electronics

HOW ACCURATE ARE RADAR SPEED METERS?
page $13 \bar{z}$
New Module
Technique

Plants of the Future

CANCER DIAGNOSIS
Spleded by COLOR TV MICROSCOPE

MINIATURIZED TRANSFORMER COMPONENTS

Items below and 650 others in our catalog A

HERMETIC SUB-MINIATURE AUDIO UNITS

These are the smallest hermetic audios made. Dimensions . . $1 / 2 \times 11 / 16 \times 29 / 32 \ldots$ Weight 8 oz. tYpical items

Type No.	Application	$\begin{aligned} & \text { MIL } \\ & \text { Type } \end{aligned}$	Pri, Imp. Ohms	Sec. Imp. 0 hms	$\begin{aligned} & \text { DC in } \\ & \text { Pri MA } \end{aligned}$	$\begin{gathered} \text { Response } \\ \pm 2 \mathrm{db} \text { (Сyc.) } \end{gathered}$	Max. level dbm
H-30	Input to grid	TFIAIOYY	50*	62.500	0	150-10,000	+13
H-31	Single plate to single grid, 3:1	TF1A15YY	10,000	90,000	0	300-10,000	+13
H-32	Single plate to line	tFlal3yy	10,000*	200	3	300-10,000	+13
H-33	Single plate to low impedance	TF1A13YY	30,000	50	1	300-10,000	+15
H-34	Single plate to low impedance	TFIA13YY	100,000	60	. 5	300-10,000	+6
H-35	Reactor	TF1A20YY	100, Henries - $0 \mathrm{DC}, 50$ Henries-1 Ma. DC, 4,400 ohms.				
H-36	Transistor Interstage	TF1A15YY	25,000	1,000	5	300-10,000	+10

COMPACT HERMETIC AUDIO FILTERS

UTC standardized filters are for low pass, high pass; and band pass application in both interstage and line impedance designs. Thirty four stock values, others to order. Case $1.3 / 16 \mathrm{x}$ $1.11 / 16 \times 1.5 / 8-2.1 / 2$ high Weight 6.9 oz .

*Can be used with higher source impedances, with corresponding reduction in frequency range and current

HERMETIC MINIATURE

 HIG TOROIDSMQE units provide high Q, excellent stability and minimum hum pickup in a case only. $1 / 2 \mathrm{x}$ $1-1 / 16 \times 17 / 32 \ldots$ weight $1.50 z$.

OUNCER(WIDERANGE)

AUDIO UNITS

Standard for the industry for 15 yrs., these units provide $30-20,000$ cycle response in a case $7 / 8 \mathrm{dia} \times 1-3 / 16$ high. Weight $10 z$.

TYPICAL ITEMS

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	Pri. Imp	Sec. Imp
$0-1$	Mike, pickup or line to 1 grid	$\begin{aligned} & 50,200 / 250, \\ & 500 / 600 \end{aligned}$	50,000
0.4	Single plate to 1 grid	15,000	60,000
0.7	Single plate to 2 grids, D.C. in Pri.	15,000	95,000
0.9	Single plate to line, D.C. in Pri.	15,000	50, 200/250, 500/600
0.10	Push pull plates to line	30,000 ohms plate to plate	50, 200/250, 500/600
0.12	Mixing and matching	50, 200/250	50, 200/250, 500/600
0.13	Reactor, 300 Hys.-no D.C.;	50 Hys.-3 MA.	D.C., 6000 ohms

Type	Application	Level	Pri. Imp.	MA D.C. in Pri.	Sec. Imp.	Pri. Res.	Sec. Res
*S50.1	Input	+ 4 v.U.	$\begin{aligned} & 200 \\ & 50 \end{aligned}$	0	$\begin{aligned} & 250,000 \\ & 62,500 \end{aligned}$	13.5	3700
SS0.2	Interstage /3:1	$+4 \mathrm{~V} . \mathrm{U}$.	10,000	0.25	90,000	750	3250
*SS0.3	Plate to Line	+20 V.U.	$\begin{aligned} & 10,000 \\ & 25,000 \end{aligned}$	$\begin{aligned} & 3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	2600	35
SS0-4	Output	$+20 \mathrm{~V} . \mathrm{U}$.	30,000	1.0	50	2875	$4 . \epsilon$
SSO-5	Reactor 50 HY at 1 mil. D.C. 4400 ohms D.C. Res.						
SS0-6	Output	+20 V.U.	100,000	. 5	60	4700	3.8
*S50-7	Transistor Interstage	+10 V.U.	$\begin{array}{r} 20,000 \\ 30,000 \\ \hline \end{array}$	$\begin{aligned} & .5 \\ & .5 \end{aligned}$	$\begin{aligned} & 800 \\ & 1,200 \end{aligned}$	850	125

* Impedance ratio is fixed, $1250: 1$ for $\frac{3 S O-1,1: 50 \text { for } \$ S 0-3 \text {. }}{}$

Impedance ratio is fixed, $1250: 1$ for $\mathrm{SSO} 0,1,1: 50$ for $\mathrm{SSO}-3$.
Any impedance between the values shown may be employed.

SUB-SUBOUNCER AUDIO UNITS

UTC Subouncer and subsubouncer units provide ex-
ceptional efficiency and frequency range in miniature size. Constructional details assure maximum relia. bility. SSO units are $7 / 16 \times 3 / 4 \times 43 / 64 \ldots$ Weight $1 / 50 \mathrm{lb}$.

HERMETIC VARIABLE INDUCTORS
 These inductors pro-

 vide high Q from $50-10,000$ cycles with exceptional stability. Wide inductance range ($10 \cdot 1$) in an extremely compact case $25 / 32 \times 1-1 / 8 \times 1-3 / 16$. Weight 2 oz.
TYPICAL ITEMS

| TYPE No. Min. Hys. Mean Hys. Max. Hys. | DC | Ma | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| HVC-1 | .002 | .006 | .02 | 100 |
| HVC-3 | .011 | .040 | .11 | 40 |
| HVC-5 | .07 | .25 | .7 | 20 |
| HVC-6 | .2 | .6 | 2 | 15 |
| HVC-10 | 7.0 | 25 | 70 | 3.5 |
| HVC-12 | 50 | 150 | 500 | 1.5 |

A McGRAW-HILL PUBLICATION
H. W. MATEER, Publisher
W. W. MacDONALD, Editor VIN ZELUFF, Monaging Editor JOHN MARKUS, Associate Edifor ALEXANDER A. McKENZIE, Associole Editor JOHN M. CARROIL, Associate Editor WILLIAM P. OBRIEN Assistant Editor WILLIAM G. ARNOLD, Assistont Editor DAVID A FINDLAY, Assisiont Editor HAIG A. MANOOGIAN, Assistont Editor GLORIA J FILIPPONE, Editorial Assistont ARLENE SCHILP, Editorial Assisfont FRANCES SULLIVAN, Editorial Assisianl GIADYS T. MONTGOMERY, Washinglon Edifor HARRY PHILLLIPS, Art Direclor

WALLACE B. BLOOD, Monager R. S. QUINJT, Buyers' Guide Manager FRANK H. WARD, Business Manager GEORGE E. POMEROY, Classified Manager DONALD :- MILLER, New York JAMES GIRDWOOD, New York WM. S. HODGKINSON, New England JAMES T. HAUPTLI, Philadelphia CHARLES WARDNER, Chicago BRUCE WINNER, Chicago HENRY M SHAW, Cleveland
T. H. CARMODY, San Francisco
R. C. ALCORN, San Francisco

CARL W. DYSINGER, LOS Angeles
WM. D. LANIER, Atlanta
JAMES H. CASH, Dallas

KEITH HENNEY, Consultant
contents
continued
High-Quality Receiver for TV Rebroadcasting 152
By Raymond S. Rosenberg
Sawtooth Pulser Gives Voltage-Current Curves 156
By N. Sclar and R. L، McFolinWide-Band Amplifier for UHF Receivers158
By Richard B. McWhirt
Audio-Standard Generator 161
By Peter Koustas
Expanded-Scale Voltmeter for A-C Measurements 164
By Herbert Galman
Staggered Triple Crystal Filter 166
By D. E. Hildreth
VHF Transmission Line Calculator 168
By A. E. Sanderson
Annual Index, Volume 28 434
ELECTRONS AT WORK 172
Over-Horizon Radio Links 172 Radar Movic 198
Sensitive Thyratron Relay......... 172
Japanese Transistor Receiver...... 174 174 Zero Hysteresis Relays. 200
Flat-Top Communications 174
The Front Cover. 176
Digital Voltage Divider 176
Zener-Voltage Breakdown Uses. 182
Reflection-Type Waveguide 192 Onc-Man TV Camera Aligner 204
Olscan Evaluation 206
Triode-Connected Pentodes 208 14

SHOP

- CAREER . . . One of the things that helps Electronics maintain its unique position in the field is the magazine's receptivity to ideas suggested by readers. A surprising number of presumably busy men volunteer topic and treatment suggestions and, in so doing, exhibit considerable publishing flair.

There is an opportunity for one such man to turn pro; we're looking for an editorial staffer. As you would expect, the job requires an engineer with industry experience. Reporting, writing or editing knowhow would represent plus value.

Take a look at the names on our page 1 masthead back over the years and it will be obvious that many of us like our work, our paper and our company very much indeed. There is nothing like an editing career for the right man, nothing tougher for the wrong.

If you think you are the right man write the editor.

- ATOMIC READERS . . . At the Hanford atomic plant, more than 75,000 copies of 800 different magazines are circulated annually among General Electric personnel.

An estimated 1,500 of the 9,200 people on the payroll receive one or more weekly or monthly publications.

Of the 10 magazines most in demand by Hanford people on regular circulation lists, 4 are published by McGraw-Hill ; Nucleonics, Busi-

electronics

DECEMBER, 1955 Vol. 28, No. 12

Member $A B C$ and $A B P$

TALK

ness Week, Today's Secretary and Electronics. The latter is the only one in its field in the top 10 .

- DX AID . . . The problem we had of obtaining a certain 1951 issue (Shoptalk, May '55) brought in a number of suggestions from readers. One of these is from L. van Zeyl of Pretoria, South Africa. He did some research into photocopying equipment and found that there is at least one machine that reproduces book or magazine pages, even though curved, without harming the binding.
- MOVING TORQUE . . . We met recently a friend of a friend of ours, Harold Varley, an electronics engineer with one of the large firms in the business. He told us of a problem he had several years ago when he was transferred to a West Coast branch.

At that time he had ten years, 120 copies, of Electronics which provided him with reference material. The bulk and weight of these brought up two problems, convincing his wife that the issues were really going with them, and the problem of packing them for a cross-country trip.

The trucker refused to take the first packing because of excess weight per package. This meant a complete repacking of all the boxes and barrels and redistributing the 120 copies with a few issues in each box and barrel. Each was then filled with lighter items from the household.

EDITORS and engineers often dream of a vocational environment like this one but few achieve it. The staff shares this shop pin-up with readers; it's the headquarters of Technical Marketing Associates, Inc., Concord, Massachusetts

Everything reached the West Coast in good order, fortunately. We didn't mention it to Harold, but suppose he now wanted to move east; his number of copies is now nearly doubled.

- DESK PROBLEM . . . Engaged in a research project, a visiting engineer commented that our Industry Report each month provides him with much useful data.

His boss, however, is quite a stickler for maintaining clear desk tops. Our friend goes along with this completely for most of the material he handles. But his present assignment requires keeping a dozen or more open copies of Electronics on his desk top for
ready reference at all times. What to do?

- ANNUAL INDEX . . . Industry Report articles are indexed cumulatively for the first time on p 30 of this issue. This step has been prompted by the number of telephone calls we get like this:

Voice on phone: "I read something on rising design costs in your magazine. What issue was it in?"

Editor (after a mad scramble through back issues: "That article was in Industry Report, for April."
Voice: "In Industry Report! No wonder I couldn't locate it in the general index."

Published monthly with an additional issue in June by Merraw-Míl l'ublishing Company, Inc., Jannes II. McGraw (1860-1948), Founder. Executive, Editorial N. Y. Longacre 4-3000. I'ublication Office, 99-129 North Broadway, Albany 1 N. Y. Donald C. McGraw, President; 1'aul Montgornery, Executive Vice-1'resident; Joseph A. Gerardi, Vice-President and Treasurer; John J. Cookw, Secyetary; Nelson Bond, Executive Vice-1'resident, I'ublications Division: Malph B, Smith Director of Advertising; J. E. Blackburn, Jr., Vice-President and Circulation Director.
Subscriptions: Address correspondence to Electronics-Subscriation Service. 330 W. 42nd St., Now York 36. N. Y. Allow one month for change of address. Sub. seriptions are solicited only from persons engaged in theory, research, design, proscriptions are solicited only from persons engaged in theory, research, design, pro-
duction, maintenance and use of electronic and industrial control coniponents. duction, maintenance and use of electronic and industrial control coniponents.
parts and end products. Position and company connection must be indicated on
subscrintion orders.

Single copies $75 d$ for United States and possessions, and Canada; $\$ 1.50$ for Lamin sherica; Canada, $\$ 10.00$ a year: $\$ 16.00$ for two years. Dther western hemisphere countrles and the Philippines, $\$ 15.00$ a year: $\$ 25$ for two years. All other countries $\$ 20.00$ a year; $\$ 30.00$ for two years. Three-year rates, accepted on renewals only, are double the one-year rate. Fntered as second-class matter August 29 , 1936, at the
Post Office at Albany. N. Y., under act of Mar. 3,1879 . Printed in U.S. A. Copyright 1955 by McGraw-Hill I'ublishing Co., Inc.-All Rights Reserved.
BRANCH OFFICFS: 520 North Michigan Avenue, Chicago 11, Ill.: 68 Post Stret. San Francisco ; MeGraw-Hill Hotise, London, E. C. 4 ; Washington, D. C. 4 ; hiladelyhia 3; Cleveland 15; Detroit 26 ; St. Louis 8; Boston 16; 1321 Rhodeslavertr Llfa.: Atlanta 3 Ga. P111 Wilshire Blod., Los Angeles 17 ; 919 Oliver finilding, Pittsburgh 23. FLECOCILONICS is indexed regularly in The Engineering
Index.

THE NEW SIGN OF SERVICE

This new trademark highlights Sorensen's dynamic new program of product development and service.
Back of the new trademark is the established reputation of "the world's authority on regulated power." Yet to be unveiled is a whole new concept of design, even better product performance and service convenience for every user of Sorensen's wide variety of equipment.
Selected sales and service representatives - functioning as an integral part of the Sorensen team - can place at your disposal the complete design and production facilities of Sorensen ... yet they are local specialists in your particular area. Sorensen's Los Angeles warehouse facilities mean improved deliveries for West Coast customers. Be sure you get all of the information available on any regulated power application. Make it a rule to check first with your local representative of Sorensen ... "the world's authority on regulated power.'

Mechanical viכration wave forms can now be measured and analyzed with the greatest accuracy, using the revolutionary MUIRHEAD.PAMETRADA Model D. 489 IVave Analyzer. Complex vibration waveforms can now be isolated and meas. ured within a wide frequency range, overcoming amplitude and frequency fluctuation and the proximity of component frequencies.
The MUIRHEAD Wave Analyzer operates as a negative feedback, tuned band-pass filter insuring constant selectivity at all frequencies, and simplifying frequency selection. Output voltage is available at tured frequency for viewing or recording.

This highly versatile instrument has a wide diversity of applications in many industries: aviation, automotive and manufacturing, shipbuilding and electric power generation, to name only a few.

FEATURES

- No internal oscillator-eliminates drift
- R/C-tuned circuits - reduces hum and noise pickup
- Choice of 4 bandwidth characteristics: In-tune High, In-tune Medium, Narrow Band and 1/3 Octave.
- High selectivity characteristic (1\% bandwidth for greatest discrimination)
- Auxiliary pre-amp permits use of high-impedance pickups or transducers.

SPECIFICATIONS

- Frequency range- $19 \mathrm{c} / \mathrm{s}$ to 21 kc (extendable down to $2 \mathrm{c} / \mathrm{s}$)
- Frequency Stability - $\pm 1 \mathrm{db}$ over several days
- Measurement Accuracy - $\pm 0.3 \%$ over most of range
- Output Voltage - 10 v
- Input Voltage - 1 mv to 300 v rms (FSD)
- Input Impedance - 0.1 megohms
- Hum and Noise Level-Equivalent to 05 mv input at maximum gain
- Power Supply (external) - $100 / 120$ v, 60 or 400 cycles, 130 w
- Dimensions—123/4" $\times 13 \frac{1}{2} 2^{\prime \prime} \times 17 \frac{1}{2} 2^{\prime \prime}$
- Weight-55 pounds

MUIRHEAD

Write TODAY for your FREE brochure on Vibration Measurement and Waveform Analysis.

FIGURES OF THE MONTH

(Source: RETMA)	Sept. '55
Television sets, units ...	978,838
Radio sets (except auto)	753,068

$586,577 \quad 986,136$

receiving tube sales

(Source: RETMA)	Sept. '55	Aug. '55	Sept.'54
Receiv. tubes, total units	$47,588,000$	$45,238,000$	$40,966,063$
Receiv. tubes, value	$\$ 34,596,000$	$\$ 33,099,000$	$\$ 28,953,592$
Picture tubes, total units	$1,202,430$	$1,048,534$	$1,149,791$
Picture tubes, value...	$\$ 22,867,851$	$\$ 19,812,567$	$\$ 23,892,469$

SEMICONDUCTOR SALES

\(\left.\begin{array}{l}Germanium diodes, units

Silicon diodes, units\end{array}\right\}\)| Aug. '55 | July'55 | Aug. '54 |
| ---: | ---: | ---: |
| $1,700,000$ | 911,000 | $1,150,000$ |

INDUSTRIAL
 TUBE SALES

(Source: NEMA)
Vacuum (non-receiving)
Gas or vapor
Phototubes
Magnetrons and velocity modulation tubes
Gaps and T/R boxes..
$\left.\begin{array}{ccc}\text { Latest } \\ \text { Quarter }\end{array} \quad \begin{array}{c}\text { Quarterly Figures } \\ \text { Previous } \\ \text { Quarter }\end{array} \quad \begin{array}{c}\text { Year } \\ \text { Ago }\end{array}\right]$

ELECTRONICS automatically controls phato settings and aperation as

Air Farce uses computers to automatically adjust airborne cameras for best pictures

NEW automatic, electronic remote control system to operate aerial cameras in nigh-speed photo reconnaissance, developed by the Air Reserrch and Development Command, is now used by the Air Force. The equipment, known as the Universal Camera Control System, (UCCS) can operate in flight without human attention. It eliminates the need for many camera controls and can be adapted to operate as many as 11 cameras.

- How - The heart of UCCS is a series of analog computers into which focal length, camera angles, film sensitivity, shutter, type of lens, ground sperd and altitude information is set manually. After
that, all operation is automatic and the system constantly adjusts the cameras for best pictures.

For night work, the system records when flash bombs have been released then calculates when each is to explode and works camera shutters accordingly. The equipment is built on a building block plan so that faulty electronic assemblies can be changed easily.

- Who The Aerial Reconnaissance Lab at Wright ADC laid out the performance requirements and general electronic design of the system. The firms that developed and constructed the system are the Bill Jack Scientific Instrument Co., which did much of the development work, A. B. DuMont Labs, Chicago Aerial Industries and Fairchild Camera and Instrument Corporation.
- Ike's Plan-Practicality of aerial photographic inspection of military installations in both Russia and the U. S., as proposed by President Eisenhower, has been questioned by the U.S.S.R. But the value of the method has been upheld by both the U.S. government and private aerial survey firms.

Photographic Survey Corp. of Canada has pointed out that even during World War II, aerial photos taken at 30,000 feet showed objects as small as 18 inches. Today, with the aid of electronics, a jet fighter ten miles above West Germany can photograph Czechoslovakia, Poland as far east as Warsaw, all of Hungary, as well as a large part of the western areas of Romania and the Ukraine.

Color TV Warms Up For Takeoff

Industry moves ahead in color planning and sales, but has a long way to climb

ln November, NBC, RCA and Westinghouse stepped-up their to activities. The network announced a \$12-million program to expand its color facilities in New York, Chicago and Hollywood, doubling its present live-color schedule of 40 hours monthly by the fall of 1956 . It also announced that its station in Chicago, WNBQ, will be made an all-color tv station by April 15, 1956.

- Tube-Westinghouse announced

a $\$ 1$-million program to buy equipment for the production of its new all-glass color tv picture tube which it feels will be ready for the market next spring.
- Sets-RCA reports a current sales rate of 1,000 color sets a week. A recent survey by the firm showed its distributors' colorset sales in individual markets. Its Cincinnati distributor reported that 68 color sets were sold during the World Series. Its Washington, D. C. outlet reported sales of 28 sets to consumers and 7 to public places during the first three weeks of October.
The RCA Philadelphia distributor, during the three-week period before, during and after the Series, sold 333 sets to authorized dealers who moved 109 to consumers and public places. In the Los Angeles area, 181 color sets were sold in a 10 -day period before and during the Series.
- Time-Despite sizable gains being made in color-set production and sales, the industry has a long way to go to equal present black-and-white business. This is shown in the chart of present total color set output on black-and-white tv's time scale. On that basis, color tv now is about where monochrome was in mid-1947.

More Small Computers Appear

Prototype machine employs magnetic amplifiers. General purpose unit is desk size

Magnetic amplifiers have made their appearance in the electronic digital computer field. A businesstype machine announced by Sperry Rand uses magnetic-amplifier units known as micro-feractors instead of electron tubes or transistors.

A prototype unit was built last June and models will be available early in 1957. It will sell for about $\$ 12,500$.

Other computer designers, engaged largely in government work, are working on machines combining transistors and magnetic amplifiers. The transistors will provide the high-speed switching while the magnetic amplifiers will build up the necessary amplification for driving the ferrite-core memories.

General Purpose-A desk-sized computer designed for engineering and scientific computation has been unveiled by Librascope of Glendale, Calif.

The machine has 16 basic orders. A library of subroutines is available. The magnetic-drum memory stores 4,09630 -bit words. The machine operates serially using single-address internal binary operation with fixed point.

Access time varies from 2 to 17 milliseconds. Clock frequency is 120 kc . Addition requires 0.26 milliseconds excluding access time; multiplication and division require 17 milliseconds. The machine consumes 1.5 kw ; sells for $\$ 29,800$.

- New Company-Boston's Laboratory For Electronics, makers of character recognition devices and other electronic equipment, is working on a generat-purpose digital computer.

Through arrangement with British Tabulating Machine, LFE intends to have available a comprehensive line of data-processing equipment, it is reported.

Librascope general-purpose computer

- Tandem-In some government applications, any failure of data processing equipnent could be disastrous. A new wrinkle is connecting two IBM model 704 computers in tandem with connecting equipment to enable one machine to act as a spare in the event of failure.

The model 704 is a large-scale digital computer especially designed for engineering and scientific computation.

Electronics Gains In Atomic Energy

Many companies move into the field as peacetime use of nucleonics gains ground

Twenty percent of the exhibitors at the U. S. Nuclear Congress Exposition in Cleveland are in electronics. At the recent atomic exposition in Geneva in August and in New York in October nearly 40 percent of the exhibitors were electronics producers.

- Equipment-For many electronics firms now in the atomic field, instrumentation is the big business. It includes prospecting equipment, radiation monitoring instruments, instrument components, low-level anticoincidence counters, radiation spectrometers, pulse-height analyzers, and medical instruments.

But electronics manufacturers (Continued on page 10)

Operated at 1.0 amp emitter-current, the Sylvania 2N95 Transistor typically provides a current gain of $17 \ldots 31 / 2$ times that of comparable types A and B. Even at 1.5 amp emitter current the 2N95 typically exhibits a high gain of $13 \ldots$ in fact, as the curve shows, the Sylvania 2N95 provides the highest gain over the widest range of operating current conditions.

In addition, Sylvania's 2N95 com-
bines all the important features you want in a power transistor, whatever your application. If, for example, yours is a switching application, the 2N95 offers high gain at high currents.

Designed for low thermal resistance, the Sylvania 2N95 Transistor provides dissipation up to $21 / 2$ watts without an external heat sink and up to 4 or more watts with a suitable heat sink. This insures stable operation in high ambient temperatures.

You compare

Check the Sylvania 2N95 against similar Transistor types yourselffor current gain as well as all of these important power Transistor features.

Does the Sylvania

2N95 offer-	onswer
1. lower cost	yes $\sqrt{ }$
2. low input impedance	yes
3. low thermal resistance	yes \downarrow
4. high current switching	yes \checkmark
5. high current gain	yes \downarrow
6. mounting for air cool or heat sink	yes \downarrow
7. hermetic seal	yes

A smaller version for heat sink mounting, the Sylvania 2N 102 is also available with the above features.
"another reason why it pays to specify Sy/vania"

Check your application for complete data on other Sylvania Transistors
\square High gain, low frequency Types 2N34 and 2N35High power, low frequency Types 2N95 and 2N68
\square High frequency Types 2N94 and 2N94A
Dept. M20R
Sylvania Electric, 1740 Broadway, New York 19, N.Y.
Name
Company
Address

Shown

more than
twice the
actual size
are not only in instrumentation for the atomic field. Sylvania, for example, is producing reactor fuel elements. Others produce special electronic components for reactors. As much as $\$ 85,000$ worth may be used in the typical small unit.

- Potential-It is estimated that a total annual volume of over $\$ 200$ million in electronic equipment will result within the next ten years from the expansion of the peaceful use of atomic energy. In addition, there will continue to be considerable government and military business for the industry.

This volume will not be gained
without increased expenditures for control and instrumentation research. According to the Atomic Industrial Forum, such spending will rise from the $\$ 106,000$ of 1953 to $\$ 4.2$ million by 1958.

It was pointed out that the industry does not know which type of reactor will prove superior in the near future. Consequently the development of control and sensing components will have to be approached on a piece by piece basis. For instrumentation components, however, design and development can proceed nearly unhampered because the general outline of the system is known.

Wrist Radio Uses Three Transistors

Wrist radio, complete with earphone and a few inches of antenna

Companies schedule increased plant and equipment outlays, see increased sales

Spending for new plants and equipment next year by electronic and electrical machinery firms will be 13 percent higher than this year, according to a preliminary survey of business' plans for capital spending in 1956 by the McGrawHill Department of Economics.

Over $\$ 507$ million will be spent by companies in the field in 1956 compared to $\$ 449$ million this year and $\$ 439$ million in 1954. Most of the firms surveyed believe that they will equal or exceed their 1956 spending in 1957 . Some 62 percent of companies surveyed are planning about the same investment and 10 percent expect to increase plant and equipment investment in 1957.

- Sales Higher-The survey also shows that electronic and electrical machinery firms expect sales in 1956 to be 7 percent higher than in 1955, explaining to some extent the reason for increased expansion. The sales increase equals that expected by industry as a whole. For individual industries the expected increases range from 2 to 12 percent.
-Status-Although spending in the electronics and electrical ma-

chinery industry will be up in 1956, plans are not yet equal to the peak expenditures made in 1953. Also, compared to all manufacturing the increase for the electronics industry is relatively small. Manufacturers as a whole plan to increase capital spending 30 percent in 1956 . The largest increases are in primary metals, the chemical industry and the automobile industry.
- Future-Indications that plant expansion in the electronics and electrical machinery field will continue in 1957 show that the industry may not lose its expansion momentum. Although such plans are tentative now, in the past companies have usually added to their advance plans, as the target date drew near.

Full advantage is taken of the inherent small size of the transistor in a wrist radio receiver just announced.

The receiver contains three transistors. One is employed as a regenerative detector and the other two comprise the audio stages. One control allows slug tuning from 550 to $1,600 \mathrm{kc}$ and the other is a regeneration control.

- Operation-Sensitivity of the receiver, designed by Linear Equipment Labs, Copiague, N. Y., is high. In the environs of New York City no antenna is needed for most stations. Six inches of wire is sufficient to pick up the weaker locals. At 30 miles from the city, one to three feet of antenna provides reception.

Mercury cells provide 6 volts to power the receiver. Total power input is 3 milliwatts.

Operation of the detector at the point of oscillation is different from that of vacuum tubes. No beat note is heard with the transistor detector of this receiver. Instead, circuit constants have been chosen so that oscillation takes place at a low pulse rate, similar to that of motorboating in an audio amplifier. The effect on the listener who misadjusts the regeneration control while tuning is much less disconcerting.
(Continued on page 12)

ceramic capacilors

designed for

mechanized assembly

Pin Terminal Disc Ceramic Capacitors

The short, stiff terminals, $3 / 16^{\prime \prime}$ long, are accurately held to predetermined lead spacings. Closely controlled coating "pants" on the leads prevent resin from extending beyond the tangent line of the disc, yet no bare disc is exposed between leads. Available in bulk or in Tube-Paks.

Just as Sprague pioneered in the automatic manufacture of capacitors, it now takes the lead in supplying these capacitors for automatic insertion. New ceramic capacitor configuration with double-tinned leads and terminals spaced precisely to a tolerance of $t .005^{\prime \prime}$ —assures foolproof automatic insertion in printed wiring boards. New packaging means top efficiency in handling, testing, and feeding the capacitors. And whichever styles you choose, you benefit from the advanced manufacturing techniques . . exhaustive quality control procedures ... and priceless on-the-spot engineering counsel which have built Sprague's reputation.

Brief descriptions of the designs and packages are shown at right. Complete information is available on letterhead request to the Technical Literature section, Sprague Electric Company, 35 Marshall St., North Adams, Massachusetts.

Diametral Lead Disc Ceramic Capacitors
After tape loading in magazines by the manufacturer, these capacitors need only have their leads precut before automatic insertion.

Taper-Tab Terminal Disc Ceramic Capacitors
Flat terminals are designed to jam casily into chassis stots, holding capacitors firmly during subsequent assembly steps prior to dip soldering. Avaitable in bulk or in Tube-Paks.

Tube-Pak ${ }^{\star}$ Packaging

Up to 200 disc capacitors, pin terminal or taper-tab terminal, can be packed in each two foot long Tube-Pak. These slotted cylindrical magazines are a perfect fit for automatic insertion equipment now in use by several leading television manufacturers. Both types are plugged at each end before shipment.

forautomation

FIRST electronic range comes off the Tappan Stove production line as

Home Cooking Goes Microwave

Units priced at $\$ 1,200$ go on the consumer market. Plant expansion to boost output

Magnetrons started moving into home kitchens last month when the Tappan Stove Co. put a mi ro. wave range designed for hom use on the market. The electronic unit was developed in conjunction with Raytheon which has had a commercial electronic range available for some time.

- Features-The range is offered by the firm as a built-in or stackon type. It weighs 150 pounds and is about the same size as conventional built-in ovens. It incorporates an electric unit for browning, since microwave cooking cooks uniformly throughout and doesn't produce a hardened surface.

Temperature controls have been eliminated on the new range. The four controls are high and low speed selectors and individual timers for the microwave and browning units. The microwave timer is calibrated in seconds for the first three minutes of its settings because of the fast cooking speed. A potato can be baked in 5 minutes, a five-pound rolled rib
roast in 30 minutes and a twolayer cake in six minutes.

The range operates on 220 -volts with the same type of cable as an electric range. It requires no special installation or plumbing. The magnetron operates at $2,400 \mathrm{mc}$, a frequency assigned by FCC for microwave cooking. Power is supplied by a four-tube rectifier unit.

- Market-Although Tappan does not plan immediate nationwide distribution of the electronic range, it will be offered in Detroit and several other major markets this year. The introduction is being limited to enable factory service personnel and home economists adequately to train distributor personnel.
Although the price of the range is higher than conventional units, the cost of operation is lower, according to Tappan.

Tappan is allocating some of the space provided by a $\$ 300,000$ plant expansion for increased electronic range production. GE plans to put its version of the electronic range on the market in 1956. Other major range makers including Westinghouse and Frigidaire are also expected to move into the field.

Small Business Gets More Air Force Work

Total of $\$ 20$ million more in prime contracts went to firms with under 500 workers

AIr force spending for electronic equipment totaled $\$ 350$ million in fiscal '55. The Air Force spends more for electronics than any other armed service.

Small business firms, those having less than 500 employees, are getting more of this business. In fiscal 1955, small business was awarded $\$ 20$ million more in prime contracts than in 1954. See chart.

Total awards were less than in 1953 and 1952 but an apparent downward trend has been reversed. The figures represent all Air Force awards to small business. A significant portion goes for electronics.

- Orders-During fiscal 1954, a total of 5,614 awards of over $\$ 10,000$ were placed with small business for a total value of $\$ 425.2$ million. In addition, $\$ 131.4$ million was placed in orders under $\$ 10,000$ to bring the grand total to $\$ 556.7$ million. In fiscal 1955, 801,555 contracts and purchase orders were awarded worth a total of $\$ 576.8$ million.
- Reasons-Air Force expenditures rose from $\$ 5.6$ billion in 1954 to $\$ 6.1$ billion for fiscal 1955. More of the equipment needed by Air Force in '55 could be produced by small business.

In 1954, it was estimated that

(Continued on page 14)

For all your Tape Wound Core Requirements, specify "CORES by ARNOLD"

You'll be assured of the performance and uniformity you want, when you use Arnold Cores as magnetic components in your amplifier, transformer and reactor assemblies.
Our facilities for production and testing are highly modern and complete. Arnold is a fully integrated company, controlling every manufacturing step from the raw material to the finished core, and therefore best able to maintain high quality control. You'll have at your command the most complete line in the industry . . containing every type, shape or size core you may require to meet design needs or electrical characteristics.

Many sizes of Arnold Tape-Wound Cores are carried in stock for immediate delivery. Write for additional information, and let us quote on your requirements and help solve your problems.

HERE'S DATA YOU NEED... Write for these Booklets

1 BULLETIN TC-101A . . " "Properties of Delamax, 4-79 Mo-Permalloy and Super-malloy"-28 pages of technical data on Arnold Tape-Wound Cores of high-permeability alloys.
2 BULLETIN SC-107
"Arnold Silectron Cores"-round, square, rectangular, or C and E cores; 52 pages of data on shapes, sizes, properties, etc.

ADDRESS DEPT. E-512.
wad sgas

The Arnold Engineering Company

SUBSIDIARY OF ALLEGHENY LUDLUM STEEL CORPORATION General Office \& Plant: Marengo, Illinois DISTRICT SALES OffICES . . New York: 350 Fifth Ave.
Los Angeles: 3450 Wilshire Blvd.
Boston: 200 Berkeley 5 t.
contracts worth $\$ 733$ million could be handled by small business. For 1955 the figure was $\$ 755$ million. When actual awards were made, 76 percent of the amounts in both years went to small business.

This was due to prices that were out of line, physical facilities that were inadequate, inability to meet delivery dates or no bids being received from small business.

- More-Along with the increased volume of Air Force prime con-
tracts, small electronic businesses are receiving greater help in securing subcontracts. Large prime contractors have been active in supporting small businesses.
GE, for example, has a manufacturing services division to funnel orders to defense subcontractors and suppliers that have available production capacity. The government has asked large prime contractors to report periodically on the number of subcontracts awarded to small business.

FCC Looks At TV Competition

Survey of uhf and vhf stations shows effect of competition, population and programs

THird survey of post-freeze ty stations by FCC compared the profits of uhf and vhf stations. As shown in the chart, the number of unprofitable vhf stations increased with the number of vhf competitors. For uhf stations with vhf competition, the same thing happened only more so.

- Losses-In areas served by two or more vhf stations, 70 percent of surveyed uhf stations and 32 percent of the vhf stations covered had continuing monthly losses during the ten-month period of the
survey. In areas served by one vhf, 71 percent of the uhf's and 29 percent of the vhf's were unprofitable every month. In singlestation markets, 33 percent of the uhf's and 25 percent of the vhf's were in the red.
- Other Factors-In addition to competition, the size of the market and programs offered were important to the profit-loss picture. Over half of the vhf stations with continuing monthly losses were in communities with less than 75,000 population. As for the effect of network programs, the study showed that only 18 percent of the vhf stations that carried network programs in excess of 7.5 hours a week and 38 percent of uhf lost.

Electronic Gear Withstands Atom Blast

Communication equipment stands up under impact of 30-35 kiloton blast

Detailed information released on the effects of atomic-blast exposure on commercial communication equipment indicates that it is generally much more resistant to nuclear effects than some typical residential structures.

A brick building located at a test point 4,700 feet from ground zero collapsed but a tv receiver, located in the same building, was still in operation without any servicing required.

- Damage-Mobile-radio antennas members were bent but still usable as a result of direct blast damage at the building location. Minor damage to coaxial cable coverings was caused by thermal radiation.

The plastic cases and knobs on ty sets and radios were cracked and chipped when struck by falling objects. However, performance was in no case seriously impaired.

Under blast conditions, whip antennas on mobile rigs showed a tendency to bend or break off where attached to the vehicle. Television receiving antennas were damaged beyond repair.

Outage of one a-m broadcast transmitter was due to the failure of the 60 -cycle power supply.

Operations Research Gains In Industry

Some firms establish new departments; others retain consultants

Application of operations research is gaining ground in the electronics industry according to a survey reported at the operations research conference held in New York City by the Society for Advancement of Management.
(Continued on page 16)

csisu

KAhle
 automatic machines

WILL PRODUCE YOUR

TRANSISTORS, TUBES
AND OTHER
ELECTRONIC COMPONENTS faster, more economically

Send for Kahlés valuable file on automatic equipment - today!-

Kйhle $\boldsymbol{e n c m i n e r e n g ~ c o m p a n r ~}^{\text {and }}$

1310 SEVENTH STREET NORTH BERGEN,N.J.
Designers and builders of special automatic and semiautomatic equipment for all industrial operations.

INDUSTRY REPORT-Continued
-Survey-Of 33 electrical and electronic firms queried, 22 replied. Twelve of the 22 companies now use operations research and have a total of 59 people assigned to the work. Six of the companies use consultants for operations research studies.

- Use-Operations research was developed during World War II by the military. According to SAM, it helps executives predict the results of an operation under different sets of variable conditions. This provides a sound basis for decision-making and forecasting.

Operations research has been applied to marketing, determining radar reliability, blending raw materials, scheduling of personnel, industrial communications, budgeting, financial incentives, transportation, traffic, allocation of sales effort and production and inventory control. Operations research has boosted use of electronic computers in business and industry.

Personal Paging Business Advances

Potential market seen for thousands of tiny vhf receivers and 200 transmitters

Physicians, delivery services and repair crews are finding radio paging essential in their work.

The paging transmitter continuously broadcasts numbers assigned to the individuals paged until the person calls into the office by telephone.

Signals are received on a pocketsize vhf receiver. Transmitters operate on 35.58 or 43.58 mc and cost about $\$ 2,000$. The paging service usually operates on a subscription service with each subscriber paying $\$ 12$ to $\$ 15$ a month.

- Operators-A paging service is in general an outgrowth of telephone answering services. There are currently 50 to 100 services with an estimated total of 4,000 receivers.

Potential market at present is about 200 transmitters.

RECORDS can now be heard while traveling as

High-Fidelity Hits the Road

Automobile record players introduce new style and disk standards and open new market

For $\$ 80$, any owner of a 1956 Chrysler Corp. automobile may have his car equipped with a newly developed record player that mounts under the car's dashboard. The player's pickup arm will track the record under all road-operating conditions... short of a collision.

Each player is supplied with six records. Additional records can be purchased for $\$ 2.50$ to $\$ 4.95$.

- Technical Details-The record player was developed by CBS-Columbia Laboratories. It operates at $16 \frac{2}{3} \mathrm{rpm}$ from 18 v 60 cps , which is converted from 12 v di-c cps by a vibrator power supply.

The pickup cartridge is of ceramic and is mounted in a counterhalanced arm that concentrates the mass at the pivot point. The cartridge is fed into the car's radio.
Records are 7 inches in diameter and are cut with 550 to 700 groves per inch depending on whether music or speech is recorded. (LP records have an average groove pitch of 235 lines
per inch.) Playing time of the records varies from 20 to 40 minutes per side depending on the groove pitch.

The fine grooves of the 7-in, record require a stylus with a $0.3-\mathrm{mil}$ tip radius, ten times smaller than that used with conventional 78 rpm records.

- Other developments-A German portable, distributed by Chemtron Industries, Inc., N. Y. features a-m /f-m reception and a built-in 45 rpm record player. The unit operates from $110 / 220$ a-c or from self-enclosed batteries. The rec-

A-M/F-M radio has built-in 45-rpm record player
(Continued on page 20)

Troe W5M VARIAC, pana! mounted Tvpe four ucsews in corriers of square base

tren-tupe manuals reset thermal yemaar breaker pr' das protection 1-am prolanged ovelleses

Type W5M VARIAC 7aximat $\quad 5.0=$ mp. 6.5 amps completely enalused for wall. tiench. panel or ben nd-manel mounting aluminu n gray Hammerorre innish
knockusts 5 amperes rated current ... light weight, provices with carrying hande, overloas pro-
tection lise switch, convenience outlet, 3 -wire groundint cord and plug (W'5MT is id antical excera 2 -wire line cord is used)

Some Features Are

Ba:ic W5 model has 20\% Increased Power Rating Drawn Wrought-Aluminum Squere Base, Designed for Excellent Heat Transfer . . . much more rugged . . . will withstand MIL-T-945A Shock and Vibration Tests
Impreved Brush Radiator . . . setting of radiator and brush independent of position of shaft disc-type radiator completely covers and protects Duratrak brush track
Enclosed single and ganged models in industrialtype rectangular cases . . . can be panel, behind panel, wall or table mounted . . . conduit knockouts conveniently located . . . all mounting hardware included
Same mounting holes as all V-5's plus additional mounting holes in each corner of square base for convenience and extra rigidity. In most cases can be substituted directly for V-5's.

Type	Description	Price
W5G2 W5G2M	2-Gang W5 2-Gang W5 completely eaclosed with conduit knockouts	$\begin{array}{r} \$ 41.00 \\ 49.00 \end{array}$
W5c3 W5G3M	3-Gang W5 3-Gang W5 completely enclosed with conduit knockouts	$\begin{aligned} & 61.00 \\ & 69.00 \end{aligned}$
WSHIC2 W5HIG2M	2-Gang W5H 2-Gang W5H completely enclosed with conduit knockouts	$\begin{aligned} & 45.00 \\ & 53.00 \end{aligned}$
W5WG3 W5mG3M	3-Gang W5H 3-Gang W5H completely enclosed with conduit knockouts	$\begin{aligned} & 67.00 \\ & 75.00 \end{aligned}$

GENERAL RADIO Company

INPUT Volts	Amperes				TYpe	Price	Description
115	0.90	$\begin{aligned} & 0-115 \\ & 0-135 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 6.0 \end{aligned}$	W5	\$17.00	Uncased
115	0.75	$\begin{aligned} & 0.115 \\ & 0.135 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	W5M	21.50	see footnote A
115	0.69	$\begin{aligned} & 0.115 \\ & 0.135 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	W5MT	26.50	see footnote B
115	0.69	$\begin{aligned} & 0.115 \\ & 0.135 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	W5MT3	28.50	see footnote C
$230 *$	0.60	$\begin{aligned} & 0-230 \\ & 0-270 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.0 \end{aligned}$	W5H	19.00	Uncased
230*	0.60	$\begin{aligned} & 0-230 \\ & 0.270 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.0 \end{aligned}$	W5HM	23.50	see foolnote A
230*	0.55	$\begin{aligned} & 0-230 \\ & 0-270 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$	W5HMT	28.50	see footnote B

*The 230 -volt models can be used on 115 -volt lines. When so used, the 0 -
output range is limited to a rated ond a maximum current of (B) except 3-wir
B Bench model with 2 -wire line cord, line switch, grounding line cord and 3 -ter-
outlet, overlogd breaker and corrying handle minal plug

for TRANSISTORSI..RAYTHEON

With this $\$ 3,000,000$ plant Raytheon now utilizes approximately 180,000 square feet of space for semiconductor research, engineering and manufacturing activities.

Not only in better supply, but of the highest quality, uniformity and reliability. All are PNP Germanium Transistors hermetically sealed.
octual
size.

SUBMINIATURE LOW FREQUENCY TRANSISTORS

Type	Collector			Emitter Current mA		BaseCurrent Ampl. Factor	Max. Noise Factor db	Alpha Freq. Cutof
	Volts	Meg. ohms	$\underset{\mu \mathrm{A}}{\text { Cutoff }}$					
2N130	-6	2.0	6	-1.0	350	22	25	0.6
2N131	-6	2.0	6	-1.0	700	45	22	0.8
2N132	-6	2.0	6	-1.0	1500	90	20	1.2
2N133	$=1.5$	1.0	6	-0.5	700	45	10	0.8
new 2N138	-6	2.0	6	-1.0	1800	140	25	1.2

RAYTHEON TRANSISTOR FIRSTS

FIRST company to make point contact transistors commercially available - in late 1948.

FIRST to mass produce germanium junction transistors - in late 1952.
FIRST to mass produce fusion-alloy RF transistors - in late 1954.

*measured in circuit which will be supplied on request
Note: above characteristics are average except where noted

RAYTHEON TRANSISTORS more in use than all other makes combined

A COMPLETE LINE OF

 Bonded Silicon Diodes

Raytheon Bonded Silicon Diodes provide low reverse current and good stability at high temperature. Every diode receives four temperature cycles of one hour at $-55^{\circ} \mathrm{C}$ and one hour at $+150^{\circ}$ C, followed by thirty-six hours at 95% relative humidity and $70^{\circ} \mathrm{C}$. Exact characteristics are maintained after temperature cycling and stability remains excellent over long periods.

Type	Peak Inv. Volts	Min. Forward mA at +1.0 V	Max. Reverse $\mu \mathrm{A}$ at Volts	
IN300	15	8	0.001	-10
IN432	40	10	0.005	-10
1N301	70	5	0.05	-50
IN460	90	5	0.1	-75
IN303	125	3	0.1	-100
IN433	145	3	0.1	-125
IN434	180	2	0.1	-150
IN302	225	1	0.2	-200

RAYTHEON MANUFACTURING COMPANY

ord player operates from the batteries too. European-type tubes are used.

Battery or a-c line operation is
also a feature of a new RCA Victor portable radio and $45-\mathrm{rpm}$ rec-ord-player combination now on the market.

SMALLER lighter equipment, like this airborne digital computer, is developed os

Transistors Gain In The Military

Airborne digital computer and underwater torpedo control operate without tubes

Electron tubes have been repiaced by transistors in an Air Force airborne digital computer and in a Navy ultrasonic torpedo control system.

- Airborne- The computer, developed and flight tested by North American Aviation for the Air Force, uses some 1,000 transistors and etched circuits. It takes up only three cubic feet of space and weighs 125 pounds.

An electron-tube computer with half the capacity would be four times heavier and would take the space of an arerage closet. The computer uses less than 100 watts compared to about 3,000 watts for an electron-tube counterpart with only half the capacity.

The etched and transistorized circuits in the unit are designed in
the form of 51 standardized panels for reliability and quick servicing. The panels can be pulled out like file cards for testing and replacement. The computer can continuously integrate 93 quantities simultaneously and generate continuous solutions of differential and trigonometric problems.

- Underwater - Developed by Westinghouse research laboratories for the Navy's Bureau of Ordnance, the new ultrasonic torpedo control is fully transistorized. The transistors can operate directly on the low voltage of the torpedo battery. This eliminates the need for a separate source of power and makes the system more simple and compact. The total power required for the control using transistors is only about one-tenth that of an equivalent electron-tube control. With transistors the warmup time of 30 seconds or more needed for electron tubes is eliminated. The transistorized torpedo is ready for instant operation.

Why Television Sets Are Failing Today

Tubes and capacitors lead as troublemakers; average is down to $11 / 2$ service calls

With the average number of service calls per tr set settling down to around $1 \frac{1}{2}$ per year. as compared to 6 or more in the early postwar days, the causes of trouble change also.

Percentage figures compiled five years ago (Why Television Receivers Fail in Service, Electronics, p 66, July 1950) are summarized in the accompanying tabulation for comparison with the 1955 year-end picture for representative service organizations.

- Trends-Although tube performance in tv sets is much better today, the tube percentage figure is up for two reasons: the tube failure rate is still highest for the first few months, hence tube troubles run high in factory service organizations where many repair jobs are within the 90 -day warranty period; and independent servicemen tend to replace weak tubes hoping the resulting higher gain will offset the circuit defect and avoid pulling the entire chassis. Where organizations train servicemen to repair only the primary cause of trouble, the tube percentage drops to approximately 35 percent.

With the almost complete demise of the service contract, false calls have just about vanished. However, with around 60 percent of its calls still made under service contracts, RCA Service Co. reports 4 percent false calls.

Although millions of antennas are now well over five years old,
(Continued on page 22)
 life-test requirements.
And the ALL-ANGL works in any position - to give sure protection for vital controls through every twist, turn, and dive in the aircraft's most violent maneuvers.

Write for Data Sheef J-il. And for your airborne requirements to meet standard MIL specifications, ask about All-Metl, Air-damped, and special Barry mounts.

Here's the mount that meets the new needs of today's jet aircraft and missiles - where equipment must have greater protection against shock and high-frequency vibrations-and where MIL-standard mounts prove inadequate.

BARRY CONTROLS incorporated

increased sensitivity of new sets may be one factor covering up gradual deterioration in antenna and transmission-line insulation.

One independent serviceman summarized his experience this year in one sentence: "Half the troubles are tubes and the other half are in the horizontal sync system."

Tube Machine Makers
 Stack Up Big Year

New plant expansions for increased tube output has upped machinery sales

Growing production of all types of tubes has increased the business of the industry's tube machinery makers. One firm estimates that sales in the field this year will top $\$ 20$ million.
-Why-A look at the plant expansions of the industry's tube makers so far this year indicates the reason for increased business. In the first 10 months of the year a dozen tube firms have announced new plant construction.

In the past month, two tube makers announced extensive expansions. Sylvania will construct a 110,000 sq ft receiving tube plant and Westinghouse has placed orders for $\$ 500,000$ worth of new equipment, primarily exhaust machines, for color picture tubes.

- Types-Most of the production equipment sold so far this year has been for picture tubes and specialpurpose tubes. The machinery market for standard receiving tubes has dropped in importance and consists mainly of replacement business.
- Firms-There are some 15 manufacturers of tube machinery. Among the largest producers are several tube manufacturers themselves. They build machinery for their tube licensees and for themselves. But most of the companies are independent machinery firms, some specializing solely in equipment for the electronics industry.

Research Heads For Billion Mark

Investment in research and development will rise as the industry's volume climbs

Spending for electronics research and development will reach a billion dollars a year in the next decade if present spending and sales rates continue.

Currently, the industry spends approximately 6 percent of its total sales on research and development. This figure is indicated by an analysis of the expenditures of 13 firms in the field and by a government survey of research in electronics and electrical machinery firms.

- Companies-Present importance of research in the industry has been indicated by recent statements of firms in the field. It was also pointed up at the American Management Association's special conference on managing product research and development.
RCA recently estimated that 80 percent of its business in 1955 will be in products and services introduced on the market during the last ten years.

IBM has indicated that it now spends about 4 percent of its gross on research and development. In its accounting and data processing division there are about 2,100 people working on development.

GE indicates that its Electronics Division's laboratory has a budget of $\$ 3.6$ million. The laboratory has the following subdivisions: engineering analysis, semiconductors and solid state, thermionics, dielectrics and magnetics, advanced circuits, communication and computers, video circuits and display, microwave and radar, application engineering.

Remington Rand had a total of 75 people working on Univac five years ago. It now has approximately 500 in the division's engineering research and development group alone.

- Budget-Consolidated Engineering increased research and devel-

opment expense from $\$ 165,502$ in 1946 to $\$ 1.7$ million in 1954, according to AMA. In the same period, sales increased from $\$ 925,-$ 787 to $\$ 15.7$ million. The firm allocated research and development expense as follows: 21.5 percent for improvement of released products; 24.7 for product design; 35.9 for product development; 13.2 for applied research and 4.7 for studies and service. Its research and development expenditures are normally set at 10 to 12 percent of predicted sales for the next year.
Varian Associates has announced that it plans to up its research expenditures and plans to spend $\$ 500,000$ on new product research this year.
-Shortages-Growth of research in electronics is also indicated by the shortage of research personnel. A survey by the Department of Labor showed that in the electronics and electrical equipment industry, three-fifths of the surveyed companies reported shortages of scientists and engineers.

All the firms with shortages said that this was impeding their research and development programs. Several manufacturers of electronic equipment stressed that their shortage of research engineers and scientists was extremely acute. One of the companies had been able to fill only half the budgeted research positions.
(Continued on page 24)

G-E Computer Tubes are specially tested for qualities that safeguard computer reliability!

General Electric pioneered special tubes for computers ... also developed tests such as those above, which assure that G-E tubes in your computer circuit can be relied on to meet designers' aims in all respects.
The tests are specific in purpose. Each covers one or more tube characteristics important in computer use, and which closely influence the accuracy and reliability of the equipment.

There is no substitute for G-E computer-tube quality, which starts with special tube designextends through precision manufacture-concludes with exhaustive tube tests that relate directly to computer service.

Also . . . there is no counterpart to G.E.'s range of special computer tubes now in production. You have a choice of proved G-E types
available for your present circuit needs, with new tubes constantly being added.
Ask for " G-E Computer Tubes And Their Applications" (ETD-1140). 54 pages-just off the press. A book every designer and builder will find useful! Tube Department, General Electric Company, Schenectady 5, New York.

- G-E computer-tube development is a continuing process, with new types being added regularly for faster, more advanced equipment, or to meet special customer requirements where volume warrants. Five types-proved popular-already are in full production:

GL-5844
GL-6211
GL-5965
GL-5915A
GL-6463

Progress/s Our Most Important Product GENERAL (96) ELECTRIC

Subminiature Relay Makers Grow

More relay makers widen lines to include the small units for military use

In the past two years, the number of relay manufacturers in the subminiature field has more than doubled. Today there are about 35 relay manufacturers who produce subminiature relays while in 1953 about 15 firms were in the field.

Main reason for the trend to miniaturization in relays, as with many other components, is that weight and size considerations are becoming increasingly more important in military equipment, particularly airborne gear, the principal market for the units.

- Market Survey-One of the latest entrants into the subminiature and miniature relay field is Elgin National Watch Co. which has acquired two relay firms. In making its move into the field, it surveyed the market.

Elgin estimates 85 percent of the miniature and subminiature-relay business is accounted for by the military and aviation markets; 10 percent by the industrial market and 5 percent by the commercial equipment market.

Because of the trend toward greater use of business machinery and toward automatic production in industry, use of small relays in industrial and commercial lines is expected to increase considerably in the next 5 to 10 years. It estimates the military and aviation market will account for 50 percent of small relay output; the industrial field, 35 percent and the commercial field, 15 percent.
-Size Defined-In differentiating between miniature and subminiature relays, Elgin defines the miniatures as those that have a volume of approximately 1 to 3 cubic inches and subminiatures as those with a volume of less than 1 cubic inch.

Electronics Grows In Business

Intercoms and dictating machines take the spotlight at Business Show

Growing use of electronic equipment in the nation's business offices was mirrored at the National Business Show in New York City. Over 25 companies displayed electronic gear ranging from dictating machines to facsimile equipment. Electronic computers were not shown this year.

- Dictation-Trend toward greater use of multiple dictating systems was evident. Up to 20 phones can be connected to a single recording unit. One manufacturer estimates that it is adding more than 1,000 new users a month. The price of the equipment is roughly $\frac{1}{3}$ the price of individual dictating instruments.

Indications are that the systems can cut dictation costs by nearly

50 percent. A net saving of almost $\$ 15,000$ was made by one user with 20 stations and 4 recorders. Annual savings of over $\$ 24,900$ are expected when the system is expanded.

- Intercoms Estimates based on Department of Commerce figures place the annual value of intercommunication equipment shipments in the range of $\$ 20$ to $\$ 30$ million, more than double 1947 shipments of $\$ 9.9$ million. A substantial part of this volume is accounted for by the oftice equipment field.
- Future-Intercom and dictating machine firms see expanding sales ahead for the equipment. They feel that the vast market of over. 4.1 million business establishments in the U. S., not counting individual offices, has hardly been scratched.

As for future equipment design
changes, indications are that more dictation and intercom equipment may be combined in a single unit. A few companies already have such dual phone-dictation and intercommunications systems available.

Television Girds For New Markets

Vidicon tube prices are lowered. Low-priced tv station is demonstrated

SALES help for expanding television applications was indicated recently when RCA announced lower prices on two vidicon tubes and Dage demonstrated a complete tv broadcasting station costing less than $\$ 50,000$.

- Tubes Drop-Suggested resale prices were reduced from $\$ 315$ to $\$ 230$ on vidicon type 6198 which is used for industrial television applications. Type 6326, used in black-and-white and in color ts broadcast film cameras, was reduced from $\$ 565$ to $\$ 515$. According to RCA, the reductions were made possible by substantial savings in manufacturing costs.
- Low Power-The Dage station is designed for communities of less than 50,000 population. It is adapted from one developed by the firm for military installations overseas where stations now in operation include those in the Azores; Deflavik, Iceland; Thule, Greenland; and Bermuda.

The equipment meets the requirements of the recent FCC change in tv rules reducing the minimum required power of tv stations in small communities to 100 watts and eliminating any requirements as to antenna height.

- School Circuit-Dage also demonstrated a plan to transmit audiovisual programs to schools via closed-circuit tv based on the use of a central point to originate all audio-visual activities. A three-

[^0]

vidicon color te film camera which uses a folded optical system was also demonstrated by the firm along with a tv-microscope system and a servo pan and tilt mechanism for remote control of industrial tr.

Civil Defense Fosters Electronics Sales

Federal, state and local governments spend increasing amounts on equipment

IN fiscal 1955, approximately $\$ 2.4$ million was available from the federal government for civil-defense communications equipment. When matched by state and local groups, this brings the total available near the $\$ 5$ million mark.

To qualify for federal aid electronic equipment to be purchased by local units must meet engineering specifications of the Federal Civil Defense Administration.

- Markets-A number of electronics manufacturers have garnered a sizable share of the business. Probably the largest amount has been spent with two-way mobile radio manufacturers. But other equipment is taking a share.

For example, the Cincinnati division of Bendix Aviation, received an order for 30,000 self-indicating ionization-chamber dosimeters. The units, which sell for approximately $\$ 10$ apiece, will be stockpiled thronghout the country for emergency purposes.

Bell Telephone has available its bell-and-lights air-raid warning system. It consists of a special telephone dial, located at a central control point, connected by private one-way telephone circuits to any number of bell-and-lights signal boxes, at warning points. One turn of the control dial flashes warning signals and sounds to all warning points. Bell also supplies two-way radio equipment which it leases and maintains.

Alden Electronics \& Impulse Recording Equipment Co. has facsimile equipment available for civil defense use.

Set Prices Go On The Upgrade

Abstract

Set makers revise prices upwards in face of rising labor and materials costs

Nearly every major tv-set manufactured has increased receiver prices in the past few months causing an average rise of $\$ 10$ in the retail price of many models. According to set makers, the rise is due to increasing costs of material and labor.

- Chart-Trend of radio and tv factory prices over the past year is indicated by the government's wholesale price indexes for the products which cover factory prices. Latest figures are beginning to show recent tv price increases. They may also indicate that more higher price sets are being sold.

The radio index shows recovery from the sharp drop that took place in August.

- TV Price Drops—Every year since 1947 the average retail price of tv receivers has fallen. Last year it took one of its biggest drops, a $\$ 50$ decline from $\$ 280$ to $\$ 230$. The decline is expected to continue this year despite recent price increases, but it may not be as severe.

Manufacturers have emphasized

lower priced sets for the second set market. Large-screen sets priced below $\$ 100$ are reported to be selling well. Indications are that a greater proportion of total set sales this year will be in table models than last year. In June the ratio stood at 60 percent table models and 40 percent consoles.

- Radio Down Too-Radio receiver prices have also followed a downward path over the years. In 1954, average retail prices declined by about $\$ 3$ from 1953. The drop in the U. S. wholesale price index for the product in August indicates that the decline will be much more severe this year, despite the upward trend of the last few months.

Glass Makes Headway In Resistors

JUST about a year has passed since low-power glass resistors first became available for use in radio and television receivers. In that time a dozen tv manufacturers have adopted the component for use in current sets and another has the units on order.

- Why-Glass resistors have been used in specialized military electronic equipment, but cost was prohibitive for civilian consumer goods. It was not until low-cost low-power types with 3,4 and 5 watt ratings were introduced that
volume use began. Now prices of the units, depending on size, range from 30 cents to $\$ 1$. In quantities the price is lower. In some cases these lower prices have forced price adjustments in the conventional resistor field.
- Construction - The low-power resistors are made of a film of metallic oxides bonded to a Pyrex glass rod under heat. By means of electronically controlled machines, the film is automatically cut to the proper value and as-
(Continued on page 28)

Wide Band Sweeps for Aligning

Radar IF Amplifiers

A combined sweeping oscillator and crystal marker generator, the RadaSweep is designed especially for rapid alignment of radar IF amplifiers. Used with an oscilloscope, it will display response curves of IF amplifiers and mark up to nine frequencies to allow precise adjustment of response.

KAY Rada-Sweep

SPECIFICATIONS

Center Frequencies: 30 and 60 megacycles. Others may be added to special order.
Sweep Width: Wide-20 mcs or Narrow-3 mas selected by a panel switch.
Sweep: All electronic, linear sawtooth. Sweep signal is brought out to terminals for connection to oscilloscope horizontal amplifier. Sweep repitition rate is adjustable around and may be synchronized to the cps line.
Markers: Up to 9 crystal positioned pulse type marks fed directly to scope vertical amplifier. Four supplied standard at $25,35,55$ and 65 mcs . Others located as specified by purchaser. The standard marks may be replaced with others as specified. Individual on-off control of each mark.
Amplitude Modulation While Sweeping: Less than $.05 \mathrm{db} / \mathrm{mc}$.
RF Output Voltage: 250 millivalts across 70 ohms.
RF Output Control: Switched Attenuator: $20 \mathrm{db}, 20 \mathrm{db}, 10 \mathrm{db}$. Continuous Attenuator: covers approximately 5:1 ratio.
Marker Output Voltage: Positive pulse, approx. 10 V peak.
Marker Output Control: Continuously variable, 0 to maximum.
Power Supply: 105 to 125 volts, 50 to 60 cps . Power input approximately 100 watts. Circuit electronically regulated.
Price: $\$ 395.00$ f.o.b. plant with standard marks. Any standard mark may be replaced with a special frequency $\$ 10.00$ each. Additional marks at $\$ 20.00$ each.

KAY Radaligner

SPECIFICATIONS

Sweep: Regular sawtooth, adjustable around or synchronized with 60 cps power line.
Frequency Range: Center frequencies may be selected at any two points in the 10 to 170 mc band.
Sweep Width: Center Frequency below $30 \mathrm{mcs}: \pm 5 \mathrm{mcs}$ Wide Band, $\pm 0.5 \mathrm{mc}$ Narrow Band; Center Frequency above $30 \mathrm{mcs}: \pm 10$ mcs Wide Band, ± 1.5 mcs Narrow Band.
Amplitude Modulation While Sweeping: Less than $0.05 \mathrm{db} / \mathrm{mc}$.
RF Outpot Voltage: 250 millivolts into 70 ohms.
RF Output Control: Switched attenuators: $20 \mathrm{db}, 10 \mathrm{db}$ and 3 db . Continuous attenuator: approxi-
mately 6 db .

Markers: Fixed: Eight, narrow pulsetype, crystal-controlled markers, positioned at customer's option. Available singly or in any com-
bination through individual bination
Variable: Frequency continuously variable throughout selected variable ranges. Frequency calibrasweep ranges. Frequency calibr
tion accurate to within 0.5%.
Marker Oułput Voltage: Positive pulse, approximately 10 volts peak.
Marker Output Control: Continuously variable, zero to maximum.
Power Requirements: 105 to 125 volts, $50-60 \mathrm{cps}$, approx. 110 watts.
Price: $\$ 795.00$ (rack-mounted), f.o.b. plant. Cabinet $\$ 35.00$ extra.
sembled with caps and leads.
Corning Glass, makers of the low-power units, has formed a components department to handle increased business from the electronies industry.

Financial Roundup

Many companies rack up record net profits for 1955's first nine months

Third quarter profits for many companies in the electronics field helped to boost nine month's earnings to new highs. Following are the net profit reports of 23 companies for the fiscal periods indicated:

('ompany	195\% Yrofit	fit 1951
Iveo 9m1	\$63,801	\$3,336,721
Horg-W゙arner 9 m .	26,076,14!	11,052,301.
furroughs 9m	8,255.002	$6,922.436$
Clevite 9 m	3,219,481	1,980,50]
'T. A. Erlison 4 m	900,16 ${ }^{\text {2 }}$	500.873
Wagin Watch fim.	$268,4+6$	2 fi9. 648
Garrett 3 m	1,093,000	8.40 .000
Ceneral Controls 9 m	1,156,664	717.237
General Electric		
9 m	41,354,000	136,191,000
Hoffman 9 m	93 +,	1,139,421
Magnavox 3 m	561,807	1331.7ヶ9
Jinn. Mining 9 m	$24.685,380$	17.308,226
	+885,848	4.5110067
Philco 9m	4,854,000	2,275,000
- recualo. Intstrumer's ! m	4!94.658	122,835
RCA 9 m	$8 ; 0,945,000$	27,557,000
Standard Coil 9 m	:301.75:	1,912,279
Stewart-Varner		
9 n	$4.145,959$].831,719
Svlvania 9 m	9,556,210	$6,166,2=6$
'Texas Instruments		
4 m	1,099,748	811,84\%
Tung-Sol 9 ml	$2,286,511$	1,478,493
Varian Assoc 12 m	433,000	$\bigcirc 25,000$
Webster-Chicaso		
$4 \mathrm{~m}$ * (loss)	6!31,476	236,894

\rightarrow Securities - Pyramid Electric filed with SEC covering 35,000 shares, par $\$ 1$, to be issued against warrants, at $\$ 3.25$ per share. Net proceeds are to be used for general corporate purposes.

RCA registered with SEC covering $\$ 100$ million of 25 -year convertible subordinated debentures to be offered to its common stockholders. They will be offered in the ratio of $\$ 100$ principal amount for each 14 shares of common stock held of record. The offering will represent the first public financing by the company. Proceeds will be used for working capital, property additions and improvements and for further expansion of facilities.

future meetings

Dec. 12-16: Nuclear Engineering and Science Congress, coordinated by Engineers Joint Council, Cleveland, Ohio.

Dec. 14: IRE Operations Research Symposium, University Museum, University of Pennsylvania, Philadelphia, Pa.
Dec. 15-17: URSI Fall Mecting, University of Florida, Gainesville, Fla.
Jan. 9-10, 1956: Second National Symposium on Reliability and Quality Control In Electronics, ASQC and RETMA, Hotel Statler, Washington, D. C.
Jin. 18-20: 12 th Annual Technical Conference, Society of Plastics Engineers, Hotel Statler, Cleveland, Ohio.

Jan. 19-21: IRE National Simulation Conference, AIEE, ACM, Baker Hotel, Dallas.

Jan. 25-26: Third Annual Industrial Show, Penn Sherwood Hotel, Philadelphia, Pa.

Fro. 2-3, 1956: IRE National Symposium on Microwave Techniques, University of Pennsylvania, Philadelphia.
l'eb. 9-11: IRE Southwestern Regional Conference and Show University of Pa. Philadelphia, Pa.

Industry Shorts

- Total of eleven f-m subsidiary communications authorizations have been approved by the FCC.

Market in batteries for transistorized radios will reach $\$ 100 \mathrm{mil}$ lion in three years, according to Olin Mathieson Chemical Corp.

- Small airborne Pye tv camera has been used to observe deicing tests on Britannia airliner engines.
- Selenium shortage continues and the government is again urging tw and radio repairmen to salvage discarded selenium rectifiers.
- New techniques of broadcast transmission which use the scatter principle make possible the im-

Feb. 15-17: 1956 Conference On High-Speed Computers, Louisiana State University, Baton Rouge, La.

Feb. 16-17: IRE, AIEE, Univ. of Pa. Conference on Transistor Circuits, University of Pemnsylvania, Philadelphia, Pa .
Feb. 28-29: Scintillation Counter Symposium, IRE, AIEE, Shoreham Hotel, Washington, D. C.

Mar. 19-22: IRE National Convention, Waldorf-Astoria Hotel, Kingsbridge Armory, New York, N. Y.

APRIL 5-6: IRE, AIEE, ISA, Magnetic Amplifier Conference, Hotel Syracuse, Syracuse, N. Y.
April 10-12: Twelfth Annual Meeting and Metal Powder Show, Hotel Cleveland, Cleveland, Ohio.

APril 11-13: 1956 IRE 7th Region Technical Conference, Hotel Utah, Salt Lake City.

April 13-14: Tenth Annual Spring Television Conference, IRE, Engineering Society Building, Cincinnati, Ohio.

April 23-24: New England Radio Engineering Meeting, IRE, Sheraton Plaza, Boston, Mass.
mediate establishment of tv relay stations linking America and Europe, according to Allen B. Du Mont.

- Latest Admiral tv sets have three automated printed circuits equivalent to 80 percent of all the wiring in the set.
- Color film-scanner shipments total 63 units to 59 stations.
- Two contracts to apply the principle of acoustic interference (electronic sound absorption) to military problems have been undertaken by RCA.
- General Electric now employs some 16,000 people in the electronics field in central New York state alone, with an annual payroll of

G-M Sewr Motare
 GUARANTEEDTO MEET ALL MIL. ENVIRONMENTAL SPECIFICATIONS

When reliabilify under extreme conditions is essential-specify G-M Servo Motors! G-M has long specialized in supplying precision servo motors to the Military Avionic Industry, especially designed to meet
military specifications for humidity, salt spray, temperature, vibration and altitude. Whatever your needs, let G-M build a servo motor with the right characteristics to perform to your specifications.

By specializing in servo motors only - not sysłems-G-M gives you these advantages...

- A broader line of servo motors in sizes and types to meet a wide range of applications.
- Servo motors available in all the standard sizes.
- Standard sizes specially modified to meet specific circuit requirements - available on a quick-service basis.
- Creative engineering in designing special motors with special characteristics.
- Faster production-betterservice.

Write today for G-M charts, specifications, or sonsudnation.

Motor Generators
between $\$ 76$ to $\$ 80$ million, according to R. J. Cordiner, president.

- Single-sideband for all mobile, Alaskan and maritime fixed service radiotelephone below 25 mc is under consideration by FCC to help
provide more communications channels.
- Production of tv sets in Germany is expected to reach 350,000 this year and may rise to 1.2 million sets by 1958, according to Telefunken.

Industry Report Index

Aircraft	
Air force long-distance yhf	use
Automatic pilot sales	. 16 Feb
Civil air patrol radio	20 Jul
Private-plane market	20 May
Radar folds into floor	24 Jun
Radar network link	16 Oct
TACAN	7 Oct
Trainer business	14 Apr

tishore purchases bolster Eu	
uerto Rican	,
TV outmut	. 16 Mar
U. S. electronics at German fajr. 24 May	
les	
Dry-cell business 10 Feb	
Industry volume for $1954 \ldots \ldots 20 \mathrm{Feb}$	
Industry looks at 1955	
Klystron business 16 Sept Magnetic amplifier sales........ 14 May	
Magnetron sales 14 Feb	
Manutacturers eye selling costs . . 10 JunNew transistor radio......... 7 Jun	
Orthicon output 10 Sept Phototube sales 10 Apr	
Renewal market gains............ 16 May Transistor portables 10 Feh	
Traveling-wave tubes 22	

Communications
Rusinessmen adopt citizens' radio. 16 Aug Facsimile sales
Microwave relay business
More two-way
Radar helmet
Radio aids flood-stricken east. .
Radio replaces cable
Rohot op takes code at 600 whm.
Sun powers telephone line.
Transistors aid long distance calls
Yachtsmen boost elecironics.....22 22 M
Computers
Analog computers help design

Rulldit-rourselt computer
Computers cut machining costs..... 24 oct
Compuler controls inventory... 20 Aug
Computer firms report gains.........20 oct
Computer manufacturer presses 1,000 mark
Computer men scan low-price field 20 Jan Computers seek new fields.
Engineers humanize computer
Maneers humanize computer..... 8 Jan
Magnetic memory goes juke box..io Jun
Nore small computers appear........ 8 Dec
New combuter models. 12
Tersonal Apr
Ping husiness
Transistor computer 7 May

Government

Government probes mergers
14 JuI
U. S contract awards emphasize
U. S. Urged to increase surplus dis- Oct Federal Communirntions Commission

FCC asks military for vhf chan-
FCC estimates its budget...........12 Nov
FCC estimates its budget........ 12 Feb
FCC looks at ty competition.
FCC okays low-power television
Mack named to FCC radio use
NAM wants in mobile radio

Imlustry

Auto industry eyes electronics. Electronics in atomic enercy Electronics in chemical plants Electronics gains in movies Fire alarms go radioactive; Industry plans spending for ' Tachine makers go electronic More locomotives use rectifiers. Oil firms team with electronics Oil industry goes automatic....

Punch cards batch concrete mixer Subminiature relays in industry. Tones control plant services Tubes in metal trades. Tubes moving underground Tubes in tool industry 24 Jun

Materials

Copper prices soar
Dwindling selenium conserved..................... 10 Oct Glass in resistors Dec
Glass makers push parts-fields inva
Synthetic mica output 14 May Wiring board hypo plastic sales...io May

Military

Air force lacks industry........ ${ }^{\text {S }}$. Jul
Air force plans parts handbook... $2^{\text {Mar }}$ Army buys transistor transceiver. Civil defense fosters electronics sale
Civil-defense helmet
Defense department wants more re-
\qquad Hefense in Canada
DEW line radar.
barly warningar........................ 20 No No
Warly warning radar goes airborne. Wectronics military contracts. rat-top sounds off with tubes. Hurricanes speed radar islands... ing Military to give navaids business. . 2 Military probes spurious radiations Missiles business shoots up.
Navy sees $\$ 7.0$ billion for 1055
Navy sees $\$ 7.0$ billion for 1055.
Radar platform
Radar mlatform
Robot aerial camera inspection.......... Ang
Transistosiness gains military work. $1 \frac{7}{2}$ Dee
vensistors in military equipment. 20 De
venty-MM transmitterit , Ta
Personnel
Engineers fuide missile desimn...... 7 Apr
Mock reactor trains engineers..... 16 Oct
Supply of technicians.............. 4 Mar

I'roduction
Automatic machine wires chassis. 8 Oct Mechanized assembler builds coin 14 Jun Muters Mechanized production talies hoid is Mar des ty sets utilize automatic production
prors makers try new prekaeing 7 . Tu
Tape controls panel hole soon.....14 May

Research and Development
Complex scope patterns form art
studies T_{4}
Electronic cooler ... Dec
Electronics and atomic blast.........14 Dec
Electronics aids space station......
Sep
Wlectronics aids space station......
Flectronics revives Aladin's lamp. 20 Ju
Electronics withstands nuclear ex-
rinder accelerates tetrode transistor 20 Seyt
production
Hollow tubes carry conversations. 222
Magnistors promise to supplement
transistor $00 k i n g$................. In May
Moving engine x-rayed with itv and Tusic synthesizer
Phosphor sandwich brightens pix
Research buys testing gear
Research heads for billion mark
Research radio stations
Transistor quality improves
Transistor radio details
Transistor transmitter
Transistor uhf tetrode

Television
Aluminized tubes
Medical television
More industries use it
New marliets fol television
New tube materials
Set prices increase
Submarine $t v$ checks fish nets
Whr mounter tubes
Whto
Color bulbs go conventional..... 22 Nov
Color set makers get set for
Color
5.14
Color-tube design get set for s5..
Color tube output
Color to warms up...................... 76 Aug
Economy forecast for color camera 16 May
Europeans to study U. S. standards
More setmakers move into color. ${ }^{7} 7$ Nov
Projection receiver enters color
Push for color tube output..
Taped color moves toward market

15 Tan
12 Nor 14 Oct 24 Dec
16 Nov 16 Nov
26 Dec 6 Mar
7 Feh .7 Feh
Det

$$
14 \text { Nov }
$$ Nov

Aug

12 Apr

For PROMPT REPLY, wire the factory collect or phone our nearest sales office.

[^1]MAGNETIC AMPLIFIER

AC INE VOLIAGE REGULATOR

MODEL MLR - 1000

1 KVA

~~NO TUBES TO REPLACE
~ NO MOVING PARTS
~ NO VIBRATING CONTACTS
~ REGULATES RMS VALUE
\therefore IDEAL FOR UNATTENDEO INSTALLATIONS
Specificatians...

- Input Voltage Range: 95 to 135 volts

Output Voltage: Nominal 115 volts. can be adjusted from 110 to 120 volts.

- Output Current: 8.5 amperes
- Regulation Accuracy: $\pm 0.25 \%$ for any combination of line or load
- Frequency Range: 60 cycles $\pm 10 \%$
- Wave Form Distortion: 3% maximum

power aupplies
- Power Factor Range: 0.5 lagging to 0.9 leading
- Response Time: 0.2 sec.
- Maximum Load: 1.0 KVA
- Ambient Temperature Range: Up to $45^{\circ} \mathrm{C}$.
- Dimensions: $191 / 2^{\prime \prime}$ wide $\times 11^{\prime \prime}$ high \times 111/2" deep (cabinet)
$19^{\prime \prime}$ wide $\times 10 \frac{1}{\prime \prime}{ }^{\prime \prime}$ high $\times 11 \frac{1 / 2^{\prime \prime}}{}$ deep (rack panel)
- Mounting: Cabinet or 19" Rack Pane
- Finish: Gray Hammertone
- Weight: 85 lbs

PERKINenginering corp.

345 KANSAS ST. EL SEGUNDO, CALIF. PHONE: OREGON 8-7215

try this one for ... 패프느․

*BH Non-Fraying liberglas Sleevings are made by an exclusive Bentley,
Harris process (U.S. Par. Nos. 2393530 , 2647296 and 2647288).
"Fiberglas" is Reg. TM of Owens-Corning Fiberglas Corp.

What happens when you put a soldering iron to your present insulation? Ten to one it cracks or melts right off the wire. But replace or protect it with BH"1151" Sleeving and your troubles are over.
$\mathrm{BH}^{\prime \prime} 1151^{\prime \prime}$ is an inspired combination of two inorganic materials-Fiberglas and silicone rubber. The Fiberglas is braided and heat-treated under BH patented methods, then the silicone is fused on to become an integral part of the sleeving. It can be twisted and bent, but it will not craze or crack. It is completely unaffected by hot spot temperatures up to $700^{\circ} \mathrm{F}$--can even be potted in molten solder without injury. To be sure, it costs a little more than ordinary sleevings, but the money saved by using a less cffective sleeving will be lost on your first reject.
If you are interested in effective insulation for continuous operation through a temperature range of $-90^{\circ} \mathrm{F}$. to $400^{\circ} \mathrm{F}$.-then try $\mathrm{BH}^{\prime \prime} 1151^{\prime \prime}$. If you are interested in a sleeving with permanent flexibility-then try $\mathrm{BH}^{\prime \prime} 1151^{\prime \prime}$. If you are interested in fungus resistance - then try BH"1151". If you are interested in a sleeving that conforms to the stringent requirements of MIL-I-18057.then try $\mathrm{BH}^{\prime \prime} 1151^{\prime \prime}$.
You'll probably prefer spool or coil put-up, but $36^{\prime \prime}$ lengths and short pieces are available on special order. You can get BH" 1151 " the way you want it. Write today for data shects and free Production Testing Samples you'll welcome the extra protection your products gain with $\mathrm{BH}^{\prime \prime} 1151$ ".

Bentley, Harris Manufacturing Co. 1312 Barclay St.
CONSHOHOCKEN, PENNSYLVANIA
Telephone: Conshohocken 6-0634

BH "1151"

Marion Medalist meters combine handsome, modern design in a choice of colors to enhance the styling of your equipment, with the greater readability of scales up to 50% longer than ordinary type panel instruments of the same size. They are interchangeable with ASA/JAN $21 / 2$ and $31 / 2$ inch sizes. Delivery now in all standard rances

GRENIER FIELD, New Hamplhive's NEW fir-Industry Area

Marion Medalist* Meters, described on the reverse side . . . as well as Ruggedized, Hermetically Sealed and other types of Marion instruments for the electronics and aviation industries - are now produced in this modern plant. Providing an appropriate setting for its outstanding products, Marion's new home combines advanced architectural design with the most modern materials . . .

G-E Germanium Rectifier Production Breaks the 5 Million Mark

Customer requirements accelerate the production of a full line of highly reliable, long-life germanium rectifiers

THE NEW germanium rectifiers were introduced by General Electric in 1952 and since then more than 5 million units have been produced for industrial and military needs. In effect, this achievement represents more than ten billion hours of rectifier life-in hundreds of diversified commercial and military applications.

> PROVED QUALITY! Of the $5,000,000$ rectifiers produced, only a fraction of 1% have required adjustment under the rerms of General Electric's full year warranty!

Wide Range of Designs. G-E rectifiers are available in a broad range of designs for many applications-for electronic computers, control equipment, power supply units, magnetic amplifiers; for military and industrial needs requiring custom designs; and for almost any application where DC power is required. G-E Germanium Rectifiers are more compact, and weigh less-as much as 75% less than comparable rectifiers of other types-and meet the rigid requirements for performance established by the U. S. Navy, Air Force, and Signal Corps. What's more, G-E Germanium Rectifiers are warranted for one full year.

Immediate Delivery. Mass production assures fast delivery on all G-E Germanium Rectifiers regardless of quantity. For complete information concerning your rectifier needs, contact your G-E Semiconductor Representative. Or, write: General Electric Company, Semiconductor Praduats, Section X4125, Electronics Park, Syracuse, Neu' York.

Progress /s Our Most Important Product GENERAL (3) ELECTRIC

Diffused Junction Germanium Rectifiers combine very high forward conductance with very high back resistance. The high temperature and magnetic amplifier rectifiers feature very low reverse current ratings at ambient temperatures of $85^{\circ} \mathrm{C}$.

Power of the basic rectifier unit is boosted 5 times by adding a copper fin. Stacked one to twelve fins in series or parallel, the rectifier may be operated as half wave, full wave, or bridge circuits, and many other types of single or polyphase circuits. Typical power ratings are as high as 3 amps @ 190 volts; 1.3 amps @ 575 volts; $3.6 \mathrm{amps} @ 140$ volts, etc.

The Medium Power Rectifier has a 5 amp rating at 200 volts $\left(55^{\circ} \mathrm{C}\right)$. At $85^{\circ} \mathrm{C}$ it is rated 2.5 amps at 100 volts. These rectifiers, stacked in series or parallel. have ratings in thousands of watts depending on the design of the circuit.

International Rectifier Selenium and Germanium Rectifiers

International

 Selenium ProductsPressed pouder or cacuum process used as determined by our Applications Engineering Dept. The most widely used Industrial Power Rectifiers in Industry today!

HIGH VOLTAGE CARTRIDGE RECTIFIERS
Designed for long life and reliability in HalfWave, Voltage Doubler, Bridge, Center-Tap Circuits, and 3-Phase Circuit Types. Phenolic Cartridge and Hermetically Sealed types available. Operating temperature range: $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Specify Bulletin $\mathrm{H}-2$

International

Germanium

Products

High quality units of improved design are the results of years of experience in the production of exceptionally fine germanium crystals plus extensive research, development and field performance testing!

INDUSTRIAL POWER RECTIFIERS
For all DC power needs from microwatts to kilowatts. Features: long life; compact, light weight and low initial cost. Ratings: to $250 \mathrm{KW}, 50$ ma to 2,300 amperes and up. 6 volts to 30,000 volts and up. Efficiency to 87%. Power factor to 95%. Bulletin C- 349

SUB-MINIATURE SELENIUM DIODES
Developed for use in limited space at ambient temperatures ranging from $-50^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Encapsulated to resist adverse environmental conditions. Output voltages from 20 to 160 volts; output currents of 100 microamperes to II MA. Bulletin SD-1B

GERMANIUM POWER RECTIFIERS
This new line features: High efficiency - up to 97%, Lowest forward drop, High reverse to forward current ratio, unlimited life expectancy. No reforming required after storage. Ratings: 26 to 66 AC input v. per junction: 150 to 100,000 amps $D C$ output. Operating temperature range: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. In three styles. Bulletin GPR-1

IV AND RADIO RECTIFIERS
The widest range in the industry! Designed for Radio, Television, TV booster, UHF converter and experimental applications. Input ratings from 25 to 195 volts AC and up. DC output current 10 to 1,200 MA. Write for application information. Bulletin ER-178-A

photoelectric cells

Self-generating photocells available in standard or eustom sizes, mounted or unmounted. Optimum load resistance range: 10 to 10,000 ohms. Output from .2 MA to 60 MA in ave. sunlight. Ambient temperature range: $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Bulletin PC 649

GERMANIUM DIODES
POINT CONTACT. High quality crystalslong reliable life-superior resistance to humidity, shock, temp.-cycling. Bulletin GD-2 JUNCTION POWER. Hermetically sealed -welded construction. Available in Standard JETEC 1N91, 1N92, 1N93 types. For diodes to meet your specific requirements, consult our Semiconductor Division.

For bulletins on products described write on your letterhead to out Product information department

International Rectifier

executive offices: 1521 e. grand ave., el segundo. california - phone oregon 8.6281

Amaurain 4 MP:

MINATURE TAPER PNIS

A-MP's new Miniature Taper Pins, shown here actual size, provide the same uniformly reliable wire connections for your miniature components, as the larger, widely used and accepted A-MP Taper Pins. Miniature Taper Pins are applied to wire with A.MP Automatic Machines at speeds up to 4000 per hour. They are then inserted into components quickly and easily with A-MP Certi-Lok Insertion Tools. Miniature Taper Pins are available for wire sizes \#26 to \#20.

AIRCRAFT-MARINE PRODUCTS, INC., 2100 Paxton Street, Harrisburg, Pa. In Canada: AIRCRAFT-MARINE PRODUCTS OF CANADA, LTD., 1764 Avenue Road, Toronto 12, Ontario, Canada

One of the reasons that kecps Potter \& Brumfield Relays out in front.
The best Engineering design is not enough. Prototypes must pass all torture qualification tests. More important the manufactured product must meet engineering expectations. Not just now and then, but for as long as the relay is made. That is why Potter \& Brumfield relays are tortured regularly throughout production runs.

POTTER \& BRUMFIELD

Frost covered sealed relays are taken from especially designed sub-zero chamber which has subjected them to continuous operation at -100° Fahrenheit.

Shaker and power supply located in soundproof room has frequency range of 0 to 2000 C.P.S. Complete with automatic servo control of acceleration and frequency cycler.

ALLTYPES-ALLSIZES-FOR ALLAPPLICATIONS

Brumfield Way

Different relay designs are subjected to torture tests in varying degrees.
Potter \& Brumfield builds relays to all quality levels and at the best possible price to you.
Samples available for immediate delivery. Send your specification for recommendation and quotations.

For quick delivery over 350 different standard relays stocked by 500 Franchised Electronic Parts Distributors throughout the United States and Canada.

Typical rugged life test using a series of 1000 watt lamps sausing the relay to operate under a load 10 times more severe than normal.

PRINCETON, INDIANA

Control of metal finishes are a must for accurate relay operation. Parts are periodically subjected to a minimurn 20% salt spray to check their resistance to corrosion.

Tester built to JAN specifications provides shock of over 100 G's. Contact reactions are indicated on oscilliscopes thyratrons or other special equipment depending on speed.

Is contract fulfillment YOUR responsibility?

This valuable book is must reading if your contract specifies precision image formation... exact control of light and color. It's rewarding reading... you'll learn how revolutionary new achievements in optical engineering can help simplify your product design; how laboratory precision in volume production assures performance to contract specifications, yet keeps costs down. Find out how Bausch \& Lomb coordinated contract execution protects your contract commitments, from design to delivery. Get better acquainted now with America's major source of optical products.

PRIE Pad tat

- Cost Savings

Fewer insertions Sinpllified insertion equipment Fewer items purchased Fewer chassis holes Smaller chassis Reduced inspection Simplified chassis wiring

- Simplified Circuit Design

 Design engineers can determine optimum parameters by quick, eas! conponent "snap-in" kit, simulating actual final layout.
- Easy Circuit Changes

Component value changes facilitated by simple assembly program variation Modest circuit modification costs.

- Flexibility

All resistance values between 5 ohms and 50 megohns. All capacitance values between 1 mmf and 5100 mmf . Parallel and series arrangements readily obtained. Excellent Circuit Flexibility thru use of printed wiring type base.

- Isolated Components

Low shunt capacitance due to low K base.

- Close Tolerances

Resistors as close as $\pm 5 \%$
T.C. capacitors as close as $\pm 1 \%$ or $\pm .1$ mmf.

- Ruggedness

Reduced breakage. No pulled-off terminals.

- Reduced Chassis Area

15 components per square inch achieved by mounting "PAC" in vertical plane.

ERIE'S New Simplified Automation *PIN ASSEMBLY CIRCUIT Lowers TV Costs

TYPICAL CIRCUIT - ACTUAL SIZE

The Pin Assembly Circuit "PAC" simplifies automation for the electronic industry by the grouping of components such as resistors and capacitors into a unitized modular package for quick, accurate installation. Packaging a group of components greatly reduces assembly labor costs. This is the real key to lower cost television sets, radios, computers, controls and other electronic items, both commercial and military

Based on uniform "building block" components, having a $1 / \mathrm{B}^{\prime \prime}$ diameter and a $5 / 8^{\prime \prime}$ length, the Pin Assembly Circuit combines up to 92 individual components in one package. Thus, in a conventional $21^{\prime \prime}$ television receiver, all resistive and capacitive elements can be included in just a few "PAC" modules. This means a considerable reduction in cost of assembly labor and equipment, whether modules are assembled to the chassis by hand or by automatic equipment.

Write tor Erie Engineering Bulletin \#450

ERIE ELECTRONICS DIVISION
ERIE RESISTOR CORPORATION

need quick service on TIMERS for automatic control?

The more automatic control problems we get, the better we like it. For while it's true each automatic control job is a bit different from the rest, the record shows that our 19 years of timer experience has given us the special knowledge it takes to give you the right answers, and in nearrecord time.

If one of our standard timers won't do your job - or one of the 721 combinations we have thus far developed from our 17 basic units - our engineers will go right to work to develop a new combination that's the one for you That's the way we grow - and we like it.
We manufacture a complete line of timers in these 4 broad classifications:

TIME DELAY TIMERS - INTERVAL TIMERS RE-CYCLING TIMERS • RUNNING TIME METERS

And since we maintain large stocks of our 17 basic units, we can assure you of rapid deliveries - of excellent deliveries even on special orders. So whatever your automatic control problem, you have everything to gain by submitting it to our timer specialists. They'll give you a profitable answer almost with the speed of automatic control itself.

Running Time Meters

ñustra

(14.6g. INDUSTRIAL TIMER CORPORATION

131 OGDEN
STREET
NEWARK 4, N.J.

VARIABLE RESISTORS

EAST COAST OFFICE Henry E. Sanders 130 N. Broadway Camden 2, New Jersey Phone: Voodlawn 6-1608 TWN No. Camden NJ 380 Phila. Phone: Market 7-312 ${ }^{\prime \prime}$ WEST COAST OFFICE
Robert A. Stackhouse 928 S . Robertson Rlvel. Los Angeles 35, Calif.
Phone: Crestview 4-5931 TIVN No. BEV H 7666 SOUTHIVESTERN U.S.A. John A. Green Compans $66^{2} 15$ Oriole Drive
P.O. Box 7224

Dallas 9. Texas
Phone: Dixon 9918
CANADIAN DIVISION C. C. Meredith \& Co. Letel. Streetsville, Ontario
Phone: 310

SOUTH AMERICA
Jose Luis Pontet
Buenos Aires, Argentina
Montevideo. Uruguay
Rio de Janciro, Brazil Sao Paulo. Brazil
OTHER ENPORT
Sylvan Ginsbury
8 West 40 th Sireet
New York 18, New York
Phone: Pennsylvania 6-8239

actual size

AT YOUR FINGERTIPS 10 ASSORTED PISTON

Gapacitors to help solve
YOUR DESIGN PROBLEMS

FOR THE EXPERIMENTER AND DESIGNER IN

RADAR

RADIO

TELEVISION
COMMUNICATIONS
MICROWAVE
TRANSMISSION AUTOMATION GUIDED MISSILES NUCLEAR PHYSICS

It'S THE ELECTRONIC ENGINEER'S BEST FRIEND!
Here are 10 different, precision quartz and glass dielectric JFD Variable Trimmer Piston Capacitors to speed your research and experimentation-complete with electrical characteristics charted in easy-to-follow tables-characteristics
which offer you: Matched temperature coefficients to meet a wide number of requirements . . incremental adjustment of capacity for highly critical tuning . . . plus a new differential type ideal for oscillator and discriminator network applications. All housed in a handsome, felt-lined, dust-proof styrene container. Better order yours today.

ELECTRONICS CORP. 1462-62 STREET BROOKLYN, N. Y.
"Go Forward with JFD Engineering"

NOPCO ${ }^{\circ}$ LOCKFOAM for the radome

because it is uniform, offers better
electrical properties, and permits
closer dimensional tolerances"
says THE BRUNSWICK-BALKE-COLLENDER CO.
U. S. NAVY'S F3H-2N ALL-WEATHER "DEMON" single-jet, carrierbased fighter plane made by McDonnell Aircraft Corp., St. Louis, Mo. The "Demon" is an all-weather, high performance fighter combining interceptor speed and fighter maneuverability with the payload of an attack bomber. It utilizes the latest in electronic aiming devices. The high precision redome-one of the largest in commercial production - is made for McDonnell by The Brunswick-Balke-Collender ${ }^{3}$ Co., Plastics Division, Marion, Va.

Sequence of potographs shewing Noxo ockfam being poured into the mol d-where it solidifies in a natter of m nues - remevec as tie finished radome, and inspec ed. These show some of the reasons for Brunswick' stateme that $\boldsymbol{\sim}$ th Lockfoam they have been able to reduce the man=hours needed.

OPPCD

PLASTICS DIVISION
HARRISON, NEW JERSEY Los Angeles, Calif.

Where you find the most modern in construction, you are very apt to find Nopco Lockfoam being used. And that goes not only for aviation and electronics manufacture, but in many other industries as well.
Airplane ratomes are but one of the first conspicuous applications which are using to good purpose Lockfoam's excellent electrical properties its strength-weight ratios, plus Lockfoam's ability to fill exactly the configurations of any cavity into which it is poured.

Nopeo's technical staff will comperate with you to the fullest.
Write today for the Nopco Lockfoam booklet. Nopco Chemical Company, 200 Stier St., Harrison, N. J.

Here's Mid-Century's Analogue Computer Installation

Where huge savings in time and costs will be realized!

Because Republic can "fly" an aircraft or guilded missile, including take-off, cruise, landing, maneuvers and emergency conditions right in this computer center. Here, the actual performance is actually and accurately simelated, in a safe and in a relatively inexpensive manner. Here the optimum in design characteristics is determined without endangering human lives or incurring losses of millions of dollars with test flight models.

Every industry that now utilizes test models can save millions of dollars in time and model costs with a

Mid-Century analogue computer center. Every industry that needs production or automation controls can do likewise by substituting Mid-Century analogue computers to more easily and cheaply adjust their manufacturing processes to a higher optimum of production with greater uniform quality.

For a Free Survey on how Mid-Century computer equipment can help solve your specific problems, you need oniy mail the coupon today - and add to your earnings tomorrow!

MID-CENTURY INSTRUMATIC CORP.

611 Broadway, New York 12, N. Y.
Please have a representative call to discuss a specific problem on which we would like to cut costs.

Firm Name.

Street...
\qquad ...State.

By.. \qquad

"precision is our business" MID-CENTURY INSTRUMATIC CORP.

611 BROADWAY

Subminiature Package Types - Others Avcilable

Our Network Designers can solve your space problems in filters, discriminators and delay lines with the subminiature toroids.

Inquiries are invifed

reduce costs

with SOUTHCO

CAPTIVE PANEL SCREWS

Here's a low-cost retractable screw fastener to save you assembly time and to eliminate the frequent need for costly special design fasteners. Unmatched for fast, economical use by assemblers of electronic units and other paneled cabinets.
"Floating" screw insures easy alignment no matter how many screws are engaged in a single panel. No special skills or tools needed; installation fast and simple.

3 head sizes and 3 standard thread sizes available. On special order, slotted heads, stainless steel screws, and extra long screws.
Write for complete information. Southco Division, South Chester Corporation, 233 Industrial Highway, Lester, Pa.

3 SIMPLE COMPONENTS

EASILY INSTALLED
Stand-off is flanged into panel. Screw is inserted into oversize hole in standoff and locked in place by retaining ring, which is passed over threads to seat behind last thread.

A SIZE FOR EVERY NEED

Screw and stand-off are brass, nickel plated. Retaining ring is durable viny! plastic.

(B) SOUTHCO

FASTENERS
 PAWL - SCREW AND SPRING . DRIVE RIVETS • ANCHOR NUTS . ENGINEERED SPECIALTIES

OFFICES IN PRINCIPALCITIES

[^2]

NOTE all diameters and lengths are identical. Photo twive aztual size.
How do you want your 10 -watt resistors?

Here are a few of the variations you can get in basic design, terminals and mountings on a standard 10 -watt Vitrohm resistor.

It's this tremendous variety (we make a wider range of resistors than anybody else) that enables Vitrohm resistors to do so many jobs so wel - and save you installation costs at the same time.

Add to this Ward Leonard's performance standards - insured by the 19 separate
inspection tests we run on every single resistor we make - and you see why you get more resistor for your money in a Vitrchm.

Prompt delivery, too, by the way.
O ur engineers will be glad to show you which Vitrohm design best meets your specific needs. A line or call to Ward Leonard Electric Company, 450 South Street, Mount Vermon, N.Y. is all it takes. 5.4

Ucinite Test Jacks

In addition to Test Jacks with a brass, nickelplated shell and nut with nylon insulator, Ucinite now offers a less expensive version with all-nylon threaded insulator for low capacity to panel and high voltage breakdown.
These Ucinite Test Jacks - designed for standard 080 phone tips-are available in a varticty of colors . . ideally suited to coded application. Silver-plated, heat treated heryllium copper contact is mate in one priece with large
terminal ends for easy soldering. The feed through type is provided with a one-piece brass terminal stud, tin-plated.

The specialized abilities and experience of Ucinite's own staff of design engineers are available for work on new and unusual problems. Volume production facilities ensure fulfillment of the largest requirements. For full information, call your nearest Ucinite or United-CinT representative or write directly to us.

How many ways can you use

R,Q, UNND HEAD

QUICK, EASY ASSEMBLY
Nut is pressed into square hole punched in sheer meal

Ordinary sheet mectal screw futs its own chreads as it is driven into the nut, exparids fingers, locks' nut and screw 'secưrely.

United-Carr's new self-locking, plastic nut is designed for blind application and can be used with all types of metal finishes without scratching or chipping the surface. Its plastic fingers provide rigid anchorage yet will not mar paint, polished metals or even porcelain.
Inexpensive sheer metal screws cur their own threads and expand the nut's fingers as they are driven, locking borh nut and screw tightly in
place. Screws can be removed and replaced several times without damage to the nut.

DOT plastic snap-in nuts are electrically nonconductive and provide a higin degree of insula. tion aganst heat transfer For all practical purposes, they also provide an effective vapor seal.
Available in several styles and sizes. Write for full information and samples or contact your nearest United Carr representative.

UNITED-CARR FASTENER CORP.

CAMBRIDGE 42, MASSACHUSETTS

FASTENERS

follows fast-changing variables with split-second response

Designed to meet the special data-recording requirements of experimental stations, laboratories, and research centers, the new $1 / 4$-Second Pen Speed ElectroniK Recorder fills an important gap between conventional large-chart recorders and oscillographic instruments.

This new ElectroniK Recorder is the fastest largechart instrument available today . . . the perfect solution for high-speed plotting of any function that can be reduced to a d-c millivolt signal. It offers the investigator extreme sensitivity, complete flexibility, laboratory precision . . . plus many new features the research man will appreciate:

Easy range change-All components of the potentiometer bridge are located on an interchangeable bakelite card.

New design plug-in amplifier-has many times the power output of standard units . . . features high input impedance, easy accessibility, flexible gain control, and rugged construction.
New pen and corriage designs-prevent pen clogging and paper tearing. Ball point pen easily removed. Transparent cartridge shows ink supply.
New slidewire and contacts-Designed for long life under high speed operation.
Your nearby Honeywell sales engineer will be glad to discuss applications in your research work... and he's as near as your phone.
Minneapolis-Honeywell Regulator Co., Inajustrial Division, Wayne and Windrim Avenues, Philadelphia 44, Pa.-in Canada, Toronto 17, Ontario.

- REFERENCE DATA:

Write for Instrument Data Sheet No. 10.0-21
"1/4-Sicond Pan Spead ElectroniK Recorder."

Stability and Reliability make CLARE Relays and Stepping Switches ideal components for DASAC

- Pushbutton control center of the dasAC warehousing and assorting system makes use of over a hundred clare Type A and D relays and clare 10 level, 26 point stepping switches.

This device, which speeds and simplifies order picking operations, was developed by New York's Dasol Corporation, consulting engineers, to facilitate the warehouse operations of their client, Judy Bond, Inc., large blouse manufacturer.

The dasac Control Center performs three basic functions. These include selection of container destination, "memorizing' the selections in consecutive order and coordinating the information to stop the container at its proper discharge point. "Relay requirements," said Sol Tanne, Dasol Chief Engineer, "above all, demanded stability and reliability. They had to be fast-acting, quiet, stable telephone-type relays which could easily be replaced if necessary."

Ability of clare Relays to perform millions-in some cases billions-of trouble-free operations has made them inćreasingly in demand as reliable components for today's high speed devices. If your design calls for long-life, high-quality relays or stepping switches, it will pay you to bring your problem to clare. Experienced field engineers are located near you. Contact them or call C. P. Clare \& Co., 3101 Pratt Blvd., Chicago 45, Illinois. In Canada: Canadian Line Materials, Ltd., Toronto 13. Cable Address: clarelay.

DASAC Push Button Control Center which uses Clare relays and stepping switches in automatic control of warehouse assorting system.

Rear view of panel shows Clare relays, provided with dust tight covers, accessible for quick inspection and maintenance.

ELARE
 RELAES

FIRST in the industrial field

dependable controls
 backed by dependable service in matching your specifications and delivery requirements.

Electronic Components Division

Why the leaders choose RESINOX* $\mathbf{3 7 0 0}$

 for molding profit-making electrical parts

Arrow-Hart \& Hegeman ze making protitable use of critical elsetrical parts molded of Resinox 3700 in their coml ination starter where high arc-resistance is a must.

Wells Manufacturing ignition coil top molded of
 Resinox 3700 outperformed all top molded of

 tests on Utah salt flats. Because of Resinow racing car no spark power was lost at speeds up to $140 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

IBM specifias Resinox 3 r.00 for cross bar emitte BM specifes production costs of this vital $\quad 3700$ "Check Prover' part ir half because Resinox, has outstanding dimensional stability.

American Bosch uses this distributor plate molded of Resinox 3700 where its superior arc-resistance is giving top performanse in the field. (Part made for them by Specialty Insulation Mfg, Co.)
the preference for resinox 3700 grows every day. This thermosetting
mineral-filled molding powder was developed by Monsanto for superior performance in magneto ignitions, motor control and transmission circuits, and countless other electrical applications. - It combines high arc-resistance with outstanding dimensional stability. - It eliminates undesirable after-shrinkage. • Its moldability is excellent and its impact resistance is good. It has good transfer molding properties. - It offers superior heat resistance. For full information on Monsanto's Resinox 3700, write today to Monsanto Chemical Company, Plastics Division, Dept. E12, Springfield 2, Massachusetts.

Serving Industry... which serves mankind

The Gyro Servo Test Table can measure the following characteristics:

1. The drift rate of the gyro unit.
2. The current product angular velocity sensitivity ratio.
3. The characteristic time.
4. The angular velocity input voltage rate output sensitivity.
5. Minimum rate detectable.
6. High limit angular velocity deviation of performance.
7. Low limit angular velocity deviation.
8. Signal generator linearity.
9. Torque generator linearity.

Since a time interval meter is incorporated in the system, the following data can also be obtained: $\begin{array}{ll}\text { 10. Spin motor excitation frequency. } & \text { 14. Signal generator null output voltage. } \\ \text { 11. Spin motor excitation voltage. } & \text { In addition the following tests can be made: } \\ \text { 12. Spin motor excitation current. } & \text { 15. Gyro damping gap temperature. } \\ \text { 13. Signal generator excitation current. } & \text { 16. Accurate determination of the input }\end{array}$

Producers of the HIG-3 and HIG-4 Gyros, Rate and Free Gyros, Differential
Pressure Mach Meters, Air Speed Indicators, Computers, Switches and many other precision-built components.

YEARS AHEAD of the industry...

MOW' Highest Stability achieved by any Frequency Shift Keyer WeW' Increased Frequency Range 1.0 to 7.0 mc

The new Northern
Radio Frequency Shift Keyer Type 105 Model 6, is a very high stability RF oscillator which provides a means for shifting an RF carrier in accordance with the intelligence. This exciter replaces the crystal oscillator in a transmitter and produces "Mark" and "Space" carrier shift for transmission of teleprinter or telegraph signals, or a linear

Mewl Pre-selection of Proper Frequency Shift for any particular transmitter frequency multiplication

Hew' Permits use with

 external oscillator without need of adapters carrier shiff for transmission of FM telephone, facsimile or telephoto. In addition to the technical advancements mentioned above, this new Keyer continues to embody the following performance-proven features:- Direct-reading frequency calibration of shift from 0 to 1000 cps.
- Frequency shift dial adjusts "Mark" and "Space" frequencies equally above and below the carrier position, which remains fixed.
- Simplfied frequency setting makes only the upper sideband tuning indication visible on the meter over substantially all of the luning range.
- Direct-reading frequency calibration of mixer and output tuning dials from 1.0 to 7.0 mc .
- Direct-reading calibration of output frequency vernier $\pm 600 \mathrm{cps}$.
- Pulse-shaping circuit to permit operation within assigned bandwidth with no adjacent channel radiation.
- Highly stable temperature controlled oven with control of $\pm 0.1^{\circ} \mathrm{C}$. at 60°
 for Fax operations.
- Component ratings according to JAN specs for greater assurance of trouble-free operation.

LEADER PREDECESSOR,

 the Industry. It supersedes and directly replaces itsthe Type 105
Model 4.

4 Waldes Truarc Rings Cut Costs Drastically, Increase Versatility of Precision Automatic Drill

Dumore's New Automatic Drill

Dumore Precision Tools, Racine, Wisconsin, uses 4 Waldes Truarc Retaining Rings in their versatile new automatic drill unit. Machining operations have been eliminated, assembly simplified. Great labor savings have resulted from use of Truare rings.

Drive Spindle Assembly

Bearing is held in position by two Woldes Truorc Rings Stond frd (Series 5000) ond Bowed (Series 5001). Two grobves are furned and housing raugh bored in one operofion. Alternate method would require of least two odditional machining operations. Bowed Truore ring takes up accumulated toleronces resiliently.

Actuator Lever Shaft Assembly

A Single Waldes Truarc External Retaining Ring (Series 5100) acts as shoulder, holds the lever in position. Labor savings are tremendous-a simple groove cutting operation replaces furning a shoulder, grinding ond polishin'g.

Piston Assembly

Easy assembly is assured by use of one Waldes Truare Bowed Ring (Series 5001) to lack the bearing to the piston assembly. When unit is to be used in tapping opplicotions, entire spindle assembly can be removed without disassembly.

Whatever you make, there's a Waldes Truarc Retaining Ring designed to improve your product...to save you material, machining and labor costs. They're quick and easy to assemble and disassemble, and they do a better job of holding parts together. Truarc rings are precision engineered and precision made, quality controlled from raw material to finished ring.
36 functionally different types... as many as 97
different sizes within a type... 5 metal specifications and 14 different finishes. Truarc rings are available from 90 stocking points throughout the U.S.A. and Canada. More than 30 engineering-minded factory representatives and 700 field men are available to you on call. Send us your blueprints today... let our Truarc engineers help you solve design, assembly and production problems... without obligation.

For precision internal grooving and undercutting . . Waldes Truarc Grooving Tool!

Waldes Kohinoor, Inc., 47.16 Austel Place, L.I.C.I,N.Y.
Please send the new supplement No. 1 which
brings Truarc Catalog RR 9.52 up to date.
(Please print)
Name
Title
Company.
Business Address
City

[^3]Eastern Cooling Units provide coolent liquid for maintaining within sofe operating temperarure limiss liquid cooled electronic tubes or similar devices. The units are completely self-sontained and usually comprise such componenis as heat exchangers, fans or blowers, liquid pumps, seservairs, flow switch, thermostat, efc.
Cooling uniss can be modified as required fer varying conditions encountered in land or sea as wall as aircraft servico. Almost all units are designed to meet such speciflea. fion as MIL-E-5400 and MILE-5272.
The units shown below are intonded only to illustrate the varying requiremants which can be satisfied. By utilizing fairly standard components and designs based on broad experience in this field, Eastern is able to provide at minimum cost equipment exactly suiting a specific requirement.
Eastern walcomes your consultation on liquid cooling problems ranging from 200 to 20,000 wafts dissipation.

Write for Aviation Products Bulletin 330.

MODEL MB-175, IYPE 200 DISSIPA. TION: 2,000 walts. ALTITUDE RANGE: sea level to 50,000 feot. POWER REQUIRED: 28 volts D.C. WEIGHT: 25 pounds. SIZE: $10^{\prime \prime} \times 15-15 / 16^{\prime \prime} \times 1034^{\prime \prime}$ high.

MODEL E/MT-205, TYPE 200A DISSIPATION: 1600 walls. ALTITUDE RANGE: sea level to 5,000 feot. POWER REQUIRED: 28 volts D.C. WEIGHT: 25 pounds. SIZE: $10^{\prime \prime} \times 21^{\prime \prime} \times 10^{\prime \prime}$ high.

COOLING UNITS

By a sustained program of research, Eastern continuously extends the uses of the latest units in electronic tube cooling, pressurizing electronic equipment, and pumping fuels and hydraulic fluids. Research and testing laboratories, a model shop, and three manufacturing plants provide the specialized equipment and manpower to turn out fully qualified units to meet appropirate government specifications.
From our extensive line of existing units, adaptations of these units, or completely new designs, Eastern can provide equipment to handle your project well. Your inquiry is welcomed.

EASTERN INDUSTRIES, INC.
100 SKYFF STREET HAMDEN 14, CONNECTICUT

MODEL ME-177. IYPE 202 DISSIPA. TION: 1700 watts. ALTITUDE RANGE: sea level to 50,000 feet. POWER REQUBRED: 110 volt, 400 cyclo, 3 phase. WEIGHT: 27 pounds, SIZE: $10^{\prime \prime} \times 19$ 15/32" $\times 7 h^{\prime \prime}$ high, per JAN-C-1720A, size Bl-D1.

MODEL E/MT-210, TYPE 200 DISSIPATION: 1500 walls. ALTITUDE RANGE: secu level to 10,000 fees. POWER RECUIRED: 208 voles, 400 cycle, 3 phase. WEIGHT: 35 pounds. SIZE: $111 / 4^{\prime \prime} \times 1912^{\prime \prime}$

MODEL E/HT-200, IYPE 201 DISSIPATION: 1,000 watts. ALTITUDE RANGE: sea leval to 50,000 feet. POWER REQUIRED: 28 volts D.C. WEIGHT: $141 / 2$ pounds. SIZE: $10^{\circ} \times 10^{\prime \prime} \times 6^{\prime \prime}$ high.

MODEL NO. 5-A DISSIPATION: 1,000 wafls. ALTITUDE RANGE: sea level to 5,000 feef. POWER REQUIRED: 100 to 110 valts D.C. WEIGHT: 10 pounds. SIZE: $77 h^{\prime \prime} \times 1312^{\prime \prime} \times 9-1 / 16^{\prime \prime}$ high.

SOLVINC TOMORROWS PROEHEMS

Try hiding from this one!

Ground Forces are more mobile these days. Better dispersed. Harder to hit. But the modern guided missile can find them.

Launched from either ground or air, it seeks and finds and strikes-remotely controlled through electronic assemblies manufactured by WebsterChicago.

This is another example of how WebsterChicago's Government Division serves the Services. For research, development and production that solve tomorrow's problems today, our engineers and facilities are at your call.
. . . from an idea to a prototype
... from a prototype to production

WEBSTER
 CHICAGO

Maker of Webcor Products since 1914
Government Division - 816 N. Kedzie, Chicago 51

and GENERAL PLATE Composite Metals Provide Performance plus Economy

Virgin metals and alloys have their limitations, and to overcome them . . . to get the exact performance you want . . . General Plate Composite Metals are the answer. They give you broadened physical and metallurgical characteristics . . . meet your specific requirements closer and do the job better, at lower costs.

For instance - permanently bonded copper to steel gives both high conductivity and extra rigidity. Silver or gold bonded to copper or bronze combines workability with high corrosion resistance. Bronze on copper makes ideal current carrying spring material with higher conductivity. Ferrous and non-ferrous combinations give you composite metals with magnetic and non-magnetic surfaces.
General Plate Composite metals in dozens of combinations eliminate many headaches . . . are
the answer to corrosion, conductivity, heat dissipation, cost and many other problems.

General Plate products include . . . precious metals clad to base metals, base metals clad to base metals, thin-gauge rolling, composite contacts, buttons and rivets, Truflex ${ }^{(8)}$ Thermostar Metals, Alcuplate ${ }^{\circledR 3}$, platinum fabrication and refining, \#720 Manganese Age-hardenable Alloy. Write for complete information and Catalog PR-700 today.

You can profit by using General Plate Composite Metals!

METALS \& CONTROLS CORPORATION GENERAL PLATE DIVISION 312 FOREST STREET, ATTLEBORO, MASS.

Variable width - width of each of 5 pulses can be adjusted independently.

Variable delay-delay between each of 5 pulses can be adjusted independently.

CODE MODULATED MULTIPLE-PLRSE MICROWAVE SIGNAL GENERATOR Model B

Pulse-time modulation-input provided in each of 5 pulse channels for external pulse-time modulation.

Variable repetition rate-repetition rate of each group of pulses can be varied.

CODE MODULATED MULTIPLE-PULSE MICROWAVE SIGNAL GENERATOR

Model B

950-10,750 mc

Generates multi-pulse modulated carrier for beacons, missiles, radar. . . provides 5 independently adjustable pulse channels, 4 interchangeable r-f oscillator heads, precision oscilloscope, self-contained power supplies ...all in one integrated mobile instrument.

The Polarad Model B is an essential instrument for testing beacons, missiles, radar, navigational systems such as DME, Tacan, H. F. Loran, etc., where multi-pulse modulated, microwave frequency energy with accurately controlled pulse width, delay, and repetition rate is required for coding.

A fully integrated self-contained equipment with these features:

Four interchangeable Microwave Oscillator Units - all stored in the instrument . . . each with UNI-DIAL control... precision power monitor circuit to maintain 1 mw power output reference level... keying circuit to assure rapid rise time of modulated r-f output... non-contacting chokes.
Five Independently Adjustable Pulse Channels -each channel features variable pulse width and delay; has provisions for external pulsetime modulation.
Precision Oscilloscope with Built-In Wide Band RF Detector for viewing the modulation en-

SPECIFICATIONS:

Frequency Range:
Band 1 … 950 to 2400 mc
Band $2 \ldots 2150$ to 4600 mc
Band $3 \ldots 4450$ to 8000 mc
Band $4 \ldots 7850$ to $10,750 \mathrm{mc}$
Frequency Accuracy ... $\pm 1 \%$
RF Power Output . . . 1 milliwatt maximum (0 DBM)
Attenuator:
Output Range . . . 0 to - 127 DBM
Output Accuracy... $\pm 2 \mathrm{db}$
Output Impedance . . . 50 ohms nominal
RF Pulse Characteristics:
a. Rise Time... Better than 0.1 microsecond as measured between 10 and 90% of maximum amplitude of the initial rise
b. Decay Time ... Less than 0.1 microsecond as measured between 10 and 90% of maximum amplitude of the final decay
c. Overshoot . . Less than 10% of maximum amplitude of the initial rise.
velope and accurately calibrating the r-f pulse width, delay, and group repetition rate. Equipped with built-in calibration markers.
Self-Contained Power Supplies-Model B operates directly from an $A C$ line through an internal voltage regulator. The coded multipulse generator is equipped with an electronically regulated low voltage DC supply. Klystron power unit adjusts to proper voltage automatically for each interchangeable band.

Contact your Polarad representative or write to the factory for detailed information.

Internal Pulse Modulation:
No. of Channels ... 1 to 5 independently on or off
Repetition Rate . . 40 to 4000 pps
Pulse Width . . 0.2 to 2.0 microseconds
Pulse Delay 0 to 30 microseconds
Accuracy of Pulse Setting ... 0.1 microsecond
Min imum Pulse Separation ... 0.3 microsecond
Initial Channel Delay... 2 microseconds from
sync. puise
Internal Square Wave . . 40-4000 pps (separate output)
Pulse Time Modulation:
Frequency . . . 40-400 cps any or all channels Required Ext. Mod. . . . 1 volt rms min. Maximum deviation ... ± 0.5 microsecond Power Input (built-in power supply) 105/125 v. 60 cps 1200 watts.

RCA ALUMINIZES TV TUBES ON

Overall view of Stokes continuous vacuum metal izing dolly system for aluminizing TV tubes a RCA's Marion, Indiana plant. Operator is required only to load and unload tubes from the 22 carts.

THE COMPLETE LINE OF STOKES

Stokes manufactures a complete line of vacuum pumping equipment. This includes mechanical vacuum pumps, diffusion and booster pumps, vacuum valves and gages, and complete vacuum instrumentation. In engineered high vacuum equipment, Stokes builds vacuum metallizers, vacuum furnaces and other vacuum processing equipment.

Stokes has for many years been active in vacuum research. Vacuum experience among our engineers covers the range from laboratory equipment to some of the largest vacuum equipment in service. This experience is available to help solve your vacuum problems.

STOKES MECHANICAL

 VACUUM PUMPSFor vacuum processing systems and for maintaining low forepressures in high-vacuum systems, the Stokes Microvac pump provides efficient, economical operation. Designed with fully automatic lubrication and a long-lasting exhaust valve assembly, every Microvac pump is assured of smooth, trouble-free operation. Six sizes give capacities from 15 to 500 cfm . Gas-ballast available on all sizes. Send for catalog listed.

STOKES METALLIZING DOLLIES

The new Stokes installation at RCA's Marion, Indiana, plant is a valveless, rugged system capable of aluminizing up to 120 TV picture tubes per hour. Low in operating cost, it is by far the least complex continuous aluminizing system available. It is designed without timers, gadgets or intricate accessories, any of which could fail and stall production. The system is so free of vibration that a five-cent piece can be balanced on the dollies while they are in motion.

Operation is simplicity itself: the operator loads one tube to a cart; pressure is automatically reduced to the required vacuum, the filament is automatically flashed and the completed metallized tube delivered to the operator's station.

For metallizing COLOR or BLACK AND WHITE TV tubes, Stokes designs and installs automatic or semi-automatic in-line systems or stationary units, in standard designs or to customer's requirements.

F. J. Stokes Machine Company
Philadelphia 20, Pa.

SEND FOR

TECHNICAL
LITERATURE:
Microvac Pumps-Catalog 750
Diffusion and Booster Pump Specification sheets and performance curves
The Story of the Ring-Jet Pump
Complete Vacuum Processing Systems-Catalog 730
How to Care for Your Vacuum Pump-Booklet 755
Vacuum Impregnation Catalog 760
Vacuum Drying-Catalog 720
Vacuum Furnaces Catalog 790
Vacuum Metallizing Catalog 780
Vacuum Calculator Slide Rule

VACUUM EQUIPMENT

STOKES RING-JET DIFFUSION

 AND BOOSTER PUMPSThe new Stokes Ring-Jet Pumps embody a new concept of the diffusion principle. Size for size, they have pumping speeds of 10% to more than 100% above any other

STOKES VACUUM VALVES

To control vacuum safely and surely, Stokes vacuum valives are available in 4, 6, 10 and 16 -inch standard flange sizes.

STOKES-McLEOD VACUUM GAGES
For measuring vacuums from fractions of a micron up to 50 mm , Stokes-Mcleod gages are the standard of reference. Four sizes available. diffusion pump for a given heat input. Ring-Jet Diffusion Pumps are available in sizes of $4,6,10,14$ and 16 inches; Booster Pumps in sizes of $4,6,10$ and 16 inches. Send for information listed.

GTOLES

To withstand high heat, shock, and continuous off-on cycling...

More proof that

if it's a job

it's a job for Centralab
 CAPACITORS

Cutaway view of the heat exchanger and burner assembly. Centralab Electrical Porcelain spark plug is in upper left-hand corner. Fue! is ejected through metal nozzle just below spark plug.

for electronic components,

Centralab's advanced engineering continues to create the prototypes of the components industry

switches

packaged ELECTRONIC
used as igniter in new, instant car heater

A newly designed, gasoline-burning, instant heater for passenger automohiles uses the principle of reliable aircraft heaters
The new heater is an injection-type system which is complete in itself. Ignition is accomplished by a spark plug of Centralab Electrical Porcelain, energized by a separate ignition system.
The spark is cycled off and on with the fuel - usually several times per minute, as the off-on cycling modulates heater output. Ignition is instantaneous.
This calls for complete reliability and perfect timing accomplished with Centralab Electrical Porcelain made for specific heat-range and heat-shock requirements. Like all Centralab ceramics, it has high heat resistance, high dielectric strength, and dimensional stability.
Get the whole story on all the Centralab ceramics including Steatite, Cordierite, Zirconite, and Titanate. Write for Centralab Ceramic Buyer's Guide, Bulletin 42-221. Or refer to it in Sweet's Product Design File.
 this month only!

Centralab Sweepstakes

28

Big Prizes!
Nothing to buy! Nothing to answer!

1st PRIZE - \$100.00 Gift Certificate for a Hart Schaffner \& Marx Suit.
2nd PRIzE - Four (4) Arrow Shirts.
3rd PRIZE - Two (2) Arrow Shirts.
Twenty-five (25) 4th PRIZES - One (1) Arrow Tie each.
To be eligible for the grand drawing. simply send us your name and accdress on your letterhead. Or ask vour Centralab rep for an entry ber 31, 1955. Contest not open in states where prohibited.

914L E. Keefe Avenue - Milwaukee 1, Wisconsin
In Canada: 804 Mt . Pleasant Road. Toronto, Ontario

new product information
 December, 1955

 RUGGEDIZED-SEALED

 RUGGEDIZED-SEALED METER-RELAYS

 METER-RELAYS}

These ruggedized versions have the same electrical specifications and use the circuitry shown in Bulletin G-6.

Meter-relays are indicating meters with built-in relay contacts. One contact is carried on the moving pointer. The other is carried on a semi-fixed pointer. When the two pointers meet, the contacts close and lock. Locking coil is wound directly over moving coil. Reset can be manual or automatic. It consists of opening the locking circuit. Spring action in contacts kicks them apart forcefully. There are no pushers nor solenoids inside meter case. These instruments meet the mounting dimension requirements of MIL M-6A. The degree of resistance to shock and vibration depends upon sensitivity and type of action wanted. In general, the relays will not be permanently damaged by shocks of 100 G 's and vibrations up to 2,000 cps at 3-4 G's. The most sensitive relays may close their contacts under these conditions.
Usual meter ranges can be supplied from 0-20 Ua. to 0-50 A., or, 0-5 Mv. to $0-500 \mathrm{~V}$. All ranges can be supplied either $A C$ or $D C$ except low millivolts (under 0-250 Mv.). These come only in DC because of limitations of instrument rectifiers. Higher voltage or current ranges are made with external multipliers. Contact setting is adjustable from front to any point on scale arc. Or, it may be preset at any fixed point. Contact arrangements are (1) single high (2) single low (3) double, high and low. When used only as relays they can be made to operate on as liftle as 0.2 microamperes (3000 ohms) or 0.05 millivolts (20 ohms).
All models can be supplied as contact meters, illustrated in the upper photos, or as a panel meter, shown below.

Black Face
MODEL 355-C 31⁄2 INCH White Face

MODEL 455, $41 / 2$ INCH

CHESTERFIELD CIGARETTES:

 basic component of this automatic process control.Wilson Mills Road Chesterland 4, Ohio Telephone (Cleveland, Ohio) HAmilton 3-4436

MODEL Narrow bezel provides same dial 255-C area as usual $31 / 2$ inch meter.
$21 / 2$ Inch MIL M-6A Mounting Dimensions

The DEW Line:

The Model 255-C meter-relays perform a vital function in DEW Line (Distant Early Warning Radar Screen) equipment manufactured by Raytheon Manufacturing Company, Waltham, Mass., where they meet these specifications:

ELECTRICAL:	$0 / 100$ microamperes with specified speed and damping.
SHOCK:	1 and 3 -foot drops, 400 lb . hammer, 3 planes.
VIBRATION:	MIL-M-10304 (Sig C)
SALT SPRAY:	QQ-M-151 A
TEMPERATURE:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
SEALING:	MIL-M-6A

Cigarette quality is controlled by the AccuRay Cigarette Gauge-Controller made by Industrial Nucleonics Corporation, Columbus, Ohio. It has appeared in Chesterfield ads in newspapers and magazines, and on the Dragnet, Gunsmoke, and Warner Brothers Presents television shows. The Model 355-C double contact meter-relay is a

ASSEMBLY PRODUCTS, INC.

69-873 Dillon Road
P. O. Box 308

Desert Hot Springs 1, California Telephone 4-2468

RUGGEDIZED-SEALED METER-RELAYS

DATA SHEET

Ordering Specifications

CONTACTS: The same size contacts (platinum-iridium) are used for all contact ratings. Locking coil turns vary for different ratings. Standard rating 5-25 DC milliamperes, 75-125 volts. Other ratings to 100 Ma .
\square HIGH LIMIT CONTACTS: Standard.
\square LOW LIMIT: Same price, specify "Low Limit'DOUBLE CONTACT: Add $\$ 10.00$.
\square FIXED CONTACT: Single \square deduct $\$ 2.00$. Double \square deduct $\$ 3.00$.
\square ISOLATED COILS: (Maximum insulation 50 volts) add $\$ 5.00$.
\square DOUBLE LOCKING COIL: (for same contact polarity on both high and low limits) add $\$ 5.00$.
\square SUPPRESSED ZERO: (scale $40-80$ etc.) add 10%. (Specify range).
\square AC METER-RELAYS: (rectifier type) add $\$ 5.00$ and specify AC (minimum volts range $0 / 250 \mathrm{AC}$ millivolts).SPECIAL CONTACT RATING: \qquad $D C$ volts,DC milliamperes.
\square MOUNTING: Will be mounted in steel or non-magnetic material \square
RANGE:

POLARITY

RUGGEDIZED-SEALED METER-RELAY PRICES

DC Volts

$0-1$ to 0-500 (Approx. 1000 ohms per
Volt. Other sensitivities available.) $\quad \$ 42.50 \quad \$ 47.00 \quad \$ 50.50$
(External resistor required for ranges over 500 volts)

CONTACT PYROMETER PRICES

($40 \mathrm{hms} /$ millivalt with
bimetal compensation)

		$\begin{aligned} & \text { Int. } \\ & \text { Res. } \end{aligned}$	$\begin{aligned} & \text { Ext. } \\ & \text { Res. } \end{aligned}$	Thermocouple	Model 255-C $21 / 2$ Inch	Model 355 -C $31 / 2$ Inch	$\begin{gathered} \text { Model } 455-C \\ 41 / 2 \text { Inch } \end{gathered}$
$0-3000^{\circ} \mathrm{F}$	$0-1650^{\circ} \mathrm{C}$	70	10	Pt 13\% Rh	\$46.00	\$51.00	\$56.00
0-2500	0-1370	212	10	C/A	41.00	46.00	51.00
0-2000	$0-1100$	172	10	C/A	41.00	46.00	51.00
0-1500	0-800	179	10	1/C	41.00	46.00	51.00
0-1000	0-500	112	10	I/C	44.00	49.00	54.00
0-750	0-400	81	10	I/C	46.00	51.00	56.00
0-500	0-260	52	10	I/C	49.00	54.00	59.00
0-300	0-150	22	10	1/C	54.00	59.00	64.00
-75 to - 225	-60 to +110	22	10	1/C	54.00	59.00	64.00
-200 to +100	$-13010+40$	22	10	c/C	59.00	64.00	69.00

Thermocouples shown are standard. Pyrometers can be calibrated for use with most other types at extra charge. Ranges listed are standard. Special ranges made to order.

> ASSEMBLY PRODUCTS, INC.

> Wilson Mills Road
> Chesterland 4, Ohio
> Telephone (Cleveland, Ohio) HAmilton 3-4436

> Or
> 69-873 Dillon Road
> P. O. Box 308

Desert Hot Springs 1, California
Telephone 4-2468

EIMAC KLYSTROMS are used in Texas Towers forward-scatfer communications system

High power UHF/micrewave forward-scatte-tronsmitters by Nat onal Company are an example of reliable Natior al equipment designed to $m \equiv \epsilon t$ he most exacting requirements. From the first Nat oral Company forward-scatter development link to he advanced Texcs Tower communication net, Eir ac klystrons have been used exclusively $\mathrm{a}_{\mathrm{s}} \mathrm{h}$ gh power final amplifier tubes. Eimac amplifier klystrons provide the power necessary to mak leng distance communication through forward-scatter fechniques practical at microwave frequarcies.

- Second in a series of advertisements emptasizing the extensive application of Eirac amplifier klystrons and circuit componeots by the leading manufacturers of forwardscatter UHF/microwave transmitters.

National Company two, ten and fifty kilawatt trensmitters employing Eimac klystrons and circuit components are among the pacesetters in the revolutionary art of forward-scatter propagation.

EITEL-McCULLOUGH, INC.

S A N B R U N O C C L I F O R N I A

The World's Largest Manufacturer of Transmitting Tubes

vacuum-melted components give long, reliable performance...

Vacuum-melted metals are the answer to the engineer's search for more reliable materials. In vacuum tube components, for example, these superior metals mean longer tube life . . . stable electrical characteristics even after repeated heatings. For vacuum-melting removes undesirable gases before they are put in the tube.

Vacuum-melting literally sucks gaseous impurities and inclusions from the molten metal. You get high-purity, gas-free metals that far outperform conventional air-melted metals. Cathode nickel alloys, iron, and alloys for metal-glass seals
are held to uniformly close standards of composition. Purity and soundness of any metal is improved.
Vacuum Metals Corporation, pioneer in development and leading producer of vacuum-melted and cast metals, has available a wide range of these unique metals designed for electrical and electronic uses. If you believe they might improve your product, please write, giving full details. Our engineers will give them careful attention. Vacuum Metals Corporation, P. O. Box 977, Syracuse 1, N. Y.

VACUUM METALS CORPORATION
Jointly owned by Crucible Steel Company of America and National Research Corporation

TELENEEERNG
 - BAND PASS

-LOW PASS FIITERS

WIRE AND CABLE FOR EVERY ELECTRONIC PRODUCT

The National Merit Scholarship Corporation

Business is Offered Big Dividends on Investment in Higher Education

Business firms searching for a satisfactory arenue to provide financial aid for our colleges and universities now have a new opportunity of major importance. It is provided by the National Merit Scholarship Corporation, which has of. fered to devote $\$ 8$ million to matching, dollar for dollar, gifts by business firms for college scholarships and supplemental gifts to the institutions where the scholarships are used.

The National Merit Scholarship Corporation, an independent agency financed initially by gifts of $\$ 20$ million from the Ford Foundation and $\$ 500,000$ from the Carnegie Corporation, has three major purposes which are closely related. They are:

1. To locate those of the nation's young men and young women who are best equipped to go to college.
2. When necessary, to help these young people go to college by giving them financial aid.
3. To help colleges and universities meet the full cost of the instruction of those to whom National Merit scholarships are granted.

