$\square\left[\begin{array}{c}0 \\ \square \\ \square \\ \square\end{array}\right](\square)[\square]$

Etching Technique for Stilton Transistor

(2)
RCOF CASE $125 / 64 \times 61 / 64^{\prime \prime}$

SM CASE $11 / 16 \times 1 / 2^{\prime \prime}$

HERMETICALLY SEALED PULSE TRANSFORMERS

Because of the wide variety of blocking oscillator, interstage, and modulator pulse applications, the bulk of UTC pulse transformers are designed to customer's specifications. Through versatile design, however, the stock hermetic MIL-T. 27 pulse transformers listed below take care of most low level applications. Wide ranges of pulse duration, loading, and level are obtainable by variations in the manner of connecting the balanced coil structure windings as shown in the engineering sheet accompanying each unit.

The $\mathrm{H}-40$ and $\mathrm{H}-41$ units employ identical windings suitable for different applications because of the manner in which the windings are brought out to the terminals. Pulse widths from .I to 5 microseconds are realized with excellent fidelity. H-42 and H-43 are highly miniaturized units. They incorporate three equal windings capable of being inter-connected for wide versatility in blocking oscillator, interstage, and impedence matching service.

| Type
 No. | Description* | | Pulse Width
 Microsec. | Ins. Test
 Volts RMS | Case |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

* Impedances shown are nominal, subject to wide variation with application. **Mtg. screw is centered on large side of case.

for SPECIAL APPLIGATIONS

SERVO MOTOR MAGNETIC AMPLIFIERS

The MAT 1-4 Magnetic Amplifiers are exceptionally stable units designed for the control of 2 phase 400 cycle servo motors. They are compact . . . hermetically sealed . . . magnetically shielded . . . meet MIL-T. 27 . . . high input impedance . . . high damping . . . high gain. The output is sinusoidal, amplitude variable, and phase reversible. Control is provided by a dual triode such as a 12AU7 operating with a plate voltage of 115 volts, 400 cycles, or higher. The signal io the triode grids can be polarity reversible DC or phase reversible 400 cycles. Power gain of the MAGNETIC STRUCTLRE is approximately $40 \ldots$ response time approximately 7.5 milliseconds . . . maximum null voltage 3V. RMS.

For $A C$ signal control, the circuit of Figure 1 is employed. For DC signal control, Figure 2 applies. Figure 3 shows the use of a power transformer (MAT-5) which provides higher plate voltages and eliminates the input transformer (MAT-6). The typical response curve of Figure 4 applies to all units, the larger units feeding heavier loads.

FIG. 2 GRID CIRCUIT
MODIIICATION FOR
DC INPUT

FIG. ${ }^{\#} 4$

TYPE N0.	MAT-1	MAT-2	MAT-3	MAT-4
230 Volt Supply				
Power output	4 W	8 W.	11 W	18 W
RL, ohms	3300	1600	1200	720
CL, mfd	2	3	5	7
115 Volt Supply				
Power output	2 W	4 W	6 W.	9 W.
RL. ohms	6500	3300	2200	1450
CL. mfd.	. 13	2	3	45
Reson. Frea.	40 cyc	35 cyc	35 cyc .	20 cyc
Log-Decr.	. 18	23	03	65
Cont. Wdg. Res.	6200 ohms	8450 ohms	4750 ohms	5650 ohms
Case				
Lengih. In.	11/4	$11 / 2$	13/4	21/8
Width, In.	1/5/16	21/8	21/2	31/8
Heignt, In.	25/16	23/4	215/16	$33 / 8$
Unit Weight, Ibs.	67	1.1	1.7	2.75
MAT-5 115 V .400 cyc to 460 VCT ; provides 230 V . 48 MA DC or 460 V . 24 MA DC. RC- 37 Case ... $13 / 8 \times 13 / 8 \times 15 / 8 \ldots 1 / 8 \mathrm{mtg}$. holes$11 / 8 \times 11 / 8 \ldots 6$ oz.				
MAT-6 $\begin{gathered}\text { Input } \\ \text { under } 1^{\circ}\end{gathered}$	10,000 ohms RCOF case	$i \ldots 1: 5$	T. ratio	phase shift

ETCHING TECHNIQUE FOR SILICON TRANSISTOR-Enlargement of jet-etched silicon wafer, showing orange glow of white light transmitted through silicon window as it approaches final thickness of a few ten thousandths of an inch (see p 194)

COVER
Figures of the Month 4
Industry Report 5
Mobile F-M Broadcast Receiver Design by Kerim Onder 130
Removing Tramp Iron From Chopped Hay by J. B. Dobie and F. C. Jacob 134
Transistor Gun for TV by Raymond E. Lafferty 137
Balloon-Borne Radiation Telemetering System by G. M. Burgwald and L. Reiffel 138
An R-F Generator for Nuclear Energy Studies. by Lester Kornblith, Jr. 142
Marker Pulse Shows Shaft Position by F. B. Woestemeyer 146
Beam-Deflection Tube Simplifies Color Decoders. by Robert Adler and Charles Heuer 148
Ferroresonant Flip-Flop Design by Rudolph W. Rutishauser 152
Tankless Low-Frequency Transmitter by Preben Gomard 154
Magnetic-Matrix Switch Reads Binary Output by John W. Brean157
Transistors Convert Sine Waves to Pulses .by Robert E. McMahon, I. L. Lebon and R. H. Baker 160
How to Handle Ringing in Television Design . by Leo Beiser 162
Low-Frequency Switch for Recording Transients by Harry B. Cordes 168
Output Windows for Tunable Magnetrons by T. S. Chen 170
Arc-Lamp Tachistoscape Impraves Reading Speed by William J. Spaven 174
Biaelectric Integrator Uses Two Transistors by Adelbert Ford 176
Multipulse Generatar Has Variable Delay by A. J. Strassman \$78
Transistor Amplifiers Reduce Delay Line Attenuation by Allen H. Schooley 181
Signal-Operated Tone Compensation by Ed C. Miller 184
Cavity-Resonator Design Charts (Reference Sheet) by Ned A. Spencer 186
Shielding Nomographs (Reference Sheet) by Joseph F. Sodaro 190
Crosstalk........... 129 Electrons at Work............. 192 Production Techniques..............248 New Products............... 308
W. W. MacDONALD, Editor; VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzie, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, David A. Findlay, Haig A. Manoogian, Assistant Editors; Marilyn Wood, Gloria J. Filippone, Arlene Schlip, Editorial Assistants; Keith Henney, Consulting Editor; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant
H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; Frank H. Ward, Business Manager; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; Charles Wardner, James T. Hauptli, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Robert H. Sidur, Atlanta

Published monthly with an additional issue in June by MoGraw-Hill Publishing Company, Inc., James H. McGraw (1800-1948), Founder. Publication Office, 99-129 North Broadway. Albany 1 , N. Y

Executive, Editorial and Advertising Offices: McGraw-Hill Building, 330 w. 42 St., New York 36, N. Y. Donald C. McGraw, President; Willard Cheralier, Bxecutive VicePresident; Joseph A. Gerardi, Vice-Fresident and Treasurer; John J. Cooke. Secretary; Paul Montgomery, Senior Vice-President, Publication Division; Raloh B. Smith. VicePresident and Editorial Director; Nelson Bond, Vice-President and Director of Advertising; J. E. Blackiburn, Jr., Vice-President and Director of Circulation. N. Y. Allow one month for change of address. Subscriptions are solicited only from persons engaged in theory, research, design, production, maintenance and use of electronic and industria month for change of address. Subscriptions are soticited onfy from persons engaged in theory, research, estabseription orders.
control components, parts and end products. Position and company connection must be indicated on subser

