Twonew

general-purpose

CBS

transistors

The versatile CBS 2N180 and 2 N 181 are particularly usefuk in audio driver and output amplifiers . . servo amplifiers . . computers . . . and military equipment. These mediumpower PNP junction thansistors offer high and uniform gain at high current levels.
The $150 \mathrm{~m} w$ dissipation of the 2 N 180 permits out $\begin{gathered}\text { uts of } 75 \mathrm{mw} \text { in Class } \mathrm{A}\end{gathered}$ and 300 mw for a pair in Class B. The generous dissipation rating is achieved with all elements of the 2 N 180 ensulated from its case for Hexible circuilry. The 2 N 181 version has an integral C clamp for dtachment to a heat simk. This increases its dissipation rating to 250 mm , giving outputs ap to 600 mw in Class B.
Like an CBS semiconduetor products, the CBS 2N180 and 2X181 are processed, not just selected, to tight specifations. Their round metal cases help to make possible closer tolerances and more dependable bermetic seals. Put these versatile and reliable high-gain transistors to woyk in low. frequency amplifiers and switching equipment. Write today for bulletin E-264 giving complete information on the CBS 2 N180 and 2 N181.

CBS semiconductors

Reliable products
through Advanced-Engineering

CES-HVTRON, Danvers, Mass.
A Division of Columbia Broadcasting System, Inc.

RFi. Telemetering and Telegraph Terminals

Frequency Type Telemeter Terminal

Model 1025

Highly Accurate, Fast Acting, Frequency Type Telemeter for Transmission over Wire Lines, Microwave, and Power Line Carrier

APPLICATION

The Model 1025 Telemeter Transmitter and Model 1090 Telemeter Receiver will accurately telemeter electrical and mechanical variables which can be converted into a DC. voltage or will actuate a slidewire, potentiometer, etc. Quantities such as temperature, speed, pressure, flow, volts, amperes, watts, vars, etc., are only a few of the many quantities which can be telemetered accurately and instantaneously.

DESCRIPTION

The Model 1025 first converts the DC voltages to a proportional 10-30 cycle frequency which, in turn, modulates a built-in audio frequency carrier. Approximately 45 individual carrier channels are available in the frequency range of 765 cps to 20 kc for simultaneous telemetering over a single communication link. Relay output for power line carrier keying and 10 to $30 \mathrm{cps} A C$ output are also available.

Comvor

Data Transmission
 Terminal

Model 912
 Audio Frequency Shift Terminal for Telemetering and Supervisory Control APPLICATION

The Comvor may be employed for data transmission, signaling, telephone dialing, telemetering, and supervisory control. Through multiple use of the equipment, information from more than sixty individual functions may be simultaneously transmitted over a single communication facility. In control applications dials, stepping switches, and relay pyramids may be used in conjunction with the equipment for the control of a virtually unlimited number of functions.

DESCRIPTION

The Model 912 Comvor is a low cost audio frequency shift terminal designed for continuous reliable operation. Each equipment contains its own power supply and is available as either a transceiver, dual transmitter or dual receiver. Electrical specifications: 22 channels from 300 to $3000 \mathrm{cps}, 38$ additional channels from 3200 to $20,000 \mathrm{cps}$; power source $115 \mathrm{v}, 50 / 60 \mathrm{cps}, 35$ to 45 watts; receiver - 600 ohm filter input, 0 to -40 dbm level, 60 ma loop current; transmitter - 600 ohm filter output -30 to -10 dbm output levels.

Comtel Telegraph Terminal

POWER SOURCE

11.5 i $\pm 10 \%, 50 / 60$ cps. 35-45 watts

AC SIGNAL LINE
600 ohms nominal

SIGNAL LEVELS

Receiver input: 0 to -40 dbm Transmitter output: -20 to 0 dbm

Model 995

Low cost Telegraph Terminal for keying speeds up to 100 words-per-minute

APPLICATION

The Comtel may be used in simplex, half-duplex, full-duplex, and multiplex telegraph systems. It is capable of handling keying speeds up to 100 words-per-minute with less than 10% distortion. Fourteen channels with a frequency shift of 85 cps are available in the voice band from 720 to 3017 cps . It may be applied to all common communication facilities and will perform with satisfaction under conditions of noise and varying signal levels.

DESCRIPTION

Each equipment contains its own power and loop supply and is available in either transceiver, dual transmitter or dual receiver. The unit is completely electronic and requires no relays. All essential controls such as transmitter output level, receiver input level, and bias are included.

Príces are FOB Boonton, N. J. Descriptive literature on each product is available. Telephone: DEerfield 4-3100

The hotly competitive TV market has long wanted high quality tuners at low prices. But everytime we took a production tuner and cut enough circuit and package "corners" to effect a significant price cut, we wound up with a product unworthy of our R / C trademark.

But last year we had our Engineering Department design a new series of tuners from scratch . . . requesting top performance and bottom costs. What we got was remarkable performance -better than requested-but no appreciable price differential. Until production got into the act, that is. Production designed and sold management on setting up a line of mechanized production equipment. And that equipment brought costs down to the desired level.

The result is evident in the T-90 uhf TV tuner illustrated. Double-circuit tuned, it features oscillator radiation fixes . . . meets all RETMA spurious radiation requirements.
Performance is just what you would expect from Radio Condenser, but the T-90 costs you far less than any previous R / C uhf tuner!

If you want information on the new R / C line of low cost tuners, we'll be happy to have one of our engineers call at your convenience.

Get Complete Engineering and Performance Data. Write Radio Condenser for your free copy of Bulletin T-90

RADIO CONDENSER CO.

Davis \& Copewood Streets - Camden 3, New Jersey
EXPORT: Radio Condenser Co., International Div., 15 Moore St., N.Y. 4, N.Y. CABLE: MINTHORNE
CANADA: Radio Condenser Co. Ltd. 6 Bermondsey Rd. Toronto, Ontario

Bettor Things for Better tiving . through Chemistry

Electronic connectors of Du Pont TEFLON® unaffected by temperature changes, humidity and mechanical shock

"Connectors of Teflon" with their respective mat ing parts. Male and female connector pins can be compression-mounted directly into drilled or

Laminations of TEFLON ${ }^{\circledR}$ for printed circuit bases

Typical uses for laminations of glass cloth and Du Pont "Teflon" tetrafluoroethylene resin include: conductor and ground insulation, hookup wire, power cable, printed circuit bases and structural parts. The laminations combine the dielectric properties, chemical inertness and heat resistance of "Teflon" with the tensile strength, resistance to cut-through, and resistance to creep of woven glass fiber.
An informative free bulletin describing the preparation and uses of laminations and impregnations of glass cloth employing "Teflon" tetrafluoroethylene resin is now available. Specify Bulletin X-64.

```
SEND FOR MORE
    INFORMATION
```

For complete details that will help you further evaluate the Du Pont engineering materials for use in your productdevelopment programs, mail the coupon at the right. Specific property and application data will be sent to you.
punched chassis holes. Available in various RMA colors. (Manufactured by Fluorocarbon Products, Inc., Division of United States Gasket Co., Camden 1, N. J.)

Magnifying lens of LUCITE ${ }^{8}$ for Stromberg-Carlson communicationsystem control panel. Names or numbers under the lens are magnified with maximum optical clarity-easily visible from a distance. "Lucite" resists cracking, crazing and chipping and is unaffected by age. (Lens extruded by Anchor Plastics Co., Long Island City, New York.)

New connectors with bodies of "Teflon" are designed for low-loss, high-frequency service in interconnection of radio, radar and other electronic equipment-where connectors are subjected to a wide range of temperatures, pressure, humidity and mechanical shock and vibration.

Continuous current rating is 3 amp . for .040 pins and 5 amp . for .063 pins. Voltage rating is $3,300 \mathrm{~V}$. R MS (short time test at sea level)

Du Pont "Teflon" tetrafluoroethylene resin was selected for this particular insulation job because of its unique properties. In this application, it is serviceable at temperatures from $-110^{\circ} \mathrm{F}$. and operates in pressure altitudes from sea level to $60,000 \mathrm{ft}$. It has zero water absorption by ASTM test D570-42.
"Teflon" is nonflammable and will not carbonize under arcing; it has good dielectric strength. Resiliency of "Teflon" enables the insulation to expand to original diameter after it is pressed into the hole-and locks the connector securely and permanently in place.

Have you investigated the possibilities for "Teflon" in your electronic design application? Do you require material that is chemically inert, suitable for use at extreme temperatures of $-450^{\circ} \mathrm{F}$. to $500^{\circ} \mathrm{F}$., tough and resilient? For complete property data on this versatile Du Pont engineering material, mail the coupon below.

E. I. du Pont de Nemours \& Co. (Inc.), Polychemicals Department

Room 224 Du Pont Building, Wilmington 98, Delaware.
In Canada: Du Pont Company of Canada Limited, P. O. Box 660, Montreal, Quebec.
Please send me more information on the Du Pont engineering materials checked: "Tefion"* \square, "Lucite"* \square. I am interested in evaluating these materials for
Name
Position
Company \qquad
Street
City
State

Type of Business

Model 446 transmitter operates on 4 crystal-controlled frequencies (plus 2 closely spaced frequencies) in the band 2.5-24.0 Mcs (1.6-2.5 Mcs available). Operates on one frequency at a time; channeling time 2 seconds. Carrier power 350 watts, A1 or A3. Stability $.003 \%$. Operates in ambient -35° to $45^{\circ} \mathrm{C}$. Nominal 220 volt, 50/60 cycle supply. Conser. vatively rated, sturdily constructed. Complete technical data on request.

Here's the ideal general-purpose highfrequency transmitter! Model 446... 4-channel, 6-frequency, medium power, high stability. Suitable for point-topoint or ground-to-air communication. Can be remotely located from operating position. Co-axial fitting to accept frequency shift signals.

Now! Complete-package, lightweight airborne communications equipment by Aer-O-Com! Write us today for details

from Transitron

SILICON RECTIFIERS

STUD MOUNTED

LEAD MOUNTED

MINIATURE

No matter which mounting

you prefer. . . . Reliability is assured

Transitron's silicon rectifiers are now available with both lead and stud mountings. The three versions now in production provide a current range from 100 ma to 1 ampere. Their small size and high temperature characteristics make them ideal for missile, aircraft or other applications where reliability is of prime importance.

	Peok Recurrent Inverse Voltoge (volts)	Maximum Average Forward Current (ma) (mo)	Peak Recurrent Forward Current (amps)
1N253*	95	1000	4.0
1N254*	190	400	1.2
1N255 *	380	400	1.2
1N256 *	570	200	0.6

See Bulletin TE1321, 1336 for additional types ond complete specifications

RATINGS AT $100^{\circ} \mathrm{C}$ AMBIENT			
TL12Peok Recurrent Inverse Voltage (volts)	Maximum Average Forward Curent (ma)	Peak	Recurrent Forward Current (omps)
TL22	100	350	2.0
TL42	400	350	2.0
TL61	600	350	2.0
		200	1.0

See Bullutin TE1335 for additional types and complete specifications.
$\left.\begin{array}{cccc|}\text { RATINGS AT } 100^{\circ} \mathrm{C} \text { AMBIENT } \\ \text { TJ. } 5 & 50 & \begin{array}{c}\text { Peak } \\ \text { Recurrent } \\ \text { Inverse } \\ \text { Voltage } \\ \text { (volts) }\end{array} & \begin{array}{c}\text { Maximum } \\ \text { Average } \\ \text { Forword } \\ \text { Current } \\ \text { (mo) }\end{array}\end{array} \begin{array}{c}\text { Peak } \\ \text { Recurrent } \\ \text { Forward } \\ \text { Current } \\ \text { (ma) }\end{array}\right]$

See Bulletin TE1338 for additional types and complete specifications.

* JAN types

Transitron

electronic corporation melrose 76, massachusetts

You'd have to smash a Corning Capacitor before you could alter its values by mechanical shock

That's how rugged these miniature fixed glass capacitors are. ("Miniature" means about one-third smaller than other kinds of equal capacitance.)

Their strength comes from the way we make them. Layers of conductor and dielectric are scaled together under heat and pressure into a monolithic structure. No mechanical shock short of shattering the seal alters the value. Speaking of values, the table illustrated above shows them

Because everything is sealed in the same material as the dielectric, nothing outside can get inside.

You can use these capacitors to tem-
peratures of $125^{\circ} \mathrm{C}$. and higher with proper voltage derating. Even after repeated temperature cycling, the TC remains the same. And TC stays within close limits over a wide temperature range, varies little between capacitors. Capacitance drift is so close to zero that it's generally less than the error of measurement.
We can make capacitors to your electrical and physical specifications over an unusually varied range. Single, selfsupported units can be designed for high voltages or high capacitances. Series parallel combinations still further extend the range.

Other electronic products by Corning Components Department: Fixed Glass Capacitors*, Transmitting Capacitors, Canned High-Capacitance Capacitors, Subminiature Tab-Lead Capacitors, Special Combination Capacitors, Direct-Traverse and Midget-Rotary Capacitors*, Metallized Glass Inductances, Resistors.

* Distributed by Erie Resistor Corporation

Circle the reader scrvice of this publication, or write direct for more information about Corning Fixed Glass Capacitors, prices and samples.

Ask for information on these other Corning Capacitors:

Medium Power Transmitting-CY60 and CY70. Ideal for mobile RF transmitters.

Canned High Capacitance—provide the advantages of rugged glass design to your specifications.

Subminiature Tab-Lead-up to 90% less volume compared to pigtail types. To your specifications.

Special Combinations-the performance and benefits of glass in infinite shapes, sizes and leads. To custom order.

from Transitron

new
 MILITARY ${ }^{\text {mem }}$ GOLD BONDED Diodes

1N270*
1N277*
1N281*

The proven performance and superior characteristics of gold bonded diodes are now incorporated in three new military types.

The 1 N 270 is designed for efficient core switching. It features 200 ma at $+1-V$.

The 1 N277 is recommended for critical high temperature applications. It replaces the existing military types 1N127, 1N198, 1N38A and 1N70.
The 1 N 281 offers 40 ma at $+1-\mathrm{V}$, and replaces the existing military types 1 N 126 and 1 N 69.

The 1N270, 1N277 and 1N281 are preferred types for new design.
Transitron's gold bonded diodes are characterized by reliability under the most severe operating conditions. This is achieved by rugged construction and 100% testing of electrical and mechanical characteristics.

WRITE FOR BULLETIN TE-1319.

*JAN types

Forward Volloge (volts)

Transitron

electronic corporation melrose 76, massachusetts

Armco DI-MAX Adds New Design "fPUNCH" to $\mathrm{M}-15$ and $\mathrm{M}-17$ Grades

Armco's DI-MAX process now offers a new design advantage in the low core loss $\mathrm{M}-15$ and M - 17 electrical steels. Better, more uniform ductility now makes it possible for designers to use punched laminations where they reed the low core losses of these grades.

Besides punchability, Armco TRAN-COR DI-MAX M-15 and M-17 offer other performance-improving properties. In large motors and generators, induction regulators, TV power transformers and other applications calling for segmented, " E " and "I" or rectangular laminations, here are some of the plus factors you get:

- Better permeability at high inductions

- Greater gage uniformity

- Better space factor

- Smoother surface

- Improved flatness

For complete information on how DI-MAX M-15 and M-17 can help you design and produce more efficient electrical equipment, write us at the address below or phone the nearest Armco Sales Office.

ARMCO STEEL CORPORATION

1146 CURTIS SIREET, MIDDIETOWN, OHIO

SHEFFIELD STEEL DIVISION • ARMCO DRAINAGE \& METAL PRODUCTS, INC. - THE ARMCO INTERNATIONAL CORPORATION

HOW TO BE SURE OF

 TERMINAL SECURITYNo matter how you assemble or solder them, IRC resistors provide the extra terminal security that prevents termination failures in the production line or in the field. Leads of IRC Type BT Resistors, for example, are uniquely anchored in the resistor body so that they won't twist or pull out. A new IRC alloy coating which overcomes copper migration also assures improved and more uniform solderability. Together, these features speed up production, cut inspection costs, and assure reliable long-range performance. For more information, send coupon today.

Why Leads Won't Come Loose
Leads of IRC Type BT Resistors are so securely joined to the element that even the unmolded assembly exceeds the standard 5-lb. pull requirement. For still greater strength, leads have a crimped collar which provides a tooth-and-notch effect when the assembly is molded as a unit.

Straight Leads Speed Automation
The IRC Automation Package assures you of consistently straight leads suitable for automatic feed. This permits automatic, trouble-free feed to holding devices or into inserting heads of printed wiring lines.

Because they can be bent up to resistor body, IRC leads solve special "fir" problems and simplify production and soldering operations.

New alloy surface on leads overcomes tendency of copper to migrate toward coating. This assures superior solderability by any method, with low or varying temseratures.

here's how much IRC's new alloy coating improves solderability

Deposited and BoronCarbon Resistors The metal used in terminations passes ASTM tests for season cracking. In addition, terminations are automatically assembled for uniform strain strength.

Wire Wound Low

 Wattage Resistors Through machine assembly, the element terminal clips, and leads are assembied simult aneously. No other method assures such uniformly high resistonce to twisting or pulling
Wire Wound Precision and Power Resistors

uges can't turn or twist and break the fine resistor wire. This also eliminates any "stroin gauge" effect which would change the resistance value.

Microstak

 Selenium Rectiflers Superior chorocteristics and uniformity.Wice variety of types including hermetically sooled units.

Voltmeter Multipliers - Boron \& Deposited Carbon Precistors insulated Composition Resistors. Power Resistors - Controls and Potentiometers - Low Wattage Wire Wounds • Germanium Diodes

Wherever the Circuit Says-
Precision Wire Wounds - Ultra HF and Hi-Voltage Resistors Selenium Rectifiers - Insulated Chokes - Hermetic Sealing Terminals

HYCOR DIVISION of internotional Resistance Co. Los Angeles, Californio CIRCUIT INSTRUMENTS INC. (IRC Subsidiary) St. Petersburg, Florido

INTERNATIONAL RESISTANCE CO.

Dept. 233, 401 N. Broad Sl., Philadelplia 8, Pa.
Send data on resisfors checked:
\square Fixed Composition Resistors \square Deposited and BoronCarbon Resistors \square Wire Wound Power Resistors \square Wire Wound Precision Resistors $\quad \square$ Selenium Rectifiers

Name

Company

Address

CHy Siate

Ucinite Electrical Assemblies

TYPICAL BASE CONNECTION DIAGRAMS

These relays contain 2,3 , or 4 magnetic switches. Each switch is hermetically sealed in a high pressure hydrogen atmosphere in a glass capsule. Platinum contact surfaces are continuously wetted with mercury by capillary connection to mercury reservoir.

4 FORMC

3 FORMC

2 OR 3 FORM

FOR COMPLETE INFORMATION

on C:LARE Mercury-Wetted Contact Relays for single or multiple circuits contact your nearest CLARE representative or address: C. P. Clare \& Co., 3101 Pratt Blvd., Chicago 45, Illinois.
Send for CLARE Sales Engineering Bulletin No. 120

SAVE SPACE, MONEY and POWER

In applications requiring more than 1 Form C contact, a multicontact relay may be used instead of 2,3 or 4 of the standard type HG Mercury-Wetted Contact Relays described in Sales Engineering Bulletin No. 120, thereby saving chassis space, first cost, and operating power.

ELECTRICAL FEATURES

LONG LIFE: Conservative life expectancy of over a billion operations when operated within ratings.

HIGH-SPEED: Give consistent performance at speeds up to 60 operations per second.

HIGH CURRENT-and yoltage-handling capacity, up to 5 amperes, up to 500 volts; (250 volt-amperes, max.)

UNIFORMITY: Operating time varies by only about 0.1 millisecond under constart drive conclitions.

NO CONTACT BOUNCE

MECHANICAL FEATURES

- Small chassis space required
- Convenient plug-in mounting
- Environment-free
- Tamperproof
- High sensitivity
- Maintenance-free
- No contact wear
- Adjustment cannot change

FIRST in the industrial field $\square \rightarrow \square \rightarrow \square \rightarrow \square ? ~$

In fringe-reception areas, there is less picture roll.

Lightning will not materially affect sync-cause picture distortion.

WITH THE NEW G-E GBUB, YOUR POPUIARMAINTAIN PILTURF STEADINESS LNDER

New General Electric twin pentode combines sync and AGC tubes in one envelope. Costs substantially less than the pair of tubes formerly needed for picture stability.

You can score a real advance in TV picture performance with the 6BU8-new G-E 9pin twin pentode that combines the functions of the GBEG and GAUG, two tubes commonly used to assure a steady, undistorted screen image.

Cost of the 6BU8 is materially less than cost of the 6BE6 and 6AU6 as a pair. Consequently, you can afford to design the new tube-or Type 3 BU8, its series-string coun-terpart-into your volume-production, popular-price television sets.

Your portables and small table models will have picture quality that is proof against flutter and distortion from passing planes, passing cars, lightning. The image
will have far less roll in fringe areas . . . tuning will be "one-hand," with no need for distance switch. All these are features usually found only in deluxe TV receivers.

The 6BU8 and 3BU8 are the latest in a long series of General Electric tubes for TV that have helped set manufacturers cut costs and improve performance. Use them to increase receiver sales by upgrading picture quality over your entire line!

Complete information and prices will be sent you on request. Or, if you prefer, a G-E tube engineer will be glad to call on you in person at your convenience. Tube Department, General Electric Company, Schenectady 5, New York.

Passing automobiles leave the picture steady, free from distortion and jitter.

4 ALSO no more bother. some "both-hands" tuning of the set! The distance switch can be eliminated-another 6BU8 plus and cost-saver. When choosing programs, viewers no longer need manipulate two controls: tuning knob and distance switch. One control knob will tune in all stations, near and far.

PRICE SETS WILI ALL CONDITIONS!

6BU8 and 3BU8

9-pin twin pentodes with common connections for the screen grid, control grid, and cathode. The two types are identical except for heater voltage- 6.3 v and 3.15 v respectively. Also, the 3 BU 8 has controlled heater warm-up time for operation in series-string television sets.

Progress ls Our Most Important Product

general electric

how to reduce

costs with

Western

Gear

rotary electrical

equipment

We have more than 50 basic prototype motors, fans, blowers, converters, alternators and generators. Motor designs range from 1/500th to $4 \mathrm{HP}, 50$ to 1,000 cycles in frequency, any desired voltage. Extensive line enables economic modification to your requirements or special design. Complete engineering service gladly offered for help on any rotary electrical equipment problem. Write for new catalog No. 254-A.

Precision fine pitch gears, constructed to the highest specifications for electronics use, available from 200 to 6 diametral pitch and from. $125^{\prime \prime}$ to $10^{\prime \prime}$ diameter. Complete engineering and manufacturing facilities for the application of high precision gearing and gear drives in electronics equipment. Ask for help on your problem. No obligation!

Detail your requirement on any electronic problem. Utilize Hestern Gear's production facilities to cut your product costs. Our cngineers will give their recommendations promptly. Address Western Gear Corporation, Electro Products Division, 132 W. Colorado St., Pasudena 1, Calif.

[^6]
EIMAC Klystrons bring new power to another frequency range．．．

Eimac X563 amplifier klystrons make 50 watt CW power output commercially available at $5400-7400 \mathrm{mc}$ ．A bonus feature of the X563 is its adaptability to present C－Band systems．Ex－ isting milliwatt equipment is sufficient to drive a conservatively rated X563 to power gains of 10,000 times and efficiencies of $20-25 \%$ ．
Single adjustment tuning knobs make each of the X563＇s four integral cavities as easy to
Eimac $\times 563 \mathrm{E}_{4} 5900.6400 \mathrm{mc}$ ，and amplifier circuit assembly．

TYPICAL OPERATING CONDITIONS PER TUBE X563 KLYSTRONS

| D－C Beam Voltage ．． 2750 v | Power Output ．．．．． | 60 w |
| :--- | :--- | :--- | :--- |
| D－C Beam Current ．． 110 ma | Efficiency ．．．．． | 20% |
| D－C Focusing Voltage ．．-50 v | Driving Power ．．．． | 5 mW |

tune as a standard AM broadcast receiver．
The Eimac X563 is also available with mag－ netic circuit components，output waveguide fitting and collector and cathode sockets com－ prising a suitcase－size amplifier assembly weighing only 20 pounds．

EITEL－MccULLOUCM，INE．

 SAN BRUNO C C ALIFORNIA The World＇s Largest Manufacturer of Transmitting Tubes
HIGH IMPEDANCE MODULATOR

To minimize loading the bridge, a high-impedance modulator is used such as Airpax Type 175

CONTROLS frequently require a modulator that presents high impedance to a bridge circuit. Perhaps you are faced by such a problem.

A typical solution is illustrated above. One arm of the bridge is used for control, the other for feedback. Output from the bridge is modulated, filtered, fed to an amplifier and used to

In basic modulafor circuit, chopper alfernately connects filter across bridge and then shorts filter
drive a motor. The follow up to the feedback arm is phased to drive the bridge toward balance. A modulator with inherently low zero offset is essential if the bridge is to be balanced accurately.

The mechanical modulator, popularly called a chopper, is ideal in this application. The break-before-make type, such as Airpax Type 175, is naturally used. (A MBB type momentarily shorts the bridge producing transients that mask the null.) The basic circuit is shown above.

A high-pass filter integrates the modulated signal to hold the output during the opencircuit interval. The action is shown in the accompanying timing diagram.

From modulation theory, we know that the circuit is insensitive to signal frequencies above half the chopper drive frequency (60 CPS for Type 175). Thus the filter is made to cut off at this limiting frequency. It also serves to narrow the noise spectrum out of the modulator.

Where an especially low noise level is required, Airpax Type 176 chopper is used. This

Upper diagram shows fiming of chopper action, lower one shows effect of low-pass filter on output
is like Type 175 but the drive-coil leads come out the top. Another way to reduce noise is to use a variation of Type 175 with solder-lug terminals.

For further recommendations on the chopper best suited to your particular requirements, write to

HERMETICALLY SEALED
OCTAL BASE
SIZE
$41 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}$ diamefer
WEIGHT
7 ounces

COMPLETE INFORMATION ON REQUEST
PLEASE SPECIFY TYPE 2007T

These units, which are the result of several years of development and testing, offer a new standard of simplicity and reliability. Particularly noteworthy is the uniformity of output signal voltage with temperature change. Small size and light weight make them ideal for airborne and portable use.

For applications where only higher B voltages are available, a simple voltage reducing circuit may be used.

Annerican Time Products, Inc.

What properties of ALITE will serve you best?

Its diamond-like hardness?
| Its electrical resistivity?
| Its high temperature characteristics?

Alite is a sintered metallic oxide with decidedly interesting properties. It is so hard, for example, that only a diamond can scratch it. It maintains excellent dielectric properties from power frequencies throughout the entire spectrum into the super high frequency range. It retains its high mechanical strength at temperatures even beyond $2000^{\circ} \mathrm{F}$. In
its resistance to chemical attack it is comparable to fine quality chemical porcelain.
How is it used? In such mechanical applications as rolating seals, pump plungers, slide valves, cutting tools, sleeve bearings, bushings, extrusion dies. In electronic applications as tube envelopes, as insulating supports. It can be joined to itself or to unrelated materials with a vacuum type bond.
Certainly, any engineer concerned with material specification in mechanical, electronic, or nucleonic design problems should be thoroughly familiar with Alite and its possibilities. Bulletin A-7 tells the story. It is free on request. Write for it today.

Alite Divison

U. S. STONEWARE

AKRON 9, OHIO

Presenting the New

OUTSTANDING FEATURES:

bines the strength advantages of machined bar stock aluminum with the shock-resistant qualities of a resilient insert.

2 A modified, double stub thread provides for speed and convenience in mating and disconnecting and the special tapered cross-section thread design resists loosening under vibration. The threads can be easily hand cleaned if contaminated by a substance such as mud or sand.

An Alumilite 225 hard anodic finish is used which gives a case hardening to the aluminum surface. This finish offers outstanding resistance to corrosion and abrasion. The cable-compressing gland used within the cable accessory accomplishes both a firm anchoring of the cable and effective waterproofing for multi-conductor cables. Neoprene sealing gaskets are used at every joint to insure a watertight connector assembly.

The cable accessory is designed to accommodate a Kellems stainless steel wire strain relief grip for additional cable locking.

A left-hand thread is used on the cable accessory to prevent inadvertent loosening. High-grade copper alloy contacts are used which provide for high current capacity and low voltage drop. The famous Bendix closed entry socket is used for contacts sizes 12 and 16 .

This new QWL Bendix* Electrical Connector was designed for and is being used principally on ground launching equipment for missiles and ground radar equipment.
Obviously for this important type of service only the highest standards of design and materials are acceptable.

That's why it will pay you to specify the Bendix QWL electrical connector for any job that requires exceptional performance over long periods of time.
*trademark

SCINTILLA DIVISION OF BENDIX

SIDNEY, NEW YORK

Export Sales and Service: Bendix International Division
205 East 42nd St., New York 17, N. Y.
Canadian Representatives: Aviation Electric Ltd.
200 Laurentien Blvd., St. Laurent, Montreal 9, Quebec

FACTORY GRANCH OFFICES

117 E. Providencia Avenue, Burbank, California - 512 West Avenue, Jenkintown, Pennsyil vania - Paterson Building, 18038 Mack Avenue, Detroit 24, Michigan - 5906 North Porl Washington Road, Milwaukee 1. Wisconsin *ulman Building, 120 W. Second Street Dayton 2, Ohio * 8401 Cedar Springs Road, Dallas 19, Texas • Boeing Field, Seattle 8

Washington - 1701 "K" Street, N. W., Washington 6, D. C

New General Electric Silicon Junction Rectifier operates at $150^{\circ} \mathrm{C}$ with full rating, delivers 250 MA at 200 V PIV-no heat sink required

New G-E Axial Lead Design And Small Package Are Specially Adaptable For Use In Automatic Circuit Assembly Equipment

More than six years of lab research and field development are behind new G-E Low Current Silicon Rectifiers. G-E engineering teams have perfected the operating characteristics of silicon for rectifiers; developed new production methods; and have proved the value of G-E Silicon Rectifiers by extensive tests.

G-E Silicon Rectifiers Offer More Advantages

General Electric Silicon Rectifiers provide a strong combination of desirable features. They operate at much higher temperatures, making possible their use in close, air-tight assemblies. Applications are much
the same as for germanium units, with the exception of much higher operating ratings at temperatures up to $175^{\circ} \mathrm{C}$. New Axial Lead design and small, all-welded package make it possible to use General Electric Silicon Rectifiers in automatic assembly equipment.

Reliable Characteristics

New process control techniques deliver consistently reliable character-
istics. All G-E Low Current Silicon Rectifiers are protected with a full year warranty - your assurance of dependable performance.

Quantities Available Now

Sample quantities of the new G-E Silicon Rectifiers are available immediately for use in testing or development labs. See your G-E Semiconductor Specialist, or, write: General Electric Company, Semiconductor Products, Section Xi46, Electronics Park, Syracuse, N. Y.

Progress /s Our Most Important Product GENERAL ELECTRIC

 line switch

Type J single-unit with long shafi and 125 v switch

Type GP small variable resistor for printed circuits

Type G small variable resistors -plain or lock-type bushings

Type G small variable resistor with line switch

Type J resistor with short shaft and lock-type bushing

AN "INDUSTRY STANDARD" WHERE LONG LIFE AND QUALITY PERFORMANCE ARE NECESSARY

Here are A-B variable resistors and potentiometers that are designed for QUALITY performance. They are available in many forms and sizes.

The resistor element in all units is a solid molded ring (not paint or film) supplied for standard or special tapers. The resistance material, insulation. terminals, faceplate, and bushing are molded in ONE piece. You can expect improvement with use as brush wears smoothly to flat molded resistor. There are no welded joints, no rivets, no soldered connections.
TYPE J- 2 watts-in single, dual, or triple construction. With or without line switch. Dual units can be supplied with concentric shafts for individual resistor control.

TYPE G \& GP- $1 / 2$ watt $-1 / 2$ inch in diameter: Type GI' units have long terminals for printed circuit applications.

TYPE T-1/2 watt-compact units for hearing aids and similar applications.
A-B variable resistors are available in standard RETMA values up to 5 megohms.

Type J triple-unit resistor

Type J dual-unit resistor with short, flatted shaft

Type J single-unit variable resistor with long shaft

Type T small varioole resistors with hand or screw driver operated plastic covers-for hearing aids and similar applications

Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee 4, Wis. - In Canada-Allen-Bradley Canada Limited, Galt, Ont.

ALLEN-BRADLEY

FROM: THE ENGINEERING STAFF AT NJE
TO: ELECMRONIC SYSTEMS ENGINEERS

HINDSIGHT ...

"Your foresight may be poor", they say "but your hindsight is always $\frac{\text { but there are days }}{}$ Maybe so, baght is pretty dim. when our hindsig standard-versusTake the age-ol for example. custom argumene knows by now (we

As everyone keating it) we grow hoarse the longest, offer by farified list of catamost divers supplies in the in-dustry-over 500 modzls, and hundreds of "quickie" stock variations. h, in addition, we Every montr, build abcut $\$ 100,000$ design and buic power supplies worth of custery time we complete
one, we add it to our list, hoping fee. sold to a number to sell it again, mistom design has been sold does it

When the same custom begin to worry not, but we're of different people, catalog? Maybe not, but we belong in the recompromise: going to try a comprout 200 of the mared a Custom-Design

We've selected abouties, and prepared a custom- Here are a famples: requested chstom which like to send you.

250-300
\%
s, usually, Minor
ncidentally, delivery is excellent- 5 to 6 week., are cheer variations in range, perfal charge.
done at nominal additional charge.

BUYERS' GUIDE

Electronic Development \& Manufacturing

> When Original Design \underline{A} ran into alignment trouble, the custower proposed design \underline{B}. Mallory engineers recommended design \underline{C} as the most efficient and economical solution.

How economical are your contact designs?

Mallory Contact Engineering Offers Five Ways
To Improve Economy

1. The most effective contact material from the extensive line developed by Mallory. More economical alloys often can satisfy actual service conditions.
2. The most economical contact design ... for your purchasing, production and produt needs.
3. The most economical backing material ... from a group of Mallory alloys developed for this use.
4. The most economical backing member design...in relation to contact and product design requirements.
5. The most economical method of assembly of contact and backing member.
By coordinating all these important elements of contact design, Mallory can help you put into effect a long-range plan for cutting contact cost and assuring peak performance.

DESIGN of electrical contacts is an engineering job in which Mallory's specialized experience can often lead to substantial savings for you. A case in point - a manufacturer of circuit breakers wanted to use a combination of flat and radius-faced contacts to lick an alignment problem in production. This design required buying and stocking of two separate contact parts.
Mallory contact engineers came up with a money-saving improvement. They recommended a modified radius design to go on both the stationary and moving contacts. Substantial production time was saved by elimination of the alignment difficulty in assembly. In addition, by buying a single type of contact engineered for the job, instead of two separate designs, the manufacturer cut his inventory problem in half, simplified purchasing and handling, and saved a significant percentage of direct contact cost as well.

There's a good chance that you can realize comparable savings on your own contact applications, by bringing your problems to Mallory specialists. The complete engneering job that our staff can undertake will assure you of gaining the maximum in performance . . . at the peak of economy ...for your specific requirements. For a consultation, write or call Mallory today.

Expect more... get more from

Serving Industry with These Products:
Electromechanical-Resistors . Switches - Television Tuners . Vibrators Electrochemical-Capacitors . Rectifiers - Mercury Batteries Mefallurgical-Contacts - Special Metals and Ceramics - Welding Materials

- TRAVELOG . . . This is written in Los Angeles, half way through a field trip, in response to a gentle yet insistent wire from New York re deadlines.

Chicago (cold), Cedar Rapids (colder), Denver (still colder, plus snow), San Francisco (wet) and now southern California (cool air, hot sun). Soon Phoenix (?), Dallas (?) and back home to the east, where we hope the weather is better than when we left.

- HI-FI HELP WANTED . . . Most frequent topic of conversation out this way is the continuing search for more engineers.

Apparently most of the young men who could be readily enticed to move west for, among other things, the salubrious climate, have already emulated Horace Greeley. Now many manufacturers who have successfully sold the sun are losing talent to new plants in still sunnier locations.

We met a man just the other day who is altering the layout of a building already under construction to provide plushier quarters for engineering. Another is advertising for engineers over a local hi-fi broadcasting station, hoping perhaps that there may be some affinity between lovers of Bach and Bessel Functions.

- DISTRIBUTION DILEMMA . . . Right across the country, manufacturers have expressed some
concern about the current difficulty of obtaining good sales representatives for their lines, particularly in the instrument business.

It seems that some of the larger companies, in the interest of diversification, have started to produce items with which they have not previously been concerned. These new items are frequently competitive with similar products handled by their reps but made by other companies. So something has to give.

Caught in this nutcracker, newer and smaller manufacturers who have not yet built up nationwide distribution are feeling the pinch.

- TALENT BANK . . . For obvious reasons, we have been sounding out people anent patents, and can report that while there is some satisfaction about the government's interest in preserving a free economy this satisfaction is indeed mild.

More often, men we have talked to have wondered out loud if the price that has been paid for what might be considered centralized banks of research talent hasn't been quite moderate. How are these talent banks to be supported? Will small companies pick up the load if they cannot be supported?

Thinking is generally along these lines.

LOOKING AHEAD . . .

Modified polyethylene subjected to high-energy nuclear radiation during production retains its excellent insulating characteristics at 150 degrees centigrade. Wire using such insulation is expected on the market within a month

> Amateur single-sideband enthusiasts will have plenty of commercial company from now on. Design of much point-to-point communications equipment for use above 30 mc is headed in that direction

Electrical radiation from some two-hundred discrete points in the heavens has been charted in Britain, in Australia and in the United States. These signals can be the basis for new systems of navigation

Relatively noise-free high-frequency amplification can be obtained with traveling-wave tubes. It may not always be necessary to heterodyne to get receiver gain

New Applications For

Abstract

\int UMMARY - Ten-target magnetron switching tube, now in commercial production, combines accurate visual read-out with high-speed electronic reset. Circuits given here show its versatility as a regular or variscale counter, multiplexer, distributor or gate

ABEAM SWITCHING TUBE contains ten identical arrays of spades, targets and grids symmetrically located around a central oxide-coated cathode as in Fig. 1. The spades form and sustain the electron beam, the targets produce a functional pentode-like output and the grids switch the beam from array to array.

Normally, when the tube is turned on by applying $B+$ voltages after a suitable filament warmup time, the tube will remain in its clear state and there will be no beam formed. This corresponds to the cut-off condition of a splitanode magnetron.

With the tube initially in this cut-off or cleared condition, the static voltage-current characteristic of an individual spade is represented by curve 1 of Fig. 2.

The dynamic spade characteristic, represented by curve 2 , is obtained with the lagging spade at 0

Tube is 3 inches long including polyethylene end caps, 1.7 inches in diameter and weighs 5 oz including its encapsulating cylindrical permanent magnet

By JOHN bethke

Applications Engincering Department
Haydu Brothers of New Jersey
Subsianfield, New Jersey
Subsidiary of Burroughs Corp.
or cathode potential, simulating the condition that exists during switching. Actually, the dynamic curve decays to the static curve after the switching transition as the lagging spade's voltage recovers at a rate determined by its R-C time constant.

These curves, taken with all the other electrodes at 100 v , can be used to determine the values of spade load resistors that will provide bistable operation for each spade. Load line R_{M} for a $60,000-$ ohm resistor indicates the lower limit, whereas R_{3} for a 500,000 ohm resistor indicates the upper limit.

A smaller resistor than 60,000 ohms would create a load line that would not intersect the static curve
and hence there would be only one stable point, at a; this means that the beam could not be formed. A resistor larger than 500,000 ohms would form a load line that would intersect the dynamic curve only at d, which is the lower state. This implies that as each spade in turn is the leading spade, the beam will automatically be formed to this position, causing astable operation or continuous switching of the beam at a frequency determined by the spade current and the R-C time constant associated with each spade.

Load line R_{s}, for a 100,000 -ohm spade resistor, intersects the characteristic at points a, b and c. Intersection a corresponds to the tube in the cut-off condition, with no beam formed; point b is unstable; intersection c represents the second stable state with a beam formed. The beam may be formed from the cleared condition to any one of the tube's ten positions by

FIG. 1-Electron beam in 450-gauss axial magnetic field serves as equivalent of contact arm in switching from one to another of the ten target output plates under control of spade and grid potentials. Tube designation is now type 6700 (formerly type MO-10)

Beam Switching Tubes

FIG. 2-Spade characteristic curves
lowering the potential of the respective spade from point a to where the negative charactertistic will take over and lock the beam in at point c.

The general shape of the electron beam with it holding on a spade is shown in Fig. 1B. The spade $B+$ is instrumental in controlling the magnitude of cathode current and hence the spade and target currents. The normal range of spade voltage with 100,000 ohm spade load resistors is 90 to 110 v , producing 4 to 8 ma of target current respectively. The targets are essentially pentode-like in that they receive a constant current within a target voltage range of from $\frac{1}{2} V$. to the maximum target voltage rating. Pulses up to $1,500 \mathrm{v}$ at frequencies above 150 kc have been obtained experimentally. The grids are effective switching electrodes, taking little or no current and hence representing high-impedance inputs.

Switching Action

The beam may remain holding indefinitely as in Fig. 1B or it may be advanced sequentially or reformed to any other position at 1 -microsecond rates as will be discussed later. The shape of the dynamic or leading spade's characteristic is altered by varying the

FIG. 3-Basic switching circuit
potential of the switching grids. Making the grids more negative raises the right-hand portion of the dynamic characteristic so that load line R, has only one intersection, at point c which is the on state.

If the grids are connected in parallel a quantized input pulse is required to insure single-step sequential switching, due to the fact that the switching time is in the order of 0.1 microsecond. The spades can be padded with additional capacitance, as determined by the maximum scaling frequency, to reduce the stringency of the input pulse requirements. Actually, the grids are internally connected in groups of five and the external connections are termed even grids and odd grids. The even grids are associated with the even spades and serve to switch the beam from an even position to an odd position. With the grids so connected, they can accept pulses as supplied by a flip-flop or they can be driven from a push-pull sine-wave source

The beam switching tube circuit shown in Fig. 3 is basic enough to introduce the tube and yet versatile enough to have many applications with few modifications. The modifications to meet the requirements of the particular application may be in the type of input drive used, the method of zero setting or

FIG. 4-Resetting circuit arrangements
the type of target load. The circuit has a degeneration resistor in the cathode circuit and a bleeder network to obtain the grid bias, both of which serve to insure reliable operation with wide $B+$ tolerances. The input signal, whether in the push-pull form shown or a single discrete pulse, should be of sufficient amplitude to vary the grids from their bias of approximately +25 volts to -20 volts with respect to the cathode.

Zero Setting

When B + is first applied, the tube remains in its cleared state and no beam is formed. The beam may be formed to any position from this cleared condition by lowering the potential of the respective spade to where the negative spade characteristic will take over and form and lock the beam. This method, which can be accomplished with a spst switch, functions well when the tube is being zero-set from the clear or cut-off condition. However, once the beam is formed, depressing such a zeroset switch will not always return the beam to the zero position.

This is explained as follows: The beam, holding in the zero position, can be formed to a leading position (1 through 4) merely by lowering the potential of the respective

FIG. 5-High-speed clear and reset circuit using direct coupling

FIG. 6-Automatic zero reset circuit
spade, whereas lowering the potential of a lagging spade (6 through 9) will not shift the beam from the zero position. Spade 5 is a borderline position and its influence will be determined by the magnitude of the spade supply voltage. Thus, the beam cannot be reset to zero from every position merely by lowering the voltage of the zero spade.

One way to circumvent this phenomenon is to clear the tube before resetting. This clearing can be accomplished by momentarily removing $\mathrm{B}+$ or by lowering the spade-cathode potential to a voltage that will not sustain beam formation. Figure 4A illustrates the use of two spst switches, for clearing and zero setting respectively. Switch 1 in this circuit is normally closed and serves to interrupt B+ for clearing the tube.

Simplified Zero Setting

Figure 4B indicates how one spst switch can accomplish simultaneous clearing and zero-setting. Depressing the normally open switch reduces the spade potential sufficiently to extinguish the beam. When the switch is released, the common spade bus begins to recover to $B+$. Since the 0 spade has been lowered beyond the others

FIG. 7-Multiposition distributor using two type 6700 magnetron beam switching tubes
and is slowed in its recovery by C_{1}, it follows that when the common spade connection reaches a potential that will form and sustain the beam, the lower voltage of the 0 spade will form the beam to this position.

Electronic Zero Setting

The circuit of Fig. 5 allows the beam switching tube to be reset with a pulse of approximately 1 microsecond duration. The resetting pulse, applied to the grid of a normally cut-off triode, triggers this tube on, allowing the plate current to flow through the two 4,700 -ohm resistors to $\mathrm{B}+$. The spade bus is thus lowered, which suffices to clear the tube. At the

FIG. 8-Tube interconnection for fourposition indication
termination of the pulse, when the voltages begin to recover to $\mathrm{B}+$, the 0 spade voltage recovery is retarded by C_{k}. Thus, when the spade bus recovers, the beam will form to the spade with the low potential.

The targets are returned directly to $\mathrm{B}+$. This is done to prevent pulses from appearing on all targets when resetting. This method of resetting can be used in a variscale distributor, as will be discussed later.

Certain applications call for an automatic zero set. Figure 6 shows how a relay may be used to reset the tube. The 0 spade is held at cathode potential by normally closed contacts. When the beam is formed, the target current energizes the relay which serves to open these contacts, permitting normal operation of the tube. If $B+$ should be interrupted for any reason, the beam will automatically be reformed to the 0 position when $B+$ is again applied.

Nondecimal Counting

Certain applications call for scalers of other than ten counts having a functional output at each position. As previously mentioned, the beam need not be advanced sequentially, but rather may be formed
from any position to any other position either within the same tube or between separate tubes. One way to accomplish this is to select a spade load line large enough to produce switching using the dy namic curve in Fig. 2, but not large enough to sustain the beam using the static characteristic.

One example of this type of switching is shown in Fig. 7, a schematic for a multiposition distributor. In this circuit, only one beam switching tube is on, the other or others being in the cleared state. The switching pulses applied to all tubes in parallel cause the beam to advance in V_{1} from position 0 to position 8 in the normal manner. When the beam is switched to position 9, two simultaneous actions occur. Target-9 current of V_{1} lowers the 0 spade voltage of V, thus forming the beam on the 0 position of V_{2} which is the overall 9 th position. Further, the 9 spade resistor of V_{1} is of such a value that

FIG. 9 Single-friode gating circuit
circuit shown in Fig. 4B is another method of obtaining a count of less than 10 that lends itself to a variscale application. The variscale is a counter-distributor capable of having its count varied from 2 to 10 positions. In this operation, a pulse is taken from the N th position to trigger the high-speed clear and reset circuit which in turn resets the beam to the 0 spade.

Some applications call for the

FIG. 10-Transfer-storage circuit using two switching tubes
this tube clears itself. When the beam reaches a corresponding section of V_{2} the action is repeated and can be used to initiate a third tube or reset V_{1}. A distributor of $9 N$ positions (N being the number of tubes) is thus obtained with no reduction of scaling frequencies and using the $\mathrm{B}+$ power requirements of only one tube. Figure 8 employs the same technique within a single tube to obtain less than 10 positions.

The high-speed clear and reset

FIG. 11-Beam-gated sampling circuits
tube to scale in its normal manner with no beam apparent, that is, without having the beam current reach the load associated with each target until a gating pulse is applied. The technique of using a single triode to obtain this gating function is shown in Fig. 9. Each target is returned to the spade $B+$ of approximately 100 v through a diode.

With gating tube $V_{\text {, }}$ normally biased beyond cutoff, these diodes provide the path for the target current. Under this condition, the loads are void of any target current; however, when V_{1} is gated on by the application of a positive signal, current flows through the load associated with the target on which the beam of the switching tube is impinging.

Transfer-Storage Circuit

In the transfer-storage circuit of Fig. 10, V_{1} and V_{2} are normally biased beyond cutoff. Switching tube V_{3} is in its cutoff or cleared state and V_{4} is made to scale or count in its normal manner. Under the above conditions the target current of V_{3} flows through diodes D_{1} to the higher $\mathrm{B}+$ of 300 v and the 20,000 ohm load resistors are void of any switching tube or leakage currents. The positive transfer pulse gates on tube V_{1}, causing its plate current of approximately 25 ma to flow through the 8,000 -ohm resistor; this lowers the potential at the junction of the V_{1} plate, the 8,000 -ohm load resistor and diodes D_{1} to approximately 100 v . With this lowered voltage the target current of V_{3} will now flow through diodes D_{2}. This target current will also pass through the 20,000 -ohm resistor associated with the holding target, developing a voltage drop of approximately 100 v that is coupled to the corresponding spade of V_{4}.

Storage switching tube V can be connected to remember the position of the beam in V_{3} at the initiation of the transfer pulse, or V. can be connected to follow the count of V_{3} for the duration of the transfer pulse and remember the position of the beam at the termination of the transfer pulse. The latter method can be accomplished by connecting targets $0,1,2$ etc of V_{3} to spades

FIG. 12-Three methods of obtaining visual read-out
$0,1,2$ etc of V_{1} respectively. With V_{4} connected in reverse order, so that targets $0,1,2$ etc of V_{3} are connected to spades $9,8,7$ etc of V_{4} respectively, V_{4} will remain locked in on the first position even though the transfer pulse should remain on for as many as four counts of V_{3}. This is accomplished because of the inherent ability of the switching tube not to step backwards.

At the termination of the transfer pulse V_{3} will continue to scale whereas V_{4} will remain holding on the transferred position. The next transfer pulse serves to clear V_{4} by gating on V_{2} for a shorter time than the duration of the transfer pulse (by differentiating the transfer pulse in the grid circuit of V_{2}), thus making it possible to store to any position of $V_{\&}$ including a lagging position.

Multiplexing Circuit

A low-impedance beam-gated sampling circuit using crystal diodes is shown in Fig. 11A.

A triode gate similar to that used in the Beamplexer multiplexing unit, currently manufactured by Burroughs, is given in Fig. 11B. One use of the instrument is as an electronic switch for a singlechannel oscilloscope. The technique can also be used as a parallel to serial converter taking many parailel inputs and sequentially gating them to a common load resistor.

Various methods are available for obtaining visual read-out. The functional pentode-like output of each position within the new switching tube again comes to the foreground
as an advantage over conventional tubes, transistors or magnetic core counters.

Figure 12A shows the use of either NE-2's or the Haydu position indicator (Pixie) in the spade circuit, providing a visual indication without altering the versatility of the target output. The Pixie 10 position low-power, low-cost indicating device has a single plug-In envelope fitting a standard socket. The addition of the indicating device in the spade circuit has the disadvantage of adding capacitance to the spade, which reduces the maximum operating frequency of the switching tube.

The two above-mentioned indicating devices, as well as the National Union Inditron and the Haydu Nixie, can also be included in the target circuitry. In Fig. 12B the target supply voltage must be sufficiently high to prevent the on target voltage from becoming lower than half the spade supply voltage, since the entire ionization voltage is developed across target R_{L}.

In Fig. 12C the NE-2 neons, the

Nixie or the Pixie can be prebiased with a separate power supply and a pulse developed across R_{L} to vary the voltage across the indicating device from below sustaining to above ionization voltage. The same precaution of preventing the on target voltage from becoming less than $\frac{1}{2} V_{\text {a }}$ must be observed.

The Nixie numerical indicator has low current, long life, small size and little parallax, and provides a visual read-out directly in numerical form.

Low-Voltage Version of Tube

A new low-voltage version of the switching tube, currently available as a production prototype, is capable of 1-mc operation and will supply 1 ma of target current with a B+ of 24 v . Figure 13 shows a transistorized flip-flop driving this new beam switching tube with a single $22.5-\mathrm{v}$ battery supplying the $B+$ power. The advantages of this tube are: (1) Low voltage and low power that makes the tube compatible with transistors; (2) output currents of sufficient magnitude to operate relays directly ; (3) improved switching requirements.

Reducing the magnetic field from 450 gauss to approximately 160 gauss produces more uniform switching around the periphery of the tube so that $20-\mathrm{v}$ pulses provide reliable operation.

This new beam switching tube is proving its versatility in pulse counting, frequency dividing, distributing, multiplexing, gating, matrixing, coding and timing as an integral part of communications equipment and other data-handling devices such as telemetering, fire control, radar, Ioran and automatic control.

FIG. 13-Transistor driver used with low-voltage version of beam switching tube. One switching tube can do all the functions of approximately twenty transistors

VIBRATION METER Uses Transistors

By JOHN F, KINKEL and M, CARR WILSON
Consolidated Electrodynamics Gorj., Pasadena, Califormia

(UMMARY - Instrument that measures vibration frequencies from 5 to $1,000 \mathrm{cps}$ can be used in the field conveniently without power-line connection. Transistors are immune to vibration effects that might cause microphonics in tubes. Biasing circuit compensates for fluctuations over temperature range -20 to 120 F

VIbration measurements must frequently be made where portability is desirable and power not readily available. The transistor
vibration meter to be described satisfies these requirements. Operated with conventional vibration pickups, it indicates peak-to-peak linear

Engineer uses transistor vibration meter to check performance of grinding machine
and torsional vibratory displacements. It can be adapted to velocity and frequency analysis of vibration by auxiliary equipment.

Vibration in machine tools can substantially reduce tool life and adversely affect quality. Vibrations of only 0.00006 in. amplitude in a grinding machine can produce marked degradation in the quality of a ground surface. ${ }^{1,2}$ The shift from propeller-driven to jet aircraft has produced a significant vibration problem. Important vibrations in reciprocating-engine, propellerdriven aircraft are low frequency and large amplitude. They are readily detected and evaluated by the pilot or flight engineer. Vibrations in turbine and jet aircraft are high frequency, small amplitude and can reach dangerous levels before being recognized. ${ }^{3}$

Design Requirements

Portability of vibration-measuring equipment is important in preflight jet-engine runups, machineshop operation and mobile testing. Ambient temperatures are expected to range from -20 to 120 F .

The environment can be expected to have fairly high sound levels and microphonic elements cannot be tolerated. The use of transistors avoided the problem of microphonics and also eliminated the need for long warmup periods.

Vibrations in the range of 5 to

Front panel of vibration meter having six-position frequency range switch, one side of double-etched circuit board and front and rear closeup views of etched range switch

1,000 cycles are conveniently detected with self-generating electromagnetic transducers. These transducers consist of a permanent magnet and a moving coil arranged such that motion between the transducer case and an internal seismic mass causes the magnet to induce a voltage across the coil. A typical vibration transducer is shown in Fig. 1A. The induced voltage across the coil is directly proportional to displacement and inversely proportional to the period of displacement. It is a velocity signal having the characteristics shown in Fig. 1B. If this pickup voltage is applied to an integrating circuit or integrating amplifier having the characteristics shown, ideally the output frequency plot will be as indicated. This integrated velocity signal is a voltage proportional to displacement.

Separation and analysis of frequency components of vibration can be accomplished by filters of known characteristics between the pickup and the integrator. Use of high-pass or band-pass filters eliminates unwanted portions of the vi-
bration spectrum under study. For example, it is necessary to determine separately propeller vibration and turbine vibration in turboprop engines. Since these are separated in frequency by approximately a decade, band-pass filters permit ready identification and measurement.

Vibration Meter

A schematic of the vibration meter is shown in Fig. 2. The instrument consists of a constant-impedance resistive attenuator, followed by a two-stage integrating amplifier. The integrated output is further amplified and applied to the bridge detector. Bridge current is read on a 500 -microampere meter. All power is supplied by two $22 \frac{1}{2}-\mathrm{v}$ batteries.

The integrating amplifier consists of two junction transistors $T R_{1}$ and $T R_{2}$. The input stage employs the common-emitter connection, while the second stage uses the common-collector mode. Feedback around these two stages provides integration to produce a displacement output. The low-fre-

FIG. 1-Electromagnetic vibration transducer used as pickup (A) and voltage-frequency transfer characteristics of system (B)
quency gain characteristic is shown in Fig. 3.

A particular feature of the circuit is its ability to increase overall displacement-signal sensitivity by sacrificing the low-frequency response of the integrator. Figure 3 shows two gain characteristics displaced by one frequency decade. These characteristics are obtained by switching the 1 and $0.1-\mu \mathrm{f}$ range capacitors. This results in a 10 -to- 1 change of displacement voltage for a given velocity signal and provides an effective ten-fold increase in sensitivity without additional amplifier gain.

Performance

Design-center maximum sensitivity is approximately 35 microvolts rms for full-scale meter deflection, which corresponds to 0.5 ma peak-to-peak displacement. At this level, signal-to-noise ratio is significant and care must be taken in selecting the input transistor. Variation in noise output with temperature is appreciable for some types of transistors; the maximum noise figure allowable in 1-cps bandwidth at $1,000 \mathrm{cps}$ has been established as 15 db . The noise is predominantly flicker noise.

Meter Amplifier

The meter amplifier uses transistors $T R_{3}$ and $T R_{4}$ both connected in the common-emitter mode. Feedback around these two stages, including the bridge rectifier, assures a meter deflection proportional to the average input. The deflection is essentially independent of the

FIG．2－Integrating amplifier uses one grounded－emitter and one grounded－collector stage．Meter amplifier uses two grounded－ emitter stages．Kange switch controls input attenuator
diode forward－current characteris－ tics for normal small diode back－ current values．Feedback voltage appears across the 75 －ohm potenti－ ometer in the output of $T R_{4}$ ．The potentiometer acts as a gain control．

The fourth－stage output is avail－ able at a jack and can be observed with an oscilloscope or a recorder having an input impedance in excess of 10,000 ohms．

The overall frequency response referred to 100 cps is given in Ta－ ble I．A significant factor in fre－ quency performance is the tempera－ ture sensitivity of the electrolytic bypass capacitors．Increase in in－ ternal series resistance at low tem－ peratures increases degeneration in stages 1,3 and 4.

Another significant temperature effect is the variation in collector current cutoff $I_{c,}$ of the transistors． The biasing networks have been designed to stabilize the circuit against variations in this param－ eter over the temperature range．

Current drain from the two bat－ teries differs in a ratio of roughly 3 to 1 ．Hence the internal resist－ ance of one will increase more rap－ idly than the other．The voltage of the battery having the greater drain is checked by the test－battery circuit and is adjusted by the 2,500 － ohm resistor．Since the useful volt－

FIG．3－Frequency response of meter on low and high frequency ranges
age to the predetermined endpoint of 15 v is governed by internal re－ sistance，the batteries can be inter－ changed once to obtain greater use－ ful life from both．

Design Features

The circuit lends itself to etched wiring．However，the geometry re－ quired for instrument compactness and the size of the special low－tem－ perature capacitors require a two－ sided etched board．All mounting and through connections on the board are eyeletted．The use of a two－sided board and the sensitivity of several components to soldering temperatures precluded dip－solder－ ing．All heat－sensitive components are soldered using heat－sink pliers as a precaution．

All electronic components，includ－ ing the meter，are mounted on the

Table I－Overall Frequency Response

Range	Frequency in cps	Tolerance in percent	Temperature in deg F
$\times 0.1$	． $0-1,000$	± 5	-20 to +120
$\times 1, \times 10, \times 100$.	10－1．000	$\pm \overline{7}$	0 to +190
$\times 1 . \times 10, \times 100$.	－ $0-1.000$	$\pm \overline{3}$	-20 to +120
$\times 1 . \times 10, \times 100$	10－1．000	± 10	-20 to +120

etched board，which is in turn as－ sembled on the upper half of the die－cast case．Connection to the in－ put and output jacks is by solderless sleeve－and－pin elements．

The two－sided etched board per－ mits use of an etched equivalent to a conventional eight－pole six－posi－ tion wafer switch．A detail of four poles is shown in a photograph． Switch elements and wipers are gold－plated．Switching is accom－ plished by wipers which short the inner races to the desired outer contacts．By proper orientation of the switch circuits on opposite sides of the board，it was possible to make both wiper disks identical．

The selector－switch knob and the indexing mechanism are integral with the case．The mechanical driv－ ing connection between the knob and wiper disks is a flatted bar which slides into the slot in the wiper disks．The indexing mechan－ ism has a spring return action in the test－battery position，returning the switch to off upon release to re－ duce battery drain．

The carrying handle can be piv－ oted to form a supporting stand holding the instrument at 30 deg．

The authors acknowledge the con－ tributions of R．L．Sink and Nor－ ton W．Bell for origination and development of the instrument and F．Walsh for styling and design．

References

（1）W＊．D．Nesbit Vibration Testing Jn－ creases Tool Elficiency，Hon A！e．Dec．23． 1934. （2）Consolidated Electrodynamies Corp． Vachine Tools and Vibration，Bulletin 15うす。
（3）A．F．Gebhart，Aircraft Monitoring sustems for Vibration Monitoring in Fioht，Consolidated Electrodynamics ©orp．TP29．Aug． 195 ．

Correction Circuits for

CUMMARY - Gamma and matrix correction circuits offset restricted brightness ranges of color cameras for live and film pickups, giving more pleasing color reproduction despite brightness range that may be as high as 180 to 1 in normal theater color film. Matrix amplifier corrects for hue shift and loss of saturation caused by gamma overcorrection

IN TRANSMISSION and reproduction of color television images, overall system gamma or gradient plays an important role in faithful translation of the original image. ${ }^{1}$ Arbitrary attempts to alter the system transfer characteristic can result in serious hue and saturation distortions. Because of the kinescope power-law transfer characteristic and restricted brightness range, it is neccesary to employ some system gamma correction.
The equipment described was designed to provide considerable flexibility in brightness gamma correction as well as hue and saturation modification. Although the amplifiers were designed specifically for use in color film reproduction, their operational flexibility should make them useful for live pickup cameras also.

Measurements show the typical color kinescope to be capable of a small-area brightness range of between 20 and 50 to 1 with a gamma characteristic of about 2.2. The brightness range is restricted on the high end by phosphor emission and allowable beam current, and on the low end by ambient light on the face of the kinescope.

Correction Gammas Needed

Assuming that a nearly linear overall system is desirable for pleasing reproductions, the pickup and transmission equipment must have a combined gamma of $1 / 2.2$ or 0.45 to compensate for the 2.2 gamma of the kinescope.
For color television studio use, image orthicon cameras are most commonly employed. They are usually operated below the knee of the transfer curve, at which point
they exhibit a gamma of about 0.65 and thus require an additional correction of 0.7 in the transmission system to achieve the desired 0.45 before being applied to the kinescope.
Flying-spot scanners, on the other hand, have an inherent gamma of unity and thus require a 0.45 gamma in the transmission system. The most recent figures for the vidicon film camera show a 0.6 characteristic requiring a 0.75 correction.

Brightness Ranges

Using the above-mentioned correction gammas for the transmission system in conjunction with the correct color filters for the pickup tube, colorimetrically correct transmission in accordance with NTSC Standards will be achieved provided the subject brightness range is kept within the 50 -to-1 limitation imposed by the color kinescope.

In a live studio this is usually possible by careful control of lighting and reflectance values for the scene to be transmitted. Unfortunately, however, in film transmission the brightness range is not under control of the television broadcaster and may be as high as 180 to 1 for normal theater release prints, thus

FIG. 1-Measured transfer characteristic of gamma correction amplifier
far exceeding the capabilities of the reproducing kinescope.
It has been shown ${ }^{2}$ that using a lower correction exponent than needed to linearize the system will reduce the brightness range of the signal to a value within the handling capability of the kinescope. Such overcorrection results in a loss of saturation and some change in hue of the reproduced picture. This undesirable condition can be corrected by a masking amplifier following the gamma amplifier. Because of the nonlinear nature of the problem, it is difficult to compute the exact coefficients required and, therefore, experimentally determined coefficients are normally employed. ${ }^{\text {. }}$

Gamma Circuit Requirements

The demands placed on the gamma amplifier are extremely stringent. To allow for various pickup devices with provisions for overcorrection requires a gamma range of 0.4 (or lower) to 0.75 . The circuit must follow the given characteristic over at least a range of 50 to 1 , and preferably 100 to 1 for film reproduction.

Fortunately, a first-order approximation to the desired curve is visually acceptable. ${ }^{*}$ It is possible to obtain the desired curves by mixing variable amounts of a true 0.4-power-law signal with a linear signal. In this manner approximation can be had to curves lying between 0.4 and unity.

Since three gamma amplifiers are required-one each for the red, green and blue channels-it is important that they be capable of producing similar curves, accurate to within at least 2 percent of each

Color TV Transmitters

By K. E. MULLENGER* and R. H. McMANN, JR.**
Vallonal Broadcasting Company
Development Laboratory
New York, $N . Y$.

FIG. 2-Red-channel gamma or gradient correction amplifier. Blue and green channels are identical
other. Any dissimilarity would become immediately apparent as a hue error varying with brightness.

The voltage characteristic of a crystal diode driven from a con-stant-current source closely follows the 0.4 power law desired. This is the basis for the gamma amplifier described.

Gamma Correction Amplifier

Although the measured contrast range of a typical color film print can run as high as 180 to 1 and higher, as a practical matter stray light in the optics of a typical camera system will limit this range to perhaps more nearly 100 to 1 . The gamma correction amplifier

[^7]was therefore designed to provide a minimum gamma of 0.4 over a 100 to 1 input range. This provides some gamma overcorrection or brightness range reduction over and above that required to linearize the kinescope.

Figure 1 is a plot of the measured transfer characteristic of the amplifier. Small-signal gain at -40 db input referred to peak

FIG. 3-Noise reduction circuit for blanking in gamma correction amplifier
white is about 15. This points up the importance of maintaining excellent clamp and gain stability to avoid introduction of serious color unbalance due to such factors as voltage drifts or normal aging of the vacuum tubes.

A schematic diagram of the gamma amplifier is shown in Fig. 2. Tubes $V_{1,}, V_{2}$ and V_{8} are used in the feedback amplifier to give a gain of approximately 45 with good linearity and good stability. The feedback factor is 17 db . This amplifier drives the clamped grid of $V_{\text {st }}$, used as a constant-current generator to drive three crystal diodes in parallel. Constant-current operation is achieved by virtue of the 5,600 -ohm series resistor. Signal voltage drop across the nonlinear crystals is then a

FIG. 4-Matrix amplifier for red channel
function ${ }^{3}$ of signal current flow: $E=K I^{0.4}$.

Tube section $V_{4 \beta}$ is used as a zero-impedance bias source for the crystal cathode return. ${ }^{0}$ The cathode of $V_{s B}$ is adjusted to provide zero impedance by setting the zERO-IMPEDANCE POT in the plate circuit of $V_{4 A}$ so as to cancel out all signal at the cathode of $V_{\text {AB }}$. Three crystals are operated in parallel as the nonlinear element to average out their characteristics and thereby provide a much better match between the amplifiers.

Tube V_{0} is a dual cathode fol-
lower used to provide ganged variable gain control of the linear signal from V_{n}, and the nonlinear signal from the germanium diodes. The outputs of $V_{\text {a }}$ are mixed in V, a stable difference amplifier. Tube $V_{\text {: }}$ is a variable gain stage and V_{8} is a shunt-regulated linear output stage.

Clamping in Gradient Amplifier

A common low-impedance clamp driver is used for all three channels so that any slight drift that might result in this amplifier (V_{11} and V_{12}) should be common to all three amplifiers. Clamp bias drift as a function of pulse amplitude is held to a minimum by using a balanced transformer and 1 -percent resistors on the clamp bias return.

The d-c bias stabilization on the crystals is achieved by returning the clamp bias to the crystal bias source, which is the cathode of V_{1}. Any variation in bias voltage is reflected to the other side of the crystal through the constant-current driver, thereby maintaining a constant operating bias across the crystal.

Operating bias is adjusted with the 250 -ohm potentiometer in the cathode lead of V_{1}. This technique provides excellent stabilization over a wide range of $d-c$ supply variation and is effective in mini-
mizing gradient tracking variations between color primaries due to tube aging or changes in $B+$ supply voltage.

Flat-top clamp keying pulses are employed instead of a sine wave to reduce line-rate clamp noise (clamp restoring on noise during blanking). In use with a flying-spot scanner, clamp pulses should be delayed as much as possible externally to avoid clamping during phosphor decay noise that carries over into the early part of the blanking interval. Because this noise is stretched at least 15 times by the nonlinear element, it should be suppressed in level so that future clamps in the system will not set up on it and produce highly objectionable line rate noise. One practical circuit ${ }^{\top}$ that has been employed with this amplifier is shown in Fig. 3. Another practical solution would be to gate the multiplier phototubes with blanking pulses.

Transfer Characteristics

Adjustment for proper transfer characteristics can be made by inspection of a stair-case waveform fed through the amplifier or by the use of a blanking waveform and a precision video attenuator. With input gain adjusted to grive 10 v peak white at the cathode of V_{4}, the gamma bias control is adjusted

FIG. 5-Complete red-channel circuit for universal or matrix masking amplifier, with first stage of identical blue channel and input of identical green channel
for proper gain at -20 db input.
In summary, the gradient correction amplifier has the following desirable characteristics:
(1) Gain stability and linearity due to generous amounts of negative feedback.
(2) Minimum gamma of 0.4 over a 100-to-1 input contrast range, providing appreciable expansion of shadow detail in color film (15-to1 stretch at 1 percent input referred to unity white gain).
(3) Continuously variable gamma from 0.4 to 1 , providing flexibility in compensating for film gamma errors and general contrast variations.
(4) Improved gamma tracking between channels through the use of three nonlinear elements (germanium diodes) in parallel, thereby averaging out nonuniformities. Bandwidth over the 15 -to- 1 impedance range is slightly improved, ivith the resultant lower range impedance achieved by operating a number of nonlinear elements in paralled.

Matrix Amplifier

The matrix or masking amplifier used to correct for hue shift and loss of saturation caused by over correction of gamma is shown in Fig. 4 and 5. It has been designed with extreme flexibility in mind to permit any possible matrix equation to be set up easily.

FIG. 6-Simplified diagram of difference amplifier used in each masking amplifier channel

The matrix amplifier uses three symmetrical difference amplifiers per channel, each like that in Fig. 6. These amplifiers are easy to convert from simple RGB matrixing to constant-white masking in which the correction signal disappears for white. ${ }^{5}$ The constant-white feature can be extremely useful as it is possible to produce large hue and saturation changes in colored areas such as blue sky and green grass while only slightly affecting the more neutral flesh colors.

The masking signal is band-width-limited before being added to the main channel. This is possible as only color correction is desired and fine detail information continues to pass through the main channel. Bandwidth-limiting results in an improved signal-to-noise ratio as the signals add algebraically, while the noise adds as the root-

mean-square. Compensation for the time delay in the bandwidth-limiting filter is accomplished by inserting wide-band delay cable in the main signal path.

Difference Amplifiers

Reversing switches S_{1} and S_{2} at the inputs of the difference amplifiers in each channel in Fig. 4 allow the matrix signal polarity to be reversed, making it possible to reduce color saturation if desired. This feature can be especially useful with poor-quality film as it sometimes permits the correction of film faults which would otherwise render the films unusuable.

Pushbutton switches S in each channel in Fig. 5 connect together the difference amplifier inputs for initial setup of the amplifiers. With signal applied and the buttons pushed, the balance potentiometers are adjusted for a null at the difference amplifier outputs. An additional switch S ties all three channels together to insure equal input signals while adjusting the individual channel gains to equality.

Potentiometers R_{t} and R_{B} in each channel can be ganged in combinations ${ }^{3}$ for ease in correlating manual masking adjustments with desired visual effects. The mask on-off relay permits masking to be inserted or removed remotely.

Acknowledgements are due to the management of NBC for permission to publish this paper, to G. M. Nixon, manager of the Engineering Development Laboratory, for his encouragement and to J. O . Schroeder for his assistance in video circuitry design.

Referfences

(1) Sidney Applebawm, Gamma Correc tion In Constant Luminance Color Television SHstems, Proc / RE, p 1, 185, Oct. 19.2.
 Pinnes Lirightness Modification Pro-
posis for Televising Color Film, Proc nosils for Televising Color Film, Proc
$I R F$, p 17t, Jan 14.34.
IRF: ${ }_{(0}^{3}$) Iroposed Controls for Electronic Masking In Color T'elevision, IRE ComvenMasking In Colol
tion Recold, 1955
tion Record. 1900 O. II Oliver, A Rooter for

white Fided Frorram lecording, Ficec White. Video frogram
Tlowics. p 90 Oct. $1!50$.
(6) L. Lax and D. Weighton, A GammaComiro! Circuit I sing Crystal Diodes, Jour TEF 99.9804 .1952 .
(7) Priwate Correspondence with WV. G. Gibson of Tavid Sarnoff Reseatch Center subject of t. Patent Application by George C. Sziklai and A. C. Schroeder. (8) F. P. Burr. The Jse of Flectronic Masking In Color Television, Iroc $1 R E$, p 192, Jan. 1954 .

> CUMMARY — Wide-band random-noise sources are useful in designing and testing receiving systems and their components. This article, second in a series, describes performance and frequency characteristics of hotcathode arcs in gas-discharge tubes, photoelectron multipliers, noise diodes, glow-discharge noise sources and other devices

Part II

Equipment for

Noise generators may be used to simulate signals or to provide a calibrated standard for measuring other noise. These uses differ in the amount of output power required.
In the first case the noise power needed is of the same order of magnitude as the power in the signal to be simulated, from microwatts to a few watts.

In the second case, the unknown power to be measured by comparison is typically the small amount contributed by the early stages of an amplifier. It is disadvantageous for a standard to be much larger than the quantity to be measured. Insertion of a large loss in the standard to obtain a match decreases the accuracy of the result

Noise generators for determining the noise figures of amplifiers deliver at the most about 20 db more power than thermal noise rather than the 100 to $150-\mathrm{db}$ increments needed to simulate typical signal sources.

Testing With Noise

One of the early uses of noise for signal simulation was in testing a broadband carrier telephone system. ${ }^{1}$ Such a system, designed to transmit several hundred voice channels simultaneously by frequency separation, is awkward to
load with actual talkers for a trial run. The composite signal when the modulated waves are superimposed does however resemble a noise wave occupying the same bandwidth.
It is feasible for testing to replace several hundred speech sources by a single wide-band noise source. The interference occurring in an idle channel is simulated by filtering out a nar row band of noisefrequency components from the noise-wave input by a band-elimination filter centered on the idle channel. ${ }^{2-4}$ The output of the idle channel consists of the ambient noise from the transmission system plus the interference from crossmodulation of the other channels.

The ambient-noise component is measured with no input to the system and the increment caused by the cross-modulation is determined as a function of the applied noise load. A similar procedure can be applied to single-channel systems to obtain a distortion-against-frequency curve for specified loading conditions. An example is the noise behind the signal, a signal-depend-

> Previous Article
> Characteristics and Origins of Noise, p 154, March 1956
ent distortion observed in magnetic recording.

Other Uses for Noise

The fact that a noise wave can in one measurement put a system through its paces with respect to a considerable frequency and amplitude range offers a speedup over obtaining data by a number of separate sine-wave measurements. Applications ${ }^{5-6}$ include determinations of network characteristics, room acoustics, loudspeaker and microphone performance and distortion in recording and reproducing.

The method is particularly helpful in obtaining smoothed data for cases in which single-frequency waves exhibit fine structure variations of iittle practical interest. In acoustic response measurements in an auditorium, a slight shift in position of the receiver may make a large difference in the result when a single-frequency test wave is used but will not have much effect on the power received from a noiseband source.

In the synthesis of speech as in the vocoder or voder, ${ }^{7}$ a noise generator provides a hiss which is shaped in its spectrum by proper controls to produce consonant sounds.

Noise generators in the range from near d-c to about 5 mc have

FIG. 1-Circuit (A) and spectral density (B) of noise generator using hot-cathode arc

Generating NOISE

been realized by amplifying the noise spectrum from a hot-cathode arc in a grid-controlled gas-discharge tube. Two or three stages with shaping of the frequency selectivity to obtain a uniform output band are sufficient for most uses.

Hot-Cathode Arcs

The main part of the noise arises from fluctuations in the dense layer of positive ions near the cathode. The frequency beyond which this noise begins to fall off varies inversely with the atomic weight of the gas. Ions can be produced almost instantaneously but have a finite life inversely proportional to their mobility. This varies inversely with atomic weight. The reciprocal of the lifetime determines the upper-frequency limit of the noise energy.

In early applications some difficulty was encountered with sharp resonance peaks associated with natural oscillation frequencies of the ions. It was demonstrated ${ }^{8-10}$ that the resonant peaks could be suppressed and the high-frequency output increased by application of a transverse magnetic field from a permanent magnet enclosing the tube.

The magnetic field turns back to the cathode those electrons which
would otherwise go directly to the anode without colliding with gas atoms. Removal from the anode current of electrons which would otherwise arrive immediately after being velocity-modulated by ionic oscillations breaks up the sharp resonance condition.

Another effect is to narrow and intensify the region of high ion

FIG. 2-Noise diode and its circuit
density. Ionic oscillations of a frequency varying with the square root of the local ion density can occur. ${ }^{11}$ The variations of density over the ionized layer result in a wide range of possible oscillation frequencies and high density values extend this range at the upper part of the band.

The Sylvania 6D4 miniature argon-filled triode has been extensively used as a hot-cathode arc
noise source. Noise-generator units including this tube are available commercially with a choice of bandwidths. A typical circuit and its spectral response are shown in Fig. $1 .{ }^{13}$

Photoelectron Multiplier

To obtain a flat band beyond 5 mc it would be possible to amplify thermal noise with sufficient gain, bandwidth and linear range. It is simpler however to start with a noisier wide-band source. A cascade of secondary-emission multiplier stages following a photoelectric cathode ${ }^{8}$ forms one convenient way since a large gain may be realized in a single tube structure.

A flashlight shining on the photoelectric surface serves to initiate wide-band shot noise which is amplified and slightly augmented by the multiplier stages. Constant power in the noise output requires a well-regulated power supply for the dynode voltages.

Noise Diode

Of the lower-power sources more commonly used as noise standards, the noise diode ${ }^{13}$ has found a considerable field of application. It consists of a two-element vacuum tube operated at temperature saturation -that is, at sufficient anode voltage to collect electrons at the anode as
fast as they are emitted by the cathode.

Under these conditions the shotnoise equations as originally derived by Schottky for random emission of electrons are valid over a range of frequencies from about $10 \mathrm{kc} u \mathrm{p}$ to frequencies at which finite electron transit time begins to exert an effect. For a considerable range white gaussian noise is available as from a current generator with average squared current

$$
I^{2}=2 e I_{0} b
$$

where e is the electronic charge of 1.6×10^{-18} coulomb, I_{0} is the diode current in amperes and b is the bandwidth in cps. The value of I_{0} can be conveniently controlled by varying the filament current
The noise diode is usually shunted by a resistance R to match the load, The available noise power from the diode alone is then

$$
I^{2} R / 4=e I_{0} b R / 2
$$

Compared to thermal noise power $k T b$, where $k=$ Boltzmann's constant and $T=$ absolute temperature, the combination of noise diode and shunting resistance gives a noise ratio at 17 C of
$n=\left[\left(e I_{0} b R / 2\right)+k T^{\prime} b\right] / k T b=$
$20 I_{0} R+1$ $20 I_{0} R+1$
At the low-frequency end, the noise is contaminated by flicker effect and at high frequencies the noise falls off because of electron transit time effect parasitic series lead inductance and shunt capacitance.

In narrow-band work it is feasible to tune out the reactive components at a particular operating frequency. The reduction from transit time can be evaluated and corrected by calibration. The Sylvania type 5722 noise-generating diode" is commonly used in this country and has been incorporated in commercially available noise-measuring devices. A typical circuit shown in Fig. 2 gives usable output up to about 500 mc . At the rated maximum anode current of 85 ma and a load resistance of 300 ohms , the noise power output is 23 db above thermal noise in the lower part of the frequency band.

Extension of noise diodes into the microwave range has been accomplished by a coaxial structure
suitable for matching into a waveguide or coaxial transmission line. Several versions were developed in England.' Figure 3A shows their water-cooled disk-seal structure in which the copper disks may be directly incorporated into waveguide sections.

Microwave Noise Sources

The anode and cathode are hollow coaxial cylinders forming a broadkand transmission line of impedance $138 \log _{10}\left(r_{n} / r_{c}\right)$ ohms where r_{c} and r_{c} are the anode and cathode radii respectively. The cathode is heated from the inside by a fine coaxial tungsten filament.

Shot noise in the current between cathode and anode is propagated as a wave in both directions along the coaxial line. Matched untuned impedance terminations at the ends give the noise source broadband properties. The effect of electron transit time is small because of the small distances traveled and has been evaluated for calibration.

An American version of the coaxial noise diode ${ }^{10}$ is shown in Fig. BB. A coaxial structure similiar to the English tube is used but the central wire within the inner conductor is used as a filament lead, and the actual filament is a loop of tungsten wire between inner and outer conductors. The other filament lead is the inner conductor itself.

A mica canacitor inside the inner conductor bypasses the filament lears. The electron flow is from the filament loon to the outer conductor. With an anode voltage of 300 v , the filament emission is tempera-ture-limited up to 100 ma .

The impedance of the coaxial line is 50 ohms. Noise outputs 20 db up on thermal noise dire obtained at
a few hundred mc. Electron transit time reduction of noise power amounts to 3 db at $3,000 \mathrm{mc}$. A tube based on this model is available commercially as the Bendix TT1.

A simplification in microwave noise measurements was introduced by Mumford. ${ }^{\text {b }}$ He showed that the positive column in a low-pressure gaseous discharge is a stable noise source, which is uniform over a wide frequency band and has the right order of intensity for convenient comparison with the noise in typical microwave apparatus.

Positive Column of a Gas Discharge

The positive column contains electrons snd ions in nearly equal concentration. Its maintenance depends on a continuing supply of electrons from the cathode. These may cone from thermionic emission of electrons by the cathode and from secondary emission caused by positive-ion bombardment of the cathode surface.

In the latter case the emitted electrons produce positive ions to make the process self-sustaining. The electrons entering the positive column have acquired sufficient energy to ionize gas molecules and excite emission of the light which gives this region its luminous appearance.

The relatively long free path enables the electrons to gain more energy during their free flights than they lose during collisions. They thus build up to an equilibrium energy considerably higher than either the neutral gas molecules or the positive ions.
The higher average energy defines a correspondingly higher electron temperature. Election tem-

FIG. 3-Disk-seal coaxial noise diode (A) and coaxial-line noise diode (B)
peratures of approximately 12,000 K are typical；the positive column emits thermal noise as if it were a resistance at this elevated tempera－ ture．The ratio of this temperature to ordinary room temperature is about 40．The resulting thermal noise source therefore has about 16 decibels more available noise power than a resistor at room tem－ perature．

Practical Device

Mumford inserted a commercial fluorescent lamp in a rectangular waveguide as shown in Fig．4A． The positive column crossed the in－ terior of the guide in the longer dimension with its axis parallel to the magnetic vector．The two cath－ odes energized from a d－c source were outside the guide and were surrounded by cylindrical metal shields which formed waveguides beyond cutoff and thereby restricted the microwave circuit to the posi－ tive column only．

The susceptance component of the discharge was tuned out by a piston and trimming screw．The conductance component was ad－ justed to match the waveguide by varying the direct－current supply． When the match was made at 3,960 mc the standing－wave ratio was less than 3 db from 3,700 to $4,240 \mathrm{mc}$ ．

The spectral density of the noise power available from the discharge was found to be uniform with fre－ quency over the microwave range tested．The amount of power was substantially independent of the direct current over a range from 40 to 140 ma ．It was almost inde－ pendent of the ambient tempera－ ture of the waveguide circuit，the variation amounting to -0.055 db per degree centigrade．

Thirty－one different colored lamps were within plus or minus $\frac{1}{ \pm} \mathrm{db}$ of each other in output．The source of the noise is the gaseous dis－ charge and is not affected by the fluorescent material which is pro－ vided to convert from ultraviolet radiation to the visible band．

Further Investigation

The constancy with frequency extends over an even wider range

FIG．4－Glow－discharge noise source ficrowave frequency（ A ）and mounting of small bore tube to generate shi noise（B）
than explored in Mumford＇s origi－ nal experiments．Isolated measure－ ments in a 65 －me i－f circuit indi－ cated that the same noise density was present．The noise was coupled into a tuned circuit by wrapping a coil of wire around the outside of the tube．

Johnson and Deremer ${ }^{18}$ extencerd microwave application to 26,000 mc．Specially constructed elongated small－bore tubes were constructed to fit the smaller waveguides．A type of mounting recommended is illustrated in Fig．4B．

The tube is inserted through the broad faces of the guide in the plane formed by the vertical and horizontal axes and its axis makes a small angle with the longitudinal axis of the guide．The $20-\mathrm{db}$ or more attenuation through the dis－ charge gives a good waveguide termination without the use of any tuning elements and insures a broadband source．With a $10-\mathrm{deg}$ angle of an argon－discharge tube， a maximum vswr of 1.1 was found over the recommended band of the guide．The shot noise flowing along the tube axis makes only a small contribution in this case since its direction of flow is at an ande of 80 deg with the electric vector in the guide．This is all advantage since the shot noise is dependent on the electron transit phase angle and hence would introduce a com－ ponent variable with frequency．

Earlier work on standards for microwave noise measurements made use of nonoscillating klvs－ trons，hot wires and silicon crystals as noise sources．These were either narrow band，not noisy enough or required calibration and have be－ come superseded．

There are still some applications made of resistors heated in ovens
and matched into waveguide to serve as thermal noise sources up to $1,000 \mathrm{C} .{ }^{20-21}$ The increment over ordinary thermal noise obtained in this way is only a few db．Recent work in which the waveguide itself is heated offers usefulness in highly accurate measurements of low noise figures．

References

（1）F．Pelerson，Gas－Tube N゙nise Gen－ ror Circuit Testing，Bell Labs Rec， 18． 15 \＄1．Nos． 1939.
18．（2）W．L：Renmett，Cross－Modulation in lultichammel Implifiers，FST．／，19．p 587 ， Oct． $1: \$ 40$.
（；）W．J．Abersheim and J．P．Schafer， Fcho Distortion in the F－II Transmission of Frequencu－Division Niultiplex，Proc
$I R F .40 . p .316 .1952$.
（i）W R．Bennett．H．E．Curtise in S．O．Rice．Interchathel Under Noise Ionad－ F－M and P－M Systems Under Noise 1955 ing Conditions，MSTH．34，Do Testing Meth－ （5）E．Cook，White Noise Tarch 1950 ． ods，A undio Eng，34，p 13，Direct Measure－ （6）C．R．Ammerman，Direct $\begin{gathered}\text { ment of Band－Width．Electrical Eng．} 68 \text { ，}\end{gathered}$ ment of Band－ilid
020% March 150
1）207，March 14．，（i）H．Wh．Dules，R．R．Riesz and s．S．A．Watkins．A Syntletic Speaker， S．S．A．Katkins．A Sivin P $73!$ ，June 1939 （ T ）J．D．Cobine and C．J．Galbagher， Yoive and O－cillations in Tot Cathode Ales，Iour Frantlin Iust．243，1 41，Jan． 4！es，
（9）C．J．Gallagher and T．D．Cobine， Fffect of Xagnetic Field on coise and Wiffect of Magnetions in Hot Cathorle Arcs，Jour A ppl Phiss，1x．J 110 ，Jan． 1947.
（10）J．D．Cobine and J．F．Culry （1）Dioc IRE． 35 1） 8% Sepi 1447
（1i）Lepronksand I Langmuir，Oscilia （11）L．Tonks alld Ionized Gases，Phys Rev． 33. p 19 s （1929． P ．G．Peterson．A Generator of mectrical voise Gell Radio Experimenter， $\because 0$ 1．Dee 1951.
$\because(13)$ J．Nolfatt，A Dinde N゙oice Gener－ tor，font IEE．Part IIA，93，p 2.335 ator．
$7!46$
$(1+46)$ W．Stinkerman．Temperature－ （1miterl Noise Diode Design．Sylcatia lechnolomist．2，p6，Oct． 1949.
15）I．Kiompfner，J．Hatton，E．E． schneider and 1．A．G．Dresel．The Trans－ mission Line Diode as a Noise Solurce at Centimeter Wavelengths，Jour $I E E$ ，Part IIA．9：3． 1.436 .1446.
（16）H．Johnson．A Coaxial－Line Diode Toise source lol UFIF，RCA RCv，8，p 169．入arch 194－
（17）W V Iumford a Broad－Band licrowate coise Source BST． S^{2} ， 608 Oct． $19+4$
（18）H Johnson and iv．Γ ．Deremer． Gasenus Discharce Suner－Figh Frequency Voise sourees proc $/ R E$ ． 30 ， 308 ，Ang． 19 J 1. No Gas Discharge pent Fluciluations in phev．79．p 190.1950. Plasma，P／hys Rev．79．P Primary Standard Thermal Noise Generator．Ratio－Elec－ tronic Fuly．p 10 ，Nov 195 ？
（21）I．I．Freeman．Noise Comnarator （ Miernuaves．Radio－Electronic Eng． 1 11，Jat．195：

Radar AFC System Uses

Abstract

CUMMARY ——Servo system, controlled by signals from radar i-f amplifier, tunes wide-range local oscillator operating in L-band. Bistable multivibrator circuit provides automatic switching from search to afc. A reactance tube senses changes in intermediate frequency

Radar receiver local oscillators must be tuned to a frequency that differs from the magnetron frequency by the intermediate frequency. Flexible local-oscillator tuning is required not only because the natural frequency of a fixed-frequency magnetron may differ from that of other magnetrons of the same type but also because tunable magnetrons can operate anywhere within a frequency band as wide as 200 mc . In addition magnetron frequency drifts usually occur while the magnetron warms up.

The motor-driven mechanically tuned system to be described consists of electronic control circuits which control a driving motor, to tune the system over wide ranges to within a few megacycles of the desired frequency (search func-
tion). The system then switches to a precise sensing method and adjusts the system to within a few kilocycles of the desired frequency (afc function). ${ }^{1}$ An alternating voltage whose amplitude and phase are functions of the amount and direction of the deviation from the desired frequency is applied to the control phase of a two-phase motor for afc action.
The transition from the search function to the afc function is accomplished in the control circuits.

Both afc and switching from search to afc described in terms of a circuit designed for the frequency control of stable local oscillators (stalo) in radar receiving systems with moving target indication (MTI).

Local oscillators can be built to

Heart-shaped cam actuates plunger in coaxial oscillator to change frequency

FIG. 1-Cross-section of stable L-band local oseillator
meet the stability requirements of MTI receiving systems for L-band and S-band operation using any of several types of conventional uhf tubes. Figure 1 shows such an oscillator. Its frequency is determined by the high-Q external cavity. The motor shown, rotates the cam which positions the spring-loaded plunger in the cavity. A complete rotation of the cam causes the oscillator to tune through its search frequency range twice. In a typical case a band of 100 mc is searched twice.

Searching

In the automatic search condition, a voltage of constant amplitude and phase is applied to the control phase of the motor. The cam rotates in one direction only, and the oscillator frequency sweeps through the band cyclically.

System alignment is apparent when signals appear in the i-f circuits of the receiver. When tuning automatically, a voltage developed by these signals in the i-f channel is used to actuate a relay, which switches the control phase of the tuning motor from the source of search voltage to the afc circuits.

Afc Circuit

To tune the local oscillator precisely, the afc system must be able to operate over the range of frequencies within the pass band of the i-f amplifier.

Since receiver i-f bandwidths and gain characteristics are governed by other considerations, it is common practice to use a separate i-f amplifier whose bandwidth is equal to that over which afc is desired,

Mechanical Tuning

ByJOHNL.CONFALONE
Lirborme Instruments Laboratory I/imeola, N. Y

and

WILLIAMR.RAMBO*
Stanford University Sunford, California

and whose gain characteristic is suited to the afc requirement. In this circuit the output signal from the receiver $\mathrm{i}-\mathrm{f}$ is amplified in a pentode stage and applied to a resonant circuit whose frequency is controlled over a small range by a reactance tube.

If the resonant-frequency is varied by the application of an a-c modulating voltage to the reactance tube grid, the impedance of the circuit, and the gain of the amplifier will vary. Thus, the voltage developed across the plate circuit of the reactance tube will vary in amplitude at the frequency of the modulating voltage, though the i-f signal applied to the amplifier grid is constant in amplitude and frequency. This voltage variation is detected, amplified in a servo amplifier, and applied to the control phase of the tuning motor. The modulating voltage itself is applied through a 90 -degree phase-shifting network to the second winding of the motor.

Frequency Characteristics

Curve 1 of Fig. 2 shows the impedance-frequency characteristic centered about f_{0}, which is the resonant circuit midfrequency when the modulating signal has zero value, and is also the passband midfrequency of the receiver i-f amplifier. Curve 2 shows the impedance-frequency characteristics shifted to a new position, centered around f_{3}, which is the resonant circuit midfrequency when the modulating signal attains its maximum negative value. Curve 3 shows the impedance-frequency characteristic shifted to a position centered about

FIG. 2-Variation of impedance-frequency characteristic of resonant circuit
f_{2}, which is the resonant circuit midfrequency when the modulating signal attains its maximum positive value. The impedance-frequency characteristic can be considered to move between curves 2 and 3 at the sinusoidally varying rate established by the modulating signal.

If, because of local oscillator detuning, the intermediate frequency is at some value lower than f_{o}, such as f_{5} of Fig. 2, then as the resonant frequency of the reactance-tube circuit decreases from f_{3} to f_{2}, the circuit impedance to the i-f signal increases from Z_{1} to Z_{2}. However, if the intermediate frequency is at some value higher than f_{0}, such as f_{6}, then as the resonant frequency of the reactance-tube circuit decreases from f_{s} to f_{2} the circuit impedance decreases from Z_{2} to Z_{1}.

Fig. 3 shows the transfer characteristics (a) of the reactancetube circuit. When a sinusoidal modulating voltage (b) is applied to the grid, the resonant frequency of the reactance-tube circuit (including the pentode plate circuit) varies sinusoidally (c) as shown.

In the ranges between either f_{1} and f_{3} or f_{3} and f_{4} (Fig. 2), the impedance of the reactance-tube circuit to the i-f signal, and therefore the gain of the pentode, also changes sinusoidally at the rate of the modulating signal on the re-actance-tube grid. The output signal of the servo amplifier, which results from detection and amplification of the voltage variation across the reactance-tube resonant circuit, is therefore an approximate sinusoidal voltage at the modulating frequency. This voltage is

Control circuits and servo amplifier are combined on one chassis
either in phase or 180 degrees out of phase with the modulating voltage depending whether the intermediate frequency is in the range f_{1} to f_{2} or f_{3} to f_{4}.

Servo Output

Figure 4 shows the phase relations existing between the modulating voltage V_{m}, at the reactancetube grid (Fig. 4A), the variation in resonant frequency of the react-ance-tube circuit (Fig. 4B), the output signal $V_{\text {o }}$ of the servo amplifier for intermediate frequencies between f_{1} and f_{2} (Fig. 4C) and the output signal of the servo amplifier for intermediate frequencies between f_{s} and f_{4} (Fig. 4D).

The output signal of the servo amplifier is used with phase sensing which causes cam rotation in the direction producing the right change in local-oscillator frequency. This is reflected in the sampled i-f as a shift toward the center resonant frequency of the reactancetube circuit.

As the sampled i-f signal approaches f_{0}, the waveform of the varitaion of the detector output voltage becomes complex and at f_{0} approximates the double-frequency characteristic of a full-wave rectifier. Thus, at this point, tuning action ceases since only the fundamental frequency component is selected for amplification in the following servo amplifier.

Driving Voltage

The amplitude of the variation of the detector output voltage is reasonably constant for an i-f signal

[^8]whose frequency is anywhere along the slope of the resonance curve (for example, anywhere in the region f_{1} to f_{2} in Fig. 2), though the average value of the i-f carrier signal in the circuit may change appreciably in accordance with average circuit impedance. Thus, ample drive voltage for the tuning motor can be developed over a wide frequency range in incoming signals if the Q of the resonant circuit is sufficiently low. By deliberately lowering the Q with a shunting resistor, afc action has been obtained over a band of $\pm 7 \mathrm{mc}$ centered on an intermediate frequency of 30 mc . The afc channel i-f amplifier should be equally wide if this characteristic is to be used.

If the incoming i-f signal frequency is in the region f_{3} to f_{3} of Fig. 2, the available driving voltage is reduced by the decrease in the modulating-frequency component of the resulting complex voltage variation in the detector output. There is a small frequency range centered at midband in which there is insufficient output voltage to drive the motor. The width of this notch or null region is dependent upon the gain in the following amplifier, the extent of the electronic tuning and Q of the tuned circuit and the incoming signal level. In the practical case, it is small compared with the passband of normal receiver i-f strips.

When the frequency of the incoming i-f signal is outside the range f, to f in Fig. 2, the available driving voltage is too low to actuate the tuning motor. As such regions are approached, it is necessary that a transfer to the search condition be effected.

Search to Afc

There is available in the output of the crystal rectifier ($C R$ in Fig. 5) a d-c voltage whose amplitude is related to the amplitude of the i-f signal appearing across the re-actance-tube circuit. This voltage can be used to control the state of a bistable multivibrator ${ }^{2}$ and, through a plate-circuit relay, the application of either a search or afc voltage to the servo amplifier and control motor. In the absence of an incoming signal, the relay contacts apply a constant-amplitude

FIG. 3-Transfer characteristic of react-ance-tube circuit
search voltage. When a signal appears that exceeds a preset level, the relay is actuated and comnects the motor to the afc circuit for precise tuning.

The problem may be complicated in the case of a cam-driven tuning mechanism. If an oscillator is controlled over a wide tuning range, it frequently is possible to establish several tuning relationships that provide an i-f signal of proper frequency. The local-oscillator frequency may be either higher or lower than the transmitter frequency by an amount equal to the intermediate frequency of the system, and either condition can be intercepted on both sides of the cam. This adds to the complexity, because the direction of the frequency change for a given direction of cam rotation is reversed on the two sides. As a result, an i-f signal can appear at four cam positions. At two of these four positions an unstable condition will exist
wherein the sensing of the afc circuit will be incorrect. The resulting afc, action will change the i-f away from the desired value to a value at which the search condition is reinstituted. The system is then returned immediately to the unstable afc state, and a continuing oscillation will result.

In the present circuit, the situation is treated by applying a sharp triggering waveform, through a second set of contacts on the searchafc relay, to a flip-flop circuit. This circuit reverses the phase of the modulating voltage applied to the reactance-tube grid each time the transition from afc to search is made. The circuit does not operate when the condition shifts from search back to afc. Thus, if an unstable point is encountered, the momentary transition back to search is made. However. on the second try a moment later, the point has become stable because of the reversal in modulating voltage phase and afc sensing, and normal afc action results.
The triggered phase-reversal action can be accomplished electronically or with a stepping relay combination. Figure 5 shows an electronic arrangement. Modulation voltages 180 degrees out of phase are introduced into the grid circuit of a triggered bistable multivibrator called the phase reversing multivibrator. The phase of the output voltage (a-c component across common cathode resistor R) depends on the section that is conducting. A phase change occurs with each transition from

FIG. 4-Phase comparison between modulating voltage (A), reactance-tube resonant frequency (B) and servo outpui (C) and (D)

FIG. 5-Complete circuit provides frequency deviation detection and electronic control over search-afc transition
the search to afc condition.
Figure 5 shows the complete afc circuit embodying the features described. This circuit has been used with the oscillator also described and was tuned (for frequency searching) over a $200-\mathrm{mc}$ range. The afc pull-in range was $\pm 1.7 \mathrm{mc}$ and the afc loop was adjusted to hold the intermediate frequency within $\pm 50 \mathrm{kc}$ of that established by the center frequency of the reactance-tube circuit (adjustable by L).

Figure 6 shows oscilloscope photographs of waveforms at the output terminals of the servo amplifier for different tuning conditions. These photographs were taken while the i-f signal was pulsed at 300 pps using $2-\mu$ sec pulse widths.

The input amplifier and re-actance-tube circuits were designed to work at a 30 -me intermediate frequency. Since a 115 -volt, 60 -cps tuning motor was used, a related $60-\mathrm{cps}$ voltage was used to modulate the reactance tube.

An input signal of 2 volts peak applied to the reactance-tube cir-
cuit will develop an output voltage of about 20 to 40 volts at midfrequency. The exact value depends on the input signal, the resonant

FIG. 6-Servo amplifier output waveforms at null and at either side of null
impedance of the circuit and so forth. The voltage variation in this signal at the modulation frequency depends upon the midfrequency amplitude of the i-f signal and the frequency excursion of the re-actance-tube circuit (generally held to 0.5 to 1 mc). It is usually approximately a few volts. Sufficient gain must be present in the following servo amplifier to raise this level to the normal motor voltage.

It is desirable that the reactancetube circuit exhibit a relatively constant Q at all freguencies in the i-f passband. This is facilitated by the triode grounded-grid reactancetube circuit."

In radar systems, the input signal is generally pulsed. With pulsed inplits, the d-c plate voltage for the input amplifier and reactance tube should be low (100 to 150 volts).

References

(1) J. Gregg Stephenson, Combined Search and Automatic Frequency Control of Mechanically Tuned Ovillators, Proo IRE, 3×1 p 1,314 , Nov. 1950 .
(2) Chance. IIughes, MacNichol, Sayre and Williams. "Thaveforms," MIT Rad Lab Series, MieGratw-Hill Book Co. Inc., New York, $194!$
(3) Harvard Radio Research Lab Staff. "VHF Techniques", Vol. 1, p 408, McGrawHill Book Co. Inc., New York. 1947

TESTING

Abstract

C UMMARY Electronic hardness tester incorporating second-harmonic flux gate magnetometer accurately measures magnetic retentivity of steel tubing in which this characteristic is proportional to hardness. Readings are independent of surface conditions

MEASUREMENT of permeability, as a basis for hardness testing of ferrous metals, has had considerable application in industry.

Most methods employ an inductor or transformer into which a part is inserted for testing. Since alternating currents are employed in this procedure, only the metal near the surface of the object to be tested exerts an influence on the test results. At 60 cps , the flux penetration is only about 0.2 inch for at typical steel, according to the formula $S=1.98 \vee \rho / \mu f$, where S is depth of current penetration in
inches (where current is $1 / e$ times that at surface), ρ is resistivity in microhm-centimeters, μ is relative permeability and f is frequency in cps.

When the part to be tested is perfectly homogeneous, this characteristic offers no particular difficulty. This is also true if only the surface properties of the test piece are of interest. Unfortunately, many steel parts have a surface condition which, while it may be only slight, can affect the permeability measurements out of all proportion to the part of the total mass

FIG. 1-Circuit of hardness tester. Readings proportional to hardness are obtained from either meter, depending on technique of use
which it represents, thus giving erroneous and inconsistent test results.

New Method

An electronic hardness tester has been developed to overcome, on special applications, some of the limitations noted above. It could be termed a d-c tester as it operates on the principle that with certain magnetic materials, magnetic retentivity is proportional to hardness.

In the method under discussion, the metal part to be tested is first placed in a coil and magnetized. Discharging a large bank of capacitors through the coil saturates the part magnetically so that results are consistent in this respect. The magnetic field created by the part is then measured with a flux gate magnetometer. There is generally no relative movement between the part and the magnetometer probe during the test.

Operating Principle

The unit described is called a second-harmonic flux gate magnetometer. The basic circuit is shown in Fig. 1. The cores are two identical high-permeability elements in the form of rods. The primary windings are wound directly on the individual cores and connected to a $2-\mathrm{kc}$ signal generator. The secondary winding is wound over both cores, and delivers voltage E_{s} having the frequency $2 f$, where f is the 2 -kc input. The output current I_{u}, derived from a phase-sensitive rectifier circuit in the amplifier, is measured by an

Flux Gate Magnetometer

By J. P. ISAACS
Norris-Thermador Corp
Los Angeles, Calif.
and
GEOFFREY GREY*
William Miller Instruments, Inc. Pasadena, Calif.

FIG. 2 -Probe construction details. Spacings and insulating techniques are critical
ammeter serving as a deviation indicator.

Under no-signal conditions (zero flux), the two voltages induced in the secondary are identical in magnitude and waveform and therefore balance each other. When a flux is present, the voltage waves become dissimilar and a voltage E_{s}, composed of even harmonics of the fundamental frequency f, appears at the input to the amplifier. This arrangement is sensitive to the direction of the flux since the phase of E_{s} reverses when the direction of the flux is reversed.

Construction of the special probe used for checking hardness of steel tubing is shown in Fig. 2 and 3. Each primary winding of the probe consists of 40 turns of No. 40 copper wire wound on small Permalloy laminations. These are laid side by side and connected in opposition. The secondary is a single 40 -turn winding laid over the primaries.

Operation

Whenever an external magnetic field is present, a second harmonic (4-kc) voltage is present at the secondary. This is coupled to the amplifier through a transformer and filter, the other even harmonics being rejected. This 4 -ke signal is amplified and applied to a ring demodulator using 1 N 40 diodes. The ring is also supplied with a 4 -kc reference signal through a second amplifier excited from a selectively filtered full-wave rectifier using two

[^9]

FIG. 3-Method of using probe for testing hardness of steel tubing

CK705 crystal diodes. A phaseshift circuit is provided in this second amplifier so that the phase relationship between the two currents applied to the ring demodulator can be adjusted.

In operation, the output of the demodulator is filtered and fed back, in the interests of linearity, to the probe by means of a 5,000-turn winding applied over the previous windings. This feedback current is polarized and its magnitude and direction are indicated on a zerocenter meter. The deflection of this meter is directly proportional to the intensity of the magnetic field of the metal sample being tested and hence to the hardness (except as noted previously).

To provide increased flexibility, an additional winding of 10,000 turns was placed over the previous windings (supported by the aluminum tubing in which the other windings are mounted). This winding is supplied from a regulated d-c source and a rheostat is connected in series to control the current.

In practice, the probe is inserted into the metal part being tested (a piece of special steel tubing) and the rheostat adjusted until the
field produced by the 10,000 -turn winding bucks out the external field and the deviation meter reads zero. The current through this coil is then read on the hardness indicator.

Applications

This method is particularly adaptable to checking the average hardness of tubing as it is easily magnetized and the probe can be placed inside. The lateral position of the probe is then not critical if the walls of the tubing are uniform.

Many other applications are possible as long as the object to be tested can be magnetized by convenient means and the magnetic retentivity is reproducible. In these cases, the position of the probe relative to the test piece may be much more critical than in the case of the tubing. As a practical matter, the hardness of steel test pieces must be above Rockwell C 40 if consistent results are to be obtained.

The flux gate magnetic hardness tester was developed in conjunction with William Miller Instruments, Inc., Pasadena, California, who now manufacture the probe. George Downs, formerly chief engineer with that organization, suggested the circuits and method.

-By ROGER E. WHITE
Roger White Electron Devices, Inc. Ramsey, New Jersey

Abstract

CUMMARY - Characteristics of traveling-wave tubes make them adaptable to many applications in radar and microwave systems as modulators, inixers and power-level limiters with increased circuit efficiency

TRaveling-Wave tubes are functionally broadband, high-gain, microwave amplifiers. However, their characteristics make them useful as receiver input r-f stages, transmitting tubes, modulators, mixers, limiters and oscillators.

A curve of gain versus frequency for a typical S-band amplifier tube is shown in Fig. 1A.

The magnitude of gain obtainable is primarily a function of beam current and tube length. However, leakage around coaxial connectors and stem leads place a practical limit on the usable gain obtainable. In low-noise designs, low gain is often desirable to extend the dynamic range of the tube, since dynamic range is determined by the ratio in db of saturation power to noise power, minus tube gain.

In high-power designs, excessive magnet power is required to focus the beam over the lengths
needed to obtain high gains. In addition, power tubes are operated at voltages above those required for synchronous velocity and the large reduction in velocity along the beam tends to limit gain. Both low-noise and high-power tubes are customarily designed at gains in the order of 20 to 25 db . Intermediate level tubes may provide gains as high as 45 db .

Bandwidth

To obtain gain, it is necessary that the signal velocity be matched to electron velocity, and if wide bandwidths are to be obtained, it is necessary that the signal velocity be the same at all frequencies. Velocity relationships, which are proportional to synchronizing voltage, of the tube of Fig. IA are shown in Fig. 1B. Increase in velocity at lower frequencies determines the lower frequency limit
of the gain curve. A second, more complicated, relationship causes the gain to fall as signal wavelength decreases in proportion to the helix diameter. This causes a fall-off in gain at higher frequencies. Careful design of these and other parameters will produce a gain-frequency characteristic as shown in Fig. 1A. Such a characteristic is desirable in r-f amplifier stages in receivers, in power amplifier stages for multichannel or tunable transmitters, in amplifying the output of signal generators and in increasing the sensitivity of measurements at low levels.

An increase in electron velocity obtained by increasing the accelerating voltage as indicated in Fig. 1B, will increase gain at low frequencies at the expense of gain at the high frequencies. This is known as operation in the dispersive region and a tube designed specifi-

FIG. 1-Typical traveling-wave tube characteristics show value of tube in wide variety of applications described in text

Traveling-wave tube with helix and electron gun assembly shown in foreground
cally for operation in this region as a voltage-tunable bandpass amplifier is known as a dispersive tube. In this type of operation, bandwidth may be restricted to values of 10 to 20 percent of the operating frequency.

Power Output

The power levels at which travel-ing-wave tubes can be designed to operate cover a span of over 80 db . Low-noise tubes rarely have a maximum power output greater than 1 mw . Power tubes producing greater than 100 kw are in development. Figure 1C shows the transfer characteristic of the tube previously discussed. The shape of this curve is illustrative of the general transfer characteristic of any travelingwave tube. A long linear range and a region of saturation is followed by a reduction in gain and power output. This characteristic makes the traveling-wave tube useful for a further group of applications since the saturation level may be set by the designer at any desired level.

The efficiency of the travelingwave tube varies widely with its function. A low-noise tube may deliberately be operated at 1 percent efficiency, or less, while in power tubes beam efficiencies of 30 percent are obtainable.

If a traveling-wave tube is used as a low-level r-f amplifier, the noise generated in the tube must be considered. Two characteristic types of noise-figure designs are compared in Fig. 1D.

Modulation

Gain of a traveling wave tube is a function of tube current, making it relatively easy to obtain ampli-
tude modulation. Some designs provide an element for that purpose. A typical grid-control characteristic is shown in Fig. 1E.

Total range of gain control available is from maximum gain to the cold loss of the tube, a range of 80 db or more. A third use of this characteristic is to provide a microwave pulsed signal of short duration. Rise and fall times approaching 1 millimicrosecond have been obtained in this fashion. Such a gate has a further advantage in that a klystron or other signal source may be operated $c-\cdots$ into the matched load of the travelingwave tube with no resultant frequency pulling of the klystron.

Since the transmission line in which the traveling-wave tube gain occurs is electrically very long, for example 40λ, a small change in the phase velocity can produce a sizable change in phase in the tube. This change in velocity can be accomplished by small variations in accelerating voltage. A typical characteristic is shown in Fig. 1F.

These characteristics make the traveling-wave tube an efficient modulator, since neither grid nor anode draw appreciable current. Single-sideband modulation can be produced by application of a sawtooth waveform to the accelerating anode. Such a waveform continually advances the phase, thus effectively shifting the frequency of the applied signal.

Limiter

If a traveling-wave tube whose saturation power level has been set at a desired power limit is used in a system, it becomes virtually impossible to exceed this level.

A traveling-wave tube preceding the crystal in a microwave receiver protects it from damage in both the operating and nonoperating conditions. The nonoperating protection results from the insertion loss of a nonoperating travelingwave tube and is usually greater than 40 db .

Mixing

When two signals are applied simultaneously to a traveling-wave tube, several intermodulation components appear. When the tube is operating well below saturation, these components are at a low level, They are usually outside the frequency band of the tube and are further reduced in the coupling circuits. However, when the combined signal power is sufficient to drive the tube to saturation, the amplitudes of these components increase markedly, By appropriate design, tubes have been produced which function as r-f mixers. It is expected that further development of this technique will produce microwave mixes in which the local oscillator will be isolated from the antenna circuit by as much as 60 db of attenuation, the entire mixer will be essentially as broadband as normal traveling-wave tubes and it is expected that conversion gains can be realized.

It is relatively simple to use the traveling-wave tube in an oscillator circuit, if a small portion of the output power is fed back into the input of the tube. If a highly selective network such as a high-Q cavity, is placed in the feedback network, the frequency of oscillation will be determined by the cavity resonant frequency.

FIG. 1-Automatic triggered sweep circuit as used in Hycon model 622 oscilloscope, with conveniional unmodified stages of

Signal-Triggered Sweep

> CUMMARY - Automatic sweep control circuit for cathode-ray oscilloscope initiates horizontal sweep cycle for each pulse edge at vertical input terminals. Signal pulse display may then be expanded as desired by increasing sweep frequency, independently of pulse input frequency

AUTOMATIC triggered sweep provides a recurrent waveform when no signal is applied to a cathode-ray oscilloscope, serving to establish a reference base line of the desired frequency and intensity. In the presence of vertical deflecting signals, the sweep circuitry assumes a monostable condition, responding thereafter to triggering signals derived from the display channel or applied from a related external source.

An oscilloscope circuit incorporating this sweep feature is shown in Fig. 1. In the absence of signal, automatic sweep relay tube $V_{3 B}$ is conducting and a relay closes the return circuit through R_{4}. The latter is internally adjusted to bias unsymmetrical multivibrator V_{5} to an astable or recurrent mode. The period of the multivibrator is determined by selecting C_{18} or C_{0} through C_{17}. Sweep range switch S_{3} simultaneously selects the appropriate sawtooth-forming capacitor C_{8} or C_{3} through $C_{\text {. }}$. Pentode $V_{\text {ов }}$ is held cut off by the gate supplied from the plate of $V_{\text {亏د }}$ through R_{5}. When the gate dura-

By RUDOLPH L. KUEHN

Ghief Development Enfoineer
Electronic Tes. Equipment Division Hycon Manuacturing Co. Pasadera, Califormia
tion is terminated, $V_{\text {св }}$ conducts, discharging the sawtooth-forming capacitor and thus creating the retrace or flyback time.

A signal present at the vertical input terminals of the oscilloscope passes through a compensated attenuator to first vertical amplifier V_{1}. From there it progresses to second vertical amplifier $V_{2 A}$ and cathode follower $V_{2 B}$. The path to the vertical deflection plates of the cathode-ray tube continues from the cathode of $V_{2 B}$.

Tapped down on the cathode of $V_{2 B}$, a $0.1-\mu \mathrm{f}$ capacitor connects the vertical input signal through syncSWEEP selector switch S_{2} to the grid of first sync amplifier $V_{3.4}$. The fre-quency-compensated plate circuit of V_{3} is connected through a $0.1-\mu \mathrm{f}$ capacitor to the grid of sync phase splitter $V_{\text {si }}$.

At the same time, the uncompensated portion of the signal is taken
from the plate circuit of V_{31} to AUTO SWEEP detector D_{1}. The latter, a germanium diode, develops a negative voltage across C_{1} which is further filtered by R_{1} and C_{2}.

The presence of signal in the vertical amplifier channel thus results in a negative bias being developed at the grid of $V_{\text {зв }}$, the Auto SWEEP relay tube. With such bias present the tube current falls sufficently to make the relay drop out. In this condition the sweep gate generator return circuit is transferred to a 200 K preset control which is adjusted to keep $V_{\overline{5}}$ cut off or in a monostable condition. The operator function of readjusting a front-panel sweep stability or sweep sensitivity control is then eliminated by the circuit action just described.

To trigger gate generator V_{5}, now in a monostable mode, it is merely necessary to advance the single control R_{2} in the desired polarity direction. The voltage, originating from the vertical channel, is applied through switch contacts of sweep range selector S_{3} to the grid of $V_{4 B}$. From the com-

scope circuit omitted for simplicity. Recurrent sweep is provided in absence of vertical signal to avoid burning screen

Magnifies Pulse Widths

pensated plate circuit of $V_{4 B}$ negative triggering pulses are applied to the gate generator through disconnect diode D_{3} to complete the process.

The action of antomatic sweep restoration is such that effertiveness has been measured with frac-tional-microsecond pulse widths at duty cycles as low as 0.2 percent.

If the phenomenon to be observed is nonrecurrent and has too low an energy content to actuate the mode transfer of the sweep circuits, part of the waveform at the start of the trace may be missed or a stationary pattern may not be achieved. For such situations, front-panel auto SWEEP switch S_{4} may be set to OFF. This places a fixed negative bias
on the relay tube which keeps the gate generator permanently in a cut-off condition and ready for triggering.