At present about half of the nation's top high

The MeGraw-Hill Publishing Company is availing itself of the opportunity to estaldish ten National Merit Scholarships. They will be known as the McGraw-Hill Merit Scholarships. The scholarships are to be awarded to qualified candidates for a four-year college course in the fields of science, engincering and the other professions and the liberal arts. There will be no limitation, beyond the appropriate professional accrediting, on the college or university selected ly a successful candidate. As part of a continuing program to aid higher education and educational institutions, MeGraw-Hill is happy to be able to share in what it believes to be the constructive educational endeavor of the National Merit Scholarship Corporation.
school graduates do not go to college. The principal reason is that they do not have the money required.

To Save Unused Brain Power

The National Merit Scholarship Corporation will strive to eliminate this dangerous neglect of topflight ability. To this end it is inviting the nation's high schools, numbering more than 24,000 , to participate in its program by designating as available candidates for National Merit scholarships the top 5 percent of their senior classes. Those so designated are then invited to take a series of tests and to submit reports designed to assure selection of the very best talent in each state. The number of scholarships to be alloted to each state will be proportionate to the number of high school graduates in the state.

The winners, the total number of whom will be determined by the amount of money the Scholarship Corporation has available, will be eligible for awards. For those who need no financial help to go to college there will be honorary awards of $\$ 100$. For those who must have help the Corporation will grant scholarships covering as much as necessary
of the cost of instruction and hamg expenses for a four-year college course.

Colleges Get Financial Help

The provision of funds to cover the students' expenses does not, however, solve the financial problems faced by many colleges. That is because the tuition charges paid by the students do not cover the cost of the instruction. The deficit must be met by drawing upon endowment funds, gifts. grants, and other a vailable sources.

Consequently, to prevent holders of National Merit scholarships from imposing any additional financial burden on the colleges and universities they elect to attend, the Corporation will make a supplementary grant to these institutions. The supplementary grant will be the equivalent of regular tuition charges made by the school, with a top limit of $\$ 1,500$ a year for both the tuition and the supplement.

As the scholarship grants to the wimning students will vary, depending upon how much financial help they need, so will the supplementary grants vary from one college to another, depending on their regular tuition charges. However, it is anticipated that on the average the full cost of a National Merit scholarship-including aid to the student and the supplement to the college-will be about $\$ 1,500$ a year.

Many business firms will find a compelling appeal in a program which is designed at once to mobilize the nation's intellectual resources more effectively and, in the process, give very badly needed financial help to our colleges and universities.

Two For One Return Offered

However, there are numerous other inducements to business firms to finance National Merit scholarships. These scholarships may:

1. Carry the name of the firm or be named in honor of someone designated by the firm.
2. Be limited to use in types of colleges of particular interest to the sponsoring firm.
3. Be limited to a college course, such as science, engineering or liberal arts, of special concern to the sponsor.
4. Be restricted to candidates or institutions in geographic areas specified by the sponsor.

In addition to these advantages there is a special financial inducement to help the Merit Scholarship program. It is that for every Merit scholarship a firm or individual finances, the Corporation will, up to the limit of $\$ 8$ million, match the funds and make another National Merit scholarship available.

There are many good ways of helping our financially beleaguered colleges and universities, and many corporations are already using one or more of them. * For those companies that can do so without embarrassing complications one of the best ways is to make unrestricted gifts directly to the institutions. But this new way provided by the creation of the National Merit Scholarship Corporation (Address: 1580 Sherman Avenue, Evanston, lllinois) has the broad appeal of serving two purposes of transcendent importance simultaneously. The purposes are to see that our hest brains are fully trained and utilized and that our colleges and universities, crucial contributors to this process, are helped at the same time. Business will serve the nation and its own community well by giving the National Merit Scholarship Corporation generous help.

[^4]This message is one of a series prepared by the McGruw-Hill Department of Economics to help increase public kinowledge and understanding of important nationwide developments that are of particular concern to the business and professional community served by our industrial and technical publications.
lermission is freely extended to newspapers, groups or individuals to quote or reprint all or parts of the text.

PRESIDENT
MCGRAW-HILL PUBLISHING COMPANY, INC.
 extension of man's VISION beyond the range of sight.
farnsworth electronics company
a division of International Telaphone and Telegrach Eorsoration FORT WAYNE, INDIANA

First for Lasting Quality-from Mine to-Market!

If it Calls for MAGNET WIRE-Call on PHELPS DODGE for INDUSTRY'S MOST COMPLETE, MOST UP-TO-DATE LINE!

Every type of insulation to meet design requirements.
Enamel • Formvar • Sodereze ${ }^{\circledR}$ • Bondeze ${ }^{\circledR}$ • Daglas ${ }^{\circledR}$. Thermaleze ${ }^{\circledR}$ Silicone • Paper • Cotton • Multiple Combinations.

Available in all sizes and shapes-round, square, rectangular. Over 400 different types!

Special emphasis on research and development-your assurance of the latest advances in magnet wire.

Vast background of application engineering experience to help solve your problems.

High capacity "V3'' switches (may be gang-mountad)

MICRO SWIrCH provides a complete line of extremely reliable, small-size, high-capacity, snap-action precision switches and mercury switches. Available in a wide variety of sizes, shapes, weights, actuators and electrical characteristics. For all types of electrical controls.

MICRO SWITCH

a division of minneapolis-honeywell regulator company

Federal rrier and weight of cable

Federal's miniature coaxial cables about $1 / 4$ the size of comparable RG types-save critical space and weight in aircraft and instrument uses.

Challenged by the high temperature and minimum weight requirements of jet aircraft and guided missiles, Federal has designed RG cables that perform perfectly at a blistering $500^{\circ} \mathrm{F}$! New Federal miniature coaxials have a top temperature rating of $150^{\circ} \mathrm{C}$. . . up to $200^{\circ} \mathrm{C}$. with an impregnated fiber glass jacket!

The key to these new cable developments lies in advanced designs.

Based on utilization of "Teflon," this superior dielectric maintains its excellent low loss and high voltage characteristics through a temperature range of $500^{\circ} \mathrm{F}$. to $-100^{\circ} \mathrm{F}$. "Teflon" has no measurable water absorption; it is chemically inert . . . unaffected by alkalies, acids, aromatic fuels, aromatic organic solvents, and highly corrosive aviation hydraulic fluids.

Federal Telephone and Radio Company
A Division of INTERNATIONAL TELEPHONE AND JELEGRAPH CORPORAIION COMPONENTS DIVISION • 100 KINGSLAND ROAD • CLIFTON, N. J.
In Canada: Standard Telephones and Cables Mfg. Ca. (Canada) Lid., Montreal, P. Q. Export Distributors: International Standard Electric Corp., 67 Broad St., New York

New G-E $\tau_{\sqrt{\text { cev-5ec }} \text { component rectifiers top } 80,000 \text {-hour-life expectancy }}$

COMPACT RECTIFIER STACKS offer designers
stable electrical characteristics.

INCREASE IN LIFE EXPECTANCY is shown in typical curves for 45 -volt cells.

Life expectancy has now been raised from 60,000 to over 80,000 hours for General Electric's new miniature Vac-u-Sel rectifier stacks. Achieved by constantly improving processing techniques, this 20,000 hour increase in life is backed up by laboratory tests. Developed for electronic, industrial-control, and power applications, these units offer compactness and stability of electrical characteristics. Ambient temperature range is broad - -65 C to 130 C -and a wide varicty of sizes, housings and finishes are available.

The "Selecto-Chart" shown below is part of a new application approach developed by G.E. It gives you greater freedom of design in selecting from the many rectifier sizes and types. Send for GEA-5935A, GEA-6273.

SELECTION IS EASY with new G-E Vac-u-Sel rectifier" Selecto-Chart.

G-E molded-case circuit breakers provide safe fuseless circuit protection

Thermal-magnetic trip elements in G-E molded-case circuit breakers help guard conductors against short circuits and sustained overloads. Operation is cool, life is lengthened through de-ionizing arc quenchers that quickly dissipate arcs. Extra safety results from trip-free operating mechanism that opens contacts against overcurrents even if handle is held closed. Solderless lugs, straight-in wiring make installation simple.

Ratings from 10 through 600 amperes for circuits of $120,240,480,600$ volts a-c, and for 125,250 volts d-c. GEC-1032.

-General () electric

DIGEST
 TIMELY HIGHLIGHTS ON G-E COMPONENTS

G.E. cuts radar transformer weights up to 35%

Small or large, narrow or wide, light weight, long life-whatever your requirements, General Electric will build high-voltage, oil-filled transformers and inductors to your specifications. The picture at left, for example, shows how G.E. cut 61 pounds from a typical radar power supply by redesigning with smaller embedded-layer coil. These coro-na-free components are suitable for many electronic applications other than radar.

Among the advantages of these smaller and more reliable G-E components are: (1) more efficient cores permit weight savings to 11%, (2) alumina terminals add reliability, and (3) the use of Formex* wire and new embedded-layer winding techniques re-
duce coil sizes as much as 53%.
All G-E radar components are designed for compact installation. All can be manufactured to MIL-T-27 specifications. All have characteristics and features to meet a wide range of requirements. G.E.'s fully equipped model shop pools engineering and manufacturing skill to fulfill your needs. The shop can deliver prototype units for your experimental or system development projects-in a hurry-because work on your jobs begins immediately. Testing is strict. Vibration, thermal-cycling and moisture resistance tests are extra steps that can be taken by G.E. to assure components of the highest quality. Ask for Bulletin GEA-5963.

Two oz. switchette operates up to $50,000 \mathrm{ft}$. alt., from $-70^{\circ} \mathrm{F}$ to $200^{\circ} \mathrm{F}$

Versatile, corrosion-resistant and compact, General Electric Size 2 switchettes perform perfectly under extremes of altitude and temperature, combine lowinertia moving parts with high contacttip force. Totally enclosed contact structure protects it from tampering and dirt. Screw-type terminals simplify wiring. For aircraft use where vibration is severe and space limited, its snap action and double-break-contact construction are especially valuable. Springreturn button on the housing can be actuated by lever, bellows, or other means. Bulletin GEC-207A.

EQUIPMENT FOR

ELECTRONIC MANUFACTURERS

Fractional hp motors Rectifiers

Components

Meters, instruments Dynamoters Capacitor. Tronsformers Pulse-forming networks. Delay lines Reactors
Motor-generator sets
Inductiols
Resistors
Voltage stabilizers

Timers
Indicoting lights Contiol switches Generators Selsyns Reloys Amplidynes Amplistots Terminal boards Push buttons Photovaltaic cells Glass bushings

Development
and Production

Equipment

Soldering irons
Resistance-welding control
Current-limited high potential tester Insulation testers Vacuum-tube voltmeter Photoelectric recorders Demagnetizers

General Electric Company, Apparatus Sales Division
Section B667-32
Schenectady 5, N. Y.
Please send me the following bulletins:
\checkmark for reference only X for planning an immediate project
\square GEA-5963 Radar Transformers
\square GEC-207A Switchettes
\square GEC-1032 Molded-case Circuif Breakers
\square GEA-5935A Miniature Vac-u-Sel Rectifiers
\square GEA-6273 New Vac-u-Sel Component Rectifiers

Name

Company

TURN PAGE FOR MORE G-E COMPONENT HIGHLIGHTS

INFRA-RED LAMPS subject new G-E capacitor to $125^{\circ} \mathrm{C}$ ambient temperature.

New G-E high-temperature Tantalytic* capacitors operate in $+125^{\circ} \mathrm{C}$ ambient at full voltage

Where quality, long life and small size are required in high-temperature, miniaturized, high-reliability equipment, specify General Electric's new $125^{\circ} \mathrm{C}$ Tantalytic capacitors. Designed to operate at full voltage in high temperature, they
meet the tough requirements of miniaturized military equipment: energy storage, filtering, or by-pass applications in electronic ordnance, guided missile, navigation, communication, and control equipment.

HIGHER VOLTAGES than 100 VDC can be applied with no life loss at ambients below rated $+125^{\circ} \mathrm{C}$ as shown above.

Three rectangular case sizes permit ratings from 36 uf at 100 volts $\mathrm{d}-\mathrm{c}$ to 180 uf at 30 volts d-c. All three sizes have same square base, varying only in height to maintain high volumetric efficiency at lower ratings.

Features: low leakage currents, long shelf and operating life, availability in polar and nonpolar construction for use in both a-c and d-c circuits. When operated at ambient of $125^{\circ} \mathrm{C}$ at rated voltage, units meet qualification requirements of 1000 hours with not more than 20 per cent loss in initial $25^{\circ} \mathrm{C}$ capacitance.

Unlike other types of Tantalytic capacitors, the foil construction offers chemically neutral electrolyte to minimize corrosion danger, plus excellent mechanical stability and freedom from electrical noise under shock or vibration. Ask for Bulletins GEA-6258 and GED2620.

LONG LIFE of G-E 125° C Tantalytic capacitors is shown by graph of life vs. loss of capacitance for typical $100-\mathrm{vd}$-c unit.

NG UFE 125° C Tantalic capacitors

designer's DIGEST

G.E. protects equipment with instantaneous voltage stabilization within $\pm 1 \%$

tions for you. You can use them in literally hundreds of types of equipment. New applications and new methods of applying these voltage-stabilizing transformers are continually being discovered. The rapid responses of control with these units are shown graphically in the three curves at right, and typical characteristics above. Bulletin GEA5754A.

General Electric voltage-stabilizing transformers are completely automatic. The compact units offer low losses, high input factor, fast response. They are easily installed, have no moving parts, and need virtually no maintenance. Often designers find standard units most satisfactory, either incorporated in new equipment or adapted to existing circuits. If special units are reqLired, G-E engineers will co-operate in finding solu-

VOIIAGE STABIUZATION Characteristics of a typical
Standand ils- or zo-volt unit operated al various load

Faced with fixed power sources, application and design engineers can draw on General Electric's "design pool" of more than 1000 different saturable reactor designs. This will simplify solving the problems they often face of controlling individual power loads manually or automatically at low cost. Very efficient even at light loads, a G-E saturable reactor provides control in an a-c circuit by direct current. Adjustment is smooth all the way. They can be satisfactorily utilized in a wide range of applications, including electrically heated furnaces and boilers, or milk pasteurizers and X -ray equipment. Apply them, too, in reduced-voltage starting, or continuously adjustable re-
active load banks. G.E. can design them in a wide variety of $a-c$ and $d-c$ ratings to meet your special application needs. Bulletin GEA-6354.

General Electric Company, Apparatus Sales Division
 Section B667-32

Schenectady 5, N. Y.
Please send me the following bulletins:
\checkmark for reference only

C Tantalytic Capacitors

\square GEA-6258 125C Tantalytic Capacitor
X for planning immediate project
\square GED- 2620 Capacitors for Electronics
\square GEA. 6354 Salurable Reaclers
For information on other products, contact your nearest G.E Apparatus Sales Office.

Nam.
 Company
 City

Leading members of the aviation industry have long known about this means of measuring aircraft and missile antenna radiation patterns. In the course of various engineering projects, they have come repeatedly to Airborne Instruments Laboratory with antenna test problems. As always, Airborne's scientists sought to create equipment, singularly perfect in performance yet flexible enough to meet many specific needs. Their efforts resulted in the Type 105 Model Range System, which automatically records polar plots of the relative field strength of aircraft radiation patterns.

The Type 105 System, however, is not only important within itself. Out of its totality have merged several significant devices, designed for many recording purposes. Among these are the 116 R Polar Pattern Recorder, the Type 20 SWR Indicator, and the Type 373 Rectangular Coordinate Recorder.

Here again is an example of creative initiative, by AIL engineers, providing a continuous succession of advanced instruments for America's industrial progress.

Send for information about the 105 Model Range System and literature on other recording devices.

Type 373 Rectangular Coordinate Recorder

SWR Indicator

why fiddle and fuss?

New -hp-711A Power Supply makes it easy to power experimental and bench setups

$0-500$ volts dc, 6.3 v ac
High regulation
Current, voltage meters
Overload protection
All-purpose utility

The new -hp-711A was developed to do just one thing--simplify your job of powering all kinds of electronic circuitry in laboratory, field and factory.

This compact (18 ths.) instrument is ideal for driving low level amplifiers, constant frequency oscillators and similar jobs where highly stable voltage is essential. Voltage range is very hroad - 0 to 500 volts. No-load to full-load regulation is better that $\pm 0.25 \%$ or 0.5 volts. Ripple is less
 than 1 millivolt.

For added convenience, there are separate current and voltage meters with new push-hutton range switching for accurate measurement of small voltages and currents. Other features include overload protection and grounding on either positive or negative de terminals. The price is $\$ 225$.

Electronic instruments for complete coverage, quality, convenience

HEWLETT-PACKARD COMPANY

3332A PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A.,
DAvenport 5-4451 . Cable "HEWPACK"
Field Representatives in all principal areas

automatic locking . . . quick disconnect plugs make Voltage Tap Panel more flexible on

KLEINSCHMIDT TELEPRINTERS

Anywhere in the world Kleinschmidt Teleprinters are set up, they're completely at home! Designed to operate on alternating current, these modern teleprinter machines are quickly and easily adapted to use from 95 to 250 volts, simply by plugging the specially designed Interlock Angle Plugs into the proper receptacle on its voltage tap panel - an ideal arrangement when machines are moved from place to place.
While connected, Interlock plugs provide a constant, low resistance contact that cannot disconnect accidentally. A vibration and impact proof contact is made on two surfaces under constant coil spring pressure, which adjusts automatically with changes in pressure or temperature.

HUBBELL

 Interlock

Type "A" Plugs and Jacks Insulated and Non-Insulated Current Cap. - 10 amps., Wire Sizes \#14 to \#18 Type "B" Plugs and Jacks (Miniature) Insulated and Non-Insulated. Current Cap. - 5 amps. Wire Sizes \#18 to \#22

```
BED
```

Type "C" Plugs and Jacks (Sub-miniature) Current Cap. 1 ampere. Wire Sizes \#20 to \#22 or smaller

DeM versatile data

 tape recorderTHE MOBILE AMPEX 800
records the broadest combination of data ever obtained concurrently on one magnetic tape-performs with laboratory precision under severe field, airborne, shipboard and vehicular conditions-and furnishes data compatible with the most widely used playback equipment.

The Ampex 800 can provide from 1 to 28 data channels. By interchangeable amplifier units, each one can be adapted to any one of three basic magnetic recording techniques :

Direct recording - 300 to 35,000 -cycle response for wide-band data or multiple recording of RDB subcarriers.
FM-carrier type recording - D.C. to 5000 cycles and high instantaneous accuracy suitable for shock and vibration data.

Pulse-width modulation recording - Up to 90 instrument readings commutated on to each tape track with frequency response 0 to 2 cycles $/ \mathrm{sec}$. With fewer instrument readings, frequency response is greater.

ADAPTS TO

ANY DATA REQUIREMENT The Ampex 800's three available recording techniques can satisfy practically any test requirement by simple insertion of the proper plug-in amplifiers. Separate channels can be assigned to measurements requiring wide-band response or high transient accuracy. And by using pulse-width techniques, many relatively steady instrument readings can be commutated on to a single channel. All will have a common time base.

WITHSTANDS THE RIGORS OF AIRBORNE, SHIPBOARD, VEHICULAR AND GENERAL MOBILE USE The Ampex 800 will perform within specifications under vibrational forces as high as 10 G -operates over a temperature range from $-65^{\circ} \mathrm{F}$. to $130^{\circ} \mathrm{F}$. - is unaffected by altitudes to 50,000 feet - and withstands a relative humidity of 100% up to $122^{\circ} \mathrm{F}$. The Ampex 800 is light in weight. It operates on 27.5 volts D.C. and 115 volts, 400 cycle, A.C. All operating functions can be remotely controlled.

RETAINS WIDELY ESTABLISHED

RECORDER STANDARDS The majority of all magnetic recorders now in instrumentation use are Ampex machines. Their recording characteristics, tape speeds, track widths and other parameters have become standards. The Ampex 800 retains these while greatly extending the environmental and mechanical conditions under which accurate test data can be gathered.

Performance specifications, descriptions and explanations

AMPEX

FIRST IN MAGNETIC TAPE INSTRUMENTATION
934 CHARTER STREET • REDWOOD CITY, CALIFORNIA
CORPORATION

Branch Offices: New York; Chicago; Atlanta; San Francisco;
Dayton; College Park, Maryland (Washington D.C. area)
Distributors: Radio Shack, Boston; Bing Crosby Enterprises, Los Angeles; Southwestern Engineering \& Equipment, Dallas and Houston; Canadian General Electric Company, Canada

FACTS YOU SHOULD KNOW ABOUT c E ul \square 1

1. Moisture absorbed is. days of immersion in tap water at 23 deg. C. Since Bakelite Cellular Polyethylene is made up of hollow cells completely separated by walls of Bakelite Polyethylene, its moisture absorption is low.

Bakelite Brand Cellular Polyethylene for wire and cable insulation is a superior low-loss plastic that consists structurally of uncomected hollow cells. It is produced by the formulation of solid polyethylene with a foaming agent which, at the time of extrusion causes expansion to a cellular form. Properly extruded, the material will expand 100 per cent, giving a density about half that of solid polyethylene.

These are the principal advantages of Bakelite: Cellular Polyethylene for high-frequency electronic service:

- Low order of moisture absorption (Fig. 1).
- Lower dielectric constant than that of solid polyethylene (Fig. 2).
- Low power factor, comparable to that for solid polyethylene (Fig. 3).
- Dielectric constant directly related to density formulation, while power factor remains uniform (Fig. 4).
- Uniformly low power losses over a broad frequency range (Fig. 5).
- Minimal power losses over wide temperature range (Fig. 6).
For more information on the properties, fabrication, and use of Bakelite Cellular Polyethylene, write Dept. ME-50.

2. Dielectric constant at 1 megacycle vs. days of immersion in tap water at 23 deg . C. Note that Bakelite Cellular Polyethylene retains its dielectric constantconsiderably lower than that of solid polyethylenethroughout long immersion periods. The lower dielectric constant results in insulated conductors with a lower capacitance per foot than when the solid material is used.

3.Power factor at 1 megacycle vs. days of immersion in tap water at 23 deg. C. Even after extended periods of water immersion, Bakelite Cellular Polyethylene demonstrates a low power factor.

POLYETHYLENE

FOR WIRE AND CABLE INSULATION

5. Power factor and dielectric constant vs. frequency. Both the power factor and dielectric constant of Bakelite Cellular Polyethylene are relatively unchanged over a broad frequency range, indicating that power losses will be uniformly low.
4. Power factor and dielectric constant at 1 megacycle vs. specific gravity. Bakelite, Polyethylene has a dielectric constant about midway between that of solid polyethylene (2.3) and that of the inert gas yielded by the blowing agent (1.0). Its value depends on the degree of expansion of the foam. The low power factor remains uniform.

6. Power factor and dielectric constant at 1 megacycle vs. temperature. These properties of Bakelite Cellular Polyethylene are consistent over a considerable operating temperature range, indicating minimal power losses due to seasonal variations.

POLYETHYLENE

BAKELITE COMPANY, A Division of Union Carbide and Carbon Corporation प[5 30 East 42nd Street, New York 17, N. Y. In Canada: Bakelite Company, Division of Union Carbide Canada Limited, Belleville, Ontario The term Bakelite and the Trefoil Symbol are registered trade-marks of UCC

The unfailing

 Dependability of BUSS FUSES

By operating properly under all service conditions - BUSS fuses can help safeguard the reputation of your product or service against loss of customer good will.

When there is an electrical fault - BUSS fuses open and prevent further damage to equipment, saving users the expense of replacing needlessly burned out parts.

And just as important, BUSS fuses won't give a false alarm by blowing when trouble doesn't exist. Useless shutdowns caused by poor quality fuses blowing needlessly are not only irritating to customers - but customers' confidence in your product or service could be jolted.

Every BUSS fuse is electronically tested to assure "trouble-free" operation.

Every BUSS fuse normally used by the Electronic Industries is electronically tested. A

helps you keep

customers

 satisfied!sensitive device automatically rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

With a complete line of fuses, fuseholders and fuse blocks available - it is just good business to standardize on BUSS.

For more information on FUSETRON and BUSS small dimension fuses and fuseholders . . . Write for bulletin SFB.

Mokers of a complete line of fuses for home, farm, commerciol, electronic,
outomotive and industrial use.

BUSSMANN MFG. CO.

(Division of McGraw Electric Co.)

 university at jefferson ST. LOUIS 7, MO.
BUSS FUSES ARE MADE TO PROTECT - NOT TO BLOW

which way*

to measure

jat engine

performance?

thrustmeters

to indicate PRESSURE RATIO ... to indicate DIFFERENTIAL PRESSURE

KOLLSMAN is in production...

on components for BOTH TYPES-for Remote or Direct reading

For over a quarter century, Kollsman has been making precision pressure sensitive mechanisms using displacement type diaphragms. This diaphragm can be called the heart of a thrustmeter pressure indicating system.

> Our long experience making displacement type diaphragms guarantees reliable thrustmeters.
typical system dPERATIONAL DATA

1. Accuracy: . 015 in 100% of readings at room temperature. .025 in 85% of readings at $-55^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. 035 in 15% of readings at $-55^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$
2. Altitude: No specific limitation.
3. Power: $115 \mathrm{~V}, 400 \mathrm{CPS}$, single phase, 18 VA
4. Pressure Ratio Range: 1.2 to 3.4
5. Pressure Ranges (operating):
$\mathrm{Pt}_{2}=2$ to $50^{\prime \prime} \mathrm{Hg}$. Abs.
$\mathrm{Pt}_{7}=2.4$ to $100^{\prime \prime} \mathrm{Hg} . \mathrm{Abs}$
$\mathrm{Pt}_{7}-\mathrm{Pt}_{2}=0.4$ to $70^{\prime \prime} \mathrm{Hg}$.
6. Temperature Range: $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
7. Weights:

Transmitter: 2.2 Jbs.
Indicator (including integral amplifier): 1.8 lb .
3. Response: Full Range in 7 seconds.

Proven Kollsman displacement type diaphragms, when fitted with Kollsman Synchrotels, comprise the transmitters for remote indicating types. Thousands of Synchrotels are now in use in other applications equally demanding of accuracy and durability.

Tailor-made Thrustmeters can be supplied for any engine-airplane combination. Write for complete technical information.
*The Pressure Ratio System has advantages for indicating
optimum climb and cruise throttle setting, whereas the
Pressure Differential System has a definite advantage at take-off.
Kollsman activities cover these seven fields:
alrcraft instruments - precision controls
PRECISION COMPUTORS AND COMPONENTS - OPTICAL COMPONENTS AND SYSTEMS radio communications and navigation equipment - motors and synchros instruments for simulated flight trainers

80-IOA 45th ave., elmhurst, new york - glendale, california - subsidiary of Standard coil products co. inc.

"Nothing can go wrong with Roto-Lock performance"

Says Elgin Metal Casket Company

Simmons Roto-Lock Fasteners are used by Elgin Metal Casket Co., of Elgin, Illinois, to give its Permaseal Caskets a perfect hermetic seal against air and water. Drawn down with a pressure of up to 1500 lbs ., Roto-Lock guarantees an absolutely tight seal and strength far beyond requirements.

President E. B. Stewart of EIgin says: "Roto-Lock worked out particularly well because of the simplicity of its construction, and the fact that it was a lock already in a housing which could readily be sealed. Functionally the lock is very good since it pulls the lid down with ease and is a quick-operating mechanism. In other words, the locking and sealing operation can be accomplished quickly and easily in a matter of seconds. Since the whole locking and sealing mechanism contains only one moving part, there is nothing that can go wrong with the performance of the lock. Of course, this is important since mal-function at a funeral service would be a serious matter."

and there's a Roto-Lock application to improve your product

Roto-Lock, which makes butt or right-angle joints quickly, is finding wide application in portable shelters, air freight and cold storage shipping containers, walk-in coolers, demountable furniture and scaffolding. It fastens in any misaligned or semi-open position and recesses completely into panels. Wherever demountability is important, there's a Roto-Lock application.

Write today for our 36 -page catalog. It's filled with applications of Roto-Lock and Simmons' four other special fasteners engineered to improve products and reduce assembly costs.

SIMMONS FASTENER CORPORATION 1750 N. Broadway, Albany 1, New York

Simmons

Some applications of Roto-Lock:

1. Portable Shelter
2. Partition
3. Demountable Refrigerator Unit
4. Demountable Desk

You can now perform the two functions of power ON-OFF control and circuit protection with one miniature fully magnetic time-delay trip-free circuit breaker. Save space (see diagram above): save weight (weighs less than 2 oz). The characteristics (tabulated at right) of this new Airpax component show it to be a significant advance in power control; just what you need.
Handle has ON and OFF positions; it moves to OFF position when breaker trips, yet breaker cannot be prevented from tripping by holding handle in ON position. Stable tripping mechanism assures reliable operation even under adverse temperature and vibration. Give your equipment the protection it deserves.
To restore service after fault has been removed, simply reset the breaker. A breaker having a 30 -sec time delay recovers full delay in about 20 sec.
To receive complete engineering data, simply write to

CHARACTERISTICS

RATINGS: 0.05 amp to 10 amp at 50 V DC or 1.0 to 10 amp at 120 V AC
MINIMUM TRIP: $\mathbf{1 2 5 \%}$ of rated load INSTANTANEOUS TRIP: 1,000\% of rated load

INTERRUPTING CAPACITY: a typical value is 500 amp at 30 V DC

POWER CONSUMPTION: 0.6 watt in lower current ratings, rising to about 2 watts at 10 amp rating
SHOCK : resists 50 g in all directions VIBRATION: 10 to 55 CPS at 0.06 in . total excursion in all directions

TEMPERATURE: -40 C to +100 C
LIFE: $\mathbf{1 0 , 0 0 0}$ operations at rated current into resistive load
ENCLOSURE : hermetically sealed

D. (RA GRAMOPHONE DEVELOPMENT CO. L HCTA LEAK INVICTA DECCA OF ENGLAND D BUR EPT VIDOR ROBERTS H. J. LEAK FERRAM G.D. (R JO GRAMOPHONE DEVELOPMENT CO. TNE BUSH PAMPHONIC INVICTA DECCA OF ENG AYMOND TRIX ELECTRICAL ROBERTS FERGUSON CHAEL. VORTEXION GRAMPIAN VIDOR F MEKC

VTONE BUSH PAMPHONIC TANNOY B IRD A
RAYMOND BURNDEPT VIDOR ROREITS FEI VTI MCVICHAEL R.G.D. (RADIO AMOF

TD.) 1 E
ICENICONE BUS

DEPT
MTI MCMICWAEL R.G.D.
(O. LTD.) RECE

Mullard

Electronic Tubes - used throughout the world

MULLARD OVERSEAS LTD., CENTURY HOUSE, SHAFTESBURY AVENUE, LONDON, ENGLAND.

Mullard is the Trade Mark of Mullard Ltd. and is registered in most of
the principal countries of the world

British equipment manufacturers are making a vital contribution to the developement of electronics in all fields of application.
Their products are being exported to every corner of the world, earning a universal reputation for advanced techniques and excellent performance.
The majority of these electronic equipment manufacturers consistently use Mullard tubes. This choice is decided upon because they prefer the greater assurance of efficiency and dependability, and because the vast manufacturing resources of the Mullard organisation guarantee ready availability of Mullard tubes wherever they are needed.
Supplies of Mullard tubes for replacement in British equipments are available from the companies mentioned below:-

In the U.S.A.	International Electronics
	Corporation,
	Department EI2,
	81, Spring Street, N.Y. I2.
	New York, U.S.A.
In Canada	Rogers Majestic Electronics
	Limited,
	Department ID,
	II-9 Brentcliffe Road,
	Toronto 17, Ontario, Canada

Corporation
Department El2,
81, Spring Street, N.Y. 12. W York, U.S.A Limited,
Department ID,
Toronto 17, Ontario, Canada

Interlock plugs insulated with ZYTEL ${ }^{\circledR}$ easily crimped for solderless connections

Interlock Type B plugs are now available with jackets of Du Pont "Zytel" nylon resin to prevent shocks and shorts. This insulation of "Zytel" protects the complete plug except contact points - allows plugging in or disconnecting with greater safety.
"Zytel" has excellent crimping properties - the terminal can be crimped tight enough for a good connection without any danger of the insulation cracking and exposing the live portion of the plug.

Use the coupon below for complete property information on this tough, durable insulating material - Du Pont "Zytel" nylon resin.

This interlock Type B plug insulated with Du Pont "Zytel" nylon resin can be easily crimped and has excellent dielectric properties. Plug manufactured by Harvey Hubbel, Inc., Bridgeport, Connecticut.

Laminations of TEFLON ${ }^{\circledR}$ for printed circuit bases

Typical uses of glass-cloth laminations of
"Teflon" tetrafluoroethylene resin include:

1. Conductor insulation, slot and phase insulation and slot wedges (motors and generators).
2. Conductors and ground insulation, coil separators and layer insulation (transformers).
3. Hookup wire, power cables, ignition wire.
4. Printed circuit bases.
5. Structural parts.

The laminations combine the dielectric properties, chemical inertness and heat resistance of "Teflon" with the tensile strength, resistance to cut-through, and resistance to creep of woven glass fiber

An informative free bulletin describing the preparation and uses of laminations and impregnations of glass cloth employing "Teflon" is now available. Write for a copy of Bulletin X-64.

Picture-tube shield of ALATHON used in new RCA color-TV receiver

Shield of Du Pont "Alathon" serves as insulator for both the deflection yoke and kinescope retaining assembly on RCA Victor's new 21 -inch color-TV set. (Kine shield molded of Du Pont "Alathon" polyethylene resin for RCA Victor by Sinko Manufacturing \& Tool Co., Chicago, Ill.)

ALATHON ${ }^{\circledR}$ has high dielectric strength, is strong and lightweight

The picture tube in the new RCA Victor color-television receiver operates at 25,000 volts. To provide insulation for this tube, RCA Victor engineers needed a material that could be readily and inexpensively molded into the complex shape of a kinescope shield . . . yet had high dielectric strength. Du Pont "Alathon" polyethylene resin proved to be an ideal material for the shield on all counts. In addition to providing the needed insulation, the shield of "Alathon" gives mechanical protection to the tube when it is shipped or handled.
"Alathon" not only has excellent insulating properties but is strong, lightweight and flexible. It is chemi-cal-resistant, as well as odorless, tasteless and non-toxic. Because of these properties, and the ease with which parts can be molded, extruded or fabricated, "Alathon" has helped engineers solve many design and operating problems.

Get complete property and application data on "Alathon," and on the other Du Pont engincering materials. Each has unique properties suited to a wide range of cost-saving applications. Clip and mail the coupon below.

NEED MORE INFORMATION? CIIP THE COUPON for additional data on the properties and applica tions of these Du Pont en gineering materials.
*"Teflon." "Alathon. "Tyrel" and "Lucite" are vegistered trade-marks of E. 1. du Pont de Nemours \& Co. (lnc.).
E. I du Pont de Nemours \& Co. (Inc.), Polychemicals Department Room 2212, Du Pont Building. Wilmington 98, Delaware Room 2212, Du Pont Bunt on canala Limited.
10 Canada: D" Hont Mox 660 , Montreal, Queliee
Please send me more information on the Du Pont engineering materials checked: \square "Zytel"* nylon resin; \square "Teflon"* tetrafluoroethylene resin; \square "Alathon"* polyethylene resin; \square "Lucite"* acrylic resin. I am interested in evaluating these materials for

NAME

COMPANY POSITION
STREET
CITY
STATE
TYPE OF BUSINESS

Navigation

Timing

Nucleonics

Geophysics

Ordnance

PRECISION DIGITAL DELAY GENERATOR

FOR GENERAL-PURPOSE LABORATORY USE

Generates pulses accurately spaced in time with respect to an internally generated reference pulse -range 0 to 100,000 microseconds

Complete generality permits numerous and varied uses such as radar range calibration, target simulation, generation of secondary frequency standards, elapsed time measurements, phase measurements, etc. Fields of application include Radar, Navigation, Telemetry, Nuclear Studies, Computor Research, Geophysics, Ordnance, and any other fields in which timing is significant.
The ability to generate a specific delay at accurate variable repetition rates sets this instrument apart from any other pulse or delay generator in the field today. Write for full details.

Pulses can be supplied under either one-shot conditions or at variable repetition rates. Both pulse delay and repefition period can be established in increments as small as 1 microsecond.

The repetition period can also be externally triggered, in which case two inde-
pendently variable delayed pulses are available. Accuracy of bolh repetition period and pulse delay are held to one part in 10^{6} by the thermostatically controlled crystal oscillator. The digital circuitry and the built-in self-checking features make continuous calibration unnecessary

8 Dependable Selutions TO HERMETIC SEALING PROBLEMS...

E-I . head.
Quarters for
hermetically-sealed multiple headers,
octal plug-ins, ter.
minals, color coded
terminals, end seals

- Patent pending

All RIGHTS RESERVED
New Catalogs on Reques
is available without oblig

6

44 SUMMER AVENUE, NEWARK 4, NEW JERSEY

advanced design of new features metal-

Above: metal parts for G-E micro-miniatures are fired in a high-vacuum furnace. Titanium is em-ployed-this substance has the unique advantage of freeing virtually all its own gases when fired to 700 C . Result of using pre-fired titanium parts: there is no subsequent vacuum contamination from metal-liberated gases when tubes operate at high temperatures. Instead, titanium serves as a gas absorber!

Right: in an operation calling for utmost delicacy, the tube's cathode disc is fitted into the support cylinder. Note rubber finger cots on the fingers holding the tiny cylinder! Changed hourly, these finger cots help ward off dirt and moisture - are worn when handling all micro-miniature tube parts, to keep the parts scrupulously clean. Other G-E aids to cleanliness are air-pressuring, air-conditioning, and lint-free Nylon and Dacron uniforms.

ONLY $3 / 8^{\prime \prime}$ HIGH! THE 6BY4 IS G.E.'S ULTRA-COMPACT NEW METALCERAMIC R-F AMPLIFIER TRIODE FOR UHF-VHF TV TUNERS.

Installs in a fraction of the space required by other tuner tubes-yet out-performs them! At 900 me operation with 10 mc bandwidth, new tube has the low noise factor of approx 8 db , and a power gain of approx 15 db . Filament and plate voltages, 6.3 v and $200 \mathrm{v} \ldots$ amplification factor, 100 . The metal-ceramic, parallel-plane design as illustrated in the cutaway, gives the new 6BY4 short electron transit time and an extremely low r-f loss; also high structural rigidity. In type 6BY4 this rigidity is employed to attain minimum microphonies rather than maximum tube resistance to shocks and vibration, since TV circuits do not undergo the same physical hazards as military and commercial airborne and mobile equipment.

1. Reference plane
2. Anode
3. Support cylinder
4. Oxide-coated cathode
5. Grid
6. Cathode ring
7. Heater
8. Grid ring
9. Heater buttons

G-E MICRO-MINITUURE TUBES ceramic construction

Heat-resistant! Micro-miniatures will operate up to 500 C! The new G-E tubes withstand shocks and vibration; have high gain, minimum noise.

Breaking sharply with traditional concepts of tube design, G-E micro-miniatures are as new as the era of advanced electronic performance that lies directly ahead.

In structure, these extremely small, rugged tubes show a straightforward engineering approach to high electrical efficiency. The materials of tomorrow are used to achieve full-rating operation at high temperatures, with no sacrifice of service life or tube dependability.

Type 6BY4--tuner triode designed expressly for TV, no bigger than a pencil-eraser, amazingly
low in microphonics - is the first of an outstanding new series of metal-ceramic micro-miniatures by General Electric. Designers of electronic equipment can meet new, exacting, commercial and military requirements by means of micro-miniature tubes - space-saving, virtually heat-proof.

Ask for full information! If your design problem is one calling for tube analysis . . . if your new circuit needs a special high-performance tube type -G-E tube engineers will be glad to consult with you. Tube Department, General Electric Company, Schenectady 5, New York.

Tube grids are carefully micro-inspected. Highpower lenses give the necessary magnification to check G-E micro-miniature grids-for the 6BY4, wire only $3 / 10,000$ inch in diameter, wound 1,000 times per inch! Special equipment, new techniques are used at every stage of micro-miniature assembly and inspection. These mark the highest precision standards attained in receiving-tube manufacture.

-
Importance of metal-ceramic research in the development of electronic tubes and other products, is accented by this new, separate Metals and Ceramics Building at the General Electric Research Laboratory, Schenectady, N. Y. Here G-E scientists, research engineers, and skilled workers invest igate and measure metal and ceramic properties and performance under every possible condition that will be encountered.

Progress /s Our Most Imporrant Product GENERAL

Fully Automatic. The Leesona No. 107 Automatic-Feed Coil Winder provides the quickest, easiest way to wind paperinsulated coils accurately. Winds four to thirty coils in stick form simultaneously. Safely handles wire sizes from No. 19 to No. 42 (B8\& S). Electronic drive assures a slow, smooth start that minimizes breakage when winding fine wires.

Meets Many Needs. The Leesona No. 108 Coil Winder is the most efficient and economical hand-feed coil winder ever designed. Winds four to thirty paper-insulated coils in stick form simultaneously. Reduces set-up time and cuts winding time and costs on long or short runs, for a wide variety of coils.

Now...Get the modern, cost-cutting coil winders you need... with one of the two Leesona Pay-As-You-Profit Plans

Here's how many forward-looking plants are now meeting competition on even terms - or better.

They're eliminating the financial waste caused by obsolete or insufficient coil winding machinery. They're cutting operating and maintenance costs, and boosting production rates, with up-to-the-minute Leesona Coil Winders - secured through one of Universal's two famous Pay-As-You-Profit Plans.

These Plans provide the economies of modern coil winding production, while safeguarding your cash,
capital position and borrowing power. Take your choice of:

I. Leesona Long-Term Purchase Plan
 II. Leesona Long-Term Lease Plan

One of these Plans may be your long-sought answer to a major production problem - may enable you to make immediate operating cost cuts, while improving your competitive position. Investigate this fast, simplified, practical financing. For information about the Pay As-You-Profit Plan that best meets your needs, contact your Universal Representative or write direct.

UNIVERSAL WINDING COMPANY
P. O. BOX 1605, PROVIDENCE 1, RHODE ISLAND, Dept. 212
E. G. PAULES \& COMPANY, 1762 West Vernon Avenue, Los Angeles, Californio

Western Representafives
W. J. WESTAWAY \& COMPANY, LIMITED, Montreal \& Hamilton, Conada Caradion Represenfatives
UNIVERSAL WINDING COMPANY, 9 South Clinton Street, Chicago, illinois UNIVERSAL WINDING COMPANY, 1500 Walnut Street, Philadelphia, Pennsylvania

Charting the course of the future in the manufacture of capacitors has always been the practice at Cornell-Dubilier. Proof of this leadership is that capacitor developments originated at C-D invariably become the standards of comparison for the entire industry.

low voltaze dry electrolytic capacitors.

C•D... 45 YEARS OF FAMOUS FIRSTS

Typical of these "famous firsts" are the three examples shown here ... proof that whatever your capacitor requirements may be your needs can be filled by C-D. Write to Cornell-Dubilier Ele ctric Corp, Dept. K-125, South Plairfields, N. J.
 THERE $H E$ CAPA

YOU GAN HAVE THE MIGROWAVE EQUIPMENT YOU NEED...RIGHT NOW!

LEASE ITI

Now, Polarad with a unique Lease Plan in electronics industry gives you the use of the microwave test equipment you need right now-without the burdens of ownership.
Management officials charged with financial responsibilities will appreciate the many advantages of leasing at a time when profits are small and corporate taxes are high. And, in the Polarad Lease Plan they will find many opportunities to preserve working capital hitherto impossible
under normal fixed asset purchasing . . Companies dealing in contract work can bid more competitively by reducing test facilities costs, because of the Polarad Lease Plan.
Profits may be preserved by the tax advantages inherent in a rental expense as opposed to a long term depreciation write-off. Write today for complete details of this plan. Polarad will be happy to review your individual requirements, and if necessary modify the plan to your needs.

POLARAD Equipment Saves Engineering Manhours

43-20 34th STREET, LONGISLAND1, N. Y.

representatives - Albuquerque - Atlanta - Baltimore - Boston - Buffalo - Chicago - Dayton - Englewood - fort Worth - Los Angeles - New York Philadetphia - San Francisco - Syracuse - Washington, D.C. - Westbury - Winston-Salem - Canada, Arnprior, Toronto-Export: Rocke International Corporation

FREE TO ELECTRONIC ENGINEERS \& DESIGNERS

A new Superior

Tube catalog

gives complete
facts on cathodes,

anodes, grid cups-

their characteristics,

uses, variety

For the first time, Superior Tube Company puts all the basic data on its broad line of cathodes and other vacuum tube components into a single catalog. The new Cathaloys are fully described. Easy-to-read tables give dimensions and tolerances on all standard cathode types, plus detailed chemical and physical properties on 23 different alloys. If you design vacuum tubes or electronic equipment using fabricated tubular parts, don't fail to send for this complete new catalog from Superior Tube Company-world's leading independent supplier of cathodes to the electronics industry.
*Manufactured under U.S. Patents. \dagger TM Reg. U.S. Pat. Off., Superior Tute Co Note. Cathaloy is a trademark of Superior Tube Co., Reg. U.S. Pat. Off.

The big name in small tubing
All analyses $.010^{\prime \prime}$ to $5 / 2^{\prime \prime} 0$. D. Certain analyses in light walls up to 2 i/2 $^{\prime \prime}$ O.D.

HOW YOU CAN USE THIS CATALOG

WHICH ALLOY. Complete Cescriptions of Superior Tube alloys make it easier for you to make the right selection.

WHICH TYPE. Tabulated dirrensional in formation given on seamless, Lockseam*, and Weldrawnt cathodes.

ANY KIND OF TUBE. Sectior scover receiving tubes, cathode ray tubes, transmitter tubes, other tubing applications.

SALES POLICY: Detailed explanation sim. plifiss ormering procedure for you, and shortens your procurement cycle.

SEND FOR YOUR COPY
 Use this handy coupon or write

Boron Carbon

Where a high degree of accuracy under widely varying temperatures is required, IRC Boron Carbons offer an ideal combination of characteristics. Their superior temperature stability is provided in 3 sizes: Types BOC- $1 / 2$ watt, $\mathrm{BOF}-1$ watt and BOH -2 watts-all 1% accuracy. Considering weight, size and cost factors, plus lower capacitive and inductive reactance, these film type precision resistors can satisfactorily replace wire wounds.

IRC TYPE	BOC	BOF	BOH
Equivalent MIL Style Wattage $\left(40^{\circ} \mathrm{C}\right.$.	RN 2OR	RN $25 R$	RN 30R
Ambient)	$1 / 2$	1	2
Max. Continuous Voltage	350 V.	500 V.	750 V.
Minimum Ohms	10	20	30
Maximum Ohms (IRC)	0.5 meg	2.0 meg	5.0 meg

3 SMALL 512:5-bCC $1 / 2$ WATT DCF 1 WATT and DCH 2 WATTS

Gircuit insfruments Inc., St. Petersburg, Flo.

TOLERANCE RESISTORS than any supplier in the industry

Molded

Boron Carbon

Only from IRC can you oblain Boron Carbon resistors with the profection of a moldat plastic housing. Any risk of mechanical damage to the coating or of insulation breakdown is overcome. Any need for special handling is eliminated, and moisture and load life characteristics are improved. 3 sires-Types MBA $1 / 6$ wath, MBB $1 / 4$ watt and MBC $1 / 2$ watt-all exceed MIL-R-10509A specifications.

TYPICAL TEMPERATURE COEFFICIENT

Wire Wound

IRC's winding skills and automatic assembly equipment provide precision windings to exacting standards. Continuous inspections at every stage of manufacture assure maximum reliability in each finished resistor. IRC Mil Type precision wire wounds meet all requirements of MIL-R-93A specification. In addition to 6 Mil sizes, IRC supplies tiny Type WWIOJ- ${ }^{13 / 12} \times 9 / 22^{\prime \prime}$. Standard tolerance $\pm 1 \%$; minimum tolerances are shown below.

Minimum Tolerances

Resistance	IRC MIL TYPES	TYPE WW $10 J$
10 ohms \& up	0.1%	
5 ohms \& up	1.25%	
1 ohm \& up	0.5%	
1500 ohms \& up		0.1%
200 ohms \& up		0.25%
65 ohms \& up		0.5%

MANY COMBINATIONS OF CHARACTERISTICS AND OPPORTUNITIES FOR COST REDUCTION ARE INVOLVED WHEN SPECIFYING CLOSE TOLERANCE RESISTORS. NO OTHER SINGLE SOURCE CAN OFFER YOU THE SCOPE OF TECHMICAL GUIDANCE AVAILABLE FROM IRC.

use coupon for complete data!

In Conada:
International Resistance Co., LId., Toronto, Licensee

Encapsulated Wire Wound

Tru-Mire encapsulated wire wound precision resistors are produced to IRC's high standards by its West Casst subsidiary, IRCAL INDUSTRIES. Available in 11 sizes and axial lead or lug types. Standard tolerance $\pm 1 \%$; alse $\pm 1 / 2$; $1 / 4,1 / 10$ and $1 / 20 \%$ rolerances can be supplied. Tru-Mire core material is the same epoxy resin as is used for the embediment. This eliminates the normal effects of temperature and moisture. Tru-Mite resistors exceed MIL-R-93A specifications.

INCOMPARABLE Frequency Stability. . .

for Airborne X-Band Radar Receivers

Now - at a New Low Cost - Varian announces the rugged VA-203 most advanced reflex klystron ever developed for airborne radar and beacon local oscillator service. The exclusive brazed-on external tuning cavity provides frequency stability obtainable in no other klystron. This construction provides outstanding stability during shock, vibration and temperature cycling ... takes punishing 50 to 100 G shocks and provides absolutely reliable operation at high altitude WITHOUT pressurization.
For Super-Rugged Service (Shocks to 250G) . . . Varian offers the VA-201 klystron. This tube is equipped with integral molded silastic leads, is similar to the VA-203 and performs with the same absolute reliability.

All these exclusive Varian features . . .

* Unique brazed-on external funing cavity assures exceptional fre-

 quency stability.* Reliable operation at low voltage and from poorly regulated power supplies. * Negligible microphonics.
* Slow tuning rate .. long tuning life . . . single shaft tuner adapts easily to motor tuning.
* Withstands 50 to 100 G shocks (up to 250 G 's for the VA-201)
* VA-203 weighs less than 4 ounces. Both tubes mate directly to standard waveguide flanges.

GUARANTEED SPECIFICATIONS		
8500 to 9600 mc	VA-203	VA-201
Resonator Voltage	300 V	250 V
Heater Voltage	6.3 V	6.3 V
Heoter Current	0.45 Amp	1.2 Amp
Power Output	$20 \mathrm{~mW} \text {, }$ Min	$15 \mathrm{~mW} \text {, }$ Min
Electronic Tuning Range	30 Mc , Min	30 Mc , Min
Vibration FM of 10 G	1 Mc, p+p, Max	$\begin{aligned} & 0.2 \mathrm{Mc}, \\ & \mathrm{p} \cdot \mathrm{p}, \mathrm{Max} \end{aligned}$

GET COMPLETE TECHNICAL DATA and specifications on the outstanding new VA- 203 and its companion VA-201 ... finest klystrons made for airborne radar. Write to our Applications Engineering Department today.

MARCONI mstruments

44 NEW STREET • NEW YORK 4

CANADA: CANADIAN MARCON! CO., MARCONI BUILDING. 242 TRENTON AVENUE, MONTAEAL ENGLAND: Head Office: MARCONI INSTRUMENTS:LMITED, ST. ALBANS, HERTFORDSHIRE
Managing Agents in Export: MARCONl S WIRELESS TELEGRAPH COMPANY LIMITED, MARCONI HOUSE. STRAND, LONDON, W.C. 2

Total Null max. 20 mv for each unit
Also available in 115 v 400 ey primary, 90 v secondary Transmitters, C.T.'s, Receivers

Get in touch Sta Standey with Budd-S

FOR WAVEGUIDE AND MICROWAVE TRANSMISSION EQUIPMENT

- silicon

power rectificer with an overall dimension
of only two inches that will
operate af currents in excess of 50 amperes
and in ambient temperatures up to $200^{\circ} \mathrm{C}$ with suifable derafing

National Semiconductor's new silicon power rectifier is designed to provide high power output and reliability in the extremely high temperature ranges.

The rectifier is housed in a rugged, shock and vibration resistant case measuring only $11 / s^{\prime \prime}$ diameter and $11 / 4^{\prime \prime}$ high. Including threaded mounting studs, the unit measures approximately two inches. Total weight is 4 ounces. The light weight, compact design and stable peak inverse voltage characteristics at high temperatures makes this unit especially adaptable for use in supersonic aircraft and guided missiles.

(86) CAPACITORS

How G-E Tantalytic* Capacitors help solve your critical design problems

Three separate lines of G-E tantalum electrolytic capacitors to meet your size and temperature needs

No matter what capacitor problems you face in your most critical electronic applications, you're almost sure to find an answer in the three proven lines of Tantalytic capacitors now offered by General Electric.

Is size your problem? G-E Tantalytic capacitors carry extremely high uf ratings per cubic centimeter, especially in the $0-150$ VDC range. In some ratings, Tantalytic capacitors are actually less than 1% the size of comparably rated paper capacitors.
Is high reliability your problem? Where small size and high reliability are "musts," as they are in communications equipment for example, G-E Tantalytic capacitors meet the challenge. Their high quality assures long, more reliable operation -at a real saving in circuit space.
Is high temperature your problem? For extremely high ambient temperatures, as found in
high-speed aircraft and guided missile applications, you can count on G-E high temperature Tantalytic capacitors. They operate at full rated voltage from -55 C to +125 C . Rectangular and tubular designs are available to meet the varying requirements of modern electronic design.
General Electric engineers have accumulated a wealth of life test and other data through a long period of testing tantalum capacitors under every conceivable condition of operation. As a result, G-E Tantalytic capacitors may be relied upon for mechanical and electrical stability and maximum efficiency in operation.

Let your G-E Apparatus Sales Representative show you how these capacitors can answer your particular problems. Or, if you would like further information (ratings and specifications) on G-E Tantalytic capacitors write directly to the General Electric Company, Section 442-30, Schenectady 5, N. Y.

Progress is Our Most /mportant Product GENERAL (3 (ELECTRIC

85 C TANTALYTIC CAPACITORS for circuits requiring low leakage current, long shelf life. Available in polar or non-polar types for a-c and d-c. Ratings $0.25-580$ uf, 3.75150 v . Tol. $\approx 20 \%$ (plain foil). -15 to $+75 \%$ (etched). Temp. range -55 to +85 C . Write for Bulletins GEC-808 and GET-2333.

125 C TANTALYTIC CAPACITORS for highspeed aircraft and guided missile electronic systems where quality, long life, small size are main requirements. Available in plain or etched foil, in rectangular or tubular designs. Ratings $0.25-180$ uf, $10-100 \mathrm{v}$. Tol. $\pm 20 \%$ (plair foil), -15 to $+75 \%$ (etched). Temp. range -55 to +125 C. Write for Bulletins GEA-6258, GET-2502, and GET-2513.

MICRO-MINIATURE TANTALYTIC capacitors for low-voltage $\mathrm{d}-\mathrm{c}$, transistorized electronic equipment such as hearing aids, pocket radios. Ratings $1-8$ uf at 4 VDC, 1 uf at $8 \mathrm{VDC}, 0.5 \mathrm{uf}$ at 16 VDC. Tolerance -0 to $+200 \%$. Temperature range -20 to +50 C. Bulletins GEA6065 and GET-2405.

RADIO MATERIALS CORPORATION
GENERAL OFFICE: 3325 N. California Ave., Chicago 18, ill. Two RMC Plants Devoted Exclusively to Ceramic Capacitors
FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.

you cant match $\sqrt{\text { Rh }}$ 触 x model 630 NOM

 for SPEED ACCURACY DURABILITY CONVENIENCE!heavy molded case
$-1 / 4^{\prime \prime}$ thick for high impact. Fully insulated.
sure grip battery contacts
Balanced double-spring tension grip assures permanent contact.
"this wide-range mode?
tests AC-DC Volts (DC at 20,000 O/V); DC Microampere, Milliamperes, and Amperes; Ohms (to 100 Megohms); Decibel and Output. Its easy-to-read scales are the longest in this type tester."

advanced engineering

- Molded mounting for resistors and shunts allow direct connections without cabling. No chance for shorts. Longer life and easy-toreplace resistors in their marked positions.

TRIPLETS ELECTRICAL INSTRUMENT CO. Bluffton, Ohio
for most efficient
meter use
-With every Model 630 you receive complete, simplified instructions on how to use and maintain most efficiently.

no slip feature

Four rubber feet furnished as standard equipment fit in back of the case to prevent slipping on smooth surfaces.
-Available as an extra (only
50 c), this special stand tilts meter at best angle for easy reading
for quick positive connections
-Banana jacks and plugs on test leads are best. Alligator clips are provided to slip on test prods for extra convenience.
for convenience
in reading

- Available as an extra (only
king size recessed knob
-Only one switch; (fully enclosed) selects both circuit and range. Just turn the switch and make your reading.

MODEL 630

\$3950

K-CAP* Ceramic Disc Capacitors are another mass produced electronic product made by Automatic Manufacturing Corporation, originators of the famous K-Tran* and J-Tran* I.F. Transformers...the first standardized I.F.'s in the industry.
K-Cap capacitors, like K-Tran and J-Tran, are manufactured completely within our own plant from the basic powders to the completed capacitor. The high K ceramic bodies are developed in our own modern laboratory and produced under the exacting supervision of our quality control engineers. The silvering process is done by men with more than 20 years experience in silvering trimmers and condensers.

K-Cap Ceramic Capacitors are distinguished by their black, wax impregnated, phenolic coating, stamped with red markings. All bear the registered trade mark K-Cap.

They are made in 4 standard types:
GUARANTEED MINIMUM VALUE
for bypassing, etc.
GENERAL PURPOSE
for coupling, etc.
TEMPERATURE COMPENSATED
in a range of T.C. from N.P.O.
through N2200
HIGH STABILITY
for elimination of drift

Available in either single capacitor, dual capacitor unshielded, and dual capacitor shielded, in a range from 2 . uuf to .02 uf.

$$
\hat{\omega} \hat{\omega}
$$

For more information about K-Cap, K-Tran and J-Tran, write for a copy of the K-Tran-K-Cap Manual-56 pages of engineering information. most valuable to you in Electronic designing.

Every part Automalic uses
 ...Aulomatic makes.

MASS PRODUCERS OF

 ELECTRONIC COMPONENTSSubsidiary General Instrument Corporation
*T.M. Reg. U.S. Pot. Off.

QK518 specifications
Frequency: 2,000-4,000 mcs.
Rapid electronic tuning by varying delay line voltage from 150 1,500 Volts.
Power output: 0.1 to 1 watt
Complete with compact permanent magnet
Approximate maximum dimensions: $10^{\prime \prime}$ long, $43 / 8^{\prime \prime}$ high, $47 / 8^{\prime \prime}$ wide.

Raytheon Backward Wave Oscillator Series

 for wide, rapid electronic tuning $\mathbf{- 1 , 0 0 0} \mathbf{~ m c . ~ t o ~} \mathbf{1 6 , 0 0 0} \mathbf{~ m c}$.The tubes in this revolutionary new line of Raytheon Backward Wave Oscillators give you four outstanding performance advantages:

1. Electronically tunable over an extremely wide range of frequencies
2. Frequency insensitive to load variations
3. High signal-to-noise ratio
4. Can be operated under conditions of amplitude or pulse modulation

These new tubes are finding fast-grewing applications in microwave equipment, including radar and signal generators.
Write today for free Data Booklet on the QK518 (above) which is available for delivery. We'll also be happy to answer any questions you may have on this new line.

RAYTHEON MANUFACTURING COMPANY

How Convair 340's Solve a Housing Problem

The nose knows when and where bad flight weather threatens! Radar weather-spotting equipment in the nose of United's Convair 340 now sees through a Koch Fiberglas Radome.
When Convair received United's order for radarequipped 340 's, they naturally turned to Koch, world's largest fabricator of moulded Fiberglas, for domes to house the radar.
The life expectancy of the Koch Radome is many, many times that of any other Radome. This Radome is made possible only by Koch's own exclusive method of moulding.
W. J. Flanagan, Convair Purchasing Agent, wrote Koch upon completion, "You have made
substantial contributions to this industry by proposing and successfully applying new departures and moulding technique."

If you are a plane manufacturer, or if you install airborne radar, investigate Koch's Moulded Fiberglas Radome. If you manufacture any equipment that needs special protection, ask the people who know the most about Fiberglas fabrication. We will be glad to confer with you about your project. Address Dept. EKE.

$\mathbf{K O Q H}$ Offerglas
Pioneer in industrial products of moulded Fiberglas CORTE MADERA, CALIFORNIA

(BG)
 DATA FOR

SOLID-STATE ELECTRONICS . . . AT RCA

For many years the Radio Corporation of America has been actively engaged in a broad program of research, development, and production of solid-state materials and devices.

Many of the electronically active solids under study and development at RCA have opened or are opening the way for new products and circuits. For example, photo-emissive and secondary-emissive materials have made possible the Image Orthicon and the multiplier phototubes. Photoconductive materials are used as light-sensitive elements in the compact Vidicon camera tube; and in new developments, they are making possible sensitive photoconductive cells for a host of potential applications.

RCA work on cathodoluminescent materials so widely used for the screens of cathode-ray tubes is being extended to find new applications for these materials; in addition, the newer electroluminescent materials are also being investigated to determine potential fields of application, By combining photoconductive and electroluminescent materials, RCA Laboratories are developing the light amplifier for intensifying images.

RCA advances in the understanding of semiconductors have resulted in important improvements in transistors. In addition to its commercial line of precision-made transistors and germanium point-contact crystal diodes, RCA has under development other types which will open new avenues of circuit design.
New ferromagnetic and ferroelectric materials under study are expected to facilitate the construction of miniature components for transistorized equipment . . . for electronic computers and business machines . . . and for many other applications symbolic of electronic progress.
Both in research and production, RCA is geared to contribute to the needs of industry for new and better products for expanding markets.

RCA DISTRICT OFFICES

Midwest: WHitehall 4-2900
Suite 1181 ,
Merchandise Mart Plaza,
Chicago 54, ill.

West: RAymond 3-8361
6355 East Washington Blvd., Los Angeles 22, Calif.

DESIGNERS

ELECTRON TUBES

BATTERIES

RCA TRANSISTORS FOR AF APPLICATIONS

RCA-2N77for low-power af applications.

for low-power
af service in
communications
and general electronic equipment.

RCA-2N109 - for
large-signal audio
applications, such as in
class B p.p power out-
put stages of battery.
operated portable
radios operating at
power levels of
approx. 160 milliwatts.

RCA-2N $105-$
for low-piwer af applications in apparatus where extremely small size is required.

RCA Transistors listed below are germanium, p-n-p, alloy-junction, hermetically sealed types, in insulated metal jackets. These highquality transistors are designed specifically for applications where extreme stability and exceptional uniformity of characteristics are paramount-initially and throughout life-and for circuits where very low collector cutoff current is essential. In addition to the units described here, RCA is developing new transistor types which will broaden transistorization of electronic equipment.

	RCA-2N77	RCA-2Ni04	RCA-2N10S	RCA-2N109
max. RATINGS				
(Absolute Values):				
collector Volts	-25	-30	-25	-25
Collector Mo	-15	-50	-15	-70
Collector Dissip. (mw)	35	up to $150 *$	35	50
Operating Temperature (${ }^{\circ} \mathrm{C}$)	50	70	50	50
TYPICAL OPERATION:*				
collector Volts	-4	-6	-4	$\rightarrow 9$
Collector Ma	-0.7	-1	-0.7	-13
Alpha (Collecior-10-base connection)	-55	-44	-55	$70{ }^{\text {º }}$
Power Gain (db)	44	41	42	$33^{* *}$
Power Output (mw) Approx	-	-	-	160**
Source Imped. (ohms)	1980	1400	2300	375 per base connection
Load Imped. (0hms)	100,000	20,000	20,000	200 per collector
Noise Factor (db)	6.5 av.	12 max.	4.5 av.	-
Cutoff Freq. (Kc)	700	700	750	-
Figure of Merit for				
High Frequency Performance (Mc)	1.7	1.6	2.6	-

* Depends on temperature and circuit parameters \dagger Large-Signal
\ddagger In common-emitter circuit at ambient temperature of $25^{\circ} \mathrm{C}$.
** For 2 transistors in class B af circuit; distortion of less than 10 percent

NEW SOLID-STATE DEVICES UNDER DEVELOPMENT

Ferrites

RCA has an extensive background of more than 5 years in the design, development, and manufacture of ferrites. Under development for a great diversity of electronic applications are the following four categories of ferrites:

1. Hard-displaying a large hysteresis loop, as in permanent magnets; 2. Soft-having small hysteresis losses, as required in deflectioncomponent cores and high-frequency transformers; 3. Square Loopwith "square" hysteresis lojps, as used in computer memory devices and high-speed switching circuits; 4. Magnetostrictive-exhibiti $1 g$ change in physical dimensions when placed in a magnetic field, as in transducers.

Semiconductor Photocells

RCA's many years of experience in solid-state electronics serves as excellent background for its developmental programs in semiconductor photocells. When such cells become commercially available, it is expected that they will find application in street-lighting control, headlight-dimming control, animated sign control, computer and business-machine reading devices, and other light-actuated devices

Radio

Receptor's

 NEW
money saving

rectifier mounting!

4ovi-kimp suap-in type

SELENIUM RECTIFIERS

Radio Receptor's unique QuI-KLIP rectifiers will soon make their debut in TV sets produced by one of the country's leading manufacturers, saving them countless dollars in production costs.

QUi-KliP requires no tools or sockets for mounting. There are no studs to break or threads to strip and the locating tab is now unnecessary. QUI-KliP provides a positive seat for the rectifier - no rocking. Yet any serviceman can remove the stack quickly by squeezing the QUI-KLIP prongs with his fingers and removing the solderless connectors

Let us show you how to put the cost saving QUI-KLIP selenium rectifiers to work in your production ... Available in most popular sizes with cells from $1^{\prime \prime}$ square to $2^{\prime \prime}$ square, for radio, TV and other electronic circuits. For detailed information, write Dept. E-13.

Semiconductor Division

QUICK MOUNTING! QUICK REMOVAL!
Spring steel clips with safe edges snap into two round, large tolerance holes in chassis (approx $/ 3 /{ }^{\prime \prime}$ dia., $3 / 4$ c. to c.). Solderless connectors as shown, when used. simplify servicing

- Speeds assembly time.
- Slashes production costs.
- Simplifies assembly.
- Eliminates stud rejects (No studs or nuts needed.)
- Permits easier replacement in the field.
\square
RADIO RECEPTOR COMPANY, INC.
In Radio and Electronics Since 1922
SALES OFFICES: 251 WEST 19TH ST., NEW YORK 11, N. Y., WAtkins 4.3633 • Factories in Brooklyn, N. Y.

Selenium Rectifiers, Thermatron Dielectric Heating Generators and Presses, Communication, Radar and Navigation Equipment

TO: Engineers and Purchasing Agents who buy power supplies

Our weekly mail never contains fewer than 35 requests for quotation on non-standard power supplies. Some of these requests can be handled by modification of standard supplies, but most of them require a custom "anit mean it in the

When we say "custom" we mean custom design, fullest sense of custom test...but custom construction, first (and most impor custom $\frac{\text { specification }}{\text { A complete regulated }}$ power supply

A complete regntains at least fifty specification the equipment it describes. facts about customers to be that

We don't ask our we've become very good complete, because we at long-distance mincribing the us a good start, possible. We'll give your request the "full treatment".

If you need expert advice in formulating your specification, call engentatives. of our local you copies of hundreds He can show you custom quotes we have made of different from $\$ 65$-0 $\$ 180,000$. recently, , he will write up the If you wish, hor you, and transmit it to us for quick action.

INCIDENTALLY-
The average quote takes $71 / \mathrm{man}$ mours of design it takes soul-searching, and just postage, and something secretarial time, paper, postage, according to our accountant called overhead. It costs us, accoctly $\$ 67 \ldots$ but who (who never crystal-gazes), So we called this memo ever heard of a $\$ 67$ answer? So wite, whe, phene.

Hard to believe? Not
when you start adding them up. For example, here are some of the most important! Input voltage range Input current Input power Input power facior MIL Spec conformation
Outpuf voltage range
Output current range
Regulation-static
Regulation-dynamic
Response time
Output Impedance-DC
Output Impedance-dynamic
Ripple and Noise
Stability
Circuit Protection (fusing, efc.)
Personnel Protection
(interlocks, etc.)
Meters (cxcuracy, size, etc.)
Housing
Size
Weight
Price
Delivery

Write for Catalog Z-5

Conporation

Electronic Development \& Manufacturing

New Phone No.
Chestnut 1-1500

34 CARNEGIE AVENUE, KENILWORTH, NEW JERSEY

$$
\text { Competent Engineering Representation Everywhere } \left\lvert\, \begin{aligned}
& \text { Rapid, complete, competitive custom quotes from } \\
& 1000 \text { Amperes (low voltage) to } 250 \mathrm{KV} \text { (low current.) }
\end{aligned}\right.
$$

```
P O W E R
S U P P L I E S
```

[^5]1700 series Mallory split-reed vibrator* uses special alloy leaves which serve both as contacts and as springs . . . eliminating usual button contacts. Life is greatly increased, constancy of output improved, and driving power reduced.

* Patent A pplied For

New Heavy Duty Mallory Vibrator

gives far longer life, constant output

For the peak in dependability and performance, plan to use this newest Mallory vibrator in your communications equipment. A completely new idea in vibrator design eliminates conventional contact buttons. The spring leaves themselves . . . made of special contact alloy ... act as contacting members. This design provides greatly increased contact area, with these important advantages:
consistently Longer Life. Tests made on heavy duty cycles prove up to 100% greater service can be expected. . . with a high degree of consistency.
Steadier Output. The decreased rate of erosion means less change in contact spacing, less variation in voltage.
Flare-Proof Starting. The new low-mass design permits wider contact spacing to prevent start-up flare . . without need for greater driving power.
Exceptional Uniformity of characteristics is made possible by the simplified design.
Minimum Size for heavy duty ratings.
The new design is available in the split-reed type shown here, for $6 / 12$ volt service, and in the Duplex heavy duty model without the split reed construction. For full technical data, and for a consultation on your specific power supply requirements, write or call Mallory.

Expect more... get more from
Serving Industry with These Products:
Electromechanical-Resistors - Switches - Television Tuners * Vibrators Electrochemical-Capacitors - Rectifiers - Mercury Batteries Metallurgical-Contacts - Special Metals and Ceramics - Welding Materials

Parts distributors in all major cities stock Mallory standard components for your convenience.

CROSS
 TALK

- CONVERSATIONAL SERVICE ... Following up last month's editorial entitled D.O.A., we call attention to a particular kind of repair work that often goes hand in hand with skimped products.

The essential tool is the tongue rather than the test set. From the tip of this instrument, firmly embedded in cheek, rolls such phrases as "They all work that way in this neighborhood," or "That's the way it's supposed to work," or "I don't see nuthin' wrong with it," or "There. that's a little better."

Much of this goes back to the fact that a man cant fix what isn't there. And so we repeat: There should be more design margin . . . and men with a conscience. More rugged assembly . . . and men with a conscience. More careful adjustment .. and men with a conscience. More critical testing . . . and men with a conscience.

People are getting tired of being talked out of it.

- SEGREGATION . . . Because the electronics industry continues to grow and diversify, it is inevitable that from time to time someone will suggest further grouping of like exhibits at trade shows. Component parts would all be together in one area, instruments in another, transmitters in another, industrial controls in another and so on. This would permit highly specialized technicians to concentrate upon areas containing products of obvious immediate interest,
therefore the suggestion has some merit.

Similar segregation of printed pages has several times been suggested to Electronics magazine. We have weighed the pros and cons, and continue to resist because ideas generated in one branch of this business have a habit of solving problems in other branches. Anything tending to reduce the exposure of the audience to overall technical advances would reduce the idea carryover.

We think, too, that while segregation might be neat it also could be deadly dull.

- PORTICO . . . Speaking of shows, we were intrigued enroute to the huge WESCON meeting in San

Francisco by a program note that said exhibits would be in the Civic Auditorium and an adjacent portico.

Were it not for the fact that our dictionary says a portico is "a structure consisting of a roof supported by columns or piers," and the absence of tanbark on the ground, we would have sworn it was a tent.

- BOUNCE . . . You can knock a New Englander down but it is hard to knock him out. A manufacturer in the flooded northeast fished some equipment out of the drink the other day and noted that several panel meters were filled with water. "That," he remarked," is what I call optimum damping."

LOOKING AHEAD . . .

Transistor production techniques quite different from those currently in use are well along in an advanced laboratory stage, may late next year radically reduce waste, cut costs, expand applications

Earth's magnetic field can displace a tv picture a fraction of an inch when a set is moved. Vot noticeable with monochrome, but suggests need for easily accessible adjustment when dealing with color

Watch for announcement of less complex color tube shadow mask, expected momentarily

Machines that type words instead of letters of the alphabet are already in experimental use. Next step will be broadening of vocabulary by means of magnetic storage. Ultimate may be typewriter you just talk to

Industrial process control is simplified when . . .

Operational d-c amplifier

Modulator

Demodulator

Basic Control Circuits

CUMMARY These basic circuits will solve more than 75 percent of an industrial control engineer's electronic problems. When the circuits are built up in plug-in form and stocked, relatively complex systems can be assembled off-the-shelf

AUTOMATIC CONTROL in industry requires many mechanical. electromechanical and electronic subassemblies. To develop a new control system, it would be desirable to have an on-the-shelf stockpile of building blocks to perform the various functions required.

Development time could be reduced considerably. All that would be required would be to connect these building blocks to satisfy the specified requirements. There will always be a few specialized items in each system that must be developed to satisfy a particular need. However, these cases represent only 10 to 15 percent of the total system.

Circuits Required

Amplifiers, power supplies, modulators and demodulators represent over 75 percent of the units required for an automatic control system.

The specifications for an amplifier, modulator or demodulator should include: gain, frequency
response, phase shift, drift stability, linearity, input, output and load impedance, maximum linear voltage output swing, output voltage with zero input voltage and power.

The specifications for a power supply should include: nominal output voltage, output current range,

FIG. l-Operational amplifiers sum, differentiate and integrate
load-change and line-change regulation, output impedance and power.

D-C Amplifier

There are as many types of amplifiers as there are electronic engineers. However, the most versatile type of amplifier may be used for adding, subtracting, integrating or differentiating. This amplifier is usually direct coupled as found in analog computers. But it may be an a-c amplifier if only addition or subtraction is required and extreme simplicity as well as long-time high-gain drift stability are desirable.
The theory of operational amplifiers is available in many textbooks. ${ }^{\text {. }}$
Figure 1 illustrates the basic operations that may be performed by operational amplifiers. Figure 2 is the schematic for a d-c operational amplifier with the specifications listed in the accompanying table.

Closed-loop gain may be adjusted by varying the ratio $R_{r 0} / R_{i n}$. The values of the cathode resistor and

Open-loop gain	4,500
Frequency response	
open loop	3 db down at 50 cps
closed loop ($R_{f b} / R_{i n}$) $=10$	3 db down at $50,000 \mathrm{cps}$
Phase shift	
open loop	135 deg at 50 cps
closed loop $\left(R_{y b} / R_{i n}\right)=10$	135 deg at $50,000 \mathrm{cps}$
Drift.	20 mv referred to input grid
Gain linearity ($R_{f b} / R_{\text {in }}$) $=10$. .	0.22 percent
Input impedance	dependent on $R_{\text {in }}$ and $R_{f 0}$
Output impedance	
open loop. .	33,000 ohms
closed loop ($R_{f b} / R_{\text {in }}$) $=10 .$.	73 ohms
Optimum load impedance	greater than 10,000 ohms
Max output swing	
(50,000-ohm load)	$\pm 50 \mathrm{v}$

FIG. 2-Circuit and specifications for a d-c operational amplifier such as used in analog computers

Are Packaged

By L. S. KLIVANS*
Northrop Aircraft, Inc.
Inglewood. Califormia

R_{L} at the output are a function of the load impedance and the maximum desired output voltage swing. A plug-in version of this amplifier is shown in a photograph.

A-C Amplifier

Figure 3 is a schematic of an a-c operational amplifier with the specifications listed in the table.

Closed-loop gain may be adjusted by varying the ratio $R_{t b} / R_{i n}$. The values of R_{k} and R_{L} at the output are a function of the load im-
pedance and the maximum desired linear output voltage swing.

Servo Amplifier

Figure 4 is a schematic of a 60 or $400-\mathrm{cps}$ servo amplifier. Although both of the operational amplifiers can be used also as servo amplifiers if a large number of inputs and low gain as well as power output is required, in general this is not the case. For simplicity, as well as increased performance, it is desirable to have a servo amplifier
building block.
Servo amplifier gain may be adjusted by varying the ratio $R_{t o} / R_{i n}$.

The output transformer is chosen to match load impedance characteristics. It was selected to drive a Transicoil 11 MG 400 -cycle induction motor-generator.

Power Supplies

A series-regulated power supply package is excellent for the 0.5 to 1 -

* Now with Radioplane Co., Van Nuys, California.

FIG. 3-Long-time high-gain drift stability characterizes this a-c operational amplifier

FIG. 4-Servo amplifier for 60 or 400 cps features simplicity and increased performance over operational types
percent regulation range. Where 2 to 5 -percent regulation is satisfactory, simplicity may be gained by utilizing voltage-regulator tubes. The latter category is suitable for servo amplifiers. The former is recommended for operational amplifiers to insure long-time drift stability.

Figure 5 A is a schematic of a subminiature plug-in series-regulated power supply utilized with the operational amplifiers shown in Fig. 2 and 3.
Figure 5B shows a regulated power supply utilizing voltageregulator tubes. This power supply will suffice for servo amplifiers or applications where 2 to 5 -percent supply changes are not detrimental.

The specifications for the two supplies are listed in the table.

Modulators

Modulators and demodulators are necessary in an automatic control system to convert from d-c to a-c or a-c to $d-c .{ }^{2}$ In a modulator, the a-c output will be proportional to the d-c input and the phase will depend on the polarity of the input signal. For the demodulator the d-c output will be proportional to the a-c input and the polarity will depend on the phase of the input signal.

The decision as to which type of signal will be used arises from characteristics of the control sensor (pressure transducer, acceler-
ometer, strain gage, phototube, etc) and the power actuation system. Where one is $d-c$ and one is a-c, it is necessary to convert the signals.

Where it is desired to convert an a-c signal to phase sensitive d-c, a demodulator is used. Figure 6 is the schematic of a 400 -cps demodulator with the specifications listed in the table.

Figure 7 is the schematic of a $400-\mathrm{cps}$ modulator with specifications as given.

This modulator is designed to be utilized in the error portion of the control system. Therefore linearity and maximum output swing requirements are not excessive. An electromechanical chopper is recom-

1.3 to 1.4

2 db down at 20 cps
50 deg lag at 20 cps
0.062 v at output
± 2 percent
35.000 ohms

300 ohims greater than 10,000 ohms
$\pm 100 \mathrm{v}$
$+100 v,-2 \%$
$0.01 \mathrm{v}, 400 \mathrm{cps}$
6.3 v at 0.6 amp
+150 vat 6 ma
-150 v at 6 ma

FIG. 6-Demodulator is used to convert a-c signal to phase-sensitive d-c
mended where low drift rates, large voltage swings and high signal-tonoise ratios are required. ${ }^{3}$ A subminiature plug-in modulator is shown in a photograph.

The modulator and demodulator may be utilized with different carfier frequencies with minor circuit changes. A subminiature plug-in phase-sensitive demodulator is shown in a photograph.

Pressure Control

Figure 8 illustrates an automatic system to control pressure accurately with reference to a pressure at a remote location. The reference pressure transducer transmits a low-level a-c voltage proportional to pressure. It is necessary to amplify this signal to drive a hydraulic control valve

FIG. 7-Modulator for error portion of control system converts from d-c signal to a-c
and actuator to displace a bellows that produces a pressure equal to the reference pressure.

A pressure transducer equal in characteristics to the reference transducer generates the feedback

FIG. 8-Pressure regulating system uses three plug-in units: a-c amplifier, modulator and d.c amplifier
signal. Three of the building blocks are utilized. An a-c operational amplifier amplifies the error signal from the two transducers. A demodulator converts this error signal to d-c. A d-c operational amplifier provides error-network equalization to improve system stability and response and drives the electrohydraulic control valve of the hydraulic actuator.

The overall system could be put together and checked out in a matter of days utilizing the buildingblock techniques rather than in the weeks or even months that normally would be required if the electronic circuitry had to be developed to satisfy the requirements.

References

(1) G. A. and T. M. Korn, "Electronic Analog Computers', MeGraw-Hill Eook Company, Inc., गew rork, 1952. (2) I. A. Greenwood, Jr., J. V. Holdam Jr. and D. Macrae, J., "Electronic Instruments", p 375, McGraw-Hill Bools Company, Inc. New York, 1948 .
(3) B. Chance, V. Iughes, E. F. MacVichol, D. Sayre and F. C. Williams, "Waveforms", p 389, McGraw-Hill Book Company, Inc., New York, 1949.

Designing Over-Horizon

> CUMMARY —— Long-distance, wide-band circuits are possible using the phenomenon of tropospheric propagation provided high transmitter power and diversity receiving equipment are used. Design considerations, including antenna gain and order of diversity, show how to set up a working system with a given percentage of reliability

POINT-TO-POINT communication with ultrahigh and super-high frequency transmissions has always appeared attractive because of three important considerations: high reliability as a result of freedom from ionospheric, atmospheric and geomagnetic disturbances; large information bandwidths; and privacy.

For many years these transmissions were believed to be of service only within or slightly beyond the radio horizon, although Marconi refused to recognize this limitation. However, with advances in transmission and reception techniques and in the technology of materials, it was demonstrated that useful signals could indeed be propagated well beyond the horizon, for distances of several hundred miles, possibly by a forward-scattering mechanism or by progressive partial reflections within the troposphere.

The discussion presented here outlines briefly the design of typical point-to-point over-the-horizon cir-
cuits, with emphasis on the operating margins that must be incorporated for accommodation of various types and grades of service.

Frequency Range

The frequency range from 100 to $5,000 \mathrm{mc}$ is best suited for point-to-point over-the-horizon (o-h) transmissions. The propagation mechanism still operates at frequencies as low as 30 mc , but difficulties in achieving narrow-beam antennas and intrusion of ionospheric effects raise the lower limit to about 100 mc .

The upper frequency limit is established by the heavy absorption of very short microwave radiation by water vapor in the atmosphere. Accordingly, the relationships that will be employed in discussing various system parameters as a function of frequency will be treated as valid only in the range 100 to $5,000 \mathrm{mc}$.

The path loss between two points connected by an o-h link consists of two major contributions, a free-

FIG. 1-Free-space loss is dependent upon distance and wavelength
space loss and an over-the-horizon loss. This breakdown of the total loss is purely a bookkeeping convenience, since experimentally only the total loss can be measured. The free-space loss contains the frequency dependence, while the o-h loss (in the $100-5,000 \mathrm{mc}$ range under discussion) is substantially independent of frequency.

Both losses, however, are dependent upon distance, with the o-h loss exacting the greater toll at long distances. The free-space loss represents the reduction in power density with increasing distance in free-space from the source of radiation. The frequency dependence of the free-space loss stems from the variation in collecting area (expressed in square wavelengths) of any receiving aperture of given gain as the frequency is altered.

The o-h loss is the loss remaining when the free-space loss expressed in decibels is subtracted from a median total loss (also in db) determined by a number of experiments ${ }^{1,2,3}$ over the frequencies and distances of interest. Various theoretical foundations for the form of the o-h loss ${ }^{1-7}$ have been given. It is the experimentally determined path loss that must be principally considered in the design of point-to-point o-h links.

Free-Space Loss

The free-space loss, L_{f}, when expressed in decibels, takes the form
$L_{f t}=10 \log _{10} \frac{G_{r} G_{t}}{P_{r} / P_{t}}=$
$20 \log _{10}\left(\frac{4 \pi d}{\lambda}\right)=22+20 \log _{10}(d / \lambda)$

Communications Links

By DAVID DAVIDSON and ALFRED J. POTÉ

Hycon Eastern, Inc.
Cambridge, Mass.
where P_{r} is the received power at a receiving antenna of gain G_{r} in the direction of the link, P_{t} is the transmitted power delivered to an antenna of gain G_{t} in the direction of the link, d is the distance between terminals and λ the wavelength. Note that it is the ratio d / λ, the distance in wavelengths, that determines the character of the free-space loss as shown in Fig. 1.

Over-Horizon Loss

Path loss L_{p} is the sum of L_{f}, , the free-space loss and $L_{\text {oh }}$, the o-h loss, all quantities being expressed in decibels. The empirical formulation of $L_{o n}$ is

$$
\begin{equation*}
L_{o h}=A+B\left(d-d_{o}\right) \tag{2}
\end{equation*}
$$

where A is the o-h loss associated with the distance d_{o} and B is the rate at which the o-h loss accrues with distance (attenuation rate). For present purposes, d_{o} will be taken as 100 miles; the expression then becomes

$$
\begin{equation*}
L_{o h}=57+0.13\left(d_{m i}-100\right) \tag{3}
\end{equation*}
$$

FIG. 3-Aperture-to-medium coupling loss results from failure to realize plane-wave antenna gain

FIG. 2-Over-horizon loss for typical northern U. S. overland transmission
where $d_{n, i}$ indicates that distance should be entered in miles. The attenuation rate B is dependent on the average refractive properties of the atmosphere for the path under discussion. The value 0.13 db per mile is taken as typical for overland transmission in northern U. S. A. and southern Canada. It may be as low as 0.11 db per mile for semitropical, over-water paths and as high as 0.15 db per mile for dry, arctic conditions.

Parameter $L_{\text {on }}$ is plotted in Fig. 2 for the case of $B=0.13 \mathrm{db}$ per mile. For other values of B, some adjustment might be necessary for the value of A.

Total path loss L_{p} in decibels, can then be written as
$L_{p}=L_{f}+L_{o h}+79$

$$
\begin{equation*}
+20 \log _{10}(d / \lambda)+0.13\left(d_{m i}-100\right) \tag{4}
\end{equation*}
$$

Antennas

The ratio of antenna gains to the ratio of received and transmitted powers, as shown in Eq. 1, implies that transmitted power may, up to a point, be exchanged for antenna power gain. Since increasing the antenna gain results in a narrowing of the antenna beam, an exchange of transmitted power for antenna gain is accompanied by increased privacy. This is not directly evident from Eq. 1.
Assuming that paraboloidal reflector antennas of diameter D are used, with illumination efficiencies of 64 percent, numerical power

FIG. 4-Coupling loss for three different beam widths
gain is given by

$$
\begin{equation*}
G=2 \pi(D / \lambda)^{2} \tag{5}
\end{equation*}
$$

The half-power beam width in degrees, w°, is given ${ }^{1}$ by

$$
\begin{equation*}
w^{\circ}=70 \lambda / D \tag{6}
\end{equation*}
$$

The net path loss $L_{\text {net }}$ can then be expressed in decibels as

$$
\begin{equation*}
L_{n e t}=L_{f s}-G_{s}+L_{o h} \tag{7}
\end{equation*}
$$

where G_{s} is the system gain and is the sum of the terminal antenna gains expressed in decibels. That is, for similar antennas

$$
\begin{equation*}
G_{a}=20 \log _{10} 2 \pi(D / \lambda)^{2} \tag{8}
\end{equation*}
$$

The relation of system gain to beam width can be expressed in decibels as

$$
\begin{equation*}
G_{s}=89-40 \log _{10} w^{\circ} \tag{9}
\end{equation*}
$$

For example, with a beam width of $1^{\circ}, G$ equals 89 db ; with a beam width of $2^{\circ}, G_{s}$ falls to 77 db .

Thus far, the effect of increased antenna gain has been related to increased privacy and a reduction in the net path loss. When the antenna beams become extremely narrow (large apertures), the volume of the atmosphere intercepted by the beams does not contribute as much to the scattering process ${ }^{8}$ as it would with wider beams. The result can be regarded as an increase in o-h loss or as a failure to realize the full plane-wave antenna gain; the latter view is presently more prevalent.

This aperture-to-medium coupling loss L_{0} has been defined theoretically ${ }^{2}$ under the assumption of identical terminal antennas. The magnitude of L_{c} depends on antenna beam width and distance between stations. As shown in Fig. 3, L_{c} is a function of w / w_{d}, where w is the beam width and w_{i} the angular distance between stations for an
assumed radius of the earth of 5,000 miles. Loss L_{0} is a function of distance only for a given antenna beam width.

An example of this dependence on distance is given in Fig. 4 for beam widths of $0.5,1.0$ and 2.0 degrees. It is difficult to determine L_{0} experimentally, but this has been done ${ }^{n}$ by Lincoln Laboratory, M.I.T. The results indicate that L_{c} is generally several decibels lower than predicted in Fig. 3 and 4 . Temporal variations noted in L_{c} are indicated in Fig. 8 of Reference 9 .

Besides increasing privacy, the narrowing of an antenna beam provides increased protection from the strong, interfering reflections caused by aircraft flying in or near the path. These reflections produce violent, rapid fading and furthermore, introduce multipath distortion that may be extremely deleterious to certain pulse transmissions and which may also restrict the effective information bandwidth.

A radio receiver amplifies and demodulates not only the input
signal but also the noise voltages generated in the antenna and in its own resistances and tubes. Since all antennas generate noise, all received signals are inherently contaminated by noise. To this minimum noise the receiver adds its own noise. As a practical matter, only the first two stages of a receiver contribute significantly to the noise output.

A measure of this additional noise output is the so-called noise factor that may be defined as the quotient of the $\mathrm{s}-\mathrm{n}$ ratio at the receiver input terminals and the s-n ratio at the receiver output. When expressed in decibels it is called the noise figure F_{n}. The minimum attainable noise figure in a receiver depends largely on the state of the art. In general, the figue increases with frequency.

For receivers of current design, at frequencies above 100 mc , a conservative estimate of the noise figure in decibels is

$$
\begin{aligned}
F_{n} & =5.3+3.6 \log _{10}\left(f_{m c} / 100\right) \\
& =3.6 \log _{10} f_{m c}-1.9
\end{aligned}\left(f_{m e} \geq 10\right)
$$

where $f_{m c}$ is the frequency in mc.
For a frequency of $2,000 \mathrm{mc}$ Eq. 10 yields $F_{n}=10 \mathrm{db}$, a figure that agrees well with recent developments ${ }^{10}$ in r-f amplifier design.

Noise appearing in a receiver when an antenna is connected may be considered as arising in a resistance equal to the radiation resistance of the antenna, assuming the antenna is not trained on a cosmic noise source. This thermal noise power as it affects the receiver output is

$$
\begin{equation*}
P_{n}=k T B \tag{11A}
\end{equation*}
$$

FIG. 5-Long-term fading characteristic based on 100 -mc data

FIG. 6-Short-term fading characteristic taking place within an hour

FIG. 7-Required power depends upon reliability desired
where P_{n} is the noise power in watts, k is Boltzmann's constant, T is the absolute temperature and B is the receiver i-f bandwith in cps.

The minimum noise output of a receiver is proportional to the i-f bandwidth. Hence, for low noise output, the receiver must be designed for the minimum bandwidth commensurate with the rate of information involved.

As an example, assume that a proposed link is to handle a single teleprinter channel at 60 words per minute.

While in an ideal wire circuit a 60 wpm transmission would require a bandwidth of only 22.5 cps , the characteristics of practical wire transmission circuits are such that 100 cps is necessary. In a radio link more bandwidth may be used to give the required reliability in the presence of fading. For conventional frequency-shift (fsk) systems a bandwidth of about 1,000 cps is needed for a 60 -wpm circuit. This value of $1,000 \mathrm{cps}$ will be used as reference bandwidth B_{o}.

In Eq. 11A the noise introduced by the antenna in the range of frequencies discussed is described by a temperature T which is custom-
arily taken as 60 F (289 degrees absolute). Since then $k T=4 \times 10^{-21}$ watt-seconds, Eq. 11A becomes, if all figures are expressed in decibels

$$
\begin{equation*}
P_{n}(60 \mathrm{~F})=10 \log _{10} B-204 \tag{11B}
\end{equation*}
$$

For the reference bandwidth $B_{\text {。 }}$ Eq. 11B becomes (relative to 1 watt)

$$
\begin{equation*}
P_{n}(60 \mathrm{~F})=-174 \mathrm{dbw} \tag{11C}
\end{equation*}
$$

For any other bandwidth simply add $10 \log _{10}\left(B / B_{0}\right)$ to the right hand side of Eq. 11C. Some typical services with corresponding bandwidth figures are listed in Table I.

Signal-to-Noise Ratio

In a communications link, the transmitter not only must deliver enough signal power to overcome noise in the receivers; it must also provide enough additional signal power for acceptable readability. Readability depends upon the signal-to-noise ratio at the detector input and upon the possible improvements achieved by the method of detection for some systems ${ }^{18}$ of modulation.

With frequency modulation, for example, the improvement is proportional to the square of the modulation index. For a given information rate the latter can be increased only at the expense of greater bandwidth, which in turn involves more thermal noise and hence raises the level to which a signal must rise before the improvement can be realized.

In the examples in this discussion it is assumed that an input signal-to-noise ratio of 10 db is just acceptable for reception of $60-\mathrm{wpm}$ teleprinter. With other

FIG. 8-Advantage of dual diversity for teleprinter channel

Table I-Teleprinter and Voice Requirements

Teleprinter, 60 wpm , fsk 425 cps			db added to $-174 \mathrm{dbw}$ (Eq 11C)
1 channel	1,	000 cps	0
4 channels		700	2.3
12 channels	3 ,	400	5.3
Voice, 4 kc per channel	Subcarrier modulating frequency	$\begin{gathered} \text { i- }[\text { hand } \\ \text { width }{ }^{12} \\ (\text { mod } \\ \text { index }=1.5) \end{gathered}$	$\begin{aligned} & d b \\ & \text { added to } \\ & -174 d b w \\ & \text { (Eq 11C) } \end{aligned}$
12 channels	$12-60 \mathrm{kc}$	468 kc	26.7
24 channels	12-108 kc	842 kc	29.3
36 channels	$12-156 \mathrm{kc}$	$1,220 \mathrm{kc}$	30.9

systems an adjustment of this figure will be necessary; for example, in commercial ($\mathrm{a}-\mathrm{m}$) television a signal-to-noise ratio of at least 40 db is required for highgrade service.

Fading Safety Margins

The o-h loss $L_{\text {on }}$ shown in Fig. 2 represents a median value obtained from experimental data. There is a long-term, seasonal fading that is not yet completely known for the entire frequency range $100-5,000$ mc . However, some very complete data ${ }^{1}$ have been obtained through transmissions in the commercial $\mathrm{f}-\mathrm{m}$ band centered at 100 mc . It is this long-term fading characteristic that is displayed in Fig. 5.

Other experimental evidence indicates that the $100-\mathrm{mc}$ information may be applied to much of the uhf range. As Fig. 5 shows, the longterm fading becomes less and less pronounced as the length of the link is increased. For 99-percent reliability on a long-term basis it is necessary to supply a margin of about 11 db to the median o-h loss for a path 200 miles long, while at 400 miles only 5.0 db need be supplied.

Short term, within-the-hour, fading follows a Rayleigh law; this is shown in Fig. 6 for a nondiversity system, and for a dual-diversity system that merely utilizes the better of two signals received in widely separated antennas. This technique is known as switching diversity and is less effective than combining diversity. ${ }^{14}$

In computing the total safety margin for fading, it is well to
note that long-term and short-term fading are essentially independent. Long-term fading establishes the immediate median level upon which within-the-hour fading is superimposed. It is thus reasonable to strive for a system that will possess a given signal-to-noise ratio for at least a certain percentage of time on a long-term basis and in addition will provide perhaps equal protection on a short-term basis.

Whatever combinations of fading margins are used, there will be periods of the year characterized by low path loss during which most of the fading margin incorporated results in the realization of an unusually high within-the-hour reliability. Weighting of the two types of fading margins will be influenced by the kind of information to be transmitted and whether errors will accumulate ofton enough to be objectionable.

A complete consideration involves not only the fading statistics shown in Fig. 5 and 6 but also the effect of the rate of fading upon the transmitted information. The fading rate increases with frequency. ${ }^{1}$

In an illustrative example reliability will be assumed for q percent of the time on a long-term basis along with reliability p percent of the time on a short-term basis. The two fading margins are simply added.

Terminal Loss and Site Noise

Certain other losses are always considered when designing o-h links. These are losses in transmission lines and connectors at each terminal and losses in effective operating margins owing to site noise.

Transmission line and connector losses arise from the attenuation characteristics of the lines connecting transmitter to antenna, antenna to receiver, from the power wasted in impedance mismatches at each terminal and from power lost to connector junctions. These losses generally increase with frequency. The losses at transmitter and receiver may be conveniently grouped together and denoted by L_{i}. A typical behavior of this loss in decibels is
$L_{i}=5 \log _{10}\left(f_{m c} / 100\right)=$
$5 \log _{10} f_{m c}-10$
The losses L_{j} should be evaluated

Table II—System Parameters At 400 Mc

Item	100 mi	200 mi	300 mi	400 mi	. 500 mi	600 mi	Remarks
$L_{f_{s}}+L_{\text {oh }}$	185	20	221	239	257	275	Eq 2 and 3
L_{i}	3.0	3.0	3.0	3.0	3.0	3.0	Eq 10
G_{s}	-52	-52	-52	-52	-52	-. 22	$20-\mathrm{ft}$ dish
$L_{\text {c }}$	0	0.9	1.8	2.7	3.6	4.5	from Fig. 3
s / n	10	10	10	10	1.0	10	acceptahle teleprinter
F_{n}	7.5	7.5	7.5	-. 5	7.5	7.5	Eq 8
$10 \log _{10} B$	30	30	30	30	30	30	$B=1,000 \mathrm{cps}$
$10 \log _{10} 0^{2} T$	-204	-204	-204	-204	-204	-201	$T=60 \mathrm{~F} \mathrm{dbw}$
P_{m}	-20.5	-1.6	17.4	36.2	5.5 .1	75.0	median
$M L_{90}$	9.0	5.5	3.5	2.5	2.0	1.8	hased on 100-me data (Fig. .i)
$M_{\text {so }}$	8.0	8.0	8.0	8.0	8.0	8.0	no diversit, Fig. 6
P_{90}	-3.5	11.9	28.9	46.7	65.1	83.8	plotted in Fig. 7
M $L_{99.9}$	22.5	14	8.5	7.0	5.0	4.0	based on l00-me data (Fig. 5)
MS 99.9 $^{\text {a }}$	28	28	28	28	28	28	no diversity Fig. 6
$P_{99.9}$	30.0	40.4	53.9	71.2	88.1	106	plotted in Fig. 7
$P^{(2)}{ }_{90}$	-8.8	6.6	23.6	41.4	59.8	78.5	dual diversity switching Fig. 6
$P^{(2)}{ }_{99,9}$	15.2	25.6	39.1	56.4	73.3	91.2	duat diversity switching Fig. 6

Table III—System Parameters At 2,000 Mc

Item	100 mi	200 mi	300 mi	400 mi	500 mi	600 mi	Remarks
$L_{f_{s}}+L_{o h}$	199	216	235	253	271	289	Eq 2 and 3
L_{i}	6.5	6.5	6.5	6.5	6.5	6.5	Eq 10
G_{s}	-80	-80	-80	-80	-80	-80	20-ft dish
$L_{\text {c }}$	3	7	10	13	15	16	from Fig. 3
s / n	10	10	10	10	10	10	acceptable teleprinter
F_{n}	10	10	10	10	10	10	Eq 10
$10 \log _{10} B$	30	30	30	30	30	30	$B=1,000 \mathrm{cps}$
$10 \log _{10} k T$	-201	-201	-201	-201	-201	-201	$T=60 \mathrm{~F} ; \mathrm{dbw}$
P_{m}	-25.5	-4.5	17.5	38.5	58.5	77.5	median
$M L_{40}$	9.0	5.5	3.5	2.5	2.0	1.8	based on $100-\mathrm{mc}$ data Fig. 5
$M S_{90}$	8.0	8.0	8.0	8.0	8.0	8.0	no diversity Fig. 6
P_{90}	-8.5	9.0	29.0	49.0	68.5	87.3	plotted in Fig. 7
$M L_{99,}$	22.5	14.0	8.5	7.0	5.0	4.0	based on $100-\mathrm{mc}$ data Fig. 5
M $S_{99,9}$	28	28	28	28	28	28	no diversity Fig. 6
$P_{99.9}$	25.0	37.5	54.0	73.5	91.5	99.5	plotted in Fig. 7
$\left.P^{(2)}\right)_{90}$	-13.8	3.7	23.7	43.7	63.2	82.0	dual switching diversity Fig. 6
$P^{(2)}{ }_{99} 99$	10.2	22.7	39.2	58.7	76.7	94.7	dual switching diversity Fig. 6

carefully for a given equipment, transmission line and operating condition. In practice, these losse may be found to be greater than that indicated ry Eq. 12 and frequently losses that are charged mistakenly against the propagation path will be found to occur at the terminals.

At any appreciable distance from a terminal the cross section of even a narrow antenna beam is large, so that the system may become vulnerable to impulse noise generated near the path by a city, a town, a manufacturing activity or a radar transmitter. In that event, an additional amount of power may be required for the link to overcome this site noise. No simple rule exists for the margin to be allowed for this kind of noise, since

The symbols have the same meanings as before and s / n is the signal-to-noise ratio expressed in decibels. For service at least q percent of the time on a short-term and a longterm basis

$$
\begin{equation*}
P_{q}=P_{m}+M L_{q}+M S_{q} \tag{14}
\end{equation*}
$$

where P_{q} is the power required for q percent reliability, $M L_{q}$ is the long-term fading margin for q percent reliability and is a function of distance, $M S_{0}$ is the short-term fading margin for q percent reliability.
Tabulations of the various losses and system parameters are given for 400 mc in Table II and for $2,000 \mathrm{mc}$ in Table III. The results are plotted in Fig. 7 for the 90 and 99.9-percent reliabilities desired. While the tables show powers in excess of 60 dbw (1 megawatt) for

Table IV-Additional Distance With Diversity at 400 Mc

Reliability	Order of Diversity	$1 \mathbf{k w}$	10 kw	100 kw	$1,000 \mathrm{kw}$
90%	1	308 mi	366 mi	420 mi	472 mi
90%	2	336	384	4.48	500
	Additional Distance:	28	28	28	28
99.9%	1	98	200	275	340
99.9%	2	217	300	360	420
	Additional Distance:	119	100	85	80

this will depend on the character of the noise and the way in which the improvement normally afforded by the modulating method ${ }^{21,15}$ is degraded in its presence.

IIlustrative Example

An organization wishes to provide over-the-horizon communication for a number of links of various lengths and has two frequency allocations at its disposal, 400 mc and $2,000 \mathrm{mc}$. Equipment can be obtained for these frequencies. The paraboloidal antenna aperture must not exceed 20 feet in diameter because of cost and mounting difficulties. It is desired to determine the power required for both 90 and 99.9 -percent reliability, for $60-\mathrm{wpm}$ teletype, single channel, fsk, with a frequency shift of 425 cps .

The power required, in decibels above 1 watt, for median service, 50 -percent the time, is given by
$P_{m}=L_{f s}+L_{o h}-G_{s}+L_{c}+L_{j}+F_{n}$
$\quad+(s / n)+10 \log _{10} B_{o}-204$
completeness, the curves in Fig. 7 are carried only up to this level.

Interpretation

Added gain provided by the 20 foot paraboloid at the higher frequency is hardly sufficient at the longer distances to overcome the additional free-space loss. This is the result of the increasing effect of L_{c}, the aperture-to-medium coupling loss for the narrowed beam.
Curves in Fig. 7 are plotted for distances from 100 to 600 miles. Some reservations should be attached to extension of the curves for distances of less than 100 miles. In that range, depending upon the height of the terminal antennas, there may be an appreciable diffracted surface wave present that would serve to widen the fading range and in any case, would provide substantially different shortterm fading characteristics ${ }^{1}$ than are indicated by Fig. 6.

The curves do not include any gains or losses incurred by the
presence of obstacles in the path. It is assumed that along the path to the horizon the clearance between the path and any obstacle exceeds the radius of a first Fresnel zone. If obstacles are present, the computation must be altered as recommended ${ }^{1.16}$ in the literature.

The advantage to be gained by employing dual diversity of the switching type at one terminal is illustrated in Fig. 8 for $400-\mathrm{mc}$ transmission. While diversity can be regarded as a means of saving transmitted power, if it is done by spacing the receiving antennas, or as an increase in reliability, it is instructive to evaluate its advantage in extending the working distance possible with a given transmitted power.

Table IV presents the additional distances obtainable by including the diversity fading margins as scaled from Fig. 8. With higher orders of diversity and with systems that combine ${ }^{17}$ the outputs of spaced antennas, greater gains in distance or savings in power are possible.

References

(1) J. W. Herbstreit. P. L. Rice, E. B. Sprecker, Survey of CRPL Research in Tropospheric Propagation, National Bureau of Standards Report No. 3.520 .
(2) T. H. Gerks. Factors Affecting Spacing of Padio Terminals in a UHF Link, Collins Radio Co., Report No. CTR-126, Feb. 18. 1955.
(3) K. Bullington, Radio Propagation Beyond the Horizon in the $40-4000 \mathrm{mc}$ Band, Proc $I R E$, 4, p 132, 1953.
(4) W. E. Gordon, Radio Scattering in (5) J. Feinstein, The Role of Partial eftections Beyond the Horizon, Trans $I R E P G A P-2, p 2$, Mar. 1952.
(6) F. H. Northover. Long Distance VHF Fields, Canad Jour Phys 33, $p 241$ and p $316,1955$.
(7) T. Ortusi, The Various Theories on Propagation of Ultra-Short Waves Beyond the Horizon, Trans IRE PGAP-3, p 86 , Apr. 1955.
(S) H. G. Booker and J. T. deBettencourt, The Theory of Radio Transmission by Tronospheric Scattering Using Very Narrow Beams, Proc $I R E, 43, p 281,1955$. (9) G. L. Mellen, W. E. Morrow, A. J. Poté, W. H. Radford and J. B. Wiesner, UHF Long Range Communication Systems. Proc IRE, p 1,269, Oct. 1955.
(1.0) J. E. Beggs, N. T. Lavoo, A Triode Useful to $10,000 \mathrm{mc}$, Proc $I R E 43$, p 15, 1955.
(11) Federal Telephone and Radio Co., 3 Reference Data for Radio Fition ; bandwidths, pineers", 451 ; signaling speeds, p 507 ; antennas, (12) D. G. Fink, 'Television Engineering', 2nd Edition, p 412, McGraw-Hill, New York, 1952.
(13) If. S. Black, "Modulation Theory", Chap. 14; D. Van Nostrand, New York, 1953.
(14) C. L. Mack, Jr., Diversity Reception in UHF Long-Range Communications, Proc IRF, p 1,281 , Oct. 1955 .
(15) National Bureau of Standards, Washington. D. C.. Circular No. 462, p 151 . (16) K. Bullington, Propagation of UHF and SFF Waves Beyond the Horizon, Proc $I R E, 38$, p 1,221, 1950.
(17) J. R. Day, Beyond-Horizon SigICS, p 122 Oct 1955 cations, ELECRRON ICS, p 122, Oct. 1955.

Meter on police-car dashboard records speed of passing car. Radar transmitter and receiver are mounted in trunk

How Accurate Are

CUMMARY —— Erroneous readings of radar units used by police departments to enforce speed laws arise from carrier frequency shift of transmitter. parallax when radar car is parked off highway, and multiple reflections from other passing cars or nearby objects. However, these errors usually give the speeder a break

MOST SPEED radars commercially available have the basic form shown in Fig. 1 and depend upon precise measurement of the Doppler shift in signal frequency. Energy radiated by the transmitter at a frequency f_{0} is reflected by the moving target and gives rise to a
detected signal having a frequency $f_{0}+f_{d}$.

The relative speed V of the automobile is related to the Doppler frequency f_{d} and to f_{o} by

$$
V=C f_{d} / 2 f_{0}
$$

where C is velocity of propagation

Table I-Speed-Counter Errors

Input Frequency incps	Calculated Speed in mph	Indicated Speed in mph	Radar Error in mph	Percent Error
60	8.2	7.0	-1.2	14.6
120	16.4	15.0	-1.4	8.5
180	24.6	23.5	-1.1	4.5
240	32.9	33.0	+0.1	0.3
300	41.1	41.0	-0.1	0.2
360	49.3	49.0	-0.3	0.6
420	67.6	57.5	-0.1	0.2
480	65.8	65.5	-0.3	0.5
540	73.9	73.5	-0.4	0.5

of the radar waves. Therefore, if f_{0} is known, f_{d} provides a direct and precise measure of V.
In the system shown the received signal is mixed with feedthrough power from the transmitter and the difference frequency f_{c} is filtered out and amplified. The signal is then limited and a frequency counter and meter or pen recorder provide a direct speed reading. Photographs show a typical radar installation in a police car.

The principal sources of error in the radar used resulted from shifts in carrier frequency, counter and/ or meter inaccuracies and errors in reading due either to parallax or human error. Other errors resulted from the fact that the quantity measured is the relative speed and not the linear speed of the vehicle

By J. Q. BRANTLEY, JR.
Consultant. Traffic Department
City of Buffalo
Buffalo, New York

ENGINEERS AS EXPERT WITNESSES

Nationwide, low-enforcement agencies are readying a crackdown on careless driving. The coming year may see vastly expanded use of radar for speed control.

However, in several instances the validity of radar speed readings have been challenged in court. Such cases may become more numerous.

The arresting agency must then call upon a qualified expert to testify to the accuracy of the radar. Thus, it behooves the electronics engineer, who may be called upon, to know something of the accuracies attainable with a typical unit.

The author describes results of independent accuracy tests made by him for the City of Buffalo traffic department. The results were observed on a single unit and cannot be applied in general. However, they indicate the precision that can be achieved and point out certain situations in which operation is unreliable

Radar Speed Meters?

relative to the ground. Reference to Fig. 2A shows that the speed of the car relative to point P is equal to $V_{0} \cos \theta$. The error in the radar observation comes from the cosine factor and is negligible for small values of θ. It always yields a reading which underestimates the actual speed of the target vehicle.

The first method used to measure radar performance involved measurements of f_{0} followed by meter calibrations taken with known frequency inputs to the counter. The second method employed a precision odometer attached to a test vehicle. Radar readings were compared with readings obtained on the odometer and related to time. The first set yields information about the inherent accuracy of the radar and the odometer readings shed light on the overall performance under actual operating conditions.

Precision Measurements

Precise error measurements were made by injecting signals of known frequency into the speed counter. Integral multiples of power-line frequency were used. The corresponding speed represented by each
of these frequencies was computed from the Doppler equation using the measured carrier frequency of $2,447 \mathrm{mc}$. Line frequencies were accurate to within 0.08 cycle. The results are shown in Table I.

In actual operation, the carrier frequency will drift varying amounts depending upon external factors such as temperature and line voltage. It was not possible to make long-term frequency checks on the unit tested but it was assumed frequent adjustments would
keep f_{0} within $\pm 10 \mathrm{mc}$. Based upon this assumption the maximum variation in speed readings will be approximately $\pm 1.4 \mathrm{mph}$ at 35 mph.

It was noted during these tests that the readings were sensitive to voltage variations in the radar-car power supply. Subsequent tests showed that the errors in Table I which were taken with car generator off, were increased by from 5 to 6 percent with the engine idling.

Numerous tests were made in the

FIG. l-Speed radar depends for its operation on Doppler frequency shift

FIG. 2-The parallax problem (A), typical installation (B), condition where echoes from two passing cars may cause inaccuracy (C) and test setup for studying effect of reflection from nearby object (D)

Tests were also run in the manner illustrated in Fig. 2D. These were intended to determine the effects of nearby reflecting objects. The readings obtained gave speeds which were consistently lower than would normally be the case. The indications were similar to those observed with two cars because the radar sees not only the car itself but its image in the reflector as well.

Maximum parallax errors were measured by setting the meter precisely at given speeds and then reading values observed from either side. The results are tabulated in Table III. By observing the manner in which police officers made this reading, it was estimated that errors due to this effect were practically always less than 0.2 mph .

Conclusion

Speed errors made by the radar were almost always in a direction which favored the passing vehicle. The one exception occurred when observations were made with the engine in the radar car idling. The radar then consistently overestimated actual speeds.

Principal errors arose from differences between actual and relative speeds, speed-counter inaccuracies especially those due to shifts in line voltage, meter inaccuracies and parallax. Additional errors can be expected as a result of carrierfrequency shifts. While these were not measured over a long period it is assumed that they are periodically checked and kept within ± 10 mc. Periodic calibration of the counter and speed meter are necessary but the reported measurements were made without prior calibration.

The author acknowledges the assistance of Walter A. Flood and John J. Earshen in conducting these tests.

Table II-Speed Meter vs Odometer

Speed Ranses (mph)	20-30	$30-40$	$40-50$
Spread in errors (mph)	6.3	4.0	1.5
Miximam error (mph)	-5.3	3.0	2.0
Minimum error (mph)	+1.0	+1.0	+0.5
Average total error (mp_{1})	-1.7	-0.9	-1.1
Average radar error (mph) (See Table I)	-0.9	-0.03	-0.2

were rare and on the average the errors favored the driver.

To confirm expected cosine errors, some runs were made which were similar to those of Fig. 2B, but with a wider passing margin. Passes were made at distances from 6 to 15 feet with increasing errors. Readings generally took place at ranges between 50 and 65 feet from the radar. When cosine errors were estimated for the individual cases and compensated for, the residual errors were comparable to those of Table II.
To assess the radar's performance in situations where two cars pass it simultaneously several runs of the type shown in Fig. 2C were made. Several speed differentials between A and B were tried and runs were made at various values of individual speeds. The readings varied over such a wide range that they were considered unusable for determining the speed of either A or B. In one case A 's speed was 35.5 mph, B 's was 21 mph and the radar gave a single reading of 24 mph .

Table III-Parallax Errors

Speed	Maximum Error
60	... ± 2.0
40	... ± 1.5
30	. ± 1.0
20	$\cdots . . .{ }^{\text {a }} \pm 1.0$

Electronic switch at center measures heart-muscle potentials of patient at right. High-gain preamplifiers of electroencephalograph at left bring signal levels up to that required by switch. Switch effectively converts oscilloscope into four-beam instrument

Multichannel Switch For Biological Observations

CUMMARY - Simultaneous observation of four signals is provided by oscilloscope accessory. Each channel is a d-c amplifier with a gain of five. Frequency of switching between channels is variable between 1 and $30,000 \mathrm{cps}$. Unlimited number of channels can be added if necessary

DESIGNED as an oscilloscope accessory, the electron switch to be described permits simultaneous observation of related biological phenomena such as electrical potentials occurring across membranes in the body of an animal or man.
The instrument as constructed provides a maximum of four channels; the principle of operation, however, makes it possible to have any number of channels desired by the addition of five triodes for

By ROBERT W, WOODS
College of Medical Evangelists Loma Linda. California
each additional channel. A channel switch sets the number of channels in use and a channel-stop switch confines the operation to contiruous observation of any single channel desired. Switching transients are of extremely short duration, essentially limited by stray capacitance. Frequency of switching is continuously variable
from 1 to $30,000 \mathrm{cps}$, the repetition rate being 1 to 30,000 divided by the number of channels in use.
In addition to the signal output, a pulse output with either positive or negative polarity is available. If the internal multivibrator is made inoperative, the same terminals may be used as an external-pulse input to actuate the switching circuits. This external pulse may be regularly produced at low frequencies or irregularly, as desired.
In the diagram of Fig. 1, the
output of multivibrator V_{1} is made asymmetrical so the fine frequency control may be affected by R_{1} in the left-hand grid circuit, which lengthens the time constant of discharge for that grid. The righthand grid circuit, from which the output pulse is taken, has a relatively short time constant of charge and discharge and since the transient time of switchover in this grid is independent of the setting of the fine frequency control, there is a more consistent pulse shape. Switch S_{1} inactivates the multivibrator. This permits pulsing from an external source through C_{1} and S_{3}.

In the pulse-forming circuit, triode $V_{2 a}$ is biased positively so an additional positive pulse is ineffective, but it is responsive to a negative pulse. From the plate of $V_{2 A}$ the resultant positive pulse is fed through differentiator $C_{2} R_{2}$ to the grid of $V_{3 B}$ which is biased to cutoff. The negative pulse output of $V_{2 B}$ is available for control of the switching circuit.

Dual-triodes V_{3}, V_{4}, V_{5} and V_{6} are
flip-flop or trigger-circuit stages. The negative pulse formed in V_{2} is fed to the left-hand grid of each of these flip-flops in parallel. This negative pulse would be without effect if the left-hand triodes of the flip-flops are nonconducting; but if one of them, say flip-flop V_{3}, is conducting the negative impulse would cut it off and the corresponding right-hand triode would begin conduction producing a negative pulse on its plate. This pulse, fed to the right-hand grid of flip-flop V_{4}, would cut off its right-hand triode, cause its left-hand triode to conduct and thus prepare it for reception of the next pulse from V_{2}. Successive pulses from V_{2} would step the left-hand conduction from flip-flop V_{3} to V_{4} to V_{5} to V_{6}.

Ring Operation

If the last in line is connected back to the first making a ring, a cyclic rotation of this left-hand conduction is obtained which can be used to switch the channels. The number of flip-flops in this ring determines the number of channels in
use. Switch S_{3} makes it possible to feed flip-flop V_{s} from the output of V_{\star} or V_{b}, etc., thus controlling the number of flip-flops in the ring and the number of channels in use.

When the number of channels is three or more, it is necessary to establish the condition that only one flip-flop shall have left-hand conduction. When the instrument is first turned on, for example, more than one flip-flop may show lefthand conduction and a form of multiple wave will travel around the ring. The single condition may be established, however, by returning one of the right-hand grids, for a time as long as one cycle of opera tion, directly to the common cathode return at -255 volts.

The various conducting cycles travel around the ring and stop at the flip-flop with the shorted grid, leaving that flip-flop the only one with left-hand conduction. Switch S_{4} performs this function, but since shorting the grid stops the switching $S_{\&}$ has been designed to stop the switching on any desired channel at the will of the operator and

FIG. 1-Electronic switch requires five triode stages for each input channel. Voltages indicated are from regulated supplies

FIG. 2-Threshold of distortion vs input signal and frequency

FIG. 3-Using spare channels as markers
serves as a channel stop switch as well as to establish the one-channel-at-a-time condition.

The $C_{3}-R_{3}$ bias combination for the flip-flops maintains a constant bias voltage since the number of conducting triodes is invariable. Capacitor C_{3} is necessary to smooth switching transients.

Sections of V_{7} and V_{s} are direct coupled to the plates of corresponding left-hand triodes of the flipflops. If the flip-flop is not conducting the plate voltage is high and the corresponding V_{7} or V_{8} triode is conducting, but if the flip-flop is conducting, the V_{7} or V_{s} triode is cut off and is not conducting. All of the V_{7} or V_{8} triodes except one are conducting at any one instant.

Signal Inputs

Dual-triodes V_{8}, V_{10}, V_{11} and V_{12} are the input stages. The first triode sections are essentially triode amplifiers with gain controls in the grid circuits and variable bias or positioning controls in the cathode circuits. These amplifiers are direct coupled to the second triode sections, which operate as cathode followers. Gating is accomplished, in the first channel for example, by drawing the plate current of the first triode section of V_{8} and the associated triode of V_{7} through the same plate-load resistor, R_{4}. If the V_{7} triode is conducting, the drop through R_{4} reduces the grid voltage of the cathode follower to a point beyond cutoff and the plate voltage of the first triode of V_{3} to a point near ground potential. Thus only one channel at a time is operative.

The output of the several cathode followers is connected in parallel and fed to the grid of V_{13}, the output cathode follower. The voltage divider in the grid circuit of V_{13} is

FIG. 4-Simultaneous four-lead electrocardiograph traces
adjusted so with positioning controls R_{5}, R_{6}, R_{7} and R_{8} set at the midpoint of their range, the voltage at the cathode of V_{13} is zero with respect to ground. The values given accomplished this result with the tubes used; other tubes may require a different ratio.

Modifications

To keep the frequency of the multivibrator independent of external capacitance effects at the synchronizing input connections, an isolating triode amplifier capacitance coupling a positive pulse to one of the grids of V_{1} at point A would be a valuable addition to the circuit.

As it stands, the unit is a highlevel switching device because of a 60-cycle hum pickup of approximately 0.001 volt. By using d-c on the filament of V_{13} this hum is greatly reduced, but not entirely eliminated. Direct-current filament power for all amplifier filaments would probably increase the utility of the instrument for low-level switching. Better shielding and placement of parts for shorter leads would also decrease the hum-pickup problem.

The amplifier section of the switch, consisting of V_{9} to V_{12} and V_{13}, was tested for fidelity by applying a sine wave to one of the inputs, with gain wide open, and varying the amplitude until the output wave showed visible evidence of distortion on the oscilloscope. This was repeated at spot frequencies from 10 to $100,000 \mathrm{cps}$ and the threshold of distortion, the amplitude of the input signal at which distortion just becomes evident, was plotted against frequency as shown in Fig. 2.

The channels may be used for measurement. For example, if channel 1 is to carry the signal, channel 2 can be superimposed on the zerosignal trace of channel 1 to mark the zero line. With the signal applied to channel 1, channels 3 and 4 can be moved to mark the positive and negative peaks as shown in Fig. 3. Subsequently a calibrated voltage applied to channel 1 could be adjusted to make channel 1 coincide with the peak marker. A time comb could also be applied to channel 2.

To date, the instrument has been used for measurement of peak potentials and for simultaneous observation of the four standard leads in electrocardiography as shown in the photograph and Fig. 4.

In Fig. 4, channels 1 to 4 are positioned top to bottom. Channel 1 carried the standard first lead (right arm against left arm), channel 2 the second lead (left arm against left ankle), channel 3 the third lead (right arm against left ankle) and channel 4 the fourth lead (chest against left ankle). This setup is shown in the photograph.

A word of appreciation is in order to Gordon Simkin, technical assistant, for his work on this project.

Automatic Colorimeter

Abstract

CUMMARY —— Three-phototube measuring head with associated electronic equipment give readings of percent saturation on three meters marked red, blue and green. Can be used for quality control of color television ficture tube production

FIG. l-Negative feedba=k is used to stabilize colorimeter against source brightness variations. Meters indicate primary color proportions

FIG. 2-Complete schematic diagram illustrates controls used to calibrate instrument with white light source

DEVELOPED primarily for checking tricolor television tubes by production personnel the colorimeter to be described imitates the color vision properties of the human eye. When the color pickup head is aimed at a luminous surface, its color content is analyzed and three meter indications are obtained within a second or so provided the surface brightness is sufficient.

Selectively energized through red, green and blue filters, the meter indications are a direct measure of the primary color proportions and numerically define the hue and saturation of the luminous source. Color comparison accuracy is good as time lapse between successive measurements can be only a few seconds. Source brightness within limits has a negligible effect on the indicated color proportions.

The pickup head is housed in an aluminum shell 6 inches long and $2 \frac{3}{4}$ inches in diameter. The circular red, green and blue color transmitting filters are arranged in an equilateral triangle. The filters are of gelatin film cemented between $22-\mathrm{mm}$ glass disks. They are fitted into blackened, undercut rims cut on end-capped aluminum shells enclosing three multiplier phototubes.

The K1211 miniature phototubes are six-stage dynode multiplier types having end-on cathodes of $\frac{1}{2}$ inch diameter and S-11 photometric response. Cathode sensitivity is rated at $50 \mu \mathrm{a}$ per Iumen average response to a $2,870 \mathrm{~K}$ incandescent lamp. The amplified anode current

Checks TV Color Tubes

By EMIL SANFORD
Tube Engineering Department

is an exponential function of the applied dynode voltages.

Since multiplier phototubes, with their built-in electrostatically focusing dynodes, are operationally disturbed by magnetic fields, the pickup head has a layer of Mumetal wrapped around the aluminum enclosures of the phototubes.

Operation

The operation of the instrument is explained by the block diagram, Fig. 1. Light striking the cathodes of the multiplier phototubes, through the respective color filters, caluses current flow in each anode load resistor. The resultant voltages are a measure of the color composition of the light source and its brightness.

However a high-gain regulating amplifier and a fixed-voltage dynode power supply control the operating voltage applied to the parallel-connected phototube dynodes. The phototubes are gain controlled by a common signal. This signal is developed from the light-source in-

Internal construction of pickup head showing filters, phototubes and circuitry

Color measurements are made by placing pickup head of colorimeter on face of operating tricolor tube and noting three meter readings
tensity and automatically suppresses the brightness variations. The instrument thus responds only to the color composition of the light source.

The phototube anode voltages are transferred to the indicating meters through cathode-follower meter amplifiers. From each point a sampling current is developed in R_{1}, R_{2}, R_{3} whose sum is balanced against the adjustable current through R_{0} of opposite polarity. The voltage at the junction of these four resistors is the input signal to the regulating amplifier. The amplifier has a reversed-polarity output to the dynode voltage divider and forms a negative feedback loop.

The meter voltage sum is thus constrained to a fixed value which is adjusted to exactly the full-scale value of one meter by the level-set control. Since the meters and phototubes are linear, each meter deflects to the relative excitation of its respective photocathode regardless of the common light intensity. The light level must be greater than a minimum threshold value or the full-scale sum cannot be maintained.

Whenever the input light level
to the pickup head is insufficient to develop the total meter voltages to a level needed to equalize through R_{1}, R_{2}, R_{3}, the reference current in R_{0}, the amplifier stays saturated. The applied dynode voltages are maximum and the phototubes operate at maximum gain. An increase of the source brightness that would develop too much signal output is counteracted by the amplified difference voltage. The stabilizing ability when one or all phototubes are variably illuminated above the threshold value is: $\Delta E_{m}=\Delta E_{d} / A_{c} \approx 300 / 3,000=1 / 10$ v , where $\Delta E_{m}=$ indicating meter voltage variation for brightness changes, $\Delta E_{a}=$ dynode voltage swing with regulation against brightness changes ≈ 300 volts and $A_{o}=$ effective loop gain $>3,000$.

The meters contain $50-\mu \mathrm{a}$ movements and with 220,000 -ohm series resistors have a full-scale reading of 11 volts. Therefore, $\Delta E_{m} / E_{m}<$ $1 / 110$ unit of full-scale error.

This is distributed among the three meter readings according to the chromaticity of the luminous source. Raising E_{m} would decrease the error and raise the threshold but caution is to be observed in
operating too closely to the knee of the phototube anode characteristic.

Circuit Details

The schematic diagram is shown in Fig. 2. The grid-cathode elements at the input of regulating d-c amplifier $V_{10}-V_{11}$ develop a contact potential that cannot be distinguished from the control signal. A variation of 0.1 volt will cause a full-scale meter error of 3 percent. The 100 -percent level-set control (labeled Full-scale in Fig. 2) compensates for this effect.

The phototube anode load resistors are adjustable in the green and blue channels for setting gain relative to the red channel. Each anode load resistor returns through the meter zero-set controls. The three leakage compensating controls effectively complete the zeroing circuits. The leakage controls permit application of a canceling potential that maintains zero meter readings in the absence of light input to the photocathode despite dynode voltage variations.

Feedback Loop

The indicating meters are cath-ode-coupled to balance dual triodes V_{4}, V_{5} and V_{8}. The green and blue meter series resistors are full scale adjusted to equal the full-scale red meter reading. The three $500,000-$ ohm summing resistors are tapped from each meter drive point to include the indicators in the feedback loop.

Even though the three K1211's, V_{1}, V_{2} and V_{3} are paralleled, a dif-
ferential gain control condition is encountered. In practice, this would be interpreted as a color variation when only the incident brightness changed. At least two-point compensation is possible by the adjustment of the three tracking controls. These fix the voltage on the last dynode in each phototube.

Therefore, as the parallel connected forward dynodes approach the voltage levels of the last dynodes, the phototube with the highest fixed dynode voltage has the most gain reduction. The tracking adjustments are usually made to bracket the normal range of operating brightness levels. A white cathode-ray tube (P4 screen) with variable grid drive for changing brightness permits a simple checking procedure.

The dynode power supply V_{12} and V_{18} uses a relaxation oscillator to generate, in a stepup isolation transformer, a voltage which is then rectified and filtered. The $6 \mathrm{AU4}$ is used for its heater to cathode insulation. Since the oscillator plate voltage is obtained from the stabilized ± 150-volt supplies in the chassis, it is free from line-voltage fluctuation. It is limited to 700 volts to keep leakages in the multiplier phototubes at low levels.

Calibration

The zero-settings of the color indicating meters are made when the pickup head is placed face down on any nonluminous surface. The effective dynode voltages are at a maximum and the regulating feed-

FIG. 3-Regulation of colorimeter shown by straight line above 5 foot-lamberts (A) and spectral response of K1211 phototube (B)
back loop is broken during this interval. An unstable dynode supply can be the cause of zero shifts at this time which result in color reading errors.

The initial adjustments of this colorimeter were made with a white television picture tube. The final white color calibration can be made and maintained with a reference white working standard such as an incandescent lamp combined with a daylight glass filter. A crt was selected having a close match to illuminant C as measured on a Barnes XYZ colorimeter. For brightness data the Weston 931 foot-lambert meter was used. This meter has a circular opening only slightly smaller than the pickup head. The adjustments require the use of a calibrating plug. This is a shallow piston-and-rod unit that closely fits the open end of the pickup head and inserts to the bottom. A circular cutout permits, by rotation, the exposure of any one of the three filter-photocathode areas.

The picture tube is operated with a square raster and 100 foot-lamberts of luminous intensity. The pickup head is centered on the raster and the calibrating plug is sequentially positioned to expose the red, green and blue filters. For each position the 100 -percent levelset, green full scale and blue full scale adjustments are made. In addition, the respective leakage adjustments are completed with an opaque sheet placed on the opening of the pickup head. The results should be full-scale on one and zero readings on two meters in turn.

Color Balance

The color balance controls are set to fix the relative meter readings to the white color standard. For illuminant $\mathrm{C}, \mathrm{R}=29, \mathrm{G}=33$ and $\mathrm{B}=38$ as the comparative offset to equal energy excitation, which is defined by $\mathrm{R}=\mathrm{G}=\mathrm{B}=33^{\frac{1}{3}}$.

The three tracking controls are successively adjusted to maintain steady meter readings as the reference picture tube brightness is varied between 10 and 100 footlamberts. By reducing the brightness level to the point where the meter reading sum suddenly slumps, a check is made for the
threshold value of response.
The colorimeter's amplitude-regulating circuit attempts to maintain a constant value of meter readings. This is illustrated by the straight line to 5 foot-lamberts on the log-log plot of dynode feedback voltage versus source brightness, Fig. 3A. The color threshold is 1.5 foot-lamberts, which is low enough for ambient lighting to contaminate color indications. Below this level the meter indications are about proportional to the brightness and do not contain usable color information.

Theoretically the instrument could read color for all increasing brightness levels. But a limit is imposed by the K1211 photocathode at 10 microamperes peak emission. This is about the point where the current ceases to be a linear function of the incident light.

From the spectral sensitivity of the cathode, in Fig. 3B, the blue filtered phototube has the largest probability of limiting. A light source emitting energy equally throughout the spectrum would reach this limit with a brightness of about 1,000 foot-lamberts.

Filters

The photometric filters used are red $=$ one red cellophane sample and one Wratten No. 86, green $=$ two Wratten No. 102 and blue $=$ one Wratten No. 48.

A Wratten No. 25 is also usable for the red filter even though its sharp cutoff for orange and yellow is not precisely suitable.

These filters provide high transmittance coincident with the desired spectral response when combined with the spectral sensitivity of the K1211 phototube. The resultant spectral discrimination of this colorimeter is shown by Fig. 4. The curves are established largely by the spectral characteristics of the phototubes, the availability of filter material, and the desire for high optical efficiency. The area under the red response curve represents about 5 percent of the K1211 unfiltered sensitivity to equal radiant energy.

