

MINIATURIZED TRANSFORMER COMPONENTS

Items below and 650 others in our catalog \mathbf{A}.

HERMETIC SUB-MINIATURE AUDIO UNITS

These are the smallest hermetic audios made. Dimensions... $1 / 2 \times 11 / 16 \times 29 / 32 \ldots$ Weight. $80 z$.

TYPICAL ITEMS

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	$\mathrm{Type}_{\text {Type }}$	Pri. Imp. Ohms	$\begin{gathered} \text { Sec. Imp. } \\ 0 \mathrm{hms} \\ \hline \end{gathered}$	$\begin{aligned} & \text { OC in } \\ & \text { Pri MA } \end{aligned}$	$\begin{gathered} \text { Response } \\ \pm 2 \mathrm{db} \text { (Cyc.) } \end{gathered}$	Max. level dbm
H-30	Input to grid	TFIA1OYY	50*	62,500	0	150•10,000	$+13$
H-31	Single plate to single grid, 3:1	TFIAL5YY	10,000	90,000	0	300-10,000	+13
H-32	Single plate to line	TF1Al3YY	10,000*	200	3	300-10,000	+13
H-33	Single plate to low impedance	TFIALSYY	30,000	50	1	300.10,000	+15
H-34	Single plate to low impedance	TFIAL3YY	100,000	60	. 5	300-10,000	+ 6
H-35	Reactor	TFIAROYY	100 Henries - 0 DC, 50 Henries-1 Ma. DC, 4,400 ohms.				
H-36	Transistor Interstage	TE1A15YY	25,000	1,000	. 5	300-10,000	$+10$

*Can be used with higher source impedances, with corresponding reduction in frequency range and current

COMPACT

HERMETIC

 AUDIO FILTERSITC standardized filters are for low pass, high jass; and band pass applicatior in both interstage and line impedance designs. Thirty four stock values, others to order. Case $1-3 / 16 \times$ $1-11 / 16 \times 1-5 / 8-2 \cdot 1 / 2$ high Weight 6.9 oz .

HERMETIC MINAATURE H-Q TOROIDS

MQE units provide high Q, excellent stability and minimum hum pickup in a case only. $1 / 2 \mathrm{x}$ $1-1 / 16 \times 17 / 32 \ldots$ weight 1.50 z.

TYPICAL ITEMS

SUB-SUBOUNCER AUDIO UNITS
UTC Subouncer and subsubouncer units provide ex ceptional efficiency and frequency range in miniature size. Constructional details assure maximum relia bility. SSO units are $7 / 16 \times 3 / 4 \times 43 / 64 \ldots$. Weight $1 / 50 \mathrm{lb}$.

Type	Application	Level	Pri. Imp.	MA D.C. in Pri.	Sec. Imp.	Pri. Res.	Sec. Res.
*SS0-1	Input	+ 4 V.U.	$\begin{aligned} & 200 \\ & 50 \end{aligned}$	0	$\begin{aligned} & 250,000 \\ & 62,500 \end{aligned}$	13.5	3700
SSO-2	Interstage /3:1	+ 4V.u.	10,000	0.25	90,000	750	3250
*SS0-3	Plate to Line	+20 v.u.	$\begin{aligned} & 10,000 \\ & 25,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	2600	35
SSO-4	Output	$+20 \mathrm{~V} . \mathrm{U}$.	30,000	1.0	50	2875	4.6
SSO-5	Reactor 50 HY at 1 mill D.C. 4400 ohms D.C. Res.						
SSO. 6	Output	+20 V.U.	100,000	. 5	60	4700	3.
*SS0-7	Transistor Interstage	+10 V.U.	$\begin{aligned} & 20,000 \\ & 30,000 \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 1,200 \end{aligned}$	850	12

* Impedance ratio is fixed, 1250:1 for SSO-1,1:50 for SSO-3.

OUNCER (WIDE RANGE) AUDIO UNITS

Standard for the industry for 15 yrs., these units provide $30-20,000$ cycle response in a case $7 / 8$ dia. $\times 1-3 / 16$ high. Weight $10 z$.
TYPICAL ITEMS

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	Pri. Imp	Sec. Imp
0.1	Mike, pickup or line to 1 grid	$\begin{aligned} & 50,200 / 250, \\ & 500 / 600 \end{aligned}$	50,000
0.4	Single plate to 11 grid	15,000	60,000
0.7	Single plate to 2 grids, D.C. In Pri.	15,000	95,000
0.9	Single plate to line, D.C. in Pri.	15,000	50, 200/250, 500/600
-10	Push pull plates to line	30,000 ohms plate to plate	50, 200/250, 500/60
0.92	Mixing and matching	50, 200/250	50, 200/250, 500/600
	Reactor, 300 Hys. - no D.C.;	50 Hys. -3 MA .	D.C., 6000 ohms

LET US MINIATURIZE YOUR GEAR.
SEND DETAILS OF YOUR NEEDS for SIZES and PRICES

HERMETIC VARIABLE INDUCTORS

These inauctors provide high Q from $50-10,000$ cycles with exceptional stabili-y. Wide inductance range ($10-1$) in ar extremely compact case $25 / 32 \times 1-1 / 8 \times 1-3 / 16 \ldots$ Weight 2 oz .

TYPICAL ITEMS					
TYPE No. Min. Hys. Mean Hys. Max. Hys.	DC	Ma			
HVC-1	.002	.006	.02	100	
HVC-3	.011	.040	.11	40	
HVC-5	.07	.25	.7	20	
HVC-5	.2	.6	2	15	
HVC-10	7.0	25	$7 C$	3.5	
HVC-12	50	150	50	1.5	

electronics

FEBRUARY • 1955

A McGRAW-HILL PUBLICATION

VIN ZELUFF, Managing Editor

JOHN MARKUS, Associate Editor ALEXANDER A. MCKENZIE, Associate Editor JOHN M. CARROLL, Associate Edifor WILLIAM P. O'BRIEN, Assistant Editor WILLIAM G. ARNOLD, Assistant Editor DAVID A. FINDLAY, Assistant Editor HAIG A. MANOOGIAN, Assistant Editor EDMUND B. PALMQUIST, Assistant Editor JANE CHRISTIE, Editorial Assistant GLORIA J. FILIPPONE, Editorial Assistant SUSAN DANIELS, Editorial Assistant ARLENE SCHILP, Ediforial Assistant GLADYS T. MONTGOMERY, Washington Editor HARRY PHILLIPS, Art Director ELEANORE LUKE, Art Assistant
H. W. MATEER, Publisher WALLACE B. BLOOD, Manager
R. S. QUINT, Buyers' Guide Manager FRANK H. WARD, Business Manager H. E. HILTY, Classified Manager DONALD H. MILLER, New York JAMES GIRDWOOD, New York WM. S. HODGKINSON, New England JAMES T. HAUPTLI, Philadelphia CHARLES WARDNER, Chicago BRUCE WINNER, Chicago J. L. PHILLIPS, Cleveland HENRY M. SHAW, Cleveland T. H. CARMODY, San Francisco R. C. ALCORN, San Francisco CARL W. DYSINGER, Los Angeles WM. D. LANIER, Atlanta JAMES H. CASH, Dallas KEITH HENNEY, Consultant

MECHANIZED TV ASSEMBLY LINE-Automatic machine in Admiral's Chicago plant is equivalent to 16 -worker conventional line for inserting resistors and wire jumpers. Blank panels start down conveyor line at far end. Details on p 182

COVER
SHOPTALK 2
FIGURES OF THE MONTH 6
INDUSTRY REPORT 7

Wall-Mounted TV Takes Giant Step 7 Manufacturers Appraise Prospects... 8 Transistor Portables Boost Output.. 10 Dry-Cell Business Shows Power..... 10 Computing Networks Aid Operations 10 FCC Estimates Its Budget........... 12 Phosphor Sandwich Brightens Pix.. 12 Ultrasonics Invades New Markets... 12 Magnetron Sales Shift Into High... 14 Automatic Pilot Sales Increase...... 16

Industry Adds Up Volume For 195420 Mechanized Production Takes Hold.. 20 Financial Roundup 22 West German Industry Surges...... 22 Offshore Purchases Aid Europe..... 22 Radio Stations Blanket Country..... 24 Set Manufacturers Display Models.. 24 Transistor Radio Details............. 26 Meetings 26
Industry Shorts 26

CROSSTALK 121
Launching Control for Guided Missiles 122
by J. B. Schrock
Dynamic Receiver Selectivity 128
by J. L. A. McLaughlin
Transistorized F-M Signal Generator 133
by J. J. Hupert and T. Szubski
Tape-Controlled Servos Speed Chemical Analysis 136
by Walt Donner
Phase Measurement for Color TV and F-M 142
by Kurt Schlesinger
Low-Noise Input Stage for Audio Preamplifier 147
by James J. Noble and John K. Hilliard
Special-Purpose Relays Gain New Uses 150
by Frank Rockett
Counting Circuit Batches Components 157
Wide-Band Analog Function Multiplier 160
by Joseph A. Miller, Aaron S. Soltes and Ronald E. Scott
Generating R-F Energy for 6-BEV Revatron 164by C. Norman Winningstad
Infrared Speeds Erasure of Dark-Trace Tubes 170
by F. Holborn and G. Hodowanec
Resonant-Loop Antenna for VHE Direction Finding 172
by James H. Eakin
R-F Filter Design (Reference Sheet) 176
by C. V. Longo and E. Wolf
contents
continued
ELECTRONS AT WORK 178
Air Force Scientists Plot Static...... 178
Electroluminescent Light Amplifier..... 178
Visible Light From Millimeter Waves. 180
Portable Analyzer Measures Mobiles., 180
The Front Cover. 182
Potentiometer Design 184
New Government Patents 190
Networks For A.C Servosystems....... 190
Intense Sound Bad for Tubes......... 196
Transistor Amplifier Performance. 196
Weather Warnings 202
Photometer Tests Road Signs 204
Ion-Gage Supply Protecis Tubes 210
Reactance Voltage Bias Source. 218
Transistor Mike 222
Pertinent Patents 222
PRODUCTION TECHNIQUES 238
Air Cylinder Pushes Pallets On Line. . 238 Pressurized Tube Plant 258
Adhesive Tape Capacitors 238
Fiberboard Tote-Boxes for Parts...... 240 High-Speed Color Bander 262
Punching Chassis Stencils. 242
Flexible Drying Rods for Tubes...... 266
Blackboard Substitute 248
Red Flag on Clip Serves as Signal... 248
Waterproofing Cable Connectors....... 250Tape-Covered Clips Serve as Clamps.. 252Precision Photoelectric Wire-Cutter... 252
Carton Turnover Machine............. 266
Gap Gate for Coaxial Tuned Stub... 268
Stripping Nylon Jacket from Wire... 270
Winding Coils on Lathe.............. 274
Paper Templates Speed Start of Line, . 276
NEW PRODUCTS 278
LITERATURE 324
PLANTS AND PEOPLE 336
NEW BOOKS 370
THUMBNAIL REVIEWS 377
BACKTALK 378
INDEX TO ADVERTISERS 423

talk

friend, Bert Fox, who is now associated with him in receiver research. He says, further, "his laboratory is proving of great help on measurements ... he has increased his equipment some $\$ 5,000$ in the last few months to be of greater help to me. ..."

FOREIGN-A number of readers write in from time to time commenting on some article that originated abroad and wonder how we obtained the information. One service to which we have access is the McGraw-Hill World News, which maintains correspondents in a number of foreign cities. These newsmen send along items automatically for all of the McGrawHill magazines and are on call for special requests.

Here's a typical example of how it works: associate editor Jack Carroll recently visited the Federal Telephone and Radio plant at Nutley, N. J. While there he noticed some interesting pieces of equipment and discovered they had been made in West Germany. A cable to Gerry Schroder, our correspondent in Bonn, requesting more data, triggered a roundup article on the electronics business in West Germany. You'll find it in this month's Industry Report.

SETUP TIME—Back in August, 1952, we bought from a news syndicate a short story describing a for horn operated by radar from a lighthouse some distance away. It was a good story for the lay press,

EDITORIAL DISTAFF, more photogenic than last month's group, includes assistants Arlene Schilp, Jane Christie, Susan Daniels and Gloria Filippone
but we felt that it needed more technical "meat".

We wrote the syndicate; it wrote its correspondents in Canada; word was relayed back to us; we wrote the National Research Council of Canada; and officials there agreed that they would prefer to see a "more adequate technical paper published in Electronics". A busy engineer undertook the job of writing the paper.

Our correspondence file shows 26 letters changed hands. The new manuscript, being edited now, includes the latest modifications and data on another installation. It will appear soon.

NEW PHRASE—Editors, more than most people, are word conscious. Because of that we almost got all fouled up in preparing for publication the article on a transistorized $\mathrm{f}-\mathrm{m}$ signal generator, page 133. The term, reactance tube, has complete acceptance today but when a transistor simulates a tube that is
already simulating a reactance, what should you call it? This led to some semantic soul searching but we took the simple way, called it a reactance transistor. But it's not a new type of transistor.

NEGATIVE TIME-Part of our business that doesn't ever get talked about is the initiation of the work of preparing editorial material for issues many months in the future. Phrases such as deadlines and closing dates have become familiar to nearly everyone but they indicate only the last breathless moments when it is practically too late to do much except move two commas.

Which is to say that now, early January, we have started to prepare the editorial material that will go into the big extra issue, the Buyers' Guide, that comes out in the middle of June, first month of summer. It will contain articles having high reference value for design engineers engaged with cirruits, equipment and components.

[^0][^1]

NEW! NEW! NEW!
 MAGNETIC
 VOLTAGE REGULATORS

These Magnetic Valtage Regulators, or Regulating Transformers, are the first units in a comprehensive line of equipment of this type being developed by Sorensen. They are primarily intended for incorporation into other equipment, where performance becomes more effective when the incoming line voltage is stabilized. However, they can be used as auxiliary line stabilizers.
The units now available have capacities of $15,30,60$, and 120 VA . Soon to be added will be units of 250,500 ,

Input voltage range Output range Regulation accuracy Load conditions Time constant

ELECTRICAL SPECIFICATIONS
$95-130 \mathrm{VAC}, 14,60$ cycles.
115 VAC, RMS, 16.
$\pm 0.5 \%$ against line changes.
given load from 0 to full load. from 2 to 6 cycles for line changes.

MECHANICAL SPECIFICATION

Model MVR15
Model MYR3O Model MVR30 Model MVR120

length $61 / 2^{\prime \prime}$, Width $27 / 6^{\prime \prime}$, Height $31 / 2^{\prime \prime}$ Length $612^{\prime \prime}$. Width $270^{\prime \prime \prime}$, Height $31 / 2^{\prime \prime}$ Length 816". Width $31 / 2^{\prime \prime}$ ", Height 41/4""
Length $950^{\prime \prime}$. Width $31 / 2^{\prime \prime}$, Height $41 / 4^{\prime \prime}$
Send for Catalog MVRI, which gives full infor-
mation on the magnetic voltage regulator line.
Since Sorensen is now offering a new type of line voltage regulator, your inquiries regarding special requirements in magnetic voltage regulators will be weltomed. Write to the Sales Engineering Department, Sorensen \& Co., Inc., 375 Fairfield Avenue, Stamford. Conn.

SORENSEN

THIS BROCHURE DESCRIBING

MUJMIFAD MABSIJPS

\qquad

WRITE UNDER YOUR BUSINESS LETTERHEAD FOR PUBLICATION 7580

MUIRHEAD \& CO. LIMITED • BECKENHAM • KENT •ENGLAND

MAKERS OF HIGH GRADE PRECISION ELECTRICAL INSTRUMENTS

FIGURES OF THE MONTH

FIGURES OF THE YEAR

Television set production
Radio set production
Television set sales
Radio set sales (except auto)
Receiving tube sales
Cathode-ray tube sales

TOTALS FOR FIRST ELEVEN MONTHS

1954	1953	Percent Change	1953 Total
6,513,292	6,766,040	- 3.7	7,214,787
9,138,955	12,267,441	-25.5	13,368,556
6,223,332	5,600,423	+11.1	6,375,279
5,272,155	5,608,447	-6.0	7,064,485
347,180,564	413,687,529	-16.1	437,091,555
8,904,106	9,194,851	- 3.2	7,582,835

INDUSTRY REPORT

electronics-February - 1955

POSITIONING cathode-ray-tube electron gun of side instead of rear of glass envelope reduces tube depth to approximately 3 inches. Laborotory model of black-and-white version of tube, shown in operotion, helps ...

Wall-Mounted TV Picture Tubes Take Giant Step

Radically differing from conventional tv-picture-display methods, the flat picture tube developed by the west coast Electronics Division of Willys Motors, Inc. holds promise of revolutionizing the tv industry and simplifying aircraft instrumentation.

- How It Works-Unlike other proposed designs, the Willys tube does not use elaborate grid-switching techniques. It consists of a phosphor screen mounted between two glass plates. The entire unit is evacuated.

The electron beam is injected along a horizontal edge of the tube (see diagram) and flows in a fieldfree region along this edge, adjacent to a row of transverse deflection plates.

By controlling the voltages on these plates, the electron beam is bent at any desired place along the edge of the tube. The beam then flows vertically in a second fieldfree region between a series of transparent horizontal deflection plates and the electrically charged phosphor screen.

By controlling the voltages on the horizontal deflection plates, the beam is deflected into the phosphor screen at any desired vertical level.

A raster is scanned by sequentially changing the voltage on the transverse (vertical) and horizontal deflection plates simultaneously. All plates are kept at a high voltage except those opposite the position at which it is desired to bend the beam.

Use of electrostatic deflection Color Use-It is reported that
eliminates the need for magnetic components, with their higher power consumption.

- Spot Size-One of the advantages of the new deflection system is said to be a large convergence angle, which solves the beam blowup probblem prevalent in other tubes. Spot size is such that a 2,000-line raster might be scanned.
- Screen Size-Although the tv tubes shown have 15 -inch screens, tubes having useful screen areas comparable to that of 24 -inch conventional tubes have been built. The new tubes have an approximate depth of only 3 inches in comparison to approximately 20 inches for the conventional tubes.
progress is being made in developing a color-tv picture tube based on the above principles. Instead of using color dots or strips, the tube might use transparent color phosphors in a multilayer screen, very much like the three color-sensitive layers in some color films. Such a tube should have no registration problem and would be comparatively simple to manufacture. Color modulation would be accomplished by changing the relative potentials of the three phosphor layers.
- Aircraft Instrumentation-One model of the new tube was adapted by Willys for the Navy's long-range program for simplifying aircraft instruments. This program will result in an instrument panel consisting of only two basic instruments, both picture tubes.

One instrument will be a semicircular plate mounted vertically and directly in front of the pilot. It will be transparent and will not interfere with the pilot's vision during contact flight. Altitude, speed and attitude of the aircraft will be shown on the plate. Physical features such as mountains, which the pilot sees during contact flight, will be depicted artifically.

Mockup of aircraft cockpit made by Douglas Aircraft for Navy's instrument simplification program. The two large instruments are flat-plate Willys tubes on which information needed to fly aircraft will be displayed

The second instrument will consist of a round plate mounted below the first just inside the cockpit rim. Its appearance will be similar to that of a radar map. Broad physical features of the earth below will be depicted by analogy. Calibrations around the rim will indicate number of miles to pilot's base, fuel remaining and similar information.

Because picture tubes are used, several items of information can be selectively superimposed in the
same area, to be used as needed. The tubes will not be used to present an actual picture of what is happening in the vicinity of an aircraft. The display the pilot sees will be an analogy of the visual world that he would see if flying by contact in clear weather.

The first interim instrument panel of the program is soon to be installed in aircraft now in production. The first simplified panel to be developed is now being tested.

Television Manufacturers Appraise Prospects for 1955

Companies see increased business for many of the industry's products

Year-end statements by manufacturers in the electronics field indicate the wide variety of activities from which business increases are expected in 1955. Following are excerpts from statements by seven electronics manufacturers:

- Admiral-We look forward to 1955 with cautious optimism. We believe industry tv sales will be off slightly during 1955 to an anticipated 6.5 million sets. From 100,000 to 200,000 color sets may be sold during the year. Mass production of color receivers at prices the public can afford will not be
feasible until a color tube is available at approximately $\$ 50$ to $\$ 60$.
- CBS-Columbia-The outstanding news in the tv industry in 1955 will be the advances made in color tv. The generally anticipated good business, wide employment, increased consumer spending and expansion of new household units plus the growing replacement market (34.5 percent of the total receivers in America today are three or more years old) will help produce an excellent black-and-white receiver market in 1955 ,
- Du Mont-We anticipate a large sales volume of industrial closedcircuit equipment in the years ahead. As far as the tv receiver market is concerned, it still looks
like primarily a black-and-white year. Color receiver production may not go much over 50,000 units in 1955.
- GE-New designs in germanium rectifiers will nearly quadruple the volume of this business in 1955. Use of two-way radio communication in mobile applications will continue to expand with total industry sales approximately 10 percent higher than in 1954.
- Philco-New developments will come from research laboratories with ever increasing speed. This will be true of the electronics industry with the tempo of development of guided missiles as a good example. This country is spending
(Continued on page 10)

Another important SYLVANIA First

 for your microwave equipment...

These high-power microwave components incorporate "ceramic-windows" for peak performance at 100 KW power levels - mounting is simplified

ATR Type 6546 featuring...
$\sqrt{ }$ new unitized construction
-dual ATR and mount in one package - eliminate "castle" mounts

For all your TR-ATR needs Sylvania offers a complete line. Write for complete data.
"Another reason why it pays to specify Sylvania"

Sylvania Electric Products Inc. 1740 Broadway, New York 19, N. Y. In Canada: Sylvania Electric (Canada) Lid. University Tower Bldg., St. Catherine Street Montreal, P. Q.
$\$ 600$ million on guided missiles in the current fiscal year and costs may exceed $\$ 1$ billion next year.

- RCA-In the high fidelity field, sales for the industry as a whole during 1954 increased about 50
percent over 1953. It is believed that the annual retail sales total of $\$ 225$ million in 1954 will rise to $\$ 300$ million in 1955 .
- Raytheon-The industry will place more emphasis on lower
priced black-and-white tv with luxury priced monochrome sets giving way to an increased volume of color receivers. Between 300,000 and 400,000 color receivers will be produced by the fall of 1955 largely in 21 -inch screen size.

PRODUCTION model of transistor radio evolves from lab design (right), as . . .

Transistor Portables Boost Output

Circuit using eight transistors provides high gain and 300 -microvolt sensitivity

LATEST step in the application of transistors to consumer products is a portable radio receiver that uses eight transistors and performs as well as conventional sets.

The set covers the broadcast band from 530 to $1,620 \mathrm{kc}$ and has a sensitivity of $300-500$ microvolts per meter. The audio response is from 100 cps to 8 kc and the unit delivers 100 mw to its 4 -in. loudspeaker.

- Production-On sale March 1,
the transistor radio will retail for $\$ 79.95$ and is a product of Raytheon's radio and television operations in Chicago. The set will run a year at a cost of 60 cents for its four size D flashlight batteries. Mercuricoxide cells would provide $2 \frac{1}{2}$ years of operation.
- Design-The eight transistors function as mixer, oscillator, two i-f amplifiers, detector, first audio and push-pull output amplifiers. The set uses a standard 455 -kc i-f. Commercially available miniature components are used. Weight is five pounds.

Dry-Cell Business Shows New Power

Battery manufacturers see an increasing market for their product. They see the plug-in radio becoming obsolete and the battery becoming the dominant power supply.

- Market-Today, there are about 9.1 million battery-powered radio sets in use. During 1955 this should reach 10.6 million sets. From this market the dollar volume in dry-cell sales may reach about $\$ 50$ million this year.

According to the Department of Commerce, here is the way production of battery-powered radio-set shipments excluding portables, has run: 1953, 80,000; 1952, 201,000; 1947, 549,000 . In the same years, portable radio shipments have run: 1953, 1.7 million; 1952, 1.7 million; 1947, 2.4 million. In 1954 the number of portable sets sold that use batteries totaled 1.5 million. Between 200,000 and 250,000 of these were the small personal type.

Computing Networks Improve Operations

Automatic coding unit lets design groups hook up to centrally located computer

One deterent to purchase of giant computers is fear that a single plant or laboratory will not be able to keep the big brain working round the clock.

One answer may be IBM's automatic coding unit called the transceiver. This device duplicates sets of punch cards at remote points by wire or radio circuits.

- Application-General Electric engineers at the aircraft gas turbine division, Evendale, Ohio; the medium steam turbine generator and gear department, Lynn, Mass.; and the large steam turbine generator department, Schenectady all wanted to use a large computer in their designing.

The only computer, an IBM 701, was at Evendale. The answer was a party-line hookup linking Evendale with Lynn and Schenectady using punch card transceivers. To handle the overflow work, GE rented the 701 at IBM headquarters in New York eight hours a day, Evendale acts as "central", receiving problems and routing them either to its own computer or to New York.

The station at New York will be discontinued in 1955 when GE receives other electronic data processing machines now on order.

- Other Setups-A similar computing hookup was used experimentally at United Aircraft's Pratt and Whitney division in Hartford, Conn. Here too, the problems involved jet engine design. However, the only link was one from engi-
(Continued on page 12)

new design freedom with

Surague Buiton Ceramic Capacitors

Sprague button ceramic capacitors offer distinct advantages to designers of ultra-high-frequency TV receivers and electronic equipment. These tiny capacitors are available in many styles for coupling, bypass, and feed-thru applications. Their wafer-dielectric construction makes possible higher self-resonant frequencies than with capacitors using conventional dielec. tric tubes. Button stand-off types, for example, minimize ground inductance and hold it at a fixed value while providing a short, uniform bypass to ground. They also provide effective shielding of the capacitor element by the outer metal shell. Sprague button capacitors are sealed against moisture by a high temperature resin, and are conservatively rated at 500 volts d-c.

For complete engineering data, write for Bulletin 605A to Technical Literature Section, Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.

Sprague, on request, will provide you with complete engineering service for optimum results in the
use of ceramic capacitorsbuttons, dises, plates, printed r-c networks, high-voltage moldeds, etc.

WORLD'S LARGEST GAPACITOR MANUFAGTURER

SPRACUE

neering offices to the computing center.
The Air Force is another customer for the punch card transceiver. An experimental link was used recently to transmit statistical data on men and equipment to Washington from Port Lyautey, French Morocco. Using a Navy radio link, data was transmitted at 1,000 characters a minute (ElecTronics, p 184, Jan. 1955).

FCC Estimates Its Budget For '55 And '56

Amount requested by President Eisenhower for the Federal Communications Commission for fiscal year 1956, which begins July 1 of this year, is $\$ 6.7$ million. The amount authorized in fiscal 1955 for FCC was $\$ 6,544,400$ while the actual amount obligated in 1954 was $\$ 7.4$ million.

However, with reimbursements from other accounts, the total available for obligation in fiscal year 1956 is $\$ 6,888,335$ compared to an estimated $\$ 7,075,775$ for fiscal ' 55 . The ' 55 figure includes other accounts and $\$ 150,000$ reappropriation of prior year balance.

[^2]
Phosphor Sandwich Brightens Pix

New solid-state device amplifies light ten times. May aid television viewing

DIRECT amplification of light without electron tubes can be accomplished by a 10 -micron film of phosphor sandwiched between conducting plates one of which is made of electrically conducting glass.

Possible applications include x ray fluoroscopy, photography and see-in-dark-devices utilizing ultraviolet sources. The light amplifier may also brighten television images to enhance the performance of monochrome projection tv units and aid development of picture-on-thewall screens. The light amplifier is a development of GE Research Laboratories.

- What It Does-At a recent demonstration, a fluorescent screen four inches across was illuminated with ultraviolet light from a slide projector. Then d-c voltage was applied to the conducting plates and a yellowish image was produced. The glow became brighter as the voltage was increased to about 100 v .

Application of ultraviolet light with no voltage on the light amplifier caused only a faint glow.

- How It Works-The phosphor film is vapor-deposited at high temperature and low pressure. It consists of zinc sulfide activated with manganese. The chemical content of the film determines what radiation wavelengths the light amplifier will accept and what wavelengths will be returned.

The size of the screen is limited by the size of the vessel available for evaporating the phosphor film on the glass plate.

- Applications-Probably the most immediate application is in X-ray fluoroscopy. A physician can use a safer dose of x-radiation and study the patient a longer time if one of the light amplifying screens is used to brighten the image.

A screen may be developed to fit over the face of a tv tube and permit lower voltage operation or in projection tv the image may be focused on the light amplifying screen.

One development problem is to reduce the time constant of the phosphor so that images may be erased as fast as produced.

For more details on the device see p. 178.

Ultrasonic Processing

Invades Three Markets

Tinning, drilling and cleaning show most industrial promise; 1954 sales approach $\$ 1$ million

PaCkaged ultrasonic generators for industrial use are now being marketed by some 24 U.S. firms, in sizes ranging from 50 watts to 2 kilowatts of output power, whereas only a few years ago it was difficult to find a single firm having anywhere near a complete line of units.
Sales of the equipment have gone up correspondingly, from an esti-

Cleaning clock movement in ultrosonic bath hoving two Mullard transducers fed by r-f generator
(Continued on page 14)

Magnets for rotors or stators ...any design or size you may require

"MAGNETIC MATERIALS CATALOG"

Write for your copy

Contains handy data on various types of Alnico Magnets, partial lists of stock items, and information on other permanent magnet materials. Also includes valuable technical data on Arnold tapewound cores, powder cores, and types "C" and "E" split cores in various tape gauges and core sizes.

ADDRESS DEPT. E-52

The use of Alnico permanent magnets in rotor and stator assemblies of motors, generators, magnetoes and tachometers has revolutionized the designs of these devices. Whatever your need may be -from a tiny rotor for a timing device to a large slab for power generators-Arnold can take care of your requirements, either for experimental samples or production quantities.

- Let as work with you. You will have the advantage of working with a leading producer of rotor magnets, whose manufacturing and testing facilities-the most modern in the business-give you the best assurance of high quality standards and uniform performance.

Wadsied

The Arnold Engineering Company

SUBSIDIARY OF ALLEGHENY LUDLUM STEEL CORPORAIION General Office \& Plant: Marengo, Illinois DISTRICT SALES OFFICES . . New York: 350 Fifth Are.
Los Angeles: 3450 Wilshire Blvo. Boston: 200 Berkeley 5 .
mated $\$ 250,000$ in 1953 to somewhere around $\$ 1,000,000$ for 1954. Figures for pulsed ultrasonic equipment, used for measuring and testing in industry and for depth-finding and detection under water, are still larger but data is not available because of military secrecy.

- Markets-Many laboratory experiments with ultrasonic equipment have been widely publicized but most remain in the labs for purely economic reasons. Even with the largest commercial generators, the equipment costs around $\$ 2.50$ per watt, and can be as high as $\$ 10$ per watt for the smallest units. This is luxury-price power, economically justified only when it can do a job not heretofore possible, improve product quality or cut production costs. Three applications show promise of meeting these economic requirements.
- Tinning of Metals - Low-frequency electronic generators, around 22 kc , are used both with hand-held ultrasonic soldering tools and ultrasonic solder pots for tinning aluminum so it can be soldered conventionally. Magnetostriction transducers produce cavitation in the molten solder and scour away oxide films.

As yet, the technique is used little if at all for dip-soldering of mechanized circuitry, because of the difficulty of inducing cavitation over the large area required. Use of two or more transducers in a pot may solve dip-soldering's current problem of occasional bad joints. Another problem, however, is release of contaminats from some plastic laminates by cavitation.

- Cleaning-Two methods of ultrasonic cleaning are currently being used. One uses low-frequency generators (around 25 kc) with magnetostriction or quartz transducers for removing hard films from objects by cavitation.
Removal of protective lacquer from optical lenses is one example. Galvanometer movements, glass tubes for semiconductors, vacuumtube electrodes, relay and other assemblies to be hermetically sealed, and dip-soldered panels are a few
electronic products undergoing electronic cleaning routinely in production. The cleaning fluid is either a detergent or a solvent for the material to be removed.

The other method uses frequencies from 200 kc to 2 mc for removing loosely adhering particles from otherwise inaccessible areas of small articles or from complex assemblies such as watch or clock movements. Multiple transducers are usually required, and parts are hand-dipped or conveyor-fed through the activated zone between transducers. Considerable custom design is needed to get optimum
combinations of transducers and solvents.

- Drilling-Though to some extent stalemated now because of patent conflicts, ultrasonic drilling may well have the biggest potential because it will make square or oddshaped holes and will work far better than existing techniques in superhard materials ranging from tungsten carbide on up through diamonds. The frequency used is around 25 kc . The bigger the hole, the more power is needed. For painless drilling of cavities in teeth, tiny ultrasonic drills show promise.

Part af a day's run af several types of Raytheon magnetrons are readied for shipment as ...

Magnetron Sales Shift Into High

Annual output increases as sales to government and civilian markets climb

In the past year, the magnetron has become, dollarwise, an important tube type. Manufacturers estimate sales this year reached nearly $\$ 50$ million, an increase of nearly 50 percent over last years sales. Compared to 1952 business, 1954 volume is nearly double the sales in that year.

- Why-One reason for the grow-
ing dollar sales volume of magnetrons may lie in the lag between the time the units are ordered until they are delivered and final billing is made. Since an estimated 90 percent of total magnetron sales go to the government for microwave uses, much of the 1954 sales increase could represent billings on government contracts placed much earlier.

Another reason for the sales rise is that more high-power units are in demand. Magnetrons with peak
(Continued on page 16)

ENCAPSULATION IN GLASS

of diodes, transistors, and other crystal semi-conductors

is now available with Kahle equipment and know-how!

glass has these advantages:

It offers a true, life-time hermetic seal.
It offers almost unlimited flexibility as to size and shape. It answers the need for miniaturization.

It is transparent. In cases where limited transparency, or translucency, or color opacity are desired, glass can be perfectly adapted.

Glass is available in a wide range of physical and chemical characteristics for special purpose applications.

It is inexpensive and lends itself to automation.

It is readily cleansed and sterilized.

With Kahle machinery and methods you can obtain high speed, low speed, or laboratory production to meet any encapsulation production requirements.
for complete details write today to
Rahle

[^3]
INDUSTRY REPORT-Continued

power ratings ranging up to 5 megawatts are being produced. Since these tubes sell at higher prices total dollar volume swells.

Much of the increase in magnetron sales may be due to the stepped up plans of the government in providing radar defense for the U.S. With much of the continental radar fence still to be erected, indications are that magnetron sales to the government market will continue to grow.

- Civilian-Increasing use of maggies in commercial radar equipment has also helped. Over 5,000 marine radars are authorized for use according to FCC figures. Use of radar in weather forecasting and observation is another factor in the magnetron market.

The medical field is another important civilian market. In 1953 some 15,000 of the units were in use in microwave diathermy equipment. It is estimated that about 75 percent of all diathermy in use in the U.S. is of the microwave type that uses the magnetron.

Beginning to grow as another commercial market is the food field. Raytheon has two models of radar cookers on the market. One range uses one magnetron; the larger unit uses two. Microwave units are being tried by Heinz for quick quick warming of individual cans of soup. The Santa Fe railroad has used the units in its diners and a number of Howard Johnson restaurants have installed the radar stoves.

- Firms-Approximately 10 manufacturers produce magnetrons in the U.S. They make over 100 types, ranging in price from $\$ 100$ to several thousands of dollars. Importance that tube makers place on magnetron sales picture was indicated last year when IT\&T dropped out of the picture-tube business to concentrate on magnetrons and other power tubes. Establishment by GE of a new electron tube development laboratory at Stanford University to concentrate on developing and exploring the application of microwave electron tubes has also emphasized the importance of the units.

ENGINEERING prototype of the Bendix autopilot that uses card-type transistorized amplifiers, top left is flight tested as

Automatic Pilot Sales Increase

Volume of the autopilot business is almost anyone's guess because of security regulations surrounding production. However, educated guesses indicate that somewhere in the neighborhood of 50,000 systems have been produced in the past five years, not including those for guided missiles.

One electronic manufacturer estimates that sales of flight control and gyro systems last year were between $\$ 30$ and $\$ 40$ million with pure electronics accounting for some $\$ 15$ to 20 million of the total. An autopilot company estimates that the present backlog of orders totals some $\$ 300$ million.

Despite the wide disparity in volume estimates, they indicate the importance of the field dollarwise. The average price of commercial autopilot systems has been estimated at $\$ 20,000$ and systems for military aircraft can cost much more.

Complex systems such as the one used for vertical take-off aircraft and others than can handle complete operations indicate that autopilots will become even more costly.

- Companies-Many electronic manufacturers share in the auto-
pilot business through subcontracts. One autopilot manufacturer uses over 100 subcontractors. There are about 20 U . S. manufacturers of autopilots.

Most of the work of these companies in autopilots is done under government contracts, but several firms have concentrated on the civilian aircraft field. Use of autopilots in aircraft for executives has been growing steadily. Helicopters are also becoming an important market.

- Transistors-Bendix Aviation recently announced that the first successful flight of an airplane controlled by an automatic pilot, containing transistors entirely instead of electronic tubes, had been made last May. Flight tests of this equipment are continuing.

The company delivered a completely transistorized automatic pilot system to the Air Force in April. It is being ground tested in a Lockheed F94C for eventual evaluation in high-performance aircraft.

In the equipment shown, three card-type transistorized amplifiers are used for the rudder, aileron and elevator control channels. Bridge-
(Continued on page 20)

The new G-R Slotted Line is amazingly smooth performing . . . offers many significant new design features . . . is extremely valuable for VSWR, impedance and voltage measurements and for determinations of attenuation, power and mismatch at any frequency from 300 to 5000 Mc .

This instrument is superior in both electrical characteristics and mechanical features and is specifically designed for adaptability to automatic motor drive. It makes possible accurate measurements on antennas, lines, coaxial components and all types of equipment operating at vhf and uhf.

The many significant improvements offered in this new Slotted Line are a result of a continuing and intensive G-R research program aimed at providing the vhf-uhf engineer with the finest tools available . . . precision equipment which is inexpensive, rugged, light-weight, and equally useful in laboratory or field.

The new Type 874-LBA is in keeping with this G-R concept around which has been built a complete and integrated line of coaxial elements, oscillators for any frequency range, quality signal and pulse generators, a unique impedance and admittance measuring device, a highly sensitive high-frequency detector and many other instruments and accessories. Write for complete descriptive literature.
Type 874-LBA Slotted Line $\$ 220$ $\$ 11$
Type 874-D20 Adjustable Stub for tuning the crystal rectifier
Type 874-D20 Adjustable Stub for tuning the crystal rectifier
Type 874-LV Micrometer Vernier for measuring high VSWR ratios \$23

Wide Frequency Range -
300 to 5000 Mc ; useful down to 150 Mc and well over 5000 Mc .
Built-In Crystal Detector - electric field within 50 -ohm, air dielectric line is sampled by an electrostatic pick-up probe and then detected by a crystal rectifier; both are mounted in a sliding carriage.
Minimum Built-In VSWR - line and connectors introduce residual VSWR of less than 1.025 to 1000 Mc , less than 1.07 at 4000 Mc .
Constancy of Probe Coupling-within $11 / 2 \%$ along entire $50-\mathrm{cm}$ line - spring-loaded nylon plugs at probe carriage ends bear on outer conductor, practically eliminating "play" and consequent changes in probe coupling. Precision-Tooled Probe Carriage - made of cast bronze, it slides on tightly fitting bronze bearings - felt washers at ends prevent dirt from entering carriage - oil holes provided for long-lasting lubrication of bearings.
Sturdy Line Construction - outer conductor is rigidly clamped on heavy brass castings and stiffened by two $1 / 2^{\prime \prime}$ stainless-sleel rods - rugged center conductor is of steel tubing with heavy copper and silver plating, supported by two teflon insulators at ends; these insulators are electrically compensated to eliminate reflections.
G-R Universal Type 874 Connector at Ends - this lowloss connector has proven superb for instrument use its VSWR is less than 1.04 to 4000 Mc ; its universal construction permits any Type 874 Connector to plug into any other, materially reducing set-up time and the need for large stocks of male and female components; connections and disconnections are made instantly.
Dinensions- $26 \times 41 / 2 \times 31 / 2$ inches.
Net Weight - only $81 / 2$ pounds.

looking for GERMANIUM TRANSISTORS

THAT CAN DO THE JOB UP TO

There are several times as many RAYTHEON TRANSISTORS in use as all other makes combined!
 \title{

Operating costs cut, efficiency up
 \title{ \section*{Operating costs cut, efficiency up when Magnolia adds Hammarund coC"

 when Magnolia adds Hammarund coC"}

The Problem: $\begin{aligned} & \text { To build a new truck-lo ading terminal out- } \\ & \text { side the congested }\end{aligned}$ side the congested refimery tark area.

The Multi-Gate system made unnecessary the use of an additionall man curing truckloading operations.

The Magnolia Petroleum Company planned to build a new truck-loading terminal at its Beaumont, Texas refinery. They wanted it built outside the congested tank area.

Separating the truck-rack from the tanks and pumps, however, would make it necessary to add an additional man per shift. Also, the operations at times-especially in bad weather-would have to wait for this man to move from one pump location to another.

After installing the Multi-Gate remote control equipment, designed and furnished by Hammarlund, the truck-rack operator now has only to push a button corresponding to the type of fuel required. The remote pumps at the tank sites are activated and the required fuel is immediately obtained at the truck-rack. As a result, it was unnecessary to employ the additional

man per shift, and it also eliminated the possibility of hurnan error in telephone orders.

According 10 John Petkovsek, Senior Engineer and Supervisor of Communications and Electrical for Mag. nolia, other benefits of the Hammarlund system were:
I) Audio tones made it possible to perform many functions using a single telephone line, thus reducing the monthly rental costs. And without the dangers of DC pulses.
2) The system can be extended any time without additional communication lines, or it could be operated over radio or microwave without change.
This is another example of the Hammarlund concept of Centralized Operations Control* at work. Write to Hammarlund, 460 West 34th Street, New York 1, N. Y.for details on COC. Ask for Bulletin E-2

[^4]
OFFSHORE PROCUREMENT

Electronics Contracts Placed Through June 30, 1954

Country	Dollar (Value in Millions)		
			Air
	Army	Navy	Force
Belgium-Luxemburg	0.3	0.4	8.2
France	50.4	2.7	5.2
Germany	7.7		0.1
Italy	17.6	2.3	1.9
Japan	1.4	.	0.5
Netherlands	3.2		0.2
United Kingdom	39.2	9.1	6.0
Yugoslavio	0.2	.	.

and Navy roughly splitting the difference.
Purchases are typified by two antiaircraft fire predictor computers model PHF-90 for France turned over to the Signal Corps by

France's TSF. The contract, valued at $\$ 7,450,000$, was signed last June.
Other examples include a Contraves electronic predictor of British design for Belgium valued at $\$ 347,000$ and for Italy, value $\$ 2,-$ 700,000 . Also for Italy, a Contraves optical tracker of British design licensed to an Italian company, value $\$ 500,000$. For Germany: an AN/TRC-4 radio relay set, \$1,400,000 and an AN/GRC-9 receiving and transmitting set.
Examples of Navy equipment contracts let last spring: iff equipment for Great Britain, \$11,500,000 ; an $\mathrm{SG}-6 \mathrm{~B}$ radar and spare parts, $\$ 719,000$ and in spring 1953 two orders for antiaircraft radar of British design, each over $\$ 5$ million.

Soundcasting Stations Cover Nation

Big Texas has the greatest number of a-m station authorizations as tallied from FCC records in midDecember. As shown on the map, the Lone Star State has 209 (24 $\mathrm{f}-\mathrm{m}$, both commercial and educational).

California has 155 a-m stations; Pennsylvania, 130; followed by North Carolina, 119; New York, 108 and Florida, 105.

New York City and Chicago both have $15 \mathrm{a}-\mathrm{m}$ stations apiece, followed by Los Angeles with 13. Every territorial possession, including Guam, has a-m grants. Puerto Rico's 26 a-m authorizations are more than those for any of 14
states on the mainland.

- F-M Coverage-Frequency modulation authorizations (shown on the map in parenthesis, below the a-m figure) show one or more for all but six states-Montana, Nebraska, North Dakota, South Dakota, Vermont and Wyoming. California has the greatest number (total of 51 commercial and educational) with New York and Pennsylvania close seconds (50 each). Ohio has 42.

New York City leads the municipalities with 14 f-m stations. Philadelphia, Washington and Detroit have more $f-m$ than $a-m$ grants.

Set Manufacturers Display 1955 Models

Twenty-five companies introduce new monochrome tv receivers and radio sets

DURING January many of the industry's tv set manufacturers displayed new monochrome tv sets for the 1955 market while only three companies introduced color models. However, with RCA's recent reduction from $\$ 175$ to $\$ 100$ for its 21 inch color tube, more new color models may soon hit the market.

- Lines-Number of models introduced by individual companies ranged from a few drop-in models to completely new lines of up to 50 models.

Predominant among the models introduced were 21 -inch sets, both table models and consoles. Sets with 17 -inch and 24 -inch screens were emphasized also.

Price changes followed the pattern of last year. Price leading 21inch and 17 -inch table models were lower than last season's equivalent. Two companies reduced prices on carry-over sets.

- Design-Greater use of the vertical chassis in new tv models was evident with at least five manufacturers showing sets using the design. Ultrahigh frequency tuners were still utilized in much the same way as in previous lines with units costing from $\$ 30$ to $\$ 50$ additional.

Emerson plans to incorporate in all its receivers for 1955 a further improvement on series-string circuits. The system cuts operating costs as much as 50 percent and boosts parts life from two to ten times, according to the firm. Pic-ture-tube accelerator voltage is increased substantially. Power consumed is about 120 watts compared to 185 watts in older models. The company also introduced new large-screen sets incorporating circuits operating on both alternating and direct current.

- Radio-New radio receivers were displayed by manufacturers with prices ranging from $\$ 12.95$
(Continued on page 26)

1•1• - $\bullet \underbrace{(8)}$ A continuously variable, stepless toroidal inductor which can provide a $4: 1$ range of maximum to minimum inductance in 180° rotation of a shaft. Write for new brochure which gives complete technical data.

to check

BURNELL

firs!

3 EXTRA REASONS TO CHECK BURNELL FIRST!

* Proven Top Quality
* Competitive Prices
* Prompt Deliveries

-1. -1 Combining the advantages of toroidal type winding with the molybdenum permalloy dust core and other specially selected materials, these toroids provide higher Q than any other structure. They also provide greater stability of inductance vs. temperature and level in a smaller space. Their self-shielding properties permit compact assemblies of coils with a minimum of deleterious effects. Supplied to an inductance accuracy of 1%. Available in standard, miniature and sub-miniature sizes. Also in a wide variety of finishes, including for the first time toroids molded in a new special material.

TELEMETERING FILTERS

Band pass filters available for every channel ranging from 400 to 70,000 cycles for band width between $15-40 \%$. Low pass filters available for operation in either unbalanced or balanced line, and range in cut off frequency from 6 up to 10,500 cycles. Also, miniaturized filters that do not sacrifice attenuation characteristics, save up to 80% space.

Write Department C for Catalog 102A

TELETYPE: YONKERS, N. Y. 3633
BURNELI \& CO., IW.
Yonkers 2, New York
PACIFIC DIVISION: 720 Mission Street, South Pasadena, California
for table models to over $\$ 200$ for hi-fi consoles. One portable radio introduced is an 8-band a-c/d-c set with built-in thermometer, barometer and hygrometer for weather forecasting.

DuMont entered the radio set business with the introduction of a 5 -tube set that can be installed inside its tv receivers and connected to the loudspeaker.

Transistor Radio Details Released

Technical information on the experimental wrist watch radio developed by the Army Signal Corps in 1953 (Electronics, p 5, October, 1953) has been released by the Commerce Department's Office of Technical Services.

- Components-The receiver shown uses three transistors, a type 1729 point contact for the regenerative stage and two type TA-153 npn junctions for the two audio stages. Power supply is a miniature 6.5 -volt battery consisting of five RM 412 mercury cells. Battery drain is about 20 milliwatts and battery life about 10 hours. As shown in the photograph, the set utilizes a printed circuit.

Regeneration is obtained inductively with feedback controlled by the proximity of two coils. A miniature capacitor is used for tuning. Bead diodes, type 1764, serve as detector and as a d-c return.

MEETINGS

Jan. 31-Feb. 4: AIEE Winter General Meeting, Hotels Statler \& Governor Clinton, New York, N. Y.
Feb. 10-12: Seventh Annual Conference and Electronics Show, Southwestern region of IRE, Baker Hotel, Dallas, Texas.
Feb. 11-13: Los Angeles Audio Fair, Hotel Alexandria, Los Angeles.
Feb. 14-16: Conference On High-Speed Computers; Louisiana State University, Baton Rouge, La.
Feb. 17-18: National Conference On Transistor Circuits sponsored by IRE, AIEE, U. of Penn.; Irvine Auditorium, University of Pennsylvania and Penn Sherwood Hotel, Phila., Pa .
Feb. 20-22: Institute of Surplus Dealers' Fourth Annual Trade Show and Convention, 212th AAA Armory, New York, N. Y.
March 1-3: Joint Western Computer Conference and Exhibit sponsored by IRE, AIEE, ACM; Statler Hotel. Los Angeles, Calif.
March 21-24: 1955 IRE National Convention, Waldorf Astoria Hotel \& Kingsbridge Armory, New York, N. Y.
Mar. 28-Apr. 1: Society for Nondestructive Testing, technical sessions, Ambassador Hotel, Los Angeles.
April 15-16: Ninth Annual Spring Technical Conference, Cincinnati IRE; Engineering Society Bldg., Cincinnati, Ohio.
APRIL 19-21: Twelfth British

Radio Components Show, Grosvenor House, London.
April 25-27: Eighth Annual Conference for Protective Relay Engineers, A \& M College of Texas, College Station, Texas.
May 2-5: Third Annual Semiconductor Symposium of the Electrochemical Society, Cincinnati, Ohio.
May 4-6: Fourth International Aviation Trade Show, 69th Regiment Armory, New York, May 6: American Association of Spectrographers Sixth Annual Conference, Chicago, Ill.
MAY 16-19: Electronic Parts Distributors Show, Conrad Hilton Hotel, Chicago.
May 18-20: Annual National Telemetering Conference and Exhibit sponsored by IRE, aIEE, IAS, ISA; Hotel Morrison, Chicago, Ill.
May 19-21: Global Communications Conference, sponsored by AFCA; Hotel Commodore, New York, N. Y.
June 3-5: ARRL Hudson Division Convention and Amateur Radio Equipment Show, Hotel Adelon, Long Beach, N. Y.
Aug. 23-SEpt. 3: British National Radio Show, Earls Court, London.
Aug. 24-26: 1955 WESCON, Civic Auditorium and Fairmount Hotel, San Francisco, Calif.
SEPT. 27-Oct. 1: International Analogy Computation Meeting sponsored by the SITEL of Belgium, Brussels.
Nov. 14-17: Second International Automation Exposition, Navy Pier, Chicago, Ill.

Industry Shorts

- Over 47,000 channel miles of AT\&T cross-country communications routes were re-engineered and re-equipped to carry color tv to 139 stations in 101 cities in 1954.
- Eight companies in the electronics field have been awarded Certificates of Management Excellence for 1954 in the sixth annual management survey by the American Institute of Management.
- Fund for the Advancement of Education has provided $\$ 43,845$ to determine the feasibility of using closed-circuit tv for college instruction. The study will be conducted at Pennsylvania State University.
- Number of retail radio and tv dealers in the U. S. has increased by nearly 12,000 in less than two years, according to RETMA.
- Americans will need over $5 \frac{1}{2}$ million new picture tubes for their tv sets in 1955, according to GE.
- Closed circuit industrial color tv equipment will be manufactured by CBS-Columbia.
- Spain now produces some 200,000 radio sets a year and has become an exporter of receivers, according to the country's radio manufacturers association.
- Chimney sweep in Stockholm has invented a radio transmitter and receiver for detecting flaws in flues.

NOW- in another important advancement from Kay Electric-circuits may be completely evaluated with spot frequency checking wholly eliminated. The new Kay KEYDSWEEP provides in-
ternal sync pulses, and will operate with an external source of sync and blanking pulses giving pedestals and spacings in accordance with the source characteristics.

Another example of AMP's Creative Approach to Better Wiring

Taper Tab receptacles

for wire sizes 26 to 18

and cost RELIABILITY

Cubic restrictions have brought about a whole new concept of wire termination. The AMP Taper Technique with AMP taper pins, tab receptacles, blocks and modified miniature components will help you take full advantage of small wire, small insulation and small space for your wire terminations.
AMP Trade-Mark Reg. U. S. Pat. Off. © AMP

Send today for your copy of our brochure, AMP's Creative Approach to Better Wiring.

AIRCRAFT - MARINE PRODUCTS, INC., 21OO Paxton Street, Harrisburg, Pa. In Canada: AIRCRAFT-MARINE PRODUCTS OF CANADA, LTD., 1764 Avenue Road, Joronto 12, Ontario, Canada

More IRC resistors are used by manufacturers
of military devices, instruments, computers,
electronic and electrical equipment, appliances,
radio and television sets than any other brand.

International Resistance Company, 401 North Broad Street, Philadelphia 8, Pa.

This new oscilloscope offers the advantages of all six Type 53 Plug-In Units now available - plus those yet to come. Only the wide-band units are limited by its dc-to- 5 mc response. Wide sweep range ($0.2 \mu \mathrm{sec} / \mathrm{cm}$ to $12 \mathrm{sec} / \mathrm{cm}$) and $4-\mathrm{kv}$ accelerating potential complement the signal-handling versatility of the Type $532 \ldots$ resulting in performance characteristics desirable for a great many laboratory applications.

Extra dependability is designed into the Type 532, mainly through circuit simplicity and conservative tube loading. Yet it retains all the precision and stability you've come to expect in Tektronix oscilloscopes. It is an instrument that will give lasting satisfaction in all applications within its capabilities.

BASIC CHARACTERISTICS

Wide Sweep Range
21 calibrated sweeps from 1 $\mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$, accurate within 3%. 5 -x magnifier, accurate and valid on all sweep speeds, extends calibrated range to $0.2 \mu \mathrm{sec} / \mathrm{cm}$. Full range $-0.2 \mu \mathrm{sec} / \mathrm{cm}$ to 12 $\mathrm{sec} / \mathrm{cm}$, continuously variable. DC-Coupled Output Amplifier
Less than 3 db down at 5 mc . Adjusted for optimum transient response with wide-band units plugged in.
Advanced Cathode-Ray Tube
Tektronix $5^{\prime \prime}$ flat-faced precision crt with 4 -kv accelerating potential provides 8 centi-
meters of linear vertical de flection.
Sensifive Horizontal Amplifier
$0.2 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$ sensitivity
Versatile Triggering
Internal or external, with am plitude level selection or auto matic triggering.
Accurate Amplitude Calibrator
Square wave, 0.2 mv to 100 v in 18 steps, accurate within 3%
DC-Coupled Unblanking
Vertical Beam Position Indicators
Electronic Voltage
Regulation

TYPE 532 - $\$ 825.00$ plus price of desired plug-in units. Prices fo.b. Portland (Beaverton), Oregon

Vertical Characteristics of the Type 532 with these Plug-in Units

TYPE 53A—DC to $5 \mathrm{mc}, 0.07-\mu \mathrm{sec}$ risetime. Sensitivity $0.05 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$, ac or dc, continuously variable, with 9 calibrated steps from $0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}, \$ 85.00$
TYPE 53B - Same as Type 53A with additional calibrated ac-sensitivity to $5 \mathrm{mv} / \mathrm{cm}$.
TYPE 53C—Dual-Trace Unit. Two identical amplifier channels, de to $5 \mathrm{mc}, 0.05 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$. Electronic switching triggered by oscilloscope sweep... or free running at about 100 kc
$\$ 275.00$

the secret of
 O HMリTE゙ RELIABILTTY...

When you need last delivery on clays of highest quality investigate AMRECON general-purpose relays. They are aveilable in current ratings op to $25 \mathrm{amp} \mathrm{A} \mathrm{\Sigma}$ or DC (n all std. voltages); in a wide vaniety of contact arrangements; anc with he-metically sealed or cus:- protected enclosures.

You can't afford the risk of failure in your equipment. Insist on components of proven reliability. In the modern Ohmite laboratories, Ohmite resistors are tested and retested under the most grueling conditions so that potential sources of trouble can be detected and eliminated. And, Ohmite is constantly searching for new materials, new processes, and new designs-to build Ohmite products that set new standards of long life and trouble-free performance.

Inside this mobile ground station, test flights of the Avro Canada CF-100, RCAF all.weather interceptor for continental defense, are "seen" and "heard" with Ampex magnetic lape recorders.

MAGNETIC TAPE RECORDING helps produce better designs faster

At Avro Canada, as at all major flight test locations in the United States, all test data transmitted by radio telemetry is permanently completely - and accurately - recorded on magnetic tape. This involves 67 separate items of information per second - items such as temperature, pressure, revolutions, acceleration, yaw and roll. The data is "magnified" on playback at slow speed, permitting Avro engineers and aerodynamists to critically study each parameter in gas furbine and airframe designs.

AVRO USES AMPEX MAGNETIC TAPE RECORDERS
The Aircraft Division of Avro Canada, Malton, Ontario is one of the many diversified users of Ampex magnetic tape equipment for data recording. Ampex recorders are widely preferred for special installations requiring broad frequency response, precise timing, extreme stability of tape motion, high shock resistance and reliable accuracy on transients. A wide variety of models are available featuring pulse width, frequency modulated and direct recording techniques... for airborne, mobile, rack-mount or console applications... in any frequency band from zero to 100,000 cycles per second.

Ampex 306 Recorder, 0 to $5,000 \mathrm{cps}$.

MAGNETIC RECORDING HAS MANY APPLICATIONS

Because magnetic tape data is convertible to any form (e.g.: oscillograph traces, scope reading, computor feeds, control signals or punched cards), many practical applications result. Examples are:

- Data Computing • Machine Control
- Advanced Research
- Test Cycling
- Process Regulation

LET AMPEX EVALUATE YOUR SPECIAL NEEDS

Without obligation, find out whether "live memory" techniques can be applied to your operation, or ask for our 16 -page illustrated bulletin. Contact your nearest Ampex representative, or write or wire Dept. E-1892

[^5]
"BLUE RIBBON Resistor"

Today a number one choice in military equipment.
Design engineers preferred choice in commercial application.

```
BLUE RIBBON-EXCLUSIVE FEATURES:
```


BASIC CHARACTERISTICS:

1. High temperature vitreous enamel coating, crazeless, moisture resistant.
2. Aluminum thru-bar-distributes heat more uniformly along the entire length of the resistor. ant.
3. Higher wattage rating per unit space requirement.
4. Space reduction behind panel or mounting surface.
5. Mounting studs-corrosion and rust resist-
6. Stack mounting assembly.
7. Light weight.
bration.
8. Field tested welded construction.
a. Wire to Terminal
b. Terminal to Core
9. Lower induction.
10. Conforms to MIL-R-26 specifications.

Order the original
 1st in performance

HARDWICK, HINDLE, INC.

Rheostats and Resistors
40 Hermon St., Newark 5, N. J., U. S. A. of quality

For more than a quarter of a century

Pinpoint your C-R tube design needs with G.E.'s new catalog of Industrial and Military types!

Here is your working guide to cathode-ray tubes for industrial and military applications! General Electric, a pioneer in basic cathode-ray research-leader in C-R tube development-now offers to equipment designers and builders a comprehensive catalog that takes the guesswork out of tube selection.

Ask for your copy . . . and keep it for constant reference! Problems arising from your special circuit needs, on which you may need further and more detailed information, will be handled promptly by letter or by a visit from a G-E tube engineer, as you prefer. The Tube Application Requirement Forms included in the catalog, make inquiry easy and systematic.

Wire or write for Catalog ETD-985-A to General Electric Company, Tube Department, Schenectady 5, New York.

Tells how General Electric is prepared to meet your need for new, special C-R types ... by combining bulbs, guns, and phosphors; or by custom-designing a tube "from the ground up" should volume warrant. Catalog includes forms for transmitting your tube requirements in detail.

-

24 standard G-E industrial and military cathode-ray tubes are illusirated, rated, fully described. Basing diagrams are included.

-

18 phosphors most in demand are described as to color, persistence, and field of application . . . also, spectral-energy emission and persistence curves are plotted for each phosphor.

*

9-page section is devated exclusively to tube, gun, and phosphor research . . . design ... manufaclure . . . testing. Includes many photographs of C-R products and processes.

MICROWANE FIELD INTENSITY RECEIVERR <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">groad band</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$950-11,260 \mathrm{mcs}$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| groad band |
| :---: |
| $950-11,260 \mathrm{mcs}$ |</table-markdown></div>

- Four interchangeable RF Tuning Heads
- Uni-Dial Tuning
- Double Tuned RF Pre-Selection
- Signal-Lock Automatic Frequency Control
- All purpose AM, FM, Pulse

The new Polarad Model R Receiver is a fully integrated unit which combines reliability, ruggedness and simplicity of operation. Characterized by high sensitivity, low noise figure and excellent gain stability, this versatile instrument is ideal for communications, laboratory measurements, field intensity measurements, production testing, and automatic monitoring.

Range 950 to $11,260 \mathrm{mc}$ with four (4) interchangeable, plug-in RF tuning units featuring direct reading UNI-DIAL control.
Low noise figure.
Excellent gain stability.
Automatic frequency control.
Direct reading output in db with provision for external metering and recording.

Separate audio and video channels.
Connectors for external IF attenuators.
High sensitivity and broadband tuning achieved with double tuned cavity preselector which tracks automatically with the local oscillator.

External type cavity klystron with non-contacting chokes Klystron voltages regulated and automatically tracked with the oscillator.

SPECIFICATIONS:

Basic Receiver: Model R-B
Tuning Unit Frequency Ranges:

Model RL-T:	950 to $2,040 \mathrm{mc}$
Model RS-T:	1,890 to $4,320 \mathrm{mc}$
Model RM-T:	4,190 to $7,720 \mathrm{mc}$
Model RX-T:	7,260 to $11,260 \mathrm{mc}$

Signal Capabilities: CW, AM, FM, Pulse
Sensitivity:
-80 dbm or better throughout range on all models

Frequency Accuracy: 1\%
IF Bandwidth: 3 mc
Image Rejection: Greater than 60 db
Gain Stability with AFC: 2 db for 24 hour period
Automatic Frequency Control: Pull-out range 10 mc off center
Recorder output: 1 ma full scale
Trigger output: 10 v . pulse across 100 ohms

Audio output:
5 v . undistorted across 500 ohms
FM Discriminator
Deviation Sensitivity:
.7 volts/mc
Skirt Selectivity:
60 db to 6 db bandwidth
ratio less than $5: 1$
IF Rejection: 50 db
Input AC Power:
105 to 125 v ., 60 cps ., 460 watts
Input Impedance: (ANT)
50 ohms

ELECTRONICS CORPORATION
43-20 34th STREET, LONG ISLAND CITY $1, N$. Y.

REPRESENTATIVES - Albuquerque - Atlanta - Baltimore - Boston - Chicago - Cleveland - Fort Worth - Kansas City - Los Angeles - New York Philadelphia - San Francisco - Scattle - St. Paul - Syracuse - Washington, D. C. - Canada, Arnprior - Export: Rocke International Corporation

Germanium rectifiers have smallest size/watt output

G-E germanium rectifiers operate at extremely high current densities-highest output voltage per cell of all existing metallic rectifiers. A large d-c output is obtained using fewer cells than other types of rectifiers, resulting in a smaller, more compact rectifier. In addition, germanium has the lightest weight per watt output of existing metallic rectifiers. These features give them broad application in power conversion wherever size and weight requirements are at a premium.
(1) Type RA2 has cell mounted on copper cooling fin -fan-cooled at 200 feet per minute. Ratings from 6 volts, 20 amperes d-c up to 26 volts, 8 amperes d-c.
(2) Type RA3 has cell mounted on copper block with multiple fins-blower cooled at 1000 feet per minute. Available in ratings up to 20 volts, 75 amperes d-c.
(3) Sealed type RA1 is convection-cooled with ratings from 6 volts, 0.5 amperes up to 50 volts, 0.4 amperes d-c.
(4) Convection-cooled type RA2 has cell mounted on copper cooling fin. Available up to 26 volts, 4 amperes d-c. G-E germanium rectifiers have extremely low reverse leakage and low forward voltage loss. Regulation is less than five percent when operated at the high current densities permissible with germanium. Bulletin GEA-5773B gives details.

Inductrols regulate rircuits
up to $600 \mathrm{~V}, 520 \mathrm{KVA}$
Where a-c, or rectified d-c, voltage or current is critical, these induction regulatars reduce erratic performance, increase life of your equipment. Available for automatic, motor, or hand (above) operation, Inductrols feature negligible wave-form distortion, begin corrections to 1% accuracy within 1 second. GEC-795 covers single-phase, GEA-5824 the 3-phase models.

G-E voltage stabilizers give $\pm 1 \%$ voltage control

G-E voltage stabilizers reduce the need to derate components to compensate for voltage fluctuations. Singlephase, standard line units from 15 VA to 1000 VA are available to correct fluctuations between 95 and 130, or 190 and 260 volts within $\pm 1 \%$. Rapid-response stabilizers correct for voltage changes in less than two cycles. Stabilizers limit short-circuit current and help safeguard the load. Check bulletin GEA-5754A.

DIGEST ON G-E COMPONENTS

New 400-cycle alternator added

 to aircraft specialty motor lineNewly developed to withstand the tremendous range of shock, temperature and atmospheric conditions of guided-missile applications, this explosion-resistant 400cycle alternator meets military specifications MIL-E 5272 procedure 1. Rated up to 1500 volt-amperes, $12,000 \mathrm{rpm}$, for output of 115 volts, this unit is designed to be driven by a wide variety of d-c, a-c, turbine, and jet-air drives.

Rigid testing assures that this alter-nator-and all G-E aircraft and armament motors-meet your design needs. Your specifications are all that G-E engineers need to begin applying their motor experience to your aircraft and armament problems. Write for GEA-6269 (new 400-cycle alternator) or GEC-988 (aircraft and ordnance motors).

G-E vacuum gages measure pressures from 0 to 20,000 microns

Two G-E vacuum gages accurately measure pressures in such applications as electronic tube manufacture, vacuum coating and plating.
MOLECULAR VACUUM GAGE is available in two calibration types-one for dry air indicates pressures between 0 and 20,000 microns; the other type has a linear scale of 100 uniform divisions which can be calibrated by the customer
 for measuring other gases. There's no primary element to burn out or replace gage measures absolute pressure of dry air in direct readings of mm of mercury. THERMOCOUPLE VACUUM GAGE has range from 1 to 200 microns and 1 to 1000 microns of mercury. Sensitive to both condensable and noncondensable gases, gage does not require recalibration when tubes are interchanged. For further information write for bulletin GEC-385C (Thermocouple Vacuum Gage) and GEC986 (Molecular Vacuum Gage)

G-E potentiometer balances to ± 2 microvolts

G.E.s self-balancing potentiometer converts small d -c voltage to measurable currents-ideal for analyzing electronic circuits because it does not appreciably load the measured circuit. Compact, portable, and self-contained, unit's accuracy is ± 2 microvolts or 0.2 percent, whichever is greater. Wide range output permits use of indicating or recording instruments having resistance up to 1500 ohms. For further information,
 check coupon for bulletin GEC-367B.

Section A667-30

General Electric Company
Schenectady 5, New York
Please send me the following bulletins
$\sqrt{ }$ for reference only X for immediate project

\square GEA-5773B Germanium Rectifiers	\square GEA -6269 400-eycle Alternator
\square GEA-5754 Voltage Stabilizers	\square GEC-988 Aircratt and Ordnance Motors
\square GEC-795A Single-phase Inductrols	\square GEC-986 Molecalar Vacuum Gage
\square GEA-5824 3-phase Inductrols	\square GEC-385C Thermocouple Vacuum Gage

\square GEC-367B Self-balancing Potentiometer
NAME
COMPANY
CITY.
STATE

TURN PAGE FOR MORE G-E COMPONENT HIGHLIGHTS

Specify G-E micro-miniature Tantalytic* capacitors wherever large capacitance is required in small space

G-E micro-miniature Tantalytic capacitors represent the ultimate in capacitor miniaturization, and are perfect companions for the transistor or for use in any miniaturized assembly. They have found wide application in hearing aids, paging systems and other transistorized devices. Standard ratings are stocked, and samples are immediately available.

Production quantities can be supplied 6 to 8 weeks after your order is received. Ratings range from 4 to 20 volts, and from 1 to 8 microfarads in the $5 / 16 \mathrm{in}$. long case-higher capacitance in the $1 / 2 \mathrm{in}$. case size. Stability of the oxide formation and inert characteristics of the tantalum metal give long operating life over a wide temperature range -20 C to +50 C . They
may be stored at -65 C . Capacitance tolerance is -0% to $+200 \%$.

Micro-miniature capacitors are designed for nonresonant, non-critical applications such as coupling, by-pass and filtering where bulk capacity is useful. Their size-smaller than the head of a match-is an advantage over paper capacitors wherever space is at a premium, and their shelf life and electrical stability is greater than aluminum electrolytic capacitors.

G-E capacitors are completely sealed against leakage or contamination of the interior and employ only a nonacid electrolyte. Each unit is identified with a color code. For further information, contact your nearest G-E Apparatus Sales Office, or check coupon for Bulletin GEA-6065A. *Reg. Trade-mark of General Electr c Company.

desiguer's DlGEST

Small-size general-purpose relay

High current rating, small size, and extremely long life make this generalpurpose relay ideal for electronic equipment where space is at a premium and reliability is of prime importance. Contact arrangements include DPDT, DPST, SPST, and SPST-double-break. Accessories are available for metal- and compound-base mounting as well as jack assembly for plug-in applications. Check coupon for bulletin GEC-257C.

Tiny relay withstands vibration

The G-E subminiature relay withstands vibration of 10 g up to 500 cps and operates at temperatures up to 125 C . Lightweight and reliable, this relay has a low capacitance rating making it ideal for switching high frequency signals or pulses. Pickup time is 5 milliseconds or less and dropout time is 2 milliseconds or less. Coils are available for 400 -cycle a-c voltage. Bulletin GEA-6211.

High-speed polarized relay

This hermetically sealed relay operates at speeds ranging from 250 microseconds to 1 millisecond. It can be adjusted for operating time of less than 250 microseconds, including bounce. Contact combinations up to 4PDT are available in a miniature enclosure 1-7/16 in.x 21/32 in. x $2-3 / 22 \mathrm{in}$.-net weight only 5 oz . The relay meets requirements of MIL-R-6106 and MIL-R-5757B. Bulletin GEA-6212.

New subminiature transformers tailored to your needs

G-E engineers designed the new line of subminiature transformers to meet a variety of electronic applications. Available in five case designs, $13 / 16 \mathrm{in}$. to 1-7/16 in. high, these new transformers are metal-clad and hermetically sealed. The new subminiature transformers can be designed to withstand highpotential test voltages of 1250 volts RMS, or altitudes up to 100,000 feet

In addition, these units will operate in ambient temperatures of 125 C . The smallest unit (illustrated) is designed for printed circuits and has solid wire conductors two inches long for easy, direct connection to the other components. Your nearest G-E Apparatus Sales Office will give you complete details.

	EQUIPME TRONICM	TFOR NUFACTURERS	Section A667-30 General Electric Company Schenectady 5, New York
	Fractional-hp motors	Development	Please send me the following bulletins;
Components	Rectifiers Timers	and Production	\checkmark for reference only X for immediate project
Meters, instruments	Indicating lights	Equipment	\square GEA-6065A Microminiature Tantalytic Capacifors
Dynamotors	Control switches		\square GEC-257C General-purpose Relay
Capacitors	Generators	Soldering irons	-GEC-257C General-purpose Relay
Transformers	Selsyns	Resistance-welding	\square GEA-6211 Subminiature Relay
Pulse-forming networks	Relays	control	\square GEA-6212 Polarized Relay
Delay lines	Amplidynes	Current-limited high-	-GEA-6212 PolarizedRelay
Reactors	Amplistats	potential tester	Name
Motor-generator sets	Terminal boards	Insulation testers	
Inductrols	Push buttons	Vacuum-fube voltmeter	Company
Resistors	Photovoltaic cells	Photoeiectric recorders	City .-..............-. State

"PIG-TAILORING"

 . . . a revolutionary new mechanical process for higher production at lower costs. Fastest PREPARATION and ASSEMBLY of Resisfors, Capacitors, Diodes and all other axial lead components for TERMINAL BOARDS, PRINTED CIRCUITS and MINIATURIZED ASSEMBLIES.

The "PIG-TAILOR" plus "SPIN-PIN" - Accurately Measures, Cuts, Bends, Ejects and Assembles both leads simultaneously to individual lengths and shapes - 3 minute set-up - No accessories - Foot operated - 1 hour training time.

PIG-TAILORING provides:	PJG-TAILORING eliminates:
1. Uniform component position. 6. Individual cut and bend lengths.	1. Diagonal cutters. 6. Broken leads.
2. Uniform marking exposure. 7. Better time/rate analysis.	2. Long-nose pliers. 7. Short circuits from clippings.
3. Miniaturization spacing control. 8. Closer cost contral.	3. Operator judgment. 8. 65% chassis handling.
4. "S" leads for terminals. 5. "U' leads for printed circuits 10. Invaluable labor saving. 10. Immediate cost recovery.	4. 90% operator training time. 9. Excessive lead tautness.
5. U leads for printed circuits 10. Immediate cost recovery.	5. Broken components. 10. Haphazard assambly methods.

- patent pending
 Write for illustrated, descriptive text on "PIG-TAILORING" to Dept. E-2P

$$
\begin{aligned}
& \text { BRUNO-NEW YORK INDUSTRIES CORPORATION } \\
& \text { DESIGNERSAND MANUFACTURERS OFELECTRONICEQUIPMENT } \\
& \text { AGO WEST } 34 \text { Th STREET NEWYORKI, N. Y. }
\end{aligned}
$$

THE CHOICE OF ALL ARMED SERVICES
 FOR MICROWAVE POWER MEASUREMENTS
 POWER: pulse and $\mathrm{CW}-5 \mu \mathrm{~W}$ to 5 W average FREQUENCY: 2омс - 10,000мс ACCURACY: 5% Absolute at all ranges,

Broaithand lif Pouer Ileters

INDICATIONS: Direct Reading
. CALIBRATION: Compensates for All Variables
...... R-F COMPONENTS: 3, 6, 10 and 20db Attenuators, Bolometer Mount and Elements, R-F Cable BOLOMETER: Broadband, High Overload Capacity
. PLUMBING: $3 / 8$ " and $7 / 8^{\prime \prime} 50$-ohm Coaxial
...... POWER SOURCE: $115 \mathrm{VAC} \pm 15 \%, 50-1000 \mathrm{cps}$
. CONSTRUCTION: Rugged, meets all JAN, MIL requirements
TYPICAL APPLICATIONS
Microwave Links . . . Television . . . Communications
Radar . . . Telemetering . . . Signal Generators . . . Laboratory Standards.
Write for descriptive literature to Department E-2M
Bruno-New York Industries Corporation desioners and mantactuerss of elictronic eourment. 460 WEST 34hh Stesti

NEW YORK I, N. Y.

Motor stator becomes pump housing as wellin new, ultra-compact, refrigeration motor-compressor

Why not combine the pump and the motor? Put a gear pump inside the motor stator, encase the stator in plastic, and you can build an entire motor-compressor in the space occupied by a conventional motor alone!

Wetmore Hodges and Associates have done just that. But along the way, they ran into an unexpected problem. With the motor stator doubling as the pump housing, it had to be pressure tight . . . free of voids. This was impossible to achieve with standard potting compounds.

New Compressor

 (left) takes only 27% of the space of a conventional unit (right). It has only 10% as many parts, weighs 58% less, and will cost much less to produce.Assembled stator (left). Finished stator (right) has been potted with Epon resin formulation. New compressor was developed by
Wetmore Hodge and Associates, Redwood City, California.

After hundreds of plastic formulations were tried, an Epon resin-based compound solved the problem. The Epon-impregnated stator proved to be pressure tight, stable mechanically and fully resistant to Freon at 350 psi , at temperatures as low as $-20^{\circ} \mathrm{F}$ and as high as $250^{\circ} \mathrm{F}$. Important too, Epon resin has excellent dielectric properties; is impervious to air, oil and water.

If you, too, are interested in plastics for electrical applications, write for technical bulletin "Epon 828 in Casting Applications."

Operation and quality quickly checked on

M B VIBRATION EXCITERS

E
保 poration take advantage of the unusual help provided by shake testing - with a specially mounted setup of two MB Model C-25 Exciters for vibrating missiles.

BENEFITS OF SHAKE TESTING

Because small vibrations can be magnified in a complex missile structure, and because interactions
of components are important, such testing checks vital systems. The MB shakers permit Bell engineers to produce conditions more severe than expected in service. In effect, a margin of safety can thereby be added to increase reliability of operation.
Moreover, vibration tests afford a quick, versatile means for checking quality of components.

Defective and malfunctioning components are quickly detected.

To cap it all, substantial savings in manhours and fuel costs have been effected by substituting shake tests for hot firing of missiles prior to flight tests.

WHY MB VIBRATION EXCITERS?
Engineered by vibration specialists to deliver maximum performance, MB Shakers can be counted on for pure table motion and dependable operation to full rated capacity. MB's line of vibration testing "tools" is complete - from small specialized-duty shakers to the largest in existence today.

Prompt servicing provided by a special staff of MB engineers. For more information on shakers, send for Bulletin 1-VE -5

${ }_{\text {the }} M B$ manufacturing company, inc.

1060 State Street, New Haven 11, Conn.

[^6]
How two TYPICAL
 production testing headaches were cured with SANBORN OSCILLOGRAPHIC RECORDING SYSTEMS

\mathbf{R}^{2}AYTHEON MANUFACTURING COMPANY'S Waltham, Mass. Inspection Dept. formerly found their incoming inspection of complex, multi-ganged potentiometers a time-taking and costly job which involved tedious calibration, instrument set-up and testing for each of the five potentiometer sections, with each operation subject to inevitable human error.

Today, by using a Sanborn four-channel Recording System and a Potentiometer Power Supply, a visual, concurrent strip-chart record of five channels (using marker stylus) of phenomena such as phasing, shorting bar, winding noise, and resolution of winding turns is provided. Inspection time is speeded up 900%, the operator sees immediately all causes for rejection, the chart is a permanent test data record, one inspector takes the place of three, and human error is reduced to a negligible factor.

MOORE PRODUCTS COMPANY, of Philadelphia uses a Sanborn Model 60 two-channel Recording System to check the Dynamic Performance of their Valve Positioners, which are used on diaphragm top-work valves and power cylinders. The valve positioner acts as a relay, applying additional air pressure to the cylinder or top-work, overcoming effects of unbalance and friction, and compelling the valve stem to take the position dictated by the pneumatic controller or manually-operated air load. A feed-back linkage assures positioning of the valve stem within plus or minus 0.001".

A pneumatic sine wave generator supplies pneumatic impulses with frequencies as high as 20 cycles per second. These impulses are sent to the valve positioner and to a transducer which converts the signal for the recorder. The response of the valve stem is measured by a strain gage pickup for the second channel of the recorder.

The above cases are but two of the many applications possible with Sanborn one-, two-, four-, six- and eight-channel Recording Systems. With a Sanborn you can register permanently and graphically virtually all electrical phenomena within a frequency range of zero to 100 cps . A choice of the number of channels, plus the ready interchangeability of various type preamplifiers (10 meet individual recording problems) offers a wider versatility of use, greater overall economy, and increased operating efficiency.

Added to these advantages are the standard SANBORN instrument features: INKLESS recording in true rectangular coordinates, high torque galvanometer movement, time and code marking, and numerous paper travel speeds.

CAMBRIDGE 39, MASSACHUSETTS

Death-defying performance

You can depend on C.T.C. coils to give, a steady, star performance. They won't go dead despite threats of temperature, climate or vibration. And for very good reasons -

The mounting stud of every C.T.C. coil is fastened to the ceramic body in a special way that does away with weaknesses of ordinary coil fastenings. This special fastening makes C.T.C. coils vibration-proof. What's more, their tightness is preserved in hot, cold, dry or damp weather. All C.T.C. coils are precision-made, of course, to meet individual specifications - and to meet, or better, government specifications, as well. And continuous quality control is maintained.

As a result, you get a guaranteed electronic component - custom or standard - whose performance you can depend upon.

Precision-made C.T.C. components that benefit from C.T.C. high quality standards include terminals, terminal boards, capacitors, swagers, hardware, insulated terminals and coil forms. For
all specifications and prices, write Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast manufacturers contact: E. V. Roberts, 5068 West Washington Blvd., Los Angeles 16 and 988 Market St., San Francisco, California.
Slug Tuned Coil Data: Single layer or pie type windings to your specifications. Forms of quality paper base phenolic or grade L- 5 silicone impregnated cerarnic. Mounting studs are cadmium plated brass; ring type terminals are silver plated ware One style ('Type C) available with retaining ware. One sille of silicone fibreglas which permit 2 to 4 terminals. Windings can be coaied with resin varnish, wax or lacquer.

New CST-50 variable ceramic capacitor surpasses range of capacitors many times its size. Stands only $/ 32$ high when mounted, is less than $1 / 2$ in A tunable element of unusual design practically Aliminates losses due to anir dielectric practically minimum losses due to 12MMFD).

CAMBRIDGE THERMIONIC CORPORATION

makers of guaranteed electronic components,
custom or standard

With the new series $V-42$ and VA- 800 high power transmitter klystrons, point-to-point microwave propagation beyond-the-horizon is a reality.
You con now design and engineer microwave systems for long distance relay communicatian ... because Varian - who has supplied the most reliable and highest power klystrons for UHF-TV - now brings you the same proved performance and economy of operation for communication service.
Varian's multi-resonator amplifiers provide you with continuous power output up to 15 kw . . . power gains up to 40 db ... in the $500,1000,2000$ and 7000 mc frequency bands . . for TV-relay, and fixed telephone or telemetering in common carrier service, industrial service or control service.

V-42 Series Warranted for 3000 Hours of Service

Each V-42 and VA-800 tube incorporates Varian's exclusive built-in tuning circuits which give you proven reliability as well as simplicity of installation, operation and use.

For Radars, Beacons and Relay Communication
Varian has a complete line of high power amplifier klystrons for CW and pulsed operation.

VA-BOB	V-70	V-82	$V-24 B$	V-42 series	VA-800 series
FREQUENCY $2700-3.400 \mathrm{mc}$	$\begin{aligned} & \text { FREQUENC.Y } \\ & 9400-10,500 \mathrm{mc} \end{aligned}$	$\begin{aligned} & \text { FWEQUENCY } \\ & 9200-9400 \mathrm{mr} \end{aligned}$	FREQUENCY $9000-9500 \mathrm{mc}$	FREQUENCT $375-960 \mathrm{mc}$	FREQUENCY $1700-2400 \mathrm{mc}$
POWER 1 meg. Pulsed	POW'ER 500 watt CW	POWER 5 kw Pulsed	POWER 40 kw Pulsed	POWER 15 kw CW	POWER 10 kw CW

Don't Limit Your Horizons. For complete specifications and applicotion data on the newest Varian V-42 and VA-800 series high-power klystrons, as well as others, micluding high-power oscillatars, write to our Application Engineering Department . . . or contact your Varian representative, located in all principal cities.

LEADERSHIP

KEYSTRONS, TRAVELING WAVETUBES, BACKWARD WAVE OSCILLATORS, R.F. SPECTROMETERS, MAGNETS, STALOS, UHF WATERLOADS, MICROWAVE SYSTEM COMPONENTS, RESEARCH AND DEVELOPMENT SERVICES

In figuring out new systems of automatic electrical control, Veeder-Root Countrol can supply vital connecting links. For instance, this Predetermining Counter can be hooked into such a system to light a light, ring a bell, or actuate a mechanism to stop a machine or process at any pre-set point. And there are many other Veeder-Root Counters that can serve as "countponents" in almost any way desired. Or special counters can be designed for specific applications. Engineers in any industry, now engaged in working out automatic control systems, can count on Veeder-Root engineers to work with them on any problem where reliable facts-in-figures are needed.
VEEDER-ROOT INCORPORATED . Hartford 2, Connecticut

Chicago 6, tll. • New York 19, N. Y. • Greenville, S. C. • Montreaß 2, Canada Dundee, Scotland. Offices and Agents in Principal Cities

New Vary-Tally Multiple-Unit Reset Counter comes in any combination up to 6 banks high, and 12 units wide Write for news sheet and prices.

Case of Molded Du Pont ZYTEL* Protects Motor Coil from High Surge Voltage

Stand-off and feed-through insulators of TEFLON ${ }^{\text {® }}$ used for high-frequency, high-voltage service

Du Pont "Teflon" is unsurpassed as an insulation material. Dielectric constant from 60 cycles per second to 10^{8} cycles per second is 2.0 (A.S.T.M. D $150-47$ T). Other properties are practically constant over the entire frequency range. Moreover, "Teflon" will not carbonize under arcing and will not DC-plate.

Good electrical properties are retained over the temperature range of $-450^{\circ} \mathrm{F}$. to $500^{\circ} \mathrm{F}$. "Teflon" will neither soften when soldering is done, nor become brittle in cold weather. Voltage breakdown after 95% humidity at $160^{\circ} \mathrm{F}$. is greater than $5,000 \mathrm{~V}$-DC at sea level. Its water absorption is zero (A.S.T.M. D570-42). Extreme humidity, fungus

These stand-off and feed-through insulators of "Teflon" are unaffected by a wide range in ambient temperature, pressure, altitude, ambient temperature, pressure, altitude, Manufactured by United States Gasket Company, Camden, New Jersey.
and weathering won't affect "Teflon". This engineering material is not subject to breakage from mechanical or thermal shock. It is inert to all chemicals normally encountered in industry.

Electrical engineers find these properties of "Teflon" tetrafluoroethylene resin particularly useful for stand-off insulators and feed-through insulatorsas well as special assemblies such as anode shields and relay contact plates.
"Z̈ytel" gives coil same electrical resistance as whole wathour meter . . . permits coil to withstand thermal shock cycling between $100^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$.

General Electric's TYPE IR-50 combination watthour meter and time switch used to control off-peak water-heater loads. The motor coil is encased with molded Du Pont "Zytel" nylon resin for superior insulation and protection.

This picture shows how a molded jacket of Du Pont "Zytel" nylon resin encapsulates motor coil. This piece is economically produced by a simple molding cycle.
*"Zytel" is the new trade-mark for Du Pont nylon resin.

General Electric investigated the properties of "Zytel" nylon resin very carefully before using it in their TYPE IR-50 combination watthour meter and time switch. What are the dielectric properties of "Zytel"? The motor coil was protected against a 7,000 -volt 60 -cycle surge, or a 10,000 -volt surge to ground when the coil was encapsulated with "Zytel". Thus, the motor coil assembly could have the same electrical surge and high voltage resistance as the watthour meter. What is the thermal stability of "Zytel"? General Electric states that this engineering material has the physical properties needed to withstand severe thermal shock cycling between $100^{\circ} \mathrm{C}$. and $-40^{\circ} \mathrm{C}$.

Simple Molding Technique

 Other considerations dictated the use of Du Pont "Zytel" (Continued, column I back side)
"Zytel" (continued)

nylon resin for this motor coil casing. It is formed rapidly and economically by a relatively simple molding cycle. It makes a compact motor assembly. "Zytel" won't rust. And it has an attractive appearance.

Du Pont "Zytel" nylon resin provides a valuable design and development tool for the electrical engineer. Its dielectric properties, lightness of weight, and resistance to corrosion and high temperatures are valuable properties for many electrical applications. For further information on this unique material, mail the coupon below.

Investigate Du Pont engineering materials in your product development programs

One of the family of these versatile engineering materials is often a key factor in product improvement or new product design.

The wide range of properties available with "Alathon"* polyethylene resin, "Lucite"* acrylic resin, "Teflon"* tetrafluoroethylene resin, and "Zytel" \dagger nylon resin are helping solve industrial design problems.

NEED MORE INFORMATION?

Clip the coupon for additional data on the properties and applications of these Du Pont engineering materials.

Slotted tubes of ALATHON ${ }^{\circledR}$ for greater battery power

The slotted construction shown above gives greater power and longer life to battery tubes for positive plates. These tubes are extruded from Du Pont "Alathon" polyethylene resin which are slotted so more of the active material around the core is exposed to electrolyte. The active material is retained better during the charge-discharge cycle, lengthening working life of the battery.
"Alathon" won't corrode or erode. It's lightweight, flexible, and strong. Low temperatures don't affect the strength and flexibility of this engineering material. Manufactured by the Electric Storage Battery Company, Philadelphia, Pennsylvania.

E. I. DU PONT DE NEMOURS \& CO. (INC.) Polychemicals Department
Room 222, Du Pont Building, Wilmington 98, Delaware
Please send me more information on the Du Pont engincering materials checked: \square "Zytel"; \square "Alathon"; \square "Teflon"; \square "Lucite". I am interested in evaluating these materials for:

NAME

POSITION
COMPANY

STREET ADDRESS

CITY \qquad STATE
TYPE OF BUSINESS
*"Alathon", "Lucite", "Teflon" are registered trade-marks of E. I. du Pont de Nemours \& Co. (Inc. \dagger "Zytel" is the new trade-mark for Du Pont nylon resin.

Du Pont TEFLON ${ }^{\circledR}$ suggests new ideas for electronic and electrical designs

Du Pont "Teflon" tetrafluoroethylene resin offers a combination of electrical, thermal and mechanical properties unmatched by any other single plastic material. It is particularly outstanding for use as electrical insulation at high frequencies and temperatures.

Properties of "Teflon":

Excellent Dielectric Characteristics over a wide range of temperatures and frequencies.

Heat Resistance: "Teflon" is capable of continuous service at $500^{\circ} \mathrm{F}$.

Tough and Strong over a wide range of temperatures, from $-450^{\circ} \mathrm{F}$. to $500^{\circ} \mathrm{F}$.

Chemical Inertness: "Teflon" is inert to all chemicals and solvents, except molten alkali metals and fluorine at elevated temperatures and pressures.

Zero MoistureAbsorption byA.S.T.M. test D570-42.

Outdoor Durability: "Teflon" is unaffected by years of outdoor weathering.

Advantages of "Teflon":

"Teflon" can be used as thin, flexible insulation-in many cases where the use of such insulation might have been impossible with other materials.

For many types of electrical and electronic equipment, "Teflon" permits simplified, compact design.
"Teflon" can be fabricated into component parts, or produced in tape form, or applied as a coating.

The electrical uses of "Teflon" are numerous. Examples include: spacers for coaxial cables; inserts for coaxial connectors; insulation for high-voltage wires and cables; wrapping tape for insulation in motors, generators and conductors.

Send for more information showing how "Teflon" can help improve electrical designs. Fill out and mail the coupon on this page.

type A
 Range: 0.1 uh to 1 h
 Accuracy: $\pm 1 \%$

-EACH INSTRUMENT PROVIDING A UNIQUE COMBINATION OF

- Wide range

High Accuracy

- Direct reading
- Ease of operation

SPECIFICATIONS:

Type KARU Capacitance Meter

- Capacitance Range: 0.5 uuf to 10 uf-divided into 6 ranges: 0 to $100 / 1000$ uf/ $0.01 / 0.1 / 1 / 10$ uf.
- Accuracy: $\pm 1 \%+.5$ uuf.
- Measuring Frequency: 1.6 to 180 kc .
- Test Terminals: 2 knurled binding posts, one at ground potential.
- Tubes: 6SN7, 6H6.
- Power Supply: 110/125/150/220 volts ac, 40 to 60 cps, 10 va.
- Dimensions: $12^{\prime \prime} \times 83 / 4^{\prime \prime} \times 83 / 4^{\prime \prime}$. Weight: 16 lbs .

Type LARU Inductance Meter

- Inductance Range: 0.1 uh to 1 h -divided into 7 ranges: 0.1 to $1 / 10 / 100 \mathrm{uh} / 1 / 10 / 100 / 1000 \mathrm{mh}$.
- Accuracy: $\pm 1 \%+0.01$ uh
- Measuring Frequency: 2.2 kc to 4.7 mc .
- Resonance Frequency Measuring Range: 2.2 kc to 4.7 mc-divided into 7 ranges: $2.2-7 / 22 / 70 / 220 \mathrm{kc} / 0.7$ $2.2 / 4.7 \mathrm{mc}$.
- Accuracy: $\pm 0.5 \%$.
- Test Terminals: 2 knurled binding posts, one at ground potential.
- Tubes: 6SN7, 6H6.
- Power Supply: $110 / 125 / 150 / 220$ volts ac, 40 to 60 cps, 10 va.
- Dimensions: $12^{\prime \prime} \times 83 / 4^{\prime \prime} \times 83 / 4^{\prime \prime}$. Weight: 16 lbs .

The KARU and LARU meters, manufactured by Rohde and Schwarz, will solve virtually all problems of capacitance and inductance measurements in the r-f field. Operating over exceptionally wide ranges, they provide accurate direct reading and require minimum skill and training.

Capacitance: KARU, by an application of the resonant circuit technique, measures from 0.5 uf to 10 uf-covering the entire range of capacitors generally used - and with an accuracy of $\pm 1 \%$.

Inductance: LARU covers the exceptionally wide range of 0.1 uh to 1 h , with an accuracy of $\pm 1 \%$. It will also measure selfresonant frequency and distributed capacitance of inductors. Measurements can be made on components with Q as low as 1 .

Both instruments are speedy and easy to operate-their direct reading scales are calibrated to give the result with no scale or multiplication factors to be considered. Six scales, controlled by the range selector switch, provide a total scale length of 54 inches.

Exclusive design features of KARU and LARU include: a novel revolving linear dial which eliminates metering errors... the range selector switch brings the appropriate scale into view... scale-factor errors are eliminated... positive action detent on the range selector switch... full protection from overload.

In measuring with KARU, the unknown capacitance is resonated with a built-in standard coil by means of the variable r-f oscillator, to which it is loosely coupled. The vacuum tube voltmeter reads the voltage across the standard coil. LARU similarly measures inductance, utilizing a standard capacitor in place of the standard coil.

These highly versatile instruments are compact, wholly reliable and completely self-contained. Each unit is provided with a recessed folding carrying handle and a removable protective cover.

For complete information, mail the attached coupon to Federal.

5. Federal Telephone and Radio Company

A Division of INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION
INSTRUMENT DIVISION 100 KINGSLAND ROAD, CLIFTON, N. J.

Federal Telephone and Radio Company Instrument Division, Clifton, N. J.
Please send further information on the items checked:
\square karu Capacitance Meter \square LaRU Inductance Meter
\square Please send copy of your General Catalog.

Name

Title
Company
Address
City \qquad Zone \qquad State

Another example of EDO's Ever-Increasing Role in the Field of MARINE ELECTRONICS

the NEW

EDO Divet-Reading LORAN

Now, Edo, a recognized leader int marine electronic development, announces a new Loran at a practical price. Built to the highest electronic standards, the Edo Loran gives quick, di-rectly-read time difference readings for accurate plots in a matter of seconds. No calculations, no computations, no tables, no special training needed to operate.

Edo has achieved a practical low price for its new Loran with no compromise in quality by applying the most advanced electronics circuitry. For instance there are less than half the number of tubes in the Edo Loran (only 26) than in any other currently available equipment. This at no sacrifice in accuracy and with the advantage of lower power requirements, easier maintenance, and greater dependability.

Model 262 Loran
\star Only 26 tubes including cathode-ray tube and rectifiers.

* Single, compact, light-weight, selfcontained unit.
* Low power consumption, 150 watts, 115 volts @ 60 cycles.
\star The unit can be mounted on a table, suspended from ōverhead or bulkhead.
$\star \quad$ Large direct reading dials especially illuminated for night use. Recessed CRT requires no hood.
* Delay is not stored and cannot drift.

SEND FOR THE NEW BROCHURE ON THE-EDO MODEL 262 LORAN.

Outstanding for many years as the Top Performer, Clevelite is unmatched in its ability to meet unusual specifications.
Built-in Dimensional Stability, High Dielectric Strength, Low Moisture Absorption, Great Mechanical Strength, Excellent Machining Qualities and Low Power Factor make Clevelite Tubing outstanding.
Available in diameters, wall thicknesses and lengths as desired, for Collars, Bushings, Spacers, Cores and Coil Forms.

Our new Torkrite internally threaded and embossed tubing affords better control of adjustments in coil forms using threaded cores.

Write for your copy of the latest Clevelite brochure. WHY PAY MORE? For Good Quality . . . call CLEVELAND!
*Reg. U. S. Pat. Off.

NO LOAD RESISTANCE-TEMPERATURE CURVES for GLOBAR® THERMISTORS

New GLOBAR ${ }^{8}$ rrpe \boldsymbol{H} THERMISTORS can help you solve many circuit problems

Where can you use resistors as sensitive to temperature changes as the new GLOBAR ${ }^{(8)}$ Type H Thermistors shown on this chart? They offer many challenging possibilities in circuit design... can help you cut costs in the manufacture of radios, television sets, motors, relays, meters, temperature indicating devices, and many other products.

The introduction of the Type H Thermistor, which has a maximum negative temperature coefficient of $4.5 \% /{ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$, supplementing the range previously obtainable with globar Types B and F, now provides you a working range from $.33 \% /{ }^{\circ} \mathrm{C}$ to $4.5 \% /{ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$.
globar ${ }^{\circledR}$ Type H Thermistors are engineered to meet your exact requirements -in electrical properties as well as shapes and sizes.

TYPICAL APPLICATIONS for Type H Thermistors	- To provide time delays in relay, solenoid circuits. - For temperature compensation in field coils. - As protective resistors in series filament circuits of radio and television receivers. - For temperature compensation in meters. - To control remote temperature indicating devices. - For temperature compensation in transistor circuitry.
WRITE FOR	Engineering Bulletin GR-3 gives detailed information on all three types of globar Thermistors-H,F and B.
\| ENGINEERING BULLETIN	Write for your copy-and, if you have a circuit
ON THERMISTORS	problem, send us the basic details. Our engineers will assist you, without obligation. Address: The Carborundum
	Company, Dept. E87-47, Niagara Falls, N. Y.

Ceramic Resistors
CONVENTIONAL - VOLTAGE SENSITIVE TEMPERATURE SENSITIVE by C/ARBORTMDTM

C 747

400 CYCLE CHOPPER

PROVEN PERFORMANCE

in large volume production is your hest guarantee of quality!

- AIRPAX has huilt

 nearly $1 / 4$ million choppers- AIRPAX maintains an engineering staff constantly striving to improve choppers
- AIRPAX has ample capacity for large volume production of choppers
- And AIRPAX choppers have proven performance life and reliability

Transmitters and Monitors of proven accuracy and reliability

SYNCHROTEL TRANSMITTERS

for the remote electrical transmission of data such as trus airspeed, indicated airspeed. absolute pressure, log ahsolute pressure, differential pressure, log differential pressure, altitude and Mach number.

PRESSURE MONITORS

to provide control signals which are functions of altitude, absolute pressure, differential pressure, etc.

To control a guided missile effectively and absolutely is a challenging problem with which hunclreds of engineers are grappling every day.

The solution depends upon the efficiency and the reliability of the controlling parts.

For over 25 years Kollsman has been making precision aircraft instruments and equipment used on military and commercial aircraft throughout the world. The talents and shills needed for success in this special and challenging field are equally necessary in the design and manufacture of precision controls for missiles.

Kollsman is presently making Transmitters and Monitors of proven accuracy and reliability for missile control.

Brochures are available on the above two products.
Please write us regarding your specific problems or requirements in the field

80-10a 45th ave., elmhurst, new york. glendale, california. subsidiary of Standand coil products co. inc.

C.D... 45 YEARS OF FAMOUS FIRSTS

Typical of these "famous firsts" are the three examples shown bere ... proof that whatever your capacitor requirements may be, your needs can be filled by C-D. Write to Cornell-Dubilier Electric Corp., Dept. K-25,South Plainfield, N. J.

Corneli.Dübiller capacitons

FIRST-

cepacitor used in proximilty fuse

[4141119: 4600
-hp- 608D VHF Signal Generator
New premium-quality performance

Wide range, direct calibration

Residual FM less than 1 kc

Drift less than 0.005\%

High power oulput
All types of modulation

two completely new

SIGNAL GENERATORS

amplifiers, broad band amplifiers and other VHF equipment. Its 1 v output is more than sufficient to drive bridges, slotted lines, transmission lines, antennas, filter networks and other circuits.

Outstanding features in both

Both -hp-608D and 608C have broadest possible modulation capabilities. There is AM modulation to 80%, and flat response 20 cps to 1 mc which provides high quality internal and external pulse modulation. RF leakage is negligible, and sensitivity measurements to $0.1 \mu \mathrm{v}$ are possible. Internal impedance is 50 ohms constant, and VSWR is a maximum of 1.2.

Both instruments also feature new mechanical design and quality construction throughout. New aluminum castings and
cabinets reduce weight. Circuitry is particularly clean and accessible. Dial, condenser and turret drives are ball-bearing. Variable condensers are specially manufactured by - $h p$ - and feature electrically welded Invar low temperature steel plates to minimize drift. Sealed transformers are used throughout, and construction is militarized.

Data subject to change without notice. Prices f.o.b. factory WRITE FOR COMPLETE DATA

HEWLETT-PACKARD COMPANY
3099A Page Mill Road • Palo Alto, California, U.S.A.
SALES AND ENGINEERING REPRESENTATIVES throughout the world

-hp- 608D VHF Signal Generator

Frequency Range: 10 to $420 \mathrm{mc}, 5$ bands.
Calibration Accuracy: $\pm 1 \%$ full range.
Resettability: Better than $\pm 0.5 \%$ after warm-up.
Crystal Calibrator: Frequency check points every 5 mc through range. Headphone jack for audio frequency output.
Frequency Drift: Less than 0.005% over 15 minute interval after warm-up.
Output Level: $0.1 \mu \mathrm{v}$ to 0.5 v into 50 -ohm load. Attenuator dial calibrated in v and dbm . (0 dbm equals 1 mw in 50 ohms.)
Voltage Accuracy: $\pm 1 \mathrm{db}$ full range.
Generator Impedance: 50 ohms, maximum VSWR 1.2.
Modulation Percentage: 0 to 80% indicated by meter.

Envelope Distortion: Less than 2.5% at 30% sine wave modulation.
Internal Modulation: $400 \mathrm{cps} \pm 10 \%$ and $1,000 \mathrm{cps} \pm 10 \%$.
External Modulation: 0 to $80 \%, 20 \mathrm{cps}$ to 100 kc . For RF output above $100 \mathrm{mc}, 0$ to 30% to 1 mc .
External Pulse Modulation: 10 v peak pulse required. Good pulse shapeat $1 \mu \mathrm{sec}$.
Residual FM: Less than 1,000 cycles at 30% AM for RF output frequencies above 100 mc. Less than 0.001% below 100 mc .

Leakage: Negligible; permits sensitivity measurements to 0.1 microvolt.
Filament Regulation: Provides highest possible oscillator and amplifier stability for line voltage change.
Power: $115 / 230$ volts $\pm 10 \%, 50 / 1,000$ cps. Approx. 150 watts.

Size: $133 / 8^{\prime \prime}$ wide $\times 16^{\prime \prime}$ high $\times 201 / 2^{\prime \prime}$ deep.
Weight: 70 lbs . Shipping weight. approx. 100 lbs .
Price: $\$ 950.00$.
-hp-608C VHF Signal Generator
Same as -hp-608D, except:
Frequency Range: 10 to $480 \mathrm{mc}, 5$ bands. Crystal Calibrator: In Model 608D only.
Frequency Drift:Less than $\pm 0.01 \%$ over 10 minute interval after warm-up.
Output Level: $0.1 \mu \mathrm{v}$ to 1.0 v .
Residual FM: Less than 0.0025% at 30% amplitude modulation for RF output frequencies 21 to 480 mc .
Filament Regulation: In Model 608D only. Price: $\$ 850.00$.

RTDTATS

by Potter \&

Brumfield and Sterling Engineering

PERHAPS YOUR TIMER WILL BE THE 661st

How do you know we can supply you with the timer that will do your job best? Because we have 19 years of experience in developing new timers to meet our customers widely varied requirements. If one of our standard timers won't do it-or one of the 660 combinations we have thus far developed from our 17 basic units-our engineers will develop the 661st combination, for your specific needs.

We manufacture a complete line of timers in these 4 broad classifications:

TIME DELAY TIMERS • INTERVAL TIMERS RE-CYCLING TIMERS • RUNNING TIME METERS

And since we maintain large stocks of our 17 basic units, we can assure you of rapid deliveries - and of good deliveries even on special orders. Automation? We're in it up to our ears...just put your problem up to one of our timer specialists. Your inquiries will receive prompt attention.
INDUSTRIAL TIMER CORPORATION
13 J OGDE STREET, NEWARK 4, N.J.

Waldes Truarc rings replace old-fashioned fasteners ... save assembly time...end scrap loss...increase operating efficiency

This is the Monroe Calculator

...precision-engineered business machine made even more efficient, and less costly to manufacture through the use of Waldes Truarc Retaining Rings.

Old Way. One-piece assem. bly was spun together. Spinning operation was costly, re sulted in high scrap loss.

Truarc Way. Two-piece assembly is held together by one Truarc Ring (series 5108). Rejects: practically zero.

Electric Motor Governor

Old Way. Collector Disc assembly was formerly riveted, requiring skilled labor. Riveled Collector Disc could not be removed in the field.

Truarc Way. Truarc Ring (series 5100) replaces rivets, saves labor, material...im. proves Collector action. Collector Disc is easily replaced.

Old Way. Washer riveted on end of assembly for zoning control. Costly, trouble. some, hard to obtain critical zoning required.

Truarc Way. Truarc E-Ring (series 5133) cuts assembly time, virtually eliminates rejects and final assembly and zoning problems.

Monroe Calculating Machine Company, Orange, N. J. uses various types and sizes of Waldes Truarc Retaining Rings. Use of Truarc has helped eliminate scrap losses, saved on material and labor, and resulted in increased operating and servicing efficiency of the product. Monroe plans to use Truarc Rings for every possible fastening operation on their entire line!

You, too, can save money with Truarc Fings. Wher-
ever you use machined shoulders, bolts, snap rings, cotter pins, there's a Waldes Truarc Retaining Ring designed to do a better, more economical job. Waldes Truarc Rings are precision-engineered...quick and easy to assemble and disassemble.

Find out what Waldes Truarc Retaining Rings can do for you. Send your blueprints to Waldes Truarc Engineers for individual attention, without obligation.

SEND FOR NEW CATALOG
WALDES

WALDES KOHINOOR, INC., LONG ISLAND CITY 1, NEW YORK waloes truarg retaining rings ano pleres are protecteo by one or more of the following 2.412.310: 2.413.213: 2.487.802: 2.417.803: 2.491.306: 2509 041 AND OTHER PATENTS PENDING

For precision internal grooving and undercutting ... Waldes Truarc Grooving Tool!

This fastener

works

through thick and thin!

HERE'S HOW SPRING-LOCK WORKS
Spring-Lock - the easy-to-use removable fastener for modern designs-works whether panel thicknesses run over or under specifications! Spring wire deflects automatically to handle greater or lesser thicknesses. Spring-Lock's design flexibility makes it more than a fastener: it can be adapted as a shelf support, door strike, knob or any similar panel-mounted device. Many standard shapes and sizes of Simmons Spring-Locks are available from stock. SIMMONS FASTENER CORPORATION 1750 North Broadway, Albany 1, New York

1. Insert fastener.

2. Half-turn locks it in place.

With production costs on the uptrend, you can figure on Spring-Lock as an assembly time and money-saver, because:

- Installation is BLIND
- Installation is EASY: no special tools are needed
- Installation is QUICK : a half-turn locks it in place
- Installation is SECURE: the spring steel locks the fastener, resists vibration

Send for details and samples, or write us about your fastening problem.

Resinox

gives you both!

High-styling in popular colors: Top safety for printed circuits!

Housings molded
of

RESINOX*1500 BLACK

take any finish
without bleedingand
meet specified

If you are seeking a high heat resistant material for cabinets housing printed circuits or prefabricated wiring-Monsanto's Resinox 1500 Black is your answer.

This phenolic compound is specially formulated to meet all specified safety standards of Underwriters' Laboratories.

No sealed chassis or other sheathing is required. Resinox 1500 Black passes oven-heat test of $115^{\circ} \mathrm{C}$. for 9 hours !

Resinox is non-bleeding in contact with spirit solvents and rapid-bake enamels. Cabinets can be painted in complete range of best-selling colors, including the new decorator shades.

These cabinets are priced competitively with those made of other materials. Resinox flows freely and cures fast to a smooth finish with high surface gloss. It has excellent rigidity, dimensional stability and resistance to warping-plus good impact resistance

For colorful printed circuit cabinets, which merit Underwriter approval, investigate Resinox 1500 Black. Write today to Monsanto Chemical Company, Plastics Division, Dept. E-2. Springfield 2, Mass.

only SOUTE゙CO

 offer all these benefits!

 offer all these benefits!}

Note,

No special tools to buy or maintain, no bucking up, no finishing, no noise, no material waste.
Just hit the pin, the rivet's in ... that's all.

On your production line, where can savings be made with Southco Drive Rivets? Write for complete data. Southco Division, South Chester Corporation, 233 Industrial Highway, Lester, Pa.

FOR BLIND

APPLICATIONS

SPEED ASSEMBLY . . CUT COSTS

SOUTHCO

FASTENERS

> OFFICES IN PRINCIPALCITIES

[^7]

Ear mounted composition control. Simply twist two ears for rigid mounting. Eliminates bushing and mounting hardware. Available with shafts for knob operation or for preset applications with insulated or metal shaft. CTS type P45 with metal shaft illustrated.

Ear mounted tandem for preset applications. Combines panel space saving features of a concentric tandem with the economy of an ear mounted unit. Available in various combinations of composition or wirewound front and rear sections. CTS type P-C245 with composition front and rear sections illustrated.

Four watt wirewound control available with or without center tap. CTS type 27 with tap illustrated

Concentric shaft tandem control with conventional bushing mounting. Designed for front panel dual knob applications, such as contrast and volume. Available in various combinations of composition or wirewound front and rear sections with or without onoff switch attached to rear section. CTS type GC-C25245 with wirewound front section, composition rear section and on-off switch illustrated.

1 1/8" diameter composition control for applications where ratings up to $3 / 4$ watt required. CTS type 35 .

Permalloy POWDER CORES

IIAGIATIGS inc.

Here's something to ring bells about, for Magnetics, Inc., the nation's largest manufacturer of tape wound cores, is now licensed by the Western Electric Company to manufacture molybdenum permalloy Powder Cores.

So now Magnetics, Inc. brings to powder core users the same "Performance-Guarantec" which has already provided a major free bonus to users of our tape wound cores, bobbin cores, magnetic shields and magnetic laminations. This is a guarantee of performance to your specifications.
"Performance-Guarantee" is your assurance of savings in production and assembly. It costs you no more . . . our prices are standard in the industry . . so make sure your next permalloy pow. der core order reads, "Magnetics, Inc. Performance-Guaranteed."

READILY AVAILABLE Why wait to have your Performance-Guaranteed Powder Core orders filled? Our expanded production facilities can have your order on its way almost as soon as it arrives. And send for our Bulletin PC-103 today so that you're ready to order PerformanceGuaranteed Powder Cores as soon as you need them.

Major Advance
 $$
7
$$

Higher Pumping Speeds in Critical Ranges. Examples: the 6 -inch booster exhausts 760 cfm at 50 microns, 1400 cfm at 15 microns, with an ultimate pressure of .06 microns. The 16 -inch diffusion pump exhausts $11,000 \mathrm{cfm}$ at 1 micron

Shorter Pumping Cycles for all high vacuum processing equipment including vacuum metallizers, vacuum furnaces and exhaust systems.