Single copies $75 ¢$ for United States and possessions, and Canada; $\$ 1.50$ for Latin America; $\$ 2.00$ for all other foreign countries, Puyers Guide $\$ 2.00$. Subscription rates -United States and possessions, $\$ 6.00$ a year; $\$ 0.00$ for two years. Canada, $\$ 10.00$ a year; $\$ 16.00$ for two years. Other western hemisphere countries, $\$ 15.00$ a year: $\$ 25.00$ for two years. All other countries $\$ 20.00$ a year: $\$ 30.00$ for two years. Entered as second class matter August 29 , 1936 , at the Post Office at Albany, N. Yer under act of
 Haverty Bldg. Atlanta 3, Ga.; 1111 Wilshire Blvd., Los Angeles 17: 738-9 Oliver fuilding, Pittsburgh 22. ELECTRONICs is indexed regularly in The Engineerlag Index.

electronic

frequency

changers

- accurate control of frequency
- accurate control of voltage
- good wave shape
- portable
- no special wiring or installation

SPECIFICATIONS

Model	FCD250	FCD1000	FC1000
Input voltage	95-130VAC, 16, 50-60~	$\begin{gathered} 208 \text { or } 230 \mathrm{VAC}_{\text {}} \\ 10,50-60 \sim \end{gathered}$	$\begin{aligned} & 208 \text { or 230VAC } \\ & 1 \varnothing, 50-60 \sim \end{aligned}$
Output voltage	$115 \mathrm{VAC}, 10$, adjustable between $110-120$ volts		
Output Frequency	$\begin{aligned} & 400 \sim \text { adjustable } \\ & \pm 10 \% \end{aligned}$	$\begin{aligned} & 400 \sim \text { adjustable } \\ & \pm 10 \% \end{aligned}$	$60 \sim$, adjustable between 45 and 65
Output valtage regulation	$\pm 1.0 \%$	$\pm 1.0 \%$	$\pm 1.0 \%$
Output frequency regulation	$\pm 1.0 \%$ in standard models; $\pm 0.01 \%$ with auxiliary frequency standard (output frequency is fixed when using frequency standard)		
Capacity	250VA	1000VA	1000VA
Load range	0.1 to full load		
Distortion	5\% maximum		
P. F. range	Down to 0.7 F		
Time constant	0.25 seconds		
Envelope modulation	2\% maximum		

These industrial and laboratory frequency changers resulted from contracts for precision inverters. They should prove useful for testing components or complete instruments that must operate over variable frequency conditions. They can also be used as sources for precision $60 \sim$ or $400 \sim$ for timing applications, or used with servo and/or gyro motors in design work.

Sorensen electronic frequency changers are also being used with ficld equipment such as geo. physical vans, where motor generator set frequency control is often inadequate. Another use will be for checking equipment designed for $50 \sim$ (foreign) usage; conversely, the same instrument can be used to convert $50 \sim$ line to $60 \sim$ source.

Flectronic frequency changers of other ratings are now in design. We shall be happy to send further information, or to correspond with you concerning your individual requirements. Address Sorensen \& Co., Inc., 375 Fairfield Avenue, Stamford, Conn. In Europe, write directly to Sorensen A.G., Gartenstrasse 26, Zurich 2, Switzerland.

SORENSEN

375 FAIRFIELD AVENUE, STAMFORD, CONN.

The scientific approach to vibration measurement

WITH the Muirhead-Pametrada Wave Analyser the localization of obscure vibrations can be carried out systematically. Designed specifically for such measurements, this instrument covers a range of $19-21,000 \mathrm{c} / \mathrm{s}$ with an accuracy of $\pm 0.5 \%$. Its high selectivity enables component frequencies close to one another to be measured; the flat top of the tuning characteristic can be varied to simplify measurements of fluctuating frequencies.
In almost every branch of engineering there is a use for this novel instrument.

FEATURES

- Wide frequency band - $19 \mathrm{c} / \mathrm{s}$ to $21 \mathrm{kc} / \mathrm{s}$ in 6 overlapping ranges
- Frequency accuracy $\pm 0.5 \%$ over entire range
- Response flat within $\pm 2 \mathrm{db}$ over entire range
- Flat-topped response curve - narrow or wide bandwidth selected at will
- Off-peak response proportional to percentage mistuning
- Output frequency is that of the selected component, and is available for oscilloscope viewing
- Octave discrimination better than 70db
- Mains operated from a separate stabilized supply unit

FIGURES OF THE MONTH

RECEIVER	Yeor Ago	Previous Month	Lotest Month	TV AUDIENCE	Yeór Ago	Previous Month	Latest Month			
PRODUCTION				(Source: NBC Research Dept.)	Feb. '53	Jan. '54	Feb. '54			
(Source: RETMA)	Feb. '53	Jan. '54	Feb. '54	Sets in Use-total. .	21,907,100	27,666,000	28,289,000			
Television sets	730,597	420,571	426,933							
Home sets	402,742	271,036	233,063	BROADCAST STATIONS						
Clock Radios	210,924	159,932	105,933							
Portable sets	87,711	46,571	98,275	Source: (FCC)	Mar. '53	Feb. '54	Mar. '54			
Auto sets	491,062	394,442	331,961	TV Stations on Air	164	379	385			
				TV Stns CPs-not on air	255	198	190			
				TV Stns-Applications	639	99	72			
				AM Stations on Air...	2,424	2,529	2,539			
RECEIVER SALES				AM Stns CPs-not on air	133	128	129			
(Source: RETMA)	Feb. '53	Jan. '54	Feb. '54	AM Stns-Applications	250	154	163			
Television sets, units.	537,122	731,917	536,017	FM Stations on Air ...	607	554	555			
Radio sets (except auto)	507,527	310,623-r	262,679	FM Stns-Applications	21 7	19 3	15 3			
				COMMUNICATION AUTHORIZATIONS						
RECEIVING TUBE SALES				Source: (FCC)	Feb. '53	Jan. 54	Feb. '54			
(Source: RETMA)	Feb. 53	Jan. '54	Feb. '54	Aeronautical	37,825	42,314	43,682			
Receiv, tubes, total units	40,061,483	22,133,347	25,189,147	Marine	39,001	43,918	44,140			
Receiv. tubes, value...	\$27,371,779	\$16,412,505	\$18,319,819	Police, fire, etc.	12,482	14,865	15,003			
Pic. tubes, total units. .	836,451-r	557,681	645,715	Industrial	16,002	20,053	20,280			
Picture tubes, value...	\$20,030,681	\$12,173,923	\$13,916,478	Land Transportation	5,636	6,556	6,600			
		\$12,173, 2		Amateur	116,697	116,369	117,427			
				Citizens Radio	1,924	5,492	5,550			
				Disaster	101	256	257			
SEMICONDUCTOR	SALES			Experimental	529	525	532			
(Source: RETMA)	Jan. '53	Dec. '53	Jan. '54	Common carrier	1,070	1,479	1,490			
Germanium Diodes	1,470,472	689,409	658,966	EMPLOYMENT AND PAYROLLS						
				(Source: Bur. Labor Statistics)) Jan.'53	Dec. ${ }^{\prime} 53$	Jan. ${ }^{\text {'54 }}$			
	$\overbrace{\text { - Quarterly Figures } \longrightarrow \text { _ }}$	Quarterly Figures		Prod. workers, comm. equip.	330.5	368.4	355.5			
				Av. wkly. earnings, comm. .	\$69.22	\$67.26	\$67.49			
INDUSTRIAL	Year	Previous	Latest	Av. wkly, earnings, radio...	\$64.46	\$67.03	\$65.74			
TUBE SALES	Ago	Quarter	Quarter	Av. wkly, hours, comm..	41.8	39.7	38.8			
(Source: NEMA)	4th'52	3 rd '53	4th 53							
Vacuum (non-receiving)	\$12,790,000	\$9,434,082	\$9,467,331	STOCK PRICE AVERA	AGES					
Gas or vapor	\$3,480,000	\$4,145,018	\$4854,222	(Source: Standard and Poor's)	Mar '53					
Phototubes	\$760,000	\$510,686	\$405,000	(Source: Standard and Poor's)	Mar. 53	Feb. 54				
Magnetrons and velocity modulation tubes	\$10,510,000	\$9,822,600	\$13,073,095	Radio-TV \& Electronics Radio Broadcasters	$\begin{aligned} & 310.7 \\ & 294.3 \end{aligned}$	281.7 284.8	301.9 302.1			
Gaps and T/R boxes...	\$2,090,000	\$1,554,000	\$1,707,730	p-pro	ovisional; r -	ised				