The curves are based upon ICI mixture data for real spectral primaries and the condition for equal radiant energy response. They pro-

FIG. 4-Response of red, blue and green phototubes when balanced for equal meter readings and with an equal-energy spectral source

FIG. 5-Colorimeter indications recorded in R-B-G diagram for single-screen primary color phosphors (crosses) and same phosphors on a tricolor shadowmask tube (line-connected dots)
vide meter indications that read the percentage of red, green and blue colors in the luminous sample. These are directly transferable to an R-G-B diagram as shown in Fig. 5. Equal curve areas result in equal indications for an equal energy spectrum. The approximate spectral wavelengths are indicated around the edge of the triangle.

The colorimeter responds to luminous excitation so that $\mathbf{R}+\mathbf{G}$ $+B=100$ percent where R, G and B each may be between 0 and 100 percent. White color is indicated by similar percentages on each meter. Equal energy white, the center of the triangle, is defined as color of zero saturation. The edges of the triangle define colors of maximum saturation with the corners identifying the pure primary colors. These are indicated, respectively, by two meters summing to 100 percent, one meter at zero, and by one meter totaling 100 percent, two meters at zero. The blue indicating meter is operationally unnecessary. It is retained for its convenience in operation and the monitoring of the 100 -percent level.

The spectral acceptance of a similar instrument may be modified to the ICI distribution coefficients that permit color interpretation in the familiar XYZ form. This compresses the color information into a fraction of the R-G-B scale lengths. The reading accuracy is reduced for only real colors are available in any case. However, the double peaked x tristimulus function can be simulated by tying a resistor from the Z blue meter drive point to the X red phototube anode load resistor. This is effectively a unilateral signal so that no red peak is introduced into the z function.

The primary target of this colorimeter is a cathode-ray tube. The usual display is a tv raster of large area and medium brightness generated by a small moving spot of high intrinsic brightness. To the pickup head, this is an intermittent light with a low duty cycle. The resultant peak phototube currents greatly exceed the average currents to which the indicating meters respond. The short persistence of most phosphors does little to modify the peak to average brightness.

CRT Indicator

It is possible to use a cathode-ray tube as the color indicator. The deflection plates are cross-connected to develop 120-degree radial scan separation for primary color excitation. The display is in polar coardinate form on a circular grid with the radial and angular spot displacement identifying the quantities saturation and chromaticity, respectively.

In Fig. 5 the crosses record the hue and saturation of color tube phosphors as measured on single screen experimental cathode-ray tubes. The same phosphors, applied to a typical 19TP22 tricolor tube, have the measured hue and saturation as shown by the line-connected dots. Some tolerable desaturation of the display colors must be established. To fix these limits realistically, a measuring instrument of this kind is needed if every manufactured tube is to be checked.

The author acknowledges the work of Frank Kliminski in the construction of this instrument.

Indicating unit has provision for calibrating meter for three separate sensing units. Relay huilt into meter sets off alarm at preset ice-load level

Piezoelectric sensing unit shown in crosssection in Fig. 1

By E. G. THURSTON*
Supervisor, Acoustics Section, Physics Dept.
Armowr Research Foundation

Ice Detector for

$\mathbf{A}^{\mathbf{a}}$ccurate determination of ice accretion on lighter-than-air craft is especially acute as the ice cannot be removed by any practical, self-contained means. The quantity of heat required to melt even a thin ice coating by heating and circulating the helium would be astronomical.

The system described here is designed to measure quantitatively the actual deposited mass per unit area as a primary variable. This is done by causing the accumulated ice mass to change the equivalent mass of a vibrating system and thus to alter its frequency of vibration. The change in the system resonant frequency is measured and a quantitative measure of the amount of deposited mass per unit area is thus obtained.

The system consists of three basic parts: the piezoelectric vibrating elements, the oscillator circuits whose frequencies are controlled by the piezoelectric elements and a frequency detector and indicating circuit.

This piezoelectric unit consists of two elements. One is cemented to
the inside surface of the fabric which covers the top of the container of the unit so that the formation of ice actually adds to its equivalent mass. The other element is not in contact with the surface and is not affected by the formation of ice. This latter element acts as a frequency control unit against which the frequency of the sensing element can be compared.

Crystal Stacks

Figure 1 shows the construction used in the final model. The sensing element consists of four parts. The first is a tapered beryllium disk driven by an adp crystal stack. This driving stack is separated from the beryllium plate by a small quartz plate. Another quartz plate is affixed to the opposite end of the stack and to this is cemented a terminating equivalent quarterwave aluminum bar.
The adp stack is made of four crystal slabs each $1 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2} \mathrm{in}$. by $\frac{1}{8}$ in. giving a total stack $1 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2}$ in. by $\frac{z}{2}$ in. The adp was chosen because it combines a good coupling factor with frequency stability.

The use of the two quartz elements on each end of the stack provides two desirable effects. First, they dielectrically insulate the adp from the beryllium disk and terminating aluminum bar. Second, by splitting the quartz plate, the compliance in a plane perpendicular to the direction of motion of the crystal stack is increased. This reduces the tendency to clamp the end of the bar which would reduce the effective coupling coefficient and thus reduce the system sensitivity.

The vibrating element which is used as a reference is identical to the sensing element except for the beryllium plate which is replaced by a small piece of lead with a roughly equivalent mass. This element is then mounted in a similar fashion to that used for the sensing element but no portion of it is in contact with the cover on which the ice forms. The frequency difference between the sensing element and the reference element is therefore a measure of the deposition of ice on

[^6]

FIG. l-Cross-section of piezoelectric stacks. Lead on top of reference stack approximates mass of sensing disk

Locations of indicator and sensing units on blimp. On preliminary test flights remotecontrol ty and motion-picture cameras were mounted on top of gas bag to monitor ice formation as a check on detector accuracy

Lighter-Than-Air Craft

\int UMMARY Piezoelectric Meacham-bridge oscillator system determines ice accretion on surface of blimps. System also has applications in remote monitoring of ice formation on radomes and in automatic measurement of deposited coatings such as oil, grease or water

the former. Cold chamber measurements have shown that such a system effectively eliminates second order variables such as temperature and pressure.

A photograph shows the sensing and comparator elements as constructed in the first model.

Oscillator Circuits

The schematic diagram of the oscillator circuits is shown in Fig. 2. This circuit consists essentially of a Meacham-bridge oscillator wherein the nonlinear bridge element which is usually an electric light bulb has been replaced by a vacuum-tube agc circuit. The most severe problem that was encountered in the development of this circuit was that of obtaining satisfactory operation under conditions of low Q in the vibrating crystal system and over a large range of

FIG. 2-Duplicate Meacham bridge circuits are used for sensing and reference. Triode in one leg of bridge functions as automatic gain control

FIG. 3-Indicating unit is connected to either of three sensing units by switch \mathbf{S}_{1}. Separate meter calibration is provided for each sensing unit
equivalent resistances. These two effects are, of course, intimately related and require the same circuit modifications for their accommodation.

In the normal Meacham-bridge circuit, the equivalent resistive impedance of the crystal element, when operating at its resonant frequency, is low, and therefore lowimpedance elements can be used in the other arms of the bridge. In this application, however, the equivalent resistive impedance of the crystal was high and varied over a considerable range between unloaded and fully ice-loaded conditions.

The equivalent resistive impedance of the crystal without any ice load is approximately 20,000 ohms, and this value increases to between 80,000 to 90,000 ohms with full ice loading of 0.050 in .

Operation at spurious resonant frequencies of the vibratory system was avoided by the use of tuned circuits having a bandwidth wide enough to accommodate the range of frequencies occurring between unloaded and fully loaded conditions and yet narrow enough to exclude operation at any other system resonance.

The oscillator circuit consists of a 6AG5 vacuum tube with tuned grid and plate and grid excitation fed back through the frequencycontrolling bridge circuit which embodies the vibrating crystal as one arm.

A portion of the output of the

6AG5 is rectified through a 1 N34 diode and then applied to the control grid of one half of a $12 \mathrm{AU7}$ which is inserted as a level control in the Meacham bridge.

The output is also fed to the grid of the other half of the 12AU7 which acts as a cathode follower providing a low output impedance to the long length of cable running over the surface of the airship from the sensing units on top to the indicating unit in the gondola. An identical oscillator circuit is provided for the reference crystal.

Although this circuit is basically simple and straightforward in design, extreme care had to be taken in the determination of the proper circuit values so that successful operation could be achieved with the low Q in the crystal vibrator. These modifications to the usual Meacham circuit should have other applications where similar problems are encountered.

Detection and Indicator Circuit

The sensing system produces two outputs, one from each cathode follower. It is necessary, therefore, to provide a circuit which will detect the frequency differences and display the resulting output in a manner which can be correlated with the amount of deposited ice.

The operation of this part of the system can be seen by reference to Fig. 3. The signals from the two cathode followers are fed into a 6BE6 multiple-grid mixer. The output of the mixer tube is passed
through one stage of amplification provided by a 6AU6. The associated circuits of this tube are designed to pass only the difference frequency, as are subsequent stages. The signal is passed to another 6AU6 which provides additional amplification and effects a partial transition from sine-wave operation to square-wave operation. The 6AQ5 stage completes the transition to square-wave operation.

The final stage uses a 6AL5 as a counter-type discriminator. The output of this stage is fed to a microammeter having a sensitive relay which can be adjusted to flash a warning signal for any predetermined accumulation of ice up to 0.25 lb per sq ft .

Performance Characteristics

Operation from no ice loading to an ice loading of 0.25 lbs per sq ft has been achieved. The indicating meter has been calibrated to read directly in lbs per sq ft of deposited ice and experiments to date have shown that this calibration holds equally well for water films.

To date it has been possible to achieve reproducible indications of deposited ice within the basic accuracy originally desired (minimum measurable and reproducible increments of 0.010 in . of ice). The system is now undergoing flight tests at the Naval Air Development Station, South Weymouth, Massachusetts.

Further development will permit considerable extension of the dynamic range of the instrument and provide a safety device applicable to heavier-than-air as well as lighter-than-air craft.

Applications other than those involving use with aircraft include the remote detection and control of ice formation on radomes or other structures, recording of ice or frost for meteorlogical purposes and the automatic measurement and recording of any deposited coating, such as oil, grease, soft mud or water, which has reasonable adherence and which does not introduce damping beyond the present operating range of the instrument.

The work described in this article was sponsored by the Office of Naval Research under contract No. Nonr1494 (00).

FIG. l-Complete gain set has frequency response of 20 to $20,000 \mathrm{cps}, \pm 0.7 \mathrm{db}$ when loading and $\pm 1.5 \mathrm{db}$ when bridging

Gain set is housed in luggage case with breakdown hinges for removing cover. Case provides room for leads and accessories

Transmission Gain Set

C UMMARY - Precision attenuator aids testing of a-m and $\mathrm{f}-\mathrm{m}$ broadcast stations' audio facilities. Unit has total maximum attenuation of 63.5 db in steps of 5,1 and 0.1 db . Minimum insertion loss is 2.5 db over frequency range of 20 to 20,000 cycles per second

AS AN AID to meeting increased need for better and faster measurement and servicing techniques for $a-m$ and $f-m$ broadcast stations, an audio-transmission gain set has been constructed.

The equipment is shown in the photograph and in the schematic diagram, Fig. 1. It is housed in a heavy-duty luggage case that has extra space for packing accessory cables and patch cords.

Circuit

The heart of the instrument is a precision variable balanced H type attenuator having zero insertion loss and a maximum selective loss of 61 decibels. The individual elements, cascaded to form the attenuator, are three 600 -ohm, 0.5 precent accuracy controls. These controls have, from left to right in Fig. 1, ten steps of 5 db per step, ten steps of 1 db per step and ten steps of 0.1 db per step.

The attenuator is capable of

By GERALD R. CHINSKI
Technical Director
Radio station hxi

handling a maximum power level of about +55 dbm and the overall power level is +30 dbm . There is no frequency discrimination in the attenuator, even at maximum loss, out to 80 kc . The balanced attenuator is made directly available through break-in jacks.

Overall input and output is provided by both jacks and instrument binding posts. Switching provision is made for input and output impendance matching at 600 and 250 ohms. A third position on the input selector key makes the input bridging at 9,500 ohms. This produces a fixed $30-\mathrm{db}$ loss when fed from a loaded 600 -ohm source.

In the bridging position powerloading resistors of values shown can be switched across the input terminals. This provides a handy
arrangement for measuring amplifiers while being driven at high output. The output impedance selector key also terminates the gain set unit in 600 ohms when in the up position.

The end matching coils are excellent at low level and have no tendency to saturate at higher levels of the order of +30 dbm . They are well balanced and have $90-\mathrm{db}$ magnetic shielding. Windings are arranged to cancel out externally induced electromagnetic fields and are provided with electrostatic shields between primary and secondary.

Resistors R_{1} and R_{z} build out the attenuator loading, so that the transformed impedance, at the input and output terminals, is close to the value selected and almost purely resistive.

The gain set is equipped with a standard vu meter, having a 1 mw in 600 ohms reference and a multiplier range of 24 db .

By IRWIN D. OLIN
Naval Research Laboratory
Warshington, D. C.

Dielectric Transformers

Abstract

CUMMARY Dielectric sections provide reflectionless match between differing waveguide impedance levels and maintain match over a broad frequency range. Dielectric version of conventional rectangular-to-circular waveguide transducer is 80 percent shorter and has improved performance

MANI PROBLEMS encountered in microwave transmission require impedance transformers to optimize system performance. This paper describes the application of dielectrics to dominant-mode cir-cular-waveguide transformers. Two designs are presented both operating within the X-band from 8,500 $9,600 \mathrm{mc}$ and using $15 / 16 \mathrm{in}$. i-d circular waveguide.

The first design is a rectangular-to-circular waveguide transducer, a dielectric transformer which, when inserted in a circular waveguide, permits the rectangular guide to join it directly.

The second design is a pressure seal for circular waveguide. Seals of this type may be used to provide weather-proof protection of a waveguiding system or enable a section of guide to operate under pressure.

These designs use a transformer composed of dielectric sections to provide a reflectionless match be-
tween differing impedance levels and maintain this match over a broad frequency band.

The configuration of the matching transformer is arbitrary. It could be a section of smoothly tapered dielectric or it could be composed of dielectric steps. The problem of converting from one impedance level to another is approached through the use of intermediate dielectric sections of varying impedance levels.

The change in the amount of reflection introduced as a wave travels from one section to another describes this variation. This may be termed the reflection taper. The number of these sections is arbitrary, being finite for a stepped section (each section made onequarter guide wavelength long at the design frequency) and tending toward infinity in the case of the smooth taper.

The solution which results in the
most compact design is the stepped matching transformer. The number of steps employed and the reflection taper govern the bandwidth over which the match between the two impedance levels is maintained.

Binomial Taper

Assume n steps will be used ($n-1$ quarter-wavelength sections) in going from one impedance level to another. The reflection taper depends upon the reflection coefficient of each step in relation to an adjacent step. The reflection taper is given by $1, k_{2}, k_{3}, \ldots, k_{n}$.

One of the most satisfactory tapers which provides a broadband design is the binomial taper. The reflection taper corresponds with the coefficients in the binomial expansion. Thus for a three-step de$\operatorname{sign} \quad(n=3)$ the reflection taper would be given by $1, k_{2}, k_{3}=1,2,1$.

Several 15/16-inch o-d Teflon tubes about 5 inches long were

FIG. 2-Stepped transformer for the rectangular-to-circular waveguide transducer (A) and performance characteristics of new stepped transducer and conventional tapered transducer (B)

FIG. 3-Teflon pressure seal design for circular waveguide (A) and performance characteristic of the pressure seal (B) which provides weather-proof protection

for X-Band Waveguide

bored with varying inside diameters and a small longitudinal slot milled into the surface. The tubes were successively placed in a precision circular slotted line and the guide wavelength measured.

Using these figures and assuming only dominant mode transmission, a value of effective dielectric constant was computed for each tube. This value represents the dielectric constant of a material completely filling the guide and resulting in the same guide wavelength.

For a given tube several values were determined, one for each frequency at which measurements were taken. These values showed no appreciable variance, within the limit of experimental error. A curve of the effective dielectric constant versus the bore diameter of the tube was thus obtained, shown in Fig. 1. This curve gives all the information necessary to design Teflon dielectric matching sections in this size circular guide.

The transformer is circularly symmetrical, being composed of dielectric tubes. Hence it satisfies conditions for exciting the TE_{11} mode at any angle in the circular waveguide from the TE_{10} mode in the rectangular waveguide.

The problem reduces to provid-
ing an impedance match between the two waveguide sections. Since two different cross-sectional geometries are involved, the definition of waveguide characteristic impedance becomes ambiguous. However, by constructing transformers designed according to the different definitions, it was found that the definition based on power-voltage considerations gave the best results.

Stepped Design

A binomial stepped design was employed using three impedance steps between the impedance level of the two guides. All the calculations were referred to $9,100 \mathrm{mc}$. Due to the step-like nature of the design, a discontinuity susceptance is effectively placed at each abrupt change in dimension. If this change is small, compared to the waveguide dimensions, the overall performance will not be greatly different from that predicted.

In this design the following adjustments were made: the transformer was positioned 0.065 inch away from the circular-rectangular junction; the low-impedance section was lengthened; and its impedance slightly increased.

Note that since the junction is the place at which the change in
cross section takes place, the coupling flanges used here contributed to the performance of the overall transducer. The rectangular wave guide was equipped with a UG $40 \mathrm{~A} / \mathrm{U}$ choke flange and the circular waveguide with a flat flange.

The completed design is shown in Fig. 2A and its performance illustrated in Fig. 2B. The same figure shows the performance of a typical tapered transducer designed to perform the same function.

The pressure-seal design is composed of a section of waveguide completely filled with a dielectric and some means for providing a broadband match to the adjacent unfilled waveguide. In this type of design, or in any design where only one waveguide cross section is involved, any choice of characteristic impedance definition will result in the same dimensions for the matching section. The design chosen for the matching section was a single binomial step. After slight modification the performance shown in Fig. 3B resulted. The dimensions for the design are shown in Fig. 3A.

The author wishes to acknowledge the contributions of P. J. Allen and R. D. Tompkins in the work described.

To make delay measurement, delay trigger 2 is fed to external sync input of crt. Initiating trigger goes through target simulator (left) to crt vertical input. Onemicrosecond markers are fed directly to crt vertical input

APPLICATION of digital-computer techniques to time-interval generation and measurement can provide a highly accurate generated delay and exact time discrimination.

The precision digital delay generator to be described gives as its output a reference pulse followed by pulses precisely delayed in time with respect to the reference pulse. It can supply these pulses under one-shot or variable frequency steady-state conditions. Its accuracy is determined by the frequency stability of a 1 -mc crystalcontrolled master oscillator, which is thermostatically controlled and accurate to one part in one million. Performance characteristics are given in Table I.

Figure 1 illustrates the output pulses available under steady-state conditions. In this mode, both t_{1} and t_{2} are independently controlled by their respective input dial settings. Figure 1B gives the output pulses available under one-shot conditions.
The ability to supply pulses accurately positioned, as shown in Fig. 1, makes the digital delay generator useful in radar and sonar range calibration and target simultation. In this application, the intiating trigger is used as the system trigger and delay trigger 1 at preset delay settings is injected as the simulated target. The process of calibration involves adjusting the range-measuring circuitry of the system to agree with the known target delay.

The technique used in delay
measurement is to compare the delayed signal with signals of known delay generated by the delay generator, making a vernier measurement or interpolation with a synchroscope. The equipment setup is shown in the photograph.

Logic of System

The block diagram (Fig. 2), shows the 1 -mc crystal-controlled oscillator followed by two cascaded divide-by-ten counters to provide three separate ranges of operation. Range 1 utilizes the 1 -mc crystal output directly, range 2 uses the $100-\mathrm{kc}$ output from the first divider circuit. Range 3 uses the 10 -kc output of the divider. The unit provides an external input jack which will accept other standard frequency inputs.

The crystal-controlled master pulses of ranges 1,2 or 3 are fed to a 10 -stage binary counter. The stored count provides the timemeasurement information which is used in the selection of a specfic input pulse. This is accomplished by diode gating circuits which are connected to the outputs of the binary counters through a manually controllable decimal-to-binary encoder. The arrangement makes it possible to set manually any count up to the maximum capacity of the binary counter 2^{n} where n represents the number of counter stages-and extract an output pulse, delay trigger 1, at that particular count for each cycle of the count chain. Any number of encoder-gate combinations can be used with a single count
chain depending upon the number of controllable delay periods desired.

The unit has two selection gates. The first gate output provides a pulse, delay trigger 1, delayed with respect to the start of the cycle, while the second selection gate determines the period for cyclic operation. This arrangement allows maximum flexibility for a count chain of fixed length. The settings of both the first and second encodergating systems can be varied throughout the full count range if the second selection gate is set equal

Chassis of precision digital delay generator illustrating modular design

FIG. 1-Pulse outputs for cyclic operation (A) and one-shot operation (B)

Digital Delay Generator

CUMMARY - Pulses for calibrating radar equipment and for target simulation are made available by instrument using I-me crystal oscillator and flip-flop frequency dividers. Precision of pulse timing is independent of flipflop transition time
to or greater than the first.
The accuracy of the generated delay is not dependent on flip-flop transition time or length of flip-flop counter chain and consequently represents an improvement over conventional digital and analog methods of generating precise time intervals. The pulses from the crystal continuously sample the selection gates as well as pulse the count chain. There is sufficient inertia in the count chain so that the M th pulse which sets the counter to M will not pass through the selection gate assuming that the
output of the decimal to binary encoder is M. However, the $(M+$ 1) th pulse will pass directly through the selection gate and be available without accumulative delay. This arrangement is one count off and is readily corrected by a one-unit compensation in the decimal to binary encoder. Its advantage is zero phase lag regardless of time delay setting.

Operation

Under steady-state conditions, the start button triggers the oneshot generator which in turn sets
control flip flop 1. Control flip flop 1 gates the succeeding master clock pulse through gate 3. This gated pulse marks the start of the time cycle and is called the initiating trigger pulse. The initiating trigger pulse resets control flip flop 1 and sets control flip flop 2. Control flip flop 2 opens gate 4 which allows the succeeding clock pulses to flow into the count chain and sample the selection gates.

A recycling scheme enables the pulse selected by the second selection gate to reset the binary counters and cut off the input flow of

FIG. 2-Logical design of the precision delay generator and its de ailed operation may be traced from this functional block diagram. Crystal oscillator and counter chain provide three operating ranges

FIG. 2-Waveforms in buffer circuit when clock pulse occurs more than $0.3 \mu \mathrm{sec}$ after trigger (A) and when clock pulse occurs less than $0.3 \mu \mathrm{sec}$ after trigger (B)

FIG. 4-One-megacycle to 100 kc count-down circuit is monostable multivibrator with common-cathode coupling

FIG. 5-One-megacycle binary counter is modified Eccles-Jordan flip-flop circuit
pulses by resetting control flip flop 2. This shuts gate 4. The pulse selected by the second selection gate sets control flip flop 1 to allow the succeeding pulse from the master clock to pass through gate 3 and set control flip flop 2. Control Hip flop 2 then opens gate 4 and the cycle repeats.

Marker pulses are supplied for each of the three ranges. They are in time synchronization with the selected pulses from selection gates 1 and 2. The marker pulses are useful when making delay measurements with an oscilloscope.

Should the total count available in the chain be insufficient to yield a low enough repetition rate for a specific test, an external repetition rate source can be used to provide increased delay time.

One-Shot Operation

When operating asynchronously, one-shot or with external repetition rate control, the two selection gates are so set that selection gate 2 is higher than selection gate 1 . The external trigger pulse hits the oneshot generator, resulting in a trigger pulse applied to control flip flop 1. This pulse sets control flip flop 1 .

Control flip flop 1 gates the succeeding master clock pulse through gate 3 to reset itself. The one-shot generator also generates a negative gating signal which is first delayed by 0.3 microsecond, time for the flip flop to change state, and then applied to gate 5. The negative gating signal is delayed to insure that control flip flop 1 has had sufficient time to reach the 1 state to insure keeping gate 5 closed to the first clock pulse succeeding the initiating external repetition trigger pulse. This could occur within 0.3 microsecond after application of the random external trigger. The gate is unprimed during this $0.3-$ microsecond interval, this, plus the fact that control flip flop 1 will hold it closed until the next master clock pulse arrives, insure that the master clock pulse gated by gate 5, whether it be the second or third pulse succeeding the random external trigger, will be full amplitude. This technique eliminates marginal operation. The first master clock pulse after $t=0$ may or may not
pass through gate 3 and reset control flip flop 1 but the second master clock pulse will most certainly do so. Should the first clock pulse reset control flip flop 1 the second clock pulse will pass through gate 5 , setting control flip flop 2 and mark the start of a new count cycle. The arrangement described functions as a buffer between the two random control frequencies insuring error-free operation. The instantaneous repetition interval resulting can vary as much as one cycle of the master clock rate per count cycle. This represents a repetition frequency variation of less than 1 part in 1,000. Figure 3 indicates two possible timing diagrams for the buffer.

Self-Checking Feature

The unit is capable of checking essentially all its own circuits.

The unit is placed into operation in the one-shot mode. The output from delay trigger 1 is fed back into the negative stop terminal of control flip flop 2. The start button sets the unit into operaton and master clock pulses flow into the count chain as well as sample the selection gates. When the count reaches a value equal to one less than that set on the delay trigger 1 input dials, selection gate 1 is primed and the succeeding master clock pulse is gated out of delay trigger 1. Feeding this pulse back into control flip flop 2 immediately resets control flip flop 2, which in turn shuts gate 4. The count chain now stores the number which had previously been set on the input dial. The stored count can be read at front panel from neon indicators. Any disagreement indicates that there has been a system malfunc-

FIG. 6-Pulse standardizer
tion. The same procedure can be used to check the delay of delay trigger 2. For this test, the system functions as it normally would in the one-shot mode, except that the front-panel switch test trigger 2 is thrown, which opens the reset line to the count chain thereby retaining the accumulated count. Testing the system under one-shot conditions is generally more severe than under similar steady-state conditions.

Circuits

The internal circuitry operates in straight binary using negative pulses throughout. The signal amplitude required for triggering all regenerative circuits is -10 volts. A combination of d-c and capacitive coupling incorporating d-c restoration is used throughout.

The 10 -to- 1 divider circuit given in Fig. 4 is a modified monostable multivibrator incorporating com-mon-cathode coupling. Clamping of the plate swing of the normally cutoff tube and the grid swing of the normally conducting tube provides for stability of operation. The circut utilizes a cathode follower within the plate-to-grid feedback loop which isolates plate load R. from the interstage capacitive loading. This provides rapid recovery as well as large output swing result-

FIG. 7-Diode coincidence circuil
ing in a stable count down from $1-\mathrm{mc}$ to $100-\mathrm{kc}$. A similar circuit is used for the $100-\mathrm{kc}$ to $10-\mathrm{kc}$ count.

The 1 -mc binary counter given in Fig. 5 is a modified Eccles-Jordan flip flop so designed as to provide a high degree of reliability. The circuit employs cathode followers within the plate-to-grid feedback paths providing a high output voltage swing at high switching speeds since the capacitive load is driven by the cathode followers. The flip flop employs cathode stabilization insuring satisfactory operation

Table I-Performance of Delay Generator

with half-emission tubes. The grid swing is clamped at both ends, removing all grid recovery problems. Complementing is accomplished by driving both flip-flop grids negative simultaneously through isolation diodes D_{3} and D_{7}. The negative inthe complement pulse passes through the d-c restoration clipping circuit composed of $R_{1}, D_{1}, D_{1}, R_{18}$ and D_{s} where the most positive 4 volts of signal is clipped. This provides immunity to spurious signals under 4 volts in amplitude.

The pulse-standardizer circuit given in Fig. 6 is composed of two cascaded 6CL6's. The first stage consists of a conventional cathodestabilized amplifier with plate ringing circuit wherein a positive standardized output pulse is generated for each negative input trigger. The output pulse is further amplified and shaped by the normally cut-off output tube. The output circuit is transformer coupled to the load and operates in the bottom portion of its plate characteristic thereby effectively clamping the output pulse amplitude.

Gating is accomplished with diode coincidence circuits of the type shown in Fig. 7. Proper design can insure zero delay in gate output when coincidence is detected.

High-Quality Receiver

Abstract

© UMMARY \qquad Off-the-air pickup of television signals for commercial rebroadcast requires features often lacking in modified home receivers. Article describes how a set especially designed for rebroadcasting attains operational reliability, immunity to interference and proper video i-f response

FIG. 1-Receiver incorporates automatic frequency control of local oscillator for greater frequency stability

FIG. 2-Plug-in front ends are designed for optimum performance at frequency of desired channel

By RAYMOND S. ROSENBERG
Nems-Clarke. Inc. Silver Spring. \boldsymbol{M} aryland

SEVERAL STATIONS engaged in direct pickup and rebroadcast of television signals have modified home tv receivers to meet their needs.

Some requirements of a tv receiver for commercial rebroadcast operation have been found lacking in modified home-type receivers. These requirements include: reliability in terms of uninterrupted service, accessibility of all components, interference immunity to high-level signals at the antenna and to strong radiated signals at the intermediate frequency, correct video i-f response, stabilized local oscillator and low audio harmonic distortion with proper receiver frequency response.

Front and rear views of a television receiver designed for commercial rebroadcast sevice are shown in the photographs. Figure 1 is a block diagram.

Front End

Each front end (Fig. 2) is a complete subassembly which plugs into the main chassis. This construction eliminates moving contacts and optimizes circuit constants for each channel.
One-half of a 6 BQ 7 A serves as a modified Colpitts oscillator, the other half as the control tube for afc. The reactance tube utilizes the internal capacitances of the tube and resistor, R_{2}, as the grid phaseshifting network. The value of

for TV Rebroadcasting

Front and rear views of television receiver for off-the-air pickup. Set is designed for rack mounting
R_{2} used is a function of the operating frequency and is selected for maximum frequency control. Resistor R, loads the oscillator tuned circuit and its maximum value is limited by the plate dissipation of the local oscllator.

Included as an integral part of the receiver is a high-pass filter. The filter has greater than $50-\mathrm{db}$ rejection at 21 mc and eliminates interference due to strong signals received at the intermediate frequency and prevents overload of the first r-f stage by high-power a-m broadcast and other low-frequency emissions. The response of the filter is shown in Fig. 3A.

Accessory Filters

To eliminate cross-modulation interference in high-signal areas, accessory high- and low-pass filters were developed. Both have appreciable attenuation in the $f-m$ band. The response curves are shown in Fig. 3B.

Figure 4 is a schematic of the rest of the receiver.

Particular attention was devoted to producing an overall response that did not appreciably change with agc level and to producing the proper low-frequency slope with a minimum number of tuned circuits.

The mixer plate circuit on the tuner chassis is link coupled to a
tuned circuit in the grid of the first i-f amplifier forming a double-tuned transformer. The secondary of this transformer is inductively coupled to the first sound trap (21.25 mc), which also provides the signal source for the $21.25-\mathrm{mc}$ sound i-f amplifier.

An M-derived filter network is used between the plate of the first and the grid of the second i-f amplifier. This network contains two traps, one tuned to 21.25 mc for additional sound rejection, the other tuned to 27.25 mc , the adjacent picture carrier frequency.

The first and second i-f stages
are gain controlled. Cathode compensation of input capacitance variations with bias is used.

The last three i-f stages form a flat staggered triple with a flat-top bandwidth of 3.75 mc .

The first stage, due to the M-derived filter structure in its plate, will not respond to screen neutralization, and for this stage a 6AU6 with its low grid-plate capacitance was selected.

The desired video i-f response, in particular the critical low-f requency slope, has been produced in only two stages of the receiver. The wide bandwidth of the r-f circuits

FIG. 3-Response of antenna filter (A) and high-band and low band filters (B)
and of the flat staggered triple prevents these stages from materially affecting the overall response.

Figure 5 shows the overall video i-f response from antenna to video detector. The response is flat to 3.75 mc with usable response to 4.0 mc . Markers occur at 22,25 , 25.75 and 26.5 mc .

Other Circuits

The sound i-f consists of a highgain voltage amplifier with $300-\mathrm{kc}$ $3-\mathrm{db}$ bandwidth driving wide-band cascade limiters followed by a phase-shift discriminator with $0.75-\mathrm{mc}$ peak separation for low distortion:

The aural signal is available at output impedances of 600 or 150 ohms, balanced or unbalanced.

For optimum performance the combined television transmitter and receiver characteristic must produce a linear phase system.

The low-frequency cutoff amplitude slope of an ideal receiver as shown in Fig. 6 affects the carrier
and the upper and lower sidebands for $\pm 0.75 \mathrm{mc}$ from center, introducing a serious source of time delay. This delay is maximum at 0.1 mc and decreases to zero at approximately 2.5 mc .

Attenuation in the region of 4.0 to 4.5 mc gives rise to serious time delay beginning at 2.5 mc and increasing with frequency. An allpass phase-correcting network suitable for compensation of this delay is so complex as to make its inclusion in home tv receivers impractical. Attenuation of the sound carrier must occur ahead of the second detector to prevent mixing of the sound and video information and, in the case of color, the sound and color subcarrier, which would produce a 920 -kc beat. Beat interference produced at the second detector cannot be trapped in the video amplifier.

Phase Compensation

Figure 7A is a horizontal sync pulse taken from the coaxial cable
feeding a television transmitter.
Figure 7 B is the same pulse viewed with a diode double sideband detector sampling the transmitter final r-f output before it is fed to the sideband filter. No phase compensation of any type was employed at the transmitter, and therefore for these tests the transmitter did not conform to the NTSC standards.
The pulse of Fig. 7A has acquired a spike on the leading edge in passing through the transmitter. The pulse shown in Fig. 7C was taken from the output of the rebroadcast receiver with its phasecorrecting network removed. The r-f input was double sideband and was taken from the transmitter coaxial line ahead of the sideband filter. The transient distortion of this pulse is serious and is entirely due to uncompensated delay produced by the low-frequency cutoff characteristic of the receiver.

Figure 7D was made under the same conditions as Fig. 7C with the

FIG. 4-Main receiver chassis includes aural, video, sync and $700 \cdot \mathrm{v}$ horizon al sync pulse channels

FIG. 5 -Overall video i-f response

FIG. 6-ldeal receiver response

FIG. 7-Horizontal sync pulse into transmitter (A) and same pulse at double sideband detector (B). Pulse at output of receiver with phase-correcting network removed and double sidebank input (C)-same pulse with network in place (D). Single sideband pulse without (E) and with (E) phase-correcting network
addition of the all-pass phase-correcting network in the receiver. Compared with Fig. 7B it shows that almost perfect compensation has been achieved.

Figure 7E is the response of the receiver without phase compensation to a single sideband transmission. Comparison of Fig. 7E with Fig. 7C shows no increase in transient distortion due to uncompensated delay caused by the transmitter vestigial sideband filter. It appears that the most serious source of transient distortion in the television system is uncompensated delay introduced by the low-frequency cutoff characteristic of the video i-f amplifier.

Figure 7 F is the response of the receiver with normal phase compensation to a single-sideband transmission. Compared with Fig. 7 D , the same receiver with doublesideband input, the effect of the transmitter sideband filter is negliible.

Sync Amplifier

Tuke V_{7} is a 6AS6 dual-grid sync separator with the composite input signal applied to the suppressor grid. The control grid is connected to the video detector output. On large amplitude noise bursts there
is sufficient voltage of negative polarity at the detector to cut off $V_{\text {\% }}$ and prevent the suppressor grid from drawing current and setting up a bias. Under normal operating conditions, however, there is insufficient voltage available at the detector to overcome the clamping action produced by the current through R_{1} and the control grid to cathode. Voltage amplifier V_{s} operates at fixed bias derived from the -41 -volt supply. Tube V_{0} consists of both halves of a 12AU7 connected in parallel and plate coupled to the sync output connector. Sync positive pulses are obtained at the cathode to drive the horizontal sync discriminator.

To obtain a high-voltage pulse to operate an agc system, it is necessary to build a horizontal oscillator with synchronizing circuits, a waveform shaper and a pulse power amplifier. Tubes V_{10}, V_{11} and V_{12} form a horizontal sync circuit. Tube V_{II} is an electron-coupled oscillator operating at $15,750 \mathrm{cps}$.
criminator, V_{10}. The output of the tube connected across the oscillator tuned circuit and controlling its frequency in response to a control voltage obtained from the sync discriminator, V_{10}. The output of the oscillator is differentiated and am-
plified in V_{13}. The signal voltage on the grid of V_{13} drives it beyond cutoff and produces a sharpened pulse. Power amplification takes place in V_{14}. An output pulse of greater than 700 volts is obtained in synchronism with the horizontal sync pulse in the video amplifier.

Keyed AGC

Tube V_{6} provides a keyed agc voltage. Composite video is applied to the control grid and a high-voltage pulse is applied to the plate. These two voltages appear simultaneously and an output is produced proportional to the grid voltage.

The age voltage is connected through a divider circuit to the first and second video i-f grids. A delay circuit is connected in the agc line to the front end to prevent application of agc voltage to the r-f stage until the signal has built up to such an extent that noise is negligible. The keyed agc circuit minimizes picture degradation due to impulse noise and is effective in reducing flutter and rapid fading produced by reflections from aircraft. The highest flutter frequency the receiver will handle is 90 cps .

The author acknowledges the contributions of Ralph E. Grimm, chief engineer of Nems-Clarke, Inc.

By N. SCLAR

and

R. L. McFOLIN

United Stutes Naval Research Leboratory Washington, D. C

FIG. 1-Sawtooth pulser circuit may be triggered at rafes from 50 to $5,000 \mathrm{cps}$

Sawtooth Pulser Gives

VOLTAGE-CURRENT characteristics of circuit elements may often be obtained by d-c methods involving the measurement of the voltages across the element and across a standard resistance in series with it. Drawbacks of this, however, are polarization effects, heating effects and the need to make point-by-point plots.

The polarization effects can be avoided by using pulses or a-c with periods shorter than the polarization time. By using a-c and employing the well-known technique whereby the V and I outputs are used to deflect the beam of an oscilloscope along perpendicular directions, the characteristic curve may be obtained as an oscilloscope trace.

Unfortunately, however, in many cases the characteristic obtained is sensitive to the local temperature of the element and this may depend on the Joule heat dissipated in the specimen. In these cases it is imperative to use pulse techniques, the Joule heating being reduced in proportion to the smaller time that the voltage is impressed on the specimen.

Circuit Requirements

To retain the convenience of obtaining the characteristic as a trace on a scope, it seemed desirable to carry over to pulse measurements the techniques customarily used
with a-c. This can be achieved by using a pulse whose amplitude is a well-defined function of time over the desired voltage range. The exact waveform of the voltage variation supplied to the specimen is unimportant as long as the pulse voltage and current outputs from the test circuit are synchronized.

To obtain traces of uniform brightness and to cover the voltage range in a monotonically increasing fashion, a sawtooth pulse voltage is used. To minimize Joule heating it is desirable to use both as short a pulse and as low a repetition rate as possible. As a check on the possibility of thermal effect, it is useful to be able to change the repetition rate easily, since thermal effects can be identified by their dependence on the repetition rate.

These conditions are satisfied in the equipment to be described. It provides a sawtooth-shaped pulse output whose repetition rate is determined by the frequency of the external trigger generator. The trigger frequency may be varied from 50 to about 5,000 cycles per second. This is conveniently accomplished with a Hewlett-Packard model 212A pulse generator.

The length of the output pulse is variable from about 0.2 to 5 microseconds while the pulse amplitude extends over a range of voltage from 0 to about 300 v . Additional
d-c bias may also be applied in series with the pulses to exterd the voltage range.

Circuit Operation

The circuit is made up of four tetrode thyratron tubes whose operation may be understood by referring to Fig. 1. Tube V_{1}, triggered externally, produces a standard pulse with a fast rise time and several hundred volts amplitude.

FIG. 2-Example of curves obtained for $100,000-\mathrm{ohm}$ component, with $1.000-\mathrm{ohm}$ resistor in series to give measure of current for vertical plates of scope

CUMMARY Four-thyratron circuit triggered by external variable-rate pulse generator makes it possible to display complete voltage-current characteristics of a wide range of circuit elements on an oscilloscope screen. Reverse characteristics of germanium diffused junction rectifier are shown as one example of use

Voltage-Current Curves

This standard pulse is fed by parallel paths to the control grids of V_{2}, V_{3} and V_{4}.

The arrival of the pulse at the control grid of each tube is determined by the delay introduced by an integrating network consisting of a resistance and capacitance in the grid circuit of each tube. The standard pulse, after being delayed by $R_{1}-C_{1}$ where C_{1} is the stray circuit capacitance to ground, causes tube V_{s} to fire. The cathode of V_{3} is thus raised to approximately the plate potential of 510 volts as stored on C_{5}. This action produces a constant-amplitude pulse on the cathode of V_{s} which is fed through the integrating network $R_{4}-C_{4}$ to produce on C_{4} a single sawtooth wave which is the output pulse.

The zero time of the output signal is determined by $R_{1}-C_{1}$. After a delay determined by $R_{2}-C_{2}, V_{4}$ fires, lowering its plate potential, and discharges C_{4} to approximately ground potential, thus terminating the output pulse. Variation of $R_{\text {, }}$ adjusts the lengths of the output pulse.

The standard pulse, also having been fed through integrating network $R_{3}-C_{3}$, then fires V_{2} to completely discharges C_{5}, and resets the thyratron tubes by lowering their plate potentials below the extinction point.

The time delay introduced by $R_{3}-C_{8}$ is approximately 5 micro-

FIG. 3-Example of curves obtained for type 1 N92 germanium rectifier when tested with five different values of resistance in series
seconds, which limits the maximum length of the output pulse. The amplitude of the output pulse is determined by the value of R_{4} which adjusts the time constant of $R_{4}-C_{4}$ and thus controls the voltage rise on C_{6}.

In the load circuit, if the series resistance is made small compared to the element resistance, then the total voltage across the combination is approximately the voltage on the specimen while the voltage across the series resistance is the measure of the current.

Resistor Curves

When using the sawtooth pulser on a 100,000 -ohm test element in series with a resistance of 1,000 ohms, the triggering rectangular input pulse and the resultant approximate sawtooth output are as shown in Fig. 2A. The voltage outputs obtained from the total
combination and from the series resistance are shown in Fig. 2B. Figure 2 C shows the resultant traces when the voltage and current outputs are applied to the horizontal and vertical axes of the oscilloscope.

Crystal Diode Curves

In Fig. 3 the apparatus was used to obtain the reverse characteristic of a GE 1N 92 germanium diffused junction rectifier. By changing the value of the series resistance, it was possible to look at different regions of the curve in detail.

The equipment described here dissipates less power in the test specimen than that previously described by Pankove; series resistance and repetition rate are readily varied, and time or hysteresis effects are essentially eliminated.

Bibliography
J. I. Pankove, Pulsed Curve Tracer for Semiconductor Testing, Electronics, p Semiconductor

FIG. 1-Details of wide-band amplifier showing plate network, left, tube cavity, center, and cathode network, right

Wide-Band Amplifier

CUMMARY Low-noise r-f amplifier for uhf receiving equipment provides a 5 to $10-\mathrm{db}$ gain in the $1,000-\mathrm{mc}$ region, a bandwidth better than 200 me and 51 -ohm input and output impedances. Amplifier uses a 416 B planar triode. Detailed design procedure is given

By RICHARD B. MCWHIRT $\begin{gathered}\text { Naval Research Laboratory } \\ \text { Washing ion, } D . C .\end{gathered}$

FIG. 2-Smith chart curves showing values of impedance at various points in cathode network (\bar{A} and B) and in the plate network (C.) Plotting points on curves designate $50-\mathrm{mc}$ steps from 1,000 to $1,200 \mathrm{mc}$

Wide-band uhf amplifier. Special Teflon tube socket for 416B planar triode is shown at right

for UHF Receivers

I\mathbf{N} UHF receiving equipment it is often desirable to have a lownoise, wide-band r-f amplifier.

For one particular application it was necessary to have such an amplifier operate in the $1,100-\mathrm{mc}$ region with a bandwidth of 200 mc , a gain of 5 to 10 db and an input and output impedance of 51 ohms.

Several types of tubes were investigated and it was decided that the 416 B planar triode would be most suitable.

Perhaps the most outstanding feature of the 416 B is its transconductance, $50,000 \mu \mathrm{mhos}$ for a plate current of 30 milliamperes. This high value of g_{m} is obtained by using close grid and interelectrode spacing and tight tolerances.

Other characteristics of the 416 B are: amplification factor 200, plate resistance 4,000 ohms and plate current 30 ma at 200 volts. One objectionable feature is the heat generated by the tube: about 7 watts from the filament and 6 watts from the plate.

Since it was desired to match the input of the 416 B to a 51 -ohm sig-
nal source, the cathode impedance of the tube under grounded-grid conditions had to be determined. The tube cavity, which provided for measuring the cathode impedance, is shown in Fig. 1, center.

From previous measurements it was known that the cathode had an inductive reactance component. A shunt capacitor with a 14 -ohm impedance was inserted in the input line immediately at the cathode shell of the tube. This capacitor served not only to add a capacitive reactance component but also offered a point from which the input network could be designed.

Measurements

Values of cathode impedance were measured with a slotted line between 1,000 and $1,200 \mathrm{mc}$ and are shown by curve 1 of the Smith chart, Fig. 2A. This plot is at 51 ohms since that is the characteristic impedance of the slotted line.

A satisfactory match between the cathode of the 416 B and a 51 -ohm signal source was obtained using a quarter-wave transformer and a
quarter-wave shorted stub in the input network, also shown in Fig. 1 (right).

The quarter-wave transformer was made by transforming the impedance at the input side of the shunt capacitor fiom 51 ohms to 75 ohms (curve 2, Fig. 2A) and moving one quarter wavelength toward the generator, curve 3 . At this point, a quarter-wave shorted stub was shunted across the line causing the arms of the curve to fold inward, curve 4. This result is then transformed back to 51 ohms, curve 5. Moving away from this point along a 51 -ohm line revolves the points on the curve about the center of the chart.

From curve 5 it can be seen that the effective load resistance presented by this network varies from 56 ohms to 89 ohms. However there is actually only about an 8-percent change in the power developed across the load resistance.

The circle shown in Fig. 2B represents a voltage standing wave ratio of two. Curve 5 lies within this circle showing that the voltage

FIG. 3-Gain in db versus frequency (A) and noise fiqure versus transformed source impedance ($R_{\mathrm{B}}=1 / \mathrm{G}_{\mathrm{a}}$)
standing wave ratio of the input network is less than two over the band from 1,000 to $1,200 \mathrm{mc}$ which is adequate.

Output Network

Before the design of the plate network could be started, it was necessary to determine the impedance of the plate of the 416 B under operating conditions by using the slotted line for frequencies from 1,000 to $1,200 \mathrm{mc}$. These values of impedance were found to range from $7.3-j 104$ ohms for 1,000 mc to $0.9-j 79 \mathrm{ohms}$ for $1,200 \mathrm{mc}$.

After the values of plate impedance had been determined, a network was designed which would match the tube to a $51-\mathrm{ohm}$ load and keep the value of equivalent series resistance presented to the plate of the 416B reasonably constant. This network consisted of a quarterwave shunt stub, a quarter-wave series capacitor, and a quarter-wave choke as shown at the left in Fig. 1.

The graphical representation of the operation of the network can be seen on the Smith chart, Fig. 2C. Starting from the 51 -ohm load and moving any distance along a 51 -ohm line has no effect on the impedance at any frequency. Therefore, the impedance at the shunt stub is a pure resistance of 51 ohms. This can be represented by a point at the center of the chart $1+j 0$.

At the point where the shorted stub joins the line, a shunt reactance is injected which spreads the points out from the center of the chart, curve 6. Moving from this point toward the generator along the 51 -ohm line a distance equal to one quarter wavelength at $1,100 \mathrm{me}$ rotates the curve half way around
the chart and tends to fold the arms of the curve in slightly, curve 7 . Also at this point there is a series capacitor. The impedance of this capacitor has little effect upon the overall impedance and can therefore be neglected.

The values of impedance are next transformed from 51 ohms to 33.5 ohms, curve 8 , which is the impedance of the outside shell of the series capacitor. Moving along the $33.5-$ ohm line one quarter wavelength rotates the curve another 180 deg around the chart causing the arms to fold in somewhat more, curve 9.

Connection to Tube

At this point the 33.5 -ohm line joins the 61 -ohm section of line which attaches to the tube. There is also a quarter-wave choke on this line which is placed such that it reflects an open circuit at the point where the 33.5 -ohm and the $61-\mathrm{ohm}$ lines join. This makes it possible to apply $B+$ to the $416 B$ plate without allowing any signal to travel into the power supply.

Moving from the junction of the $33.5-\mathrm{ohm}$ and 61 -ohm line, curve 10 , down to the tube a distance of 4.04 cm , moves the points on the chart about 0.150λ toward the generator, curve 11. These values of impedance are then added in parallel with the impedances presented by the plate of the 416B to obtain the total impedance, curve 12.
In curve 12 (Fig. 2) the values of equivalent series resistance presented to the plate vary between 104 and 131 ohms. The average value for the five frequencies is about 120 ohms. The variation from 120 ohms is about ± 10 percent and
satisfactory.
To supply filament voltage and cathode bias to the 416 B , it was necessary to construct the special tube socket shown in the photograph. Since there is a considerable amount of heat dissipated by the filament, Teflon was chosen as the socket material.
To block any r-f on the filament or cathode leads, quarter-wave chokes were constructed using polystyrene and pressed into holes drilled in the Teflon plug. These chokes have spring clips attached to one end which will engage the pins on the base of the tube when the Teflon plug is inserted into the base of the tube cavity.

Experimental Results

The response of the amplifier was determined experimentally using an input signal between 925 and 1,275 mc from a 51 -ohm signal generator and a 51 -ohm bolometer load on the output.

For an input of 1 mw , the output averaged about 5.7 mw over the band between 1,000 and $1,200 \mathrm{mc}$. This average is in close agreement with the calculated average of 6 mw .

The overall response was flat within $\pm 0.6 \mathrm{db}$ as compared with the theoretical value of $\pm 0.5 \mathrm{db}$. It can be seen from the graphical representation shown in Fig. 3A that the $3-\mathrm{db}$ bandwidth is over 300 mc .

The noise figure of the first model wide-band amplifier, constructed from brass rod and tubing, was measured using a fluorescent tube noise source which had an output of 16.4 db above $K T B$. The resulting value of noise figure was 11.9 db .

A second model was constructed which was a duplicate of the first except that all of the brass parts were plated with 0.001 inch of silver. The noise figure of this unit was 10.0 db , or an improvement of about 2 db over the brass model.

Although the noise figure of the silver-plated model is 2 to 3 db above theoretical, it is still satisfactory since the theoretical noise figure is difficult to realize at this frequency.

A view of the completed amplifier is shown in the photograph.

Top view of chassis showing physical layout of components

Complete generator showing outputs
by peter koustas
Tube Division
hadio Corporation of America Harrison, New Jersey

Audio-Standard Generator

Abstract

(CUMMARY __ Simultaneous output voltages are available at frequencies of $500 \mathrm{cps}, 1,1.5,2,3,5$ and 10 kc from unit employing tuning-fork standard. Technique involves full-wave rectifiers as doublers to achieve desired frequencies

CAlibration of sensitive test equipment often requires an accurate source of audio frequencies.

For example, the pulse-repetition frequency of pulsed-magnetron test sets must frequently be calibrated by means of a high-quality audio generator.

When a wide range of harmonically related frequencies is desired, a crystal-controlled oscillator utilizing multivibrator-type dividers is often used to furnish an output at submultiples of the crystal irequency.

This article describes a less complex and less expensive experimental unit which features tuningfork frequency control, relatively simple circuitry, reliability and elimination of the need for adjustments. Seven triode sections are used as cathode-follower output stages and all frequency multiplication is accomplished by diode doublers.

Frequency Control

The tuning fork is a frequency standard comparable in stability and accuracy to the quartz crys-
tal. ${ }^{1,3}$ Mechanically resonant reeds may also be used for frequency control with a slight sacrifice in accuracy. These mechanically vibrating elements are useful as the frequency-determining portion of an electron-tube oscillator such as that used in the standard audiofrequency generator described in this paper.

Oscillator-frequency control elements of the resonant-reed and tuning-fork types are readily available for any frequency in the lower audio range. The accuracy of commercial units ranges from 0.1 to
0.001 percent; higher values of accuracy are available on special units, depending on the characteristics desired.
The tuning-fork or resonant-reed controlled oscillators are electrically equivalent to the Meissner r-f oscillator. ${ }^{3}$ This is shown in Fig. 1. The frequency of the r-f oscillator is determined primarily by the circuit within the dotted lines, which is composed of L_{1}, L_{2}, L_{3} and C_{1}.
This circuit may be considered as a transformer whose primary and secondary, L_{1} and L_{2}, are coupled through a high-Q resonant circuit composed of C_{1} and L_{3}. If there is little coupling from L_{3} to L_{1} and L_{2}, the frequency of oscillation is approximately equal to $1 / 2 \pi \sqrt{L_{3} C_{1}}$ and is substantially independent of external circuit parameters. Examples of these are tube capacitance or plate voltage.

Operation

In the tuning-fork oscillator, however, the transformer is physically quite different, although electrically equivalent. The primary and secondary are separated and not mutually coupled. One leg of a tuning fork made of magnetic material forms the core material of each coil.
Plate-current disturbances of any kind, such as those which occur

FIG. 1-Schematic diagram of tuning-fork-controlled oscillator (A) and
Meissner r-f oscillator (B)
when voltage is applied, have two simultaneous effects: the tuning fork is set in motion; and a magnetic flux is induced in it by the coil whose core it forms. Because a well-made tuning fork is mechanically equivalent to a high-Q resonant circuit, it vibrates only at its resonant frequency when shock excited. The loaded Q of a tuning fork can easily be made greater than 10,000 .

When the tuning fork is excited, both legs exhibit some movement. The motion of the leg used as the core of the grid winding induces a voltage in the coil L_{2}. The circuit will then oscillate, provided the polarity of the grid voltage is such that it reinforces the plate signal and the tube supplies enough gain to offset circuit and mechanical losses.

Because feedback can occur only when the tuning fork is vibrating, the accuracy and stability of the oscillator depend directly upon the mechanical properties of the vibrating element.

Circuit

A complete schematic of the standard-frequency generator is shown in Fig. 2. Triode V_{1} is the tuning-fork-controlled master oscillator from which all output frequencies are derived. A small amount of negative feedback, provided by resistor R_{1}, limits the gain of the oscillator tube. Thereby the tuning fork is prevented from being overdriven and the purity of the waveform is improved to an appreciable extent.

The oscillator operates at a frequency of 500 cycles per second. This frequency was arbitrarily chosen because lower frequencies can be calibrated against the powerline frequency by Lissajous figures ${ }^{*}$ observed on an oscilloscope. This technique may also be used to extend the usefulness of the stand-ard-frequency generator down to 100 cycles or up to a frequency of 100 kilocycles.

Multiples of the base frequency are obtained by principles which are commonly known but not often applied to this particular application. The first four terms of the Fourier expansion of the full-wave rectification of a sine wave will
result in the following expression

$$
\begin{aligned}
e=\frac{2 E_{m}}{\pi} & -\frac{4 E_{m}}{3 \pi} \cos 2 \omega t \\
& -\frac{4 E_{m}}{15 \pi} \cos 4 \omega t-\frac{4 E_{m}}{35 \pi} \cos 6 \omega t
\end{aligned}
$$

This expansion includes a second harmonic equal to $4 / 3 \pi$ times the peak voltage applied. The presence of this second harmonic may be used to provide multiples of the oscillator frequency.

One half of twin triode V_{2} is a cathode follower providing a lowimpedance output at the fundamental frequency; the other half is an amplifier. The plate load of the amplifier consists of a transformer in which a center-tapped secondary provides a phase difference of 180 degrees between the voltages at the two ends with respect to ground.

Rectification

Diode V_{5} is a full-wave rectifier. The original sine wave is thus converted to the familiar output waveform of a full-wave rectifier having a resistive load which is rich in harmonic content. The high-Q parallel-tuned circuit included in the diode load eliminates all harmonics except the second. The unloaded Q of the inductors used in this circuit ranges from 120 to 200.

An isolating resistor in series with the tuned circuit maintains a high loaded Q by minimizing d-c through the inductor and equalizes the amplitude of all frequency generator outputs.

The filtered second-harmonic voltage is then fed into a second twin triode, V_{4}. One triode amplifies the second harmonic in preparation for the next diode frequency doubler; the other triode provides another low-impedance cathode-follower output stage.

Frequency doubling provides only frequencies which are (2) ${ }^{n}$ times the oscillator frequency, where n is an integer. Often, however, frequencies such as 3,6 or 10 times the fundamental frequency are required. Two methods of achieving such frequencies were considered. The sine wave could be shaped to a form, such as a square wave, containing odd harmonies and then filtered.

FIG. 2-Schematic of audio-frequency generator employing tuning-fork-controlled master oscillator. Diode frequency multipliers are used to obtain frequency doubling

Alternately, two of the available frequencies could be added and then rectified to provide either their difference or sum and associated harmonics.

Diode Doubler

The second method was used because it required only a single tube, a diode. Two mixing stages are incorporated which furnish output at 1,500 and 5,000 cycles. Each of these stages combines two frequencies whose sum or difference is desired and the resultant voltage is then rectified. If the two voltages are represented by $E_{1} \sin \omega_{1} t$ and $E_{2} \sin \omega_{2} t$, the Fourier expansion of the rectified output contains the two terms $k E_{1} E_{2} \sin \left(\omega_{1}+\omega_{2}\right) t$ and $k E_{1} E_{z} \sin \left(\omega_{1}-\omega_{2}\right) t$ where k is a mathematical constant of proportionality.

The rectifier output will contain voltage components whose frequencies are equal to the sum and the difference of the two original frequencies. The particular component desired may then be selected by a suitable tuned circuit similar to that previously described in this article.

The 500-cycle and 1,000-cycle
voltages, obtained from V_{2} and V_{4}, respectively, are combined through resistors R_{2} and R_{3} and applied to the diode mixer V_{τ}. The 1,500-cycle component is selected from the mixer output by a tuned circuit and amplified by V_{s}, fed through diode doubler, V_{12} to furnish a 3,000-cycle output.

A second diode mixer, V_{g}, provides a 5,000 -cycle output by combining the 3,000 -cycle and 2,000 cycle voltages. The 5,000 -cycle voltage is then amplified by one half of V_{10} and rectified by the final diode frequency multiplier to provide an output frequency of 10 kilocycles. The number and choice of output frequencies is determined by the particular requirements of the application and not limited to those shown here.

Advantages

Reliability is inherent in this experimental standard-frequency generator because all tubes are operated conservatively and use of capacitors has been held to a minimum. Because there are no multivibrators nor oscillating circuits other than the master oscillator, output is limited to the frequencies
designed into this piece of equipment.

Power-supply requirements are simplified because variations in supply voltage affect only the oscillator circuit. An OB2 voltage-regulator tube of the glow-discharge type provides adequate regulation of oscillator plate voltage for practically all purposes. Total powersupply drain is approximately 60 milliamperes.

All output voltages are available simultaneously at 500 cycles, $1,1.5$, $2,3,5$ and 10 kilocycles. Peak-topeak amplitude of all outputs is 20 volts. No perceptible drift has been observed at any time during long periods of continuous operation of this equipment.

The author expresses his appreciation to D. Mawhinney who constructed the unit and simplified many of the difficulties prior to the completed design.

Refbrences

(1) F. E. Terman, 'Radio Engineer's Handhook',' J 950 . McGraw-Hill Book Co., Hanchook ${ }^{\text {I }}$ Inc. New York, 1943.
(inc. New E. Norrman, A Precision Tuning. Fork Frequency Standard, Proc $I R E, 20$, p 1,715 , Nov. 1952 .
(3) \dot{F}, E. Terman, "Radio Engineer's Handbook", p 4S0. McGraw-Hill Book Co., Inc., New York, 1943.
(i) Seeley, "Electron Tube Circuits", p 486 , NeGraw-Hill Book Co., Inc., New York, 1950.

Expanded-Scale Voltmeter

(UMMARY - Instrument shows rms voltage with 0.25 -percent accuracy over range of 100 to 500 volts. Hot-wire thermal bridge provides highly stable voltage standard, which is relatively independent of frequency from 50 to 2,000 cycles per second

MANY applications in electronic engineering require an indicating instrument that will accurately measure high voltages.

To meet this need, an expandedscale voltmeter has been developed which permits the indication of a narrow voltage range over the complete indicating-meter scale.

In the laboratory-model instrument, a tapped input transformer permits this voltage range to be placed conveniently, so that in actual use the applied voltage is equal to the sum of the readings of two knobs plus the reading of the meter. In the panel-mounted voltmeters, this adjustable feature is eliminated and the scale is expanded about the nominal voltage.

Accuracies of 0.25 percent over a frequency range of 50 to 2,000 cycles are achieved in the labora-tory-model voltmeter and accuracies of 0.5 percent over the same frequency range are achieved in the panel meter. Sensitivities as high as 0.3 inch per volt are obtainable.

Principle of Operation

A thermal bridge is used as the voltage standard in both models of the expanded-scale voltmeters. By exploiting the nonlinear properties of a hot wire, a highly stable voltage standard has been developed. This element is used in a bridge circuit with wire-wound resistors to give a system whose output is shown in Fig. 1. The output voltage goes through a null at an input of $E_{\text {. }}$ For small deviations from E_{s}, the output voltage is proportional to ($E_{m}-E_{s}$). Since the nonlinearity is produced by heating of the wire, the indication is rms and relatively
independent of the frequency.
High-frequency limitations imposed are those of wire-wound resistors and low-frequency limitations result from distortions caused by nonlinearity during a cycle of the input frequency. These impose limits of about 20 to $100,000 \mathrm{cps}$ on the voltage standard. Accuracy of 0.1 percent can be obtained.
The temperature coefficient of the bridge is very small because of the high operating temperature of

FIG. 1-Characteristic of hot-wire thermal bridge used as voltage standard
the wire in the nonlinear element, since a change in ambient produces only a small percentage in the wire's temperature rise. This small coefficient is compensated for by using a temperature-sensitive resistor in one branch of the bridge. The high operating temperature of the nonlinear element also produces rapid response to voltage changes.

Laboratory Model

The circuit of the laboratory model of the expanded-scale voltmeter is shown in Fig. 2. The nonlinear voltage standard is driven from a precision tapped transformer which permits measuring a wide range of input voltages. The taps are arranged in decades with 10 -volt steps from 100 to 390 volts on the input, providing exact input ratios to the voltage standard. An accurately center-tapped secondary

FIG. 2-Laboratory-model expanded-scale voltmeter has provision for operating l-milliampere external recorder

for A-C Measurements

By HERBERT GALMAN
Chief Development Engineer
Arga Division, Beckman Instruments, Inc. South Pasadena. Califormia

on the transformer permits eliminating two resistors in the bridge to give a half-bridge voltage standard. The transformer has 0.1 -percent accuracy from 50 to $5,000 \mathrm{cps}$.

The transformer-voltage standard combination produces an output proportional to $\left(N_{s} / N_{p}\right)\left(E_{m}-\right.$ E_{s}) where N_{s} / N_{p} is the ratio of the transformer's secondary voltage to its primary. By multiplying this output by N_{p} / N_{s}, a voltage proportional to $\left[E_{n}-\left(N_{n} / N_{s}\right) E_{n}\right]$ is obtained. Since N_{n} / N_{s} was chosen to be decade voltages from 100 to 490 volts in 10 -volt steps, a method of accurately subtracting these voltages from the input voltage is obtained. This subtraction is rms.

The amplifier, consisting of V_{1} and V_{2}, multiplies the voltage standard's output by N_{s} / N_{p} through changing the feedback resistors with changes in the transformer taps. Negative feedback makes the gain very accurately proportional

Table I-Typical Voltage Errors

Harmonic Content	RMS Voltmeter Meading						
	100	104	108	400	404	408	
10%	2nd	0	0	0	0	0	0
10%	3 rd	0	0.15	0.30	0	0.15	0.30
10%	4 th	0	0	0	0	0	0
10%	5th	0	0.10	0.20	0	0.10	0.20
10%	7 th	0	0.06	0.12	0	0.06	0.12

FIG. 3-Panel-type expanded-scale voltmeter for specific voltage ranges

Expanded-scale voltmeter is read by adding dial settings to meter reading

Panel-model meter has circuitry in can attached to meter housing
standard, the resulting error is usually negligible.

Typical errors are given in Table I, which gives the error in volts. This table shows that no waveform error exists at the 0 -volt end of the panel-meter scale. Maximum error occurs at the 10 -volt end of the scale. For a given harmonic content, the maximum error in volts is independent of the voltage range used. For normally encountered waveforms, with less than 10 -percent distortion, only small errors will result.

To operate the voltmeter the hundreds and tens knobs are turned to bring the meter needle on scale and the setting of the knobs are added to the meter reading. For example, $200+30+3.7=233.7$ volts. The meter has a full scale reading of 12 volts, giving a 2 -volt overlap and eliminating the necessity of switching back and forth when the voltage is close to the end of the scale.

Panel-Mounting Meter

The panel-model of the expandedscale voltmeter, Fig. 3, has one range. The network containing the voltage standard and demodulator are packaged in a hermetically sealed can attached directly to the meter itself.

In this version of the voltmeter the thermal bridge is operated at a voltage of 6 or 12 volts. A transformer is used to step down the input voltage to the proper voltage for bridge operation.

FIG. 1-Crystal filter circuits showing basic staggered element (\AA), with its equivalent circuit (B) and a lurther simplification (C)

Staggered Triple

\int UMMARY — Narrow-band filter with extremely sharp skirts is provided by piezoelectric crystals in stagger-tuned system. Circuit functions from 400 ke to 5 mc by suitable choice of crystals

By D. E. HILDRETH

RECENT DEVELOPMENTS found in mechanical filters and the more familiar lattice systems seem to cover sharp filter applications quite well. However, the need occasionally arises for a filter outside of the frequency range of the mechanical filters or more simple in terms of component requirements and adjustments than lattice systems. Results with the staggered crystal filter shown here have been promising.

Unit Function

Basically, a staggered element in this system contains a phase inverter, to facilitate neutralization of crystal holder capacitance, a crystal and an isolation stage which may be a cathode follower or an amplifier. Maximum energy is transferred to the isolation stage at the seriesresonant mode of the crystal. Circuit Q can be altered by the addi-
tion of resistance in series with the crystal-neutralizing circuit and the input of the isolation stage of this system.

Design criteria for the use of staggered elements is well covered in the literature. ${ }^{1}$ Design criteria usually given is to enable the design of a system with maximal flatness. Higher Q's than those dictated by design criteria can be used where peak-to-valley ratios on the order of 3 to 6 db can be tolerated. The allowance of a peak-tovalley ratio is usually more than compensated for in terms of a superior skirt-shape factor.

A basic element is shown in Fig. 1 A and its equivalent circuit is shown in Fig. 1B. It is further simplified in Fig. 1C.

If Fig. 1C is used to evaluate an indication of stage gain at resonance and R_{i} is made much larger than $X_{c i}$, the approximate equation
for stage gain is the following

$$
\text { Gain }=\frac{E_{0}}{E_{1}}=\frac{I X_{c i}}{E_{1}}=\frac{X_{c i}}{R_{1}+R_{x}}
$$

A typical apparent voltage gain for a crystal circuit at 400 kc assuming C_{i} to be $5 \mu \mu \mathrm{f}$ and total R to be 5,000 ohms would be 80,000 / $5,000=16$.

System Results

The circuit shown in Fig. 2 is the prototype which was built to be used with 400 -kc crystals. The curve shown in Fig. 3 indicates frequency response which was present with a voltage gain of 20 .

Figure 4 indicates results when crystals at $1.599,1.600$ and 1.601 mc were used. Inherently, this system is most practical where overall system Q's are on the order of 2,000 to 20,000 . Where lower system Q's are required, staggered systems employing Q multipliers or normal

FIG. 2-Circuit diagram of prototype model of staggered triple crystal filter using $400-\mathrm{kc}$ crystals

Crystal Filter

resonant circuits may be used to advantage.
Since resistance (R_{0} in Fig. 2) must be added in series with a series resonant circuit to reduce Q, the circuits shown would result in signal attenuation rather than gain if crystals were to be used for low-Q elements. This may easily be determined by referring to the gain equation where the Q-reducing resistance would appear in the de-
nominator of this expression.
Where skirt-rejection requirements are not too severe, a single staggered pair may be used or a single crystal circuit where a sharp peak is desired.

Applications of this type of filter system seem to be large. It may readily be adaptable in the elimination of the double-heterodyne process in some high-frequency receiver applications where a high degree
of both image rejection and selectivity are required. The size of such equipment could immediately be reduced and less shielding would be required to reduce the multiple beats present when more than one local oscillator is used in a receiver system.

Reference

(1) H. Wallman Stagger-Tuned Amplifier Design, p 682, "'Electronics Manual for Radio Engineers." Zeluff and Markus, McGraw-Hill Book Co., New York, 1949'

FIG. 3-Frequency response of filter circuit using 400 kc crystals with a voltage gain of 20

FIG. 4 -Curve shows frequency response with a cenfer frequency of $1,600 \mathrm{kc}$

VHF Transmission Line Calculator

By A, E, SANDERSON Aircraft Radio Corporation

CUMMARY Phase shift and attenuation introduced by transmission line connecting unknown impedance and measuring equipment can be quickly corrected by use of simplified calculator dial together with Smith or Z-® chart. Dial is also useful in design of filters, antennas and matching networks

CORRECTION of vhf impedance measurements for phase shift and attenuation introduced by the transmisson line connecting an unknown impedance with measuring apparatus can be made with the calculator shown here.

It is used in conjunction with
either a Smith chart or $Z-\theta$ chart. With this device corrected measurements may be plotted directly on the Smith chart without the necessity of reading values from a separate calculator and transcribing them. Scales not necessary for transmission line corrections are omitted for sim-

plicity on the chart below. An impedance curve plotted on these charts is valuable in the design of vhf filters, matching networks and antennas. Such a curve will tell not only how good the network may be in terms of vswr, but with proper interpretation, will tell exactly what steps should be taken to perfect the design of the network.

Calculator Design

The transmission line calculator consists of a clear plastic disk about 8 inches in diameter with printed scales. Two D-shaped sections and a radial slot are cut out of the disk to allow marks to be made directly on the graph paper as the measurements are taken. A small hole is located at the center for a thumbtack pivot.

A scale around the outer perimeter of the calculator is marked off in units of $1 / 1,000$ wavelength. The scale goes from 0 to 500 , since 1 revolution of the calculator corresponds to the phase-shift correction for a section of line $\frac{1}{2} \lambda$ in length. A scale along the upper edge of the radial slot from the center to the outer edge of the calculator is marked off in vswr from 1 at the center to ∞ at the outer edge. This scale is nonlinear, but may eusily be calculated from the re(Continued on page 170)

ETCHED CIRCUITRY

AND RELATED ASSEMBLIES

Graphic Circuits Reduce Wiring Costs • Cut Down Assembly Time • Eliminate
Errors • Miniaturize • Guarantee

Uniformity

RIGHT ANGLE BOARD (Right)

Developed and produced for right angle application. The right angle board accommodates all of the CINCH socket sizes, and can be bonded with epoxy resin or snapped in and retained by newly developed CINCH hardware. All units meet or exceed Military Specifications.

Sockets, terminals and other hardware installed to customatic assembly.

CINCH PRINTED CIRCUIT CONNECTORS (Shown enlarged)

The etched circuit connector provides fast, easy assembly. Does not require precision tolerances on board thickness. Eliminates moisture trap. Allows greater flexibility of configuration. Lower cost. ing production design, drafting, artwork, development, prototyping and manufacturing photo-printing, silk screen, etching, machining and punching, fabricating, mechanical assembly, electrical assembly, encapsulating, quality control, and fluoroscopic inspection.

Centrally located plants at Chicago, Shelbyville, Pasadena and St. Louis.

Complete facilities for engineer-

CINCH will design new, or re-design parts within the category of their manufacture to fit your particular plans, and will also assist in the introduction in the assembly of CiNCH's specially designed component in your radio and TV equipment.

CONSULT CINCH

CINCH components are avail
able af leading elecironic
jobbers-everywhere.

GRAPHIK CIRCUITS

Division of Cinch Manufacturing Corporation
lation vswr $=(1+\Gamma) /(1-\Gamma)$ where Γ is a linear function, being 0 at the center and 1 at the outer edge. This scale allows impedance points to be interpreted directly in terms of vswr.

A third scale extends along the lower side of the radial slot from the center to the outer edge of the calculator. This scale is marked off in db steps, starting from the outer edge as reference. Each db step represents the radial movement of a point by a given percentage of its distance from the center. Since this motion can be either toward or away from the center, no numbers appear on the scale. Lines marking $1-\mathrm{db}$ steps are longer than the intermediate lines. This scale allows corrections to be made for the effect of line attenuation.

To determine proper line corrections as a function of frequency for the length of line used between the measuring equipment and an unknown impedance, the line is first terminated in a known or calibrating impedance. This may conveniently be a short circuit. The input impedance of the line is then measured at one frequency and the point is plotted on the Smith chart. The calculator is placed over the Smith chart and rotated until the slot is aligned with the point. Assuming a short-circuit termination, the phase correction for the line is read on the outer scale of the calculator at zero ohms on the Smith chart. The attenuation correction is the number of db steps between the measured input impedance point and the outer end of the scale.

This process is repeated for each frequency at which measurements are to be made and the phase and attenuation corrections recorded. The line input impedance can then be transformed to corresponding terminating impedances and plotted directly on the Smith chart.

FIG. 1-Solution of transmission line problem. Input impedance of transmission line is indicated by crosses and impedance of antenna by circles

To do this, the short-circuit is replaced by the unknown impedance and the input impedance of the line is measured at one of the chosen frequencies. The slot of the calculator is then positioned over the point representing this measured impedance. Moving outward along the slot from this point by the tabulated db step correction gives the vswr of the unknown terminating impedance. The calculator is then rotated counterclockwise by the tabulated phase correction and the chart is marked through the slot opposite the vswr previously established. The impedance represented by this point is the terminating impedance.

With lines that are several wavelengths long, some precautions should be observed. Frequencies of measurement must be accurately determined, preferably with a crystal calibrator, be-

Table I-Line Corrections for 133-mc Antenna

Fre- quency in Mc	Phase Correc- tion λ	Attenua- tion Correc- tion in Db Steps
100	455	0.7
110	398	0.7
120	341	0.7
130	285	0.7
140	228	0.7
150	171	0.7

cause a small frequency error will result in a large error in the phase-shift correction.
Attenuation correction may become large and should therefore be determined quite accurately. For best accuracy, the calibrating impedance should have a vswr fairly close to that of the unknown impedance since the attenuation of the line is a function of vswr and will be greater for large vswr. If such a calibrating impedance is used, the line corrections must be determined by a method analogous to that described above for a shortcircuit termination.

Example

As an example, consider the determination of the input impedance and resonant frequency as seen at the terminals of an experimental antenna unit mounted on a finite ground plane. The desired resonant frequency is 133 mc . The line used to feed this antenna has a characteristic impedance of 50 ohms .

Figure 1 illustrates measured data on such an antenna, plotted with the calculator. The antenna was replaced by a short-circuit and input impedance of the shorted line was measured at $100,110,120,130,140$ and 150 mc. A table of line corrections was then made up (see Table I). The antenna was put back on the line, the new input impedances were measured, corrections applied and a corresponding series of five points were obtained. A smooth curve connecting these points intersects the axis of pure resistance at 46 ohms. The frequency at which this occurs is 129 mc . When the antenna was shortened to become a pure resistance at 133 mc , the vswr was 1.08 .

Bibliography

[^7]
This capacitor changed designers' ideas about how well... and how long... an electrolytic capacitor could be relied upon to operate

On Electrolytic Capacitors... Mallory FP is the Sign of Dependability

AUTOMATIC CONTROLS
 An example of a field served by Mallory

The long life and uniform high quality of Mallory electrolytic capacitors are particularly valuable, in modern electronic instrumentation, which must deliver consistent and umintermpted service as the "brainpower" guiding complex production processes.
Also serving the manufacturess of measurement and control equipment are other Mallory precision components . . contacts, resistors, con* trols, switches, rectifiers, vibrators and mercury batteries. Becanse of this wide rande of components, Mallory engincers have a unipue fund of experience-available to assist you in meeting special requirements and in balancing related circuit elements.
"FP" is the mark of a mique capacitor construction, pioneered and perlected by Mallory, which sets the industry's standards for performance and service life. It signifies these features:

- Ability to operate at ambients of $85^{\circ} \mathrm{C}$ without derating.
- High ripple current rating; suitable for use with metallic rectifiers and in doubler cirenits.
- Exceptional life, in service and on the shelf.
- Compact, standardized case size.
- Quich, economical twist-prong mounting and variety of printed circuit mountings.
For premiam performance and reliabilit. . . . without premium price FP Capacitors. Our capacitor engineers will he glad to consult on your circuit requirements, to assist in effective application and often to aid in simplification of circuitry. For technical data. or for a discussion of your particular requirements, write or call Mallory today.

Expect more... Get more from
Serving Indusfry with These Products:
Electromechanical-Resistors * Switches - Television Tuners * Vibrators Electrochemical-Capacitors . Rectifiers . Mercury Batteries Mefallurgical-Contacts . Special Metals and Ceramics. Welding Materials

Parts distributors in all major cities stock Mallory
standard components for your convenience.

Over-Horizon Radio To Link Islands

Pair of 28 -foot paraboloidal diversity antennas at Nutley, N. J.

Propagation over distances in the order of 200 miles using uhf has recently proved feasible when appreciable transmitting power and diversity reception are suitably employed.

Tropospheric beyond-horizon circuits are to be installed between Florida and Cuba in a joint endeavor of American Telephone and Telegraph Co. and International Telephone and Telegraph Corp.

In addition, Radio Corp. of Porto

Rico, IT\&T subsidiary has recently filed application with FCC for the development of a radio link between San Juan, Puerto Rico and Ciudad Trujillo, Dominican Republic. The new link will be necessary to meet increasing traffic demands. Propagation tests will probably start in late 1955.

Experimental work in progress at Federal Telecommunication Labs (IT\&T subsidiary) includes a 91mile, 900 -mc multiplex circuit be-

Technician adjusts frequency division multiplex $f-m$ receiver at Nutley termlnal of tropospheric 91 -mile $900-\mathrm{mic}$ circuit to Southampton, N. Y.
tween Nutley, N. J. and Southampton, L. I., N. Y. Loss over the path exceeds by some 30 db that predicted or encountered elsewhere. Some of the loss may be seasonal in character and some may result from the proximity of a ridge formed by the Palisades along the Hudson River. There appears to remain an additional loss factor that is suspected to arise from the overland nature of the path, perhaps from the over-city portion.

Sensitive Thyratron Relay Operates On Microampere

By John N. Haris
Staff Member
Lincoln Laboratory
Massachusetts Institute of Technology Lexington, Mass.

Often there is need for a very sensitive relay that will operate from currents as low as a microampere. The circuit shown here has been successfully used in conjunction with a mercury thermoregulator for controlling temperature. It is suitable for many other applications.

When the input is open, the grid is returned through R_{1} and R_{2} to the cathode and the tube is ignited
during the positive portion of the cycle. When the input circuit is closed, the filament voltage is in

Circuit of the sensitive thyratron relay
series with the grid return (since $R_{2} \gg$ resistance of the filament winding) and of such a phase as to prevent the tube from igniting.
Resistance R_{3} is chosen so that the rated current (usually 1 to 10 ma) passes through the relay. A resistance of 10,000 to 30,000 ohms has been satisfactory in most cases. The capacitance C is across the coil to prevent chattering and may be about $12 \mu \mathrm{f}$. Resistors R_{1} and R_{2} are chosen to satisfy the input impedance and current limitations. When it is desired to have very low current in the input circuit, values

Build these compact Power Supplies into your equipment!

Kepco Voltage Regulated Power Supplies are conservatively rated and are designed for continuous duty at $50^{\circ} \mathrm{C}$ ambient. REGULATION: Specified for each unit is available throughout its output voltage range and is less than 0.2 volts for line fluctuation from $105-125$ volts and less than 0.2 volts for load variation from 0 to maximum current.
RIPPLE: Less than 3 mv . rms.

featulies:

- Superior Regulation.
- Ulitra.Stable 85A2/0G3 Reterence Tube.
- Low Ripple.
- Low Output Impedance.
- Fast Recovery Time, Suit. able for Square Wave Pulsed loading.
- Voltage Range continuously variable without Switching.
- Either Positive or Negative may be Grounded.
- Oil Filled Condensers.

Wire Harness and Resistor Board Construction.

- Power Requirements 105 . 125 volts, $50: 60$ cycles.
- Terminations and locking type voltage control on rear of unit.
- AC, DC Switches, Fuses, and Pilot Lights on Front Panel.
- Color Grey Hammertone.
- Guarantee One Year.

To Include $3^{\prime \prime}$ Current and Voltage Meters, add M to Model number (e.g. KR $1 . \mathrm{M}$) and Add $\$ 30.00$ to the Price. To include Dust Cover and Handles for Table Mounting, Add C to Model number (e.g. KRI.C) and Add $\$ 10.00$ to the Price. To Include Meters, Dust Cover and Handles, Add MC to Model number (e.g. KR-1MC) and Add $\$ 40.00$ to the Price. PRICES F.O.B. Flushing

A LINE OF 45 MODELS

Available from Stock - Catalog on Request
of $R_{\mathrm{t}}=1 \mathrm{megohm}$ and $R_{z}=4 \mathrm{meg}$ ohms have been used. However, for many applications $R_{1}=250,000$ and $R_{e}=100,000$ have been found satisfactory.

For load reguirements exceeding the rating of the output relay, a second power relay may be operated from it.

The research in this development
was supported jointly by the Army, Navy, and Air Force under contract with the Massachusetts Institute of Technology, at Cambridge, Massachusetts.

Japanese Transistor Broadcast Receiver

Circuit diagram of the Sony TR-55 transistor superheterodyne broadcast receiver

Five Transistors are used in a superheterodyne radio broadcast receiver built by Tokyo Tsushin Kogyo, Ltd. of Japan, licensees of Western Electric Co. Printed circuit wiring is employed. The output jack permits use of an earpiece in-
stead of the self-contained $2 \frac{1}{2}$-inch loudspeaker. Four penlight cells furnish 6 volts on which the receiver operates for about 50 hours.

Power output of 10 milliwatts is possible with 10 percent distortion. Field strength required is between

1 and 2 millivolts per meter. The receiver tunes from 535 to $1,605 \mathrm{kc}$. Intermediate frequency is 455 kc . Selectivity is approximately 15 db at 10 kc off resonance. Photographs of the set were shown on page 12 of the October Electronics.

Antenna Arrays Insure Flat-Top Communications

Scale model on rotating pillar

Microwave generator and horn
tures must not constitute a flight hazard and must be substantially unaffected by other structures.

The Forrestal's uhf radio gear, used to communicate with jet aircraft, is said to have an effective range of 1.5 times that of previous equipment, Eight diversity anten-

Detail of model receiving antenna
nas are located on the gun tubs and corners of the flight deck. By virtue of their positions, the antennas are free from the interfering effects of other antennas, ship superstructure and reflections from the sea.

Even with antennas at half their former height the new uhf system

many models of HELIPOT*
precision potentiometers are stocked for immediate shipment
... our engineers will gladly adapt standard HELIPOTS to your
requirements . . . or build entirely new HELIPOTS for you. fur information and specifications

Once your name was Og. You tired of shouldering mastodon steaks...of dragging your mate by her hair. You invented the wheel.

Later, your name was Watt. Steam made your kettle-lid dance... and the Industrial Revolution was on.

Yesterday, you were a bicycle mechanic named Henry...today, your brainchild's descendants are counted in millions.

Your name is legion. You created every linkage... every device... every system.

You're an engineer.
You make things work better ... faster... more accurately ...more economically.

Next week...next month...next year...some system will need a better, faster, more accurate or more economical means of recording ... or indicating... or computing... or controlling a process.

You'll want precision potentiometers.
You'll discover that Helipot makes the most complete line... linear and non-linear versions... in the widest choice of sizes, mounting styles and resistances.
... write for data file 1109
 first in precision potentiometers

Helipot Corporation/South Pasadena, California Engineering representatives in principal cities a division of beckman instruments, inc.

ment can now be observed.
In this system, a color camera is mounted on a laboratory microscope. The optics are adjusted to focus the real field through the color drum segments onto the face of the single image-orthicon pickup tube.
The field-sequential system uses a 24 cps color-frame repetition rate. Horizontal scanning
frequency is $29,160 \mathrm{cps}$ and the vertical frequency is 144 cps interlaced 2 to 1 . Aperture correction and crispening circuits are used.

The image from the compound microscope normally viewed by the eye is, in the color microscope, formed at the photocathode of the image orthicon. This image, with a diagonal of 1.6 in , is amplified electronically in brightness and then magnified in size to a diagonal of approximately 11.5 in . on a small monitor, 18.5 in . on a larger monitor and 83 in . on a large-screen projector. This results in image size magnification of 7,12 and 52 respectively. Using a $2-\mathrm{mm}$ objective and a $10 \times$ ocular, the overall magnification can be 46,800 .
provides greater communications range than equipment used in World War II.

Characteristics of the antenna
system were tested in advance by Federal Telecommunication Labs using a scale model of the carrier equipped with a scaled receiving an-
tenna. The rotating model was illuminated by a microwave horn and recordings made of signal strength versus orientation.

Digital Voltage Divider Using Four Resistors

Digital voltage dividers are potentiometers consisting of a set of fixed resistors that are switched by a keyboard or other means to effect a voltage division. The simplest is the series type shown in Fig. 1A. When two or more decimal digits are used to set up a voltage division the number of resistors becomes large and since precision resistors must be used, the total cost is high. A parallel type of divider has been developed in which only four resistors are required per decimal digit regardless of the number of digits. Fig. 1B shows the basic circuit.
The output voltage is

$$
v=\frac{G_{2}}{G_{1}+G_{2}} V
$$

where the resistors are expressed as conductances.

The value of v can be varied by

By L. J. Kamm

Chief Electrical Engineer Schatzki Engineering Co. Springfield Gardens
Long Island
transferring resistors from group G_{1} to group G_{2}. Proper choice of values for g_{1}, g_{2}, make possible a
large number of different values of v by different groupings of a small number of resistors. For example for a one digit divider, let $g_{1}=1 \mathrm{mho}, g_{3}=2 \mathrm{mho}, g_{3}=3$ mho and $g_{4}=4 \mathrm{mho}$.

Then $G_{1}+G_{z}=10$ mhos and the combinations that can be made are

Table I-Digital Combinations of G_{1} and G_{2} Using Four Resistors

$v / V=G_{2} /\left(G_{1}+G_{2}\right)$	G_{1}	$\begin{aligned} & \text { Value } \\ & \text { in } \\ & \text { mhos } \end{aligned}$	G_{2}	$\begin{aligned} & \text { Value } \\ & \text { in } \\ & \text { mhos } \end{aligned}$
0	$g_{1}+g_{2}+g_{3}+g_{4}$	10	0	0
${ }_{0}^{0.1}$	${ }^{g_{2}+g_{3}+g_{4}}{ }_{\text {g }}$	9	g_{1}	
0.3	$g_{1}+g_{3}+g_{4}$ $g_{1}+g_{2}+g_{4}$	8	g_{2} g_{3}	$\stackrel{2}{3}$
0.4	$g_{1}+g_{2}+g_{3}$	6	g_{4}	4
0.5	$g_{2}+y_{3}$	5	$g_{1}+g_{4}$	5
0.6 0.7	$g_{1}+g_{3}$ $g_{1}+g_{2}$	4	$g_{2}+g_{4}$	6
0.8	${ }_{9} g_{2}+g_{2}$	$\stackrel{3}{2}$	${ }^{g_{3}+g_{4}} g_{1}+g_{3}+g_{4}$	7 8
0.9	g_{1}	1	$g_{3}+y_{3}+y_{2}$	9
1.0	0	0	$g_{1}+y_{2}+g_{3}+g_{4}$	10

A COMPLETE LINE OF DEPENDABLE ENCAPSULATED RESISTORS

PRECIIION WIREWOUND RESISTORS FOR 85C AND I25C AMBIENTS

When you have applications requiring accurate resistance values at 85 C and 125 C operating temperatures, in units of truly small physical size-you'll find the resistor you want is one of the 46 standard Permaseal designs in tab and axial lead styles.

They meet or exceed requirements for all types of military and industrial electronic apparatus and instruments. They are "extra-protected" by a special Sprague-developed plastic embedding material that performs beyond the se-
vere humidity resistance specifications of MIL-R-93A and Proposed MIL-R9444 (USAF).

Permaseal winding forms, resistance wire and embedding material are matched and integrated to assure long term stability at rated wattage over the operating temperature range.
These high-accuracy units are available in close resistance tolerances down to $\pm 0.1 \%$. They are carefully and properly aged for high stability by a special Sprague process.

SPRAGUE

FOR COMPLETE DATA WRITE FOR COPY OF SPRAGUE ENGINEERING BULLETIN NO. 122A

SPRAGUE ELECTRIC COMPANY - 35 MARSHALL ST. • NORTH ADAMS, MASS.

Five times as many parts checked per day... with a Kodak Contour Projector

Here's one company's approach to the problem of receiving inspection that may hellp you save time, improve accuracy.

Technology Instrument Corporation`s receiving inspection used to require 10 to 15 minutes each to check incoming precision shafts by mechanical gaging. Inspection involved concentricity, diameters, shoulder locations, and other hard-to-measure dimensions. Tolerances on these shaftscomponents of precision potentiometers ranged from $.002^{\prime \prime}$ to $.0002^{\prime \prime}$.
Then they turned to optical gaging with a Kodak Contour Projector; inspection time was cut to 2 to 3 minutes per shaft.

Here, again, is proof of how a Kodak Contour Projector often speeds inspection of precision parts. Dimensions difficult or impossible to measure by mechanical methods frequently are easily checked using optical methods. And you can shift from one part to another simply by changing a fixture and chart-gage.

There's a Kodak Contour Projector for every inspection or measurement job, whether in the toolroom, in receiving, production, or final inspection. And there's a representative in your area who can evaluate your needs for you. To get in touch with him, or for a copy of the booklct "Kodak Contour Projectors," mail the coupon below.
the KODAK CONTOUR PROJECTOR

EASTMAN KODAK COMPANY
Special Products Sales Division, Rochester 4, N. Y.

```
Please send me a copy of your booklet "The Kodak Contour Projectors."
```

Put me in touch with your representative.

NAME \qquad _TITLE

COMPANY
STREET
\qquad

CITY \qquad STATE

So accurate and deadly is the Hughes Falcon guided missile produced in Tucson, Arizona, for the U.S. Air Force, that it has knocked maneuvering drone bombers out of the air even without an explosive warhead. Although its electronic brain can outwit any enemy bomber, it is the smallest guided missile in production.

Because of this small size and consequent extreme miniaturized packaging, new production techniques have had to be conecived. This leads to production testing of individual parts, small integrated units, self-contained components, complete integrated systems, and simulated environmental performance.

The development of equipment for producing and testing of such a missile provides a continuous challenge to engineers experienced in electronic circuit design including the following:

Pulse-Power Supply-Transistor-IF and RF-Clamping-Wave Shaping-Switching-Phase Shift-Input-Output-Modulator-Discrimina-tor-Feedback-Video Circuits.

FIG. 3-Ten-position switch circuit for setting up digital voltage values with four resistors
switching for each digit is independent of the switching for the other.
For a three digit divider, 12 resistors are used with values as follows
$g_{1}=100$
$g_{2}=200$
$y_{5}=10$
$g_{9}=1$
$g_{2}=200 \quad g_{6}=20 \quad g_{10}=2$
$\begin{array}{lll}g_{3}=300 & g_{7}=30 & g_{11}=3 \\ g_{4}=300 & g_{8}=30 & g_{12}=4\end{array}$
The simplest way to transfer re-

Air-Conditioned Shielded Room

Double-walled screen room comprising aluminum sheeting separated by insulating cores of paper honeycomb filled with plastic resin provides $100-\mathrm{db}$ shielding from 14 kc to 1 kmc . Internal temperature can be maintained anywhere between - 65 F and 140 F . It was designed by NYU for the Air Force and is air-transportable

- MEDIUM POWER
- LOW NOISE FIGURE
...GERMANIUM

FUSED

- HIGH GAIN
- AXIAL LEADS
- minimum alpha.CROWding effect at high currents
- clip.in style package
- hermetic seal

NPN TRANSISTORS

${ }_{s y \text { FIUGFIES }}$

These devices offer excellent performance charatteristics, even up to higher polver ratings, together with high gain and low noise figures.

The uel" package is designed to dissipate ntore heat. This wakes it possible to maintain the high performance characteristics.

The low alpha-crowding effect makes the new Hughes transistors particularly adaptable to high current medium power amplifiers, in addition to: Computers... Switching ...Audio Amplifiers...i-f Amplifiers .. Oscillators. For all types, maximum collector current is roo milliamperes, and
collector dissipation is 500 milliwatts. Under certain conditions, or when used with
clips or with suitable heat sinks, these ratings can be increased substantially. Detailed specifications for each type are available in pertinent data sheets.

ACTUAL SIZE (כhoto, transistors in hand).
New Hughes Fused Junction NPN Germanium Transistor, available in (A) Three leads, to fit conventional transistor socket mountings; (B) Clip-in style package.

RATINGS AT $25^{\circ} \mathrm{C}$

Type	Alpha		Maximum Collectorto- Base Voltage $\left(V_{C}\right)$
	Min.	Max.	30 V
HA5001	0.975	1.0	15 V
HA5002	0.950	0.965	20 V
HA5003	0.975	0.99	

Collector Cut.Off Current $\left(\right.$ Ico 2	Alpha Cut.Off Freq. $(\propto$ cogb)	Rise Time	Noise Figure
$5 \mu \mathrm{~A}$	2.5	2.5μ secs	\ldots
$12 \mu \mathrm{~A}$	1.0	\ldots	15.0 db
$10 \mu \mathrm{~A}$	1.5	\ldots	15.0 db

FIUTGIEHS
Aircrafi Company, Culver City, California

Your immediate needs for one or more relays of any kind are shipped from our greatly enlarged stock which includes hundreds of types in all popular contact arrangements and coil ratings.
Complete stocks of current standard types of leading manufacturers are maintained for your convenience.
All relays are new, inspected and unconditionally guaranteed to be as represented. 24 hour delivery is routine. Phone us.

All standard distributor types of Advance Relays are on hand in quantity. Save precious time - order from Relay Sales!

RELAY SALES HAS MOVED TO THE COUNTRY!
Bigger, more efficient office, warehousing and shipping facilities are providing even faster service for our customers. Lots of parking space. Route 64 at E.J. \& E. R.R.

Please change your records

Phone:West Chicago 1100
sistors from group G_{1} to group G_{2} is to connect one side of each resistor permanently to the output wire and connect the other side to one or the other of the end wires by a single-pole double-throw switch as in Fig. 2.

For manual setting by rotary switch, each resistor is switched by a 10 -position switch with certain positions connected to one side of the line and the other positions connected to the other side. For manual setting by keyboard, each key must have 1, 2, 3 or 4 transfer contacts and each resistor wired as shown in Fig. 3 for the single digit case.

Other values of g may be chosen that are equally useful. Also, analgous circuits may be developed for binary and other number systems. This circuit has been used in digital servomechanisms using both 2 digits and 3 digits and has worked satisfactorily.

Zener-Voltage Breakdown Uses In Silicon Diodes

By Carl N. Wulfsberg
A in Force Cambridge Resench Center Ccmbridge, Muss.

General characteristics of the silicon junction diode shown in Fig. 1 indicate that it differs markedly from the point-contact germanium type in two ways.

Back resistances may exceed 10,000 megohms at moderate back voltages, and a sharp breakdown in back resistance occurs at a particular back voltage, the so-called Zener voltage. A third important difference is the ability of the silicon diode to operate at high temperatures without serious degradation

FIG. 1-Characteristics of silicon junc. tion diodes

Nagnalic Shiidhs

WIIY TAKII LESS?

You're time and money ahead with PerformanceGuaranteed Magnetic Shields, for our shields are guaranteed to meet the requirements of your circuit to mutually agreed upon shielding specifications. Dry hydrogen annealed, as required \therefore. . of MuMetal, A.E.M. 4750, or whatever commercially available material is most suitable .. . fábricated or drawn . . . painted or lacquered to match any shade, or unfinished. Write for the industry's most complete catalog, MS-104, today.

R•B•M General Purpose Relays..

have solved many specific relay problems with no development or tooling cost to the customer. RBM has produced handreds of thousands of magnetic relays from standard parts-designed and initially produced over seven years ago-to fulfill the need for dependable relays at low cost.

The many variations of contact form and ratings, as well as ter-
minal arrangements and mounting brackets, may well provide just the right relay for you. WRITE FOR BULLETIN 570or better yet, tell us your require. ments. Bulletin 570 shows only a few of the many variations.

Whether a single relay or a relay panel complete with wire assemblies and cord sets, RBM may help you lower your costs

R-B-M DIVISION
 essex wire corporation Logansport, Indiana

Controls for Electronic, Refrigeration, $1 n-$ dustrial, Appliance, Communication and Automotive Industries

FIG. 2-Direct-current voltage regulator
of its characteristics.
Although back resistance decreases rapidly with increasing temperature, values in excess of a megohm may be expected at 150 C . Forward resistance also decreases, but more slowly, while the Zener voltage normally increases slowly with temperature. Being junction devices, the diodes may have rather

FIG. 3-Alternating-current peak voltage regulator
high shunt capacitances. From one manufacturer's data, very low Zener voltage diodes have capacitances in the order of $50 \mu \mu \mathrm{f}$; the capacitance decreases with increasing Zener voltage and drops to 2 or $3 \mu \mu$ for diodes with high Zener voltages.

Numerous applications of silicon diodes in switching circuits suggest themselves, especially where high back resistances are desirable, such as diode gates and matrix switches. Matched pairs and quads are available, which should provide more stable operation than the comparable germanium types in discriminator and modulator circuits, especially under the condition of widely varying temperature. Silicon diodes are efficient rectifiers, with rectification ratios at one volt of 10^{3} or higher. High-power types recently made available will undoubtedly find wide application as power rectifiers and in magnetic amplifiers.

Silicon diodes are suited for use in diode-capacitor memory devices;

DU MONT Radar Tubes aid Miniaturization

The new Du Mont compact, high-resolution radar tubes will save space and weight permitling full use of miniaturization techniques in airborne and other portable radar receivers.

With resolution or light output comparable to standard tubes, these tubes offer substantial savings in both space and weight over more conventional designs. Tuhes are designed to be supported at the faceplate only.
Together with the small neck ending in a nine-pin miniature base, this simplifies connections to the tube and saves weight in supports and tube socket.

The low-current heaters in the $5^{\prime \prime}$ and $7^{\prime \prime}$ tubes draw only $0.3 A$. Therefore cooling problems and power requirements are much less in equipment using one of these tubes.

TABLE OF IMPORTANT SPECIFICATIONS							
type	diameter	length	focus	deflection	$\begin{aligned} & \text { NECK } \\ & \text { DII. } \end{aligned}$	voltage	$\begin{gathered} \text { DEFLECTION } \\ \text { ANGLE } \end{gathered}$
B1125	5"	$7{ }^{\prime \prime}$	mag.	mag.	$7 / 8 \prime \prime$	8 kv	70°
B1144	5"	$7{ }^{\prime \prime}$	mag.	mag.	$7 / 8 \prime \prime$	16 kv	70°
B1142	$7{ }^{\prime \prime}$	$8{ }^{1 / 2 \prime}{ }^{\prime \prime}$	mag.	mag.	$7 / 8$ "	8 kv	70°
B1132	$10^{\prime \prime}$	121/2"	elect.	mag.	1-7/16"	10 kv	90°

- FOR COMPLETE DETAILS, WRITE: TECHNICAL PRODUCTS DIVISION

ALLEN B. DU MONT LABORATORIES, INC., 760 Bloomfield Avenue, Clifton, N. J.
 FOR FAST SHIPM We EXCEL in small die-pressed and bo convinced TELVERY.
dry us and tolerances. Workmanship and QUICK GLASS MULTIFORNS
your most exacting needs to meet your most lron and kovar Sealing Ideal Multiforms for resist mercury attack, have readily. They chanical strength and SOE TO ASSIST YOU OUR $\angle A B O R A T O R Y$ IS PREPARED TO AS MUTITFORM

- If you are still making your own multiforms - let Mansol help you with your particular problems.
- Write to Dept. E for complete information about Steatite, Glass Multiforms and our production facilities.

OBLGGATION FOR THIS SERVICE. OBLIGATON

i40 ittifestreft, belleville, N. J.

CABLE ADDRESS: Mansol - Belleville. New Jersey

TUNING FORK

 RESONATORS •
THE ULTIMATE

IN PRECISION
AUDIO
FREQUENCY

CONTROL

PHONE OR WRITE for complete information regarding
component type Tuming Fork Resonators, or variously packaged Tuning Fork Frequency Standards.

General Mercury Batteries are helping many manufacturers take even greater advantage of transistors. The outstanding quality, and the high ratio of energy to size of these batteries is helping to build more compact, easier-to-handle portable miniaturized products without loss of efficiency.
Already the use of these tiny but powerful mercury batteries has spread throughout the hearing aid industry. The results are smaller, lighter instruments with greatly improved performance.
We invite you to investigate the possibilities General Mercury Batteries have for your product. They can be made in "power packs" in an unlimited number of series, parallel or series-parallel combinations. General "power packs" are made up of individual cells joined together by General's special surge-weld process. We will be glad to send you complete technical data. If you have specific questions we will be most happy to answer them.

grid of a following stage. While a resistor may be used in place of the diode to achieve the necessary change in level, there is a signal loss owing to the voltage-divider action of the resistors. By using a diode, the full signal amplitude is retained, the $d-c$ level being reduced by a factor equal to the Zener voltage of the diode.

Good transient response is possible with a proper shunt capacitor. A $1-\mathrm{mc}$ square wave with $0.1-\mu \mathrm{sec}$

FIG. 5-Silicon diode slicing circuit
rise and fall times was generated at the plate of V_{1} of Fig. 4 and, with the diode properly shunted, virtually no change in amplitude or waveform was observed at the grid of V_{g}. The d-c level, however, was reduced by 60 volts, the Zener voltage of the particular diode used.

Figure 5 shows a fast slicing circuit; V_{1} conducts until its grid potential falls below the slicing level, when the current is suddenly transfered to V_{s}, as indicated by the waveforms. Normally, the grid of V_{2} is returned to a fixed direct voltage, which makes the slicing level dependent on the d-c level of the incoming signal.

By including a silicon diode as shown, with a suitable R-C smoothing network, the difference in the d-c levels of the two grids is fixed by the Zener voltage of the diode. With output amplitude dependent on the d-c level of the input signal, there is virtually no change in the slicing operation of the circuit with input levels ranging from 75 to 175 volts.

Silicon diodes facilitate design of a simple and accurate method of converting a binary number stored in a shift register into an analog direct voltage. The accuracy required of such a device is 1 part in

TRU-OHM PRODUCTS, division of Model Engineering \& Mfg. Co., Inc., General Sale. Office: 2800 N . Milwaukee Ave., Chicago 18 , Ill.

80 MILLION SOLD!

TRU-OHM is Now the World's Largest Producer of Wire-

Special size resistors: Tru-Obm's bighly skilled factory trained technicians turn out large varieties of special resistors. Complete data of these special size resistors is available.

Complete line of pouer rheostats... of finest quality with UL approval; variety from 25 watts up.

High Quality, Speedy Delivery Sets Record
Over 50,000 square feet of the most modern manufacturing facilities, including a brand new furnace, enable volume production . . . assure faster delivery, finer quality, better prices. And TRU-OHM EXPEDITES FOR YOU . . . ships on time.
Inquiries Invited. You can get the complete story of Tru-Ohm's tremendous growth and why, by writing to 2800 N. Milwaukee Ave., Chicago 18. Let Tru-Ohm's experts solve your resistor and rheostat needs.

Wound Resistors!

Chicago ... From Tru-Ohm's general sales office. Since starting just a few short years ago, TRU-OHM PROD. UCTS has grown phenomenally to ten times its original capacity. Having just produced its $80,000,000$ th wire-wound resistor, Tru-Ohm is now the world's largest growing and largest producers of wire-wound resistors.

Resistor No. $80,000,000$. One of many wire-wound resistors ubich are turned out by the thousands daily.

For Original Equipment or Replacement Needs

A complete line of resistors as well as a complete line of power rheostats are now produced for the finest industrial manufacturers in the world . . for replacement applications...sold through parts jobbers.

WESTINGHOUSE
 NEW SILICON POWER

RECTIFIER puts you ahead...

High-temperature operation. Exhaustive tests have shown that these units are capable of operation up to $200^{\circ} \mathrm{C}$ with no detectable aging in their characteristics.

In rectifier efficiency. Forward voltage drop reaches only 0.85 volts at 40 amperes, $190^{\circ} \mathrm{C}$ junction temperature. Efficiency is over 99%. Ratings up to 200 volts maximum peak inverse are available in four classifications: $50,100,150$ and 200 volts.

In compact design. Westinghouse silicon power rectifier (shown actual size above) takes only $1 / 50$ th the volume of the comparable selenium rectifier.

Write today for your free application Facts Folder describing the full range of silicon power rectifier characteristics. These rectifiers are available for immediate delivery. Call your local Westinghouse sales office, or write: Westinghouse Electric Corporation, 3 Gateway Center, P. O. Box 868, Pittsburgh 30, Pa.

J-80002

2^{n}, where n is the number of binary digits. If n is greater than 4 or 5 , it is usually necessary to provide the flip-flops in the register with buffer stages, which may work into a ladder-adding network or drive relays that control suitably weighted resistors.

The method shown in Fir. 6 requires no additional stages, and is relatively indepeadent of tube characteristics and sunply voltares. The shift register flip-flops are comprised of pentode pairs, with the

FIG. 6-Digital-to-analog voltage converter
screen of each pentode that is cut off when storing a one connected as shown. With ones stored in the flip-flops (screens cut off), the first flip-flop, which contains the most significant digit, contributes a current E_{z} / R, the second a current $E_{z} / 2 R$, and so on.

This binary weighting of the currents supplied by the various stages then results in a current (or voltage) proportional to the binary number stored. The only requirements placed on the tubes are that no screen current flow when a one is stored and that sufficient current be drawn when a zero is stored to cut off the associated collector diode, with resultant zero current contribution.

Use of silicon diodes as collectors reduces the back current of a cutoff diode to a negligible value, while offering a very small resistance in the forward direction. The accuracy of the circuit is chiefly dependent on the tolerances of the resistors and the ability of the regulating diode to maintain a constant voltage E_{i}. The most critical resistor is the one associated with the first flipflop, which should have an accuracy of at least 1 part in 2^{n}.

Since highly precise resistors are available, the limiting factor will normally be the regulating diode, which must compensate for varia-

Something New Under

 TheSun!
SEARD-RYEGSMAD MSTRUMENIS By collsiswimh Have thit "NiW Look Fin

Ferfect Recdablity: Now shroinds designed by loading industrial dosigners focus attertion to the large dial, assuring "one look" readability end enhanced appearance.
Greater Atcuracy: New zero cidjussor parmits "split-second" adfustment from the frant. No danger of laaks.
Simpllfod Maintenance: New ginsket seal perfected by Roller-5mith parmils easy dizassomWy for servise-NO expansive scldering equipment-No wasted gilassinyou use the same glass over and over. Costs are reduced.

Poller-Smith sealed and ruggodized instru-

 ments feature these three outstandiag engineering and design improvements in ell sixes from $11 / 2$ to $41 / 2$ inches to makes them the most advanced on the market. Availeble in all practinal ranges of AC and DC for accurate measvemonts under extrome enviranmentel conditions.Consuft our englnearing staff with over 50 years experfence to solve your specific research and dovelopment problems.

Af oxtra fecture-new "wrap around shreud with gasket: seal makes these moters os modern in appearance as they are in performanso. Precisely built, thair ned functional forv expresses the forward thinking of our englneers.

Designed to comply tully with MIL-M-6A and MIL-M-10304 (Signal Corp.)

instumerb Inditwon

 precinion Pieducta siape teal
 most modern and most efficient miniature components it is possible to make today . . . built to the most precise, demanding specifications of the electronics industry.

BETTER PERFORMANCE WITH LESS WEIGHT AND SPACE

1. Thin-gauged, grain-oriented nickel alloys yield improved magnetic properties.
2. Glass, asbestos, silicone, and poly. ester film insulations allow higher operating temperatures.
3. Skilled craftsmen using miniaturization techniques highly developed and applied at Celco.

MISSILE AND AIRCRAFT Miniaturized Components

Transformers

- Chokes Low Level Input : Matching
- Transistor Circuits

Celco

Magnetic Amplifiers

- Demodulators - Limiters
- Saturable Reactors Signal
- Pulse

Take advantage of the Celco design and production experience in this specialized field. Get a Celco estimate-improve your quality-reduce your cost.

Constantine Engineering Laboratories Co.

Island Avenue
Mahwah, N. J.
tions in the supply voltage as well as a total variation $2 E_{z} / R$ in the output current. By choosing the proper diode and operating it at a suitably high current, variations in E_{z} can be held sufficiently low that the circuit can be made good to 8 digits, which implies an accuracy of 1 part in 256.

Reflection-Type

Asymmetrical Waveguide

By Koryu Ishii
Microwave Laboratory Nihon University Surugadai, Toliyo, Japan

ONE-WAY TRANSMISSION waveguides using ferrite and resistive film attenuators depend on Faraday rotation of the electromagnetic wave. Waves in the forward direction may pass through the waveguide without high attenuation but waves in the opposite direction are absorbed by the resistive film and cannot pass.

A reflection-type asymmetrical waveguide described here uses a combination of H -plane tapered iris and matching screws. Figure 1 shows a diagram of the reflectiontype asymmetrical waveguide.

The H-plane tapered iris made of thin metallic film is located in the rectangular waveguide. This iris determines direction of power transmission. The discontinuity of

FIG. 1-Cross-section of asymmetrical waveguide in the E and H planes

BRC

 RX Meter combines all necessary

 RX Meter combines all necessary RF Bridge Test functions

 RF Bridge Test functions}

Completely self contained . . . quick, easy broad band measurements, on components or coaxially connected elements

Co-ax Adapter Kit Type 515-A adapls RX Meter for coaxial connections.
TYPE 250-A FREQUENCY RANGE 500 kc to 250 mc The RX Meter Type 250-A is a completely engmeered measuring instrument including a broad band RF oscillator, RF bridge and null detector. The parallel resistance and parallel capacitance or inductance of the unknown is indicated on precise, easily-read dials. Components such as resistors, capacitors or coils, are connected across two unbalanced binding post connections on top of the instrument. The Co-ax Adapter Type 515-A, shown above, replaces the binding posts in a few seconds with a Type N Comnector for measurement of coaxially connected devices. No corrections are necessary over the entire frequency range for most measurements.

The RX Meter measures the characteristic impedance, attenuation and propagation velocity of RG-58/U Cable.

SPECIFICATIONS

FREQUENCY RANGE: 500 KC to 250 MC in eight ranges. FREQUENCY ACCURACY: $\pm 1 \%$.
RESISTANCE RANGE (Rp): 15 to 100,000 ohms.
CAPACITANCE RANGE (C_{p}): -100 mmf to +20 mmt (may be extended).
INDUCTANCE RANGE (Lp): 0.001 uh to 100 mh .
TEST VOLTAGE: 0 volts D.C. (Up is 50 ma may be passed through unknown terminals). O.1-0.5 volts R.F. (may be conveniently reduced to 20 mv). POWER REQUIREMENTS: $105-125$ volts, $50 / 60 \mathrm{cps}, 60$ watts (internally regulated).

Dynamic measurement of a junction transistor under conditions of variable bias and applied RF. Similar procedures can be used with vacuum tubes.

The RX Meter provides a simple, accurate means of measuring, independently, the RF resistance and reactance of a wide variety of materials, components and circuits. It is also useful in making other types of measurement.

Dynamic measurements of the parameters of transistors and vacuum tubes can be made. D.C. current up to 50 ma can flow through the bridge terminals permitting simple direct biasing of the unknown element. By a simple procedure, the RF voltage across the unknown can also be varied, permitting measurement of input and output impedance under a wide variety of conditions.

Cable characteristics can be measured on the RX Meter using a very short cable sample. A simple measurement will yield the characteristic impedance, attenuation and propagation constant. By the use of a balun the same characteristics can be measured for balanced cables.

> Type 250-A Price: $\$ 1250.00$ F.O.B. Boonton, N.J.
> Type $515-\mathrm{A}$ Price: $\$ 32.50$ F.O.B. Boonton, N.J.

How Big is a Toroid?

As large or as small
as your needs require...
if your source is $B \& W$.
Barker \& Williamson can provide precision toroidal coils wound on a production line basis from doughnut size to aspirin size.

A sure cure for production

and miniaturization
headaches.

FIG. 2-Frequency characteristic of reflectionless termination
the iris for forward transmission is compensated by matching screws.

Operation in the forward direction is as follows. Transverse H plane width of the narrow mouth of the iris is shorter than the half of the cutoff wavelength. Therefore, even if the iris is made of tapered waveguide and the impedance is gradually transtormed, this section acts as a discontinuity. This discontinuity is, however, compensated with matching screws.

If the wave comes from the opposite direction, power cannot pass the narrow mouth of the iris. Because this size is below cutoff and since there is no matching device the discontinuity of the narrow mouth is not compensated. Matching screws at the right side do not act in the field free region this time.

Wave power transmission coeffi-

FIG. 3-Transmission characteristic of tapered iris in both directions

"TO PEACE

because the awful

 alfernative is the end of all life" KThese are the last twelve words of the invocation given at the launching of "Seawolf."
As the second nuclear-powered submarine to be completed within the past 20 months . . it dramatically re-affirms our entrance into a brand new era!

In a smaller way . . . yet significantly . . . it also re-affirms Norden-Ketay's leadership in the field of electronics and instrumentation. For based upon their experience, research facilities, and performance in volume production...The Precision Components Division of Norden-Ketay was chosen by General Dynamics Corporation, builder of "Seawolf," to supply the SYNCHROS which translate electrical impulses into positioning data.. another example of how Norden-Ketay serves most of the leaders in automatic controls . . where reliability counts most!

Look to Norden-Ketay for
SINChros • SERVO motors • digital converters rate generators • resolvers • magnetic AMPLIFIERS • GEAR TRAINS • VARI-OHM POTENTIOMETERS • NAVIGATIONAL SYSTEMS • FIRE CONTROL SYSTEMS • SERVO MECHANISMS • AIRBORNE INSTRUMENTS • BOMB DIRECTOR SYSTEMS • COMMUNICATION EQUIPMENT • COMPUTERS • ACRAGAGE PRESSURE GAGES

1955, by Lt. Comdr Paul F. Bradley,
(ChC), USN. "Therefore, reverently we
ask Thee, O God, of both the atom's law and man's reason, to bless and guide thern to life more abundant . . . to peace . . . because the awful alternative is the end of all life."

Our expansion program requires: Scientists•Engineers • Precision Instrument Makers-write to S. W. Wilson

Norden-Ketay Corporation

99 Park Avenue, New York 16, N. Y.

DIVISIONS :

The Norden Laboratories, White Plains, N. Y.
Precision Components Division, New York, N. Y.
Commack, Long Island, N. Y
Instrument and Systems Division, Milford, Connecticut

SUBSIDIARIES :

The Frohman Manufacturing Company, Inc., Miami, Fla.
Nuclear Science and Engineering Corporation, Pittsburgh, Pa.
Vari-Ohm Corp., Amityville, Long Island, N. Y.
Scientific Specialties Corporation, Boston, Mass.

Looking for precision-built push-button or snap-action switches in the 15 to 50 ampere range with operating pressures of approximately 4 pounds?

Chances are, Hetherington has just what you wantin standard types-backed by a record of proved performance in critical aviation or military applications. Just about any circuit, activating arrangement or mounting style is available and each standard type is readily adaptable to numerous and inexpensive variations.
Write for catalog-or send details of your requirement for recommendation by Hetherington switch specialists.

HETHERINGTON, INC., SHARON HILL, PA.
West Coast Division: El Segundo, California

FIG. 4-Characteristics of matching iransformer section of asymmetrical waveguide
cients of this asymmetrical waveguide were measured by conventional method using a standing wave detector and reflectionless termination.

Figure 2 shows the frequency characteristics of the reflectionless termination. The vswr is less than 1.15 and the power transmission coefficient is more than 99.5 percent over the range of 8,700 to 9,700 me.

Transmission characteristics of a section of the tapered iris alone is shown in Fig. 3. The wave transmission is asymmetrical but the forward transmission coefficient is too small.

Figure 4 shows the transmission

FIG. 5-Characteristics of complete waveguide adjusted for maximum forward transmission (A) and optimum transmission coefficients at 9.180 mc (B) and 8.785 mc (C)

Gone are the days when a scope with 100 kc bandwidth would satisfy most of your research requirements. Today you need a precision instrument of unparalleled accuracy, capable of tackling dozens of different assignments

That's where the "Easy-Six" comes in. Precision engineered to handle the most advanced electronic research, this LFE Model 411 is nonetheless so easy to use even unskilled operators can quickly grasp the essentials. Six X-axis plug-in units provide the flexibility needed to meet a wide range of requirements.
If you're looking for an accurate, precision, general-purpose scope that's easy to operate, write for our free bulletin about the LFE 411 "Easy-Six", or contact your local LFE Engineering Representative.

LABORATORY FOR ELECTRONICS, INC.

75 Pitts Street, Boston 14, Massachusetts
FOR EXPOITT SALES CONTACT ANDREW SZUCS, INC., 50 BROAD ST., NEW YORK 4, NEW YORK

Semiconluctor Engineers and Sceintists

GENERAL MOTORS offers exceptional opportunities in this field as a result of newly expanded programs of research and development-and now, also, pilot plant production.
These are permanent programs of great and increasing importance to General Motors in its electronic, automotive, aircraft engine, locomotive, household appliance and military activities-not just temporary study or short-term development programs.
Physicists, physical chemists and electronic engineers with baccalaureate or advanced degrees and those with transistor, diode, photo-cell, other semiconductor and related experiences in research, development or process and production will find:

- Important, interesting and challenging problems

- Modern facilities

- Congenial association with others skilled in these sciences

Resulting in maximum personal satisfaction, development and recognition.

Upper-level positions for those shown to qualify.
The unusual employe benefits of General Motors are provided by this 20 -year-old GM electronics division. Relocation expenses are paid. Pleasant Indiana community with excellent living conditions, schools and many other advantages. Letters held in complete confidence. Give information on education, experience, military duty and personal data.

DIVISION OF

Three sections of asymmetrical wave. guide before assembly. Tapered iris is at center
characteristics of the matchingscrew section. This section is almost symmetrical.

With the iris section and the matching-screw section combined the power transmission characteristics is as shown in Fig. 5. In Fig. 5A, the matching screws were adjusted to obtain maximum forward power transmission coefficient at $9,615 \mathrm{mc}$. Fig. 5B and Fig. 5C show optimum transmission coefficient at frequencies of $9,180 \mathrm{mc}$ and $8,785 \mathrm{mc}$, respectively.

For Fig. 5A, the backward transmission coefficients were also improved by the matching screws but the asymmetrical nature of the waveguide is not so good.

In the case of Fig. 5B, the asymmetrical nature of the waveguide is very good over the range of 8,790 to $9,270 \mathrm{mc}$. Resonance due to both the tapered iris and the screw tuners are observed at $9,250 \mathrm{mc}$ and forward attenuation is a bit

Radar Movie

A twenty-minute motion picture film called "Safe Passage" produced by Raytheon Mig. Co., Waltham, Mass., shows some of the faulty techniques that have resulted in collisions between ships equipped with radar. Made with the assistance of the Coast Guard and others, the sound film is available on loan for education

With Crucible alnico magnets you get consistently higher energy product . . . which means more energy from a smaller magnet.

That's why they provide maximum design freedom for manufacturers of watt-hour meters, voltmeters, and devices of all kinds requiring magnets from 0.2 ounces to several hundred pounds.

Crucible has been a leading producer of these powerful magnets ever since alnico alloys were first developed. And its magnet experience is backed by over a half-century of special purpose steelmaking.

For technical assistance in solving magnet applications, call Crucible. Crucible Steel Company of America, Henry W. Oliver Building, Pittsburgh 22, Pa.
first name in special purpose steels

Crucible Steel Company of America

3XP RAYONIC CATHODE RAY TUBE provides a brilliant and sharply-defined trace and high deflection sensitivity at medium anode potentials. When comparing 3RP operating at 1000 volts second anode against 3 XP operating at 2000 volts, the results are astonishing. For the same spot size, 3XP light output is improved by a factor greater than 4, vertical deflection sensitivity improved by a factor of 2 , while the horizontal sensitivity remains unchanged. Because 3XP is enclosed in a short envelope and has half the inter-electrode capacities of the 3RP, the tube lends itself admirably to high frequency video work as well as for low repetitive operation.
TECHNICAL DATA The basic properties of the cathode ray tube that concern the designer or the user are: deflection sensitivity, unit line brightness, line width, static voltage requirements and physical size. A comparison between cathode ray tubes manufactured by Waterman Products Company is shown in the table below. These tubes are available in P1, P2, P7 and P11 phosphors. 3JP1, 3JP7, 3SP1 and 3XP1 are available as JAN tubes.

tube	PHYSICAL DATA			Static voltage			DEFLECTION*		LIGHT OUTPUT**
	Face	Length	Base	A3	A2	A2 Max.	Vert	Hor	
$3 \mathrm{JP1}$	$3^{\prime \prime}$	$10^{\prime \prime}$	Med Diheptal	3000	1500	2000	111	150	352
3 MPl	$3^{\prime \prime}$	$8^{\prime \prime}$	Sm Duodecal		750	2500	99	104	33
$3 \mathrm{RP1}$	$3^{\prime \prime}$	$91 /{ }^{\prime \prime}$	Sm Duodecal		1000	2750	61	86	44
3SP1	$1.5 \times 3^{\prime \prime}$	91/8"	Sm Duodecal		1000	2750	61	86	44
$3 \times \mathrm{P} 1$	$1.5 \times 3^{\prime \prime}$	8\%"	Loctal		2000	2750	33	80	218

* Defiection in volts per inch
onght output of an element of a raster line (one mm
$\begin{array}{lc}\text { WATERMAN PRODUCTS CO., INC. } \\ \text { PHILADELPHIA 25, PA. } & \text { CABLE ADDRESS: POKETSCOPE }\end{array}$

WATERMAN PRODUCTS INCLUDE
3JP1, 3JP7, 35P1, 3XPI JAN RAYONIC ${ }^{\text {® }}$
Cathode Ray Tubes
3JP-3MP-3RP-3SP-3XP RAYONIC CATHODE RAY TUBES
Available in P1, P2, P7, and
pil Phosphors
POCKETSCOPES ${ }^{\circledR}$ PULSESCOPES ${ }^{\circledR}$ RAKSCOPES ${ }^{\text {B }}$

What is "solid state electronics"?

Youhave already received great services from "Solid State Electronics"... but much more is coming your way!
This side of radio science is both old and new. It started with the galena detector which gave you signals you could hear. In phosphers that glow in response to electronic bombardment, it gave you, first, a picture tube - and now, full color television.

Ferrites that store and repeat electronic signals-the memory elements of the computer-are the next stage in this radio engineering. Tomorrow, "steareatronics" (as Cornelius Ryan calls it in Collier's) will provide silicones and other solid state materials which will store heat and power from the sun to serve you.

A working summary of this science is offered to you in the December issue of "Proceedings of the IRE"-from background data to the newest research. This one issue, some 300 pages, is the word count equivalent of a 600 -page text book... useful, up-to-the minute. It is a history-making issue you will treasure for years.

Price to non-members . . . \$3.00
(All IRE members will receive this December issue as usual. Extra copies to members, $\$ 1.50$ each.)

Every Article Is a "Treasure" in this History-Making Issue

"Lead Article," by Dr, Frank Herman, RCA Laboratories, Inc.
"Field of Ferrites," a paper covering the history of the development of ferrites, by Dr. E. W. Gorter, The Philips Co,
"Ferrite Developments," by Dr. Paul N. Russell
"Historical background and current state of the art in dielectric materials," by Dr. E. T. Jaynas, Stanford University
"Future trends and unsolved problems in dielectric materials," by Dr. Gen Shirane, Pennsylvania State University
"History of Semiconductor Research," by G. L. Pearson and W. H. Brattain, Bell Telephone Laboratories, Inc.
"Germanium and Silicon," by G. A. Morton and M. L. Schultz, RCA Laboratories, Inc.
"Conductivity, Hall effect and optical absorption of intermetallic compounds," by Dr. H. P. R. Prederikse, National Bureau of Standards
"Photoconductivity in some of the sulfides and selenides," by Dr. Richard H. Bube, RCA Laboratories, Inc.
"Performance of Photoconductors," by Dr. Albert Rose, RCA Laboratories, Inc.
"Leaf Salts or Infra-red Photoconductors," by T. S. Moss
"Design \& Performance in a Storage Light Amplifier," by Rosenthal Jennie, Allen B. Dumont Labs.
"An Electroluminescent Light, Amphtyme Picture Panel," by B. Kazan and F. H. Nicoll, RCA Laboratories, Inc.
"Cathodoluminescence," by Dr. G. F. J. Garlick, University of Birming. ham
"Electroluminescence," by Prof. Georges Destriau and Dr. Henry F. Ivey, Faculte des Sciences de Paris
"Physical Chemistry of Phosphors," by Dr. F. A. Kroger, The Philips Co.

The Institute of Radio Engineers
1 East 79th Street - New York 22, N. Y.

PROCEEDINGS OF THE IRE
1 East 79th Street, New York 22, N. Y.
\square Enclosed is $\$ 3.00$
\square Enclosed is company purchase order for the December, 1955 issue on "Solid State Electronics"

Send to:
Name.
Company
Address
City \& State

LAPP

GAS-FILLED CONDENSERS

Lapp's experience of 18 years of design and manufacture of gas-filled condensers is back of this precision-made unit and its promise of years of trouble-free duty. It is small in size and low in loss, offers high voltage and current ratings, high frequency limits, safety, punc-ture-proof operation and constant capacitance under temperature variation.

The entire electrical and mechanical assembly of the Lapp gas-filled condenser is supported by a top aluminum ring, the steel tank serving only as a support for this ring and as a leak-proof gas container. High-potential plates are carried on a rigid center stud which is supported by a top ceramic bowl. Grounded rotor plates are carried on ball bearings nearly the full tank diameter. This construction provides a grounded tuning shaft on variable models and makes possible efficient and complete water cooling for high current operation.

Models in four tank diameters, $7^{\prime \prime}$ to $18^{\prime \prime}$, are available, in variable or fixed capacitances, for duty up to $30,000 \mathrm{mmf}$; in current ratings to 400 amps at 1 mc ; operating voltages to 80 Kv peak. Write for Bulletin 302, with complete description and characteristics data. Lapp Insulator Co., Inc., Radio Specialties Division, 244 Sumner Street, Le Roy, N. Y.

much of which results from a high antemat gain. RCA engineers stress the fact that this circuit is experimental, for data gathering and is not currently in use for communications.

The over-horizon technique is particularly applicable in remote regions where the cost of maintaining conventional microwave repeaters every 25 or 30 miles would be either prohibitive or physically impossible.

Zero Hysteresis Relays
By Irving Barditch Baltimore, Md.

USE of a relay that has identical values of pull-in and drop-out current is sometimes mandatory. Almost any relay can be made to do this in combination with the proper

Circuit for comparing pull-in and dropout voltage of relays (A). Oscilloscope waveform (B) shows position of closure point for early drop-out (a) equal pull-in and dros-out (b) and late drop-out (c)
vacuum-tube drive circuit. A zero or even negative hysteresis can be obtained.

The circuit diagram shows the trigger circuit with the relay in the plate of V_{18}. Adjustment of the bias on V_{18} allows the relay drop-out current to be made equal to, less than or greater than the pull-in current. A 100,000 -ohm potentiometer permits this adjustment to be made without difficulty.

The set-up shown allows the relay action to be shown on the scope. The half-wave sinusoid pulses at a 10 to $20-\mathrm{cps}$ rate drive the relay and present the pattern on the scope

INSTANTANEOUS ELECTRONIC (type IE) For instantaneous correctian and extremely close contral. Completely electronic. No moving parts.

TUBELESS MAGNETIC (type TM)
For unattended locations and critical uses where tube failure cannot be tolerated.

ELECTRO MECHANICAL (type EM)
For large industrial loads or for applications requiring zero waveform distortion and high efficiency.

Here is a complete line of automatic voltage regulators designed with the application in mind . . . with operating characteristics that always equal or better the nameplate rating.

Of special importance is the fact that STABILINE maintains the root mean square voltage - the voltage rating for which all electrical equipment is designed. Before you purchase automatic voltage regulation equipment, make sure it is R.M.S. responsive.

We have detailed information about STABILINE automatic voltage regulators. Send the coupon for your copy of our Bulletin S351.

 for $A C$ or DC operation in commercial and military ap. plications. It is used in labcratory experimentation, for testing communications equipment and systems, and in the field of nuclear research, as well as for timing critical industrial processes.

For complete information on. the Type 690, write for bulletin PB-610.

1ICR 55

SPECIALISTS IN TIME CONTROL

that is blanked during relay closure. This shows the exact timing for opening and closing of contacts.

Light Beam Controls TV Receiver

Control of a modern television receiver by a flashlight depends upon selection of an appropriate photosensitive target. Photocells located near the four corners of the television screen determine clockwise and

FIG. 1-Thyratron control circuit used for power switch and muting
counterclockwise channel selection, operation of the power switch and sound muting. Sensitivity, volume control and other adjustments must be manually preset.

Photoelectric devices used are cadmium-sulfide photocells. They change resistance with change in light. Resistance is an inverse function of light intensity, being extremely high in the absence of light. The range may be as great as 100 megohms to 25,000 ohms.

Two different types of controls are used. The motor drive unit is actuated through a pair of thermionic motor-control tubes (both in the same envelope) and relays. Loudspeaker muting and power switching is handled using a pair of thyratrons.

When the control grid of the 2 D 21 thyratron in Fig. 1 is near zero, conduction occurs. Since the plate voltage is alternating, the tube stops conducting every time the a-c swings negative. Alternating voltage applied to tube plate and control grid are in phase and tube conduction occurs during the positive

Acknowledged quality leadership . . . in research, design, development and manufacture... of all the basic components on which the science of electronics is founded.

SALES OFFICES: ATLANTA, CHICAGO, COLUMBUS, CULVER CITY, DALLAS, DENVER, DETROIT, NEWARK, SEATTLE.

BALLANTINE Sensitive,
 Wide Band Electronic Voltmeter

measures 1 millivolt to 1000 volts from 15 cycles to 6 megacycles

Accuracy 3\% to $3 \mathrm{mc} ; \mathbf{5 \%}$ above
Input impedance 7.5 mmfds shunted by 11 megs
When used without probe, sensitivity
is increased to 100 MICROVOLTS but
impedance is reduced to 25 mmfds
and 1 megohm

MODEL 314
Price $\$ 285$

All Ballantine instruments are

SENSITIVE - ACCURATE - DEPENDABLE

- Same accuracy at $A L L$ points on a logarithmic voltage scale and a uniform DB scale.
- Only $O N E$ voltage scale to read with decade range switching.
- No "turnover" discrepancy on unsymmetrical waves.
- Easy-to-use probe with self-holding connector tip and unique supporting clamp.
- Low impedance ground return provided by supporting clamp.
- Stabilized by generous use of negative feedback.
- Can be used as 60 DB high fidelity video pre-amplifier.

Write for catalog for more information about this and other BALLANTINE voltmeters, amplifiers, and accessories.

FIG. 2-Motor control circuit selects channels
swing. The plate-circuit solenoids are energized by pulsating direct current.