The sync amplifiers are compensated in order that sufficient triggering voltage may be available to operate the instrument in the intended fashion with sine waves as high in frequency as 5 mc . Past this point the AUTO SWEEP will not switch to triggered mode, but stationary patterns are still obtained because the gate generator will synchronize when running recurrently. The vertical amplifier is down not more than 3 db at the $6-\mathrm{mc}$ point.

The reference trace frequency is nominally the same as that of the
triggered sweep. It is this unusual condition which allows synchronization of high-frequency sine waves which otherwise cannot actuate the automatic circuitry.

The power supplies of the instrument are electronically regulated, resulting in trace fluctuation immunity under varying line voltages and surges. A total of 3,000 voits between the cathode-ray tube gun and post-accelerator ensures adequate brightness even for P7 and P11 phosphors. The horizontal amplifier is balanced and d-c coupled, providing left-hand edge clamping of the trace. The cathode-ray tube unblanking voltage is also clamped, resulting in uniform beam intensity at low-frequency sweeps.

Oscilloscope incorporating triggered sweep

Comparison of triggered or driven sweep with synchronized free-running sweep

Permanent-Writing

CUMMARY - Inertialess electron-beam recorder for writing directly on high-sensitivity electrographic paper uses 26 in-line targets swept by the beam of a modified cathode-ray tube. Targets are connected to external styli across which paper is pulled. System is unaffected by vibration

IN THE RECORDING system to be described, a virtually inertialess electron beam serves as the writing element for producing permanent markings on electrographic paper. The recorder resembles a modified cathode-ray tube, as shown in Fig. 1. At the upper end of the tube, coplanar closely spaced targets are sealed into the face of the tube, with the external pojtions serving as styli. Electrosensitive paper is drawn over the styli at constant speed in a direction perpendicular to the plane of the styli.

Spring back-up fingers press the paper against the styli and serve as electrodes.

In operation, the signal to be recorded is used to deflect the electron beam in the plane of the elements. As the beam strikes each target in turn, the beam current passes through the face of the tube to the corresponding stylus. By the application of suitable potentials between the spring fingers and the cathode of the electron gun, this current is made to pass through the electrosensitive paper and pro-
duce a mark. The recording thus consists of a series of dashes, a continuous line through which constitutes a reasonable facsimile of the incoming signal.

A typical example of such a recording is shown in Fig. 2A, where a set of dashes may be seen, one for each stylus. The pattern is easily recognized as a sine wave.

Tube Construction

To simplify fabrication of the tube, the required number of targets is sealed into a press stem

FIG. l-Original concept of recorder tube, as shown by front and sice views in patent application. Recording paper is pulled across face of tube by drive mechanism

Unmounted direct-writing eathode-ray rube and completely assembled recording system incorporating this tube

Cathode-Ray Recorder

By LOUIS N. HEYNICK, ROBERTJ. WOHL and DAVIDH. ANDREWS
U. S. Naval Material Laboralory Brooklyn, New York

mounted in place of the face. Since level recording was the primary application, 26 styli were uniformly spaced in a 2 -inch row to give a range of 50 db in $2-\mathrm{db}$ steps.
The tube styli can be used directly for writing, but it is usually more convenient to connect a set of external styli to the tube pins with a cable and plug. Deposition of a layer of phosphor on the glass areas adjacent to the targets aids in locating, centering and focusing the electron beam.

An electrographic paper developed recently by Naval Research Laboratory, having about 30 times the sensitivity of the best commercial papers available, yielded writing with the available beam current of the tube. However, the special paper required platinum styli held at a positive potential relative to the spring fingers. Electron flow was the refore in the direction opposite to that of the electron beam.

To provide a platinum writing surface, a piece of $20-\mathrm{mil}$ platinum wire was bent into a U-shape and welded over each nickel stylus of the tube. The secondary electron yield from the targets proved sufficient to override the $0.5-\mathrm{ma}$ primary beam and give the required reverse current.

Performance of System

Based on deflection over all 26 targets, sine-wave response is 11 cps, square-wave response is 500 cps and linear writing speed is 80 inches per second. The system limitation is the necessity for delivering sufficient charge to each stylus being swept by the signal to produce visible marking of the paper. For square waves, the beam need stay only on the initial and final targets about one millisecond, whereas for sine waves the beam must dwell on each intermediate target for at least this time interval. The sine-wave response limit is in-
versely proportional to the number of targets swept, whereas the square-wave response is independent of the number of targets swept.

The sine-wave response limit was verified at paper speeds of 25 and 125 mm per second, but at 5 mm per second the individual cycles of the input frequency merged into a continuous set of lines as shown in Fig. 2B. When the frequency is

FIG. 2-Examples of traces obtained
raised at this slow paper speed, the individual cycles become more closely spaced as in Fig. 2C and merge at around 11 cps . Each paper area under a given stylus then receives the charge from more than one beam traverse over the corresponding target before it leaves the stylus. Under these conditions the delivered charge is independent of frequency. As frequency goes up, the shorter dwell time of each beam traverse is compensated for by the corresponding increase in the number of traverses.

The linear writing speed of the cathode-ray recorder is only about one-fifth that of the best commercial recorders. It has only 4 -percent resolution, while that of commercial instruments is 2 percent. On the other hand, the square-wave response limit is about 5 times the
upper limit of commercial recorders.

Larger writing currents can be obtained by using electron guns of greater current capabilities or by enhancing the secondary emission, or both. The frequency response will go up in direct proportion to the increase in writing current.

Other Applications

An in-line target tube may be used as a pulse-height analyzer, the voltage discrimination of which is fixed by the number of targets. Fast counters may be employed on selected pins to determine the incidence of the corresponding levels.

Another related application is as an analog-to-digital converter, wherein any arbitrary function may be chopped into its decimal equivalents. A third application is as a function transducer and recorder. External pins may be connected to the tube styli and spaced logarithmically or in any other manner along the width of the paper.

Acknowledgment is made to L. D. Chirillo of Boston Naval Shipyard for the original conception of this type of direct recorder tube, to Naval Research Laboratory for furnishing samples of their electrosensitive paper, to S. M. Sterling and J. P. Attard of the Electron Physics Section of the Material Laboratory for fabrication of the recorder tube, and to R. Winfield and N. Burton of the Cathode Ray, Storage and Phototube Section of the Material Laboratory for evaluation of the system.

The opinions or assertions herein are those of the authors and are not to be construed as reflecting the views of the Department of the Navy or the Naval Service at large.

Bibliography

R. B. Loucks, High-Speed Direct-Trace Recording Methods, Instruments, p 30 , Jin1. 1951

Balanced-Capacitance

> CUMMARY - Fence surrounding power plant, radar station or atomic energy installation is protected automatically against intrusion, minimizing size of costly four-shift guard patrols, by fail-safe electronic system that detects movement of person up to 7 feet away from antenna wires

T0 SUPPlement the protection provided by barbed-wire fences around electric power generating plants and substations, an electronic system was devised that set off an alarm when anyone approached or touched the barbed wire. This alarm system was so fool-proof that even if the details of its operation were known, it could not be penetrated.

The field of protection even extends into the ground below the fence to some extent, depending on soil conductivity, to detect anyone attempting to tunnel under.

The system corrects for capacitance changes automatically to correct for drift due to changing weather conditions, but at a sufficiently slow rate that it is practically impossible to penetrate by crawling slowly toward the fence antenna. Close to the fence, the slightest movement of a person's body trips the alarm. System sensitivity remains constant at all

By GLENN H: BROWNING

Chairman of the Board
Browning Laboratories, Inc.
ivinchester, Mass.
times, despite changes in antenna capacitance. Changes in antenna loss due to growth of weeds, rain on the wood antenna posts or damp insulation are of no consequence unless extreme, because two separate antennas are used and are connected to oscillators rather than to a tuned receiving circuit whose selectivity depends directly on antenna losses.

Design Experiments

A beat-frequency oscillator system was decided on because of the electrical leverage obtainable when employing beats between harmonics of the oscillators. An unbalanced system of wires was constructed outside the fence and capacitance measurements made at about 100
kc. It was found that capacitance changes of $50 \mu \mu \mathrm{f}$ in a total of 2,000 $\mu \mu \mathrm{f}$ took place at sundown too rapidly to compensate for and still make the alarm effective.

A balanced system of wires extending in either direction from the end equipment was then tried. Measurements showed that the differential capacitance change was only a fraction of a $\mu \mu \mathrm{f}$ in 5,000 $\mu \mu \mathrm{f}$. Inductive interference did not affect the end equipment when the oscillator frequency was in the 50 to 150 kc range.

Practical System

The final design, shown in Fig. 1, employs two oscillators, with the lines along the fence serving as part of the tuning capacitance of each oscillator. A mixer produces beats between the harmonics of the two oscillators. A frequency-selective network in the low audio range provides d-c voltages which are used as a bias for sharp-cutoff relay

FIG. 1--Elements of complete electrostatic intrusion alarm

FIG. 2-Curves used for slow differential corrective system

FENCE ALARM SYSTEM

Front view of control unit, showing tuning dials, funing ineter and phone jack

Typical panel used at guard station
circuit requires an additional alarm tube and associated relay.

The method employed for differential correction, shown in Fig. 3 , uses a variable capacitor connected to one oscillator and driven by a reversible Telechron motor which in turn receives its power from four thyratrons. Two of these thyratrons get their control bias from diodes which are adjustable so that compensation can be started at a desired point. The other two thyratrons are connected inverted and fired by a network from the control thyratron, thus operating the motor. One thyratron of the type used had insufficient power to drive the motor.

Adjustable controls permit setting the operating point as well as the high alarm, high compensation and low compensation at the required point on the selective curve shown in Fig. 2.

An alarm must be given should any tube or component in the end equipment fail. Thus, the low-alarm relay is energized under normal operation and drops out when in alarm condition. The filament of the highalarm thyration is placed in series with the 6N7 low-alarm tube so that the low-alarm relay will drop out should the high alarm be inactive.

With a two-wire antenna system

FIG. 3-Complete control circuits of Browning model BL-300 alarm signal system. Power supply is conventional
using insulated wires 2 and 4 feet from the ground on metal supports close to the barbed wire fence, false alarms were common. The capacitance of the antennas was changed by the wind swaying the barbed wire. Rain changed the capacitance materially. Rain drops would collect on the antenna wires and when a gust of wind blew them off, a false alarm resulted. The rain also changed the capacitance to the metal arms supporting the antennas.

When the antennas were placed about 3 feet from the fence, the trouble from the wind on the fence was eliminated and the apparent sensitivity was greatly increased. With $1-\mu \mu \mathrm{f}$ equipment sensitivity, the detection range of a person was about 1 foot when the antennas were close to the fence, but with the antennas 3 feet from the fence a person was detected about 4 feet away.

Changing to a powdered mica insulating covering for the antenna

FIG. 4-Example of antenna system and lead-in for woven-wire fence
wire allowed practically no moisture droplets to collect, but rain still gave false alarms. When porcelain insulators on wooden arms were used to support the antenna wires, the trouble with rain disappeared.

The final antenna layout is shown in Fig. 4. It consists of a threewire system. The lower wire is 18 inches from the ground, the second is 2 feet and the third is about 6 inches below the top of the fence. Detection range is up to 7 feet, depending on the sensitivity setting. Each control unit covers 500 linear feet (250 feet each half) and is on guard night and day, reducing manpower requirements for guards to a minimum. So far as is known, this system has never been penetrated without sounding an alarm.
The system is essentially insusceptible to external jamming, as the selective circuit is well isolated from the antenna circuit. Plug-in selective circuits of different operating frequencies could be used for even greater difficulty in jamming, by giving three unknowns--the two harmonics and the frequency of the selective circuit.

Telemetering

Electronic Data Transmission

By ALEXANDER A. McKENZIE Associafe Editor

An

and HAIG A. MANOOGIAN Assistant Editor

TRANSMISSION of information, or data, plays an increasingly important role in man's conquest of his environment. The development of means for transmitting data is as significant to modern technology as was the formulation of spoken, or written, language to earlier progress.

The summary represented by this Special Report describes a number of the more frequently used techniques for transmitting data from one place to a distant point. There are others that cannot be treated here and there are techniques as yet unexploited.

The measurements of science and the control of many industrial processes depend largely upon meter readings. It is natural that the reading of meters at a distance has become known as telemetering. In a broad sense, telemetering, or data transmission, includes not only meter readings but also comparable intelligence. Sometimes, for example, it is more profitable to study the integration of a series of meter readings that have been printed upon a moving chart or photographed in sequential steps upon a film.

Keeping this survey within reasonable confines required that limits be set. Telemetering is generally defined as the indicating, recording or integrating of a quantity at a distance by electrical translating means. The main emphasis here is upon electronic data transmission. Examples are drawn from many branches of electronics, but communications, remote control and automation as such are not the subject of discussion

AFTER TAKE-OFF

REGULUS guided missile shown at right (and on the front cover of the April 1956 issue of ELECTRONICS) was developed by Chance Vought Aircraft, Inc., under sponsorship of Navy Bureau of Aeronautics. It may be launched from submarines, surface ships and shore bases. Many of these missiles equipped with tricycle landing gear and parachute-type brake have been recovered and used for further data gathering flights

Systems Development

Telemetering systems have grown with need. An early application,

 over existing wires, aided in the distribution of electric power. Later,
scientific exploration of the atmosphere made radio transmission

necessary. Today, the demands of business, industry and defense

make telemetering of many kinds mandatory

Patents issued in 1885 in the United States described electrical telemetering systems. It was not until 1912, however, that a Chicago public utility installed a system that was employed to aid in load dispatching.

In the years since, power-line telemetering systems have become available in standard packages. Equipment used for the measurement and control of temperature has likewise become available. There are, as well, commercial systems for measurement of fluid flow and many other parameters.
In the mid-thirties, particularly with increased use of radio frequencies above 50 mc , great interest developed in exploring and investigating phenomena of the upper atmosphere. Weather and cosmic ray data began to be accumulated using balloon-supported radio transmitters. This interest resulted from the findings of the Second International Polar Year, 1932-33. Plans for the International Geoplysical Year (IGY) call for further sounding the nature of the atmosphere and the region above it during 1957-58.
During the early forties, there was accelerated interest in systems for broadcasting position data, particularly to military ships and aircraft. Detection systems, such as radar and sonar, that would give evidence of enemy presence were in demand.
Automatic control of antiaircraft armament brought a further need for data that was answered to some extent by iff (identification, friend or foe) equipment that kept most friendly planes from being shot down.
The war that had spurred these interests came to an end before the Germans could produce and launch any quantity of guided missiles in which they had specialized their research. United States forces used some remotely controlled drones loaded with explosives, as well as devices equipped with television transmitters.

As a result of continued research the art of hurling equipment high into the atmosphere has now reached a point at which it is possible to envision the use of an intercontinental ballistics missile (ICBM). Telcmetering equipment to test such a missile is shown on the cover of this Special Report.
The need to know what is lappening to a missile under test has opened a whole new field of telemetering. Because of the tremendous activity here, standards were set up for
certain aspects of missile telemetcring. While these standards (reproduced here) have been outgrown, they are still used where possible.

The ficld of telemetering is growing. During 1957-58 some dozen earth satellites will be separately launched by the United States. Each one is expected to circle the earth about once every 90 minutes and remain in orbit a matter of days or wecks. New telemetering devices will turn on the satellite transmitter bricfly while it sends down scientific data from overhead.

System Principles. Although data transmission systems arc gencrally complex, they can often be divided into simpler component parts. The development of an industrial or power-line type of telemetcring system is shown

Table I-Teleprinter Codes

FIG. 1-Development of time-division and frequency-division telemetering systems. Means of computing power at a distance using wire line, radio or carrier is shown
in Fig. 1. At (A) is shown a battery and load. The voltmeter, whether it be viewed at the load or some distance away (assuming the resistance of the linc be compensated) reads the potential across the resistance.

If a resistor is placed in series with the varialble load, as at (B), there is means for determining the power absorbed in the load through measurement of voltage and current. The resistors in serics with the milliammeter allow compensation for line resistance.

Although it is necessary to have someone throw the switch from V to A according to a prearranged plan in order to meter at a distance, this is not so if the sampling system at (C) is used. Assuming a conventional a-c power line, the switching is automatic. (Such syuchronization is common in other telemetering systems like facsimile and teleprinting.) Dwell tine of the relay contacts must be considered in adiusting the meter resistors.

A carrier-current can be superimposed upon the connecting line, or a radio circuit can be used to tic together the transmitting and receiving locations. At (D) is shown a simplified reactance oscillator, the frequency of which is varied by the input d-c. Voltage and current indications at the receiver are given by frequency-sensitive devices that sample the output of the discriminator.

The system shown in Fig. 1E operates on a frequancy multiplex basis without sampling. Here two separate reactance oscillators are controlled over an adeguate frequency band and then output signals are conbined in a radio or carrier transmitter. At the receiver, filtered signals from the output pass separately through diseriminators to indicating meters.

Simple System. The distance between transmitter and
receiver need not be great to qualify a telemetering system.
An example is the devicc shown in Fig. 2. It comprises a couple of bimetal units, onc of which opens a normally closed electrical contact. The other controls the position of a pointer.
The measuring element can be moved, as by float in a tank of liquid, and it then controls the length of time that the contact is maintained. The longer the receiver bimetal is heated the higher the pointer rises on the scale. Thermal incria bucks out sudden fluctuations, as might occur in the gasoline tank of a moving vehicle.

Radiosondes. Although balloon-supported radiometcorographis werc used in sereral countrics prior to 1930, significant American developments stem from the mid thirties. The radiosonde, as it became known, was arrived at through necessity. During periods of worst wather when meteorological information is most desired it is unfeasible to fly kites or send aircraft aloft. Probably more thousands of weather telcmeters have been mamufactured and used than any other one data transmitting cquipment.
American radiosoncles in present usc employ a sampling system to send back datai. An carly type used the Olland principle that gave a weighted sample unlike the signal from a simple commutator device. As shown in Fig. 3 , the metcorograph elements comprise a hair hugrometer, bimetallic thermometer and aneroid cell. To thesc are attached contact arms that bear upon the surface of a disk rotated bv clockwork. A reference mark gives a fixed time mark against which the other elemonts are measured, because the clockwork is affected by temperaturc. An idealized chart is shown at the right indicating changes in pressure, temperature and relative humidity:

The circuit used in developmental models built at Bluc Hill Observatory employed an oscillator that sent ont impulses of modulated carrier when the meteorograph made contact. Modulated plate voltage was provided by a buzzer transformer. Carrier frequency was near 60 mc . Output from a super-regenerative recciver was connceted to a magnetically operated pen bearing against a rotating drum to which the chart was fastened. A modern version of the radiosonde is described in the section on commutation, where it is used to illustrate a means for plotting one function against another.

Cosmic Ray Counting. The dircetion of arrival of cosmic lavs upon the surface of the carth depends upon geomagnetism. The number of particles increases with elevation above sea level. Because these facts were known only qualitatively around 1935, a few investigators began a program of balloon ascensions. These experiments have

FIG. 2-Simple telemeter that depends upon the heating of bimetallic strips. Position of the movable arm determines height on scale to which pointer will rise
been supplemented since the war by telemetering rockets and will be further pursued during the International Geophysical Year.

One model of cosmic-ray sounding equipment used successfully cluring 1936 and 1937 employed an escapement switch. Two linds of information were time-multiplexed: altitude and the number of vertical cosmic rays. The escapenent allowed the equipment to fall gradually away from the balloons that carried it aloft.

Elements of Telemetering. The essential portions of a datal transmission system include a transducer, sometimes called a pickup, or sensing device, to change some other form of cncrgy into elcctrical energy, a transmission or signaling system and a recciver with an output transducer or recorder

If it is desired to transmit information from a number of pickups, there are two possible ways to perform the function. Either more simultancous channels of transmission must be provided or data from a number of pickups must be sampled in sequence and properly identified at the receiver. Sometimes both mothods are used at once.

A number of present and proposed telemetering svstems are indicated in the dot chart, Table II.

Military Applications. Missile data transmission systems during the war were gencrally confined to guidance functions. The only German system known to have seen service is thic Strassberg-Kehl command link.

Shown in Fig. 4 is tine modulated data transmitter (A) into which two pairs of audio frequencies are fed through the control that is actuated like the joystick of an airplanc. With the control in a neutral position, a rotating commutator fecds equal periods of each frequency through movable brushes to the modulator.

Moving the control in any direction causes one frequency in either or both of the low and high-frequency oscillator pairs to proclominate. This effect is illustrated in (B) where the normal and downward signals of the up-down channel are blocked out on the basis of time. In the downward position, the $1-\mathrm{kc}$ signal predominates.

In a guided aircraft equipped with the receiving devices shown in (C) the control surfaces are continually vibrating. Change occurs when the control is caused to spend more time on one side than the other of its neutral position.

Since the commutator at the transmitter rotates at 5 rps, it sends out alternate $1 / 10$-sccond pulses from each half of each pair of oscillators.

Other Telemeters. Many types of telemeters have similarities to those already described. Some of them are data systems-others fringe upon control as well, such as chart recorders in which the off-zero position of an associated potentiometer can supply a control voltage.

Another type of telcmeter equipment is the teletypewriter, for which codes are shown in Table I. Although teleprinter equipment used for communications is standardized, its output can be encoded and its input signal decoded.

The teleprinter has been used as a computer output device. Although it is customarily equipped with letters and numbers, these may be essentially meaningless in ccrtain telemetering applications in which provision of a different kevboard and type kevs convert impulses to symbols. This, in fact, is true for weather map symbols.

Propagation-affected Data. A data transmission system

Table II-Applications of Telemetering

BUSINESS	now	future
Accounting		\bigcirc
Branch tie-in.		\bigcirc
Burglar alarms.		\bigcirc
Fire alarms.		\bigcirc
Inventory control.		-
Space-reservation.		
Stock ticker.		
Telautograph.		
Teleprinter.	-	

COMMUNICATIONS

Automatic teleprinter correction.
Broadcast remote control.........
Telecasting remote control......
Wire data circuits................

INDUSTRIAL

Data for automatic control....	
Fluid depth measurement.	
Measuring gas flow.............	
Pipe-line control.	
Rainfall reporting.	
Reading gages by tv	

MILITARY	
Battleground television.	\bigcirc
Doppler devices.	-
ICBM.	-
Personnel data.	-
Radioactive monitoring.	-
SAGE.	-
Search-Rescue operations.	\bigcirc
Sonobuov.	
Target drone aircraft	
TV-guided missiles	-
Ultrafax.	\bigcirc
Underwater detection nets	\bigcirc

RESEARCH

Aircraft design.	
Flight testing	
Landing on planets.	\bigcirc
Medical research.	
Missiles.	
Navigation-data sendback .	O
Nuclear experimentation.	
Projectiles.	
Radiosondes.	
Satellites. .	

TRANSPORTATION

Automatic flight plans.
0
Automatic railroading.

Hyperbolic navigation.
Radar speed detection.
Radar traffic detection
Rho-theta navigation.
Train identification.

FIG. 3-Elements of a radiosonde based upon the Olland sampling principle. Relative displacement of elements is shown by a series of short dashes on moving chart paper at ground station
that receives increasingly wider use is one in which the finite delays in the propagation of radio waves from a pair of suitably synchronized radio transmitters is used to plot a line of position. Two properly disposed pairs of transmitters provide a fix. A fix can likewise be obtained from so-called rho-theta systems, but usually the distance between master and slave transmitters would be less than 200 miles.

A simplified hyperbolic line of position intersecting a sccond is shown in Fig. 5A. Such a diagram is basic to navigation data systems like Gce, loran, Lorac, Raydist and Decca. It suggests possibilities of moderately longrange missile guidance in which a single line of position is used to take the missile to its target where it is dumbed. either by impuise from an intersecting line or by some other means.

Relayed Fixes. Of peacetime interest for purposes of sea rescue is the automatic relay of hyperbolic data. Equipment requires only the operation of a switch by any occupant of a lifeboat. Lime-of-position data that wonld ordinarily be read off by a navigator can be used to modulate a pulse transmitter. These pulses, together with other identifying codes, would be picked up at one or more receiving stations.
Only one line of position is shown in Fig. 513 for simplicity. In actuality, pulse signals giving linc-of-position data from two pairs of navigation-adid stations would be alternated. Such information would be much more exact and definite than the bcarings of even the best conventional direction-finding equipment. At least one relayed-fix system of this general type is under devclopment in the guided missile progran.

FiG. 5—Data transmission in position-finding system often depends upon time of propagation. A standard hyberbolic fix from two pairs of transmitters is shown at (A). A relayed line of position comes from the lifeboat at (B)

FIG. 4-Strassberg-Kehl command (left) was used by the Germans for remote radio guidance of missiles. Employing two pairs of audio tones, it vibrates control surfaces more to one side than to the other for guidance

Input Transducers

Transducers, or pickups, are important links in a telemetering
chain. These devices transform the energy of the measurand -
the physical quantity, property or condition to be measured -
into another form of energy such as an electrical current or voltage

In choosing a transducer for a particular application, factors such as hysteresis error, resolution, frequency response, sensitivity, calibration, repeatability and compatibility are considered.

Compatibility of a transducer must be considered from two aspects, mechanical and electrical. Mechanical compatibility encompasses enviromnental conditions such as vibration, temperature, pressure, atmospherc, space limitations and monnting arrangements.

Electrical Compatibility. If a commercial telemetering system is to be used, the transducers must be electrically compatible with the other equipment of the svstem. In conventional frequency-division-multiplex systems, the f-m subcarrier oscillators may be modulated in any of three ways, as variable-voltage, variable-resistance or variableinductance controlled oscillators.

Most voltage-controlled f-m subcarrier oscillators have been standardized to produce a ± 7.5-ke subcarrier frequency deviation from an input of 0 to 5 volts.

Mannfacturers of time-division-multiplex svstems have adopted both a 0 to $5-\mathrm{v}$ and a 0 to $5-\mathrm{mv}$ standard. The 0 to 5 -v standard was recommended for piom telemetering by the Research and Development Board.

Consideration must be given to transducer sensitivity. In an $\mathrm{f}-\mathrm{m}$ multiplexing system, excessive transducer output can cause the associated subcarrier oscillator to be driven into all adjacent chamel, thereby causing interference. 'Iransducer sensitivity is consequently not higher
than actually needed for an application.
Resistive Transducers. Potentiometer, strain gage and nommechanical-resistance-variation devices are three major types of resistive transducers.

In the potentionncter type, a change in resistance is obtained by causing a linear or rolary motion to displace the wiper arn. In most applications, the potentiometer is connected across the voltage source, as slown in Fig. 6, and the variable output voltage used directly to modulate an a-m or $\mathrm{f}-\mathrm{m}$ subcarricr oscillator. It is also connected as a rheostat in the frequency-determining circuit of an oscillator, providing an $\mathrm{f}-\mathrm{m}$ subcarrier signal.

Onc of the potentiometer transducer's advantages is the comparatively high output voltage available, depending on the voltage source, making it possible to reduce or eliminate subsequent amplification and accompanying deficiencies. Other favorable factors are that precision devices will provide readings in voltage ratio versus measurand with errors of the order of tenths of a percent; wear, of the order of a million cycles, will cause little change in the initial error. If the supply voltage is transmitted as a reference, output accuracy is not alfected by changes in supply voltage or temperature since the output is in the form of a ratio.

Limitations. Accuracy of these devices is limited by geometric precision and improves with the lengtl of the wound element. Sensitivity or resolution of a potentiom-

FIG. 6-Typical potentiometer-transducer circuitry. Dashed-line components may be added as needed

FIG. 7-Unbonded strain-gage pressure transducer has diaphragm mechanically coupled to movable armature. Pressure variations cause armature to move and change tension of wire filaments. Typical circuit is shown at right; source voltage can be a-c or d-c

Table III-Characteristics of Accelerometers

	Potentiometer	Variable Reluctance	Differential Transformer	Piezoelectric	Variable Capacitance	Strain Gage	EMF Generating
Acceleration Amplitude ($1 / \mathrm{sec}$)	1 to 50	1 to 200	\mathbf{l} to 200	0.1 to 30,000	1 to 200	1 to 1,000	up to 100
Highest Resonant Frequency (cps)	90	500	500	80,000	50,000	2,000	5
Useful Freq Range	0 to 50	0 to 350	0 to 350	3 to 25,000	0 to 25,000	0 to 1,500	5 to 2,000
Self-Generating	no	no	no	yes	no	no	yes
Damping	magnetic fluid	fluid	magnetic fluid	none fluid	none	fluid	magnetic
Excitation	d-c carrier	carrier	carrier	none	carrier	$\mathrm{d}-\mathrm{c}$ carrier	none
Output Inpedance	10,000 ohms resistive	1,000 ohms inductive	200 ohms resistive	$1,000 \mu \mu f$ capacitive	$50 \mu \mu \mathrm{f}$ capacitive	600 ohms resistive	200 ohms resistive
Accessories	none	bridge	carrier	cathode follower	bridge	bridge	none
Upper Temp Range (without coolant)	350 F	350 F	350 F	500 F	500 F	250 F	500 F
Resolution	$1 / 2$ percent	limited only by design					
Accuracy	1 percent full-scale	1 percent full-scale	1 percent full-scale	1 percent full-scale	3 percent actual reading	1 percent full-scale	1 percent full-scale

eter is inversely proportional to the number of turns on the resistive clement. Present techniques permit wiping as many as 1,500 turns, which is equivalent to a resolution of 0.067 percent. Another limitation is imposed by the frequency of the potentiometer wiper motion. Above approximately 10 cps , the wiper tends to bounce on the clement surface.

Potentiometcr transducers as shown in the photographs are often used to measure pressurc and accelcration. The measurement of the accelerating force is obtaincel as a resistance or voltage ratio by laving a spring-supported, magnetically or fluid damped mass move the wiper ann of the potentiometer in direct proportion to the value of acceleration. The characteristics of such accelerometers arc shown in Table III.

Wire-Strain Gages. Probably the second most widely used type of resistive transducer is the resistance-vire strain gage. Operation of this device is based on the change of electrical resistance that occurs when the wires constituting a gage are stretched.

Bonded gages are made in thic form of a continuous resistance-wire grid cemented to a carrier shace. The carrier transfers strain to the wire through the cement. Gages are available with resistance values of 60 to 5,000 ohms. The basic gage has a resistance of about 120 ohms, which is large compared to the resistance of lead wires and switch contacts. Bonded gages are commonly applied to test structures for the measurement of stress-strain, torque and deflection.

The unbonded gage in its basic form is a displacement transducer. In the conter of a stationary frame an armature is supported rigidly in the plane perpendicular to the longitudinal axis in such wav as to allow free movement along this axis. Wound between rigid pins mounted in the frame and armature are four windings of strain-sensitive resistance wire which comprise the four elements of a Wheatstone bridge, as shown in Fig. 7 .

As the armature is causcd to move longitudinally by an cxtcrial force, two sets of filaments are elongated and increase in resistance, while the other two sets shorten and decrease in resistance. The resistance clange of the filaments alters the electrical balance of the bridge to produce an electric signal in the output circuit. When a bellows or diaphragn is attached to the linkage of the unbonded displacement transduccr, the element becomes a pressure transducer. The basic element becomes an acceleration transducer when a mass is attached to the armature.

Unbonded gages have nominal bridge resistance of from 50 to 15,000 ohms. With 5 to 200 volts $\mathrm{d}-\mathrm{c}$ or a-c input, they supply full-range open-circuit voltages from 10 millivolts to 1 volt and full-range currents of 30 to 400 microampercs. Unbonded gages are available which have an accuracy of 0.25 percent of full scale.

The stepless character of the output of bonded or unbonded gages makes their ultimate resolution limited only by thie characteristics of the associated equipment.

Both bonded and unbonded gages may be used with cither d-e or a-c bridge circuits. An a-m subcarrier may be obtained clirectly by exciting the bridge with the subcar-
rier frequency. The briclge output may also be used to modulate an $a-m$ or f-m subcarier oscillator.

Temperature and Voltage-Sensitive Materials. Nonmechan-ical-resistance-variation devices include temperature-sensitive and voltage-sensitive materials. 'Temperature-sensitive materials are usually of two types-pure metals which normally have linear temperature-resistivity characteristics and semiconductors, which have nonlincar temperature-resistivity characteristics.

These materials are usually used as an arm or arms of a bridge circuit and the bridge used as previously mentioned. Where the resistance change is sufficient, thev can also be used as the frequency-determining components of phasesliift or blocking oscillators.

Typical of the pure-metals are platinum, tungsten, nickel and copper.

Finc-wire grids of metals, cmbedded in a protecting material, can be fixed to an object whose temperature is to be measured. Response time of the wire elements may be controlled to some degree by varying the wire diameter.

In contrast with metals, which often have small positive temperature cocfficicnts of resistance, some semiconductors have relativelv large, nonlincar negative temperature coefficients. Thermistors are probably the most widely used semiconductors. They are usually a sintered misture of ceramic materials and mangancse, nickel, cobalt or other metallic oxides, formed in various shapes. The resistance of a thermistor may change by 2.5 to 8 percent per degree C of temperature change at 20 C , iu comparison with $\frac{1}{3}$ percent for average metals. Resistivity of various thermistor materials is 100 to 500 times greater than that of platinum.
Thermistors are used in much the same way as other resistive (metal) materials and are generally used over the temperature range of -60 to +300 C .

This self-heating characteristic of themistors may be used to measure flow rates of gases and liquids, low-level air pressures (5 mmo to 1 micron) and dew-points, among others. These measurements are all based on the principle that a heated thermistor will dissipate heat at a rate which is a function of the mcdium surrounding it.

Some types of cerannic resistors have properties similar to those of thermistors, with negative temperature cocfhcients of 1 to 3 percent per degree C at 25 C .

The property of certain materials, such as lithiun chloride, to change in resistivity as a function of moisture absorption is used to measure relative humidity over a

Giannini potentiometer accelerometer consists of magnetically damped, spring-supparted mass system which actuates wiper arm of linear potentiometer through linkage system
range of 15 to 100 percent. A humidity cell usually consists of a plastic or glass plate coated with a hygroscopic film of lithium chloride. Electrodes attached to the edges of the plate permit measuring of the variable resistance.

In addition to its sensitivity to moisture, lithium chloride is also temperature sensitive to a small degree. Consequently, accurate humidity moasurements with this material require temperature compensation.

Capacitive Transducers. These devices consist basically of two or more electrodes or conductors separated by an insulating material. Since capacitance is a function of the separation of the electrodes, the area of the conductors and the dielectric constant of the insulator, changing any one of these parameters caluses a capacitance change which can be analyzed. For example: two fixed electrodes can be immersed in a modium of variable dielectric constant; the dielcetric constant of a medium may remain fixed and the amount of dielectric varied; onc electrode can be fixed and the other made to vary with the amount of dielectric. The latter two methods permit measuring volume. Angular displacement can be measured by rotating one of the

FIG. 8-Test-missile head contains germanium photoconductor which is employed as frequency-determining element of transistor $f-m$ subcarricr oscillator. Spinning of missile causes light falling on photoconductor to vary and in turn vary subcarrier frequency

Table IV-Phosphors for Scintillation Counters

Phosphor	Chief Application	Scintillation inime in μ sec
Nickel-Killed Zinc Sulphide	α particles	3.0
Thallium-Activated Potassium Iodide	$\alpha \beta$ particles γ rays	1.5
Naphthalene $+0.01 \%$ Anthracene	β particles γ rays	0.06
Anthracene	β particles γ rays	0.02

clectrodes of a parallel-plate variable capacitor. This ssstcm is self-refcreucing as it goes through a minimum and maximum every 360 degices of rotation.
Linear displacement is mcasurable by fixing one elcetrode and causing the other to approach it or recede from it as a function of the measurand.
Capacitor transduccrs may be used as frequency-determining elements of oscillator circuits or in bridge circuits.
Advantages of this type of translucer include high frequency response, high scnsitivity, small to high displacement ranges, good resolution, high-temperature operation and ability to measure static quantities. Disadvantages are sensitivity to vibration and electrical noise, temperature drift and maintenance of original calibration (except for sclf-referencing arrangements). Sensitivity usually decrcases approximately 1 percent per 20 C rise.
Piezoclectric Materials. The ability of certain materials to generate an clectrical voltage when subjected to mechanical stress may be utilized in a transducer. This piezoclectric property is common to natural crrstals, such as quartz and tourmaline, synthetic materials, such as Rochelle salts, ADP (ammonium dilydiogen phosphate) and ceramics such as barium titanate.
Transducers of thesc materials are self-generating; the electrical energy produced bcing linearly proportional to energy of the measurand. This property permits them to directly voltage modulate an $a-\mathrm{m}$ or $\mathrm{f}-\mathrm{m}$ subcarricr oscillator.
Piezoelectric transducers liave wide dynamic range, with virtually no lyystercsis and infinitc resolution. Certain types have excellent reproducibility of results. The mechanical structure of these transducers is normally stiff, causing them to be rugged and have a wide frequency-response range. They are usually limited, however, to the measurement of frequencies above 2 to 3 cps.

In all applications, electrostatic shielding, along with short cable lengths, requires careful consideration, as crystals are sensitive to clectrical-noise pickup. Excessive cable lengths can also be detrimental to the signal level because of the cable's shunting capacitance.

Of the various piezoelectric materials commonly employed, no one material exceeds, in all respects, characteristics of the othcrs. Piczoelectric ccramics are frequently used in telemetering; they have a good combination of energyconversion efficiency, temperature stability, ruggedness and ease of fabrication into any shape. These cerumics are capable of operation from -95 to +500 F .

Piezoelectric translucers arc often uscd for the measurement of shock and vibration, high acoustic levels, as well as fluctuating pressures. Pressure measuring and force measuring devizes are capable of measuring pressures from 0.01 psi to more than 30,000 psi over frequency ranges of 3 to $25,000 \mathrm{cps}$.
Electronic Devices. Transducers which utilize the motion, produztion or control of free electrons can be classified as clectronic. These include photoelectric, ionization, thermoclectric and other devices.
Any phenomena which produce a variation in light intensity, position or color may be measured or detected with photoclectric transducers. These include photoconductor, photovoltaic and photoemissive devices.
Photoconductive Devices. The tern photoconductivity is used to dessribe changes of conductivity induced by illumination in a gas, solid or liquid medium. For sonic time sclenium was the principal material uscd for photoconductive transclucers. However, in recent years, lead sulfide and germanium devices have also become prominent.
Selenium cells may show a decrease in resistance by a factor of five when exposed to strong illumination. They pass appreciable dark-state current and are comparatively slow to respond to light clanges.
Lead sulfide cells usually consist of a semitransparcnt coating on the inside surface of an evacuated glass bulb. They have linear illumination-versus-resistance response and low noise level and are particularly useful where frequency is less than $10,000 \mathrm{cps}$, color temperature is in the range 400 to 3,900 Kelvin, light flux is concentrated in an arca

FIG. 9-Typical Radio Receptor pnp germanium-junction phototransistor and circuit for modulated-light use. Base inductance is tuned to light-modulation frequency for best signal-to-noise ratio

FIG. 10-Operating regions of various nuclear radiation detection instruments and shapes of output-voltage pulses. Waveshapes shown are for infinite input time constonts
up to 1 sq cm and rapid response is required. A resistance change of up to 80 to 1 can be obtained.

Operation of lead-sulficle cells above temperatures of 100 C is not ordinarily recommended. A slow drift in resistance and sensitivity may be encountered if the leadsulfide surface is exposed to air. In certain applications, temperature compensation may be required to offset the high temperature coefficient of these cells.

Germanium photoconductive devices may be either photodiodes, phototransistors or photoconductors. Photodiodes are basically germanium diodes whose resistance is dependent on incident illumination and, to some degree, temperaturc.

Plotoconductors are germanium bars without directional characteristics. They can be used in a-c circuits without the clipping effect of photodiodes. An application is illustrated in Fig. 8. Phototransistors are essentially groundedemitted transistor amplifiers, as shown in Fig. 9. Their characteristics are a function of $a /(1-a)$, where a is the current amplification factor.

All of these photoconductive devices, except phototransistors, are generally used in series with a voltage source. The variations in conductivity produce a corresponding output voltage which may be applied as discussed in previous paragraphs.

Generating Devices. Photovoltaic cells devclop an internal emf when illuminated by energy in the visible, infrared and ultraviolet regions of the spectrum. Such calls usually consist of a pure metal base over which is placed a layer of semitransparent semiconductor material. Electrodes are attached to the base and semiconductor material. The barrier layer may be between the top clectrode and semiconductor layers or between the semiconductor and base metal layers. The former, a front-wall cell, has greater sensitivity than the latter, a back-wall cell.

Under short-circuit conditions these cells produce a maximum output current that varies linearly with the light intensity; open-circuit output voltage increases logarithmically with light intensity. This claaracteristic requires that low values of load resistance $b c$ used for linearity. Output is usually used in a voltage form by proclucing a voltage drop across a load resistor.

Commercially available photovoltaic cells are either copper-copper oxide, silicon pu-junction or iron sclenidesilver. All of these devices have outputs which are proportional to the area cxposed to radiant energy. A $1 \frac{3}{3}$-inch diameter silicon-junction cell will gencrate 0.25 v across 10 ohms in sunlight. Other cclls ordinarily produce outputs in the milliampere or millivolt range.

Frequency response of these cells is affected by the large capacitances involved. With equal 60 -cps on-off intervals of light, the off current can be as much as 50 percent of the on current. At $1,000 \mathrm{cps}$, the off current can be as ligh as 97 percent of the on current.

These devices have a tendency to become fatigued. This characteristic necessitates fairly frequent calibration in some applications.

Phototubes. Photoemissive transducers are of two general types, gas or high-vacuum diodes and multiplier phototubes.

Gas and high-vacuum phototubes consist of a semicylindrical cathode of large area, on which a photosensitive substance is evaporated, and a wire anode coaxial with the cathode. With a positive potential on the anode, photoclectrons are emitted from the cathode and collected at the anode as a function of the wave length and intensity of the light illuminating the cathode. As the light on the

Giannini Bourdon-tube potentiometer pressure transducer has liquidfilled case to isolate mechanism from corrosive media and to provide damping against shock and vibration

FIG. 11-Parallel circular-plate ionization chamber has boron-coated electrodes for detection of slow neutrons. Wire leads are of lead and are coated with quartz
cell varies, the current changes, causing a variation in the voltage drop across a load resistor in series with the cell.

By filling the glass envelope with an inert gas such as argon or neon, at a pressure of the order of 0.5 mm , the photocurrent for a given illumination intensity is greatly increased. Increasing the anode voltage of gas phototubes beyond a certain point causes photoelectrons traveling to thic anode to ionize the gas molecules, relcasing more elcetrons and producing an amplification effect. This gas amplification ratio is dependent on the incident-light flux in addition to the anode voltage. If amplification ratios of about 10 are reached a glow discharge usually takes place.

The ionization-deionization time of gas phototubes operating in gas-amplification regions causes an approximately 6 -db drop in response at $10,000 \mathrm{cps}$ relative to 800 cps.

Plate potentials of gas phototubes are required to be of the order of 100 volts $\mathrm{d}-\mathrm{c}$ while high-vacuum tubes operate at about 250 volts. Both types have a maximum temperature limitation of 75 to 100 C .

To provide greater sensitivity, electrostatic electron multipliers or dynodes may be incorporated with the basic phototube. Multiplier phototubes are usually made with nine or 10 dynode stages, although any number is permissible. Each dynode is maintained at a potential from 50 to 150 volts more positive than the previous dynode. This multiplication process can increase sensitivity by about 500,000 compared to nonmultiplier phototubes. Final anode potentials of 1,000 to 3,000 volts are required.

Ionization Devices. Some transducing devices operate on the principle that a fast-moving charged particle will eject
an orbital electron from an atom if it approaches sufficiently close to the atom. Since the residuc of the atom is a positively charged ion, the process is referred to as ionization and the incident particles as ionizing radiations. Utilizing this property, nuclear radiations can be measured by obscrving the resulting ionization when they pass through a medium such as a gas.

A trpical instrument consists of a metal cylinder with a coaxial central elcctrode, in a gas-filled enclosure. The central elcctrode, the anode, is usually positive with respect to the outer electrode, the cathode. When an ionizing particle entcrs the gas between the electrodes, ions are formed and the positive ions are collected by the cathode and negative ions by the anode. Magnitude of the collected charge will depend on the number of initial ionizations and the voltage applied to the electrodes.

Variation of collected charge with the voltage between the electrodes is shown in Fig. 10. The characteristics vary in nature over the four voltage ranges shown in the graph.
At very low voltages the ions move so slowly that manv recombine before reaching the clectrodes; charge collected increases with plate voltage. Increasing the voltage, a point is reached whice the ions move sufficiently fast that thev are all collected before they can recombinc. Continuing to increase the applied voltage in this region will not increase the number of ions collected. When operating in this second region the device is called an ionization chamber. Such a chamber produces current pulses whose amplitude is proportional to the total amount of ionization in cach ionizing event. Output pulscs are usually of the order of 10^{-5} to 10^{-3} volts or fractions of microamperes and subsequent amplification is a necessity. By plotting the number and size of the ionizing cvents, the mature of the radiation can be inferred.

As the voltage applied to the electrodes is increased bevond the ionization-chamber region, the operation of the chamber enters the proportional-counter region. The proportional counter is similar to the ionization chamber except that the negative ions formed move sutficientlv fast to cause secondary ionization in the gas. As a result the current pulses for bursts of radiation are larger, but proportional to the initial amount of ionization.

Increasing the electrode voltage still further causes the device to operate in the Geiger region. Geiger counters give an output pulse of constant width and amplitude for cach radiation particle regardless of the number of electrons formed in the initial ionizing event.

Table V-Thermocouple Characteristics

\quad Element	Operating Range in centigrade	Output at 100 C and 0 C in mv
Copper and constantan	-200 to +400	4.3
Iron and constantan	-100 to +300	5.4
Chromel and Alumel	0 to $+1,900$	4.1
Platinum and plitinum-rhodium	$+500 \mathrm{to}+1,400$	0.643

Transducer elements of radiosonde include, from top to bottom, barometer for altitude, thermistor for temperature and lithiumchloride cooted plastic sheet for humidity measurements

Geiger-Muller tubes are usually operated with a potential of 1,000 to 2,000 volts. Depending on this voltage, the output pulses mav be as high as 100 volts, permitting the output to be uscd directly vithout subscquent auplitication.

In all of the ionization devices cliscussed, resolution of number of radiation particles is limited by the recover time of the gas used. For argon, which is usially emploved in Geiger counters, there is a dead time of 100 to 200 microseconds while the gas deionizes. This limits resolution for argon devices to 10.000 particles per second. Alcohol vapor is sometimes added to argon in Geiger comuters to shorten the discharge recoverv time. Resolving times of ionization chambers or proportional counters are about 200 times less than that of Geiger counters.
All of the devices discussed are sensitive to ionizing radiations such as gamma rays, cosmic rays and alpha and beta particles. Noutrons, however, do not cause ionization because they carry no charge. By using a gas such as boron trifloride, or by using boron-coated electrodes. as shown in Fig. 11, impinging slow neutrons knock alpha particles out of the boron and the alpha particles produce the necessary ionization. l'or fast-neutron detection, hydrogen is used instead of boron trifloride.

Pulse counting rates of the order of thousands per second, from the various radiation measuring devices. are not unusual. Conscquently, scaling circuits are used to count down the number of pulses alctected. Count-down scales of 32,64 and 128 arc common.

The property of phosphor materials to fluoresce or scintillate, employed in conjunction with multiplier phototubes, is another important method of detecting ionizing radiation. Gamma rays or other ionizing radiations bombarding a phosphor such as anthracene. sodium iodide or maphthalene procluce flashes of light. These light flashos are pioked up and amplified by the
phototulbe by a factor of 10^{6} or more.
Scintillation counters are particularly noted for their high efficiency, counting rate and accuracy. They do, howcuer, have a relatively high thermal noise level. Lifetimes of excited atomic states are about $10^{-8} \mathrm{sec}$ and the light flashes and recovery times are corresponding short in duration (Table IV). Since the phototube output pulses are proportional to the energy of the particles causing the ion izing events, these counters are used to determine both the encrgy and number of the ionizing particles or photons.

Scintillation counters are usually used to measure or detect weak gamma radiation. By using phosphor containing lithium, they can be uscd to measure slow neutrons.

Themoelectric Devices. Thermocouples operate on the thermoclectric principle that two wires of metals with different work functions and in physical contact at both ends will generate a circulating current if onc junction is at a temperature different from the other. The value of this current will be proportionate to the temperature differcntial, the work-function differential of the wires and the circuit resistance.

Typical wire combinations are copper-constantin, chromel-alumel, platinum-platinum rhodium and iron-constantin. Temperature operating ranges and output voltages of these combinations are listed in Table V. Though the current mav reach relatively high valucs, output voltage of such devices is usually limited to several microvolts.

Thermocouples are particularly suitable for measuring tomperatures in localized areas. They can be securely welded to the surface under measurement, providing good transfer characteristics over the area of the weld. Average response times are such that transient temperatures of the order of 0.1 second mav be measured

Magnetic Transducers. These devices may be classificel in two gencral categories, variable reluctance devices and emfgenerating devices.
Variable-reluctance transducers usually consist of one or more coils and a core. By fixing either the coil or the core and moving the other, the length of the magnetic path through which flux linkages pass will be made to vary. These changes in magnetic path result in varying magnetic reluctance and in turn varving electrical inductance.
A typical differential transformer consists of a concentrically wound transformor with one primary winding and two sccondary windings connceted in series opposition. The relative magnetic linkage between the a-c excited primary and the scoondary output windings is varied by changing the position of a ferromagnetic core. The output voltage is proportional to the mechanical displacement of the core, which is made a function of the quantity being measured. Its phase leads or lags the input current by a maximum of 90 degrees, depending on the displacement.

Differential transformers are usually used with excitation frequencies of 60 to $20,000 \mathrm{cps}$ at up to 12 volts input. Linearity of these units can be within 0.10 percent for full-scale core displacements of 0.025 to 0.800 inch Ontput impedance is of the order of a few hundred ohms

This type of transducer is used primarily with displace-ment-type clements such as floats, bellows, Bourdon tubes and diaphragms.

Another group of reluctance-type transducers are cssentially rotating transformers. They are similar. in appearance and construction, to miniature wound-rotor induction motors. Fither the rotor or stator winding is a-c excited The other winding then produces an output voltage which is a function of the iuput shaft angle and scaled to the input voltage

These devices are analogous to resistance potentiom-

FIG. 12-Phase shift between signals from two pickup heads is proportional to amount of twist between torque-carrying shaft and reference shaft and gives indication of dynamic torque

FIG. 13-Permanent magnet in hub of hydraulically suspended Potter flow meter induces signal in pickup coil. Signal frequency is proportional to flow rate; tota! pulses are proportional to total flow
eters. Life expectancy is high-over 10^{6} cycles. Lack of a wiper eliminates contact bounce and permits speeds of $1,500 \mathrm{rpm}$. Resolution is infinite. Also, unlike resistive units, induction units have isolated input and output.

Other variable reluctance devices consist essentially of different variations of ferromagnetic-core inductors. These devices can produce as much as ± 20 percent change of the initial inductance. They can be used with a-c bridges or used directly as frequency-dctermining elements in L-C f-m subcarrier oscillators.

EMF Generators. Generator types of transducers are usually characterized by a coil or conductor cutting across the lincs of flux of the magnetic fields causing a voltage to be induced in the coil. Conversely, the conductors may be kept stationary and the lines of flux of the magnetic field moved. Output voltage is dependent on the number of conductors, the rate at which they cut the magnetic field and the ficld's strength.

One type of generator transducer consists of a permanent magnct on which is wound a pickup coil. Passing magnetic objects near the unit distorts the magnetic field and generates al voltage proportionate to the rate of motion of the objects. This principle of operation is utilized in the dynamic-torque transducer of Fig. 12 and the flow-rate meter shown in Fig. 13.

Signaling Methods

Means for sending data depend upon the transmission medium. When
wire lines are available, signaling systems may be simple. More complex
data call for frequency or time sharing of facilities. Radio systems
depend upon available channels and type of modulation
must include noise discriminating ability

Industrial devices for transmission of data usually operate over short distances where two or more wires can be cconomically furnished. When several types of data must be transmitted to any distance simultaneously, electronic systems are frequently required and the original elements may become a part of the new system.
Bridge Circuit. An elementary bridge system for which a diagram is shown in Fig. 14 requires a source of constant potential and two potentiometers, one of which is moved by the measurand. Manual adjustment of the receiver potentiometer for galvanometer null gives the measuremont according to a previously calibrated scale. The

FIG. 14-Elementary bridge system requires manual operation at receiver but is easily adapted to servo balancing control

FIG. 15-Remote dial reading systems. So-called d-c synchro (A), conventional a-c synchro (B), and tuned audio system (C)
bridge has two arms at the transmitter and two at the receiver. Off-null galvanometer current can be used to control the rotation of a motor or clutch system so the proper scale reading is shown automatically and continuously. The transmitter arms of the bridge need not comprise a simple potentiometcr. One arm $A B$ can be a fixed resistor and the other $B C$ a resistance thermometer. As resistance changes with tomperature, unbalance causes the pointer to show temperature on the scale.

Dial Position. Direct indication of a dial position is possible by scveral means. Developments of ferromagnetic and permanent magnet matcrials have made practicable the construction of so-called d-c synchros. As shown in Fig. 15A, a tapcred resistance bridge with two fixed and four sliding connections is connected to a motor-type device with two sets of paired series windings. Rotation of the bridge assembly results in rotation of the effective field.

The commonly used a-c synchro is shown at (B). Movement of the rotor relative to the stator windings results in corresponding movement of the receiving rotor. Use of a common power line for both rotors effectively reduces the control lines to three.

Another stepless positioner, dircctly adapted to transmission by radio or carrier uses the position-secking tendency of a two-phase motor in which one of the windings is controlled by a series tumed circuit. If the motor is mechanically coupled to one of the clements, as the inductor in (C), the motor will automatically tune to line frequency and an indicator attached to the shaft will assume an appropriate position.

Such a remote-reading indicator can be actuated by a similar tuncd circuit controlling a servomotor. In this case, the motor is coupled to an audio oscillator that furnishes the linc voltage. Thus, changing the tuning by moving the position transmitter varies the line voltage. This change is automatically followed by the receiver.

Frequency Variation. A variable frequency system, of which the elements are shown in Fig. 16A, was in operation in the power field at an early date. As originally used, the transmitter was connccted to the recciver by a wire line. Later systems transmit the data by carrier current or inicrowave link. The carrier equipment is indicated.

In the transmitter, a small variable capacitor is mechanically attached to the shaft of the instrument to be telemetered. Movement of the shaft then clanges the frequency of the variable oscillator, which may be well above the audio range in order to cmploy small, lightweight com-
ponents that will have minimum effect on the shaft.
Mixing this frequency with output from a fixed oscillator that produces a frequency of the same magnitude is effected in the beat detector. A more usable low frequency is thereby produced.

Output from the beat detector can be fed through a wire line (as shown by the alternate dashed connection) to an amplifier and a meter calibrated in terms of the quantity to be measured.

The output can also be used to modulate a transmitter coupled through high voltage capacitors to the power linc. One or more receiving units can be attached at other points along the line. Losses occurring from phase-to-phase coupling and phase-to-ground coupling attenuate the signals.

A frequency systcm used by Control Corp., shown in Fig. 16B, uses two frequencies somewhat in the manner of a bridge, in that two variable capacitors are in effect used at the transmittcr. As the capacitance of one increases, that of the other decreases. By this means, the reaction on the measuring instrument is minimized.

Output from two oscillators is heterodyned and the desired combination from the converter is selected with a low-pass filter. After modulation and transmission to the receiver, the incoming frequency is again hetcrodyned with a fixed frequency, filtered and appropriately displayed on a frequency meter calibrated in terms of the measurand

Cam Type. An impulse-duration telemeter suitable for slow-speed data is shown in Fig. 17. A signal is transmitted every twelve seconds. This principle is used in equipment manufactured by the Foxboro Co. The contactor shown at the left has two degrees of frecdom. It can be positioned around its axis by the motion of a pickup. It normally rides on the back surface of the cam, during which time a switch is closed. The cam rotates in the direction shown alt 5 rpm .

As the cam rotates, the contactor is off the cam for a portion of each cycle, depending upon its position in relation to the cam axis. Because the position is determined by the measuring element, the time Turing which the contactor is off the cam is proportional to the measurement. The switch is thus closed for a period proportional to the measurement.

At the receiver, a similar cam is motor driven in synchronism. When the transmitter is encrgized, relay K_{1} closes and conncets one side of the up winding for the reversible motor, assuming that the receiver cam switch is open. Its contactor is likewise movable and is positioned by the reversible motor.

By using a clamping mechanism, the contactor is allowed to move only during a short reset period at the beginning of each cycle. When the contactor is off the receiver cam K_{2} operating the other coil (down) is energized providing the transmitter switch is open.

When both transmitter and receiver switches are closed or open simultaneously, neither motor coil is energized and the pointer cloes not move. Two telemetcring systems for power and water-level data, shown in Fig. 18, are manufactured by General Electric. Only the elements of the systems are described here.

The transmitter for a-c measurments is shown at the left of (A). Λ watt-hour mechanism is used to translate the a-c electrical quantity into a varying rotational speed. A light-modulating disk is mounted on the shaft of the watt-hour meter. The serrated edge of the disk (shown in the drawing as a series of holes) interrupts the light falling on a phototube. The disk is shaped so that phototube output varies sinusoidally with time.

Table VI-Subcarrier Bands

	Subearrier Band		Subcarier		Nominal	Maximum
Band	Lower limit in cps	Center fre: in cps	Upper limit hneps	Deviation in percent	Intell freq in cps	Intell freq in cps
1	370	400	430	± 7.5	6	30
2	518	560	602	± 7.5	8	40
3	67.5	730	78.5	± 7.5	11	55
4	888	960	1,032	± 7.5	14	70
5	1,202	1,300	1,398	± 7.5	20	100
6	1,572	1,700	1,828	± 7.5	25	125
7	2,12\%	2,300	2,473	± 7.5	35	175
8	2,775	3,000	3,22.5	± 7.5	45	255
9	3,607	3.900	4,193	± 7.5	60	300
10	4.99 .5	5.400	5,805	± 7.5	80	400
11	6,799	7,350	7,901	± 7.3	110	550
12	9,712	10.500	11,288	± 7.5	160	800
13	13,412	14.500	15,388	± 7.5	220	1,100
14	20,350	22,000	$2: 3,650$	± 7.5	330	1,650
15	27.750	30,000	32,250	$\pm .5$	450	2,250
16	37,000	40,000	43,000	± 7.5	600	3,000
17	48,560	52,500	56,440	± 7.5	790	3,950
18	64,750	70,000	75,250	± 7.5	1,050	5,250
Optional Bands						
A.	18,700	22,000	25,300	± 15	660	3,300
B.	25,500	30,000	34,500	± 15	900	4,500
C.	34,000	40,000	46,000	± 15	1,200	6,000
D.	44,620	52,500	60,380	± 15	1,600	8,000
E.	59,500	70,000	80,500	± 15	2,100	10,500
These bands can tre used by omitting adjacent bands						

There is a 21 -cycle range, between 6 and 27 cps , from minimum to maximum input. The cathode follower reduces output impedance of the phototube to avoid extraneous a-c pickup. The following amplifier provides sufficient output to operate radio or carrier equipment.
Zero indication is accomplished using a constant-torque elcment driven from a constant-voltage transformer. This torque adds directly to that of the primary detector. When there is $n o$ output to the primary detector, the constant torque causes the light modulating disk to revolve at such speed as to result in 6 -cps output.

At the receiver (right) the signal gocs through a lowpass filter that attenuates all frequencies above 27 cps . Square-wave input to a saturating transformer is provided with a limiter, inverter and power amplifier. Transformer output is a square-wave pulse of constant energy content. Rectification of the pulses gives a d-c output through a constant-resistance load that varies with the input frequencr.

The end device is an indicating or recording milliammeter with the scale graduated in units of the measurand. Since zero reading is actually determined by the constanttorque 6 -cps output from thic transmitter, a failure of the system results in a below-zero indication. Alternatively, the subzero reading can be used for special signaling purposes.

The transmitter (B) used for $d-c$ measurements converts a millivolt or milliampere signal into the conventional 6 to 27 -cps frequency range. Input, reference and feedback signals are applied to a sensitive galvanometcr system that detects any unbalance. If the galvanometer mirror is deflected, a beam of liglit is reflected onto the cathode surfaces of a double phototube with its sections connected in series.

This plototube is one element of a relaxation oscillator

This telemeter transmitier (left) uses a cam to transmit the temperature pickup reading. The receiver (right) has a reversible motor that moves in either direction or remains motionless. A pen is ottached to the drive
that operates over the range from 12 to $5+\mathrm{cps}$. Its out put is amplified through both grids of a double-triode tulbe that functions as a bistable multivibrator. In this circuit, the frequency is halved and the output at 6 to 27 cps is connected through output anuplifiers.

Tene Combinations. Data is frequently sent by audio tones, cither singlv or in combination. Onc system manufactured by Motorola uses two pulses of two tones eacl. Each pulse takes about 0.75 seconcl with a delay of 0.2 sceond between the end of tlic first and the beginning of the sccond. Such sustems are used in communications work for sclective calling of mobile vehicles or aircraft. Tones are also used in the control of oil pipe lines. For purely data purposes they are neceled in the remote operation of broadcast stations. The Federal Communications Commission provides tlat continuous moasurement be made of frequency and modulation characteristics.

Missile Systems. Military telemetering in current use tends towards either $\mathrm{pwm} / \mathrm{f}-\mathrm{m}$ or $\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$. They are both
capable of handling several data channels. Pulse-width modulation of a frequency-modulated carricr (pwom/f-m) is a time-sharing system. As such it has limitations in accuracy for fast-changing information. Frequency-modulating onc or more subcarriers of a frequency-moclulated transmitter ($\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$) provides instantaneous continuous presentation of scveral data channels. It is likely, however, to be more prodigal of bandwidth.

The principles of the two systems are shown in Fig. 19. The pwni/f-m system provides from 30 to 90 channels with frequency response up to about 2 cps . The composite signal resulting from the commutation is a serics of pulses on an f-n carrier. The width of the pulse is analogous to the measurand. The system antomatically corrects each revolution measuring zero and full scale.

F-M/F-M System. Currcnt standards permit as many as 18 frequency multiplexed subcarriers from 400 cps to 70 kc . The telemetry standards in Table VI show that each subcarrier can be modulated ± 7.5 percent. The higher channels can bc modulated ± 15 percent if alternate

FIG. 16-Frequency telemetering system depends upon transmission of oudio tone (A). Variation of the system uses two oscillators whose frequencies are varied in opposite directions (B)
chamels are omitted. Limiting accuracy in the $\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ system is the frequency stability of the subcarrier oscillator.
There are other modulation systems possible and some of them have been used. Pulse amplitude modulation of an f -m carrier (pan/f-m) permits the output of a highspeed switch to frequency modulate an f-in transmitter directly. This permits telemetering a large number of channels with a frequency response in excess of that using present time-multiplexed systems. It would allow sampling each of 100 clalmnels 500 times a sccond for a channel response of better than 100 cps. Such a svstem could combine the frequency capability of $\mathrm{f}-\mathrm{m}$ with the automatic error correction of any time-multiplexed system.

Pulse Code. High accuracy could be obtained from a pulse code system in which the tramsducer output is translated into a binary code and thus transmitted. Data could be presented at the ground station in either analog or convenient binary form for processing.

At the present time, equipment light enough for either missile or general aircraft use by which data could be cncoled in binary form is not in general use, although a system has been developed by engincers of Radiation, Inc.

Modulation Systems. Various types of modulation are shown in l'ig. 20 and their chalateteristics of bandwidth of pulse code modulation systens in terms of bandwidth and signal-noise ratio are shown in lig. 21.
'lelemetering uses a radio-frequency b:ind between 216 and 235 mc . The specific carrice frequency will usually depend upon the facilitios of a government test range

FIG. 17-Position of mechanical contactor arm relative to rotating cam is compared with a similar cam that controls direction of rotation of motor to move receiver dial in the Foxboro telemeter

FIG. 18-Power-line telemetering system sends low-frequency pulses derived from rotation of disk between light and phototube caused by variation in a-c parameters (A). Information derived from d-c is transmitted by equipment (B)

FIG. 19—Basis of pulse-width modulation of a frequency modulated carrier ($\mathbf{p w m} / \mathbf{t}-\mathrm{m}$) transmitter (A) and receiver (B). Two-channel $\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ transmitter (C) and receiver (D)

MODULATION METHOD	TRANSMISSION BANDWIDTH	SIGNAL-NOISE
AMPLITUDE (a-m) double sideband and carrier single sideband and carrier single sideband	$\begin{aligned} & \frac{2}{f_{m}} \\ & f_{m} \\ & \Delta f_{m} \end{aligned}$	$(S / N) f_{m}=(C / N) f_{t}$
FREQUENCY (f -m) wideband $\quad\left(f_{m}<f_{d}\right)$ narrowband $\left(f_{m}>f_{d}\right)$ frequency shift-Usually f_{k} must be f_{m} see abo	$\begin{aligned} & \quad \begin{array}{l} 2 f_{d} \\ 2 f_{m} \\ \text { least the third harnonic } \\ \text { transmitted, thus } f_{m}= \\ \text { ve } \end{array} . \end{aligned}$	$\begin{aligned} & (S / N) f_{m}= \\ & \sqrt{3}(C / N) f_{t}\left(f_{i} / f_{m}\right) \end{aligned}$ of the keying frequency $3 f k$, using this value of
PHASE ($p-m$) double sideband and carrier $\begin{aligned} & m_{p}<60^{\circ} \\ & m_{p}>60^{\circ} \end{aligned}$ single sideband and carrier $m_{p}<60^{\circ}$	greatly as depth of modul about 60 degrees f_{m}	$(S / N) f_{m}=\phi(C / N) f_{t}$ bandwidth increases ation is increased beyond
PULSE	Depends on repetition rate, wave-shape, and duration of pulse: for approximations use $2 / t_{p}$ where if t_{p} is duration of pulse in microseconds, transmitted bandwidth is in megacycles per second	$\begin{aligned} & (S / N) f_{m}=m_{w} t_{p}(C / N) f_{t} \\ & (S / N) f_{m}=t_{t} f_{t}(C / N) f_{t} \end{aligned}$
PULSED amplitude (pam) frequency (pfm) phase (ppm)	$8 f_{m}$	Inferior to unpulsed modulations of like type unless pulse rate is very high and transmitted bandwidth is very wide

(C/N) f_{l} is ratio of peak carrier to peak fluctuation noise in transmission channel f_{t} cycles per second wide.
$(S / N) f_{m}$ is ratio of peak signal in output channel to peak noise (due to fluctuation noise) in output channel f_{m} cycles per second wide.
f_{d} is maximum deviation frequency of frequency-modulated carrier in cycles per second.
f_{m} is maxinum frequency component in modulating wave in cycles per second.
f_{t} is frequency bandwidth that is transmitted; that is, it is the bundwidth of the modulated carrier that is passed by the system.
Δf_{m} is frequency interval between lowest and highest frequency components in modulating wave.
m_{p} is maximum deviation angle of phase-modulated carrier in degrees. m_{w} is maximum width modulation factor for pulse width modulation.
t_{m} is pulse displacement produced by pulse modulation, in seconds.
t_{p} is duration of transmitted pulse in seconds, for frequency in cycles per second.
ϕ is peak phase deviation in radians of phase-modulated carrier.

PULSED AMPLITUDE MODULATED CARRIER

PULSED PHASE MODULATED CARRIER

FIG. 20-Comparison of various types of modulation useful in telemetering data
and the bandwidtla of the information to be transmitted.
Beacon Telennetering. The data transmitting set illustrated, built by Stavid Enginecring, is a subminiaturized airborne unit that operates in conjunction with a radio beacon to telemeter data to the ground. The set provides an instrumentation facility that is supplementary to the normal ground-radar tracking of rocket-propelled missiles. The system utilizes the existing r-f link between beacon and radar as an information path.

This ppom telemetering set has a data capacity of ten channels at a maximum sample rate, for each, of 100 per scoond. Integral pickup and data conversion circuits are included to measure temperature, vibration amplitude, vibration frequency, the radio beacon peak power output, $B+$ voltage and filament voltage.

The unit, developed for the U. S. Army Signal Corps, contains the system multiplexing and pulse-position modulation circuits for handling ninc 0 to 5 -volt d-c input data signals and one 6 to 7 -volt d-c synchronization signal.

Subcarrier Discriminator. One type of receiver output device is shown in Fig. 22. Units of this type are used to produce useful output from the f-m subcarrier.

Industrial PCM. At least two manufacturers (Bendix Pacific and Vapor Recovery Systems) employ variations of

FIG. 21-Pulse-code signaling systems compared with other types on the basis of signal-noise ratio and bandwidth

Table VIII—Decimal and Binary Numbers

Decimal	Natural Binary	Minimum Error
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

pulse-code modulation in industrial data transmission systems. In one, a circular dial calibrated in clegrees is moved relative to a pointer. At the receiving end a similar dial is caused to be illuminated at the proper angle. Alternatively, a 120 -lamp matrix and switching circuit gives direct readout of the appropriate number.

The actuating dial is connected to a commutator disk on which ride seven brushes. The commutator segments take the form of a minimum error or Gray binary code. Depending upon the segments contacted, anywhere from one to seven audio tones are transmitted to the receiving decoder. Signaling is essentially an on-off function comparable to telepriuter coding.

The minimum-error or reflected binary code differs from the natural binary code as shown by the example given in Table VIII. The rearrangement of the binary numbers has the advantage that adjacent binary numbers differ by only onc digit. Coding crrors resulting from mechanical imperfections in the coding device are thus greatly reduced.

Fluid Measurement. A systen employed by Varec, while cssentially the same in that it employs pulsc-code modulation, differs in many details. It is designed primarily to telemeter liquid level readings accurate to the nearest $\frac{1}{8}$ inch. Transmission of the binary code indications is somewhat unconventional in that instcad of marks and spaces (like the telcprinter) the system uses dots and dashes. A dot represents an off and a dash an on pulse.

The binary code wheels are set up through appropriate gearing to be rotated by a float. The disk in Fig. 23A is used to send inches and fractions while that at (B) sends feet and tens of feet. Brushes bearing against the code disks are connected to commutator segments on another disk that encodes the dots and clashes.

As the propelling motor is called upon by the receiving station to send out the code, a pair of brushes contact

FIG. 22-Circuit diagram of linear multivibrator type of subcarrier discriminator. Plug-in filters permit use on any of the standad channels. Output limiting circuit protects the load (such as recording galvanometer) if output becomes unbalanced in excess of ± 150 percent full scale
circles of short and long conducting segments. In any case, the short-time contacts are made and sent out. If the binary code disk brushes associated with the com mutator segments are making contact, a clash is scnt out instead, by extencling the time otherwise sent as a dot. An ancillary dial circuit allows sclection of the desired tank. Project Vanguard. In the research program planned for the International Geophysical Year is exploration of the region 200 to 300 milcs above the cartl. To obtain information for a period longer than that usually afforded by use of a rocket, it is proposed to cause an carth satellite to orbit around the earth at a velocity of some 18,000 miles an hour.

Present plans call for the first instrumental satcllite to weigh 21.5 pounds. It will be a metallic sphere with a diameter of at least 20 inches. Among the phenomena it will observe are temperature and pressure, density, strength of the earth's magnctic field, ultraviolet spectrum

FIG. 23-Binary code disks used to sense fluid level and convert it to pulse code. Disk (A) measures inches and (B) measures feet

Receiving station for liquid level pulse code telemetering system
of the sun and cosmic radiation.
While a satellite of the size contemplated will be unable to transmit all these data, several could be obscrved and transmitted simultancously or in sequence. To save battery power, it may be necessary to control data transmissions from the ground as indicated in Fig. 2t, turning on the equipment during the time that signals can be received as the satellite makes a revolution around the earth once every 90 minutes.

Optical tracking using phototheoclolites would be satisfactory and least expensive, except for the fact that the object will be hard to spot. In cloudy weather, even the tavored periods previous to sunrise and after sunset witl be useless. A miniature radio transmitter that radiates a signal to sensitive ground receivers will undoubtedly be cmployed.
'The exact nature of the Minitrack equipment has not been revealed but the function of the radio links is shown in the drawing.

FIG. 24 -Possible arrangement of tracking and telemetering equipment to observe phenomena between 200 and 300 miles above the earth from the Vanguard satellite on its orbit about the earth

Commutating Devices

Radio channels or wire lines can generally be used for more than one kind of information. If data characteristics are changing slowly,

 time sharing can be employed. Switches that connect thevarious measurands to the modulator may be mechanical,

semiconductor or electron-tube devices

Time sharing of telemeter chamels is possible if the data to be transmitted are changing slowly. Sampling temperatures in the free air with equipment lifted by a frce balloon recquires only a simple switching device. Recording the outputs of a large number of strain gages at the instant of impact will permit of no time sharing owing to the short-term nature of the phenomenon. Sufficient channels must be provided to transmit data for all the parameters.

It is a rule of thumb that ten points are necessary properly to idcutify a sine wave. By simple arithmetic it can be shown that as the frequency of the wave increases, the sped of the commutator must be raised. This rule also imposes an upper frequency limitation on commutator operation in practice.

There are multicontact, motor-driven rotary switches

Beam switching tube of a type being used in telemetering equipment

FIG. 25-Circuit diagram of an electronic commutator using tubes and diodes. Time sharing of radio-frequency channels is possible without use of rotating devices when fifteen channels are employed. Equipment is built by Electro-Mechanical Research

Baroswitch operated by the variation of atmospheric pressure in weather sounding radio telemeter switches the signal elements

FIG. 26-Typical beam-gated sampling circuits using the Burroughs magnetron beam switching tube built by Haydu.
with standard sampling rates of 900 samples a second. The rate for a given channcl is generally limited to about 20 per second (or a sine-wave frequency of 2 cps).

Diode Switches. Another approach, which involves no moving parts, is an elcetronic sampler handiing 15 inputs. Using silicon diodes the switch samples as high as 15 kc and is basically able to go as ligh as 100 kc . One version of the device is shown in a photograph (circuit in Fig. 25).

Tube Switches. Electron tule devices are being used in the field of military telcmetering. Onc electron-beam tube, manufactured by Haydu Brothers, uses a switching grid, a spade and a target output plate as its basic electrodes. The switching grid is designed to initiate highspeed sequential switching without drawing current.
The two circuits in Fig. 26 show typical beam-gated sampling methods for switching a number of inputs to a common output. At (A) the cathode gated triode is normally cut off. The beam clamps the target to ground, turning the triode on with the samc voltage across it each time.

The input at that position is the only one effective at the output. Positive clamping to ground permits individual grid bias position control.

If the inputs to be sampled are low impedance, the crystal diode gate circuit at (B) can be used. Isolation crystal diodes between circuits are necessary.

The sampling or commutating device in a modern weather radiosonde, Fig. 27, uses 150 segments of conducting metal alternating with insulating strips. An ancroid capsule moves the contacting brush. The circuit detail (B) is arranged for selective sampling such that humidity is switched on at low altitucle.

Electronic commutator (left) uses 20 tube sections and 50 semiconductor diodes. Sampling switch built by General Devices (center) has three poles with 60 shorting channels for each pole. Unit at right, operating at $1,800 \mathrm{rpm}$, is used in ground tests

FIG. 27-Elements of a modern weather radiosonde (A) that show dependence upon the commutating system (B). Modulator and r-f transmitter shown at (C) transmit tones representing weather measurements

Output Indicators

At the receiving end of a telemetering system, the transmitted data are recorded in some form of information storage device - paper tape, magnetic tape, photographic film, punched cards - or displayed visually. Recorded data are played back and processed as needed

Quite often, incoming received signals are recorded initially on magnetic tape. The recorded information is then played back, processed and recorded again, usually on one of the various other recording mediums.

In time-division systems, the telemetered information is stored by recording the leading and trailing edges of the received pwon signal as positive and negative pulses on magnetic tape. The recorder playback circuits recreate the original rectangular wave at the output signal. The signal is applied to a data-reduction system, which decodes the original multiplexed signal into its components. These signals are then recorded on an oscillograph or other device. Analogonsly, in frequency-division systems, the received information is stored on magnetic tape in the form of a frequency-modulated signal. The playback signal is processed and recorded.

Magnetic-tape recorders are of two types, amplitude
modulated and frequency modulated. Amplitude-modulated recorders are similar to standard tape recorders cxcept that frequency response is extended over a range of 100 to $100,000 \mathrm{cps}$ by increasing the tape specd and using special head designs. In addition, special instrumentation is employed to minimize flutter and wow. Heads are available that will permit recording up to 28 different tracks, with an accuracy of 20 percent of full scalc.

The overall bandwidth of f -m tape recorders is the same as that for a-m recorders. Accuracy, however, is about 2 percent of full scale. Individual tracks may be multiplexed to provide an even greater number of channels at the expense of limiting individual information channels to 0 to $5,000-\mathrm{cps}$ frequency responsc.

Information from the data-reduction system is usually applied to a direct-writing oscillograph, galvanometer oscillograph, cathode-ray oscillograph or sclf-balancing

FIG. 28-Typical data recording devices include direct-writing oscillograph (A), galvanometer oscillograph (B), magnetic-tape recorder (C) and self-balancing recorder (D). Telemeter signals are usually stored on tape then played back, processed and recorded on one of other types of recorders. Information is processed as many times as necessary to get into desired final form

Double 14-track magnetic-tape data recorder system built by A-V Mfg. Corp. runs one machine while other is reloaded with tape. End machine reproduces loops for repetitive analysis. Tape speed is 60 ips
recorder. In choosing a recorder, factors such as sensitivity, imput impedance, method of registration, cost, accuracy, coordinate system, linearity, resolution, response speed, drift stability and number of channels should be considered.

Oscillographs. Individual channcls of direct-writing oscillographs consist of a pen moved across a paper tape by a D'Arsonval movement (Fig. 28A); the movement encrgized by an amplifier integral in the recorder. These devices can have up to six channels, each channel capable of 0 to 100 cps. response with 5 -percent full-scale accuracy. Calibration is generally dcsirable shortly bcfore use.

Each channel of a galvanometer oscillograph consists of a galvanometer movement to which a mirror is attached (Fig. 28B). The image of a light source is reflected from the mirror to a roll of photosensitive paper. Input signal variations cause the galvanometer movement and mirror to rotate, in turn causing the light beam of the mirror

Indicating panel of power station has linear and circular self-balancing recorders to record steam-gas and air, feedwater and other temperatures on continuous basis
to scan the photosensitive paper. These instruments are made with up to 48 scparate channels; each channel capable of 0 to $8,000 \mathrm{cps}$ frequency response with an approximate full-scale accuracy of 2 percent. Most instruments of this type have provision for interchanging galvanometers with widely varying characteristics.

Cathode-ray oscillographs can consist simply of a cathode-ray oscilloscope with a motion-picture camera attached to the screen. Accuracies of 5 to 10 percent and frequency response of 0 to 10 mc are available with these instruments. The number of channels is determined by clectronic switching circuits and is usually limited to eight.

Null Recorder. Sclf-balancing recorders (Fig. 28D) compare the input signal, in a bridge circuit, with an internal reference signal. A servo system kceps the bridge balanced. When the bridge is unbalanced by a change of the signal being measured, the servo system rebalances the bridge moving the inclicator arm. These recorders are usually limited to one or two channels per unit. Each channel is capable of 0.5 to 24 sec full-scale balance time with 0.25 -percent full-scale accuracy. The amount of information handled per chamel is sometimes increased by mechanically time-multiplexing the input signals.

Acknowledgement. The authors are grateful to those in the industry who contributed information from which this article was asscmbled. They wish particularly to thank the following individuals: Elliot Gruenberg; Leon IIillman; Scrge Korff; J. K. Kulansky; Sherman Rigby ancl Kenneth M. Uglow.
Organizations that assisted include: Applied Phusics Laboratory, Johns IIopkins University; Applied Science Corp. of Princeton; A-V Manufacturing Corp.; Avien, Inc.; Avion, Division of A.C.F. Industries, Inc.; Bailey Meter Company; Bell Telcphone Labs.; Bendix Aviation Corp., Pacific Division; Bristol Co.; Bureau of Ordnance, Department of the Nary; Consolidated Engineering Corp.; Elcetro-Mechanical Research, Inc.; The Foxboro Co.; General Devices, Inc.; Gencral Electric Co.

Also G. M. Giannini \& Co., Inc.; Gulton Mfg. Corp.; Haydu Brothers of New Jerscy; Naval Research Laboratory; Nems Clarke, Inc.; Research Division, New York University College of Engineering; Potter Acronautical Co.; Radiation, Inc.; Radio Frequency Labs., Inc.; Raymond Rosen Engincering Products, Inc.; Statliam Laboratories, Inc.; Stavid Engineering; Taller \& Cooper, Inc.; The Vapor Recovery Systems, Inc.; Vitro Laboratories.

Data recorded on multitrack paper-tape oscillograph, at receiving end of telemetering link, is read off by enginecring staff for subsequent interpretation and evaluation

Glossary of Telemetering Terms

(condensed from AIEE suggested terminology)

ICCELEROMETER-instrument that measures one or more

 components of acceleration.ACCURACY-if an indicated or recorded valuc, is a measure of conformity to an accepted standard.
AMBIENT-surrounding medium.
AMBIENT CONDITIONS-such as pressure, temperature.
AMPLITUDE MODULATION-(a-m) conveys intelligence by varying the amplitude of a wave.
BAND-limited continuous region which is part of a more extended region. Used in conncction with frequencies and pressures.

BANDWIDTH-extent of the band.

BAUD-a unit of sigualing-speed derived from the duration of the shortest code element. Speed in bauds is the number of code elenicuts per second.
BIDIRECTIONAL PULSES-single polarity pulses, not all of which have the same sense of departure from normal.
BINARY CODE-composed of a combination of entities, cach of which can assume one of two possible states and which is identifiable in time or space.
BITT-a quantity of intelligence which is carried by an identifiable entity and which can exist in either of two states.
CALIBRATION ACCURACY-finite degree to which a device can be calibrated. (Influenced by sensitivity, resolution, and reproducibility of the device itself and the calibrating equipment.) Usually it is cxpressed in percent of full scale.
CARRIER-a wave suitable for modulating by a modulating wave.
CARRIER-TO-NOISE RATIO-magnitude of the carricr to that of the noise after selection and before any nonlinear process, such as amplitude limiting and detection.
CHANNEL TELEMETERING-route required to convey the magnitude of a single telemetering measurand.
CHANNEL PULSE-represents intelligence on a chanuel by virtue of the modulation characteristic.
CLAMPING CIRCUI'T-maintains either amplitude extremity or a waveform at a certain potential level.
CLIPPER-a device whose output is zero or a fixed value for instantaneous input amplitudes up to a certain value, but which las an output that is a function of input for amplitudes exceeding the critical value.
CLIPPER LIMITER - a device whose output is a function of the instantancous input amplitude for a range of values lying between two predetcrmincd limits but is approximately constant at another level, for input values above the range.
COMMUTATION SWITCH-device used to execute repetitive sequential switching.
CROSS MODULATION-of a carrier of the desired signal by an undesired signal.

CROSS TALK-intefference in a given channel originating in another chanuel of the same system.
DECODING-process of obtaining intelligence from a code sigual.
DETECTION-process by which a wave corresponding to the modulating wave is obtained in response to a modulated wave.
DEVIATION FROM LINEARITY-in percent of full scale, deviation from linearity is the maximum deviation of a curve from the most favorable straight line that can be drawn througla the curve.
DEVIATION RATIO-in a frequency-modulating system, the ratio of the signal frequency to the maximum frequency of the system.
DISCRETE SAMPLING-individual samples of such long duration that the intelligence frequency response of the channel is not deteriorated by the sampling process.
DISCRIMINATOR, FREQUENCY-a device that responds only to a given set of frequencies laving a particular characteristic, such as duration, amplitude, period.
DISCRIMINATOR, PULSE-a device that responds only to a pulse having a particular characteristic, such as duration, amplitude, period. The latter is also called a time discriminator.
DISCRIMINATOR, PHASE-a device in which amplitude variations are derived in response to phase variations.
DUTY FACTOR-in a pulse carrier composed of pulses that recur at regular intervals, the product of the pulse duration and the pulse repetition frequency.
END DEVICE-the fimal system element that responds quantitatively to the measurand and performs the final measurement operation.
ELECTRIC TELEMETERING-telemetcring performed by deriving from the measurand or from an end device a quantitatively related separate clectrical quantity or quantities as a translating means.
ERROR-of an indicated value is the difference between the indicated value and the true value of the quantity measured. (It is the quantity which algel)raically subtracted from the indicated value gives the true value. A positive error denotes that the indicated value of the instrument is greater than the true value.) Usually expressed in percent of full scalle.
FRAME-one cycle of a cyclically recurring number of pulses.
FRAME FREQUENCY-the number of frames per unit time.
FRAME SYNCHRONIZING PULSE--a recurrent signal establishing each frame.
FREQUENCY DEVIATION-the deviation in frequency from its assigned valuc.
FREQUENCY MODULATION-angle modulation in which the instantaneous frequency of a sine wave carricr is caused

GLOSSARY OF TELEMETERING TERMS

(continued)

to depart from the carrier frequency by an amount proportional to the instantaneous value of the modulating wave.
FREQUENCY MODULATION DEVIATION-peak difference between the instantancous frequency of a modulated wave and the carricr or reference frequency
FREQUENCY MULITIPLEX-technique for the transmission over a common path of two or more signals, each characterized by a distinctive refcrence frequency or frequency band.

FREQUENCY RESPONSE CHARACTERISTIC-variation

 with freguency of the gain or loss of a device or a system.FREQUENCY SHIFT KEYING-that form of frequency modulation in which the modulating wave shifts the output frequency betiveen predctermined values and the output wave is coherent with no phase discontinuity.
FREQUENCY SWING-in frequency modulation, the peak difference between the maxinum and the minimum values of the instantaneous frequency.
FRICTIONAL ERROR-as applied to pickups, is the difference in values measured in percent of full scale before and after tapping, with the measurand constant.
HARTLEY-a unit of information content, equal to one decimal decision, or the designation of one of ten possible and equally likely values or states of anything used to store or convey information. A Hartley nay be conveyed by one 10 ary code clement. One Hartley equals $\log _{2} 10$ bits; $\left(\log _{2} 10=3.323\right)$.

HYSTERESIS ERROR-the maximum difference in percent of full scale in readings obtained by making a complete fullscale cycle of the measurand at a specific value of the latter.
INDICATOR-an instrument that makes information available but in which there is no provision for storage of such information.
INDICATION-the display to the human senses of information concerning the measurand.
INTERFERENCE-in a signal transmission system interference is the extraneous power that tends to interfere with the reception of the desired signals.
KEYING-forming of signals such as those employed in tele graph transinission by an abrupt modulation of the output of a direct-current or an alternating-current source, as, for example, by interrupting it or by suddenly changing its amplitude or frequency or some other characteristic.
LIMITER-a device whose output is virtually constant for all inputs above a critical value.
LINEARITY-a relationship existing between two quantitics when the change in one quantity is exactly and directly pro portional to the change in the other quantity.
MEASURAND-a physical quantity, property, or condition that is to be measured.

MODULATION-the process or the result of the process in which the amplitude, frequency, or phase of a wave is varied with time in accordance with a wave.

MODULATION INDEX-a measure of the degree of modulation for any type of modulation
MULIIPLE MODULATION-a succession of processes of modulation in which the modulated wave from one process becomics the modulating wave for the next.
NATURAL FREQUENCY-frequencies of a body or system are the frequencies of frec oscillation.
NOISE-any electrical disturbance tending to interfere with normal reception of a transmitted signal.
PHASE DEVIATION-peak difference between the instantaneous angle of the modulated wave and the angle of the carricr.

PLIASE MODULATION-angle modulation in which the angle of a sine wave carrier is caused to depart from the carricr angle by an amount proportional to the instantaneous value of the modulating wave.
PHASE RESPONSE CHARACTERISTIC-the phase displacement versus frequency properties of a nctwork or system.
PICKUP-a device that converts a magnitude (which may be of a measurand) into a corresponding electric signal.
PRIMARY DETECTOR-the first system element or group of elements that responds quantitatively to the measurand and performs the initial measurement operation
RECORDER-an instrument for the storage of information concerning the relationship among variables.
RIPPLE-percent ripple is the ratio of the effective root-meansquare value of the ripple voltage to the average value of the total voltage, expressed in percent.
SAMPLE, INTELLLIGENCE-part of a signal used as evidence of the quality of the whole.
SIGNAL-in telemetering, is the electrical intelligence or message conveyed.
SIGNAL-TO-NOISE RATIO-the ratio of the magnitude of the signal to that of the noise. This ratio is often expressed in decibels.
ŠUBCARRIER-a carrier applicd as a modulating wave to modulate another carrier.

SYNCHRONISM-the phase relationship between two or more periodic quantities of the same period when the phase difference between them is zero.

TELEMETERING-measurement with the aid of intermediate means that permit the measurement to be interpreted at a distance from the primary detector. The distinctive feature of telcmetering is the nature of the translating means, which includes provision for converting the measurand into a representative quantity of another kind that can be transmitted conveniently for measurement at a distance. The actual distance is irrelevant.

TIME DIVISION MULTIPLEX-the process of transmitting two or more signals over a common path by using different time intervals for different signals.

Bibliography

SXSTEMS

The Theory and Application of FM/FM Telenetering Bendx Aviation Corporation', Pacific 'Div., Hollywood, Calif. "Fundimentals, of Instrumentation For The Industries'. Minneapolis-Honeywell
Regulator Co., Ind. Div., Philadelphia, Pa. A. L. Thurston, Scille Ẅrighs Moving Trucks, Slectroncs, p 142 Jan. 1956 .
A. Socke, Guidance", D. Van No-
 J. E. Spooner, Range and Coverage
Characteristics of a High Capacity PTM-AM Telemetering Sysiem, Nat Tele Conf Rec, F 70, 195.
H.' A. Rhodes and R. W. Ralston. Channels for Telemetering, Supervisory Control and Other Purposes, Nat Tele Conf Rec, p 33, 1905.
C. R. Reid, A Digital Ajproach to Tele-
mejer Testing, Nat Tele Conf Rec, D
145 , meer resting, Nat Tele Conf Rec, D 145 ,
$195 \overline{5}$. Irast, S. H. Cahoun, G. S. Hartloff
J. J. Prast, S. H. Calhoun, G. S. Hartloff and G. W. Liske, A Precision Pressure Telemetering System with Digital Iata Handing. Nat Tele Conf Rec, p 192, 1905. vat Tele Conf Rec, 1 1515. 1950. Jat Ohman, Vibrotion Disital Telemeterin System, Nut Tele Conf Rec, p 49, 1955. Control System, Nat T'ele Conf Rec, p9, 1955.
'T. B. Jackson, A Sequential Pulse Trlemetering System, Nat Tele Conf Kec, p 169, 1955.
R. F. Hummer, R. M. McClun and D. J. Simmonds, An Automatic Digital Telemetering System for Small Gilided Missiles, Nat Tele Conf Rec, p 201, 1955.
M. H. Goldstein, Jr. and C. W. Merriam III, Evaluation of an Automatic Landing System for Aircraft, Nat Tele Conf Rec, p 149 , 195 万.
W. II. Egwerton. A 14-Channel sistem for Remote Control of Aircraft Flight, Nat Tele Conf Rec. p 161, 1955.
G. E. Earhart and O. A. Becklund, Silicon Transistor Applications in Telemetering Equipment, Nat Tele Conf Rec, p 174,1905 In ... Dover, Telemetry as a Flight Test L. R. Davis. A Pulse Telrmetering Sys tem for Use on Balloon-Lalunched Rockets, Nat Tele Conf Rec, 1 16.5. $195 \overline{5}$.
Rain Gages Send Radio Reports, ElecTroNiCs, p 186D, Sept. 19:5.
S. S. Bagno, Designing Ultrasonic Alarm Systems, ELECTRONICS, il 106, Aug. 1955 . It J. S. Carroll, S. B. Hanimond and E. If. Stewart. Measuring and E-cording Atmos-
pheric Electrostatic Potentials, Eleo Eng, plieric Electrostat
p 690 A Aug. 1955.
p 690 . Alug. 1955 . ${ }^{\text {C. }}$. 1 . Forrest, Jr.. A Fully Selective Telemetering Sostem Employing Telegraph Facilities, Comm and Nlec, p 3i2, July 1955.
W. W. Rufleth, Facts that Influence Your Approach to Telemetering, Control Eng, p 48, Julv 1955.
For Riam Electuonics System Controls For $\underset{\mathrm{K}}{\mathrm{Alam}} \mathrm{G}$, ELECTHONICS, p 122, July 1955. Backseat Computor Rates Fuel in Action, Control Eng, p 58 , June 14.5.
G. E. Bower and J. B. Wynn. Jr., AnG. L. Bower and J. B. Wynn. Ir., AnElectronics. p 164 , June 19-5.
Ioint Committee on Trlemeteriny Terminoloyy, Glossary of Some Telemetering Terms, Elec Eng, p 153, Feb. 1955
H. J. Strickiand. Light-Beam Telemetering. Electhonics, p 135̄, Dec. $19 \overline{4} 4$.
Handbook of Measurement and Control, Inslruments and Automation. Dec. 1054.
M. L. Greenough aud C. C. Gordon, Parachute-Borne Telemetering System, Electionics, p 148, June 1954.
G. M. Lurgwald and L. Reiffel, BalloonBorne Radiation Telenietering, System,
ELECTHoNics, p 138 , May 19.4 .

Rawinsonde Probes Troposphere, ElecTRONICs, P 196D, Apr. 1954
F. M. Riddle. Transistors in Telemetry, Electronics, p 178, Jan. 19.4.
C. W. Jolinstone, J. F. Lalback and H. J. Lang, a Telemetering System for a Large Electrostatic Accelerator, Proc IRE, p 1,664, Dec. 1952.
A. J. Mornfeck and G. R. Markow. Multipoint Telemetering System Using Teletype Transmission. Flec Eng, p 929, Oct. 19:2 J. L. MeLucas, Narrow-Band Link Re lass Radar Data, Electronics, p 142, Sept 19.12.
V. E. Suomi and E. W. Barrett, Experimental Radiosonde for the Investisation of the Distribution of Water Vapor in the Stratosphere, J_{J}, Sr. and $\mathrm{S}_{\mathrm{S}} \mathrm{L}_{\mathrm{L}}$, Ackerman Guided Missile Test Center Telemetering Guided Missile Test Center Telemeterin System, Electronics, p 106, May 1902 .

Tclemetering Standards for Gunded Mis Siles, Research and Develo
Dept. of Defense, Nor. 1951.
Dept. of Derense, Nor. ig: Mckenzie, Automatic Broadcast Program Monitor, Electhonics, p 124, Oct. 1951.
J. J. L. Hogan and J. W. Smith. Multi plexed Broadcast Facsimile. Electronics, p 97, Oct. 1951
C. K. Duff, Choice of Telemetering Syslems and Channels tor a Power System, Elec Eng, p 796, Sept. 1951
F. Friswold, Central Instrumentation Widens Testing Scope, Product Eng, p 168, Aug. 1951 .
M. A. Pomerantz, Cosmic-Ray Radiosonde and Trelemetering System, Electronics, p 88, Apr. 1951.
J. T. Mevaney, Antomatic GCA, Electhonics, p 82, Feb. 19:1
J. A. Ioremus, Telemetering System for Radioactive Snow Gage, Electionics, p 89, Feb. 1951
M. H. Nichols and L. L. Rauch. Radio Telemetry K Sci Instr, p i, Jan. 1951. Farnell Chishoim. E. F Bultichannel Pisy ind G. W. Farneif A Multichannel PAN-FM Radio 19.j1. IV. A. Derr, T. C. Wren and J. V. Kresser, Multistation Supervisory Control, Selemitering and Communitation of Singlep 862, Oct. 1950.
G. E. Foster, The Metrotype System of Disital Recording and Telemetering, ELec Lig, b 427, May 1950.
Telemetering Ocean Current Information. Electronics, p 148D, Mar. 1950 .
F. W. Lehman, Transistor Oscillator for Telemetering, Electronics, p 90, Aug. 1949. A. A. Mckenzie, Ultrafia, Electionics, p 77, Jan. 1949.
T' A. Borden and G. M. Thynell, "Principles and Mcthods of Telemetering, Reinhold Pub. Corp., New York. N. Y.. 1948. R. F. Belin, Radiosonde Potential Gradient Measurements, Elictronics, p 184D
Jan. $19+8$. Telemetering. Supervisory Control and Associated Circuits, Special Pub. S-12, $A I E E, 1948$.
$V_{\text {. }} L_{\text {L }}$ Heeren, C. H. Hoeppner, J. R. Kauke, S. W. Lichtman and P. R. Shifflett. ELectionics, p 124, Apr. 1947
V. L. Heeren, C. H. Hoeppner. J. R Kauke. S. W. Lichtman and P. R. Shif flett. Telemetering from V - 2 Rockets, Part I Electronics, p 100, Mar. 1947.
Telmetering in Stratosphere, Elec TRONICS. R142D, Mar. 19 ± 7.
L. I. Raueh. Electronic Communication for Telemetering, Electionics, p 114, Feb, 1947.
L. Ackerman and Grorge Rappaport Radio Control Systems for Guided Missiles, Electronics, p 86, Dec. 1946.
D. N. Moore Jr., I Pane-to-Ground Radio Telemetering, Electronics, p 124, Nov 1945.

Facsimile Over 4.000-Mc Relay System, GLECTRONics, p 146 D , Oct. 1946
H. B. Brooks, Weather Forecasting, ElecTRONics, p 84. Oct. 1946.
N. J Holter, Measurement of Ocean Waves Generated by Atomic Bombs, ElecTRONICS, p 94, May 1946 .
V. D. Hauck, J. R. Crosby and A. B Dember, Radiosonde Telemeter Sytems, Electronics, p 120, May 1946
K. Henney, The Sonobuoy, Electronics, p 154, Apr. 1946.
i Wones Th Wolf, D. Ewing and tionics, pi24, Feb. 1946.

TRANSDUCERS

L. A. G. Terleen, New Development in Miniature Telemetering Pickups, Nat Tele Conf hec. p $63,195 \overline{5}$.
R. A. Runyain and J. B. Harry, A. Capacitance Compensated Strain Gage Sulcarrier Oscillator, Nat Tele Conf Rec, p 88, 19 ธ5.
R. L. Rod, Ultra Sonic Liquid Level Indicating Systems, Nat T'ele Conf Rec, p 28 , 1955
S. C. Stern and C. W. Hill, Simple Ultraviolet Radiometer, R Sci Instr, p 1,222, Dec. 1950.
S. A. Davis, Using A Two-Phase Servomotor as an Inductor Tachometer, Control EnO, p 75 , Nov. 1955
A. D. Miaier, Tap the Transducer to Up System Accuracy, Control Eng, p 92, Oct. 1955
S. R. Gilford and H. P. Broida, Ihysio logical Monitor for Anest hesia, Electronics, p 130, Oct. $195 \overline{5}$
R. L. Bell, Electric Transducers for Auto matic Weighing. Eleo Eng, p 926, Oct. 195\%, A. J. Hornteck and L. M. Wermelskirchen, The Morable Core Transformer as a Pick Comm and Elec, p 454 Set 19 ºn
Comm and Flec, p
V. Corey, Calibrate Angular Accelero meters Without Precise Accelerations, Control Eng, p 87, Aug. 1955
H. F. Clarke, A Survey of Noncontacting Vibration Pickups Using Filectric Fields, Comm and Elec, p 186. May 1905.
W. II. Howe, High-Pressure Measurement and Control. Control Eng, p 53 , Apr. 1955. H. M. Joseph and N. Newman, Eddy Current Mutual-Inductance-Transducers with High-Condnctivity Reference Plates. Comm and Elec, p 39, Mar. 1955.
W. R. Clark, W. G. Amey and G. C Mergner, An Air-borne Temperature Indi cator, Comin and Elec, p 1 Mar. 195. H. Christensen and J. E. Funder, Pressure Gage for ship-Morel Hulls, ELEC Char, p 190, Jan. 1955

Characteristics and Applications of Resistance Strain Gages, Nationa bureau of Standards, Washington. D. C.
R. L. Bailer aud J. R. Quirk, VHF Meter Measires Low Power Levels, Electinonics, p 158 . Nov. 1954
P H. B. Weisbecker and R. Steinitz, DirectReading Grenz-Ray Dosimeter, Electronics, 1 168. Oct. 1954
F. Kockett. Precision Potentiometers Use New Materials, Elvcthonics, p 145, Oct. 1954.
J. Piccard, H. Larsen and J. Riomsirand, Thin Wire Thermometer for Radiosondes, R Soi Instr, p 959, Oct. 1954.
R. J. Levine. Temperature-Compensated Aircraft Fuel Gage, Electronics, p 160, Sept. 1954.
E. Keonjian and J. S. Schaffiner, Shaping of the Characteristics of TeuperatureSensitive Rlements, Comm and Elec, p 396,
A. Corman and J. F. Redinger, RocketBorve Photometer Measures Sky Light,
G. C. Mayer, Electrical Circults for

Weight Measurement，Elec Mfg，p So，Aug J．Irog．Improved Needle Thermocouple or Subeutaneous and Intramuscular Meas arements in Animals and Man．R sci Instr， p 799 ，Aug 1954.
Short－Circuit Rotor，Comm and Short－Circuit Rotor，Comm and lilec，p 131 Day ${ }^{195} 4$ ．Kret，＂Transducers＂，Allen B Du Mont Lab．，Inc．，Instr．Dír．．Clifton
N．J．， 1953 ． N．J．， 1953.
L．Jones．Cemented Piezoelectric Accilero D．Sters sci Instr，p 1．1．1．Dec．195：； Manometer Accelerometer，Theory of the p 1，021，Nov． 1953.
S．Davis，Rotating Components for Auto
matic Control，Product matic Control，Product Eng， P 129，No下．
A．I．Brownlee and H．E．Brown．Gen erator Stator Copper Temperature Indi cator，Comm and Elec，p 676，Nor．1953．
J．E．Dinger and R．E．Ruskin，Resistance Thernometer with a Linear Response Sci Instr，p 761，Sept． 1953.
L．C．Bradles．Temperature Sensitive I＇hosphor Used to Messure Surtace Tern peratures in Aerodynamics，R Sci Insti p 219 ，Mar． 1953
Radio－Sondes，R^{\prime} sci lnstr er 97 mement fo J．Winckler and K Str， F 97 ，Feb． 1953 proved Cerenkov Detector for Cosmic Roys Sci Instr，$p 765$ ，Dec． 1952
C．M．Fields and R．S．Nerim．Simmsnidal Calibration Table for Vibiration Trpe Trinns ducers，Product Eng，p 172 ，Dec． 1052.
R．J．Fytip ancl A
Transducers for Measurement and Conirol Transducers for Measurement
G．K．Guttwein and A．I．Dranetz Self Generating Accelerometers ELEC＇Rosics p 120，Oct． $19 \overline{0} 1$ ． Measuring Small Motions，Product Eng， （I） 163 II Aug． 1051.
II．W．Cole，Jr．，Some Thermocouple De－
tails for Temperature Measarement Prod uct Eng， p 166，Aug． 1951.

Testing Aircraft Fuel Gages，Elec TRONICS， p 138D，July 19 ， 1

S．S．Haynes，Automalic Calibration of Radiosonde Baroswitebes，Eiectronics p 126 May 1951.
J．F．Engelberger and II．W．Kretsch．An Glectromechanical Transulucer，Elec Eng ？ 437. May 1951.
S．A．Talbot．J．L．Lilienthal．Jr．，J Resser and L．W．Reynolds，Wide Range Mechano－Electronic Transilucer For Physio Apr． 1051 ． Apr．R．Bierman and R．Jenkins，Hypo－ dermic Pressure Manometer Utilizing the Bonded Wire Resistance Strain Gauge R Sci Instr．p 268，Apr． 1951.
D．J．Deifichele．Wire Strain Gises for Filerated Temperature Service，Product Eno，P110，Oct． 1950.
with Variable Reactors Breunich，Sensing Small Motion： with Variable Reactors and Differential
Transformers，product Eng，p 11．July Transf
1950.

W．D．MacGeorge，The Differential Trans former as Applied to the Measurement of Substantially Straight Line Motions．In struments，p 610 ，June 1950.
Permanent Magnet Measures Fluid Flow Product En！，p 9S，Feb． 19.50.
product Eng． 150 ．Ian 1050 ded at NOL Product Eng，P150．Ian 1950
${ }^{R}$ ．C．Hizer，Testing Vohicle Components With Strain Gages，Product Eng，p 134 Apr． 1949.
of Ancular Anstrument for Measurement of An Feb Acceleralions，Proaluct Eug A．C．Ruge，Bonded Resistance Wire Gase for Strain Measurements，Product EHG，p 116. Jan． 1949 ． dircraft Speed，EIECTRONICS $p 72$ lieb 1948
E．F．Kiernan，Telemetering Fathometer， RLECTUONICS． 9 96，Oct．1！ 14 ．
Fate Jurran．Imperlance Fringe for Flow－ Rate Metering，ELECThonics，p 106，Apr． $19+7$.
D.
D．W．Moore．Jr．，Electronic Position Pickup，Electronics， 1 j 100 ．Jan， 1947 D．G．Fink．F－M Radar Alimeter，Elfc－ TRONICS，p 130，Apr． 1946
D．W．Moore，Jr．，Fuel Consumption In dicator．Eiectronics，p 152．Mar． 1946. ELECrionics， 130 ，Feb． $19+5$ ．

COI）ING OR SAMIPIING

H．Moss．The Magnetron Beam Switch－ Tube．Nat Tele Conf Rec，p 97， 1950.
R．O DuBois，Miniaturized Airborne

Electronic Commutator，Nat Tele Conf Rec， p 112，195．
Comp．R．Davis．IIigh Speed Mercury Jet Commutating Switch，Nat Tele Conj Rec， p 105， 1955
rices in Prinster，Mechanical Sampling De Nices in lelemetering and Related Fields， Nat Tele Conf liec，p 4t． 1955
silver Quickens and J．H．Derry，Quick－ Sampling Pace，Control Eug．p 84，Jıne 10ラ5． A．G．Fitzpatrick，PCM Couling System Uses Special Tubes，ELECTnoxics，p 173 ， Nov 10.3.
R．R．Bennett and H．L．ow．Step Switch Conics Diritizes Analog Data，Elec－ Tronics，p 144, Nov． 1953 ．
Un．
Gia eriated Two－Channel Commutator Switch， R Sci Insir．p 833．Sept． 1953.
J．P．Costas．Coding with Linear Systems， roc $I R E$ ， 1,101 ，Sept． 1952.
W．H．Chester ind W．P．Klemens，De－ commotatiner Pulse Telenetis，Electronics， p 140 ，Aug． 1952.

SIGNALING

R．W．White，A lDM－FM Telemeter for Low Level DC Inputs，Nat Tele Conf Rec， 9 i8， 1955.
R．M．Stuart，A New Hi－Speed Telemeter Transmitter for DC Measurements，Nal Tele Conf Rec，p $̄, 195 \%$.
G．S．Sloughter．R．A．Rungan．W．H． Duerie，and G．E．Tisdale，Telenietry Filters and Their Effect on the Denamic Accu－ racy of Multiplex FMI Subcarrier Instru－
inentation Systems，Nat Tele Conf Rec， mentation S
$p 118$
19
p $118,19.5$.
A New Crystal－Coutrolled．Wr．Zancanata， A New Crystal－Controlled Ground－Station Telemetering Receiver，Nat T＇ele Conf Rcc， p $127,1950$.
ner Subeariers Mixing Xirborne Telemeter－ ing Subcarriers for Maximum Isolation with Minimun Loss．Vat Tele Conf Rec， p \mathbf{W} ．H．Howe，A New rime Interval Tele－ meter System，Nat Tele Conj Rec．$p 1 \overline{5}$, 1955．Finkel，F．Shitndelman and J．Pione Kowski A New Subminiature Airborne Ful Demultiplexer，Nat Tele Conf Rec，p 92， 195．5．R．Cunningam，Antomatic Teletyre ＇ransmitting System，Nut Tele Conf lice， p $21,1950$.
A．H．Cooper，Coherent I＇ulse Telemetry， Nat Tele Conf Rec， 1 179，195，
G．F．Montgomery，Ultrasonic Switch Aids Diversity Reception，Electronics，p 109 M．H．Kebby，Coaxial Cavity Filters for Multiplexing of $900-\mathrm{MC}$ Radio－Relay Sys tems，Elcc Eng，p 42す̄，Mav $195 \overline{3}$
ation Over Complex Cur of Tone Modu lation Over Complex Ciritier Channels Elec Eng，p 310 ，Apr． $195 \overline{\text { Weber }}$
Liquid Fluid Level，Control Signals Merer Mar． 1905. for Industrial Controls，El．ECTRON：Cs，1188， Mar． 1905.
D．G．Mazur，Pulse Transmiter for 19 T 4.
II．B．Schultheis，Jr．Froqueney Code Telemetering System，Eifctronics，p 17： Apr． $195+$ ．
C．R．Scbafer，Phase－Selective Detectors LImCTRONICS，I 188 ．Feb． 1904
H．S．Black，＂Modulation Theory＂，D
van Nostrand Co．，Inc．，New York，N． 1953.

R．W．Beckwith，Frequency Shifi Car rier－Current Equipment for relemeterin and Other Control Functions，Elec Eng p 1,026 ，Nov． 1952. Gray，V．Purske and W ．I Morrow，Wide Band Data Transmitter， Morrow，Wide Band Data Tri
Erectronics，p 168 Sept 1953. Multiplex System，Electronics，p 116 ， Multiplex
Aug． 1952.
F．G．Willey．Converter Cirenit for Phase Shift Telemeterint，Euecruonics，p 1 toD， Ang． 1951 ．Sloughter and R ．Ellis，Jinear Discriminator for F－M Multiplexing．Elec－ TRONICS，p 112．June 19.1
N．R．Best，Matrix Telemetering System， Electronics， 1 82，Aug． 1950
Modulation．Electanghin，Folded Sideband Modulation．Electronics，p 88 ，Mar． 19 ． 90.
G．H．Melton，Multichinnel Radio Tele metering for Rockets，Electrowics，p $10 \theta^{3}$ ． Dec． 1948

O．G．Villard．Jr．．Composite Anplitule and Phase Modulation，Eractronics．p Sfi Nor． 1948.

S．Bailey and H．E．Singleton，Reducing Transmission Bandwidth，ELECTRONICS p 107 ，Aug． 1948 ．
H．D．Helfrich．Jr．Wide Ieviation Re actance Modulator，Electronics，p 120 Apr． 1948 ．
munications munications Systems，Eisectronics，p 73 Jin． 1948.
Efficiency，Elecrmoxics，on Transmission Efficiency，Elwcrroxics，p1360．Jan． 1948 Minimizes Noise，Entermovics，p $2 \mathscr{2}$ ，Dec 1947.

Pulse Code Modulition．Eifictuonics b 136 D ，Aug． 1947 ．
F．H．Rockett，Modulation Types and Charmeteristics，LiLectuonics， 1 124，mid June 1947 ．
A．Easton，Pulse Modulated Oscillator Electhonics， 124 Mar． $1: 147$.
H．K．Bradtord，Nite－Anrle lhase Modu lator，libectranics，p 100 ．Feb． 1947
 out Sideband Splatier，Eifectuonics，p 90 Jan． 1947.
G．G．Bruck，lrequency Modulator
ELECRONics，p J66D Jan． 1947 Elictronics， D J6D，Jan． 1947

M．Marks，Caseade Phase Shilt Modu－ hator，Electionics，p 104 ，Dec． 1946.

Pulse Time Modulation Cireuits，Elec－ TRONICS，p 140 D ，Nov． 1946.
Ratios Sinnal－to－Nois Ratios，ElLectroxics，p 150 ．June 1940. Lu Equipment，Enecrionics，p 12t，May 1946.
D.

Methodshuman．Ficsimile synchronizing Methods，ELEC＇uONICS，p 130，Mar． 1946

DATA PROCESSING

J．L．Winget，l＇recision Data Recording and Repeating system（The Inductosyn）， Nat Tele Con Rec， p 示， $19 \overline{5}$
Rat Tele Shaw．Talking to a Computer， R．L．lieuiner．An Analors
R．L．lieuiner．An Analor Cross－Spec－ Drum Analyzer for Certain Telemetered Data，Nat Tcle Conf Rec， p 82 ．19．55．
H．D．Grief and R．A．Dekimpe．Anto－ matic Data Reduction of ATissile Telemeter－ iug．Nat Tele Conf Rec，p 204.195.
A．Nat Gere Conf Rec，p 20t．19nges．Precision Mnli－Channel Heads ior Marnetic Tape Recording，Nat Tele Conf Rec，p 141，1555．
G．L．Davies．The Role of Magnetic Tape in Data Recording Processing find Analysis， Nut Tele Conf Rec，p 182， 19.5 อे．
G．W．Bower，A New Instrumontation Di－ rect Writing Iecorder and Its Application to Telemetry．Nat Tele Conf Rec．V 13 S ． 1955. G．W．King，A New Approach to Intorina－ tion Storave，Control King，p 48，．Uug． 195.5 ． R．L．Perkins．Magnetic Drum Storage Devices．Product Eng．p 192 ．Aug．1955． E．M MeCormick，Data Reduction Sys tem for Missile relemetering，Elfctionics， p 126．May 195J．
G．M．Groenendyke and G．B．Loper， Cathode－Ray Display of Seismic Record ings，Electronics，p 160，May 1955.
Eny，p 180．Mar 1055 Systems，Product Ent，p 180，Mar．I⿰马5． Geophysical Recordings，Entactronics， p 152，Janl． 1905.
Recorder Nonitors Test Flight，Elec THONICS，p 192D，Sept． 1954
A．S．Hoagland．Magnetic Drum Record－ ing of Digital Data，Comm and Elec，p 381.
Sept．1954． Curtin，A New 12－Element Automatic Oscil－ lograph and Application on the Bonnerille
Power System，Comm thd Elec，p 307，Sept． Power System，Conm and E＇lec，p 307，Sept． 1954．L．IIollander，Dirital Data－Recorder Stores Continuous＇Voltages，Comm and Elec，p $253 . J u l y 1954$
M．L．Van Doren，Magnetic Recording of PWM Signals，Ef．FCTHON1CS，p 232 D ，May
G．K．Guttwein and J．M．Leslie，Jr Mignetic Recording for Vebiculiar Re search．Enectronics，p 154 ，leb． 1954 ． ing Instruments，I＇irt II，Elec Mfg，p 120 Dec． 1953 ． Instruments．Part I，Elec Mjo，p 114，Nov． 1953.

J．Linsles，Pulse Recording System for Lesearch at Iligh Altitude，R Sci Instr， － 181 Feb．1！ 3.
A．A．Gerlach，F－M Recording in Guided Missiles，Electronics，p 108 ．Jin 1953
L．Costrell，FM Data Reducrion from Magnetic＇Tape Recordings，li Sci mstr． p 76，Jan． 19 ．ns．
Whort Intervisls，ELection and Timer for Short Intervils，ELECTHONiCs，p 12G，Nov 1917.

By SAUL SHENFELD
and

MANUEL FINKLE
U. S. Navy Underwater Sound Laboratory

New London, Connecticut

Appearance and structure of type QK-464 storage tube

Storage-Tube Device Simulates Radar Net

Abstract

CUMMARY - Video signals are obtained in the form in which they would be received from two or more separated radar stations. Moving targets may be simulated. Cathode-ray storage tube retains information fed alternately to separate radar indicators

IN EVALUATING radar indicator equipment, the problem of synthesizing video signals, which represent the return echoes of moving targets, frequently arises. This problem may be complicated by the need for presenting the targets as they would be displayed on indicators of two or more radar stations geographically displaced.

In Fig. 1A is shown a possible configuration of the targets and two radar stations whose returns are to be simulated. The radar stations are labeled A and B. Although only three targets are shown, many more could be simulated.

Three radar indicators using ppi presentation were used. In one, the
oscilloscope was replaced with a QK-464 storage tube. This indicator employed the resolved-time-base type of sweep and had provision for off-centering in the X and Y directions. The other indicators used centered ppi presentation.

Synchros

A slewing motor drove a 5 G synchro at 5 rpm . The output of the synchro was connected to the servo system in each indicator so that the three indicators had identical speeds of angular rotation. The instantaneous bearing of each sweep was aligned by zeroing each synchro.

In Fig. 1B is shown the indicator presentations simulating those used
for stations A and B. It is assumed that the targets and stations are in the positions shown in Fig. 1A.