Higher Forepressures. Examples: at blankoff, 2.4 mm . for the 6 -inch booster; 0.35 mm . for the 16 -inch diffusion pump, both at normal heat input.

Sizes Available NOW:

Diffusion Pumps: 4, 6, 10, 14 and 16 inches Booster Pumps: 4, 6, 10 and 16 inches

Use the Coupon (upper right) to request specifications and performance curves.
h

Application \qquad
NAME
COMPANY
ADDRESS
CITY _._._._._._._._._STATE

.in DIFFUSION PUMPS

The NEW Stokes RING-JET Diffusion and Booster Pumps Increase Pumping Capacity More Than 50\%

The revolutionary design of the new Stokes Ring-Jet* Diffusion and Booster Pumps is a major development in diffusion pump techniques. It is a high point of achievement in Stokes' 50 years of experience in building high vacuum equipment.

Here, briefly, is a description of the old and the new . . . the development which has given Stokes Ring-Jet Pumps such high pumping capacity. Diffusion pumps have as one limiting factor the cross section of the air flow path. A second limiting factor is the distance from the jet to the condensing surface.

The new Stokes Ring-Jets replace the conventional jet cone with a ring of jets. This increases the cross-sectional area of the air flow path without increasing the distance to the condensing surface. The effect is to increase pumping speeds on some models more than 50%.

Increased pumping speeds, shorter pumping cycles, smaller mechanical pumps, operation against higher forepressures, are outstanding advantages of the new Stokes Ring-Jet Pumps. Fill out the coupon for full information.

*Patent's Pending

For Generation of Pulse Voltages-南 $\begin{gathered}\text { chatham } \\ \text { Hitioicicin }\end{gathered}$

A three electrode zero bias thyratron with peak power handling capacity to 2.6 megawatts
ELECTRICAL DATA

		MIN.	BOGEY	MAX	
HEATER VOLTAGE	5.8	6.3	6.8	Volts	
HEATER CURRENT @6.3V	9.6	10.6	11.6	Amps	
CATHODE HEATING TIME	300			Sec.	
ANODE VOLTAGE DROP, PEAK	100	150	200	Volts	

for detailed chorocteristic doto request sheet DSW.104.1

Chatham Hydrogen Thyratrons are the product of many years of concentrated experience in this specialized field. Embodying the most advanced developments in the art, the tubes illustrated offer uniformly high performance
when employed in the generation of pulse voltages in the order of microseconds. For complete data and specifications on Chatham Hydrogen Thyratrons, call, write or wire today - no obligation.

financial aid to higher education

Business Aid for Our Colleges Voluntary or Involuntary?

Previous editorials in this series have shown that:

- As a group the nation's independent, privately endowed colleges and universities are in grave financial trouble, and
- There are many different means by which business firms can extend a helping hand to these institutions.
This editorial, one of a series devoted to the financial problems of higher education, sulmits this proposition: If business firms do not voluntarily go to the financial aid of higher education, there is every prospect that they will soon be providing more financial support for higher education involuntarily, through taxation.

If this prospect materializes, one of the basic elements of a well-balanced system of higher education - a strong array of independent colleges and universities - may well be dangerously weakened if not destroyed. And in the process a potentially crucial bulwark for freedom of enterprise in the United States-that same strong array of independent colleges and universities - will be undermined.

Acceptance of these propositions implies absolutely no disparagement of tax-supported colleges and miversities. These have an indispensable role in the total system of higher education in the United States. Leaders of these
institutions would be among the first to agree that their position is strengthened by a strong system of independent institutions, supported privately rather than by political agencies.

What is the evidence that in one way or another, voluntarily or involuntarily, business will be giving more financial support to higher education? One impressive part of this evidence is provided by the recent rapid increase in the proportion of college and university students attending tax-supported institutions.

Rapid Shift in Enrollment

In the fall of 1952 tax-supported colleges and universities enrolled about 7.5 per cent more students than the independent institutions. In 1953 this percentage was doubled. And in 1954 the tax-supported institutions enrolled 26 per cent more students.

In the case of students entering college for the first time the relative growth of the tax-supported institutions recently has been even more striking. In 1952, the number of beginning students in the tax-supported schools, as reported by the U. S. Office of Education, exceeded those in the independent colleges and universities by 35 per cent. In 1954, just two years later, this figure jumped to 49 per cent.

Why has the proportion of students attending tax-supported colleges and universities been in-
creasing so rapidly? There are many reasons. But a dominant reason is that, in order to keep going at all, the independent institutions have been forced to make large increases in the prices they charge for instruction. The purchasing power of their endowment funds has been cut in half by price inflation. The capacity of the wealthy to supplement their endowments by gifts, as they have done in the past, has been greatly reduced by high taxes. As a result these schools have been forced to rely increasingly on higher prices for instruction (tuition as it is called in academic circles) to make both ends meet.

Since 1940, the independent colleges and universities have raised their tuition fees by an average of about 60 per cent. This is considerably less than the increase of about 100 per cent in prices generally since 1940. And it is nowhere near enough to prevent the faculty memhers of the independent colleges from faring miserably in terms of salaries, a matter of major national importance to which we shall return in this series. But the increase in tuition fees of the independent colleges has been much greater than the increase in the fees charged by the taxsupported schools. And that price differential increasingly tends to shunt students into the schools which are supported chiefly by taxes. Independent colleges now charge, on the average, about $\$ 580$ per year for a full course of instruction while the tax-supported institutions charge, on the average, about $\$ 240$.

Bigger Tax Bill in Prospect

A large increase in the total enrollment in our colleges and universities during the next decade is in prospect, particularly when the great increase in births during World War II is reflected in the number of young men and women of college age. With a total of 2.5 million students at present enrolled in our institutions of higher learning, it is estimated that the total will be over 3 million by 1960 .

If this trend continues most of the anticipated increase in college and miversity enrollment will be concentrated in tax-supported institutions. Indeed, if the shift toward tax-supported institutions that has occurred in the last three years were to continue over the next six years at the same rate, about two million of the three million students anticipated in 1960 would be in tax-supported colleges and universities and
one million in independent schools. In 1950 there was a $50-50$ division in enrollment. This shift would mean, of course, a corresponding increase in the tax bill for tax-supported educatimon. And of this bill, we can be sure that an ample share would be assessed against business firms.

No Easy Solution

The best way, of course, to put a brake on a soaring tax bill for higher education is to help the independent institutions get in shape fimancoaly to carry a larger share of the student load. For most companies the development of a mutually satisfactory program of financial aid for higher education is a complicated process. In fact, it is so complicated that some companies with an initial disposition to provide financial help are inclined to despair of working out a mutually constructive plan.

If, however, the leaders of business will contemplate seriously the only available alternative to their extending voluntary help to our independent colleges and universifies, their determination to work out a plan will be strengthened. For that alternalive involves a grave weakening of our sysfem of higher education, together with an involuntary increase in the financial support of higher education by business. The increase would come through higher taxes. Contemplation of such an alternative should, if necessary, toughen the will of business firms generally to do everything possible to extend financial help to ont independent colleges and universities.

[^8]
DonardCMClman

 PRESIDENTMcGRAW-HILL PUBLISHING COMPANY, INC.

When the there's a tr

Space saving insulation. machined from KEL-F Plastic rod.

Miniature Test Jacks for 500 volt RMS "HF" circuit ...injection molded of KEL-F Plisitic.

Contact Bar insulated with KEL.F Plastic...injection molded directly to beryllium-copner.

When vou have to squeeze more and more into less and less space... when materials lack the specific properties you need for miniaturization, we suggest you look into the possil)ilities of KEL-F Plastic.

The development of KEL-F Plastic, a fluorocarbon polymer, was inspired by a vital problem of miniaturization in the field of electronics. What it accomplished then, it can repeat for your products.

KEL-F Polymer is a dense, tough thermoplastic with outstanding resistance to the effects of high and low temperatures. In wire insulation, tube sockets, connector blocks, printed circuit bases, transistor seals, and other applications its zero moisture absorption, non-wettability and dimensional stability can provide high level performance under severe conditions of temperature and humidity.

The compressive strength is high. Bearing loads
of $8,000 \mathrm{psi}$ result in only 4% to 5% permanent set. KEL-F Plastic can actually be used for structural members. Electrical properties are outstanding. They include superior resistance to areing, surface flash-over and thermal cycling

KEL-F Plastic is readily moldable by extrusion, compression, injection and transfer methods. Molding techniques are fully perfected, and molded components can be depended on to exhibit all the inherent characteristics of the original molding material.

KEL-F Plastic is available as a molding compound, or it can be obtained in rods, tubing, sheets and film from a number of suppliers. It is also available in dispersions, suitable for bake-coating of metals and certain non-metals. The full story of KEL-F Polymer should be in your active file. Write us.
(14) Registered trademark for The M. W. Kellogg Company's Fliorocubon polymers.

Miniature Rectifier and momit for parts...injection molded of KEL-F Plastic.

THEM. W. KELLOGG COMPANY
Chemical Manufacturing Division, P. O. Box 469 , Jersey City, N. J. SUBSIDIARY OF PULLMAN INCORPORATED

Another G-E Capaci-

 tor First for the Elec; tronics Industry

DRAWN-RECTANGULAR CASE has no soldered seams, does not depend on solder for mechanical strength and effective sealing.

new . . . G-E CAPACITORS IN DRAWN-RECTANGULAR CASES

- Solderless, double-rolled cover seam

- Seamless case with standard dimensions

General Electric is now producing fixed paper-dielectric capacitors in seamless, solderless cases with standard dimensions that comply with or exceed MIL specifications For complete information contact your G-E Apparatus Sales Office or write for Bulletin GEC-809A to Section 442-24, General Electric Co., Sehenectady 5, N. Y.

Progress Is Our Most important Product

GENERAL ELECTRIC

SOLDERLESS DOUBLE-ROLLED COVER SEAM makes a mechanically strong, hermetic seal.

BOTTOM OF CASE IS INDENTED to permit mounting in inverted position.

UPRIGHT OR INVERTED MOUNTING is possible using either spade lug, or footed brackets (above)

FOUR BUSHINGS STYLES are civailable for applications below 2000 volts d-c; special skirted bushings for higher voltages.

STANDARD CASE SIZES are interchangeable, making it unnecessary to change drawings or circuit layouts.

Telephone engineers have chosen more kilowatt miles of REL thin route radio relay equipment than that of any other manufacturer.

REL equipment is world famous as supremely reliable. REL relays reduce revenue-losing "down time" and costly maintenance trips-an especially valuable feature in isolated or remote installations.

REL sets the pace in continual engineering advances. Good as was last year's REL equipment, today's is better.

RELy on REL for RELiable RELays.
Second in a series describing FEL versatility

RED

RADIO ENGINEERING LABORATORIES • INC.
36-40 37th St •Long Island City 1, N. Y.
STillwell 6-2100 -Teletype: NY $4-2816$
Canadian representative:
Ahearn \& Soper Co., P. O. Box 715, Ottawa
lnternational representative :
Rocke Interuational Corp., 13 E. 40, N.Y. C. 17

When you need profofypes . . look to Ketay.
The Research and Development Division is staffed and equipped to provide basic research where standard concepts are not applicable.
As design agent for the Department of Defense and many leading industrial firms... Ketay has developed units for applications requiring resistance to the extremes of corrosion, humidity and temperature... units conforming to special configurations ... and many subminiatures.

Ketay design units have set the standard for accuracy, torque and power, stability and uniformity, and variety in function and adaptability.

FOR A SINGLE PROTOTYPE

This corrosion-resistont synchro is on original Ketay design to meet special requirements. gyro pickoff shows how Kefay designs to meet the needs of special con. figuration. $\xrightarrow{\longrightarrow}$

Ketay

 ... OR 10,000 UNITS

Ketay offers the widest range of synchros, servo motors, resolvers, and related units. In fact, many of your "special design requirements" can be obtained with "over 130" standard items now in volume production.
Ketay is a major supplier to both the military and leading industrial firms. They are specialists in SYNCHROS - RESOLVERS SERVO MOTORS • RATE GENERATORS •
MAGNETIC AMPLIFIERS • POTENTIOMETERS •
GEARS AND GEAR TRAINS • SERVO MECHANISMS • AIRBORNE INSTRUMENTS • ELECTRONIC EQUIPMENT. When high precision and fine quality are important . . look to Ketay!

CBS-Hytron Qualifies for

Signal Corps Honor

Inspection Program

CBS-Hytron is the first and (as of January 15, 1955) the only receiving-tube manufacturer qualified for the Signal Corps honor inspection program ... the Reduced Inspection Quality Assurance Plan - RIQAP.

The Signal Corps Supply Agency has informed CBS-Hytron: "The completeness of your manufacturing process and quality controls, the supporting inspection records, and the quality of your end product have enabled us to adopt a reduced inspection plan on your Electron Tubes."

The Signal Corps found that CBS-Hytron is producing a quality of product which is "either equal to or better than the Acceptable Quality Level established by the Goverument."

Equivalent quality of product is available to you, too.

Quality products through ADVANCED-ENGINEERING
 made available to meet your specilic application.

JK-G 3: 10 me to 150 me . Miniature size, minimum aging drift, high O for maximum performance. JK miniaturized "Glasline" crystals meet the growing need for minimum size with maximum stability.

that unlocks tomorrow's door

CERTIFIED STABILITY performance is the key to spectrum conservation

With the radio spectrum already congested, and channels narrowing, frequency control tolerances must narrow too. Equipment that "drifts" or "ages" has no place on this express way. Nor need it have, for today JK crystals are available that exceed your most critical stability requirements for interference-free land, sea and air radio communications. Crystals of this extreme stability are also serving as filter resonators for radar, for power line carrier communications and telemetering, and as ultra-precision time bases. And our research goes on. JK Glasline crystals, and JK Ovens, offer "packaging" that combines unprecedented enrivonmental control with the compactness your new equipment requires. So precise, so rugged, so protected are these JK crystals that their performance can now be Certified to previously unheard of stability tolerances. So don't let frequency management problems delay your development programs. JK engineering can be the key needed to unlock tomorrow's door for you.

TO COMPLETE THE ENVIRONMENTAL PICTURE: THE NEW JKOg OVEN

To the protection JK Glasline design provides against moisture, contamination, vibration and barometric pressure, the JKO9 oven adds control of temperature. It is production tooled for economy and uniformity, is small and light ($1.28^{\prime \prime} \times 1.70^{\prime \prime}$ $\pm 1.5 \mathrm{oz}$.), and is capable of maintaining a temperature constant to within $\pm 1^{\circ} \mathrm{C}$ over a range of -55° to $+100^{\circ} \mathrm{C}$. Here is an oven that matches the performance of many, massive multi-stage heaters - an example of JK's ultra-stable minia. turization program.

JK-G9: Precision "Glasline" quartz crystals, sealed in evacuated glass for cleanliness and protection, over a complete range of 800 cycles to 5 mc .

JK-G4: "Glasline" Crysta! Filter Resonator. For broad filter applications such as power line carrier communications and telemetering. Frequency range 50 to 200 kc .

THE JAMES KNIGHTS COMPANY

Crystals for the Critical - Sandwich, Illinois

JK STANDARD MILITARY AND COMMERCIAL TYPE CRYSTALS

Quality and service are James Knights traditions that apply to the simplest JK crystals as well as to the most complex, and apply to our smallest customer as well as our largest. So whatever your requirements - look to James Knights as a dependable, cooperative source for quality, price and delivery.

PRESSURE MOUNT
ED: A complete line of commercial and military types.

MILITARY TYPES Hermetic sealed, metal cased, in frequency ranges from 16 kc to 100 me

Now...the answer to high-resolution recording of test data the Extended Range ElectraniK Recorder

Closeup of indicating scale. Upper pointer shows millivolts within the span; lower pointer indicates millivolts to be added. Total! reading: 4.58 mv .

Designed especially for recording variables which change over a wide range, this new ElectroniK instrument records on a chart effectively 55 inches in width. It has five equal measuring spans. Whenever the variable being measured reaches either the upper or lower limit of one of these ranges, the instrument automatically steps to the adjoining range and continues recording. Two indicating pointers show the range in use and the value within the range. Connected to each pointer is a pen; one draws a purple record showing the range, the other draws a red record of the variable itself. To get the complete reading, you simply add both pen or pointer indicalions.
The complete range is 10.2 millivolts, in five

2 -millivolt steps with an extra 0.2 millivolts on the high end of each span to provide an overlap that facilitates measurements near the changeover point. Pen speed of $41 / 2$ seconds full scale affords rapid response to quickly changing variables.
You'll find this new instrument particularly valuable in strain gage measurements and in dozens of other uses where high resolution aids interpretation of data. Your nearby Honeywell sales engineer will be glad to discuss your specific applicaion . . . and he's as near as your phone.
Minneapolis-Honeywell Regulator Co., Industrial Division, Wayne and Windrim Avenues, Philadelphia 44, Pa.

- Reference data; Write for Data Sheet No. 10.0-18, "Extended Range Recorder."

The rectifier you need ... when you need it!

Bradley Selenium Rectifier Kits are time-savers for the design and development engineer. Seven different kits offer a broad choice of types, all complete units, all with standard commercial coding. Miniature rectifiers from 1.5 ma D.C. up to 3700 volts peak inverse. Power rectifiers from 100 ma D.C. to 10 amperes D.C. up to 740 volts. The smallest rectifiers have $3 / 16$-inch diameter plates, the largest 5 - x 6 -inch plates. There's a type and size for every conceivable need.

Bradley Rectifier Kits are low in cost, too. The individual rectifiers are all produced by Bradley's standard, high quality production methods - the proven vacuum deposition process with rigid, laboratory-type controls.

With Bradley Selenium Rectifier Kits on hand there's no more waiting for samples - no more delayed projects. Write today for complete details on kits and costs, or see your local industrial electronics jobber.

Model 446 transmitter operates on 4 crystal-controlled frequencies (plus 2 closely spaced frequencies) in the band 2.5-24.0 Mcs (1.6-2.5 Mcs available). Operates on one frequency at a time; channeling time 2 seconds. Carrier power 350 watts, Al or A3. Stability $.003 \%$. Operates in ambient -35° to $45^{\circ} \mathrm{C}$. Nominal 220 volt,50/60 cycle supply. Conservatively rated, sturdily constructed. Complete technical data on request.

Here's the ideal general-purpose highfrequency transmitter! Model $446 . .$. 4-channel, 6-frequency, medium power, high stability. Suitable for point-topoint or ground-to-air communication. Can be remotely located from operating position. Co-axial fitting to accept frequency shift signals.

(0)

DEFINITELY DEPENDABLE!

Aerocom's Dual Automatic Radio Beacon

Reliability is built into every part of this dual 1000-watt aerophare unit. Ruggedly constructed and conservatively rated, it provides trouble-free unattended service, and at truly low operating and maintenance cost. It operates in the frequency range $200-415 \mathrm{kcs}$, using plug-in crystal for desired frequency.

Uses single phase power supply, nominal 220 volts, 50 or 60 cycles. Consists of two 1 kw transmitters with keyer (2 keyers if desired, automatic transfer unit and weatherproof antenna tuner. Each transmitter housed in separate standard rack cabinet, with controls in rack cabinet between the transmitters.

Nominal carrier power is 1000 watts. High level plate modulation of final amplifier is used, giving $30 \%-35 \%$ tone modulation. P-T switch interrupts tone, permitting voice operation. Operates in ambient temperatures from $-35^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, humidity up to 95%.

Standby transmitter is placed in operation when main transmitter suffers loss (or low level) of carrier power or modulation, or continuous (30 sec.) tone. Audible indication in monitoring receiver tells when standby transmitter is in operation.
A.ntenna may be either vertical tower or symmetrical T type.

COMMUNICATION ACCESSORIES COMPANY
Hickman Mills, Missouri

0.01% regulation accuracy! 1000 VA capacity!

Sorensen Model 1001

electronic AC Voltage Regulator

specifications

Input	$95.130 \mathrm{VAC}, 10,50-60 \mathrm{n}$
Output	110-120 VAC, adjustable
Load range	0.1000 VA
Regulation ascurasy	$\pm 0.01 \%$ against line and $\pm 0.01 \%$ against load guaranteed at room temperature, for a resistive load, an input variation of $\pm 10 \%$ and over a 2-to-1 load change. For all other conditions within the specifications the 1001 has a proportionate amount of accommodation.
Distartion	3\% RMS maximum
P. F. range	0.95 leading to 0.7 lagging
Time constant	0.1 second
Tube complement	6SL7GT (1), 6L6GA (1), 5Y3GT (1), 2AS15 (1)

Fiven grearer capacity with similar accuracy will be available this fall when the Sorensen Model 2501 Regulator - $\pm 0.01 \%$ accuracy, 2500 VA capacity - goes into production.

general catalog available

AC VOLTAGE REGULATORS - 150 VA to 15000 VA capacities, 115 volt and 230 volt output, 400 -cycle regulators, 3 -phase regulators
FREQUENCY CHANGERS -60 cycle and 400 cycle, accuracy to $\pm 0.01 \%$

NOBATRONS - Regulated low-voltage, high-current DC sources
B-NOBATRONS - Regulated high-voltage, low.current B power supplies
NOBATRON-RANGERS - Wide-range variable DC sources
TUBELESS DC SUPPLIES - Maghetic amplifier supplies with various outputs and capacities

AIRBORNE FREQUENCY CHANGERS \& INVERTERS, MILITARIZED REGULATORS, FIITERS, TRANSFORMERS, AND RELATED EQUIPMENT.

For your copy write Sorensen \& Co.. Inc., 375 Fairfield Avenue Stamford, Conn. In Europe, Sorensen A.G., Gartenstrasse 26, Zurich 2, Switzerland.

SORENSEN

375 FAIRFIELD AVENUE, STAMFORD, CONN.

Here's the Story:

Alcuplate was developed by General Plate to reduce the raw material costs for manufacturers using strip copper or brass.
A composite metal, Alcuplate is a solid layer of copper permanently bonded on one or both sides of less expensive aluminum. This combination has practically the same physical and electrical properties of copper . . . but reduces copper or brass costs by as much as 30%.

ALCUPLATE FEATURES

- Nafural copper appearance
- High electrical conductivity
- Excellent heat dissipation
- Soff-soldering surfaces
- Easy fabrication
- Light weight

alcuplate

 The Material of 1001 USES
Replaces Strip Copper or Brass at Savings up to $\mathbf{3 0 \%}$

Here's how ALCUPLATE can be worked:
ALCUPLATE can be fabricated by stamping, drawing, spinning and forming. Its malleability permits its use in the manufacture of many parts from work-hardened rather than annealed or dead soft materials. The copper provides an ideal surface for soft-soldering operations and electroplated or other finishes.

A few typical products where ALCUPLATE is cutting fabrication costs

Heat transfer units - Electronic chassis and component cases - Electrical terminals Jewelry - Gift ware - Chafing dishes Water pitchers - Drain spouts

In what Sizes is ALCUPLATE Stock available?
In coils or cut lengths up to $1 / 16^{\prime \prime}$ thick by $13^{\prime \prime}$ wide and in a choice of thickness ratios and tempers.
For further information, write or wire
ALCUPLATE ${ }^{\circ}$
METALS \& CONTROLS CORPORATION
GENERAL PLATE DIVISION
32 FOREST ST., ATtLEBORD, MASS.

Now Fairchild is able to miniaturize potentiometers and still give you the accuracy and reliability you need.
This advance is made possible by Fairchild's continuous and extensive research on new materials such as epoxyresin and halogenated polyethylene insulating materials, and precious metal alloy resistance wire, and by thorough evaluation of these materials in our own environmental testing facilities. These advances are maintained by our rigid quality control program on materials, processes, and manufacturing.

MENMATERGEATEON

without

sacrificing performance

Fairchild miniature precision potentiometers meet applicable portions of MIL-E-5272A for humidity, vibration, temperature cycling, fungus resistance and salt spray. These units, in $7 / 8^{\prime \prime}$ and $1 / /^{\prime \prime}$ diameters, meet the same requirements for accuracy and reliability as most standard precision units up to $2^{\prime \prime}$ in diameter.
No matter what factors govern your choice of precision potentiometers, you'll find the answer in Fairchild's complete line. Write Dept. 140-59 A, Fairchild Camera and Instrument Corporation, Potentiometer Division, 225 Park Avenue, Hicksville, Long Island, New York.

PR R R R / / / D

12
 ,800 ТО
 5

integrated equipment for

 Extremely High FrequenciesNow, Polarad has applied its advanced engineering techniques to produce fully self-contained microwave test equipment for use in the Extremely High Frequency region--12,800 to 50,000 MC
This new line of Signal Generators, Signal Sources, and Spectrum Analyzers is designed to save engineering manhours in the laboratory and on production lines-obviating experimental test set-ups.
The Extremely High Frequency Polarad Signal Generator, for example, furnishes monitored power output as well as measures external signal strength and frequency.
Highest accuracy and reliability of operation are assured by careful engineering and the use of highest quality components. For complete information write to your nearest Polarad representative or directly to the factory.

ELECTRONICS CORPORATION
43-20 34th St., Long Island City 1, New York

REPRESENTATIVES - Albuquerque - Atlanta - Baltimore - Boston - Chicago - Cleveland - Fort Worth - Kansas Clty - Los Angeles - New York PhiladeIphia - San Francisco - Seattle • St. Paul - Syracuse - Washington, D. C. - Canada, Arnprior-Export: Rocke International Corporation

Chase Tellurium Copper gives you the advantages of high conductivity plus good machinability．

Chase Tellurium Copper can be ma－ chined with tool speeds and settings similar to those used with Free－Cutting Brass，permitting high rates of produc－ tion．But，unlike Free－Cutting Brass， Chase Tellurium Copper can be hot worked easily，and can be cold worked almost as extensively as pure copper．

For more information on Chase Tellurium Copper，check the coupon below．

BRASS \＆COPPER CO．
WATERBURY 20，CONNECTICUT－SUBSIDIARY OF KENNECOTT COPPER CORPORATION
The Nation＇s Headquarters for Brass \＆Copper

Albany \dagger	Chicago	Detroit	Los Angeles	New York	St．Louis
Athanta	Cincinnati	Grand Rapids \dagger	Milwaukee	Philadelahia	San Francisca
Batimore	Cleveland	Houston	Minneapolis	Pittsburgh	Seattle
Boston	Dallas	Indiznapolis．	Nawark	Providencre	Waterbury
Chariotta \dagger	Denver	Kansas City．Mo．	New Orleans	Rochester \dagger	（†sales office only）

Chase Brass \＆Copper Co． Waterbury 20，Conn．

Dept．E－255
Gentlemen：
Please send me your free Tellurium Copper booklet．
Name．
Position
Firm
Street
City
\qquad
$1-$

Get out of the Magnetic Doghouse

 with MUMETAL Shields

ADDRESS DEPT. E-62

Mumetal shields will give instant relief to interference caused by extraneous magnetic fields. This materal can cure many troublessolve many a problem for you.

Use it where high permeability is required at low flux densities, such as in input and microphone transformers, hearing aid diaphragms, instruments, wireand taperecorders, etc. For properly heat treating Mumetal, we can also offer commercial hydrogen annealing facilities.

A fund of technical data on
shields and other applications for Allegheny Mumetal is availablelet us help with your problems.
In addition to Mumetal and other high-permeability alloys, we offer a range of magnetic and electrical alloys and steels that is unmatched in its completeness. Our services also include the most modern facilities for lamination fabrication and heat treatment. - Let us supply your requirements. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa.

STEELMAKERS to the Electrical Industry Allegheny Ludlum

for rapid disconnect
use cannon

"unit plug-in"

connectors
speed up inspection...testing...maintenance! facilitate interchangeability!
You can connect, disconnect, interchange, replace, test, and inspect instruments, assemblies, and sub-assermblies
easily and rapidly when you use Cannon "Unit Plug-In" multi-contact electric connectors.

You'll find some with shells . . . some without. Shell
style units . . . in a wide variety of des gns . . . are ruggedly constructed to take the many "in" and "out" operations of rack, panel, chassis, and sub-assembly applications. Varied,
simple, but always rigid mounting facilities provided on each connector half. Standard, miniature, sub-miniature sizes. Either connector half may be made into a plug by use of an end bell.

Up to 156 contacts. And . . an amazing number
of combinations of contacts for control, zudio, thermocouple, co-ax, twin-ax, as well as pneumatic connections. In single. or double-gang. Special moisture-proofed types. Standty units
feature gold-plated contacts to withstand detericration and corrosion. Write for full information. Write TODAY!

(845)
 first in connectors
 GAviou plucs

Please refer to Dept. 120
CANNON ELECTRIC COMPANY, 3209 Humboldt Street, Los Angeles 31, California. Factories in Los Angeles; East Haven; Toronto, Canada; London, England. Contact representatives and distributors in all principal cities.

Get better printed circuits ... lower costs . . . fewer rejects m NeW CD.D.F METAL CLADS

All manufacturers of metal clad stock for printed circuitry have made considerable progress in improving their prod-uct-a material with a metal foil surface bonded to a nonconducting base. How this has been done by one leading manufacturer, the Continental-Diamond Fibre Company, illustrates some of the problems involved in buying this type of material and in understanding its design potentials.

C-D-F CONSOLIDATED GRADES

At first, small test lots of Dilecto laminated plastic with copper surfaces were made. Almost every core material was used. Finally the number of practical grades for printed circuit work narrowed down to these few grades which retained to a large degree the inherent electrical qualities of their base material and resin at high temperatures:

COPPER CLAD GRADE XXXP-26

A laminate with excellent electrical and mechanical properties. High moisture resistance and dimensional stability. Recommended for applications where high heat and high insulation resistance plus low dielectric loss under high humidity is needed. Low cold flow characteristics. Can be hot punched to $1 / 8^{\prime \prime}$. Good flexural strength. Natural green color.
This is one of the improved C-D-F Dilecto laminates. Advances in resins and manufacturing techniques makes this grade almost homogeneous, with improved impregnation of the filler. Thorough impregnation eliminates entrapped moisture and air, giving greater moisture resistance and better dielectric properties.
Any metal clad is no better than its base and the care taken in laminating. With the cost of material high, compared to labor and inspection, the purchase of a uniform metal clad material, like this C-D-F grade, becomes vital,

COPPER CLAD GRADE XXXP-24

Similar to grade XXXP-26 in electrical and moisture resistance properties, but not quite as strong mechanically. Equal cold flow and punching characteristics. Natural brown.

COPPER CLAD GRADES GB-112S AND GB-261S
These silicone grades use a glass fabric laminate with a copper foil surface on one or both sides. Recommended where high heat resistance and low dielectric loss properties are required. For certain tuners and inductances the
low dielectric loss factor of this grade makes its higher cost acceptable. A continuous filament (Grade GB-112S) is used for thicknesses $1 / 32$ to $1 / 16^{\prime \prime}$. A staple filament (Grade GB-261S) is used for thicknesses over $1 / 16^{\prime \prime}$.
COPPER CLAD GRADE GB-116T
A glass base laminate using duPont's tetrafluoroethylene resin, Teflon, for outstanding resistance to high heat with extremely low dielectric loss properties. A fine weave continuous filament glass fabric cloth is used for superior mechanical strength and good machining qualities. In spite of its high cost, this C-D-F grade has demonstrated that it can save money and do a job that no other single material can in microstrip high-voltage, high-frequency circuit elements. Remember, C-D-F is a major supplier of shects, tapes, rods, tubes of Teflon, has valuable experience in its manufacture and fabrication. Write for samples.

C-D-F INCREASED BOND STRENGTH

By developing a special thermo-setting adhesive particularly suited for metal clads, C-D-F was able to increase the bond strength of their laminates considerably above their original figures. Bond or peel strength, the amount of pull required to separate the foil from the core material, is one of the most important physical properties. Therefore, the purchaser should compare his source of supply with these C-D-F average test values:

BONDING STRENGTH-FOIL TO LAMINATE		
	MATERIAL	Average or Typical Value Lbs. pull per 1" width of foil to separate
XXXP- 24 or	XXXP-26 plus 0.0014" copper	5 to 8
XXXP-24 or	XXXP-26 plus $0.0028^{\prime \prime}$ copper	7109
	GB-116T plus 0.0014"' copper	5 to 12
	GB-112S plus 0.0014"' copper	6108
	GB-261S plus $0.0014^{\prime \prime}$ copper	7 to 10

C-D-F INCREASED HEAT RESISTANCE

Special efforts by C-D-F technicians to increase the heat resistance of all C-D-F Metal Clads have resulted in certain special grade variations able to withstand higher soldering temperatures without damage. As production methods change, C-D-F offers materials to meet your requirements.

NOW .. . HOW ABOUT YOUR STORY?

Notice how we have talked about C-D-F and what we have done to improve quality and uniformity of metal clad products. Much of this has been accomplished with the guidance and cooperation of leading users of printed circuit stock. No one company knows all the answers . . . but C-D-F, a big reliable source of supply, can help you get better printed circuits . . . lower costs . . . fewer rejects. Look up the address of your nearest C-D-F sales engineer in Sweets Design File, write us for samples you can test in the lab and on the production line, technical bulletins, help on your specific project. We want to work with you!

CONTINENTAL-DIAMOND FIBRE COMPANY NEWARK 16. DELAWARE

Tuning Fork Resonators, the ultimate in precision audio frequency control...

...phone or write
for complete information regarding component type. Tuning Fork Resonators, or variously pack:
aged Tuning Fork Frequency Standards.

Philamon Laboratories Inc. 5717 third avenue, brooklyn 20. new york

 dustry will be arriving from all sections of the nation and from abroad to inspect the more than 700 exhibits. It will be the biggest show the industry has ever seen.

As in the past, this show will be the focal point of everyone (whether manufacturer or designer) who has a stake in electronics. It is the high point of technical shows and showgoers will have the opportunity to see the latest in equipment, circuitry, components and materials. It is the one technical show that is a "must." On the next page are the reasons why the March Issue of ELECTRONICS is a "must", too, for electronic manufacturers

of electronics

Manufacturers show their products in the ELECTRONICS "Preview in Print."

As in past years, manufacturers and those who have interests in the electronic industry, have come to depend on the March Issue of ELECTRONICS as their product show place in conjunction with the IRE Show. The March Issue is a "last chance" before the Show for those who plan to exhibit and announce products and booth numbers . . . and for
those who do not plan to be in the show, to inform individual customers and prospects of their products. It is this Pre-Show issue of ELECTRONICS which has become the one means of alerting a wide audience . . . in the March Issue of ELECTRONICS . . . your "Preview in Print," where more than 35,000 purchasing influences see your products.
*. Closing date for advertising space in the March Issue of ELECTRONICS-February 1.
Look up the ELECTRONICS representative at Booth 126 at the IRE Show.

how can vacuum-melted metals help the electronics industry?

When a metal is melted and cast in a vacuum, the gaseous impurities are literally sucked out. The result is an important improvement in many critical properties.

For example, cathode nickel alloys, iron, and alloys for metal-glass seals - are all produced to extremely close standarcls of composition and uniformity. Soft magnetic alloys exhibit improved permeability, both initial and saturation. Copper shows marked increase in purity and soundness.

Vacuum-melted components greatly increase
vacuum tube life and reliability. That's because the vacuum-melting process degasses these metals before they are placed in the tube.

Vacuum Metals Corporation, pioneer in development and leading producer of vacuum-melted metals and alloys, can now offer you a wide range of metals for electrical or electronic applications. If you would like to see how these remarkable new materials can fit into your own production, write on your company letterhead, describing the application in which you are interested. Vacuum Metals Corporation, P.O. Box 977, Syracuse 1, New York.

VACUUM METALS CORPORATION
Jointly owned by Crucible Steel Company of America and National Research Corporation

If it's performance you're looking for, check these exclusive features of Ward Leonard's complete line (25 through 300 watts) of Vitrohm ring rheostats:

The "twin" contact shoes of sintered material assure uniform contact pressure and unusually smooth, trouble-free operation.

Special alloy resistance wire is toroidally wound on core and held permanently secure by the Vitrohm vitreous enamel.

Core and base are molded of highest quality ceramic materials and bonded together by Vitrohm enamel.

Whether your product is heavy industrial apparatus, sensitive electronic equipment, or a simple appliance requiring rheostats, you'll get more accurate, dependable performance per dollar from the Vitrohm ring line. Write for data-packed bulletins to Ward Leonard Electric Co., 150 South St., Mount Vernon, New York.

Rheostat Type	Watt Rating (based on 300° C Rise)	Total Resistance* Min. Mhms. Ohms		Approx. Number of Steps at Min. ohms ot Max. ohms	
$25 R$	25	1.0	5,000	27	520
$50 R$	50	1.0	10,000	49	998
100 R	100	1.0	10,000	41	1041
150 R	150	1.0	10,000	43	1240
300 R	300	1.0	2,500	40	710

* Wide range of resistance values stocked for immediate shipment.

- Esult- Engineered Controls Since 18:2

1. AXIOHM* Used in electranic equipment requiring miniature power resistors. 2. FIXED VITROHM* Used for voltage dropping and current limaiting. 3. ADJUSTOHM* Gives circuit addiustability for voltage dividing or regulating purposes. 4. NON-INDUCTIVE* For low inductance and distributed capacitance in high frequency circuits. 5. PLAQOHM* Used in compact, high frequency electronic equipment, 6. DISCOHM* A miniature resistor for law inductance values and distributed capacitance. 7. STRIPOHM* For compact
aviation, communication and navigation equipment. 8. RIBFLEX Used in circuits where high wattage must be dissipated in small space. 9. FERRULE TERMINAL For rapid interchangeability of resistance values or resistor replacement. 10. SCREW BASE With an Edison screw base for mounting to provide rapid means of changing resistance. 11. BRACKET TERMINAL Has leads silver brazed to brockets for easy interchange or renewal of unit.
*These are stock resistor types

Ward Leonard Vitrohm resistors will best meet your every requirement

- The eleven resistor types shown above (seven of them stock resistors) represent the most complete line ever offered by any manufacturer.

We carefully control every step in the manufacture, and run more than 19 separate inspection checks on every single resistor we produce to make sure it will perform as rated, even under the most adverse conditions.

That's why you can depend on the performance of every Ward Leonard resistor you use.

We also maintain a stock of component parts so that made-to-order resistors may be quickly assembled to meet your special requirements.

For full information on Vitrohm resistors, write for our Catalog 15, to Ward Leonard Electric Company, 150 South Street, Mount Vernon, N. Y.

WARD LEONARD IS THE ONLY MANUFACTURER that makes its own ceramic cores, Vitrohm enamel and terminals. Even our resistance wire is specially drawn to Ward Leonard's own rigid specifications.

Hughes

high temperature operation Silicon

extremely high back resistance
 Junction

exceptionally stable characteristics

Diodes

Now you can take advantage of silicon's operating temperature range and obtain, at the same time, a semiconductor device with phenomenally high back resistance. Actually, many of the types of the new Hughes Silicon Junction Diodes provide essentially an open circuit in the back direction. This means that many entirely nell circuit applications are nov made possible.

The entire line of these new Silicon Junction Diodes is packaged in the onc-picce, fusionsealed glass body, originated and developed at Hughes. This now-famous construction is impervious to moisture penetration-ensures electrical and mechanical stability. With their axial leads and subminiature size, Hughes diodes are easier to mount, easier to spot-weld or solder. So, when temperature or high back
resistance requirements call for silicon, be sure to specify Hughes Silicon Junction Diodes.

Electrical features: Good forward conductance . . . very sharp back voltage breakdown . . extremely high back resistance.
Physical features: One-piece, fusion-sealed glass body... axial leads for casy mounting . . . subminiature sizc.

Actual size,
diode glass body:
0.265 by 0.103
inches, maximum
Body is coated with opaque silicone enamel to shield crystal from light. Color-coded on cathode end.
Ambient operating
emperature range -80° to $+200^{\circ} \mathrm{C}$

RCA

This transformer, one of 25 is located in the tube-manufacturing department on the first floor. The rating is 220 / 8KV C.T. 7.2 KVA. On the floors above there are 95 similar transformers. Elsewhere in this plant NWL Transformers have been giving satisfactory service for 12 years under the same severe conditions.

Above photc, with cabinet safety door open, shows N'NL Transformer in place. Photo at left shows tube-sealex machine. Cabinet containing transformer is snown within circle.

NWL Transformers, such as that illustrated above, are used to supply high voltage D.C. current to the tube-sealing machines shown in lower photo. RCA produces only products of the highest quality. Because of the extremely accurate work done by these
machines under high speed production schedules, it is imperative that the transformers be completely dependable over long periods of time. NWL Transformers meet these conditions.

From 10 VA to 300 KVA Dry-Type only. Both open and encased. 1, 2, and 3 Phase. 15 to 400 Cycles.

WINDING LABORATORIES P. O. Box 455 - Dept. 102, TRENTON, NEW JERSEY

NOWIA New Concept in Transistor Application!

These new Westinghouse transistors offer many new design features for reliable operation in switching applications. In computers, Magamp ${ }^{(8 y}$ systems, as at substitute for relays and in many other devices, you'll find they operate at a high percentage of efficiency, with greater sensitivity, higher power handling ability over wider temperature ranges than transistors in linear operation.

MAXIMUM RATINGS CHART 2N73 2N74 2N75

Voltage Emitter to collector-volts	50	50	20
Total device power at $25^{\circ} \mathrm{C}$.	200 mw	200 mw	200 mw
Total device power at elevated temperature	100 mw $65^{\circ} \mathrm{C}$	100 mw $@ 40^{\circ} \mathrm{C}$	100 mw $100^{\circ} \mathrm{C}$

YOU GAN BE SURE ...IF IT'S
 Westinghouse

NEW DESIGN FEATURES

- Designed for low frequency switching applications
- Low internal power consumption in the "on" condition
- Low leakage current in the "off" condition
- Capsuled in high dielectric, low loss material
- Sealed with a special moisture-resistant coating

2N73 - A general-purpose low level switch intended for operation in the inverted grounded emitter circhit, as illustrated.
2N74 - A high current level switch for use in the normal grounded emitter circuit.
$2 N 75$ - A very low current level switch for use in the grounded emitter connection (some applications use this type in inverted grounded emitter with switch "off" and normal grounded emitter with the switeh "on").
Write for detailed characteristics data and the free fourpage folder that describes nine working circuit applicat tions. Address your request to:

Westinghouse Llectric Corporation
Electronic Tuthe Division
Commercial Engincering Department $A-3015$ Elmira, New York

ET -95065
OUR ENGINEERING TODAY IS YOUR PROFIT TOMORROW

With its new and greatly expanded facilities, Midwestern Instruments will accelerate its design and manufacturing endeavors in the general fields of instrumentation and automatic control systems. We invite the submission to us, of problems in recording dynamic information in both airborne and ground-based applications, as well as problems concerned with automatic control, particularly those of reasonably high power level and dynamic performance requirements where hydraulic servosystems are at their best.

Write or wive for further information.

How Indiana-designed

 Permanent Magnetsmade a loud-speaker lighter . . a nuclear resonance research unit more powerful!

Here are two case histories showing interesting and somewhat unusual applications of Indiana Permanent Magnets . . one tells the story of a tiny $1 / 10$ ounce magnet, the other the story of a massive $1 / 2$ ton magnet.

Each application called for creative and imaginative thinking . . the same kind of original engineering and design thinking that is an important part of every Indiana Permanent Magnet.
Because Indiana Steel Products Company believes so strongly in the vital importance of creative
and originative magnet design, it maintains the world's largest engincering staff devoted solely to the design and application of permanent magnets.

This specialized service is available to original equipment manufacturers. Indiana engineers, with more than 45 years experience in designing permanent magnets for some 40,000 applications, will welcome the opportunity to work with you in the development of your permanent magnet designs. Write for detailed information and a copy of Engineering Design Manual 4-A-2.

1/10-OUNCE PERMANENT MAGNET . . This headphone set, which includes a loud-speaker only $13 / 16^{\prime \prime}$ in diameter, is used with secretarial transcribing machines, group-hearing systems, for hotel and hospital radios, in beauty salons, dental offices, broadcasting studios, airports, etc.

The headset had to be light, which called for an exceptionally light permanent magnet of high energy. Level or sound quality could not be sacrificed. The manufacturer working with Indiana design engineers used Hyflux Alnico V. Result: Indiana Permanent Magnets that weigh only $1 / 10$ ounce.

$1 / 2$-TON PERMANENT MAGNET . . Here is one of the world's largest permanent magnet assemblies. Used in nuclear resonance research, it contains over 1,000 pounds of Indiana Hyflux Alnico V , and produces a magnetic field of 6,750 gausses in the air gap.

It provides an extremely stable field. Critical controls, necessary with electromagnets, are not required. No heat is generated to effect critical conditions . . . and being a permanent magnet, its power won't fail during an experiment. Indiana engineers designed this giant assembly to customer's exact requirements.

THE INDIANA STEEL PRODUCTS COMPANY VALPARAISO, INDIANA

Worlds Largest Manufacturer of Permanent Magnets

INDIANA PERMANENT MAGNETS

FREE SUBSCRIPTION!
Write for your subscription to Applied Magnetics . a bimonthly publication carrying helpful, practical information about permanent magners and their application to industrial nd consumer proxucts. Pleas

NOW ... FROM

 GLASS DIODES
designed for specific applications

HIGH INVERSE VOLTAGE TYPES

The 1 N 55 B with a 150 volt rating, and the T5G with a 100 volt rating are particularly suitable for circuits where high voltages are encountered.

HIGH TEMPERATURE TYPES

The T18G and 1N198 diodes are rated, specified, and 100% tested for operation at $75^{\circ} \mathrm{C}$. They are specifically intended for use where high inverse resistance and reliable performance is required at elevated ambient temperatures.

HIGH CONDUCTANCE TYPES

For applications requiring high forward conductance, types such as the T7G and T 25 G with over 200 ma at +1 volt provide improved circuit performance.

HIGH RESISTANCE TYPES

The T8G and T9G offer several megohms inverse resistance and are ideal for critical circuits requiring a minimum of diode loading.

COMPUTER TYPES

Specified for recovery time, the T16G, T17G, 1N191, and 1N192 are suited for critical pulse circuitry. Types T7G, T6G, and T25G have been designed especially for fast core switching.

JAN TYPES

The 1N126, 1N127, 1N128, and 1N198 are designed and tested to meet all requirements of MIL-E-1B.

Trangitron electronic corporation melrose $\mathbf{7 6}$, massachusetts

Phil-trod

 New Phil-trol Relays Available with

 New Phil-trol Relays Available with
 Phil-trol Engineering, in its constant policy

to keep abreast and ahead of the rapid progress in electronic design and production techniques, has developed several new relays. Those shown here illustrate a completely new sub-miniature type, the minute, featherweight Phil-trol " 15 " series. They are available with printed circuit terminals as well as with standard soldering lugs.

Also shown are the popular, improved Phil-trol types " 4 " and " 8 " relays, both available with printed circuit or Taper Tab terminals.

In designing these new relays Phillips Control Corporation applied their long specialized experience and their same standard practice of producing the finest relays possible for the intended applications. And to achieve greatest economy commensurate with top performance and long dependable life.

The new Phil-trol " 15 " series, and the improved types " 4 " and " 8 ," added to the Phil-trol line, further broaden the unusually wide selection of Phil-trol Products available for practically every relay application.

You are invited to call upon the comprehensive Phil-trol Engineering Service to help you determine the exact Phil-trol relay best for your application-or to work with you on "special" problemswithout obligation.

Phil-tral Type 15QA with printed circuit terminals of brass. Contacts are silver. Shown actual size-weight is approximately 1 ounce.

Here are the completely new Phil-trol Type 15QA Relays (above and below). Sub-miniature in size, light in weight, they are ideal where dependable performance is a "must"-as in delicate instrumentation, Radiosonde equipment, or the Autronic Eye. Available for DC operation up to 60 V., with contact 1 Form C (S.P.D.T.).

Phil-trol Type 15QA with standard solder terminals of silver. Contacts are also silver. Shown actual sizeweight 1 ounce approximately.

for Relay Users

Printed Circuit \& Taper Tab Terminals
 Phil-trol Sales-Engineering Offices

SIDE VIEW

This Phil-trol 8QA, DC relay is equipped with the new wedge action Taper Tab terminals for simple, fast, positive connections. No soldering problems. Phil-trol Engineers have made the 8QA available in a Taper Tab model to save time and labor in assembly. It is also available with printed circuit terminals.

The Phil-trol 8QA is highly sensitive, provides fast opening and closing. Heavy duty, long-life bearings give precision operation. Contact springs are equipped with twin contacts to assure maximum reliability. Operating voltage up to 230 volts DC. Weight is approximately 3 ounces.

The improved Phil-trol series "4" relay (above) is the new printed circuit model 4CQA. It is a multi-contact, DC unit, small in size, light weight, with good resistance to vibration ... and it is economical in cost. This relay is

END VIEW

available with coils having either single or double windings. It operates up to 115 volts DC. Weight is $13 / 4$ oz. (approx.) The 4CQA is also available with Taper Tab or standard soldering terminals.

COAST-TO-COAST

GENERAL OFFICES

59 W . Washington St., Joliet, Illinois.
Tel: JOliet 3-3431
CALIFORNIA, Los Angeles 36,
5410 Wilshire Blvd
Tel: WEbster 3-6405
CALIFORNIA, Palo Alto,
180 University Ave.
Tel: DAvenport 3-3288
CALIFORNIA, Santa Monica,
2910 Nebraska Ave
Tel: Van Nuys, STate 9-4887
COLORADO, Denver 20 ,
3014 So. Cherry Way
Tel: SKyline 6-2555
GEORGIA, Atlanta 3,
311-315 Georgia Savings Bank Bldg., 84 Peachtree St., N.W
Tel: CYprus 7381
MICHIGAN, Detroit 27,
12812 Puritan Ave.
Tel: UNiversity 1-7311
NEW YORK, Buffalo 3,
833 Ellicott Square Bldg.
Tel: MAdison 3306
NEW YORK, New York 17,
2044 Graybar Bldg.,
420 Lexington Ave.
Tel: MUrray Hill 5-9103
OHIO, Cleveland 6,
12417 Cedar Road.
Tel: ERie View 1-0054
PENNSYLVANIA, Philadelphia, Western Savings Fund Bldg.
Broad and Chestnut.
Tel: KIngsley 6-2480
WASHINGTON, Seattle 9 , 216 First Ave., N.
Tel: ELiot 6981

Plants at Joliet, Illinois, Sanfa Monica, California, and Santurce, Puerto Rico
PHILLIPS CONTROL, CORP., Dept. E, Jolief, Ill.
Gentlemen: Please send me your General Catalog \square
I am also interested in: Phil-trol Type 15 Printed Circuit Retays \square
Phil-trol Type 8QA Taper Tab Relays \square
Phil-tral Type 4CQA Printed Circuit Relays \square
Name
Company
Street
City Zone__ State_

5 to 300 VOLTS RECULATED WITH NO TUBES!

SURGE-SUPPRESSED MAGNETIC-REGULATED SUPPLY

TYPE AA14
A completely static, tubeless, transistorless power supply with double-regulation to strongly suppress input voltage surge effects on the output voltage. A portable remote control is sup-

OUTPUT: 5 to 300 V.D.C. continuously variable, 0 to 200 ma .

INPUT: 105 to 129 V.A.C., 60 C.P.S., single phase.

REGULATION: $\pm 0.5 \%$ due to line voltage changes. $\pm 1.0 \%$ due to combined line and load changes throughout entire range of output voltages.

RIPPLE: Less than 0.3 Volts peak to peak.
plied which may be panel-mounted or used on a bench. Designed for long-life and service-free operation. Ideal for general lab work, testing and other applications.

KLYSTRON SUPPLY MAGNETIC-REGULATOR

INPUT: 105 to 125 V.A.C., 55 to 65 C.P.S. Single phase.

REGULATION: $\pm 2.0 \%$ under any combination of line, load and environmental conditions.

ENVIRONMENT: $-18^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$, up to 100% humidity.

HIGH SHOCK AND VIBRATION

A completely static, tubeless, transistorless power supply regulator for control of an 18,000 V.D.C., 0 to 200 ma. power supply; built in

accordance with military specifications. For cabinet-mounting as part of a radar beacon system. Built to meet MIL-E-4158.

General Magnetics is engaged in a program of research and development with a view to expanding its line of magnetic-regulated power supplies and other magnetic amplifier components.

If you have special requirements for magneticregulated power supplies, magnetic line regulators, magnetic amplifiers or magnetic modulators, your inquiry will be welcomed.

Write on your letterhead for further details

CLARE Type J Relays help count cars ACCURATELY and FAST . . . on Jersey's Garden State Parkway

Keeping track of traffic on the Garden State Parkway hour after hour, day after day, is rugged duty for control equipment. Only the most sturdy and precise components can stand the wear and tear.

That's why engineers of Taller \& Cooper, Inc., whose toll booths and collection equipment are found on every major American toll facility, chose Clare Type J Relays. These relays accurately record the number of vehicles that pass through the Toll Plaza. Their high speed permits accurate readings of automobiles even up to 40 miles per hour.

Here's the small switch Electronic

- Designers of electronic equipment are extremely critical of day in, day-out performance of components. Reliability of MICRO SWITCH products has made them first choice for a nyyrigd of uses in this industry where component failure is in-

In the subminiature switch MICRO switch provides this superior reliability with extremely small-size, light-weight switches and assemblies that meet the requirements of the most streamlined design. Long experience has made MICRO SWITCH men expert in many complex problems of the electronics industry. Both in the field and at the factory they have participated in the development of many special switches to meet unusual specific requirements.

There comes a time in your development work when it will save you time and money to talk to an experienced switch man. Then is the time to call on MICRO SWITCH, the first name in precision switches. There is a MICRO SWITCH branch near you. Look in the yellow pages of your phone book.

See MICRO SWITCH Exhibit

Radio Engineering Show - March 21-24
Kingsbridge Armory - New York, N. Y.

[^9]in Canada, Leaside, Toronto 17. Ontario - FREEPORT, ILLINOIS
 Now Available!

- G.E.'s NEW Junction Transistor, 2N43A, is the first to be written into Air Force specifications! MIL-T-25096 (USAF) was actually written around this G-E product developed for the Military. It meets the most rigorous requirements on electrical and mechanical characteristics, and reliability. Spread in beta (gain) is held to a $2: 1$ ratio-far narrower than for ordinary transistors.

Designed for mass production at low cost, this P-N-P transistor offers performance characteristics second to none! It is the completely dependable audio amplifier for commercial and military applications. Include it in your design plans now while production lots are rolling through the assembly line.

For complete specifications and details on applications write today. General Electric Company, Section. X425, Germanium Products, Electronics Park, Syracuse, New York.

DESIGN FEATURES:

EXCEPTIONALLY HIGH BETA (GAIN)... and spread is held to 33-66.
STURDY CONSTRUCTION... built to comply with rigorous vibration and shock requirements. Welded seam keeps transistor free from solder-flux contamination.
SEALED JUNCTION...contamination gases permanently eliminated!
HIGH POWER OUTPUT...case design makes possible a collector dissipation of 150 MW .
HERMETIC SEAL... unaffected by moisture.
HIGH TEMPERATURE OPERATION... rated for a maximum junction temperature of $100^{\circ} \mathrm{C}$.
LONG LIFE... stable performance throughout the life of your equipment.
SMALL SIZE...extremely compact design provides added flexibility for all applications.

THE MILITARY DESIGN
USAF-2N43A per specification MIL-T-25096

COMMERCIAL DESIGN - 2N43A
Absolute Maximum Ratings:

Electrical Characteristics, Common Base

$$
\left(\mathrm{V}_{\mathrm{c}}=-5 \mathrm{~V}, \mathrm{l}_{\mathrm{e}}=1 \mathrm{ma}, \mathrm{~T}=25^{\circ} \mathrm{C}\right)
$$

Inpuit Impedance (h_{1}) 30 ohms
Output Admittance $\left(h_{22}\right)$. 1.0μ mhos
Feedback Potential Ratio $\left(h_{12}\right)$. 4×10^{-4}
Current Transfer Ratio ($h_{\mathbf{2 1}}$) 0.9775

Progress/s Our Most Important Product

 GENERAL (\%) ELECTRIC
Top pulse performance is an Eimac Tube Feature

EXAMPLE OF HIGH POWER OUTPUT CAPABILITIES OF EIMAG TUBES IN TYPICAL PLATE PULSRD AF AMPLIFIRR PPERAIION

T

 he chart on this page illustrates the amazing power capabilities of versatile Eimac broadcast and communications tubes in typical pulse amplifier application. Incomparable pulse performance is a feature of Eimac łubes stemming from reserve filament emission and ability to handle high electrode voltages and resulting currents. This, plus clean, simple design, free of troublesome internal insulators, and advanced production techniques, produces an unmarched quality enabling Eimac tubes to give long, reliable performance in pulse RF operation and pulse modulator service.In addition to pulse rated CW tubes, Eimac has designed and produced many tube types specifically for pulse application. The 4PR60A radialbeam pulse tetrode, pictured here, is one of this famous family. An oxide coated cathode tube,

it delivers 300 kw of power output in pulse modulator service with only one kilowatt of pulse driving power. From the $100 T$ power triode, used in the first Navy sea radar tests, to the 4W20,000A, Eimac pulse-rated tubes have filled key sockets in sea, land and air pulse operation.

Contact our Technical Services Department for your free copy of Eima= opplication bulletin No. 3, "Pulse Service Nates."

A matter of simple arithmetic

 there are no hidden extras in KARP*" one stop service"
quality production...

- is a matter of routine at KARP. Each unit is so rigidly inspected during manufacturing and finishing that "hidden costs" are prevented.
- Whether you need ten or ten thousand units whether they are massive or minute - you'll find that it pays to deal with KARP.
- There is no obligation for quotations on your blueprints, samples or sketches. Write or phone today.
Send for descriptive literature.
KART METAL PRODUCTS CO.
Division of H \& B American Machine Company, Inc. 215 63rd STREET - BROOKLYN 20, N. Y.

*
 encloswes reflect the stills evithin

FACILITIES FOR ENGINEERED SHSET METAL FAERICATIONS: in aluminum or steel - long run or short - spa', arc, gas or tejarc welding - any type finish - Modern plant -3 city blocks long - U. S. Air Force Certified Welding Facilities - Thousands of dies available Air-concifoned spry reom...complete

- Most modern of sheet metal baking ra:ilities
- Complete sub-assendy facilities

0 PYE ERICSSON SEVEN CHANNEL VHF FM RADIO TELEPHONE SYSTEM

This 7-channel Radio Link System has been designed for economy both in initial cost and maintenance demands.
This has been achieved without sacrifice of essential facilities or relaxation of performance standards. Both Radio and Carrier equipment for the 7 -channel terminal is housed in a single 6 -foot cabinet as illustrated.
The equipment is fully tropicalized and suitable for continuous unattended operation in all parts of the world.

ABBREVIATED SPECIFICATION
Radio Frequency Range $\quad 60-216 \mathrm{mc} / \mathrm{s}$
Transmitter output Power 10 watts, or with Amplifier unit-50 watts
Baseband (7 Channels)
Maximum Deviation $0.3-23.4 \mathrm{Kc} / \mathrm{s}$

Receiver Bandwidth
$50 \mathrm{Kc} / \mathrm{s}$
6 db downat $\pm 120 \mathrm{Kc} / \mathrm{s}$

Pre New Zealand Ltd Auckland C.I, New Zealand	Pye Canada Ltd Ajax. Canada	Pye-Electronic Pty., Lid. Melbourne, Australia	Pye Ireland, Ltd. Dublin. Eire
Fye Radio \& Television (Pty) Ltd Johannesburg South Africa	Pye Limited Plaza de Necaxa 7 Mexico 5	Pye Limited Tucuman 829 Buenos Aires	Pye Limited Sth Avenue Building 200, 5th Avenue. New York

Kew! mult-purpose

Sweep Signal Generator

4.5 to 120 mc .

- A wide range of continuously variable linear-frequency sweep widths.
- Crystal controlled frequency identification.
- Adiustable frequency-interpolation pip marks.
- Internal mixer for forming composite display signal.
- Accurate continuously-tuned CW with choice of internal AM.
- Internal crystal calibrator for CW.
- Wide range of calibrated output voltage.

The Sweep Signal Generator Type 240-A is a contimnously tuned accurate CW Signal Generator with internal AM. The output voltage is continuously monitored, indicated and calibrated over a wide range. The CW Signal can be calibrated against an internal crystal. Electronic sweep circuits are included which produce an AGC-controlled, con-stant-amplitude, variable width linear frequency deviation. Two systems are included for frequency identification while sweeping. One of these is crystal controlled and the other is an interpolation system. An internal mixer adds the frequency identification information to the test receiver output signal prior to its connection to the display oseilloscope.

SPECIFICATIONS:

RF FREQUENCY RANGE: 4.5 to 120 MC continuously variable in five ranges.
RF FREQUENCY ACCURACY: $\pm 1 \%$
RF OUTPUT VOLTAGE: 1 to 300,000 microvalts. 0.1 to 30,000 microvolts with external attenuator.

AMPIITUDE MODULATION: Factory adjusted to 30% from internal 1000 cps oscillator.
RANGE OF SWEEF WIOTHS: Continuously variable from $=1 \%$ of center frequency to $\pm 15 \mathrm{MC}$ or $=30 \%$ of center frequency whichever is smaller.

LINEARITY OF SWEPI RF FREQUENCY; Within 10% over middle $\mathbf{3 0 \%}$ of sweep excursion, within $\mathbf{2 0 \%}$ over remainder.

FLATNESS OF SWEPT RF OUTPUT: Within 7% under all conditions.

FREQUENCY IDENTIFICATION MARKS: Crystal frequency identification spaced $0.1,0.5,2.5 \mathrm{MC}$. Tuning dial identifies center mark. Two adjustable-position interpolation pip marks.

PRICE: $\$ 1375.00$ FOB BOONTON, N. J.

RCA-2D21-a senzitev, foulelectrode thymatro of tie ind rectly heated cathze ype for use in relay applicatiors. 1as a high control ratio (3sen iell independent of anbiev emperatuse over a wide rarge), ztremey small pre-conduci on orgas-leal age currents sigh if to the beginning of cenductiot, bery low grid-anode cepacian:é end grd current. The ? $\mathrm{D} \boldsymbol{l}$ is notaffected appreciably bo lie valtage surges and, in a higr-se sit vts circul, can be operated 1 recly from a vacuum photuthe.

RCA-5879-is a sharp-cutoft pentode of the 9 -jin miniature type intended for use as an audio amplifier in applications requiring reduced microphonics, leakage, noise, and hum. It is especially well-suited for in put stages of medium-gain public address systems, home sound recorders, and general-purpose audio systems.

RCA MULTIPLIER PHOTOTUBES—RCA-6342, 5819 and 6199 multiplier phototubes are "head-on" types for use in applications involving low-level, large area light sourtes. Coupled with suitable phosphors, these tubes are especially useful in scintillation ccunters for detesting and measuring nuclear particle radiation. Spectral response of these types covers the range from 3000 to 6200 angstroms witt maximum response at about 4000 angstroms. Types 6199 and 5319 have luminous sensitivity values of 24 and 25 amperes per lumen respectively when operated with a supply voltage of 1000 volts. Type 6342 has a lmminous sensitivity value of 7.5 amperes per lumen with a supply valtage of 1250 volts, or 35 amperes per lumen with 1500 volts.

RCA.4X150-A—a very small and compact forced-air-cooled beam power tube for use in power amplifier or oscillator service at frequencies up to 500 mezacycles and also as a wideband amplifier in videc applications. The 4X150-A has a maximum plate dissipation of 150 watts. Terminal arrangements of this power tube facilitate its use with $\tan ^{\prime} k$ circuits of the coaxial type. Additional features : unipotential cathode... integral radiator . . . coaxial-electrode structure. Max. length: 2.468", max. diameter: 1.645".

RCA WP-25A TVISOTAP-designed for use as either an adjusteble isolation transformer or as an adjustable autotransformer to facilita e testing and troukle-shooting of series sting rircuits in radio and TV receivers, and other electronic equipment. Seven-position selecto- switch permits acjustment of primary valtage in 5 -volt steps for operation from any supply line voltage from 105 to 130 v . Output valtages of approximately 105,115 , and 130 v are previded throughout the supply-line voltage raEge.

MARCONI instruments

the first
 N巴M DESIGN of selenium rectifiers
 IN OYER 20 YERER

No center mounting Full air ventilation between plates Light contact and constant assembly pressure
No center hot spots Lightest weight per unit of output power Lower initial forward resistancebetter voltage regulation
Smaller overall size for each ratingcost no more
Better for all electrical and electronic equipment because of

- Improved convection cooling
- Simpler mounting
- Longer life and minimum aging
- Designed for more rugged service and rated for use in high ambient temperatures
- Important

COL-5EL is the rectifier
most readily adaptable to printéd circuit applications.
Because of the fixed edge mount yoke, assembly requires anly one whistler die, one hole fixed, one hole variable to three dimensions. For complete information write

REVOLUTIONARY NEW DEVELOPMENT

PHELPS

ASSURES IN EXISTING DESIGNS INCREASED MARGINS OF SAFETY FOR OVERLOADS

-means greatly prolonged thermal life

MAKES NEW DESIGN

 ECONOMIES POSSIBLE AT HIGHER TEMPERATURESThermaleze, Phelps Dodge's new film magnet wire, provides greatly improved heat resistance for short time, high temperature performance. For Class A windings, where unusual heat conditions prevail, it offers a greater safety factor against overloading. Good abrasion properties, excellent solvent and moisture resistance and good film flexibility readily permit Thermaleze to be substituted for conventional film wires.

Any time magnet wire is your problem, consult
Phelps Dodge for the quickest, easiest answer!

First for Lasting Quality-from Mine to Market!

IN CLASS "A" FILM MAGNET WIRE . . . THERMALEZ improved heot stability!

PHELPS DODEE COPPER PRODUETS corporation

INCA MANUFACTURING DIVISION
FORT WAYNE, INDIANA

Mechanical hum has been reduced to a new low, in the latest vibrators developed by Mallory. A product of Mallory's 25 years of pioneering research and manufacturing experience in the vibrator field, this new model makes it possible to design automobile radios and other battery-powered electronic equipment for lower hum levels than ever before possible.
"FLOATING" DESIGN. The secret of this vibrator's exceptional performance is a new construction in which the vibrator mechanism "floats" inside the case. Transmission of mechanical hum or shake to the outside of the can or base is held to an absolute minimum.

QUIET IN ANY MOUNTING POSITION. Noise output remains consistently low regardless of the position in which the vibrator is mounted...actually is
lower in level than the electrical hum emitted by most auto radio speakers.

PREMIUM PERFORMANCE WITHOUT PREMIUM COST. The new, extra-quiet Mallory vibrators cost no more than previous models. They are now the standard type, in most instances hearing the same part number.
For quiet operation, long life and consistent performance, you will find these Mallory vibrators your best choice . . . both for new designs and for the units you now have in production. For specialized consultation on your power supply problems, call on the experience which Mallory has gained during a quarter century of leadership in vibrator development and application. Write today for our Technical Bulletin, or for a call by a Mallory representative.

IN POWER SUPPLIES BE SURE TO USE ...
Mallory FP Electrolytic Capacitors . . The original fabricated plate capacitor, FP electrolytics have for many years been built for continuous operation at $85^{\circ} \mathrm{C}$. Famons for long shelf and service life.

Expect more . . Get more from
Parts distributors in all major cities stock Mallory standard components for your convenience.

Serving Industry with These Products:
Electromechanical-Resistors . Switches Television Tuners Vibrators Electrochemical-Capacitors - Rectifiers - Mercury Batteries Metallurgical-Contacts - Special Metals and Ceramics - Welding Materials

cross
 TALK

- LONG-RANGE PLANNING . . . Making the rounds in the middle west last month, we were impressed by the number of companies working on design, production and sales programs covering the next five to ten years.

This seems smart, since longrange economic forecasts are optimistic and any downward fluctuations in business are likely to be momentary. They should be readily bridged over. Management that failed to provide the bridges, by adopting a short-term policy, could easily lose out to competition.

- DYNAMIC TESTING . . . Reliability requirements of giant computers, guided missiles and modern radar have outgrown conventional testing techniques.

The functional or "can-you-see-the-grass" approach went by the boards some years ago. Then marginal testing had its day; this involved boosting voltages until the weakest components popped.

Today emphasis is on dynamic testing. Complex instruments feed new equipment off-beat waveforms simulating the worst possible environment. The test unit evaluates performance and lights up green for good and red for no good. Some testers go on and pinpoint trouble in detail.

- TRAINER TROUBLE . . . Speaking of complex instruments, just
the other day we saw a very efficient device designed to train radar operators. It uses ultrasonic principles and is equipped with several fancy devices that keep water in a large tray pure; just a little bit of algae shows up as a forest of trees.
- MANPOWER PROMISE . . . One of our McGraw-Hill associates who attended a recent Science Fair (some 60 of these are conducted throughout the country each year) reports that high school students in attendance indicated the following career interests :

[^10]These are the youngsters (average age 15) upon whom much of the promise of tomorrow rides.

- BOOTSTRAP OPERATION . .

High-frequency heating is coming into widespread use as part of the process for growing semiconductor crystals. Thus electronic apparatus is being used to make more electronic apparatus and, particularly, to do it in such a way that
larger yields and increased reliability are obtained.

Speaking of semiconductors, one of the major applications now becoming apparent is the control of adjustable-speed drives using d-c motors. This work is well along, one of the few remaining bugs being the inclusion of adequate overload protection.

- INGENUITY . . . The tendency to automatically specify special components that may be unnecessarily costly is nowhere more common than in connection with government projects. Just the other day we heard about a designer who successfully leaned the other way; he found that heavygage paint cans made excellent shielded containers for electronic equipment that may eventually show up in some far off place such as the South Pacific.
- HOT TELEMETER . . . As more and more broadcast transmitters are equipped for unattended operation by remote control it might be a good idea to include in the stl one additional channel monitoring ambient temperature inside the building.

A California transmitter inexplicably went off the air without warning not so long ago, inexplicablv, that is, until the studio learned that the distant building in which all the gear was housed had burned to the ground.

Launching Control

View of main control racks illustrates complexity of equipment. Engineer is checking function relays

FIG, 1-Relationship of quided-missile firing system to other range instrumentation

By J. B, SCHROCK
Electronic Engineering Co. of Calif. Los Angeles, California

WELL-PLANNED and completely instrumented missile test facilities provide a central timing system to supply accurate and wellintegrated timing and control signals to many pieces of data-gathering equipment, such as phototheodolites, high and low-speed cameras of various types and radar units whose outputs are fed to plotting boards and/or data reduction computers. These recordings are tied together by a correlated set of signals from the basic timing system.

Data recording is highly important in a missile research program whether that research is directed toward the development of a tactical weapon or toward upper atmosphere investigation.

The entire data-gathering operation centers around the launching and flight of the missile, for which it is desirable to start necessary timing signals in close coincidence with the actual launching.

As can be seen in Fig. 1, the firing system is the only link between the base timing system and the missile during the time immediately prior to launching.

Small rockets such as those used with the bazooka or recoilless antitank rifle, require a firing circuit consisting of only a switch and battery to ignite the propellant and effect a launching. However, in the case of a more elaborate research type of rocket or missile many functions must be performed at predetermined times and with proper time relation to each other, often in the last few seconds before launching. Examples of these functions are: uncage the gyros; ignite flares or auxiliary rockets within the missile; start pressurizing pumps; control various fuel valves; switch in internal power supplies;

for Guided Missiles

Master timing circuits program the firing of guided missiles, actuate guidance and telemetering equipment and alert rocket-range control units. Fail-safe and interlocking provisions guard against premature detonation of propellants

Matador pilotless bomber (left) is typical of missiles fired by automatic launching systems. System can handle needs of two-stage rockets (right)

Essential controls and indicators are grouped on fire control panels
alert or actuate tracking and guidance devices; start instrumentation and recording devices; separate umbilical connectors; operate or alert telemetering equipment.

Manual performance of these functions can lead to confusion and inaccuracy and it is, therefore, desirable to perform as many of them by an automatic programming system as possible. During launching a fraction of a second delay in actuating one valve with respect to another may mean the difference of several thousand feet in altitude attained or several miles in distance traveled by the test vehicle. This is due to the fact that fuel or propellant loads are inefficiently used while the missile is sitting on the pad awaiting the opening of, for example, the main stage valves.

General Description

Normal laboratory procedures require that similar tests be repeated as consistently as possible with only the desired functions being changed and these in a well-controlled manner. The firing system provides a
sufficiently versatile and well-controlled programming facility to meet these and other requirements.

The firing system consists of the main control racks and a fire control panel located in each of the blockhouses in the launching area.

The programming section of the main control racks provides fully automatic control of any combination of up to 92 separate functions. These functions may be performed at any -second increment during the 180 seconds before and 30 sec onds following time T minus 0 or reference time.

The main control racks house also a timing signal separation and synchronizing circuit, automatic summing relays for delaying the program (hold fire) and a group of indicators showing the status of the various sections of the system at all times during an operation. Also included are the events recorders and the d-c power supplies necessary for the various panels. A separate 18 -trace recording oscillograph is provided to record higherfrequency signals than those
handled by the events recorders. A record of up to 80 slow events and a maximum of 18 high-speed events may be obtained for any given launching. This does not include telemetering recordings.

The fire control panel shown in a photograph provides the launching supervisor with full control over the programming section in the main control racks as well as a complete visual indication of the status of all factors pertinent to the launching control system. Appearing on the panel are such controls as sequence start, hold fire, permit reset, safety circuit breaker open and reset or close controls and launching-area-clear indicator. Since the sequence-start control initiates the series of events leading ultimately to the firing of the rocket, it becomes the pushbutton of the system.

Automatic Sequence Panel

The automatic sequence panel of the programming section sets up a series of unique combinations of pulses to provide actuating voltages

FIG. 2-Functional block diagram of automatic sequence panel
to the function relays at any desired time throughout the sequence. It consists of a high-speed keying relay and a pair of stepping-type rotary switches. Also located on this panel are switches to set the sequence duration, synchronizing relays and the sequence-start and hold-fire relays. Figure 2 is a functional block diagram of the automatic sequence panel.
The keying relay receives its actuating current through any one of five keying tubes. This relay has single-pole double-throw contacts and voltage pulses from both nor-mally-open and normally-closed contacts are utilized.
The circuit uses two types of stepping switches: a 50 -point fourlevel unit and a 25 -point three-level unit. The 50 -point or units switch is operated through a 10 -second interval at a rate of 5 steps per second. At the end of each of these 10 -second intervals a pulse is applied to the coil of the 25 -point or tens switch. Thus, the units switch programs consecutive 10 -second intervals throughout the sequence of an operation while the tens switch programs the 2110 -second increments of time from T minus 180 to plus 30 seconds at the rate of one step every 10 seconds. Figure 3 is a simplified schematic of the stepping switch circuit.

Twenty-eight-volt positive pulses from the keying relay are applied to the units stepping switch actu-
ating coil through contacts on the sequence-start and hold-fire relays. These positive keyed pulses are also fed to the wiper arm of the functions level of this units switch, then through the time terminals to the positive input of the function relay circuits. The wiper arm of the functions level on the tens switch is connected to ground. The contacts of this level, therefore, provide a ground return for the function relays when connected to the respective tens time terminals.

Thus, with the units switch repeatedly programming a 10 -second interval of time and the tens switch providing a different ground return for every 10 -second block of time, a separate and distinct coincidence of positive voltage and negative return pulse combinations is set up for every $\frac{7}{3}$ second of time throughout the sequence.

Other levels on the stepping switch are used for visual countdown indication, synchronization to the range timing system and sequence duration reset.

Since these stepping switches are electrically cocked and spring driven when the pulse is removed, the function contacts are never used to interrupt current flow. This is conducive to extremely long life and high reliability in these critical circuits. The switches are hermetically sealed and suspended in oil. This type of construction solves the lubrication problem and enhances
reliability and life expectancy.
Three rotary selector switches provide for homing or resetting the automatic programming system to any point up to reference or firing time.

The sequence-start and master hold-fire relays are closed when the start button is pushed. This completes the circuit from the keying relay and applies pulses to the actuating coil of the stepping switch. If the start button is operated during the last half of a keyed pulse, any function relays to be operated by that particular pulse will fail to be picked up. This malfunction is prevented by using the space voltage from the back contact of the keying relay. Likewise, a hold fire cannot be effected except during the interval or space be-

FIG. 3-Simplified schematic of step. ping circuit
tween pulses. This prevents a function relay from receiving only the small first part of the pulse.

Function Relays

There are 92 relay groups, designated as function relays, which may be actuated at any time throughout the automatic program and released at any subsequent time. Actuation may apply or remove any voltage in a function circuit or merely close or open a set of contacts as desired.

Assignments of the function relays are: 48 for missile functions; 24 for operational functions, including camera starts, prereference signal, reference time, conditional hold-fire sampling, positive time indication and hold-fire lock; 8 for automatic hold-fire sampling; 6 for firing functions; 6 for safety functions (used to arm the firing-function relays).

Each relay group includes a master function relay which receives the locking pulse, a release relay which operates from the unlocking pulse, a test-operate switch, indicator and suppressor lamps and a group of blocking rectifiers. Electrical arrangement of these components is shown in Fig. 4.

Since the relay circuits are of the electrically holding type, a means of preventing the holding voltages from feeding back into the stepping-switch circuits of the automatic sequence panel is required. Also, since the two sides of the relay coils are operating in a coincidence arrangement and may be in combination with many other

FIG. 4-Typical circuit of a function relay
coils, it is necessary to prevent sneak circuits from actuating the relays at a time other than that intended. It is for these reasons that the selenium blocking rectifiers are used as shown in Fig. 4.

The multipole switch in its lower position allows manual testing of the function circuit. In its center position the switch releases the relay or prevents its operation if desired while the upper position connects the relay group to the automatic sequence panel for automatic operation at the intended time.

The function relay coils are connected to the automatic sequence panel through the time terminals by jumpers which can be left in place for repeated identical launching programs or may be changed from one launching to another.

This allows a firing sequence to be carefully and accurately controlled for each operation. Such close control cannot be realized when the missile firing operations are controlled manually because of the inconsistancies and errors of human reactions.

Certain functions remain reasonably fixed for all launching operations. These functions have to do with the internal operation of the system or with base instrumentation. Twenty-four of these operational functions are provided for and grouped on a panel. Their electrical operation is identical to the missile function relays.

In some missiles it is necessary to stop or hold certain functions if other prior functions have not yet occurred. In this case, arrangement is made to provide signals from the missile for each critical function or group. Sensing relays located on the automatic hold-fire relay panel read these signals and associated relays sample the circuits of each critical function immediately prior to the operation time for the next critical function. If the signal is present, the system will proceed without hesitation. If the signal is absent, the system will stop immediately and hold until the situation is correct to proceed. Provision is made for eight such samplings to be made throughout a given program.

The launching control system
provides six high-current firingline circuits. These are energized simultaneously or at different times through 50 -ampere contactors. The contactors are actuated by the firing function relays located in the main control racks. For safety, the contacts of the firing function relays are not energized until shortly before their operate times. Application of voltage to their contacts is done by the safety function or arming relays. Safety precautions also include eliminating test switches from the firing and safety function relay circuits.

Time base generator for laboratory checkout uses plug-in circuits

It is desirable to program the launching of a missile so that T minus zero or reference time is in coincidence with the one-pulse-persecond signals of the range timing system. Since the firing system operates with a finer resolution than the 1-pps signals and since it is difficult for the launching supervisor to press the start button on any desired 5 -second pulse, a means for automatically synchronizing the firing system to the range timing signals is provided by the time pulse separator in conjunction with circuits within the automatic sequence panel in a manner which makes out-of-sync operation of the system practically impossible. Figure 5 shows the basic steppingswitch synchronizing methods.

The 5 -pps timing signal is fed simultaneously to a string of bistable multivibrators arranged as a five-stage linear counter, as in Fig. 3. This counter operates in the normal fashion except that the last stage is not fed back to reset the first stage and it is therefore not self sustaining. To make it operate continuously, the first stage is reset by the $1-\mathrm{pps}$ time signal. In
this manner, the linear counter operates in synchronization with the 1 and 5 -pps time signals. If the counter should miss a pulse it is resynchronized every second throughout the automatic countdown.

Outputs of the individual stages of the linear counter are fed to monostable one-shot multivibrators. The time constants of these oneshots are adjusted to give output pulses having a width of 40 milliseconds. The output of flip-flop 5 and, hence, the output of one-shot 5 will always occur in coincidence with the 1 -second time pulse. This 1 -second pulse is delayed slightly and used to reset flip-flop 1, so that the ${ }^{\frac{1}{3} \text {-second pulse immediately fol- }}$ lowing each 1 -second signal will give an output from one-shot 1 . The next z^{7}-second pulse will give an output from one-shot 2 and so on through the cycle until the fifth $\frac{1}{8}$-second pulse will give an output from one-shot 5 in exact coincidence with the next 1 -second signal. Thus the circuit arrangement provides a means of separating and identifying the 5 -pps signals by causing one of the flip-flop one-shot combinations to handle only the 0.8 second pulses, the next combination to handle the 0.6 -second pulses and so on.

The output signals from the oneshots are fed to the grids of five keying tubes. Plate voltage for these tubes is fed through the keying relay coil and contacts of five $\frac{1}{5}$-second indicator relays. Only the relay corresponding to the posi-
tion of the stepping switch will be closed and plate voltage applied to its associated keying tube. If the time signal received corresponds also to this position, plate current will flow and cause the keying relay to pulse the stepping switch coil. The switch will step to the next position and close the next succeeding relay. This prepares the associated keying tube to accept the next time signal. If the signal being received does not correspond to the stepping switch position, the latter will not operate but will wait until the counter has reached that position.

Hold-Fire

Prior to the start of a given programmed sequence or during a period of hold fire, the linear counter continues to operate in synchronism with the timing center. During the hold-fire period, however, the stepping-switch indi-cator-relay combination performs as a memory register to insure that the automatic sequence will be reinstated on the proper $\frac{1}{3}$-second step and in exact sync with the counter.

Since the function relays operate in approximately 17 milliseconds, the 40 -millisecond pulse width was chosen to give an operating margin of slightly better than two to one.

The time pulse separator utilizes packaged circuit units for counting, shaping and controlling the width of the timing pulses. Use of these plug-in units allows a neat component arrangement and cuts main-

FIG. 5-Basic schematic of stepping-switch synchronizing circuits
tenance or replacement time to a minimum.

The firing system utilizes a group of lamps to indicate the exact status of the countdown sequence throughout the automatic phase. They indicate the exact time remaining until reference time. Main control panels within the blockhouse indicate status to the nearest $\frac{1}{3}$-second increment while remote indicator panels indicate to the nearest second. One person reads the various combinations of lights and gives a voice count over the public address and communications systems.

Some confusion existed when the announcer, counting in one-second increments, would see the zero light come on and say, "Zero", only to have the count progress on through $-0.8,-0.6,-0.4,-0.2$, and finally to true zero or reference time. Attempts to modify the visual countdown indicators to eliminate this difficulty introduced the problem of obtaining correct transfer of the tens lights.

An effective system was devised that uses two separate ground return busses for the remote tens indicators which are switched to insert a delay during the transfer from 40 to 39,30 to 29,20 to 19 etc.
Visual countdown indicators are located throughout the site.

Safety Features

The launching operations of some modern guided missiles involve the use of many tons of highly volatile fuel and/or thousands of pounds of high explosives. It is therefore necessary to take many precautions for the safe control and firing of these vehicles.

The firing equipment is located in a concrete and steel blockhouse located a short distance from the launching pad. Those persons directly responsible for the launching operation are stationed here and view the missile through ports fitted with eight to ten-inch-thick explo-sion-proof glass. Elsewhere on the range, flight safety officers and test control officers receive information as to whether conditions throughout the range are satisfactory for the safe launching of the missile.

All responsible personnel are provided with controls which will either allow them to stop the prog-

FIG. 6-Schematic of time base generator for laboratory checkout of main control rack circuits
ress of the automatic countdown (hold fire) or prevent launching by opening the safety circuit breakers in the firing lines. Some officers are provided with both sets of controls. When an unsafe condition occurs, any one of these persons has merely to flip a switch and the firing will not take place until the unsafe condition is cleared.

Fail-safe circuits are used in all critical control lines. A control voltage must be present on these lines before automatic operation may proceed. Hold-fire circuits as well as those controlling the safety circuit breakers are arranged to go to a safe condition in event of a circuit or power failure. An individual voltage source for each of these control circuits is located in the same building as the control. Thus, if a control-line pair either opens or shorts, a hold-fire occurs.

The firing circuits are electrically open at points called arming stations. These stations are provided with locked doors and are armed with uniquely keyed plugs. The person making final connections to the electrical firing circuits carries the keys and plugs for the particular lines he is using. Since no other plugs will fit the arming stations on those lines, he is spared the embarrassment of having the missile take off as he connects the last wire.

Booster or RATO bottles and flares are fired by a device called a squib. This is similar to an electrical dynamite cap. A squib checker is provided to measure the electrical continuity of these squibs. This instrument will indicate a readable
difference between a good squib, whose resistance may be as low as one tenth ohm, a shorted squib or an open circuit. Current through the measured circuit is limited to a maximum of 3 ma even with a shorted squib or in the event any component should fail within the test set.

The squib checker also provides for measuring the firing lines to detect any d-c or a-c voltages present. The voltage indicator scale is not calibrated since the presence of any voltage denotes a dangerous condition and the firing lines should not be armed. On the most sensitive range, the presence of only a few millivolts can be detected.

Resistors are provided at various places across the firing lines to prevent buildup of static charges on these circuits. Their resistances must be low enough to leak off the charges yet high enough to prevent the flow of current induced from adjacent lines. They are of the composition carbon type, chosen over the wire-wound type because they usually become defective by changing value rather than by opening completely.

Testing

System check-out cannot be completed until the equipment is installed in the various locations throughout the launching site and all interconnections made. Panels can be thoroughly tested in the laboratory, however, either individually or in small groups. Largest units of equipment to undergo lab tests are the main control racks. This part of the system is made
operable for such tests by installing jumpers and feeding in voltages to simulate control signals.

The system will not operate if the 1 and 5 -pps signals from the central timing equipment are not fed into the time pulse separator. Since this equipment is not available for lab tests, a suitable substitute has been devised to furnish the necessary time signals.

The test set, shown in a photograph, consists of a free-running 5 -pps multivibrator and a series of flip-flops arranged as an $n / 5$ frequency divider to give the $1-p p s$ signal. High accuracy is not necessary for test purposes but close correlation between the two signals is imperative. By increasing the $\mathrm{R}-\mathrm{C}$ time constant of the multivibrator, the stepping rate may be reduced for slow-motion tests. Since the $5-\mathrm{pps}$ signal is divided digitally, the 1-pps signal stays in perfect synchronization with it and the system operates smoothly even at extremely low speeds. Figure 6 depicts schematically the operation of the timebase generator.

Special thanks are due to J. R. Wright, project engineer in the systems engineering group at Air Force Missile Test Center, for his help in obtaining data and illustrations used in this paper ; to W. R. McQuiston of Electronic Engineering Company of California for helpful criticism and N. Sheegog for the schematic and photographic reproductions.

Equipment described herein was designed, fabricated and installed under USAF contract AF 08(606)670.

Selectable single-sideband dual-diversity receiver with single-sideband conver ters (top) for electronic bandwidth control

Top view of signal splitter that embodies bandwidth selection

Dynamic

By J. L. A, McLAUGHLIN

J. L. A. McLaughlin Corp

La Jolla, Calif

ASERIOUS Limitation to consistently reliable long-distance radio communications in the highfrequency band is the obvious discrepancy that exists, at various times of the day and seasons of the year, between the usable bits of the band as compared to the total allocated. This phenomenon is caused by the vagaries of propagation and behavior of the ionosphere.

In recent years, the heavy and ever-growing world-wide radio traffic in these limited portions of the band adds substantially to the difficulty of long-distance communications and has resulted in increased congestion and jamming interference.

Passband Requirements

The problem of signal-jamming under conditions of spectrum saturation is further complicated by frequency instability of the transmitters and the lack of adherence to world-wide agreement on frequency allocations. Ideal channel spacing to prevent interference at the receiver is determined by more complex considerations than simply that of information bandwidth. Communication links employing fixed-frequency receivers require greater channel spacing than systems using tunable receivers because the selectivity characteristic of the receiver must be broadened at the passband points to allow for the maximum frequency deviation of both transmitter and receiver.

Receiver Selectivity

Continuously variable bandpass filters provide an ideal attenuation characteristic to eliminate adjacent-channel interference or deliberate jamming in high-frequency radio receivers. Electronic control of bandwidth extends to diversity reception

Besides receiver passband requirements and frequency drift, channel spacing for minimum adjacent channel interference is also influenced by the selectivity shapefactor of the receiver. It has been shown ${ }^{1}$ that for double-sideband transmissions of voice frequencies having sidebands $\pm 2.5 \mathrm{kc}$ received on fixed-frequency receivers, the required channel spacing is 20.5 kc when the receiver has a selectivity shape-factor of 3-to-1.

Shape Factor

By reducing the receiver selectivity shape-factor to 1.2 -to- 1 by the use of i-f filters having greater attenuation at the $60-\mathrm{db}$ points, the channel spacing could be reduced to
about 14 kc . However, a tunable receiver does not require a selectivity bandwidth in the passband in excess of the sidebands transmitted. Such a receiver with a 1.2 -to-1 shape-factor would provide the same degree of protection from adjacentchannel interference as the fixedfrequency receiver when the channel spacing was reduced to but 8.5 kc for the same maximum channel deviation.

It has been assumed, in considering channel spacing and receiver selectivity, that the passband requirements of a receiver must equal the transmitted sidebands plus possible drift in the transmitter and receiver. However, this is not necessarily so since usable jam-free
bandwidth in the high-frequency band is not predictable.

Agile Selectivity

It follows that for the maximum effective maintenance of communications, the receiver selectivity characteristics should be agile and capable of matching the actual passband possibility under any given jamming condition, rather than bandwidth of the transmitted sidebands. Otherwise frequency and intensity of the beatnotes produced by jamming may seriously mask the desired information over a large portion of the audio-frequency spectrum. The overall effect with a fixed passband is a much greater loss of intelligibility than would be the

FIG. l-Single-sideband selectivity versus selectivity of associated receiver

FIG. 2-Elements of electronic variable-bandwidth control system using two converters, crystal and variable frequency oscillators and filter
case in reducing the bandwidth sufficiently to remove the heterodyne beatnote.

In the reception of double-sideband (dsb) transmissions jamming can be eliminated effectively in many cases by reducing the total
bandwidth without loss of transmitted information frequencies employing more sophisticated means than is the common concept of receiver selectivity.

By employing a selectable-singlesideband (sssb) demodulator, a
jamming carrier in one of the sidebands of a dsb signal can be rejected without sacrifice of the theoretical information passband requirements.

When interference occurs in both sidebands, the jamming effects can

FIG. 3-Block diagram shows signal splitter for which schematic is given in Fig. 4

FIG. 4-Upper or lower sideband can be selected at will. Electronic bandwidth control operates by tuning oscillator $V_{4 B}$
be eliminated by use of sssb demodulation for rejection of the jamming signal producing the greater loss of intelligibility and rejection of the jamming effects in the other sideband by precise control of its bandwidth. Precise bandwidth control of the receiver will also provide the greatest intelligibility-to-jamming ratio protection possible for the reception of ssb transmissions subject to jamming.

Bandwidth Control

A commercially available sssb converter (the McLaughlin MCL-50/50-B Signal-Splitter) has been designed to be used with modern communications radio receivers having high-order frequency stability for the reception of dsb, ssb, single-sideband suppressed-carrier or c-w transmissions. This equipment provides exalted-carrier reception for both normal and reducedcarrier transmissions of either ssb or dsb signals.

A stable local oscillator provides a carrier frequency for demodulation of suppressed-carrier or c-w transmissions. The bandwidth of either selected sideband is continuously variable from 6 kc down to approximately 400 cps as shown in Fig. 1. The attenuation outside the chosen bandwidth is 60 db at 500 cps from the $6-\mathrm{db}$ points.

Variable bandwidth is accomplished by cascading fixed bandpass filters having ideal attenuation and passband characteristics, in an electronic dual-modulation bandwidth-
product process. A block diagram of the basic system to accomplish this is shown in Fig. 2. In this system, the input signal from the i-f of the associated receiver is converted to a new frequency range by a crystalcontrolled oscillator and mixer circuit. It is then applied to a bandpass filter having a passband equal to only one sideband of the signal. These operations are shown in Fig. 3 and 4. Either sideband can be selected by changing the crystal frequency of the fixed-frequency oscillator.

Double Filter

The single-sideband signals are then applied to a second frequency converter and bandpass filter having the same bandwidth as the first. This converter utilizes a variablefrequency oscillator to shift the undesired frequencies (such as jamming signals) passed by the first filter out of the passband of the second filter. This procedure provides continuously variable bandwidth with ideal frequency-shape factor without compromise of the highest intelligibility-to-interference ratio possible under jamming conditions.

However, owing to the unpredictable and fluctuating nature of signal interference in some highfrequency bands, undesired signals may be expected to drift or change instantaneously. This necessitates full attention of an operator who must continually switch sidebands and adjust bandwidth under diffi-

FIG. 5-Elements of automatic bandwidth control that rejects jamming
cult jamming conditions.
Such is true in international radio broadcasting where it is often required to employ relay stations to rebroadcast on lower frequencies to local audiences. In this field, the relay stations employ selectable-single-sideband receivers to reduce jamming effects on their program rebroadcasts.

Effective program protection from jamming requires that at no time should the program be disturbed by sideband switching clicks. Both sidebands must be monitored to insure that the sideband in use is really the one freest of interference. The problem becomes more difficult where dual or triple-diversity receivers are used, requiring that all receivers be switched separately.

Antijamming Receiver

An improved antijamming receiving method has been designed into the McLaughlin DDX-RID independent ssb receiver. In essence it consists of a precision frequencycontrolled superheterodyne with independent ssb demodulators of the type described. One unit demodulates the upper sideband and the other the lower. The demodulated products from both are combined in a common load.

This method of reception greatly simplifies the work of the operator in controlling receiver jamming. By means of binaural headphones (one earpiece connected to the output of each sideband channel) the operator monitors each sideband and adjusts the bandwidth in either or both for minimum interference. Since no bandwidth switching is involved, optimum reception is accomplished smoothly and rapidly. Where diversity reception is employed, servo systems can be supplied to control bandwidth of all receivers remotely. The bandwidth of each sideband for all receivers on the same circuit can be meter-indicated remotely.

Servocontrol

Under some types of operation and where cost is warranted, antijamming bandwidth control can be accomplished automatically by servo-controlling the bandwidth-

FIG. 6-Automatic bandwidth control rejects jamming carriers in a dual single-sideband receiving system
control oscillator with a signal proportional to the jamming frequency. A block diagram describing a simplified system is shown in Fig. 5 and a complete block diagram for automatic dual-bandwidth control of both sidebands is shown in Fig. 6. This system of ssb variable bandwidth is much the same as that of the DDX-RID receiver. However, it differs in that the signal carrier and the ssb are separated by filters in the first ssb conversion.

Removing Jammers

A jamming carrier in the passband of the first ssb filter is mixed with a local frequency source to produce a beating frequency that will fall in the range from 5,000 to 9,700 cps. This signal passes through a frequency-sensing circuit that provides a d-c signal proportional to the jamming frequency for servo-
controlling the bandwidth control oscillator to the correct frequency (bandwidth) for $60-\mathrm{db}$ attenuation of the interference.

When the jamming carrier moves to within a few hundred cycles of the signal's carrier, it falls out of the ssb filter and control circuit and full bandwidth is restored. The lowfrequency beat notes are removed from the receiver demodulators by high-pass filters. Such a system assures freedom from beatnote interference.

The jamming monitoring circuit in both independently controlled sidebands automatically adjusts the bandwidth of each ssb demodulator to the exact width required for a $60-\mathrm{db}$ rejection of the jamming carrier.

By combining the demodulated outputs in a common load, the maximum usable information can be ex-
tracted from the transmitted a-m signal.

The basic principle of continuously variable bandwidth control has already been proven practical for elimination of carrier jamming in high-frequency receivers. Extending this principle to include automatic features can provide protection from accidental and some forms of malicious jamming to unattended radio communications circuits.
In time of stress it can likewise eliminate an unpredictable human element and still maintain optimum communications in the face of severe jamming.

References

(1) E. W. Pappenfus, Stabilized Master Oscillator, Electronics, p 108, Dec. 1950
(2) J. L. A. McLaughlin, The Selectable pinc-Sune 1941 .

Front panel shows different functions of signal generator

FIG. 1-Instrument has three main circuit sections

Transistorized

F-M Signal Generator

Instrument has 10 -millivolt output over range of 20 to 100 mc , plus crystal calibrator and nine preset crystal-controlled frequencies for checking i-f circuits. Designed for military applications, circuit has reactance-transistor frequency modulator

By J. J. HUPERT and T. SZUBSKI
Director of Research
Project Engineer
A. R. Fiver Products, Incorporated

$\boldsymbol{A}^{\text {p }}$PPLICATION of transistors to test equipment has resulted in a frequency-modulated signal generator covering the frequency range of 20 to 100 mc .

The unit has a maximum output of 10 millivolts across 10 ohms. Auxiliary circuits include a crystal calibrator, which provides calibration marks every even megacycle and nine crystal-controlled oscillators preset to cover 1.4 to 20 mc for checking receiver i-f circuits. The block diagram of the generator is shown in Fig. 1.

Most of the engineering difficulties were due to the inherent inability of transistors to operate
efficiently at higher radio frequencies. Two known approaches ${ }^{1,2}$ involved application of tetrode-type junction transistors or point-contact transistors adapted by their design features to operate at high frequencies.

Transistors

At the time the project was started only 2 N33 point-contact transistors were available for highfrequency operation. Production difficulties connected with the very small spacing between emitter and collector points (of the order of 0.0005 in .) caused the mortality rate of these transistors to be very
high initially, but reliability soon improved to a satisfactory degree.

Effects of ambient conditions on transistor performance were dealt with by partial temperature control and stabilization of power supply sources.

Although some point-contact transistors have been known to oscillate up to approximately 300 mc , it was not safe to count on this in production-equipment design. Also, r-f voltage level obtainable from vhf point-contact transistor oscillators varied greatly from sample to sample.

Precision signal generators usually have high insertion loss be-
tween their oscillatory circuits and stipulated output load. Efficiency of the power transfer from the tuned circuit is therefore of no consequence and output adjustment methods such as a piston-type attenuator can be used in conventional design. As a result of the extremely low power yield of transistor circuits at high frequencies and their susceptibility to frequency variation caused by load variation, power-transfer efficiency is critical in the case of a transistorized signal generator.

Circuits

The vhf part of the signal generator, shown in Fig. 2, is composed of an f-m oscillator operating at one-half or one-third of the output frequency and a harmonic-selector stage.

Early in the development an attempt was made to use point-contact transistors in an oscillator directly to 100 mc with the oscillator's tuned circuit coupled directly to the output attenuator. This proved feasible in a few selected samples, but had to be abandoned because of the great nonuniformity of behavior of individual transistors in the vicinity of 100 mc and the unfavorable effect of even a slight loaũ variation on the frequency stability of the oscillator. The same type of transistor was found to operate satisfactorily as a harmonic selector and as a driving oscillator at frequencies up to 33.3 mc . The circuit of Fig. 2 was found to accommodate considerable variation of the oscillator output with various transistor samples under identical biasing conditions.
The inherent feedback in the
transistor always causes a certain amount of coupling between output and input circuits, which tends to deteriorate the isolation between the oscillator and the output circuit. Since the momentary bias of the transistor is determined by the value of emitter current, less driving power is needed to drive a transistor doubler. This enables lighter coupling to the oscillator and consequent reduction of the undesirable coupling between stages. To realize this fact, it should be remembered that at higher radio frequencies in vacuumtube frequency-multiplier circuits the r-f power loss in the driver stage occurs mainly in the physical resistance of the tuned circuit of the driver. This is due to the high value of r-f voltage across that circuit necessary to drive the grid circuit of the multiplier fully but with a small angle of plate current flow (high grid bias).

The internal feedback in the harmonic-selector stage reduces the load caused by the L-C circuit tuned to the desired harmonic, resulting in improvement of the harmonic output.

Output Circuit

The output circuit of the harmonic selector must operate efficiently from the point of view of power transfer. This requirement results from the necessity for a simple voltage monitoring circuit, required output of the generator being only 10 mv at 10 -ohms output impedance. A voltage of 250 mv is assumed necessary for accurate and simple monitoring by a rectification circuit.

Because of its large insertion

FIG. 2-Oscillator is modulated by 2 N 33 reactance transistor over vhf range
loss, the use of a piston-type attenuator, otherwise advantageous in vhf circuits, is excluded.

A resistance attenuator is used instead, varied in ten-db steps. The range of $10-\mathrm{db}$ variation between the adjacent fixed steps is covered by adjusting the r-f output from the harmonic selector and monitoring its value on a panel meter.

Prior to the selection of the modulator circuit, an investigation was carried out to find whether nonlinear properties of barium-titanate capacitors could be conveniently utilized for frequency modulation purposes. ${ }^{3}$ Such modulation was found feasible and relatively easy to realize in practice, but this approach was abandoned because the barium-titanate capacitor required too small an area of contact and too thin a dielectric for convenient construction in the frequency range required. In addition, strong impulse noise was observed at lower frequencies while modulation sensitivity and harmonic distortion were found to depend on the modulation frequency.

On the other hand, the design of a transistor-reactance modulator circuit met with complete success, with reservations usually applicable to transistors operating at high radio frequencies.

Equivalent Circuit

Basic operation of the circuit may be explained with the equivalent circuit of the transistor. shown in Fig. 3B. Soiving the circuit equations, the equivalent $\mathrm{adm} \mathrm{t}_{\mathrm{t}}$ tance y of the reactance transistor is $y=j \omega C_{1}(1-\alpha)$. For real $\alpha=$ $\left|x_{r}\right|$ inductive impedance results if $\left|\alpha_{r}\right|>1$ and capacitive if $\left|\alpha_{r}\right|<\mathbf{1}$. Remembering that at high frequencies α is in general complex, $\alpha=$ $\left|\alpha_{r}\right|-j\left|\alpha_{i}\right|$ and

$$
\begin{equation*}
y=g+j b=\omega C_{1}\left[-\left|\alpha_{i}\right|+j\left(1-\left|\alpha_{r}\right|\right)\right] \tag{1}
\end{equation*}
$$

The imaginary component of α contributes to the negative equivalent conductance of the reactance circuit, while the real component of α contributes to the susceptance component b. If coupling capacitor C_{1} in the emitter circuit is substituted by resistor R_{1}

$$
\begin{equation*}
y=g+j b-\left(1 / R_{1}\right)\left[\left(1-\left|\alpha_{r}\right|+j \mid \alpha_{i}\right]\right] \tag{2}
\end{equation*}
$$

In this case α_{i} contributes to the susceptance component and $\left|x_{r}\right|$ to
the conductance component, which is negative for $\left|\alpha_{r}\right|>1$ and positive for $\left|\alpha_{r}\right|<1$. At present, capacitive coupling is used and there is evidence of the presence of the negative conductance component. Actually mixed coupling occurs because of the effect of emitter resistance r_{θ}, which cannot be neglected.

Frequency modulation occurs as a result of variation of biasing emitter current $I_{\text {eo }}$ at the modulation rate. This variation is associated with the corresponding variation of α and of b. Component $g=-|g|$ also varies correspondingly. Since ample negative conductance to overcome circuit loss is provided by the oscillator circuit with resulting effect of amplitude limiting, the variation of additional negative conductance g is not of consequence and does not cause excessive spurious amplitude modulation. Spurious a-m is below 2 percent at $100-\mathrm{kc}$ f-m deviation at all radio frequencies.

The accurate formula for y considering the full equivalent circuit of the reactance transistor for small signals in Fig. 3C is
$y=g+j b=\frac{y_{c}+\left(g^{\prime}{ }^{\prime}+j \omega C_{1}\right)(1-\alpha)}{1+r_{b}\left[y_{c}+\left(g^{\prime}{ }_{e}+j \omega C_{1}\right)(1-\alpha)\right]}(3)$
where $g_{e}=\omega^{2} C_{1} r_{e}$.
Equation 3 is equal to Eq. 1 or Eq. 2 depending on whether $g^{\prime}{ }^{\prime}$ or $j \omega C_{1}$ predominates, when r_{b} and $y_{c}=$ $1 / Z_{\text {。 }}$ are neglected. The negative conductance component of y can be measured fairly successfully using an auxiliary tuned circuit in conjunction with a vhf Q-meter. The negative g can be evaluated from an apparent increase of the Q value of the auxiliary circuit.

Performance

Proper optimization of emitter bias and radio-frequency voltage across the emitter was found quite critical, but with preset adjustment for both, it was found possible to maintain distortion below 5 percent at all radio frequencies and at all deviations below the specified maximum of $50-\mathrm{kc}$ deviation up to $50-\mathrm{mc}$ r-f and 100 kc for the remainder of the radio-frequency range.

Sensitivity of modulation is likely to vary with the setting of the tuning capacitor at various frequencies throughout each band and

FIG. 3-Basic transistor reactance circuit used in Fig. 2(A) simplified (B) and complete (C) equivalent circuits
also between the bands. As with tube-type f-m modulators, special means of equalization of modulation sensitivity over the range of radio frequencies are required. They take the form of a system of a-f attenuators ganged to the main tuning capacitor and to the range switch.

Transistor Types

The use of RDX300 junction tetrodes in this equipment was investigated. It was found that no particular advantage is gained in using tetrode transistors in the harmonicselector stage; point-contact performance was equivalent.

In the oscillator-modulator application, junction tetrodes proved considerably superior from the standpoint of freedom from spurious $f-m$ and from the effect of temperature on frequ acy stability. Spurious f-m caused by contact noise is the main drawback of pointcontact oscillators and modulators. In the described equipment, contact noise caused f-m deviations of 250 to $1,250 \mathrm{cps}$ depending on the value of tuned-circuit capacitance and radio frequency of the carrier for the point-contact transistor oscillator and modulator.

Spurious f-m deviation dropped to 50 to 65 cps when junction tetrodes were used. Power output
of a junction tetrode is somewhat higher than that of a 2 N 33 , but the uppermost frequency of oscillation does not exceed approximately 35 mc for the junction tetrode.

The performance of the vhf circuits, which form the major part of the discussed instrument, approach on the whole that of their vacuum-tube counterparts, with an additional saving of about 20 percent of volume. The volume of the transistorized equipment is 1.44 cubic feet. The saving in weight exceeds 50 percent of the weight of equivalent equipment, based on vacuum tubes (42 lb with transistors and 113 lb with vacuum tubes). The weight saving is very desirable since it directly affects the portability of the equipment. A temperature oven provided to safeguard the oscillator against frequency changes with ambient temperature variations is responsible for the saving in volume not being as impressive as it might be expected.

The effect of temperature on oscillator frequency and the value of residual spurious f-m due to contact noise (with point-contact transistors only) are the only two major points where the performance of the transistorized generator is affected in comparison with the equivalent vacuum-tube design.

Part of the work described above was performed in connection with Signal Corps Contract DA-36-039-sc-42714. A Rosenblum and H . Spett cooperated in this work as representatives of Coles Signal Laboratory. A. H. Maciszewski, President and Director of Engineering of A. R. F. Products, Inc., contributed to the discussions leading to the present concept of the equipment. A large proportion of laboratory work was performed by K. T. Tsunamura.

References

(1) R. L. Wallace L. G. Schimpf and E. Dickten. A Junction Transistor Triode for High Frequency Use, Proc IRE, 40. $\mathrm{p} 1,395$, Nov. 1952.
(2) G. M. Rose and B. N. Slade. Transistors Operated at 300 MC , ELECTRONICS, p 116, Nov. 1952 .
(3) H. H. Wider and N. Cass, F-M Transistor Oscillator, Electronics, p 198. July 1953.
Technical staff of Philco Division. The Surface Barrier Transistor, Proc $I R E, p$ 1,702, Dee. 1953.
J. M. Early, P-N-T-P and N-P-I-N Junction Transistor Triodes, BSTJ, p 517 , May 1954 .

Tape-Controlled Servos

Infrared spectrophotometer for analyzing organic compounds has magnetic-tape memory and servo control to simplify calibration. Circuits include $10-\mathrm{cps}$ low-noise amplifier and five-stage regulated power supply

T10 ObTAIN a CURVE of transmittancy versus wavelength the sample is exposed to monochromatic infrared radiation of progressively varying wavelength and the radiation passing through the sample is detected by a phototube.

A 100-percent-transmission reference line must first be obtained. This requires that corrections be introduced for absorptions within the monochromator and for the fact that Nernst lamp radiation as a function of wavelength follows a typical black-body radiation curve rather than a straight line. These corrections are made by varying the width of a slit placed in the optical path between the sample and the dispersing prism during a scan. The slit servomechanism is provided for this purpose.

It is necessary also to scan the infrared spectrum produced by the dispersing prism as fast as possible consistent with the resolution desired. However, since resolution varies with slit width, the rate at which the spectrum is scanned must vary. The wavelength servomechanism accomplishes this.

Finally, the strip chart upon which the transmittancy-wavelength curve is automatically plotted must move at a rate corresponding to the spectrum scanning rate. The chart drive is controlled by the chart servomechanism.

Once the 100 -percent reference line is established, a sample is introduced into the liquid cell of the spectrophotometer. All the above motions must now be reproduced with great accuracy. This is done by magnetic-tape playback control.

Optical Path

Figure 1 shows the optical path of the spectrophotometer. The Nernst lamp is the source of infrared radiation and the phototube

By WALT DONNER
 Beckman Instruments, Inc. South Pasadena, California

THE INFRARED SPECTROPHOTOMETER

Infrared spectroscopy is a powerful tool for chemical analysis and is particularly valuable in organic chemistry. Chemical compounds are composed of atoms held together by molecular forces. Thus electromagnetic radiation of the proper frequency can excite a number of modes of oscillation in a molecule.

As a result of this action, energy is expended in exciting the molecule; the amount of energy given up and the frequencies for resonance are unique properties of a given molecular structure. Curves of transmittancy plotted against wavelength enoble the spectroscopist to identify the compound under test.

Standard transmittancy-wavelength curves have been compiled for hundreds of pure compounds but to correct ordinary spectrograms to read directly in transmittancy is a tedious and time-consuming task. The instrument described accurately records infrared spectrums directly in transmittancy.

The infrared spectrum shown above is for ammonia (NH_{3}) under $100-\mathrm{mm}$ pressure in a $10-\mathrm{cm}$ test cell. Rocksalt prisms were used in the spectroscope. Actually, two runs were made at moderate speed and resolution; their superposition illustrates the precision and reproducibility of the machine. The 100 -percent-transmittancy line at the top was drawn during a standardizing run
monitors this source to maintain its emission constant. The light beam is formed by a condensing mirror and passed through a motor-driven beam chopper, whose function is to chop the light at $10-\mathrm{cps}$ so that a-c amplification may be used. A negative lens collimates the radiation beam in the liquid cell region. Lens H brings the beam to a focus on the entrance slit. Lenses J and H produce an image of the front face of prism M in the plane of the external aperture to permit use of a narrow external beam and avoid introducing radiation into the monochromator at angles wider than can be usefully employed. In the exit beam system lens Q confines the beam, producing an image of the front face of prism M^{\prime} in the plane of the thermocouple condensing mirror.

The exit multiplier phototubes and off-axis condensing mirror are used to study visible and ultraviolet absorption. Windows can be inserted if it is desired to isolate the exit-beam liquid-cell compartment.

An intermediate aperture is inserted between the first and second monochromators. The thermocouple is the detector of infrared radiation. The smallest detectable signal is in the order of 10^{-18} watt.