Since the photocell decreases resistance when illuminated, the thyratron will fire owing to rising potential on the control grid, energizing the solenoid that performs the appropriate switching function.

Action of the tuning motor control circuit is similar to the thyratron action. Because only momentary contact and release are required, plate-current relays are operated by conduction of either half of a dual-triode 6BX7 tube, as shown in Fig. 2.

When the amplitude of a-c control voltage swings the grid of the tube sufficiently positive for an average 9 -ma rectified direct-current flow through the coil the relay will operate. With no excitation voltage at the g rid, no d-c plate current will flow since the tube is normally biased to cutoff.

Filter capacitors C_{s} and C_{s} smooth out the pulsating voltage and avoid relay chatter that would otherwise result during negative swing of the alternating current.
Information on the Zenith Flashmatic remote control has been abstracted from an operating guide furnished through the courtesy of Zenith Radio Corp.

Volscan Evaluation

AIR TRAFFIC control tests will be conducted for Air Research and Development Command by engineers of Air Force Cambridge Research Center. Evaluation of the Volscan (AN/GSN-3) system will be conducted at Clinton County Air

When you inquire about Calidyne Shaker Systems, you're asked "What type of vibration testing is required - conventional environmental testing? Fatigue testing? Structural response determination? Mechanical noise reduction?" Further, "What are your present, and anticipated, requirements for force, frequency, and stroke?" In this way, Calidyne can recommend the equipment which will provide maximum usefulness for your investment, with as much flexibility as possible for future needs.

CALIDYNE DELIVERS

To meet your requirements, Calidyne offers complete Shaker Systems ranging in force output from 25 to 12,500 pounds. Systems consist of one or more electrodynamic Shakers, a rotary or electronic power supply, a control console and various optional accessories for monitoring, measuring or automatically cycling tests. Calidyne Shakers feature greater useful force output through lighter armatures, true linear armature motion, rugged construction. Certain Calidyne power supply units, also, will operate Shakers of widely different force outputs. Any accessory may be added to a basic system at any time, without costly revamping or modification.

CALL CALIDYNE

For competent help in solving your vibration testing problems, or technical data on any Calidyne Shaker System, call Calidyne now.

120 CROSS STREET, WINCHESTER, MASSACHUSETTS
SALES REPRESENTATIVES:
WALTHAM, MASS.
Robert A. Woters, Inc.
Waltham 5.6900
NEW HAVEN, CONN.
Robert A. Waters, Inc.
Fulton 7.6760
NEW YORK CITY AREA
G. C. Engel \& Associates
Rector 2.0091
RIDGEWOOD, NEW JERSEY
G. C. Engel \& Associotes
Gilbert $4-0878$
PHHADELPHIA, PA.
G. C. Engel
Chestnut Hill 8.0892
NORTHERN NEW YORK
Technical Instruments, Inc.
Walham, Mass.
Walthom $5-8445$

CLEVELAND, OHIO M. P. Odell Co.

DAYTON, OHIO M. P. Odell Co Oregon 4441
DETROIT, MICHIGAN M. P. Odell Co. Superior 8-5114
WASHINGION, D. C F. R. Jodon, Inc. Hobor: 2.4300
SOUTHEAST
W. A. Brown \& Assoc Alexandria, Va .

CHICAGO, ILIINOIS Hugh Marsland \& Co Ambassador 2.1555

INDIANAPOLIS, INDIANA Hugh Marslond \& Co. Glendole 3803

MINNEAPOLIS, MINN. Hugh Marsland \& Co. Colfox 7949
DALLAS, TEXAS John A. Green Co. Fleetwood 7-7385
HOLLYWOOD, CALIFORNIA G. B. Miller Co.

SAN FRANCISCO, CALIF. G. B. Miller Co
lytell 3-3438
ALBUQUERQUE, NEW MEXICO G. B. Miller Co.

Albuquerque 5.8606
SEATTLE, WASH.
G. B. Miller Co. Lander 3320
CANADA
Mecsurement Engineering Ltd Arnprior, Ont., Phone 400 Toronto, Ont,, Mayfair 8860 EXPORT

Rocke International Corp 13 East 40 th $\mathrm{St}_{\mathrm{t}}, \mathrm{N} . \mathrm{Y}_{1} 16, \mathrm{~N}_{\mathrm{I}} \mathrm{Y}$.

Force Base, Ohio.
Present equipment provides automatic control instruction for 14 aircraft simultaneously. The equipment selects for each aircraft the earliest possible time of arrival consistent with speed of the aircraft and which does not conflict with other planes already scheduled.

An automatic device continually computes control orders for each aircraft so that it will arrive on schedule within a precise interval. The computer accomplishes this spacing by heading control, which comprises automatic issuance of minor offset headings for the aircraft to fly when it is necessary that it be delayed.-G.T.M.

Dynamic Characteristics of Triode-Connected Pentodes

By Alexander J. Dessler and H. G. Robinson

Duke University
Duham, North Carolina
APPROXIMATION formulas accurate to within 20 percent are given in this article for the μ, g_{m} and r_{n} of triode-connected pentodes utilizing

Faster Radiosonode

Weather information can be collected quickly using radio sounding apparatus carried by a new type of balloon, Made of neoprene, the new balloons can be inflated with 300 cu ft of hydrogen and will rise at $1,800 \mathrm{ft} a \mathrm{~min}$ until they burst at about 15 miles. Conventional types rise at $1,000 \mathrm{ft} \mathrm{a} \mathrm{min}$. Advantage of the newer technique is that pressure, femperature and humidity data can be received before the balloon, which also indicates wind di. rection and velocity at various levels, is blown beyond the range of recep tion.

Pye Telecommunications announce a NEW TWO-WAY RADIO EQUIPMENT

Demonstrations of a new equipment, designed in Cambridge, have been given in London recently to representatives of Police and Fire Services, Local Authorities and Industrial Organisations. This equipment has been designed to defeat the chronic shortage of two-way radio channels.

Known as the Pye "Ranger" it is the solution to the frequency shortage which is hamstringing mobile radio users in Great Britain!
The new equipment operates on a channel spacing of only $25 \mathrm{Kc} / \mathrm{s}$-a quarter of the customary spacing-thus potentially quadrupling the number of mobile radio channels. Robust construction, excellent performance and carefully selected components make it capable of operating under arduous conditions and in any weather.
This mobile radio is designed for fitting in the dashboard of ordinary cars and vehicles. The price of the equipment, notwithstanding its many-times improved specification, is approximately the same as that of earlier equipments which it now replaces.

Please write for full details

Telecommunications

Pye (New Zealand) Ltd Auckland C.I., New Zealand

Pye Radio \& Television (Pty.) Ltd Johannesburg
South Africa
PYE

Pye Canada Ltd Ajax, Canada

Pye Limited Mexico City
LIMITED

Pye Piy., Ltd.
Melbourne, Australia
Pye Limited
Tucuman 829
Buenos Aires
CAMBRIDGE

Pye (Ireland), Ltd
Dublin, Eire

Pye Corporation of America

270 Park Avenue
New York
ENGLAND

Call in an S.S.White engineer when working out any problem involving flexible shafts. He has at his fingertips the accumulated knowledge of over a half a century of specialization in the design, manufacture and application of flexible shafting to all types of remote control and power drive set ups.

For instance, if you're working on a new design, he'll be able to save you valuable time in selecting the proper shaft, and can often make recommendations which will help cut costs and improve performance.

Even when it's a case of replacing shafts in an existing application, his help will prove invaluable in sug-
 gesting the correct shaft for the job, especially if you've been having difficulty with the old one.
Best of all, this advisory service costs nothing and entails no obligation. Its one purpose is to insure your getting the best in flexible shafting.

Flexible shaft

 information for you...

Bulletin 5306 has basic information and data on selection and application. Send for a copy. Address Dept. E.
S.S.WHITE INDUSTRIAL DIVISION 10 East 40th Street, New York 16, N. Y.
only readily obtainable pentodeconnected data. A formula is also given for the dynamic screen-grid resistance of a pentode.

The formulas, based on the approximations that the characteristic curves are linear in the vicinity of the quiescent operating point and that the shielding of the screen grid essentially prevents changes in the plate voltage from affecting the cathode current, give the dynamic characteristic values for triodeconnected pentodes:

$$
\begin{aligned}
g_{m, T} & \approx\left(1+\frac{I_{s}}{I_{b}}\right) g_{m} \\
r_{p, T} & \approx \frac{E_{s}}{\left(I_{b}-g_{m} E_{c}\right)\left(1+\frac{I_{s}}{I_{b}}\right)} \\
\mu_{T} & \equiv \frac{g_{m} E,}{I_{b}-g_{m} E_{c}} \\
\mu_{T} & \approx\left(g_{m, T}\right)\left(r_{r}, T\right)
\end{aligned}
$$

where
$g_{m, T}=$ triode-connected transconductance ${ }_{\mu_{T}}^{g_{m, T}}=$ triode-connected amplification factor
$r_{p, T}=$ triode-connected dynamic plate resistance
$g_{m}=$ pentode-connected transconductance
$I_{s}=$ d-c pentode screen grid current
$I_{b}=\mathrm{d}-\mathrm{c}$ pentode plate current
$E_{s}=$ d-c pentode screen grid voltage
$E_{c}=\mathrm{d}-\mathrm{c}$ control grid bias (negative) or $-R_{k}\left(I_{b}+I_{s}\right)$ when the cathode bias resistor, R_{k} is given.
The following is an example using the 6AK5 sharp-cutoff pentode. The pentode connected data for typical operation is obtained from the tube manual.

$$
\begin{aligned}
& g_{\pi}=5,000 \mu \mathrm{mhos} \\
& I_{s}=2.5 \mathrm{ma} \\
& I_{b}=7.5 \mathrm{ma} \\
& E_{s}=120 \mathrm{v}\left(I_{s}+I_{b}\right) \\
& E_{c}=-R_{k}\left(I_{0}\left(10 \times 10^{-3}\right)=-1.8 \mathrm{v}\right. \\
&=-180\left(\begin{array}{l}
2.5 \\
g_{m}, T
\end{array}\right. \\
& \approx\left(1+\frac{2.5}{}\right) 5,000=6,700 \mu \mathrm{mhos} \\
& \mu_{T} \approx \frac{5,000 \times 10^{-6} \times 120}{7.5 \times 10^{-3}+5,000 \times 10^{-6} \times 1.8} \\
&=36 \\
& r_{p, T} \approx \frac{120}{\left(7.5 \times 10^{-3}+5,000\right.} \\
&\left.\quad \times 10^{-6} \times 1.8\right)\left(1+\frac{2.5}{7.5}\right) \\
&=5,400
\end{aligned}
$$

The plate voltage for triode operation should equal the pentode operated screen voltage; also the triode-connected control-grid bias should remain the same as that on the pentode.

Higher order correction terms added by more exact analysis were not included since for design pur-

When Specifications Contain

These

KEL-F PLASTIC
Hard, dense, molding thermoplastic with high impact, tensile and compressive strength. Resistant to chemical attack, heat and cold. Impervious to moisture, non-wettable, outstanding electrical characteristics. Applications include : terminals, tube sockets and bases, wire and cable insulation, connectors, transistor encapsulation.

KEL-F DISPERSIONS

Finely divided plastic solid in volatile medium. Applied by spray, spread or dip coating. KEL-F Dispersions give metallic and other surfaces the corrosion resistance and nonadhesive, non-wettable characteristics of KEL-F plastic. Coating formed is dense, tough, chemically resistant. Applications include: component coatings, dielectric shields, insulation on instruments and apparatus.

KEL-F OILS, WAXES AND GREASES

KEL-F Oils, Waxes and Greases are low molecular weight polymers. Resistant to chemicals, heat, cold, and are non-flammable. Oils are fluid at room temperature. Waxes are solid at room temperature. Greases are compounded from oils and filler. Lubricity of oils is equivalent to extreme pressure additive. Applications include: lubrication, hydraulic fluids, heat transfer, damping, potting.

KEL-F ELASTOMERS
Highly resistant fluorocarbon elastomer for critical applications subject to corrosive conditions. Possess excellent elastomeric properties, flexibility at low temperature, stability at high temperatures up to $400^{\circ} \mathrm{F}$., low moisture absorption. Processed on standard equipment, and can be molded and calendered.
Applications include: seals, valve diaphragms, industrial clothings, wire insulation, microswitch coverings, gaskets, etc.

KEL-F PRINTING INKS

Fluorocarbon base printing inks, are resistant to moisture, corrosive chemicals and gases, and abrasion. Produced in range of 10 colors. KEL-F Printing Inks are recommended for striping polyethylene, nylon and KEL-F wire insulation. Combining effectively with the substrate, they offer high performance under difficult conditions.

ZERO MOISTURE ABSORPTION

CHEMICAL RESISTANCE (acids, alkalis, gases, oxidants)
THERMAL RESISTANCE ($-320^{\circ} \mathrm{F}$. to $390^{\circ} \mathrm{F}$.)
NON-WETTABILITY
ANTI-ADHESIVE SURFACE...
With Superior Electrical Properties

faMIIY OF FLUOROCARBON PRODUCTS

KEL-F fluorocarbon products include thermoplastic molding compounds, Dispersions, Oils, Waxes, Greases, Elastomers and Printing Inks. Unique among commercial synthetics they provide the solution to difficult design and production problems when no other materials prove satisfactory.

Based on the extremely stable fluorocarbon molecule, KEL-F products are outstanding for their resistance to chemical corrosion, heat, cold and moisture. Because of their unique combination of properties they can help you make a better product . . . protect equipment against wear or deterioration... make possible improved product design . . . meet more rigid performance specifications.

Write for special literature covering your particular interests.

THE M. W. KELLOGG COMPANY Chemical Manufacturing Division, P. O. Box 469, Jersey City, N.J. SUBSIDIARY OF PULLMAN INCORPORATED
(8) Registered trademark of The M.W. Kellogg Company for its fluorocorbon polymers

Problem: Bendix Aviation Corporation's Pacific
Division, North Hollywood, California, manufactures a series of rotary electric actuators for operating valves in aircraft. But getting a small, lightweight filter to keep the motor from creating radio-frequency interlerence proved to be a real problem. Any such filter would have to be mounted as an integral part of the square motor actuator, and the required $150^{\circ} \mathrm{C}$ operating temperature didn't help any. APPROACH: Bendix Pacific engineers took their problem to the Radio Noise Suppression Laboratories of the Sprague Electric Company in Los Angeles. There, Sprague and Bendix engineers cooperated in making radio interference measurements and setting up envelope and mounting provisions for the proposed filter.
SOLUTION: A filter was designed by Sprague to meet the envelope, mounting and $150^{\circ} \mathrm{C}$ performance needs. The filter successfully passed radio interference requirements of MIL-I-6181, MIL-1-6181B, and also, the rigid requirements of MIL-E-5272A. When mounted, the Sprague filter is completely encased in the motor, with the filter terminals utilized as the motor terminal strip.
PRODUCTION SCHEDULES for these and many other filters are reguularly met by Sprague plants on both coasts. We would like the opportunity to solve your problem too. Write, wire, or phone Sprague Electric Company, 12870 Panama Street, P.O. Box 66507, Los Angeles 66, California (TExas 0-7531) or North Adams, Massachusetts (MOhawk 3-5:311).

Sprague on request will provide you with complete application engineering service for optimum results in the use of radio noise filters.
poses an accuracy of 20 percent is usually sufficient.

An approximation formula for the screen resistance, r_{s}, of the pentode is

$$
\begin{gathered}
\frac{E_{s}}{I_{s}} \\
I_{b} \\
\left(I_{b}-g_{m} E_{c}\right)
\end{gathered}
$$

As an example, using the above 6AK5 data

$=22,000$
In normal pentode operation r_{s}, with regard to a-c, is effectively in parallel with the screen dropping resistor and the screen decoupling capacitor, $C_{s v}$. Therefore the minimum value of $C_{s y}$ necessary to achieve a given low-frequency response can be calculated. Negative feedback produced by screen degeneration can also be found by using r.

Radio Opens Garage Door

Remote control of garage doors is effected by a selection of proper radio frequency and modulating frequency using a mobile transmitter and fixed receiver connected to a motor-actuated device.

Equipment manufactured by Robot Appliances, Inc. of Dearborn, Mich. operates on one of 50 differ-

FIG. 1-Mobile transmitter

FIG. 2-Garage receiver operates mofor

Hand-split mica from selected grades is scarcealmost all imported.

Treated and untreated continupus machine-made

Revolutionary new capacitor material offers cost savings up to 90%

. . . with improved performance in both stacked and rolled capacitors.
Two new products developed by Mica Insulator Company offer many important advantages, savings and new design opportunities in stacked and rolled capacitors.
These new materials are Capacitor Grade Isomica ${ }^{\circledR}$ and Samica ${ }^{\left({ }^{(8}\right)}$ ma-chine-made continuous, 100% pure mica. Capacitor Grade Isomica is treated and impregnated with special high-temperature resins. Capacitor Grade Samica is a manufactured continuous, pure mica product and may be impregnated by the user.

Beffer stacked capacitors at lower

 cost. Previously only high grades of costly natural mica could be used in stacked capacitors. Supply was, andcontinues to be extremely limited. Capacitor Grade Isomica and Samica, available in unlimited quantities, may now be used in many stacked capacitor applications in jet aircraft ignition and electronic systems, as well as high-powered ground radar, etc. Use of these new materials makes possible stacked capacitors which are much less costly, easy to manufacture by automatic techniques.
Better performance in rolled capacitors. In rolled capacitors, organic paper and other materials used were subject to failure at high temperatures. Capacitor Grade Isomica and Samica make possible rolled capacitors that perform well over a wide temperature range . . . in many cases mean a reduction in size and weight for the same electrical rating.

MICA INSULATOR COMPANY

Schenectady 1, New York

Offices in Principal Cities
In Canada-Micanite Canada Led., Granby, Quebec

Important savings, opportunities.

 Capacitor Grade Samica is freely available in sheets 36^{n} wide, tapes or punched pieces. Capacitor Grade Isomica is available in sheets $36^{n} \times 36^{n}$ or fabricated pieces. They offer you manufacturing economies and lower material costs, inventory savings, new design possibilities in both miniature and large sizes, better physical and electrical properties, and alleviate dependence on foreign sources of supply.
Mail This Coupon

for Complete Technical Data
Mica Insulator Company

- Schenectady l, New York
- I am interested in your new Capacitor
- \square Please send technical data
- Rease have Technical Service
- Name
- Tifle
- Company
- Address
-

LAMICOID ${ }^{\circledR 1}$ Laminated Plastic - MICANITE ${ }^{\circledR}$ Built-up Mica - EMPIRE ${ }^{\circledR}$ (®oated Fabrics and Papers - ISOMiCA (®)

PRECISION C ARE THE MOST WIDELY USED in the ELECIRONIC INDUSTRY

Here's why:

1

PRECISION patents covering bobbin constructions give guaranteed protection against infringements.
2 Many tools are available to fit standard laminations, solenoids and relay brackets.
3 Low initial tooling and tool revision charges.
4 Less rejects - no parting line flash to break wire during winding. No cold flow.
5 Will not shatter under thermal expansion or physical shock.
6 PRECISION combines materials to solve your mechanical, dielectric, temperature or moisture problems.

PRECISION Bobbins are available in any size, round, square or rectangular. Cores fabricated from dielectric kraft, fish paper, acetate, Resinite, quinterra or combinations, including Mylar*. All orders to customer specifications.
*Du Pont trademark

Plus the Most Complete Coil Form Service Available?

Square and Rectangular Tubes

Any length, shape, size, I.D. or O.D.

Round Tubes

Any decimal size up to $8^{\prime \prime}$ I.D.

Resinite Coil Forms

Highest resistivity of any resinated product.

Bobbins

Round, square or rectangular.

Mandril Service

Accurately ground mandrils at low cost.

Fabricating Service

Complete facilities to meet any customer requirement.

Sales Representatives in:

New England: Framingham, Massachusetts, Trinity 3-7091
Metropolitan New York, New Jersey:
Jersey City, New Jersey, Journal Square 4-3574
Upstate New York: Syracuse, New York, Syracuse 4-2141
Northern Ohio, Western Penn.: Cleveland, Ohio, Atlantic 1-1060 Indiana, Southern Ohio: Logansport, Indiana, Loganspart 2555 California: Pasadena, California, Sycamore 8-3919

Canada: Montreal, Quebec, Canada, Walnut 0337

Loop is shown mounted on side of transmitter box (bottom of photograph)

Receiver that is actuated by $7-\mathrm{kc}$ modulation. Equipment is mounted near door-operating motor under a dust cover
ent available radio signals. Frequencies in the same neighborhood call be staggered to avoid false operation of adjacent systems.

Besides a radio-frequency tuning control (not shown in detail) in Fig. 1, there is a plug-in audio oscillator circuit to match the discriminator in the receiver. Power is obtained from a vibrator power supply connected to the car battery.

The receiver, Fig. 2, depends both upon reception of a radio-frequency signal to which the receiver is tuned and output from an audio discriminator to operate a relay that actuates the door motor. The power supply (not shown) is conventional.

One-Man TV Camera Aligner

By W. L. Shepard
General Electric Co.
Electronics Park Syracuse, N. Y.

Adjustment of either a black and white or color camera requires setting the alignment controls. This requires that the beam-focus voltage be rocked through focus setting. Normally this involves a manual adjustment at a point remote

BENDIX-PACIFIC SPECIALIZES IN AIRBORNE RADAR WHICH IS YOUR RADAR REQUIREMENT?

EAST COAST OFFICE: 475 5th AVE., N.Y. 17 • DAYTON, OHIO- 1207 AMERICAN BLDG., DAYTON 2, OHIO - WASHINGTON, D.G.-SUITE 803 , 1701 "K" ST., N.W. CANADIAN DISTRIBUTORS: AVIATION ELECTRIC, LTD., MONTREAL. $9 \cdot$ EXPORT DIVISION: BENDIX INTERNATIONAL, 205 E. 42 IN ST., NEW YORK 17

News in Analog Computing...

A choice of Plotting Boards...

A Chicago business analyst reports engineers and industries must have versatility in equipment selection, if they are to carry out the expanded research programs planned for 1956.

Foreseeing this, Electronic Associates is making available the only complete line of plotting boards. Four different models of the famous Variplotter Plotting Board, designed to give a rapid, accurate, graphic recording of any information that can be reduced to electrical form.

Reading from left to right in the picture above, there is the vertical Variplotter, Model 205J, with two arms and four pens . . . the horizontal Variplotter Model 205 K , with one arm and one pen . . . the horizontal Variplotter Model 205L, with two arms and two pens . . . and the latest Variplotter, the Model 1100 A, with one arm and one pen, and featuring.small, convenient size, outstanding performance, and low cost.

For detailed information on Variplotter plotting boards, Precision Analog Computing Equipment, or rental of time at the EAI Computation Center in Princeton, New Jersey, contacı Dept. EL-14. Electronic Associates, Juc., Long Branch, New Jersey.
from the camera, reguiring a second man at this remote point.

A simple circuit used in some equipment automatically eliminates the necessity for manual rocking of the beam focus. Thus the need for two men to perform the adjustment procedure is eliminated.

The circuit requires few parts. When switch $S_{1 A}$ is turned to the on position, voltage is applied to the circuit and the short across R_{t} is removed. Capacitor C_{1} charges through R_{1} until a voltage high enough to fire the neon bulb is reached. Then C_{1} is discharged through the bulb. The time constant of R_{1} and C_{1} determines the number of times per second that the beam focus is rocked through the focus position.

The resultant sawtooth is then applied to C_{2} through R_{2}. This results in a partial integration of the sawtooth to produce a triangular waveform. This waveform is then applied through R_{3} and C_{3} to R_{4}. Resistor R_{3} serves to isolate the circuit and divide the voltage to obtain the correct swing of the beam focus. The triangular waveform superimposed on the correct direct voltage causes the beam focus to go in and out of focus.

The values given will cause the beam focus to rock completely through focus approximately twice a second. This rate can be adjusted easily by changing the values of either C_{1} or R_{1}.

It is necessary, when installing this device, to use shielded wire for any long leads going to the image orthicon tube. This prevents any tendency for feedback.

To use this device it is only necessary to adjust the beam focus voltage for best focus. Then switch S_{1} is turned on. After the alignment procedure is completed, the switch is turned off and the camera then functions normally.

Circuit of the focus adjustment unit that can be mounted in the television camera

THE GREATSS NAME IN HICCTRPCAI WIIRE AND CABIF

Modern methods assure producf uniformity.

It takes a unique combination of modern production facilities, rigid quality control techniques and skilled workers to make consistently top quality magnet wire... and General Cable has it! That's why General Cable magnet wire is noted throughout industry for its extraordinary uniformity... providing the ultimate in high level performance.

Important, too, General Cable can always supply you with exactly the magnet wire you want... when you want it! They make every type, shape and size:

Formvar, Plain Enamel, Nylon Enamel, Silicone, and other synthetic enamels, with light, intermediate or heavy coatings.

Cotton, Paper, Silk, Nylon, Glass and Special High Temperature Covering with single and double wrappings, similar and dissimilar materials.
Plus bonded paper and glass, or other specialized types. You name it and General Cable makes it... and makes it right! So look to General Cable for all your electrical wire and cable needs!

bare, weatherproof, insulated wires and CABLES FOR EVERY ELECTRICAL PURPOSE

GENERAL CABLE CORPORATION Executive Offices: 420 Lexington Ave., New York 17. N. Y.
SALES OFFICES: Atlanta - EEltimore • Boston • Buffalo Chicago - Cincinnati Cleveland Dallas Dayton Denver Detroit Erie (Pa.) - Greensboro (N. C.) - Houston Indianapolis - Kansas City - Lincoln (Neb.) - Los Angeles Orleans Newark (N. J) Vew York Philadelphia Pittsburgh - Portland (Ore.) - Richmond (Va.). Rochester (N. Y.) - Rome (N. Y.) - St. Louis - San Francisco Seattle - Springfield (III) : Syracuse . Tampa - Tulsa Washington (D. C.)

Production Techniques

Plug-In Assemblies Use Standard Component Bodies

During development of a new design, engineer can make up own module by snapping components into clips, then soldering clips conventionally

Packaged subassemblies of standard composition resistors and tubular ceramic capacitors, massproduced at an overall cost approximating that of individual components, have been announced by Erie Resistor Corp. Called PAC, for Pin Assembly Circuit, the new modules can be plugged into holes of etchedwiring boards either manually or by machine, for lower-cost tv and radio sets as well as computers, industrial controls and other military and commercial electronic equipment.

- General Details-The mounting base used for each module is XXXP copper-clad paper-base phenolic. Sprocket-like terminal holes are punched along both sides of long strips of the material. The strips can later be chopped into shorter lengths holding up to 92 components. After applying embossed wiring to one side of the base for
interconnections, terminals are installed on the other side by automatic machinery, to make contact through the board with the embossed wiring.

The terminals are like miniature fuse clips, for holding cylindrical leadless standard component bodies. One row of terminals has integral terminal pins. The components are pushed into these clips and the edgres of the board are dipped in solder, after which the assembly is given a dipped or molded plastic jacket.

FIG. $\overline{1}$-Base and terminal dimensions

Finished modules are easily inserted in punched holes of etched wiring board

- Dimensions-The new modular assembly is based on use of uniform components $\frac{1}{8}$ inch in diameter and ${ }_{5}^{5}$ inch long. These outline dimensions have been standard for ceramic tubular capacitors and composition resistors for many years. Other components having these dimensions can be used equally well.

A standard center-to-center spacing between components of 0.200 inch has been selected, as shown in Fig. 1. This spacing provides maximum utilization of space, with corresponding economy of production cost both for the modules and the finished electronic equipment.

Resistors available for these dimensional requirements are rated at $\frac{1}{2}$ watt and 500 volts with tolerances of 5 percent or wider in values from 5 ohms to 50 megohms. Back-of-board wiring readily permits connecting components in series or parallel for higher wattage ratings. Capacitors are available

KESTER "44" RESIN, PLASTIC ROSIN AND "'RESIN-FIVE"
FLUX-CORE SOLDERS owe their production line popularity to the simple fact that they provide the exactly right solder for every soldering application. It's not difficult to realize why Kester is consumed so rapidly . . . because of its great adaptability to so many different soldering operations.

SEND IODAY for Kester's new 78-page informative textbook "SOLDER . . .Its Fundamentals and Usage."

KESTER

 D

C○MPANY 4204 Wrightwood Avenue, Chicago 39, Illinois; Newark 5, N. J.; Brantford, Canada

Embossed wiring on back of base

Frant view of base after staking pins

Appearance after installation of component bodies and dip-soldering

Finished module in plastic jaclret

Six of the new modules replace $5 \ni$ individual components on this etched wiring board, reducing the original 69 insertion operations to only 16
in the range of 1 to $5,100 \mu \mu \mathrm{f}$.

- Advantages-Since each circuit element is individually made and tested prior to assembly, no compromises in characteristics and tolerances are needed. Tolerances can be as close as those available for individual components.

Individual capacitors mean complete diversity in selecting values and temperature characteristics. The same module can include lowcapacitance temperature-compensating units and high-capacitance bypass units.

Since the components are mounted vertically with respect to the etched-wiring chassis, area requirements on the wiring board are greatly reduced. A pin-assembly circuit containing 15 comporients
occupies only $1 \mathrm{sq} i \mathrm{in}$. of chassis area.

Design engineers can be supplied with mounting-base samples with clips attaehed. These, together with kits of resistor and capacitor bodies in a wide range of values, facilitate experimental breadboard layouts.

After a circuit is tooled and being produced, component value changes merely involve substituting new parts at the assembly station.

The laminated phenolic base strip insures against breakage in shipping and handling. Terminals are firmly staked to the base.

- Wiring-Connections between components are facilitated by embossing the copper wiring on the back of the base. This process is

(
 mminmmomitm

Long strip has components in position before cutoff. At lower left is section cut from strip and at right is finished module

The Onle COIIPLBTE line...

Model DSS
3 -speed, 4-pole motor

- FOR PORTABLE PHONOS - FOR HI-FI UNITS - FOR COMBINATIONS • FOR RECORDCHANGERS - FOR TAPE RECORDERS • FOR REPLACEMENT USE - FOR EVERY PHONO APPLICATION

Follow the lead of America's foremost manufacturers - Specify Gl for all your phonomotor needs. A complete range of speeds and types to meet every requirement - backed by over half a century of design leadership!

Model DR
2 -speed,
4 -pole motor

Mociel AX
Single speed,
2 -pale motor

Model D-10
4 pole, shaded pole AC Induction type for tape, wire or disc recorders

Model RM4
Single speed, 4-pole motor

Desianed for棼 Application

10061

10058

SHAFT LOCKS

In addition to the original No, 10060 and No. 10061 "DESIGNED FOR APPLICATION"' shaft locks, we can also furnish such variations as the No. 10062 and No. 10063 for easy thumb eperation as illustrated above. All types are available in bright nickel finish to meet Signal Corps requirements or black oxide to meet Navy specifications.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY
MALDEN
MASSACHUSETTS

Comparison of dip-coated and molded packaging for modules
unique in that no chemicals are used in preparation of the circuit. The desired pattern of wiring is punched below the surface of the copper-clad laminate. Unwanted surface copper is then ground off to leave the wiring. Either 1-oz (0.00135 -inch) or $2-\mathrm{oz}$ (0.0028 inch) electrolytic copper foil is used

Terminals are timned flat stock having an enlarged portion near the unit to serve as an automatic stop for mounting. Dip-soldering gives intimate noise-free contact between terminals, contact clips, wiring and components.

The adhesive bond used with the laminate will withstand solder-dip temperatures up to 570 F for 2 seconds immersion or 500 F for 10 seconds without causing blistering or weakening of the bond. When
tested before soldering in accordance with NEMA standards, a peel strength of 6 to 8 lb is obtained.

Minimum line width and spacing is $\frac{1}{32}$ inch. Large conductor areas such as shields and grounds can be embossed if broken by picket-fence barriers.

After soldering, the unit is dipped or molded into a jacket of plastic for enviroumental protection and ease of manual or automatic handling. Finished dimensions are shown in Fig. 2.
PAC units are designed primarily for use with etched wiring boards. Components for one or several stages can be inserted in one plugging-in operation. If done manually, labor costs are drastically reduced as compared to individual insertion of components. If automatic insertion equipment is used, the number of insertion heads is correspondingly reduced.

FIG. 2-Dimensions of finished unit and method of marking

Toothpicks Screwdrivers for Fragile Cores

When screwdrivers snapped slot shoulders of sintered-iron cores during factory test adjustments in
small coils for airborne radar, Fred Olney suggested using common toothpicks which would twist be-

[^8]

Formica Research perfects sensational new cold punching laminate

Brings 1,000,000 megohms resistance value, precision and translucency to printed circuitry.....

Research, an important part of the exclusive new Formica 4 -point service, has just perfected a new cold punching paper base laminate offering $1,000,000$ megohms insulation resistance and valuable new translucent properties.
Known as XXXP-36, the new grade brings greater accuracy to printed circuitry. Because of its cold punching qualities, XXXP-36 requires no heat cycle. Therefore, the base laminate is not subject to dimensional
change as in grades which must be heated before punching. This means that with Formica XXXP-36, you can now produce printed circuits with new and higher standards of accuracy.
XXXP- 36 translucency can be doubly useful. Make this simple test: hold it to the light. You can see (1) the smooth, homogenous structure, the total absence of resin pockets, voids and imperfections that dissipate the insulating properties of ordinary paper base
laminates . . and (2) how perfectly the circuit on one side registers with that on the other. New XXXP-36 is ideal for terminal boards and tv insulators requiring high I. R. Formica's engineering skill can help you find new materials for new products and processes. For complete information on the new XXXF-36, or on the new "Formica-4" service, use coupon below. The Formica Co., 4640 Spring Grove Ave., Cincinnati 32, Ohio.

Make the Formica Translucency Test. Send for a sample XXXP-36 printed circuit. Fill out and mail coupon today.

Gentlemen:

I'd like a sampie XXXP-36 printed circuit and
\qquad complete information on this new grade
\qquad Send bulletin showing how I can take advantage of the new "Formica-4" laminated plastics service.

Name
Company
Title

Address
City \qquad Zone_State

Relied on for positive action and long life in scores of applications involving time delay in electrical circuits, the "SNAPPER," formerly produced by Elly Electronics Corp., is now a Curtiss-Wright product.

Single pole, double throw contact action eliminates chatter. These unique relays feature snap action, double throw, reliability, small size. They are adaptable to military and commercial applications. Time delay periods: preset from 3 seconds up. Envelope: metal, miniature (7 and 9 pin) or octal (8 pin). Glass, 9 pin only.

High-Low Differential Thermostat

The "SNAPPER" Thermostat is a single pole, double throw snap action temperature sensitive switch. Its snap action principle has been extended to provide a low differential thermostat with precision char acteristics, of low cost.

Write for detailed data
corporation - carlstadt, n. I.

[^9]fore they snapped the shoulders and ruined the coils. The idea brought him a $\$ 225$ suggestion
award at General Electric's Light Military Electronic Equipment Dept. in Utica, N. Y.

Router Cuts Curves In Wiring Boards

Placing board on template. Dust collecting duct is at left of router

Finished etched wiring boards are cut to irregular shapes with the aid of a unique production setup involving a steel template and a router, in the Glen Cove, N. Y. plant of Photocircuits Corp. Each board in turn is placed over two positioning pegs on the template and the combination is then run under the router. A metal button
directly under the router on the table of the machine serves as a stop for the template to give the required shape of cut without dulling the cutter through contact with the template.

A stream of compressed air is directed at the router to blow cut particles into a vacuum collecting duct just behind.

One-Way Pallet-Return Conveyor

When a new radio assembly line was first set up in Westinghouse's Metuchen, N. J. plant, delays were caused by the return of empty pal-
lets to the start of assembly lines. With benches and equipment already installed, overhead and aisle space was at a minimum for me-

Hooks of empty pallet ride on rotating screw of monoflow conveyor

Audio amplifier unit by Photocircuits Corp., Glen Cove, N. Y., using Revere Rolled Printed Circuit Copper.

- Now that Revere Rolled Printed Circuit is available, nothing need deter you from switching to printed circuitry. This copper is supplied to laminators in standard coils of 350 lbs ., in widths up to $38^{\prime \prime}$, and in $.0015^{\prime \prime}$ and $.0027^{\prime \prime}$ gauges, weighing approximately 1 oz . and 2 oz . per square foot.

High in conductivity, uniformly dense through and through and side to side, Revere Rolled Printed Circuit Copper is easily etched and soldered.

When ordering blanks from your laminator, specify Revere Rolled Printed Circuit Copper.

REVERE
 COPPER AND BRASS INCORPORATED

Founded by Paul Revere in 1801
230 Park Avenue, New York 17, N. Y.
Mills: Baltimore, Md.; Brooklyn, N. Y.; Cbicago, Clinton and Joliet, Ill.; Detroit, Mich.; Los Angeles and Riverside, Calif.; New Bedford, Mass.; Newport, Ark.; Rome, N. Y. Sales Offices in Principal Cities, Distributors Everywhere.

NEW...the 400 cycle vernistat*
a.c. Potentiometer

you asked for!

The 400 cycle Vernistat is an a.c. potenti-ometer-type voltage divider that combines high linearity and low output impedance. It is essentially a non-dissipative element adaptable to high temperature operation. Size and mounting dimensions are designed to the BuOrd specification for a size 18 synchro.

Here are the details:

- high linearity, inherent in the design principle, is maintained over the life of the unit.
- low output impedance eliminates need for isolation amplifiers in many applications.
- high output current capability.
- low phase shift - less than 90 seconds, depending on model.
- can be coupled with synchros, resolvers and other components - as well as ganged.
- nonlinear functions can also lie generated.
Class 5 ball bearings, centerless ground shaft, and an aluminum housing machined to close tolerances combine to make the Vernistat a precision instrument. Shaft seals will be supplied where they are required by envirommental conditions.

> check these specifications:

Linearity Tolerance $\pm 0.05 \%$
Minimum Outpui
Voltage Increment 0.01%
Output Impedance. . less than 130 ohms
Input Voltage 130 v max.
Input Impedancée. . . up to 75,000 ohms
*Trademark

vernistat division

PERKIN-ELMER CORPORATION Norwalk, Connecticut
Want more information? Use post card on last page.
chanical handling of the palletreturn operation.
The problem was solved by ordering a rotating-cable conveyor 60 ft long, equipped with $\frac{1}{2}$-hp motor drive. The conveyor extends the full length of the workers' bench lines at a convenient height of about $2 \frac{1}{2} \mathrm{ft}$ above bench level. The conveyor consists of a flexible car-bon-steel screw inch in diameter that turns in a metal retaining rail. The top of the rail is open to expose this screw. The wire hooks of
empty pallets are hooked over the screw and are moved at approximately 12 feet per minute to a point at the start of production. These pallets can be placed on the conveyor at any time, at any point, in one motion.
This type of rotating conveyor eliminates the need for a return strand or loop, thus permitting installation in minimum space. The conveyor was designed and installed by M-H Standard Co., Jersey City, N. J.

Double-Dip Soldering Uses Chassis Vibrator

Conveyorized dip soldering machine is operated by long air cylinder mounted horizontally at vpper left. Assembled wiring board is taken from end of assembly line at left and hooked over bracket on lower chain. The three vertical air cylinders push the board down at the spray fluxing station (left), the soldering station (center) and the unloading or cleaning station (right)

By W. R. Cass
Pye Ltd., Radio Works
Cambriage, England

Appearance of board after soldering. Rubber caps protecting control shafts have been removed. Keyhole slots on brackets are used to attach chassis to carrier of soldering machine

A DIP soldering machine developed for use on radio etched wiring boards uses an overhead-chain conveyor driven intermittently by a long air cylinder. At the feed position, the operator hooks each assembled wiring-board pallet in turn onto brackets on the chain. The chassis is first moved to a flux spray position, then is given two dips in molten solder. During each dip and for a shost period thereafter, the chassis is vibrated by air hammers to help break down oxide film on joints and to remove any excess solder.
Instead of having the chain conveyor dip down at each station, an air cylinder is mounted above each station. When the chain has come

C.D.F SPIRAL TUBING offers many advantages to the cost-conscious design engineer and purchasing agent. It is low-cost, moisture-resistant, highstrength, and easy to fabricate. It has sufficiently low dielectric loss properties and goad dielectric strength for many applicationz.

Using C-D-F's new Spiral Tubing is a way of saving money in buying electronic insulation... without lowering the electrical and mechanical characteristics of the part required. This special tubing is a high-strength plastic made from paper or vulcanized fibre that is spirally wound. It is available in two basic forms in various grades: (1) as plain untreated tubing. (2) as impregnated tubing containing various types of thermosetting insulating varnishes.

BUY ONLY THE PROPERTIES YOU NEED
Spiral Tubing can be used to replace rolled or molded laminated phenolic tubing in many cases. As the degree of moisture resistance and mechanical strength is established during the manufacturing process, you specify ... and buy. \dot{F}. only those properties required for the application. C-D-F also offers complete designing, machining and assembly. You can get finished components, or random length tubing, with fast deliveries. Write for Technical Folder ST-53 and samples, after checking our catalog in Sweet's Design File. Call the C-D-F sales engineer listed there-he can save you time and money immediately with C-D-F Spiral Tubing!

reduces unit costs, improves products
 New C-D-F Plastic Spiral Tubing

- 1 •

Condrantal Diannad rac
CONTINENTAL-DIAMOND FIERE DIVISION OF THE BUDD COMPANY. INC. NEWARK 16, DELAWARE

A VERY HARD TUBE is supplied in C-D-F Grade 6A. The parts shown have maximum mecharrical strength, lowesi water absorption rate under immersion conditions and most stable dielectric loss properties. Fine for bushings and cores.

NEW CONSTANT TORQUE TURENG, for permeability tuniag with iron cores, features ezact internal threading with three point suspension of the core to prevent binding . . . no external embossing to lower dielectric strength. Write for samples.

THIN.WALL SPIRAL TUBING has good concentricity and is tough. Note thin wall construction, cleanness of machining, variety of shapes. C-D-F Spiral Tubing is easily machined, formed, punched. Made in many grades for special applications.

HARD OR SOIT, square or rectangular coil-form tubing is made for solenoid and transformer applications. Sides are straight with minimum gap in paper winding. Supplied in soft, varnished kraft, or hard, rigid tubing.
> radio interference and field intensity*
MEASURING EQUIPMENT

Stoddart RI-FI* meter cover the frequency range 14 kc to 1000 mc

VLF

NM. 10A, 14 kc to 250 kc
Commercial Equivalent of AN/URM-6B Very low f́requencies.

VHF

NM-30A, 20 ms to 400 ms
Commercial Equivalent of $A N / U R M-47$ Frequency range includes $F M$ and $T V$ bands

UHF

NM. $50 \mathrm{~A}, 375 \mathrm{mc}$ to 1000 m
Commercial Equivalent of AN/URM-17 Frequency range includes Citizen's band and UHF color IV band

Stoddart NM-20E 150kc to 25mc

Commercial Equivalent

 Of AN/PRM-IA
WIDE FREQUENCY RANGE

Covering the most widely used portion of the radio-frequency spectrum, the NM-20B is a precision instrument designed for field or laboratory measurement, analysis and interpreta tion of all types of radiated and conducted radio-frequency signals and interference Sturdy dependability, broad frequency range and a full complement of accessories fit this instrument's outstanding characteristics to an impressive variety of applications. Includes standard broadcast band, radio range, WWV, ship-to-shore, amateur and other communication frequencies.

SELF-CONTAINED BATTERIES
Battery power allows portable operation of the NM-20B. The ac power supply permits operation from 105 to 125 volts or 210 to 250 volts ac at any frequency between 50 cps and 1600 cps . Its versatile power requirements and special weather-proof construction provide unlimited field operation.

PICKUP DEVICES . . . Pickup devices available for use with the NM-20B include the loop and loop probe, rod antennas and matching impedances for conductive inputs. These permit unlimited usefulness in measuring both conducted and radiated interference.

Spray fluxing station. Board is pushed down into baffles by air cylinder to minimize escape of spray during fluxing. Teflon wiper blade, mounted on conveyor chain ahead of wiring board brackef, wipes dross off solder pot at rext stction
to rest after an advance, the air cylinders are actuated to push the pallets down at their respective stations. The rod on the air cylinder comes down through a hole in the bracket on the chain to push down a spring-loaded inner shaft on which the pallet bracket is hung The spring brings the chassis up again after the air cylinder has retracted entirely out of the bracket.

A hinged wiper blade is attached to a long rod bolted to the chain

Radio wiring board, hooked over con veyor bracket, is here in position over sclder pot

MICROWAVE SIGNAL GENERATORS

JUST ONE POLARAD

MICROWAVE SIGNAL GENERATOR

CAN MAKE ALL

THESE MEASUREMENTS

Each Polarad Microwave Signal Generator (4 models cover $950-11,500 \mathrm{mc}$) is equipped with the unusually simple UNI-DIAL control that tracks reflector voltages automatically while tuning continuously. Frequency, accurate to $\pm 1 \%$, is read directly on the single frequency dial. There are no mode charts, no slide rule interpolations necessary.
But, most significant are the built-in features that enable use of these rugged instruments for so many applications: internal modulation, pulse and FM ; internal square wave modulation; synchronization outputs, delayed and undelayed; provision for multi-pulse modulation input; provision for external modulation and synchronization; variable attenuator calibrated directly in - dbm; engineered ventilation to insure specification performance over long operating periods.
Contact your local Polarad representative or write directly to the factory for the latest detailed specifications.
specifications (all models unless indicated)

Here is a $7 / 8^{\prime \prime}$ potentiometer that offers you the extreme precision found in larger sizes of Gamewell Potentiometers.

Body is of anodized aluminum and the shaft is made of stainless steel. Kohlrausch type winding provides excellent linearity and the unit meets MIL-E 5400 specifications as they apply.

The unit can be modified for special mounting. Write for additional information about the new $7 / 8^{\prime \prime}$ type RVG-14 precision potentiometer.

THE GAMEWELL COMPANY

NEWTON UPPER FALLS 64, MASS.

PRECISION POTENTIOMETERS
Manufacfurers of Precision Electrical Equipment Since 1855

CONDENSED SPECIFICATIONS
Potentiometer Type No. RVG-14
Diameter (inches) $\quad 3 / 8{ }^{\prime \prime}$

Rating (watts)
Torque, max. (ounce-inches) 0.25
Weight (ounces) $3 / \mathbf{N}^{*}$
Max. Resistance (ohms) $\pm 5 \% \quad 45,000$
Min. Resistance (ohms) $\pm 5 \% \quad 25$
Useful Angle (deg.) 354°
Min. Resolution (\%) 0.06
Linearity (\%) $\quad \pm 0.5$
Multiple sections can be ganged; add $1 / 2^{\prime \prime}$ to overall length for each additional section. Better linearities can be obtained on special order.

Unloading station. Air cylinder is provided here for use if cleaning is needed after soldering
just ahead of each bracket, to sweep the dross off the solder pot just before dipping.

Silicone rubber caps are pushed over the shafts of the volume control and band-changing switch before dip soldering, to give automatic masking. The caps are gripped by the threads of the controls, and are easily removed afterward.

Modular Bundles Use Etched-Wiring Boards

By Robert J. Roman
bastman Korlak Co. Rochester, N. Y.
Low-volume users of printed circuits look to mechanization for versatility and low tool cost, to permit frequent changes in the product without excessive changeover costs. This is very difficult to accomplish with machines alone. Great simplification of the problem has been achieved by stand-

Example of Paraplate bundle, showing how some leads can be left long after soldering, for use as interconnecting terminals. Multiple-lead couplates can be soldered into notches on edge of one plate, as on upper plate here

Bakelite Epoxy Resin, mixed with

POURED AS A LIQUID
hardener, is poured into place, without harm to fragile elements in the assembly. The mixture will cure with excellent adhesion to metal, ceramics or glass, bonding them firmly in position.

FILLS EVERY

 CREVICELow viscosity pennits Bakelute Epoxy Resin-hardener combination to penetrate extremely minute cavities. Air entrapment is minimized. Vibration or centrifugal casting reduces it further, aids in filling, and eliminates bubbles.

HARDENS
 WITHOUT HEAT

Bakelite Epoxy Resius can cure at room temperature-another advantage where parts would be damaged by high temperatures needed to set other potting materials. Oven curing at low temperatures may be used for more complete reaction.

Cured Bakelite Epoxy Resin resists shocks, chemicals, moisture. It keeps the assembly solidly embedded, safe from

KEEPS ASSEMBLY SAFE

extenal hazards. Resin shrinkiage is so slight as to be unimportant for most applications, but can be further reduced by use of fillers.

Potting and encapsulating with BAKELITE Epoxy Resins make delicate electrical assemblies stronger, easier to handle

Many electrical assemblies seem to grow more fragile as they become more efficient. But Bakelite Brand Epoxy Resins are making them more serviceable than ever. Three different types of these resins are available for potting and encapsulating techniques. They can be cured by any of four specially formulated Bakelite Epoxy hardeners designed to give a variety of viscosities and curing speeds, or by several conventional catalysts. We can help you pick the combination with the best set of properties for your product. In addition, there are Bakelite Phenolic and Polyester Resins ideally suited to give you the widest selection of materials available. Find out what all these resins can do. Write Dept. BL-50.

BAKELITE COMPANY, A Division of Union Carbide and Carbon Corporation [1] 30 East 42nd Street, New York 17, N. Y. The term Bakelite and the Trefoil Symbol are registered trade-marks of UCC

MISSILE SYSTEMS EILECRONICS

A number of significant developments have created new positions for engineers possessing unusual ability and advanced academic training in the following fields:

Antenna Design . . . to develop advanced flush type antennas in connection with Missile guidance and other data transmission systems. Specialized training is desirable.

Guidance Systems . . . to develop guidance systems and electronic circuitry for missiles. The position requires experience in micro-wave circuitry, pulse techniques and systems analysis.

Data Transmission . . . to develop advanced automatic equipment for the transmission of data for missiles. The position requires at least three years' development experience in instrumentation and telemetering and knowledge of communication theory.
lockheled aircraft corporation - VAN NUYS, CAIIF.

Method of soldering leads of subminia. ture tube to edge notches of board

Steps in inserting resistor manually
ardizing on a basic module for axial-lead components, called a Paraplate bundle. Here the components are installed between two parallel etched-wiring boards and the connections are dip-soldered in two operations.

Nonaxial-lead components, such as tubes, transistors and switches, can be added at any time by using slot-soldering terminations around the edges of the boards. A slotted termination is ideal for this application as it will not close up or bridge when dip-soldered without a wire inserted.

- Advantages-When properly supported, modules of this type satisfy varied environmental requirements at least as well as the average components they support. For most component groupings, the bundle requires less total etched-wiringboard area than most flat mounts.

Space characteristics are exceptionally good for most component groupings. The two-plate construction allows for crossovers without expensive, troublesome doublesided prints. Exclusive of any mounting structures which may be required, the bundles are selfsupporting.

An improved new assembly method for the modular system

Whiskers on tin-plated steel, enlarged 6 times. Immense yield strength of metals in whisker form was discovered by Bell scientists.

The clue of the metal whiskers

The habit of close observation at Bell Laboratories often turns "tremenclous trifles" into important scientific progress. Such a case occurred when uncesplained short circuits in wave filters seemed to be associated witlo a zinc-plated mounting bracket.

Close scrutiny disclosed a whiskery growth on the zinc plating. Similar whiskers of tin were found growing on tin-plated equipment. Studies showed the whiskers to be tiny single cristals of metal.
Suspecting that these unusual crystals might be of essentially perfect structure, alert Laboratories scientists saw an opportunity at last to test
an important metallurgical theory.
The scientists studied the whiskers, grew larger ones, and showed that the crystals had enormously high vielel strength as predicted by the theory for perfect crystals - a strength far greater than for the same metal in any other known form. This clue has opened new frontiers in the study of what makes metals strong or weak, and has excited metallurgists all over the world.

Thus, another new advance has come out of the Bell Telephone Laboratories practice of scrutinizing everything that can play a part in

Throagh the study of thousands of specially cultivoted whiskers, Bell scientists seek to prevent freacherous growths in telephone equipment.
 better telephone service.

NOW
 adjustable

POLYSTYRENE GAPAGITORS

of 0.1% or better
and Long Time

Stability in

the order.

Check these outstanding features:
-I. R.-@ 25° C- 10^{12} OHMS

- Dielectric Absorption-.015\%
- Dissipation Factor-. 0002
- Temp. Coeff. (-20 0° to 140° F.) 100 P.P.M. per ${ }^{\circ} \mathrm{C}$ Excellent for Computer Integration, Test Equipment or Secondary Standards. Join these other leading firms in specifying Southern Electronics' precision polystyrene capacitors
 for your most exacting requirements: Reeves Instrument Corp. Electronic Associates, Inc., Convair, Berkeley Scientific, M.I.T., Calif. inst. of Tech., and many others. Write for complete catalog -

SOUTHERN ELECTRONICS POIYCON Cld

MYCON
239 West Orange Grove Ave., Burbank, Calif.

Method of inserting component by hand. Mirror at rear aids operator in putting lead into board closest to her
features ready adaptability to high or low production with negligible tool and equipment cost.

With the two $\frac{1}{18}$-inch-thick etched wiring boards held against back-up plates at some distance $L-\frac{Y}{3}$ inch, where L is the cut length of all components, the component is inserted in four steps: (1) precut to length L; (2) preform slightly to decrease overall length approximately $\frac{1}{32}$ inch; (3) insert first component lead; (4) insert second component lead; (5) straighten leads.

- Manual Assembly Fixture--The U-shaped assembly cradle has a steel base with clear plastic back-up plates affixed to each end. As the printed circuit plates do not have to be accurately located, they are

REQUEST ALL FOUR

for up-to-date data on MICRO instrument bearings
(1) For your drafting board or desk PRINT 1031 HANDY WORK SHEET with complete line of Retainer Radial Bearings.

(2) Answers to specific Questions are provided by more than 20 current N. H. B. B. ENGINEERING BULLETINS

(3) Concise yet complete, the N. H. B. B. CATALOG 53 is the Handbook of the Instrument Bearing field.

- PACIFIC COAST

KERMIT T. SIMONS
Tel. RYan 1-9051

- MIDWEST

JOSEPH W. DANIELS
Tel. SUpprior 7.0984
Charles S. Ward
Tel. Tonity $1-4601$

- SOUTAWEST
J. RQBERT NATOLI

Tel. Sterling 2826

- EAST

SJDNEY J. GOODRICH
Tel. HUnter 2-8633
CARL F. GRAESSER, JR.
NEW HAMPSHIRE
bALL BEARINGS, INC.
Peterborough, N. H.
Phone 424 - 425

Work setup of manual assembly. using bench fixture to hold wiring boards

Pushing wiring boards together after inserting all components

Setup used for fluxing and dip soldering after loading boards manually
affixed to the back-up plates with simple spring clips. Each station has a universal holding fixture with an inset Alnico magnet for firmly gripping the cradle. An adjustable mirror on the holding fixture allows the operator to see both plates at once. Depending on the volume and complication of the bundle being run, two or more work stations can be lined up, with bundle cradles passing from one to the other.

When all components have been assembled, an operator removes the bundle from its cradle after first pushing the wiring boards together

NOW . . . all the desirable performance characteristics of Radio Condenser's well known T-31 series vhf-TV tuners in a completely new package. Designed for greater safety and easier installation, the new T-31

THE NEW LOOK

 ...in vhf-TV tuners carries an even lower price, because of mechanized production methods now in effect.Here are just a few of the design improvements that make the new T-31 far superior to the original. As you can see in the illustrations, tubes are mounted at the extreme right, for easier installation beside large cathode ray tubes. Captive tube shields snap open for fast tube replacement, but cannot be removed from the tuner . . . a safety feature designed to meet Underwriters Laboratory requirements. The spring-held snap-on cover eliminates screws, makes for simplified, more efficient assembly.

Like the twelve-position four-wafer switch pentode unit illustrated, all tuners in the T-31 series are characterized by fine image and i-f rejection for high selectivity, good noise figure and drift characteristics. They also meet all RETMA spurious radiation requirements. Performance is everything you would expect from a Radio Condenser tuner, even at the new low price.

Get Complete Engineering and Performance Data
Write Radio Condenser for your free copy of Bulletin T-31.

Radio Condenser Co.

Davis \& Copewood Streets - Camden 3. New Jersey
EXPORT: Radio Condenser Co., International Div., 15 Moore St., N.Y. 4, N.Y. CABLE: MINTHORNE
CANADA: Radio Condenser Co. Lid., 6 Bermondsey Rd., Toronto, Ontario

By calibrating each 501 Thermal Relay after hermetic sealing, Edison provides unequalled timing accuracy sealing, Edison provides unequalled timing accuracy can realize all of the benefits of a thermal relay without concern for changes in atmospheric pressure - or the problems of relay maintenance.

This exclusive method of calibrating, developed in the world-famous Edison Laboratory, is just one of the features that have earned the Edison 501 Relay an outstanding in-use record. A high degree of vibration and shock resistance, extreme light weight and typical Edison construction ruggedness are but a few of the other features of the Edison 501 Relay that lend it to such applications as these:

- Sustained over-current or over-voltage protection

- Integration of pulses or intermittent current
- Improving sensitive contact operation
- General control use
- Cathode protection
- "Holdover" circuits
- Motor starting

Send for complete information on the dependable Edison 501
 Thermal Relay - now.
-
to the final bundle distance. The bundles are then inserted in the holders of a dipping machine, where all joints are dip-soldered automatically.

- Automatic Insertion Head-The basic principle of the retraction insertion head developed for mechanized assembly is not altogether different from the manual method. The component is first picked up by a four-jaw head. The two inner jaws lock against the wire when closed, but the two outer or metering jaws permit the wire to slip when closed. When the inner jaws retract in the second step, about $\frac{1}{16}$ inch of wire is pulled through each metering jaw and stored in the loop. After the excess wire is cut off in the third step the head has both wires in excellent length and coordinate control. The head is then placed in position between two etched-wiring boards and the inner jaws are returned to their original position to complete the insertion.
- Automatic Assembly MachineA proposed in-line transfer machine has etched-wiring boards carried from station to station on platens or cradles in a manner similar to the hand method. Insertion head assemblies are mounted in pairs at each station. The head will pick up a component, retract and cut, then move between the circuit plates for an insertion. Horizontal and vertical

Steps in achieving automatic insertion

Basic tool used for automatic insertion

Will Vacuum Melted Metals do for YOUR Product What They do for Radar?

A Vacuum Furnace will help you get the Answer

Vacuum melting produces metals and alloys having unique properties of reproducibility, homogeneity, cleanliness, and ductility with impact and fatigue strength. Alert engineers are upgrading their products and cutting costs by taking advantage of these properties.

For instance, Radar benefits from tubes made of vacuum melted component parts. Improved machinability and reproducibility assure precise electrode dimensions and composition, which give more consistent tube characteristics. Greater thermal and electrical conductivity and elimination of "outgassing" increase tube life.

Would such metals make your product better? A vacuum furnace will enable you to develop materials especially suited to your needs. We have made and operated more high vacuum furnaces than any other manufacturer in the world. Can we help you, too? Send coupon below today.

NRC Madel 2555 Vacuum Furnaces are now being used by aircraft companies, engine manufacturers, investment casters, specialty steel producers to speed up development of new materiais that will meet ever more severe operating requirements.

SALES OFFICES:
Boston, Chicago, Cleveland, Houston, Los Angeles, New York, Palo Alto, Philadelphia;
in Canada: Taronto, Arnprior

HYCON EASTERN

a comprete facility for

CRYSTAL FILTERS

Announcement is made of a new technique for the synthesis of crystal filters which resolves many of the problems heretofore associated with their design and production. High initial cost and long lead time have been eliminated System design no longer need be compromised because of the limited number of existing filters. Filters can be produced on short notice in large or small quantities to meet exact performance requirements. Curves shown above suggest the wide variety of characteristics. Your inquiry is invited.

HYCON EASTERN, INC.
75 Cambridge Parkway, Dept. A, Cambridge 42, Massachusetts

Inserting head, shown just as it is putting resistor into holes of etched wiring boards held on positioning pegs in fixture
position adjustments are made independent of head motion. Since the head will accommodate a wide range of components, accurate direct-reading adjustment devices can be employed to minimize changeover time.

Etched wiring boards are fed in at one end of the machine and completely assembled bundles removed from the other. Although the machine is planned for maga-zine-type board feed and an auto-matic-bundle-transfer head, the feed and removal can be accomplished in any way consistent with the size of the run.

Here, as with the hand method, bundles are transferred to another machine for dip soldering.

- Automatic Soldering MachineThe transfer head at the output of the assembly machine would be equipped with cutter plates which cut excess wires during the transfer cycle. The bundle is transferred to a relatively simple holder on the dipping machine.

The soldering machine is basically an indexing-turret type with

Sketch of automatic assembly and soldering setup planned for use with Paraplate bundles

TYPE 50C, LEFT TYPE 50, RIGHT 240 TO 800 CY .
 Type 2003. They have equivalent accuracy but are much smaller, lighter and have fewer component parts. In the Type 50, all critical components are housed within the fork container.
Both the Types 50 and 50C offer superior shock resistance, up to 60 G . Hermetically sealed and shielded. When requesting information, please state type number.

FREOUENCY STANDARDS ■ AND PRECISION FORKS

PICTURED AT LEFT, ABOVE
TYPE 50C SPECLIICATIONS
SIZE.... $21 / 4^{\prime \prime} \times 2^{\prime \prime} \times 43 / 8^{\prime \prime}$ high. WEIGHT.... 8 ozs. ACCURACY........... $\pm .02 \%$ from -65° to $85^{\circ} \mathrm{C}$ OUTPUT............................. 5 V into 250,000 ohms
TYPE R50CSame as Type 50 C with accuracy of $\pm .002 \%$ from 15° to $35^{\circ} \mathrm{C}$
pictured at right, above
TYPE 50 SPECIFICATIONS

> SIZE... $1^{\prime \prime}$ dia. $\times 33 / 4^{\prime \prime}$ high. WEIGHT.... 3.5 ozs. ACCURACY.......... $\pm .02 \%$ from -65° to $85^{\circ} \mathrm{C}$ OUTPUT........................5V into 250,000 ohms TYPE R50................. Same as Type 50 with accuracy of $\pm .002 \%$ from 15° to $35^{\circ} \mathrm{C}$

For 17 years this company has produced precision frequency standards for integration in highly accurate instruments and timing devices of our own and other manufacture. We make frequency standards within a range of 30 to 30,000 cycles, a field in
which we offer maximum accuracy, simplicity and durability. Our products are now serving in many and varied applications-in industry, government (including the armed services, particularly in the field of aviation) and for laboratory uses.

Servo Motor Control System

Most engineering ingenuity concentrates not on basic principles, which are relatively simple, but on the fine details that make the difference between good and poor design, between high and low cost, or between efficient and inefficient component arrangement. For instance, the motor control system patented by the Ford Instrument Company. The purpose of the system is to provide a sensitive control system to make an induction motor respond accurately to a relatively small reversible input signal. This system employs saturable-core transformers to combine the sensitivity of vacuum tube amplifiers with the high power-carrying capacity of saturated-core devices This also facilitates the problem of matching the motor impedance with that of the amplifier.

In the circuit shown the first pair of tubes act as a phase inverter, with the control signal applied to the grid of one inverter tube. The feedlback signal, produced by a d-c generator coupled to the controlled motor, is applied to the inverter tube. The output of the inverter is the signal of the servo loop. The second pair of tubes acts as a driver-stage for the saturated transformers that supply one winding of the controlled two-phase induction motor; the other motor winding is comected to the power line.

This is typical of the things Ford engineers do . . every day. If you have a control problem it will pay you to talk to the Ford Instrument engineers.

${ }^{83}$
FORD INSTRUMENT COMPANY
DIVISION OF SPERRY RAND CORPORATION
31-10 Thomson Avenue, Long Island City 1, N. Y.

[^10]vertical-acting dipping arms, similar to the prototype operating on the hand line. The dipping machine features simplicity of action and peninsular location of solutions.

Making full use of advantages gained by modular restrictions and the reliable simplicity of retraction insertion, the inherently high-capacity multihead machine is easily adapted to economical low-volume operation. It is estimated that a 40 -head machine equipped with suitable short-run component programming could be completely changed over in less than 15 minutes.

Dip-Soldering Clamp Masks Tube Socket

Immersing board in first soldering pot. Cake of beeswax in left hand will be wiped over next pot before transferring board to it

A SPRING-LOADED clamp assembly welded to the jaws of long-nosed pliers serves as a convenient tool for holding a small wiring board during dip soldering in RCA's Indianapolis plant. Squeezing the plier handles together opens the disk-shaped jaws of the clamp enough to permit placement over the tube socket. When the jaws are released, the entire tool serves as a handle for immersing the board in the pool of molten solder. The metal disks of the clamp prevent solder from getting into the tube socket contacts.

Two solder pots are used side by side. After immersing the board in the first one, the operator wipes a cake of beeswax over the surface of the second pot and immerses the board in this, to complete the

A uniquely NEW Oscillograph from

Midwestern

Instruments

Midwrestern's New Model 590 insorporates every feature necessary for a successful flight-test instrument.

Specially designed for remote control*

*If desired the instrument can be supplied with no controls on it. All control then originates at a remote location.

products

- OSCILlographs
(laboratory and flight test)
- magnetic structures
- galvanometers
- AMPLIFIERS
- hydraulic servovalves
- torque motors
- SERVOAMPLIFIERS
- data repeaters
- waterproof connectors
- GEOPHYSICAL EQUIPMENT

Here's another great development in Midwestern's series of famous flight-test instruments. It is based on extensive experience applying other Midwestern oscillographs to many combinations of environmental conditions. One of the many features is a re-motely-controlled jump-speed system. Speed may be changed at any time by simply positioning a rotary switch to the required setting. 20 recording speeds are possible with this electricallyactuated system and change gears within the oscillograph. Lamp intensities are automatically adjusted to a previously-set value for recording at the new speed. The single aluminum alloy casting is ribbed for the strength and rigidity needed under high acceleration conditions.

Write for Complete Detoils and Specifications

MIDWESTERN INSTRUMENTS
41st and Sheridan Road

Every design engineer or production man we ever met makes mental notes of good places to get quick aid on needs out of the ordinary.

You might like to know, therefore, that a great deal of the work we do here at Wheeler on transformers, coils, harnesses, custom-built electronic assemblies, and communications components is just that kind of assignment.

We publish no catalog of the everyday standard items : $:$ they present no problem to anyone. We do serve an increasing group of engineering and production departments that require competent help ... backed by ample manufacturing facilities ... in producing components that are "a little (or a lot) different." Call or write us for an interesting story.

TRANSFORMERS•COILS•AMPLIFIERS CUSTOM ELECTRONIC AND WIRING ASSEMBLIES COMMUNICATIONS EQUIPMENT

INSULATED WIRECOMPANY, INC. Division of Sperry Rand corp. l101 EAST AURORA STREET

Method of placing clamp over socket of wiring board
buildup of solder over each of the clinched leads. The double-pot technique has greatly improved the reliability and uniformity of dipsoldered joints on etched wiring boards used in the firm's radio and television receivers.

Automatic Tester for Ferrite Memory Cores

Ferrite storage cores are automatically tested and graded by International Telemeter Corp. of Los Angeles with a new machine incorporating a Syntron model EB-01-B vibrating parts feeder. The cores are placed in the feeder, which lines them up and delivers them down a chute to a mechanism that sorts into sixteen uniform

Core tester, with feeder at right, sorting mechanism at center and motor drive at left

$1100-\mathrm{cm} / \mu \mathrm{sec}$ writing rate!

f.o.b. Portland (Beaverton), Oregon

Includes indicator unit, power-supply unit, scope-mobile, cathode-follower probe, 7 -step atternator unit, viewing hood, bezel, 170 ohm cable

Complete specifications and information on demonstration schedules are available from your local Tektronix Fie!d Office or Representative or from...

Transient Response-Risefime seven millimicroseconds.
No overshoot or ringing.
Maximum Sensitivity - $0.05 \mathrm{v} / \mathrm{cm}$.

Sweep Range - Eleven calibrated sweeps

from $0.01 \mu \mathrm{sec} / \mathrm{cm}$ to $20 \mu \mathrm{sec} / \mathrm{cm}$. Each can be adjusted to the accuracy of an external standard.

Regulated Accelerating Połential -

24 kv on T54P11H Tektronix metallized precision cathode-ray tube.
Low Displacement Error -
Less than 1% of 8 cm horizontal, less than 2% of 2 cm vertical.
Rate Generator -
15 to 15,000 cycles, accurate within 5% of full scale.

Amplifude Calibrafor -

Pulse-type, accurate within 4% of full scale.

Regulation -

All de supplies electronically regulated. Indi-cator-unit heater voltages regulated.

Calibrafed Horizontal-Position Vernier

grades on the basis of magnetic properties. The tester is able to handle one core per second; in this time, as the core passes through the test contacts, 5,000 separate trials of each of two tests are made.

Mounting Picture Tube in Color TV Cabinet

Placing yoke assembly over neck of color picture tube. Tube rests on molded plastic ring which can be seen in cabinet at rear on conveyor

ON THE final cabinet assembly line for 26 -tube color-tv consoles in RCA's Bloomington, Ind. plant, the cabinet is placed face down on a wood slat conveyor. This position simplifies the installation of the molded plastic support ring for the picture tube, which is fastened with wood screws driven by an air gun. The picture tube, with molded plastic jacket over its metal wall and

Using special cam-action ratchep wrench to tighten knurled nut on one of three tie rods that hold picture tube assembly against front of cabinet

Outstanding for many years as the Top Performer, Clevelite is unmatched in its ability to meet unusual specifications.
Built-in Dimensional Stability, High Dielectric Strength, Low Moisture Absorption, Great Mechanical Strength, Excellent Machining Qualities and Low Power Factor make Clevelite Tubing outstanding.
Available in diameters, wall thicknesses and lengths as desired, for Collars, Bushings, Spacers, Cores and Coil Forms.

Our improved Torkrite internally threaded and embossed tubing affords better control of adjustments in coil forms using threaded cores.

Write for your copy of the latest Clevelite brochure. WHY PAY MORE? For Good Quality ... call CLEYELAND!
${ }^{\bullet}$ Reg. U. S. Pat Off.

If your business involves measuring time in hours, minutes or seconds, you know that there are other, equally important standards of measure for Time and Timing. Check your present Jiming sources; how do they measure up in terms of -

QUALITY? - Remember that HAYDON* has the complete, up-fo-theminute research and manufacturing facilities, the long experience and the skilled personnel essential to producing Timing Motors and Devices of the highest uniform quality and the most advanced design.

COMPLETE SERVICE? - Ready to serve you for all your fiming meeds, HAYDON has the complete, fully integrated engineering and manufaciuring facilities to take your timing projects from design and development through to finished product . . . economically manufactured in small or large lots to meet your requirements.

TRAINED REPRESENTATIVES? - Making all of these facilifies and serv. ices conveniently available to you are HAYDON's Field Engineers. Each of these men is a Timing Specialist . . . fully qualified by training and experience to help fill your timing needs. There is one of these Specialists in your area. Why not phone him today and make an appointment to discuss your requirements!
*Trademark Reg. U.S. Patent Office

A SUBSIDIARY OF GENERAL TIME CORP

mataouabritas foe TIMING
 HAYDON Manufacturing Company, inc.
 2436 ELM STREET, TORRINGTON, CONNECTICUT

Method of degaussing yoke assembly. Earth's-field compensating magnets can be seen on band surrounding rim of picture tube. Yoke tie-rods go to metal inserts in wood corner brackets
with the earth's-field compensating magnets mounted around its rim, is then lowered into position on the plastic ring.

The yoke assembly is brought down over the neck of the picture tube, and three steel tie rods are run from the cabinet to the frame of the yoke to hold the entire picture tube assembly in position. A special ratchet wrench is used to tighten the knurled nut that goes

New 26-tube color-tv consoles on wood shipping pallels ride down slat conveyor at lower level and are pushed up over rollers on incline to start of next slat conveyor at higher level, for passage through screened and partially darkened final test rooms

rca senior VoltOhmyst

Senior VoltOhmyst, RCA WV-98A, only $\$ 75.00$ User Price* including probe and cable, instruction booklet, complete and ready-touse... Shown slightly smaller than actual size. * Optional

You can work faster, more accurately - when you own and use the new RCA WV-98A SENIOR VOLTOHMYST with the extra-large full-vision meter-face. "Speed-up" in your service work -without the slightest sacrifice in quality-means a "build-up" in your profits. Look at the easy-to-read expanded scales. Then look at some of the other advanced features you also get.

- Large, easy-to-read, wide-vision meter ($61 / 2^{\prime \prime} w$).
- Expanded meter scales . . separate peak-to-peak voltage scales
- Accuracy of 3% full-scale on BOTH ac and dc voltage measurements.
- Sturdy, single-unit streamlined probe with built-in ac-ohms/de switch.
- Rugged die-cast aluminum case.
- Compact desigı: $7^{\prime \prime}$ wide, $33 / 4^{\prime \prime}$ deep, $61 / 2^{\prime \prime}$ high, 6 lbs .

The all-new WV-98A has all the important, time-proved performance features of earlier VoltOhmysts including direct reading of peak-to-peak voltages of complex waveforms. See this highly accurate, versatile, service instrument at your RCA Distributor! Order now.

RADIO CORPORATION OF AMER/CA
TEST EQUIPMENT
HARRISON, N.J.

NEW! WG-299A slim, single unit DC/AC-Ohms Probe and Shielded cable is provided with the RCA WV-98A. Probe has handy builtin switch permining instant selec tion of de or ac/ohm operation
(®it) Trade Mark "VoltOhmyst" Reg. U.S. Pat. Off

"PRINTED CIRCUIT

 OUTPUT UPPED when we OUTPUT UPPED R.C.E."
-the FASTEST ETCHING SOLUTION for PRINTED CIRCUITS

Here indeed is good news for all makers of etched printed circuits. Philip A. Hunt Company, world-famous makers of photographic and photo-engraving chemicals, now offers Hunt R.C.E. Solution, a special etching solution with these BIG advantages, guaranteed:

1. Controlled rapid etching speed, permitting standardiza. tion of a high production etching schedule
2. Instant and uniform etching over entire circuit
3. Maximum etching capacity
4. Full protection of tops

Contact your nearest Hunt branch, or write us at Palisades Park, N. J., today for full information on Hunt R.C.E. Solution.

PALISADES PARK, N. J.

over the threaded end of each tie rod.
The final step is degaussing the yoke structure. This is done by lowering over the neck of the picture tube a large coil connected to the 115 -volt a-c line, leaving it there about 10 seconds, then slowly lifting up the coil.

After mounting the picture tube, the cabinet is turned upright and assembly is completed at subsequent positions on the conveyor. The back cover and the removable top of the cabinet are put on last. The top is made removable so that servicemen can reach in from above to adjust the earth's-field compensating magnets around the rim of the picture tube.

Substitutes for Eyelets in Etched Wiring

By L. J. Martin and M. J. Vavra
Weapon Systems Development Jaboratories
Hughes Aircraft Culver City, Calif.
Open circuits and poor joints are a major threat to etched circuit reliability. Open circuits are most apt to occur in the vicinity of connections to component leads, either through failure of soldered connections or through breakage of the etched conductors. Bond strength between the conductor and laminate is limited and may be impaired if a connection is overheated by handsoldering, as in replacing components. These conductors are unable to withstand heavy stresses applied by component leads if these stresses tend to pull the conductor away from the laminate or even to rotate or shear the bond. They are, however, amply immune to stresses directed toward the laminate. This is illustrated in Fig. 1.

Connections should be protected

FIG. 1-Ability of convential lead to withstand stresses in various directions when soldered to etched wiring board

STANDARD TYPES DIRECT FROM STOCK
 PLUS SPECIAL DESIGNS BUILT TO REQUIREMENTS

Chatham specializes in the development of general and special purpose tubes for both electronic and industrial applications. Many of the tubes originally developed by Chatham to fill α specialized need, now number among the most widely used tubes in the industry. For complete information on Chatham tubes - either stock items or types built to your requirements - call or write today.

CHATHAMELECTRONICS
Division of Gera Corporation - LIVINGSTON, NEW JERSEY

INSTRUMPNTS INDUSTRY NमHDS

Hycon engineering skill and design keep pace with ever-changing industry, producing instruments that anticipate need-designed to simplify and speed produztion.
Depend on Hycon for electronic testing equipment.

MODEL 625 DIGITAL RATIOMETER

Measures ratio of two DC voltages where
one is derived from the other. Ratio is displayed on a three digit servo-positioned counter. Provides a discreet indication of one part in a thousand. Slewing time is less than $41 / 2$ seconds full scale. The response is critically damped. $\$ 550^{00}$

MODEL 615 DIGITAL VTVM

Ideal for production-line testing and the laboratory, this new VTVM gives direct readings, without interpolation. Features illuminated digital scale with decimal point and polarity sign.. 12 ranges (AC, DC, ohms) ... response with auxiliary probe to $\$ 50 \mathrm{mc}$.... accuracy: 1% on DC and ohms: 2% on AC. FIELD RUGGEDNESS..
LAB PRECISION $\$ 374^{50}$

FIG. 2-Forming of eyelets on etched wiring
from those stresses to which they are weak, either by forming the leads and placing the components to prevent these stresses or by reenforcing the connections with eyelets.

- Drawbacks of Eyelets-Eyelets frequently are used to provide interconnection between etched wiring on opposite sides of the board, as well as to provide mechanical bonding of the conductors to the board. This use of eyelets allows repeated change of components without danger of lifting the conductors from the base material. These eyelets, however, form additional links in the wiring and unless properly used may be a source of unreliability. Gold-plated or solderplated eyelets wet readily when solder-dipped, this being essential for obtaining reliable joints. After plating, the eyelets should be cleaned, dipped in stearic acid flux and baked dry.

Installation of eyelets is accomplished by applying controlled pressure to a pair of eyelet-heading dies. The shape of the forming cavity of the die is important. Improper forming of the eyelet heads may cause poor solder joints, as illustrated in Fig. 2. Improper eyeletting can, and has, caused unreliability of the most troublesome kind because, when corrosive flux residues become trapped under their heads, failures may develop

Plants in Norristown, Pa, and La Verne, Calif.
PHENOL-MELAMINE-SILICONE-EPOXY LAMINATES • COMBINATION LAMINATES • VULCANIZED FIBRE • POLYESTER GLASS ROD

Tips for designers

Sealing strips for crew doors of 4 -engine commercial transpart plane are made from Taylor canvas base phenol laminate . . . chosen for its flexibility and long-wearing qualities.

Welders' helmets are fabricated from tough, durable Taylor Vulcanized Fibre . . . readily formed to many desired contours.

Aircraft fuel gage tank unit uses a tube of Taylor Epoxy Glass Base Laminate . . . an Unusual material noted for excellent corrosion resistance and electrical insulation over a wide humidity range.

Railroad track-joinf insulation, a specially developed grade of Taylor Vulcanized Fibre, withstands heavy impacts and mechanical stress of high-speed trains.

TAYLOR FABRICATING FACILITIES

Your production can be simplified...schedules safeguarded... inventory headaches cured . . . and overall costs reduced by having Taylor fabricate finished parts to your specifications. Efficient, modern facilities are ready to serve you. Get in touch with Taylor about your requirements.

Support for antenna lead in is punched from Taylor Insulation . . . a lightweight, flexible material ideal for mechanical applications and rough usage.

New Products, too, UseTough, Flexible Taylor Insulation

When you're designing new products or modernizing old ones, take advantage of the unique characteristics ... both in performance and economy ... of Taylor Insulation. Also called "fish paper," this versatile material has long been a favorite of designers. It offers properties that have not been duplicated by more recently developed materials . . . many of which Taylor also makes.
Most outstanding properties of Taylor Insulation are its extreme toughness, excellent bending qualities, high dielectric strength and arc resistance. Its durable surface withstands abrasion. It is an ideal insulating material for slot wedges in electric motors, for field coils, for transformers, and for arc shields.

Taylor Insulation is not limited to insulation work. Its strength, tough-
ness and resistance to many chemicals qualify it for gaskets, washers, metal box liners and a wide variety of mechanical products.

To insure uniformity of its useful characteristics, Taylor Insulation's base is a high grade rag paper manufactured in Taylor's own paper mill. Taylor Insulation comes in sheets, strips, rolls and coils for high speed production equipment . .. sheets approximately $56^{\prime \prime} \times 90^{\prime \prime}$, and rolls up to $56^{\prime \prime}$ wide.

Write to Taylor for a copy of its general catalog with complete technical data on this and other grades of Taylor vulcanized fibre and laminated plastics. And have a Taylor engineer consult with you for specific recommendations on your particular materials application.
 \section*{the fufure resides
 \section*{the fufure resides IN MEN WITH IN MEN WITH IMAGINATION! IMAGINATION!
 los alamos scientific laboratory}
... the nation's most important institution for the development of nuclear and thermonuclear weapons is seeking professional engineers and scientists, particularly those vitally interested in the development of the atomic age.

In addition to its continuing and everexpanding achievement in weapons research, the Laboratory is now pioneering in the fascinating fields of nuclear and thermonuclear power and nuclear propulsion.

At the Laboratory, staff members have the opportunity of associating with leaders in research and experimentation . . . of working with some of the Western World's finest equipment and facilities . . . of winning recognition... of achieving advancement commensurate with ability.

If you would like more information about the Laboratory's career opportunities which are not civil service... about the delightful climate and area in which Los Alamos is located,

FIG. 3-Method of swaging component lead to obtain greater mechanical strength in etched wiring assembly

FIG. 4-Method of forming component lead to obtain greater strength
later. Not only are proper forming and soldering difficult, but the labor required is costly and this destroys much of the economic attractiveness of dip-soldered etched circuitry. Consequently, there is a trend toward eyelet elimination.

- Eyelet-Eliminating Techniques If wiring boards are to be produced without eyelets, provision must be made to insure that the stresses applied to the leads of components cannot be transmitted to the conductor on the board in such a manner as to tear it away from the base material or fracture it. This can be done by swaging the component lead on the unsoldered side, as shown in Fig. 3. Another method is to form the lead in such a manner that it bears against the unsoldered surface for a short distance before it enters the hole (Fig. 4). Still another way is to arrange the components for edgedipping as in Fig. 5. This provides

FIG. 5-Arrangement of components for edge dip soldering, to obtain strong fillets on both sides of board

DIANA
 RADAR

In this age of man-made satellites, knowledge of space is being expanded by the moon radar system now in operation by the U.S. Army Signal Corps at Belmar, N.J.

Both the transmitter and receiver, which were designed and manufactured by REL, are held stable by a single crystal to better than one part in 10^{6}. Output power is 50 kw , and frequency is 151.11 mc . The receiver noise factor is better than 3 db , with gain of 170 db .

REL's world-famed experience and facilities are available for the solution of your specialized radio problem.

Seventh in a series describing REL versatility

RADIO ENGINEERING LABORATORIES • INC.

36-40 37th St - Long Island City 1, N. Y.
STillwell 6-2100. Teletype: NY 4-2816
Canadian representative:
Ahearn \& Soper Co., P. O. Box 715, Ottawa
\qquad

Phalo Cables are Customer-Made...

Ask Any of Our"Custom" Customers!

Because this statement could be made by many Phalo customers who saw us turn "specs" into a custom cable built for their express purpose, we have not shown the personality behind this statement.

We can, however, show you some very interesting examples of the scope of

Phalo's custom cable operation . . . and we can translate your "specs" however complex and exacting they are.

If you're holding cable specs that are holding up progress and you wish you were holding the finished custom cable, get hold of your Phalo man.

Ask For The Complete Phalo Catalog

PLASTICS CORPORATION

\qquad

CORNER OF COMMERCIAL STREET

WORCESTER, MASS.
Insulated Wires, Cables - Cord Set Assemblies

FIG. 6-Mounting component flat on board gives greater strength
a fillet of solder around the lead on both sides of the board, preventing the stripping of conductors from the board by a force exerted on the lead from the component side of the board. Eyelets also can be eliminated when leads emerge from the bottom of a component capsule, as in Fig. 6.

- Coatings for Wiring BoardsAfter the etched circuit assembly has been completed, it often is desirable to coat the board to control subsequent surface contamination. The requirements of a good protective coating are: high humidity resistance consistent with good recovery properties; adequate electrical properties; cure at 75 C or less so that the coatings can be cured in the presence of tempera-ture-sensitive components; good physical properties such as adhesion to the board; transparency so color coding can be recognized; easy application in the required thickness.

Although the ideal coating which will meet all of the above requirements has not been found, coatings can be selected which will most closely meet the desired application.

A 5-mil coating, although difficult to apply, gives a reasonable compromise between good humidity protection and rapid recovery. Thicker coatings show greater resistance to humidity exposure but show slower recovery after long exposure and also make component replacement very difficult.

Grounding Wiring Boards

AFTER installation of the assembled etched-wiring boards on the metal chassis with self-tapping screws, an operator on Admiral's assembly line solders certain of the screws to the chassis to insure good per-

1000 WATTS

Rugged, versatile general purpose H.F. transmitter-Aerocom's 1046 packs 1000 watts of power and high $.003 \%$ stability under normal operating conditions (0° to $+50^{\circ} \mathrm{C}$.). Excellent for point-to-point or ground-toair communications.

Multi-channel operation on telegraph Al, or telephone A3 with GM-8A modulator . . new Acrocom 1046 can be remotely controlled wath TMC-R at control position and uses only one pair of telephone lines. In A3 operation, the local dial control panel is located in modulator cabinet.
Transmitter cabinet has $83 / 4$ inch panel space available for either local dial control panel or frequency shift keyer

Model 1046 operates on 4 crystal-controlled frequencies (plus 2 closely spaced frequencies) in the band $2.0-24 \mathrm{Mcs}$. Operates on one frequency at a time; channeling time 2 seconds. Operates into either balanced or unbalanced loads. Operates in ambient -35° to $+50^{\circ} \mathrm{C}$. Power supply: nominal 220 volts, $50-60$ cycles, single phase.

Complete technical data on request

WITH
.003\% STABILITY

$A E R(-\infty B M$
3090 S.W. 37th AVENUE
MIAMI 33, FLORIDA

MORE WAYSTO SQUEEZE PENNIES
 OUT OF UPSET SPECIALS COSTS

Specially designed upset products are solving thousands of problems. Dozens of design pointers on them are yours for the asking. Send us your sketches, prints, finished products for suggestions.

A HALF-CENTURY OF MACHINE SCREWS AND SPECIAL. FASTENERS

WRITE FOR our catalog
the PROGRESSIVE manufacturing company 50 NORWOODST., TORRINGTON, CONN.

Soldering insures good ground to etched wiring by anchoring mounting screw permanently in position. The solder here doesn't reach the etched wiring itself
manent r-f grounds for the etched wiring in critical circuits. Solder from an overhead spool is fed freely to each of these grounds after heating with the iron. Two irons are used alternately, since the metal chassis cools an iron faster than it can heat up again on a moving conveyor line operating at about a 30 -second cycle.

Terminal and Marking Tools Added to Wire Cutter

THE ADDITION of terminal-attaching and wire-printing mechanisms to an Artos automatic wire-measuring, cutting and stripping machine brings further speed and production economy in preparing large quantities of wire leads for use in electronic equipment. The new TA-20-S machine made by Artos Engineering Co., Milwaukee, can be op-

Wire-cutting machine with terminal attacher at right end. Reel of prefabricated terminals can be seen at upper right, with wire supply reel just below. Terminals are attached at only one end of each lead. Wire printer, not shown here, mounts on bar projecting at left of machine

Meur aunongesiock construction
Permits assembly of computer elements in any desired combination to do particular job or expand existing instalation
Mem convenent patchbay
Available in units of 1632,3264 or 4896 holes for maximum flexibility. Patchboard changes possible during operation.
Meur powerfu anmultres
Noise less than 3 mv rms in cabinet. Phase shift $0.075^{\circ} @ 100 \mathrm{cps}$. in cabinet. Bandwidth over 10 KC in cabinet.
Hew
high speed resolvers
Vastly improved dynamic performance . . . 35-cycle bandwidth.

* Six gang multiplying potentiometers. Accuracy equivalent to 0.1% linearity potentiometers (over-all multiplying accuracy 0.2% including mechanical non-linearities). Two gangs tapped for function generation.
* Two front panel plug-in turrets for padding or feeding voltages into the tapped pots for function generation. Turrets may be stored for future use.
* High Speed - Velocity $1500 \mathrm{v} / \mathrm{sec}$.
* Long Life - Carbon film potentiometer gives exceptionally long life even at high velocities.
* Superior Frecuency Response: Maximum amplitude rise 1.4 @ 40 cps. Bandwidth over 50 cps . Dynamic error less than 0.5% of input @ 2 cps.! Phase shift less than $0.3^{\circ} @ 3$ cps.!
- Exceptional low speed performance too - Typical tracking error less than 0.05 volts maximum for ramp input as low as $0.01 \mathrm{v} / \mathrm{sec}$.

TEFLON \dagger TERMINALS
"Mike' is the herdest worker at Sealectro. For in every operalion-fror tooling ip to settirg of the automatio mactines, anc again fram outpouring production to final inspectior - the nieroneter is everywhere in avicence. Sealectre ras set those cluse-toleranse standards which others :ry io follon

Sealectio's "Fress-Fit" terminals are the p-ecision terminals press-fitteJ into chassis or compenent eliminating useal hardware and so dering, and minimizing tabor Piece after piece after fiece of absoluse uni=orm ty. Anc they "stá p.:.." "es, a ways right, all ways, thanks to "Mike", the hardest worker at Sealectro, he or ginal and still the leading exclusive Teflon terminal producers. - Trade-mark \dagger Trade-mak of E. I. Cu Pont de Nemours \& Co

GET YOUR COPY...

This "Presa-Fit" Yanual prevides tiat fractical 'know-10w' ycu want on superlat ve rsulated terminals. Wrie for it on your business stationary. Asc let us collatcrate on you irsulated term nal problens ard requirenents.

corporation
166 UNION AVE., NEW ROZHELIE, N.Y. - NEw Rochelle 2-6015

ITEMS LIKE THESE AVAILABLE AT

The Nation's Headquarters for Brass \& Copper
Atlanta Baltimore Boston Charlotte \dagger Chicago Cincinnati Cleveland Dallas Denver Detroit Grand Rapids \dagger Houston Indianapolis Kansas City, Mo. Los Angeles Milwaukee Minneapolis Newark New Orleans New York Philadelphia Pittsburgh Providence Rochestert St. Louis San Francisco Seattle Waterbury (tsales office only)

Complete specifications for the 5000 Series, including amplifiers and power supplies, available on request. Phone, write or wire today.

LANGEVIN MANUFACTURING CORPORATION

47.37 AUSTELL PLACE, LONG ISLAND CITY I, N. Y. Telephone: RAvenswood 9.1860
A Subsidiary of the W. L. Maxson Corporation
compensating mechanism for the wire prefeeder. The printer is a dual unit, with the printing units about 3 inches apart. The printer is positioned in such a way that it is centered on the point at which the wire will later be cut. It operates each time the wire puller stops, so as to give a printed identification near each end of each lead.

Production of Curved Etched-Wiring Boards

POST-FORMING of etched-wiring boards has been placed on a production basis in the Minneapolis plant of Bureau of Engraving, Inc. Thermocontact presses provide preheating and special rollers do the actual forming.

Partially cured laminates, rigidly tested for forming ability, shrinkage, delamination and ability to hold the radius after forming are used for the base material. Nylonbase phenolics and glass-base epoxy resins are examples of materials that have proved satisfactory.

- Forming Procedure-After the board is etched on one or both sides, it is placed in a timer-controlled hot-plate press for 30 to 120 sec onds at 250 F to 350 F , depending on the material. High-temperature rubber plates in the press provide good overall thermal contact. The timer automatically opens the press at the end of the selected heating cycle. The board is then immediately transferred to a specially designed roller-type press for the actual forming.

The board is sandwich-rolled

Placing board in heating press to soften base material

The "skin" we love to watch

The "skin," or plated coating, on CTC terminals gets extremely close scrutiny from our quality control engineers. And we take pleasure in this careful watching because -

We know, as a result, that you can depend on CTC terminals for electroplated coatings of guaranteed minimum thickness - whether to government specifications or your own.

Our "watching" of these coatings includes periodic bend tests for adhesion, and periodic microscopic inspection of cross sections for coating thickness. These are but two of many examples of quality control that enable us to offer customers guaranteed electronic components ... custom or standard.

Besides terminals, we pay close attention to the production of CTC terminal boards, capacitors, swagers, hardware, insulated terminals, coil forms and coils. For all specifications and prices, write to Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38,

Mass. West Coast Manufacturers contact: E. V. Roberts, 5068 West Washington Blvd., Los Angeles 16 and 988 Market St., San Francisco, California.

Terminal Data: Our standard terminal line includes 30 types, each in varied shank lengths. Made of silver plated brass, coated with water dip lacquer to keep them chemically clean for solder ing. Also available: combination screw and solder terminals in 3 sizes, and a complele line of phenolic and ceramic insulated terminals. All materials, specifications. Special order finishes include hot tin, elecirotin, cadmium plate or gold plate.

Standard CTC Terminal Boards as well as those made to your own specifications by CTC are availmade to your own specifications by CTC are available. Standard in cotton fabric phenolic, nymic. phenolic or grade $L-5$ silicone impregnated ceramic. or silicone fibreglas laminates, imprinted as required and lacquered or varnished to specifications MIL-V-173 and JAN-'I-152.

CAMBRIDGE THERMIONIC CORPORATION

> makers of guaranteed electronic components, custom or standard

Direct, accurate measurements of signal components- $\mathbf{1 5}$ to 500 kc

Model 121 Wave Analyzer

This new Sierra Wave Analyzer is designed to give you maximum operating ease, high accuracy and broad applicability in analyzing complex wave forms between 15 and 500 kc . The instrument is particularly useful for carrier system frequency analysis and induction studies, for determining filter transmission characteristics, or for measuring distortion and intermodulation components of rf signal sources and transmitters.

The Model 121 makes possible direct measurement of signal components throughout its range, and eliminates complex expensive setups with conventional receivers and signal generators. Input level range is +42 to -70 dbm at 600 ohms impedance. Measuring accuracy is $\pm 2 \mathrm{db}$; selectivity is such that response is 45 db down at 1 kc off resonance. Input bridging impedance is 10,000 ohms in the pass band.

Model 122 LINE-BRIDGING TRANSFORMER

The Sierra 122 Line-Bridging Transformer instantly converts Model 121 Wave Analyzer from single-ended to balanced input. The transformer is a broad band ferrite core unit operating flat within 0.5 db . from 15 to 500 kc . It is compensated so that Analyser readings are corrected for the transformer's small insertion loss. Offered in three impedances: Model 122A, 135 ohms; $122 \mathrm{~B}, \mathrm{~s} 10$ ohns; $122 \mathrm{C}, 600$ ohms.

For complete information see your local Sierra sales representative or request Bulletin 103A

sierra

Sierra Electronic Corporation

San Carlos 2, California, U.S. A.
Sales representatives in major cities
Manufacturers of Carrier frequency Voltmeters, Wave Analyzers, Line Fault Analyzers, Directional Couolers, Wide-Band RF Transformers, Custom Radio Transmilters.

[^11]

Board in loading position on bed of forming press

Curved board emerging from roller after slow cooling
within a felt layer that extends the cooling time to prevent thermal shock. Even pressure of the roller prevents damage to the delicate wiring on both sides of the board, permitting forming to an inside radius as small as three times the thickness of the material. Studs and components are now added after forming, but experiments are under way involving forming after insertion of components.

Locating Heater Shorts

WHEN a cathode-heater short develops during aging of tubes in batches of 100 , a heavy-duty relay or switch is closed to burn out the heater and thereby eliminate the short. This technique saved $\$ 375.00$ per year when first introduced in Sylvania's Emporium plant as a result of a suggestion by Donald Crawford.

The previous technique involved pulling tubes out of the aging rack one at a time until the shorted tube was located. This meant pulling up to 100 tubes.

John O. Gantner, Jr., President of Gantner of California, reveals why

"She always has the last word!"

They say a woman will always have the last word. It's certainly true when she shops for a swimming suit!
"She waits till the last possible minute, and irsists she get the 'last word' in style. Pressure on stores is terrific. If 'hot styles run out of stock, those sales are gone forever.
"But our retail accounts know they can depend on G.intner.

Gantner styles can be restocked to any store in the country in a few hours, while the ads are running. Not a moment is lost - not a sale is lost - thanks to Air Express!
"And one last word - about costs. Specifying Air Express can save you money, too. 15 lbs . from San Francisco to Chicago, for example, costs $\$ 10.91$. That's $\$ 1.09$ less than any other complete air service!

GETS THERE FIAST via U.S. Scheduled Airlines CALLAIR EXPRESS... division of RAILWAYEXPRESS AGENGY

71 New Products and 63 Manufacturers' Bulletins Are Reviewed
 . . Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered

TRANSISTORS

of the medium-power type

I'ransitron Electronic Corp., Melrose 76, Mass. The new mediumpower type transistors are designed for high power dissipation with linear operation over a wide collector current range. They are hermetically sealed under vacuum to insure reliability under the most severe operating conditions.

Efficient thermal connections provide greater power dissipation at elevated temperatures (up to 750 mw dissipation at 25 C). Maximum

dissipation ability of 2 N85, 2N86 and 2 N87 medium power transis-
tors is obtained by chassis mounting

- Output-These transistors are intended for Class A or B output or driving stages, and will provide high output with a minimum of distortion. Approximately $1.5-\mathrm{w}$ output can be obtained from a pair of 2N86 medium-power transistors operated in push-pull class B, even at temperatures up to 70 C when mounted on an aluminum chassis for heat-sink purposes.

Prices range from about $\$ 3.00$ each to approximately $\$ 4.50$.

PLUG-IN MODULES

use standard component bodies

Erie Resistor Corf., Erie, Pa, announces a new packaged subassembly that can be mass-produced at an overall cost approximating that of individual components, while greatly reducing the cost of assembly labor and equipment. Called PAC, for Pin Assembly Circuit, the new module permits installation of resistors and capacitors as a unitized plug-in package in etched wiring boards either manually or by machine, for lowercost tv and radio sets, computers, industrial controls and other military or commercial electronic equipment.

The modules employ standard composition resistor and ceramic tubular capacitor bodies without leads, fitting into miniature fuse clips anchored in holes along the sides of the XXXP phenolic base plate. Interconnecting wiring is applied to the other side of the plate by an embossing process giving the equivalent of etched wir-

ing without immersion in chemical solutions.

- Components-Development engineers can readily make their own experimental modules. Up to 92 individual components may be combined by using an appropriate length of base plate, for insertion in a single operation. Basic component size is $\frac{1}{8}$ inch diameter and \bar{s} inch long, for which resistors are rated as $\frac{1}{2}$ watt and 500 volts, with tolerances of 5 percent or wider, in values from 5
ohms to 50 megohms. Multiple pins are connected in series or parallel for higher wattage ratings. Capacitors range from 1 to $5,100 \mu \mu$ f. The adhesive bond of the conductive pattern on the back will withstand solder dip temperatures up to 570 F for 2 sec immersion or 10 sec at 500 F .

SWEEP GENERATOR

 with sync pulse addedKay Electric Co., 14 Maple Ave., Pine Brook, N. J., has amnounced the Sona-Sweep model TV, which permits overall visual examination of the low end of the video spectrum. Features include separate

An assembly with 14 Concentric, hard silver rings electro deposited into machined plastic blank. Dovetail locks rings in place. Machined blank insures accuracy. Diameter approx. 11 ", thickness opprox. 5/16".
\Rightarrow An assembly with 30 rings of various widths to accommodate vorious current requirements. Unit is opprox. 4-5/16" long, designed for flange mounting.

Cylinder type assem. bly approx. $33 / 4^{\prime \prime}$ long with 24 hard silver rings. 15/8" O.D. with wall thickness less than $1 / 4^{\prime \prime}$ 。

- PAT. NO.

2,696,570

Cylindrical assembly with 25 rings. Three wide rings occommo date large contact arec brushes for high current capacity. Length $14^{\prime \prime}$. O.D. approx. $53 / \mathrm{s}^{\prime \prime}$.

ELECTRO TEC is now tooled up, with new expanded facilities for production of large Slip Ring Assemblies to exact customer specification. Sizes range up to $36^{\prime \prime}$ in diameter, either cylindrical or disc type.
The exclusive ELECTRO TEC PROCESS*-the electro-deposition of hard silver rings into an accurately machined plastic blank-consistently yields a high degree of dimensional accuracy, excellent concentricity, and a jewel-like ring finish. This process also eliminates expensive tooling and mold charges, frequently lowers costs to 30% of other methods of manufacture. The silver rings are uniformly hard for long life-70-95 Brinell.
ELECTRO TEC one-piece construction precludes dimensional variation due to accumulated errors. The plastic base is fully cured before rings are plated into it, thus preventing separation of base material from the rings.
ELECTRO TEC LARGE SLIP RING Assemblies are widely used in Radar Equipment, Fire Control Systems, Test Tables and many other critical applications. Light weight combined with rugged durability recommends their use in airborne applications.

Every user knows the ELECTRIC TEC reputation for quality and 'superiority in miniature and sub-miniature slip ring assemblies.

Our Engineering Department is available for consultation on any of your slip ring problems withoul obligation.
controls on sync pulse and sweep generator, r-f output and adjustable equalizer for better than 0.5percent accuracy in any one region in the band.

Blanking is added to provide zero level base line; permits locking of scope at test receiver end. Output is attenuated in steps for all of the
sync and sweep pulse signal. A frequency vernier control permits observation of specific portions of the spectrum when sweep is turned down to narrow range.

- Specifications-Range is 0 to 350 kc; r-f output, 0 to 1 v peak-to-peak into 75 ohms; flatness of sweep
over entire range, 0.5 percent; output attenuator, 2, 4 and 6 db for whole signal; variable sweep rate, 2 to 0.5 cps ; variable sweep width, 0 to 350 kc ; sync pulse output, 0.3 to 1 v into 75 ohms; sync pulse duration, 5 -milliseconds; sync pulse frequency, adjustable $15,750 \mathrm{cps}$ $\pm 750 \mathrm{cps}$ (accuracy: $\pm 10 \mathrm{cps}$).

PROTOMAKA

makes etched circuit in $1 / 2 \mathrm{hr}$
Printed Electronics Corp., 15 Willow St., Natick, Mass. The Protomāka, a unit for making production prototypes of printed electronic circuits, measures only 60 in. long by 50 in . wide by $45 \frac{1}{2} \mathrm{in}$. high, but can produce an average printed circuit in only 30 to 40 min . Circuits up to 10 in . by 16 in . in size can be manufactured.

- How It Works-The Protomāka is simply plugged into a standard $110-\mathrm{v}$ line, one hose is connected to a cold water faucet and another to a waste drain. With these simple

connections the unit is ready to operate. It produces etched wiring by the photographic process. Copper clad material is coated with photosensitive resist on a whirler.

The board is held by a pair of quick-acting clamps while the solution is poured on the surface. Centrifugal force spreads the resist evenly, any excess flowing into the aluminum bowl in which the whirler spins. An infrared lamp dries the resist as the piece rotates. The circuit board is then exposed on the light table where the negative is placed under the resisted panel, and pressed firmly to it by the vacuum frame table top. Exposure time is only 30 sec . A developing tank with an overflow water rinse is conveniently located to complete the printing cycle.

The compact unit will sell between $\$ 3,000$ and $\$ 3,500$.

MALE CONNECTOR

ups printed circuit progress

Circon Component Co., 17544 Raymer St., Northridge, Calif., announces the new male connector for

electronic, instrument and printed circuit uses. Available in both miniature and subminiature series, the connectors show five improvements over previous models.

They provide higher insulation resistance and humidity performance due to new phenolic base material which exceeds all requirements of MIL-P-15035, type PRE-P. A sustained near-perfect contact is maintained with the new shot-burnished gold deposition process employed in the production of the contact surfaces.

Interface bond between the contact and the body of the connector is such as to eliminate virtually any damage to the contact bond due to careless application of wires to contacts. Increase in width of extremity contacts provides sound cabling and relief of strain at these critical points. Vinyl insulating hood provides built-in mold for potting of connectors should user desire.

- Prices-A schedule is available listing prices of 16 models (subminiature and miniature series), which range from 73 cents to $\$ 4.72$. Quantity discounts are also shown.

GALVANIC INSULATORS

of Zytel polyamide resin

Crawford Fitting Co., 884 E. 140th St., Cleveland 10, Ohio, has announced the latest addition to the line of Swagelok tube fittingsSwagelok galvanic insulators of Zytel polyamide resin. The in-
sulators offer a new method of eliminating galvanic action which results from joining dissimilar metals.

- Uses-With their use, brass, aluminum, copper and steel may now be joined. Moreover, they will find many applications at junction

$I_{\text {Nterested in high-purity phosphors . . . for color, }}$ black and white television tubes... for radar or oscilloscope tubes? Here is your opportunity to get the latest information directly from Sylvania - your prime source of phosphors and screen settling chemicals.
This new 24 -page publication contains specifications and more than forty performance charts to guide in the selection of phosphors for every application. You will find helpful hints on almost every page, based on Sylvania's own experience in manu-
facturing the world's finest television and cathode ray tubes.
Something worth keeping in mind, too: Sylvania phosphors and chemicals are manufactured under a rigid control system that assures high performance from every batch. Prove this to your satisfaction by placing your next order with Sylvania!

WRITE FOR YOUR COPY

Sylvania Electric Products Inc
1740 Broadway, New York 19, N. Y.

Name Title

Company
Address

boxes, panel boards and bulkheads.
The insulators are made in a complete line of shapes and in $\frac{1}{16}$ in. to 1 -in. tube and pipe sizes,

Extruded Teflon insulation to meet the requirements of MIL-W-16878A Types E and EE, sizes 10.30 AWG in 14 solid colors and spiraliy striped. Parallel wrapped Teflon-exclusive patented construction featuring super-flexibility, sizes $20-34$ AWG in 14 solid colors to MiL-W-16878A Types E and EE.

TEFLON INSULATED HOOK-UP WIRE

TEFLON LEAD WIRE

SHIELDED TEFLON WIRE

TEFLON TUBING

TEFLON
AIRCRAFT WIRE

JACKETED
SHIELDED TEFLON INSULATED CABLE
MINIATURE
TEFLON
COAXIAL
CABLE
multi. CONDUCTOR teflon CABLE

CUSTOM

 teflon cableSpiral wrapped Teflon - special cross-lapped construction with spiral striping conforming to commercial (GEN-104) and military (MIL-W.76A) Soecifications having the standard stripe width, tay and spacing. Sizes 8-30 AWG to MIL-W-16878A Types E and EE Specification NEW 5 mil wall subminiature Teflon hook-up wire for applications where space factor is extremely critical. Sizes 26. 28, 30 and 32 AWG in 4 solid colors.

Teflon impregnated fibreglas braid over Teflon insulated wire for high
temperature motor and transformer leads. Sizes 8.32 AWG, solid and temperature motor and transformer leads. Sizes 8-32 AWG, solid and tracer colors.
Silicone lacquered fibreglas braid over Teflon insulated wire for class H applications. Sizes 8.32 AWG, solid and tracer colors.

Alf of the above described hook-up and lead wires are available with closely woven wire braid shields to all military and customer specifications.
100% shielding provided with a close-fitting drawn copper or aluminum tubing available on request.

Ultra-flexible slip-on insulation for 20.30 AWG sizes available in 14 solid colors.

New improved Teflon-glass-Teflon sandwich construction providing superior resistance to abrasion and vibration, as well as increased margin of safety for overload protection and emergency operation. Conforms fully to MIL-W.7139A, available in sizes 6 to 22 AWG.

Teflon outer jacket cross-lapped and fused to provide an impervious
and flexible covering completely resistant to all corrosive chemicals and flexible covering completely resistant to all corrosive chemicals. Teflon impregnated or silicone spac ing over shielded Teflon insulation. These class H cables are available in solid and tracer colors, sizes $10-30$ AWG.
Extruded vinyl ar nylon jackets over shielded Teflon wire for high Extruded
frequency, moderate temperature applications. All standard sizes and frequen
colors.
Nylon lacquered nylon braid outer covering over shielded Teflon wire for extra rugged applications at temperatures not exceeding $120^{\circ} \mathrm{C}$. Solid colors and tracers, sizes $10-30$ AWG

50, 70 and 93 ohm extruded Teflon insulated miniature coaxial cables with extruded vinyl, nylon or Teflon outer jackets. Also available with lacquered over-braids.
Finished coaxial cable assemblies are now being supplied with miniature connectors and fittings.
Copper or aluminum clad miniature Teflon insulated coaxial cables for rugged applications with extreme size and weight limitation. The semi-rigid nature of this construction minimizes self-generated noises. Flexible low-noise miniature Teflon insulated coaxial cables are also available on request.

Teflon insulated conductors cabled together to exact customer specifications
Shielded multi-conductor Teflon insulated cables.
Teflon outer jacket, silicone or Teflon impregnated fibreglas braid and nylon lacquered nylon braid over shielded multi-conductor Teflon insulated cables are available for numerous specialized applications in tele-metering and instrumentation.

Tensolite's development facilities are ready to assist you in the de sign and selection of special Teflon wire, cable and thermocouple constructions as well as custom wire assemblies and harnesses.

To be certain of rapid and reliable deliveries, specify shipment by American Airlines Airfreight. In addition to being the most experienced, American
also leads all other airfreight carriers in:

CAPACITY - with the largest cargo capacity of any airline, American has space where it's needed, when it's needed.

COVERAGE - with routes to more key industrial areas, American is able to provide the most direct one-carrier service.

AMERICAN AIRLINES

SCHEDULES - with the most frequent schedules, American keeps terminal time to a minimum, assures you of prompt forwarding.

For complete information about the advantages of shipping American, wire collect to American Airlines, Inc., Cargo Sales Division, 100 Park Avenue, New York 17, New York.

SPECIFICATIONS
Frequency Ronge
100 to $1000 \mathrm{mc} / \mathrm{s}$
Residual VSViR:
Less than f .05
Accuracy of Reflectiont
Coefficient Angle.
Better than $\pm 5^{\circ}$
Characteristic Impedance:
50 ohms
Output Termirials:
Type \mathbf{N} ack.
Other interchangeable
connectors
Min. Input Signal:
Approx. 1 volt at $100 \mathrm{mc} / \mathrm{s}$, 0.1 volt at $1000 \mathrm{mc} / \mathrm{s}$ Dimensions:
$8^{\prime \prime}$ I. $\times 5^{\prime \prime}$ w. $\times 53 / 4^{3 k} h$.
Weight:
$41 / 2 \mathrm{lbs}$.

The PRD Type 219 Standing Wave Detector is the

- READS VSWR AND REFLECTION COEFFICIENT ANGLE DIRECTLY

- SMALL AND COMPACT

\author{

- LOW IN COST
}
package, low cost solution for making measurements easily and accurately in the 100 to $1000 \mathrm{mc} / \mathrm{s}$ region. By connecting the output to a VSWR indicator, such as the PRD Type 277, VSWR may be read directly on the indicator meter. No special detection equipment is required. The reflection coefficient angle is easily determined merely by rotating the top drum dial to a minimum indication on the meter and reading the angle on the dial directly in electrical degrees. No calculations are required. The probe and crystal detector are self-contained.
Usually it is more convenient to work with VSWR and refiection coefficient angle directly instead of with other components of the measured impedance. When other quantities are also of interest, they can easily be read from a conventional impedance chart. Only $\$ 475$ f.o.b. N.Y. Write for PRD Reports, Vol. 3, No. 2, and for 1955 catalog.

Polifoçợ RESEARCH

202 TILLARY STREET BROOKLYN I, N. Y. Telephone: Ulster 2-6800

\& DEVELOPMENT CO.INC

Midurest Sales Office:
1 SO. NORTHWEST HWY., PARK RIDGE, ILL. - TAICOt 3-3174 Western Sales Office:
$7411 / 2$ NO. SEWARD ST., HOLLYWOOD 38, CAL. - HO 5.5287
announced the new subminiature Shorty relay ideal for guided missiles and printed circuits. Height when seated is less than 1 in .

- Specifications-Delay range is from 1 sec to 5 min ; power drain, approximately 4 w ; heater voltages, up to 125 v (230 v available if required) ; interchangeable on d-c or a-c of any frequency; insulated for test voltages of $1,000 \mathrm{v}$ a-c $(1,250$ v a-c on special order). Contacts are rated at 6 amperes 115 v a-c, noninductive load, 3 amperes d-c spst only. The relay is hermetically sealed, fully compensated for ambient temperature ranges of -60 C to +85 C ; up to 125 C if required. It will withstand vibration of from 5 to 500 cps at accelerations of 10 g ; shock up to 50 g .

CONNECTORS

with Bellows type contacts
DeJur-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. The newly developed Bellows type contacts are now supplied with the company's printed-circuit receptacles. They are available in single and double-row construction of 6 , $10,15,18$ or 22 contacts.

- Features-The new design provides longer contact life and smoother engagement. The connector accepts 0.054 in . to 0.071 in . variation of standard is in. copper clad printed circuit laminated card (receptacle to accommodate $\frac{1}{8} \mathrm{in}$. board also available on special order).

Wiring styles include solderless wire wrap, solder lugs or taper pins for AMP 53. A choice of mold-

HIGH EFFICIENCY FERRITE COMPONENTS

For TV and Electronic Circuits

Three performance standards-WO-I, WO-2, and WO-3-have been established for the performance characteristics of Allen-Bradley ferrite parts:-
WO-I and WO-3 are somewhat more efficient but are interchangeable with other makes of ferrite components.

Allen-Bradley WO-2 ferrite parts have much lower losses and higher permeability with greater flux
density at maximum operating temperature. Their higher magnetic efficiency permits reduction in size of the ferrite parts and the use of less copper. Lower over-all cost is often the result.

In some color TV circuits, Allen-Bradley WO-2 ferrites have eliminated two tubes and related parts. It will pay you to investigate the use of Allen-Bradley ferrites in your electronic circuits.

Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee 4, Wis. - In Canada-Allen-Bradiey Canada Limited, Galt, Ont.
OTHER QUALITY COMPONENTS FOR RADIO, TV \& ELECTRONIC APPLICATIONS

Fixed Molded Resistors
$1 / 10,1 / 2,1 \& 2$ watt

Ceramic Dielectric Capacitors for by-pass and filtering
ALLEN-BRADLEY

A New Approach To Precise

 400 Cycle Frequency Control

Here's the answer to exceprional 400 cycle frequency control regardless of input frequency variations or changes in load! It's the result of American Electric's "MIC" drive . . a MOTOR INDUCTION COUPLING which produces a new standard of automatic speed control! No belts, no gears ... speed changes are instantly sensed and automatically corrected electronically.
400 cycle output is held to $\pm 1 / 4 \%$ despite input frequency changes or load variations which ordinarily affect alternator rpm. Even closer control is available for special applications!
All other advantages of American Electric's proven alternator designs are retained. . low overshoot, fast transient voltage recoveries, low harmonic content, minimum maintenance.
Capacities: Single phase, $1 / 2 \mathrm{KVA}$ to 40 KVA
Three phase, $1 / 2 \mathrm{KVA}$ to 100 KVA
Write for quotations on your specific requirements

Application

Engineering
offices
in principal
industrial
areas

Ing compounds is available: mineral filled Melamine, Plaskon reinforced (glass) Alkyd 440A, and Orlon filled diallyl phthalate.

PULSE TRANSFORMER

is highly miniaturized
I'CA Electronics Inc., 2180 Colorado Ave., Santa Monica, Calif. The MPT miniaturized pulse transformer is available in 2,3 and 4 windings, and a pulse-width range of 0.01 to $25 \mu \mathrm{sec}$.

As an encapsulated unit, it is commonly mounted by soldering into a circuit. Because of its small size, there are no shoch or vibration problems. The transformer meets MIL-T-27A, wherever applicable.

- Applications-It is ideally suited for: blocking oscillators, impedance matching and phase inversion; as wide-band input and output transformers; $l-v$ interstage coupling; triggering and counting circuits; d-c isolation; pulse shaping and many other applications.

Prices range from $\$ 4.45$ each to $\$ 8.05$ each, depending on design and quantity.

POWER SUPPLY

is focusing-magnet type
Levinthal Electronic Products, Inc., 2760 Fair Oaks Ave., Redwood City, Calif. Designed for use with
from 0.05 Mhy. from 10 Mhy. to to 4.5 Mhy. 700 Mhy.

ti-20S

$$
14 \text { stock values }
$$

TI-23S

TI-21S

15 stock volues from 01 Mhy. to
1 Mhy.
Tl-2 25
10 stock volues from 10 Mhy. to 150 Mhy.

	OD	H
$\mathrm{TI}-20$	$1 \prime$	$9 / 16$
$\mathrm{TI}-21$	$5 / 8$	$5 / 16$
$\mathrm{TI}-22$	$7 / 8$	$3 / 8$
$\mathrm{TI}-23$	$7 / 8$	$3 / 8$

Can be supplied hermeti-cally-sealed, encapsulated or in a metal can.

HIGH FREQUENCY

 TOROIDAL INDUCTORS featuring very high Q, temperature stabilization and low pickup utilizing the latest materials and techniques.

Today at Martin，one of the finest engineering teams in the whole ners world of flight systems de－ velopment is at work on tomorrow＇s design and development problems．

Most of the people on that team are young－and moving ahead fast with a dynamic and fast－moving． management．

Push any button and you can get the story of some of the exciting things that are happening there．

Contact J．M．Hollyday，Dept．E－12，The Martin Company，Baltimore 3，Maryland．
high－power klystrons and travel－ ing－wave－tube focusing magnets，a continuously－variable $150-\mathrm{v}$ 4－am－ pere power supply with less than 0.1 －percent current ripple is now available．

It is designed to operate from $115-\mathrm{v} 60-\mathrm{cps}$ single－phase power．
－Components－Units include an undercurrent relay to interlock with tube beam supply and indicator light，main power switches，pilot light，and appropriate fusing．

The power supply is designed to fit standard $19-\mathrm{in}$ ．relay－rack mount－ ing．Price is $\$ 275$ ．

SWEEP GENERATOR covers the entire X －band

Roger White Electron Devices， Inc．， 12 West Island Road，Ramsey， N．J．The SWMI－5 sweep generator is designed to permit rapid evalua－ tion，measurement and adjustment of microwave circuits and systems．

Incorporating the $\mathrm{BC}-\mathrm{X} 10 \mathrm{~m}$ back－ ward－wave oscillator，the genera－ tor supplies a microwave signal swept in frequency across a wave－ guide range or any portion of it from 66 mc to 60 kmc ．The unit can also operate as a manually con－ trolled $\mathrm{c}-\mathrm{w}$ source if desired．
－Sweep Width－The range of fre－ quencies covered in each sweep can be adjusted to cover the entire range or any portion as small as 10 percent of the band．This makes the unit equally useful for examin－ ing the performance of components over narrow bandwidths or across the full waveguide range．

Power output may vary as much

Now Puerto Rico Offers 100% Tax Exemption to New Industry

by BEARDSLEY RUML

> "We don"t want runaway industries" says Governor Muñoz. "But we do seek new and expanding industries." Federal taxes do not apply in Puerto Rico, and the Commonwealth also offers full exemption from local taxes. That is why 325 new plants have been located in Puerto Rico, protected by all the guarantees of the U.S. Constitution.

IN a dramatic bid to raise the standard of living in Puerto Rico, the Commonwealth Government is now offering U. S. manufacturers such overwlielmBeardsley Ruml ing incentives that more than three hundred new factories have already been established in this sumny island 961 miles off the Florida coast.

First and most compelling incentive is the $\mathbf{1 0 0 \%}$ tax exemption for most manufacturers who set up new plants in Puerto Rico.

For example, if your company is now making a net profit after taxes of $\mathbf{\$ 5 3 , 5 0 0}$, your net profit in Puerto Rico would be $\$ 100,000-$ a gain of 87 per cent, simply because Federal corporate income taxes do not apply in Puerto Rico and all local taxes are waived as well.
Your dividends in Puerto Rico from a corporation there could be $\$ 50,000$ against $\$ 25.000$ net in the U. S. - because Federal personal income taxes do not apply either.

What About Labor?

Puerto Rico's labor reservoir of 6937,000 men and women has developed remark:ble levels of productivity and efficieneythanks, in part, to the Commonwealth's rocational training schools. These schools also offer special courses for managers and supervisors.

The progress made in technical skills may be gauged from the fact that there are now twenty-eight factories producing delicate electronic equipment.

Among the U.S. companies that have already set up manufacturing operations in Puerto Rico are Sylvania Electric, Carborundum Company,St. Regis Paper, Remington Rand, Univis Lens, Shoe Cor-

	EXEMPTION Your net profit in Puerto Rico would be :
\$ 17,500	25.000
29,500	50,000
53,500	100,000
245,500	500,000
48:5,500	1,000,000
dividend tax	EXEMPIION
If your income* after U. S. Individual Income Tax is :	Your net income in Puerto Rico would be :
\$ 3,900	\$ 5,000
7,360	10,000
10,270	15,000
14.850	25,000
23,180	50,000
32,680)	100,000
43,180	200,000
70,180	500.000
These examples are figured in Puerto Rico to a singl Federal rates offective Jan	ed for dividends paid n. 1. 1954.

poration of America, and Weston Electric.

"Close to Paradise"

Listen to what L. H. Christensen, Vice President of St. Regis Paper, says:
"The climate is probably as close to paradise as man will ever see. I find Puerto Ricans in general extromely friendly, courreous and cooperative.
"This plant in Puerto Rico is one of our most efficient operations, in both quality and output. Our labor has responded well to all situations."
Mr. Christensen might have added that the temperature usually stays in the balmy 70's twelve months a year.

The swimming, sailing and fishing are out of this world. Your wife will rejoice to hear that domestic help is abundant.

The Commonwealth will leave no stone unturned to help you get started. It will build a factory for you. It will help you secure long-term financing. It will even
screen job applicants for you-and then train them to operate your machines.

Transportation

Six stcamship companies and five airlines operate regular services between Puerto Rico and the mainland. San Juan is just $51 / 2$ hours by air from New York.

Light-weight articles such as radar components come off the line in Puerto Rico one day and are delivered by air freight next day in Los Angeles, Chicago and other mainland cities. And, of course, there is no duty of any kind on trade with the mainland.

Are You Eligible?

Says Governor Muñoz: Our drive is for new capital. Our slogan is not "mone something old to Puerto Rico," but "start something new in Puerto Rico" or "expand in Puerto Rico."

To get all the facts, and to find out whether you and your company would be eligible for complete tax exemption, telephone our nearest office.

New York	MU 8-2960	579 5th Ave.
Chicago	AN 3-4887	W
Los Angeles	WE 1-1225	5525 Wilsh

OR MAIL COUPON

Commonwealth of Puerto Rico Economic Development Administration 579 Fifth Ave., New York 17, N. Y.
Dept. V4
Mail me "Facts for Businessmen." I am interestel in the advantages of Puerto Rico for the industry l lave checked.
\square
\square Leather \square Optical \square Metals

Other
Name
Company
Address

Performance proven, you will find these small, extremely low-cost MicroMatch couplers now incorporated in the most modern Government and commercial transmitters. MicroMatch Directional Couplers produce an output essentially independent of frequency over the range of 20 to 2000 megacycles. Couplers are adjusted to produce full scale meter deflection at power levels of 1.2 watts to 120 KW. Accuracy of power measurement is plus or minus 5% of full scale.

For complete details on the MicroMatch line of monitoring equipment, please consult Page 495 of Electronics Buyer's Guide, or, better still, write for our 46-page catalog.
as 10 db from minimum to maximum in the band but the variation over any $100-\mathrm{mc}$ band is usually small.

Price of the unit is $\$ 2,800$. A data sheet is available giving additional information.

LOUDSPEAKERS

Isophon electrostatic types

ArNhold Ceramics, INC., 1 E. 57 th St., New York 22, N. Y., announces the new Isophon line of electrostatic loudspeakers, manufactured in West Germany. Two types are available-the rectangular type St H (illustrated) and round type St H B7.

- Frequency - The loudspeakers are suggested for use over a 7,000 to 20,000 -cycle frequency range. Special construction of the membrane results in far reaching and evenly distributed volume and sound even in the higher frequencies, where cone speakers often develop trouble.

The small size, in particular the thickness of less than 1 in., and the low cost make the speakers desirable for manufacturers of radio, tr, high-fidelity and other applicable sound equipment.

DEFLECTION YOKE

has high linearity accuracy
Standard Coil Products Co., Inc., 2085 N. Hawthorne Ave., Melrose

AN ADVANCE IN ElECTRONICS

Germanium Junction Power Diodes Types 1N91, 1N92, and 1N93 achieve characteristics never before possible in either thermionic or other types of solid state rectifiers. For example:

- small size-high power-approximately four times the rectified power in the same space as other devices.
- high efficiency - combines very low forward resistance with high back resistance . . . 100% rectification efficiency is approached.
- long life - unlike other semi-conductor metals, Germanium does not age . . . in addition, hermetically sealed construction.

100\% RIGID CONFORMANCE TO SPECIFICATIONS

Quality control of Clevite Transistor Products Power Diodes is based on a 100% sampling. Each and every unit is individually tested for rigid conformance to specifications.

- electrically tested - each unit must meet or surpass performance requirements.
- hIGH PRESSURE HUMIDITY TESTED - each unit is checked to assure perfect hermetic sealing.

Clevite Transistor Products

241-2S7 CRESCENT STREET
WALTHAM 54, MASSACHUSETTS

A division of the Clevite corporation TRANSISTORS • DIODES • SEMI-CONDUCTOR DEVICES

ABSOLUTĖ MAXIMUM RATINGS (for 60 cycle, $55^{\circ} \mathrm{C}$. resistive load)

ARMED SERVICES and A.E.C.
Source inspection Available

Write for Power Diode Bullefin PD2

	IN91	$1 \mathrm{N92}$	IN93
	100 v at	200 v . at	300 v . at
Peak Inverse Voltage (volts)	2.7 ma	1.9 ma	1.2 ma
	0.47	0.31	0.24
Peak Forward Current (amps)	150	100	75
DC Output Current (ma)	25	25	25
DC Surge Current (amps)	0.5	0.5	0.5
Full load Voltage Drop (volts)	30	65	100
Continuous Reverse Working Voltage (volts)	30	50	50
Operating Frequency (Kc.)	50	80	
Storage Temperature (${ }^{\circ} \mathrm{C} .1$	85	85	85

A midwestern electronics manufacturer has cut soldering time a full 60% by changing from cadmium plated to tin-zinc plated parts. As a result they increased assembly production by 250%.

Corrosion-resisting tin-zinc offers many assembly and plating advantages to manufacturers of electronic parts -

PRODUCTION - The soldering operation is made easier and considerable assembly time can be saved-parts can be soldered at lower temperatures . . . Embrittlement of fine wire is greatly reduced - solderability is retained longer (even after 3 years on the shelf tin-zinc plated parts have been soldered without difficulty) . . . Flux is not necessary.

PLATING - M\&T tin-zinc plating is economical, easy, and assures a corrosion-resisting finish with good coverage even on difficult metals such as malleable iron.

M\&T tin-zinc plating may solve your production problems, too. For detailed information on the process or technical assistance, write us without obligation.

METAL \& THERMIT CORPORATION

Park, Ill. Designed for accurate control of the spot position in a crt intended for radar application, the new precision deflection yoke has a linearity accuracy in the azimuth direction of better than $\frac{1}{2}$ percent. Linearity in the range direction is better than $\frac{1}{2}$ percent.

- Orthogonality-Angle between azimuth and range directions is held to an accuracy of $1 / 10 \mathrm{deg}$. This performance is brought about as a result of a special winding technique and the use of molded coil forms combined with equipment for measuring deflection accuracy to within 0.03 percent.

A cylindrical iron core surrounds the windings for shielding purposes. The entire assembly is pressed into a phenolic cylinder, then completely impregnated and sealed to prevent entrance of moisture.

Dimensions are as follows: inside diameter, $1 \frac{1}{2} \mathrm{in}$.; outside diameter, $3 \frac{1}{8}$ in.; length, $3 \frac{3}{4} \mathrm{in}$. Windings can be made to suit practically any specified requirement. Size can also be varied where required.

AMPLIFIER-VOLTMETER is highly sensitive

Allen B. DuMont Laboratories, Inc., 750 Bloomfield Ave., Clifton, N. J. Type 346 sensitive amplifiervoltmeter can make precise measurements of a-c signals from 100 $\mu \mathrm{v}$ to 300 v at frequencies from 10 cps to 2 mc .
The 4 -in. meter scale is illuminated to facilitate use under low ambient light conditions. Readings are provided from -72 to +52 db . Calibration is in two linear voltage scales (0 to 1 and 0 to 3) and

You are now offered the choice of TWO different printedwiring methods: (1) The Aerovox exclusive Pressed Silver or (2) The Aerovox Etched Copper. Each has its particular field of applications.

Furthermore, Aerovox also offers a choice of different base materials, such as: Phenolic-paper Base, Phenolic Fabric, Epoxy Glass, Melamine Glass, Teflon Glass, Polystyrene and Methacrylite, each with certain characteristics for given usages.

PRESSED SILVER

Produced by a hot die-stamp process in which the conducting pattern is mechanically embossed in one or both sides of the selected base material. Does not rely on any adhesive agent for the bond between conductive and base materials. Pure silver conductors are partially imbedded in base support. Compared with copper, the silver is more resistant to oxidation, solders more readily, and provides superior electrical contact surface with greater resistance to wear, particularly for switching applications.

ETCHED COPPER

Produced by applying an etch-resistant pattern on to a metal foil, usually copper clad. Unprotected metal areas of printed pattern are then etched away leaving desired wiring pattern. The resistant enamels may be applied by (a) Direct photographic means, or (b) Screen printing. The former achieves maximum definition of lines held to close tolerances at relatively modest costs; the latter effects cost savings where extremely fine detail is of secondary importance.

PRINTED WIRING PRIMER...

Write on your business stationery for this practical guide on printed wiring. And let our printed wiring specialists collaborate on your particular applications.

AEROVOX CORPORATION

 SPECIAL PRODUCTS DIVISION NEW BEDFORD, MASSACHUSETTSIn Canada: AErOVOX CANADA LTD., Haimilton, Onf.

a db scale (-12 to +2 dbm). The rectifier is of the full-wave average type to offer greatest accuracy when dealing in complex waveforms.

- Specifications - Meter ranges are $0.001,0.003,0.01,0.03,0.1,0.3$, $1.0,3.0,10,30,100$ and 300 v full scale. Accuracy is ± 3 percent, 20 cps to 1 mc ; ± 5 percent, 10 cps to 2 mc . Stability is ± 1 percent at any line voltage between 105 and 130 v. Input impedance is 10 megohms shunted by $24 \mu \mu \mathrm{f}$.
- Physical Characteristics - It measures $6 \frac{1}{2}$ in. high, 41 in . wide and $7 \frac{1}{3} \mathrm{in}$. deep overall. Weight is 61 lb.

Price of the unit is $\$ 200$.

IMPEDANCE PLOTTER

for instantaneous recording

Chesapeake Instrument Corp., Shadyside, Md., announces an automatic impedance plotter for instantareous recording of real and imaginary components of impedance as a function of frequency, temperature or other variables. It eliminates point by point plotting procedure, thereby serving as a practical production control tool as well as a valuable research instrument.

- Ranges-Frequency range is 10 cps to 100 kc with a rated accuracy of ± 2 percent. Resistance range is 0 to 10,000 ohms; reactance range, $\pm 10,000$ ohms.

The apparatus uses Mosely Autograf recorder which plots on standard $8 \frac{1}{2}$ in. by 11 in. graph paper.

- Applications-The AIP has demonstrated its uscfulness in the de-

Picture Quality Is Our Business Too!

HOKUM ON PREAMPLIFICATION

Way out in our back room we have a section devoted to Engineering. One purpose of this group is to see to it that our relays work in the job for which our customers purchased them. Our man Waldo Hokum, one of the members of this group, has for years been untangling circuit problems that have had an unflattering effect on our relays and during this time he has been able to segregate many problems and assemble them in definite categories. ${ }^{3}$.