To achieve the video signals for each channel, it was necessary to modify the indicator containing the storage tube so that the position of the sweep origin could be offcentered on a time-shared basis between the points on the storage tube corresponding to the locations of stations A and B.

The configuration on the screen of the storage tube is shown in Fig. 2A. Because of time-shared off-centering, one sweep will emanate from A and the next sweep will emanate from B. The sweep starting from A will give an electrical

FIG. l-Configuration of targets and radar stations (A) and simulated ppi presentations (B)
output from the storage tube as shown in Fig. 2B. The next sweep, starting from B, will have no echo. It is then possible to obtain video which will have bearing and range connotation of returns obtained at positions A and B.

Storing Signals

The $\mathrm{QK}-464^{1,2}$ is an electricalinput and electrical-output storage tube. To prepare the storage surface for the wRITE operation during which the target signals are stored, it is necessary to operate the tube first in an ERASE and then in a charge condition. For erasure, the storage screen is connected to +300 v and a constant beam current is scanned across the entire surface of the storage screen.

For charging, the surface of the storage screen is again scanned with a constant beam current but with the voltage of the storage screen reduced to approximately 30 v d-c.

For the write operation, the storage screen is connected again to +300 v , but sufficient bias is applied to the control grid to prevent current flow except during the actual writing of the signal. With this voltage, secondary emission ratio of the storage surface is greater than unity. As a result, any electrons striking the surface will caluse a greater number of electrons to leave the area. A positive potential is created at this point relative to the rest of the screen.

For writing, the 5G synchro was operated manually. The sweep was positioned along the bearing of the
target with respect to A and a range strobe was used to give a sharp pip at the range of the target. See Fig. 2C. The intensity control of the range strobe was turned up for a fraction of a second to write. This sequence may be continued for writing any number of targets.

An alternative procedure consists of disabling the sweep circuits during the wRITE operation and, by X and Y positioning controls, locating the beam spot at the desired target positions. When the grid bias of the tube is reduced for a fraction of a second, the target positions may be marked. The sweep is then restored to normal operation.

Read Out

For reading out the stored information, the potential on the storage screen is reduced to approximately +20 v . The beam current is set for a few microamperes.

Electrons will reach the collector plate only at those points which

FIG. 2-Target pattern (A), video output (B) and method of writing targets on storage tube (C)

Y off-centering is determined by potentiometers that set the d-c potentials on the clamping tube.

The output gates of the flip-flop are connected to gated video amplifiers. The video output from the gated video A channel occurs when the sweep is off-centered to correspond to position A. This sequence occurs for one sweep line. The start of the next sweep on the storage tube occurs from position B, and the gated video B amplifier is activated.

The video connected to indicator A will show the targets as seen from A. On the other indicator the targets will be displayed as though detected from B. A schematic diagram of the output circuits of the storage tube, the video amplifier and the gated video amplifiers is shown in Fig. 4.

A simulation of moving targets has been devised by connecting points X and Y in Fig. 3, to a non-time-shared, variable d-c voltage. This may be obtained from a motordriven potentiometer and adds a variable displacement to both timeshared off-centered voltages. The

FIG. 3-Time-shared sweep permits alternate display on two radar indicators.
targets though fixed in location on the screen, will actually appear on indicators A and B as moving targets. This is due to the translation of the centers of both sweeps.

The authors acknowledge the cooperation of A. S. Luftman and J. Buckbee of Raytheon Manufactur-
ing Company, who assisted in the technical problems concerned with optimum preformance of the storage tube.

References

(1) R. C. Hergenrother and B. C. Gardner, The Recording Storage Tube, I'roc Ihe, $E, 38$. p 740 , July 1150 .
(2) ${ }^{38}$ S. Winkler and S. Nozick, Operation of CRT Storage Devices, ELECTRONiCS, 27 , No. $10, \mathrm{p} 184$, Oct. 1954 .

FIG. 4-Storage tube circuits, video amplifier and gated video circuits constitute heart of radar simulator

Power Transformer Design Charts

By REUBEN LEE and N, E, MULLINIX
Westinghouse Electric Corp.
Baltimore, Md.

$\left\{\begin{array}{l}\text { UMMARY ——Design time for two-winding, } 60 \text {-cps power transformers is } \\ \text { reduced by charts based on use of specific core series under typical operating }\end{array}\right.$

FIG. 1-Primary and secondary winding turns as determined from core volt-ampere rating

DESIGN of simple, low-voltage transformers creates a problem for most transformer design groups. These design charts eliminate or minimize the amount of calculation necessary.

Chart Design Conditions

Limiting assumptions had to be made so that the values for the chart could be calculated. These were based on the use of type-C cores but a similar chart could be made for any given series of cores at 60 cps or other frequencies. The assumptions were:
(1) The core is used at maximum rated volt-amperes.
(2) Core flux density is 16,500 gauss at 60 cps .
(3) The transformer is a single-section secondary wound over primary with 1,000 -volt insulation throughout.
(Continued on page 186)

FIG. 2-Winding wire size in relation to voltage and core rating

NEW

Compression type-28, 32, 40, 48 and 52 contact connectors. Center engaging screw with wing nut or screw driver slot and spring action contacts-permits easy, quick and reliable engagement and dis-engagement. Receptacle side available for pressurized applications.

40 contact connector "A" style for applications where piug is "live voltage" side.

CINCH MICRO CONNECTORS

Available in two styles for alternate application where either the plug or receptacle side is the "live" voltage side. (Protective Hoods and Cable Clamps Available.)

52 contact connector "B" style for applications where receptacle is "live voltage" side.

Molded of orlon filled diallyl per MIL-P-14D. Contacts gold plated; other hardware is passivated stainless steel. (Multiple polarization available.)

Cinch will design, or re-design components to fit specific needs, and will assist in the assembly of components through proven automation technique.
(4) Primary and secondary windings occupy equal amounts of space. Total coil height occupies nine-tenths of core-window height.
(5) Copper loss is divided equally between the two windings.
(6) Total transformer temperature rise is 40 C with a 65 C ambient except for the four smallest cores. These were limited by the regulation values shown in Table 1.
(7) All units are uncased, vacuum impregnated with resin.

Procedure in using the design charts is as follows:
(1) Choose a core from Table I which has a v-a rating equal
to or greater than that required.
(2) Using rated primary and secondary voltages, find number of turns for both windings from Fig. 1.
(3) From rated primary and secondary voltages, find wire size for both windings from Fig. 2.
(4) Use the chart of Fig. 3 to obtain winding resistances.

Ratings rarely fall exactly on the v-a values assigned to each core. Therefore, choose the core with the next higher rating. Wire size in Fig. 2 also increases in discrete sizes. If the chart indication falls between two sizes the smaller size should be used.

Departures from the assumed conditions preclude direct use of

FIG. 4-Relation of winding wire size to current
the chart, but it is still useful as a starting point in designing transformers for high voltages or with multiwinding secondaries. The following notes apply to such modifications:
(1) For each additional secondary winding reduce the core maximum rated volt-ampere by 10 percent.
(2) For 5 -kv rms working voltage reduce the core maximum rated volt-amperes approximately 33 percent.
(3) For 50/60-cycle transformers, reduce the core maximum rated volt-amperes 10 percent.
(4) When permissible temperature rise is higher than 40 C , the core maximum volt-amperes equals ($v-a$ in table) \times $\sqrt{ }$ 'temperature rise/40 C
(5) For rectifier plate transformers use the average of primary and secondary volt-amperes to determine core size. Multiply the primary-wire size in circular mils on chart by primary $v-a /$ average $\mathrm{v}-\mathrm{a}$, and secondary wire in circular mils by secondary v -a/average $\mathrm{v}-\mathrm{a}$.
(6) When taps are required, additional layers of wire may be needed, and unless the transformer rating falls well below the maximum core rating in Table I, size is larger than for a transformer with no taps.

Figure 4 gives the relationship between wire size and current for various cores.

[^10]
MALLORY MERCURY BATTERIES

Mallory Mercury Batteries and Silverlytic* Capacitors save space, provide superior performance in transistor circuits and other low-voltage miniature equipment.

SILVERLYTIC CAPACITORS

Dependability in Miniature Size -to Work with Transistors

To power transistor circuits, Mallory Mercury Batteries are now manufactured by a unique "snap together" construction \dagger that makes higher voltage ratings available at hourly operating costs even lower than conventional batteries. The new design comes in standard 15, $221 / 2$ and 45 voltages . . . can be produced in other ratings on order. A unique power source pioneered by Mallory, mercury batteries offer high energy content in small volume . . . far longer life in service and in storage. Service life up to three times that of usual dry batteries can be expected in transistor radios. Their constant discharge characteristic is ideally suited for transistor operation.
*Trademark
\dagger Potent opplied for
Parts distributors in all major cities stock Mallory standard components for your convenience.

Serving Indusiry with These Products:
Electromechanical-Resistors •Switches • Tuning Devices * Vibrators Electrochemical-Capacitors * Rectifiers - Mercury Batteries Metallurgical-Contacts - Special Motals und Ceramics * Welding Materials

Subminiature Silverlytic Capacitors give maximum rating in small size. Type TAP, $7 / 32^{\prime \prime}$ in diameter by $3 / 8^{\prime \prime}$ long, operates from -55° to $+85^{\circ} \mathrm{C}$; values up to 30 mfd . at 6 volts, and in higher voltages as well. Even smaller is Type TAW-only $.145^{\prime \prime}$ in diameter by $3 / 8^{\prime \prime}$ long. Five basic capacitance values for Type TAW, from 1 mfd . at 24 volts to 6 mfd . at 4 volts. Each capacitance value is also available at lower voltage ratings at slightly lower cost.

We'll be glad to consult on your specific circuit requirements, and to send full technical data. Just write or call Mallory today.

Expect more... get more from

Transistor Receiver Powered By Sun

Weighing only 10 ounces, the receiver shown is said by General Electric engineers to be capable of working two hours a day for more than eight months in total darkness although solar powered. A min. iature storage battery is charged by seven solar cells contained in the transparent plastic case. Artificial light, like that from a 100 -watt bulb, can be used to operate the experimental receiver in the absence of daylight. Costs are still too high to contemplate use of highly efficient solar cells for production receivers. Size of the unit could be cut in half by substituting new subminiature components. Four npn transistors are used

Army's First Semiconductor Equipment

Vacuum tube repeater (EE-89) that weighs 16 pounds will be replaced

Engineering models of Signal Corps first fully transistorized equipment have gained approval necessary for large-scale procurement. The item is a throw-away

FIG. 1-Transistor negative-impedance telephone line repeater

Type TA-126 repeater weighing 65 pounds will give way in some cases
telephone repeater (Electionics, p 178, Jan. 1956).

The negative-impedance repeater (TA-287) is intended for use on field wire as a 2 -wire intermediate, unattended type equipment. Designed for insertion at 6 -mile intervals in a line, it can be employed in circuits using up to 30 miles of wet field wire with a net circuit loss of only 0.8 db per mile at a frequency of 1 kc .

In event of defective operation, the entire repeater is thrown away, since it is sealed in a waterproof compound with external wire leads, thus precluding repair.

Weighing about $3 \frac{1}{2}$ pounds, it will replace the EE-89 equipment, which weighs 16 pounds. It will likewise replace type TA-126 equipment in

BRANE Guides Bomber

Known less glamorously as the MA-2 bombing and navigation system, BRANE (Bombing RAdar Navigation Equipment) is the new name for equipment built by IBM for installation in the Boeing B-52 Stratofortress, the biggest, fastest bomber employed by Strategic Air Command. In the photograph, an Air Force officer peers into the bombsight periscope of the combined navigation-bombing device that weighs 1.457 pounds, requires 30 cubic feet of space and has over 300 electron tubes

W:PRO Presents 2 New VOLTAGE REGULATED POWER SUPPLIES

KEPCO Voltage Regulated Power Supplies are conservatively rated. The regulation specified for each unit is available under all line and load conditions within the range of the instrument.
REGULATION: As shown in table for line fluctuations from 105-125 volts and load variations from minimum to maximum current.
SPECIAL FEATURE: Provision is made for picking up the error signal directly at the load, compensating for the voltage drop in external wiring.

Model 2600

OUTPUT	VOLTS	CURRENT	REGULATION	RIPPLE
1	$0-60$	$0-2$ AmP.	5 Mv.	1 Mv.

Model 2650

30 MODELS

AVAILABLE FROM
STOCK. COMPLETE
catalog on request

KEPGO LABORATORIES

many applications. The latter unit weighs 65 pounds.

Other transistorized versions of communications equipment are under development at Signal Corps

Engineering Labs. Among these are field telephones, 2 and 4 -wire voice frequency repeaters, signal generators, telegraph line units, telephone ringers, teletypewiter
tape sensing devices, audio test amplifiers, teletypewriter converters, dynamic microphone preamplifiers and other audio or inter-mediate-frequency devices.

Infrared Oil-Film Camera Shows Heat Patterns

Engineer adjusts the evaporograph (left) to pick up image of girl holding a glass of ice water. The picture (right) was taken in a completely darkened room at a distance of 30 feet

Called Eva (for Evaporograph) by Baird Associates, Inc., who developed it for the Signal Corps, a new instrument makes it possible to see many objects in the dark. A human body, automobile or other object that has differences in temperature can be seen easily and identified, A man can be spotted at 200 yards and a house a mile dis-
tant can be seen in total darkness.
In operation, the evaporograph collects radiation emitted from an object and focuses it as an image upon an oil film. The oil evaporates from point to point at rates varying with the amount of radiation received at each point. Viewed in reflected light, the differences in oil-film thickness appear as dif-
ferent colors of the visible spectrum.
One practical use of the newly declassified device in the field of electronics may be photographing vacuum-tube envelopes or other components for studies of life expectancy. Temperature studies are now generally conducted by observing the effects of temperature at discrete points.

Lenticular Film For Color Kines

Practical help for the telecaster desirous of using color kinescope recordings may lie in the use of embossed film. Thus far, other methods, such as employment of magnetic tape, have not proved practicable.
The diagram shows the principles of color kinescope recording on embossed film. The red, green and blue video signals in a color television system are fed to three separate kinescopes, marked respectively, R, G and B. The phosphor screens of the three kinescopes are all of the same type, for example, $\mathrm{P}-16$.

Method of recording color programs on monochrome lenticular film

Tonal values of the red content of the scene being televised are rep-
resented by the tonal values of the picture appearing on tube R. This picture may therefore be referred to as a red-separation image. Similarly, the green separation appears on G and the blue separation on B.

- Monochromes - It should be noted that the pictures on the kinescopes are not themselves colored, red, green and blue. All pictures have the color that is characteristic of the phosphor used in all three tubes. For the P-16 phosphor, the light is blue, extending into the ultraviolet. By the design of the optical system, light

many models of HELIPOT* precision potentiometers are stocked for immediate shipment
...our engineers will gladly adapt standard HELIPOTS to your requirements... or build entirely new helipots for you.
for information and specifications

Once your name was Og. You tired of shouldering mastodon steaks...of dragging your mate by her hair. You invented the wheel.

Later, your name was Watt. Steam made your kettle-lid dance... and the Industrial Revolution was on.

Yesterday, you were a bicycle mechanic named Henry...today, your brainchild's descendants are counted in millions.

Your name is legion. You created every linkage...
every device...every system.
You're an engineer.
You make things work better...faster... more accurately ...more economically.

Next week...next month...next year...some system will need a better, faster, more accurate or more economical means of recording... or indicating... or computing... or controlling a process.

You'll want precision potentiometers.
You'll discover that Helipot makes the most complete line... linear and non-linear versions... in the widest choice of sizes, mounting styles and resistances.

You're an engineer
Your career is in the making.
Helipot would like to hear from you.
from R reaching the kinescope recording camera film appears to come from one of four parallel apertures, or bands.

Light from G comes through a second one of these apertures and light from B comes through the remaining two apertures. In the diagram, which schematically displays a vertical cross-section of the optical system, the four bands of light approach the camera objective lens from the left.

An enlarged view of a cross-section through the recording beams and embossed film is shown in the circle at the bottom right of the diagram. The film has tiny cylindrical lenses called lenticules, formod in the film base itself by an embossing process
These lenticules face the camera lens, so that light entering the camera must pass through the lenticules before striking the lightsensitive emulsion that is coated on the back of the support. The camera lens forms images of all three kinescope rasters, superimposed in register on a single frame of the film. Simultaneously, each lenticule images the four separate apertures on the emulsion lying directly behind itself. Thus the red, green and blue separation images are recorded in separate positions within the emulsion.
-Lens Ridges-Each lenticule runs transversely all the way across the 35 -millimeter film width and there are 25 lenticules per millimeter of film length. The recorded image of the televised object is thus divided into about 390 horizontal strips, corresponding to the number of lenticules contained in the height of a 35 -millimeter mo-tion-picture frame. Each of these strips is further divided into red, green and blue components.

It is an important fact that the emulsion layer is an ordinary bluesensitive black-and-white type. The color separations are obtained as colorless, silver images. Since complicated color processing of the film is not required, it can be developed rapidly, easily meeting the requirements for time-zone-delayed broadcasting.

Televising embossed film color records is accomplished either by

Gunfire Control Tracks Jets

Tracking jet aircraft with 3 and 5-inch naval guns in any weather is possible using U. S. Navy's mark 63 gunfire control system manufactured by Sperry Gyroscope Co. Newer gunfire controls and radars have been combined with gyro-optical tracking principles used previously
means of a flying-spot scanner, which requires the use of a continuous projector, or by means of storage tubes such as the Vidicon, in which case an intermittent projector is used.

A suitable optical system for use with Vidicons is essentially the reverse of the geometrical combining unit used in recording. In this case, the film as it passes through the projector gate is illuminated from the emulsion side. Light transmitted by the various black-and-white color-separation images in the film is directed by the film lenticules in bands corresponding to the taking apertures.

Suitably arranged reflecting surfaces and lenses image the three separations on three different Vidicon storage surfaces, serving the red, green and blue channels of the television system.

In addition to meeting the time requirements for quick-kine recording, embossed film gives highquality color rendition and picture sharpness. Furthermore, a permanent record is obtained from which color prints may be made on ordinary color films.

The greater part of this report has been kindly furnished by the Research Laboratories of Eastman Kodak Co.-A. A. мек.

WWV Modifies Broadcasts

Time signals from WWV, near Washington, D. C., are maintained in close agreement with a new uniform time called UT2, determined by the U. S. Naval Observatory. Occasional step adjustments of exactly plus or minus 20 milliseconds are made on Wednesdays at 1900 UT (Universal Time, which corresponds with GMT).

The time adjustments are necessary several times a year because of variations in the earth's rate of rotation. Final corrections to the broadcast time signals are published weekly by the Naval Observatory.

- Frequency-Improvements have been made in the accuracy of broadcast frequencies, which are now accurate to a part in 100 million. Carrier frequencies of $2.5,5,10,15$, 20 and 25 me are used, the frequencies of 30 and 35 mc having been discontinued Jan. 1, 1953.

To give longer intervals free from modulation, the tones 440 and 600 cps have recently been shortened from 4 to 3 minutes duration. This is likewise true for WWVH near Maui, Hawaii. A silent period of 4 minutes is observed by WWV commencing at 45

6 0

a COMPLIETE LINE OF DEPENDABLE ENCAPSULATED RESISTORS

PRECISION WIREWOUND RESISTORS FOR 85C AND 125C AMBIENTS

For applications requiring accurate resistance values at 85 C and 125 C operating temperatures-in units of truly small physical size-select the precise resistor you want from one of the 46 standard Permaseal designs in tab or axial lead styles.

Winding forms, resistance wire and embedding material are matched and integrated, resulting in long term stability at rated wattage over the operating temperature range. The embedding material is a

SPRAGUE

special plastic that extends protection well beyond the severe humidity resistance specifications of MIL-R-93A and Proposed MIL-R-9444 (USAF).

These high-accuracy units are available in close resistance tolerances down to $\pm 0.1 \%$. They are carefully and properly aged by a special Sprague process so that they maintain their accuracy within the limits set by the most stringent military specifications.

CONNECTORS for POTTING

Potting of electrical connectors was pioneered by AMPhenol in 1953-today a complete selection of AN and Miniature AN-type connectors are available from AMPHENOL in potting constructions.

The greatest benefit from potting is assured electrical reliability in the presence of moisture and humidity. Potted assemblies provide complete protection against the effects of moisture, fuel, oil, lubricants, hydraulic fluid, salt spray and carbon tetrachloride. Potting offers an actual bonded seal-not a seal dependent upon critical face-to-face mechanical seals which tend to create moisture traps under temperature cycling. The potted assembly is tamper-proof and vibration resistant. Potting provides cost, weight and space reduction.

For complete information (background, methods, ordering) send for the newly issued brochure: amphenol connectors for potting

AMERICAN PHENOLIC CORPORATION chicago 50, illinois
AMPHENOL CANADA LIMITED toronto 9 , ontario

MAEПET/CS inc.

LOW COST- HIGH QUALITY

Potter \& Brumfield, with its many years of Engineering and Production experience, builds relays to all quality levels.
Relays from the most exacting to the simplest in operating specifications are readily available at P\&B.
Small or Large quantity orders receive the same careful attention by the people that have the "Know How."
Let Potter and Brumfield engineers become part of your design group in selecting the correct type of relay to meet all requirements.
for quick delivery over 350 different standard relays stocked by 500 franchised Electronic Parts Distributors throughout the United States and Canada.
Send your specifications for samples and quotations.

gain of the cathode-follower-the higher the gain, the lower the capacitance.

Physically, this means that the

Components mounted on tube socket are connecled to power supply and output wiring by bus wires running up sides of tube as shown in the photograph
more nearly the cathode and screen voltage follow the grid voltage, the less capacitive effect there will be between the grid and these elements. Thus it is desirable to make the gain of the cathodefollower as near unity as possible

A SUPERIOR LOW-FREQUENCY INSTRUMENT BY

DuMONT

The Type 350 combines the best features of all previously available low-frequency instruments. It is an entirely new low-frequency instrument that must be seen to be appreciated

Identical X - and Y - amplifiers permit accurate measurements up to 150 KC .
Identical phase response between the two amplifiers allows accurate phase-shift measurements of minute phase differences.
Internal calibration is provided for both amplifiers.
Stability-wise, the Type 350 has no peer. Regulation of all circuits, including the filaments, permits accurate measurements over many hours. The illuminated, calibrated scale assists in measurements. High accelerating potential permits operation with long-persistence screens.
Modern hard-tube sweep circuit provides superior linearity with beam gate for forward trace brightening. This sweep circuitry eliminates practically all time distortion over the range of sweeps from $1 / 2 \mathrm{sec} /$ inch to $2 \mathrm{uscc} / \mathrm{inch}$.

These and many other new features make the Du Mont Type 350 the standard of performance in low-frequency oscillography.
Write for complete technical details...
Price $\$ 395$

- Broad Frequency Coverage
- Extended Modulation Range
- Wide FM Deviation

\author{

- Low Distortion
}

MEASUREMENTS' Model 95 Standard Signal Generator is designed and engineered to meet the rigit test requirements imposed on modern high quality electronic instruments. It provides frequency coverage between 50 Mc and 400 Mc . Freguency modulation is continuously variable, and the degree of deviation is directly shown in kilocycles on a panel meter. The Model 95 with its extremely high stability and low distortion makes this instrument indispensable for critical measurements on FM receivers, multiplex and telemetering equipment.
The Morlel 95 with its low residual fm, less than 60 DB below full deviation, permits accurate evaluation of equipment characteristics in which low noise level is essential. An internal barretter bridge in conjunction with mutual inductance type attentuators provides a high degree of output voltage accuracy.
The Model 95 Standard Signal Cenerator is now available from production.
SPECIFICATIONS

CARRIER FREQUENCY RANGE: 50 to 400 Megacycles in 3 bands, 50-100 Mc. 100-200 Mc. 200-400 Mc.

FREQUENCY ACCURACY: $\pm 1 \%$ Direct reading dial.
FREQUENCY DRIFT: Less than $.05 \%$ after warm-up

OUTPUT VOLTAGE: Continuously variable from 0.1 to 100,000 microvalts.

OUTPUT VOLTAGE ACCURACY: At 100,000 microvolts the output voltage accuracy is $\pm 10 \%$
OUTPUT IMPEDANCE: 50 ohms, VSWR less than 1.4

LEAKAGE AND STRAY FIELDS: Attenuator leakage less than 0.1 microvolt. Power line leakage and stray fields negligible.

MODULATION: Frequency modulation continuously variable,
0-150 Kc on 50-100 Mc band, 0-300 Kc on 100-200 Mc band, $0-600 \mathrm{Kc}$ on $200-400 \mathrm{Mc}$ band.
MODULATION FREQUENCY: Internal 400~ and $1000 \sim \pm 5 \%$ accuracy. External modulation flat within $\pm 1 \mathrm{db}, 250 \sim$ to 70 Kc .
FM DISTORTION: Less than 0.5% for 75 Kc deviation on 50-100 Mc band, 150 Kc deviation on 100-200 Mc band, 300 Kc on 200-400 Mc band.
RESIDUAL FM: Better than 60 db below full deviation.
POWER SUPPLY: 117 volts $50-60$ cycles, 140 watts.
DIMENSIONS: $17-1 / 4^{\prime \prime}$ wide $\times 11-3 / 16^{\circ}$ high $\times 14-7 / 8^{\prime \prime}$ deep overall.
WEIGHT: Approximately 70 pounds.
to reduce the input capacitance.
Gain of a cathode-follower

$$
G \approx \frac{g_{m} R}{1+q_{m} R}
$$

where R is the cathode load resistor.
From this, it is seen that it would be desirable to make R large to cause the gain to be as near unity as possible. However, this is contrary to the requirement that the cathode-follower drive a low-impedance cable. This difficulty is surmounted by using an input cathode-follower with high gain to drive another cathode-follower providing the proper output impedance.

Tandem cathcde-follower probe has attenuation of only 2 to 1 with input capacitance of less than $3 \mu \mu \mathrm{t}$

A 6U8 triode-pentode was used with the pentode section as the input. In choosing a cathode resistor for the input stage, transient response of the circuit had to be considered. Gain considerations dictate the use of a large load resistor but the R - C time constant of the cathode circuit should be as low as possible for good transient reponse.

A compromise was reached by choosing a cathode resistor no larger than necessary for maximum gain. The calculated gain for the 6 U 8 pentode section with a cathode load resistor of 3,900 ohms is 0.95 , assuming a transconductance of $5,000 \mu$ mhos at the particular operating point chosen. If the normal input capacitance for the tube is considered as $5 \mu \mu \mathrm{f}$, the calculated input capacitance for the cathodefollower circuit is $0.25 \mu \mu \mathrm{f}$.

The input resistance of the circuit is higher than the 470,000 ohm grid resistor shown on the circuit diagram. When the grid resistor is returned to the cathode network, to establish correct grid-

Morgan NcMahon, Head of Enginee ins Services, is in rharge of PSI's product epplicationi and manufacting engineering tere he holds diodes pr or to sutieting them ti, 1)C(p.s.i. hermetic seal test.
" n effect, we take each PSI Diade on a deef"-sea dive during our hermetic seal test. Every unit is immers id in liquic insice a pressure bomb and subected to 1000 p.s.i. pressure. Then we tes it. viewing its d, amaic characteristics on an oscilloscope Any unit exa triting instability or possible cong-term degradatior (evide ced by hyste ϵ gis, drift, flutter, discontinuiies, excessive reverse curre, or low break down voltage) is rejected.
"Since no diode is actually used under 1000 p.s.i. pressu-e, what's the point? Just this: Only thro 1 applicat: or: O° very high liquid pressures is it possitle to identify $\min .1=$ openings th -c ugh which moisture or other damaging contaminants can altimately migrete during the érvice life of the diode. This rigid eest increases assura-ce of the long term reliability of PSI diodes, and therefore the reliabili;y of the equipnent in which they are used."

COMPARE IT YOURSELF!
If you wish to compare your own procedures for evaluat. ing semiconductor hermetic seals to the Pacific Semicon. ductors' 1000 p.s.i. liquidpressure test described here. we will be pleased to send complete test inst-uctions and an equipmert list upon request.

Pacific Semiconductors, Inc.

cathode bias, the input resistance is $R_{n}\left[\frac{e_{1}}{\rho_{1}-e_{2}}\right]$ Here, e_{2} is equal to $0.95 e^{\text {s }}$ so that the input resistance is calculated to be 9.4 megrohms.
The pentode section is capacitively coupled to the triode section which serves as the output cathodefollower driving the low-impedance cable. The cathode resistor for the triode serves also as the terminating resistor for the cable and its size is therefore determined by the characteristics of the cable. An RG-62/U cable terminated with 100 ohms was found satisfactory if the input signal did not exceed 2 volts peak-to-peak, as the circuit overloaded for signals larger than 2 volts.

Video probe with power-supply filter chassis. Cable rerminating resistor is located in cable connector

Since the particular application for this probe required that the probe be able to accept input signals as large as 8 volts peak-topeak. the maximum output of the driver stage was increased by using a 200 -ohm load and RG-114/U cable.
Mechanical design required that the probe be of convenient size, and that the input network have mininum wiring capacitance and be adequately shielded. The photograph shows the layout of the parts within the probe. The components that carry the a-c signal are yrouped together on the bottom side of the tube socket, except for the relatively large screen by-pass capacitor which is located in the space above the tube.

The other leads from the tube socket are brought around the tube by the bus-wires shown. There is enough space between one pair of the bus-wires to permit replacement of the 6U8. The d-c filter components are located with the

AIRCRAFT-TYPE hydreulfo

To supply dependable hydraulic power for critical applications, Eastern units are engineered to perform under extreme conditions. Compact design and varying motor sizes make them unique power sources, especially desirable for airbarre use. The equipment illustrated in detail presents a typical Eastern Power Unit designed for one application. Many other requirements can be satisfied with designs of this general type.
Unit consists of: posifive-displazement pump, electric motor drive, oil reservoir, expansion chamber, porous bronze ten-micron filter, pressure regulating valve, filter relief valve, and expansior relief valve.
SPECIAL UNITS to be built in-o Servo Systems and specialized projects are avoilable. As illustrated below, Actuators combined Servo-valve and Actuator, and Servo-valve Hydraulic System combinations are being produced by Eastern for custom-specified jobs. If your project involves equipment of this type, write to us for further information.

Specifications:
Available with either $1 / 8,1 / 4$, or $1 / 2$ horsepower motor, in 28 V. D.C. or 400 Cycles 3 Phase power.
Available with various pump characteristics. Under certain operating canditions, units can be made self-cooling. Example: $1 / 4$ H.P. Unit has a continuous-duty oil-temperature rise above ambient of approximately $60^{\circ} \mathrm{F}$. at sea level. Pressure range from 0 to 1500 PSIG with compatible flow.
Anodized aluminum body contains all components except motor.

CLEVELITE*

THE PHENOLIC TUBING OF QUALITY

Low moisture absorption .. Dimensional stability ... High dielectric strength . . Low loss . . . Great physical strength . . . Good machinability.

This combination of Clevelite's "Built-in-Quality" provides that extra protection for better product performance.

Minimize rejects and inspection costs . . . for Quality of material and workmanship . . . Specify Clevelite . . . The economical tubing!

FAST DEPENDABLE SERVICE
Write for your copy of our latest CLEVELITE brochure! Why pay more? For good quality . . call CLEVELAND!

power supply and the d-c voltages are brought to the probe, along with the filament current, on a separate cable.

The input is shielded by a copper cylinder that fits inside the probe wall and around the a-c circuit components. Another thin sheet of plastic on the inside surface of the copper shield insulates it from the components within.

The shield is electrically attached to the output circuit and therefore moves voltagewise with the components within it, minimizing capacitance between these elements and the shield. The low-impedance source to which the shield is attached reduces electrical pick-up from extraneous sources.

The probe body itself is a plastic cylinder that has a relative! y high melting point. Ventilation holes aid in dissipating the heat generated within the 6 U 8.

The equipment available for testing the bandwidth of the probe indicated that its frequency response was flat to at least 10 mc . Satisfactory transient response was demonstrated by inserting the probe in series with the video line of a closed-circuit to system that was reproducing the standard RETMA test pattern to better than 600 lines. Except for the loss in

Reconnaissance TV

The hand-held television camera shown weighs only 8 pounds. Transmitter, complete with power supply that will transmit pictures continuously for two hours, weighs 47 pounds. Developed by Signal Corps Engineering Laboratories, the new equipment has a range of about a mile. It could be set up to report, unmanned, from a radioaclive or other hazardous location

Inspection of incoming precision shafts took 10 to 15 minutes each by mechanical gaging-involved concentricity, diameters, shoulder locations, and other tough-to-measure dimensions to tolerances of .0002". Doing the work on a Kodak Contour Projector cut time to 2 to 3 minutes per shaft.

The problem was to check many small calculating machine parts overaging about 13 critical dimensions for each with shapes mostly complex. With carefully engineered mechanical gages, inspection time averaged 50 seconds each. Optical gaging on a Kodak Contour Projector brought the average down to 12 seconds.

Spacing the parallelism of a special tuning condenser for electronic test equipment had to be held to very close tolerances. "Use of the Kodak Contour Projector," the company reports, "permits economical measurements of parallelism to an accuracy impossible to obtain by other methods."

On a flexible rubber-like part, rejects ran as high as 30%. By using a Kodak Contour Projector to measure the parts and then plotting results by statistical quality control methods, production changes were made that resulted in rejects dropping from 30% to less than $1 / 4$ of 1%. Optical gaging eliminated distortion of the part while gaging, and proved 4 to 5 times faster than usual methods.

One instrument inspects these varied parts

Here is another economy optical gaging can provide: switching from one part to a second part requires only a change of chart and fixture. You still use the same basic instrument. And with a Kodak Contour Projector, the variety of parts you can check is almost without limit. Here's why:

1. Capacity-Screen size on an optical comparator does not restrict the size of parts you can handle, for multiple-position fixtures allow the handling of parts larger than the screen itself. What's important is the staging area-and Kodak's unique relay lens provides uniform ample clearance regardless of magnification. The distortion-free image lets you measure anywhere on the viewing screen. The choice of lenses, of horizontal or vertical projection, and of surface or shadow illumination gives you the greatest possible flexibility.
2. Ease of operation-Kodak Contour

Projectors are designed for maximum speed and minimum operator training. The bright screen image reduces fatigue, lets you use the instrument in normal room light. Images are erect and unreversed at all magnifications. Finger-tip controls are within convenient reach of the operator.
3. Optical stability-The adjustment-free optical elements on Kodak Contour Projectors eliminate the need for operator adjustments. Rigidly mounted lenses and mirrors maintain alignment
 and position. Rugged construction withstands rough and heavy use.
Whether you are now using optical gaging or just considering it, you should have a copy of the booklet, "Optical Gaging with Kodak Contour Projectors." It gives complete details on Kodak optical gaging equipment and how it can work for you. Write to Special Products Sales Division.

EASTMAN KODAK COMPANY, Rochester 4, N. Y.
the KODAK CONTOUR PROJECTOR

Cost advantages are not made by shortcuts at Spectrol. Design and production knowhow make the cost savings. Every potentiometer is produced under the same hi-standard conditions-from precision winding to the rigid quality-controlled final assembly.

That's why the 10 -turn Model 800 provides accuracy which out-classes others at comparable cost-and in addition to closer electrical tolerances offers other quality features like
machined aluminum lids, precisionground shafts, and dimensionatly stable laminated phenolic housings.

Versatile, accurate, reliable over a long life-available in volume quanti-tics-immediate delivery from stockthe Model 800 is a great advance.

Write or call for more details about the wide variety of special leatures available - and about Spectrol's miniature and single turn potentiometers - today.

Write for catalog or contact your nearby Spectrol representative-

SPEOHROL

Electronics Division of Carrier Corporation
1704 South Del Mar Avenue, San Gabriel, California

ALBUQUERQUE, N.M. DAYTON
Gerald B. Miller Co. Robt. B. Burtner Co. BELMONT, CALIF. Gerald B. Miller Co BOSTON
Gerber Sales Co
CHICAGD
Knoblock \& Malone

DETROIT Electro-Mec Associates
FT. WORTH Thomson Eng Service
HOLLYWOOD
Gerald B. Miller Co.
MINNEAPOLIS
Fred B. Hill Co.
NEW YORK
D. R. Bittan Co.
PHILADELPHIA
Samuel K.
MacDonald, Inc.

HOLLYWOOD MinNEAPOLIS Co. Fred B. Hill Co NEW YORK D. R. Bittan Co PHILADELPHIA
MacDonald, Inc.

ST. LOUIS

Thomson Eng Service
SYRACUSE
Wally B. Swank WASHINGTON, D.C. Samuel K. MacDonald, Inc.
gain (0.5), there was no loss in quality of the test, pattern while the probe was in the line.

While the same pattern was being reproduced on the ty system, the probe was then attached to various points in the video amplifier circuits without disturbing the quality of the test pattern reproduction, thereby demonstrating that the capacitance introduced by the probe was sufficiently small to prevent loading of the video circuits.

Tube Interchangeability

OF interest to industrial electron tube users is a revised edition of a commercial publication listing 2,000 type designations of 26 different manufacturers. Vacuum power tubes, rectifiers, magnetrons, phototubes and oscillograph types are among categories covered in the industrial listing. The manual is available at moderate cost from RCA Tube Division, Harrison, N. J.

Hurricane Prediction

Sea Water, an electrical conductor moving through the earth's magnetic field, generates an electromotive force. Across the Florida Straits, from Key West to Havana, about 1 volt is generated as a result of 10^{10} gallons flow every sec-

Power Tube Assembly

Typical of the step-by-step sequence of operations in assembling a beam-power, water-cooled RCA tetrode for use in uhf television is that of placing cathodes in position with tweezers. As shown in the photograph, the tool in the left hand is used to depress the pantograph cathode spring to which the cathode is clipped

In the menny fields using lron Powders...

When you seek the utmost in
I. F. Cores (TV)

Permeability Tuner Cores
I. F. Cores (BC)

FM tuning cores
Core resistivity
Low modulation and hysteresis
Low modulation, but good permeability
Stability
Density
Green Strength
Smooth machining
Sintering at low temperatures
Finest particles
Magnetic fluids, dispersibility
Permeability
Purity - for high purity alloys

Try these types of

G A F. Carbonyl Iron Powders

| $T H, S F, J$ |
| :--- | :--- |
| $\mathrm{~L}, \mathrm{HP}, \mathrm{MR}, \mathrm{GQ4}$ |
| $\mathrm{~J}, \mathrm{~W}$ |

Today there are eleven types of GAF Carbonyl Iron Powders - each produced to rigorous standards of uniformity. Their characteristics vary by type.
Ask your core maker, your coil winder, your industrial designer how these powders can increase the efficiency and performance of the equipment or product you make. They can reduce weight, size, and also decrease cost. If your requirements call for other characteristics or different degrees of performance than are offered by any of our standard types, we welcome the opportunity to work with you in developing new grades of iron powders. Let us send you literature giving the applications and working properties of GAF Carbonyl Iron Powders. Send for your free copy today.

MEBE!
mpa

grom Research to Reality...

TWO YEARS AGO the first silicon transistors were put on the market by Texas Instruments. Enthusiastic acceptance of these high gain, high temperature units has allowed Texas Instruments to repeatedly increase production and reduce prices because of improved mass production techniques.
TODAY, after outstanding field performance under rigorous conditions, TI silicon transistors and diodes are being installed in mass-produced equipment by increasing numbers of electronics manufacturers. You can now select from TI's broad line of silicon transistors ...the widest choice on the market... allowing for complete transistorization of many circuits.
THE 8 TYPES of TI grown junction silicon transistors range from high gain, low level units to high gain power units with up to 8.75 watts dissipation. Also, Texas Instruments produces 55 types of single crystal fused junction diodes . . . general purpose diodes in 13 voltage ratings ... voltage reference diodes in 42 voltage breakdown ratings.
WHEN YOU PLAN transistorization or miniaturization, contact Texas Instruments first... your most experienced source for semiconductor devices - silicon or germanium transistors, rectifiers, and cliodes.

YOUR CHOICE OF 8 SILICON TRANSISTORS

4 high temperature small signal transistors For reliability and economy at high temperatures. Dissipation at $150^{\circ} \mathrm{C}, 50 \mathrm{mw}$; at $25^{\circ} \mathrm{C}, 150 \mathrm{mw}$. Maximum collector voltage, 30 volts.

			gain (db)
$\begin{gathered} \text { type } \\ \text { no. } \end{gathered}$	alpha	alpha frequency cutoff (mc)	(design center)
903	0.9 to 0.95	4 (Design Center)	30.5
904	0.95 to 0.975	5 (Design Center)	34
905	0.975 (Min.)	6 (Design Center)	36.5
904-A	0.95 (Min.)	8 (Minimum)	35

3 high temperature medium power transistors
For audio and amplifier stages. Dissipation at $150^{\circ} \mathrm{C}, 150$ mw; at $25^{\circ} \mathrm{C}$, I watt.

| type |
| :---: | :---: |
| no. |
| 951 |
| 952 |
| 953 |

alpha
(minimum)
0.9
0.9
0.9

collector voltage (maximum)	gain (db) (minimum)
50	30
80	30
120	30

high temperature power transistor
For output power stages, as in servo amplifier outputs. Dissipation at $100^{\circ} \mathrm{C}, 3.5$ watts; at $25^{\circ} \mathrm{C}, 8.75$ watts.

type no.	operation 970	Class $\mathrm{A}\left(100^{\circ} \mathrm{C}\right)$	1 winimut
970	Class $\mathrm{B}\left(100^{\circ} \mathrm{C}\right)$	2.5 watts	gain (db) (minimum)
	28		

LOOK TO TI FOR: SILLCON SMALL SIGNAL AND POWER TRANSISTORS - SILICON JUNCTION DIODES - GERMANIUM RADIO AND GENERAL PURPOSE TRANSISTORS • SWITCHING TRANSISTORS

TEXAS INSTRUMENTS
600OLEMMONAVENUE DALLAS S. TEXAS

Official U. S. Navy Photograph

'Diamond H' Aircrafttype Relays Go to Sea in the Nautilus

Their reliability proven in such critical land and air applications as guided missiles, jet engine controls and fire control systems, "Diamond H" miniature, hermetically-sealed, air-craft-type relays were chosen by Westinghouse for an important role in the world's first atomic-powered submarine. They're used in the reactor control system of the Nautilus.

Possible performance characteristics of "Diamond H" Series R 4 PDT relays span such broad ranges that the modifications which can be arranged to meet particular sets of requirements are almost endless. They're fully described in Bulletin R250, a copy of which is yours for the asking. Our engineers will gladly work with you to develop a variation for your specific need.

THE HART MANUFACTURING COMPANY

202 Bartholomew Avenue, Hartford 1, Conn.
for the dish and transmitter bolts on this head and the head can be rotated 380 degrees or tilted 15 degrees below the horizontal or 30 degrees above the horizontal by means of two cranks placed at the base of the tower. This allows panning to be done from the ground.

FIG. 1-Trailer carrying tower is located at desired spot. Outriggers keep unit steady while tower is raised in about three minutes

Telescopic shafts are used with this mechanism so that the tower can be raised or lowered to any level without any adjustment to the shafts.

FIG. 2-Panning head and driver shatts. Ring mounted on plate holds transmitter and dish antenna

A second panning head has been developed that will operate two 4 -foot dishes with their respective receiver and transmitter; each dish can be rotated 210 degrees and tilted 15 degrees above or below the horizontal. Intended use is at repeater or relay points.
This tower can be loaded on the trailer, pulled to location and set up quickly with the assistance of the trailer and then guyed. The

Standardized Electronic Hardware:

\vdash IMMEDIATE DELIVERIES

World's Largest Stock

You get immediate delivery from the largest warehouse stock of silver plated terminal lugs in the world. This means you put your line into production without delay. Over 21 million pieces ready for immediate shipment.

NO JAMMING-No jammed swaging machines nor delays due to off-sized units. USECO'S precision manufacture and quality control guarantees smooth performance. Lugs are specially processed after machining to eliminate distortion.
"USECO.PLATE" - "USECOPLATE," exclusive silver plating, insures consistent thickness over the entire surface. Meets Federal Specs. Special lacquer dip prevents corrosion, helps solderbond. Various platings such as gold, cadmium, hot tin dipped, etc., are available on request.

TERMINAL BOARDS-Prompt s.tock delivery of Standard

Boards. Specials to your specifications. All operations under one roof to speed delivery and maintain undivided responsibility.

PRINTED CIRCUITS-"WRAPAROUND", "PLATED-THRU" and "FLUSH" circuits. Noted for correct plating, extreme accuracy, excellent pattern definition, better contact, easier unplugging -all adding up to guarantee unsurpassed performance.

CATALOGS-See our cpndensed catalog pages in The MASTER and in ELECTRONIC BUYER'S GUIDE. For more information, write for complete catalog. Please address Dept. 16

U. S. ENGINEERING OO., ING. A Division of Litton Industries, Inc.
 521 COMMERCIAL ST., GLENDALE 3, CALIF

 \rightarrowHiram Maxim devised the first singlebarrel, fully automatic machine gun. It cmbodied the best features of otber firearms and Maxim's own refinements. With this automatic, uell-packaged gun, one man has the fire power of dozens of individual riflemen.

(EXR BROAD-BAND MICROWAVE SIGNaL SOURCES

SPECIFICATIONS

Type No. N771A: 950 to $2000 \mathrm{Mc} / \mathrm{s}$. Type No. N771B: 1900 to $4000 \mathrm{Mc} / \mathrm{s}$ Direct Reading Frequency Dial Accuracy: $\pm 1 \%$ *
Power Outpur: 50 mw (average) over the band.
Internal Modulation: CW, Square Wave and Pulse (400 to 1800 cps)
External Pulse Modulation and Re flector Modulation (FM) through Front Panel Input Jacks.
*When greater acticuracy is required, the FXR Type No. N410A Direct Reading Coaxial Frequency Meter will provide $\pm 0.1 \%$ accuracy from 1000 to 4000 Mc / s.

N410A

Convenience is the "big gun" of the FXR all-in-one Signal Sources. Into one compact package has been built a power supply, klystron, klystron cavity, modulator, variable rf attenvator and an automatic reflector voltage tracking system. These Signal Sources are as easy to use as your home radio. The speed and ease with which broad-band measurements may now be made increases efficiency and allows more time for other tasks. Also, the output power across the band is high enough for most attenuation measurements.

Microwave engineers who use the compact FXR Signal Sources will appreciate the valuable time saved, the convenience, improved stability and simplicity of operation of these units. This represents another example of FXR's leadership in contributing to progress in the Microwave Test Equipment Field.

Write oday for a complete cata. log of FXR PRECISION MICRO. WAVE TEST EQUIPMENT.

*PACKAGED ASSEMBLY CIRCUIT

PAC-Facts

REDUCED COSTS
PAC requires fewer insertions. Simplified equipment. Smaller chassis area. Reduced inspections. Fewer holes. Simplified chassis wiring.

UNIQUE TERMINAL DESIGN

The Erie PAC terminal provides a "U"shaped cross section and tapers in both planes to assure easy insertion, self-adjusting - rigid fit, and large contact area.

FLEXIBILITY

All Resistance values between 5 ohms and 50 megohms. Wide range of capacitor temperature characteristics. Parallel and series arrangements readily obtained. Excellent circuit flexibility thru use of printed wiring type base

REDUCED CHASSIS AREA

Chassis area is reduced by use of the vertical plane design feature. 15 components per square inch.

Erie's new Packaged Assembly Circuit is able to reduce assembly and labor costs for electronic component users by simplifying automation. By employing standard size resistor and capacitor pins, a PAC module can be assembled simply, automatically, and economically.
PAC will drastically reduce the number of component insertions in TV, radio, computers, and other electronic equipments by combining up to 90 components into one PAC module. The illus tration above clearly exemplifies how Erie's Pack aged Assembly Circuit will clean up and simplify nearly any printed circuit board. The original conventional design, at left, contains 44 individ ual components. The electrically equivalent Erie PAC design, at right, contains but 16 individual units-a savings of 64% in the number of insertions.
Experimental PAC Design Kits have been prepared and are available at a moderate cost. The 5% PAC Kit includes 195 different resistance and capacitance values, strips, wiring boards, clips, eyelets, and other material essential for building complete PAC circuits. The 10% PAC Kit contains 105 values along with the other items, and the 20% PAC Kit has 54 values plus equipment. This Design Kit is your key to cost savings.

Write for Erie Engineering Bulletin No. 450-1

image of positive charges that is then scanned by an electron beam.

As they are scanned in sequence, the separate picture elements assume a potential corresponding to a secondary-emission factor of unity. Between consecutive scannings, the potential of the individual target elements drops owing to the fact that they intercept slow secondary electrons released from other points on the target by the fast photoelectrons and the equally fast electrons of the scanning beam. This interception effect is known as redistribution. As potential decreases it is increasingly probable that photoelectrons will release secondary electrons from a particular target element.

Cross-section of image iconoscope showing deflection coils D and scanning beam E. In the new tube, the insulated mica target plate is replaced by a conducting glass plate

Essential difference between the image iconoscope and the Scenioscope lies in the target. This comprises a glass plate having a certain conductivity. It is substituted for the insulating mica plate employed in the image iconoscope.
The back is covered with a layer of metal that acts as the signal plate. It assumes a negative potential with respect to the collector. The scanning beam periodically stabilizes the surface elements of the target at a potential slightly higher than that of the collector.
The potential of a particular element drops in the interval between successive scannings, partly because of interception of redistribution electrons. Main cause of the drop is leakage current through the target. Dominance of leakage current as compared with redistribution tends to eliminate spurious signals.
Signal versus photocurrent in the new tube has a curvature opposite to that of luminance versus control characteristic of a picture tube,

Sustained electrical accuracy throughout the life of a potentiometer is largely governed by the unit's ability to resist mechanical dimensional changes. The all-metal-case construction of Fairchild potentiometers assures mechanical rigidity that maintains superior initial accuracies and tolerances throughout a long life cyclein spite of severe changes in environmental conditions. This is another advance made possible by Fairchild's continuous research and quality control program on materials, processes and manufacturing.

SUSTAMMED AGEURAGEY

through mechanical rigidity

Now for the first time Fairchild brings you the sustained accuracy of all-metal-case construction in a 10 -turn potentiometer. This unit has only $1 / 2$ the diameter and $1 / 3$ the weight of usual standards. It is the Fairchild Standard Type 920. Its $241 / 2^{\prime \prime}$ coil length assures linearities of $\pm 0.25 \%$ in a resistance range of 1,000 to 200,000 ohms, with $\pm 0.1 \%$ available for special applications. Your choice of servo, threaded bushing or three-hole pilot bushing mountings.
This is another example of how Fairchild's complete line can give you the answers, no matter what factors govern your choice of precision potentiometers. Write Fairchild Controls Corp., Components Division. Dept. 140-62A2.

EAST COAST

225 Park Avenue
Hicksville, L.I., N.Y.

WEST COAST

6111 E. Washington Blvd.
Los Angeles, Cal.

TIME
 for "flight - vital" ground installations

HAYDON*008 stents

 7008 Series Elapsadithe adilyofss retain the same import, HAYDON The Quality, Xe e dependability, compactness and hight features many type ideal means of providing precise, fully relighloming for the many types of vital permaneyfor portal gide divsthation equipment and
 \ldots and on other leak eve the complex ines of taro
 near you e
*Trademark Reg. U.S. Patent Office

hayden
 ATHORRINGTON

HEADQUARTERS FOR
 TIMING

HAYDON Manufacturing Company, Inc.

2428 elm street, torrington, connecticut
which eliminates need for gamma correction. A picture of acceptable quality is now obtained with only 100 lux of illumination on the scene. A value of 300 lux is sufficient to insure a virtually noisefree picture.
This information has been abstracted from Philips Technical Review, courtesy of North American Philips Co., Inc.

Phonetic Alphabet Changes

Starting March 1, CAA controllers abandoned use of the phonetic words, COCA, METRO, NECTAR, UNION and EXTRA and substituted CHARLIE, MIKE, NOVEMBER, UNIFORM and XRAY.

These changes have been approved by the International Civil Aviation Organization (ICAO) after tests showed that the five words now replaced were causing confusion.

The latest international phonetic alphabet is

ALFA	NOVEMBER
BRAVO	OSCAR
CHARLIE	PAPA
DELTA	QUEBEC
ECHO	ROMEO
FOXTROT	SIERRA
GOLF	TANGO
HOTEL	UNIFORM
INDIA	VICTOR
JULIETT	WHISKEY
KILO	XRAY
LIMA	YANKEE
MIKE	ZULU

Tube Information Service

National Bureau of Standards has on file some 10,000 cards filed by tube type number and appropriately referenced to manufacturers' source material. About 10 percent of the cards, representing more popular types of tubes, have been coded on punched card for mechanical sorting.

With this service it is possible to find information on any tube, all tube types whose electrical characteristics, bulb sizes or base configurations fall within particular

A. Louis Oresman, President of Catalina, Inc., asks

"Can you pick the winner?"

"The bathing suit business is like a beauty contest. You never can tell in advance which models are going to win!
"This year, for example, we designed more than 400 different suits. Those that catch on in the stares get a flood of rush orders! They push our production facilities to the utmost. And that, in turn, puts the pressure on shipping and delivery.
"But even though cur manufacturing is done in the Los Angeles area, we never have delivery problems anywhere in
the 48 states! They're all solved for us by Air Express! And Air Express has never failed us!
"Using Air Express regularly, we can fill rush orders anywhere in the country in a matter of hours. And in the highly competitive fashion business, that's important!
'And yet, most of our shipments cost less than any other air service. 10 lbs ., for instance, Los Angeles to Dallas, is $\$ 5.70$. It's the lowest-priced complete air service by 81ϕ !'

GETS THERE FIRST via U.S. Scheduled Airlines

We at Lapp are mighty proud of our record in the field of tower insulators. Over 30 years ago, the first insulated broadcasting towes was erected-on Lapp insulators. Since then, most of the large radio towers in the world have been insulated and supported by Lapp insulators. Single base insulator units for structures of this type have been design-tested to over $3,500,000$ pounds.
A thorough knowledge of the properties of porcelain, of insulator mechanics and electrical qualities has been responsible for Lapp's success in becoming such an important source of radio insulators. Write for description and specification data on units for any antenna structure insulating requirement. Lapp Insulator Co., Inc., Radio Specialties Division, 248 Sumner Street, LeRoy, N. Y.

ranges and domestic tubes that can be substituted for foreign types.

The service is now available to scientists and engineers in government and industry who have legitimate requests. Coding on punched cards is proceeding as rapidly as possible for the balance of the data.

Inquiries can be made by telephone. Written requests should be addressed to C. P. Marsden, Chief, Electron Tubes Section, National Bureau of Standards, Washington 25, D. C.

Microammeter Measures Frequency

AUdIo-FREQUENCY measurements can be made with considerable precision at the lower end of the spectrum using a saturable reactor and a rectifier. A plug-in unit that has been developed recently combines components and requires only a suitable source of voltage and a microammeter to give direct frequency readings.

The magmeter is essentially a saturable reactor that serves as a volt-second limiter providing constant output pulses for each reversal of the input signal. These pulses are rectified and delivered to a d-c microammeter to provide output indication. The character-

Plate Photocontrol

A new printer for making presensitized offset plates is controlled automatically by a photoelectric device. Manulactured by Robinson Photomechanix, Inc., it can also be used for albumen and deep-etch plates or with sensitized papers. An etched circuit is employed in the electronic control unit

areyou

"10st"

in

electronics?

Developments have been so rapid in the horizonless science of electronics that many creative engineering talents lie hidden "under a bushel" of noncreative detail work.

If your ability exceeds the use that is now being made of it, you'd do well to learn what's happening at Martin.

For there are - and always will be-excellent opportunities at Martin for electronics "engineering talent in the fields of aircraft, missiles, rocketry, nucleonics and space vehicle development.

Contact J. M. Hollyday, Dept. E-04, The Martin Company, Baltimore 3, Maryland.

istics of the core material on which the reactor is wound are essentially invariant with time and temperature.

The basic unit lends itself to applications over wide frequency ranges. At low frequencies of 1 to 20 cps it can be used for measurements in which counter-type i!nstruments tend to be inconvenient because they require about 10 sec onds for their indications to obtain an accuracy of at least 5 percent.

- Aircraft Use-In a typical application, the frequency range is from 0 to 500 cps when used with a $0-500$ microampere meter. Where limited signal is available, a vacuum-tube driver (Fig. 1) is used. In this application the frequency detector has a linearity of better than 2 percent of full scale ($\pm 10 \mathrm{cps}$) plus a temperature coefficient up to 550 parts per million per degree centigrade.

FIG. 1-Reactor and rectifier count cycles
When the input signal is 4 volts rms across each half of the input transformer, a 25 -percent change in excitation produces less than 1 percent change in frequency indication. Minimum reliable drive at this point in the circuit is 2 volts rms; maximum safe drive is 6 volts rms.

Response of the magnetic frequency detector is essentially independent of wave form. There is less than 1 -percent change in indication for sine, square, or triangular waves having the same rectified average value.

In the circuit shown, the 12AT7 dual triode draws an average current of 15 ma . Interchanging tubes produce less than 1-percent change in output.

- Operation-The input transformer matches the driver stage to the low-power signal source whose frequency is to be measured. The bias resistor develops self-bias for

These curves tell a straight story!

Do you find such insulation adhesive terms as thermoselting, heat-resistant, and solvent-resistant confusing at times? For instance, the difference between at pressure-sensitive tape with a "thermosetting" adhesive and one with "heatresistant" adhesive?

The difference in holding power of the two is graphically demonstrated in the chart above. A "heat-resistant" adhesive simply has a higher-thanaverage softening point. For many applications, where not subjected to high temperatures, tapes with conventional or heat-resistant adhesives may offer adequate holding power. But if extreme or prolonged temperature is the problem, you need "Scotch" Brand Tapes with 3M Thermosetting Adhesive.

The "thermosetting" adhesive on "Scotcn" Brand Tapes is soft enough at application to be pressure-sensitive - tapes stick at a touch. When subjected to heat, however, a positive chemical
change takes place which increases the adhesive's bond strength - it develops into a firm, insoluble, infusible bond.

Once cured, 3M Thermosetting Λ dhesive holds under extreme operating heat without softening ... has high bond-strength for anchoring leads ... bakes dry to prevent throw-out . . . resists action of solvents, waxes, and varnishes. The only tapes combining all four of these advantages are "Scotcit" Brand Tapes with 3M Thermosetting Adhesive.

Why not let us show you how 3M Thermosetting Adhesive Tapes can give better performance in insulating your products? Just write on your letterhead to 3M Co., St. Paul 6, Mimn., Dept. CA-4.6.

These "Scotch" Brand Insulating Tapes have 3M Thermosetting Adhesive: No. 27, Glass Cloth Backing; No. 28, Acetate Cloth Backing; No. 29, Cotton Cloth Backing; Nos. 38 and 39, Treated Paper Backings; No. 56, Polyester Film Backing.

The first true thermoseting adhesite ...still the industry standard...found only in...

SCOTCH Electrical Products

The terms "Scorch" and " 3 W " are registered trademarks of Minnesola Mining and Manufacturing Co.. St. Path 6 , Minn. Export Sales Office: 99 Park Ave., New York 16, N.Y. In Canada: P.O. Box 757, London, Ontario.

INFRASONIC

(Ulira-Low Frequency per I.R.E. "Standards on Electroacoustics, 1951")

Voltage Measurements

with the NEW

BALLANTINE VOLTMETER

FREQUENCY RANGE
0.05 cps 10 30 KC
down to 0.01eps with corrections
VOLTAGE RANGE
0.02 to 200 V peak to peak
lowest reading corresponds 10 7.07 mv rms of a sine wave
\section*{ACCURACY}
3\% throughoul ranges
and for any point on meter
\section*{IMPEDANCE}
10 megohm by an average capacifance of $30 \mu \mathrm{f}$
\section*{OPERATION}
Unaffected by line variation
100 to $130 \mathrm{~V}, 60$ cycle, 45 watt

APPLICATIONS

The Ballantine Infrasonic Voltmeter Model 316 has been introduced to satisfy a growing need for an instrument to facilitate the measurement of ultralow frequency potentials as are encountered in low frequency servomechanisms, geophysies, biological research, and in loop analysis of negative feedbach amplifiers. Among many other uses, it will serve as a very satisfactory monitor for the output of commercially available ULF signal generators most of which are not fitted with an ontput indicator.

PRICE: $\$ 290$

FEATURES

- Pointer "flutter" is almost unnoticeable down to 0.05 cps , while at 0.01 cps the variation will be small compared to the sweep observed when employing the tedious technique of measuring infrasonic waves witle a de voltmeter.
- A reset switeh is available for diselarging "memory" circuits in order 10 conduct a rapid series of measurements.
- The reading stabilizes in little more than 1 period of the wave.
- Meter has a single logarithmic voltage scale and a linear decibel seale.
- Accessories are available for range extension up to 20,000 volts and down to 140 microvolts.

For further information on wis and other Ballantine instruments write for our new catalog.
the dual triode. Bias is such that on positive peaks, the grids draw current.
The 270 -ohm limiting resistors clip these peaks so that the reactor unit will not be overdriven. The $1,000-$ ohm compensating rheostat is initially adjusted with an input of known frequency to produce the correct indication on the meter. The unit weighs $3 \frac{1}{2}$ ounces. Information on the circuit has been furnished through courtesy of Airpax Products Co.

F-M Transistor Transmitter

Bulut to demonstrate practical vhf performance of transistors, the f-m transmitter described briefly here occupies a volume of $3 \frac{1}{2}$ cubic inches. The essential components in the small device require only a plastic case and compact battery for completion of a working unit.
Only one transistor, shown in the figure, is used. As an r-f oscillator, the transistor operates by virtue of energy fed back through interelement capacitances. Characteristics of the transistor provide an effective phase shift that compensates for that resulting from capacitive feedback.
The transmitter is made to operate in the region of 100 mc principally because of the convenience in obtaining receiving equipment at this frequency. It is adjusted to a channel not occupied by a commercial f-m station.
The mechanism of frequency modulation lies in the characteristic current-gain and phase-shift behavior of the transistor. The d-c operating point is defined by d-c emitter current and d-c collector voltage when no audio signal is applied. If this d-c operating point is changed, there will be a phase shift in fed-back energy.
The oscillator will therefore change frequency by the amount necessary to restore the necessary phase relationship and will continue to oscillate, but at a different frequency. When the operating point is varied at an audio rate, the oscillator will be frequency modulated.
The diode in the base circuit permits stable operation using only one

Both electrically and mechanically, Chatham kotron Selenium Rectifiers offer important design advantages. Combining lighter weight with smallest efficient size, kotrons are built rugged to last longer. Improved design assures longer short circuit loads, twice the voltage surge of ordinary rectifiers.

ADVANCE DESIGNED

AIRBORNE CONVERSION

Input - 195 to 210 volts,
3 phase, 400 cycles
Dutput - 28 v. DC, 100 amps. Regulation - 25 to 31 volts Weight - under 17 lbs.

Type 28V100 Power Supply illustrated provides substantial weight savings, reduced size, greater reliability and im. proved electrical characteristics. Ruggedized throughout. Type 28 V . 100 exceeds MIL.P. 7212 requirements.

CUSTOMDESIGNED EQUIPMENT

CHATHAM specializes in the development, design and production of equipment built to customers' needs. Our engineers will supply estimates on receipt of your drawings and specifications.

High power Radar modulators
built to government specifications.

CHATHAM ELECTRONICS LIVINGSTON, NEW JERSEY

Division of Gera Corporation

Your immediate needs for one or more relays of any kind are shipped from our greatly enlarged stock which includes hundreds of types in all popular contact arrangements and coil ratings.
Complete stocks of current standard types of leading manufacturers are maintained for your convenience.
All relays are new, inspected and unconditionally guaranteed to be as represented. 24 hour delivery is routine. Phone us.

All standard distributor types of Advance Relays are on hand in quantity. Save precious time - order from Relay Sales! Relays Stepping Relays Delay Relays

Timers
Contactors
Mofor Starting Relays

Differential Relays

Polarized Relays

Circuit of simple f-m transistor transmitter originally described in ELECTRONICS. p 130. Feb. 1954
battery for emitter and collector circuits. The 3,000 -ohm resistor prevents undesirable oscillation and the 2,000 -ohm resistor (left) provides a path for emitter current without shorting the audio signal. The other 2,000 -ohm resistor (right) adjusts d-c voltage on the collector and acts as load resistance in the audio circuit.

Distance covered with the transmitter, using only radiation from the coil of the oscillator circuit, is limited to a few hundred feet. One practical use for such a unit is in conjunction with a lapel microphone and a public address amplifier, leaving the speaker free to roam at will without dragging a microphone cord behind him.

More complete details of the device have been published in the Bell Laboratories Record, Feb. 1956, from which this abstract was made with permission.

Hot Dials

Electroluminescent dials have found their way into automobile radio receivers, where, according to the diagram in one service manual, they are caused to glow using 210 volts a-c from the secondary of the vibrator transformer.

A measure of protection would seem to be afforded the user or service man by virtue of a gap, one side of which is connected to the back of the dial scale, the other being at high voltage. The front of the dial scale is grounded.

In the same brochure, it is indicated that some receivers have a 270,000 -ohm resistor in series with the high-voltage lead. The value of this resistor can be changed to vary the brilliance of the scale illumination.

MORE THAN A MILLION DEPENDABLE RELAYS IN STOCK

Products of the following well-known manufacturers are represented: Advance, Allied, Automatic Electric, Clare, Cutler Hammer, G.E., Guardian, Leash, Philtrol, Potter Brumfield, Price Bros., RBM, Sigma, Struthers Dunn, Terado, Western Electric and many others.
Write, wire or phone for immediate quotations.
Phone West Chicago 1100

RELAY SALES

P.O. Box 186-A Route 64 at E.J. \& E. R.R.
West Chicago, Illinois

Vibrations of the sound "or" in the word "four." Pattern represents nine of the "pitch periods" which originate in puffs of air from the larynx when a word is spoken.

An electronic sampling of the "or" sound. One "pitch period" in three has been selected for transmission. This permits great naturalness when voice is rebuilt. Intelligible speech could be sent through a 1 in 6 sampling.

The selected samples are "stretched" for transmission. They travel in a narrower frequency band than complete sound.

Using the stretched sample as a model, the receiver restores original frequency. In all speech, sounds are intoned much longer than is needed for recognition - even hy the human ear. Electronic machines perform recognition far faster than the ear.

The receiver fills in gaps between samples, recreating total original sound. Under new system. three or four voices could travel at once over a pair of wires which now carries only one-and come out clearly at the end!

Production Techniques

Glue-Drying Machine for Television Receiver Cabinet Frames

W00D FRAMES for fronts of wood-and-metal television receiver cabinets are assembled and dried on a huge revolving-carrier clamping machine at the G-E Rockford, Ill. cabinet plant. The frames are glued and placed in the captive wood clamps for installation of screws. The completed frames then move over the top, down and back underneath the long horizontally mounted drying machine to the starting position while the glue dries. Two sets of clamps are on each carrier, so frames can go through two at a time.

Installing screws after loading glued frames onto carriers of horizontal endlesschain clamping and drying machine. Crank handles of clamps are at outer ends of carriers

Cutting and Clinching Machine for Etched Wiring Boards

A simple air-operated machine is widely used in RCA's Bloomington, Ind. plant to cut and clinch leads of components automatically after they have been manually inserted

Cutting and clinching blade of machlne. Holes in plate under blade serve as culting die for shearing action
in etched wiring boards. These setups eliminate the need for preliminary preparation of components, since the operator can bend the leads with her fingers as she in-

Method of loading components into wiring board on cut-and-clinch machine. Operator bends leads herself
serts them in the holes in the board.
Each operator inserts only a specified group of parts, just as in a conventional manual assembly line. Boards are transferred from

Bringing up lever to fress down newly inserted components preparatory to cutting and clinching

KESTER "44" RESIN, PLASTIC ROSIN AND "RESIN-FIVE" FLUX-CORE SOLDERS owe their production line popularity to the simple fact that they provide the exactly right solder for every soldering application. It's not difficult to realize why Kester is consumed so rapidly .. . because of its great adaptability to so many different soldering operations.

SEND TODAY for Kester's new 78-page informative textbook "SOLDER . . . Its Fundamentals and Usage."

KESTER

one station to the next by a conveyor belt that runs under the cut-and-clinch machines. Taking a board off the belt, the operator places it over positioning pegs on the machine, then loads in her assigned components one by one. Next, with her right hand she brings up a lever that presses a rubber-cushioned plate down over the board. This plate has appropriate recesses and cushions to press the newly loaded parts down without crushing them and damaging previously inserted parts.

Pressure on a foot pedal then operates the air cylinder of a Speedy Air Vise to move the shearing blade down toward the operator. This blade cuts all leads simultaneously. Further movement bends the cut ends down against the

Initial method of contouring pressure plate by glueing carved pieces of sponge rubber in position

Aluminum mold (top) and sponge rubber pressure pad made from it for use in holding components down on wiring board while cutting and elinching leads
etched wiring. Contoured recesses in the shearing blade give a neat clinch without crushing the board. A slanting trough collects the cut leads and guides them down into a scrap box on the far side of the belt.

Initially, the rubber hold-down pads were made by carving pieces of sponge rubber and cementing them in appropriate positions on a metal plate. Increasing use of the highly successful cut-and-clinch machines justified changeover to a casting technique. For each machine, a board having the parts correctly assembled on it is plastered with modeling clay in the reverse of
the desired rubber pad. This board is then used as a pattern in a sand mold for pouring an aluminum mold. The aluminum mold is used in turn as the master for producing as many rubber pads of that pattern as are desired. This is done by placing a sheet of uncured sponge rubber over the aluminum and then curing under heat and pressure much as when making rubber stamp pads. The resulting contoured rubber pieces are then cemented to the metal pressure plates.

Newer versions of these cut-andclinch machines use a vertically mounted air cylinder to bring down the pressure pad, speeding up the operation still more. The two air cylinders are interlocked, so that one touch of the foot valve operates them both in sequence.

Setup using overhead pressure pad having its own air cylinder

Finishing Techniques for Wood-Metal TV Cabinets

AcCurate matching of simulated and actual wood finishes on combination wood-metal television receiver cabinets is achieved at the G-E Rockford, IIl. cabinet plant, by combining roller-graining and electrostatic painting with final hand spray gun touchup.

After receiving the prime finish coat, the metal cabinet shells that form the sides and top of each table-model cabinet are moved by overhead conveyor to the rollergrain room. Here the cabinets are transferred manually to wheeled pallets that can easily be slid along a metal-top bench. Each finished face of the cabinet in turn is rolled past the roller-grain units mounted

Applying roller-grain finish to metal cabinet shelves
vertically at the rear of the bench, for application of the simulated
wood finish to the metal panels forming the sides of the cabinet.

- Spray Disk-After draining, the metal cabinet shells are loaded on another overhead conveyor for transport through a Ransburg electrostatic paint station, to receive a clear scuff and stain resistant finish. The shells travel around this room in a circular path on the conveyor while the rotating-disk painting fixture moves up and down in the center of the room. As the paint comes out of the center of the rotating disk, it is electrostatically charged to a high positive potential. The centrifugal force of the disk combined with the attraction of the
 out almost to zero. The tough resin prevents damage by vibration or impact. It withstands temperatures from -90 to +250 deg. F., and results in a motor that runs eight per cent cooler. Dielectric strength of the resin is high.

Encapsulation with Bakelite Epoxy lesin is effected by mixing the liquid resin with its liquid hardener and pouring the mixture into place. It penetrates crery crevice, then hardens into a tough, dimensionally stable mass that holds each element of the assembly firmly in position.

New coil design has stretched mechanical life of starter more than 50%. Extracting two bracket screws " A " and loosening of cross arm screws " B ". as shown in exploded draw. ing, make coil removal easy.

BAKELITE COMPANY, A Division of Union Carbide and Carbon Corporation Uद5 30 East 42 nd Street, New York 17, N. Y.
The term Baкelite and the Trefoil Symbol are registered trade-marks of UCC

Designed for

The No. 90901 One Inch Instrumentation Oscilloscope

Miniaturized, packaged panel mounting cathode ray oscilloscope designed for use in instrumentation in place of the conventional "pointer type" moving coil meters uses the $1^{\prime \prime}$ TCPI tube. Panel bezel matches in size and type the standard $2^{\prime \prime}$ square meters. Magnitude, phase displacement, wave shape, etc. are constantly visible on scope screen.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY MALDEN MASSACHUSETTS

Electrostatic spray room, showing disk
grounded cabinet shells serves to give an even coating over the entire outside surface of the shells.
-Shading-After the wood front frame has been attached to the metal cabinet shell, final shading insures that the finish on the wood will match the simulated finish on the top and sides. This detailed

Matching wood and melal linishes
spray painting operation is performed with a hand-held spray gun in a spray booth while the cabinets move past on a roller conveyor. The pallets used are large enough to hold two cabinets back-to-back. A large cog arrangement serves to turn the pallets automatically so that the painter can easily process both sides of the wood frame.

Gear-Operated Video I-F Alignment Setup

AFter dip soldering, tv boards are tested and aligned in semi-automatic setups at RCA's Indianapolis and Bloomington plants. Three positions are usually provided, to give preheating time. The boards are placed over spring-loaded con-
tacts positioned to meet with the desired terminals on the etched wiring. A lever is then used to attuate a irain of four gears. These move spring holding fingers down over the board to press it against the contacts. When the board is in

Placing board on empty position while tubes are warming up preparatary to alignment at other two positions

UNITED ANNOUNCES

NEW DC-6A CARGOLINERS

Five new DC-6A Cargoliners ${ }^{(1)}$ are joining the United Air Lines fleet - increasing our all-cargo space by nearly 70% ! Each of the new DC-6As carries up to 30,000 pounds of cargo, at 300 miles an hour . . and accommodates single pieces up to $76^{\prime \prime} \times 81^{\prime \prime} \times 115^{\prime \prime}$, and up to 8000 pounds.

Each is equipped with radar, a United cargoplane "exclusive" for smoother flight and better on-time performance-plus many other improvements of special interest to shippers.

In addition, all of our regular passenger Mainlines ${ }^{\circledR}$ carry cargo to the 80 cities on our route. And only United offers you these extra services:

Telemeter Air Bill. Special new equipment and United's vast communications system makes possidle the handling of complete air bills by wire. Advance notice of expected arrivals is possible while shipments are still in the air. This means the consignee can have pickup arrangements completed when the plane arrives. No "time out" for your shipment!
Reserved Air Freight Space. Space can be reserved on any United plane, or connecting world-wide carrier!

It all adds up to a completely new standard of air freight service for you?

New, Exclusive Features for your benefit . . "

Tie-Down Strength Greater than any other airline. All rings in the main cabin between doors are 5,000lb. Twelve $10,000-\mathrm{lb}$. rings. All metal floors.

Aluminum Pallets allow preloading, speed handling, protect cargo.

Motorized Tug Bar enables United to handle the heaviest pieces of any airline.

For service or information, call or write the nearest United Air Lines Representafive. Write for new booklet on air freight tailored to your needs! Cargo Sales Division, Dept. V-4, United Air Lines, 5959 S. Cicero Avenue, Chicago 38, Hlinois.

marion mecters
marion electrical instrument company GRENIER FIELD, New Hompsire NEDP MANCHESTER, N. H., U.S.A.

high-vacuum

 high-voltage rectifier tubes $D\|\| E L E$also a complete line of industrial x-ray tubes

[^11]position it holds down the nylon button of a master switch that applies plate voltages to the circuits of the board.

Anvils support the board under transformers requiring adjustment, to prevent breakage of the board under pressure of the adjusting tool. Other chromium-plated anvils are located directly under the spring hold-down springs so as to give good ground connections for the etched wiring.

When adjustments must be made below a board, captive screwdrivers are mounted under the test bench.

Moving lever to rotate gear irain that brings spring clips into position to push wiring board down over contacts

Square-Corner Conveyor Saves Floor Space

Square-corner conveyor transfer setup at output of drying tunnel for spray-finished bases

AFTER WOOD swivel-base sections for television receiver cabinets travel through a curing tunnel for drying of their finish coats, a hydraulically operated shifting device automatically transfers each carrier in turn transversely to a parallel conveyor running back to the input of the tunnel. Use of this square-corner conveyor technique saved 75 percent of the space that would otherwise be required for this operation at the G-E Rock-
ford, Ill. television cabinet plant. Air cylinders actuated by triplever valves make the transfer operation completely automatic. Wher a conveyor hanger reaches the end of the line, it trips the first air cylinder. This pushes the hanger onto the transverse track and moves it to the end of this short track. The hanger then trips the valve of the other cylinder, and this in turn pulls the hanger onto the long return conveyor line.

Solenoids Connect Etched Wiring Board

Solenoids tripped by snap-action switches make all connections and apply all voltages automatically when an operator slides a sweep board into position at a special
test and alignment setup in the Metuchen, N. J. television plant of Westinghouse Electric Corp. Interlocking switches insure that action cannot start until the board has

Want more information? Use post card on last page.

 and weight of cable

Federal's miniature coaxial cablesabout $1 / 4$ the size of comparable RG types-save critical space and weight in aircraft and instrument uses.

Challenged by the high temperature and minimum weight requirements of jet aircraft and guided missiles, Federal has designed RG cables that perform perfectly at a blistering $500^{\circ} \mathrm{F}$! New Federal miniature coaxials have a top temperature rating of $150^{\circ} \mathrm{C} . .$. up to $200^{\circ} \mathrm{C}$. with an impregnated fiber glass jacket!

The key to these new cable developments lies in advanced designs.

Based on utilization of "Teflon," this superior dielectric maintains its excellent low loss and high voltage characteristics through a temperature range of $500^{\circ} \mathrm{F}$. to $-100^{\circ} \mathrm{F}$. "Teflon" has no measurable water absorption; it is chemically inert . . . unaffected by alkalies, acids, aromatic fuels, aromatic organic solvents, and highly corrosive aviation hydraulic fluids.

Have Ceramic Stack Spacers
A COMPLETE LINE of VIbrators
Designed for Use in Standard Vibrator-Operated Auto Radio
Receivers. Buill with Precision Construction, featuring Ceramic Stack Spozers for longer Lasting Life. Backed by more than 22 years of experience in

Vibrator Design, Develop.
ment, ond Manufaclaring.

A" Battery IIlminators, DC-AC
解

See your jabber on uncee factony

American Television \& Radio Co.

 Zuakty Prodiced Since 1931 SAINJ PAUL 1, MINNESOTA-U, S. A

Adjusting translormer on sync board. All connections are made automatically by solenoie's after operator slides board into position on test stand
been pushed all the way in between the two aluminum slides. Solenoids on opposite ends of the board then operate to lock the board rigidly in position, after which other solenoids bring a bank of spring-loaded
contacts up against the bottom of the board and apply operating voltages. The operator can then proceed with test and alignment, using the automatically connected scopes as indicators.

Take-Apart Spools for Magnetic Telemetering Tape

By W. D. Isbell
Flight Test Engineer Convair (San Diego) A Division of General Dyhamics Corp.

New take-apart spool, at left, being disassembled from airborne tape recorder. Extra sleeve appears in center fore ground. Spool at right is older solid type that cannot be taken apart

Flight test programs for planes like Convair's new delta-wing supersonic interceptor involve handling of a tremendous volume of magnetic tape for airborne recorders. In this instance, the tape was used at Edwards Air Force Base Test Center in the arid Mojave wastelands near Muroc, California, then shipped to the data-reducing facility at San Diego.

- The Problems - Extremely low humidity, which makes magnetic tape brittle, prevented quantity storage of tape at the test center. The San Diego Division was shipping the tape on recorder spools as needed, but damage to spools and tape in shipping was proving costly because the spaols are not repairable and valuable

EYERY SECOND

without A miss*

Every signal, in a telemetering system, passes through the commutation switch - truly the heart of the system.
To provide superior operating characteristics at this focal point, Mycalex Electronics Corporation developed Mycalex Model TM-55 Series Commutation Switches using SUPRAMICA ${ }^{\circledR}$ 555 ceramoplastic commutator plates.
Test results showed unquestionable superiority: 5500 hours at 600 RPM,
with only a simple brush cleaning
170 hours continuous operation af 1800 RPM ... and still functioning perfectly with a clean, unchanging signal!
SUPRAMICA 555 ceramoplastic is precisionmolded in a wide variety of shapes and sizes offering: absolute dimensional stability-zero moisture absorption - dependable operation at temperatures as high as $950^{\circ} \mathrm{F}$. - precise tolerance control - high dielectric strength - contacts cannot loosen even at widely different operating temperatures.
For information on Mycalex Model TM-55 Series Commutation Switches, MYCALEX ${ }^{\left({ }^{(}\right)}$ glass-bonded mica, and SUPRAMICA ${ }^{(3)}$ ceramoplastics, write to General Offices and Plant, Box 311 , Clifton, New Jersey.
-600 RPM Operation

UNDER
UNDER EXCLUSIVE LICENSE OF THE MYCALEX CORPORATION CF AMERICA

WORLD'S LARGEST MANUFACTURER OF GLASS BONDED MICA AND CERAMOPLASTIC PRODUCTS

Los Angeles Office:

Mycalex Corporation of America, 5657 Wilshire Boulevard, Los Angeles, California, WEbster 8-2169 Chicago Office:
Mycalex Corporation of America, 6677 Northwest Highway, Chicago 31, Illinois, NEwcastle 1-7062 Minneapolis Office:
Mycalex Corporation of America, 8th St., Minneapolis, Minnesota, Flllmore 7701 Washington Office:
Mycalex Corporation of America, 1411 Pennsylvania Avenua NW, Wash. 4, D. C., REpublic $7-7040$

Inswe Product Performance REVERE SPECIALTY WIRES

For those tough design jobs where ordinary hook-up and thermocouple wires die from the heat, get brittle in cold, abrade and corrode . . . Revere SPECIALTY wires stand up. Built to MIL and customer specifications, Revere's wide range includes:
For High Temperatures
REVCOOTHENE-(Extruded Monochlorotrifluoroethylene) $-40^{\circ} \mathrm{F}$ to
$+275^{\circ} \mathrm{F}$, AWG 28 to 10 , silver plated copper conductors, inert,

HOOK-UP WIRES +275 , AWG 28 to 10, silver plated copper conductors, iner excellent dielectric strength, no volatile plasticizers, non-flammable, thin wall, abrasion and moisture resistant.

For Extremely High Temperatures

Fiber glass ($t 0700^{\circ} \mathrm{F}$), asbestos ($t 0900^{\circ} \mathrm{F}$), pure silica glass fiber (to $1500^{\circ} \mathrm{F}$) wrapped or carded with outer braid and saturant as required by application.

A variety of telemetering and other multi-conductor cables constructed to customer specifications. Polyethylene, polyvinyl, nylon, glass, Revcothene, asbestos insulations for singles and jackets. Twisting, braiding, shielding, color coding to suit conditions.

Saturants for flame and abrasion resistance, metallic braids for severe service and electrical shielding. Color coding in fourteen solid colors and stripes.

Prompt delivery of standard stock wires. Write for samples and literature on specialty hook-up or thermocouple wire.

WALLINGFORD, CONNECTICUT A Subsidiary of Neptune Meter Company

now in production... and available for immediate delivery!

Reversible voltage-to-digital converter makes a complete, independent voltage-to-digital conversion every 22 microseconds or a complete digital-ło-voltage conversion every 2 microsecends!
Now EPSCO, Incorporated, the leader in precision high-speed data reduction has available, as a shelf item, the Model B oll Datrac Converter featuring ultra-high-speed and accuracy without manual calibration or adjustment of any type! Conservative design and total absence of mechanical switching assures reliable field operation.
ALSO AVAILABLE: THE BINARY CODED DECIMAL MODEL 8613 DATRAC CONVERTER having voltage-to-digital conversion time of $\mathbf{2 6}$ microseconds; all other specifications remain the same.

GET THE FACTS:
Send for your copy of the detailed specifications and

EPSCO
 INCORPORITED

 applications notes on the EPSCO high-speed DATRAC Series B Converters.
FEATURES:

1. Voltage-to-digital
conversion time:
2. Digital-to-voltage conversion time:
3. Maximum full scale input voltage:
4. Minimum full scale input voltage:
5. Data code:
6. Accuracy:
7. Calibration:
8. Data Code Output

Forms:
$\pm 1,000$ volts
$\pm 10 \mathrm{mv}$
Binary digit

22 microseconds
2 microseconds

土 $.05 \%$ full scale
$\pm 1 / 2$ least significant
Automatic to an internal standard cell reference
a. Serial pulse train
b. Parallel semi-static binary valued voltage lines
c. Positive parallel-line trigger pulses
9. Size:

19 inches wide by 261/4" high relay rack mounting (also available with cabinet as shown)

Suntare
 corporation

HILLSIDE, NEW JERSEY

IMPACT EXTRUSIONS • CONDENSER CANS-SHELLS
 ALUMINUM • ZINC • MAGNESIUM • LEAD • SILVER

Shipping container ready for shipment to data reduction station, with identify. ing data marked on side with grease pencil
ment of instruments were found to be ideal for conversion to tape shipping containers. The tape is first transferred from the manufacturer's large supply spools to one of the take-apart spools. The spool is then disassembled and the tape removed with its sleeve and placed in the container. Each container will hold three of the 5 -inch rolls of tape. The can is then sealed at San Diego, which boasts an ideal humidity, and shipped to Edwards.

Upon receipt of the tape, ground crews at Edwards can rearm the planes' recorders without removing the take-apart spools from the aircraft. After a flight the tape is removed and returned to the San Diego data-reducing station.

The new spools as built by Convair cost about three times that of standard production reels, but it now takes only two spools to service one recorder indefinitely. The spools are fabricated from 75 ST aluminum. The sleeves, on which the tape is transported, can be made of any nonmagnetic rigid material such as aluminum, Micarta or molded plastic.

Plug-Assembly Conveyor

Plug and wire assemblies for aircraft electronic systems are now made at Martin on an assembly-line conveyor. The first wire of an assembly is identified, cut to length on

take a look at a 20 YERR RECORD!

OFFNER DYNOGRAPH RECORDERS

Offner Dynograph Recorders are the result of 20 years of development and production experience. Criginally used in the electro-medical field where high speed and sensitivity to minute signals were imperative, industrial models of the Dynograph have established many new performance standards for direct-writing oscillograpí recorders.

Compare the Offner Dynograph with all other direct-writing oscillographs on the market today-if you do, you'll choose the Dynograph.

High sensitivity-up to 15 microvolts per mm.
Stability-absolutely drift-free
No "warmup"-immediately stable and ready to use
One persent linearity-for 5 centimeters deflection
One amplifier-for all recording applications
Large, easy to read and easy to measure records
Rapid $p=n$ response $-1 / 1201 \mathrm{~h}$ second deflection time
If you want the widest versatility, highest accuracy, and greatest reliability in direct writing high speed oscillographsselect the Offner Dynograph! It's the result of 20 years of development and production experience.

Write for your copy of the Dynograph Bulletin; get complete details and application information. Our Engineering Represertative in your area will demonstrate the Dynograph in your plant-write for a demonstration date.

Type MC Console. Specially designed for computor write our, felemetering, and other fow gain application

Type M Console. Atcommodates up to six recording channets with specialized inpm. couplers, for a wide varielv of applicationseight chart speeds. I to 250 mm . per secomd.

Type P Portable Dynegraph. Single and Dual Channel Units-performance specifications identical to those of the console modelChart speeds from I to 100 mm . per second.

The outstanding development

 in the field of semi-conductor devices

Housed in a single case, two de-coupled transistors now open an entirely new field for the mighty midgets of electronics as oscillators, multivibrators, flip-flops, switching devices, etc.!

A common-collector transistor stage acts as the input device of a second transistor to serve as a useful type of dc matching transformer. No extra power supply is required since the first transistor represents the base leak for its successor.

Now available in limited quantities for laboratories and research.
For complete details on the MT-1 Tandem Transistor write or wire:

In addition to the tandem transistor described on the preceding page MARVELCO also produces the following transistors available for immediate delivery in commercial quantities:
TYPE "J""
Audio Frequency Junction Transistor
The Type " J " is designed for use in medium gain, low-to-medium power applications at audio or ultrasonic frequencies.

TYPE "IF"

Intermediate Frequency Junction Transistor Available for the first time is a transistor designed for switching speeds and still preserving high collector dissipation. For use in medium gain, low-to-medium power application at ultrasonic frequencies.

TYPE "HF"

High Frequency Junction Transistor
Type "HF" is designed for use in medium gain, low-to-medium power applications in the high frequency spectrum.

TYPE "JP-1"

Power Transistor

Designed for use in medium gain, intermediate power amplifier and switching applications. For maximum efficiency in push-pull operation, matched pairs may be ordered at no additional cost.

TYPE "RF-1"

Junction Type High Frequency "Ham" Transistor
Designed for use in medium gain, low-tomedium power applications in the high frequency spectrum.

TYPE "CQ-1"

Junction Type "Ham" Transistor
Designed for use in medium gain, low-tomedium power amateur applications at audio and ultrasonic frequencies.

MARVELCO TRANSISTOR SOCKETS

Socket permits ready interchange of transistors and precludes damage to transistor by soldering unit into a circuit. Designed for group mounting permitting space conservation when a large number of transistors are to be mounted in final assemblies such as computer circuitry. Also has high degree of utility in R\&D bench work stage of circuit design.

TYPE HS

High speed switching transistors having very rapid rise and power time characteristics. These units combine high peak current capability and low saturation potential drop. For use in computer and flip-flop application.
For complete specification data write to

NATIONAL AIRCRAFT CORPORATION 3411 Tulare Avenue . Burbank, Calif.

Want more information? Use post card on last page.

Conveyor runs at rear of long, narrow assembly bench for aircraft electronic cables and plugs
a semiautomatic machine and put on the conveyor belt with the plugs and fittings. It travels to the next worker who removes a portion of the nylon jacket and adds Vartex identification sleeves. Part of the braided shield around the wire is made into a pigtail for a subsequent ground connection. One end is then stripped, tinned and soldered to the pretinned plug terminal. Other wires belonging to the assemblies are prepared singly and placed upon the conveyor, going in sequence to the workers who solder them to the plugs.

The braided shield pigtails are soldered to a common grounding ring. Vartex identification sleeves are tied temporarily in place and the assembly is visually inspected. The wires are bundle-laced at intervals and the assembly is tested electrically before potting. In the final operation, the Vartex identification sleeves are adjusted to suit contract requirements and the wire assembly is ready for installation. As many as sixty plugs can be assembled simultaneously on this belt-conveyor.

Etched Wiring Boards

 Have Resistivity ProblemBy L. J. Martin and M. J. Vavra Weapon Systems Development Laboratories
Hughes Aircraft Co.
Culver City, Calif.
A WIDE range of resistivities has been observed in preliminary tests of laminates for etched wiring boards, as shown in Fig. 1. Among the phenolics, one showed lower resistivity when dry than three others showed after three days at 98 -percent relative humidity. The best material, when dry, had resistivities above 10^{15} ohms per square for all four samples, but its resistivity dropped by five orders of magnitude following humidity

rating - 3 watts -100 to 100,000 megohms
SERVICE - High voltage equipment such as electrostatic generators, atomic energy equipment, etc.

CHARACTERISTICS

- Negative temperature coefficients
- Negative voltage coefficients
- Good stability, durability, mechanical strength
- Non-deterioration of values due to age
- Non-hygroscopic base specially processed against humidity
- Compactness

BULLETIN 4906
has full details. Send for a
sopy. Aftention Depi. R.

THE
Cobllnite INDUSTRIAL DIVISION
DENTAL MFG. CO.

IrISh INSTRUMENTATION TAPE
 BRAND

made by Orradio Industries, world's largest exclusive magnetic tape manufacturer-already ranks high in the esteem of automation engineers. Several of the leading makers of electronic computers, telemetering equipment and other devices requiring magnetic instrumentation tape have tested it, use it in volume and are recommending it to their customers.

But irish, never satisfied with just the status quo, would like to go further. Custom-engineered instrumentation tape, with electrical and physical characteristics tailor-made to your instrument, can be yours for the asking. irish would welcome the opportunity to come into your laboratory, discuss with you your individual requirements as to frequency response, hardness of coating, lubrication, drop-out tolerance, durability and other performance factors, and come up with the tape that specifically fits your needs to the minutest detail. You know best when it comes to your own instrument... irish knows best when it comes to magnetic tape...so get together with an irish application engineer-write, phone or wire irish today !

INDUSTRIAL DIVISION

ORRADIOINDUSTRIES, INC.
OPELIKA, ALABAMA
World's largest exclusive magnetic tave manufact r or

Export Division: Morhan Exporting Corp., New York
Canada: Atlas Radio Corp., Itd., Toronto, Ontario

FIG. 1-Apparent surface resistivity of copper-clad plastic materials. Lengths of vertical bars represent change in resisfivity; upper end of each bar is dry value and lower end is value after 72 hours at 98 -perceni humidity
exposure, at which time its resistivity was next to the lowest. The material which seemed next to the poorest in its dry state maintained its resistivity phenomenally after humidity exposure, showing the third highest wet resistivity. The best phenolic, according to these tests, showed 10^{14} ohms per square dry and nearly 10^{18} ohms per square when wet, a performance only slightly exceeded by two of the nonphenolics. One is forced to conclude that phenolics can be good or poor insulators and that their insulating properties shouldn't just be accepted on faith.

Turning to the nonphenolics, one manufacturer's glass-base silicone laminate showed the highest dry resistivity, above 10^{15}, but dropped well below 10^{10} after humidity exposure, a greater change than for any of the phenolics. The remaining nonphenolics included diallylphthalates, epon-glass, Teflonglass and epon-orlon. Their resistivities were well clustered, with dry values similar to the better phenolics and generally with less deterioration of resistivity following humidity exposure.

Short-Run Cable Machine

A NEW planetary cabler, designed and built by Douglas Roesch, Inc., 2200 S. Figueroa St., Los Angeles, offers a solution to the problem of

New irends and developments in designing electrical products . . .

How General Electric Permanent Magnets help designers miniaturize products by supplying constant magnetic field energy in a fraction of the space required by electromagnets

Where constant magnetic field energy is necessary, powerful G-E Alnico permanent magnets offer the designer many advantages no electromagnet can match.

The most important of these advantages - from the designer's viewpoint - is the permanent magnet's superior volumetric efficiency. An Alnico permanent magnet can supply a given magnetic field in a fraction of the space required by even the best designed electromagnet.

Since miniaturization has become so vital in the electrical and electronics industries, it is important to see just why and how a permanent magnet utilizes space so much more effectively.

Figure 1 shows a typical magnetization curve of an electromagnet with a flux density of 20,000 gausses, when the polarizing force is 200 oersteds. (The curve has been displaced into the magnetizing quadrant for comparison purposes.)

In a well-designed electromagnet, approximately half the total area is occupied by conductors, and half is flux-conducting core material.

Therefore, to make the comparison valid, the residual induction of the electromagnet must be reduced to 10,000 gausses (Figure 2).

The area under the curve now represents the approximate external field energy available on a volume basis. When the equivalent demagnetization curve of Alnico 5 is plotted against the corrected electromagnet
curve (Figure 3), the true capabilities of each type of magnet become immediately apparent.

The area under the Alnico 5 curve is about three times the area under the electromagnet curve. Thus, to produce a given field requirement, the permanent magnet will occupy a volume one-third that of an equivalent electromagnet.

FIGURE 3
The above comparison is somewhat theoretical; under many circumstances, permanent magnets will show to even greater advantage. For example, consider the two TVtube focusing magnets in Figure 4, at the top of the next column.

At the left, is the electromagnet previously used. It weighed 2 lbs . 13 ounces, and took up 16.35 cubic inches. At right, is the G-E Alnico 5 permanent magnet which replaced it. The new magnet weighs just 15 ounces, and occupies only 1.30 cubic inches - a space saving of 87% !

These savings in size and weight result from permanent magnets' inherent volumetric superiority. In addition, permanent magnets provide equally impressive savings in both initial and service costs because of four other inherent advantages.

FIGURE 4
First, no power source is required with permanent magnets, because no energy is consumed. Once magnetized, the field is permanently retained.
Second, permanent magnets operate continuously. There can be no interruptions of the field due to power failure.

Third, permanent magnets are extremely stable under changing temperature conditions. They are unaffected by conditions ruinous to electromagnet installations.

Fourth, permanent magnet assemblies are easier to install, and cost nothing to maintain. There are no moving parts to break down, no wiring to burn out, no costly, timeconsuming repairs to make.

These are but a few of the many reasons why designers are turning to G-E Alnico magnets for products for which only electromagnets had been previously considered.

If you have a problem where constant magnetic field energy is required, one of the G-E Alnico compositions may well be your solution. For more design data or technical assistance from our magnet engineers, write: Carboloy Department of General Electric Company, 11137 E. 8 Mile Street, Detroit 32, Michigan.

Progress Is Our Most Important Product general (9) Electric

MIT
LINCOLN LABORATORY

- Electrical Engineers

- Physicists

- Mathematicians

Cable-maker for short-run orders can be easily changed over fior producing wide variety of cables
supplying custorm electronic cable in prototype or production runs. The new machine has successfully fabricated intricate multiple-conductor cables, delicate coaxial circuits, precision balanced quads and power leads into one manageable cable length. Quality can be compared favorably to mill-run, catalog power cable, despite the highly specialized nature of the short-run components.

Mounting Wiring Bcards on Color-TV Chassis

Two etched wiring boards used in RCA's new 26 -tube color television receiver are both fastened to the chassis at one work position with the aid of an air gun and an efficient work handling arrangement in

Driving mounting screw into sound circuit board of color-ty set. The board al. ready installed directly behind serves as the picture i-f section

The Complete Line of TC Capacitors

 RMC DISCAPS

TC	$1 / 4013$.	5716 Dia.	$1 / 2$ Dra.	5/8 Lia.	3/4 Dia.	7/8 Dia.
P. 100	1. 3 MMF	4. 9 MMF	10. 20 MMF	-	-	116.150
NPO	2. 13	14. 29	30. 69	70. 85 MMF	86-115 MMF	116-150 MMF
N- 33	2. 13	14. 29	30. 56	57. 62	63-100	101.150
N. 75	2. 14	15. 27	28-56	57. 68	69-110	111.150
N. 150	2. 15	16-30	31. 68	69. 75	76.140	141.150
N. 220	3. 15	16. 30	31-75	76. 50	91-130	131-190
N-330	3. 15	16. 30	31. 75	76-100	101-150	151-190
N. 470	3. 20	21. 40	41. 80	$81-120$	121-200	201-240
N-750	5. 29	30-68	69.150	151-180	181-300	301.350
N-1500	15. 50	51-120	121-200	201-250	251-330	331-560
N-2200	47. 75	76-150	151-200	201-275	276-470	471-560

SPECIFICATIONS
POWER FACTOR: Over 10 MMF less than $.1 \%$ at 1 regacycle. Under 10 MMF less than $.2 \%$ at 1 regacycle.
WORKING VOLTAGE: 1000 V.D.C.
TEST VOLTAGE (FLASH): 1750 V.D.C.
CODING: Capacity, tolerance and TC stamped on dise. INSULATION: Durez phenolic-vacuum waxed.
INITIAL LEAKAGE RESIST ANCE: Guaraneed higher than 7500 megohms.
After humidity leakage resistance: Guaranteed higher than 1000 megohms.
LEADS: No. 22 tinned copper (. 026 dia.).
TOLERANCES: $\pm 5 \% \pm 10 \% \pm 20 \%$
These capacitors conform to the RTMA spec fication for Class 1 ceramic condensers.
The capacity of these condensers will not change under roltage.

Temperature coefficients up to N. 5200 available on special order.

Type C Discaps are available in a wide rar ge of capacities and temperature coefficients and the millions used over the years prcve them to be the ideal replacement for tubular ceramic and mica capacitors.

Their smaller size, greater stability, and greater mechanical strength are features thet leading manufacturers of electrical and eleztronic products have found advantagecus. Rated at 1000 working volts, Type C Discaps cost no more than ordinary 600 volt capacitors.

If your applications involve printed circuits, Type C Discaps are available with plug in leads.

DISCAP CERAMIC CAPACITORS

RADIO MATERIALS CORPORATION
general office: 3325 N. California Ave., Chicago 18, III.
Two RMC Plants Devoted Exclusively to Ceramic Capacitors
FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.
the firm's Bloomington, Ind. plant. The operator places each finished board in turn over its punched opening in the steel chassis, then anchors each board with six self-tapping screws taken from a bin directly in front of the bench. Each screw in turn is put into the magnetic chuck of the wrench, a washer is pushed over the screw, and the combination is driven through the previously punched holes in the wiring board and the chassis.

Changing Insertion Heads On Assembly Machine

Quick changing of setups on the General Mills automatic assembly machine is achieved by using a standard housing at all stations and having a variety of inter-

Loosening one of the two bolts that hold the insertion head in its housing. Magazine feed turret. which fits over vertical shaft, is removed first

Removing insertion head
"'Pioneer" one who goes before for others to follow."

IF WEBSTER IS RIGHT -

Then Midland Has Done It Again, this time with

glass holders for crystals:

Permanent high vacuum attainable only with glass, isolates the crystal from atmospheric factors detrimental to dependable performance. Truly, here are crystals designed with the future in mind future requirements of application and design as well as the long life of the unit far into the future.

MANUFACTURING
COMPANY, INC.
3155 Fiberglas Road - Kansas City 15, Kansas
World's Largest Producer of Quartz Crystals

Dependable high vacuum pressure monitoring during processing!

New Model 193A Ionization Gauge and Model 192A Ionization Gauge Amplifier provide a convenient, accurate and dependable method of monitoring pressures from 10^{-4} to $10^{-7} \mathrm{~mm} \mathrm{Hg}$. The ion gauge can operate for months without attention; the cost and inconvenience of burned out gauges, poisoned cathodes, grid heating, etc., is eliminated.
Sierra 193A Ionization Gauge has a monel-encased interaction space with case near ground potential. A nichrome wire anode at 2.5 Kv is centered inside the case. An insulated out-gassing heater is mounted nearby. An insulated kovar tube is provided for connection to the vacuum line. Permanent magnets in the shell provide the magnetic field, with the shell serving as a return magnetic path, connection block, envelope and heater oven. Electrical connections are made to external binding posts. The tube weighs 22 oz., measures $7^{\prime \prime} \times 5^{\prime \prime} \times 31 / 2^{\prime \prime}$.
Sierra 192A Ionization Gauge Amplifier consists of a high voltage rf power supply, voltmeter, heater transformer and self-regulating low voltage power supply. It provides range switches, a special leak-check range for full scale meter deflection at any pressure, built-in calibrating circuits, and a heater switch for out-gassing the gauge tube. The instrument operates on 115 v 60 cycle power, measures $10^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime}$ and weighs $171 / 2 \mathrm{lbs}$.

Specifications subject to change without notice

WRITE FOR COMPLETE DETAILS

Sierra Electronic Corporation

San Carlos 2, Calfornia, U. S. A. Sales representatives in major cities Manufacturers of Carrier Frequency Voltmeters, Directional Couplers, Wave Analyzers, Line Faul Analyzers, Wideband RF Transtormers, Custom Radio Transmitters, VHF.UHF Detectors, Variable Impedance Wattmeters, Reflection Coefficient Meters, Calorimeters, Water Loads, Thermopiles lon Gauge and Ion Gauge Amplifiers, Phase

Changers.
changeable insertion mechanisms that fit into the housings of all stations. In addition, two simple wrench adjustments change the position of the entire housing at a station.

Two bolts anchor the head in its housing. When these are removed with a small Allen wrench, the 24 -

Method of repositioning insertion head laterally, after first loosening bolts of locking clamp just below transverse screw
pound head can easily be lifted out by one man after disconnecting one air line and one cable connection. Actually, heads are changed in this manner only rarely because repositioning of standard heads is usually sufficient to accommodate a change in etched wiring boards.

Checking Linearity of Shaped Resistor Cards

RESISTANCE elements wound on shaped flat cards are checked for linearity and for shorted turns at taps with a special calibrating fixture in the Hicksville, N. Y. plant of Fairchild Controls Corp. A small and inexpensive cathode-ray

Linearity checking setup, with resistance card on fixture in front of B battery. Contact arm running over card is moved by stainless steel belt going over shaft of master potentiometer in front of operator

QUALITY PERFORMANCE
 depends on small things

Manufacturers of electronic equipment recognize that such small things as fastenings are vitally important to the operation of that equipment...to the service that it gives... to the length of life that it serves.

Harper Everlasting Fastenings cost no more and you benefit by:

- The speed of assembly due to the clean threads and precision manufacture.
- The assurance of quality performance due to corrosion resistance and superior strength.
- The improvement in appearance due to the fact that Harper fastenings never rust.

More than 7000 different Harper fastening items are carried in stock in both non-ferrous and stainless steels. See your nearest Harper distributor or write for the Harper catalog.

THE H. M. HARPER COMPANY 8244 Lehigh Avenue, Morton Grove, Ill.
If you have a beaded part that you are now milling from bar, it will pay you to investigate the Harper Flo-Form ${ }^{\circledR}$ method of producing such parts in quantities economically. Savings range up to 50%. Information on request from a Harper Field Enginetr.

Specialists in all corrosion-resistant fastenings
 Bolts - Nuts • Screws - Rivets - Washers of Bress Bronze - Monel - Aluminum - Stainless

HARPER

HE LAID THE KEEL OF TWO INDUSTRIES . . . where deep-water shipping can serve your plant direct

SIR THOMAS ARGOLL wrote in 161:3: "Went forward with my Frigat at Point Comfort, and finished her. She was the first big ship built in this country, and her first voyage was "for get ting fish " Shipbuilding and fishing are still important to Virginia's Hampton Roads area, where a varied industrial output now totals $\$ 683,000,000$ a year.
if your plant can profit by a deepwater site, you will find the finest at Newport News, Norfolk, Portsmouth and South Norfolk. Over 300 ship lines link the harbor to 286 world ports with sailings every 90 minutes. Three airlines, 9 major railroads and 45 truck lines serve this magnificent

midway East Coast port and offer favorable tates to the Mid-west.
MANPOWER AND MATERIALS are abundant. Here, coal, chemicals, pulpwood, lumber, peanuts, soybeans and other raw materials roll up to your plant at shorthaul cost.
ample electricity at low cost flows from vepco's modern power network. Its generating capacity expanded by 300,000 new kilowatts in 1955, with another 300,000 under construction and ready soon. For facts on taxes zoning, water, natural gas, climate and other plus factors for your plant -or for confidential help in locating a suitable site, write or phone verco, serving the tor of the south

VIRGINIA ELECTRIC and POWER COMPANY

Clark P. Spellman, Director - Area Development
Electric Building, Richmond 9, Virginia - Phone: 3-4261
oscilloscope is used as an indicator for obtaining the high-precision check of calibration that is required for precision potentiometers.

For a test, the operator hooks the card over pegs on a holding fixture at the left of the calibrating wheel. One peg is rigid and is used for the card end from which measurements are made. The other holding peg is spring-Ioaded to keep the card under tension. A wiper contact mounted on a stainless steel belt is set to the start of the resistance winding and the large indicator dial of the master potentiometer is set to zero. The steel belt runs over the shaft of the master unit, so that the wiper on the card moves as the master is rotated.

Holding fixture for resistance card

After the card is located in the fixture and the leads are connected to the ends of the winding, a reference point of the particular function is selected to set up the checking equipment (scope, dial plate and master pot).

The master pot is set to the reference percent output (selected either by the customer or the manufacturer) by adjusting the vernier dial of the master potentiometer to the required value. The wiper is moved over the winding by rotating the dial plate until a null appears on the scope. The wiper is then locked in place and the dial plate is loosened to permit setting it at the desired angular location corresponding to the reference output. The dial plate is then locked in place and the wiper loosened, permitting it to traverse the winding again.

The linearity is then checked by rotating the dial plate to the angles specified on a function check sheet. The percent output corresponding to each angular setting is recorded from the master pot vernier after a null appears on the scope, for comparison with the theoretical percent output. The difference between

These small, durably constructed units furnish the solution to assembly and procurement problems confronting design engineers and purchasing agents.

A variety of diode and transistor housings are available from Hermetic with weld projections and special metallic finishes to simplify assembly techniques. These units eliminate costly soldering steps-they result in man-hour savings!
The advanced design of Hermetic Transistor Housings provide additional advantages to the engineer and purchasing agent. The internally exposed areas of these parts are of all-glass construction. This construction feature prevents the contamination of a transistor wafer when closure is made after mounting and assures reliable transistor performance, as well as longer shelf life.
Practical designs . . . efficient production... technical assistance in the solution of procurement problems-this is just one phase of Hermetic's service to industry.

Write for complete data and catalogs. The film,
"THE MANUFACTURE OF HERMETIC SEALS", is now available for company showings. Write for details.

Hermetic Seal Products Company

31 South 6th Street, Newark 7, New Jersey
California Associate: Glass-Solder Engineering, Pasadena

RELIABILITY ARE OUR MOST VALUED COMPONENTS

TYPE BG9A-S

A New 1000 kc PRECISION CRYSTAL

 FOR FREQUENCY STANDARDS

This precision sealed-inglass crystal unit provides exceptional stability with minimum ageing when used as a reference source in secondary frequency standards.

WRITE FOR BULLETIN \#491 Beiley
the actual and the theoretical is the error. The error must be within tolerance to pass inspection.

Cutting and
 Forming Leads

Resistor and capacitor leads are cut and formed by an air-actuated machine that can be fed by hand at rates up to 1,500 components per hour, in the Cambridge Radio Works of Pye Ltd. Once the air is turned on, the machine operates automatically, at a speed which can be set to suit the operator. Positions of the cutting and forming blades are continually adjustable to leave any desired length of wire on each lead. Adjustment is made by loosening Allen screws and sliding the entire cutting and forming members sideways.

The operator grasps each component in turn by the end of one lead and holds it against a stop between the cutting jaws. After the leads have been cut and formed, the unit is dropped into the chute below. The chute is designed so it can

Machine for cutting and forming leads of axial-lead components. Continuously operating air cylinder at rear is made by The Climax Rock Drill \& Eng. Works Lid., Carn Brea, Cornwall, England

ENGINEERS LOOK TEN YEARS AHEAD!

Take that ten year ahead look. There"s a fine career opportunity in the enginecring field you like best waiting for you at Douglas.

And what about the Douglas Aircraft Company? It's the biggest, most successful, most stable unit in one of the fastest growing industries in the world. It has giant military contracts involving some of the most exciting projects ever conceived...yet its commercial business is greater than that of any other aviation company.

The Douglas Company's size and variety mean that you'll be in the
work you like best - side by side with the men who have engineered the finest aireraft and missiles on the American scene today. And you'll have every prospect that ten years from now you'll be where you want to be carecr-wise, money-wise and location-wise.
For further information about opportunities with Douglas at Santa Monica, El Segundo and Long Beach, California and Tulsa, Oklahoma, write today to:
DOUGLAS AIRCRAFT COMPANY, INC.
C. C. LaVene, 3000 Ocean Park Blvd.

Santa Monica, California

DOUGLAS

First in Aviation

The solid alumina oxide insulator, coiled heater, and sleeved heater legs combine to eliminate heater-cathode shorts and reduce heater-cathode leakage, thus providing unparalleled operating dependability.

TUBE TYPE						
Type	5838	5839	5852	5993	6106	6754
Prototype	6×5	6×5	6×5	6×4	$5 Y 3$	412A
Bendix No.	TE-3	TE-2	TE-5	TE-10	TE-22	TE-36
	Full Wave					
Class	Rectifier	Rectifier	Rectifier	Rectifier	Rectifier	Rectifier
	Octal	Octal	Octal	9-Pint	Octal	9-Pin
Base and Bulb	T-9	T-9	T-9	Miniature	T-9	Miniature
TYPICAL OPERA TING CONDITIONS						
Heater Voltage	12.6	26.5	6.3	63	5.0	6.3
Plate Volts Per Plate	350	350	350	350	350	350
mA Load	70	70	70	70	100	100

Type Prototype Bendix No. Class Base and Bulb Heater Voltage Plate Voltage Screen Voltage Grid Voltage Gm Plate Current Power Output	5992 6 V 6 TE-8 Beam Pow Amplifier Octal T-9 6.3 250 250 -12.5 4000 45 mA 3.5 W	63852C51, 5670TE-21DoubleTriodeg-Pin Miniature6.3150--2.050008 mA-	
HARD GLASS TUBES			
Type	6094 6384 6A05, 6005 6AR6 TE-18 TE-27 Beam Power Beam Powe		6754
Prototype			412A
Bendix No.			TE-36 Full Wave
Class	Amplifier 9-Ріп	Amplifier	Rectifier
Base and Bulb	$\begin{aligned} & \text { Miniature } \\ & 6.3 \end{aligned}$	Octal T-9	Miniature
Heater Voltage		$1.2{ }^{6.3}$	6.3
Heater Current	$\begin{gathered} 6.3 \\ 0.6 \mathrm{Amp} . \\ 250 \end{gathered}$		1.0 Amp .
Plate Voltage		250	350
Plate Current	$\begin{gathered} 250 \\ 45 \mathrm{~mA} \end{gathered}$	77 mA	二
Screen Voltage Grid Voltage	$\begin{gathered} 45 \mathrm{~mA} \\ 250 \end{gathered}$	250	二
Grid Voltage Gm	4100	-2200	
Power Output	4.5 W	8.5 W	
Load Current		-	100 mA

The above three tubes incorporate hard glass bulbs for hightemperature operation (maximum bulb temperature $300^{\circ} \mathrm{C}$).

Present-day military aircraft and missiles require electron tubes that are highly dependable under extremely severe operating conditions. And building such tubes is our specialty. Bendix Red Bank Reliable Tubes are rugged enough to withstand continuous vibration, varying voltages and frequent shock. For details on regular, or special-purpose, fubes to meet your specific needs, write red bank division, bendix ayiation corporation, eatontown, new jersey.

West Coast Sales and Service: 117 E. Providencia Ave., Burbank, Calif. Export Sales and Service: 205 East 42nd 5t., New York 17, N. Y. Canadian Distributor:
Aviation Electric, LId., P. O. Box 6102 Montreal, Quebec.

Air-actuated lead chopper for ceramic components
be lifted out when full and transferred to the assembly line for use as a dispenser bin.

Leads of ceramic disk capacitors and coupling plates are chopped to length by air-powered jaws under foot-valve control. This assembly is mounted on the front of the workbench, so that cut leads can drop into a bin below.

Components are inserted manually without clinching, with the aid of trolley cars that support wiring boards on a pass-along assembly line. The car is much like a chassis equipped with four rubber wheels, having in its top a framed rectangular hole to receive the wiring board. The trolley-car wheels run in semicircular channels cut into an ordinary wood-top bench. At each work station is a spring-loaded catch for holding the trolley while parts are being inserted in the wiring board.

After assembly is completed, the boards are removed for transfer to the dip soldering machine. The empty trolleys are placed on a sloping shelf at the back of the bench for gravity return to the start of the line.

Component storage bins are open and mounted on a slant to give gravity feed. A protruding lip at

GUARDIAN -for the ultimate in open, enclosed, sealed and hermetically sealed controls
a complete line of controls serying american industry

MAKE

TECHNICRAFT YOUR PRIMARY SOURCE

Designed with Fincioion Built with Fineaison Touted with Finciusen

One of our representatives is near you. Sales engrneering offices in: Dallas • Dayton - Los Angeles Chicago - Seattle - St. Louis • Toronto (Canada).

SERVING RADAR AND COMMUNICATIONS WITH THE best in microwave transmission devices

Technichaflaboratories
1550 THOMASTON RD. THOMASTON, CONNECTICUT

Designers and Manufacturers of Rigid and Flexible Waveguide Assemblies, Microwave Test Plumbing and Components, Waveguide Systems.

Work station on trolley-car assembly line, showing open gravity-leed dispenser bins. Spring -loaded clip holds car steady as components are inserted in wiring board. Rubber wheels of car run in channels cut into wood bench
the bottom of each bin facilitates pickup. The lip of the bin is above the bench; a component is removed with the left hand by placing the thumb under the lip and the forefinger on top to draw a component to the edge and grab it.

Each component to be assembled is assigned a number in sequence. This is written on a tape tab placed on the lip of each dispenser bin. Corresponding numbers are screenprinted on the top of the wiring board, between lines going to the holes in which the particular component is to be inserted. This technique minimizes assembly errors and cuts down training time when starting up a line for a new design.

Intensity Markers Aid Television Alignment

By L. W. Dixon
Test Equipment Design
Radio Corporation of America Television Division Bloomington, Indiana

ALIGN MENT OF TELEVISION receivers on a production test line can often be made more efficient by the simultaneous presentation of negative and positive intensity markers to sweep signals being viewed on an oscilloscope. This is accomplished in the i-f section of chassis alignmont by the use of a sweep generato feeding all i-f alignment positions on the production line. The sweep generator output is simultaneously fed into a sampling cir-
 varying spectications. (Inset) Ram has built an excellent reputation for winding qualit coils and trarstormers used in radio and TV equipment.