FIGURES OF THE YEAR

Television set production	$7,214,787$
Radio set production	$13,368,556$
Television set sales	$6,375,279$
Radio set sales (except auto)	$7,064,485$
Receiving tube sales	$437,091,555$
Cathode-ray tube sales	$7,582,835$

TOTALS FOR THE FIRST TWO MONTHS

1953	1954	Percent Change
$1,449,832$	847,504	-41.5
$2,285,581$	$1,641,213$	-28.2
$1,177,195$	$1,267,934$	+7.7
922,248	573,302	-37.8
$77,367,556$	$47,322,494$	-38.8
$1,824,767$	$1,203,396$	-34.1

INDUSTRY REPORT

electronics—MAY • 1954

Industry Hails Armed Forces' New Look

Outlay for electronic gear remains high despite cutbacks in defense spending

Emphasis on airborne and atomic weapons rather than balanced military forces, makes fighting men more dependent than ever upon electronic equipment.

- Air Force-Spearheading development of airborne electronic weapons is the USAF Air Research and Development Command. At 10 major research and development activities, in 160 colleges, universities and other nonprofit institutions and in 1,520 industrial plants and laboratories, work is underway on Air Force projects to implement
the massive retaliation principleshould it become necessary.
- Automatic Flight-Several recently unveiled devices indicate that Air Force scientists are well on the way to relieving the pilot of his more arduous duties and in some cases replacing him entirely.

The N-1 gyro compass, now standard equipment aboard medium and heavy bombers, permits navigation over polar regions where magnetic compasses are unreliable. The A-1 dead-reckoning computer is a companion piece to the gyro compass. With heading, air speed, wind direction and velocity fed in, the pilot can read his latitude and longitude continuously.

Pilotless flight may be the even-
tual goal toward which the digital airborne computer and automatic sequence selector point. The former reportedly can guide an aircraft to specific targets, discharge appropriate weapons and get the intruder home without human direction.

- Production-Other developments include instruments to speed materials testing and research on air frames, power plants and propellants.

Electronic manufacturers are keenly interested in work on reliable components such as subminiature amplifiers that consume only $\frac{1}{2}$ watt heater power compared to 2 watts for present units; small electron tubes capable of operating at high temperatures in sealed, ex-

Three Steps in Evolution of 3D Printed Circuits

Underside views of 21 inch tr chassis obove illustrate space saving over conventional wiring, left, accomplished by Tinkertoy module technique in center (ELECTRONICS, p6, Feb., 1954) and at right, new printed-circuit method using Reliaplates developed by Sanders Associates. The plates contain interstage and bypass components and are mounted at right angles to main etched plate containing all tubes and wiring except high-voltage rectifier and front-end tubes. Main plate is 12 inches long, six wide

INDUSTRY REPORT-Continued

pendable subassemblies and a miniaturized 100 -watt water-cooled ceramic tetrode.

- Radar-Preliminary work is well under way on the $\$ 400,000,000$ radar fence across the far north. The joint U. S.-Canadian undertaking is designed to provide six hours advanced warning in case of attempted attack by hostile aircraft on U. S. industrial centers.
The fence comprises both ground and airborne stations.
- Missiles-Development of electronic control systems for guided missiles is number one task for many electronic engineers and production of telemetering equipment by which designers learn how their birds perform during their firstand last-flight is becoming a big business.

Suppliers report expanding sales of ground-station equipment and sales of airborne telemeters in lots of 50 to 100 .

Congress Objects to FCC License Fees

Reluctant itself to impose fees upon operators and radio station licensees, FCC initiated proposals (Electronics, p 5, Mar.) following a directive of the Budget Bureau. Fees ranging from $\$ 3$ (for operators) to $\$ 1,500$ (for equipment type approvals) were proposed, effective May 1.

- Backtracking-Objections filed with the Commission by its April 1 deadline included that of National Association of Radio and Television Broadcasters. Discrimination against broadcasting as compared with other mass advertising media was claimed by NARTB, which recommended Congressional hearings on the subject.

Congress, through the Senate Interstate and Foreign Commerce Committee, has now asked FCC to withhold action on fees until July 1, 1955. The Budget Bureau still feels that FCC should comply with its directive resulting from an Act of the Congress. At press time, FCC had not indicated what action it would next take.

ONE MACHINE produces 2007 -inch or 7012 -inch records per hour when

Disk Maker Adopts Injection Molding

New production method gives pair of stampers almost indefinite life

Large-scale record manufacturing by injection molding was recently inaugurated by Columbia Records at its Bridgeport plant.

Principle of the injection molding process is automatic molding of a plastic material that has been heated to fluid condition. Compression molding, used by the record industry for more than 50 years, molds a plastic mass that is heated to a semi-solid, gummy state.

- Operation-Polystyrene is poured in pellet form into a hopper resting on top of the machine. A metering device below the hopper regulates the release of pellets into a heating cylinder.

Under temperatures of 400 to 600 F the styrene is reduced to a liquid, similar to heavy oil in consistency, An injection plunger forces the fluid into a pair of mold cavities containing the stampers or grooved disks that mold each record surface. Double-mold cavities permit two records to be made at the same time.

Under hydraulic pressure the fluid styrene is molded into grooved disks which harden through a cooling medium while still in the machine.

When completely cooled, the finished records are automatically ejected onto a rack from which they tip automatically onto wire spindles. Records are of exact weight and thickness with perfect edges. Each groove is reproduced exactly as it appears on the stamper and each succeeding record produced is exact in every detail.