One category soon became so large that we had to take more floor space to make room for it - that was, and is, how to get conventional relay response to low impedance D.C. signals of the order of 0.1 to 100 microwatts. Many relay uses call for amplifying these signals so that they will be strong enough to activate even our most sensitive relays. This is especially important to people who work with photocells, thermocouples and the like.

Waldo stuck with this one through various stages of vacuum tubes, transistors, toroidal coil magnetic amplifiers and such, but never was really happy about his progress. There was always something like high cost, fragility or instability to cast a dark shadow on his otherwise blissful existence. It wasn't until he designed and made his own magnetic amplifier that he began to see the sumshine again.

What he cance up with was a maquetic amplitier which, among other things, included conventional bobbin. wound coils rather than toroids. This made our directors happy, becatise even they know that the manufacturing costs are much less with bobbins, and, what is more importint, it made waldo happy. He discovered that his new gismo, ${ }^{12}$, together with the circuitry that he developed to go with it, had some rather interesting specs, generally as follows:

MAGNETIC	AMPLIFIER	RELAY
SERIES 8000*		
Sensitivity	0.1 to 100 microwotts	
Nature of signal:	D. C. from 0.1 to 30,000 ohms 13.	
Reloy response		
Contoct form.	(1) 3-position, center neutral 121 SPDT	
Conlact rating	1.5 amperes of 28 VDC or 115 VAC	
Speed of response:	30 to 300 milliseconds depending on overdrive and $1 / R$ of input circuir	
Environment:	Standard	Available
Vibration	59	10 g .
	1030 cps .	to 500 cps .
Temperature	0° 10 $50^{\circ} \mathrm{C}$	-55° to $125^{\circ} \mathrm{C}$
Shock	10 g	100 g
Power Supply:	115V @ 60 cps .	1158 (a) 400 cDs

This thing is now at the point where it would be worth your time to play around with - that is if the above specs bracket your problem generally and especially if you need to monitor the conditions of bridge balance or compare the outputs of low impedance D.C. signal sources.

If such is the case, Waldo has some sample "packages" that not only include his magnetic amplifier, and a Sigma Relay (natch), but also the circuitry that makes the thing work. If you think you'd like one of these to fool with, or wish more information on this subject, we suggest you write to us, attention of out man Waldo. His name really is spelled Holcombe.

SIGMA INSTRUMENTS, JNC.
62 Pearl St., So. Braintree, Boston 85, Mass,

ANALOG COMPUTER available in kit form

Heath Co., a subsidiary of Daystrom, Inc., Benton Harbor, Mich., has available an inexpensive electronic analog computer in kit form. It incorporates such features as: 30 coefficient potentiometers, each of which is capable of being set to an accuracy of better than 0.1 percent; one standard reference supply for all d-c voltages; a nulling meter for accurate setting of computer voltages; and a unique patch-board layout which enables the operator to see his computer block layout.

- Makeup-The computer is comprised of the model ES-400 computer cabinet, model ES-200 amplifier, model ES-100 power supply, model ES-100 initial conditions and model ES-600 function generator.
Selling price is under $\$ 700$.

WIRE-WOUND RESISTORS for mechanized production

HYCOR Co., INC., 11423 Vanowen St., North Hollywood, Calif., has announced the series A precision wire-wound resistors for use in

Two outstanding basic electron components . . . Haydu's "Beam Switching Tube" and "Nixie" the numerical indicator tube . . . are combined to make possible this versatile new instrument.

- VARICOUNT

Static to megacyclà counter distributor
Microsecond electronic preset Microsecond variable scale output

- BEAM SWITCHING IUBE (6700)

Replaces 20 Tubes
Megacycle counting 0-9
Megacycle preset

- NIXIE (HB106)
$1^{\prime \prime} \times 1^{\prime \prime}$
10 digit $0-9$ gas indicator tube "Two-dimensional"

Microsecond recycling
Microsecond clearing Preset gating

Low power consumption Electronics most reliable distributor
Pentode "woaking" output

In-line readout

Common anode prebiasing
lrw power

Write for complete technical data lo:

BROTHERS OF NEW JERSEY PLAINFIELD, NEW JERSEY

minted wiring circuits. They are designed to conform to specifications proposed by RETMA for components to be used in automatic assembly equipment.

- Encapsulation-The resistors are encapsulated in a tough epoxy compound for protection against extreme humidity, mechanical and thermal shock. The plastic is filled with heat-conducting minetal which dissipates the heat and erqualizes hot spots in winding. Sealed-in terminal connections are welded. They satisfy military requirements of MIL-R-93A and JAN-R-93.
- Specifications-Temperature coeficient is ± 0.0022 percent per deg C : operating temperature, -65 C to +125 C ; wattage range, from 0.25 w to 1 w with tolerances to 0.1 percent

FIVE-MC OSCILLOSCOPE

for lab and production line
Eico, 84 Withers St., Brooklyn 11, N. Y. The No. 4605 -me oscilloscope is designed for laboratory, production line, and monochrome and color ty servicing. Kit price is \$79.95; factory-wired price, $\$ 129.50$.

- Features-Some of its outstanding features include: reproduction of the 3.58 mc sync burst and 3.58 me oscillator signals in color tv sets; flat from d-c to 4.5 mc , usable to above 5 mc ; built-in voltage calibrator; vertical amplifier push-

Whatever other dilemma the advertising budget planner may be in, he is in agreement on one salient point: advertising, to develop maximum effectiveness, must be continuous. Nothing, absolutely nothing, pays off on the long run more than getting potential buyers familiar with your product and trade name by way of consistent, all-the-year-'round advertising. Once ascertaining what your market is, the logical approach is to keep your product in view of this market through continuous, consistent advertising.

For instance, the value of continuity in advertising was demonstrated by a series of surveys conducted by McGraw-Hill's Research Department. It was found through the results of these surveys that continuity in advertising increased the recognition of an electronic firm's products 26% in nineteen months.

For the budget planner with an electronic account, there is a ready-made promotion
package for the consistent, continuous year 'round advertising program. That program is 12 regular issues of ELECTRONICS plus the 1 issue of the ELECTRONICS BUYERS' GUIDE . . . 13 insertions for 1956! Here you will reach more than 40,000 subscribers who pay to get ELECTRONICS - owners, partners, corporate officers, managers, department heads, chief engineers and especially: electronic, electrical, design and research engineers; in brief, the people of the industry who are responsible for buying the products you promote in the sales pages of ELECTRONICS and the buying reference pages of the "Guide." With a consistent, continuous advertising program in 13 issues of ELECTRONICS (12 regular issues plus the "Guide") manufacturers have discovered that they get the greatest return from their advertising dollar investment because ELECTRONICS reaches the men who influence purchasing.

BUDGET NOW FOR 13 INSERTIONS IN'56!

Types I.P4-4W. and LP5-5W, shown. Also LP3-3W., LP7-7W. and LP10-10W.

Corning Low-Power Resistors for Radio and TV

You'll find that Corning Low-Power Resistors perform admirably under the most adverse radio and TV operating conditions. Their resistance range is the highest of any low-power resistor.

Small and compact, they save space. They are non-inductive and exceptionally stable.

The fired-in film of metallic oxides on glass forms is tough, abrasion-resistant, difficult to scratch. No need for special handling to prevent damage during installation.

The automatic resistance spiralling of these LP-type resistors is electronically controlled. Press-fitted caps with axial tinned leads ready to solder complete the assembly. This guarantees reliable uniformity of the following characteristics.

CHARACTERISTICS

Range-LP3 resistors are available from 200 to 20,000 ; LP4 from 200 to $40,000 \Omega$; LP5 from 200 to $45,000 \Omega$; LP7 from 200 to $36,000 \Omega$; LP10 from 200 to $50,000 \Omega$; with a $\pm 10 \%$ tolerance
Power Rating is based on $40^{\circ} \mathrm{C}$. ambient temperature for the LP3, LP4 and LP5 resistors and $25^{\circ} \mathrm{C}$. ambient
for the LP7 and LP10 with an average hot spot of $275^{\circ} \mathrm{C}$.

Derating-With suitable derating, resistors can be operated at ambient temperatures over $120^{\circ} \mathrm{C}$.
Overload-Operated at 10 times the rated wattage for 5 seconds, resistance change is less than 2%.
Soldering-Permanent change in resistance due to normal soldering technique is less than $1 / 2 \%$.

Moisture-Resistance change is less than 1% after 100 hours at an ambient temperature of $40^{\circ} \mathrm{C}$. and 95% relative humidity.
At Radio Frequencies-The LPresistors are essentially non-inductive.
Mechanical Protection-A high temperature lacquer coating provides added protection during handling.

Availability-Immediately . . . through Corning Glass Works or authorized distributors of Erie Resistor Corp. For new low prices and other information send the coupon, or write to Corning Glass Works, Corning, New York.

pull throughout for reduced distortion, and choice of direct or capacitive coupling; 25 mv per in. vertical sensitivity; and full d-c horizontal and vertical positioning.

MEGOHM BRIDGE

 uses encapsulated networksTelectro Industries Corp., 35-18 37th St., Long Island City 1, N. Y. Model 750 megohm bridge is a portable self-contained instrument for measuring resistance values to 1 million megohms. It contains a specially designed highly sensitive electronic detector and galvanometer for null indications. Overall accuracy is better than 2 percent of scale reading.

- Uses-Model 750 is designed to measure resistances, voltage coefficient of resistors, insulation resistances of transformers, and resistances of three terminal networks.

A special feature of the construction is the use of encapsulated networks to assure maximum stability of components.
Price is $\$ 550$.

CONVERTER

 card data into analog formLibrascope, Inc., 808 Western Ave., Glendale, Calif. Model 250 punched card converter is an automatic data processing accessory that

THE ONLY COMPLETE LINE OF VIDEO TRANSMISSION

104I-BR STAIR STEP GENERA. TOR-Che cks amplifude linearity, differential amplitude linearity and differential phase of unit or system. Variable $4-15$ steps. 1044-AR - above with build in sync and blanking adder and 3.58 mc adder far modulating
steps $\&$ burst on hack parch steps \& burst on back poreh.

AMPLITUDE vS FRE GUENCY. Check wide band coaxial cobles, miband coaxio conks, individ-cro-wave inks complete yal units ond complency TV systems for frequanc response characteristics response point to poim checking or sweep genchecking ar sweep-Model 1070-8R.
erotor-Model 1070-3K.

EPEMTAL PHASE vs. AMPLITUDE. Check for ability of system to Ironsmil color with fidelironsmil arying ampliity at sarying is bact 1udes. Shown with 4° video ampliter witho. Model differentiol phase. model 1044-AR or $1041-21$.AR. $1070-8 \mathrm{R}$ with 1601-AR.

LOW \& HIGH FREQUEN-
CY CHARACTERISTICS.
Cy CNARACTERinging,
Defermine fiew fresmears, sicps, ghase shilt, quency tilt, phase shith, quency ismarch terminations, mismarsies iv signals or atc. in - 1071-R sy thro systems.-1070:BR or 1072 -AR alone.

ERVELOPE DELAY vs FREQUENCY. Shown: onrelope deloy characterisrics of Model 620 BR NISS receiver aqualizer NTSC receiver by Model as indico
Measures "funny papar effect.

1U71-AR WINDOW GENERATOR -Checks low frequency response of system. Fast rise time leading edge theeks high trequency response. Output may be displayed on kinescope or oscilto. seope. 1072-AR includes sync blanking odder.

1070-BR MULTI-BURST GENER ATOR - Provides white bor and 6 bursts of preset freq. 0.5 6.0 mc . Own sync and blanking odder. Checks freq. response or complete system inc. Those us ing keyed clamps. Used to odd syne and blankits (window and step generators $1070-$ BRM has own 3.58 ms adder.

608-A HI-LO CROSS FILTER with 3 pos. switch for viewing signal directly, or thru low or high pass filter. Allows individua abservation of either high or low freq. component of signol or signal directly. Sensitive check using modulated step signal from (1044-AR) through high poss section.
603.AR PHASE SLOPE (ENVE LOPE DELAY) CURVE TRACERInstanfaneous scope of meter reading of the envelope delay and amplitude characteristic vs. frequency of any network, video omplifier, or system up Has separate tronsmitter and Has separate transmitrer and way or loop measurements.
1601.AR CHROMASCOPE—For accurate checking af color signals, ar simultancous amplitude and phase characteristics of a sig of phase and differential phase. nailaments for color

The Nation's Leading supplier of Color TV Equipment 88 Merrich Road Amityville, N. Y. AMityville 4.4446
1521. A OSCILLOSCOPE CAMERA -Poloroid sype for instantoneous 1 to 1 sario photo-recording from any 5 oscilloscope.

COOVE - STAIRCASE SICNAL -(aBOVE-STARCASE SIGNAL Mi-Lo Cross Filter for Signal andysis-60s-A. MTSC phase equalize. Cheak for Iransient response of 1073%.
1073.A SIN2.SQUARE WAVE ENERATOR-Closely equivolen io actual camero signal. Used and phase characteristics of a TV or pulse unit or system.
Simultaneously shows ampli. tude, phase, and envelope delay. (Described by R. C. Ken-
nedy, N.B.C., in "Electronics.")

translates the decimal code punched into cards into an analog signal for automatic point plotting by $\mathrm{X}-\mathrm{Y}$ plotter and recorder model 200-A.

- Accuracy-The punched card converter has an accuracy of 0.1 percent when used alone and an accuracy of 0.25 when used in conjunction with a plotter.

When used with the Librascope $\mathrm{X}-\mathrm{Y}$ plotter the instrument will plot approximately 60 cards per minute. Used with the IBM 523 punch machine, cards are simply loaded into the hopper, no special panel connections being necessary.

Individual punched cards may be read separately on a visual display located on the front panel of the instrument. The chart scale of the converter can be expanded independently by a factor of 10 to 1 for special data process applications.

Current price of the instrument is $\$ 2,450$.

GERMANIUM TRANSISTOR

in much smaller size
Raytheon Mfg. Co., 55 Chapel St., Newton 58, Mass., announces four new transistors which are $\frac{1}{4}$ to $\frac{1}{3}$ the size of former units. These $p m p$ fused junction germanium transistors have a volume of only 0.0087 cu in . and are designated types 2N130, 2N131, 2N132 and 2N133. The first three are intended for use in audio or low r-f applications; the fourth is a low-noise transistor for use in low-level audio circuits.

- Noise Factor-Average noise factor of the 2 N 133 is 6.5 db and will not exceed a maximum limit of 10 db . This is an improvement. over the older type 2 N106/CK727,

-AUTOMATIC FREQUENCY CALIBRATOR

CONCEIVED and DEVELOPED BY
the AUTO-CAL can:
Calibrate over 1000 Frequencies in ONE HOUR! and SIMULTANEOUSLY AUTOMATICALLY Type these Frequencies on CALIBRATION DATA CARDS

The 0 A AUTO-CAL has slashed CALIBRATION and RECORDING TIME by 533% within an accuracy of $.005 \%$

Ouly LORAL has the AUTO-CAL!

Your inquiry for CALIBRATION or RECALIBRATION of FREQUENCY METERS - Military, Industrial or Commercial - is solicited!

LORAL ELECTRONICS CORPORATION

794 EAST 140th STREET
-

[^12]
now discontinued, which had a maximum noise factor of 12 db .

Maximum ambient temperature is 85 C . These transistors are electrically similar to and are designed to replace the CK731 series. Technical catalog sheets are available.

RECORDING POT

with thermocouple calibrations
Westronics, Inc., 3605 McCart St., Fort Worth, Texas, has ammounced a miniature strip-chart recording potentiometer weighing less than 25 lb . It is a vailable with standard charts and ranges for copper-Constantan, iron-Constantan and Chro-mel-Alumel thermocouples, and has internal cold-junction compensation.

This recorder, of the null-balance potentiometer type, records on a 5 -in. strip chart, with a pen speed of 1 sec full scale and an accuracy of better than 0.5 percent.

- Prices-The standard recorder with single speed chart drive is \$425. Manual change gears to provide three speeds are optional with single-speed instruments for $\$ 15$. The three speed, quick change, gear shift chart drive feature is $\$ 50$.
- Special Features-Backset Micro Switches for alarm or auxiliary control, additional chart speeds, other than standard ranges and transmitting slidewires are some of the special features which can be incorporated in the recorder.

POTENTIOMETER

for 50 to 70,000 -ohm range
Fairchild Controls Corp., Hicksville, L. I., N. Y. Type 747-E potentiometer provides a resistance range of 50 to 70,000 ohms with a standard linearity of ± 0.15

McGraw-HAll Mailing
 Lut Well

- Merchandise your advertising
- Conduct Surveys
- Get leads for your salesmen
- Get inquiries about your product or service
- Pin-point geographical or functional groups
- Sell Direct
- Build up weak territories
- Aid Dealer Relations

Direct Mail is a necessary supplement to a well rounded Business Paper advertising program.

600,000 actual names of the top buying influences in all the fields covered by the McGraw-Hill publications make up our 150 mailing lists. These lists are built and maintained primarily for our own use, but they are available to you for Direct Mail purposes. Pick out a list of YOUR prospects from our Industrial Direct Mail Catalogue.

More and more, progressive companies are using Industrial Direct Mail regularly as an advertising medium. They effectively allocate a portion of their ad budgets to this second medium at the same time as they concentrate on the best business publications.

For complete, detailed information about our service, fill in the coupon or write for your copy of our free Business and Industrial Direct Mail catalogue.

Direct Mail Division

McGraw-Hill Publishing Co., Inc. 330 West 42nd St., N. Y. 36, N. Y.

Please forward my free copy of the McGraw-Hill "Industrial Direct Mail Catalogue."

NAME \qquad

COMPANY \qquad

ADDRESS \qquad

CITY \qquad STATE \qquad
. . . with the versatile MULTI.RANGE METER TESTER, Power Supply, and Limit Bridge

Precise, self-contained unit for laboratory and production use. For DC instrument calibration from 25 ua full scale to 10 ma full scale, and $0.10 \mathrm{~J} V \mathrm{DC}$; sensitivity and resistance measurement; DC current-voltage source; limit or Wheatstone bridge measurements from 0-5000 ohms. Regulated Power supply. Stepless vacuum tube voltage control. Accuracy exceeds $1 / 4 \%$ (current), $1 / 2$ ohm or $1 / 2 \%$ (resistance). For 115 V , 60 cycle AC. Compiete - needs no accessories

marion mefers

Made of ETHYL CELLULOSE...
A TOUGH, DURABLE PLASTIC

NOW . . .
For Extra Strength "D" WASHERS TO FIT OUR CABLE CLIPS

5267 N. AVONDALE AVE. CHICAGO 30, ILL.
Wost Coast Representative:
5777 West Pica Bivd. - Los Angeles 19, Calif

percent. A special clamp provides an unrestricted tapping area allowing up to 19 taps and presents a simplified means of phasing units in a ganged assembly without disassembling the units.

- Uses-The low noise level and high resolution of these units make them particularly desirable for computer assemblies, calibration controls, servomechanisms and other similar applications.

Type 747-E has a diameter of 2.100 in . and a cup width of 0.984 in. and up to 6 units can be ganged on a single shaft. The units are furnished with welded taps and end leads. Low starting torque is only 1.0 oz-in. per cup section.

Prices range from $\$ 30$ to $\$ 40 \mathrm{a}$ cup in sample quantities; $\$ 15$ to $\$ 25$ a cup in production quantities.

CONVERTER

analog-to-digital type
J. B. Rea Co., Inc., 1723 Cloverfield Blvd., Santa Monica, Calif., has available a high-speed, accurate analog-to-digital converter with capacity of up to 100,000 conrersions per sec, 30 mv resolution and 0.1 percent guaranteed accuracy. It will accept signals from transducers, $f-m$ discriminators, $\mathrm{f}-\mathrm{m}$ or p wm magnetic tapes, film

for that short grid lead

 use the Sangamo
50 ote-m-pole

First used in Navy electronic gear, Tote-m-poles are invaluable for "bug-resistant" wiring of models and production units. Advantages: Short leads; high component density; improved ventilation.

Tote-m-pole supporting "T" network of 5 resis. tors and 4 capacitors.

CUSTOM COMPONENTS SALES* SANGAMO ELECTRIC COMPANY SPRINGFIELD, ILLINOIS
-H. Y. Pawer Supplies • Inductive Components Servo Instruments - Low•X Resistors
 Electronic Cabinet COOLING FANS Now for the first time, a rack-mounted, self-con-
tained unit is oirered for coolmg electronle cahimi tained Twit bis oters mounted sing electrontc catin.
ets side. provtde
Iniximum filtered air with mintimum sinel heil

 Large size (103/4" high $x{ }^{19}$ " wide with
6 " blower wheels). Dedivers $600 \mathrm{CF}+\mathrm{h}$. Send for literature.

McLEAN ENGINEERING PRINCETON, N. J.

 \title{
FREQUENCY
 \title{
FREQUENCY MEASUREMENT MEASUREMENT and CONTROL
} and CONTROL
}

FREQUENCY STANDARDS

Opfers a Comprehensive LLine of MICROWAVE FILTERS AND PRESELECTORS
 greatest possible advantage, Frequercy Standards now offers a comprehensive line of filters and preselectors. Thèse units are engineered and constructed with the same exacting care and precision which has made Frequency Standards' wavemeters a standard in the industry.

Frequency Standards is proud of its reputation to undertake development and production work in the fields of preselection, Irequency measurement and contro. which approaches the "state of the art." Our engineering services are available at all times to assist you with your prokiems.

RESONANT FREQUENCIES AVAILABLE

	L	S	C	X
Bandwidth (Maximum available)	5\%	3\%	2\%	1%
Number of Sections*	2, 3, 4	$2,3,4$	2, 3, 4	2, 3, 4
Insertion Loss (For 1\% bandwidth)	$\pm 1.5 \mathrm{db}$	$\leq 1 . \mathrm{db}$	$\leq 1 . \mathrm{db}$	$\leq 1 . \mathrm{db}$
Rejection ($F_{0} \pm 2 \times B W$) (db)	243648	243648	243648	243648
Input VSWR (Matched Load)	≤ 1.5	≤ 1.5	≤ 1.5	≤ 1.5
*More Sections Available without Gang Tuning.				

NEW CATALOG ON REQUEST-Call or write for new Brochure with complete data on precision-built Microwave Filters, Preselectors, Frequency Meters and Field Test Instruments.

PRECISION
 Continental Connectors

mechanical

 connect and disconnect

SM- 7
7 Contacts
actual size

SM. 34 with hood
34 Contacts ACTUAL SIZE
readers or other analog sources, and convert them to any desired digital code.
-Sampling-Used with appropriate commutating, it will sample, in sequence, data from any number of analog sources. Digital output may be printed out, or used as input to a digital computer. Interim storage of the digital data can be accomplished, if desired, by a programmed magnetic tape unit.

- Price-The basic converter price is $\$ 12,000$, with the price adjustable depending on the speed required by the application. The price of a complete conversion system varies of course with the extent of the requirements of each individual application.

A Rea high-speed input commutation switch, digital output magnetic recorders and programming circuits are among the new features offered in complete converter systems. An 8 -page illustrated brochure is offered.

VOLTMETER

measures differentials

Freed Transformer Co., Inc., 1715 Weirfield St., Brooklyn 27, N. Y. Type 1560 differential voltmeter is extremely useful when checking response and attenuation of filters, transformers, amplifiers and other applications where a small difference in two voltages is to be measured, as it measures differences in voltage levels as low as 0.01 percent regardless of their relations.

Because of its stability and sensitivity, it may also be used to observe drift in amplifiers, meters and filters. The a-c input signals

NEW-Air-transportable Shetter

> One of the many types of special enclosures designed by Craig for electronic installations and other uses.

A streamlined, lightweight shelter with "big shelter" strength and proportions - aluminum or Fiberglas skins bonded by a special process to a foam core - model shown $76^{\prime \prime} \times 76^{\prime \prime} \times 96^{\prime \prime}$ inside dimensions - weighs under 1000 lbs. completely equipped with lighting and ventilation systems.
trade mark

are amplified, then rectified and compared, so that an accurate comparison may be obtained regardless of the phase of the input signals.
-Specifications-Difference voltage range is -10 percent to +5 percent in 0.01 percent increments. Input voltage levels are from 0.1 v to 100 v . Frequency range is 30 cps to 20 kc . Input impedance is 500,000 ohms. The instrument is entirely self-contained and operates from a $115-\mathrm{v}$, 60 -cycle line.

GAMMA GUN is fully transistorized

Universal Atomics Corp., 19 E. 48th St., New York 17, N. Y., has available the fully transistorized gamma gun, a self-contained, handportable scintillation counter giving 500,000 counts per minute- 300 time as sensitive as a single Geiger tube. It has a 23 in . sodium iodide crystal, a built-in preamplifier and a full-view ore evaluation meter.

- Uses-The gamma gun is designed for use both on the ground and in the air. Its light weight and small area permit it to be used comfortably in the smallest plane.

It has six operating ranges to give maximum sensitivity and four time constants ranging from 1 to 60 seconds. The use of transistors in combination with mercury cells completely eliminates drift.

The gamma gun will operate for over 1,000 hours of continuous field use with no battery charges. It sells for $\$ 995$.

POTENTIOMETER for 80 to 150,000 ohms

Fatrchild Controls Corp., Hicksville, N. Y. Type 748-E potentiom-

here's how to get the fast, precise answers you need
 SONIC AND ULTRASONIC FREQUENCY RESPONSE TRACING

...and many other analysis and measurement problems... the pioneer is the leader

consult.

the pioneer-
for instruments designed to your needs.

eter offers a high degree of accuracy in a resistance range of 80 to 150,000 ohms.

- Linearity-Standard linearity tolerance for the potentiometer is ± 0.10 percent. On special order linearity up to ± 0.05 percent can be obtained on higher resolution windings.

Low starting torque is only 1.0 oz-in. per cup.

- Tapping Area-A special clampband feature provides an unrestricted tapping area allowing up to 33 taps and presents a simplified means of phasing units in a ganged assembly without disassembling the units. The unit is furnished with welded taps and leads.

The potentiometer is gangable in assemblies of up to 6 cup units on a single shaft. It has a diameter of $3 \frac{1}{8} \mathrm{in}$. maximum and a cup width of 0.984 in .

Prices range from $\$ 30$ to $\$ 40$ a cup in sample quantities; $\$ 15$ to $\$ 25$ a cup in production quantities.

GROUNDOMETER

 is completely portableBorden Engineering Co., Division of M. J. Johnson Aircraft Engineering Co., 39 E. Hanover Ave., Morris Plains, N. J. The new type W4 Groundometer is a null-reading Wheatstone bridge for measuring the resistance to ground of driven

PANORAMIC RADIO PRODUCTS, INC.
10 S. Second Ave., Mount Vernon, N. Y., MOunt Vernon 4-3970

Shown here are just a few of the many instruments Panoramic has designed to meet your needs for rapid, yet accurate analysis and measurement. Send for Panoramic's Catalog and find out how Panoramic can give you the right answer to your research, development and production problems. Our specialists are available for consultation, without obligation.
LP-1—AP-1 PANORAMIC SONIC ANALYZER for Audio Frequency Waveform Analysis-20 cps-20 kc.

SB-7a-PANORAMIC ULTRASONIC ANALYZER for Ultrasonic Waveform Analysis-1 ke-300 kc.
SB-8b—SA-8b, SC-8b—PANALYZOR, PANADAPTOR and PANORAMIC INDICATOR for RF, VHF and UHF Spectrum Analysis.
SPA-1—PANORAMIC SPECTRUM ANALYZER for Microwove Spectrum Analysis-50 mc-4000 me.
SC-1-PANORAMIC SWEEP GENERATOR for Sonic and Ultrasonic frequency response tracing-20 cps-200,000 cps with one instrument.

Write today for complete Catalog and prices. Inquiries invited for development of special Panoramic analyzers.

"ON THE JOE"
 provide valuable DYNAMIC ANALYSIS DATA

Sunturn
Single-Chamel Systent

 Types
Available..

STANDARDIZED
SERVO SYSTEMS AND OTHER STANDARD TYPES FOR AUTOMATIC CONTROL -

In addition to new lines illustrated, many standard and higher power mag. netic amplifiers are available for applications involving automatic control.

CUSTOM DESIGNS

 FOR SPECIAL REQUIREMENTS- we design and engineer
complete servo or automatic control systems

AFFILIATE OF the general CERAMICS
CORPORATION

- MAGNETIC PRE-AMP +

SATURABLE TRANSFORMERS
Supply: 115 volt 400 cps .
Power cutput: $3.5,6,10,18$ watts
Sensitivity: 1 volt $A C$
Response Time: .03 sec .
Lowest Cost - Smallest Size
For further information requeff Form 5493

- MAGNETIC PRE-AMP +

HIGH GAIP MAGNETIC AMPLIFIER
Supply: 115 volt 400 cps .
Power output: $5,10,15,20$ watts
Sensitivity: .1 volt AC
Response Time: .008 to .1 sec .
Highest performance - All magnetic
For further information request Form S496

- TRANSI-MAG*:TRANSISTOR +

HIGH GAIN MAGNETIC AMPLIFIER
Supply: 115 volt 400 or 60 cps .
Power output: 2, 5, 10, 15, 20 watls
Sensitivity: . 08 volt $A C$ into 10,000 ohms
Response Time: .01 sec .
Fast response at high gain
For further information request Form $\$ 499$
(400 eps.); Form S 497 (60 cps .)

MAGNETIC AMPLIFIERS • INC

Telephone: CYpress 2.6610
ground rods, transmission line towers, radio and tv antenna grounds and industrial plant grounds. It has full scale ranges of 1-5-10-50-100-500-1,000-5,000 and 10,000 ohms.

The instrument has, in its portable carrying case, a compartment for all the necessary reference rods and test leads, which are of the proper lengths to serve as measuring lines for the correct reference electrode spacing. Due to its patented circuit, only the $10-\mathrm{in}$. reference rods need be used and the Y-reference electrode may be as high as 400 times the resistance of the ground being measured.

- Other Use-The W4 can also be used as a d-c Wheatstone bridge from 0.01 ohm to $100,000 \mathrm{ohms}$ at 0.1 percent accuracy by connecting an exterior d-c galvanometer.

The complete instrument is $7 \frac{1}{2} \mathrm{in}$. by $7 \frac{1}{2} \mathrm{in}$. by 12 in . and weighs only 16 lb. Price is $\$ 160$ plus $\$ 25$ for the galvanometer if it is desired. 632 TINTON AVE., NEW YORK 55, N. Y.

Get out of the Magnetic Doghouse

with MUMETAL Shields

Mumetal shields will give instant relief to interference caused by extraneous magnetic fields. This material can cure many troublessolve many a problem for you.

Use it where high permeability is required at low flux densities, such as in input and microphone transformers, hearing aid diaphragms, instruments, wire and tape recorders, etc. For properly heat treating Mumetal, we can also offer commercial hydrogen annealing facilities.

A fund of technical data on
shields and other applications for Allegheny Mumetal is availablelet us help with your problems.

In addition to Mumetal and other high-permeability alloys, we offer a range of magnetic and electrical alloys and steels that is unmatched in its completeness. Our services also include the most modern facilities for lamination fabrication and heat treatment. - Let us supply your requirements. Allegbeny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa.

Allegheny Ludlum

marion meters

ELECTRIC CAMERAS For Practically Every Industrial Use!

Data Recording Cameras that save you time...give you a permanent, accurate record. Built to withstand environmental conditions, on land, in the air or at sea. Completely automatic at any time interval. Choice of fifteen models.. specially engineered variations can be supplied.
Write for complete detailed liferature today

transformers are available in 8-32 or $\frac{1}{4}-28$ RI-lon tube construction.

- Design-A new snap-in keyed design eliminates the need for mounting clips, but is interchangeable with clip-mounting chassis cut out. RI-lon one-piece forms resist electrolysis indefinitely, have uniform characteristics and simplify components for automatic insertion in printed-circuit type applications.

RESISTORS
 are deposited carbon type

Dale Products, Inc., Columbus, Neb. The Dalohm deposited carbon resistors are now being supplied with an improved coating material. The material incorporates such features as extreme toughness for rough handling; low temperature cycling (to -85 C) ; resistance to humidity, and high-temperature characteristics, making these reresistors suitable for printed circuit solder dipping without the added space required for sleeving.

Identified as types DC (per Spec MIL-R-10509A) and CC (commercial grade). Dalohm deposited carbon resistors are available in 8 standard sizes from $\frac{1}{8}$ w to 5 w , and resistance range to 500 megohms. Standard tolerance is 1 percent.

DELAY CHANNEL available as complete unit

Sturrup, Inc., Middletown, Conn., has announced the model 500 ultrasonic delay system available as a complete unit. The unit includes a compact solid ultrasonic delay line with predelay and post-delay circuits, and a self-contained, regulated power supply, particularly suiting it for radar, computer and

For consistently high purity... "Lnoe" M.S.C. .ane cosss
(Mass Speclrometer Conlrolled)

\author{

- Helium - Argon
 - Neon - Krypton
}
- Xenon

In radar electronic equipment, nuclear radiation counters, cosmic ray cloud chambers, and thyratrons, where the purest rare gases are demanded, Linde M.S.C. Grade gases meet the specifications. They are produced under continuous mass spectrometer control to assure you of gases of known purity and consistently high quality. Linde, the world's largest producer of gases from the at mos phere, can meet your individual needs of volume, mixture, and container.
For information on the physical, chemical, and electrical properties of these gases, send for the booklet, "Linde Rare (iases."

$$
*
$$

LINDE AIR PRODUCTS COMPANY

A Division of

Union Carbide and Carbon Corporation 30 E. 42nd Street ण15 New York 17, N.Y.

> In Canada:

LINDE AIR PRODUCTS COMPANY, Division of Union Carbide Canada Limited, Toronto The term "Linde" is a registered trade-mark of Union Corbide and Carbon Corporation
 20 terminals.

Simplifies soldering. Insures correct con nections. Saves time. Ideal for harness or cable assembly. Brass terminals, cadmium plated. Bakelite mounting. Send for com plete data

Just press the easy-acting lever on this Quick-Reset Ratchet Counter . . . and all 4 figures reset to zero as instantly as though you used a push-button. This saves time and speeds work on short machine runs, inspection and many other jobs. Counter is compact . . . $2.69^{\prime \prime}$ long, $1.44^{\prime \prime}$ high, $1.29^{\prime \prime}$ wide. The 4 white-on-black figures are $.166^{\prime \prime}$ high. You can order it (Series 1126) from stock right now . . . just like scores of other Veeder-Root Counters for manual, mechanical and electrical operation in every field from electronics to atomics.

VEEDER-ROOT INCORPORATED

 HARTFORD 2, CONNECTICUTGreenville, S. C. - Chicago 6, III.
New York 19, N. Y. - Montreal 2, Canada Offices and Agents in Principal Cities

EVERYONE CAN COUNT ON Veeder-Root "THE NAME THAT COUNTS"

Parabolic MICROWAVE ANTENNAS for all bands $2000 \mathrm{mc}-4000 \mathrm{mc}$ 7000 mc X and K PERFORMANCE ADVANTAGES

- Low VSWR
- High gain
- Low side and back lobes
- Pressurized feeds
- All-weather dependability
- Ready adaptability to special service requirements

For every microwave application, Gabriel can furnish antenna equipment of proved efficiency and reliability. The experience and facilities of Gabriel Laboratories offer prompt, dependable solution of your antenna problems. And the manufacturing plant of Gabriel Electronics Division assures volume production to the Laboratories' performance specifications.

For analysis of your antenna or microwave problems, write us or telephone NEedham 3-0005 (through Bosion).
autocorrelation systems as well as general laboratory use.

- Specifications-The unit illustrated has a delay of $500 \mu \mathrm{sec} \pm 5$ percent. Characteristics include a video response of -3 db between 10 cps and 4.5 mc and a signal-tonoise ratio of 40 db . Several units may be cascaded for longer delays.

VARNISH

for printed circuits
The Insl-X Sales Co., 26 Rittenhouse Place, Ardmore, Pa. A new varnish designed especially as a protective insulating coating for modular assemblies, printed circuits and printed circuit components has been developed by the Schenectady Varnish Co.

Complete Sealing-Far more flexible than conventional coatings, the Schenectady No. 642 printedcircuit varnish can be baked or air-dried to a tough resilient coating that completely seals the laminate and component leads against arc-producing moisture. A $2 \frac{1}{2} \mathrm{mil}$ coating of this water-white varnish withstands $1,250-\mathrm{v}$-even after 72 hours exposure at 100 percent relative humidity.

- Other Features-The highly arcresistant varnish will not support tracking, nor will it char. It is completely free from aging characteristics or discoloring and may be readily thinned with Xylol or its equivalent.

ECHO BOX

tests airborne radar
The Narda Corp., 66 Main St., Mineola, N. Y. Model 833 echo box is a high Q resonant cavity, specifically designed for rapid test-

VULCAN ELECTRIC HEATINCUNITS

 FINNED STRIPFor use in blower type electric unit heaters, os oven or space heaters dryers. p u m switch towers, etc.

For use where sheath temperature will not exceed 750°.

yUlCAN ELECTRIC COMPANY DANVERS 10. MASS

Hunting COILS For High Temp. Application?

DANO makes them!

For specifications calling for coils to be used for high temperature applications, Dano will supply the exact coils needed.
Dano, makers of a wide variety of coils, is fully equipped to meet the increasing demand for these special coils. Keeping pace with modern design, Dano offers incapsulated coils with tough, molded covers that spell extra electrical insulation with freedom from moisture.

Every Dano Coil is custom-made to your specific requirements. Call or write today, and Dano's quote will be on the way!

- Incapsulated Confs - Form Wound
- Bakelito Bobbln - Cotton Interweave
- Paper Section - Acetate Bobbin
- Coils for High Temperature Applications
- Also, Transformers Made To Order

The 屈
 MAIN ST., WINSTED, CONN.

FERROXCUBE SHIELDING BEADS

Ferroxcube shielding beads on inpull leads provide simple, efficient decoupling so that h-t, i-f and pulse signals from output stages will not be picked up by input wiring. Highpermeability Ferroxcube material increases inductance so that lead acts as h.f choke while i-f, h.f and pulse oscillations are damped by high losses that occur in Ferroxcube 3 B at frequencies over 0.5 mc .
Ferroxcube shielding beads also increase the h-f effectiveness of button-type ceramic feed-thru capacitors. SEND FOR BULLETIN FC 5112

FERROXCUBE CORP. OF AMERICA

A Joint Affliate of Sprogue Electric Co.. and Philips Industries Monaged by Sprogue
35 East Bridge Street - Saugerties, New York

MOLYBDENUM

For ELECTRONIC APPLICATION
RIBBONS

STRIPS

FORMED PIECES

Your spècial-metals rolled/to thin sizes - clośe tolerances

SAVE MONEY!

Measure frequency and FM deviation on a multitude of channels with just two small LAMPKIN METERS

IAMPKIN 105-B MICROMETER FREQUENCY METER - Heterodyne-type, universal coverage, 0.1 to 500 MC . Aceuracy 0.005%. Weight 13 lbs. Width $13^{\prime \prime}$. Price $\$ 220.00$.

LAMPKIN 205.A FM MODULATION METER-Indicates FM voice deviation, $\pm 25 \mathrm{KC}$., all channels, 25 to 500 MC . meets FCC mobile specs. Weight 13 lbs . Width 121/4". Price $\$ 240.00$.
NEW booklet: "HOW TO MAKE MONEY IN MOBILE-RADIO MAINTENANCE" free on request. Write today!
LAMPKIN LABORATORIES,
INC.
Instruments Divisioñ
BRADENTON, FLORIDA
ing of the overall performance of C-band (5,350 to $5,450 \mathrm{mc}$) airborne weather radars. The cavity is coupled to the radar transmission line through a directional coupler or with a pickup antenna placed near the radar antenna.

- How It Works-During the radar transmitted pulse, microwave energy is stored in the echo box. Immediately following the pulse, the energy is returned to the radar over the same path producing a signal or target on the radar indicator. At the end of the pulse the returned energy decays exponentially, finally disappearing into the background noise clutter at a point determined by the receiver sensitivity and transmitter power output.
Therefore, the time interval between the beginning of the transmitted pulse and the point where the signal on the radar indicator disappears into the noise (called the ring time) measures the overall performance of the radar. Price is $\$ 970$.

COIL BOBBIN lug terminals attached

Precision Paper Tube Co., 2035 W. Charleston St., Chicago 47, Ill., can supply coil bobbins with any desired number of lug terminals attached. The attached lug feature perfectly adapts the bobbins for use with printed circuits.

- Another Advantage-These coil bobbins can be insulated from the coil winding by washers as an integral part of the assembly. This not only improves insulation, but it greatly facilitates easier and faster production of the finished coil.

Bobbins are available in any size with round, square or rectangular core, and flanges of all shapes. Cores are wound from dielectric
kraft, fish paper, acetate or combinations, including DuPont Mylar. They can also be supplied Resinite impregnated.

Since the bobbins are made to order, cost will be affected by such factors as specifications, the number of lugs attached and the time element involved in making them.

DATA REDUCER shows vibration frequencies

Hycor Co., Inc., 11423 Vanowen St., N. Hollywood, Calif., announces a data reduction filter sei for analyzing vibration frequencies in aircraft and missiles. In use, a tape recorder containing the complex wave form is fed into the unit which separates the component frequencies into 24 components.

- Cathode-Follower AmplifiersThe unit consists of 24 cathodefollower amplifiers which feed 23 band-pass filters ranging progressively from 30 cps to $2,000 \mathrm{cps}$, and one 20 -cycle low-pass filter.

Output of each filter appears on jacks on the front panel. A channellevel control is provided for each filter. A set of jacks is also included on the front panel for oscilloscopic viewing of the complex waveform at the input.

The individual frequencies may be analyzed separately to determine the exact nature of the mechanical
small in sizeB1G IN CAPACITY

about $1 / 3$ the size and $1 / 4$ the weight of a comparably rated standard rectifier

Operating at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ Fansteel High Temperature Rectifiers deliver full rated power output, continuously, with no derating whatever. At temperatures up to $150^{\circ} \mathrm{C}$ ($302^{\circ} \mathrm{F}$), only moderate derating is necessary.

Fansteel High Temperature

 Rectifiers are available in all standard cell sizes and all standard circuit arrangements and with all standard protective finishes-moisture resistant, fungus resistant and a salt-spray resistant finish that really works! The table indicates a partial list of over 100,000 available types.
Send for

 bulletin 6.401FANSTEEL METALLURGICAL CORPORATION North Chisago, Illinois, U.S.A.

DEPENDABLE RECTIFIERS SINCE

ALUMINACERAMICS

These man-made "sapphires" provide

EXTRA strength ... EXTRA hardness EXTRA precision ...

For mechanical, electrical and electronic applications, Stupakoff Alumina Ceramics provide highly valuable characteristics. Because they are exceptionally hard, parts made of this material serve well under conditions of abrasion and wear. Because of the material's high strength, it finds many applications where its resistance to pressure, shock and impact adds to the life and service of an assembly. Because Stupakoff has the equipment and skill to mass-produce alumina parts with dimensions held to close tolerances, Stupakoff precision ceramics assemble readily and function correctly.

Parts may be simple or complex, ground or machined, plain, metallized or assembled. Our research and engineering facilities are available to assist in the design of your parts.

LATROBE, PENNSYLVANIA
vibration. The entire unit, including power supply, is contained in a standard enclosed 5 -ft cabinet rack.

AXIAL BLOWER
 is smaller and lighter

John Oster Mfg. Co., Avionic Division, 1 Main St., Racine, Wisconsin, has developed a smaller, lighter 2 -in. axial blower with exceptionally high air delivery in relation to volume and weight.

- Performance - Type AXB2249 puts out 25 to 30 cu ft of air per minute at zero static pressure yet weighs only 8 oz and measures only 3.375 in . long by 2.87 in . o-d. Operating temperature range is from -55 C to +71 C . Other military aircraft environmental requirements are also met.
The device consists of an aluminum blower housing black anodized, a 2 -in. aluminum fan and a $115-\mathrm{v}$ 400 -cycle motor.
Type AXB2249 is used for cooling a wide variety of electronic equipment in aircraft and industrial applications.

LAMINATED PLASTIC for printed circuitry

The Formica Co., Cincinnati 32, Ohio. The XXXP-36 Formica coldpunching laminate brings translucency, greater accuracy and superinsulation to printed circuitry. Since it punches cold in thicknesses up to and including $\frac{1}{15}$ in., no heat cycle is required. Thus the base laminate is not subject to dimensional change as in grades which must be heated before punching. Circuits made from the new grade will be more accurate.

Formica XXXP-36 also offers

high dielectric strength, greater heat resistance and superior bonding strength. Simply by holding the Formica sheet to the light it is possible to see the smooth, homogenous structure, and to note how well the circuit printed on one side registers with that on the other.

For a free sample, write the company.

INDICATOR

checks coils for shorts
Kartron, Drawer 472, Huntington Beach, Calif. Model 101-D electronic shorted turn indicator is sensitive, rugged and nonshocking when checking unmounted electrical coils for shorts. Mandrel size is small enough for all but the smallest coils; large enough for coils up to about a 2 -in. cube outside, or equivalent volume in most other shapes.

The unit is designed to detect

NEW TECHNICAL DATA on stupulisoff CERAMIC MATERIALS

The very latest technical information on a wide range of ceramic materials is given in the new Stupakoff Technical Data Chart Electrical and physical characteristics and the chemical composition of various grades of the following ceramic materials are included:

ALUMINA	PORCELAIN	ZIRCON
ALUMINUM SILICATE	STUPALITH STEATITE	CORDIERITE
	MAGNESIA	

Valuable design and application suggestions included in the Stupakoff Data Chart help you engineer your ceramic parts for lowest cost and greatest satisfaction.

Send today for your free copy of the new Stupakoff Data Chart. Arranged for ready reference.

Write Dept. E

Division of The CARBORUNDUM Company

LATROBE, PENNSYLVANIA

KEARFOTT ... from

 problem through productionEngineering ability and production facilities are as important to you as the characteristics of the components you select. After components are approved, you are dependent upon your supplier . . . dependent upon him for engineering assistance . . . dependent upon his ability to produce quality products in the required quantities.

Many of the servo motors, synchros, gyros and systems in use today had their inception on the drafting boards of Kearfott's engineers. This is proof of Kearfott's engineering ability. Kearfott offers complete engineering service before, during and after the purchase of a component.

Modern buildings, over 430,000 square feet of floor space, equipped with the latest in precision machinery, manned by 3,400 highly skilled specialists, are your assurance of Kearfott's ability to produce.

Yes, Kearfott is a dependable source of supply. If you have a design problem or require a special or standard component, contact Kearfott.

KEARFOTT COMPONENTS

 INCLUDE:Gyros, Servo Motors, Synchros, Servo and Magnetic Amplifiers, Tachometer Generators, Hermetic Rotary Seals, Aircraft Navigational Systems, and other high accuracy mechanical, electrical and electronic components.
Send for bulletin giving data of components of interest to you.

KEARFOTT COMPANY, INC., LITTLE FALLS, N. J.
Soles and Engineoring Offices: 1378 Main Avenue, Clifion, N. J.
Midwest Office: 188 W . Randolph Street, Chicago, III. South Central Office: 6115 Denton Drive, Dallas, Texas West Coast Office: 253 N. Vinedo Avenue, Pasadena, Calif.
one shorted turn of No. 44 wire and built for years of production line high speed testing. Shorts are indicated on the 1-ma meter by a downward deflection $\frac{1}{3}$ to $\frac{1}{2}$ full scale.

SMALL OSCILLOSCOPE weighs $81 / 2 \mathrm{lb}$

Probescope Co., 44-05 30th Ave., Long Island City 3, N. Y., has designed a portable miniature oscilloscope weighing $8 \frac{1}{2} \mathrm{lb}$ and taking up less than ${ }_{4}^{\frac{1}{4}} \mathrm{sq} \mathrm{ft}$ on the bench. It measures 9 in. high, 6 in. wide and 5 in. deep.

Model MO-1 has the following features: an input impedance of 2 megohms shunted by $15 \mu \mu \mathrm{f}$; a 10-to-1 attenuator; vertical sensitivity of 100 mv full scale; sweep rate of 20 cycles to 30 kc in 5 steps. It is ideal for waveform analyzing and quick troubleshooting.

RESISTANCE DECADE

has seven dials
Industrial Instruments, Inc., Cedar Grove, N. J. A new resistance decade featuring accuracy of better than ± 0.1 percent of each resistance increment is announced. The
instrument has 7 dials having decade steps of $0.1,1,10,100,1,000$ 10,000 and 100,000 ohms. Decades are available with each dial having 9 or 10 steps.

Resistance coils are of manganin wire, bifilar wound, with the exception of $10,000 \mathrm{ohms}$ and over which are low temperature coefficient nickel-chromium-iron alloy wound, All resistance coils are wound on ceramic cores, oven-aged and varnish impregnated.

Switches are the self-cleaning trpe with 4 phosphor-bronze spring wipers and detent mechanism for positive location of switch points. Switches and resistors are mounted below the panel for maximum protection from dust.

FLEXIBLE CABLES

for printed circuits
Sanders Associates, Inc., Nashua, N. H. Flexible printed circuit cables-made by a process of laminating the versatile plastic Kel-F with copper in thin sheets-are now being introduced. The new cables have excellent electrical and mechanical properties for operation over a wide range of environmental conditions.

Complete encapsulation of the conductors in Kel-F ensures maximum protection against moisture. Glass cloth can also be included in the laminations for increased strength and high temperature stability. The new lighter and thinner cables are adaptable to many types of connectors or terminations and are easily secured by clamps, rivets or cement. The manufacturing technique eliminates wiring errors.

Additional conducting and insulating layers can be added to the basic cable to provide a greater number of separate conductors. Stacked circuits have been built up

New Technical Advances, New Materials and Techniques Have Resulted in Delay Lines of Unusual Characteristics . . . And At Low Cost:

If you use delay lines in: Telemetering Digital or Analog Computers - Pulse Circuits - Coders and Decoders - Navigation Systems - Stable Time Reference Units - or in special applications -- you'll find this brand new technical bulletin of great interest and use in your work.

CHARACTERISTICS OF NEW STANDARD* UNITS

All Standard units are guaranted to have the following characteristics:
Temperature coefficient of delay less than 50 parts per million per ${ }^{\circ} \mathrm{C}$.
Opcrating temperiture range: - 55 C to 125 C .
Delay tolerance 3%.
Spurious sigr.als less than 5%.
Characteristic impedance tolerance 5\%.
Attenuation in DB approximatcly 0.1 to 0.2 times delay-to-rise-time ratio.
*Custom units are built to even more seringent specifications.

CONTENTS

New Standard Series

Precision Audio Delay Lines
Custom Designed Units
Special Applications

Design Formulae Typical Circuits

Characteristic Impedance

Attenuation

Delay Time
Rise Time
Delay-To-Rise-Time Ratio
Bandwidth
Phase Linearity
Spurious Signals Operating Temperature Range

ESCO

SEND FOR BULLETIN DL-55 TODAY!

UNION

Selenium Power Rectifiers with
 "Solid Stack" assembly

The "solid stack" assembly of the new line of Union Selenium Rectifiers provides utmost rigidity and far more resistance to vibration. It eliminates radial movement and prevents breaks in the paint seal.
This extra rigidity is obtained by using larger, non-resilient spacer washers finished flat to close tolerances and all parts are under constant pressure exerted by Belleville springs at the ends of the stack.

The selenium cells are produced by a special and carefully controlled process which assures uniform high quality and better performance. Corners are rounded instead of sharp for safety, and to assure an un-
broken coating. Connectors are made of brass or bronze for better service under adverse conditions.

Ratings: The standard line of Union selenium rectifier cells range in size from $1^{\prime \prime}$ x $1^{\prime \prime}$ to $5^{\prime \prime}$ x $6^{\prime \prime}$ and with convection cooling, are rated from 180 to 10.0 amperes per cell on a single phase fullwave bridge basis. Cells can be "stacked" in series, parallel or series-parallel combinations to fit practically any current and voltage conversion requirement. The stack assemblies conform to NEMA specifications.

Write for our Bulletin 1009, or contact any of our distributors listed below for complete information.

GENERAL APPARATUS SALES

DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY

NEW YORK, IVanhoe 3-2424 (Hempstead) BALTIMORE, VAlley 5-3431

BOSTON (Ashland) TRinity 2-4485
st. LOUIS, JEfferson 5-7300
to 5 layers and may go higher depending on the application.

ELECTRICAL COUNTER

 wheels cannot jamNorth Electric Co., Galion, Ohio, has announced a 5-digit electrical counter designed for reliable highspeed impulse recording. Type E-RSA-200 is compact and light in weight, and is suitable for installation in small spaces, measuring $\frac{3}{4} \mathrm{in}$. by $1^{\frac{3}{6}} \mathrm{in}$. by $4 \frac{1}{18} \mathrm{in}$. overall. Each counter is enclosed in a sturdy metal cover, available either as an individual unit or in strips of ten, with a common cover.

A flexible spring clip holds each unit firmly in place on the mounting plate. The mechanism of the counter is built so that the wheels cannot jam or get out of mesh. Each counter wheel is made of nylon for extra long wear. The coil of the unit is terminated with soldering lugs in rear.

Final inspection tests are made at a rate of 20 impulses per second.

SINE SWITCH

has high shock resistance

Metals \& Controls Corp., Spencer Thermostat Division, Attleboro, Mass., has announced the Klixon K
series sine switches, for aircraft and industrial controls, actuators, relays and instruments. A highly precise sensitive snap switch is available for applications requiring small movement differential with high resistance to shock and vibration. The sine-curve switching element withstands from 0 to 500 cps at 10 g while continuously loaded the within 0.0002 in . of the actuation point.

Movement differential as well as operating and release forces can be adjusted and set to meet a wide variety of application requirements.

Once calibrated, the Klixon sine switch precisely maintains its operating characteristics throughout its life. Movement differential is 0.0005 in . minimum; shock, 200 g ; temperature, -65 F to +350 F ; life, 100,000 cycles minimum; and size, $1 \frac{1}{8} \mathrm{in}$. by $\frac{7}{8} \mathrm{in}$. by $\frac{11}{11} \mathrm{in}$.

CAVITY WAVEMETERS cover 2.6 kmc to 90 kmc

Demornay-Bonardi, 780 South Arroyo Parkway, Pasadena, Calif., is in production on a line of precision cavity wavemeters designed to give unusually broad coverage of microwave bandwidths. Only 11 sizes are needed to serve the entire range from 2.6 kmc to 90 kmc . Hence fewer sizes are required to cover wide segments of the total range. Each instrument measures all frequencies within the range.

Accuracy of these units is so high that they may be used as secondary standards, suitable for calibrating all other laboratory cavities. Units are nitrogen filled, and hence unaffected by changes in humidity or atmospheric pressure.
High resolution is accomplished with a precision micrometer-type turning screw which resolves

UNION

Now a complete line of "Selenium Slim" Rectifiers
 in the ratings you need

Now you can get Union "Selenium Slims" in five ratings ranging from 1.25 to 20.0 milliamperes and maximum peak inverse voltages from 36 to 9360 with condenser input filter. They are available in diameters from $1 / 8^{\prime \prime}$ to $1 / 2^{\prime \prime}$.

These high-voltage, low-current rectifiers are made by a new process which assures superior quality and trouble-free performance. They are designed to outlast and outperform vacuum tube circuits at a comparable price.
"Selenium Slims" are made in as-
semblies of 1 to 260 miniature cells spring-loaded in either tough phenolic tubes or hermetically-sealed glass tubes. You can snap them into your circuits with standard fuse clips or solder in with pig-tail leads. Special assemblies are available to meet customer requirements.

A few applications are television receivers, electronic equipment, elec-tro-static precipitators, business machines and Geiger counters.
Send for our new Bulletin 1007 for complete information, or contact one of our distributors listed below.

GENERAL APPARATUS SALES UNION SWITCH \& SIGNAL dIVISION OF WESTINGHOUSE AIR BRAKE COMPANY
 PITTSBURGH 18

 PENNSYIVANIA

NEW YORK, IVanhoe 3-2424 (Hempstead)
BOSTON (Ashland) TRinity 2-4485
BALTIMORE, VAlley 5-3431
ST. LOUIS, JEfferson 5-7300
CHICAGO, LOngbeach 1-3042 - LONDON, OHIO, LOnden 1555 • LOS ANGELES, CLinton 6-2255

CVC
thermocouple vacuum gauge

offers high sensitivity, rapid response

This single-stage thermocouple vacuum gauge gives rapid readings in the 1 to 1,000 micton range. It is the CVC type TG-029, designed around a printed circuit.
The gauge is compact, portable, and priced considerably lower than the previous single-station model.
Its outstanding features include:

- No compensating adjustmentsjust plug it into a 115 -volt outlet and turn on the power switch.
- Measures the total pressure of condensable vapors and permanent gases.
- Is not harmed by exposure to atmospheric pressure.
- One direct reading meter scale
covers the range from 1 to 1,000 microns Hg .

New, more rugged gauge tube

This gauge uses the new TG-77 gauge tube which eliminates the fragile junction weld of previous tubes.
The tube is less subject to organic vapor contamination and its electrical characteristics do not vary appreciably from one tube to another.
The TG-029 is the latest addition to a complete line of CVC thermocouple gauges including the batteryoperated, panel-mounted, singlc-station unit type TG-025; the one-to-six station unit type TG-09; and the automatic control unit type TG-010 which actuates a double-pole, double-throw relay at any predetermined pressure.

Specifications

Range
Case Dimensions
Weight
Power
Type TG-77 Tube
Cord

1 to 1, C00 microns
$.5_{16^{\prime \prime}} \times 66_{16}{ }^{\prime \prime} \times 618^{\prime \prime}$
5 lb .1407.
115 V. 60 cycle, AC
$2 \frac{7}{16}{ }^{\prime \prime}$ with $1 / 8^{\prime \prime}$ NFT nipple
10 fr .

For further information write for copies of CVC Data Sheets 9-35 and 9-37.

Consolidaled Wacuum Corporalion Itochester 3, N. V. a subsidiary of CONSOLIDATED ENGINEERING CORPORATION, Pasadena. California CVC sales now handled through Consoltdated Engineerlng Corporatlon with offices located in: Albuquerque - Atlanta - Boston - Buffalo - Chicago - Dallas Dutroit - New York - Palo Alto - Pasadena • Pliladelphia - Seattle - Washington, D.C.
plunger travel into $0.001-\mathrm{in}$. increments, and also with a multipage calibration chart furnished with the instrument.
The units are designed for operation in a temperature range of -30 C to +70 C . The line comprises reaction types, absorption and transmission types, all priced low. Literature is available.

MOLDED RESISTOR with double insulation

Electra Mfg. Co., 4051 Broadway, Kansas City, Mo., has announced a new $\frac{1}{2}$ w molded deposited carbon resistor. Its double insulation results in these advantages: complete mechanical protection, longer load life, better electrical insulation, greater moisture resistance and performance that exceeds all electrical requirements of MIL-R10509A.

Complete information may be had by writing for bulletin No. 70.

GEAR HEAD

for subminiature motors

Bowmar Instrument Corp., 2415 Pennsylvania St., Fort Wayne, Ind., has introduced a new subminiature motor gear head. The device measures 0.937 in . in diameter and adds
just $\frac{5}{8}$ in. length to size 10 motors in its 26.4 -to- 1 reduction ratio.

Model 937 speed reducer contains internally, in addition to its gear clusters, a unique adjustable slip clutch. Backlash is less than 30 minutes, and its weight is $1 \frac{1}{\frac{1}{2}} \mathrm{oz}$.

Applications include computers, servo controls and general instrumentation where weight and size limitations are critical.

MAGNETIC TAPES
 for electronic computers

ORRadio Industries, Inc., 120 Marvyn Road, Opelika, Ala., has announced 50 different types of magnetic tapes for electronic computers. Reading and writing are performed at the rate of 15,000 alphabetical or numerical characters per second on Irish instrumentation tape No. 311.

The 50 types of tape will include tapes on acetate and Mylar films in $1,200 \mathrm{ft}, 2,400 \mathrm{ft}$, and $4,800-\mathrm{ft}$ lengths, and in $\frac{1}{4}, \frac{1}{2}, \frac{5}{8}, \frac{3}{4}$ and $1-\mathrm{in}$. widths. The manufacturing technique produces a mirror-finish, and a tape virtually drop-out free, which is so important in electronic computer applications.

INPUT SCANNER

 selects 100 data channelsElectro Instruments, Inc., 3794 Rosecrans St., San Diego 10, Calif. The IS100 input scanner sequentially selects 100 channels of data. When used in conjunction with the company's digital voltmeters and ohmmeters (and printer), one has a complete automation system for component and system testing. The IS100 consists of a series of stepping switches with all neces-

Deigning a Neos Satllite?

YOU'LL NEED SLIP RING ASSEMBLIES . . . AND NO ONE CAN MAKE THEM BETTER THAN PMI

Before your new design leaves the drawing board, whether it be for a synchro or a satellite, if the plans call for a slip ring (collector ring) assembly, let us give you the benefit of our 13 years experience. From one circuit miniatures to 500 -circuit giant installations, we can design, develop and produce the assembly to do the job.

PMI Engineers work out all production and design details. Give us a call for free estimate.

P M INDUSTRIES, INC.
270 FAIRFIELD AVENUE STAMFORD, CONNECTICUT

Eccosorb CH Microwave Absorber for Darkrooms

Eccosorb CH is a series of broadband absorbers reflecting less than 2% of the energy incident upon its surface. It is composed of enmeshed, rubberized fibers and made in sheets 2 feet by 2 feet in various thicknesses. Eccosorb CH is light weight and flexible. It is easily mounted and its natural, white surface color gives good light reflection.

Free Space Rooms are easily and economically built for indoor antenna measurements. Reflections are eliminated for all practical purposes. You can build your own microwave dark room or we offer you a complete Free Space Room ready to use. Emerson \& Cuming engineers design and build special types for unusual conditions. Send us your specifications.
Another absorber, ECCOSORB HF comes in rods, sheets or molded shapes in several volume resistivities for waveguide terminations and similar uses. If you have a problem write for information on .. .

Rlastics for Electronics

Emerson \&

869 WASHINGTON STREET, CANTON, MASS.

ales Representatives

DAYTON
ROBERT G. SIFF \& ASSOCIATES 11 W. Monument Bldg., Dayton 2, Ohio Hemlock 1254
KANSAS CITY
E NGINEERING SERVICES COMPANY 4550 Main Street, Kansas City 11, Mo. Jefferson 7765 NEW YORK
M. RAYMOND KALLMAN
P. 0. Box 104, Rosiyn, L. I., New York Roslyn 3-6511

ST, LOUIS

NGINEFRING SERVICES COMPANY

 N635 Delmar Blvd St Louis 5 Mo V0 3-3661WASHINGTON, D.C
500 Mass. Ave Washington 5, D. C Columbia 5-2694

WEST COAST

McCarthy Associates
P. 0. Box 36, Altadena, Calif Sycamore 8.5790
sary controls and power supplies.
It is rack mounted (7 in . by 17 in. by 16 in .) and operates on $115-\mathrm{v}$ power. When used with digital voltmeter and printer, 100 channels can be printed out in approximately 5 minutes.

GENERATOR for signal and sweep

Decade Instrument Co., 14 Maple Ave., Pine Brook, N. J. The Sweepalator serves as a combined signal generator and sweep generator. It features decade switching, crystal c-w or center frequencies and wide range calibrated output. Specifications include the following: range, 10 kc to 1.5 mc ; steps, 1 kc in 3 decades; interpolation, calibrated $0-1 \mathrm{kc}$; accuracy, 100 cps ; short term stability, $\pm 25 \mathrm{cps}$; harmonic content, 3 percent maximum; output, 3 v rms ; attenuator, $3 \mathrm{v}, 1 \mathrm{v}$, $0.3 \mathrm{v}, 0.1 \mathrm{v}, 0.03 \mathrm{v}, 0.01 \mathrm{v}$ full scale; meter, calibrated $0-1$ and $0-3 \mathrm{v}$.

CAPACITORS

with immersion-proof shell
Arnhold Ceramics, Inc., One East 57th St., New York 22, N. Y. The new Electrica capacitors function at temperatures from -20 C to +110 C and meets the demands of broadcast, tv and measurements fields for light weight and minimum size. Thermoplastic protective covering makes the capacitors air-tight, moisture and fungus
proof. Coating remains stable at all normal operating temperatures and insures high mechanical strength. The capacitors are economically priced. For complete data write for bulletin E .

PREAMPLIFIER

for oscillographic recording
Sanborn Co., 195 Massachusetts Ave., Cambridge, Mass., has developed a preamplifier which converts an average value of a-c watts into a proportional d-c voltage suitable for recording. Model 150-2300 a-c wattmeter preamplifier is designed as a front-end for plug-in installation in a model 150-200 driver amplifier unit, used in Sanborn one-to-eight-channel recording systems. Complete performance data and specifications are available from the company.

MAGNETIC COUNTER is miniature type

Veeder-Root Inc., Hartford 2, Conn., has developed a small reset magnetic counter for moderate counting duty on the many applications where extreme long life is not required. Compact and easily

for fire control systems power controls computers - telemetering - stabilization
Pacific Scientific now offers you three new production model accelerometers - fully tooled, tested and approved. You can save both time and money with these full production units - especially if they're incorporated into your designs at an early stage. Listed below are some of the general specifications, and your nearest Pacific representative will be glad to discuss your specific requirements. Write or phone today!

Range:
output:
Accuracy:
Natural
Frequency:
Cagins: Damping:
up to +15 G
Dual Potentiometers or switches -or one pot \& one switch
to 1%
10 CPS at 0 to 4 G Electrical

A15-2000 SERIES

$$
\text { up to }+10 \mathrm{G}
$$

Potentiometer
to 1%
Radically low for any
given G range
Manual for Shipping only Manual for Shipping only Air

LA06-0100 SERIES
up to +15 G
Potentiometer
to 1%
Radically low for any
given G range
Air

PACIFIC SCIENTIFIC - pioneers in the field of
aircraft instrumention since 1919

PACIFIC SCIENTIFIC COMPANY

I422 Grande Vista Avenue
Los Angeles 23, California
Please send me detailed information on Pacific Accelerometers
name
sompany
street
eity

者

FOR
 the scientist or engineer who has
 more to offer. . .

A limited number of positions of unusual responsibility

IBM, long a leader in the growing field of digital computers for business, science, and government, offers a limited number of longrange creative assignments to outstanding men with Master's or Doctor's Degrees in Electrical Engineering, Physics, Mathematics, Chemistry or Physical Chemistry.

- Research in solid state materials

Investigation of electronic phenomena in solids
Study of ferrite and semi-conductor characteristics
Study of the role of surface effects in semiconductor device characteristics
Evaluation of sample semi-conductor or ferrite components

- Development of new concepts, new approaches to infernal handling of information in computer systems
Information Theory
Research in Machine Organization
Theory of Control of Digital Devices
Switching Circuit Theory
Digital Data Transmission
- Circuit Design, Systems Design and Analysis

Electronic pulse circuits for accounting and data processing machines-arithmetic switching and logical circuitry-pulse amplifiers, shapers, gates, etc.-magnetic storage-transistor circuitry -in-put-output device controls.

If you have more to offer, IBM offers you

- Stimulation . . . Satisfaction

At IBM men find the kind of facilities, associates and climate which stimulate achievement.

- Professional Growth

In Company growth lies personal opportunity, and IBM has an enviable record of steady and consistent growth. Over the past quarter century, IBM's business has doubled
every five years on the average.
Out of respect for the unusual man's talent and promise, IBM encourages qualified candidates to visit its Poughkeepsie, N. Y. laboratory at their convenience, and IBM's expense. Write, outlining your qualifications, to: William M. Hoyt, International Business Machines, Room 412, 590 Madison Avenue, New York, N. Y.

[^13]connected in series with any device having a contact arrangement, the series 1507 counter may be actuated by any type of switch, relay or photoelectric unit. Maximum recommended speed is 700 counts per min. Watt consumption is 4.5 at rated voltage (24 and $110 \mathrm{va} \mathrm{c} / \mathrm{d}-\mathrm{c}$ types are standard). Voltage variation is permissible up to 10 percent but not more than 10 v . The counter measures approximately $2 \neq \mathrm{in}$. wide by $2 \frac{1}{2} \mathrm{in}$. high. Figures are 0.188 in . high.

BREAKDOWN TESTERS with range to 100 kv

Industrial Instruments, Inc., 89 Commerce Road, Cedar Grove, N. J. Type PA-50 h-v a-c breakdown tester permits tests from 0 to a maximum of $100,000 \mathrm{v}$, continuously variable. It is rated at 5 kva available at breakdown. The PA-50 is entirely self-contained eliminating the dangers in multiple unit setups. The entire instrument is housed in a 30 -in. relay rack, $6 \frac{1}{2} \mathrm{ft}$ high. It is designed for either laboratory or production testing of such items as insulating tapes, transformers or any application requiring a variable, safe, dependable source of high a-c voltage.

DUAL SWITCH is single-actuated

Minneapolis-Honeywell Regulator Co., 4428 Wayne Ave., Philadelphia 44, Pa., has developed a new single-actuated dual switch designed for a wide range of in-

dustrial control and electronic applications. The 6AS13 is a lowforce, double-pole switch consisting of two basic switching units operated by a single roller-lever actuator. It is available with a variety of lever lengths, either straight or formed levers, with or without roller. Basic switching units of the 6AS13 are listed by UL at 15 amperes-125, 250 or 460 v a-c, $\frac{1}{2}$ ampere- 125 v d-c and ${ }_{-1}$ ampere- 250 v d-c. Various other basic switching units can be used to provide higher electrical capacity for d-c circuitry, or for special circuit applications. Operating characteristics may be had for the asking.

AUDIO ATTENUATOR manufacturers' type

Cinfma Engineering Co., Aerovox Corp., Burbank, Calif., is producing a new manufacturers' type audio attenuator for sound attenuation, sound mixing, special measuring and calibration units. The item, featuring self-wiping contacts of nickel silver, carbon composition and wire-wound resistors, is available in 150, 250 and 600 ohms. Resistance element values are standard 5 -percent accuracy. Audio ladder controls have a $6-\mathrm{db}$ inherent

REGULATED
\checkmark STABILITY
(Long term $\pm 160 \mathrm{ppm}-$
Short term ± 50 ppm per hour)
\checkmark LOW RIPPLE
\checkmark LOW IMPEDANG:
 REGULATED

\checkmark Low Voltage-HIgh Current

J DC POWER SUPFLY

Here's a voltage reference that can be depended upon for many laboratory functions, bitspecifically suited for colibrating meters, powe ing multi-stage amplifiers and compute-s.
OUtPUT OLEFANCE for 10% line voltage variaHon: $\pm .002 \%$ or Ess
voltage reliabil ty read on decade dials: $.02 \%$ c. 5 millivolt., whichever is greater.
OUTPUT OLTAGES: (1) 10 to 310 volt: in 1 vole

A Magnatic Ampl fier Power Supply with output ai 15 ampe es continuously variable from 5 to 32 volts without switching.
REGULATION: $\pm 1 \%$ from no lood to full load. $\pm 1 \%$ from 1 (15 to 125 volts input.
RIPPLE VOLTAGE: 1% RMS @ 32 volts ond full load, in reosiac to $\%$ @ 5 volts and full load

Complete spec fications and details upen request - write or wire todey.

Oregon

MANUFACTURERS OF SPECIAL ELECTRONIC EQUIPMENT

you can rely on ARC Test Equipment!
Unerring precision is yours in the ARC Type H-14 Signal Generator! For either pre-flight or bench checks, this instrument tests all ARC Omni and Localizer Receivers with vital accuracy and speed. The H-14 clears one unit or a complete squadron . . . in under sixty seconds!

Checking up to 24 omni courses, to-from and flag-alarm operation, omni course sensitivity, calibration accuracy and left-center-right on localizer, the versatile H-14 also may be used to transmit voice instructions to pilots along with test signals.

ARC supplies the watchdog H-16 Standard Course Checker for exact course accuracy and phase measurement checks on the $\mathrm{H}-14$, or any other omni signal generator. Both instruments available from factory only. Write for literature.

Dependable Airborne Electronic Equipment Since 1928

Aircraft Radio Corporation BOONTON, NEW JERSEY

[^14]insertion loss. All other network types of mixer controls have zero loss. The attenuator comes without knob and dial, but they are available as accessory items. Shipping weight is 8 to 12 oz per section.

GEAR HEAD used with servo motors

Sterling Precision Instrument Corp., 34-17 Lawrence St., Flushing 54, N. Y. Designed for use with most Bureau of Ordnance servo motors, the model 600 series standard gear heads will fit units from $1^{\frac{1}{18}}$ in. diameter to $1^{\frac{3}{4}}$ in. diameter. Special heads can be designed for servo motors outside this group. The company's standard gear heads have the output shaft concentric with the servo mounting diameters. Attaching these gear heads to a servo motor creates a clean, fully enclosed selfcontained unit.

DELAY LINES

are continuously variable

Advance Electronics Co., Inc., 451 Highland Ave., Passaic, N. J. Type 611 variable delay lines are continuously variable from 0 to
beyond $10 \mu \mathrm{sec}$. The continuously variable delay line in type 611a is essentially a condensed r-f cable with one conductor changed into a long thin coil and the other spaced closely to the first, thus producing a large amount of time delay, yet maintaining low attenuation at high frequencies. The tapped delay line in type 611 b has 10 or more sections of m-derived LC networks with similar electrical performance to that of the step variable delay line.

DATA TRANSLATOR includes visual readout

Epsco Inc., 588 Commonwealth Ave., Boston 15, Mass., announces the new Datrac data translator for ultraprecision voltage-to-digital and digital-to-voltage conversion. Model E Datrac converter provides 2 voltage-to-digital conversions per sec or 30 digital-to-voltage conversions per sec to an accuracy of ± 0.01 percent ± 1 least significant digit. The converter includes a visual readout and output conversion for direct control of printers, typewriters, or card punching equipment. Five decimal digits are provided. Three floating decimal ranges provide full-scale readings of \pm $99.999, \pm 9.9999$, and $\pm 0.99999 \mathrm{v}$, thus providing $10-\mu \mathrm{v}$ sensitivity. A number of optional features may be provided.

WAFERING MACHINE is fully automatic

Micromech MFg. Corp., 1020 Commerce Ave., Union, N. J. The Micro-Matic precision wafering machine is made specifically for use

WIDE-BAND POWER OSCILATOR

200 to 2500 $\mathrm{mc} / \mathrm{sec}$ 40 watts at $200-400 \mathrm{mc}$ 25 watts at $400-1000 \mathrm{mc}$ 10 watts at $1000-2500 \mathrm{mc}$

Provides exceptionally broad frequency coverage and substantial power output in a single source. Offers smooth tuning and precise resettability, with overlapping coverage of the full range in two bands.

Price, including oscillator and power supply-modulator, $\$ 2250.00$ net F.O.B. Long Island City, N Y Write for free bulletin.

Frequency ranges.... 200 to $1050 \mathrm{mc}, 950$ to 2500 mc Calibration accuracy..... $\pm 1 \%$ or ± 5 megacycles whichever is greater Resettability.......................................better than 0.1% Modulationinternal square-wave and sine-wave, 400 and 1000 cps ; also external
Outpui impedance........................ 50 ohms (nominal)

Subminicture I-F AMPIIIERS

- High gain and sensitivity
- Wide-band response
- Rapid recovery
- 40 db manual gain adjustment
- Low noise

Designed for aircraft and electronic instrumentation, these amplifiers can be furnished to meet specific performance requirements. Typical specifications are given at right

Model No.	Center frequency $\mathrm{mc} / \mathrm{sec}$	Band width $\mathrm{mc} / \mathrm{sec}$	Noise figure db	Gain db
M1154	30	12	1.7	100
M1155	60	12	3.7	100
M1156	90	12	5.0	100

Maxson Instruments products include: power oscillators, I-F amplifiers, mag-amp voltage regulators, frequency regulators for aircraft inverters, ultrasonic flowmeters, ac-celeration-sensitive switches, and statistical accelerometers. For detailed information, contact our main office, or Maxson District Office at :

47-37 Austell Place

Long Island City 1
New York
Tel: RAvenswood 9-1850

"CLIP-TYPE" closed entry socket contact now standard in
Z
Scinfiex
electrical
CONNECTORS

CANNOT be overstressed-eliminates intermittent circuit problems resulting from socket contact malfunction.

Bendix-Scinflex* socket contacts have always been machined from bar stoch. Stampings, with their required thin sections, can be easily overstressed.

Industry has also been plagued with overstressed spring leaves due principally to the misuse of test probes and las tolerances on pin contacts. Bendix engineers now provide the only socket contact which completely eliminates all these problems.

The "Clip-Type" socket will not accept any oversize probe or pin, nor can one be forced into it. Also, no amount of wrenching or twisting of an acceptable pin or probe can possibly distort the spring clip. This new socket is now standard in all Scinflex connectors including those using solderless, high-temperature and thermocouple contacts.

Complete detailed information is available on request.
*trade-mark

SCINTILLA DIVISION of SIDNEY, NEW YORK

Export Sales and Service: Bendix International Division, 205 East 42nd St., New York 17, N. Y. FACTORY BRANCH OFFICES: 117 E. Providencia Ave, Burbank, Calif. - 512 West Ave., Jenkintown, Pa. - Stephensun 590 Road Dallas 19 Tex. Boeing Field Seattle 8 Wash - 1701 "K" St 4 S. Maın St., Dayton 2, 0. - 8401 Cedar Springs Road, Dallas 19, Tex. " Boeing Field, Seattle 8, Wash. • 1701 "K" St.,

by the electronic industry for slicing and dicing germanium, silicon and quartz used in transistor and diode manufacture. It is equipped with control mechanisms and other automatic devices together with inbuilt accuracy. The wafers produced are consistent in thckness, and parallelism is controlled to within several ten thousandths variation. Any predetermined thickness may be obtained, ranging from 0.010 to 0.225 . A 4, 5, or 6 -in. diamond impregnated metal saw may be used for slicing and dicing. The working capacity of the machine is 6 in. transverse, 12 in. Iongitudinal and up to 12 in vertical.

AMPLIFIER

for 10 eps to 1 mc

Shasta Division, Beckman Instruments, Inc., P.O. Box 296, Station A, Richmond, Calif. Model 854A amplifier provides a choice of two fixed voltage gains of 10 and 100 times, over the frequency range of 10 cps to 1 mc . The instrument is
usable to higher frequencies with some slight sacrifice in uniformity of response, namely, $\pm 1 \mathrm{db}, 5 \mathrm{cps}$ to 2 mc at a gain of 100 times. The circuit used introduces distortion of less than 1 percent when operating into recommended loads. Equivalent input noise is $20 \mu \mathrm{~V}$ on 100 times gain setting, and $80 \mu \mathrm{~V}$ with a gain of 10 . Output voltage is a maximum of 10 v into a minimum load of 3,000 ohms. The input impedance is one megohm shunted by approximately $15 \mu \mu \mathrm{f}$.

DELAY LINE for color television

Shallcross Mfg. Co., Collingdale, Pa., has announced an inexpensive, distributed-constant delay line designed for use as a compensating delay in the luminance channel of color tv receivers. The type T30036 delay line has an impedance of 4,300 ohms and uniform response to 4 mc . Phase characteristics also are linear within 5 percent to 4 mc . Total delay is $0.8 \mu \mathrm{sec}$. Rise time is only $0.1 \mu \mathrm{sec}$. The unit is enclosed in an aluminum can only $1_{8}^{3} \mathrm{in}$. square by $3 \frac{1}{s} \mathrm{in}$. high, exclusive of terminals. Modifications of the basic electrical and physical characteristics can be made for quantity users.

FREQUENCY CHANGER uses synchronous motor drive

Georator Corp., Manassas, Va. Answering the need for a compact supply to furnish constant 420 cycles, with output frequency as invariable as the input, the unit pictured has been developed. Motor

PANELOC announces

a new

 rotary

Saves Space - Saves Weight

This new Paneloc Rotary Latch is a simple and economical, strong and durable fastener for access panels, electrical control panels, inspection doors, machinery doors, and other hinged or removable covers. It permits a larger access opening, operates quickly with a quarter-turn. Entire assembly on access panel itself, eliminating many installation steps; no special tools required. Only four simple parts; made of steel, cadmium plated. Three standard sizes now available, more to be added. Special sizes and finishes available on order. Cost very low, performance unsurpassed. Write for a catalog and price list for your file.

PANELOC...America's most versatile line of aircraft fasteners .. . Rotary Latches, Styles 1, 2, and 3 Panel Fasteners, High Performance Fasteners, Snap Fasteners.

PANELOC-A product of Scovill

With unequalled experience in all of the accepted waveguide metals, Technicraft's thorough, stage-bystage inspection and measurement policy assures delivery of only the most precise plumbing, both electrically and mechanically.

Technicraft employs the most advanced attaching techniques, including dip brazing. Manufacturing standards under constant supervision of experienced microwave engineers. Extensive lab facilities available for development and production tests.

For complete details and characteristics ask for our specification sheets.

TELHNILRT GBMATORIE
 1550 THOMASTON RD. - THOMASTON, CONNECTICUT

Designers and Manufacturers of Rigid and Flexible Waveguide Assemblies, Microwave Test Plumbing and Components, Waveguide Systems.

is synchronous type, direct coupled in a compact unitary combination with a Nobrush 420-cycle generator. The resulting combination is free of brushes, exciter and slip rings, yet delivers as constant a 420 -cycle frequericy as the input 60 cycle. Without any regulator or delicate auxiliary, the unit will maintain output voltage to better than 2 percent for a given load. The generator creates no radio interference, is immune to damage from short circuits, will withstand moisture, dust and grit. Converters are available in this design (150 va to 5 kva), with any desired combination of single or three-phase input and output.

RECTIFIER RELAYS for better a-c reliability

Magnecraft Electric Co., 3350 W. Grand Ave., Chicago 51, Ill. Increased operating reliability throughout the wide range from 25 to 400 cycles a-c is provided in recently announced rectifier relays. Full wave rectifiers incorporated in these relays convert a-c to rectified d-c; thus providing d-c operation from a-c power supply. Advantages obtained in comparison with conventional a-c operation include: increased operating sensitivity, higher contact pressures, greater resistance to vibration, reliable operation through much wider variation in voltage or cur-
rent, freedom from a-c hum and, in many cases, reduced size. The rectifier relays are available with a wide range of contact combinations in hermetically sealed or dustproof enclosures as well as open. Literature is available on request.

DIGITAL READOUTS with advanced design

Non-Linear Systems, Inc., Del Mar Airport, Del Mar, Calif. The NLS $3 W$ series is the most recent and advanced design of the company's in-line, luminous digital readouts. Standard readouts are available with from one to six windows arranged horizontally. The edge-lighted Lucite plates are engraved with numbers from 0 through 9, decimal points and polarity signs. The numbers are $\frac{1}{2} \mathrm{in}$. wide and 1 in . high, spaced $1_{\frac{1}{8}}$ in. on centers to provide maximum legibility. A new quick change terminal strip to which connecting wires can be soldered retains the lamps, maintains spring-loaded contact with each lamp, and eliminates resoldering connections when replacing lamps. Improved design of the interlocking frame members provides maximum precision and sturdiness. Volume production tooling and assembly methods provide high quality and variety at low cost.

NOISE GENERATOR used with analog computers

Automation Laboratories Inc., 517 W. 207th St., New York 34, N. Y. The low-frequency Gaussian noise generator provides a random voltage whose amplitude probability distribution is Gaussian to within 1

JET PROPULSION LABORATORY
 OF THE

CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California

ipl

has positions now open in several fields of

MISSILE GUIDANCE SYSTEM DEVELOPMENT

This is an opportunity to associate yourself with the nation's foremost guided missile research and development facility.

1) System Analysis

Engineers, Physicists or Mathematicians are wanted for rocket guidance system planning and analysis. The work requires a combination of imagination and a high level of analytical ability. Experience in the engineering type problems of guidance or related equipment is very desirable. This overall system work provides the opportunity to become familiar with a broad variety of interesting and challenging fields. Excellent digital and analogue computers are available for use in the studies.

2) Inertial Guidance

Engineers and Physicists are wanted for missile inertial guidance component development. Work involves design, development and evaluation of gyros, accelerometers, integrators, stable platform systems and associated apparatus. Particular emphasis is placed on the problem of achieving component performance under severe environmental conditions, and on development of advanced testing techniques.

3) Layout and Packaging

Engineers are wanted for layout design and proof testing of electronic and electro-mechanical packages with emphasis on meeting vibration, temperature, and system operation requirements.

4) Switching Circuits

Engineers are wanted to design low power switching, control, and power circuits, with emphasis on reliability and ease of operation.

The Jet Propulsion Laboratory is located in a suburban area of Pasadena, California. It offers these advantages:

Desirable academic associations
Emphasis placed on research and development
Excellent laboratory and model shop facilities
Attractive salaries
A stable yet progressive organization
Interviews are conducted by members of our engineering staff.

Airmail your summary of qualifications to:
CALTECH |JET PROPULSION LABORATORY 4800 Oak Grove Drive

Pasadena, California

- The Silk Screen method is being widely accepted for preparing copper laminated plastic panels prior to etching printed circuits. General Decorator Presses put printed circuits on an automatic, high production basis. Bowed panels are held flat by vacuum. Line contact impression and accurate register give clean, sharp reproduction uniform layer of resist.

Model No.	B1224	B1824	81836
Sheet Size	$13 \times 25^{\prime \prime}$	$19 \times 25^{\prime \prime}$	$19 \times 37^{\prime \prime}$
Speeds Up To	1000 perhr.	800 per hr.	800 per hr

Write for complete information
RESEARCH AND SUPPLY COMPANY
572 S. Division Avenue Grand Rapids 3, Michigan

GOLD INLAY KNOBS

You can get beautiful gold inlay knobs, pointers, instrument controls . . . thousands of styles and varieties. . . in any quantity from GEE-LAR - The House of Knobs. They're available in both knurled and spring types, in either walnut or ivory backgrounds. For faster service and lower cost . . . plus the widest selection
. . get your Gold Inlay Knobs from GEE-LAR!

THE HOUSE OF KNOBS
GEE-LAR MANUFACTURING COMPANY

percent. The output frequency spectrum is flat to within 1 db from d-c to 27 cps in the standard model, but the frequency spectrum can be modified upon special request. Output voltage is 5 v rms , regulated to within 0.1 db , and available from a low source impedance. A continuously adjustable calibrated attenuator permits the output to be decreased from this value. A front panel meter continuously monitors the rms value of the output voltage. The instrument can be removed from the cabinet and mounted in a standard rack. It is intended for use with analog computers, simulators, servo testing and many other applications.

RELAY

operates at 10 milliseconds
Hedin Tele-Technical Corp., 87 Dorsa Ave., Livingston, N. J. Relay $100-\mathrm{MS}$ operates at 10 milliseconds and incorporates a thorough wiping effect. Available either hermetically sealed or with dust cover, it is designed for $d-c$ applications in contact combination from spst to dpdt. Capacity is up to $1.5 \mathrm{am}-$ peres inductive and 5 amperes resistive with coil resistance to a maximum of 30,000 ohms. Bounce and chatter are eliminated by the built-in wiping action in the con-
tact movement. Drop-out if desired can be adjusted to about 65 percent of pickup. Wattage requirement is 250 mw per pole. The relay's applications include controls, recording, signal systems and electronic instrumentation, particularly in plate circuits and in circuits employing transistors.

TEN-MC SCALERS

for high-speed counting
Electrical and Physical Instrument Corp., 42-19 27th St., Long Island City 1, N. Y. Model 4104 and 4124 10-me scalers have a binary or decade scale of 4.096 or 1,000 respectively, or larger if desired. A five digit electrical reset register with any count predeterminable, a predetermined timer, a regulated $h-v$ supply (0 to $2,500 \mathrm{v}$) for photomultipliers and the availability of a general purpose 10 -mc preampliflier and pulse height discriminator make these units ideal for highspeed scintillation counting in nuclear and medical applications.

PREAMPLIFIER

for use with pickups
Endevco Corp., 180 E. California St., Pasadena, Calif., announces a

The MODEL "777" V.T.V.M. is o completely self-contoined, ready-to-use test instrument. Its accessories and the HF co-ax cable, DC Probe, $A C$ line cord ond instruction book all fit in the genuine California Saddle Leather carrying case that is furnished with the instrument.
(VACUUM TUBE VOLTMETER)
42 Unduplicated Ranges
llluminated Dial (5000 hour self-contained lamps)
Die Cast Chrome Finished Bezel
Metal Case, unbreakable, ultra compact
Doubly Shielded, time proven 200 microamp movement Permanent Accuracy... 3\% DC, 5\% AC
Large, Easy to Read Scales 41/8" Long
Color Coded Scales: green-ohms;
black-AC, DC; Red-P. to P.
2 Zero Center Scales for FM Discriminator Alignment
Separate Range and Function Switches
Only 2 Jacks for All Measurements
New, High Style, Easy-ło-Use Chrome Bar Knobs
Dual Purpose Handle also serves as AC line cord reel
"777" V.t.v. complete with
Coaxial Cable, DC Probes and leather Case at your PARTS DISTRIBUTOR

151 PASADENA AVE., SOUTH PASADENA, GALIF.

PRECISION

 ATtENUATION
то 3000 mct

TURRET ATTENUATOR
featuring PULL-TURN-PUSHaction

FREQUENCY RANGE : dc to 3000 mc . CHARACTERISTIC IMPEDANCE: 50 ohms. CONNECTORS: Type " N " Coaxial female fit. tings each end
AVAILABIE ATTENUATION: Any value from 1 db to 60 db .
VSWR: 1.2 max., dc to $3000 \mathrm{mc} / \mathrm{s}$, values from 10 to 60 db . As value decreases below 10 db , VSWR increases to not over 1.5.
ACCURACY: $\pm 0.5 \mathrm{db}$.
POWER RATING: One watt sine wave power dissipation.

SINGLE "IN-THE-LINE" ATTENUATOR PADS

 and 50 ohm COAXIAL TERMINATIONSThis new group of pads and terminations features the popular Type C and Type N connectors, and permits any conceivable combination of the two styles. For example, the two connector types, either male or female, can be mounted on the same attenvator pad, with or without flanges, so that it may serve as an adapter as well as an attenuator. Frequency range, impedance, aftenuation, VSWR, accuracy and power rating are as designated above. Send for free bulletin entitled "Measurement of RF Attenuation."

new probe type of preamplifier for use with piezoelectric pickups permitting the user to trim the self-generating pickup output sensitivity to an even or standard value so that direct reading of physical parameters such as acceleration, force and pressure is possible with standard v-t voltmeters. Model 2614 features an input selector switch for the choice of 3 input conditions: 1,000 megohms for use with vibration pickups, extending the 1-f range of piezoelectric pickups to $2 \mathrm{cps} ; 1,000$ megohms with d-c isolation for general uses; and 22 megohms for shock pickups, and fast recovery from overloads. In addition, a subminiature 3 decade shunt capacitv switch is provided with a total capacitance from $10 \mu \mu \mathrm{f}$ to 9,990 $\mu \mu \mathrm{f}$ in $10 \mu \mu \mathrm{f}$ steps. The unit features amplifiers gains of 1,3 and 10 , with stability of 1 percent or better, a frequency response from 2 cps to $15,000 \mathrm{cps}$, and an output of 5 v into $2,500 \mathrm{ohms}$

WET BLAST UNIT

 cleans tube leadsThe Cro-Plate Co., Inc., 747 Windsor St., Hartford 1, Conn. Designed for the high production rate cleaning of electronic receiving tube leads to insure good welding bond, a new rotary automatic is capable of blast cleaning, rinsing, drying and unloading at the rate of approximately 1,200 parts per hour. All chemical cleaning is eliminated through the use of the wet blast
method. Mounted vertically within the cabinet is a 6 -station, air-operated rotary indexing table to which 6 vertically positioned work holding spindles are attached. Each spindle supports a chuck which, in turn, carries the tubes through each of the separate, baffled operating stations. The use of different work holding fixtures makes the unit highly adaptable to the finishing of a wide variety of other parts.

SILICON POWER RECTIFIER

for miniaturization purposes
Automatic Mfg. Corp., subsidiary of General Instrument Corp., 65 Gouverneur St., Newark 4, N. J. The tiny silicon power rectifier illustrated, designed for use in equipment where miniaturization and high temperature reliability are vital, takes up only $3 / 100 \mathrm{cu}$ in. of space and weighs only $7 / 100 \mathrm{oz}$. It should play an important role in electronic gear for guided missiles, supersonic aircraft and other military equipment. In the commercial and industrial field, the new rectifiers are designed for manufacturers of power supplies, magnetic amplifiers, communications equipment, and many types of computers, whose bulk can be greatly reduced by use of the tiny semiconductors instead of vacuum tubes or selenium rectifiers. They are available in 6 voltage ranges, capable of handling voltages as high as $1,000 \mathrm{v}$, with d-c output currents on the order of 300 to 400 ma . They operate at temperatures as high as 200 C.

Literature

Electronic Test Instruments. Shasta Division, Beckman Instruments, Inc., P. O. Box 296, Station A, Richmond, Calif., has available

SIDELIGHTS ON THE SCIENTISTS number
 2 of a series

How many patents per Ph. D.?

Some of the young fellows on our staff have been analyzing our files of personal data regarding scientists and cugineers here at Huglipes. What group characteristics mould be found?

With addirional facts cheerfully contributed by their colleagues the h have come up with a score of relationships-some amusing, some quite surprising. We shall
chart the most interesting results for you in this series.

Data obtained from a 20% random sample of the 2.200 professional engineers and scientists of Hughes Research and Development Laboratories.

In our laboratories here at Hughes, more than half of the engineers and scientists have had one or more years of graduate work, one in four has his Master's, one in is his Doctor's. The Hughes research progran is of wide variety and scope, affording exceptional freedon as well as exceptional facilities for these people. Indeed, it would be hard to find a more exciting and rewarding human climate for a career in science. Too, the professional level is being stepped up continually to insure our future success in commercial as well as military work.

Hughes is pre-eminent as a developer and manufacturer of airborne electronic systems. Our program includes military projects in ground and airborne electronics, guided missiles, automatic control, synthetic intelligence. Projects of broader commercial and scientific interest include research in semiconductors, electron tubes, digital and analog computation, data handling, navigation, production automation.

Right now the Laloratories in Culver City, California, and the Missile Production facility in Tucson, Arizona, have positions open for engineers who are experienced in any or all phases of Test Equipment Design.

scientific staff relations

Hughes

RESEARCH AND DEVELOPMENT
LABORATORIES
Culver City, Los Angeles County, Califomia
a new 8-page catalog describing its line of electronic test instrumentation including expanded scale voltmeters and frequency meters, vtvm's, oscillators, resistance bridges, power supplies, wide-band amplifiers, WWV receiver, decade inductor and various accessories.

Fluorocarbon Plastics. United States Gasket Co., P. O. Box 93, Camden, N. J. Those interested in Fluorocarbon plastics in their products will find a 20 -page brochure helpful. "Inside U.S.G." is a concise, word and picture story of the company-fabricators of Teflon, Kel-F, Bakelite Fluorothene, and similar engineered plas-tics-and how it functions as a supplier of these plastics for electronic purposes. It highlights the specialized engineering and production facilities available to customer manufacturers to assure sound application and the most economical production of their requirements.

Ask for bulleting No. IN-554.
Electronic Design and Manufacture. Electronic Products Corp., 322 State St., Santa Barbara, Calif., has released a bulletin describing facilities for the design and manufacture of electronic equipment for military and industrial applications. The bulletin describes the company's facilities for the fabrication of cables and electrical wiring harness assemblies including facilities for braiding and molding.

The bulletin also tells of the company's activities in the assembly of electronic devices, design and manufacture of specialized electronic test equipment, power supplies, subminiature electronic assemblies and etched-circuit wiring.

Vibration Measurement. General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. A 64-page booklet covers the meaning of vibration terms, description of vi-bration-measuring instruments, procedures, typical examples, and interpretation of results. Unwanted vibration, like noise, plagues nearly every industry and plant at one time or another.

There are also many types of
desirable vibrations. The first step toward understanding what is happening in all these cases is the measurement of the vibration, and a useful guide for this work is the "Measurement of Vibration."

Calibrator. Allegany Instrument Co., 1000 Oldtown Road, Cumberland, Md. A single-sheet bulletin illustrates and describes the type C calibrator, a universal tool for the standardization of wire strain gages, transducers and thermocouples. Features, operation information and specifications are given. Price of the unit discussed is $\$ 650$.

Electronically Regulated Power Supplies. Tarc Electronics Inc., 48 Urban Ave., Westbury, N. Y. A new data sheet describes a line of four power supplies, electronically regulated and designed to meet the extremely close tolerances encountered in color and monochrome television. Specifications for units with output currents ranging from 50 ma to 600 ma are given.

High-Frequency Resistors. International Resistance Co., 401 North Broad St., Philadelphia 8, Pa., has announced catalog data bulletin F-3 containing comprehensive data on characteristics, applications, resistance values, tolerances, terminations, insulation and voltage rating for type HFR high-frequency resistors. Included are charts and graphs.

Electronic Frequency Meter. Hew-lett-Packard Co., 275 Page Mill Road, Palo Alto, Calif. Volume 7, No. 1 of the Journal illustrates and describes the model 500 B electronic frequency meter, a 3 -cps to $100-\mathrm{kc}$ unit with discriminator output and expandable scale. Complete technical specifications are listed. Also included are specifications for the electronic tachometer indicator.

Master TV Manual. BlonderTongue Laboratories, Inc., 526 North Ave., Westfield, N. J. A 12page master tv installation manual discusses all types of multiple tv systems, industrial tv systems and the proper use of Masterline equipment. Illustrated sections cover antenna and line installation, signal

Berkeley moon ssy FREQUENGY METER...

1. Wider Frequency Coverage ...
$0-42 \mathrm{mc}$ without plug-ins, extendable to 515 mc with Model 5580 VHF-UHF converter.
2. Universal-Instrument Versatility...
a frequency ratio meter, 0.1 mc period meter, $1 \mu \mathrm{sec}$ to $10,000,000 \mathrm{sec}$ time interval meter, 0.2 mc EPUT* meter, or 1 mc counter.

3. Reasonably Priced...

unmatched in range, precision and utility at anywhere near the price.

FEATURES

- Direct-coupled input amplifiers
- Direct connections to digital printer, digital-to-analog converter, or data converters for IBM card punches, electric typewriters or telemetering systems
- Provision for external frequen. cy standard input
- Coupling to WWV receiver
- Relay rack mounting if desired

78

INDUSTRIAL CONTROL SYSTEMS
division
BECKMAN INSTRUMENTS INC. 2200 Wright Avenue, Richmond 3, California

BRIEF SPECIFICATIONS

Frequency Meas. Range: 0 cycles to 42 mc Time Interval Meas. Range: $1 \mu \mathrm{sec}$. to 10^{-7} seconds Period Meas. Range: 0 to 1 mc (Period $\times 10,0$ to 100 kc)
Input Requirements: 0.1 v . peak to peak
Time Bases: Frequency 0.000002 to 20 seconds, decade steps. Time Interval and Period Meas: 1 mc to 1 cps , decade steps
Accuracy: $=1$ count of unknown (or time base) $=$ crystal stability
Crystal Stability: Temperature stabilized to 1 part in 10: (short term)
Display Time: 0.2 to 5 seconds
Power Requirements: $117 \mathrm{v} . \pm 10 \%, 50-60$ cycles, 260 watts
Dimensions: 203/4"W $\times 19^{\prime \prime} \mathrm{H} \times 16^{\prime \prime} \mathrm{D}$. Weight, 100 lbs Price: $\$ 1,745.00$ (f.o.b. factory)

No other frequency meter offers all the advantages of the Model 5571 - why settle for less? Write now for complete technical and applications data; please address Dept G. 12 test \& nuclear instruments

Corrections of Product Listings for the 1955-1956 Electronics Buyers' Guide

BOLD FACING AND ADVERTISING PAGE NUMBER ARE OMITTED IN THE FOLLOWING:

AUTOMATIC ELECTRIC MFG. CO.,
62 State St.,
Mankato, Minn.
ADVERTISING PAGE 560

RELAYS
Impulse
Latching
Power
Sensitive
Sub-Miniature
Telephone
Time Delay

TIMERS-Automatic Cycle
TIMERS-Automatic Interval
TIMERS - Automatic Reset
TIMERS-Cycle
TIMERS-Motor Operated
TIMERS - Multicontact
TIMERS-Sequence

SWITCHES_Time

DIMCO-GRAY CO.,
207 E. 6th St.,
Dayton, Ohio
ADVERTISING PAGE 678

FASTENERS \& FASTENING DEVICES
INSULATION PARTS
Plastic Insulation Parts-
Molded
KNOBS
RELAYS
Time Delay
SWITCHES-Time
TIMERS-Automatic Interval
TIMERS - Motor Operated

EMELOID CO., INC.,
1239 Central Ave.,
Hillside 5, N. J.
ADVERTISING PAGE 539
KNOBS

${ }_{\text {Asp }}$ electronics BUYERS' GUIDE ${ }_{A B C}$

A McGraw-Hill Publication 330 West 42nd St,, New York 36
distribution, closed-circuit ty, system maintenance and trouble-shooting procedures.

Simplified charts and tables, with specific examples, show how to calculate signal levels at any point. All the company's amplifiers, converters, tapoffs and accessories are fully described. Also offered is free engineering assistance.

Infrared Radiation Pyrometers. Servo Corp. of America, 20-20 Jericho Turnpike, New Hyde Park, L. I., N. Y. A new 4-page brochure describes 2 infrared radiation pyrometers. The IR-2 is an industrial instrument designed for temperature measurement of moving objects in process as well as the location of hot spots in inaccessible equipment.

The IR-1 discussed covers a nominal temperature range of ambient to $1,000 \mathrm{C}$. As a control instrument, the unit described is highly suitable for fine measurements. As a control instrument it is outstanding for processes requiring high sensitivity near ambient.

Bobbin Winder. Geo. Stevens Mfg. Co., Inc., Pulaski Road at Peterson, Chicago 30, Ill., has available a data sheet on the new compact front-loading multiple-head adjust-able-length bobbin winder. Model 314-AM3 is pictured and completely described.

Technical data include dimensions, weights, types of windings, coil o-d and length, maximum distance between winding centers, wire sizes, tension equipment, builtin adjustable cam, gears, slowstart and winding speed, new oneway clutch, set up time, motor equipment, brake, counter, instant reset and start, automatic one-shot lubrication and new instant automatic brake release.

Dielectric Capacitors. Corson Electric Mfg. Corp., 540 39th St., Union City N. J. A 2 -page, 2 -color catalog sheet describes and lists a new line of ultrahigh-stability polystyrene dielectric capacitors. The capacitors discussed are designed for use where low leakage and low dielectric absorption are important. The sheet shows standard units which come in bathtub
and rectangular can types in 200 , 400 and $600-\mathrm{v}$ ratings, from 0.05 to $25 \mu \mathrm{f}$. Also described are special units which may be ordered with a variety of housings and terminals, still lower temperature coefficients, higher insulation resistance, silicone impregnation, lower power factors, lower retrace, and other special specifications.

Resistors. International Resistance Co., 401 North Broad St., Philadelphia 8, Pa. Catalog data bulletin P-2a covers types PW-7 and PW-10 resistors. Comprehensive data on applications, design and construction, characteristics, ranges, power ratings, tolerance, stamping and derating are given. Charts and graphs are included.

Electromanometer. Consolidated Engineering Corp., 300 N. Sierra Madre Villa, Pasadena 15, Calif. Bulletin 1547 illustrates and describes the type 37-103 Electromanometer, a precision, pressuremeasuring instrument. A functional diagram is included, along with pressure balance information, specifications, applications and readout methods. A price list for the type 37-103 Electromanometer system is also included.

Captured Spot Displacement Follower. The Optronic Co., 136 Caputo Lane, San Jose, Calif. A 12page folder illustrates and describes the Optron, a device for measuring displacement, runout or vibration of oscillating or rotating parts from $1 \mu \mathrm{in}$. to 5 in . with frequency response from 0 to 100 ,000 cps .

The captured spot displacement follower discussed may be used to measure amplitude and frequency of any displacement or vibration within the specified ranges. Principle of operation, component description, overall assembly and specifications are included.

Cable Harness Tester. Industrial Instruments Inc., 89 Commerce Road, Cedar Grove, N. J. A singlesheet bulletin illustrates and describes the type A-1 electric cable harness tester, a compact, rugged instrument. The tester discussed makes continuity measurements,

MICROWAVE POWER MEASUREMENT DEGREES
FROM

CUBICS 2 -UNII CALORIMETRIC WATTMETERS

for obtaining direct power readings in testing electronic equipment - without guessing!

 power measurement gives you direct power readings... with such precision, and yet so simple in its application.The model shown is the MC-IB for power measurement from 2600 to $26,500 \mathrm{MC}$. Also available are the models MCX-1A (coaxial type) for power measurement from 100 to 3000 MC , and MCL-IA (L-Band waveguide type) for power measurement from 1120 to 2600 MC .

Whether checking field equipment, developing or making acceptance tests on new equipment or magnetrons in the lab, or in production, one of CUBIC'S Calorimetric Wattmeters will be an invaluable addition to your test equipment. Standard laboratories calibrate secondary power devise, especially tridge type bolometer instruments. Exact calibration is provided month to month.

Write for more information, and ask for our catalog of other test equipment and woveguide components. Or if you have a problem in development or engineering, CUBIC offers the services of its engineering staff and tacilities in its solution.

TERMALINE DIRECT READING R. F. WATTMETERS

(DUAL RANGE)

MODEL 611-0.15 and 0.60 Watts MODEL 612-0.20 and 0.80 Watts IMPEDANCE-511/8 Ohms

Models 611 and 612 are popular instruments in research and design laboratories, vacuum tube plants, transmitter manufacturing plants, and in fixed and mobile communication services.
They are ruggedly built for portable use, and are as simple to use as a D.C. voltmeter. The power absorbing load resistor is non-radiating, thus preventing transmission of unwanted signals which interfere with message traffic in communication services.

Frequency range: 30 to 500 MC (30 to 1,000 MC by special calibration)
Impedance: 5I.5 OHMS-VSWR less than 1.1
Accuracy: Within 5% of full scale
Input connector: Female " N ' which mates with UG-21 or UG-2IB. Adapter UG-146/U is supplied to mote with VHF plug, PL259.
Special Scale Model " 61 s " are available as low as $1 / 2$ watt full scale, and other models as high as 5 KW full scale. Cafalog furnished on Request

All these . . . and more . . . for YOUR BEST CONNECTIONS

write for

 80-PAGE CATALOG
LSGO CORPORATION

5753 Mariemont Ave. Cincinnati 27, Ohio

insulation resistance tests, dielectric strength tests, and provides terminations for the use of external instruments. It is designed for use in production or maintenance work. Price is included.

Precision Instruments. Allen B. DuMont Laboratories. Inc., 760 Bloomfield Ave., Clifton, N. J. A recent pocket-sized folder covers 13 new precision instruments. Included are 5 cro's including $21-\mathrm{in}$. indicator, portable field unit, and others to cover the range of d-c to $20 \mathrm{mc} ; 4$ new oscillograph-record cameras; new high-quality vtvm and 2 low-distortion oscillators. Illustrations, brief details and prices are given.

Precision Cleaning. Cobehn, Inc., Caldwell, N. J. An 8-page folder deals with a solvent and equipment that safely spray cleans electronic components, contact points and precision instruments; and removes oil and grease, rosin flux, abrasives, lapping compounds and dust, dirt and lint.

The Cobehn solvent and equipment are described with an illustration of a typical installation of a bench unit. The booklet discusses the company's engineering service which is available without cost or obligation. Also available is a single page list of satisfied user companies of this technique of precision cleaning.
Boron-Carbon Precistors. International Resistance Co., 401 North Broad St., Philadelphia 8, Pa. An illustrated description of $\frac{1}{2}$-watt molded Boron-Carbon precistors is contained in catalog data bulletin $\mathrm{B}-8 \mathrm{a}$. It includes comprehensive data on characteristics, applications, wattage rating, tolerance, dimensions and insulation. Charts and graphs are also shown.

Lubricants. The Alpha Molykote Corp., 65 Harvard Ave., Stamford, Conn. Bulletin 103-A is a 4 -page 2 color catalog of the variety of Molykote lubricants now available to industry. It lists 17 types of this molybdenum disulfide lubricant line and features a complete explanation, with diagrams, of the importance of this compound in extreme bearing pressure, and high,
low and normal temperature lubrication applications. Five new Molykote iubricants are discussed.

Also included is a selector chart which describes each Molykote type, the kind of carrier used in it, the temperature range in which it operates best, and the proper method of application.

Subminiature Relays. Elgin-Neomatic, Inc., 2435 N . Naomi St., Burbank, Calif., has issued a new brochure illustrating rugged subminiature relays designed for a wide variety of high-precision applications. The brochure includes the Neomite, a tiny precision relay, built in a standard transistor case for transistorized circuitry.

Also featured are the Neomatic VK and VR series, lightweight, compact units with excellent vibration resistance due to counterbalanced armature design. The brochure lists a variety of enclosures available in the VR and VK series and a complete rundown on specifications.

Wire-Wound Resistors. International Resistance Co., 401 North Broad St., Philadelphia 8, Pa. Type MW wire-wound resistors are covered in the 4 -page bulletin B-2a. Comprehensive data on construction, tolerance, power rating, marking, humidity, adaptability and frequency characteristics are given. Detailed charts and graphs are included.

Precision Indicators. MinneapolisHoneywell Regulator Co., Wayne and Windrim Aves., Philadelphia 44, Pa. Data sheet No. 10.02a gives specifications, dimensions and operating characteristics of the Brown-Rubicon precision indicator. Now available in two overall ranges, the instruments described greatly speed laboratory-type electrical measurements.

Infrared Detectors. Barnes Engineering Co., 30 Commerce Road, Stamford, Conn. The latest type of infrared detectors used as sensing elements in radiometers, pyrometers, infrared spectrometers and other infrared instruments are described in a new bulletin called "OptiTherm Infrared Detectors." It overs the characteristics, con-

TIC's New 800A

A MEASUREMENT LABORATORY IN ONE COMPACT INSTRUMENT

featuring

- Wider ranges of current, voltage and resistance
- Very high stability
- High accuracy
- Wide frequency range
- Portability
- Rugged construction

UNMATCHED IN RANGE

DC and AC Volts a full decade lower (0.1V to 1000 V , full scales)

Resistance values a full decade lower and higher (0.02 ohms to 5000 megohms)

Current values from 1 millimicroampere to 100 MA (full scales)

Sale of the Instrument Division of Technology Instrument Corporation to Acton Laboratories, Inc. becomes effective January 1, 1956. With the transfer, Acton Labs. adds to its own high precision instruments the full, industry-endorsed TIC line. Acton Laboratories' expanded staff means stepped up deliveries . . . its experience in the manufacture of both select lines assures continuing emphasis on quality.

- Patents applied for

IEEHNOLOGY INSTRUMENT GORP.

electronic power to spare...

LM Electronics, Inc 40,000 watt model PP. 40/40. A Electronic Power Supply

Pioneered by
LM Electronics, the advanced design of these new
 electronic power supplies provides up to 125,000 watts of audio frequency power, permits vibration test programming unattainable by other means. Systems using LM power supply units can produce single sweep-range sine wave, complex wave, noise, and flight simulation vibrations with unmatched ease and accuracy. Designed for laboratory, production and field use, LM electronic power supplies also have wide applications as variable frequency power sources and ultrasonic generators.

WRITE TODAY for detailed
specificotions and technical data on our complete line of electronic power supplies and vibration
 test equipment

struction, circuitry and uses of these high-speed thermistor-type sensing elements.

Four-Watt Resistors. International Resistance Co., 401 North Broad St., Philadelphia 8, Pa. Catalog data bulletin P-1a illustrates and describes the type PW-4 4watt resistors. It contains comprehensive data on tests, applications, ranges tolerance, stamping, rating and derating. Two graphs are included.

Power Supply. Technical Advisory Associates Corp., 30 Broad St., New York 4, N. Y. A single-page bulletin covers the AC700 power supply, a unit designed for use in critical resistance heating applications, for example the heat sealing of glass diodes.

The automatically recycling timer discussed allows precise timing of the heating cycle over a wide range. Output current is continuously variable up to 25 amperes. Full specifications are listed in the bulletin. Price of the power supply described is $\$ 350$.

VTVM's. Technology Instrument Corp., 531 Main St., Acton, Mass., has prepared an 8-page brochure describing the outstanding features of its new extended range type 800 A and 800 B vtvm's. The 800 A is priced at $\$ 275$; the $800 \mathrm{~B}, \$ 325$. Die-cut into the shape of the instruments, the brochure explains their operation and use in simple terms.

Also available is Laboratory Report No. 16, entitled "Basic Theory of the Type 800 A Vacuum Tube Voltmeter," which discusses in detail the design consideration, giving basic circuits and development logic. Die-cut brochure No. I-105 and Laboratory Report No. 16 are available upon written request.

Delay Lines. Helipot Corp., 916 Meridian Ave., South Pasadena, Calif., has available the second technical paper on Helidel delay lines, entitled "Criteria and Test Procedures for Electromagnetic Delay Lines." Technical paper No. 491 discusses general types of fixed and variable electromagnetic delay lines and defines conventional ter-

Genisco's New GOH Accelerometer
 WTHASTANDS VIBRATIONAL acGeLERATIONS of 15 G's up to 2000 cps

This newest Genisco Accelerometer is a rugged, oil-damped, potentiometer-type instrument designed to operate in the most severe missile and aircraft vibrational environment. For example, in a recent production test the GOH performed satisfactorily after vibrational environment of 15 G 's up to 2000 cps . As further proof of its ruggedness, the GOH will withstand $40-\mathrm{G}$ shocks of 5 millisecond duration on the sensitive axis, and steady-state accelerations of 30 G 's on the non-sensitive axes and 10 G's on the sensitive axis without damage.
heating element available - A thermo-stat-controlled, internal heater may be installed in the GOH to keep operating characteristics constant between $-50^{\circ} \mathrm{F}$. and $+160^{\circ} \mathrm{F}$. However, thermostat operation is limited to 60,000 feet or less, 95% relative humidity at $160^{\circ} \mathrm{F}$., and a vibrational enviromment of 10 G 's up to 500 cps .

SPECIFICATIONS

Ranges: $\pm 1 \mathrm{G}$ to $\pm 3 \mathrm{G}$'s inclusive.
Natural Frequencies: 7 cps . 1012 cps .
Nominal Damping: 0.65 of critical at $75^{\circ} \mathrm{F}$. Values between 0.4 to 1 sel if desired.
Resistance: 14000 ohms ($\pm 5 \%$); center tap al 0 G-paint. Other resistances also supplied.
Potentiometer Voltage: Up to 60 volts.
Resolution: One part in 300 for standard potentiometer.
Noise Levels: Less than 10 mv at 0.1 ma brush current.
Linearity: Within 1% of full scale from best strcight line through calibration points.

Complete technical data on the GOH and other Genilable from Genisco, Incorporated Transducers is Avenue, Los Angeles 64 , Caplifornio 22, Federal copy today.

RELIABILITY FIRST

NEW PRODUCTS
(continued)
minology. Common delay-line distortions are illustrated, methorls for correction are analyzed, test procedures (both pulse and sinusoidal) and methods for measuring linearity and phase shift are described.

Deposited Carbon Resistors. International Resistance Co., 401 North Broad St., Philadelphia 8, Pa. Comprehensive data on tests, applications, specifications, tolerance, ranges, performance and dimensions of deposited carbon resistors are available. Detailed charts and graphs are given in the 4 -page catalog data bulletin B-4a.

Vitreous-Enameled Resistors. Ohmite Mfg. Co., 3680 Howard St., Skokie, Ill. A 2-page bulletin, No. 147, gives specifications and features of the company's new line of small wire-wound, vitreous-enameled resistors with axial leads. It shows the two sizes, rated at 5 and 10 w , that are carried in stock in a wide range of resistance values. Also shown is a price schedule.

Connector Bulletin. DeJUR-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. A 2-page illustrated color bulletin describes features of the new 37 -contact Continental connector suitable for airborne electronics. It includes electrical and mechanical ratings, mounting and clearance dimensions and diagrams. Write for bulletin CCC20.

Building Blocks. Servo Corp. of America, 20-20 Jericho Turnpike, New Hyde Park, L. I., N. Y. A 12page brochure describes a versatile array of electromechanical general purpose analog computer components. Called the Servomation building blocks, various component combinations provide the means for industrial control, design and mathematical problem solving, classroom demonstration and data processing. The units discussed are coordinated modular assemblies which match each other in all the important mechanical and electronic specifications. Featured are the Servoscope for analysis of phase and gain shifts, the Servoboard for breadboarding electromechanical

For operating tape re. corders, dictating ma. chines, amplifiers and other 110 -volt radio. audio devices from DC or storage batteries. Used by broadcast studios, program producers, executives, salesmen and other "field workers".

DUO-VO:T GENEMOTORS

The preferred power sup-
ply for 2 -way mobile radio
installations. Operates
from either 6 or 12 -volt batteries. Carter Gene. motors are standard equipment in leading makes of auto, oircraft, railroad, utility and marine communications.

CHANGE-A-VOLT DYNAMOTORS

Operates 6 -volt mobile radio sets from 12 -volt automobile
batteries also from 24,32 batteries... also from 24, 32 and 64 -volt battery power. One of many Carter Dynamotor models. Made by the world's largest, exclusive man. ufacturer of rotary power supplies.
BE SAFE ... BE SURE ... BE SATISFIED $A C$ can be produced by revers ing the flow of DC, like throw. ing a switch 120 times a sec ond. But ROTARY converters actually generate $A C$ voltage from an alternator, same as ROTARY power is such clean AC so dependable such clean ial for hash-free operation of al for hash-free operation of
recorders from DC power.

MAIL COUPON for illus trated bulletin with complete mechanical and electrical specifications and peformance chaits. Carter Motor Co., Chicago 47

assemblies, amplifiers, modulators, demodulators, corrective network, power supplies, jack panels and cabinetry.

Nuclear Reactor Brochure. Min-neapolis-Honeywell Regulator Co., Wayne and Windrim Aves., Philadelphia 44, Pa., has available a brochure reviewing the amplifiers, power supplies, detectors and recorders applicable to nuclear reactor control. An illustration of typical reactor-control instrumentation is also shown along with panels in operation. Readers are invited to request the brochure on their own letterheads.

Magnetic Cores. General Ceramics Corp., Keasbey, N. J. A 4-page folder illustrates and describes Ferramic magnetic cores. Specifications and data on standard grades of Ferramic H are given. A table of magnetic properties of other Ferramic bodies is included.

Precision Oscilloscope. Laboratory For Electronics, Inc., 75 Pitts St., Boston 14, Mass. The model 411 Easy-Six, a wide-band, adaptable, precision oscilloscope, is described in a new 4 -page brochure. The leaflet describes the way ease of operation has been brought to a complex, precision piece of test equipment. It also describes six plug-in packages which make it possible to use the oscilloscope as a delayed or undelayed model, a gated marker generator, a tv test instrument, a video switch and a long sweeps generator.

Plug-In Units. EECO Production Co., 506 E. First St., Santa Ana, Calif. The new 40 -page illustrated catalog 827 presents circuit drawings and specifications on 36 of the company's different plug-in units for the design, development and production of electronic equipment. A number of typical applications are also presented to show the use of the units.

Magnetic Components. Milwaukee Transformer Co., 5231 North Hopkins St., Milwaukee 9, Wisc. A 16-page catalog lists various transformers and other magnetic components manufactured by the com-

PRECISION QUALITY componentis OF TUNGSTEN, MOLY, NICKEL CLAD WIRE, ALLOYS, KOVAR

throughout production with Tungsten hard glass leads produced under General Electric Timing Control. Each tungsten lead is microspecially inspected for flaws. DKE offers highest quality and LOW PRICES. Send drawings for quotations and let us prove the economy of our prices.
 immediate delivery on following bases: 50 Watt, 3303B, 412 Industrial Base, Giant 7 Pin Bayonet, 4310 Four Pin Jumbo, Tetrode, Hydrogen Thyratron Bases in both Aluminum and Copper up to 6.50 dia, etc. All bases to JAN-1A/MIL-E-1B and subjected to weights and strength tests.
DKE HYDROGEN THYRATRON TUBE BASES

CALL OR WRITE FOR QUOTATIONS ON YOUR SPECIFIC REQUIREMENTS

тне engineering co.

27 WRIGHT ST., NEWARK 5, N.J.
pany. Case dimensions and ratings of many of the company's stock types are given and illustrated. The components described are engineered for commercial, industrial, laboratory and government applications.

Elapsed Time Indicators. Haydon Mfg. Co., Inc., Subsidiary of General Time Corp., Torrington, Conn., announces availability of product engineering bulletin No. 5 describing the new 60 and 400 cycle hermetically sealed total hour indicators now being manufactured for military applications. Complete specifications are listed. The rugged running time meters described indicate and repeat hours-of-operation up to 10,000 on a dial-type face.

Potentiometer Checker. Analogue Controls Inc., 37 W. 20th St., New York 10, N. Y. A 2-page flyer describes the model PC-15 potentiometer checker. The calibration standard instrument discussed finds wide application in receiving inspection of potentiometers and in calibration use where system performance may be improved by trimming potentiometers in accordance with individual error distribution as determined by comparison with an accurate standard. Complete operation information and technical specifications are included.

Electronic Instruments. KrohnHite Instrument Co., 580 Massachusetts Ave., Cambridge 39, Mass. Catalog D is a 36 -page booklet giving illustrated descriptions, chief features and specifications for a line of versatile electronic instruments. It covers 8 models of ascillators, 6 filters, 6 power supplies and an amplifier. Included are 4 pages of reference material and suggestions for ordering.

Electronic Thermostat. Minneapo-lis-Honeywell Regulator Co., 4428 Wayne Ave., Philadelphia 44, Pa. A 16-page illustrated booklet tells how electronic flexibility lets you sequence from your thermostats when you want to, locate your thermostats where you want to, and compensate your thermostats as

Constant $50 \Omega-63 \Omega-70 \Omega$ impedances

AT andersen

solves the toughest delay line problems. produces rugged, efficient, reliable delay lines able to withstand wide temperature variation.
meets delivery schedules.

Characteristics of typical radar delay line:

- 2780 microsec. $\pm 0.1 \%$ at $20^{\circ} \mathrm{C}$
- 20 Mc. carrier frequency

6 Mc. bandwidth
Less than 56 db insertion loss into 200 ohm load -46 db spurious response ratio
Do you have a delay line problem? Write for Technical Bulletin 55 or call us foday. Your inquiry will receive prompt attention. 39 Talcott Road

West Hartford 10, Conn.

WAVE FILTERS AND OSCILLATOR NETWORKS FOR FREQUENCY-DIVISION MULTIPLEX SYSTEMS

Radio Engineering Products are leading designers and manufacturers of advanced-technique wave filters and bridge-stabilized oscillator networks for the voice-frequency and carrier-frequency ranges. These filters are mostly miniaturized in hermetically-sealed cases, and meet applicable military specifications. Standard units currently produced include those listed below. Delivery is from stock.

Service	Type	Function	Spo		Range	No. of chans.
A-M Carrier-	F2124	Send filter	170 cycles		255-4835 cycles	28
Telegraph Sel25						
"	F2125	Receive filter	170	"	255-4835 "	28
	F9610	Oscillator network	170	"	255-4835	28
'	F6131	Send filter	120	"	300-4980 "	40
"	F8261	Receive filter	120	"	300-4980 "	40
"	F9631	Oscillator network	120	"	300-4980 "	40
F-S Carrier- Telegraph, S + Dx 17	F11294	Send filter and oscillator network	120	"	$\begin{gathered} 3120,3240, \\ 3360 \end{gathered}$	3
	F11291	Receive filter and discriminator nełwork	120	'	$\begin{gathered} 3120,3240, \\ 3360 \end{gathered}$	3
"	F11209	Low-pass filter			0 to 2950 "	-
Carrier-Telephone (Type C System)	F15002	Channel filter	$\begin{gathered} \text { app } \\ 3 \end{gathered}$		3-32 kc.	8
Carrier-Telephone (Type C System)	F15340	Oscillator network	$\begin{gathered} \text { appr } \\ 3 \mathrm{k} \end{gathered}$		3-32 kc.	8
Carrier-Telephone "	F9511	Channel filter			4-36 ke.	8
	F9520	Oscillator network	4		4-36 kc.	8
Carrier-Telephone (Type C System)	F2121	Line filter and balancing network			5-kc. crossover	-
Carrier-Telephone (Type C System)	F8910	Line filter and balancing nefwork	-		3-ke. crossover	-
Curier-Telephone (Type H System)	F1922	Line filter and balancing network	-		3-kc. crossover	\pm
We will promptly supply full information on these and other types on request.						

> RADIO ENGINEERING PRODUCTS 1080 UNIVERSITY STREET, MONTREAL 3, CANADA
> Telephone: UNiversity 6-6887 Cable Address: Radenpro, Montreal
> manufacturers of carrier-telegraph, carrier-TELEPHone and broad-band rado systems

TEMPERATURE CABINETS	HUMIDITY AND
TEMPERATURE CABINETS	

Write for Gile Folder
SUBSIDIARY OF CRAMPION MFG. CO.
141 JEFFERSON ST., HOLLAND, MICH. MEMBER OF ENVIRONMENTAL EQUIPMENT INSTITUTE
much as you want to. The booklet explains how electronic control of heating and air conditioning is as flexible as a strand of wire.

Selenium Rectifier Design. Federal Telephone and Radio Co., 100 Kingsland Road, Clifton, N. J., has issued a 12 -page booklet entitled "Federal Selenium Rectifier Design Data Guide." It gives engineers the factors that should be considered in the design of industrial and military rectifiers and tells why these factors are important. The explanations are given simply and briefly, and cover a wide range of rectifier applications.

Included in the data gruide is a questionnaire which may be filled in and returned to the company for full evaluation of any specific design. The company's complete line of industrial rectifier products is also briefly described and illustrated.

Electronic Controls. Eaton Manufacturing Co., Kenosha, Wise. Complete with illustrations and circuit diagrams, the 16 -page bulletin EC-1 contains nontechnical, simplified information on the installation, performance and maintenance of the basic Dynamatic electronic control. The principles utilized to accomplish stepless speed control of Dynamatic eddy-current rotating equipment, using an a-c line as the power source, are described in detail. Precise speed control in addition to many other features which provide individual control requirements are presented.

Photoelectric Systems. Worner Electronic Devices, Box 118, Rankin, Ill. A new 20 -page booklet on photoelectric systems covers the uses of electronic equipment in industry. It is written in nonengineering terms for easy understanding. Copies are available by request made on business stationery.

R-F Connectors. American Phenolic Corp., 1830 South 54th Ave., Chicago 50, Ill., has released a new 64 -page D3 catalog covering the following r-f connector series: N, BN, C, LC, UHF, BNC, HN, between series adapters, coaxial cable fittings, push-on and Sub-

CORPORATION

312 QUINCY AVENUE, QUINCY, MASS.
minax. Dimensions, mounting holes, weights, impedance, materials and matching cable types are given for each connector. The DC3 also contains illustrated comnector cable assembly methods for each series. Requests for the catalog on company or government letterhead will be promptly filled.

Horn Antennas. Waveline Inc., Caldwell, N. J. Microwave optimum standard gain horns are illustrated and described in a single-page looseleaf perforated leaflet. The leaflet describes a set of 8 horn antemas covering the frequency range from 2.6 to 40.0 kmc . Gain of each horn discussed is $15.0 \mathrm{db} \pm$ 0.2 at the specified frequencies.

Sine and Pip Generator. Dalmotor Co., 1329 Clay St., Santa Clara, Calif. A new leaflet, form GPM-3, describes a small generator suited for continuous-indicating duty in radar instrumentation and similar applications. It produces simultaneously a two-phase sine-wave and two indicating pips per revolution.

Included in the leaflet are an illustration of the unit, a dimensioned outline drawing, a list of mechanical and electrical specifications and performance curves relating output voltage in volts to load resistance in ohms for both 20 -cps (1,200 rpm) and $35-\mathrm{cps} \quad(2,100$ rpm) operation.

Resistor Engineering Guide. International Resistance Co., 401 North Broad St., Philadelphia 8, Pa. Comprehensive data on the company's complete line of resistors and special products are listed in the revised 1955-1956 oflicial resistor engineering guide. Data given include JAN or MIL equivalent, rated wattage, standard tolerances, temperature rise, temperature coefficient, maximum operating temperature, ohmic values available, dimensions and approximate prices.

Precision Potentiometer. Helipot Corp.. 916 Meridian Ave., South Pasadena, Calif. A recent technical paper, No. 573, tells what happens to the operating characteristics of a precision potentiometer during its working life. Entitled "Precision Potentiometer Life and

साजD KITS IN ONE EVENINGbut they last a lifetime... and you save 50\%
38 Kits and 42 Instruments the Industry's most complete line of MATCHED TEST INSTRUMENTS

$1 / 2$-million EICO Instruments are now in use the world over! Thot's the proof of EICO's leadership in Value.

For latest precision eng. neering, finest components, smart professional appearance, lifetime performance and rock-bot. tom economy - see and compare the Elco line at your Jobber before you buy any higher-priced equipment! You'll agree with over 100,000 others that only EICO Kits and In. struments give you the industry's greatest values or lowest cost

[^15]

100 pages of the most complete and comprehensive data of antenna equipment and radio frequency transmission line ever published! There are 80 pages of product description and 20 pages of technical data . . . complete information for the engineer planning antenna systems. Send in the coupon below for your copy.

Get your Copy • Fill out Coupon Now!

ANDREW Corporation

Dept.E-12, 363 East 75th Street Chicago 19, Illinois

[^16]Reliability," the paper discusses the effects of wear on operating characteristics (linearity, total resistance, noise, torque and shaft play) and the operating characteristics of potentiometers which are affected during use. Suggestions for increasing useful life are also given.

Punched-Tape Control System. Barnes Engineering Co., 30 Commerce Road, Stamford, Conn. A brochure describing the application of Binotrol, a punched-tape control system, to a turret lathe to make it completely automatic, has recently been published.

The 8-page booklet describes the operating principles of Binotrol and relates in detail how all of the motions of the lathe are completely controlled by the system.

Preparation of the punched tape, application of binary number coding to the lathe's functions, and advantages of the new lathe are also discussed. The Binotrol system described has an operating principle that is digital-to-analog, and contains few vacuum tubes.

Four-Channel Carrier System. Lenkurt Electric Co., San Carlos, Calif. Volume 4, No. 10 of the Demodulator illustrates and describes the type 45 CB carrier system, which operates in the 40 to 76 -kc frequency range, and transmits up to 4 high-quality voice and signaling channels over an openwire pair.
New design features incorporated in the system include transistors. Design features, block diagrams, frequency allocation and modulation plan, as well as possible applications, are given.

Photoelectric Pyrometer. Photoswitch Division, Electronics Corp. of America, 77 Broadway, Cambridge 42, Mass. The 4-page illustrated bulletin PT556 contains descriptive data, specifications and dimensions on pyrometer type P2T, which provides new and greater flexibility in the fast and accurate measurement and automatic control of high temperatures.

The photoelectric pyrometer described operates over a range of from 1,000 to $5,000 \mathrm{~F}$ and will
pulse transformer kit simplifies
circuit design

Sprague's new Type 100Z1 Pulse Trans* former Kit contains five multiple winding transformers, each chosen for its wide range of practical application. Complete technical data on each of the transformers is included in the instruction card in each kit so that the circuit designer may readily select the required windings to give transformer characteristics best suited for his applications, whether it be push-pull driver, blocking oscillator, pulse gating, pulse amplifier, or impedance matching. Electrical characteristics of the transformers in the kit have been designed so they may be matched by standard Sprague subminia. ture hermetically-sealed pulse transform. ers shown in engineering bulletin 502B.
For complete information on this kit, as well as the extensive line of Sprague pulse transformers, write to the Technical Literature Section, Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.