Narrow-Band Amplifier

The 10 -cps voltage generated by the thermocouple passes through an input transformer to give a voltage gain of 1,000 raising the signal above the amplifier input noise level by a factor of five. The signal-tonoise ratio of the entire instrument is determined by the signal-to-noise ratio of the thermocouple. The rms Johnson noise in the thermocouple is 10^{-10} volts at ambient temperature in a $0.5-\mathrm{cps}$ bandwidth. This represents a noise voltage of 10^{-7} volts referred to the amplifier input.

The 10 -cps amplifier shown in

Speed Chemical Analysis

Spectroscopist at Navional Heart Institute prepares for run with infrared spectrophotometer. Instrument aids study of organic compounds isolated from plants in the search for new drugs to combat heart disease

Fig. 2A has an input section of lownoise design with a voltage gain of 1,000 while the output section also contributes a net voltage gain of 1,000 providing a maximum voltage gain of 10° or 10° referred to the thermocouple terminals. A manual attenuator located between the two amplifier sections enables the operator to control the overall signal amplification. The maximum signal that can be handled by the input amplifier without distortion is about 20 volts rms. The input stage employs a 14 F 7 , a twin triode with a high shot-noise figure of merit. This measure is taken as the transconductance divided by the square root of the plate current. In addition, the tube has rugged nonmicrophonic construction and excellent insulation. Its $150-\mathrm{ma}$ filament
permits economy of d-c heater power for the low-level input stages.

Inverse d-c feedback controlling the grid bias in each amplifier section minimizes the blocking which results from overbiasing a highlevel stage by grid current drawn at the positive peak of an excessive signal. Blocking ordinarily lasts a considerable time because the amplifier time constants must be long to give the required low-frequency response. However, with inverse feedback, smaller time constants are used and their effect is further decreased by degeneration.

A schematic of the input amplifier is shown in Fig. 2B. The a-c feedback that stabilizes the amplifier also reduces noise, improves linearity and makes the amplifier noncritical as to tubes.

The output amplifier is similar to the input amplifier except that it is push-pull throughout. Both a-c and d-c feedback loops are employed.

Following the output amplifier, a mechanical synchronous rectifier is used to provide the high degree of linearity required for precise measurements. It consists of a pair of contacts operated by a cam on the same shaft that drives the chopper shutter mechanism. A phasing drum interposed between the cam and the shutter compensates for phase shift occurring in the thermocouple and 10 -cps amplifiers. The output voltage then passes through an adjustable filter to a d-c amplifier which drives the strip-chart recorder.

In addition, the $10-\mathrm{cps}$ amplifier chassis contains a regulated power

FIG. 1-Mechanical configuration of infrared spectrophotometer showing optical path
supply and Nernst lamp regulator whose output is controlled by the monitor phototube.

Because of the power-supply regulator a 10 -percent line-voltage change produces less than a one-part-per-million change in the supply voltage at frequencies near $10-$ cps. The electronic regulator consists of five stages with a feedback factor of 300,000 . The circuit supplies 240 ma at 275 volts. The internal impedance at $10-\mathrm{cps}$ is less than 0.001 ohm and $120-\mathrm{cps}$ ripple is only 25 microvolts rms. Noise voltage is 5 microvolts in a $1.6-\mathrm{cps}$ bandwidth centered at $10-\mathrm{cps}$. Fig-

FIG. 2-Block diagram of 10 -cps low-noise amplifier (A) and schematic of its input stages (B

FIG. 3-Five-stage power-supply regulator has a feedback factor of 300,000: supplies 240 ma at 275 v
ure 3 is a schematic of the powersupply regulator. Tubes V_{1}, V_{2} and V_{3} are cascaded for voltage amplification and are direct coupled because they must amplify small d-c changes. The d-c reference level depends chiefly upon the space-chargelimited emission of the first stage filament; a 1-percent change in filament current corresponds to about a $25-\mathrm{mv}$ input signal.

Direct Transmittancy Servo

The energy radiated from the Nernst lamp has a typical blackbody radiation curve. The energy peak occurs at about 2 microns and is down 1,000 times at 15 microns. The uncompensated reference level (no sample) in a single-beam spectrophotometer is essentially the black-body curve of the source neglecting absorptions in the optical path.

A fixed 100-percent reference level to record absorption spectrums directly in transmittancy is attained by varying the slit width in the monochromator automatically as

FIG. 4-Recording (A) and playback systems (B) permit use of magnetic tape for instrument calibration
a function of wavelength position. At long wavelengths (15 microns) where the energy is low, the slits are widened and conversely at shorter wavelengths the slits are narrowed to compensate for the increase in radiation from the source. Slit width as a function of wavelength position over the entire scanning interval is memorized during a standardizing run and transmittancy of the sample recorded directly by reproducing the slit-width-versus-wavelength information during a second run, meantime introducing the sample into the instrument.

A servomechanism controls the slit width to maintain a 100 -percent reference level by monitoring the output voltage of the $10-\mathrm{cps}$ amplifier and comparing it with a fixed reference voltage. The position of the slit-motor shaft is recorded on a tape recorder as a function of the wavelength position to an accuracy oif 1 part in 5,000 .
it is necessary to traverse a spec-
tral slit width in a time proportional to the response period of the 10 -cps amplifier.

Wavelength Drive Servo

A second special servomechanism is utilized during the standardizing run automatically to set the velocity of the wavelength drive motor proportional to a voltage which varies directly as the geometric slit width and the response period of the amplifier. This voltage is derived from a resistive divider mounted on a 48-position switch driven by the slit motor. The output voltage E_{0} of the switch may be represented by $E_{\text {。 }}=C \log W$, where W is the slit width and C a multiplying factor to compensate for the amplifier time constant used.

The logarithmic function is necessary since a log cam is used to drive the slit jaws, giving a constant change in light output for a given rotation of the slit shaft. It is necessary to memorize the wavelength motor position to an ac-
curacy of 1 part in 15,000 .
The slit and wavelength servomechanisms to be described later are both variations of a basic position servo in which a two-phase synchro is attached to the motor shaft through a suitable gear ratio. A reference oscillator provides a $165-\mathrm{cps}$ signal which is split into two components differing in phase by 90 deg . These two voltages are applied to the fields of the synchro. The resultant magnetic field can be represented by a vector of constant amplitude rotating at $165-\mathrm{cps}$.

The phase of the induced emf in the synchro rotor winding referred to the reference oscillator voltage measures the relative position of the rotor shaft. The reference and the rotor frequencies are recorded on tape and when played back provide control information to reproduce the motor position during the standardizing run. It is necessary only that the synchro be within one-half revolution of its original starting position at the start of the playback

FIG. 5-Block diagram of slit control system (A) and schematic of slit modulator and motor amplifier (B)

Three tracks of varying area on $35-\mathrm{mm}$ film provide memory for chart drive
run to assure perfect lock-in. This is accomplished by observing a counter on the motor shaft.

On playback, the $165-\mathrm{cps}$ reference signal from the tape recorder is split into two components 90 deg apart and applied to the synchro fields. The induced rotor voltage is compared in phase in a discriminator with the previously recorded rotor voltage. The resulting error signal is amplified and applied to the servo motor which drives the synchro to maintain phase balance. As the control signal varies in phase the servo motor maintains the phase balance reproducing any recorded function.

Two control channels are necessary to record both the wavelength and slit motor positions. The same reference frequency is used, however, requiring the recording of only three signals. Since all three signals are essentially the same frequency, ± 2 cycles, a modulated carrier system was utilized.

Recording System

A 1,750-cps carrier is used for the slit channel, 2,750-cps for the wavelength channel and $3,750-\mathrm{cps}$ for the reference signal. The three
modulated carriers are mixed in a linear resistive divider and applied to the tape recorder through a recording amplifier. See Fig. 4A.
No mechanical synchronization is necessary since the phase of the three signals with respect to each other is independent of the speed of the tape used. Even nonhomogeneous tape presents no problem as long as the signal loss on playback represents no more than a half revolution of the synchro.

On playback, the composite signal consisting of the three modulated carriers is separated by band-pass filters, Fig. 4B. Each channel is separately demodulated, filtered, amplified and applied to the proper discriminator after passing through an amplitude limiting amplifier that insures constant amplitude despite tape nonhomogeneities.

Slit Servomechanism

Figure 5A is a block diagram of the slit servomechanism. A dragcup generator is used for viscous damping to degenerate the motor time constant and assure fast response with good damping. The low-pass filter between the $10-\mathrm{cps}$ and d-c differential amplifiers is
necessary to remove the $10-\mathrm{cps}$ and $60-\mathrm{cps}$ components to prevent overloading the differential amplifier. Figure 5B is a schematic of the slit modulator and motor amplifier.

Any d-c unbalance between the 6 J 6 grids in the balanced modulator produces a $60-\mathrm{cps}$ component whose amplitude is proportional to the unbalance and whose phase is either zero or 180 degrees with respect to the a-c line depending upon relative grid polarities. The modulator output signal is compared with the drag-cup generator signal in the first stage of the servo amplifier and the error signal is used to drive the slit motor. The diode limiters are biased to limit the top speed of the motor and prevent overloading the power-amplifier stages.

Since the light intensity falling on the thermocouple is proportional to the square of the slit width, it is necessary to drive the slit with a logarithmic cam so that the loop gain remains constant throughout the slit excursions.

Wavelength Servomechanism

During the standardizing run, the wavelength drive functions as a wide-range velocity servo with a large value of $d-c$ feedback from a tachometer tied directly to the motor shaft. The wavelength drive motor runs at a speed such that the output voltage of the d-c tachometer is equal to the applied control voltage. The servo motor can apply full torque continuously from $\frac{1}{3} \mathrm{rpm}$ to $2,000 \mathrm{rpm}$, a dynamic range of 6,000 to 1 . The difference between

FIG. 6-Wavelength control system (A) and chart drive system (B) demonstrate similarities in their electrical design

FIG. 7-Schematic of wavelength servo amplifier
the applied signal voltage and the tachometer voltage is applied to a $60-\mathrm{cps}$ chopper, amplified and impressed across the servo motor. During playback, the chopper measures the difference between the discriminator output voltage and the tachometer, converting the velocity servo to a position servo. The gear ratio to the monochromator wavelength drive is such that a complete scan from 15 to 1 microns can be made in 5 minutes, at wide slit widths. Both the wavelength and slit servos can be controlled during the standardizing run by manually adjusted potentiometers to increase the versatility of the instrument. Figure 6A is a block diagram of the wavelength servo.

Figure 7 is a schematic of the wavelength motor amplifier. The difference voltage between the input signal and the d-c tachometer is chopped at $60-\mathrm{cps}$ and amplified by the first stage. The first two stages are regeneratively coupled to make up for the loss in gain that would incur due to degeneration from the cathode resistors.

Wavelength Presentation

The dispersion of a prism is such that the distribution of wavelength versus angle is a nonlinear function which resembles a portion of a tangent curve. It is desirable to have the chart paper drive linear in wavelength and as a consequence it is necessary to introduce a nonlinear element having a reproducibility of one part in 13,000 between the wavelength drive and the overall chart paper drive system on the strip recorder.

A method was developed for recording phase versus position on $35-\mathrm{mm}$ film, using three identical tracks of variable area. A linear
section of the film is shown in the photograph. A $20-\mathrm{ft}$ section of film is driven by a sprocket connected to the wavelength drive mechanism and scanned as it passes a slit only 0.01 inch wide.

The scanning mechanism comprises a projector lamp, optical elements, Polaroid modulating system, slit and phototube and is shown in Fig. 8. At the slit, opposite each track on the film, are three Polaroid filters with their polarization angles differing by 60 deg. Light passes through a Polaroid disk rotating at 60 rps , the film, slit and filters and is picked up by a phototube. The transmission of the first film track is $A(\sin \alpha+1) B \sin ^{2} \omega t$ is the angular velocity of the rotating disk.

Since the phototube is looking at all three tracks, the signal voltage in the phototube load resistor is

$$
E_{o}=A(\sin a+1) B \sin ^{2} \omega t+A\left[\sin _{1}\right.
$$ $\left.\left(a+\frac{2 \pi}{3}\right)+1\right] B \sin ^{2}\left(\omega t+\frac{\pi}{3}\right)+A$

$$
\left[\sin \left(\alpha+\frac{4 \pi}{3}\right)+1\right] B \sin ^{2}\left(\omega t+\frac{2 \pi}{3}\right)
$$

This can be reduced to

$$
E_{o}=k\left[1+\frac{1}{2} \sin (2 \omega t-\alpha)\right]
$$

The d-c component can be disregarded and the signal voltage becomes a sine wave of angular velocity $2 \omega t$ or 120 cps and a phase angle determined by a, which corresponds to the position of the film on the slit.

A small diagonal mirror intercepts a portion of the rotating polarized light and the light passes through a fixed Polaroid filter to another phototube to produce a 120 cps signal for phase reference. This signal is split into two components 90 deg apart and applied to the fields of a synchro in the paper chart drive system (Fig. 6B). The control signal generated by the film

FIG. 8-Film scanner for chart drive
system is fed to a phase discriminator that compares its phase with that of the rotor signal from the chart synchro.

The phase difference signal is amplified and used to drive the chart motor. Each time the film tracks are advanced 360 deg the chart synchro is driven through one complete revolution. The phase distribution along the film follows the dispersion curve of the prism. Since the film is geared directly to the wavelength drive shaft no additional memory system is required for the chart paper to follow accurately with wavelength scanning on playback.

Summary

The Beckman Model IR-3 spectrophotometer utilizes an automatic control system which enables the recording of spectra directly in 100-percent transmittancy at a scanning speed proportional to slit width by means of servomechanisms. Wavelength versus slit width information is automatically recorded on a tape recorder for periods of time up to one hour by comparing the rotor voltage of synchros tied to the motors with a reference signal, which is applied to the synchro fields.
The resulting phase differences are applied as error signals to the servo motor amplifiers from discriminators during the playback run, thus causing the motors to exactly reproduce their previously recorded positions as a function of time. Introduction of a sample into the instrument during the playback run allows the sample adsorption to be referred to a 100 -percent reference line instead of the usual blackbody radiation curve emitted by the Nernst source.

Phase Measurement for

Abstract

Indicating instrument displays phase and amplitude of carrier at given frequency in respect to reference phase supplied at same frequency. Phase magnifying feature increases measurement accuracy. Unit is also applicable to direction-finding equipment

By KURT SCHLESINGER

Research Division
Motorola, Incorporater
Chicago, Illinois

NEED for an instantaneous phase and amplitude indicator in the color-tv field has been recognized for sometime. ${ }^{1}$ Today, this need has been met by instruments such as the vectorscope, which are standard equipment in transmitter installations for color tv. ${ }^{2}$ These instruments are also likely to be found on future production lines for color receivers and in service shops, this trend being aided by several commercial products, some already on the market ${ }^{3}$ and more still to come."

The vectorscope is an oscilloscope for the display of signals that consist of amplitude and/or phase modulation of a carrier at some specific center frequency, Ampli-tude-modulation is displayed as the radial distance of the scanning spot from center screen and instantaneous phase is displayed as the angle counted from a fixed phase reference on the vector screen.

To supply the reference phase electrically, a continuous unmodulated carrier at center frequency has to be available. This reference carrier may be supplied to the instrument from an external source or may be reconstituted from a composite signal which conveys reference-phase information by a time-division multiplex process. This type of transmission is typical for the color-tv applications of the vectorscope and slightly complicates the instrument.

Circuitry

Figure 1 presents the basic circuit arrangement and the electronic
functions involved in obtaining a vectorscope display. The instrument operates on two inputs. The first is a signal input

$$
\begin{equation*}
e_{x}=A \cos (\omega t+\phi) \tag{1}
\end{equation*}
$$

Here, both amplitude and phase may be time variable. In a typical color application, a bandwidth of over 1 megacycle is allotted to these parameters. The second input is a reference input

$$
\begin{equation*}
e_{\tau}=2 \cos (\omega t) \tag{2}
\end{equation*}
$$

The amplitude factor 2 indicates the use of a limiter within the instrument. The angular frequency ω stands for a carrier of 3.579545 mc in an instrument designed for NTSC color.

Two synchronous detectors are used for the X and Y coordinates. The X detector operates on the input signal and the reference voltage. Its filtered output is

$$
\begin{equation*}
e_{x}=A \cos \phi \tag{3}
\end{equation*}
$$

The Y detector operates on the input signal and a derived reference component, 90 degrees advanced in
phase with respect to the signal of Eq. 2

$$
\begin{equation*}
e_{\theta}=-2 \sin (\omega t) \tag{4}
\end{equation*}
$$

Its output then becomes

$$
\begin{equation*}
e_{y}=A \sin \phi \tag{5}
\end{equation*}
$$

The detected voltages e_{s} and e_{y} result in a stationary dot on the screen with the desired polar coordinates A_{1} and ϕ_{1}.
Frequently, it is desirable to enhance visibility of the display by providing radials from each dot to center. This is accomplished by periodically keying the signal amplitude to zero at a rate Ω. This keying process may be accomplished either ahead of detection in the signal amplifier ${ }^{2}$ or after detection in the deflection amplifier. ${ }^{5}$ The latter approach requires two modulators, the former only one.

Figure 1 exemplifies the predetection modulation in showing a tracer signal $e \Omega$ and a signal modulator. If the tracing frequency is lower than the line rate, say 10 kc , the vectogram is displayed at a

FIG. 1-Basic arrangement of vectorscope elements

Color TV and F-M

Left to right: NTSC color-bar signal as displayed on vectorscope; vector rotation of color carrier with and without phase multiplier; spurious phase rotation in a color-video stage; standard quality f-m signal; phase and amplitude response of delay band-pass filter
pulsating radial scale and the circuitry is particularly simple.

Synchronous Detectors

Figure 2A shows the synchronous detectors used for the vectorscope. These work on the pulsed-envelope principle. ${ }^{\circ}$ In this application, each group of detectors is directly coupled to its pair of deflection plates through a constant-K filter passing $1,500 \mathrm{kc}$. Band-rejection filters at each plate remove all traces of color carrier from the display. The overall frequency response is shown in Fig. 2B.

Each tube delivers up to 200 volts peak-to-peak from a 4 -volt signal. Since the output from each doublet is in push-pull due to the balanced cathode excitation, there is adequate output for full deflection of a 4,000 -volt beam on a 5 inch tube.

Other features of these high-level pulsed envelope detectors are inherent amplitude linearity and a phase error of less than 2 degrees,
both secured by the high injection ratio of 5 to $1 .{ }^{6}$

Figure 3 shows the low-impedance quadrature network employed. In the tuned-pi structure shown, the quadrature phase between output and input is unaffected by variations of the load resistance r_{2} if one L-C branch is tuned to resonance. The basic relations of the tuned pi are

$$
\begin{equation*}
e_{2}=e_{1} j r_{2} / Z \tag{6}
\end{equation*}
$$

where $Z=\sqrt{L / C}$ and $\omega^{2} L C=1$.
The input impedance is a pure resistance

$$
\begin{equation*}
r_{1}=Z^{2} / r_{2} \tag{7}
\end{equation*}
$$

It follows that the amplitude balance can be adjusted by changing the load resistor r_{2}, but the input impedance stays resistive and the phase relation between voltages does not change. If built for a low impedance ($Z=100 \mathrm{ohms}$), the tuned pi guarantees correct vector display despite load variation so that there is no need for elaborate self-checking devices.

If the vectorscope is used as a color monitor, the additions to its circuitry shown in Fig. 4 are necessary. Since the color signal is composite, the phase reference has to be reconstituted by a separate burst regenerator within the instrument. This requires a separate sync amplifier having conventional videobandwidth characteristics (0 to 5 mc), so that conventional sync stripping and inverting practices may be used.

For signal amplification chromaticity bandwidth ($2.5 \div 4.5 \mathrm{mc}$) is adequate and low and medium frequencies up to 2 mc may be suppressed. In this channel, a variable delay unit is desirable so that the vectogram may be zeroed for phase. Such a delay-control unit, consisting of a single-layer helix on top of a slotted metal tube inside which a moving pickup coil is provided is shown in one of the photographs. At 3.6 mc , a complete 360 -degree rotation of the pattern is realized with a delay-line helix of only

FIG. 2-High-level pulsed envelope detector used in vectorscope (A); relative frequency response of detector (B)

Vectorscope for color-signal monitoring. Separate sync and signalprobe inputs permit constant maintenance of phase reference

Variable time-delay control unit consists of single-layer helix on top of slotted metal tube, with moving-coil pickup inside
eight inches total length.
The complete vectorscope for color monitoring is shown in one of the photographs. Use of two separate probes for sync and signal inputs permits constant maintenance of phase reference while the signal probe explores various parts of receiver or transmitter circuitry. Each probe consists of a small head with an input capacitance of less than 3 u. . f attached to a 3 -foot cable.

The photograph of the vectorscope waveform obtained from a NTSC transmission of vertical color bars includes the colors red, yellow, green, magenta and blue. Each color persisted for only 7 microseconds at a time. The angles and radials may be compared to the NTSC signal specifications. ${ }^{\text {T }}$

Phase Magnifier

The ability of the vectorscope to resolve small phase angles is limited both by the properties of the associated circuits and by the cathode-ray tube itself. A 5 -inch tube with an effective spot size of $\frac{1}{16}$ inch would account for a phase tolerance of ± 1 degree. Errors of similar magnitude may be contributed by the synchronous detectors themselves, ${ }^{6}$ as well as by the process of color synchronization. As a result, the total error to be expected from a vectorscope may lie within the limits of ± 2 degrees.

Some of the effects with which color-tv engineers are concerned are well below this limit of resolution; one example is the detection of dif-
ferential phase shift in color-video amplifiers. Transmission of the color carrier through a tube in the presence of large variations of pedestal often causes color-phase errors of the order of $\frac{1}{2}$ to 2 degrees per stage.

Another use for a differentialphase test arises if delay balance is sought for two parallel networks, each having a different bandwidth. A typical example is the delay equalization between I and Q channels. Two and a half feet of cable, having a delay of about 0.1 microsecond, is commonly used for this purpose. This average time corresponds to a color-phase rotation of 5 degrees. Since the K factor of the cables varies by about 10 percent, measurement of $\frac{1}{2}$ degree of phase is of interest. This corresponds to a differential delay of about 400×10^{-12} seconds, the time for a signal to traverse 3 inches of cable.

Figure 5 illustrates the principle of the phase multiplier successfully used to magnify the phase resolution of a standard vectorscope. The network under test causes an incremental phase shift $\Delta \phi$, too small to be seen on the vectorscope screen. The network output is passed into the signal frequency multiplier which raises the signal frequency N_{a} times. The phase at the multiplier output is rotated by $N_{a} \Delta \phi$ with respect to the reference phase ϕ. The reference carrier is also frequency multiplied, but the order of multiplication is one less than before: $N_{b}=N_{a}-1$.

The outputs of the signal and reference-frequency multipliers are heterodyned in the mixer beating the output back to the reference frequency f_{1}. The relative phase angle, however, becomes $\phi_{2}=N_{a} \Delta \phi$, which in this case is a magnification of ten times. As a result the vectorscope indicates the differential phase shift at a greatly expanded scale. Vector rotation of color carrier with phase multiplier is shown in the photographs.

An application of the phase microscope to the study of a $6 \mathrm{AC7}$ amplifying 0.5 volt of color carrier, while being modulated by 1 volt of stairstep signal is shown in one of the photographs. The stage exhibits both differential phase and gain distortion. The former is almost too small to be seen directly, being only 4 degrees. At the output of the phase microscope, the phase distortion appears magnified to 40 degrees. The gain variation is visible in the direct view as a radial dis-

FIG. 3-Tuned-pi quadraiure network employed in circuit of Fig. 2
placement, but shows more clearly on the phase multiplier display.

Color tv is not the only type of radio communication which can benefit from an instantaneous phase indicator like the vectorscope. Frequency modulation is another field for its application. Here is a need for an instantaneous deviation indicator to serve as a monitor for broadcast stations or as an aid in the alignment of transmitting equipment. To adapt the vectorscope to this application, the first requirement is an adapter to convert any arbitrary signal-carrier frequency to the preset instrument frequency. Such conversion is basically feasible since the phase relation between two synchronous carriers is unaffected by the process of heterodyning.

F-M Monitor

Figure 6 shows how the vectorscope may be used to monitor the frequency deviation of any f-m broadcast transmitter. A conventional $\mathrm{f}-\mathrm{m}$ receiver is used and its intermediate frequency of 10.7 mc is routed by $72-\mathrm{ohm}$ coaxial cable to the vectorscope through two separate channels. The first channel comprises a double modulator or transponder. The first modulator develops the sum frequency of 14.3 mc $\pm \Delta f$ resulting from a beat between the i-f signal and a local $3.6-\mathrm{mc}$ crystal oscillator. A band-pass filter isolates this sum frequency and supplies it to the second modulator. Here, the sum frequency is beaten back into 3.6 mc by heterodyning it with the original signal. However, before reaching the second modulator, the signal goes through two delay lines. The first, D_{o}, matches

FIG. 5-Use of a phase magnifier in conjunction with the vectorscope permits observation of phase angles that would normally be too small to be seen

FIG. 6-Application of the vectorscope as an f-m monitor. The signal from the receiver is fed to the vectorscope through a double-beat converter
the delay incurred in the transponder band-pass filter. The second delay section, D, has a ferrite core and is so designed that the phasedelay difference for two extremes of deviation amounts to 180 degrees. Since $\mathrm{f}-\mathrm{m}$ standards call for $\Delta f \leqq$ ± 75 ke the required delay is

$$
\begin{equation*}
D=1 / 4(4 \Delta f)=3.3 \mu \mathrm{sec} \tag{8}
\end{equation*}
$$

Since the transponder preserves phase relations, the vectorscope in Fig. 6 will display a fan-shaped pattern which will reach a spread of 180 degrees for peak deviations only, but will stay within this

FIG. 4-Setup for using vectorscope as color monitor. Bandwidths of chroma and colorsync amplifier should be 2 to 4 and 0 to 4 me respectively
angle for FCC approved transmissions. At the same time, the fanned-out area will be a segment of a circle as long as the receiver limiter is working properly. Any spurious a-m is detected as a noncircularity of the boundary.

A vectogram obtained from a local f-m station is shown in the photographs.

Phase-Delay Display

Phase delay and envelope delay are determining factors for the transient response of video amplifiers. Circuits for equalizing delay distortion are finding increasing application in tv receiving and transmitting equipment. ${ }^{8,0}$ In color tv, phase-delay distortion in the chromaticity channel may cause crosstalk and color contamination due to quadrature components; instruments to display such distortion are of assistance to designers of color equipment.

A vectorscope equipped with a transponder displays both phase and amplitude response of a fourterminal network.

Employing a suitable signal.

FIG. 7-Setup for phase-delay presentation with the vectorscope. Circuit resembles that of Fig. 6 except that $f-m$ signal is replaced by signal generator

FIG. 8-As an element of an all-electronic direction finder, the vectorscope displays small differences in the time of arrival of a signal carrier at the site of various component antennas forming a directive antenna array
generator whose frequency varies in discrete jumps, the vectorscope displays the overall phase shift per unit change of frequency (phase delay) offering a visual check on phase distortion. Figure 7 shows the test-equipment layout. The equipment resembles the f-m monitor of Fig. 6, except that the $\mathrm{f}-\mathrm{m}$ signal is replaced by a signal generator whose frequency is varied by constant steps and the test network replaces the disper-sion-free delay line used before.
The electronic wobbulator uses a center frequency of 10.7 mc and is frequency modulated by a staircase generator so that a total deviation of $\pm 1 \mathrm{mc}$ is accomplished in 10 steps, each 200 kc apart, at a repetition rate of 60 cps .

The resultant vectorscope display consists of discrete radials whose length and direction indicate attenuation and phase shift through the network at the step frequencies. If the network is a band-pass filter, the pass band is recognized as that section of the vector envelope which most nearly approaches a circle through the origin at maximum radius. Constant phase delay, on the other hand, is recognized by
equal angles between consecutive radials. Crowding or spreading of these angles signify phase distortion at the spot frequencies.

Tests on any arbitrary frequency may be done by heterodyning down to that frequency and back between terminal points P and Q in Fig. 7, using the same local oscillator.

Direction Finding

The vectorscope may also be used as the essential element of an allelectronic direction finder, measuring small differences in the time of arrival of a signal carrier at the site of various component antennas forming a directive antenna array. In this application, it offers several advantages over conventional equipment using mechanical pointer instruments. Some of these are instantaneous operation, nonambiguity and the absence of a critical gain adjustment for the sense antenna. In addition, an approximate information about the signal field strength is supplied since the radial length of the vector display varies with signal input.

Figure 8 shows basic circuitry for adaptation of the vectorscope to direction finding. Two crossed
loops develop signal voltages

$$
\begin{align*}
& e_{N}=A \sin \alpha \cos (\omega t) \tag{9}\\
& e_{W}=A \cos \alpha \cos (\omega t) \tag{10}
\end{align*}
$$

where α is angle of wave incidence off west and ω signal frequency.

A vertical sense antenna adds omnidirectional signal information

$$
\begin{equation*}
e_{o}=B \sin (\omega t) \tag{11}
\end{equation*}
$$

All three signals Eq. 9 to 11 are handled by a single receiver on a time-sharing basis using synchronous electronic samplers at input and output. The receiver converts the signal frequency ω into an intermediate frequency Ω, adding in the process, the same delay - to all channels. This changes the time scale from t to $t^{\prime}=t+\tau$, but it does not affect the relative phase shift information. After burst-regeneration is performed on all three signals, the receiver outputs are

$$
\begin{align*}
e_{N}^{\prime} & =A \sin \alpha \cos \left(\Omega t^{\prime}\right) \tag{9a}\\
e^{\prime}{ }_{V} & =A \cos \alpha \cos \left(\Omega t^{\prime}\right) \tag{10a}\\
e_{o} & =B \sin \left(\Omega t^{\prime}\right) \tag{11a}
\end{align*}
$$

Now, e_{w}^{\prime} is fed through a tuned-pi network, whose output is

$$
\begin{equation*}
e^{\prime \prime} w=A \cos \alpha \sin \left(\Omega t^{\prime}\right) \tag{10b}
\end{equation*}
$$

Summing Eq. 9a and 10 b at equal amounts, yields the new signal

$$
\begin{equation*}
S=\frac{1}{2} A \sin \left(\Omega t^{\prime}+\alpha\right) \tag{12}
\end{equation*}
$$

This signal is fed to the S terminal of the vectorscope and the sense signal Eq. 11a to its R terminal after being limited to

$$
\begin{equation*}
e_{r}=2 \sin \left(\Omega t^{t}\right) \tag{11b}
\end{equation*}
$$

The combination of signals Eq. 11 b and 12 is necessary and sufficient to display, on the vectorscreen, both the desired azimuth α of the wave front, as well as a radial of the length $\frac{1}{2} A$, which for constant receiver gain is proportional to field strength.

References

(1) K. Schlesinger and L. W. Nero, A Phase Indicator for Color TV. ElectronICS, p 112. Oct. 1952 . 19 before FCC, p 504, June 25.1953 .
(3) Chromascope Instruction Manual, Telechrome Inc., Amityville, N. Y.
(4) Type 2430 Vectorscope Instruction Manual, Tel-Instrument Co., Inc., Carlstadt. N. J.
(5) W. Firestone and R. Richardson, Simplified Vectorscope, Electronics, p 180. Sept. 1953.
(6) K. Schlesinger TV Color Detectors use Pulsed Envelope Method, Electronics, p 142, Mar. 1954.
(7) Report 7,144, Hazeltine Electronics Little Neck. N. Y., 1953.
(8) G. L. Fredendall, Delay Equalizer for Color TV, Proc IRE, Jan. 1954.
(9) J. Avins, Improving Transient Response of TV Receivers. RCA license bul${ }^{2} \mathrm{C} \mathrm{LB}_{\mathrm{F}} 928$, Oct. 22, 1953.
VTSC Color Televi monitoring system for vention Record, Parton Signals, IRE Convention Record, Part 4, $\mathbf{f} 61,1953$

FIG. 1-Hypethetical microphone cathode-follower circuit (A) and equivalent circuit (B). Plot (C) shows open-circuit rms noise voltage produced by thermal agitation in real component of impedance of equivalent circuit

Low-Noise Input Stage for Audio Preamplifier

By JAMES J, NOBLE and JOHN K, HILLIARD
Altec Lansing Corporation
Beverly Hills, Calif.

Free-grid-connected cathode follower has noise threshold of 20 to 50 microvolts with equivalent input resistance of 10,000 megohms. Circuit may be applied to capacitor microphones and other low-output signal sources requiring negligible loading

CATHODE FOLLOWERS have found much use as the input stages for devices requiring unusually high values of input resistance. When the signal source demands even higher resistance and lower noise threshold than provided by the conventional circuit, use of the free-grid connection offers many advantages. Such a special case is the Altec 21-type miniature capacitor microphone.

Load Resistance and Noise

In the application to be considered, the cathode follower is used as an impedance translator in close proximity to the capacitor micro-
phone. In the hypothetical microphone cathode-follower circuit of Fig. 1A, a physical grid resistor R is used.
Following conventional practice in the operation of vacuum tubes, the ohmic value of R should be no greater than is required by the signal source, which in this case is a capacitance of 6 u. .f. Since the source is capacitive, the ohmic value of R is equal to $1 / \omega C$, where ω is 2π times the frequency at which a 3 -db loss occurs. Selecting 20 cps as the cutoff frequency, R is computed to be 1,400 megohms.

The equivalent electrical network of this circuit is shown in Fig. 1B
as a parallel resistor-capacitor combination in which C is the sum of microphone and stray capacitance and R is the grid circuit resistance. At 23 C , the thermal-agitation noise e for the network is
$e=1.27 \times 10^{-10}\left[\tan ^{-1} 2 \pi f_{2} C R\right.$

$$
\left.\left.\tan ^{-1} 2 \pi f_{1} C R\right) / 2 \pi C\right]^{1 / 2}
$$

where f_{2} and f_{1} are the upper and lower frequency limits.

A plot of this equation for values of R is shown in Fig. 1C. The thermal noise e increases with R to a point and then assumes a negative slope. Returning to the hypothetical circuit of Fig. 1A, if the calculated value R is located on the graph of Fig. 1C, it will be found
to fall beyond the noise maxima on the negative slope. A further increase in the ohmic value of R would result in a lower thermalnoise output. At this point, a resistance of such magnitude is being considered that its complete elimination is justified.

Free-Grid Tube

A decade ago, use of vacuum tubes in low-level circuits without benefit of grid leak was described At that time, plate-loaded tubes were investigated in which it was necessary to determine and provide proper bias for lowest noise operation.

In the microphone system circuit of Fig. 2, grid-leak resistors are absent as is any apparent biasing means. From cathode-loaded amplifier theory, it is known that if a positive potential is established at the grid, the cathode will assume a voltage providing proper tube bias, assuming the circuit constants are correctly established. The problem is one of obtaining a charge on the capacitor microphone and maintaining it at the desired potential.

One explanation is based upon the assumption that the most conductive path across the insulators is the one between grid and cathode. When the circuit is initially energized, full power-supply potential is applied between the plate and screen elements of the vacuum tube and ground. If the control grid were grounded, the cathode would rise to a voltage nearing the cutoff bias value of the tube. In this case, it would be 15 to 20 volts. The grid is not grounded, however. It is connected to a capacitor, which begins to charge to the cathode potential through the major conductive path between grid and cathode.

As the capacitor potential increases, the cathode potential also increases, reducing the voltage gradient across the tube. Since the cathode and grid potentials rise in unison, it can be seen that the microphone is charging to the bias potential, which is the difference in cathode-to-grid voltage. As the cycle nears completion, the charging potential, that is the bias, has reduced to the range of 1 to 1.2 volts and equilibrium is reached. It
might be supposed that if this explanation were correct, the capacitor microphone would charge to the full cathode potential, thereby reducing the grid bias to zero. This cannot occur, since in the absence of a charging potential, the capacitor would soon discharge through the dielectric losses, again providing sustaining charging potential.

Stability

This circuit is not subject to drift of the polarizing potential with time giving rise to unpredictable variations in microphone sensitivity. Upon being energized, the circuit stabilizes within a few sec-

FIG. 2-Stick-type capacitor microphone has free-grid cathode follower incorporated into microphone base
onds. In addition, microphone polarizing voltage is more consistent with tube substitution than it would be with the conventional self-biasing arrangement.

To attain this consistency, the strictest requirements must govern the design and material of the tube socket, the pieces attached to the socket and the basing arrangement of the tube itself. The socket must be molded of a material having a high volume resistivity and low moisture absorption. Its mechanical design must provide maximum length to the surface leakage paths by means of barriers on the pin side and suitable recessing of the contacts on the tube side. These techniques provide consistent equiv-alent-input-resistance values in the range of 10,000 megohms.

Additional Noise Sources

The low self-noise value indicated on the graph of Fig. 1C is not realized in practice. This arises from the fact that leakage currents flow through the insulators, giving rise to noise through random-
particle contact resistance and because part of the input resistance is integral to the tube itself. Hence, this resistance attains a temperature much higher than the 23 C ambient used for calculation. To limit temperature rise, the tube heater is worked at potentials ranging from 5.5 to 6 volts. In addition, to minimize noise arising from leakage current, plate and screen potentials are established at the lowest permissible values consistent with satisfactory transconductance and signal handling ability.

The circuit of Fig. 3 was used to determine the noise threshold of the system; $E_{\text {o }}$ ranged from 20 to 50 microvolts.

A 200 -volt battery was then substituted for the microphone, maintaining normal circuit voltages while eliminating impedance in the grid circuit. Voltage E_{o}, representing all circuit and tube noises exclusive of grid-circuit origin, thus measured between 4 and 8 microvolts.

To determine whether electrical leakage across the microphone insulator contributed largely to grid circuit noise, the 200 -volt battery was connected between microphone case and circuit ground. The circuit voltages and the grid impedance were normal but the microphone polarizing voltage was zero, relieving the dielectric stress. Voltage $E_{\text {o }}$ was 20 to 50 microvolts indicating that microphone leakage is not a major noise contributor. These values of E_{o} are 3 to 6 times greater than the thermal emf calculated, based upon an equivalent input resistance of 10,000 megohms.

The conclusion drawn from the above measurement is that the grid circuit of the electron tube is the major contributor. There are two prime sources of noise to be considered in the tube input circuit.

First, the tube operates at the free-grid potential, defined as the potential at which equilibrium exists between the flow of electrons and ions to the grid. Although the net grid current is zero, the flow of electrons and ions is random by nature, causing minute fluctuations of the grid voltage. The insulators within the tubes assume quite high temperatures, producing noise from thermal agitation and, in addition,
are subject to d-c potentials causing noise through leakage. The latter is approximately proportional to the IR product of the insulators.

Noise distribution is of importance in the frequency band when the signal source is capacitive. For the network of Fig. 3, with $R \geqq$ 1×10^{10}, rms noise voltage on a percycle basis varies at a rate that is inversely proportional to frequency, above a nominal 20 cps . This is a fortunate circumstance in the case where the output is monitored aurally, since average ear deficiencies at low levels render much of this noise inaudible.

A suitable tube for free-grid use must have high transconductance, thereby reducing the input admittance to the minimum value. In the triode-connected follower, the susceptances of the interelectrode capacitances are appreciable. The magnitude of input capacitance is

$$
C_{\mathrm{in}}=C_{g p}+C_{g k}(1-A \cos \theta)
$$

where A is the magnitude and 0 the phase angle of cathode voltage relative to grid voltage. The magnitude of the grid-to-plate capacitance, therefore, is not reduced by cathodefollower action.

The static grid-to-plate capacitance of the pentode is reduced by a factor of 500 to 1,000 by virtue of the screen grid. Although the geometric input capacitance may be larger than for a triode, it exists primarily between control grid and the cathode and screen elements. It is therefore reduced by cathode-follower action and may be expressed

$$
C_{\mathrm{in}}=\left(C_{01 \mathrm{l} 2}+C_{\theta 1 k}\right)(1-A \cos \theta)
$$

Hence, when the pentode follower has a sufficiently high gain figure, the input capacitance is less than that of a triode. These factors, as small as they seem, are quite large when it is considered that the miniature microphone is a capacitive generator of only 6 u.uf. Because it is capacitive, susceptance reduces microphone sensitivity without frequency discrimination. This might not be too great a price to pay for the simplicity of the triode. Before judging, however, the resistive component of the input admittance for the two types must be compared.

Conductive loads present the problems of noise and frequency
discrimination previously discussed. If it is assumed that the cathode load is a pure resistance and the conductance term G_{g} mathematically determined, the result is found to be zero for triodes and pentodes.

Experimental Results

Considerable experimental work has been done with subminiature triodes. This consisted primarily of selecting types with appropriate characteristics, then obtaining quantities from different sources for actual tests in the circuit. A common difficulty proved to be a loss of sensitivity at low frequencies. Some of all types were involved but not all of any one type. It was felt that the rejection percentage was too high to be commercial.

FIG. 3-Circuit used to determine noise
Since measured performance was not in agreement with theoretical results for leakage, it was felt that the losses were due to constructional features of the subminiature triode, rather than to dynamic characteristics. Accordingly, leakage-resistance tests were performed on a number of tubes. A motnr-driven megohmmeter was employed which applied a stress of 500 volts. Scale graduations included calibrations to 10,000 megohms and infinity. The measurements were extended to pentodes for comparison purposes, in which case the suppressor and screen grid elements were connected to the cathode to simulate the dynamic operating condition. In all cases, the instrument guard circuit was employed to allow measurement between discrete elements.
As suspected, a portion of all triode tubes gave indication of leakage between grid and plate. The plate is at a-c ground in the cath-ode-follower circuit, therefore, this resistive component is directly in shunt with the microphone. In this
respect, tube type 5718 was the best subminiature triode tested.
All samples were acceptable in terms of grid-to-plate conductance. The 5879 is a miniature 9 -pin pentode. It was included for comparison as the only one of many types tested that was specifically designed for low-level andio applications. In consideration of leakage resistance only, this tube would seem to be superior. Some advantage may have been gained from its comparatively larger internal structure. However, tube manufacturers agree there are two other manufacturing improvements of consequence.

Condensation of getter material on the insulating mica supports within the tube causes leakage between elements. The 5879 contains a barrier between getter and top mica support, thus preventiner contamination of this surface. The cathode sleeve. usually nicke!, evaporates at a rate dependent upon temperature. It deposits on insulators in much the same way as the getter with the same end results. To minimize this, the tube is processed at a low temperature and fitted with a cathode, which in operation functions at a moderately low temperature.

Visual Evidence

Representative subminiature triode and pentode tubes were dissected to see if the measured result could be correlated with visible mechanical features. The triode types were similar in construction and without exception had platesupport tabs passing through mica insulators in close proximity to the grid-support rods. By comparison, the spacing in the pentode was at least ten times as large. In addition, r-f shielding in the pentodes consisted of metal barriers in contact with the mica supports and arranged in a way to isolate the grid from the plate. Since these shields are normally connected to the cathode, they reduce both conductance and susceptance.

Bibliography

R. J. Carrington. Miniature Capacitor Microphone Omnidirectional at all FreMicrophone Omnirirectional at ancies, Elec Mfg. p. 128 . Oct. 1950 . quencies, Elec Mfg. p 12 s . Oct. 1950 .
L. L. Beranek, ments', p 191, John Wiley and sons, Inc.. New York, N. Y., 1950.
R. J. Mever, Ópen Grid Tubes in Low Tevel Amplifiels, Flactronics, p 126 , Oct. 1944 .

COMPONENT DESIGN TRENDS

FIF. 1-For video switching, crosstalk is attenuated over 60 db at 4 mc in this Danbury-Knudsen coaxial relay

FIG. 2-Actuator pins transfer spring arms between center conductor of common coax and pin grounded through terminating resistor

FIG. 3-Measured crosstalk and swr for coaxial spdt relay in which blade shorts to cavity wall in one position

Special-Purpose Relays

Abstract

Design refinements in choppers, resonant relays, thermal relays, high-speed relays, contact modulators, a-c/d-c relays, coaxial relays and vacuum relays give improved performance and reliability, thereby broadening markets into many new fields of use

CONNECTING and disconnecting electrical circuits, although basically elementary operations, take on many forms in accordance with the operational requirements of the equipment and the functional limitations of the circuits. In the previous article of this series, several relays designed specifically for opening or closing circuits under command were described. Here, various more specialized relays are described to illustrate the flexibility of recent designs in such electro-magnetic-mechanical devices.

Coaxial Relay

A coaxial relay or switch presents a problem not normally encountered in switches for lumpedconstant circuits. The switch must, in some applications, present the same impedance to the line opened as when closed. The problem is somewhat related to the circuit loading requirement that necessitates use of a make-before-break contact at lower frequencies. The unit of Fig. 1 provides this con-
stant impedance by the arrangement shown by Fig. 2.

Basically this switch consists of two blades mounted in coaxial connectors, placed in a shielded cavity and deflected by insulating pins. As one blade contacts the center common coaxial contact, the other blade contacts an insulated terminal to which a terminating resistor is connected. This construction is used for video switching, where it terminates each input circuit in its characteristic impedance when not connected to the common output.

In circuits where the disconnected line should be terminated in a short-circuit, the blade grounds to the cavity wall in its open position. This construction attenuates crosstalk by 70 db at 400 mc , compared to 40 db for a T -type switch where one blade is alternately deflected to contact one of two opposed contacts, thereby terminating the disconnected line in an open circuit. In addition, the dimensions of the blade, cavity and coaxial connectors have been selected to match the im-
pedance of 50 -ohm cable, so that the grounding coaxial relay is reported to be useful well into the microwave region. Figure 3 presents manufacturer's measurements for a spdt coaxial relay with type-N connectors.

A further variation of the grounding relay is a multiposition unit. Two cavity blocks are stacked crisscross, with the common coaxial contact extending through each cavity. Energizing any one relay moves its pin to deflect the associated blade, thereby closing that circuit to the common contact. Switching time is approximately 0.015 second ; the operating coil requires approximately 1.5 watts; crosstalk is similar to that of the spdt unit; swr is below 1.2 up to 800 mc . Development is under way to extend this construction up to 16 inputs with characteristics suitable for vhf operation.

Rotary coaxial switches for connecting a generator to any one of as many as six separate loads, manufactured by Thompson Products,

FIG. 4-Vacuum relay for $10-\mathrm{kv}$ power supply has adjustable trip setting from 1 to 8 amp (Jennings Radio)

FIG. 5-Jennings multiple-pole double-throw vacuum relay can switch several high-voltage high-current circuits in synchronism

FIG. 6-Ten armatures are attracted sequentially by series of pulses applied to single winding (Kellogg)

Gain New Uses

By FRANK ROCKETT*

Airborne Instruments Laboratory, Inc. Mineola, $\bar{A} . Y$.

* Now with Airpax Products Co.
are rated for a maximum swr of 1.5 up to $11,000 \mathrm{mc}, 0.2$ insertion loss, $60-\mathrm{db}$ cross-talk attenuation at $3,000 \mathrm{mc}$ and a characteristic impedance of 50 ohms. They handle 100 watts r-f at $3,000 \mathrm{mc}$ (700 peak r-f v) and operate from -65 F to +165 F with a life of 100,000 actuations.

Vacuum Relay

For switching higher r-f or other voltages encountered in electronic equipment, vacuum relays are used. Switch capacitance is one micromicrofarad or less between open contacts. Some units are rated 5 to 100 kv and continuous current from 1 to 800 amp . The tungsten contacts of such units are held together by an external spring or solenoid, the contacts operating in an extremely high-vacuum enclosure.

Because the dielectric strength of a high vacuum is thirty times that of air, a contact separation of 0.25 inch holds off 100 kv . Deionization time is shorter than for other interrupting media. For example, total breakdown time at $10 \mathrm{kv} \mathrm{d}-\mathrm{c}$ is only about 5 milliseconds. The negligible sparking and the ability of tungsten to make at high currents without welding result in such life as over 59,000 operations of one relay in a spot welder control
making a $100-\mathrm{amp} 200-\mathrm{v}$ inductive load.

The trip-free overload circuit breaker of Fig. 4 protects a radio communication transmitter from overload. The lower contact is sealed in a bellows to be movable and is driven by an external solenoid.

For multiple-pole double-throw operation the construction of Fig. 5 has recently been introduced commercially. In the unit shown, four sets of double-throw contacts are sealed into the periphery of the evacuated glass envelope. The unit has a d-c solenoid in the base that moves a clapper plate. Attached to the clapper plate is a ceramic disk with shorting bars attached to it so that the center contact of each set is connected from one outer contact to the other when the relay is actuated. Design emphasis in these
units is on switching high currents at high voltages.

Magnetic Impulse Counter

Where the need is for handling a high amount of information at low level, the magnetic impulse counter of Fig. 6 is available. Based on the familiar telephone relay, this digital relay actuates ten sets of contacts sequentially from a single coil without the use of latches or dogs and escapements.

Armatures once attracted are held by residual magnetism in the core until a single pulse applied to a second coil erases the residual magnetism. Associated with each armature is a normally open and a normally closed contact. Standard contact material is palladium, but gold alloy is supplied for low-impedance applications. The small, light-weight armatures ro-

Previous Articles in Series

Part I: Fixed Capacitors Undergo Miniaturization, p 120, July 1954
Part II: New Variable Capacitors Extend Tuning Range, p 130, Aug. 1954
Part III: Fixed Resistors Show Stability Improvements, p 132, Sept. 1954
Part IV: Precision Potentiometers Use New Materials, p 144, Oct. 1954
Part V: Iron-Core Transformers Run Smaller and Hotter, p 136, Nov. 1954
Part VI: High-Frequency Coils Use New Core Materials, p 140, Dec. 1954
Part VII: New Relay Materials Improve Performance, p 144, Jan. 1955

COMPONENT DESICN TRENDS

- Coaxial relays for video switching provide desired impedance match whether open or closed
- Vacuum relays give long life at high voltages and currents in transmitter and spot welder applications
- Solenoid moves ceramic clapper plate in vacuum relay having sealed-in-glass contacts
- Ten-armature counting relay actuates ten sets of contacts one by one; single reverse pulse releases all contacts
tate through so small an are that life is expected to exceed 10^{8} pulses. As with many relays, coils are available for operation within voltage variations of 10 percent of nominal for $6,12,24,48$ and 115 v d -c.

The coil core is flat, hard steel with sufficient residual magnetism to hold an armature in its operated position against the contact springs. A pulsing winding at the armature end of the core drives the armatures; a knockdown winding at the heel end releases all armatures. Ten parallel magnetic circuits, completed through the heel iron, are formed by the ten armatures and a double comb assembly that mounts on the main pole piece and an extended front pole piece.

Each armature except the first is initially held against a tooth of the outer or air gap adjustment comb (Fig. 6) by a load spring (upper of the two control springs). When the counter is at its open-circuit position, the first armature is held by the control spring in what is termed the half-step position; that is, with the lower segment of the armature approximately half-way between the main and the front pole pieces. In this position the armature is beyond the influence of the front or extended pole piece and within the pull-in range of the main pole piece.

The first pulse of current to the driving winding attracts only the first armature to the main pole, thus operating the associated spring contacts. During this pulse, the other nine armatures are held by magnetic pull against the front pole piece.

After the first pulse, residual magnetism holds the first armature in its operate position. In this posi-
tion the first armature has lifted its upper control spring. This spring overlaps the second armature, but being lifted no longer loads it. The motor spring (lower of the two control springs) under the second armature then moves the second armature into its halfstep position so that it will operate on the next pulse. The motor spring has only sufficient tension to overcome the residual magnetism through the front pole piece. Because of clearance between the armature arm and the ladder that drives the spring contacts, motion of the armature into the half-step position does not actuate the contacts.

The second pulse of current pulls in the second armature, thereby actuating the associated contacts and lifting the load spring to free the third armature so that its motor spring can advance it to its half-step position. The sequence of

FIG. 7-Typical characteristic of resonant relay shows that operate and release are substanfially at same coil voltage below resonance
operations continues until all ten sets of contacts are actuated or until a reverse pulse of current through the release coil neutralizes the residual magnetism, at which time the overlapping load springs return the armatures against the front comb.

This impulse counter relay mounts in a space equivalent to two standard telephone relays and weighs 1.25 lb . Tests to determine the counter's ability to remain operated on its residual magnetism showed that the armatures remain operated with no current to either winding for more than four months. Tests were discontinued after this interval because it exceeds all foreseeable requirements. Operating current at 48 v is 0.62 amp . Minimum duration of applied pulse is 0.016 second; operate time is between 0.006 and 0.008 second; minimum interval between applied pulses is 0.016 second; minimum duration of release pulse is 0.050 second.

Thermal Time-Delay Relays

The trend, apparent in all electronic components, toward smaller size and less reaction to environment has resulted in miniaturized hermetically sealed thermal time delay relays. Units made by George Ulanet Co. are representative of this trend. Thermal timers are used for long delays because of their low cost, ability to provide a

FIG. 8-Frahm oscillator control consists of two reeds mounted on a bar to form a vibrating element isolated by rubber mounts from base (James G. Biddle)
definite time lag or a time lag proportional to overload and ability to take elevated ambient temperature.

At G-V Controls, over 90 percent of their thermal relay production is now devoted to miniature units for mounting in a miniature 7 -pin tube socket or directly on a chassis in a punching the same as that for a 9 -pin socket. Older units plug into an octal socket. Although hermetically sealed, the delay of these units is adjustable over a 5 to 1 range by an external screw that deflects an arm passing through a diaphragm. Delays of 0.25 second to several minutes are provided by such units. Within 3 or 4 seconds after being de-energized these relays are ready to time another cycle.

These miniature thermal relays consist of two rigid stainless steel bars of equal length which expand equally with temperature rise. The heating element is embedded in one member. A hinge between the two rods carries a long contact arm that is deflected by any differential expansion of the rods to actuate the contacts, which can be either normally open or normally closed. Con-

FIG. 9-Oscillator circuit with resonantreed control of frequency provides 1.5 v output at 20 C with 20,000 ohm load
tact force is about 30 grams and the contacts have a slight wiping action. The nominal time delay is predetermined by the thermal mass of the bars; tolerance is somewhat less than ± 10 percent of normal time delay and is maintained over a range of -70 C to +70 C .

In addition to the usual characteristics of relays such as life, power drain, contact voltage and current rating, insulation, chatter and effect of shock and vibration, thermal relays have a re-operating time and a recovery time. The reoperating time is the interval which elapses after power to the heater is cut off at the operating point

FIG. 10 -High-speed relay operates in 0.2 millisecond when driven from a high. resistance power source, and releases somewhat faster (Stevens-Ârnold)
until it re-operates the contacts (closing normally closed contacts, for example). Recovery time is the interval that must elapse after power to the heater is cut off at the operating point for the relay to recover its ability to repeat a specified portion of its timing cycle. Reoperating times are usually of the same order as rated delay times. At the re-operate time a thermal relay has generally recovered about half its rated delay and usually requires about five times its delay time to recover substantially full delay.

To avoid chatter and intermittent contact during the interval that a thermal relay is actuating its contacts, Elly Electronics Corp. manufactures a unit actuated by a bimetallic element with a snap action that develops 20 grams of contact force at the instant of actuation. If the heater remains energized this force increases considerably. These units actuate a spdt switch with silver contacts rated for 10 amperes a-c. Units with twice this rating are under development.

The snap-action thermal relay is compensated for operation from -55 C to +85 C and provides a delay of from 2 to 200 seconds accurate to ± 15 percent. It can be supplied, because of the snap action, in a wide range of re-operate times. A laboratory model of this relay operates on one watt, about a quarter of the power usually required.

Resonant Relays

For multiplex telemetering, resonant relays serve both to discriminate between signals of different frequencies and to respond to their respective signals. The StevensArnold resonant relays are designed
to respond to a relatively small signal, as shown in Fig. 7, and to actuate an auxiliary relay or thyratron. A vibrating reed mechanism is adjusted at the factory to respond to a narrow band of frequencies. In response to energy at the resonant frequency, the contacts vibrate, closing the controlled circuit intermittently at the resonant frequency. Either a slow-acting relay or an electronic circuit can thus be energized. Standard frequencies are $60,153,170,189,210,234,260,289$, $322,357,398$ and 442 cps with a bandwidth of ± 1 percent minimum at 3 v . There is sufficient spacing between these frequencies to prevent unwanted operation either by another frequency or by a harmonic of another frequency.

Only 20 milliwatts operates a relay at 3 v . Coil resistance is 500 ohms. Contacts are rated for 110 volts d-c at 0.25 amp maximum; contacts are closed for 5 percent of the time.

For signaling at frequencies from 50 to $1,000 \mathrm{cps}$, a pair of resonant relay units is available consisting of an oscillator control unit shown in Fig. 8 and a reed relay. In the range of 200 to 500 cps , up to 16 channels terminated by such units can operate without interference, the control unit producing a signal at a preset frequency and the relay unit responding to it.

The oscillator control unit consists of a miniature tuning fork used in a circuit such as that of Fig. 9. A drive coil around one reed and a pickup coil around the other couple the mechanical structure to the electrical circuit. Operated in the range of 200 to $1,000 \mathrm{cps}$, the circuit provides a buildup time of

COMPONENT DESICN TRENDS

- Miniaturization and hermetic sealing permit high ambient temperatures, extending uses of thermal time-delay relays
- Tube-socket mountings gain favor for many types of relays
- Snap action reduces chatter in thermal relays
- Resonant relays become more frequency-selective, permitting operation on more channels for given bandwidth in multiplex telemetering
- Thin leaf-spring armatures minimize inertia of moving parts in high-speed relays
less than 30 seconds, an initial feequency within ± 0.15 percent of nominal value at 20 C and a temperature coefficient of frequency (for the control separate from the oscillator) of less than -0.003 percent per degree C from -40 C to +80 C .

The signal so generated is transmitted to a mating reed relay. By coding the information to be transmitted as combinations of n frequencies, with 16 channels available between 200 and 500 cps and, for example, four relays required to respond for each control function, 1,820 control functions can be handled.

The speed of response of a resonant relay depends on the signal level. These units can be operated at any level between 20 and 200 ampere-turns. At low levels the operating power is in the order of 20 milliwatts, with response time within 25 cycles after a suddenly applied signal; at one watt, response time is less than 8 cycles. Coil resistances are available from about half an ohm to over 500 ohms.

The vibrating contacts are closed about 5 percent of the time during operation; they are rated for 0.75 amp and 200 v . For long contact life, an auxiliary relay should be used that operates at between 20 and 50 milliwatts.

High-Speed Relay

For the most part, the speed of operation of a relay is determined by the inertia and spring loading of the armature. In the spdt unit of Fig. 10, the armature is a leaf spring carrying the movable contact, thereby minimizing the inertia of the moving parts. The normally open contact is supported on the
pole piece, while the normally closed contact is supported on a copper strip. This switch assembly is supported in a brass channel and constitutes the core for the coil. (A similar construction is used in a vacuunı switch recently developed by Revere Corp. of America.) When the coil is energized, the armature deflects to close the air gap in the magnetic circuit, thereby transferring contact from one fixed contact to the other. An electrostatic shield surrounds the switch assembly.

Rated operating power is as low as 240 milliwatts for spdt and 480 milliwatts for dpdt. Pull-in current is about a third to a half of rating; drop-out current is about a fifth of rating. With constant-current operation, wherein the resistance of the driving circuit at least five times the resistance of the coil, first contact is made 0.2 millisecond after applying power and firm contact is achieved in 1.0 millisecond. After power is removed, the normally open contacts release in 0.1 millisecond; 0.05 millisecond later the normally closed contacts first reclose, and by the end of 1.0 millisecond firm contact of the normally-closed contacts is re-established. Constant-voltage operation produces slower closing times; somewhat faster operation is possible if the R-C time constant of the constant-current generator is in the vicinity of half a millisecond.
Two types of contacts are available for this relay : gold alloy rated up to 110 v and 0.25 amp , and plati-num-rhodium rated from 10 to 110 v and from 0.05 to 0.5 amp . Contact resistance of gold alloy contacts is low and stable but the life of such contacts is short if they pass appreciable current. Platinum-rhodium
contacts can handle higher current but tend to develop slightly higher contact resistance in use. With either contact material, a spark suppression circuit is required if the relay is connected to an inductive or a capacitive load.

For an inductive load, the suppression circuit consists of a series resistor and capacitor shunting the contacts to provide a critically damped loop with the load. For a capacitive load, a resistor in series with the contacts limits the current to within the contact rating.

A-C/D-C Relay

Heretofore relays have generally been adapted for operation from a-c power sources by using shading coils and other techniques for producing sufficiently slow response to prevent the armature from chattering. Recently developed high-efficiency dry rectifiers provide an alternative solution, illustrated by an a-c/d-c relay being currently introduced by Hi-G Inc. There are a variety of features of this relay indicative of modern trends.

The unit is compact and houses a full-wave bridge rectifier using four miniature germanium diodes and a d-c relay in a hermetically sealed case. Thus the relay operates on d-c of either polarity or on a-c without chatter. The diodes are mounted so that their heat is conducted to the outer case for dissipation. Like so many other components being developed today, this one was initially designed for airborne use on 400 cps power so that a complete switching circuit could be powered directly from the a-c line.

The rotating armature is both statically and dynamically balanced, with the result that the relay withstands shock in excess of 100 g and vibration accelerations in excess of 20 g at $2,000 \mathrm{cps}$. The armature has a double air gap to produce high torque and fast action in driving the contact arms firmly against solid silver ball contacts. Resilient contact arms provide armature spring return, so that accessory springs are unnecessary, A wiping action keeps the point of contact clean; contact current of 4 amperes can be controlled with a life of over 10^{-}operations. Units operating under normal conditions have exceeded

400,000 cycles of operation.
To test the contact noise of these units, a potentiometer noise tester is used to measure relay contact resistances as low as 0.01 ohm . The relay is placed on a shake table and the noise tester used to detect any brief instant when contact resistance rises above a defined threshold.

Where utmost reduction in space and weight is required, entire relay switching networks, including single and ganged relays, are hermetically sealed in a can for custom packaging.

Contact Modulators

Related to spdt relays but requiring some special considerations, especially as to life and symmetry of operation, contact modulators are coming into prominence in automatic control and related applications. Illustrative characteristics of such a unit, for a low-noise model developed by Iron Fireman Manufacturing Co., include reed resonance sufficiently above 800 cps so that input and output can be varied from 60 to $800 \mathrm{cps}, 65$-degree phase angle between switch action and impressed drive voltage at 400 cps , spdt break-before-make contacts rated from 1 to $10 \mathrm{v} \mathrm{d-c}$ and $100 \mu \mathrm{a}$ with a life in excess of 2,000 hours, drive coil rated for $6.3 \mathrm{va}-\mathrm{c}$, plug-in mounting for an octal tube socket and construction to withstand usual military and industrial environments. This unit, like the one illustrated in Fig. 11, brings the coil leads out through the top and the contact leads out through the base to minimize pickup of the a-c drive voltage in the signal circuit.

The unit in Fig. 11 is available in two models, for operation at 55 to 65 cps or at 45 to 55 cps . Like the high-speed relay described above, either gold alloy contacts (rated to $1.5 \mathrm{v} \mathrm{d}-\mathrm{c}$ and 1 ma) or platinumrhodium contacts (rated from 1.0 to $50 \mathrm{v} \mathrm{d-c}$ and 5 ma) are available. The 77 -ohm coil is rated for 6.3 v a-c at 90 ma maximum ; phase angle between switch action and drive voltage is 22 degrees. A companion chopper is rated for operation from 0 to 500 cps with spdt gold alloy contacts. The unit is rated for a noise of $200 \mu \mathrm{v}$, and for $100 \mu \mathrm{v}$ on special order.

Noise is defined to a great extent
by the method of measurement. The setup of Fig. 12 is used at StevensArnold. The decade amplifier and vtvm are commercial units such as Ballantine models 220 and 300 . The chopper mounting should be thoroughly shielded. To check the effectiveness of the shielding, disconnect one of the leads to the chopper coil at its source. The steady reading of the voltmeter should be less than 0.001 volt with an amplifier gain of 100 , although random fluctuations may send the pointer above this limit. With the chopper operating the noise level is the indicated voltage divided by the amplifier gain. This is the unsymmetrical output waveform of the noise voltage converted by the meter into the rms of an equivalent sine wave.

Where a chopper is used in a nullseeking circuit, the noise masks and thus broadens the null. If, as is the case in such a circuit, the chopper is to operate most of the time near this null, contact rating at low current and voltage may be more significant than full rating. Here, however, as in most contact switches, life decreases rapidly as the voltamperes to be interrupted increases above the design limit.

Symmetrical Chopper

Another consideration in the choice of a chopper for a particular application is symmetry. Inevitably some drive voltage leaks into the signal input circuit where, if it is not removed by a filter, it is transmitted by the synchronous switch together with the d-c signal. Deppending on the phase angle between the switch action and the impressed coil voltage, the chopper will tend to attenuate the in-phase component (phase angle of switching action near ± 90 degrees) or the quadrature component (phase angle of switching action near 0 degrees). For perfectly symmetrical switching action, both components vanish. As the switching action becomes asymmetrical, the quadrature component rises rapidly but the chopper transmits less than 10 percent in-phase component for an asymmetry as much as about 25 percent. Thus, both switching angle and symmetry are important properties of choppers. Where the switching angle is stable, a phase-shifting cir-

FIG. 1l-Chopper housed in Mu-metal case, giving noise level below one microvolt into 103,000 ohm load, rated for operation from 0 to 43 C (Stevens-Arnold)

FIG. 12-Measuring noise from chopper

FIG. 13-Chapper provides highly symmetrical low-level switching with stablephase of switching action (Bristal Co.)

COMPONENI DESIGN TRENDS

- Germanium-diode bridge rectifier in relay housing permits operation on either a-c or d-c
- Low-noise contact modulators for automatic control applications use symmetrical vibrating-reed construction
- Relay-type choppers withstanding $30-\mathrm{g}$ shock now being designed
- Heary-contact choppers withstand 1,000-hour life test
- Photoelectric choppers exceed 10,000 -hour life
cuit can be placed in the coil drive circuit to provide the desired angle if the inherent angle of the chopper is otherwise.

The chopper of Fig. 13 is specifically designed to achieve symmetrical switching (asymmetry below 0.5 percent). The unit provides dpdt action for both synchronous modulation and demodulation of the signal. A permanent magnet constitutes part of the magnetic circuit to bias the switch, as in a polarized relay. The armatures, 0.007 inch thick and weighing only 0.03 gram, are free from resonances up to several thousand cps. Thus, at, usual operating frequencies, the switching angle is relatively independent of frequency.

Substantially full reed driving

FIG. 14-Cataway of chopper in which oversize contacts operated with high impact give long life (Airpax Products)
force is developed within a small electrical phase angle after the coil current passes through zero, so that changes of ± 20 percent in coil current cause negligible shift in switching phase. The unit makes possible discrimination of a $0.05-\mu \mathrm{v}$ signal in the presence of stray power line voltages 2,000 times greater, can be operated from 0 to $3,500 \mathrm{cps}$ and has contacts rated for 3 volts and 2 ma with resistive load. A group of units on accelerated life test at 600 cps operated satisfactorily for over two years. A miniature version of this nonresonant reed inverter is hermetically sealed, shock and vibration resistant and fits seven-pin miniature tube sockets and shields.

Design for Reliability

As with the other components surveyed in this series, reliability is becoming a pressing problem. If the design of a chopper is such as to withstand environmental extremes, the factors that remain to limit life are erratic contact action, manifesting itself as changes in dwell time, and the appearance of contact resistance. If the contact resistances to the two fixed contacts becomes unequal, the modulation is unbalanced; that is, there is an offset error. An insidious aspect is that the resistance is erratic and may go unnoticed in life tests yet cause faulty operation in equipment.

In the chopper of Fig. 14, large, heavy contacts are driven to produce high impact force, rapid break and wide opening traverses. As a consequence, the unit is capable of handling substantial power during momentary overload. A bolster plate provides damping to limit chatter at closure and to accelerate the contact quickiy at break. The units are life-tested at rated 400 cps for 1,000

FIG. 15-Test setup for measuring dwell times of Airpax chopper. Accuracy is improved by reversing polarity to drive coil to interchange dwell time periods
hours on recording equipment that measures average dwell time for a d-c signal of $50 \mu \mathrm{v}$ at $50 \mu \mathrm{a}$, using the circuit of Fig. 15. Although the tests are discontinued at 1,000 hours (1.44×10^{9} operations) to release the test racks for the next sample, users have reported lifes in excess of 5,000 hours. The contacts of this unit are rated for 2 ma and 100 v .

Several miniature versions of this basic structure are available, one rated for operation from 30 to 110 cps , and two models rated for operation to +200 C . All electrical connections are spot-welded; no organic materials or binders are used. Continuous life tests of these units at 200 C indicate that performance is substantially as good as at normal ambient. The leads to the drive coils of these units are twisted.

During final assembly of these choppers at Airpax, dwell times are individually adjusted to equality by observing the times of closure and break as displayed on a circular sweep, from which phase angles can be read accurate to a degree. Phase angle is also checked so that, in those applications where necessary, a phase-correcting circuit can be relied upon to provide the desired contact phasing.

Phase angle of a 60 -cps unit 14 in. high is held to 21 ± 5 degrees, although a tolerance of ± 15 is more usual on other models in anticipation that they will be used in circuits that rely upon filters and shielding in the low-level d-c signal input circuit to minimize leakage from the drive voltage. The phase angle of a $400-\mathrm{cps}$ unit is near 90 degrees to minimize transmission of the in-phase component of the driving sine wave. The balance of this unit is within 15 degrees, and it is intended for circuits with wellshielded or filtered signal input.

Counting Circuit

Batches Components

Articles such as paper, sweets, buttons and metal parts are automatically counted and batched at count speeds up to 400 per second in quantities of two to 1,000 units. High accuracy of count and special counter packaging ensure long-term reliability

By P, E, TOOKE \(\begin{gathered}Electronic Maohine Compray
Thornton Heath, Survey,
Enuflund\end{gathered}\)

PReselected batching of steel components for various industrial uses is accomplished by a recently developed batching counter.

The counter was designed for a firm requiring batching of small steel components automatically at high speed. The transfer mechanism used to separate the batches was already installed and working, the limiting factor being the necessity of weighing the components against a standard batch before initiation of this mechanism. Also, due to the components being hot when weighed, heavy asbestos gloves had to be used, with consequent reduction of speed and efficiency. A fully automatic system was desired, which would count the components passing along a conveyor belt and after a predetermined number had gone by, would initiate the transfer mechanism.
Requirements for operation of the transfer mechanism are simple. A solenoid operating a small clutch is energized over for a period of not less than 0.1 second. This starts a chain conveyor with buckets to take the selected number of components. During this time the counter is required to reset itself and continue counting since the articles are fed at the same speed during separation of the batches.

The equipment is used in a hot metallic-dust-laden atmosphere and is therefore completely sealed. The problem of heat dissipation was overcome by using cold-cathode

Typical insiallation of counter on paper cutter counts and batches sheets of paper into quires or other quantities
tubes throughout. Due to the very low heat radiation, the equipment runs for 8 hours with a temperature rise of only 10 deg C .
The batch number is selected by three front-panel switches, arranged to select units, tens and hundreds, so that direct reading can be obtained of the number selected. A reset button permits manual zeroing.

Counter Tube Operation

Three GS10C Dekatron selector tubes are used in the counter. These tubes have a counting rate of 550 a second, easily covering the speed requirements. They consist of 30 cold-cathode diodes in a common envelope. The cathodes are in the form of rods and are mounted around a common central plate. The plate is connected through a high resistance to a positive supply of 400 volts. When the cathodes are returned to the negative point, one of the plate-cathode gaps ionizes and the glowing cathode can be seen through the front of the tube. Plate current flows through the plate load resistor and the voltage at the plate drops to the maintaining voltage of the glow. This voltage is less than the voltage required to strike a further discharge, therefore only one cathode glows.

If a cathode adjacent to that already glowing is made negative the ionized gas already in close proximity to this gap causes the breakdown voltage to be only a few volts greater than the maintaining po-
tential and therefore this cathode will strike. Two adjacent cathodes are now glowing, but as there is a constant potential difference between plate and glowing cathode, the plate follows the negative-going cathode potential. This reduces the potential difference across the gap, which was originally glowing, until it is insufficient to maintain the discharge; the second cathode then carries the plate current. Thus the glow circulates. The waveforms of the voltages applied to the cathodes must be such that each electrode is, in turn, the most negative.
The first, fourth, seventh, etc cathodes are all connected internally; the second, fifth, etc likewise. The remaining cathodes are brought out to the tube base separately. The two rings of cathodes are referred to as guides 1 and 2, the next electrode clockwise to any cathode being guide 1.

In operation the second guides are biased positive with respect to the cathodes by a potential at least equal to the transfer voltage. Then at the cessation of the pulse on these electrodes, the following cathode will appear negative and the glow will leave the second guide.

Counter Circuit

Figure 1 shows the counter circuit. The input impulse from the photocell amplifier is fed through C_{1} to the trigger of V_{1}. The $+170-$ volt positive bias on this tube ensures that it will trigger with a positive-going pulse in excess of 5
volts. The plate of this tube is coupled to the first guides of V_{2} through C_{2}.

The second guides are fed from a tap on the plate load through C_{3}. When V_{2} triggers, both capacitors discharge and due to the tapped plate load, the negative pulse passed to guide 1 is larger in amplitude than that at guide 2. Therefore the glow discharge in V_{2} transfers from cathode 0 , to guide 1 . On discharge of C_{2} and C_{3}, V_{1} resets due to the insufficient current passed by the plate load, which unless supplemented by the discharge of the capacitors will not maintain the burning voltage.

The charging of C_{2} and C_{3} causes guide 1 of V_{2} to become more positive than guide 2 because of the difference in time constants, thereby causing the glow to surround guide 2 until it becomes sufficiently positive with respect to the cathodes. The glow then transfers, completing one count. This sequence occurs until the output pulse from cathode 10 of V_{2} triggers V_{3}, which then drives V_{4} and so on.

Gate and Reset

Figure 2 shows the coincident gate and reset circuit. Should any cathode of the GS10C tubes be made negative to all the others, the glow will jump to this cathode. This offers a convenient method of resetting the counter to zero, by feeding a negative pulse to all transfer cathodes. The sliders of the three selector switches, having been

FIG. 1-Counter circuit uses three GSIOB dekatron selector tubes. These tubes have a counting rate of 500 per second. Test-pulse switch permits injecting of 60 -cycle signal into counter to check its operation
switched to the required catnodes, are connected to blocking crystal rectifiers. Bias is applied to the positive side of these rectifiers, which are also connected to the trigger of gating tube V_{1}.

During normal operation, the rectifiers pass current through the 220,000 -ohm load resistors. However, when the glow discharge rests on a cathode which has been selected, the current passing through that cathode load causes a voltage drop to appear across it, which is sufficient to block the rectifier. Since there are still two other rectifiers passing current, the voltage at point X does not rise until all the selected cathodes have a glow resting on them. Then as all rectifiers are blocked, the positive voltage rise at point X fires tube V_{1}.

To give counts of less than 100 or 10 , the cathode load resistors are returned to the blank pin on the selector switch, which in all other positions but zero is grounded by the grounding slider. On being switched to zero, however, the rectifier for that circuit is opencircuited, allowing two rectifiers or only one rectifier to block before V_{1} is triggered. On V_{1} triggering, the negative-going pulse at the plate is fed through three crystal rectifiers to the tenth or transfer cathode of each counter tube.

The negative pulse developed across the plate load of V_{1} is large enough to reset the GS10C tubes to zero. Tube V_{2} is triggered by V_{1}. Coupling capacitor C_{1} on discharg-

Counter for batching bread rolls into two loading chutes
ing resets V_{1} ready for the next batch pulse. A large capacitance C_{2} across V_{z} ensures that the relay in the cathode circuit is held on long enough to operate a small solenoid. Discharge of this capacitor also resets V_{2} for the next pulse.

Pickups

Various types of pickup heads have been used with this counter, such as photocells, magnetic pickups and snap-action switches. Use of a P50A (Standard Telephone \& Cable, Ltd) transistor photocell has extended the field. Due to the small size and high output of the P50A, it is ideal for use on small objects such as cigarettes, pills and other articles. This cell has a sensitive area of $1.5 \times 0.5 \mathrm{~mm}$ and a sensi-

FIG. 2-Selector and reset circuit uses three rotary switches for unit selection. A negative pulse fed to all the cathodes resets the counter to zero
tivity of 30 ma per lumen. Its chief advantage is that it will operate the trigger tube of the counter directly and can be placed in positions that are inaccessible to normal-size photocells.

With use of a less sensitive photocell, a preamplifier giving a short output pulse is necessary for freedom from jumping and missing counts. The counter input circuit is insensitive to hum pickup, therefore a long input lead can be tolerated without elaborate shielding.

The complete counter has a maximum count speed of 400 per second with a maximum batch speed of 0.5 second. It counts batches of 2 to 1,000 in units of one. Input pulses must be positive, greater than 5 volts and of not less than 100 -microseconds duration.

The unit has found application for counting and batching papes envelopes, sweets, metal components and other products. A typical setup on a paper feeder, which batches the sheets into quires or any other convenient number, is shown in the photograph. A variation of the standard counter is used on a machine for predetermined batching of bread rolls into two baskets. As shown there are two output chutes; both of these can be selected alternately to give different numbers of rolls automatically.

Thanks are due to the Electronic Machine Co. of Thornton Heath, Surrey, England, manufacturers of this counter, for permission to release this article.

Wide-Band Analog Function Multiplier

JOSEPH A, MILLER,
Minneapolis-Hioneywell Minneapolis, Minu.

By

AARON S. SOLTES
Air Force
Cambriage Research Center
Cambridge, Mass.
and RONALDE, SCOTT
Kescarch Laboratory of Electronics Cambridge, Mass.

Abstract

Beam-deflection tubes perform nonlinear squaring operations that are the basis of this analog multiplication method. Speed and accuracy are high. Performance is primarily limited by associated circuitry rather than the tubes

DEVELOPED on the quarter-square principle, a simple analog function multiplier takes advantage of the characteristics of recently developed beam-deflection squarelaw tubes, such as type QK-329. These can provide full parabolic square-law action to an accuracy better than 1 percent of full scale, over a frequency range from d-c to the vhf region.

This particular multiplier was built to explore the possibility of using these square-law tubes for this application. Commercially available plug-in amplifiers were employed in the associated circuits. Results obtained showed that performance of this relatively crude model was, on the whole, limited by the associated circuitry rather than the square-law tubes. Nevertheless a combination of accuracy and speed of response had been achieved that exceeded any other known method of analog multiplication.

A quarter-square multiplier is instrumented around the identity

$$
\begin{equation*}
x y=\frac{1}{1}(x+y)^{2}-(x-y)^{2} \tag{1}
\end{equation*}
$$

The left-hand term is the desired product and requires the perform-
ance on the right-hand side of the operations of addition, subtraction, multiplication by a constant, and squaring. All operations but squaring are linear and are readily accomplished using conventional techniques. The particular method selected for achieving the two nonlinear squaring functions, however, presents a design problem and is principally responsible for the characteristics that distinguish one quarter-square multiplier from another.

FIG. 1-Comparison of curved portion of static characteristic of square-law tube with parabola

The beam-deflection square-law tubes used as the starting point in the present design are capable of providing accurate reproducible full-parabolic transfer characteristics in a noncritical manner. Over their range of operation, speed of response and accuracy capabilities are essentially independent of each other. That is, the same accuracy obtainable under d-c conditions is achievable at the upper end of its frequency range.

Square-Law Circuit Elements

The principle employed to produce a square-law characteristic in these tubes is that of deflecting a flat sheet of electrons across a target electrode containing parabolic apertures.

The discussed tube is essentially a copy, with only minor modifications of the simplest of the QK256 series of experimental beamdeflection square-law tubes. ${ }^{1}$ More precise methods of measuring and plotting the nonlinear static characteristics have indicated that the accuracies achievable are better than was previously stated.

Figure 1 is a plot of a typical

Complete analog multiplier employs amplifiers that provide a single-ended lowimpedance output at an open-loop d-c gain of over 10,000. Present frequency response is limited by amplifier bandwidths

Type QK-329 beam-deflection tube pro vides full parabolic square-law action with 1 percent accuracy at full scale
static characteristic made on an automatic precision (0.1 percent) plotting board. Within an input range about the origin of approximately ± 35 volts the error is too small to measure by such means and remains less than 1 percent up to ± 40 volts. Within these limits the static characteristic may be idealized to a close approximation as a parabola

$$
\begin{equation*}
i_{\text {out }}=i_{0}+k\left(e_{0}+e_{\mathrm{in}}\right)^{2} \mathrm{amp} \tag{2}
\end{equation*}
$$

with its vertex displaced from the origin by amounts e_{0} and i_{0}.

Current

Scale factor k is expressed in mhos per volt and is essentially a constant for a given tube over a wide range of variations in cathode to anode voltage, when operated with its average deflection-plate potential, $E_{\text {bins }}$, maintained at a fixed fraction of E_{R+}. The voltage required to center the parabola on the vertical axis, $-e_{0}$, is generally small. Its magnitude may differ from tube to tube, but remains constant with time for a given tube and is not sensitive to changes in operating potentials. Self-centering schemes
are, therefore unnecessary to hold e_{0} constant.

The current, i_{0}, is a function of total current and subject to change when any of the operating parameters that affect total current are varied, such as heater voltage, $E_{\text {bls, }}$ or $E_{B_{+}}$. Normal precautions appropriate to d-c amplifier design are therefore advisable to keep i_{0} stable.

As with most beam-deflection devices, best operation of the QK-329 is obtained with a balanced input. The input conductance between deflection plates is small enough to ignore under most conditions. Where precise operation at d-c is required, account should be taken of the possible presence of diode currents of about 10 microamperes between the cathode and the positively biased deflection plates. This current is not an inherent property of the tube type, but rather a consequence of the fact that its effect had not been noticed in earlier applications.

The Multiplier

Equation 1 can be instrumented in a variety of ways. The block diagram of Fig. 2 illustrates the
arrangement of functional components employed. No effort was made to obtain any particular overall multiplier scale factor. Three identical plug-in operational amplifier units are used in standard feedback computer configurations of unity gain to perform both the inverting and subtracting functions. These amplifiers provide a highimpedance differential pair of inputs and a single-ended low-impedance output at an open-loop d-c gain of over 10,000 . Both amplifier inputs handle signals in the subtractor stage, whereas one of the inputs in each of the two inverter stages is only used for zeroing purposes.

The output or product of a multiplier with identical inputs may contain frequency components up to twice as high as those present in either input. Consequently, the subtractor must be capable of operating up to a maximum frequency of double that which must be handled by the inverters.

In order to further extend the frequency range of the subtractor it was found necessary to reduce the impedance level of its associated ex-

FIG. 2-Multiplier system using identical amplifier units for inverting and subtracting
ternal computing resistance below that used in the inverters.

Ground potential is used as an absolute zero reference for the multiplier input and output signals. The plug-in amplifier circuits when zeroed do not introduce any shift in reference level between their inputs and outputs. However, the input and output of a square-law stage normally operate at different potentials. The deflection plates of the beam-deflection tube rather than its output, operate near ground potential. This avoids complicating the driving circuits to the squarelaw stages, that are already burdened with provisions for forming balanced sum-and-difference signals.

The potential differences between square-law stage outputs and subtractor inputs are eliminated through the use of conventional voltage-divider step-down arrangements. To prevent excessive signal attenuation, cathode followers are inserted between the high-impedance voltage-divider taps and the lower impedance inputs to the subtractor.

Push-pull sum-and-difference signals for the square-law stage inputs, $\pm(x+y)$ and $\pm(x-y)$, are formed with respect to ground potential in a symmetrical passive summing network. To do this, the network is supplied with balanced versions of the multiplier input signals, $\pm x$ and $\pm y$. Signals $+x$ and $+\boldsymbol{y}$ are derived directly from the input terminals of the multiplier, while the inverters provide their negative counterparts. A schematic diagram of the complete wide-band
analog function multiplier appears in Fig. 3.

Instantaneous output accuracy within ± 0.5 percent of maximum product was consistently achieved within the input operating ranges of ± 25 volts after alignment of the function multiplier.

A dynamic range of approximately 30 db at either input and 60 db at the output was obtained.

Overall amplitude response was flat for either or both input frequencies from d-c to 90 kc (output flat to 180 kc) with a gradual rolloff at higher frequencies.

The overall phase response at 90 ke was 65 deg and decreased almost linearly with frequency. Phase response was measured with one input a constant to make input and output frequencies identical.

Long-term drift from all causes including adjustments was within 1 percent of maximum product af ter an initial settling period of about 3 hours. The output zero required the longest settling time, while other adjustments reached stability more rapidly. Conventional regulated power supplies fed by a 2 -percent a-c line regulator were used to power the multiplier during the stability measurements.

Multiplier Adjustment

Circuits employed to instrument the basic multiplier equation produce a nominal over-all scale factor other than one-to-one. No effort has been made to achieve a unity scale factor. The circuits, unless compensated, may introduce a number of extraneous terms that arise from misalignments.

Magnitudes of errors produced by some of the potential sources of extraneous terms, such as deviations of the effective gains of the inverters from unity or the sum-and-difference network from equality, depend upon the accuracy and stability of passive resistive components. Errors contributed by these parts of the multiplier may be minimized during construction by use of accurate and stable resistors and are therefore not considered.

Other errors, more subject to variation with time (those dependent upon the stability of active or replaceable components) are best eliminated by adjustments. Equa-
tion 1 may be rewritten to include these terms and their adjustments, in the form

$$
\begin{align*}
K x y+\Delta= & A_{1}\left(x+y+z_{1}\right)^{2}- \\
& A_{2}\left(x-y+z_{2}\right)^{2}+C \tag{3}
\end{align*}
$$

where, in the above equation factor K is the over-all scale factor of the multiplier and Δ is the total error at the output caused by misalignments.

Scale factors of the squared sum-and-difference channels, A_{1} and A_{2}, include the square-law, cathodefollower and subtractor stages.

The off-center terms at the inputs to the square-law stages, z_{1} and z_{2} include the respective square-lan stage centering voltages, e_{0}, and the inverter zero adjustments, B, used to set them to zero

$$
\begin{align*}
& z_{1}=\left(e_{0}\right)_{1}+B_{1}+B_{2} \tag{3~A}\\
& z_{2}=\left(e_{0}\right)_{2}+B_{1}-B_{2} \tag{3B}
\end{align*}
$$

The term C is the (zero signal) off-zero term at the output of the multiplier. It includes the subtractor zero and also any d-c unbalance present in the cathode followers or between the outputs of the squarelaw stages.

Equation 3 may be expanded into the desired product and three types of error terms by carrying out the indicated operations
$K x y+د=2\left(A_{1}+A_{2}\right) x y$
(A) $+\left(A_{1}-A_{2}\right)\left(x^{2}+y^{2}\right)$
(B) $+2\left(A_{1} z_{1}-A_{2} z_{2}\right) x+2\left(A_{1} z_{1}+A_{2} z_{2}\right) y$
(C) $+A_{1} z_{1}{ }^{2}-A_{2} z_{2}{ }^{2}+C$
square-law error (A)
linear error (B)
constant error (C)
error terms

A procedure has been devised for systematically eliminating these error terms in a convergent manner. Some method of observing the form of the multiplier output as a function of an input signal is required. Error terms are then eliminated in the order shown in Eq. 4 by the following adjustment routine:
Equating A_{1} and A_{2} cancels the square-law error, Eq. 4A. This is done by setting y to zero and observing the form of the output as a function of x as A is varied. When the plot is a straight line A_{1} and A_{2} are equal.

The next two steps eliminate the
linear error terms, Eq. 4B, by setting B_{1} and B_{2} so that $z_{1}=z_{2}=0$. The conditions for this are found from simultaneous solution of Eq. $3 A$ and $3 B$ to be

$$
\begin{equation*}
B_{1}=-\left(e_{0}\right)_{1}+\left(e_{0}\right)_{2} / 2 \tag{5A}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{2}=-\left(e_{0}\right)_{1}-\left(e_{0}\right)_{2} / 2 \tag{5B}
\end{equation*}
$$

The order in which B_{1} and B_{2} are adjusted is of no consequence.

The term B_{1} is adjusted to the criterion of Eq. 5A by setting y to zero and observing the form of the output as a function of x as B_{1} is varied. The observed output, Δ, will be a constant for the proper adjustment of B_{1}.

The term B_{2} is adjusted in a similar manner by setting x to zero and observing the form of the output, Δ, as a function of y, while varying B_{2}. The output will again be a constant for the proper adjustment of B_{2} to the criterion of Eq. 5B.

The final step is to adjust C so that the multiplier output is at zero potential with respect to ground when the input terms are zero.

Performance Limitations

Accuracy of the present multiplier stays within close limits for input signals up to a certain level and gradually deteriorates as the inputs get larger in a manner similar to gradual overloading. The error appears to be produced principally by variable current flow between deflection plates and cathode of the square-law tubes, that occurs when the deflection plates exceed a certain positive potential with re-
spect to the cathode. The IR drops produced in the sum-and-difference network by these changes in current are equivalent to shifts of the centering voltage adjustments from their original settings and introduce corresponding errors.

The ideal remedy is to modify the tube design to minimize the deflection currents. It is possible that some of the other developmental square-law tubes already built possess improved characteristics in this respect. Short of this, more accurate multiplier performance is attainable with the same square-law tubes by finding operating conditions with lower deflection currents. Reducing the impedance levels at the inputs to the square-law stages (sum-and-difference network) also improves performance. Inverters with higher output power ratings would then be required to maintain the original amount of drive.

Frequency response is at present limited by the bandwidths of the plug-in amplifiers. The QK-329 square-law tubes have been successfully operated from d-c to vhf. They contributed no measurable phase shift to the over-all multiplier phase shift mentioned in the previous section on performance. Increases in multiplier frequency response of 100-to-1 over the present model could thus be made before the square-law tubes offered a direct obstacle to such improvements. For efficient design, a multiplier with two identical inputs should have a differential amplifier at its output with twice the bandwidth of the input.

FIG. 3-Schematic of complete multiplier whose performance is primarily limited by circuitry rather than the square-law tubes

FIG. 4-Plot of multiplier characteristics. $Z-K X Y$, using square-law tubes

Stability

Multiplier drift is primarily zero drift of the output circuits. If the maximum-output signal level were increased to make full use of the capabilities of the differential amplifier, the percent drift would be improved. Use of drift-stabilized amplifiers would also help.

The square-law stages of the present multiplier contribute only 12 percent of the observed overall long-term drift at the multiplier output or approximately 0.12 percent of maximum output. The differential output of the multiplier circuit provides a degree of inherent discrimination against the effects of drift that could result from changes in total current in the square-law tubes.

Sizeable increases in bandwidth, accuracy and zero stability are achievable with existing square-law tubes by improving the associated circuitry. Square-law tubes of the general type employed, therefore, provide a nucleus around which considerable forward progress in analog multipliers can be made.

The work described here was supported in part by the Army Signal Corps, the Navy Dept. (O.N.R.) and the Air Force (A.M.C.) under contracts DA-36039 sc 100 and $3-99-10-022$ with the Research Laboratory of Electronics, M.I.T.

The authors wish to acknowledge the contributions of J. Gradijan, G. Fine and A. Moccia of the Air Force Cambridge Research Center.

Reference

(1) Aaron S. Soltes, Beam Deflection Nonlinear Element, Electronics, p 122 , Aug. 1950.

Main control room showing use of special dual-beam oscilloscopes. Accelerator ope:ator is laoking af the frequency monitoring scope (above left hand). Bevatron employs practical self-tuning system

Generating R-F Energy

Radio-frequency field of proton synchrotron accelerates protons from 10 -mev linear accelerator to an energy level of 6 billion electron volts. Proton beam is kept at constant radius of travel by a feedback circuit that increases the magnetic field as the particles are subjected to increased accelerating potentials

By C. norman winningstad

Radiation Laboratory, Department of Plynsicm
University of Califonna, ISerkeley, Calif.

PROTONS are received from a linear accelerator at 10 mev and a reasonable percentage of these are further accelerated by a proton synchrotron to a final energy of greater than 6 bev .

The particles are kept at a nominally constant radius of 600 inches by a magnetic field. For a given energy and radius there is only one value of magnetic field that will keep the protons from spiraling inward or outward. As the particle energy increases the magnetic field must also be increased. The increase in particle energy is obtained by passing the proton bunch
through a drift tube that is excited with an r-f accelerating potential

As the bunch makes one revolution per r-f cycle, it receives a small acceleration each revolution and hence a small increase in energy and velocity. The orbit length is nominally constunt, hence there must be a slight increase in the frequency of the accelerating potential each time the particles are accelerated, as well as an increase in the magnetic field.

Since the magnet excitation equipment is large and not economically suited to wide control on a rapid basis, the magnetic field is
allowed to build up in a manner determined by the characteristics of the magnet excitation equipment and the magnet itself. The r-f is then forced to follow the increasing magnetic field. The relation between the r-f and the magnetic field is

$$
f=2.497\left[1+(2.056 / E)^{2}\right]^{-1 / 2}
$$

where $f=r-f$ in megacycles per second and $B=$ magnetic field in kilogauss.

System Operation

Figure 1 shows a simplified diagram of the bevatron. The north

Primary frequency generator uses what is basically a groundedanode Colpitts circuit

Inside r-f house, north tank. Cylindrical unit is final amplifier, surrounded by inductor boxes

for 6-BEV Bevatron

or acceleration tank contains the drift tube. The drift tube is nominally ten electrical degrees long; with an equilibrium phase angle of 30 deg, approximately 12 kv peak r-f would be enough to supply the required energy increase (1.7 kev) per turn. Experiments with a quarter-scale model indicated better performance with approximately twice the required threshold value. Forty kv was chosen as the design figure to allow a generous margin.
The magnet coils are excited by a twin motor-generator, rectifierinverter system. With motors requiring $5,400 \mathrm{kw}$, a peak energy storage of 80 megajoules is obtainable in the magnetic field. Thus, at 10 pulses per minute, the Q (2π times the ratio of maximum energy stored to energy dissipated per cycle) of the bevatron magnet system is sixteen. Frequency as a function of magnet current is shown in Fig. 2 while Fig. 3 shows the accuracy required of the r-f system as a function of frequency. How closely the equation is adhered to
depends upon how much beam may be lost due to r-f inaccuracy. The beam is subject to various types of comparatively low-frequency oscillations in radial, vertical and orbital directions. At injection, radial oscillations are large and their amplitude reduces as the field increases. At injection, nearly the full fourfoot aperture is usable (the proper magnetic field distribution keeps the beam focused).

However, the useful aperture reduces considerably at high fields, owing to saturation of the magnet, and moves radially outwards. The difference between the amplitude of the radial oscillations and the useful aperture is roughly the amount of radial error permissible.

R-F System

A block diagram of the bevatron r-f system is shown in Fig. 4.

The primary frequency generator (pfg) receives information about the magnetic field in terms of current shunted from the magnet windings. This constitutes approximately 95 percent of
the frequency-determining information; the other five percent is a flexibly programmed current-derived signal. The circuit makes the output frequency virtually independent of vacuum-tube parameters provided the tubes are in reasonably good condition. The output is nominally 15 volts peak into a 93 -ohm coaxial cable.

Although the input signal from the pfg is nominally 10 volts peak, the driver unit, essentially a scaleddown version of the final amplifier, operates satisfactorily with from 8 to 20 valts peak input. The driver must amplify the input signal to a $2,000-v$ peak level. The effective driver load is the nominal 600uuf input capacitance associated with the final amplifier. Grid power required by the final amplifier is 20 kva rms at 2.5 mc . To supply this economically, the final amplifier input capacitance is antomatically resonated with a variable inductance, allowing the output stage of the driver unit to be a class C amplifier.

The final amplifier stage uses a

FIG. 1-Simplified plan view of 6-billion electron volt accelerator
shield-grid triode, an A2332S. This tube was chosen for its ample reserve of power-handling ability.
The 400 - цu.f capacitance of the drift tube is resonated with an automatically adjusting inductance. With $40-\mathrm{kv}$ peak voltage at 2.5 mc , there is 2.5 megavolt amperes peak within the system, maintained by a plate power-supply input of less than 50 kw .

Primary Frequency Generator

The heart of the pfg is the fre-quency-determining circuit. (Fig. 5). The important element therein is the main inductor consisting of two toroids each wound on a ferroceramic ${ }^{2}$ core, $\frac{5}{8}$ inch i.d., 1 inch o.d., and $\frac{1}{4}$ inch thick. Each toroid is wound with 32 turns and when the two are connected in series they constitute an inductance that may be varied from a nominal 1,000 microhenries to 1.1 h . The toroids are arranged so that induced signals between the saturating and r-f circuits buck out thus minimizing magnetic coupling. In addition, a
double electrostatic shield prevents any appreciable electric coupling. The unit is mounted coaxially with the shunted current system leads and is oil-insulated for 30 kv .
The main inductor core material was chosen because of its ability to produce a nearly linear fre-quency-versus-saturation current characteristic, matching the beginning of the curve of Fig. 2. The amount of current diverted from the main magnet influences the rate of saturation. Hence, the initial slope of the frequency-current functions may be matched. A third winding on the main inductor, the bias winding, is utilized to impose approximately five reverse ampere turns.

As the magnet current rises the inductance increases, until the residual magnet, and bias ampere turns balance; then the frequency rises with the magnet current's further rise. Varying the bias current thus translates the frequencycurrent function, allowing a close match of Fig. 2.

To match the sharp knee and the slowly changing frequency portion, the shaper inductor is used as a relatively fixed inductance. The frequency remains relatively constant as the main inductor saturates so that its inductance is small compared to the shaper inductor. The shape of the knee and the flat frequency portion are approximated by choosing the proper value of resonating capacitance and shaper inductance.

Curve Corrector

Because it is not practical to obtain a match to the required curve with the necessary precision with magnet-current information only, there is provision for modulating the bias supply (effective at low frequencies) and the shaper inductor (effective at high frequencies) with a curve corrector. The curve corrector allows a manual adjustment of roughly 5 percent to be made at about 30 current-determined points with a smooth transition from point to point.

The greatest amount of accuracy is needed near injection. Hence,

FIG. 2-Accelerating potential irequency plotted as a function of total magnet current
a good match of Fig. 2 may be obtained with virtually no manual correction needed. In the region of the knee of Fig 3, the tolerance allowed is greatest, the match is most difficult and the manual correction utilized is large. Towards the end of acceleration, the tolerance becomes tighter, and the manual correction necessary is less than at the knee, owing to a better match.

Ferroceramic

The stability of the pfg is largely limited by the ferroceramic-cored inductor. Temperature, history, hysteresis, rate of saturation and r-f
level are the main factors. Temperature effects are adequately controlled by a $30-\mathrm{deg}$ oil bath held to closer than 0.1 deg C . History effects are rendered negligible after three saturation cycles if the beginning of the cycle is held consistent to 0.1 ampere turns and if the high end is always at least 50 percent of full ampere turns. The bias ampere turns are in excess of remanence. Each saturation cycle thus passes through zero core flux initiating the same hysteresis loop each cycle.

The ferroceramic used has large values of permeability and dielectric constant, hence a low velocity of propagation through the cores. The cores are small enough that

FIG. 3-Frequency tolerance of the radio-frequency system
at normal bevatron pulse rates the saturation of the core is rateindependent.

The r-f level is held constant to within better than $\frac{1}{2}$ volt of the 10 volt peak operating level to keep the r-f field from significantly influencing the saturation cycle. The aircore inductors and the capacitors were chosen on the basis of high stability and Q.

Oscillator

The oscillator circuit (Fig. 5) was developed to maintain the high degree of repeatability of the frequency-saturation cycle independent of the vacuum-tube parameters. The system basically is a grounded-anode Colpitts circuit.

The boot-strap arrangement was adopted to hold the lower cathode follower's plate voltage approximately constant by the upper cathode follower, thus obtaining the desirable characteristics of a screen-grid-tube cathode follower with the reliability of a triode. In addition, the triode is much less susceptible to stray magnetic fields.

The grounded-anode circuit arranges the tube's input capacitance to a minimum. Variation in input
capacitance from tube to tube and within a tube's normal life is thus negligible compared to the approximately $200 \mu \mu \mathrm{f}$ of the frequencydetermining circuit.

Feedback resistor R_{1} is made as large as possible to provide isolation from the small variations in output impedance of V_{2}. The maximum value of R_{1} is determined by the minimum value of shunt impedance of the frequency-determining circuit, the relative values of C_{1} and C_{2}, and the gain of cathode follower $V_{\text {g }}$. Resistor R_{1} is close to a maximum when C_{2} and C_{2} are equal.

To keep the oscillator operating linearly and to preserve a constant r-f amplitude at the ferroceramic cores, a diode limiter V_{1} is used. Although there is some theoretical advantige in splitting the feedback resistor R_{1} and regulating a diode clamp to hold the r-f output voltage constant by sampling the oscillator level with a detector, tests demonstrated the direct clamp V_{1} has a tolerably small effect on the frequency and is simpler. The frequency sensitivity of the ferroceramic to r-f voltage was an order of magnitude larger than the frequency shift due to a direct diode

FIG. 4-Block diagram of the bevatron radio-frequency system. Output frequency is virtually independent of vacuum-tube parameters
clamp. The additional complexity of a drive-regulation system might in practice produce a larger frequency error than the simple direct clamp system. A regulator tube holds the clamp voltage constant in spite of varying clamp conditions. The required stability is achieved if the r-f is held to within $\frac{1}{2}$ volt of the 10 -volt peak level.

The parasitic suppression resistors, coupling capacitors and out-put-line driving transformers were designed to provide adequate band pass for the required frequency range. However, they will not provide unnecessary bandwidth for possible noise response. The output transformers are doubly electrostatically shielded to provide' good isolation of the ground potential differences that exist throughout the bevatron building.

Automatic Tuning

When an r-f amplifier operates into a highly reactive load, a considerable saving in power may be obtained by resonating the reactive load so that the amplifier need supply r-f current only for the lossy elements of the system. This
is normally done where operation is confined to a relatively narrow band of frequencies. Where a broad band of operating frequencies is simultaneously involved, the uneconomical wide-band amplifier must be used.

When there is essentially only a narrow band of frequencies present at any one time within the wide possible operating band, a tuned amplifier may be used. However, it must be in tune and the additional complexity of the tuning mechanism must be economically justifiable.

Power Requirements

The frequency range and rate of change of the bevatron are such as to allow a practical self-tuning system to be used. Total driver-unit power input is 8 kw . With wideband amplifiers, 30 kw of plate power supply alone would be required, as well as much bigger tubes than the two $4-400 \mathrm{~A}$ driver-output amplifiers.

The final amplifier and associated self-tuning equipment require a total of about 75 kw instead of roughly 1.5 megawatts of plate

FIG. 5-Simplified schematic of primary frequency generatos
supply alone for a broadband system.

Final Amplifier

A simplified diagram of the final amplifier is shown in Fig. 6. The inductance used to resonate the drift tube and stray capacitance is composed of four stacks of 20 inductors each. Each inductor contains ten ferroceramic core toroids, nominally $1 \frac{3}{4}$ inch i.d., $2 \frac{1}{2}$ inch o.d. and one inch thick with a rectangular cross section. These ten cores are enclosed by five turns of silverplated machined copper so that there is nominally $\frac{1}{8}$ inch uniform spacing between turns all around the inductor. The five-turn winding serves as both the r-f and saturation winding. The resistance of the 9,600 silver-to-silver bolted joints is small compared with the total resistance of 22 milliohms.
Each stack of inductors is arranged in a lucite box to provide forced oil cooling. In addition, the physical arrangement minimizes stray capacitance and residual inductance. Each inductor is capable of a nominal range of $1.25 \mu \mathrm{~h}$ saturated to 1 mh unsaturated. At the lowest frequency (about 250 kc), with the present oil-flow system capable of removing 75 watts per core, each inductor can safely handle 2 kv peak continuously without exceeding the Curie temperature of 140 deg C .

The shield-grid triode is tapped in between the seventh and eighth inductors in each stack thus operating at a 14 -kv peak level. The stacks are 20 inductors high to allow a $40-\mathrm{kv}$ peak output level and four stacks are used in parallel to obtain the required inductance. The stacks are in parallel for r-f and in series for d-c. Less than 1,000 amperes is required to cover the range.

Saturation Supply

The 1,000 -ampere saturation power supply, Fig. 7, within its dynamic range, has a time constant of the order of a microsecond. Each phase of the input three-phase transformer has its secondary connected in series with each corresponding primary of the load transformer. All three phases, consisting of series pairs of source

FIG. 6-Final circuit diagram
secondary and load primaries, are connected in delta. Under these conditions, ideally, no power can be delivered to the load. A bridge rectifier system, using 869B's is connected to the junctions at the delta corners and the 5771 control tube acts as a load on the rectifier. If the rectifier were a perfect short, the delta corners would all be at the same potential, changing connection effectively from series delta to parallel wye connections of pairs of source secondaries and load primaries. Thus the single control tube, with the 869B's acting as commutators, effectively controls the amount of polyphase power deliverable to the load. The load transformer output is connected to a 25 -volt 1,000 -ampere selenium rectifier system.
To improve the high-frequency response of the system, a booster transformer is connected with its primary in series with the controltube plate circuit and the secondary in series with the output of the selenium rectifier. With the bucking supply, control amplifiers and feedback system, the unit regulates current from 0 to $1,000 \mathrm{amp}$.
The 6BN6 phase detector receives an in-phase fraction of the final amplifier grid signal for application to the last gate grid. The

FIG. 7-Saturation supply regulates current from 0 to 1,000 amperes
first gate grid receives a quadrature square wave obtained by capacitance coupling from the drift tube to the IN56A clamping diodes.

Drift Tube

When drift tube potential is 180 deg out of phase with the final amplifier grid signal, the grids of the 6BN6 are in quadrature placing the phase detector in the center of its range. If the drift tube signal is other than 180 deg with respect to the final amplifier grid signal, the 6BN6 gate grids will overlap to a greater (less than 180 deg) or lesser (more than 180 deg) extent. This changes the average voltage delivered through the 12AY7 to the 6SH7 amplifier.

In normal operation, the primary frequency generator continuously delivers a signal to the driver. The output stage of the driver is platemodulated with a series regulatortube system. Until the r-f on signal is delivered, the drive to the final amplifier is too low to cause conduction due to fixed bias. However, $\mathrm{d}-\mathrm{c}$ plate voltage is always present on the final amplifier, because r-f on the drift tube would be detrimental to beam-injection.
Under these conditions, the selftracking output stage of the driver is tracking with a low-level output.
ready to provide full drive with the arrival of the r -f on signal. However, the phase detector for the final amplifier is not operating properly due to the lack of a signal from the drift tube. The $5687-6 \mathrm{AL5}$ regulated clamp system clamps the phase-detector signal to the satura-tion-supply input-control amplifier 6SH7 so that the correct current will be flowing in the final amplifier reactors when the r-f on signal arrives. The phase detector takes over quickly and the signal on the drift tube locks in proper phase in the order of a millisecond after the r-f on signal. R-f builds up on the drift tube within $30 \mu \mathrm{sec}$.
W. R. Baker is in charge of the bevatron r-f system. The original investigation of the ferroceramic materials was done by Q. Kerns and J. Riedei. The high-level r-f equipment was done by Q . Kerns, O. Anderson and N. Norris; the low-level and monitoring equipment by Q. Kerns, O. Anderson, G. D. Paxson and the author.
All bevatron work was done under the auspices of the U. S. Atomic Energy Commission.

Bibliography

W. Brobeck. Design Study for a 10 -Bev W. Brobeck. Design Study for a $10-\mathrm{Bev}$
Magnetic Accelerator, Rev Soi Instr, Sept. 1948.

No. Kerns, Rectifier System, U. S. Patent

Infrared Speeds Erasure

Abstract

Aluminum-backed screen absorbs infrared radiation from tungsten filament to provide complete erasure of saturated traces in 2 to 5 seconds. Screen is sufficiently sensitive to record transients in single sweep

By F. HOLBORN* and G. HODOWANEG

Research Division
National Union Electric Corp. Orange, N.J.

Potassium chloride (KCL) has been found to be the most suitable scotophor, or screen material, for practical dark-trace tubes. When bombarded with an electron beam the peak of the optical absorption band produced by color, or F centers, in KCL occurs in the green region of the visible spectrum at approximately $5,600 \mathrm{~A}$. The regions of a KCL screen which contain these color centers appear magenta since green light is absorbed, while red and blue light are diffusely reflected.

Background Theory

The F-centers are attributed to electrons which are trapped in vacant chlorine ion sites within the regular crystal structure. In the writing process internal secondary electrons are released in the crystals by the beam of primary electrons. The secondary electrons, chiefly from chlorine ions, may be trapped by the net positive fields of anion vacancy sites within the crystal, with the formation of F-centers. The chlorine ion which has lost an electron is trapped in the vicinity of a potassium ion vacancy site.

Random thermal agitation can temporarily ionize F-centers. However, F-centers are eliminated only when the trapped electrons are returned to the chlorine holes from which they came. To facilitate their return the KCL must be exposed to 5,600 A light and the F-centers made unstable by thermal agitation. This process is called erasure.

[^11]

FIG. l-Scotophor deposited on mica sheet (A) has aluminum and carbon. black backing to absorb inirared radiation. Complete tube assembly (B) shows position of erasure filament

Early tubes were erased by exposing the tube face to intense white light. A portion of the radiant energy was converted into heat in the screen, thus accelerating the decay of F-centers. Because of the large thermal capacity of the faceplate the erasure time was of the order of minutes. In later tubes, shorter erasure times were obtained by placing the scotophor on a substrate of lower thermal capacity such as a sheet of thin glass or clear mica having a coating of tungsten. The tungsten was heated by passing a current through it.

Attempts have been made to heat the KCL film with cathode rays. In this type of erasure system, a thin
substrate screen is backed with a metallic aluminum layer. A sharplyfocussed electron beam is used for writing. For erasure the beam is defocussed to cover the entire screen and beam current is increased to heat the screen to the point of erasure. Such a tube is simple in structure, but it is difficult to design an electron gun that can produce a well-defined writing beam and can also furnish a high density (but of uniform current density) beam.

In a modified form of electronbombardment erasure an aluminum coated mica substrate screen is used with an oxide-coated filament mounted in zig-zag fashion at a distance of approximately two inches from the screen. The emission current generates sufficient heat in the aluminum backing to give a 10 -sec erasure time.

In the construction of this tube the aluminum layer must be opaque to the 500 -volt erasure-beam. Any penetration of the aluminum film by the beam produces changes in the KCL film, mainly by the release of chlorine gas. High gas currents can cause erasure-filament burnout. Even if burnout does not occur, the intense ion bombardment of the erasure filament results in slumping emission.

Infrared Erasure

In a tube designed to overcome some of the shortcomings of the electron-bombardment erasure types, the scotophor is deposited on a thin mica substrate as shown in Fig. 1A. Erasure is effected by

of Dark-Trace Tubes

FIG. 2-Divider circuits for elimination of erasure-filament shadow during writing in conventional operation (A) and with post-deflection acceleration (B). Switches are shown in write position. For erasure S_{1} would be open and S_{2} closed
radiant energy to eliminate direct electron bombardment of the screen other than that employed in the writing process.

Radiation erasure depends upon the fact that polar salts, such as KCL, have strong absorption bands in the far infrared region. The Fcenters are ionized and kept that way under long-wave infrared radiation. While the released electrons are in the conduction band of energy levels, the metallic nature of the salt at this time gives rise to an additional absorption of radiant energy. This additional absorption in regions containing a concentration of F-centers is sufficient to heat
the scotophor to the point of complete erasure.

The general structure of the tube is shown in Fig. 1B. The long-wave infrared radiator is a thin deposited layer of aluminum. The aluminum radiator is heated by radiant energy from a tungsten filament mounted behind the screen. Absorption of radiant energy is facilitated by a thin deposit of carbon black. Erasure time for tubes using this composite erasure device is determined mainly by the time it takes the radiator to reach a temperature of 80 to 90 deg C. Erasure requires 2 to 5 seconds for saturated traces. Useful contrast is achieved in this

Zig-zag erasure filament is mounted on hangers about 2 inches from screen
tube with a final-anode or screen potential of 8 kv and above. Normal screen potential is 10 to 14 kv . During the writing cycle, the shadow of the erasure filament is eliminated by making the filament slightly more positive than the screen. When operating the screen at 14 kv , the erasure filament must be 300 to 600 volts more positive. The normal way of achieving these potentials is by a voltage divider as shown in Fig. 2A. In this case, the bleeder current, i_{1}, should be made appreciable compared to the maximum beam current, i_{3}, to reduce the erasure filament-to-screen voltage variation with signal.