- Stamper Life-Since material is introduced into the closed disk as a fluid, friction and general wear on the record stampers is virtually nonexistent. A single pair of stampers has almost indefinite life, in contrast with compression molding stampers that yield little more than 1,000 disks before degradation in the quality of their surfaces sets in.

The complete molding cycle, from fluid state to finished record, takes 20 seconds for a 7 -inch, 40 seconds for a 10 -inch long-playing and 45 seconds for a 12 -inch long-playing record.

Each double-cavity injection molding machine produces either 200 -inch records or 90 10-inch $33 \frac{1}{3}$ or 7012 -inch $33 \frac{1}{3}$ rpm disks per hour. Long-playing records require a longer molding cycle than 7 -inch disks because more material is injected to cover a larger record surface.
(Continued on page 8)

Introtrcing A New DECADE COUNTER TUBE

The 6476 is Another New Sy/vania Development

Now Sylvania offers a new, visual electronic counting device. It's specially designed for control and totalizing applications in high-speed production equipment.

Operating by electrical impulses, this tube visually indicates consecutive numbers by light flashes within the tube-counting from one to ten.

All cathode leads are brought out individually and can be plugged into a socket, permitting independent control of pulses. Additional tubes may be added to the circuit thereby increasing counting capacity to hundreds or thousands.
You will find this new Sylvania tube is low in cost, compact in size, and extremely reliable. For detailed specifications address Dept. 4E-1605, Sylvania.

Electrical Data

Anode Current . 350 ma. max. 350 volts
Supply Voltage 4,000 pulses per second
Max. counting rate

One more reason why it pays to specify Sylvania.

Sylvania Electric Products Inc., 1740 Broadway, New York 19, N.Y. In Canada: Sylvania Electric (Canada) Lid., University Tower Bldg.

St. Cotherine Street, Montreal, P. Q

WIDENING gap between demand and supply sparks hunt for substitutes, as

Planners Fear Selenium Shortage

Titanium dioxide and silicon are scanned as rectifiers; selenium scrap drive gains

InCREASING use of selenium rectifiers in radio, television and electronic equipment has brought about a potential shortage of the metal. Presently, domestic production and imports nicely balance consumption but manufacture of electronic equipment on a wartime basis could exhaust available selenium stocks in a matter of months.

- Uses-The electronics industry now uses 45 percent of all selenium consumed. Other users are the steel, glass, rubber and chemical industries. Selenium rectifier stacks provide reduced size and weight over copper oxide or copper sulphide stacks and have been replacing both hard and soft diode rectifiers in power supplies generally.

An important use of selenium outside electronics is as a catalyst in the organic chemical and drug business. Total selenium consumption in 1953 was $1,100,000$ pounds.

- Supply-Selenium is produced as
a by product of copper refining, being found principally in anode slimes. Domestic production totaled 890,000 pounds in 1953 . Imports amounted to approximately 100,000 pounds. Canada supplies nearly 90 percent of imports; other sources are Japan, Sweden, West Germany and Belgium-Luxembourg.

Latest stockpile figures indicate that supplies of elemental selenium held by primary producers amount to only a two-month supply.

- Conservation-Throughout 1952 selenium was in short supply and the subject of study by the National Production Authority, Munitions Board, Defense Materials Procurement Agency and Bureau of Mines. During the year, 66,781 pounds were turned in as scrap by rectifier manufacturers and recovered from spent catalysts by the chemical industry.

Key to the problem is replacing selenium in dry-plate rectifiers. A titanium-dioxide rectifier is under development by the Bureau of Standards. Recent work with silicon junction diodes also gives promise in this direction.

The silicon junction diodes avoid
the current limitations of the silicon point-contact units and the thermal instability of germanium. However, silicon junction diodes thus far produced have been for switching and demodulation and power rectifiers of this type represent largely a pious hope of defense planners and a gleam in the eye of semiconductor researchers.

Microwave Makers See Expanding Market

Push sales to pipelines, railroads and utilities; two new firms enter field

Communications equipment manufacturers have resumed promotion of microwave systems for railroads, pipelines, power utilities and independent telephone companies. Some curtailment of sales effort resulted while manufacturers concentrated on fulfilling contracts undertaken in the 1951-52 boom.

Early post-war activity by common carriers started the microwave activity. The Bell System still leads with about 6,000 route miles of TD-2 radio relay in operation; a $1,000-\mathrm{mile}$ system forms the backbone of Western Union's operations.

Pipeline companies have installed most of the privately owned equip-ment-well over 10,000 miles. In all, right-of-way companies spent nearly $\$ 40$ million during 1951-52.

The armed services installed an additional $\$ 40$ million worth of mi-crowave-largely in Europe and North Africa.

- Sales Potential-Less than 10 percent of existing pipeline mileage is equipped with microwave communications and pipelines are growing at a rapid rate. Many new systems have been laid over mountains and in the far north where rock slides and ice conditions are bad for pole lines.

Railroads, by and large, have not turned to microwave but both RCA and Philco are making a play for the market. The problem of whether telephone companies will

Sprague PULSE TRANSFORMERS for digital computers

Type 102 pulse transformer at left is color-ceded to customer specifications. Unit at right is standard.

As a new line of seliable components for digital computers, Sprague has introfuced and is in production on pulse trans:armers of a new type. This transformer line is principally directed to high speed, low power computer circuits, with some designs also finding application in blocking oscillator circuits, memory ring driving circuits, etc.

Two major types are offered: a miniature transformer, Type 10 Z , for 0.05 to 0.5 microsecond pulse circuits, and a larger transformer, Type 20Z, for handling pulses up to 20 microseconds in length. Intermediate sizes and pl g g -in units are also available for special cus-omer requiremeats.

Basic data on the high reliability miniature transformer is tabulated as right. Complete details are in Engineering Bulletin M 502. A copy will be sent you on letterhead request to the Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.

Sprague, on request, will provide you with complete application engineering service for optimum results in the use of pulse transformers for computers.

BASIC CHARACTERISTICS OF TYPE $10 Z$ PULSE TRANSFORMERS

Pulse Duration
 .05 to 0.5 microseconds.

Applications
Physical Description

Ratios Offered

Maximum Repetition Rate

Pulse

Amplitude
D.C

Rating

Temperature

Insulation
Resistance
flipflop circuits - buffer circuits pulse amplifier circuits • gating circuits - other circuits with pulse lengths up to about 0.5 microseconds.

Hermetically sealed. Housed in cor-rosion-resistant can with glass-tometal solder-seal terminals at each end. Can length is $3 / 4^{\prime \prime}$ and diameter is $1 / 2^{\prime \prime}$. Transformers can be mounted and supported by lead wires in most applications.

Ratio 1:1 - Cat. No. 1023
Ratio 2:1 - Cat. No. 1025
Ratio 3:1 - Cat. No. 1024
Ratio 4:1 - Cat. No. 1022
Ratio 5:1 - Cat. No. 1021
Special Ratios Available
For a pulse length of 0.1 microsecond, pulse repetition rates up to 2 megacycles per second can be employed.

Normally used in circuits whose pulse amplitude varies up to 60 volts.

Maximum working voltage, 300VDC. Flash tested between windings at 600VDC. May be life tested at 450 VDC between windings, $85^{\circ} \mathrm{C}$, for 250 hours.

May be operated between $-55^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$. Higher temperature units available on request.