RAM standardizes on Leesona coil winders...adds No. 108 machines

These uinders help

 maintain highest quality standards . . . with good production performanceRam Electronics, Inc. (Irvinglon, N. Y.) earned its fine reputation by adhering to unusually high quality standards.

This reputation, of course, is one they intend to keep. So in adding to coil winding facilities they picked

Leesona No. 108 Coil Winders, standardizing on Leesona equipment which has served them so well in the past. To quote Mr. Del Vecchio, plant manager:
"We have come to count on Leesona Coil Winders to assure the high quality coils we insist upon for our products. That's why any additions to our present installation will be Leesona winders."

The Leesona No. 108 Hand Feed

Coil Winder was designed specifically for complete accuracy, great flexibility and top production at low operating cost.

Investigate

how Leesona No. 108 Coil Winders can perform with great efficiency in your plant. The coupon will bring you complete details, together with other helpful coil winding information. Why not check and mail it today?

FOR WINDING COILS in QUANTITY... accurately... USE LEESONA WINDING MACHINES

UNIVERSAL WINDING COMPANY

P. O. EOX 1605, PROVIDENCE 1, RHODE ISLAND, Dept. 124

Please send me
Bulletin on the Leesona No. 108 Hand-Feed Coil Winder.
Condensed catalog of Leesona Winders.
Bulletin on the new Leesona Pay-As-You-Profit Plans for purchasing or leasing modern coil winding machinery.
\qquad
\qquad
\qquad

Farmsworth

Here's the storage tube bright enough for direct viewing in a sun-lit cockpit . . . by several persons in a normally lighted room or a projection display of four feet! With one control knob, operator can set display for any persistence desired... from a few thousandths of a second to several minutes. All information can be erased instantly by merely pressing a button!

Another Farnsworth achievement . . .

One of many complex electronic products developed, designed. and produced for defense and industry . . . backed by over a quarter of a century of continuous success and leadership in the field of electronics.

Farnsworth

for complete details on the IATRON storage tube, write
FARNSWORTH ELECTRONICS COMPANY • FORT WAYNE, INDIANA
a division of International Telephone and Telegraph Corporation

FIG. 1 -Sweep generator and marker generator connections to equipment
cut containing crystals which become resonant as their frequencies are swept through, as in Fig. 1.
\rightarrow Method of Use - Rectification and amplification of the output from the crystals results in pulses which are fed through a common cable to the Z axis of the oscilloscope for intensity modulation purposes. Positive pulses, appearing as bright dots on the i-f response curve displayed on the oscilloscope, are used to identify the frequencies used for peaking the i-f staggertuned stages, as in Fig. 2A and 2B. Negative pulses, identified by blanked portions of the trace as in Fig. 2C, are used as curve reference markers.

In operation the aligner feeds the i-f sweep signal into the chassis, peaks each stagger-tuned stage for maximum rise from the base line of the corresponding bright dot, then touches up the alignment by referring to the negative-blanked curve positions to obtain the proper position of the reference markers.

- Advantages-When master signal systems are used, this method has many advantages. The aligner

Fig. 2-Positive pulses as they appear before alignment (A), curve shape after positive pulse peaking (B) and i-f response after touchup (C) using negative pulses as reference markers

> New Resistor Stands Higher Overloads... Without Crazing!

The "Blue Ribbon", resistor with a bigher wattage rating per unit space requirement. Made by Hardweick, Hindle, Inc., Newark, N. J.

Here is a resistor really new and different . . . the compact Hardwick, Hindle "Blue Ribbon," which stands remarkably high overloads and excessive heat without crazing.

Special design features which make this possible are: an aluminum thrubar extending through the center of the elliptical ceramic core, which in. sures a more even distribution of heat to prevent "hot-spots;" and a thermo-shock-proof enamel coating which eliminates crazing.

Heretofore, crazing, which occurred mostly at terminal areas, shortened resistor life and limited the safety factor. To prevent this, an alloy with three hard-to-find qualities was needed: (1) It had to have a coefficient of expansion to match all integral parts; (2) it had to be free of gas; (3) it had to form a perfect bond with the enamel.
A large order, indeed. But Driver-Harris filled it
by developing \#146, a glass-to-meral sealing Alloy. This alloy now makes it possible to operate resistors and rheostats at hitherto dangerous overloads, with no risk of breakdowns in the enamel coatings.

146 Alloy is one of 4 Driver-Harris Alloys which cover most glass-to-metal sealing needs-available as rod, wire, strip, sheet foil, and in special shapes. Today the makers of the "Blue Ribbon" use 146 Alloy for the terminals in all of their resistors and rheostats as well. They also use Nichrome*, Advance*, and other gas-free resistance alloys made by Driver-Harris in winding the cores.
What you can learn from this is clear. If you also need a special purpose alloy, send us your specifications. Our engineers with 48 years of experience are at your service.

One of a new line of " H "
Series bigh wattage rheostats made by Hardwick, Hindle, using Driver-Harris Alloys.

Driver-Harris Company harrison, new jerser

BRANCHES: Chicago, Detrait, Cleveland, Louisville, Los Angeles, San Francisco

In Canada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, Ontario

of the most complete line of electric heating, resistance, and electronic alloys in the worlo

Dont GambleWith Cable Performance

.. Dependon DHAL?

"Almost" is never enough when it comes to cable performances. You must be 100% certain the cable you select is custom-made to do the job your power engineering plans call for. You must know you can depend on cable performance in every respect.

Many of America's major users of cables have found they can depend on Phalo to produce exactly the cable needed.

Send Phalo a copy of your cable "specs". You'll discover a new kind of cable dependability.

Ask For The Complete Phalo Catalog

FIG. 3-Vertical (A) and Z-axis (B) inputs to cathode-ray oscilloscope
is required to select only one signal at the attenuator. Considerably less hookup time is required. The aligner can simultaneously observe the i-f response characteristics while making specific frequency adjustments. Relatively few distribution cables and transformers are required. Model change-over time is reduced to a minimum.

The overall analysis of the method indicates a substantial reduction in alignment time and a general improvement in the cuality of alignment, resulting in better overall performance.

Turn-Finding Welder for Potentiometer Taps

TAPS of hair-size wire are welded to precisely the correct turn on the resistance element of a precision potentiometer with an electronically controlled capacitor discharge welder that allows welding current to flow only at the exact turn that gives the desired resistance value. Tweezers connected to the welder are used to hold the short piece of wire used for the tap. The welding operation is observed with the aid

Automatic welding setup used for welding tap on precisely the correct turn of α precision potentiometer

a complete line by a world leader in electron tubes and semiconductors

STABLE•UNIFORM•TIGHT-TOLERANCE

Each amperex germanium diode is all-glass . . . fusion sealed . . . and available in both a clip-in (' $G A^{\prime}$) and a solder-in (' G^{\prime}) version.

Preferred
entertainment diodes

- video detector types

1N60G, 1N87G, and OA73

- DC restorer type 1 N88G
- AGC and AM defector type IN541
- matched-pair ratio detector for TV and FM receivers - type IN542

COMPUTER DIODES

- recovery-lime and high-temperature tested types
- tight-folerance, point-contact, high-temperature guaranteed types.

GENERAL PURPOSE
and REPLACEMENT DIODES

- 100 voll types
- high back-resistance types
- I megohm back types
- video detector types

AMPEREX also has available a complete line of audio and switching transistors of all-glass construction.

For detailed data or applications-engineering consultation, write to Semiconductor and Special Purpose Tube Department

230 DUFFY AVENUE, HICKSVILLE, LONG ISLAND, N. Y.

IET US KNOW YOUR DEIVERY REQUIREMENTS - WRITE TODAY

KEARFOTT COMPONENTS INCLUDE:

Gyros, Servo Motors, Synchros, Servo and Mag. netic Amplifiers, Tachometer Generators, Hermetic Rotary Scals, Aircraft Navigational Systems and other high accuracy mechanical, electrical and electionic components.
Send for bulletin giving data of components of interest to you.

KEARFOTT COMPANY, INC., LITTLE FALLS, N.J.

Closeup of welding operation, showing light source mounted ai rear of stereo microscope
of a 20-power stereo microscope, using a spotlight mounted on the assembly fixture to give adequate illumination for this critical operation.

The other terminal of the welder is connected to the wiper arm of the potentiometer, which is set to the desired tap position. With the aid of a calibrating chart, the welder controls are set to a value corresponding to the ohms per turn of the particular potentiometer unit being welded. Sufficient weld current then flows only when the tap wire is on the same turn as the wiper. This technique is used in the Hicksville, N. Y. plant of Fairchild Controls Corp.

Connector Assembly Jig

SOLDERING of nine connectors in correct orientation on the cover of a hermetically sealed airborne electronic control unit is expedited through use of a simple metal jig. A thin sheet of steel having hex holes in the correct positions for the connectors is attached to a

The cyclotron shown above is one of the many types of advanced research equipment in use at Los Alamos. This variable energy machine is designed to accelerate high intensity beams of all the hydrogen and helium isotopes.

The Laboratory offers a wide range of opportunities to do research and development work in the fields of Physics, Chemistry, Metallurgy, Mathematics, Computing and Engineering.

If you are interested in learning more about career opportunities at Los Alamos, write-
department of scientific personnel
Division 703

los. alamos
 scientific laboratory
 of the university of california

LOS ALAMOS, NEW MEXICO

A NEW DESIGN APPROACH...

BEYOND-THE-HORIZON TRANSMISSION

BEYOND-THE-HORIZON TRANSMISSION

The newest military and commercial long-range communications systems are turning towards the advantages of "scatter" transmission. By transmitting directly to stations well beyond the horizon, scatter transmission systems eliminate the construction and maintenance of intermediate microwave stations and avoid cables and repeaters of wire systems, while retaining the wide bandwidths available at high frequencies. This direct transmission can span water or inaccessible terrain while giving predictably high signal reliability and frecdom from interference.

A NEW APPROACH ... CONTROLLED SYSTEM DESIGN

A complete analysis including the effects of climate, multipaths, modulation, diversity and prolonged equipment operation combined with an exclusive experimental method of simulating every proposed link enables Hycon Eastern, Inc. to hit the performance
target more precisely. We can reduce the expense of a large margin for error and eliminate the possibility of costly site relocations by careful assessment of each customer's needs and operating conditions that will provide him with an optimum design.

HYCON EASTERN OFFERS AN INTEGRATED SERVICE

Within the areas of Hycon Eastern, Inc. and its associated companies can be found complete facilities not only to design, engineer and specify equipment for Beyond-the-Horizon Transmission Systems, but to design Central Offices, Connecting Wire Networks, perform Communication Traffic Density Surveys, Acrial Surveys and Mapping to determine the most efficient routes for land lines and for various radio links such as UHF/SHF line of sight. After the necessary facts have been gathered there further exists the experience to evaluate them and to specify practical equipment with complete independence of judgment necessary to create a complete communications system that will fulfill present and projected needs.

solder are placed on each nut used on the other side of the cover to prevent loosening from vibration during use. This technique is used in the Long Island City, N. Y, plant of Ford Instrument Co.

Spraying Molten Metal

 on Resista nce Cards

Spraying resistance card with molten metal to form end connections, using combination mask and holding fixture

End connections and shorted sections are produced on wound cards and mandrels for precision potentiometers by masking with a holding fixture and then spraying with molten precious metals in a production setup in Fairchild's, Hicksville, N. Y. plant.

Spraying is done in a metal-lined chamber that catches oversprayed metal. The Metco gun is mounted on the bench at the front of this chamber. The part being sprayed is held by the operator and moved about to insure adequate buildup of metal in the desired areas.

Hoseshoe Bends in Pass-Along Lines

A LONG pass-along assembly line for television i-f amplifiers was set up in an essentially square area in Emerson's Jersey City plant by using six horseshoe bends. The line

BEAM SWITCHING TUBE...

The beam switching tube offers a new basic device to the engineer of electronic equipment. Versatility of the basic ten-position tube is such that any desired type of sequential, simultaneous or random switching of any number of positions may be obtained. The simplicity of the tube design and associated required circuitry results in a new standard of reliability. It reduces the total number of tubes required in a circuit, space, weight, and heat in control and switching systems.

Perfected by the Burroughs Research Center... rigidly tested and accepted by key electronic plants and communications labs throughout the world...this revolutionary new tube is now precision-manufactured in production quantities with complete accuracy and dependability by the Haydu tube division, specialists in the electronic industry.

Here's the fastest way to produce finished wire leads!

Insula:ed
 Non-Irasclated

Inswatced (9) Non-Iasulated

TYPE "B" MINIATURE PLUGS AND CONNECTORS Current Capacity: 5 Amperes Wire Sizes: \#18 to \#22

TYPE "C" SUB-MINIATURE JACKS AND CONNECTORS Current Capacity: 1 Ampere Wire Sizes: \#21 to \#22

TYPE "A"

PLUGS AND CONNECTORS
Current Capacity: 10 Amperes
Wire Sizes: \#14 to \#18

VIBRATION PROOF!

Left: With an Interlock Plug and Jack securely mounted, test begins with platen vibrating at 10 cycles per second. Right: at 50 cycles per second, camera stops motion to show plug still locked in its jack! Tested for 18 hours at an amplitude of .06 inch and at a varying frequency from 10 to 50 to 10 cycles per second, conductive quality remained steady with no current interruption during vibraticn.

For Further Information, Write Dept. C:

GARYEY HUBBELL, IDC.

Interlock Electronic Connector Dept., Bridgeport 2, Conn.

80 New Products and 34 Manufacturers' Bulletins Are Reviewed
...Control, Testing and Measuring Equipment Described and
Illustrated . . . Recent Tubes and Components Are Covered

VHF ATTENUATOR

for accurate, easy operation

Abstract

Federal Telephone and Radio Co., 100 Kingsland Road, Clifton, N. J. Precise measurement of attenuation in electrical elements over a frequency range from $\mathrm{d}-\mathrm{c}$ to 300 mc may be easily carried out by means of type FT-DTR vhf standard attenuator.

- Performance - The instrument

provides accurate attenuation from 0 to 100 db in $1-\mathrm{db}$ steps, with ease of operation equal to or better than that usually associated with l-f attenuators. It is ideal for attenuation comparison checks and serves also for the attenuation of known voltages where fractional outputs are needed.

The unit weighs 24 lb and measures $19 \frac{3}{4} \mathrm{in}$. long, $7 \frac{3}{4} \mathrm{in}$. high and $10^{\frac{1}{3}} \mathrm{in}$. deep. It has a characteristic impedance of 50 ohms .

ULTRAPRECISION POT

features high linearity

Litton Industries, Components Div., 336 North Foothill Roaa,

Beverly Hills, Calif. The new 10turn 2-in. o-d ultraprecision potentiometer provides independent linearity as close as 0.01 percent or better. High stability combined with extra rugged construction assures highest accuracy even under severe environmental conditions.

- Construction and Specifications -The resistance coil is externally wound on a nonhydroscopic ceramic core which is chemically inert, di-
mensionally stable, and has a low coefficient of expansion. Rugged metal-to-metal traveling nut stops withstand static torque of 500 in.-oz. The wiper arm is independent of the stops and, to minimize wear, only the wiper touches the resistance element. The $2-\mathrm{in}$. diameter cover is precision-machined aluminum. Electrical angle is $3,600 \mathrm{deg}$ with 90 deg overtravel at each end. All tapes are welded to a single turn of wire. Resistance values of 1 K to 100 K can be supplied; other values on customer order.

VACUUM SWITCH

is high-current type

Penta Laboratories, Inc., 312 N . Nopal St., Santa Barbara, Calif. The PL-169 high-current vacuum switch was developed specifically for switching between spectrograph are and spark sources, but has numerous other uses where a compact, sealed spdt relay capable of handling 30 amperes at voltages up to 250 , or low current at voltages up to 22,000 , or both, is required.

- Highlights-The PL-169 features large contact surfaces, large ter-
minal leads, and a heavy flexible shunt to carry current around the

armature. High-vacuum exhaust allows it to withstand a voltage of $22,000 \mathrm{v}$ across the open contacts, even though contact spacing is only 0.020 in.

DIODE CURVE TRACER gives large display

Waters Mfg., Inc., P.O. Box 368, South Sudbury, Mass. Completely independent display of forward and reverse characteristics of all common types of diodes, on the scope

_builds in extra reliability and versatility

Here's a simple reliability test you can make yourself to demonstrate important advantages of Sylvania's "donut-ridge" button header. When you bend the tube leads as shown, ordinary headers will flake, chip, or crack : but leads bend cleanly around the "donut-ridge" header in Sylvania "Gold-Brand" subminiatures.

The "donut-ridge" is an original Sylvania refinement in button header design: you'll find it on all Sylvania T-3 premium subminiature tubes. By preventing sharp angle bends in the leads the "donut-ridge" eliminates header cracking and chipping -leads can be clipped short for tight component spacing.

These reliability "extras" are added to the basic advantages of button header design. Greater protection against mechanical shock and vibration; wider lead spacing to retard electrolysis for more stable operation at high temperatures; heavier leads and less lead fatigue; more rigid seating in socket applications; these are just a few of the benefits the button
header has over pressed stem construction.
And only the button header accommodates eight external leads which make possible the twin triode with separate cathode connections. Pioneered by Sylvania, the twin triode broadens subminiature application and provides greater versatility in subminiature circuit design.

Standardize your reliable equipment designs with Sylvania "Gold-Brand" subminiatures. There's a "donut-ridge" button header type to meet all your subminiature needs and Sylvania offers you the most complete line. 39 types are detailed in the "Sylvania Gold-Brand Subminiatures" brochure. Write for it. Address department D20P.
face of the model 1003B diode curve tracer, gives an image four times the size of that obtained with earlier models. Dual inputs permit convenient comparison or differential testing of diodes and resistors. This facilitates application of the
instrument to production testing in addition to its use in laboratory work and as a maintenance tool.

- Specifications-Accuracy is ± 5 percent for measurement of forward characteristics at the in-
creased sensitivity of $2 v$ per in. and current ranges of 10,20 and 50 ma per in., and of reverse characteristics at 50,100 and 250 v per in. and current ranges of 1 , 10,100 and $1,000 \mu$ a per in. Voltage is adjustable from 0 to 500 v .

PISTON CAPACITORS

used in printed circuitry

JFD MFg. Co., Inc., 6101 Sixteenth Ave., Brooklyn, N. Y., has introduced a new series of subminiature piston capacitors designed primarily for use in printed circuitry and automation.

- Two Models-The VC9G (\$3 list) and VC10G ($\$ 2.50$ list) feature glass dielectrics and invar silverplated rotors. The VC10G measures

$\frac{5}{15}$ in. in length; model VC9G, $\frac{9}{16} \mathrm{in}$.
Temperature range of both goes from -55 C to +125 C and their dielectric strength (d-c volts) is greater than $1,000 \mathrm{v}$ d-c. Adjustment torque is approximately 1 in . oz. Both midget trimmers have a 2-56 internal screw thread, with a 0.118 diameter screw head.

Capacitance range of the VC10G is $1 \mu \mu \mathrm{f}$ to $4.5 \mu \mu \mathrm{f}$, and weight is 2 grams. The VC9G has a capacitance range of $0.5 \mu \mu \mathrm{f}$ to $8.5 \mu \mu \mathrm{f}$; weighs 3 grams.

H-F DIODES

are silicon bonded

Transitron Electronic Corp., Melrose 76, Mass. The new silicon diodes, now being produced in a subminiature glass case, exhibit excellent high frequency and fast switching characteristics. They are intended for use in detector, discriminator or pulse circuits where high temperature performance is important.

- Highlights-The bonded silicon diodes offer low shunt capacitance
(0.8 $\mu \mu \mathrm{f}$ average), high inverse resistance and moderate forward conductance with a high degree of electrical and mechanical ruggedness. Types such as the 6SG are particularly useful in 30 -to $60-\mathrm{mc}$ i-f strips for video detectors, clamps or clipping diodes. Their fast pulse recovery time is of particular importance for computer circuits as well.

Extremely small size and ability to operate at high ambient temperatures are important advantages when they are used for aircraft and missile applications.

MAGNETRONS

ruggedized, pulse type

Microwave Associates, Inc., 22 Cummington St., Boston, Mass., has developed two new ruggedized pulse-type magnetrons for continuous operation under extreme conditions of shock and vibration. Both tubes, identical physically, are especially suited for short pulse operation in extremely high-definition radars for airborne and mobile use.

- Simplification-The MA-200 and MA-206 feature much improved form factor packaging with a total weight reduction of 2 lb , simplified mounting requirements and a more
compact design than standard 5789. Long life is achieved by use of the dispenser type impregnated tungsten cathode.

The MA-200 is a pulsed-type fixed-tuned magnetron generating approximately 40 kw peak power at 35 kmc . Its r-f spectrum is unchanged when subjected to vibration conditions of 15 g at 1,000 cycles.
The MA-206 is a low-power counterpart of the above generating $20-\mathrm{kw}$ peak power at 35 kmc .

A-F OSCILLATOR 30 cps to 30 kc output

American Metrix Corp., Box 179, Upper Darby, Pa. Type 816 a-f service oscillator gives an output

13 RINGS CONCENTRICITY .003" GROOVE

exclusive* ELECTRO TEC techniques

insure closer tolerances, absolute uniformity, and the ultimate in miniaturization
Electro Tec units are the product of an exclusive manu:acturing technique that results in accuracy unattainable by conventional fabricating methods. In this process a plastic is moulded around the wire leads. Accurate machining reduces this blank to the proper shape, complete with grooves. Hard silver is deposited into the grooves by electroplating to produce the required rings. Final machining insures concentricity and dimensional accuracy. The result is one-piece, unitized construction with conducting rings of 70 to 95 Brinell hardness.
Diameters of these assemblies range frcm . $045^{\prime \prime}$ to $24^{\prime \prime}$ cylindrical or flat. Cross-sections may range from $.005^{\prime \prime}$ to $.060^{\prime \prime}$ or more. Rings are polished to a jewel-like finish and can be held to 4 micro-inches or better. Even the smallest sizes withstand a 1000 V.A.C. breakdown test. Most types easily withstand rotational speeds up to 12000 rpm .

ELECTRO TEC Assemblies are Specified by the Nation's
Leading Precision Instrument and Equipment Manufacturers for Proven Greater Dependability, Longer Life, Smoother Functioning.
The uniformly superior performance of Electro Tec slip ring and commutator assemblies in thousands of industrial and governmental applications has resulted in wide adoption of these component units by most leading manufacturers of precision instruments and equipment. Although these products provide improved performance and extra dependability, prices are strictly competitive. Write today for fully illustrated literature.

SO. HACKENSACK

CORPORATION
NEW JERSEY

- ONE PIECE UNITIZED CONSTRUCTION
- ABSOLUTE MINIMUM TORQUE FRICTION
- DIAMETERS FROM .045" TO 24.0"
- MINIMUM 1000 V.A.C. HIPOT INTER-CIRCUIT
- UNIFORMLY HARD SILVER RINGS PLATED INTO GROOVES ON PRECISION MACHINED ONE PIECE PLASTIC FORM
- SPECIAL SURFACE DEPOSITS PREVENT TARNISH, MINIMIZE FRICTION, BRUSH NOISE AND PRACTICALLY ELIMINATE WEAR

-PAT. NO. 2,696,570

PRODUCTS OF PRECISION CRAFTSMANSHIP BY A NEW AND REVOLUTIONARY PROCESS

The CMC Hodel 310 Series Preset Con- ponents, ete., in exact presclected trollers are designed as high speed direct reading electronic counters of the coincident type which will control any operation or activate an alarm after a preselected total count has heen reached.
*A few of the many applications are batching and packaging of pills, bottles, botlle caps, canned goods, pen points, machine parts, electronic com-
quantities; controlling the exact length of stock in culting operations; and control of high speed machinery. Any clectrical, mechanical or optical events which can be converted into electrical im. pulses can be counted and controlled. De vices to effect this conversion may be photocells, magnetic coils, switches, and suitable ransducers for pressure, temperature, velocity, acceleration, displacement, etc.

SPECIFICATIONS						
	312A	313A	314A	315 A	3184	
Decades	2	3	4	5		
Count Capacity	100	1000	10,000	100,000	1,000,000	
Counts per Second	010100,000 los totolizing caunter)					
Recycling Rate	50,000 counts per second las preset counter)					
Input Sensifivity						
	0.07 volts rms : $1-10 \mathrm{cps}$ Positive Pulse Rise Time: $1 / 2$ volt or more per sec.					
Input Impedance	0.5 megohm, 50 mm ?					
Accuracy	Absolute					
Output	(negative pulse optional)					EXCEP
Output Relay Contacts	5 amps, 117 vol!s, non-inductive loadNormally open or normally closed (with indicatar Can be switched out					
Relay Hold Time						
Auxiliary Power	6.3 volts ac (a 3 amps; +225 volts dc reguloted (a) 50 ma ; -150 valts de regulated fa 5 ma .					
Power Requirements	117 voits $\pm 10 \% 50.60$ cycles					
	$100-150$ watts depending on model					
Dimensions	20 to 28 lbs . depending on model					
Net Weight						
Finish	Panel: Light grey baked enamel Case: Dark grey baked enamel					
Data Subject to Change Without Notice						

The direct reading Model 101A Preset Decade Counting Unit is designed to provide an output pulse at a selected number at rates in excess of 50,000 counts per second. They are capable of counting at a $100,000 \mathrm{cps}$ rate if reset is not required. These units are readily connected in cascade in order to ennit a pulse at any desired count. Typical applications are batching, sorting, packaging, automatic counting and control. Srequency division, generation of precise delays, etc.

Model IOIA $\$ 75.00$

from 30 cps to 30 kc which largely covers the acoustic frequency range. It is intended for adjustments of a-f amplifiers and measurements at audio and acoustic frequencies. Output level is adjustable from $10 \mu \mathrm{v}$ to 10 v by an accurate attenuator system. An automatic regulation circuit keeps the output level constant with changes in frequencies.

- Further Technical Data - Frequency accuracy is 2 percent ± 2 cps. Output impedance is less than 5,000 ohms. Distortion from 30 to 50 cps is 3 percent; above 50 cps , 2 percent. Power supply is 115 to $220 \mathrm{v}, 50 / 60 \mathrm{cps}$. Dimensions are $10 \frac{1}{3}$ by $7 \frac{5}{8}$ by $7 \frac{1}{2} \mathrm{in}$. Weight is 12 $\mathrm{lb}, 2 \mathrm{oz}$.

MERCURY BATTERY for electronic devices

P. R. Mallory \& Co., Inc., Battery Div., North Tarrytown, N. Y., has developed a mercury cell so designed that a number of them can be stacked together to provide required voltage in a variety of physical shapes. The design permits full automation in the construction of the basic cell and in the assembly of the cells into battery stacks, with substantial economies in production costs. Thus the long shelf life and constant

CAN

Many times we have been asked if Ampli-Film Dielectric can be curved. We had anticipated applications in which Ampli-Film would be made in shapes other than flat . . .

Yes, Minflifilm can be formed in unusual shapes

The size and shape of some electronic gear require that components be manufactured in unusual shapes. Dielectrics must, in turn, be formed to fit. Ampli-Film meets the requirement. The curved Capitron ${ }^{\circledR}$ Wafer Capacitor pictured is an example. A truly remarkable versatility in a dielectric.
 pressible and inert . . . undergoes no distortion from heat or pressure . . . can be bonded by adhesives . . . is free from pinholes and flaws . . . is easy to handle and fabricate.

AIRCRAFT-MARINE PRODUCTS, INC.
Chemicals and Dielectrics Division - 155 Park Street, Elizabethtown, Pa.
A.MP of Canada, Ltd., Toronto, Canada - Aireraft-Marine Products (G.8.) Ltd., London, England
A.MP-Holland N.V., 's-Hertogenbosch, Hollond - Sociefe A.MP de France, Courbevoie, Seine, france

ONEDIT-MCO AUTOMATIC

 CIRCUIT ANALYZERvoltage output inherent in the mercury battery system are available at lower prices.

- Specifications - The new batteries are available in standard miniature sizes for $15,22.5$, and 45 v . The basic individual cell is 0.490 in . in diameter, with an overall height of 0.280 in . When cells are nested together, the net height of each is 0.210 in .

PULSE EQUIPMENT

for wideband transmission
Electrical and Physical InstruMENT CORP., 421927 th St., Long Island City 1, N. Y. A new line offers most equipment needed for wide-band pulse transmission problems from d-c to 1 millimicrosecond rise time pulses (0 to 350 mc), standard coaxial cables prefabricated to any desired length with any desired standard connectors and coaxial line terminations for any impedance from 50 to 200 ohms. Impedance matching boxes for joining different impedance lines, and pulse splitters-mixers, pulse attenuators, and variable pulse delay boxes are included.

Box 04-15, 911 Broadway, Kansas City, Mo. • Phone: HArrison 1-8484
Partial List of DIT-MCO Users:
Bell Aircraft Corporation, Texas Div. - Bendix Aviation Corporation, Sidney, New York - Boeing Airplane Company, Seattle, Washington and Wichita, Kansas - American Bosch Arma Corporation - Douglas Aircraft Company, Tulsa, Oklahoma - Fairchild Aircraft Division - Goodyear Aircraft Corporation - Martin, Baltimore - Naval Ordnance Laboratory, White Oaks, Maryland - Northrop Aircraft, Inc. - Motorola, Inc. - Temco Aircraft Corporation - Trans World Airlines - Convair Chance Vought Aircraft - Servomechanisms, Inc. - Radio Corporation of America - Pacific Mercury Television Mfg. Corp.

If your product involves complex electrical circuitry, DIT-MCO can help you make it better and faster, at less cost. Write today for full details.

DIT-MGQ ING., ELEGTRONIGS DIVISION

NEW smaller sizes-ADDITIONAL wattage range

For all applications where the equipment must survive the most severe environmental, shock, and vibration conditions.
Smal est in size; completely welded from terminal to termiral; silicone sealed, offering high di-electric stren;tt., maximum heat dissipation, and maximum resistance to abrasion; impervious to moisture, salt ions and gases.

RS-iA, 2 watts; RS-2B, 2 watts; RS-2, 2 watts; RS-5, 5 watts; RS- 7,7 watts; RS-10, 10 watts.

- Tomperature coefficient 0.00002/Deg. C
- Raiges from 0.05 ohm to $55,000 \mathrm{ohms}$, depending on type
- Tole Conform to applicable JAN and MIL Specifications

Write for Bulletin R-23A
 DALE PRODUCTS, INC. Phone 2139
 1300 28th Ave., Columbus, Nebrasko, U.S.A.

attenuator using resistive coaxial networks.

- Specifications - The attenuators are used in both narrow-band and broadband circuits within the frequency range from d-c to $4,000 \mathrm{mc}$. The vswr is better than 1.1 to 1 at all frequencies to $3,000 \mathrm{mc}$, better than 1.2 to 1 at all frequencies to $4,000 \mathrm{mc}$. Rated power is 1 w continuous, 1 kw peak. Accuracy is $\pm \frac{1}{2} \mathrm{db}$. Normal impedance is 50 ohms, with special impedance values supplied on request.

Designed to withstand mechanical shock and vibration, the AT-104 is expected to be widely used both as a laboratory test device, and a production component where flexibility coupled with accuracy is required.

MEASURING SYSTEM plots vswr vs frequency

Color Television Inc., 935 San Carlos Ave., San Carlos, Calif. Permitting instant observation and/or recording of vswr vs frequency, model 125-A sweep-frequency vswr measuring system offers the speed and accuracy of a ratiometer system using a bidirectional coupler. Overall accuracy is within 2 percent.

- Uses-The instrument is ideal for wideband tuning operations both in the laboratory or on the production line. Also, where desired, it can be used in single-frequency operations.

Both a built-in oscilloscope and direct-reading meter are provided for direct observation. Where permanent records are required a recorder is available as an accessory. A 203-B klystron with $1,000-\mathrm{cps}$ square-wave modulation is used as an r-f source. The system includes a load calibrated at 4 vswr read-

Notable Achievements at JPL

FIRST TO FLY FM-FM TELEMETERING...From JPL's 3-band FM-

 FM telemetering System flown in 1944, to its present extremely versatile, compact, transistorized 18 -band system, telemetering has been an important factor in the successful development of JPL guided missiles.Significant firsts in this field are:
In 1948, a 10-band FM-FM System with 15 measurements.
In 1953, an 18-band FM-FM System with 36 measurements.
In 1954, a 14-band FM-FM System with all audio circuits transistorized.

Pioneers in Telemetering Development

JPL JOB OPPORTUNITIES ARE WAITING FOR YOU TODAY!
in these fields
ELECTRONICS
ELECTRONIC RESEARCH
SYSTEMS ANALYSIS
ELECTRO-MECHANICAL INSTRUMENTATION

INERTIAL GUIDANCE
TELEMETERING
PHYSICS
PACKAGING
MECHANICAL ENGINEERING
AERONAUTICCAL ENGINEERING

CALTECH

The success of the Corporal and other JPL guided missile programs is dependent on constantly improved instrumentation techniques. Development, a major portion of the Telemetering Group activity, is directed toward improving system flexibility, accuracy and reliability. This activity is tailored to both immediate and long range instrumentation requirements of the many Laboratory missile programs.

The use of transistors and modern magnetic elements, together with progressive packaging techniques developed from intensive JPL studies, result in greatly improved reliability in missile-borne and ground-recording equipment. In addition, advanced communication studies are being utilized in the design of advanced telemetering equipment to the constant improvement of this art. An example of applied theory, is the use of tracking filter techniques in the communication link-resulting in a significant improvement in telemetering data accuracy.

The size and character of the "Lab" fosters a personal contact and close relationship between data-user and telemetering engineer. This close telemetering support is a basic reason for the development of better ways of measuring drag for the aerodynamicist, motor pressures for the propulsion expert, stresses for the missile designer and of monitoring complex electronic circuits which are the responsibility of the guidance specialist. This close cooperation has become a prime factor in the growth of the laboratory into one of the most successful guided missile development centers in the world.

You are invited to join this progressive group of scientists and engineers. Write us today.

JET PROPULSION LABORATORY
A DIVISION OF CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

BALLAST REGULATORS

Amperite Regulators are designed to keep the current in a circuit automatically regulated at a definite value (for example, 0.5 amp .) ... For currents of 60 ma , to 5 amps . Operate on A.C., D.C., Pul. sating Current

T6 $6_{\frac{1}{2}} \mathrm{~L}$

Hermefically sealed, they are not affected by changes in altitude. ambient temperature (-55° to $+90^{\circ} \mathrm{C}$.) , or humidity ... Rugged, light, compact, most inexpensive.

Write for 4-page Technical Bulletin No. AB-51
AMPERITE CO., Inc.
561 Broadway, New York 12, N. Y. Telephone: CAnal 6.1446
In Canada: Atlas Radio Corp., Ltd. 560 King St., W., Toronto 2B
ings for each of 3 different frequencies.

- Price-The complete system including indicator, oscillator, bidirectional coupler and calibrated load is $\$ 4,950$.

SWEEP OSCILLATOR priced at $\$ 695$

Kay Electric Co., Pine Brook, N. J. The Marka-Sweep model Video 50, a new sweeping oscillator with marks, provides both a $50-\mathrm{mc}$ sweep which includes the low end of the video spectrum, and a continuously variable i-f sweep, enabling the operator to look at the complete spectrum to 50 mc or any 4 -me part over the range.
-Specifications--Range is 50 kc to 50 mc , continuously variable; r-f output, 1.0 v peak to peak into 75 ohms, flat within $\pm 0.5 \mathrm{db}$ over widest sweep; sweep width, linear sweep continuously variable 4 mc to 50 mc ; sweep rate, variable around 60 cps , locks to line frequency; attenuators - individually switched 20, 20, 10, 6 and 3 db plus continuously variable 6 db ; markers —both internal and external crystal controlled pulse type, individually selected at $10,20,30,40$ and 50 mc .

ELECTROLYTICS

 are ultraminiature typeBarco, Inc., Box 1222, Milwaukee 1, Wisc. Particularly advantageous for the transistor application where size is of prime importance, these ultraminiature electrolytics are now available in 42 types. Capacitance range is from $0.15 \mu \mathrm{f}$ to $160 \mu \mathrm{f}$, voltage ratings from 1.5 v dew to 70 v dew, and diameters from $\frac{7}{8} \mathrm{in}$.
 metically sealed and are inherently

MICROprecision switches ...THEIR USE IS A PRINCIPLEOF GOOD DESIGN

Type "V3" switch

Subminiature toggle switch

A continuous flow of Precision Switch developments anticipates designer's needs

Whatever the design requirementwhether it calls for unusually small size, unusually high electrical capacity or unusual actuation and circuit arrangement -there is a micro precision switch to meet it. That is why designers have long made it standard policy to check with micro switch as new needs develop.
Shown here are just a few small, compact switch designs that are typical of micro switch development. Each is one of a whole "family" of extremely reliable switches.
Type "V3"' Switch. The MICRO Switch "v3" line switches have the highest electrical capacity for their size of any switch available. They have been developed to meet the exacting requirements of designers for an extremely small, compact switch without sacrifice of quality. Actuators are available to permit their actuation by cams, slides and other mechanical motion not in line with the switch plunger motion. (Send for catalog 74).
"V3"' Rotary Selector Assembly. 'These assemblies are available with from one to eight switching units and from two to eight detent positions. Light in weight and small in size, these assemblies are well suited for use in electronic and aircraft applications. Many as-
semblies are available with various camming sequences. (Send for catalog 74).
High Capacity Basic Switch. This switch combines high electrical rating with high inrush capacity. The steady state current rating is 20 amperes, with inrush capacity of 75 amperes on voltages up to 460 volts a-c. These switches are especially useful for handling high inrush currents of solenoids, motors and tungsten lamps. (Send for catalog 62).
Subminiature Toggle Switch. This is one of a number of subminiature toggle switch designs developed for subminiature assemblies. The toggle switch illustrated consists of one micro subminiature switch riveted into the stainless steel toggle bracket. The assembly is for single-pole, double-throw service. Double-throw switches can be used "normally open" or "normally closed" by wiring to either the normally open or normally closed terminals. (Send for catalog 75).

Circuit Arrangements
DOUBLE THROW

Type V3 Switch
This switch has a single-pole, doublethrow contact arrangement. Electrical rating is: 10 amperes, 125 or 250 volts a-c; $1 / 2$ ampere, 125 volts $\mathrm{d}-\mathrm{c}$; $1 / 4 \mathrm{am}$ pere, 250 volts d-c.

DOUBLE THROW

High Capacity Basic Switch

Standard switches are single-pole, double-throw. Electrical rating is: 20 amperes 125,250 or 460 volts a-c; $1 / 2$ ampere 125 volts $\mathrm{d}-\mathrm{c}$; $1 / 4$ ampere 250 volts d-c; 1 H. P. 115 volts a-c; $2 \mathrm{H} . \mathrm{P} .230$ volts a-c; 10 amperes 125 volts when controlling tungsten filament lamp loads on a-c circuits.

Subminiature Toggle Switch

Contact arrangement is single-pole, double-throw. Double-pole, doublethrow assembly, using two subminiature switches is available. Electrical rating is: 5 amperes 125 or 250 volts a-c. The 30 volt d-c rating is, inductive - 3 amperes at sea level and $2.5 \mathrm{am}-$ peres at 50,000 feet, resistive-4 amperes at sea level and 4 amperes at 50,000 feet, maximum inrush is 15 amperes.

MICRO SWITCH Engineering Service, experienced in precision switching problems, is available-at the MICRO SWITCH branch nearest you. Why not call today?

MICRO SWITCH
 A division of minneapolis-honeywell regulator company
 H

InCanada, Leaside, Toronto 17, Ontario - FREEPORT, ILLINOIS

In just it to 2 seconds average, using Hecon's new Model 625 Ratiometer, you can measure directly the ratio of two related DC voltages. It's a real money-saver for qualitycontral testing on component production lines... brings new accuracy and speed to telemetering, measuring VSWR and reading remote transducers. Although completely new, there's no special training needed, for error-free readings are made directly on the fast, reliable* 3 -digit counter.

> \#yycon counters are specially engineered for long service. prototypes have been continuousig sychey on excess of 1,000 hours... the equivatent of at least 20 years of average use. comnfers backed by unqualifled. conthucus-use service guarantee.

MODEL 615 DIGITAL VTVM
Features fast, error-free readout on a reliable, illuminated decimal point 3-digit counter.
low in leakage current. An operating temperature range of -30 C tn +60 C is standard. List price is $\$ 1$.

REPEAT CYCLE TIMER operates on less power

Brailsford \& Co., Inc., Milton Point, Rye, N. Y. Model AGS-4 repeat cycle timer was developed primarily for balloon instrumentation. It has 4 spdt switching circuits. Overall dimensions are: 3 in. deep; 2 2 in. high; 1 巽 in. wide. Weight is 6 oz . Operating current is 8 ma at 6 v d-c. The governor will hold speed to within 1 percent with as much as 50 percent voltage shift, either plus or minus from rating.

It is also available with 1,2 or 3 circuits and in any required output speed.

Although primarily designed for semiexpendable applications, units now incorporate a new brush assembly to give normal service life of better than 3,000 hours continuous operation.

COIL WINDER variable pitch space

geo. Stevens Mfg. Co., Inc., Pulaski Road at Peterson, Chicago 30, Ill., has available a new variable pitch space winder designed for

sub-miniature MOOULAR AMPLIFIERS

REL-18 ISOLATION AMPLIFIER A Sub-miniature 400 cycle power amplifier, having adjustable voltage gam from unity to 70 with 100 Mw power output. The cir cuit uses triodes with negativ eedback reducing the pedn to a minimum.

REL. 19 SUMMING AMPLIFIER
Special purpose sub-miniature 400 cycle amplifier with multiple mputs and single output. The sig nal output is the vector sum of he input signals times the gain of the amplifier. 14 channel summing accuracy within $21 / 2 \%$. Low output impedance, low phase hift and high stability are achieved by use of negative feed back.

REL-20 SERVO AMPLIFIER
High gain sub-miniature servoHigh ga utizing push pull out put and feedback. 100 MW powor output, low phase shift and high stability. Designed to operate into a chopper demodulator.

* PROYEN RELABBLITY
* REDUCE OVERALL

SYSTEM COST

MINIMUM SPACE AND WEIGHT

DESIGNED TO MILITARY SPECIFICATIONS

REL-102 GENERAL PURPOSE

 WIDE BAND AMPLIFIERMaximum gain 300. Four course gain ranges with each range coninuously variable $\pm 10 \%$. High nput and low ontput impedance
REL-103 GALVANOMETER AMPLIFIER
For amplifier piezo electric or low level transducer signals to drive evel transtucer signals to drive Galvanometers. 70 MA peak to beak into 30 ohm galvanometer

rel-104 accelerometer AMPLIFIER
For amplifying piezo-electric accelerometer signals to drive subcarrier oscillator and similar de vices. High input impedance and 10 continuously variable $+10 \%$

REL. 09
Miniature Tclemetering Pow er Amplifier designed ts withstand extreme s jech and vibration. $E 2$ watts nominal power output.

Visit RHEEM at booth No. 309 at the I.R.E. SHOW.
March 19 thru 22, 1956 KINGSBRIDGE ARMORY New York City, N. Y

RHEEM MANUFACTURING COMPANY

GOVERNMENT PRODUCTS DIVISION RESEARCH AND DEVELOPMENT LABORATORIES ELECTRONICS LABORATORY9236 EAST HALL ROAD, DOWNEY, CALIF.

You Ban Rely on Rheem

Shallcross "P" Type Encapsulated Resistors are ideal for installation where stability, dependability, and minimum size and weight are a must. These radically new resistors offer the performance advantages of hermetically sealed steatite resistors at less cost.
Because of the unique Shallcross method of encapsulating windings, " P " type resistors have greater maximum resistances, longer leakage paths, and higher wattage ratings.
Shallcross " P " type resistors are available in six MIL-R-93A lug-type styles and five axial lead styles with wattage ratings ranging from .500 to 3.5 watts. All styles meet and exceed JAN-R-93A, Characteristic A.

Complete information on sizes, ratings, and test results of Shallcross "P" type precision wirewound resistors is available in Engineering Bulletin L-30. Write for your copy today.

SHALLCROSS MANUFACTURING CO. 522 Pusey Avenue, Collingdale, Pa.
long production runs. It features the electric heel-and-toe pedal which starts the machine and resets the cam for each new winding, permitting the operator to have full use of both hands at all times.
A new time-saving self-resetting automatic counter requires no handling or resetting until turns count is changed, saving much valuable time during long production runs.
Model 518-AM winds variable pitch single layer coils up to 3 in. long by 3 in. o-d. Wire sizes range from 18 to 46 . One tension, one gearing set-up, magnetic brake and custom built motor are supplied. Windings speed is up to $2,100 \mathrm{rpm}$. Complete job changeover takes only 5 to 10 min . Output end of spindle is $\frac{5}{8}$ in., flatted shaft, accommodating chucks or mandrel adapters.

CIRCUIT BREAKER for operation to $1,200 \mathrm{cps}$

Airpax Products Co., Middle River, Baltimore 20, Md. Type 410 miniature magnetic circuit breaker is now rated for operation from 60 to $1,000 \mathrm{cps}$. This compact series breaker is thus applicable to a wide variety of airborne installations operating at 400 cps even if the power* is subject to wide variations in frequency.

- Specifications - Occupying little more than a cu in. of volume and weighing less than 2 oz , this allmagnetic inverse time delay breaker is available in ratings from 1.0 to 10 amperes, 120 v . The hermetically sealed unit is designed for a minimum life of 10,000 on-off operations, resists over 50 g shock and 0.06 in . total excursion of vibration from 1.0 to 55 cps in all
 variable up to 100 kc deviation. - A.M. monitored and variable up to 80% depth. - Output Level variable from 0.2 microvolt to 200 millivolts. • Precision Incremental Tuning with frequency change indicated on a directly' calibrated meter.

VACUUM TUBE VOLTMETERS • FREQUENCY STANDARDS • OUTPUT METERS F.M. \& A.M. SIGNAL GENERATORS • DEVIATION METERS • WAVEMETERS WAVE ANALYSERS • BRIDGES \& Q METERS • AUDIO AND VIDEO OSCILLATORS Full data and prices will be mailed immediately on request

If you would like to receive our bulletin "Marconi Instrumentation ", please mail this
to Marconi Instruments, 44 New Street, New York, 4. Please put my name on the complimentary mailing list for "Marconi Instrumentation", the quarterly bulletin written by engineers for engineers.

Name

Company

Address

City and State

ANOTHER EXAMPLE OF Latermarz PIONEERING...

The S-12-C series of Systems RAKSCOPES have been developed for the dual purpose of monitoring and troubleshooting of rack-mounted equipment. These oscilloscopes obtain a new degree of flexibility with the maltiple input selector making possible selection of different signal sources. This optional vertical input selector, with built-in attenuators, selects either front panel connectors for troubleshooting or rear mounted connectors for systems monitoring. This permits the omission of an entire switching panel from an overall system resulting in circuit and space economies. A ruggedized construction philosophy has been carried throughout. Vertical and horizontal amplifiers are identical, each having a frequency response from de to $700 \mathrm{kc}(-2 \mathrm{db})$. Their sensitivities are 50 and 72 millivolts rms per inch of deflection. Signal amplitude calibration employs a direct reading meter. The time base is operative in either trigger or repetitive modes with a range from $1 / 2$-cycle to 50 kc . Synchronzation is independent of polarity. Sync. lockout circuits are employed for stable operation over wide range of writing speeds and amplitudes. A unique plug-in elliptical sweep network makes frequency calibrations more simplified. Power requirements: 105-125 volts, 50 to 400 cycles. Accessory probes available; attenuator and amplifier types.

WATERMAN PRODUCTS CO., INC.

PHILADELPHIA 25, PA.
CABLE ADDRESS: POKETSCOPE

MANUFACTURERS OF
PANELSCOPE*
S.4.C SAR PULSESCOPE*
S.S.C LAB PULSESCOPE
S.II-A INOUSTRIAL POCKETSCOPE S-12-B JANIIEd RAKSCOPE* S.12-C SYSTEMS RAKSCOPE S.14-A HIGH GAIN POCKETSCOPE. S-IA-B WIDE BANO POCKETSCOPE. S-14-C COMPUTER POCKETSCOPE* S.15.A TWIN TUBE POCKETSCOPE* RAYONIC' Calhode Ray Tubes and Other Associated Equipment
directions and maintains its trip level constant from -0 to +100 C .
Because it mounts with a standard switch shank, type 410 trip-free circuit breaker serves both as power on-off control and as circuit protector to simplify eguipment wiring and maintenance.

L-F CROSSOVER priced at $\$ 13.95$

Bfam Instruments Corp., 350 Fitth Are., New York 1, N. Y. The CX500 predetermines the crossover fresuency at 500 cps , and has output connections providing l-f from 0 to 500 cps and $\mathrm{h}-\mathrm{f}$ from 500 cps upwards. Input and both output impedances are 15 ohms. Weight is approximately 1 lb . Dimensions are 4 in , by 3 in . by 1 in .

SINE-WAVE GENERATOR uses etched circuits

Donner Scientific Co., 2829 Seventh St., Berkeley 10, Calif. Model 1200 sine-wave generator generates pure sinusoids from 1 cps to 1 mc (plus overlap) in 6 decade ranges. Distortion is less than 0.1 percent for any frequency or amplitude. Low output impedance of 600 ohms is constant for any setting of the amplitude control. The signal, 0 to 8 v rms, contains no d-c component Stable amplitude, freedom from

Free-Cutting CHASE BRASS ROD

makes tools last longer, lowers production costs!

The hig difference in machining Chase Free-Cutting Brass Rod is a direct result of just the right anount of evenly dispersed lead particles in the alloy. The proof is in the chips!
Chase Free-Cutting Brass Rod yields short, brittle chips which rapidly clear cutting tools - make possible heavier feeds, higher cutting speeds-without gromming or jamming.

You can get Chase copper alloys in many different cross sections that save alditional machining time. These include round, hexagonal and octagonal rods, square and rectangular bars, and oval, half oval and half round shapes. Remember, too, repeat orders of Chase alloys always have the same cutting characteristics.

Get the alloy rod you need, from Chase wholesalers or from Chase's own fully stocked warehouses or mills. Write, wire or phone, torlay!

Chase
 BRASS \& COPPER CO.

Waterbury 20, connecticut - subsidiary of kennecott copper corporation

NEW CHASE ROD and WIRE MOVIE "IN THE CHIPS'
Contact your nearest Chase Warehouse or Sales Office now to arrange for a loan of this informative film for showing in your own organization. Write on your Company letterhead

The Nation's Headquarters for Brass \& Copper (tsales oftice only)

Allanta	Chicago	Denvel	Indianapolis	Minneapolis	Philadilphia
Bultimma	Cincinnati	Detoit	Kansas Cilty, Mo.	Newark	Pititsburgh
Bastor	Clevilind	Grand Rapids \dagger	Los Angeles	New Örleans	Providence
Chasietto \dagger	Dalles	Houston	Milwaukes	New York	Roctraster \dagger
	St. Lotis	San francisco	Soatto	Waterbury	

Of course, you can always get another piece of equipment to test, set up your instruments, repair your personnel, relandscape the grounds and start all over . . . but it's really easier and less expensive to get the data the first time. Barring a cataclysm like the one above, the Fairchild Oscillo-Record Camera is your best bet for getting accurate records of the test clata you want . . . the first time.

Since Fairchild built the first camera specifically designed for oscilloscone recording, more Oscillo-Record cameras have been used than all other continuous motion oscilloscope recording cameras combined. The Oscillo-Record camera has several design features which contribute to its outstanding reliability and troublefree operation in obtaining accurate test data. It is ruggedly constructed; its sprocket film drive eliminates slippage, even at high speeds. Rigid, top-of-scope mounting safeguards it against accidental upsetting, maintains the camera in focus at all times and leaves oscilloscope controls unobstructed. Other features include the electronically-controlled continuously variable film speed which permits the selection of the exact rate of film transport for optimum performance.
For any wave pattern . . . continuously varying, stationary or single transient, at all speeds from 1 to 3600 inches per minute, ($7200 \mathrm{in} / \mathrm{min}$ on special order) the Fairchild Oscillo-Record camera is the reliable means of photographing scope patterns. Industrial Camera Division, Fairchild Camera \& Instrument Corp., 88-06 Van Wyck Expressway, Jamaica, L. I., N. Y., Dept. 120-25A2.

FIIRCHILD

OSCILLOSCOPE RECORDING CAMERAS

drift, and high calibration accuracy are insured by a fully regulated power supply and generous negative feedback.

- Other Features-The instrument utilizes a frequency-generator circuit requiring only two vacuum tubes. No wave filter or complex distortion-reducing device is needed. Use of etched circuits and miniaturized components has cut the weight to 23 lb and the size to $7 \frac{1}{2}$ by $10 \frac{1}{2}$ by $13 \frac{1}{2} \mathrm{in}$.

Model 1200 has application wherever high-quality sine waves are essential, as in communications, audio and laboratory testing. Price is $\$ 265$.

MICROWAVE JOINT for 1.00 by 0.50 waveguide

Airtron, Inc., 1103 W. Elizabeth Ave., Linden, N. J., has developed a microwave rotary joint with a peak power rating exceeding 400 kw at atmospheric pressure. The high-power waveguide rotary joint is used with 1.000 by 0.500 waveguide and is available in both unsealed or pressured versions.

Characteristics include a maximum vswr of less than 1.25 over the $8,500-9,600 \mathrm{mc}$ range and a vswr of less than 1.10 when tuned for narrow-band operation. Variation of vswr with rotation is negligible throughout the total angular travel.

- Further Data-Rated for 30 psi pressurization, the rotary joint retained 60 psi without leakage, after rotation at 170 rpm for 10 million revolutions. Mechanical design features assure stability of electrical characteristics throughout the life of the high power joint.

Lasting accuracy of rotation is maintained by large diameter preloaded ball bearings. These bear-

electronics \rightarrow

FOR EVERY MICROWAVE APPLICATION

Cabriel can furnish antenna equipment of proved effisiency and reliabilty. The experience and facilities of Gabriel laboratories offer prompt solutions to your antenna problems. And the manufacturing skills and equipment of Gabriel Electronics Division assure schediled producfion to the laboratories' performance specifcations.

Electromechanisms

New 2-TERMINAL

SERIES L-6600

Only $115 / 64 t^{\prime \prime}$ long from lens to terminals, this new Hetherington light gives wide-angle visibility in both standard and edge-lit panels. Uses 6,14 or 28 volt AN-3140 lamps in a unique mounting so light is "piped" evenly throughout the long plastic lens. Lamp circuit insulated from case to meet the needs of electronic equipment. Mounts in 15.s.2" diameter hole. Can - be supplied with "taper tab" terminals. Also available with 1 -terminal, case ground, as Series L-6000.

smaller

INDICATOR LIGHTS
for compact Aviation and Industrial Assemblies

New "PRESS-TO-TEST"

SERIES L-3200
Here's added safety for critical warning light jobs. Lamp and its circuit can be "checked out" before take-off by pressing spring-mounted plastic lens cap. Uses same lamps and lens assembly as L-6600 shown above. Lamp circuits insulated from case. Housed in lightweight anodized aluminum case. Mounts in 1/2" diameter hole.

OTHER INDICATOR LIGHTS ... including Hetheringtonoriginated switches with Built-in Lights are regularly produced in a variety of standard and special styles. Write for Bulletin L-2.

HETHERINGTON, Inc.

SHARON HILL, PA.

West Coast Div.:
139 Illinois St .
El Segundo, Calif.

ings are a premanently lubricated, sealed type which eliminate dirt contamination problems over the life of the bearing.

TIME DELAY RELAY has 2-in-1 feature

Branson Corp., Boonton, N. J. The new type TDRH thermal time delay relay uses only 1.531 by 0.844 chassis space and contains two thermal relays which may be completely independent or interwired in various ways to provide special voltage compensated delays as we.l as other unique results.

- Operation - The TDRH is hermetically sealed and can be operated in ambient temperatures from -65 C to +125 C. It will operate properly under the various shock and vibration requirements encountered in high speed military aircraft.

The time delays may be operated at voltages up to 120 v . They require 2 to 4 w of control power depending upon the particular requirements. Normally open or normally closed contacts are available. Standard delays may be anywhere from 1 sec to 1 minute.

EPOXY COMPOUND for potting, encapsulating

Houghton Laboratories, Inc., 322 Houghton Ave., Olean, N. Y., have available a new epoxy compound, Hysol 6600, especially developed for use in potting and encapsulating large metal masses such as transformers for electronics, instrument transformers, power bushings and related equipment. It has been

Available now

to Engineers and Designers!

NEW! OVER 100 PAGES!

Multi-lead
Headers

E.I HANDBOOK and CATALOG

E-I End Seals

INCLUDES COMPLETE DATA Contains full electrical and mechanical data on over 500 standard types with a helpful discussion of accepted installation techniques.

REQUEST YOUR FREE COPY NOW This authoritative brochure will be particularly useful for design, production and purchasing staffs for specifying, installing and ordering service-proven E-I glass-to-metal seals. To obtain your copy, just write E-I on your company letterhead. A copy will reach you promptly!

Accepted Methods of Installation

With many quality insulations of Asbestos... Glass . . . Nylon . . . Varnished Cambric . . . Polyethylene . . . Polyvinyl . . . Teflon . . . Zytel, among others, Continental also offers a wide range of wire sizes-in stock and on special order. For instance, Continental's ELECTRONIC HOOK-UP WIRE. This nylon-insulated, hook-up wire saves TIME... LABOR . . . and GUESSWORK in assembly. Resistance to abrasion, acids, alkalis and petroleum solvents-and temperatures ranging from $-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ -assures dependability plus versatility. Available in AWG SIZES 18 to 32.

One source for your many wiring requirements -Continental. Write today for Continental's complete catalog of heat-resistant, moistureresistant wires, cables and cords. Serving 6005000 volts. Sizes, 18 AWG-2,000,000 CM.

Continental's industrial wire and cable specialists are available to serve you at any time.

Contact: Continental Sales, Box 363, Dept. C Wallingford, Conn., Phone COlony 9-7718
Ontinental
WIRE CORPORATION
WALLINGFORD, CONNECTICUT - YORK, PENNSYIVANIA
used in transformers which must meet the requirements of MIL-T27A specification.

Hysol 6600 is a filled epoxy base supplied in the form of a soft solid which melts to an easily handled, low viscosity liquid. A resilient, heat-resistant, tough casting is obtained when this base is processed with Hysol Hardener D.

SILICON TRANSISTOR for power amplification

General Electric Co., Syracuse, N. Y. A power pmp alloy junction silicon transistor, the ZJ 16 is capable of dissipating 8 w at 85 C and 4 w at 120 C . Maximum storage temperature is rated at 200 C . Maximum collector voltage is rated at 75 v . Alpha cutoff is 100 kc .

- Applications - The device will find application in guided missiles, jet igniters, servomechanisms, switching and general amplifier. circuits.

It is expected that the ZJ 16 will ultimately be the company's answer to the need for reliable power amplification in automobile radios.

TEST JACKS
 for printed circuit use

Raytileon Mfg. Co., 100 River St., Waltham 54, Mass. The new test jacks are miniature units designed specifically for printed circuit application. Consisting of a nylon insulator, a beryllium copper spring pin contact, and a gold-plated contact sleeve, these units are readily mounted in panels up to $\frac{1}{4} \mathrm{in}$. thick.

Eight colors are available and the

"WE LIKE THE CONSISTENT QUALITY

of RICHARDSON plastics"

Chicago Telephone Supply Corporation is the world's largest producer of variable resistors. To achieve this position, they have stressed quality-both in their manufacturing operations and in their sources of supply. For many years, The Richardson Company has supplied the Chicago Telephone Supply Corporation with laminated and molded plastic products which meet their high standards for insulating and electrical properties-a testimonial to Richardson's own quality-mindedness.

If you are looking for a plastic supplier who can give you what you need, contact Richardson. Their complete laminating and molding facilities permit volume production with consistent high quality and accuracy. Write or phone today for complete information.

The RICHARDSON COMPANY
 FOUNDED 1858

2797 Lake St., Melrose Park, Illinois (Chicago District)
SAles Offices in principal cities

Here's your

Norden-Ketay high-quality resolvers provide you with accurate solutions to problems encountered in:

- High precision phase shifting
- Data Transmission
- Industrial process controls
- Rectangular to polar coordinate transformations
- Rectangular coordinate rotations

These precision resolvers are available to standard sizes ($10,11,15$ or 23) or may be ordered to your specifications.
For full details write for data file \# 113.

Norden-Ketay Corporation

Western Division :

13210 Crenshaw Blvd., Gardena, California Precision Components Division: 555 Broadway, New York 12, New York

Where specs are tight..

Designed for those applications where less than the best means failure . . . by the world's first and leading manufacturer of precision singleturn wire-wound potentiometers. Advanced production and quality-control techniques by the pioneer in mass production of precision potentiometers offer unequalled delivery . . . of prototype and production quantities.

All models of the TIC Ball-Bearing Series are designed to the latest industrial dimensions. Servo mounting is AIA standard. Stainless-steel ball-bearing construction is used for low-friction
low-torque operation. Other precision mechanical features include precious-metal slider contacts . . . centerless-yround stainless-steel shaft . . . and one-piece stainless-steel clamp ring developed by TIC for simple, precise phasing of individual units of ganged assemblies.

Designed for precision applications in automatic control systems, the subminiature ST09, for example, features standard independent linearity of $\pm 1 \%$ (0.3%, special) of the total resistance, and $\pm 5 \%$ standard total resistance accuracy. High resolution . . . equivalent noise resistance less than 140 ohms ... wide standard temperature range ($-55^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$) increases application versatility. ST09 is available in standard resistances of $100,200,500,1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}$, 10 K , and 20 K .

Full specification on the STO9 and other units of the
TIC precision ball-bearing series available upon request.

IECHNOLOGY INSTRUNEN CORP.

533 Main Street, Acton, Mass., COlonial 3-7711
West Coast Mail Address, Box 3941, No. Hollywood, Calif., POplar 5-8620
nent magnets retain their energy even when used without keepers or under other closed-circuit conditions, and in the presence of strong opposing fields.

Ceramagnet magnets are practically nonconductors. Electrical resistivity is 6 by 10^{10} ohms per cm^{3}, making them ideally suited for h-f and h-v circuits. Temperature characteristics are linear, including retrace, to 400 C .

Units are available in practically any size or shape. Complete engineering data including graphs of essential properties appear in bulletin RC-10A.

POWER SUPPLY

a precision power source

A-V Mfg. Corp., 730 Fifth Ave., New York 19, N. Y. The new precision frequency power supply type 120 A is a precision 60 -cycle power source with accuracy of 0.01 percent over the temperature range of 0 to 75 C .

The internal precision frequency source is a hermetically sealed $480-$ cycle tuning fork whose frequency is divided by eight to provide the 60 cycles which drives the unit's power amplifier.
Size is 19 in. wide for rack mounting, height $10 \frac{1}{2} \mathrm{in}$. and depth 13 in . Weight is 60 lb net. Input power is $105-130 \mathrm{v}, 300 \mathrm{v}-\mathrm{a}, 50-400$ cycles.
Complete details are given in bulletin 120B.

LINEAR TRAVEL POT in $1 / 2$-in. diameter case

General Components Co., 801 Eighth St. Southeast, Minneapolis 14, Minn., announces a new, miniaturized linear travel potentiometer. Either single or dual pots are available in a $\frac{1}{2}$-in. diameter case. Ball type mounting provides

MISSILE WEAPONS

SYETEMS PLANNING

The successful development of advanced missile weapons systems demands a high order of creative planning and coordination between scientists and engineers in virtually every field. Individual efforts must fit smoothly into group progress covering a span of years.

At Lockheed Missile Systems Division, regular planning conferences coordinate the progress of weapons systems development - from initial operations research and systems analysis to operational use

Significant new activities ait Lockheed hàve created openings for those able to contribute to group efforts of the utmost importance.

Systems Analyst Jobe Jenkins (standing) discusses planning on a new weapons systems project with research and development personnel involved in initial development activities. From left to right: E. A. Blasi, antenna; G. D. Schott, flight control; W. D. Van Patten, command guidance; Jenkins; H. R. Senf, electronic research; W. F. Main, radar; J. J. Dulin, electronics systems analysis; E. V. Stearns (back to camera), advanced systems design.

MISSIKE SYSTHEMS DIVISION
research and engineering staff

LOCKHEED AIRCRAFT CORPORATION VAN NUYS. CAIITORNIA

universal alignment. Resistance values are up to 60,000 ohms per in., total travel up to 6 in.

- Performance - Dual wipers are on each element for minimum noise and longer life. Resolution can be as low as 0.0008 in., with single turn taps. It has O-ring sealed construction to meet environmental requirements of MIL-E-5272A.

Unique design permits complete preassembly and testing before insertion in case.

PREAMPLIFIER

battery-powered, a-c coupled
Tektronix, Inc., P. O. Box 831, Portland 7, Oregon. Type 123 is a battery-powered a-c coupled preamplifier with a voltage gain of 100 . Passband is within 3 db from 3 cps to 25 kc , within 2 percent from 15 cps to 6 kc . Maximum input signal is 0.1 v peak-to-peak.

- Other Features-It is fitted with coaxial input and output connectors, permitting mounting on an oscilloscope or other instrument, or mounting to a cable for use as a probe. Dimensions are 35 in . high, $1 \frac{1}{2} \mathrm{in}$. wide, $2 \hat{i}_{6}^{3} \mathrm{in}$. deep, not including connectors. Weight is only 10 oz . Price, including batteries, is $\$ 50$.

SPECTRUM ANALYZER for h-f use

Marconi Instruments, 44 New St., New York 4, N. Y. The OA1094 spectrum analyzer gives a visual

The consistently higher energy product of Crucible Alnico permanent magnets enables manufacturers to use smaller, more powerful magnets in the magnetos of outboard motors, power mowers and oher gasoline-powered equipment. In fact, ever since Alnico alloys were first developed, Crucible has been supplying them to manufacturers of permanent magnet magnetos, generators and motors and all types of magnet-equipped devices.

Pioneers in magnet design and production, Crucible's magnet division is hacked by a half-century of fine special steelmaking. So when you have a magnet application it will pay you to call Crucible. Crucible Steel Company of America, The Oliver Building, Mellon Square, Pilushurgh 22, P'a.

CRUCIBLE

first name in special purpose steels

Crucible Steel Company of America

Eccosorb CH Microwave Absorber for Darkrooms

Eccosorb CH is a series of broadband absorbers reflecting less than 2% of the energy incident upon its surface. It is composed of enmeshed, rubberized fibers and made in sheets 2 feet by 2 feet in various thicknesses. Eccosorb CH is light weight and flexible. It is easily mounted and its natural, white surface color gives good light reflection.

Free Space Rooms are easily and economically built for indoor antenna measurements. Reffections are eliminated for all practical purposes. You can build your own microwave dark room or we offer you a complete Free Space Room ready to use. Emerson \& Cuming engineers design and build special types for unusual conditions. Send us your specifications.
Another absorber, ECCOSORB HF comes in rods, sheets or molded shapes in several volume resistivities for waveguide terminations and similar uses. If you have a problem write for information on . . .
CPlastics for Electronics

Emerson \&

 Cuming, Inc.
869 WASHINGTON STREET, CANTON, MASS.

Sales Representatives

DAYTON
ROBERT G. SIFF \& ASSOCIATES 11 W. Monument Bidg., Dayton 2, Ohio Hemlock 1254

KANSAS CITY

engineering services company 4550 Main Street, Kansas City 11, Mo. Jefferson 7765 NEW YORK
M. RAYMOND KALLMAN
P. O. Box 104, Roslyn, L. I., New York Roslyn 3-6511

PLASTIC FOAMS
LAMINATING AND IMPREGNATING RESINS PLASTIC-FIBER GLASS LAMINATES

HIGH DIELECTRIC

 CONSTANT PLASTICS METALIZED PLASTICS ELECTRONIC
EMBEDMENTS

CASTING RESINS
LOW LOSS ROD
AND SHEET STOCK
MICROWAVE ABSORBERS

ENGINEERING SERVICES COMPANY 6635 Delmar Blvd., St. Louis 5, Mo. V0 3-3661
WASHINGTON, D.C. TED BRITT
500 Mass. Ave., Washington 5, D. C. Columbia 5-2694
WEST COAST
P. McCarthy Associates
P. 0. Box 36, Altadena, Calif
presentation on a crt of the frequency spectra of a-m signals in the 3 to $30-\mathrm{mc}$ band. Bandwidth can be switched to either 6,30 or 150 cps and the sweep amplitude can be varied from 0 to 30 kc and scanning time from 0.1 to 30 sec . Using a two-stage measurement technique, relative signal amplitude levels of 60 db can be measured.

CENTRIFUGAL BLOWERS cool electronic equipment

Trade-Wind Motorfans, Inc., 7755 Paramount Blvd., Rivera, Calif. Series PA-361 blowers are being used in cabinets and other housings for ventilating electronic equipment. Compact in design, they employ centifugal blower wheeels and produce up to 130 cfm with shaded pole motors. Overall dimensions are approximately 7 in . in length, width and depth.

S-W INDICATOR speeds component testing

Marconi Instruments, 44 New St., New York 4, N. Y. The TF1081 automatic standing-wave indicator provides rapid and accurate vswr measurements by means of a motor driven waveguide probe. The unit includes a modulated klystron oscillator, and the output from the probe is amplified and displayed on

Manufacturers of precision aircraft and missile electronic components: 大Radar Yokes \boldsymbol{X} Motor Stators, Armatures Rotors \boldsymbol{X} Transformers

DONNER MODEL $120 \square$ SINE WAVEGENERATOR

Less than 0.1% distortion, any amplitude or frequency
1 cps to 1 mc in 6 decades, plus overlap
600 ohms constant output impedance

Many other exceptional features

Small, portable - 23 pounds
$\$ 265.00$, FOB Factory
صी $\int\left\{\begin{array}{l}\text { BCIENTIFIC } \\ \text { company }\end{array}\right.$
the synchronized crt. Frequency range is from 8,500 to $9,500 \mathrm{mc}$ and the accuracy of vswr measurement is 0.5 percent. Minimum discernible vswr is 0.995 .

TEST BRIDGE

fast impedance comparator
Brusir Electronics Co., 3405 Perkins Ave., Cleveland 14, Ohio, has introduced a new addition to the line of deviation test bridges, extremely fast direct-reading impedance comparison instruments.

- Uses-The instruments are used primarily for production inspection, inspection of resistance, capacitance and inductance. They are designed to accurately and quickly present a comparison against a standard impedance indicating both percentage impedance deviation and phase angle deviation in radians on a 6 -in. illuminated scale.

The new deviation test bridge model BL- 1506 has a 100 -ke bridge frequency for the test ranges 10 to 50,000 ohms resistance, $25 \mu \mu \mathrm{f}$ to $0.1 \mu \mathrm{f}$ capacitance, and $20 \mu \mathrm{~h}$ to 80 mh inductance.

For automatic inspection the meter can accommodate 4,000 units per hour.

KNOB LOCK
 for electronic controls

Raýtheon Mfg. Co., Waltham 54, Mass., has announced a new locking device for use on potentiometers and other electronic controls. De-

For greater economy...
wider design flexibility...
UNEXCELLED PERFORMANCE!

Miniaturized Hi-Voltage

QUALITY CARTRIDGE RECTIFIERS BY
 International

Manufactured under the United States Army Signal Corps Reduced Inspection Quality Assurance Program RIQAP

The higher voltage ratings of International selenium rectifier cells result in a 30% shorter length cartridge! These miniature-size rectifiers permit greater design freedom where space is at a promium. They are available in numerous terminal types, circuits, cell sizes and protective coatings to meet your specific needs. International - leader in the field-sells more selenium cartridge rectifiers than all other manufacturers combined! As a result, your special cartridge rectifier requirements may be standard at International. A wire, letter or phone call will bring immediate and experienced recommendations for your application.

International Rectifier

 EXECUTIVE OFFICES: EL. SEGUNDO. CALIFORNIA PHONE OREGON 日.628,

 If CANROA: ATIAS RADIO CORE., LID., 50 wingolo ave. W., TOROHTO, ontario. ru t.gima

a complete line of JOHNSON variable capacitors

Whether you're looking for a tiny " M " capacitor similar to the one shown above, or a rugged air variable rated to 11,000 volts, you're sure to find it in the Johnson line. All Johnson Variable Capacitors are designed to permit high standards of workmanship, yet costs are low.

TYPE "M" CAPACITORS

Extremely compact and rugged-requires $5 / 8^{\prime \prime} \times$ $3 / 4^{\prime \prime}$ panel mounting area. Soldered brass plates. Low inductance bridged stator terminals. Heavy beryllium copper rotor contact nickel plated. Steatite end frames, DC-200 impregnated. Heavy nickel plating, standard - other platings available.

TYPE "L"

 CAPACITORSExcellent for applications requiring extreme stability and rigidity-tie rods soldered directly to ceramic (steatite) end frames. Plates and metal parts, brass-plating is heary nickel - other platings available. Re quires $13 / 8^{\prime \prime} \times 13 / 8^{\prime \prime}$ panel mounting area.

Johnson also mokes

 a complete line of

SHAFT COUPLINGS • FLEXIBLE SHAFTS • PANEL BEARINGS Flexible and rigid shaft couplings ovailable for $1 / 4^{\prime \prime}$ to $1 / 4^{\prime \prime}, 1 / 4^{\prime \prime}$ to $3 / 8^{\prime \prime}$, and $3 / 8^{\prime \prime}$ to $3 / 8^{\prime \prime}$. Types available for adjustment to both axial and angular shaft misalignment.
Flexible shafts are phosphor bronze with $1 / 4^{\prime \prime}$ nickel plated brass hubs. Permit out-of-line or up to 90 degrees angular control with minimum backlash.
Panel bearings are nickel plated brass-for $1 / 4^{\prime \prime}$ shaft and up to $3 / 8^{\prime \prime}$ panels. Types available with $3^{\prime \prime}$ and $6^{\prime \prime}$ nickel plated brass shaftsstandard $3 / 8^{\prime \prime}-24$ nut furnished.

For complete information and specifications on Johnson Air Variable Capacitors or other Johnson electronic components, write for your copy of components cotalog 9760.

2304 SECOND AVENUE SOUTHWEST - WASECA, MINNESOTA

[^12]
signed for application with Raytheon standard control knobs, the knob lock mounts on the control bushing replacing standard mounting hardware and provides a simple means of maintaining critical control settings under conditions of shock or vibration.

It takes up little more panel area than the knob itself. An eighthturn of the fluted skirt forces a circular neoprene shoe against the inner face of the control knob, locking the knob firmly without affecting the angular position of the control shaft.

The knob lock is available in three sizes for use with series 70 , 90 and 125 round Raytheon standard control knobs.

TEFLON TAPE

now in cementable form
The United States Gasket Co., Camden 1, N. J., is producing Teflon tape-treated for cementing with any commercial adhesive, to metal, glass, wood, plastics or any other surface. Pull test is approximately 45 lb .

- Applications - Thin section (down to 5 mil) inexpensive applications of this material can be made for many purposes where

what's the

veridicality

 of a DeMornay-Bonardi

 of a DeMornay-Bonardi}

standing wave detector?

Verily, it's high. Since you want true readings from a slotted line, we've produced an instrument abounding in "truthfulness."

First we massacred the causes of mismatch. The D-B waveguide block, for example, is precision-formed in one piece to give it high internal uniformity. This pays off in an even path for the measured waves. Also, it minimizes residual VSWR. To wipe out warpage, we make the block of non-distorting, stress-free aluminum, precision-milled to assure absolute alignment with the probe carriage. Three leveling screws support the instrument without rocking.
Do we stop there? Not by your transverse travel! We use a 5 -point kinematic carriage suspension which assures maximum linearity of probe motion. The carriage rides on stainless steel ball bearings, precision ground and spring loaded to keep perfect alignment. A large knob controls the carriage motion from a restful stationary position, leaving eyes
free to watch the indicator. Knob speed is continuously variable from "vernier" to "fast," allowing you to speed up the quick measurements.
Your budget buys more. For a modest amount, you can equip any D-B instrument to handle another frequency band. Merely use a different size waveguide block and probe. Nine sizes of each are available-all interchangeable in 30 seconds, without loss of accuracy. Thus one instrument will measure from 12.4 KMC to 90 KMC and another from 5.8 KMC to 12.4 KMC .

Who needs tuning? D.B broad band probes with calibrated depth adjustment need no tuning over the allocated waveguide band, and yet are efficient at all frequencies. There's a special built-in miniature coaxial cable that flexes freely with the carriage motion, eliminating 95% of cable noise. Many more refinements in addition. Complete data sent on request.

Teflon's extremely anti-hesive sanitary surface, zero water absorption, chemical inertness, broad service temperature range and unusual dielectric qualities are desired. Teflon tape, treated for adhesion on both sides and laminated to another dielectric for rigidity, also offers excellent possibilities for printed circuit production.

Cementable Teflon tape, 5 mil to 60 mil in thickness is available in continuous rolls up to 12 in . wide. Sheets are also available in thickness in sizes up to 24 by 24 in. and in $\frac{2}{16}-\mathrm{in}$. thickness, up to 48 by 48 in .

SMALL RECTIFIER

for printed circuits
Radio Receptor Co., Inc., 251 W. 19th St., New York 11, N. Y., has announced a new miniature selenium rectifier with special snap-in terminals designed for printed wiring boards. The terminals will snap into the printed board easily, but with sufficient mechanical rigidity to hold the rectifier firmly in place, making soldering necessary only for good electrical contact.

- Ratings-The new rectifiers are the half-wave stack types 8Y1B and 8 J 1 B , rated at 30 ma and 65 ma , respectively, at off the line voltages, with a capacitive load in an ambient temperature of 45 C .

Both stacks mount in $\frac{3}{3}$ diameter holes spaced on $\begin{gathered} \\ 3\end{gathered}$

AMPLIFIER light-weight, small space

SERvo Corp. of America, 20-20 Jericho Turnpike, New Hyde Park, L. I., N. Y. Model 1124 Servoflex amplifier is designed to meet the light-weight, small space and

Du Pont MYLAR helps Burgess obtain smaller, more powerful batteries

"Smaller than your finger tip, yet a third more powerful than conventional cells . . that's the story of improvement on our line of dry-cell batteries", reports the Burgess Battery Company, Freeport, Ill. "We achieved this improvement by using a laminate with 'Mylar'* formed into an envelope to seal in tiny dry cells. Because the lamination is extremely thin, we saved valuable space for more energy-producing materials.
"By using this same laminate with 'Mylar' as the insulating cell-stack wrap, the old problem of holes appearing in the overwrap after heat sealing has been completely eliminated. High chemical resistance and strength make it possible to heat-mold each cell into a permanent
locked mosition to preserve the intercell connection. What's more, the transparent material permits maximum quality control . . inspectors can see into each cellstack to insure perfect stacking and wrapping."

This is only one example of the wav versatile Du Pont "Mylar" polyester film, used alone or in combination with other materials, is making possible superior performance for a variety of electrical products.

For more information on how "Mylar" can help you improve product performance, or solve knotty problems, send in the coupon below. Be sure to indicate the type of application you have in mind.

* Mylar is a registered Du Pont trademark for its braud of polyester film.

better things for better living
THROUGH CHEMISTRY

DU PONT
 CYLAR

```
E. I. du Pont de Nemours \& Co. (Inc.)
Film Dept., Room E-4, Nemours Bldg., Wilmingion 98, Del
Please send the new booklet (MB-t) listing properties, applications and types of "Mylar" available.
Application
``` \(\qquad\)

\section*{Name}
```

Company
Address
City

``` \(\qquad\)
``` State
``` \(\square\)


\section*{- FURNISHED WITH ANY NUMBER OF LUGS ATTACHED AT A NEW LOW IN UNIT COST}

Low-cost coil bobbins can now be furnished to your specifications with any number of lugs attached. Through the development of special high production automatic equipment, Precision has eliminated the expense and difficulty of attaching terminals... especially as encountered with molded type bobbins.

The attached lug feature especially adapts these bobbins to printed circuit applications. Equally important, they can be insulated from the coil winding by washers as an integral part of the assembly. This latter advantage not only improves insulation, but greatly facilitates easier and faster production of the finished coil.

Coil bobbins with lugs attached are available in any size . . . with round, square or rectangular cores . . . flanges of all shapes. Cores are wound from dielectric kraft, fish paper, acetate or combinations, including DuPont Mylar. They can also be supplied Resinite impregnated.

\section*{Write, wire or phone for full information}

Sales Representatives in:
llinois; Indiana; lowa; Wisconsin; Missouri; Minnesota: Chicago, Hlinois, ARmirage 6-5200.
Indiana; Southern Ohio: Logansport, Indiana, Logansport 2555. Northern Ohio: Cleveland, Ohio, ATlantic 1-1060.
New England: Framingham, Massachusetts, TRinity 3-7091.
Delaware; Washington, D. C.; Maryland; New Jersey; Metropolitan New York; Eastern Pennsylvania; Virginia: Jersey City, New Jersey. Swarthmore 5-2480. Upper New York: Syracuse, New York, Syracuse 4-2141.
CANADA: Montreal, Quebec, Canada, Walnut 0337.
MEXICO: Mexico 6, D. F., Telephone: 35-08-18.

\section*{PRECISION PAPER TUBE CO. \\ 2041 W. CHARLESTON ST. Plant No. 2: 79 Chapel St., Hartford, Conn.}
quality performance of operation in high altitude servo systems. As such, it complies with MIL-E-5400 requirements. A 3-legged transformer acts as a combined power supply and output transformer in the reluctance amplifier circuit.
- Other Features - With instantaneous response the 1124 accepts a single d-c input or takes the difference between two such inputs and a built-in 400 -cycle synchronous chopper modulates the d-e signal to an a-c signal. It will drive any 115 v 400 -cycle servo motor rated at 8 w or less. The present model features a voltage gain of approximately 25,000 (rms v out/d-c v in).

\section*{VOLTAGE DIVIDER}

\section*{tiny, 3 -section d-c type}

The Daven Co., 530 West Mt. Pleasant Ave, Route 10, Livingston, N. J., has available a new, miniature, 3 -section d-c voltage divider. Composed of three resistance sections with four output terminals, this unit is completely encapsulated, providing protection against saltwater immersion, and extremes of humidity and temperature (-55 C to +125 C).
-Specifications-Measuring \(\frac{1}{4}\) in. in diameter by \({ }^{3}\) in. in length, the voltage divider is available with a maximum of up to 100,000 ohms per section. Standard resistor accuracy is \(\pm 0.5\) percent. Wattage dissipation is \(\frac{1}{2} \mathrm{w}\) at room temperature and 0.25 w at 125 C .

\section*{SMALL RELAY for control circuits}

Kurman Electric Co., Inc., 35-18 37th St., Long Island City, N. Y., has manufactured a new miniature telephone relay, designed for motor control, mobile radio and many other control circuits where there

The Beamplexer is actually a fast electronic switch. Its heart is the Burroughs Beam Switching Tube which acts as a gate, picking the ten parallel input signals off in sequence, at adjustable speeds ranging from push button to 100 kc , and putting them out on one line. Each signal can be located on the scope as desired, and even superimposed on another, through individual position and amplitude controls for each channel. Other controls include separate amplification for each channel.

Power consumption is 120 volts a-c, 60 cps , single phase, 0.73 amps , with the entire unit self-contained for cabinet or standard relay rack mounting.

Full details on how the Beamplexer can make your scope more useful . . . make your time more efficient . . . are given in Technical Bulletin 346 available for the asking. Write for your copy.

BURROUGHS CORP. - ELECTRONIC INSTRUMENTS DIVISION Department C - 1209 Vine Street - Philadelphia 7, Penna.

HPB 4B-103

\title{
ELECTRONILSS ENGIILEEAS
}

Link Aviation, Inc., one of the world's leading manufacturers of analog computing equipment, has built over \(\$ 100\) million worth of computer-actuated devices in the past five years. Most of this electronic computing equipment has been custom-designed to meet the highly specialized requirements of complex military training devices.

Our development activity embodies the fields of flight and radar simulators, missile and gunnery trainers, special purpose computers for laboratory and industrial applications, electronic laboratory instrumentation and specialized optical devices.

In a recently established program to develop top-flight technical men for management positions, we are seeking electronics engineers with the following qualifications:

\section*{1. Advanced degree in E. E., Engineering Physics or Applied Science.}
2. One or two years' experience since attainment of advanced degree.
3. Training, experience, and interest in feedback systems, analog computation, vacumm tube or transistor circuitry (with particular emphasis on low-frequency or instrmentationapplications), instrument servomechanisms.

The men we seek are making rapid progress in their present jobs, but are interested in greater opportunities unrestricted by age, seniority, rigid salary structures, formalized tables of organization, and other administrative obstacles. Our high order of dependence upon key technical men creates a challenging opportunity for superior engineers which we feel is unusually attractive.

Please send full details of your qualifications to: MR. JOHN M. HUNT, Manager of Engineering

\author{
LINK AVIATION, INC., BINGHAMTON, N. Y.
}
pioneer and world's largest producer of jet flight simulators

A subsidiary of General Precision Equipment Corp.

is need for a small relay to handle heavy currents of up to 5 amperes -125 v a-c.
 by \(1{ }^{2}\) 解 in. high and has a life of 100,000 operations minimum under the contact load mentioned, with increased life under lesser load. A fast acting d-e relay with \(100-\mathrm{mw}\) minimum operating power, maximum coil dissipation of 1.5 W and maximum coil resistance of 6,000 ohms, it will meet MIL-R-5757B class A. Enclosed snap-action contacts are UL approved.

Special features include impregnation and tropicalization, hermetic sealing, replaceable switch assembly and a-c operation.

\section*{MAGNETIC AMPLIFIER is voltage regulated}

Rapid Electric Co., 2881 Middletown Road, New York 61, N. Y. A regulated \(14 / 28 \mathrm{v}, 200 / 100 \mathrm{am}-\) pere d-c power rectifier is designed to meet Air Force specifications MIL-P-8194 and MIL-P-6457A. Operating on \(220 / 440\) v, 3 phase, 50-60 cycles, the output voltage

\title{
Q Meter Inductors for measurements up to 260 mc !
}

\section*{INDUCTORS Type 590-Aaccessories to Q Meter Type 190-A}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ TYPE 590-A INDUCTORS } \\
\hline Type & \begin{tabular}{c}
Inductance \\
\(\mu h\)
\end{tabular} & \begin{tabular}{c}
Capacitance \\
\(\mu \mu f\)
\end{tabular} & \begin{tabular}{c}
Approximate \\
Resonant \\
Freq. me
\end{tabular} & \begin{tabular}{c}
Approximate \\
O
\end{tabular} & \begin{tabular}{c}
Approximate \\
Disiributed \\
C \(\mu \mu f\)
\end{tabular} \\
\hline \(590-A 1\) & 0.05 & \(8.0-95.0\) & \(70-230\) & 320 & 1.5 \\
\hline \(590-A 2\) & 0.1 & \(10-100\) & \(50-160\) & 350 & 1.8 \\
\hline \(590-A 3\) & 0.25 & \(8.0-80.0\) & \(30-100\) & 310 & 2.3 \\
\hline \(590-A 4\) & 0.5 & \(7.5-80.0\) & \(25-70\) & 340 & 2.4 \\
\hline \(590-A 5\) & 1.0 & \(7.5-65.0\) & \(20-50\) & 300 & 2.9 \\
\hline \(590-A 6\) & 2.5 & \(9.0-25.0\) & \(20-30\) & 300 & 2.9 \\
\hline
\end{tabular}

\section*{Q METER Type 190-A}

This new 190-A \(Q\) Meter measures an essential figure of merit of fundamental components to better overall accuracy than has been previously possithle. The V'TV M, which measures the \(Q\) voltage at resonance, has a higher impedance. Loading of the test component by the \(Q\) Meter and the minimum capacitance and inductance have been kept very low.

\section*{SPECIFICATIONS-TYPE 190-A}

FREQUENCY RANGE: 20 mc . to 260 mc .
RANGE OF Q MEASUREMENT:
Q indicating voltmeter 50 to 400
Low O scale
Multiply Q scale
Differential Q scale 10 to 100

Total \(Q\) indicating range
0.5 to 3.0

0 to 100 5101200 PERFORMANCE CHARACTERISTICS OF INTERNAL RESONATING CAPACITANCE: Range -7.5 mmfd to 100 mmfd . (direct reading). POWER SUPPLY: \(90-130\) volts - 60 cps (internally regulated). Type 190 -A Price: \(\$ 625.00\) F.O.B. Factory

BOONTON RADIO
BOONTON.N.J.U.S.A orporation

Inductors Type 590-A are designed specifically for use in the Q Circuit of the Q Meters Type \(170-\mathrm{A}\) and \(190-\mathrm{A}\) for measuring the radiofrequency characteristics of condensers, resistors, and insulating materials. They have general usefulness as reference coils and may also be used for periodic checks to indicate any considerable change in the performance of the Q Meters.
Each inductor Type 590-A consists of a high \(Q\) coil mounted in a shield and is provided with spade lugs for connection to the coil terminals of the \(Q\) Meters. The shield is connected to the lugs which connect to the Low Coil terminal in order to minimize any changes in characteristics caused by stray coupling to elements or to ground.

NEW PRODUCTS
regulation from no load to full load is held within 0.5 v , including a variation of \(\pm 10\) percent of the rated input voltage.
- Maintenance-Periodic aircleaning of selenium rectifier stacks is all the maintenance reutuired. Self-lubricating fan-molor bearings eliminates lubrication.

\section*{SHF WAVEMETER covers 4,000 to \(10,000 \mathrm{mc}\)}

Marconi Instruments, 44 New St., New York 4, N. Y. The TF1059 shf wavemeter cover's the wide band of 4,000 to \(10,000 \mathrm{mc}\) by use of a cavity resonator operating in a hybrid mode. It is tuned by a \(2 \frac{1}{2} \mathrm{in}\). precision micrometer and is totally enclosed, the micrometer being viewed via a low power lens.
- Highlights - Its features are high \(Q\) and an accuracy of 0.05 percent. Discrimination at the worst point is 0.03 percent. Power required is 1 mw .

\section*{PILOT LIGHTS \\ with spade terminals}

Dialight Corp., 60 Stewart Ave., Brooklyn 37, N. Y., now offers its series of indicator lights, which accommodate bayonet type miniature lamps, with spade terminals. These terminals are the matching male

E
Paren
Silicon Crystal

Platinum-Iridium
Spring Contact

RELIABILITY YOU CAN SEE
In this cross section (made from a standard, non-selected production specimen), renowned Hughes quality is clearly visible. (A) The platinum-iridium whisker makes firm, positive contact with the aluminum button. (D) The rectifying junction is clean, sharp, and straight. (E) The parent silicon crystal is free from strain-induced cracks, fissures or blemishes around the junction. Such meticulous work manship gives microscopic evidence that, in semiconductors, hughes quality means highest quality.
\({ }^{*}\) Characteristics rated at \(25^{\circ} \mathrm{C}\) and at \(150^{\circ} \mathrm{C}\). Ambicut operating range, \(-80^{\circ} \mathrm{C} 10+200^{\circ} \mathrm{C}\).
** Dimensions, diode glass body: 0.265 -inch by 0.105 -inch, maximum.

\section*{HUGHES PRODUCTS}

A DIVISION OF The HUGHES AIRCRAFT COMPANY

All Hughes Silicon Junction Diodes are packaged in the famous one-picec, fusion-sealed glass body developed at Hughes. This construction is impervious to moisture-ensures electrical and mechanical stability. So, when your circuitry involves high temperature or high back resistance requirements, be sure to specify Hughes Silicon Junction Diodes. Available now, at lower prices, in nine different standard and several special types. And, as always, they are First Of All... For reliability!

\section*{FEATURES:}

High Temperature Operation*
Extremely High Back Resistance
Very Sharp Back Voltage Breakdown
Excellent Forward Conductance
Subminiature Size**
Exceptionally Stable Characteristics
For descriptive product information, please write:

\section*{HUGHES}

SEMICONDUCTORS
HUGHES PRODUCTS
International Airport Station
Los Angeles 45, California

\section*{Continental Connectors adds coaxial contacts}

Single Coax Contact

2 Coax Contacis plus 14 \#20 Contacts

\section*{SPECIFICATIONS:}

Contacts: 14 and 18 (as illustrated) plus other contacts and arrangements on special order.
Contact Pins (brass) and Sockets (spring temper phosphor bronze) silver. and gold plated for low contact resistance.
Terminals: Solder cup or turret type.
Moldings: Choice of Mineral-filled Melamine, Plaskon reinforced (glass) Alkyd 440 A , or Orlon-filled Diallyl Phthalate.

\section*{ELECTRICAL RATINGS:}

Voltage Breakdown:

> At Sea Level................ 2100 Volts RMS At 60,000 Ft................. 750 Volts RMS

Current Rating \(\qquad\) 5 Amps.
Addifional information on these connectors, and special designs requiring the use of subminiature, printed circuit, hermetic seal, pressurized, high voltage, or power connec. tors are available on request. Write taday for free catalog.

\section*{ELECTRONIC SALES DIVISION}

DeJUR-Amsco Corporation 45-01 Northern Blvd.
Long Island City 1, N. Y.
part for the convenient quick-connect type wire terminals. The connection is positive with triple spring action and, in many situations, their use makes a cost-saving contribution to the manufacture or maintenance of equipment.

The T-3 \({ }^{\frac{1}{4}}\) incandescent bulbs which are used may be had in 2 to \(55-v\) ratings. With Dialco's built-in resistor these pilot lights may be used on voltages of \(105-125 \mathrm{v}\) or \(210-250 \mathrm{v}\). Simple external resistors can be provided for all higher voltages.

\section*{RIGHT-ANGLE SOCKETS for printed wiring}

Aerovox Corp., Pacific Coast Division, 2724 South Peck St., Monrovia, Calif., has announced rightangle tube sockets that provide marked reduction in height and depth of printed-wiring assemblies. They are equally adaptable to hand-or machine-insertion methods. Terminals are of adequate length to slip into printed wiring holes and be dip soldered. Silver-plated contacts are engineered to provide nonfatiguing contact pressure with suitable insertion and withdrawal pressures. Metal parts and mounting hardware are plated to meet salt-spray test specifications.
- Four Types-These components are available in 7 - and 9 -pin sockets and in 4 different versions. Type A is for general-purpose applications where extra rigidity and resistance to vibration and shock are not important factors; type AX, for special applications requiring extra rigidity; type \(B\), same as \(A\), but with tube shield added; and type

Plants in Norristown, Pa. and La Verne, Calif.

\section*{Tips for designers}

Terminal strips for high-precision electronic instruments benefit from the excellent insulating properties of Taylor XXXP-301 hot-punch laminate.

Coil forms for this solenoid have to operate at high temperatures . . . an ideal application for Taylor glass melamine laminate.

Fuelline clamp for a fighter airplane's "pipeline" system is machined from Taylor fabric base laminate which has high mechanical strength and resists extreme temperature and humidity.

Base plate for high-voltage TV component, punched from Taylor canvas melamine laminate, has high dielectric strength and arc resistance.

TAYLOR FABRICATING FACILITIES
Your production problems can often be simplified... schedules safeguarded . . . inventory headaches cured . . . and overall costs reduced by having Taylor fabricate finished parts of vulcanized fibre and laminates to your specifications. Efficient, modern facilities are ready to serve you. Write to Taylor about your specific requirements.

Low-flow under physical load is an important characteristic of the Taylor Grade 353 washer used in this selenium rectifier. The Taylor Grade XX-10 tube provides dependable, long-lasting insulation for the current-carrying plotes.

\section*{Electrical and physical stability recommend Taylor Iaminafes}

Dozens of different grades of Taylor laminates offer the designer and the production man a variety of combinations of electrical and physical properties for a wide range of product applications.

And very important . . . but often overlooked . . . is the degree to which these Taylor laminates maintain their original characteristics, over long periods of time and under severe operating conditions. You can have performance to fit your requirements . . . performance with stability ... when you use Taylor laminates.
Included in this broad selection of materials are paper, fabric and glass bases . . . phenol, melamine, silicone and epoxy resins. Within
the complete line there is the combination you need, to improve the performance of your present product or to help move a new product into practical and economical production.

They are available in several forms, too, which make for greater fabrication efficiency ... sheets \(49^{\prime \prime}\) by \(49^{\prime \prime}\), and tubes and rods in a wide range of sizes.

Whenever you are looking for a laminate ... and particularly when the specifications include stability . . . it will pay you to check with Taylor first. To help you in your selection, Taylor offers the services of its engineering staff as well as the facilities of its fabricating division. Call on Taylor for a consultation on your specific requirements.

\section*{UNIQUE SENSITIVE RELAY}
incredibly small,
lightweight and adjustable!

\section*{ADVANCE "SO" SERIES}

Here for the first time is a sensitive relay only \(1-7 / 32^{\prime \prime} \times 1-1 / 8^{\prime \prime} \times 1-1 / 4^{\prime \prime}\)... weighing only \(1-1 / 2\) ounces, and adjustable over a wide range. You get much more latitude with this relay in designing for tiny areas.

The Advance "SO" is set at the factory to operate on 10 milliwatts. User can adjust it down to 2 milliwatts, or any desired pick-up or drop-out, by means of fine screw contacts. A balanced armature provides extremely sensitive operation. The unit is highly efficient, ruggedly built, and offers excellent shock and vibration-resistant characteristics.

Contact arrangement is SPDT. Coil resistances: 4000,6500 and 10,000 ohms. Life expectancy: 250,000 operations. Available in open types... dust-tight or hermetically sealed enclosures. Now in quantity production.
 Advance "SO" relays are priced amazingly low. Write for literature.
\begin{tabular}{|r|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Coit \\
Rescistance
\end{tabular} & \begin{tabular}{c}
Pick Up \\
Voltage
\end{tabular} & \begin{tabular}{c}
Pick Up \\
Current
\end{tabular} & \begin{tabular}{c}
Drop Out \\
Voltage
\end{tabular} & \begin{tabular}{c}
Drop Out \\
Current
\end{tabular} & \begin{tabular}{c}
Max. Coil \\
Continagefor
\end{tabular} & Overrravel & \begin{tabular}{c}
Contact \\
Gap
\end{tabular} \\
\hline 4000 & 6.4 V & 1.6 MA & 3.2 V & .8 MA & 110 V & .0015 & \(.002 / .003\) \\
6500 & 8.1 V & 1.25 MA & 3.9 V & .6 MA & 140 V & .0015 & \(.002 / .003\) \\
10,000 & 10 V & 1 & MA & 5 V & .5 MA & 175 V & .0015 \\
\hline
\end{tabular}

ELECTRONICS DIVISION
ELGIN NATIONAL WATCH COMPANY
FOR RELAYS: 2435 N. Naomi Street, Burbank, California

BX, same as AX, but with tube shield added.

\section*{POWER METER}

\section*{d-c to 500 mc}

Marconi Instruments, 44 New St., New York 4, N. Y. The TF\(1152 / 1\) measures true power from d-c to 500 mc with an accuracy of 5 percent up to 250 mc . It has ranges of 10 and 25 w maximum and a parallel-plate line matched to the cracked carbon load resistor insures a pure input impedance of 50 ohms throughout its entire frequency range.

Since it reads true power, modulation depth can be easily calculated. Calibration can be readily checked at d-c or 60 cps .

\section*{TUBE CHECKER checks international types}

American Metrix Corp., Box 179, Upper Darby, Pa., The type 310 will rapidly make a series of checks and measurements on receiving tubes, at one of several points on the static characteristic chart, in conditions similar to normal working conditions. It checks filament con-

\section*{under the sunny skies of colorado!}

\section*{A NEW Division of The Glenn L. Martin Company}

A NEW engineering project

\section*{A NEW technical challenge}

\section*{A REALLY new way of life for engineers and scientists in the wonderland of Colorful Colorado}

DENVER, the capitol of Colorado, is the site of Martin's new multi-million dollar plant where development work has begun in new fields of engineering. To enhance this project, Martin is offering the finest in laboratory and production facilities; salary levels commensurate with experience and ability; association with people of extremely high technical competence;
opportunities of advancing oneself professionally ...
PLUS, a higher standard of living . . . and a way of life that is unhurried, stimulating, and completely enjoyable.
The GIenn L. Martin Company's NEW DENVER DIVISION in the heart of the Colorful Colorado Rockies will put you on the threshold of a career that has no limit.
We invite you to inquire about positions now open in the following fields

\section*{POSITIONS:}

Circuit Design \& Anal.
Auto. computations
Mathemalicians
Electronics Engineering
Systems Analysis

Servo Design
Instrumentation
Physicists
Electronic Systems
Communications

\section*{M 4 F T M M}

DENVEF ロルISION

\footnotetext{
Address inquiries to: Emmett E. Hearn, Employment Director, Box 179, Dept. H, Denver, Colorado
}

\section*{ALL NEW DESIGN! \\ Simple...Foolproof...Low Cost 1500 WATT HOMELITE GENERATOR}

Model 35All5
Homelite Generotor 1500 Wotts, 115 Volt 60 Cycle AC 90 Pounds

1- New Money-Saving features... No DC brushes; just two easy-to-get-at collector ring brushes... No commutator or DC windings . . No intermediate couplings; armature keys directly to shaft. Fewer parts to wear out - longer trouble-free generator service.

2.2. Constant Voltage...less than \(4 \%\) change from no load to full 1500 watt capacity . . assures long service life for your electrical requirements . . guarantees top performance at all times.
3. 5. Overload Capacity... 1500 watt continuous duty with generous overload capacity prevents stalling under heavy loads . . . insures uninterrupted service even when starting loads exceed operating loads.

4.
Compact and Lightweight . . . one man can easily carry this generator wherever you need electricity to power time-saving electronic and communications equipment. No need for long, hazardous power-consuming cables.

\section*{SAVE EVEN MORE!}

New Homelite idle control unit, available as optional accessory, runs engine at idle speed when no current is drawn . . . automatically brings engine to full speed \(w\) when load is applied.

\section*{HOMELITE} A DIVISION OF TEXTRON AMERICAN, INC. 6804 RIVERDALE AVE., PORT CHESTER, N.Y.

Manufacturers of Carryable PUMPS GENERATORS • BLOWERS • CHAIN SAWS
tinuity, hot and cold interelectrode short circuits, and filament-cathode insulation, and will measure plate current and mutual conductance anywhere on the characteristic chart. An overload cutout protects the instrument against faulty usage.

\section*{PRECISION RESISTORS encapsulated, wire-wound}
R. C. L. Mfg. Co., P. O. Box No. 25, Riverside, N. J. Series 3030 encapsulated wire-wound precision miniature and subminiature resistors are designed and built to withstand wide temperature ranges with ambients up to 125 C , humidity, salt water immersion, corrosion and shock without deterioration. They will withstand all test requirements of MIL-R-93; and can be supplied in radial and axial lead styles.
- Technical Information - Standard tolerances are 1 percent, available to 0.05 percent. Temperature ranges are -70 C to +125 C . Wattage is 0.1 to 0.750 w . Range is from 1 ohm to several megohms.

\section*{CHASSIS KIT \\ for prototype models}

Precision Metal Products Co., 41 Elm St., Stoneham 80, Mass. The 3-D chassis kit is designed to provide complete flexibility to the design and development engineer in the construction of prototype mod-

STABILINE type EM6220Y

Electrical equipment is designed to operate at a specified voltage. It is obvicus that equipment will perform best . . . last longer if the specified rated voltage is maintained.
Voltage is supplied to your plant within certain "allowable" limits. Even if the voltage reading at your doorstep is right on the button, voltage variations occur within the plant.
STABILINE* Automatic Voltage Regulators end voltage variation headaches. They maintain constant specified voltage to voltage-sensitive equipment regardless of line voltage fluctuations or load changes. There is a STABILINE to fulfill the needs of most applications. Let us give you more facts.

14663 Titus St., Van Nuys, Cal. - P.O. Box 946, 2881 El Camino Real, Redwood City, Cal. 482-B Eglinton Ave., West, Toronto 12, Ontario, Can. - 2217 Biscayne Blvd., Miami 37, Florida - P.O. Box 48, 721 So. Blvd., Oak Park, III. - 4033 W. Rogers Ave., Office \#2 Tippett Bldg., Baltimore 15, Maryland . 250 Park Ave., Rms. 502-504 Postum Bldg., New York 17, N. Y. - P.O. Box 132, 101 Public Sq., Medina, Ohio - 4515 Prentice St., Room 201, Dallas 6, Texas.

\section*{THED}

SUPERIOR ELECTRIC

THE SUPERIOR ELECTRIC COMPANY
Have your representative call \(\square\)
Send stabiline Bulletin S351 \(\square\)
Name
Company Name
Company Address
City
.Zone . . State

\section*{A Long Step FORWARD in-}
 tips in this disciplined incremental oscillator. It is the black-box equivalent of 20,000 crystals . . and offers setability, readability and stability approaching the theoretical limits. Unskilled personnel can take immedate advantage of its designed-in simplicity, versatility and precision, and it meets JAN Specifications for electrical, mechanical and environmental performance. PULLLIN and HOLD,IN are equal and automatic through o new Discriminator* without moving parts. . . DIGITIZED DIAL* gives direct readings of fequency... READOUTS are both mechanical and electrical .. AUTOMATIC RESET to exact frequency after power failure . . REMOTE OPERATION * available . ALL-ELECTRONIC design with simplified circuitry and construction for fast, easy maintenance . . and many other unique features. *Patent's Applied For.
Three Models cover the range from 18 mc to 410 mc , with increments providing from 2000 to 20,000 discrete frequencies in each portion: Model 182-A for the HF spectrum - 182-B for VHF and 182-C for UHF. The Manson Series 182 Crystal Synthesizers are ou standing for use as:
Transmitter Excifers - Frequency Standards -Ultra-Stable Signal Generators and Frequency Meters-Low-Power AM and FM Transmittersand as Master and Beat-Frequency Oscillators with Double and Single Side-Band Receivers.
..........................Write for Bulletin 182
Manson offers to Engineers and Techncians a rewarding present and attractive future in suburban Conrecticut.
els. It consists of : end brackets, side channels, terminal strips, miniature and octal tube socket plates, component mounting boards, mounting brackets, double-end press-in terminals, self-tapping screws, potentiometer mounting boards, and rack mounting plates.
- Materials Used-Plastic used in all mounting boards is laminated, paper base, XXXP (MIL-P-3115), type PBE. This material has low dielectric losses and excellent insulation resistance. Its \(\frac{3}{32}-\mathrm{in}\). thickness provides excellent strength. The silver-plated solder terminal lugs, type PMP No. 1602, are lacquered to prevent tarnishing.

Overall size of the chassis kit is 5 in . wide, \(16 \frac{7}{8} \mathrm{in}\). long and \(3 \frac{1}{2} \mathrm{in}\). high. Capacitors, controls and components are easily mounted through the many holes provided. Two or more kits may be joined together for more complex prototypes.

\section*{GLASS CLOTH BOBBINS}

\section*{laminated silicone type}

Silicone Insulation, Inc., 567 Third Ave., New York 16, N. Y. A silicone glass cloth bobbin laminated into a unified structure is finding a most needed application in high-temperature transformers, solenoids, relays and other coilusing equipment. The new spool maintains both mechanical and dielectric strength at the joints.

The bobbins include round and rectangular units with two or more flanges, with irregular flanges, protrusions, core extensions, or metal inserts.
- Thin Walls - Their thin rigid walls save valuable winding space. Wall thickness of 0.030 in . are most frequent, but walls of 0.020 in . or 0.015 in . are common, while some

\section*{modernization}

For the benefit of those to whom marking pulses and spacing pulses are only assorted bauds - the top illustration represents a vencrable, familiar and respected telegraph relay made by one of the great corporations. For a long time it has been common in Teletype communication equipment; and, as with the DC-3 airplane, its "bugs" are pretty well domesticated.

Then, in a 1946 development contract, the Signal Corps asked for a small equivalent - hermetically sealed against the tropics and G. I. fingers. Ironically enough, when it came time to try and sell the result (Sigma Series \(7 \downarrow\)) nobody had any way of using it unless it fitted existing sockets and cover clamps

This led to the preposterous but effective arrangement in the second illustration

There was only one trouble. It had been the custom with the predecessor relay to clean and adjust contacts at infrequent intervals during a long service life. Hermetic sealing, besides somewhat impairing contact life, makes service and adjustment quite impractical. (Some will recall previous mention of the Air Force Captain and his dramatic "small hole treatment." The story was true.) So the verdict on the Series \(\bar{f}\) was confused: Good in "tactical" situations; i. e., foxholes; also good in some commercial equipment, but n. g. in other.

A private attempt to end all such attempts - with a good Sigma telegraph relay once and for all-led to the Series 72 (0). In order to be sure of no distortion at 100 word-per-minute speeds, it was made capable of acceptable behavior at \(1000 \mathrm{w} . \mathrm{p} . \mathrm{m}\). Not only was it made with a detachable cover, but the wearing parts were made replaceable like phonograph needles. (It was our good fortune that the " 72 " turned out, in addition, to be a rather decent relay on a great many other counts, which means business outside the telegraph field.)

Now, of course, there may be some devil-may-care individuals actually designing future equipment of this type with octal sockets. The AB-37 Adaptor is still around however, for those who must look before they leap.

SIGMA INSTRUMENTS, INC., 62 Pearl Street, So. Braintree, Boston 85, Massachusetts
have been made as low as 0.010 in
Close dimensional tolerances can be maintained- \(\pm 0.005 \mathrm{in}\). is normal while \(\pm 0.001 \mathrm{in}\). is possible. These tolerances are largely a function of the tooling.

Laminated silicone glass cloth bobbins meet and exceed class \(H\) temperature requirements.

\section*{VOM PROBES \\ are rugged and accurate}

Futuramic Co., 2500 W. 23rd St., Chicago, Ill. Model 261 high-ohms probe extends the ohmmeter range of the vom by a factor of 10 . It permits measurement of resistance values up to 200 megohms. The probe can be used with any 20,000 ohms-per-volt vom having a centerscale indication of 12 ohms , and an internal ohmmeter battery of 7.5 v .
- Other Features-It is ruggedly constructed, highly accurate, and has a gold-plated steel housing with color-coded Lucite end pieces. The probe is put into operation by simply plugging into meter in place of conventional test load.

Price is \(\$ 9.95\).

\section*{R-F PREAMPLIFIER features small size}

Applied Science Corp. of Princeton, P. O. Box 44, Princeton, N. J. Model APA-2 r-f preamplifier greatly improves the signal-to-noise ratio of a typical radio receiver in the \(215-235 \mathrm{mc}\) frequency band, resulting in a better reception of lowstrength signals. Addition of the preamplifier to a typical receiving installation utilizing a receiver with a typical \(10-\mathrm{db}\) noise figure

EARLY RESEARCH AND DEVELOPMENT EXPERIENCE with electronic location equipment at G.E. began in 1935 when this first system, with an output of \(11 / 2\) watts, located planes up to five miles away.

IN USE TODAY, this huge nodding height finder was designed and developed by General Electric to be used with powerful search radar systems and is a major confribution to long-range aircraft location.

\title{
How G.E.'s 20-year antenna background can help make your radar system more effective
}

\section*{6 examples show experience in all areas of land- and ship-based antenna work}

To give you an outstanding source for reliable, precision radar antenna equipment, General Electric backs modern facilities with the know-how that comes from many years of research, engineering, and manufacturing experience.

For example, early research in electronic location equipment at G.E. began in 1935 and engineering and manufacturing experience includes these six major areas:
1. Stabilized bases to compensate for ship pitch and roll were built in large quantity with Navy antennas in World War II.
2. Small, portable systems for weather balloon tracking were developed and produced for the Army and Navy in 1948.
3. Powerful heightfinding antenna, FPS-6XW1, developed by G.E. for USAF in 1949, was an advancement in long-range detection.
4. Giant shipboard search anfenna, largest in use today, was G-E developed and produced for Navy earlywarning ships.
5. Long-range search anfennas (FPS-7) were designed and built by G.E. using advanced construction techniques.
6. One of the first combination antennas (allows both search and elevation detection), the Navy's SPS-8 was designed and produced to give a precise beam pattern.

This extensive background enables clearer perception of special engineering and manufacturing problems. It is the element that helps give G-E precision antenna equipment the efficiency and reliability to help make your radar system more effective. For more information, contact your G-E Apparatus Sales Office or use coupon below.

> Mail to: General Electric Company, Section F \(223-2\) Schenectady 5, N. Y.

Please send me these two bulletins:
GEA-6279, Radar Antennas, Mounts, Components, and Accessories
GED-2494, G.E.'s Naval Ordnance Department Offers Complete Engineering and Manufacturing Services
\(\square\) For immediate project. \(\square\) For reference only.
Name
Pasifion
Organization
Address

\title{
Progress/s Our Most Important Product GENERAL ELECTRIC
}

produces an improvement in signal-to-noise ratio equal to that which would result from a five-fold increase in transmitter power, or an antenna gain increase by a factor of 5 .
-Size-The preamplifier is \(17 \frac{1}{2}\) in. long by \(6_{4}^{1} \mathrm{in}\). wide by \(5^{2 g}\) in. high and weighs \(12 \frac{1}{4} \mathrm{lb}\). By virtue of its small size it can easily be mounted at the antenna in most cases.
The separate power supply furnished with each preamplifier mounts in a standard 19 in. relay rack and may be placed at a remote point with respect to the preamplifier.

\section*{RESISTOR NETWORK plug-in type}

The Daven Co., 530 W. Mt. Pleasant Ave., Livingston, N. J., has developed a new plug-in resistor network, type 1299 . The unit is epoxymolded, hermetically sealed and measures \(\frac{7}{8}\) in. in diameter and 13 in. in length. Its base fits a standard 9-pin miniature socket.
- Specifications - The plug-in resistor network can accommodate up to 8 individual resistors with a

\section*{A new and better}

\section*{variable-phase, single-turn} precision potentiometer

\section*{CLAROSTAT M VARI/PHASE MW}

EQUAL TORQUE AND TRACKING IN BOTH DIRECTIONS

Unique contact design permits micrometer tension adjustment at factory and assures equal torque and tracking in either direction at all times.

NO CLAMPING RINGS
Simplified phasing-External independent phasing of each cup without affecting the relationship of the others.-To phase, loosen clamping nut, move terminal board in desired direction, tighten clamping nut and it's done. Speedy phasing saves time and money. Reduced overall diameter by elimination of clamping rings.

STANDARD A.I.A. MOUNTING
Mounting per A.I.A.* standards-others available. Meets or exceeds electrical and mechanical A.I.A. requirements.

Materials selected for lightest weight possible. Design assures highest performance. Five sizes available-7/8", 1-1/16", 1-5/8", \(2^{\prime \prime}\) and \(3^{\prime \prime}\) diameters.

Another CLAROSTAT first. A product of advanced imagineering.

WRITE FOR
COMPLETE ELECTRICAL AND MECHANICAL SPECIFICATIONS.

CLAROSTAT MFG. CO., INC. DOVER, NEW HAMPSHIRE

In Canada: Condian Marconi Co., Ltd., Toronto 17, Ont. Manufactured under license in Great Britain by
A. 8. Meral Products Lid., 17 Stratton St., London W.I. Concessionaires for British Commonwealth except Canada

total resistance of 6 megohms. Individual resistor tolerances can be held to \(\pm 0.05\) percent. It is operable from -55 C to +125 C . Each resistor can dissipate 0.5 w .

This new assembly can be supplied for other standard sockets or connectors, if required. It can also be furnished with modifications of physical size depending upon the number of resistors and their values.

\section*{TRANSISTOR}

\section*{germanium tetrode type}

General Electric Co., Syracuse, N. Y., has announced a new germanium tetrode transistor produced by the company's melt-back process. It combines rugged construction and substantial power handling capabilities with high frequency performance.
-Specifications - Typical alpha cutoff of the new device is 50 mc at 85 C . It is rated at a minimum of 10 db power gain at 30 mc at 25 C with a \(2-\mathrm{mc}\) bandwidth. It is capable of dissipating 50 mw at 25 C and has a rise and fall time of \(0.02 \mu \mathrm{sec}\).

\section*{FILTER CHOKES \\ new hermetic series}

United Transformer Co., 150 Valick St., New York 13, N. Y. A new concept in filter choke design and ratings is effected in the hermetic series recently released. Designed to provide exceptional reliability through low temperature rise and high insulation safety factors, these

The right people
with the right facilities produce the right solutions

\section*{"'Packaged"}

\section*{to deliver top performance anywhere}
missiles, countermeasures, communications, radar, computers and control systems. Whether the problem is military or industrial, Sylvania's business is to come up with electronic solutions that are producible.