A post-deflection acceleration curcuit is shown in Fig. 2B. Anode voltage is 10 kv and final screen voltage is 14 kv . The erasure filament is maintained slightly negative with respect to the screen. Thus, a voltage-divider network drawing very little current can be used to obtain operating voltages.

Other Applications

Although designed primarily as a radar indicator, this tube can be used in other applications. In industrial radiography an x-ray image could be produced by synchronizing the writing beam with a collimated x-ray beam and modulating the tube grid voltage in accordance with x-ray intensity.

In a similar manner, semipermanent recordings of the optical image of translucent objects can be obtained by using a flying-spot scanner. The screen sensitivity of this tube is high enough to record single transients with the images retained long enough for detailed study.

The development of the darktrace cathode-ray tubes described in this article was done under the auspices of the Navy Bureau of Ships.

Bibliography

E. Goldstein, Ann d. Physik und Chemie, 54, p W71. 1895 . Proc Phys Soc, 49, p 3, London. 1937.
A. H. Rosenthal, Proc $1 R E, 28, \mathrm{p} 203$. May 1940.
F. Seitz. 1946.

Resonant Loop Antenna

Interference sources are located within ± 5 degrees with signal-to-noise ratios as low as 10 db . Construction provides low mechanical inertia and good structural stability required for mobile applications. Can be used either with receiver or field-intensity meter

Antenna and amplifier assembly; amplifier unit is mounted against rool of truck and antenna is screwed into place through a $160-\mathrm{mc}$ mobile antenna mounting hole

Mobile communications in the vhf spectrum are subject to interference from intermittent radiating sources such as industrial and medical r-f heating devices, high-voltage leakage discharge and reradiated intermodulation interference. Such sources are usually difficult to locate as they often contain no identifying modulation characteristic.

Directional antennas provide a means for locating such interference sources. Multielement antennas with sufficient directivity are unwieldly, and therefore unsuited for mobile direction-finding use, especially in the lower portion of the vhf spectrum. The shortduration sporadic nature of frequently encountered interference sources often requires use of direc-tional-antenna systems with low mechanical inertia in order that bearings can be obtained rapidly.

The unit to be described permits
rapid bearing measurements in the ange of 30 -to- $40-\mathrm{mc}$ when used with a mobile $a-m$ or $f-m$ communications receiver or standard field-intensity meter. Bearing resolution is approximately ± 5 degrees with threshold signal-to-noise ratios in the order of 10 db . For more favorable signal-to-noise conditions, resolution approaches ± 2 degrees.

Antenna Characteristics

Loop antennas with diameters on the order of one-tenth wavelength or less exhibit a figure-eight directional characteristic. The radiation resistance of a single-turn loop of this size is approximately $2.5 \mathrm{ohms}^{1}$.

The effectiveness of a loop in extracting energy from an electromagnetic field is a function of its effective length. The effective length in meters of a single-turn loop ${ }^{2}$ is

$$
\begin{equation*}
l_{\text {loop }}=2 \pi A / \lambda \tag{1}
\end{equation*}
$$

where A is loop area in square meters and λ is wavelength in meters.
The effective length of a half-wave dipole ${ }^{3}$ is

$$
\begin{equation*}
l_{\mathrm{dipole}}=\lambda / \pi=0.32 \lambda \tag{2}
\end{equation*}
$$

For comparison, the ratio of these equations yields

$$
\begin{equation*}
l_{\text {dipole }} / l_{\text {loop }} \cong 0.05 \lambda^{2} / A \tag{3}
\end{equation*}
$$

At 30 mc , a half-wave dipole is approximately 40 times more effective than a single-turn loop 16 inches in diameter ($1 / 25$ wavelength).

A 16-inch loop structure appears to be a practical size for mobile and portable use at 30 mc when wind loading and portability are considered. An additional maxi-mum-diameter limitation is discussed later.

A loop with perfect electrostatic shielding is responsive only to the magnetic component of a vertically polarized electromagnetic field. A discontinuity in the shield must be provided to prevent the magneticfield lines from being terminated by induced shield currents. With a discontinuity the shield has a negligible effect upon the magnetic field acting upon the loop.

Since the loop is symmetrical about a vertical axis, the vertical magnetic component of a horizontally polarized wave will produce zero net loop current.

Single-Turn Loop

Figure 1 shows the equivalent circuit of the single-turn unshielded loop where e is output terminal voltage, R^{\prime} is radiation resistance plus r-f resistance of a single loop of wire, L is loop induc-

for VHF Direction Finding

By James h. EAKIN*
Senior Development Engineer
Two-Way Systems Engineering Section
Motorola, Incorporated
Chicago, Illinois

tance and e_{0} is induced voltage $=$ $E_{\circ} \times l_{\text {loop }}$ in which E_{o} is the field intensity in volts per meter.

The equivalent circuit of the antenna with capacitance added to form a resonant circuit is shown in Fig. 1B. At resonance, $\omega_{L} \cong 1 / \omega c$ and the circulating current, i_{c}, is e_{0} / R^{\prime}.
From this, the output terminal voltage is

$$
\begin{equation*}
e\}=i_{c} / \omega C=e_{o} / \omega C R^{\prime}=e_{o} Q^{\prime} \tag{4}
\end{equation*}
$$

where Q^{\prime} is effective circuit Q.
In practice, an electrostatic shield is used to obtain a uniform loop conductor-to-ground capacitance, which is independent of loop orientation. The shield also serves

FIG. 1-Equivalent circuit (A) of loop antenna and loop with capacitance added (B) to form resonant circuit
to eliminate antenna effect. Equation 4 is therefore only approximate, since the shield forms an added distributed capacitance around the loop. This equation also neglects the shunt admittance presented by the amplifier driven by the resonant loop.

The increased gain of a resonant loop over a nonresonant loop thus becomes evident. For a resonant loop the induced voltage multiplied by Q^{\prime} appears at the output.

A more exact analysis would include the effect of induced shield currents mutually coupled to the loop conductor. ${ }^{4}$ However, the circuit impedance around a discontinuous untuned shield is very large and the loop terminal voltage is only negligibly affected by the presence of such a shield.

Loop Balancing

To obtain a symmetrical accurate directivity response to vertically polarized fields, the loop must be balanced with respect to ground and surrounding objects. This is accomplished by an electrostatic loop shield and balanced-output termination. The loop amplifier is shown in Fig. 2. The circuit employs a push-pull amplifier to provide the required balanced loop termination and at the same time providing the necessary impedance transformation to an unbalanced 50 -ohm output. The neutralized triodes yield a low amplifier noise figure.

The loop and associate amplifier provide a measured maximum re-sponse-voltage gain of 8 db over a standard dipole. Tuning range is 30 to 40 mc . The directivity re-

[^12]

Method of mounting amplifier under roof of car

Amplifier subchassis has shafts of twogang capacitors coupled together for luning in range of 30 to 40 mc
sponse to a vertically polarized source is shown in Fig. 3. The measured half-power bandwidth of the instrument is 400 kc .

Loop Construction

Details of the loop construction are shown in Fig. 4. Maximum loop diameter consistent with a $10-\mathrm{mc}$ tuning range is about 13 inches. The diameter is limited by the amount of added shield capacitance that can be tolerated as loop size is increased. Increasing the inside shield diameter would decrease the shield capacitance and permit use of a somewhat larger loop.

Sliding tubular collars of copper can be added to each end of the shield at the top to permit precise adjustment of shield symmetry ${ }^{5}$. Poor symmetry is exhibited when true and reciprocal bearings are not separated by exactly 180 degrees. Care in physical construction of the loop will obviate the need for

FIG. 2-Push-pull amplifier provides balanced input for direction-finding antenna along with unbalanced 50 -ohm output to coaxial line
installing these tubular collars.
The photographs show the amplifier subchassis and complete prototype with self-contained batteries and loop assembly. The loop assembly is inserted through a 160 mc mobile-antenna mounting hole in the vehicle roof. A circular metal stiffening plate forms a bearing surface for the loop-assembly collar.

The amplifier is connected from the inside of the truck by a UG-102/U connector and a set screw in the amplifier support bracket. The amplifier output connects to the mobile receiver or fieldintensity meter through a 50 -ohm flexible cable. The amplifier and the loop rotate as an integral assembly.

A fixed azimuth scale on the underside of the roof and a pointer on the amplifier assembly indicate loop orientation with respect to vehicle heading.

Bearing null indication can be obtained from the rectified detector output of an a-m receiver or the grid current in an unsaturated limiter stage in an f-m receiver.

Locating Techniques

In general, the actual locating of interfering sources is difficult. This is especially true when the source is intermittent or characterized by wide and sporadic changes in frequency.

The situation is further complicated by the possibility of nonunt-
form radiation fields at bearingmeasurement sites. Multipath transmission resulting from reflections generally yields erroneous bearing indications. Wave arrivals other than directly from the source produce a composite received field. The loop is responsive to the resultant vector sum of these components. Thus, the bearing will appear to be along some line between the directions of arrival of the direct and reflected waves.

Presence of energy from reflecting sources near the receiving location can be detected by checking for variations in signal amplitude as the vehicle is moved along a line in

FIG. 4-Cross-section of antenna. Shield is discontinuous at top and bottom

FIG. 3-Directivity pattern of resonant loop in region of 30 to 40 mc
the direction of the indicated bearing. The bearing measurement site should be on flat ground which contains no obstructions within a radius of 100 yards or more from the loop.

The presence of reflecting and reradiating sources near the interference source is more difficult to establish. The distance between signal maxima and minima along the line of the bearing may be large and therefore difficult to detect.

When nearing radiating sources in built-up urban areas, the loop may prove useless due to severe nearby reflections and reradiation from wire lines propagating the interference. Use of an omnidirectional antenna may prove more desirable under these conditions. Changes in mean signal amplitude then indicate the proximity of the interfering source.

The development described was carried out at the U. S. Forest Service Regional Radio Laboratory, Government Island, Alameda, California.

References

(1) J. D. Kraus, "Antennas", p 167, McGraw-Hill Book Co. Inc., New York, 1950.
(2) F. E. Terman, "Radio Engineer's Handbook', p 813, McGraw-Hill Book Co. Inc., New York, 1943 . Co. Inc., New Sork, 1943 "Fundamentals of
(3) H. Hkiling, "Fetric Waves", p176, John Wiley and Sons. Inc., 1948 .
(4) R.E. Burgess, The Screened Loop Aerial, Wireless Eng, Oct. 1939.
(5) W. E. Hopkins, A Loop DirectionFinder for Ultra Short Waves, Wireless
Eng, Dec. 1938 .

TEN OR TEN THOUSAND... \& IDENTICAL BECAUSE AUTOMATICALLY MADE FOR AUTOMATION

Centrally located plants at Chicago Shelbyville, Indiana and St. Louis.

CINCH components available af leading electronic jobbers everywhere.

CINCH will design new or re-design parts within the category of their manufacture to fit your particular plans. CINCH will also assist in the introduction in the assembly of CINCH's specially designed component in your radio and TV equipment.

CONSULT CINCH!
Cinch Manufacturing Corporation
1026 South Homan Ave., Chicago 24, Illinois
Subsidiary of United-Carr Fastener Corporation, Cambridge, Mass

By C. V. LONGO and E, WOLF
Essex Blectronics
Berkeley Heights, N.J.

Alignment chart permits solution for insertion loss, reactance and frequency values of nonmatching pi-section radio-frequency interference filters employed in transmission systems of 50 -ohm (resistive) characteristic impedance

THIS design chart is based upon a theoretical analysis of the indicated circuit when evaluated in accordance with MIL-STD-220. The chart is also valid if the series element is an antiresonant circuit or self-resonant choke. In this case apparent inductance values should be used and the antiresonant frequency becomes an upper frequency limit.
Preparation of the chart is based upon a peculiar relation-
ship between the parameters over a restricted range of values. Extrapolation is thus unwarranted without previous verification.

The chart is a composite of a nomograph relating inductance and insertion loss to an intermediate function (plotted on the dummy axis) and a graph relating the intermediate function to frequency and capacitance. The graph is derived by calculation from the theoretical results. The result is in effect a double-align-
ment chart. Examples show use.
Line $A B C$ indicates that $50-\mathrm{db}$ insertion loss may be attained at 10 mc with a circuit in which L equals 50 h and C equals 1,000 u.f. Line $A^{\prime} B^{\prime} C^{\prime}$ shows that the circuit constants of the first solution will yield $20-\mathrm{db}$ insertion loss at 2 mc .

Research activity leading to development of this chart was sponsored by Signal Corps Engineering Laboratories, Fort Monmouth, N. J.

Miniature Batteries and Capacitors for Transistor Circuits

For the transistor equipment . you are designing, it will pay you to investigate Mallory miniature batteries and capacitors. Ideally suited for low-voltage circuits where space is at a premium, these components offer excellent electrical performance in exceptionally small size.

MALLORY MERCURY BATTERIES

and Power-Paks, developed through Mallory's pioneering research in this field, provide maximum energy in minimum volume. Their constantvoltage, constant-current discharge characteristic makes them the ideal energy source for optimum transistor operation. They are unexcelled for long life ... both in service and on the shelf . . . and withstand extreme ambient temperatures.

SILVERLYTIC* CAPACITORS

have the highest capacitance and voltage ratings available in the smallest size case. Type TAP tantahum anode units-only $7 / 32^{\prime \prime}$ in diameter by $3 / 8^{\prime \prime}$ long-are supplied in values from 2 mfd . at 100 volts to 30 mfd . at 6 volts. Even smaller is Type TAW ...just $0.145^{\prime \prime}$ in diameter and $3 / 8^{\prime \prime}$ long, with a capacity of 4 and 6 mfd . at 4 volts.

Write to Mallory for full techmical information and for expert engineering assistance in application.

Expect more . . .
Get more from MALLOR

Parts distributors in all major cities stock Mallory standard components for your convenience.

Serving Industry with These Products:

Electromechanical-Resistors - Switches - Television Tuners • Vibrators Electrochemical-Capacitors - Rectifiers - Mercury Batteries Metallurgical-Contacts - Special Metals and Ceramics • Welding Materials

Air Force Scientists Plot Static Direction in D-Layer Study

Sextuple goniometer driven synchronously records noise or signals at various frequencies. Loop antennas complete a revolution every 15 minutes

USING RADIO signals from Navy low-frequency station NSS to check direction-finding equipment, members of the Ionospheric Laboratory, Air Force Cambridge Research

Center are trying to correlate data with atmospheric and extraterrestrial phenomena.

Main interest is study of the D-layer, the lowest stratum of the
ionosphere. By using lightning discharges as transmitters of lowfrequency electromagnetic energy, it is possible to make observations of height, electric-charge density and formation and deformation of the D-layer with respect to time.

In the experimental station at Fourth Cliff, Scituate, Mass., are six loop antennas about 3 feet in diameter. These loops are driven synchronously to turn one complete revolution every 15 minutes. Their outputs are connected through receivers to a pen recorder that plots response at various frequencies.

To date, a diurnal variation in static intensity has been noted. Atmospheric noise is highest during the night, probably owing to disappearance of the D-layer. More noise is recorded during the summer months than in the winter.

The recording station is almost completely automatic, being visited only once or twice a week.

Experimental Light Amplifier Employs Electroluminescence

Two pictures on the same strip of film show beightness increase (left) resulting from light amplification and lantern-slide projection without amplification (right)

The Phenomenon of electroluminescence (which has been put to practical application for the illuminated dial of a commercial radio receiver) forms the basis of a recent demonstration by General Electric engineers and scientists. Ten-fold amplification of ultraviolet light was effected when ten or more
visible photons were emitted for every incident ultraviolet photon.

According to D. A. Cusano, who described field enhanced solid-state luminescence before the American Physical Society at the end of January, large increases in the luminescent brightness of ultraviolet excited or x-ray excited zinc

Special phosphor cell used to effect amplification of light. Ultraviolet photons from a slide projector hit the cell, which reflects visible light. Application of d-c increases intensity
sulfide layers have been observed when these phosphors are subjected to electric fields.

Application of 100 volts d-c across vapor-deposited $\mathrm{ZnS}: \mathrm{Mn}$ films approximately 10 microns thick (10^{5} volts per centimeter) increases brightness 50 times. Excitation may be either ultraviolet or

KEPCO Voltage Regulated Power Supplies are conservatively rated. The regulation specified for each unit is available under all line and load conditions within the range of the instrument.

REGULATION: As shown in table for line fluctuations from 105-125 volts and load variations from minimum to maximum current.
SPECIAL FEATURE: Provision is made for picking up the error signal directly at the load, compensating for the voltage drop in external wiring.

Model 2600

OUTPUT	VOLTS	CURRENT	REGULATION	RIPPLE
1	$0-60$	$0-2$ Amp.	5 Mv.	1 Mv.

Model 2650

30 M०DELS
 AVAILABLE FROM
 STOCK. COMPLETE
 catalog on request

KEPGO LABORATORIES

131-38 SANFORD AVENUE • FLUSHING 55, N.Y. - INDEPENDENCE 1-7000
by means of x-radiation.
For a given value of $\mathrm{d}-\mathrm{c}$ field, brightness increases monotonically with excitation intensity. The single phosphor layer hence acts as an

1mage intensifying screen. Physically the device used comprises a phosphor film between plane parallel electrodes, one of which is transparent.

With the phosphor showing negligible emission under action of the electric field alone, the magnitude of luminescence is principally dependent upon the intensity of excitation.

Millimeter Wave Generator Produces Visible Light

WORKING on a project of the Office of Naval Research at Stanford University Microwave Laboratory, Hans Motz and several associates have generated waves down to 0.16 $\mathrm{mm}(2,000 \mathrm{kmc})$ with power in the order of 10 to 100 milliwatts.

Outgrowth of electron linear accelerator research, the Motz generator comprises an accelerator, undulator and echelette spectrometer. A $2-\mathrm{mev}$ accelerator produces a pulsed beam of electrons about $\frac{1}{8}$ inch in diameter. Traveling nearly the speed of light, these electrons pass into the foot-long undulator.

A rectangular silver waveguide held between 16 steel teeth jutting from the undulator's interior conducts the electrons through its core. These teeth are poles of opposing

Millimeter wave generator produces frequencies betweer those of radio and infrared. New waves might be used for short-distance communications
magnetic fields, all eight of which, alternating in opposite directions, cause the speeding electrons to oscillate at the desired frequency.

Distance between like poles is 40 mm but Lorentz contraction and Doppler effect (owing to the relativistic effect of high speed) cause the effective length of the undulator to shrink to $1 / 50$ th actual size. Wavelength produced is made to shrink to one-fifth so that ultimate wavelength is only $1 / 250$ th of 40 mm .

The echelette spectrometer comprises a grooved aluminum plate and a two-foot aluminum parabolic mirror. The output of the undulator is reflected from the aluminum mirror to the aluminum plate. Angle and depth of the precision grooves cause the desired waves to reflect back to the mirror, while those with undesired characteristics are effectively eliminated.

When a $100-\mathrm{mev}$ beam was employed, visible light was produced.

Radar and Computer Track Mortar Shells Back to Source

Counteroffensive radar used during a part of the Korean conflict was recently unveiled to the general public by U. S. Army Signal Corps and Sperry Gyroscope Co., manufacturers of the equipment.

Long-used for fire control of military weapons, radar performs a special detection function in the counter-mortar radar set AN/MPQ10 that tracks enemy shells. This tracking information, fed into a computer, reveals the source of the shells.

The radar equipment mounted on a modified gun carriage, can be towed by light Army truck to whatever part of a battleground must be

Counter-mortar radar AN/MPQ-10 is mounted on gun carriage
covered. The system comprises the dish antenna shown, controlled by
automatic tracker, a gas-engine generator and separate remote control console with radarscopes.

Elevation and range computers are mounted on the modified gun carriage. Extension cables permit separation of the tracking unit and controls by at least 100 feet.

One radar officer commands an operations team that translates the radar plot into precise co-ordinates for artillery counterfire. The portable control unit is about the size of a large-screen home television console and can be easily concealed in dugouts, foxholes or other protected locations. Computer range data reveals the enemy position.

Portable Analyzer Measures Mobiles

BANDWIDTH of radiotelephone emissions is generally measured approximately. Frequency-modulation signals are usually checked by
operators using devices that read proportionally to the deviation-accurate only on sustained tones -rather than to actual band-
width. Distortion in amplitudemodulated transmitters that are not overmodulated may cause adjacent channel interference as

Helipot makes precision potentiometers... linear and non-linear. . in the widest choice of sizes, mounting styles and resistances. Many models are stocked for immediate shipment. . . our engineers will gladly adapt standard models to your zequirements... or design entirely new HELIPOT precision. potentiometers for you.

A child's conundrum becomes a matter of life and death... when radar tells a lie. When our radar tracks attacking aircraft ... or an incoming missile... the lives of all of us on target balance on the pinpoint of a mathematical riddle.
How high is up? It depends on the point-of-viewing.
Because of earth's curvature, radar sees an interloper... 100 miles away... 6600 feet lower than it really is. Readings must be corrected instantaneously before being fed to our interceptors...otherwise, attacker and defender play true or false at twice the speed of sound.

Electronic Engineering Company of California has designed an analog computer that makes this vital correction...converting radar observation into true altitude above sea level. The computer continuously solves the equation

$$
\mathrm{H}_{c}=\mathrm{H}_{o}+\left(\mathrm{R}_{o}{ }^{2} / 2 \mathrm{r}\right)
$$

The mathematics are complex. The mechanism, with a two-gang HELI POT* series A precision potentiometer at its heart, is beautifully simple. Both are fully described in a new application data sheet... write for Data File 201.

DESIGNED and built by Admiral Corporation engineers, this 30-foot long battery of machines automatically assembles approximately half of the company's vertical chassis for 21 -inch television receivers. Blank printed circuit boards start down the one at the far end.

The assorted resistors and wire jumpers in the eight-tube section are inserted singly, some two at a time and others three at a time. Assembled boards slide down the chute at the lower left.

The employee is showing the bottom side of a printed circuit board (right) and the assembled board with all parts in her other hand. Printed circuit chassis construction results in more uniform production, trouble-free soldering and lower production costs.

FIG. 1-Attenuator and supplementary oscillator extends frequency range of commercial panoramic spectrum analyzer that is used by monitoring officers to check mobile transmitters
objectionable as that produced by overmodulation.

For more exact determination of the bandwidth of actual spectrum occupancy, engineers often use a panoramic display device that shows the extent of side frequencies. By definition, the bandwidths consid-
ered significant in this description include all components of the emission stronger than 25 db below the level of unmodulated carrier. To avoid the complexity of graduating an oscilloscope in db, an attenuator is provided instead at the antenna input terminals of the panoramic device. The attenuator has two positions, 0 and 25 db . Accuracy of level is determined only by the attenuator, so long as all measurements are made at the same point on the oscilloscope scale without changing the gain control between the two settings of the attenuator switch.

The basic instrument scans a region plus or minus 25 kc at 500 kc. An extended frequency range is obtained by adding a local oscillator with a fundamental frequency range between 27 and 70 mc . Harmonics of the oscillator make it possible to obtain operation as high as 200 mc . It is thus possible to use this portable equipment for measurement of true bandwidth of chan-

FIG. 2-Unmodulated carrier (A) is frequency modulated (B) with attenuator in. Bandwidth is read (C) with attenuator out. Deviation-limited transmitter has similar bandwidth (D)
nels occupied by land mobile and other radio stations.

Circuit diagrams of the added circuits are shown in Fig. 1. Fundamental range of the oscillator is 27 to 70 mc . Second-harmonic range is 55 to 120 mc and the third harmonic occurs between 85 and

Preparing High-Purity Silicon by Induction Heating

Zone-melting process for production of high. purity silicon is observed by Hubbard Horn, physicah chemist in General Electric Research Laboratory. Refining process consists of successive recrystallization as ingot moves slowly through gas-filled quartz tube. Induction coils around outside of tube cause ingot to melt in narrow zones. Impurities in molten regions are swept to the end of the bar. Dr. Horn views the whitehot crystal through a semiopaque water cell that filters out heat
 builds for the ELECTRONICS INDUSTRY

The quantity production of quality components for electronics is the object and the success of AMPHENOL. The variety of our expanding line of components reflects both the needs of electronics and the growing demand for AMPHENOL quality in every specification of important connectors and cable.

AN CONNECTORS

RF CONNECTORS

HERMETIC SEAL RECEPTACLES

MINIATURE AN-TYPE CONNECTORS

SUBMINAX RF CONNECTORS

BLUE RIBBON CONNECTORS

MINIATURE RACK \& PANEL CONNECTORS

Pótted an connector assemblies

rg coaxial cable

. . components buiit to standard specifications or lesigned to the special requirements of the electronics industry...

Saved

- \quad -

296 pieces per thousand!

Like many another manufacturer, the Hoover Company, Canton Ohio, has its rejection problems. A typical one involved a flexible, rub. ber-like "litter picker" used in its vacuum cleaners. Although tolerances ranged from $.085^{\prime \prime}$ to . $101^{\prime \prime}$, rejects ran as high as 30%.
To solve this problem, Hoover employed a Kodak Contour Projector to measure the parts, plotted results in accordance with modern methods of statistical quality control. Based on these studies, alterations were made in the cutting tool and the holding fixture for the part. Rejects dropped from 30% to less
than $1 / 4$ of 1%. Savings amounted to 296 pieces per thousand.
"Optical gaging with the Kodak Contour Projector," say Hoover engineers, "eliminated incorrect readings caused by mechanical distortion of the parts. In addition, optical methods of measurement proved from 4 to 5 times faster than conventional gaging techniques."
Your own production measurement or inspection problem may similarly be solved by optical gaging with a Kodak Contour Projec. tor. To find out more about it, send the coupon for your copy of "The Kodak Contour Projector."
the KODAK CONTOUR PROJECTOR

OPEN TYPE. Circuit switching - power and dynamotor loads - plate circuit - low capacitance.

HERMETICALLY SEALED. Stud or bushing mounting solder or plug-in headers-circuit switching-power Iow loss applications.
TRANSPARENT PLASTIC COVER. Most R-B-M relays now available in low cost transparent plastic cover.

OTHER PRODUCTS: Motor starting relays and overload protectors for refrigeration, appliance and general purpose motors. Industrial contactors and across-the-line starters. NEMA size 1 and smaller. Low cost general purpose relays. Low voltage D. C. manual and magnetic devices.

Visit Booth 617-619 Kingsbridge Armory I.R.E. Convention New York City, March 21-24

Controls for Electronic, Refrigeration, Industrial, Appliance, Communication and Automotive Industries

FIG. 1-Simple potentiometer circuit showing symbols used in design equations
the designer avoids making a full circuit calculation, which would show just how valid the approximation is. Instead, R is chosen to be so low that load R_{L} cannot appreciably affect transmission T. This is an easy and fairly safe way to insure that the voltage division is about as planned, but it gives no indication of how small R must be. As a result the potentiometer resistance is often lower than necessary, in consequence loading down the source, wasting power and perhaps aggravating a dissipation problem.

An accurate rule of thumb that gives the maximum permissible potentiometer resistance in terms of the load resistance R_{L} and the allowable loading error E is: resistance R must not exceed $4 E R_{L}$.

The loading error E is defined as the relative amount by which the actual voltage transmission T of the loaded potentiometer falls short of the transmission T_{0} with no connected load, or an infinite R_{L}. That is, E is defined as $\left(T_{0}-T\right) / T_{0}$. This quantity is to be evaluated at the potentiometer setting at which the relative loading error is greatest.

As an example, consider a calibrated potentiometer for driving a grid circuit that acts as a resistive load of 50,000 ohms. At the worst setting, the actual voltage attenuation must not differ owing to loading by more than 2 percent from that indicated on the potentiometer dial. In this case, R_{L} is 50,000 ohms and E is 0.02 . Then by the

FIG. 2-Error in voltage transmission in potentiometer caused by load is maximized at halfway point in potentiometer range

NEW

TV MONITORS

Together, new Sierra 161 and 162 TV Monitors provide convenient, dependable and complete monitoring of NTSC Standard Color Transmissions or black-and-white video signals.
Model 162 consists of a picture unit and a separate power supply. Features include high-level triode demodulators for linearity and stability, automatic chroma control, numerous test jacks to simplify circuit adjustment, and a regulated high voltage supply for the picture tube.
Model 161 provides convenient video signal waveform analysis and amplitude measurement. Vertical amplification is available to either 2,4 or 6 mc . Also included are a high impedance, low capacitance probe, an input attenuator and a 60 cps calibrating signal simultaneously displayed on screen and voltmeter. Horizontal sweep may be expanded 12 or 20 tube diameters with return trace blanked.
Write for Data Sheets

SPECIFICATIONS - MODEL 162

Input Video Signal: 0.25 to 2.0 volts peak to peak, black negative. Input Impedance: 72 ohms, coaxial (BNC connector).
Resolution: 250-300 lines (Full NTSC color signal bandwidth is used).
Picture Tube: $15^{\prime \prime}$ tri-color type.
Operating Power Requirements: 105 to 125 volts, $50 / 60 \mathrm{cps}, 4$ amperes (approx.).
Mounting: 19" relay rack.

Cabinet Dimensions: Picture Unit $171 / 4^{\prime \prime}$ wide, ($19^{\prime \prime}$ panel), 21" high, $29^{\prime \prime}$ deep. Power Supply Unit $171 / 4^{\prime \prime}$ wide ($19^{\prime \prime}$ panel), $83 / 4 "$ high, $81 / 2^{\prime \prime}$ deep.

SPECIFICATIONS - MODEL 161

Input Signal Level: 05 to 300 volts peak to peak.
Deflection Sensitivity: 2 mc bandwidth: 0.05 peak to peak volts per inch. 4 mc and 6 mc bandwidth: 0.10 peak to peak volts per inch.
Frequency Response:
Vertical Amplifier: 2 mc I.R.E. -3 db down. 4 mc Normal - 3 db down. 6 mc Line Test - 3 db down.

Square Wave Response: Less than 5\% tilt at 60 cps .
Horizontal Amplifier: $35 \mathrm{kc}-3 \mathrm{db}$ down.
Inpur Impedance: Vertical amplifier without probe 470 k ohms $40 \mu \mu \mathrm{f}$. Vertical amplifier with probe 1 megohm. $14 \mu \mu \mathrm{f}$. Horizontal amplifier (external sweep) 100 k ohms $200 \mu \mu \mathrm{f}$.
Sweep Frequencies: Low range 18 to 80 cps continuously variable. High range 4,000 to $16,000 \mathrm{cps}$ continuously variable.
Horizontal Expansion: Low frequency sweep 20 tube diameters. High frequency sweep 12 tube diameters.
Operating Power Requirements: 105 to 125 volts $50 / 60 \mathrm{cps}$ 1.8 ampere.

Cabinet Dimensions: $17^{\prime \prime}$ wide, $9^{\prime \prime}$ high, and $20^{\prime \prime}$ deep.

Data Subject 10 Change Without Notice

Sierra Electronic Corporation
San Carlos 2, California, U.S.A.
Sales representatives in major cities Manufacturers of Carrier Frequency Voltmeters, Wave Anolyzers, Line Fault Analyzers, Dlrectional Couplers, Wideband RF Transformers, Custom Rado Transmitters, VHF-UHF Detectors, Varlable Impedance Wartmeters, Reflection Coefficient Meters.

two signals or more

one scope

Manhunts

$\sim \frac{T_{0}}{T}=1+\frac{R}{R_{L}} x(1-x)$
If loading is not severe, the second term here must be small with respect to unity. Thus in inverting Eq. 2 to the desired reciprocal form the binomial-theorem approximation can be used to obtain

$$
\begin{equation*}
\frac{T}{T_{0}}=1-\frac{R}{R_{L}} x(1-x) . \tag{3}
\end{equation*}
$$

The second term of the latter can be identified as the relative loading error E. Ignoring its negative sign, the error is

$$
\begin{equation*}
E=-\frac{R}{R_{\mathbf{L}}} x(1-x) . \tag{4}
\end{equation*}
$$

As a function of the setting sariable x, the error function, plotted in Fig. 2, is parabolic with a maxmum at $x=\frac{1}{2}$. The error is zero at both extreme settings. For minimal-design, interest exists only in its maximum vale, which is $E=R / 4 R_{L}$. Hence the design rule already stated: $R=4 E R_{\text {L }}$.

As a subsidiary application, a simple calibration formula can be provided for laying out a special scale for a potentiometer used with

FIG. 3-Effect of resistive load on dial calibration of potentiometer

60

F455K-Series, Double-Ended Solder Termingls

Shorp selectivity characteristics, campactness of tubular design and choice of terminal style illustrated obove are among top features of the new designs.

COLIINS Mechanical Filters have become the byword to electronics people looking for superior selectivity characteristics, compact design, simplified circuitry and maintenance-free service in IF passband filters. Utilizing magne:ostrictive principles of mechanical resonance to provide high attenuation of unwanted signals, Collins has es:ablished a wide margin of leadership maintained by an intensive research program. The important develop. ments of this research are now available to the electronic incustry.

Most significant of these new developments are the lowering of transmission loss to 10 db or less, and tem. perature compensation of the Filter for operation over a range of $.40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Shape factors are now nearer to the ideal "square" curve than ever before thought possible. And a new tubular style case, permitting greater conservation of space in new equipment designs, has been developed with three options in terminal style.

In addition to producing a comprehensive line of stand. ard Filters ranging from 250 kc to 500 kc , Collins welcomes your special filtering problems. Filters can be designed for IF frequencies from 100 kc to 500 kc , and with bandwidths from 500 cps to 15 kc .

To apply our experience to your particular problems or for further information on existing designs, contact the nearest Collins office.

COLLINS RADIO COMPANY

Cedar Rapids, lowo

261 Modison Ave., NEW YORK 16
1930 Hir-Line Dr., DALLAS 2
2700 W. Olive Ave., BURBANK
Collins Radio Company of Canada, Led, 74 Sparks Street, OTTAWA, ONTARIO

WEIGHT

Less than 6 ounces.
BASE
Standard Oćtat.
LENGTH
25/E inches.
DIAMETER
1\%16 inches.
FINISH
Black.
CASE
Hermetically sealed.

TEMPERATURE

-55 c to +85 c .

VIBRATION

Withstands 10 g . (10 to 55 cps .)
SHOCK
Withstands 30 g .
BREAKDOWN
280 volts D.C.
AVERAGE LIFE
1,000 hours under average operating conditions into o resistive load.

DRIVE

6.3 volts.

FREQUENCY

380 to 420 cps. CONTACTS
SPDT - . 002 amps.
100 volts
DWELL TIME
135 degrees
(plus or minus 20°)
PHASE LAG
65 degrees.
(plus or minus 15°)

NOISE

Less than 3 millivolts peak to peak at one megohm.

Some Terrifories available to established manufacturers' represenfafives
a known fixed load resistance so that it will read directly the actual loaded transmission. The calibration formula results from reassembling, with the aid of approximate Eq. 4, a simple expression for the loaded transmission $T=x$ ($1-\mathrm{E}$)

$$
\begin{equation*}
T=x\left[1-\frac{R}{R_{L}} x(1-x)\right] \tag{5}
\end{equation*}
$$

This has the form shown in Fig. 3, which differs slightly from the dashed straight line that represents the no-load condition.

While the value deveioped for the loading error in this discussion involves an approximation itself, the second-order error thus overlooked is in about the same ratio to the evaluated error E as the latter is to unity.

New Government Patents

Supplementing a list of patents previously published (Electronics, p 198, Oct. 1954) is "Patent Abstract Series, No. 5, Electrical and Electronic Apparatus" (PB 111468) for sale at $\$ 4$ from Office of Teehnical Services, U. S. Department of Commerce, Washington 25, D. C.

The 1,915 patent abstracts in the new book that are of particular interest to engineers and manufacturers in the field of electronics include those describing radio and navigation apparatus, tubes, computing devices, batteries and telephone and telegraph apparatus.

Electromechanical
 Networks For A-C
 Servosystems

By Charles A. Savant and Clement J. Savant Whittier, California

BECAUSE OF DRIFT in d-c amplifiers, emphasis has been placed on a-c type servo systems. The typical system utilizes an a-c transducer, tuned amplifier with appropriate feedback and a two-phase a-c control motor. In most systems, some

R. H. Davies, Vice-President of the Clark Equipment Company, asks:

"Do you know this famous weight lifter?"

"You've seen these mechanical muscle men all over the country," says R. H. Davies. "Clark builds them to lift up to 13 tons at a clip!
"When Kansas City was hit by a recent llood, most of their fork trucks were damaged. Clark dealers are among the best equipped in the country. But when ten or fifteen companies needed replacement parts - and fast - the demand was unprecedented! We shipped carburetors, distributors and other
essentials by Air Express from our Jackson, Mich. service headquarters - and they arrived the same day!
"Our sixty dealers coast to coast know its speed and reliability. We average 5,000 pounds a month by Air Express.
"What's more, most of our shipments cost less by Air Express. For instance, a $25-1 \mathrm{~b}$. shipment by Air Express from Jackson, Mich. to Kansas City costs us $\$ 6.45$ - that's $\$ 3.50$ less than by any other air service."

The Bliley BH6A, with Molded Nylon Bumpers, assures dependable performance in range $800 \mathrm{kc}-2000 \mathrm{kc}$ This new design meets the exacting requirements of MLL-C3098A as applied to types CR-18, CR-19,
CR-27, CR-28, CR-35 and CR-36. It includes 3098A as applied to types CR-18, CR-19,
CR-27, CR-28, CR-35 and CR-36. It includes the supplemental specification calling for tests under 100 G 's in three planes.
Another example of Bliey leadership-for 25 years the top choice in crystals.

ERIE, PA.

FIG. l-Servo system using equalization network (A) has greater signal-tonoise ratio than demodulation-remodulation system (B)
form of series equalization is necessary for stability. Although much effort has been expended in using bridged or parallel-T networks, there has been little success. The reason for this rests in the low Q of these R-C notch networks, which results in such a large attenuation of the sidebands that the signal-tonoise ratio becomes intolerable. Figure 1A demonstrates a block diagram of a typical system of this type.

Alternately, demodulation and remodulation systems of the type shown in Fig. 1B have been used. The a-c signal is amplified and demodulated with a phase-sensitive demodulator. The d-c signal is series equalized with the desired passive networks and then remodulated.

This article presents a method of complete a-c series equalization by means of electromechanical networks. These networks are reli-

FIG. 2-Electromechanical lead (A) and lag (B) networks are not subject to drift because of their completely $a-c$ character

These units, which are the result of several years of development and testing, offer a new standard of simplicity and reliability. Particularly noteworthy is the uniformity of output signal voltage with temperature change. Small size and light weight make them ideal for airborne and portable use.

COMPLETE INFORMATION ON REQUEST PLEASE SPECIFY TYPE 2007T

For applications where only higher B voltages are available, a simple voltage reducing circuit may be used.

American Time Products, Inc.

From the exceptional resources of Raytheon..

nAYTHEOR
 MINIATURE PULSE TRANSFORMERS

Raytheon, giant in the electronics industry and longtime leader in transformer design, offers miniature pulse transformers - the last word in modern design - thoroughly proved under exacting performance requirements in such world-famous equipment as Raytheon Radar.

Take advantage of Raytheon's exceptional resources to solve your transformer problems. Send in your requirements or write for complete information.

MINIATURE PULSE TRANSFORMERS

 for blocking oscillator use

AVAILABLE FROM STOCK

These hermetically sealed, military approved pulse transformers are designed for universal blocking oscillator use at repetition rates from 50 to 5000 pps .

UX-7307A and UX-7350A are identical in electrical characteristics, having two windings for 1000 ohms impedance and two windings to match 250 ohms. To cover a wider variety of applications, the windings are arranged differently in the two transformers.

These units are also available in octal type tube bases as UX-7307 and UX-7350. Bulletin DL-K-320 gives complete information including typical circuits. Write for it.

RAYTHEON

MANUFACTURING COMPANY EQUIPMENT SALES DIVISION
DEPT. 6120-A WALTHAM 54, MASSACHUSETTS DISTRICT OFFICES : BOSTON, NEW YORK, CLEVELAND, CHICAGO, NEW ORLEANS, LOS ANGELES (WILMINGTON), SAN FRANCISCO. SEATTLE INTERNATIONAL OPERATIONS: 589 FIFTH AVENUE, NEW YORK CITY

TYPICAL RAYTHEON TRANSFORMERS

Plate, Filament, Pulse, Audio and R.F. Transformers; Toroids; Filters; Chokes; Reactors; Voltage Stabilizers; Magnetic Amplifiers; Delay Lines; TV Deflection and Focus Coils.

BUILD

Emelfoure in fifulwaris
DEPENDABILITY
INTO YOUR
PRODUCTS
able, rugged and are not subject to drift because of their completely a-c character.

Figure 2A shows the block diagram of the electromechanical lead network. Using the notation of this figure, the following expression results

$$
\begin{equation*}
E=e_{o} / A=e_{I N}-\left(K_{m} N^{\prime} e_{o}\right) / s(\tau s+1) \tag{1}
\end{equation*}
$$

where s is the Laplace transform operator, K_{m} is the motor constant, N^{\prime} is the constant of the potentiometer and τ is the ratio of the motor and gear-train inertia to the slope of the motor torque curve. The transfer function of the motor is

$$
\begin{equation*}
K_{m} / s(\tau s+1) \tag{2}
\end{equation*}
$$

For large gain, A, Eq. 1 reduces to

$$
\begin{equation*}
e_{v}=s(\tau \varepsilon+1) / K_{m} N^{\prime} e_{I N} \tag{3}
\end{equation*}
$$

For small values of τ and frequency

$$
\begin{equation*}
e_{o}=s / K_{m}^{\prime} N^{\prime} e_{I N} \tag{4}
\end{equation*}
$$

Thus, in operational notation, e_{e} is proportional to the derivative of $\boldsymbol{e}_{1 N}$

Since the amplifier is tuned and a-c, high-gain is possible with relative ease. Drift is no problem and with appropriate tuning the noise can be appreciably reduced. Reference voltage is provided for proper subtraction at the amplifier input.

The block diagram of the integrator system is shown in Fig. 2B. No feedback is necessary here since the transfer function now is

$$
\begin{equation*}
e_{o}=A N^{\prime} K_{m} / s(\tau s+1) e_{I N} \tag{5}
\end{equation*}
$$

Again for low frequencies approaching zero, Eq. 5 becomes

$$
\begin{equation*}
e_{o}=\boldsymbol{A} N^{\prime} K_{m} / s \tag{6}
\end{equation*}
$$

This then is the desired expression.
It is possible to use an integrator in a system and produce zero steady-state error. If the integrator is inserted in a loop with feedback, the input to the inte-

FIG. 3-Integrator for electromechanical system can provide a-c or d-c output depending on the signal used to excite the motor-driven potentiometer

For Convenience and Safety

Standardize on BUSS FUSES

No matter what your fuse application may be - in television, radio, radar, avionics, instrument or controls - you can be sure there is a BUSS fuse to fit your exact needs.

Our complete line includes: standard type, dual-element (slow blowing), renewable a nd one-time types . . . in sizes from $1 / 500$ ampere up, plus a companion line of fuse clips, blocks and holders.

You'll find that standardizing on BUSS fuses helps to simplify buying, stock handling and records.

And probably most important of all is your assurance that BUSS fuses will give dependable electrical protection under all service conditions. For every BUSS fuse normally used by the Electronic Industries is tested in a sensitive electronic device that makes sure the fuse is electrically and physically perfect.

Should you have a special problem in electrical protection . . .

. . . BUSS places at your service the world's largest fuse research laboratory and its staff of engineers. Whenever possible, the fuse selected is already available in local wholesalers' stocks, so that your device can be easily serviced.

More information is available on BUSS and Fusetron small dimension fuses and fuse holders. Just write for bulletin SFB. Be sure to get the latest information before your final design is crystallized.

> BUSSMANN Mfg. Co.
> (Div. McGraw Electric Co.)
> University of Jefferson St. Lovis 7 Mo.

(B) TWO VERSATILE

 Electronic Voltmeters

 Electronic Voltmeters}

A Sensitive VOltmeter and Null detector

AS A VOLTMETER
Frequency Range 10cps -2 mc Voltage Range...................... . . 100 Hz - 100v Inpul Impedance. 2 meg shunted by 15 y 1 Accuracy......................... 3% 10cps-Ime 5% elsewhere
Voltages as low as 40 microvolts can be measured.

AS A NULL DETECTOR

Model 310A

A Sensitive VOLTMETER and DECADE AMPLIFIER

 (Battery Operated)
AS A VOLTMETER

Frequency Range 2cps - 150ke Voltage Range. 100 uv-100v Input Impedance \qquad 2meg shunted by $15 \mathrm{\mu}$ н Accuracy. 3% 5cps-100kc 5% elsewhere

- Ideal for measuring valtages in circuits above ground potential.
- Switch provided for high meter damping.

AS A DECADE AMPLIFIER

Frequency Range \qquad $.2 \mathrm{cps}-150 \mathrm{kc}$
Voltoge Gains. $1000,100,10,1$
Outpul Impedance \qquad approx 3000 ~
Equivalent Input Noise <10 uv

Both Instruments Feature

- Single logarithmic voltage scale with decade range switching.
- Same accuracy of reading at ALL points on the scale.

WORLD'S LEADING ELECTRONIC VOLTMETERS

Write for FREE DB colculator and for complete
information on these and other Ballantine instruments.

BALMAVIINS LABORATORIRS. INC.

grator will be the error. Even at d-c, the motor will continue to turn until the error is reduced to zero and hence the system has zero steady-state error. Threshold effects of the motor and amplifier can be minimized by increasing the gain.
The circuit of a completed integrator is shown in Fig. 3. The unit is small, reliable and has either a d-c or an a-c output as desired since the excitation of the motor-driven potentiometer can be either type of signal. A wide range of transfer functions is available if various other mechanical components are added. For example damping, spring rate or a combination of these when added to either network permits a variety of functions.

Intense Sound Bad for Tubes

Tests made by engineers of Armour Research Foundation on small electron tubes and relays showed malfunction at high sound levels. Components were tested in a sound chamber at simulated sound levels typical of jet and rocket engines and guided missiles.
Sound spectra of an Air Force jet aircraft may approach 150 decibels at 10 feet from the tail pipe when the jet engine is operating full thrust and approaches 140 db in the equipment bay.

Such sound intensities are high enough to affect reliable operation of electronic components, particularly vacuum tubes.

Transistor Amplifier Performance

By Cecil E. Williams
Electrical Engineer Armour Research Foundation of Illinois Institute of Technology Chicago, Ill.

Commercial junction transistors have internal capacitances that may cause a reduction of amplifier gain at frequencies slightly above the audible range. The conventional T equivalent circuit does not indicate the frequency response since it contains no terms for transistor capacitances. The equivalent circuit values of alpha, base resistance,

IN GOVERNMENT

IN SCHOOLS and UNIVERSITIES

Bell Vocational School

Bell Vocational School

Princeton University

jowa State Coltege

Technital School

Since

Los Alamos Physics Laboratory
 Development Station

McCMellan Air Force Base

Aberdeen Proving Grounds

Pensacola Naval Air Station
 THE STANDARD ELECTRIC TIME COMPANY

97 Logan Street - Springfield 2, Massachusetts
ELECTRIC CLOCK AND PROGRAM SYSTEMS • FIRE ALARM SYSTEMS • HOSPITAL SIGNAL SYSTEMS PRECISION IIMERS CHRONO-TACHOMETERS PIPELINE NETWORK ANALYZERS

SAVE DRAFTING TIME
Right Way to MEASURE MACHINE SCREWS

By dimensioning and naming machine screws as indicated, you avoid misunderstanding, cut down on drawing changes and save time in purchasing.

machine screws and special fasteners are our business

WRITE FOR our catalog

the PROGRESSIVE

 MANUFACTURING COMPANY50 NORWOOD ST., TORRINGTON, CONN.
emitter resistance and collector resistance are readily obtained for a given operating point but internal capacitances cannot be directly measured. The equations become tedious to solve if internal capacitances are added to the equivalent circuit.

Several transistors were tested to measure their performance as a function of input frequency. The grounded-emitter circuit was selected because it has a higher input impedance than the grounded-base circuit and a higher gain than the grounded-collector circuit. The input voltage was held constant at approximately 1 millivolt and supplied from a zero-impedance generator.

Figure 1 shows the variation of input impedance and voltage gain

FIG. l-Frequency response of transistor amplifier with load matched for maximum power output

FIG. 2-Frequency response of grounded-emitfer amplifier with series emitter resistance
with frequency for a transformercoupled load. The amplifier load was adjusted for maximum power output at 1-millivolt input. The direct current in the transformer primary reduced the low-frequency response and all further tests were made without transformer coupling.
Results of adding a partially bypassed resistance in series with the emitter lead is shown in Fig. 2. This gain stabilizing circuit lowered the peak gain approximately 30 percent but reduced the gain variation to less than ± 3 percent over the

first in its power range . . designed specifically for audio service

The Tung-Sol 6550 is a brand new and direct appreach to the high power design requirements of high fidelity audio amplifiers. For outputs up to 100 watts, two 6550's in push-pull will provide the same power now ortained in most existing designs by the use of four or more tubes. In addition to greater audio output, use of the new 6550 results in simplified electrical balance, reduced maintenance and lower cost. The Tung-Sol 6550 is not directly interchangeable with the 616, 5881 or KT66 elass of tubes. With proper circuitry, however, the 6550 will provide full power output with approximately the same grid voltage drive as the smaller tubes. The 6550 is produced under laboratory conditions with exhaustive quality control to assure premium performance and long life.

Rugged Construction - The advanced design features which have made the $\tau u n g-S o l$ 5881'so extremely reliable are embodied in the 6550.
1 Glass button stem construction is strong and compact and provides a rugged support for the tube structure.
2 Micanol wafer and metal shell base provides full lifetime electrical insulation and greater mechanical strength.
3 Cathode materials of exceptional stability give more untform emission with greater life expectancy. Cathode is not poisoned by inactivity during standby periods.
4 Maximum control of grid emission achieved by gold plating and carbonizing.
5 Triple gettering promotes long, gas-free life. Getters are confined by a spray shield to prevent mica conlamination.
6 Life tests are made under severe overload conditions to assure adequale safety factor.

The TUNG-SOl engineering which has produced the 6550 is constantly af work an a multitude of special elearon tube developments for industry. Many exceptionally efficient general and special purpase tubes have resulted. Tech. nical data sheets, or circuitry suggestions for the 6550 may be obtained by writing to Tung-Sol Commercial Engineering Deparfment.
TUNG-SOL ELECTRIC INC., Newark 4, New Jersey - Sales Offices: Allonta, Chicago, Columbus, Cuiver City (bos Angeles), Dalios, Denver, Devroit, Newark Seattle TUNG-SOL makes All-Glass Sealed Beam Lamps, Miniafure Lamps, Signal Fiashers, Picture Tubes, Radio, TV and Special Purpose Electron Tubes and Semiconductor Products.
PRECISION TWIN EXTENSION SPRING

Available in practically all sizes and capacities

This type of Chatillon Iso-Elastic Twin Extension Spring is used by every leading manufacturer of computing scales in the world. Reason:-because it is accurate to 1 part in 2,000 !

This extreme accuracy has induced companies like General Electric, Bendix, Pitney-Bowes, Sperry and many others who make precision instruments, to incorporate Chatillon Iso-Elastic springs into their designs.
The hysteresis error of this remarkable spring is less than $.05 \%$ of deflection. Drift does not exceed $.02 \%$ of deflection in 5 minutes. Combine these characteristics with temperature compensation and you have what is truly a precision spring in every sense of the word. Chatillon makes Spiral, Torsion, Compression and Form Springs of Iso-Elastic material, as well as springs of all conventional alloys.
We can help make your product better. Let Chatillon's Spring Division assist you. Write for engineering bulletins today.

Chatillan's exclusive temperaturecompensated spring material.
U.S.A. Pof. Na. 2174171.

> Manufacturer of
> Precision Springs and Measuring Apparatus Since 1835.

*

JOHN CHATILLON E SONS

85 cliff Street, New York, N. Y.

This power-type wire wound axial-lead Blue Jacket is hardly larger than a match head but it performs like a giant! It's a rugged vitreous-enamel coated job-and like the entire Blue Jacket family, it is built to withstand severest humidity performance requirements.

Blue Jackets are ideal for dip-soldered sub-assemblies . . . for point-to-point wiring . . . for terminal board mounting and processed wiring boards. They're low in
cost, eliminate extra hardware, save time and labor in mounting!

Axial-lead Blue Jackets in 3,5 and 10 watt ratings are available without delay in any quantity you require. $\quad \star \quad \star$

SPRAGUE TYPE NO.WATTAGE RATING
DIMENSIONS L (inches)
$\mathbf{1 5 1 E}$

SPRAGUE $=$

CHICAGO STANDARD TRANSFORMER CORPORATION ADDISON AND ELSTON CHICAGO 18, ILINOIS 431 Greenwich Street, New York 13, N. Y.

FIG. 4-Uniformity of characteristics for ten CK 721 transistors
sistor operating points and voltage gain. Transistor 1 was obviously abnormal and showed severe output distortion at input levels above 0.5 millivolt. Transistors 2 to 7 have similar voltage gains and stabilized with approximately 1 volt between emitter and collector. Transistors $7,8,9$ and 10 had higher gains and operated with approximately 2.5 volts between emitter and collector. The transistors with the highest voltage gains had the lowest input impedances.

In designing transistor amplifiers the loading effect of the transistor upon the signal source must be considered. The frequency response and input impedance are determined by the transistor operating point and the nature of the load. Circuits requiring gain stability and transistor interchangeability must be carefully checked experimentally after the basic circuit configuration has been established.

Weather Warnings

Continuous aviation weather forecasts in New York and Chicago on 162.55 mc using unattended facilities, may be extended in future to other parts of the country. Experimental broadcasts utilize CAA lowfrequency range stations. Weather information can thus be broadcast simultaneously with range signals and the desired information se-

provide maximum energy . . . minimum weight
No matter what your permanent magnet application may be - galvanometer, speedometer, television or telephone - you'll find that Crucible alnico magnets have a consistently higher energy product. This means more energy from a smaller magnet.

Since alnico alloys were first developed, Crucible has been a leading producer of this superior type of permanent magnet. And Crucible alnico permanent magnets are made by the nation's foremost specialty steelmaker.

For alnico magnets that are unsurpassed in quality - call Crucible.

CRUCIBLI

first name in special purpose steels
54 years of Fine steelmaking

Rear view of pocket radio with back re. moved, showing TI transformer and transistors in relation to other circuit components.

The world's smallest commercial radio receiver makes the most of miniaturization possibilities with a Texas Instruments

used in the first transistorized consumer product!

 subminiature transformer and four TI transistors. TI subminiature transformers, such as the one used in the Regency pocket radio, are adaptable to mass production dip-soldering assembly techniques.Your most experienced source of supply for transistorized circuit components, Texas Instruments produces the most complete line of subminiature transformers, consisting of 32 standard models. Ranging from less than $3 / 8$ inch cubed (one milliwatt output) to one inch cubed (200 milliwatts output in push-pull), TI subminiature transformers are precision units specifically designed for transistorized and other minialurized circuits. TI engineers will design special models - in virtually unlimited variety-to meet your exact requirements.
Don't delay your own product miniaturization program. Write today for Bulletin DL-C 424, describing TI subminiature transformers in detail.

if

you

need

to
 sio elecirion

 a
 precise
 interval

Adlake relays require no maintenance whatever ... are quiet and chatterboss . . free from explosion hazard... dust, dirt, moisture and temperature changes can't affect their operation. Mercury-to-mercury contact gives ideal snap action, with no burning, pitting or sticking. Time delay characteristics are fixed and non-adjustable.

Hecot Variable Capacitor*

DIMENSIONS: (exclusive of shaft) $13 / 16^{\prime \prime} \times 11 / 16^{\prime \prime} \times 11 / 16^{\prime \prime}$. Capacitance Range: up to 385 mmfd per section, with at least 10:1 ratio from maximum to minimum. Both "rotors" and both "stators" are isolated for flexibility of circuitry. Specially cut plates are possible but not recommended. Shaft diameter: $3 / 16^{n}$ or $1 / 4^{\prime \prime}$. Standard Shaft length: $3 / 8^{\prime \prime}$. Other lengths to order. Weight $1 / 2$ oz. Patent Applied For.
QUARTZ CRYSTALS and ELECTRONIC DEVICES by michey ELECTRONICS COMPANY

MT. HOLIY SPRINGS, PA. PHONE 376

Prototype models available only. For further details, price information and delivery dates, write, wire or phone.

Part of the control equipment of a modern dial system-dial telephony's equivalent of a brain. It goes into action the instant you dial a call, selectipg the telephene you want to reach and directing the switthes that set up the connection... just as the brain directs the muscular actions of the body.

Thismore about the nature of thought. But dial telephone systems do simulate many of the processes of the human brain. For example, when a number is dialed, Bell's newest switching system -

COUNTS the dial pulses
REMEMBERS them
DECIDES ON the best route to a nearby town or across the nation

TESTS to see if the route is clear
SELECTS an alternate if the first route is busy REPORTS difficulties in circuits, if any
Today's automatic switching reflects the creative thinking of many scientists and engineers at Bell Telephone Laboratories. Each year your dial telephone is able to do more for you. And this is but one phase of the continuing effort to keep your Bell telephone service the world's best.
has been found linear over its full scale.

In the instrument described, the

CLIFTON SIZE 10 SYNCHROS tor Consistent HIGH ACCURACY

Errorspread
curve for a
iypicalmonth's
production of
transmilters.

- Average Error Soread 7
- Averąe mas. Error from Ez about 5
- Averafe Rnis Error under 3^{\prime}
- guaravtied Maximum Error Speazd 12 "

IMMEDIATELY AVAILABLE

For full angineering information on trjisrittess, rec ミivers, resolvers, differentials and zortro iransformers, and complete lines of Size 11 and 15 synchros also inmedialely available, write or teleptene T W. Shoop, Scles Mgr. (Telephone Phila.) N. Ad sor 6-2101.

West Zocst Fep. Wm. J. Enright, 98E N . Kensingion Rd., Los Angeles. MUtual 6573.

LOOR $=O$ CPPC FOR

SYNCHRO PROGRESS

CLIFTON PRECISION PRODUCTS CO. INC. CLIFTON HEIGHTS
collimator lens has a diameter of 9 cm and a focal length of 63 cm . The other lens has a $6.3-\mathrm{cm}$ focal length. The light source is a 6-v, 50-cp lamp. A $25-\mathrm{mm}$ diameter photocell is used, stopped down to $16.5-\mathrm{mm}$, with a $5.5-\mathrm{mm}$ diameter hole cut in the center, the light source thus subtending an angle of 30 minutes at the collimator lens, the mean angle of divergence having the same value.

For retroreflectors, different parts of whose surface are utilized in sending light back in different directions, it is essential to provide uniform illumination across the sample surface. This is achieved by withdrawing the lamp and placing a lens of $2.5-\mathrm{cm}$ focal length in front of it as shown in broken lines in Fig. 1. The lens behind the photocell is replaced by one of $6.9-\mathrm{cm}$ focal length. The same system can also be used on reflectorized materials. The light source is imaged onto the photocell aperture through the two lenses forming a uniform image on the collimator lens. Optimum conditions are achieved if the image of the light source on the plane of the photocell completely fills the hole diameter. The complete instru-

Photometer is constructed as portable unit to facilitate measurements on the road under actual field conditions
ment, with separate carrying case for the galvanometer, is shown in the photograph.

Results obtained at normal incidence with this instrument without the use of separate colored calibration filters are in good agreement with those obtained with more elaborate equipment. Of eight samples of beaded material, four showed appreciable differences in the results obtained by the two methods and there is little doubt that the differences arise from specular reflection. Except for samples such as these

Want more per hour . . . or more accuracy . . . or less cost?

However you want your coil winding improved ... there's likely to be a Universal Coil Winder that will do the job.

Higher-production machines. More versatile machines. Machines that will give you greater accuracy.

See for yourself by visiting the Universal Demonstration Room nearest you - in Cranston, R. I. or Chicago, Ill. Watch how coils are turned out at top speed, see how convenient the
machines are for operators, observe how accurately the coils are wound.
Write us to set up a date for a visit. Address UNIVERSAL WINDING COMPANY, P.O.Box 1605, Providence 1, R. I., or 9 South Clinton St., Chicago, Ill.

And use the coupon to obtain information on latest developments in coil winding.
 SYSTEM

A POWERFUL integrated system

Calidyne's new 12,500 pound force shaker system is an achievement in magnitude of force-output and over-all system performance, ayailable in no other vibration testing system. With it you can now meet vibration test specifications with loads far heavier than ever before. It also opens new research and product-testing possibilities to commercial manufacturers.

FULL PERFORMANCE OPERATION OVER A WIDE RANGE

Unint upted, full rated performance over the 5 to 500 cps range without alternator switching or power factor correction results from a new rotary power supply design, which incorporates two identical alternators seriesconnected with provision for shifting phase between the two outputs. A new ring-type shaker armature suspension assures pure linear, sinusoidal motion of the armature system, rather than motion along an arc found in conventional shakers. Useful load is also greater, due to the high force output and light weight armature: 10 g with 1000 lb . load, 20 g with 375 lb . load.

EXCEPTIONAL STABILITY AND SIMPLIFIED CONTROL

Amplidyne servo controls hold a set frequency of 500 cps to $\pm 1 \mathrm{cps}$, and displacement or acceleration level to $\pm 3 \%$. The automatic cycling system further provides automatic changeover from constant displacement to constant acceleration at any preselected point, such as required for conformance to MIL-E-5272A. The new power supply design also permits direct connection of alternators to shaker armature. This eliminates control and switch gear, attendant maintenance and inconvenience.

Complete specifications and details on the Model 82 Shaker and Associated System available on request

having special properties the other samples showed negligible variation.

The specular component is usually of no use in road signs, and so it would be desirable to find a satisfactory method of testing that ignores the specular component, Measurement has indicated that the specular beam is negligible outside an angle of 9 -deg total width and the solution is to test samples at a 5 -deg angle of incidence, rather than at normal incidence.

The reflectometer has been used both in the laboratory and on road signs that have been installed. In the latter case, night observations are straightforward, both on reflectorized material and on retroreflectors; with simple screening, equally reliable results are obtained in daylight.

Acknowledgment is made to C . Maguire and K. S. Sarma, who assisted in the testing of the reflectometer.

Ion-Gage Supply Protects Tubes

R. W. Raible and M. K. Testerman

Engineering Experimental Station University of Arkansas Falyetteville, Arkansas

Laboratories with several experimental vacuum systems in simultaneous operation, find it desirable to have a compact portable ionization gage-tube supply available. The supply may be attached quickly to an ion-gage tube previously sealed into a vacuum system. It is wasteful and frequently inconvenient to have a supply for every iongage tube in use. Thus, a few portable supplies easily moved from one

(A) Ion-gage supply constructed for rack-panel mounting. Use of miniature tubes makes possible smaller portable unit that can be connected to gage

Out of IBM's Collator pops a tubing idea for you!

This is IBM's Collator-a mechanical super-accountant that shuffles, selects, matches and merges punched cards at the rate of four per second!
Heart of this electronic gee-whizzer is an extraordinary kind of tubing-a contact roll over which the cards must pass. Eighty miniature, hard steel brushes finger each card as it skims by-penetrate it through pre-punched holes, touch the contact roll and close the electronic circuit-flipping the card into the right slot.

Collator contact rolls must have good wear resistance to stand this high-speed workout. And they must resist corrosion and be good electrical conductors. So IBM employs Superior Weldrawn* Beryllium Copper and
low carbon steel composite tubing for Collator contact rolls. This tubing meets IBM's tight specifications for wear resistance, peak hardness and conductivity. Superior supplies the composite tube in $11 / 8^{\prime \prime}$ O.D. with $.049^{\prime \prime}$ wall.

When tubing troubles put the hex on your plans, call on Superior.

We have years of experience, the modern test and development facilities, and more than 55 analyses in many metals to unravel your problem. Write for a copy of our new Technical Bulletin \#7-2 on Seamless and Weldrawn* Beryllium Copper Tubing. Superior Tube Company, 2500 Cermantown Ave., Norristown, Pa.

Round and shaped tubing available in Carbon, Alloy and Stainless Steels; Nickel and Nickel Alloys; Beryllium Copper; Titanium; Zirconium

All analyses . $010^{\prime \prime}$ to 5/a' O.D.
Certain analyses in light walls up to 21/2" O.D.

Toroids... Actual Size

B\&W WINDS THEM ALL!

Now . . . you can have a dependable source of supply . . . for toroids of any size . . . in small or large production rens.

B\&W's recent purchase of one of the first Boesch Subminiature Toroidal Coil Winding Machines extends to an even greater range the complete line of B\&W toroidal coils available to meet any of your requirements. For with this new equipment, B\&W can now wind the smallest toroidal coils on a production line basis, just as precisely, just as rapidly, as it always has the larger sizes.

The ability of these miniature coils to reduce the size of many different types of toroidal assemblies is nowhere better illus. trated than in the company's own line of filters. Made to meet the highest standards of industry and military, these R\&W components include high-pass, low-pass, bandpass, and band suppression filters, as well as discriminators for r-f or audio frequencies.

For information on how B\&W toroids can solve your production prablems, give you greater miniaturization, write us about your problem on your company letterhead.

BAD Barker \& Williamson, Inc. 237 Fairfiold Avenue - Upper Darby, Penna, U.5.A.

FIG. 1-Ion-gage supply controls cur. rent to gage-tube filament in relation to gas pressure
ion-gage tube to another are of value. The circuit described in this article was found to be adequate for such applications and to be reliable in its operation over long periods. The filament-emission regulator circuit is a modification of previously reported filament-emission regulators utilizing temperature control ${ }^{1,2,3}$ of the filament.

A schematic diagram of an ion-gage-supply protection circuit is presented in Fig. 1. The power supply for the unit consists of transformer T_{1} and tubes V_{1} through V_{6}. This supply provides voltages of $+150,-150$ and -255 volts with vr-tube regulation. A single transformer provides both positive and negative $d-c$ voltages with full-wave rectification.

The electron emission of the fila-

- AlSiMag may offer improvements for your application. Send in blueprint or sample today for price and delivery information.

53 RD YEAR OF CERAMIC LEADERSHIP
AMERICAN LAVA CORPORATION
A SUBSIDIARY OF MINNESOTA MINING AND MANUFACTURING COMPANY CHATTANOOGA 5, TENNESSEE

Branch offices in these citie: (see your local felephone directory): Cambridge, Mass. - Chicago, Ill. - Cleveland, Ohio - Dallas-Houston, Texas - Indianapolis, Ind. Hos Angeles, Calif. * Newark, N. J. Philadelphia-Pittsburgh, Pa. . St. Louis, Mo. . South San Francisco, Calif. - Syracuse, N. Y. • Tulsa, Okla.

The Model 59 UHF Megacycle Meter is specially designed to cover the UHF television band plus the many mobile and fixed communication services through its wide frequency coverage of 430 to 940 megacycles in a single range. It incorporates all of the quality features and the excellent performance of the popular Model 59 plus a unique design resulting in a maximum of convenience in use. It is an indispensable instrument for electronic engineers, researchers, experimenters and radio servicemen.

USES

- As a grid-dip oscillator for measuring the resonant frequency of passive circuits such as cavities, tank circuits, inductors, capacitors, chokes, transmission lines and antennas.
- As an auxiliary signal generator for alignment and tuning of $\mathbf{U H} \mathbb{F}$ receivers and transmitters.
- As an oscillating or absorption marker for use with a sweep-frequency generator.
- As a wavemeter or heterodyne frequency meter.
- As a low sensitivity receiver or field-strength meter for tracing source of spurious oscillations in receivers and transmitters.
- For adjusting antenna systems, wave traps, and filters.

SPECIFICATIONS

FREQUENCY RANGE: $430-940 \mathrm{Mc}$ in a single band
FREQUENCY ACCURACY: $\pm \mathbf{2 \%}$ (Individually calibrated)
OUTPUT: CW or 120 -cyele modulation
POWER SUPPLY: 117 volts, 60 cycles, 30 watts
DIMENSIONS: Oscillator Unit $45 / 9^{\prime \prime} \times 21 / 2^{\prime \prime}$
Power Unit $51 / 3^{\prime \prime}$ wide $\times 61 / 0^{\prime \prime}$ high $\times 71 / 2^{\prime \prime}$ deep
ment is regulated against temperature changes of the filament resulting from changes of gas pressure in the ion-gage tube and also fluctuations in line voltage. The fila-ment-emission regulator consists of transformers T_{s} and T_{5} along with tubes V_{7}, V_{s}, and V_{10}. The regulator is actuated or controlled by the iongage grid current, which passes through R_{8} and R_{3}.
A change in ion current will produce a change in the voltage drop across these two resistors and thus a change in the d-c potential appearing at the grids of the balanced difference amplifier V_{8}. The amplified d-c signal then is applied to the control grids of V_{7} and V_{10} which in effect, changes the load placed on the secondary windings of T_{s},

This change of impedance is reflected into the primary of T_{4}, which is in series with T_{5}. Thus, the voltage applied to the filament is altered to correct for the original variation in the ion-gage grid current. The grid current is regulated to within approximately 1 percent for variations in line voltage of ± 10 percent over all ranges of gas pressure normally encountered with an ion-gage tube. In the particular application shown here, resistors R_{2} and R_{s} were chosen to produce a 155 -volt drop with an ion-gage grid current of 10 ma .

Adjustment

This causes the signal-input grid of V_{s} to be at or near ground potential under equilibrium conditions. An example of the adjustments in the regulator is given below for the type 1949 ion-gage tube for which this supply was primarily designed. However, it would be easy to adjust this supply to operate properly with almost any ion-gage tube.

The 1949 tube requires a nominal filament voltage of approximately 5 volts. To supply this potential the secondary of T_{o} is tapped across two 6.3 -volt windings in series. Because of the reduced voltage on the primary of this transformer, the connection gives approximately the required filament voltage.

A milliammeter is placed in the grid lead to the ion-gage tube and a variable transformer is used in the power line leading to the entire unit for the purpose of varying the input voltage. Resistor R_{z} is so
 Are these vital publications, that tell the story of your products and your company, as effective, readable, well designed and illustrated as they can be? Today more than ever, your entire operation is judged by each annual report, employce manual, and public relations piece that you produce. Have you examined your communications lately? If you have any doubt as to the impact of your instructional and promotional literature, remember . . .

COMMINICATION IS OUII BUSINESS

For a good many decades McGraw-Hill has stood for complete coverage in the business literature field. Now the McGraw-Hill Technical Writing Service offers a new approach to your publication problems - an integrated writing, cditing, illustrating, and printing service for the custort production of: instruction manuals, product buldetins, training aids, industrial relations literature, annual reports, company histories, procedural guides and other collateral literature. More than 150 editorial and graphic experts are at your disposal, ready to prepare high-quality material to your own or government specifications. Save time, save money . . . and make your communications work! Let our staff be your staff for technical and business publications.

Mcliraw-hill Book Co. TECHNICAL WRIIING SERVICE

Write or phone Technical Writing Service, McGraw-Hill Book Co., Inc. 330 West 42nd Street, New York 36, N. Y. - LOngacre 4-3000

Ouly - Trectsion offers you HIGHEST QUALITY, LOW COST PAPER TUBING any shape every size any length plus any ID every OD any quantity

adjusted that the regulator operates in its optimum manner over the desired variation of input-line voltage and filament-temperature changes. The multiple windings on T_{5} permit almost any desired ion-gage tube to be used and, by appropriate adjustment of R_{2}, R_{3}, and R_{4}, optimum regulation can be obtained at almost any ion-gage grid current.
The ion current of the ion-gage plate passes through a divider which gives scales of sensitivity of $1,3,10,30,100$ and 300 . The circuit is such that there is a maximum of only 1 -volt developed across this divider on any range setting so that the voltage appearing on the ion-gage plate does not deviate appreciably with changing ion currents.

Gain
In the specific case of the type 1949 ion-gage tube, the gain of the amplifier V_{11} and V_{12} can be adjusted so that one volt across it produces full-scale deflection of the meter. When the sensitivity is thus adjusted, full-scale pressure sensitivities of $9 \times 10^{-4}, 3 \times 10^{-4}, 9 \times 10^{-5}$, $3 \times 10^{-5}, 9 \times 10^{-8}, 3 \times 10^{-8}$ millimeters of mercury are obtained. Potentiometer R_{5} is the sensitivity adjustment for the vacuum-tube voltmeter and R_{6} and R_{7} are the coarse and fine meter-zero adjustments respectively. The same d-c signal from the ion-gage collector plate that goes to the vacuum-tube voltmeter is also applied to the control grid of V_{13}, a cathode follower, which places it on the shield grid of thyratron V_{8}. The cathode-bias voltage on the thyratron is obtained by a bridge rectifier operating off of the filament winding of transformer T_{1}. Bias is adjusted on the thyratron so that a signal causing $1 \frac{1}{2}$ times the full-scale reading will cause the thyratron to fire and close relay 2. Cathode follower V_{13} was found necessary to isolate the grid of the thyratron from the collector plate of the ion-gage tube because appreciable currents flowing in this grid circuit caused a false signal to be applied to the vacuum-tube voltmeter. When relay 2 is closed, the 110 -volt a-c is removed from the filament circuit and also the 110 -volt outlet provided on the back of the chassis.

This outlet may be used to pro-

tect other tube filaments in the vacuum system and also may be used to stop the diffusion and forepumps in the event of a leak. Use of pilot lights to indicate the condition of the circuit is desirable when working with systems that have opaque envelopes. If the filament of the ion-gage is visible, the on and off indicator bulbs are unnecessary.

Type 2050 thyratrons can be used without any major circuit changes in place of the 6L6's, which presently are used as the control tubes in the variable impedance. Also, the miniature thyratron 2D21 can be satisfactorily used at this position to produce a circuit consisting entirely of miniature tubes. When thyratron tubes are used as the regulating tubes in the variable impedance, there is an occasional tendency for the filament-emission regulating circuit to oscillate at high-pressure conditions in the ion-gage tube.

Recent work has shown that the 6L6 tubes can be replaced by type 6216 hard miniature tubes, with an improvement in filament-emission regulation. This results in a compact circuit and eliminates the oscillating tendency present when miniature thyratrons are used. When 6216 tubes are used in place of V_{2} and V_{10}, transformer T_{4} is replaced by one having a $350-0-350 \mathrm{v}$, 90 ma secondary winding.

References

(1) ${ }^{1)}$ J. Rainwater, Rev Sci Inst, 13, p 118. 1942.
(2) R. B. Nelson and A. K. Wing, Rev Sci Inst, $13 . \mathrm{p} 215,1942$
(3) L. N Ridenour and C. W. Lampson, Rev Soi Inst, 8, p 162, 1937.

Reactance Voltage
 Bias Source

By Frank J. Burris
Tacoma, Washington

The reactance-generated bias source shown in the diagram provides an increase in efficiency over the ohmic voltage drop possible in this portion of the circuit at no further expense to the supply source. A two-stage inductively operated filter is shown but a single-stage unit will also function likewise. Po-

INTEGRATED

ELECTRONICS

... welded into one close knit organization of integrated responsibility. From the first step in research to the first production unit, the same engineering group is responsible for both design and development. This integrated operation eliminates diversion between early development and final responsibility for maximum production design. One group of specialists with one goal... the solution to your problem.

For the past ten years Hoffman Laboratories has been successfully solving advanced design and production problems in electronics and electro-mechanics. In almost every case it has been necessary to reach beyond the routine of development...to develop special test and analytic equipment... to formulate unique research procedures.
Hoffman Laboratories has never undertaken a development project that has not gone into production.
Write the Sales Department for your free copy of
"Report From Hoffman Laboratories."

Interior view of Sound Chamber. Hoffman
Laboratories has one of the West's largest and best equipped Environmental Test Laboratories.

Hoffman
 LABORATORIES, INC.

Navigational Gear Missile Guidance \& Control Systems

Radar

Noise Reduction

 Countermeasures (ECM)Computers
Communications
Terminal Equipment Transistor Application

[^13]Challenging opportunities for outstanding engineers. Write Director of Engineering, Hoffraan Laboratories, Inc. 3761 S . Hill Street, Los Angeles 7, California

If you're looking for an opportunity to work with the finest mindpower and facilities in the whole new world of aircraft development...if you want to harness the power of great knowledge to your own technical training... then you should know this:

Martin's engineering staff represents an aggregate of 10,000 man-years of engineering experience, covering every branch of the aeronatutical sciences.

And there is - and always will be-a need for outstanding "new blood" in this organization.

If it's only a job you wanl, the woods are full of them. But if you are one of the few who are destined to go far in this industry, you'd be wise to take an engincer's-eye view of the mindpower and the facilities you'll be working wilh.

Write 10 J. M. Hollyday, Box E-9, The Glem L. Martin Company

RMC DISCAPS

the standard of performance throughout the electrontic industry

RMC devotes its entire research, engineering and production facilities to the development and manufacture of ceramic capacitors. Production is controlled from basic powders to completed capacitor assuring absolute quality control. Every DISCAP is tested at twice its rated voltage before shipment. DISCAPS are available in temperature compensating, by-pass, stable capacity, high voltage and AC line types in addition to the exclusive new "Wedg-loc" types for printed wire circuits.

PRICE is right! DELIVERY is right!

ECLIPSE-PIONER AUTOSTw" Sywchros

**transmitters. recewers, control transformers, differentials and resolvebs

And there's a type to meet every need!

Our Autosyns provide the perfect answer to synchro requirements for three good reasons. First, they're priced attractively to keep down your initial cost. Second, they can be delivered in prototype quantities at once. Third, they're available in all standard types in production quantities ... as well as practically any special type you could ever need. And, of course, military specifications are used as design objectives in all cases. Only at EclipsePioneer can you find the combination of
experience, facilities, and production techniques that make possible all these important advantages. So, whatever your synchro requirements, it will pay you to see Eclipse-Pioneer.
other standard and special eclipsePIONEER AUTOSYN SYNCHROS INCLUDE models $1,11,15,18,23$ and 2 R as well as high temperature, high frequency, lin. ear, and other types for special needs.
*registered trademark bendix auiation corporation.

WRITE DEPARTMENT C

ECLIPSEPIONEER

TETERBORO, NEW JERSEY

West Coast Office: 117 E. Providencia Ave., Burbank, Calif.
Export Sales: Bendix Inferinational Division, 205 E. 42nd \$1., Now York 17, N. Y.

ELECTRONS AT WORK

ohmic value of 22 volts. Any ohmic bias voltage developed across L_{z} is incidental and also supplementary to that generated by the reactance method. The idea is suited to audio systems, as well as being applicable to other a-c or d-c electronic amplification apparatus.

Transistor Mike

Variable-reluctance microphone and transistor preamplifier are packaged by Remler Co., Ltd., of San Francisco, to fit space of carbon microphone

PERTINENT PATENTS

By Norman L. Chalfin Hughes Airoraft Co. Culver City, Calif.

Computing devices differ in function, magnitude and method. In the three computer patents reviewed this month, one application reviews the art and a portion of this information is printed below.

Electrical Computer

A recent patent for an "Electrical Computer," issued to C. J. Hirsch of Douglaston, N. Y., is assigned the Hazeltine Research Corporation of Chicago, Ill. This patent 2,652,194 reviews the computer art as quoted below:
"One general type of . . . computer, which may be referred to as a digital computer, includes relay machines, punch-card machines and adding and multiplying machines utilizing either mechanical or electronic counting devices. These computers can handle numerical data after the problem has been reduced to a numerical routine susceptible to solution by digital methods, which often requires extensive programming of the operation of the machine.
"The accuracy usually is limited only by the number of places to

ELECTRICAL CORDS KEEP YOUR APPLIANCES IN SERVICE

manufacturers and service men whose products serve best

Smeitr Beldeñ WIREMAKER FOR INDUSTRY

PROBLEM-R-F interference caused by portable electric hand tools was once quite a problem for the military. To suppress the noise from such small equipment, engineers tried outboard filters and shielded line cords. But these proved to be expensive, bulky, and generally inconvenient. In addition, leakage current from line to tool frame was increased-in some cases to a hazardous extent.
APPROACH-The Black $\&$ Decker Manufacturing Co., maker of the drill illustrated above, submitted the problem to the Radio Noise Suppression Laboratories of the Sprague Electric Company in Los Angeles.
SOLUTION-Sprague designed a tailor-made filter which meets all the requirements of size, weight, and performance. Eliminating all radio noise, the filter is still small enough to be installed in the drill housing.
FILTER PRODUCTION SCHEDULES for this drill and small electric hand tools made by other manufacturers are regularly met by Sprague plants on both coasts. Perhaps we can solve your problem too. Write, wire, or phone Sprague Electric Co., 11325 W. Washington Blvd., Los Angeles. 66, Calif. (TExas 0-7491) or North Adams, Mass. (MOhawk 3-5311).

which a computation is carried out, but the machine may have to perform a very extensive counting operation to solve even a single algebraic expression. Computers of this type tend to be bulky and cumbersome in operation, particularly when the problem is at all complex.
"Another type of . . . computer may be classified generally as a continuously variable computer. These computers deal with quantities by continuous correlation with mechanical displacements or electrical effects. Tachometer instruments come under this classification. Another example of this type of computer is the resolver, in which a primary winding carrying a voltage the amplitude of which represents a vector is coupled to two secondary windings on a rotor mechanism.
"The rotor is moved in such a way that the coupling of the primary winding to these two secondary windings varies as the sine and cosine respectively of the angular direction of the vector. Thus the amplitudes of the voltages induced in the two secondary windings may represent respectively the components of the vector as projected on the axes of a system of Cartesian co-ordinates.
"Compared with digital computers, the continuously variable computers usually have the advantage of high speed and facility of setting up the computer to solve a given problem, but have the disadvantage that their accuracy tends to be lower. In order to provide a computer of the continuously variable type to solve a particular problem, it is necessary to find an effect which can be made to follow the independent variables involved in the problem continuously with proper tracking and without objectionable backlash or time lag effects.
"Much ingenuity has been exercised to devise mechanical, electrical or electromechanical devices suitable for accomplishing these purposes and for providing a useful indication of the result of the computation. In general, however, each such computer can be used to solve only a very restricted form of problem and hence usually is permanently coupled mechanically

MASTER TAMPER

8650 jolts per minute, hour after hour, can't shake loose the EVERLOCK lockwashers on the Master Tamper.

Sverlock

R-B-M SWITCHES

Specially designed EVERLOCK lockwashers provide permanent, vibration-proof fastenings on R-B-M automotive foot dimmer, headlamp and horn switches.

Everlock... In the Picture

Wherever Positive Grip Counts

Screw-Lockwosher Assembly

locknuts

everlock lockwashers' exclusive alternating chisel edges bite into the face of the work and the nut under powerful spring tension . . . hold fast even under the most severe jars, jolts and vibration. Available in four standard types or to your own specifications, everlock lockwashers provide the positive holding power demanded by more and more manufacturers of quality products. Next time you order lockwashers be sure to specify amf everlock. THOMPSON-BREMER \& COMPANY, Dept. E, 520 N. Dearborn, Chicago 10, Ill.

Kenneth D. Delanoy J. M. Murphy W. L. Borth, Jr. Thom Lundeen Doyton 3, Ohio

Oscar P. Martin Lokewood 7, Ohio
J. Romsey Reese, Inc. New York 7, N.Y.
J. M. Murphy Monchester, Cann.

Russell T. Brosius Philadelphia 3, Pa Detroit 1, Mich.

Chicago 34, III. Moline, Illinais
C. W. McNeil Forrest Moschner Houston, Texos St Louis, Missouri

Leonard F. Berg A. J. Murphy St. Paul 14, Minn. DeWitt, N.Y.

Richord C. Dudek Beverley Hills, Calif. Atlonta 6, Ga.
P. L. Robertson Milton, Ont, Can.

Sam T. Gleaves Lovisville 5, Ky.

Donald G. Teeling Indianapolis 44, Ind.

Oregon Indus. Factors Partland 1, Oregon

If we
haven't already made it we'll design it for you

To solve your specific potentiometer problem, send an outline of your specs to Gamewell. You'll get prompt service on your order for a prototype to meet your requirements.

Linear and non-linear Gamewell Precision Potentiometers are described in the booklet shown below. We'll be glad to send you a copy.

THEGAMEWELL COMPANY NEWTON UPPER FALLS 64, MASSACHUSETIS
In Canada: Northern Electric Co., Ltd., Belleville, Ont.

[^14]

Manufacturers of precision electrical equipment since 1855
or electrically to the source of the independent variable involved in the computation.
"This specialization of function, dictated by the special nature of the mechanical or electrical devices utilized in the computer, makes the continuously variable computers of limited usefulness in the solution of the mathematical problems or algebraic expressions most frequently encountered."
The present invention provides an electrical computer for solving equations involving known and unknown parameters. A great many relationships may be expressed in the form of equations in which known parameters include one or more independent variables some of which may be assigned constant values in a particular case and in which the unknown parameter is the dependent variable.

FIG. 1-Number can be raised to power greater or less than unity in this circuit, which forms portion of new computer design
The invention is devised to provide high-speed solution of equations by the computation of common mathematical relationships involved ; by continuously and rapidly recalculating variable parameters; and by referring, in algebraic computation, all of the independent and dependent variables, represented by voltages, to a convenient reference or datum voltage.

In Fig. 1 there is shown a circuit according to the Hirsch patent in which a number may be raised to a power either greater or less than unity.

The computer comprises a plurality of circuits in the form of energy storage networks such as the reference circuits A and B energized by batteries E_{1}^{\prime} and $E_{1}^{\prime \prime}$ through vac-uum-tube cathode-follower circuits under the control of a timing gen-

HUBBELL Interlock

N/EW Automatic Locking - Quick Disconnect /RSULATED Interlock Plugs

Fast Crimp Wiring for \#22 to \#18 Wire

1. Strip wire $1 / 4^{\prime \prime}$ (diameter of wire insulation not to exceed.075). Insert wire through Nylon Insulation into plug barrel.

2. Crimp with Inferlock Crimping Pliers. (Cat. No. 120Y91)
3. Male plug (Cat. No. 480B10) is now fully insulated and ready for a multiplicity of electrical or electronic applications.
4. Plug locks securely, automatically in any Interlock Type " B " Jack.

The unique lo=king features of all Interlock Plugs assure a permanent low resistance contact, vibrction-proof connection every time. The contact parts themselves form the locking mechanism, making an electrical breakdown impossible while plug is locked. Constant coil spring pressure on contact points adjusts automatically for changes in temperature or pressure.
Interlock Pluçs are easily adaptable for use wherever a positive, vibration-proof connection is required. Our Development Laboratory will cooserate with your engineers to adapt Interloc: for your specific applications.

For Further Information, Write Dept. A:

New Microwave Components for 12.5 to $18.0 \mathrm{Kmc} / \mathrm{s}$

erator. The timing generator operation may be seen from the curves of Fig. 2.

A comparison develops the negative pulse of curve (C) to trigger a pulse generator. The pulses (curve D of Fig. 2) are applied to a sampling circuit containing a diode bridge. The pulses are applied across one diagonal of the bridge to overcome the bias of a voltage applied across the same diagonal terminals.
The bridge is thus rendered conductive for the duration of the triggered pulse. During this interval the voltage of reference circuit B is applied across the resistor in

FIG. 2-Timing generator operation in terms of waveforms
the grid of the vtvm circuit to charge the capacitor in its cathode.

To solve an equation of the form

$$
y=x^{n}
$$

batteries $E_{1}{ }^{\prime}$ and $E_{1}{ }^{\prime \prime}$ are adjusted to equal unity on any convenient voltage scale. The inventor shows that there is a relation between the voltages in the system of

$$
\frac{E_{1}^{\prime \prime}}{E_{2}^{\prime \prime}}=\left(\frac{E_{1}^{\prime}}{E_{2}^{\prime}}\right)^{n}
$$

so that in the case of adjustment noted above $E_{2}^{\prime \prime}=\left(E_{2}^{\prime}\right)^{n}$; therefore $E_{2}^{\prime \prime}$ is parameter x and E_{2}^{\prime} is parameter y.
As an example let $x=0.6$ and n $=2.1$ where $\left(E_{1}{ }^{\prime}\right)=\left(E_{1}{ }^{\prime \prime}\right)=1$.
The time constant of the reference networks B and A are adjusted to the ratio $n=2.1$.
Battery E_{2}^{\prime} is then adjusted to equal 0.6 on the same scale as used for the other adjustments. The value as read on meter m is found to be 0.34 , thus $y(0.34)=x^{n}$ ($0.6^{2.1}$).
There are further details of the utility of the circuit shown in the patent and other more complex

Send for your free copy of the all-new Guardian Relay Catalog Number 11. Illustrations, dimensional drawings, full technical descriptions and operational data charts combine to present the most complete relay line available from any single source! Write today for your free copy, sent post-paid. No obligation.

FOR SWITCHING COAXIAL CIRCUITS AT FREQUENCIES UPTO 5000 MC, DANBURY-KNUDSEN OFFERS A TYPE FOR ALMOST ANY PRODUCT APPLICATION

SPDT Coaxial Switches with grounding-type contacts are available in series 4 and 5 with many combinations of MB, SM, BNC, UHF, N, and C connectors, as well as attached lengths of cable, or solder terminals. Both series come in either 100 -watt size or a larger size which has a power rating of 500 watts and twin contacts in both positions. The VSWR of these switches is low. Average measurements of the CR25N (N connectors) show VSWR readings ranging from 1.03 at 100 mc to 1.4 at 4000 mc . Over the same frequency range, the crosstalk figure varies from 85 db to 40 db .

For Limited Space Applications, miniature SPDT coaxial relays are available in series 2. These relays have MB or BNC connectors or attached leng ths of cable. 15/6 inches high, relays in this series require a mounting space of only $15 / 16$ by $1 \frac{3}{8}$ inches.

Double-Pole Transfer (crossover) switches are available in series 56 with either BNC or N connectors. At 300 mc , VSWR is 1.08 and the crosstalk figure is 44 db .

Fast Operating Multiposition switches are available in 3 -, 4 -, or 6 -position types with BNC connectors, and in 3 - and 4 position types with N connectors. At 500 mc , VSWR is 1.1 and crosstalk 60 db .

Resistor-Terminated Switches for video and similar applications are available in 2-, 3 -, and 4-position types with BNC connectors, and in 2 -position types with UHF or N connectors. Each input is terminated in a 50 or 75 ohm resistor, when not connected to the common output.

Small Rotary Switches in 3-, 4-, or 6-position types with BNC connectors constitute series 1000. These switches are 2 inches in diameter, manually operated, with a VSWR of 1.15 and crosstalk figure 60 db (both measured at 1000 mc).

Most of the 2-position switches above are available for either AC or DC remote operation, or for manual operation by means of a toggle type actuator. For remote operation, the multiposition types can be supplied only with DC operating coils.
Mating connectors for all cable types may be obtained from the INDUSTRIAL PRODUCTS COMPANY, a division of DAN-BURY-KNUDSEN, INC.
Write for our catalog describing these and other types of coaxial switches and relays.

FIG. 3-Blocks showing system for solving an equation (A) or finding logarithms to any base (B)
variations of the circuit for achieving results of computations for $z=x y$, or $z=x / y$, or $y=k / x$, for $z=x y$, or $z=x / y$, or $y=k / x$, (where a is a convenient constant).

Figure 3B shows a block diagram of the system for finding logarithms to any base or antilogarithms.

Figure 3A shows an arrangement for solving equations of the form $y=\sin (x \pm \theta)$ or $x=\theta \pm \sin ^{-1} y$.

Continuous Computer

Patent 2,661,152 recently granted to Peter Elias of Cambridge, Mass. covers a "Computing Device" for providing a continuous indication of the instantaneous magnitude of the product of two independent variables either or both of which may vary rapidly with respect to time. This invention provides such indication with electronic circuits and no moving or mechanical parts and may be used with direct reading indicators or with graphic electrical recorders.

In the invention each of the independent variables is expressed as a signal voltage whose instantaneous magnitude is proportional to the magnitude of one of the factors of the product and whose polarity is determined by the positive or negative coefficient of the factor.

Figure 4 is a circuit diagram of the invention in its simplest form. Two pentodes are shown with a

Radio Receptor

 announces the RR106

new type Germanium PNP Transistors

Selected pairs for efficient Push-Pull Audio Power Operation

Featuring:

- Low distortion
- Small, hermetically sealed construction.
- Low $I_{\text {eo }}$
- Matched for low distortion and equal current drain.
- Stable, reliable, long. life performance.

A few of many possible applications:

- Personal portable receivers
- Intercoms
- Servo amplifiers
- Magamp preamps
- Portable tape recorders

TYPICAL RR106 OPERATION
See figure 1

For further information, without obligation, write Department E-6.

1. This current level is established by the forward base bias and is essential to minimize distortion at low levels.
2. For rated power output. For normal commercial broadcast service the battery drain averages to approximately 10 ma . A class A amplifier, under similar conditions would drain approximately 37 ma !
3. This is total circuit efficiency and includes transformer losses as well as power dissipated in the emitter stabilization resistor.
4. This rating is established for a maximum harmonic distortion of 10% and for conservative operation at an ambient temperature of $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$.

We also manufacture Selenium Rectifiers and Silicon and Germanium Diodes.

With U.S. MICRO-POWER

BEFORE . . . voltage drops below a usable level ...be fore there is any loss of power to essential equipment . . . MICROPOWER IS IN ACTION. Completely automatic, Micro-Power operates with the main source
 of power. No time-consuming "load transfers", no power "outages"

... EVEN FOR PRECIOUS SECONDS!

Micro-Power is a complete standby service that replaces several units of costly, more complicated eqưipment. Electric plant, rectifier, battery banks and motarWrite U. S. Motors for complete information, specifications and fower curve charts.
generator CAN ALL BE ELIMIN. ATED . . . with the installation of a single MICRO-POWER UNIT. NEW INSTALLATONS - SAVE UP TO \$300 PER MILE!

UNITED STATES MOTORS CORPORATION

553 Nebraska Street OSHKOSH, WISCONSIN

common cathode return, a common plate circuit, a common negative suppressor bias voltage source but independent input circuits to the grids. The common plate circuit is designated output $x y$. The suppressor circuits are the y input. The control grid circuits are the x input. The common controls for each of these inputs are linked together.

FIG. 4-Product of two independent variables is continuously indicated

FIG. 5-Method of dividing (A) or raising to a power (B)

Suitably adjusted the sum of the output currents in the common output circuit is equal to $x y$. In the patent complete derivations of the resultant are shown to indicate the degree of accuracy and more accurate circuits, which are combinations of the basic circuit are indicated.

An example of the use of circuits shown in the patent (not all of which are reproduced above) is shown in Fig. 5A for computation of x / y.

The input multiplier such as one of those shown in Fig. 4, but hav-

IN TOP QUALITY CORES

For HIGHIER FREOLUETOLES

FROM 20 TO 300 Mc.

TYpes SE, JaviI W

 GA\&F CARBONYL IRON POWDERS

From Research to Reality...

Three types of G A \& F Carhonyl Iron Powders are particularly satisfactory in cores designed for use at the higher frequencies. To assure low losses and good magnetic and temperature stability at 20 mc . to 300 mc ., we invite you to test Types SF, J and W. These powders are microscopic, almost perfect spheres-ranging from 3 to 9 microns in diameter-with the same rigorous uniformity that characlerizes all G A \& F Carbonyl Iron Powders.

Today, Carbonyl Iron Powders-a total of ten types-are widely used in the production of cores for transformers and inductor coils-to increase Q values, to vary inductances, to reduce coil size, to confine stray fields or to increase the coupling factors.
We urge you to ask your core maker, your coil winder, your industrial designer, how G A \& F Carbonyl Iron Powders can increase the efficiency and performance of the equipment or product you make, while reducing both the cost and the weight.
We offer you two books-one covering SF, J and W Powders only-the second covering the other seven types. In both books, characteristics and applications are given with diagrams, performance charts and tables. For either or both hooks, address Department 24.

S.S.WHITE QUALITY IS AN INVESTMENT

S.S. White flexible shafts incorporate the latest engineering and technical advancements in flexible shaft design and manufacture. They're a quality product built to measure up to the highest possible performance standards. This is one reason why there is no "or equal" for an S.S. White flexible shaft, and why you can specify them with confidence.

BULLETIN 5306 has basic information and data on flexible shaft application and selection. Send for a free copy. Address Dept. E.

THE Ce/OCNite INDUSTRIAL DIVISION DENTAL MFG. CO.
 10 East 40ih Sireet NEW YORK 16, N. Y.

Western District Office - Times Building, Long Beach, California
ing a transformer output is arranged to generate a voltage proportional to the negative of the product of two input voltages, $-k y z$ where k is a positive constant. The output is applied to a conventional adding circuit which has as its second input the dividend voltage x. The resultant $x-k y z$ is applied to an amplifier of gain A, which provides thus $A(x-k y z)$ so that the input voltage z is now $z=A(x-$ kyz) or $z(1+A k y)=A x$ and $z=x /[(1 / A)+k y]$.

For a non-zero y, z may be made as nearly proportional to x / y as desired by increasing A, the gain of the amplifier.

A further example is shown in Fig. 5B where when the same voltage is applied to both inputs of a multiplier such as shown in Fig. 4 an output voltage proportional to the square of the input voltage is obtained. Higher powers to give a resultant x^{n} may be obtained by applying the original voltage x to one side of a multiplier while the last x^{n} is applied to the other side.

Shift Register

In computing devices shift registers are used for storing items of information for variable lengths of time, for converting serially occurring information to parallel or simultaneous operation and so forth. Such circuits frequently require a number of stages under some periodic control to advance the operation of the computer.

An invention of a "Shift Regis-

FIG. 6-Three-stage shift register (one stage within dashed lines)

ter" by H. M. Fleming, assigned to Monroe Calculating Machine Co., of Orange, New Jersey, was awarded patent 2,638,542.

The principal object of the Fleming device is to provide a shift register capable of being used in the manner of prior shift registers with a minimum number of electron tubes per stage.

One form of the invention is shown in Fig. 6, where three stages of the invention are indicated in the circuit. One stage is in the dashed outline. Figure 7 shows the time

FIG. 7-Time relationship of pulses in shift register
relationships of the pulses involved in the operation of the invention.

High and low input signals are applied to the input triode through an integrating circuit R and C. The anode of the first triode is connected to a source of positive advance pulses that provide anode potential during the pulse period occurring at regular intervals.

The cathode of the first triode is connected through a capacitor to a source of negative potential and to the grid of the second triode. The cathode of the first triode is connected through a capacitor to a source of negative potential and to the grid of the second triode. The cathode of the second triode is connected to a source of negative pulses that occur in coincidence with the advance pulses.

The signals are applied to each stage of the register, each in coincidence with an advance pulse but due to the action of the integrating circuit are not in effect until the occurrence of the next advance pulse.

Conduction of the first tube of the pair in response to a signal charges the capacitor in the cathode of the first tube which maintains the second tube conducting until a third advance pulse occurs. If the applied signal is such as to cut off the first tube the second does not conduct.

Ama, a division of American Bosch Arma Corporation, manufacturers of high accuracy defense weapons control systems, has selected Bogue precision power supplies for their laboratories and production testing.
Fire control, bomb sighting, and navigational systems all depend on very precise equipment. Bogue hi-cycle power provides the high degree of accuracy to meet the severe requirements these systems demand.

Precision Power

There is a Bogue engineering representative in your area to discuss your power applications and assist you in the selection and design of power apparatus to meet your exacting specifictions. A phone call or letter will have him at your service.

Write for Descriptive Bulletin 440

Bogie Electric Manufacturing Company Paterson 3, New Jersey

$$
\begin{aligned}
& \text { vOGUE } \\
& \text { The Alithouty on digit Couple Precision Paper }
\end{aligned}
$$

Air Cylinder Pushes Pallets On Subassembly Line

Start of assembly line for i-f strips, showing operator loading strips into four-strip rack

Air cylinder under metal cover here operates every four minutes to drive plunger thet pushes racks on line at left one position further down slowly

AN AIR CYLINDER operating every four minutes under control of a time clock provides automatic pass-
along action for an i-f subassembly line in the Westinghouse Metuchen, N. J. plant. Red lights flash 15
seconds before each plunger operation, to warn assemblers that their racks will soon begin to move.

Adhesive Tape Capacitors for Mechanized Assembly

Since the announcement of a new mechanized production system, code-named Project Tinkertoy (Electronics, Dec. 1953, p 160), the National Bureau of Standards has developed a compatible adhe-sive-tape capacitor for this ce-ramic-wafer system under the sponsorship of the Navy Bureau of Aeronautics.

Tape spray chamber, with spray gun at right. Infrared lamps dry coating

A conducting tape, coated on one side with a dielectric, provides one element of the capacitor. The other element is a silver pattern printed and fired on the wafer. It is now possible to apply an adhesive-tape resistor to one side of a wafer and an adhesive-tape capacitor to the other side.

The materials required for the

Applying NBS adhesive-tape capecitors manually to steatite blank wofers
manufacture of tape capacitors are a heat-resisting asbestos paper tape, silver flake, silicone resin, butyl cellosolve, a powdered high-K titanate body, N-hexane and epoxide resin. The electrically conducting formulation (a mixture of the silver flake, silicone resin and solvent) is ground in a ball mill. The mixture is sprayed on a loop of tape

Finished unit. Conductive tape connects top element to tinned notch

KESTER "44" Resin, Plastic Rosin and 'Resin-Five" FluxCore Solders keep the production lines moving by providing the exactly right solder for every application. Only virgin metals are
used in Kester . . . further assurance of the constant solder alloy control combined with consistent flux formulae . . . all part of Kester Flux-Core Sclder quality that'll "keep 'em rolling" for you!

BE SURE YOU GET KESTER'S neso 78-page informative textbook "SOLDER . . Its Fundamentals and Usage."

[^15]1 -in. wide, allowed to dry thoroughly, and then sprayed on the other side. When cured, the metallized tape is conductive along each side and from one side to the other. After slitting along the center to form two ${ }^{8}$-in. tapes, it is ready for application of the dielectric film.

The dielectric formulation is composed of high- K titanate body that has been pulverized in a ball mill with N -hexane until the particle size is about 1 to 2 microns, after which the slurry is allowed to evaporate under a hood. The ground titanate body is mixed with epoxide resin and further ballmilled. This tacky dielectric mix-
ture is then sprayed on the metallized base tape in various thicknesses determined by the number of passes the tape makes in front of the spray gun. Thicker applications make capacitors of lower value.

The silver pattern that forms one electrode of the capacitor is applied to the steatite wafer by means of a screen press. It is then dried and fired onto the ceramic. The adhesive dielectric-coated tape that forms the other electrode is cut. into squares slightly larger than the silver contact and pressed down on it. A narrow conductive strip, similar to resistor tape but with a con-
ductivity of approximately 0.02 ohm per half inch, is laid down between a contact on the edge of the wafer and the top side of the capacitor. The complete assembly is then cured by placing it in an oven at room temperature, raising it to 225 C over a period of one-half hour, and holding this temperature for 45 minutes.

Capacitors of higher values can be manufactured by applying a number of layers of tape, one on top of another, with appropriate connections to the edge of the wafer. Smaller capacitors can be made by reducing the area of the silver pattern printed on the wafer.

Fibreboard Tote Boxes for Parts Use Beer-Case Construction

Fibreboard tote boxes in use on precision instrument assembly line, along with conventional metal boxes. Note use of Electrolux vacuum cleaner under grinder, with hose going to sheel-metal enclosure araund buffing wheel to keep down dust during operations

New LIGHT-WEIGHT tote boxes made of moisture-resistant solid fibreboard-the same type of board used in multiple-trip beer bottle
carriers-are used for delicate parts and subassemblies of precision instruments in the Springfield, Ill. plant of Sangamo Electric

Co. The construction of this new tote-box includes a stepped-back protruding bottom section, permitting one unit to be nested into

The Olle coIIPLEPE Line...

- FOR PORTABLE PHONOS FOR HI-FI UNITS - FOR COMBINATIONS - FOR RECORD CHANGERS - FOR TAPE RECORDERS • FOR REPLACEMENT USE - FOR EVERY PHONO APPLICATION

Follow the lead of America's foremost manu= facturers - Specify GI for all your phonomotor needs. A complete range of speeds and types to meet every requirement - backed by over half a century of design leadership!

Model D- 10
4 pole, shaded pole AC Induction type for tape, wire or disc recorders

[^16] -

Model DSS
3 -speed, 4-pole motor

Model DR
2-speed,
4-pole mator

SINCE 1915. LEADERS IN AUTOMATIC CONTROL

Ford Instrument Company engineers draw on the entire scope of scientific knowledge to solve each problem. In a recent project, Ford found good use for components it developed a score of years ago to produce a mechanical memory system whose accuracy is indepenclent of the time interval, and which meets a military requirement of absolute reliability.

In an instrument in which the input quantities may vary with time, it is desired to produce an output equal to the change in one quantity A since the time t_{1}, added to the value that a second quantity B had at time t_{1}. At the same time it is desired to store another output equal to the change in quantity A since a second time t_{2}, added to the value that the quantity B had at that time t_{2}. It is further desired at any subsequent time to be able to read the first output or alternately the second output.

The storing of this information is accomplished by closing clutch C at instant 1 and clutch D at instant 2 . The first output is then read directly at any subsequent time and the alternate output by opening clutch C . To recycle - clutch D is then opened.

Whatever problems must be solved in designing and manufacturing computers and controls, skills in electronics, magnetics, hydraulics and mechanical and electrical techniques are called upon by Ford engineers to develop the best instruments for the purpose.

If you have a problem in control engineering, Ford Instrument Company's forty years of experience in high precision design and production will help you find the answer.

FORD INSTRUMENT COMPANY
DIVISION OF THE SPERRY CORPORATION 31-10 Thomson Avenue, Long Island City 1, N.Y.

ENGINEERS

of unusual obilifies can find a future of FORD INSTRUMENT COMPANY. Write for information.
another. Strength and rigidity are accomplished by the use of a wire reinforcement built in the top rim.

Size of the Sangamo tote box was determined by the dimensions of storage shelves, with three boxes 18 inches deep completely occupying one shelf from back to front. The boxes are made by Gaylord Container Corp., Saint Louis, Missouri, and are shipped knocked-down for assembly with a power stitcher as needed. Cost is about one-fifth that of comparable steel boxes.

Punching Chassis Stencils on Addressograph

With only minor modifications a standard Elliott addressing machine serves for cutting stencils used for spraying identifying legends on resistor terminal cards and chassis sections for the Matador guided missile in the Baltimore plant of The Glenn L. Martin Co. With the Addressograph machine permanently set up on a bench adjacent to assembly positions, new stencils can be cut in a few minutes whenever needed because of production changes.

Conversion from embossing of metal to punching out of stencil paper merely involves use of a special soft backup paper on the solid anvil. This paper is obtained in the form of green tape from The Elliott Addressing Machine Co., Cambridge, Mass. Each operation

Stencil-cutting setup. Left hand of operator is on character-selecting knob. Line-spacing holes can be seen on paper feed plate in foreground

Exciting New Deyelopment

 Photo courtesy

Methode Manufacturing Corp. Chicago, III.

New CuClad* copper-clad laminate offers unequalled bond strength, heat resistance, solderability, punchability, electrical performance!

Here's the foil-clad laminate you've been waiting for! It's CuClad Lamicom® -made possible by an entircly new concept in bonding material, specially designed equipment developed exclusively by Mica Insulator Company. This new bond and unique bonding method give you unequalled performance that's consistent and dependable from sheet to sheet, lot to lot.
*Trade-mark
You get all these advantages:
A STRONGER BOND WHICH IMPROVES WITH AGE AND HEAT better heat resistance better reaction to hot solder BOND ELECTRICALLY EQUAL TO LAMINATE
IMPROVED ARC RESISTANCE
SUPERIOR PUNCHABILITY UNIFORMITY
and CuClad Lamicoid is competitively priced!
CuClad Lamicold is available NOW, in several grades. Tell us your requirements or problems-or ask to have a Mico Sales Engineer call.

LOOK AT THESE TYPICAL PRODUCTION RUN VALUES ON 6028 XXXP CuCLAD LAMICOID:
BOND STRENGTH-Guaranteed min: 6 lb .; avg. 9 lbs . $\left(90^{\circ}\right.$ peel at $2 \mathrm{lbs} / \mathrm{min}$.)
SOLDER TEST-Guaranteed no blisters @ 230$240^{\circ}$ C. for 10 seconds, ${ }^{\prime \prime}$ square floated on molten solder
HEAT RESISTANCE-Guaranteed no change at 150° C. for $1 / 2$ hour in air-circulated oven, air flow parallel to specimen
PUNCHABILITY-Excellent
SURFACE RESISTIVITY, megohms
C-96/35/90
7.3×10^{4}
VOLUME RESISTIVITY, megohm cm.
C-96/35/90
3.7×10^{5}
WATER ABSORPTION
1/16"'th., E-1/105 + D-24/23
copper on $1 / 16^{\prime \prime}$ th., E-1/105 + D-24/23
copper removed .. 0.7%

Schenectady 1, New York
Offices in Principal Cities
In Canada-Micanite Canada, Ltd., Granby, Quebec
 dous variety of standard rivets that have helped many of our customers. Yet, frequently a customer is confronted with a specific fastening (or electrical contact) problem requiring something special. Here are a few of the thousands of unique designs created to give a customer what he needs.

CONTACT STUD FOR RADIO AND TELEVISION

Here is one of the many former screw machine items now being successfully produced by our cold heading process, thereby rewarding the user with substantial cost savings.

CAPACITOR RIVETS

Our capacitor rivets are recognized nationally. We have successfully developed a product which not only prevents any leakage but also facilitates soldering the connection - sometimes by passing the terminal wire through the rivet.

SILVER AND SILVER ALLOY CONTACTS

These silver and silver alloy contacts minimize electrical switch failure wherever long cycle life is a requirement. Made in both tubular and solid styles.

BI-METAL CONTACTS

If the proportion of shank to head size results in a prohibitive cost in solid silver, the advantage of a silver disc on a bronze base rivet provides the desirable cycle life with greater economy.

AUTOMATIC RIVETING MACHINES

TUBULAR has a wide selection of Automatic Fecd - single and multiple setting - bench or floor models - pneumatic, motorized or foot powered machines. Standard models or Special design - for your work.

Our Sales Engineering Staff is prepared to discuss your problems, and furnish recommendations promptly. Please send blueprints or a sample assembly to Dept. E at the office nearest you.

[^17]
Precision Designed for LOWEST VSWR!

TYFE 116-A WAVEGUIDE TERMINATION

For precisicn measurements PRD prasents a standard of impedance. The termination consists of a matched resistive insert terminating a section of RG-52/U waveguide. Each insert is tested to insure that its VSWR is less than 1.01. Dimensions of the waveguide are maintained so that its characteristic impedance is within 0.5 percent of nominal. Flange faces are milled flat and the screw holes are referenced to the center line.

- Frequency Range:
8.2 to $12.4 \mathrm{kmc} / \mathrm{s}$
- Very Low VSWR:

Less than 1.01

- Stable

Characteristics

- Rugged
- Waveguide Type:

RG-52/U

- Flange Type:

UG.39/U

TYPE 354-B WAVEGUIDE TO COAXIAL LINE ADAPTER

CHECK WITH PRD FOR QUALITY-BUILT TEST EQUIPMENT
The components shown are typical of the very complete PRD line of precision-built Microwave Test Components. Standard items available include Attenuators, Terminations, Slotted Sections, Transmission Line Components, Frequency Measuring Devices, Detection and Power Measuring Elements, Signal Sources and Receivers, etc. Write today for the PRD illustrated catalog. Address Dept. E-2.