20,000 ohms minimum between windings, measured at $25^{\circ} \mathrm{C}$ and 180 Volts DC.

WORLD'S LARGEST CAPACITOR MANGFACTURER

SPRAGUE

Export for The Americas: Sprague Electric International Lid., North Adams, Mass. CABLE: SPREXINT

INDUSTRY REPORT-Continued

permit interconnection with new microwave systems with the same off-line calling privileges allowed for existing pole lines will probably influence this market.

- New Firms-Stromberg-Carlson and Collins have entered the microwave field. Collins will supply complete systems in the 5,925-$5,700-\mathrm{mc}$ range. Frequency-division multiplexing will provide 24 voice channels.

Stromberg-Carlson is teamed with RCA to supply the independent telephone company market. Stromberg will furnish the 30 -channel multiplexing and channeling equipment while RCA will supply the r-f portions.

- Airborne Color-Meanwhile, the Bell System's network continues to expand under the impetus of color television (microwave will pass the complete color signal).

Most recent addition is a 164 mile leg from Atlanta to Montgomery, Ala.-part of a projected 400 -mile route ultimately to reach Jackson, Miss.

Glass Makers Ready Color Envelopes

Any foreseeable demands for color picture tube envelopes can now be met by the glass industry. Production and sealing problems have been solved by attaching metal flanges to the glass face plate and cone with which tube manufacturers can join the two glass pieces together with a cold sealing process, after inserting the color pack. This sealing method permits the bulb to be opened and resealed at least two times.

Sealing problems peculiar to rectangular tubes have been solved by development of an automatic sealing machine for this type of envelope.

Metal color-tube envelopes have also come on the scene. United Specialties, in cooperation with Westinghouse, has developed a stainless steel envelope for 21 and 24 -inch tubes. Samples of a Westinghouse single-gun color tube using these envelopes will be available later this year.

MOVABLE tripod-mounted GCA antenna covers approaches for all runways as

Airport Talkdown Facilities Improve

New accessories and GCA units for smaller airfields make badweather landings safer

Despite propwash among fliers relative to the merits of the instrument landing system (ILS) and ground controlled approach (GCA), both systems are mandatory for any big airport. For the small plane equipped only with two-way radio, GCA has often been a life-saver.

Technicians split up the functions of GCA into ASR (airport surveillance radar operating on 10 centimeters) for control of traffic 20 to 50 miles away and PAR (precision approach radar using two, higher resolution, $3-\mathrm{cm}$ beams) for final landing approach. In either case, the pilot maneuvers according to suggestions from ground controllers who communicate the information by radio.

- Costs-Although GCA was designed at MIT's Radiation Laboratory during the war and its several refinements have been available on laboratory breadboards for some years, the installed cost of the deluxe equipment has slowed its gen-
eral adoption. On the average, CAA will pay $\$ 261,300$ for latest ASR and $\$ 184,000$ for PAR.

The very-high frequency direc-tion-finding equipment required in addition costs $\$ 24,635$. Airports to receive the new Bendix GCA (some as replacements for older equipment) include Chicago, New York (Idlewild and LaGuardia), Washington, Atlanta, Los Angeles, Cleveland, Boston, Knoxville, Louisville, Nashville, Fort Worth, Miami, Burbank, Denver and Buffalo.

- Gadgets-Not just Rube Coldbergs, but real essentials for safe landings in bad weather are special items known as moving-target indicator, video mapping and automatic direction finder. The first, called MTI, enables the operator to cancel out fixed objects that would otherwise clutter his scope picture. Video mapping gives the ground radarman an electronically generated map that is mixed with his radar signals so as to display air traffic routes, navigation beacons and danger spots.

The direction finder, also known
(Continued on page 12)

SILECTRON G-CORES...BIG or LITTLE

 ...any quantity and any size

For users operating on gowernment schedules, Arnold is now producing C-Cores wound from $1 / 4,1 / 2,1,2,4$ and 12 -mil Silectron strip. The ultra-thin oriented silicon steel strip is rolled to exacting tolerances in our own plant on precision cold-reducing equipment of the most modern type. Winding of cores, processing of butt joints, etc. are carefully controlled, assuring the lowest possible core losses, and freedom from short-circuiting of the laminations.

We can offer prompt delivery in production quantities-and size is wo object, from a fraction of an ounce to C-Cores of 200 pounds or more. Rigid standard tests-and special electrical tests where required-give you assurance of the highest quality in all gauges. - Your inquiries are invited.

The Arnold Engineering Company
 SUBSIDIARY OF ALLEGHENY LUDLUM STEEL CORPORATION General Office \& Plant: Marengo, Illinois DISTRICT Sides OFFICES... New York: 350 fitth Ave. Los Angeles: 3450 Wilshire Blvo.
 Boston: 200 Berkeley St.

Scope presentation of airfield approaches gives ground operator plane position information from which he can direct pilot by radio
as vhf/d-f, points to the plane while its transmitter is in communication with the ground, eliminating the possibility of the ground controller's confusing blips on his radar screen.
-The Economy Size-To equip smaller airports having smaller budgets for initial equipment and fewer salaries, a Massachusetts firm has just brought out a small economy-size GCA.

The 75-tube PAR unit shown by Laboratory for Electronics is expected to sell for $\$ 30,000$ to $\$ 35,000$. Using a rotatable tripod-mounted
antenna system, the unit can be placed to cover any runway of an airport.

Changeover of runways requires about thirty minutes. Initial setup requires about six hours.

- Military Use-At advanced airstrips in military operations, the equipment can be broken down into subassemblies that can be reassembled in about two hours.

Although it was designed and developed as a commercial unit, the new equipment is now being given a series of tests under field conditions by the armed services.

Silicon Invades Junction Diode Market

Four firms manufacture units, others announce pilot runs; military users corner output

Large-scale use of silicon alloy junction diodes seems closer with four manufacturers indicating that they are producing such new semiconductor devices. Texas Instruments, National Semiconductor Products of Evanston, III. and Transistor Products of Melrose, Mass. have announced commercial availability of their silicon diodes while Western Electric indicated that silicon diodes were being made at their Allentown plant.

- Single Crystal-Although diodes of polycrystalline silicon have been widely used since the early days of microwave radar, the high-purity single-crystal silicon diode is of recent vintage.

Tiny particles of silicon dioxide are transformed to monocrystalline silicon in an operation requiring temperatures as high as $1,500 \mathrm{C}$. Contacts are fused to thin wafers of silicon and the assembly is then hermetically sealed in light-tight aluminum cans about the size of a pencil eraser.

- Performance-Silicon diodes do everything that germanium diodes do and do it better. Back resistance is extremely high-in the order of thousands of megohms. The flow of
current in the reverse direction is so small that a new unit has been set up to measure it. This is the nanoampere, one-billionth ampere.

These properties mean that silicon diodes can be used for telephone switching with a minimum of crosstalk. Impetus to development of the silicon diode has come from a Navy request for bids on a 100 -line transistorized telephone exchange to use more than 2,000 silicon diodes.

- Temperature-Germanium diodes tend to break down under ambient temperatures between 65 and 75 C . The silicon units, however, can withstand 150 C . This hightemperature stability has led to their use in guided missiles and airborne systems.

One manufacturer reports that 80 -percent of its silicon diodes are being used in rockets.