CHARACTERISTICS OF KIT TRANSFORMERS

| Type | Induct.
 Pri.
 $(\mu \mathrm{H})$ | | Leakage
 $(\mu \mathrm{H})$ | Dist. Cap.
 of Pri.
 $(\mu \mu \mathrm{F})$ | Max. Nom.
 P.W. Range
 (μ sec $)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | | Avail. |
| :---: |
| Ratios. |

the mark of reliability
respond to temperature changes of 5 F , indicating this change on a meter and providing relay action to give a signal or to control heating devices. Accuracy of the unit is practically unaffected by oxides or scale formation on the work, or by smoke or vapors between the pyrometer scanner and the hot object. Plug-in chassis design of the pyrometer simplifies maintenance, and the use of rugged industrialquality components assures on-thejob dependability.

Instrument Catalog. Norden-Ketay Corp., 555 Broadway, New York 12 , N. Y. Bulletin No. 364 is a 4-page folder dealing with solid front Acragages. Specifications are given on pressure, vacuum, compound, pneumatic and electric transmitters, receiver, test, chemical protectors and gages. Dimensional diagrams are included.

Potentiometers. Leeds \& Northrup Co., 4934 Stenton Ave., Philadelphia 44, Pa. Complete information about the type K-2 potentiometer is available in a 4-page data sheet. The publication points out the widespread use of this potentiometer in industrial and research labs for potential difference measurements, for instrument checking, and for precise temperature measurements.

This concise sheet describes the circuitry and construction of the type K-2 in detail, and lists the accessories required for typical measurements. Ask for data sheet E-51 (3).

Variable Inductance Coils. North Hills Electric Co., Inc., 203-18 35th Ave., Bayside 61, N. Y. A singlesheet bulletin deals with a new series of miniature variable inductance coils covering the 1 to 1 ,-$000-\mu \mathrm{h}$ range completely.

Designed for such applications as video peaking, r-f and i-f amplifiers and filter networks, the coils described feature ceramic forms, split bushings and locknuts, and single D-hole type mounting.

Recording Oscillograph. Consolidated Engineering Corp., 300 N. Sierra Madre Villa, Pasadena 15,

CONTINUOUS, DIRECT-READING

X-BAND VSWR masuriment

2% overall accuracy!

For speedy and accurate VSWR measurements in laboratory or production use, the CTI Model 1108 Measuring System reads directly, is continuously tunable from 8,500 to $9,600 \mathrm{mc}$.

MATLOW'S NEM

SAME HEAT in $1 / 5$ the size!

- A NEW HIGH of 375 watts per sq. in. $1500^{\circ} \mathrm{F}$ operating temp. with .005" fit in hole.)
- L.O-N.G.E-R cartridge life
- LIGHTER WEIGHT and smaller size-for greater flexibility in installation and design application.

WRITE for Bulietin 355

SINCE 1922 -DESIGNERS AND MANU. FACTURERS OF ELECTRIC HEATING UNITS
ELECTRIC MFG.CO. 1390 FERGUSON AVE. SAINT LOUIS 14, MO.

A COMPLEIE SPINNING SERVICE

FOR THE

ELECTRONIC INDUSTRY Metal Spinning

FROM 10^{\prime} PARABOLA TO THIMBLE-SIZE CASE

Mu Metal Shields

annealed in our own hydrogen atmosphere oven *

COMMITMENTS SOLICITED. SEND FOR OUR brochure we are a job shop - we have no product of our own

TBAVRR

115-E Madison Street, Malden 48, Mass.

Calif. Bulletin 1521B illustrates and describes the type 5-116 recording oscillograph. The unit discussed was developed to provide the dynamic test-measurement field with a high-precision, compact, reliable and extremely rugged multichannel recording oscillograph.

Features, specifications, prices and data on associated equipment and other Consolidated products are included.

Flexible Electrical Insulations. Irvington Varnish \& Insulator, Division of Minnesota Mining \& Mfg. Co., Irvington, N. J., has available a general catalog of flexible electrical insulation materials. It is a compilation of technical data sheets of the company's products which are grouped into three categories: coated products, varnishes and plastic products.

Included also are many useful charts and conversion tables. The catalog is supplied in a loose-leaf binder which makes it possible to change or add additional sheets as required.

Measurement and Control Systems. Daytronic Corp., 216 S. Main St., Dayton 2, Ohio. A 6 page folder covers linear variable differential transformer measurement and control systems for laboratory and industry. Illustrations, specifications and operating principles are included.

Plastic Dielectric Capacitors. The Gudeman Co., 340 W. Huron St., Chicago 10, Ill. A 6-page engineering bulletin (No. XC-201-4) illustrates and gives complete technical information on high temperature 165 C XC plastic film dielectric hermetically sealed tubular capacitors with exceptionally high insulation resistance, low power factor, and low dielectric absorption.

Included are capacitance listings, dimensions and voltages, dimensional drawings, and engineering data on test voltage, life test, power factor, insulation resistance, capacitance change, moisture resistance, vibration and typical curves.

Control Relay. Clark Controller Co., 1146 E. 152nd St., Cleveland 10, Ohio. A new line of sectional-
pole heavy-duty 10 -ampere control relays, to occupy minimum panel space, is described in an 8-page bulletin. Bulletin PL 7305-PM completely describes the new relays, available in models with from 2 to 12 poles. (Up to 8 poles are available without double-decking).

The bulletin pictures each of the 10 models in the line; gives dimensions, enclosures, features and data on maintenance and pole conversion from normally-open to normallyclosed; and lists the other literature and layout template kits which are available.

Magnetic Shields. Magnetics, Inc., Butler, Pa. Catalog MS-104, "Performance-Guaranteed Magnetic Shields," describes the shield alloys which are used, the dry hydrogen annealing process used for controlling shielding properties, fabrication and finishes.

Some discussion is devoted to mounting brackets and availability of single or multiple nested shields made from Mumetal alone or with alternate layers of Mumetal and copper. Thirty-three pages of working drawings are included showing the diversity of shields which the company manufactures, and descrbing materials used.

Battery-Operated pH Meter. Photovolt Corp., 95 Madison Ave., New York 16, N. Y. Bulletin No. 118 covers the battery-operated pH meter model 125 . It illustrates and describes the unit which is powered by three ordinary radio batteries that last $2,000 \mathrm{hr}$. Price of the unit described is $\$ 145$ including batteries and electrodes. The bulletin discusses a number of useful accessories which have recently been developed.

Portable Potentiometers. Allegany Instrument Co., 1000 Oldtown Road, Cumberland, Md. A 4-page folder contains descriptive information and illustrations of a line of portable potentiometers and millivolt sources used to calibrate amplifier gain and linearity, recording potentiometers, millivoltmeters and thermocouples. Prices of the units described are as follows: models P-55 and P-55M, $\$ 215$; model P-55MB, $\$ 240$; and model P-102, $\$ 345$.
 Mo. 3-1930-111; polaroid dimmer. All assemblies accommodate midget flanged base lamps like this one (actual size); easily replaced. Available for voltages of $1.3,2.7,6,14$, and 28 . Any assembly available complete with lamp. SAMPLES ON REQUEST - NO CHARGE Write for latest Catalogues and Design Brochure.

CORPORATION
60 STEWART AVE. - BROOKLYN 37, N. Y. HYACINTH 7.7600

Plants and People

Manufacturers continue to expand plants and facilities for future growth. Technical societies elect new officers, honor engineers for technical accomplishments. Engineers are promoted and move to new positions in the industry

Mycalex Opens Synthetic Mica Plant In New Jersey

Plant designed solely for the production of synthetic mica was formally opened in Caldwell Township, N. J. by Synthetic Mica Corp., wholly owned subsidiary of the Mycalex Corp. of America.

Production of the highly strategic material, under the trade-name Synthamica, has been under way for several months. At first the bulk of the synthetic mica produced will be pulverized and bonded with electrical glass to produce an electrical insulation material called Supramica. The material is currently being used in supersonic aircraft, guided missiles and nuclear development.

The formal opening of the new plant marked a 10-year effort to produce mica synthetically to reduce U.S. dependence on foreign sources for the material.

In the first batch of synthetic mica, produced at the new plant, the crystals, although not large, were larger than any produced in earlier pilot plant operations, and the chem-

Production furnace and auxiliary processing equipment in new mica plant
ical purity of the new batch was "above expectations." The company has also announced an expanded research and development program whose twin goal is to produce synthetic mica in forms that will
eventually service all the critical markets where natural mica is used today, and to evolve modern mechanized methods to supersede the present laborious hand processing associated with natural mica.

New Transistor Firm Expands Into Aviation Field

ACQUISITION of National Aircraft Corp., Metropolitan Airparts Co. and Florida Aviation's western division, was announced by Reagan C. Stunkel, who recently acquired the transistor facilities of Hydro-Aire. Stunkel was formerly vice-president of Hydro-Aire.

Metropolitan Airparts, Florida Aviation and the former HydroAire facilities, now called Mar Vista Electronics, will operate as separate divisions of National Aircraft under the presidency of Stunkel.

Total employment of the combined operation is more than 300 employees, all of whom will be retained under the new organization.

h. C. Stunkel, president of National Aircraft, right, and H. H. Roads, president of Hydro-Aire
Headquarters of National Air-
craft will be located in Burbank, Calif. adjacent to Lockheed Air Terminal. Some $30,000 \mathrm{sq} \mathrm{ft}$ of office and manufacturing facilities have been leased there from Pacific Airmotive Corp.

The Mar Vista Electronics division also will be located there. The manufacture of diodes, transistors, and other semi-conductor devices under the trade name, Marvelco, will be conducted under the direction of Robert Vaughn, vice-president of the firm.

Twenty-two acres of manufacturing buildings and hangars are occupied in Van Nuys, Calif. and will house the aircraft and manufactur-

Best for meeting customer demand...all year round United Air Lines Air Freight

Many businesses first learned the advantages of United Air Lines Air Freight by using it to "fill in" inventories during peak buying seasons.
Now they use it profitably and enthusiastically throughout the entire year for many other good reasons-to maintain a better control of inventorie's . . to improve customer service . . . to obtain higher prices through better service . . . to reduce the number of cancelled orders through faster delivery . . . to protect the condition and appearance of goods at destination by reducing in-transit
damage . . . and to bring down the cost of packing, crating and warehousing.

Why not plan to use United Air Lines Air Freight regularly during the coming year? The cost is lower than you might think. For example, a leading dress manufacturer ships children's dresses coast to coast for only about 14ϕ each !

Remember, too, only United offers Reserved Air Freight space on all equipment-not only over its own routes, but world-wide through connecting airline agreements.

For speed, dependability and economy, learn the advantages of United Air Lines Air Freight Service. Call the nearest United Air Lines Representative or write for free booklet, "Industry's Flying Partner." Cargo Sales Div., Dept. V-12, United Air Lines, 5959 S. Cicero Avenue, Chicago.

ing divisions of the firm.
Combined operation under the name of National Aircraft Corp. began in October. New officers in addition to Stunkel include: Jack Ferris, vice-president; L. D. Harrison, vice-president and treasurer; J. Guenette, secretary ; Ruth Fitzgibbons, assistant secretary, and Charles Thompson, chief counsel.

Stromberg Begins $\$ 5$ Million Expansion

A five-million-dollar expansion program has been started at the main plant and offices of Strom-berg-Carlson, a division of General Dynamics.

More than a quarter of a million sq ft of floor space will be added to the firm's facilities.

The new building will adjoin the north side of the company's main plant in Rochester. It will be completed in 1957.

The building will be divided into three main sections: an administration and research building, providing more than $100,000 \mathrm{sq} \mathrm{ft}$ of space; a kitchen and cafeteria section; and a factory building providing approximately $110,000 \mathrm{sq} \mathrm{ft}$.

Sylvania Dedicates Plant, Starts Another

New Waltham Laboratories of Sylvania, where guided missiles and the development of electronics means to detect and destroy them are a primary concern, were recently dedicated. Discussing the problems presented by an enemy missile and equations of its path are, left to right Dr. Oliver G. Haywood, manager of the Waltham laboratories; Paul Black, manager of the avionics laboratory and Dr.

Edwin G. Schneider, manager of the missile systems laboratory.

Some 700 mathematicians, physicists, electronic engineers, and other members of the firm's avionics and missile systems laboratories work in the $120,000 \mathrm{sq} \mathrm{ft}$ building.

Sylvania also began construction of its new data processing center in Camillus, N. Y.

The $50,000 \mathrm{sq} \mathrm{ft}$ center, scheduled to begin operations February 1,

RETMA Board of Directors And Officers For 1955-56

1956, will house a Sperry-Rand Univac and will be the focal point of a 12,000 -mile private electronic communication system linking the firms facilities in 51 cities.

By the leased Western Union network, these various installations will feed financial and production information to the center.

RCA Expands Research In Canada

James R. Whitehead

Dr. James Rennie Whitehead of McGill University has been appointed to head the new RCA Victor Research Laboratories in Canada. Dr. Whitehead's work will be in the field of pure physics and electronics research not necessarily connected with company projects or developments.

Associated with him will be Dr. Sydney Wagner, also of McGill University, and a staff of Canadian physicists. The new laboratories will be opened before the end of the year.

From 1939 to 1951 when he joined McGill, Dr. Whitehead was associated with the British Government Telecommunications Research Establishment engaged on important war and defense projects. Beginuing with work on the Mark I prototype aircraft system for radar identification, he put in 1,500 hours of actual flight testing of radar systems. He then designed the Mark III airborne equipment which was fitted to all Allied ships

MATERIALS

A single test to chèck your own findings - or a complete qualification series to satisfy your customer or the Government. *

13 Laboratories

 within 1 OrganizationTo do your testing, E.T.L. maintains thirteen separate well equipped, fully staffed laboratories in these fields:

Electronic*
Environmental
Electrical
Chemical
Mechanical
Physical
Photometric
Radiometric
Photomicrographic

Radioactive
Spectrophotometric
Ultrasonic
X-ray
*In the Electronic field, for instance, measurements and determinations can be made over extreme high and low range of parameters for the usual characteristics such as Capacitance, Resistance, Frequency (including the microwave region), Power, Power Factor, Interference, etc. Qualification Tests can be made to Military Specifications such as:

ASESA List No. 100
MIL-E-5272
MIL-E-5400
MIL-E-8189
MIL-1-6181
MIL-STD-108
MIL-STD-202
MIL-L-770
MIL-L-25412

Electronic Parts and Materials
Electronic Equipment, Aeronaufical
Electronic Equipment, Aitborne
Electronic Equipment, Pilotless
Electronic Equipment, Interference

Radioactive Material
Luminescent Material-Fluorescent
E.T.L. Services are independent, impartial, and as confidential as your own. Using E.T.L. Services is like finding extra trained talent and extra test equipment without adding to your payrall or capital investment.

A bulletin outlining services will be supplied on request
Testing for Industry
(aib
electrical testing laboratories, inc.
2 EAST END AVENUE - BUTTERFIELD 8-2600 - NEW YORK $21, \mathrm{~N}$. Y.

An Invitation TO MANUFACTURERS OF ELECTRONIC EQUIPMENT

1. Friendly labor supply.
2. Unusual city, county, and state tax advantages.
3. Industrial sites plentiful.

4 Good banking facilities.
5. Full cooperation guaranteed.
6. Strategic location
for
SMALL
or
MEDIUM
INDUSTRIES

Businessmen of Lakeland, Florida will cooperate fully and furnish complete information to manufacturers who will consider relocating or establishing a branch unit in this fastgrowing central Florida city

INDUSTRIAL DEVELOPMENT COMMITTEE OF 100 LaKELAND TERRACE HOTEL

LAKELAND, FLORIDA

and aircraft and was named head of the research group responsible for ground and airborne systems.

Dr. Wagner joined the physics department at McGill in 1946, and was appointed associate professor in 1954. From 1950 until this year, he also held a research appointment in the Eaton Electronics Research Laboratory, where he did research on electronic beams and traveling wave tubes.

Marion Instrument Moves To New Plant

Marion Electrical Instrument Co. transferred all its operations to a new, half-million-dollar plant erected at Grenier Field, Manchester, N. H. The facilities produce more than 85% of the components used in Marion panel instruments, meters, aircraft instruments and mechanisms.

The new plant has $40,000 \mathrm{sq} \mathrm{ft}$ of space.

Hoover Buys Control Of Electronics Firm

The Hoover Company has purchased controlling interest in Phebco, a Baltimore electronics firm.

The purchase will involve no changes in the personnel of Phebco, or changes in its current research and production programs. Phebco specializes in designing and making electronic equipment for industrial use, radar and guided missiles.

Hoover plans to expand and develop Phebco's current activities, and later to coordinate some of its work with that in the international Hoover organization.

Plans are to secure larger quarters for Phebco so it can expand its
research work on electronic equipment for industrial uses. Phebco is currently devoting most of its efforts toward developing and making guided missile electronic equipment.

Centralab Names
 Three Engineers

Robert L. Wolff
Robert L. Wolff has been elected vice-president in charge of engineering of the Centralab division of Globe-Union.

Wolff, an employe of the company since 1937, has been director of products engineering since 1951.

Other appointments are W . S. Clark as division manager of the Badger Centralab plant and R. C. Anderson as division manager of Keefe plant. Anderson has been with the company since 1950 and Clark since 1948.

Columbia Acquires Armstrong's Station

Columbia University's school of engineering has acquired the stee? radio tower and laboratory building in Alpine, N. J. from the estate of the late Major Edwin H. Armstrong, inventor of $\mathrm{f}-\mathrm{m}$ radio and long a professor of electrical engineering at Columbia. The installation will be known as the Edwin H . Armstrong Field Laboratory and will be used by the department of electrical engineering for research in radiation and propagation of various types of radio waves, particularly with respect to their behavior in the atmosphere, ionosphere and upper atmosphere. It will also be available for military

HEAVY DUTY

Multiple Arm

 RElays by SICNALVersatile - Rugged
Cast Aluminum Base
High Shock and Vibration Resistant
Available AC - DC
Contact Capacities Available 10; $35 ; 50 \mathrm{amp}$.
Contact Combinations on Same Base
Designed to Meet Many Mil Spec's

A superior relay that has endured the test of time. . . Specified for many years by America's largest manufacturer of electrical controls and communications equipment.
For complete data, write for Bulletin No. 30-6

Engineering representatives in principal cities

THE BEST TEST FOR TV

 TlC'sTYPE 1105
SIDEO SWEP
GENERATOR

Price: \$600. F.O.B. Carlistadt, N. J.

- High Output
- Flat Frequency Response
- Keyed Carrier Markers to Zero Amplitude
- 75-ohm Internal Impedance
- SawtoothSweepSignal

Expressly desigr ed for testing Video equipment requiring a high level signal, the Tel-Instrument Type 1105 provides a 2.0 V . Max. p-p signal from a 75 -ohm source into a 75 -ohml load, with a sweep range from 50 KC to 10 MC . Features include: Ten selectable crystal controlled pulse.type markers supplied at either integra megacyle point, or as desired; flat output within $\pm 0.2 \mathrm{db}$ over entire range, attenuated over 60 db ; and external ma-kers.

TIC has a complete line of monochrome and coler TV studio and production test equipment. Complete information sent at your request.
TIC Tol-Insifutiont

4336 NORTH KNOX AVE., CHICAGO 41

Available for envelope types T7, T8, MT8, T9, T12, STM2, T12ZDI, ST14, S14, ST16, T51/2, T61/2, MIT-IC, ST19, T14, ST128CT-9.

Manufacturers of Electronic Components

JAMES IPPOLITO \& CO., INC. 1624 Stillwell Ave., Bronx 61, N. Y.

and industry projects.
In addition to the Alpine site, Columbia also acquired from the Armstrong estate, 57 acres of land in the towns of Catskill and Hunter, New York. This area includes one of the taller peaks of the Catskill Mountains. These two sites plus Columbia's engineering camp near Litchfield, Connecticut, will form a triangular range for extensive field studies in radar and radio.

The tower and laboratory were built in 1938 by Major Armstrong to perfect frequency modulated radio transmission. During World War II the station was also used in radar developments.

Beckman Instruments Plans Expansion

Berkeley Division of Beckman Instruments plans to build an addition to its plant in Richmond, Calif. The $\$ 350,000$ expansion program will add $44,000 \mathrm{sq} \mathrm{ft}$ of working area to the plant. It is to be completed by mid-January. The addition will permit doubling of the work force and a 100 percent space increase for all departments.

General Ceramics Appoints Bouwmeester

JOHN H. Bouwmeester has been appointed vice-president of manufacturing and a director of General Ceramics Corp.

He was associated, until recently, with the Indiana Steel Products

Proven first truly effective product for prevention of Tarnish! nox-tarnish is a high grade packaging paper impregnated with a stable, non-volatile, non-toxic chemical composition capable of removing hydrogen sulfide from the atmosphere.
nox-tarnish eliminates production rejects because it insures bonding on soldering operations by keeping silver tarnish-free. It also keeps gold, cadmium or copper bright and free of sulfide stains.

In every case where tests have been made by industrial concerns with nox-Tarnish, the product has proven far superior to any product on the market today. Nox-TARNISH is used by many of the largest manufacturers of electronic components, silverware and hollow ware.

Available in rolls, sheets or shredded. It can be fabricated into bags, envelopes, caseliners to meet individual packaging requirements. Write today for samples and technical bulletin N.T.
*Potent Applied for.

Protective Packaging Division

DRUBERT CHEMIICRL CO.
formerly nox-rust chemical corp. 333 No. Michigan Ave. Chicago 1, lilinois

Manufacturers of

rust preventives - V.C.I. PAPERS ADHESIVES - AUTOMOBILE UNDERCOATINGS Want more information? Use post card on last page ELECTRONICS - December, 1955

Company in a similar position. Appointment of James W. Schallerer to the position of project engineer developing magnetic memory devices and allied equipment was also announced.

He was formerly with Lincoln Laboratory of M. I. T. as a staff member in charge of a magnetic material testing laboratory.

Texas Instruments Builds New Plant

Construction has begun on the new main plant for Houston Technical Laboratories, the geophysical instrumentation subsidiary of Texas Instruments. The $40,000 \mathrm{sq}$ ft plant is being built on a fiveacre tract in Houston, Texas.

When the modern new building is completed next spring, the lab's research, design, and manufacturing operations now being carried on in several rented buildings in Houston will be consolidated.

The new building will provide facilities for more than a hundred occupants.

Union Switch \& Signal Realigns Engineers

G. W. Baughman, F. E. Lowance and E. F. Brinker, right to left, discuss a new inert train-carried coil for an electronic train identification system
UNion Switch \& Signal, division of Westinghouse Air Brake Co., has made the following personnel and organization changes:

George W. Baughman, vice-president, formerly in charge of the railway signal engineering department, has been appointed to the staff of the vice-president and general manager.

A newly established position,

with these rugged nylon fip and banana plugs!

Look at these features:

- Shock-proof nylon insulating handles-won't chip or crack with the hardest usage.
- provides high voltage insulation.
- Highly resistant to extremes of heat, cold and moisture.
- Special design for simplified solderless connection of up to 16 gauge stranded wire.
- Economical-simple, functional engineering design gives you top quality at low cost.

SPECIFICATIONS

BANANA PLUG-nickel-plated brass construction with nickel-silver springs. Spring plug is $.175^{\prime \prime}$ diameter, fits all standard banana jacks. TIP PLUG-recessed metal head is fully insulated, preventing exposure of metal surfaces when tip plug is engaged in any standard tip jack. Metal parts are brass, nickel-plated. Pin is .081" diameter-fits all standard tip jacks. Available in 11 bright colors to match Johnson nylon tip jocks.

\qquad
NYLON TIP JACK AND INsulating sleeve
Complete assembly includes a standard nylon tip jack with a threaded nylon insulating sleove. Ideal for pateh cords, this assembly is also excellent for ponel mounting, where on insulated rear connection is desired.

[^17]

E. F. JOHNSON COMPANY

2331 SECOND AVE. S.W. - WASECA, MINN

[^18] 356
director of research and engineering, will be filled by Dr. F. E. Lowance, formerly on the staff at Air Brake executive headquarters.

The present research department and the present development group in railway signal engineering will be merged to form a new research and development department, with E. F. Brinker as manager and D. P. Fitzsimmons as assistant manager. In addition to his other duties Dr. Lowance will be acting manager of the railway signal engineering department with H. L. Ludwig assigned as assistant manager.

L. M. Engineering Constructs New Plant

The L. M. Engineering Co. of Los Angeles, Calif. plans to build a $36,000 \mathrm{sc} \mathrm{ft}$ building in Hawthorne, Calif. It will consolidate activities now housed in separate buildings.

The new $\$ 600,000$ project, to be completed early in 1956, will include electronic, engineering and fabrication operations and office facilities. It is expected to increase production four-fold.
L. M. Engineering designs and manufactures special machinery, tooling, handling equipment, and electronic shakers. The electronics division makes testing equipment.

Rea Appoints
 Three Executives

D. T. Gundersen
D. T. Gundersen, who joined J. B. Rea as chief engineer in 1954, has been appointed vice-president in charge of engineering and produc-

ACME
 MAGNET WIRE
 made by SPECIALISTS for Over 50 Years

The Acme Wire Company's balanced pioneering experience of more than a half-century has made this company the leader in the field for the best in magnet wire. Highly trained personnel inspect Acme magnet wire at all stages of manufacture to make sure that this important product is of top quality.

An Acme Wire inspection station

The Acme Wire Company have been specialists for over fifty years in the field of dependable electrical insulations.

Do You Know These

 Other Acme Products?Varnished Electrical Insulations Coil Windings
Electrical Insulating Varnishes and Compounds

ACME WIRE CO.
NEW HAVEN, CONN.

MAGNET WIRE - COILS
VARNISHED INSULATIONS
INSULATING VARNISHES AND COMPOUNDS

tion. He was with Cook Research Laboratories as chief administrative engineer. Prior to that he was chief engineer for the Askania Regulator Co.
L. E. Schumacher, who has been sales manager of the Rea Company since 1953 , has been appointed vicepresident in charge of sales and customer relations. He was formerly sales manager for Logistics Research.

Francis A. Oliver has been appointed as manager of the newly created data storage devices unit of the company.

The new unit will be responsible for the development and manufacture of magnetic storage components.

Oliver, designer of the new magnetic components, was formerly head of research and development of magnetic storage devices at Na tional Cash Register's electronic division. Prior to that he headed a similar division at the computer division of Bendix Aviation Corp.

Kester Enlarges Plant

Kester Solder Co. of Chicago has expanded its plant facilities at Newark, N. J., by more than 50 percent. All phases of its Newark factory, manufacturing operations, warehouse and shipping areas, have been enlarged.

William Barkley Joins Rust Co.

William J. Barkley has been appointed as vice-president of Rust Industrial Co.
He founded the Wireless Specialty Co. of Boston, Mass., in 1907,

Can you make your transformers smaller, lighter... with Class C encapsulation?

Where a higher hot spot is permissible, you can reduce the ounces and the inches of your transformers by $1 / 4$ to $1 / 2$.

How? With silicone rubber encapsulation. This allows operation in the $160^{\circ} \mathrm{C}$. to $200^{\circ} \mathrm{C}$. range at a reduced size.
Silicone rubber encapsulation is one of the many services available to the communications industry at Caledonia. (We provide Class C transformers open and in cases, too.) All encapsulation is done in our plant.

For help with this problem, and others involving transformers and related electronic assemblies, contact Caledonia.

When you bave a transformer problem, call on

ELECTRONICS AND TRANSFORMER CORPORATION
Dept. E-12 Caledonia, N. Y.

Augat two-tension loop clamps are the longsought answer for uses where tube base tolerances vary up to .040 . The bands of these sturdy clamps are made of Beryllium copper, heat treated to retain original tension and nickel plated to withstand a 96 hour salt spray test with no adverse effect.

The remaining parts of Augat's two-tension loop clamps are made of 18% nickel silver.

Write today for catalog and samples.

AUGAT BROS.INC.
 31 PERRY AVENUE • ATTLEBORO, MASS.

manufacturing crystals, receiving sets and spark transmitters.

Barkley later was associated with Dr. Lee DeForest as vice-president of the DeForest Radio Co.

His later associations included the position of general manager of the power and transmitting tube division of Sylvania. Following that, he joined the staff of Collins Radio Co. of Cedar Rapids, Iowa, where he acted in the capacity of general sales manager and executive vice-president from 1934 until April 1, 1955.

Barkley will head up an expansion program at Rust Industrial in the manufacture of remote control equipment and other electronic devices in the communication and navigation fields.

IBM Plans

Swiss Research Lab
IBM PLANS to establish a research and development laboratory in Zurich, Switzerland. It is expected to be in operation the first of next year.

The new laboratory is intended to establish closer contact between the domestic IBM organization and development activities being conducted by European scientists and engineers in the accounting and data processing equipment field. The firm expects to be able to incorporate in its machines the technical advances of both European and American scientists.

Dr. Ambros P. Speiser, associate professor at the Swiss Federal

Ambros P. Speiser

Institute of Technology, has been appointed as director of the laboratory and will assume his new position after completing present work as head of the computer group at the Institute.

IBM also has leased a $20,000 \mathrm{sq}$ ft building in San Jose, Calif., for development and pilot production of a new machine. Work at the new facility will start in December. The newly-acquired space boosts total working area of the IBM research and development laboratory in San Jose to $52,000 \mathrm{sq} \mathrm{ft}$.

Bourns Adds Plant In Iowa

Bourns Laboratories of Riverside, Calif., manufacturer of precision potentiometer instruments, has added a subsidiary plant in Ames, Iowa, devoted to the manufacture of miniature instruments.

Managed by Arthur J. Miller, the plant will have 25 employees and occupy an area of $12,000 \mathrm{sq} \mathrm{ft}$.

IRC Appoints Iowa Plant Head

Guy B. Entrekin
Guy B. Entrekin has been appointed plant manager of International Resistance's fifth and newest manufacturing branch plant located in Burlington, Iowa.

He was formerly IRC chief product engineer, and led a special research and development project on carbon composition resistors. Prior to joining the company seven years ago, he was product engineer

WELDMATIC MODEL 1015 precision welder firmly joins wires, sheets and blocks of tungsten, nickel nichrome, steel, silver and copper in tube elemen assembly for mass spettrograph guns Molybdenum and tantalum also welded in plate assemblies.

for service and lab. work Heathkit PRINTED CIRCUIT OSCILLOSCOPE KIT
 FOR COLOR TV!

(1)Check the ourstanding engineering design of this modern printed circuit Scope. Designed for color TV work, ideal for critical Laboratory applications. Frequency response essentially flat from 5 cycles to 5 Mc down only $11 / 2 \mathrm{db}$ at 3.58 Mc (TV color burst sync frequency) Down only 5 db at 5 color burst sync frequency). $20-500,000$ cycles, 5 Mc. New swecp gencrator 20 Soll syoc wave form imes the range usually offered. Will sync wave form display up to 5 Mc and better. Printed circuit boards stabilize performance specifications and cut assembly time in half. Formerly available only in costly Lab type Scope. Features horizontal trace expansion for observation of pulse detail - retrace blanking amplifier - voltage regulated power supply - 3 step frequency compensated vertical input - low capacity nylon bushings on panel terminals - plus a pacity nylon bushings on pancl
host of other fine features. Combines peak performhost of other fine features. Combines peak perform:

Heathkit iv

SWEEP GENERATOR KIT

ELECTRONIC SWEEP SYSTEM

(2) A new Heathkit swcep generator covering all (2) frequencies encountered in TV service work (color or monochrome). FM frequencies too! 4 Mc - 220 Mc on fundamentals, harmonics up to 880 Mc. Smoothly controllable all-electronic sweep systcm . Nothing mechanical to vibrate or wear out. Crystal controlled 4.5 Mc fixed marker and sepatate variable marker 19.60 Mc on fundamentals and 57 180 Mc on calibrated harmonics. Plug-in crystal included. Blanking and phasing controls - automatic constant amplitude output circuit - efficient atten uarion - maximum RF ouspur well over . 1 volt vastly improved linearity. Easily your best buy in sweep gerierators.
(1)
 BENTON HARBOR 14, MICH. COMPLETE INFORMATION

If your problem involves accurate division of AC voltage, you need a

STANDARD RATIO TRANSFORMER

AC voltages can be divided with accuracies as good as $.005 \%$ and resolution as good as . 00001%

The PT Series (7 models) precision AC voltage dividers have been specifically designed to divide AC voltage with unusual accuracy. Push button and rotary switch models available, in both carrying case and rack mounting styles. Models avail. able to cover frequencies from 30 to 3,000 cps (to 10,000 eps at reduced accuracy). PT-5, illust rated, covers $50-3,000 \mathrm{cps}$, with continuous resolution.

For design and production use

Appications include: Bridge Ratio Arm, AC potentiometer; checking resolvers, servos, transformers, computers: for meter calibration, and as a ratio standard.

For complete information contact your Gertsch representative or

GERISCH

GERTSCH PRODUCTS, INC. 11846 Mississippi Avenue Los Angeles 25, California

MARKE MACHINES

Solve "IN-PLANT" PRINTING PROBLEMS

- FASTER - NEATER - AT LOWER COSt

The Markem Model 45AF Machine prints trade name, trade mark, specifications, etc., on resistors, condensers, capacitors, diodes, triodes, transistors, etc., at production rates. Feeds, prints, and ejects automatically. Quickly insertable type provides easy change in data being printed.
Write for further information. Submit sample of item you wish to mark.

for Western Electric.

The Burlington plant is expected to start production of deposited and boron carbon type resistors on or about December 1, 1955.

Bristol Engineering Expands Plant

Bristol Engineering Corp. has doubled its working area by leasing a $33,000 \mathrm{sq}$ ft factory in Bristol, Penna. The newly acquired building will house the firm's electronic division and also its experimental and fabricating shops.

Harrington Joins
 Arthour D. Little

Joserf Harrington, formerly of United Shoe Machinery, has joined the staff of the mechanical division of Arthur D. Little, consulting industrial research firm of Cambridge, Mass. Dr. Harrington will be concerned with the design, development and fabrication of automatic machinery for the assembly of intricate equipment, particularly in the electronics field. He will also assist in the technical audit services offered by the company. Dr. Harrington joined the research division of the United Shoe Machinery Corp. in 1932, where he became assistant director of research in 1947.

Precision Radiation Acquires Radio Craftsmen

Precision Radiation Instruments of Los Angeles, producers of radiation detection units, has acquired

Potentiometers

"Lo-TORK" POT LT 7/8
For minimum-torque uses in computer, servo, and selsyn service. Stainless-steel precision ball bearings. Maximum torque is 0.01 inch-ounce. Dissipates one watt at $80^{\circ} \mathrm{C}$. Resistances- 100 to 100,000 ohms. Weight is only $\frac{1}{2}$ ounce. Ganging to six decks; internal clamps hold $\frac{7 \prime \prime}{8 \prime \prime}$ diameter. Standard linearity 0.5%; on special order 0.25%; toroidal winding allows winding angles to 360°; standard 354°
$4 P$

17 7/5

MICRO-MINIATURE and MINIATURE
Series AP1/2-S—2 watts continuous at $80^{\circ} \mathrm{C}$; resistances 10 to 20,000 ohms, 5% tolerance standard; diameter $\frac{1}{2}^{\prime \prime}$, depth $5_{8}^{\prime \prime}$, weight $\frac{1}{4}$ ounce; sealed well enough for potting.
Series RT $7 / 8-S-3$ watts continuous at $80^{\circ} \mathrm{C}$; resistances 10 to 100,000 ohms; diameter $\frac{7^{\prime \prime}}{8 \prime}$, depth $\frac{3^{\prime \prime}}{8}$, weight $\frac{1}{2} \mathrm{oz}$; standard linearity 2%.
Series AP 11/8-S-4 watts continuous at $80^{\circ} \mathrm{C}$; resistances 10 to 150,000 ohms; diameter 1孪", depth $\frac{1}{2}{ }^{\prime \prime}$, wt. less than $\frac{3}{4}$ oz.; standard linearity 1%.

All precision-machined, with anodized aluminum bodies, line-reamed phosphor bronze bearings, centerlessground stainless steel shafts, and goldplated fork terminals. Fully sealed and fungus-proofed. Can be processed, on special order for use at $125^{\circ} \mathrm{C}$. Aerohm potentiometers are individually checked for quality and performance.

Write for copy
of our new catalog.

WATERS MANUFACTURING, inc. Waltham 54. Massachusetts
 aroucaion emeinerine oficis in orincioat citits

plants and people

Radio Craftsmen of Chicago, manufacturers of high fidelity components and equipment.

The new, wholly-owned subsidiary will be operated as a division of PRI, with the executives of Precision Radiation operating as the governing body of the new subsidiary.

Radio Craftsman, which has been selling directly to the consumer, will now market its products through dealers in a one-step distribution plan.

Sanborn Selects

 Engineering Head

Maurice S. Hartley
Maurice S. Hartley has assumed the post of director of engineering for Sanborn Co. of Cambridge, Mass., manufacturers of medical and industrial instruments.

He was with Raytheon as product manager. He has also been connected with Imperial Oil of Canada, as senior research physicist, and previously was engaged as manager of the technical-commercial division of Philips Industries, also of Canada.

Raytheon Shuffles

 Equipment OperationsRaytheon has established two new integrated organizations in its equipment operations. One is responsible for commercial equipment and the other for government equipment. Each will have its own

WE'VE GOT 'EM

GREMAR R.F. CONNECTORS

wOODS Aircraft Supply

309 West Elmwood Avenue Burbank, California Telephones: VIctoria 9-3211

THornwall 2-8182
The right connection
for the right connectors

(
 POWER
 MEASUREMENT IN LIQUID LOADS

MODEL 3901 THERMOPILE $\$ 75.00$ f.o.b. Grass Valley, Calif.

- 30 pair junction moulded in polyethylene
- All Plastic Case
- $1 / 4^{\prime \prime}$ copper tube fittings
- Rapid take-down for cleaning
- From 10 watts to several kilowatts per unit

SPECIFICATIONS

Internal resistance 1 millivolt per ${ }^{\circ} \mathrm{C}$
Voltage Maximum pressure . . 1 milivolt per PSI Dimensions . . . $6-3 / 16 \times 21 / 8 \times 23 / 4$ Weight

MODEL 5800 CALORIMETER
$\$ 360.00$ f.o.b. Grass Valley, Calif.

- A complete comparator to measured 60 cycle power, utilizing above thermopile.
- Built-in calibration circuit and heater.
- Sensitive, non-clogging flow valve. SPECIFICATIONS

Weight
Dimensions Approx. 21 pounds
$81 / 4^{\prime \prime} \times 9^{\prime \prime} \times 17^{\prime \prime}$ Maximum pressure . . $1 / 40^{\circ}$ PSI Range full scale . $300,600,1500,3000$ watts Meter sensitivity Calibrating potentiometers Fittings . . For $1 / 4^{\prime \prime} \times 3 / 8$ " plastic tubing
Other equipment for use in power measurements and specific equipment for microwave power measurement set-up.

- Model 5801 Calorimeter-Range 60, 150 , 300,600 watis.
- Model 3701 Water load calibrator heater.
- Model 4105 X Band Water load - 1000 watts CW 300 Kw . peak - Less than 1.2 VSWR over $7000 / 10000 \mathrm{mc}$.
- Model 5500/5501 Variable phase standing wave introducer at X band.
Let us send you full specifications on these Lools for power measurement, or send for our complete catalogue.
- Glass Working Lathes, equipment
- High Vacuum Pump and Gauge.
- Hyigh Vacuum Pump
- Vacuurm Tube Laboratory Equipment.
- Spot Welder and Timers.
engineering and development facilities.
Two new positions created by the change have been filled by John H . Beedle as manager of commercial equipment, and Gordon S. Humphrey as manager of government equipment. Each man has had more than a dozen years' service with the company.
Raytheon also announced that it has built a room with solid lead walls, for use in the x-ray study and inspection of electronic vacuum tubes.

The structure, weighing several tons, was designed by Raytheon engineers to house a powerful x-ray machine which is capable of maximum operation at 300,000 volts. Initial facilities make it possible to photo-inspect 20 tubes at a time.

Kuthe Labs Elects President

William P. Maginnis has been elected president of Kuthe Laboratories of Newark, N. J., subsidiary of IT\&T. He succeeds Dr. Herman Kuthe, founder and first president, who has been elevated to chairman of the board.

Prior to his present appointment, Maginnis was vice-president and works manager of the components division of Federal Telephone and Radio. For 21 years before his affiliation with Federal, which he joined in 1951, he was with RCA. His last position with that company was as head of component engineering at the Camden plant. Before that he was chief engineer at Bloomington, Indiana.

GE Expands Control And Radio Plants

Pilot operations will start this fall at GE's new multi-million dollar plant near Roanoke, Va. The plant of more than $600,000 \mathrm{sq} \mathrm{ft}$ will house manufacturing and office facilities for the company's industry control department, currently headquartered in Schenectady, N. Y.

The new plant is expected to be completed about January, 1956, and the transfer should be completed early in 1957.

The plant will employ some 1,800

The Sanders Minicube Blower contains both miniature blower and motor in a rugged, $1^{\prime \prime}$ cube. A single package, it is designed for use on aircraft and guided missiles operating under severe environmental conditions. It is operable over wide ranges of vibration, acceleration and temperature, and is suitable for many exacting applications.
The Sanders Minicube Blower can be used to:

- Eliminate hot spots in subminiature equipment
- Prevent fogging of lens or viewing glasses
- Cool Klystrons and other electronic tubes and devices
- Maintain uniform flow of air in restricted space

SPECIFICATIONS

$\begin{array}{cl}\text { Output: } 3 \text { cubic feet of } & \text { Speed: } 22,000 \mathrm{RPM} \\ \text { air } / \text { minute } & \text { Size: } 1^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime} \\ \text { Input: } 400 \mathrm{cps}, 4 \text { watts } & \text { Weight: } 1 \text { oz. } \\ \text { Voltage: Model } 1: 6 \text { volts } & \\ & \text { Model } 2: 26 \text { volts }\end{array}$
For detailed specifications, write Dept. E

Want more information? Use post card on last page.
December, 1955 - ELECTRONICS
persons upon completion of the move from Schenectady.

The company also has expanded its communication equipment manufacturing, warehouse, and office facilities in Utica, N. Y.

The company has signed a lease for $60,000 \mathrm{sq} \mathrm{ft}$, or roughly half of the former Oneida Bleachery building in Utica.

The new space is to be used to augment two-way radio manufacturing operations and to consolidate various office and warehousing activities now at several locations throughout the Utica area.

The electronics division also announced that Lawrence R. Cohen has been appointed to the newlycreated position of manager of application engineering in the laboratories department. He was previously sales manager for Army equipment. He joined GE in 1946 as a design engineer.

The new position will include liaison with outside customers, including the military services, to determine their technical trends and requirements and to advise them of General Electric's facilities for applied electronic research and advance electronic development.

Shannon Receives
 Ballantine Medal

Dr. Claude E. Shannon, member of the technical staff of the Bell Telephone Laboratories, received the Stuart Ballantine Medal of The Franklin Institute for outstanding achievement in the field of communication.

Among Dr. Shannon's early contributions to the field of communication was the development of a mathematical theory of switching circuits which led to switching algebra.

His other contributions have dealt with the fundamental theory of transmission. Using statistical concepts in communication theory, he devised a quantitative means of measuring the size and complexity of the communication facilities needed to handle messages. He recognized that the fundamental factor limiting the ability to transmit information is noise. Using

You Name If EISLER Makes it... $\underbrace{\text { S }}$
Eisler tipless stem patents hove been extensively used by incandescent lemp and radio tube manutacturers. Eisler patents are free and have been a source of protection to the radio tube and lamp industry. Why not consider your next machine an Eisler? Serving the Industry over 35 years.

Send for Catalog

751 So. 13th St. NEWARK 3, N. J.

Made in two and three position types; momentary and locking actions. Single hole mounting. Attractive hardware. Long springs without any "forms" ot point of flexing insure lang spring life. Springs insulated from each other by phenolic spacers with hard rubber tubing press fit through the stack-insures correct alignment of the contacts and provides high insulation resistance. "Soft" easy action actuator; real detent action on locking types.

Full details in Catalog S-52-fourth printing-
Fine silver contacts, rated at 3 amperes, 120 volts, A.C non-inductive load - standard. Also available on special order with larger silver contacts for higher currents and Palladium contacts for low current - low voltage circuits.

TELEVER SWITCH

 for more rugged applica-tions. Features unusual "TBeam" frame construction -light design with rug. gedness af a structural 'T-Beam". send for your copy.

- Military or special yokes and focus coils designed to your specifications.
- Production yokes for TV sets.

For your answer to yoke problems write Dr. Henry Marcy today.

INSTRUMENTS, INC.
100 Industrial Road • Addison, Ill. • Phone: Terrace 4-6103

statistical notions, he devised a quantitative measure for the information handling capacity of communication means. The theory of these researches is contained in his paper "The Mathematical Theory of Communication." The contents of this paper have become known as information theory, and by virtue of their generality form a new and basic philosophy for the communications industry.

The AIEE presented him with the Alfred Noble Prize in 1940. During 1940-41, he was a National Research Fellow. He joined Bell Telephone Laboratories in 1941

In 1949 the Morris Liebman Memorial prize of the IRE was awarded him for his "original and important contributions to the theory of the transmission of information in the presence of noise."

Sensitive Research Expands Facilities

Sensitive Research Instrument Corp. moved to new and larger production and engineering laboratories in New Rochelle, N. Y.

The building has complete facilities for manufacturing electrical indicating instruments. It gives Sensitive about three times the production and engineering facilities heretofore available.

Servo Promotes
 Three Executives

A. Eric Theis has been promoted to vice-president in charge of manufacturing at Servo Corpora-

A. Eric Theis
tion of America. Charles F. Healey was named vice-president in charge of administration; and H. Gordon Hawthorne, treasurer. Dudley L. Miller continues as secretary of the company.

Theis was production manager of Servo before his recent promotion. He is an engineer with over twenty years experience in the manufacture and production of radio communication, navigation, and electronic control systems and instruments.

Lenkurt Electric Enlarges Facilities

Lenkurt Electric signed a twoyear lease for use of a new building being constructed in San Carlos, Calif.

The building will have $14,400 \mathrm{sq}$ ft of space.

When completed in December, some of the company's business divisions and some manufacturing operations will be transferred there.

The company now has 155,000 sq ft of floor space and owns or leases approximately 45 acres in the San Carlos industrial area.

Most of the equipment produced by Lenkurt goes to telephone companies in the United States and Canada for use in increasing longdistance circuits.

The company has more than 1,000 employees and a monthly business volume exceeding $\$ 1,000,000$.

Clevite Units
 Select Executives

J. Kneeland Nunan has been named to the new position of vicepresident and general manager of Clevite Research Center in Cleveland, Ohio.

Nunan has been president of Consolidated Vacuum Corp.

Transistor Products, an operating unit of Clevite, announced the appointment of E. F. Giguere as vice-president for sales.

He joined Transistor Products in 1953 and served as director of sales prior to his promotion to vice-president.

He was associated with Federal Telephone \& Radio Co. for 14 years, rising to the position of broadcast sales manager. During 1952 and

JET PROPULSION LABORATORY OF THE
CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California

jpl
has positions now open in the fields of

GUIDED MISSILE INSTRUMENTATION AND TELEMETERING

The Laboratory has the responsibility for the destgn and develop ment of complete guided-nxissile systems such as the Corporal. Much of its success is credited to its small but outstanding telemetering and instrumentation group, which was one of the first in the nation to design and employ transistor telemetering systems.

This is an opportunity to associate yourself with the nation's foremost guided-missile research and development facility. Applicanis must have at least a B.S. in a related field from an avcredited unlversity with good academic standing and meet one of the following experience requirements.

1) Experience or training in transistor circuit design.
2) Experience in the development of missile telercetering systems.
3) Wxperience in instrumentation system design and data processing.

Airmail your summary of qualifications and references to:
caltech 4800 Oak Grove Drive

Pasadena, California

preferaid by the experts

No. 99 Junior Kit

It'S the MOST!

\author{

- MOST for your money -MOST compact 11 -tool pocket kit -MOST popular since the "99"
}

Yes, since the 99 JUNIOR was introduced in May, technicians have kept us busy making enough! If you don't already have one of these pocket kits, with the 7 quality XCELITE nut drivers and 4 screwdrivers, ask your supplierthey're in stock!

XCELITE, INCORPORATED Dept. C Orchard Park, N, Y.

Tor Originality zar Look to XCELITE

Use "Unusable" Spaces with this

 Receiver and Power suppiy

Our Model 128 subminiature power supply (left) is designed to provide $\mathrm{B}+$ and filament voltages to various equipments. Being extremely compact ($1^{\prime \prime} \times 3^{\prime \prime} \times 9^{\prime \prime}$) it may be mounted in inaccessible or normally unusable spaces. Lightweight (only 36 oz .), it has been ideal for critically balanced airborne devices. Consider it for your applications. The model 127 VHF receiver, as shown at right, incorporates modular design for flexibility of installation as one unit or separated for better space utilization. Wideband characteristics and module size ($1^{\prime \prime} \times 3^{\prime \prime} \times 9^{\prime \prime}$) permit application in all fields of instrumentation and communication-airborne or otherwise. This receiver features crystal frequency control plus excellent sensitivity, quieting and noise rejection. Send the coupon below today for our Data Sheets 100 and 101 which give de-
 tailed specifications on this versatile equipment.

Instrument and Electronic Division Oakland Int'I. Airport

Oakland 14, Calif.
Subsidiary of California - Eastern Aviation, Inc.

1953 he served as a consultant to the FCC and the CAA.

Transistor Products also announced that Allen J. Dusalt, formerly semiconductor sales manager for CBS-Hytron, has been appointed general sales manager for Transistor Products.

Samuel Rubinovitz, formerly assistant to the director of sales, has been named government sales manager.

In Clevite's Brush Electronics Co., John H. Harris, formerly vicepresident and general works manager, has been made vice-president in charge of planning, and Wallace T. Gray has been appointed general works manager.

Perry C. Smith has been appointed manager of the equipment department of Brush Electronics.

He joined Brush earlier this year. He was formerly general manager of the electronics instruments division of Burroughs Corp. Prior to that he was manager of scientific instruments engineering for RCA.

CBS-Hytron Builds Tenth Warehouse

CBS-Hytron plans to build a 55,000 sq ft warehouse in Chicago for tubes. Completion is scheduled for early spring.

The new warehouse will have an engineering application laboratory, sales, service, and engineering offices, branding and packaging facilities.
The new structure will bring to ten the number of the firm's warehouses in operation.

General Mills
 Adds Five Engineers

L. K. Lee, former head of the advanced techniques laboratory at Stanford Research Institute, and George H. Geick of Emerson Radio, have joined the mechanical division of General Mills.

Lee, a specialist in miniaturization and automatic production techniques for electronics, will be technical advisor to the engineering research and development department. He will concentrate on design for automatic production.

Geick will be assistant manager
of systems analysis. He was assistant to the executive vice-president of Emerson, concerned with the administration of commercial and military design and production in radio, television and related fields.
Three German scientists have also joined the division.
Dr. Otmar M. Stuetzer has been named to head the electron physics lab. He was radar section chief of the German Research Council and coordinator of the German radar and countermeasures program during World War II. He comes to General Mills from the U. S. Air Force Wright Air Development Center at Dayton, Ohio, where he was chief of the advanced development branch in the electric components lab.

His staff will include Dr. Gottfried K. Wehner and Ludwig J. Mayer, who worked with him at WADC. Dr. Wehner, a specialist in gas discharge and surface physics, was a branch chief at Flugfunkforschungs, the German Air Radio and Radar Research Institute, during World War II. Mayer was chief of the microwave tube laboratory at the same establishment.

Telerad Elects
 New President

Charles George has been elected president and chairman of the board of Tetrad Manufacturing. George, who has served as vicepresident and general manager for

Charles George

HOMELITE

will meet your specs for LIGHTWEIGHT GENERATORS

To meet the requirements for lighter, smaller and more powerful auxiliary gasoline-engine-driven generators for both rotary and fixed wing aircraft, Homelite has designed and built several special units.
Typical of these new Homelite generators is the Model 34 D 28 shown above.
Weighing only 67 pounds . . almost half the weight of previous auxiliaries with comparable power ... this Homelite develops 70 amperes at 28.5 volts DC and is capable of starting $700 \mathrm{~h} . \mathrm{p}$. aircraft engines either directly or with a small battery floated on the line.
Requiring less than 3 cubic feet of storage space, this unit is equipped for push button or manual starting and starts without preheating in temperatures as low as minus 40 degrees Fahrenheit.

Meeting specifications for lightweight, powerful generators . . for both military and commercial applications . . . is the specialty of the house with Homelite. We've been doing it for close to half a century.
No matter how new, how different or how tough your requirements ...
turn them over to Homelite. The chances are you'll get the most satisfactory answer . . . faster.

Write and our engineers will get in touch with you.
Homelite builds generators in sizes from. 15 KW up to 5 KW in all voltages and frequencies... with either gasoline engine or electric motor drive.

Figure A.

NEW RIGHT-ANGLE VARICON INTRODUCED

ELCO announces a new RightAngle Varicon as the latest newsworthy addition to its world-famous line of miniature connectors. The new Right-Angle Varicon (Fig. A.) available in 2 -contact male plugs, makes it possible to run wires or cable parallel to panel, thus conserving space. Units may be plugged into mating portion of connector, side by side. (Fig. B.).
Insulator acts as strain relief for cable, permitting exertion of heavy forces without breaking connections. Plugs are polarized the same as other standard Varicons; with the same high current and voltage rating, low resistance, low capacitance.
For further information, or a copy of the new Varicon Catalog V-2, please write us on your company letterhead.

ELCO CORPORATION, M STREET BELOW ERIE, PHILA. 24, PA., CU 9.5500

the special products division at the center. He has been staff engineer with Sperry Gyroscope, senior project engineer with CurtissWright and administrative engineer of Simmonds Aerocessories. Prior to his present appointment he was contract engineer for Fairchild Aircraft Corp.

Eitel-McCullough Expands For Super Klystrons

A New $17,000 \mathrm{sq} \mathrm{ft}$ building with faciities for the production of super klystron amplifier tubes up to twenty feet long will be added to the main San Bruno, Calif., plant of Eitel-McCullough. Present plans call for completion of the building in early Spring.

According to the company, the need for additional klystron facilities arises from an increasing number of electronic applications, including forward-scatter.

One section of the building will include a two-ton crane to handle the giant klystrons.
The new extension will bring the total area at the main Eimac plant in San Bruno to approximately $170,000 \mathrm{sq} \mathrm{ft}$.

Norden-Ketay Sets Western Division

Norden-Ketay Corp. has established a Western Division in Gardena, Calif.

The division consists of two plants, one in Gardena, the other in nearby Hawthorne, Calif. Together the plants comprise a unit of 30,000 sq ft , equipped for research, design, development and quantity production of synchros and resolvers and other components.

General manager is Arnold Raines, who was previously assistant general manager of the Arga division of Beckman Instruments.

Manager of the engineering department is Herbert Galman, who was previously chief development engineer of Beckman's Arga division.

The division will have a research and development department under the direction of Harold H. Sarkissian. He was previously vice-presi-

Boehme Communication Filters Especially designed...

- for minimum "ringing" or "tailing" (transient response) - for optimum results under dynamic conditions
*Ayailable in a wide variety of types, frequency characteristics and impedance matches.
Write for data sheets, today!

H.O. Boehme, Inc.

Designers and Manufacturers Communication Equipment
Precision Electro-Mechanical Apparatus
915 Broadway - New York 10, N.Y.

HEYCO NYLON STRAIN RELIEF BUSHINGS CUT PRODUCTION COSTS AND IWPROVE PRODUCT QUALITY

With Heycos it's no longer necessary to tie wire knots or use insulating grommets. Product life is increased and product appearance is greatly enhanced.

HEYMAN MANUFACTURING COMPANY Kenilworth is New Jersey

THE HEYMAN ORGANIZATION WITH 25 YEARS STAMPING EXPERIENCE HAS MODERN PRESS CAPACITY FOR OVER 2,000,000 FINISHED STAMPINGS PER DAY. ASK FOR BULIETIN 33 ${ }^{2}$ ∞

Miniature and Sub-Miniature SLIP RING ASSEMBLIES BRUSH BLOCK ASSEMBLIES COMMUTATORS

and other

Electro-Mechanical Components

PRECISION MADE TO YOUR OWN SPECIFICATIONS

Precision molded products with exacting tolerances in precious and non-precious solid metals of all alloys. All types of Thermo-Plastic and Thermo-Setting materials.

Slip Ring Assemblies fabricated or one-piece precision molded to your specifications in Nylon, Kel-F, Mineral filled Mellamine, Phenolic, and other materials. Rings and leads spot welded or brazed together for positive electrical circuit.

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

COLLECTRON CORPORATION

MUrray Hill 2-8473 - 216 East 45th Street • New York 17, N. Y.

Arnold Raines
dent and a member of the board of Computer Research Corp. and chief engineer of National Cash Register Co.

Norden-Ketay's present manufacturing operation in California, under Harry Loveman as operations manager, has been integrated into the new divisional organization.

Norden-Ketay also announced that George D. Butler has been appointed director of sales.

Before joining the firm, he was vice-president in charge of sales of Warren Electronics. Prior to that, he was district sales manager of Beckman Instruments.

During the war he was a project engineer at Bendix Aviation Corp., and also senior engineer at Carl L. Norden in New York.

Tracerlab Builds New Plant

Construction has been started by Tracerlab on a new $164,000 \mathrm{sq} \mathrm{ft}$ plant in Waltham, Mass.

The new plant will be ready in the Summer of 1956. Tracerlab's operations have grown from $\$ 30$,000 in 1946 to over $\$ 12,000,000$ in 1954.

The new plant will also house certain operations of Keleket X-Ray Corp., a Tracerlab subsidiary.

Erie Resistor
 Promotes Foster

James H. Foster has been appointed general manager of Erie Resistor's electro-mechanical division. Since joining the firm five

McGRAW-HILI

MAILING LISTS

WILL HELP YOU

- Merchandise your advertising
- Conduct Surveys
- Get leads for your salesmen
- Get inquiries about your product or service
- Pin-point geographical or functional groups
- Sell Direct
- Build up weak territories
- Aid Dealer Relations

Direct Mail is a necessary supplement to a welt rounded Business Paper Advertising program. 60000 actual names of the top buying influences in all the fields covered by the McGraw-Hill publications make up our 150 mailing lists. These lists are built and maintained primarily for our own use, but they are available to you for Direct Mail purposes. Pick out a list of YOUR prospect from our Industrial Direct Mail Catalogue.
More and more, progressive companies are using Industrial Direct Mail regularly as an advertising medium. They effectively allocate a portion of their concentrate on the best business publication.
For complete, detailed information about our service, fill in the coupon or write for your copy of our free Business and Industrial Direct Mail catalogue.

Direct Mail Division,
MrGraw-Hill Publishing Co., Inc. 330 West 42nd St., N. Y. 36, N. Y.

Please forward my free copy of the McGraw-Hill "Industrial Direct Mail Catalogue."

Name
Company
Address.
City \qquad State

PLANTS AND PEOPLE
years ago he has served as chief of electronic research and assistant general manager of the division he now heads.

New Firm Formed By RC Controls

COMPUTER-MEASUREMENTS division of Detectron Corp. has been acquired by RC Controls Corp. of North Hollywood and formed into a new company to be known as Computer-Measurements Corp. The firm has a new plant in North Hollywood, Calif. Development, design, manufacturing and sales will take place there under John K. Rondou, president and J. L. Cassingham, vice-president.

Baldwin-Lima
 Elects Three V.Ps

Robert B. Murray, Jr., former Undersecretary of Commerce, has been promoted to vice-president and has been elected a member of the board of directors of Baldwin-Lima-Hamilton Corp. He has been assistant to the B-L-H president since leaving his government post.

James M. White has been elected vice-president in charge of manufacturing for B-L-H, resigning a similar post at ACF Industries to accept the new position. He formerly also was manufacturing vicepresident for Allis-Chalmers.

Colonel John R. Martin, who recently retired from the U.S. Air Force as director of procurement for the Air Research and Development Command at Baltimore, Maryland, has been appointed vice-president in charge of electronics and instrumentation operations.

U. S. Officials Honor Canada's Browne

In Canada, the Department of Transport's retired controller of telecommunications, G. C. W. Browne was presented with a scroll and a wrist watch from his friends and acquaintances in Washington, D. C. The presentation was made on behalf of U . S. officials in the communications field of the State Department, Military Services, Coast Guard, CAA, FCC, the

Hycor band-pass and low-pass telemetering filters are produced in exact accordance with accepted military standards. In addition to designs which conform to Applied Physics Laboratory specifications, miniature units are available.

Hycor Telemetering filters are potted for complete protection against vibration and humidity. The finest components are used to minimize aging effects on characteristics.
Send for Bulletin TF which describes stardard types available.
Hycor engineers will be pleased ta quate on your most exacting

Neliance $\sqrt{\text { Nica }}$ (o.g $)_{n c .}$ MICA SPECIALTIES

RADIO and TV TUBE SPACERS

CAPACITOR FILMS

HEAT RESISTANCE WASHERS

Reliance are specialists in the fabrication of Mica parts. For 27 years, they have met industry's specifications for critical tolerance and quality control. Our years of experience meeting close tolerance work can help you whenever you are faced with tight specifications and our quality control will meet the increasing rigid specifications of today's design

QUALITY MICAS MAKE QUALITY TUBES

Is your application of Mica correct?
Consult us for help in obtaining the proper use of Mica in your products.

> RELIA N C E MICA 341-351 39th St.

CROSSBAR

```
A truly superior switch MASTER for
MASTER CONTROL AND MONITOR SWITCHING OF AUDIO \& VIDEO CIRCUITS Also
COMPUTERS TELEMETERING TELEPHONY - DELAY LINES
```

Department of Agriculture and the Department of the Interior.

Previously RETMA of Canada and the Department of Transport had honored him.

Moloney Electric Promotes Two

C. M. Lovell, formerly vice-president and chief engineer of Moloney Electric, transformer manufacturer, has now been named vice-president in charge of engineering and research.

He joined the firm in 1920 as an engineer. He was made chief engineer in 1928. In 1942, he was appointed as vice-president and he was also elected to the board of directors.

Lovell has been instrumental in the development of concentric-laver winding and its application to transformer manufacture at Moloney.

The company also announced that David F. Winter has been appointed vice-president, chief engineer and director of research. He will continue in his recently-appointed post as director of the newly-formed engineering research and development laboratory of Moloney Electric.

He has served as a staff member at the radiation laboratory of MIT,

In 1948 he joined the staff of Washington University as an assistant professor of electrical engi-

C. M. Lovell

D. F. Winter
neering.
On leave of absence, Winter joined the DuMont Laboratories as a senior engineer and then as an engineering consultant to the instrument division in 1949. From 1950 to 1952 he served first as a senior engineer under special contract with the Naval Ordinance Plant at Indianapolis, Indiana, and then as project head.

In 1951, Winter was made an associate professor at Washington University in St. Louis. He came with Moloney Electric in 1952 as a consultant.

In 1954, Winter joined Moloney on a full time basis with a leave of absence from Washington University.

Winter received a full professorship at Washington University in 1955 and is now an affiliate professor with that institution.

Tharpe Leaves Du Mont, Petersen Named

James B. Tharpe has joined Visual Electronics Corp., of New York as president.

He resigns as manager of the Du Mont television transmitter sales department to associate himself with the independent selling agents representing Du Mont in the sale of TV broadcast equipment. He will directly handle all New York City and network accounts, and, in conjunction with Herbert Bloomberg, will handle key

THE NEW WAY TO

with

the first chip-proof, flexible engraving stock

on the versatile
bend it

form if
So simple to engrave Gravoflex. Lettering stands out permanently on contrasting background. No paint needed. 10,000 Engravographs used for engraving on metals and plastics. Only Engravograph has these patented features:

- Adjustable for 15 ratios. - Self-centering holding vise.

III

- Automatic depth regulator.
- Adjustable copy holders.

NEW HERMES ENGRAVING MACHINE CORP. 13.19 UNIVERSITY PLACE, NEW YORK 3, N. Y.
punch it

TUNABLE DETECTOR AMPLIFIER TYPE

 FT-UBM
Applications-

- Bridge Detector
- Selective Amplifier
- Wave Analyzer
- Carrier Frequency Test Set
- Variable Frequency Filter

Specifications-

Range: 45 cps to 400 kc .
Selectivity: Adjustable from 1% to 10% or flat response over entire band.
Sensitivity: $10 \mu \mathrm{v}$ (with band width of 2% and deflection of 10% full scale). Amplification: 5 steps from 1:10 to $1: 10^{5}$.
Power: 110/220v., 40 to 60 cps .

- S 913

Federal Telephone and Radio Company, A Division of International Telephone and Telegraph Corporation. Instrument Division
100 Kingsland Road, Clifton, N. J.
\square Please send further information on Tunable Detector Amplifier, Type FT-UBM.
\square Please send latest instrument catalog.

> NAME
title
COMPANY

ADDRESS
CITY \qquad _STATE

3 Relay Types by FILTORS, inc.

Now a Leader in the Sub-miniature Relay Field

MIL SPECIFICATIONS
All Made to MIL-R-5757B and MIL-R-25018 (USAF)
dry circuit relays available IN PRODUCIION QUANIITIES

Write Today For New Catalog Listing Sales \& Engineering Office Nearest You

FILTORS, INC.

30 Sagamore Hill Drive
Port Washington, L. I., N. Y.
Canadian Office:
MJS ELECTRONIC SALES, LTD.
F.O. Box 240, Ajax, Ontario Tel.: EMpire 8-3806

Export Office
MAURICE I. PARISIER \& CO.
1860 Broadway, New York 23, N. Y
Cable Address
MIPARISIER NEW YORK
Want more information? Use post card on last page.

PLANTS AND PEOPLE
television broadcast equipment accounts in the area between New York and Chicago.

Kenneth F. Petersen succeeds Tharpe at Du Mont. He was formerly marketing manager for Du_{u} Mont tv transmitter sales and before that director of engineering facilities for WPIX in New York.

Alto Scientific
 Adds Engineers

Principals of the Alto Scientific Co. now include president Lester L. Libby, vice-president Thomas F. Turner and secretary-treasurer Dr. David D. Cherry. Together, the background of the trio includes experience in development, manufacturing or sales with Tung Sol, Federal Telegraph Co., Federal Telephone and Radio Corp., Kay Electric, Ohmega Laboratories, Civil Aeronautics Administration, Northrop Aircraft Co., Sierra Electronic Corp. and Bell Telephone Laboratories.
New engineers joining Alto recently include James F. Melton, formerly with the Stanford Research Institute and Hewlett-Packard Co., Lawrence R. Teeple of California Research \& Development and Consolidated Aircraft, and Kenneth A. McQueeney who came to Alto from Sierra Electronic Corp.

New Glass Seal Company Established

W. P. SPEER, formerly manager of the glass seal division of Cannon Electric, has organized Seals, Ltd. in South Pasadena, Calif.

The company specializes in the design, manufacture and sale of glass-seal type connectors.

Summers Gyro Appoints Romig

Harry G. Romig has been appointed staff engineer at Summers Gyroscope Co.

He comes to the Santa Monica concern with 30 years of varied experience in industry. Twenty-

USERS of EPOXIES and POLYESTERS

for embedded circuits and parts

Can Now

- Replace or Repair Defective Parts
- Salvage Valuable Parts
in embedded circuits by fully or partly remov. ing the encapsulating resin with the NEW STRIPPER-SOLVENT
'MONASTRIP" EP

> SAVE COSTLY LABOR AND PARTS. No special equlpment needed. MONASTRIP E.P. is non-inflammable and can be reused. Write for details to Chem. Division. Section E.S.

INDUSTRIES, INC.
PATERSON 4,
NEW JERSEY

WIDE-RANGE FREQUENCY METER 85-1000 MEGACYCLES

A VERSATILE PRECISION MEASURING INSTRUMENT
 Recommended Applications:
 - Precise Measurements of Frequencies
 - Production Testing
 - Alignment of Transmitters and Receivers
 - Laboratory Testing
 - Portable Field Testing
 - A Secondary Frequency Standard
 - Signal Generator Calibration
 - U.H.F. and V.H.F. Television Alignment

[^19]

The simplicity and accuracy of Dekatron counting and timing circuits make the Ekco Model N-530A Automatic Scaler the most outstanding and most versatile instrument of its kind. This scaler will time a predetermined count, count for a pre-determined time, or can be manually operated.

FEATURES:

- Preset: elapsed time interval-$100-100,000$ seconds in 10ths
- Preset/elapsed count interval$100 \cdot 1,000,000$ counts
- Maximum counting rate $-60,000$ counts/second
- Maximum stopping time-2 milliseconds
- Six electronic decades
- Dekatron direct-reading counting and tining fubes
- Pulse height discriminator permits use with G-M, scintillation, flow or proportional
counters-variable 5.50 volt preset acceptance level

SPECIFICATIONS:

- Imput sensitivity - negative 0.1 volt and positive 5 volts
- Input resolution time - $\mathbf{5}$ microseconds, low coincidence loss
- Power Requirements-110-250v, 50/60 cycles, 130 watts
- Dual-range Power Supply-250-1000 and
$500-2000$ volts
Stability- $\pm 0.5 \%$ for variations up to $\pm 10 \%$
Ripple - less than 5 mv : rms peak
Write TODAY to our American representative for fechnical data on the complefe line of EKCO equipment.

ELECTRONICS, LTD. Southend-on-Sea, Essex, England
U. S. Sales and Service AMERICAN TRADAIR CORP. Long Island City 6, New York
five of these years he was with Bell Telephone Laboratories, New York, N. Y., as a member of the technical staff specializing in quality control. He was with Hughes Aircraft Co., Culver City, Calif., for almost three years, serving ultimately as technical director of quality control after being quality manager of central quality control. Recently, in addition to consultant work, he was employed by International Telemetering Corp., Los Angeles, as quality director.

Midwestern Elects New President

G. R. Morrow, vice-president and manager of Midwestern Instruments, has been elected president.
M. E. Morrow, founder and president, became chairman of the board.
E. J. Handly was elected vicepresident of finance. Other reelected officers were D. G. O'Brien, vice-president in charge of engineering and production; A. E. McCoy, vice-president in charge of sales; John F. Y. Stambaugh, secre-tary-treasurer and Truman R. Howell, assistant secretary-treasurer and comptroller.

The company now occupies its new million dollar plant in Tulsa, Okla.

NBS Appoints

Parts Chief

Robert D. Elbourn has been appointed chief of the components and techniques section of the Na tional Bureau of Standards. This section investigates new components and devices for electronic computers and explores techniques for applying them.

Elbourn is a member of the original team that developed in 1950 the Bureau's electronic computer, SEAC.

He has been with the Bureau since 1947.

Prior to joining the Bureau's staff, he was an electronic engineer with the Naval Ordnance Laboratory and with C. G. Conn of Elkhart, Ind.

Tubeless Constant Voltage Source For Measurement \& Control Circuits

Abstract

Designed to replace the chemical cell and VR tube in airborne, laboratory and other critical instrumentation, the K-Volt Standard provides constant voltage through extremes of operating conditions . . . including am bient temperatures as low as -55° and up to $100^{\circ} \mathrm{C}$. Operating from AC or DC supply, it employs no tubes or moving parts, is unaffected by position, vibration or mechanical shock. Negligible temperature coefficient, dependable regulation characteristics and rugged design make it applicable as an absolute reference, a constant output working supply, or a precision voltage regulator wherever specifications demand highest stability. Other important features are:

- Small size: $11 / 2^{\prime \prime}$ by $11 / 4^{\prime \prime}$ dia.
- Power drain less than 1.8 watts
- Life: more than $10,000 \mathrm{hrs}$.
- Vibration: conforms to MIL-E-5272A
- Miniature 7 -pin base
- Weight: less than $30 z$
- Hermetically sealed
- Random drift less than 0.1% over 1000 hrs.

Models to Meet Wide Range of Application Requirements: The K-Volt Standard is available for operation from 26.5 volts $D C$, or 117 volts AC, 60 or 400 cycles; $\cdot D C$ output 6 volts or 1 volt, at 1 ma or 10 ma .

For complete specifications and performance data
send for bulletin No. A1 28

Precision Instruments and Control Systems 58-15 Northern Blvd., Woodside 77, N. Y.

You can "miniaturize"
a lot smaller with these

ALLEN minicapi AND MINISETI

SOCKET SCREWS!

\# 0 THRU $=3$ DIAMETERS

Whatever you're "miniaturizing," Allen Minicap and Miniset Socket Screws are ready to hold the parts securely. Say the word - and Allen engineers will gladly work with you to show you how Minicaps and Minisets make it possible to scale down sizes even farther in your miniaturization designs.

Allen Minicaps and Minisets are tiny, but tough - true Allens in their accurate and uniform sockets, threads, heads and sizes. They're so strong, you can safely specify fewer screws or smaller sizes.

With precision-fit Allen sockets, the key fits tight - makes starting easier, saves time in assembly. Allen Minicaps are knurled, and trimmed on top and under the heads - fit better and look better.

Your Industrial Distributor has Allen Minicaps and Minisets now. He will show you why Allens hold better and last longer.

Sold Only Through Leading Industrial Distributors.

[^20] 376

New Books

Elements of Electronics

By Henry V. Hickey and William M. Villines. McGraw Hill Book Co., New York, 1955, 487 p, $\$ 5.00$.
In THIS volume the authors get right down to business; they introduce the vacuum tube soon after describing the basic behavior of the electron. This may seem an unconventional approach, but it steers the beginner immediately to the most important electronic device with which he is to become intimately acquainted. To make the story particularly pertinent in the first chapter, the explanation of direct currents and static electricity are immediately entered together with a brief introduction to mathematics involving the power of ten.

$A-C$ and D-C Circuits

The principles and operation of simple d-c circuits, natural and electromagnetism plus a working knowledge of meters, follow in simple logical sequence.

Alternating-current theory is treated with sufficient detail and is accompanied by two chapters, one on trigonometry and one on phase relationships; these three chapters adequately fill out the picture on a-c fundamentals with a minimum of confusion.

The action of capacitive and inductive circuits as described in the following two chapters are relatively simple since the reader has first been given a background in alternating-current theory.

Electron Devices

The remainder of the volume deals with vacuum tubes and their application to electronic equipment. The primary vacuum-tube functions of amplification and oscillation, are covered in six chapters, five of which are devoted to types of amplifiers. The relationship of the basic electronic functions to concrete operating equipment is covered in ten chapters-five on transmitter theory and operationfive on receivers.

A short chapter on transistors follows, to end the book rather abruptly.

Granted that receivers and trans-

RAWSON ELECTROSTATIC VOLTMETERS

Available ranges 100 volts to 35,000 volts
Measure true R.M.S. values on A.C., no waveform or frequency errors.

NO POWER CONSUMPTION

Leakage resistance greater than one million megohms. These meters may be used to measure STATIC ELECTRICITY!
Ideal for measuring high voltage power sup. plies with zero current drain. Rugged, well. damped movement. All elements surrounded by metal shielding for accuracy and safely

Write for bulletin

RAWSON ELECTRICAL INSTRUMENT CO.

111 POTTER ST.
CAMBRIDGE, MASS

Wanted!

We're looking for engineers whose prime responsibility is to seek ways and means to make products or parts better, more efficient and at lower cost. To you, we recommend Frenchtown Engineered Ceramics.
Very possibly you can profit from the many valuable properties of Frenchtown Engineered Ceramics to give you resistance to high temperatures and low thermal expansion; excellent mechanical strength and wear resistance; superior dielectric strength at both high and low frequencies.

This helpful 4-page bulletin contains complete data on electrical and mechanical characteristics of Frenchtown highperformance bodies. Send for a free copy today.

frenchtown

PORCELAIN COMPANY
86 Muirhead Ave. - Trenton 9, N. J. Want more information? Use post card on last page. December, 1955 - ELECTRONICS
mitters form the major portion of electronic gear, it would have been pertinent to round out the volume with a few pages more on electronic circuitry as applied to control, measurement, photoelectricity and television.

On the whole, the book gives a well planned and clear explanation of electronic principles. Circuit functioning and practical commercial applications are covered with excellent technique.

Enough restraint has been exercised in the descriptive matter to give a clear picture without letting the text become confused with redundant material.

Harry E. Thomas, Senior Project Engineer, Federal Telecommunication Laboratories, Nutley, N. J.

Electronic Measuring Instruments

By E. H. Banner. The Macmillan Co., New York, 1955, 395 p, $\$ 8.50$.
INTENDED primarily for the information of instrumentation engineers, this book is neither a text nor a handbook. It covers basic theory of electronic devices useful in instrumentation and their application. The instruments described include industrial, scientific and medical instruments. Electronic test equipment is not covered in this book.

Arrangement

The book is presented in three parts. The first discusses eletronic devices such as vacuum and gasfilled tubes, cathode-ray tubes,

Bridge circuit for measuring low light intensity

- HIGH ACCURACY
- MEASURES FROM 0 TO 360 DEGREES
- READINGS NOT AFFECTED BY NOISE AND HARMONICS
- PHASE SHIFTS OF THE ORDER OF $.01^{\circ}$ CAN BE MEASURED EMPLOYING SPECIAL CIRCUIT TECHNIQUES
- MEASURES IN-PHASE AND QUADRATURE COMPONENTS SEPARATELY

For further information contact your nearest representative or write for brochure

INDUSTRIAL TEST EQUIPMENT CO.

 55 E. 11 th ST. NEW YORK 3 - GR. 3-4684Manufacturers of: PHASE METERS

NULL DETECTORS

IMPEDANCE COMPARATORS

POWER OSCILLATORS

VACUUM TUBE VOLTMETERS
freauency Standards
automatic
HI-POT

Other Electronic
Test Equipment

COILS

COIL ASSEMBLIES
Variable R.F.
Variable I.F.
Plate Coils
Oscillator Coils
Crystal Heater Units
Impedance Coils Peaking Coils R.F. Chokes

Video Peaking Coils Transmitter Coils

YOKES

Industrial Camera Yokes
Alignment Yokes
Image Orthicon Yokes
Focus Coils Image Orthicon
Terminal Board Assemblies

TELE COIL CO., Inc.

 SAMUFL FELDMAN, PROs.2733 Saunders St.
Camden 5, N. J.
Phone EMerson 5-7528

PLASTICON

THE PLASTIC FILM CAPACITOR

phototubes, solid-state devices and particle detectors.

Part two discusses electronic measuring instruments making use of these devices. Part three covers other measuring instruments including electronic and other counters, electromechanical transducers, electrical instruments and instruments for measuring physical quantities.

Usefulness of the book to American engineers is somewhat limited in that many of the electron tubes and commercially available instruments described are, understandably, of British origin.

Striking a humorous note in the preface, the author suggests that thermopiles might have been used at Thermopylae or that diodes and triodes are extensions of the Odes of Horace.-J.M.C.

Electronic Musical Instruments

By Richard H. Dorf. Radio Mag azines, Inc., Mineola, New York, 1955, 326 p, \$7.50.
That there is a need for a book covering the field of Electronic Musical Instruments is obvious since there have been so many new and interesting applications of electronic (and electric) devices to the music world. The book "Electronic Musical Instruments" does describe most of the innovations currently on the market.

It is apparently written for three groups: the musician, the engineertechnician, and the build-it-yourself enthusiast. As a result-interested musicians find it lacking since

Heterodyne instrument with harmonic synthesis
it does not delve into the musical aspects of the subject in sufficient detail. The engineer-technician finds many instances where subjects are excessively simplified, and the build-it-yourself enthusiast finds not enough detail to permit finished construction.

Further, a speaking-to-class presentation is used rather than a less verbose and more professional writing technique. The book is well illustrated with pictures showing the various instruments, and schematic drawings are used profusely and advantageously for greater clarity. The book is well printed with exceptionally few typographical errors. The appendix of electronic music patents is quite extensive.
G. Edward Hamilton, American Broadcasting Company, New York, N. Y.

Thumbnail Reviews

The Mobile Manual for Radio Amateurs. American Radio Relay League, West Hartford, Conn., 1955, 352 p, $\$ 2.50$ (paper). Selected articles from QST dealing with design of station equipment for mobile operation. Articles described receivers, transmitters, antennas and power supplies.
Basic Synchros and Servomechanisms. Van Valkenburg, Nooger \& Neville, Inc. John F. Rider Publisher, Inc., New York, 1955, two volumes: 272 p, $\$ 5.50$ (paper), $\$ 6.95$ (cloth, one volume). Material from Navy course on Basic Synchros and Servomechanisms. Pictorial presentation, quite elementary. Covers servo components, servo fundamentals and design, error detectors, amplifiers and control circuits.
Handbook of Engineering Materials. D. F. Miner and J. B. Seastone. John Wiley \& Sons, Inc., New York, 1955, $1,391 \mathrm{p}, \$ 17.50$. Includes sections on general information about materials, metals, nonmetals and construction materials. Covers common chassis metals, papers, fibers, plastics and rubbers, organic finishes, carbon products and ceramics.

Proceedings of the First Conference on Training Personnel for the Computing Machine Field. A. W. Jacobson. Wayne University Press, Detroit, Mich., 1955, 104 p. Proceedings of a conference held at Wayne University June 22-23, 1954. Includes 17 papers, reports on 3 panel discussions and roster of persons attending conference. Subject headings include: manpower requirements, educational programs, influence of computers on technical and general education and cooperative efforts for training and research.

FOR MARKING...

PLASTIC •METAL GLASS - PAPER RUBBER C CERAMIC CARDBOARD in such products as Resistors, capacitors, valves, tubes, labels, sleeves, spark plugs, cartons, etc., etc.
THESE PRODUCTS AND MANY OTHERS OF ALMOST ANY MATERIAL AND SHAPE CAN BE IMPRINTED

ON THE

REJAFIX

MARKING MACHINE

Why nof send us samples of your products? They will be fest-printed and peturned to you for your examination!

- REJAFIX HAND-OPERATED MODELS FOR SMALL RUNS. FULLY AUTOMATIC MODELS FOR MASS PRODUCTION.

EST. 1922

infroduces the

WRITE TODAY FOR COLORFUL BROCHURE SHOWING THE NEW LINE OF ATR TV SETS

ALSO MANUFACTURERS OF DC-AC INVERTERS, "A" BATTERY ELIMINATORS, AUTO RADIO VIBRATORS

Quatart Prowest Sures 1931
SAINI PAUI 1. MINNESOTA-U.S.A
Want more information? Use post card on last page. 380

Backtalk

Resistance Analyzer

Dear Sirs:
We believe you will be interested in knowing that your printer must have dropped one or two lines of type when making the break in that story between pages 290 and 292, September 1955.

The last sentence on page 290 should have read: "It was designed to check such characteristics as d-c resistance, temperature coefficient, and voltage coefficient of resistors according to JAN specifications. Voltage coefficient of any resistor up to a capacity of 2 w can be determined down to as low as 0.0002 percent per volt."

Richard G. Morris
Manager
Advertising, Public Relations The Kuljian Corporation Philadelphia, Pennsylvania

Patent Examiners Needed

Dear Sirs:
There is a serious delay in the processing of patent applications in the U. S. Patent Office because the size of the examining staff has not kept pace with the increased number of patent applications filed. This creates uncertainty as to the patent status of new products and processes and tends to slow down or defer their adoption by industry and their introduction to the public.

This is a matter that can handicap the larger corporation and can be critical for the individual inventor and the small business whose operations revolve around patented products and processes.

Congress has appropriated additional funds for new patent examiners, but with the existing demand for engineers and scientists in industry it has been difficult to obtain enough candidates having the necessary technical qualifications . .

There are vacancies in the examining staff which should be filled promptly this fall and we appeal to you . . . since Electronics is read by the technically and scientifically trained people whom the Patent Office is trying to reach. Steps have already been taken

specialists in designing and manufacturing of allpurpose fasteners and wire forms. Tooled to produce over 1000 styles in any screw size, material finish, quantity, to your specifications

Serving Industry for Thirty-five Years - OTHER PRODUCTS -

- TOOLS DIES - STAMPINGS

Bulletins on complete line upon request
WENCO manUFACTURING Co.
4133 W. Hubberd St. chicesge 22, wi. U. U.S.A.
Want more information? Use post card on last page.
December, 1955 - ELECTRONICS

Professional Services

Consulting—Patents—Design—Development—Measurement in
Radio, Audio, Industrial Electronic Appliances

AIRPAX PRODUCTS CO.

Development Dirision
Snecialists in the
Design and Manufacture of
UNUSUAL TRANSFORMERS AND HELAYS
Middle River
Bahimore 20, Ind.

ANALYSIS INSTRUMENT CO.

Consuliants on Magnetic Problems
Magnetic Materials Tested Special Magnetic Derices Designed
Magnetizing \& Testing Equipment Supplied
P. O. Box 7

Pequannock, New Jersey

H. O. BIXBY ASSOCIATES

Consultants to the Electronio Industry
SURVFYS - PROMOTIONS - LIAISON
PERSONNFI, PLACEMENT - TECHNOLOGY
238 Mainst .
Cambridge 42, Mass.
EL_iot 4-94.04

THOMAS H. BRIGGS
 \& ASSOCIATES
 Electronics Consultants

EIfctron Tubes - Automation - Project Surveys Tube Materials \& Reliability - Servo-mechanisms Boy 135 RD\# 2 Norristown, Penn

```
CROSBY LABORATORIES, INC.
            Murray G. Crosby & Staff
                Radio - Electronics
    Rese:urch Development && Manufacturing
        Communication, FMI & TV
        Rolbins Lame, Hicksville. N. Y.
```


DELAWARE PRODUCTS CO

Aualog Voltage to Digital Conversion Digital Voltage Recording Systems
Design-Development-Manufacturing
300 Broadway
Camden 3, N. J.

EDGERTON, GERMESHAUSEN

 \& GRIER, INC.Consulting Engineers
Stroboscopy - Transient Oscillogranhy

- Pulse Techniques
High-Speed and Electronic Flash Photography Telemetering - Indusirial Television Applications
Brookine Avenue
Boston 15 , Mas

Eldico of New York, Inc.
Pioneers of Television Interference Elimination from Transmitters, Induction Heaters, Diathermy and cte

Donald J. S. Merten \& Engineering Stafp
72 E. Second St.
Mineola, L. I., N. Y
Pioneer 6-5212

ELECTRONIC RESEARCH ASSOCIATES, INC.

TRRANSISTORIZE' YOUR PRODUCT। Complete Service in consulting, research, development, and production on Transistor circuitry, prodact
67 East Centre Street

$$
\begin{aligned}
& \text { eet } \\
& \text { NUtles } 2-5410
\end{aligned}
$$

Nutley, N. J.

ERCO RADIO LABORATORIES, INC.

Radio Communications Equipment Engineering - Design - Development - Production Cour 27n Year in Air to Ground Communications and Radio Beacons
Garden City - Long Island • New York

HANSON-GORRILL-BRIAN INC.

Product \& Mfg. Development rlectrical - electrionic hydraulic - mechanical
One Continental Hill Glen Cove, N. Y.
Glen Cove 4-7300

THE KULJIAN CORPORATION

ELECTRONICS DIVISION
Consulting Electronic Engineers
Research, Development. Production of
Automatic Controls - Special Instrumentation
1200 No. Broad St., Philadelphia 21, Pa. Stevenson 2-9000

Measurements Corporation

Research \& Manufacturing Engineers
Harry W. Hovek Martial A. Honnell.
John M. van Beuren
Specialists in the Design and
Development of Electronic Test Instruments Boonton, New Jersey

MINOT INFORMATIC DEVICES
AUTOMATIC RECOGNITION OF
SHAPES, PATTERNS \& INFORMATIOS
1RENEARCH - INVENTION - CONSULTING or detection and interpretation of complicated forms, characteristics of
materials, printer characters, ete.
Otis N. Minot, 22 Eliot R2d., Lexington 73. Mass.

NEW ROCHELLE TOOL CORP.

FOR CERTIFICATION OF INDUCTION
AND DIELECTRIC HEATING EQUTPMENT
IN ACCORDANCE WITH F.C.C. RULINGS
Mobile 'Test Unit Avallable Entire U. S.
320 Main St.
New Rochelle. New York
Phone NE 2-5555

NIAGARA ELECTRON LABORATORIES

CONSULTATION - DESIGN - CONSTHUCTION MFG. THE THEIRMOCAP RELAY Specializing in solution of problems of electronic and electro-physical inscrumentation for the researc ar analytical laboratory. Industrial plant problem Andover, New York Cable Address: NLATRONLAB

PICKARD \& BURNS, INC.
Consulting Electronic Engineers
Analysis and Evaluation
Research, Development and Production
of Speoial Electronic Equipment
240 Highland Are Needham 94,

ALBERT PREISMAN

Consalting Engineer
Television, Pulse Technigues, V1deo Amplifters, Phasing Network Industrial Applianc
MANAGEMENT TRAINING ASSOCIATES
3224-16th St., N. Y. Washington 10, D. C.

SUNSTEIN ENGINEERING CO.
 David E. Sunstein and Associates

Consulting Services for Research. Engineering
and l'roduction of Industrial, Consumer, and Government I'roducts.
464 Conchohocken State Road Bala-CWuyd, (Phila.)

THE TECHNICAL
 MATERIAL CORPORATION

Communications Consultants
Sysiems Engineering
General Offices and Laboratory
T00 Fenimore Rd., Mamaroneck, N. Y.

WALSH ENGINEERING CO.
Design and Prototypes
of Electronic Apparatus
in which Transformers and Magnetic Components are especially important factors in Performance. Size, Weight and/or Cost
34 DeHart Place
Eliza beth 2-7600
Elizabeth, $\mathrm{N} . \mathrm{J}$.

WHEELER LABORATORIES, INC.

Radio and Eleotronics

Consulting - Research — Developwent R-F Circuits - Lines - Antennas
Microwave Components - Test Equipment
Harold A. Wheeler and Begineering Staff
Great Neck, N. Y.
HUnter 2-7876

YARDNEY LABORATORIES
 Research-Design-Development
 Electro-Chemical Generators of Fnergy
 40-46 Leonard Street
 Worts 6-3100
 New York 13, N. Y

in this direction and over 100 new patent examiners have been added to the examining staff since June of this year, and it is understood that the Patent Office plans to build this number up to a total of 350 new examiners by the end of 1956

Salaries for examiners start at $\$ 4,345$ a year, and it is possible to reach a salary of $\$ 7,570$ in $5 \frac{1}{2}$ years. The Patent Office also offers liberal vacations and sick leave and pension benefits.

Engineers and scientists holding a college degree in engineering or applied science, or a degree with a major in chemistry or physics, or with certain combined credits in these fields, are eligible for appointment as patent examıners, without examination, upon application to the Commissioner of Patents in Washington.

Henry E. Sharpe The New Vork Patent Law Assoc.

Face-Plate Seal

Dear Sirs:
The statement in the news story on p 22 (Nov. 1955) that "a low temperature solder glass seal is used to seal the face plate to the funnel . . " is incorrect. The face plate and cone of the all-glass color television tube are sealed by the same method used regularly to seal the face plate and cone of black and white television tubes.
H. C. McDaniel

Westinghouse Electric Corp.

Transistor Symbol

Dear Sirs:
I have found it quite convenient and, I believe, also appropriate to use the symbol $X R$ to indicate or label a transistor in schematic diagrams and as an abbreviation in written material.

I under stand the name transistor was originally a combination of trans (across) and resistor. Since X is often used in place of trans and R is, of course, the symbol for a resistor, $X R$ could very well be the symbol for a transistor.

William G. Shepard Seattle, Washington

CONTACTS

MANUFACTURER'S REPRESENTATIVES

As a service to readers, ELECTRONICS presents the advertisements for some of the leading manufacturer's representatives in the electronics industry. These firms are qualified to help the Manufacturer with his distribution problems; the Buyer with his product needs.

S. BOSWORTH \& CO.

Engineering Sales Representatives precision Flibotronio ingtrembntation
 Industrials-Aircraft-Government-Universities
In MetronOlitan New York and Adjouning Areas 244 Old Country Road, Hickssille. L. I., New York HIcksville 4-2232

SAMUEL K. MACDONALD, INC. manufacturers representatives over 25 years 1531 SPRUCE STRET, PHILA. 2, PA. Territory;
Pennsylvania © New Jersey

Orfier Offices: Pennsyivania Now Jo
Deloware: Maryland Virginio e West Virginia
Distriet of Columbia
Washington, D.C.

"OUR FOURTH YEAR"
 The NEWHOPE CORPORATION
 Loo Rocke, Assooisto

RADIO, ASVALes Organnaztion for the Four salesmen concentrating In Metronolitan Now 6 East 39th Street $\begin{gathered}\text { Telephone Lixington 2-7372, } \\ \text { New York 16, New York }\end{gathered}$

LOOK AT THIS RECORD OF GROWTH

A few short years ago, a handful of people pioneered advanced semi-conductor development at Transitron.

Today Transitron employs over 500 people in a modern plant of 65,000 square feet at Melrose, Massachusetts.

AND NOW...FURTHER EXPANSION

A newly modernized second plant of 250,000 square feet is being equipped at Wakefield, Massachusetts.

If you're in search of real opportunity, you'll find your professional horizons unlimited at Transitron. In a few short years this young company has carved out a leading position in the field of semiconductors. It is now undergoing further expansion into a second plant of 250,000 square feet.

Here is your chance to work with stimulating, congenial associates in an atmosphere of progress informal and free of red tape. You'll be located in pleasant, suburban Boston, in the heart of one of America's technical centers - where cultural and educational advantages are found for you and your family. And you're only an hour's drive from New England's vacationland

So, if your experience is any of these fields
SOLID STATE PIIYSICS ELECTRICIL ENGINIELRIVG METALLLRGY SALES ENGINEERING
MEGHANICAL ENGINEERING PIROUUCTION ENGINEERING,
there is an unparalleled opportunity for you right now with Transitron. Salaries are attractive; vacation, insurance and retirement benefits are liberal and your opportunities for professional growth are unlimited.

A letter to Transitron with your resume will receive our prompt attention, and will be held in strictest confidence. Transitron Electronic Corporation, Telephone: MElrose 4-9600.

Unusual engineering positions in electrical and mechanical design of radar, sonar and telemetering are available. These positions, which are directly associated with our long. range projects for industry and for defense, are available at all levels. Now nearing completion at BendixPacific is the new Engineering Center. With more than 100,000 square feet of area it represents the latest and one of the most complete engineering facilities in the nation.

You are invited to consider becoming a member of this vital engineering group - with a forward looking company in Southern California.

Please fill in the coupon or write us for complete information.

SYLVANIA'S

CALIFORNIA RESEARCH LABORATORY
(San Francisco Bay Area-Near Palo Alto)
Needs experienced creative engineers for a long range research and development program in microwave electronic systems and components. Also needs experts in design and custom packaging of specialized electronic communications equipment.

We have specific openings for ENGINEERING SPECIALISTS and SENIOR ENGINEERS in:

SYSTEMS ANALYSIS For weapons systems planning, operational analysis and data handling problems.

MICROWAVE ANTENNAS For investigation of new concepts in polarization and pattern control, direction finding and multi-function radiators.
MICROWAVE CIRCUITS For advancements in synthesis of filters, broadband mixers, power dividers, etc., involving modern techniques of stripline, ridge guide and periodic structures.
TRANSMITTER DEVELOPMENT For research and development involving microwaves and pulse techniques.
FIELD ENGINEERING For advanced engineering field tests of prototype equipment.
COMMUNICATIONS SYSTEMS For design and development of complex communications systems.

Sylvania offers the finest facilities and equipment available. We also provide financial support for advanced education, as well as a liberal insurance, pension and medical program.

Mountain View, California

ELECTRONIC

All inquiries will be answered within two weeks.

Our Laboratory is located 5 miles from Palo Alto in the San Francisco Bay area, close to excellent schools and universities, unexcelled living conditions, ideal climate and ample housing.
RELOCATION EXPENSES PAID

defense laboratory

 velopment of vitally needed new applications in mechanical and electrical engineering fields is internationally known.
Now you can join an ERA Project Team. While you are working closely with ERA's staff of outstanding engineers, you will be learning all about the system being created and perfected. You will grow with ERA and steadily enlarge your computer experience and professional standing.
FIELD ENGINEERING . . . A special extended training program at full salary is offered to men who choose computer field engineering. Take your family with you to permanent computer installations.

To qualify, send an outline of your training and experience to Department D-4

Themingtore Thand division of SPERRY RAND corporation

EngINEERING \neq ESEARCH $/ 7$ SSOCIATES division

1902 West Minnehaha Avenue - Saint Paul W-4, Minn.

SALARIES-At RCA, engineering salaries average measurably higher than those of other companies in the field. Intermediate engineers range from $\$ 5000$ to $\$ 8500$, senior engineers from $\$ 8500$ to $\$ 15,000$. Staff and supervisory salaries open

INDIVIDUAL RECOGNITION-RCA organizes engineering activities into groups small enough to allow broadest scope for your individual accomplishment. The average group has just 11 engineers. Yet, in all activities, you are backed by the entire facilities and engineering resources of RCA.

LOCALITIES-At Camden or Moorestown, you enjoy the educational advantages of Greater Philadelphia, with moderate-cost living in pleasant suburban communities. Waltham offers at-home opportunity for New England engineers. Los Angeles, ideal West Coast location.

Harrison lies next to Greater New York. Lancaster and Findlay have small-city advantages.

ADVANCEMENT-Regular, objective appraisal of your work speeds your promotion. Professional and financial progress is just as sure as your achievements make it.

PROFESSIONAL STATUS-RCA world leadership in electronics is based on the abilities of exceptional men on every organizational level Many have widely known engineering and scientific reputations. You work in day-by-day association with these leaders.

BENEFITS - There's a complete program at RCA A very liberal Tuition Refund Plan. Companypaid life, sickness and accident, hospital-surgical insurance for you and your family. Modern retirement plan. Relocation assistance, suggestion and patent awards.

${ }_{3 s 5}\{$
 OVER 600 EXPERIENCED ENGINEERS AND SCIENTISTS* CHOSE RCA SYSTEMS, DESIGN OR DEVELOPMENT CAREERS

FIELDS OFENGINEERING AGTIVIT	M A N A A G E R S	TYPE OF DEGREE AND YEARS OF EXPERIENCE PREFERREO											
		Electrical Engineers			Mechanical Engineers			Physical Science			Chemistry Ceramics Glass Technology Metallurgy		
		1.2	$2 \cdot 3$	4-15	1-2	$2-3$	4-15	1-2	2-3	4-15	1-2	2.3	4.15
SYSTEMS													
(Iftegration of theory, equipments and environment to create and optimize major electronic concepts.)													
AREORNE FIRE CONTROL				$\begin{aligned} & \mathbf{W} \\ & \mathbf{M} \end{aligned}$			M			W \mathbf{M}			
DIGTAL DATA HANDLNG DEVICES	$\begin{gathered} M \\ C \end{gathered}$			C			C			C			
MISSILE RLECTRONICS * RADAR	M			M \mathbf{X}			M			M			
INERTAAL NAVIGATION	M			M			M			M			
COMMUNICATIONS				C						C			
DESIGN - DEVELOPMENT KINESCOPES (B \& W and COLOR), OSCILLOSCOPES-Electron Optics-Instrumental Analysis-Solid States (Phosphors, High Temperature Phenomena, Photosensitive Materials and Glass to Metal Sealing)		L	L	L	L	L	L	L	L	2	L	L	L
RECEIVING TUBES-Tube Design - Test and Application EngineeringChemical and Physical Development-Methods and Process Engineering -Advanced Development		H	H	H		H	H		H	H		H	H
SEMI-CONDUCTORS-Transistors-Semi-Conductor Devices-Materials		H	H	H	H	H	H	H	H	H	H	H	H
MICROWAVE TUBES - Tube Development and Manufacture (Traveling Wave-Backward Wave)	H		H	H		H	H		H	H		H	H
GAS, POWER AND PHOTO TUBES—Photosensitive Devices-Glass to Metal Sealing		L	L	1	1	1	L	L	L	\underline{L}	L	L	L
AVIATION ELFCTRONICS-Radar-Computeris-Servo Mechanisms —Shock and Vibration-Circuitry-Remote Control-Heat Transfer-Sub-Miniaturization-Automatic Flight-Design for Automation-Transistorization	$\begin{gathered} M \\ C \end{gathered}$	M C X	M \mathbf{C} X	M C X	$\begin{gathered} M \\ C \end{gathered}$	M C X	M C X	M C X	M C C	M C X			
COMPUTERS—Systems—Advanced Development-Circuitry—Assembly Design-Mechanisms-Programming		c	$\frac{C}{X}$	M \mathbf{C} \mathbf{X}	C	C	M C X	C	C	M			
RADAR-Circuitry-Antenna Design-Servo Systems-Gear TrainsIntricate Mechonisms-Fire Control	$\begin{gathered} M \\ C \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{C} \\ \mathrm{X} \end{gathered}$	M C X	$\begin{gathered} M \\ C \\ X \end{gathered}$	M C X	M C X	M C X	M C X	M C X	M C X			
COMMUNICATIONS - Microwave - Aviation - Specialized Military Systems		C	C	C		C	c		C	C			
RADIO SYSTEMS—HF-VHF-Microwave-Propagation AnalysisTelephone, Telegraph Terminal Equipment		1	I	1		I	I		I	1			
MISSILE ELFCTRONICS-Systems Planning and Design-Radar-Fire Control-Shock Problems-Servo Mechanisms	M	M	M	M	M	M	M	M	M	M			
COMPONENTS-Transformers-Coils-TV Deflection Yokes (Color or Monochrome)-Resistors		C	Z \mathbf{C}	$\begin{aligned} & z \\ & \mathbf{C} \end{aligned}$	c	z	z	c	c	C		z	z
MACHINE DESIGN			L	L		L	C L H		L	1			

Locations: C-Camden. N.J. H-Harrison N.J I-International Div L-Lancaster. Pa. M-Moorestown. N.J W-Watham. Mass. X-Los Angeles. Calif. Z-Findlay, Ohio

Please send resume of education and expetience, with location preferred, to:

Mr. John R, Weld, Employment Manager Dept. A-15M, Radio Corporation of America 30 Rockefeller Plaza, New York 20, N. Y.

TO THE FINE ENGINEERING MIND SEEKING THE CHALLENGING PROJECTS IN

ELECTRONICS

ELECTRONICS ENGINEERS are urgently needed to fill top career openings at Convair in beautiful San Diego, California. Qualifications include experience in missile guidance systems, microwave techniques, digital computers, servomechanisms, test equipment design, circuit analysis, transistor and magnetic amplifier circuit design, and electronic reliability. Antenna engineers also needed for airborne antenna research and development projects. CONVAIR offers you an imaginative, explorative, energetic engineering department ...truly the "engineer's" engineering department to challenge your mind, your skills, your abilities in solving the complex problems of vital, new, long-range programs. You will find salaries, facilities, engincering policies, educational opportunities and personal advantages excellent.

Generous travel allowances to engincers who are accepted. Write at once enclosing full resume to:
H. T. BROOKS, ENGINEERING PERSONNEL, DEPT. 912

CONVAIR

A Division of General 3302 PACIFIC HIGHWAY

Dynamics Corporation SAN DIEGO, CALIFORNIA

SMOG-FREE SAN DIEGO, lovely, sunny city on the coast of Southern California, offers you and your family a wonderful, new way of life . . .a way of life judged by most as the Nation's finest for climate, natural beauty and easy (indoor-outdoor) living. Housing is plentiful and reasonable.

REPLIES (Box No.) Address to office nearest you NEWYORK: 330 W. 42ndSt. (36) SAN FRANCISCO: 68 Post St. (11)

POSITION VACANT

Instrument Maker-Electronics-Technical school training in electronics with 3 to 4 Hears experience in repair, maintenance and Knowledge of physics and radiation-detection instruments desirable. Appointmentection January 1956 . Starting salary $\$ 80-\$ 90$ per week depending on qualifications: $\$ 90-\$ 105$ for higher qualifications. Vacation, sick leave, hospitalization. Social Security, Reply Box 11 . Oak Ritlge, Tennessee.

POSITION WANTED

Component Parts Engineer specialized in small electronics parts with a practical reFitility philosophy for missile environments. missile electronics. Desires aircraft and position where evaluation and test methods can be of value. PW-7311, Electronics.

SELLING OPPORTUNITY WANTED

Detroit Manufacturer's Agents, Established twenty years. Clientele with Automotive, Chemical and Metal Industries in Laboratory, Ensineering and Operating office. Complete Chemical, Metallurgical and Electronics eduequipped electronics service shave new fully equippen electronics service shop. RA-8334,
Electronics.

PART-TIME WORK WANTED
Seattle sales engineer seeks part-time work for supplier. Aircraft only. PTWW-8261, Electronics.

MANUFAGTURERS REPRESENTATIVE

Engineer desires repeat and expendable electrento and electro-mechanical products for sale to Gulded Missile and Aircraft Companies located in Southern LEE GRANT
Technical Sales \& Contrar COMPANY 1418 W. Highland Ave. Contract Administrators
Hollywood 28, Calle.
Phone Hollywood 9.6278

DRAKE PERSONNEL
National Placement Center for EXECUTIVE AND TECHNICAL PERSONNEL
General and Plant Managers Plant Superintendents-Foremen Accounting-Staff Personnel Engineers: Design-Production Sales Managers-Engineers

Please outline briefly your experience or personnel needs to:

John Code
220 S. State St., Chicago 4, III HArrison 7-8600

ENLINEERS - SCIENTSTS \$6,000 - \$20,000
 World Wide Coverage NO FEE

Thousands of engineers have used National as a clearing house-let us assist you. Send detailed resumes
Specify positions preferred and choice of geographic locations
1108-16th St., N.W. Wash. 6, D. C. NATIONAL EMPLOYMENT SERVICE

[^21]
A new Bendix Radio Engineering Building

AND WHAT IT CAN MEAN TO YOUR FUTURE!

ELECTRONIC ENG. PHYSICISTS MECHANICAL ENG.

Our new Engineering Building is one manifestation of our continuing rapid growth. Yes, we are expanding both our government and commercial business. This means you can step up your engineering career fast with us! You'll benefit from top salaries . . . a secure future . . . placement at highest level of your capabilities . . . pleasant living in beautiful residential area. Simply drop us a postal card, briefly stating your education and experience. We'll act fast . . . and confidentially!

Address: Personnel Manager, Depł. J

Radio
DIVISION OF bendix aviation CORPORATION Baltimore 4, Maryland

Excellent for

SPCCIFICATIONS ENGINEER

Three or more years of experience in electronic design or applications engineering. Familiarity with military specifications and technical writing experience desirable.

SYSTEMS ENGINEERS

Responsible experienced engineers required for design and development of airborne electronic systems including navigational and fire control systems. Systems engineers also required for integration of missile system with aircraft fire control systems.

CIRCUIT DESIGN ENGINEERS
Positions available at all levels from recent graduates to engineers with relevant super visory experience. Electronic circuit design ex perience required. Should be capable of inde. pendent design and andysis for work velopment of circuits for complex radar and

SYSTEMS ANALYSIS ENGINEERS

For synthesis and analysis of complex missile guidance and radar systems. Degree in elec trical engineering or physics and three or more years experience in servo, feedback control systems, and dynamics required. Familiarity with noise theory desirable.

ELECTRONIC PACKAGING ENGINEERS

```
For packaging of electronic units of radar and missile sys tems. EE or ME degree required and three or more years experience in design or packaging
```


- MISSILE AND RADAR DIVISION •

Continued expansion of Raytheon's Missile and Radar Division has created long range oppor unities for experienced engineers. This Division is engaged in all phases of missile developmen tracts for missile systems involve overall responsibility for testing to production. Prime con guidance, motor and auxiliary equipment. This Division is located 20 miles from Boston affering choice of urban or country living, excellent recreational facilities and proximity to Boston's educationol and entertainment advantages.

GENERAL INFORMATION

Salary and advoncement commensurate with ability. Liberal vacation, sick leave, group life and health insurance and a worthwhile pension system. Tuition support plan for engineering courses Relocation expenses paid. Write giving details on experience to G. P. O'Neil. A mutually con venient time for interview will be arranged.

ENGINEERS
Honeywell
"First in Controls"
OFFERS EXCELLENT
OPPORTUNITIES IN
RESEARCH
. . including analysis of electronic controls and control systems, using control theory and analog tests. Variety of other applied research activities.

DEVELOPMENT

. . of electronic and electromechanical devices for defection and control of all types of industrial process variables.
... development and design of complex industrial instrumentation systems, data reduction and data handling systems.
... development of pneumatic and me. chanical devices for flow measurement and control and other small electrome chanical controls and recording instruments.

APPLICATION

personal contact with customers, determining exact needs for custom-built devices or systems, determine feasibility of manufacturing special products by estimating engineering time necessary, etc.

Excellent Opportunities FOR MEN WITH

1.-A degree in E.E., M.E. or Physics
2.-From 1 to $7 \mathrm{yrs}^{\prime}$ experience in instrumentation or similar fields
3.-Group or Project Leader Potential

Send a confidential resume of your qualifications for consideration in the area of your interest.

HONETWELL
 BROWN INSTRUMENTS

Wayne \& Windrim Avenues Philadelphia 44, Pa.

Among the challenging assignments which foretell bright futures for engineers at Goodyear Aircraft Corporation - consider what goes on at Goodyear in the field of electronics:
Consider "ATRAN," the all-weather electronic equivalent of a contact pilot-pioneered, patented and produced at Goodyear Aircraft. Still "under wraps" for the military - it is a device with a brilliant commercial future, the most brilliant performer in its field!
Consider "GEDA" - the Goodyear-built analog computer, stalwart of one of the world's largest computer laboratories-facilities readily available to creative engineers who come to Goodyear

Aircraft where you're invited to explore new avenues of approach to problems.
Consider radomes, ground and air-borne radar, test equipment for cross-talk and deflection. And beyond the locked doors: interesting and complete challenges in the fields of missiles, weapons systems and new concepts involving electronic nerve centers.
Consider-by all means-what the future can mean for you at Goodyear Aircraft! Send resumé, request application: C. G. Jones, Personnel Department, Goodyear Aircraft Corporation, Akron 15, Ohio. Plants in Akron and Litchfield Park, Arizona
\qquad

Theyre doing big things at CDDD点YEAR AMRCRAFT

 THE TEAM TO TEAM VITH in AERONAUTIOSSYLVANIA grows 33\% faster than electronics industry

ENGINEERS
Your Future Lies with a GROWTH Firm in a GROWTH Industry

You can move up fastest and most securely with a firm that grows ... in an industry that grows.
Projected growth of the electronics industry is more than double for the next ten years. Past indications prove that your best chance for a career is with Sylvania... in the past eight years Sylvania has grown 33% faster than the electronics industry of which it is a part.

Join Sylvania now and grow with it.

WALTHAM Engineering

Majors in E.E., M.E., Math,
Physics. Research \& Development
experience in -
Countermeasures
Systems Analysis
Transistor Applications
Noise Studies
Antenna Res. 8 Dev.
Systems Development
Mechanical Design
Miniaturization
Digital Computer Circuits ${ }^{2}$ Systems
Circuit Designs
Shock \& Vibration
Technical Writing
Missile Analysis
Missile Systems Laboratory
Radar Research \& Development
Missile Guidance \& Ground Equipment Analysis
Systems Evaluation Operations Research

BUFFALO Engineering
Majors in E.E., Math or Physics.
Experience in Advanced Development and Product Design
Information Theory
Advanced Circuit Design
VHF-UHF Systems Design \& Evaluation
Logical Cirevir Design
Mathematical Analysis for
Numerical Computation
Pulse Techniques
Data Processing Devices
Components \& their Applications
Magnetic Amplifier Techniques
Servo Techniques \& Applications
Digital Computer Design
Control Circuits \& Devices

INTERVIEW \& RELOCATION EXPENSES

 WILL BE PAID BY SYLVANIASyivania provides finoncial support for advanced educotion as well as liberal in surance, pension and medical programs.

Please foruard resume to: Professional Placement Supervisor
Thomas A. Tierney I Randall A. Kenyon
100 First Ave. 175 Great Arrow Ave.
Waltham, Mass. Buffalo 7, N. Y.
Your inquiries will be answered within 2 weeks

SYLVANIA ELECTRIC PRODUCTS INC.

New 86,000 Sq. Ft. LABORATORY ADDITION

New work under contract at the Burroughs Research Center has saturated our present facilities, making necessary the erection of the new 86,000 Sq. Ft. addition pictured above to assure an uninferrupted continuity in the planned expansion of our activities for industry and government.

. . . and we here at Burroughs, believing that there are entirely new, undiscovered concepts and approaches in the Field of Computers, Solid State Techniques, Data Processing and Transmission, Automation and Process Control are expanding the scope of our research functions in order to find the ideas needed to meet the anticipated needs of industry and government. To accomplish this end we are offering unlimited opportunity for a parallel personal growth to qualified people in all levels of engineering, physics and administration.

If you can let yourself go ... think and create new ideas in the above fields...

ACT NOW!

For a Personal Interview at YOUR Convenience... PLEASE WRITE OR CALL
M. E. JENKINS, Professional Placement Manager PHONE: PAOLI 3500

Paoli, Pa.
Our Company benefits will meet the most exacting standard . . . our pay is commensurate with your ability and if you seek advancement and responsibility, THIS IS IT!

Paoli, Pa. - On Philadelphia's Beautiful Main Line WORK AND LIVE WHERE THE BEST IN EVERYTHING IS AVAILABLE TO YOU AND YOUR FAMILY

> PIONEERING OPPORTUNITIES in the following fields!

- MISSILE GUIDANCE SYSTEMS
- JET and TURBO PROP ENGINE CONTROLS
- BOMBING NAVIGATIONAL COMPUTER SYSTEMS
- AIRBORNE FIRE CONTROL
- U.H.F. COMMUNICATIONS
- MICRO-WAVE EQUIPMENT

THE ELECTRONICS DIVISION OF GENERAL MOTORS

*

Our current monthly turnover figures are phenomenally good. Have been, we are proud to say, for years. It speaks well for the job opportunities, working conditions and the wages we pay our Engineers and Designers. Investigate for your future. Write us today.

Write today for Employment Application: Mr. Lovis R. Berks, Supervisor of Employment

ELECTRONIC ENGINEERS

Young men interested in design devalopment of UHF, VHF and other TV equipment will find excellent opportunity for valuable training and advancement in lab of engi-neer-owned manufacturer of specialized TV products.
No government work. Degree not essential if otherwise qualified. Congenial surroundings. Liberal employee benefits.

Phone or write to

BLONDER-TONGUE LABS, INC.

526 North Avenue, East Westfield, New Jersey WEstfield 2-7032

ENGINEERS, TECHNICIANS AND operational analysts - FIELD SERVICE •

Experience in one or more of the following categories: Digital Computers, Ground Radar, Communications and Microwave.
DYNAMIC ELECTRONICS N. Y. Inc. 73-39 Woodhaven Blvd., Glendale, L. I.
ILlinois 9-700-x-3
Mr. Schwartz

ELECTRONIC ENGINEERS

Technical Operations, Inc., is looking for an electronic engineer with three to five years of experience, capable of supplying original ideas in the fields of transistor circuitry and operations research instrumentation. Join an expanding research and development organization located in suburban Boston. Please send complete resume and requirements to:

R. R. SMYTH
\section*{Technical Operations,} Inc.
6 Schouler Court Arlington 74. Mass.

$\mathcal{Z e n d i z}_{\text {ofitrs }}$

3 SENIOR ENGINEERING JOBS WELL WORTH LOOKING INTO ...

23 OTHER ENGINEERING POSITIONS!

Bendix also offers unusual job opportunities for assistant engineers, junior engineers; and technicians, as well as a score of other assignments. A 30 -page book describing in
detail every phase of our guided missile operation will be sent to you on request. If you are interested in guided missiles, this book is bound to interest yout. Write for it today.

CHALLENGING CAREERS AT RAYTHEON

Studying ferromagnetic resonance. A cavity perturbation method is used, in which a ferrite specimen placed in a high Q microwave cavity changes cavity properties in accordance with electrical and magnetic properties of the material.

Looking for a good place to grow?

When you join Raytheon you work in an atmosphere of progress. Advanced work on ferrites for microwave applications is proceeding in Raytheon's modern ceramic research facilities. Various types of gyrators, isolators and other ferrite microwave devices have resulted from development work in the equipment systems and component development laboratories.
University graduate study is encouraged through a tuition refund plan. Openings now for engineers, scientists in many areas including:
microwave tubes - special purpose tubes - guided missiles transistors - diodes - receiving tubes - TV receivers • radar metallurgy - ceramics - communications - cathode ray tubes sonar • servomechanisms • solid state physics • field engineering

Join a team where performance pays off. Please address inquiries to L. B. Landall, Professional Personnel Section.

RAYTHEON MANUFACTURING COMPANY
190 Willow St., Waltham 54, Mass.
Plants also located in California and llinois

ENGINEER

MISSILE \& WEAPONS CONTROL SYSTEMS STUDIES

Enjoy full use of your skill and im agination. and friendly, professional give and take with top men in the field of electromechanical precision equipment.
You will perform studies related to airborne weapons control and kuldance requirements, feasibility, performance and specifications of computers and over-all systems.
A degree in physics, ME or EF or the quivalent in experience-is required uch diversified fields as: dirital in puters, digital data transmission systems, logic counting and conversion circuits, high precision gyto and gimbal structures, dynamic behavior of missiles: alignment of inertial platevaluation of guidance systems and instrumentation. Send resume in confl dence to:

Technical Personnel Dopt. 2-500

ARMA

Division American Bosch Arma Corp. Roosevelt Field, Garden City Long Island, N. Y.

COMMUNICATIONS ENGINEERS and TECHNLCIANS

EXCELLENT SALARIES
MINIMUM PREREQUISITES
ENGINEER EE Graduatos with 3 years TECHNICIAN 2 yoars tochnical seheot In 2 yoars technical schoor In
communications and 3 yoant experience.
Require installation adjustment and maintomance experience with communication recelvers and assoexperience with communication recedvers and asso-
ciated terminal equipment. Also. men with similar experience with high-powered transmitters, कnteennss. $\begin{gathered}\text { transmission lines. } \\ M u s t ~ b o ~ w o l l i n g ~ t o ~ t r a v e l ~ i n ~ U n i t e d ~ S t o t e s ~ a n d ~\end{gathered}$

Must bo whiling to travel in
Page Communications Engineers, Ine. 710 Fourteenth St., N.W. Washington S, D.C.

Systems Synthesis Engineer GUIDED MISSILES FIELD

 A creative and responsible position with General lating environment for enyineers.Progress in the development of guided missiles has capable of applying a broad viewpoint to the problems of wespons systems and of using a areative approach to synthesize systems meeting military requirements.

At least ten to fifteen fears axperience is desirable. and should include a background in servo systems. ractar systems, gudance systems, etc. An endneer constdered for work in carrying out the more detailed portions of the systems synthesis functjon.
THIS IS AN UNUSUAL OPPORTUNITY TO JOIN AN OUTSTANDING SCIENTIFIC STAFF IN FUTURE.

Send complote resumo to
MR. JAMES HEVELIN
SPECIAL DEFENSE PROJECTS DEPT:.
GENERAL (3) ELECTRIC
2900 CAMPBELL AVENUE SCHENECTADY, N. Y.

The Producer of UNNVAC

Is Expanding Its

Field Of Operations!

Yes... these are all-important facts to men who are not content to follow established patterns created by others . . . but seek, by their own creative and pioneering instinct, to lead the field through the development of even NEWER and MORE ADVANCED methods to be incorporated into UNIVAC III.

Here at Remington Rand, the first name in electronic computing, we encourage creative thinking. Where others stop, we carry on with new applications and developments. That's why only Univac, with no "extra" equipment, can check its own work, read, write and compute simultaneously. To these already proved superior accomplishments add the speed of Univac ll's magnetic-core storage - and you have the first electronic business data-processing system to use magnetic core storage successfully.

To Qualified Men

the remingion rand UNIVAC DIVISION Offers
Permanent, Well Paying ENGINEERING POSITIONS

WRITE OR PHONE
D. A. BOWDOIN

Placement Manager
BAldwin 3-7300

To Experienced Men . . or Those Recent Graduates Who Can Qualify As

- Electrical Engineers . . Circuit Designers to develop and apply new circuit techniques. Degree in E.E. or equivalent experience required.
- Mechanical Engineers . . .to design and develop electro mechanical devices; electronic packaging design and development.
- Physicists . . for Solid State computer components development. Also design of various optical systems; phosphors and ferromagnetism; electric contacts research.
- Logical Designers for system design in effecting logical functions of electronic data processing equipment.
The above openings lie in the field of electronic or electromechanical data processing equipment, research and development and specifically in such areas as Magnetic Tape Mechanisms . . . Paper Handling Devices . . . Magnetic Drum or Tape Applications . . High Speed Mechanisms ... Transistors . . . Electronic Packaging Design . . . Servo-Mechanisms and many other areas of interest.
- Mathematicians and Programmers ... with experience in electronic digital computer programming or extensive math background.
- Chemists and Metallurgists electro-chemical; physical or inorganic chemistry; magnetic materials; magnetic film deposition.
- Product Analysts . . . experienced in customer application of business machines or related equipment; applications analysis.
In addition to the challenge of being associated with the leading men in this field, our qualified employees benefit by a liberal cooperative educational aid program . . . health and hospitalization benefits for BOTH you and your family . . . progressive retirement plan . . moving and travel expenses.

TRemninegturn TRanad UNIVAC DIVISION SPERRY RAND CORPORATION

This is the Evendale Plant, Government Products DeviEvendale, a Northern suburb of Cincinnati, this plant has research and development programs.

ENGINEER REQUIREMENTS

"headquarters" of the Crowley sion, AVCO Manufacturing Corporation. Located in every facility for long range
(IN PERCENT)

: Engineers...

Our continuing expansion program means that highly creative opportunities are now available to Electronic, Electrical, Aeronautical and Mechanical Engineers, Physicosts and Mathematicians. Crosley offers you a chance to achieve individual recognition in a success. fuel growing organization.

Crosley's Engineering Staff is engaged in the design and develop. ment of a selected diversity of defense equipments. There are openings at all levels of Research, Advanced Development and Product Engineering for individuals experienced with any of the following: Guided Missiles, Air Navigation, Radar Systems, Communications, Gyros, Magnetic Amplifiers, Servos, Computers, UHF, VHF, Printed Circuitry, Transistors, Circuit Design, Fire Control Systems, Infra-Red Radiation, Desection Nucleonics and Human Engineering.

Address your resume to:

> Director of Engineering Government Products, Dept.
> $\mathrm{A}^{\mathrm{VCO}}$
> manufacturing corporation

2630 Glendale-Milford Road
EVENDALE, CINCINNATI 15, OHIO

TRANSISTORS

SYSTEMS EVGINEERING

TELEVISION RECE VER DESIGN

Zenith wants to talk to you about:

- Solid State Physics
- Transistors
- Circuits for Color \& Monochrome Television and Radio
- New Types of Vacuum Tubes
- Radio \& TV Receiver Design
- Subscription TV (Phonevision)
- Ceramic Engineering (High Dielectric, Piezoelectric)
- Patents
- Industrial Engineering (Automation)

Modern Air-Conditioned Laboratories
Attractive Profit Sharing and Insurance Plans
Outer Chicago Location with Opportunity for Suburban Living and Graduate Study
Non-Classified Work—Publication Encouraged
Since 1919 Zenith has manufactured radios for home use and is one of the country's oldest companies continuously in this field. It is today a leading manufacturer of quality television sets and hearing aids. Continuity of management, a record of pioneer technical developments and a reputation for quality products are important factors for you to consider. Zenith's consistent, steady growth and unusually low engineering turnover rate indicate a desirable combination of opportunity and stability

ACOUSTICS

For an appointment, write to G. E. GUSTAFSON

Vice President, Engineering
Zenith Radio Corporation 6001 Dickens Avenue, Chicago 39, Illinois

RADIO CORPORATION

Dear wife and kids:
Mot here ok. today. Could nt wait to tell you what I think of Farrsworth and Fort Wayne. Et' more than a place to work.. it's a way of life!' Moat of the foes here our their own homes. There are no row houses and that cottage in the country is real and only 10 minutes from everywhere.

Schools? There are 50ifthem (full time " no half day shifts: 5 brautiful lith schools and l car take grad work at Purdue here at Faincuorth's expense! 132 in a town of 135,000 that boasts one of the lowest jurmile delinguencyrates in the country.

Theses also a full size, full season symphony orchestra... World championship baskettall and hockey in a new 3 million dollar coliseum that out of this world. (ar eyou listening jackie?) Tell oe and his inge to start packing bccaure theses plenty of room here for
more engineers like hive in Rand D more engineers like him in Rand 0 and systems engineering in missiles, radar, antennas, microwaves, test equipment, countermeasures, transistor applications and ocher phases. Tell him t write the Technical Employment manager, Farnsworth Electronics bo. (a divion of IT TT) at For Wayne, bed. He ll be glad he did.

I cart wait until you and the kids get here... ll know yocill lore it. "Ind, like they say at Farnworth, "Very, very few ever leave it."

$\mathbf{P}_{\text {pRoject }}$ Engineer

$\mathrm{D}_{\text {sigign and development of me. }}$ chanical or electro-mechanical mechanisms in the field of ammunition. Projectiles, fuses, training devices, weapons systems. M.E. or Physicist, 5-10 years experience. Advanced degree preferred. Enjoy advantages of Connecticut living.

$$
\frac{\text { Reply }}{\text { Employment Manager }}
$$ winchester - western division OLIN MATHESON CHEMCAL CORPORATION

P.O. Box 906

NEW HAVEN 4, CONN.

LAC NEEDS AN SEE.

The Communication Accessories Company of Hickman Mills, Missouri, one of the country's leading producers of toroidal components, needs a sales engineer--prefdrably between $25-35$ with a BS degree in electronics.
You will specialize in filter networks and transformers . . . give customers technical assistance . . . have some field duties. Attractive compensation
Hickman Mills, a suburb of Kansas City, Missouri, offers rural comfort near metropolitan Kansas City. Phone Kansas City, Hickman Mills, Missouri.
-

RESEARCH

and

DEVELOPMENT

Ph.D.
Management Level Openings
A major industrial company is forming a laboratory operation to carry out basic long range research and developnient in the will be divorced from immediate production problems and will be undertaken in an appropriate laboratory environment.

The nucleus of a staff is now being selected. Candidates having PhD. or equivalent degrees with some years post doctoral experience are being sought. Positions are open in the fields of guidance
electronics and physics.
Liberal benefit program: Northeast location.
Replies will be
considered confidential
P-8376 Electronics

330 W. 42 St., New York 36, N. Y.

PRODLCT PLANNING ENGINERRS

to study customer requirements and engineering techniques in order to formulate the characteristics of new products. Should have broad background in engineering and business.

TECHNICAL LIAISON ENGINEERS

to perform liaison between development design, monufacturing and sales groups to insure successful production and marketing of company products. Should have background in administration and coordination of technical activities.

TRAINING
at our expense at full salary.

HOUSEHOLD GOODS
moved at our expense.
INSURANCE, PENSION and other liberal employee benefits.

INTERVIEWS
arranged at our expense.

Send written resume to
Department D-8

DIVISION OF
Remington Rand Division of SPERRY RAND Corporation 1902 W. Minnehaho Ave. St. Poui W4, Minn.

LAND-AIR, INC. OFFERS EMPLOYMENT
 IN NEW MEXICO

Interesting positions open on U. S. Army-Air Force integrated missiletest range working for private contractor.
Work located near cities of Alamogordo and Socorro, New Mexico. Dry climate, pleasant communities, good schools, outdoor and indoor duties. Congenial working groups:

ENGINEERS-

We have several opportunities for Electronic and Mechanical Engineers, with and without experience, to work with various instrumentation systems used in guided missile testing. Graduate engineers desiring field experience will find this work both challenging and interesting. Also some lab positions open in development of instrumentation systems. Pertinent experience as an engineer may be acceptable in lieu of degree.

TECHNICIANS-

Electronic and Mechanical Technicians needed tor operation, maintenance, and improvement of electronic, electro-optical-mechanical instrumentation devices used in obtaining data from guided missile tests. Very interesting, mainly outdoor work-some lab work, requires good physical condition, good vision, driving ability, plus technical background.

NOTE OUR EMPLOYEE BENEFITS:

1. Excellent pay
2. Paid vacation (2 weeks per year)
3. Paid accident \& health (income) insurance
4. Paid hospital, surgical, polio \& life insurance
5. Excellent contributory insurance plan for dependent?
6. Merit system of pay raises
7. Travel and moving expense

YOUR CONTACT IS:

W. J. McClarin, Personnel Director, Land-Air, Inc., P. O. Box 394, Holloman, New Mexico.

LEGAL NOTICE

 MANAGGME ONNERSH
Of Electrunics published monthly at. Albans, Now York The name and
The name and address of the puthisher editor man aging editor, and manager is lublisher McGraw-Hill I'ublishing Company, Inc, 330 West 42nd Street, New York 36, N. Y. Editor. W. W. MacDonald, 330 . West 42 nd
Strcet, New York $36, ~ N . ~ Y: ~ M a n a g i n g ~ e d i t o r, ~ V i n ~ Z e l u f f . ~$ Strcet, New York $36, N$ N. Y Managing editor, Vin Zeluff.
330 West 42 nd S Sreet, New York 36 . N. Y., Manager.

\mathbf{Y}.
2. The owner is: McGraw-Hill Publishing Compans Inc. 330 West 42 nd Sireet, New York 36, N. Stack holders holding 1% or more of stock: Donald C. McGram Graw. Donald C. Mevalier, Trustees for Marold H. Mi Mo of 330 West 42 nid S treet, new York $36, \mathbf{N}$. Y. ; Rruald Accaraw and llaroli m . Merark. Trustens for fatharine

LFGAL NOTICE

M. Rock. 330 West 42 nd street, New York 36 . N. Y
Donald C. McGraw. 330 West 42 nd Stret, Nes York Donald C. McGraw. 330 West 42 nd Street, New York 36.
N. Y. Mildred W. McGraw, Madison, New Jersey; Graco W. Y. : Mildred W. McGraw, Madison, New Jersey Graco stone \& Company. e/o Vollington Fund. Inc., Claymont, Dei. © Company. Co Volington Find. Inc., Claymont
3. The known bindholders, mortgagees. and other security holders owning or holding 1 per pent or more of totul
anount of honds. mortgages, or of her securities are: None amount or honds, mortgages, or other securities are: None holder or security holder appears upon the hooks of the
company as trustee or in any other flducialy rolation company as trustee or in any other flduciary relation, the
name of the person or cornoration for whon sumh trustee is came of the berson or cornoration for whon sutch trustee in affant's full knowledge and belief as to the circumstance and conditions under which stockholders and security hold ers who 10 not appear unon the booke of the conpalyy as trusces. hold slock and securities in a canacter nther thin
hat of a bona ide nwrier MLISBING COMPANY, INC surom in By J. A. GERARDI, Vice Pres, \& Treas Surm in ald sthastiterd befnem me this isth das

SALES ENGINEERS
 WANTED

Excellent opportunities for several engineers with well established East Coast instrument manufacturer now expanding its line of aviation products which includes electronic and electro-mechanical components for jet engines and guided missiles. Electrical engineering background essential. Must have established contacts with the aircraft industry. Openings in Los Angeles, Dallas, and East Coast areas. Generous company paid benefits include hospitalization, pension, insurance, and vacation plans.

```
P-7913. Electronics
330 W. 42nd St.. New York 36, N. Y.
```


REPRESENTATION WANTED

Electronic Instrument Representative Wanted by established manuiacturer of digital instruments. Require sales engineering organization now calling on industrial man ufactures, research laboratories and mili tary in Metropolitan New York City area Long Island, New Jersey and Eastern Pennsylvania. Write full details including lines carried.

Computer-Measurements Corporation
 (formerly Detectron)
 5457 CLEON avenue
 North Hollywood, Colifornio

REPRESENTATIVES WANTED

Manufacturer of electronic test equipmen for military and commercial applications needs technically qualified representatives. Write giving qualifications, lines handled, territory covered.

RW-2178, Electronics
1111 Wilshire Blvd., Los Angeles 17, Callf.