THE VALUE OF HERMETIC SEALING OF RELAYS

The performance of some relays is improved considerably by hermetic sealing. Particularly is
this the case on relays which have delicate springs, fine gauge wiring and small physical size.

These types are naturally sensitive to the embarrassing consequences of unsympathetic environments and
give much more rhythmic performances when protected by an encompassing metallic membrane from the wanton attacks of
pliers, screw drivers, thumbs, or church keys.

On the other hand, relays employing switch contacts which have to make and break electrical circuits have an addiction, when hermetically sealed,
 to the production of various black deposits in the immediate vicinity of the switch. Some engineers claim these result from traces of volatile
hydrocarbons trapped in the insulation. They suggest that harmful effects of such deposits are avoided by using only materials like
 granite, soapstone or concrete. Unfortunately, these present certain difficulties in fabrication.

In general, two expedients seem most successful to date. One is to ignore the deposits. They usually only reduce the life expectancy, important only if the relay is placed in service. (Since most sealed relays spend their days on a shelf in a depot warehouse, this consideration may usually be dismissed.)

The other was proposed by an Air Force captain who may as well remain nameless, both because he was actually trying to use equipment and because his most effective solution runs somewhat counter to entrenched government prejudice. He increases the life expectancy of relays (yes - Sigma relays,
worse luck) approximately five-fold, by drilling
 in each carefully pressure-tested enclosure --- on man mole.

SIGMA INSTRUMENTS, INC.
62 Pearl Street, So. Braintree, Boston 85, Mass.

Sprayäng resistor board with DeVilbiss spray gun, using stencil frame having wires that automatically press stencil against board

Example of metal-plate stencil having positioning pins
up the pin and pushes the slide forward. The pin automatically drops into the next hole to give precise line spacing.

When spraying small quantities of a piece, the stencil can be held in position over the work or taped to the work. To get a clean sprayed impression, the operator presses the stencil l down on the chassis at each spraying location in turn with one hand while manipulating the spray gun with the other hand.

For larger runs and for standard items such as resistor boards, stemci hold-down frames are used to speed up the work. These are made from metal, and have wires running across in between the lettering to get pressure across the entire width of the stencil. The stencil is attached to the underside of the frame with masking tape, so that the operator can transfer the stencil from one piece to the next with a

Here is the original miracle upon which all wireless telephony is founded... Lee de Forest's Audion tube.
Today of course it has been improved a thousand-fold...in sensitivity, in power, in range. But this one still stands as the granddaddy of them all.
And what has this to do with Driver-Harris? Simply this:

The improvements on the Audion have come about through the combined efforts of thousands of devoted physicists, metallurgists, and engineers, whose increasing skills have in turn been made possible by the production of ever more effective radio alloys. Since the very beginnings of radio,
the Driver-Harris metallurgists have led the way in developing these special-purpose alloys conforming to rigid specifications, upon which the performance of electron tubes so largely depends.

With the result that today Driver-Harris sells annually more tons of radio alloys to the makers of electron tubes than does any other supplier.
Driver-Harris makes alloys for every electronic tube requirement: for grids, plates, side rods, glass seals, cathode sleeves and tabs, socket prongs, mica straps. We offer over 80 electrical heat- and corrosion-resistant alloys for various electrical and electronic applications.

If the alloy you need hasn't already been developed, send us your specifications. Our engineers with 48 years of experience are at your service.

The Audion elect on tube, invented by Lee de Forest in 1906

BRANCHES: Chicago, Detrolt, Cleveland, Louisville, Los Angeles, San Francisco
In Canadas the B. GREENING WIRE COMPANY, Ltd., Hamiltor, Ontario.
makers of the most complete line of electric heating, resistance, and electronic alloys in the world

OHF

Utra Wigh Fraquencies

: RADIO INTERFERENCE : and FIELD INTENSITY*
 : measuring equipment

: Stoddart NM-50A • 375 mc to 1000 mc

- Commercial Equivalent of AN/URM-17

ULTRA-HIGH FREQUENCY OPERATION... Frequencies covered include UHF and color television assignments and Citizen's Band. Used by TV transmitter engineers for plotting antenna patterns, adjusting transmitters and measuring spurious radiation.
RECEIVING APPLICATIONS ... Excellent for measuring local oszillator radiation, interference location, field intensity measurements for fringe reception conditions and antenno adjustment and design.
SLIDE-BACK CIRCUIT . . This circuit enables the meter to measure the effect of the peak value of an interfering pulse, taking into account the shaping due to bandwidth. QUASI-PEAK FUNCTION . . An aid in measuring pulse-type interference, the QuasiPeak function is just one of the many features of this specially designed, rugged unit, representing the ultimate in UHF radio interference-field intensity equipment.
ACCURATE CALIBRATION . . . Competent engineers "hand calibrate" each NM-50A unit. This data is presented in simplified chart form for easy reference.
SENSITIVITY. . . Published sensitivity figures are based on the use of the NM-50A with a simple dipole antenna or RF probe. However, the sensitivity of this fine instrument is limited only by the antenna used. The sensitivity of the NM:50A is better than ten microvolts across the 50 ohm input.

Stoddart RI-FI* Meters cover the frequency range 14 kc to 1000 mc

VLF

NM-10A, 14 kc to 250 ke Commercial Equivalent of AN/URM-6B, Very low frequencies.

MF NM-208, 150 kc to $\mathbf{2 5 m c}$ Commercial Equivalent of AN/PRM-1A. Self-contained AN/PRM-1A. Self-contained Includes standard breadeast bond, radio range, WWV, and communications frequencies. Has BFO.

VHF

NM-30A, 20 mc to 400 mc
Commercial Equivalent of AN/URM-47. Frequency range includes FM and TV bands.

> STODDART AIRCRAFT RADIO Co., Inc. 6644-A Santa Monica Blvo., Hollywood 38, California • Hollywood 4-9294
quick movement of the hand.
Another type of stencil uses positioning pins that fit into chassis holes. These pins are staked into a piece of sheet metal having cut-out windows over which the stencil pieces are taped.

Blackboard Substitute

Working out design problem for nonlinear precision potentiometer on press-ed-wood board painted with ordinary cream-colored oil paint

In place of blackboards at Helipot Corp., South Pasadena, Calif., engineers work out problems by using water-base crayons on a creamcolored board. The eraser is simply an ordinary towel. The crayons are available at most art supply stores.

Red Flag on Clip Serves as Parts-Needed Signal

An ordinary rèd shipping label attached to a spring-type paper clip is used as an indication that parts are needed on television receiver assembly lines in the Westinghouse Metuchen, N. J. plant. The mast of the flag is a metal strip that is soldered to one handle of the paper clip and riveted to the reinforced hole in the shipping tag. This flag can easily be clipped to the side wall

Method of attaching parts-needed flags to tote boxes needing refilling

MIG-4 GYROS

 BEING SHIPPED

ENGINEERING - DEVELOPMENT • PRODUCTION

THE Creenleaf manuFACTURING COMPANY 7814 Maplewaod Industrial Court • Saint Louis 17, Missouri

Where quality control works on the production line ... producing Gyros (rate and integrating), Pressure Transmitters, Accelerometers, Synchros, Air Speed Indicators, Actuators and many other precision-built components.

World's Finest Cored Solder!

Address U. S. A. and Canadian incuities to: DEPT. E. \boldsymbol{z}
MULTICOLE SALES CORPORATION 164 Juane St., New York 13, N. Y. othe territo ies te
MULTICORE SDLDERS, LTD. Maylands Ave., Hemal Hemsstead, Herts, England
of an empty tote box. The added height achieved with the metal strip permits tags to be seen several aisles away. The tags are put up and removed by production clerks, and serve as a continuous indicator to foremen on the performance of their stock men.

Waterproofing Cable Connectors

Molded plastic caps like those used on pill bottles serve to seal the ends of cable connectors in the Baltimore plant of The Glenn L. Martin Co. These can be applied in considerably less time than was formerly required to wrap water-

Method of using plastic caps to waterproof plugs and keep out dirt

Old method of waterproofing plugs by wrapping and taping

2 G－E TEXTOLITE：

LAMINATES

at a new low cost！

MEET the Textolite＂Twins＂－two new General Electric paper base laminates for hot－or cold－punching．Their

HOT PUNCHING GRADE 2053
Offers excellent mechanical strength and electrical properties－at greatly reduced cost．Uniformly good ap－ pearance．Can be readily hot－punched up to $1 / 8^{\prime \prime}$ ．Ideal for terminal strips，sockets，spacers and contactors．

mechanical strength and punching properties offer you easy－to－fabricate laminates－at a new low cost．

COLD PUNCHING GRADE 11561

Combines the advantages of excellent cold punching and shearing qualities with high mechanical and elec－ trical strength－at low cost．Can be punched cold to $1 / 8^{\prime \prime}$ and sheared cold to $3 / 32^{\prime \prime}$ ．Outstanding ease of fab－ rication，high impact and dielectric strength．

MEET THE REST

OF THE TEXTOLITE FAMILY，TOOI
G．E TEXTOLITE 11562 （NEMA Grade P）－for general purpose applications
G－E TEXTOLITE 11563 （NEMA Grade XXP）－ for medium electrical resistance

G－E TEXTOLITE 11564 （NEMA
Grade XXXP）－for the highest eletirical
requirements

Progress／s Our Most Important Product GENERAL（9）ELECTRIC

SEND FOR FREE SAMPLES！

General Electric Company
Laminated and Insulating Preducts
Sect．No．E2－5，P．O．Box 1911
Cleveland 1，Ohio
Please send me samples and data sheets on G－E Textolite laminates：
（）2053（） 11561 （） 11562 （） 11563 （） 11564
Name
Firm \qquad
Street \qquad
City
Zone＿＿State

proof paper around the connectors and anchor it with adhesive tape.
The new plastic plugs, made by Cannon Electric Co. of Los Angeles in various sizes to fit its line of connectors, are left in position until final assembly of the electronic equipment in the intended aircraft or guided missile.

Tape-Covered Clips Serve as Clamps

Holding photocell element together with padded spring clamp while applying cement

Covering the jaws of ordinary alligator clips with adhesive tape or masking tape converts them into spring clamps for holding small parts together during assembly operations. This technique is used in the Paramus, N. J. plant of Avion Instrument Corp. for sealing tiny lead-sulfide photocells for photoelectric choppers. The light-sensitive units are placed between Nisa glass conductive plates and held together with the padded clamp while cement is applied with a small brush.

Precision Photoelectric Wire-Cutting Machine

Lengths of wire required for circuit cables of the P5M Martin antisubmarine plane, the Matador guided missile and other aircraft in production at the Baltimore plant of The Glenn L. Martin Co. are automatically cut to precise length even though up to 15 feet long. The desired length can be set to within $\frac{1}{16}$ inch on the dials of a fourdecade predetermined electronic counter made by Potter Instrument Co., Great Neck, New York. The

Now Available at

Threaded Barrel Flared Tubing Types

TYPE $535 \mathrm{~S}-5 / 16.24 \mathrm{R}-.075 / \mathrm{F}$

COMPRESSION TYPE

THREROED END SEALS

FOR TUBULAR COMPONENTS

E-I compression seals offer super rugged construction that withstands pressure changes, shock and vibration. No special skill is required to apply the seal, and as sembly is rapid as all metal parts are tin. dipped for easy soldering. In addition to standard types, special constructions and diameters can be supplied quickly, on order. Check your hermeti-cally-sealed terminal requirements with E-I.
 caumanaion PROBLEMS ín
One Compact Unít!

Latest model in most complete linc of instrument standards made in U.S. is now available for laboratory, production and inspection operations involving instrument calibration, testing or repair. It provides an accurate, easy way for unskilled personnel to check and maintain electrical instruments using modem methods. Skilled technicians can be relieved for other duties; using and storing delicate standard meters, separate power supplies, shunt boxes, etc., no longer nccessary.

INSTRUMENT CALIBRATION STANDARD

Single cabinet contains power supply, standard meters, Wheatstone Brídge, and all controls.
Interlocks and high voltage discharge circuits provide automatic protection for operator, instrument being tested and Weston standard meters. Color coding and arrangement of controls on front panel simplify operation. Two sets of binding posts are used for all test connections; no other plugs, jacks, or interconnections are necessary.
A.c and d-c analyzers, shunts, ammeters, voltmeters, galvanometers, multimeters, recorders, vacuum tube voltmeters and wattmeters are some of many instruments that can be calibrated. Operates on 115 volts; uses 250 watts.

RANGES

0.25 millivolts to 2000 volts

2 microamperes to 20 amperes

ACCURACY

0.5% (or better) of full scale over all ranges.

Mootal Magnet Charger

Charges All Kinds \& Shapes of PERMANENT MAGNETS

Designed for re-charging instrument magnets, including the new core type mechanisms, this unit is portable, selfcontained, simple and safe to operate. It supplies two levels of charging current: 12,000 and 24,000 amperes. Operates on 115 volts; uses only 15 watts. Over 500 in service.

Radio Frequency
 LABORATORIES, INC
 Boonton 3, N.J., U.S.A.

DESIGNERS AND MANUFACTURERS OF ELECTRICAL EQUIPMENT SINCE 1922

Write for free folders that describe both models in detail.

Setup for mearsuring, cutting and printing wires for electronic aircraft cables
first three decades read in inches and the fourth reads in sixteenths of an inch (achieved by leaving the last binary decade unaltered during manufacture of the counter, whereas the others are altered conventionally for conversion from the scale-of-sixteen binary system to the scale-of-ten decimal system).

The incoming wire runs between two wheels, one of which is on the same shaft. as a chopper disk whose teeth interrupt a light beam directed at a phototube. The wire is pulled by a standard drive taken from an Artos wire-cutting machine. The speed of this drive is easily adjusted to achieve approximate synchronism with a wirestamping machine at the next position.

At the left of the drive is a wirechopping arrangement operated by a solenoid connected to the counter. When starting up with a run of new wire, the operator threads it be-

Operator holds finished wires in left hand as she threads into stamping machine with right hand the start of the wire that is emerging from the measuring and chopping equipment al the rear

EVERY ELECTRONICS ENGINEER HAS DESIGNED COILS TO UTILIZE MODDE CODENGMADAD

Consistently dependable, Moldite core "Standards" are in demand wherever electronic engineering requires the finest in precisionmanufactured cores with absolute uniformity from first to last.

MOLDITE CORE "STANDARDS" OFFER.

Economy
AVAILABILITY
UNIFORMITY
HIGH QUALITY
INTERCHANGEABILITY
FLEXIBILITY
"The right Moldite core for the right coil", is a byword at National Moldite whose precision production facilities have given the industry a superlative core or coil form for every electronic application.
Design with Moldite Core Standards in Mind.

for solderless WIRE WRAP

Printed circuit receptacle, developed primarily for computer applications, uses the New BELL TELEPHONE "Wire Wrap" solderless wrapped connections. Twenty-two gold plated phosphor
bronze contacts accommodate three \#24 gauge wires per contact, and $.093^{\prime \prime}$ thick board. This unit is avaitable in Mineral filled Melamine, Plaskon reinforced (glass) Alkyd 440A, or Orlon filled Diallyl Phthalate.

$1 \rightarrow 1$

ELECTRONIC SALES DIVISION

DeJUR-Amsco Corporation
45-01 Northern Blvd. Long Island City 1, N. Y.

SPECIAL DESIGNSSubmit your connector problems to our engineering department.
tween the measuring wheels, through the guide tube of the Artos drive and then through the chopper jaws. She then pushes a button on the bench to clear the counter and chop off whatever short length of wire is projecting. The counter then takes over, keeping the Artos drive running until a count corresponding to the preset length has been reached; this automatically takes into account the fixed distance between the measuring wheels and the chopping blades. The counter then operates the solenoid which simultaneously pulls the Artos drive wheels apart and pulls down the chopping blades. Stopping the feed prevents buckling

Photoelectrjc setup for measuring wire length in conjunction writh electronic counter. Sheet of aluminum in path of light beam serves as mask, with light passing only throuch tiny drilled hole to phototuje at far side of wire

Artos drive and chopper with pratective housing removed. Pushbution in left foreground clears counter and actuates chopper as required after threading in new wire

At UTC a great deal of the credit for their present position of leadership goes to the engineering and quality control staffs and the best of laboratory facilities. These are supplemented by a separate Material Testing Laboratory where all

formerly TOMORE ELECTRIC CORP.

ANNOUNCES 4 Bla "NEWS"

A NEW PLANT quadrupled floor space in a light, airy, clean building to accommodate brand-new Sage-designed equipment capable of sustained, orderly product flow at many times previous capacity-under closest control and inspection.

NEW MANAGEMENT PERSONNEL
to complete a well-rounded organization.

3 A NEW RESISTOR IINE

complementing the original pioneer "Tomore" line of miniature precision power resistors. The newly-engineered Sage "Silicohm" line affords the toughest insulation against thermal shock plus high dielectric strength, greater stability consistent with long life, and resistance ranges to 60,000 ohms. a NEW NAME

Sage Electronics Corporation-to
reflect and emphasize these achievements.

Type "S" (Silicone coated) 2, 5 and 10 wat

Type "M" (Metal clad) 25 and 50 watt

Tolerances, 3% to $.05 \%$. Resistances .05 ohms to 60,000 ohms depending upon type and power rating.

WRITE FOR COMPLETE DATA, and see us at the IRE Show, Booth B, Kingsbridge Palace, adjacent to the refreshment stand.
of the wire during the interval that the blades are down. Release of the solenoid restores the drive automatically for initiating measurement of the next piece. The cutter has two mating blades moving together, to eliminate crushing of insulation such as might occur with one blade working against a fixed bar or anvil.

Independently of the measuring setup is a Productimeter, made by Durant Mfg. Co., Milwaukee, which is set to the number of wires wanted in a given length. This sounds a buzzer when the quota is reached.

As each new length of wire begins coming out from between the open chopper blades, the operator picks it up and threads it into a standard stamping machine made by Kingsley Stamping Machine Co., Hollywood, Calif. for stamping of the assigned part number on the wire at separations specified for military electronic equipment. Manual threading is required, rather than inserting the stamping machine ahead of the measuring setup, to meet the requirement that there be a stamped notation within three inches of one end of the wire. Wires emerging from the stamping machine are caught by the operator with her left hand and held there for batching. When the desired number of wires is completed, she ties them together temporarily with Wire Ties, which are wire-reinforced paper strips made by H. F. Hanscom and Co.

Pressurized Tube Plant

Room air pressure is maintained at about one-quarter inch of water above atmospheric to keep lint and dust out of a critical tube

Scarf held in open door illustrates how air pressure keeps dust out of radar tube assembly area

THIS MONTH'S BIG CAREER OPPORTUNITIES

DEVELOPMENT ENGINEERING *

Digital computer circuit designelectronic pulse circuits for accounting and data processing machinesarithmetic, switching and logical circuitry-magnetic storage-transistor circuitry-input-output device controls-pulse amplifiers, shapers, gates, etc. ALso excellent openings in systems planning, functional and reliability analysis, electronic component development, packaging, diagnostic and application program development.

"IBM GREAT PLACE TO WORK"

says development engineer now in his 8 th year with the company
"Every year with IBM is more challenging than the last," says Max E. Femmer, Development Engineer at Poughkeepsie. "It was a tremendous satisfaction in 1952 to help develop IBM's outstanding 701 Electronic Computer. Today our projects and our work are even more interesting. Both my wife and I think IBM is a wonderful company."

Mr. Femmer is Technical Administrator of the entire Electronic Data Processing Machine Development Program.

MAGNETIC CORE MEMORY

DEVELOPED BY IBM STAFF
This is a Microsecond Memory-developed and perfected by IBM engi-neers-with data transmission in and out of storage at the rate of more than 43,500 characters a second. A random access unit,
 the IBM magnetic core cam locate and move 5 characters to a programmed location in 35 millionths of a second.

MANUFACTURING ENGINEERING *

Design and development of electronic test equipment for digital computer production testing-circuit design-systems planning and analysis-test planning. ALSO excellent openings in functional and acceptance testing-test equipment installation and maintenance-automation engi-neering-manufacturing research.

* Required-a degree in E.E., M.E., or a Physics B.S. or B.A., or equivalent experience.

Desirable-experience in any of the following fields: digital and analog computers, including airborne types, radar, TV, communications equipment, relay circuitry, automation, servo-mechanisms, instrumentation, or data handling systems.

For information on these career opporfunities WRITE,

 giving defails of education and experience, to:William M. Hoyt
IBM, Dept. 686(4)
590 Madison Ave., New York 22, N.Y.
Your replies, of course, will be held in strictest confidence.
INTERNATIONAL BUSINESS MACHINES CORPORATION

IBM joins America in saluting all ENGINEERS during NATIONAL ENGINEERS' WEEK, Feb. 20-26, 1955.

World's Leading Producer of Electronic Accounting Machines and Computers

- .

Industrialists and businessmen considering plant location, relocation, regional branch plants, offices and warehouses will find this kit a source of valuable guidance. Ten new solidly factual folders, conveniently packaged in a tabbed file cover, present what you need to know before selecting your location.

For your copy, write: State of Florida, Industrial Development Division, 3410D Caldwell Building, Tallahassee, Florida.

Information Kit Folders:

MARKET - NATURAL RESOURCES - TRANSPORTATION
EDUCATION \& CULTURE•POWER•LABOR•RESEARCH
HEALTH \& CLIMATE - GOVERNMENT \& TAXES - WATER

assembly area at the new General Electric industrial and transmitting tube plant at Scranton, Pa. A 40 -hp centrifugal fan provides pressure for the 138,000-cubic-foot room. The fan blows 62,000 cubic feet of air per minute into the room. The pressure may be regulated by a series of vent louvers.

In the room are lines for assembly of completed tubes or parts of hydrogen thyratrons, magnetrons, lighthouse transmitting tubes, and the tiny metal-and-ceramic GL-6299 low-noise triode.

For further protection against lint and dust, incoming air is electrostatically filtered, and operators wear nylon gowns and gloves.

Similar pressurized rooms are used for critical tube operations at the firm's Owensboro, Ky. receiving tube plant and at its Syracuse and Buffalo, N. Y. cathode-ray tube plants.

Jaws on Pliers Bend Pigtail Leads

Tool for making single right-angle bends in axial-lead resistors

Formed steel jaws brazed onto longnose pliers serve as efficient hand tools for bending both leads of small components simultaneously to the required shapes for most efficient use on standard resistor terminal boards or on etched wiring plates. The central openings in the forkshaped jaws accommodate the body of the part and provide automatic centering. Parts shorter than the opening can readily be centered visually where required, or offset to

These

GEAR HEADS

 are our Answer to HMCHTORQUE at LOW SPEEDSWe are producing a complete line of gears for our 1600 frame motors to meel amy precision, low speed high torque requirements. Gear reduction anits built to withstand impact, vibration and high acceleration are available. If your requirements are such that control problems are the important factor we incorporate the correct actuating device in the design.

Our 1600 frame motors are available in highly efficient induction, nor-synchronous types or in hysteresis or reluctance synchronous types. They may be for 60 cycle, 100 cycle or variable frequency operation (501600 cps), single or polyphase. Supplied in ratings from $1 / 1000$ to $1 / 10$ horsepower for continuous duty. Housing is anodized cluminum. Ball or sleeve bearing construction. Will withstand ambient temperatures from -55° up to $150^{\circ} \mathrm{C}$.

Servo Mechanisms

 Automatic Flight Controls - Sine Wave Alternators
Aircraft Cameras

If you have any problem involving sub-fractional horsepower motors, Induction Motor Corporation is your logical source of supply. We manufacture induction, synchronous and servo motors for gearhead, blower, fan and torque motor applications. We can either build them to your specifications or design them to meet your requirements.

For the answer to your problems, write or phone:

 motorscorp.
 570 Main St., Westbury, L. I., N.Y. Phone WEstbury 7-7070

Tool for making double bends in leads of mica capacitors for mounting on tur. ret terminals
get unequal lead lengths.
Either single or double bends can be obtained by appropriate shaping of the jaws. These tools are in use in the Baltimore plant of The Glenn L. Martin Co.

High-Speed Color Bander

A compact, new bench-model color bander designed and manufactured by the Markem Machine Co. of Keene, New Hampshire, has been designed to meet increased requirements of precision in applying up to six color bands for identification of crystal diodes and the new subminiature resistors and capacitors. The stack feed is adjustable to take parts ranging from ${ }^{3}$ to $2 \frac{3}{4}$ inches

New high-speed printer as set up for applying four colar bands to molded paper capacitors at rate of 50 parts per minute, Painted paris drop down slide at left into tote box (not shown)

A NEW LINE OF BROADBAND MICROWAVE COMPONENTS

MICROWAVE TEST ANTENNAS

Covering 1,000 to $26,600 \mathrm{mc}$. Rugged, portable units built especially for field intensity measurements, antenna pattern recording, leakage measurements and other communications use. Supplied complete with tripod mount, adjustable pan head, and convenient carrying case.
Each of these Polarad test antennas is highly directional with excellent front to back ratio, and is supplied with flexible waveguide or coax couplings.

MODEL NO.	FREQUENCY RANGE	MAX. VSWR
L	1,000 to $23,000 \mathrm{mc}$	$3: 1$
S	2,150 to $4,600 \mathrm{mc}$	$2: 5$
R	4,450 to $8,000 \mathrm{mc}$	$2: 5$
X	7,850 to $12,400 \mathrm{mc}$	$2: 7$
KU	12,400 to $18,000 \mathrm{mc}$	$1.5: 1$
K	18,000 to $26,000 \mathrm{mc}$	$1.5: 1$

BROADBAND-PASS FILTERS

Covering 650 to $13,000 \mathrm{mc}$. These Polarad Broadband-Pass filters are the first of their kind commercially available. They feature sharp skirt selectivity and low pass band insertion using standard 50 ohm co-axial connections. Curves showing typical bandpass characteristics are available on request.

MODEL No.
frequency range
$650-1,300 \mathrm{mc}$

MICROWAVE WAVEMETERS

Covering 500 to 4000 mc. Precision, adjustable, cavity-type meters designed for measuring frequency with $\pm 0.2 \%$ accuracy over the range 500 to 4000 mc . Each meter in the series has a $2: 1$ frequency range. Specific frequency metering is accomplished by adjustment of micrometer head until a dip of at least 20% in output occurs when input or output impedance is nominal 50 ohms. Micrometer head readings are easily converted to frequency by using calibration chart furnished with each instrument. Utilizes Type "N" coax connectors.

microwave attenuator-Model SIJ

Covering 4,000 to $12,400 \mathrm{mc}$. A continuously variable, stub-tuned, mutual inductance attenuator (waveguide beyond cut-off) designed for externa! use in making microwave measurements with spectrum analyzers, signal sources, receivers and for power measurements. The Model SIJ can be used as a standard calibrated attenuator; for circuit protection; or for monitoring and measuring. It will insure RF circuit isolation. It may be used to convert signal source or laboratory oscillator into a signal generator.

AVAILABLE ON EQUIPMENT LEASE PLAN
FIELD MAINTENANCE SERVICE AVAILABLE THROUGHOUT THE COUNTRY

SPECIFICATIONS:
Frequency Range: Impedance: Attenuation Range: Minimum Insertion Loss:

4 to 12.4 kmc 50 ohms 130 db

Approximately 10 db depending on frequency.

POLARAD
 ELECTRONICS CORPORATION

43.20 34th STREET • LONG ISLAND CITY 1, N. Y.

REPRESENTATIVES - Albuquerque - Atlanta - Battimore - Boston - Chicago - Cleveland - Fort Worth - Kansas City - Los Angeles - New York Phlladelphia - San Francisco - Seattle - St Paul - Syracuse * Washington, D C. Canada, Arnprior-Export: Rocke International Corporation

INVESTIGATE This Counseling Service For Frequency Control Engineers

Equipment is being designed every day that creates new applications and new problems for frequency control devices. To help you benefit from the latest developments in this rapidly advancing field, Scientific's Research Department offers this service:

Send Scientific a sketch of your proposed frequency control unit, or of your frequency control problem. Scientific's research and development staff will analyze your data for possible improvements or modifications, and will recommend the standard crystal best adapted to your needs.
This analysis service by Scientific's engineers has helped many manufacturers achieve a design that enabled them to (1) use a standard, less expensive crystal, (2) save many engineering hours at the design level, and (3) produce a circuit that will be far more efficient. It can do the same for you. To use this service to its fullest advantage, send your sketches while they are still in the design stage - even before comprehensive drawings and prototypes have been made. Scientific offers you this service at no cost and with no obligation. Address your correspondence to the Research Department.
SCIENTIFIC RADIO PRODUCTS, INC. 215 South 11th St. - ATlantic 9787 - OMAHA, NEBR.
in body length and $\frac{8}{20}$ to 1 inch in diameter.

Each component is individually selected from the bottom of the stack by slotted fingers that grip the leads loosely, then slide forward to hold the component against a revolving common die doll applying up to six colors simultaneously. The component rotates against the die roll until a recess in the roll reaches the component. The fingers then eject the component into the recess,

Method of loading chute
from where it rolls out and down the output chute after another quarter-revolution of the die roll. Simultaneously, the fingers retract to select the next piece.

Small units may be fed by manually loaded turret feed mechanisms, insuring positive control while the component is banding and ejecting.

Interchangeable reservoir units govern the positions of the color bands. The reservoirs apply their individual colors to an ink transfer roll at the rear, which in turn transfers the ink to the die roll.
Recommended operating speed is 50 units per minute. Components may be loaded into the chute at any time, even while the machine is in operation. Special fast-air-dry inks are used, so that parts can generally be dropped directly into tote boxes without smudging the color bands. Accessories include a vari-able-speed unit, separately-powered take-away conveyor and heating element.

The equipment may be inserted

At both the Waldorf-Astoria (convention headquarters) and Kingsbridge Armory, you'll attend what actually amounts to 22 conventions fused into one. Hundreds of scientific and engineering papers will be presented during the many technical sessions, a large number of which are organized by I R E professional groups. You'll meet with the industry's leaders-enjoy the finest meeting and recreational facilities in New York.

Radio

Engineering Show

At the Kingsbridge Armory and Kingsbridge Palace, you'll walk through
a vast panorama of over 700 exhibits, displaying the latest and the newest in radio-electronics. You'll talk shop with the industry's top manufacturers-enjoy the conveniences provided for you in the world's finest exhibition halls, easily reached by subway and special bus service.
Admission by registration only. $\$ 1.00$ for I R E members, $\$ 3.00$ for non-members. Social events priced extra.

The Institute of Radio Engineers
1 East 79 Street, New York good reasons why you should aftend the Radio Engineering Show

Hear...

vital research and engineering papers on computers, transistors, color TV, etc., subject-organized in 55 sessions.

Watch...

a computer balance a cane, making 20 corrective moves a second -at the IRE Show.

See...

the exhibits of 69 components vital to successful Automation. Or compare 21 different types of Transistorsand other subminiature components.

Check-up on...

"1955 Instrumentation" shown on Instruments Avenue. Exhibit grouping helps you see more on the Avenues named.

Audio - Broadcast - Radar
 Transistor - Television

Radio - Components • Microwave
Airborne - Production
Circuits • Computer • Electronics

Meet...

all your friends. 39,302 attended IRE in 1954.

Enjoy...

The Convention's Social Events. It is good to mingle with your industry friends at IRE.

Get the facts...

faster and easier at exhibits and sessions than you could from weeks of your own "digging."
*Send for the 1954 Directory of 604 Exhibitors and list of 100 new exhibitors.

GEARED FOR
 FAST RESPOMSE \square
 Gear Reducer

DIEHL offers this Instrument Servo Motor with a Gear Reducer attrac. tively priced for commercial applications in five different ratios. Either the motor, gear reducer or both can be quickly replaced avoiding costly down-time. The spur gear construction insures good efficiency.

Our engineering staff will gladly help you select the motors best suited to your specific requirements. A request on your letterhead will bring you a copy of Technical Manual No. EL-0255 describing Dieh1 Servo Motors and related equipment.

Other Available Components:

D.C. SERVO SETS - RESOLVERS MINIATURE PERMANENT MAGNET D.C. MOTORS

DIEHL MANUFACTURING COMPANY

Electrical Division of THE SINGER MANUFACTURING CO
Finderne Plint, SOMERVILIE, N.J
directly into a production line, receiving components directly from a degreasing or deflashing operation automatically by means of a conveyor.

Flexible Drying Rods
Prevent Tube Breakage

Drying rods on carriage which moves at same speed as overhead conveyor for picture fubes

Flexible coil-type air drying rods prevent breakage of picture tube necks on an automatic drying unit in the General Electric tube plant at Electronics Park, Syracuse, N. Y. In normal operation the rods, mounted on a carriage which moves along parallel to the bulb conveyor, rise into the bulbs as they pass over the drying unit. If a bulb or its drying rod is misaligned, however, the bulb neck might be damaged if it were not for the flexibility of the coil-type rod. On this unit, a 21 -inch bulb can be dried in about five minutes, with larger or smaller bulbs requiring more or less time.

Carton Turnover Machine

Final packing of black-and-white television receivers is achieved in three steps in the Westinghouse Metuchen, N. J. plant with the aid of automatic turnover machines actuated by air cylinders.

First, an empty upside-down

Rellige Tnaductries A PROVEN SOURGE FOR QUALITY U.G. CONNEGTORS

Allied's reputation for precision made connectors is growing throughout the Electronic Industries.

Our entire plant has earned approved Air Force quality controland the U. G. connectors meet all government specifications. Sensitive testing devices make it possible to maintain tolerances to new minimums and assure the highest standards of uniformity and dependability.

Care of manufacture is reflected in all details, as weight and texture of silver plating and other items often overlooked or neglected.

We keep delivery promises

Adequate plant facilities enable us to gear our delivery schedules to meet your production needs.

Here's another reason why our customers know we won't let them down. On 95% of our connectors, we carry a large, complete inventory of parts. Overnight we can assemble and ship enough connectors to avoid production tie-ups. The remainder of the order promptly follows.

Complete line of

R.F. connectors

Allied offers a complete line of R. F. connectors to meet your exact needs. In addition, we make specials to anyone's design. We have the engineers, tooling and experience to do the job.

For quotations and fast action on quality connectors at the right price -phone, wire or write;

25th at Woodland Ave. Louisville 10, Ky.

Arthur W. Richardson, Chief Engineer, Station WGBH-TV, Boston, Mass., at station's Raytheon KTR'-100 microwave relay which transmits picture and sound simultaneously.

More than 75 TV stations using this equipment for STL, remotes, and network intercommunication have proved the performance of the 5976 Klystron.

Color TV relay uses Raytheon 5976 Klystrons

The new, compact Raytheon KTR-100 microwave relay is a good example of the use of the long-life Raytheon 5976 in regular and color TV relay equipment. This reliable Klystron has also been selected for additional applications by other leading manufacturers-for these five reasons:

Over 22,000 hours of life - many users report more than 22,000 hours (over $21 / 2$ years) of continuous service.

Low temperature coefficient-temperature need not be held to close tolerance. No forced air cooling
Low power requirements - only 300 volts at 25 mA . Easy to install.
Low initial cost-lowest cost Klystron in its class. Immediate delivery in any quantity.

Low maintenance cost-long life means absolute maximum of trouble-free operation... ideal for isolated installations.

Condensed Operating Data-5976 Klystron		
	33/4 Mode	23/4 Mode
Power output	$\begin{aligned} & 110 \mathrm{~mW}_{(6750 \mathrm{MC})} \mathrm{av} \text {. } \end{aligned}$	$\begin{aligned} & 150 \mathrm{~mW} \\ & (6750 \mathrm{Mc}) \end{aligned}$
Frequency range	6200-7425 Mc	6200.7425 Mc
Reflector voltage	$\overline{\mathrm{Vdc}}{ }^{78 \text { to }}-158$	$\bar{V} d \mathrm{c}_{200}^{200}-285$
Resonator voltage	300 Vdc	300 Vac
Current	25 mA	25 mA
Modulation sensitivity	1.0 Nic/v	$0.5 \mathrm{Mc} / \mathrm{v}$
Temp. coefficient	${\overline{\mathrm{MC}} / \mathrm{C}^{-10+.10}}_{10 \mathrm{c}}$	$\overline{\mathrm{Mc} / \mathrm{C}^{\circ} \mathrm{to}+.10}$
Pulling figure	$\begin{aligned} & 0.2 \% \\ & \text { erating of op } \\ & \text { freg. } \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { erating of op op- } \end{aligned}$

Write for valuable Data Bobklets on Raytheon Magnetrons and Klystrons, including the stable, reliable 5976. Our Application Engineer Consultation Service is also available to you without cost or obligation. Call us when you have a microwave tube problem.

Leeds \& Northrup Company ELECTRODE ASSEMBLY FLOW BLOCKS

are made from
 CITSOL 60100 Series - EPOXIDE RESINS•

Because of these outstanding properties

The Leeds \& Northrup "plastic flow type" electrode assembly above shows the How block, at left, formulated from HYSOL 6000. Measuring about $41 / 2^{\prime \prime}$ by $11 / 2^{\prime \prime}$, it has three wells into which the pH electrodes and temperature compen. sator screw against sealing gaskets. Leadwires from these detecting elements are connected, in the terminal box at top, to leadwires from recording and/or controlling equipment. Insert shows the assembly in operation. The test solution flows through the block, under pressures up to 30 psi, where its pH is continu. ously detected by the electrodes.

HYSOL 6000 Series epoxide compounds provide the best plastic for this electrode assembly for many reasons. The block itself is produced from a single piece of plastic material. This one-piece construction provides great mechanical strength and prevents solution leakage. The fact that the flow block is chemically resisfant is important, since measured solutions are either highly acidic or highly caustic. The d-c electrical insulating properties of HYSOL 6000 Series epoxide compounds minimize electrical pickup and current leakage which would create a measuring error.

Gage in position in stub that has been sawed in half to show inner construr. tion of coaxial unit
construction shown permits pushing the gage alongside the central conductor. The gage handle is slotted for part of its length to give the springiness needed to accommodate varying central conductor diameters, since it is gap spacing rather than conductor diameter that is critical.

Different gages are kept on hand for the various tuned circuits of this type, because of the varying degree of coupling and consequent variations in required gap length.

Stripping Nylon Jacket from Shielded Wire

Preparation of insulated shielded wire generally involves removal of a length of the nylon jacket to expose the shielded wire. This must usually be done without nicking or cutting the strands of the shielding braid. One method of doing this at the Baltimore plant of The Glenn L. Martin Co. involves holding the

Method of mounting standard American Beauty iron without tip for stripping nylon jacket

DONT TREAD ON ME

First Nawy Jack, which unfurled the historic warning to the world in 1775-believed to have been first hoisted to the jackstaff of the ALFRED by one Licut. John Paul Jones.

"START TO FINISH"

A HOUSING PLAN THAT WORKS!

OLYMPIC'S "start-to-finish" facilities are geared to your industrial housing needs. A stock of over 3000 sizes and shapes means prompt delivery of the right housing for you. Blueprint specifications are followed precisely by our metal craftsmen. What's more, you really can consolidate your specs with OLYMPIC!

- FABRICATIONS, DRAWINGS, PRECISION METAL STAMPINGS form to house any product
- FACILITIES . . . at your disposal are OLYMPIC'S complcte sample shop. engineering, design and production de. partments.
- FINISHING ''with a purpose"'...Black Oxide, Cadmium Plated or Hot Tin Dipped. The correct finish for the job is the finish used.
- MASS PRODUCTION PRICES OLYMPIC has quality at heart with youtr budget in mind.

Let OLYMPIC experts co-operate with you on that howsing problem!

METAL PRODUCTS COMPANY, INC. ALPHA, NEW JERSEY

[^18]insulation over the hot shank of a bench-mounted soldering iron. The operator holds the end of the wire with long-nose pliers and slowly pulls the wire from left to right across the iron for the desired distance. The melted jacket can then easily be pulled back with the fingers.

The operation is done quickly to minimize softening of the insulation inside the shield.

A sheet aluminum housing for the soldering iron covers all but the working surface, to minimize chances of burning fingers. The tip of the soldering iron is removed, since the larger-diameter shank provides faster melting of the jacket.

Nylon-jacketed shielding wire is used in the Matador guided missile to prevent undesired circulating currents that would occur with bare shielded wire touching various grounded points intermittently.

An automatic cutting machine for shielded wire was built recently at this plant, following a General Motors design. This employs contrarotating cutters in conjunction with a precisely machined anvil to cut through the nylon jacket and shield as it is rotated on the anvil by the operator. The machine is being used on an experimental basis at present, with the hope of modifying its design so as to cut selectively through the nylon jacket without nicking the shielding braid, thus eliminating need for the slower nylon-melting technique currently being used for the purpose.

The anvil is spring-loaded in such a way that it is normally open, to

Method of holding shielded wire on anvil of automatic cutter

PANORAMIC SONIC analyzer
 P. 1

Many engineers find that Panoramic's LP-1 expedites their entire measurements LP- 1 expedites their entire measurements
program. LP.l analyzes sound vibrations program. Lp-1 analyzes sound vibrations veniently, accurately. Designed to elim inate the tedious problems commonly associated with audio waveforms associated with audio waveforms vides valuable visual information in seconds.

- visualizes frequency and amplitude of waveform components between 40 and 20,000 cps; magnifies small portions of spectrum for detailed analysis; displays easily photographed; scans spectrum in 1-second; analyzes changing and static phenomena.

It will pay you to investigate the many unique advantages of LP. 1.

- SPECIAL APPLICATIONS
- Investigations of closely spaced sound and vibration frequencies. Harmonic an alysis of waveforms having low frequency fundamentals. Spectrurn analysis requiring constant band width
- Panoramic's LP-1 offers scores of unique advantages; it will pay you to check their application to your probles write today for complete specifications.

WRITE TODAY
for Complete Specifications Made by th makers of
Panodaptor, Panalyzor, Panoramic Sonic Analyzer and Panoramic Ultrasanic Analyzer

10 South Second Ave., Mount Vernon, N. Y. Phone: MOunt Vernon 4-3970 Want more information? Use post card on last page. February, 1955 - ELECTRONICS

Look what NEW DU PONT MYLAR is doing to capacitors!

How about your electrical product?

There's almost no limit to the new ideas for better electrical products made possible by "Mylar" polyester film. The smaller capacitors shown are just one example. Consider the opportunities for improving the design of your own product with this amazing new film.
"Mylar" offers you a combination of electrical, physical, chemical and thermal properties never before available in a plastic film. It has a dielectric strength of 4000 volts/mil, which makes it ideal for a variety of insulating purposes. Tensile strength of 23,500 p.s.i. permits its manufacture in gauges as thin as $1 / 4$ of a mil $(0.00025$ inch). Besides being the strongest of all plastic films, "Mylar" is inert to the attack of many solvents and insensitive to moisture. Its thermal stability permits an operating range of $-60^{\circ} \mathrm{C}$. to $150^{\circ} \mathrm{C}$.
Find out more about "Mylar." Send for your free copy of the new booklet that gives you the facts and figures . . . shows you how this versatile film is already being used to advantage as slot, phase, and wedge insulation in motors ... conductor insulation in transformers . . . as primary insulation and barrier tape for wire and cables. Write to: E. I. du Pont de Nemours \& Co. (Inc.), Film Dept. E, Wilmington 98, Del.

DU PONT MYLAR ${ }^{\circledR}$

Trouble-Free 400 Cycle ${ }^{*}$ Power Supplies

with American Electric

This is the complete rotat ing member of an American Electric Inductor Alternator with 2 bearing commonshaft motor drive. Note absence of coils, slip rings, brushes etc. Ball Bearings are the only wear points.

Most rotary electrical equipment is subject to wear... in windings, slip rings, brushes, springs or other working parts. But here's an alternator with NO WEAR POINTS other than two ball bearings! Even these are grease-sealed; lubricated for life.
With American Electric's exclusive Inductor Alternator clesign you can forget maintenance, forget trouble! Write for details and power ratings.
${ }^{*}$ Also available in other fived frequency ranges or in cariable frequency models.
features-Low Harmonic Content, Compact Design, Quiet Operation, High Power Factor.

The Allernator with NoWear Points!

Also Manufacturers of High Frequency Revolving Field Alternators,
Miniature Electric Motors, A. C. Industrial Motors, , Motor Driven Blowers \& Fans

2 Bearing Com. mon Shaft Motor Alternator Sct.

Completely Portable
Motor-Alternatot Sct.

हर्द ?

7811 Telegraph Road,
Zos Angeles 22,
Californiz

DIVISION UP AMEKIGAN ELECTKONICS, INC.

FIELD ENGINEERING REPRESENTATIVES: Atlanta * Boston • Buffalo • Chicapo * Dayton - Dallas Kansas City Memphis : Minneapolis Now Orleans. Now York City Rochester Seattle Silver Spring (Md.) St. Loalis

View of cutting blades, with anvil in retracted position for easy insertion of wire on which braid is to be cut
permit easy insertion and removat of wire. When ready for cutting, the operator presses a foot pedal that is linked mechanically to the anvil, to move up the anvil and actuate a snap-action switch to start the motor that drives the cutters.
The motor is belt-coupled to a Boston speed-reducing gear box. The beveled output gear of this box mates with two larger beveled gears facing each other, to drive two shafts in opposite directions. On the other ends of these shafts are gears which in turn drive the shafts on which the milling cutters are mounted. The cutters are essentially in contact with each other as they rotate in opposite directions and their teeth are beveled away from the contacting surfaces to achieve practically a razor-thin Vshaped cut.

Winding Coils on Lathe

ON PRODUCTION RUNS too small to warrant setting up a high-speed continuous-operation coil-winding machine, for certain types of precision potentiometers, a winding lathe is used at Helipot Corp., South Pasadena, Calif. The heavy enameled copper core is locked in a Jacobs chuck on the headstock and supported by smoothly machined rollers on the carriage. The spool of resistance wire rides on a projection of the carriage at the rear of the

THIS saving was experienced by one manufacturer on one part in one year. If you've ever added up the excessive time, motions and money required in hand assembly of gaskets to your parts, you'll appreciate the "Flowed-in" principle as the outstanding gasket development of the decade. Wherever "Flowed-in" gaskers are used, they cut deeply into the cost of hand assembly.

The "Flowed-in" Process is amazingly simple. A fluid flows onto a spinning surface. As the surface revolves, a uniform circular track of "Flowed-in" gasket material is deposited on the part. Baking or drying transforms the fluid into a rubbery gasket that won't fall off the part.

The Darex Process leads to savings: In labor - by eliminating hand assembly. In materials - by eliminating waste and improving quality. Or, more probably, in both !

DEWEY and ALMY

Chemical Company

Division of W. R. Grace \& Co.
Cambridge 40, Massachusetts
fully proven - The Darex Flowed-in Gasket Process is more than a sealing compound . . . more than a machine . . . more than an engineering service. When you switch to Flowed-in Gaskets you get:
Gaskets with built-in resistance properties - Over 800 gasketing formulations have been tested for their effectiveness against high and low temperatures, weather, gases. solvents, moisture, vibration, hydraulic fluids, pressure . . . other problem conditions.
Machines - To apply the compound, Dewey and Almy designs and builds machines based on more than 30 years' field experience.
Service - Every machine is adjusted precisely to your specifications. Dewey and Almy engineers install the machines and train your operators to full efficiency.
Discover what DAREX "Flowed-in" GASKETS can do for you!

[^19]

For the past five years, Mufual Don Lee Broadcasting Center in Hollywood, California, has used Cramer timers to control automaticcilly the time interval allowed for station breaks. When the system cue is given, the precise Cramer timer takes over, allowing associated stations exactly 15 seconds for call letters and station break announcement before returning to the following network program. This leaves the operator free to give attention to other operating details, particularly important during heavy load hours when several different programs must be dispatched.

This application of Cramer time control is but one of thousands where accuracy and reliability of the timing function reduces the need for supervision. If you have a timing problem, Cramer can undoubtedly help you. Simply write us . . . our engineers will be glod to make recommendations.

Jumper wire hookup template for resistor board of ground-to-ground guided missile

Paper Templates Speed Start of New Wiring Line

Craning of necks between instruction charts and work when starting up a new assembly line is eliminated at Martin Aircraft by taping a small removeable paper template containing all this information to each resistor board or chassis. Workers place the components directly over indicated locations.

The idea was first introduced on the USAF B-61 Martin Matador production line. Here a total of 1,500 man-hours of work was saved using this new method, according to factory supervisors. The templates are discarded as soon as workers have memorized the new procedure.

miniature and standard

Pulse Transformers

by Keystone

write for new illustrated brochure,
"Modern Components"
This new brochure describes and illustrates a wide variety of transformers and magnetic amplifiers produced to help you meet unusual and difficult specifications.
Write today for your copy.
Design engineers and component manufacturers are constantly running into new problems requiring special pulse transformers.
Performance standards are higher for both military and commercial users. Rather than trying to make a standard unit stretch to do the job, more and more major component manufacturers are turning to Keystone custom-engineereed pulse transformers. Keystone produces a wide variety of pulse transformers designed to meet your individual performance requirements with minimum size and weight.
Shown here are two typical Keystone units customengineered to meet specific requirements. The smaller one, model PT-175, is a line matching transformer.
Pulse repetition rate is 1300 c.p.s., pulse duration is .1 to 1 microseconds, impedance is $75-1000$ ohms. The unit is $13 / 8^{\prime \prime}$ high, has a diameter of $1^{\prime \prime}$, and weighs just 1.6 ounces. The larger unit is also a line matching transformer, model PT-403. It has a pulse repetition rate of 1500 c.p.s., pulse duration of .3 to 3 microseconds, and impedance of 100-2000 ohms. Diameter is $134^{\prime \prime}$, , height is $17 / 8^{\prime \prime}$ and it weighs just 4 ounces. Both units are hermetically sealed, both meet applicable
MIL specifications.

If you are working on a particular problem involving a special pulse transformer-or if you would like to compare the performance of an individually-designed unit to the stock unit you are now using-contact the Engineering Department with an outline of your requirements. No obligation, of course.

77 New Products and 48 Manufacturers' Bulletins Are Reviewed . . . Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered

VIEWFINDER ASSEMBLY

fits over standard camera
Kalbfell Laboratories, Inc., 1090 Morena Blvd., San Diego 10, Calif., announces a new 5 -in. electronic viewfinder assembly to be used in conjunction with its standard small-sized tv camera to provide flexibility necessary for studio or remote control commercial broadcasts. The assembly may be easily installed or removed. It consists of

a lens turret with 4 mounts on the front and a 5 -in. crt fed by a 6 -mc video amplifier on the rear. The crt is flat-faced and magnetically deflected and provides brightlyfocused images of high resolution and excellent contrast. The assembly discussed is self-contained and is driven from the standard cable that feeds the Vidicon camera. It may be ordered together with, or as a separate unit from, the standard camera.

DIODE TESTER

measures d-c characteristics

Trans Electronics Co., 7243 Eton Ave., Canoga Park, Calif. Designed to measure the d-c characteristics of diodes in both the forward and reverse directions, the model B production diode tester will meet all the requirements of diode manufacturers for rugged production equipment. Three voltage supplies, E_{1}, E_{2} and E_{3}, preset from 0 to 25
v, 25 to 75 v , and 75 to 150 v respectively, are available for measuring reverse currents. An electronic microammeter measures the current at E_{1}, E_{2} or E_{3} in 4 ranges selected by lever switches. Ranges are 0 to 50,0 to 5,0 to 0.5 and 0 to $0.05 \mu \mathrm{a}$ full scale. Voltages are monitored in 3 ranges- 0 to 3,0 to 30 , and 0 to 300 v full scale. All range and scale selection is automatically taken care of in the switching.

PHASE COUNTER

composed of 3 plug-in units

Advance Electronics Co., Inc., 451 Highland Ave., Passaic, N. J. Three plug-in units-a decade counter and switching circuit, a timing unit and a function unit comprise a new phase measuring instrument. The decimal counter and switching circuit has a fast gate with interlocking arrangement and a decade counter consisting of 5 decimal counters connected in tandem. The timing unit consists of a $100-\mathrm{kc}$ crystal oscillator and 5 stages of $10-1$ frequency dividers. The function unit consists of 2 circuits. One of them is used to generate a sharp pulse at

the instant when the input signal E_{1} intersects with the zero axis. This pulse is used to start the counting of the signal from the
timing unit. The other circuit is used to generate a sharp pulse at the instant when the input E_{2} intersects with the zero axis. This second pulse is used to stop the counting of the signals from the timing unit. As a result, the number displayed by the counter will correspond to the phase angle.

WAVE ANALYZER operates automatically

The Davies Laboratories, Inc., 4705 Queensbury Road, Riverdale, Md. Completely automatic reduction of vibration, seismic, power line transient, noise, shock, and

Developed to meet the exacting requirements of newer tube types that require flat or stretch grids-this new Sylvania grid wire offers a higher degree of uniformity than previously achieved in an alloy of this type.

In addition to excellent uniformity, Sylvania 50/50 tungsten-molybdenum wire has higher elongation than tungsten; greater tensile strength than molybdenum-a combination of properties that mean fewer rejects, lower production costs in your tube manufacturing operations.

Sylvania offers you the only line of grid wires-plain
or plated-made every step of the way by a single manufacturer. It is a complete line, meeting the highest requirements of tube manufacturers . . . tungsten, molybdenum, 50/50 tungsten-molybdenum, D-nickel, in a full range of sizes. Plating available includes gold, rhodium, silver or nickel.

Precision manufactured and quality-controlled through drawing and plating, Sylvania wires have the characteristics known to be needed for producing the world's finest radio tubes. Write for complete information.

Sylvania Electric Products Inc. - 1740 Broadway, New York 19, N. Y.
In Canada: Sylvania Electric (Canada) Ltd., University Tower Bldg.,
St. Catherine St., Montreal, P. Q.

Lighting. Radio. Electronics. Television. Atomic Energy
similar data can now be made on a new heterodyne-type automatic wave analyzer. The analysis is a Fourier analysis-amplitude vs frequency. Suited for operation from any source supplying a repetitive signal such as a magnetic tape loop, the wave analyzer covers the fre-
quency range of 2 to $2,000 \mathrm{cps}$. It features variable bandwidth $\frac{1}{2}$ to 45 cps, analysis down to 3 cps , amplitude accuracy ± 5 percent of reading on logarithmic scale, frequency accuracy 0.5 percent of reading, input voltage range 60 db , and input impedance 212 megohms. The com-
plete automatic wave analyzer consists of 6 basic units which are available individually as well as in an assembly-input switching panel, oscillator-controller, modula-tor-filter, recorder, power supplies and rack. Complete details are given in bulletin 54-C.

PULSE TRANSFORMERS

available in two types

Acme Electric Corp., 1375 W. Jefferson Blvd., Los Angeles, Calif., has developed two distinct types of miniature pulse transformers. One group is available in a series of metal case designs, with approved type glass seal terminal header plates. The second group is encapsulated in molded epoxy resin with several types of terminal connec-

tions. This pulse transformer line was especially developed for triggering and counting circuits, and for d-c isolation, inversion pulse shaping and pulse transmission circuits. Their development and engineering have taken into consideration severe temperature changes, shock and humidity environmental conditions of use. Bulletin PT-301 lists 6 distinct designs available in 19 sizes with 21 different ratios in each category as stock units.

PHASE METER

uses comparison method

The W. L. Maxson Corp., 460 W. 34th St., New York 1, N. Y. An electronic instrument for precise measurement of phase difference between two sinusoidal voltages, model P-1060 precision phase meter provides absolute accuracy of 0.1 deg with incremental accuracy of 0.01 deg operating throughout the frequency range from 30 to 20,000 cps. Any phase angle from 0 to 360 deg may be measured without am-
biguity. Insensitive to even harmonics, it can tolerate approximately 1 percent third harmonic content within the rated accuracy of measurement. Applications include use in the design of ssb transmitters, and in the measurement of capacitor power factor, stray capacitance across resistors and residual inductance in noninductive resistors. Shift through amplifiers and other computer characteristics demanding precise phase relationships are accurately measured by this instrument.

FREQUENCY STANDARD

for I-f timing applications
Industrial Test Equipment Co., 55 E. 11th St., New York 3, N. Y., has introduced frequency standard model 620 , which can deliver up to 5 v at a precise frequency of 60 or 120 cps (factory set to within ± 0.01 percent). Other frequencies precisely set can also be supplied upon request. Frequency stability is such that temperature variations from -40 C to +85 C or line voltage variations from 105 to 125 v will affect frequency of oscillation by less than ± 0.01 percent. Output distortion is less than 1 percent.

The output amplifier is transformer coupled which presents the option of either isolated output or ground-
ing one of output terminals. Dimensions are 9 in . high, 15 in . wide, and 8 in . deep. Weight is 17 lb . The instrument should be extremely useful in accurate l-f timing applications.

A-C/D-C RELAY with built-in rectifier

Hi-G Inc., Bradley Field, Windsor Locks, Conn. A new a-c/d-c relay contains 4 miniature germanium diodes to rectify a-c excitation signals and provide chatter-free d-c switching action. The diodes are

hermetically sealed in the standard relay can, and are mounted to allow heat conduction through the can wall. Networks of these relays can be operated directly off the a-c power line, without the need for large d-c rectifiers. These relays can also operate on d-c excitation of either polarity. The new relay has a balanced rotating armature which can withstand shock accelerations in excess of 100 g . and vibration accelerations in excess of 20 g over the frequency range of 2 to 2,000 cps. A highly efficient magnetic circuit drives 1 -pole, 2 -pole, 4 -pole and 6-pole ganged contact arms firmly against solid-silver ball contacts. Contact bounce and arcing are held to a minimum, and reduced interference noise meets requirements of MIL-E-6181.

RESISTOR

of the metal film type

The Daven Co., 191 Central Ave., Newark, N. J., announces a new hermetically sealed, metal film type resistor, series 850 . It is expected to fill the gap between precision wire-wound types and the low-cost composition types. The pure, noble metal resistive element is deposited

a name to remember in electronic hardware
new DIODE CLIPS

An efficient, new way of holding crystal diodes. Three types a vailable. Model \#9000 for front panel mounting. Model \# X9000 for front panel mounting with a blind hole for dip solder application. Model \#9020 for rear-of-panel connections. All models available for standard terminal board thicknesses, or to your specifications. Silver plate on half hard brass assures good contact resistance. Retains excellent grip after multiple insertions.
always call $\mathcal{L E R C O}$ for
Complete hardware
Terminal boards
Terminal lugs
Miniature terminals
Taper pin terminals
Insulated terminals
Printed circuit hardware
Connectors
Write for free catalog

\rightarrow AERCO division of
LYNN-DEATRICK, INC.
501 South Varney Street
Post Office Box 69
burbank, Calif. VICtoria 9.5556

ASKFOR BULLETIN ON COPPER-CLAD

For printed circuits, the important consideration is the laminate base since other characteristics are often similar. In buying printed circuits, therefore, it pays to insist on the best -INSUROK T-725 or T-812-because of their outstanding electrical properties which remain remarkably stable under repeated temperature and humidity cycling.

Laminated INSUROK Grades T-725 and T-812 have made history ever since they were first introduced to the electronics industry. Possessing a unique combination of properties, they have been used successfully for many years in critical high-frequency applications.

INSUROK T-725 and T-812 have high physical strength and low cold flow, and are readily punched into intricate shapes. Richardson also furnishes copper-clad INSUROK in many other grades, in addition to T-725 and T-812.

Experienced Richardson engineers will gladly assist you in the selection and application of copper-clad INSUROK . . . write or phone your nearest Richardson sales office today.

The RICHARDSON COMPANY
 FOUNDED 1858
 2797 Lake Street, Melrose Park, Illinois (Chicago District)

cone
EL SEGUNDO, CALIFORNIA - ORegon 8-6281
World's Langest Supplier of 2udity Industrial Rectifiers
on the inner surface of a glass tube. Electrical connections are silver bands fused to the element and the glass. End caps are bonded to the glass in a glass-to-metal seal, providing complete hermetic sealing for over 60 psi. Extreme stability and a temperature coefficient independent of resistance value, plus a very low reactive component of impedance, make the series 850 a preferred type for military or h-f use. Performance characteristics far exceed the requirements of MIL-R10509A. The series 850 resistors are available in $\frac{1}{2}, 1$ and 2 -w sizes.

TELEPHONE RELAYS open and close fast

Kurman Electric Co., Inc., 35-18 37th St., L.I.C., N. Y., has introduced a newly designed line of telephone relays (type A) for applications requiring rapid opening and closing time up to 14 individual circuits. Among the relay's features are its d-c operation; fast operate and fast release ; coil resistance up to 63,000 ohms; coils single or double armatures. Maximum coil dissipation is 10 w .

TRANSISTOR SOCKETS insure space conservation

Hydro-Aire, Inc., 3000 Winona Ave., Burbank, Calif., have developed a standard strip of transistor

Tips for designers

High temperatures in an aircraft generator posed a tough problem for rotor insulation . . . solved by Taylor Silicone Laminate.

Television tuner uses a shaft made of Taylor polyester glass rod . . . a strong material with excellent insulating qualities.

Refrigerator doors are hung with hinge spacers of Taylor Super White Vulcanized Fibre . . . tough, smooth, abrasion-resistant and readily formed.

Handles for heavy-duty fuse boxes are made of Taylor melamine laminate for resistance to arcs, corrosion . . . and for high mechanical strength.

TAYLOR FABRICATING FACILITIES

Your production problems can often be simplified . . . schedules safeguarded . . . inventory headaches cured ... and overall costs reduced by having Taylor fabricate finished parts of vulcanized fibre and laminates to your specifications. Efficient, modern facilities are ready to serve you. Write to Taylor about your specific requirements.

Terminal boards for Hewlett-Packard high-precision electronic instrument circuit are made of Taylor XXXP-301 laminate... chosen for its excellent, stable insulating qualities.

Unique hot punch laminatesset new performance standards

Taylor's new " 300 " series of paper base laminates were developed specifically to meet the stringent demands of modern electronic products. These hot-punch materials now make it possible for you to get premium physical and electrical properties . . . without premium price.

These new Taylor materials are unique. They're uniform all the way through . . . no surface overlay of resin. Their superior performance will add to the value of your products. And their excellent fabricating qualities will give you substantial savings in production. Equally important, you are always sure of these properties in every shipment, thanks to Taylor's methods of manufacture and strict laboratory control in each phase of processing.

A wide selection of grades of the new laminates have been developed to fill varied requirements of electronics manufacturers:

XXXP-301-the ultimate in electrical properties. Unusually high insulation resistance under all climatic conditions . . . low water absorption ... excellent punching and staking . . . phenomenal recovery. Premium performance at standard price.
XXP-351-a high-grade laminate second only to XXXP-301, with closely comparable characteristics at a lower price.
Grade 353-a quality laminate with outstanding electrical and physical properties . . . priced for economy.
Grade 354-a laminate that's especially easy to fabricate. Good stability, low water absorption, and economical price.
Grade 381-flame retardant with high arc resistance.
Plan to take advantage of these new laminates in the products you are now designing. Write to Taylor for full data, and for a consultation by a Taylor engineer.

DAYSTROM INSTRUMENT and AMERICAN GYRO-a team of proven ability, know-how and experience for the solution of any electronic, gyroscopic, control and automation problems REGARD.

Products and facilities of American Gyro Div. of Daystrom Pacific Corp. perfectly complement the products and facilities of Daystrom Instrument. American Gyro components and control systems are outstanding in a field demanding precision, accuracy, and ruggedness. Daystrom Instrument is proud to welcome this new member to the family of Daystrom Incorporated.

DAYSTROM INSTRUMENT, Archbald, Pa.

sockets for use in transistor circuits. This makes it possible to group transistors, particularly in computer circuitry. Dimensions of the first model are 6 in . $\times 1 \mathrm{in}$. \times $\frac{1}{4}$ in. This model has 10 sockets. Other models are being developed to accommodate 30 or more sockets in a single strip. The strip material is phenolic, the transistor contacts are of phosphor bronze and the solder contacts are copper. Internal connections are handled by a printed circuit.

POWER RECTIFIER

in new silicon type
Transitron Electronic Corp., Melrose, Mass., has developed a new silicon power rectifier that is capable of operating efficiently between the extremes of 150 C above and -60 C below zero, and possesses large power handling ability. These silicon rectifiers can be made extremely compact. Savings in weight and volume will make these units especially adaptable for communications in military aircraft.

COMPARISON BRIDGE for rapid testing

Freed Transformer Co., Inc., 1715 Weirfield St., Brooklyn 27, N. Y. Type 1870 incremental inductance
comparison bridge is designed for rapid testing of transformers and chokes under actual operating conditions. Use of $4-\mathrm{in}$. easy-to-read meters and keeping the number of operating controls to a minimum assures rapid and reliable operation. The instrument consists of a variable 0 to 500 -ma d-c supply, a 60 -cycle 0 to $135-\mathrm{v}$ a-c supply, a comparison circuit and a vtvm. A jack is incorporated for connecting an external oscillator to supply other test frequencies. Inductances of 25 mh to 25 h can be compared on a deviation range of ± 20 percent with an accuracy of ± 1 percent and deviation of ± 50 percent with an accuracy of ± 5 percent. All controls and power supplies are contained in one unit.

DELAY LINE

is continuously variable
Helipot Corp., 916 Meridian Ave., South Pasadena, Calif., has introduced the Helidel delay line for use in color ty broadcasting, radar scanning, h-f oscilloscopes, short-time memory systems and many other applications. These delay lines are continuously variable units of the distributed-constant electromagnetic type. Delay is adjustable in increments of only 0.02 millimicroseconds and signals are transmitted with minor distortion of waveshape. The Helidel also features sharp rise-time of 0.0175 usec maximum, extreme bandwidth of 20 mc and negligible overshoot or phase distortion. It resembles a multiturn helical potentiometeronly $2 \frac{1}{8}$ in. in diameter. Two standard models are available-a 10 -turn unit with total delay of $0.2 \mu \mathrm{sec}$, and a 15 -turn unit with total delay of $0.3 \mu \mathrm{sec}$. Both are internally terminated by $2-w$ resistors in their

by DIMOND-UNION

are the answer to all your marking needs.

Vinylite is ideal for permanent stamping.

It is wonderful on metal and all non-porous surfaces. It is solvent, grease-resistant, and acid proof. This means greater span of marking life for your stamp.
Vinylite delivers super-sharp impressions.
This deep-molded Vinylite Stamp always delivers a precise, permanent, super-sharp impression. The deep molding process minimizes clogging and cuts time lost for cleaning to practically nothing.
Vinylite is resilient.
Dimond-Union Vinylite Stamps are cushíoned by a timed curing process that gives them the same cushiony elasticity of rubber yet with all of Vinylite advantages. It makes impressions on irregular surfaces with amazing smoothness.

Vinylite is versatile.

Vinylite is highly functional and can be adapted to any marking device especially where depth and sharpness of impression are important.

Dimond-Union is equipped to deliver fast, quality service to meet your most exacting demands. No matter how large or small a quantity, any design can be duplicated, affixed permanently to your marking device, or Dimond-Union will make a new design or stamping device to your order.

Call or write Dimond-Union Stamp Works for The Stamp of Perfection!

FOR ELECTRO-MECHANICAL INSTALLATIONS THAT MUST WITHSTAND SEVERE SHOCK . . . CALL P M I

Electro-Mechanical assemblies, simple or complex, that's our business. Slip ring (collector ring) assemblies are our specialty. Devices we have produced vary from onecircuit miniature slip ring assemblies to 500 circuit complete installations. Give us a call for free estimates.

PROJECT 135C102
Produced for U. S. Navy Bu. Ord. SRA to withstand 100G shock load to Gov't specification Mil-T-17113. 260 circuits.
characteristic impedance of 1,350 ohms. The 15 -turn unit, providing more than 360 deg of phase-shift at 3.58 mc , is particularly useful for color-tv phasing requirements.

SIGNAL GENERATOR with built-in oscilloscope

CANOGA CORP., 5955 Sepulveda Blvd., Van Nuys, Calif. The latest model wobbulator signal generator -an integral unit combining a swept frequency signal generator with a built-in oscilloscope-has a frequency range from 2 to $1,000 \mathrm{mc}$, and offers continuous single-knob turning with calibrated dial. Featuring an all-electronic sweep circuit, it is possible to sweep in frequency any bandwidth of 100 mc or smaller. Amplitude variation is less than 0.01 db per mc. The instrument is ideal for use by anyone who manufactures, services or tests any type of receiving equipment such as video, r-f, i-f and distributed amplifiers. When used by tv-set manufacturers in production tests, it shows gain, band-pass characteristics and response to spurious frequencies in one picture.

VSWR AMPLIFIER

is a high gain unit
Polytechnic Research \& Development Co., Inc., 202 Tillary St., Brooklyn 1, N. Y. Type 277 vswr
amplifier is an inexpensive, low noise, high gain audio amplifier. Sensitivity is $0.3 \mu \mathrm{v}$ for full-scale deflection on the meter. It is ideally suited for use with slotted sections in measuring vswr over the range of 1.0 to over 100 . A selector switch permits either high input impedance for such applications as low level crystal operation and null indication in bridges or low input impedance. The meter is calibrated both in vswr and db. A panel switch permits either a 15 or $50-\mathrm{cps}$ bandwidth centered at $1,000 \mathrm{cps}$ or broadband operation from 350 to 2,500 cps.

OSCILLOSCOPE valuable in color tv work

Heath Co., Benton Harbor, Mich. Model 0-10 oscilloscope has features that make it valuable in color tv work. Essentially llat vertical channel response is from 5 cps to 5 mc . It is down only 1.5 db at 3.58 mc (color to sync burst frequency). Model $0-10$ employs printed circuit boards for stable circuit operation. It uses full 5 -in. crt and employs a sweep generator circuit that will produce stable, linear sweeps up to $500,000 \mathrm{cps}$.

DUAL-PURPOSE TUBES
 feature stable operation

CBS-Hytron, a division of Columbia Broadcasting System, Inc., Danvers, Mass., has produced dual-purpose reliable tubes that provide stable operation as both voltage regulators and voltage-reference tubes. Types USN-OA2WA and USN-OB2WA are designed for dependability under severe environmental conditions and for a wide

Need pounds or tons of

Call on

Cannon-Muskegon

High frequency induction furnaces.

MasterMet alloys are available in ingot, shot, billet or cost bar forms. Immedi ately available are stocks of 300 and 400 stainless and carbon steel alloys. "Spe cials'" including tool steels, ferritic, austenitic and super stainless alloys of nickel and cobalt-base ore also available.

Write today for your copy of new MasterMet Alloy Bulletin for com. plete technical details.

Exacting MasterMet metallurgical control to your specifications assures exactly predictable control of finished part or casting
Electronic design engineers! You specify the alloy and we'll tailor it to your needs, backed by a certified analysis! Name the quantity - the fast delivery will surprise you! Preparation can begin almost immediately after receipt of order. MasterMet alloy service gives you all this:
uniform alloys to your melting proGRAM - The results you get from a sample cast are the same as the final production run.
mastermet certified analysis-Regularly furnished are notarized certificates insuring you specified alloys with exact electrical, physical and chemical properties.
PRODUCTION MELTS OR SAMPLE JOBS Modern furnace equipment assures completely flexible service at any time.
fast action on your orders - No long delays for a mill run. Alloys delivered in drums, clearly marked with all specifications for fast selection and storage.

Cannon Muskegon
 $\begin{array}{lllllllllll}\mathbf{C} & \mathbf{O} & \mathbf{R} & \mathbf{P} & \mathbf{O} & \mathbf{R} & \mathbf{A} & \mathbf{T} & \mathbf{I} & \mathbf{O} & \mathbf{N}\end{array}$
 2885 Lincoln Street - Muskegon, Michigan

Model

812 811
810
807B

FOUR NARDA MODELS COVER 5.85 to 18.0 kmc

All Narda models offer 0.1% accuracy with 0.05% on special order . . 0.05% precision . . . 10% reactive dip minimum . . . low insertion loss. Calibration plates are clearly etched for permanent legibility.

NARDA MODEL 802: 2,400-10,200 mc

A self-contained instrument with two coaxial resonators tuned by a single control, type N input connectors, crystal detectors, and crys. tal current meter for resonance indication. Features 0.2% accuracy, high loaded Q, frequency reading from a universal calibration chart in the removable cover (not illustrated). No correction charts are required. The entire frequency range is free from spurious re. sponses or other ambiguities.

NARDA MANUFACTURES A COMPLETE LINE OF MICROWAVE TEST EQUIPMENT, THERMISTORS AND BOLOMETERS. WRITE OR CALL FOR TECHNICAL LITERATURE . . and use the Narda advisory services without obligation.

range of applications. Features include: flat, smooth voltage-current characteristic; improved voltage repeatability; and stable electrical characteristics. Bulletin No. E-235 gives complete technical information and test ratings.

MARKER GENERATOR for uhf tv use

Kay Electric Co., 14 Maple Ave., Pine Brook, N. J. The Ultra-Marker is a crystal-positioned uhf tv marker generator. Designed for use with a sweeping oscillator, it develops a highly accurate oscilloscope display marker signal at all uhf sound and picture frequencies covered by an associated sweeping oscillator. The Ultra-Marker, together with a suitable sweeping oscillator and an oscilloscope, form an ideal uhf ty production test and alignment setup. A switching system which eliminates all but every fourth set of channel markers permits the instrument to be used with less accurately calibrated sweep generators. Additional features are: calibrated r-f output attenuator to make marker levels independent of sweeping oscillator output settings, narrow pip type markers fed directly to the oscilloscopenot through the receiver under test, and a sweeping signal input re-
quirement of only 10 mv into its 70 -ohm input circuit.

TESTER

for junction transistors
Devenco Inc., 150 Broadway, New York 38, N. Y. A new tester provides a rapid, positive means of testing the current gain of any $n p n$ or $p n p$ junction transistor. A front panel selector switch allows rapid changeover from $n p n$ to $p n p$ testing. The tester incorporates direct reading calibration by a single knob adjustment, with conversion from beta to alpha values by means of a simple table or curve, both of which are supplied with the unit. A selfcontained oscillator provides high signal stability with considerable harmonic output, enabling the tester to detect transistors with a low beta cutoff.

PANEL VOLTMETER with expanded scale
Arga Division, Beckman Instruments, Inc., 220 Pasadena Ave., South Pasadena, Calif. With the new expanded scale panel voltmeter a-c voltage readings accurate to 0.5 percent over the frequency range of 50 to $2,000 \mathrm{cps}$ are obtained. Use of a thermal bridge permits the indication of a narrow voltage range. The scale is expanded about a given normal voltage which may be as low

If this is what YOU NEED in RESISTORS

STABILITY

PRECISION*
LOW TEMPERATURE COEFFICIENT
LOW MOISE LEVEL

- WIDE RANGE OF VALUES
- SMALL PHYSICAL SIZE
- LOW COST

CHOOSE FROM THESE 8 SIZES OF
Slectra DEPOSITED CARBON RESISTORS
SHOWN IN ACTUAL SIZE

* Standard Resistance tolerance is $\pm 1 \%$, but all Electra resistors ore available in $+2 \%, \pm 5 \%$, and $\pm 10 \%$. Electra quality is unsurpassed in the industry as several hundred leading manufacturers, our customers, will testify. You will find our services to your liking ... deliyeries are prompt and special requirements completely followed.

BOWSER "L"CHAMBER DUPICATES FLLLHIT CONoITIIONS AT LEAR-ROMEC

This Bowser Altitude Chamber provides on-the-ground answers to questions about in-flight performance. Here, fuel injection pumps and other aircraft accessories are subjected to extensive development and production testing under extreme conditions of altitude, temperature and humidity.

By use of this versatile, reliable Bowser unit, Lear-Romec engineers are able to determine how equipment will operate at altitudes from sea level to 80,000 feet . . . temperctures from $-100^{\circ} \mathrm{F}$ to $+180^{\circ} \mathrm{F}$... relative humidity from 20% to 95%.

Whatever your environmental testing or production needs ... low temperature, high altitude, humidity, sand and dust, explosion or fungus ... be sure to check with Bowser, the pioneer. Or contact the Bowser sales engineer in your area.

A free descriptive bulletin describing the complete line of Bowser high altitude chambers is available on request.

BOWSER TECHNICAL RFFRIGFBATION

division of bowser inc. - terryville, connecticut

but will fuse when surge becomes dangerous to expensive components. An example of this type resistor is the series 4 FYG-001, Part No. CM14282, a 7.5 -ohm resistor normally carrying 1 ampere and withstanding surge currents of 1.75 amperes. It is designed to fuse at 2.3 amperes in less than 30 sec .

POWER PACKS

in miniature size
Electronic Research Associates, Inc., 715 Main St., North Caldwell, N. J., has announced a new group of Transpac self-contained a-c operated low voltage regulated d-c power packs designated as the models CV5, 10, 15, 20, 25 and 30. Wired into circuits like other components they provide a rugged, reliable source of d-c voltage reference or d-c power for magnetic amplifiers, transistor equipment, vacuum tube biasing and other constant voltage applications. Size is $23 \times 2 \frac{3}{8} \times 2 \frac{3}{4} \mathrm{in}$.

ALTERNATOR
 is light and small overall

Electric Motors and Specialties, Inc., King and Hamsher St., Garrett, Ind. Model HA-2 motor-alter-

for this new terminal

 construction if you want
SEALED

IMMERSION-PROOF 85-100 C. TWIST-PRONG ELECTROLYTICS

Note the new cover design for Aerovox twist-prong electrolytic capacitors. It embodies several highly desirable features not found in conventional twistprong units, such as:
All-in-one phenolic disk and sealing rubber. Greater basic strength than with separate layers of phenolic and rubber heretofore used.
Lead corinection through stud to terminal, produces excellent seal against moisture.

Design flexibility of terminal-stud construction allows greater size and shape variation of terminal ends. Especially desirable with "printed" wiring" circuitry. Greater dimensional uniformity.
Permits standardization of mounting. Completely interchangeable with all other types.
No internal contact between dissimilar materials - high purity aluminum throughout.

GET THE FACTS!

Let us give you the significant details, and then let us quote on your requirements for these superior twist-prong electrolytics.

nator features 2-phase, 30-cycle output at 18.5 v . The rotor shaft, extended at both ends of the motoralternator, permits the unit to perform several functions simultaneously. Power output is equivalent to 2.7 w from the shaft and 1.37 w for electrical power. Input is 115 v , single-phase 60 cycles at 26 to 30 w . The unit features synchronous operation, dynamically balanced rotors on a common stainless steel shaft and two-bearing construction. It conforms to AN-E19 specifications. The HA-2 weighs 6 lb and is of sufficiently small overall dimensions (about 7 in . long and $3 \frac{1}{2} \mathrm{in}$. in diameter) for incorporation into production equipment.

LINEAR TRANSDUCER

 is extremely versatileCrescent Enginefring \& Research Co., 14828 Arrow Highway, Baldwin Park, Calif. The extensometer linear transducer illustrated is designed for operation at elevated temperatures. It measures linear motion, relative displacement, position and vibration. The unit may be operated at temperatures between -160 F and $+1,300$ F, and has linear ranges available from 1 in. to 32 in . Fesolution of all models is $0.000,000,1 \mathrm{in}$. It features operating sensitivities to 5
v per in. and linearities to 0.1 percent of linear range. Simple design and heavy construction prevent damage from shock or mistreatment. No force is required for displacement of the sensing probe. Instrument housing measures 1 in . in diameter. Length is determined by the range required, and varies from 3 in. to 65 in.

CAPACITORS with adjustable values

Film Capacitors, Inc., 3400 Park Ave., New York 56, N. Y., announces a new series of polystyrene and Teflon dielectric capacitors with adjustable capacitance values. These capacitors may be adjusted to values from 1 percent below to 1 percent above nominal. They employ a self-rigid type of winding which is inherently stable without external pressure. The winding is completely noninductive, thus minimizing power factor and soakage. These capacitors find extensive applications in computers, tuned circuits, and timing circuits, where extreme precision is required. Units are available in all capacitance values from 0.01 uf to 1.0 . .f. Rated working voltage is $200 \mathrm{~d}-\mathrm{c}$.

VARIABLE INDUCTORS in 10 standard values

Levinthal Electronic Products, Inc., 2760 Fair Oaks Ave., Redwood

Vernistal...The Revolutionary

New Precision Variable-Ratio Transformer

Analog Computers? Servos? Control Systems? Vernistat is a completely different type of voltage divider combining low output impedance with an inherently high resolution and linearity not ordinarily attainable by precision potentiometers.
The Vernistat consists of a tapped auto-transformer which provides the basic division of voltage into several discrete levels. These levels are selected and further sub-divided by a continuous interpolating potentiometer that moves between 30 transformer taps.

Because of its unique operating principles, electrical rotation is held to close tolerances eliminating the need for trim resistors. In many applications there is also no need for impedance matching amplifiers.

Specifications of the standard model Vernistat are shown below. Other versions are under development to meet specific end uses.

What are your requirements for this unique precision voltage divider? Fill in the coupon now.
vernistat division PERKIN.ELMER CORPORATION NORWALK, CONNECTICUT

SPECIFICATIONS

Linearity Tolerance

$$
\text { better than } \pm .05 \%
$$

Resolutionbefter than $.01 \%$
Output Impedance
130 ahms (max.)
Max. Output Current $\quad . \quad 50$ ma Frequency 50-3000 cps Other models including a mini aturized 400 cps version will be available in the near future

```
vermistat division P/EC PERKIN-ELMLR CORPORATION
825 Main Avenue, Norwalk, Conneclicut
    Send me more infarmation on the Vernistat.
        The applicatian I have in mind is as follows
NAME
TITLE
COMPANY
ADDRESS
```


"HOW SMALL CAN YOU GET?"

 in manufacturing precision-controlled insulated magnet wire so fine you can barely see it, it is only natural that our engineering people have been working with miniature and sub-miniature coil and transformer units from the inception of miniaturization.

The important NEW TINY-MITE series of transformers is one result of this work. Tiny-Mite Transformers, with unusually excellent typical characteristics, are ideal for use in transistor and printed circuits, control, guided missile, and similar applications where space, weight, and size are prime factors.

Tiny-Mife Transformers are assembled with nickel alloy laminated cores, with fine wire coils wound on nylon bobbins. Windings are terminated with special care and technique to insure maximum protection to leads.

Tiny-Mite Transformers are varnish-treated and can be supplied open frame with $3^{\prime \prime}$ color coded leads, or in metal shells, hermetically sealed, and with \#22 tinned leads soldered to header terminals to facilitate assembly.

Tiny-Mite Engineering Data Sheets are available on request to Wheeler producers of fine gauge magnet wire, specialized coils, and transformers. Your own special needs can almost certainly be met by standard units in this new series, or by possible modifications. We will welcome your inquiry.

THE WHEELER INSULATED WIRE COMPANY, Inc.

Division of The Sperry Corporation
1101 East Aurora Street, Waterbury 20, Connecticut

WHEELER MAKES THESE PRODUCTS A

City, Calif. Available both shielded and unshielded, the style A type 1 variable inductors are supplied in 10 standard values from $56 \mu \mathrm{~h}$ to 1.8 mh and up to a maximum of 25 mh in special units. They feature an inductance variation range of 2 to 1 ; Q's of approximately 200 ; operating temperature range from -50 C to +100 C ; and temperature coefficients of inductance less than 50 ppm per deg C. Embedment of the entire powdered carbonyl-iron cup core and coil assembly in epoxy resin gives these variable inductors high resistance against the effects of large-amplitude vibration or shock, as well as providing good protection against moisture and chemical attack. Capable of dissipating 2.5 w with a temperature rise of 20 C , the units have voltage ratings of 400 v maximum, dimensions of $1 \frac{1}{8} \mathrm{in}$. long $\times \frac{3}{4} \mathrm{in}$. diameter, and weigh approximately 1 oz .

PACKAGE LABORATORY

for TV broadcasting use
Allen B. Dumont Laboratories, Inc., 760 Bloomfield Ave., Clifton, N. J., has announced a video-signal monitor primarily for use in tv broadcasting, made available by packaging the types 325 tv line selector and 327 cro. Type 325 tv line selector is operated by 3 controls which enable the operator to count down to any particular horizontal line, serrated or equalizing pulse of a composite tv signal, at which point it produces a synchronizing signal to trigger the oscillograph and display the signal from the selected point. Type 327 cro is a medium-frequency oscillograph designed primarily to fill the gap in the oscillograph line resulting from the trend in the industry to concentrate on l-f or h-f instru-
ments. The d-c to 5 -me bandwidth of the new oscillograph encompasses the frequencies found in the black-and-white or color tv signal realm. Accurate time and amplitude measuring features are included in the type 327.

PYROMETER

has many industrial uses
Photoswitch Division, Electronics Corp. of America, 77 Broadway, Cambridge 42, Mass., has developed a photoelectric pyrometer for industrial use which makes possible the precise monitoring and control of the temperature of hot materials. The complete system consists of 2 units: a scanner type 41AU4 consisting of a phototube and lens assembly with a variable iris, and a control type 27 LJ 7 containing an electronic amplifier, a relay and a meter. The plug-in design of the control chassis provides for simplified replacement and maximum accessibility for examination, adjustment and repair. The company has available a sheet giving tentative specifications and a typical calibration light intensity chart.

DIFFERENTIAL

for precision servo use
Trans-American Precision Instrument Corp., 34-17 Lawrence St., Flushing 54, N. Y. Model 750

The New SHURE "twin-Lever"

 CERAMIC PICKUP CARTRIDGE
(2) P PC Series for $331 / 3,45,78$ r.p.m.

AN "AB" LISTENING TEST WILL PROVE THAT THIS CARTRIDGE
SURPASSES ANY OTHER HIGH QUALITY COMmERCIAL CARTRIDGE FOR EQUIPMENT MANUFACTURERS!

Here is a "Balanced-Fidelity" cartridge designed for the equipment manufacturer to give you the maximum quality possible within your cost objectives.

RADICAL NEW DESIGN FOR NEEDLE REPLACEMENT!
Needle replacement is now so simple it can be done blindfolded!! This is a feature that will be of special interest to the ultimate users of your original equipment. Anybody can replace the needle, without tools, in a few seconds-while the cartridge remains in the pickup arm!

MODELS PC4 and PC5

Output Level at 1,000 c.p.s
Output Level at 1,000 c.p.s.
Frequency Response
Compliance
Tracking Force
Net Weight
Dimensions
.40 volts $(331 / 3.45 \mathrm{rpm})$
.60 volts (78 rpm)
30 to 13,500 c.p.s.
$1.30 \times 10-6 \mathrm{~cm} /$ dyne
$5 \mathrm{gr} . \mathrm{min}$.
7 grams
$13 /{ }^{\prime \prime}$ overall length:
$\frac{10}{32}{ }^{\prime \prime}$ wide $5 / 8$ high

ALSO....

New High Output Ceramic Cartridges NO LESS OUTSTANDING IN THEIR CONTRIBUTION TO LOW COST, FINE QUALITY REPRODUCTION ARE THE HIGH-OUTPUT CARTRIDGES, MODELS PC2 and PC3.

For further information on these remarkable new cartridges, write
SALES DIVISION - SHURE BROTHERS, INC., 225 W. HURON STREET, CHICAGO 1D. ILL.

cortet Round

123 Series Diol
Skirtet Roynd

175 Serice: Cronk

298
single-ended differential is primarily designed for use in high precision servos. The basic differential unit is constructed to meet all requirements for minimum backlash, low break-away torque and minimum power transmission losses. All three shafts (two inputs and the output) extend concentrically from one end of the housing. The entire mechanism is enclosed in a sealed housing. Mounting dimensions for the unit are identical to those of the Mk 8 Mod 0 servo motor. This type design permits the engineer to mount the differential to be mounted on a single plate, thus providing the advantage of a single row gear train.

MAGNETIC AMPLIFIER with $0.0083-\mathrm{sec}$ time lag

Librascope, Inc., 808 Western Ave., Glendale, Calif. A new ultra-fast magnetic amplifier has been developed for use in control systems where a high-gain amplifier and fast response are required. Speed of response is independent of the number of stages of amplification. This makes possible the present 3stage amplifier in which the input and output phase occur during the same half cycle of the power supply. Reduction of the series major loop lag permits the use of more negative feedback in the inner loop, resulting in improved stability. These magnetic amplifiers can be used either as phase reversible a-c amplifiers or as polarity reversible d-c amplifiers for d-c inputs with no changes in the internal wiring of the amplifier. Model 504-1 has a power gain of 50,000 ; power output, a-c, 15 w , phase reversible with a-c input; d-c, 15 w , polarity reversible with d-c input. Load impedance is

800 ohms; input imperdance, 15,000 ohms. Weight is 10 lb . Dimensions are $6 \mathrm{in} . \times 5 \mathrm{in} . \times 10 \frac{1}{2} \mathrm{in}$.

CAPACITORS
are humidity resistant
Good-All Electric Mfg. Co., Ogallala, Nebraska. Seramelite capacitors have high humidity resistance and will operate continuously over a temperature range of -50 C to +100 C . They are available with either paper or mylar dielectric, are encased in ceramic tubes and are sealed with a new thermosetting plastic. The wax free units will not drip at temperatures even higher than 100 C . After 28 days at 60 C and 95 percent relative humidity with 100 percent applied voltage, model 503 S still has an insulation resistance of 1,000 megohm-p.f with a maximum of 10,000 megohms. Seramelities are available in a capacitance range of 0.001 of to 2.0 uf with a voltage range of 100 to 1,600 working volts $\mathrm{d}-\mathrm{c}$, in sizes as small as $0.215 \times 27 / 32 \mathrm{in}$.

COAXIAL TUNER

for microwave region use

Dunn Engineering Associates, Inc., 11 Windsor St., Cambridge, Mass. A new broadband coaxial tuner, for use in the microwave region, makes possible impedance matching over a wide frequency range with a single instrument. Utilizing the line-stretcher and single-stub principle for matching to 50 -ohm lines, the model C-50-A tuner reduces vswr's in excess of

ANOTHER EXAMPLE OF CIORITZ PIONEERING...

The S-12-B RAKSCOPE is a rack mounted, JANized (Gov't Model No. OS-11) version of the famous WATERMAN S-11-A POCKETSCOPE, with the addition of a triggered sweep and a special calibrating circuit for rapid frequency comparisons. The entire oscilloscope is built to occupy but seven inches when mounted in a standard relay rack. The vertical and horizontal amplifiers are identical, having sensitivities of 0.05 Volt rms/inch and frequency responses which are flat within -2 db from DC to 200 KC . These features permit observation of low frequency phenomena without undesirable trace bounce. The sweep rate is continuously variable from 5 cycles to 50 KC in either the triggered or repetitive mode with synchronization polarity optional. The return trace is blanked. Because provisions are made for applying input signals from the rear, as well as the front, the $\mathrm{S}-12-\mathrm{B}$ is the ideal combination, systems monitor and trouble-shooting oscilloscope. Investigate the multiple applications of this instrument as an integral part of your "rack mounted" projects.

WATERMAN PRODUCTS CO., INC.

PHILADELPHIA 25, PA.
CABLE ADDRESS: POKETSCOPE

WATERMAN PRODUCTS INCLUDE

S-4-C SAR PULSESCOPE ${ }^{\circledR}$
S-5-A LAB PULSESCOPE
S-6-A BROADBAND PULSESCOPE S-11-A INDUSTRIAL POCKETSCOPE® S-12-B JANixed RAKSCOPE ${ }^{\circledR}$ S-14-A HIGH GAIN POCKETSCOPE S-14-B WIDE BAND POCKETSCOPE S-15-A TWIN TUBE POCKETSCOPE RAYONIC ${ }^{\circledR}$ Cathode Ray Tubes and Diher Associated Equipmen'

Output from this rugged

Genisco Accelerometer

 (GLH MODELS)is measured in volts not millivolts!

30 to 1 to less than 1.2 over the frequency range 750 mc to $10,000 \mathrm{mc}$. Ruggedly built, the tuner is constructed largely of coin silver, rhodium plated for tarnish resistance. Settings of the instrument are retained by simple fingertightened locking nuts. The tuner is intended for use with systems employing type N fittings and is furnished with male or female type N connectors in combinations specified by the customer.

D-C POWER SUPPLIES are constant voltage type

Associated Specialties Co., 1751 Main St., Orefield, Pa. Model 2 is a subchassis mounting type electronically regulated d -c constant voltage power supply. These supplies can be mounted on a chassis along with other components and thereby save space which would be used by a relay rack mounting supply. The d-c output voltage is continuously variable from 200 to 325 v d-c for load currents from 0 to 100 ma . Regulation of $\mathrm{d}-\mathrm{c}$ voltage is better than 1 percent for loads of 0 to 100 ma and line voltage variations from 105 to 125 v . Ripple output is less than 10 mv rms. Price is $\$ 51.00$.

METER CALIBRATOR is 0.01 percent stable

Kalbfell Laboratories, Inc., 1090 Morena Blvd., San Diego 10, Calif., announces a new combination voltage and current meter calibrator to be used in laboratories and on electronic production lines as a secondary standard, to provide combination voltage and current

calibration. The calibrator employs the company's absolute d-c power supply circuitry and provides variation of the output voltage or current in small steps. Stability is 0.01 percent, with 0.05 percent accuracy. It is especially recommended for computer facilities, telemetering groups, magnetics laboratories and standards laboratories.

POWER SUPPLY for digital computer use

Mag-Electric Products, Inc., 12822 Yukon Ave., Hawthorne, Calif., has developed a new type of regulated power supply specifically intended for digital computer application. The units are constructed with rugged long lasting magnetic components and conservatively rated selenium rectifier. Line voltage is 115 or $220 / 440$, single phase, $220 / 440$ three phase. The $E_{\text {d-c }}$ is adjustable to ± 5 percent of nominal value. Accuracy is ± 0.5 percent from 10 -percent load to full load with ± 10-percent change in line voltage and ± 5-percent change in line frequency. Ripple is 0.5 percent rms of d-c output voltage. Speed of response is 0.17 sec 10 percent load to full load. These power supplies

How Grant macose solved both COST and QUALITY

THE PROBLEM:

 CONTROL PROBLEMSSig-Trans Inc., designers ane manufacturers of Synchro-Signal Amplifiers for the U. S. Navy, require precision gear trains in large quantities. It is imperative that each gear be uniformly accurate to produce finished gear trains which are assigned the delicate task of aligning synchro-mechanisms for coordinating all Gyro-Compasses throughout Navy vessels.
Production costs increased as chassis assembly was halted time and again because gears ceuld not be quickly and uniformly matched.

THE SOLUTION:
Sig-Trans turned to GRANT. Here they found the experience and skill necessary to mass produce gear trains containing 19 different types, so uniform that chassis assembly was completed rapidly and economically. Gear rejection dropped to zero. Remarkable quality control in the face of such a precision application.
For information on bow GRANT GEARS will belp you solve both cost and quality control problems in the design and production of electronic equipment, write, wire or call.

DECADE RESISTANCES \& VOLTAGE DIVIDERS delivered from stock

Accuracy: 10 ohms and above: $\pm 0.1 \%$ 1 ohm: $\pm 0.25 \%$ $0.1 \mathrm{ohm}: \pm 1 \%$ $0.01 \mathrm{ohm}: \pm 5 \%$

Temp. Coeff.: $\pm 0.002 \%$ per degree C.
Maximum Load: $1 / 2$-watt per step Frequency Limit: Non-inductive to 20 KC

DECADE RESISTANCE BOXES

Type	Dials	Ohm Steps	Total Resistance-Ohms	Price
817	3	0.01	11.1	$\$ 60.00$
818	3	0.1	111	51.00
820	3	1	1,110	56.00
821	3	10	11,100	60.00
822	3	100	111,000	63.00
823	3	1,000	1,110000	77.00
824	3	10,000	$11,100,000$	120.00
$817-A$	4	0.01	111.1	75.00
819	4	0.1	1,111	71.00
885	4	1	11,110	77.00
826	4	10	111,100	79.00
827	4	100	$1,111,000$	92.00
828	4	1,000	$11,110,000$	139.00
8285	5	0.1	11,111	94.00
829	5	1	111,110	101.00
830	5	10	$1,111,100$	113.00
831	5	100	$11,111,000$	155.00
$817-C$	6	0.01	$11,111.1$	105.00
8315	6	0.1	111,111	109.00
832	6	1	$1,111,110$	121.00
833	6	10	$11,111,100$	169.00

UNMOUNTED DECADE RESISTANCES

Type	Dials	Ohm Steps	Resistance-Ohms	Price
435	1	0.1	1	$\$ 12.00$
436	1	1	10	13.25
437	1	10	100	13.25
438	1	100	1,000	15.00
439	1	1,000	10,000	16.00
440	1	10,000	100,000	18.50
441	1	100,000	$1,000,000$	32.50
442		$1,000,000$	$10,000,000$	60.00

DECADE VOLTAGE DIVIDERS (Potentiometers)

Type	Dials	Ohm Steps	Resistance-Ohms	Price
845	3	1	1,000	98.00
837	4	0.1	1,000	126.00
835	4	1	10,000	132.00
836	4	10	100,000	146.00

SHALLCROSS MANUFACTURING COMPANY

522 Pusey Ave., Collingdale, Pa.

can be provided for assembly in standard relay racks to facilitate computer wiring.

DIGITAL READOUT provides in-line display

Electro Instruments, Box S, Old San Diego Station, San Diego 10, Calif. A new digital display unit provides in-line numerical indication for instrumentation, production, or wherever ambiguous readings cannot be tolerated. Standard displays are available with one to six windows, each window 15 in . wide $\times 2$ in. high with 1 in. numbers. The in-line display is obtained with edge-lighted engraved lucite plates, mounted in an aluminum frame with miniaturized incandescent bulbs located either at the top or bottom. Each numeral is associated with a single, removable light bulb. Units may be purchased with 6,14 or 28 -v lamps. Tapped holes are provided for panel mounting.

RECTIFIER

is mercury-vapor filled
National Electronics, Inc., Geneva, Ill., has announced the NL-633 high-current rectifier, rated at 30 amperes d-c and 225 amperes peak. It is bracket mounted and of rugged construction, making it particularly
adaptable to industrial applications. The NL-633 is mercury-vapor filled and has wide temperature limits. Construction is such that the condensed mercury temperature rise is almost independent of load, if proper phasing is observed. Other ratings are: filament volts, 2.5 v ; filament current, 50 amperes; maximum peak inverse volts, 900 v .

LITTLE TRANSISTOR is hermetically sealed

CBS-Hytron, Danvers, Mass., is producing a transistor about the size of the head of a wooden match. This newly developed transistor is hermetically sealed in a cylindrical metal case that is only about $\frac{1}{4} \mathrm{in}$. long and $\frac{1}{8}$ in. in diameter. Three of these tiny transistors, with a total weight of less than a penny, are used in hearing aids. Ask for bulletin E-240.

D-C POWER SUPPLY for h-r applications

Kalbfell Laboratories, Inc., 1090 Morena Blvd., San Diego 10, Calif. Model 200D-2 absolute d-c power supply provides a high powered source of voltage with standard cell stability. Output voltage is varied from 100 to $2,000 \mathrm{v}$ in $10-$ volt calibrated steps. Between steps it is varied with a potentiometer. The unit is provided with an output current of 20 ma . Long time stability is 0.01 percent; and short time stability, better than 50 parts per million per hour. Output voltage is calibrated within 0.02 percent. The model 200D-2 is ideal for photomultiplier, t-w tube, magne-

Sticks to the job!

Time waits tor no man, but Metal-Cals withstand time, weather and wear as they stick to the job of identifying your product! These anodized, etched aluminum nameplates are permanent and indestructible. Backed by a pressure-sensitive adhesive, they go on easily-to stay! Metal-Cals remain clear, sharp and easy-to-read. The letters, characters and colors are a permanent part of the anodized, .003-inch aluminum foil. They slash application costs, too, because they are faster to apply and require no rivets, screws, pins or other fastening devices. So, to identify... specify...METAL-CAL!
 fied Metal-Cals for marking their $1 / 4$-inch electric power drills. They have standardized on Metal-Cals for permanent, distinctive product labeling.

Use this coupon for FREE SAMPLES AND AN EXPLANATORY BROCHURE that show how Metal-Cal, the anodized, etched aluminum nameplate, sticks to the job of trademarking or providing clear, sharp diagramming or serial numbering for your products.
-TM Reg. U.S. Pot. Off.
Pot. Pend.

DEPEND ON

Bendita RELIABLE ELECTRON TUBES

DESIGNATION AND TYPE					TYPICAL OPERATING CONDITIONS		
Type	Prototype	Bendix No.	Description	Base And Bulb	Heater Voltage	Plate Voltage Per Plate	M.A. Load
5838	6×5	TE-3	full Wave Rectifier	$\begin{gathered} \hline \text { Octal } \\ \text { T. } 9 \end{gathered}$	12.6	350.	70.
5839	6×5	TE-2	Full Wave Rectifier	$\begin{gathered} \text { Octal } \\ \text { T-9 } \end{gathered}$	26.5	350.	70.
5852	6×5	TE-5	Full Wave Rectifier	$\begin{gathered} \text { Octal } \\ \mathrm{T}-9 \end{gathered}$	6.3	350.	70.
5993	6×4	TE. 10	Full Wave Rectifier	$\begin{gathered} 9-\mathrm{Pin} \\ \text { Miniature } \end{gathered}$	6.3	350.	70.
6106	$5 Y 3$	TE-22	Full Wave Rectifier	$\begin{aligned} & \text { Octal } \\ & \text { T-9 } \end{aligned}$	5.0	350.	100.

Type	Prototype	Bendix No.	Description	Base And Bulb	Heater Voltage	Plate Voltage	Scretn Voltage	Grid Voltage	Gm	Plate Current	Power Output
5992	6V6	TE. 8	Beam Power Amplifier	$\begin{gathered} \text { Octal } \\ \text { T. } 9 \end{gathered}$	6.3	250.	250.	12.5	4000	45. MA	3.5 W
* 6094	6AQ5 6005	TE-18	Beam Power Amplifier	9-Pin Miniature	6.3	250.	250.	12.5	4500	45. MA	3.5 W
6385	$\begin{aligned} & 2 C 51 \\ & 5670 \end{aligned}$	TE-21	Double Triode	$\begin{aligned} & \text { 9.-Pin } \\ & \text { Miniature } \end{aligned}$	6.3	150.	-	-2.0	5000	8. MA	-

*Tube Manufactured with Hard (Nonex) Glass for High Temperature Operation (Max. Bulb Temp. $300^{\circ} \mathrm{C}$.)

tron-klystron, and other applications where high voltage and moderate current are required.

P-M MOTOR

for 28-v d-c operation
Dalmotor Co., 1329 Clay St., Santa Clara, Calif. Type PM-4 permanentmagnet motor for $28-v$ d-c operation has an integral brake separately actuated from 28 v d-c, and capable of bringing the armature to a stop from the rated operating speed of $4,500 \mathrm{rpm}$ within one shaft revolution. Designed for continuous-duty applications requiring good speed regulation, the unit supplies a high starting torque of $50 \mathrm{oz} \mathrm{in}$. amperes. Standard ratings include a total input current, including the 0.25 -ampere brake current, of 2.5 amperes with $40-w$ load. The dynamic brake torque is 100 oz in. minimum. The unit, weighing 2.4 lb., has reversible rotation.

TOROIDAL INDUCTORS

 with ± 1 percent toleranceFreed Transformer Co., Inc., 1715 Weirfield St., Brooklyn 27, N. Y., has announced a wide variety of standard and subminiature toroidal inductors. All have a standard tolerance of ± 1 percent with frequency ranges up to 200 kc and inductance values up to 50 henrys. They are available in stabilized and nonstabilized types. The subminiature inductors feature 4 types covering frequency ranges from

500 cps to 200 kc with inductance values to 2 hemrys. These are supplied cased or uncased.

POWER PACKS

for airborne use
Plastic Capacitors, Inc., 2511 W. Moffat St., Chicago 47, Ill., has announced a new line of power packs for airborne use. Input frequency is 400 cycles and the output range from 1 to $25 \mathrm{kv} \mathrm{d}-\mathrm{c}$ is covered by 6 models. Temperature range is from -60 C to +85 C , and the unit can be operated in any position. Ripple on all models is less than 5 percent per milliampere. Featured is the new output terminal construction which is small, but provides adequate flashover for operation at $50,000 \mathrm{ft}$.

POTTING COMPOUNDS for electronic components

Electronic Plastics Corp., 130th St. \& 90th Ave., Queens 18, N. Y., announces a new material called EM-BED-IT, which was especially formulated to solve the problems encountered in encapsulating delicate electronic components for the armed forces. It is extremely fast setting, taking only minutes; re-

GENERAL PURPOSE

GENERAL PURPOSE DISC CERAMICONS have low series inductance which assures efficient high frequency operation. Values from 5.0 mmf to .02 mfd . Rated at 500 Volts D.C. Working.

HIGH VOLTAGE DISC CERAMICONS employ the same basic diameters and design that have been standardized in 500 volt ceramic capacitors. Conservative voltage ratings from 1 KV through 6 KV D.C.W. based on extensive life test data.

TEMPERATURE COMPENSATING DISC CERAMICONS offer a wide combination of temperature coefficient and capacitance values. They meet all requirements for RETMA REC-107A Class 1 ceramic capacitors. Available in capacity ranges to 1940 mmf at 500 V.D.C.W

Pallet-Pak

. Erie's new exclusive method of packaging value $801-811-831$ ERIE Disc Cera micons and easy inventory and stor age. Write for Pallet-Pak (ersalepa Bulletin.

ERIE DISC CERAMICONS are available in the three categories above, each having a wide range of values. These capacitors consist of flat ceramic dielectrics with fired silver electrodes to which lead wires are firmly soldered. Completed units are given a protective coating of phenolic which is then wax impregnated for moisture protection. Disc Ceramicon sizes from $5 / 16^{\prime \prime}$ max. to $3 / 4^{\prime \prime \prime} \mathrm{max}$. diameter. Write for complete description and specifications.

ELECTRONICS DIVISION
ERIE RESISTOR CORPORATION
Main Offices and Factories: ERIE, PA.
Monufocturing Subsidaries:

ARTISAN enclosures and chassis are designed and fabricated to give you all these features . . . and are economical, too.
Each fabrication is tailored to an individual need to make it functional. Quality materials and unusual production techniques assure protection against damage and high maintenance cost. And, for greater sales value, Artisan units are attractive.
Remember, ARTISAN is your best source.

Write for our detailed literature.

Metal Works Company
plays its corresponding digit through a dust-proof transparent window. Frequency range of the PT- 5 is 50 to $10,000 \mathrm{cps}$.

DPDT CHOPPER with isolated circuits

James Vibrapowr Co., 4036 N. Rockwell St., Chicago, Ill. Model C-976, a new dpdt chopper, features a unique coax construction, fully isolated circuits and low residual noise, and is suitable for a $60-\mathrm{cps}$, $6.3-\mathrm{v}$ operation. The chopper will withstand extremes of shock, temperature, vibration and humidity. Connection is through a 9-pin miniature header. The height of the chopper is 2 墧 in.; width, $2 \frac{5}{8} \mathrm{in}$.; and depth, 1 in .

PLUG-IN RELAY is conveniently installed

Magnecraft Electric Co., 1448 W. Van Buren St., Chicago 7, Ill. New convenience for installation, inspection, interchange or replacement is provided by open-type plug-in relays. They can be installed, inspected or replaced without disturbing the wiring. When used in portable equipment, plug-in relays can be removed readily for protection in transit. They can be fur-

FOR RECORDING DYNAMIC QUANTITIES

6 to 24 channels for airborne, mobile or laboratory application for the recording of dynamic or static strain, vibration, acceleration and pressure.

FEATURING...

- Automatic calibration of all channels by pressing one button
- Frequency response zero to 6,000 c.p.s.
- Convenient controls on the MRC-21 Strain Gage Control Unit and S-20 Oscillograph
- Versatility with either carrier or wide-band amplification
- Automatic record length control, viewing screen, rapid chart speed changes possible

Hathaway Matched Transducers are available for acceleration, vibration, and pressure.

Ten years caoorshlip in ornamic analusss ssriems

WRITE
for
Bulletin 3F1
and 2 H 1

nished with standard contact combinations up to 24 arms per relay. Standard contact ratings are 2 amperes at 24 v , d-c or 115 v , a-c. Bifurcated contacts for extremely low voltage and low current or heavier contacts rated up to 5 amperes can be furnished. Operating voltages available range from 6 to 230 v , a-c or d-c. Dimensions, including plug, are $3 \frac{1}{2} \mathrm{in}$. long, $1 \frac{1}{3}$ in. wide. Height varies with number of contact arms required.

DECADE COUNTER weighs 11 oz with tubes

Ransom Research, P. O. Box 382, San Pedro, Calif., has developed a miniaturized electronic decade counter using the EIT decade scaler tube and weighing only 11 oz with tubes in place. Available are a $20-\mathrm{kc}$ scaler, a $40-\mathrm{kc}$ scaler, a 100 -kc scaler and an output stage scaler operating at 10 cps which can be used to feed a mechanical counter. The decade counters described employ plug-in construction using an Alden 20 pin plug for quick installation and removal as well as to permit their use as building blocks to form any desired combination. All types now available measure only $1 \frac{3}{4} \mathrm{in} . \times{ }^{\frac{1}{4}} \mathrm{in} . \times 3 \frac{3}{4} \mathrm{in}$. exclusive of tubes.

TAPPED DELAY LINES in 46 combinations

The Jacobs Instrument Co., Bethesda 14, Md., has announced a series of the lumped-constant type tapped delay lines. This W series of military types are offered in a wide variety of delay times and

characteristic impedances. All of this series of tapped lines are completely encapsulated in a special stable thermosetting resin which completely suriounds and supports each comment, protecting it against shock and vibration. These lines are usable over a wide temperature range and have excellent thermal stability of delay. They are hermetically sealed. The W series of lines contains tapped inserts for 6-32 mounting bolts. External connections are made by means of strong solder lugs.

POWER AMPLIFIER
 for high-fidelity uses

Fairchild Recording Equipment Co., 154th St. and 7th Ave., Whitestone, N. Y., is manufacturing a new compact $50-\mathrm{w}$ power amplifier for high fidelity applications. Model 260 power amplifier is only 12 in . wide, 7 in . deep and $7 \frac{1}{4} \mathrm{in}$. high. It features low intermodulation distortion and low harmonic distortion as well as excellent signal-to-noise ratio, and is guaranteed not to ring at any level regardless of load power factor. One design feature is the self-contained balance control which permits adjustment for minimum distortion, proper phase inversion and dynamic balance of the output

HAYDON makes very small, extremely rugged Timing Motors for 00 cycle, 400 cycle, and d-c use. They precisely, dependably measure and control timing - under variable condifions . . . in unusual locations and positions . . . without taking up too much space! With the help of HAYDON Timing Motors, you can now build time controls into your product with a minimum increase in space requirements!

HAYDON*

 helps you control space and TIME!If time and space are your problems, call in the nearby HAYDON Field Engineer. He can help you find the most efficient appligations of timing components. He can help insure superior performance in your producth Mail the coupon for his name, and for an informative catalog - foday.

HAYDON
A SUBSIDIARY OF GENERAL TIME CORP.

HEADQUARTERS FOR TIMING

HAYDON Manufacturing Company, Inc.

 2426 ELM STREET, TORRINGTON, CONN.\square Send me the name of the nearby HAYDON Field Engineer. Send me catalog, "Electric Timing Motors".

NAME

 POSITION COMPANY CO. ADDRESSGITY

6 Instruments in 1

without plug-ins!