- Pilot Runs-Other manufacturers indicate that they are producing experimental units. These include Hughes Aircraft, Raytheon and Radio Receptor. Sylvania, in production on point-contact silicon diodes, says that it has junction units in an advanced stage of development.

Manufacturers relate that breakdown voltage on run-of-the-mine silicon junction diodes runs between 15 and 50 volts but that experi-
mental units have withstood inverse peak voltages of 2,500 volts.

Development is underway on silicon power rectifiers to replace selenium stacks in radio and television receivers.

TV Tuners May Use Quartz Crystals

Industry considers this solution to color tuner drift; cost of crystals is chief drawback

Overtone crystals, for use in r-f oscillator stages of color television receivers, are getting attention in virtually every receiver engineering lab. The chief problem appears to be economic-the high cost of grinding crystals for the precise $6-\mathrm{mc}$-apart frequencies.

- Cost Factors-Even with mass etching techniques, crystal grinders are quoting around $\$ 2.50$ apiece to tuner manufacturers for quartz plates ground to tv specifications. Tuner manufacturers say this cost must be cut in half before crystals can go in. Hand grinding costs still more. For the crystal industry the stakes are high, considering that each vhf color tunt. would use an even dozen crystals. If predictions
(Continued on page 14)

sealing glass or sealing glass-to-metal?

then Kahle machinery is best for you...

largest manufacturer of sealing machines for the electronics and allied industries
Experience with the widest range of products to be sealed whether all glass seals or glass-to-metal seals - makes Kahle your logical source for sealing machines - stationary, automatic or combination. Kahle automatic combination machines seal and exhaust in one operation produce up to 2000 units each hour! Regardless of your product or production requirement, write KAHLE.

SPECIAL EXPERIMENTAL AND RESEARCH SERVICES OFFERED BY KAHLE INCLUDE:

- Special glass parts and accessories
- Special tools for research
- Special models
- Small-lot manufacture of special items for research or development
- Regular industrial engineering at regular fee or contract rates
- Special tubes, lamps, etc. for research purposes including elements and parts
- Any special equipment for manufacture or research for tubes or lamps

Kahle
 ENGINEERING COMPANY

1310 SEVENTH STREET NORTH BERGEN. N.J.

SUb-miniature tubes 24 head

MERCURY LAMPS
hermetic seal a head

RADIO RECEIVING TUBES
SEAL EKHAUST MACHINE

CR TUBES 16 head

cr tubes simgle head
high frecuency sealing

SUb-MINAATURE 12 head

bl-post lamps single head fluorescent lamps 24 head
MOULDED NECK LAMPS

power tuges single head

vacuum bottles
of 10 million color sets in the next five vears come true, this would be something like a $\$ 160$ million windfall for the crystal business.

- Technical Factors-Crystals would eliminate the oscillator drift problem that now calls for costly temperature-stabilized tuning arrangements, to eliminate the necessity for frequent retuning while watching a color program. The actual amount of drift is no more than with black-and-white tuners, since the same channel frequencies are involved, but with color the tuning becomes more critical.

Thinking of production men is along the lines of wiring in twelve crustals permanently one for each vhf channel, so that factory output of sets can be shipped anywhere
without need for unpacking by a dealer to plug in the appropriate channel crystals for a locality.

With uhf color tuners, plug-in arrangements will be probably be necessary, but a single crystal could serve for three to five adjacent channels because a screwdriveradjusted control can be used to shift the frequency of an overtone crystal.

A typical uhf channel might use 5th overtone operation of a crystal ground somewhere around 10 mc , to give a $50-\mathrm{mc}$ signal for multiplying to 250 mc and then doubling to 500 mc or thereabouts for a uhf oscillator channel.

One quartz crystal per color tv set is already pretty much assured, for the $3.58-\mathrm{mc}$ crystal filter for color sync.

Railroad Electronics Market Expands

Manufacturers expand activities in the field as more roads install equipment

Recent action by two major electronies manufacturers in the railroad electronics market has caused the industry to reappraise the field.

RCA has set up a railroad communications sales activity tó sell a complete line of microwave radio relay equipment, including $960-\mathrm{mc}$ and $2,000-\mathrm{mc}$ system to railroads. Federal Telephone and Radio is extending its activities in communications equipment to include the railroad industry. It plans to offer main-line control as well as dispatching, signalling, train departure and other complete systems for railroad operation.

- Activity-One reason for increased activity by electronic manufacturers in the market is the steady growth of railroad radio. As of January 1, 1953, there were 10,827 mobile and fixed railroad radio transmitters authorized to operate. The present number of transmitter authorizations is approaching 13,000 . Nearly 90 railroads in the U. S. have installed railroad radio equipment.
- Future-During the last session

of Congress, a bill giving the Interstate Commerce Commission the authority to order railroads to install electronic safety equipment was passed by the Senate and sent to the House. Although it is still in committee and no action is planned on it during the present session, manufacturers hope that its eventual passage will swell sales in the fie!d.

In addition to ordering installation, the bill would make it possible for the ICC to require railroads to establish rules and regulations for proper maintenance and use of elec-
tronic equipment in safety service.
At the present time, ICC can order installation of block signal systems, automatic train stops and similar devices. However, the ICC has no power to require installation or use of electronic devices and radio communications systems and would have to be given such authority by Congress.

Stripe Aids Color Set Installers

Signal received as vertical bar at right-hand side of picture, generator located at station

A COLOR test generator for television stations will add a narrow green-orange stripe to the station's monochrome transmission.
The color stripe is practically unnoticeable on monochrome receivers. Even though the receiver is correctly adjusted for color, it may not receive a satisfactory color picture at a particular location according to RCA engineers who developed the unit.

- Need-Under certain conditions of multi-path reception or improper orientation of the receiving antenna it is quite possible to pick up a satisfactory monochrome picture but to have the color subcarrier almost completely cancelled. Thus it is not possible to determine for sure that a particular color receiver installation will reproduce color programs from a specific tv station until an actual transmitted color signal is available.

The new color test generator can be added (by stations equipped for carrying network color programs) for approximately $\$ 500$. The stripe can be transmitted more or less automatically during station breaks, thus not interfering with normal monochrome operation.

- How It Works-The color stripe generator is designed to be connected to the video line feeding the transmitter in such a way that the normal system operation is not
(Continucd on page 16)

SHOCK, VIBRATION and NOISE

DO YOU W Complete DATA?

CATALOG 523-A. Airdamped Barrymounts for shock and vibration protection of military airborne equipment.
BULLETIN 532. Vibration isolator Type 915, for isolating vibration and noise caused by high-speed motors or motor-driven equipment.

BULLETIN 533. Me-dium-impact shock machine Type 150-400 VD, for qualification and acceptance shock tests up to 77 g .
BULLETIN 534. Series M44 ALL-METL vibration isolators and Series TOMA mounting bases, for military airborne equipment under extreme operating conditions.

BULLETIN 535. Component shock machine Type 20 VI , for qualification and acceptance shock tests up to 210 g .

'"LOOK - NO LAGGING!" Increasing profits through the use of the new Leveling Barrymount for industrial machinery.