In addition to its Buffalo Engineering Laboratory and manufacturing facilities, the Electronic Systems Division has installations at Waltham, Mass., and Mountain View, Calif., staffed with topranking scientists and engineers, and backed by Sylvania's extensive resources in the electronics field.

This "package" gan go anywhere, any time, in modern, high-performance aircraft, and deliver effectively in America's defense. It is an electronic countermeasure system. Designed, engineered, and "packaged" for minimum weight, the equipment provides maximum reliability and top performance under extreme conditions of humidity, altitude, shock, vibration, and temperature differential.

Engineered in the Buffalo Engineering Laboratory of Sylvania's Electronic Systems Division, this highly advanced elec-
tronic system employs subminiature tubes, transistors, and printed circuits in a package which is itself subminiaturized. Despite its complexity of design and purpose, it is engineered for quantity production in the Division's Buffalo plant.

In all of Sylvania's Electronic Systems Division installations, the right people work with the right facilities, within a sound managerial envirenment. That is why they have produced the right solutions to a variety of problems, and have made such important contributions in the fields of aviation electronics, guided

\section*{NEW TOOLS
 \\ R-F MEASUREVENTS}

AMCI Precision Hybrid
Type 1025
Frequency range: 100 mc to \(\mathbf{3 0 0} \mathrm{mc}\)

\section*{PERMITS DETECTION OF SWR's AS LOW AS 1.002}

THE TYPE 1025 PRECISION HYBRID is a five-terminal, high-frequency network built with particular attention to stability and accuracy of construction. It makes possible the measurement of quantities that have been, normally, only estimated. For example: this device can be used to measure at about 200 mc . a reflection coefficient as low as 0.01 , with a precision of \(\pm 0.001\) in magnitude and \(\pm 5^{\circ}\) in phase angle.

VERY LOW SWR's can be measured by using the Type 1025 Hybrid with a suitable receiver and signal generator. With additional equipment, the phase angle also can be obtained, permitting point-by-point plotting of impedance curves like the one shown at the right.

DIRECT DISPLAY OF IMPEDANCE can be obtained by using the Type 1025 Hybrid in conjunction with the AMCI type 1028 Polar Display Unit (frequency range 120 mc to 240 mc) together with a standard (d-c oscilloscope and suitable swept oscillator. A typical display is shown in the unretouched photograph at the left.

hermetic filter chokes exceed MILT -27 specification requirements.
- Features -- Four inductance-vscurrent ratings for each unit provide maximum versatility in application. The ten units in the H series cover current values from 20 ma to \(1,250 \mathrm{ma}\), with voltage ratings up to \(3,000 \mathrm{v}\) d-c.

These units also have industrial ratings for high reliability, broadcast, test equipment and similar service.

\section*{SILICON TRANSISTORS in large-scale production}

Bogue Electric Mfg. Co., 52 Iowa Ave., Paterson 3, N. J., has available a complete line of precision durable silicon grown junction transistors. They will operate at peak efficiency under a wide range of operating conditions, including high temperatures.
- New Characteristics-Three important new characteristics in design are: high input operating voltage, higher collector operating voltage and decreased collector series resistance. These will permit silicon transistors to operate efficiently in the large signal applications necessary in magnetic

Need a sub-miniature low-inertia Servo Motor or Servo Motor Generator?

Here are two brand-new ones

TYPICAL MOTOR CHARACTERISTICS

CK-1048-24-A1

\section*{Frame Size}

Voltage: Fixed Phase
Frequency
ontrol Phase
Frequency
Fixed Phase.
Control Phas
mpedance:* Fixed Phase
Power Input* Control Phase.
Stall Torque
No Load Speed
Rotor Moment of Inertia
Torque to Inertia Ratio. Weight
\begin{tabular}{l|l}
Weight.... Temperature Range & 1.5 oz \\
Operating Tem & \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\)
\end{tabular}
*At stall with rated voltage applied to each phase
18
18 volts
18 volts
400 cps
.095 amp.
\(190=158+j 104\) ohms
\(190=158+104 \mathrm{ohms}\)
3 watts
.15 oz -in
6300 rpm
\(3.5 \mathrm{gm}-\mathrm{cm}^{2}\)
\(21,000 \mathrm{rad} / \mathrm{sec}^{2}\)

FV-112-11-A1

\section*{TYPICAL GENERATOR CHARACTERISTICS}

Voltage: Input
Frequency
Frequency
Linearity
Input Impedance
Recommended Output Loading Power Input
Null Voltage
.250 volts \(/ 1000 \mathrm{rpm}\) - 400 cps
\(1 / 2\) of \(1 \%\) up to 3000 rpm
\(178=135+j 115 \mathrm{ohms}\)
100,000 ohms
1.5 watts

15 millivolts max

These latest additions to the Eclipse-Pioneer line are now in initial production. They're another forward step in the continuing development of Bendix components to meet modern space, accuracy and weight requirements. For full details, write stating your specific needs. department a, eclipse-pioneer division, bendix aviation corporation, teterbono, n. J.
Let "by Bendix" be your guide to BUY BENDIX
West Coast Office: 117 E. Providencia Ave., Burbank, Calif.
Export Sales and Service: Bendix International Division, 205 E. 42nd Street, New York 17, N. Y.
amplifier, computer and servo applications.
The new transistors are currently available in two categories, one with emitter voltage of 2 v and the other, the " A " category with emitter voltage of 5 v . Four types of transistor in each series cover a wide range of special operating requirements.

\section*{SILICON RECTIFIERS axial lead types}

Transitron Electronic Corp., Melrose 76, Mass., has available axial lead silicon power rectifiers which offer versatile mounting arrangement for printed circuits or standard terminal boards.
- Specifications-They are available with peak inverse voltage ratings up to 600 v , and maximum average forward currents to 500 ma at 100 C . They feature both high forward conductance and low leakage current for high operating efficiency

Small size (less than \(\frac{1}{4} \mathrm{cu}\) in. total volume) and hermetic sealing ideally suit these rectifiers for use in military equipment or similar applications where miniaturization and reliability are of importance. Complete information is given in bulletin TE-1335,

\section*{LAB TEST DEVICE gas analyzer, vacuum pump}

Barry Electronics Corp., 512 Broadway, New York 12, N. Y. Model 1 is a combination leak tester, gas analyzer and vacuum pump. The unit includes built-in vacuum pump, vacuum gages, all neecssary control valves and a gas analyzer cell for identification of system leaks. This test apparatus is self-contained in a single top-of-

\title{
Now! Accurate automatic measurements for varied industrial applications...
}

NOW EVERY FEATURE you want in a precise, automatic Digital Voltmeter is available in these new Non-Linear Systems models. Their performance features automatic measurement from zero to \(\pm 999.9\) volts DC with high accuracy and resolution. Fast readings are presented in a brilliant, in-line luminous numerical display. Automatic features simplify operation, enable you to use non-technical employes. Assured long life results from exclusive NLS oil-sealed stepping switch system, plus top-quality components. Thorough quality control ensures reliable operation. And unitized construction means simplified maintenance, saving you time and money.

Yet NLS Model 451 Digital Voltmeters are priced far below instruments offering only a fraction of these advantages! These low costs are possible because NLS, as originators of the Digital Voltmeter, has the advantage of pioneering design and production techniques. Furthermore, NLS quantity production results in additional savings.

You can save time and money, and assure automatic accuracy in precision measuring, with an NLS

Digital Voltmeter. Mail coupon today for more information on how these quality instruments can assist your operations.

\section*{YOU GAIN THESE ADVANTAGES}

Automatic operation - Simple operation plus brilliant numerical readout and recording allows use of nontechnical personnel.
Exhaustive quality control - Sustained accuracy assured by systematic testing procedure throughout all engineering, production phases.
Unitized, standardized construction - Each instrument can be quickly disassembled into three functioning subassemblies.
Quality components, including mercury-cell reference standard, stepping switches built to NLS specifications, precision resistors and other high standard components.
Oil-sealed stepping switch subassembly cuts maintenance, boosts switch life, ensures reliability under all operating conditions.
Long-life stepping switches-Life tests corresponding to \(21,000,000\) readings completed, with switches still operating!

Simplified maintenance, resulting from unitized construction, saves you time and money.
No-lost-time service - Interchangeable subassemblies and complete instruments available promptly.
Automatic recording by electric typewriter, printer, summary punch.
Low initial cost, based on NLS integrated, efficient production methods, and on advanced engineering developments.
New! Automatically-standardized reference power supply eliminates manual adjustment; available instead of internally-mounted mercury-cell battery pack.

\section*{APPLICATIONS}

Automatic measurement, digital display and recording of DC voltages for:
Manufacturing - Development, production and process control testing.
Laboratories - Precision standardization procedures.
Special test equipment-Analog computers, missile components, control systems.
Many more! Our application engineers are available to work with you.

NON-LINEAR SYSTEMS
TWX: Del Mar 6-345 - PHONE: SKyline 5-1134
ORIGINATORS OF THE DIGITAL VOLTMETER
Digital Ohmeters - AC.DC Converters - Digital Readouts
Data Reduction Systems P Peak Reader Systems
Data Reduction Systems. Peak Reader Systems
Digital Recording Systems. Binary Decimal Converters

NON-LINEAR SYSTEMS, INC.
Dept. B-456, Del Mar Airport, Del Mar, California
Send new '56 catalog on complete line of precision instruments, and current price list.
NAME
COMPANY \(\qquad\)
ADDRESS
STATE \(\qquad\)
CITY \(\qquad\) 1

Here's the acknowledged peak of recording oscillograph development-CEC's Type 5-119, usable for over \(90 \%\) of all staticdynamic tests, regardless of their complexity. An unusual group of built-in safeguards against data loss has proved especially valuable in aircraft flight testing and in missile testing, where conditions are often impossible to duplicate and lost data can mean tens of thousands of dollars. In the air or on the ground, you can be sure when you use the CEC 5-119.

The 5-119 records up to 50 channels on records \(12^{\prime \prime} \times 250 \mathrm{ft}\) at speeds from 0.1 to 100 inches per second. Instant speed change of \(10: 1\) is effected through a simple switch control. It uses standard CEC Galvanometers, with linear frequency response from 0 to 3000 cps . All controls and warning lamps are located on the front panel.

\section*{For complete information} about the 5-119 oscillograph, write today for CEC 1536B-X3.

\title{
Consolidated Electrodynamics CORPORATION
}

\author{
formerly Consolidated Engineering Corporation
}

ELECTRONIC INSTRUMENTS FOR MEASUREMENT AND CONTROL 300 North Sierra Madre Villa, Pasadena, California

Sales and Service Offices in: Albuquerque, Atlanta, Boston, Buffalo, Chicago. Dallas, Detroit, New York, Pasadena, Philadelphia, San Francisco, Seattle, Washington, D. C.

bench cabinet with all controls and gages conveniently located on the front panel. The portable, versatile instrument is suited for altitude test chambers, evacuation of tubes, and leak detection of mechanical and electrical components.

\section*{C-R-A-M UNIT widely versatile instrument}

Radio Frequency Laboratories, Inc., Boonton 3, N. J. Model 1051 C-R-A-M (calibrator-receiver-am-plifier-mixer) is intended for use (1) as a secondary frequency standard of 0.0005 -percent accuracy, (2) for the reception of standard time and frequency broadcasts from WWV, (3) as a moderate gain audio amplifier for general use, and (4) as a mixer to compare two external signals to each other or to compare one external signal to one of the harmonics or subharmonics of its \(10-\mathrm{mc}\) crystal oscillator.

The unit has a self-contained regulated power supply. Overall dimensions are 10 in . wide by 11 in . high by 9 in. deep. Weight is approximately 24 lb .

\section*{TANTALUM CAPACITOR featuring high stability}

Fansteel Metallurgical Corp., Rectifier-Capacitor Division, North Chicago, Ill. Type STA tantalum capacitor has favorable characteristics over a temperature range from -70 C to +85 C . From room temperature to -70 C , capacitance

DESIGNED TO HELP YOU MEET PRICE COMPETITION ...

\title{
G-E \(\sqrt{a c-u} 5_{e} L^{*}\) Rectifiers Cost You Up to 30\% Less
}

Here is a component rectifier stack that will out-perform ordinary selenium stacks, and yet cost you up to \(30 \%\) less!
INITIAL COST IS OFTEN \(30 \%\) LOWER: G-E Vac-u-Sel rectifiers can be made up to \(30 \%\) smaller for any given application, due to the greater current-carrying capacity of the individual cells. Smaller size means a lower cost to you. These cells are produced by a unique G-E sphere-type vacuum-evaporation process that enables us to accurately predict the output and life characteristics of any model number. We are thus able to give you a stack with the exact life you require. You don't pay for more life than you need.
PICK THE LIFE YOU WANT: You can select a Vac-u-Sel rectifier that will last up
to 80,000 hours or more. But if your application calls for shorter life, we can give you a smaller, less expensive stack, which operates at greater than normalrated current. You will find that even when overrated these top-quality G-E Vac-u-Sel rectifier stacks will perform with greater predictability than ordinary selenium. So, by tailoring each stack to meet your exact requirements, you receive the benefit of top quality at lower cost.

Contact your G-E Apparatus Sales Office, or write for Bulletin GEA-6273 to: Section 461-41, General Electric Co., Schenectady 5, N. Y.
Vac-u-Sel is a trade-mark of the General Electric Co. It designates top-quality sellenium rectifier cells manufactured by a unique sphere-type vacuumevaporation process by the Rectifier Department,
Lynn, Mass., headquarters for silicon, germanium, selenium, and copper-oxide component rectifiers.

LONG LIFE is provided by G-E Vac-u-Sel rectifier stacks-even at high operating ambients and better than normal-rated current.

\title{
Progress Is Our Most Important Product GENERAL
}

\section*{LOW-LEVEL MAGNETIC D. C. SIGNAL AMPLIFIER}

\section*{for thermocouple and strain gage applications in telemetering systems}

RUGGED, ALL-MAGNETIC construction assures exceptional stability under the most severe conditions. No moving parts, no fragile elements. Unit withstands extreme vibration and shock without introducing spurious noise, and delivers reliable performance in high environmental temperatures. Produces 5 VDC output from 1 millivolt DC input, with exceedingly high gain stability. Used in all major aircraft and missile instrumentation projects as well as for temperature and strain measurements in industrial and medical applications.

FEATURES

\author{
- Gain change of less than \(2 \%\) for \\ temperature change of \(100^{\circ} \mathrm{C}\). \\ - Gain change of less than \(1 / 2 \%\) for line voltage changes from 105 to 125 volts. \\ - High DC voltage gain, fipple-free. \\ 5 VDC output from 1 millivolt DC input. \\ - Responds only to DC; signal sensitivity 10-12 watts \\ - No pickup - no lead shielding required. \\ - All magnetic - maintenance-free. \\ - Response time 40 milliseconds.
}
- No tubes - no warm-up time, generates no heat.
- Power requirements less than 10 milliwatts.
- Temperature compensated control circuit.
- Hermetically sealed in thermosetting plastic.
- Magnetically shlelded.
- Long life, extremely rugged and reliable.
- Operates from standard 400 -cycle supply.
for further information, write for Bulletin EB-201-A

\section*{MAGNETIO RESEARGH GORP. 200 GENTER STREET - EL SECUNDO, CALIFORNIA}

\footnotetext{
Mfrs. of Magnetic Amplifiers and Converters, Magnetically
Regulated DC Power Supplies, Magnetic Pulse Generators.
}

and power factor are practically constant.

The capacitor will operate more satisfactorily at higher frequency than conventional electrolytic capacitors.
- Makeup-The new STA uses a porous sintered tantalum anode with an electromechanically formed tantalum oxide dielectric, which provides large capacitance in small pace with exceptional chemical and electrical stability.

\section*{ITV EQUIPMENT \\ new remote control type}

General Precision Laboratory Inc., Pleasantville, N. Y., has announced new remote control of its closed-circuit industrial and institutional equipment including camera, lens iris and focus, indoor and outdoor pan and tilt, and weatherproof housing.
- Remote Operation - The equipment is highly suitable for surveillance work and remote monitoring of operations. Full 360-deg camera viewing and \(90-\mathrm{deg}\) tilt are obtainable with both indoor and outdoor mountings.

Two restyled camera control

\section*{}

\section*{is EASY to Reset...}

\section*{Everyone Can Count on EDER-ROOT}

Designed for panel mounting where remote indication is required, this electrically operated counter is a compact package \(5.5^{\prime \prime}\) long, \(2.1^{\text {" }}\) wide, \(2.7^{\prime \prime}\) high. Capacity: 1,000 counts per minute. Power consumption, 8 watts. Stocked in 110 and 220 AC and DC. Easy to reset, except when locked . . . then the sturdy tumblerlock* puts the damper on tampering. Yet one *National Lock Co. Lock No. 68.4837; Key D.428

\section*{Stacked at}

Hartford 2, Conn. . New York 19, N. Y. Greenville, S. C. Chicago 6, III. Montreal 2, Canada
Offices and Agents in Principal Cities
Nold
turn of the key resets all 6 figures to zeros.
This new Magnetic Counter is one of the thousands of Veeder-Root standard and special counters . . . electrically, mechanically and manually operated . . . in daily use throughout the world in industry, business, science and medicine. You, too, can count on Veeder-Root ... to help you count anything you need.

\section*{Veeder-Root}
"THE NAME THAT COUNTS"

\section*{MEASUREMENT} from DEGREES...

\section*{SPECIFICATIONS}

Av. Power 0.000 watts
Peak 000 KW
VSWR I.I mox
frea ronge
Basic unit
2.6 to 3.95 kmc

With Adapters
2.6 to 18.0 kmc

\section*{CUBI'S'S 2-UNIT CALORIMETRIC WATTMETERS}

> . . for obtaining direct power readings in testing electronic equipment-without guessing!

Three of the world's largest producers of electronic equipment have recently made CUBIC Calorimetric Wattmeters standard test equipment in their laboratories and plants. for very good reason. No other instrument designed for power measurement gives you direct power readings . . . with such precision, and yet so simple in its application.

The model shown is the MC-1B for power measurement from 2600 to \(26,500 \mathrm{MC}\). Also available are the models MCX-1A (coaxial type) for power measurement from 100 to 3000 MC , and MCL-1A (L-Band waveguide typet for power measurement from 1120 to 2600 MC.

Whether checking field equipment, developing or making acceptance tests on new equipment or magnetrons in the lab, or in production, one of CUBIC'S Calorimetric Wattmeters will be an invaluable addition to your test equipment. Standard laboratories calibrate secondary power devise, especially bridge type bolometer instruments. Exact calibration is provided month to month.

Write for more information, and ask for our catalog of other test equipment and waveguide components. Or if you have a problem in development or engineering, CUBIC offers the services of its engineering staff and facilities in its solution.

\title{
MASS PRODUCTION
}

\section*{hallescoit}

ELECTRONICS

\section*{Ideas That Become Finished Products}

You can expect intelligent solution of your design problems, with fast processing to finished product, when you use the completely integrated development and production facilities of Hall-Scott Electronics. Advanced electronic engineering, manufacture, and assembly-including precision sheet metal work-are all carried on under one roof in an ultra-modern plant. Hall-Scott laboratories include advanced condition, simulation, electrical and mechanical testing equipment. The shops are tooled for efficient production of the most complex electronic equipment.
You can also expect the same high standards that have made the name Hall-Scott synonymous with dependability in research and development for industry and government over the past 40 years.
No matter what your electronic project may be, write for complete information on how Hall-Scott Electronics can assist you... 2950 North Ontario Street, Burbank, California, Dept.| E-456.

Work now in process includes Ground Control Camponents for Missiles, Sensing Devices, Electronic Analyzers, Transistorized Power Pockages, Plug in DC Amplifiers, Pre-flight

\section*{ELECTRA}

\section*{Your Best Source For All Types of DEPOSITED CARBON RESISTORS}

\section*{1. Standard}

\author{
2. Molded \\ 3. Hermetically Sealed
}

Electra, a pioneer manufacturer, offers you a complete line of precision Deposited Carbon Resistors. Chances are your firm has modified its designs to specify deposited carbon resistors. No matter what your needs, you'll find the right resistor among the 16 physical sizes in Electra's complete line. Available in \(1 / 8\) watt to 3 watt capacities and resistance ranges of 2 ohms to 50 megohms.

\section*{STARDARD}

Manufactured to meet or exceed specification MIL-R-10509A, Electra's standard resistors offer you the largest capacity in the smallest physical size. Available in 8 sizes, this resistor gives you accuracy and stability plus Electra's improved, exclusive insulation at the lowest possible cost.

\section*{MOLDED}

Give you every advantage of Electra's standard resistor, and more! Molded plastic case gives you extra mechanical protection, longer load life, better insulation against electrical shock and humidity. Meets or exceeds specification MIL-R-10509B (Proposed).

\section*{HERMETICALLY SEALED}

Designed to meet the roughest, most rigid requirements. Sealed in impervious ceramic sleeve with special silver alloy solder. Maximum protection against rough handling, temperature extremes, humidity, exposure to chemicals. Meets or exceeds specification MIL-R-10509B (Proposed).

MANUFACTURING
COM P A N Y
4051 Broadway WE J-6864 Kansas City, Missouri

\section*{FILL OUT THIS COUPON TODAY!}

testing, information handling, and control wherever extra high frequencies are required. Output is \(\frac{1}{2}\) sine wave pulse, with adjustable width from \(0.03 \mu \mathrm{sec}\) to \(0.07 \mu \mathrm{sec}\) in 5 bands. Frequency range is from 1.6 mc to 10.4 mc in 4 overlapping bands. The generator utilizes the same standard voltages as all other Burroughs pulse control equipment.

Designed for rack mounting, the unit measures 19 in . by \(3 \frac{1}{2} \mathrm{in}\). by 10 in . with amateur notches.

\section*{SENSITIVE RELAY features different design}

Sterling Engineering, Princeton, Ind., announces a new low-cost sensitive relay which, due to its unusual mechanical design, provides 15 percent more winding space than similar conventional design. Results are high contact pressures and high resistance to vibration.
- Specifications--Sensitivity is 40 mw; coil resistance, up to 22,000 ohms; operating shock, 25 g ; vibration over \(10 \mathrm{~g}, 10\) to 60 cycles; weight, only \(1 \frac{1}{16} \mathrm{oz}\).

\section*{POTENTIOMETERS} smaller size, lighter weight
The Gamewell Co., Newton Upper Falls 64, Mass. Model RVG-14 is a \(\frac{7}{8} \mathrm{in}\). diameter, \(\frac{3}{4}\) oz precision potentiometer specifically designed to meet the increasing demand for smaller size and lighter weight with good linearity. It features dependable performance, particularly where severe vibrations and

\section*{how Transicoil servos help LORAC}

\section*{bring off-shore navigation to accuracies within yards}

Lorac (LOng Range ACcuracy), one of the newest methods of close tolerance navigation, is now providing pin-point positioning for ships at sea, well away from land or other navigational markers. Developed by the Seismograph Service Corporation, this novel system compares the phase relationship of three sets of radio signals to fix position.

Lorac accuracy depends on the ship's receiver having laboratory type dependability and precision under extreme corrosive atmosphere and rough handling. Yet the servo phase resolver and indicator can spot position to within a matter of yards.

This all-important servo indicator-package was designed and built by Transicoil to meet the specific requirements of shipboard use.

When coupled to the electronic section of the receiver, this unit continuously measures the phases of the incoming signals by comparing the phase of the beat frequency with a modu-

The Transicoil servo assembly used in the Lorac receiver. Components include a 400 cycle oscillator supply for two indicators and two servo amplifiers. System is built on separate chassis to permit the indicators and amplifiers to be located in separate parts of the ship.
lated reference signal, and presents the position information on the counter-pointer type dial face.

The Lorac system is typical of the way in which Transicoil can solve your servo problems to bring new measures of accuracy and dependability. Transicoil will develop and manufacture a complete "package" servo system to conform to your individual requirements. You pay only for results-on a fixed fee basis for equipment delivered and functioning properly.
Write today for further information, outlining your servo problem.
 OUTPUT UPPED when we

\section*{-the FASTEST ETCHING SOLUTION for PRINTED CIRCUITS}

Here indeed is good news for all makers of etched printed circuits. Philip A. Hunt Company, world-famous makers of photographic and photo-engraving chemicals, now offers Hunt R.C.E. Solution, a special etching solution with these BIG advantages, guaranteed:

\section*{1. Controlled} rapid etching speed, permitting standardiza. tion of a high production etching schedule
2. Instant and uniform etching over entire circuit
3. Maximum etching capacity
4. Full protection of tops

Contact your nearest Hunt branch, or write us at Palisades Park, N. J., today for full information on Hunt R.C.E. Solution.

Hunt R.C.E.
Solution is supplied in 145 lb . rubber drums

Established
\(\frac{1009}{}\)

high operating temperatures are encountered.

This metal-housed potentiometer is available in single as well as multigang construction, with sleeve or ball bearings.
- Specifications-Winding resistances from 25 to 45,000 ohms may be had with minimum resolution of 0.06 percent and optimum linearity of 0.25 percent where specified. Maximum continuous operating temperature is 150 C , and the units meet MIL-E-5272A specification as they apply.

COMPENSATION SWITCH handles computer drift

The Applied Science Corp of Princeton, P. O. Box 44, Princeton, N. J. The new computer drift compensation switch is primarily for use in electronic analog computers to connect a single a-c compensating amplifier in sequence to a number of \(d\)-c computing amplifiers for zero drift or offset compensation. It may also be used in other applications where a rotary compensator of high quality is required.
-Specifications-The switch has two poles and is available with 60 or 80 make-before-break contacts per pole at sampling speeds ranging from 3.5 to 4 rps . The

BRISTOL'S SYNCROVERTER SWITCH is made to fit 7-pin miniature tube socket (left) or \({ }_{43}^{3}-\mathrm{in}\). diameter chassis hole (right). Covered by patents.

\section*{"Most reliable miniature chopper we've tested!"}

That's the playback we're getting from electronic engineers all over the country on the high-performance Bristol Syncroverter \({ }^{\text {B }}\) switch. One engineer writes:
"In seven years of experience in applying similar devices, we have not found a chopper as reliable ... after our tests no deterioration in performance was found, and we believe there is no equivalent meeting our requirements."
Another electronics engineer comments on his life-tests:
"The switch has passed the 1000 -hour mark without the slightest degradation of the wave form."

The Syncroverter switch has a normal operating life of thousands of hours. It's a polarized, SPDT, non-resonant switch that provides break-before-make action in synchronism with a sine or square-wave driving current anywhere in the frequency range of 0 to 2000 cps . In addition to reliability and long life, it's noted for light weight (only 1.7 ounces) low noise level, and clean wave form.

Write today for free bulletin on the high-performance Syncroverter switch. The Bristol Company, 152 Bristol Road, Waterbury 20, Conn.
6.10
\begin{tabular}{|lll|}
\hline & TYPICAL OPERATION \\
\hline & 400 cps & 500 cps \\
Coil voltage & 6.3 V sine, square, & 6.3 V sine, square, \\
& pulse wave & pulse wave \\
Coil current & 55 milliamperes & 45 milliamperes \\
Coil resistance & 85 ohms & 85 ohms \\
*Phase lag & \(55^{\circ} \pm 10^{\circ}\) & \(65^{\circ} \pm 10^{\circ}\) \\
*Dissymmetry & \(l e s s\) than \(4 \%\) & less than \(4 \%\) \\
Temperature & \(-55^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\) \\
*Switching time & \(15^{\circ} \pm 5^{\circ}\) & \(15^{\circ} \pm 5^{\circ}\) \\
Mounting-Any position-fits 7 -pin miniature socket \\
*These characteristics based on sine wave excitation \\
\hline
\end{tabular} FOR OYER 60 YEARS
phasing between poles is adjustable. This switch is \(5{ }^{3} \mathrm{in}\). long by 7 in . wide by \(4 \frac{1}{8} \mathrm{in}\). high and weighs approximately \(9 \frac{1}{2} \mathrm{lb}\).

\section*{SILICON DIODE \\ for X-band mixer use}

Bomac Laboratories Inc., Beverly, Mass. The 1N23D high sensitivity silicon diode can lower the overall system noise down to 7.5 db in a system with well-designed plumbing. It is designed for X-band mixer use in superheterodyne receivers where low overall noise and minimum conversion loss are required. These characteristics enable the systems engineer to design for both maximum receiver sensitivity and maximum output signal to noise ratio.
- Other Uses-With proper mounting and circuitry these diodes may also serve as low-level detectors and measuring devices in the X -band region.
Both normal and reversed polarity are available.

\section*{DUAL D-C SOURCE for transistor biasing}

Electronic Research Associates, Inc., 67 E. Center St., Nutley, N. J. Model 310 is a regulated dual output high current tubeless supply specially designed to power both high and low-current transistors. Other applications include computer magnetic memory devices, d-c filament supply, solenoid and mag-netic-clutch operation, and all types of regulated, d-c high-current lab-

\section*{FOUND: a Cathode alloy that prolongs tube life under fluctuating voltage}

CATHALOY* A-31 IDEAL FOR CAR RADIO TUBES. This discovery was made in actual car radio installations. Heater supply voltages were found to vary up to \(25 \%\) above specification. And the tubes using Superior's new Cathaloy A-31 \(\dagger\) consistently outlasted others.

These findings prompted car radio manufacturers to insist on longer-life tubes in car radio service. Specifications stipulate several hundred hours at approximately \(25 \%\) overvoltage. No cathode alloy can match Superior's Cathaloy A-31 in meeting these requirements.

OTHER ADVANTAGES. Cathaloy A-31, with its \(4 \%\) tungsten, is probably the strongest cathode material at high temperatures that is commercially available today. Hence it qualifies especially for use in ruggedized tubes. In addition, its special composition reduces the twin problems of sublimation and interface impedance.

SEND FOR FREE CATALOG. Contains complete technical information on Cathaloy A-31 and other cathode alloys and on electronic tubular parts. Write Superior Tube Co., 2500 Germantown Ave., Norristown, Pa.

Cathodes made from A-31 are available in Weldrawn,* Lockseam \(\dagger\) and disc cathodes.
*T.M. Reg. U.S. Pat. Off.. Superior Tube Co. †Manuiactured under U.S. matents. NORRISTOWN, PA.

\title{
One part does the work of many when you use a flexible shaft
}

\section*{Design simplification is one of the reasons why it pays to use S.S.White "Metal Muscles"®}

It's a designer's axiom that simplification is one of the most effective ways of reducing product costs. By so doing, you save weight, you eliminate a number of unnecessary parts and you reduce assembly time and costs.

\section*{Eliminating Parts}

When it's a question of transmitting rotary power or providing remote control, especially where turns or alignment are involved, an S.S. White flexible shaft is an efficient cost-saving solution. The illustration below demonstrates why this is so.

One flexible shaft is all it takes to do a job that might otherwise require an entire system of bevel gears, straight shafts, universals, etc. Added to this is the fact that installation is greatly simplified and alignment problems are eliminated.

\section*{\(90 \%\) Cost Reduction}

Actual cost figures on a control set-up for a large dual hydraulic power system dramatize how effectively flexible shaft simplification can cut costs.

In this case, 35 parts including universal rods and bevel geared elbows were being used to transmit control from two handwheels to a motor control unit and thence to two hydraulic motors.
Without any necessity of redesigning the equipment, \& standard S.S.White flexible shafts were used in place of the original control system. The result was a \(90 \%\) savings - and, incidentally, \(100 \%\) improved performance.

\section*{What About Your Application?}

Perhaps your own designs cannot realize benefits as outstanding as this. But the chances are good indeed, that, if you are not now using them, you'll be able to handle many remote control and power drive applications better and at less cost with an S.S. White flexible shaft.

\section*{USEFUL FLEXIBLE SHAFT DATA}

Bulletin 5601 has concise information on how to select and apply flexible shafts. Send for a copy.

S. S. WHITE INDUETRIAL DIVIBION, DEPT. E, 10 EAST \(4 O\) IH ST., NEW YORK 16, N.V. Western Office: 1839 west Pico Bivd., Los Angeles 8. Calli.

oratory and industrial power requirements.
-Specifications-The supply operates from a \(95-125 \mathrm{v}\) a-c, \(60-\mathrm{cps}\) source. Either output can provide singly or simultaneously \(0-30 \mathrm{v} \mathrm{d}-\mathrm{c}\) at a maximum current of 1.5 amperes. Ripple is less than 0.05 percent. Input regulation is better than \(\pm 1\) percent, and the internal d-c resistance is less than 3 ohms. The shunt a-c impedance is less than 0.02 ohm at 60 cps . In addition to the \(\mathrm{d}-\mathrm{c}\) outputs, line regulated a-c output \(0-130\) va-c is also provided.

\section*{INDICATOR LIGHTS two-terminal subminiatures}

Hetheringiton Inc., Sharon Hill, Pa., has announced fully insulated, two-terminal indicator or warning lights in the smallest sizes consistent with the dependability required for aviation and critical industrial applications. They are available in two basic styles-series L660. a subminiature design measuring \(1{ }^{15} \mathrm{in}\) in. long by \({ }^{5}{ }^{5} \mathrm{in}\). in diameter; and the L-3200, 1 s in. long by in. in diameter with a built-in press-to-test circuit for ultracritical warning light applications. The lamp circuit is fully insulated from the case in both types.

Miniature AN-3140 lamps are mounted deep inside a long plastic lens. An inside leveling of the lens serves to pipe the light

Denver manufacturing plant now under design

Infrared laboratory

Instrumentation laboratory

At Ramo-Wooldridge today there exists a wide range of projects intended to aid aircraft in navigating to the vicinity of targets, finding the targets, destroying them, and returning safely to base. Work is under way in such fields as infrared and microwave detection, information display, communication and navigation, and analog and digital computing. Some projects are in the laboratory development stage, some in the flight test stage, some in pilot production.

Good progress is being made in the establishment of facilities and operational patterns that are well tailored to the winque requirements of advanced electronic systems work.

\section*{AIRBORNE ELECTRONICS}

AND
WEAPON CONTROL SYSTEMS

Initial unit of flight test facility

Communications pilot line production

Simulators in computing center

Positions are available for scientists and engineers in these fields of current activity:

Communications Systems
Digital Computers and Control Systems
Airborne Electronic and Control Systems
Electronic Instrumentation and Test Equipment
Guided Missile Research and Development
Automation and Data Processing
Basic Electronic and Aeronautical Research

The Ramo-Wooldridge Corporation

\section*{RADIO \\ INTERFERENCE AND FIELD INTENSITY measuring equipment}

Stoddart equipments are suitable for making interference measurements to one or more of the fallowing specifications:

\section*{AIR FORCE-MIL-I.6181B}

150 kc to 1000 mc
BuAir - MIL-I.6181B
150 kc to 1000 mc
BuShips - MIL-I-16910A (Ships)
14 kc to 1000 mc
SIGNAL CORPS - MIL-I-11683A
ISO kc to 1000 mc
SIGNAL CORPS - MIL.S.10379A
150 kc to 1000 mc
The equipments shown cover the frequency range of 14 kilocycles to 1000 megacycles.

Measurements may be made with peak, quasipeak and average (field intensity) detector functions.
F.C.C. PART 15 - Now in effect, the revised F.C.C. Part 15 places stringent requirements upon radiation from incidental and restricted radiation devices. Stoddart equipment is suitable for measuring the radiotion from any device capoble of generating interference or c. \(w\) signal within the frequency range of 14 kc to 1000 mc .

Write Stoddart Aircraft Radio Co., Inc., for your free copy of the new revised F. C.C. Part 15.

throughout the entire periphery, thereby assuring maximum visibility from all angles. The heavy lens is over in . long so the lights may be used equally well with either standard or edge-lit panels.

\section*{HEAT EXCHANGER \\ used in liquid circuits}

Rotron MFg. Co., Schoonmaker Lane, Woodstock, N. Y. Recommended for use in closed-system liquid circuits, the model \(A\) heat exchanger has 3 -kw capacity and finds application in radio transmitters, oscillators, dielectric heating apparatus, and similar devices incorporating liquid-cooled vacuum tubes.
- Capacities-The exchanger, weighing 12 lb , is available in either type \(1-3000\) having liquid flow capacity of 4 gpm or type \(2-3000\) having liquid flow capacity of 8 gpm . Heat capacity is the same for each type.

The fan motor is of the shadedpole type and connects to a 1-phase, \(115-\mathrm{v}, 60-\mathrm{cps}\) supply line. Catalog sheet \(80201-1\) is available.

\section*{CONTROLLED WARMUP TUBES} feature high perveance
General Electric Co., Schenectady \(5, \mathrm{~N}\). Y. A new horizontal deflection amplifier tube, the 12DQ6, has been added to the company's line of \(600-\mathrm{ma}\) controlled warmup tubes. Also now available is the \(6-v\) version, the 6DQ6.

Both tubes have extremely high perveance, permitting the design of

Price \(\$ 3500\)
f.o.b. Portland (Beaverton), Oregon

Includes indicator unit, power-supply unit, scope-mobile, cathode-follower probe, 7 -step attenuator unit, viewing hood, bezel, 170 -ohm cable.

Complete specifications and information on demonsfiration schedules are available from your local Tektronix Field Office or Representative, or from...

Transient Response-Risetime seven millimicroseconds.
No overshoot or ringing.
Maximum Sensitivity - \(0.05 \mathrm{v} / \mathrm{cm}\).
Sweep Range - Eleven calibrated sweeps
from \(0.01 \mu \mathrm{sec} / \mathrm{cm}\) to \(20 \mu \mathrm{sec} / \mathrm{cm}\). Each can be adjusted to the accuracy of an external standard.

\section*{Requlated Accelerating Potential -}

24 kv on T54PllH Tektronix metallized precision cathode-ray tube.
Low Displacement Error -
Less than \(1 \%\) of 8 cm horizontal, less than \(2 \%\) of 2 cm vertical.

\section*{Rafe Generator -}

15 to 15,000 cycles, accurate within \(5 \%\) of full scale.
Amplitude Calibrator -
Pulse-type, accurate within \(4 \%\) of full scale.

\section*{Regulation-}

All dc supplies electronically regulated. Indi-cator-unit heater voltages regulated.
Calibrated Horizontal-Position Vernier

Where dependability is vital...

\title{
Tilik RF SHIELDING CONTROLS RADIO NOISE!
}

In radar systems - as in all types of noise-sensitive electronic devices - more and more design engineers are turning to METEX RF Shielding Products as the most practical and effective method of suppressing radio noise.

METEX Shielding Materials are formed from knitted, metallic wire for maximum conductivity. The inherent resiliency of the knitted structure provides a continuous line contact between imperfect mating surfaces with minimum contact impedance. The countless, interlocked loops, formed from continuous wire strands, impart maximum cohesion with no loose strands or frayed fibres.

This unique combination of electrical and mechanical properties not only re-establishes electrical conductivity across joints, but conforms to wide irregularities in mating surfaces with minimum closing pressure.

high-efficiency 90 -deg deflection systems without the necessity of using an expensive deflection amplifier tube.
- Other Technical Data-They incorporate \(6,000-\mathrm{v}\) pulse capability, a 15 -w dissipation rating and a large bulb for increased reliability. The 6DQ6 heater is rated at 6.3 v and 1.2 amperes. The 12DQ6 has a \(12.6-\mathrm{v}\) rating at \(600-\mathrm{ma}\) current with an 11 -sec warmup time.

\section*{A-C REGULATOR dual-voltage automatic type}

Electronic Measurements Co., Lewis St., Eatontown, N. J. Model 260-A automatic a-c regulator operates for either 115 or \(230-\mathrm{r}\) mains without derating. Voltage changeover is accomplished in the field by simple switching devices requiring only seconds to operate.
- Specifications-The control tolerance is better than 1 percent; and power rating is 6 kva , and input range is 100 to 130 or 200 to 260 v at line frequencies from 47 to 63 cycles.

The unit also features a monitor which warns of improper operation plus a fail-safe arrangement to prevent over-voltage. Wall or floor-

These curves contrast the plate and filament supply voltages obtained from
a Sola and a conventional power transformer when line voltage is varied
from 100 v to 130 v

\title{
Improve Performance of electronic products with built-in regulating power transformer
}

You can make sure your product will always receive correct plate and filament voltages by building in a Sola Constant Voltage Power Transformer (Type CVE) in place of a conventional, non-regulating power transformer.
The Sola CVE provides \(\pm 3 \%\) regulation of plate and filament supply, with line voltage variations of 100 to 130 volts. Regulation is completely automatic, continuous and substantially instantaneous (1.5 cycles or less). Sola CVE stabilizers have no moving parts or tubes, require no manual adjustments or maintenance, and are selfprotecting against short circuits.
Three stock units (all with high voltage ct, 5.0 v and 6.3 v regulated windings) are stocked by your electronic distributor. You can order production quantities of special units manufactured to your specification. We invite your inquiry.

TYPICAL STOCK UNIT: Sola Electronic Power Transformers are made for chassis mounting. They are furnished complete with separate capacitors and capacitor mounting brackets.

\section*{SEND FOR FOLDER:}

Please write for folder which gives complete data.
Ask for CIRCULAR 7D.CVE-195

CONSTANT VOLTAGE TRANSFORMERS for Regulation of Electranic and Electrical Equipment - LIGHIING TRANSFORMERS for All Types of Fluorescent and Mercury Vapor Lamps. - SOLA ELECTRIC CO., 4633 West 16th Street, Chicago 50, Mllinois, Blshop 2-1414 - NEW YORK 35: 103 E. 125th St., TRafolgar 6.6464 - PHILADELPHIA: Commercial Trust BIdg., RIttenhouse 6.4988 - BOSTON: 272 Centre Street, Newton 58 , Mass., Blgelow 4-3354 CLEVELAND 15: 1836 Euclid Ave., PRospect 1.6400 - KANSAS CITY 2, MO.: 406 W . 34th St., Jefferson 4382 . LOS ANGELES \(23:\)

236,330 or \(\mathbf{4 4 0}\) volis, \(\mathbf{6 0}\) cycles, A.C.
...save space, weight and cast!

\section*{LEAK PROOF CONSTRUCTION:}

Cases are seamless, and tops (see drawing) are joined to cases via a double-rolled seam which provides not only a perfect and permanent seal but also incorporates exceptional mechanical strength. No solder is needed or used.

\section*{SPECIAL IMPREGNANT:}

Cases are filled with Chlorinated Diphenol Resin - an impregnant which is non-flammable and has high dielectric qualities. It has exceptional stability and long life, even at high operating temperatures.

\section*{CHOICE OF TERMINALS:}

Three types of terminals, (see illustration) to fit your particu-
 lar needs-speed connecting time whether you prefer mechanically joined or soldered leads.

\section*{WIDE RANGE OF SIZES:}

Available for 236,330 and 440 volts A. C., 60 cycles. Conventional or barrier type terminal mounting. Two types of mounting brackets.

Write for Bulletin 237 A
mounted it is \(18 \frac{1}{2} \mathrm{in}\). high by 13 in . wide by \(8{ }_{4}^{3} \mathrm{in}\). deep overall. A rack unit is also available having dimensions of 19 in . by 8 in . by 13 in. deep. The weight is 90 lb .

NEW ANTENNA
for communications purposes
The Herb Kreckman Antencia Co., 124 Greenwood Drive, Massapequa, N. Y., announces a new series of communications antenna designed to mount directly on \(1 \frac{1}{4}\) in. support pipe. The DGP-155 is an all-brass duo-ground plane which has 6 radials for improved impedance to frequency characteristics.

Also in the new series are coaxial, co-plane and a 4 -element stacked coaxial for the 108 to 470 -me range ; and coaxial, co-plane, ground plane and duo-ground planes for the 25 to \(50-\mathrm{mc}\) range.

At 40 mc the new series of coaxials and ground-planes will withstand winds in excess of 100 mph

\section*{SECONDARY STANDARDS available in 38 ranges}

Phaostron Instrument and Electronic Co., 151 Pasadena Ave., South Pasadena, Calif. A new line of completely self-contained, ready-to-use, portable laboratory instruments (secondary standards) are available in 38 standard ranges. Rated accuracy is either 0.5 percent or 1 percent of full scale deflection. An incorporated overload network provides meter protection up to 500 times full scale value for short periods.
- Switch-Multirange portable instruments are available which pro-

\title{
YOUR "SPECIAL" TIMER may be one of our 721 STANDARD UNITS!
}

We have 20 years of experience in developing new timers to meet our customers widely varying requirements. Our Engineering Department not only originates new designs, but also develops modifications for that purpose. That's why most requests for special timers can be filled without delay-by one of the 721 combinations we ve developed so far from our 17 basic types of timers. But if we don't have what you want on hand, we'll welcome the chance to design and make it for you! And quickly too!

We manufacture a complete line of timers in these 4 broad classifications:

\section*{INTERVAL TIMERS - TIME DELAY TIMERS \\ RE-CYCLING TIMERS • RUNNING TIME METERS}

Our large stock assures you of rapid deliveries-even when we have to create a brand new timer for your special needs. Ask us first-you may save yourself much lost motion... and your inquiry will receive prompt attention.

\author{
Timers that Control the Pulse Beat of Indiustry \\ \section*{:}
} INDUSTRIAL TIMER CORPORATION

1409 McCARTER HIGHWAY, NEWARK 4, N. J.

\section*{chef-less restaurant}

This concept of Suc Vanderbilt. Pratt industrialdesign graduate now designing GNI auto interiors, would assemble a whole meal and cook it by mierowave in a few seconds. Customer would merely check picture ment, insert moncy, push buttons. By the time he reached the far end of the counter the meal would be waiting, piping hot. All components alrcady cxist.

Many designs that will make news tomorrow are still in the "bright idea" stage today. No onc knows which will flower into reality. But it will be important in the future, as it is now, to use the best of tools when pencil and paper translate a dream into a project. And then, as now, there will be no finer tool than Marssketch to working drawing.

Mars has long been the standard of professionals. To the famous line of Mars-Tcelinico push-button holders and leads, Mars-Lumograph pencils, and Tradition Aquarell painting pencils, hase recently been added these new products: the Mars Pocket-Technico for field use; the efficient Mars lead sharpencr and "Driftsman's" Pencil Sharpener with the adjustable point-length feature; and - last but not least - the Mars-Lumochrom, the new colored drafting pencil which offers revolutionary drafting advantages. The fact that it blueprints perfectly is just one of its many important features.

The 2886 Mars.Lumograph drawing pencil, 19 degrees, EXEXB to 9H. The 1001 Mars. Technico push-button lead holder. 1904 Mars-Lumograph imported leads, 18 degrees, EXB to 9 H . Mars Lumochrom colored drafting pencil, 24 colors.
J.S. S

TAEDTLER, INC.
hackensack, new jersey
at all good engineering and drawing material suppliers

vide up to 6 ranges with a multiplier switch. This switch also protects the meter movement when set in transit position by damping the meter movement and thereby giving additional protection during storage and transit.

Specifications, including leather carrying case, are: height, \(7 \frac{1}{2} \mathrm{in}\); width, \(6 \frac{5}{8} \mathrm{in}\).; and depth, 33 in .

\section*{H-V RECTIFIER TUBE}

\section*{cuts tv manufacturing costs}

General Electric Co., Schenectady 5 , N. Y. The 2B3-GT h-v rectifier tube promises to cut tv set manufacturing costs and give longer life.
- Specifications--It has a filament rating of 1.75 at 0.25 ampere as compared with the \(1.25-\mathrm{v}\) and \(0.2-\) ampere rating of the 1 B3-GT. The tube can be operated directly from the flyback transformer without a filament dropping resistor-thus saving the manufacturer the cost of the resistor, associated wiring and assembly expense.

The 2B3-GT has a new type of filament construction which promises to give longer life and greater

\title{
Indiana Permanent Magnets undergo 13 quality and uniformity tests!
}
. . to help maintain a steady flow on YOUR production line

Yes, Indiana Permanent Magnets undergo a wide range of tests . . Spectograph tests . . chemical analyses . Zyglo tests . . 13 tests in all to assure precise magnetic characteristics, sound structure, exact physical dimensions . . in short, to assure uniformity and high quality.

Maintaining the high quality of Indiana Permanent Magnets is not just a one-man or one-department responsibility. Teams of physicists, engineers, technicians and experienced craftsmen supervise and keep a constantly critical eye on all stages of production. Quality control is this group's most important single job . . by far!

To be sure of better permanent magnets. take advantage of the experience of permanent magnet specialists. Indiana maintains the World's largest staff of engineers devoted solely to the design and application of permanent magnets . . the World's largest and most complete research and production facilities.

Indiana engineers, with almost a half century of experience in "tailoring" permanent magnets for more than 35,000 designs, will welcome the opportunity to work with your technical men in the development of your permanent magnet designs.

We invite you to contact your nearest Indiana sales engineer . . in Boston, HAncock 6-2323 . . in Chicago, FRanklin 2-1114 . . in Cleveland, CHerry 1-4163 . . in New York, VAnderbilt 6-1898 . . in Los Angeles, DUnkirk 4-0465 . . in Philadephia, KIngsley 5-2036 . . in Rochester. HAmilton 8990.

Write, today, for your copy of magnet catalog \#11-A4. This 8 -page booklet details the wide range of Indiana cast permanent magnets available for immediate delivery in sample quantities.

INDIANA
PERMANENT MAGNETS

> Signposts of Quality that make F.C.I. Capacitorsideal for exacting applications.

When your industrial capacitors specs. call for precision and stability, specify FCI.
Excellent delivery on standard or special types-Capacitors made to your specifications. For more complete technical data, write for catalog
dependability. Other ratings and pin comections remain the same as the \(1 \mathrm{~B} 3-\mathrm{GT}\).

\section*{D-C AMPLIFIER \\ for lab and portable use}

The Ralph M. Parsons Co., 135 W. Dayton St., Pasadena, Calif., has designed a \(\mathrm{d}-\mathrm{c}\) amplifier to meet the exacting requirements of data recording in both laboratory and portable applications. Gain is adjustable to a maximum of 400 with drift not exceeding 2 in . in any half-hour period.

The amplifier is free of oscillations regardless of the gain balance or compensator setting. A control is provided to compensate for the response characteristics of the recorder which may be used. Any standard pen or graphic recorder may be used.

For further information write for bulletin 119.

\section*{SERVO GEAR TRAIN}
weighs only 6.875 oz
Johin Oster Mfg. Co., Racine, Wisc., has available a new size 11 servo gear train weighing only 6.875 oz and consisting of a single

\title{
Can YOU cut manufacturing costs 74\% in ONE stroke?
}

You may be able to slash parts costs \(25 \%, 50 \%, 75 \%\) or more - if you take advantage of PRESTEEL'S unique stamping experience, know-how, and plant facilities.

Here's how we saved \(74 \%\) for a well-known New York manufacturer (name on request):
Two major parts - a cutter bar and cover - were too expe isive. With grooves machined from flat stock, they cost \(\$ 3.00\) per pair.
Could we cut costs by coining? We could - and did! Our engineers, backed by PRESTEEL'S 72 years of stamjing experience, designed ingenious new tools and new rroduction methods.
Result: a new low cost of 78 ¢ per pair \(-74 \%\) less than the odd price. Plus accuracy, quality, and volume production in far less time. Another pressing problem solved by PRESTEEL in one stroke!

Bring us your "impossible" metalworking problem in brass, steel, steel alloys, inconel, magnesium, or titani um. Let PRESTEEL show you how to cut costs, save time, boost profits - through stamping. Our facilities include more than 130 presses from 16 to 1500 tons, plus comprehensise welding and annealing equipment. Mail the coupen today.

\section*{WORGEGIER PREGCBD STHEL GOMPANY}

\section*{FREE!}
from Werczay p-zesed Stea, this hardsone, prastical astrtray - an erample -fPRESTEEL craftsmanswio-is yours fir the asking Attact the coupon to your business letter head.

Gef a quote from the leader - PRESTEEL!

101-D Barber Ave., Worcester 6, Mass.
Please send me a PRESTEEL ashtray and brochure illustrating facilities and products.
Name

Title__Company

Street Zone State
City ___ Zone___ State

homogeneous unit instead of two separate parts. Type 2LR-3265 is designed to meet military requirements and can be built to operate 150 C ambient. Both the motor section and the gear train section are extremely versatile and are designed to cover a great range of applications. For example, the motor can be made to operate as a 2, 4, 6 or 8 -pole motor. Windings can be made to operate on 60 or 400 cycle, 26 to 115 v .

The gear train operates with load torques up to \(25 \mathrm{in} .-\mathrm{oz}\) and maximum momentary load torques of 75 in.-oz. Backlash is 35 minutes minimum. Gear ratios may be varied in convenient steps from 12 to 1 to 4,000 to 1. A slip clutch is available if desired. Units have been made with windings to load output transformers of amplifiers or to be connected directly to the output tubes or transistors.

CONTINUITY TESTER used on production lines

Century Engineers, Inc., Burbank, Calif. Up to 200 conductors in groups of 50 in any given cable or harness assembly can be checked automatically with the new continuity tester.
- Operation-The tester uses stepping switches of the telephone variety to provide automatic switching from one circuit to another. The read-out is positive. Six volts d-c is used for test voltage. The tester, with appropriate patch cables, will check cables and harnesses.

The instrument is provided with the following front panel controls: power light, switch and fuse, momentary start switch and reset switch, 50 numbered lights for circuit identification, a ready light to

\title{
From 3 to 20 times the usual plotting area
}
. . . combined with considerably simplified operation

Direct plotting on the face of a 22 -inch indicator is now possible through the use of our AN/SPA-23 (XN-1) indicator.

Developed for the Navy Department, this indicator uses a 22 -inch flat-faced (250 -inch radius) cathode ray tube permitting parallax-free observation and plotting. Through its size, several operators may be accommodated.

Incorporating a high degree of flexibility, ranges from 4 to 300 miles are provided and input repetition rates of 60 to 3000 PPS are accepted. All contents have been "human-engineered" for operator convenience and minimum fatigue.
Designed for maximum reliability and ease of maintenance, the unit may be completely serviced from the front with all components readily accessible and replaceable.

This indicator is but one of the many products designed and developed by Stromberg-Carlson for the defense of our country.
In military or civilian products of the highest order-there is nothing finer than a Stromberg-Carlson.

indicate the starting position of the tester, lights 1 through 4 to indicate which group of 50 circuits is under test, positional selector switch to select the bank of 50 circuits to be tested.

\section*{TINY POTENTIOMETER flexible or turret terminals}

Circuit Instruments Inc., P.O. Box 355, 1927 First Ave. South, St. Petersburg, Florida. Model HM-100 miniaturized multiturn potentiometer is available with either flexible or turret-type terminals. These potentiometers have a 1 -oz-in. maximum starting torque, while net weight is only 1.2 oz .
- Technical Data-The unit is rated at 2 w at 40 C , and standard linearity is \(\pm 0.5\) percent. Resistance values are from 500 to 100,000 ohms. Standard tolerance is \(\pm 5\) percent; however, tolerances as low as \(\pm 0.5\) percent can be obtained.

\section*{PRINTED CIRCUIT RECEPTACLE}
in single or double rows
DeJUR-AMSCO Corr., 45-01 Northern Blvd., Long Island City 1, N. Y. The 28 -contact printed circuit receptacle (PCSC28) has a center barrier as part of the molding to provide extra strength and prevent warping. Gold-plated phosphor bronze contacts are available in single or double rows to accommodate up to 56 connections.

Exclusive Bellows-type contact with coil-spring action grip clasps board firmly over the entire printed circuit board contact area. It retains tension and allows use of

General-Purpose DIRECT-COUPLED 5" 'SCOPE, WO-88A Low in cost, yet high in quality-for general labaratory applica tions, production-line alignment, testing, troubleshoating-builtin voltage-calibrating facilities permit simultaneous waveshape display and peak-topeak voltage measure ments; sync polarity instantly reversible; only 10 muf input capacitance with probe Price . \(\$ \mathbf{1 6 9 . 5 0}\)

\section*{Economy-Priced DUAL-BAND} 5"'SCOPE, WO-91A Excellent for general laboratory, or produc-tion-line for waveshape observation and measurement, signal tracing, and alignment of chraminance circuits and wide band ampli-fiers-voltage.calibrated input step-atten. uators and calibrated graph screen make possible direct voltage readings as easily as with a VTVM.
Price \$229.50*

Identical "V" \& "H" Amplifiers DIRECT-COUPLED 7"'SCOPE, WO-56A invaluable for phase measurements or vector display-7" screen plus trace expansion of 3 times screen diam eter provide unusually large waveshape dis. play for distant view ing of close examina. tion of minute portions of waveshapes; fre quency-compensated voltage calibrated attenuators in both "V " and "H" amplifiers. Price \$274.50*

\section*{Engineer's Choice} DUAL-BAND 5"'SCOPE, WO-78A Recommended to and chosen by engineers requiring a 'scope with extra-sensitivity and extended-frequency re-sponse-utilizes flatfaced cathode-ray tube with post-deflection acceleration; auto matic sync timiting; push-button for call bration checking; excellent phase charac teristics; full screen deflection over entire rated frequency range. Price......... \(\$ 425.00\)

\section*{CHOOSE FROM FOUR OF THE FINEST...}

\section*{RCA OSCILLOSCOPES...}
accurate, reliable instruments designed to operate with minimum maintenance under production conditions!
RCA Oscilloscopes and other superior-quality RCA Test Instruments are available through your RCA Distributor. See him now for early celivery. For detailed technical data. write RCA, Commercial Engineering, Sectior. D-19-W, Harrison, N. J.

TEST EQUIPMENT
Radio Corporation of America, Harrison, N.J.
\begin{tabular}{|c|c|c|c|c|}
\hline SPECIFICATIONS & W0.91A & W0.78A & W0-88A & WC.56A \\
\hline FREQ. RESPONSE Wide-Bond Positions & \[
\left\{\begin{array}{c}
10 \cos t 04.5 \mathrm{Mc} \\
(\pm 1 \mathrm{db})
\end{array}\right.
\] & \[
\begin{gathered}
3 \cos \text { to } 4.5 \mathrm{Mc} \\
(-1 \mathrm{db})
\end{gathered}
\] & & \\
\hline \[
\begin{aligned}
& \text { Hish-Sensitivity } \\
& \text { Positions }
\end{aligned}
\] & \[
\begin{gathered}
10 \mathrm{cps}+0500 \mathrm{Kc} \\
(-1 \mathrm{db}) \\
10 \mathrm{cps}+0 \mathrm{Mc} \\
(-6 \mathrm{db})
\end{gathered}
\] & \[
\begin{gathered}
3 \mathrm{cps} \text { to } 500 \mathrm{Kc} \\
(-3 \mathrm{db})
\end{gathered}
\] & \[
\begin{gathered}
0 \mathrm{cps} \text { to } 500 \mathrm{Kc} \\
(-3 \mathrm{db}) \\
0(\mathrm{cps} 101 \mathrm{Mc} \\
(-10 \mathrm{db})
\end{gathered}
\] & \[
\begin{gathered}
0 \text { cps to } 500 \mathrm{Kc} \\
(-2 \mathrm{db}) \\
0 \text { cps } 01 \mathrm{Mc} \\
(-6 \mathrm{db})
\end{gathered}
\] \\
\hline SENSITIVITY Wide-Bond Positions & \[
\begin{aligned}
& 0053(\mathrm{rms}) \mathrm{v} \\
& 0.15(\mathrm{p} \cdot \mathrm{p}) \mathrm{v}
\end{aligned}
\] & \[
\begin{aligned}
& 0.035(\mathrm{rms}) v \\
& 0.1(\mathrm{p}-\mathrm{p}) \mathrm{v}
\end{aligned}
\] & & \\
\hline High Sensitivity Positions & \[
\begin{aligned}
& 0.018(\mathrm{rms}) \mathrm{v} \\
& 0.05(\mathrm{p}-\mathrm{p}) \mathrm{r}
\end{aligned}
\] & \[
\begin{aligned}
& 0.0035(\mathrm{rms}) \mathrm{v} \\
& 0.01(\mathrm{p}-\mathrm{p})
\end{aligned}
\] & \[
\begin{aligned}
& 0.025(\mathrm{mss}) \\
& 0.07(\mathrm{p}-\mathrm{p}) \mathrm{v}
\end{aligned}
\] & \[
\begin{aligned}
& 0.01(\mathrm{~ms}) v \\
& 0.03(\mathrm{p}) \mathrm{p})^{2}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { RISE TIME } \\
& (\cdots \text { V'Amp.) }
\end{aligned}
\] & \[
\begin{gathered}
0.1 \mathrm{usec} \\
(4.5 \mathrm{MC}) \\
0.5 \mathrm{sec}) \\
(1.5 \mathrm{Mc})
\end{gathered}
\] & \[
\begin{aligned}
& 0.1(\mathrm{sec}, \\
& (4.5 \mathrm{Mc}) \\
& 0.7(\mathrm{sec}) \\
& (1.5 \mathrm{Mc})
\end{aligned}
\] & \(0.5 \mu \mathrm{sec}\). & 0.35115 sec . \\
\hline SWEEP FREQ. & \[
\begin{gathered}
10 \text { cps to } 100 \mathrm{Kc} \\
\text { Plus preset } \\
\mathrm{H}^{\prime \prime} \& \mathrm{~V}^{\prime}
\end{gathered}
\] & \begin{tabular}{l}
10 cps 10100 Kc \\
Plus preset \\
\(H^{\prime}\) \& " \(V\) "
\end{tabular} & 15 cps to 30 Kc & \begin{tabular}{l}
3 cps to 30 Kc \\
Pluspreset \\
'H * \& "V
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
*User Price (Optional). All instruments supplied with probes, cables, green graph screens, instruction tooklets.
}
Call . . .
undersized or oversized board while maintaining low contact resistance.
- Special Design - The PCB20 printed circuit receptacle is a special design type with center mounting and two sets of five double row contacts. It accommodates two printed circuit boards, each with 10 connections.

These connectors can be supplied in mineral filled Melamine, Plaskon reinforced (glass) alkyd type 440 A and Orion filled diallyl phthalate molding compounds.

\section*{COLOR TV TUBESCOPE checks pattern accuracy}

Edmund Scientific Corp., Barrington \(3, \mathrm{~N}\). J. The color tv tubescope is a microscope designed to assist and simplify alignment of the dot pattern on the picture tube during manufacture and field servicing. It checks the accuracy and concentricity of the pattern where unaided vision is unsatisfactory, inadequate and time consuming.
- Parts-The instrument consists of two parts, a main chrome-plated optical body housing a cemented

DATA PROCESSING. ELECTRIC TYPEWRITERS. TIME ECUIPMENT. MILITARY PRODUGTS

\section*{BIRD Model 43 thruline DIRECTIONAL WATTMETER}

\section*{Reads Directly... Watts forward WATTS REFLECTED ...In 50 hmm Coastal Lines}

Measures POWER into the antenna in the actual over. ting circuit. Continuous monitoring if desired.
Measures reflected power, direct reading. In antenna match. ing work, results show directly in lower reflected power. Ideal for mobile equipment.
Tests 50 ohm ref lines, antenna connectors, filters-quickly ACCURATE because of high directivity and small frequency error.
DIRECT READING - no calibration charts, no full scale meter adjustments needed. Meter scale reads directly for all ranges and is expanded for better downscale reading. CONVENIENT -does not require reversal of \(r \cdot f\) connedtons. No auxiliary power required.
Negligible power loss and insertion VSWR.
Full scale power range and frequency range are determined by the selection of plug. in elements from the following list.
Frequency Range -25-1000 megacycles in five ranges wis. 25-60 (A), \(50-125\) (B), 100.250 (C), 200.500 (D), \(400-1000\) (E)

Power Range \(-10,25,50,100,250\) and 500 watts full scale. Available in most frequency ranges.
Accuracy - \(5 \%\) of full scale.
Write for literature.

Model 43 with front element in operating position. Dimen. sons: \(7^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}\). Weight 4 pounds.
SO239 jacks for PL259 plugs available.

\author{
8847 W. 47th ST., BROOKFIELD, ILLINOIS
}

\section*{Only GLOBAR \({ }^{\text {® }}\) Ceramic Resistors can give you design FLEXIBILITY like this!}

THESE TWO EXTREMES in thermistors were designed by globare engineers to meet specific circuit requirements of two of our customers. Chances are that your particular application will not require either of them... but will fall somewhere in between. But our experience in working out difficult design problems like these, plus our flexibility in production, is your assurance that a Globar \({ }^{\left({ }^{(}\right)}\)Thermistor design will satisfy your requirements best.
free engineering bulletin gives detailed information on uses and specifications of all three types of globar \({ }^{(2)}\) Thermistors - F, B and H. Ask for Bulletin GR-3 and, if you have a circuit problem, send us the basic details. Our engineers will assist you, without obligation. Write The Carborundum Company, Depr. E 87-68, Niagara Falls, N. Y.

GLOBAR \({ }^{(3)}\) THERMISTORS are available with temperature coefficients ranging from \(.3 \%\) per degree C at \(25^{\circ} \mathrm{C}\) up to \(4.5 \%\) per degree C at \(25^{\circ} \mathrm{C}\), and in a broad range of body sizes for special electronic packaging. Both thermistor sizes shown above, while originally custom-designed, are still in production and currently available.

\section*{GLOBAR}

Ceramic Resistors

microvolt and crystal-controlled generator. Information on outstanding range and accuracy, specifications and applications are included.

Unitized Chassis. Instrumentation Devices, Box 319, Buchanan, N. Y., has available a circular describing a chassis design of unitized construction without special wiring methods. Conventional wiring and components can be used to build circuits on the shelves of the chassis described. Unit chassis dimensions are illustrated.

Printed Circuit Connector. DeJURAmsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. A 2-color engineering data sheet on printed circuit 22 -contact connector series 4 PCSC gives detailed description and specifications plus mounting and clearance dimensions. Write for technical bulletin 44 C .

Variable Inductances. Superex Electronics Corp., 4-6 Radford Place, Yonkers, N. Y., has available a 4-page folder illustrating and describing a line of \(r\)-f chokes and coil forms. An industrial price schedule may also be had for the asking.

Transformer Products. United Transformer Co., 150 Varick St., New York 13, N. Y. Catalog 56 A covers a complete line of transformers, filters, and high \(Q\) coils for military, industrial, broadcast, amateur, laboratory and replacement purposes. Included are an index and net price list, illustrations and specifications.

Ultraminiature Electrolytic Capacitor. Barco, Inc., Box 1222, Milwaukee, Wisc. Catalog CS-33 is a complete listing of the 42 types of ultraminiature electrolytic capacitors. Inclucling test charts and a cross-reference table, the brochure details these units in their range from \(0.15 \mu \mathrm{f}\) to \(160 \mu \mathrm{f}, 1 \frac{1}{2} \mathrm{v}\) dew to 70 v dcw, and \(\frac{1}{8} \mathrm{in}\). diameter to 23/64 in. diameter.

Resistance Standards. Consolidated Resistance Co. of America, Inc., 44 Prospect St., Yonkers, N. Y. Data sheet No. 128 describes VariPlug and pushbutton resistance
-

Ge

\section*{... your single source for both transistor-grade silicon and germanium}

Sylvania has long been a primary refiner of high-purity germanium. Now, newly completed facilities for the production of high purity silicon are operating on a pilot plant basis, producing the semimetal in needle or densified form, of spectrographic purity. Full production is expected in the spring. At present, tran-sistor-grade samples are available for your testing on a letterhead request basis.
Specifications for Sylvania gernlanium dioxide and semimetal include ingot asreduced (guaranteed \(5 \mathrm{ohm} \mathrm{cm} \mathrm{resistivity)}\) and polycrystalline ingot (guaranteed minimum 30 ohm cm resistivity). Which-
ever grade you prefer, you can be sure of continuing high quality and uniformity when you order from Sylvania.

If you use semimetals in your products . or plan to in the future . . . write for technical specifications and quotations on Sylvania silicon and germanium. Remember, too, that our engineering staff is always ready to help you solve semimetal application problems.

Sylvania Electric Products Inc. 1740 Broadway, New York 19, N. Y In Canada: Sylvania Electric (Canada) L.td., University Tower Bldg., St. Catherine St., Montreal, P. Q.
\[
{ }^{*} \text { SYLVANIA }
\]

\section*{Eleciro Iet \\ Corparation}

Manufacturers

\section*{Slip Ring} Assemblies of CITSOL G(1)(1) EPOXIDE RESINS

The Electro Tec Corp. selected HYSOL 6000 Series tubes to make slip ring assemblies. That's because the outstanding electrical, thermal and mechan. ical properties of HYSOL 6000 epoxide compounds provided an ideal material for precise machining, intricate silverplating and ease of handling. The ability to withstand wear contributed heavily to its use in a mechanism for the transfer of electrical current from a stationary to a rotating mechanism.

Houghton Laboratories, Inc., supplies HYSOL 6000 Series tubes in certain sizes to Electro Tec Corp. and also furnishes the basic resin compound for formulating tubes in varying sizes. The 6000 Series includes a complete line of easily machined sheets, tubes and rods, room temperature and heat curing potting and casting compounds and coating and laminating varinshes.

Again, HYSOL 6000 Series epoxide compounds show a remarkable adaptability for a variety of applications. Perhaps one of your design or pro duction problems can be solved with the use of this new plastic. Remember, complete research, design and production tacilities at Houghton Laboratories. Inc., are ready to help you in any such problem. Inquiries are invited at no obligation. Learn for yourself what HYSOL 6000 Series com pounds might be able to do for you. Phone, wire or write today!
standards. Included are specifications, prices and information on optional equipment. Chief features and illustrations are shown.

Receiving Tubes. Radio Corp. of America, Harrison, N. J., has published a revised edition of the technical booklet, "RCA Receiving Tubes for A-M, F-M, and Television Broadcast." The 28 -page booklet gives the characteristics of more than 600 RCA receiving tubes including picture tubes. Picture tube information is presented in a chart which lists and describes 75 types. Base and envelope connection diagrams are supplied for all tube types.

A classification chart is arranged to permit quick determination of the type designations of RCA receiving tubes according to their functions and filament or heater voltages. The company's picture tubes are listed according to their envelope size, focus method and deflection method.

The booklet carries a list price of 20 cents a copy.

Silicon Rectifiers. Sarkes Tarzian Inc., Rectifier Division, 415 North College Ave., Bloomington, Ind. An 8 -page booklet covers a line of silicon rectifiers which will fill military requirements and many commercial applications. Included are information on efficiency, operating temperatures, size, construction, voltage and current ratings, series and parallel operation, typical applications, specifications and illustrations.

Magnetic Tape Recorders. Amplifier Corp. of America, 398 Broadway, New York 13, N. Y. The VU Magnemite series, portable, bat-tery-operated, spring-motor magnetic tape recorders, with built-inv -u meter is described in a 4-page folder.

The brochure completely describes in detail, features of 14 models, all of which were especially designed for field applications. A variety of single, two, three and four speed models are available and listed with their respective recording characteristics tabulated for easy reference or selection.

The various mechanical and electrical components are fully de-

\section*{High Current Gain-}

\section*{Maintained at}

Large Collector Currents

New Westinghouse XD-5081 transistor is characterized by high current gain throughout its operating range. Distortion is cut to a minimum.
THERMAL DISSIPATION. Large copper base provides an ample heat dissipating area.
LONG LIFE - RELIABLE OPERATION. Hermetically sealed in glass and metal to exclude moisture, prevent atmospheric contamination.
TYPICAL APPLICATION. Ideally suited for audio output stages and switching applications.

Performance data on the XD-5081:
Large signal current gain . . . yo at \(I c=1\) ampere; \(55 \mathrm{at} I c=2\) amperes
Large signal frequency cutoff
(common emitter) . . > \(>10 \mathrm{kc}\)
Maximum voltage (Vce) ... 35 volts
Maximum current (Ic) . . . 2 amperes
Saturation characteristic (Vce)
\[
.<1 \text { volt at Ic=1 ampere }
\]

Thermal drop . . \(3.5^{\circ} \mathrm{C}\) per watt from junction to case
Maximum junction temperature . . \(100^{\circ} \mathrm{C}\)
Sample quantities are available immediately. Contact your nearest Westinghouse district sales office or write, Westinghouse Electric Corporation, 3 Gateway Center, P. O. Box 868, Pittsburgh 30, Pennsylvania.

J-09002
you can be SURE...IF IT's Westinghouse

The appearance of your equipment will be enhanced by PHAOSTRON meters with their high style, die cast bezels and large easy-to-read scales.

You can depend upon \(2 \%\) accuracy because these meters are calibrated to within \(1 \%\) of full-scale deflection with controlled, certified standards.

Continuous accuracy is assured by the UNITIZED METER MOVEMENT ASSEMBLY which provides integral mechanical stability. The aged alnico magnet of the meter is protected from the effects of stray magnetic fields by the steel case.

These units are also equipped with insulated zero adjustments.

Nine Types in 77 Standard Ranges are available at your Parts Distributor. If you have a special requirement, write to the Product Development Department for a practical recommendation.

\section*{PHAOSTRON INSTRUMENT AND ELECTRONIC COMPANY 151 PASADENA AVE, SOUTH PASADENA, CALIF.}
scribed and individually illustrated. The recorders' operations are concisely explained and complete technical specifications, recommended accessories, as well as direct factory prices are included.

TWT Amplifiers. Hewlett-Packard Co., 275 Page Mill Road, Palo Alto, Calif. Volume 7, No. 5 of the Journal covers new twt amplifiers which feature provision for simulating special microwave signals. The amplifiers described operate over the 4-8 and \(7-12.4 \mathrm{kmc}\) ranges with gains of 25 db or more and with maximum power outputs greater than 10 and 5 mw , respectively, at 50 -ohm input and output levels. Illustrations and specifications for models 492A and 494A are included.

Tubeless D-C Power Supply. Perkin Engineering Corp., 345 Kansas St., El Segundo, Calif., has available a new bulletin describing the model 28-10 WX, \(28-\mathrm{v} \pm 10\) percent at 10 amperes magnetic amplifier tubeless regulated d-c power supply. The unit illustrated and described in the bulletin features regulation of 0.5 percent and ripple of 1 -percent rms. All characteristics and specifications on this unit are shown.

Cavity Wavemeters. DeMornayBonardi, 780 S. Arroyo Pkway, Pasadena, Calif. A 4-page folder covers type DB-715 precision, broad-band cavity wavemeters. Features, applications, description, specifications and ordering information are included.

Analog Computer. Weber Aircraft Corp., 2820 Ontario St., Burbank, Calif. A 6-page folder fully illustrates and describes a low-cost general purpose analog computer which is complete within one basic unit. Applications and specifications are listed.

Connectors and Cable. Gulton Mfg. Corp., 212 Durham Ave., Metuchen, N. J., has announced a 6-page folder describing the new subminiature C-21 connectors and cable. It gives complete information concerning features, construction and applications of these Glennite C-21 subminiature connectors which oc-

HARD-TO-REACH JOINTS in Sanborn Co.'s electro-eardio graphs are soldered quickly with the fine-point G-E Midget iron-with no damage to adjacent parts. Weight of iron-less
than 2 cunces-helped increase output by reducing operator fatigue. The Midget's ironclad-copper tip saves Sanborn \(1 / 2\) hour cleaning and tinning time daily, per operator station.

\title{
Sanborn speeds assembly \(13 \%\) with G-E Midget iron, a small soldering iron with hig-iron efficiency
}

handles like a Pencil-weighing less than a package of cigarettes, the General Electric Midget soldering iron speeds production by reducing operator fatigue.

RAPID HEAT TRANSFER is achieved by locating the heater directly in the ironclad-copper tip. Result- the G-E Midget iron's heat efficiency is \(90 \%\).

THREE-IN-ONE IRON with \(1 / 8^{\prime \prime}, 1 / 4^{\prime \prime}, \frac{3}{16}{ }^{\prime \prime}\) tip sizes gives you greater versatility to meet you" soldering requirements. Tips can be changed in only 5 seconds.

For more information write for GED-2263, G-E Midget Soldering Iron, Section 724-2, General Electric Co., Schenectady 5, N. Y.

\section*{GENERAL (6) ELECTRIC}

Single hole mounting provided by 15/32' threaded bushing 3/8" longi slotted bushing and a special washer provide a convenient non-turn device.
2-position and 3 -position types; locking and non-locking. A unique feature is that conversion from a non-locking
action to a locking action can be made by removing a simple stamping supported by 2 screws.
Contact are welded cross bar pal-ladium-standard. Fine silver (in various sizes) on special order.

Write for details and price

\author{
1336 N. Halsted St., Chicago 22, III. \\ Canadian Representative: \\ Atlas Radio Corp. Ltd., 50 Wingold Ave., Toronto, Canada
}

All the engineering features and outstanding workmanship of the 6000 Series "Telever Switch" are retained in this new switch.

\section*{COLOR SIGNAL CHECKING have you SPINNING?}

\section*{use 5flés NEW \\ Type 2015 DIFFERENTIAL GAIN \& PHASE MEASURING GENERATOR} and Type 2036 DIFFERENTIAL GAIN \& PHASE ANALYZER

Now you can conveniently measure small values of differential gain and phase with oo more than a 5 cm scope deflection! Differential gain can be read at \(\mathbf{2} \% / \mathrm{cm}\). Differential phase at better than \(0.5 \% / \mathrm{cm}\). The test signal contains the measurement signal, sync, color burst and front and rear porches. The measurement signal is a saw or 10 -step, with \(5 \%\) to \(20 \%\) superimposed RF. Color certification tests are made to \(\pm 1 \%\) with the continuously variable, calibrated phase shifter. Type 2007 Sync Signal Simulator is available as attachment.
cupy only one-quarter the volume of standard AN connectors and can withstand up to 100 g shock. Handy scale and actual size cutaway diagrams, easy-to-use ordering data, and specific technical information are all prominent features in the folder.

Silicon Junction Rectifiers. National Semiconductor Products, 930 Pitner Ave., Evanston, Ill. Bulletin TIB 22-55 covers high power silicon junction rectifier types NS-Pl and NS-PIR (reversed polarity version of NS-Pl). Tentative ratings, mechanical and electrical data and physical characteristics are included.

High-Power Dummy Load. A. R. F. Products, Inc., 7627 Lake St., River Forest, Ill., has available a bulletin on its model ADA-1 high-power dummy load which is used to replace the antenna in a radio transmitter when it is desired to keep the equipment operating for testing or alignment purposes. Application information, description, illustration and typical test results are included.

Static Control Systems. Westinghouse Electric Corp., P. O. Box 2099, Pittsburgh 30, Pa. The new Cypak static control systems are discussed in a new booklet entitled "The Whys and Wherefores of Cypak." Illustrated with photographs, drawings and circuit diagrams of actual equipment, booklet B-6584 covers the systems from four points of view: the need for static industrial controls, what they are, how they operate and where they can be used.

Time Delay Relays. A. W. Haydon Co., Waterbury, Conn., has available a new bulletin describing operation and specifications of the 6400 series d-c, \(11400 \mathrm{a}-\mathrm{c}\), and 24300 series 400 -cycle time delay relays with proportional delayed reset for delaying application of plate voltage in gas and vacuum power tubes until filaments or heaters have reached the proper temperature.

Bulletin TD402 describes standard delayed reset units, reclosure time, tolerance, operation and special application of proportional de-

\section*{IN TODAY'S ELECTRONIC ACHIEVEMENTS LIE TOMORROW'S CAREERS}

Your work in advanced guidance and control systems and components at AUTONETICS today is excellent assurance of long-range opporlunity. Prohlems like heat resistance, weight reduction and sub-miniaturization in electro-mechanical devices for missiles and manned aircraft have a direct application to non-military industry.

The work at AUTONETICS is challenging and professionally rewarding. Nearly 100 projects are now underway-most of which have not yet been printed in journals or texts. This diversity means good opportunity to find the field that is best for your particular talent, training and desires.

In developing and designing precision electro-mechanical equipment, you will use the finest digital and analog computers and other advanced research and test facilities at AUTONETICS.

In addition to all the physical advantages at AUTONETICS, you will welcome the professional attitude of your colleagues here. You can expect to be informed about your personal progress, have your iteas listened to.

If you are interested, AUTONETICS welcomes your inquiry. All replies will be held in the strictest confidence.

\section*{Choice openings for:}

Computer Specialists Electro-Mechanical Designers Environmental Test Engineers Electronic Component Evaluators Instrumentation Engineers Fire Control Systems Engineers Flight Control Systems Engineers Electronics Research Specialists Computer Programmers Computer Application Engineers Automatic Controls Engineers Electronic Engineering Writers Inertial Instrument Development Engineers Preliminary Analysis and Design Engineers

\author{
Contact: \\ Mr. D. S. Grant, Engineering Personnel Office \\ Autonetics, Dept. 991-20EL, 12214 Lakewood Blvd., Downey, Calif.
}

\title{
Autonetics \\ A DIVISION OF NORTH AMERICAN AVIATION, INC.
}

layed reset time delay relays, available for civilian and military requirements.

Ceramic Transducers. Gulton Mfg. Corp., Metuchen, N. J., has available a comprehensive 12 -page brochure covering the use of piezoelectric ceramic transducers. The 2 -color booklet outlines the many applications of ceramic transducers including ultrasonic shock and vibration, medical and underwater sound equipment, in addition to presenting complete physical and electrical properties and specifications for the ceramic materials. Other features covered include a discussion of resonant frequency characteristics and detailed tables outlining standard sizes and shapes of transducers available.

Miniature Feed-Through Capacitors. The Gudeman Co., 340 W. Huron St., Chicago 10, Ill. A 4page engineering bulletin (No. 271-2) illustrates and gives complete technical data on miniature paper dielectric hermetically sealed feed-through capacitors designed for use in r-f interference suppression. Included are capacitance listings, dimensions and voltages, dimensional drawings and engineering specifications on test voltage, life test, insulation resistance, power factor and military environmental requirements.

Miniature Connector. DeJURAMSCO Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. A 2-color, 2-page technical bulletin gives description, specifications, enlarged views, mounting and clearance dimensions of the new series 20 miniature Continental connector with coaxial contacts. Write for bulletin 16 C .

F-M-Carrier Recording Equipment. A-V Mfg. Corp., 730 Fifth Ave., New York 19, N. Y., has issued a new bulletin illustrating and describing its type 6 f-m-carrier recording system. Recording data from d-c to \(10,000 \mathrm{cps}\), the basic system described consists of five building blocks. Fourteen tracks can be included in one system and A-V building block units can be

Construction-Printed circuit terminals are designed with snap-in feature which holds relay in printed circuit board without lugging prior to solder dip.

Other versions of MS relay available with standard solder type terminals and insulating base, where required. Also with 4 N.O. isolated circuits having common make.

While not yet in production, extra-sensitive version has been developed. Maximum coil resistance 18,000 ohms, nominal sensitivity .030 watt, maximum sensitivity .020 watt, overall height \(1-9 / 16^{\prime \prime}\). All other details same as standard MS relay.
Application-Type MS is an ideal relay for any application requiring a compact, highly reliable single pole D. C. device, where a low cost solution is required because of volume usage and competitive problems.

The fact that industry has already used over a million units of this design is your assurance that the R-B-M Type MS relay will meet your most exacting requirements.

Contacts used in Type MS are of the cross bar type, which offer the ultimate in reliability throughout the life of the relay. Molded bobbin design has eliminated coil failure on sensitive applications under severe climatic conditions.

OTHER VERSIONS

SOLDER TERMINALS 4 isolated circuits with common make contact.

on insulating trase.

EXTRA SENSITIVE VERSION
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ ENGINEERINS DATA } \\
\hline Specifications & \begin{tabular}{l}
Miniature Sensitive Relay \\
Type MS
\end{tabular} \\
\hline Contact Form & S. P. D. T. \\
\hline Contact Rating & 1 amp. 32 V.D.C. non-inductive \\
\hline Coil Resistance & Up to 10,000 ohms \\
\hline Nominal Sensitivity (Coil lnput) & .050 Watt \\
\hline Maximum Sensitivity & .040 Waft \\
\hline Approx. Dimensions & \(1 \mathrm{~K} / 8 \times 1 / 16 \times 11 / \mathrm{s}^{\prime \prime}\) \\
\hline
\end{tabular}

OTHER PRODUCTS
Send for Descriptive Bulletin MS-1

ESSEX WIRE CORPORATION, Logansport, Indiana

MODEL 12014 WWV RECEIVER

Features:
* Coverage of all WWV and WWVH frequencies: 2.5, 5. \(10,15,20\) and 25 me
* Individual crystal for each frequency
\(\star\) High sensitivity and seleativity
\(\star\) Compact, reliable construction

\section*{Description:}

This high-quality instrument is designed to provide laboratories and industries with a reliable, accurate means of utilizing primary standard accurate means ond frequencies supplied throug the tional Bureay of Sies suppried through the Nalional Bureau of Slandards and WWVH. E tion and dependable performance is included

Brief Specifications:
Frequency Coverage: 2.5,5,10,15, 20 and 25 mc
Sensitivity: Better than 1 microvolt for 3 db signal plus noise-to-noise Selectivity: 1 kc at 3 db down
Dimensions: 19"W x 51/4"H 9-5/16" \(D\); relay rack mounting

Weight: 17 lbs
Price: \(\$ 495\) f.o.b. factory

OTHER SHASTA QUALITY INSTRUMENTS
Expanded Scale Frequency Meters and Voltmeters Audio Oscillators - AC Voltmeters • Power Supplies Wide Band Amplifiers Bridges • WWV Receivers Decade Inductors.

Write today for Technical Bulletin 1201-A please address Dept. SG-4

\section*{BECKMAN INSTRUMENTS INC}
P. O. Box 296, Station A. Richmond, California Telephone LAndscape 6.7730

\section*{Stainless Fastenings} IN STock

\section*{FAST}

SERVICE
ON SPECIALS
WRITE
FOR FREE CATALOG

Immediate delivery from the world's largest stock

\section*{Anti-Corrosive Metal Products Co., Inc.}

CASTLETON-ON-HUDSON, N. Y.
plugged together to provide both direct and f-m type recording. Ask for bulletin 107.

Components and Accessories. Herman H. Smith Inc., 2326 Nostrand Ave., Brooklyn 10, N. Y. A new 32-page catalog features an expanded line of plugs and jacks, all with schematic diagrams and detailed technical specifications. Printed in 2 colors throughout, catalog No. 56 is an important reference work for everyone connected with the design and production of electronic equipment.

Antenna Catalog. Andrew Corp., 363 E. 75th St., Chicago 19, Ill., has produced a comprehensive catalog on antennas, antenna systems and transmission line. The 100 page catalog contains the product description and engineering data of over 500 products. Twenty pages are devoted to system engineering data and related information that engineers specializing in this field of electronics will find informative.

Ceramic Capacitors. Cornell-Dubilier Electric Corp., South Plainfield, N. J. A comprehensive 20-page catalog (616) covers all standard or popular ceramic ca-pacitors- disk, tubular, slug-types and special types-manufactured by the company.

The illustrated, 3-color catalog consolidates an extensive variety of ceramic capacitors available to meet any precise applications. These include single and dual capacitance disks, tubulars, printed circuitry and automation disks, h-v slug types and special design types. The Tiny Mike line is also described.

Resin Booklet. Ohio-Apex Division, Food Machinery \& Chemical Corp., Nitro, West Virginia. A 6-page booklet describes Dapon, a new material developed to fill a need for a solid prepolymer of diallyl phthalate. Included are information on applications, resin blends, laminates, and technical data on properties and solution properties.

Terminal Blocks. Marathon Electric, Wausau, Wisc. The complete line of Controlead heavy-duty terminal blocks is illustrated and

TUNG-SOL ELECTRIC INC., Newark 4, N. J.
sales offices: atlanta, columbus, culver city, dallas, denver, detroit, melrose park illl, newark, seattle

\section*{FREE} DESIGN DATA BOOKLET
HOW TO APPLY THERMAL RELAYS

Based on 10 years experience in the design, manufacture and engineering application of thermal relays, this booklet contains diagrams and recommendations to save you hours of engineering time. Here is data on thermal relays with specifics on their use in high-power electron tube circuits, automatic controls and other applications. The booklet discusses design factors that influence the time delay, instantaneous and saturation values, reoperate and recovery periodsgives information on contact protection, how to eliminate contact chatter, temperature compensation and vibration problems.
For your free copy of "How to Apply Thermal Relays"* write:
*Reprinted from "Electrical Manufacturing"
Cruman
a great name continues great new achievements
\[
\begin{aligned}
& \text { ingtrument division - incorforatied iakeside avenue. west orange, new jersey }
\end{aligned}
\]

described in a 4 -page folder. Included are specifications on the series 1000 solderless connector block, series 2000 direct wiring block, series 3000 stud terminal block, series 6000 screw terminal block, series 6000-SC short circuiting block, and series \(6000-\mathrm{H}\) hinged cover block.

Ultraviolet Microscope. NordenKetay Corp., Snow \& Union Sts., Boston, Mass. A 4-page illustrated bulletin deals with the automatic color translating ultraviolet microscope which is available for accurate structure determination and indication of absorption spectrum. Bulletin 370 describes applications and operating principles. A bibliography of experimental results obtained with the microscope is given. Prices are included.

Alternators. Leece-Neville Co., 1374 E. 51st St., Cleveland 3, Ohio, has released 2 new 4-page folders illustrating and describing two new models of its standard line of alternators, models 5368-G3 and 5370-G6. Designed to replace d-c generators on passenger cars, light and medium trucks, school busses and the like, the models described are also particularly suited for such specific types of vehicles with twoway radio or telephone as police cars, highway patrol, taxicabs and utility trucks. A transformer may be attached to the alternator discussed to give up 800 w of \(110-\mathrm{v}\) portable power.

The folders are illustrated with photos, charts and engineering drawings. Specifications, application and installation information are likewise featured.

Soft Soldering by Induction Heating. McDowell Electronics Inc., 117 Woodside Ave., Metuchen, N. J. Bulletin 561 is a 4 -page folder that tells how soft soldering by induction heating can increase production output, cut labor costs, decrease production rejects, eliminate cold solder joints and assure uniform penetration. Illustrations and design notes are included.

Variable Delay Line. Helipot Corp., 916 Meridian Ave., South Pasadena, Calif. Data sheet No. 54-74 covers

\title{
For the most dependable printed circuits, you need the high bond strength, workability, heat-resistance of C-D-F DILECTO \({ }^{\circ}\) METAL-CLAD LAMINATES
}

Printed circuits based on C-D-F materials are being used with great success in military electronic equipment, commercial television and radio sets, telephone switchboards-even sub-miniature radiosonde equipment and hearing aids.

Photos courtesy of Photocircuits, Inc., Glen Cove, N. Y.

HIGH BOND STRENGTH -C-D-F's special adhesive for metalclad Dilecto bonds the copper foil to the plastic without affecting the laminate's superior electrical properties. Heat-resistance, dissipation factor, dielectric constant, dielectric strength, and insulation resistance of the Dilecto base remain unaffected. The closelybonded foil can be etched cleanly and dipped in hot solder to \(220^{\circ} \mathrm{C}\). (\(428^{\circ} \mathrm{F}\).) for ten seconds with a guarantee of no blistering or separating. Metal-Clad Dilecto can be punched or machined either before or after etching.

EXCELLENT WORKABILITY -On all five Dilecto metal-clad grades, you can solder, punch, saw, and assemble components either by hand or automatically. Thanks to the inherently superior workability of the plastics laminate over that of ceramic-type materials, Dilecto can be dropped, jammed into tight chassis, and otherwise treated roughly on the assembly line and in service.

HIGH HEAT-RESISTANCE-Metal-Clad Dilecto Laminates are made of phenolic, epoxy, or Teflon* resin for various conditions of service and assembly, and have either cellulosic paper or woven glass-fabric base. All are ideally suited to printed-circuit applications in which heat-dissipation is a major problem. Continuous exposure to high ambient operating temperatures in enclosed electronic equipment has no significant effects on Dilecto's electrical and physical properties.

UNLOAD YOUR HEADACHE HERE! C-D-F, a big, reliable source of supply, can help you get the most for your printed-circuit money by reducing rejects, lowering fabrication costs, assuring dependable quality every time. Send us your print or problem, and we'll gladly supply appropriate test samples free. See our catalog in the Product Design File (Sweet's) or send for the new 20 -page Dilecto catalog. Let your nearby C-D-F sales engineer (listed in Sweet's) help you right from the design stage!
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TYPICAL PROPERTY VALUES} \\
\hline & \[
\begin{gathered}
\text { Copper-Clad } \\
\text { PHENOLIC } \\
\text { (Grade XXXP-26) } \\
\hline
\end{gathered}
\] & Copper-Clad
PHENOLIC
(Grade XXXP-24) & \[
\begin{gathered}
\text { Copper-Clad } \\
\text { EPOXY } \\
\text { (Grade GB-116E) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Copper-Clad } \\
\text { EPOXY } \\
\text { (Grade GB-181E) }
\end{gathered}
\] & Copper-Clad
TEFLON*
(Grade GB-116T) \\
\hline BOND STRENGTH-0.0014" foil (Lbs. reqd. to separate \(1^{\prime \prime}\) width of foil from lam nate) & 5 to 8 & 5108 & 8 to 12 & 8 to 12 & 5 to 8 \\
\hline MAXIMUM CONTINUOUS OPERATING TEMP. (Cleg. C.) & 120 & 120 & 150 & \[
150
\] & 200 \\
\hline DIELECTRIC STRENGTH (Maximum voltage per mil.) & 800 & 800 & 700 & \[
650
\] & \[
700
\] \\
\hline INSULATION RESISTANCE (Megohms) 96 hrs. at \(35^{\circ} \mathrm{C} . \& 90^{3} / \mathrm{RH}\) & 50,000 & 50,000 & 30,000 & 20,000 & Over \(10{ }^{6}\) megohms \\
\hline DIELECTRIC CONSTA VT \(10^{6}\) Cycles & 4.20 & 4.20 & 4.90 & 4.95 & 2.85 \\
\hline [IISSIPATION FACTOR \(10^{6}\) Cycles & 0.026 & 0.026 & 0.019 & 0.018 & 0.0006 \\
\hline A.RC-RESISTANCE (Seconds) & 10 & 10 & 60 & 80 & 180 \\
\hline TENSILE STRENGTH (psi.) & 16,000 \(\times 13,000\) & \(14,000 \times 11,000\) & \(46,000 \times 42,000\) & \(48,000 \times 44,000\) & \(23,000 \times 21,000\) \\
\hline FLEXURAL STRENGTH (psi.) & \(21,000 \times 18,000\) & \(19,000 \times 16,000\) & \(60,000 \times 55,000\) & \(75,000 \times 65,000\) & \(13,000 \times 11,000\) \\
\hline I?OD IMPACT STRENGTH edgewise (ft. lbs. per inch of notch) & \(0.40 \times 0.35\) & \(0.40 \times 0.35\) & \(6.5 \times 6.0\) & \(13.5 \times 11.5\) & \(6.0 \times 5.0\) \\
\hline COMPRESSIVE STRENGTH flatwise (psi.) & 28,000 & 27,000 & 60,000 & 62,000 & 20,000 \\
\hline BASE MATERIAL OF LAMINATE & Cotton rag paper & Cotton rag paper & Fine-weave, medium-weight glass cloth & Medium-weave, medium-weight glass cloth & Fine-weave, medium-weight glass cloth \\
\hline COLOR OF UNCLAD LAMINATE & Natural greenish & Natural Brown & Natural & Natural & Natural \\
\hline \multicolumn{6}{|r|}{All these standard grades are available with \(0.0014^{\prime \prime}, 0.0028^{\prime \prime}, 0.0042^{\prime \prime}\), or thicker electrolytic or rolfed copper foil on one or both surfaces. Other metal foils and other resin-and-base combinations can be supplied on special order.} \\
\hline
\end{tabular}
-duPont Trademark

CONTINENTAL-DIAMOND FIBRE DIVISION OF THE BUDD COMPANY, INC.

\section*{A COMPLETE SPINNING SERVICE}

the \(1-\mu\) sec Helidel variable delay line that has a longer total delay than in the \(0.2-\mu \mathrm{sec}\) and \(0.3-\mu \mathrm{sec}\) units. Delay in the unit described is adjustable in increments of 0.04 millimicroseconds; rise time, 0.08 \(\mu\) sec maximum; frequency response, from 0 to 4.5 mc . Overshoot and phase distortion are negligible.

The \(1-\mu\) sec Helidel described is a 10 -turn unit with mechanical rotation of \(3,600 \mathrm{deg}+5 \mathrm{deg}-0\) deg. Other applications include use in laboratory electronic measuring devices in color telecasting and highspeed computers. It is useful for measurement of potentiometer phase shift at 400 cycles; \(360-\mathrm{deg}\) phase shift at 1 megohm, and 1,800 deg at 5 megohms.

The unit described is also valuable as a memory circuit in the development of high-speed computers because of the relatively long, distortion-free delay.

Gear Boxes. Southwestern Industries Inc., 5880 Centinela Ave., Los Angeles 45, Calif., has issued an illustrated catalog sheet describing in detail a series of flexible, precision-made gear boxes for use in actuators, computers and small electronic components. Designated series 145 and 167, the gear boxes described provide maximum torques from 150 oz in. to 200 oz in. with high efficiency and low backlash.

Units discussed are designed for mounting directly to small electric motors, and can be supplied with an input shaft if desired. Ball bearings are used throughout to provide maximum operating efficiency. Complete specification tables are included in the catalog sheet.

D-C Power Supplies. Universal Electronics Co., 1720 Twenty-Second St., Santa Monica, Calif., has released an 8-page catalog (BF56), describing an expanded line of regulated d-c power supplies. The catalog includes approximately 125 models under the headings: Standard, Precision, Ultra-Precision, For Transistor Research, Unireg (Mag-Amp), Fixed Voltage, Constant Current and Custom Designs.

\section*{Research and production tests speeded} with the KlectraniK Null Indicator

TUST about anything a galvanometer can do . . . in laboratory or production line testing ... the ElectroniK Null Indicator can do better, easier and faster. A completely electronic null detector, it can be used with any d-c bridge or potentiometer circuit. It is unaffected by vibration.. needs no leveling or special mounting. It has plenty of sensitivity for the most accurate measurements. It's fast ... indicates in less than \(1 / 2\) second. It takes heavy overloads without damage . . . eliminates delays from "loss of spot" that hamper use of spotlight galvanometers. Just plug into any 115 -volt, 60 -cycle line, and it's ready to use. Look at these characteristics-then order one now for your own test work!

\section*{Period-less than \(1 / 2\) second}

Current sensitivity-.001 microamp/mm
Voltage sensitivity-1 microvolt/mm
Input impedance- 1000 ohms at max. sensiłivity
Overload rating-1 volt af max. sensifivity
Stability-less than 1 mm zero shift/hour
Damping-critically damped. Independent of external resistance.
Terminals-input and ground, for spade, pin, or banana plugs
PRICE-only \(\$ 175.00\) net, f.o.b. Philadelphia
Minneapolis-Honeywell Regulator Co., Industrial Division, 4591 Wayne Avenue, Philadelphia 44, Pa.

\section*{Honeỹwell \\ EROWN INSTRUMENTS} Fist in Controls Prices and specifications subject to change without notice

Electronics manufacturers continue to build new plants and expand existing facilities through acquisitions. Engineers are promoted to new positions, join new companies. Industry associations elect new officers, plan 1956 activities

\section*{Missile Firms Plan Extensive Expansions On The West Coast}

Lockheed Aircraft will move its missile systems division from Van Nuys, Calif. to new expanded headquarters in the San Francisco area by the end of 1956.

An initial outlay of \(\$ 7\) million will be spent for construction of two \(51,000 \mathrm{sq} \mathrm{ft}\) research laboratories on a 22 -acre site at Stanford University, and a \(96,000 \mathrm{sq} \mathrm{ft}\) manufacturing facility on a 275 acre site, in Sunnyvale, 7 miles from the campus. Construction is scheduled to begin immediately on the two research labs, with work on the Sunnyvale plant to begin shortly. The labs are expected to be ready by fall and the plant by the end of the year.

The initial construction will be part of a \(\$ 20\) million expansion program to take place over the next three years.
- Boeing - After revealing plans for an \(\$ 8.5\) million manufacturing and office facility of \(558,000 \mathrm{sq} \mathrm{ft}\) at Renton, Wash., the Boeing Airplane Co. announced plans for a \(\$ 21\) million developmental center near its main plant in nearby Seattle.

The developmental center, south

Louis N. Ridenour, center, of Lockheed indicates site of the firm's new research buildings to Dr. F. E. Terman, right, and D. B. Adams of Stanford University
of the present plant and adjacent to Boeing Field, will include four main buildings and minor supporting structures which will add \(1,-\) \(021,000 \mathrm{sq} \mathrm{ft}\) of covered area to the Boeing operations. Certain phases of the Bomarc project (guided missiles), physical research, structural
testing and experimental activities are among the functions which will occupy the area.

Largest of the new buildings will have a total floor area of \(754,000 \mathrm{sq}\) ft . The buildings are expected to be completed and in operation by the fall of 1957.

\section*{Beckman Instruments Establishes Shockley Semiconductor Lab.}

Beckman Instruments has established the Shockley Semiconductor Laboratory near Stanford University to develop and produce transistors and other semiconductor devices in the field of advariced electronics for automatic production techniques.
Headed by Dr. William Shockley, pioneer in the development of the junction transistor, as director, initial lab members include Drs. G. Smoot Horsley, formerly of Motorola and Bell Laboratories; Leo B. Valdes, formerly of Pacific Semiconductor and Bell Laboratories; William W. Happ, formerly

William Shockley
of Raytheon and Sylvania and R. V. Jones.

Quartered temporarily in Mountain View, Calif. the group will move into the new \(\$ 500,000\) research and development center Beckman is building in Stanford Industrial Park for its Spinco division and the Shockley Semiconductor Laboratory.

Completion of the facility is scheduled for August.

Dr. Shockley said that recent developments in physics and chemistry indicate great future expansion for semiconductors. "We have found corresponding phenomena in tran-

\section*{STABLE MAGNETS AMPLIFIER}

Output is
Independent of Supply Voltage

Output is
Unaffected by
Supply Frequency

FERRIC
A FERRomagnetic Amplifier
Ferrac, a self-contained amplefir, is now available for intros. Initial computers and error (current into one control coil necessary to accurately zero the output and null error (current into control coil to re-zero the Ferrac during and ope environmental do not exceed \(\pm 5\) conditions)

GAIN: 2.5 volts output per
100 microampere externally adjustable
by feedback \(\operatorname{tr}\) NENT: Operating ENVIRONMENT: OPe ts MIL-

\[
\begin{align*}
& \text { T-27A require } 115 \text { volts at } \tag{400}\\
& \text { POWER: }
\end{align*}
\] CPS
sistor and vacuum tube electronics which suggest ways in which transistor counterparts may be made for a wide variety of vacuum tubes now in use", he said.

\section*{General Radio Selects New President}

Charles C. Carey has been named president of the General Radio Co. of Cambridge, Mass. succeeding Errol H. Locke, recently retired.

Carey joined the company's production department in 1927 and has been its vice-president for manufacturing since 1944 .

The following directors were reelected: Harold B. Richmond, chairman; Charles C. Carey; Donald B. Sinclair; Arthur E. Thiessen and Frank L. Tucker.

\section*{Sprague Constructs Transistor Plant}

Construction of a new plant for Sprague Electric Co. to manufacture surface-barrier transistors will begin shortly at Concord, N. H. The new building will occupy 20,000 sq ft adjacent to the Concord Airport.

It is expected that production will be well under way by fall of 1956 with about 200 persons employed.

Temporary manufacturing quarters in Concord will probably be utilized by Sprague beginning this spring while the new plant is being built.

Sprague was recently licensed to produce surface-barrier transistors under Philco patents.

General manager of the firm's Concord operation will be Jesse Ault, who recently retired as works manager of the Haverhill and Andover, Mass. plants of the Western Electric Co. John Puppolo, who has been associated with Sprague for the past 22 years and is presently production superintendent of the firm's tantalum electrolytic capacitor operations at North Adams, will be factory manager in charge of production. The Concord plant will be Sprague's twelfth for the manufacture of electronic components.

The company presently employs over 6,000 persons in the manufacture of various types of electronic components.

\section*{Lenkurt To Build New Engineering Building In California}

Architect Frank Lloyd Wright has been retained by the Lenkurt Electric Co. of San Carlos to design a new administration and engineering building for the electronics firm.

The building will have about 90 ,000 sq ft of floor space and will be located near the center of Lenkurt's 55 -acre plot in the San Carlos industrial area.

Neither the exact site nor the timetable for construction of the administration and engineering building is definite yet and it may be several more months before plans are complete and building starts.

Offices and engineering development laboratories that will go into the new Lenkurt building now occupy about one-third of the company's present \(167,000 \mathrm{sq} \mathrm{ft}\) of floor space. The firm recently broke ground to add another \(6,000 \mathrm{sq} \mathrm{ft}\)

Frank Lloyd Wright, center, and president L. G. Erickson, right, and executive v-p K. E. Appert of Lenkurt Electric
factory building wing.
During the past six years the number of Lenkurt employees has increased from 125 to the present
total of 1,600 and the company's monthly business volume has jumped from \(\$ 100,000\) to \(\$ 1,500\),000.

\section*{Magnavox Acquires Two Businesses, Appoints Engineers}

The Magnavox Co. and Sentinel Radio Corp. signed a contract for the sale of substantially all the assets, properties and goodwill of Sentinel as a going business to Magnavox.

Magnavox expects the acquisition of Sentinel to facilitate its planned long-range expansion program. Operations at the Sentinel plant in Evanston, III., are expected
to continue and be expanded in the near future. Leonard F. Cramer, vice-president and general manager of the television-radio-phonograph division of Magnavox, will be responsible for the Sentinel operation.

Richard S. Lawton, present secretary-treasurer of Sentinel, will continue in an executive capacity. The business will continue without
interruption and production will be accelerated in the near future. Magnavox also plans to build a \(100,000 \mathrm{sq} \mathrm{ft}\) plant at Urbana, Ill. with provision for eventual expansion of this operation to 400,000 sq ft . It is to be completed by the latter part of 1956.

Magnavox also completed the acquisition of the Sparks-Withington radio-television business as

\section*{STAR PERFORMER}

\section*{CLOSE TOLERANCE}

The use of clcse tolerance capacitors becomes practical when there is assurance tha: later shists will not wipe out the advantage of initial precision. Good-All Mylar trokes are widely applied in tolerance of \(1 \%, 5 \%\) and \(5 \%\). Our engineors are reainy to uork with you on any capcaitor problem.

\section*{MYLAR Capacitor Applications}

Computero... Milfitary and Commercial Seismic Instrumentation Deetronic Control Systems

Guidance Systems Critical TV Circûits

\section*{GOOD-AL Capacitors}
contribute to the stable performance of many types of electronic equipment. Not all are as large and impressive as a TV transmitter, but their requirements for capacitor stability may be many times more exacting.

Engineers have come to rely on Good-All Mylar capacitors for their small capacity change during life. This feature, together with small size, low power factor and excellent IR, is responsible for the rapid increase in demand for our various MYLAR* types.
*DuPont's Trademark for Polyester Film

Test Equipment

\section*{- LOW NOISE LONG LIFE - RUGGEDNESS SMALL SIZE}
. . . high power gain and dependability are only a few advantages of Magnistor amplifiers for low-level signals from d-c to if frequencies. The typical circuit illustrated will deliver a 25 -volt signal at 20 ma, with an output noise level equivalent to less than 2 microvolts applied to the input, and an input impedance of 50 ohms.

Using other Magnistor types and circuits, considerably higher gains can be attained. For complete information on Magnistors, their circuits and applications, write to:
potter instrument co., inc. 115 Cutter Mill Road, Great Neck, N. Y.

\section*{DEFLECTION YOKES}

We specialize in the design and manufacture of precision deflection yokes for military and commercial applications. Phone or write for immediate engineering evaluation of your critical display problems.

Phone: RAmsey 9-1123

\section*{Constantine Engineering Laboratories Co.}

\author{
Island Avenue
}

Mahwah, N. J.
part of a planned program to increase the company's sales volume to the \(\$ 100\) million mark in its next fiscal year. The Magnavox Company volume for the last six months ended December 31, 1955 was \(\$ 34\) million. It is anticipated that the sales volume to be gained from the acquisition of the Spartan business will add from \(\$ 15\) million to \(\$ 20\) million in radio-phonographtelevision annual business.

None of the manufacturing facilities of Sparks-Withington were acquired. Only certain movable assets associated with the manufacture and conduct of the Sparton radio-television business were purchased. A line of instruments will be manufactured by the Magnavox Company in its own plants and sold under the brand name of Spartan through the sales personnel previously associated with the Sparks-Withington.

Lt. Col. John J. Slattery was appointed assistant to the vice-president and general manager of the government and industrial division of Magnavox.

Prior to joining the firm, he was vice-president and director of engineering of Sterling Precision Instrument Corp., instrument division.

Colonel Loren E. Gaither, Signal Corps, USA (RET), has been appointed director of engineering of the government and industrial division of Magnavox. He was formerly with the Evans Signal Laboratory of the Signal Corps engineering laboratories of which he was director from 1951 to 1955 .

\section*{Bendix Names \\ Transistor Head}

Wallace C. Caldwell has been appointed to head a new department for expanded research into and production of transistors at the Red Bank division of Bendix Aviation Corp.

Dr. Caldwell, who has been chief engineer of the division's electron tube plant in Eatontown, N. J. for the past four years, will direct an engineering and manufacturing program geared to the market for transistors and other semi-conductor devices.

Before joining Bendix, Caldwell
was associated with the department of physics of Iowa State College and also served as a consultant to Bendix. During World War II he conducted research and development on radar systems and radar tubes at MIT.

John H. Wyman had been named to succeed Dr. Caldwell as chief engineer for electron tubes at the Red Bank division. Wyman has been with Bendix for seven years, serving most recently as chief project engineer for special-purpose electron tubes.

Bendix also announced that Richard M. Somers has been appointed director of engineering for the Kansas City division.

Prior to his appointment he was assistant director of engineering of the division, which is engaged in the production of instruments and electronic devices as a prime contractor for the Atomic Energy Commission.

He joined Bendix as a staff engineer of the Eclipse-Pioneer division, Teterboro, N. J.

Somers succeeds Howard K. Morgan who has been named director for commercial aviation systems of the corporation.

Fairchild Formally Opens New Plant

Left to right, S. M. Fairchild, Lee Griswold, J. M. Case

Fairchild Camera and Instrument Corp. formally opened a new plant in California primarily built to provide new west coast production, engineering, sales and office facilities for the potentiometer division of Fairchild Controls Corp., a wholly-

SHEET....ROD....
TUBING....MOLDED OR MACHINED PARTS?

\section*{YOU CAN GET JUST WHAT YOU WANT}

*TEFLON
DuPont trademark

\section*{Advantages:}

CHEMICAL-Completely inert
ELECTRICAL-Extremely low power factor Very high dielectric strength
THERMAL-Temperature range \(-300^{\circ} \mathrm{F}\). to \(+500^{\circ} \mathrm{F}\).
MECHANICAL-Strong, flexible Weather resistant
LOWEST COEFFICIENT OF FRICTION ABSOLUTELY NON.STICK
frave

"Made of Teflon by JOHN CRANE" has become practically a standard specification for parts and components subject to severe electrical, corrosive, thermal, mechanical or atmospheric abuse. Whatever your requirements in Teflon . . . sheet, rod, tubing, packings, gaskets, bellows, insulators, sealing dises or non-stick parts . . . "John Crane" can supply them!
In addition, you get these important plus factors: complete uniformity throughout, high density control, freedom from flaws and rigid adherence to your specifications.
"John Crane's" complete fabrication facilities assure you prompt delivery on exactly what you want - no compromise. If you have an entirely new requirement, no standard design or procedure "John Crane's" laboratory facilities, know how, research and engineering experience go to work on your particular need.
Now is a good time to put "John Crane" to test. Contact Crane Packing Company today.

Crane Packing Co., 6402 Oakton St., Morton Grove, Ill., (Chicago Suburb)

In Canada: Crane Packing Co., Ltd., Hamilton, Ont.

Versatility - 1 to 5 gang models, single or double shaft, servo or bushing mount.

Permanent Accuracy - Resistance element integrally molded within housing. Leads, taps and terminals firmly encapsulated.

Long Life - Scanning action distributes wear across face of bar contact. Rigid, fixed lead screw.

Dependability - Mechanically and electrically stable. Effectively sealed against dust and moisture.

Absolute Linearity - Uniform resistance distribution. No external trimming required.

Specifications - Meets extreme commercial and military require. ments for all applications.
7. Availability - Quick deliveries on
production quantities. production quantities.

\section*{Borg 1100 Series Micropots}

Accurate, dependable, long-lived. Has 9 inch coded leads for easy installation. Offers your products a comperitive price advantage.

Let's look at it this way-What features should an instrument incorporate to make your job easier, help prevent costly mistakes? Take the case of the new PRD Klystron Power Supply. Should we incorporate a sawtooth rather than a sine wave modulation? It's easier to put in a sine wave. However, a sawtooth has the definite advantage of eliminating phasing and blanking problems when the frequency response of a transmission device is to be studicd. So, in goes the sawtooth. It's casy enough to get hold of some sine wave modulation which can be applied through the external modulation input.

As for preventing misfakes - consider switching from cw to square wave modulation. Suppose you forget to readjust the reflector voltage . . . Sure, you'll catch the mistake later, but time is lost. The new PRD Klystron Power Supply has an electronic clamping circuit which locks the top of the square wave to the previously chosen reflector voltage. No readjustments to think about, no mistakes.

Want to modulate with pulses - use the external input. The rise time degradation of your pulses will be less than .1 microsecond!

Another point, good regulation! Here's an example: a \(\pm 10 \%\) line change or any load change will cause a reflector voltage change of only \(\pm 0.1 \%\).

Compare . . chances are that you'll send in your order for the PRD Type 809, too.
 202 TILLARY STREET, BROOKLYN 1, NEW YORK Telephone: Ulster 2.6800

The New PRD KLYSTRON
POWER
\[
S \cup P P L Y
\]

HERE'S WHAT THE TYPE 809
CAN DO FOR YOU -
- Powers most low and medium voltage klystrons - p p to 600 V . beam supply
- Has electronic readjustment of reflector voltage when changing from cw to square wave modulation - no errors due to forgetfulness
- Has square wave, sawtooth and provision for external modulation for pulses
- Affords exceptional stability and regulation at modest cost
- Price \(\$ 350.00\) F C.B. New York
(Available fren stock. Call
or write for new Bulletin.)

Midwest Solus Office

I SOUTH NORTHWEST HIGHWAY, PARK RIDGE, ILL. - TAlcot 3-3174 Western Sales Office:
737.41, SUITE 7, NO. SEWARD ST. HOLLYWOOD 38, CAL.-HO-5-5287

heating tunnel for the production of tv and radio cabinets. Because of the altitude, drying initially presented a difficult problem.

\section*{Dynamics Expands}

\section*{Reeves Instrument}

Reeves Instrument Corp., a subsidiary of Dynamics Corp. of America, has taken over a \(\$ 5,000\),000 plant and added facilities at Roosevelt Field in Mineola, N. Y. The addition increases the company's plant space by more than 30 per cent.
The 280,000 sq ft plant will bring together under one roof Reeves research, development and production programs previously located in a number of buildings at Roosevelt Field. It will accommodate more than 3,000 employees, as compared with 1,300 in the old facilities.

The new plant will increase Reeves Instrument's total factory and office space in Mineola and New York City to approximately half a million sq ft .

\section*{Radio Club \\ Elects Officers}

Frank A. Gunther
The Radio Cluib of Americal elected Frank A. Gunther president of the organization for 1956. Serving with him are Walter A. Knoop, Jr., vicepresident; O. James Morelock, corresponding secretary; Joseph J. Stantley, treasurer, and John H. Bose, recording secretary.

Directors for the coming year include: Ernest V. Amy, Ralph R. Batcher, George E. Burghard, Paul F. Godley, Harry W. Houck, Fred
A. Klingenschmitt, O. F. Masin, Renville H. McMann, Jr., Jerry B. Minter, Harry Sadenwater, Francis H. Shepard, Jr., Joseph J. Stantley, Jr. and Craig Walsh.

Frank A. Gunther is vice-president of Radio Engineering Laboratories in Long Island City.

Walter A. Knoop is a professional engineer in the firm of GawlerKnoop Co. O. James Morelock is a radio consultant in Millington, N. J. Joseph J. Stantley is with Continental Sales Co., Inc., of Newark, N. J. John H. Bose is engaged in research at the electronics research laboratories of Columbia University.

\section*{GE Appoints Three Engineers}

George G. Gabel has been appointed manager of the General Electric semiconductor products manufacturing operation in Syracuse, N. Y.

He joined GE in 1929 at Schenectady and transferred to Syracuse in 1944 as assistant superintendent of aircraft gas turbine manufacturing operations.