BERKELEY Model 5571 Frequency Meter
Another BERKELEY first! Model 5571 offers for the first time the combined functions of six instruments in one compact, light weight unit - without plug-ins. Additional features include:

1. 0.42 mc frequency meter (extendable to 515 mc)
2. Frequency ratio meter
3. 0-1 mc period meter
4. $1 \mu \mathrm{sec}$ to $10,000,000 \mathrm{sec}$ time interval meter.
5. 0-2 mc events-per-unit time meter.
6. 1 mc counter

features

- Frequency range extendable to 515 mc
- Direct-coupled input amplifiers
- Direct connections to digital printer, digital-to-analog converter, or data converters for IBM card punches, electric typewriters or telemetering systems
- Provision for external frequency standard input
- Coupling to WWV receiver
- Relay rack mounting if desired

CONDENSEDSPECIFICATIONS

Frequency Meas. Range: 0 cycles to 42 mc
Time Interval Meas. Range: $1 \mu \mathrm{sec}$. to 10^{7} seconds
Period Meas. Range: 0 to 1 mc (Period $\times 10,0$ to 100 kc)
Input Requirements: 0.1 v , peak to peak
Time Bases: Frequency: 0.000002 to 20 seconds, decade steps. Time interval and Period Meas: 1 mc to 1 cps , decade steps
Accuracy: ± 1 count of unknown (or time base) \pm crystal stability
Crystal Stability: Temperature stabilized to 1 part in 10° (short term)
Oisplay Time: 0.2 to 5 seconds
Power Requirements: 117 v. $\pm 10 \%, 50-60$ cycles, 260 watts
Dimensions: $203 / 4^{\prime \prime} \mathrm{W} \times 19^{\prime \prime} \mathrm{H} \times 16^{\prime \prime} \mathrm{D}$. Weight, 100 lbs .
Price: $\$ 1,650.00$ (f.0.b. factory)

Available Now! See itat the IRE Show, Booths 752-754
Write today for complete technical data and application information; please address Dept. G-2

tubes to be made aurally without test equipment of any type.

REGULATOR TUBE

 is rugged under shockRaytheon Mfg. Co., 55 Chapel St., Newton 58, Mass., has announced the new, improved, 108-v regulator tube type OB2WA to replace type OB2 in critical military and commercial applications. This development features ruggedness under shock and vibration, tightly controlled specifications and 150 C bulb temperature ratings. It is now available to MIL specifications.

TERMINALS

in new taper pin types

Lynn Electronic Research Co., 501 S. Varney St., Burbank, Calif. Four new taper pin terminals have been added to the line of electronic hardware. Included are double-end taper, taper from front, taper from back and taper from front with blind hole. Sizes are available for standard terminal board thicknesses, or special terminals may be ordered to specification. The new taper pins are of half-hard brass
bar, with copper flash and electrotin plate finish. A complete catalog of the company's electronic hardware is available on request.

FLIP-FLOP

packaged as plug-in unit
EECO Production Co., 827 S. Vermont Ave., Los Angeles 5, Calif. A new high-speed flip-flop is designed for use in counting and frequency division applications. It has a 0 to l-mc range for decade operation. Packaged as a plug-in with an 11pin base, the flip-flop unit has a $1 \frac{1}{2} \mathrm{in}$. o-d and a seating height of $3{ }^{2} \frac{1}{2} \mathrm{in}$. A minimum input signal of 80 v is required for input frequencies from 0 to 500 kc . Its output signal has an amplitude of 80 v. The plug-in unit is designed to permit it to be taken apart or assembled without the use of any tools.

SWEEP DIGITIZER

has low torque

Oerlikon Tool \& Arms Corp. of America, Asheville, N. C. Extremely low torque is the key feature of a digitizer recently developed. Converting either shaft positions or voltages to unambiguous

Measure Frequency to 515 mc

Abstract

READ IT DIGITALLY, PRINT IT AUTOMATICALLY! Add a Model 5580 VHF-UHF Converter and 1452 Printer (below) to a BERKELEY Frequency Meter*-get the most convenient, inexpensive means yet devised for frequency measurement to 515 mc . Exclusive BERKELEY Modular design uses low cost fixedband plug-in units in place of costly wide-band amplifiers. Accuracy of measurement is $\pm 1 \mathrm{cyclc}, \pm$ crystal stability (1 part in 10°)

*Model 5580 connects direcsly to BERKELEY Model 5570 or 5571.

Plug-in units covering 13 fixed bands from 42.515 mc eliminate costly wide-band amplifiers. Price, $\$ 100.00$ each except for 42.155 mc Model $5581 / 4$, which is $\$ 150.00$ f.o.b. factory.
tutomatic Digital Recorder Completes System

Model 1452 prints 6 digits (8 or 10 on special order) on standard andling machine tape. Only $18^{\prime \prime}$ wide $\times 10 \frac{1}{2 \prime \prime}$ high $\times 14^{\prime \prime}$ deep, weighs 60 lbs. Price, $\$ 750.00$ f.o.b. factory.

BERKELEY Model 1452 Digital Recorder operates directly from any late model BERKELEY meter, automatically prints up to 10 -digit readout on standard adding machine tape. Scanner and printer are combined in one compact unit. Can be modified to print "Time" or "Code" information simultaneously with count data on same tape.

Write for complete specifications and data; please address Dept. G-2

Berkeley

division
M-52
becknan instruments inc.
2200 WRIGHT AVE., RICHMOND 3, CALIF.
INDUSTRIAL INSTRUMENTATION AND

5 reasons why Corring film-type resistors meet your most exacting circuit needs

1. They're Stable • The resistive element of Corning Resistors is so stable it can be cycled from near absolute zero to red heat without impairing its electrical properties. These resistors withstand high-ambient and high-operating temperatures.

2. They're Moisture-

proof - Corning Resistors are impervious to moisture. They meet specifications for maximum resistance change under moisture resistance tests of MIL-R-10509A and MIL-R-11804A.
3. They're Durable • No need to coddle Corning Resistors. Drop them or scratch them. Neither affects them. The film material is fired in at a red heat and makes an integral contact with the heat-resist-
ant base. You end special handling and assembly costs.
4. They're Quiet • No necd to use oversize resistors to overcome solder heat noise. Fired-insilver bands afford low-load resistance, low-noise termination. These resistors are so quiet, noise is difficult to measure. Excellent for sig-nal-level, high-gain amplifier stages.

5. They're Space-

 Saving - You can couple Corning Resistors close-without damage or fear of creating noise.That's not all! Corning Resistors have other important characteristics to help you. And there are 16 different types, covering a resistance range from 10 ohms to 1 megohm; ratings from $1 / 2$ watt to 150 watts. Write today for technical descriptions of all of them.

CORNING GLASS WORKS • CORNING, N. Y. New Products Division
Corking meand reseache in Glass
digits, the Quantasweep can be used in a large variety of applications. It will convert to digits any information measured by either shaft rotation or voltage, such as speed, pressure, tension, weight, remote temperature and humidity, Operation is based on detection of null voltage. If the input is a shaft position, a low-torque potentiometer is mounted on the shaft to convert shaft positions into voltages. Output commutators have sufficient capacity for operating items such as card or paper tape punches. Least count of the Quantasweep is 1 part in 10,000 and precision is 0.025 percent of full-scale reading. Torque required to actuate may be as low as 0.007 in . oz.

DELAY LINES

for color television
The Gudeman Co. of California, Inc., 9200 Exposition Blvd., Los Angeles 34, Calif., has developed a new series of epoxy resin impregnated miniature delay lines to meet the requirements of color tv manufacturers. Model GTV.6-2.5K provides an $0.6-\mu$ sec delay with an impedance of 2,500 ohms. Length is $1 \frac{3}{4} \mathrm{in}$. Model GTV.8-4.1K provides an $0.8-\mu$.sec delay with an impedance of 4,100 ohms. Length is $2 \frac{1}{8} \mathrm{in}$. Both units are $\frac{1}{2} \mathrm{in}$. in diameter and have flexible axial leads. Other delays and impedances are available to meet special requirements.

JUNCTION TRANSISTORS of the pnp type

Westinghouse Electric Corp., Box 284, Elmira, N. Y., has available three new germanium $p m p$

junction transistors. The transistors (types 2N54, 2N55, and 2N56) are designed for low-power, lowfrequency amplifier applications. Each is capable of dissipating 200 mw at 25 C . All are provided with leads for wired-in installation. The average cutoff at the $6-\mathrm{mw}$ power level is 500 kc . The average current gain of the transistors are: 2 N 54 0.97 ; 2N55-0.95; and 2N56-0.92.

FEED ANTENNA

for microwave relay use
Prodelin Inc., 307 Bergen Ave., Kearney, N. J., announces a new antenna for microwave relay communications. The new radiator is called the Off-Set feed antenna and features broadband electrical characteristics. Only two types now make it possible to operate over the entire 1,700 to 2,450 and 2,450 to $2,700-\mathrm{mc}$ bands with a vswr at 1.02 for tv use. Four and six-ft. size antennos are available. Low side lobe radiation permits two antennas to be operated back-to-back with greatly reduced crosstalk inter-

WIDE Power 200 to $\mathbf{2 5 0 0} \mathbf{~ m c / s e c}$

 50 watts to 400 mc 25 watts to 1000 mc 10 watts to 2500 mc 1141A Cavity OscillatorA New Instrument of unusual capabilities, the Maxson Model M1141 UHF Wideband Power Oscillator, provides exceptionally broad frequency coverage and substantial power output in a single source. A simple changeover of feedback assemblies provides over-
lapping coverage of the full range in two bands. For easier portability, the instrument is divided into two units. Provision is made for internal and external amplitude modulation and for CW operation. With its smooth tuning and precise resettability, the Model M1141 is an excellent general-purpose signal source.

1141B Power Supply and Modulator

Frequency Ranges

200 to 1050 mc - 1000 to 2500 mc

Calibration Accuracy

$\pm 1 \%$ or $\pm 5 \mathrm{mc}$ whichever is greater
Resetfabilitybetter than 0.1% Internal square-wave 400 cps Internal square-wave 1000 cps Modulation Internal sine-wave 400 cps Internal sine-wave 1000 cps External

MAXSON develops and manifacture systems, subsystems, and components in armament, navigation, electronics, and seecoal devices.

Ask for facilities report.

Output impedance 50 ohms (nominal)

Write for free bulletin EI254.

Stupalkofif

PRECISION CERAMICS

PRECISION CERAMICS can improve your products...cut your costs!

In the assembly of electrical or electronic equipment, the use of precision-made components means faster production and the correct functioning of the equipment in service.

Through the application of experience-developed engineering and technical skills and modern equipment, Stupakoff produces, in large volume, parts that meet most exacting specifications.

Stupakoff precision ceramics may be plain or metallized; and made from alumina, steatite, zircon, Stupalith or other materials.

WRITE for our new bulletin No. 30I, which describes precision ceramic products, or send drawings for quotations.

Stupaikoff

CERAMIC \& MANUFACTURING COMPANY • LATROBE, PA. division of The CARBORUNDUM Company
ference. Weighing less than 16 lb . the new antenna is adaptable to a variety of supporting structures and transmission line input connectors.

JUNCTION TRANSISTOR
 for low-power applications

General Electric Co., Syracuse, N. Y. Type 2N76 fused junction transistor was designed to cover a broad specification range, giving designers a stable, relatively inexpensive component. Shelf life and exposure to full rated temperature will not change the characteristics of the transistor. It is hermetically sealed (accomplished by use of glass-to-metal seals and resistance welded seams). The transistor was developed for use in audio and supersonic frequency stages. It has a maximum frequency cutoff at 2.5 mc with the design center at 1.0 mc . Alpha design center is 0.95 , while maximum collector voltage is -20 v , and the maximum junction temperature is specified at 60 C . The transistor is capable of dissipating 50 mw in 25 C free air. Illustrated is the 2N76 transistor compared to a 1 -w resistor.

SYNCHROS

feature high accuracy

Clifton Precision Products Co., Inc., Marple at Broadway, Clifton Heights, Pa., has developed a new series of size 15 synchros. The instruments feature very high accuracies for their size and weight. Maximum diameter is 1.437 in ;

and maximum overall length, 1.640 in. Average weight is 4.7 oz . The synchros are available with leads, or can be specially ordered with radial or axial terminals. The size 15 synchros are available in the following types: signal generators, receivers, regular and high impedance control transformers, high output control transformers, control differentials, regular and high impedance resolvers and sinecosine generators.

MEGOHMMETER measures leakage resistance

Freed Transformer Co., Inc., 1715 Weirfield St., Brooklyn 27, N. Y. Type 1620 megohmmeter is invaluable for measuring leakage resistance of transformers, insulating materials, cables, motors, standoff insulators, resistors and capacitors. The 1620 is a direct reading precision balanced electronic ohmmeter with a variable d-c test potential included as part of the unit. The d-c test potential is variable from 50 to $1,000 \mathrm{v}$. The range of resistance readings is from 0.1 megohm to $4,000,000$ megohms in 6 overlapping ranges. Resistance read-

Stupaliofi

Kovar HARD GLASS Seals

Kovar HARD GLASS Stand-offs for test or connection points.

Fused oxides guarantee TRUE HERMETIC SEALING

Stupakoff Seals are made by bonding together Kovar metal and hard borosilicate (Pyrex Brand) glass, through a heating process which fuses the oxides of these materials. The strain-free bond thus formed guarantees true hermetic sealing over a wide range of temperatures.

The smooth glazed surface of these compact, light weight seals has high insulating value, and minimizes accumulation of moisture and foreign materials. High thermal endurance permits operation at elevated temperatures, and maximum efficiency is retained even at minus temperatures.

Proper design of a Kovar HARD GLASS stand-off or lead-through terminal insures incorporation of these advantages in your product to provide the desired safety factor. See the "Design Information" section of Catalog $453 A$, on payes 29 and 30 .

Stupalkoff

Complete dato of hundreds of sizes, styles ond rotings of standard Stupakaff Kovar HARD GLASS hermetic seals is given in this catalog. Send for a free copy of Bulletin
 453A.

PATENT PENDING
Fra Power Supplies introduce a new concept in power interconnection and switching (patent pending) to provide exclusive multiple unit operation

- Power Supply Units are interconnected by integral extension cables. Series, parallel or unit (individual) operation is selected by a panel switch.
- Up to ± 1000 volts available from series connected units. Up to six intermediate regulated volt ages also available from series connected units,
- As high as $1 / 2$ Amp available with parallel connection.
- All HV outputs of single or interconnected supplies available at terminals and at a single output connector
FEPower Supplies provide superior operation. - Conservative application of quality components.

Extended current or voltage available from single unit, under certain conditions.

- Full 300° knob rotation utilized for voltage control, right dow'n to true zero voltage.

FE

SPECIFICATIONS

Output Voltages: \#1 High Voltage; 0 to 250 volts $D C$ continuously variable, 100 mo maximum current over entire volrage range.
\#2 Bias voltage; 0 to - 150 volts $D C$ continuously variable, 5 ma maximum lood. (Model 1101 only.)
\#3 AC unregulated; full 6.3 volts rms available of 5 amps maximum load
Regulation:
$D C$ high voltage; 0.2% or 0.3 volts (whichever is greater), from no load to fuli lood, at ony line voltage from 105 to 130 volts. Output voltage at any current is regulated within 0.3% or 0.7 volts (whichever is greater), for line voltage changes from 105 to 130 volts.
DC bias voltage; regulated by OD3/VR150 tubes. (Model 1101 only).
Mefering: Separate voltmeter and millammeter
Internal Impedance: $D C ; 3$ ohms maximum. $A C ; 1$ ohm maximum.
Ripple and naise: Less than 5 murms
nput Power: At full lood, 250 wotts, 50 to 420 cycles 105 to 130 volts (or 215 to 250 volts)
Protection: input and Output protected by fuses Extended range operation: Up to ± 1000 volts or $1 / 2 \mathrm{amp}$ ovailable by interconnection of several units. Panel switch selects unit, series or parallel operation.

Terminals:

DC High Voltage; either positive or negotive terminat may be grounded. All outputs available at terminals and ar receptocle. When units are interconnected, all high unit.
DC Bias Voltage; bias voltage is with respect to negotive terminal of high voltage supply. (Model 1101 only.) Size: $1012^{\prime \prime}$ w by $7^{\prime \prime}$ h by $10^{\prime \prime} \mathrm{d}$. May be stacked one above on other.
All fuses and pilat lamps are replaceable from panel. Removable ponel permits servicing without removing unit from cabinet. Weight 19 pounds.
(Dato subject to change without notice)
PRICE -F.O.B. Palo Alto, Colif.
Model $1100 \$ 209$ each- $\$ 199$ each (two or more) Model 1101 \$219 each- $\$ 209$ each (two or more)

ings and applied test voltage are indicated on separate $4-\mathrm{in}$. meters. A relay operated from the front panel discomects the high voltage from the test terminals and eliminates all danger of shock to the operator.

COURSE INDICATOR for VOR installations

Aircraft Radio Corp., Boonton, N. J., has amnounced a course indicator for use with type 15D VOR airborne receiving equipment. It combines all functions of a crosspointer meter and course selector in one unit to save valuable instrument panel space which is particularly necessary in dual VOR installations. It fits a standard $3 \frac{1}{8} \mathrm{in}$. instrument hole and weighs 3.3 lb .

PROGRAMMING DEVICE operates automatically

Scientific Specialties Corp., Snow and Union Streets, Boston 35, Mass. Basically, the automatic programming device consists of a chart recorder on which a program is drawn in the form of a black line on the recorder chart. The X axis represents the rate of change and the Y axis represents time. In actual operation, a photovoltaic cell observes the black line and discriminates be-
tween the black and white portions of the chart. This information is inserted into the recorder amplifier which in turn controls the position of a retransmission slide wire. By using this continuously variable slide wire and an electronic motor drive unit, stepless speed motor control can be achieved.

SERVO AMPLIFIER
 for 400 -cps operation

Clifton Precision Products Co., Inc., Marple at Broadway, Clifton Heights, Pa., has developed a new servo amplifier, type VA-4-A-60, designed for $400-\mathrm{cps}$ operation. High sensitivity and power output are featured. Maximum height is 4 in ., maximum width 28 in. and maximum depth is $1 \frac{1}{4} \mathrm{in}$. Weight is 6.6 oz . This amplifier is designed to deliver 4 w into the control phase of a servo motor. An input of 20 mv 400 cps drives the amplifier to 4 -w output. Gain of the amplifier may be varied externally. The complete amplifier is capsulated in epoxy resin to minimize the effects of moisture, vibration and other adverse environmental conditions. Data sheets giving characteristic data, outline dimensions and mounting information are available on request.

LOW-NOISE TRIODE

with $6.3-\mathrm{y}, 200$-ma heater
Raytheon Mfg. Co., 55 Chapel St., Newton 58, Mass. Type CK6533 is an improved low noise subminiature triode with $6.3-\mathrm{v}, ~ 200-\mathrm{ma}$ heater, amplification factor of 53 and mutual conductance of 1,750 $\mu \mathrm{mhos}$. At the standard test condition of 40 cycles, $15-\mathrm{g}$ vibration, noise output across $10,000 \mathrm{ohms}$ in

MAGNEIC RECORDNG

Brush offers complete line of precision magnetic heads

- Brush heads perform the functions of recording, reproducing, and erasing - where accuracy is vital to the performance of the magnetic recording system.

Brush heads utilize a unique laminated pole structure to provide uniformity of track width. Assembled poles are ground and lapped perfectly flat to provide a straight, accurate gap. This precision gap alignment assures time-phase accuracy. Thus data can be recorded on one machine and played back on another, with all signals remaining in perfect time-phase relationship.

You can fill all your requirements from Brush's complete range of single and multi-channel heads. For information write Brush Electronics Company, Dept. K-2A, 3405 Perkins Avenue, Cleveland 14, Ohio.

Pulse recording heads used on magnetic memory drum. Interlaced arrangement provides 150 recording tracks

Data recording equipment uses two multichannel Brush heads to record 25 data channels on a l-inch tape.

BRUSH ELECTRONICS
INDUSTRIAL AND RESEARCH INSTRUMENTS
PIEZO-ELECTRIC MATERIALS - ACOUSTIC DEVICES MAGNETIC RECORDING EQUIPMENT ULTRASONIC EQUIPMENT

COMPANY
formerly
The Brush Devalopment Co. Brush Electronics Company is an operatiag writ of

They tell us

 this relay is TOPS!

ELECTRONICS engineers have been giving these UNION Miniature Relays a real "going over"-and they like what they found. They tell us the relays have come out "tops" in every testespecially for high-vibration resistance and they meet and exceed MIL-R-5757 A\&B. They resist shock, vibration, corrosion, heat, cold, and have a life expectancy of $1,000,000$ operations!

Contacts are available to function down through the microampere and millivolt range. Coil resistance, contacts, voltage requirements, means of mounting, etc., can vary to suit your circuits.

We don't pretend to know all the possible applications, but if you have relay problems, call in our nearest sales representative. He can help you to a satisfactory solution. In the meantime, write for descriptive literature now.

GENERAL APPARATUS SALES

UNION SWITCH \& SIGNAL
 DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY
 PITTSBURGH

 PENNSYLVANIA
 NEW YORK
 vanhoe 3-2424
 (Hempstead)
 BOSTON
 Jackson 9-3122 (Wethersfield, Conn.)
 BALTIMORE ST LOUIS Valley 5-3431 Jefferson 5-7300
 LOS ANGELES Michigan 9719

SMALL CONNECTORS with side mounting hole

Winchester Electronics, Inc., Norwalk, Conn. The countersunk side mounting hole and narrow width of series JF connectors permit exceptionally flat mounting, thus minimizing connector protrusion when installed on equipment. This is proving effective in solving circuit terminal problems in apparatus where space is limited, or where unusual design prohibits conventional connector mounting. Contacts are rated at 5 amperes, use No. 20 Awg wire, and are precision machined and gold plated over silver for low contact resistance, prevention of corrosion and ease of soldering. Mineral filled Melamine bodies provide high dielectric strength and arc resistance. Available with either 2 or 4 contacts, the reversed pin and socket assembly
provides positive polarization. Connector dimensions are: $7 / 18 \mathrm{in}$. high; $1^{\frac{h^{2}}{2}}$ in. maximum overall engaged length; $\frac{1}{8}$ in. wide (2 contact type) and $\frac{1}{4}$ in. wide (4 contact type). Minimum voltage breakdown at sea level is $2,250 \mathrm{v} \mathrm{d}-\mathrm{c}$; at $60,000 \mathrm{ft}$ altitude, 700 v d-c. Weight of the 2 contact connector is 0.03 oz ; the 4 contact connector, 0.06 oz .

TINY COMPONENTS

 in standard typesElectrical Industries, division of Amperex Electronic Corp., 44 Summer Ave., Newark 4, N. J., has introduced new miniature components for transistors and other assemblies requiring hermetic sealing. They are available in standard types with three, two or single wires. All outside leads are approximately 11 in . in length. Both Kovar and compression types are included in the line, and shapes include squares, rounds and rectangulars.

WIRE-WOUND RESISTOR

 with visibility featureShallite, Inc., 10 Mill St., Paterson, N. J., announces a new development of precision wire-wound resistor based on transparent encap-

NOW! ULTRA-HIGH

 PREGISIONPOLYSTYRENE GAPAGITORE

in wost values!

Check these
outstand ng features:

- Capacitance Available 0.05 to $\mathbf{3 0 . 0}$ MFD
- Voltage available 100 to 400 VDC
- Insulatior Resistance -

106 MEG / MFD

- Temp. Cceff. -

100 P.P.M. per ${ }^{\circ} \mathrm{C}$ $\left(-20^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$

- Dielectriz Absorption - .015\%
- Dissipatōn - . 0002

Special values to close tolerances - our specialty Join these other leading firms in specifring Southern Electronics' precisior polystyrene capacitors for your most exacting requirerrents: Reeves Instrument Corp., Esctronic Associates, Inc., Convair, Berkeley Scientific, M.I.T., Calif. Inst. of Tech., and mand others.
Write fo ${ }^{-}$complete catalog -

SOUTHERN ELECTRONICS

TURRET ATTENUATOR featuring "PULL-TURN.PUSH" action

SINGLE "IN-THE-LINE" ATTENUATOR PADS and 50 ohm COAXIAL TERMINATION

FREQUENCY RANGE:
de to 3000 mc .
CHARACTERISTIC IMPEDANCE:
50 ohms
CONNECTORS:
Type " N " Coaxial female fittings each end AVAILABLE ATTENUATION:

Any value from .1 db to 60 db
VSWR:
<1.2, dc to $3000 \mathrm{mc}_{\text {, }}$ for all values from 10 to 60 db
<1.5, dc to 3000 mc ., for values from . 1 to 9 db
ACCURACY:
$\pm 0.5 \mathrm{db}$
POWER RATING:
One watt sine wave power dissipation
Send for free bulletin entitled "Measurement of RF Attenuation"

Inquiries invited concerning pads or turrets with different connector styles

STODDART AIRCRAFT RADIO Co., Inc. 6644-A Santa Monica Blvi., Hollywood 38, California - Hollyweod 4-9294

sulation. This visibility feature assists materially in precluding service failures due to internal strains. The resistors include other improvements, such as mechanical fastening, electric welding of all wire. leads and the phosphor bronze term-inals-all being completely visible through the transparent encapsulation. They are designed to meet the requirements of Government specifications JAN-R-93 and MIL-R-93A.

BAND-PASS FILTERS are subminiature units

Communication Accessories Co., Hickman Mills, Mo., has available a new standard series of subminiature band-pass filters measuring
 These units have a 0.55 cu . in. displacement and exhibit excellent characteristics for telemetering and airborne applications. They are designed to meet MIL specifications with 6-percent bandwidth at $3 \mathrm{db}, 40 \mathrm{db}$ per octave. The units are hermetically sealed with compression glass header and drawn metal can. The $\%$ studs afford a positive mounting arrangement. Custom designs are available on request.

COAX CONNECTORS are heavy-duty type

Tru-Connector Corp., 416 Union St., Lynn, Mass., announces a complete family series of newly-designed r-f coaxial connectors developed to maintain performance under the most adverse operating conditions. They combine excellent electrical performance at microwaves with the proven mechanical dependability and quick-disconnect
features of high-pressure hydraulic fittings. Units are available in plugs, jacks, panel-jacks, receptacles and right-angle plugs for cables similar in size to RG-10/U.

CERAMIC CAPACITORS meet military requirements

Aerovor Corp., Hi-Q Division, Olean, N. Y. Type CNP ceramic capacitors can be supplied in close temperature-coefficient limits without individual t-c testing. These units are available in a noninsulated tubular style with radial leads and a clear nonhygroscopic plastic coating. They meet the performance requirements of MIL-C-11015A, JAN-C-20A, and RETMA REC-107-A specifications. Engineering details, including tolerances and typical temperature-coefficient curves, are contained in bulletin NPQ-100.

D-C AMPLIFIER features high stability

Electro-Mechanical Research, Inc., Ridgefield, Conn. Model 62A stabilized d-c amplifier has a passband from d-c to 25 kc , has zero drift restricted to $20 \mu \mathrm{v}$ equivalent input over any period of operating time, a gain of $1,000 \pm 1$ percent, input impedance 200,000 -ohm cali-

- VECO Thermistors, too, can do almost anything!

These tiny metal oxide components are virtually unlimited in the measurement and control functions they can perform in electrical circuits.
Because their principal characteristic is extreme sensitivity to thermal changes, they can be used in temperature measurement and control, switching, voltage surge protection, flow measurement, fire detection, gas analysis, liquid level gauging, time delay control; power measurement, overload protection, voltage regulation, automatic gain control, temperature compensation, etc.

Victory Engineering Corporation
 101 Springtield Road

 UNION, NEW JERSEY Tel: Murdock 8-7! 50thermistors
varistors
TEMPERATURE
SENSING DEVICES
semsing bevices ELEGTRONIG AND
THERMAL CONTROL ThERMAL CON
INSTRUMENTS

To learn more about VECO thermistors and their uses, write for Experimenter's Kit No. M-168 of 6 thermistors and 1 varistor, with suggested circuitry, $\$ 5.00$ postpaid.

Also available, 36-page Data Book, $\$ 1.00$ (free if requested on business stationery.)

See Us At the I.R.E. Show Booth 657-659

> "Properly designed chassis increase reliability, facilitate maintenance, reduce cost and enhance appearance of electronic equipment..."

This headline in a featured article of a recent issue of Electronics magazine could well apply to many Falstrom customers who found out about the advantages of Falstrom chassis, control boards, graphic panels and various enclosures. Falstrom, with over 85 years' experience and its modern metal fabricating equipment, can custom design and produce any size or style metal assembly in small or large quantities, in aluminum, steel and other alloys at reasonable cost. Send your prints or write for Falstrom bulletin \#142-C.

SEE US AT BOOTHS 766 AND 768

falstrom means it's that much better!

FALSTROM COMPANY, 93 Falstrom Court, Passaic, N. J. PRescott 7-0013

Since 1870
brated step attenuator, output range for load impedances greater than 1,000 ohms is zero to $\pm 5 \mathrm{v}$, output range for load impedances less than 1,000 ohms is zero to ± 5 ma; noise is less than $15 u v$ equivalent input; linearity is ± 0.25 percent. Accessory equipment includes strain gage bridge balance and supply and an output amplifier for driving pen motor recorders and high-frequency string galvanometers.

PNP TRANSISTORS

 are low noise-level typesAmperex Electronic Corp., 230 Duffy Ave., Hicksville, L. I., N. Y., has available 4 new $p n p$ junction transistors. Type 0C70 has a grounded emitter current gain from 20 to 40 , while the OC71 has a gain of 30 to 75 . Both have average noise figures of only 10 db and are particularly suited to hearing aids and other portable circuits. They are designed for mass production and are all-glass with true fusion seals. The 080 C and 081 C are metal-cased transistors having the standard JETEC base and dimensions. The metal casing allows a higher collector voltage and a dissipation of 50 mw at 45 C . Otherwise the electrical characteristics are the same as for the OC70 and OC71 respectively

INSULATING LACQUER has high adhesion

Insl-X Sales Co., 26 Rittenhouse Place, Ardmore, Pa. The A-11 airdry acrylic coating finds wide application in the electrical-electronic fields: as a binder for pie-wound coils; in the manufacture of potentiometers; as a sealant for plastic molded units, oil-filled capacitors,
and decals on phenolic surfaces; and as a general purpose high quality adhesive. Supplied in colors as well as clear, it is also used for color coding such units as ceramic capacitors which are subject to high operating temperatures. For most uses the compound is best applied by brushing or dipping. Complets information is provided in bulletin A-11, available on letterhead request to the company.

SOCKET SAVER

 for installation on tube testersPomona Electronics Co., Inc., 524 W. Fifth, Pomona, Calif., has developed a device designed to be installed on tube testers and other electronic equipment to prevent wear and tear of sockets on original equipment. It comes in a 7-pin miniature, 9 -pin miniature and 8 pin octal. The unit is built of quality materials including silver plated contacts and pins to give maximum service.

GEIGER COUNTER

 with tropicalized circuitThe Radiac Co., Inc., 489 Fifth Ave., New York 17, N. Y. Model GC235 Prospectometer features a watertight directional probe containing a highly sensitive thinwalled Geiger tube. The probe, which has a shield for beta-gamma discrimination, is connected to a

BC-200 (Typical Cross-Section)

Linear and non-linear function

Ball Bearing Potentiometers

- External phasing
- Starting torque: 0.5 oz in. max.
- Backlash: 0.05° max.
- Logarithmic, sine-cosine and other functions
- Multiple, adjustable taps
- Unitized design for universal coupling
- Precision machined aluminum housing
- Servo or single hole mounting

Our engineering department can sapply prototypes quickly to meet unusual design specifications for tests and approval. Write for complete technical literature. No obligation

Electronic Sales Division
DeJUR-Amsco Corporation
45.01 Northern Blvd., Long Island City 1, N. Y.

- Fully enclosed precision ganging types
- Standard and power types
- High resolution precision types
"You're always sure with DeJJR potentiometers"

BIRD Model 43 thruline DIRECTIONAL WATTMETER

Reads Directly .. WATTS FORWARD WATTS REFLECTED...7x 50 ham Coaxcal Sines

Measures POWER into the antenna in the actual oper. ating circuit. Continuous monitoring if desired.
Measures reflected power, direct reading. In antenna match. ing work, results show directly in lower reflected power. Ideal for mobile equipment.
Tests 50 ohm r-f lines, antenna connectors, filters-quickly. ACCURATE because of high directivity and small frequency error.
DIRECT READING - no calibration charts, no full scale meter adjustments needed. Meter scale reads directly for all ranges and is expanded for better down-scale reading. CONVENIENT - does not require reversal of r-f connections. No auxiliary power required.
Negligible power loss and insertion VSWR. Full scale power range and frequency range are determined by the selection of plug-in elements from the following list.
Frequency Range-25-1000 megacycles in five ranges vis. 25-60 (A), $50 \cdot 125$ (B), 100-250 (C), 200-500(D), $400 \cdot 1000$ (E).

Power Range-10,25,50,100,250, and 500 watts full scale. Available
in most frequency ranges in most frequency ranges.
Accuracy - 5% of full scale.

Model 43 with front element in operoring position. Dimensions: $\times 4^{\prime} \times 3^{\prime \prime}$ Weight 50239 ia available. available.

5 -ft cable to permit the easy investigation of holes, crevices and other likely hotspots. The Prospectometer's tropicalized circuit assures maximum efficiency in every type of weather or climate. Engineering design features a patented printed circuit and a stable electronic power supply operating off inexpensive low-voltage batteries. Radioactivity is signaled in 3 ways at once: loud earphone clicks, meter indication and flashing neon light. The unit comes equipped with its own calibration chart and calibrating standard. Weight is $5 \frac{1}{2} \mathrm{lb}$.

Literature

Servo Analyzer. Minneapolis-Honeywell Regulator Co., Wayne and Windrim Ave., Philadelphia 44, Pa. Analysis of servomechanisms and process equipment, using frequency response techniques, is now speeded by the Brown servo analyzer, an automatic transfer-function measuring and plotting system. Bulletin 1170 describes and illustrates the components and operation of the versatile instruments.

Subminiature Receiver. Lehigh Valley Electronics 215 S. Third St., Allentown, Pa., has available a single-sheet bulletin illustrating and describing a subminiature receiver no larger than a pack of cigarettes. The receiver discussed is designed to operate at frequencies between 25 and 60 mc and has an effective range of about 20 miles. It weighs $5 \frac{1}{2} \mathrm{oz}$.

Transformers and Lab Test Instruments. Freed Transformer Co., Inc., 1715 Weirfield St., Brooklyn 27, N. Y., announces availability of two new comprehensive catalogs covering a line of transformers (catalog 545) and precision laboratory test instruments (catalog 546). Catalog 545 is a 24 -page bulletin, completely indexed, which contains illustrations, dimension tables, technical specifications, and complete descriptive material on the company's transformers, filters, magnetic amplifiers, reactors and tor-
electronic controls. Of particular interest to engineers is the page devoted to formulas frequently used in transformer and reactor computations.

Oscillographs and Amplifiers. Brush Electronics Co., 3405 Perkins Ave. Cleveland 14, Ohio. Information detailing recently developed models of oscillographs and amplifiers is provided in a new brochure. The literature gives basic details of the company's 4 and 6 -channel oscillograph in combination with universal and dual-channel $d-c$ amplifiers. It also provides related information concerning universal amplifier model BL-520, and dualchannel direct-coupled amplifier model BL-530. The instruments described have numerous applications in many fields of research and industry.

Television Camera System. Kalbfell Laboratories, Inc., 1090 Morena Blvd., San Diego 10, Calif. A 4page folder illustrates and describes the Kay Lab tv camera system that employs only 3 basic units-the camera, camera control and syn-chronizer-monitor. Each of the units is discussed and specifications and significant features are listed.

Color Planning Packet. Allen B. DuMont Laboratories, Inc., 1500 Main Ave., Clifton, N. J., has available a color planning packet which is an attempt to simplify the color film packaging so that one can choose for himself the combination which best fits in with his proposed color plans, and see for himself the relative costs of various combinations. In addition there is given complete descriptive literature on each item in the company's color line, including a complete 20 -page brochure on the film Multi-Scanner.

Time Delay Relays. The A. W. Haydon Co., 232 N. EIm St., Waterbury, Conn. Bulletin TD500 contains technical data and specifications on a line of special time delay relays. The relays described are motordriven and provide accurately controlled time delay periods adjustable over a wide range.

Permanent-Magnet Motor. Dalmotor Co., 1329 Clay St., Santa Clara,

Now, you can have it! Now, you
can have a trimming potentiometer that's protected
against humidity. It's an EPR "exclusive" made possible
by EPR research. What's more-in addition to real protection against
humidify, COMP-U-TRIM provides greater' resolution. The
exclusive EPR internal tap plus larger winding area
provide resolution unequalled in the field today.

If you use frimming pofenfiometers you'll be glad you've learned abouf COMP-U-TRIM,

WIDE RANGE OF

TEMPERATURE
COEFFICIENTS

Write, Wire or Phone for Data Sheets, now.

STANDARD VALUES

50 Ohms	1000
100 htms	2000 Ohms
250 Ohms	5000 Ohms
500 Ohms	10000 Ohms
High reso values avain	nd resistance upon special .

E) No. 11-1930-111; mechanical dimmer. No. 3.1930-111; polaroid dimmer
All assemblies accommodate midget flanged base lamps like this one (actual size); easily replaced. Available for voltages of $1.3,2.7,6,14$, and 28 . Any assembly available complete with lamp Samples on request - no charge Write for Catalogue L-153

LIGHT Shield ASSEMBLY
(All illustrations are approx. actual size.)

\qquad

Foremost Manufacturer of Pilot Lights

DIALIGFIT

CORPORATION 60 STEWART AVE. - BROOKLYN 37, N. Y. HYACINTH 7.7600

oidal inductors. Catalog 546 is a 16-page bulletin describing and illustrating the company's complete line of test instruments including voltmeters, megohmmeters, filters and magnetic voltage regulators. All technical specifications are given.
Instrument Calibration Standard. Radio Frequency Laboratories, Inc., Boonton, N. J. A single-sheet bulletin describes and illustrates the model 454 a-c instrument calibration standard which has been designed to provide a medium for quickly and accurately calibrating a-c voltmeters, ammeters and milliammeters. Information on accuracy, safety features and applications is included. Electrical specifications are given.

Antenna Equipment. Andrew Corp., 363 E. 75th St., Chicago 19, Ill. Bulletin 200 tells how to choose the most economical combination of base, antenna, tower, transmitter and line for required range. This 4-page reprint contains an ilustration, complete description and tabular data.

Power Rheostats. TRU-OHM Products, 2800 Milwaukee Ave., Chicago 18, Ill., has available complete illustrated literature on a line of power rheostats. The rheostats described are designed for use in series with other applicances rated 300 v or less, and are $25,50,75,100$ and 150 w.

Antenna Design Calculations. Technology Instrument Corp., 531 Main St., Acton, Mass. Laboratory Report No. 14 deals with antenna design calculations for determining field patterns synthesizing antenna arrays and studying pattern behavior by use of the company's complex plane analyzer. It also describes the application of the complex plane analyzer to other engi neering design calculations which involve complex numbers.
Special Transformers. Central Transformer Co., 910 W. Jackson Blvd., Chicago 7, Ill. A 4-page brochure provides a description of special designs produced by the company for a wide variety of applications in such fields as communications, nucleonics, ordnance and

Calif. Details on the new type PM$36 \mathrm{p}-\mathrm{m}$ motor are given in a new leaflet-Form PM36-954. The publication includes full dimensional details on this $20-\mathrm{w}, 6,000-\mathrm{rpm}$ unit which is recommended for applications where high efficiency, good speed regulation, and low r-f interference are required. Specification data are tabulated and performance curves given to cover relationships between torque output and input current, rpm, output watts and percent efficiency.

Power Transistors. MinneapolisHoneywell Regulator Co., Minneapolis 8, Minn. A 6-page folder contains illustrated information on a power transistor that directly drives a servo motor, operates a speaker, handles numerous electrical switching operations, and has already been applied to the operation of a transistorized aircraft fuel gage. Included are data sheets giving preliminary specifications and characteristic curves for the 2N57 power transistor.

C-R Tubes. General Electric Tube Department, Schenectady 5, N. Y., announces availability of a new 40 page designer's booklet (ETD-985) on crt's for industrial and military applications. The booklet provides data on 24 standard GE tube types, and describes the company's engineering and production facilities available to meet specialized customer requirements. The tube types covered are used in oscilloscopes, radar indicators, industrial tv and tv studio monitors. Technical information in the booklet includes tube essential characteristics, gun design factors, and a description of standard phosphors covering color, persistence and spectral response.

Motor-Alternator. Electric Motors and Specialties, Inc., King and Hamsher Sts., Garrett, Ind. A recent piece of literature illustrates and describes the model HA-2 pre-cision-built $30-\mathrm{cps}$ motor-alternator. Included are applications, features, typical performance and standard dimensions.

Decade Counters. Hewlett-Packard Co., 3204 Page Mill Road, Palo Alto, Calif. A 4-page loose-leaf perforated folder illustrates and discusses

DUMONT
 MILCAPS

GLASS-TO-METAL HERMETICALLY SEALED SUBMINIATURE CAPACITORS

MEETS THE OPERATING REQUIREMENTS OF MILITARY SPECIFICATIONS MIL-C-25A

MILCAPS are subminiature paper capacitors hermetically sealed in tinned brass tubular cases. Perfect enclosure of the impregnated paper sections is achieved by the use of glass-to-metal solder seal terminals. MILCAPS are recommended for all applications where size is a primary consideration ... and are available in any one of the following impregnants: Stabilized Halowax ($85^{\circ} \mathrm{c}$): Mineral Oil ($85^{\circ} \mathrm{c}$: or Duroil ($125^{\circ} \mathrm{C}$)

DUMONT-AIRPLANE \& MARINE INSTRUMENTS, Inc.

OFFICE
15 William Street
New York 5, N. Y.

FACTORY
Clearficld
Pennsylvania
 Micro-miniature and Miniature Wire-wound Precision Potentiometers

Designed for minimum-torque use. Torque as low as 0.010 inch-ounce. Dissipates one watt at $80^{\circ} \mathrm{C}$. Resistances - 100 to 100,000 ohms. Weight is only $1 / 2$ ounce. Ganging to six decks, internal clamps hold $7 / 8$ in. diameter.

These potentiometers have standard linearity of $.5 \%$, on special order $.25 \%$; precision toroidal winding allows winding angles up to 360°, standard is 354°

"HOTPOT'

Designed for high-temperature use At $200^{\circ} \mathrm{C}$., dissipates one watt Dissipates five watts at $80^{\circ} \mathrm{C}$. Resistances - 1000 to 25,000 ohms. Stainless-steel case, one inch dia. by $11 / 16$ inch depth behind panel. Teflon-insulated terminals.

AP- $1 / 2 \quad$ RT $/$ RTS- $7 / 8 \quad$ AP- $11 / 8$

3 micro- and miniature potentiometers

- Two, three, and four watts continuous at $80^{\circ} \mathrm{C}$ respectively.
- 3 resistance ranges, $10-100,000$ ohms. - Compact - $1 / 2,7 / 8$, and $11 / 8$ in. dia. - Weights only $1 / 4,1 / 2$, and $3 / 4$ ounce.

These potentiometers are precision machined, and have line-reamed bushings of phosphor bronze, centerlessground stainless steel shafts, anodized aluminum bodies, and gold-plated forktype terminals. All units are fully sealed, moisture-proofed and fungicide treated. On special order, potentiometers processed for operation up to $125^{\circ} \mathrm{C}$.

These potentiometers are available with servo as well as bushing mount.

Write today for detailed information and prices

[^20]the AC-4A decade counters. The etched circuit in the units described makes for reliability and highspeed counting to 120 kc . The counters shown use binary flip-flop circuitry. Specifications are included.

Pulse Generators. Burroughs Corp. 1209 Vine St., Philadelphia 7, Pa. A simple guide to the speedy assembly of a variety of pulse testing systems is provided in a new 6-page brochure. The three generators described collectively cover a frequency range from 15 cycles to 4.5 me. The manner in which the units are assembled into logical pulse systems, without need for breadboarding special pulse circuits, is covered thoroughly. Making liberal use of block diagrams and pulse timing charts, the folder explains the basic functions of the individual building blocks, shows how they are assembled to form basic test tools such as square wave generators, pulse burst generators, pulse stretchers, pulse distributors, frequency dividers, pulse synchronizers and other practical systems.

Transmitting-Type Pentode. Penta Laboratories, Inc., 312 N, Nopal St., Santa Barbara, Calif. A 4-page catalog describes and illustrates the PL-6549, a $75-w$ dissipation alignedgrid pentode featuring good performance at low plate voltage, but also capable of good performance at relatively high voltage, for mediumpower applications. Included are electrical and mechanical characteristics, information on r-f and a-f operation, and maximum ratings.
Etched Circuits. Hastings Instrument Co., Inc,, Warwick, Va. Catalog No. 130 reveals the company's policy of designing, etching, plating and fabricating circuits, as well as assembling components. The singlesheet well-illustrated catalog lists applications and advantages of etched circuits, and gives tips on ordering.

Magnetic Field Measuring Equipment. Donald C. Seibert, Box 281, Wilmington, Del., is distributing descriptive information on the AEG (Allgemeine Elektricitaets-Gesellschaft of Frankfurt, West Germany) magnetic field measuring equipment. Features of the equip-

CHECK DIODES

- Instantly •Visually

- In Operation

You can tell good diodes from bad - at a glance - when you check them with this compact, self-contained, visual tester.

- Shows dynamic characteristics of point-contact-type germanium diodes on a cathode-ray tube.
- Calibrated scale allows direct reading of voltage on horizontal axes and current on vertical axes.
- Can be used by unskilled operators, for production-line testing and stock maintenance.
- Pays for ttself in a short time by spotting rejects and units having insufficient shelf life.
- Shows forward and backward characteristics between 10 ohms and 20 megohms
- Operates on 115 volts $50 / 60$ cycles.
- Overall size. $11 \times 12 \times 9$ inches
- Price
$\$ 400.00$
Data sheet giving detalled information on the Model 1003-A Crystal Diode Curve Tracer will be sent on request.

WATERS MANUFACTURIMS, inc.
Waltham 54, Massachusetts
apmicarion angmenine orrices in mincibat ciries
ment described are direct measurement of magnetic fields with fullscale ranges between 2 and 20,000 oersteds. Applications include measuring distributed magnetic fields, measuring gap strength, measuring the earth's magnetic field and indirect measurement of direct current.

Crystal Diodes. CBS-Hytron, Danvers, Mass. The second edition of the company's reference guide for crystal diodes is now being distributed. It lists 185 types of diodes; gives all basic data concerning them; and includes 18 dimensional diagrams.

Auto Radio Vibrators. American Television \& Radio Co., 300 E. 4th St., St. Paul 1, Minn., announces the availability of an auto radio vibrator wall chart which incorporates complete cross reference vibrator equivalent charts, vibrator specifications, base diagrams, and popular auto radio vibrator replacement types.
H-F Generator. Industron Corp., 50 Brook Rd., Needham Heights 94, Mass., has available literature on the company's new h-f generator which eliminates the need for a shielded room where dielectric heating devices are used by staying within the FCC-assigned 27 mc band. One- and two-kw generators, with accurately rated output and single dial selector for a complete range of sealing capacity, are described in the latest bulletin.

Servo Systems and Components. Feedback Controls, Inc., 1332 North Henry St., Alexandria, Va., has available its latest brochure on standard servo systems and components. Included are illustrations, listings of chief features, dimensional drawings and specifications for magnetic servo amplifiers, booster amplifiers, a universal operational amplifier, a d-c instrument servo amplifier and standard electronic servo systems.

Transmitter Equipment Bulletin. Allen B. DuMont Laboratories, Inc., Clifton, N. J. Bulletin TR-779 discusses the type 5411-A Diplexer, which permits simultaneous operation of both aural and visual trans-
WE ARE SPECIALLY ORGANIZED TO HANDLE DIRECT ORDERS OR ENQUIRIES FROM OVERSEAS SPOT DELIVERIES FOR U.S.
BILLED IN DOLLARSSETTLEMENT BY YOUR CHECK CABLE OR AIRMAIL TODAY

\section*{capacitance \&attenuation
 | TYP | , | MPED | |
| :---: | :---: | :---: | :---: |
| C 1 | 7.3 | 150 | . 36 |
| C 11 | 6.3 | 173 | 36 |
| C 2 | 6.3 | 171 | . 44 |
| C 22 | 5.5 | 184 | . 44 |
| C 3 | 5.4 | 197 | . 64 |
| C 33 | 4.8 | 220 | . 64 |
| C 4 | 4.6 | 229 | 1.03 |
| 44 | 4.1 | 25 | | ULTRA LOW

NEW
 MX and SM' SUBMIIIATUBE GONWECTORS
 Constant $50 \Omega-63 \Omega-70 \Omega$ impedances

TRANSRADIO LTD. 138a Cromwell Rd, London SW7 ENGLAND
cables: hamsad, lomoon

HEAT- \& MOISTURE-RESISTANT WIRES, CABLES \& CORDS for
Air Conditioners, Airplanes, Bakeries, Bake Ovens, Ballast Transformers, Boiler Rooms, Busses, Centrol Stations, Clothes Dryers, Commercial Refrigerctors, Cranes Dry Kilns Electric Furnaces, Elestris ectric Furnaces, Electric Motors, Electric Ranges, Electronic Equipment, Hair Dryers, Heat Controls, Heating Elements, Infra-red Heat, Lighting Fixtures, Locomotives, Mercury Switches, Motion Picture Machines, Oil Burners, Panel Boards, Paper Mills, Power Houses, Pyrometers, Radios, Range Lights, Range Timers, Resistance Soldering, Restaurant Equipment, Rheostats, Sewing Machines, Show Case Lights, Smokehouses, Soldering lrons, Sporlights, Stage Lights, Steel Mills, Switchboards, Table Stoves, Tele vision Sets, Thermostats, Toasters, Waffle Irons, Water Heaters, ef cetera ad infinitum.

"MILITARY" HOOK-UP WIRE or CABLE by CONTINENTAL

-whichever the type and specification involved - whether the insulation is thermoplastic or synthetic resin, whether unbraided or with braid of cotton or glass or rayon, or nylon jacket, for any service from 300 V to $2,500 \mathrm{~V}$ is available in the full range of AWG sizes 24 to 6 inclusive . . . Write, wire or phone about your specific requirements! DEPT. L

CONTINENTAL

WIRE CORPORATION Plants at YORK, Pa.,
\& WALLINGFORD, Conn.
SALES: Box 363, Wallingford, Conn. Phone 9-7718

Available for envelope types 17. T8, MT8, T9, T12. ST12. T122DI. ST14. S14, ST16, T51/2. T61/2, MT-IC. ST19, T14, ST128CT-9.

Manufacturers of Electronic Components

mitters into a single antenna. The bulletin includes an illustrated description, a listing of features, and electrical and mechanical specifications.

Time Delay Relays. The R. W. Cramer Co., Inc., Centerbrook, Conn., has released a 12-page production bulletin describing a line of time delays. Bulletin PB-310 covers adjustable time delay relays for panel mounting as well as fixed and adjustable units designed for built-in applications. Cutaway and exploded views provide a clear look at the design and application features. Load circuit operation tables, time ranges, dimension drawings and other pertinent information are also included.

Cutput Voltage Source. The Calidyne Co., Winchester, Mass. Bulletin 2354 illustrates and describes the model A23 Calivolter, a precision electrical instrument designed for use with an a-c or d-c voltage source. The Calivolter is to be used wherever accurate voltage measurements over a wide frequency range must be made. The bulletin lists advantages and features as well as specifications.

Differential Transformer Amplifier. Daytronic Corp., 216 South Main St., Dayton, Ohio. A singlepage bulletin is devoted to the model 400 differential transformer amplifier for the dynamic study of physical phenomena. Chief features, a block diagram and specifications are included.
F-M Tuner. Noroton, Delmenhorst, Fichtenstrasse 21, Germany. Now available is a 6-page folder on the ultra-short-wave built-in 12642 $\mathrm{f}-\mathrm{m}$ tuner. An illustration, schematic diagrams and circuit are included. The unit described features 12 circuits: 3 preliminary circuits, an oscillator circuit and 8 i-f circuits. The bulletin lists the following tube types used : PCC84, EC92, EF42, EF41 and 2 diodes. The usw construction discussed fits organically into almost any type of receiver.

Millivoltmeter Pyrometers. The Bristol Co., Waterbury 20, Conn., has published a bulletin (P1244) on a complete line of millivoltmeter
pyrometers and accessories. Included are data on the model 580 indicating pyrometers for service up to $4,000 \mathrm{~F}$, indicating controllers with mercury switches or thyra-tron-operated relays, and portable indicating pyrometers. Also included are two-point and multiplepoint pyrometer switches for use when a single indicator is intended to monitor temperature measurements from more than one station. Model 580 described has a 7 -in. mirror scale for easy readibility, The indicator has also been incorporated into an electronic Free-Vane controller, which is pictured and described in the 12 -page bulletin.

Copper Alloy Precision Strip. Penn Precision Products, Inc., 501 Crescent Ave., Reading, Pa. A new 4-page bulletin presents general information on precision-rolled veryilium copper, phosphor bronze, nickel silver, chromium copper and copper strip. It describes material furnished to extremely close thickness tolerances (± 0.0001 and ± 0.0002 in.). The bulletin includes discussion of available alloys, sizes and tolerances together with tabular data on engineering properties.

Phone Jacks. Carter Parts Co., 213 W. Institute Place, Chicago, Ill., has released a new catalog sheet covering 21 types of IMP miniature phone jacks. The sheet includes mounting dimensions, circuit diagrams and complete descriptions.

High-Speed Relay. General Electric Co., Schenectady 5, N. Y., has available a new publication containing information on a high-speed relay "with a memory." Listed as GEA-6212, the bulletin describes the function and operation of the hermetically sealed, high-speed, polarized relay for electronic applications. In addition to information on various applications of the relay, the bulletin provides data on ratings, specifications and dimensions.

Precision Phase Meter. Advance Electronics Co., Inc., 451 Highland Ave., Passaic, N. J., has available a single-page bulletin illustrating and describing the type 405 phase meter, a simple and convenient device for studying phase relation-

maintain accuracy

potentiometer windings give LONGER LIFE and greater

Now, Pacific Scientific presents a unique new high temperature accelerometer, designed by Humphrey to give accurate, clear signals at temperatures from -65° to $+550^{\circ} \mathrm{F}$. - far in excess of former operating ranges! The rugged stainless steel and ceramic construction provides long life and allows precision tolerances for maintaining repeatability.

For the higher temperatures encountered in missile work, as well as for use in all types of aircraft where heat dissipation is a problem, this new unit provides the ideal answer!

SPECIFICATION DATA:

- Environmental-Temperature: -65° 1o $+550^{\circ} \mathrm{F}$. Shock: 60 G s in any direction without damage to the instrument.
- Accuracy-Within $1 / 2 \%$ to 2% depending upon G range and potentiometer resistance. (Including linearity, resolution and environmental conditions.)
- Range-Any range from $-1 \mathrm{G}+1 \mathrm{G}$ and $-50 \mathrm{G}+50 \mathrm{G}$. Also available in asymmetrical ranges.
- Resolution- 0.4% to 0.2% of full range. Potentiometer resistance can be furnished with any DC value between 300 and 20,000 ohms for all ranges
PACIFIC SCIENTIFIC-pioneering the field of $\frac{\square}{\text { Pacific }}$ LOS ANGELES, CALIF., 1430 Grande Vista Ave. SAN FRANCISCO, CALIF., 25 Stillman Street SEATTLE, WASHINGTON, 421 Michigan Ctreet ARLIMGTON, TEXAS, 111 East Main Street

Precious metal potentiometer windings, of special platinum alloy, plus Pacific Scientific's advanced production techniques make possible unequaled quality at prices competitive with ordinary designs. Precision potentiometer, new motor and wheel design give maximum dynamic range and exceptionally high natural frequency. Powerful signal suitable for either ac or dc intelligence systems. Maximum output up to ± 50 volts. The simple, rugged design of the new Pacific Rate Gyro makes it ideal for checking flight test characteristics, telemetering systems, automatic pilot and guided missile control. Check these specifications against your design problems;
MOTOR POWER- 115 volt, 400 cps. or 28 volt d.c., Approx. 10 watts.

RANGE-Any range from $\pm 10^{\circ} / \mathrm{sec}$ to $\pm 1000 \%$ sec.
NATURAL FREQUENCY-From 3 cps. to 200 cps. depending upon rate range. Example: $\pm 50^{\circ} /$ sec. unit, Natural Frequency-above 25 cps.
DAMPING-Viscous fluid damper, normally 0.5 to 0.7 of critical damping.
POTENTIOMETER RESISTANCE-From 500 ohms to 20,000 ohms, with or without taps, single or dual pots available.
RESOLUTION-0.25\% to 0.8% of total potentiometer resistance.
ACCURACY-Within 1.0% to 2.5% of full rate depending upon range of instrument.

LOS ANGELES, CALIF., 1430 Grande Vista Ave. SAN FRANCISCO, CALIF., 25 Stillman Street SEATTLE, WASHINGTON, 421 Michigan Street ARLINGTON, TEXAS, 111 East Main Street Eastern Representative: Aero Engineering Inc.

For operating tope re corders, dictating ma chines, amplifiers and other 110 -volt radio audio devices from $D C$ or storage batteries. Used by broadcast studios, progrom producers,

CHANGE-A-VOLT OYNAMOTORS
Operates 6 -volt mobile radio sets from 12 -volt automobile batteries. . also from 24, 32 and 64 -volt battery power. One of many Carter Dynamotor models. Made by the world's largest, exclusive manufacturer of rotary power sup plies.

BE SATISFIED $A C$ can be produced by revers ing the flow of $D C$, like throw ing a switch 120 times a second. But ROTARY converters actually generate $A C$ voliage from an alternator, same as utility stations. That is why ROTARY power is such clean $A C$, so dependable essen. tial for hash-free operation of recorders from DC power.

b)MAIL COUPON for illus trated bulletin with complete mechanical and electrical specifications and peformance charts. Carter Motor Co., Chicago 47.

ships between two signals. The unit discussed is particularly suitable for production work. Specifications and chief features are listed.

Electronic Timer. Ferrara Inc., 8106 W. Nine Mile Rd., Oak Park 37, Mich. The T-2 electronic timel is well illustrated and described in a recent 4-page folder. The instrument covered is designed for interval timing, timed delay, repeat cycling, programming and pulsing. Complete technical specifications with diagrams are included.

Impulse Magnetizer. Raytheon Mfig. Co., 100 River St., Waltham 54, Mass., has available technical and catalog data on its model 8100 impulse magnetizer, which has made possible the economical production of permanent magnets of special configuration. Illustrations, specifications and appications are included.

H-V Connectors. DedUR-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. A recent catalog sheet contains an illustrated description of the series 800 highvoltage connectors which were designed for critical applications where breakdowns tend to occur. The connectors described feature 3 $h-v$, removable center contacts surrounded by 12 fixed contacts. They are designed for AN36 shell. The catalog sheet shows mounting and clearance dimensions, and lists complete electrical and mechanical ratings.

Defense Electronics. Otis Elevator Co., Electronic Division, 35 Ryerson St., Brooklyn 5, N. Y., has published a 3-color 32-page report entitled "Electronics for Defense." It describes the combined experience and resources for research, development design and manufacture of electronic equipment which the company offers to the armed services and industry. Also explained are the organization's field service training programs.

Self-Locking Inserts and Tapped Holes. Banc-Lok Division, Boots Aircraft Nut Corp., Newtown Turnpike, Norwalk, Conn., has available a detailed diagrammatic catalog on

RELAYS for EXACTING REQUIREMENTS

A.C. or D.C., open, plug-in, dustproof, hermetically sealed and many special models.

Available with resistance to shock, vibration, and temperature change to meet military specifications.

Special variations engineered to exacting application requirements.

Whatever your service, just tell us what you need or send for catalog.

MAGNECRAFT ELECTRIC CO.
3350B W. Grand Ave., Chicago 51, III.
its self-locking threads for blind fastening in metal, wood and plastic, especially in material too soft or too thin to tap. Included among the many applications of the inserts described are the assembling of electronic chassis and mounting instruments. Information on how to specify parts is given. The catalog along with actual test samples may be had for the writing.

Tubeless Magnetic Amplifier D-C Supplies. Sorensen \& Co., Inc., 375 Fairfield Ave., Stamford, Conn. Three models of tubeless magnetic amplifier d-c supplies are described in a recent data sheet. Input, output, load range, ripple, regulation accuracy, recovery time and size of each instrument are given.

Synchronous Motor. The R. W. Cramer Co., Inc., Centerbrook, Conn., has developed a new high torque synchronous motor which is described in bulletin PB-110. This 8 -page illustrated bulletin covers the complete line of the company's motors: the type 112 synchronous motor, type 142 clutch unit motor, and the type 152 dual motor. The bulletin provides complete detail about each type, including cutaway views, dimension diagrams, speed ranges, shaft details and construction schematics.

Transistor Design Sheets. Westinghouse Electronic Tube Division, P. O. Box 285, Elmira, N. Y., has available a 10 -page set of design sheets describing transistors and their application. Design data are given for three new Reliatron transistors pnp junction types 2N54, 2N55 and 2N56. General semiconductor theory is discussed and equivalent circuits and equations are derived for grounded-base, grounded-emitter and groundedcollector connections. Circuits for a phonograph preamplifier and an audio oscillator are shown to illustrate typical transistor applications.

Cold Casting Compounds. Thiokol Chemical Corp., 780 N. Clinton Ave., Trenton 7, N. J. Several trial formulations and properties of cold casting compounds based on the company's liquid Polymer LP-2 are described briefly in a 4 -page bulletin. The compounds discussed may

KEARFOTT

... all new synchros

Mechanical

 Stability
High Accuracy

Corrosion

 ResistantSize 11 Options

And Low In Price

KEARFOTT COMPONENTS INCLUDE:

Gyros, Servo Motors, Synchros, Servo and Magnetic Amplifiers, Tachometer Generators, Hermetic Rotary Seals, Aircraft Navigational Systems, and Aircraft
other high accuracy mechanical, elecother high accuracy mechanical,
trical and electronic components.

ENGINEERS:

Many opportunities in the above fields are open-please write for details today.

Stator integrally bonded with housing prevents null shifts when rotating or clamping synchro in its mount. All materials have similar thermal coefficient of expansion for optimum performance over a wide temperature range. Case provides positive grounding and shielding.

10 minutes maximum deviation from electrical zero.
Housings, shafts and ball bearings are stainless steel. Laminations are corrosion resistant, nickel-bearing steel. Non-metallic materials are fungus inert.
1.062" Diam. x 1-45/64 long, weight 4 oz.

Available with leads or terminals, single or double ended shafts.

Type	Model	Price*
Transmitter	RS911-1A	$\$ 29.50$
Control Transformer	RS901-1A	29.00
Repeater	RS921-1A	31.50
Differential	RS941-1A	51.00
Resolver	RS931-1A	44.00

*Based on 1-25 unit price with leads and standard shaft. Quantity prices on request.
Kearfott Series 900 synchros are dimensionally and electrically interchangeable with Kearfott R200 Series Size 11 .Synchros. Write today for data sheets.

KEARFOTT COMPANY, INC., HITTLE FALLS, N. J.
Soles and Engineering Offices: 1378 Main Avenue, Cliftion, N. J.
Midwest Office: 188 W . Randolph Streel, Chicago, III. South Central Office: 6115 Denton Drive, Dallas Texas West Cocst Office: 253 N . Vinedo Avenue, Pasadeno, Colif.

TRANSISTOR and CRYSTAL DIODE COMPONENTS

Special alloys supplied to small diameters
From initial selection of melt components through production and final completion, SECON puts a complete metallurgical unit at your service.
Tell us your wire and ribbon problems and we'll gladly submit prompt recommendations. Small quantity inquiries and orders specially invited. Write for Pamphlet E-2.

SECOI

for wherever the

- Fine Wire
drawn to $0.0003^{\prime \prime}$ diameter - Rilbon ralled to $0.0001^{\prime \prime}$ in thicness Electro-Plated Wire alnil Ribbon
- Sperial Solder Enamathed and
Insinated Wia'e - I’irani Gatuge Wire - Nlectric I'rimer. Iqnition Wire
- Galvanomoter Sus pusion Strip
- Eichirel Wire
- Preciaion Potentiometer Wirr
- Transisior Components - Experimental Melts

SECON METALS CORPORATION
7 Intervale Street, White Plains, New York WHite Plains 9-4757

Type SM-15 and SM-30 Resistors -ffer three vital advantages - subminiature size, weather resistant construction and high resistance. The elimination of center hole mounting and the inclusion of axial leads increases winding area and results in 25% greater resistance balue than resistors of standard cesign. Special coating is moisture and fungus proof and designed to Reet JAN-R-93 specifications. Sealed in Bakelite construction affords additional climatic protectection. As ratings are conservative, trpes $S M-15$ and $S M-30$ can be specified with confidence for service under rigorous conditions.

ASK FOR THE NEW RESISTOR HANDBOOK Contains complete dota on resistors for every purpose
and, their recommended and, their recommended
applications. Please make reauest on puny letrerhead.

TYPE SM-15 5/16" DIA. $\times 3 / 8{ }^{\prime \prime}$ LG.

TYPE SM-30
5/16" DIA. x 3/4" LG.

be poured and cured at room temperature to resilient rubbers with negligible shrinkage. They are currently being used for potting electronic components.

Miniature Continuously Variable Delay Lines. Advance Electronics Co., Inc., 451 Highland Ave., Passaic, N. J., has published a single-page bulletin on a line of miniature continuously variable delay lines with less than 5×10^{-10} second resolution time. Included are an illustrated description, schematic diagram and a table of specifications covering 11 different types.

Dynamotor Data. Gothard Mfg. Co., 2110 Clear Lake Ave., Springfield, Ill. A condensed catalog has been published on a line of commercial, military and mobile dynamotors. The new literature, bulletin No. 410, contains much valuable information on d-c to d-c power conversion as provided by the company's various units.
High-Resolution Radar. Sperry Gyroscope Co., Division of the Sperry Corp., Great Neck, New York. A new 6-page folder illustrates and describes the Mark 3 high-resolution radar. The unit described provides superior range resolution, its $0.10-\mu$ sec pulse length insuring extremely high definition at short ranges. It makes available a stabilized picture, or a stabilized azimuth ring plus a stabilized plotting surface. Technical data are included.

Audio Recording Services. The Dubbings Co., 41-10 45th St., Long Island City 4, N. Y. A new 12-page bulletin describes the complete range of tape and disk recording services offered by the company's audio laboratory for broadcast stations, sound studios, businesses, record companies, prerecorded tape firms and high-fidelity enthusiasts. The bulletin covers the various types of dubbings in use, and presents price lists for small and large quantities. Included are tape recording, multiple tape duplication, disk recording, disk masters and pressings, off-air monitoring and editing. The company's line of audio test products are also described. These include test records, test tapes and test level indicator.

peter partition corp.
 Manufacturers of Cordboord Partitions

19-21 HEYWARDST. BROOKLYN 11, N. Y. Telephone: TRiongle 5.4033

STERLING
 A DEPENDABLE SOURCE FOR

 TRANSFORMERS

DRAWINGBOARD
WEATKERSTRIPPING INTO YOUR EQUIPMENT
YOU GET ITS POSITIVE SHIELDING EFFECTIVENESS - at maximum overall economy

Plan now to take full advantage of Metex Electronic Weatherstripping's unusual effectiveness in shielding all types of electronic equipment. Because it is made of knitted wire mesh, Metex Electronic Weatherstripping is both conductive and resilient. It assures positive metal-to-metal contact between all mating surfaces. And being resilient it accommodates itself positively to surface inequalities.
In reality, Metex Electronic Weatherstripping can do more for you than just shield RF leakage. It can cut the cost of machining mating surfaces to close tolerances. It can eliminate the need for extra fasteners and many other costly means of making joints RF tight.
Applications in which Metex Electronic Weatherstripping has already proved its effectiveness include pulse modulator shields, wave-guide choke-flange gaskets, local oscillators on TV sets, dielectric heaters, etc.

Plants and People

Manufacturers acquire more companies and plan further plant expansions. Electronic engineers and management executives are promoted. The industry's technical societies elect officers and announce future plans

Army Heads Visit West Coast Electronic Laboratories

Assistant Secretary of the Army Frank Higgins, center, began visits to west coast contract installations with an inspection of the Sylvania Electronic Defense Laboratory in Mountain View, Calif., a research facility for the study of electronic counter measures.

He was joined by Lieut. Gen. W. B. Palmer, left, Deputy Chief of Staff for Logistics and Supply and Brig. Gen. W. Preston Corderman, right, Chief E. \& T. Division, Office of the Chief Signal Officer, both of Washington, D. C.

They were guided through the installation by Henry Lehne, standing, director of the Mountain View laboratory.

Motorola Buys Auto Radio Plant, Promotes Engineer

Motorola has purchased 60,000 sq ft of car radio tuner manufacturing facilities from Lee J. Drennan in Arcade, New York. The firm also appointed William Firestone assistant chief engineer of the research department of its Communications and Electronics Division.

The newly acquired plant will devote its entire production to supplying the company with car radio tuners. It will ship finished goods to
the Quincy, Illinois plant and the Canadian subsidiary in Toronto.

Because of additional production requirements, anticipated employment is expected to increase from the current 350 employees to 450 people. The payroll in Arcade is expected to be in excess of one million dollars per year.

William Bruyere has been named to continue in his capacity as plant manager. He will report to Walter
B. Scott, vice-president in charge of manufacturing for Motorola.

Dr. Firestone in his new research department position will have responsibility for specific phases of departmental administration. He will also continue in his present position as head of the advanced investigation section of the research department. This group is engaged primarily in vhf two-way radio research and pulse code work.

WCEMA Councils Elect Officers for 1955

The Southern California and San Francisco Councils of WCEMA elected officers for 1955. Southern California elected Gramer Yarbrough as chairman for 1955. Yarbrough is assistant manager of American Microphone Co. in Pasadena.

Elected as vice-chairman of the

130 company association of electronic manufacturers is Hugh P. Moore, president of Acme Electronics of Monrovia. D. C. Duncan, vice-president and general manager of the Helipot Corp. in South Pasadena, was named secretary-treasurer of the group.

Directors of the association in-
clude Hugh F. Colvin, vice-president and general manager of Consolidated Engineering Corp. of Pasadena; E. P. Gertsch, president of Gertsch Products of Los Angeles; Paul R. Repath, president of Paul R. Repath Co. of Los Angeles and T. P. Walker, vicepresident of Triad Transformer

CRAFTSMAN USES JEWELER'S GLASS and the G-E Midget iron to solder a potentiometer joint the naked eye can't see. Equipped with a pencil-fine tip, the Midget can solder delicate
connections without damaging adjacent parts. A Calrod* heater cast in the tip provides amazingly rapid heat transfer. Tests prove the Midget iron melts solder in less than a minute.

G-E Midget Iron melts solder in less than a minute, quickly solders joints the naked eye can't see

IRONCLAD-COPPER TIP NEEDS no tinning or filing. And by actual test a General Electric Midget iron lasts up to ten times longer than an ordinary iron.

RAPID HEAT TRANSFER is achieved through a Calrod heater cast in copper. The Midget iron can melt solder in less than a minute, recovers heat in seconds.

THREE-IN-ONE IRON with $1 / 8^{\prime \prime}, 1 / 4^{\prime \prime}, \frac{3}{16}{ }^{\prime \prime}$ tip sizes. Weighing less than three ounces, the General Electric Midget iron speeds production by reducing operator fatigue.

Write for GED-2243, G-E Midget Soldering Iron, Section 724-I, General Electric Co., Schenectady 5, N. Y.

Corp. of Los Angeles.
The San Francisco Council of the West Coast Electronic Manufacturers Association elected H. Myrl Stearns as chairman for 1955. Stearns is executive vice-president of Varian Associates of Palo Alto.

Elected to the position of vicechairman of the 180-company elec-
tronics association was Winfield G. Wagener, director of technical services for Eitel-McCullough of San Bruno. Calvin K. Townsend, vice-president and general manager of Jennings Radio of San Jose, was elected secretary-treasurer.

New directors of the association for 1955 are John A. Chartz, vice-
president and general manager of Dalmo Victor Co.; J. J. Halloran, vice-president and chief engineer of Electro Engineering Works; George I. Long, executive vicepresident and general manager of Ampex Corp. and Douglas C. Strain, president and general manager of Electro-Measurements.

Navy Honors Electronics Engineer

James E. Gall was awarded the Navy's highest civilian award for his "outstanding" work in the development of improved electronic techniques and equipment and accomplishments in the field of signal analysis. He is now an electronics engineer with the Army Signal Corps in Washington.

The atvard was made by Assistant Secretary of the Navy James H. Smith.

The citation read in part, "The new and revolutionary signal analysis equipment development (made) on the basis of your endeavor has met with continuing success and has culminated in the production of valuable electronic equipment now in use by various components of the Armed Services."

Gall joined the Naval Research Laboratory in 1940, following work as an engineer with several radio

Assistant Secretary of the Navy James H. Smith, right, and James E. Gall
manufacturing companies. He transferred to the Navy's Bureau
of Aeronautics in 1950, and, in 1953, to the Army Signal Corps.

GE Selects Haller As Labs Head, Plans Germanium Move

George L. Haller has been appointed manager of the laboratories department of GE's Electronics Division, according to an announce-
ment by the company.
GE also announced plans to center all engineering and manufacturing of germanium rectifiers and diodes at its Clyde, N. Y. plant.

Dr. Haller was dean of the College of chemistry and physics at Pennsylvania State University prior to his appointment. For the past two years he also has acted as a consultant to the laboratories.

The laboratories employ approximately 500 persons including 300 engineers and scientists. Its prime function is advanced development and investigations in the broad field of electronics, both civilian and military. Its projects cover such fields as transistors and other semiconductor devices, radar, color television, electronic computers, video tape recording and automatic assembly machines.

The Advanced Electronics Center at Cornell is engaged in several studies of the application of complex electronics systems and various aspects of automation.

The Microwave Laboratory in California is concentrating on the development and application of microwave electron tubes.

Dr. Haller was a radio engineer for Westinghouse from 1927 to 1929 and audio engineer for E. A. Myers \& Sons in Pittsburgh from 1929 to 1933, before returning to Penn State as a graduate assistant.

He remained at the university until 1935 when he became a radio engineer for the War Department at Wright Field where he served until 1942. From 1942 until 1946 he served in the Signal Corps and later the Air Corps.

Design and development of GE's

ANNOUNCING - A New Allen-Bradley Electronic Component

The Bulletin 5420 Discoidal Feed-Thru Capacitor

The isolating or filtering performance of a feed-thru capacitor is a function of its common or "coupling impedance." This is the shunt impedance between its free electrode and the metal shield or chassis on which it is mounted. Capacitors which exhibit the smallest "coupling impedance" are superior for those applications where filtering is desired.

In the frequency range between 100 megacycles and 1000 megacycles (VHF and UHF television), tubular type feed-thru capacitors have been found unsatisfactory because of parallel resonance effects resulting in high "coupting impedances." Allen-Bradley discoidal feed-thru capacitors do not exhibit such resonance effects at frequencies of 1000 megacycles or less. The absence of these paraliel resonance effects and the relatively high capacitance values with resultant low coupling impedances make Allen-Bradley discoidal feed-thru capacitors ideal for ultra high frequency television receiver applications. Measurements have shown improvements in filtering of more than 20 db through their use.

These tiny discoidal capacitors, in addition to their excellent electrical characteristics, possess remarkable mechanical properties. They are unusually strong and have ample safety factor with respect to the mechanical stresses and thermal shocks incidental to installation and soldering.

They are currently available in production quantities in accordance with the following electrical specifications. Capacitance values are between 1000 MMF and 2000 MMF for all usual operating temperatures. Insulation resistance in excess of 10,000 megohms. Rated continuous working voltage 500 V. D. C. Hi-Pot test 1250 V. D. C.

Please write for Bulletin 5420 covering feed-ithru and stand-off capacitors.

Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee 4, Wis. - In Canada-Allen-Bradley Canada Limited, Galt, Ont.

Designed for

36000 SERIES
Ceramic Plate or Grid Caps
A new addifion to this series of exclusive Millen 'Designed for Application'" products is the 36004 for use on fubes with $1 / 4^{\prime \prime}$ diameter contacts. Efficient, compact, easy to use and neat appearing. Soldering lug and contact one-piece. Lug ears annealed and solder dipped to facilitate easy combination "mechanical plus soldered" connection of cable. No. 36001 for $9 / 16^{\prime \prime}$ tube terminals. No. 36002 for $3 / \mathbf{a}^{\prime \prime}$. No. 36004 for $1 / 4^{\prime \prime}$.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY
MALDEN
MASSACHUSETTS
germanium rectifier and diode units at Electronics Park in Syracuse will be transferred to the Clyde plant where they have been and will continue to be manufactured.

Raymond A. York was named manager of germanium diode and rectifier engineering.
York has been manager of product engineering.

He joined GE in 1948. In his new position he assumes additional responsibility for complete engineering of diodes and rectifiers.

Du Mont Sells WDTV, Realigns Executives

Television station WDTV in Pittsburgh was purchased by Westinghouse Broadcasting Co. from Allen B. Du Mont Laboratories. Shown at the signing of the purchase agreement are (left to right, seated) : C. J. Witting, president of Westinghouse Broadcasting; A. B. Du Mont, president of Du Mont Labs; (standing) E. V. Huggins of Westinghouse and Ted Bergmann of ' Du Mont.

The purchase price agreed upon was $\$ 9,750,000$. The sale, has been approved by the Federal Communications Commission.

WDTV was established by Du Mont and went on the air January 11, 1949. It was the first television station in Pittsburgh and still is the only vhf station there.

A petition seeking formal consent was filed with the FCC. Until the FCC acted on that petition, WDTV continued to operate as a DuMont station.

The election of William H. Kelley as vice-president and general man-

Lightweight Arrowhead FLEXIBLE DUCTING

Ability to withstand extreme vibration and flexing conditions have definitely proved the superiority of Arrowhead's Airtrōn flexible ducting for electronic equipment cooling. This Fiberglass ducting retains its resilient flexibility in all temperatures from $-125^{\circ} \mathrm{F}$ to $+700^{\circ} \mathrm{F}$.

Arrowhead's flexible ducting is made in 130 standard types and constructions to serve various engineering applications. It absorbs vibratio and torque motions and can be compressed or distorted for easy installation in confined areas. Non-corrosive, Airtron ducting is resistant to oils. vapors, acids and alkalies.

ARROWHEAD BUILDS

SPECIAL DUCTS
Laminated Fiberglass plastic ducts in practically any conceivable shape in experimental or production quantities to close tolerances without elaborate or expensive tooling.

WRITE FOR COMPLETE DATA

showing types and applications. Comparative charts show characteristics, temperature ranges, weights, pressure ranges, etc.

2350 Curry St., Long Beach 35, Calif.

Scouting for Incapsulated Coils?
 DANO MAKES THEM!

Dano, makers of a wide variety of coils, is fully equipped to meet the increasing demand for these special coils. Keeping pace with modern design, Dano offers incapsulated coils with tough, molded covers that spell extra electrical insulation with freedom from moisture.

Every Dano Coil is custom-made to your specific requirements. Call or write today, and Dano's quote will be on the way!

- Incapsulated Coils - Form Wound
- Bakelite Bobbin - Cotton Interweave
- Paper Section - Acetate Bobbin
- Coils for High Temperature Applications
- Also, Transformers Made To Order

The Â
 Ne DANO Electric Co. MAIN ST., WINSTED, CONN.

ONE

 MANto work with
one of the country's outstanding scientists
towerd the development
of new kinds of magnetic recording heads
and to assume administrative responsibilities as assistant head of a section

Write to

E. A. Gentry, Personnel Manager

Clevite-Brush Development Co.
540 East 105th Street
Cleveland 8, Ohia

Your trademark and krand names are symbols of consistent high product quality. When prominently and appealingly displayed on your products, they are confi-dence-building selling assers that improve your competitive position in today's brandconscious market.

Meyercord Nameplate Decals identify and help move all types of products faster across your dealer's counter and out of his stockrooms-with trademarks that are attractive, colorful, uniform, legible, and durable. Meyercord Decal Nameplates are applied speedily and economically on your assembly-line .. for long or short runs.
"HOW MEYERCORD SERYES INDUSTRY'

MEYERCORDD Namplate DECALS Help SELL Your Product

Our special staff of skilled artists, photographers, typographers, color experts, is ready to help you establish a strong selling identification for your product . . . at minimum cost per unit. Let a highly-trained Meyercord Decal engineer show you how to add sales appeal to your product, while cutting nameplate costs.

FREE "Mark-It" Manual of Decal Nameplates

Send today, on your company letterhead, for this valuable full-color guide to every industrial prohlem in marking, identification, instruction, and information.

THE MAYBRGORDGO. Wollibingent Desalomania Manufucturess

DEPT. D-303
5323 WEST LAKE ST. CHICAGO 44, ILLINOIS

Metal Film Resistor

Perfect compromise between precision wire wound -and composition types
This new precision film type resistor is hermetically sealed highly stable, and has a temperature coefficient independ ent of resistance value. The Davohm Series 850 is available in $1 / 2,1$ and 2 watt sizes; to tolerances of $\pm 1.0 \%$, $\pm 0.5 \%, \pm 0.25 \%$; and, to any desired value.

Condone thea poflumence fypura!

	MLL•R-10509A ALLOWABLE CHANGE	Series 850 TYPICAL CHANGE
Temperature Cycling	1.0%	0.02%
Low Temperature Exposure	3.0%	0.04%
Short Time Overload	0.5%	0.02%
Effect of Soldering	0.5%	0.02%
Moisture Resistance	5.0%	0.08%
Voltage Coefficient	0.002%	0.00%
Load -Life (per 1000 hours)	1.0%	0.20%
Temperature Coefficient (PPM/ ${ }^{\circ} \mathrm{C}$)	± 500	$+370 \pm 20$

Write for complete data.

D)
Available Through: THE DAVEN ELECTRONIC SALES CORP. Associated with:
" DAD EN
191 Central Ave. Newark 4, N. J.

WORLDS LARGEST MANUFACTURER OF ATTENUATORS

William H. Kelley
ayer of all manufacturing and sales divisions and the appointment of William C. Scales as manager of the receiver sales division was also announced by Du Mont.
Under the new alignment, the company's instrument, cathode-ray tube, communication products, international, government contracts and receiver manufacturing and sales divisions will report to Kelley.

Kelley has served RCA in many important capacities. Later he went to Motorola where he was vicepresident in charge of sales. After serving that company for ten years, he joined Du Mont as vice president, marketing.

Scales moves into his new post after serving as sales manager for Du Mont's cathode-ray tube devision since 1950. He joined the commany in 1948.

CBS Divisions

Promote Engineers
Robert G. Marchisio has been appointed a vice-president of CBSHytron.

He will have general authority in all phases of the firm's operation. He will also have line authority in any activity or area in the performance of assignments as directed by-CBS-Hytron president C. F. Stromeyer.

Marchisio came to CBS-Hytron in 1951 as assistant to Stromeyer, then a vice-president. He previously had worked at Sylvania, first as assistant chief engineer, then chief engineer for proximity fuses and later as chief engineer of the fixture division at Ipswich. Re-

30,000 Usable Co-Existent Harmonics of IKC

- Additional applicationsTiming comb generator Spectrum Generator
- Trigger Generator Square Wave Generator
 Model 101

Compare these outstanding features

- Stability 1 part/ 10 million over period of days.
- Standard ascillator variable ± 40 PPM with dial calibrated in parts per mil-
lion and directly readable to 0.1 part per million.
- Resetability to within 0.1 PPM.
- 1 KC Harmonic to 30 Mc .
- 10 KC Harmonics to 100 Mc .
- 50 KC Harmonics to 150 Mc .
- 100 and 250 KC Harmonics to beyond 250 Mc.
- Low output impedance.
- Low cost.

FIRST TIME AVAILABLE! A sliding secondary frequency standard with direct

THE INSTRUMENT FOR YOUR MAGNETIC PROBLEMS

D-79 GAUSSMETER

FEATURES -

- Reads 10 to 30,000 Gauss Flux Fields
- Probe is only .025" thick
- Active area . 01 square inches
- Nel Weight only $10 \frac{1}{2} \mathrm{lbs}$.
- Power Supply 105-125 Volis, 50-60 Cycle
- Overall size $13^{\prime \prime} \cdot h i g h, 10 \frac{1}{2}$ " wide, $6 \frac{3}{4}$ " deep

A complete precision built unit that will measure flux density and determine the direction of "flow". It will locate and measure "stray fields". plol variations in strength and offers a fine use for checking production lots against a standard. It is simple to cperate-no ballistic readings . . . no jerking or pulling. Comes in protective carrying case.

For Literature Write for Brochure E-255

NOW
AVAILABLE IN ALL SIZE 5 RANGES

- Low Temperature Flexibility to $-90^{\circ} \mathrm{F}$ (impact test)
- Flame resistant - all sizes self extinguishing in less than 15 sec.
- High Temperature Stability up to $260^{\circ} \mathrm{F}$
- Completely fungus resistant

For use wherever Air Force Specification MIL-I-7444A (1) applies, Resinite EP-93 Vinyl Insulation Sleeving is now available. Here is one outstanding source - one material - to meet the requirements of all 3 size ranges of this specification.

The quality of Resinite sleeving is rigidly controlled through meticulous compounding, precision manufacturing and thorough inspection. Laboratory Test Reports of EP-93 and other Specification Grades of Resinite Sleeving are furnished with each shipment at no extra cost.
One order will show you why more Resinite Specification Vinyl Sleeving than all others is used by the aircraft and electronics industries. Write for samples and performance data.

Want more information? Use post card on last page.

For Sensitive and Accurate Control

RANGES:
0/20 Ua. to 0/50 A. $0 / 5 \mathrm{Mv}$. 10 $0 / 500 \mathrm{~V}$.
The trip point is adjustable to any point on the scale arc. These meter-relays are sensitive to changes of as little as 1%. One contact is carried on moving pointer. The other is on a semi-fixed pointer. When two pointers meet contacts close and lock. Holding coil is wound directly over moving coil. Reset can be manval or automatic. Spring action in contacts kicks them apart forcefully. Three sizes of clear plastic case models, $21 / 2,3^{3 / 4}$ and $41 / 2$ inches (all rectangular). Two ruggedized and sealed models, $21 / 2$ and $31 / 2$ inches (round metal cases). Contact arrangements: High Limit Single, Low Limit Single or Double (both high and low). Contact rating is 5 to 25 milliamperes D.C.
Suggested circuits for meter-relays and complete specifications including prices are covered in new 16 -page Bulletin G-6, which you can get by writing Assembly Products, Inc., Chesterland 4, Ohio.

SIMPIYTROL $\begin{gathered}\text { AUTOMAIIC } \\ \text { PYROMEIER }\end{gathered}$

Cat. No. 453102500° F. Price $\$ 132.00$ Motors electronics division of Toledo, Ohio have formed a new corporation to manufacture and supply a complete tv station package including vidicon camera and transmitter. To be known as The Fleetwood Corp., the new company will have its main manufacturing and development facilities in Toledo, Ohio. John W. McGee, former general manager of the Willys electronics division, is president of the company.

Other officers include A. R. Bitter, former head of educational sales and Homer Humiston, former chief engineer of the electronics

Willys Personnel Form New TV Firm

Former key personnel of Willys
Thermocouple type Automatic Pyrometer for controlling temperature in furnaces, ovens, and processes. The Simplytrol is economical and reliable with few moving parts. There are no vacuum tubes. The regular load relay is S.P.D.T. 5 Amps. Optional heary duty relays to 40 Amps.

10 temperature ranges cover from -75° to $3000^{\circ} \mathrm{F}$. Several special ranges to $-400^{\circ} \mathrm{F}$. "On \& Off" control for holding the desired temperature warks on gas, oil or electric heat. Indicating meter-relay is medium high resistance and has bimetal cold junction com. pensation. For use with all standard thermocouples. Accuracy 2%.
"Auto-Limif" switch changes Simplytrol from automatic controller fo limit pyrometer for sofety shut down or warning. Cabinet: $61 / 2 x$ $61 / 2 \times 9 \frac{1}{2}$ inches. Also flush panel mount models. Send for new Bulletin G. 7 for more data. Assembly Products, Inc., Chesterland 4, Ohio.

Want more information? Use post card on last page. February, 1955 - ELECTRONICS

THE HEYMAN ORGANIZATION WITH 25 YEARS
STAMPING
EXPERIENCE

anchor power cords to the housing
 $\boldsymbol{\&}$ eliminate strain on ferminals

- Heycos absorb all cord pull, push and torque and insulate wire from housing. Product life is increased and product appearance is improved. Samples available on receipt of wire sizes.
HEYMAN MANUFACTURING COMPANY KENILWORTH 2, NEW JERSEY

HAS MODERN PRESS CAPACITY FOR OVER 2,000,000 FINISHED STAMPINGS PER DAY. ASK FOR BULIETIN 33

\qquad

ELECTRONIC ENGINEERS and PHYSICISTS

We invite you to investigate the fine professional opportunities at Sperry. An enviable record of 43 years consistant growth and expansion plus Sperry's 15 year club of more than 1500 employees is ample evidence of opportunity, good salaries, benefits and fine working conditions that make for a bright future.
Design Engineers - Klystron and traveling wave fubes, Magnetrons, Image orthicon, Solid state devices, Microwave measuring equipment.
Production Engineers - Power tube operation Knowledge of tube assembly and processing techniques is essential.
Measurements Engineers - For microwave meqsurements on Klystrons and traveling wave tubes.

- relocation allowances
- liberal employee benerts
- adequate housing in beautiful suburban COUNTRY TYPE AREA
- TUITION REFUND PROGRAM (9 graduate schools in area of plant)
- modern plant with latest technical facilities
- association with outstanding professional PERSONNEL

Apply in person or submit resume to Employment Office
SPERRY GYROSCOPE CO. (Division of the Sperry Corp.) Marcus Ave, and Lakeville Road, Great Neck, Long Island, New York

Type D Capacitors
with Characteristics never before achieved!

EMPLOYING a newly developed plastic film Edielectric. Film Capacitors, Inc. has produced a line of capacitors that are superior in performance, smaller and lighter in weight, and lower in cost. Nothing presently available approaches the high level of Type 0 for practically every type of high voltage D.C. application. Its versatility enables you to stock one type which performs the functions of many.
F-C-I Type D capacitors are furnished in glass tubes with hermetically sealed end caps and either wire leads or threaded studs.

ELECTRICAL CHARACTERISTICS

Operating Temp. Range Voltage Range, D.C Capacitance Range Power Factor
Dielectric Absorption
Voltage Derating at $85^{\circ} \mathrm{C}$.
Voltage Derating at $125^{\circ} \mathrm{C}$
Temperature Coefficient
I.R. at Room Temperature

Capacitance Stability
$-55^{\circ} \mathrm{C} .10+125^{\circ} \mathrm{C}$ 600 V to 60 KV .0001 to 0.1 MF 0.3\%@1KC 0.1% 30% 66%
$+500 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ 10^{6} megohms/MF 0.5%

When your industrial capasitar specs. call for precision and stability, spesify F-C.I.

Excellent delivery on standard or special lypes... Capacitors made to your specifications.
For more complete technical data, write for catalog

fim capacitors, inc.

3400 Park Ave., Now York, N.Y. Telephone CYpress, 2-5180

John W. McGee
division of Willys. They will assume the same positions with the new firm.

RCA Plans New Lab, Names Two Generals

RCA PLANS TO ESTABLISH an engineering laboratory in the greater Boston area for the development of specialized electronic fire-control systems for military aircraft. The company also named Generals Smith and Richardson to executive posts in the corporation.
Robert C. Seamans, Jr, has been appointed manager of the new laboratory. Location of the new facility is still to be determined but it is expected to be equipped and in operation by early February. By the end of 1955 it will provide employment for approximately 100 scientists, engineers and laboratory personnel.

Dr. Seamans has been associate professor at M.I.T. since 1949 and for the past two years served also as director of the M.I.T. flight control laboratory. From 1941 to 1949 he was first instructor and then assistant professor of aeronautical engineering subjects at M.I.T.

General Walter Bedell Smith was elected a member of the board of directors of RCA. He is vice-chairman of the board of directors of the American Machine \& Foundry Company. He served as Under Secretary of State from February, 1953 to October, 1954.

Major General William L. Richardson, U.S. Air Force (Ret.) was appointed to the newly created post

Miniature and Sub-Miniature

SLIP RING ASSEMBLIES BRUSH BLOCK ASSEMBLIES COMMUTATORS

and other
Electro-Mechanical Components

PRECISION MADE TO YOUR OWN SPECIFICATIONS

Precision molded products with exacting tolerances in precious and non-precious solid metals of all alloys. All types of Thermo-Plastic and Thermo-Setting materials.

Slip Ring Assemblies fabricated or one-piece precision molded to your specifications in Nylon, Kel-F, Mineral filled Mellamine, Phenolic, and other materials. Rings and leads spot welded or brazed together for positive electrical circuit.

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

COLLECTRON CORPORATION

MUrray Hill 2-8473 - 216 East 45th Street • New York 17, N. Y.

MANSOL makes Glass Multiform Pellets for GLASS-TO-METAL SEALS

WE CAN FULFILL G-12 MULTIFORM REQUIREMENTS

GLASS MULTIFORMS - The ideal multiforms for Iron Sealing and Kovar Sealing, matching the expansion of these metals over their entire working range. They resist mercury attack, have ample mechanical strength, and seal readily. Our laboratory is prepared to assist you in selecting the proper glass for any metal.

- If you are still making your own multiforms, Mansol would like to show you how to save money and eliminate rejects.
- Write to Dept. N for the complete story about multiforms. Formula 800 and our production facilities. No obligation of course.

CABLE ADDRESS: MANSOL
 Missile.

JET

PROPULSION LABORATORY
california
institute of technologi

Active in all phases of electronics and physics related to guided missiles and jet propulsion.

The nation's foremost guided-missile research ond development facility, established in 1940, offers exceptional opportunity for engineers and research scientists in the fields of guidance and control, information theory, computers, electro. mechonical devices, instrumentation, and related aspects of electronic research. The laborotory offers an ideol blend of academic and industrial environments ond maintoins o high level of rechnical comperence. Attractive solaries are offered.

A brochure describing opportunities and activities at the Laboratory will be sent upon request.

WITH

SCIENTIFICALLY-DESIGNED SMALLER CUP POINTS

Smooth, deep point penetration for greater holding power and resistance to vibration; precision formed threads and accurate thread lead for maximum locking action. Comparative tests by leading laboratory prove Allen Set Screws unmatched in performance. Write to Advertising Department for Bulletin C-33A.

When ordering through your local industrial distributor, specify Genuine Allenpoint Set Screws.

Want more information? Use post card on last page 348
of manager of defense projects coordination in the Engineering Products Division of RCA .

He assumes responsibility for overall coordination of the division's broad military programs and for policy planning affecting government-business operations.

General Richardson retired from military service in July, 1954. He served as Commander, Air Force Missile Test Center, Patrick Air Force Base, Florida from 1950 until his retirement. From 1946 to 1950 he was assistant for guided missiles to the Deputy Chief of Staff, Operations, U. S. Air Force Headquarters, Washington, D. C.

General Mills Selects Baller

Howard Baller has joined the staff of General Mills' engineering research and development department as manager of electronics research.

Since 1949 he has served as assistant manager of the electronics department for W. L. Maxson Corp. in New York. He was also head of that firm's research section and a member of the graduate faculty of Brooklyn Polytechnic Institute.

He has served two years as a physicist with the Naval Ordnance Test Station in Pasadena and three years as co-chief of development group in the electronics division of Fairchild Engine and Aircraft Corp. before joining the Maxson Corp. in 1949.

At General Mills Dr. Baller holds responsibility for the research program in electronics. He will also assist in planning the companysponsored items in the field of in-

Kenyon
TRANSFORMERS
Meet All Government and Commercial Requirements Inquiries Invited

840 Barry St., New York 59

this fellow is trained in your business. His main duty is to travel the country - and world - penetrating the plants, laboratories and management councils . . . reporting back to you every significant innovation in technology, selling tactics, management strategy. He functions as your all-seeing, all-hearing, all-reporting business communications system.
the man we mean is a composite of the editorial staff of this magazine. For, obviously, no one individual could ever accomplish such a vast business news job. It's the result of many qualified men of diversified and specialized talents.

AND, THERE'S ANOTHER SIDE TO THIS "COMPOSITE MAN," another complete news service which complements the editorial section of this magazine the advertising pages. It's been said that in a business publication the editorial pages tell "how they do it"-"they" being all the industry's front line of innovators and improvers - and the advertising pages tell "with what." Each issue unfolds an industrial exposition before you-giving a ready panorama of up-to-date tools, materials, equipment.

SUCH a "man" is on your payroll. Be sure to "listen" regularly and carefully to the practical business information he gathers.

McGRAW-HILL PUBLICATIONS

SERIES M200

Miniature i. I. Amplifiers

Here's a brand new way to design i.f. strips: Simply reach for your purchase order pad, specify the characteristics you desire, and mail to Instruments for Industries, Inc. Standard models are available from stock, special designs get prompt attention from our engineering and production staff.
I. F. I.'s fast, convenient service on i.f. strips and other types of broad-band amplifiers has saved valuable design and production time for many leading companies. Write for complete details.

Specifications of Standard Units

M260	M230	M231	M235
Band center........ 60 mc	30 mc	23.5 mc	30 mc
Band width $\quad 10 . \quad 10 \mathrm{mc}$	2 mc	2 mc	10 mc
Voltage gain $\quad . \quad 90 \mathrm{db}$	110 db	110 db	90 db
Output power	0.1 W	0.1 W	0.04 W
input impedance 50 ohms	50 ohms	50 ohms	50 ohms
less than1.3:1	1.3:1	1,3:1	1.3:1

INSTRUMENTS FOR INDUSTRIES, INC. Mineola. N. Y. ${ }^{151}$ Gien "SEE US AT THE I. R. E. SHOW-bOOTH \#741-AIRBORNE AVE."

WHEN YOU NEED

$\left\{\begin{array}{l}\text { SAME-DAI SIIPMBI } \\ \text { OF AMMPEPEX TUBES }\end{array}\right.$

We maintain a complete stock of most types . an ample supply of the most efficient high fidelity amplifier pentodes such as the 6CA7 and EL 84, the popular 6360 twin tetrodes, 75 N Geiger Counter Tube, the EIT Decade Counter and tubes for communications, industrial and special purpose applications . . . including water and air cooled power tubes up to 100 KW , special ruggedized power tubes and ignitrons, hydrogen thyratrons, semi-conductors, diodes, etc.

If you connot get immediate delivery from your local distributor, contact us . . . we probably have the tubes you require . . . in stock!

E1T-\$16.50 6360-\$3.00
dustrial instrumentation and controls.

Hallicrafters Elects New President

raymond W. Durst, executive vicepresident of Hallicrafters, has been elected president and William J. Halligan, president, has been elected to the newly created post of chairman of the board of the company.
The new Hallicrafters president joined the company in 1936 as executive vice-president. Prior to that, from 1930 to 1936, he was first comptroller and later secre-tary-treasurer and a director of the Echophone Radio Corp. of Chicago.
Before joining Echophone, from 1928 to 1930, Durst was secretarytreasurer of the Ahlbell Battery Container Corp.
The company also announced that Daniel F. Shea, Jr. has been named engineering laison executive of the government contract division.
For the past year and a half, Shea had been affiliated with the Hazeltine Electronics Corp. of Little Neck, New York as a senior project co-ordinator.

General Radio Promotes Sinclair

Donald B. Sinclair was appointed vice-president for engineering of General Radio Co. Dr. Sinclair joined the firm in 1936 and has served the company as engineer, assistant chief engineer and,

For consistently high purity... "Linde" M.S.C. rare gases

Trade-Mark
(Mass Spectrometer Contralled)

In radar electronic equipment, nuclear radiation counters, cosmic ray cloud chambers, and thyratrons, where the purest rare gases are demanded, Linde M.S.C. Grade gases meet the specifications. They are produced under continuous mass spectrometer control to assure you of gases of known purity and consistently high quality. Linde, the world's largest producer of gases from the atmosphere, can meet your individual needs of volume, mixture, and container.

For information on the physical, chemical, and electrical properties of these gases, send for the booklet, "Linde Rare Gases."

LINDE AIR PRODUCTS COMPANY

A Division of

Union Carbide and Carbon Corporation 30 E. 42nd Streel IIFE New York 17, N.Y. In Canada:
Dominion Oxygen Company, Division of Union Carbide Canada Limited, Toronto The torm "Linde" is a registered trade-mark of Union Carbide and Carbon Corporation.

You Name It EISLER Makes if....
GLASS TO METAL
ELECTRONIC GLASS WORKING EQUIPMENT for RADIO, TELEYISION TUBES, INCANDESCENT LAMPS, GLASS LATHES for TELEVIISION TUBES We make Transformers, Spot and Wire Butt Walders. Wire Cutting Machines and 500 ather itoms, Indispensable in your production. Eisler Endesigns, let us build them for you. Write to Charles Eisler who has served The Industry over 34 years.

IF YOU NEED ANY SPECIAL CAMS WE MAKE THEM

JUST OUT!

OUR BRAND NEW $1954-55$

Digital

Communication

Engineers

Systems

Engineering
experience
Miniaturization
in
the
fields
Circuit
Development
Electromechanical
Development
Digital
Techniques

Long-Range
Information
Transmission
New advancements in the field of long-range information transmission are being made at Hughes with digital techniques.

Areas of Work

To further expand work in this area, Hughes Research and Development Laboratories are interested in people with experience in airborne communication systems, digital storage, low frequency measurements, modulation systems, miniaturized packaging, audio, IF and RF circuitry in the HF range, analog to digitaland other data conversion methods.

Scientific and Engineering Staff

Hughes
RESEARCH AND DEVELOPMENT LABORATORIES

Culver city, LOS ANGELES countr, CALIFORNIA

[^21] disruption of an urgent military project.
since 1949 , as chief engineer.
During World War II, he was associated with the National Defense Research Committee program, under Dr. Vannevar Bush, working on radar countermeasures and guided missiles. For his work overseas on the former project he received the President's Certificate of Merit.

Honeywell Buys Instrument Firm

Minneapolis-Honeywell has purchased all of the outstanding capital stock of Doelcam Corp. of Boston, Mass., manufacturer of precision instruments and control equipment.

The firm will be operated as a new division of Honeywell. There will be no change in the management, headed by John J. Wilson, president and founder of Doelcam.

The Boston firm employs more than 600 persons.

Bendix Advances Three Executives

E. K. Foster, a vice-president and member of the administration committee of Bendix Aviation, has been named a group executive in charge of four divisions-Bendix Radio, Bendix Television and Broadcast Receiver, York and Cincinnati. He joined Bendix in 1936.

Howard Walker, formerly plant manager of the York division in York, Pa., has been promoted to general manager.

Maurice W. Horrell, director of

E. K. Foster
> let Williams help you apply

FERRIC oxides

to the manufacture of your

FERRITES

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.
Williams FerricOxides analyze better than $99 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.
Tell us your requirements ... we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.
P.S. We also produce IRN Magnotic
Core Inon powders Mor the Ele Electronic
Industry, the Magnetic Tapo RoCore Industry, the Magnefic. Wape Rocording industry and ormers. W.

Want more information? Use post card on last page.

4336 NORTH KNOXAVE., CHICAGO 4 In Canada: Cossor (Canada) Ltd., 30i Windsor Street, Halifax. N. S.

MERIT COIL starts with

 the FINEST.. GARFIELD WIREto end with
the BEST.. COILS and TRANSFORMERS

Merit Coil and Transformer Co., of Chicago, is known for precision-engineered coils and transformers. When distributors can't take chances with anything less than the best, they specify MERIT.
And merit specifies garfield wire every time! They know they can't go wrong with Garfield, whose modern equipment and stringent quality standards produce tolerances closer than NEMA standards.
When you specify Garfield you are SURE of getting UNIFORMITY-and top SERVICE along with QUALITY.

Write for your copy of our specifications chart on bare wire, plain and heavy enamel additions.

of The Quertakes Cosporation
142 Monroe St., Garfield, N.J.
GRegory 2-3661—2

SERVOMECHANISM PRACTICE

Just Published!
A practical approach to handling the problems of servomechanism design, manufacture, and operation. Givas essontial data on circuitry, electrical about these components to achieve the limit of their performance. Includes step-by-step desikn methords. manufacturing techniques, and trouble-shooting and tosting procedures. Provides information on mag-
netic aniplifiers and many other recent adyances in servomechanism components. By Witliam R. Ahrendt, President, Ahrendt Instrument Co.: Lecturer, U. of Maryland. 341 pp... 282 illus., $\$ 7.00$

ENGINEERING CYBERNETICS

Just Published!

A practical guide on the theory and mathematics underlying the practico of servomechanism and feed-
back control. Covers the essentials of the whole fleld, from the simple conventional servomechanisms to the very complex controlled and guided systems. Brings information on non-linear servomechanisms, control design by perturbation theory, con-
trol design with prescribed performance, nolse flltering and detection, von Neumann's theory of frror control, and other related tobles. Discusses applications in guided missiles, rockets, and guid-
ance systems. By H.S. Tsien, Daniel \& FIorence Guggenheims. Jet Propulsion Center, Calif. Inst. of「ech. 375 pp., 153 illus., $\$ 6.50$

MILLIMICROSECOND PULSE TECHNIQUES

Just Published!
Describes pulse circuits operating in the millimicrosecond time range, covering both basic principles and latest developments. Devotes primary attention to systems of large bandwidth and digcusse basic theories, transmission lines, transformers and a novel pulse invertor, pulse generators, ampliflers, cathode-ray oscilloscopes, etc. Expiains important nuclear physics applications. By Energy Research Establishment. Harwell. England. 250 pd., $\$ 7.50$

ELECTRONTUBE CIRCUITS

Shows how to analyze and use electron-tube circuits to achleve a broad variety of operations, including work in radar, television. pulse communication, and general electronic contiators, amplitude modulation and demodulation, frequency modulation and detection, tuned voltage amplifiers, tuned power amplifiers, and oscillators. Also gives the mathernatical
formulations for each circuit described. By Samuel formulations for each circuit described. By Samuel University. 529 pp., 641 illus., $\$ 7.50$

[^22]
FREE!

VALUABLE FACTS ABOUT ELECTRIC HEAT

- WHY is electric heat better?
- WHEN can electric heal be used?
- HOW can Watlow help you in your special heat. ing problems? - WHERE are Waflow heating units being used
oday? A helpful guide published to assist you in the proper use of electric heating units (immersion, cartridge, band and strip). WRITE for your free copy today

Howard Walker
engineering and assistant general manager of the Bendix Computer division at Los Angeles since 1952, has been promoted to general manager. Palmer Nicholls, a vice-president and group executive, has held the title of general manager of this division.

Bendix Aviation also announced that it has changed the name of the Eclipse-Pioneer Foundries division to Bendix Foundries.

The change was made to emphasize the division's policy of serving the needs of a wide range of industrial customers in the aviation, electronic and marine fields.

Huggins Receives Air Force Award

William H. Huggins was recently presented the Air Foree Decoration for Exceptional Civilian Service by Lt. General Thomas S. Power, Com-
mander of the Air Research and Development Command.

Dr. Huggins, who has been a professor of electrical engineering at Johns Hopkins University in Baltimore since August, 1954, was awarded the decoration for his exceptional performance of duties as chief of the plans branch, directorate of electronics research, at ARDC's Air Force Cambridge Research Center, Cambridge, Mass., from January 1946 to August 1952.

The citation reads, in part, ". . . Mr. Huggins successfully established new approaches in the fields of electronics, hearing and communications. . . His many scientific achievements have had a profound and far reaching influence on the design of practical equipment for the United States Air Force."

Arvin Establishes Military Division

Arvin Industries has formed an electronics products division to specialize in subcontract work on military and industrial electronic projects.

Leo W. Burns, with the company for more than five years in several different sales and administrative capacities, has been named sales manager for the newly formed division.

Airborne Conference Attracts Engineers

More than 900 engineers and industrial representatives were at hand to inaugurate the first East Coast Conference on Airborne and Navigational Electronics held in Baltimore. Twenty-eight technical papers were presented by authors from fifteen separate industrial and government organizations. Thirtyone development and manufacturing companies displayed their products at the Sheraton-Belvedere hotel.

The conference, jointly sponsored by the Baltimore Section of the IRE and the IRE Professional Group on Aeronautical and Navigational Electronics, is intended to be an annual affair. Tentative plans for the 1955 conference are being

square wave generator

Combined Voltage Calibrator

 and Source of Square WavesThis precision instrument provides square waves suitable for testing the transient and frequency response of wide band amplifiers, and for accurately measuring their amplitude. A wide range of output levels is available. Attenuator settings do not affect the output wave shape.

MODEL 175

SPECIFICATIONS - Frequency Range: 10 cps to 1 mc continuously variable over decade steps; Rise time: $0.02 \mu \mathrm{sec}$ for 100 ohms output, 0.05 $\mu \mathrm{sec}$ for 1200 ohms output; Max. output: 10 volts p-p across 100 ohms, 100 volts p-p across 1200 ohms.

VHF-UHF NOISE SOURCE

Accurate, Simplified Operation

Ideal for measuring receiver noises in television tuners, receivers and other applications between 50 and 900 mc . Designed for operation with 300 ohm receivers with less than 0.5 db error. Noise figure $0-19 \mathrm{db}$.

Write for specifications and catalog on our complete line of measuring equipment.

NEW LONDON/INSTRUMENT P. O. $B O X 189 E$ NEW LONDON.CONN

unique in design - rugged in construction

 GREENPANTOGRAPH
ENGRAVERS

HEAVY-DUTY MODEL D-2

THE FAMOUS MODEL 106

The three-dimensional bench Model 106 cuts costs - engraves, routs, models and profiles, giving you expert results even by unskilled workers.

The Model D-2 heavy-duty two dimensional Pantograph is a precision machine with a multitude of new features. Open on three sides, it permits complete freedom for engraving, milling, profiling large panels lup to $30^{\prime \prime}$ in diameter) or bulky pieces. Single, micrometer adjustment controls vertical depth of cut, automatically adjusting copy table with pantograph. Range of reduction ratios from 2-to-1 to infinity! Vertical range over 10 inches!
For complete information, write to

$$
\underset{\substack{\text { GREEN INSTRUMENT COMPANY } \\ 363 \\ \text { Putnam Ave. } \\ \text { Cambridge, Mass. }}}{\text { COM }}
$$

Features...

- HYCOR telemetering filters have excellent characteristics due to the use of high " Q " toroid inductor elements. The filters may be used in low level circuits with negligible hum pickup resulting.
- In addition, only the finest capacitors are employed to assure stability.
- Available in standard RDB frequencies.

GENERAL SPECIFICATIONS Impedence 500/500

TYPE	banlwibth	atienuation	frequency rance
1500	$=71 / 2^{\circ}$ 。	-3 do or less	400 cps to 14.5 kc
	$=20 \%$	-30 do or more	
4300	$=71 / 2 \%$	-3 db or less	400
	- 20%	40 db or mo	11300 cps 1014.5 kc
4000	= $71 / 2 \%$	-3 db or less	400 cps 10960 cps
	- 15%	-45 db or more	11300 cps to 14.5 kc
	- 15%	-3 db or less	22 kc to 70 kc
	-28\%	45 db or more	

Other frequencics and impedances available on request.

11423 VANOWEN STREET NORTH HOLLYWOOD 1, CALIF.
formulated at present.
Technical session moderators included: Harry Davis of R.A.D.C.; C. E. McClellan and N. V. Petrou of Westinghouse Air Arm Division; W. W. Bender and H. Schutz of Glenn L. Martin. A highlight of the technical program was a symposium on air navigation and traffic control. Taking part in this symnosium were Col. J. Taylor of ANDB; W. O. Arnold of Bell Laboratories; G. C. Cornstock of Airborne Instrument Laboratories; S. Barkowitz of Franklin Institute and Cmdr. W. W. Bush and J. Anast of ANDB.

ElectroData

Promotes Carpenter

Richard E. Carpenter has been promoted to chief production engineer of ElectroData Corp.