BULLETIN 536. Series M64 ALL-METL vibration isolators and Series AOMA and NOMA mounting bases, for military airborne equipment under extreme operating conditions.
BULLETIN 537. Series 262/633 vibration isolators, for isolating vibration and noise caused by medium-speed motors or motor-driven machinery.
BULLETIN 538. Series 670/297 shock and vibration isolators, for isolating shock caused by impact-type machines, and vibration and noise caused by heavy rotating or reciprocating machines.

Here are complete engineering data, application information, and pointers to profits in every field of shock and vibration isolation. Write TODAY for your free copies of the ones you need.

707 PLEASANT ST., WATERTOWN 72, MASSACHUSETTS

```
                                    SALES REPRESENTATIVES IN
Atlanta Baltimore Chicogo Cleveland Dallas Doyton Detroit Los Angeles Minneapolis New York
    Phitadelphio Phoenix Rochester St. Louis Son Francisca Seattle Toronto Washington
```

changed. The generator does not change the basic signal but simply adds a small amount of color information: a color sync burst sig. nal and a short test burst of color signal which is superimposed on the monochrome video signal at the right-hand side of the raster.

Monochrome receivers are rela-
tively blind to these added signal components because most receivers have relatively low response at 3.6 mc. During a color transmission the color bar will be deleted.

The generator has been demonstrated to the FCC which indicated that it did not feel the test bar was objectionable on black-and-white re-
ceivers. It was put into continuous use at WNBT on all monochrome programming.

Some of the other networks have indicated that they were proceeding along these general lines but had not decided whether this particular piece of equipment or some other was the answer to aiding color tv.

Television Set Sales Boom In Canada

Dominion's production and sales head for new records as more stations go on the air

Contrary to recent tv set production trends in the U. S., output of receivers in Canada is moving sharply upward. U. S. production for the first two months of 1954 fell almost 42 percent compared to the similar period in 1953 , from 1.4 million sets to 847,504 .

In Canada, however, the value of tv sets sold jumped 38 percent in the first two months of 1954 compared with the same period in 1953. There were 73,675 sets sold valued at $\$ 27.2$ million in January and February compared with 47,500 sets valued at $\$ 19.6$ million in the same period last year.

As shown in the chart, 1953 was the biggest year on record for Canadian tv production. Output totaled 429,600 sets compared to 126,000 units in 1952, an increase of 240 percent. Monthly production averaged 35,800 last year while in 1952 it averaged 10,500 per month.

- Reason-Main reason for the increasing production and sales of sets in the Dominion is the rising number of tv stations that have taken to the air. There are now 9 stations on the air and 6 more are expected by the end of the year. A total of 15 grants are outstanding. At the end of 1953 over 60 percent of total Canadian population was within range of tv service.
- Plants-A number of U. S. tv manufacturers have set up production facilities in Canada to garner a share of the growing sales volume. Latest to announce

plans for establishing a plant there is Emerson. The firm expects to quadruple its sales volume in Canada this year and estimates that more than $\$ 1$ million in orders for its products have already been booked for 1954. Crosley is also expanding in the Dominion and
is doubling its present plant capacity there to $90,000 \mathrm{sq} \mathrm{ft}$.

British manufacturers are also moving into the Canadian market. Canadian Marconi and A. H. Hunt of London, England have formed a new company in Ontario to manufacture capacitors.

Electronic Cookers Head for Homes

UHF cooking, used in the past on a small scale for commercial food preparation, may soon enter the home kitchen to cut down the time and work involved in preparing the family meals.

In twelve experimental models now being home tested by the Tappan Stove Co., a Raytheon magnetron is used to generate the uhf power. The stove, developed jointly by the two companies, would cost about $\$ 2,000$ at present, but is expected to sell for about $\$ 1,000$ in mass production. Although still in the developmental stages, the Tap-
pan Company hopes to be marketing the stoves late in 1955.

- Advantages-In addition to high cooking speed (a cake bakes in three minutes), use of pots and pans is eliminated. Meals are cooked directly in the serving dishes since ceramic and china are not affected by the uhf radiation. Use of top burners is eliminated since the oven arrangement of the uhf stove will be able to handle all types of cooking jobs.

Cost of the stoves will be high
(Continued on page 18)

SINCE 1915, and by production test-groups for the measurement of . . . RESISTANCE is CAPACITANCE $\&$ INDUCTANCE

IMPEDANCE
 is DISSIPATION FACTOR VACUUM TUBE and now TRANSISTOR COEFFICIENTS

These instruments are indispensable en gineering tools found in research and development organizations engaged in every phase of scientific investigation. They are a result of decades of experience acguired in the de sign and manufacture of electronic test and measuring apparatus. Highest measurement accuracy, rugged construction, and dependable operation ... year after year, have gained
them the respect of engineers and scientists both here and abroad.

Write today for more complete information on any of these bridges. G-R Sales Engineers at our head office in Cambridge or at our Branch Engineering Offices in either New York, Chicago or Los Angeles will be glad to recommend instruments suitable for your measurements problems.

compared to a $\$ 350$ price of some electric stoves, but some savings on the electric bill will be obtained. The electric stove requires about 3,000 watts, as compared to 750 for the uhf cooker.

Electronic Paging Bids For More Business

New systems are expected to swell the market in commercial and industrial fields

Electronic paging systems used for transmitting sound to personnel within buildings and plants represent substantial business for a number of manufacturers. Sales volume of such equipment may grow this year because of new systems.

- Methods-Dictograph Products has introduced a system that utilizes a coil that picks up audio frequencies from a closed loop in the building. The signal is amplified and fed to a midget loudspeaker attached to the coat lapel. Weight of the transistorized receiver and loudspeaker is under four ounces.

IBM has a system that superimposes pulses on regular a-c wiring. Personnel customarily paged are assigned paging codes which indicate the cadence in which the signals will operate. Paging is accomplished by inserting a selector plug in the central code selector. This carrier-current system operates relays and other electromechanical units without extra wiring.

- Market-According to Dictograph, an annual sales volume of $\$ 2$ to $\$ 3$ million can be expected from its personal paging system. Wide application of the equipment is seen in hospitals so that patients will not be disturbed, in department stores to curb thievery, civilian defense work and in outdoor movies. A major broadcasting network is interested in the system for its tv studios to cue floor operators.

IBM also expects increasing sales for coded systems and estimates that more than 7,000 of its electronic time and program systems have been installed.

Plant Building Lets Down Some

Construction contracts let by the industry rose 75 percent in 1953 but are low this year
Building boom in the electronics industry showed signs of taking a breather this year after three years of high activity. Contracts for manufacturing plants let during January and February were far below those of the same period last year. The figure for broadcast station construction is not yet available but there are signs that it too is less substantial that it was a year ago.

- Industrial-Last year was one of the industry's big expansion vears. In 1953, 28 plant construction contracts totaling $\$ 24.8$ million were let compared to 16 contracts amounting to $\$ 14.3$ million in 1952, according to Engineering News Record. In 1951, a high point for industrial expansion, 27 contracts totaling $\$ 62.5$ million were awarded. There was a greater number of smaller expansions in 1953 while 1951 was a year of relatively few contracts for much larger expansions.
-Stations-The trend in broadcast station construction has been different. In 1953, construction contracts awarded by broadcasters were 30 percent higher than all of
the contracts let in both 1951 and 1952 combined. Over 200 tv stations and 100 radio stations went on the air during last year, accounting for the increase.
- Defense-Much of the plant expansion in the electronics industry in the past three years has been due to government encouragement through allowance of accelerated tax amortization.