Immediately prior to his latest appointment, Gabel was manager of manufacturing engineering at the Clyde, N. Y., semiconductor products plant, a position he assumed in 1954.

James W. Nelson, Jr. was appointed manager, and William A. Edson, consulting engineer of GE's microwave laboratory at Stanford Industrial Park, Palo Alto, Calif.

Nelson succeeds H. R. Oldfield, Jr. who has been manager of the micro-

J. W. Nelson, Jr.

For the first time, the design engineer, experimenter, prototype technician and special-equipment builder can enjoy the advantages of basic circuit assemblies in the form of neat, compact, high-reliability modules. Instead of gathering, designing, wiring and testing the various components that go into basic circuitry, the user now has all that work done for him with these handy plug-in Aerovox modules, thereby permitting better utilization of time and talents towards more creative design requirements.
Selecting the most popular basic circuits with corresponding sub-assemblies, Aerovox now offers, through its parts distributors, seven standard-circuit modules. As a further convenience in selecting and connecting these modules, Aerovox makes available a 12 -position printedwiring breadboard with connection jacks and bus bars.
Individual standard-circuit modules, mounting sockets, breadboard, may be purchased separately. Complete kit containing seven standard-circuit modules, breadboard, banana plugs and instruction manual, in handsome plastic box, available at special introductory price.

WRITE FOR BROCHURE and name of nearest Aerovox distributor.

\section*{(944) THREE PHASE VARIABLE FREQUENCY POWER SUPPLY}

\author{
CONTINUOUSLY VARIABLE FROM 360 TO 440 CPS
}

CML's Model 1450 Electronic Generator has a power output of 750 volt-amperes with output voltage regulation of better than \(2 \%\) from no load to full load. Harmonic content is below \(3 \%\) at full load.

Model 1450 is also available as a fixed frequency unit employing a tuning fork oscillator to give a frequency accuracy and stability of 1 part in 50,000 . This stability is independent of line voltage or frequency.

Catalogue sheet " \(P\) " describes the Model 1450 and is available for the asking.

\section*{COMMUNICATION MEASUREMENTS LABORATORY, INC.}

350 LELAND AVE., PLAINFIELD, N. J.

\title{
CANOGACORPORATION
}

Radar Systems. Antennas • Recelvers Test Equipment • Microwave Components
5953 SEPULVEDA BLVD., VAN NUYS, CALIFORNIA
wave laboratory since it was established in late 1954. Oldfield was recently promoted to general manager of a newly-established industrial computer section in Syracuse, N. Y.

Prior to his new appointment, Nelson was manager of electron tube research of the microwave laboratory. He has been with the company's electronics division since 1946, and was a member of the management team which established the Laboratory.

As consulting engineer, a new position in the microwave laboratory, Dr. Edson will be responsible for advice and counsel on technical aspects including planning for the future. He has been manager of microwave techniques at the laboratory since August, 1955, when he joined General Electric.

He came to the laboratory from Stanford University where he was acting professor of electrical engineering. Prior to this he was director of the school of electrical engineering at Georgia Institute of Technology.

\section*{Ramo-Wooldridge \\ Plans Expansion}

Ramo-Wooldridge Corp. plans the erection of a major electronics manufacturing plant in the Denver area.

It exercised an option on 640 acres of industrial land near Littleton, Arizona. Ground will be broken in May or June on the first structure of \(172,000 \mathrm{sq} \mathrm{ft}\), with allowance for future expansion of the site, if needed.

Original production in the new factory will be electronic systems for military customers, such as fire control systems for military aircraft, radar systems, electronic computers, or advanced communications equipment. Later, the company expects to produce automation and data processing equipment for commercial clients, as well.

The facility will accommodate 1,500 employees, with annual sales of \(\$ 25\) million.

Buildings currently occupied or under construction by RamoWooldridge in the Los Angeles International Airport area total \(300,000 \mathrm{sq} \mathrm{ft}\).

Employment has grown from

Delco Radio, first organization to develop and use Mi-Power transistors for automotive application, now offers permanent employment opportunities to men of highest caliber.
Some of these opportunities are for men experienced in solving problems of semiconductor processing, development, or application. Other positions exist for persons experienced in semiconductor or related research.
These are challenging jobs where probessional knowledge will be utilized to the highest degree. Qualified persons will be rewarded with personal satisfaction, recogntion and stimulating companionship with other eminent scientists, and will also receive liberal compensation and benefits as important members of the General Motors organization.
If you are capable of assuming the responsibility of leadership and are experienced in transistor, diode, photo cell or other semiconductor projects, write to Personnel Director, Department B Your inquiry will be held in confidence.

WORK WITH THE MEN WHO FIRST MADE HI-POWER
TRANSISTORS AVAILABLE IN AUTO RADIOS!
Relocation expenses are paid to pleasant Indiana community where you'll make congenial associations with men of recognized standing in the field of semiconductors.

DIVISION OF GENERAL MOTORS, KOKOMO, INDIANA

\section*{TELEX Mini-Mike}
- Tiny, precision speaker-microphone.
- Quality, dynamic performance.
- For use in dictating machines, transceivers, other electronic equipment where "ruggedness" is important.

Model 100 PRECISION DESIGN Wt. approx. \(11 / 3 \mathrm{oz}\); Size \(1^{1 " x} \times 1\) " \(\mathbf{x}^{3} / 4^{\prime \prime}\); Impedance 10 ohms

\section*{TELEX Boom-Type} NEN Headset le . , - Lightweight . . . adjustable tone arms . . . no ear muffs.
- Available with single, double receivers, split phones.

1912 N. Buffum St., Milwaukee 1, Wis.
112 S. Water St. Providence 3, R. I. Representatives in Principal Cities

150 in July, 1954, to nearly 1,400 currently. By December, 1956 employment is expected to exceed 2,300.

Sales for the company totalled \(\$ 10,000,000\) in 1955 vs. \(\$ 2,000,000\) in 1954. Sales this year are expected to exceed \(\$ 20,000,000\).

\section*{Philco Names \\ New President}

James H. Carmine will retire as president of Philco Corp. when his term ends in April. He plans to continue as an active member of the company's board of directors and finance committee and to serve as special consultant on sales and merchandising. He joined Philco in 1923 as a battery salesman.

William Balderston, who has been associated with Philco for 25 years, is to be re-elected chairman of the board. James M. Skinner, \(J_{r}\)., who is now a director and vicepresident and general manager of the television division, is to become president.
Skinner, son of the late James M. Skinner, who was president of Philco from 1929 to 1939, joined the company in 1934.

\section*{Gunderson Receives} Amateur Award

Left to right, J. Milton Lang of GE, under secretary of state Herbert Hoover, Jr., Robert W. Gunderson

Robert W. Gunderson, a blind New York City radio amateur, was presented with the Fourth Annual Edison Radio Amateur Award for outstanding public service.

He received the trophy and \(\$ 500\) check for designing electronic test

\section*{21 seconds to make complete noise or vibration analysis!}

This chart record produced by the Brush Spectrum Recorder presents a complete frequency and noise level analysis for an electric motor. It is an example of the way Brush instrumentation can aid your analysis of noise or vibration:
- All sounds trom 14 cycles to 36,000 cycies per second automatically scanned amdrecorded by the Brush Spectrum Recorderto eliminatelaborious plotting of data.
- Measurements made in onethird octave steps, to positively ldentify frequencies.
- Complete recording through the complete frequency range made in 21 seconds, to save valuable engineering time.

The Spectrum Recorder is one unit in the most complete line of noise and vibration instrumentation availahle (manufactured in Denmark by Bruel \& Kjaer). Thus Brush can offer you matched systems, and offer application assistance on complete projects. For complete information call your Brush representative, or write Brush Electronics Company, Dept. K : 4, 3405 Perkins Avenue, Cleveland 14, Ohio.

How leading companies use this Brush instrumentation

BRUSH ELECTRONICS
PIEZOELECTRI PIEZOELECTRIC MATERIALS M ACOUSTIC DEVICES
MAGNETIC RECORDING EQUIPMENT AND COMPDNENTS

\section*{COMPANY}

Division of Clevite Corporation

LOCKHEED
uses Spectrum Analyzer for data reduction of telemetered information
o measure noise iransmission through circraft fuselage wall panels.

GENERAL ELECTRIC. . . Uses Frequency Response Recorder to check mechanical resonance points of both steam and jet turbines when blades are magnetically vibrated.

CARRIER . . uses Spectrum Recorder for production quality control checks of room air conditioning units.

\section*{UNION}

\section*{SELENIUM RECTIFIERS fitted to your application}

SPECIALIY DESIGNED COMBINATIONS of standard UNION selenium rectifier cells range in size from \(1 / 8^{\prime \prime}\) to \(1 / 2^{\prime \prime}\) diameter rated from 2.5 to 40.0 milliamperes per cell on a single-phase full-wave bridge basis.

"SELENIUM SLIMS" in five ratings ranging from 1.25 to 20.0 milliamperes and maximum peak inverse voltages from 36 to 9360 with condenser input filter. Available in diameters from \(1 / 8^{\prime \prime}\) to \(1 / 2^{\prime \prime}\).

POWER RECTIFIERS with solid stack assembly range in size from \(1^{\prime \prime} \times 1^{\prime \prime}\) to \(5^{\prime \prime} \times 6^{\prime \prime}\) and with convection cooling are rated from .80 to 10.0 amperes per cell on a single-phase full-wave bridge basis.

Our engineers can help you in designing the best rectifier for your applications. Write for catalog.

\section*{GENERAL APPARATUS SALES \\ UNION SWITCH \& SIGNAL}

DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY

PITTSBURGH is

instruments which operate by sound instead of visual meters. The annual award is granted each year by General Electric Co. for ingenuity and sacrifice displayed in employing amateur radio in the public interest.

Speakers at the award banquet in Washington, D. C. included Herbert Hoover, \(\mathrm{Jr}^{2}\), the undersecretary of state, himself a licensed radio amateur.

Gunderson is editor of The Braille Technical Press, an electronics magazine for the blind, and has translated electronics refereace books into Braille.

\section*{Mallory To Acquire General Dry Batteries}
P. R. Mallory plans to acquire the business of General Dry Batteries.

General Dry is to operate as a Mallory division under its present management. In addition to president Walter A. Onorato, General Dry's officers include Fielder Is rael, executive vice-president, and Dudley Thomas and Frank J. Wisinger, vice-presidents.

\section*{Motorola Extends Arizona Expansion}

A \(\$ 3\) million plant expansion for its Phoenix, Ariz., research and production facilities is planned by Motorola.

The new plant site is on 160 acres 2 miles southeast of Scottsdale, resort center about 9 miles west of Phoenix.

The additional \(150,000 \mathrm{sq} \mathrm{ft}\) of production and laboratory space will bring total plant space of Motorola's three Phoenix facilities to \(300,000 \mathrm{sq} \mathrm{ft}\).

Work in the new plant will be devoted to research, development, and production of military electronic equipment. This plant will parallel production of one of the two other Motorola divisions in Phoenix. The company's third plant, a \(\$ 1.5\) million structure, produces transistors for military and civilian use.

When completed, the new facility will employ a work force of 1,000 -divided into about 400 engineers and physicists and about 600 as-
sembly and production workers. Motorola now employs 2,000 at its two other facilities at Phoenix.

When all three plants are in production, the company payroll will top \(\$ 1.5\) million a month making it one of the largest in the state.

\section*{Westinghouse Promotes Five Engineers}

Gilbert C. Larson has been appointed assistant general manager of the television-radio division of Westinghouse.

He was employed by the Colonial Radio Corp. in 1935 as supervisor of the production engineering laboratory. From 1940, he was with the Hazeltine Electronics Corp. as a project engineer on iff gear, and later, as engineer in charge of the New York licensee laboratory. He joined Westinghouse in December 1947. Prior to his new appointment, he was manager of engineering for the television-radio division.

Norman S. Kornetz has been appointed manager of engineering of the division. He was formerly manager, engineering sub-division, where he had direct responsibility for all television engineering.

He was a radio receiver design engineer with the Colonial Radio Corp. from 1938 through 1942. In 1942 he became a captain in the U. S. Signal Corps and was in charge of the government's administrative radio communications at Calcutta, India, until 1945.

He joined Westinghouse in 1945 as manager of television engineer-

Norman S. Kornetz

\section*{UNION}

\section*{MINIATURE RELAY Plate Circuit 10,000 OHMS}

This new UNION 10,000 ohm, cur-rent-sensitive relay picks up at a nominal value of 8 milliamperes throughout the entire temperature range of \(-65^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), while maintaining the excellent shock and vibration characteristics inherent in our standard design. It can withstand 200 volts across the coil continuously.

These current-sensitive relays have a life expectancy of 100,000 operations. They meet or exceed all requirements of Mil-R-5757-B and withstand shock up to 50G's, vibration through 1500 cycles at 15 G 's.
The relays are available in 6PDT or 4 PDT models, all the usual mountings and with plug-in or solder-lug connections.

\section*{DRY CIRCUITRY APPLICATIONS}

In grid switching applications where the relay contacts must operate at low-voltage, low-current levels, special gold-alloy contacts have proved highly reliable. They maintain their low resistance through hundreds of thousands of operations. They are available on the complete line of UNION miniature relays.

\section*{GENERAL APPARATUS SALES \\ UNION SWITCH \& SIGNAL}
division of westinghouse alr brake company
PITTSBURGH 18

PENNSTIVANIA

\section*{To users of ceramic parts...}

\section*{is THERMAL SHOCK giving you trouble?}

Stupakoff offers a number of ceramic bodies providing exceptional resistance to thermal shock, the most outstanding being STUPALITH, which has withstood over a hundred cycles from \(2000^{\circ} \mathrm{F}\) to liquid air without harm.

\section*{are HIGH TEMPERATURES your problem?}

Components formed of selected Stupakoff Ceramic Materials will withstand extremely high and prolonged temperatures, without deterioration, even in the presence of many corrosive gases and materials.

\section*{would PRECISION-MADE CERAMICS help speed your production?}

Stupakoff specializes in the mass-production of precisionmade ceramic parts and components. Tolerances of \(\pm 0.001\) in. are not unusual. Their use in assemblies of electrical and electronic equipment sharply reduces assembly costs, and assures correct functioning of the equipment in service. This precision is particularly valuable in miniaturized assemblies.

\section*{Write for the new Stupakoff Ceramic Data Chart}

DIVISION OF

LATROBE, PENNSYLVANIA

Technical Operations was formed in March, 1951. Its officers include three of the original founders: Dr. Frederick C. Henriques, Dr. Eric T. Clarke and Dr. Marvin G. Schorr.

\section*{Burroughs Appoints Engineering Director}

Thomas M. Butler
Thomas M. Butler has been appointed to the new post of director of engineering for Burroughs Corp. He was formerly chief development engineer.

He assumes responsibility for the administration of all engineering functions at the home office in Detroit. In addition he will be responsible for functional engineering coordination of product engineering in all divisions and subsidiaries.

Butler has been with the corporation for 37 years. He joined Burroughs in 1919 as a tool design apprentice under its apprentice program.

\section*{Chope Named Outstanding Engineer}

Wilbert E. Chope, president of Industrial Nucleonics Corp. of Columbus, Ohio has been named the "Outstanding Young Electrical Engineer of 1955" by the jury of award of Eta Kappa Nu, electrical engineering honorary fraternity.

This award is made annually to an electrical engineer under 35 and

\section*{PERFECTLY FUSED BOND eliminates "leakers"}

The single terminal hermetic seals shown here are among the most widely-used of literally hundreds of designs of Stupakoff Kovar Hard-Glass designs.
At the right is a typical cross-section showing how hard glass and Kovar alloy are intimately fused in an oxide bond that forms a true hermetic seal. Because the thermal expanision of Kovar exactly matches that of hard borosilicate glass, Stupakoff Seals are free from strain over the entire working temperature range.

Principal sizes available are:

\section*{Dimension A}

Over-all length 220 in . to \(37 / 6 \mathrm{in}\). Dimension B

Flange to lead end . 110 in . to \(27 / 8 \mathrm{in}\). Dimension C

Cup diameter........ 119 in. to 625 in. Dimension D
Terminal diameter,.... 015 in . to \(3 / 6\) in. Special sizes can be made if desired.
Terminals may be solid or tubular, with plain ends, or with flattened and punched or hook ends, as shown in the photograph.
WRITE for catalog 453A, which gives complete data and dimensions of all standard Stupakoff Kovar HardGlass Hermetic Seals.

Representative terminal designs are illustrated above. Stupalleofif

DIVISION OF

\section*{marion meters}

designed for Tomorrow

New illinois type smt SUB-MINIATURE Electrolytic Capacitors

Where space is at a premium-and absolute reliability is a must-there you will find ILLINOIS type SMT sub. miniature electrolytic capacitors.
- Immune to shock and vibsation.
- Ideal for low voltage DC circuits.
- Hermetically sealed - Immersion - proof aluminum cases.
- Securely anchored "double sealed" construction.
- Extended temperature ranges.

If your application is a "tough one", specify ILLINOIS Type SMT for complete dependability. Wide range of capacities and voltages.
out of the college less than 10 years in recognition of outstanding technical accomplishments and meritorious service in the interests of his fellowmen.

Honorable mentions were made to J. N. Grace of the Westinghouse Atomic Power Division; H. R. Johnson of Hughes Research Laboratories; D. B. Shuster of the Sandia Corporation and Glen Wade of the Stanford University Applied Electronics Laboratory.

With Henry R. Chope and George B. Foster, Chope founded the Industrial Nucleonics Corp. in 1950 to develop peace-time industrial uses of atomic energy. Starting with three men and zero sales, this company now employs close to 300 people and is a multi-million dollar corporation.

\section*{North American Selects Two Engineers}

Norman F. Parker has been appointed assistant chief engineer of autonetics, a division of North American Aviation.

Prior to his appointment, Dr. Parker served for four years as assistant chief of the division's guidance section. He first joined the company in 1948.
He was appointed supervisor of the theoretical analysis unit in 1950 and in 1951 was promoted to group leader, autonavigator systems group. He held the latter position

Norman F. Parker
until 1952 when he was named assistant chief of the guidance section.

Prior to joining North American he was employed as an engineer at the University of California radia-

\section*{3 ANSWERS TO POWER PROBLEMS}

More flexible shafts are being used in the electronic field today because they offer an economy in time, space, and costs.
There are three types of jlexible shafts available, each baving cerfain adtanfages of its оич.
The FIRST type of tlexible shaft is power drive, which transmits power between two points where, due to position, solid shafts pannot be used. The power drive flexible shaft provides for totation either clockwise or counter-clockwise with the wire wound according to the direction rotation in order to strengthen the cable while the assembly is in use.

SECOND is the remote control flexible shaft which ofters the advantage of rotation both clockwise and counter-clockwise and may function in either a continuous or an intermittent operation. The remote control flexible shaft has proven its value many times where the driven element required only
a fraction of a turn or many complete turns a fraction of a turn or many complete turns
and where both rotation and reciprocation and where both rotation and reciprocation
were required.
The THIRD type of ilexible shafting is the coupling which is an added application of the remote control flexible shaft and is parrs within a piece of equipment. There are no aligninent problenis to contend with because the flexibility of the coupling compensares for any difference in alignment between the drive and the driven elements.
For complete information and a better understanding of tlexible shafting write F. W. Stewart Corporation, 4311 Ravens wood Ave., Chicago 13, Illinois.

Frenchtown Metallized Terminals!
Here is Frenchtown's improved line of Annuluted Type Nicote Metallized Hermetic Terminals for use in controls, relays, transformers, capacitors, motors, and heater units. Customengineered of High Alumina CeRamics and metallized with our exclusive Nicote, these terminals are available in six varying sizes with a choice of terminal hardware to fit any exacting application. Write for Engineering Bulletin 1055.

\section*{frenchtown porcelain}

86 Muirhead Avenue - Trenton 9, N. J.
National Representatives: Lundey Associates 694 Main St., Waltham 54, Massachusetts Want more information? Use post card on last page. April, 1956 - ELECTRONICS
 Are these vital publications, that tell the story of your products and your company, as effective, readable, well designed and illustrated as they can be? Today more than ever, your entire operation is judged by each annual report, employee manual, and public relations piece that you produce. Have you examined your communications lately? If you have any doubt as to the impact of your instructional and promotional literature, remember

\section*{COMMINILATION IS OUIR BUSINESS}

For a good many decades McGraw-Hill has stood for complete coverage in the business literature field. Now the McGraw-Hill Technical Writing Service offers a new approach to your publication problems - an inte. grated writing, editing, illustrating, and printing service for the custom. production ol: instruction manuals, froduct bulletins, training aids, industrial relations litfrature, annual reports, company histories, rrocedural guides and other collateral literature. More than 150 editorial and graphic experts are at your disposal, ready to prepare high-quality material to your own or government specifications. Save time, save money . . . and make your communications work! Let our staff be your stafl for technical and business publications.

\section*{Mcfraw-hill Book Co. TECHNILAL WRITING SERVICE}

\author{
Write or phone Technical Writing Service, McGraw-Hill Book Co., Inc. 330 West 42nd Street, New York 36, N. Y. - LOngacre 4-3000
}
 ULTRA LOW WE ARE SPECIALLY ORGANIZED
TO HANDLE DIRECT ODDERS OR
ENQUIRIES FROM OVERSEAS SPOT DELIVERIES FOR U.S.
BILLED IN DOLLARSSETTLEMENT BY YOUR CHECK
CABLE OR AIRMAIL TODAY

\section*{capacitance \&attenuation \\ \begin{tabular}{|l|l|l|l|}
\hline TYPE & NNF, & IMPED \(\Omega\) & O.D: \\
\hline C 1 & 7.3 & 150 & \(.36^{\circ}\) \\
\hline C 11 & 6.3 & 173 & \(.36^{\circ}\) \\
\hline C 2 & 6.3 & 171 & \(.44^{\prime}\) \\
\hline C 22 & 5.5 & 184 & \(.44^{\prime}\) \\
\hline C 3 & 5.4 & 197 & \(.64^{\prime}\) \\
\hline C 33 & 4.8 & 220 & \(.64^{\prime}\) \\
\hline C 4 & 4.6 & 229 & \(1.03^{\prime}\) \\
\hline C 44 & 4.1 & 252 & \(1.03^{\prime}\) \\
\hline
\end{tabular}}

\section*{NEN ©MX and SM' sUBMINATUAE GONYEGTORS}

\section*{for service and lab. work Heathkit PRINTED CIRCUIT OSCILLOSCOPE KIT FOR COLOR TV!}

(1)
Check the outstanding engineering design of this modern printed circuit Scope. Designed for color TV work, ideal for critical Laboratory applications. Frequency response essentially flar from cycles to 5 Mc down only \(11 / 2 \mathrm{db}\) a 3.58 Mc (TV Do \(\frac{10}{}\) Mc (Ty color burst sync frequency). Down only 5 db at 5 Mc. New sweep generator \(20.500,000\) cycles, 5 simes the range usually offered. Will sync wave form display up to 5 Mc and better. Printed circuit boards stabilize performance specifications and cut assembly time in half. Formerly available only in costly Lab type Scope. Features horizontal trace expansion for observation of pulse detail - retrace blanking amplifier - voltage regulated power supply - 3 step frequency compensated vertical inpur - low capacity nylon bushings on panel terminals - plus a host of other fine features. Combines peak performance and fine engineering features with low kit cost!

\section*{Heathkit TV}

\section*{SWEEP GENERATOR KIT} electronic sweep system

(2)
A new Heathkit sweep generator covering all frequencies encountered in TV service work (color or monochrome). FM frequencies too! 4 Mc - 220 Mc on fundamentals, harmonics up to 880 Mc. Smoothly controllable all-electronic sweep sysrem. Nothing mechanical to vibrate or wear out. Crystal controlled 4.5 Mc fixed marker and separate variable marker 19.60 Mc on fundamentals and 57 180 Mc on calibrated harmonics. Plug-in crystal included. Blanking and phasing controls - automatic constant amplitude output circuit - efficient attenuation - maximum RF output well over . 1 volt vastly improved linearity. Easily your best buy in weep generators.
tion laboratory at Oak Ridge, Tenn.
D. B. Duncan has been appointed assistant chief of the guidance section, succeeding Parker.

Dr. Duncan first joined autonetics in August, 1950 as a research engineer in the guidance section's investigation unit. In August, 1954 he was promoted to group leader of the guidance analysis group. Due to a reorganization, he became group leader of the section's research group in July, 1955 and held that position until his recent appointment.

\section*{Servomechanisms Promotes Kasindorf}

Ira L. Kasindorf has been appointed chief development engineer of Servomechanisms eastern components division in Westbury, N. Y.

Prior to his appointment, he was a staff engineer at the company's eastern division for three years, where he was engaged in the development of analog computers and associated electronic and electromechanical components.

\section*{Telecomputing And Whittaker To Merge}

Telecomputing Corp. plans to acquire all of the outstanding stock of Whittaker Gyro, in exchange for 900,000 shares of authorized but unissued Telecomputing stock.

Telecomputing will specialize in scientific data processing equipment, commercial products and military products for guidance and control systems.

Telecomputing Corp. was formed in 1947 by Ward Beman and other associates. Whittaker Gyro and predecessor companies have been in business since 1938.

The management of Telecomputing Corp. will consist of Ward Beman as chairman of the board and Joseph Globig as president. Globig was formerly president of Whittaker Gyro.

Telecomputing's plant facilities consist of approximately \(146,000 \mathrm{sq}\) ft and total personnel of about 800.

Current backlog of the combined companies is approximately \(\$ 9\),000,000.

Wm. R. Whittaker Co., Ltd.,
parent company to Whittaker Gyro, will be the principal stockholder of Telecomputing Corp.

\section*{Ballard Joins Hall-Scott Motors}

Albert N. Ballard, has joined Hall-Scott Motors Co. as factory manager of the firm's electronics division in Burbank, Calif.

For 17 years he served in supervisory capacity for Convair Corp. In January, 1952, he became aircraft division manager of the White Motor Co. and later that year returned to Convair as chief industrial engineer.

Stanford Research
Annnint: Twn \(\qquad\)

\section*{Improved regulation}

The Model B3 Variable Voltage Regulated Power Sup ply is an improved version of the standard time-tested Model A3.
REGULATION: aganst load 15\%
against line . \(3 \%\)
CONTINUOUSLY VARIABLE, 0 to 350 volts DC.
CUIRRENT: 200 milliamperes.
FIPPLE less than 3 millivolts peak to peak at any current or volfoge. Either pessitive or negotive output terminal may be grounded
VARIABLE stabilized bias supply.

\section*{Continuausly Variable... without switching}

Models 5-2V and 5-4V Variable Valtage Regulated Power Supplies provide extremely well filtered and regulated direct Electronica MODEIS current output which may be varied continuously without switching from zero to 500 volts. Maximum current output of the instruments may be drawn at any vollage setting.
REGULATION: against lisad . \(15 \%\)
against line \(.3 \%\)
CONTINUOUSLY VARIABLE, 0 to 500 velts without switching
CURRENT: 200 milliamperes (any volrage setting) \((5-2 \mathrm{~V}\))
400 milliamperes (ony voltage setting) 15.4 V)
EITHER POSITIVE OR NEGATIVE output terminal moy be grounded.
RIPPLE VOLTAGE less than 5 millivolts peak to peak
VARIABLE stabilized bias supply.

Hycor band-pass and low-pass tele. metering filters are produced in exact accordance with accepted military standards. In addition to designs which conform to Applied Physics Laboratory specifications, miniature units are available.
Hycor telemtering filters ore potted for complete pratection against vibration and humidity. The finest components are used to minimize aging effects on characteristics.
Send for Bulletin TF which de. scribes standard types available.

Hycor engineers will be pleased to quote on your most exacting

12970 Bradley Avenue, Syimar 1, Calif.
communication and navigation equipment and direct the studies in system engineering.

He has worked with the airlines company 20 years. In Denver since 1946, he supervised the development of telecommunication requirements, procedures and policy involving air navigation and traffic control.

\section*{Donner Scientific Plans Expansion}

Donner Scientific Company plans to build a new plant on a 10 acre site it recently purchased in Concord, Calif. The new \(22,000 \mathrm{sq} \mathrm{ft}\) plant, scheduled for completion in June, will house the company's engineering laboratories, manufacturing facilities and administrative offices, now headquartered in Berkeley, Calif.

The first building will cost \(\$ 125,-\) 000 and an additional \(\$ 125,000\) will be invested in machinery, equipment and fixtures. The setting will be arranged to permit expansion to \(100,000 \mathrm{sq} \mathrm{ft}\) of floor space when required. Donner manufactures electronic test equipment, general purpose analog computers and aircraft control systems for inertial guidance of missiles and stabilization of aircraft.

The company was organized in August 1953 by W. K. Rosenberry, president, who also founded Berkeley Scientific Co. in 1946 and which was merged with Beckman Instruments in 1952. Under Rosenberry, Berkeley Scientific grew from a one-man operation, with an initial investment of less than \(\$ 10\),000 , into an instrument firm with annual sales of \(\$ 2,000,000\) and 300 employees. Donner Scientific has increased its personnel \(50 \%\) during the past 4 months and expects to be employing 500 persons by the end of 1957.

Donner also announced that Robert E. Krueger has been named marketing manager of the company.
Before joining Donner, Krueger was sales manager for Unitek Corp. in Pasadena, also before that chief mechanical engineer at Rutishauser Corp. in the same city. He was a staff member at Los Alamos Scientific Laboratory and

earlier was associated with Beckman Instruments and Douglas Aircraft in engineering capacities.

\section*{Thompson Products Names Gardiner}

Robert A. Gardiner has joined Thompson Products of Cleveland to head research and development work of the company's electronics division in aircraft and missile controls, sub-systems and components.

He was formerly for 12 years with the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics at Langley Field, Va. Earlier he was associated with Airborne Instrument Laboratories, of Mineola, N. Y. and General Industries Co. of Elyria, Ohio.

\section*{Stock Board Tours Packard-Bell Plant}

Robert S. Bell, left, executive vice-president and Herbert A. Bell, right, of the Packard-Bell Co. team up to explain methods of mass producing television receivers to F. E. Naley, second from right, president of the board of governors of the Los Angeles Stock Exchange, during a tour of the firm's main plant by the group. Looking on is Dr. N. Jacoby, dean of the UCLA School of Business and a member of the board of Packard-Bell. Stock exchange members inspected the technical products division, color television research laboratory, cabi-

New high-vacuum pump

CVC's KS-200 oil diffusion-ejector pump.

The KS-200 costs \(\$ 390\) F.O.B. Rochester (price subject to change without notice). For full technical data, write for Bulletin 5-31.
heats faster cools faster for faster cycling

You can complete more process cycles an hour and cut mainlenance costs with this new \(C V C\) oil diffusion-ejector pump.
The KS-200 is designed especially for TV tube aluminizing, vacuum-arc melting of metals, and other repelitive processes that require pressures in the 1 to 10 micron \(\mathrm{H}_{\mathrm{g}}\) tange.
Faster heating. Four heaters (combined capacity, 2000 watts) heat the pump's fluid from a cold start to operating temperature in only seven minutes.
The heaters sit in cylindrical wells that jut up into the pump fluid from the bottom of the boiler-an arrangement that combines the low heat loss of an internal-immersion heater with the easy maintenance of a heater mounted externally.
Faster cooling. An internal coil in direct contact with the pump lluid cools it enough for safe exposure to atmosphere in only one minute, a saving of four to fïve minutes over old designs.
No valves needed. Convaclor-12 pump fluid gives you shorter wam-up and cool-down times with the KS-200. The saving offsels the longer cycling required by most high-vacuum pumps when used without valves.

With Convaclor-12 fluid the pump's ultimate pressure is \(6 \times 10^{-5} \mathrm{~mm} 1 \mathrm{lg}\). You can reach \(1 \times 10^{-5} \mathrm{~mm} \mathrm{Hg}\) with Convoil-20 fluid, but speed and throughput become slower in the 1 to 10 micron range. See graph below.

Consolidated Vacuum Rochester \(\mathbf{3}, \mathbf{N} . \mathbf{Y}\).
a division of CONSOLIDATED electrodynamics corporation, Pasadena. California
Sales Offlces: Albuquerque . Atlanta - Boston . Buffalo . Chicago . Dallas - Detroit New York - Pasadena - Philadelphia - San Francisco - Seattle - Washington, D. C.

...bigh efficiency even at low plate voltages

\author{
PL-6549 \\ beam power pentode
}

This rugged, versatile power package, when used as a class \(C\) amplifier, delivers 60 watts at 600 volts... 110 watts at 1000 volts . . . with driving power less than \(3 / 4\) watt. An effjcient modulator, amplifier or oscillator. Provides distortion-free, high peak power for class \(A B\), single sideband service. Beam pentode construction offers a combination of peak power and linearity unattainable with conventional tetrodes. Rugged - ideal for all mobile applications.
ratings
Filament - Thoriated Tungsten
(quick heating)
Voltage 6.0 volts
Current 3.5 amps
Plate Voltage, Max. . . . 2000 volts
Plate Current, Max. . . . 150 ma.
Screen Voltage, Max. . . 600 volts
Plate Dissipation, Max. . . 75 watts
PENTA offers a complete line of power diodes, triodes, tetrodes, pentodes for many a.f and r.f applications, hydrogen thyratrons and vacuum relays. For power tube information, write for data fïle 203.

\section*{PENTA}
laboratories, inc.
316 N. Nopal St., Santa Barbara, Calif. Want more information? Use post card on last page.

\section*{ACME ISONEL WIRE}

\section*{Plus Acme \#150 VARNISH Equals Class B}

\section*{Equals MIL-T-27A Class S}

Freed Transformer Co., Inc., Brooklyn, N. Y., a leader in engineering and manufacturing of transformers and reactors for the electronics industry, has found in the above equation the solution to the manufacturing and performance problems of Class B (MIL-T-27A, Class S) Commercial and Military units. Acme Isonel Wire is a Class B (MIL-T-27A Class S) wire. However, optimum insulation system performance can only be achieved when this wire is impregnated with a compatible varnish. Acme \#150 is that varnish.
Acme \#150 Varnish does not require a high temperature cure. It has excellent resistance to oils.
Acme \#150 Varnish meets all the requirements of specifications MIL-V-1137A, Class CB, Type \(M\) for government equipment. In fact, it exceeds the heat resistance requirements of this specification by \(50 \%\).
Acme \#150 Varnish improves thermal stability, while maintaining dielectric strength when used in Class B (MIL-T-27A Class S) windings.

NEW HAVEN, CONN.
magnet wire - coils
Varnished insulations insulating varnishes AND COMPOUNDS

charge of east coast operations and chief engineer. Kenneth M. Rehler is vice-president in charge of west coast operations. Other officers are Robert L. Massard, treasurer and William P. Horton, clerk of the corporation.

Brooks was one of the original founders of the company in 1952. Prior to the forming of CCC, he was in the computer department of Raytheon. He served as overall systems coordinator during the construction of the RAYDAC computer. He was also project engineer at Barber-Colman Co.

\section*{IBM Maps Western Expansion}

IBM PLANS a multimillion dollar expansion of its west coast operations. The program includes:

A new 13-story office building and data processing center of advanced design in Los Angeles. Construction will start in mid-1956 and occupation by 600 people will get underway in mid-1957.

A six-story office building now nearing completion in San Francisco. Occupation by nearly 300 people will begin later this month.

New manufacturing, engineering and education facilities at San Jose. Approximately \(400,000 \mathrm{sq} \mathrm{ft}\) will be built during 1956 and occupied by 1,500 employees beginning in the fall.

A new office building in Santa Monica. Over 150 people moved into this two-story structure in midJanuary.

Data processing centers in Portland and Seattle. These facilities will be installed in Portland in March, in Seattle in June.

\section*{Byron Jackson Builds New Plant}

The Byron Jackson division of Borg Warner Corp, has begun construction on a \(65,000 \mathrm{sq} \mathrm{ft}\) electronics plant in Santa Ana, Calif. Total cost of the project for property, buildings and equipment will be \(\$ 1\) million.

Construction, to be completed in June, will include a \(45,000 \mathrm{sq} \mathrm{ft}\)
 older IN23B and IN23C crystals!
* Vastly improved sensitivity. The MA 408 insures a consistent minimum improvement in sensitivity in excess of 2 db over the older 1N23C.
* When operated in the MA 611 X -Band crystal mounwhich is specifical-y designed and "mated" to the 408 diodes, a minimum figure of merit at 9000 me is 16 C able vow in production quantities.

TEFLON* INSULATED WIRE AND CABLE

> The name Hitemp Wires, Inc. on a spool of Teflon insulated wire, tubing, multi-conductor sable, lacing cord or tape. . is your assurance of highest quality - bcrn of years of experience and development, and modern craftsmanship.

Although Teflon is as thin or thinner than ordinary insulations it has the amazing working temperature range of -90 C . to +250 C . . . it has opened new horizons in the electrical and electronic industries.

Hitemp's Teflon insulated products offer: low loss factor, low dielectric constant high volume resistisity, non-flammable, low coefficient of friction, unaffected by moisture, tough ... yet flexible, completely inert to all known commercial solvents.

For better products . . . for lower production costs . . . for improved performance. call the leading specialist in high temperature insulations today.
your nearest Hitemp Wires, Inc. representative or sales engineer.
HITEMPWIRES,INC. 26 WINDSOR AVE., MINEOLA, NEW YORK
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{NATIONAL REPRESENTATIVES} \\
\hline WASHINGTON, D.C. & KENTUCKY \& OHIO & michigan & ARK., KAN., MO., NEB. & los angeles ano & EXPORT \\
\hline GOVERNMENT & Gallagher Company & James B. Morrow & White Supply \({ }^{\text {co }}\). & central calif. & Hitemp Wires, Inc. \\
\hline John W. Houston Jr & 15 Eitche Lve. & 85 Louise Ave. & 4343 Duncan Ave. & C. B. Rush & Export Division \\
\hline 1625 \({ }^{\text {Washington } 6 . D . C}\). & Cincinnati, Ohio & Highland Park. Mich. & St. Louls, Mo. & \& Associates & Mineola, N. Y. \\
\hline Washington 6. D.C. & \begin{tabular}{l}
TEXAS \\
General Power Equip
\end{tabular} & \begin{tabular}{l}
INDIANA \\
Richard C Warner
\end{tabular} & NEW ENGLAND & 3757 Wilshire Blvd. Los Angeles 5, Calif. & OREGON WASH. Ray fohnston Co \\
\hline \multirow[t]{3}{*}{N. Y. \& N. J Par Distributors 240 Old Country Rd Hicksille, N. Y} & 5626 Oyer Street & Box 338 & Richard Whitehead & & 11009 Evanston Ave. \\
\hline & Dallas 6. Texas & South whitley, Ind & & s. calif. e ariz. & Seattle, Wash. \\
\hline & N. C., S. C. \& TENN. Glern \& tarson & \begin{tabular}{l}
ILL. \& WIS. \\
Wesley L. Wilson
\end{tabular} & Caine Sales Agency & 110 W . Broadway. & tulsa gokla. Joseph Turner \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
CANADA, VIRGINIA \\
W. VIRGINIA.
\end{tabular}} & 123 Etevard Court & 2750 W. North Ave. & 3020 N. Cicero Ave. & Glendale 4. Calis. & P. O. Box 7068 \\
\hline & Charbote 1, N C & Chicago. III. & Chicago 41, III. & Glendate 4. Caly. & Tulsa, Okla. \\
\hline \multirow[t]{4}{*}{PENNSYIVANIA Aironic Accessory Ca 161 Orinoco Drive Brightwaters. N. Y} & Mid. \& DEL. & FLORIDA & SAN FRANCISCO & UPPER N. Y. State & birmingham, ala. \\
\hline & Sol. W. Goodman & Larry Johnson & Bill Kolans \& Co. & Philip L Kirsh & C. H. Emory \\
\hline & 32 W . Biddle St. & 8163 N. E. 2nd Ave. & 3589 20th Street & 223 windemere Road & P. O. Box 9013 \\
\hline & 8altimore 1. Md. & Miami. Flofida & San lrancisco, Cal. & Rochester 10. N. Y. & Birmingham 9, Ala. \\
\hline \multicolumn{6}{|c|}{*Duponis trade Name for Potytetralluorolithylene} \\
\hline
\end{tabular}
building to house the main plant and offices, and a \(20,000 \mathrm{sq}\) ft testing laboratory. The main plant will eventually be enlarged to 100,000 sq ft .

The new facilities will consolidate Byron Jackson's electronic facilities currently handled in four separate plants in Pasadena, Calif.

\section*{Linear Equipment \\ Changes Name}

The corporate name of Linear Equipment Laboratories of Copiague, New York, has been changed to LEL Inc. This was brought about by the sale of the Linear Instruments division to the Measurements Corp. of Boonton, N. J., subsidiary of Thomas A. Edison. Linear Instruments will move to Boonton. The sale included all instruments, trade marks, good will and the trade name "Linear." The Linear line of instruments will be marketed through the present Linear sales representatives retained by the Measurements Corp. LEL will devote its entire efforts to the i-f amplifier division. It will manufacture i-f strips and transistorized products.

Construction has been started on a new building adjacent to the present manufacturing plant which will double manufacturing area.

Harry R. Clark was elected president of LEL Sales Corp. of Copiague, New York. He will also continue as vice-president and general sales manager of LEL Inc. LEL Sales Corp. will market the firm's wrist radio on a national basis.

\section*{Nebraska Electronics Firm Established}
J. J. Jensen has been appointed general manager of Nebraska Electronics Manufacturing Co.

Nebraska Electronics is a new corporation formed jointly by Good-All Electric Mfg, Co. and Radio Industries, Inc., for the manufacture of ceramic disc capacitors. The company's plant is located in Ogallala, Nebraska. All sales will be hand!ed by the distri-
bution organization of Good－All Electric．

Jensen had previously served as an assistant to the president of Good－All on staff assignments．

\section*{Penn－Texas Division Gets New Name}

The Plastic division，Colt＇s Manu－ facturing Co．of Hartford，Conn．， a subsidiary of Penn－Texas Corp． of New York，N．Y．，has changed its name to Manufactured Products Corp．The firm is a custom molder of plastics for packaging and in－ dustrial uses．

\section*{Two Engineers Join Bomac}

Louis W．Roberts
Louis W．Roberts joined the staff of Bomac Laboratories in Beverly， Mass．He will be in charge of a newly formed theoretical section which will function as a consulting group to other sections of the en－ gineering department．

He comes to Bomac from Micro－ wave Associates，where he was one of the founders and director of re－ search．His background also in－ cludes consulting work for M．I．T． engineering manager for Sylvania and professor of physics．

Donald R．Lester joined the staff of Bomac as an electronic engineer． He will be in charge of klystron development．

He has been associated with Ray－ theon and Trans－Sonics，Inc．，where

\section*{Look what YOU can have in Centralab}

\section*{packaged Electronic Circuits}

Transitor Hearing Aid Circuit （with tone suitch）

Special Filter Gircuit

Take a look at the many features that can be built in CRL＇s versatile Packaged Electronic Circuits．Pictured are some special assemblies that illustrate the use of ．．．
《Ry Fixed and adjustable resistors．
＜回 Fixed and adjustable capacitors．
《同 Inductance．
《尼 Specialized switches．
＜＜Wiring．
\(\leftrightarrow<\) Built－in tube sockets．
«ค）Mounting brackets．
《禹 Miscellaneous hardware．
Only Centralab P．E．C．＊can accomplish such a variety．Over 160 standard P．E．C．＊designs are available for your immediate use．For special requirements，call on Centralab engineers－but early in the planning stage， before you＇ve＂frozen＂your design．
Remember this is not a laboratory curiosity． Over \(55,000,000\) are in use today．

four-channel carrier-telephone terminal for radio links
This is a minaturized unit of advanced design which provides four voice channels on a trequency-division basis above a voice-frequency order-wire channel. Each of these five channels is provided with a 4 -wire 2 -wire termination and a voice-frequency ringing circuit for d-c or 20 -cycle signals. Adjustable attenuators are provided in the 4 -wire side of all channels, and a built-in test oscillator and meter permit complete line-up, maintenance and trouble-shooting checks to be made. Channel levels are from -9 to 0 dbm and line levels from -30 to 0 dbm . Channel width is 300 to 3500 cycles within 1 db .

This unit is only \(5 \frac{1}{4 \prime \prime}\) high by \(19^{\prime \prime}\) wide by \(14^{\prime \prime}\) deep. It mounts on a standard rack and operates from 115 volts \(50-60\) cycles a.c.

> RADIO ENGINEFRING PRODUCTS 1080 UNIVERSITY ST., MONTREAL 3, CANADA TELEPHONE
> UNiversily 6-6887

Angeles, Calif. Hufford has contracts on hand for production of guided missile components which will be administered by Siegler's Hallamore electronics division in Long Beach, Cal.

Siegler acquired the business of the Hallamore Electronics Co. last year.

\section*{Axel Expands Electronics Division}

Anel Brothers electronics division moved to a recently purchased fivestory plant in Jamaica, N. Y., the former Fairchild Camera \& Instrument Corp. plant.

Axel also expanded and re-organized its design and development engineering staff, under the direction of Manuel L. Matnick, chief electrical engineer. The enlarged staff will concentrate on the design and development of electronic components

\section*{Du Mont Consolidates, Promotes Executives}

Du Mont Laboratories has consolidated all government manufacturing, engineering and sales operations into one division under Thomas T. Goldsmith, Jr., as vicepresident and general manager of the government and research divisions.

Dr. Goldsmith has been head of Du Mont's research division since 1936. He will continue to direct the company's research division which also engages in extensive commercial programs and electronic applications.

Dr. Goldsmith joined Du Mont in 1936 as director of research, and he has been vice-president, research, since 1953.

Irving G. Rosenberg was appointed vice-president and general manager of the technical products division which embraces electronic instrument, broadcasting equipment and mobile communications operations. He has been with the company since 1942 , and has served in various management capacities. He has been a vice-president since 1953.

William H. Kelley has been elected a director of the company

\section*{New RC} Antenna Coupling Network built to \(U / L\) specifications

Resistance
1/2 meg. nominal.

Cazacits
4 4\% smmf. GMV tol.

Tested at 1500 V.A.C. in accordanee with U/I requilemenis.

Naximume size
\(.312^{\prime \prime}\) diameter. . \(900^{\prime \prime}\) lenoth

Centralab Tubular Resistor-Capacitor Combination
There's nothing else like it!
Combines a high-quality, ceramic capacitor and a built-in fixed resistor in the space of a capacitor alone.

Costs you less than an equivalent combination of individual resistor and capacitor (not to mention installation cost)

Radial lead construction; Durez coated; stamped with capacity and resistance value.

Sets using TUBE-R-Cap have been approved by Underwriters' Laboratories.

\section*{PRECISION ATTENUATION to 3000 mc !}

\section*{SINGLE "in-the-line"}

\section*{ATTENUATOR PADS} and 50 ohm COAXIAL TERMINATIONS

This new group of pads and terminations features the popular Types C and N connectors, and permits any conceivable combination of the two styles.

six-position

\section*{tURRET ATTENUATOR}
- Frequency Range: dc to 3000 mc
- Characteristic Impedance: 50 ohms
- Available Attenuation: Any value
from 1 db to 60 db .
- Accuracy: \(\pm 0.5 \mathrm{db}\).
- Power Rating: One watt sine wave power dissipation
and vice-president and general manager of consumer products.

He joined Du Mont in 1954 as vice-president, marketing. As a director, he succeeds Stanley F. Patten who just recently assumed the office of treasurer, and now holds the dual office of vice-president and treasurer.

Kelley will direct the operations of the firm's receiver division and the cathode-ray tube division.

Arthur Israel, Jr., was elected secretary and Bert L. Graham as assistant secretary.

Israel has been assistant secretary. He succeeds Bernard Goodwin, who has resigned.

Graham was formerly controller, then special assistant to the president before succeeding Israel as assistant secretary.

\section*{Philips Selects Research Head}

John A. Hipple

John A. Hipple has been elected vice-president and director of research of North American Philips Co. He will succeed O. S. Duffendack as director of the Philips laboratories at Irvington-on-Hudson.

Dr. Duffendack, who has reached retirement age, will continue for this year as a member of the board of directors and as a consultant.

Since 1953, Dr. Hipple has been director of the Mineral Industries Experiment Station and assistant dean of the College of Mineral Industries at Pennsylvania State University. He was chief of the atomic

PRECISION QUALITY components OF TUNGSTEN, MOLY, NICKEL CLAD WIRE, ALLOYS, KOVAR

throughout production with Tuncsien hard glass leads produced under General Electric Timing Control. Each tungsten lead is microspecially inspected for flaws. DKE offers highest quality and LOW PRICES. Send drawings for quotations and let us prove the economy of our prices.

CALL OR WRITE FOR QUOTATIONS ON YOUR SPECIFIC REQUIREMENTS

\section*{тне engineering co.}

27 WRIGHT ST., NEWARK 5, N,J.
physics section of the National Bureau of Standards from 1947 to 1953.

\section*{Association Elects New Officers}

Electronics Manufacturers Association elected the following officers: president, I. A. Mitchell of United Transformer Co.: treasurer, Hyman Winograd of Presto Recording Corp.; secretary, Allan C. Bernstein of Adams Laboratories.

Elected to the board of directors were David Wald of Dewald Radio Mfg. Co. and United Scientific Laboratories; I. Walter Wyckoff of Pilot Radio Corp.; Lloyd Hammarlund of Hammarlund Mfg. Co. and Arthur Blumenfeld of University Loudspeakers.

\section*{Texas Instruments To Acquire Burlington}

Texas Instruments plans to purchase the business and assets of the Burlington Instrument Co . in a cash transaction.

Burlington Instrument, 20-yearold manufacturer of electrical indicating instruments, is located in Burlington, Iowa. The entire operation will be integrated with the TI components division and transferred to Dallas as soon as possible. Manufacturing space has been leased near the firm's main Dallas plant for the expansion of the components division.

Burlington product sales have totalled well over a million dollars per year.

\section*{Varian Associates \\ Name Patterson}

Howard R. Patterson, formerly vice-president and general manager of Chromatic Television Laboratories of Oakland, Calif, has joined Varian Associates as manager of the production engineering department.

The former department head, B. C. Gardner, has been promoted to head the product engineering division.

Patterson served as chief engineer of the television and pickup tube factories of RCA at

Official u. S. NAVY PHOTOGRAPH

THE USS Boston, recently commissioned as the first guided missiles warship in history, carries the newest and most powerful weapons afloat.

Vitro Laboratories takes pride in the Navy's "well done" for its part in the systems engineering of the missiles installation and launching system on the Boston.

Another first in the important new field of systems engineering is the comprehensive multiple-range timing system conceived, developed, installed and operated by Vitro for armament testing at the Air Force Armament Center in Florida. By means of pulse electronics, a time signal generator establishes base "central" time measured in 10,000 ths of a second. The system transmits time signals to remote ground and airborne stations for precision command timing and time identification of action photographs.

These are but two of many examples of Vitro's role in systems engineering of the most advanced kind. They are forerunners of significant new systems applicable across a broad industrial spectrum.

Vitro Laboratories is now building a million-dollar laboratory to make its staff and facilities available for new industrial and governmental projects.

Write for detailed information to
VITRO LABORA TORIES, 962 Wayne Avenue, Silver Spring, Md.

\section*{A Division of}

\footnotetext{
Research, development, weapons systems
\(\$\) Nuclear and process engineering, design
Refinery engineering, design, construction
父 Uranium mining, milling, processing, refining
- Rare metals, heavy minerals, fine chemicals
(3) Ceramic colors, pigments, chemical products
}

Want more information? Use post card on last page. 410

Lancaster, Pa., as chief production engineer in the Chicago cathoderay tube factory of Rauland Corp. and as chief engineer of the cathode-ray tube department of Raytheon before joining Chromatic in 1951.

\section*{Daystrom Realigns \\ Three Executives}

Samuel J. Childs has been appointed vice-president and general manager of Weston Electrical Instrument Corp., a subsidiary of Daystrom, Inc. Childs, who was formerly president of Davstrom furniture division, will be in charge of all manufacturing and production at Weston.
He was president and treasurer of the Friend Manufacturing Co. in Gasport, N. Y. and of the Bennett Manufacturing Co, in Alden, N. Y. before joining Daystrom.

George J. Parker was appointed vice-president of Daystrom in charge of its Washington office. He was formerly president of the Daystrom Instrument division at Archbald, Pa. Walter W. Slocum, recently promoted to vice-president of operations of Daystrom, will assume current responsibility for the operation of the instrument division.

\section*{Air Associates Appoints Harries}

Wollgang Harries
Wolfgang Harries has joined the staff of the research and development division of Air Associates.
Dr. Harries came to the United

\section*{Another PRBTSTO} precision instrument

\section*{Model 100}

The Presto Model 100 *Microwave Secondary Frequency Standard is a versatile, inexpensive test signal generator. In the laboratory or on production test bench, the Model 100 together with microwave receiver and auxiliary signal generator, will provide rapid measurement of frequencies from 50 to \(11,000 \mathrm{mc}\), with \(\pm .005 \%\) accuracy.

\section*{The Presto Model 100 will}
- perform functions of expensive primary standards
- calibrate standard signal generators
- establish standard frequencies
- calibrate and align receivers
- test radar or microwave installations
- provide markers for panoramic displays

This unique and valuable instrument weighs only \(81 / 2\) pounds and comes complete with 4 foot RG-58/U cable with UG-260/U connectors, Presto XH microwave crystal holder with Type N male plug and 8 foot power cable.

Price: \(\$ 265.00\) f.o.b. Paramus, N. J. Write for complete information and specifications.

RECORDING CORPORATION
Specialty Products Division
Poramus, New Jersey
Want more information? Use post card on last page, April, 1956 - ELECTRONICS

\section*{NOW...theAll-purpose} 'Scope wh WESTON

WAVEFORM ANALYSIS

Response curves accurately displayed. Ideal for use with Weston intensity morker disploy. A fast, retrace sweep circuit with cathode follower oulput prevents pattern distortion.

SQUARE WAVE RESPONSE

Overshoot is only 2 to \(5 \%\). Rise Time is 0.1 Micrasecond. Square wave depicted 250 kc .

PHASE MEASUREMENTS

Phase shift between horizontal-vertical amplifiers, \(0.500 \mathrm{kc} 0^{\circ}\), to 1 mc within \(2^{\circ}\); by internal adjustment with gain contro!s at max \(0^{\circ}\) phase shift possible on any specific frequency to 6 mc .

\section*{RESPONSE CHARACTERISTIC}

Note flatriess throughout specified range; to 3.6 inc down 1.5 db , at 4.5 mc down 3 db , af 6 mc down 6 db .

Jewel bearings for lowest torque, and superior seal against surroundings that contain abrasive dust, make this new, Model LLT \(7 / 8\) Waters pot the ideal unit for high-reliability service where minimum torque is essential. With torque low enough to permit actuation by a Bourdon tube or a bimetallic thermal element, this potentiometer offers new advantages in sensitive-instrument applications as well as in computer, servo, and selsyn uses. Check your needs with these specifications:
\begin{tabular}{|c|}
\hline \multirow{8}{*}{} \\
\hline \\
\hline
\end{tabular}

Where the features of a ball-bearing potentiometer are desirable, specify Waters Model LT \(7 / 8\) "Lo-Tork" potentiometer.

Write for data sheets on jewel-bearing and ball-bearing precision wire-wound potentiometers.

Do you ever need pots that are "just a bit different"? Maybe we can help you - by modifying a standard Waters design or by taking a bold, new approach. Tell us your need and we'll tell you what we can do.

States from Germany in 1951. He was formerly chief engineer for Matawan Electronics Co., a subsidiary of Lavoi Laboratories, where he was responsible for the development of automatic calibrators and testors for electronic equipment.

\section*{CBS Names \\ Quality Chief}

David S. Blackwell has been named manager of quality control for CBS-Columbia.
He was formerly chief production engineer for the Warwick Manufacturing Corp. and director of quality for Capehart-Farns worth.

\section*{Kearfott Plans New Plant}

Kearfott Co., GPE subsidiary, plans a new engineering-sales building to be constructed opposite the present home offices and production plants in Little Falls, N. J.

The target date for completion of the building is early 1957.

Kearfott's present engineering forces will provide the majority of the 1,500 persons expected to be employed in the new building. More than 500 additional engineers, technicians and production specialists are being added.

The new building, which will contain \(240,000 \mathrm{sq} \mathrm{ft}\) of floor space, will increase the total facilities of Kearfott to \(600,000 \mathrm{sq} \mathrm{ft}\).

\section*{Hughes Aircraft \\ Appoints Two Engineers}

Hughes Aircraft Co. appointed J. W. Clark and S. W. Lichtman to the scientific staff of its research and development laboratories.

A specialist in high power microwaves and nuclear electronics, Dr. Clark will serve as a staff scientist reporting directly to Dr. A. V. Haeff, vice-president and director of research.

Lichtman, associated with guided missile and rocket research, heads the missile reliability effort of the Hughes systems engineering department.

Dr. Clark was most recently with Litton Industries where he was

\section*{HIGH- \(\mu\) FERRITE POT CORES FOR EFFICIENT MINIATURIZATION}

Versatile Ferroxcube pot cores permit construction of miniature coil assemblies having moderate inductance values with relatively high Q. Shielding is excellent, stray fields are minimized. Cores can be placed close together or even stacked, with neglicible. coupling between adjacent coils.

Ferroxcube Pot Cores are available in 3 high permeability ferrite formulations.

WRITE FOR ENGINEERING BULLETIN

FERROXCUBE CORPORATION OF AMERICA
A Joint Affiliate of Sprague Electric Co. and Philips Industries Managed by Sprague
35 EAST BRIDGE StREET - SAUGERTIES, NEW YORK

GEE-LAR MANUFACTURING COMPANY
421 South Wyman Street - Rockford,lllinois

\section*{NEW! DOUBLE-RANGE Incremental-Inductance BRIDGE}

For production and Iaboratory testing of coils
with d-c and a-c magnetization.

This new, two-in-one instrument provides fast, easy measurement of inductance from zero to five and five to 180 henries, with superimposed d-c from one to 500 milliamperes, in inductors up to 750 ohms resistance. Accuracy \(\pm 3 \%\).

1 Direct reading of inductance on large, balance-control dial calibrated for 60-400-1000 sps, and for use at any intermediate frequency.
2 Three-inch 'scope shows phasedifference nulls.
3 Panel instruments read direct current and a-c volts.
4 Continuous and independently adjustable control of a-c voltage, 0-135 v., and direct current supply, 0-500 ma.
5 External-frequency input for measurements at frequencies between 60 and 1000 cycles.

The double-range calibration of the Model 1002-C Incremental Inductance Bridge permits high accuracy in the measurement of low values. Its rapid, simple operation and rugged construction make it equally suitable for production-line and laboratory use. For detailed information, write for bulletin EL-4.

Price \(\$ 895.00\) complete, net F.O.B. Wayland, Mass.

NEW MINIATURE
FEED-THRU
CAPACITORS
Paper Dielectric - Hermelically Sealed Gudeman Impregnant \#257 Types 271 and 272

The Gudeman Feed-Thru Capacitor, Types 271 and 272 , is a three-terminal component designed to be used for R.F. Inferference suppression in a manner similar to a low pass filter. The typical insertion loss characteristics for these Feed-Thru Capacitors when measured in a 50 ohm line are in accordance with MIL-Standard 220.

The internal construction of these Feed-Thru Capacitors is designed so as to minimize the inherent inductance; therefore, these units perform functionally as nearly as possible to an ideal capacitor.

- Screw neck mounting
- Hermetically sealed tubular construction
- Glass compression or ceramic solder seal terminals
- High insertion loss from . 15 to 1000 MC
- Ratings range from 1 to 20 amps at 125 V.A.C. \((0-400\) cycles \()\) or 400 V.D.C.
- Operating temperature range: \(-55^{\circ} \mathrm{C}\). to \(+85^{\circ} \mathrm{C}\).

\section*{340 W. Huron, Chicago 10}

\footnotetext{
Want more information? Use post card on last page.
}
director of the nuclear electronics division. Lichtman was head of the missile laboratory division of the Naval Ordnance Laboratory, Corona, Calif.

\section*{Astron Buys Skottie Electronics}

Astron Corp. of East Newark, N. J., manufacturers of capacitors and r -f noise interference filters, bought all of the outstanding stock of Skottie Electronic Corp. of Peckville, Penna. The purchase includes the plant buildings and production facilities.

Skottie manufactures ceramic capacitors and also supplies subminiature units designed specifically for transistorized and printed circuits.

Steps are being taken to expand the firm's production facilities.

Eitel-McCullough Selects Hall \& Heil

James L. Hall
James L. Hall has been named group leader of the ceramic receiving tube group for Eitel-McCullough of San Bruno, Calif., manufacturer of electron-power tubes.

Dr. Hall has assumed the duties of Paul Williams who has moved to the position of special assistant to the director of research. Hall came to Eimac as an electronic research engineer in July, 1953 from the Stanford Research Laboratory. He was made assistant department
(@) PORTABILITY...weighs less than 15 pounds, measures \(10^{\prime \prime} \times 71 / 8^{\prime \prime} \times 8^{\prime \prime}\).
(O) VERSATILITY ...can be used as recording millivoltmeter or -with appropriate transducers - to record measurement of physical quantities.
(O) RECTILINEAR trace represenfation.
(O) FULL CHART zero positioning.
(O) HIGH INPUT impedance and high allowable signal source impedance.
© PANEL damping control for optimum stability.
(O) CHART DRIVE extension for synchronization with other equipment.

THE VARIAN G-IO GRAPHIG RECORDER HAS ALL THESE FEATURES AND MORE. . . IS PRIGED AT \$295

WRITE TODAY FOR COMPLETE TECHNICAL DATA ON this remarkable new INSTRUMENT AND ITS FULL ACCESSORY LINE.

\section*{Special Products Division}

VARIANassociates

Representatives in all principal cities MICROWAVE TUBES - INSTRUMENTS Want more information? Use post card on last page. April, 1956 - ELECTRONICS

\section*{Clarify all types of} Audio Frequencies types，frequency characteris－ tics and impedance matches． Boehme Communication Filters Especially designed．．． －for minimum＂ringing＂or ＂tailing＂（transient response） －for optimum resultsuuder dynamic conditions
Write for data sheets，today？

\section*{H．O．Boehme，Inc．}

Designers and Manufacturers Communication Equipment Since 1917
Precision Electro－Mechanical Apparatus
915 Broadway ．New York 10，N．Y．

HOV

FAR

AFE

YOU
GOING

AS AN

\section*{玉エ（CTRONIC}玉NGINEER？

If you＇re a qualified electronic engineer with ability，ambition，and imagination，your best chance for professional growth is with Elec－ tronic Engineering Company of California

You can exercise your initiative and versatility on the wide variety of projects that form our increas－ ing backlog．And you will be assured of recognition，security，excellent facilities，and the finest possible working conditions

How far you go is up to you！
Send a resume of your background to Bob Lander

Electronic Engincering Company －1 Califormia
180 SOUTH ALVARADO STREET
IOS ANGELES 57，CALIFORNIA

\section*{METER－RELAYS}

For Sensitive and Accurate Control

\section*{RANGES：}
\(0 / 20\) Ua．to 0／50 A． \(0 / 5 \mathrm{Mv} . t o\) \(0 / 500 \mathrm{~V}\) ．
The trip point is adjustable to any point on the scale arc． These meter－relays are sensitive to changes of as little as \(1 \%\) ．One con－ tact is carried on moving pointer．The other is on a semi－fixed pointer．When two pointers meet contacts close and lock．Holding coil is wound directly over moving coil．Reset can be man－ ual or automatic．Spring action in contacts kicks them apart forcefully．
Three sizes of clear plastic case models， \(21 / 2,33 / 4\) and \(41 / 2\) inches（all rectangular）． Two ruggedized and sealed models， \(21 / 2\) and \(31 / 2\) inches（round metal cases）． Contact arrangements：High Limit Sin－ gle，Low Limit Single or Double（both high and low）．Contact rating is 5 to 25 milliamperes D．C．
Suggested circum for meter－relays and com－ plete spesifications including prices are covered in new 16 －page 8ulletin G－b，which you can get by writing Assembly Products，Inc．，Chester－
land 4，Ohio．

\section*{FUDEMAI NEW＂XC＂PLAStIC FILM DIELEGTRIC CAPACITORS}

Hermetically Sealed（GIass to Metal） Tubular Cased

The development of the Gudeman ＂ XC ＂capacitors results in a new line of high temperature capacitors that has exceptionally high insu－ Iation resistance，low power factor and low dielectric absorption．The case sizes were selected whereby no voltage derating is required when the capacitors are used within a temperature range from \(-65^{\circ} \mathrm{C}\) ． to \(+165^{\circ} \mathrm{C}\) ．

The Gudeman＂XC＂capacitors as shown are hermetically sealed， tubular，oil filled（Gudeman Impreg－ nant \＃258），plastic film dielectric． Other case styles such as bathtub and rectangular types are available．

\section*{NEW MINLATURE DRY ELEGTROLYHICS}
－Gudeman＂EMM＂Type
－Size Range \(3 / 16^{\prime \prime}\) to \(3 / 8^{\prime \prime}\) diameter \(1 / 2^{\prime \prime}\) to \(7^{\prime \prime}\) long
－Capacity Range： 1 MFD to 100 MFD
－Voltage Range： 3 V．D．C．to 50 V．D．C．
－Operating Temperature： \(65^{\circ} \mathrm{C}\) ．
－Hermetically Sealed
－ \(99.99 \%\) Purity Foil
－Low Leakage Current
－Low Equivalent Series Resistance

\title{
Neliance Nica Co., Snc. MICA SPECIALTIES
}

\section*{RADIO and TV TUBE SPACERS}

\section*{CAPACITOR FILMS}

\section*{HEAT RESISTANCE WASHERS}

Reliance are specialists in the fabrication of Mica parts. For 27 years, they have met industry's specifications for critical tolerance and quality control. Our years of experience meeting close tolerance work can help you whenever you are faced with tight specifications and our quality control will meet the increasing rigid specifications of today's design

> QUALITY MICAS MAKE QUALITY TUBES

Is your application of Mica correct?
Consult us for help in obtaining the proper use of Mica in your products.

> RELIANCEMICACO., INC.
> 341-351 39th St.
> Brooklyn 32, N. Y

NOTHing strikes so brutally at human lives as a slum.
Yet of America's many millions of homes, the blot that is a slum covers more than 1 out of every \(10 \ldots\) and nearly one-half of all our homes are urgently in need of repair and basic improvements.

Will the blot go on spreading? Or will a concerted, nationwide attack on the causes of slums shrink it, year by year, until it is wiped out? Today, this is a challenge to every American . . . a challenge that must be met.

\section*{Your community . . . your problem !}

A slum reaches across blocks, across miles, to sit on your doorstep and demand a price.

You pay it in the threat of crime and juvenile delinquency to your family. You pay the price in higher personal property taxes to fight the disease and crime and poverty that are slum-bred. You pay personally when the value of your home sinks as community deterioration takes another step closer.

Your firm pays when the community where you do business goes downhill. Slums automatically mean lower purchasing power and less effective labor.

\section*{Good citizenship is good business}

It's good citizenship and good business both for your firm to join efforts to check housing decay. . . to stop slums before they start. In fact, it's the responsibility of every business, as it is of every other good citizen, to support community improvement efforts.

Some slums are beyond repair. They should be torn down and a fresh start made. Others can be remodeled, made to conform to better living standards. So it is up to you to get behind every sound program which seeks to provide adequate housing for all our people.

Adding your support to the efforts of the millions already aftacking the problem, your firm can help stop slums cold and put America's housing standards at a new height.

\section*{How to get into action}

A group of Americans from every walk of life has formed a new, non-profit organization to help combat home and community deterioration - The American Council To Improve Our Neighborhoods . . A.C.T.I.O.N.
Send for a free copy of "ACTION." It explains what A.C.T.I.O.N. is and proposes to do. It also lists booklets, research reports, check-lists, and other material which can help you protect the housing health of your community. Address P. O. Box 500, Radio City Station, New York 20, N. Y.
AGOM

- Flat from DC to 4.5 mc to reproduce 3.58 me sync burst and oscillator signals in color TV sets.
- 4-step freq-compensated attenuator in both AC and DC positions.
- Built-in calibrator permits peak-to-peak voltage measurement.
- Automatically syncs anything visible on the screen.
- Pre-set TV V \& H sweep positions (\(30 \mathrm{cps} \& 7875 \mathrm{cps}\)).
- Edge-lit lucite engraved graph screen with dimmer control; filter; standard bezel fits standard photographic equipment.
- 5UP1 CRT

Write for FREE New 1950 Catalog E-4. and Name of Distributor
84 Withers Street - Brooklyn 11, N. Y.
(C)56 Prices \(5 \%\) Higher on West Coost

\section*{NaNJ.. MALCO AUTOMATIC PIN AND CONTACT INSERTING MACHINE FOR PRINTED CIRCUIT APPLICATIONS}

Request Bulletin 551. Better yet, give us the facts about your operation. We'll show you how your costs can be lowered and your production increased.

\section*{...the Most Important Cost-Saving Advancement Yet Offered}

Malco's Automatic Pin and Contact Inserting Machine can materially reduce your assembly costs - and at the same time step up production to practically any desired level.
Operation is completely automatic. Up to 40 or more self-retaining terminals are inserted into the printed circuit board in any symmetrical or non-symmetrical pattern within a 3 -second cycle. A special platen engages the self-retaining snap-in feature of the terminals, and the board is ready for immediate further assembly and dip soldering.
Malco Automatic Inserting Machines can be engineered to your particular application or production requirements. in any symmetrical or non-symmetrical .

Electronics \& Machine designs and manufactures standard and special types of r-f co-axial connectors.

\section*{Astatic Names Engineering Director}

Fred Gluck

Fred Gluck has been appointed as director of engineering of The Astatic Corp. of Conneaut, Ohio. He was formerly chief engineer of Fada Radio \& Electric Co. He will direct and coordinate the various engineering activities at Astatic.

While at Fada, Gluck was responsible for all engineering activities involved in the design and manufacture of ty and radio receivers, and with that company's military electronics program. He was previously in engineering and sales administration with the Radiart Corp. of Cleveland.

\section*{New Missile \\ Firm Formed}

Systems Research Corp., a new company formed by a group of former Lockheed scientists who resigned last December following a policy dispute, began operations at its Van Nuys, Calif. headquarters.

Heading the company is Dr. Ernst Krause, former director of Lockheed's missile systems research laboratories branch. Dr. John L. Barnes, former director of Lockheed's computer and control laboratory, is serving as vice-president of the new company and Dr. Montgomery Johnson, former di-

Frequency: 30cps to 3kc and higher -
Low Output Impedance - High Luput Impedare
Also available: ©hit for panel mounting
WRITE FOR COMPLETE DESCRIPTIVE LITERATURE
GOAST GOIL GOMPANY
WE 6-6188
MANUFAGTURERS OF CUSTOM TOROIDAL WINDINGS AND PRODUCTS
Dept. A-1 5333 W. Washington Blyd., Los Angeles 16, Calif.

\section*{MOLYBDENUM} PURE and THORILTED TUMGSTEN \(>\) For ELECTRONIC APPLICATION RIBBONS
 STRIPS FORMED PIECES

Your spectial-melals rolled/ 10 thin sizes - clośe Tolerances H. CROSS CO.

15 BEEKMAN ST., N. Y. 38, N. Y.
worth 2.2044 and COrtlondt 750470

\section*{limitless.}

Poly-Scientific's newly perfected manufacturing processes permit limitlas variation in dèsign every part custom to your individual ments.
\begin{tabular}{|c|c|}
\hline & A real achievement in sub-minia-
turization: thirty-two \(0.140^{\prime \prime}\) di. ameter rings in less than one inch of length, with no sacrifice of electrical or mechanical characteristics: Rugged and accurate
stainirss steel flange and center rod insure perfect alignment. Solld coln gold rings of 140 Brinnel harciness are finished to a
high pellsh. Also note color coded teflon insulated leads. \\
\hline
\end{tabular}

This extremely aceurate commutator, used to generate a critical Impulsing sequence, is fabricated with coln geotd segments common to
P- 30 tlon of which guarantees uniform wear and long life

Gat the full story . . . wrim. Iodoy for descriplive literature.

CORPORATION
Dept. E BLACKSBURG, VIRGINIA

Available in 5 Sizes
1. \(0 x-1052\). Length \(2-13 / 32^{\prime \prime}\). 10 contacts, space thick.
to \(0.067^{\prime \prime}\) thick. 3.21 32". 18 con2. Dx -1852 . Length \(3.21 / 32^{\prime \prime}\). 18 . 5 or boards \(0.060^{\prime \prime}\)
tacts, spaced \(5 / 32^{\prime \prime}\). tacts, spale thick.
to \(0.071^{\prime \prime}\)
3. DX-2252. Length 4.9/32". 22 con3. DX. 2252 . Length 4 . For boards \(0.060^{\prime \prime}\)
tacts, space \(5 / 32^{\prime \prime}\). to \(0.071^{\prime \prime}\) thick. 4. \(0 \times-2842\) Length \(4-9 / 32^{\prime \prime} .28\) con. 4. 0 ts, spaced \(1 / 8^{\prime \prime}\). For boards \(0.060^{\prime \prime}\)
to \(0.071^{\prime \prime}\) thick to \(0.071^{\prime \prime}\) thick. \(4.9 / 32^{\prime \prime}\). Double 5. Dy-4453. Length \(4.9 / 32\). spacts. spar row, total of 44 conted circuit boards \(5 / 32^{\prime \prime}\). For printed \(0.00^{\prime \prime}\) thick.
\(0.062^{\prime \prime}\) to 0.10\()\)

Nylon plastic shells... gold plated contacts DX contacts of phosphor bronze, "AY of beryllium copper. All contacts "errip" the board, which \(11 / 32^{\prime \prime}\). Each rated at approximately polarization studs provided. 5 -amp. Pors 2000 and 2500 v .
Flashovers
ac rms. row types for boards printed single-row types for boards sides comon one side only, or type for boards mon. printed both sides having printed bolits, not common. Please refer to Dept. 120
 plys ELECTRIC CO., 3209 Humboldt St.0./
Califoria.
Representatives]
and CANNON ELLes 31, California. Represent Los Angeles 31 , in all principal cities and distributors
Want more information? Use post card on last page.
rector of Lockheed's nuclear physics laboratory, is the corporation's secretary-treasurer.

The new company expects to devote some of its energies to projects dealing with specific missile parts, but its primary aim is research and development work on the entire missiles system.

\section*{Narda Establishes Manufacturing Subsidiary}

The Narda Manufacturing Corp. has been formed as a wholly owned subsidiary of The Narda Corp.
The new company will manufacture uhf and microwave test equipment and detecting elements for The Narda Corp. In addition, the firm will engage in government contract and sub contract work relating to electronic test equipment.

Officers of the new corporation are: president, Dr. John C. McGregor; vice-president, William Bourke; vice-president in charge of engineering, Stuart Casper; vicepresident in charge of manufacturing, James McFarland.

\section*{Oxford Division Appoints Plant Head}

Fred Boecker has been appointed plant manager of Oxford Electric's transformer division.

He comes to Oxford from the Rola Company of Cleveland, Ohio, where he was in charge of transformer operations. Prior to that, was in charge of transformer operations at Utah Products of Chicago.

\section*{Marvelco Names Design Director}

Clarence B. Knudson has been appointed director of the newly formed product and applications design section of Marvelco Electronics division of National Aircraft Corp.

Knudson comes to Marvelco from Hoffman Laboratories where he was manager of the new products development engineering division. He has been vice-president in charge of engineering, Vantool, Inc.; director of engineering, Wash-

\section*{sturdy TEMFLEX 105...}

\section*{Meets Military and Commercial Specifications}
- Irvington's Temflex 105 helps put your product in the strategic position of meeting both government and commercial insulation requirements. This versatile, flexible plastic tubing meets Mil-I-631-C specification (... far exceeds it!) Temflex 105 is QPL and UL approved as a \(105^{\circ} \mathrm{C}\). tubing. Improved heat deformation qualities and resistance to "cut through" give you \(20 \%\) greater strength over older types. Self-extinguishable and fungus resistant Temflex is produced by Irvington's Plastics Department in all standard colors to fit all standard wire sizes. Send for literature and samples. *Reg. U.S. Pat. Off.

suecialists in designing ard manufaciuring of allpurpose fosteners and wire forms. Tooled to produce over 1000 styles in ony screw size, material, finish, quantity, to your specifications.

Serving Industiy for Thirty-five Years - OTHER PRODUCTS -
- TOOLS - DIES - STAMPINGS Bulletins on complete line upon request WENCO MANUFACTURING CO. 1133 W. Hubbard St., Chicago 22, III, U.S.A.

\section*{DIRECT READING OF PM DEVIATION}

25 to 500 mc . At Low Cost!

LAMFKIN 205-A fM MODULATION METER
- Indicates instantanecus modulation deviaIndicates instantanequs modulation dev.
tion, positive of negative up to 25 KC .
- Accuracy \(10 \%\) of full scale.
- Tunable 25 to 500 MC . in one band, with fast and slow controls.
- Sensitivity 10 millivalts or better through. out range.
- Speaker for aural manitoring, oscilloscope output for visual manitoring.
- Meets FCC spess for mobile-radio maintenance.
- Size only \(7^{\prime \prime} \times 12^{\prime \prime} \times 71 / 4^{\prime \prime}\). Weight 13 lbs .
- Price \(\$ 240.00\) net. Sotisfaction guaranteed or money refunded.
For measuring transmitter frequencies from 0.1 to 175 MC . (crystal-controlled transmitters to 500 MC .), within \(0.005 \%\), use the companion unit-the LAMPKIN 105-B MICROMETER FREQUENCY METER!

Write today for technical data on both instruments.
LAMPKIN LABORATORIES, INC.
Instruments Dive, Bradenton, Florida
any mathang prodlems?
- ENGRAVING
- ARC ETCHING
- NUMBERING
- LETTERING
- CALIBRATING

\section*{Also}

Tracer Guided
- PROFILING
- SLOTTING
- MILLING
end for booklet 29
Write for name of nearest representative

Heut hermes engraving machine corp. 13-19 university place new york 3. n. y.

\section*{PRECISION PHASEMETITR}

\section*{\(0.1^{\circ}\) ABSOLUTE ACCURACY}
\(0.01^{\circ}\) incremental accuracy 30 to 20,000 cycles per second

0 to \(360^{\circ}\) phase range
10-megohm input impedance (shunted by \(25 \mu \mu \mathrm{f}\))

The New Maxson Model 901 Precision
Output connection for strip-chart recorder.

Self-contained power supply for 105-125 volts, 50-60 cycles.
Adaptable to standard relay-rack mounting.

Price \(\$ 3990\) net
F.O.B. Long Island City.

Phasemeter is a direct-reading electronic instrument adaptable to a wide variety of demanding measurement applications in computers, synchros, and amplifiers.

The instrument measures phase difference between two sinusoidal voltages; phase angles are read from a two-degree, step control with vernier indicator having a precision of \(0.01^{\circ}\). Built-in sensing provides direct reading of proper quadrant. Accuracy is independent of even harmonics and of third harmonics up to \(1 \%\). Input-level range is from 0.5 to 10 volts rms.

Write or phone us for further information.

47-37 Austell Place
Long Island City 1

\section*{New York}

Tel: RAvenswood 9-1850
 . . . because they've been tested, tried, and proved in use!

Why are ACEPOTS and ACETRIMS being written into the specifications of so much new equipment? Because they not only meet the requircments of space and weight saving compactness, but they also meet the vital requirement of dependability

Special design and use of newest materials are features you get in ACEPOTS and ACETRIMS. The design is the result of \(31 / 2\) years development and \(l\) year of of \(31 / 2\) years" development and 1 year of
successful use. Ace's system of manufac. ture and exacting inspection and quality control assure you of highest quality standards. A Polaroid picture record is supplied with each ACEPOT showing linearity and resolution.

If you want sub-miniaturization, yet want to be sure of the performance and dependability of a beavyweight champion, consull Ace and you'll be right. Expedited consult Ace and youll be right. Expedited
delivery on prototypes. Prompt delivery on production orders. Send for catalog sheets and application data sheets.
\begin{tabular}{|r|r|}
\hline operation: \\
\hline results: \\
\hline application: \\
\hline
\end{tabular}

\section*{FULLY AUTOMATIC, SAFE,} HIGH PURITY, ECONOMICAL

PURE NITROGEN WITH CONTROLLABLE HYDROGREN CONTENT PRODUCED AT LOWEST COST

\section*{FOR MATERIAL OR PROCESS}

\section*{NITRONEAL GAS GENERATOR}

Pure nitrogen is produced by this equipment with a controllable hydrogen content that can be varied to meet changing requirements and maintained at any desired percentage between \(.25 \%\) and \(25 \%\).

Write for additional data on how the Nitroneal Gas Generator can be applied to your process or in your plant.

Request FREE,
informative booklet No. 21.

113 ASTOR ST., NEWARK 5, N. J.
ENGELHARD NNDUSTRIES
NEW YORK• SAN FRANGISCO. LOSANGELES•CHICAGO
ington Institute of Technology ; section head, American Bosch Corp. and electronics engineer at Westinghouse.

\section*{Hewlett-Packard \\ Plans Expansion}

Hewlett-Packard Co. of Palo Alto, Calif., has leased a 40 -acre site in the Palo Alto area to build new manufacturing facilities. The property, owned by Stanford University, was leased for 99 years. The company hopes to begin construction in a year. The present plant and offices will be retained.

\section*{Infra Selects \\ Chief Engineer}

Fenimore Fisher

Fenimore Fisher was promoted to chief engineer of the motor and generator division of Infra Electronics Corp.

He formerly was senior engineer in the servo motor laboratory of the firm at the design level. Prior to joining Infra over five years ago, he was employed as design engineer by the Naval Aircraft Instrument Laboratory in Philadelphia.

\section*{Signal Engineering Changes Its Name}

Wheelock Signals, Inc. is the new name of Signal Engineering \& Mfg. Co., makers of relays, fire alarm systems, audible signals, code call system and auxiliary equipment.

The change, made to simplify the
 tions. The tiny plugs, 2 conductor type with combination clamp and solder lug terminals, pass the same 500 volt breakdown test as do plugs many times larger. Miniature jacks are also 2 conductor type, with either open or closed circuit. Tiny microphone connectors are available in both cord mounted and panel mounted types.
For plugs, jacks and connectors . . . standard or miniature . . . call on Electrocraft.

\section*{Sonex Transistor Tester}

A general purpose transistor tester for laboratory, field and industrial use. It measures and reads directly on a four inch meter the following transistor parameters:
Beta: 0-50 0-150
or as calibrated
\(I_{\text {eo }} \quad 0-50\) microamperes
\(0-150\) microamperes
\(R_{\text {e: }} \quad 0.02\) megohms to
2 megohms
Write for descriptive literature
SONEX, INC.
245 Sansom St., Upper Darby, Pa.

\section*{Mew Miniature RELAYS swith 20 amps. reliably}

Class 11-D
For DC operation to 150 V. Minimum operating

For AC operation to 440 V . or DC 10230 V. Minimum operating power, \(1 / 2\) watt. 2-1/16" long, \(1-1 / 16^{\prime \prime}\) wide, 1-9/16 \(6^{\prime \prime}\) high.

Send for Catalog

ENGINEERS SPECIFY Hoyt for-
\(\sqrt{ }\) Appearance \(\sqrt{ }\) Economy
You get big advantages - optimum performance at minimum cost-when you specify HOYT Instruments incorporating more than 50 years' Manufacturing experience. HOYT offers you a complete Line of Panel and Portable Meters in a variety of sizes, ranges and cases . . Milliammeters, Microammeters, Millivoltmeters, Ammeters, Voltmeters and others-Mov-ing-Coil Repulsion and Rectifier Types-all designed for today's needs.

Take advantage of HOYT's lower cost! Write today for complete information and prices on the Meters you need.

\section*{7ort ELECTRICAL INSTRUMENTS Sales Div.: BURTON-ROGERS COMPANY 42 Carleton Street, Cambridge 42, Mass., U.S.A.}

COMPLETE LINE of deflection yokes for every need including military and special yokes. Focus Coils for tough problems. We'd like to help you with new applications. Write or phone Dr. Henry Marcy today.
syntronic
corporate name, is a change in name only and the business will be continued as heretofore by the present personnel with the same ownership, products and policies which have characterized the company over the past forty years.

The change of name follows the firm's recent move to larger and new plant facilities and offices at Long Branch, N. J. The company was previously located in New York City.

\section*{Zenith Establishes West Coast Lab}

Zenith Radio Research Corp. of California, subsidiary of Zenith Radio, established a research laboratory in Redwood City, Calif.

Winfield W. Salisbury will be director of research of the lab.

The laboratory will be concerned with electronic developments in areas outside the household radio and television field which may lead to diversification of the company's activities.

\section*{Jerrold Electronics} Opens New Laboratory
Jerrold Electronics Corp. dedicated its new 10,000 sq. ft research laboratory in Huntington Valley, Pa . In addition to the electronic research facilities, it includes a machine shop, plastic molding shop and two model shops for assembling prototype models.

\section*{Clary Names Two Engineering Heads}

Clary Corp. has appointed two assistant chief engineers to head new development programs for its electronic and data-processing equipment and for business machines.

Kenneth F. Oldenburg and Milton Scozzafava were promoted to the newly-established offices of assistants to Robert E. Boyden, chief engineer. Both have been engineering supervisors since 1952.

Oldenburg will continue in charge of the electronic and data-

Miniature and Sub-Miniature SLIP RING ASSEMBLIES BRUSH BLOCK ASSEMBLIES COMMUTATORS
and other Electro-Mechanical Components

\section*{PRECISION MADE} TO YOUR OWN SPECIFICATIONS

Precision molded products with exacting tolerances in precious and non-precious solid metals of all alloys. All types of Thermo-Plastic and Thermo-Setting materials.

> Slip Ring Assemblies fabricated or one-piece precision molded to your specifications in Nylon, Kel-F, Mineral filled Mellamine, Phenolic, and other materials. Rings and leads spot welded or brazed together for positive electrical circuit.

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

\section*{COLLECTRON CORPORATION}

MUrray Hill 2-8473 • 216 East 45th Street • New York 17, N. Y.

\section*{TWIN REGULATED POWER SUPPLY - \(\$ 44500\)}
 \(0-500 \mathrm{ma} 0-300 \mathrm{v} \underset{\substack{\text { continuously } \\ \text { varlable }}}{\text { con }}\)
Two completely independent high current supplies, fed from separate auto transformers. The + and - terminals of each supply are isolated from the chassis. Either may be grounded independently of the other. Each supply has a 2 stage DC amplifier, separate fusing and separate controls.

\section*{TIIT BARBER colman HIIL} high quality for a wide range of applications

MOTOR WITH CENTRIFUGAL BIOWER

Looking for a d-c fractional hp motor of unusually high quality, high dependability? Specify Barber-Colman, the versatile line of small motors in both permanent magnet and split series types. in various mountings and speeds, and outputs up io \(1 / 10 \mathrm{hp}\). Ideally suited to power electro-mechanical actuators, switches, hlowers and programming devices. Barber-Colman small d-c motors are also available with lightweight radio noise filters to meet radio interference requirements of USAF. They are ideally suited for use as tachometer generators. Whatever your problem involving small motors, consult Barber-Colman Company for an ex. pert solution.

Write for free catalog No. 100
BARBER-COLMAN COMPANY
Dept. D, 1459 Rock Street, Rockford, Illinois

\section*{3 Relay Types by FILTORS, inc.}

\author{
Now a Leader in the Sub-Miniature Relay Field
}

SUB-MINIATURE 4PDT
The Smallest, Actual Size Hermetically-Sealed 4PDT Relay Available Today
TYPE: 26SR12
Mtg. Ctrs. 1.406 Shock: 50 G VIb. : 10 G at 5
to 500 cps
Amb. Temp.
to \(+125^{\circ} \mathrm{C}\)
Welght: 2.602

MIL SPECIFICATIONS
All Made to MIL-R-5757B and M
All Made to MIL-R-5757B and MJL-R-25018 (USAF)
dRy circuit relays available IN PRODUCTION QUANTITIES

Write Today For New Catalog Listing Sales \& Engineering Office Nearest You

\author{
FILTORS, INC. \\ 30 Sagamore Hill Drive \\ Port Washington, L. I., N. Y. \\ \section*{Canadian Office:} \\ MUS ELECTRONIC SALES, LTD. \\ Tel.: EMpire 8-3806 Exporf Office: \\ MAURICE I. PARISIER \& CO. 1860 Broadway, New York 23, N. Y. \\ MIPARISIER NEW YORK
}

Want more information? Use post card on last page.
handling equipment department and Scozzafava of the business machines department.

Oldenburg joined the engineering department as a designer in 1946 and for the past few years has been in charge of the data-processing laboratory.

\section*{Consolidated Sets Up Data Laboratory}

Robert L. Sink

Consolidated Electrodynamics Corp. has established an advanced electronic data laboratory.

The lab will undertake development of advanced equipment in the magnetic-tape data-processing field under contract to governmental and private agencies.

Named to head the Laboratory, which will be located in Pasadena, was Robert L. Sink, former assistant director of engineering for Consolidated.

He joined Consolidated in 1945 as chief electrical engineer. Previously, he had held engineering positions with Litton Engineering, Hewlett-Packard and GE.

\section*{General Controls Acquires Division}

General Controls Co. of Glendale, Calif., acquired the precision potentiometer division of Electro Circuits of Pasadena.

The new division is to operate as an independent unit with all Electro personnel continuing with

\section*{No more "priority"!}

Expanded production enables us to offer our Telephone type twincontact Relays to any industry.
For many years, Stromberg-Carlson production of twin-contact Telephone type relays has been completely absorbed by the independent telephone industry.
Last year, we hecame a division of General Dynamics Corporation. A five-million-dollar expansion program is under way and one result is already increased relay manufacturing facilities, enabling us to broaden our distribution.

These relays-proven by years of reliable service in the telephone fieldare designed to operate under extreme ranges of temperature and humidity. They are made in many types of which these are typical.

Type \(A\) is a general-purpose relay especially adapted to the control of switching operations.
Type B is a gang-type relay which can be equipped with three times the number of spring combinations as the " A " type.
Type C. Two relays on the same frame; mounts in same space as the " A " type. It is particularly effective where small space is a factor.
Type D. Miniature general-purpose relay of approximately \(1 / 3\) the size of " A ".

The catalog in the photograph above gires fullor specifications. We'll gladly send one on request.

\section*{}

\section*{STROMBERGCARLSON}

A DIVISION OF GENERAL DYNAMICS CORPORATION - TELEPHONE INDUSTRIAL DEPT., 111 CARLSON ROAD, ROCHESTER 3, N. Y. Want more information? Use post card on last page.

ApriI, 1956 - ELECTRONICS

AMPLIFIERS for RADAR \& GUIDED MISSILE Application

Save valuable time in your development programs. Stock IF Amplifiers available for immediate delivery or modified to meet your end use requirements. Whatever your IF problem, contact our IF Enginecring Department.

Frequencies: 5 to \(100 \mathrm{MC} \&\) Higher

\section*{T Formerly: LINEAR EQUIPMENT LABORATORIES, Inc.}

\section*{700 achratal yart}
 SERIES 2400
- Improved Socket Contacts - 4 individual flexing surfaces. Positive contact over practically their entire length.
- Cadmium plated Plug and Socket, Con-
 tacts mounted in re-P-2406.CCT cessed pockets, greatly increasing leakage distance, 1 N CREASING VOLTAGE RATING.
- Interchangeable
 with 400 Series.

Send for complote Catalog No. 20. Plugs, Sockets, Terminal Strips.

Solve "IN-PLANT" PRINTING PROBLEMS
- FASTER - NEATER - AT LOWER COST

\section*{COLOR BANDING WIRE LEAD COMPONENTS}

The Markem 69A Machine semiautomatically applies up to six color bands to wire lead components such as resistors and condensers. Band width and color changes are easily made. Automatically feeds and ejects; bands about 50 objects per minute. The 69A will also mark cylindrical objects with complete label detail, in one or two colors.

Other Markem machines available for marking electrical parts and products of all sizes and shapes. Write for detailed information.

\section*{A PHASE SENSITIVE NULL METER Wherein noise AND HARMONIC voltages are EfFECTIVELY ELIMINATED}
- Allows separate balance of inphase or quadrature in null circuits.
- Eliminates the necessity for filters.
- High sensitivity.
- Direction of null clearly shown on zero centered meter.
- Synchro zeroing without recourse to coarse and fine switching.

For further information contact your nearest
representative or write for brochure

\footnotetext{
INDUSTRIAL TEST EQUIPMENT CO.
55 E. 11 th ST. NEW YORK 3 • GR. 3-4684
}

Manufacturers of: PHASE METERS

NULL DETECTORS

Impedance COMPARATORS

POWER OSCILLATORS vacuum tube VOLTMETERS

FREQUENCY
STANDARDS

AUTOMATIC HI-POT

Other Electronic Test Equipment
the division under the direction of Bruce Grimm, chief engineer.

\section*{Raytheon Elects New Treasurer}

Allen E. Reed has been elected treasurer of Raytheon. He has served as comptroller of the firm for the past nine years and will continue in that capacity in addition to the office of treasurer.

As treasurer of Raytheon, Reed succeeds D. T. Schultz, who joined Allen B. DuMont Laboratories as president.

\section*{Central Transformer Doubles Space}

Central Transformer Co. doubled its manufacturing space by leasing additional space at its present location in Chicago.
M. R. Whitman is president and chief engineer; L. G. Shore is secre-tary-treasurer and general manager and F. J. Gallagher is manager of sales.

\section*{Feedback Controls \\ Appoints President}

William M. Pease has been appointed president of Feedback Controls, Inc. He formerly held the position of vice-president and general manager of the firm. He was \(\mathrm{v}-\mathrm{p}\) and manager of the electronic division of Ultrasonics Corp. and director of the servomechanisms lab at M.I.T., previously.

\section*{Lewyt Expands In Electronics}

Three Lewyt corporations will spend \(\$ 10\) million during the next 5 years in an expansion program.

The program started last July with the \(\$ 2\) million purchase of the Ford Instrument plant in Long Island City, N. Y. from the SperryRand Corp. The newly acquired building has \(315,000 \mathrm{sq} \mathrm{ft}\) of manufacturing space, but 43,000 more sq ft are being added. The expansion program will triple research and development facilities and double production capacity. In the

IF IT'S NEW . . . IF IT'S NEWS . . . IT'S FROM ELL 4

Newsworthy and newsmaking are Elco's new \(90^{\circ}\) Printed Circuit Sockets for 7-pin and 9-pin miniature tubes. These Elco quality components permit installation of the tubes in a position parallel to the printed-circuit chassis, thus conserving space where height is limited. The new sockets carry the same characteristics as standard miniature tube sockets. Furthermore, mounting brackets are designed to maintain rigidity and cannot be loosened from the chassis. For further information, please address your inquiry on your company's letterhead.

ELCO CORPORATION, M STREET BELOW ERIE, PHILA. 24, PA., CU 9-5500

\section*{Wanted:}
by the industry's leading technical literature specialists

\title{
MANUALS \\ of the most superior quality \\ \\ TO PRODUCE \\ \\ TO PRODUCE \\ most quickly and economically
}

The professional organization producing the greatest volume of technical literature in the electronics field is now available to you. We have complete facilities for organizing, writing and illustrating your operating and maintenance manuals for equipment-or any technical literature you may requirc-at substantial savings in time and money. Complete production and printing facilities are a part of our integrated operation. Your inquiries are cordially invited.
call or write HOWARD W. SAMS \& CO., INC.
Special Services Division, 2201 E. 46th St., Indianapolis 5. Phone: Glendale 4531

We'd like to send you our brochure:
"The Story of a Unique Service"

near future the firm will have manufacturing and assembly facilities for over 6,000 employees.

Each of three companies has been allocated a good slice of the \(\$ 4\) million expansion pie for the coming year.

The Lewyt Manufacturing Corp., makers of electronic and electromechanical equipment for the military and private industry, plans a new research and development laboratory, new test chambers, new vibration and shock test equipment and new plating gear.

\section*{Crosby Labs \\ Promotes Coffman}

BARTON C. COFFMAN has been named chief engineer of Crosby Laboratories of Hicksville, N. Y. He joined the firm in 1951 as senior engineer. He was later advanced to the post of research associate.

\section*{Lambda Electronics \\ Pushes Output}

Lambda Electronics plant
LambdA Electronics Corp., manufacturers of power supplies, is in full production at its new plant at 11-11 131 st. in College Point, N. Y.

\section*{ESC Appoints Production Chief}

ESC Corp., of Palisades Park, N. J., manufacturer of delay lines, appointed Melvin Traum as production manager

Previous to his appointment at ESC, Tratum was associated, for twelve vears, with the guided missile division of Federal Telecommunication Laboratories.

YOUR BEST SOURCE

\title{
COILS
}
that are

\section*{ENGINEERED FOR QUALITY}
- TRANSMITTER•R.F.
- OSCILLATOR •I.F.
- CHOKES - RELAY
- PEAKING - MAGNET
- FILTER
- SPECIALS
N. Y. AREA REPRESENTATIVE: BEN JOSEPH \& ASSOC. 521 FIFTH AVE. NYC 17-MU 2-8945

COILS-ELECTRONICS CO.
2943 N. 2nd ST. PHILADELPHIA 33, PA. REgent 9-6465

SOME TERRITORIES OPEN to Qualified representatives

\section*{Before You Can Make a Reliable Electric Connection}
1. The insulation must first be removed.
2. ALL the insulation must be removed.
3. The conductor must not be nicked or reduced in diameter.

Developing a method and equipment for a specific high-quality, high speed stripping operation requires full consideration of all the factors peculiar to that job. In most cases, standard equipment (often with adaptations) will do the job; in others, special methods must be developed.

Our specialty is studying your specific applications and recommending an efficient wire-stripping method.

Ask for free 24.Page Book,
"Reliable Electrical Connections"
Rush Wire Stripper Division THE ERASER CO., INC.
1068 S. Clinton St., Syracuse 4, N. Y.

\section*{An Invitation TO MANUFACTURERS OF ELECTRONIC EQUIPMENT}

Businessmen of Lakeland, Florida will cooperate fully and furnish complete information to manufacturers who will consider relocating or establishing a branch unit in this fastgrowing central Florida city

INDUSTRIAL DEVELOPMENT COMMITTEE OF 100 LAKELAND TERRACE HOTEL

\section*{LAKELAND, FLORIDA}

\section*{PETER PARTITION CORP.}

Manufacturers of Cardboard Partitions
124 BOERUM PLACE
BROOKLYN 1, M.Y.
Telephone: TRiangle 5-4033

\section*{FORMS}
and

\section*{METAL} STAMPINGS

We'll prove that our high speed production means lower unit costs for you!

You'll save two ways - (1) the initial low unit cost made possible by high speed machines; (2) precision and quality control guarantees accurate parts and performance.

\section*{STRAIGHTENING AND CUTTING}

Perfect straight lengths to 12 feet. .0015 to .125 diameter.

WIRE FORMS
.0015 to .125 diameter.

\section*{SMALL METAL STAMPINGS}
.0025 to .035 thickness. .062 to 3 inches wide.
Specializing in production of parts for electronic, cathode ray tubes and transistors.
Write for illustrated folder.

\section*{ART WIRE AND STAMPING COMPANY}

1 Boyden Place - Newark 2, New Jersey Want more information? Use post card on last page.

\section*{New Books}

\section*{Ultrasonic Engineering}

By A. E. Crawford
Academic Press Inc., New York, 1955, 344 p, \$8.00.

THE contents of this book deal with a subject which has been rapidly increasing in importance over the past decade, although a large percentage of engineers are totally unfamiliar with it. The object of the book is to present and correlate data on the applications and effects of ultrasonic waves and to cover some basic methods of generation of ultrasonic energy. Emphasis is placed on the practical aspects of ultrasonics and not on mathematical analysis.

The book is divided into sections covering: theory, generation and applications.
- Basic Theory-In the first section the author discusses basic ultrasonic theory including types of waves, standing waves, energy and frequency measurement, and the phenomenon of cavitation. The properties of absorption, reflection, refraction and beaming of ultrasonic waves are described. Basic equations are presented. These equations although brief, are informative. A group of tables of velocity of sound, specific acoustic impedance and density of a large number of liquids, solids, gases and metals are included which are helpful in designing ultrasonic generators.

Schematic arrangement of acid fog precipitation using sonic agglomeration
- Generators-The second section deals with the generation of ultra-
sonic energy using piezoelectric, magnetostrictive and electromagnetic transducers. Also included is an interesting chapter on ultrasonic generation by high-velocity jets of liquids and gases. The theory of operation and practical design considerations of the various types of transducers mentioned are adequately discussed including forms of coupling and methods of mounting.
- Applications-The third section, which occupies more than half the book, is concerned with practical high-power applications of ultrasonic energy in the fields of chemistry, metallurgy, and medicine. In addition descriptions are given of instruments employing ultrasonic waves for drilling, soldering, dust precipitation and equipment for use in underwater applications. Excellent qualitative information on the actual processes involved in applying ultrasonic energy to perform various tasks and descriptions of commercially produced laboratory and industrial instruments are contained in this section.

The excellent graphs, tables, photographs and drawings help to a large extent in making this book a fine introduction to the field of ultrasonics for engineers unfamiliar with the subject. It is also a valuable source of information to those interested in familiarizing themselves with the capabilities of ultrasonic energy for the purpose of possibly converting their standard methods of processing to ultrasonic methods with the object being improved efficiency and economy, among other things.-S. A. Gitlin, Dept. of Electrical Eng. Electronics Research Labs, Columbia University, New York

\section*{Linear Feedback Analysis}

By J. G. Thomason. McGraw-Hill Book Co., New York, 1955, 348 p, \$8.50.
"Linear Feedback Analysis" is an introductory, analytical treatment of feedback-circuit analysis, which emphasizes stability theory and design techniques for stabilizing feedback amplifiers. The book is written at a level which should be readily understood by seniors or graduate

\section*{electronics engineers:}

> andyour family you can enjoy all the EXTRAS at the BALTIMORE DIVISIONS Of Westinghouse

\section*{This is BALTMORE:}

\section*{BALTIMORE:}
"City of monuments," in the heart of the Chesapeake Bay area ... famous for its sailing, fishing, swimming and upland hunting. Historically, the hub of our independence and birthplace of the "Star Spangled Banner." Big city advantages with small town atmosphere.

\section*{FOR THE ENTIRE FAMILY:}

Professional and intercollegiate sports, a world-renowned symphony orchestra, outstanding public library facilities and art galleries, legitimate theater, three television stations. Many active church and civic organizations.

\section*{FOR YOUR CHILDREN:}

A modern, complete and ably-staffed public education system. One of its high schools has a nationally-famous pre-engineering course. The area also boasts several well-known and highly respected colleges and universities. Skillfully planned park and playground facilities.

\section*{FOR YOUR WIF:}

Expansive "Downtown" facilities, plus the convenience of modern suburban shopping centers. Well planned home developments and individual homes, built to meet any desired budget.

\section*{FOR YOU:}

At the Baltimore Divisions of Westinghouse . . . Liberal relocation allowances, advanced education at Company expense, excellent employee benefits, interesting projects in association with recognized leaders in the industry, together with truly unlimited opportunity.

\title{
This is Westinghouse in Balfimore
}

\section*{AIR ARM DIVISION:}

Pioneer in airborne electronics, developer of the world's first automatic electronic airborne fire control system. Today's advanced projects will win still more respecf for this outstanding division . . . and you can share in its future!

\section*{ELECTRONICS DIVISION:}

Chief supplier of transmitting and radar equipment for the Navy during World War II, this division is today engaged in challenging projects covering the entire scope of ship and landborne electronic equipment. At this writing, work is progressing on the construction of an ultra-modern plant to house advanced military electronics projects.

Westinghouse Baltimore Divisions are proud of their achievements in electronics, and proud, too, of the men who have made them possible. The past success of the Divisions offers to all qualified engineers an assured future . . in the most modern of plant facilities, and with an established leader of the electronics industry.

\section*{BOMAR}

\section*{TYPICAL OF THE}

\section*{ADVANCED PROJECTS AT}

\section*{Westinghouse}

\section*{BALTIMORE DIVISIONS}

BOMARC is typical of the many interesting projects "in the works" at Westinghouse. Such projects are more than a "one-shot" challenge to the engineer . . . they are the true steps forward in his career, and the broadening of knowledge that enriches his value to himself and to his profession. If you are interested in this type of project,
Westinghouse is interested in you!

\section*{CIRCUITRY}

MICROWAVES
SERVOMECHANISMS
MAGNETIC AMPLIFIERS
DIGITAL COMPUTER
PROGRAMMING
FIRE CONTROL SYSTEMS

\section*{PACKAGING}

TRANSFORMERS
ANALOG COMPUTER

\section*{DESIGN}

VIBRATION
RADAR DESIGN
FIELD SERVICE

\section*{I}

Send letter outlining your education and experience to-
Technical Director, Dept. A
Westinghouse Electric Corp.
2519 Wilkens Avenue
Baltimore 3, Md.

\section*{YOU CAN BE SURE ...IF IT'S \\ Westinghouse}
electrical engineers.
The first third of the book is devoted to the mathematics basic to stability analysis, with chapters on a-c circuit analysis, Laplace transforms, and examples of transform analysis.

The middle section, of five chapters, is devoted to amplifier analysis and design, with detailed descriptions of the design and stabilization of biasing and coupling circuits for vacuum-tube feedback amplifiers. Primary emphasis is on the gainphase analysis, and the discussion leads to a presentation of common stabilizing networks.
- Circuits-The final section of the book includes discussions of a number of typical, linear feedback amplifier circuits, particularly drawn from the field of nuclear instrumentation, but of rather general interest. Circuits discussed include the cathode follower, various operational amplifiers (in considerable detail), a current amplifier for an ionization gage, a pulse amplifier as used in counting instruments, an audio amplifier with transformer-speaker load, and several electronically regulated power supplies.

The stability of feedback systems. Two lags, negative feedback; two lags, positive feedback
- Theory--The middle chapters represent the core of the design theory, as the author presents the concept of Nyquist diagrams and then turns to gain and phase plots. The gain-phase relations are discussed, the limitations on gain and phase are considered, and the stabilization problem is presented largely in terms of the gain-phase plots.

The discussion of theory is consistently clear and presented in terms of concrete, easily followed examples. Thus, although the theoretical development only rarely goes beyond and usually does not go as far as Bode's bible in the field, the

\section*{NEW CURTISS-WRIGHT DISTORTION ELIMINATING VOLTAGE REGULATOR}
- Reduces typical power line distortion to less than 0.3\%
- Furnishes 1.4 KVA of distortion-free power
- Electronically regulates 115 V output to \(\pm 1 \%\)
- Recovery time less than \(1 / 50\) cycle
- Provides additional 4 KVA of \(\pm 1 \%\) electromechanically regulated power
- Electromechanical time constant only 0.6 seconds
- Electromechanical regulator, unlike usual magnetic voltage stabilizer, introduces no distortion or phase shift

Here at last is the ideal solution to the disturbing problem of harmonics and low frequency noise appearing in 115 V ., 60 cps power sources. In one compact package, every laboratory can now obtain both
1) distortion-free, regulated power when needed, and simultaneously
2) a large supply of electromechanically regulated power for applications where normal line distortion is tolerable.

In addition to its general laboratory unility, this instrument is ideally suited for preventing instability and inaccuracy in a.c. computer system nulling operations. Many other applications. 230 V . model also available. Immediate delivery. \$1,689 f.o.b. Carlstadt, N. J. Write for details.

Component \& Instrument Department

Want more information? Use post card on lasi page.
book seems to be a definite contribution in the dissemination of the basic ideas of stabilization.

In this sense, the book closely parallels a number of servo books, such as G. J. Thaler's "Elements of Servomechanism Theory," except of course that in Thomason's book the examples are drawn from the feed-back-amplifier field rather than the servo field.
- Feedback-There are a number of fundamental aspects of the feed-back-amplifier subject which the author chooses not to discuss in order to emphasize the basic techniques of stabilization. For example, there is practically no real utilization of transform methods in design, once the Nyquist criterion is established.

Perhaps more important, there is only a very brief discussion of the effects of feedback on sensitivity, impedances, distortion, etc. The especially brief treatment of sensitivity (the return difference is not included in the index) is unfortunate in the reviewer's opinion, since stabilization is really necessary in the majority of cases only because of the desire for low sensitivity. Likewise, there is essentially no clear distinction between negative resistance and instability and only a hurried disposition of conditionally stable systems.

Comment on these omissions is unjust, however, since the author is not trying to present feedback theory, but rather the basic, commonly used techniques for the design and stabilization of feedback amplifiers, and in this direction he has succeeded admirably with a book which is easily read, replete with interesting examples, relatively free of errors, and in a comparatively under-published fieldJohn G. Truxal, Associate Professor, Polytechnic Institute of Brooklyn, Brooklyn, New York

\section*{The Physics of the Ionosphere}

The Physical Society.
London, England, 406 p, 1954, 40 slillings (paper).

THIS Book is the report of the Physical Society conference held

By means of an exclusive Sanders process, the versatile plastic Kel-F can now be laminated with copper in thin sheets to provide a flexible printed circuit cable. This unique development introduces an entirely new concept in the fabrication of multi-conductor cables or wiring harnesses. Excellent electrical and mechanical properties are supplied for operation over a wide range of environmental conditions. The complete encapsulation of the conductors in Kel-F ensures maximum protection against moisture. Glass cloth can also be included in the laminations for increased strength and high temperature stability.

\section*{FEATURES}
- Excellent dielectric strength
- High degree of flexibility
- Lighter, thinner than many cables
- Maximum environmental protection
- Adaptable to many connectors
- Multi-layer construction available
- Suitable for chassis harnesses
- Wiring errors are eliminated
- Easily mounted

Write for engineering bulletin to Dept. E4

Want more information? Use post card on last page.
April, 1956 - ELECTRONICS
at the Cavendish Laboratory, Cambridge in September 1954. It contains 50 papers, 45 of which are in English with 3 in German and 2 in French.

The report is in four parts: the lowest ionosphere, 10 papers; irregularities and movements in the ionosphere, 17 papers; the ionosphere F2 layer, 9 papers; the mathematics of wave propagation through the ionosphere, 14 papers.

\section*{Arrangement}

Each section is introduced by a survey article to bring the reader up to date on present knowledge in the field. An addendum to each survey article summarizes the major points brought out during the conference. The four survey articles provide a good introduction to the subject of ionospheric radio propagation.

The paper Scattering at Oblique Incidence from Ionospheric \(\mathrm{Ir}^{-}\) regularities by D. K. Bailey of NBS reports transmissions of \(1,200 \mathrm{~km}\) on frequencies on the order of 50 me by forward scattering from irregularities in the \(E\) or \(D\) regions, the power of the transmitter being about 30 kw . This sort of phenomenon has assumed considerable importance in military uhf point-topoint communications.

The Ionospheric F2 Region by R. J. Havens, H. Friedman and E. O. Hulburt of NRL reports on compostion and temperatures in the upper atmosphere. The data was obtained during rocket flights that attained altitudes up to 219 km . —J.M.C.

\section*{Microwave Spectroscopy}

By C. H. Townes and A. L. Schawlow
McGraw-Hill Book Co, Inc., New York, 1955, 698 p, \$12.50.
YET another book of the same title to come out within a couple of years. The first, by Walter Gordy et al, was published by John Wiley in 1953, and the second, a Methuen Monograph by M. W. P. Strandberg, in 1954. Both books were reviewed in Electronics (October 1953 and June 1954, respectively). In reviewing the latter, the re-

The New G-20 gives you a truly precision potentiometer with many characteristics found only in pots costing twice as much. Here are the outstanding features.
- Linearity is 0.5 or better
- Radial or Rear Extension TurretTerminals
- Non-metallic housing uses material of high dimensional stability that is inherently fungus-proof and moisture resistant
- Servo, Threaded-Bushing or Flange Type Mountings
- Power rating 1.5 watts at \(65^{\circ} \mathrm{C}\) (derated to 0 at \(150^{\circ} \mathrm{C}\))
Gamewell gives you this high quality at low cost by new design techniques and high production methods.
See how many applications can use this new \(\mathrm{G}-20\). It is ideal where you require good precision at a bargain price for industrial and commercial apparatus. Gamewell is ready to supply these in quantity now.

\section*{THE GAMEWELL COMPANY}

\footnotetext{
PRECISION POTENTIOMETERS
}

Manufacturers of Precision Electrical Equipment Since 1855

\section*{Technical Data}

Resistance, Max.
\[
63,000 \text { ohms } \pm 5 \%
\]

Resistance, Min. 20 ohms \(\pm 5 \%\)
Linearity Std. \(\pm 0.5\)
Electrical Angle \(340^{\circ} \pm 3^{\circ}\)
Max. No. of Turns 2100
Watts at \(65^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots . .1 .5\)
Torque Max......... 1 oz. - in.
Max. Temperature \(150^{\circ} \mathrm{C}\)
Weight 11/4 02.
4-40 NC-2B 3 -Holes
Equally Spaced on 500 R.

\section*{REGULATED POWER SUPPLY}

\author{
With 100 Microvolts Hum
}

Krohn-Hite Model UHR-245 ULTRA-HIGH REGULATION POWER SUPPLY furnishes continuously variable voltage from 150 to 500 volts and delivers up to \(\frac{1}{2}\) ampere of DC current with \(0.002 \%\) load regulation and less than 100 microvolts of ripple over the entire operating range. The internal impedance is less than 0.01 ohm for DC and low frequencies and less than 0.05 ohm for frequencies as high as 50 kc . Full rated maximum current can be drawn with \(100 \%\) duty cycle at any output voltage and at any line voltage from 105 to 125 volts with a substantial safety factor. There are two independent 6.3 volt AC 10 ampere outputs. Price \(\$ 375.00\) f.o.b. factory.

For Further Details Write
KROHN-HITE INSTRUMENT CO.
DEPT. E, 580 MASSACHUSETTS AVE.,
CAMBRIDGE 39, MASS.

\section*{msur TOP wsument} Perfionnance Giral jewel assemblies

\begin{abstract}
Made under rigid quality-control throughout manufacture. Bird complete jewel assemblies come ready to install . . . saving production time . . . eliminating rejects . . . cutting costs.
Bird jewels are custom mounted to your specifications, by skilled craftsmen. All assemblies are thoroughly inspected . . . carefully packaged . . . shipped to meet critical production schedules.

And the cost - far less than trying to make the same assemblies in your own plant-actually only pennies to insure perfect performance for your instruments.
Why not discuss the use of jewel bearings or special assemblies with the Bird engineering staff - they are always at your service for all types of jewel bearing problems - no obligation of course.
For information on Bird Jewel Assemblies write for Bulletin 5.
\end{abstract}

Over 40 years of serving industry with Quality jerwel bearings

1 Spruce Street, Waltham 54, Mass. sapphire and glass jewels, precision glass grinding, JEWEL MOUNTING AND ASSEMBLY, SAPPHIRE STYIII
viewer pointed out that among American universities, Columbia, Duke and M. I. T. were perhaps the foremost in the field of microwave spectroscopy. Duke and M. I. T. having made their contribution, it now behooves Columbia University to bring forth the present volume, which is perhaps the most all-encompassing yet, not only because it is more recent, but also because of the exhaustive treatment: the book draws on a bibliography of some 1,200 items, with information to match.
- Molecules-But this is no mere compendium of tables, graphs, and other information of the handbook type. Rather, the treatment starts with a consideration of the simple diatomic molecules, followed by the increasingly complex cases of linear polyatomic molecules, symmetrictop molecules, and asymmetric-top molecules. The authors go on to discuss some of the fine and hyperfine effects, the study of which has been made possible by the use of microwave technique for the first time.

Of the book's eighteen chapters only three are concerned directly with instrumentation: one on microwave circuit elements and techniques, one on microwave spectrographs, and one on methods of measuring and controlling frequency. There is also a short chapter on the production of millimeter waves, a topic on which the Columbia group is particularly competent to report, since they have made some notable contributions to this field.
- Impact-There are few instances in which electronics has had such a profound influence upon related fields as microwave spectroscopy has had on physics and chemistry (and promises to have on chemical analysis). The authors speak of the "furious activity" that has made their task especially difficult, both because of the huge amount of results becoming available all at once, and because of the rapid development of ideas and techniques that is sure to make any published survey obsolete quickly. They have addressed themselves to this task with a result that is certainly im-

\section*{for a good connection.}
pressive, producing a book that is both timely and likely to remain a standard work for some time to come.
C. H. Townes is Professor of Physics at Columbia University, and A. L. Schawlow, formerly also associated with Columbia, is a member of the staff of the Bell Telephone Laboratories. They are to be commended for undertaking to write such a major work, and to be congratulated as to the extent of their success in accomplishing their avowed intent "to discuss the material critically, systematically, and in the simplest way consistent with some completeness in a single vol-ume."-Charles Susskind, University of California, Berkeley, Calif.