He has served as staff assistant to L. P. Robinson, ElectroData vice-president, since January, 1954 and will continue to report to Robinson in his new post. As production engineering chief, he will be responsible for translating computer and computer component development projects into manufacturing requirements.

Joining Consolidated Engineering Corporation as a production engineer in 1946, Carpenter was made staff assistant to the director of engineering in 1947, a post he held until recalled to active naval service during the Korean emergency.

Returning to Consolidated in 1953, he was made staff assistant

Yes, experience docs paz in many ways. Our clients knou from experience they have a dependable, responsible source for preparation of better industrial and tusiness lit. erature.

Why not do the job righ t? It saves time, money and produces results. Let us give you a preposal on your next publication.

Wc'll do the whole joo-from planning to printing-or jast hose parts that you need.

product literature

military manuals
company publicafiens
training material

Call or write for more in ${ }^{\text {ormation. }}$
TECHNICAL WRITING SERVIÇE
McOraw-Hill Book C., nc. - 330
West 42nd Street • N. Y. 36, N. Y.

YOU PUT POWER IN YOUR PRODUCT with

SARGEANT Wilibur
HEAT TREATINGCORP.

- Bright Annealing, Brazing, Hardening of Stainless Steel
- Cycle Annealing of LaminationsSilicons, Irons, Steels
- Certified Equipment*
- Specifications Rigidly Enforced

Write, Wire, or Phone for Complete Information Somple Processing Without Obligation

SARGEANT ${ }_{\text {G Villbur }}$

 HEAT TREATING CORP. 170 YORK AVENUE PAWTUCKET, RHODE ISLAND
*Certified by the U.S. Air Force

JOHNSON

FACTORY-CALIBRATED

ECHO BOXES

Calibrated in ringing quality Provide complete check of radar performance
Designed for many frequency bands
Special resonant cavity designs on request
WRITE FOR COMPLETE INFORMATION

JOHNSON SERVICE CO.

507 E. MICHIGAN ST., MILWAUKEE 2,WIS.

CONTINUOUS, DIRECT-READING

 X-BAND VSWR messumens

2% overall accuracy!

For speedy and accurate VSWR measurements in laboratory or production use, the CTI Model 110B Measuring System reads directly, is continuously tunable from 8,500 to $9,600 \mathrm{mc}$.

MULTI RANGE CHAMBER FOR DEPENDABLE TESTING

LOW TEMPERATURES,

 HIGH TEMPERATURES ALTITUDE and HUMIDITY
It's the
 Murphy \& Miller LTA-27!

INCREASED RANGES

- Alfitude range above $200,000 \mathrm{ff}$.
- Low temperatures to $-120^{\circ} \mathrm{F}$
- High temperatures to $+300^{\circ} \mathrm{F}$
- Humidisy 20 to 95%
- 27 cu . ff. test space

 of controls, chamber, operating units means FAST, ACCURATE, MODERN TESTING
Here's the ultimate in Multi-range environmental test units - a compact, self-contained urit that will handle virtually any test problem involving temperature, vacuum and humidity in combination or individually. Available with Recorder Controller, integrated Program Control and many optional features. Highest quality material and workmanship throughout. Get complete details on the LTA- 27 today. Write for illustrated circular.

MURPHY \& MILLER, INC. Environmental Test Division 1322 So. Michigan Ave., Chicago 5, III.
for service and lab. work
Feathkit
PRINTED CIRCUIT

oscilloscope kit
 for COLOR TV!

Check the outstanding engineering design features of this modern printed circuit Scope. Designed for color TV work, ideal for critical Laboratory aplications. Frequency response cssential!y flat from 5 cyeles to 5 Me down only 11_{2} db at 3.58 Mc (TV color hurst sync frequency). Down only 5 db at 5 Mc . New sweep generator $20-500,000$ cycles, 5 times the range usually offered. Will sync wave form display up to 5 Mc and better. Printed circuit hoards stabilize ferformance sperifications and cut assembly time in half. Formerly a a ailable only in costly Lah type Seope. Features horizontal trace expansion for observation of mulse detail-retrace blanking amplifiervoltage regulated power supply-3 slep fremency compensated vertical ingut--low capacity uyfon bushings on patiel terminals-plus a host of other fine features. Combines peak performance and fine engineering features with low kit cost!

Heathkit iv

sweep generator kit

ELECTRONIC SWEEP SYSTEM

A new Heathkit sweep gencrator covering all frequencies encountered in Th service work (color or monochrome). FM frequencies loo! $4 \mathrm{Mc}-220 \mathrm{Me}$ on fundamentals. harmonics up to 880 Mc . Smoothly controliable all electronic sweep system. Nothing mechanical to vibente or wear out. Crystal controlled 4.5 Me fixed marker and separate variable marker $1!1-60 \mathrm{Mc}$ on fundamentals and $57-180 \mathrm{Mc}$ on calibrated harmonics. Plug-in crystal incluted. Blanking and phasing controls-automatic amplitude constant outjut circuit-efficient attenuation-maximum RF output well over 1 voltastly improved linearity. Fasily your best buy in sweep generators

HEATH COMPANY

in the company's computer division. In 1954 he became staff assistant to the vice-president of the newly-formed computer firm.

Polarad Electronics Expands Plant

Polarad Electronics Corp. has acquired $55,000 \mathrm{sq} \mathrm{ft}$ of additional manufacturing space in a new plant located in Long Island City, New York.

The existing plants in Brooklyn will continue to operate. The additional facilities will provide for increased manufacturing and engineering activity.

The company has opened up three new divisions for the manufacture and development of computers, Klystron tubes, and microwave components. Polarad's new plant will increase its engineering and production capacity by fifty per cent.

The administration and executive offices and engineering will be centralized in this plant.

Ketay Buys Vari-Ohm Stock

Ketay Instrument has purchased the majority stock interest in the Vari-ohm Corp. of Amityville, Long Island, N. Y., manufacturers of potentiometers.

As a result of the purchase by Ketay, Vari-ohm is now expanding its facilities to permit larger volume production of its units.

Officers of the reorganized Variohm Corporation, now a subsidiary of Ketay, are M. Sherman, president; J. L. Daniels, who developed the units, executive vice-president and J. Stadler, secretary-treasurer. Sherman is a vice-president of Ketay and Stadler is secretary.

Printed Circuit Firm Organized

A new company, Printed Circuits, in Bloomfield, Conn., has been formed for the design, engineering, and manufacture of all types of printed circuit boards. Production is now underway.

Chauncey T. Mitchell will serve

TRANSISTOR $\&$

DIGITAL COMPUTER

TECHNIQUES

applied to the design, developnent and application of

AUTOMATIC RADAR DATA PROCESSING, TRANSMISSION AND CORRELATION IN LARGE GROUND NETWORKS

ENGINEERS PHYSICISTS

Digital computers similar to the successful Hughes airborne fire control computers are being applied by the Ground Systems Department to the information processing and computing functions of large ground radar weapons control systems.
The application of digital and transistor techniques to the problems of large ground radar networks has created new positions at all levels in the Ground Systems Department. Engineers and physicists with experience in the fields listed, or with exceptional ability, are invited to consider joining us.

fields include

TRANSISTOR CIRCUITS
DIGITAL COMPUTING NETS MAGNETIC DRUM AND CORE MEMORY LOGICAL DESIGN PROGRAMMING

VERY HIGH POWER MODULATORS AND TRANSMITTERS

INPUT AND OUTPUT DEVICES SPECIAL DISPLAYS
MICROWAVE CIRCUITS

Scientific and Engineering Staff

HUGHES

RESEARCH AND
DEVELOPMENT LABORATORIES
Culver City, Los Angeles County, California

Relocation of applicant must not cause disruption of an urgent miititary project.
as general manager of production and engineering.

Officers of the new firm include Ernest E. Carpenter, president, Arthur H. Kruh, treasurer and Judge Morris J. Cutler, secretary.

Rod Advanced By Boque Electric

Robert L. ROD was promoted to assistant to vice-president of Bogue Electric Mfg. Co. He will assist John A. Herbst, vice presi-dent-engineering, in the administration of engineering activities.

Previously Rod was assistant director of research and development and headed the company's activities in the development of electronic devices. Before joining Bogue in 1951 he was associated with Melpar and Radiomarine Corporation of America.

Aerovox Acquires Ceramic Firm

Aerovox Corp. of New Bedford, Mass. has acquired all outstanding stock of Henry L. Crowley \& Co, of West Orange, N. J., manufacturers of powder-irons and steatite products.

The Crowley plant has 110,000 sq ft of floor space.

Gross Joins
 Chem-Tronics

Bernard Gross, formerly director of laboratories at Rohr Aircraft Corp. in Chula Vista, California, has been named president of Chem-

DC-AC CHOPPERS

O-500 cycles
DEPENDABLE

All military specifications met. Libera: factors of safety to meet
emergency

1. Production sampled daity and life tested to creck 1,000 hour rating
2. Every Chopper given not only one but two tests over the full range of military temperatures
before shimement.
bere sol cot.
3. Only gold contacts used for superior operation in the vital
4. Liberal safety factors to meet emergency conditions.
a.
b. Input valtage $\pm 30 \%$.
x 1 unax
vrite for these
CATALOGS:
Wo. 37,60 CPS.

STEVENS
 A 0 , 0
 $N C=R \geqslant O R E T D$

22 ELKINS STREET
 SOUTH BOSTON 27, MASS.
 S/A.11

Tronics, a newly organized firm in San Diego. The firm has purchased a six-acre tract for construction of a plant in San Diego.

The company will specialize in research and manufacture of electroform metal parts and electronic process control equipment.

Named to succeed Gross at Rohr is Hugh M. Rush, who has been assistant chief engineer for the aircraft sub-assembly firm.

Hydro-Aire
 Expands Electronics

Hydro-Aire, aviation subsidiary of Chicago's Crane Co., plans expanded activities in the electronics field. The formation of a new electronics division to be headed by Reagan C. Stunkel, formerly the firm's vice-president in charge of operations, is planned. Stunkel will take on full responsibility for the company's sales, research and development and manufacturing in the electronics field.

Robert J. Trivison has been appointed works manager for the firm. He was formerly production manager.

President of Daystrom Joins Weston Board

Thomas Roy Jones, president of Daystrom, was elected a director of the Weston Electrical Instrument Corp.

Jones has been president of Daystrom and its predecessor companies since 1932 and is chairman of the board of directors of each of

Thomas Roy Jones

How to keep

informed on

the

part of

your business

At your finger tips, issue after issue, is one of your richest veins of job information-advertising. You might call it the "with what" type -which dovetails the "how" of the editorial pages. Easy to read, talking your language, geared specifically to the betterment of your business, this is the kind of practical data which may well help you do a job quicker, better-save your company money.
Each advertiser is obviously doing his level best to give you helpful information. By showing, through the advertising pages, how his product or service can benefit you and your company, he is taking his most efficient way toward a sale.
Add up all the advertisers and you've got a gold mine of current, on-the-job information. Yours for the reading are a wealth of data and facts on the very latest in products, services, tools . . . product developments, materials, processes, methods.
You, too, have a big stake in the advertising pages. Read them regularly, carefully to keep job-informed on the "with what" part of your business.

McGRAW-HILL PUBLICATIONS

An Invitation TO MANUFACTURERS OF ELECTRONIC EQUIPMENT

1. Friendly labor supply.
2. Unusual city, county, and state tax advantages.
3. Industrial sites plentiful.
4. Good banking facilities.
5. Full cooperation guaranteed.
6. Strategic location
for
SMALL or MEDIUM INDUSTRIES

Businessmen of Lakeland, Florida will cooperate fully and furnish complete information to manufacturers who will consider relocating or establishing a branch unit in this fastgrowing central Florida city \qquad

INDUSTRIAL DEVELOPMENT COMMITTEE OF 100 LAKELAND TERRACE HOTEL

LAKELAND, FLORIDA

A NEW ALLISON FILTER...CUT-OFFS DOWN TO 15 CPS
The Model 2A
CONTINUOUSLY VARIABLE PASSIVE NETWORK AUDIO FREQUENCY FILTER

NO VACUUM TUBES • NO POWER SUPPLY

Another Allison First ... the Model 2-A Filter engineered for extreme low frequency application, ranges from 15 cps to $10,000 \mathrm{cps}$. It is a modified version of the tested and proven AlLISON Model 1-A Filter.
FEATURES

- Low Pass, High Pass and Band Pass with Continuously Variable Frequency from 15 to $10,000 \mathrm{cps}$.
- Passive Network... No Power Supply, No Vacuum Tubes.
- Low Loss... Approximately 1 db . in Pass Band.
- High Attenuation Outside Pass Band $30 \mathrm{db} /$ octave.
- Maximum Input 5 Watts.
- Designed for 600 Ohm Circuits.

Model 2-A Filter Model 2-B Filter

 (15 to $10,000 \mathrm{cps}$.) (60 to $20,000 \mathrm{cps}$.) $395^{\circ 0}$prices foo.b. factory
Write for Engineering Bulletin with Complete Technical Data.
allison laboratories
14187 SKYLINE DRIVE P PUENTE, CALIFORNIA Representatives in Principal Cities.

EVERY USER OF

SOLDERING

 LUGS TERMINALS SMALL STAMPINGS

Can Profit Through MALCO'S Low Cost, Quantity Production

We manufacture a complete line of standard and custom-made solder and solderless lugs, terminals, corona rings, and small stampings for radio, television and industrial electrical/electronic use.
Precision tooling and rigid quality control insures tolerances to your most critical specifications. High production techniques, plus stocks of over 1000 different parts permit prompt delivery at lowest possible unit cost.

Daystrom's five operating units. Prior to this, he was vice-president and general manager of Harris, Seybold, Potter Co. of Cleveland, Ohio and held executive positions with Cincinnati Milling Machine Co. and Moline Plow Co.

ACF Industries
 Acquires E\&R

ACF Industries has acquired the Engineering \& Research Corp. of Riverdale, Md. E \& R produces electronic and aircraft equipment and employs about 1,800 people. ACF has two other electronics companies as subsidiaries. They are ACF Electronics of Alexandria, Va. and Avion Instruments of Paramus, N. J.

Pioneer Enters New Fields

Pioneer Industries of Reno, Nevada has entered the field of nuclear detection and is producing custom built scientillation counters for survey work. Another new division of the company for color television research is in process of formation.

Executives of Pioneer include W. E. Osborne, president, who until last summer headed Resdel Engineering Corp. of Los Angeles; J. R. Chown, executive vice-president, who has directed Pioneer since its formation; J. W. Braithwaite, also long with Pioneer but formerly from Marquardt Aircraft and R. P. Banaugh from the Livermore, California laboratories of the Atomic Energy Commission.

Mettler Named By Honor Society

Ruben F. Mettler, systems department head at Hughes Aircraft and now on loan to the Department of Defense in Washington, has been named the outstanding young electrical engineer of 1954 by Eta Kappa Nu, Electrical Engineering Honor Society.

He was voted the outstanding young engineer "By virtue of his outstanding planning and develop-
ment of air defense control systems, his participation in civic affairs and his various artistic attainments. . ."

Certificates of honorable mention have been awarded to Lindon E . Saline and Leon K. Kirchmayer of GE, Edward E. David, Jr. of Bell Telephone Laboratories and Jackson F. Fuller of GE.

The Award, which was first made in 1936, is given annually to an outstanding electrical engineer, who has been out of college not more than 10 years and who is not more than 35 years old, in recognition of his technical achievements and for meritorious service to his fellowmen.

Teasdale Named

 By Tempco AircraftA. Robert Teasdale, Jr. has joined Temco Aircraft as chief of electronics design.

The new design chief will supervise design and installation of electronics systems and will report to G. B. Spaulding, technical director of systems design.

Teasdale was formerly with GE, the University of Texas and Convair,

Preco Acquires
 Two More Firms

Electra Motors and California Gear Co., both of Anaheim, California, were acquired by Preco of Los Angeles. Several months ago Preco also acquired ownership of Electron Products of Los Angeles, manufacturers of capacitors and filters.

The two concerns, who jointly

THE NEW WAY TO

MARKEQUIPMENT....
with

So simple to engrave Gravoflex. Lettering stands out permanently on contrasting background. No paint needed. 10,000 Engravographs used for engraving on metals and plastics. Only Engravograph has these patented features:

- Adjustable for 15 ratios.
- Self-centering holding vise.

III

- Automatic depth regulator. - Adjustable copy holders.

NEW HERMES ENGRAVING MACHINE CORP. 13.19 UNIVERSITY PLACE, NEW YORK 3, N. Y.

punch it

here's what dIE CAST

CDC ZINC ALLOY THREADED

in terms of a better product in terms of a more economical product!
Every Quality Feature
is an Economy Feature!

- The plain bright finish docs not require further

Surface finishing for most applications
Coser tolerances - Cleaner threads - Greater dependability, durability - Die-cast uniformity

- LOWER PRICES!
- CORROSION-RESISTANT

Quick deliveries from stock - Specials to order Write Today for Samples, Prices \& Bulletins

GRIES RAPRODUGER CORP.

World's Foremost Producer of Small Die Castings
151 Beechwood Ave., New Rochelle, N. Y.
Phone NEw Rochelle 3.8600

The WWV frequency standard, as transmitted by the U. S. Bureau of Standards, is the most accurate frequency standard of any in the world.
By using the new Matawan WWV receiver, this frequency standard, with all its information (standard audio frequencies, time signals, propagation notices) is now available to your laboratory. The WWV carrier, after elimination of its modulation, by means of a narrow band pass crystal filter, monitors your local HF standard. The rotative pattern on the screen of the cathode ray tube gives sense and amount of the frequency deviation.
Either the $5 \mathrm{MC} W W \mathrm{~V}$ or the 15 MC WWV may be received. The receiver will accommodate any local frequency in the range from 50 kC to 10 MC equal to a subharmonic of $10 \mathrm{MC}, 2 \mathrm{MC}$ or 400 kC . A second channel receives the audio modulation and time signals of the WWV-Standard.
Four Models Available.
Fully descriptive, illustrated

	WWV Input	
	5.0 MC	5 and 15.0 MC
Audio Modulation on Speaker Phone Jacks	$\begin{gathered} \text { Model ME-117A } \\ \$ 865 \\ \hline \end{gathered}$	Model ME-117C $\$ 910$
Additional Filter for 440/600 CPS	$\left\lvert\, \begin{array}{\|c\|c\|} \hline \text { Model ME-117B } \\ \$ 940 \end{array}\right.$	$\begin{gathered} \text { Model ME-117D } \\ \$ 985 \end{gathered}$

> PHILLIP H . HARRISON \& CO.
> Route 34, Matawan, N. J. Matawan 1-3113
employ approximately 125 people, will continue to operate separately under Arval Morris, president, with no change in policies or management.

Seneca Falls Machine Expands

Seneca Falls Machine Co. is constructing a new building adjacent to its main plant in Seneca Falls, New York to house its newly formed electronics division and to provide space for its engineering department. The new building is scheduled for completion about April 1, 1955.

Brubaker Promotes Myers And Byall

Fred Myers, director of field engineering for Brubaker Manufacturing and former head of the design branch of the Electronics Division, Bureau of Aeronautics, has been elected vice-president of the Los Angeles firm.

Paul W. Byall, formerly controller of the company, was elected treasurer.

Sperry Forms Aero Division

Sperry Gyroscope has formed a new aeronautical equipment division at the Great Neck, N. Y. main plant.

Named as manager of the new

H. C. Bostwick

McLEAN ENGINEERING PRINCETON, N. J.

Molded Coil Windings and Components

1. MAGNET WIRE 2. INSULATIONS 3. VARNISHES 4. COMPOUNDS

All-Acme coils, made with Acme materials, guarantee 100% performance at all times.

By using Acme-produced materials, quality can be controlled at every step of manufacturing process.

There are Acme coils for most requirements.

Years of experience in coil-winding (we are one of the oldest in the country) have made "Acme" synonymous with service, dependability, and top quality.

ACME WIRE CO.

NEW HAVEN, CONN.

MAGNET WIRE - COILS VARNISHED INSULATIONS INSULATING VARNISHES AND COMPOUNDS
Want more information? Use post card on last page. 366
aero division is Herb C. Bostwick, formerly engineering director for flight research. Current move is in line with a program begun last year of streamlining Sperry operations along product lines.

Bostwick began his career with Sperry in 1936 as an aeronautical field engineer. He served subsequently as aircraft armament manager, aircraft radio manager, and engineering director for flight research.

IT\&T Promotes
 General Leavey

Major General Edmond H. Leavey, U.S.A. (Retired), has been elected president of International Standard Electric Corp., overseas manufacturing subsidiary of IT\&T.

General Leavey joined IT\&T in 1952 as vice-president and since June, 1953 until his present appointment had been president of Federal Telecommunication Laboratories at Nutley, New Jersey. He is also a director of various IT\&T associate companies.

The firm also announced that R. J. Miller, former sales manager of rectifier equipment, has been appointed manager of the firms rectifier equipment product line. He assumes responsibilities for all engineering, manufacturing and sales functions of the department.

IBM Appoints Defense Engineering Head

Charles F. McElwain was appointed director of defense engi-

MODEL CM-300 $10-1000$ MC
Accurosy: Berter thon $1 / 2 \mathrm{dt}$
4 three connector, ree rype crystel mount for general pupose in it mon. itaring 50 or 75 chm cooxial skstems
Available in $50,100,150$; 25; 150 225 Avoiloble in $50,100,150$; 25; 150,225
ahm itpedonces for ise ith Trad ahm itpedonces for ise vith Trad
Grep Atrenuator AT-120 for -minimum grep Altenual
insertion loss.
inserrion loss.
ENC connectors focilitiots direct cennection to AT- 120 Siep. Artenuators forming o compiten monirored output system to 1000 MC .

Yisit our exilitit and sea our complate

 line of Preaision Elatroic TetEquipment.
Wrive for details to

Want more information? USe post card on last page February, 1955 - ELECTRONICS
neering and defense manufacturing for IBM. McElwain has been the company's defense engineering coordinator since July, 1953. In his new position he will work closely with manufacturing and engineering defense departments in the company's plants at Poughkeepsie, Kingston and Endicott, New York.

Tsumeb Corp. Names American Metal

The American Metal Co. of New York, N. Y. is now selling germanium dioxide in the U. S. as sales agents for Tsumeb Corp. of the Territory of Southwest Africa. Production is on a modest scale at present but can be increased substantially if demand warrants it, according to the company.

Potentiometer Firm Appoints Gangi

S. Gangi has been appointed general manager of the George Rattray \& Co., manufacturers of precision potentiometers in Richmond Hill, N. Y.

He is a graduate engineer with 25 years experience in the engineering and production of precision instruments and components.

Electronic Research Expands Plant

The laboratory and manufacturing facilities of Electronic Research Associates of North Caldwell, N. J. have been moved to a new plant in Nutley, N. J. The new plant has more than double the space of the transistor equipment firm's previous plant.

Bauman Joins Transco Products

Transco Products of Los Angeles, California, manufacturers of aircraft and electronic equipment, appointed Harold Bauman, formerly

2082 Lincoln Ave., Altadena, Calif., SYcamore 8-1185. Offices in WASHINGTON, D.C. and DETROIT

- Military or special yokes and focus coils designed to your specifications.
- Production yokes for TV sets.

For your answer to yoke problems write Dr. Henry Marcy today.
syntronic
INSTRUMENTS, INC.
100 Industrial Road • Addison, Ill. • Phone: Terrace 4-6103

STANIESS .sTTOCK

All types and sizes of screws (slotted, Phillips, socket, hex head), bolts, nuts, washers, rivets, keys and pins

Over 9000 items in stock means immediate de. livery from one source

- New Garden City plant now operoting of top speed and quality
- Unsurpassed facilifies for quantity fabrication of specials
- A staff of seasoned engineers always available for consultation
- Pioneers in the manufacture of stainless steal fosteners

WRITE NOW FOR fREE COPY OF FASTENER MANUAL PIO

$$
\begin{aligned}
& \text { MANUFACTURERS SINCE } 1929 \\
& \text { SCREW PRODUCTS COMPANY, INC. } \\
& \text { GARDEN CITY YOR }
\end{aligned}
$$

a vice-president of Standard Business Machine Mfg. Co., as chief engineer.

Before joining Standard, he was chief electrical engineer of Ampro Corp. and before that was a department head supervising electronic and electro-mechanical projects for Bell \& Howell.

USECO Purchased By Litton Industries

USECO of Glendale, Calif., formerly known as U.S. Engineering Co., has been purchased by Litton Industries.

USECO has been a producer of electronic terminals and terminal boards and for the last year has entered into the fields of etched and printed circuitry.

North Electric Appoints Ayers

Raymond W. Ayers, formerly executive vice-president of Allen D. Cardwell Co., has been appointed manager of the newly expanded industrial division of The North Electric Manufacturing Co. of Galion, Ohio.

Lansing Adds Space

James B. Lansing Sound of Los Angeles, Calif., has added an annex of $10,000 \mathrm{sq} \mathrm{ft}$ for cabinet construction.

Magnetic Recorder Firm Formed

A new corporation, Tape Recorders Incorporated, in Chicago, has begun operation as manufacturers of magnetic tape recorders.

the american metal co. LTD.

SUPPLIER OF

PURE

GERMANIUM DIOXIDE

FOR ELECTRONIC USE

| GENERAL
 OFFICES | 61 Broadway, New York 6, N. Y.Bowling
 Green
 $9-1800$ |
| :--- | :---: | :---: |
| BRANCH 20 Providence St.
 Boston, Mass.
 Hancock 6-5310 1 No, LaSalle St.
 OFFICESChicago, III. | |
| State 1-0980 | |

TOROID COIL WINDERS UHF COAXIAL WAVEMETERS

Send for Illustrated Catalogs
MICO INSTRUMENT CO.
76-E Trowbridge St. Cambridge 38, Mass.

A truly superior switch MASTER for MASITOR SWITCHING MUDIO \& VIDED CIRCUITS AUDIO \& VIDEO CIRCUITS Also
COMPUTERS : TELEMETERING
TELEPHONY - DELAY LINES ETC.

MEASUREMENT IN LIQUID LOADS

MODEL 3901 THERMOPILE

$\$ 75.00$ f.o.b. Grass Valley, Calif.

- 30 pair junction moulded in polyethylene
- All Plastic Case
- $1 / 4^{\prime \prime}$ copper tube fittings
- Rapid take-down for cleaning
- From 10 watts to several kilowatts per unit

SPECIFICATIONS

MODEL 5800 CALORIMETER
$\$ 360.00$ f.o.b. Grass Valley, Calif.

- A complete comparator to measured 60 cycle power, utilizing above thermopile.
- Built-in calibration circuit and heater.
- Sensitive, non-clogging flow valve. SPECIFICATIONS
Weight
Approx. 21 pounds
Dimensions
- $81 / 4^{\prime \prime} \times 9^{\prime \prime} \times 17^{\prime \prime}$

Maximum pressure
Range full scale $.300,600,1500,3000 ~ w a t t s ~$
Range full scale.
Meter sensitivity $\mathbf{3 0 0 , 6 0 0 , 1 5 0 0 , 3 0 0 0 \text { watts }}$
$\begin{aligned} & \text { Meter sensitivity } \\ & \text { Thermopile sensitivity }\end{aligned} . \quad . \quad 1 \mathrm{mv} /{ }^{\circ} \mathrm{C}$

Thermopile sensitivity
Controls
Range switch, Calibrating valve,
$1 \mathrm{mv} /{ }^{\circ} \mathrm{C}$

Other equipment for use in power measurements and specific equipment for microwave power measurement set-up.

- Model 5801 Calorimeter - Range 60, 150, 300, 600 watts.
- Model 3701 Water load calibrator heater.
- Model 4105 X Band Water load - 1000 watts CW 300 Kw , peak. Less than 1.2
VSWR over $7000 / 10000$.
- Model 5500/5501 Variable phase standing wave introducer at \mathbf{X} band.
Let us send you full specifications on these tools for power measurement, or send for our complete catalogue.
- Glass Working Lathes, equipment.
- High Vacuum Pump and Gauge.
- Hydrogen Bell Jars.
- Vacuum Tube Laboratory Equipment.
- Spot Welder and Timers.

Want more information? Use past card on last page. 370

Electrical Transients

By L. A. Ware and G. R. Town. The Macmillan Co., New York, 1954, $222 p$, $\$ 4.75$.
Increasing use of pulse circuits in communications engineering has contributed a widespread interest in electrical transients among circuit designers. Engineering colleges have therefore tended to build post-war graduate courses in electronic circuit design around the study of transients and the methods of operational calculus required in their solution. Currently this trend has been extended to include the study of transients in the undergraduate curricula in electrical engineering.

Scope of Book

This book is written to furnish a text for a senior-level course in electrical transients. Presumably it is intended for both communications and power majors although in content it seems slanted for the former group. The authors have based the book on course material used over a four-year period in senior electrical engineering courses although they indicate that the text might also be used by third-year students.

The book deals with finding the response of R-L, R-C and RLC circuits to alternating emf, compound, switching and transistor transients, nonsinusoidal applied emf and repeated discontinuous functions. It is liberally sprinkled with illustrative examples. The differential equations involved are solved by both classical and operational methods-often both methods are employed on a single problem.

Contents

Chapter 1, 35 pages excluding problems, leads off with a definition of the transient problem and illustrative examples of finding the transient response $R-L$ and $R-C$ circuits when a direct emf is applied. Also presented is a discussion of the time constant and the voltage relationships in a simple sweep circuit. The classical method for

CAIL OR WRITE FOR QUOTATIONS ON YOUR SPECIFIC REQUIREMENTS

27 WRIGHT ST., NEWARK 5, N.J.
solving differential equations is used.

A particularly lucid description of the Laplace transform is given in chapter 2. The method is introduced by analogy to the use of logarithms. One of the problems given in chapter 1 is reworked using the Laplace transform. Chapter 3 gives further examples of the use of Laplace transforms with classical solutions also given for comparison.

Response of R-L and R-C circuits to compound, switching and transition transients is dealt with in chapter 4 of 29 pages. The Laplace method is stressed although classical solutions also are shown. Circuits considered include the Lcoupled T section and capacitancecoupled circuit.

Chapter 5 concerns transient response of R-L-C circuits; chapter 6 deals with alternating applied emf while chapter 7 considers miscellaneous applied emfs.

Repeated and discontinuous emf functions such as the Morse dot, full-wave rectifier output sawtooth waveform, class-C amplifier pulse and half-wave rectifier output are treated in chapter 8 .

The final chapter considers the transient response of vacuum-tube circuits. Included are the R-C amplifier, video amplifier and cathode follower. The index has rather few entries but is perhaps adequate for a book of this type and length. The book includes only 85 problems, all of which seem quite instructive. However, an instructor seeking to establish adroitness in handling transients through an intensive problem-solving course might like to see more. The fact that answers are not given may discourage some practicing engineers from using the book for self-study to bring their knowledge of circuit design up to date.

Conclusions

On the whole the book is readable, easily understood and worth reading both by students and engineers whose academic preparation antedates the introduction of courses in transient analysis. It seems quite adequate for a seniorlevel course in electrical transients and might indeed be within the

Where

 accuracy is VITAL! You Can Depend On ARC Test Equipment

With unfailing accuracy and speed, the ARC Type H-14 Signal Generator provides pre-flight or bench-maintenance checks of ARC Omni and Localizer Receivers. In less than one minute the $\mathbf{H}-14$ can check one unit or an entire squadron simultancously

This dependable precision safeguard verifies up to 24 omni courses, to-from and flag-alarm operation, calibration accuracy,
omni course sensitivity and left-center-right on localizer. In addition, it transmits vocal instructions to pilots along with test signals.

ARC provides the companion H-16 Standard Course Checker for precision checking on the course accuracy and phase measurement of the H-14, or any other omni signal generator. Both instruments are sold only direct from factory. Detailed literature sent on request. Dependable Airborne Equipment Since 1928

Aircraft Radio Corporation BOONTON, NEW JERSEY

Type H-14 Signal Generator

Type H-16 Standard Course Checker

Omni Receivers UHF Receivers Transmitters

AR Shav-pak NEW, LOW PRICE!

SHAVE IN THE COMFORT OF YOUR CAR, Boat or Plane!

Specially Designed for Operating Standard A.C. Electric Shavers in Automobiles, Buses, Trucks, Boats, and Planes.

TYPE	$\begin{aligned} & \text { IMPUT } \\ & \text { D.C. } \\ & \text { volis } \end{aligned}$	$\begin{gathered} \text { A.C. } \\ \text { ouiput } \\ 60 \text { crcies } \end{gathered}$	output WATTAGE	$\begin{aligned} & \text { UIST } \\ & \text { PRICE } \end{aligned}$
6.SPB	6	115 yolts	15	995
12.5P8	12	115	15	995

Introducing

AIR MIGHTY MIDGET portafic IN VERTER WITH GREATER OUTPUT DICTATE REPORTS ACCURATELY-PROMPTLY! make your car, boat or plane a "rolling office"
 with ATR INVERTERS for changing your
storage battery storage battery
current to A. C current to A.C.
Househald electricity Aoywhere
Plugs into
Cigarelte Lighter
in your own car!
Receplacte on Dash
${ }^{5} 199$

ATR INVERTERS . . .
especially designed for operating standard 110 volt A. C.

- dictating machines - tape recorder - ELECTRIC RAZORS - WIRE RECORDERS

TYPE	$\begin{aligned} & \text { INPUT } \\ & \text { D.C. } \\ & \text { yairs } \end{aligned}$	$\begin{aligned} & \text { AC. } \\ & \text { OUTPUT } \\ & 60 \text { CYCLES } \end{aligned}$	Dutput wattage	LIST PRICE
6-DME	6	115 volts	30-40	19.95
6H-DME	6	115 volts	60.75	29.95
Above Inverters also available for 12 -volf operation.				

See your jobler or curite factony today for complete information
H1 American Telivision \& Radio Co.

Want more information? Use post card on last page.
comprehension of third-year students where a course on electrical transients is taught on that level. -J.M.C.

Quality Control

By N. L. Enrick. The Industrial Press, N. Y., 1954, 181 p, $\$ 4.00$.
IT IS my opinion that Mr. Enrick in writing his book for the practical man has overshot the mark in his effort at simplification. His philosophy, particularly in the earlier chapters, seems to be that some control is better than no control at all. While this can be accepted for the sake of expediency, I believe it extremely inadvisable to send the practical quality man into a factory with a false sense of confidence, especially in these days when engineers and supervisors have more than a casual interest in the statistical tools used in quality control.

Defining Accuracy

It is very misleading where, on page 36 , he says "Where absolute accuracy is the aim" (referring to adjustment factors). It seems that this absolute accuracy referred to boils down to two sigma limits and I wonder how many statisticians or mathematicians will go along with this regardless of the number of standard deviations. The chart on page 112 falls into the same category where the computations to obtain sigma are shown. I doubt if this would find ready acceptance.

In the chapter on simplified analysis of variance Mr. Enrick had a golden chance to shine. The chapter proves interesting as far as it goes but I believe he could have gone further with it.

A more complete chapter on the mathematical derivation of the adjustment factors would help to satisfy those interested enough and who would like to put a little more than blind faith into it.

Conclusions

In spite of all this criticism, with the exception of some liberties taken with statistical theory, the book is not without merit. The text on application and administration is based on accepted and proven practice and should prove a handy

- Now for the first time you can successfully use a single metallic coating for refractory ceramic bodies which provides a surface for applying either hard or soft solders with melting points between 275° and 1600°. With Nicote, no expensive preliminary processing is necessary. It's ideal for hermetic and mechanical seals and vacuum applications. Bulletin 155 contains complete details. Write for a copy.

frenchtown

PORCELAIN COMPANY 86 Muirhead Ave - Trenton 9, N.J.

PRECISION FREQUENCY MEASUREMENTS...

 0.1 to 175 mc . At low cost!

LAMPKIN 105-B

micrometer frequency meter

- Heterodyne type, A.C. operoted
- Measures crystal-controlled Iransmitters, all frequencies, 100 Kc . to 500 Mc .
- Accuracy $.005 \%$ and better, conserva-
tively
- Automatic correction for temperature of
crystal calibrator
- Pinpoint CW signal generator above 20
- Meets FCC specs for mobile-radio maintenance
- Size only $13^{\prime \prime} \times 8^{1 / 2} 2^{\prime \prime} \times 5^{\prime \prime}$. Weight 14 lbs. - Price $\$ 220.00$. Satisfaction guaranteed or money refunded
For indicating $F M$ deviation $\pm 25 \mathrm{kc}$., on any carrier frequency 25 to 500 me., use the companion unit - the LAMPKIN 205-A FM MODULATION METER!
Write today for technical data on both instruments.

LAMPKIN LABORATOṘIES, INC.

 INSTRUMENTS.DIV 4, BRADENTON, FLORIDAWant more information? Use post card on last page
February, 1955 - ELECTRONICS
the $N E W$

STROBO-SYNC

automatically synchronizes stroboscopic light sources with high frequency shakers to permit inspection in slow motion from zero to one cycle per second.

No Gain Adjustment 40 db Range

No Frequency Adjustment 20 to 2000 CPS

Send for Bulletin to

Winkler Sabarataries

5225 North 20th Street
Phoenix. Arizona

MERCURY VAPOR DETECTOR

for detecting toxic concentrations of mercury vapor

The toxic limit is a full scale reading on the high sensitivity scale of Model 23, illustrated above. The weight is 7 pounds and the size is $13 \times 81 / 2 \times 41 / 2$ inches.

A bibliography on the mercury vapor hozard is ovailable on request as well as literoture an the different models af the Kruger Mercury Vapor Meter.

HAROLD KRUGER INSTRUMENTS

Box 164
San Gabriel, Calif.

1500 VOLT Regulated POWER SUPPLY

For Photo-Multiplier Tubes

Front View of Model 710-PR Power Supply
Continuously Adjustable from 600 to 1500 V.D.C. at 0.1 Milliamperes

POSITIVE TERMINAL GROUNDED
Regulation: Output voltage varies less than $.01 \%$ per volt change of line voltage. Output voltage varies less than 1 volt with variations of output current between 0 -1 milliampere. (Internal impedance less than 1000 ohms.)

Model 710p Cabinet Mounted \$210.00*
MODEL 710PR
Standard Rack Mounting \$215.00 *

Also available with 2 or 3 independently regulated and independently adjustable outputs.

Write for Descriptive Bulletin
Models Available With Negative Terminal Grounded (Substitute letter " N " for " P " in model designation).
*Prices net F.O.B. Cbicago

FURST

EIECTRONICS. INC.

3324 W. Lawrence Ave., Chicago 25, Illinois
when there's a soldering job to be done ...

UNGAR ELECTRIC TOOLS, INC. P.O. Box 312, Venice, Colifornia
 HSULATIOW BETTER COWWECTIONS JONES BARRIER
Terminal Strips

Shown: Screw Ter-minals-Screw and Solder Terminals Screw Terminal Solder Terminal below. For every need.

Six series meet every requirement: No. 140, 5-40 screws; No. 141, 6-32 screws; No. 142 , 8-32 screws; No. 150, 10-32 screws; No. 151, 12-32 screws; No. 152, 1/4-28 screws.

YOU BUILD
 KITS IN ONE EVENING-
 but they last a lifetime... and you save 50\%
38 Kits and 42 Instruments the Industry's most complete line of MATCHED TEST INSTRUMENTS
 Wired 52993 20,000 ohmstwed

1/4-million EICO Instruments are now in use the world over! That's the proof of EICO's leadership in Value

For latest precision engi neering, finest compo nents, smart professional appearance, lifetime performance and rock-bottom economy - see and compare the EICO line at your Jobber before you buy any higher-priced equipment! You'll agree with over 100,000 others that only EICO Kits and In. struments give you the in. dustry's greatest values at lowest cost

[^23]reference for those without actual experience.

In calling a spade a spade, it is my opinion that the book does not add too much to the knowledge of the subject found in existing literature which tells the story adequately and just about as simply.R. McGhee, Sylvania Electric Products Inc., Kew Gardens, N. Y.

Amplitude-Frequency Characteristics of Ladder Networks

By E. Green. Marconi's Wireless Telegraph Co., Ltd., Marconi House, Chelmsford, Essex, England, 155 p, 1954, 25 shillings.

THE PRIME PURPOSE, essential scope and especial limitation of this text are well summarized in the author's opening remarks: "In the continually expanding field of communication there is need for design information on broadband circuits, which is more exact than that supplied by classical filter theory. In particular we require to know what is the best that can be done with comparatively simple networks. Recently a number of papers have dealt with the design of low-pass and band-pass filters (consisting of chains of resonant circuits) producing desired exact amplitude characteristics. The most outstanding of these is by Dishal Proc. IRE, 37, 1949, p 10, 50-69. It therefore seemed worth while to work out on similar lines a basic theory of the low pass ladder network which could be applied by wellknown analogies to the derived band-pass, high-pass and band elimination filters.
"The results could then be used in the design of broadband couplings between valves, between a valve and a resistance (load or generator) or between a transmission line and a reactive load or generator. For most applications we shall simplify the theory by assuming no loss in the coupling network. The basic equations, however, will be worked out for the general case."

Chapter Titles
The actual content encompassed is excellently epitomized in the

IN

Experience, more specifically High Production Experience, in applicable graphic arts techniques, plastic and metal fabricating methods and precision electro-mechanical component manufacture are important factors in a smooth conversion to use of prefabricated wiring. METHODE places such experience at the service of receiver and equipment manufacturers.

Demonstration model of one of the first commercially successful radios utilizing a prefabricated wiring board furnished by METHODE. Courtesy Hallicrafters Co.

Many of the early leaders (names on request) in the utilization of prefabricated wiring hove employed the fortunate combination of equipment and know-how offered by METHODE's established position in the wiring device field. As with other wiring devices utilized in electronics, specialization by a component manufacturer offers producers advantage in quality and economy while permitting concentration on the applications of this new and basic component product.

Write for our new ''Printed Circuil Handbook - UTILIZATION OF PREFABRICATED

WIRING'

statements of the chapter headings. Thus: Part I-General Theory comprises: Properties of Low Pass Ladder Network; Response Type B (Butterworth or Maximally Flat) ; Response Type C (Chebyshev or Oscillatory) ; Application to Band Pass Networks; and High Pass and Band Pass Networks. Part IIApplications comprises: Design of Networks to Obtain Optimum Performance of Valves (Power Bandwidth and Gain Bandwidth Figures of Merit) ; Analysis of Two and Three Branch Networks; BroadBand Matching of Reactive Loads; Design of Low Pass and Band Pass Filters with Either Type B or Type C Response; Input Impedance (or Admittance) of a Low Pass or Band Pass Network Adjusted for Type B or Type C Response and Collected Formulae. The Appendices comprise: Low Pass to High Pass and Band-Elimination Transformations; Band Pass Amplifier Chains with Stagger Damped Double Circuits, or Stagger Tuned Single Circuits; Improvement in Power-Bandwidth Figure of Merit by Stagger Damped Amplifie: Stages; Networks with Undercoupled Type A Response; Multiple Solutions for Network Elements; Alternative method of Calculating the Transferred Decrement and Coefficients of Chebyshev Polynomial.

This theoretical content is buttressed by a bibliography of 26 pertinent references; a noteworthy, carefully detailed listing and definition of the several score of symbols used in the text-which very useful item is omitted in most circuit books; and a friendly, pertinently remarked introduction by M. Dishal of the Federal Telecommunications Laboratories, who is a very active American worker on problems of network synthesis.

Dishal's Introduction

A prime value of this book and a good indication of the gap it fills, are well-stated by Dishal, in his introduction: "It is particularly this generalized person-the designing engineer-who is most in need of this modern network theory design information, for he is the man who must not only deal with the general concepts and qualitative ideas re-

Dimensions: $1 / 2^{\prime \prime}$ diam., $1 / 2^{\prime \prime}$ high: Tuning: Slug-tuned; Q : 57 (minimum).

CMALLEST ever mass-produced - Vo-Tron Subminiature Components, recently introduced, supply the answers to primary subminiature problems of top performance within limited space.

Also available in the Vo-Tron line: 455 KC components of comparable size-various LC ratios-highest Q . Others to your specifications.

Let us know your requirements!
Wire or write for samples.

Vo-Tron Division VOKAR CORPORATION Dexter 6, Michigan

MISSILE SYSTEMS

Research

and

Development

The technology of guided missiles is literally a new domain. No other field of science offers greater scope for achievement.

Significant work in this field is being performed at

Lockheed Missile Systems
Division, with many projects involving unexplored areas of scientific endeavor.

MISSIIESYSTEMS DIVISION
research and enginering staff

LOCKHEED AIRCRAFT CORPORATION

VANNGYS•CALIFORNIA

Want more information? Use post card on last page.
quired by modern electronic systems, but must also be concerned with the actual numerical performance of the circuits-. .
"It is this important requirement for accurate numerical information that is not satisfied by the image or iterative parameter design procedures which are still [the only procedures] being taught in so many of our schools today, and it is this type of information which is supplied by Mr. Green's book."

Reviewer's Opinions

Now Mr. Green is both one of the most active English writers on problems of network synthesis and a long-practiced design engineer (in Marconi's Wireless Telegraph Co. Ltd.). Accordingly, it is to be anticipated that he is exceptionally fitted by experience both in exposition and in application-work to advance a well-integrated account of his subject. And, in fact, careful reading reveals that this book fulfills precisely such expectation. Thus, the development of the theory is lean in work. precisely-phrased, and well-detailed.

The illustrative examples are numerous, varied in nature and panoramic about application in practice; the results obtained are carefully discussed as to both freedom and limitation of use. Additively, the many charts, tables and graphs of the text provide a wealth of di-rectly-useful design data. Finally, the typography is excellent; the figures carefully drawn and labeled; the paper and binding, respectively, of excellent grade and workmanship.

Conclusions

We have here an authoritative work on the particular topic evidenced in its title. It provides a good purview of the practical values of a mode of analysis that is as yet familiar to few. The reviewer recommends the book to the earnest attention of the graduate student, teacher, practicing design engineer, research and development worker, or any other who would familiarize himself with the theory and use of a branch of network synthesis which-though rooted in Darlington's classic paper published sixteen years ago (1939) -is as yet little familiar to the rank and file of

MISSILE SYSTEMS

Plysicists and Enginecrs

New developments have created positions for those possessing outstanding ability in fields of:
Radar • Computers
Systems Engincering
Antenna Design
Communications
Telemetering
Electromechanical Design
Test Equipment Design Instrmentation
Structures Engincering
Nuclear Plysics
Mechanical Enginecring
Acronantical Engineering
Operations Rescarch
Stress Engincering

MISSILESYSTEMS DIVISION
research and engineering staff

LOCKHEED AIRCRAFT CORPORATION

VAN NUYS•CALIFORNIA

Want more information? Use post card on last page
those mentioned.-Thomas J. Higgins, Professor of Electrical Engineering, University of Wisconsin.

Valves for A. F. Amplifiers

By E. Rodenhuis. Philips' Technical Library. United States distributors, Elsevier Press, Inc., Houston 6, Texas, 1954. $150 \mathrm{p}, \$ 2.25$.

For those who design and build audio amplifiers, this is a practical and useful book of a type not found in this country. The considerable amount of material on the numerous Philips' tubes for a-f work is more voluminous than is found in any of our tube handbooks; when added to the chapters describing the actual layout and construction of several amplifiers, the book serves as a guide to the whole a-f art.

Problems of hum, distortion, layout on the chassis and choice of tube for specific purposes are handled in such a way that an American designer could learn a great deal. He would have to correlate the characteristics of Dutch versus American tubes to choose properly the American counterparts, but this should not be difficult.

All in all, this is a book which shows the reader how to choose the proper tube for a particular job and how to use that tube properly for best results.-K.H.

THUMBNAIL REVIEWS

Plastics Engineering Handbook. Society of the Plastics Industry, 850 p , 1954, \$15 from Reinhold Publishing Corp., 430 Park Ave., New York 22, N. Y. Design, materials, processes, equipment, finishing, assembly, testing and standards of plastics and plastic products.
Miniature I-F Amplifiers. By R. K-F Scal. NBS Circular 548, 46 p, 1954, 40\%, Government Printing Office, Washington, D. C. Descriptions of three high-gain high-frequency i-f amplifiers (20 to 100 mc), $\frac{1}{8}$ the size and $\frac{1}{2}$ the weight of equipment they replace, using subminiature tubes with low-noise input circuits.
Statistical Theory of Extreme Values and Some Practical Applications. By Emil J. Gumbel. NBS Applied Mathematics Series $33,51 \mathrm{p}, 1954,40 \phi$, Government Printing Office, Washington, D. C. Applications to meterological problems, to strength of materials, quality control, oldest ages at death, extinction times for bacteria, etc.
 -65° to $200^{\circ} \mathrm{C}$.
fast operating
time delay
HERMETICALLY SEALED
ALL TO MIL R 5757B
SPECIFICATIONS
Manufacturer's of High Precision Sub-Miniature Electro-Mechanical Devices

ELGIN-NEOMATIC.INC.

A SUBSIDIARY OF ELGIN NATIONAL WATCH COMPANY 9010 BELLANCA AVE. - LOS ANGELES 45, CALIF. • OR 8.3814

E-X-T-E-N-D THE RANGEOF your frequency standard

MODEL AM-1
Measures and generates 20 to 1000 mc . Accuracy and stability as good as 1 part in 10^{7} may be realized with proper driving source and auxiliary
measuring equipment.

MODEL FM-4
Measures and generates UHF through X bands. Extended frequency range possible. Requires 500.1000 mc . driving source. Contributes no error in accuracy and stability. When used with AM-1, accuracies of 1 part in 10^{7} may be obtained.

For complete information and specifications contact your nearest Gertsch representative or

IN THE PROCESS OF PIONEERING THE DEVELOPINENT AND

SUILDING OF TOROIDAL COIL WIND ITS DESIGNS USED BOESCH MANUFACTURING CO INC IN SUCH MACHINES HAVE FEATURES PATENTED BY OTHERS TO THE ORDER OF COIL FEATURES PATENTED BY OTH BOESCH TO THE ORDER BEEN MANUFACTURED BY BOE ICO INC. MAMUEACTURERS LICENSED BY WP TO ANNOUNCE THAT IIE ARE EXTREMELY HAPPY TO ANNEEMENT NHICH ME ARE EXTREMELY HAPMED AN AGPEEMENT RECENTLY WE HAVE EFFECTE SELL OR UNDER YESTERN'S PATENTS, TO SES BE SO PERUITS US, UNDER VESTERN'S PATENY CAN NOU BE SOLD LEASE SUCH WACHINES. OUR WACHINE USER TO EXECUTE A AND USED WITHOUT REQUIRING THE ROYALTY PAYMENTS $=$ LICENSE CONTRACT AND TO MAKE ROYAL BOESCH MFG CO 1 MC A 4 BOESCH: $=$

 - BOESCH MANUFACTUR MAMUFACTURERS LICENELY HAPPY TO

BACKTALK

Home Movie Sound

Dear Sirs:
We were very much interested in reading the article "Home Movies Sound Off on Tape", in the July, 1954 issue of Electronics (p20). However, in certain respects the story seems contrary to our own experience with magnetic sound,

The article states that the "normal expansion and contraction of film with temperature and humidity tends to crack off the striping." To date we have coated approximately $5,000,000$ feet of film. In no instance have we ever seen cracking of our Soundstripe.

The comment is made that magnetic striping is considered satisfactory only for $16-\mathrm{mm}$ film, because there is not enough room on $8-\mathrm{mm}$ film to get adequate fidelity, Although we do not stripe $8-\mathrm{mm}$ film, the width of this stripe is the same as the track we place on double-perforated $16-\mathrm{mm}$ film. The argument resolves around the term "adequate", but we believe that it is possible to get adequate quality from $8-\mathrm{mm}$ magnetic film.

The system, outlined, of recording and playback using a tape recorder, we feel has several disadvantages. If damaged film causes the projector to lose its loop, the only way of obtaining synchronism again is to go back to the original sync mark at the beginning of the film. Also, since the tape and the film run at different speeds, it is almost impossible to edit out sections of film and sound simultaneously, while this is no problem at all when the stripe is on the film itself.

Synchronous control systems have been used for some time in various forms in commercial practice. But all of them have essentially the same drawback when it comes to editing or finding a synchronizing point on the film. Based on several years of intensive engineering and development work, we have concluded that the most practical and simplest way to record and play back a magnetic sound
track is to put the sound on the film itself.

We would also like to point out that the present price for Soundstripe is $2 \frac{1}{2} \phi$ per foot rather than $3 \frac{1}{2}$ e per foot.
J. P. Weber

Manager, Sales Engineering Bell a Howell Company Chicago, Illinois

Editors Note: We agree that "adequate" sound quality is impossible to define and hope that current consumer interest in and appreciation of highfidelity audio will not reflect adversely on the public's impression of the quality obtainable from striped home movie film. It seems to us that the 2.5 million $8-\mathrm{mm}$ fans have long been awaiting even barely adequate sound.

Drafting Aid

Dear Sirs:
I was extremely interested in the article "New Drafting Tools and Techniques" (p 120, Aug. 1954). The exchange of such information will help engineers responsible for handbook illustrations and engineering drawings.

Our department has evolved a simple process for duplicating symbols and special notes which saves drafting time. Tailor-made symbols can be made to supplement available printed acetate symbols . . . the adhesive is a non-wax type and drawings may be reproduced as blue-line or Van Dyke prints.

Provided an Ozalid machine is available, multiple copies of any symbol, waveform, or special lettering to be used on drawings can be made on acetate in three steps.

Ink the desired symbol or lettering on regular drawing paper. Expose the original tracing on Ozalid Viewfoil X101 (black) and develop. Stick Minnesota Mining Co. doublecoated transparent cellophane tape No. 666 to underside of viewfoil (the adhesive tape comes in roll form with a protective backing).

To use, cut out the desired symbol, peel the protective backing from the tape and place it on drawing. Press the symbol smooth and it will stay locked in place. It can be shifted by prying up and relocating.

In completing a schematic, attaching lines may be inked directly over the acetate or made up on acetate also and laid over other sym-

Ask for a demonstration - you must see this unit to believe it! Write for Catalog E-2.

In electronics or any part of the electrical field where clamps are needed for rigidity and stability in holding tubes, compact plugs or socket type units, Augat clamps provide the answer. Approved and used in electronic equipment for the armed forces, an innumerable variety of stock numbers are ready for immediate delivery while clamps made to your specifications can be had easily and quickly.

Augat clamps are precision produced and made of 18% nickel silver for greater fatigue value, increased tensile strength and for utmost durability. They have withstood a two hundred-hour salt spray test with no adverse effect.

Catalog and samples promptly sent on request.

```
                                    AUGAT BROS. INC.
31 PERRY AVENUE - ATTLEBORO, MASS.
```


Here's the perfect miniature magnetic amplifier, designed by Atlas engineers to match the Oster Company, $18 \mathrm{~V}, 400$ cycle, 2 phase servo motor type 2 ET-123 Model 2. The SA-427 occupies only 1 cubic inch of space; weighs but 50 grams. It is available with either a high impedance control winding to work with a vacuum tube pre-amplifier, or a low impedance control winding to operate with a transistor pre-amplifier. The Atlas SA-427 has a gain of 1,000 and a response time of less than one-and-one-half cycles of supply frequency. FREE FOLDER . . . contains complete electrical and mechanical specifications. Write today for Booklet SA-427.

ATLAS
 ATLAS ENGINEERING CO., Inc. 3 EDGEWOOD ST., ROXBURY, MASS.
 in Canada
 CANADIAN ATLAS TRANSFORMER CO, LTD., 17 CARLAW STREET,TORONTO, CANADA

BACKTALK
bols. The completed art work may be photographed for offset printing or blue-line prints for checking or manufacturing purposes can be made.

Viewfoil scratches easily in development, and the manufacturer recommends that tissue paper be placed over the acetate. A piece of plastic window screening works very well and permits faster development.

There is no difficulty in getting an excellent line negative for offset printing, but if work consists of four or five layers of acetate a Wratten G15 (yellow) filter on the camera prevents fogginess.

James A. Lippke
Supervisor, Tech. Manual Dept. March-Theiss, Inc. Huntington, N. Y.
Editors Note: The samples sent us indicate that this should be a very useful technique for producing special symbols and waveforms.

Ideal World

Dear Sirs:
I AM a student of electronics at the Madras Institute of Technology (chromepet). I submit a short passage describing the possibility of an ideal world which can come into existence with help of electronics.

Machines (electronic) do all work for human beings, so that human beings need not do anything. That is, they become angels enjoying themselves and immersed in their art in which they have excelled. Art will flourish and there will be beauty everywhere.

Murder, killing, theft and other bad events happening today will be avoided with the help of electronic robots. These robots will impart suitable punishment to those doing crimes-all work being done automatically. An electronic "bad thought detector" will detect bad thoughts and locate the source of such thought and at once punish the source. As a result there would not be any bad thoughts in this world.

What more is required for an ideal world? Now there will also be the freedom of thinking and every fellow can think any thing he wants except bad thoughts.

M. HARIHARAN
"Amritha Vilas"
Madras, India

Professional Services

Consulting-Patents—Design—Development-Measurement

 inRadio, Audio, Industrial Electronic Appliances

ANNIS ELECTRIC RESEARCH LABORATORY, INC.

consulting - research - development and design of radio and electronic Antennas, Waye Prodagation, Information Storage Computers, Impedance Matching and Varialile Speed A-C Mowrs.
P. O. Box 581
$14011 / 2 \mathrm{~S}$. Nell St

CROSBY LABORATORIES, INC.

Murray G. Crosby E Staff Radio - Electronic
Research Develonment \& Manufacturing Communication. FM \& TV
Robbins Lane, Hicksville, N. Y.
Hicksville 3-3191
> R. W. HODGSON CO.

> Technical Sales Representation \&
> Specializing In Electronics, Nucleonics
> Speciaizing In Electronics, Nucisons \&
> Cybernetics. Let Us Handle Your Nev
> 3406 W . Washingtan Blrd. Los Angeles 18. Calit.

NTERFERENCE MEASUREMENT

 LABORATORYIntorference Study per Government Specification Shielded Space for Interference Investigation Fich Surveys for F.C.C. Certiffcation of Induction nd Dielectric Heating Equipmen
907 East 5lst Street - Brooklyn 3. New York Ingersoll 9-1765

THE KULJIAN CORPORATION

ELECTRONICS DIVISION
Consulting Electronic Engineers
Research, Development, Production of
Automatic Controls-Special Instrumentation 1200 No. Broad St., I Philadelphia 21. P'it.

ROBERT McCABE

Radio Noise Measurement and Elimination Field Intensity Survess rarmitt Telc. Donald J. S. Merten \& Engineering Staff

70 E. Second St.
Mineola, L. I., N.
Garden City 7-0383

ELECTRONIC RESEARCH

ASSOCIATES, INC.
"TRANSISTORIZE" YOUR PRODUCT! Complete Service in consulting, research, development, and production on Transistor circuitry, products and instrumentation.
67 Last Centre Street $\begin{gathered}\text { Nutley 2-5410 }\end{gathered}$
Nutler, N. \mathbf{J}.

ERCO RADIO

 LABORATORIES, INCRadio Communications Equipment Engineering - Design - Development - Production

Our 25 th Year in Air to Ground
Communications and Radio Beacons
Garden City - Long Island - New York

HANSON-GORRILL-BRIAN INC.
Product \& Mfg. Development ELECTRICAL - ELECTRONIC HYDRAULIC - MECHANICAL

One Continental Hill
Glen Core, N. Y. Glen Cove $4-7300$

Measurements Corporation

Research \mathcal{E} Manufacturing Engineers Hariy W. Hoiok Martial A. Honnbll Joen M. van beurien Spenialists in the Design and
Development oi Electronic 'lest Instruments Boonton, New Jerses

NEW ROCHELLE TOOL CORP.

FOR CERTIFICATION OF INDUCTION
AND DIELECTRIC HEATING EQUTPMENT
IN ACCORDANCE WITHF.C.C. KULINGS
Mobile 'Test Unit Available Entire U. S.
320 Main St.
Vew Itochelle, New York
Phone NE 2-5555

PICKARD \& BURNS, INC.
Consulting Electronic Engineers Analysis and Evaluation nalysis and Evaluat
of Radio Systems
Research, Development and Iroduction of Special Electronic Equipment. 240 Highland Ave. Needham 94, Mass.

ALBERT PREISMAN

Consulting Engineer
Television, Pulse Techniques, Yideo Amplifiers, Phasing Networks, Industrial Appliances
MANAGEMENT-THAINING ASSOCLATES 3224-16th St., N. W. Washington 10, D. C.

```
JOSEPH RACKER CO., INC.
How good is your new product?
NEW PRODUCT CONSULTANTS
complete service for your new product Evaluation . . . Market Research. . . Sales Bullding Commercialization . . . Flnancing . . . Promotion
. Production
140 Nassau St., New York 38, N. Y. Worth 4-1463
```


THE TECHNICAL MATERIAL CORPORATION

Communications Consultants Systeins Engineering
General Offices and Lasboratory
-00 Fenimore Rd., Mamaroneck, N. Y.

WHEELER LABORATORIES, INC. Radio and Electronics Consulting - Iesearch - Development R-F Circuits - Lines - Antennas Microwave Components - Test Equipment Harold A. Wheeler and Engineering Staft Great Neck, N. Y. HUnter 2-78:6

YARDNEY LABORATORIES, INC.

Research-Design-Development
Electro-Chemical Gonerators of Energy

40-46 Leonard Street

Worth 6-3100

New lork 13, N. Y.

THE
REAL
VALUE
of placing your unusual problem in the hands of a competent consultant is that it eliminates the elements of chance and uncertainty from the problem and provides real facts upon which to base decisions.

CONTACTS

Noise \& program erasure. Use the best. Cinema's Bulk-Tank Type Degausser 9205 Economically priced. Buy yours today

CINEMA ENGINEERING CO. givision afrovox comporation
1100 chesthut siaget - gurbank, calif.

Preceisian

BLACK ANODIZING

Specializing in black anodizing, both sulphuric and chromic, on all alloys and cartings.
All other colors as well.
GOVERNMENT CERTIFIED
Contact us for special service.

HENRY and MILLER INDUSTRIES, INC. 675 Garfield Ave., Jersey City, N. J. HEnderson 4-4200

SODERING
BRAZING \& WEIDING
B. ALIFN CO. INC. Chitage 31, III.

6751 BRYN MAWR AVE.

EISLER MANUFACTURES COMPLETE EQUIPMENT RADIO WELDERS FOR SPOT \& WIRE BUTT
RADIO, TV TUBE EQUIPMENT \& REPAIRUNITS
INEANDESCENT, FLUORESCENT MFG. EQUIPMENT
NEON IGN MAK ERS EOUIPMENT
NEON SIGN MAKERS EQUIPMENT, GLLASSLATHES
Wet Glass SLICING\& CUENING MACHINES for Lab Use TRANSFORMERS, SPECIAL \& STANDARD TYPES EISLER ENGINEERING CO., INC.
75ı So. 13th St. Newark 3, N. J.

A copy of this quick-reading, 8 -page booklet is yours for the asking. It contains many facts on the benefits derived from your business paper and tips on how to read more profitably. Write for the "WHY and HOW booklet.'

McGraw-Hill Publishing Company, Room 2710, 330 West 42nd St., New York 36, N. Y.

Searchlight Section

AUTO RADIO DESICN ENGINEER

High-level position available for graduate EE with considerable experience in design of auto radios, thorough knowledge of subject. Excellent opportunities for advancement in rapidly-growing division of well-established manufacturer. Liberal benefits. Community in Western New York noted for fine schools. cultural opportunities, recreational facilities. If qualified a personal interview will be arranged.

Send resume to PERSONNEL MANAGER
Stromberg - Carlson
Rochester 3, N. Y.

```
REPLIES (Box No.): Address to office nearest you NEW YORK: 330 W. 42nd St. (36) CHICAGO: 520 N. Michigan Ave. (11)
SAN FRANC1SCO: 68 Post St. (4)
```


POSITIONS VACANT

MICROWAVE ENGINEER. Challenging opportunity for senior level engineer with extendesign and development. Position involves ap pllcations of microwave circults in the evaluation of modern radar techniques. Cornell Aero nautical Laboratory, Buffalo 21, New York.
ELECTRONICS ENGINEER. Challenging op portunity for senior level engineer with ex
tensive practical experience in the fid analog computers and aerodynamic simulators. Position involves applications in the evaluation of airborne military radar, firecontrol, navigation and human engineering activities. Cornell Aeronautical Laboratory, Buffalo 21, New Yorls
SERVOMECHANISM ENGINEER. Challenging extensive experience in applied servormechanism design and development. Position involves original applications of servomechanisms in airborne military radar, firecontrol and navigation systems. Cornell Aeronautical Laboratory, Buf-
falo 21, New York.

ELECTRONICS EXECUTIVES- $\$ 7,500$ to $\$ 25$, 000. As a member of the nation's largest Executive Placement and Procurement Service, experienced in any phase of Electronic, Electrical, or Electro-Mechanical Research. DeVelopment, Manufacturing, or Administration. application: Drake Engineering Personnel Serv ice, 7 W. Madison St., Chicago 2, IllinoisFinancial 6-2100.
(Continued on opposite page)

CLASSIFIED

 SEARChlight SECTIONADVERTISING

EMPLOYMENT

OPPORTUNITIES

EQUIPMENT-_USED or RESALE

UNDISPLAYED RATE

$\$ 1.80$ a line, minimum 3 lines, To figure advance payment count 5 average words as a line. POSITION WANTED undisplayed advertising rate is one-half of above rate, payable in advance.

INFORMATION

DISCOUNT 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals). EQUIPMENT WANTED OR FOR SALE Advertise-

DISPLAYED-RATE PER INCH
The advertising rate is $\mathbf{\$ 1 6 . 1 0}$ per inch for all adyertising appearing on other than a con tract basis. Contract rates quoted on request.

AN ADVERTISING INCH is measured $7 / 8$ inct vertically on one column, 3 columns- 30 inches - to o page.

POSITIONS FOR ELECTRONICS EXECUTIUES

\$5,000-\$50,000

One of the nation's largest executive agencies presents an exclusive service for men in the electronics and allied industries. This is a confidential, professional and rapid service for the nationwide placement of successful men underinistrative felds. Send a short resume including age, education and work history and we will tell you by return mail what we have available for you and how we can help. Write to ${ }^{H}$ Graebner at Graebner s.
tive Chicago 3, lllinois. We also offer a special service to companies seeking qualifed applicants in any field. Write for more information.

POSITIONS VACANT

Continued from opposite page)

FLORIDA POSITIONS (a few elsewhere)

 $\$ 3,600$ to $\$ 25,000$ up. Electrical-electronic en gineers, scientists, physicists, inventors, mathematicians. Aeronautical design engineers. Electronic interviewers, inspectors, instructors and technical writers Electronic technicians (anespecialties). Flight test instrumentation mpe). Design draftsmen and drafting inspectors (electrical-electronic). Send resume and photograph to Tech-Associated Agencies, P. O. Bow 1324 , Orlando, Florida.ELECTRONICS ENGINEERS Wanted to design communications-equipment circuitry. Must commensurate with ability. Pleasant working conditions. Manson Laboratories, Inc., 207 Greenwich Avenue, Stamford, Conn.

POSITIONS WANTED

ELECTRICAL ENGINEER of 15 years standing experienced in organizing and supervising department and coordinating patent, research and manufacturing activities, presently and for past 9 years engaged in corporation patent department. under 40, BSEE, LLB, Patent desires to ioin rising research or manufacturing concern. PW-5046, Electronics.

AGGRESSIVE RADAR systems engineer with microwave specialty desires change. Presently directs several r and d contracts and has strong theoretical background in electronles, physics Electronics.

SELLING OPPORTUNITIES WANTED
 Addirional Selling Opportunities W'anted on Page 386

SUCCESSFUL SOUTHERN California manufacturers' representatives expanding organiation. Established among aircraft and electronic manufacturers and wholesalers. Offers experienced, aggressive representation to companies with good growth potential. Warehouse and offices in tos Angeles. Anceles 17 . Calif 1111 Wilshire Bivd.

REPRESENTATTVE SEEKS printed circuit components and other lines. Selling electronic and industrial manufacturers in Ohio, and in-
diana on printed wiring and plastics. RA-5183, Electronics.

HAVE YOU A BETTER MOUSETRAP?
Let us introduce it at GRIFFISS AFB, center for all AF ground electronic equipment and see that you no longer miss any AF business.

WRIGHT ASSOCIATES
P. 0. Box 623 Ranufarer's Representame, New York

ENGINEERS NEEDED FOR RESEARCH and development Positions in the

Design of electronic instrumentation for underwater ordnance, including high gain amplifiers, conventional filters, power amplifiers, oscillators and detectors in the ultrasonic range.
Analytical and experimental treatment of scientific research problems in the fields of hydrodynamics, acoustics, electronics, network theory, servomechanisms, mechanics, information theory and noise analysis, including analogue and digital computations.

Design of transducers, fundamental problems in underwater acoustics involving transmission, attenuation, reflection, etc. Problems in sound control and noise reduction. Acoustical aspects of systems research including operations research and feasibility studies.

Opportunities for graduate study
Liberal Vacation Policies
Excellent Working Conditions
Write
Persennel Director
THE PENNSYLVANIA STATE UNIVERSITY ORDNANCE RESEARCH LABORATORY
State College, Pennsylvania

ENGINEERS

LEAR, INC.

-a leading designer and producer of precision electrical, electronic and mechanical accessory devices and instruments for the aviation industry, in 1955 will substantially increase the engineering programs of its Grand Rapids, Michigan, division.

Experienced engineers and recent graduates can work at their maximum skills in these aviation-related engineering fields:

- MECHANISMS DESIGN
- FRACTIONAL H.P. MOTORS
- SERVOMECHANISMS
- GYRO INSTRUMENTS
- ELECTRONIC COMPONENTS
- ELECTRONIC CIRCUITRY
- AUTOMATIC FLIGHT CONTROLS

Electrical Engineer or Mechanical Engineer degree or equivalent practical engineering experience. Background in design of intricate precision mechanical, electrical or electronic devices preferred

To apply, send resume to: EMPLOYMENT MANAGER

LEAR, INC.

110 Ionia Avenue, N.W.,
Grand Rapids 2, Michigan

To the Engineer who is Very Particular

RCA expansion opens the kind of permanent opportunities you'll find most desirable

A whole new program of expansion at RCA-in Research, Systems, Design, Development and Manufacturing-opens a broad variety of permanent positions with all the features that appeal to the alert, creative engineer. These are opportunities with a future . . . available today for the man who wants to move ahead professionally with the world leader in electronics. They include work in fields of phenomenal growth. At the RCA engineering laboratories listed in the chart on the right, you'll find the kind of living and working conditions attractive to the professional man and his family.

Engineers and scientists find every important factor that stimulates creative
effort . . . including a quality and quantity of laboratory facilities unsurpassed in the electronics industry... and everyday association with men recognized at the top of their profession.

RCA's benefits add up to an impressive list of "extras." Among them: tuition for advanced study at recognized universities . . a complete program of companypaid insurance for you and your family ... a modern retirement program . . . relocation assistance available.

Your individual accomplishments and progress are recognized and rewarded through carefully planned advancement programs. Financially as well as professionally, you move ahead at RCA!

about His Future....

What can RCA offer you?

Check the chart below for your career opportunity in
color television
AVIATION ELECTRONICS
electron tubes
missile guidance
RADIO SYSTEMS

FIELDS OF ENGINEERING ACTIVITY	TYPE OF degree and years of experience preferred											
	ElectricalEngineers			Mechanicat Engineers			PhysicalScience			Chemistry Ceramics Class Tecthology Metallurgy		
	1.2	2-3	$4+$	1-2	2-3	$4+$	1.2	231	$4+$	1.2	23	$4+$
RESEARCH - SYSTEMS • DESIGN - DEVELOPMENT COLOR TV TUBES-Electron Optics-Instrumental Analysis -Solid States (Phosphors, High Temperature Phenomena,	L	L	L	L	L	L	L	L		L	L	L
receiving tubes-Circuitry-Life Test and Rating-Tube Testing-Thermionic Emission	H	H	H		H	H		H			H	H
microwave tubes-Tube Development and Manufacture (Traveling Wave-Backward Wave)		H	H	H			H	H			H	H
GAS, POWER AND PHOTO TUBES-Photo Sensitive DevicesGlass to Metal Sealing	L	L	L	L	L		L	L		L	L	
AVIATION ELECTRONICS-Radar-Computers-Servo Mech-anisms-Shock and Vibration-Circuitry - Remote Control -Heat Transfer-Sub-Miniaturization-Automatic Flight -Design for Automation-Transistorization			M C			M C			M ${ }^{\text {M }}$			
RADAR-Circuitry-Antenna Design-Servo Systems-Gear Trains-Intricate Mechanisms-Fire Control			M C			M C			M C			
COMPUTERS (ANALOG AND DIGITAL)-Systems-Advanced Development-Circuitry-Assembly Design-Mechanisms			M			M			M			
communications-Microwave-Aviation-Specialized Military Systems			M			M			M			
RADIO SYSTEMS-HF-VHF-Microwave-Propagation Analysis-Telephone, Telegraph Terminal Equipment		0	0		0	0		0	0			
missile guidance-Systems Planning and Design-Radar -Fire Control-Shock Problems-Servo Mechanisms			M			M			M			
COMPONENTS-Transformers-Coils-TV Deflection Yokes (Color or Monochrome)-Resistors		C	C		C	C		C	C			
manufacturing TV Color Tubes-Microwave Tubes	L		L	L	L	L	L	L			L	
MACHINE DESIGN Mechanical and Electrical-Automatic or Semi-Automatic Machines		L			H			H	H			

C-Camden, N.J.-in greater Philadelphia near many suburban communities.
H-Harrison, N. J.-just 18 minutes from downtown New York.

Location
 Code

L-Lancaster, Pa.-in beautiful Lancaster County, about an hour's drive west of Philadelphia.
M - Moorestown, N.J.-quiet, attractive suburban community close to Philadelphia.
$0-$ Overseas-RCA International Division, several locations.

Please send resume of education and experience, with location preferred, to:

Mr. John R. Weld,
Employment Manager, Dept. C-3B
Radio Corporation of America 30 Rockefeller Plaza
New York 20, N. Y. RADIO CORPORATION OF AMERICA

GENERAL ELECTRIC

PLANS
 FARINTO THE FUTURE

ENGINEERS PHYSICISTS

The development of new technologies at General Electric has opened the door on a program of advanced electronics work requiring the skills of top engineers and physicists. To engineers this means long-range, continuing opportunity enabling them to build a solid future as they enjoy the vast facilities, stimulating challenges and many incentives and rewards offered by General Electric.

Advanced Development, Design, Field Service and Technical Writing in connection with:

MILITARY RADIO \& RADAR MULTIPLEX MICROWAVE MOBILE COMMUNICATION COMMUNICATIONS ELECTRONIC COMPONENTS TELEVISION, TUBES \& ANTENNAS

Bachelor's or advanced degrees in Electrical or Mechanical Engineering, Physics, and experience in electronics industry necessary.

Please send resume to: Dept. 2-5-E, Technical Persomnel

GENERAL (9\%) ELECTRIC

Electronics Park, Syracuse, N. Y.

SALES ENGINEFR

An excellent opportunity awaits a young Sales Engineer in a growing enterprise. Link Aviation, Inc., pioneer manufacturers of flight training equipment has openings for several young men in their early 30 's who possess an electronic or electrical engineering degree, and have had at least three years' sales experience under competent sales management.

This position has excellent growth potential commensurate with the company's advances in the electronics field.

Link has a well rounded benefit program, excellent housing and ample recreational opportunities in the upstate New York area.

Write-giving full information to the Manager of Industrial Relations

SALES ORGANIZATION AVAILABLE

Headquarters Cleveland, Ohio, covering Ohio, Indiana, Kentucky, Western Pennsylvania, serving Industrial Manufacturers using Electrical, Mechanical, and Plastic Parts in finished products. Interested in one additional line with potential volume. References and pertinent information exchanged.

RA-4816, Electronics
330 W. 42 St., New York 36, N. Y

Manuiacturers Representative, Ohio

Is vour company adeqnately represented at Wright Patterson Air Force Base. Gentile Air Force Depot and Ohio area? Sales Engineer (B.E.E.) with enperience selling electronic equipment, desires lines oft.
P. 0
. O. Box 529, Far Hills Branch, Dayton 9. Ohio.

Manufacturers Representative Engineer desires newly manufactured electronic and electro-mochanical products for sale to Guided
Missile and Aircraft California. Reply to: Companies located in Southern LEE GRAN
Technical GRANT SNYDER CO. Technical Sales \& Contract Administrators
1418 N . Highland Ave. Hollywod Mhand Ave, Hollywood 28, California
Phollywood 9.6278

LINES WANTED

by established representative organization with 3 aggressive engineers selling in volume to electronic mfrs and parts job. bers in N. Y. C. and Northern N. J.

RA-5249, Wectronics
330 W . t2nd St., New York $36, \mathrm{~N}$. Y.

Forceful, creative thinking by top-flight engineers is the key to Goodyear's progressive research and development programs.

Experienced engineers . . . men with ability and imagination . . . do top work for Goodyear. Positions are open to qualified physicists and electronic, electrical, and mechanical engineers for research, design, development, and product engineering in these fields:

Electro-mechanical
Microwave
Servomechanisms Electronic Packaging

Send a résumé of your qualifications or request application-
C. G. Jones, Salary Personnel Department

gOODYEAR AIRCRAFT CORPORATION

1210 Massillon Road Akron 15, Ohio

AIRCRAFT

The Field of Research offers Satisfying CAREERS

We maintain one of the notion's most progressive research and development laboratories and are looking for qualified engineers-Senior and Junior -who are interested in furthering their careers in the field of research.

If you are interested in becoming part of A GROWING COMPANY—with OUTSTANDING PERSONNEL—at HIGH STARTING SALARIES-and EXCELLENT WORKING CONDITIONS contact

Mr. D. M. Halliday

Immediate Openings in Radar MICROWAVE TECHNIOUES ANTENNA DESIGN File theory (Electro-Magnetic) SERVOMEChANISMS AIRCRAFT INSTRUMENTATION CIRCUIT THEORY-DESIGN OPERATIONS RESEARCH aERONAUTICAL ENGINEERRG MECHANICAL ENGINEERING
$\star 8100$ N. Monticello Ave.,
Skokie, Illinois KEystone 9-2060
\star A division of COOK ELECTRIC COMPANY 2700 N., Southport Ave., Chicago, Illinois Electrical and Mechanical Enginee:ing and Manufacturing Since 1897

mw vour horizo n I

— ELECTRONHG ENGINEERS
 ELECTRONIC RHYSICISTS

Bendix Radio has new,
exceptional opportunities for adrancement while working ons:

RADAR
MISSILE GUIDANCE AIR BORNE COMMUNICATIONS MOBILE COMMUNICATIONS AUTO RADIO

Expand the horizon of your future with Bendix Radio -a leader \& pioneer in the electronics field, one that has the knowledge, strength and resources to stay out front during the competitive days ahead Yourpart IS EASY Wireaphone write . . . or send us a post card. Simply state your nam address and phone number, your education and experience. We'll carry the ball fram there! Al/replies hefe in strictest confidence, and we guarantee speedy action

Address: Mr. L. H. Naggle
Dept. J
Bendix Radio
Baltimore 4, Md.
Phone: VAlley 3-2200

Fire
 Control ANalysts

Mathematicians - Electrical Engineers • Physicists

needed for immediate openings in all levels of employment. These are top ranking technical positions together with training positions leading to top responsibility in mathematical analysis for electronic fire control, computers, and servomechanisms.

- Household goods moved Liberal employee benefits
- Interview expense paid

Send written resume to

REMINGTON RAND, Inc.

ERA Division
1902 W. Minnehaha Ave.
St. Paul 4, Minn.

Electrical Engineers and Physicists

- Radar Simulation
- Advaneed Circuitry
- Analog Computors
- Ballistics
- Mapping
- Telemetering

Senior and Junior Engineers
A Job avith
Goodl "Contacts"

We offer you the opportunity to come in contact with an entire project, not with just a segment of the overall job. Here is your chance to join a firm with a future . . . to grow with us ... to gain individual recognition by working closely with technical management. You will live and work in a delightful suburban community . . associate with other top-notch engineers. If you are looking for a job with good contacts, write

Industrial Research Laboratories
Dept. A-2, Hilltop and Frederick Rds.
Baltimore 28, Maryland

5 5GE E Electronic • Electromechanical PHYSICISTS SALES ENGINEERS

 Enjoy

 Enjoy

 These Advantages!

 These Advantages!
 In addition to paid vacations, liberal pension plans and numerous other valuable health and hospitalization benefits for you and your family, we provide cooperative educational aid at one

 of the many technical schools in the Philadelphia area for qualified applicants who find our center an ideal work-shop in which to secure the desired recognition in their chosen fields.Your family, too, is important! And, here at Paoli, a delightful suburban community, thirty minutes from Philadelphia, you will find the cultural atmosphere as well as the educational facilities required for your children.

We will pay travel expenses for all applicants invited to visit our NEW Research Center to consider the application of their educational and/or work background to the many challenging problems we are engaged in for industry and the nation's welfare.

If you want the BEST for yourself and your family, consider NOW your qualifications for the openings listed on the right and -

Write L. E. DICK, Personnel Manager BURROUGHS RESEARCH CENTER Paoli, Pa.

Located on PHILADELPHIA'S "MAIN LINE"

To Inspect Its Facilities and Opportunities for Better Living!

If you possess an educational and/or work background in Communications and Data Handling . . . including such specifics as Radar ${ }_{k}$ Telemetering, Guided Missiles, Process Control Instrumentation, Digital and Analog Computers, Transistor and Magnetic Circuit Design and Analysis, Magnetic Amplifiers, Servo Mechanisms, Small Mechanisms and Electronic Packaging Design . . .

CONSIDER THESE OPENINGS AS

- ELECTRICAL ENGINEERS; Junior \& Serior
- MECHANICAL ENGINEERS; Junior \& Senior
- LOGICAL DESIGNERS - PHYSICISTS
- PROJECT ENGINEERS
- SALES ENGINEERS to sell E-101 electronic desk computers in all sections of the country. Sales \& Technical experience in allied lines desirable.

EEEGTRONIG ENGNEERS PHYSICISTS

YOU HAVE A FUTURE AT HALLER, RAYMOND \& BROWN, INC.

YOUwill live in State College, a modern community of 17,000 "young" people with cosmopolitan ideas. Located among the scenic Nittany mountains of Pennsylvania, State College offers you a chance to locate your family in the right atmosphere and give them the advantages of modern, progressive school facilities, churches, parks, theatres, and shopping centers. You will enjoy the finest hunting, fishing and outdoor sports areas in the United States, all within a half-hour's drive from your home.

IT'S THE WELFARE OF THE INDIVIDUAL THAT COUNTS

will benefit from HRB's location in the cultural environment of State College. You can continue your advanced education at The Pennsylvania State University which is within a minute's walk of HRB. The knowledge and experience of some of the finest minds in the country are within telephone reach.

YOUwill work for one of the country's fastest growing research companies, staffed with top flight men in advanced fields of electronic research, development and design. You may join other staff members in purchasing HRB stock through a number of convenient plans, assuring yourself that your voice will not go unheard with regard to company affairs or policy. You will earn a liberal salary and share in such company policies as paid vacations, company-paid group life insurance and retirement plans.

Operations Research Engineering Analysis Electronics Development

An application form can be obtained from: Personnel Officer
HRB, Inc., State College, Pa. All inquiries will be regarded as confidential.
HALLER, RAYMOND \& BROWN

APPLICATION ENGINEER

Manufacturer of laminates has open a responsible new position for an Electronics Engineer with diversified training and experience. Position will involve working with customers on applications and assisting in guiding our research and development activities. Salary open. Replies confidential. Send resume to:

R. H. Skamfer

THE RICHARDSON COMPANY
27 th and Lake Streets
Melrose Park, Illinois

REPRESENTATIVES WANTED

Established Ceramic concern starting new line of ceramic insulating materials for use in electronics industry desires manufacturers agents throughout United States.

RW-4823, Electronics
330 W. 42 St., New York $36, N$. \mathbf{Y}.

TECHNICAL REPRESENTATIVES

LEAR, INC. will expand its top notch Field Service organization in 1955 to keep pace with increasingly widespread military acceptance of LEAR flight control systems and flight reference systems.

Attractive salary, liberal expense arrangements. Assignments may require travel or residence at assigned stations. Company orientation prior to assignment.

Qualifications include:

1. E.E. Degree or equivalent.
2. Knowledge of servomechonisms, gyros, electronics.
3. Tech. Rep. experience.

To apply, send resume to:
FIELD SERVICE MANAGER
LEAR, Inc.
110 Ionia Ave., N.W. Grand Rapids 2, Michigan

WANTED SALES ENGINEERING REPRESENTATIVES

Excellent opportunities to represent well-established, rapidly growing Eastern transformer manufacturer. Must have good technical background, preferably electrical engineering graduate. Now calling on government agencies and manufacturers of electronic equipment doing industrial, commercial and government work. Territories open: Detroit, Chicago and Los Angeles. Write full particulars to

RW-5019, Electronics
330 W. 42 St., New York 36, N. Y.

TUBE ENGINEER

We are considered "small business" but pride ourselves on worthwhile contributions to the Electron Tube Art. An engineer with "TUBE BACKGROUND" will profit by contacting us.

LEWIS AND KAUFMAN, Ltd. LOS GATOS CALIFORNIA

ELECTRONIC ENGINEERS

TO DEVELOP

TRANSISTOR CIRCUITRY

Opportunity to study fundamental transistor circuit problems and to apply transistors in the design of receiver, guidance and control systems of gluided missiles.

Transistor experience desirable but not essential.

Located in residential suburb of Nation's Capital, Advanced educational facilities available. Moving expenses paid. Other liberal benefits.

Send resume to
 G. B. Mayfield

APPLIED PHYSICS LABORATORY THE JOHNS HOPKINS UNIVERSITY 8621 Georgia Avenue,
Silver Spring, Maryland

M. I. T.

IINCOLN LABORATORY

Staff research positions available for exceptional electrical engineers with advanced training or experience in electronics as applied to . . Radar, Communications and
High Speed
Digital Computers

Please reply to:
Personnel Department, P. O. Box 73, Lexington 73, Mass.

PROGRESSIVE ENGINEERS LOOK WEST

Qualified Electronic and Electro-Mechanical engineers find happy association with a Western electronics pioneer and leader. design $\left\lvert\, \begin{aligned} & \text { Commercial and military projects. Radar, oME, Com. } \\ & \text { munlcations, }\end{aligned}\right.$ munlcations, Nolse, Test Equipment including color T.V. -Many others with real interest \& challenge. Relocatlon expenses-excellent working conditions-Central locatlon. Scheduled reviews \& advances. Fine insurance plan. Move should not disturb urgent military projects. Send complete resume, income history \& requirements to engineering employment mgr.
Heffin ait wox the coment |Offman laboratories, inc.
(A SUESIDIARY OF HOFFMAN RADIO CORP.)
3761 SO. HILL ST. LOS ANGELES 7. CALIF.

ENGINEERS IN ELECTRO-ACOUSTICS

ELECTRO-VOICE, INC. has positions open for Engineers with degrees in Electrical Engineering or Physics.

Positions are open for experienced men in speaker, microphone, or phonograph pickup design and development and for recent graduates.

Excellent future for the exceptional man.
Write to: Vice President, Engineering
BUCHANAN
MICHIGAN

JUNIDR ENGINEER

Continental Oil Company PONCA CITY, OKLAHOMA

Electronic Research Group immediately requires B. S. in Electrical Engineering ca pable of meeting wide variety of design problems including analog and digital petroleum industry. Previous experience preferable but not required. New erience tory. Excellent working conditions. Send resy. Excellent working conditions. Send ary requirements to personnel Records Di_{i} vision, Continental Oil Company Ponca City, Oklahoma.

ENGINEERS

 DESIGNERS • DRAFTSMEN Electronic Mechanical

THE MELPAR SYMBOL STANDS FOR Growth - Progress Leadership

in research and development OF ELECTRONIC EQUIPMENT

Diversified and Challenging

A real appreciation and recognition of the individual's merit and ability

An opportunity for qualified men to join a company that is steadily growing

A location that offers

Our
Technical Personnel
Reprosentative will give
you complete delails of the
Pporlunitics acailable 10 men qualificd in the following fields.

- Metwork Theory
- Micromave Technique
- UHF, YHF or SHF Rectivers
- Analog Compulers
- Digital Computers
- Magnetis Tane Handlina Eoviimmen
- haoaar and Countermeasures
- Packaging Electronic Equipment
- Pulse Cirsuitry
- Microware Fillers
- Flight Simulators
- Subminiaturization Techniques
- Electro-Mechanical Design
send complete resume to
Technical Personnel Representative,

A Subsidiary of the Westinghouse Air Brake Co.
452 Swann Ave., Dept. E-14
Alexandria, virginia
or 11 Galen St., Watertown, Mass.

TO THE FINE ENGINEERING MIND SEEKing THE CHALLENGING PROJECTS IN

MATHEMATICS and APPLRED PHYSICS

MATHEMATICIANS AND APPLIED PHYSICISTS with advanced degrees or equivalent experience are offered exceptional career opportunities now at Convair in beautiful San Diego, California. Challenging problems involving theoretical analysis and synthesis of missile guidance systems require highly qualified men in several fields including statistical noise study, information theory, and optimum filter design; microwave propagation studies; synthesis of highly complex control systems involving both analog and digital computing equipment as components; simulation studies of complex control systems using analog and digital computers. Convair's digital* and analog computing facilities rank among the country's best and provide powerful working tools.
CONVAIR offers you an imaginative, explorative, energetic engineering department ...truly the "engineer's" engineering department to challenge your mind, your skills, your abilities in solving the complex problems of viral, new, longrange programs. You will find salaries, facilities, engineering policies, educational opportunities and personal advantages excellent.
SMOG-FREE SAN DIEGO, lovely, sunny city on the coast of Southern California, offers you and your family a wonderful, new way of lifea way of life judged by most as the Nation's finest for climate, natural beauty and easy (indooroutdoor) living. Housing is plentiful and reasonable.
Generous travel allowances to engineers who are accepted. Write at once enclosing full resume to:
H. T. Brooks, Engineering Personnel, Dept. 902
*ERA 1103
CONVAIR
A Division of General Dynamics Corporation
3302 PACIFIC HIGHWAY
SAN DIEGO, CALIFORNIA

Bendix Missile Section is a major contractor in the U.S. Navy's guided missile program--a part of the "new look" in our defense plan. Our expanding program has many opportunities for senior engineering personnel: Electronics Engineers, Dynamicists, Servo-Analysts, Stress Analysts, Project Coordinators, and Designers. Take time now to look into the opportunities which Bendix can offer you. Write Employment Dept. M, 401 Bendix Drive, South Bend, Indiana.

ELECTRONIC ENGINEERS • PHYSICISTS • MATHEMATICIANS

The country's foremost computer development organization has permanent positions open in the above fields for qualified professional personnel. Opportunities for personal advancement and professional growth are exceptional in today's most rapidly expanding technological field.

HERE IS THE KEY TO YOUR FUTURE
...share in the satisfaction of contributing to the advancement of this important art.

- Openings at all levels of experience.
- Training in digital techniques provided.
- Salaries commensurate with experience.
- Interview travel at our expense.
- Moving expenses paid for household goods.
- Liberal employee benefts.

Themineglore Thaned

$\mathcal{E}_{\text {naineering }} \mathbb{R}_{\text {isearch }} \not A_{\text {ssociates onvion }}$ 1902 West Minnehaha - St. Paul W4, Minnesota

ENGNERS PRODLCT DEELOPMENT

E.E. Degree plus demonstrated ability in design of electronic equipment. Three to Five years' experience in Industrial Instruments involving A.C. and D.C. Amplifiers, Meters, Signal Generators, Oscilloscopes.
Practical production background also desirable. Positions offer secure future with aggressive and expanding orgomization. Excellent working conditions and associations. Starting salaries commensurate with training and experience.

Send your complete resume in confidence to . . .

BRUSH ELECTRONICS CO.

3631 Perkins Ave., Cleveland 14, Ohio (Division of Clevite Corp.)

ENGINEER (Mechanical)

3 to 5 years' experience in production of small electro-mechanical components. Familiar with manufacturing techniques and tolerances.

TELEREGISTER CORP.
445 Fairfield Ave., Stamford, Conn Stamford' 48-4291

ELECTRONIC ENEINEERS

Research \& Development

Internationally known research organization seeks experienced engineers for challenging research and development programs in the following areas:
Radar and Radio Communications
Receiver Design
Electronic Instrumentation
Computer Circuitry
Our expanding staff assures permanent positions and excellent opportunities for personal and professional growth. Liberal benefits including generous tuition refunds for graduate study. Send resume to:

Mr. T. E. DePinto ARMOUR RESEARCH FOUNDATION Illinois Institute of Technology

Technology Center Chicago 16, Illinois

[^24]
ENGINEERS

The APPLIED PHYSICS LABORATORY OF THE JOHNS HOPKINS UNIVERSITY offers an exceptional opportunity for professional advancement in a well-established laboratory with a reputation for the encouragement of individual responsibility and self-direction. Our program of

GUIDED MISSILE DEVELOPMENT
provides such an opportunity for men qualified in:
ELECTRONIC CIRCUIT DESIGN AND ANALYSIS
DEVELOPMENT AND APPLICATION OF TRANSISTOR CIRCUITRY
SERVOMECHANISMS AND CONTROL
SYSTEM ANALYSIS
ElECTRONIC EQUIPMENT PACKAGING INSTRUMENT DESIGN
MISSILE SYSTEMS DEVELOPMENT flight testing

Please send your resume to
Glover B. Mayfield
APPLIED PHYSICS LABORATORY
THE JOHNS HOPKINS UNIVERSITY
8621 Georgia Avenue Silver Spring, Maryland

TUBE
 ENGINEERS

Research Or
Development For
SYLVANIA
2 TO 5 YEARS' EXPERIENCE in tube development. Minimum B.S. Degree in Physics or E.E.-Ph.D. in Electronics-Physics acceptable in lieu of experience.
Many engineers are needed for Sylvania's expanding tube research and development program in the laboratories at either Kew Gardens or Bayside, Long Island. Knowledge of electro-magnetic theory and electron dynamics essential. Experience in microwave phenomena especially desirable.
Relocation expenses will be paid by Sylvania.

Please forward reaume to E. W. Doty

Manager of Personne Research Laboratories

SYLVANIA

ELECTRIC PRODUCTS INC.
Bayside, Long Island, N. Y.
All inquiries will be answered within 2 weeks

These top-level positions . . involving advanced research, development and design work with the expanding operation at our Electronics Division ... offer experienced engineers unlimited opportunity to create. Income and other benefirs, as well as our professional working atmosphere and conditions, will prove attractive to all qualifed applicants. An illustrated brochure will be forwarded promptly, upon receipt of your inquiry.

OPENINGS EXIST FORMAGNETIC AMPLIFIER ENGINEERS

Applied research, development and design of magnetic amplifiers and transformers, reactors and saturable reactors.
UHF COMMUNICATIONS ENGINEERS
Applied research, development and design of military
UHF communications apparatus at all power levels,
and for both transmitters and receivers.
ANTENNA AND WAVEGUIDE ENGINEERS
Applied research, development and design of antennas and waveguide systems for military communications and radar equipment.

RADAR INDICATOR SYSTEMS ENGINEERS

Planning, studying, proposing, and advanced research, development and design to include search, fire-control and missile guidance systems
white today to arrange for confidential interview:
R. M. Swisher, Jr

Employment Supervisor, Dept. 88
WESTINGHOUSE ELECTRIC CORPORATION 2519 Wilkens Avenue Baltimore 3, Maryland
you can be Sure.
"ris Westinghouse

SYSTEMS ENCINEERS

FOR STAFF ASSIGNMENTS
-

DEVELOPMENT PROGRAM IN MILITARY WEAPONS SYSTEMS

Missiles Fire Control

Reliability Studies Radar

Sonar
Underwater Ordinance

REAL CAREER OPPORTUNITIES

You'll enjoy the advantages of a small company atmosphere in the Silver Spring Laboratory . . . along with the stability of being part of the rapidly growing Vitro Corporation of America with 6 diversified operations through. out the United States.

- Suburban Location in residential community adjacent to Washington, D.C.
- Plentiful housing-modern apartments, houses to rent or buy
- Advanced courses available at 4 major universities
- Cultural advantages of the nation's capitol

Interviews expenses paid for qualified applicants as well as reasonable relocation expenses
Similar opportunities also available at West Orange, N: J. and Elgin Field, Florida Laboratories

Write to Personnel Manager

VITRO LABORATORIES

962 WAYNE AVE.

NEW

 HORIZONSToday's horizons in electronic engineering are limited only by the vision of the individual himself. To those qualified men who desire to stand on the comstantly changing frontiers of electronic development, we offer a chance to pioneer and grow with a soundly-established, yet young and progressive company.

Electronics Field Engineers

Local \& Field Assignments Available
At least 5 years' experience in any one of these fields: Servo Mechanisms; Special Weapons; Microwaves; Antennas; Circuit Design; Flight Simulators; Radio Propagation; Électronic Computers and Communi cations.
Qualified to instruct in the operation and supervise installation, maintenance and repair of Radar, Sonar, Flight Simulators and allied electronic equipment in the field.
Salary and advancement commensurate with ability: liberal vacation, sick leave 9 paid holidays, group life, sickness and accident insurance plans, and a worthwhile pension system.

STAVID
 ENGINEERING, INC.

Personnel Office, 312 Park Avenue Plainfield, N. J.-PLainfield 6-4806

SILVER SPRING, MD.

SENIOR ELECTRONICS ENGINEERS

$E E$ degree or equivalent experience. Background in communications and navigation desirable. Permanent positions in design and development. Citizenship required. Position at Rochester, New York. Excellent living and recreational conditions in this area.

ADDRESS:

Chief Electronics Engineer STROMBERG-CARLSON COMPANY ROCHESTER 3, NEW YORK

CHEMICAL ENGINEER

Chemical Engineer experienced in resistance films and resistor materials resist for printed circuit research and devolop ment program in the Research Departmont of an Ohio manufacturer of olectronic equipment.
Man accepted will be responsible for this phase of work and will report directly to the department head.
Saldry open. Replies held in confidence Allow cince for moving expense Submit resume to
P-4810, Electronics
330 W. 42 St., New York 36, N. Y.

EMPLOYMENT PROBLEM?

When you are in need of specialized men for specialized jobs, contact them through a classified ad in a McGraw-Hill Publication.

Management, Engineering, Production, Maintenance, Selling . . . these represent broadly the principal functions in business and industry. And it is principally to the men and executives who fill keys jobs in these important divisions that McGraw-Hill publications are directed.

McGraw-Hill Domestic Publications

AMERICAN MACHINIST
AVIATION WEEK
BUS TRANSPORTATION
BUSINESS WEEK
CHEMICAL ENGINEERING
CHEMICAL WEEK
COAL AGE
CONTROL ENGINEERING
CONSTRUCTION METHODS AND EQUIPMENT
ELECTRICAL CONSTRUCTION AND MAINTENANCE
ELECTRICAL MERCHANDISING
ELECTRICAL WHOLESALING
ELECTRICAL WORLD
ELECTRONICS
ENGINEERING AND MINING JOURNAL
ENGINEERING NEWS-RECORD
FACTORY MANAGEMENT AND MAINTENANCE
FLEET OWNER
FOOD ENGINEERING
NATIONAL PETROLEUM NEWS NUCLEONICS
PETROLEUM PROCESSING POWER
PRODUCT ENGINEERING
TEXTILE WORLD
THE MEN YOU NEED ARE
THE MEN WHO READ THE
McGRAW-HIIL PUBLICATIONS
330 West 42nd St.,
New York 36, N. Y.

ELECTRONIC ENGINEERS!
 \bullet
 - Big opportunities
 - await you at
 - Bendix York!
 -
 To the Engineer who is a recent college graduate, as well as to those with experience in all phases of advanced design, Bendix York offers opportunities outstanding in its field. As a young and expanding division, Bendix York provides fascinating and challenging assignments. Good salaries, all employee benefits, ideal living conditions in a beautiful suburban area are yours.

 AVIATION CORPORATION YORK DIVISION
 Phone: York 5521 York, Penna.

ELECTRONIC ORGANS

Unusual opportunities exist for young men whose backgrounds qualify them for sales and engineering positions with expanding manufacturer of fine electronic organs.

Send resume and salary requirements to:

P-4776, Electronics

330 W. 42 St., New York 36, N. Y.

ENENEERS

 PHislasis
NEW Growth Opportunities As Sylvania's Missile Systems Laboratory Prepares to MOVE to BOSTON

Early next summer, Sylvania's Missile Systems Laboratory, now located at Whitestone, Long Island, N. Y., will relocate permanently in new, larger quarters in the Boston area. As a Sylvania engineer, you can look forward to:
- Creative work and challenging technical problems
- Opportunity to grow with an expanding organization
- Financial support for advanced educational studies
- Liberal benefits in insurance, pension and medical programs
- Live and work in model suburban Boston area offering many cultural and recreational activities.

Moving expenses to Boston will be paid by Sylwania.
An office has already been opened at Newton, Massachusetts, with immediate openings there and on Long Island.

Permanent positions are available for Engineers and Physicists with
a minimum of 3 years' experience in one of the following fields:

ANALYSIS \& DESIGN OF
SEARCH RADAR SYSTEMS
ANTENNA THEORY \& DESIGN
ANALYSIS OF MISSILE GUIDANCE SYSTEMS

MATHEMATICAL ANALYSIS \& SYSTEM DESIGN OF FIRE CONTROL \& COMPUTER EQUIPMENT

INERTIAL GUIDANCE OR INFRA-RED FOR DETECTION \& TRACKING

SERVO SYSTEM
DESIGN \& ANALYSIS
AERODYNAMICS
PROPULSION
AIRCRAFT OR MISSILE STRUCTURES

Ilease fomaral resime to
Manater of lersomel

SYLVANIA ELECTRIC PRODUCTS INC.

S. 20.21 Francis Lewis Blvd. Whitestone, L. I., N. Y.
All inquiries will be answered within wo weeks

OPPORTUNITIES FOR

Senior and Intermediate

 Engineers and Physicists FOR ADVANCED DEVELOPMENT * FOR LONG range development in color television and \star SALARIES COMMENSURATE WITH ABILITY AND EXPERIENCE * SOUND background IN ELECTRONICS ESSENTIAL. * DESIGN AND DEVELOPMENT EXPERIENCE OR ADVANCED DEApply or Mail Resume to Employment Manager
Westinghouse

ELECTRIC CORPORATION TELEVISION-RADIO DIVISION, METUCHEN, N. J.

Hectronic Ingineers

 Melanical Ingineers PhysicistsExpanding operations in ORDNANCE DEVELOPMENT including guided missiles, fuzes and safety and arming devices assures permanent positions. Openings for both experienced and inexperienced men in these challenging and rapidly expanding fields. Opportunities to participate in this new concept of electromechanical miniaturization.

ALLIED PRODUCTS DIVISION
HAMILTON WATCH CO. LANCASTER, PA.

SEMICONDUCTOR DEVEIOPMENT

Responsible positions are now available with one of the leading and fastest growing semiconductor manufacturers. These are outstanding opportunifies for Physicists and Engineers in research, development, or production of advanced germanium and silicon diodes and transistors.

Experience in semiconductors or other components such as tubes or capacitors is desirable.

The following positions are available: Physicists Metallurgists
Device Engineers Production Engineers Sales Engineers

Send Resume or call

Transitron $\underset{\substack{\text { fesertoric } \\ \text { coposation }}}{ }$

407 Main Street, Melrose, Mass. MElrose 4-9600

For Every Business Want
 Think "Searchlight" First!

"Searchlight" - classified Advertising "spots" current Employment, Equipment and Business Opportunities-both offered Electronics.

Your best chance for increasing responsibility and rapid advancement in the electronic field is in the challenging field service work associated with digital computers. Camputer experience is not necessary. You will receive extensive training in computer logic and circuitry and specialized training on specific computers. Good salaries start with the training period. After training you will be assigned to one of our large computer installations in continental United States. You will enjoy liberal travel allowances and other employee benefits.

The practical knowledge of computers obtained from actual experience at field installations will aid you greatly in advancement.

Minimum qualificetions for ELECTRONIC ENGINERS Bachelor Degree-2 years electronic experience

Minimum qualifications for ELECTRONIC TECHNICIANS High school plus electronic school (armed forces acceptable) and four years electronic experience

For further information regarding our computers and training programs, send a brief resumé of your education and experience to Mr. R. A. Nelson, Employment Manager. Interviews at our expense by arrangement. All contacts are held in strict confidence.

Themiongtore Rand

Stability and Opportunity for ELECTRONIC ENGINEERS

who want more room to grow

Top opportunities for achievement and recog. nition are open at FTL... key unit of the world-wide, American-owned IT\&T System. FTL's long-range development program offers stability and security. Finest facilities - plus broad and generous employee benefits.
interesting assignments in:
Radio Communication Systems - Electron Tubes Microwave Components - Electronic Countermeasures Air Navigation Systems - Missile Guidance
Transistors and other Semiconductor Devices Rectifiers - Computers - Antennas
Telephone and Wire Transmission Systems

SEND RESUME TO: PERSONNEL MANAGER, BOX EL-2

Federal Telecommuntication Laboratories a division of international
telephone and telegraph corporation 500 Washington Avenue, Nutley, N. J.

Electronics Engineers

expanding helicopter
 field offers you
 excellent opportunities

Both Junior and Senior electronics engineers are needed to work with those who design, test, and build rotary wing aircraft.
Challenging positions are open to men with experience or a good educational background in:

Radar

Flight Test Instrumentation
Strain Gage Circuitry
Oscillographic Data Recording Systems
Vibration and Temperature Measuring Systems
Work on Automatic Control Systems-
both test and development Automatic Pilot and Blind Flying Instrumentation
Not only will your professional achievements be recognized, but you and your family will enjoy many personal benefits.

Apply in person or send complete resume to
R. L. Auten, Personnel Department

AIRCRAFT
Bridgeport 1,
Connecticut

THE

CLASSIFIED SECTIONS
("Searchlight" Advertising) of McGraw-Hill Publications
can be used at small cost to announce all kinds of business wants or "opportunities" of interest to other men in the fields served by:

American Machinist
Aviation Week
Bus Transportation
Business Week
Chemical Week
Coal Age
Construction Methods and Equipment
Control Engineering
Electrical Construction and Maintenance
Electrical Merchandising
Electrical Wholesaling
Electrical World
Electronics
Engineering and Mining Journal
Engineering News-Record
Factory Management and Maintenance
Fleet Owner
Food Engineering
National Petroleum News
Nucleonics
Petroleum Processing
Power
Product Engineering
Textile World
When you want additional employees, want to buy or sell surplus used or new equipment, want additional products to manufacture-in fact, for almost any business want-advertise it in the Classified Section for quick, profitable results!

Classified Advertising Division

McGraw-Hill Publishing Co., Inc. 330 W. 42nd St., New York 36, N. Y.

RECEIVER ENGINEERS With Experience in VHF and UHF Frequencies

Career Opportunities With Old Established
Central Connecticut Firm
Interesting Projects Top Salaries Suburban Living
Replies Held in Strict Confidence Wire or Phone Collect Personnel Mgr. SHerwood 7-2741
THE ALLEN D. CARDWELL ELECTRONICS PRODUCTIONS CORPORATION
Plainville, Connecticut

AUDIO ENGINEERS

Electro-Voice, Inc. has positions open for engineers with degrees in Electrical Engineering or Physics for work in the field of Audio. Openings in both production and engineering departments.
Excellent opportunity for men with experience in loudspeaker manufacturing.

Write:
Vice President, Engineering
ELECTRO-VOICE, INC. buchanan

MICHIGAN

METALLURGIST PHYSICIST

Permanent Magnets

Experienced in Alnico production and control with practical and theoretical background for developing magnetic material. Must be U. S. citizen.

CRUCIBLE STEEL CO. OF AMERICA
Att. Mr. J. A. Kearney
HARRISON, N.J.

A NEW KIND OF JOB

Intriguing opportunity for an electronics engineer to use his knowledge and experience in a new way with definite long-term investment possibilities. Desirable back-ground:-knowledge of military equipment; skill at gathering, writing, organizing technical data; ability to communicate; an alert, inquiring incisive mind. Some sales engineering would help. Should be free to travel.

Location-New York City
Plesse specify salary requirements 330 W .42 St 330 W .42 St., New York $36, \mathrm{~N} . \mathrm{Y}$.

Admiral

wereases ENGINEERING STAFF

Diversification at ADMIRAL is making itself felt in more and better engineering carcers.
Real ability and originality can find new challenge and opportunity with a leader in electronic developand opportunity with a

Positions available for engineers with the following backgrounds:

MICROWAVE ENGINEERS

Experienced in UHF and SHF circuitry and components, with understanding of wave guides, cavitfes, and duplexers.

ELECTRONIC ENGINEERS

Junior and Senior engineers for television receiver circuit design. Experienced men also needed for V.H.F. and U.H.F. tuner work.

RADIO ENGINEERS

Duties involve designing household and portable radio receivers. FM and AM experience preferred.

MECHANICAL ENGINEERS

Electro-Mechanical designers. Assignments involve the design and layout of small mechanical devices at the development level.

COMMUNICATIONS ENGINEERS (MILITARY)

Applied development and design of radar and other specialized military systems.

- AUTOMATION ENGINEERS

A special opportunity exists in the field of applying automation and printed circuit techniques in the above categories. Your imagination and engineering talents can be used in furthering this development.

Good starting salaries and working conditions with complete program of employee benefits. Opportunity for professional development with excellent facilities in Chicago area to carry on University graduale work while working full time.

- Send complete resume to Mr. Walter Wecker, Personnel Department, to get more information on these opportunities.

You Can Tell a Company by Its Record of Engineering Turnover

We are now adding
a few highly qualified engineers and physicists to our staff
for work in Automation, Electronic Business Machines, Solid State Physics, Photoelectric and Thermal Detectors, Computation

(Digital and Analog)

 and Infrared ImageFormation.
and there's virtually no engineering turnover a ECA. Why? Simply because engineers find enough diversity ... enough opportunity and professional growth to satisfy their most ambitious plans. They like being part of a comparatively small, closely integrated staff of highly creative men . . . the atmosphere of academic freedom combined with high industrial pay. They enjoy to the fullest the very obvious advantages of working in Cambridge, Mass.
And through it all is the stability inherent in an organization recognized as a leader in electronic and photoelectric controls for both commercial and military uses -reflected by a sales increase of 500% in the past 5 years-adding up to solid expansion and growth for
everyone concerned.

Please address all inquiries to Mr. N. R. Olsen, Dept. 705

ELECTRONICS CORPORATION OF AMERICA
 77 Broadway, Cambridge 42, Mass.

PROJECT ADMINISTRATORS

Senior Electronic Engineer
 Senior Physicist

We have openings for one Senior Physicist and one Senior Electronic Engineer with considerable experience in Project Administration of challenging and extremely inter esting research and development contracts. Ability to administer a contract, meet schedules and perform within estimates is a prime requisite. They must also have the following qualifications:
SENIOR PHYSICIST: A satisfactory background is required with particular emphasis on physical and geometrical optics. At least five years' experience in electronic necessary.

SENIOR ELECTRONIC
solid in radar and pulse circuitry and wideband and educational background must be general physics. Some experience and wideband video, with a good background in puters and servos in industry would be desirable techniques, analog or digital com-
Submit resume, including salary requirement, to

President

FREED ELECTRONICS AND CONTROLS CORPORATION 200 Hudson Street,

DESIGN ENGINEERS

The Pacific Division, Bendix Aviation Corporation has openings for design engineers in development of radar, sonar and telemetoring offering excellent opportunities for growth with the corporation and the opportunity to live in Southern California. Positions are open at several levels.

> Please Address Inquiries to
> W. C. WALKER

ENGINEERING EMPLOYMENT MANAGER
11600 Sherman Way
North Hollywood, California

ARE FOU III N NED

of elianeris or of
HIGHIIY TRANED TECHNCLANS

for your Personnel Program?