PROGRESSIVE L. I. FIRM
 needs ELECTRONIC ENGINEERS
 Opportunity for self-expression and growth. Must have $2-6$ yrs. exp. in the design of IF. VHF and have ${ }^{2-6}$ yrs. exp. in the design of IF. VHF and or UHF broad band systems. Many personal or UHF broad band systems. Many personal benefits. Phone or write Mr. G. W. Fellendorf, benefits. P
 Instruments for Industry, Inc
 Mineola, N. Y. Ploneer 2-5300

NUCLEAR
 INSTRUMENTATION

Physicist or electrical ongineer with ninlmum of
5 years' experience in nuclear instrumentation ${ }^{2}$ of 5 years experience in nuclear instiumentation. Po-
sition open for a qualified nan interested in the administrative and operationat aspects of the elec tronie development division of a targe midwest tab oratory. Age range 30 to 40 years. Salary open

520 N. Michigan Ave., Chicago 11, 111

[^22]

New Products

Engineer

Exceptional opportunity for creative engineering work in the New Products Engineering Latoratory of a leader in the consumer, products tield. The work includes application of present products to new devices and the development of new products of wide consumet appeal.
The man we are looking for should have a degree in electrical engineering and be familiar with electrical and electronic instrumentation. He should be strong in circuit analysis of electro-mechanical and electronic equipment. including transistor devices, with a record of achievement to substantiate his abilities and interests.
Age 25-32. Salary will depend upon educational background and experience. Summary of education and job history should be addressed 10 :

Mr. N. M. Potter, Head, New Products Engineering Lab., National Carbon Co., A division of Union Carbide and Carbon Corporation, P. O. Rov 6056. Cleveland 1, Ohin.

HERES A CHANCE FOR

A REAL CHANGE

Right Now there are some fine career positions open in the ever expanding elec tronics industry. Why not write us and weigh the advantages of working with a leader in the field -

Admiral
 Corporation

Zour Opportuxity may be listed below if you: have background or interest in these fields:

RADAR - MIIITARY AND COMMERCIAL

Gun laying, IFF and beacons, navigational aids, air traffic control, video processing and distribution systems.

TELEVISION - MILITARY AND COMMERCIAL

Mobile TV systems, comeras, complete systems including RF front ends, if amplifiers and RF cavities in the UHF region.
Household TV section requires engineers at all levels who are capable of offering original ideas of valucs in highly competitive field, mono= chrome and color.

RADIO - MIITAARY AND COMMERCIAL

Airborne and ground communication systems at HF, VHF and UHF level. Domestic and export receivers, HI FI and phonographs.

TRANSISTORS

Development group being augmented to explore all phases of transistor application.

PHYSICISTS

Research in, and analysis of, high level nuclear radiation effects on electronic components. This concerns original investigations at reactor levels.

TECHNICAL WRITERS

To organize, write and edit instruction books, operating and maintenance manuals for electronic equipment. Experience preferred, but will consider qualified trainees.
Admiral engineers know the satisfaction of creative work that gives them the opportunity to explore and expand new techniques in their field.

- Let's discuss our mutual interests.

Send complete resume to: Mr. Walter A. Wecker, Personnel Division

3800 W. Cortlaind St. Chicago 47, Illinois

ELECTRONIC ENGINEERS

What Sbould $a n$
EE Know
About Atomics?

Quite a bit these days, with so many companies getting into the field. While many new firms are now starting to explore the field, Electric Boat Division of General Dynamics Corporation led the way with the building of the first nuclear powered submarines, Nautilus and Sea Wolf.
In addition to increasing its engineering force for work on new and greatly advanced nuclear submarines, Electric Boat is expanding Research and Development operations to include the development of additional practical uses for nuclear energy.

Right now Electric Boat has interesting positions for EE's versed in
servo-mechanisms, circuitry, motors and generators, radar \& sonar, or electro-mechanical systems.

Study for bachelor's or advanced degrees is encouraged at Electric Boat, with courses in mathematics, naval architecture, nuclear engineering and nuclear submarine systems offered within the plant, and tuition paid by the company for study in these or other fields at leading colleges and universities.
Men interested in these openings should write complete details of background and experience including initial salary requirements. Interviews will be arranged promptly for qualified applicants. Address Mr. Peter Carpenter.

Electric Boat Division
 GENERAL DYNAMICS CORPORATION GROTON

For a BETTER JOB in ENGINEERING The Swing's to

CHIEF RF ENGINEER

Tr design or supervise the design of radio equipment, antennas, horns, mixers, directional couplers, rotating joints and radomes. Must know cost estimating of this equipment and be able to ad ods. Should be capable of setting up RF section. Approximately 10 years experience in design of RF components and systems

SYSTEMS SPECIALIST

For the analysis of electronic system performance and establishment of design parameters for electronic systems
Must be able to prepare or supervis the preparation of technical proposals and act in the capacity of technical ad visor on engineering program. Approxi-
mately 10 years experience in general electronic design work.

MECHANICAL ENGINEERS
Product Design, Production liaison on electronic packaging and mechanisms. Involves gear trains, printed
circuits and electronic layout work. Knowledge of military specifications. Minimuma 6 years experience in electronic equipment design and manufacture.

ELECTRONIC ENGINEERS
Experienced in Product Design and Production. Production liaison recircuits and packaging. System and Component Testing. Some experience in cost estimating and project administration. Familiarity with all

And remember thot $A M F$ is well-known for its liberal benefits program.

Please send complete resume to: Personnel Manager, Electronics Division

What Opportunities in Electronics are on the Horizon at

Huge antenna used with new radar height-finder needs a room all its own above the control center in the radome building erected in Arctic climates. Air pressure supports the rubberized glass fabric radome "balloon." Entrance to the radome is through an air lock chamber.

GENERAL ELECTRIC?

Advances in electronics are so rapid at General Electric that today's predictions appear tomorrow as equipment bearing the GE symbol.
The opportunities created by the scope and pace of the field are increased at General Electric by the facilities and range of professional advantages which GE engineers enjoy.
This means that GE electronics engineers have incentives, satisfactions and rewards that lead to accelerated personal development and advancement in the company.

ENGINEERS • PHYSICISTS
Positions available in the following fields:

Advanced Development, Design, Field Service and Technical Writing in connection with:
milltary radio \& radar - multiflex microwave mobile communication - semiconductors - electronic components - television, tubes \& antennas

Bachelor's or advanced degree in Electrical or Mechanical Engineering, physics, and experience in electronics industry necessary.

Please send resume to: Dept. 12-5-E - Technical Personnel

ELECTRIC

ELECTRONICS PARK, SYRACUSE, N. Y.

ELECTRONIC ENGINEERS

Research \& Development Physicists - Engineers (SENIORS)
Experienced in research and development of various radar systems including: beacons, missile guidance and counter measures. Advanced training in applied mathematics, noise theory and probability analysis desirable. EE degree or equivalent required.

FIELD ENGINEERS

(SENIORS)
Local \& Field Assignments
Must have EE degree, with 3-5 years experience in one of the following
-Flight Simulators
-Radar \& Sonar Trainers

- Fire Control Radar
- Electronic installation
and maintenance.
- ERUIPMENT ENGINEERS

3-5 years experience with at least 3 years in circuit packaging. EE degree with mechanical backeround.

- APPLICATION ENGINEERS

5-10 years experience on coil and trans-
former development.
Salary and advancement commensurate with ability; liberal vacation, sick leave, 9 paid holidays, group life, sickness and accident insurance plans, and a worthwhile pension system.

STAVID

Engineering, Inc.
U. S. Highway 22, Watchung, P. 0. Plainfield, N. J.-PLainfield 7-1600

EXCELLENT OPPORTUNITIES

FOR ENGINEERS
\& SCIENTISTS
In Research and Development of Instruments \& Equipment

QUALIFICATIONS:

BS , MS or PhD degrees in mechanical, electrical, electronics and chemical engineering, physics and chemistry.

A CAREER WITH A FUTURE:

Permanent, responsible positions for qualified, creative men to develop, design and apply special instruments and equipment to our pilot plant and process operations.

EMPLOYEE BENEFITS:

Excellent working conditions, modern facilities, Retirement and Insurance Programs, Company Contributed Savings Plan.

GOOD LOCATION:

Modern, medium sized Southwestern community. Pleasant surroundings with excellent family recreation, religious and educational facilities.

Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential. Write:

Industrial Relations Manager

Research and Development Department PHILLIPS PETROLEUM COMPANY
Bartlesville, Oklahoma

RATES

"Employmentitpportunities"
Displayed-The advertising inch is $\$ 21.50$ per inch for all advertising appearing on other than α contract basis Contract rates quoted on request.

An advertising inch is measured $7 / 8^{\circ}$. vertically on a column-3 columns- 30 inches to a page.

Subject to Agency Commission.

Undisplayed- $\$ 1.80$ per line, minimum 3 lines. To figure advance payment count 5 average words as a line.

Discount of 10% if full payment is made in advance for 4 consecutive insertions.

Not subject to Agency Commission.
Send New ads to electronics
330 W. 42nd Street New York 36, N. Y.

CORNELL AERONAUTICAL LABORATORY, INC. of Cornell University is seeking ELECTRONIC ENGINEERS

for positions in all levels of experience above Junior Engineer Communications
Dynamic Control Systems
Aircraft Instrumentation Radar Computers
Electrical Measurements
Varied Electronic Circuits Servo-Mechanisms Missile Guidance Microwave

If you have a B.S. degree and experience, imagination and potential, we invite you to communicate with our Employment Manager
Cornell Aeronautical Laboratory BOX 235 BUFFALO 21, N. Y.

$W_{\text {hen }}$

Ausvering Adverfisements

P
Itest to not semi oristewe tuas rertificales or thbotographs. We cannot eresponsible for their return. Please send photostat or carbon copies.

ENGINERS

The APPLIED PHYSICS LABORATORY of THE JOHNS HOPKINS UNIVERSITY offers an exceptional opportunity for professional advancement in a wellestablished Laboratory with a reputation for the encouragement of individual responsibility and self-direction.

Our program of
GUIDED MISSILE
RESEARCH and DEVELOPMENT
provides such an opportunity for men qualified in

Design and Analysis of Pulse Circuits Research and Development in Radar and Microwaves
Electronic Packaging
Development of Telemetering, Data Processing, and Special Switching Equipment
Magnetic. Amplifier Design \& Analysis
Development and Application of Printed Circuits
Servomechanisms and Control-System Analysis

Please send your resume to
Protessional Staff Appointments

APPLIED PHYSICS LABORATORY THE JOHNS HOPKINS UNIVERSITY

8609 Georgia Avenue Silver Spring, Maryland
now can completely, confidentiall y make arrangements for better positions through our unique. Job Improvement Service.
As publishers of Engineers' Job Directory we have close contact with leading manufacturing and research firms in all sections of the country.

Here's what you do. Send us your name, title, company and home address. We will forward to your home brief forms which you fill out and return. We compare your experience and desires with our file of specific job openings. You make the decision. No obligation to you, no cost whatsoever. Our clients pay us to find you. Find out what you're really worth-today. Write, phone or wire.
氢 ${ }^{5}$ DECISION INC.

Management and

Recruitment Consultants
Oliver P. Bardes, President
440-A First National Bank Building
Cincinnati 2, Ohio

ENGINERS

DESIGNERS

DRAFTSMEN

Investigate Opportunities at EBU DIVISION OF ACF INDUSTRIES INC.

ERCO

Engineers have built a record of continuous progress and growth for themselves and for the Company for a quarter of a century growth in physical p!ant, personnel, number and diversity of products and services.

Today this growth continues and we are constantly on the alert for new men to add fresh impetus to that progress . . . paying top salaries to capable people.

Your ${ }^{\text {whork }}$ will be interesting and stimulating . . . it might include electronic flight simulators, machine tools, guided missiles, or a variety of specialized electronic devices.

You

can choose a home from a number of fine nearby residential areas convenient to both shopping centers and plant .. . and you can further your education at the many nearby Universities . . . you can enjoy suburban living and be within easy reach of the cultural advantages of the Nation's Capital.
ERCO now needs Electronic Engineers (all levels with some overseas positions available). Aerodynamicists, Analog Computer Engineers, Mechanical Design Engineers, and supporting personnel. Send resume or request for additional information to:

SENIOR
 ELECTRONICS
 ENGINEER
 meeded for new contracts section of rapidly expanding military engineering department

NATURE OF WORK

System Analysis and Study Preparation of Technical Proposals Long Range Planning
Evaluation of Engineering Problems at Early Stages

REQUIREMENTS

High Degree of Technical Skill and Imagination
Ability to Organize and Compose Complex Technical Documents
Friendly and Personable - Must Deal Extensively with StrombergCarlson and Military Engineering Personnel

Stromberg-Carlson has recently become a Division of the General Dynamics Corporation and is located in the Finger Lakes region of upstate New York. Excellent educational, living, and recreational facilities are available in this area. Please send resume to

Charles W. Finnigan, Chief Electronics Engineer
STROMBERG-CARLSON COMPANY
A DIVISION OF GENERAL DYNAMICS CORPORATION Rochester 3, New York

Immediate Openings at KOLLSMAN

```
SYSTEMS ENGINEERS . . . For development. test-
ing and field service ol airborne navigational
systems. Some experience with servos utilizing
electronic and eleciro-mechanical components
desirable
ELECTRICAL ENGINEER .. Experience in small
electro-mechanical devices. motors, synchros and
induction pick-offs.
```


DESIGNERS

```
Electronic, Electro-Mechanical, Mechanical
1. Electronic and electrical packaging. Knowledge of sub-miniaturized techniques. Work is associated with servos. amplifiers and components.
2. Mechanical or electro-mechanical nackaging ot precision flight instruments.
```

These are permanent positions with Kollsman, designers of America's finest aircraft instruments . . . a progressive, growing organization in which the atmosphere is friendly, the facilities of the best, and the employee benefit program liberal.

Please aubmit complete resumes,
preliminary to confidential infervieno
to Thomas A. Peluou.
kollsman
instrument corporation
80.018 45th avenue, elmhurst, new york - subsialary of Standand coil prooucts co. inc.

Know how

Sond reanme to

ELECTRONT

ENGINE

- HEAVY BACKLOGS
- SOUND FINANCING
- TOP BENEFITS
- MANAGEMENT BY ENGINEERS
- EDUCATIONAL AID
- MINIMIZED RED-TAPE
- VARIED SPECIALIZATION
- fleXIble ORGANIZATION
- VERSATILE PERSONNEL
e.f. lander

Employment Opportunities ADVERTISERS INDEX

Armour Research Foundation of III Inst. 398 Admiral Corp 403
Arma Division
American Bosch Arma Corp...396, 398, 404 American Machire \& Foundry Co........ 404
AVCO Mfg Corp., 398
Crosley Division $A C F$ Industries Inc........ 411
Avion Division of AC
Bendix Aviation Corp.,
Pacific Division.
Products Division, Missile Section
Radio Division
Research Laboratories
York Division
Bonder-Tangue Labs.
Brown Instruments Div. Honevwell 394
Burroughs Research Center 393
Calidyne Co., The 410
Cardwell Electronics Prod. Corp., Allen D.. 411
Communication Accessories Co.......... . 40
Computer-Measurements Carp............... 402
Convair, A Div. of General Dynamics Corp.
Convair, A Div. of General Dynamics Corp.
San Diego, Calif........................ 388
San Diego, Calif.. 388
Pomona, Calif.
Decision Inc. 407
Drake Personnel linc......................... . . . 38
Dynamie Electronics NY, Inc.............. 394
Electric Boat Div.
General Dynamics Corp............... 404
Electronic Engineering Co. of Calif........ 408

Farnsworth Electronics Co............. 400
Fisher Radio Corp.................................. 404
General Electric Co................. 396, 405
General Motors Corp.
General Precision Lab. Inc................. 411
Goodyear Aircraft Corp... 39
Instruments for Industry Inc................ . . 402
Jet Propulsion Lab.
Calif Institute of Tech................... . 41
Johns Hopkins University, Applied Physics
Koll'sman Instrument Corp................ 408
Land-Air Ine. 402
Maryland Electronic Mfg Corp.. 392
Melpar Inc. 409
Monarch Personnel 388
National Carbon Co...................... . 403
National Employment Service 388
Olin Mathieson Chemical Corp........... 400
Page Communications Enginee:s.......... . 396
Phillips Petroleunı Co.................. 406
Radio Corp. of America.............386, 387
Radio Receptor
.409
Raytheon Mig Co. 390
Waltham, Mass …..............396, 405
Newton, Mass D Div.... of Sperry Rand
Corp., Engineering Resectrch Assoc., 38
Remington Rand Univac Div. of Sperry
Rand Corp.397, 40
Sanders Assoc., I.7c.......................... . . . 409
Sikorsky Aircraft 412
Sorensen \& Co., Inc
Snyder Co., Lee Grant
Stavid Engineering Inc.
Stromberg-Carlson Co,
Div, of General Dyiamics.
Sylvania Electric Products Int 407
Buffal Electric Products Inc.,
Butfalo, N. Y..
Waltham, Mass
Mountain View, Calif
Technical Operations
Tracerlab 394
Transitron Electronic Sales Corp........... 383
Vitro Corp. 406

Zenith Radio Corp. 399

This index is publisted as a convenience to the readers. Care is taken to make it accurate but CLASSIFIED assumes ro responsibility for errors or omissions.

ENGINEERS SCIENTISTS

Junior to Senior Levels with some experience in:

SEMICONDUCTOR DEVICES
 CIRCUIT DESIGN

RADAR
you are needed, well-apprecoated, and well-rewarded

In GOOD PAY

In INTERESTING WORK
In LONG-TERM PROGRAMS
that will increase your career potential at...

RADIO RECEPTOR CO.,

240 Wythe Ave., Bklyn, N. Y.

- Send resume to: S. Winston •

ELECTRONIC

ENGINEERS

GROW WITH ATOMIC ENERGY!
Here is an outstanding opportunity even in this era of plentiful jobs! Openings exist at all levels.
EXPERIENCE in pulse circuitry, DC amplifiers or automatic control will be most helpful.
CONSIDER these advantages. . .

- First and foremost company in the atomic field!
- Commercial work!
- Modern suburban plant under construction!
- Diversity of products and job security!
- Professional development in new field!
- And, of course, excellent fringe benefits and competitive salaries!

IF you are alert to new ideas and aggressive enough to pursue them ... if you are capable of shouldering responsibility . . . if you would like to develop electronic equip. ment and systems for the new and exciting nucleonic industry . . . if you are looking for a real challenge . . . write in confidence to ...

Electronic. Mechanical DESIGNERS•DRAFTSMEN
How do you Measure success?
Some measure success only by money, others by the enjoyment they get out of their work. But the true measure of success is a combination of both plus the knowledge that your efforts art recognized and appreciated.

Melpar engineers find diversity and opportunity for professional growth; they enjoy being part of a highly creative staff without losing their individuality; and they benefit from Melpar's completely integrated facilities for system responsibility from design concept through production. Molar measures up to your

To learn how Technical Personnel Representative

Subsidiary of Westinghouse Air Brake Co

- Network Theory
- Systems Evaluation
- Automation
- Microwave Technique
- UHF, VHF or

SHF Receivers

- Analog Computers
- Digital Computers
- Magnetic Tape

Handling Equipment

- Radar and

Countermeasures

- Packaging

Electronic Equipment

- Pulse Circuitry
- Microwave Filters
- Flight Simulators
- Servomechanisms
- Subminiaturization
- Electro-Mechanical Design
- Quality Control \& Test Engineers

Subsidiary of Westinghouse Air Bi. E-24 Falls Church, Va.
3000 Arlington Blvd., Dept. E-24 First St., Cambridge, Mass.

ENGINEERS

Puzzled ...about PANAR?

> it's a startling new conception of radar, developed by Sander Associates, Inc.
> it's only one of many "firsts" achieved by this company since its founding 4 short years ago.
> it's typical of the way this organization-run BY endiners, FOR engineers-is shaping the future of electronics.

> Problems off the beaten track are not new to Sanders Associates, Inc. Unregimented thinking is characteristic of the organization, and the ability to assess a new conception with an open mind. This has lead to such importint developrnents as tri-scan antenna, "tri-plate" microwave plumbing, and -of course-PANAR.
> Inevitably. Sanders Associates, Inc. Is expanding looking for a number of engineers with inventive mindsmen with at least 3 years experience in guidance systems, weapons systems, countermeasures, system concepts, basic circuitry, component development. microwave antenna or electromechanical transducers.
> We would value the opportunity to discuss your future at Sanders with you. Drop note to D. H, Johnson, outlining your experience. Interviews can be arranged either in Nashua or in your own area.
 137 Canal St., Nashua, New Hampshire
(A pleasant community set bn the Beautify Nev Hampshire hills,

Join the ELECTRON TUBE bandwagon!

CONTINUING INCREASE IN THE DEMAND FOR RAYTHEON'S LINE OF RELIABLE TUBES HAS CREATED SEVERAL OUTSTANDING OPPORTUNITIES FOR FUTURE-MINDED ENGINEERS.

- PROJECT ENGINEERS to supervise important and interesting projects. $3-5$ years experience in vacuum tube design, development, or production engineering required.
- DEVELOPMENT ENGINEERS to work on short and long range electron tube developmental projects. 1-2 years experience desired.
- PRODUCTION ENGINEERS to work on electron tube production problems. Minimum experience of 1 year.
- EXCELLENT BENEFITS
- FIJLL TUITION REFUND PLAN for improvement of
formal education

Please Send Complete Resume to
TECHNICAL PLACEMENT OFFICE
RAYTHEON MANUFACTURING CO. special tube division
55 Chapel St .
Newton 58, Massachusetts

ELECTRONIC ENGINEERS

Degree in Electrical Engineering or Physics with experience in servomechanism, electronic control devices, computer theory highly desirable.

SALES ENGINEERS

Engineering background essential. Experience in instrumentation desirable.

DESIGN ENGINEERS

Capable of responsible design in development projects in complex equipment. Background in Aeroelasticity, structural dynamics, machine design and electronics helpful.

THE CALIDYNE COMPANY

Manufacturers of Vibration Test Equipment
120 Cross Street
Winchester, Massachusetts

ELECTRICAL ENGINEER

Opening for recent Electrical Engineer graduate in elec-trical-instrument department of a rapidly growing New England chemical-plastics company. To an energetic young man with creative ability who is interested in the rapidly growing instrumentation field in chemistry, we offer singular opportunity to acquire breadth and scope of electronics-electrical instrumentation experience. Our plant is located in pleasant New England community. Send resume and salary requirements to

INDEX TO THE SEARCHLIGHT SECTION ADVERTISERS

Allied Electronics Sales 418Alltronics	
	Amber Industrial Corp............... 413
	American College of Engineering 413
	Arch Electronics Co.......... 418
	Arrow Sales Inc..................... 424
	Belevision Inc. 422
	Blan 41
Cagan Sales. R. C.............. 422	
	Chase Electronic Supply Co......... 426
	C \& H Sales.
	Communication Devices Co
Communications Equpment Co of 421	
	Cramer Electronics Inc............. 42
	Electroaicraft Inc.
	Empire Electronics Co 42
	Engineering Associates 418
	Delaware Equipment Co 412
	Fair Radio Sales
	Fay-Bill Distributing Co............. 42
	Finnegan, H
	Gould Green
	Greene. G.
	Harjo Sales Co
	Hodgson Co.. R. W 413
	Houde Supply Co
	Instrument Service Corp 42
	JSH Sales Co
	Lapirow Bros
	Lectronic Research Labs
	Legri S. Co., Inc
	Liberty Electronics In
	L \& M Associates.
Radalab	
	Radio \& Electronic Surplus 424
	Robinerte Co.. W. C............ 413
	Red Arrow Electronic Sales Co..... 413
	Relay Sales 420
	Rex Radio Supply Co................ 414
	Ruxur Electronics Corp......... ... 425
Sanett. Bob 413	
	Semler Industries Inc.......... 422
	Societe Industrielle Alfa, S. A....... 412
	S. \& R. Electronics Inc.......... 426
$\begin{array}{ll}\text { TAB" } \\ \text { Telemarine Communications } \mathrm{Co} \text { Co.... } & 415 \\ 418\end{array}$	
	Universal General Corp
V \& H Radio \& Elecrionics Supply. 422	
This index is published as a convenience to the reader. Care is taken to make it accurate but Classified assumes no responsibility for errors or omissions.	

DESIGN

ENGINEERS

GUIDED MISSLLES FIELD
Transducer, Modulator, Transmitter Designers

Progress in gulded missile de elopment at this major company, located in upper New opening for a transducer designer able to design circuits or components to transform vibration, temperature, electrical currents, and other data into voltage form compatible to telemetry or recovery instrucation of exlsting designs, and esting all designs.
There
There is also an opening for an angineer ablo to design and test mitter equipment, and evaluate and test commerclal equipment of this type.
These jobs require minimum of five years experience. Working conditions and salary at this company are excellent and livijve. Many opjortunities for adaitional education
Send complete resume in confidence to $330 \mathrm{~W} .42 \mathrm{St}$. P- New York

RECEIVER ENGINEERS transistor circuit engineers SUBMINIATURE EQUIPMENT ENGINEERS
 Career Opportunities With Well Established Central Connecticut Firm
 Challenging Projects
 Top Salaries Suburban Living

Reples Held in Strict Confidence Wire or Phone Collect
Personnel Mgr. SHerwood 7-2741

THE ALLEN D. CARDWELL ELECTRONCS PRODUCTIONS CORPORATION

Plainville, Connecticut

JET PROPULSION LABORATORY

 of theCALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California
Excellent opportunities exist for professional growth in research atmosphere for Engineers and Physicists of all grades. Facili ties and equipment are superior.

Airmail your summary of qualifi cations to

- 綡

CALTECH
JET PROPULSION LABORATORY 4800 Oak Grove Drive
Pasadena, California

ENGINEERS
Say
"YES"
to a Life With Roots

If you are ready to put down roots . . . to embark on a permanent career with deep professional and personal satisfaction . . . General Precision Laboratory may have an opening for you.
There is a variety of long-range projects underway at GPL, α subsidiary of the large and diversified General Precision Equipment Corporation. We look for engineers who can contribute advanced ideas, sometimes pursuing an independent line, sometimes collaborating with experts in several fields. GPL men can count on recognition following quickly upon aecomplishment.
Not the least of the advantages of working at GPL is the location in New York's well-known Weatchester County. It's a particularly fine place to put down roots, with its beautiful countryside, modern homes and fine schools.
If your experience qualifies you for the work being done at GPL and you are looking for a stable future, send details of your background to Mr. Hollis \mathbf{F}. Ware. Expenses will be paid for qualified applicants who come for interview. We regret we can consider only U. S. citizens.

63 Bediford Road
GPL DOES RESEARCH \& DEVELOPMENT WORK IN:
Electronics
Aircraft ${ }^{\circ}$ Missile Control Guidance wave $\&$ Missile Control, Guidance . . Radar, Microtrial) . Precision Mechanics Optical Devices. . Instruments, Servos, Controls: (electro-mechanical, magnetic, electronic)

ELEGTRONTG
 EICIMESBS

Challenging DESIGN \& DEVELOPMENT
 POSITIONS for CREATIVE ENGINEERS

These positions are tailor-made for highly imaginative engi-
neers who enjoy problems of more than ordinary difficulty; problems that require a maximum of individual electronic creativity. Men selected will be entrusted with the complete electronic or electro-mechanical design and development tasks (initial circuits, systems, components, or product design) entailed in carrying a prototype project from original conception to its completion. REQUIREMENTS: Senior and intermediate engineers with degrees and 4 to 8 years' experience; Junior engineers with degrees and 1 to 3 years' experience, capable of growing with our long-range, electronic design and development program in the following fields:
(1) ANALOG COMPUTER
(4) ELECTRO-OPTICS
(2) RADAR BEACONS
(5) MISSILE SYSTEMS
(3) MAGNETIC AMPLIFIERS
(6) SERVOS
(7) FIRE CONTROL SYSTEMS

PROOF OF U S CITIZENSHIP REQUIRED
WE ARE LOCATED in a suburban area, at the Paramus exit of Garden State Plsways, convenient to the N. J. Turnpike and only 15 minutes from Manhatans, If you choose, you can live nearby, avoiding the discomforts, costs and time wasted in commuting. Enjoy living in a clean, friendly community, minsles from work!

Interviews will be arranged at convenient locations. Send resume to:

AVION DIVISION
OF ACF INDUSTRIES INGORPORATED
Route 17, Paramus, N. J. Colfax 1-4100
Only 15 minutes from
Gcorge Washington Briage

Electronics Engineers

expanding helicopter
 field offers you excellent opportunities

Both Junior and Senior electronics engineers are needed to work with those who design, test, and build rotary wing aircraft.
Challenging positions are open to men with experience or a good educational background in:

Radar

Flight Test Instrumentation
Strain Gage Circuitry
Oscillographic Data Recording Systems
Vibration and Temperature Measuring Systems
Work on Automatic Control Systems-
both test and development
Automatic Pilot and Blind Flying Instrumentation
Not only will your professional achievements be recognized, but you and your family will enjoy many personal benefits.

Apply in person or send complete resume to
R. L. Auten, Personnel Department

SIKORSKY AIRCRAFT
 Bridgeport 1,
 Connecticut

UNUSUAL CREATIVE FREEDOM
 at
 AVIATION RESEARCH LABORATORIES DIV.

- The center of advanced development activities for the Bendix Aviation Corporation offering excellent opportunities in design, research and development.

SYSTEMS ENGINEERS

To coordinate and supervise a group of engineers and mathematicians in systems analysis and design.

MATHEMATICIANS

Evaluation of servo control and guidance systems and components of a system Analysis of systems and applications.

MACHINE DESIGNERS

Design of automatic machine tools, machine tool hydraulic servos, and digitally controlled tools.

CONTROLS ENGINEERS

Analyse and synthesize control system and design, develop and pockage such systems.

COMPUTER ENGINEERS

Development of special purpose digital and analog computers for process and business applications.

MICROWAVE SPECIALISTS

Research and development in ad. vanced microwave techniques.

MECHANICAL ENGINEERS

Develop mechanical and hydraulic components for servo controls. Systems engineering and dynamic analysis of numerically controlled machine tools.

- Staff will participate in the initial exploration of new flelds and the development of new commercial products.

All replies confidential-

send brief resume to:
DIRECTOR OF PERSONNEL
BENDIX AVIATION CORPORATION RESEARCH LABORATORIES DIVISION 4855 Fourth Avenue - Detroit 1, Mich.

SEARCHLIGHT
 SECTION

(Continued on pages 413-127)

TEST EQUIPMENT

HEWLETT PACKARD 200B Audio Os cillator (Rack Mounting type) 20 to 20,000 cycles. Like new... $\$ 75.00$ HEWLETT PACKARD 400-A Vacuum Tube Voltmeter-Like new... $\$ 95.00$ HEWLETT PACKARD 325 Distortion Analyzer- 30 to 15,000 cycles. Excellent …................ $\$ 220.00$ GENERAL RADIO 713-B Beat Fre quency Oscillator-0.40 KC. Excel lent …..................... $\$ 225.00$ GENERAL RADIO 723-C Vacuum Tube Fork-New $\$ 89.50$ GENERAL RADIO 572B Microphone Hummer, new $\$ 7.50$ WATERMAN S-12-B Rakscope, new $\$ 325.00$
DUMONT 208 Cathode Ray Oscillo-scope-Excellent $\$ 95.00$
NAVY LAE-1 Signal Generator- 510 to 1300 MC, CW or internal pulse modulation. New $\$ 225.00$ MEASUREMENTS CORP. 79.B Pulse Generator-New $\$ 165.00$ All prices net $F O B$ Phila., Pa.
SEND FOR LATEST CATALOG
LECTRONIC RESEARCH LABS.
715-19 ARCH STREET
Phila. 6, Pa. Phone MA 7-6771

RELAYS

3600-6 PDT-Struthers Dunn, type 220XFX100, 26.5 VDC, hermetically sealed.
$\$ 2.95$ ea.- 10 for $\$ 25.00-100$ for $\$ 200.00$

SELENIUM RECTIFIERS

Sarkes Tarzian miniature rectifier, $1 / 2$ wave, bridge embedded selenium, 52 VAC input, 21 VDC output at 5 milliamps, axial wire leads.
$\$ 1.00$ ea - 10 for $\$ 8.50-100$ for $\$ 70.00$
DELAWARE EQUIPMENT COMPANY
124 N. 3rd St. Phila. 6, Penna. Lo-3-4930

Exceptional offer

40.000 BALL BEARINGS brand new
SKF Rigid Type EL4-4 mm, int.-13 mm. ext - 5 mm , thick one range of balls-net price: Belg. francs 10 .- or $\$ 0,20$.
Type $126-6 \mathrm{~mm}$. int. -19 mm . ext. -6 mm . thick two ranges of balls-rotule rolling net price:

Belg. francs 7.50 or $\$$. 0,15
F.O.B. Antwerp, export packing included.

SOCIETE INDUSTRIELLE ALFA Soc. Anon.
8o, rue de la Senne, Brussels (Belgium)

cassme SEARCHLIGHTSECTION

UNDISPLAYED RATE:
$\$ 2.10$ a line, minimum 3 lines. To figure advance payment count 5 average words as a line.
PROPOSALS, \$2.10 a line an insertion.
BOX NUMBERS count as one line additional in undisplayed ads.
DISCOUNT of 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals).

DISPLAYED RATE
The advertising rate is $\$ 18.50$ per inch for all advertising appearing on other than a contract basis. Contract rates quoted on request.
AN ADVERTISING INCH is measured $7 / 8$ inch vertically on one column, 3 columns- 30 inches-to a page.
EQUIPMENT WANTED or FOR SALE ADVERTISEMENTS acceptable only in Displayed Style.

BUSINESS OPPORTUNITY

Do you have a circuit, gadget or little black box that can be sold for some industrial application? We'll make it and sell it for you

ENGINEERING DEGREES

(Under and Postgraduate)
E.E. Maior in Electronics, Earned Through Home Study.
AMERICAN COLLEGE OF ENGINEERING
Affliated with University of the West
Box $27724(\mathrm{G})$, HOLLYWOOD 27, CALIF.

For Quick Delivery

Large Quantities-EE-8 Field Telephone-New
3-Complete BC-694. Large Stock Replacemert Parts.
Large Quartities BC-312, BC-342 $100 \mathrm{BC}-224$. Checked Out

WANTED
BC-312, 224, 342, 348 Complete Units and all Compo iert Parts.
EE-8 Complete Units and Components
ART-13 Complete Units and Component Parts
RED ARROW ELECTRONIC SALES CO.
1217 Summit Ave Union City, N. J. N.Y. Tel. Oxford 5-0994

TRANSFORMERS

RECTIFIERS

IRON CORE COMPONENTS BOUGHT \& SOLD
SEND US YOUR REQUIREMENTS
MAGNETRAN SURPLUS CO.
96 Newport St. Brooklyn 12, N. Y.
WANTED

WANTED

ELECTRONIC TUBES, all types. Also want all types airborne electronic equipment: ART. 13; BC-788; 1-152; ARC-1; ARN/7, etc. Top dollar paid!

> BOB SANETT, W6REX 1524 S. Edris Dr.
> Los Angeles 35 , California

FOR SALE

Wholesale to Institutions Industrials \& Dealers Only

RELAYS METERS

MOTORS - BLOWERS
SWITCHES - MAGNETS
SYNCHROS - RECEIVERS
I.F. STRIPS - NETWORKS antennas - RESISTORS DUPLEXERS CAPACITORS CONNECTORS - CONTACTORS INSTRUMENTS - WAVE GUIDES MODULATORS DYNAMOTORS
TRANSMITTERS TRANSFORMERS
TORQUE UNITS - SYNCHRONIZERS TEST EQUIPMENT - CONTROL BOXES POTENTIOMETERS KLYSTRON MOUNTS JUNCTION BOXES - MICROWAVE PARTS
all Types of tubes

WRITE TO
AMBER INDUSTRIAL CORP. METALS AND SALVAGE DIVISION 732 E. Monument Ave. Dayton, Ohio

GUARANTEED
 LOW PRICES!

Full Line Of Radio and TV Receiving Tubes

OA2	$74 ¢$	6AS6	$\$ 1.50$
OA3	$\$ 1.00$	$5981 / 5650$	
2C39A $\$ 7.50$	$\$ 40.00$		
2C40	$\$ 7.00$	HF200 $\$ 6.00$	
2C43	$\$ 7.00$	$807 W$	$\$ 3.50$
2C45	$\$ 6.00$	8072 a	$\$ 5.00$
2D21	$75 ¢$	$832 A$	$\$ 1.25$
2K25	$\$ 7.00$	$872 A$	$\$ 1.25$

THIS IS JUST A PARTIAL LIST OF AVAIL ABLE TYPES Send for onl complete tube list

Manufacturers

Let us handle TECHNICAL SALES representation of your products
Inventors
We will SHARE THE COST of protecting your invention if accepted for commercialization

WE SPECIALIZE IN

Electronics, Nucleonics, Instrumentotion, Servomechanisms \& Cybernetics.

R. W. HODGSON CO.

Technical Sales Representation \&
Research \& Development Engineering
3406 W. Washington Blvd., Los Angeles 18, Calif. REpublic 2-2651

HELIPOTS

TEN TURNS; 50,000 OHMS

Linearity tolerance 0.05%
Resistance tolerance 1%
3/8" standard bushing mounting
New, clean, original bulk pack. Regular factory cost cut drastically because of contract $\$ 12.95$ each, postpaid in U.S.A.
Also available: 0.1 and 0.5% linearity af lower prices; write for quote.
QUANTITY USERS WRITE FOR QUOTATION ON these and other quality components

> G. GREENE

166-04 67th Avenue Flushing 65, N. Y.

[^23]
WANTED

BC-788,T-47 A/ART-13, BC-348R, R-5/ARN-7, RT-18/ARC-1

AN/ASQ-1 and 1 A MAGNETOMETERS This is an airborne naannetometer used to measure the
magnetic flux of the earth and to locate submarines and other metallic obijects by their distortion of the mag-
AN/GSO1-A SPEECH SCRAMBLERS
Speech scrambler for use on any comm. channel to in. sure privacy, We can supply complete installation
this equipment $28 v$ DC input. Also 100 V 60 cyc.

SCR-281A DIRECTION FINDER

 Automatic ground direction finder covering $1.5 \mathrm{mc}-30 \mathrm{mc}$ signal in its range. This equipment is transportable and can be set up inuickly. 110 ov 60 cyc. PORR.P.P.I. REMOTE RADAR REPEATERS

We can supply the following types of remote Radar
P.P.I. Repeaters. The nain radar provides the Syncronizing, Syncro. and Video. Pulses to operate the Repeaters. These repeaters may be used with any marine ground or airlorne.
VC $7^{\prime \prime}$ P.P.I. Upright deck mount Repeater. 4
Ranges are provided fron $4-200$ miles. Input 110 Rannes are provided from $4-200$ miles. Input ilo
Volt 60 Cyc. VD $7^{\prime \prime}$ P.P.I. Deck mount Repeater. This unit is and may be used on deck. The ranges are the same as the VC. Input leck. Volt ranges 60 Cyc.
VE $7^{\prime \prime}$ P.P.I. Table mount Repeater. This is a
very compact set. 4 ranges are provided from very compact set. 4 ranges are pr
$4-200$ miles. Input 110 Volt 60 Cyc.
VF $9^{\prime \prime}$ P.P.I. Deck mount Repeater. This is a very late model Repeater enabling 20 radars to be vided. Input 110 Volt 60 Cyc .
VG $12^{\prime \prime}$ P.P.I. Plotting Table Projection Repeater. This is a very elaborate Remote Indicator. For use in a nlotting center. Un to 20 Radars may be
fed into it. This set utilizes a Skiatron tube to provide data that can be retained on the screen
and can be erased at will. Input 110 volt 60 Cyc. Accossories are available such as repeater adaptors
enabling the set to be used at a freater distance than normal. Input switches to select the radar to be viewed etc.

Prices FOB NYC. Rated firms open account. Prices subject to change without notice.
CABLE: Radalab, NY TELETYPE: NY-4-4361

SCR-682-A RADAR

 10CM ligh power long range harbor surveillance andearly warning RADAR. This equipment is a 3000 mc
motile search radar that can be transported in a truck. The eque surch radar that can incorporates a 7 Irapp for operation up 00 yards at 10,000 yard range and 5000 yards at 240,000 yard range. Trans. output is anprox. 225 KW . pulse width is one nicrosecond. Antenna beam width is g's $^{\prime \prime}$ Input is IlOv G0 cyc. Can be supplied with
out operating sheiter or antenna tower. POR.

We can supply many types of radars, test sets, communications equipments, manufactured after 1947. Write us if you cannot find it.

AN/APR-4 38-4000 MC RECEIVER This is a precision receiver covering $38-4000$ me. The set
utilizes 5 tuning units with direct leading dials in ming.
acycles. The receiver lias a wide and narrow band-width acycles. The receiver has a wide and narrow band width
30me. I.F. strip which may be selected at will. An 30my. I.F. strip which may be selected at will. An
output nieter is provided to measure signal strength. Outputs are provided for a pulse analyzer and pan adator Each tuning unit has an automatic sweeping
 range to
POR
500-1300 MC SIGNAL GENERATOR
This is a high precision signal generator covering $500-$
1300 mic. A precision attenuator is built in providing ac1300 mlc . A precision attenuator is built in providing ac-
curate determination of oatnut from $0-100,000$ micro. volts. Either CW Or oulseil carrier output with the following characteristics are provided. Pulse rate $60-2.500$
CPS. Pulse lengtic $2-30$ microseconds. output line 50 onm imperance. Accuracy better than. one percent In.

90-600 MC SIGNAL GENERATOR This set covers $90-600$ mic. with an accuracy of one percelit or better. C. W. or mulse output with the following
characteristics are provided.
Output from $0-100.000$ microvolts $2-30$ microsconds long. Pulse rate $60-2500$

CF-3A CARRIER REPEATER

This is a transportallo 4 wire carier tolephone repeater This set amplifies all signals when used in an intermedi ate position on a carrier system to extend the range. DC formed to the terminal equipments or to other reneaters. Monitoring and transmission circuits are built in. Power all CF terminals and commercial equipments. Brand Now in original cases. POR.

AN/APA-17 DIRECTION FINDER
This is an automatic direction finder covering $300-1.000$ me to be usel with the APR-1 and APR-4 radar search
receivers. The bearing is presented on a cathode ray receivers. The bearing is presented on a catedo air craft or on the ground. Input 110 v 400 cyc and 28 v DC

Abstract

\section*{RADAR BEACONS} X and S Band High and Low Power Racons We can supply the following Beacons in Portable and Stationary Models. The X.BAND models will AN/CNP-6 X-Band high power Radar Beacon This is a 40 KW set for use at an Airport. This set will Interrogate X-BAND Radars up to 200 miles. Variabie. Coding is provided as well monitoring faceilities. input is 110 V 60 CYC . AN/CPN-8 S-BAND HIGH POWER AIrDOI ANeacon. This is a very compact set. This set will Bnterrogate S-BAND Radars uip to 200 Miles. Int variable Coding and monitoring facilities are pravided. Input 110 volt 60 Cyc . AN/CPN-17 S-BAND High nower version of the 110 Volt 60 Cyc the latest improvements. indut AN/UPN-4 X-BAND Very liohtweight Portable Beacon. This set will interouate X-BAND Radars Beacon. This set will interoqate X-BAND Radars "If to 60 miles. Variable Corting is provided. In AN/UPN-1 and 2 S-BAND Portable Aet will interrogate a S-BAND Radar in to 60 50 Lits. D.C. andl 110 volts 60 Cyc. Weight Approx.

Llis.

ATOWERS and ANTENNA tow
EQUIPMENT

TRAANGLE TOWER

 (IIILIStratel), Galvanized Steel

MAST BASES-INSULATED MP-22 BASE-Ins. spring action,
direction of thacket tan be raised

 heay cos sping in tor mianting.
 heayy coil spring, $7^{\prime \prime}$ dia. Ins. Re
 MAST SECTIONS FOR ABOVE BASES: Tubular steel, conper coated.
painted

BLOWERS:

MIN: VOC-AC CAST ALU. MINUM BLOWER (1'ctare 2" outlet, Shunt Motor $4^{\prime \prime} \times 2^{\prime \prime}$
3000 let is 24 V10C. $\$ 5.95$ 6 VDC SINGLE-100 CFMf. VDC FLANGE- 150 CFM

 10 CFM BLOWER (Pictured
at left)-28 VDC-. 0 A: 5000
lins. Dioneer Motor SS 2345 luminum Ilower Housing Overall Size: $4-1 / 2^{\prime \prime}$ x $\quad 3-\left.1\right|^{\prime \prime}$
1rice
115 V. 60 CYCLE BLOWERS:
 intahe: $2^{\prime \prime}$ outlet. Complete size: $5^{\prime \prime} \times 6^{\prime \prime} \quad \$ 8.95$

 Is VAC 60 cycle FLiNGE TYPJ-140 ClM: $3-1 / 2$ intake; 2 "1" INis Complete size: 7 -1/2" $\$ 13.95$ 115 VAC 60 cycle FIANGF TVWN 275 CFM ; ${ }^{4-1 / 2 "}$

 Motor NSI-33. Remored from New Equip \$14.95 ment. \#1SOD-200
$115-V A C$ 60 CyCle BLOWER- 100 CFM; $3-3 / 4$ " in
 lennoved from New Enuinmet. Diehl
Motor
PB-2106-6
No. FDBIL-2106.... Same as above hit with 12-Curved Di- \$7.95 Previously Adv. Items Still Avaiable. Please Write!

REX RADIO SUPPLY CO.

88 CORTLANDT ST. N.Y. 7, N.Y. Phone co-7-1617 - Prices F.O.B. N. Y.
CAPACITORS
gov't termination purchase
Oil filled-impreg.. micas.
Write for current listings
RESISTORS
insl. quality $1 / 2.1 \& 2$ watts
Wirewound- $3-5-10-20-50$ watts
GOULD GREEN, 252 Greenwich St., NYC 7

CAPACITORS
Oil filledination purchase Write for current listings RESISTORS
insl. quality $1 / 2 \cdot 1$ \& 2 watts GOULD GREEN, 252 Greenwich St., NYC 7

High Current Power Supplies

New Variable Voltage X-fmrs

PHOTOFLASH \& STROBE LAMPS

Ist Quality

HI-FI HDQTS
COMPLETE LINE OF HI-FI
Speakers, Tuners, Amplifier Record Changers \& Components, GET OUR PRICE B-4-U-BUY NEW G.E. PHONO CARTRIDGES
Original Boxed, $\$$, \$, Back Gtd

Replc'ment Needles "TETRAD"

 "TAB" HI-FI SPEAKERS

 HI-FI RECORDING TAPE Finest, \$, \$, \$, Back Gtd
 soid $\$ 1.80$
FAMOUS NAME BRAND BUYS HI FI Record Changers
 HI Fl Speakers

REW "TABTRON" SELENIUM RECTIFIERS

RETURN YOUR OLD DUD RECTIFIER-DEDUCT 5% FROM PRICE dISCOUNT TO INDUSTRIALS, SCHOOLS \& COLLEGES
'TABTRAN" Rectifier Xfmrs

 2/Ampsivoltage one half max.
Dual Prilis \& 220 V 60cy; Tapped 36 VCT
"TABTRAN" Rectifier Chokes

* $\star \star \star$ SPECIAL XMAS BUYS

 Delay Line-ESC $12200 / 04 \mathrm{mu}$ Gocd Sis $52.6 / 510$

图

 POCK Multitester
"TAB' $27 \mathrm{C} \quad \$ 7.85 \mathrm{ea}$

A.) INFRARED SNOOPERSCOPE

\qquad

New Variable 0 to 6 \& 12 Volt/12 Amp

FILTER CAPACITORS ORS
$\begin{aligned} & 2 / 5150 ; 10 / 5 \\ & 53.98: \text { for } \mathrm{S}\end{aligned}$ CE156M 600 MFD 15N
CE603M 3000 MFD 60 V . Quality VOLTAGE REGULATOR \$ \$ Popularly Priced $\$ \$$ ONLY \$16.98

230 to $115 V$ Autoformers

 5

$2000 / 2 \mathrm{~K}$	16.95
1634	

Cost of Mdse

 jeot to Change WIthout

AN/GRC-13
 FIELD SET
 AN/PRC-14 WALKIE-TALKIE

2 to 12 MC. Transmitter-Receiver. C.W. and Radiotelephone. Complete. OUTPUT: 20 watts CW-6 watts voice.

Consists of: RT-136/GRC-13 Receiver-

Transmitter
PP-272/U Power Supply (12-24 V. DC \& 110 Vac).
G-28A/U Hand Generator with mount and crar.ks.
MX-1012/U Installation Kit
Accessories: Microphone, headset, cables, antennas, guys, hardware and transit trunks, for all the above.
This unit-new and unused-is of latest design and can be overated in the field with hand-driven generator or a generator and self-contained battery system. Also operable
from A. C. mains. Provision for 1 mile pair from A. C. mains. Provision for 1 mile pair waterproof cases for field transportation Both whip and long wire antennae included. Ten preset crystal-controlled frequencies. Enine generator kit MX-1010/U available if desired. Manufactured by RCA These units are complete and operable. They are avail-able-new and unused-in quantities.

Transmitter - Receiver (30 Mile Range)
FREQUENCY: 225 to 400 M.C.— 4 channels
EMISSION:-A3 only. OUTPUT-1 watt.

Large quantity of brand-new-never used - components and partially completed sets to make up approximately 400 complete units. All are absolutely new including such items as cases, straps, antennas, etc. for the assembly of this recently manufactued set. Here is a great opportunity to make an unusually fine buy-the result of a recently terminated contract. Technical data available to qualified inquirers.

RADIO TRANSMITTERS

in all power ranges.
R.C.A. - COLLINS - BENDIX and others.

We have and offer for sale the largest quantity of Medium powered transmitters available in the market, today. Your inquiries will be answered promptly.

SPARE PARTS SCR-300

The largest supply under one roof -anywhere. Ask us for any item used in this famous walkie-talkie from the headset to the antenna

COMMUNICATION DEVICES CO

TWX—NYI—223
Cable-Communidev, N. Y.
Tel. ADirondack 4-6174
2331 TWELFTH AVENUE

RCA TV CAMIRA

 NEW Surplus for Labs! Export Industrials! Medicine! Closed Circui
Ideal for labs, Industry. prisuns. TV tecluiclans:

 fier and free complete therlinkal duia. solid AT
FRACTION OF REAL VALUE! —— $\begin{gathered}\text { Write today! Noto } \\ \text { our new addressl }\end{gathered}$ Harjo Sales Co. burbank, California

save on TUBES brand new TUBES gUaranted TUBES

OAP........ . 75	2J55 35.00	4X150A.... 22.50	VT158...... 9.75	464A 2.25	836......... 1.50	5656. 7.00
OA3....... 1.00	2J56......... 50.00	4×500A 5500	FG166...... 15.00	RH507 25.00	$8371 .00$	5657.... . . 125.00
O52....... . . 75	2J§1.......... 15.00	5BPQA..... 500	FG172... . . . 15.00	CK512AX.... 1.10	838 75	5663......... 1.50
OB2W A..... 3.00	2J62......... . 5.00	58P4....... 2.00	WL200. 75.00	527. 22.50	838w 3.00	5667....... 125.00
OC3/VR105. . 75	2J62A..... . 50.00	5CP1 1.75	CE.203..... 3.75	ML531..... 4.00	842........ . . 2.00	5670....... 1.50
OD3 VR105. 75	2J851....... . 35	5CP1 A..... 9.50	203A........ 5.00	559........ . 50	845........ 5.00	5672....... 1.25
ELC1B........ 1.50	2K22......... 14.50	5C92 29.50	204A....... 35.00	KU610........ 3.50	849..... . . . 22.50	CK5678..... 1.00
1AD4 $\ldots . .$. 1823 . . .	2K25........ 1200	5C30/C5B.... 1.50	207.... 50.00	HY615...... . 50	851 10.00	5686........ 2.00
1824........ 5.50	2K26........ 45.00	5CP7A.... . 10.00	211/VT4C... . 50	WL616. 50.00	859......... 5.00	5687........ 3.00
1894A....15.00	2K98........ 35.00	5D23 7.50	212E....... 17.50	KU627 10.00	860 3.00	5691........ 4.75
1826....... 2.00	9K33A..... 60.00	5FP7......... 1.50	217A........ 1.50	KU628... . . . 10.00	861 15.00	5692 5.00
1827....... 10.00	2K34....... 99.50	5JPQ..... 7.00	217C....... 2.00	648P1 7.50	865......... . 50	5693....... 4.75
1835....... 4.50	2K39....... 100.00	5JP4......... 7.00	WL21 $819 .00$	WL652 20.00	878A........ 1.35	5696........ 1.00
1836....... 4.00	2K41 100.00	5JP5......... 7.00	OK291 125.00	HK654..... . 25.00	874........ . 60	5702....... 1.40
1840........ 2.00	2K43...... 125.00	5JP11 A 19.50	RX233A..... . 75	WE701A.... 1.85	878........ . 50	5702W A.... 6.00
1851........ 6.75	2K44....... 125.00	5J93 20.00	FG235A.... 25.00	702A....... . 50	884..... . . . 1.00	5703....... 1.10
1N21......... . 75	2K45 45.00	5J26... 125.00	OK2 $49150 .00$	WE703A... 1.25	GL889..... . . 50.00	5718........ 3.00
1N218...... 1.50	9K47...... 195.00	5J29......... 5.00	WE249B..... 2.50	WE704A.... 75	GL889A.... 65.00	5719....... 2.50
1N22........ 75	2K48....... 80.0	5J30......... 5.00	WE949C.... 300	WE705A... . 75	889R A 125.00	RK5 $781175 .00$
1N23....... . 75	2K54........ 15.00	5133........ 5.00	250TL....... 15.00	706AY-GY . . 15.00	902A........ 3.00	5725 1.85
1N238....... 1.50	2K56....... 50.00	5MP1 3.95	WF.251A... 47.50	707A....... 3.50	902P1 3.00	5726........ . 75
1 N23BM..... 3.50	2V3G 2.00	5NP1 5.00	WE252A... 10.00	707B........ 4.50	917 2.75	5727........ 2.25
1 N25....... 4.00	2X2A....... 1.00	5R4GY...... 190	OK253 . . . 149.50	WE708A.... . 75	919......... 2.95	5744........ 1.90
1 N26........ 4.50	3 AP1 2.95	5R4WGY.... 2.25	WE254A . . . 5.00	713A....... . 50	992......... 1.25	5750....... 3.10
$1 \mathrm{~N} 285 .00$	3BP1 2.00	(6) 6.50	FG258A.... 90.00	714A....... 12.50	927......... 1.00	5751....... 2.20
1N34A..... . 50	3822....... . . 1.50	6AJ5-JAN... 1.25	271A....... 10.00	$715 \mathrm{~A}9 .00$	SN930....... 4.50	5780...... 199.50
1N35........ 1.50	3824.	6AK5W 1.50	WE274B.... 1.00	715B....... 4.00	931 A........ 2.50	CK5787..... 4.95
1N42........ 8.00	3824W 5.00	6AL5W.... . 65	WE282B..... 5.00	$715 C12 .00$	935........ 4.00	5814....... 1.00
1N47........ 3.00	3826....... . 3.00	6AR6...... 1.95	OK283A. . 100.00	717A....... . 50	954........ . 35	5814A...... 2.25
1N63/K63... 1.75	3898......... 6.00	6AS7G 2.50	OK28 4A. . 100.00	719A....... 9.50	955........ . 35	5819....... 35.00
1N69....... . 40	3829........ 5.50	6D21.... . . 150.00	WE287A. . . 3.50	720AY-EY... 50.00	956......... . 35	5895....... 7.95
1P21........ 22.50	3C22. 60.00	6F4......... 3.95	WE300B.... 5.00	721 A....... . 75	957........ . 35	5829....... 1.80
1P22....... . 6.50	3C23 5.00	6J4.......... 1.95	GB302....... 5.00	7218....... 7.25	958A....... . 35	5837....... 70.00
1P28....... 9.0)	3C24........ 1.50	6K4......... 2.25	304TH 8.95	729A........ 3.50	959........ 1.50	5840....... 5.00
1P29........ 2.00	3C27....... 1.00	6SK7W...... 2.00	304TL 12.50	723A/B..... 8.50	991........ . 35	5842........ 13.50
1P36....... 2.50	3C31........ 1.50	6SL7WGT.... 2.00	WE305A.... 3.00	WE724A.... . 85	CK1005..... . 35	5844....... 3.00
1P39....... 1.20	3C33........ 9.95	6SU7GTY.... 2.25	307A/RK75.. 1:00	WE724B.... . 85	CK1006..... 2.75	5851....... 4.00
1W5 1.25	3C45........ 6.00	6X4W........ 1.00	WE 308B 10.00	725 A....... 3.25	CK1007..... 75	5896....... 6.50
2AP1....... 5.00		6X5WGT.... 1.30	WE31 2 A.... 9.95	786A........ 7.00	1603....... 3.00	5899.... . . . 7.00
2C26A..... . 50	EL	7C29...... . 50.00	WE313C..... 9.75	7968. 30.00	1620........ 3.25	5901....... 6.50
2C33........ ${ }^{\text {2C34 }} 7$	3D	7	WE316A.... . 50	726C. 20.00	1623........ 2.25	5905....... 8.95
2C34........ . 35	$\begin{array}{ll}\text { 3D21A..... } & 4.00 \\ \text { 3DP1 \$2..... } & 5.00\end{array}$	7C24........95.00	327A....... 2.50	730A....... 7.50	$1624 \ldots . .1 .00$	5907........ 7.90
2C35........ 250	3E29........ 8.50	NE16........ . 35	WE336A.... 5.00	750IL 42.50	1625....... . 30	5908. 7.95
2C39........ 7.50	3FP7A....... 3.50	FG17........ 8.95	WE338A.... 5.00	800.... 1.50	1626........ . 35	5910....... . 45
2C39A..... . 8.00	3GP1 1.95	RK21 1.00	WE349A... 6.00	801 A........ . 50	1630....... . 50	5932. 4.00
42 10.00	3J30..... . . . 35.00	RX21....... 5.50	WE350A.... 2.75	802..... . . . 2.75	1636....... 1.90	5933/807W . . 4.00
2C43........ 7.00	3J31.... 45.00	HK24.... . . 3.00	350B........ 2.75	803......... 1.40	1641....... 1.35	5965...... . 1.50
2C44........ . 50	3K30...... . 125.00	D42 40.00	354C........ 5.00	804......... 9.75	1642....... . 50	5998....... . 1500
2C46....... 6.00	4B23 6.00	HK54........ 2.00	356B....... 0	$805 \ldots4 .00$	1945 60.00	6005......... 1.75
2C51....... 3.00	4824 6.00	OK59. 30.00	357B........ 50.00	806......... 7.50	2050....... 1.00	6021 5.00
2C52....... 3.50	4B26. 6.00	OK60 25.00	WE359A 2.00	807........ 1.20	2051....... . 65	CK6050..... 2.00
2C53....... 10.00	4827......... 2.50	RK60/1641... 1.35	368AS....... 2.00	807W 4.00	ZB3800.... . 75.00	6147....... 3.00
2D21........ 60	3.50	RK61 2.95	371B........ . 50	808........ 1.25	5517A....... 1.75	6177. 49.50
2D21W 1.35		OK61 25.00	WE388A. . . . 1.20	809..... . . . 2.25	5551....... 25.00	8005....... 4.95
2E27........ . 75		OK62 25.0	WE393A... 4.50	811......... 2.90	5553/655 . . 190.00	8012.... . . . 1.00
2E32....... 1.00		HY65....... . 1.50	WE394A.... 3.00	812........ 2.50	5557/FG17 .. 2.95	8013 4.95
2131......... 14.50	4E27. 83.75	RK65/5D23 . 10.00	WE396A.... 3.00	813 11.00	5559/FG57 . 10.00	8025 A 9.00
2J33.........14.50	4J28......... . 35.00	FG67/5728 . 19.00	403B/5591... 2.75	814......... 1.75	5561 29.50	9001......... . 85
$2 J 3414 .50$	4J29. 35.00	RKR72...... . . 50	GL414. 99.50	$815 \ldots . . .$.	5586....... 125.00	9002....... . . 65
$2136 ~ . ~ 20.00 ~$	4J31 65.00	RKR73....... . 50	417A....... 3.50	826......... . 75	5591/403B... 2.75	9004........ . 85
$213910 .00$		100TH.... . . . 6.50	RT434 25.00	829 6.00	5611........ 99.50	9005 1.50
$2 J 40 \ldots14 .50$	4J42.... 25.00	FG104... . . . 29.50	434A........ 3.00	829B 8.50	5634....... 7.50	9006........ . 25
2J42....... . . 60.00	4J50 99.9 .50	FG105 11.00	446A........ . 50	830B 75	5636. 4.00	
2148........ 35.00		F123A..... . 8.95	446B 2.00	832. 3.75	5637. 5.50	
2J49. 40.00	4J52..... . . . 50.00	F123A..... . 2.95				
2350 35.00	4J57. 100.00	F128A..... . 15.00	450TL 35.00	833A...... . . 27.50	5651 1.40	
2151 150.00	4」58....... . 100.00	FG154....... 15.0	WL456 59.5	83		

THIS IS ONLY A PARTIAL INVENTORY. CHECK WITH US FOR YOUR REQUIREMENTS

Thousands of other types in stock. Send us your requirements. RECEIVING TUBESI We Carry a complete line in stock. Standard brands only.

ELECTRONICS
Dept. EW
1100 Venice Blvd Los Angeles 15 California

All Prices F.O.B. Los Angeles, sublect to change without notice. Minimum order $\$ 3.00$. Check with us for items not listed.

SEARCHLIGHT SECTION

POWER RHEOSTATS
Over 25,000 Rheostats for immediate shipment

ALL BEST CARBON RESISTORS
Brand New-Fresh Stock
All Standard R.M.A. values available EB 1/2

GB 1
Price Schedule

ALL BEST TYPE "J" POTS

- JLU Locking Bushing - Shaft for Knob Your Choice-95¢ ea.

$\begin{aligned} & \text { ouns } \\ & \text { ans } \\ & \text { sidi } \\ & 5000 \end{aligned}$				coum

SELSYN C78248 ea. \$6.95

 Differential C78249 ea. . . \$2.95Miehl Midget PM Motor $\$ 3.95$ KS_15098—LO1 27 VDC

COAX CONNECTORS

 BARGAIN: $\left.\begin{array}{c}\text { PL } \\ 259 \\ 239\end{array}\right\} 35 ¢$ ea. $\begin{gathered}\text { Brand } \\ \mathrm{New}\end{gathered}$

Minimum order $\$ 3.00$
malling list
WALNUT 2-3553

ARCH ELECTRONICS CO.

AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to $4,000 \mathrm{Mc}$; wideband discone and other antennas, wavetraps, mobile accessories, 100 page technical manual, etc. Versatile, accurate, compact-the aristocrat of lab receivers in this range. Write for data sheet and quotations.

We have a large variety of other hard-to-get equipment, including microwave, aircraft, communications, radar; and laboratory electronics of all kinds. Quality standards maintained.
NEW TS-13/AP X-BAND SIGNAL GENERATORS with manual $\$ 575.00$; T-47A/ART-13 Transmitters, $\$ 450.00$; H-P, Boonton, G-R, Measurements, many others in stock.
ENGINEERING ASSOCIATES
434 PATTERSON ROAD
DAYTON 9, OHIO

TELEMARINE

PARTIAL LISTING OF OUTSTANDING SURPLUS COMMUNICATIONS EQPT.
WE 248-A RADIOTELEPHONE EQP'T. 250/350 Watts, 2-20 MC, 30 Channels Transmit and Receite all crystal-controlled, monitors 3 separate yue tubes Comp'reTt uses standard Modern plus). Operates from 110 Volts, $50 / 60$ Cveles AC. INEAF-ROR SHP RADIOTHLEFHONE, OR DESCRIPTIVE LITERATURE AND PRICE, Class "C', with separate Rectifler Power Supply. Operation from 220 V ., 3 -phase, $50 / 60$ Cycles AC. Easily modithed for orher frequencies. NEW. Not Gov't. Surplus. WRITE FOR DESCRIPTIVE MODEL LSR 42OF R RADIO BEACON OR SHIP KADIO TRANSMITTER. Kreq. Range 275-510 KC. Power Output 100 Watts CW, 150 Watts LSR-520-C RADIO BEACON POWER AMPLI. FIER, Class B Linear Amplifier used with above CW or 800 Watts MCW. ODerates from 115 Volts BC-797 VHF $10-126$ MC. 50W. AM Output for BC-460 Collins Autotune Transmitter, 250 W . Al. 200 W. A3 or A2, 10 Channels $2-16$ mic.
BC-44, 300 W. F M Trans-Receiver, 20 to 28 and
 10r Power Supply and other accessories.
SCR-619. FM Trans-Receiver 27 to 38.9 mc . com plete with all accessories. NEW units.
SCR-522. VHF Trans
4 -Channel. $100-156$ MC Recrg. Eqt. for Plane or Ground Communica-CR-5il. Walky-Talky, 3-6 MC, Crystal Controlled Trans-Thecrg. With Plug-In Units for Fred BChanging Ser.536. HANDY and WALKIE-TALK SCR-300 (BC-1000) WAIKLE-TALKIES, 40-48 MCS 2 channel 1 M Trans-Reseivers. TCS X-mttr-Receirer for Ship or Shore. tenna. Loading Coils, Ete. Starter and Spares.
TAJ 500 W . Output, $175-550 \mathrm{Kc}$. whth M.G. for $\mathbf{A C}$ TAQ. DC operation as TAJ above but $1,000 / 1,500 \mathrm{~W}$. out But with MG
BL 350 W. Output, A1, A3, IF. \& H.F. for $\mathbf{A C}$ PE. 75 U G Gas Fingine Generators NEW, w/Spares. T-21/GR-3-C Sound Ranging Microphones for lo RC-263 TRANSMITTING EQP'T. $1.5-10.0 \mathrm{mc}$. $4-$ 100 to 260 V. AC, 25-60 cycles biilt-in power supply 75 Watts CW. 50 W . phone conserrative output rating NEN: Complete with Remote
Control and case of spares. LaRGE dUANTITY SCR-543 RADIOTELEPHONE EQP'T. 45 W Radiotelephone (Trans-Receiver EqPA.) 6-chan used excellent units. IAARGE QUANTITY iN LINK-1498, VIF Trans-Rerg EnDt,
50 Watts ont put TM. Arailable in 14
VO
V AC operation.
150-AY Mackay IF Ship X'mitrs.
8707 IRMCA Ship Kadio Compass.
LRN-IA Loran Equipment. B-14GY Console Switchboard
SB-23/GTA Power Supdly tor above
HEADQUARTERS FOR TCS EQUIPMENT AND SPARE PARTS: WALKIE-TALKIES (SCR-300 OR BC-1000) AND SPARE PARTS. HANDY TALKIES (SCR-536 OR BC-6II) AND SPARE IN NEW OR LIKE NEW CONDITION WE HAVE LARGE QUANTITIES OF THESE EQUIPMENTS. ALSO DM-35 DYNAMOTORS AND PE-IO4 (FOR SGR-284) VIBRATOR POWER SUPPLIES. GN-5 SUPPLIES FO RSCR-694 AND GRC-9 EQUIPMENTS. WRITE FOR PRICES \& DESCRIPTIVE LITERATURE.
SELECTIVE RINGER for MOBILE or SHIP-TO.
SHORE RADIOTELEPHONES PEIMits Phone ODSHORE RADIOTELEPHONES Permits Phone Operator to call your Raliotelephone exclusively, when lighting a light. Designed \& Mfd. by Western Electric, MODLL 107A, modern, compact and efficient Can be attached to any receiver, complete Instruc
tion Book supplied. Dim.: $15 \% /{ }^{\prime \prime}$ long, $81 / 2^{\prime \prime}$ high $51 /{ }^{\prime \prime}$ wide. Shpg. Wt. 25 lbs . NEW ÚNITS. Reg value $\$ 245.00$ each. OUR LOW PRICE-EACH $\$ 85.00$

EXPORTERS, GOVERNMENT AGENCIES, INDUSTRIALS! We have large stock of Transmitfers, Receivers, Walkie-Talkies, VHF EquipBent Ship \& Broadcast Srators, Radar, Lecessories, efc. Write and tell us of your require available upon request.

TELEMARINE

COMMUNICATIONS CO.
3040 W. 21 st Street, Brooklyn 24, N.Y. Phones: ES 2-4300
CABLE ADDRESS: tELEMARINE, N. Y.

SPECIAL PURPOSE TUBES

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& \$ \& 2K54 \& EL-C6A. 6.00 \& RK-65 7.00 \& 5.00 \& 800......... 1.50 \& 50 \\
\hline OA3 \& . 90 \& 2K55......... 5.00 \& EL-C6J. 6.50 \& FG-67 9.00 \& CE-303 . . . 2.95 \& 801 A 50 \& \\
\hline OA5 \& 4.00 \& \& EL-C6L 3.75 \& RK-69 9.00 \& WE-304B . . . 7.50 \& 802........ 2.25 \& \\
\hline OB2 \& 65 \& 50.00 \& EL.6C. 8.00 \& RK-72. 50 \& 304TH 8.50 \& GL-803 2.00 \& 1629......... 1.50 \\
\hline OB3 \& 75 \& 2V3G....... 1.35 \& 6AC7W..... . 75 \& RK-73....... . 50 \& 304TL........ 15.00 \& 803.... 1.40 \& 1623........ 2.35 \\
\hline OC3 \& 70 \& 2X2........ . 35 \& 6AJ5 1.15 \& HY-75 3.00 \& WE-305A... 3.00 \& 804.... 9.00 \& 1694........ \({ }^{1695}\) \\
\hline OD3 \& 70 \& 2×2A....... . 90 \& 6AJ6...... 2.00 \& RK-75 85 \& CE-306...... 7.50 \& 805.... 4.50 \& 1625 \({ }^{1630}\) \\
\hline EL-C1B \& 2.00 \& 3A4........ 50 \& WE-6AK5 1.35 \& VR-75 9.90 \& \({ }^{307 A} \ldots \ldots . .{ }^{85}\) \& \begin{tabular}{l}
\(806 ~\) \\
\hline 807 \\
\hline 1.00 \\
\hline
\end{tabular} \& 1630....... 1.40 \\
\hline EL-1 \({ }^{\text {C }}\) \& 1.50 \& 3A5 50 \& 6AK5W..... 1.35 \& 75TL........ 5.50 \& CE-309 . . . \(\begin{array}{r}9.75 \\ \text { We-310A } \\ \hline\end{array}\) \& \({ }^{807}\) 807w 1.20 \& 1631......... 1.40 \\
\hline XFG1 \& 2.00 \& 3AP1 3.00 \& 6AL5W65 \& VR-78...... 5.50 \& WE-310A...
WE-311A. \& \begin{tabular}{l}
807W 3.85 \\
\(808 . . .\). \\
\hline
\end{tabular} \& 1635......... . . 1.00 \\
\hline 1 AF4 \& 2.50 \& 3B21 5.00 \& 6AN5 2.75 \& FG-81A 5.00 \& WE-311A...
WE-313C \& 808. \& 1636 1.35 \\
\hline 1 AG5 \& 2.00 \& 3829........ 1.50 \& 6AR6 1.25 \& VR-90.... \(\begin{array}{r}\text { CV.92 } \\ \text { C }\end{array}\) \& WE-313C... 2.85
316A \& 809 10.5 \& 1641....... 1.35 \\
\hline 1 B29. \& 1.35 \& 2823......... 3.50 \& 6AS6 1.25 \& CV-92 17.50 \& WE-323A... 7.50 \& 810 2.75 \& \\
\hline \(1 \mathrm{B23}\) \& 3.00 \& 3824....... 1.00 \& GAS6W 2.50 \& FG-95...... . . 17.50 \& W23B....... . 4.50 \& 811 A. 3.50 \& \(1654 \ldots . . .3 .50\) \\
\hline 1894 \& 5.00
1000 \& \& 6AS7G \begin{tabular}{r}
9.35 \\
6BM6
\end{tabular} \& \begin{tabular}{l}
VT-98BR 12.50 \\
HF.100 \\
\hline
\end{tabular} \& \(\begin{array}{ll}\text { 323B...... } \& 4.50 \\ \text { WE-328A... } \& 3.50\end{array}\) \& 811 A....... 3.75
\(812 . . .{ }^{2}\) \& 1656......... 6.50 \\
\hline \[
1827 .
\] \& 10.00
100 \& \(\begin{aligned} \& 3895\end{aligned} . \cdots \cdots . .3 .00\) \& 6BM6 20.00
6C21 17.50 \& \begin{tabular}{l}
HF-100 \\
100R \\
\hline 1.00 \\
\end{tabular} \& WE-328A.... 3.50 \& RCA-813 . . . 12.50 \& \(1661 \ldots . . .6\). \\
\hline 1 B35 \& 4.50 \& 3B27........... 3.00 \& 6G4 2.00 \& 100TH...... 6.50 \& WE-337A . . 10.00 \& 814......... 1.75 \& \(1846 \ldots . . .250 .00\) \\
\hline 1 1836 \& 3.75 \& 3B28 5.50 \& 6J4 3.00 \& WE-102D . . . 2.50 \& WE-339A... 10.00 \& \(815 \ldots \ldots . .1 .50\) \& \(\begin{array}{r}1851\end{array}{ }^{1.75}\) \\
\hline 1838. \& 25.00 \& 3BP1 2.50 \& 6JSW 1.25 \& FG-105 12.00 \& WE-347A... 3.00 \& \(816 \ldots . . .{ }^{1.25}\) \& \begin{tabular}{l}
\(1904 ~\) \\
1960.00 \\
\hline
\end{tabular} \\
\hline 1840 \& 2.35 \& EL-3C... 5.00 \& 6L6WGB. . . . 3.35 \& VR-105 70 \& WE-349A.... 7.50 \& 829. 10.00 \& \\
\hline 1842 \& 4.50 \& EL-3CJ. 8.50 \& 6SC7GTY..... 2.00 \& VU-111S.... 1.00 \& WE-350A... 3.00 \& \({ }^{826} \ldots \ldots7{ }^{75}\) \& 175.00 \\
\hline 1847 \& 7.50 \& 3C23......... 3.50 \& 6SN7WGT.... 1.50 \& HY-114B... \({ }^{75}\) \& 350B..... \({ }^{2.50}\) \& 828.... 6.00 \& 90001 175.09 \\
\hline 1859 \& 10.00 \& 3C24......... 2.50 \& 6SU7GTY. . . . 2.00 \& WE-121A...
WE-122A \& WE-352A ... 15.00 \& 829.
889 B \& 2051 65 \\
\hline 1 C21 \& 2.00 \& 3C31 9.00 \& 7BP7....... 5.00 \& WE-122A....
F.193A

W \& \& \& 2172........ . . 10.00

\hline 1 P 23. \& 2.00 \& 3C33 9.50 \& 7CP1 12.50 \& F-123A 5.50 \& WE-354A 14.00 \& \&

\hline 1 P24. \& . 50 \& 3C37 10.00 \& 7EP4........ 10.00 \& \& $$
\text { WE-355A . . } 15.00
$$ \& 832 A 5.00 \& ZB-3200 75.00

\hline 1 P 28 \& 8.75 \& 3C45 6.00 \& | 9GP7 | 5.00 |
| :--- | :--- |
| 91P7 | 3.50 | \& \[

$$
\begin{aligned}
& \text { WE-1 24A.... } 3.75 \\
& \text { VT-127A.... } 2.50
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { WE-355 A . . . } 15.00 \\
& \text { WE-356B . . } 7.50
\end{aligned}
$$
\] \& 838A 30.00 \& R-4100 5.75

\hline $1 P 29$
1 P30 \& 1.50

1.50 \& | 3D21 A |
| :--- |
| 3D22 |
| 1.00 |
| .75 | \& 9LP7 3.50

9MP7. 7.50 \& $$
\begin{aligned}
& \text { VT-127A...... } 9.50 \\
& \text { F-128A..... } 15.00
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { WE-356B.... } \\
& \text { WE-368A.... } \\
& \hline
\end{aligned}
$$
\] \& 834 …....... 5.75 \& R-4330

R

\hline 1 P32 \& 1.00 \& 3DP1 3.75 \& 10Y.......... .95 \& HF-130 90 \& WE-368AS . . 2.50 \& $835 \ldots \ldots . .6 .00$ \& 5528.... $\begin{array}{r}3575 \\ \hline 55\end{array}$

\hline 1 P 34 \& 1.75 \& 3DP1 A 7.50 \& CE-11V 2.25 \& VR-150.... ..$^{.70}$ \& 371 A 1.00 \& $836 \ldots . . .{ }^{1.50}$ \& 5550 25.00

\hline 1P36 \& 2.50 \& 3E29 8.50 \& 12A6..... . 2.50 \& FG-154.... 15.00 \& 371B 1.50 \& $837 \ldots . .90$ \& $5551 \ldots . .3{ }^{35.00}$

\hline 172 \& 2.00 \& 3EP1 2.00 \& 12DP7A. . . . 25.00 \& HK-154 5.00 \& WF.388A ... 1.50 \& GL-838 2.00 \& $5553 \ldots . .100 .00$

\hline CE-9C \& 1.50 \& 3FP7. 2.00 \& 19GP7 17.50 \& FG-166 15.00 \& WE-393A... 5.00 \& 838............. 9.95 \& | 5556 |
| :--- |
| $5557 \ldots . .$. |
| . .75 |
| .. |

\hline VG-2 \& 7.50 \& 3FP7A 3.50 \& 12J5WGT . . . 1.50 \& FG-172 15.00 \& 394A..... 1.85 \& $\begin{array}{r}849 \\ 843\end{array} \ldots9 .95$ \& 5550 17.50

\hline 2A4G \& 1.15 \& 3GP1 2.00 \& 12K8Y...... 50 \& QK-181 20.00 \& | WE-394A... 3.00 |
| :--- |
| WE.396A | \& 843 \& 5610 1.00

\hline $2 A P 1$ \& 4.00 \& 3HP1 3.00 \& 12L8GT.... 50.75 \& FG-190.... 7.50 \& WE.396A... 3.00 \& 845 W45 8.50 \& 5632 8.50

\hline 2 AP1A \& 5.00 \& 3J21........ 50.00 \& LM-15 50.00 \& HF-200 10.00 \& \& 849 W 18.50 \& 5637......... 5.00

\hline 2AS15 \& 3.75 \& 3131........ 35.00 \& NE-16....... 9.75 \& CE-201 ${ }^{2} 5.75$ \& $$
\begin{aligned}
& \text { U10R } \\
& \text { WE-417A. . . } 100.00 \\
& 10.00
\end{aligned}
$$ \& $851 ~ 10.00 ~$ \& $56447 .50$

\hline 2821. \& . 90 \& $3 \mathrm{~K} 27 \ldots150 .00$ \& FG-17....... 9.75 \& CE-203 2.50 \& $$
\text { WL.417A... } 2.85
$$ \& 852 5.00 \& 5645... 6.50

\hline 2826 \& 1.25 \& $3 \mathrm{KP1} 1 \ldots . .$. \& | RK-19......... $\quad .85$ |
| :--- |
| RK-90A | \& | $203 A$ | |
| :--- | :--- |
| 2037 | 2.50 |
| \ldots | 5.00 | \& \[

WE.418A... 12.50

\] \& | $852 \ldots . . .$. |
| :--- |
| $860 ~$ | \& $5650 \ldots85 .00$

\hline 9 C 21 \& . 50 \& $\begin{array}{lr}3 \text { 3R1 } \\ 3 \times 2500 \text { A } 3 & 125.00\end{array}$ \& \[
$$
\begin{aligned}
& \text { RK-90A. } 7.50 \\
& \text { TZ.90 } 1.75
\end{aligned}
$$

\] \& 203Z 25.00 \& \[

$$
\begin{aligned}
& \text { WE-418A.... } 12.50 \\
& \text { WE-421A... } 7.50
\end{aligned}
$$
\] \& 861........... 15.00 \& 5651....... 1.35

\hline $$
\begin{aligned}
& \text { QC2q } \\
& \text { 2CQ }
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
.35 \\
.75
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 3 \times 2500 A 3 \ldots 125.00 \\
& 4.400 A \ldots . . .40 .00
\end{aligned}
$$
\] \& CE-21C : 2.00 \& WE-205B 5.75 \& GL-434A . . . 10.00 \& $865 \ldots . . .{ }^{6} .35$ \& 5654 1.35

\hline $9 C 25$ \& . 35 \& 4AP10 3.75 \& RK-21....... . 85 \& $207 . \ldots50 .00$ \& 446A 50 \& 866A 1.10 \& 5656....... ${ }^{5670}$. 6.50

\hline 2C26A \& . 50 \& 4829 6.50 \& RK-22 3.50 \& $211 \ldots . . .{ }^{\text {. }}$. 50 \& 446B 1.85 \& 866-JR 1.25 \& 5670........ ${ }^{1.50}$

\hline 2 C 33 \& . 75 \& 4B23 6.50 \& CE-23C 1.40 \& WE-211C . . 10.00 \& 451 5.00 \& 868........ 90.00 \& 5687........ 2.50

\hline 9 934. \& . 35 \& 4824 5.00 \& PJ.23. 2.00 \& WE-211D 8.00 \& WL-460 8.50 \& 869B.... 9.00 \& | $5691 \ldots ~$ |
| :--- |
| 5696 |

\hline 2 C 38 \& 10.00 \& 4825 8.00 \& RK-23 9.50 \& WE-21 2E . . . 25.00 \& 464A..... 2.25 \& GL.879A . . . 2.50 \& 5696 1.00

\hline 2C39. \& 5.00 \& 4826 3.00 \& HK-24..... 2.85 \& 217A 1.50 \& WL-468 12.50 \& CE.872A 1.50 \& 5720. 15.00

\hline 2C39A \& 10.00 \& 4827....... 2.75 \& HK-24G..... 2.00 \& 217C 30.00 \& \& $872 A$
874 \& 5725 1.50

\hline 2 C 40 \& 7.50 \& 4E28 3.00 \& CE-95A/B... 2.00 \& WL-218 . . . 20.00 \& CK-510AX ${ }_{597} 15.50$ \& \& 5796 65

\hline 2 C 42 \& 10.00 \& 4830 1.75 \& RK-25..... 2.25 \& CE-220 8.00 \& W27.530 25.00 \& 878.... 50 \& 5797 1.40

\hline 2 C 43. \& 7.50 \& 4832 10.00 \& 25E6WG. . . . 4.000 \& CE-221
291 A .
8 \& WL-530. 25.7 .50 \& 878.......... . . . 35 \& 5728 9.00

\hline 2 C 44 \& . 35 \& 4C92 7.50 \& | 25T. |
| :--- |
| 95TG |
| 2.85 |
| .50 | \& 921 A 2.00 \& | WL-531..... |
| :--- |
| WL.532A . . |
| 1.00 | \& \& 5740 44.00

\hline ${ }^{2} \mathrm{C} 46$. \& 6.00 \& | 4C95 3.00 |
| :--- |
| 4C97 . . | \& | 25TG \ldots. |
| :--- |
| 2.50 |
| CE-28D | \& CE-929 5.00 \& WL-532A 9.00 \& 885 1.00 \& 5763......... . 1.00

\hline WE-2C51 \& 3.00 \& 4C97....... ${ }^{3.50}$ \& CE-28D 9.5 .50 \& CE-294 3.00 \& $\begin{array}{ll}\text { GL-546 } & 2.00 \\ 559\end{array}$ \& $902 \mathrm{P1}$. 3.00 \& $5801 \ldots2 .50$

\hline 2C53. \& 10.00

65 \& \begin{tabular}{l}
4C35 15.00

4E97.

\hline

 \&

RK-28 \& 2.50

28D7 \& .55
\end{tabular} \& CE-225 3.3 .00 \& GL.575A . . . 10.00 \& $905 ~ 2.00 ~$ \& $5819 \ldots25 .00$

\hline 2D91 \& .65
1.40 \& 4E97 35.00 \& 28D7 ${ }^{\text {23D }}$ W ${ }^{\text {a }}$. 1.50 \& \& WL.579B 10.00 \& 913 20.00 \& 5890 400.00

\hline 2D21 2 l \& 1.40
2.00 \& 4J34. 35.00
4J52. . . 35.00 \& 23D7W 1.50 \& \& 631-P1..... 5.75 \& 917 2.25 \& $5827 \ldots \ldots . .2 .50$

\hline 2E94. \& 1.95 \& 4×100A . . 18.50 \& CE30C....... 1.25 \& CE-235A. . . 5.00 \& WL-632A... 17.50 \& $918 \ldots1 .85$ \& $5829 \ldots{ }^{1.50}$

\hline 2E25. \& 1.85 \& EL-C5B 1.00 \& Twin 30..... 7.50 \& WE-242A . . . 5.00 \& WL-655/658 100.00 \& - \& $5842 \ldots . . .{ }^{5} 10.00$

\hline 9E96. \& 3.95 \& EL-5BHD 6.50 \& HY-30Z..... 2.65 \& WE-242C ... 8.00 \& WL-670A... 8.00 \& 0 2.00 \& $5847 \ldots10 .00$

\hline 2E99. \& 1.00 \& EL-5B2.5 6.50 \& CE-31V 2.00 \& WE-249B . . . 2.50 \& WL-681/686. 25.00 \& $921 ~ 1.00$ \& $5939 \cdots . . .{ }^{4.00}$

\hline 2E36. \& 1.25 \& 5AP1 3.00 \& FG-32 6.00 \& WE-249C . . . 2.50 \& W E-701 A . . . 2.00 \& 999......... 1.20 \& $5933 \ldots 24.00$

\hline 2E41. \& 2.00 \& 5B21 2.00 \& FG-33...... 15.00 \& 250R 4.75 \& 702A 100 \& $9231 .40$ \& 5948 250.05

\hline 2J21A \& 2.75 \& 5BP1 2.50 \& RK-33...... .50 \& 2507H 18.50 \& 702B 1.00 \& 924..... 1.35 \& $5981 / 5650$. . 85.00

\hline 2 l 26 \& 4.75 \& 5BP1 A 7.50 \& VX-33A.... 2.50 \& 250TL . . 45.00 \& \& \& 5998 7.50

\hline 2197. \& 4.75 \& 5BPQA 5.00 \& RK-34...... ${ }^{\text {35T }}$. 35 \& WE-251A ... 47.50 \& WE-704A.... ${ }^{\text {705A }} .75$ \& 926............ 1.00 \& 6031 4.75

\hline 2129. \& 15.00 \& 5BP4....... 9.00 \& 35T....... 4.50 \& WE-252A . . . 9.50 \& 707A 3.00 \& 928..... 2.50 \& 6097 65

\hline 2130 \& 15.00 \& 5C21 7.50 \& 35TG $\ldots \ldots . .3 .00$ \& WE-253A.... 3.50 \& 707A 3.08 .50 \& 928.... 1.25 \& $6187 \ldots . .1 .50$

\hline 2131 \& 14.00 \& 5C22 25.00 \& | RK-38 | 6.50 |
| :--- | :--- |
| RK-39 | 150 | \& | WE-254A . . . |
| :--- | \& W07B.708A 4.50 \& 929.......... 1.25 \& 6188 9.00

\hline 2132 \& 14.00 \& ${ }_{5}^{5 C 30} \ldots \ldots . .1 .00$ \& RK-39........ ${ }_{\text {R }} 1.50$ \& HK-257B 8.8 .50 \& WE-708A 1.00 \& 931 A 3.00 \& R-6210 . 15.00

\hline 2333. \& 14.00 \& $5 C P 1$
$5 \mathrm{CP1}$ \& T-40...... 2.35 \& FG-258A. . . 100.00 \& 713A 1.35 \& SN-948 7.50 \& UX-6653 . . . ${ }^{\text {. }} 75$

\hline 2334. \& 14.00 \& $\begin{aligned} & \text { 5CP1 A } \\ & \text { 5CP7 }\end{aligned} \cdots . . .88 .50$ \& IZ-40.: 3.5 .50 \& WE-261 A . . . 10.00 \& 715 A 2.00 \& 954......... ${ }^{\text {a }}$. 30 \& $800188 .50$

\hline 9336. \& 15.00

5.00 \& | 5CP7 |
| :--- |
| 5D21 |
| $\mathbf{8 . 5 0}$ | \& VX-41. 2.50 \& WE-262B. . . . 70.00 \& 715 B … . . . 4.00 \& 955 35 \& 8002R 15.00

\hline 2138. \& 10.00 \& 5D23......... 7.00 \& RK-44 1.00 \& WE-264C. . . . 3.00 \& $715 C$. 12.00 \& 956........ . 35 \& 8005 4.75

\hline $2 J 39$ \& 10.00 \& 5FP7........ 1.35 \& OK-47 50.00 \& WE-967B 10.00 \& WE717A . . . 1.00 \& 5 \& ${ }_{8011}^{8008} \ldots6 .00$

\hline $2 J 40$ \& 14.00 \& 5FP1 $455 .00$ \& RK-47....... 1.75 \& WE-968A . . . 7.50 \& 717A...... ${ }^{35}$ \& 958A ${ }^{.35}$ \& 8011

\hline 2 J 0. \& 35.00 \& 5GP1 5.00 \& CE-48........ 1.75 \& FG-971 25.00 \& WE-719A... 9.50 \& 959....... 1.50 \& 8012......... 8.50

\hline $2 J 51$. \& . 100.00 \& 5J29 7.50 \& RK-49........ 2.85 \& WE-979A... 5.00 \& 791A...... . 7.75 \& 972A....... 3.50 \& ${ }^{8012} \mathbf{8 0 1 3}$....... 2.50

\hline $2 J 52$. \& 50.00 \& 5J30 5.00 \& HY-51B 7.75 \& WE-974A... 3.00 \& 721 B 7.25 \& $991 . . .100 .30$ \&

\hline 2553 \& 25.00 \& 5J32 15.00 \& FP-54. 44.00 \& WE-274B.... 1.00 \& 792A B 9.50 \& CK-1005 100.25 \& | 8013A |
| :--- |
| 8016.50 |
| 8.50 |

\hline $2 J 54$. \& 50.00 \& 5JP1 12.50 \& HK-54 2.00 \& 274B..... ${ }^{\text {a }}$. 50 \& 723A/B . . . 9.00 \& CK-1005...... 2.00 \& 8016 1.50

\hline 2155 \& 50.00 \& 5JP2. 7.00 \& T-55 3.50 \& WE-975A... 5.00 \& WE-724A... .85 \& CK-1006 2.05 \&

\hline 2356 \& 75.00 \& 5JP4. 7.00 \& RK-57. 4.50 \& WE-976A . . . 7.50 \& WE-724B.... .85 \& CK-1007...... 3.50 \& ${ }_{8021}^{8029 ~ . ~ . ~} 75$

\hline $2 J 61$ \& 15.00 \& 5JP5 A 7.00 \& RK-58. 8.90 \& 276A 9.50 \& WE-725A... 3.00 \& CK-1009 3.30
CK-1026 . . 3.00 \& 8029 1.75

\hline $2 J 69$. \& 4.75 \& 5JP11 10.00 \& QK-59 25.00 \& WE-289A... 7.50 \& WE-726A ... 95.00 \& CK-1026 5.00
R-1100 \& 8025 2.500

\hline 2162 A \& . 50.00 \& 5LP1 7.50 \& QK-60 25.00 \& WF-283A... 4.00 \& WE-726B 25.00 \& R-1100
$\mathrm{R}-1130 \mathrm{~B}$ \& ${ }_{8026} 8085$. 3.50

\hline 2JB51 \& . 35 \& 5LP1 A 20.00 \& RK_60. 1.35 \& WE-985A.... 5.00
WE-286A \& WE-726C.... 20.00 \& R-1130B 1115.00 \& PD-8365 50.00

\hline 2 K 25 \& 12.50 \& 5NP1 ${ }^{\text {5R4 }}$. . . . 2.50 \& HY-61 1.25 \& | WE-286A . . |
| :--- |
| O87A | \& WE-730A . . . 2.50 \& 1603.......... 3.00 \& 9001 8.85

\hline 2 K 28 \& . 35.00 \& 5R4GY ${ }^{\text {5R4WY }}$. 8.90 \& QK.61 29.00 \& 287A ${ }^{\text {WE-995A }}$... 3.50 \& WE-732A 2.00 \& 1608 3.75 \& 9002.......... . . 65

\hline 2K30 \& 100.00 \& 5R4WGY 9.95 \& RK-61 9.75 \& WE-995A . . . 95.00 \& WL-735 1.40 \& 1608 1.50 \& 9003 90

\hline 2K33A \& 65.00 \& $5 \times 3 \ldots \ldots 3.3{ }^{3.00}$ \& \& WE.296A ... 25.00 \& 750TL 40.00 \& 1612......... 1.95 \& 9004..... 35

\hline 9K41 \& 75.00

40 \& | $5 \times 3 P 1 \ldots .$. |
| :--- |
| 575.00 |
| 50.00 | \& \& \& WL.759 12.50 \& 1613.......... 1.00 \& 9005 1.40

\hline 9K45 \& 40.00
125.00 \& 5Z.2P7 \ldots. . . 50.50 .00 \& $\begin{array}{r}\text { RK-63 } 18.18 .50 \\ \text { HY-65 . . . } \\ \hline\end{array}$ \& $\begin{array}{llll}\text { WE-300B } & 0.50 \\ \text { CE-302 } & \\ \end{array}$ \& WL786 15.00 \& 1614.......... 1.50 \& 9006 25

\hline
\end{tabular}

The prices quoted above are $F O B$ shipping point
western engineers
ELK GROVE, CALIFORNIA
george whiting, OWNER

All tubes are new individually cartoned,
fully guaranteed

\star Immediate Delivery
\star Hundreds of Types
\star All Standard Makes
\star New-Inspected-Guaranteed
See Our Ad on Page 182

Cadmium or olive drab finish. All comply with government specifications.

Let us quote on your requirements.

Wilfreen enthutries

99 MURRAY ST., NEW YORK 7, N. Y. WOrth 4-2490-1-2

COMMUNICATIONSECUIPMENTCO.

MICROWAVE MAGNETRONS

-2J21A. . \$2.25	3J31.... $\$ 32.50$	700B.... . 58.7
2J22..... 2.50	4J34, ... 23.50	700D..... 8.75
2J26..... 2.50	4J42 47.50	706A..... 9.75
2127..... 3.00	5J23.... 34.50	706D..... 14.75
2J29..... 18.50	$5 J 30 \ldots . . .14 .50$	706CY... 9.75
$2131 \ldots . . .13 .95$	5533.... 4.75	706EY... 9.75
$2 J 32 \ldots . .14 .50$	QK 59.... 39.50	725A*
2337.... 9.50	QK60... 35.00	730A..... 8.75
239..... 8.25	QK 61.... 50.00	
2162..... 6.75	QK 62.... 54.00	- Write

\square AT-68/UP 3 Cm Horn with type N reed for receiver measurements. eto.
New (as shown) ROTARY JOINT (APS-6) Sperry ITT
 PARABOLOID DiSH, i8" diam. Spun Alumnum.
Focus. For AN/APS3 CM. DIPOLE and Feed Assembly. (May be used with FLEXIBLE SECTION 8 ing. FLEXIBLE SECTION 9 in . long Cover-to-Cover. $\$ 5$
3CM. DIPOLE FEED, $15^{\prime \prime}$ L. for AI' 15 10 MITRED ELBOW. Cast aluminum, $144^{\prime \prime} \times 5 / \mathbf{s}^{\prime \prime}$ \$14.50
 dish, operating fromi 24 vde motor. Beam pattern: 5
deg. in hoth Azimuth and elevation. Sector Scan: over 1.60 deg. at 35 scans per minute. Elevation Scan:
over 2 deg. Tlt: Over 24 deg.................. $\$ 35.00$ Cross-Guide Directional Coupler. UG-40 output flange. Main Guide is 6 " Lonk, with 90 Deg. "E'" Plane bend flanges. Coupling ticure; 20 db Nominal...... $\$ 22.50$
$\mathrm{RG52} / \mathrm{U}$ Waveguide in 5 , lengths, fitted with UG 39 flarges to JIG40. Silrer plated....... per length $\$ 5.00$
Rotating. Joints snpplied either Rotating-Joints supplied either with or without deck
mountings. With UG40 flanges..........each $\$ 17.50$ Bulkhead Feed thru Assembly. 15 ib. gauge................ $\$ 15.00$
Pressure Gauge Section with Pressure Gauge Section with 15 lb gauge...... $\$ 10.00$
Directlonal Coupler, UG-49/U Take off $20 \mathrm{db} . . .517 .50$

 TS 12. TS-13. Etc.
ADAPTER. UG-163/U.................................. $\$ 2.50$ ea.

I. F. AMPLIFIER STRIPS

Model 15: 30 Mc Center frequency. Bandwidth 2.5 Mc gain figure: 65 db Uses 5 stages of 8AC7's. Has
D . C. Restorer and Video Detector A.F.C. Strip in60 MC. Mindature IF strid, using GAK 5 's 60 Mc center

JAN WAVEGUIDE FLANGES
 COAXIALR.F. FILTERS

PULSE TRANSFORMERS

4 P37 Primary, 50 Ohms 750 V . 001 Duty. Sec. 15 Kr
1000 Ohms Impedance. Bifiar $12.6 \mathrm{~V} / 2.5 \mathrm{~A}$. $\$ 32.50$

 GE \#K-2449A. Primary: 9.33 KV , 50 ohms Imp. Sec-
ondary: 28 KV .450 ohms. Pulse length: $1.05 / 5$ usec

 32 KW impedance 40.100 ohm output. Pri. rolts 2.3
$\mathbf{K V}$ Pk. Sec. rolts 11.5 KV Pk. Bifilar rated at 1.3
 usec $@ 600 / 600$ PPS. Pk. Power 200/150 KW . Bi-
flar: 1.3 Amp. Has built-in' magnetron well. $\$ 32.50$ K-246i-A. PTimary: $3.1 / 2.6 \mathrm{KV}-50$ ohms (line). Sec-
ondary $14 / 11.5 \mathrm{Ky}-1000$ ohms Z . Pulse Ifengh 1

 RA18-1_3 wdgs. Ratio: 1:1:1. 1.10 uh. /wdg. $\$ 2.50$
ohms DCR

PULSE MODULATORS

MIT. MOD 3 HARD TUBE PULSER: Output Pulse Power 144 KW 12 KV at 12 Amp .) Duty Ratio: . 001 rolage: 155 v . 400 to 2400 cms . Uses $715 \mathrm{~m} 1-829 \mathrm{~m}$ ASD Modulator-Units, mid. by Sperry Mard tubes Dilser delivers Pk. Dulse of 144 kw. Similar to Mnd
unit. Brand new. less tubes. $\$ 85.00$

3 CM. TEST SETS

S $12 / A P$. For standing wave measurement of plumb. ing, TR/ATR boxes, crystal mixers, antennas, etc.
The TS 12 consists of two basic units: Unit i is a high gain stable amplifler followed by a 3-inch meter
which reads SWR directly UNIT 2 consists of wavewhich reads SWR directly. UNIT 2 consists of wave-
guide accessories, including a slotted line, probes, guide accessories, including a slotted line, probes,
dummy load, adapters, etc. Either bolometer or dummy load, adapters, etc. Either bolometer or
 self contained. Operates $9305-9445$ me. 50 microwatts.
TS 13 . AP . Sional souree
Comes with a wavemeter, thermistor.bridge power Comes with a wavemeter, thermistor. bridge power
meter, and calibrated attenuator. Oscilitator is a kly. meter, and calibrated attenuator.
stron type $723 / a-b$ which may internally (self. synch) or externally pulsed. Controls are provided for
FM operation, variable pulse delay, pulse width and phasing. Operates from $115 \mathrm{v}, 60-800 \mathrm{cps}$. Now*

BARGAIN SPREDALIS

Barry shock mounts: nos. 2045, C-2060, C-2070. C Trihedral radar reflector, MK-1, aluminum.......... $\$ 3.50$ Trihedral radar reflector, MK-1, aluminum $\quad \$. \$ 3.50$ list 20 SCS
ber tape dispenser. $\$ 8.50$

SPARES FOR PRC-10

3C1084H-67	3C1084H-71	2Z5822-488
3C1084H-68	3C1084Z-74-3	2Z5822-503
3C1084H-69	2Z9632.611	3DA1.304
3C1084H-70	$2 Z 9631.407$	3DA10-543

 Power supply unit, nary type-EL-2 Input: 115 cy. Output: 135 rdo $/ 10$ ma, 90 de de $/ 5$ mat: 3 r de $/ 360$
ma. New. complete with spare parts box. To be used ma. New, complete with spare parts box. To be used
with model TBX radit gear wa. $\$ 9.50$
 Amplifier. Altec A-127. 18 Watts outpuit with response
from $20-20,000$ cps. Operates trom 115 v: 60 cps. Std trom $20-20,000$ cps. Operates trom 115 v .60 cps . Std
rack panel nutg. Used, cxcellent............ 103 Pulso analyer type APA-6. With 3 in. scoope.
BC 602 Controi box for $\mathrm{SCR} 522($ pushbutton $)$

Phase-shifter. Helmholta type: 0-360 deg.
Capacitor, oil-filled, 0.25 mol 25.000 volts de...$\$ 2.50$
Hydronhone, MODEL M1-2 A lattice of 3 crystals in a
AN/CRW-2A Renote control receiver, for operating target planes, etc. New, with soundproof mounting
HEX REPEATER EE TEL. REPEATER, EE B9, complete with tubes and
 F.T\&R devices, and balancing circuits. Used for adapting $2=$
 cables and instruction book. supply, main unit, an UNOERWATER MICROPHONES, Model Jil- Consists
of a mosalc of 7 crstals. Aay be used at 17-73 Kc. of a mosalc of 7 crystals. May be used at $17-73 \mathrm{Kc}$.
omnidirectional, 50 ohm output,
 Continuous Operation from 24 VDC Completely En -
closed
 ALLTTUDE in DICATOA for APN:
C. 870 Final P.A. Coil for BC610 2-3.5 Mc. variabie RA. 74 Power Suppiy for Super Pro.

ELECTRIC MEGAPHONE SYSTEM For Rural Areas, Hotels, Commercial Steamers, Ball Parks, Etc.
U. S. NAVY type PaE-1 ment is desigued for toice reinforcement numuch the same
manner as, but to a greater manner as, but to a greater acoustic megaphone. Consists of Megaphone Unit (whicll combines a microphone and
reproducer which electricatly amplifies the output siknal of the microrimone section of the megaphone and feeds this amplified simasl to the reprolucer section. Charging

DTANMOTORE

PUT			OUTPUTI		
TYPE	VOLTS	AMPS	VOLTS	AMPS	Price
BDAR83	14		375	. 150	\$6.50
35X-059	19	3.8	405	. 095	4.35
POSX-15	14	2.8	220	. 08	8.95
DM33A	28	7	540	. 250	3.95
23350	27	1.75	285	. 075	3.95
B-19	12	9.4	275	. 110	6.95
			500	. 050	3.95
DA-3A*	28	10	300	. 260	
			150	. 010	
			14.5	5.	
PE 73CM	28	19	1000	. 350	10.50
BD $69{ }^{\text {¢ }}$	14	2.8	220	. 08	8.95
DAG-33A	18	3.2	450	. 06	2.50
DM25 ${ }^{\text {d }}$	12	2.3	250	. 05	6.95
BDAR 93	28	3.25	375	. 150	6.95
\ddagger Less filter			*Replacement for PE 94.		
Yused;	xcellent				5.95

INVERTERS

$800-1 \mathrm{~B}$ input $24 \mathrm{vdc}, 62 \mathrm{~A}$. Output: $115 \mathrm{~V}, 800 \mathrm{cy}$ 7 7 A . $P E-218 \mathrm{H}$: Input: $25 / 38$ vdc. 92 amp. output $\mathrm{i} 15 \mathrm{~V} 300 /$

TS-56A/AP TEST EQUIPMENT Slotted line test equipment designed for operation over 51 ohnus. Ideal test set for matching antennas, measnrement of character istics of transmission line. With
inst thitions nianual. New. Shipping
$\mathbf{1 2 0}$
$\mathbf{2 0}$ TEST OSCILLATOR TS-47/APR, 40-2000 + Mc. Fundamental coverage $40-500 \mathrm{Mc}$ in two ranges. Har-
monics abore 2000 Mc . Provides a calibrated (dial) accuracy ± 0.7 per cent) H.F. source for testing receiving equignient. Output 3 MW or more up to 400
Mc. less on liamonics. C. W. mod. Dulse or sine Part of output. Countermeasures equid- $\quad \mathbf{\$ 1 6 5 0 0}$

COO CYCLE TRLNUSFORMERE

KS13104
$\mathrm{KS9615}$
$\mathbf{K} 9608$
302433A

KS 9945
KS
9685

70G30G1
M-7474318
$352-7069$
352-7096
352-7099
${ }^{3}{ }^{0} 163253$
$5_{2-7179}^{\mathrm{M}-747195}$

6. $3 \mathrm{~V} / 4 \mathrm{~A}, 3 \mathrm{~V} / 1 \mathrm{~A}$,
$1233 / 35 \mathrm{MA}, 114 \mathrm{VCT} / \mathrm{O} / \mathrm{A}$
6.5/3.5A $592 \mathrm{VCT} / 118 \mathrm{VA}, 6.3 \mathrm{~V} / 8.1 \mathrm{~A}, 5 \mathrm{~S} / 2 \mathrm{ZA}$.
$6.4 / 7.5 A, 6.4 \mathrm{~V} / 3.8 \mathrm{~A}, 6.4 / 2.5 A$. $600 \mathrm{VCT} / 36 \mathrm{MLL}$ CT $2100 \mathrm{~V} /-27 \mathrm{AA}$.
2-2.5V Wdgs at $2.5 A$, Each Lo-cap.,
22 2.5V/1.79A $5 \mathrm{SV} / 3 \mathrm{BA}, 6.5 \mathrm{~V} / 6 \mathrm{~A}, 6.5 \mathrm{~V} /$
 $1.75 A, 6.3 \mathrm{~V} / 2.5 A, 6$
$\mathrm{BC}-929.7 \mathrm{M}, 2.5 \mathrm{~V} / 5 \mathrm{~A}$. $5200 \mathrm{~V} / 2002 \mathrm{~A}, \mathrm{Z} .5 \mathrm{~V} / 5 \mathrm{~A}$. $2.5 \mathrm{~V} / 20 \mathrm{~A}, 12 \mathrm{KV}$ Test
$250 \mathrm{~V} / 100 \mathrm{MA} .6 .5 \mathrm{~V} / 12 \mathrm{AC}$, $5 \mathrm{~V} / 2 \mathrm{ZA}$

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. M.O. OR CHECK. ONLY SHIPPING SENT C.O.D. RATED CONCERNS SEND P. O. PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED VIA CHEAPEST TRUCK OR RAILEX.

BELVISION'S COMPONENT BARGAIWS

TUBES

3A5 JAN RCA BOXKGD.
3BP1 75c 6J6. 25c fig

CONDENSERS

CERAMFD, 350 V. FP (Plug-in) ALD.... 156 $.005-7.500$ voliT …....................... 10 c

And Many Other Ifems
We Also Purchase Your Surplus Inventory

RESISTORS - CARBON - INSULATED $1 / 2$ WATTM. 10 per M 1 WATT, $\$ 30$ per M HMIMTV 500 OF A NUMBER
 CONTTIOLS. SOCKETS.

HRITE FOR PLICES

BELVISION, INC.

254 Greenwich St., N. Y. 7, N. Y. BA 7-6063

PRECISION INSTRUMENT BEARINGS	
Brand new	- Original packates
N.D. SSR2 N.D. SSR3 N.D. SSR 4 M.P.B. SS.4C	35 ¢ each
$\begin{array}{r} \text { Many } \\ \text { R. } \\ \text { P. Box } 1152 \end{array}$	other tynes avaitable C. CAGAN SALES Rochester 3, New York

NEED METERS? STANDARD or SPECIALS

 any quantity - NEW - SURPLUS

WRITE - PHONE - WIRE
INSTRUMENT SERVICE
455 B. 67th St. Arverne, New York
CAA No. 4264 Ltd.
NE 4-8594

100 AMPERE TRANSTAT

Variable Transformer-115 volt ac 60 cycles imput $0-115$ volts AC 100 Amp. Output. Packed in original wood cases. 99.50 FOB

LAPIROW BROTHERS
1649 Hoffner St., Cincinnoti 23, Ohio

TS-155

S BAND SICNAL GENERATORS
2.7-3.4 KMC—Complete—Brand New. Write for specifications \& price,
L \& M ASSOCIATES
253 Boulevard Hasbrouck Heights, N.J. (Phone: HA 8-2665)

ELLEOTRONIO

WAR TERMINATION INVENTORIES

WRITE OR WIRE FOR INFORMATION ON OUR COMPLETE LINE OF SURPLUS ELECTRONIC COMPONENTS. ALL PRICES NET F.O.E. PASADENA, CALIFORNIA

ESTERLINE-ANGUS .RECORDER

Model AW 0-1 MA
DC Milliameter permanent magnet moving coil type. Spring clock duel speed drive (hour and minute). Instructions including connection diagrams and instroment data
sheet with each instrument.

```
Portable case

\section*{telegon oscillator}


Input: 115 volts, 60 cycle; Output: 26.5 volts, 400 cycle 3 .watts @ 250 ohm load. Ideal for laboratory use ....approx. 10 x 7
\(\times 8^{\prime \prime}\), wt. 16 lbs..................... \(\$ 29.95\)

\section*{PIONEER TORQUE UNITS}


Type 12602-1.A. Includes CK 5 Servo motor coupled to output shaft thru 125:1 gear reduction train. Output shaft coupled to autosyn follow-up (AY-43). Ratio of output shaft to follow-up autosyn is \(30: 1\) Includes base mounting type cover for motor and

Gen. 575 V 400 cy .
Trans. \(105 / 55 \mathrm{~V} 60 \mathrm{cy}\) 235 F 1 Cont. Trans. \(105 / 55 \mathrm{~V} 60 \mathrm{cy}\). 215 F 1 Gen. \(115 / 105 \mathrm{~V} 60 \mathrm{cy}\). 2J1EM1 Gen. \(115 / 57.5 \mathrm{~V} 400 \mathrm{cy}\). 5 CT Cont. Trans. \(90 / 55 \mathrm{~V} 60 \mathrm{cy}\). 50 dilf. Mtr. \(90 / 90 \mathrm{~V} 60 \mathrm{cy}\). 5DG Diff. Gen. 90/90V 60 cy . 5 F Syn. Mtr. \(115 / 90 \mathrm{VAC} 60 \mathrm{cy}\). \({ }_{5} 5 \mathrm{HCT}\) Cont. Trans. \(90 / 55 \mathrm{~V} 60 \mathrm{cy}\). 5 5SD Diff Gen \(90 / 90 \mathrm{~V} 400 \mathrm{cy}\) 6DG Diff. Gen. \(90 / 90 \mathrm{~V} 60 \mathrm{cy}\). 6G syn. Gen. \(115 / 90\) VAC 60 cy . 6G Eyn. Gen. \(115 / 90 \mathrm{VAC} 60 \mathrm{cy}\). R110.2A Kearfott Cont. Mtr. 115 V 400 cy .
R20 (1-1-A Kearfott Cont. Trans. \(2 € / 11.8 V 400 \mathrm{cy}\).
R210-1A Kearfott Tra
R23E.1A Kearfott Resolver
\(2 \mathrm{E} / 118 \mathrm{~V} 400 \mathrm{cy}\).
C56;01 Type 11.4 Rep. 115 V 60 cy . c69<05-2 Type I-1 Transm. 115 V 60 cy .
C69406 Syn. Transm. 115 V 60 cy . C69<06-1 Type \(11-2\) Rep. 115 V 60 cy . C76166 Volt. Rec. 115 V 60 cy . C78 48 Syn. Transm. 115 V 60 cy . c78ᄃ49 Syn. Diff. 115 V 60 cy C 78663 Repeater 115 V 60 cy .
\(\mathrm{C} 79 \pm 31\) Transm. Type 1.4115 V 60 cy. 851 Bendix Autosyn Mtr. 32 V 60 cy . 403 रollsman Autosyn Mir. 32 V 60 cy . CK5 Bendix Mtr. 2 phase 26 V 400 cy . CK5 Bendix Mtr. 2 phase 26 V 400 cy .17 .50 FJE. 23.9 Resolver 115 V 400 cy . \(999-1411\) Kollsman 26 V 400 cy . \(1377-0410\) Kollsman 26 V 400 cy . 1515B-0410 Kollisman 26 V 400 cy . 10047 -2-A Bendix 26 V 400 cy . 2900 Transicoil 115 V 400 cy.
\(\$ 12.50\)
1SF syn. Mtr. 115 /90V 400 cy . \(\begin{array}{r}7.50 \\ \hline 1.50\end{array}\) 10.00
7.50 7.50
5.00 5.00
7.50
1750 17.50
17.50 17.50
17.50 17.50
17.50 17.50
34.50 34.50
34.50 34.50
34.50 34.50
34.50 34.50
42.50 42.50
12.50 12.50
25.00 25.00
34.50 34.50
42.50 17.50 15.00 15.00 22.50 20.00 20.00 20.00 20.00 10.00
12.50 12.50
5.00 5.00
7.50 7.50
20.00 70.00
7.50 7.50
7.50 7.50
17.50 17.50
25.00 25.00
15.00 15.00
10.00 10.00
20.00 12.50 15.00
gear train............................ \(\$ 34.95\)
gear train. . . . . . . . . . . . . . . . . . . . . .

\section*{SMALL DC MOTORS}

(approx. size overall \(33 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}\) dia.:.) 5069600 Delco PM 27.5 VDC 250 rpm
5069230 Delco PM 275 VDC 145 rpm 5069230 Delco PM 27.5 VDC 145 rpm
\(\$ 12.50\) 5068750 DCO 275 VDC 160 rDm W/brake 6.50 5068571 Delco PM 27.5 VDC \(10,000 \mathrm{rpm}\) ( \(1 \times 1 \times 2^{\prime \prime}\) )
5069625 Delco 27.5 VDC
\(120 \mathrm{rpm} \mathbf{w} /\) governor
MM A. 11 Globe PM 24 VDC
5BA10A118 GE 24 VDC 110 rpm 5 BA10A137 GE 27 VDC 250 rpm reversible SBALOAJ52 27 VDC 145 rpm reversible 806069 Oster series reversible \(1 / 50 \mathrm{~h} . \mathrm{p}\). c. 28 P-1A \(27 \mathrm{VDC} 1 / 100 \mathrm{~h} . \mathrm{p} .7,000 \mathrm{rpm}\) 7100-B PM Hansen 24 VDC 160 rpm SSFD-6-1 DiehI PM \(27.5 \mathrm{VDC} 10,000 \mathrm{rpm}\) 6 -volt PM Mtr. migd. by Hansen 5,000 6-v1/4" in dia. \(2^{\prime \prime}\) long overall

\section*{SELLING}

Receivers
Transmitters
Radar
Special Purpose Tubes
Relays
Meters
Switches
Connectors
Recifiers
Transformers
Motors \& Generators
Wiring Cable
Instruments
and
All Electronic Components

\section*{WILL BUY ALL}

New or Used

craft sparkplugs any condition

RADIO \& ELECTRONIC SERVICE
Wholesale Only
13933-9 BRUSH STREET
Detroit 3. Mich. TO 9-3403
Wholesale Only


\section*{A DFPARTMENT STORE FOR YOUR BhECTRONIC SUPPITS}

WE'RE SELLING YOU RELAYSWHAT ARE YOUR OTHER NEEDS? Our normal Inventory Includes Over 80,000 Different liems in the Electronic, Radar and Radio Fields

\section*{RyATS}
allied • leach - telephone type miniature alrcraft - guardian sigma - hermetically sealed and many others


SEND FOR OUR LATEST BULLETINS and add your name TO OUR MAILING LIST
cable address: UNIGENCOR, N. Y.


\section*{TIME DELAY RELAY}

Haydon 115 v 60 cy . adi, in 5 sec . steps to 40 sec .
spdt mu sw. \(\$ 5.95\). With 2 arms \& 2 sw ... \(\$ 9.95\) PULSE xfmr Utah \(1059 \cdot A A, 3\)-50T Windings \(\$ 3.95\) Hundreds of other itcms, see ad in Buvers
EMPIRE ELECTRONICS COMPANY
409Q Ave. L Brookiyn 30, N. Y. Cloverdale 2-4000

\section*{GLASS TUBING}

PYREX - NONEX - URANIUM BULB \& CYLINDERS WRITE FOR FREE MONTHLY LIST HOUDE SUPPLY COMPANY PHONE KEYPORT 7-1286
M. R. \#1 Box 86 X Keyport, N. J.

\section*{A BARGAIN FOR YOU in a ....}

\section*{so \\ SOLA Constant Voltage}

\section*{End \\ Fluctuating}
line
Voltage


Bargains in Brand New Surplus
Write for spécial quantity prices on starred* items
OIL FILLED CAPACITORS
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline VOLTS & MFD & \[
\begin{array}{r}
\text { Price } \\
+49.95
\end{array}
\] & VOLTS & MFD & \[
\begin{array}{r}
\text { Price } \\
.89
\end{array}
\] \\
\hline 25 KV & & +49.95 & 1000 & 28.0 & 5.50 \\
\hline 25 KV
25 KV & 0.5
0.1 & \(\begin{array}{r}+39.95 \\ \hline 14.95\end{array}\) & 1000 & 28.0 & . 69 \\
\hline 7.5KV & 0.5 & 4.25 & 600 & 10. & 1.29 \\
\hline 8KV & 0.25 & 1.09 & 600 & 8 & 1.19 \\
\hline 3KV & 0.5 & 1.59 & 600 & 4 & \(\star .69\) \\
\hline 3KV & 0.1 & *1.19 & 600 & 2 & * 39 \\
\hline 2.5 KV & 2.0 & - 2.95 & 6 CO & 5 & * .19 \\
\hline 2 KV & 5.0 & 2.95 & 660AC & 5 & 2.95 \\
\hline & & & 330AC & 5 & 1.29 \\
\hline
\end{tabular}

SPECIAL SWITCHES


SW 141 ( ) DPST normally open with or without lock-in button, part of CD. 318 cord sel
\[
\star .34 \varnothing
\]


SW 244 SPDT An tennachange switch Square D Cat. No 9320-962 SC \#3ZK \(9503-20\) Bakelite Base \(2 \times 8 \times 1 / 4\)
*.49¢
Sensitive MU-Switch 15A. 125 V. AC 15/32 32 threaded bushing. SPST N.C.-444; SPST N.O.-49ф; SPDT-69¢

MULTIPLE SECTION OIL CAPACITORS 10 Mid 400 volts \({ }^{91 / 2}\) Mid 600 volts
 bottom mount. Western Electric Meets specs for at - 50 to +85 C \(\left.\begin{array}{llll}600 \mathrm{~V} \text { operation at } \\ 40^{\circ} \mathrm{C} \text {. } 33 / 4 \times 33 / 8 \times 2\end{array} \right\rvert\, \begin{aligned} & \text { will pass at } \\ & \text { test at } \\ & 43 / 4 \times 1 / 2\end{aligned}\)

Molded, Upright and Ceramic-Cased Mica Capacitors
\begin{tabular}{|c|c|c|c|c|}
\hline . 01 & 4LS & 600Wv & CM45B103J & . 32 \\
\hline . 02 & 4LST & 600WV & CM50B203G & \(\star .45\) \\
\hline . 001 & A2L & 2500WV & Thickness \(\frac{7}{15}{ }^{\text {a }}\) & . 49 \\
\hline . 02 & 6 S & 2000WV & & 1.65 \\
\hline . 0068 & F2 & 30cowv & & -1.35 \\
\hline . 00015 & Type & 10,000WV & 3Amp 1 & 9.95 \\
\hline
\end{tabular}

\section*{ 1.0 usec 400 P.P.S. 50 Ohm Z}

Variable Transmitting Capacitor: 19 to 116 mmid 27 plates, \(085^{\prime \prime}\) air gap. O/a Tuning Units TU-7A a TU-79.......... \(\times 98 \mathrm{c}\)

OCTAL SOCKETS \(\star \$ 5.00 \mathrm{C}\) Johnson 122-128 steatite sockets; Am phenol 49-558, steatite ring mounting; and \(11 / 2\) mounting centers.

Allied BJ6D36 DPDT, 24VDC coil 115 V AC Allied BO 13D35 SPST Double break normally open 24 V DC. Coil Silver contacts each rated \(15 \mathrm{Amp} @ 24 \mathrm{~V}\) Autelco Jr Type 16 ilisV AC coil DPDT Snap Action contacts rated 15 Amp 115V, 5 Amp 230 V . Cook \#773 Standard Telephone Relay 900 ohm DC coil double arm 14 \(21 / 2 \mathrm{H}\). . . . ............................ 1.09

\section*{RG 9 B/U \\ . 15.00 C . FT PL 259 Plug M 359 Angle Adapter \\ \(\qquad\) \(\star 23 c\)}

Power Rheostat famous make Model J 3000 hm 50 Watts. 000 Whm 2 with potentiometer JLU 2000 Ohm 2 wi . 444 
These are only a few of our specials; write us your requirements
ALL PRICES F.O.B. OUR WAREHOUSE
ERMS: Net 10 days to tirms rated well in D.B. Others deposit or cash with order

RUXUR ELECTRONIOS GORP
RUXUR ELECTRONICS CORP 623 HUDSON ST., NEW YORK 14 WAtkins 4-7260

TUBE CARTONS • STACKERS
Super gloss red \& black, or plain olossy white. Both types with new sarety partion
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SIZE:} & \multirow[b]{2}{*}{FOR TUBE TYPE} & \multirow[b]{2}{*}{Quantity per case} & \multicolumn{2}{|c|}{PRICES} & \\
\hline & & & Per
case & \[
\begin{aligned}
& \mathrm{P}_{\text {er }} \\
& 100 \\
& \hline
\end{aligned}
\] & Gsionterted \\
\hline Miniature red \& black 1" \(\times 1{ }^{\prime} \times 3^{\prime \prime}\) & 6AU6, 6ALS , etc. & 3000 & \$27.00 & \$100 & \\
\hline  & & 3000
2000 & 27.00
22.50 & 1.25 & STHDAPA \\
\hline GT red \& black \(11 / 4\); \(\times 1 / 4{ }^{\circ} \times 35\) GT glossy white & 6SN7GT, 6W. \({ }_{\text {\% }}\) & \({ }_{2000}^{2000}\) & 22.50 & 1.25 & \\
\hline Large GT red \& black \(13 / 2^{\prime \prime} \times 13 / 2^{\prime \prime} \times 1 / 22^{\prime \prime}\) & IB3, 6BQ6GT, etc. & 1500
1500 & 20.25
20.25 & 1.50
1.50 & \\
\hline Large GT white \({ }^{\text {G red }}\) \& black \(2^{\prime \prime} \times 2^{\prime \prime} \times{ }^{\prime \prime}\) & 5U.4G, 6BG6G, etc. & 1500
1000 & 18.00 & 200 & \\
\hline \(\underline{G}\) write \({ }^{\text {a }}\) & 5U.6, 6BG6, et. & 1000 & 18.00 & 2.00 & \\
\hline Small Jumbo. white \(3^{\prime \prime} \times 3^{\prime \prime} \times 71 / 2^{\prime \prime}\) & \(809,866 \mathrm{~A}\), etc. & 550
300 & 41.25
27.00 & 7.50
10.00 & \\
\hline  & 813, 872A. etc. & 300 & 27.00 & & Mron \\
\hline Miniwtackers, white (holds 10 mintubes) GT stackers, white (holds 10 GT tuber) & & 1000
1000 & 13.50
18.00 & 1.50
2.00 & 10 \\
\hline Lead wheathe for crystal diodes & & \[
\begin{gathered}
\text { Carton } \\
\text { Lot } \\
144
\end{gathered}
\] & \[
\begin{aligned}
& \text { Per } \\
& \text { Carton } \\
& 12.90 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { Each } \\
\hline 10
\end{gathered}
\] & \\
\hline
\end{tabular}

Lead whenthe for crystal diodes

\section*{DIRECTRON} SELENIUM RECTIFIERS


Max. \begin{tabular}{l|l}
. & 18 \\
\hline
\end{tabular}
\(\qquad\) \begin{tabular}{c|c} 
AC \\
DC \\
28 VAD
\end{tabular}
 36 VAC
28 VDC
\(\mathbf{5}\)
VAC
\begin{tabular}{c} 
TYPE \\
72 VAC \\
\(\mathbf{5 6 V D C}\) \\
\hline 130 VAC \\
\hline 100 VDC
\end{tabular}



 4.50
5.90
7.85
14.35
17.30
24.80
29.75
48.75
57.65
71.00
86.95
115.75
\(\xrightarrow{\$ 7.45}\)

\section*{.45
9.15}

\section*{ELECTRONIC TUBES}

Guaranteed - Unused \& Boxed

\section*{- Critical Types Lab Tested for Your Protection}
 \(\mathrm{OC}^{\mathrm{OD} 3}\)
1 B 2
\(1 \mathrm{1B}\)
18
18
1 B


Chokes to your specifications.


SNOOPERSCOPE/TELESCOPE
An ingenious infra-red device that lets you see in "the dark. Powered by two ordinary pletelly portable and independent of all other sources of power. Each scope is complete with lens, IP25 viewing tube, focusing adjustment, hand and shoulder straps, special mount for fixed use, and waterproof rubberoid shoulder type carrying case. Very light and compact. Easy to use. "Requires only standard light source with infra-red filter." Absolutely BRAND NEW! (Original cost to government over \(\$ 1,500.00\) )
RCA Model US/C-3 SNOOPER- \$160,00

\section*{SELSYN CLOSEOUT!}

\section*{Only 150 Left!}

115 volt, 60 cycle repeater selsyns. Track perfectly in pairs. Originally used as part of Sig. Corps remote indicator 1902-A. NO. 78386. Removed from equipment, all are clean and in guaranteed perfect appearance and operat ing condition. Will sell all or part. \$4,95
SPECIAL NET EACH.

8
 FAX. N. Y . \({ }^{\text {C }}\)
BARRY
ELECTRONICS CORP.
512 Broadway, N. Y. 12, N. Y. Phone: Walker 5-7000

\section*{MOTOR GENERATORS AND CONVERTERS}

50, 60, 400 and 800 cycle and
DC Power Supplies
\begin{tabular}{|c|c|}
\hline 28 dc to \(110 / 1 / 800\) @ 1 kva . (Overall length: 12 inches) & \$49.50 \\
\hline 110de to 110/1/800 @ 350va & 150.00 \\
\hline 110ac to 110/1/800 @ 350va & 235.00 \\
\hline 220-440/3/60 to 110/1/400 @ 2kva & 435.00 \\
\hline 32 dc to 110/1/60@350va & 100.00 \\
\hline 110de to 110/1/60 @ 350va & 100.00 \\
\hline 110 dc to 28dc @ 250 va & 74.50 \\
\hline 110/1/60 to 28dc @ 250va & 97.50 \\
\hline 220/1, 3/60 to 28dc @ 250va & 97.50 \\
\hline 110dc to 110/1/60 © 1.25 kvo & 135.00 \\
\hline 220de to 110/1/60 @ 1.25kva & 145.00 \\
\hline 110de to 110/1/60@350va. & 85.00 \\
\hline 110dc to 110/1/60@ 500va & 95.00 \\
\hline 110dc to 110/1/60@ 5kva. & 285.00 \\
\hline
\end{tabular}

\section*{SYNCHROS \& SELSYNS}
\begin{tabular}{|c|c|c|c|}
\hline \(1 F\) & \$55.00 & 7G & \$49.50 \\
\hline 1G & 55.00 & \(2 \mathrm{~J}_{1} \mathrm{~F} 1\) & 10.00 \\
\hline 1DG & 42.50 & \(2 J 1 G 1\) & 10.00 \\
\hline 5F & 39.50 & \(2 \mathrm{JH1}\) & 10.00 \\
\hline 5G & 39.50 & 6DG & 25.00 \\
\hline SCT & 45.00 & 6G & 34.50 \\
\hline 5SDG & 27.50 & & \\
\hline
\end{tabular}

Torque Unit Pioneer 12602-1-A with CK-5 Motor and AY-43 Autosyn \(\$ 34.50\)

\section*{MICRO WAVE ACCESSORIES}

Flex. Wave Guide- \(12^{*}\) long, UG-51, -52 flanges, new, at. ................ \(\$ 12.50\) Fex. Wave Guide-E-plane 90 goose-
neck bend, rect. plain flanges, guide is neck bend, rect. Dlain flanges, guide is
equiv. to RG-51/U Airtron \(\$ 309.40\) new, at.
Flex. Twist-E to \(H\) RG-51/U size, UG-51/O \& rect. plain flange, Airtron Rigid W, G., Silver pl brass, RG-51/U with UG-51, 52 flanges, \(6^{\prime}\) long.... CG-85/APQ-7, Alum. W. G., RG-51 with two UG-52 flanges, \(60^{\circ}\) \& \(22^{\circ} \mathrm{H}\) Elbows, Sil. pl. brass RG-51 with -52 llanges mitered \(90^{\circ} \mathrm{H}\)-plane-51. Elbows, Sil. pl. brass,'RG-51, two UG-52 flanges, mitered, \(90^{\circ}\) E-plane
Elbow, RG-51, UG-51, 52 flanges, \(90^{\circ}\) H-plane and \(22^{\circ} \mathrm{E}\) plane bends.
Type \(N\) take offs Broad-UG-51, -52 . Rotating Feed Aroadband.
AN/MPG-1 Sil pl. brass RG-52, new Magnets, Alnico \(V\), for \(3 \& 10 \mathrm{~cm}\) Magnetrons various gap widths, 15 lbs Transformer, Output Ior 725A etc. with fil. wndg. and magnetron well Rotating A xtmr. Philco \$352-7190. Rotaling Antenna paris-for AS-18/ motors, torque units, wave suide, feed motors, torque
and erystal mounts, Klystron mounts, duplexers, l.f. strips, converters and many special bends and devices too numerous to list. Send sketch if possible.


A Division of Compass C..
75 VARICK ST. NEW YORK 13, N. Y. All phones: CANAL 6-7455
Cable Address: COMPRADIO, N. Y.

DONT PASS THIS UP
\begin{tabular}{|c|c|c|}
\hline Type Quan. & Type Quan. & Type Quan. \\
\hline 1N21..... . 05 & 4J22. . . . 10.00 & 728CY... 20.00 \\
\hline 1N21A... . 20 & 4J23 .... 20.00 & \(800 . . . .2 .1 .00\) \\
\hline 1N21B... 45 & 4J26.... . 2250 & 801........ 30 \\
\hline 1N23..... . 30 & 4J27...... 22.50 & 801A..... . 20 \\
\hline 1N26..... 1.50 & 4J28..... 22.50 & 806..... 4.00 \\
\hline 1N82.... . 50 & EL5B ... 1.95 & 807....... 1.00 \\
\hline HD2070... 1.00 & ELC5B ... . 50 & CRC814... 1.50 \\
\hline HD2071... 1.00 & EL5BHD- & \(815 . . . .1 .00\) \\
\hline HD2072 1.00 & 4823.... 5.50 & SD828A ... 6,00 \\
\hline 3EP1.... 1.00 & 5C30 .... 3.00 & 829B..... 5.00 \\
\hline 5BP4..... 2.00 & \(5 \mathrm{~J} 29 \ldots 3.50\) & 8308..... . 65 \\
\hline 5CP1 . . . . 2.00 & \(5 \mathrm{~J} 30 \ldots 3.50\) & 838..... . 75 \\
\hline 5CP7 . . 3.00 & 5J33... 3.50 & 843...... . 25 \\
\hline 5GP1 . . . 4.00 & 5R4GY... 1.25 & 851 ...... 4.95 \\
\hline 5JP7.... 5.00 & 5R4WGY. 1.50 & \(852 \ldots . .6\) \\
\hline 5JP7AC... 5.00 & 6AC7W... 1.00 & 866A. . . . 1.00 \\
\hline 5Z2P5. . . 11.00 & 6AS6W . . 1.75 & 878. . . . . . . . 1.00 \\
\hline 78P7.... 1.50 & 6F4..... 1.25 &  \\
\hline 9GP7.... 7.00 & 6J4...... 2.50 & CRC917 . 1.00 \\
\hline 9JP1/ & 6 J4WA . . 3.00 & \(958 . . . . . .\). \\
\hline 1809P1.. 4.00 & 6 J 6 W .... . 95 & 959...... 1.00 \\
\hline 9LP7. . . . 3.00 & 6SK7W ... . 50 & SC968.... 6.50 \\
\hline 10CP4.... 6.00 & 6SK7Y... . 70 & CK1090. . 1.95 \\
\hline OA3 . . . 80 & 6SN7WGT . 95 & 1201...... . 50 \\
\hline OB2.... . 80 & 6X4W ... . 85 & 1611....... 1.25 \\
\hline OC3..... . . 60 & NT10. . 20 & 1619....... . 50 \\
\hline 0D3 ...... 80 & 12C8.... . 75 & 1629...... 10 \\
\hline ELC1B/A. 2.50 & RK19.... . 79 & 1641/RK60 3.00 \\
\hline 1826... 75 & RK20A. . 3.50 & 1684.... 1.00 \\
\hline 1832/532A . 50 & CE25A/B.. 1.25 & 2050 ..... . 75 \\
\hline 1836..... 4.50 & 26A6 . . . . 75 & 2051...... 1.00 \\
\hline 1841.... 30.00 & FG32 .. 3.50 & \(5584 \ldots 1.50\) \\
\hline 1863A . . 15.00 & CHS41... 50 & GL5621/B6 6.00 \\
\hline EL1C . . . 3.00 & EF50 SY1. . 50 & \(5636 \ldots . .4 .00\) \\
\hline 2A4G .... . 50 & HK54.... 2.50 & 5637..... 4.00 \\
\hline 2C22.... . 65 & 1641/RK60 3.00 & 5653 .... 75 \\
\hline 2 C 26 .... 50 & QK61.... 15.50 & \(5659 . . . . . .3 .00\) \\
\hline 2C26A . . . . 75 & HY65.... .90 & 5670 .... 1.25 \\
\hline 2C34.... . . 50 & RKR72... 40 & \(5672 \ldots . .75\) \\
\hline 2C37. . . 19.50 & QK95.... 1.50 & 5676.... 75 \\
\hline 2C38..... 6.00 & 100TH . . 10.00 & WL-5684 . 7.50 \\
\hline 2C39.... 7.50 & 100TL . . . 10.00 & 5686..... 1.00 \\
\hline 2C39A . . . 10.00 & \(1148 . . .\). & 5696..... 1.00 \\
\hline 2C43... 9.50 & F123A... 3.50 & JRP5702 \\
\hline 2C44.... . 40 & 152TL .... 8.50 & WA. . . 4.00 \\
\hline 2C46 . . . . 6.50 & 203A . . . 1.00 & CK5703. 1.00 \\
\hline 2C51. . . . 2.00 & 211W . 75 & JRP5703 \\
\hline 2C52.... 3.00 & CEP217C. 2.00 & WA. . . . 3.00 \\
\hline 2C53. . . . 8.50 & RX-233A 1.00 & 5719..... 2.00 \\
\hline 2D21.... 70 & 245A . . . 10.00 & 5722..... 4.00 \\
\hline 2D21W . . . 1.20 & 274A.... 1.50 & 5726...... 65 \\
\hline 2E26. . . . 2.00 & 274B . ... 1.75 & 5726 \\
\hline 2E42.... \({ }^{.} 75\) & 282A.... 1.25 & 6AL5W . 75 \\
\hline 2J21A... 200 & CR300... . 25 & 5727/ \\
\hline 2J22...... 3.00 & EL302.5 . . 3.00 & 2D21W. 1.20 \\
\hline 2J32..... 14.00 & TR317... \({ }^{\text {. }} 50\) & 5744..... 90 \\
\hline \(2 \mathrm{~J} 36 . .\). . 22.50 & 358A . . . 3.00 & 5750..... 1.50 \\
\hline 2J38..... 17.50 & WL417A. . 3.00 & \(5751 \ldots 1.75\) \\
\hline \(2 \mathrm{5} 59 . . . . .25 .00\) & 450TH. . 15.00 & 5762 ... . 40.00 \\
\hline 2K25.... 15.00 & 450TL . 20.00 & 5763 ... 1.20 \\
\hline \(2 \mathrm{~K} 25 /\) & 471A ... 75 & CK5787... 4,00 \\
\hline 723A/B. 15.00 & CK501AX. 75 & 5814.... 1.10 \\
\hline 2K31/411. 60.00 & RH507... 17.50 & JRP5829.. 1.50 \\
\hline 3822. . . . 1.40 & WL531.... 4.00 & \(5844 . . .11 .10\) \\
\hline 3823 . . . . 1.00 & WL532A. . 75 & \(5851 . . . .3 .00\) \\
\hline \(3824 . . . . .3 .00\) & CK574AX. 1.25 & \(5852 \ldots 6.50\) \\
\hline \(3 \mathrm{B29} \ldots . . .1 .50\) & 701A.... 1.00 & 5933/807W 3.00 \\
\hline EL3C..... 2.50 & 7028 .... . 45 & 5964..... . 75 \\
\hline 3C24.... . 65 & 705A .... 80 & 6080WA.. 3.50 \\
\hline 3C43. . . . . 6.50 & 707A ... . 2.00 & 6082...... 3.00 \\
\hline 3D6..... 75 & 707B.... 1.00 & 6095 .... 1.00 \\
\hline 3D21A. . . 4.00 & 708A. . . . . 50 & 6099.... 2.00 \\
\hline 3K21 . . . . 40.00 & 713A.... . 40 & 6147.... . 1.50 \\
\hline 3K30.... 45.00 & 715A.... 1.50 & 6186...... 3.50 \\
\hline ML3W... 1.50 & 7158 . . . 3.50 & 6189.... 2.50 \\
\hline 4822-EL5B 1.50 & 715C.... 6.50 & 6197.... 1.00 \\
\hline 4B23-EL5B & 717A.... . 40 & 6211..... 1.75 \\
\hline /HD.... 2.50 & 721A.... . 45 & \(7193 \ldots .\). \\
\hline 4C28.... 17.50 & 721B . 5.00 & 9006..... . 25 \\
\hline 4C35 . . . . 10.00 & CHS724A . 1.00 & \\
\hline 4J21 ..... 22.50 & 725A... 5.00 & \\
\hline
\end{tabular}

Many other tube types in stock. All tubes subject to prior sale. Prices subject to change without notice. Minimum order \(\$ 25.00\)

Terms: \(25 \%\) deposit with order-or send full remittance to save C.O.D. charges. F.O.B. Bethpage, N. Y.

\section*{S. d IR. ELLCTRONICS, Inc.}

297 Central Avenue Bethpage, L. I., New York WEIIs 1-8600


\section*{An INVESTMENT!}

Productive advertising is an INVESTMENT rather than an EXPENDITURE.
'Selling Opportunities" advertisers almost invariably report prompt and satisfactory results. BE CONVINCED-send us your advertisement TODAY.

\section*{TEST EQUIPMENT}

FLUX-METER. Measures flux of magnetron mag. nets trom 500 to 4000 gauss. New......... \(\$ 14.95\) \begin{tabular}{l} 
New with spare tubes and manual \\
PANADAPTER. AN/APA-10. FOr \(115 v\), \\
\hline
\end{tabular} Vew with 80 ware tech manual ......... \(\$ 97.50\)
\(40-500 \mathrm{MC}\) TEST OSC. TS-47/APR. Nerा. \(\$ 149.50\) FREQ. STANDARD. Telrad 18A. New. ... \(\$ 23.95\) RECEIVER. \(158-210 \mathrm{Mc}\). \(13 \mathrm{C}-1068 \mathrm{~A} .60\) cy.. \(\$ 29.50\) PULSE TIMER. CUZ-50AGD. FOT \(115 / 60 \% 1 . \$ 65.00\) OSCILLATOR \(300-1600 \mathrm{Mc}\). AN/A1"「-5. New \(\$ 39.50\) OSCILLATOR \(450-710 \mathrm{Mc}\) AN-AFT-2. New \(\$ 29.75\) MODULATOR BC. 1203 . For \(115 \mathrm{v}, 60\) oy... \(\$ 125.00\)
MODULATOR BC-423B. Radiates 205 Mc . pulsed sig. at 4.098 cDS. New 60 © FREQ.METERS. LINK \(230-\mathrm{D2}\). For testing inobile equip. One esch \(152.270-15 \pi .530,152.390-157\).-
650 . \(152.510-157.770,152.630-156.890\), \(35.420-43 .-1\)



\section*{HI-VOLT OIL CAPACITORS
}

\section*{02020}

AMPLIDYNES
5 AM2IJJ7. Input 27 VDC @ 15 A . Output 60 VDC @AM3AN」9A. Input 27 VDC @ 44 A. Output 50 DC (a 8.8 A. \(7500 \mathrm{Rl} \mathrm{MI}_{1}\) New ......... \(\$ 23.50\) 5AM31N118A. Input 27 VDC © 44 A. Output 60 DC @ 8.8 A. INVERTERS
Leland Elec. C. PE206A. Input: 280 DC at 38 Amp.
 G.E. 5 ASIBIJJIAA. Input: 28DC. output: 115, 400 DYNAMOTORS
Navy type CA1O-211444. Input: 105 to 130 VTDC. Output: either 26 VDC at 20 amps. of 13 VDC at 40 amps . ladio filtered and complete with line SMALL DC MOTORS G.E. 5BA50LJ2A. Armature 60 VDC at 8.3 Amps. Field 27.5 VDC at 2.31 RPM 4000. II.P. \(\mathbf{0}\) 0.5. Ner \(\begin{gathered}\text { Nster E-7.5, } 27.5 \text { DC. } 1 / 20 \text { HP, } 3600 \text { RPM. Shunt }\end{gathered}\)


ELECTRONICRAFT
27 MILBURN ST
8RONXVILLE 8, N. Y.

\section*{NEW YORK'S RADIO TUBE EXCHANGE}
\(\square\) Standard brands. First grade only. No pull outs No rejects. No rebrands. At lowest prices.


\section*{Special! TS45 X BAND GENERATOR-s9900}


NEWTS-147 B AND C/UP TEST SET
SIGNAL GENERATOR
Hard-to-get X-Band Now Available Test Set TS 147 UP is a portable Micro ing and adjusting beacon equipment and adar systems which operate within the requency range of 8500 MC to 9600 MC .

\section*{NEW UNUSED SURPLUS TS 259 K BAND 23400-24500 MEGACYCLES SIGNAL GENERATOR}

NIW MICROWAVE TEST EQUIPMENT TS148/UP SPECTRUM ANALYZER
Fleld type \(X\) Band Spectrum Analyzer. Band 8430.9580 megacyclos. Will Check Frequency and Operation of various X Band equip; also measure pulse width, c-w spectrum width and \(Q\) or resonant cavitios. Will also check ireauency of signal generators in the
\(X\) band. Can also be issed as frequency modulated Signal Gen. \(x\) band, Can also be used as requency modulated signal Gen.
arator etc. Available new complete with all accessories, in carrying case.


\section*{SPECIAL! 5,000 V. POWER SUPPLY For IP25 Infrared Image Converter fro
NEW, Complete with RCA 1654 Tube. \\ OTHER TEST EQUIPMENT USED CHECKED OUT, SURPLUS \\ \begin{tabular}{|c|c|c|c|c|}
\hline TSKI/SE & T3S/AP & TS108 & TS226 & Surplus Equip \\
\hline TS 3 A/AP & T536/AP & TS110/AP & TS239A-TS239C & APA10 \\
\hline \({ }_{\text {TS12/AP }}\) & 15.45 & TS126/AP & TS258 & APS 3 APS 4 \\
\hline TS13/AP & TS47/APR & TS147/ap & TS270 & \\
\hline TS14/AP & TS69/AP & TS174/AP & TF890/1 & APRSA \({ }^{\text {APT }}\) \\
\hline + \({ }_{\text {TS33/AP }}\) & TS102A/AP & TS182 & 834 & \\
\hline
\end{tabular}

\section*{You Can Reach Us on} TWXNY1-3235
large quantities of quartz and unmounted
Crystal Holders: FT243, FT171B others.
Quartz Crystal Comparators.
North American Philips Fluorescopes Type 80.
arge quantity of Polystyrene beaded oaxial cable

SPEED FORMING and FABRICATING JOBS

mactines


\section*{O'NEIL-IRWIN MFG. CO.}

321 8th Ave. • Lake City, Minn.
Want more information? Use post card on last page. 428

\section*{INDEX TO ADVERTISERS}

Acme Wire Co.
Aeronautical Communications Equip- ment, Inc. ..... 
Aerovox Cory. ..... 281
Ainslie Corn. ..... 343
Airborne Instruments Laboratory. . ..... 80
Aireraft Radio Corp. ..... 322
Aircraft-Marine Prodncts, Ine. ..... 35
Airpax l'roducts \(\mathbf{C o}\). ..... 89
Allen-Bradley Co ..... 273
Allen Co., Inc., L. 15 ..... 382
NHen Manufacturing Co. ..... 376
Allegheny Ladlum Strei Corp. ..... 303
American dirtines, Inc. ..... 271
American Flectric Motors, Inc.
American Flectronies Inc274
Americun Gas Furmace Co. ..... 357
Anerican I.ava Corporation. ..... 115
American Phemolic Corp. ..... 178
American Telovision \(\boldsymbol{A}\) Ralio Co...... ..... 380
American Time l'rod ..... 241
Amperite Co., Inc. ..... 286
Ampex Corporation ..... 83
Andersen Laboratories. Ine. ..... 341
Indrew Corporation ..... 344
Arnold Engineering Co. . ..... 13
Assembly Products. Inc: ..... 64A-64B
Augat Bros., Inc. ..... 358
Automatic Mamuficturing Corp. ..... 112
Avien, Inc. ..... 375
Bakelite Co., a Div. of Union Curbidand Carbon Corp................ 84, 85, 231
Ballantine Laboratories, Linc. ..... 206
Barker \& Williamson, Inc. ..... 194
Barry Controls, Ine. ..... 21
Hausch \& Iomb Opticat Co.. ..... 38
Belden Manulacturing Co. ..... 68
Hell Telephone Laboratories. ..... 233
Bendix Aviation Corporation Eelipse-Pioneer Div.
292
292
Pacific Div. ..... 210
Scintilla Div. ..... 324
Bentley, Harris Mfg. Co. ..... 32
Berkeley Division, Beckman Instruments, Inc. ..... 33.
Bird Electronies Corp ..... 336
Ibochme, Inc., II. ©. ..... 369
Boonton Radio Corp. ..... 193
Borg Corporation, George W. ..... 346
Hosworth \& Co. ..... 382
Brush Electronics Company ..... 216
Bndd-Sianley Co., Inc. ..... 106
Burnell \& Co., Inc. ..... 67
Busmann Mfg. Co. ..... 86

Cuiedoniat Litedronics Trunsformer Corp. 358 Calidyne Company, The. . . . . . . . . . . . . . . 208 Cambridge Thermionic Corp.. . . . . . . . . . . . 263
Carter Motor Co. . . . . . . . . . . . . . 339
Centralab, Div. of Globe-Union, Inc. . . . 6 ..... 64
Cert \& Co., Art ..... 38
Chase Irass \& Copper Co..
Chatham Electronics, Div. of Gero Corp. 25
Chlcago Standard Transformer Corp. . . . 29
Chicago Telephone Supply Corp. . . ..... 41
Cinch Mff. Cor ..... 169
Clare \& Co., C. P. ..... 51
Clevite Tramsistor Products ..... 279
Cleveland Container Co ..... 247
Clifton I'reclsion Products Co., Inc. ..... 105
Cohn Corp.. Sigmund ..... 352
Collectron Corporation ..... 370
Color Television Inc. ..... 340
Colortone Electronics Inc. ..... 374
Commonwealth of Puerto Rico. . ..... 27Communication Accesories Co.
Laboratory, Inc. ..... 430
Computer Measurements Corp. ..... 378
Condenser Products Div. of New Haven
Watch \& Clook C ..... 378
Conrad Ine. ..... 342
Consolidaterl Vacumm Corp. ..... 316
Constantin \& Co., L. L. ..... 299
Constantine Engineertng Laboratories ..... 192Continental-Diamond Fibre, Div. of theBudd Company: Inc. .
297Cornell-Dubilier Electric Corp
Corning Glass Works. ..... 9 :
Cosmic Condenser Co. ..... 378
Craig Systems, Inc. ..... 298
Cramer Co., Inc., R. W. ..... 204
Cross Co., H.. ..... 307
Crucible Steel Co. of America ..... 188
Cubic Corporation ..... 838
Cunningham Son \& Co., Ine., James ..... 372
Curtiss-Wright Corp. ..... 224
Dano Products Co ..... 307
Maubert Chemical Co ..... 355
avies Laboratories, In ..... 331
Dr-Jur-Amsco Corporation ..... 206
DeMorney-IBonard ..... 377
Dialight Corporation ..... 347
Donner Scientific Co. ..... 282
Dumont Airplane \& Marine Instruments,
    Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Du Mont Laboratories Mnc., Allen B..... 188

DuPont de Nemours \& Co., (Inc.)

    Polychemicals Dept. . ..... 91
Polychemicals Dept. ..... 
Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Du Mont Laboratories Inc., Allen B. . . . 188
Dupont de Nemours \& Co., (Inc.) .
Eastern Industries, Inc. ................. 58
Eastman Kodak Company ..... 179
Edison Inc., Thomas A. ..... 238
Eisler Engineering Co., Inc. ..... 363
Eitel McCullough, Inc ..... 65
Ekco Electronics Ltd. ..... 375
Elco Corp. ..... 368
Electrical Industries, Dlv, of Amperex Wectronlc Corp. ..... 93
Electrical Testing Laboratory, In ..... 351
Electro Impulse Laborntory.. ..... 380
Electro Tec Corp. ..... 267
Electronic Asociates, Inc. ..... 216
Electronic Instrument Co., Inc., (EICO)
Emerson \& Cuming inc. ..... 318
Engineering Co., The ..... 340
Epseo, Inc. ..... 313
Firle Resistor Corp. ..... 39
Esgex Wire Corp., R-B-M Div. ..... 184
Falcon Electronies Corp. ..... 482
Fansteel Metallurgical Corp ..... 308, 309
Farnsworth Electronles Co. ..... 71
Ferroxcube Corp. of America. ..... \(30 \%\)
Flitors, Inc. ..... 374
Ford Instrument Co., Div. Sperry Kand Formica Company ..... 242
Freed Transformer Co., Inc. ..... 223
Frenchtown Iorcelain Company ..... 376
Frequency Standards ..... 295
F-IR Machine Worlas Inc ..... 235
Furst Electronics, Inc. ..... 432
G M Laboratories, Inc. ..... 29. 354
Gabriel Electronics Div. of Gabriel Co... 306Gamewell Co.\(\stackrel{20}{ }\)
Garfield Wire Div. of the Overlakes Corl). 368
Gee-Lar Manufacturing Company ..... 328
General Cable Corp. ..... 217
General Dry Batteries Inc. ..... 188
General Electric Company
Apparatus Dept. 76, 77, 78, 79, 108, 109
Tube Dept . ......................... 94, 9
General Industries C ..... 221
General Radio Co. ..... 17
General Research a Supply Co ..... 328
Genisco Incorporated ..... 339


DUMONT-AIRPLANE \& MARINE INSTRUMENTS, Inc. OFFICE
15 William Street
New York \(5, \mathrm{~N}\). Y.

FACTORY
Clearticld
Pennsylvania
George Brent
P.0. Box 91I
Pittsburgh 30, Pa.
J. G. Bucher \& Associates
205 E. First St
Rm. 6, Dayton 2, Ohio
Frank A. Emmit Co.
2837 W. Pico BIvd.
Los Angeles 6, Cal.

(A)

\section*{TUBE COMPONENTS AND HERMETIC SEALS}
(A) Molded Button Stems
(B) Silicon Diode Closure - 100 amperes
(C) Silicon Diode Closure - 50 amperes
(D) Silicon Diode Closure - 10 amperes
(E) Silicon Diode Closure - 5 amperes

We are also equipped for custom glass operations, both hand \& machine. Complete facilities available for sealing \& evacuation. Write now for immediate quotations on any quantity.

(C)

Over a Quarter Century of Sealing Experience

\section*{}
```