\section*{Introductory Nuclear Physics}

By David Halliday. John Wiley \& Sons, Inc., New York, 1955, 493 p, \(\$ 7.50\).
Instrumentation for studying nuclear phenomena and for controlling reactions depends heavily upon electronic circuitry. This puts the electronic engineer into the nuclear energy business and it behooves him to have more than a nodding acquaintance with this new, complex and rapidly moving science.

This book is designed as an introductory text on the undergraduate level. Nevertheless, the material presented in small type and the appendixes contain material sufficient for a course on the first-year graduate level.

Halliday linear accelerator for heavy ions
- Content-The book covers radioactive decay and alpha emission, gamma radiation and internal conversion, behavior of gamma rays, beta decay, detection of charged particles. Also: neutrons, nuclear

Up to date production facilities using the most modern high speed, automatic machinery producing quality components for the Electronics and Telecommunications Industries.
Automatic's high standards of quality are based on over 15 years experience manufacturing precision parts for the Army, Navy, Air Force and Atomic Energy Commission.
Prompt engineering service is available for design and production of any special connector or component you may require.

Manufacturers of
RF FITTINGS - RF CONNECTORS COAXIAL RELAYS - COAXIAL SWITCHES • INSULATED CONNECTING RODS AND SHAFTS • POWER PLUGS • AUDIO PLUGS • COAXIAL CABLE ASSEMBLIES

WRITE, WIRE OR PHONE FOR FURTHER INFORMATION.

METAL PRODUGTS CORP.
329 Berry Street, Brooklyn 11, N. Y. - EVergreen 8-0364

In professional fields, Magnecord has long been established as first choice. Now the P60-A Editor sets new standards in professional installations.
The Editor has all the easy, accurate editing features of the most expensive models with the greatest number of operating features ever built into a tape recorder for such a low-cost investment.
Before you decide, check the specifications of the new Editor. To be convinced, hear and operate the Editor yourself.
Whatever your requirements, there's a Magnecorder to fit the job. The HiFi Pro or the Citation is an excellent accessory unit at moderate cost. The fabulous \(M-90\) is the finest professional tape recorder made today.

\section*{Magnecordinc.} The Choice of Professionals 1101 S. KILBOURN AVE. CHICAGO 24, ILLINOIS
Export: Ad. Auriema, Inc.
89 Broad Street, New York, N. Y.

CONSULT Onilio

Your product benefits 3 ways from the use of a DIALCO Pilot Light:
Enhanced appearance: The glow of light and sparkle of a lens add colorful visual attraction. Greater safety: A timely warning flashed by a pilot light can prevent damage to equipment. Added service: Discs inserted behind lenses can be used to deliver specific messages, such as "FUEL LOW", "ON", "OFF", etc.
Let the Dialco engineering department assist you in selecting the right lamp and the most suitable pilot light for your needs.

Dialco offers the complete line of pilot lights, from sub-miniature types to giant units with \(11 / 2^{\prime \prime}\) lenses. Every assembly is available complete with lamp. SAMPLES ON RE. QUEST AT ONCE NO CHARGE

Foremost Manufacturer of Pilot Lights

CORPORATION
60 STEWART AVE. - BROOKLYN 37, N. Y.
```

HYACINTH 7.7600

```

PLANT AT
BROOKLYN, N. Y.
masses, structure, reactions, fission and spin, particle accelerators, cosmic rays and subnuclear narticles.

Chapter II presents the more elementary concepts of quantum mechanics with more detailed material in the appendix. The quantum mechanical approach is used in presenting subsequent material.
- Electronics-The chapter on particle detection describes the operation of several electronic instruments including cloud chambers, electroscopes, scintillation counters, amplifiers, scalers and coincidence detectors. Also described are proportional counters and the mass spectrometer.

Under the heading of accelerators the reader can discover the principles of electrostatic generators, linear accelerators, cyclotrons, bevatrons and proton synchrotrons.

Other sections of the book treat electronic instrumentation used in nuclear experimentation such as the pair spectrometer for gamma-ray energies, the beta-ray spectrometer, molecular-beam magnetic resonance apparatus and r-f equipment for studying nuclear spin. Also covered are eletronic equipments for studying nuclear reactions, cosmic rays and subnuclear particles.-J.M.C.

\section*{Thumbnail Reviews}

Partial Differential Equations of Mathematical Physics. A. G. Webster. Dover Publications, Inc., New York, 1955, 440 p, \(\$ 1.98\) (paper). Reprint edition of 1927 work. Covers fields of mathematics particularly useful in electromagnetic studies.

ASTM Standards on Plastics. American Society for Testing Materials, Philadelphia, Pa., 1955, 790 p, \(\$ 5.75\) (paper). Presents specifications, methods for testing including electrical tests, recommended practices and defination of terms relating to many materials in wide use in the electronics industry.

Peaceful Uses of Atomic Energy, Vol. III, Power Reactors. Columbia University Press, New York, 1955, 389 p, \$7.50. Proceedings of international conference held at Geneva in August 1955. This volume contains informa-

\section*{N E W}

\section*{BAKER}

\section*{NON-SAG \\ PlatinumClad TungstenWire}

\section*{STANDS UP BEST WHERE}

HIGH TEMPERATURES ARE REQUIRED!
In scientifically controlled comparison tests to determine relative sag at elevated tempera. tures, both platinum clad molybdenum and platinum clad tungsten wire showed very little sag. But at \(1200^{\circ} \mathrm{C}\) the molybdenum sagged seven times faster than the tungsten.
In addition to this advantage, tungsten shows a substantially lower degree of interaction with platinum. Baker's Platinum Clad Tungsten Wire is available in a broad range of diameters.

Send for free booklet
"Platinum Clad Tungsten Wire."

113 ASTOR STREET, NEWARK 5, N.J. NEW YORK - CHICAGO
SAN FRANCISCO - LOS ANGELES

Want more information? Use post card on last page.
tion on every central-station power reactor throughout the world. Discussion of many of the reactors includes material on instrumentation.

Table of the Descending Exponential. National Bureau of Standards. Superintendent of Documents, Washington, D. C., \(76 \mathrm{p}, \$.50\) (paper). Useful in applied electronic physics. Table extends from \(x=2.5\) to 10 at intervals of 0.001 to 20 decimal places.

Table of Hyperbolic Sines and Cosines. National Bureau of Standards. Superintendent of Documents, Washington, D. C., \(81 \mathrm{p}, \$.55\) (paper). Covers from \(x=2\) to 10 at intervals of 0.001 to mine significant figures.

Bulletin of the Academy of Sciences of the USSR. Columbia Technical Translations, White Plains, New York, single issues: \(\$ 20\); annual subscription: \(\$ 110\). Present copy, No. 3, Vol. 18,1954 is 112 p , paperbound. It includes fifteen papers dealing with properties of ferrites. For example: Rotation of the Plane of Polarization of Centimeter Waves By a Ferrite Disk.

Broadcasting Stations of the World. Foreign Broadcast Information Service. Superintendent of Documents, Washington, D. C. (paper). Lists all known radio and television broadcasting stations except domestic stations within continental U. S. Published in four parts: Part I (\$1.25) indexes stations according to country and city; Part II (\$1.25) indexes according to frequency; Part III (\(\$ 1.00\)) indexes by call letters or slogan; Part IV (\$.60) deals with f-m and tv stations.

The Mathematical Analysis of Electrical and Optical Wave Motion. H. Bateman. Dover Publications, New York, 1955, 168 p, \$1.60 (paper). Reprint of 1914 book on mathematical analysis of electromagnetic wave phenomena using Maxwell's equations.

Arbeitsverfahren und Stoftkunde der Hocvakuumtechnik Technologie der Elektronenrochren. H. Steyskal. Physik Verlag, Mosbach, Germany, 1955,183 p, DM 14.40 (paper). Characteristics of materials and techniques used in the fabrication of electron tubes.

Techniques for Application of Electron Tubes in Military Equipment. Rex S. Whitlock. Office of Technical Services, Washington, D. C., 1955, 271 p (paper). Air Force technical report presents data on electron tubes intended for military applications. Gives essential tube properties and relates them to circuit design. Bulk of book consists of numerical data and design considerations for specific tube types.

CONTINUOUS, DIRECT-READING X-BAND VSWR masumaws

For speedy and accurate VSWR measurements in laboratory or production use, the CTI Model 1108 Measuring System reads directly, is continuously tunable from 8,500 to \(9,600 \mathrm{mc}\).

\section*{\$PECIFICATIONS}

Two VSWR Ranges
Attenuation Scale:
Waveguide Fitting
Directional Couplers, directivity

COLOR TELEVISION INCORPORATED CT
SAN CARLOS 1, CALIFORNIA

15,000 different types and sizes of LINE SUPPORT CLIPS, LINE SUPPORT BLOCKS and HARNESS STRAPS for positive, vibration-free support in aircraft, marine and industrial installations.
Consider the advantages of standardization - completeness of line - a smaller and more flexible inventory - quick and easy training of personnel - safety -

> durability - interchangeability - ECONOMY . Specify ADEL
Complete Catalog available upon request
Direct inquiries to Huntington Division
1444 Washington Avenue
Huntington 4, West Virginia
Burbank, California
Canada: Railway \& Power
Engineering Corporation, Limited

\section*{In winding Taraids}
on a BOESCH machine a finished coil can be removed and a new one inserted ready for winding in the time it took you to read this far. Na need to remove shuttle ar other parts.

CALL YOUR
BOESCH REPRESENTATIVE TO SHOW YOU THE REST OF THIS PICTURE

\section*{ONE LEVER}
controls clamping and spreading of shuttle -

ONE HAND
inserts core and
removes finished coil.

Write today for complete information
on BOESCH winding machines

\section*{Backtalk}

\section*{Tubes Plus Diodes}

Dear Sirs:
CONCERNING the circuit shown on page 192 of Nov. Electronics ("Electronic D-C Amplifiers", by I. Barditch), no apparent purpose is served by the diodes in series with the plates of the 12AT7. The diodes present a high impedance to reversal of current, but the tubes already possess an infinite impedance to reversal of current, so the diodes appear to be superfluous.

Robert Heppe
Nutley, New Jersey

\section*{Dear Sirs:}

Mr. Hepper is probably not aware that tubes subjected to a high negative voltage on the plate exhibit a phenomenon known as "back emission". This is fully discussed in a Sylvania Engineering Information pamphlet Vol. I, No. 10, May 1954 in an article entitled "Effects of AC Plate Voltages on Tube Performance". It is pointed out therein that back emission can vary with temperature and from tube to tube, so that different tubes will perform differently in the same circuit.

The diodes prevent this from occurring. So, while it is possible the diodes can be omitted for economy, they do provide a measure of "design margin" that is desirable.

Irving Barditch Baltimore, Maryland

\section*{Magnetic Amplifier For Counters}

Two decimal counting units shown in the photograph use tubes (left) and ferristors (right). Reduced size results from using a 50 -year old principle in development of a modified magnetic amplifier (Electronics, p 128, Oct. 1955). The particular applica. ion is that of Beckman Instruments, Inc.

For consistently high purity... " \(\operatorname{LIT}_{\text {TradeMark }}^{N D E " M . S . C . R A R E ~ G A S E S ~}\)
(Mass Spectrometer Controlled)
\(\begin{array}{ll}\text { - Helium } & \text { - Argon } \\ \text { - Neon } & \text { Krypton }\end{array}\)
- Xenon

In radar electronic equipment, nuclear radiation counters, cosmic ray cloud chambers, and thyratrons, where the purest rare gases are demanded, Lindy M.S.C. Grade gases meet the specifications. They are produced under continnous mass spectrometer control to assure you of gases of known purity and consistently high quality. Linden, the world' \(\varepsilon\) largest producer of gases from the atmosphere, can meet your individual needs of volume, mixture, and container.
For information on the physical, chemical, and electrical properties of these gases, send for the booklet, "Linden Rare Gases."

\section*{*}

\section*{LIND AIR PRODUCTS COMPANY}

\section*{A Division of}

Union Carbide and Carbon Corporation 30 E. 42 nd Street गत्ट New York 17, N.Y. In Canada:
LINDE AIR PRODUCTS COMPANY, Division of Union Carbide Canada Limited, Toronto The term "Linde" is a registered trade-mark of Union Carbide and Carbon Corporation.

INTERVALOMETER

The Model N-10 Intervalometer is a lightweight, compact instrument for controlling the cycle rate of camera recording devices and other electrically or electronically operated apparatus. Pulse rates per second are 1. 2, 4.5,8, and 10, and the pulse length is variable from 25 milliseconds to 70 mil Itseconds. Special pulse intervals and pulse duration may be supplied on order. The Model N-10 Intervalometer is built to meet all environmental conditions encountered in aircraft use.

Write for complete detailed specifications today

\title{
Professional Services
}

Consulting—Patents—Design—Development—Measurement in
Radio, Audio, Industrial Electronic Appliances

\section*{ATLANTIC ELECTRONICS \\ LABORATORIES}

Design Development Prototypes Specialists in
ELeCTRONIC TIMING DEVICES
606 Bond St. Asbury Park, New Jersey

\section*{H. O. BIXBY ASSOCIATES}

Consultants to the Eleotrome Industry
SURVEYS - PROMOTIONS - LLAIBON pehsonnel placement - technology
238 Main St.
Cambridze 42. Mase.

> ELLot 4-9404

\section*{CROSBY LABORATORIES, INC.}

Murray G. Crosby E Staff
Radio - Electronics
Research Development \& Manufacturing
Communication, FM \& TV Communication, FM \& TV

\section*{DELAWARE PRODUCTS CO.}
analog Voltage to Digital Conversion Digital Voltage Recording Systems
Design-Development-Manufacturing
300 Broadwas
Camden 3, N. J

Eldico of New York, Inc.
Pioneers of Telerision Interference Elimination from Transmilters, Induction Heaters, Diathermy \({ }^{\text {Prom }}\) etc.

Donsld J. S. Merten \& Engineering Stact
12 E. Secand \(8 t\)
Mineola, L. I., N. Y.
Pioneer 6-5213

\section*{ELECTRONIC RESEARCH} ASSOCIATES, INC.
"TRANSISTORIZE" YOUR PRODUCTI Complete service in consulting, research, development, and production on TranBistor circuitry, prod67 East Centre Streat

NUtley 2-5410
Nutley, N. J.

\section*{ERCO RADIO}

LABORATORIES, INC.
Radio Communications Equipment Engineering - Design - Development - Production Communications and Radio Beacons
Garden City - Long Island - New Yort

\section*{HANSON-GORRILL-BRIAN INC.}

Product \& Mfg. Development mlectrical - hlectronic hydraulic - mectantical
One Continental Hill
Glen Core, N. Y.
Glen Core 4-7300

\section*{WHEN}

TIME

\section*{IS}

\section*{SHORT}
put the solution of your problems up to a specialized Consultant whose professional card appears on this page. His broad experience may save you months of costly experimentation.

\section*{ELECTRONICS}

330 West 42nd St., New York 36, N. Y.

\section*{THE KULJIAN CORPORATION \\ bleotronios division}

Consulting Electronic Engineers

> Research Development, Production of Automatic Controls S Speclal Instrumentation 1200 No. Broad St., Phlladelohia 21. Pa. Stevenson \(2-9000\)

\section*{Measurements Corporation}

Research \& Manufacturing Engineers
Habry w. Hover martial a. Honnhll John M. van'betorbn
Specialists in the Design and
Developnient of Electronic Test Instruments. Boonton, New Jersey

\section*{MINOT INFORMATIC DEVICES}

AUTOMATIC RECOGNITION OF
RESEARCH - INVENTION - CONSULTING on detection and Inter - CONStan op
complicated forms, characteristics of complicated forms, characteristics of
materials, printed characters, etc.

\section*{DR. HAROLD NARCUS}

METALLIZING CONSItant CONDUCTORS
Pioneer in the field of metallizing non-conductors such as plastics, ceramics, glass, etc. for both indus-
trial and decorative applications. Techniques and processes developed during 20 years specialization in the fietd. Recognized authority with well-known record of aehievement. ILLeasant 3-5918
15 Vesper Street \({ }^{\text {Tel. }}\) PLeasant \({ }^{3-5918}{ }_{\text {Worcester 2, Mass. }}\)

\section*{NIAGARA ELECTRON LABORATORIES \\ CONBULTATION - DESIGN - CONSTRUCTION MFG. THE THERMOCAP RELAY \\ Spectalizing in solution of problems of elect ronic and electro-physical instrumentation for the research or analytical laboratory. Industrial plant problems also levited. \\ Andover, New York Cable Address: NITronlab}

\section*{NUCLEAR-ELECTRONICS CORPORATION}

From Engineering Design to the Finished Product Nuclear Instrumentation- Communications Industrial Electronics - Audio Equipment 2632-36 W. Cumberland St. Philadelohia, Pa.

PICKARD \& BURNS, INC.
Consulting Electronic Engineers
```

Analysis and Evaluatio

```

Research Development and Production of Speclal Electronic Equipment
240 Highland Ave. Needham 94. Mass.

\author{
ALBERT PREISMAN \\ Consulting Engineer \\ Telerision, Pulse Technique, Video \\ Ampliffers, Phasing Networ
Induastral Applances Afllisted with \\ MANAGEMENT-TRAINING ASSOCIATES 3224-16th St., N. Y. Washington 10, D. C.
}

\section*{SUNSTEIN ENGINEERING CO.}

David B. Sunstein and 4 ssociates
Consulting Services for Research, Engineering Consulting Services for Research, Engineering
and Production of Industrial, consumer, and Government Products.

> 464 Conshohocken State Rosd Bala-Cynwood (Phila.) Pa.

Bala-Cynwood (Phila.)
MOhaw \(4-0459\)

\section*{THE TECHNICAL \\ MATERIAL CORPORATION \\ Communications Consultants} Systems Engineering
General Offices and Laboratory
700 Fenlmore Rd., Mamaroneck, N. Y.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
TELECHROME, INC. \\
Electronic Design Specialists COLOR TELEVISION EQUIPMENT Flying Spot Scannors, Color Synthesizers. Keyers, \\
 88 Mertick Rd. Amityville, L. I., N. \(\mathbf{~ x . ~}\)
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{WALSH ENGINEERING CO.}

Design and Prototyper
of FAectronic Apparatus
in which Transformers and Magnetic Components in wirh Transformers and factors in Performance, Size, Welght and/or Cost
34 DeHart Place
FHizabeth 2-7600
Flizabeth, N. J.

\section*{WHEELER LABORATORIES, INC.}

\section*{Radio and Flectronics}

Consulting - Research - Development R-F Circuits -Lines - Antennas
Microwave Components - Test Equipment
Harold A. Wheeler and Engineering Stalf
Great Neck, N. Y. HUOter 2-7876

\section*{YARDNEY LABORATORIES \\ Research-Design-Development}

Electro-Chemical Generators of Energy
40-46 Leonard Street
Worth 6-3110
New York 13, N. Y.

\section*{MANUFACTURERS" REPRESENTATVES \\ in the electronic industry}

As a service to readers, ELECTRONICS presents the advertisements for some of the leading manufacturers' representatives in the electronic industry. These firms are qualified to help the Manufacturer with his distribution problems; the Buyer with his product needs.
\begin{tabular}{|c|}
\hline MACLEN CORPORATION \\
Manufacturers Representative \\
8616 Georgia Ave, Silver Spring, Md \\
Components \& Equipment \\
Territory: \\
Pennsylvania New jersey \\
Delaware Maryland \\
Virginia W. Virginia \\
District of Columbia
\end{tabular}

\section*{REPRESENTATIVES!}

This is a special section for Manufacturers' Representatives desiring advertising space in units smaller than the minimum run of book display space.
It offers you an economical means to keep in contact with the key people of the electronic industry who most naturally will be interested in your products and services as a source of supply or as a sales outlet for their products.
SPACE is available in units from one to four inches. \(A\) "one inch" space unit is an "advertising inch" measuring \(7 / 8\) " deep by one column in width, \(21 / 4^{\prime \prime}\). Larger space is by additional even lineal inch units in depth, or by additional columns in width, or both. Oversized advertisements are not accepted.
RATES: One insertion \(\$ 26.50\) per inch, Six insertions \(\$ 24.00\) per inch, Twelve insertions \(\$ 22.00\) per inch. Cash discount \(2 \%\) - 10 th of month following date of invoice. 15\% Agency Commission.

Equipment Manuals - Product Catalogs - Handbooks - Training Aids Industrial Relations Literature - Pro cedural Guides - Engineering Presentations - - and any type of technical literature
use our speciglists in - - -
WRITING \(\ldots\). EDITING
ILLUSTRATING .. . PRINTING

\section*{McGRAW-HILL}

Technical Writing Service* 330 West 42nd St., N.Y.C. 36 LOngacre 4-3000

It is important to us, too, because this is why we continue to attract the best.

We lead the field because we have the best engineers the best engineers seek employment here because we lead the field.

It's as simple as that!
"Not quite"-you say? Then why not come in and talk it over?

Since many tube programs continue to expand, we require PhD's, Masters and Bachelors in EE, ME, Physics and Chemistry to fill openings as follows:

TRAVELING WAVE TUBE DEVELOPMENT -A recent addition, but we're fast gaining the necessary momentum to attain the leod.

MAGNETRON RESEARCH \& DEVELOP-MENT-Raytheon's leadership in this field was earned during World War 11 and is being increased now for both defense and industry.

CROSSED FIELD TUBE DEVELOPMENTHigh \& Low Power Backward Wove Tubes, as well as some you've never heard of

PRODUCT ENGINEERING-Parlayed with our R.\&D. you have an unbeatable combina tion

APPLICATIONS ENGINEERING-The engineer who likes to travel couldn't make a better choice.

CATHODE RESEARCH \& DEVELOPMENTWe need one man in this section and he must be outstanding.

METHODS \& FACILITIES DEVELOPMENT-
Four men were recently promoted from this group leaving the field wide open for the right men.

KLYSTRON ENGINEERING-A bosic inter esting part of the microwave tube field in which new developments appear constantly

Please send complete resume of your qualifications and experience to Mr. D. Hamant at:

\section*{RAYTHEON MANUFACTURING COMPANY}

Foundry Avenue
Waltham 54, Massachusetts

Sylvania has quadrupled its 1947 sales and is expanding rapidly. We plow back into research and engineering an unusually high percentage of each year's income; it rates with the highest figures in industry today. These increases make for a broader based engineering while adding engineering management... creating unusual opportunities for men of talent.
At the base are recent college graduates with little or no experience. Filling in the essential positions of research direction, supervision and testing are engineers with experience and proven ability in their specialized fields.
Increasing our overall research constantly creates open. ings. These openings lead eventually to far greater responsibility either in engineering management or research specialties. Top engineers are key men in creating new and better products that open new markets to Sylvania.
There are openings now for experienced men at Sylvania.

\section*{WALTHAM Laboratories}

Majors in E.E., M.E., Math,
Physics. Research \& Development experience in -

\section*{Avionics}

Countermeasures
Systems Analysis
Transistor Applications
Noise Studies
Antenno Res. \& Dev.
Systems Development
Mechanical Design
Miniaturization
Digital Computer
Circuits \& Systems
Circuit Designs
Shock \& Vibration
Technical Writing
Missile Analysis
Missile Systems
Radar Research \& Development Missile Guidance \& Ground Equipment Analysis
Systems Evaluation Operations Research

BUFFALO Engineering Laboratory
Majors in E.E., Math or Physics. Experience in Advonced Develop. ment and Product Design
Information Theory Advanced Circuit Design VHF-UHF Systems Design \& Evaluation
Logical Circuit Design
Mathematical Analysis and/or Numerical Computation Pulse Techniques
Data Processing Devices Magnetic Amplifier Teshniques Servo Techniques \& Applications Digital Computer Design Control Circuits \& Devices

\section*{interview \& relocation expenses} will be paid by syivania

Sylvania provides financial support for advanced educalion as well as liberal insurance, pension and medical pragrams.

Please forward resume to: Professional Placement Supervisor
Erling Mostue : E. F. Culverhouse
100 First Ave. 175 Great Arrow Ave. Waltham, Mass. \({ }^{\text {I }}\) Buffalo 7, N. Y.
Your inquiries will be answered within 2 weeks

SYLVANIA ELECTRIC PRODUCTS INC.

\section*{How much is an} idea worth.??

Plenty, if it's given a chance. In the hands of a creative engineer, a promising idea is the first step toward significant achievement. But before it pays off, it must be transformed into a reality.

That's the way we work at Goodyear Aircraft. Here, ideas are a prime commodity-they are our raw materials. And to make them work, our engineers have the most modern facilities available, including one of the largest computer laboratories in the world. Here, every idea gets a chance to mature.

This respect for individual thought and effort has been a key factor in our many great contributions to aeronautics. During the past 46 years, in peace and in war, our engineers have turned ideas into accomplish. ments that, today, are a part of nearly every aircraft in our skies. Airships, structural materials, electronic equipment, reinforced structural plastics, missile components - the list is long and broad. And
tomorrow - who knows - maybe your idea will be added to the impressive list.
For if you have faith in your ideas and your ability to make them work, this may well be the challenge you have been seeking. Our continued growth and diversification demand expansion of our creative engineering staff. Opportunities are unlimited at both Akron, Ohio, and Litchfield Park, Arizona, for rewarding professional careers in all specialties of engineering.

Salaries and benefits are, of course, liberal. And for those who wish to continue with academic studies, company-paid tuition courses leading to advanced degrees have been established at nearby colleges. For further information on your career opportunities at Goodyear Aircraft, write: Mr. C. G. Jones, Personnel Department, Goodyear Aircraft Corporation, Akron 15, Ohio.

They're doing big things at

\title{
GODD TEAR AIRCRAFT
}

THETEAMTOTEAM WITH IN AERONAUTICS

Deer Bill:
Now that foe is on the team here at Farmswortt, hes asked me to write and give you the same story that got him interested in coming with us.

Actually, Bill, it want a "stow."
Lust a few honest-to-goodress recons why he and Marge should make the move and let the family really live as url as let fol grow professionally.

For instance, do you know what. "sold" Marge? The fact that in livre here you are only 10 minutes from everywhereschools, churches, stores etc. and Voe goes home for lunch every day instead of weekends. She also liked the idea of some 300 lakes within 70 miles. (Guess where there planning to spend the summer!)

As for foe, hes all hoped up about the work he's doing on such misilles as Bomarc, Talos, Terrier and Others. Says the top-notch scientist o and engrieess hes working with are all big. league and hes on the term.

Thats' about it, Bill. An engoneer with your talents shouldrit bs waiting, around when he can get in on the ground floor here at Tameworth in research, develop meat or production engineering in missile guidance and control, radar, microwaves, test equipment, countermeasures, transistor applications etc.
so - why not write, right now to Don Alone, Furnworth Elactromis bo. Fort Wayne, had. (Adiricore of International Telephone and Telegraph Corp.)

You, Poe, \(l\) and Farnsworth isl be mighty glad you did.

\title{
\(\mathcal{B e m d i j}^{\text {PGuDed missiles }}\) Ce ofler ineresting jols with outstanding futures
}

MISSILE SYSTEMS TESTING-In Missile Systems Testing, opportunities exist in two areas; First, as part of the teams that test newly developed experimental missiles; and second, for those with a good technical backgraund and a penchant for dealing with production problems as a technical supervisor in our final test organization.

SYSTEMS ANALYSIS-Engineers are needed to work on fundamental problems of analytical dynemics in over-all behavior of missiles and weapons systems and the interactions of components and systems of a missile, particularly in terms of weapons performance. Ability, training and experience in analogue and digital computers, breadboards, prototypes of missile equipment, and electronic and mechanical simulators are essential in these positions.

MISSILE GUIDANCE-Engineers are needed to design, develop and test prototype systems of an extremely complex missile system. Experience in microwaves, electronics, mechanics, seryo systems and related fields is essential.

TEST EQUIPMENT-Experienced engineers required for design of precision electronic and electro-mechanical automatic test equipment and instrumentation. Programming, signal generation from low frequency to microwave, analogue and digital data handling, and go-no-go comparators and indicators are involved.

Bendix Guided Missiles also offer interesting job opportunities for Senior Engineers, Assistant Engineers, Junior Engineers and Technicians.

A thirty-six-pege book, "Your Future in Guided Missiles", describing in detail the many phases of our guided-missile operation and the job opportunities available to you, will be sent to you on request. Write for your copy today.-bendix PRODUCTS DIVISION-MISsiles-403B Bendix Drive, South Bend, Ind.

These positions are tailor-made for highly imagingfive engineers who like problems of more than average difficulty; assignments that require a maximum of individual electronic creativeness.

\section*{CURRENT OPENINGS INCLUDE:}

\section*{RADAR AND PULSE SYSTEMS}

Background of VHF-UHF development including circuitry design for airborne and ground equipment. Long term development involves application of intersting new techniques.

\section*{DEFLECTION CIRCUIT ENGINEERS}

To do original work on the design and development of horizontal and vertical deflection components and circuitry for both monochrome and color receivers.

\section*{PHYSICISTS_ENGINEERS}

Experienced in measuring and evaluating reactor fields-neutron and gamma measurements, calculation of effects of these fields on electronic components.

\section*{COMPONENT PARTS}

Long terms projects on the design of television components with emphasis on engineering control of yokes, tuners and flyback transformers in production.

\section*{COMMUNICATION SYSTEMS}

For design of complex systems. Familiarity with air-borne receivers and transmittens required. Knowledge of transistor theory and application to military equipment an asset.

\section*{ENGINEERING WRITERS}

To organize, write and edit operating and maintenance manuals. Openings also available for compiling technical disertations used for government bid proposals.

\section*{RECENT GRADUATES OR EXPERIENCED MEN}

This is an invitation to both of you to inquire about these and other opportunities.

Liberal salaries based on education, ability and experience. Paid life insurance and hospitalization plus a retirement plan, liberal vacation policy and periodic salary reviews are added benefits.

If you are interested in a secure future, write and give full details to Mr. W. A. Weaker, Personnel Division.

\section*{Admiral Corporation \\ 3800 W. Cortland St. . Chicago 47, Illinois}

\section*{Needed Now...}

Engineering Talent
in Electronics
- Physics
- Mechanics

\section*{Heres} Career with \(a\) Future!

Here is a career opportunity for you to associate yourself with a rapidly growing organization. Industrial Research Laboratories is located in suburban Baltimore and is housed in buildings that were designed to be research laboratories. The organization is large enough to handle complex systems problems, yet small enough to insure individual recognition. Personnel are assocrated with all phases of projects to which they are assigned and have the advantage of participating in the entire project, not just a segment of it.

Industrial Research Laboratories has a liberal approach to vacations, sick leaves and incentive plans, and offers many additional benefits.

Our production and earning curves have been constantly on the upswing since our inception, and we have never discharged or furloughed an employee for lack of work.

If you are interested in a career with future, write:

INDUSTRIAL RESEARCH
 LABORATORIES
Div. of Aeronca Manufacturing Corp. Dept. A-4, Hilltop \& Frederick Rds. Baltimore 28, Maryland

\section*{ENGINEERS} Honeywell
"First \(\ln\) Controls"

OFFERS EXCELLENT OPPORTUNITIES IN

NUCLEAR ENGINEERING

\section*{PROJECT}
... with nuclear science background. Position requires interest and ability in the design of control systems. Employment with HONEYWELL offers broad opportunities in the nuclear field.

\section*{RESEARCH}
including analysis of electronic controls and control systems, using control theory and analog tests. Variety of other applied research activities.

\section*{DEVELOPMENT}
... of electronic and electromechanical devices for detection and control of all types of industrial process variables.
. . . development and design of complex industrial instrumentation systems, data reduction and data handling systems.
...development of preumatic and mechanical devices for flow measurement and control and other small electromechanical controls and recording instruments.

\section*{APPLICATION}
.. personal contact with customers, determining exact needs for custombuilt devices or systems, determine feasibility of maufacturing special products by estimating engineering time necessary, etc.

CONTACT OUR REPRESENTATIVE MR. D. R. GARVEY

HONEYWELL brown instruments

Wayne \& Windrim Aves. Philadelphia 44, Pa.

SEMICONDUCTOR ENGINEERS and SCIENTISTS AATHED

Unusual long range opportunities are available due to our current expansion and past record of performance.

Raytheon, one of the world's largest producers, has already shipped over 15 million semiconductor devices. Raytheon is the only volume producer of the complete line of silicon power rectifiers, and both germanium and silicon transistors and diodes.

The newly created SEMICONDUCTOR DIVISION is now rapidly expanding in a separate plant with 3 acres of floor space; 9 acres of land are available for planned future expansion. This location provides smallcompany almosphere for professional growth and opportunity with large company resources and stability. The plant is within 6 miles of Greater Boston's six leading universities and colleges; Raytheon's tuition refund plan encourages advanced study.

\section*{ELECTRONIC ENGINEERS}

BS or MS in EE for development evaluation, and pilot line positions. Semi-conductor experience valuable.

\section*{PHYSICISTS}

BS, MS or PhD. To participate in theoretical analyses and device development. Transistor or Diode experience valuable. Knowledge of solid state principles desired.

METALLURGISTS
BS or MS. Knowledge of crystal growing, electronics of crystals Transistor or Diode experience desired but not essential.

APPLICATIONS ENGINEERS
Cuircuitry Involving applications of transistors in missile and other airborne electronics, computers, communications equipment and hearing aids.

Engineering Section Leaderextensive experience in cus.
tomer contact at engineering level, and supervision of circuit engineers working on transistor applications problems.

\section*{PRODUCT ENGINEERS}

BS or MS in Chemistry, Metallurgy, Physics or Electrical Engineering. Specify and control semiconductor production processes.

\section*{MECHANICAL ENGINEERS}

AND AUTOMATIC MACHINE DESIGNERS
BS or MS or equivalent experience. Experience in mechanisms as applied to automatic machinery for small parts. Knowledge of materials and small parts fabrication techniques valuable.

\section*{SALES ENGINEERS}
\(B S\), MS or \(E E\) or equivalent experience. Customer contact at engineering level. Electronic component experience necessary.

Please send complete resume to:
Vaughan Andrews, Technical Placement Office

SEMICONDUCTOR DIVISION

\author{
150 Califarnia St., Newion 58, Mass.
}

Excellence -in Slectronics

\author{
... New Opportunities ... 17 + Locations ... One Best For You And Your Family
}

\section*{Can anyene but RCA offer you a choice of Iocations like this?}

At Camden, Moorestown or Cherry Hill, you enjoy cultural advantages of Greater Philadelphia, live at moderate cost in pleasant suburban communities. Waltham offers at-home opportunities for New England engineers. Four ideal West Coast locations. Harrison borders on Greater New York. Lancaster, Marion and Findlay have small-town advantages. There's pleasant year-round outdoor living in Cocoa Beach, on Florida's central east coast. RCA Service Company and International Division assignments include ideal locations in the United States, and wherever RCA electronic equipments are installed and serviced throughout the world.

\section*{Individual Recognition -}

RCA organizes engineering activities into groups small enough to allow broadest scope for your individual accomplishment. The average group has just 11 engineers. Yet in all activities, you are supported by the entire facilities and engineering resources of RCA

\section*{Salaries -}

RCA engineering sataries average measurably higher than other companies' in the field. Intermediate engineers, \(\$ 5000-\$ 8500\) : senior engineer3, \(\$ 8500-\$ 15,000\); staff and supervisory salaries open.

\section*{Advancement-}

Scheduled, objective appraisal of your work speeds promotion. Professional and financial progress is just as sure as your achievements make it.

\section*{Professional Status-}

RCA bases world leadership in electronics on the abilities of exceptional men at every organizational level. Many have notable engineering and scientific reputations. You work in day-by-day association with men of this caliber.

\section*{Benefits -}

There's a complete program at F.CA. A very liberal Tuition Refund Plen. Company-paid life, sickness and accident, hospital-surgical insurance for you and your family. Modern retirement plan. Relocation expenses paid. Sugsestion and patent ewards.

\title{
Now, Pinpoint Your Future ...Here are the Opportunities! ...Here are the Locations!
}

\section*{FIELDS OF ENGINEERING ACTIVITY}
```

- SZSTRMNS
(Integration of theory,
equipments and
environment fo create
and optimize major
electronic concepts.)

```
\begin{tabular}{|l|}
\hline ayianton electronics - conthols \\
\hline digital data handling devices \\
\hline missile elictionics - radar \\
\hline Inertial navigation \\
\hline comunications \\
\hline
\end{tabular}

\section*{- DESTGN • DEVELOPMENT}

KINESCOPES (B \& W and COLOR), OSCILLOSCOPES-Electron Oplics-Instrumental Anolysis-Solid Stotes (Phosphors, High TemperciPure Phenomeno, Photosensitive Materials and Class to Metol Seoling) RECEIVING TUBES-Tube Design-Test and Application EngineeringChemical and Physical Development - Mehods and Pracess Engineering - Advanced Development

SEMI-CONDUCTORS-Tronsistors-Semi-Condugtor Detices-Molericils MICROWAVE TUBES - Tube Development and Manufacture (Troveling Wave-Bockward Wave-Magnetron)
GAS, POWER AND PHOTO TUBES-Photosensitive Devices-Glars to Mefal Sealing - UHF and VHF-Power
AVIATION ELEGTRONICS-Rodor-Computers-Servo Mechanisms -Shack and Vibration-Circuitry-Remote Control-Heat Transfer-Sub-Miniaturization - Automatic Fligh: - Automafion - Transistorization
COMPUTERS-Systems-Advanced Development-Circuitry-Assembly Design-Mechonisms-Programming

RADAR-Circuitry-Antenno Design-Servó Systems-Gear Train3Intricate Mechanisms - Fire Control-Intórmation Handling-Displays
COMMUNICATIONS - Specialized Military Systems - Microwove -Aviation-Audio-Propagation Studies
MISSILE ELECTRONICS-Systems Planning and Design-Radari-Fire Contral-Shock Problems-Servo Mectanisms
COMPONENTS - Transformers - Cails-TV Deflection Yokes (Calor ar Monochrome)-Resistors-Ferrifes (Material and Parts)
\begin{tabular}{|c|c|c|}
\hline \(\bullet\) & SYCFMNE APPLICATION & (Evaluation and Plarning-Design and Development-Modification-Specificatior) \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
MISSILE TEST INSTRUMENTATION (Dato Acquisition and Processing) \\
- Radar - Telemetry - Timing - Communications - Optics - Computer
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{RADAR-Airborne-Surface-Shipboard-Sonar-Fire Control} \\
\hline & \multicolumn{2}{|l|}{COMMUNICATIONS - Radio - HF - VHF - UHF - Microwove Telephone - Teletype - Telegraph Terminal Equipment - Wdva Propagation} \\
\hline
\end{tabular} Telephone - Teletype - Telegraph Terminal Equipment - Wdva Propagation

\section*{- MACHINE DESIGN}

Mechanical and Electrical-Autamatic or Semi-Automatic Machines
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\hline M \\
A \\
N \\
A \\
A \\
E \\
R \\
S \\
\hline
\end{gathered}
\]} & \multicolumn{12}{|c|}{TYP: OF DEGRIE AND YEARS OF EXPERIENCE PREFERRED} \\
\hline & \multicolumn{3}{|r|}{Electrical Engineers} & \multicolumn{3}{|r|}{Mechanical Engineers} & \multicolumn{3}{|c|}{\begin{tabular}{l}
Physical \\
Science
\end{tabular}} & \multicolumn{3}{|l|}{Chemistry
Ceramics
Gass Tectinology
Motalurgy} \\
\hline & 0.2 & 2-3 & 4.15 & 0-? & 2-3 & 4-15 & 1.2 & \(2 \cdot 3\) & 4.15 & 1.2 & 2.1 & 4-15 \\
\hline & & w & \[
\begin{aligned}
& \mathbf{W} \\
& \mathbf{M}
\end{aligned}
\] & & & M & & w & \[
\begin{aligned}
& \mathbf{w} \\
& \mathbf{M}
\end{aligned}
\] & & & \\
\hline \[
\begin{gathered}
M \\
C
\end{gathered}
\] & & \[
\begin{aligned}
& M \\
& C
\end{aligned}
\] & \[
\begin{gathered}
M \\
C
\end{gathered}
\] & & C & C & & c & C & & & \\
\hline \[
\begin{array}{|c|}
\hline M \\
W
\end{array}
\] & & \[
\begin{aligned}
& \mathbf{M} \\
& \mathbf{w} \\
& \mathbf{X}
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{M} \\
& \mathbf{w} \\
& \mathbf{x}
\end{aligned}
\] & & \[
\begin{gathered}
M \\
W
\end{gathered}
\] & \[
\begin{aligned}
& M \\
& W
\end{aligned}
\] & & \[
\mathbf{M}
\] & \[
\begin{gathered}
M \\
W
\end{gathered}
\] & & & \\
\hline w & & & w & & & w & & & W & & & \\
\hline & & & c & & & & & & c & & & \\
\hline & 1 & \[
\frac{1}{Y}
\] & \[
\stackrel{\mathbf{L}}{\mathbf{Y}}
\] & 1 & \[
\frac{\mathbf{L}}{\mathbf{V}}
\] & \[
\frac{1}{7}
\] & 1 & 1 & 1 & 1 & \[
\frac{\mathbf{L}}{\mathbf{Y}}
\] & \[
\frac{4}{V}
\] \\
\hline & H & H & H & & H & H & & H & H & & H & H \\
\hline & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline H & & H & H & & H & H & & H & H & & \({ }^{H}\) & H \\
\hline & 4 & \(t\) & 1 & \(L\) & \(L\) & 1 & 4 & 4 & 4 & 4 & 4 & \\
\hline \[
\left|\begin{array}{c}
w \\
c
\end{array}\right|
\] & \[
\begin{aligned}
& \mathbf{W} \\
& \mathbf{c} \\
& \mathbf{x}
\end{aligned}
\] & \[
\begin{aligned}
& w \\
& c \\
& \mathbf{x}
\end{aligned}
\] & \[
\begin{aligned}
& w \\
& \mathbf{c} \\
& \mathbf{x}
\end{aligned}
\] & \[
\begin{gathered}
w \\
c
\end{gathered}
\] & \[
\begin{aligned}
& \mathbf{w} \\
& \mathbf{c} \\
& \mathbf{x}
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{w} \\
& c \\
& \mathbf{x}
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{w} \\
& \mathbf{c} \\
& \mathbf{x}
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathbf{w} \\
& \mathbf{c} \\
& \mathbf{x}
\end{aligned}
\] & \[
\begin{aligned}
& w \\
& c \\
& \mathbf{x}
\end{aligned}
\] & & & \\
\hline & C & \[
\begin{aligned}
& \mathbf{c} \\
& \mathbf{x} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& M \\
& \mathbf{C} \\
& \mathbf{X}
\end{aligned}
\] & c & \[
\underset{x}{c}
\] & \[
\begin{gathered}
M \\
C \\
X \\
\hline
\end{gathered}
\] & c & C & \[
\begin{gathered}
M \\
C
\end{gathered}
\] & & & \\
\hline \[
\begin{gathered}
M \\
C
\end{gathered}
\] & \[
\begin{aligned}
& \mathbf{M} \\
& \mathbf{c} \\
& \mathbf{X} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
M \\
C \\
X
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{M} \\
& \mathbf{C} \\
& \mathbf{X}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{N} \\
\mathrm{C} \\
\mathrm{X} \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \mathbf{M} \\
\mathbf{c} \\
\mathbf{x} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& M \\
& c \\
& X
\end{aligned}
\] & \[
\begin{gathered}
M \\
C \\
X \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
M \\
C \\
X \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
M \\
C \\
X \\
\hline
\end{gathered}
\] & & & \\
\hline & c & c & c & & \(c\) & \(c\) & c & c & c & & & \\
\hline M & \[
\begin{gathered}
M \\
X
\end{gathered}
\] & \[
\begin{gathered}
M \\
X
\end{gathered}
\] & \[
\begin{gathered}
M \\
X
\end{gathered}
\] & M & M & \[
\begin{gathered}
M \\
X
\end{gathered}
\] & M & \[
\underset{X}{M}
\] & \[
\stackrel{M}{\mathrm{X}}
\] & & & \\
\hline & C & \[
\begin{aligned}
& z \\
& c
\end{aligned}
\] & \[
\begin{aligned}
& z \\
& c
\end{aligned}
\] & \(c\) & \[
\begin{aligned}
& z \\
& c
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& c
\end{aligned}
\] & C & C & C & & \[
\begin{aligned}
& \mathbf{z} \\
& c
\end{aligned}
\] & \[
\begin{aligned}
& z \\
& c
\end{aligned}
\] \\
\hline F & F & \[
\mathrm{F}
\] & \[
\mathrm{F}
\] & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~S}
\end{aligned}
\] & \[
\mathrm{F}
\] & \[
\mathrm{F}
\] & \[
\begin{aligned}
& f \\
& S
\end{aligned}
\] & F & \[
5
\] & & & \\
\hline F & \[
\begin{aligned}
& F \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~S}
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{F} \\
& \mathbf{S}
\end{aligned}
\] & \[
\begin{aligned}
& F \\
& 5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~S}
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{F} \\
& \mathbf{S} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~S}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~S}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~S}
\end{aligned}
\] & & & \\
\hline \(F\) & \[
\begin{aligned}
& 5 \\
& 5 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline 5 \\
& 5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~S} \\
& \mathbf{I}
\end{aligned}
\] & \[
\begin{aligned}
& F \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{F} \\
& \mathbf{S}
\end{aligned}
\] & \[
\begin{aligned}
& F \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& F \\
& \mathbf{S}
\end{aligned}
\] & \[
\begin{aligned}
& F \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& F \\
& 5
\end{aligned}
\] & & & \\
\hline & 1 & 1 & & 1 & H
H
\(\mathbf{Y}\) & C
H
Y & & 4 & L & & & \\
\hline
\end{tabular}

\footnotetext{
Locations: C-Camden, N.J. F-Cocoa Beach, Fla. H-Harrison, N.J. I-International Div. L-Lancaster, Pa. M-Moorestown, N.J. S-RCA Service Co. (Cherry Hill, N.J.-:
} Alexandria, Va.; Tucson, Ariz.; San Diego, Sacramente, San Francisco, Calif.; Foreign Assignerents). W-Waltham, Mass. X-Lus Angeles, Calif. Y-Marion, Ind. \(\mathbf{Z}-\) Findlay, Ohio

Engineers skilled in circuit design of electronic navigational equipment for aircraft are being offered excellent opportunities at Bendix-Pacific. These are secure, well paying positions with strong peace time application. Bendix-Pacific also has unusual positions in electrical and mechanical design of airborne radar, telemetering and missile guidance.

Let us send you complete information. Mail the coupon or write us today.

\section*{Are You an Engineer Who wants to go Higher-Faster?}

Aiming for the upper strata, but still earth bound after a few years of ambition-blunted effort? Here's your chance to move just as far and as fast as your ability and hard work will justify.

We're offering careers-not jobs-in electronics, semiconductors and color TV with a company that's youthfully mature, yet growing and expanding every day.

Submit resume or address request for personal interview to D. Bellat, Personnel Director, Tung-Sol Electric Inc., 200 Bloomfield Avenue, Bloomfield, N. J.

\section*{ts TUNG-SOL \\ EAST ORANGE - BLOOMIIELD,N.J.}
\begin{tabular}{|c|c|c|c|c|}
\hline & & & & \\
\hline Radio and TV Tubes & Aluminized Picture Tubes & Special Putpose Tubes & Sermiorductors & Color Pichure Tubes \\
\hline
\end{tabular}

\title{
TO THE FINE ENGINEERING MIND SEEKING THE CHALLENGING PROJECTS IN ELECTRONECS
}

ELECTRONICS ENGINEERS are urgently needed to fill top career openings at Convair in beautiful San Diego, California. Qualifications include experience in missile guidance systems, microwave techniques, digital computers, servomechanisms, test equipment design, circuit analysis, transistor and magnetic amplifier circuit design, and electronic reliability. Antenna engineers also needed for airborne antenna research and development projects.
CONVAIR offers you an imaginative, explorative, energetic engineering department... truly the "engineer's" engineering department
to challenge your mind, your skills, your abilities in solving the complex problems of vital, new, long-range programs. You will find salaries, facilities, engineering policies, educational opportunities and personal advantages excellent.

SMOG-FREE SAN DIEGO, lovely, sunny ciry on the coast of Southern California, offers you and your family a wonderful, new way of lifea way of life judged by most as the Nation's finest for climate, natural beauty and easy (indoor-outdoor) living. Housing is plentiful and reasonable.

Generous travel allowances to engineers who are accepted. Write at once enclosing full resume to: H. T. BROOKS, ENGINEERING PERSONNEL, DEPT. 916

A Division of General

SYLVANIA'S
CALIFORNIA RESEARCH LABORATORY
(San Francisco Bay Area-Near Palo Alto)
Needs experienced creative engineers for a long range research and development program in microwave electronic systems and components. Also needs experts in design and custom packaging of specialized electronic communications equipment.

\section*{We have specific openings for ENGINEERING SPECIALISTS,}

SENIOR ENGINEERS and ENGINEERS in:
SYSTEMS ANALYSIS For weapons systems planning, operational analysis and data handling problems.

MICROWAVE ANTENNAS For investigation of new concepts in polarization and pattern control, direction finding and multi-function radiators.

MICROWAVE CIRCUITS For advancements in synthesis of filters, broadband mixers, power dividers, etc., involving modern techniques of stripline, ridge guide and periodic structures.

TRANSMITTER DEVELOPMENT For research and development involving microwaves and pulse techniques.

FIELD ENGINEERING For advanced engineering field tests of prototype equipment.
RECEIVER DEVELOPMENT For design and development of microwave and communications receivers and pulse circuitry.
Sylvania offers the finest facilities and equipment available. We also provide financial support for advanced education, as well as a liberal insurance, pension and medical program. complete resume to JOHN C. RICHARDS Electranic Defense Laboratary Bax 205
Mountain View, Califarnia

\section*{ELECTRONIC}

All inquiries will be answered within two weeks.

Our Laboratory is located 5 miles from Palo Alto in the San Francisco Bay area, close to excellent schools and universities, unexcelled living conditions, ideal climate and ample housing.
relocation expenses Paid
defense laboratory

SYLVANIA
SYLVANIA ELECTRIC PRODUCTS INC.

If you are tied up in red tape . . . if the scope of your work is limited . . if you can't use your creative engineering abilities . . . then MEMCO offers you a sound escape from stagnation and monotony.

\section*{AT MEMCO:}
every electronic engineer...
is encouraged to use his creative talents.
works on all phases of his projects.
is appreciated as an engineer, not as a replaceable cog in a big machine.
gets top pay and the usual benefits. can build a sound, worthwhile future.

For full details please write to

\section*{MARYLAND ELECTRONIC}

MANUFACTURING CORPORATION
5009 Calvert Road
College Park, Maryland
(A suburb of Washington, D. C.)

LOW TEMPERATURE

SPIN RESONANCE

\section*{ENGINEERS, PHYSICISTS, CHEMISTS}

\section*{Zenith wants to talk to you about:}
- Solid State Physics
- Transistors
- Circuits for Color \& Monochrome Television and Radio
- New Types of Vacuum Tubes
- Radio \& TV Receiver Design
- Subscription TV (Phonevision)
- Ceramic Engineering (High Dielectric, Piezoelectric)
- Patents
- Industrial Engineering (Automation)

TRANEISTDRS

Modern Air-Conditioned Laboratories
Attractive Profit Sharing and Insurance Plans
Outer Chicago Location with Opportunity for Suburban Living and Graduate Study
Non-Classified Work-Publication Encouraged
Since 1919 Zenith has manufactured radios for home use and is one of the country's oldest companies continuously in this field. It is today a leading manufacturer of quality television sets and hearing aids. Continuity of management, a record of pioneer technical developments and a reputation for quality products are important factors for you to consider. Zenith's consistent, steady growth and unusually low engineering turnover rate indicate a desirable combination of opportunity and stability.

SYSTEMS ENS WEERTG

TELEVISION マEC ミIVER DESIGN

ACOUSTICS

For an appointment, write to G. E. GUSTAFSON

Vice President, Engineering
Zenith Radio Corporation
6001 Dickens Avenue, Chicago 39, Illinois

RADIO CORPORATION

Engineers and Scientists:
INSTRUMENTATION SYSTEMS ENGINEERING for Military Applications

IN THESE NEW PROGRAMS AT THE MISSILE TEST PROJECT, FLORIDA

Have you as an engineer or scientist considered the problems and projects associated with the instrumentation and control of a long range missile, guided over a course that extends thousands of miles?

To achieve precision performance, missile launching and guidance require a vast network of instrumentation and control. New development programs have created challenging opportunities for Electronics Engineers and Scientists who are interested in data acquisition, transmission, recording and processing systems.
A world leader in electronics provides instrumentation for the Air Force Long Range Testing Laboratory, which extends from Patrick Air Force Base, on the Central East Coast of Florida, to the Mid South Atlantic.
You will enjoy top salaries, liberal company-paid benefits, and ideal Florida living for you and your family.
Relocation assistance, too.

TODAY ... get complete information on arrangements for personal interview. Send a complete resume of your education and experience to:

PERSONNEL MANAGER
MISSILE TEST PROJECT-Dept. N-10D
P. O. Box 1226

Melbourne, Florida
MISSILETEST PROJECT Melbourne, Florida

- a mechanical engineer who wants to design electro-mechanical devices for instrumentation and data reduction. Must have supervisory ability, BSME, at least \(8-10\) years experience in this type of work.
- an electronic engincer to supervise a test department for custom instrumentation equipment. BSEE, 3-5 years experience required.
- several electronic engineers equipped with BSEE degrees and 0.5 years experience.

\section*{Davies Offers}
- a place in the suburban Maryland sun - close to the culture of Washington, D. C., far from the cares and annoyances of city life, in an area of good schools, good government, well kept property.
- the chance to be yourself-an individual among individuals, an engineer among engineers-to draw personal satisfaction from the fruits of your labors-to be a wheel, rather than a cog.
- a voice in the future of magnetic tape data recording and instrumentationthe confidence and mutual respect of the men who developed the technique.
- the opportunity to continue your education at such nearby schools as George Washington University, University of Maryland, etc.

\section*{Plus}
- attractive salaries, air conditioning, advancement, a company-paid-for pension plan . . . in short, as much as any company can offer. But we offer, in addition, the sheer pleasure and gratification that makes a job a career.

For an interview, write, enclosing resume, to Mr. Gomer L. Davies
Davies Laboratories, Inc.
Riverdale, Maryland

\section*{WIth ac the electronics division of}

\section*{General Mators}

ALL GRADUATE ENGINEERS are offered permanènt job opportunities. We extend a cordial invitation to every deserving Engineer and Designer to write us their wants. We may be able to supply the square hole for the square peg!

YOUR FUTURE depends on your making the right connection with the right firm as quickly as possible.

The men hired will enjoy working with some of the top men in the field and with the finest test, research and development facilities. GM's long-standing policy of decentralization creates individual opportunity and recognition.

Why not send us full facts about your education, work background, etc.
We will do all we can to treat your application with the fullest confidence.

\section*{ENGGINEFRS}

Put Yourself Ahead in Engineering with the

MECHANICAL ENGINEERS
Mechanical or electromechanical engineers familiar with the packaging of military electronic equipment, vibration, shock and other environmental problems, kinematic design of mechanisms.

\section*{EIECTRONIC ENGINEERS}

Experienced in Product Design and Production.
Production liaison requires wide knowledge of electronic circuits and packaging. System and Component Testing. Some experience in cost estimating and project administration. Familiarity with all types of military specifications.

\section*{SYSTEMS SPECIALIST}

Analysis of electronic system performance and establishment of design parameters for electronic systems. Able to prepare or supervise preparation of technical proposals and act in capacity of technical advisor on engineering program. Approximately 10 years experience in general electronic design work.

\section*{FIEID ENGINEERS}

Experience in radar, ultrasonics, servomechanisms, or computers. Positions involve field assignments in the continental United States after in-plant training.

AMP is well known for its liberal benefits program. Join AMF in Boston where a gigantic electronics boom is on . . . in fact, this is the new electronics center of America. Here you will be surrounded by the nation's leading universities-M.I.T., Harvard, Tufts - outstanding historical sites and gateway to all New England's four-season resorts and sports, easily accessible on new super-highways-and our smart, modestly priced home communities are models for today and tomorrow.
Please forward your resume to Personnel Manager

\section*{Electronics Division} AMERICAN MACHINE \& FOUNDRY CO.
mechanical \& Electrical
engineers

\section*{All Levels}

\section*{More Than A Career,} LEAR, Inc.

\author{
offers you A Way of Life
}

\section*{-a way to work}

Since it was founded 25 years ago, LEAR, Inc. has maintained an uncompromising standard of quality in high-precision electronic and mechanical accessories, devices and instruments for the aviation industry. Among these are: Servo Systems, Magnetic Modulators, Stable Gyro Platforms, Magnetic Sensing and Guiding Devices, Precision Actuators and Electronic Switches. Today these standards have helped create a large and ever-growing demand for LEAR products. This is the LEAR "way to work"-lts problems and achieve-ments-which we offer to share with qualified engineers.

\section*{- a way to live}

You create an entirely new way of life when you make your home in Grand Rapids, Michigan. In addition to the many cultural and educational facilities, you will find a thriving yet uncongested community ... neighborly people ... and the unlimited recreation and relaxation that the beautiful surrounding countryside offers.

\section*{We Now Have Openings}
for men with varying degrees of experience in research, design and development.

\author{
To Arrange Interview \\ send resume to: \\ Employment Manager
}

LEAR, Inc.
110 Ionia Ave., N.W.
Grand Rapids 2, Mich

\section*{ENGINEERS for immediate placement}

\section*{ELICTRICAL ENGINEERS mechanical encine rs ELECTRONIC ENGINEERS COMPUTER ENGINEERS SOLID-STATE PHYSICISTS}

\section*{Engineering at NCR:}
1. Immediate, permanent positions in Mechanical Engineering, Electrical Engineering and Physics Research Divisions.
2. Engineering project work in Adding Machines, Cash Registers, Accounting Machines, Computers and related Data Processing Equipment in Dayton, Los Angeles, and Ithaca, New York.
3. Opportunities in design, development, produc-
tion-engineering and packaging of mechanical, electronic, and electromechanical devices.
4. Some experience in development, design, and application of high-speed, light-weight mechanisms of the intermittent-motion type; or, experience in digital devices and components, is desirable, but not essential.
5. Ample training and indoctrination is available to all employees.

\section*{As an NCR engineer you, with your family, will enjoy:}
1. UNLIMITED OPPORTUNITY in the broad, everexpanding field of Business Machine Engineering and Research.
2. AN EXCELLENT SALARY, plus exceptional benefits of lifetime value for you and your family.
3. A RECREATIONAL PROGRAM for year-round enjoyment of the entire family, including a new NCR Country Club with 36 holes of goif, and a 166 -acre
employees' park for outings with swimming, boating, and supervised play for the children.
4. LIVING \(\mathbb{N}\) DAYTON ...considered a clean, attractive, progressive city with outstanding school facilities.
5. YOUR WORK AT NCR with its friendly, family atmosphere, with its employee morale at a very high level, and with people who, like, yourself, have decided to build their professional future with NCR.

ACT AT ONCE - Send résumé of your education, experience and geographic preference to:

EMPLOYMENT DEPARTMENT, TECHNICAL PROCUREMENT SECTION 4

\section*{THE NATIONAL CASH REGISTER COMPANY Dayton 9, Ohio}
*Trade-Mark-Reg. U. S. Pat. Off.

\section*{How to Keep at the FOREFRONT Of DEVELOPMENTS in your field}

The best method, quite simply, is to join the staff of a company where continuous, intensive, massive research activities are constantly improving transistor performance and introducing basic innovations in this burgeoning world of the semi-conductor.
Not only is Sylvania the world's largest manufacturer of crystal diodes, but it is also a notable pioneer in this area, responsible for such developments as the practical miniaturization of transistors. Only last year SYLVANIA developed the metallurgical process which so greatly increases the electrical stability and life of tiny germanium diodes.
Inevitably, engineers and scientists who work at SYLVANIA's Electronics Division march at the forefront of the procession, professionally speaking. And they enjoy the added advantages of association with a company of outstanding stability, diversity and record of growth. (In 54 years Sylvania has grown from a one-plant company to an organization with 43 plants and 16 research and engineering laboratories.)
Salaries are high and company policies contribute in every way to peace of mind and personal progress. Comprehensive benefits ¡nclude life, accident, hospital-medical-surgical insurance and a unique savings and retirement program-one of the most advanced in industry. Also liberal educational aid.

\section*{POSITIONS OPEN AT THIS TIME}
for men with semi-conductor experience or a degree in Electrical, Mechanical Engineering, Chemistry, Physics or Metallurgy.

Please forward complete resume to Miles R. Weaver, Personnel Manager Electronics Division
SYLVANIA
SYLVANIA ELECTRIC PRODUCTS INC. 100 Sylvan Road, Woburn, Mass.

ELECTRICAL ENGINEERS Physicists

Immediate openings in
fast-growing fleld of

SEMI-CONDUCTORS

Permanent career positions with General Electric in Syracuse, New York ... for development, instrumenta tion, design and processing of transistors and rectiffers

Unusual opportunity for electrical engineers and physicists with B.S., M.S or Ph.D. degrees.

Chance to work with the in dustry's leading engineers and scientists under treal working conditons in modern laboratories, full equipped with all facillties
To learn more about your G-E opportunity to live and work in the heart of New York's vacation land, write today to
Mr. M. D. Chilcote,
Department 156-E
Electronics Park
Syracuse, New York
GENERAL ELECTRIC

\section*{QUICK SOLUTION}

\section*{to}

MAN POWER PROBLEMS
through the EMPLOYMENT OPPORTUNITIES SECTION of this publication. The market place for those offering or wanting the services of men on engineering. technical and executive level.

This section offers a quick, effective solution to your man power
problems. Because its readership is confined to just the type of men you need, waste circulation is avoided... You reach only the men you want.

\section*{CLASSIFIED ADVERTISING DIVISION}

ELECTRONICS
330 WEST 42ND ST. NEW YORK 36, N. Y.

\title{
THE SHOT HEARD 'ROUND THE - WORLD
}

\section*{History is repeating itself}

Additional opportunities for Tube Applications Engineers, Mechanical Designers, Test Engineers, and Technical Wrifers.

Write giving a few details on your experience to G. P. O'Neil

\section*{}

CONHPUTTMR

who can fill key creative posts
in long-range, non-military
research and design

\author{
FOR ADVANCED
}
*

BUSINESS
COMPUTER SYSTEMS
ENGIN ERE
To specialize in research and design for advanced business computer systerms. Must have exceptional creative ability, plus knowledge of vacuum tube circuit design, transistor circuitry.

\section*{*}

SENIOR DIGITAL COMPUTER ENGINEERS
For projects in advanced computer design, development and application. Must have thorough knowledge of digital computer logic and circuitry, input-output devices, programming.

\section*{*}

TRANSISTOR CIRCUITRY ENGINEERS
For advanced research and design in computer transistor circuitry. Capabilities should include ability to direct others in new project work.

OPPORTUNITY FOR ELECTRONIC OR ELECTRICAL ENGINEERS
Background in one or more of the fields below equips you for excellent career positions with NCR Electronics Division:
Logical design - ferroelectrics - magnetic cores • computer SYSTEMS - TRANSISTOR CIRCUITS - INPUT. OUTPUT DEVICES APPLICATIONS OF PHYSICS • COMPUTER SYSTEMS SPECS. DEF. OF SYSTEM REQUIREMENTS
"GROUND FLOOR" OPPORTUNITY WITH UNUSUAL STABILITY Openings listed here are for the basic organization of the NCR Electronics Division. If you qualify for one of them, you'll be a key member of this fast-developing division of one of America's top companies. You'll enjoy the freedom of a small, select research group -operated by engineers for engineers - as well as the exceptional financial stability of a large, long -established firm, A full program of employee benefits, too. New, modern, air-conditioned plant with every modern research and development facility in a conveniently situated Los Angeles suburb.
* For illustrated company brochure, write Director of Personnel.

NATIONAL CASH REGISTER COMPANY electronics division 3348 West El Segundo Blvd., Hawthorne, Calif.

The APPLIED PHYSICS I LABORATORY of THE JOHNS HOPKINS UNIVERSITY offers an exceptional opportunity for professional advancement in a wellestablished Laboratory with a reputaion for the encouragement of individ. ul responsibility and self-direction.

\section*{Our program of}

GUIDED MiSSILE RESEARCH and DEVELOPMENT
provides such an opportunity for men qualified in
Design and Analysis of Pulse Circuits
Research and Development in Radar and Microwaves
Electronic Packaging
Development of Telemetering, Dato Processing, and Special Switching Equipment
Magnetic Amplifier Design \& Analysis,
Development and Application of Printed Circuits
Servomechanisms Analysis Control-System Analysis
Please send your resume to
Professional Staff Appointments
APPLIED PHYSICS LABORATORY THE JOHNS HOPKINS UNIVERSITY

8609 Georgia Avenue Silver Spring, Maryland

\section*{Electronic \\ Development Engineers A real opportunity} for personal recognition. Nongovernment work on complete product design projects with established manufacturer of industrial TV cameras, amplifiers, receivers, frequency converters, etc.

Mlust be prepared to work independently. See your own ideas through - from blueprint to finish - ready for market. Modern lab facilities at your complete disposal.

Write or Telephone

BLONDER-TONGUE LABS., INC.
Westfield, New Jersey
WEstifield 2.7032

\title{
Gendil Aviation Corporation YORK DIVISION
}

YORK, PENNSYLVANIA
TELEPHONE YORK 5521
Dear Engineer,
If you are a fortune-hunter, turn the page; this is not for you. But if you are one of the great majority of professional men who is primarily interested in a satisfying job and attractive working and living conditions with reasonable security and good promise for the future, read on!

Sure, this is a sales pitch - but different, since it aims to be honest: We need Engineers, just like every other leading company. You've seen the screaming ads promising Utopia, or Nirvana, to anybody with any semblance of engineering qualifications. We're different! At York, we cling to the belief that you will be more impressed with a frank statement of the pros and cons.

First, we are in the electronics business. Most of our work is military. Since we are working with five or six government agencies, our activities are which We are a small, but full-fledged division of the Beng. On the other hand, Bendix conveys the security and stability of a large compass, so that we also have the operates its divisions on a practically auma11, independent company. Nobody gets flexibil buried!

The plant is 100,000 sq. ft. big - about 3 years new and excellently equipped with machinery and test equipment. The plant is located about five miles east of York, Pa., on the Lincoln Highway, in what the real estate dealers describe as a "beautiful suburban area". (And it is.) You can live (as I do) within three minutes drive of the plant. For \(\$ 10,000\) you can have a 2 -bedroom house (cheaper if you buy a rundown farm house).

The town (of about 75,000) has at least one of everything you could find in a bigger city, including a symphony orchestra of some note. (Sorry, the pun was unintentional.)

Here in our plant, we believe that engineers are people, individuals yet, and not hired hands. We exercise some care in hiring, because we want them to stick; and, in fact, our turnover rate is negligible. The work and status of each individual is reviewed every six months. This doesn't mean that he gets a raise every time, but \(10 \%\) a year isn't far from the average. As an engineer, it's possible to make over \(\$ 10,000\) a year, but you have to be good.

We operate basically by a project system, with a great deal of responsibility vested in each Project Engineer. The supporting departments - Drafting, Mechanical Engineering, Model Shop (you should see our Model Shop), technical publications and the like - furnish service to the project groups. We do about \(\$ 1,000,000\) a year engineering business alone, and seem to have no difficulty in acquiring more. Were growing fast!

We don't offer you the moon, but we do offer you a fair shake:
Sincerely yours,

12. Y. Mmplely.
K. F. Ump1eby

Chief Engineer

Studying ferromagnetic resonance. A cavity perturbation method is used, in which a ferrite specimen placed in a high \(Q\) microwave cavity changes cavily properties in accordance with electrical and magnetic properties of the material.

\section*{Looking for}

\section*{a good place fo grow?}

When you join Raytheon you wo:k in an atmosphere of progress. Advanced work on ferrites for microwave applications is proceeding in Raytheon's modern ceramie research facilities. Various types of gyrators, isolators and otber ferrite microwave devices have resulted from development work in the equipment systems and component development laboratories.
University graduate study is encouraged through a tuition refund plan. Openings now for engineers, scientists in many areas including:
microwave tubes : special purpose tubes - guided missiles transistors • diodes - receiving tubes - TV receivers • radar metallurgy • ceramics • communications - cathode ray tubes sonar • servomechanisms • solid state physics • field engineering Join a team where performance pass off. Please address inquiries to L. B. Landall, Professicnal Personnel Section.

RAYTHEON MANUFACTURING COMPANY 190 Willow St., Waltham 54, Mass. Plants also located in California and Hlinois

\section*{SENIOR}

\section*{ELECTRONIC ENGINEERS}

Enjoy Professional Respect-and fine Connecticut life

If you have an \(E E\) degree. and servo-mechanism experi ence, and have (or can be given) security clearance, you can qualify for an excellent position in our long-success. ful company, situated in one of Connecticut's most pleasant environments, with access to mountains, lakes and sea.

Here, your experience and intelligence will be well respected and rewarded, and you, with your family, will enjoy the benefits of living in beautiful Connecticut.

We will hold your resume in strict confidence. Write today to

P-9482, Electronics
330 W 42 St., New York 36, N. Y.

\section*{Because he wants more} opportunity for advancement than most companies can offer. If an electronic engineering job with an unusual career potential interests you, write for our new brochure on engineering opportunities at Varian.
Address:
Personnel Director Varian Associates
Stanford Industrial Park, 611 Hansen Way Palo Alto, California

VARIAN

ONE OF A SERIES - depicting missiles - "Yesterday, Todaf and Tomorrow"

\section*{\(\sum_{v \sigma \tau \dot{\prime} \mu \alpha \tau \alpha}{ }^{\circ}{ }_{\pi} \lambda \omega \nu\)}
in Greek means weapons systems; and, with the catapult, the Greeks developed one of the earliest weapons systems. Perfected slowly, it reached the height of its effectiveness during the Middle Ages. Today's weapons systems concepts are tremendously more complex than the ancient catapult. The swift advances of science enables only the highly integrated engineering teams to keep pace with the changes. Combined with a perceptive management policy, such a team in a relatively short time can achieve a goal that once took centuries.

At Bell there is both progressive management and creative engineering teams. With that years-ahead look, Bell is concerned not only with today's problems but with tomorrow's successes. Backed by years of successful missile development and management, Bell is now engaged in new projects in advanced missile design. To the creative engineer desiring top assignments, this is an opportunity to work on a completely new weapons system. For qualified engineers with a B.S. or advanced degree, Bell is offering positions where a high level of professional achievement may be attained.

We invite inquiries concerning your association with Bell Aireraft.
Contact: Manager, Engincering Personnel

P. O. Box 1 Buffalo 5, N. Y.

\section*{DEVELOPMENT ENGINEERS}
for Weapons System Engineering
- Development of detailed operational concepts and requirements for a missile weapon system.
- Loop analysis and evaluation (aero, servo, seeker, warhead, fuse, rocket) to arrive at optimum system design. Experience on servo systems or guidance systems highly desired.

\section*{DESIGN ENGINEERS}
- Establish reliability criteria for weapon system elements; formulate, monitor and perform continuing analysis of a test program to yield all necessary reliability data.
- Hydraulic installations - design and layout installations. Experience with aircraft or missile hydraulic devices desired.
- Control and coordinate designs and changes to elements of missile support equipment system. Experience affording broad knowledge of electronic, hydraulic and mechanical elements in a complex system is highly desired.

\section*{PROJECT ENGINEERS}
- To assume responsibility for technical coordination on weapon system requirements between project group, manufacturing/test activities and contractor.

\section*{FLIGHT TEST ENGINEER}
(0) Establishment and coordination of instrumentation requirements for weapon system test program. Determination and coordination of range safety requirements and test objectives.

Texas Instruments expanding research and development programs have opened outstanding opportunities for physicists (solid state) and electronics engineers. TI offers you real chances for advancement in a rapidly-growing industry. Positions are now available in the following fields of engineering:

> Transistor device development
> Transistor circuit applications
> Automation and test equipment design
> Microwave component development
> Infrared radiation development
> Transformer design
> Resistor engineering
> Electrical meter design
> Production planning and control

At Texas Instruments you will have the long-range stability of a 25-year-old firm with many notable "firsts" in the fields of semiconductors, geophysics, radar, infrared radiation, and others. You will enjoy the many living, cultural, and recreational rewards of the sunny Southwest. We would be glad to discuss these career opportunities with you... our profit-sharing plan and other personnel advantages at Texas Instruments.

Write to Personnel Director

TEXAS Instruments

\section*{opportunities in}

\section*{OPERATIONS RESEARCH}

Operations Research Office of The Johns Hopkins University offers exceptional opportunities for scientists who prefer the challenge of operational problems of unusual scope and diversity to routine design and development work.

Our current research program has openings for men qualified in olectronics and physics who are particularly interested in:
- Mathemarical Analysis
- Determining applications of known photographic, acoustic, infrared and radar fechniques to military problems
- Military communications systems planning, analysis and evaluation
- Electronic Countermeasures Analysis

Please send your resume to Reseorch Personnel Officer OPERATIONS RESEARCH OFFICE

\section*{THE \\ JOHNS HOPKINS UNIVERSITY \\ 7100 Connecticur Avenue Chevy Chase, Md.}

\section*{ELECTRONIC ELECTRICAL ENGINEERS}

Permanent positions are available at all levels of experience in the Communications and Radio Frequency section of a large Midwestern research and development or ganization. We reed qualified personnel to work in:

\section*{Electronic Countermeasures Microwaves}

\section*{Radar}

Antennas and Propagation
Radio Interference
Communications Systems
Here is an excellent opportunity to join the staff of a progressive organization, work on challenging and diversified research programs, receive liberal educational benefits, and enjoy optimum professional asso. ciations. New air-conditioned facilities are under construction, and will be available shortly.
Write to:

\section*{J. A. Metzger}

ARMOUR RESEARCH FOUNDATION
of Illinois Institute of Technology
10 West 35 th Street, Chicago 16, Illinois

\section*{REPRESENTATION WANTED}

Rapidly growing nationally known transformer manufacturer desires effective representation Metropolitan N. Y., Pacific Northwest, Ohio, Minn.. Wis. lowa

RW-1032-Electronics
520 N. Michigan Ave., Chicago 11, Ill,

. . e each highway to achievement . . . must have a beginning and what better place to start than right here . . . in the new ultra-modern multimillion dollar Research Center which is only one of three erected in the immediate area within the past 3 years.
Located on Philadelphia's Main Line, within sight of historic Valley Forge, Burroughs multiunit Research Laboratories are less than an hour by train or car over express highways to

Philadelphia where cultural and educational facilities of known merit are available to engineers interested in advance study at The University of Pennsylvania, Drexel Institute or Temple University during the evening hours.

Naturally, a retirement program and other benefits for you and your family are part of Burroughs Progressive Employment Policies. So, too, is association with outstanding men in the business machine field.

Looking to future expansion, Burroughs invites inquiries from those qualified as: electrical engineers • PhYsielsTS • electromechanical engineers mechanical engineers - technclans - mechanical design enaineers . . . in the following fields - Control Computers, Pulse Circuitry, Digital Computers, Optical Devices, High Speed Mechanisms, Guided Missiles, Solid State Circuitry, Electronic Packaging, Electrographic Recording Devices.

CORPORATION RESEARCH CENTER paoli. pa., near historic valley forge

Send Complete Resumé to M. E. JENKINS PLACEMENT MANAGER
For Interview af Your Convenience

\section*{FIERD ENGINEERING WITH A FUTURE-at Raytheon}

PLAN YOUR CAREER HERE - Raytheon needs men like you who are qualified for field engineering and have the ability to build a future in electronics. Experience in the field has enabled many of our engineers to become executives at Raytheon. Unlimited opportunity is open to you now in the following programs:
MISSILES Air-to-Air-Ground-to-Air
RADAR \(\qquad\) Search - Fire Control Bombing - Countermeasures
Other Equipment. . . . Ship and Airborne Sonar - Multiplexers Microwave Relay Links - Communications

Raytheon has designed and built complicated electronic equipment for the past 30 years. One of its present equipment projects is the world's most publicized radar-the DEW LINE radar.
If you have a college degree, you'll rate preference. However, if you have an extensive electronic background, send in your application. Special training will be provided by our Training Facility to prepare you for your assignments.
Attractive salaries, benefits, and allowances. Domestic and overseas assignments.

\footnotetext{
RAYTHEON MANUFACTURING COMPANY 100 River St., Waltham 54, Mass.
}

\section*{RECENT ENGINEERING GRADS}
are you interested in getting AN ADVANCED DEGREE?

If yoll want to combine work and study, and at the same time gain experience in research techniques. full time employment opportunities are available in aerodynamic research projects utilizing wind tumel facilities. Any type of engineering Submit details of background to Mr. F. K. Womack:

University of Minnesota Aeronautical Enginecring Lab Rosemount Research Center Rosemount, Minnesota

\section*{DRAKE PERSONNEL}

National Plocement Center for EXECUTIVE AND TECHNICAL PERSONNEL.
General and Plant Managers Plant Superintendents-Foremen Accounting-Staff Personnel ngineers: Design-Production Sales Managers-Engineert

Please outline briefly your experience or personnel needs to:

John Cope
220 5. State 5t., Chicago 4, Ill.
HArrison 7-8600

\section*{ENGIMEERS - SCIENTISTS \$6000 - \$20,000}

WORLD-WIDE PLACEMENT

\section*{NO FEE}

Industrial counseling service with an intimate knowledge of the engineering market. Relocation expenses and plavement fees paid by employers.
Resumes acknowledgcil immediately, specify position preferred and geographic losation desired.
1346 Connecticut Ave. NW Washington 6. D. C. ANN PALMER HAYNES Industrial Personnel Consultant

\section*{ELECTPONIC PROJECT ENGINEERS}
\(\$ 8100\) to \(\$ 12.000\) a year. Experienced in all types of Electro-Mechanical design. research and develon-
ment on Electio-Mechanical products. Canalo of ment on Electio-Mechanical products. Capable of
successfully dinecting groups of encineers. complete resume to: J. COOPER
64 E. Jackson Blvd.
Chicago, III.
Suite 940
Prompt ant conficiential service

\section*{ENGINEER — STAFF}

Major manufacturer of air borne fire control and missile systems, seeking a staff engineer to roordinate detection prosiram. Should nossess knowl. per year. Company pays all expenses.

MONARCH PERSONNEL
23 E. Jackson Blyd, Chicago 4,

CHIEF ELECTRONIC ENGINEER
\(\$ 10.000\) to \(\$ 15.000\) a year Capable of directing multi-praject goups. Will supervise enginears from through expansion mograil. Send resume to:

> J. J. COOPER

64 E. Jackson Blyd
Suite 940
Chicago, III.
Prompt and confidential service

An employment advertisement in this EMPLOYMENT OPPORTUNITIES section will help you find the engineers you need. It's on inexpensive, time soving method of selecting competent personnel for every engineering job in the electronic field.

\section*{A land with a climate where your ideas can grow}

You begin to hunt for such a climate when you see your ideas stagnating in the airless confines of a company too small-or lost in the bog of one that's too big.

You promise yourself it's climate you'll look at, this time when you pick a job. Management climate-because that's where ideas find sun-shine-not the big freeze.

So you look for a company where Management recognizes a hot idea when it comes up from the lab. You look for a company where Sales knows how to take hold of a good idea and move. You search for a de. partment without pigeon holes; you want to work, not roost.

That's why Stromberg.Carlson's story should appeal to you. Since World War II our volume has increased 16 times, thanks to good ideas accepted and promptly applied. Recently we joined the headline-making General Dynamics Corporation, making the ionosphere the limit on your future here.

As two or three generations of Stromberg-Carlson engineers can tell you, the climate in this scientific-industrial city of Rochester seems to stimulate live minds. You meet next-door neighbors who know what you're talking about. You enjoy winter sports, summer boating, good music, fresh theater-and a salary-bonus plan that lets the good way of living be yours. It should be, when you choose a lifetime job.

The list at right shows where there's room for you and your ideas to grow. Dig in now-with a detailed letter to Mr. Howard L. Foote, at the address below. We think you'll like what he has to say to you.

STROMBERG-CARLSON COMPANY A DIVISION OF GENERAL DYNAMICS CORPORATION ROCHESTER 3, N. Y. - Plants at Rochester, N. Y., Los Angeles, Calif., and San Diego, Calif,

You'll find your future in one of these specialized areas

\section*{RESEARCH}

Communication and Data Systems - Information Theory • Semi-Conductor - Digital' Techniques • Servo Mechanisms • Electronic Switching - Acoustic Transducers • Magnetic Amplifiers - Nucleonics • Microwave and Wireline Carrier

\section*{ELECTRONICS}

Radio Communications - Mechanical Design Engineering • Infrared • Automatic Test Systems - Countermeasures - Navigational Systems - Radar - Computer Techniques - Military Transistor Applications - Missile Guidance Systems - Microwave Development - Electronic Communications

\section*{AUTOMATION}

Systems Engineering - Automatic Assembly - Transistors - Amplifiers \& Filters - Automatic Test Equipment - Numerical Control - Computers - Counters - Instrument and Power Servos - Production Engineers

\section*{WIRE COMMUNICATION}

Dial Central Office Equipment - Telephone Instruments - Wireline Carrier - Frequency Multiplex • Toll Ticketing - Transistor Circuitry • Microwave Links • Electro-mechanical Design - Electronic Switching Systems

\section*{AUDIO-ACOUSTICAL}

Transformers - Tape Recorders - Audio Amplifiers - Loudspeakers - Electronic Carillons • Intercommunication Systems • Auto Radio - Home Radio - High Fidelity Music Reproduction - Sonar

\section*{FLIGHT TEST INSTRUMENTATION ENGINEERS}

Do you qualify for one of these unusual and difficult positions offered by Republic Aviation? The opportunity for growth and professional advancement is exceptional, the salaries are tops, the benefits many ... including Republic's now famous Retirement Income Plan offering: (1) a basic program paid in its entirety by the company; and (2) a cooperative plan for even greater retirement income with Republic more than matching your contribution.

> Positions open for:

\section*{PROJECT FLIGHT TEST} INSTRUMENTATION ENGINEER
5.7 years experience. Must be capable of: (1) co-ordinating the acivities of an engineering group; (2) translating the flight test ergineer's requirements into instrumentation specifications capable of fulfilling the specific test requirements: (3) performing the basic systems engineering on a given project.

\section*{FLIGHT TEST INSTRUMENTATION ELECTRONIC ENGINEER}

Airborne Magnetic Tape Specialist
Opening for engineer presently involved in the development and/ or use of Magnetic Tape Recorders for Airborne Data Acquisition System. Must have a thorough knowledge of the present state of of the art and a good understanding of FM/FM and PWM systems.
Telemeter Specialist

3 years experience minimum. Must have a thorough understanding of FM/FM and PWM telemeter systems and be capable of directing the operation of the telemeter ground station and checkout of the airborne system. The opportunity exists for the advancement into the field of PWM and FM/FM to Digital Converters.

\section*{FLIGHT TEST INSTRUMENTATION DEVELOPMENT ENGINEER}

5-7 years experience. Must be capable of supervising the activities of a development group. A basic working knowledge of the funda. mental laws of physics required together with heavy experience in advanced flight test instrumentation. Responsible for: (1) systems engineering on advanced instrumentation projects; (2) design and development of specialized instrumentation components not commercially available: (3) design and development of circuitry and techniques required to make various transducers compatible with various methods of recording.

\section*{FLIGHT TEST INSTRUMENTATION ENGINEERS}

1-3 years experience. Several openings for electrical engineers and physicists with an instrumentation background who wish to adapt their present instrumentation experience to the challenging field of flicht test instrumentation. Mechanical Design engineers are required for designing the installation of instrumentation in flight test aircraft.

Please forward complete resume, including.
details of your technical backgound, to:

\section*{Assistant Chief Engineer}

Administration
Mr. R. L. Bortner

farmingdale, long island, new york

\section*{PERSONNEL MANAGERS}

\section*{Looking for} Engineers . . Technicians?

\section*{"RESSRVIOIR of ENGINEFSS and TECHILCAL MEN"}

The engineers and technicians you want to reach are gathered in convenient, compact groupsas this 12 -page booklet points out.
It keys the job titles these men hold to the McGraw-Hill publications they read for on-the-job information. It explains how you can make contact . . . channel, concentrate your employment advertising to just the men with the job qualifications you want . . . without wasting advertising money for higher-priced space in publications with general circulation, in which you pay for perhaps 999 unqualified readers for every 1 who may meet your job requirements.

Write for your tree copy to
Classified Advertising Division
McCraw-Hill Publishing Co., Inc. 330 W. 42nd St., N. Y. 36, N. Y.

\title{
WILL YOU BE little \\ WITH A BIG COMPANY
}

A C.A.C. Engineering-Management Conference

COMMUNICATION ACCESSORIES COMPANY . . in suburban Kansas City, offers you advantages not available in other companies . . other localities.
THIS IS "OPPORTUNITY" KNOCKING .. NOW IS THE TIME TO ACT! C.A.C. has urgent requirements for engineers who have specialized, or would like to specialize in the following:

\author{
Magnetic Amplifiers \\ Small Servo Motors \\ Magnetic Cores and Materials Relays
}

\section*{Precision Potentiometers \\ Mechanical Filters \\ Precision Saturable Reactors Laminated Transformers}

\author{
L-C Type Filter Networks \\ Coil-winding Machines \\ Plastic Encapsulation Processes and Methods
}

Salary? Initial salary based on evaluation of education, experience and past accomplishment record. Your income will be re-evaluated bi-annually by a salary committee with strong engineering representation. You are thereby guaranteed of income commensurate with your contributions to C.A.C. SEND US YOUR RESUME TODAY, or depending upon the urgency of your personal situation, phone us collect (Kansas City, SOuth 1-5528).
YOU HAVE HEARD OF OUR COMPANY
C.A.C. is the world's largest exclusive producer of toroidal windings. More than 500 persons are employed in 3 nearby locations. Plans call for a new, very modern structure to house the entire operation. Products we manufacture are vital components in a long list of end equipment . . . our customer list is growing every day. Because we are a subsidiary of a World Leader in electronic communication equipment, you will have every advantage of new product development and research.
GROWTH POTENTIAL This is the point which you as an engineer looking for a rapidly advancing career in engineering and engineering management should consider profoundly.
The crowding of the available frequency spectrums will continually dictate the use of more precise frequency selective networks and will include recently develloped mechanical filters. Our new developments in magnetic amplifiers, together with the expanding missile program have created the requirements for a vastly increased engineering activity in this field. The present C.A.C. is only a nucleus for the organization which will be required to meet our customers' military and commercial needs.

DIVERSIFIED ENGINEERING ASSIGNMENTS As a C.A.C. engineer you will never become "bored" with your work. Due to the widely varying needs of our customers, practically every assignment is totally new and different. Your experience will broader, and later on, if you feel that specialization is your forte it will be your opportunity. There are challenging developments ahead and you can be in on "the ground floor" in helping to perfect them.
OUR LOCATION OFFERS THE FINEST FOR FAMILY LIVING You really live in Kansas City . . it's known as a city of lovely homes! Here is the world-famous Country Club Plaza, the original shopping center. Our plant location, 20-minutes from downtown Kansas City, offers convenience unheard of in other metropolitan areas. Live close to the plant, go home for lunch if you like. See your children going to wonderful schools, growing up in a wholesome atmosphere. And, living costs in Kansas City are way below many other areas.
They say "everything's up to date in Kansas City" and it's true. It's a hub of air transportation to all points (a fact you will appreciate when you assist sales personnel on engineering project conferences at customer facilities). Entertainment, sports activities and family recreation are big reasons for coming to Kansas City, but most of all, you and your family will appreciate its comfortable living.
OUR AIM... THE WORLD'S FOREMOST MAGNETIC AMPLIFIER LABORATORY. In this field where relatively few individuals can speak authoritatively, C.A.C. has become a leader. The vast future of magnetic amplifiers set our plans to build this unique laboratory . . it is decided and you can enjoy a wonderful future as a part of it.
To say that our ambitions are limited only to magetic amplifiers would be grossly incorrect. Research and development of a most intensive nature will continue over a wide range of products supplementing toroidal designs.

Write or Phone WAYNE S. BONEBRIGHT, Vice President

\section*{Communication Accessories Company}

World's Largest Exclusive Producer of Toroidal Windings HICKMAN MILLS, MISSOURI (A suburb, 20 minutes from downtown Kansas City, Mo.) Telephone, Kansas City, SOuth 1-5528

A Subsidiary of Collins Radio Company

\section*{SYSTEMS ENGINEERS}

LIBRASCOPE offers outstanding opportunities to "career" engineers in military and industrial projects, involving the design of fire control systems, analogdigital computers, transistor and servomechanisms components - packages and many other categories, some of which are listed below. Fields of concentraion include mechanics, optics, electronics, magnetics.

\section*{DO YOU QUALIFY FOR THESE IMMEDIATE OPENINGS?}

\section*{AIRBORNE}

EQUIPMENT ENGINEER Experienced digital computer engineer. BA or BS in Physics engineer. BA or BS in Physics
or EE. Experience in mag. or EE. Experience in mag-
metic or transistor techniques metic or transistor techniques
in pulse circuits desirable.

\section*{ELECTRONICS}

ENGINEER
Project Mgr. to design, develop and check out circuitry in servomechanisms and in servomechanisms and
instrumentation. EE or equiv. instrumentation. EE or equiv.
Transistor and/or mag amps.
experience desirable

\section*{ENGINEER TO WRITE}

PROPOSALS
BS in math, physics or Engr. To prepare proposals on militory equip. Fire control and guidance systems, analog or digital computers. Extensive experience brings top pay

\section*{SENIOR}

ENGINEER
With EE to do analyses of airborne systems. Must have 2 yrs. systems analysis exprience in digital computers. rience in digital computers.
ability to write military proability to write military pro-
posals, and to work out math for computer processing.

\section*{SHIPBOARD}

EQUIPMENT ENGINEER
Assist in proposal prepareton for shipboard computing systems \& components. EE or Physicist. Experienced in sonar, anti-sub fire control. analog or digital computers. Navy background preferred.

\section*{MECHANICAL}

\section*{ENGINEER}

Experience in electro-mechanical design to take charge of mech. designs in electronics packages. ME degree or equiv. packages. Me degree or equiv.
Experience with servos or optical applications desirable.

Join a well-established firm with the "young man's' viewpoint... where each individual works closely with management...stays with his project from start to finish. Excellent pay, subsidiary benefits. Relocation assistance. Contact Don Webster, Chief Engineer.

a sumbictary of
LIBRASCOPE, INC. BOB WESTERN AVE. GLENDALE, CALIFORNIA

\section*{FOR RATES}

\section*{OR INFORMATION}

About Classified Advertising,

\section*{Contact}

The McGraw-Hill

\section*{Office \(N_{\text {earest you. }}\)}

ATLANTA, 3
1321 Rhodes-Heverty Bldg.
WAlnut 5778
W. D. LANIER

BOSTON, 16
350 Park Square
HUbard 2-7160
CHICAGO, 11
530 No. Michigan Ave.
MOhawk 4-5800 W. HIGGINS

CINCINNATI, 37
1915 Rockingham Ave.
REdwood 1.4537
W. GARDNER

CLEVELAND, 15
1510 Hanna Bldg.
SUperior 1-7000
c. J. LOUGHLIN

DALLAS, 2
Adolphus Tower Bldg., Main
\& Akard Sis.
PRospect 5064
C. JONES

DETROIT, 26
856 Penobscot Bldg.
WOodward 2-1793
L. SEEGER

LOS ANGELES, 17
1125 W . both St.
MAdison 6-9351
c. W. DYSINGER

NEW YORK, 36
330 West 42 St.
LOngocre 4-3000
W. SULLIVAN
D. COSTAR

PHILADELPHIA, 3
17th \& Sansom St.
RItrenhouse 6-0670
E. MINGLE

ST. LOUIS, 8
3615 Olive St.
JEfferson 5-4867
W. HIGGINS

SAN FRANCISCO, 4
68 Post St.
DOuglas 2-4600
R. C. ALCORN

\section*{ELECTRONIC INSTRLMENTATION ENGINEERS}

Beechcraft has immediate openings for Electronic Instrumentation Engineers. Three to five years experience in experimental research testing of high speed aircraft or missiles required. Knowledge of instrumentation and telemetry coupled with ability to instrument, record and analyze is essential. Graduates with E.E. degree preferred. Excellent opportunity with a progressive company. Please address inquiry with resume of past experience to Roy F. Kunz, Dept. 69E, Beech Aircraft Corporation, Wichita, Kansas.

\section*{BEECHCRAFT}

\section*{COMMUNICATIONS ENGINEERS and TECHNCLIANS}

EXCELLENT SALARIES
MINIMUM PREREQUISITES
ENGINEER EE Graduates with 3 years TECHNICIAN \({ }^{2}\) years teobhloal school in Pequire years experionce.
Require installation adjustment and maintanance experience with communication recelvers and associated terminal equipment. Also, men with slmilar nas, transmission lines.

Must bo willing to travel in United States and
Page Communication Engineers, Inc. 710 Fourteenth St., N.W., Washingtón 5, D.C.

\section*{QUALITY CONTROL ENGINEER}

Quality control engineer for components manufacturer located in Westchester County. Experience preferred in coils, transformers or audio filters. Apply only if experienced. Position is permanent with a nationally known manufacturer, and salary will be commensurate with experience.

P-1011, Electronics
330 W. 42 St., New York 36 , N. Y.

\section*{ELECTRONIC ENGINEERS}

To those interested in extending the "State of the Art" at VHF and UHF-l. F. I. offers challenging opportunities on long range programs, Wide band experience particularly useful, but not necessary. Expanding electronics firm. All normal fringe benefits.

\section*{Send resume or phone.}

\section*{INSTRUMENTS}

FOR INDUSTRY, INC.
150 GLEN COVE ROAD MINEOLA, N. Y. MR. T. C. VILLA. PIONEER 2-5300

\section*{UNEQUALLED OPPORTUNITIES IN ENGINEERING}

Now is the time . . . Convair is the place! Yes! If you are planning for a career in engineering look to Convair Pomona, the leader in Electronics. America's fastest growing young industry. Now engaged in Design, Development, Engineering and production of Electronic equipment and complex weapons systems. Convair-Pomona is the country's only exclusive guided missile plant, with the most modern, best equippea engineering facilities. Be first with Convair, live in the beautiful Pomona Valley only minutes from Los Angeles, the mountain, seashore and desert playgrounds. Country living near the city at its best!

Generous travel allowance to Engineers who are accepted. Write now enclosing a complete resume to:
Employment Dept. 3-G

\section*{CONVAIR}

A DIVISION OF
GENERAL DYNAMICS CORPORATION

\section*{POMONA}

CALIFORNIA

\title{
COOK RESEARCH LABORATORIES
}

ELECTRICAL AND MECHANICAL ENGINEERING AND MANUFACTURING SINCE 1897

\section*{TO BE SPECIFIC...}

ABOUT OPPORTUNITIES
IN ELECTRONICS WITH
GENERAL ELECTRIC

\section*{ELECTRONIC ENGINEERS}

Experienced in microwave techniques for long-range project involving unusual radar applications. The positions offer opportunity to work in the field of very high microwave problems including transmission in wave guides, in antenna design and associated high frequency equipment.

These positions are in the Prin. clipal Engineer level.

Other positions are open for electronic engineers in the development of guidance components for guided missile systems.

Electronic engineers are needed at all levels in other assignments such as radar-aeronautical systems, electromechanical instru. mentation and servomechanisms.

\section*{CORNELL}

AERONAUTICAL Saboratory. Ine.
4352 GENESEE ST. GUFFALO 2.h.N. Y.

TRANSLATORS
Native English speaking

\section*{COMPUTER}

\section*{Applications} and Development
ENGINEERS
COMPUTING SERVICES
Engineering \& Scientific Computation Analog
Digital
COMPUTERS SYSTEMS DEVELOPMENT DEVELOPMENT
Analog and Digital
Systems analysis and synthesis
Logical organization
Circuit design
These are full time positions offering fascinating and varied work and educational benefits for graduate study. Contact:

\section*{J. A. Metzger}

ARMOUR RESEARCH FOUNDATION
of Illinois Institute of Technology 10 West 35th St. Chicago 16, Illinois

\section*{GOING OUR WAY?}

\section*{ENGINEERS and PHYSICISTS are going one direction at MOTOROLA...UP!}

We, at Motorola, know where we're going-and we're confident about getting there. If you, too, believe there's plenty of room at the very topwhy not join us? You'll be teaming up with men of vision in an organization that respects creativeness as well as hard work. We think you'll grow with the challenging assignments at Motorola missile guidance, radar, microwave, and the many other pioneering projects.

Motorola's continuing expansion program offers excellent opportunity for advancement to match your abilities. But, just as important to an engineer or physicist, the daily challenge to the imagination will bring the strong sense of accomplishment you seek.

If you're an electrical engineer, mechanical engineer, or physicist (senior or junior fevel), and looking for more important assignments in:

\section*{CHICAGO, ILLINOIS}

\section*{Two-Way Communications}
- Receivers and Transmitters
- Power Supply
- Antenna design
- Systems Engineering

Microwave
- Pulse Circuit Design
- Systems Design
- Circuit Design

\section*{PHOENIX, ARIZONA}
- Microwave Antennas
- Radar Systems Design
- Transmitters and Receivers
- Modulators
- Logical Circuitry
- Pulse and Video Circuitry
- Environmental Test
- Transistor Applications
- Packaging of Missile Borne Electronic Equipment

RIVERSIDE, CALIFORNIA (65 miles from los Angeles)
- Military Operation Analysis
- Circuit Design
- Dynamics Analysis
- Microwave Systems
- Analog Computor Operations
- Scrvo Mechanisms
- Digital Computor Analysis
- Airborne Electronics
- Aerophysics

For Assignments with a FUTURE UNLIMITED write:

\section*{MOTOROLA, inc.}

Engineering Personnel Mgr., 4501 W. Augusta Blvd., Chicago 51, Illinois

TECHNICAL OPERATIONS, INC.
INVITES INQUIRIES FROM ELECTRONIC ENGINEERS IN. TERESTED IN JOINING A MODERATE SIZED RESEARCH AND DEVELOPMENT ORGANIZATION OPERATED BY SCIENTISTS FOR SCIENTISTS.

IF YOU ARE INTERESTED IN A FUTURE LIMITED ONLY bY YOUR OWN ABILITY, PLEASE CONTACT

Robert Smyth
Technical Operations, Inc.

6 Schouler Court
Arlington 74, Mass.

\section*{Experienced}

\section*{Electronics}

\section*{Writers}

Immediate Openings at AUTONETICS
For writers who can prepare trouble analyses, check-out and line-maintenance procedures for service handbooks on electronics equipment. Practical experience desired in laboratory or field work in radar, computers, receivers and transmitters.

Please write immediately to:
D. S. Grant

Engineering Personnel Office, Dept. 991-20E, 12214 Lakewood Boulevard, Downey, California

\section*{EMPIOMENT OPPORTUNTIIES}

The Advertisements in this section include all employment opportunitiesexecutive, management, technical, selling, office, skilled, manual, etc.

DISPLAYED
The advertising rate is \(\$ 21.50\) per inch for all advertising appearing on other than a contract basis. Contract rates quoted on request.
An advertising inch is measured \(7 / 8\) " vertically on a column - 3 columns - 30 inches to a page.
Subject to Agency Commission.

\section*{UNDISPLAYED}
\(\$ 2.10\) per line, minimum 3 lines. To figure advance payment count 5 average words as a line.
Box Numbers-counts as 1 line.
Discount of \(10 \%\) if full payment is made in advance for 4 consecutive insertions.
Not subject to Agency Commission.

Send NEW ADS to ELECTRONICS, 330 W. 42 nd St., N. Y. 36, N. Y. for May issue closing April 2nd

REPLIES (Box No.): Address to office nearest you NHW YORK: sso W. 42nd St. (86)

OHIOAGO: 520 N. Michigan Ave. (11) SAN FRANOISCO: 68 Post St. (4) LOS ANGELES: 1125 W. 6th St. (17)

\section*{POSITIONS VACANT}

Instructor or Assistant Professor in electrical engineering: to teach laboratory and lecture tronics or power; M.S. degree plus industrial experince required. Good opportunity for advancement in a new department in the process of planning a new building and curricula. Good salary scale. Appointment open Septeinber, 1956 . Write E.B. Weinberg, Sacramento State College, Sacramento, California.
Wanted Resistor engineer with experience in the manufacture of ceramic based printed circuits by large eastern manufacturer. Salary open, commensurate with ability and experience. All replies held in strictest confidence.
Please reply to \(P-1064\), Electronics.

Engineers-High frequency heating. Design or sales experience with dielectric or induction heating equipment or power oscillators prelerred. Expanding medium size company within 30 miles of New York has challenging
opportunities for technicians, draltsmen and opportunities for technicians, draitsmen and tronics.

\section*{SELLING OPPORTUNITY OFFERED}

Manufacturer's Representatives - Custom Plastics electronic parts fabrication. Expanding Eastern custom fabricators and machinists (automatic screw) of plastic partsstampings, terminal board assemblies, conNylon, laminated phenolics, etc. Need reps with active contacts and experience in elec. with active contacts and experience in elec-
tronics industry. Attractive commissionstronics industry. Attractive commissionsence and territories. RW-1049; Electronics.

\section*{POSITIONS WANTED}

Electron Tube Engineer. Now serving in executive capacity. Wide experience in development and research. Background cathode ray, color. photo sensitive, fluorescent, thyratron. high vacuum, etc. Glass and metal techniques. PW-1044, Electronics.
Technical Editor, 4 years industrial experience with handbooks for complex electronic system on govt. contracts, desires responsible position in the New York City area. PW
9373 . Electronics. 9373 , Electronics.

\section*{SELLING OPPORTUNITIES WANTED}

Established Metropolitan New York salesman seeks component lines for manufacturers and industrials. Please reply to RA-8897, Electronics.

Additional items wanted on exclusive factory representation in State of California. Now selling remote control for TV. Lane-Leed Industries, 1310 Santee St., Los Angeles 15 California.

\section*{Position wanted in NEW PRODUCTS DIVISION} of Progressive Firm actively engaged in design, developing and marketing new electrical, electromechanical and electronic products. Experience: \(61 / 2\) yrs college. 5 yrs industrial, 3 yrs teaching. patent history. Salary \(\$ 8500-\$ 11500\), advancement based upon results.
```

PW-9528, Electronics

```

330 W. 42 nd St., New York 36, N. Y.

\section*{When Answering}

\section*{BOX NUMBERS}
to expedite the handling of your correspondto expedite the handing of your correspondence and avoid confusion, please do not address a single reply to more than one
individual box number. Be sure to address separate replies for each advertisement.

Raytheon's new Wayland Laboratory is devoted exclusively to the design and development of advanced electronic equipment. Under one roof an engineer can see his program carried through completely . . . from idea to reality.
A delightful location-only 17 miles from the heart of Bostonoffers a choice of rural or urban living, and access to the entire New England area is convenient via a network of modern highways.

Positions are available for

\section*{Engineers and Physicists}
experienced in the Systems Analysis and Design of Radar equipment

For further details, send your name and address to MR. ROBERT E. DOHERTY AT:

\section*{RAYTHEON MANUFACTURING COMPANY WAYLAND LABORATORY WAYLAND, MASSACHUSETTS}
* No resume required-we will send you a brief form which can be completed in just a few minutes.

ERC() Engineers have built a record of continuous progress and growth for themselves and for the Company for a quarter of a century . . . growth in physical plant, personnel, number and diversity of products and services.

Today this growth continues and we are constantly on the alert for new men to add fresh impetus to that progress . . . paying top salaries to capable people.

Taut work will be interesting and stimulating . . . it might include electronic flight simulators, machine tools, guided missiles, or a variety of specialized electronic devices.

You can choose a home from a number of fine nearby residential areas convenient to both shopping centers and plant . . . and you can further your education at the many nearby Universities . . . you can enjoy suburban living and be within easy reach of the cultural advantages of the Nation's Capital.
ERCO now needs Electronic Engineers (all levels with some overseas positions available). Aerodynamicists, Analog Computer Engineers, Mechanical Design Engineers, and supporting personnel. Send resume or request for additional information to:

\section*{SEMICONDUCTOR DEVELOPMENT}

Responsible positions are now available with one of the leading and fastest grow ing manufacturers of semiconductors. These are outstanding opportunities for

\section*{Positions are available for:}

\section*{Physicists \\ Device Engineers}

Physicists and Engineers in research, de velopment or applications of advanced silicon and germanium transistors, recti fiers and diodes.

Electrical Engineers
Application Engineers

Send resume
or coll
Transitron electronic corporation
407 Main Street MElrose \(4-9600\) Melrose, Mass

\section*{RADIO ENGINEER}

LARGE MIDWESTERN CONCERN HAS EXCELLENT OPENINGS FOR TOP FLIGHT RADIO ENGINEERS WITH TRANSISTOR EXPERIENCE FOR AUTOmotive radios. Salary Commensurate with past experience liberal fringe benefits and excellent working conditions. Submit Complete resume giving details of pást experience and EDUCATIONAL BACKGROUND.

P9544 Electronics, 520 N. Michigan Ave., Chicago 11, IIl.

McGRAW-HILL

\section*{MAILING LISTS}

WILL HELP YOU
- Merchandise your advertising
- Conduct Surveys
- Get leads for your salesmen
- Get inquiries about your product or service
- Pin-point geographical or functional groups
- Sell Direct
- Build up weak territories
- Aid Dealer Relations

Direct Mail is a necessary supplement to a well rounded Business Paper Advertising program.
600,00 actual names of the top buying influences in all the fields covered by the McGraw. Hill publications make up our 150 mailing lists. These lists are built and maintained primarily for our own use, but they are available to you for Direct Mail purposes. Pick out a list of YOUR prospect from our Industrial Direst Mail Catalogue.
More and more, progressive companies are using Industrial Direct Mail regularly as an advertising medium. They effectively allocate a portion of their concentrate on the best business publication
For complete, defailed information about our service, fill in the coupon or write for your copy of our free Business and Industrial Direct mail catalogue.

Dlrett Mail Division,
MeGraw:Hill Publishing Co., Inc.
330 West 42nd St., N. Y. 36, N. Y.
Please forward my free copy of the McGraw-Hill "Industrial Direct Mail Catalogue."

\section*{Name}

Company
Address
Cily \(\qquad\) State \(\qquad\)

\section*{ELECTRICAL ENGINEERS:}

\section*{A Career at Electric Boat... Is An ADVENTURE in Engineering}

In the past several years, Electric Boat has been making one headline after another as the nation's first adaptor of nuclear power for propulsion. The Electric Boat-designed and built atom submarines, Nautilus and Seawolf, are already accomplished fact.
Behind the headlines, the wor's of designing even more advanced atomic submarines goes on. Every day, Electric Boat engincers are coning to grips with problems in nuclconics that pave the way for applications ir other fields.

There is roon - and opportunity - for more engineers able to cope with these problerrs. Current openings are for Electrical Engineers versed in servomechanisms, circuitry, motors and generators, radar and sonar, or electromechanical systems.
These jobs offer more than engineering adventure. There's common-sense practicality involved, too. Electric Boat's backlog of orders and years-ahead plans; its record stable engineering employment; its sponsorship of advanced study at leading universities and within the plant are some of the practical features. New England living or the shores of Long Island Sound is another. To find out more details about these opportunities, write us details of your background and experience including initial salary requirements. Interviews will be arranged promptly for qualified applicants. Please address Peter Carpenter.

\section*{ELECTRIC BOAT}
dIVISION OF GENERAL DYNAMICS CORPORATION
GROTON, CONNECTICUT

\section*{ENGINEERS SCIENTISTS}

Make More Money -Amprove Your Position

DECISION/INC is recained by leadirig manufacturers and research Cums clients pat us to find yout No obligation to you-no cost nhatspever. Corapletely confidential.

All you have to do is send us your name, type of work, company and home addrcss. We will forward brief forms to your home. We will then present to you various openings in diversified companies from which you can choose
the one you like best the one you like best.

If you would like to know what you're ready worth, write, phone or wire us reandy

DECISION/INC
tharagement and Recruitment Consultants Oliver P. Bardes, Presidens

AHS FIRST NATIONAL BANK BUILDING CINCINNATI 2 OH OHO

\section*{ELEGTROFIG \\ DEVELORMEDTH ENADNEBS}

\section*{Challenging DESIGN \& DEVELOPMENT POSITIONS for CREATIVE ENGINEERS}

These positions are tailor-made for highly imaginative engineers who enjoy problems of more thon ordinary difficulty; problems that require a maximum of individual electronic creativity. Men selected will be entrusted with the complete electronic or electro-mechanical design and development tasks (initial circuits, systems, components, or product design) entailed in carrying a prototype project from original conception to its completion REQUIREMENTS: Senior and intermediate engineers with degrees and 4 to 8 years' experience; Junior engineers with degrees and 1 to 3 years' experience, capable of growing with our long-range, electronic design and development program in the following fields:
(1) ANALOG COMPUTER
(4) ELECTRO-OPTICS
(2) RADAR BEACONS
(5) MISSILE SYSTEMS
(3) MAGNETIC AMPLIFIERS (6) SERVOS
(7) FIRE CONTROL SYSTEMS

WE ARE LOCATED in a suburban area, of the Paramus exit of Garden Siate Pkway., convenient to the N. J. Turnpike and only 15 minutes from Manhattan. If you choose, you can live nearby, avoiding the discomforts, costs and time wasted in commuting. Enjoy living in a clean, friendly community, minutes from work!

Interviews will be arranged at convenient locations. Send resume to:
GVION DIVISION
OF ACF INDUSTRIES INGORPORATED
Route 17, Paramus, N. Jr COlfax 1-4100
Only 15 minutes from
George Washington Bridge

\section*{DO YOU NEED ENGINERS} WTH EPPRRIECCH: IN:

\section*{Research}

Development
Design
Instrumentation
Servomechanisms

\section*{Missiles}

\section*{Audio Systems}

Control Systems

\section*{Radar}

Computers

\section*{Transistors}

\section*{Place an "ENGINEERS WANTED"} advertisement in this SEARCHLIGHT SECTION of ELECTRONICS. It's an inexpensive, time saving method of selecting competent personnel for every engineering job in the electronics industry. The selective circulation of ELECTRONICS offers you an opportunity to choose the best qualified men available throughout the industry.

For Rates and Information Write:

CLASSIFIED ADVERTISING DIVISION

\section*{McGRAW-HIIL PUBLICATIOHS}

330 West 42nd St.,
New York 36, N. Y.

Beckman Instruments, Inc.* offers E.E.'s, M.E.'s, Manufacturing, and Sales Engineers the kinds of jobs that creative men dream about. Top salary, all employment "extras"including our Educational Assistance Plan, modern facilities and personal recognition that comes naturally with our decentralized operation. Small town living... but near metropolitan areas in either Fullerton, So. Pasadena, Newport Beach, Richmond or Palo Alto.
*We're pacing the commercial electronics field (\(\$ 3,000,000\) sales in 1949 to \(\$ 21,000,000\) sales in 1955) and we'll be disappointed if you don't grow with us.

\section*{Becknen/instruments, inc.}

Write Beckman Instruments, Inc., 2999 W. 6th St., Los Angeles 5, Calif. Ask for Career File \# 52

\section*{EXCELLENT OPPORTUNITIES FOR ENGINEERS \& SCIENTISTS}

IN RESEARCH AND DEVELOPMENT OF INSTRUMENTS \& EQUIPMENT QUALIFICATIONS:
\(\mathrm{BS}, \mathrm{MS}\) or PhD degrees in mechanical, electrical, electronics and chemical engineering, physics and chemistry.
A CAREER WIth a future:
Permanent, responsible positions for qualified, creative men to develop, design and apply special instruments and equipment for our pilot plant and process operations.

\section*{EMPLOYEE BENEFITS:}

Excellent working conditions, modern facilities, Retirement and Insurance Programs, Company Supplemented Savings Plan.

\section*{GOOD LOCATION:}

Modern, medium sized Southwestern community. Pleasany surroundings with excellent family recreation, religious and educational facilities.
Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential. Write:

Industrial Relations Manager
Research and Development Department

\section*{PHILLIPS PETROLEUM COMPANY \\ Bartlesville, Oklahoma}

As designers of America's finest aircraft instruments, Kollsman can provide excellent opportunity for protessional growth. And the congenial atmosphere, the modern facilities contribute to an environment in which a man can do his best work.

\section*{SYSTEMS ENGINEERS}

For development, teating and fleld service of airborne navigational systems. Some experience with servos utilizing electronic and electro-mechanical components desirable.

\section*{ELECTRICAL ENGINEERS}

Experience in small electro-mechanical devicea motors, gynchros and induction pick-offs.

FIELD SERVICE ENGINEERS
For work associated with airborne navigational equipment. Should be versed in electronics circultry and mechanical repalrs. Entafls some travel.

\section*{DESIGNERS}

Electronic, Electro-mechanical, Mechanical
1. Electronic and electrical packaging. Knowledge of sub-miniaturized techniques. Work is associated with servos, amplifers and components.
2. Mechanical or electro-mechanical packaging of precision flight instruments.

Please submit resumes to the Employment Manager. Confidential interviews will be arranged.

\section*{SENIOR and INTERMEDIATE ELECTRONIC ENGINEERS}

Stromberg-Cartson, a Division of General Dynamics Corporation, is located in the Finger Lakes region of upstate New York. In addition to providing a wide variety of challenging engineering opportunities, excellent salaries are offered with the finest working conditions in a modern electronics laboratory. Unusual recreational and educational facilities are available in this medium-sized progressive city, and fine residential areas are located within a mile of the plant. Because of the variety of its product line, which is approximately equally divided between military and civilian. StrombergCarlson offers a degree of stability and an opportunity for advancement unequalled in the industry. Openings:

Radio Communication Systems Data Systems Digital Techniques
Microwave Circuits Mechanical Design Engineering Infrared Automatic Test Systems Countermeasures Navigational Systems Military Transistor Applications Radar Missile Guidanse Systems

Write or call collect:
C. W. Finnigan, Chief Electronics Engineer

\section*{STROMBERG-CARLSON COMPANY}

A DIVISION OF GENERAL DYNAMICS CORPORATION
104 CARLSON ROAD, ROCHESTER 3, N. Y.
- RADIO COMMUNICATION SYSTEMS • INFRARED • DIGITAL TECHNIQUES • DATA SYSTEMS

\section*{Employment Opportunities ADVERTISERS INDEX}

Admiral Corp
American Machine \& Foundry Co
452
Arma Div American Bosch Arma..... 462
Armour Research Foundation of Corp.. 48
Institute of Tech

Autonetics Div., of North American Avi
ation, Inc. 480
Beckman Instruments, Inc. 485
Beech Aircraft Corp...
Bell Aircraft Corp
469
Bendix Aviation Corp.
Pacific Div.
Products Div., Missile Section.
York Div.
456
Blonder-Tongue Labs
Collins Radio Co
467
Burroughs Research Corp....................... . . . 471
Communication Co...................... 4
Convair, A Div. of General Dynamics Corp
Pomona, Calif. 4
Coan Diego, Calis. 457
Cook Research Laboratories:
Cornell Aeronautical Lob, Inc
Davies Laboratories, Inc.
Decision, Ine
Decision, Inc.
Drake Person
Corp Boat Div., General Dynamics
Electronic Eng. Co., of Calif
Erco Div., of ACF Industries
483
464
Farnswort 482
General Electric Co., Syracuse, N. Y. 464, 478
General Electric Co., Syracuse, N. Yeneral M64, 478
Electroniss Div. 461
Motors Corp.,
Goodyear Aircraft Corp.
Haynes, Palmer, Ann.
Honeywell Brown Instruments
449

Industrial Research Labs
Industrial Research Labs.................. 452
Instruments for Industry, Inc. 452
Johns Hopkins University Chevy Chase, Md
Silver Spring, Md

Kearfort Co., Inc.
Kollsman Instrument Corp. 466 485

Lear, Ins.
Librascope Inc., General Presision
Magnavox Co.
Maryland Electronic Manufacturing Corp. 458
Melpar, Inc. University of
Missile Test Project
Missile Test Proiect
Motorola, Inc.
Motorola Personnel 460
National Cash Register Co
Dayton, Ohio
Howthorne, Calif.
Oster Mfg. Co., John 484
Page Communications Engineers, Inc. 477
Radio Corp. of America......................454, 45 48
Raytheon Mfg. Co.,
Bedford, Mass.
Bedford, Mass.
Wewlon, Mass.
Wayland Mass.
Republic Aviation Corp
Sperry Products Co
Stavid Eng.
Stavid Eng. Co............................. Dynamics Corp.
Sylvania Electric 455

Sylvania Electric Products,
Mounta, N. Y.
Wountam Mas, Calif
Woltham, Mass.
Technical Operations
Texas Instruments, In
Transitron Electronic Corp
Trans World Airlines
Tung-Sol Electric, Inc
Varian Assoc. 465
453
472
48

Zenith Radio Corp 59

This index is published as a convenience to the readers. Care is taken to make it accurate but CLASSIFIED assumes no responsibility for errors or omissions

\section*{ENGINEERS}

ARMA pioneers in
IINERIALL NAIIGAION

Immediate openings jor Supervisory and Staff positions as well as jor

Senior Engineers Engineers, and Associate Engineers. experienced in:
SYSTEMS EVALUATION GYROSCOPICS
DIGITAL COMPUTERS ACCELEROMETERS TELEMETRY GUIDANCE SYSTEMS STABILIZING DEVICES SERVOMECHANISMS AUTOMATIC CONTROLS THERMODYNAMICS OPTICS
ENYIRONMENTAL RESEARCH TRANSFORMERS

ARMA, recognized for its accomplishments in the flelds of navigation and fire control, is a leader in the clevelomment of Inertial Navigation. This new system deals solely with space, time and acceleration acting independently of external influences.