We offer a booklet especially prepared to help you solve this problem. It is called the "RESERVOIR of ENGINEERS and TECHNICAL MEN".

This booklet shows, through a listing of the major job titles held by readers of McGraw-Hill Publications, how these men are gathered in convenient, compact groups that you can economically reach with your advertising. Here are no huge, swollen circulations, with expensive price tags where maybe not one reader in a thousand would have the necessary job qualifications.

In a recent advertisement one of the leading aircraft manufacturers restated a well known, but seldom practiced principle:
A trained, experienced engineer in one specialty can be retrained in almost any other engineering specialty with a minimum of time and effort expanded.

It is one of the purposes of this booklet to show how you can best reach men specifically trained for your needs or technicians who can be easily and quickly retrained.

For your free copy of this booklet write us on your letterhead. You are under no obligation whatsoever. There is a limited supply so write us now.

McGraw-Hill

Publishing Co., Inc.
Classified
Advertising
Division
330 West 42nd St., New York 36, N. Y.

DEVELOPMENT \&

FIELD SYSTEMS ENGINEERS

- ANTENNA
- RADIO COMMUNCCATIONS
- radar
- MICCROWAVE
- NaVIIGAIIONAL AIDS
- teRMNAL EQUPMENT
- TELETYPE

With a progressive, expanding, well established corporation. Interviews will be arranged for qualified applicants. Send complete biographical resume, experience and education to

Mr. J. E. Richardson Personnel Director

MARYLAND ELECTRONIC MFG. CORP. 5009 Calvert Road
College Park 9, Maryland

DESIGN ENGINEER

Independent research $\&$ development with established control company. Capable of designing electro-magnetic devices. Experience in design of controls for A-C $\&$ D-C service to 750 volts from 10 to 1000 amperes. Substantial salary. Advancement.

Write G. Franklin
AUTOMATIC SWITCH CO.
Orange, New Jersey

ELECTRICAL ENGINEERINDICATING INSTRUMENTS

If, within the next year or eighteen months you plan to retire, yet are not ready for the rocking
chair, an interesting job beckons you from Now chair, -an interesting Job beckons you from N
Hampshire. For turther information write to mshire. For turther information write to

330 W. 42 St., New York 36, N. Y.

RADIO ENGINEERS

Consulting Engineering firm requires senior and juniar radio engineers for permanent staff positions. Experience in development, design or operation of military radio and radar systems required. Work is of unusual interest and offers sound opportunities for advancement. Location, midwest. Salary, open, Send summary of qualifications and background to:

P-5218, Electronics

330 W. 42 St., New York 36, N. Y.

If ever there was a field that spelled growth and opportunity for the men in it - that field is electronics, today and tomorrow.
And, fast as electronics is expanding, Sylvania continues its important growth as a leader in the industry. The electronics field has jumped from $\$ 1,350,000,000$ in 1947 to $\$ 5,500,000,000$ in 1953 and is projecting a $\$ 10$ billion year in 1960 ; Sylvania's assets have jumped from $\$ 150$ million in 1951 to over $\$ 200$ million in 1953. Today Sylvania is reaching out in more new directions, heavily emphasizing research, and development of new products.
In such a dynamic, forward-moving company, you might say that opportunity is built-in and waiting for engineers to make the most of it. Every day new success stories are being created at Sylvania, One of them can be yours.

Opportunities in Development, Production and Sales Engineering in the fields of:
 SEMI-CONDUCTOR DEVICES:
 Transistors - Microwave Diodes
 Germanium Diodes
 MICROWAVE TUBES:
 Magnetrons - Thyratrons
 T.R. and A.T.R. Tubes
 If you are a college graduate, preferably with a degree in Electrical Engineering, Physics, Chemistry or Metallurgy, and have 1.5 years' experience, you are invited to apply.
 ```OPPORTUNITIES in BOSTON and SENECA FALLS \\ Live and work in Boston's suburbs: WOBURN, \\ NEWTON,IPSWICH Plants.Excellent living con- \\ ditions and unrivalled educational facilities.```
 Or in Upper New York State
 SENECA FALLS (near Syracuse)

Please forward complete resume to: Mr. Miles Weaver, Personnel Manager ELECTRONICS DIVISION

ENGINEERS

in our Electronic Tube Division
at elmira, new york
Development \& Application Engineers: Receiving, micro-wave (including traveling waves), image orthicon or vidicon tubes; solid state devices. Electrical Design Engineers: Designing, costing and guiding construction of processing and testing equipment, e.g. atmosphere furnaces, electrical welders, induction heaters, X -ray seasoning and test units, waveguide apparatus, transistor life test units.
Manufacturing Engineers: Pilot and manufacturing processes for image orthicon, solid states, micro-wave, receiving tubes, color TV, and magnetrons. Also PROCESS QUALITY CONTROL.

> We Offer You an Enjoyable Lite in N. Y. State's Resort Lakeland ... and a Rewarding Career

Company representative ts interviewing in Chicago Feb 11, N,Y.C. FeU 18, Los Angeles Feb 25, and Boston March 4 th. Interviews can also be arranged in your area, or travel expenses paid if invited to Elmira for interview. Send resume:

WESTINGHOUSE Electronic Tube Div, P. O. Box 284, Elmira, N. Y.

WESTERN ELECTRIC CARRIER FREQUENCY

COMPONENTS CF-1-A
THRU CF-7-A
ALL NEW MATERIAL
LARGE QUANTITIES IN STOCK Listing Available - Send Requirements We Carry A Large Stock of Electronic Components \& Equipment SEND FOR CATALOGE SPECIALS
TRANSMITTER-RECEIVER
Link 30 TRANSMITTER-RECEIVER STROBOTRON FLASH STROBOSCOPE -lortable-for stopping motion-adjustable fre-quancy-Connplete with 1D21/SN4 tube. reflector \& Power Supply
$5^{\prime \prime}$ Mu-Metal SCOPE SHIELDS............. $\$ 1.95$ GEIGER COUNTER-Kelaket K 900 (Aural-Visual) like new. less Geiger tuhe.. 27.50 TS 100/AP TEST SET-like new .$\$ 69.50$ (RADION1日 PRODU日TS
RADIONIC PRODUCTS cO. 325 Canal Sth, N.Y. 13,N.Y. WO 6-1290

100,000 1619 Tubes \$7,000.00

Archy Flectronics Inc.,

Hancock at Gray
Louisville 2, Ky.

TELEPHONE

RELAYS

TIME DELAY

Haydon relay $115 \mathrm{v} ~ 60$ cy adjustablo In 5 sec , steps
to 40 seconds max. $31 / 2 \times 31 / 2 \times 21 / 2$.
4PDT RELAYS:
Midget (Price 5700) $12 \mathrm{vde} 70 \mathrm{~S} .$. .$\$ 1.65$ $-24 \mathrm{vdc} 280 \Omega$ or $425 \Omega .52 .45$. Herm. seal. $2 \times 11 / 2 \times 11 / 4$; -Allied SKHX or Price $5724-1$ HSX......... $\$ 3.45$ ALLIED LKHX $4500 \Omega 5$ madc 2 AlB or 2BIA. $\$ 3.45$ SPDT 6vdc 35Ω Dunco 181 xax 100 cer. Insul. . $\$ 1.25$ 6 vac 330 mac 5.6Ω res. spst n.o. Guardlan... $\$ 1.45$ 115 vac sodt: P\&B MR5A. $\$ 1.95$; SIgma 41 RJ. $\$ 3.45$ ERIE \#557 cer. trimmer 3-12 NPO or 8-50 150./K Hundreds of other items. Write for listings.

EMPIRE ELECTRONICS CO.

 409V Ave. L Brooklyn 30, N. Y. CL 2-4000Now Sola Const. Volt. Transformers Input ${ }^{956-125 V A C}$ output ${ }^{118 \mathrm{VAC}}{ }^{60}$ cyole 600 VA (115 V out) $\$ 47.50$, Raytheon 120 VA (115V out) $\$ 10.95$.
Piate Transformer
Primary $240 / 220 / 200$ VAC 60 cycles 1 Phase sec-
oudary 1310 VCT 850 Oudary 1310VCT@850 Ma. $\$ 19.95$.
Fllament Transformer
Primarý $115 V A C$ cycles 1 Phase, dual sec-
ondary $2.2 \mathrm{~V} @ 18$ amps anch $\$ 3.95$.
1% Wire Wound Precislon Resistoce
Uv to 1 meg., 35 each. Send us your ut F.O.B. Cincinnati

LAPIROW BROS.

1649 Hoffner St. Cincinnati 23, Ohio Kirby 1285

WANTED

Type R19/TRC-1 Receivers.
W-3652. Electronics
330 W .42 St. New York $36, \mathrm{~N} . \mathrm{Y}$.

WANTED

SN11-11/MPN-1A Signal Mixer Unit. Part of GCA equipment. Manufactured by Philadelphia Naval Yard. Approx. 200 each required.
R. E. WHITE \& ASSOC., INC. 6919 San Fernando Rd. Glendale, Californio

WANTED

ART-13 transmitters, parts, and components, DY-12 and DY17 dynamotors, CU-25 etc. Also ARC-1 and ARN-7 moterial. Advise price, condition first letter.
FLORIDA AIRCRAFT RADIO \& MARINE, INC. P. 0. Box $2050 \begin{gathered}\text { International Alrport } \\ \text { Branoh } \\ \text { Mlami 48, Florlda }\end{gathered}$

PRECISION LABORATORY POTENTIOMETERS

NEW "TABTRON"" SELENIUM RECTIFIERS
 * FULL WAVE BRIDGE DATED \& ONE YEAR GTD

TEST EQUIPMEN
Prices Sloshed

 SELSYNS-SYNCHROS

NEW HIGH CURRENT POWER

- $\square=\square$

 OOO0 Pransmitters from the Set Power Pack or Dynamotor CONVERT YOUR 6V "FAST" CHGR to $12 \mathrm{v} / 50 \mathrm{~A}$ as well as $6 \mathrm{v} / 100 \mathrm{~A}$ Use

HEAVY DUTY BATTERY

 New Rectifier \& Transformer Combo

 -UR

PULSE NETWORKS

 CkI
810 PPS. 50 ohims imp; Unit 2. 2 . Sis. Sections. 2.24
 PPS, 62 ohms impedance 3 sections.
$7.5 E 4-16-60.67 \mathrm{P}, 7.5 \mathrm{KV}$. Eto Circuit T. microsec. 60 PP'
7 -5E3.3-200-67P.
PPS PPS. ohms imp, 3 sections. Circuit, 3 microsec. 200
 KS865 CHARGING GHOKE: $115-150 \mathrm{H} @$
 KS9623 CHARGING CHOKE: 16H @ $75 \mathrm{MA}, 380$ Ohms
DCR 9000 VIC Test

PULSE TRANSFORMERS GE \#K2748-A, 0.5 useo (10 2000 Pps. Pk. Pwr.
32 KW impedance 40.100 olm. Pri polts 2.3 K Sec. voits 11.5 KV Pkr. Biflar rated at 1.3 Amp. Fitted
 usec @ 600/600 PPS. I', Power $200 / 150 \mathrm{KW}$. Biflar.
1.3 Amp. Has "built-in"' maknetron well. $\$ 32.50$ $\mathrm{K}-2461-\mathrm{A}$. Frimary: $3.1 / 2.6 \mathrm{KV}-50$ ohms (ine). Sec-
ondary $14 / 11.5 \mathrm{KV}-1000 \mathrm{ohms}$ \%. Pulse Length: 1 usec @ 500 PPS. TK. Power Out: 200/130 KW
Biflar: 1.3 Amps. Fitted with magnetron well.. $\$ 29.50$

PULSE MODULATORS

MIT. MOD 3 HARD YUBE PULSER: Ontput Pulse max. Pulse duration: $5,1.0$, 2.0 nuicrosec. laput volt
age: 115 . 400 to 2400 cbs . Uses $1-71 \mathrm{~B}$. $4-89-\mathrm{B}$. AsD Moculator-Units, mid. wy Sporry. Hard tube pulser delivers 1 lk. pulse of 144 kw . Simular to Mod 3 unit.
Brand new, less tubes. Airborne RF head, miodel AlA, delivers 50 Kw peak out-
put at 900 mc . at 001 duty. Complete with puliser

PE 204 VIBROPACK
Input $12 \mathrm{VDC} / 0.58 \mathrm{Amp}$. Out
$2 \times 4.3 \mathrm{~V} / 50 \mathrm{MA}$.
$2 \times 45 \mathrm{VDC} / 0.5$ $2 \times 4.3 V / 50 \mathrm{MA} . \quad 2 \times 45 \mathrm{VDC} / 0.5$
$\mathrm{MA} . \quad 2 \times 85 \mathrm{VDC} / 5 \mathrm{MA}$. NeW. Complete with Spare Vibrator.
Well-Shielded and Portanle. Well-Shielded and Portanls.
Shown with cover $\quad \$ / 75$
removed.

LATE ARRIVALS

- L\&N \#1553 RATIO BOXES, \$275
- ESTERINE-ANGUS RECORDING mLllamMeters, 0.1 MA $\$ 155$
- IFF, AIRBORNE SET, TYPE APX-1, WITH 28 TUBES AND DYN.... $\$ 21.50$

1. F. AMPLIFIER STRIPS

Model 15: 30 Mc center Prequency. Bandwidth 2.5 Mc . gain hgure: 65 db . Uses 5 stages of $6 \mathrm{AC7}$'s. Has D. C.
Restorer and Video Detector. A.F.C. Strip included. Input impedance: 50 Ohms. Less tubes........ $\$ 17.50$
60 MC . Miniature IF strid. using 6AK5's 60 Mc center Freq. Gain: 95 db at Bandwidth of 2.7 Ma . New. Com-

400 CYCLE TRAXSFORMERS

KS13101 (All Primaries 115V. $6.3 \mathrm{~V} / 15 \mathrm{~A}$ Cycles)

 \section*{$K S 13104$ $\mathbf{K S 9 6 1 5}$ $\mathbf{K} 9318$

}KS9615
$\mathbf{K S 9 3 1 8}$
KS9608
$\mathbf{3 5 2 - 7 1 0 2}$
M-7472426 $6.3 V / 4 A$: P/OR-55/ARQ-9

$1233.35 \mathrm{MA}, 1140 \mathrm{VCT} / .07 \mathrm{~A}$ | $6.3 V / 2.5 A$ |
| :--- |
| $1450 \mathrm{~V} / 2 \mathrm{MA}$ |
| 5 V |

$$
\begin{aligned}
& 352 \\
& 702 \\
& \text { K5 } \\
& \text { KS } \\
& 352 \\
& 352 \\
& 352
\end{aligned}
$$

7022
$k 59$
$k 5$
35
3
3
3
352RA64 ${ }_{9} 901692-2$ 901699-501
$901698-501$ $901698-501$
$\mathbf{U \times 8 8 5 5}$ RA6405-1
RA85 $\underset{\text { T-48852 }}{\text { RA65 }}$ $\mathbf{3 5 2 - 7 0 9 8}$
$\mathbf{K S 9 3 3 6}$ M-7474319 KS8984
52 C 080 52C080
32332
68G631
80G198
$302433 A$
KS 9445
 M0G3474318
$352-7069$
352-7096

DYMAMOTORS

TYPE
35X.059
POSX-15
DA-7A
DM 33 A
23350
$\mathbf{B - 1 9}$
DA-3A" PE 73 CM DAG- 3 AA
DM $25 \dagger$ OM $25 \dagger$
BDAR 93 + Uss Filter.
INPUT
19
14
28
28
27
12

800.1 B Input $24 \mathrm{vdc}, 62 \mathrm{~A}$. Output: $115 \mathrm{~V}, 800 \mathrm{cy}, 7 \mathrm{~A}$
 500 cy 1500 Valt-aninaere

 PU $7 / \mathrm{AP}^{\prime}$ Input: 28 valc/160A. Dutput $115^{\circ} \mathrm{VAC}$ Used, Exc. ${ }^{400}$. 250.

MICROWAVE ANTENNAS

3 cm . Horn, $1^{\prime \prime} \mathrm{x} 1 / \mathrm{m}^{\prime \prime}$. with twist and 180 deg. bend Ar49/A
Feed Relay system Parabolic reflectors approx range 2000 to 6000 Mc. Dimensions 412' $\times 3^{\prime}$. New..... Stub gup-
Discone Antenna. AS 125 APR. $1000-3200$ mic. Stub ported with type "N" connector. length of coax and "N" connectors.......... \$4.50 AN' Parabolic Reflector Spun Aluminum dish.
 tremely lightweight, portable............... 3 vertical dipoles working against a rectangular ANesh approx. $3^{\prime} 4^{\prime}$. Frea. $140-200$ me. With loblng
mwitch ($115 \mathrm{v}, 60 \mathrm{cy}$) and portable slatted crate. ExLremely rugged... $\$ 32$

POWER TRANSFORMERS
COMBINATION— $115 \mathrm{~V} / 60 \sim$ INPUT
$\begin{array}{ll}\text { CT-133 } & 150-\mathrm{C}-150 \mathrm{~V} / 65 \mathrm{MA} .6 .3 \mathrm{~V} / 2.5 \mathrm{FA}, 6.3 \mathrm{~V} / 0.6 \mathrm{~A} \\ \mathrm{CT}-127 & 900 \mathrm{~V} / 25 \mathrm{MAPK} .5 \mathrm{~V} / 2 \mathrm{~A} / 2 \mathrm{~V} / 7.5 \mathrm{~A} .5 \mathrm{CT}\end{array}$ CT-006 $\quad 350-0-350 \mathrm{~V} / 120 \mathrm{MA}, 5 \mathrm{VCT} / 3 \mathrm{~A}, 2.5 \mathrm{VCT} /$ $\begin{array}{ll}\text { CT-965 } & 78 \mathrm{~V} / 0.5 \mathrm{sA}, 6.3 \mathrm{~V} / 2 \mathrm{~A}, \\ \text { CT-004 } & 350-0-350 \mathrm{~V} / 90 \mathrm{MA}, 5 \mathrm{VCT} / 3 \mathrm{~A}, 2.5 \mathrm{VCT}\end{array}$
 $\begin{array}{lll}\text { CT-479 } & 7000 \mathrm{~V} / 018 \mathrm{~V}, 2.5 \mathrm{~V} / 5 \mathrm{AA} 17,800 \mathrm{~V} \text {. Test. } \\ \text { CT-013 } & 450-0450 \mathrm{~V} \text { (G) } 200 \mathrm{MA}, 10 \mathrm{~V} / 1.5 A, 2.5,\end{array}$ $450-0-450$
$3.5 A$
$5 \mathrm{~V} / 3 \mathrm{~A}$
 PLATE- $115 \mathrm{~V} / 60$ ~ INPUT
P 400VCT/4.0 AMPS For RA43
$125 \mathrm{~V} / 45 \mathrm{MA}$ (For Preamp)
$125 V 4551$
$660-0-660 \mathrm{VAC}$ or preamp) $(500 \mathrm{VDC})$ or $550-0-550$
VAC (400VDC) at 250 MADC
$1400-0-1400$ VAC (300 MADC or $1175-0$ -

PT 168 2100-0-2100 1800 VAC $(1500 \mathrm{VDC})$ at 300 MADC.

PT 13
PT 801
PT 521
PT 913
PT

$210-0-210 \mathrm{~V}$ at 2.12 Amp ...
$3140 / 1570 \mathrm{~V} .2 .36 \mathrm{KVA}$.
$22,000 \mathrm{~V} / 234$
22000V/06A. Hali' Wave
$2500 \mathrm{~V} / \mathrm{IV}^{2} \mathrm{MA}$ H'SLD.
$280 \mathrm{VCT} / 2 \mathrm{~A}$
KVA
$\cdots \cdots$
\cdots
$\$ 1.79$
2.79 4.39
1.95 4.39
1.95 3.65 FILAMENT- $115 \mathrm{~V} / 60$ ~ INPUT

D-164699 Bead Type DCR: 1525-2550 Ohms af 75 Des F. Coefficient: 2% Per. Deg. Fahr. Max. Current 25 D-167332 Bead Type DCRI is $1525-2550$ Ohms. Rated 25 MA at 825-1.175 VDC
D-167613 Disk Type DCit: 355 Ohms © 75 Deg. F.PM. M.

SAVE ON TUBES BRAND NEW TUBES GUARANTEED TUBES

All Prices F.O.B. Lot Angeles, subject to change without notice. Minimúm order $\$ 5.00$. Check with us for items not Ilsted.

ELECTRONICS Dept. EL
7552 Melrose Ave,
Los Angeles 46. California

Thousands of other types in stock. Send us your requirements. RECEIVING TUBES! We carry a complete line in stock. Standard brands only.

SPECLAL PURPDSE TUBES

A2..... . 75	3AP1...... 5.00	6SN7WGT. 2.00	257A...... . 2.00	. 25	933.. 2.00
OA3/VR75 1.00	$\text { 3B22/ELiC. } 1.50$	$\text { 7BP7...... } 1.00$	FG-258A/	715B..... . 5.00	954... 25
OA5...... 4.00	3BP1 2.00	7C29. 50.00	5553 . . 132.50	715C. 12.50	955.. 25
OB2... 75	3B24. 2.00	7CP1 15.00	264C. 3.00	717A. $\quad .50$	956....... . . 25
OB3/VR90. 75	3B24W... 5.75	9GP7... . . . 5.00	267B. 6.00	719A. 10.00	957........ . . 25
OC3/VR105 . 75	3B25 3.00	9LP7. 3.50	271 A. 7.50	721 A...... 1.00	958A. 25
OD3/VR150.75	3B26..... 3.25	9MP7.. 7.50	272A..... . 5.00	722A..... 1.00	959..... 1.00
C1B...... 2.50	3B28...... 3.50	10Y..... . $\quad .95$	274A..... 4.75	723A/B.... 8.75	991/NE-16 $\quad .35$
1B22...... 1.00	3C23..... 5.00	12A6..... $\quad .50$	WE-274B. . . 3.00	724B...... ${ }^{\text {795 }}$. 75	$\begin{array}{llr}\text { CK-1005... } & .25 \\ \text { CK-1006... } & 1.00\end{array}$
1B23...... 3.75	3C24/24G.. 1.00	12GP7.... 14.00	274B..... . 50	725A.. . . . 5.00	CK-1006 . . 1.00 R-1100
1B24...... . 4.50	3C45...... 7.00	12J5WGT. . 2.50	275A..... 5.00	726A..... 7.50	$\begin{aligned} & \mathrm{R}-1100 \ldots \ldots 5.00 \\ & \mathrm{R} 1130 \mathrm{~B} / \ldots \end{aligned}$
1B27...... 8.75	3D21A.... 6.00	12K8Y.... . 50	276A..... 3.00	726B. 25.00	
1B32...... 1.00	3D22 9.75	12L8GT. . . 1.00	282A. 2.50		$\begin{array}{r} \text { 1B59... } 10.00 \\ 1500 T .75 .00 \end{array}$
1B35..... 4.75	3DP1 A . . . 7.50	LM-15. . . . 250.00	283A..... 3.50	728AY-GY.10.00	15007.... 45.00
1B42...... 4.50	3E29. 9.00	15E........ 1.50	286A..... 6.00	730A..... 10.00	1603.... 4.00
1C21. 1.50	3EP1 1.50	15R.7	304TH. . . . 6.00	801 A..... $\quad .95$	$\begin{aligned} & 1608 \ldots . . . \\ & 1611 . . . \\ & \hline .00 \end{aligned}$
1P23...... 2.00	3FP7A.... 5.00	FG-17/5557 3.00	304TL. 5.00	802........ 2.50	1611..... 2.00
1P24...... 1.50	3GP1.. . . . 2.50	RK-19..... . 1.25	305A.. 3.50	803... 1.50	75
1P30...... 2.25	3HP7..... 3.00	RK-20A. . . 12.50	307A/	804...... . . . 9.75	1613..... ${ }^{\text {, } 75}$
1P36. 2.50	3KP1..... 7.25	RK-21.... . . 1.00	RK-75... 1.00	805....... 2.75	1614..... 1.50
1V5....... 1.50	4AP10..... 3.75	PJ-22. 1.75	310A..... 3.50	806........ 15.00	. 50
1Z2........ 2.00	4B22..... 6.50	RK-23. . . . 3.00 HK 24.75	311 A..... 5.00 $313 C$	807........ 1.00	1619..... $\quad .25$
VG-2. 10.00	4826. 3.50	HK-24.... 2.75	313C..... 2.00	808....... 1.50 809.75 8.	1622...... 1.50
2AP1..... 5.00	4827..... 3.50	CE-25A/B. . 2.00	316A.... . $\quad .50$	809....... 2.75	1624.... . . . 1.0 .95
2C21/1642. 50	4B31 25.00	28D7 ${ }^{\text {98D }}$ W \cdots. $\quad .75$	323A..... 10.00	$810 \ldots10 .00$ $811 \ldots \ldots$. 1.00	1625..... $\quad .50$
2C22..... 50	4C22/ HF-100	28D7W $\ldots 1.50$ TWIN $30 . .10 .00$	323B. 5.00 $327 \mathrm{~A} . .0$	811........ 3.00 811 A.... 3.50	1630.... . . . 1.50
2C20A. . . . 50	HF-100. . 7.50 $4 \mathrm{C} 27$. 4.00	FG-32/5558 7.25	327A..... 3.5 328A.... 2.75	812........ . . 2.25	1852.... . . 75
2C33/ ${ }_{\text {RX-233A }} 1.25$	4C27. 4.00 4 C 55.00	FG-32/5558 7.25 FG-33/	328A..... 4.75 $348 \mathrm{~A} . . .$. 4.50	813........... 10.00	1853.... . 75
$\begin{array}{rr}\text { RX-233A } & 1.25 \\ \text { 2C34/RK-34 } & .25\end{array}$	$\begin{aligned} & \text { 4C35 } 15.00 \\ & \text { 4E27. . . . } 12.00 \end{aligned}$	5720. . . . 11.50	349A. 7.50	814....... . 2.00	1960..... . 50
2C34/RK-34 2C39A . . . 25	4J34. 20.00	GL-34 1.00	350A..... . 3.50	815... 1.00	2050..... 1.00
2C40. 6.50	4J35. 75.00	35TG. 5.75	350B. 3.50	822... 15.00	2051.... ${ }^{.} 50$
2C43. 12.00	4J42. 25.00	VC-50 5.00	352A. 10.00	826....... . 1.00	ZB-3200..100.00
2C44....... 50	4J52 50.00	FP-54/	353A...... 5.00	828.. 7.50	R-4330... . . 7.50
2D21 75	5AP1.... . 2.00	5740... . 44.00	354A. 15.00	5	5551/652. 40.00
2D21W . . . 1.75	5B21...... 3.50	HK-54 1.75	355A..... 15.00	829B..... 9.00	5556/PJ-8. . 6.75
2E22 2.50	5BP1 2.00	$\begin{array}{ll}\text { RK-60/1641 } & 1.75 \\ \text { RK-62 } & 1.75\end{array}$	368AS. . . . 4.00	830B 1.00 832.00	5510...... 1.25
2E24..... 2.25	5BP2A.. . . 2.50 5BP4.... 2.00	FG-67. ${ }^{\text {RK-6. }}$. 1.75	388A. 1.00	832A. 5.50	5645.... 6.50
2E26..... 3.25	5BP4...... 2.00	F728 10.00	393A...... 7.00	833A. 35.00	5656..... 9.75
2J21A.... 3.50	5C22. ${ }^{\text {5C30 }}$ / 5 B. . 30.00 1.50	RK-72...... ${ }^{\text {r }}$. $\quad .75$	394A. 2.00	834... 7.50	5670..... 2.50
2J26. 2.25 2J27. . . 2.50	5CP1. 2.75	RK-73.. 75	410R 100.00	835... 15.00	5696..... 1.00
2J27.. 2.5 .250	5CP7. 7.50	75T. 5.00	WL-417A.. 4.50	836... 2.25	5703.... . . 75
2J29..... 25.00 $2] 30 \ldots .00$	5-1. 8.580	75 TL. 5.00	GL-434A.. 3.00	837... 1.50	5725..... 2.00
$2 J 30 . \ldots .$. 20.00 $2151 . .$. 15.00	5FP7....... . . 1.00	FG-81A... . 5.00	446A. $\quad .50$	838.. 1.50	5801/ ${ }^{\text {V }} 33 \mathrm{~A} 350$
2J31.... 15.00	5FP14...... 5.00	FG-95/	446B 2.00	842.. 2.50	VX-33A. 3.50
2J32..... 15.00	5GP1.. 5.00	5560 . . . 14.00	450TL 40.00	843. 25	5820 (See 2P21)
2J33..... 15.00	5J23. 25.00	C-100D 2.00	WL-460... . 8.00	845....... . 7.50	$5827 \times \ldots 3.50$
2J34..... 15.00	5J29.. 7.50	100TH.... . 5.75	464A..... . 2.25	845W.. 10.00	CK-5829. . 1.75
2]36. 50.00	5J30. 15.00	RX-120... 15.00	WL-468. . . 15.00	846. 50.00	5933..... . 6.50
2]37..... 10.00	5J32....... . 25.00	VT-127A.. 2.00	SS-501.... 7.25	849.. 20.00	5963... 1.00
2J38...... 15.00	5JP1....... . 12.50	F-128A. . . 50.00	CK-510AX 1.00	850.. 10.00	5981/5650.50.00
2J39..... 10.00	5JP1........ . 7.50	HK-154. . . . 3.00	527....... 15.00	851... 15.00	R-7301.... 10.00
2] $4025 .00$	5JP4........ . 7.50	VT-158. . . . 10.00	WL-530... 10.00	860........ . 2.50	8002R 10.00
2J50..... 35.00	5JP5A...... 7.50	FG-190. . . . 3.50	WL-531... . 3.50	861....... 7.50	8005 4,00
2J55... 50.00	5LP1 9.75	HF-200. . . . 9.50	559........ . 7.75	865....... 5.50	8011.... . . . 50
2J56.. 50.00	5R4GY. 1.00	C-202. 10.00	575A.... 15.00	866A..... 1.00	8012..... . 1.00
$2 \mathrm{l} 6115 .00$	C6A. 10.00	203A. 2.00	WL-579B. . 12.50	868/PJ-23. . 2.00	8012A... . . 2.50
2J62..... 5.00	C6F. 10.00	203Z. 5.00	HY-615... . $\quad .50$	869B. . . . 17.50	8013.... . 2.75
2J-B51 1.00	C6J. 5.00	204A. 5.00	WL-632A. 15.00	872A..... 1.00	8013 A..... 3.75
2K25 12.50	C6L/5528.. 3.75	205B. 5.50	WL-670A. . 8.75	874.. 50	8014A. . . . 50.00
2K30.... 100.00	6AC7W.... 1.25	207. 35.00	WL681/	876.. 1.00	8016. 2.00
2K33A . . . 60.00	6AJ5...... 1.25	$\text { 211........ } 75$	636... . . . 25.00	878....... . . . 50	8020. 1.25
2K41.... . 90.00	6AJ6...... 2.50	212E. 25.00	701 A..... 2.00	884... 1.00	8025 1.75
2K54. 20.00	6AN5..... 3.00	217A...... 1.50	702A-B.... 1.00	885.... . . . 1.25	8025A.... 2.75
2K55 15.00	6BM6..... 35.00	WL-218. . . 25.00	703A..... 1.25	902P1 5.00	PD8365.. . . 50.00
2P21(lmase	6C21 15.00	220C. . . . 182.50	704A..... 75	905...... 3.00	9001...... 75
2P21 Orthicon)	6G4/	221A...... 75	705 A 75	917...... 2.00	9002..... . 75
250.00	X-102B . . 2.50	CE-235.... 5.00	706AY-GY. 20.00	918....... . 2.00	9003... . . 1.00
2V3G.... 2.25	6J4...... 3.75	249B..... 3.00	707A..... 3.50	920.. 2.50	9004..... . ${ }^{\text {. } 25}$
2x2/879... 25	6L6GAY.. . 1.25	$250 \mathrm{TH}17 .50$	707B. 4.75	922..... . . 1.00	9005... . . . 1.00
2X2A.... 1.00	6Q5G.... 3.25	250TL. . . . 15.00	708A. 1.00	923... 1.00	9006... . 100.25
EL3CJ. . . . 7.50	6SB7Y.... 1.00	251A. 30.00	709A..... . 1.00	925.. 1.75	9906R. . 1000.00
3A4...... . 50	6SC7GTY... 2.00	252A...... 7.50	713A...... 50	927........ 1.25	
3A5...... . 50	6SK7Y.... . 50	253A...... 3.50	714AY. . . 17.50	931A..... 2.75	

SCH00 For Vehicular Use
The SCR-300 as pictured here is supplied complete and ready to operate. It is generally considered to be the best portable set of its kind to come out of World II, and is still in general usc. As specialists in the SCR-300, we have sold thousands throughout the world to completely satisfied users.

- 18 Miniature Tubes © Frequency 40.0 to 48.0 Compact Construction © Depensmission Rugged \& munications - Range-5-miles or better depending upan terrain - Minimum Maintenance-spares readily available - Guaranteed and Checked for operation prior to each shipment.

Spare Parts for (SCR-300)

 Large Quantities, All NewRADIO DIRECTION FINDER USN-DAE-1 Made by RCA for USN small craft. Freq. 240 to 2000 KCS. Input 115V. A.C. Includes Radio Receiver, Loop Assembly, Spare Parts and tubes, Accessories and Cables, Instruction Manual, All New and Complete

TCS

Manufactured by Colling Radio Co. for
U. S. Navy. Frequency range: 1500 . 12.000 kcs . master oscillator and four crystal controlled channels in trans. mitter and receiver. Conservatively rated at 40 watts telegraphy and 20 bile and flxed station use. Includes: ea. TCS transmitter
I ea. TCS receiver
I
ea. remote control
I ea. remote control speaker unit micronhone tung unit
ea. headset
$\left\{\begin{array}{l}\text { ea. telegraph key } \\ \text { ind }\end{array}\right.$
1 ea. 12 volts DC dynamotor supnly
lea. $110 / 220$ vort $A C$ power supply Larea. tochnical mancea stocks of TCS spare Parts Available Stocks of TCS spare Parts Avalable
TCS-Rectifier Power Supply. Noiv. Mfg
by Federal Tel and Radio Coro., HIOV by Federal Tel and Radio Core., 110 V TRANSMITTERS
Bendix-70 watis-4 channel L.F.Collins -40 watts-Xtal-M.O. with

G.E.- 10 watts-Xtal-light weight, Felleral T\&T-400 watts-4 channelW. E. F. 350 watts-2 channel-carrier

RECEIVERS

VHR-401A, $109-144 \mathrm{MCS}$., $110 \mathrm{~V} . \mathrm{A} . \mathrm{C}$. Bendix-RA-10.DA
Collins-TCS
Hallicrafters-S
Wilcox-
CW.
Stromberg Carls

(romberg-Garson-RBM U.S Navy

SEARCH RECEIVER ARD-2

Measures RF signals from 80 to 3000 MCS. and pulse rates from 50 to 8000 cycles. Designed as direction finder and frequency meter for U S Navy Aircraft Includes:
ANTENNA DETECTOR-CMD-66AFH-Variable length antennas, diode detector and silver plated tuning stub with calibrated scale.
AMPLIFIER CMD-50ADC - Three stage pulse amplifier, trigger circuit, pulse rate counter circuit and audio amplifier, visual signal indicator, rectifier power supply operative on 115 Volts AC 60 to 2400 cycles current, regulated. TEST OSCILLATOR-CMD-60ABG - Cavity frequency of 400 cycles with selection of four pulse repetition rates.
ALL CABLES AND FITTINCS ACCESSO IES AND SHOCK MOUNTED RACK for immediate installation, plus two Technical Manuals.
SPARE PARTS - Steel chest includes spare Tubes and components.

New Price each-\$375.00
MICROPHONE, WESTERN ELECTRIC
\#1120-DA, (Similar to T-32) high quality, F-l single button. Press-totalk upright telephone stand type new, individually boxed with cord and W.E. Swbd plug similar to PL-68. Perfect for airport, police/commercial radiotelephone instal-

COMMUNICATION DEVICES

2331 Twelfth Avenue
Cable Comy-223 Tel. ADirondack 4-6174

STEPPING SWITCHES

$\begin{array}{ll}\text { SS5 } \\ \text { \#R960; Single Level; } 6 \text { to } 12 \text { VDC. } & \text { Each } \\ \text { Lotg } \\ \text { of } 10 \\ 9.00\end{array}$ \#R960; Single Level; 6 to $12 \mathrm{VDC} .10.95 \quad \mathbf{9 . 0 0}$
$\# R 975: S i n g l e L e v e l ; 24$ to 36 VDC .11 .95
$\mathbf{1 0 . 0 0}$ \#R976; Single Level ; 48 to 60 VDC 12.9511 .00 \#R978; Two Level; 6 to 12 VDC. 12.95 11.00 $\#$ R979; Two Level; 48 to 60 VDC. 14.95 13.00 Mfg. by Western Electric Co., Automatic Electric Sales; 22 step; 5 levels; Bridging Wip: ers, Contacts: Gold
 plated brass 10 of Weight: 2 Ib. 2 oz. 1 Break-Make: Net SS6 "Homing" T'ype; Double-Ended Wlpera; Step in One Direction
\#R926; 6 to 12 VDC............... 14.75 12.00

 Mrg by Western Electric Co., Automatic Wiperic Sales; 44 Step; 2 levels; Bridging rupter Switch: 1 Break-Make; Net Weight: 1 lb .14 oz
SS7 "Homing" Type; Double-Ended Wipers; Step in One Direction
$4 R 927 ; 6$ to 12 VDC..$~$
14.7512 .00 $\mathrm{ER982} ; 24$ to $36 \mathrm{VDC}$.
H R983; 48 to 60 VDC.

15.75
16.75
14.00

SEND FOR COMPLETE CATALOG TERMS:-All Prices F.O.B. Our Plant. Rated Firms Net 10 Days; All Others Remittance with Order. Approximate Shipping Charges (overage will be Plus Cable Address: UNIGENCOR N, Y (H)UYESSCl gencral cory?

NEED METERS?

 STANDARD or SPECIALSany quantity - new - surplus

$$
\text { F〇R } \begin{aligned}
& \text { Electronic - military } \\
& \text { alrcraft - hams }
\end{aligned}
$$

ALL makes-models
METERS $\begin{aligned} & \text { Repalifed } \\ & \left.\begin{array}{c}\text { Rescaled } \\ \text { Recalbated }\end{array}\right)\end{aligned}$
WRITE - PHONE - WIRE

INSTRUMENT SERVICE

455 B. 67th St.
Arverne, New York
CAA No. 4264 Ltd.
NE 4-8594

[^25]largest surplus tube dealer in the country STANDARD BRANDS - TRANSMITTING \& RECEIVING

All boxed and fully guaranteed. Special quantity discount- 10% on 100 or more of same type. Minimum order $\$ 10.00$. Thousands
of other types in stock. Send us your requirements F.O.B. New York 25% deposit with order or if paid in advance save C.O.D. charges. Rated firms net 10 days. Prices subject to change without notice. For fast service ask for Sy.

AN/APN-9A AUTOMATIC COUNTER LORAN

[^26]
SPECIALISTS SARIRRUGGEDIZED PUROSE

world's largest stock RELAYS

 immediate delivery!
adjustable thermal type time DELAY RELAY
Operates on 115 V.A.C. Continuously adjustable delay from 5 to 20 seconds. $1 / 4$ inch D.P.D.T. $121 / 2$ amp. contacts. Primarily designed for use with radio transmitters but has wide variety of other applications. Catalog No. R 686 Price $\$ 6.10$ each

STEPPING UNIT

Operates on 22 to 30 V.D.C. 12 Position driv ing mechanism operates through 360° in pro gressive steps. Indexes one position for each
momentary current impulse Attached wafer switch may be used for self interruption. 7 inch flatted shaft will drive pulley, gear or one or more wafer switches. Catalog No. R $809 \quad$ Price $\$ 2.45$ each SOLENOID OPERATED RATCHET STEPPER Operctes on 6 V.D.C. Operates three 12 posi tion wafer switches. Most standard wafer are interchangeable with those supplied.
Rotates 30° with each impulse Rotales No R 709 impulse.
Catalog No. R $709 \quad$ Price $\$ 3.90$ each

Archy Electronics Inc.,

Hancock at Gray
Louisville 2, Ky.

INDUSTRIAL X-RAY INSPECTION EQUIPMENT

 General Electric OX-200, XRD Diffraction Picker, Standard, Westinghouse and Keleket units from 100 KV up. Special inspecion boo
217 E. 23 rd St.
Send for Price List of Special Savings
On Thouscinds of Different Types of Tubes. Available For Immediate Delivery, Indus: trial, Transmitting, Special Purpose, and Receiving Types, Crystal Diodes,

ALLIED ELECTRONIC SALES. DEPT. E
74 CORTLANDT ST. NYY. NTY 74 COR
PHONE BARCLAY
7.5839 .' 5840

RECONDITIONED SURPLUS

25-SCR-284 Field Transmitter-receivers 25-BD-72 Fleld Telephone Switchboards Export packed with testing certificate RAYA TRADING COMPANY 33 West 42nd Street New York 36, N. Y.

SCR-503
 CO-AXIAL CABLE

 NEW CATALOGUE NO. 114
 ARROW SALES INC. Othice-Warehouse: 7460 VarNa AVL., N. Hollywood, CAL.
 Phones: STanley 7.6005 - Poplar 5.1810 Salesshowroom: 2005 Empilie avenue, BuiBank, CAL. Cable Adtress: ARRoWSALES, Notith HoLIywood Telegraph Adtress: WUX, सohith holitwood
 Central Division
 Mailing Address \& Sales-Showroom:
 2441 S MICHIEAN AVE CHICAEO 16 , ILLINOIS Phone: CAlumet 5-4750

N. Y.s IRADID TUBE EXCHANGE

TERRIFIC SLASHES IN PRICE UP TO 70\% FROM PREVIOUS LOW PRICES

HEW TS-147 B AND C/UP TEST Hard-to-get X-Band Now Available Test Set TS 147 UP is a portable Microwave Signal Generator designed for testing and adjusting beacon equipment and radar systems which operate within the frequency range of
8500 MC to 0600 MC .

NEW

MICROWAVE TEST EQUIPMENT TSI48/UP SPECTRUM ANALYZER Will Check Frequency and Operation of various X Band equipment such as Radar trum wirlth and Q or resonant cavities. Will also check pulse width, c-w specerators in the X band. Can also be used as frequency modulated Signal Generator, NEW UNUSED SURPLUS TS 259 K BAND 23400-24500 MEGACYCLES SIGNAL GENERATOR
OTHER TEST EQUIPMENT USED
CHECKED OUT, SURPLUS

TS33/AP TS3/AP T35/AP T356/AP
 | 1.96 A |
| :--- |
| T |

S182 S226 S239A-TS239C S251

SPECIAL

Wide Band S Band Signal Generator $2700 / 3400 \mathrm{MC}$ usinig 2 K 21 or PD 8365 Klystron, Internal Cavity Attenuator,
Precision individually calibrated Fre Precision individually calibroted Fre-
quency measuring Cavitiy. CW or Pulse Modulated externally or internally.

You Can Reach Us on TWXNY1-3235 Large quantities of quartz crystals Crystal Holders: FT243, FT171B others Quartz Crystal Comparators.
North American Philips Fluoroscopes Type 80. corge quantity
coaxial cable.

Minimum Order 25 Dollars
Phone: WOrth 4-8262 LIBERTY ELECTRONICS, INC.

135 LIBERTY STREET. Cables: TELSERUP
襄

NEW REPAIR PARTS For BC 348
 \section*{MODELS H, K, L, R, ONLY}

Main Tuning Capacitor.........
1st IF Transorme Asseniy
2nd I-F rranformer Assembiy.
3rd
2nd 1-F Transformer Assembly
Cth I-F Transformer Assembly
Cryw Oscllator Assembenbiy
915 kc Crystal mounted.

1. F. Unit Assembly
Resistor: Malume Control.....
Band \#1 Coils-per set of
rand \#2 Coils-per set of

Complete dial assemplys.
 HIGH-VOLT OIL CAPACITORS

BARGAINS IN TEST EQUIPMENT

cates polarity. l'robe gal 1/4" British handicraft in 500 to 4000 gauss. Indihinged cover. Onerating instructions on underside of cover. Size $12-3 / 4$ case with A lab instrument. Also ideal for classroom magnetics instruction. $\$ \mathbf{2 4 5 0}$
 3000. Uses 95%, IS 6 and $3 \mathrm{~S} \ddagger$ tubes. Requires Q^{\prime} " resonator hat average " Q ". of spare kit of tulues.................. instruction book, probe and $\$ \mathbf{4 7 5 0}$ scope. Has 3 inputs for feeding in receiver I.F.'s of 455 KC , 5 . 2 Mc or 30 Mc Mc tical and horizontal push-pull amplifier inputs, etc. Complete with 21 tus both vel Price of circuitry. descriptive datu, theory, etc. Postraid in U. S. A. AN/APA- $\$ \mathbf{\$ 7 5}$
Onls In EST OSCILLATOR TS-47/APR, $40-2000+$ Mc. Fundamental coverage $40-500 \mathrm{M}$ 400 Mc . less. source for testing receiving equipment. Output 3 MW or mol New with handlook of Mainintenance Instructions.......................... $\mathbf{1 6 9 5 0}$
 AN/APR-I RECEIVER. For use with tuning units TN-I and rice uith tubes less tuning units

14950 oseillator, 5 Ib stafes, diode detector, tuning eve, and 2 stages of audio 'Iuming $300-1200$ Weipht Approx. fio Ibs Only es fance fom $300-1200 \mathrm{Mc}$. Nominal output 10 to 30 watts. Tunable 1-3022 (oscillator). Price with tubes... $\mathbf{1 3 9 5 0}$

RADAR ANTENNAS

So-I (10 CM) assembly with reflector,
wavegude nozzle and New … nozzle and drve motor. SO-3 (3CHi) Surface Search type with rotlector and drive motor. but less phumb-SO- 13 (10 CM) Complete assenbly with
$24^{\prime \prime}$ dish, dipole. drive notor and gear-
\qquad
G. E. SERVO AMPLIFIERS Used in B29 planes for Central Station
Fire Control Systems B2, B3 and B4. Fire Coltrol Systems IB2, B3 and B4.
Used to drive Ampliyne 5AM31NJ9A and Control N10tor 5BAA50LJ2. listed in
this ad. Ner less tulies.......... $\$ 29.50$

SCR-522 EQUIPMENT Complete BC-624C receivers and BCracks. plugs. connectors, dynamoting lirand new oquipnient kith instruction
manuals. Write for full details.

RA38 RECTIFIER
MA. Input 115 V 0-15000 V DC @ 100
$53 \times 56 \mathrm{in}$. Write for detailed informa
tion.

PHONE DEERFIELD 7.0044

NEW YORK 6, N. Y.

COMPASS

A Division of Compass Communications Corporation

TEST SETS

TS-35A/AP-(Late Model) X-IBand Signal Generator and Power Meter-Input 115/1/50-1200 CPS. Generates and measures RF power. Produces (CW or pulsed, int. or ext. gynchronized) signal of TS-69/AP Frequency Meter, Range $340-1,000$ mes. Uses $0-200$ microammeter; Excellent. ... $\$ 75.00$ TS-100/AP Test Scope with type A, R, J and X Indications. Gated and ungated sweeps, int. or ext. riggering
We have more than a hundred thousand pounds of radar and microwave accessories 15 LB. ALNICO-V MAGNET-Approx. 4800 gauss- $\$ 16.00$ Each
FLEX. WAVEGUIDE Brand New w/choke and flange; $3-\mathrm{cm} ., 12^{\prime \prime}$-length- $\$ 12.50$ ea. 3-cm., $23^{\prime \prime}$-Length- $\$ 14.00$ ea.; $10-\mathrm{cm} ., 60^{\prime \prime}$-Length- $\$ 22.50$ ea.

RADAR BEACONS
$Y J$ and YG
$A N / C P N-6$
AN/CPN-6
Also SA, SF, SG, SD, SJ, SK, SN, SQ—both equipment and spare parts

SA-2

 RADARUsed for air traffic control, tracking and search, both land-based and ship-borne. 5 microsec. pulse., PPI indication, operates at 200 mcs , peak power of $150 \mathrm{~K} . W$. Input $110 / 120$ volts a.c. 4 complete installa. tions in stock.-Write for price.

APQ-13-Very late model airborne radar set, complete and new...
. $\$ 2,950.00$ APS-3-3 cm-Alrborne radar for search and homing, 5 -in scope. 10 brand new sets at. $\$ 700.00$ ea MAG- $\mathbf{1 0} \mathrm{cm}$, remarkable link radar, portable, operated from 6 volt battery, uses folding antenna
SCR-545-Complete radar set, less vehicle, antenna and power plant, pretty fair condition, sold as-is a
ANTENNA ASSEMBIY- 10 cm RADAR-Reflector is a lightweight parabolic cylinder, Ass'y has both manual and motor drive. Ideal unit for labs, classroom demonstration, small craft, etc.
SN-RADAR- 10 cm -Compact, light and portable, ranges of 5 and 20 miles. Uses 5CPI scope Operation is from 115 volts, 60 cycle, but we can supply converter for dc operation.

RECEIVERS
ARB ARC-1 ARC. A ${ }^{\text {AR R }} 8$ ART-13 CR-91 SLR
RAK RAL RAO RBB RBO RBG RBL
RBA RBM BC- 294 BC- 214 BC- 314
BC- 344 BC-348 AND OTHERS

FIELD EQUIPMENT SCR-274 984
300 300
399 399
503 503
536 808
898
BC-191
375
603
604
610 E
683
683
684
903
983
994
924
1000
1306
AND OTHERS

393 Greenwich St., New York 13, N. Y. BEEKMAN 3-6510 Cable: COMPRADIO, N. Y.

Wholesale, Industrial and Institutional Sales Only

These are partial listings only of our stock. Please other types.

Receiving Tubes Klystrons, Magnetrons

SPECIAL
 726A
 9.50

Crystal Diodes
Standard Brands Only

1 N 21	§. 65	5BP1.
1 N 21 B	1.40	$5 \mathrm{SPP1}$
1N21C	14.20	5CP7A
1 N 22	99	5 FP7
1 N 23	1.10	5MP1
1N23A	1.75	7 BP 7
1 N 23 B	1.85	
1N25	5.25	$\mathrm{OA}^{\mathrm{OA}}$
1 N 26	8.50	
1 N 27	1.50	$\mathrm{OC}_{0} 11$
1N28	5.00	OD3/VR
1 N 34 A	75	
1N35	2.10	${ }_{1822}$
1 N 38	1.25	
1N38A	1.95	1 B 24.
IN40	12.25 12.25	$1 \mathrm{1B26}$
1 N 42	21.00	${ }_{1}^{1837}$
1 N 43	1.80	1836
1 N 44	1.20	1336
1 N46	1.00	$1 \mathrm{B42}$
1N51	. 55	1836A
1N52	1.45	C1B
1 N 54	. 95	1 P 21
1 N 55	2.75	1P28
1N56	1.00	122
1 N57	. 20	2C26A
1N58	1.35	2C39A
1N58A	1.70	$2 \mathrm{C40}$
2AP1	8.00	2 C 46
3AP1	8.00	2 C 51
3BP1	3.00	$21) 21$
3CP1-S	2.00	2 E 24.
3DP1-S	5.95	2 J 21 A
3GP1	1.99	2 J 22.

Prices Subject To Change

EMELTONE ELECTRONICS CO.
71 W. Broadway - N. Y. 7, N. Y. Phone REctor 2-1696

SPECIAL PURPOSE TUBES

5C22 3450

Jobber Boxed
 NH以
$\begin{array}{cr} & 13.00 \\ \cdots & \begin{array}{r}65.00 \\ \cdots \\ \cdots \\ \cdots \\ \hline 14.50 \\ \hline\end{array}\left|\begin{array}{r}125.00\end{array}\right|\end{array}$

OK250

 1.75
.29
2.25

2.25 | 9.50 |
| :---: |
| each |
| Tubes |
| Tunetrons |
| $\cdots \cdots$ |
| $\cdots \cdots$ |
| 1.75 |
| 2.29 |
| 2.25 | XOPRT

FOREIG

Cash Paid For Your Surplus Tubes-Send List And Prices

WANTED
BC-788, T-47A/ART-13, BC-348R, R-5/ARN-7, RT-18/ARC-1

AN/ARC-2

2-9.5 mc autotune transmitter-receiver. This -quipment will provide 8 channel autotune operation on roice or C.W. power output is app. 30 watts. This set is similar to ART-13 matically tuned to the trans, freq. as channels are changed, providing a very compact communication pkge. for air or ground use. Power input is 28 v DC. POR.

AN/CPN-6, 17 RADAR BEACONS

$3 \mathrm{~cm} \& 10 \mathrm{~cm}$. High Pwr. Airport Radar Beacon. Output approx. 40 kw . Complete installation available. POR.

AN/TXC-1, RC-120 FACSIMILE SETS Page sending and receiving equipment. These sots will transmit and receive a 12 by 18 inch or a 7 by 8 inch page of written or picture material over a telephone line or a radio circuit in 20 minutes. The copy may be sent on or received on either photographic printing paper or on direct recording paper. Power in-
put is $110 \% 60$ cyc. POR.

AN/ASQ-1 and $1 A$ MAGNETOMETERS
This is an airborne magnetometer used to measure the magnetic flux of the earth and to locate submarines and other metallic objects by their distortion of the magnetic field. Com-
plete sets available. P.O.R.

SCR-506A

2-6me mobile or field radio transmitting and receiving equipment. This equipment is a
currently used mobile communication set by many govts. The power output is 90 watts CW and 25 watts phone. The trans. may be set to 4 pre-selected channels or tuned manually. Power input is either 12 of 24 v DC. POR.

SCR-694

$3-6 \mathrm{mc}$. portable field radio. This equipment provides reliable communications in the field or vehicle. Provisions are made for 2 prese channels, or the set may be tuned manually. Power output is 5 watts phone and 20 CW . pack for 6 or 12 volt operation iner a vibra or a hand generator for field use. POR.

AN/TRC-1

$70-100 \mathrm{mc}$ point to point VHF radiotelephone equip. This is a irequency modulated 50 watts point to point radio trans. and receiver set mountain country where a land channel in mountain country where a land wire is imdesired such as a construction project. The range is approx. 60 miles line of project. The is completely portable and operates from $110 v$

AN/TRC-7

100-156 mc. portable crystal controlled 2 channel walkie-talkie battery operated. POR.

AN/ARN-6 RADIO COMPASS

This is a very compact light weight automatic radio compass covering 100 KC to 1750 turized includs. All components are miniaspeed aircraft. Complete sets and components are available. Input 110 Volts 400 eyc. and 28 Volts DC. POR.

AN/GSQ1-A SPEECH SCRAMBLERS
Speech scrambler for use on any comm. chamael to insure privacy. We can supply com input. Also $110 \mathrm{v}, 60 \mathrm{cYc}$.

Prices FOB NYC. Rated firms opon account. Prices subject to change without notice.
CABLE: Radalab, NY
TELETYPE: NY-4-4361

RC-115B 75 MC BEACON

This is a 75 MC Marker Beacon Ground Station. This equipment comes mounted in a transporting trunk. The set can emit either inner, outer, or carways signals. The transmitter is crystal controlled and operated from 110 Volts 60 cyc. POR.

SCR-291A

Automatic ground direction finder covering 1.5mc-30mc. Provides instant becrings on a C.R. indicator of any signal in its range. This up quickly. 110 y 60 cyc. POR. .

AN/ARC-1

100-156 mc. VHF transmitter-receiver. This equip. provides phone operation in 10 crystal controlled automatically selected channels from $100-156$ me. with one guard channel. We can also modify these sets for 20 and 0 channel operation and can supply complete supply. Normal input 28 v DC. POR.

SCR-682 A RADAR

10CM high power long range harbot surveillance and early warning RADAR. This equipment is a 3000 mc mobile search radar that can be transported in a truck. The equipment incorporates a $7^{\prime \prime}$ PPI for operation up to 240,000 yards. Azimuth accuracy is $\pm 1 \%$. Range accuracy is 100 yards at 10,000 yard range output is approx. 225 KW palse wange. Trans. output is approx. 225 KW , pulse width is one microsecond. Antenna beam width is 6°. Inwithout operating shelter or contenna tower POR.

AN/APQ-15

Multiple echo equipment. This set will pick up signals from a ground search radar and re-transmit them making the plane carrying it ground radar entire tleet of planes on the
gro...

WESTERN ELECTRIC STEPPER
44 Step, 2 Levels, Bridging Wipers, Gold Plated Inter. Contact Yoltage 5.5 to 12 V.D.C. 4.40 hms , Pieces $\$ 12.00$ Each. Brand New. Quan. Discounts. 60MC. IF STRIP
Uses (6) 6.AK5 Mfg. Western Electric. Price, $\$ 14.50$. MITRED BEND. Vy Short Radius. E plane, $\$ 10.00$. TRANSITION, $1^{\prime \prime} x 1 / 2^{\prime \prime}$ to $11 / /^{\prime \prime} \times / /^{\prime \prime}$ Lgth $316^{\prime \prime}$, $\$ 6.50$.
WAVE GUIDE, RRG52V/, $1^{\prime \prime} \times 1 / 2^{\circ \prime}$. Per TWIST 90 DEGREE, UG39 to UG40. Silver plated, $\$ 6.50$.
CRYSTAL MOUNT. Hold any IN23 UG40 fig. input. \$15.00.
DIRECTIONAL COUPLER. Uni. or BI directional types 20db, coax "N" output, UG39 fig, to UG40
FLEX. SECT. $6^{\prime \prime}$. UG39 flgs. $\$ 10.00,12^{\prime \prime}$ at $\$ 17.50$. ROTARY JOINT, 3 types available, miniature 180 deg. input output. miniature 90 deg, input output. large 90 deg, input output 360 deg. rotary coupling for lab or high speed scanner VSWIZ 1.2 or better,
LINE
XMSN Lines, $\$ 34.50$
\mathbf{S} GUIDED MISSILE F.28/APN-I9 FIL. db db loss at ctr. frea. over band, 3 db at 15 mo band ends. JAN spec. Ideal as standanteed, 85.00 ,
AN/APN-60 Crystal Mounting, $\$ 19.50$. AN/APN-60 Crystal Mounting, $\$ 19.50$.
COAXIAL CRYSTAL MOUNT. Type COAXIAL CRYSTAL MOUNT. Type N fittjugs, tuneable silver plated. Holds
any IN21 type Xtai, $\$ 9.50$.
LIGHTHOUSE CAVITY For 2C40 tuhe Tuneable $2700-2900 \mathrm{mes}$ w/suitable grid cyls. Can be Praq. modulated, $\$ 22.50$,
FEEDBACK DIPOLE
FEEDBACK DIPOLE 7/8" coax. 113/4" o.a. \$14.50. ECHO BOX. TS-207/UP, $2700-2900 \mathrm{mc}$. $\$ 64.50$. ECHO BOX. OBU-3, Precision w/detector and
M MAGIC TEE, precision. MAGIC TEE, Drecision. $\$ 22.50$ 115/U flanges. $\$ 22.50$. KLYSTRON OUTPUT COUPLING for 2K50. RG 66/U suide, $\$ 6.50$. H BEND 90 deg. CG346/U. E BEND 90 deg. CG345/U. Cplg. UG-117 to UA-16. ADAPIERS $1 / \frac{1 / 2}{} / \mathrm{lg}$ UG116 to UG116,
RADIO-RESEARCH INSTRUMENT Co.
550-5 Ave., N. Y. 36, N. Y. Tel: JU 6-469i
PAUL J. PLISHNER

Your Inquiries to

Advertisers Will
Have Special Value
-for you-the advertiser-and the publisher, if you mention this publication. Advertisers value highly this evidence of the publication you read. Satisfied advertisers enable the publishers to secure more advertisers and-more advertisers mean more information on more products or better service-more value-to YOU.

NEW G.E. VOLTAGE STABILIZERS

Stabilize varying line voltages to plus or minus 1% line 95 to 130 volts 60 cycle single phase output 115/120/125 volts

$$
\begin{aligned}
& 2 \text { K.V.A. } \$ 90.00 \\
& 3 \text { K.V.A. . . . } 105.00
\end{aligned}
$$

Completely housed and mounting brackets, Govt. surplus
LEON H. WICOFF
Box 354
Seaside Pork, N. J.

These "Searchlight" advertisements

are live opportunities in the Electronic field.
Each announcement represents a current Want or Offering of an organization or individual in the field. Some have moneysaving possibilities, others are opportunities for more business: many are employment opportunities; still others offer equipment - used or surplus new.
"Searchlight" advertisements are constantly changing. New opportunities are constantly finding their way into this great Want medium, each issue. Regular reading of the "Searchlight" pages can be as important to you as reading the editorial sections; Editorial matter is news of the industry : Advertising is NEWS OF OP. PORTUNITIES in the industry.

for EVERY business WRNT "Think SEARCHLIGHT first"

Immediate Shipment from one of the Most

 COMPLETE INVENTORIESof SPECIAL PURPOSE, TRANSMITTING
RADIO AND TV RECEIVING TUBES

New Jan Raytheon	New Jan
5656	Gen'1 Electric
Late Code Dating	Late Code Dating
Special.\$7.95	$\$ 2.15$

We specialize in new

- Jan Types
- Ruggedized 5000 \& 6000 series

Complete inventories in stock

TUBE CARTONS

Two-Colored Cartons With New Safety Partiltions - Super-Glass Red and Black Carton is the Most SIzE EACM
 6AU6, 6AL5, etc. 1B3, GBGGGT, etc.
 "Quantity Users-Buy These Cartons by the Case. Write for Quantity Discounts.-
Terms: F 0 B-N Y C- 25% Deposit with orderor send full remittance to save C O D chargesCABLE BARRYLECT. N. Y. TELEGRAPH BARRY ELECTRONICS, FAX, N. Y.

6AG7 Jan.	. 90	446A	70
6AK5 Jan...	. 55	WL-468	9.00
FG-17.	3.00	578	9.00
RX21A	9.00	707-B	4.00
HK 24	2.50	715C.	11.50
28D7	. 90	723 A/B	8.50
FG-32	8.50	750 TL Eimac	
QK-60	30.00	Surplus.	30.00
QK-61	30.00	803.	1.50
100 TL Eimac		829-B	9.50
Surplus	5.50	830-B	95
211 50	832A	6.00
304 TH		838	1.50
Surplus	6.75	866-A	1.25
304 TL		872A Gen'l	
Surplus	6.75	Electric	2.75
337A.	6.00	921	1.40
387A	17.50	1613.	1.50
394A	3.00	1616.	. 75
403A/6AK5	1.00	1619.	40
403B/5591.	3.25	1624.	1.00
404A/5847.	9.95	1625	. 25
407A.	4.75	1631.	1.00
408A/6028.	2.25	1636.	1.25
416A	35.00	1960.	1.00
416B.	55.00	2050	1.25
421 A/5998.	10.00	8008 RCA.	6.45
GL-434A..	4.00	8020.	1.25

Many Other Types in Stock. Phone, wire, or write for quotations.

BARRY ELECTRONICS CORP.

AUTHORIZED DISTRIBUTORS FOR EIMAC, CBS-HYTRON (CBS), CETRON, LEWIS \& KAUFMAN AND PENTA TUBES. 512 Broadway, New York 12, N. Y.

PHONE: WALKER 5-7000

CLASSIFIED ITEMS:

BC-2I2G Amplifiar 2/6C5 Tubes. $\mathrm{N}: \$ 3.95-\mathrm{U}: \$$

BC. 216 A Amplifler 6F7 \& 39/44 Tubes.
BC-229/429 Hecer 1.95 BC-230 Transmitter 2500-7700 KC w/Coils. . U. 5.95 BC-347 Amplifier 1/6F8G Tube..N: $\$ 3.95-\mathrm{U}: ~ 1.95$ BC-357 Marker Beacon Receiver
BC-367 Amplifier 2/6V6GT Tubes, N: $\$ 4.95$ BC. 375 TKANSMITTER
BC-453 RECEIVEH 190 to 550 KC
BL-459 TLANSMITTER 7 to 9 M
BC. 463 Transmitter \& Modulator 67 to 71 MC BC. 603 FM RECLIVVER 20 to 28 MC . BC-604 FM TRANSMITTER 20 to 28 MC... BC-605 AMPLIFIER 2/1619 Tubes. BC-620 FMI TRANSCEIVEL 20 to 28 MC. U: 3.95 BC-645 TRAXSCEIVER - Converts 420 to 500 MC BC-654 TRANSCEIYER 3800 to 5800 KC BC-659 FM TRANSCEIVER 27 to 39 MC BC-684 FM TLANSMITYER 27 to 39 ... U: 34.95 to $39 \mathrm{MC} . \mathrm{U}: 19.95$ BC 715 .
 BC-791 Code Tape BC-966 IFF SFT
 R-25/ARC-5 LUECEIVER 1.5 to 3 MC - Less Tubes R-27/ARC-5 RECEIVER 6 to 9 MC - Less Tubes R-I/ARR-I RECLIVER - Converts 2 or 6 Meters RT-7/APN-1 ALTIMLETER \qquad RT-34/APS. 13 TRANSCEIVER - Complete Less BD-72 Switchboard - Portable - 12 Line. U: U: 39.95 FL-8A Range Filter. $\$ 1.49$ FL- 5 Filter,. U: 1.00 TS-9 Carbon Handset.U: $\$ 3.95$ TS-13 Handset TS-10 Soundpowered Handset or Head \& Chest Set TG-10 KEYER F Inked Code Tapes............ 19.95 TG-3+A KEYER F/Inked Code Tapes.LN: $\$ 16.95-$ TU-5 Tuning Unit F/BC-375-BC-191, U: $\$ 4.95-$ rU-6 Tuning Unit $\mathrm{F} / \mathrm{BC}-375-\mathrm{BC}-191 \ldots . . \mathrm{U}: \quad 5.95$ U-7 Tuning Unit $\mathrm{F} / \mathrm{BC}-375-\mathrm{BC}-191 \ldots \mathrm{U}: \mathbf{N :} \mathbf{\mathrm { N } : 9 5 - 9 5}$
 BC-306 Antenne Loading Coi1....U: \$2.95-N: $\mathbf{3 . 9 5}$

U Means Used

METERS:

WESTON AC AMMETER:

(Pictured) In portable leather caso. with Test Leads, $21 / 2^{\prime \prime}, 0_{0}-15$ AC ${ }^{\text {caso }}$ nd
$0-3$ AC Scale................ $\$ 5.95$ DC AMMETER HOYT:
In portable metal case, with Test Leads, 41/2". Fan Mirrored Scalo-0-15 ADC.............. 34.95
$0-3$ RF AMMETER IS-128- $2-1 / 2^{\prime \prime}$ Rd. NEW: $\$ 3.95$
 D-B METER- 10 to Plus 6-G.E.-3-1/2" Rd.. 4.95 TS-291/U VOLTOHMMETERNEW: 7.95

BLOWERS:

BLOWER AND heating element 115 Volt 60 cycle: mlower 100
CFM. Heating element can be turned on \& oft separately Price
$\$ 10.95$
115 VAC 60 cycle SINGLE TYPE- 100 CFM: $2-1 / 4{ }^{4}$ intake: ${ }^{2 \prime \prime}$ outlet. Complete size: $5^{\prime \prime} \times 6^{\prime \prime}-\quad \$ 8.95$ 115 VAC 60 cyclo DUAL TYYE- 100 CFM $4^{\prime \prime}$ intake; $2^{\prime \prime}$ Dis, Each Side. Complete size: $8^{\prime \prime} \times 6^{\prime \prime}-\$ 13.95$
No. 1 C 880

 $\times 8$-1/4" $\mathrm{D}-\mathrm{No} .2 \mathrm{C} 067$
$\$ 14.50$
115 VAC 60 cycle FLANGE TYPE- 140 CFM: 3-1/2"

 8 No $^{\prime \prime} \mathrm{H}^{\prime} \mathrm{C}^{2} 8-1 / 16^{\prime \prime} \mathrm{D}$ - $\$ 21.95$
6 VDC SINGLE- 100 CFM-No. 6100 6 VDC FTAANGE- 150 CFM-No. $6150 \ldots . .$. 12 VDC SINGLE- 10 CFM-Min- 24 NO $1210 \ldots \$ 7.95$ 24 VOC DUUIL-20 CFM-Min-No. $2420 \ldots \$ 5.95$ $12 / 24$ VDC-AC Cast Aluminum Blower- 100 CEM: 3^{*} intake; $2^{\prime \prime \prime}$ outlet. Shunt Moter $4^{\prime \prime}$ 区 $2^{p \prime \prime} \quad \$ 5.95$
3000 RPM @ 24 VDC....................... $\$ \mathbf{5}$

DYNAMOTORS:

HEAVY DUTY MOBILE DYNAMOTOR
DM.42-14 V. input; output $1030 \mathrm{VDC}-260 \mathrm{MA} \&$
515 V .215 MA @ 6 VDC. Approx. halp of Voltage New: $\$ 12.95$ - USED: $\$ 8.45$ INPUT OUTPUT: STOCK PRAICES:
VOLTS: VOLTS: MA: NO.: USED:NEW 14 VDC $\begin{array}{lrr}14 & \text { VDC } & 230 \\ 14 & 330 & 15 \\ 14 & 250 & 5 \\ 14 & 1000 & 35 \\ 28 & 1000 & 35 \\ 12 \text { or } 24 & 500 & 5 \\ 12 & \text { or } 24 & 275 \\ 12 & 11 \\ 14 & \text { VDC } & 330 \\ \text { POWER SUPPLY } & 17\end{array}$ $\begin{array}{rl}90 & \mathrm{D} \\ 150 & \mathrm{~B} \\ 50 & \mathrm{D} \\ 350 & \mathrm{~B} \\ 350 & \mathrm{P} \\ 50 & \mathrm{U} \\ 110 & \mathrm{U} \\ 90 & \mathrm{P} \\ 175 & \mathrm{BD}\end{array}$ \qquad USED
$\$ 6.95$ $\$ 6.95$
3.95
6.95
14.95
8.95 $\$ 5.95$
8.95

29.95 | 4.95 |
| :--- |
| 4.95 |
| .95 | POWER SUPPLY - 24 VDC - 3 Amp output: 115 Volt 60 cycle input, Completely filtered with 0-75 VDC

Output Meter \& 2 Tungar Bulbs-Used, Tested. $\$ 12.95$

ANTENNA EQUIPMENT:

MAST BASES-INSULATED

MP-22 BASE ${ }_{\text {bracket }}$ Ins, spring action; direction of bracket can be raised or lowered $\mathbf{\$ 2 . 9 5}$ MP-S-33 BASE - - Insulated type with heavy coil spring and $5^{\prime \prime}$ dia. Ins, Requires $2^{\prime \prime}$ hol $\$ 5.95$
for mounting. Weight: 9 lbs............. $\$ 5.950$ MP-37 BASE Weight: 9 Ibs. Insulated tybe with heavy coil

MAST SECTIONS FOR ABOVE BASES:
Tubular steel, coppor coated, painted, in 3 ft. seo-
tions, screw-in type. MS- 53 can be used to make any
length with MS-52-51-50-49 for taper. Any section. Larger Diameter Section: MS-54................. 5045

APS - 4-X BAND RADAR SETS

RT5A Receiver and Transmitter $\$ 99.50$
APS A Clean like new (with all tubes)
\$12.95
Miniature 69 meg IF strip (APS-4) (less tubes) \$7.95
D15142695 db gain 2.7 Mc Band width
MAGNETS for 725A... $\$ 7.50$ (with 725A Tube)... $\$ 10.00$

TEST EQUPMENT
804 Sig. Generator overhauled
like new $\cdots \ldots \ldots . . \$ 150.00$
TS -117 New $\ldots \ldots \ldots . \$ 300.00$
TS -102.1 New $\ldots \ldots . \$ 400.00$

SPECIAL

Minature
BLOWER 275 V BLOWER 27.5 V - 10,000 RPM Dellco trpe $5068-$
571 .

SHUNT MOTOR
$\begin{array}{llll}\text { type } \\ \text { RPM } \\ \text { RPM } & 27.5 \quad \vee & 5600 \\ \$ 2.95\end{array}$
2 reduction app.-5 RPM
\& 20 RPM Mfg. by John Oster Company
10 - $\$ 2.49$

Prices subject to change. All items subject to prior sale. Send for complete list and prices.
TERMS: Prices F.O.B. San Carlos-Cash or 25% with orders Balance C.O.D.-Rated concerns (D \& B) Net 10 days cash

ELECTRONIC INDUSTRIES

Radio Electronic Supply
930 El Camino
Lytell 1-0345
San Carlos, Calif

AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to $4,000 \mathrm{Mc}$; wideband discone and other antennas, wavetraps, mobile accessories, 100 page technical manual, etc. Versatile, accurate, compact-the aristocrat of lab peceivers in this range. Write for data sheet and quotations.

We have a large variety of other hard-to-get equipment including microwave, aircraft, communications, sadar; and laboratory electronics of all kinds. Quality standards maintained.

NEW TS-13/AP X-BAND SIGNAL GENERATORS with manual $\$ 575.00$; T-47A/ART-13 Transmitters, $\$ 450.00$; H-P, Boonton, G-R, Measurements, many others in stock.
ENGINEERING ASSOCIATES
434 PATTERSON ROAD
DAYTON 9, OHIO

Witgren Sndusties

"UG" and "AN" CONNECTORS

Bring your production

 costs way down without sacrificing quality!We are now making scheduled deliveries to many companies, including major aircraft concerns, on contracts running as late as mid-1956. We can do the same for you.

AN 3106 A

All Shell Sizes \& Types

Connectors will be supplied with clear cadmuim or olive drab finish as your specifications require.

We maintain an excellent stock of " M " \& " E " type connectors

99 MURRAY ST. N. Y. 7, N. Y. WOrth 4-2490-1-2

 All prices FOB Oakland, Calif., 25% cash with ordor. Balance COD.
EMMONS RADIO SUPPLY CO.
405 10th St.
Oakland, Calif
Phone TWinoaks 3-7411

TRANSFORMER "C" CORES 15 -
SIMPLE ASSEMBLY ENABLES EXPERIMENT--
EPS TO BUILD THEIR OWN TRANSFORMERS. ERS TO BUILDTHEIR OWN TRANSFORMERS, ANO ETC. Usamle Gov't rejects, at savings from 50
to 75% of cost. From 0.1 to 100 Ibs. A dew typical cores and their approximate dimensions are: ${ }^{2}$ STK. No.

 | $\mathrm{C}-25$ | \ldots | 4.1 | 1 | 4 | 2.5 | 6.6 | 35 | 8.75 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}-28$ | \ldots | 4.0 | 1.3 | 2.4 | 7.7 | 35 | 8.95 | |

HEAVY DUTY TRANSFORMERS Cat. $\# 1239,-1.1$ KVA. Input
 Size $523 \times 6 \times 51 / 2$, Nec. Wt. $151 / 2 \mathrm{ibs}$ Note: Two of these can le con-
nected to obtain 26 and 28 volta volts at to obtain 39 and 42

SLIP RING ASSEMBLY
EMERSON ELECTRIC-Part

 to transfer voltages ijetween
stationary and moving parts

turrets. Full 360° rotation.
 higher voltages. Also has swivel plumbing designed
to trinsfor oxygen. Size $9 \times 6 \times 10^{\prime \prime}$. Wt 10 lbs to rinlete with lousing NEWW.............. $\$ 8.50$

BATTERY CHARGERS
Made by Associated-Hartman Cors. Feature heavyduts constriction and parts, over-size transforiners; Charging current indicated by glow sicmal light and tapers of as battery becomes cllarged. Heavy Muel ler connector clips on output cables. Also used as
power supplies where 6 or 12 VDC is needed $110-120$ VAC 60 Cy . Fresh late ' 54 stock conimpete with eables. MODEL (S -6)- 6 amp. 6 volt. Size

 MODEL (U-6) -Same as above but has special output connector to plug into any car cligarette IIghter IILst
$\$ 19.95$. Irice Brand NEW $\$ 19.95$. Price Brand NEW... $\$ 12.45$

$\$ 32.50$ I Price Brand NEW............... $\$ 19.45$
MODEL
$(\mathrm{S}-20)-20$ amp. 6 yoit. Has ammeter and
 Molt. Charges 20 amps. at 8 volts and
vol $20.6 / 12 \mathrm{~V}$)-Dual 6 and 12 10 amps. at 12 volts. Ammeter a automatic reset circuit breakers.
$12 V$
switch
Size
$61 / 5 \times 61$ 17 1bs. List ${ }^{2} 54.95$. Price Brand $\$ 34$
 ALL MERCHANDISE FULLY GUARANTEED PROMPT DELIVERY ON ALL ORDERS Terms: Prices FOB St. Louis. Cash or 259 (D\&B) Ners. Balance COD. Rated Concerns

MCNEAL ELECTRIC \& EQUIPMENT CO.
4736 Olive St.
St. Louis 8, Mo.

TEST EDUIPMENT
 UNUSED—FULLY GUARANTEED

HEWLETT-PACKARD
(Back Mounting type) 200 B
20 to
Andio
20,000
Osycles Reg. price- $\$ 120.00 \quad$ Special $\$ 75.00$

HEWLETT-PACKARD 400A Vacuum Tube Volt meter-. 005 to $300 \vee \mathrm{AC}-9$ ranges
Freq. response- 10 cps to
Reg. price- $\$ 185.00$ Special $\$ 95$
FURST ELECTRONICS ModeI. 1210 Electronically Repulated. Multiplo Power Supply (Rack mount Outputs +200 to +470 VDC, $0-1 \mathrm{ma}$ 50 to +200 VDC, $0-70 \mathrm{ma}$
50 to -150 VDC, $0-10 \mathrm{ma}$
All outputs 1% regulation-less than 5 mv RMS Special \$55.00

All prices net FOB Phila., Pa. Send for latest catalog
LECTRONIC RESEAROH LABS.
715 ARCH STREET

SPECIAL PURCHASE!

Big Shipment Just Received NEW RCA TV CAMERAS
Perfect Condition-Complete with Technical Data and information

$\$ 197.50$

Hundreds of

Sold at \$225 and Up! Hurry! Never before a buy like this! Rig up your own uses-plua training and experimental work. pllfier and clipper. Complete dope on request

Write for

BURBANK, CALIF.-PHONE: VIctoria 9-2411

121/2 KW High Frequency Induction HEATING UNIT

200 to 500 Kilocycles, practically new. sacritice.

ART ANSON
1901 S. 12th St.
Allentown, Pa.

811 Boylston St., Boston 16, Mass. CO 7-4700

INDEX TO ADVERTISERS

Acme Wire Co. 366
Adams \& Westlake Company 205
Aeronautlcal Communications Equip-
ment, lic.80, 81
Aerovox Corporation 294
Aircraft-Marine Products, Inc 28, 29
Aircraft Radio Corp 371
Airpax I'roducts Co 53
Allon-Bradley Co. 339
Allen Co., Inc., L. B 382
Allen Manufacturing Co. 348
Algehany Ludlum Steel Corp 88
Allied Industries, Inc. 268
Allied Radio 346
Allison Laboratories 362
Almetal Screw Products Company, Inc. 368
Almo Radio Company 351
American Electric Motors 274
Amertcan Electronic Laboratorieg, Inc 380
American Gas Furnace Co 365
American Lava Corporation 213
American Metal Co., Ltd 369
American Phenolic Corp 18.4
American Television \& Radio Co 372
American Time Products, Inc 193
Ampex Corporation 3
Antara Chemicals, A Sales Division of
General Aniline \& Fum Corp.......... 233
Armco Steel Corp 92
Arnold Engineering Co 13
Arowhead Rubber Company 340
Artisan Metal Works Co 306
Art Wire stamping 360
Assembly Products, Inc. 344
Atlas Engineering Co., Inc 380
Augat Bros. Inc 379
Automatic Electric Mig. Co 236
Ballantine Laboratories, Inc 196
Barker \& Williamson, Inc. 212
Barry Corp. 21
Belden Manufacturing Co... 223
Bell Telephone Laboratories 207
Bendix Aviation Corporation eol Banloneer Div. 222
Bennett Manufacturing Company 341
Serkeley Division, Beckman Instruments 311
Bird Electronics Corp 324
Bliley Electric Company 192
Boesch Mfg. Co., Inc. 378
Bogue Electric Manufncturing C 237
Boonton Radio Corp 113
Bourns Laboratories 293
Bowser, Inc. 292
Bradley Laboratories, Inc 79
Bruno-New York Industries, Corp....... . 42
Brush Electronics.................112A, 112B, 317Burnell \& Co., Inc. 25
Bussmann Mfg. Co 195
Calidyne Company 210
Cambridge Thermionic Corn 46
Cannon Electric Company 89
Cannon Maskegon Corp 289
Carborundum Company 52
Carter Motor Co. 332
Chase Brass \& Copper Co. 87
Chatham Llectronics Corp. 68
Chatillon \& Sons, John 200
Chicago Standard Transformer Corp.... 202
Chicago Telephone Supply Corp.....64A, 641
Cinch Mfg. Corp. 175
Cinema Engineering Co 382
Clare \& Co. C. P 107
Cleveland Container Co. 51
Clevite-1Brush Development Co 341
Clifton Precision Products Co., Inc 208
Cobehn, Inc. 421
Cohn Corp., Sigmund 342
Collectron Corporation 347
Collins Radio Co 189
Color Television, Inc 357
Communication Accessories Co 82
Continental Communications, Inc 343
Continental-Diamond Fibre Co 10
Continental Wire Corp. 330
Cornell-Dubiller Electric Corp. 55
Corning Glass Works 312
Cornish Wire Co.. Inc 346
Cosmic Condenser Co 365
Cramer Co., Inc., R. W 276
Cross Co., H. 365
Crucible Steel Co. of America 203
Cunningham, Son \& Co., Inc. James. 369
Dale Products, Inc. 308
Danbury-Kínudson, Inc. 230
Dano Electric Co 341
Daven Company 3rd Cover
Daven Electronic Sales Corp 342
Daystrom Instrument. Div. of Daystrom, 286
DeJur-Amsco Corporation 256, 323
Dewey \& Almy Chemical Company, Div.
of W. R. Grace \& Co. 275
Dialight Corporation 326
Diehl Manufacturing Company 266
Dimond-Union Stamp Works 287
Driver-Iarris Co. 247
Dumont Airplane \& Marine Instruments 327
DuPont de Nemours \& Co. (Inc.) E. I.Polychicals Dept $\cdot \cdots \cdot \cdots \cdot 18$ A $_{48}^{2}$Dyna-Labs, Inc. 343
Eastern Precision Resistor Corp, 325
Eastman Kodak Company 185
Edin Company Inc. 308
Edo Corporation 50
351, 38:

Notching
 Sheet Materials?

Do It Quickly, Easily with a DI-ACRO ${ }^{*}$ NOTCHER

Speed up notching operations, eliminate the need for heavy presses and dies with a Di-Acro Notcher. A $6^{\prime \prime} \times 6^{\prime \prime}$ notch can be made in 16 gauge material in one operation. Many straight shearing jobs also performed.

*pronounced DIE-ACK-RO

BOTH HAND

AND POWER
OPERATED MODELS
avallable
Di-Acro Power
 Notcher is especially designed for operations where high rate of production must be maintained. Motor driven flywheel and all moving parts housed in welded, steel cabinet.

Hand operated Di-Acro Notcher is ideal for short run production or experimental use.

WANT MORE INFORMATION?

Send for 32-Page Catalog
Gives complete detaila on Di-Acro Notchers, Benders Brakes, Press Brakes, Punch Presses Rod Parters, Rollers, Shears and Spring Winders.

Want more information? Use post card on last page.

ELECTRONIC COMPONENTS AND ASSEMBLIES:
Vacuum Tube Components, Transistor and Diode Components, Slip-Ring Commutators, Sub-Miniature Assemblies

ELECTRICAL CONTACTS

Relays, Vibrators, Voltage Regulators
METER AND INSTRUMENT COMPONENTS
Instrument Bearings, Jewel Bearings and Pivots, Gear Trains, Lapped
Surfaces Surfaces
COBEHN HIGH.VELOCITY SPRAYYCLEAN TECHNIQUE
REMOVES: Rosin Flux; Oil, Grease and Wax; Lapping Compound and Abrasives; Dirt, Dust and Lint
SAFELY -No Film or Residue, No Corrosive Effect; No Damoge to Surface; No Fire or Explosion Hazard

This New 48-Page Vacuum Pump Catalog FREE On Request

Contains a complete description, including performance of Welch Duo-Seal Pumps ranging from 21 Liters to 35 Liters per minute, as well as a greatly enlarged listing of Diffusion Pumps, Vacuum Gauges and Accessories.

If you do not
have your Copy WRITE FOR IT NOW!

W. M. WELCH SCIENTIFIC COMPANY
division of w. m. welch manufacturing company - ESTABLISHLD 1880

1515 Sedgwick St., Dept. H, Chicago 10, Illinois, U.S.A.
Manufacturers of Scientific Instruments and Laboratory Aptaratus
Eitel-Mt-Cullough, Inc. 110
Electra Manufacturing Co. 291
Electrical Industries, Div. of Amperex
Elect ronic Instrument Co. Inc. (EICO) $3: 4$253
Electronic Parts Manufacturing Co., Ine. 35
Electronic Tube Corp... 188
Electro Tec Corporation 281
Elgin-Neomatic, Inc. 377
Emerson \& Cuming, Inc 361
Engineering Co., The 380
Epco Products, Inc 343
Erie Resistor Corp 305
Fairchild Camera \& Instrument Corp. 85
Falstrom Company 392
Federal Telephone \& Kadio Company. 40
Film Capacitors, Inc. 345
Ford Instrument Company 242
Frenchtown Porcelain Company 372
Furst Electronics, Inc 373
G M Laboratories, Inc 353
Gamewell Company 226
Garfleld Wire Division of the Overlakws
Corp. 3.93
Gee-Lar Manufacturing Co 32!
General Electric Company Apparatus Dept. 8, 39. 40, 41, 72, 337
251
109
Chemical Div: 109
35
General Industries Co 241
General Marnetics, Ins 106
General Radio Company 17
Genisuro. Inc. 300
Gertsch Iroducts. Inc 377
Good-all Electric Mfg. Co. 93
Grant Gear Works. Inc 301
Green Instrument Co 355
Greenleaf Manufacturing Co. 219
Gries Reproducer Corporation. 364
Guardian Elpetric Mfe. Co 229
Hammarlund Manufacturing Co., Ine 23
Hardwick, Hindle, Inc 34
Harrison \& Co., Phillip H 364
Harvey Hubbell, Inc 287
Hathaway Instrument Company 30\%
Haydon Manufacturing Company, Ine. 309
Heath Company 358
Helipot Corporation, a Div, of Beckman Instruments, Ine 181
Henry \& Miller Industries, Ine 382
Hermetic Seal Products Co. 235
Hewlett-Packard Company 56, 57
Heyman Manufacturing Co. 345
Hoffman Laboratories Inc. 219
Hopkins Engineering Co 367
Houghton Laboratories, Ine 270
Hughes Aircraft Company 97
Hughes Research \& Development Labs 306
Hyeor Company, Inc. 356
Ilsco Copper Tube \& Products Inc 329
Indiana Steel Products Company. 102

Industrital Development Committee of 100. 361
Indiustrial Development Liv. State of Florida 260 Induction Motors Corp 261
Industrial Timer Corp..................... 60
Infra Electronic Corp. 361
Institute of Kadio Engineers. 365
Instruments for Industries, Inc. 350
Instrument Resistors Co................. . . 334
International Business Machines. 259
Internationai Rectifier Corp. : 28.1
Internationai Resistance Company 30, 31
Ippolito \& Co.. Inc., Tames 330

Jet Propulsion Laboratory 34 \%
Johnson Service Co....................... 35 \%
Jones Div. Howard B, Cinch Mfg. Corp. 373
Kahle Engineering Co................... 15
Karp Metal Products Co, Div, of H \& 13 American Machine Co.................. 11 Kay Electric Co............................. 27
Kearfott Co., Inc. 25?, 333
Kellogg Company, M. W................. 71
Kenyon Transformer Co., Inc. 348
Kepco Laboratories 179
Kester Solder Co. 239
Ketay Instrument Corp 74
Keystone Products Company 27%
Knights Company, James............... $76, \quad$ \% 7
Kollsman Instrument Corp. 54
Kriger Instrument, Harold. 373
Laboratory for Electronics. 267
Lampkin Laboratories, Inc. 372
Lapp Insulator Co., Inc. 262
Lewis \& Kaufman Ltd 183
Librascope, Inc. 354
Ande Air Products Company. Div. of
Union Carbide \& Carbon Corp.......... 331
Litton Engineering Laboratories........ 370
Lockheed Missile Systems Div. 376
Lynn-Deatrick, Inc. 282

M \boldsymbol{R} Manufacturing Company, Inc. 44
Magnecraft Electric Co 332
Magnetics, Inc. 65
Magnatran, Inc. 363
Malco Tool \& Manufacturing Co........ 362
Mallory and Co., Inc. P. R........... 120, 17%
Mansol Ceramics Co. 347
Marconi Instrumente, Ltd................ 116
Martin Company, Glenn L. 220 , 271
Maxson Corp., W. L. 313
McCor Electronics Co. 206
McGraw-Hill Book Co., Inc. 353
McLean Fingineering 365
McMillan Industrial Corp................. . 282
Measurements Corporation 214

PERKIN POWER SUPPLIES

MODEL M60VMC

0 to 32 VOLTS © 25 AMPS. (Cont.)

REGULATION: $\pm 1 \% *(a)$ At 28 V. D.C.-Increases to 2% max. over the range $24-32 \mathrm{~V}$. dses mot exceed $2 V$. regulation over the range $4-24$ V. D.C. (b) from $1 / 10$ Full load tc Full load. (c) At a fixed A.C. input oi 115 V .
RIPPLE: 1% rms @ 32 V . and Full Load- 2% rms. max. @ any voltage above 4 V . A.C. INPUT: 115 V . Single Phase, 60 c.p.s. WEIGHT: 130 lbs .

FINISH: Baked Grey Wrinkle. DIMENSIONS: $22^{\prime \prime \prime} \times 15^{\prime \prime} \times 1+1 / 2^{\prime \prime}$
\#this unit is an economical solution to your power supply needs if stabilization for A.C.
Voltage changes are not required. If this is required, write for spec. on Model ME1040-30
Price: $\$ 439 \mathrm{w} / \mathrm{o}$ cabinet, $\$ 474 \mathrm{w}$ cabinet
Lll prces F.O.B., El Segundo, Terms: $1 \% .10$ doys, net 30 Phone colfect for juantity ciscounts.

NO TUBES TO REPLACE • LONGER LIFE • WIDE VOLTAGE range - LOWER MAINTENANCE COST • GUARANTEED

REGULATION: $\pm 1 \%$ (a) From 10 to 40 V . D.C. (L) From 100 to 130 V. A:C. (c) From 3-o 36 Amps. D.C.
RIPPLE: 1% rms
MOUNTING: Cabinet (or $19^{\prime \prime}$ rack panel)
A.C. INPUT: $100-130$ V., 1 Phase, 60 Cycles

FIVISH: Boked Grey Enamel
RESPONSE: 0.2 Sec .
WEIGHT: 200 lbs.
METERS: $41 / 2^{\prime \prime}$ AM and VM
DIMENSIONS: $22^{\prime \prime} \times 15^{\prime \prime} \times 23^{\prime \prime}$

ALSO AVAILABLE: Standard 6 and 115 volt models; Ground and Airborne Radar and Missile Power SuppliesPrompt Delivery!
WRITE: On company letterhead for free subscription to technical periodical PERKIN POWER SUPPLY BULLETIN.

WRITE FOR BULLETIN MA 154

WE JUST DON'T AGREE
 THAT
 PANEL INSTRUMENTS CANNOT BE MADE MORE ACCURATE THAN 1 OR 2 PERCENT

All of the portable reference standard instruments SENSITIVE RESEARCH manufacturers can now be procured in equivalent panel types in ACCURACIES AS HIGH AS .25 of 1%. D.C. SENSITIVITIES FROM 1 MICROAMPERE AND 1 MILLIVOLT FULL SCALE. A.C. SENSITIVITIES FROM2 MILLIAMP凹RES AND 200 MILLIVOLT FULL SCALE. ALL MODELS AND TYPES.

MODEL EW
Edgewise panel type 5" hand-drawn mirrored scale Up to 8 switch controlled ranges

MODEL JW
$4^{\prime \prime}$ hand-drawn mirrored scale

Detailed descriptive literature available on request

MODEL UPP
A new vertical panel type $4^{\prime \prime}$ handdrawn mirrored scale. Accuracy .5 of $1 \% \mathrm{Up}$ to 5 switch controlled ranges.

SENSITIVE RESEARCH
 INSTRUMENT CORPORATION
 MOUNT VERNON. N.Y.

Symbol of Quality
 ELECTRICAL INSTRUMENTS OF PRECISION SINCE 1927

Metal Cal, C \& H Supply Co 303
Metal Textile Corporation............... . 33
Metals \& Controls Corp., General Plate
Methode Manufacturing Corp............ 374
Meyercord Co., The......................... 341
Mica Insulator Co 248
Mico Instrument Co......................... . 369
Micro Switch, A Dir. of Minneapolis-
Honeywell Regulator Co 108
Mlcrowave Assoclates, Inc................ . . 228
Midwest Instruments 101
Miles Reproducer Co., Inc. 382
Millen Mfg. Co., Inc., Jamee. 840
Minneapolis-Honeywell Regulator Co. In -
dustrial Div. 78
Monsanto Chemical Company. 63
Muirhead \& Co., Ltd.
Multicore Solders, Ltd...................... . . . 250
Murphy \& Miller, Inc. 358
N.k.K. Mfg. \& Engineering Co........... 368

Narda Corporation, The................. 290
Natlonal Moldite Co........................ . . 255
Natvar Corporation 25%
New Hermes Engraving Machlne Corp . . 363
Now London Instrument Co 355
Nothelfer Windlug Labs................... 98

Ohmite Mfg. Co...........................32A, 32B Olympic Metal Products Company. Inc. . 272 O'Neil-Irwin Mfg. Co 423
P M Industries, Inc. 288
Pace Electronics Corp....................... . 350
Pacific Sclentlific Co....................... . . 331
Panoramic Radio Products, Inc.......... . 27:
Perkin-Elmer Corp. 295
Perkin Engineering Corp 425
Permag Corp. 369
Peter Partition Corp. 335
Phalo Plastlcs Corp. 218
Phelps-Dodge Copper Products Corp. 119
Phllamon Laboratories, Inc............... 91
Phillips Control Corp. 104, 105
Polarad Electronic Corporation.36, 37, 86, 263
Polytechnic Research \& Development Co
Inc. ... 245
Potter \& Brumfleld........................ . 58 , 59
Preclsion Apparatus Co., Inc............. . 428
Precision Paper Tube Co.................. 216
Progressive Manufacturing Co............ . 198
Pye, Ltd. 112
Pyramid Electric Company............... . 117

R-B-M Division, Essex Wire Corp 186
R S Electronics Corp 316
Radio Corporation of America...... 114,115
Radio Engineering Laboratories, Inc.... 73
Radio Frequency Laboratorieg, Inc. 254
Radio Materials Corp.................... . . 221
Radio Receptor Co., Inc.. 231
Rallway Express Agency, Air Express 191
Raytheon Mfg. Company . . 18, 19, 194, 269, 298
Reeves-Hoffman Corp. 326
Resin Industries, Inc 344
Richardson Company, The................ . 283
Rotron Mfg. Co., Inc 426
Rumple, Inc. 190
Sage Electronics Corp 258
Sanborn Company 45
Sargeant \& Wilbur Heat Treating Corp. 357
Scientific Radio Products, Inc 264
Secon Metals Corp 334
Sensitive Research Instrument Cory 426
shalleross Mrs. Co. 302
Shell Chemical Corp 43
Shure Bros., Inc 297
Sierra Electronic Corp 18 \%
igma Instruments, Inc 246
Signal Engineering \& Mpg. Co 351
Simmons Fastener Corp 62
Sorensen \& Co., Inc 83
Sou1h Chester Corp. 64
Southern Electronics Co. 319
Sperry Gyroscope co. 345Sprague Electric Co............... 11, 201, 224Stackpole Carbon Co. 99tondard Wlectric Time Co..................... 197Steriing Engineering Company, Inc.,. 58,59terlinStevens Arnold Inc. 359Stoddart Aircraft Radio Co., Inc.248, 320Stokes Machine Company, F. J. 66, 67tupalof Ceramie Manfacturintupakof Ceramic \& Manufacturing Co.
Superior Tube Co 211
Sylvanis Electric Products, Inc9, 279
Syntronic Instruments, Ine 367
T L G Electric Corp 379
Taylor Fibre Co 285
Technology Instrument Corp 217
Cektronix, Inc 32
Thompson-Bremer \& Co 225
rad Television Cort. 366
Transitron Blectronle Corp 103
329
Tubuiar Rivet \& Stud Co 244
Tung-Sol Electric Ine 199
Ungar Electric Toois Inc............... 373
Unlon Carbide \& Carbon Corp., Linde AirProducts Div.house Alr Brake Co.Ünited States Gasket Co 427

Tough TEFLON replaces brittle materials for high frequency, high volfage, high temperature service

COMPRESSION MOUNTING wilhout breakoge. No odditional hodwore needed

Chemelec Stand-Off and Feed-Through Insulators

Tough, resilient Teflon is fast replacing brittle glass in miniature components. Chemelec components permit compression mounting, facilitate miniaturization, greatly reduce assembly costs, withstand shock and vibration in service.

- Teflon's superior insulating characteristics made these miniatures possible-for high frequency, high voltage or current, high temperature service.

Higher surface and volume resistivity.

Lower loss factor and dielectric constant.

Wider service temperature range $\left(-110^{\circ} \mathrm{F}\right.$ to $+500^{\circ} \mathrm{F}$).

WON'T CARBONIZE under arcing or DC-plate.

Investigate Chemelec Stand-Off and Feed-Through Insulators for superior service and lower assembly costs.
Nineteen stock sizes, including sub-miniatures. Other dimensions feasible. Write for Chemelec Bulletin EC-1153.

Fluorocarbon Products, Inc.,
Division of
UNITED STATES GASKET COMPANY
Camden 1, New Jersey

FABRICATORS OF
 FLUOROCARBONS \& OTHER PLASTICS

Representatives in principal cities throughout the world

20,000 OHMS PER VOLT D.C.
5,000 OHMS PER VOLT A.C.

The ' 120 ' gives you . . .

\checkmark more ranges
\checkmark an extra-low resistance range
\checkmark an extra-low voltage range
\checkmark an extended low current range
\checkmark a larger meter scale face
\checkmark simple, positive range selection
\checkmark positive contact jacks and plugs

Compare These Wide Spread Ranges and Special Features:

\star © DC voltage ranges: $\mathbf{2 0 , 0 0 0}$ ohms per volt.
$\star 8$ ac voltage ranges: 5,000 ohms per volt. 0-1.2-3-12.60.300.600.1200-6000 volts.
$\star 8$ AC OUTPUT RANGES: same as AC volt ranges. Built-in 600 volt blocking capacitor.
$\star 7$ dic Current ranges:
$0.60-300$ Microamperes. $0-1.2-12-120-600 \mathrm{Ma}$. 0-12 fmperes.

* 5 RESISTANCE RANGES: self-contalned. $0-200 \cdot 2000 \cdot 200,000$ ohms. 0-2-20 megohms.
$\star 8$ decibel ranges: -20 DB to +77 DB . $O D B=1$ Milliwatt, 600 ohms.
\star extra large $51 / 4$ " rugged 'pace' meter: 40 microamperes sensitivity, 2% accuracy
$\star 1 \%$ MULTIPLIERS and SHUNTS:
Wire-wound and deposited film types.
\star tWO jacks serve all standard ranges: Separately identified and isolated jacks provide for extra high ranges.
\star "TRANSIT" SAFETY POSITION on range selector protects meter during transport and storage.
\star CUSTOM-MOLDED PHENOLIC CASE and PANEL: Compact, laboratory sty led Instrument.

MODEL 120... Complete with Internal ohmmeter batteries, banana-plug test leads and detailed operating manual. Overall case dimensions.
$53 / 8 \times 7 \times 34 / 8^{\prime \prime}$
Net Price $\$ 39.95$

PRSCHKYON. Appartive co. inc. 70-31 8ith street, Glendale 27, L. I., N. Y.

Want more information? Use post card on last page.

United States Motors Corporation ≥ 32 United Transformer Co...............nd Cover Universal Winding Company

Vatuum Metals Corp
Varian Associates 47
Vedder-Root, Inc. 48
Victury Engineering Corp, 321
Vokar Corporation, Vo-Tron Div 375
Vilcan Electric Co. 369
Waldes Kohincor. Inc 61
Ward Leonard Electric Company $96 B$
Waterman Products Co., Inc. 299
Waters Manufacturing Ine 328
Watlow Electric Mfg. Co 354
Welch Scientific Co., W. M 424
Wenco Mfz. Co. 343
Westinghouse Electric Corp 100
Wheeler Insulated Wire Co.. Inc 296
White Dental Mfg. Co., S. S 234
Williams \& Co., C. K. 352
Winkler Lathoratories 373
SEARCHLIGHT SECTION
(Classified Advertising)
H. E. Hilty, Mgr.
EMPLOYMENT
Positions Vacant. 382-406 Selling Opportunit 386, 392
elling Opportunit -33. 386
Employment Agencies - 383
BUSINESS OPPORTUNITIES 383
EQUIPMENT(Used or Surplus New)406-422
WANTED . 406
ADVERTISERS INDEX
403
Adniral Corp
$.406,414$
Anson Articies, Art...
396
Armour Research Foundation.
Arrow Sales Inc.396
.415
.405
419Automatic Switch 419
Barry Electronics Corp Barry Electronics
396
Products Div.
404
404
Bendix Aviation Corp., Yacific Div 399
Corp.389
Bittc 406
Brus 415
396
Brush Electronics Co.....
Burroughs Research Center
391
Cardwell Electronics Prod. 403
406

Finnegan, H. Aircraft Radio Marine Inc.

Maritime Switchboar
Melpar Inc.420
Monmouth Radio Laboratories. :399
Pennsylvania State University, The.
Radalab....Radio Corp of America384,Radio Research Instrument Co420
406
418
Relay Sales Inc. 414
Richardson Co.. The............................... . . 392
Sikorsky Aics Corp.414
Snyder Co., Lee Grant.386
418
Stromberg Carlson Co. 398
Pe 399
Sylvania Electric Products Inc., Buffalo...393
"TAB"407
Terminal Radio Corp 496
Universal General Corp.. 401
412
Vitro Laboratories, Silver Spring Md. 412
398
Western Engincers 411
Westinghouse. Elmira. N. Y.Westinghouse-TV.Radio Div.400
Wilgreen Industries
421
383
Wright Associates.

This index is published as a convenience to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsfibility for errors or omissions.

With Over 3500 Standard Switches In The Daven Line From Which To Choose - and which in turn can be modified to provide countless additional switch com-binations-it's easy to see why Daven is equipped to meet your most exacting switch requirements on short notice.

Knee-Action Rotor Lowers Contact Resistance . . . Gives

Longer, Trouble-Free Switch Life! Every Daven switch

 features the exclusive, patented Knee-Action rotor arm with two separate wiper blades, each individually spring-loaded-to insure extremely low and uniform contact resistance throughout the life of the switch.Daven's special design renders these blades tamperproof...they withstand rugged treatment in the field. Because of their self-wiping action, little or no servicing is required.
Compact Design for Smaller-Size Components-With Daven's space-saving design, up to 8 poles per deck can be supplied... a significant factor for maximum performance where depth and mounting space are at a premium. Daven switch sizes start at 1-3/8" diameter x 1-11/16" in depth. Solid silver alloy rotors, slip rings, and contacts are used exclusively. These switches meet all applicable military specifications.

Write today for FREE catalog.

[^0]: Tublished monthly with an additional issue in Jume hy Megraw-llill loublishing Tompany. The. Janes II. Mefraw (18\&0-1948), Founter. Publication Office, $99-129$ North Broadway, Allany I. N. Y.
 Executive, Editorial and Advertising Offices: McGraw-Hill Building. 330 W. 42 St.. New York 36, N. Y., Tongacre 4-3000, Imonald C. MeGraw, Eresidfut: and Truasurer: Johat I. Conke, Secretars; Paul Montgomers. Fxemutive Vice I'resident. Puhlication Division; Talph B, Smith, Vice-President and iditorial Dirfetor: Nelson Bond, Vice-Iresident and Director of Adrertising: J. E. Mlack burn. Jr., Vice-J Pesident and Director of Circulation.
 Sunscrintions: Address correspondence to Electronics-Subscription Service.
 only from persons enuaged in theory, research, design, production, maintenance and use of electronic and industrial control components, parts and cud products.

[^1]: Position and company connection must the indicated on subscription orders. Sibgle copies Fid for United States and possorsions, and Cauala: $\$ 1.50$ for , dith Amertet; $\$ 20$ tor all other foreign countries. Buyers Ginde $\$ 3.00$. SubCanada, 10.00 a year $\$ 1 f .00$ for two ypars. Other western henisphere contries Gut ithe Philiminiss \$15.00 in year: \$25.00 for two years. All other coumtries $\$ 20.00$ a veill $\$ 30.00$ for two years. Thee year rates, a coepted on renewals onls.
 Us. A Copright 1955 hy Merinw-Hill Pher act of March 3, 1879 Printed in
 ox J'nst Street, San Francisco 4 : MeGraw-Jtil Itouse, London, E. C. 4: Wash-
 \%2t-9 Oliver Fuilding. Fittshurgh 22. Fifforionics is indexed regulany in The Enginperting Index.

[^2]: - Uses-Obligations by activities include: Applied technical research and frequency allocation-1956 estimate, $\$ 431,174 ; 1955$ estimate, $\$ 437,090$ compared with $\$ 447,576$ in 1954. This activity provides the Commission with basic information for determining the best utilization of the radio spectrum.

 Broadcast estimate for 1956 is $\$ 1,205,764$. For 1955 it is $\$ 1,243$, 992 compared with $\$ 1,383,989$ for 1954. The slight decrease is due to reduced tv station applications.

 Obligation for licensing and regulating safety and special radio services for 1956 is estimated at $\$ 724,375$ compared to $\$ 705,735$ for 1955 and an actual expenditure in 1954 of $\$ 743,534$.

 Field engineering and monitoring is estimated at $\$ 2,269,709$ for 1956 and $\$ 2,259,908$ for 1955 compared with the 1954 appropriation of $\$ 2,339,100$.

[^3]: 1310 SEVENTH STREET • NORTH BERGEN. N. J.

[^4]: *Trademarks pending on Centralized Operations Control and COC.

[^5]:
 CORPORATION 934 CHARTER STREET, REDWOOD CITY, CALIFORNIA

 BRANCH OFFICES: New York; Chicago; Atlanta; San Francisco; Dayton; College Park, Maryland (Washington, D.C. Area).

 DISTRIBUTORS FOR AMPEX INSTRUMENTATION RECORDERS: Radio Shack,
 Boston; Bing Crosby Enterprises, Los Angeles; Southwestern Engineering \&
 Equipment, Dallàs and Houston; Canadian General Electric Company, Canada

[^6]: HEADQUARTERS FOR PRGDUCTS TO ISOLATE VIBRATION...TO EXCITE IT...TO MEASURE IT

[^7]: wherever two or more parts are fastened together; standard and special designs for improved performance and lower production costs

[^8]: This message is one of a series prepared by the McGraw-Hill Department of Economics to help increase public knowledge and understanding of important nationwide developments that are of particular concern to the business and professional community served by our industrial and technical publications.

 Permission is freely extended to newspapers, groups or individuals to quote or reprint all or parts of the text.

[^9]: MICRO SWITCH provides a complete line of extremely reliable, small-size, high-capacity, snap-action precision switches and mercury switches. Available in a wide variety of sizes, shapes, weights, actuators and electrical characteristics. For all types of electrical controts.

[^10]: Electrical, radio and electronics engineering
 Aeronautical and rocket engineering
 Physics and atomic energy.
 Medicine
 Mathenatics
 Biology
 Mechanical engineering
 Chemical engineering
 Dentistry
 Science teaching
 Registered professional nursing.
 Civil and sanilary engineering.
 Geology, metcorology, oceanography Pharmacy
 Metallargy
 Engineering and lab assistants Industrial and safety enginereinig....
 Mining engineering

[^11]: - Deceased

[^12]: \# Work done while with U. S. Forest
 Service

[^13]: A sursidiary of moffman electronics corporaticia

[^14]: PRECISION POTENTIOMETERS

[^15]: COMPANY 4204 Wrightwood Avenue, Chicago 39, lllinois; Newark 5, N. J.; Brantford, Canada

[^16]: \qquad

[^17]: Tubular Rivet
 E STUD COMPANY
 WOLLASTON 7O. MASSACHUSETTS BRANCH OFFICES: Buffalo, Chicago, Dallas, Detroit, Indianapolis, Los Angeles, Nashville, New York City, Philadelphia, San Francisco, St. Louis

[^18]: Want more information? Use post card on last page.

[^19]: - MAIL THE COUPON TODAY! ———————

 ## DEWEY AND ALMY CHEMICAL COMPANY
 Division of W. R. Grace \& Co.

 Cambridge 40, Mass.
 Please send me the new DAREX Flowed-in GASKET Brochure.

 ## Name

 Firm
 Street
 City State

[^20]: WATERS MANUFACTURING, inc. Waltham 57. Massachusetts
 aprication encimetheng orfacis in mencipal cisiss

[^21]: Relocation of applicant must not cause

[^22]: --SEE THESE BOOKS 10 DAYS
 McGraw-Hill Book Co.
 330 W .42 St., NYC 36
 Send me book (s) checked below for 10 days examination on approval. In 10 days I will remit for
 book(s) book (s) unwanted book(s) postpaid. (We day deliyery costs if you remit with this coupon-same return privilege.)
 \square Ahrendt-Sorvomechanism Practice- $\$ 7.00$
 Q Then-Engineering cybernetise- Wells-Milimicrosecond Pulse Tech.
 niques- $\$ 7.50$
 \square Seely-Electron-Tube Circuits- 7.50
 (PRINT)
 Address
 City Zone.... State...
 Company
 Position
 For price and terms outside U. \mathcal{E}.
 worite McGTaw-Hill Int'l., N.Y.C.

[^23]: ELECTRONIC INSTRUMENT CO., IME. 84 Withers Sireet, Brooklyn 1 N. Y Want more information? Use post card an last page.

[^24]: Experienced, for ENGINEERS
 Experienced, for design and development work on switches of all types-microswitches; leaf-type; tap; experienced in precision potentiometer design. With progressive midwest manufacturer of small electrical components. Attractive conditions, good opportunity. Give full details, include salary desired.

 520 N. Michigan Are., Chicago 11. Ill.

[^25]: FOR SALE
 HEADSETS. HSS-30/U
 REMOTE CONTHOL UNITS, RM- 29
 ANTENNA EOUITHNT. RC-173
 ANTENNA EOUILMFXT. RC-173

 DYAANOTORS, DM-36
 DYNANOTOLS. PE-8G
 VICTOR-BERNARD INDUSTRIES, INC 1511 N. 26th St., Phila. 21, Pa.

[^26]: This set provides greatly simplified operation over the regular APN-9 or APN-4. To take a bearing it is necessary only to match PPI'S on the screen and re
 is necessary.

 Accuracy within 1%. Furnishes position information at far greater distance from transmitting stations than onssible by any other means.

 The unit consists of the R249/APN-9A.
 Indicator, pluqs, etc. Input is lloV. 400 cyc. Large
 quantity available. Each Loran is completely checked out and guaranteed.