866 Bergen St.

```

BIgelow 3-8676
Newark 8, N. J.

\section*{POWER AT PRECISELY}

THE FREQUENCY YOU REQUIRE


Model 1435
2 KVA Unit

Any CMLL Electronic Generator is available with a total of up to four precision American Time Products tuming fork oscillators in the \(50-6000\) cps range.

The use of these precision oscillators gives a frequency accuracy and stability of \(l\) part in 50,000 entirely independent of line voltage or frequency.

CML Electronic Generators are available in single and three phase units in power output ratings from 50 VA to 80 KVA . Write for Catalogue " N ".

\section*{COMMUNICATION MEASUREMENTS LABORATORY, INC. 350 LELAND AVE., PLAINFIELD, N. J.}

Good-all Electric Mrg. Co................ . 283
Greenleaf Manufacturing Co.. 55
Gries R.producer Corp. . . . . . . . . . . . . . . . 365

Hammarlund Mfg. Co., luc. ............... . 20.
Harvey Hubbel, Inc. . ...................... . . 82
Hayden Assoclates, Paul................ 382
Haydon Manufacturing Co., Inc......... 248
Haydu Brothers of New Jersey.......... . . 285
Heath Co. .................................. . . . 359
Helipot Corp., Div. of Beckman
Instruments, Inc. . . . . . . . . . . . . . . . . . . 175
Hethrrington, Inc . . . . . . . . . . . . . . . . . . 196
IIewlett-Dackard Co. . . . . . . . . . . . . . . . . . . 81
Heyman Manufacturing Co. . . . . . . . . . . . 369
Homelite a div. of Tectron American.
Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Hughes Aireraft Co. . . . . . . . . . . . . . . 180, 181
Hughes Research \& Development
Laboratories . . . . . . . . . . . . . . . . . . . . . . . 332
Hunt Company Philip A................. . . . 250
Hyerr Company, Inc..................... . . 371
Hycon Eastern, Inc. . . . . . . . . . . . . . . . . . 240
Hycon Electronies, Inc. . . . . . . . . . . . . . . . 252

Ilsco Corporation . . . . . . . . . . . . . . . . . . . 336
Industrial levelopment Committee of 100, Lakeland, Hlorida. . . . . . . . . . . . . . . . 352
Industrial Trest Equipment Co............ . \(\mathbf{3 7 7}\)
Industrial Timer Corp. . . . . . . . . . . . . . . . . . 40
Institute of Radio Englneers. . . . . . . . . . . 201
Internatiomal Business Machines. . . . . . . 320
International Rectifier Corp. . . . . . . . . . . . 34
Int-rnational Resistance Co........ . . 100, 101
Ippolito \& Co., Inc., James....... . . . . . . . 354

\footnotetext{
Jet Propulsion Laboratory ............327, 365
-I ID Electronies Corp . . . . . . . . . . . . . . . . . 42
Johnson Company E. F.................. . . . 355
Jones Div., Howard B., Cinch Mfg. Co. . 301
Jones Elcetronies Co., Inc. M. C. . . . . . . 278
}
Kahle Linginering Co. ..... 15
Kaiser Metal Products Inc. ..... 92
K:ty Electric Co. ..... 27
Kearfott Company, Inc. ..... 312
Kelloge Company, M. W ..... 211
Iiepco Laboratories ..... 173
Kester Solder Co. ..... 219
Koch Fiberglas ..... 114
Kollsman Instrument Corp. ..... 87
L M Eleetronies, Inc ..... 338
Laboratory for Electronics, Inc ..... 197
Campkin Laboratories, Inc. ..... 307
Land-Air, lne ..... 366
Langevin Manafacturing Corp. ..... 262
Lapp Insulator Co., Inc. ..... 202
Lewis K Kauman Ltd. ..... 207
Linde Air Products Company, Div. of Union Carbide \& Carbon Corp.... ..... 304
Litton Engineering Laboratories ..... 362
Lockherd Missile Systems Div. ..... 232
Loral Llectronics Corn ..... 091
I.rs Namos Arinntific latboritory of theIniversity of Californin254
MacIbomald Inc., sammel K ..... 38:
Marmatran, Inc. ..... 370
Magnetic Ampliliers, Inc. ..... 302
Magneties, Inc ..... 183
Mallury and Co., Inc., P. K.......... . 120, 17
Mansol Ceramies Co. ..... 186
Marconi lnstruments, Ltd. ..... 104
Marion Electrical Instrument Co.32A, 3213, 294, 304
Marliem Machine Co. ..... 300
Mark Products ..... 356
Martin Company, Gienn L ..... 276
Mivgon Instruments ..... \(3 \approx 3\)
HeLean Lingineering ..... 294
Metal \& Thermit Corporation ..... 280
Medals © Controls Corb., General Plate
Mgrs. Representatives ..... 382
Miea Insulator Co ..... 13
Dicro Switeh, a Div. of Minneapolis- Honeywell Regulator Co. ..... 74
Mid-Century Instrument Co. ..... 44
Midivestern lnstruments ..... 243
Millen Mig. Co., Inc., James ..... \(2 \% 2\)
Industrial Hiv. ..... 50
Mona Industries, Inc. ..... 374
Monsanto Chemical Co. ..... 53
Muirhead \& Co., Ltd. ..... 5
Mullard Overseans Ltd ..... 90
- J E Corporation ..... 119
Naresco Efuipment Corp., Sub. of Sational Research Corp......... . . ..... 239
National Semiconductor Produc ..... 107
New Hampshire Ball Bearings, Inc..... ..... 230
New IIermes Engraving Machine Corp.. ..... 373
Vewhope Corporation ..... 389
Vopco Chemical Co. ..... 43
Norden-Ketay Corp. ..... 195
Northern Radio Co., Inc. ..... 56
Nothelfer Winding Labs, Inc. ..... 54


\section*{the most complete service in parts and stock}
- United States Gasket Company offers precision parts fabricated from duPont Teflon, Kellogg Kel-F, Bakelite Fluorothene and other plastics. U.S.G. facilities provide cold molding and sintering techniques, compression molding, extruding and injection molding-quality controlled "from powder to part," to assure uniform electrical, chemical and physical characteristics of the highest quality.
U.S.G. also maintains a machine shop specially equipped for the precision machining of parts from fluorocarbon stock.

Come to U.S.G. for all your requirements-sheets, rods, tubing, tape, cylinders, bars, beading, electrical spaghetti-as well as custom-molded and machined parts.

Write for Catalog No. 300.

\section*{United States Gasket Company}

CAMDEN 1, NEW JERSEY


\section*{ATLAST! \\ ASUBMINIATURE THERMAL TIME DELAY RELAY* for \\ GUIDED MISSLIES and PRNTED CIRCUITS}

The only Relay under \(1^{\prime \prime}\) in height that offers the following:
- Time delays from 1 second to 5 minutes
- Heater Voltages to 230 volts. Interchangeable on A.C. or D.C. of any frequency
- Contact rating up to 6 amps
- Hermetically sealed.
- Fully compensated for ambient temperatures of from
\(-65^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\).
- Will withstand vibration of from 5 to 500 CPS at acceleration of 10 G .
- Shock up to 50 G.
- Rapid reoperating time.
- Available in 7 and 9 pin.

*PATENT PENDING

\section*{FALCON ELECTRONICS CORP. 308 WILLIAM STREET, HARRISON, N. J.}

\section*{Model 220}

\section*{WIDE BAND D.C. AMPLIFIER}

INPUT IMPEDANCE: 1 Megohm shunted approx 20 mmF for each single-ended or differential input; 2 Megohms shunted approx. 10 mmF for push-pul signals
FREQUENCY RESPONSE: d.c. to 100,000 cycles within \(1 \mathrm{db}, 6 \mathrm{db}\) down at 200,000 sycles
MAXIMUM GAIN: \(100 \pm 10 \%\) for balanced or un balanced inputs or outputs
INPUT ATTENUATORS: 10010 or 1 and "off" positions, independently in each channel
DC INPUT CONNECTIONS: Two posts for push-pull or differential, one post connected to ground; for setting attenuator to "off" position disabled by AC INPUT CONNECTIONS: Arranged AC INPUT CONNECTIONS: Arranged like DC con-
nections; signal terminals connected to DC ter-
minals through coupling condensers minals through coupling condensers
OUTPUT IMPEDANCE: Approx. 250 Ohms singleended, approx. 120 Ohms push-pull. Minimum load resistance; 250 Ohms
UNDISTORTED OUTPUT: 20 volts or 5 Milliamperes (peak) max.
NOISE AND HUM: Below 40 microvolts referred to inpu
MOUNTING: Meta cabinet, \(8^{\prime \prime}\) wide by \(8^{\prime \prime}\) high by \(13^{\prime \prime}\) deep
POWER CONSUMPTION: 120 watts from 115 volt \(50-60\) cycle, single-phase a.c. power line


A precision instrument designed for use as a preamplifier in conjunction with cathode-ray oscilloscopes, vacuum tube voltmeters and other instruments.


Write today for descriptive literature on the Furst Model 220 D.C. Amplifier and other precision laboratory instruments.
FURST

\author{
ETECTRONTCS.INC. \\ 3324 W. Lawrence Ave., Chicago 25, Illinois
}
O'Neil-Irwin Mfg. Co. ..... 428
Oregon Electronics ..... 321
PM Indnstries, Inc ..... 317
Pracific scientific Co ..... 310
l'anoramic Radio Products, Inc ..... 300
larkin-Elmer Corporation ..... 226
Herkin Engineorimg Corp ..... 31
Phalo IPlasties Corp. ..... 256
INaostron Instrument \(\mathbb{N}\) Llectronic Com-
pany ..... 328
Phelps-Dodge Copper Products Corp.l'hitamon Laboratories, Inc. ........... 18 ?
['lillips Process Co., Inc ..... 340
Photograylije Products, Inc. ..... 304
Polarad Electronies Corporation. . 61. 98, 229
lolyteclunic Research \(\&\) Development Co.
.......... . . 272
lopper \& Sons, Iuc. ..... 379
lotter \& Brumfield Mfg. Co........... . 36, 37
Irccivion Apparatus Co., Inc............. 433
l'recision l'aper Tube Co. ..... 214
Progressive Mfg. Co. ..... 258
P'ye Limited ..... 209
Pyramid Electric Company ..... 103
R. 13. M. Division, Essex Wire Corp. ..... 184
Radiation, Inc. ..... 379
Radio Condenser Co. ..... 237
Kadio Corporation of America......116, 117 ,
249, 4th Cover
Radio Engineering Laboratories, Inc.... 255
Radio Engineering Products ..... 342
Radio Materials Corp. . ..... 110
Radio Receptor Company, Inc ..... 118
Railwny Express Agency, Air Express265
Rawson Electrical Instrument Co. ..... 376
Raytheon Mfg. Co. ..... 113
Reeves-Hoffman Corp. ..... 347
Reeves Instruments Corp. ..... 259
Relay Sales ..... 182
Reliance Mica Co., Inc ..... 372
Revere Copper \& Brass, Ine ..... 225
Roller-Smith Corp ..... 191
Rowe Engravers ..... 982
Rutherford Electronics Co ..... 364
Sanborn Company ..... 301
Sanders Associates, Inc. ..... 362
Sallgamo Electric Co. ..... 294
Scovłll Manufactarlag Gompany ..... 325
Seientific Electronic Labs ..... 430
Scintilla Div., Bendix Aviation Gorp. ..... 324
Sealectro Corp. ..... 260
Shasta, Division Beekman lnstruments. Inc. ..... 357
Sierra Electronic Corp. ..... 264
Sigma Instruments, Inc. ..... 284
Signal Engineering \& Mfg. Co. ..... 353
Simmons Fastener Corp. ..... 88
Sorensen \& Co., Inc. ..... 4
South Chester Corp. ..... 46
Southern Electronics Co. ..... 234
Sprague Electric Co............11, 177, 212, 344
Stackpole Carbon Co ..... 52
Stevens Arnold, Inc. ..... 382
Stoddard Aircraft Radio Co., Inc.. . . .228, 330
Stokes Machine Co., F. J ..... 62, 63
Stupakoff Ceramic \(\&\) Manufacturing Co Div. of the Carborundum Co....... 310, 311
Superior Electric Company ..... 203
Superior Tube Co. ..... 99
Switcheraft. Inc. ..... 363
Sylvanla Electric Proditets, Inc ..... , 269
Syntronic Instruments, Ime. ..... 364
253
Taylor Fibre Oo. . . . . . . . . . . . . . . . . . . . . . 253
Teehnicraft Laboratories, Inc ..... 337
Teiner Engineering Corp. ..... 346
Tektronix, Ine ..... 245
Telechrome, Inc. ..... 289
Tele Coil Co., hnc. ..... 377
Tel-Instrument Electronics Corp. ..... 353
Telonic Industries ..... 338
Tensolite Insulated Wire Co., Inc ..... 270
Transradio, Ltd. ..... 341
Iripiett Eleatrical Instrument Co. ..... 111
neering Mfg. Co. ..... 189
Tung-Sol Electric, Inc. ..... 205
Ucinite Co., The ..... 48 Hakelite Co ..... 84, 85, 231
Union Swltch \& Signal. Div. of West- inghouse Air Brake Co..............314, 315
United Air Lines ..... 349
United-Carr Corporation ..... 49
United States Gasket ..... 431
United Transformer Co. ..... 2nd Cover
Univeranl Windiag Company. ..... 96
Vacurim Metals Corp. ..... 66
Varian Associates ..... 102
Veeder-Root, Inc. ..... 305
Vulcan Electric ©o. ..... 307
Waldes Kolinoor, Inc ..... 57
Ward Leonard Electric Co. ..... 47
Waterman Products Co., Inc ..... 200
Waters Manufacturing, Inc ..... 361
Watlow Electric Mfg. Co. ..... 345
Webster Chicago ..... 59
Weckesser Co. ..... 294
Wenco Manmfacturing Co. ..... 380
Wentinghouse Electric Corp. . . . . . . . . 190, 297
Wheeler Insulated Wire Co., Inc., Div. ofSperry Kand Corp. . . . . . . . . . . . . . . . . 244
White Dental Mfg. Co., S. S. ..... 210
Woods Aircraft Supply ..... 361
Kcellte, Inc. ..... 366
MANUFACTURER'S REPRESENTA.

TIVES


\section*{hich sensitivity vivm and ELECTRONIC OHMMETER Complete with 3 -way Universal test Probe PEAK TO PEAK VOLTAGE RANGES TO 3200 VOLTS}

A compact wide range VTVM-Ohmmeter for modern electronic circuit checking in the laboraiory, on the production line and for general service-maintenance. Feafures include Peak-to-Peak voltage ranges which afford a new high in P-p reading accuracy of pulsed wave-forms in color or monochrome TV and similar applications.

\section*{7 DISTINCTLY SEPARATE FUNCTIONS}

40 SELECTED, WIDE-SPREAD RANGES
6 TRUE-ZERO-CENTER DC VDLT RANGES:
Constant \(26^{2 / 3}\) Megs input resistance.
\(0 \pm 12 \pm 6 \pm 12 \pm 60 \pm 300 \pm i 200\) volts
5 ELECTRONIC OHMMETER RANGES:
0-1000 \(-10,000\) ohms. \(0-1-100-1000\) Megs.
- 6 PLUS and 6 MINUS DC VOLT RANGES:
(Left-Hand-Zero) constant \(131 / 3\) Megohms input.
\(0-1.2-6-12-60-300-1200 \mathrm{~V}\).
6 HIGH IMPEDANCE RMS AC VOLT RANGES:
6 HIGA IMPEDANCE RMS AC
\(0-1.2-6-12-60-300-1200\) volts Input Characteristics: Up to 60 V Range 3 Megs., \(90 \mathrm{mmfd} ; 300 \mathrm{~V}\) Range - 1 Meg. \(70 \mathrm{mmfd} ; 1200 \mathrm{~V}\) Range -4 Megs ., 67 mmfd .
- 6 HIGH IMPEDANCE P-P AC VOLT RANGES:

6 HIGH IMPEDANCE P-P AC
\(0-3.2-16-32-160-800-3200\) volts
Input Characteristics: Up to 160 V Range 6 Megs., 90 mmfd; 300 V Range - 1 Meg., \(70 \mathrm{mmfd} ; 3200 \mathrm{~V}\) Range \(-4 \mathrm{Megs.}\),67 mmfd .
5 SPECIAL HIGH FREQUENCY PROBE RANGES:
5 SPECIAL HIGH FREQUENCY PRO
Requires optional PRECISION RF-10AHF Probe)
Probe input capacity:-approximately 5 mmfd .
- ONE UNIVERSAL COAX. AC-DC VTVM PROBE serves all functions other than HF ranges.
- PEAK-TO-PEAK "RE-SET" PUSH-BUTTON for rapid "zero"' return of special electronically damped test circuit.
- extra-large 51/4" Rugged PACE meter. \(200 \mu \mathrm{~A}\) sensitivity \(\pm 2 \%\) accuracy
- \(\mathbf{1 \%}\) MULIIPLIERS and SHUNTS.

MODEL 88: complete with detachable AC line cord, internal ohmmeter battery, coaxial VTVM Probe and operating mantal
ACCESSORIES FOR THE MODEL 88 RF-10A HF vacuum tube probe.......... \(\$ 14.40\) net IV-8 60 Kilovolt safety probe \(\quad 14.75\) net ST-1 Snap-on foidaway tilt-stand \(\quad 1.00\) net

This index is published as a convenience to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibility for errors or omissions.

\section*{Index to}

\title{
electronics
}

\author{
McGraw-Hill Publishing Company, 330 West 42nd St. New York 36
}


Itenls for which the page reference is marked ' \(D\) ', are editorial material published monthly in Electrons at Work and Production Techniques.


Antenna. broadband horn
Antenna, Empire State WOB-TV... 188D Aus Antenna, etched for supersonic.214D Apr cratt 1 ................................... 130 Juls Antenna, f-m, inside a-m tower.... 130 Aug Antenna for vhf direction finder.... 142 May Antenna, helmet, pack-set using.. 150 Mar Antenna, moon-tracking -........166D Aug
Antenna
copter
................................... 134 Nov
Antenna, sailboat, design of..................144 Jov
Antenna, spider, six direction.......180D Jun
Antenna system for missile telemeter-
ing. Bower \& Wynn..................164 .Tun
Approach radar, portable............. Oct
Approach radar, portable........................ Oct
Array, see also antenna
Aseptic machine shop............204D Oct
Astronomy, radio, as navigation aid 182 D Jan
Astronomy, radio, spider antenna. 180D Jan Astonomy, spectrum analyzer for sun 176 D Oct
Atmospheric research, balloons gather oct lightning intormation ........218D Oct
Atomic clock, cesium frequency stand-
Ard arenuation, suc also attenuators 180D Apr
Attenuator, transmission test set... 145 Dec
Audience survey techniques.......... 126 Jan
Audio amplifier circuit design factors 166 A
Audio amplifier, magnetic.......... 162 Sept
Audio amplifier, telephone repeater . 164 Jan
Audio amplifier, transistor.......196D Feb
Audio, improving mobile......174D Sept
Audio. low-noise input stage for pre-

Audio oscillator, L-C.........216D Mar Audio oscillator has low distortion,
Sulzer ........................ 158 May Sulzer
Audio-standard generator, Koustas............................ 161
Dey Audio-standard generator, Koustas. . 161 Dec Audio tones control refinery operations, \(\quad\) Wambeck.......... .130 Jan Audio transmission gain test set...... 145 Dec Automatic a-c bridges sort ceramic
capacitors, Upham \(\ldots . . . . . . . .106\) Jul
capacitors, Upham ....................... Jul
ponents bio.........................248D Nov.
Automatic blood pressure recorder will
sound alarni .................... 78 D Jun
Automatic colorimeter for tv color Jun tubes, Stanford ........................... Dec Automatic control, capacitor sorting. 106 Jul Automatic control, electronic weighing \(\quad 152 \mathrm{Jun}\)
\(\begin{gathered}\text { Automatic control, extrusion of wire } \\ \text { insulation }\end{gathered} . . . . . . . . . . . . . . .1+4\) Apr Antomatic control in refinery opera- 144 Apr tion ........................................... Jan Automatic control, micrometer sor Automatic control, packaging basic May circuits ................................. 122 Dec industrial control, phase shifter for Automatic control, variable-speed for \(\begin{gathered}\text { motors } \\ \text { for }\end{gathered}\) Iutomatic damping improves ty moni- Apr tor. Thomas, Demars \& Jones...230D Mar

Autornatic inspection for green-rot in Ju \(\underset{\text { egtomatic micrometer sorts insulating }}{\text { mafers }}\) Fearon Automatic music-speech discriminator silences speaker, Roth. ............162D Aus
Automatic production, punch cards Automatic production, punch cards
control job-lot assembly.........122 Nov Automatic programming cuts broadcasting costs, smain complex im-
 Automatic testing-mechanized production of electronic equipment...159 sept Automatic tuning of aircraft antenna 152 Aug Automation, see automatic control Automobile, headlight diminer for.. 170 Ma Automobile, power supply for 6 and Automobile, radar speed meter............................. Day Dec Aulomobile reflection in vhf-tv, Geist \({ }_{166 \mathrm{D}} \mathrm{Jul}\)


\section*{B}

Balloons gather lightning information Band-pass filters using strip-line tech-
niques, Bradley and White....... 152 May Baseline determined by geodimeter.194D Ju Basic chassis for experimental work, Emslie \(\begin{gathered}\text { Easic control circuits are packaged }\end{gathered}\) Batching counter Batching counter Battery, soldr, elficiency doubled...188D No Beacon, radar, calibrator checks....150 Apr Beam deffection amplifier tube..... 132 Aug Bevatron, exenerating r-f energy for.. 164 Feb
Beyond-horizon signals extend commu-Beyond-horizon signals extend commu nications, Day
Bias source, reactance voltage....218D Feb Bias supply design for bolometers, \(\quad\) Braun ................................2D Oct Binary adder tube for high-speed com-
puters. Maynard puters, Maynard
Binary counter, four decade frequency
divider using ................................. Apr Biology, electronic switch for......
Blackboard substitute
Blimp, ice detector for
Blind, radar cane guide
Blood pressure recorder.
Bolometer, bias supply design
Booster amplifier for uhf-tv......... 112 Jul Bovine ryrations measured electronis Aug ally ..................................198D Jun
 freadboard, chassis for experimental 16 work \(\quad\) Bridged- network, design of notch. 172 Nov British color ty tests...............206D Sept
British tv tower................188D Nov British tv tower.......................1888 Nov Broadcast, see also f-m television Iroadcast, antenna for WoR-TV. 214 D Apr Broadcast, automatic programining...135 Oct Broudctist, Canadian time signals \(182 \mathrm{D}, 196 \mathrm{D}\) Jun Broadcast, color-burst deviation meter 149 May Broadcast, color-video enevelope-delay \(\quad\) Jun
 tower
Broadcast, feedback clamp circuit for
for tv \(\quad\) Broadcast, high quality receiver for Broadcast, matrixing and encoding
 Broadcast, pulsed tones control a-m
 Bradcast, tabulating radio-tv audi-
 Broadcast, uhf re........................131 May Broadcast, video patch panel.....210D Apr Broadcast, WOR master control 204D Sept Broadcast receiver, transistorized portBroadcast transmitter, fifty kw .....168 Mar Building potted amplifiers........250D Sept Burglat alarm, design of ultrasonic.. 106 Aug
Eusiness machine, computer as.....122 Jun Business machine, photoelectric reader 134 May

\section*{\(c\)}

Cable plus wrench.......
.264D May
alibrator checks radar beacons. . . . 150 Apr Calibrator, industrial microwave. . 168 Jun Camera alignment, one man tv....214D Sept Canadian observatory broadcasts talking clock ...................182D, 196D Jun Cancer diagnosis, ultrisonic........174 Apr Cancer research, cytoanalyzer......208D Jun Cane, radar, for blind ......itor
Capacitance transducer, single-tube 182 D Oct
Capacitive transducer has low imped- 61 Jun Capacitor, a-c bridge sorts ceramic.. 100 Jul Capacitor, energy storage..........216D Oct Capacitor Production Techniques

\section*{Adhesive tape capacitors. \\ Aduesive tape capa}

238D Feb
230 D Sept
nstalling electrolytics ..................240D Sept
Limit bridge tests ten-at-a-time..224D Jun Placing plastic tubing on metal-Card-controlled machines are thrice as productive stages, Millman \& Taub.........156 Nov Cathode-follower detector .........168D Aug Cathode-follower, improving frequency \(A\) response
Cathode-ray display of seismic record-Cathode-ray display of seismer....160 May Cathode-ray tube changes signal to 18 Day letters....................................2D May Cathoderay tube deflection circuit. 146 Jul Cathoderay tube, fabe, fat
 Ceramic capacitors sorted by a-c
 Cesium trequency standard conirols accurate atomic clock...............180D Apr Characteristic, dynamic, triode-con- \(\begin{gathered}\text { nected pentode } . . . . . . . . . . . . . . .208 D ~ D e c ~\end{gathered}\) nected pentode mixture................. 176 Apr Chart, linear reactor design......... 208 Mar
Chassis, basic ior experimental work Chassis design for i-f amplifiers,
 Chopper, electronic …............192D Nov Chopper, transistor, for d-c amplifier. 135 Apr
Choppers, design trends in..........150 Feb Choppers, design trends in ...........io
 Circuit, transistor switching........ 168 Jan Clamp circuit, feedback, for tv.....i82D Jul Closed-circuit television adds eyes in Sawmill coupler for unf multiplexer.152 Nov Coaxial coupler for unt multiplexer.
Coaxial lilter, band-pass using a strip
Mas Coil Production Techniques

Applying varnish to coil with pres-
surized hypo...................288 Nov Die-casting cuts cosi.............222D Jut One-way pallet-return conveyor 224 D Dec Toothpick screwdrivers for fragile Dec winding coils on tathe...................... 4 D Feb Color-burst, meter fur deviation of, .149 May Colorimeter for color television tube \(\begin{gathered}138 \mathrm{Dec}\end{gathered}\)
Color television, see also television 138 Dec Color teelvision, colorimeter for...... 138 Dec
Color television, computer for color Color television, computer for color 166 Oct color television, differential gain test Color television, flying spot pickup..176D Jul Color television, matrixing and en- No coding \(\quad\) col.................................. 140 Nov Color television, phase measurement. 142 Feb
Color television, studio amplifier for, 154 Mar Color television, studio amplifier for 154 Mar
Color transparencies aid assembly. 234 D Jul Color transpitish......................... 206 D Sept Color tv pallet design................318ט Mar Color-video envelope-delay measure- \(\quad\) Jun Coipitts oscillator, producing osciliations with .....................184D May Communications, designing links....126 Dec
Commanication, electronics markeis. 138 Apr Commanication, electronics markets. 138 Apr Communication, mobile radio squelch \(\begin{gathered}\text { circuit } \\ \text { C................................ } 143 \mathrm{Jul}\end{gathered}\) Communication, power amplifier for 124 Aus ssbmunications, aircraft recommendalions Communications, beyond horizon ............................... Oct nals extend ........ design of boat anCommunications, designing compo- may nents for 2,000 mc..............i86D may Communications, improving .........156 Jun
 radio
Communications, series-tube modulator
158
Nov
Communications, single-tone calling May

Comparator for small phase ancles Compensated squelch for mobile radio 143 Jul coceners, Hargreaves ......... video stages impedance recorder..................................... Nept Component design trends-Metallic rectiflers approach infinite life.... 162 Mar Component design trends-New relay
materials improve performance....it4 .fan Component desisn irends special-purpose relays gain new uses.......... 150 Feb Component preparation-mechanized production of electronic equipment Sept 141 Sel
Components, design for uhf ......186D May
Components, testing airborne........181 Ma
Computer, analog, color, andiansistor amplifis Computer, binary adder tube for....iti Sept Computer-controlled stabilizing fin. 212 D Nov Computer, d-c transistor circuits..... 1:3 Computer, data reduction for missiles \(1: 6\) Computer, ferrite-core memory.... 194 Mar Computer, flying-spot iunction geneComputer, for ram jet engine tests isod Jun Computer, modulator for flight trainer
Computer, photoelectric reader.....134 May Computer, square-law circuit..... 192 sep Computer storane synchronizing drum storage speed …...........................is isod Fug Computer, wide-band analog runction multiplier ….................................. 122 Jun Computers for business...
Condenser, sea Capacitor
 Contact bounce in relays, measuring. 137 Aug Continuous weather map recorder.
Control, see aiso automatic control \(\begin{gathered}\text { circuits, packaging......... } 22 \mathrm{Dec}\end{gathered}\) Control, launching, for guided missiles Control of magnetic drum speed....140 Aug Control of magnetic drum speed... 140 Aug
Control of \(\mathrm{a}-\mathrm{m}\) and \(\mathrm{f}-\mathrm{m}\) stations by
 Controlling extrusion of foam plastic ( 4 Apr Conveyor Belt Production Techniques Feb Air cylinder pusness panetifies handing of power transiormers
nstalling mounting clips for i-f
i- 2 D
Sept Installing mounting ...........262D Sept Midge: train delivers cabinets to th Nov Oil damper controls wire tension. 2868 Apr Pallet turnaround Paper templates speed start of \(\begin{gathered}\text { of } \\ \text { P76D }\end{gathered}\) wiring line
Quick-release clamps pull chassis Shadowless lighting for tv assembly Silicon-steel slitter cuts tranaformer \(\quad\) Jul costs \(\quad\) chree-operator assembiy-turntable
Tote rack for i-f strips loads from TV assembly line uses red trouble
 Counter, extended range flip-flop.... 149 Jan Counter, short-interval timer....... 168 Aug
Counter, silicon transistor decade.... 1127 Feb Counter, silicon transistor decade..... 1127 Feb Countermeasure, target discriminator 118 Aug
Counting circuit batches components, Fook Counting labels with ferroresonant rings, Swarthe \& Isborn.............. 28 Oct
Coupler, selective, for uhf multiplexer 152 Nov Criss-cross d-c amplifier, Morrison.198D Aug Crystal, changing properties of lead
 Crystal, spectrum analyzer for quartz 160 Oct Current remulator for van de Graaff 151 Oct magnet, Rogers ............................156 Dec Cytoanalszer compares cancer cells Ap

\section*{D}

Damping, automatic for tv monitor 230 Dar Dark-trace tulle has infrared erasure 170 Feb Dula processor prepares computer inDut on ram jets....................... meterins, McCormick . ............126 May Dawn chorus, ionospheric disturbances \(\quad 198 \mathrm{D}\) May

D-C amplifier, criss-cruss \(\quad\)..........1ss Au
Decade counter employs silicon transisDecade counter fo
Defense-emergency radio ............ 128 Oct
Deflection circuit, transistor c-r tube. 146 Jul
Delay generator, digital...............i4S Dec
Delay-line design (rererence sheet) Delay line subcarrier discriminaior Jun Morgan \& Blake...................... 203 Mar Demodulator, dynamic diode limiler for fom line radar network in ihe north 146 Aug spots planes
-layer, ploting static direction....184D May D-layer, plotting static direction...178D Feb DME, airborne interrogator for.... 170 May Design, cathode compensation for wideo stages ................... for
 Design chart, noise factor nomograph
Design chart, power rating of parasitic suppressurs \(\quad\) esign chart, r-f filter.

174 Nov
 experimental work
Design of audio amplifiers........ 166 Nov Design of bias supply for bolometer 208D Oct Design of chassis for i-f amplitier. . 182D Aug Design of delay lines.......................76 Jun Design of i-f transistor transformers. 156 Aug Design of micruwave gain-standard
Design of notch networks............... 150 Jut
Design of overstaggered doublet ampli-
fiers
Design of transistorized high-gain 158 Jul portable, Sheehan and Ivers.....159 Mar Design trends in metallic rectifiers. 162 Mar tions links, Davidson communica Designing stable triode mote...... 126 Dec


 Detector-amplifier, infinite impedance
Detector, fire, ionization chamber. 260 D Aug Detector, ice, for aircraft.............I42 Jun Detector, limit \(\ldots . . . . . . . . . . . . .202 \mathrm{D}\) Oct Detector. null, differential amplifier for
Detector, photoelectric rot, for eggs. \(140 \mathrm{~A} \mathrm{Jul}^{2}\)
Detector, square-law for Detector, ultrasonic burelar and fire 170 Nov
duce navigation aid..............182D Jan Diana antenna tracks planets..........ifid Aug Dielectric heating generator, dummy
load for \(\ldots . . . . .162 \mathrm{D}\) Jul
 Dielectric mixture chart (reference................... Aug sheet). Sion
Dielectric transformers for ielectric transformers for X-band
wavegulde, olin \(\ldots . . . . . . . . . . . .146\) Dec Differential amplifier for null detectlon, Barnette \& Giacoletto...... 148 Auf
 Digital delay generator................IS Dec
Digital voltage divider using four reDigital voltage divider using four re-
gistors, Kamm................... \(.176 D ~ D e c ~\) Diode. double-based
Diode limiter, dynamic, for f-m de-
modulator
Diode, silicon, using Zener effect Aug in … used in time-delay generator 182 Dec Dip soldering-mechanized production Nov Direct-reading noise-figure indicatis Direct-reading noise-figure indicator,
Chase
Direction finder for smali airports........................ Nov
Direction finder, vhf..............168D Jun
Direction finding, vhf. resonantion 168 D . Tul
antenna for
antenna for
Directional antenna, see antenna
Directly coupled transistor circuits,
Beter, Bradley, Brown \(\&\) Rubineff
Discriminator, delay line subcarinoff. 132 . Tun Discriminator, delay line subcarrier. 203 Mar Discriminator, targe-speech ......162D Aug sures
Distance measurement, airborne inter Aug
rogator
Distribution amplifier for color \(\begin{gathered}\text { vision } \\ 170\end{gathered}\) May
Diversity recention ......................... 15

Divider, digital voltage..............176D Dec
Divider, frequency, four-decade....154 Apr
Dominion time signals.......182D, 199D Jun
Door opener, radio
Double base expan
tions, Suran............. .198 Mar
 Dummy load, paralieled beacon lamps nor
Dynamic cbaracteristics of triode-
connected pentodes, Dessler \& Rob-
inson
\& Dynamic-diode limiter forf-m demodu-
Iators, Mural... ........................ 46 Ag Dynamic receiver selectivity, Mi............. Aug


Eddy current plating thickness sage. 146 Nov
Egg inspection, photoelectric...... 140 Jul Electric punch speeds insertion of Elug-nuts \(\ldots . .\). tronics
Electrodynamic scales .................. 152 Jun Electroluminescence, light amplifier
using......................................\(~ F e b ~\) Electromagnet removes nonferrous metais, Lovell ...................... 164 Sept Electromechanical networks for a-c
servo systems, Savant \& Savant. 190D Feb servo systems, Savant \& Savant. 190D Feb Electron microscope exposure timer. 206 Mar Electron paths, tracing
Electronic chopper for d-c amplifiers
Electronic computers for the buginess Nov
man, Carroll ........................... 122 Jun
Electronic equipment, mechanized pro- duction of
Electronic of \(\begin{gathered}\text { filter for high-voltage power }\end{gathered}\) Electronic filter for high-voltage power
 Electronic organ uses rotating loud- No speakers, Markowitz \(\quad\)..................116 Jul Electronic switch eliminates transients,
Iudwig \(\&\) Hind..................... 63 Oct Electronic \(\begin{aligned} & \text { switch for biological obser- }\end{aligned}\) Oct vations, Woods ....................... 135 Dec Electronic switch, music-speech dis-
criminator ......................... 162 D Aug Electronic weigbing on the production Aug line, Bell \& Ferstle.................... 152 Jun Electrontcs markets for equipment..........is8 Apr Electronics, survey of 25 years..... 124 Apr
Electrostrictive ceramic relay.....26
Mar Electrostrictive ceramic relay.....226D Mat Embedding technique for three-tube
plug-in unit, Fox..................... Empire State antenna for wor-TV
Adams, Alford, Leach. Rubin \& Abel 214 D Apr
Encapsulation, dielectric mixture chart \(\begin{aligned} & \text { Apr } \\ & 176 \\ & \text { Apr }\end{aligned}\)
Encoding and matrixing color tele-
vision Apr vision \(\quad\)......................................... 129 Nov Engine, x-ray television shows inside
invelope-delay measurement color- Apr
 Equipment markets for electronic. 138 Apr Equipment, markets for electronic. 138 Apr Eiasing. infrared, for dirk-trace tubes 170 Feb Etched antenna for supersonic aircraft 130 Jul Etched wiring band-pass filter..... 152 May Etched wiring-mechanized production
of electronic equipment.......... 138 Sept of electronic equipment........... 138 Sept
Evaporated magnetic materials. Blois Expanded-scale voltmeter for 210 D Jun
 Experimental light amplifier employs
electroluminescence
.............178D Feb Exposure timer for the efectron microExtending uht-tw with booster ampli-
fiens, Epstein, Morrison \& Woodward
Extrusion of plastic insulation, control \(112 \mathrm{~J} \omega\) of electromagnet remo................................... Ap


\section*{- \(F\)}

Facsimile speeds plant messages...222D Jun
 Fan-pencil antenna for search radars, Frinter ................................ 142 May Farm machinery parts speeded by
radio
 Feedback clamp circuit for tv, Wendt Dec
 fier, Slaughter ...................... 174 May Ferrite core memory used in juke box 138 May Ferrite-core memory uses pulse trans- 138 Oct
 Ferroresonant rings used in label Ferrule wrench aids mounting of panel oc

Field strength, see propagation
Filler, banupass for receiver.......... 128 Feb Filter, band-pass, using strip-line... 152 Ma Filter, electronic. for high-voltage Filter, staggered triple crystal.................................... Aus Fingertap tuach actuates chruit....200D Oc Fire call box............................. Oc Fire delection, ionization chamber. 200D Jun Fire detector, ultiasonic alarm systen
Fire watching by remote tv........1isD Oct Fixed L-C oscillator without taps,
Fleming.............. .26 Ma Flat cathode-ray tube simplifies cockpit instrumentation ...............214D Ma Flight trainer, transistor modulator for
Flip-fop counter 126 Sep Beckwith \(\because . . . . . . . . . . . . . . . .149\) Jan
 quency multiplier for...........224D May
Flush-panel doors serve as tops for Flush-panel doors serve as tops for
engineering desks
 F.Ming-spot function generator \(\ldots \ldots .149 \mathrm{Jun}\)
F (enna inside the \(\mathrm{a}-\mathrm{m}\) tower,
 F-M demodulator, dynamic diode lim- Aus iter for
discriminator, delay line F-M discriminator. delay line sub\(\underset{F}{\text { F-M, multiplexing transmitters. }}\) F-M signal generator, transistorized. 133 Feb Fog alarm, microwave controlled...180D Jun Formica bench tops reduce rejects. 240 D May Forward scatter, designing communication links ................................... Dec Forward scatter, extend uhf comunica-
tions \(\ldots \ldots . .122\) Oct Four-decade frequency divider, Jensen Frequercy divider.........................154 Apr Apr-decade. Frequercy divider. four-decade....154 Apr Frequency Modulation, see broadcast,
communication, f-m, etc
Frequency multiplier, magnetic, for
fluorescent lighting, Frequency response, improving ca- May Frequency selective coupler for uhf Aug
 Frequency standard, cesium, for
atomic clock ....................180D Apr Frequency standard, microwave........................ Apr \(\begin{gathered}\text { Jun }\end{gathered}\) Frequency synthesizer for Navy trans-
mitter Frequency tripler in magnetic ampli-............... Jan Function generator, fying-spot..............149 Jun

\section*{G}

Gage, pressure, for shlp models...196D Jan Gage pulsed eddy current plating thickress
Gain-standard horns for microwave Garage door opener, radlo..........212D 150 Dul Gas discharge tube, see tubes GeA, purtable tron, Winningstad ............. 164 Feb Generator, signal, see also osciliator Generator, audio standard............. 161 Dec Generator, millimeter wave produces Generator, nonlinear time delay............................... Feb Generator, precision digital delay....148 Dec Generator, pulse-series ..............224D Mar Generator, pulse, transistor.............. 132 Nov Generator, repetition rate..............
Generator, transistor waveform \(\ldots . .138\) Jul Generator, transistor waveform ......
using pulse tech 133 Feb ..................... Jun Generator, waveshape, high voltage 2.2 D Apr Geodimeter determlnes precise base-
 Geophysical exploration speeded by im Ma proved magnetometer ….......162D Aug Geophysics, tape recorder io

\section*{Germanium, see iransistors}

McKenzie. Goniometer for D-layer study......178D Feb Grid-control tube, uhf-tv...............130 Apr

Ground controlled approach radar. 154 Oct Groundan nicket ship roach radar.ig4D Jul Guided missile, antenna for tele- Jun meterins
Guided missile, data reduction system por ile ianching control.-126 Ma Guided missile launching control... 122 Feb Guided miswile, simulatur tests radar 127 Jul
Gyrator, ferrite microwave modulator May

Interior Dept. uses underwater tv..218D Oct
 nterval thmer, short................ibles Nay lun-gage subily protects tubes. Raible Ionosphere, see nilno propagation
Tonosphere, see anno propagation
 Ionuspheric research. theory of thunderstorm electricity \(\begin{gathered}\text { chamber detects fire.............. }\end{gathered}\)
 Irradiation, insect control by electron 202 D may

\section*{H}

Head, alloys improve magnetic record
 Headight dimmer for automobiles... 170 Mar

 High fidelity, see also andio
High fidelity translstor power ampliffer
Riddele High-power uht-tv uses grid-control 130 Apr tuhe, Koros ..................... 130
 casting. kusenbert
High-speed photography, shutter for
172 Jun High-voltage supply uses electronic High-voliage waveshape generator. Higher velocity op propagation..................... Sept Highly resulated r-f voltage suppiy
Sloan. Ralble \& Testerman.......192D Apr Horn antenna. broadband. .........188D Aug
 How accurate are radar apeed meters?' 32 Dec Brantley …........................... formers (reference sheot), Webster 156 Aug How to design overstaggered doublets Aug How to design sailboat antennas. 158 Jul
 Hysteresis, testing in relays.........202D Dec


Japanese transistor broadcast receiver


Kerr-cell shutter has submilcrosecond
speeds, Nicholson and Ross......... 171 Jun
Kystron, see also tube
.186 D Jan
Klystron, tunable X-band................... 135 Jan

\section*{————}

Labeling Techniques
Numbered clips simplify replace-
ment of parts......................228D Aug Overhead conveyor ior tiv uses ing color-coded carriers aid.....inting Aug Press-driven turntable aids printinh \(\begin{gathered}\text { of } \\ \text { ofenium rectifiers...........232D }\end{gathered}\) Punching chassis stenclls on AdRed tag on clip serves as parts neded signal..................248D Feb Shop-made rubber stamps identify chassis parts id................... Apr Tape printer aids identification of
autenna parts.............. .236 D Apr Yellow alligator clips identify ter- ter Apr minals ..........................292D Apr Launching control for guided missiles, 122 Feb ns for microwave, dielectric..... 142 Aug Letters printed by c-r tube.........is2D May Light amplitier uses electrolumine-
 dight beam controls ty receiver...204D Dec Light hydraulic presses cut phono pickup costs, Holmes............250D Jan Light produced by millimeter wave Eenerator .............................. Feb Light, traffle, controlled by radio.... 194 Jun Lighting, magnetic frequency multiplier for fluorescent..................224D May
Limit detector, sensitive.........202D Oct Limiter, see also \(\mathbf{f - m}\)

Limiter, dynamic, for f-m demodulator
Linear accelerator, r-f power supply Aus
Linear accelerator, spectrometer resu- 137 Nov Linear por r-f. amplifier for ssb trans nititers, Isruene....................... 12 Liftear reactur chart (reperence sheel!. Linearity and phase nomograph................................... Apr Linearity, measurement, sawtooll Ap 211 D Nov Linearity, video, by cathode compenis6 Noy Loading, potentiometer design for. minimal uitrasonics as a substitutD Feb

 Logarithmic amplifier. target dis-c-iminator ..................................... 18 Aus Leng-distance waveguide may riva! Mar
 Long-wave transmitter. Navy.... fordion antenna for vif direction for Loudspeakers, electronic orbans using 16 Ju
 L. W-freduency oscillator .............is8 Oct
Low-frequency sound reducer......i88 Jun low-frequency sound reducer..........i88 Low-impedance capacitlve transilucer 161 Jun Low-nolse input stage for audio pre- 7 Feb Low-ripple aljustable regulated power supply, Hetiand \& Buss........... 164 No


Machine assembiy-mechanized pro-
duction of electronic equipuent..147 Sopt Magnet, impulse magnetizer for per- 121 Ag Magnetron Production Technigues

Controlling dust in microwave tuhe
assembly plant, Leng...........238D Apr amplifier, autopiot servo 208D May Magnetic drum, synchronizing..... 140 Aug Magnetic frepuency multiplier for May fluorescent lighting, Downle....224D May
fagnetic materials, evaporated....210D Jun Magnetic materials, evaporated....210D Jun Magnetic tape, see also record, tape
\(\underset{\text { magnetic }}{\text { recording }}\) tape controlled chemical analysis magnetic improves geophysical 136 Feb Magnetic tape Begun ................... 152 Jan recordings, Begun for permanent
 Magnetometer for geophysical explorMagnetron, see tube
Marine communications, design of boat antennas .................................. 140 Jun Market for electronic equipment,
Mllek
Master Master control, wor .............204D Sept Materials for relays.................... 144 Jan Matrix, ferrite-core memory.......... 194 Mar Matrix, ferrite core memory used in juke box \(\quad\) atrixing anding color ior tele-
casting, Taub, Rabinowitz, Schacher \& Star ...................................... 150 Nov Measurement, phase meter for water 128 Sep velocity int, sawtooth linearity...204D Nov Measuring equipment. antenna for vhi \(\quad\) direction finding direction finding
Measuring equipment. audio standard
 Measuring equipment, color-burst devi- 9 May Measuring equipment. color-video Ma envelope delay .......................ifentia Jun Measuring equipment, differential Measuring equipment, differential gain 114 Aug test for color tv.........................114 Aug Measuring equipment, expanded-scale \({ }_{\text {voltmeter }}\) Dec Measuring equipment, goniometer for

 Measuring equipment, phase meter for color tv
\(\begin{gathered}\text { Measuring equipment, phase meter for } \\ \text { color ty }\end{gathered}\) and \(f-m \ldots . . . . . . . . . .142\) Feb

Measuring equipment, pholometer for
(1ay.......204D Feb Measuring equipment, relay contact
bounce Measuring equipment sawtooth pulser Aug gives voltage current curves.
Measuring equipment, servo anaiyzer
Measuring equipment, spectrum analy- 172 Apr zer for mobile radio.................is0D Feb f-in signal generator.................... 133 Feb Measuring equipment, transmission
test set
 equipment, Markus ................... 137 Sept Mechanized production. punch-card
control
Nov Medical electronics, blood pressure
recorder ............................ 78 D Jun Medical electronics. cytoanalyzer for Jun cancer cells .................................... Ap: Medical electronics, electromagnet re
moves nonferrous metals from
moves nonferrous metals from eye
Medical electronlcs, electronic switel 164 Sept
Medical electronics, electronic switch
for
Medical electronics ................................... Oct for biological observation ......... 135 Dec
Medjcal electronics, exposure timer for

monitor for anesthesia............130 Oct
Medical electronics, ultrasonic cancer
Medical electronics, ultrasonies as subt Mar
stitute for lobotomy.................164D Jul
Memory, ferrite-core ............i94 Mai
Memory, ferrite-core used in julie box Mar
Memotron storage tube...............1til Jan Metal, nonferrous, removed from eve
 Meteorology, radar aids.....................is2D sept
 meteorology, weather mapping radar sep Meter, phase, for color tv.........156 Jin Jin Meter shows color-burst deviation, Micrometer, automatic, sorts insilat May Ming wafers .................................... May Mheet), Conover …....................72 Oct Microphonics in transisiors......206D Sept Microscope, exposure timer tor electron
206 Mar
 Microvave, broadband horn antenna Microwave calibrator. industrial...188D Aug Jun Microwave, dielectric transformer for
X-band......................................\(~\) Microwave, extended range transmis. ............................ Dec mion ......................................... May Microwave gain-standard horns.....150 Jul Microwave, long distance waveguide Aus Microwave, millimeter wave genera-
tor produces light............... 180 D Feb Microwave, modulated kiystron......180D Feb Jan incrowave modulator uses ferrite gy Microwave, noise tigure indicator.... 139 May Microwave, nomograph for rectangular 172 Jan waveguides
Microwave osciliator, designing stable an
triode
Microwave, reflection-type asymmetri- Mar
 Microwave system controls fog alarm Jan Park
froware, tunable X-band cavity. 135 Jan Microwave, X-band amplifier......202D Apr Military electronics, antenna for air Military electronics, antenna for 1.................... Dec
 Military electronics, data reduction for \(\quad\) Jun missile telemetering .................... 126 May ability electronics, equi..........180D Ju Military electronics, fan-pencil radar
antenna...\()^{2}\) Military electronics, launching control May for fuided missiles....................... 122 Feb Military electronics marke reveal 10 Ap Military electronics, nodels reveal how
to avoid Radar....................... 122 Jan
 for navy Mitary electronics, navy transmitter
uses frequency synthesizer........ 138 Jan Military electronies, pack set using Military electronics, radar and com Mar puter track mortar shells......180D Feb Military electronics, simulator tests
missile radar......................\(~\)
rul missile radar .............................. \({ }^{\text {mitary }}\) electronics, sonar tarbet simuMilitary electronics, sonar target simu-............................................. Mar Military electronics, target discrimin- Mar ator for countermeasures......... 118 Aus Military electronics, telephone chan-
nels increased \(\ldots . . . . . . . . . . .180 \mathrm{D}\) Apr Military electronics, testing airborne
components................. \(.181 ~ M a r ~\) components ................................. Ma Mobile direction finder, antenna for....................... Feb

Mobile power supply for 6 and 12 voits, Mobile radio, compensited squelch for 216 D May Mobile radio, improving............. 156 Jun Mobile radio, improving audio....190D Oct Mobile radio, single tone calling....144 May Mobile radio, spectrum analyzer meas
ures
Models for avoiding radar............................................. Modern fifty-kilowatt broadcast trans miter, Witty …...................... 168 Mar Krakauer and Bibbero Modulated klystron … .........is@D Jan Modulator, ferrite microwave..... 139 May Iodulator, series-tube ................. 158 Nov Modulator, transistor, for flight train
Monitor for anesthesia_........ 126 Sept Monitor for anesthesia................ 130 Oc onitor, tr receiver used ................ Ma Cortar shells traclied by radar and computer ................................... Feb Motor control, variable speed....... 162 Apr Motor speed control
Multichannel oscillator, phase con- Aus trolled ...................................... Ap4 Apr tor te waveform generator, transisMultiplexer, uhf, uses selective couplers ..................................... 152 Nov Multiplexing f-m broadcast transmit ters, Bose ……........................ 146 Oct Multiplier, wide-band analog........... 160 Feh Multivibrator, junction transistor. 168 Jan Music electronic orsan with rotating
lusic electron
Music-speech discriminator \(\ldots . .200 \mathrm{D}\) Apr Muting circuit for mobile radio...... 143 Ju

N

\section*{Navigating by carrier-based TACAN}
beacons ......................................... Jun 184D Jun
 Navigation, computer-controled \({ }^{\text {nn }}\) May Navigation, microwave controlled fog Nov
 Navy transmitter uses freguency syn-...174D Oct thesizer, Romander \& Watson....i38 Jan Negative resistance diode, double based 198 Mar Network, design of notch...........172 Sept
 New ferrite-core memory uses pulse transformers, Paptan ….......194 Mar New government patents............190D Feb ance relay materials impiove perform- \(\quad\) Jan New transmission techniques extend
range sevenfold range sevenfold Night airglow aids ion..............182D May Night airglow aids fonosphere research 212 D Mar Nipkow disk, use in headight dimmer Mar Noise factor nomograph (reference sheet), McCarrell ..................... 174 Nov
Noise figure, indicator, direct reading Noise figure, indicator, direct reading 161 Nov Noise testing for electronic compo nents \(\begin{gathered}\text { nomograph, microphone }\end{gathered}\) 181 Mar
 Nomograph, phase-linearity ............ 178 Apr guides (reference sheet), Chen... 172 Jan Nonferrous metal removed from eye 164 Sept Nonlinear time-delay generator uses
 sheet), Savant \& Savant.........172 Sept Nuclear magnetic resonance ma netometer ................................ Aug Nuclear research, current regulato 151 Oct Nuclear research, spectrometer regu-
lator stabilizes \(r\)-f............................... Nov
 Nut starters, Ives.....................236D Jug

Observing whistlers
Oil prospecting cro di..............198D May mic recordings safely .................................320D Mar One-man tv camera aligner, shepard
Optical images superimposed on rad
 Organ, electronic, using rotating loud 142 Aug
 Oscillator, blocking, transistor ....16S Jan Oscillator, Colpitts, failure to oscil-
 Oscillator, loca, for c-w radar...... 166 May oschlator, phase controlled multiOscillator, reducing shock hazard of
industrial
of
In Oscillator, stable triode microwave. 184 Mar Oscillator, subaudio \(O\).................144 Oct Oscillator, subharmonic crystal....i206D Jan Oscillator, transistor multiwaveform 138 Ju Oscillator, tunable cavity \(\mathbf{X}\)-band. 135 Jal Oscillator, twoterminal push-pull. 202D Aug Oscillogram, trigger adapter for tran-over-horizon propagation, see also
forward scatter, propagation
Over-horizon radio to link islands 172D Dec verseas jadiotelephone service links Overstaggered doublet amplifier तesign

Photography, submicrosecond shutter 171 Jun Photometer for ionosphere research 212 D Mar Photometer tests reflecting road signs, Giovanelli Photometer for electron microPhotometer timer for electron micro- Mar Physiological monitor for anesthesia,
 Picket Ship Tub
net .... picture tube in color t....246D Dec Piercing with squeeze riveter.......230D Aug Plastic, dielectric mixture chart.... 176 Ap
 slating thickness gage, eddy current Apr Plug-in rectifier replaces tube.....198D Aug Pogo parachute replaces drones as
missile target \(\ldots . . . . . . . . . . . . . . . . . . . . . . . . ~ J a n ~\) Portable analyzer measures mobiles Portable precision approach radar, Potentiometer design for minimal loading, Coleman ..............184D Feb Potting, dlelectric mixture chart....176 Apr Potting, delectric linear, for ssb...1.124 Aug
Power amplifier,
Power amplifier, transistor......174D Sept Power amplifier, transistor........174D
Power rating of parasitic suppressors
(reference of parasitic Power rectifier, silicon for a-c line Power supply, high-voltage, using elec tronic filter Power supply, highly-regulated r-f.192D Apr Power supply, ion-gage............210D Fe Power supply, low ripple regulated
Fower supply, mobile, for 6 and
volts ................................216D May Power supply, regulator for constant-
current Power suppiy, r-p, spectrometer regu- 77 Nov Power supply, using silicon power 146 Apr rectifiers \(\ldots\).....................ibrating ignitor tube
Power supply Preamplifier, see also amplifier
Preamplifier, low-noise input stage. 147 Feb Precise measurement of sawtooth linearity
Precision approach radar, portable........................ Oct Precision digital delay generator,
Perzley ................................. 148 Dec Precision time-delay ...................18D No Preferred circults standardization.182D Nov Preparing high-purity silicon by inducPressure gage for ship-model hulls, J'recision calibrator checks radar bea- 150 Apr cons. Sinish

\section*{Printed Circuit Techniques}

Controlling sludge in etched wiring Nov bath \(\quad\) bingoldering clamp masks tube Nov rounding wiring boards........256D Dec Modular bundles use etcbad-wiring \(\quad\) Dec Plug-ins, assemblies use standard component bodies Production of curved etched-wiring
boards boards Quality control charts for printed wing Jul outer cuts curves

Specifications for printed-wiring duction symbols aid 266D May Stencilled symbols aid assembly on
etched wiring hoards.........224D Oct etched wiring hoards ........... Substitutes for eyelets in etched wir-
ing, Martin \& Vavra...........250D Dec Test pattern checks printed-circuit \(\quad\) Jan panels
Tool spreads Iurs of socket on etched
wiring board wiring board
nted
transparencies reduce
reduc
 Printing, transducer tube changes sig-
nals to letters......................... May
 Process control, see automatic control
Process control, packaging circuits.. 122 Dec Producing oscillations with a Colpitts circuit, McCusker ..............184D May circuit, McCusker
Production, automatic assembly with May punch card control..iso automatic Pronnetion
control
Production control, capacitor sorting 106 Jul Thoduction control, electronic weighing 152 Jun Production control, micrometer sorter 156 May Production, mechanized, for electronic leoduction Techniques, see type: caph citor; coil; magnetron; printed cir-
ruit: etc.
oscillator for ....................... 15 s May Programming, automatic ................... 135 oct Propastation, airborne laboratorv, 1640 Aug Propagation, designing communicalion \(\quad \mathrm{Dec}\) Propagation, forward scatter in uhf. 122 Oct Propagation, highard seatecity.....180D Sep Propagation in rectangular waveruides 172 Jan

Propagation pattern measured by heli
copter ............................... 134 Nov Propagation, plotting D-layer static di- \(\quad\) (eb rection
Properties of lead sulfde crystals \(\begin{gathered}\text { Properties } \\ \text { changed }\end{gathered} .\). Psychoacoustic research, electronic switch for .............................. 163 Oct Pulse amplifier .................................int Sept Pulse amplifier athode compensation Pulse-cross display for tv alignment 156 Nov Pulse Generator, see also Generator Pulse renerator, high voltage....222D Apr Pulse generator, high roltage.....222D Apr 'ulse magnetizer for permanent mag- 121 Aug Pulse-series generator, Grisamore \& \({ }_{\text {\& }}\) Mar
 Pulse techniques used Pulse transformers used in ferrite core \(\quad\) Mar Pulsed eddy currents gage plating \(\quad\) Nov thickness, Waidelich ................... No
 Pump feeds cement to both sides of sept Punched cards control job-lot assembly
system, Gamble, Godwin \& Feldheirn 122 Nov
Punched slots in back cover anchor Sept built-in tv antenna. ............220D Sept
push-pull oscillator, two-terninal. 202 D Aug

Quartz, crystal, spectrum analyzer.. 160 Oct
Reactor, linear, design chart........ 208 Mar Reader, , hotoelectric ................134 May Rebroadcasting, high quality tv re-
ceiver for.............................\(~\)
152


\section*{Receivers, see also \(\mathbf{f - m}\), television}

Receiver, design of transistorized port- \(\quad \mathrm{Ma}\) able ...................................... Ma Receiver, Japanese transistor.....174D Dec Receiver selectivity, dynamic............128 Feb Receiver, tv, alignment by pulse-cross
 Receiver, tv, for rebroadcast.........152 Dec
Receiver, tv. light beam controls. 204 D Dec Receiver, iv, used as rebroadcast may
 Receiver uses afc or amplifier for uht Recorded broadcast, automatic.... 135 Dec Recorder, 14 -channel tape, for geo- 152 Jan
 Recorder, complex impedance....i. 167 Sep Recording, and tabulating the radio-
tv audience, Brown............... 126 Jan Recording, seismic, cro display....1.160 May
Rectifier, plug-in, replaces tube....198D Nug Rectifier, plug-in, replaces tube....198D Nug Rectifier, yower, for a-c line operation 146 Apr Rectifier, trends in metallic.......168 Mas Rectilier, Vibrating
Reducing hazard of electrical shock in industrial oscillators Reference sheet, design of i-f transis- \(\quad\) Aug tor transformers delectric mixture
Reference sheet, dipr Reference slieet, linear reactor chart 208 Mar Reference sheet, microphonc nomo-172 Oct Reference sheet, noise factor nomo- Nov
 Reference sheet, overstaggered dou- 158 Ju Reference sheet, power rating of para- 170 Oct
 Reference sheet, rectangular wave- 2 Jan Reterence sheet, standard electronics symbols sheet, tracing electron paths Refinery, automatic control of...... 130 Jan Reflection from automobiles in vhi- \(J\) Jul Reflection-type asymmetrical wave- \(D\) dec guide, Ishii
Reflectometer for road signs............................ Feb Ruflector, see also antennia
Regulated r-f power supply.........192D Apr Regulator, current, for van de Graaff 151 Oct generator \(\begin{aligned} & \text { gegulator for constant current power }\end{aligned}\) supplies, Deichert .......................... 126 Aug Regulator, motor speed. \(\operatorname{Regulator,~spectrometer,~stablizes~} r-f\) Nog
137 Nov Relay contact bounce measurements, 137 Aug Jiu design irends...................................................... Relay, electrostrictive ceramic....226D Mar Relay, microwave, for rural telephone
Relay, sensitive thyration.
\(208 D\) Jan
172 D Dec
202 D Dec
Radar, AEW planes keep watclı...178D Nov Radar aids meteorology ..........182D Sept Radar and computer track mortar shells back to source...........180D Feb shells back to source...............208D Jun Radar, C-band weather mapping.178D Dec Radar, Livw line......................1442 May Radar' fan-bencil antenna.............142 May Radar, portable precision approach.15
Radar, infrared erasure for dark-trace tubes ...cal oscillator for c-w.... 166 May Radar, missile, checked by simulator Radar, models show how to avoid.. 122 Jan Radar, nomosrayhs for rectangular wavequides
Radar movie
Radar movie ...............................198D Dec Radar, optical image superimposed on 214 D Mar
Radar range calibrator checks beacons ap
Radar ship ............................164D Jul Radar ship
Radar, shortinterval timer for testing
168 May Radar speed meters, acuracy of..... 132 Dec Radar, tunable X-band cavity \(\ldots \ldots . .\).
Radiation, see also proparation
Radiation, see also propagation
Radiation pattern measured by he
Ropter ................................... 134 No copte
Radio,
 cast
Radio astronomy as navigation aid. 182D Jan Radir astronomy, spectrum analyzer
for sun
 Radio, audience survey...............126 Jan Radio circuit transmits statistical data \(\quad\) Jan from North Africa.................184D Jan Radio control gives right-of-way...134D Jun
Radio, dynamic receiver selectivity.. 128 Feb Radio, fifty-kw broadcast transmitter
Radio, improving mobile............ 156 Jun Radio openg garage door..............212D Dec Radio, singletone calling for mobile 144 May Radiosonde, faster Rain gages send radio reports....186D Sept Reactince voltage bias source, Burris \(\begin{array}{r}218 \mathrm{D} \\ \mathrm{Feb}\end{array}\)

Relay, zero hysteresis.
Reliability, equipment io........isoD Jul
Reliability, equipment polenetering
Remote control for refinery operations 130 Jan
Remote \(t\) v camera spots forest fires. 178D Oct Repeater amplifies in either line direc-
tion, Merrill, Smethhurst \& Rose. 164 Jan tion, Merrin, Smethhurst \& Rose. 178 D Sept Repetition-rate generator has high accuracy, plemenos \(\ldots\)................. 148 Nov
iesistor, power rating perasitic supResistor production Techniques
Assembly fixture tor ganned preci-
sest Assembly fixtures tor precision 100-
tentiometers Automatic riveter makes resistor Mar terminal boards ........................2400 Oct Copping resistors precision potentiometers and fattening helices for potentiometers cards for precision potentiometers
High-speed color bander..........2662D
Feb Hopper-fed automatic lead cutler for carbon resistors................ forsin Life-testers for precision potentio- \({ }_{6 \mathrm{D}} \mathrm{Ju}\) meters \(\quad\) rackaging resistors por automatic Potting with hypo syringe..........228D Jan Resistor lead cutter............260D Nov Resistor lead cutter
Resistor-spiraling machine is com-
pletely automatic Resistor-varnishing setup ........252D Oct

Shock-testing machine for precision
potentlometers.................258D Apr veyorlzed palnting setup.......220D Oct Sorting silvered resistors..........232D Oct Welding taps of precision windings 238 D Sept
Resonant-loop antenna for vhf direc- Sep ton finding. Eakin ....................72 Feb ode-follower
one-follower ................................... Aug Reverse tv prog R-F amplifier for uhf-tv. . . . . .........112 Jul
\(\mathbf{R - F}\) connectors used in video patch \(R-F\)
pane! \(\ldots \ldots . . . . . . . . . . . . . . . . .210 \mathrm{D}\)
Apr panel \(\ldots\)..................................... Apr

Road signs tested by photometer. 19204 D Apr Robot Euidance system for pilot aircraft
Robol sings new tunes.......................200D Ju Rubber band protects panel finish
Rural microwave ....................23in May

Signal kenerator, transistorized f-m. 133 Feb Silicon diode, using Zener effect in..182D Dec Silicon power rectifer ...........184D Sept operation Rudenbers for a-c line Silicon prepared by induction heating Apr Silicon transistor, see also transistors Feb Silicon transistor used in counter...112 Aug Simple color computer gives tristim-
ulus values, Burr \& White........ 166 Oct Simulator, sonar target............... 167 Miar Single-sideband missile radar.............. \(\begin{aligned} & \text { transmitter, } \\ & \text { Sul }\end{aligned}\) power amplifier for.....................124 Aug Singletone calling simplifies mobile Aug radio. Hassel ........................... 144 May Single-tube capacitance transducer cir cuit, Fleming ......................182D Oct Slot-array antenna, photoetched.... 1830 Jul Solar battery efficiency doubled in year Jun olar battery efficiency doubled in year Jun Jun Solar battery powers telephone carrier Solar research, spectrum analyzer for
sun Soldering Techniques

Automatic soldering gun uses elec-
tronis timing .................274D Apr Double-dip soldering uses chassis Apr vibrator, Cass ..................226D Dec
Masking and fuxing pigr dip solder Fe
Radio is dip-soldered with tubes in sept sockets …...................... 236 D sept
Wishbone-shapering tools........246D May
Vishbone-shaped soldering staples
save space on panels..........232D May Solid state, see diodes, transistors, etc. Sonar target simulator, Cologne \& \(\underset{\text { Sorting }}{\text { Marriner }}\) weighing................................ Mar orting and weighing on production Sorting, automatic micrometer for......................... May Sound, see also audio
Sound, effect of intensity on tubes.. 196D Feb Sound level, microphone nomograph. 172 Oct Sound reducer, 1-2......................188D Jun autio amplifier, design factors tor Speclal-purpose relays gain ........................... Apr Rockett …................................. Feb Spectrometer regulator stabilizes r-f.
Donner Spectrum analyzer for quartz crystais, No Speech-music discriminaior \(\quad . \quad 162 \mathrm{D}\) Oc Speed control for motor......... 126 Au Speed control, variable, for motors............. 26 Apr Speed meters, radar.......................132 Dec Speed of propagation, higher, .....isod Sept Spectrophotometer, tape-controlled, 136 Feb Spetrum analyzer for mobile radio 180 D Feb Spider antenna can beam signals in six
directions Square-law circuit, Lion \& Davis...192D Sept Square-law detector for rms voltages Square-law multiplier, diode bridge. 176 Nep Square-law multiplier, diode bridge. 16
Squelch circuit, compensated, for mo-
 Squirrel-cage motor speed controi sys- Jul SSB, see slngle-sideband .................. 126 Aug SSB, see single-sideband
Stahilization, of r-f for spectrometer. 137 Nov Stablization of transistor amplifier \(b\) feedback for"...................................... May Stabilizer for ships, computer con-
trolled
 dreth \(\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~\)
Stager
Jul Stagger-tuned amplifier design..........158 Jul Standard, gain, microwave horn, ... 150 Ju
Standard symbols for electronics (refStandard symbols for electronics (ref-
erence sheet)
May Standards, preferred circuit........i82D Noy Static electricity, formation in thun-
derstorms \(. . . .{ }^{2} . . . . . . . . .184 \mathrm{D}\) Apr Station operation, automatic broadicast Apr
Statistics transmitted by radio....184D Jan Storage tube employs secondary emis- Jan Strip-line, band-pass filter using.................... 152 May Studio amplitier design for color tele- May vision, Schroeder
Subaudio oscillator tunes \(0-50\) cycles, Fleming \& Follin.................... 144 Oct Suhcarrier discriminator, delay line. 203 Mar Subharmonic crystal oscillator.....206D Jan Supersonic, see ultrasonic
Suppressor, power rating parasitic... 170 Oct Surgery, anesthesia monitor for..... 250 Oct Survey of 38 computers for business. 124 Jun urveying, geodimeter determines base- Jun
 Swish, ionospheric disturbances...i98D May
Switch, electronic, eliminates tran- Man sients \(\begin{gathered}\text { witch, electronic. for biolo.................................... }\end{gathered}\) Switch, electronic, for biology ......... 135 Dec Switch, ultrasonlc, for diversity re- Oct ception ................................. 169 Nov Switching circuit, double base diode. 198 Mar Switching circuits, transistor......... 168 Jan Symbols, standard electronic..........176 May Synchronizing magnetic drum storage
speed, Bivans............ .140 Au Synthesizer, electronic music................ 140 Aug Apr



Table model receiver uses afc for \(f-\)
 TACAN for private planes...............174D Jun TACAN navliation syslem shows b.il4D Ju ing and distance.....................174D Oct Tank capacitor energy storage.... 216
Tape-controlled servos speed chemical Tape-cuntrolled servos speed chemical
analysis. Donnor \(\ldots . . . . . . . . . . . .136\) Feb
Tape-covered clliss serve as clamps. Tape-covered clliss serve as clamps. 252 D Feb Taue recorder, geophysical. .......... 152 Jan Target discriminator for countermer- Ju sures, Weiss \& Sixbey.............. 118 Aus Target for missiles, parachute......ison Jan Target simulator, sonar............... 167 Mar sile ........................................ 64 Jun for missile data reduction system Telemetering for broadcast station.. 136 Say Telephone, all-electronic, using stora:e tube tel.......................................... Jan battery
Telephone, military channels increased Nov Telephone repeater, transoceanic. 17 NDD Apr Telephone. rural microwave........208D Jan Telephone, two-way repeater amplifier Jan Telephotograph, facsimile speedup. 164 Jan
Television, Albion tries commercial Television, aligning by pulse-crose 180 D Nov
 Television, antenna for wor-TV...21+D Apr Television, automatic damping im-
proves monitor proves monitor \(\quad\) i.................230D Mar Television, automobile reflection... 166 D Jul Television, British tower........20fD Sept Teievision, color-burst meter..........188D Nov Television, color, colorimeter for.....138 Dec Television, color, differential galn test Dec Television, color, phase meter,.... 156 Aug
Television, color, used for intercty Television, color, used for intercity consultation .......................itid Mar Mar measurement \(\ldots . . . . . . . . . . . . . . . . . . . .144\) Jun Television, feedback clamp circult 182 D Jul
Television flat cathode-ray tube. 214 D Mar Television flat cathode-ray tube..214D Mar Television, high-power grid-control Television, high-speed facsimile for Apr news photos …....................... 134 Jul Television, Interior Dept. uses under- Jul
 Television, light beam controls recelver 204 D Dec Television, matrixing and encoding
color
Nov colevision, one-man camera alignment 10 Nov Television, receiver for. \(\qquad\) 214 D Dec
.152 Dec Television, remote, spots forest fires 178 D Oct Television, transistor deflection circult 146 Jul Television, uhf, amplifier tube for.. 176D Nov Television, uhf, amplifier tuhe for...176D Nov Television, underwater camera....174D Sept
Television, used in sawmill......214D Mar Television, wide-band amplifier for uhf 158 Dec
 Temperature indicator for alreraft Apr Temperature stabilizing transistor am- Nov plifler ....................................... May Terminala, production technigues Universal holding jig for terminal
boards
Testing, see aiso measurement, ailtran May Testing, see also measurement, nitra\(\underset{\text { sesting }}{\text { sonics }}\)
nents, Mintorne electronic compo-
 Testing color tv, differential gain,..114 Apg Testing, transmission gain............ 145 Dec Testing technicuues
Accelerator tests parts whirllng at
100 g Automatic tester for ferrite memory
cores.....................................\(~\) Calibrating waveguide frequency me- \(\quad\) mec ters in batches of eleven. Mc. 208 D Jul
Drop test for instruments, McorDrop test for instruments, McCor-
 of missile controls..............256D Jan Life test setup......................234D
Locating heater shorts.........264D Locating heater shorts.............264D Dec speaker magnets
Pictortal inspection Pictorial inspection records expedite flow of quality data, Squires.. 234 D May
Quality control panel shows variations in tested parts..........208D Aus Recorder checks llnearity of prect-
sion potentiometers........244D Nov Rotating bolt actuates shake table Nov Rotational life-tester ............262D Nar Servo amplifier tester for production
use, Alman.................... \(.310 D ~ M a r ~\)

Test sets heat plant................308D Mar Testing seals of coaxial cavities. 257D Jan Transparent covers for quality con- \(\quad\) croinarts ...................230D Jun trol charts
Turntable aids inspection..........286D Apr Value-averaging device ..........246D Jun
Theory for formation of thunderstorin electricity. ..................................4D Apr Thermometer for aircraft engines.ing Nov Thickness gage, eddy current plating 146 Nov Thread-matilating tool.............256D Sept
 Thuncterstorms, formation of static electricity ..............
Thyratron relay. microampere.... 172D Dec Tine delay gerierator, nonlinear..194D Nov Time delay generator.................... 148 Dec Time delay nomograph...............178 Apr Time signals, Canadian observatory
 Timer for electron microscope.........206 Mar Timer, short-interval
Tiny tube amplifles uhf-tv.........176D Nov Tone calling, mobile radio..........144 May Tones, audio, for refinery control... 130 Jan ones contron installation of \(f-m\) sept Tower, antenna, installation of \(\mathbf{~ a n t e n n a ~ o n ~ a - m . . . . . . . . . . . . . . . . . . ~} 130\) Aug Tracing electron paths (reference sheet, Spaven .........................74 Jun Traffic, radar speed meters..........132 Dec Traftic, radio control................194D Jun Transducer, capacitive, low-impedance 161 Jun Transdueer, single-tube capacitance \({ }_{182 \mathrm{D}}\) Oct
 Transformer, dielectric, for X-band.. 146 Dec Transformer, design of i-f transistor. 156 Aug Transient, trigger adapter for oscillo-
Transients, eliminated from electronic Apr Transients, eliminated from electronic \(\quad\) ons Transistor amplifier, feedback-stabl
lized ................................................ May
 Transistor amplifiers for analog com- 19 Jul


 Transistor c-r tube deflection circuit
Taylor \& Moore..................... 146 Jul Transistor, design of portabie using.its

Transistor microphonics .........206D Sept Transistor modulator for flight trainers, Ettinger . . ...................... 126 Sept Transistor pulse generators, Eckess, Deavenport \& Sherman...........132 Nov Transistor receiver, Japanese......174D Dec Transistor transformer, Transistorized \(f-m\) signal Generator,
Hupe:t \& Stubski.....................
Feb Transistors generate multiwaveforms, Transistors generate muitiwaverorms,
Keonitian and Suran.........................
Transmission, extended Transmission llne calculator, vhf....168 Day Transmision test Chinski .... 168 Dec Transmission test set, Chinsk
Transmitter, Hifty-kw hroadcast.... 168 Mar Transmitter monitor, color-burst.....149 May Transmiter, multiplexing f-m.....146 Oct Transmilter, pulsed tone controlled. 132 Sept Transmitter, series-tube modulator. 158 Nov Transmitter, ssb, linear power amTransmitter using frequency synthe- Aus



Transoceanic telephone cable has built-
in repeaters.......................... Trays, for production nise

Assembly-iine benches are loaded
from rear, Prince \& Mowll....262D Apr Deep-well bins hold precut leads on Fibreboard tote boxes for parts use beer-rase construction ........2407 Feb Heater-storing trays ...............282D Apr
 grams, Fieming mic................... 184 Apr Triple-crystal flter \(\cdots \cdots \ldots \ldots \ldots . . . \boldsymbol{c}_{166}\) Dec
 Tuhe, anode-rlynode amplifier...................................... Sept Tube, colorimeter for color television Tube, dark-trace, with infrared erasure 170 Feb Tuhe, dynamic characteristics of tri- Dec ode-connected pentodes ..........208D Dec Tube, flat cathode-ray...................286D Nov Tube, that eathode-ray..................... 130 Apr
 Tube Prodnction Technigues

Air-aciuat+d machine makes cat-
210D Aug Automattc aluminizer for television
picture tubes ................236D Jun

Burn-in rack cuts early tube fail ures, Richards .................300D Mar Cam-action grid former..........298D Ma Centering fixtures for color TV picture tubes ..........................296D Mar Detecting cracks in glass-to-metal Mar seals, Staats ............................. for .......250D Jun Electrode-centering jig .........2377D Ju Filament-inserting funne prevent tube breakage ...............................id Feb Lint. control program reduces tube Aug Pressurized tube plant............258D Feb Prolucing formed and inside-out
grids for uhf pencil tubes, Acker Round-robin noise test for tubes.244D Apr Sliding-average computer for tube quality charts. ...................294D Mar Trenches replace pipes in tube plant 238 D Ju Tube-aging conveyor ..............260D Oct -shaped trough aids threading 26 D Mar Tube replaced by plug-in rectifier..19sD Aug Tube socket spreaders..............224D Ju
 Tube, vibrating-ignitor rectilier.. 248 D Nar Tubes, effect of Intense sound on....196D Feb Tunable cavity for X-band oscillators, Tunable microwave triode osciliator. 184 Mar Tuning aircraft antenna by a-m 15 system
TV, see television Twenty-five years of electronics. Zeiulf Two-terminal \({ }^{\&}\). push-pull oscillator ap Two-terminal push-pul..........202D Aug
 Two-way uhf pack set uses helmet antenna, Jensen \& Schwartz......150 Mar

\section*{U}

UHF amplifier tube for..........176D Nov UHF antenna for aircraft carrler... \(1 \times 4 \mathrm{D}\) Dec UHF, designing components for...1s. 122 Oct UHF, forward scatter extends range. 120 Apr UHF, grid-control tube.................... UHF multíplexer uses selective cou-
plers, Carlin ........................152 Nov \(T T H F\)
UHF rebroadcasting cuts cost. Root. 131 May
UHE ting dx....................200D Dec
 UHFF-TV, booster amplifier for........112 Jul
UHF wideband amplifier for receivers 158 Dec
Ultrasonic alarm system, design of. 106 Aug Ultrasonic alarmic irradiation substitutes for
 ultasonic ranging speeds cancer diag- 74 Mar nosis, Reid \& Wild..................74 Mar Ultrasonic switch aids diversity recep- \(\quad\) Nov

 Unitized production benches facili-
tate assembly-line changes......232D May


VHF direction finder.........................68D Jul VHF transmission line calculator, Sanderson................................168 Dec
vacuum gage. power supply for...210D Feb Vacuum gage, power sup
Van de Graaff generator, current reg-
 Variable index of refraction lens for Variable-speed control for integral-hp Variable-speed control for integral-hp
motors, Cowie \(\&\) Gregson..........162 Apr Velocity measurement, phase meter

Velocity of propagation, higher...180D Sept Vibrating-ignitor tube consumes less \(\quad \mathrm{Ma}\) power, Hatta and Hiraga.......248D Mas Viden, see also television
Video amplifier for color television. 154 Mar Video patch panel using r-f connectors, Weise .i..........206D Dec Voltage current curve sawtooth pulser for .................................156 Dec Voltage divider, digital .............176D Dec Voltmeter, expanded scale a-c......... rm


Water-dip solution cleans terminals Nov Water velocity, phase meter for.....128 Sept Waveform generator uses pulse techniques, Newhall ...............
Waveguide, see also microwave
Waveguide, dielectric transformer for \(\quad\) X-band \(\ldots \ldots \ldots \ldots \ldots \ldots .146\) Dec
 Wavesuide, nomographs for rectangu- 172 Jan Waveguide, reflection-type asymmetii-................................................... Waveshape generator, high voltage Weather map recorder.................196D Jui Weather mapping radar uses C-band Sept
 Whistlers, ionospheric disturbances 198 May Wide-angle phase shifter for indus-Wide-band amplifier ......................... 155 Jul Wide-band amplifler for uhi receivers, Wide-band analog function multiplier Miller, soltes \& Scott................. 160 Fel Wings on chassis support 24-inch plc-
ture tube ........................... 248 D sept Wire insulation, controliing extrusien of Wire production Techniques
Beveling new pliers prevents nick-
ing of wires Card-controlled machine makes man Constant-tension automatic wireCutisting machicicing.........2tid Jan Grounding shield braid in guided \(A\) apr Induction generator bonds hookup wire strands before stripping..208D Aug Lead length gate....................260 Not Nov Minimizing splices in aireraft raPotting Techniques for Cable ConPrecision photoelectric wire-cutting Pulling cable conductors throukh
 as wire-cutting gujues...........222D Jan Terminal and marking tools added lo Terminal and marking tools added
wire cutter................. \(.258 ~ D e c ~\) Tin reflowing cuts wire-stripying Nov waterproofing cable connectors...250D Feb Wire-coiling dlah
WOR master control...................204D Sept
WOR-TV, Empire State antenna...214D Apr


X-band receiving amplifier. Tshii. 202D Apr X-ray television shows inside of op-
erating engine............... .182 D Apr


Zener-voltage breakdown uses in sili con diodes, Wulfsberg ............182D Dec Zero hysteresis relays, Barditch.....2u2D Dec

\title{
Items in the author index for which page references are preceded by (letter) are comments from readers, published monthly in the Backtalk department
}

\section*{A}

Abel, F, Adams, Alford, Leach \& Rubin, Empire State antenna for
WOR-TV Ackerman, Hi. J., Producing formed and insicle-out grids for uhf pencil Adams, G. J., Alford, Leachm Rubin \& Abel, Empire State antenna for Alexander, F. C... Jr., About whistlers Apr Alford, A. Leach Rubinetter) 380 D Aug Adams, Empire State antenna for WOR-TV ….....................214D Apr Alman, J, Servo amplifer tester for production use
Applegarth, A.
A Applegarth, A. R., Airborne interroga- May Armstrong, H. L., Infinite impedance
 Arnold, \(W\). \(G\). \& Zeluft, 25 years of
electronics

\section*{B}

Backinan, K., Mobile power supply for
6 and 12
Bagno,
\(S\) volts Designing uit.................... May alarm systems Designing ultrasonic Baker, V. H., Taboada \& Wiant, In-

202 D May Barditch, I., Electronic chopper for d-c Barditch, I. Zero hivsteresis relay. 192D Nov Barditch, I. Zero hysteresis relays. 202 D Dec ential amplifier for null detection
Barry, J. N. \& Clarke, Microwave Aus modulator uses ferrite gyrator... 139 May leckwith, H., Flip-flop counter has extended range \(B\), geophysical recordings …...... 152 Jan
 Weighing on the production line.. 152 Jun Bernard, W. B., Distortion correction
Bernard, W. B., Series (lube rer) 480D Mar bates amplifier screen-grid.......158 Nov Berry, C. E., Noise calculations
reter, R. H. Bradley, Brown and Rubinoff, Directly coupled transis
 Bibbero, R. J. \& Krakauer, Modular
simulator tests missile radar..... 27 Jul
Bishop, F. W. Exposure timer for the electron microscope .........206 Mar Bivans, \(E\). W., Synchronizing mag- Mar netic drum storage speed … 140 Aug Biake, IR. \(F\) \& Morgan, Delay line
subcarrier discriminator
....... 203 subcarrier discriminator .........203 Mar Blois, M. S., Jr., Evaporated magnetic
materials .............................. Jun Boesen, G. F. \& Schuitz, Juke box Jun uses ferrite-core memory ......... 138 Oct Bose, J. H., Multiplexing f-m broadcast transmitters ..................... 146 Oct Bower, G. E. \& Wynn, Antenna system for missile telemetering .....164 Jun Bradley, \(E\) H. Microstrip lines (letter) 322 D Jul

Bradley, E. H. \& White, Band-pass nlters using strip-line technique
Bradley, W. E., Brown, Rubinoff \(\mathcal{L}^{2}\) May Beter, Directly coupled transisto
 speed meters? .......................... 132 Dec Braun, F. H., Bias supply design for Bright, \(R\). L. \& Kruper, Transistor Bright, R. L. \& Kruper, Transistor
choppers for stable d-c amplifiers
choppers for stable d-c amplifiers 135 Apr
 Brown, A. C. L., Recording and tabulating the radio-iv audience...... 126 Jan Brown, \(R\). B., Rubinoff, Beier \& Bradley, Directly coupled transistor circuits w.................................... 132 Jun shifter for industrial controls..... 188 Mar Brueckmann, H., Helicopter measures Bruene watterns ....................... 134 Nov Bruene, W. B., Linear power amplifier for Ssb transmitters \(\ldots\)......ilit Aug of mobile radio...................190D Oct Burnett, L. C., Fast tube rate \(\begin{aligned} & \text { (letter) } 408 \mathrm{D} \text { May }\end{aligned}\) Burr, R, P. \& White, Simple color computer gives tristimulus values
Burris, F. J., Reactance voltage bi66 Oct
 adjustable regulated power supply

164 Nov

Chase, C. E., Direct-r98D Jul, 206 D Sep figure indicator ...................... 161 No Chen, T. S., Nomographs for rectangular waveguides
Chinski, G. R. Transmission test set. 145 Dec gage for ship-model Funder, Pressure 196 D Jan Clarke, W. W. H. \& Barry, Micro-
wave modulator uses ferrite gyrator
Colby, N. C., Designing 2,000-mc con- 139 May Colby, N. C., Designing 2,000-me com-
ponents for communications \(\ldots 186 \mathrm{D}\) May Cole, E. B., Jr., Airplane models reveal how to avoid radar...........122 Jan Coleman, F. F., Potentiometer design for minimal loading
Cologne, \(K . ~ M . ~\) Marriner, sonar Fel Cologne, K. M. \& Marriner, Sonar target simulator
Conover,
W. B. Conover,
graph
(reference sheet) Cowie, E. G. Gregson, variable-
speed control for integral-hp ino-
tors.......................................\(~ A p r ~\) tors
Cuddy,
oscillator., Two-terminal push-pull
Apr
Cambrif. fr. D., Controling extion of foam Carlin, H. J., UHF multiplexer uses selective couplers ................... 152 No Carroll, J. M., Electronic computers for the businessman Cass, W. R., Double-dip soldering uses Chalfin, N. L. Pertinent patents...........260 Jan Chalfin, N. L, Pertinent patents. 210 Jan



Eakin, J. H., Resonant-loop antenna for vhf direction finding ........ 172 Feb man. Transistor pulse generators. 132 Nov Emslie, N. M., Basic chassis for ex-

Epstein, J., Morrison \& Woodward,
Extending uhf-tv with booster am-
plifiers Etifingers G. M., Transistor amplifiers 112 Ju for analog computers ........119 Jul ettinger,
for flight trainers ....................126 Sept


\section*{F}

Fearon, E. T., Automatic micrometer sorts insulating wafers............. \({ }^{156}\) Punched cards control job-lot asFerstle, J. A. \& Bell, Electronic Welghing on the production line. 152 Jun lening, L., Fixed LC oscillator with- out out taps Leming, Single-tube capacitance Mar transducer circuit .................182D Oct Fleming, L., Trigger adapter for tran-

Fleming, L. \& Follin, Subaudio oscillator tunes \(0-50\) cycles \({ }^{2}\). Subaudio oscillator tunes \(0-50\) cycles........144 Oct Fox, R. C., Embedding technique for three-tube plug-in unit
French, \(H\). \(\&\) Kennedy,
Coldideo French, H . \& Kennedy, Color-video , Junvelope-delay measurement Froemke, D. \& Nelson, Electronic load Funder
sure gage for
ship-model huils.

\section*{G}

Galman, H., Expanded scale voltmeter for a-c measurements................ Dec Gamble, G. W., Godwin \& Feldheim, Punched cards control job-lot as
sembly system
 craft antennas . . Geist, J . C., Automobile reflection in \(\quad\) vhf-tv Giacoletto, L. \& Barnette, Differential amplifier for null detection 148 Aug
 Giovanelli, R. G., Photometer ' iests retlecting road signs............204D Feb Goatley, C. \& Kelleher, Dielectric lens for microwaves \(\ldots\) Feldheim \& Gamble, Punched cards control job-lot asGoldbers, \(H\). B., Local oscillator for 160 May c-w radars .................................. Glow may Gregson, J. H. \& Cowie Variable- Mar speed Control tor integral-hriable
tors ..................................... 162 Apr Grisamore, N. T. \& Uyehara, PulseGeries generator \(\quad\) groenendyke, G. \& Loper, Caihode-
ray display of seismic recordings 160 May Gruner, R. A., Another staple tech- \({ }_{\text {nique }}\)............(letter) 410 D May niqu

Hahnel, A., Phase-controlled multichannel oscillator J.................... Compensated squelch for mobile radio receivers squel world 143 Jul Hariharan, M., Ideal world. (let- \(\quad\) (let Harris, J. N., Sensitive thyratron relay operates on microampere ........ilin
 Hatta, Y. \& Hiraga, Vibrating-ignitor Mar tube consumes less power....... \({ }^{2} 48\).
electric reader feeds business ma-
chines chines W. T. \& Lufcy, Alloy improves Ma magnelic \(\operatorname{Hetland}\) G., Jr. \& Buss, Low-ripple
adjustable regulated jower supply 164 Nov
Heywood, J. P., Quatity control charts

 Hilliard, J. K. \& Noble, Low-noise
input stage ior audio preamplifer 147 Feb Hind, J. E. \& Ludwig, Electronic switch eliminates transients
Hiraga, \(S\) \& Hatta, Vibrating-ignitor Hiraga, \(S\). \& Hatta, Vibrating-ignitor
tube consumes less power......248D Mar tube consumes Hodewanec, \(G\). \(\&\) Holborn, Inirared \(^{\text {d }}\) speeds erasure of dark-trace tubes 170 Feb Hogan, J. V., Facsimilie speedup enhances usefulness \(\quad\) Holbor..................
\(\begin{aligned} & \text { Holborn, } \\ & \text { speeds } \text { erasure of dark-trace tubes } \\ & 170 \mathrm{Feb}\end{aligned}\) Holmes, H., Light hydraulic presses
cut phono pickup costs.........250D Jan Hooper, E. T. \& Suozzi, All-magnetic audio amplifier ....................... 122 Sept Houghton, \(R\). W.. Phase meter analyzes color tv systems.................iv6 Jan Hupert, J. J. \& Szubski, Transistor-


Isborn, \(C\) \& Swarthe, Counting labels
with ferroresonant rings............ 128 oct Ishii, K., Reflection-type asymmetri-
 Ivers, J. H. \& Sheehan, Design of Ma transistorized high-gain portable. 159 Mar ves. R. L.. Ferrule wrench aids mounting of panel lamps..........236D Ju

\section*{\(J\)}

Jensen, I . C. and Schwartz, Two-way uht pack set uses helmet antenna \(\quad 150\) Mar Jensen,
decade
irequency
divider...........
dis Apr Jiu, R., Relay contact bounce measure- 7 Aug ments. Méer shows color-burst de- Mas viation
Jones,
., Thomas \& Demars, Automatic damping improves \({ }^{\text {tv }}\)
monitor
\(\square\)

Kaiser, A. W. \& Wolkstein, Anodedynode beam deflection amplifier 132 Aug Kalmus, H. P., Capacitance transducer has Kamm, L. J., Digital voltage divider using lour resistors ..................176D Dec Kanagy, M. 'T., All-magnetic a-f amplifier ..........................etter) 406 Nov Kaufman, A. B., Pot design problem (letter) 408 D May Kaufman, B. A.. Nonlinear time-delay Niodes ..........194D Nov Kenerator uses diodes .......ielectric Nov Kennedy, R. C. \& French, Colorvideo envelope-delay measurement 144 Jun Keonjian, E. \& Suran, Transistors gen-
eratemultiwaveforms.......... .138 Jul Kiebert, M. V., Jr., Circuit design factors for audio amplifiers \(. . . \cdots . .166\) Apr Kleist, L., Rotational life-tester...262D Nov Klink, G., Jr., F-M antenna inside the K-m lower F . Basic control circuits L . S .
 are packaged temperature indicator for aircraft engines … uhi.......... 123 No grid-control tube................................. Ap Koustas \({ }^{\text {P., Audio-standard generator }} 161\) Dec Krakauer, M. \& Bibbero, Modular simi- \(\quad\) Ju Krenitsky, P., Decade counter employs silicon transistors \(\mathcal{A}\) \& \(\quad\) Bight, Transistor Kruper, A. P. \& Bright,
choppers for stable d-c amplifiers choppers for stable d-c amplifiers 135 Apr

\section*{\(\longrightarrow\) L}

Leach, H. H., Rubin, Abcl, Adams \&
 Lee, R.., Linear reactor chart........ Lee, \({ }^{\text {Leng, }}\) B., Controlling dust in microwave tube assembly plant......238D Apr
Levin, J. B., Portable precision approach radar Levine, M. B and Mintz, Testing airLinden, \(D\). L., Chassis design for if 18 D Aug amplifiers
Lindner, M., More pot data.......182D Aug Lindner, M., More pot data (letter) 377D Apr Lion, K. S. \& Davis, Square-law cirLipplie " J."A., Drafting aid..(letter) Longo, C. V. \& Wolf, R-F filter design 76 Feb (reference sheet) ................... 1 Gathode
Loper, G. B. ray display of seismic recordings. 160 May Lovell, W. V., Electromagnet removes nonterrous metals Electronic switch eliminates transients ................ 163 Oct Lufcy, C. W. \& Heath, Alloy improves magnetic recording ...............137 Jun Lux, W., German tv transmitters 482 D Mar

Markowitz, J., Electronic organ uses Markus. J., Mechanized production of electronic equipment Marriner, \(\mathrm{E} . \mathrm{H}\). \& Cologne, Sonar target simulator
Martin, \(L\). J. \& Martin, L. J. \& Vavra, Controling
sludge in etched wiring bath....238D Nov
 Martin, \({ }^{\text {eyelets in etched wiring...........250D Dec }}\) Maynard. F. B., Binary-adder tube for
high-speed computers ..................
Sep high-speed computers Nomograph (reference sheet) Mail reduction No McCormick, E. M., Data reduction May system S T Drop test for struments ............................258D Sep McCusker. \(R\). W Producing oscillaMcDutie, \(T\). E., Spectrum analyzer McFolin, \(R\). L. \& Sclar, Sawtooth pulser 156 Dec Mives voltage-current frequency divider ................. 154 Ap McGhee, R., Review revised (letter) \({ }_{319 \mathrm{D}} \mathrm{Ju}\) McKenzie, A. A., Getting the most Jun from mobile radio... Dynamic re- \(\mathrm{I}_{\mathrm{c}}\) A.,
 mor uhf receivers .................... 158 Dec Merrill, J. L., Smethurst \& Rose, Re-
peater amplifies in either line direction
Michels,
M., Puised tones control a-m
man and \(\mathrm{f}-\mathrm{m}\) stations ........................ Miessner, B. F., Patent billetpending (letter) 31SD Ju Miessner, B. F., Those early (letter) 386 D Sept Milels, J. T., Market for electronic 138 Apr miller, J. A., Soltes \& Scott, wideband analog function multiplier...160 Feb illman, J. \& Taub, Cathode compen-6 No Mintz, F. \& Levine, Testing airborne 181 Ma electronic components A............. 181 Mar Moerman, N. A., Short-interval timer 168 May Montgomery, C. F., Ultrasonic switch 169 No
 permanent magnets................. 121 Aus Ioore, T. M. \& Taylor, Transistor c-r \({ }^{\text {ch }}\) Jul tube deffection circuit \(\cdots\) Belay iline subcarrier discriminator \(\dot{d}-\mathrm{c}\) ampliin A...198D Aug Morrison, W. C., Epstein \& Woodwara
extending uhf-ty with booster am- 112 Jul plifiers \({ }^{\text {powll, }}\) U............................. line benches are loaded from rear \({ }_{262 \mathrm{D}}\) Apr Mural, F., Dynamic-diode limiter for fug i-m demodulators


Olin, I. D., Dielectric transformers for X-band waveguide ....................146 Dec


Papian, W. N., New ferrite-core mem-


Pastor, J., Jr., Staple problem (letPerzley, "W... Precision digital.................. Mar generator................ 148 Dec Plemenus, \(F\) A., Repetition-rate genPorter, J. H., Sensitive limit detector 148 Nov Pote, A. J. \& Davidson, Designing over- Oct horizon communications links....126 Dec Prince, \(W\). \(甘\) howll, Assembly-line
benches are loaded from rear. 262 D Apr Prugh, \(T\). A., Junction transistor Apr switching circuits ................... 168 Jan

\section*{R}

Rabinow, J. Scanning disk improve
auto headlight dimmer ..........770 Mar Malrixing and encoding color for
 Raible, \(k\), w. Testerman
Highly
regulated
s-f voan,
 Raible, R. W. \& Testerman, Ion-gage
supply protects tubes ...........210D Feb Reed, J, M., High-voltage waveshape Feb
 ing speeds cancer diagnosis......174 Mar Richards, J. A. K., Burn-in rack cuts early lube failures Precise.........300D Mar ment of sawtooth linearity measureRiddle, \(R\). L., High finearity.... .204 D Nov
 Robinson. \(H\). G. \& Dessler Dynamic 140 Jun Robinson. \(H . G\) \& Dessler, Dynamic
charncterlstics of tridode-connected

 Rockett, F., New delay materials im-
prove performance Rockett performance \(\quad\)..................... 144 Jan Rockett. F., Special-purpose relays
gain
new
uses....................... 150 Feb Rogers, new uses................................ 150 Feb Roman, R. J., Modular bundies ....151 Oct etched-wiring boards.............230D Dec milter uses frequency synthesizer
Root. H. G., UHF rebroadcasting cuts 138 Jan
 peater amplifies in either ine Re

 ceiver for ty rebroadcasting........152 Dec
Ross, I. \& Nicholson, Kerr-cell shintRoss, L. \& Nicholson, Kerr-cell shut-
ter has submicrosecond speeds.... 171 Jun criminntor silences speaker \(\mathbf{R u b i n}\), \(\mathbf{R}\). 162 D Ag Rubin, R., Abel, Adams, Aiford \(\mathbf{1 6 2} \&\)
Learh. Empire state antenna Wearh. Empire state antenna for Rubinoff, Di., Beter. Bradiey \&
Frown,
circuits
circuits
Rudenberg,
\(H\). fiers for a-c line operation ....... 1

\section*{S}

Sanderson. A. E. VHF transmission
 for rms voltages ...................... 170 Nov Savant, C. A. \& Savant, Electromechanical networks for a-c servo-
systems
 Savant, C. A. Savant, Notch net-
vork design (reference sheet) network desi Schacher, D., Star, Taub \& Ratino- Sept witz, Matrixing and encoding color
 cheldorf, M. W \& Klink, FMan an
tenna inside the a-m tower.... .130 Aug tenna inside the a-m tower...... 130 Aug for color tv and \(f-m \ldots \ldots \ldots 142\) Feb

 chroeder, J O. Differential gain
set tests tv color.
Aug
 schult\% C. Color television..............154 Mar uses ferrite-core memory, ............138 Oct pack set uses helmen, Two-way uht

scott, R. E., Miller \& Soltes, Wide
band analog function multiplier.. 160 Feb Seiter, J. G., Vacuum metallizing of
selenium rectifiers ............. 258 D Nov Shelenium rectifiers. H. M., Automatic recorder for comp. H. M., Automatic recorder for
complex impedances ............ 167 Sept complex impedances \(\ldots . . . . . . .167\)
Sheehan,
transistorize \(\&\)
dvers, Design of
transistorized bigh-gain portab 159 Mar
Shepard, D. H. \& Heasly, Photoelectric 159 Mar reader feeds business machines... 134 May Shepard. \(V\). L., One-man to camera
 Transistor pulse generators .....132 Nov , L. M. Jeeps and electrons (letter) 399D Oct Sinish, R. D., Irecision calibrator Checks radar beacons ............... 150 Apr Sion, E., Dielectric mixture chari
(reference sheet) \(\ldots . . . . . . . . . .176\) Apr Sixbey S. R. \& weiss, Target dis. 176 Ap criminator for countermeasures... 118 Aug Slaughter, D. W, Feedback-stabilized Aug transistor amplifier .................. 174 May Slayton, W. T., Design of microwave \(\quad\) gain-standard Sloan, \(L\) G., Raible \& Testerman,

Highly regulated r-f voltage supSmaller, \(P_{-}\)Automatic programming Apr cuts broadcasting costs \(\because \cdots \cdots \cdots 135\) Oct methurst, J. O., Rose \& Merrill, Re-

 Sodaro, J. F., Phase-ilinearity nomograph (reference sheet) band analog function multiplier. 160 Feb Sommers, D. J., Photoetched antennas
 Spaven, W. J., Tracing electron paths
(reference
 speed control system \(\ldots \ldots \ldots \ldots . .126\) Aug Spencer, N. A., Tunable cavity for Aus Squires, \(F\). H., Pictorial inspection
records expedite flow of quality
 clamp circuit for tv................182D Jul Staats, \(H\). N., Detecting cracks in Jul
 tanford, E., Automatic colorimeter \({ }^{\text {for }}\), Dee for tv color tubes .................. 13 Schacher, Matrixing and encoding color for telecasting . tephenson, J. G., Designing stable triode microwave oscillators \(\ldots . .184 \mathrm{Ma}\) trial microwave calibrator \(\quad\)... 168 Jun torm. H. F., Four decades ago (ietter) Struven, W. C., Precision time-dela Apr Stull, K. S., Jr., Ultrasonic phase 218D Noy ter measures water velocity...... 128 Sept ulzer, P. G., Audio oscillator has Suozzi, J J \& Hooper Ail….............. May audio amplifier Hooper, All-magnetic Suran, J. J., Double base expands di- Sep
 generate multiwaveforms ransistors 38 Ju warthe, E. \& Isborn, Counting labels with \(T\) \& Hupert Transigio. 128 Oc \(\mathrm{f}-\mathrm{m}\) signal generator \(\ldots .\).

Uhlmann, W. E. M., Storage tube em
ploys secondary emission ..........161 Jan Upham, J. L., Jr.. Automalic a-c \(\quad\) bridges solt bridges sort ceramic capacitors.. 106 Jul
Uyehara,
G. series generator Grisamore, Pulse-...........224D Mar

\section*{\(-\quad \mathbf{V}\)}

Van Wambeck, S. H., Audio tones control refinery operations ........130 Jan sludge in etched wiring bath 238 D No Vavia, M. J. \& Martin, Substitutes for No Veyelets in etched wiring.........250D Dec Vofier, J. G. \& Stinehelfer, Industrial
microwave calibrator \(\ldots . . . . . . .168\) Jun

\section*{—— W}

Waidelich, D. L., Pulsed eddy current
Gage plating thickness......... 146 Nov mitter uses frequander, Navy transmitter uses frequency synthesizer. . 138 Jan We (letter) 378D Feb Webb, H. D., How to design nver- Feb staggered doublets (reference sheet)
Webster, R. R., How to design i-f 158 Jul transistor transformers (reference
 formers \(\underset{\mathrm{D}}{\mathrm{M}}\)., Video parch (letter) 399D Oct Weise, D. M., Video patch panel using \(\begin{gathered}\text { 210D Apr } \\ \text { r-f connectors }\end{gathered}\) Weiss. M. \& Sixbey, Target discrimina tor for countermeasures .......... 118 Aug Wendt. K. R. \& Squires, Feedback
clamp circuit for tv.
White. D................ J Jul White. D. R. J. \& Bradiey, Band-pass
fiters using strip-line techniques White, J. R. \& Burr. Simple color May computer gives tristimulus values
Wiant. D. E.. Baker \& Taboada, In- \({ }^{166}\) Oct sect controi by electron irradiation
Wild. J. J. \& Reid, Ultrasonic rane2 May
 performance ., Transistor amplifier
 ergy for 6-bev bevatron ........... 164 Feb Witty, W. M., Mofern fifty-kilowatt broadeast transmitter (fiter design Wolf, E. \& Longo. R-F filter design
(reference sheet) (reference sheet) \(\&\) Kiaiser. Anode. dynode beam deflection amplifier.. 13? Aug Woods. R. Ali-pass amplifier Electronic switch for biological observations ..............135 De Woods, \(R\). W. Jmproving cathodefollower frequency response \({ }^{\text {foodward, O. M. Jr., Epstein } \& \text { Mor }}\) Woodward, O. M., Jr., Epstein \(\mathcal{\&}\) Mor-
amplifers aouk Wouk, V., Hich-voltage supply uses 112 Jui Wouk, V., Lissajous therapy................ 154 Aus Wulfsberg. K. N. Zener-voltage break - Mar down uses in silicon diodes......182D Dec system for missile telemetering .. 164 Jun

\section*{z}

\section*{Zeluff, V. \& Arnold, 25 years of elec \\  servo amplifier .....................208D May}


For You: Progress and Service...
...through greatly augmented engi-neering-research personnel, multiplied production facilities, delivery schedules to meet every deadline, far-reaching engineering assistance and new efficiencies in every department ...to enhance Daven's reputation for leadership in the design, manufacture and supply of:
Attenuators • Precision Wire Wound and Metal Film Resistors - Rotary Switches . Electronic Test Equipment

\section*{RCA WT-100A Electron-Tube MicroMhoMeter NEW VERSATILE TUBE TESTER!}

RCA-WT-100A
Electron-Tibe Micko Mhometer Suggestec User Price: \(\$ 785.00\)

\section*{Practical for:}
- Radio. Phonograpl, and TV Set Manuacturer
- Electronic Equipmenr Manufacturers
- Electronic Researct and Developnent Jroups
- Electronic Mainten ance and Service Goups
- Cummunicatiora and Broadcast Staione
- Tuke Manufacturers
. . . has accuracy approaching that of

\section*{tube-factory equipment for measuring true gm}

The new RCA-W.T-100A Ele=tron-Tube Micromhometer is especial y suited for laboratcry and production-line testing, and Eirc sit design enginserinई. Unique design makes possible the resting of receiring trbes, receiving-type tubes for industy and communications, and small ransritting tubes _ncer actual operating voltage and carrent conditions. This feazire permits diesct correlation of test results with thae marafacturers enobished data-and in design work, perraits the derermir ation of a tube's paformance under 1 given set of current and voltage conditions. The Microbleometer is manut cured in accordance with the same rigid standards of hich zuality that accour: for the outstanding reputation of RC4 tubes. The WT-001 weighs only 50 pounds; measures \(231 / 2^{\prime \prime} \times 3^{\prime \prime}=181 / 2^{\prime \prime \prime}\).

Voltage-drop measurements across tubes,
and crystal diodes!

> Pluge intrithersocke: nemblezentsnetr leketh?
emsty \(=\) add \(d\) ?

Burn-eat proof meter-electron ically prosected.

\section*{Tube pin}
selector suritches
-up 1014 pins!

Measures current up 10 300-ma in ji ranges-as low as 3 mamp full scale!

Builh-in 7 n culibratizg circuit!

Control-grid-to plute und supprestransconductance medsurements to 100.000
to 100.000 ?
Storage co - part ment for E゙ug-in multiple-scket atachonctiv!

No inconvenient patchcorés - no external null indicators rec \(i\) ired! Highly accurate, repeatable neasurements! Built-in voltage-regulated power supply provides =olt ages to 300 volts; provides curs ents to 300 ma !

For descriptive information, call or write your RCA Representative or write Commercial Enginsering, RCA, Section L-19-a Harrison, IV. J.```


[^0]:    (Confinued on page 26)

[^1]:    New York City: HUnter 2-7784 Philadelphia: NOrristown 5.2600
    Chicago: Dlversey 8.6885 St. Lovis: DElmar 7701 Kansas City, Mo.: Jefferson 7221
    Dallas: FOrrest 8-8306
    Denver: MAin 3-0343
    San Francisco: ULmar 1-7129
    Syracuse:
    Pittsburgh:
    Minneapolis:
    Seattle: Mldway 4-7884 MOhawk 4895
    Albuquerque: $\quad 5.9632$
    Lo6 Angeles: Sycamore 8-5790

[^2]:    Wherever two or more parts are fastened together, standard and special designs for improved performance and lower production costs

[^3]:    WALDES TRUARC Retaining Rings, Grooving Tools, Pliers, Applicators and Dispensers are protected by one or more of the following U. S. Patents; 2,382,948; 2,411,426; $2,411,761 ; 2,416,852 ; 2,420,921 ; 2,428,341 ; 2,439,785 ; 2,441,846 ; 2,455,165 ; 2,483,379 ; 2,483,380 ; 2,483,383 ; 2,487,802 ; 2,487,803 ; 2,491,306 ; 2,491,310 ; 2,509,081$; $2,544,631 ; 2,546,616 ; 2,547,263 ; 2,558,704 ; 2,574,034 ; 2,577,319 ; 2,595,787$, and other $\mathbf{U}$. S. Patents pending. Equal patent protection established in foreign countries.

[^4]:    * These, as well as the plight of our colleges and universities, are discussed in a pamphlet, "Business Aid to Our Colleges and Universities," which embodies a series of five editorials which appeared in all McGraw-Hill publications. Copies of the pamphlet can be ohtained without charge by aldressing the Department of Economics, McGraw-Hill Publishing Company, Inc., 330 West 42nd Street, New York 36, New York.

    Methods of helping our colleges and universities finaucially are also outlined and discussed in a pamphlet, "Aids to Corporate Support of Higher Education," which may he obtained without cost by aldressing the Council for Financial Aid to Eilucation, 6 East 45th Street, New York 17, New York.

[^5]:    M I T E D

[^6]:    *Work done while with Clevite-Brush Development Co.

[^7]:    P. H. Smith, A Transmission Line Calculator, Electronics, p 29, Jan 1939.

    1. H. Smith An Improved Transmis sion Line Calculator, Electronics, p 130 , Jan. 1944 .
[^8]:    Using toothpick to adjust sintered iron core while measuring inductance at production test setups

[^9]:    Want more information? Use post card on last page.

[^10]:    ENGINEERS
    of unusual abilities can find a future at FORD INSTRUMENT COMPANY. Write for information.

[^11]:    Copyright 1953 Sierra Electronic Corp. Data subject to change without notice.

[^12]:    Serving in AVIONICS • AIRBORNE NAVIGATIONAL EQUIPMENT • COMMUNICATION SYSTEMS • RADAR EQUIPMENT \& IEST EQUIPMENT

[^13]:    Producer of electronic data processing machines, electric typewriters, and electronic time equipment.

[^14]:    Omni Receivers - 900-2100 Me Signal Generators - UHF and VHF Receivers and Transmitters - 8-Watt Audio Amplifiers - 10 Channel Isolation Amplifiers - LF Receivers and loop Direction Finders

[^15]:    ELECTRONIC INSTRUMENT CO., Inc.

[^16]:    Name
    Title.
    Company
    Name
    Address
    
    our interests are in: In this field we are:
    $\square$ Radio $\quad \square$ Manufacturers
    communications $\square$ Dealer or $\square$ Broadcast equipment distributor
    $\square$ Military equipment $\square$ Users
    $\square$ Other, please specify $\square$ Other, please specify

[^17]:    Investigate ioday' Write for prices, further information.

[^18]:    Want more information? Use past card on last page.

[^19]:    
    ELECTRONICS, incorporated
    200 Frank Road, Hicksville, L. I., N. Y. HI 4.2124
    Export Rep: Andrew S. Szucs, Inc.
    Want more information? Use post card on last page.
    December, 1955 — ELECTRONICS

[^20]:    Want more information? Use post card on last page.

[^21]:    Assistant to President, Chief Engineer Moderate size, extremely nrogressive manufacturer 2nd plant. President, general manager, desires man familiar with engineering. tooling and manufacture to assume some of the increased managerial work
    load. Starting salary 10,000 to $\quad 13.500$ Company oad. Starting salary 10,000 to 13.500 . Company MONARCH PER
    28 E. Jackson Blvd.
    Chicago 4, 111.

[^22]:    An employment advertisement in this EMPLOYMENT OPPORTUNITIES section will help you find the engineers you need. It's an inexpensive, time saving method of selecting competent personnel for every engineering iob in the electronic field.

[^23]:    1500-2000 POWER TRANSFORMERS, 115V60. 550vet075, 6.3v2a, (lbs.) $2^{\frac{3}{4} \#}$ \#, Thermador $V$ case, $23 / 4 \times 3 \times 31 / 4 \mathrm{~h}$, about $1 / 2$ OEM price, make offer.
    W. C. ROBINETTE CO.

    802 Fair Oaks Ave. S. Pasadena, Calif.