Creative engineering of the highest order is required to develop components making Inertial Navigation possible; accelerometers to measure acceleration ; integrators to convert this information into velocity and distance; gyros to provide directional reference and hold the system stable; computers to calculate course-to-steer and distance-to-go. Components must meet rigid weight and size requirements and function with undreamed-of accuracy.

ANMLA, one of Amerien's largest producers of ultraprecise equipment, offers unlimited opportunity for eneineers to lielp in this great endavor, Clallenging projects and ARMA's extensive supplementars benefits make an ARMA career doubly attractive. ARMA engineers are currently working a 48 hon week at premium rates to meet a critical demaud in the Defense Dept's missile program
Moving allowances arranged.
Serd resume to:
Technical Personnel Dept. 2.500
Division of American Bosch Arma Corporation Roosevelt Field, Garden City, Long Island, N. Y.

\section*{Where in the World do You Want to Go in Your ENGINEERING CAREER?}

If you are seeking an opportunity to further your career with a fine company . . . look no further.
TWA presently has openings for Aeronautical, Mechanical, Electrical and Electronic Engineers to work with a small, select group of engineering associates. This arrangement gives each engineer the opportunity to demonstrate his ability and to advance within the company ...t the opportunity to build his future with the world's finest airline.

Qualifications: B.S. in Engineering.
Location: TWA's ultra modern building now nearing completion at Kansas City, Mo.
Living Conditions: Excellent, both city or suburban private homes or apartments.
Benefits: Many employee benefits, including liberal free transportation for yourself and family each year.
Salary: Commensurate with experience.
If you are an engineer with qualifications in any of these fields explore your opportunity with TWA today. Write:

Mr. R. Paul Day, Emplayment Manager

\section*{TRANS WORLD AIRLINES}

Kansas City 5, Missauri

\section*{INDEX TO THE SEARCHLIGHT SECTION ADVERTISERS}
Allied Electronics Sales 500
Alltronics 489
Arrow Sales, Inc. 494
Barry Electronics Corp. 499
Blan 498
C \& H Sales Co. 493
Communications Equipment Co 491
Diamond Metal Co., Inc 499
Electronicraft Inc. 498
Empire Electronics Co. 498
Engineering Associates 501
Fair Radio Sales 494
Fay-Bill Distributing Co 496
Finnegan, H. 498
Greene, \(G\). 496
Harjo Sales Co. 489
Instrument Service Co 501
JSH Sales Co 495
Lectronic Research Labs. 489
Legri S. Co., Inc. 489
Leru Laboratories Inc. 49
Liberty Electronics Inc. 492
McNeal Electric \& Eqpt. Co 489
Monmouth Radio Labs 492
M. R. Co., The. 501
Radalab Inc 494
Radio \& Electronic Surplus 496
Relay Sales 499
Rex Radio Supply Co 499
Ruxur Electronics 490
Sagal Co., Leo 492
Servo-Tek Products Co 500
"TAB" 502
Universal General Corp. 497
V \& H Electronic Industries 498
V \& H Radio \& Electronics Supply 489
Western Engineers 490
Wilgreen Industries 490
Wolf Co., Edward. 501

This index is published as a convenience to the reader. Care is taken to make it accurate but Classified assumes no responssibility for errors or omissions.

\section*{CLASSIFIED SEARCHLIGHTSECTON avarismg}

BUSINESS OPPORTUNITIES
EQUIPMENT - USED or RESALE

\section*{UNDISPLAYED RATE}
\(\$ 2.10\) a line, minimum 3 lines. To figure advance payment count 5 average words as a line.
PROPOSALS, \(\$ 2.10\) a line an insertion.
BOX NUMBERS count as one line additional in undisplayed ads.
DISCOUNT of \(10 \%\) if full payment is made in advanse for four consecutive insertions of undisplayed ads (not including proposals). Send NEW ADVERTISEMENTS to N Y Office, 330 w
The publisher cannot accept advertising in the Searchlight Section, which lists the names of the manufacturers of resistors, capacitors, rheostats, and potentiometers ar other names designed to describe such products.

ART-13 APR-4 BC-610-E
\(B C-348, \quad B C-312, \quad B C-342, T C S, B C-221\),
TS-173, ARC-1, APR-5AX, RTA-1B
FRA Teletype Converters (RCA)
ALLTRONICS,
Box 19, Boston 1, Mass. Richmond 2-0048

sprimat purpose tunes

western engineers

\footnotetext{
Prices are For
shipping point
Orders for less than
ten dollars cannot be
processed
}

ELK GROVE, CALIFORNIA
GEORGE WHITING OWNER

All fubes are neto in dividually cartoned, fully guaranteed

Bargains in Brand New Surplus
\(\star\) Starred Items Available in Production Quantities at Special Prices
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{These are only a few of our specials; write us your requirements} \\
\hline \multicolumn{6}{|c|}{OIL FILLED CAPACITORS} \\
\hline vol.ts & MFD & Price & volts & MFD & Price \\
\hline 25 KV & 1.0 & *49.95 & 1000 & 28.0 & 5.50 \\
\hline 25 KV & 0.5 & * 39.95 & 1000 & 2.0 & . 69 \\
\hline 25 KV & 0.1 & 14.95 & 1000 & 0.5 & . 19 \\
\hline 7.5 KV & 0.5 & 4.25 & 600 & 10 & 1.29 \\
\hline 6 KV & 0.25 & 1.09 & 600 & 8 & 1.19 \\
\hline 3 KV & 0.5 & 1.59 & 600 & 4 & *. 69 \\
\hline 3 KV & 0.1 & *1.19 & 600 & 2 & *. 39 \\
\hline 2.5 KV & 2.0 & *2.95 & 660 & 1 & *. 19 \\
\hline 2KV & 5.0 & 2.95 & 660AC & 5 & 2.99 \\
\hline 2 KV & . 25 & . 89 & 330AC & 5 & 1.25 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
PULSE NETWORK SPECIAL \\
Sprague 15-1-400-50 15 Kv
1.0 usec 400 P.P.S. \(50 \mathrm{ohm} Z\)\(\$ \$ 95\) l.0 usec 400 P.P.S. 50 ohm \(Z\)
\end{tabular}}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|c|}{SWITCHES} \\
\hline \multicolumn{6}{|r|}{Square D Antenna change switch Bakelite base} \\
\hline \multicolumn{6}{|r|}{\(2 \times 8 \times 1 / 4 \times 496\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Mul Swith & RC-1P & norm. clased & . 59 \\
\hline Mu Switch & RO-1P & norm. open & 59 \\
\hline Mu Switeh & RD-1P & double-throw & . 69 \\
\hline Micro Switch & WZ-RQ1 & norm. closed & . 69 \\
\hline Micro Switch & YZ-RQ1 & norm. open & 79 \\
\hline Micro Switch & WZ-RL8 & norm. closed & . 49 \\
\hline Micro Switch & BZ-R & doublethrow & -49 \\
\hline Micro Switch & G-R32 & norm. open & . 34 \\
\hline ST 50 R DPD & on-mom & & . 89 \\
\hline ST 40 G SPDT & momen & .-off-mome & 44 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline MULTIPLE SECTION & OIL CAPACITORS \\
\hline 10 mifd 400 V meets & \(91 / 2 \mathrm{mfd} 600 \mathrm{~V}\) meets \\
\hline 600 V specs; Dual 5mid & 2-2-2-1-1-1/2-1/2- \(-1 / 2{ }^{3} / 4 / 4\) \\
\hline \(3 \mathrm{term} .33 / \mathrm{Hx} 33 / 8 \mathrm{~W}\) & \(\mathrm{H} \times+3 / 4 \mathrm{~W} \times 11 / 2\) \\
\hline & \\
\hline
\end{tabular}

TRANSMITTING CAPACITORS

TERMLL PRICES FO.B. OUR WAREHOUSE TERMS: Net 10 days to firms rated well in D.B.
Others doposit or cash with order balance C.O.D. RUXUR ELECTRONICS CORP, 623 Hudson St., New York 14 WA 4-7260

\section*{COMMUNICATIONS \\ EQUIPMENT CO.}

MICROWAVE COMPONENTS 10 CM.-RG48/U Waveguide

\author{
OMER
}

 BEACONLGHTHOUSE cavity DOCTV-2 ieeecn
 \(721 A\) TR BOX complete with tute and tuning dill
 HOLMDELL-TO-TYPE BEACONANTENN ANTENNA. AT49A/APR : Bioarland Conicill Soll E. PLANE BENDS. 90 leeq. less nlanges...... \(\$ 12.50\)
K-Baml. X -Band Eqnt. Available..... Send for List

APS-2 SPARE PLUMBING

\section*{}

\section*{!}

3CM DIPOLEFEED
MITRED ELBOW. Cast aduminum for in \({ }^{\circ}\)
CM ANTENNA ASSEMBLY: I Fes \(1 \sigma^{\prime \prime}\), \(\$ 3.50\)
linh. unpating from \({ }^{24}\) the movar. Beam pattern:
(i+g. in loth Azimuth and eleration. Sector Scan:
orer 1 on fleg. at 35 scans per minute. Elevation Scan

 Rotating-boints sumplited pither with or without cleck muntings. With "Citn flanges
Pressure Gauge Section with 15 th. eallze........ \(\$ 15000\) MAGNET AND STABILIZER CAVITY FOR 2JII MAL 90 degree elbows
ADAPTER:
TA 12 TS
ADAPTER

\section*{APS-1S SPARE PARTS}

CU. \(73 /\) APS. 15 A , ECGS \#2Z23265-78 right angle bend, arm. trje sy talieoty 20 dhe compling... \(\$ 12.50\) each def. twist. Onte pud pick-up lorid with press. 90

\section*{WAVEGUIDE FLANGES}

\section*{}

\section*{Right Angle Bend \(\mathbf{E}\) or H Plane, speciry combin}

\section*{THERMISTORS}
D. 16 6999 Bead Tyee DCR;

 D. 166228 Disk Tyne 712001 ms @ \(60^{\circ} \mathrm{F}, 4220 \mathrm{hms}\)
\(880^{\circ} \mathrm{F} 2590 \mathrm{hms} @ 100^{\circ} \mathrm{F}, 1640\) hms
\(120^{\circ} \mathrm{F}\)

POWER TRANSFORMERS
COMBINATION- \(115 \mathrm{~V} / 60 \sim\) INPUT
\begin{tabular}{c}
CT-518 \\
CT \(\mathbf{- 3 7 5}\) \\
\hline
\end{tabular}
 CT-200 \(900 \mathrm{~V} / 25 \mathrm{MA}\) PK. \(5 \mathrm{VV} / 2 \mathrm{AA}, 2 \mathrm{~V} / 7.5 \mathrm{AA} . .\). CT-965 12.5A, 2.5VCT/3.5A.
CT-965
CT-004
CT- 002
CT-479
CT-403
CT-403
CT- 931

\section*{350-0-3} \(7.5 \mathrm{~A} . \mathrm{V} / 50 \mathrm{MA}, \quad 5 \mathrm{VCT} / 2 \mathrm{~A}, \quad 2.5 \mathrm{VCT}\) \(350 \mathrm{VCT} .026 \mathrm{~A} 5 \mathrm{~V} / 3 \mathrm{~A}\)
585 VCT .086 S

PLATE- \(115 V / 60 \sim 1 N P U T\)
PT-47 \(400 \mathrm{VCT} / 4.0\) AMPS For RA43
\(\begin{array}{ll}\text { PT-034 } & 125 \mathrm{~V} 4 \mathrm{SMA} \text { (For Preamp) } \\ \text { PT- } 133 & 3140 / 157 \mathrm{CV} .236 \text { KVA }\end{array}\)
\(3140 / 157 \mathrm{CV}\). 2.36 KVA .
7500 -06A. Half Way
2500 V 12 MA HSLD
\(37.5 / 40 \mathrm{~V}\) AT 750 MA.
2500 V 12 MA H5SD.
\(37.5 / 40 \mathrm{~V}\) AT 500 MA
\(860 \mathrm{VCT} / 230 \mathrm{MA}\) DC
\(1500-0-1500 \mathrm{~V} / 4\)
\(2060 \mathrm{VCT} / 0.175 A\) \(\qquad\) FILAMENT-115V/60~INPUT

FT \(\qquad\) \begin{tabular}{r}
2.95 \\
\hline .79 \\
14.95 \\
8.95 \\
5.49 \\
8.95 \\
279 \\
7.50 \\
6.95 \\
7.50
\end{tabular}

FILTER CHOKES
\begin{tabular}{|c|c|}
\hline Stock & Description \\
\hline CH-914 & 12H Y/250 MA 2500 V. \\
\hline CH-CEC & 117: 9-60H/.05-4C0 MA. 10 KV Test \\
\hline CH-113 & 2.5H/700 MA, 2.5 KV Test 18 Ohms. \\
\hline CG-044 & 8.5H/350 MA, 3.5 KV Test 50 Ohms. \\
\hline CH-291 & O-1H/12 A. DCR: 0.3 Ohms. \\
\hline CH-322 & . \(35 \mathrm{H} / 350 \mathrm{MA}-10\) Ohms DCR \\
\hline CH-141 & Dual \(7 \mathrm{H} / 75 \mathrm{MA}, 11 \mathrm{H} / 60 \mathrm{MA}\) \\
\hline CH-69-1 & Dual 120H/17 MA \\
\hline CH-776 & \(1.28 \mathrm{H} / 130 \mathrm{ma} / 75\) ohms \\
\hline CH-344 & \(1.5 \mathrm{H} / 145 \mathrm{MA} / 1200 \mathrm{~V}\) Test \\
\hline CH-366 & 20H/300 MA \\
\hline CH-599 & \(15 \mathrm{HY} / 15 \mathrm{MA}-400\) ohms DCR \\
\hline CH-445 & 0.5HY/ \(200 \mathrm{MA}, 32.2\) ohms, 3000 V.T. \\
\hline CH-170 & \(\mathbf{2 x 0 . 5 H / 3 8 0 ~ M A , ~} 25\) chms. \\
\hline CH-124 & 5H/200 MA, 3 KV Test \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{400 CYCLE TRANSFORMERS}

\section*{DYNAMOTORS}

TYPE INPUT VOLTS AMPS VOLTS AMPS PRICE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TYPE} & \multicolumn{5}{|l|}{DYNAMOTOES} \\
\hline & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { INPUT } \\
& \text { VOLTS AMPS }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
OUTPUT \\
VOLTS AMPS
\end{tabular}} & PRICE \\
\hline BDAR83 & 14 & & 375 & . 150 & 56.50 \\
\hline 35X-059 & 19 & 3.8 & 405 & . 095 & 4.35 \\
\hline DM33A & 28 & 7 & 540 & . 250 & 3.95 \\
\hline B-19 & 12 & 9.4 & 275 & . 119 & 6.95 \\
\hline & & & 500 & . 050 & \\
\hline \multirow[t]{3}{*}{DA-3A*} & \multirow[t]{2}{*}{28} & \multirow[t]{2}{*}{10} & 300 & 2.6 & \multirow[t]{2}{*}{3.95} \\
\hline & & & 150 & . 010 & \\
\hline & & & 14.5 & 5. & \\
\hline PE 73 CM & 28 & 19 & 1000 & . 350 & 17.50 \\
\hline 8D 69 & 14 & 2.8 & 220 & . 08 & 8.95 \\
\hline DAG-33A & 18 & 3.2 & 450 & . 06 & 2.50 \\
\hline 8DAR 93 & 28 & 3.25 & 375 & .150 & 5,75 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{PE 94., Brand New. 5.95} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{Nayy type CAJO-2/1444. Input: 105 to 130 VDC. Outpat either 26 VI at 20 surps. or 13 VDe; at 40 amps. thatio fillerad and complere with line switch vew \(\$ 69.50\)}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{INVERTERS}
\(800-1 \mathrm{~B}\) input \(24 \mathrm{vdc}, 62 \mathrm{~A}\). Output: \(115 \mathrm{~V}, 800 \mathrm{cy}\). 7A. PE-218H: Usput: excellent. \(25 / 38\) vde, 92 anip. Output \(115 \mathrm{~V} \$ 18.75\) PE206: input: 28 vic, 36 amps. Output, 80 V 800 cy SOO volt-amp. Dim. \(13 \times 51 / 2 \times 101 / 2\). New.... \(\$ 22.50\)

\section*{D.C. RELAYS}

CR2792B116A3
SPST- 50 Amp Contacts. Operates from \(22-30\) VOC.
Coil Res. 200 Olrms. Completely enclosed in transpar ent plastic case, which may be removed for adjustments

GE \#CR2791B116W3
same as above, except alditional terminal brought out
from contact arm................................. \(\$ 1.30\)
GE \#CR2791-F100D3
Differential: OPST. Norm. open. Oual coil. 1500 ohms
per coil - 25 Ma Operating Curremt. Contact: 20
GE \#CR2791F100G3
Same as above. except has extra la contact. Rated \({ }^{5}\)
GE \#CR2791-D101F3
All Ceramic Insulation, DPDT, Coil - 12 VDC . 100
Ohms DCR. Contacts desiqned for fast operation. Rated at 5 Amps.

GE \#CR2791B106J3
SPDT. 5 Amp contacts. Coil rated 22 -30VOC. 150 ohms DCR. Contacts are lesigned for fast operation, and ens-
closed by clear plastic cover..................... \(\$ 10\)

GE \#CR2791B106C3
SPDT, Dual Contacts will handle 20 Amps. Coil: 18.28
VDC 125 ohms DCR
THESE RELAYS AVAILABLE
IN MFRS. QUANTITIES

\section*{PULSE TRANSFORMERS}
\({ }^{4}\) P37. I'rinary. 50 ohms 730 V . 001 Duty. Sec. \(15 \mathrm{KY} \mathrm{V}^{\circ}\)
 FIO TRANS MSUHT IN. an

0 ohms. Imp (a35/120 GE \#K-2748-A. O. Hisec (was 2000 los. Pk. inwr. out is

 1uec a bof Tis. Tk, Power Gut: 200130 KW . Bifilar \(541318-13\) wars. Ratio: \(1: 1: 1,1.10\) uh /war. \(\$ 3.55\)
 UTAH X-150T-1. Two sections, \({ }^{3}\) Wdgs, per section.
\(1: 1: 1\) Ratio. 3 inf, 6 ohms DCli ner Widg... \(\$ 5.00\)
 MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. M.O. OR CHECK. ONLY SHIPPING SENT C.O.D.
RATED CONCERNS SEND P O. PARCELS IN EXCESS OF 20 POUNDS WILI BE SHIPPED VIA CHEAPEST TRUCK OR RAILEX

\section*{343 Canal St., MewYork 13,M.Y. Dept. E-4 Chas.Rosen Phone:CAnal 6-4882}

\section*{NEW YORK'S RADIO TUBE EXCHANGE}

Standard brands. First grade only. No pull outs. No rejects. No rebrands. At lowest prices.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Price & Type & Price & pe & Price & Type & Price & Type & Price & Type & Price & Type & Price \\
\hline OA2 & \$1.00 & 2 T 34 & 36.00 & 3 GP 1 & 5.00 & 12DP7A. & 45.00 & 368AS. & 4.95 & 730A & 22.50 & 95 & 25 \\
\hline OA3 & 1.10 & \({ }_{2} 236\) & 90.00 & \(3{ }^{3} 21\) & 75.00 & LM15.. & 200.00 & 371B. & 1.50 & \(750 \mathrm{TL}{ }^{\text {c }}\) & 45.00 & E114 & \\
\hline \(\mathrm{OB}^{\mathrm{O} 2}\) & . 99 & 2 J 38 & 8.95 & 41226 & 5.40 & 15E. & 1.75 & 385A & 4.50 & 801 A & . 90 & 1280 & 95 \\
\hline OB3 & 1.10 & \(2 J 39\) & 8.59 & 4 C 27 & 10.00 & 15 R & . 75 & 388A & & 802 & . 95 & 15007 & 5.00 \\
\hline 0 OC & . 96 & 2 J 40 & 29.60 & 4 C 28 & 35.00 & NE1 & . 59 & 393A & 7.50 & 803 & 5.95 & HK155 & 75.00 \\
\hline OD3 & . 89 & 2 J 42 & 135.00 & 4 E 27 & 16.00 & 20.4 & . 75 & 394A & 3.95 & 805 & 6.95 & 1603.. & 5.00 \\
\hline ClB & 2.95 & \({ }^{2} 149\) & 60.00 & 4 J 25 & 50.00 & KY21A & 8.25 & MX40 & . 50 & 807 & 1.25 & 1612 & 1.50 \\
\hline \[
1 \mathrm{~B} 22 .
\] & 1.50 & 2350 & 55.00 & 4 J 26 & 50.00 & HK21. & 2.50 & 417A.... & 15.00 & 808 & 1.95 & 1613 & 1.25 \\
\hline 1 B 23 & 6.95 & 2 T 55 & . 150.00 & 4 J 27 & 50.00 & RX21 & 8.00 & 434A & 15.00 & 809 & 2.95 & 1616 & 1.25 \\
\hline 1 B 24 & 9.00 & \({ }^{2} \mathrm{~J} 56\) & 110.00 & \({ }^{1 J} 28\) & 50.00 & K1124G & 1.95 & 446A & 1.95 & 810 & 10.50 & 1619 & . 45 \\
\hline 1826. & 1.75 & 2 J 61 & . 20.00 & 4329 & 50.00 & 25 T & 2.95 & 4.16 B & 3.95 & 811 A & 3.75 & 1622 & 1.50 \\
\hline \(1 \mathrm{B27}\). & 15.00 & 2 J 61 A & 25.00 & 4J30 & 30.00 & 35T & 4.95 & 450TL & 45.00 & 812A & 3.95 & 1624. & \\
\hline \(1 \mathrm{B38} 8\). & 35.00 & \({ }^{2} \mathbf{J} 62\) & 15.00 & 4 J 31 & 150.00 & 35 TG & 5.95 & 450TH & 52.50 & & & & \\
\hline \(1 \mathrm{B50}\) & 23.00 & 2 K 22 & 29.00 & 4J32 & 150.00 & RK39 & 2.75 & 464A. & 7.50 & 814 & 3.75 & 1626. & \\
\hline 1851 & 7.50 & 2 K 23 & 15.00 & 433 & 150.00 & HF5 & 1.75 & 471 A & 1.25 & 815 & 3.25 & 1654 & \\
\hline 1B56. & 35.00 & 2 K 25 & 19.50 & 4 3 3 & . 100.00 & HK54 & 4.50 & 527 & 24.00 & 816 & 1.45 & 1851 & 1.80 \\
\hline \(1 \mathrm{B60}\) & 35.00 & 2K 26 & 68.00 & 4 J 35 & 150.00 & RK72 & 1.00 & WL530 & 23.00 & 829 & 11.00 & 20001 & 0.00 \\
\hline 1 N 21. & . 55 & 2 K 28 & 35.00 & 4 J 36 & . 150.00 & RK73 & 1.00 & WL531. & 22.50 & 829 A & 12.00 & 2050. & 1.80 \\
\hline 1N21A. & . 95 & \({ }_{2} \mathrm{~K} 29\) & 35.00 & iJ37 & . 150.00 & FG95 & 19.95 & WL533. & 15.00 & 829 B & 12.50 & 2051 & 1.00 \\
\hline 1 N 21 B & 1. 50 & 2 K 33 A & 75.00 & 4338 & . 150.00 & 100Tt1 & 7.95 & HK 654 & 35.00 & 830 B & & & \\
\hline 1 N 21 C & 12.50 & 2 K 39 & . 140.00 & 4J39 & . 150.00 & FG105. & 20.00 & \(700 \mathrm{~A} / \mathrm{D}\) & 10.00 & 832A & 9.95 & VAR & ous \\
\hline \(1{ }^{\text {N } 22}\) & . 66 & 2 K 41 & . 135.00 & 4340 & . 150.00 & 122A & 1.75 & 701A. & 4.50 & 833A & 40.00 & & ND \\
\hline 1N23. & . 90 & 2 K 12 & .180.00 & 4J11 & . 150.00 & 203 A & 7.50 & 703A & 3.95 & 834. & 7.50 & & \\
\hline 1 N 23 A & . 90 & \(2 \mathrm{2K} 43\) & 199.00 & 4 4 42 & 190.00 & \({ }^{211}\). & . 95 & 704A & 1.95 & & 3.95 & & \\
\hline 1 N 23 B & 1.50 & \({ }_{2} \mathrm{~K} 44\) & . 195.00 & 4 l 51 & . 190.00 & \({ }_{217}^{21}{ }^{\text {C }}\) & 12.00 & 705 A & 2.75 & 837. & 2.75 & NEW & PRO- \\
\hline \[
\begin{aligned}
& \text { 1N23C. } \\
& \text { 1N } 25
\end{aligned}
\] & 7.50
4.50 & \({ }^{2} \mathrm{~K} 45\) & 80.00
95.00 & 4 4 52 & . 2255.00 & 242 C & 10.90 & 706AY & 2.5 & 838 & 5.95 & & \\
\hline 1 N 26 & 4.75 & 2K 50 & . 295.00 & \({ }_{513}{ }^{4}\) & . \({ }^{225.05}\) & \({ }_{249 \mathrm{C}}^{24 . \mathrm{C}}\) & 4.50 & \({ }_{70} \mathbf{F Y}\) & 5.57 & & 35.00 & 5820. & 475.00 \\
\hline \(1{ }^{1} 27\) & 3.50 & 2K51 & 35.00 & 5BP9A & 12.00 & 2507 T & 19.95 & \({ }_{70713}\) & 6.57 & 860 & 3.50 & 5826. & 450.00 \\
\hline 1N34A. & . 79 & 2K55 & 25.00 & 58P4. & 3.95 & 250 TL & 19.95 & 714AY & 36.00 & 861 & 25.00 & & \\
\hline 1 N 38 & 1.00 & 2 K 56 & 72.00 & \({ }^{5 C 1}{ }^{\text {d }}\) & 7.50 & 252A. & 3.60 & 715 A . & 4.50 & 866 A & 1.50 & \({ }_{8013}^{8012}\) & - 2.50 \\
\hline \(1 \mathrm{IN}^{13}\) & \({ }^{2} 2.25\) & 3AP1A & 10.00 & \({ }_{5}^{5 C P 7}\) & 9.95 & 27513 & 1.00 & \({ }^{71513}\) & 9.00 & 86913 & 67.50 & \({ }_{8013}^{8013 .}\) & + 3.00 \\
\hline 1 P 25. & 75.00
13.50 & 318P1. & 7.20
5.50 & 5CP7A
\(5 \mathrm{CP1}\) & 18.00 & 304 TH & 10.00 & \({ }_{715 \mathrm{C}}\) & 15.00 & \({ }_{8693}{ }^{\text {® }}\) - & 50.60 & 8013A. & - \(\begin{array}{r}3.50 \\ .1 .75\end{array}\) \\
\hline \({ }^{2} \mathrm{C} 40\). & . 12.00 & 3825 & 5.50 & 5 D 21. & 10.00 & 307 A & 2.50 & & 15.00 & 87 & 2.25 & 8020. & 1.85 \\
\hline \({ }_{2} \mathrm{C} 43\) & . 14.50 & 3 B 26 & 5.00 & 5JP1. & 27.50 & 310A & 4.50 & \(720 \mathrm{AY} /\) & & 878 & 1.50 & 8025. & \[
\begin{array}{r}
3.97 \\
96.00
\end{array}
\] \\
\hline \({ }_{2} \mathrm{C} 44\) & . 60 & 31328. & 8.00 & 5JP2 & 19.50 & 310 B & 6.75 & GY. & 50.00 & 879 & 1.50 & PD83 & .96.00 \\
\hline \({ }_{2} \mathrm{C} 46\) & 7.50 & EL3C & 5.50 & \({ }_{51}{ }^{\text {P }}\) P4. & 27.50 & 311A & 6.50 & 721A & 1.50 & 884 & 1.50 & \[
\begin{aligned}
& 9001 . \\
& 9002 .
\end{aligned}
\] & 1.52
.90 \\
\hline \[
\begin{aligned}
& 2 \mathrm{D} 2 \\
& 21 \mathrm{~A}
\end{aligned}
\] & . 12.00 & \(3 \mathrm{3C22}\) & 15.00 & \({ }_{5}^{5123}\) & 25.00 & \({ }_{323}{ }^{\text {A }}\) & 3.50 & 721 B & 7.50 & 385 & 1.50 & & 1.25 \\
\hline 2 J 22 & . 9.00 & 3 C 31 & 2.95 & 5SP7. & 96.00 & 323 A & 3.75 & 721A & 1.95 & & & 9004 & . 35 \\
\hline 2126. & . 15.00 & 3DP1 & 7.50 & C6A & 11.00 & 325A & 6.75 & 724 B & 2.25 & 954 & & 05 & 2.75 \\
\hline 2 J 27 & . 15.00 & 3DP1A & 10.00 & C6J & 7.50 & 350 A & 4.50 & 725 A & 18.00 & 955 & . 50 & & \\
\hline 2331 & . 24.00 & 3DP1A-5 & 210.00 & \(7 \mathrm{7P1}\) & 5.00 & 350 B & 5.95 & 726 A & . 10.60 & 956. & . 75 & THOU & \\
\hline 2332 & 29.00 & 3EP1. & 5.00 & 7D1'4 & 9.00 & HK35iC & 15.00 & 72613 & . 45.00 & 957 & . 25 & & HER \\
\hline 2333. & 32.00 & 3 E 29 & 15.50 & 2 AP 4 & 50.00 & 35 & 15.00 & 726C & . 45.00 & 958 A & . 60 & & ES \\
\hline
\end{tabular}

Special! TS45 X BAND GENERATOR-sggoo
NEW UNUSED SURPLUS TS 259 K BAND
23400-24500 MEGACYCLES SIGNAL GENERATOR

\section*{SPECIAL! 5,000 V. POWER SUPPLY \\ For IP25 Infrared Image Converter from
NEW, Complete with RCA}

NFW MICROWAVE TEST EQUIPMENT TS148/UP SPECTRUM ANALYZER

Field Type \(X\) Band Spectrum Analyzer. Band 8430.9580 Mega-
cycles.
WIII Check Frequency and Operation of various \(X\) Band equip: also measure pulse width, \(c-w\) spectrum width and \(Q\) or resonant cavitles. Will also check frequency of slg nal generators in the \(X\) band. Can also be used as frequency modulated Signal
OTHER TEST EQUIPMENT USED CHECKED OUT SURPLUS

\(\qquad\)

SPECIAL
resonance chamber
TYPE CAOT-14 AAT including sweep
motor crystal 1N23 with holder and
output plug. New.
\$32.50

WESTINGHOUSE AB De Ion 3 pole, 6 amp 250 V AC E frame. Original cartons

860 GLENMONT, L. A. 24 , CALIF.

\section*{ELEOTRONIO}

WAR TERMINATION INVENTORPES

WRITE OR WIRE FOR INFORMATION ON OUR COMPLETE LINE OF SURPLUS ELECTRONIC COMPONENTS. ALL PRICES NET f.O.B. PASADENA, CALIFORNIA

\section*{\(\left.0_{0}^{0} 0^{0}\right]^{1}\) \\ SALES CO.}

2178-E East Colorodo St. Pasadena 8. California RYan 1-7393

\section*{INVERTERS}

10042-1-A Bendix
DC input 14 volts; output: 115 volts; 400 cycles. 1-phase; 50 watt
12116-2-A Bendix
Output : \(115 \mathrm{VAC} ; 400\) cyc; single phase; 45 amp. input: 24 VDC, 5 amps . \(\$ 35.00\)
12117 Bendix
Output: 26 volts; 400 cycies, 6 volt amperes, 1 phase. Input : 24 VDC; 1 amp. \(\$ 15.00\) 12121 Bendix
Input: 24 volt D.C. 18 amp. 12000 r.p.m. Output: 115 volts, 400 cycle, 3 -phase, 250 volt amp, 7 pf.

Output: 115 V; \(3 \cdot p h a s e ; 400\) cycle; \({ }^{\text {amps }}\)
.5 Input: 24 VDC; 12 amp. .5 Input: \(24 \mathrm{VDC} ; 12 \mathrm{amp}\).
\(\$ 49.50\)
12126-2-A Bendix
Output: 26 volts; 3 phase; 400 cycle; 10 \(V A_{i}, 6\) PF. Input : 27.5 volts DC: 1.25 amps.
12130-3-B Bendix
\(\$ 24.50\)
Output: 125.5 VAC; 1.5 amps .400 cycles single phase, 141 VA. Input: \(20-30\) VDC. \(18-12\) amps. Voltage and frequency regulated.
12133 Bendix
input: \(26 / 29\) voit D.C., 28 amps output: 115 volt, 3 phase, 400 cycle, 250 volt amp. .8 pf .
2143.2.A Bendix

Output : 115 volts: 400 cycles \(_{j} 250\) VA: single phase pf. 9-1. DC input: \(26-29\) VDC \(25.22 \mathrm{amp} ;\) voltage \& frequency regulated
\(\$ 49.50\)

\section*{778 Bendix}

Output: 115 volt, 400 cycle; 190 VA; single phase and 26 volt, 400 cycle, \(60 \mathrm{VA}^{\prime}\), single phase and 26 volt, 400 cycle, 60 VA, single
phase. Input: 24 VDC.
10285 Leland
Output: 115 volts AC; 750 VA, 3 phase, 400 cycle, 90 pf and 26 volts. 50 VA, single 60 amps cont duty 6000 mpm 27.5 VOC 60 amps. cont. duty, 6000 rpm . Voltage and
frequency regulated.
\(\$ 99.50\) 10339 Leland
Output : 115 volts; 190 VA ; single phase; 400 cycle; 90 pf, and 26 volts; \(60 \mathrm{VA}_{;} 400\) cycle. duty, voltage and freq. regulated. \$49.50
10486 Leland
Output: 115 VAC; 400 cycles; 3 -phase; 175 VA; 80 pf. Input: 27.5 DC; 12.5 amps; cont. 0563 .
\(\$ 70.00\)
10563 Leland
Output: 115 VAC; 400 cycle; 3-phase: 115 VA; 75 pf. Input: 28.5 VDC; 12 amps.

PE109 Leland
\(\$ 35.00\)
Output: 115 VAC, 400 cyc ; single phase; 1.53 amp; 8000 rpm . Input: 13.5 VDC; 29 amp.

PE218 Leland
Output: 115 VAC; single phase pf 90 380/500 cycle; 1500 VA. Input: 25-28 VDC 92 amps; 8000 rpm; Exc. Volts 27.5 BRAND NEW.
MG149F Holtzer-Cabot
\(\$ 30.00\)
Output: 26VAC@250 VA; 115 V. @ 500 VA; single phase; 400 cycle; input: 24 VDC @ 36 amps.
MG153 Holtzer-Cabot
input: 24 VDC; 52 amps. Output : 115 volts 400 cycles, 3 -phase, 750 VA . Voltage and frequency regulated.
DMF2506M Continental Electric
\(\mathbf{2 4 - 3 0}\) volts input; 5.5 .45 amps; cont. duty. Output: 115 volts; 44 amps; 400 cyc; 1 phase; pl 1.0; 50 watts.
cyci
\(\$ 39.50\)

SELSYNS-SYNCHROS

\section*{ROTARY JOINT}

Contains 4 slip rings; rated at 3 amps at 110 VAC. Model No. RP.J-E-11. Manufactured by Selectar Mfg. Corp. Approximately \(2^{\prime \prime}\) in diameter, \(31 / 2^{\prime \prime}\) long Priced at. \(\$ 3.00\) each.

ICT Cont. Trans. \(90 / 55 \mathrm{~V} 60 \mathrm{cy}\). IDG Diff. Gen. 90/90V 60 cy . IF 5 yn . Mtr. \(115 / 90 \mathrm{~V} 60 \mathrm{cy}\). IG Gen. 115 V 60 cy . 1SF Syn. Mtr. \(115 / 90 \mathrm{~V} 4 \mathrm{CO} \mathrm{cy}\). 2JIF1 Gen. \(115 / 57.5 \mathrm{~V} 400 \mathrm{cy}\). \(2 \mathrm{JJF} 3 \mathrm{Gen} .115 / 575 \mathrm{VV} 40 \mathrm{cc} \mathrm{cy}\). \({ }_{2} \mathrm{JIFAl}\) Gen. \(115 / 57.5 \mathrm{~V} 4 \mathrm{CO} \mathrm{cy}\). \(57.5 / 57.5 \mathrm{~V} 400 \mathrm{cy}\).
211 Hi Diff. Gen. 575 V 400 cy . \(2 J 5) 1\) Cont. Trans. \(105 / 55 \mathrm{~V} 60 \mathrm{cy}\). \(2 J 5=1\) Cont. Trans. \(105 / 55 \mathrm{~V} 60 \mathrm{cy}\). 2 25न1 Gen. 115/105V 60 عy. 2115 MI Gen. \(115 / 57.5 \mathrm{~V} 400 \mathrm{cy}\). 5CT Cont. Trans. \(90 / 55 \mathrm{~V}\) 6) cy. 5D Diff. Mtr. \(90 / 90 \mathrm{~V} 60 \mathrm{cy}\). 5 DG Diff. Gen. \(90 / 90 \mathrm{~V} 60 \mathrm{cy}\). 5 F Syn. Mrr. 115/90VAC 60 cy . 5 G 3yn. Gen. \(115 / 90 \mathrm{VAC}\) (6) cy. \({ }^{5 H C r}\) Cont. Trans. \(90 / 55 \mathrm{~V}\) b0 cy. SDG Diff. Gen. \(90 / 90 \mathrm{~V} 60 \mathrm{cy}\) cy \({ }_{6 G} 60\) Syn. Gen. \(115 / 90 \mathrm{VAC} 60 \mathrm{cy}\). 7 G syn. Gen. \(115 / 90 \mathrm{VAC} 60 \mathrm{cy}\). 7G Eyn. Gen. \(115 / 90 \mathrm{VAC} 60 \mathrm{cy}\). R1115V 400 cy
R20C-1-A Kearfott Cont. Trans. R21G/11.8V 400 cy .
26/11 8 V 400 Trans.
R235-1A Kearfott Resolver \(26 / 118 \mathrm{~V} 400 \mathrm{cy}\)
C56731 Type 11-4 Rep. 115 V 60 cy. C69405-2 Type 1-1 Transm. 115 V 60 cy .
C694J Syn. Transm. 115 V 60 cy . C69416-1 Type \(11-2\) Rep. \(115 \vee 60 \mathrm{cy}\). \(C 76156\) Volt. Rec. 115 V 60 cy . C78248 Syn. Transm. 115 V 60 cy . C78849 Syn. Diff. 115 V 60 cy . C78803 Repeater 115 V 60 cy .
 851 bendix Autosyn Mtr. 32V 60 cy .20 .00 4035 .orlisman Autosyn Mtr 32 V 60 . 750 CK5 Eendix Mtr. 2 phase 26 V 400 cy .17 .50 FPE-25-11 Diehi Servo Mtr. FPE, 115 V 60 cy .
FPE-43.1 Resolver 400 cy . FJE-43-9 Resolver 115 V 400 cy . \(1377-3410\) Kollsman 26 V 400 cy . \(1515 \mathrm{E}-0410\) Kollsman 26 V 400 cp . \(10047-2-\mathrm{A}\) Bendix 26 V 400 cy .
2900 Transicoil 115 V 400 cy .
\(\$ 37.50\)
\(\$ 37.50\)
37.50 wiy 37.50
\(\$ 12.50\) 7.50
10.00 10.00
7.50 5.50 7.50
17.50 17.50 17.50
17.50 17.50 34.50 34.50 34.50 34.50 34.50 42.50
12.50 12.50
25.00 34.50
42.50 17.50 15.00 15.00 22.50 20.00 20.00 20.00 20.00 10.00 2.50 22.50 22.50
\(\mathbf{2 5 . 0 0}\) 25.00
\(\mathbf{2 5 . 0 0}\) 25.00 15.04
10.00 20.00 12.50
15.00

APG 15 INDICATOR
Easily converted to a MDDULATION INDICATOR. Unit contains a 2AP1 tube with shield, also 9006 tube, miscellareous potentiometers and resistors. Brand new........ \$5.00 each Conversion data to miniature modulation in-

TEMPERATURE and HUMIDITY indicator

(Hair actuated) Manufactured by Freez Ingtrument.t. Model No. 181-1. Approximately \(71 /{ }^{\prime \prime}\) high by \(3^{\prime \prime}\) wide. Priced at
38.95 each.

1136

\section*{SMALL DC MOTORS}

(approx. size overall \(33 / \mathbf{a n}^{\prime \prime} \times\)) \(1 / 4^{\prime \prime}\) de.i)
5069600 Delco PM 27.5 VDC 250 rpm 5069230 Delco PM 27.5 VDC 145 rpm 5068750 Delco 27.5 VDC 160 rpm w/brake 15.00 5068571 Delco PM 27.5 VDC \(10,000 \mathrm{rpm}\) (\(1 \times 1 \times 2^{\prime \prime}\))
5069625 Delco 27.5 VDC
120 rpm w/governor
MM A-11 Globe PM 24 VDC
5BA10A1 18 GE 24 VDC 110 rpm
5BAIOAJ37 GE 27 VOC 250 rpm reversible
58A10AJ52 27 VOC 145 rpm reversible
806069 Oster series reversible \(1 / 50\) h.p.
\(10.000 \mathrm{rpm} 27.5 \mathrm{VDC} 15 /{ }^{\prime \prime} \times 31 /{ }^{\prime \prime}\)
\(10,000 \mathrm{rpm} 27.5\) VOC \(15 / 8^{\prime \prime} \times 31 / 2\)
C-28P-1A 27 VDC \(1 / 100\) h.p. \(7,000 \mathrm{rpm}\)
\(7100-\mathrm{B}\) PM Hansen 24 VDC 160 rpm
SSFD-6-1 Diehl PM 27.5 VDC 10,000 rpm
\begin{tabular}{c}
\(6 \cdot v o l t\) \\
\(11 / 4\) - In dia. 2 , migd. by Hansen 5,000 row 4.00 \\
\hline
\end{tabular}

\section*{WANTED}

RT-66, 67, 68, 69, 70 GRC AN/PRC-8, 10 AN/PRC-6 R-109-110 GRC PARTS AND COMPOPONENTS OF AN/GRC EQUIPMENT

\title{
Radalab Inc. \\ Phone Virginia 9-8181-2-3
}

81-17 124TH ST.
RICHMOND HILL 18, NEW YORK, N. Y.

AN ASQ-1
Airborne Magnetometer
This is all airborne chart recording magoscilfator. detector head. chart profile re. corder. power supply, etc. The equipment lias a sensitivity of 2 gamma or better. The AN/ASQ-1 records on an Esterline magnetic nield caused by an ore fleposit or a sunken boat or submarine. An indicator is provided that gives a bearing on a
magnetic distarhance. Power input is 28 v magnetic disturhance. Pow
0 C. Weight alsout 130 IIs.

AN/PRC-8, 10 WALKIE-TALKIE
The PRC series are the new F.M. hinh freq. back pack walkie-talkies. These sets are miniaturized and weigh 18 libs. complete. The PRC. 8 covers \(20-27.9\) mc. PRC- 10 covers. 38.54 .9 mc. The set has is tubes The receiver is A.F.C. controlled and has a sensitivity of thererover is equipned with a squelch control Complete sets and oarts available

\section*{AN/GRC- 3 thru 8}
 The transmitter output is 15 watts. The transceivers are tuneable or

\section*{SCR-682-A SEARCH and weather radar}

This is a 10 cm high power search and weather cellent SERVICE IN A TORNADO OR SIORM WARNING NETWORK, OR AT AN AIRPORT for sur eillance to 135 miles. The set consists of three units. I- The paraboloid antenna which includes Modulator. 3-Desk type P.P.I. indicator, units ha.e pullout decks that enaile the set to be serviced without being taken out of operation and are ully satety interlocked
orar specifications
(-Operating freq. 3000 cm 10 mo
2-Power output-225kw.
3-Pulse wisth-1 micro second.
1 -anges- \(500-2+0.000\) yds in four ranges. 10.000 5- 360 scatl.
fi-azimuth accuracy
\(7-7^{\prime \prime}\) P.P.I. indicator
8-Antenna bean width ।
(1) 110 : 60 cyc nower input

THE SCR-682-A IS AVAILABLE
IN OPERATION BY APPOINTMENT.

AN/APN-3 - AN/CPN-2 SHORAN
The AN/APN-3 and AN/CPN- 2 are airborne and ground. Preci-
sion distance measuring installa. tions. This efulipinent operates on 225 mc . The range is 250 miles
225 with an accuracy of 25 feet. This is the most accurate distance
ne easuring equipment huilt to date. The AN/APN-3 used with the K-I complter (also available) will permit taking a photograph
un to 250 miles from the CPN. up to 250 miles from the CPN- 2
beacons connoletely automatically. The AN/APN. 3 can be fed into the aircraft auto pilot to fly it to very widely used by geological very widely used by geological
survey companies for oil prospect. ing and mapping. Power input is 110 y 400 cyc and 28 DC DCOM.
PLETE SETS AND SPARES

OTHER EQUIPMENT AN/URC-4
Airsea rescue set
AN/ARC-12 and ub
AN/APG. 15 and up
AN/APR-4.5. 6 and un
AN/CPN.6. B. 17 Beacons
AN/CPN.6. B. 17 Beacons
AN/UPN.1. 2. 3. Ralal Beacons
AN/UFN.1.2.3. 1. Ratlar Beacons
SCR-399, 499
SCR - 399.499
SCR-536
SCR-300
SCR
SCR. 506
SCR-508. 608
Test Sets TS. to TS-700
cult
"If it Is or Was Made We Can
Supply It"

SCR-616-BC-1269
F.M. \& A.M. \(145-600 \mathrm{mc}\) communications receiver The receiver is a superhet covering the 145.600 me in 2 bands. The dial is calibrated in megacycles. F.M., or A.M. reception is offered. Input is 110 v 60 cyc. This is one of the nicest receivers de signed.

\section*{RECEIVER-TRANSMITTER} FM \(20-28 \mathrm{MC}\)
BC-603 ERCCIVIER: \(20-28\) MC variable tuning, 10
 spraker:
i/tiAC. PLUG row rear of Receiver..................... \(\$ 1.00\)
 BC. 604 THANSV1TTET: \(20-28 \mathrm{BIC}, 30\) Watt, com-
 P/161! \& 1'1624. Transmiter........................ \(\$ 1.00\)

 Transinitur, 2i Wait outwin T Tubes: 1/1825. /12shé n/12.i6. 3/12s. haput output 250 VDC 60 MA. Transmitter 28 VDC

\section*{TELEPHONE EQUIPMENT}

EE. 8 Field Telephone dieal trir private telu-phone sxstem for two or move phonas, up to it mines, hanf

 SOUND POWERED HEAD\& CHEST SETS TS. 9 HANDSETS,
TS. 13 HANDSETS

\section*{INVERTERS \& GENERATORS:}

GENERATOR-115 Y: 400 Cvele, 1400 Watt, Single GENERATOR: Motor " 11 P ' \(115 / 230\) 60 evele single phase: Generator vadt 28.5 VDC 400 Watt. Pelt Drive. TR

115 V. 60 CYCLE BLOWERS:
 At Left: Il'5 VAC 60 Cycle
SINGLE TYPE 100 CFM Mete sizake: \(5^{\prime \prime} 0^{\prime \prime}\) - \(\$ 8.95\) 115 VAC 60 Cycie DUAL TYPE Inn \&FM t" intake: 'y" Dis. \(\$ 13.95\)

15 VAC 60 cycle COMPACT TYIM: 108 CFM: MoM built intide sumirtel cage: f-1/2" intake
 115 VAC 60 cycle FIANGE TYPF- 140 CFM ; 3-12"
 115 VAC 60 cycle FFLANGE TWIN-2T5 CFM: 4-1/2"
人o. 26069
\(\$ 21.95\) 15 VAC 60 Cycle BLOWER -200 CFM ; \(4^{\prime \prime}\) intake;
 115-VAC 60 Cycle BLOWER-100 CFAT: 3-s/4" intake: \(2^{2 \prime}\) outlet; Rd. Flange with Flap Director.

\section*{OTHER BLOWERS:}
\(12 / 24\) VDC-AC CAST ALUMINUM BLOWER- 100

 10 CFM BLOWER-2:.5 VICC: \(1 / 100\) IIP; 7000 IUTMS: \(=2\) Orersall size: \(3^{1} 2^{\prime \prime} \mathrm{x} 43 / 2^{\prime \prime}\). \(\$ 5.95\)
\(\$ 5.95\)
\(\$ 5.95\)
115 V . 100 CYCLE-10 CFM-Eastern Air Dertces

 \(\$ 5.95\)

NEW L/ST: Writn toflay for FreeE New

SAVE ON TUBES BRAND NEW TUBES gUARANTEED TUBES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline OA2 \(\ldots \ldots .75\) & 2.42 & 60.00 & 4J52 50.00 & 203A....... 3.00 & WE-394A... 3.00 & \(800 \ldots1 .50\) & 5517...... 1.75 \\
\hline OA3 3.90 & \(2 J 48\) & 35.00 & 4X150A..... 22.50 & 204A..... 25.00 & WE-396A . . 3.00 & 801 A 50 & 5551/FG271. 25.00 \\
\hline CB2....... 65 & 2 J 49 & 40.00 & 4×500A . 55.00 & 207. 25.00 & 403/5591 . . 2.75 & 802 2.25 & 53 \\
\hline OB3 VR90.. . 85 & \(2 J 50\) & 35.00 & 5EP2A 5.00 & 211 VT4C... . 50 & WE-403A ... 1.50 & 803 1.40 & FG258A . 90.00 \\
\hline OC3 VR105. 65 & 2 2 55 & 35.00 & 5CP1 A 8.00 & 212 E 15.00 & WE-404A . . 11.00 & 804 . 9.00 & 5559 FG57. 10.00 \\
\hline OD3 VR150. 65 & 2156 & 50.00 & 5CP7A 8.00 & WL-218 \(\quad 15.00\) & GL-414 . 99.50 & 805 6.00 & 5586.... 125.00 \\
\hline ELC1B 1.50 & \(2 J 61\) & 15.00 & 5CP11 A ... 9.50 & RX-233A . . 75 & WE.416B ... 45.00 & 806 7.50 & 5591/403B . 2.75 \\
\hline \(1 \mathrm{AD4}\)....... 1.25 & \(2 J 62\) & 6.50 & 5C22....... 29.50 & FG-235 A . . 25.00 & 417A...... 2.75 & 807 1.20 & 0 \\
\hline 1B23..... 2.75 & 2K22 & 14.50 & 5C30/C5B .. 1.00 & QK-249 ... 150.00 & WE-417A... 12.50 & 807W 3.00 & 5636 2.25 \\
\hline 1 1824 . 5.50 & 2K23 & 14.50 & 5JP2.... 7.00 & WE-249B . 2.50 & WE-423A ... 8.50 & \(808 \ldots . .1 .95\) & 5647 5.00 \\
\hline 1824A..... 12.50 & 2K25 & 12.00 & 5JP4 . . 7.00 & WE-249C... 3.00 & 446B...... 2.00 & 809 2.25 & \(5651 \ldots 1.40\) \\
\hline 1B26....... 1.25 & 2K26 & 45.00 & 5JP5 7.00 & 250-R 4.00 & WL-456 59.50 & 810 . 10.00 & 5654 1.25 \\
\hline \(1827 \ldots 10.00\) & 2K28 & 25.00 & 5JP11 A..... 9.50 & 250-TL 15.00 & 464A . 2.25 & 813 11.00 & 5656....... 7.00 \\
\hline 1B35 4.50 & 2K33 & 90.00 & 5MP1...... 3.95 & WE-251 A 39.50 & 527........ 22.50 & \(814 \ldots 1.75\) & \(5657 \ldots 125.00\) \\
\hline 1836..... 4.00 & 2 K 33 A & 50.00 & 5NP1 . . 5.00 & WE-252A... 7.95 & ML-531 4.00 & \(815 \ldots 1.50\) & 5663 1.50 \\
\hline 1B40 2.00 & 2К33B & 110.00 & 5R4GY..... . 90 & WE-254A... 3.75 & KU-610 . . . 3.50 & 826 75 & 5667 . . . 125.00 \\
\hline \(1842 \ldots . .4 .00\) & 2K34 & 85.00 & 5R4WGY ... 2.75 & FG-258 A . 90.00 & KU-627 . . . 10.00 & 829...... 6.00 & 5670
\(5687 \ldots 3.50\)
. \\
\hline 1B47 6.50 & 2K35 & 175.00 & C6J 6.50 & FG-271 25.00 & KU-628 ... 10.00 & 829B . . 8.50 & 5691 ... 4.75 \\
\hline 1851...... 6.75 & 2K39 & 100.00 & 6AK5W 1.00 & 271 A 10.00 & 648P1 . . 5.00 & 830B . . 75 & \(5702 \ldots . .75\) \\
\hline 1 B62 . 4.00 & 2K41 & 100.00 & 6AN5 2.00 & WE-274B ... 1.00 & WL-652 ... 20.00 & \(832 \ldots . .4 .00\) & 5702WA... 6.00 \\
\hline 1 B63 A . . . 22.00 & 2K42 & 125.00 & 6AR6 1.25 & WE-282A ... 6.00 & HK-654 . . . 25.00 & 832A 6.00 & \(5703 \ldots . .10\) \\
\hline 1 N21...... . 60 & 2K43 & 110.00 & 6AS6..... 1.95 & WE-282B 6.00 & 681/686 . 25.00 & 836 1.50 & \(5718 \ldots 3.00\) \\
\hline 1N21B. . . . 1.25 & 2K45 & 40.00 & 6BL6 ... 35.00 & WE-285A . . 5.00 & WE.701 A . 1.85 & \(842 \ldots 2.00\) & 5719 2.50 \\
\hline 1 N23 60 & 2K46 & 200.00 & 6BM6. 25.00 & 287-A 2.50 & 702A..... 50 & \(845 \ldots 5.00\) & RK-5721 .. 150.00 \\
\hline 1N23B..... 1.50 & 2K47 & 110.00 & 6F4...... 3.25 & & & 849 17.50 & 5725
5796 \\
\hline 1 N23BM.... 3.50 & 2 K 48 & 75.00 & \(6 J 4 \ldots \ldots .95\) & & & \(851 \ldots 10.00\) & 5727 . . 1.30 \\
\hline 1N23C....... 2.50 & 2K50 & 150.00 & 6J4WA 3.50 & & & \(852 \ldots . .00\) & \(5744 \ldots 1.90\) \\
\hline 1N25 3.00 & 2K54 & 7.00 & 6K4....... 2.25 & & & 858...... 0 & \(5750 \ldots 3.10\) \\
\hline 1 N26...... 3.75 & 2K56 & 50.00 & 6O5G . . 3.25 & & NTJBE & 860..... 3.00 & 5763...... 1.30 \\
\hline 1N28....... 5.00 & \(2 \times 2 \mathrm{~A}\) & 1.00 & 6L6WGB.... 2.75 & & & 861 ... 15.00 & CK-5787.... 4.95 \\
\hline 1N31....... 3.00 & 3AP1 & 2.95 & 6SK7W..... 2.00 & Long persistency
Value at \(\$ 200.00\) & This tube has & 872A....... 1.35 & \(5814 \ldots 1.00\) \\
\hline 1N34A..... . 50 & 3BP1 & 2.00 & 6SN7W 2.00 & been rejected for & military use. & \(884 \ldots . .1 .00\) & 5814WA.... 3.50 \\
\hline 1 N38A \(\ldots . . .65\) & 3 B 24 & 1.00 & OSUTGTY.... 2.75 & Smppell \& Fully & & GL-889 . . 50.00 & 5819..... 25.00 \\
\hline 1N42....... 8.00 & 3824W & 5.00 & 6X4W 1.00 & Guaranteed Only & & GL-889A . . 65.00 & \(5825 \ldots . .7 .95\) \\
\hline 1 N52...... 65 & 3B26 & 2.50 & 6X5WGT.... 1.30 & & & 889RA.... 110.00 & 829 W A..... 8.40 \\
\hline 1 N63..... 1.75 & 3B28 & 5.00 & 7C22 50.00 & & CAPACITORS & 902A. 3.00 & \(5837 \ldots 70.00\) \\
\hline 1 N69 40 & 3B29 & 5.50 & 7C24..... 90.00 & & \(30 \mathrm{KV}9 .00\) & 902P1 3.00 & 5840 4.50 \\
\hline 1 P21 30.00 & 3 C 22 & 60.00 & FG-17... 2.95 & 0 mmfd . & 9.00 & 905 2.00 & \(5844 \ldots 3.00\) \\
\hline 1P92..... 6.50 & 3 C 23 & 5.00 & RX-21 4.00 & & KV. 12.50 & \(917 \ldots . .2 .00\) & \(5851 \ldots . .4 .00\) \\
\hline 1 P98...... 9.00 & 3 C 27 & 1.00 & HK-24..... 3.00 & & er Values! & 919........ 2.00 & 5876 11.50 \\
\hline \(1 W 5 \ldots \ldots . . .1 .00\) & 3 C 31 & 1.50 & RK-28A 2.50 & & & \(927 \ldots . . .0 .00\) & \(5894 \ldots . .18 .00\) \\
\hline 1Z2..... 1.75 & 3 С33 & 8.00 & HK-54..... 2.00 & HF-300 . . . 15.00 & WE-703A... 1.95 & 931 A..... 2.50 & 5896 5.00 \\
\hline 2AP1 4.00 & 3C45 & 7.00 & D-42..... 40.00 & WE-300B. . . 5.00 & WE-704A . 75 & 935 4.00 & 5899 5.00 \\
\hline 2C33...... 75 & 3DP11A & 7.50 & OK-60 25.00 & GB-302 5.00 & WE-705A .. . 75 & 954..... 35 & 5901 6.50 \\
\hline 2C35....... 2.50 & 3D21A & 3.00 & RK-60/1641 . 1.35 & 304TH 8.00 & 706AY-GY 15.00 & 955 35 & 5908.... 7.95 \\
\hline 2C36....... 30.00 & 3DP1S2. & 5.00 & RK-61....... 2.50 & 304TL 8.95 & 707A...... 3.50 & 956 35 & \(5932 . . .4 .00\) \\
\hline 2C37....... 30.00 & 3E29 & 8.50 & QK-62 25.00 & WE-305A.... 3.00 & 707B...... 4.50 & 957 35 & 5933 807w 4.00 \\
\hline 2C39....... 4.95 & 3FP7A & 2.50 & HY-65 1.00 & 307A/RK75.. 1.00 & WE-708A ... 75 & 958A..... . 35 & 6005....... 1.75 \\
\hline 2C39A 10.00 & 3 J 30 & 35.00 & RK-65/5D23. 7.50 & WE-308B.... 15.00 & 714A...... 12.50 & 959........ 1.85 & 6091 4.50 \\
\hline 2C42 10.00 & 3 K 22 & 150.00 & FG-67. . . . 12.00 & WE-310B.... 3.00 & 715A....... 1.75 & 991........ . 35 & 6044 30.00 \\
\hline 2C43....... 9.00 & 3K23 & 150.00 & HY69....... 3.00 & WE-319A... 2.00 & 715B....... 4.00 & CK-1005 35 & 6045 C \\
\hline 2C44....... . 50 & 3K30. & 100.00 & RKR-72..... . . 50 & WE-315 A . . 20.00 & \(715 C \ldots . . .12 .00\) & CK-1006 ... 2.75 & 6046 75 \\
\hline 9C46 6.00 & 4-65 A & 14.00 & RKR73...... . 50 & WE-316A 50 & 717A...... . 50 & CK-1007 55 & \begin{tabular}{l}
CK.6050 \\
6096 \\
\hline 1.00 \\
\hline 1.75
\end{tabular} \\
\hline 2C51...... 3.00 & 4B23 & 5.00 & ML-100.... . 50.00 & 327A........ 3.50 & 720AY-EY . . 50.00 & \(1603 \ldots . .3 .00\) & 6100/6C4WA 2.25 \\
\hline 2C52...... 3.00 & 4B24/3C & 4.00 & \(100 \mathrm{TH} \ldots . .6 .50\) & WE-336A ... 5.00 & 721 A....... 75 & 1620 3.25 & \(6111 \ldots 6.50\) \\
\hline 8C53 10.50 & 4B31 & . 22.00 & FG-105 ... 11.00 & WE-338 A . . 5.00 & 721B....... 7.25 & 1623....... 1.75 & \(6147 \ldots 3.00\) \\
\hline 2D21 60 & 4C27 & 5.00 & F-123A . 2.95 & WE-348A . . 6.00 & 728A 75 & 1.00 & 6177 ... 49.50 \\
\hline 2D21 W 1.25 & 4C28 & 25.00 & F-124A . . \(Q\) & WE-349A ... 6.00 & 723A...... 5.00 & 1625 30 & \(6246 \ldots\) Q \\
\hline 2E26....... 3.25 & 4C35 & . 13.50 & F-128A . 13.00 & WE-350A . . 2.75 & 723A/B . . 8.50 & \(1626 \ldots .\).
\(1636 \ldots\) & \(6764 \ldots . .\). \\
\hline 2E27....... . 60 & 4E27. & . 8.75 & FG-154 . 15.00 & 350B 2.00 & 725A 3.50 & 1641.......... 1.35 & 8005 4.95 \\
\hline 2E32 1.00 & 4」22 & . 35.00 & VT158...... 9.75 & 354C 5.00 & 726A 7.00 & 1642...... 50 & 8012 1.00 \\
\hline 2J31 15.00 & 4J29 & 35.00 & FG-166 . . . 15.00 & 3568 6.50 & 726B 20.00 & 1945 ... 65.00 & 8025 A . . . 9.00 \\
\hline 2J32........ 12.50 & 4」31 & 65.00 & FG-179 20.00 & WE-359A... 2.00 & 726C 20.00 & 2000T . . . 150.00 & 9001 85 \\
\hline \(2 \mathrm{3} 3 \mathrm{C......}\). & 4J34 & 50.00 & HF-200 10.00 & 368 AS 2.00 & 730 A 7.50 & 2050 90 & 9002 55 \\
\hline 21.34 14.50 & 4J 42 & 25.00 & OK-181 20.00 & WE-388A.... 1.20 & 750TL 40.00 & 2051 65 & 9004 85 \\
\hline 2J36....... 15.00 & 4J50 & 99.50 & WL-200. 75.00 & WE.393A... 4.50 & WL-759..... 3.95 & ZB-3200 . . . 69.50 & 9005 1.50 \\
\hline
\end{tabular}

THIS IS ONLY A PARTIAL INVENTORY.
CHECK WITH US FOR YOUR REQUIREMENTS

Thousands of other types in stock. Send us your requirements. RECEIVING TUBES: We Carry a complete line in stock. Standard brands only.

ELECTRONICS
Dept. E-A
hos Venice blyd Los Angeles 15 California

All prices F.O.B. Los Angeles, subject to change without notice. Minimum order \(\$ 5.00\). Check with us for items not listed.

\section*{SEARCHLIGHT SECTION}

\section*{TUBES • ALL FAMOUS ADVERTISED BRANDS ONLY • TUBES}

RMA GUARANTEE-From \(10 \%\) to \(95 \%\) Below Manufacturers Price-Look and Compare Special Prices to Quantity Buyers. Most of Our Tubes are Jan.- \(95 \%\) are Original boxed - Brands such as R.C.A., G.E., Ken-Rad, Sylvania, Tung-Sol and Raytheon
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Prico & Type Price & Type Pri & rice & Type & Price & Type & Prl & Type & Price & Type & Price & Trpo & Pric \\
\hline & & \begin{tabular}{ll}
2 K 28 \\
2 K 33 & 29.50 \\
\hline 9.95
\end{tabular} & & 12A & . 85 & 274B & 1.79 & 703 A & 1.90 & 815 & \({ }_{1}^{1.95}\) & \({ }_{5}^{5703} 5\) & \\
\hline \({ }_{\text {Cra }}\) & \({ }_{1824}^{1822} \ldots . .6 .69\) & \({ }_{2 \times 15}^{2 K 31 .}\) & & cisk & 1.25 & \({ }_{286 \mathrm{~A}}^{282}\) & 6.4.49 & & (1.25 & & 1.75 & S765.
1625
1625 & \\
\hline CRP RK- & & 2K54 \(\ldots . .8 .95\) & & & \({ }^{2} \mathbf{2} 99\) & \({ }_{\text {287A }}^{288}\) & \({ }_{6.61} 6\) & 70 & 14.50 & 829 & 8.99 & & \\
\hline 72
Ec1 & & \({ }_{2 \times 3 / 65}^{2 K 5} \ldots 9.50\) & & \({ }^{26866}\) & 1.19 & 3 304TH & \begin{tabular}{|c}
10.00 \\
12.00
\end{tabular} & & \({ }^{17.55}\) & \({ }_{\text {c }}^{830 \mathrm{~B}}\) 8 & 2.999 & 1630 & \\
\hline & & \({ }_{2 \times 3 / 6}^{2 \times 1 .}\) & & \({ }_{9}{ }_{\text {PP7 }}\) & \% \begin{tabular}{c}
6.25 \\
500 \\
\hline
\end{tabular} & 307A & 1.85 & \({ }_{708 \mathrm{~A}}^{707}\) & 4.45 & & -31.50 \({ }^{\text {31.59 }}\) & 11 & \\
\hline EM.3GA . . \({ }^{\text {a }}\) 39.50 & \({ }^{28}{ }^{2811}\) & & & 110 & 139
1.59 & \({ }_{316 \mathrm{~A}}^{310}\) & 3.99 & \({ }^{7} 713\) & 1.969 & ¢888 & . 95 & \({ }_{1806}^{164}\) & \\
\hline \({ }_{\text {F128A }}{ }_{\text {F123A }}\)... 5.98 & & & \({ }_{\text {54PP4. }}^{51}\) & 12 l & 1.59
.29 & \({ }^{327}{ }^{\text {32 }}\) & 3.35 & & \({ }_{24}^{29.95}\) & & 590 & & \\
\hline FG-105 12.99 & & & & 248 & \({ }_{1}^{1.89}\) & 329 A
34
34A & 4.69 & 715 A
715
715 & & 885 & \({ }_{6.49}^{4.49}\) & 205
5651

205 & \\
\hline FG-154.14.99 & & \({ }_{3825}^{3824 W}4 .99\) & & 357
357 & 4.99
7.25 & \({ }_{3508}^{3508}\) & \({ }^{2} 7.95\) & \({ }^{71174}\) & \(\begin{array}{r}16.50 \\ \hline .49\end{array}\) & 851
860 & 16.50 & & \\
\hline & \({ }_{2} \mathbf{C 3 9 A}\) …... 11.50 & & & & & & & \({ }^{18} \mathrm{~A}\) EY/ & & 886 & 9:09 & & \\
\hline & & & CRYSTAL & & & & \({ }_{\substack{1.10 \\ 3.59 \\ 69}}\) & & & & \(\begin{array}{r}.99 \\ \hline 1.19 \\ \hline\end{array}\) & \(\xrightarrow[\substack{5678 . \\ 5687 \\ 588 \\ \hline}]{ }\) & \\
\hline & & & DIODES & N & . 49 & & . 64 & & 8.95 & & -10.00 & \(\substack{5670 \\ 5702 \\ \text { cha }}\) & \\
\hline & & & DIODEs & 1N23A & 49 & 1 \({ }^{34 A}\) & . 61 & & \({ }^{1.999}\) & & & \({ }_{5726}\) & \\
\hline
\end{tabular}

\section*{FAY-BILL}

418 Broome St., N. Y. 13, N. Y Telephone CAnal 6-8404

All boxed and fuliy guaranteed. Special quantity discount- \(10 \%\) on 100 or more of same type. Minimum dellesit with orther or if paid in advance save C. \(\mathbf{0}\). \(\dot{\text { D }}\). Send us your requirements. F.O.B. New York \(25 \%\) change without notice. For fast service ask for Sy.

\section*{SELLING}

Receivers
Transmitters
Radar
Special Purpose Tubes
Relays
Meters
Switches
Connectors
Rectifiers
Transformers
Motors \& Generators
Wiring Cable
Instruments
and
All Electronic Components
RADIO \& ELECTRONIC SURPLUS
13933-9 BRUSH STREET
Detroit 3, Mich. TO 9-3403

\section*{WILL BUY ALL}

New or Used
Leach, Relay \#5059-R
\#5058
\# 5055
\# 5053 -SM
+5053

Antenna Switching Relay
Box \# CBY 23049
\begin{tabular}{|c|c|}
\hline Antenna Swit
Box & ching RelaY
\# CBY 23049
\# BG-AN-198
\(\#\) BC -408 \\
\hline Tubes & \[
\begin{aligned}
& \quad \begin{array}{l}
\text { \#53A } \\
\text { VT-127A } \\
35 T
\end{array} \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

WL. 530
Highest prices paid for most all types of air-
Highest prices paid for most all
craft sparkplugs any condition

Wholesale Only

\section*{CHOPPERS}

Stevens-Arnold Tyoe 364: SPDT contacts: coil 18
 Stevens.Arnold Type 365, same as above except coil Stevens. Arnold Type 365, same as above except coil
26 rolts and solder-lug base; price \(\$ 15.00\) each. Airpax Type A.580, coil 120 rolts, 380 to 420 Airpax Type A-589-4, coll 6.3 volts, 380 to 420
cricles
\(\$ 12.50\) each. cycles, \(\quad\) price \(\$ 12.50\) each. Bendix Autosyn, Tspe AY-211S-5-R, sealed cans,
price \(\$ 18.00\) each. Kearfott Motor, Type lil10-2B-B, new, origlnal boxes, Precision Spur-gear speed reducer to fit above
motor. Write for detailed information on the following items:

Kollsmann type 1912.01 True Airspeed Trans mitters
Hipersil and Hin wire

M5, M 7, and MRE.50 Minlature Godd Plated
Connectors
Falrchild
746
Multigang Precision Potentiometers
G. GREENE

166-04 67th Arenue Flushing 65, New York

IMMEDIATE DELIVERY

WESTON Type 705 SENSITROL

Stationary contact is a small powerful permanent magnet and movable contact is iron "rider" mounted on pointer which travels over relay scale. Operating torque moves pointer into magnetic field of stationarycontact which draws movable contact and holds it firmly. Contacts remain closed until reset. Will operate directly from a photocell or a group of thermocouples. Net weight 14 oz.
Double contact with Solenoid Reset; Sensitivity 7.5 Microamps; Reset coil 6-24 VDC or 24 VAC ; Makes contact on increasing or decreasing values; Contacts; "Twintacts". Capacity 100 ma at 110 volts; Nickel plaied brass cover; Weston Model 705 Type 6 \#R560 18.75; 10 for 170.00 Same as \#R560 but with glass face; Weston Model 705 Type 6 \#R561....... 19.75 10 for 180.00 Single contact (Normally Open), Solenoid Reset; Sensitivity; 10 Microamperes; Reset coil; \(6-24 \mathrm{~V}\) DC or 24 V AC ; Contact: "Twinlact", capacity 100 ma at 110 volts; Glass Face; Weston Model 705 Type 4 \#R523 \(17.75 \quad 10\) for 160.00 Same as \#523 with Brass Cover Weston Model 705 Type 4 \#R523N.......... 16.75 10 for 150.00

\section*{STEPPING} SWITCHES
Mfd. by Western Electric Minor Switch 10 steps and of Contacts: \#'s

Step \& Reset R960, 975, 976 Gold plated brass; Bridging Wiper; others non-bridging; Net. Wh. I lb.
\#R960; Single Level; 6 to 12 V.DC Each of 10 \#R960; Single Level; 6 to 12 VDC. \(\mathbf{9 . 5 0} 8.00\) \#R975; Single Level; 24 to 36 VDC. 10.509 .40 \#R977; Two Level; 6 to 12 VDC. 11.50 10.00 9.00世R978; Two Level; 24 to 36 VDC. 11.5010 .00 \#R979; Two Level; 48 to 60 VDC. 12.50 11.00

SS6 Mfd. by Western Electric Co.; 22 step; 5 levels; Bridging Wipers; Contacts
 Gold plated brass. Interrupter Switch: 1 Break-Make; Net Weight: 2 lb. 2 oz. "Homing" Type; \(180^{\circ}\) Wipers; Step in One Direction
\#R926; 6 to 12 VDC............. 13.7511 .50
 \(15.75 \quad 13.50\)

SS7 Mfd. by Western Electric Co.; 44 step; 2 Levels; Bridging Wipers; Contacts: Gold plated brass; Interrupter Switch; 1 BreakMake ; Net Weight 1 lb .14 oz.
"Homing" Type; \(360^{\circ}\) Wipers; Step in One Direction

 CLARE TYPE 20 "Homing" type; Sup in one direction; 20 position; \(180^{\circ}\) wipers, one bridging and remainder non-bridging; Interrupter Switch: | break. \#R891; 24 36VDC; 3 levels; Clare \#SD19. 12.95 each

\section*{WESTERN ELECTRIC MERCURY CONTACT}

Pressure Sealed; Octal Plug Base D171584; (Equivalent to 275B) SPDT; 1 coil of 4500 ohms plus 24 V Heater. Operating current: 8.0 ma, release current: 5.2 ma. Overall length: \(31 / 4^{\prime \prime}\). overall diameter 1-3/16" \#R1021 10 for 65.00
\[
100 \text { for } 625.00
\]

SIGMA SENSITIVE
SIGMA 4F8000S; I ma; SPDT (1C); 8000 ohm ; \#R425 3.95 ea. 3 for \(10.00 \quad 10\) for 30.00 SICMA 5F16000S; 0.5 ma ; SPDT (IC); 16000 ohm; \#R627.

100 for 450

HERMETICALLY SEALED ALLIED SMHX-1;24 VDC; 6PDT(6C); 10 Amp contacts; 230 ohm; Solder lug header; \#271.
 R627. 100 ... 5.95 ea. 10 for 50.00 .50 ea. ALLIED SKHXCC; 24 VDC; DPDT(2C) 425 ohm; Solder lug header; \#R85... 4.95 ea. ALLIED SKHXCCCC; 24 VDC ; 4 PDT (4C); 425 ohm ; Solder lug header; \#R86 5.50 ea.

\section*{A-C RELAYS}

ALLIED P012A115: \(115 \mathrm{~V} 50-\) 60 cyc; 4PDT; 10 Amp contacts; \#R1025....... 4.50 ea. 10 for \(40.00 \quad 100\) for 350.00 GUARDIAN 150: \(115 \mathrm{~V}, 50-60\) cyc; SPDT, 3 Amp contacts; \#R1029 1.50 10 for \(12.50 \quad 100\) for 110.00 24 VOLT TRANSFORMER; 1.5 Amp; Pri; 115V: \(50-60 \mathrm{cyc}\); Double shielded; Net wt: \(11 / 2\) lb; \#T120 10 for 13.00

\section*{LATEST SUBMINIATURE TYPE}

ALLIED 50G MH-12; MIL-R-5757A; 24-29 VDC; 4PDT; 300 ohm; Herm. Sealed; Solder Lug Header; 2.9 oz ; Operate time 8 millisec; 1-1/16" dia. \(\times 1-5 / 16^{\prime \prime} \mathrm{H}\); \#RII38.......... 5.50 ea. STRUTHERS DUNN 220XFX100; Same as Allied above but 6 PDT; 300 ohm ; Herm. Sealed; Solder Lug Header; 3 oz; 1-3/16" dia. \(\times 1-11 / 16^{\prime \prime} \mathrm{H}\); \#R1 \(145 \ldots . .6 .00\) ea.

\begin{tabular}{|c|c|c|c|c|}
\hline . \({ }^{\text {c }}\) & Ohms & Contacts \(\dagger\) & Stock No. & Each \\
\hline 24 & 300 & 3 A & R340 & 1.25 \\
\hline 24 & 640 & \({ }_{1 C}{ }_{1} 1\) B & R640 & 1.25 \\
\hline 2.5 ma & 10000 & \(1 \mathrm{C}, 1 \mathrm{~A}\) & R1132 & 2.00 \\
\hline 8 ma & 5000 & 5A & R1133 & 2.00 \\
\hline 24 & 600 & 1 C & R318 & 1.15 \\
\hline 24 & 600 & 2 A & R319 & 1.15 \\
\hline 24 & 600 & \(1 \mathrm{~A}, 1 \mathrm{C}\) & R336 & 1.25 \\
\hline 24 & 600 & 1A, 1B, 1C & R337 & 1.35 \\
\hline 24 & 250 & 4 C & R1161 & 2.75 \\
\hline 24 & 250 & 6 C & R1162 & 3.25 \\
\hline \multicolumn{5}{|l|}{Clare Type K} \\
\hline 24 & 300 & 1 A & R344 & 1.00 \\
\hline 24 & 300 & 2 C & R331 & 1.25 \\
\hline 24 & 300 & 1 C & R345 & 1.15 \\
\hline 3-S & 17 & 1 A & R339 & 1.00 \\
\hline 6 & 30 & 2 C & R1134 & 1.25 \\
\hline 48 & 1300 & 2 C & R1135 & 1.50 \\
\hline 24 & 300 & 1A, 1B, 1C & R1163 & 1.50 \\
\hline 24 & 250 & 1B, 2C & R1136 & 1.50 \\
\hline 24 & 300 & & R1137 & . 80 \\
\hline
\end{tabular}
Coil and Frame actuator only (No contacts).
-
\begin{tabular}{lcccc}
24 & 300 & \(1 A\) & R346 & 1.00 \\
24 & 300 & 1 C & R347 & 1.00 \\
24 & 300 & 2 C & R348 & 1.15 \\
12 & 150 & 1 A & R338 & 1.00 \\
Allied & Type & SK & & \\
24 & 300 & 1 C & R349 & 1.00 \\
24 & 300 & 2 C & R67 & 1.15 \\
24 & 300 & 4 C & R525 & 2.25 \\
Allied & Type & STK & & \\
24 & 300 & \(1 A\) & R350 & 1.00 \\
24 & 300 & 1 C & R330 & 1.00 \\
24 & 300 & \(2 A, 1 \mathrm{C}\) & R403 & 1.25
\end{tabular}

Allied Type F \& Price 1150
\begin{tabular}{lcccc}
\(6-12\) & 120 & 1 A & R394 & 1.00 \\
12 & 100 & \(2 \mathrm{~A}, \mathrm{iC}\) & R 395 & 1.25 \\
8 ma & 3000 & 1 A & R916 & 1.25
\end{tabular}

Advance Type 1504 \& 1604
\begin{tabular}{lllll}
24 AC & 45 & 2 A & R334 & 1.00 \\
3 & 14.5 & 2 C & R650 & 2.00 \\
12 & 450 & 1 H & R396 & 1.50 \\
12 & 450 & 2 A & R397 & 1.50
\end{tabular}

Cook \& RBM
\begin{tabular}{|c|c|c|c|c|}
\hline 24 & 250 & \({ }^{3 A}\) & R317 & 1.25 \\
\hline \({ }^{24}\) & 500
6500 & \({ }^{2 \mathrm{C}}\) & R918 & 1.50 \\
\hline 12 ma & 5000 & \({ }^{4} \times 14\) & \({ }_{\text {R1164 }}\) & 3.75 \\
\hline \multicolumn{5}{|l|}{Anti-Capacity Types} \\
\hline \({ }^{124}{ }^{12} \mathbf{4}\) & 500
300 & 14 \({ }_{1}^{14}\) & R106
R134
R35 & 1.90 \\
\hline & 300 & \({ }_{2 C}\) & R351 & 1.50 \\
\hline
\end{tabular}
 Miscellaneous Types
Migr' 8 Con- Stock Price
No. Volts Ohms tacts No. Each Kurman \(24 \begin{array}{lllll} & 1500 & 1 C & \text { R1139 } & 1.00\end{array}\) \(\begin{array}{lccccr}\text { Kurman } & 24 & 1500 & \text { 1C } & \text { R1139 } & 1.00 \\ \text { Leach P3 } & \text { Seties } & .02 & \text { 1C } & \text { R1141 } & .80\end{array}\) \(\begin{array}{lcccrr}\text { LeachP3 } & \text { Series } & 150 & 1 \text { 1C } & \text { R173 } & .80 \\ \text { Price TB302 } & 24 & 300 & 2 A, 1 C R 404 & 1.35\end{array}\)

\section*{ALL MERCHANDISE IS GUARANTEED AND MAY BE RETURNED FOR FULL CREDIT.}

SEND FOR LATEST CIRCULAR. TERMS:-All Prices F.O.b. Our Plant. Rated Firms Net 10 Days; All Others Remítance with Order. Orders Under \(\$ 10.00\) Remittance with Order, Plus Approximate Shiping Charges (Overage Will be Returned).

SEARCHLIGHT SECTION

\section*{FOR SALE}

RESISTANCE WIRE on Spools
Insulated NICHROME Sizes
18 to 32 -also CUPRON bare
in Sizes 20 to 32 Total Approx. 400\# DUMET Wire on reels Diameter .040 Approx. 200\#
DUMET Rod 7.1/16 round, over 5 feet Totaling Approx. 1,000\#
Write or phone
DIAMOND METAL COMPANY, Inc. 70 Pine Street New York 5, N. Y. Telephone: Whitehall 4-2282

24 HOUR DELIVERY OF THESE TYPES

\footnotetext{
Stondard Telephone Relays Short Telephone Relays Midget Relay 5
Timers
Aircraft Contactors
Rotary Relays
Western Electric
Iype "E" Relays
}
P. O. Box 186-AA, West Chicago, Ill.

Phone West Chicago 1100

\section*{SERVO SPECIALS}

\section*{60 CYCLE SERVO MOTOR \& GENERATOR}

Navy Type CAN211773 - 6.5 watts. Manuf. by Sangamo or Kollsman. Motor input is 115 volts per phase at 60 cycles. 2 pole construction gives speed of approx. 3350 rpm . Tachometer generator is of the constant frequency type with an outpur of 6.5 volts per 1000 rpm . Output shaft has a 10 tooth helical gear
SA-513
\$37.50
TYPE 15CX4A
SYNCHRO
TRANSMITTER
 electrical error 12 minutes.. Total weight 0.4 lbs. Dimensions \(1.89^{\prime \prime} \times 1.437^{\prime \prime}\) diameter. Synchro-type mounting.
SA-465
\(\$ 17.50\)
TYPE AY101D
PRECISION AUTOSYN
TRANSMITTER OR
CONTROL TRANSFORMER

26 volts, 400 cycle single phase input. Will operate on 6 volts 60 cycles.
\(\$ 9.50\)

\section*{TYPE 1SF SYNCHRO}

Manuf. by Bendix \& Ford Instrument Co. Although this is a Navy Synchro designed for a 400 cycle excitation of 115 volis, it has been very successfully used on 60 cycle supplies not exceeding 32 volts. Since it has an internal mechanical inertia damper, it can be used either as a "transmitter" or as a "repeater". We strongly recommend this unit for many commercial applications requiring compact remote indicating assemblies.
SA-29
\(\$ 9.50\)
WRITE FOR COMPLETE CATALOG

\section*{SEARCHLIGHT Equipment Spotting Service}

This service is aimed at helping you, the reader of "SEARCHLIGHT", to locate Surplus new and used electronic equipment and components not currently advertised. (This service is for USER-BUYERS only) No charge or obligation.
How to use: Check the dealer ads to see if what you want is not currently advertised. If not, send us the specifications of the equipment and/or components wanted on the coupon below, or on your own company letterhead to:

\section*{Searchlight Equipment Spotting Service c/o ELECTRONICS}

\section*{330 W. 42nd St., N. Y. 36, N. Y.}

Your requirements will be brought promptly to the attention of the equipment dealers advertising in this section. You will receive replies directly from them.
Searchlight Equipment
Spotting Service c/o ELECTRONICS
330 W. 42nd St., N. Y. 36, N. Y.
Please help us locate the following equipment, components:
\(\qquad\)
\(\qquad\)
NAME TITLE

\section*{COMPANY}
StREET
CITY
ZONE
STATE
4/56

AN/APR-4 LABORATORY RECEIVERS
Complete with all five Tuning Units, covering the range 38 to \(4,000 \mathrm{Mc}\); wideband discone and other antennas, wavetraps, mobile accessories, 100 page technical manual, etc. Versatile, accurate, compact-the aristocrat of lab receivers in this range. Write for data sheet and quotations.

We have a large variety of other hard-to-get equipment, including microwave, aircraf", communications, radar; and laboratory electronics of all kinds. Quality standards maintained. NEW TS-13/AP X-BAND SIGNAL GENERATORS with manual \(\$ 575.00\); T-47A/ART-13 Transmitters, \(\$ 450.00\); H-P, Boonton, G-R, Measurements, many others in stock.
ENGINEERING ASSOCIATES
434 PATTERSON ROAD DAYTON 9, OHIO

NEW GE PHONO CARTRIDGES

CARTRIDGES

diamond \(\dagger\)

\(\left\{\begin{array}{l}\text { WRITE FOR OUR NEW } \\ \text { HI-FI CATALOG }\end{array}\right.\) \$ \$ SAVES \$

HI-FI RECORDING TAPE
Finest, \$, \$, \$, Back Gtd

VECTOR" PLUG-IN STANDARD TURRET

KLYSTRON "X" BAND

 WAVEGUIDE TEE 106 A Sperry 3.95-6 Kme

 HEAVY DTY \(115 \times / 60\) cy SATURABLE
 THOR ELECTRIC DRILLS

"TAB" SPECIAL BARGA!N BUYS

\begin{tabular}{|c|}
\hline \\
\hline
\end{tabular}

Money Back Guarantee (Cost of Mdse. Only)
\(\$ 5\) Min. Order FOB \(\$ 5\) Min. Order FOB
N. Y. C. Add
charg.

\section*{INDEX TO ADVERTISERS}
Ace Electronics Associates.
Aeme Wire Co
Acromark Co
Adims Westlake Co.
Aleir Precision l'rolurts. A Div. of General Metals Corp. 443
Advante Electronias Iáab., Inc. 506
Inc98
Aerovox Corp380. 387
Aircraft-Marine Products, Inc.....36, 3\%, 273
Air Express Divinion Railway Express 215
Airpax Products Co. 112,369
Alfor Products Co. 28
Alford Mfg. Co. Inc. 326
Allen-Bradley Co 118
Allegheny Iudium Steel Curp 58
Allied Control Co. Ine 82. 83
Alloy Precision Castings Co 370
American Gas Furnace Co. 419
Amorican Lava Corporation 95
American Machine \& Foundry Co. 74
American I'henolic Corp. 194
Imerican Television \& Radio Co. 232
Ammerican Time Prorlucts. Inr. 11.
Amperrx Electronic Corp 250
miberite Co., Ine 278
Andrew Corp. 209
Antara Chemimals, A Silles Div. a 205Gramern Iniline \& Film (orp......
Anti-Corrosive Metal Prolucts Co., Ine. 328
Armeo Stad Corp. 102
Arnold Engineering Co. 13
Artos Enginmering Co 264
Art Wire \& Stamping Co 432
insemmble products, Inc. 115
Asweiated Commodity Corm 116
Antomatic Metal Products Corb. 441
Autonetics, I Miv. of North Amerioun Avintion, lus. 369
Bakelite Cu., Div. of Inion Carbide Carbon Corp 227
, 442
Batiantine Laboratories, lne \(2 \% 0\)
Hartmer-Colman Co. 425
Barry Controls, Inc. 21
Hanseh \& Lomb Optical Co 437
Bead Chain Mfg. Co 36:
Helden Damutacturing Co. 339
Ifell Trephome Laboratories 223
Bendix Aviation Corporation Eelipse-Pionefr Div 328
Hed Jank Div. 25ン
Wentley, Ilarris Mfg. Co 32
Berkeley Division, IBeckman Inntruments
Inc inc. 38
Birel Co., Inc., Richard li. 410
Hird Electronies Corı 360
Bliley Electri4 Co. 2.50
Bothme, Ine., H. O.415
Boesch Mify. Co., IneBoonton Radio Corb.Brailaford © Cu., Ime
Bristoil Co.. TheBrush Filectronies Company441
309309
Borg Corporatiun. George W. V. 384
340
Burroughs Corp. Nifetronic Instrument 391
Bussmann Mig. Co. \(\%\)\(30 \%\)
 Broadeasting System. Inc 12
Cambridge Thermionic Corb. 4:0
Canoga Corp. 388
Carboley, Ibept. of General F:lectric Co.. 24
Carbornudum Company. Globar Division 36Celco-Constantine Engincerine Labora-
Centrafab, Div. of Globe-Union Inc. \(40 \%\)
Chase IBrass \& Copper Co. 28.
Chatham Electronics, Div, of Gera Corp. 221
Chiengo Standard Transformer Corp.. 329
Chicago Telephone Supply Corp. \(6: 3\)
Cinch Mfg. Corp. 185
Circuit Instruments, Inc. 358
Clare d Co., C. I 107
Clevelaml Container Co. 20?
Clevite Transistor I'roducts 3
Clifton Irecision I'roducts Co.. Inc.. 304
Clarostat Mfg. Co. Inc. 323
Clouglt-Brengle Co. 50.4
Coast Coil Company 41)
Cohn Corp.. Sigmund \(4: 7\)
Coils-Electronies Co. 431
Collectron Corporation 425
Color Television, Inc. 443
Communicutions Measurements Labora 388
Computer Measurements Corj. \(2 \%\)
Conrad, Inc. 506
Consolidated Electrodynamies Corp... 330
Consolidated Vacuim, Div, of Con- 401
Continental-Diamond Fibre. Siv. of the Budd Company, Inc. 37.
Continertal Wire Corp. 290
Cornell-Dubilier Electrie Corp. 39
Corning Glass Works 100
Cosmic Condenser Co \(4 \because 3\)
Coto-Coit, Ine 406
Cramer Co., Inc. R. W. 10:
Crane Pacling Co 383
Cross Co., H. 419
Crucible Steel Co. of Ammerica 29
Cubic Corp. 331
Curtiss-Wright Corp. 3:3.138
Dale Products, Inc 276
Dano Products Co. 400

Your special delay line needs can be met by assembling standard units for laboratory or production requirements.

\section*{WRITE FOR DATA SHEET}

\section*{ESSEX ELECTRONICS}

Berkeley Heights
New Jersey
CRestview 3-9300
7303 Atoll Ave. No. Hollywood Calif.

Trenton, Ontario Canada

\section*{Extended Range Audio Oscillator}

Model 420 is a resistance-capacity tuned type oscillator with balanced 135 ohm and balanced 600 ohm outputs from 20 cycles to 250 KC and single ended output from 20 cycles to one megacycle. Output is 100 milliwatts. Distortion is less than \(1 \%\) from 100 cycles to 100 KC .
- SEND fOR CATALOG 54A.

Manufacturers of:
1.F. Sweep Generalors Beat Frequency Oscillators - Audiomatic Generotors Band Spread Audio Oscillalors Exiended Range Audio Oscillalors Transmission Measuring Sets - Standard R.F. Signal Generators - Capacity-ResislanceInductance Bridges Coil Checkers and Other Associaled Equipment.

Daven Company 3rd Cover
Dejur-Amsco Corporation, Electronics Delco Radio Div. of General Motors.... 389
DeMornay-Ronardi 303
Dialight Corporation 442
Dit-Mco. Inc. Electronics Div. 274
Donner Scientific Co. 300
Douglas Aircraft Co., Inc................ 251
Driver-Harris Co. 257
Dumont Laboratories, Inc., Allen B..... 197
Dunles Coxp. 230
DuPont de Nemours \& Co. (Inc.), E. I. 30
Film Dept. \({ }_{9}\)
Polychemlcals Dept. ... 9
Durant Mfg. Co. 390

Eastern Industries, Inc. 201
Eastman Kodak Company 203
Edison, Inc., Thomas A. 374
Eisler Engineering Co., Inc................. 416
Eitel-McCullough. Inc. 111
Elco Corp. 429
Electra Mfg. Co............................. . . . 336
Electrical Industries Div. of Amperex Electronic Corp. 28

Electrocraft, Div. of Hamilton-Pax, Inc. . 423
Electro Tec Corp............................. 271
Electronic Engineering Company of 415 California
Electronics Buyers' Guide................ 319
Electronic Instrument Co., Inc. (EICO) . . 418
Elgin National Watch Co. Electronics 31
Emerson \& Cuming, Inc. 298
Engineering Co., The 408
Epsco, Inc. 235
Eraser Co., Inc. 431
Erie Electronics Division, Erie Resistor
Corp 2
Essex Electronice 503

F-R Machine Works, Inc.................. 211
Filirchild Camera \& Instrument Corp.... 286
Fairchild Controls Corp., Components
Div.
213
Farley \& Loetscher Mifg. Co. 296
Farnsworth Electronics Co............... 2 . 20
F+deral Telephone \& Kadio Co......... 231
Ferroxcube Corp. of America. 413
Film Capacitors, Inc. 352
Filtors, Inc. 426
Fisher Radio Sales Co., Inc............ . . 370
Frenchtown Porcelain Company. 396

G-M Laboratories. Inc. 76
Gabriel Electronics Div. of Gabriel Co... 287
Gamewell Co. 439
Gates Radio Co........................ 261
Gee-Lar Manufacturing Company 413

Apparatus Dept. ..30, 31, 52, 321, 331, 367
Components Dept. Components Dept
Laminated and Insulating Froducts

General Radio Co. 17
Good-All Electric Mfg. Co............... . . 381
Grant Pulley \& Hardware Corp.......... 84
Gries Reproducer Corp. 429
Ginardian Electric Mfg. Co.. 253
Gudeman Company 414, 415

Hall-Scott Electronics 335
Hammarlund Mfg. Co., Inc.............. . 25
Harper Co., H. M........................... . . . 247
Hart Mfg. Co. 208
Harvey Hubbell, Inc. 267
Maydon Manufmeturing Co.. Inc.......... 214
Haydu Brotherg of New Jersey 265
Heath Co. 398
Helland, a Div. of Minneapolis-Honeywell 80
Helipot Corp., Div. of Beckman Instru-
ments, Ine. 191
Hermetic Seal Company. 849
Hetherington, Inc. 288
Hewlett-Packard Co........45, 46, 4\%, 54, 55
Hitemp Wires, Inc. 404
Homelite, A Div. of Textron American,
Inc. 316
Houghton Laboratories, Inc. \(\mathbf{3 6 4}\)
Hoyt Electrical Instruments. 424
Hughes Alrcraft Ce......................87, 311
Hughes Research \& Development Laboratories 86, 310
Hunt Company, Phillip A............... 338
Hycon Hastern. Inc. 263
Hycon Electronies. Inc................... . 280
Hycor, Divislon of International Resist-
ance Co.
\(\qquad\)
Illinois Condenser Co 396
Indiana Steel Products Co. 351
Industrial Development Committee of 431
Industrial Test Equipment Co. 428
Industrial Thmer Corp. 349
International Buslness Machines 359
International Rectifier Corp. 301
linternational Resistance Co......... . 104, 10Irvington Division Minnesota Mining and420
J-V-M Engineering Co. 360
Jet Propulsion Laboratory. 277
Johnson Company, E. F. 302
Jones Div., Howard B., Cinch Mfg. Co... \(42 \%\)
Kahle Engineering Co 15
Kay Eloctric Co 27
Kearfott Company. Inc. 260
Kellogg Company. M. W. 91
Kenco Laboratories 189

\section*{POLYPENCO}

\section*{POLYPENCO Spaghetti Tubing Proves Resistance To Heat, Simplifies Assembly}

One of the newest applications for POLYPENCO Teflon Spaghetti Tubing is its use on a series of miniature rotary tap switches. The choice of this tubing was based on its complete resistance to soldering heats.
These other valuable characteristics make Polypenco Teflon Spaghetti Tubing the ideal choice for your thin wall insulation applications:

\section*{- SUPERIOR FOR COMPONENT PRODUCTION}

Excellent dielectric permits miniaturization
Does not break down by bending or flexing
- SUPERIOR ELECTRICAL PROPERTIES

High dielectric strength: \(750 \mathrm{v} / \mathrm{mil}\) upwards
Low dielectric constant: 2.0
High surface resistivity: above \(10^{12}\) ohms
Services entire frequency range
Unaffected by heat and moisture
- SUPERIOR PHYSICAL PROPERTIES

Service range: \(-320^{\circ} \mathrm{F}\) to \(550^{\circ} \mathrm{F}\)
High vibration and flex life
- SUPERIOR CHEMICAL PROPERTIES

Resistant to solvents, alkalis, acids
Zero water absorption
Fungus resistant
Non-ffammable, sunlight resistant
Polypenco Teflon Spaghetli Tubing is available in 10 coded colors and in AWG wire sizes \#8 through \# 26.
Polypenco Teflon is also available in rod, tubular bar, tape and slab. Write today for more data on your applications.
THE POLYMER CORPORATION OF PENNA. • Reading, Penna. In Canada: Polypenco, Inc., 2052 St. Catherine St., W., Montreal, P. Q.

\section*{POLYPENGQ* Nylon, Teflon*, Q-200.5 and K-51}

HOLLAND, MICH.

\section*{THMPERATURE \\ ATD HUMIDITY CHANBERS}

Meets MIL Specs for Temperature and Humidity cycles with full programming including MIL-E-5272-A
" \(F\) " Series - Front Opening
Range: \(-100^{\circ} \mathrm{F}\). to \(+300^{\circ} \mathrm{F}\).
Humidity: \(10 \%\) to \(97 \%\)
Controllable above at \(35^{\circ} \mathrm{F}\). D. P

ALTITUDE AND TEMPERATURE CABINETS
Range: \(-125^{\circ} \mathrm{F}\) to \(+500^{\circ} \mathrm{F}\)
Altitude: Up to \(125,000 \mathrm{ft}\).

TEMPERATURE CABINETS Range: \(-150^{\circ} \mathrm{F}\). to \(+500^{\circ} \mathrm{F}\).

4, 8, 12, and 27 cu. ft. Standard Models Available - Immediate delivery

\section*{Write for Gile Golder}

SUBSIDIARY OF CRAMPTON MFG. CO
I41 JEFFERSON ST., HOLLAND, MICH. MEMEER OF ENVIRONMENTAL EQUIPMENT INSTITUTE

Kester Solder Co............................. \(\boldsymbol{*}\) \&
Kinney Mfg. Dif., The New York Air
Brake
Co.
Kleiner Metal Specialties, Inc............ \(\mathbf{i} 54\)
Knigits Co., Jamen....................... 3th
Krohn-IIte Instrument Co. 14

Lampkin Laboratories, Ine. 18
Lapp Insulator Co., Inc................ z10
L. ELInc........................ 42

Leach Corp, 5
Librascope, Inc. t.
Linde Air Iroducts Comiany, Div, of
don Carbide \& Carbon cor.
Lockheed Missile Systems Div. 295
Ios Alamos Selentific Laboratory of the
University of California
M. I. T. Lincoln Laboratory 3.42
MacDonald, Inc. Sanumel K. 46
Machean Corp. 46
Magnatran. Inc. 430
Magnecord, Ine 14
Magnecraft Electric Co 42 ?
Magnetic Amplifiers, Inc. \(\because 44\)
Magnetic Research Corb. 338
Magnetics, Inc. 195
Maleo Tood \& Manufacturing Co. \(+18\)
Mallory and Co., Inc. F. R. 120. 189
Manson Laboratorles 318
Manufacturers' Representatives. 44
Marconi Instruments, Ltd. 288
Iarion Electrical Instrument Co 396Martin Company. Glenn \(L\)218, 315
Maxson Instruments 121
McColpinChristie Corp. 489
Measurements Corp. 198
Metais \& Controls Corp.. General Plate 66
Metal Textile Corp 346
Micro Switch, a Div. of Minneapolis- oneywell Kegr 179
Microwave Associates, Inc. 403
Midand Mfg. Co., Lnc. 245
Milford Rivet \(\mathbb{S}\) Machine Co 400
Millen Mfs. Co., Inc., Janes 828
Iinneapolis-Moneswell Regulator Co 377Indistrial Div.
Minnesota Mining \& Mfg. Co \(\geq 19\)
Loloney Electric Co 64
Iuirhead \& Co., L.td. 5
Iullard Overseas, Ltd 50
Mycalex Corb, of America. 333
N J E Corporation 119
Marvelco Electronics Div. 238,239

National Idead Cu
Vational Moldita (0 y!
Nems-Clarke, Inc.
New Hermes Engravimg Narlime Corp. \(+21\)

Non-Linear systems. Jue. 329

Norden-Ketaty Corp. 3 .'?. :99:
Nothelfer Winding I.abs. Ine

Offeer Electronics. Ine
Oregon Electronics \(39!\)
Orradio Industries, Ine., 240
(otis Elevator Company, Elequronice Dis, 4

Pardifle Semiconductors, Luc.
Pranoramic Radio Protucts. Inc.......... 504
Penta Laboratories 402
Perkin Engineering Cory. 33
Peler Partition Corp. \(4: 3\)
Phalo Plasties Corp. 258
Phaostron Instmiment if Elfetronic Com- 30

Philamon Laboratories, Inc.............. 53
1*hileq Corp. \(\quad\). 1
Phillips Irocess Co., Inc.................. 410
Photographic Products. Ine. 444
littshurgli Lectrodryer Commany McGraw Electric Company Division... 90
Polarad Electronies Corporation........ \(6 \boldsymbol{6 7}\)
Polymer Corp. of Penna. 505
Poly Ecientific Corp. 419

Potter Co.. The. 348
Potter \& Brumfield. Subsidiary of American Machine \& Foundry Co.

Potter Instrument Co. Inc.
Precision Apparatus Co., Inc........... 508
Precision Paper Tube Co................. 306
Pressman Associates
425
Presto Recording Corp. 410

R \(\mathbf{R}\) M Division, Essev Wire Corp. 371
Rediation, Ine. 425
Radio Condenser Co..................... . . 94
Radio Corporation of America..35\%, th Cover Radio Englneering Laboratories, Inc.... 59

Radio Engineering Products............ \(40 f\)
Radio Frequency Laboratories, Inc..... 93
Radio Materials Corp. 243
Radio Receptor Company. Inc'.......... 42
Ramo Wooldridge Corp. 343
Remington Rand Univac. Div. of Sperry
Kand Corp. \%
Raytheon Mfg. Co.18, 19. 29, 35
Reeves Instrument Corp. 113
Relay Sales 228
Reliance Mica Co., Inc.................... 416
Revere Corp. of America 834
Rex Rheostat Co. 446

\title{
TEFLON TAPE
} ...now cementable

- Now, "the material that sticks to nothing" can be cemented to anything (metal, glass, wood, plastics, etc.) with ordinary commer cial adhesives (including the pressure-sensitive). Pull test approximately 45 lbs.
This new, treated tape (down to 5 mil. thickness) offers the opportunity for inexpensive, thin-section applications of this material for many services where *Teflon's unusual dielectric properties, zero water absorption, broad service temperature range (\(-110^{\circ}\) 七o \(500^{\circ} \mathrm{F}\)) and chemical inertness are desired
Cementable Teflon Tape, 5 mil. to 60 mil. in thickness is avail able in continuous rolls up to 12 in . wide. Sheets are also available \(1 / 32\)-in. thick in sizes to \(24 \times 24\) in.; \(1 / 16\)-in. thick in sizes to \(48 \times 48\) in

Now-if the problem says "Teflon", price ceases to be a factor Specify Cementable Teflon Tape

Bhmont

For laboratory, industrial and technician. A rugged, dependable instrument for broad coverage of modern electronic oscillograph applications, INCLUDING COLOR TV. High sensitivity PLUS single, overall wide-band frequency response, and many other special performance features at most sensible price.
* Push-Pull, Wide-Band Vertical Amplifier: \(10 \mathrm{MV} /\) inch sensitivity. 2 Megohms, 22 mmfd One DB from 10 cps . to \(3.5 \mathrm{MC}-3 \mathrm{DB}\) at 5 MC
- Direct Reading, Peak to Peak Voltage Calibrator \(\star\) Vertical Pattern Reversal Switching Facility
t Push-Pull, Wide-Range Horizontal Amplifier: \(100 \mathrm{MV} /\) inch sensitivity. 2 Megohms, 25 mm fd \(100 \mathrm{MV} /\) inch sensitivity. \(2 \mathrm{Megohms}, 25 \mathrm{mmfd}\)
One DB from 10 cDs . to \(1.0 \mathrm{MC}-3 \mathrm{DB}\) at 2 MC .
* Linear, Multi-vibrator Sweep Circuit: 10 cycles to 100 KC . Amplified sweep retrace blanking.
* Amplified Auto-Sync Circuit
* Four Way Sync. Selector Switch provides for internal Negative, Internal Positive, External and Line Synchronization.
* "Z" Axis Input for blanking, timing, marking.
* Built-in 60 cps Phasing and Blanking Controls.
* All 4 Deflection Plates Available directly (at rear), with full beam centering facilities.
* Tube Complement: 12AV7 ' \(V^{* \prime}\) Cathode Follower-Ampl. 648 "V"Ampl.-Phase Splitter. Two 6CL6 Push-Pull "v' Drivers. 6U8 ''H" Cathode Follower-Ampl. 6C4 'H" Phase Splitter. Two 12BH7 Push-Pull ' 'H" Drivers. 12AV7 LinearSweep. 6BH6 Auto-Sync. Ampl. 12AU7 Sweep Retrace Blanking Ampl. OA2 Voltage Regulator. 5V4 Low Voltage Rect. Two IV2 High Voltage Rect. 5CP1/A CR Tube.
\(\star\) High Contrast, Filter Type, Calibrating Screen * Fully Licensed under AT\&T and RCA patents.

Model ES. 550 Deluxe: (Illustrated) In customstyled, blue-grey ripple finished steel cabinet 2 color satin-brushed aluminum panel and contrasting dark blue control knobs. Case Dimensions \(81 / 4 \times 141 / 2 \times 181 / 2\) inches. Complete with all tubes, including 5CP1/A CR tube. Comprehensive Instruction Manual. above but in standard blectrically identical to anodized aluminum panel. Case Dimensions \(81 / 4 \times 141 / 2 \times 181 / 2\) inches. Complete as above. Net Price: \(\$ 230.00\)

PRECISION Test Equipment is avail able and on display at leading electronic parts distributors. Write directly to factory for new 1956 catalog.

\section*{PRSCISYONApporcous compony, inc. 70-31 84th Street, Glendale 27, L. 1., N. Y Expert: 458 Broadwoy, New York 13, U. 3. A \\ Conödo: Atlos Rodio Corp., Ltd., 50 Wingold Ave., Toronto 10}
Rheem Mfg. Co. 281
Richardson Co. 291
Rotron Manufacturing Co., Ine. 206
Royal Metal Mfg. Co.................32A, 3213
Sams \& Co., Inc., Howard W. 430
Sanders Associates, Inc. 438
Arintilla Div., Bendix Aviation Corp. 116
scovill Mfg. Co. 264
Setburg Corporation 79
Shallcross Mfg. Co. 282
Shasta. Div. Beckman Instruments Inc. 3.
Sierra Electronic Corp. 246
igma Instruments, Inc. 320
Sola Electric Company 34
Sonex, Inc. 423
Sorensen \& Co., Inc 4
South Chester Corp 34
Southern Electronics Corp. 327pectrol Electronics Div, of Carrier Corp, 204
Sprague Electric Co. 11, 193
tackpole Carbon Co \%
Staedtler, Inc., J. S. 350
78
Stevens Arnold, Inc 384
tewart Corp., F. W. 396
toddart Aircraft Radio, Co..,
\(.355,426\)Stupakoff Ceramic Manufacturing Co.,
Div. of the Cariorundum Co......394. 395
Sun Tube Corp. 236
Superior Electric Co. 317
Superior Tube Co. 341
Switcheraft, Inc. 368
Svlvania Electrle Products, Inc. \(\quad \underset{269}{ }, \ldots 320,363\)
Syintronic Instruments, Inc. 424
Taylor Fibre Co. 313
Technicraft Laboratories, Inc. 254
Teiner Engineering Corp. 376
Telitronix. Inc. 390
Tel-Instruments, Electronics Corp.... 368
Texas Instruments, Inc 446
Tower Construction Co. 96
Transicoil Corp. 337
Transitron Electronic Corp. \(.99,101\)
Transradio, Ltd 398
Tru-Ohm, Div. of Model Engineering
Tung-Sol Electric, lnc. 17 373

Varian Associates \(.60,414\)
Veerler-Root, Inc. 333
Virginia Electric s: Power Co. 248
Vitro Corp. of Anserica 409
Vulcan Electric Co. 400
Waldes Kohinoor, Inc. 81
Waterman Products Co., Inc. 284
Waters Manufacturing, Inc. 41*, 413
Wenco Manufacturing Co 421
Western Gear Corp. 110
Weston Electrical Instrument Co. 411
Westinghouse Electric Corp. . . . 48, 365, 433
Wheelock Signals Inc. 276
White Dental Mfg. Co. S. S.239, 342Worcester Pressed Steel Co.353
MANUFACTURER'S REPRESENTA. TIVES 446
PROFESSIONAL SERVICES 445
CLASSIFIED ADVERTISING
F. J. Eberle, Business Mgr.
SEARCHLIGHT ADVERTISING489-502ADVERTISERS INDEX 488
EMPLOYMENT OPPORTUNITIES. .447-488ADVERTISERS INDEX 487

\footnotetext{
This index is published as a service. Every care is taker to make it accurate, but ELECTRONICS assumes no responsibility for errors or omissions.
}

\section*{PRODUGTS OF WORLD-FAMOUS}

\section*{DAVEN}

\title{
(TREATITIR-VIGIILERRIIG
}

TYPE T-330

Exclusive
Zeatures:
. "Knea-Atrion" Elade
- Tamper proof
- Unifarm contact pressure and low contact resistance over the life of every unit.
- Each rotor blade individually stupported to give positive contact in operation under all types of conditions.
2. 8 ass Case of 2-Piece Construction
- Greatly reduces elearance space required for removal of cover in rear of unit.
3. "Lock-lite" Dust Covẻr
- Held by positive, bayonet-type lock which prevents cover from falling off under stress of vibration.
-. Enclosed Roller-Type Detent
Mechanism
- For extra lang life and positive indexing.
- Addition of detent does not increase depth of unit.
D. Low-Less Molded Terminal Board - For high resistance to leakage.
-. Rigidly Supported Resistor Sirips - With air insulation.

\section*{YEARS AHEAD, CREATIVE-ENGINEERING}
has always characterized Daven's efforts in the production of electronic components and equipment.

The unit illustrated above is only one in a complete line of Daven's world-famous attenuators. Because this Company has pioneered and created so many worth-while improvements in units of this type, you can do no better than to specify Daven Attenuators.

Daven's skilled staff of specialist-engineers is at your "beck and call" to help with your problems in the selection of the right attenuators for the equipment you are designing.

Write for complete catalog data.

526 West Mt. Pleasant Avenue Livingston, New Jersey
GREATLY EXPANDED PRODUCTION FACILITIES ENABLE DAVEN TO MAKE DELIVERY FROM STOCK ON A LARGE NUMBER OF STANDARD ATTENUATOR TYPES.

\section*{NEW HORIZONTAL AMPLIFIER TUBE}

> ... RCA-6DQ6-A runs "cool" in todey's deflection systems . . . has power-tc-spare for tomorrow's wide-angle designs.

Another outstanding example of RCA's progressive design-engineering in the field of electron-tubes. RCA- 6 D\() \mathrm{Q}(6-\mathrm{A}\) is designed to meet all the requirements for a highefficiency horizontal amplifier tube in todays TV receivers. And, it has the necessary power-to-spare for efficient operation in tomprow's circuits which may require borizontal deflecion in excess of 90 .
RCA-6DQ6-A. and its series-string equivalent RCA-12DQ6-A, are glass-octal high-perveance beam-power tubes having substantially nigher racings than the 6DO6 and 12 DQ 6 for de plate voltage (including boosti, de grid-No. 2 voltage. average cathode current, and grid-No. 2 input, plus a high operating ratio of plate current to grid-No. 2 current. Internal structural mounts are so designed as to give maxinum heat dissipation, prevent "hot spors" on the plate.
atlow "cooler" operation of the grids.
Gain the advantages now offered to your designs by specifying this new RCA tube-longer in-the-set operating life (it runs "cooler")-brighter pictures (higher efficiency, grearer power-handling capability).
\begin{tabular}{|l|c|c|}
\hline Maximum Ratings & 6296,12309 & \(600 \%-A, 12006-A\) \\
\hline Plate Volts (incl. boost) & 550 & 700 \\
Grid-No. 2 Volts & 375 & 200 \\
Av. Cath. Current & & 140 ma \\
Grid \#2 Input & & 3 w \\
\hline
\end{tabular}

EAST: HUmboldt 5.3900 744 Broad Sireet Newark 1, NJ.
MIDWEST: WHitehall 4.2900
Suite 1181 ,
Merchandise Mart Plazo Chicago 54, III.
WEST: RAymond 3-8361 6355 East Washington Blvd. Los Angeles 22, Calif.

For sales information contact the RCA Office nearest you. Fot rechnical data, write RCA, Commercial Engineering, Section DI9Q, Harrison, N. 1.```

[^0]: Single coples Tife tor tuled stanes and porsessions, and canarla: $\$ 1.50$ for
 cription tates Laited States and positisions. \$6.00 a sear; \$9.00 for two years und the Philippines. 8.500 a year; $\$ 25$ tor wo wears. All wher conntries $\$ 20.01$ a year: $\$ 30.00$ tor swo years. Three-vear rales, accepted on renewals onty, are

 BRANCH OFFICES: 520 North Michikan Arenue, Chicago 11, 111,: 68 post

 Index.

[^1]: Removing batch of half-pound grown quartz crystals from Clevite autoclave. All crystols ore essentially identical in shape, weight and orientotion

[^2]: 1 A-MP of Canada. Ltd. Toronto Canada - 2. A-MP-Holland N.V.'s-Hertogenbosch, Holland

 - 3. Aircraft-Marine Products (G.B.) Ltd., London, England - 4. Societe A-MP de France, Courbevoie, Seine, France

[^3]: Radig Receptor Products for Industry and Government: Selenfum Rectifjers - Germanium Diodes Thefmatron Dielectric Heating Generators \& Presses - Communications, Radar \& Navigation Equipment

[^4]: MuLLARD OVERSEAS LTD．，CENTURY hOUSE，SHAFTESBURY AVE，LONDON，ENGLAND
 Mullard is the Trade Mark of Mullard Ltd．and is registered in most of the principal countries of the world．

[^5]: Warehouse stocks of AL Staimless Steels carried by all Ryerson plants

[^6]: PLANTS AT LYNWOOD. PASADENA, BELMONT. SAN FRANCISCO (CALIF.), SEATTLE AND HOUSTON - REPRESENTATIVES IN ALL PRINCIPAL CITIES

[^7]: * Now with Radio Corporation of America, New York, N. Y.
 New York, N. Y. CBS Laboratories, Ine.

[^8]: * Formerly with Airborne Instruments Laboratory.

[^9]: * Now with Computer Division, Bendix Aviation Corp., Los Angeles, Calif.

[^10]: Condensed by permission from "Elecronic Transtolmers and Circuits' 2nd dididion, by Renlen Lee, John Wiley \& Sons, Inc., ฝ̌

[^11]: DUNLEE CORPORATION 4560 West Congress Street CHICAGO 24, ILLINOIS

[^12]: CAPACITORS • INDUCTORS - KNOBS • DIALS • SOCKETS • INSULATORS • PLUGS • JACKS • PILOT UGHTS