Under the fast tax program, an electronics firm with a new $\$ 1$ million plan, for example, could charge off the investment on its books within five years, at a rate of $\$ 200,000$ a year, thus substantially decreasing the amount of tax that would be assessed during those years. The fast tax plan has been successful to the extent that many manufacturers hope it will be continued and expanded.

- Future-Despite the lower level of plant expansion activity that is expected this year, 1954 will still be important. More new tv stations will take to the air in 1954 and stations getting ready for color tv may build new studios. NBC recently announced plans for a $\$ 3.4$ million studio to be built in Burbank, California.

Industrial plant expansion is continuing and companies such as

[^0]

Foremost in the field

RAYTHEON TRANSISTORS are FOREMOST IN THE FIELD with PROVEN RELIABILITY Over $1,000,060,000$ OPERATING HOURS of actual field performance in commercial equipment with only a FRACTION OF 1% FIELD RETURNS proves their reliability to be superior to the reliability of vacuum tubes. RAYTHEON TRANSISTORS are foremost in number of units in use in commercial equipment. Raytheon successfully made transistors in "experimental," "pilot" and now MASS PRODUCTION phases. The latest continuous, mass production, and inspection techniques are employed in the making of Raytheon Transistors. HUNDREDS OF THOUSANDS are IN ACTUAL COMMERCIAL USE - MANY TIMES MORE THAN ALL OTHER MAKES COMBINED. No other manufacturers can make these statements.
RAYTHEON GERMANIUM DIFFUSED JUNCTION PNP TRANSISTORS

RATINGS: - ABSOLUTE MAXIMUM VALUES:	CK722	CK723	CK721	CK725	CK727	2N63*	2N64*	2N65*
Collector Voltage (volts)	-22	-22	-22	-22	-6	-22	-22	-22
Collector Current (ma)	10	10	10	10	- 10	10	10	10
Collector Dissipation ($30^{\circ} \mathrm{C}$) (mw)	33	33	33	33	30	33	33	33
Emitter Current (ma)	10	10	10	10	10	10	10	10
Ambient Temperature (${ }^{\circ} \mathrm{C}$)	50	50	50	50	50	50	50	50
AVERAGE CHARACTERISTICS $\left(27^{\circ} \mathrm{C}\right)$								
Collector Voltage (volts)	-6	-6	-6	-6	-1.5	-6	-6	-6
Emitter Current (ma)	1	1	1	1	0.5	1	1	1
Collector Resistance (meg)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Emitter Resistance (ohms)	25	25	25	25	50	25	25	25
Base Resistance (ohms)	250	350	700	1500	500	350	700	1500
Base Current Amplification Factor	12	22	45	90	35	22	45	90
Cutoff Current (approx.) (ua)	6	6	6	6	6	6	6	6
Noise Factor (max) (db)**	$30 \dagger$	$25 \dagger$	$22 \dagger$	$20 \dagger$	$12 \dagger \dagger$	$25 \dagger$	$22 \dagger$	$20 \dagger$

*Hermeticaliy sealed in metal package

+ Measured at $V_{c}=-2.5$ volts in common emitter circuit
†tMeasured at $V_{c}=-1.5$ volts; $\mathrm{Ic}_{\mathrm{c}}=0.5 \mathrm{ma}$ in common emitter circuit

RAYTHEON MANUFACTURING COMPANY

Exaellence in Eilectromics
Receiving Tube Division - Home Qffice $55^{\circ} \mathrm{Ch}$ gpel St., Newton 58 , Moss,

RAYTHEON MAKES ALL THESE:
rellable subminuture and miniature tubes - semicombuctor dedes aho transistors - hucleomic tbbes - microwaye tubes - recilvime and mcture tubes

Admiral, Motorola, and Raytheon have made plans for sizable plant additions. Electrical machinery firms plan capital spending of $\$ 553$ million in 1954.

Financial Roundup

Final financial reports for most of the firms in the electronics field are now in for 1953 and for the most part showed that last year was very successful profitwise.

Survey by the National City Bank of New York covering 82 companies in the radio-tv, electrical equipment field showed net income up 10 percent from $\$ 418.3$ million in 1952 to $\$ 461.5$ million in 1953. Book net assets for the 82 firms rose from $\$ 2.8$ billion to $\$ 3.0$ billion during the year and percent return on net assets rose from 14.8 percent to 15.1 percent.

For individual companies reporting on 1953 net profits in the past month. the picture was as follows:

- Securities-Electro Data registered with SEC covering 450,000 shares of capital stock (par \$1). Proposal is to offer 435,000 shares to common stockholders of Consolidate Engineering at ratio of one share for two of Consolidated. Offering price is to be $\$ 3.50$ per share. Proceeds will be used to repay all working capital advances made by Consolidated. They amounted to $\$ 256,573$ in March. Balance will be added to working capital and used for further development of the business.

Arcturus Electronics filed with SEC covering 100,000 shares of class A common (par one cent) to be offered at the market price. Proceeds are to go to D. E. Replogle, president of the company.

Setmakers Push Portable Sales

More personal radios are being made as radio size decreases; sales increase

Radio for every person seems to be the aim of some manufacturers this year as the portable radio season gets underway. Newer, smaller models have been introduced and sales of the sets are expected to represent a larger part of total radio output this year.

- Trend-As shown in the chart, 1953 was the biggest year produc-tion-wise of the past five years for portables. Approximately 1.7 million sets were produced representing 13 percent of total radio production, compared to 12 percent in 1952.

In 1953, the percentages taken by each type of radio receiver were: auto, 39 ; home, 33 ; clock, 15 and portable, 13. Gains made in the portable field seem to have been made at the expense of home radio production which showed a sharp decrease compared to 1952 output.

- Seasons-April through June were the big production months for portables last year when nearly 38 percent of total output was produced. In the last 3 months 22 persent were made. In 1952, second quarter production accounted for 32 percent of total portable output while output in the last 3 months of the year represented 38 per cent of the total production. Thus, depending on the size of the Christmas rush, the second and sometimes the fourth quarter of the year are the big production seasons for the product.
- Future-Total portable radio production for the first quarter of this year is off compared to last year but manufacturers aren't too concerned. Many have scheduled heavy portable promotions and are counting on substantial sales to the graduation-wedding-vacation markets.

Of the new portable models, the smallest announced so far is Emerson's laboratory model that meas-

ures $\frac{3}{4}$ of an inch deep, 3 inches high and $3 \frac{1}{2}$ inches wide. It uses 4 subminiature tubes and both printed and etched-metal circuitry. Special core materials are used to reduce the size of the intermediate frequency coils, oscillator coils and output transformer.

The next step that may take place this year is the commercial introduction of a transistorized portable. Many of the components necessary for such a set are available now. GE has demonstrated an experimental vest pocket portable radio, weighing about 5 oz ., that uses transistors and diodes and is powered by two penlight cells. Raytheon has also shown an all-transistor experimental receiver that may be marketed in 1955.

More TV Sets Work on Arrival

Only 15 percent fail to work

 when plugged in; small tubes are still biggest headacheChances are about 85 in 100 today that a television set taken out of its sealed carton and installed in a home will work satisfactorily. In contrast, the odds five years ago were around 50-50, and on some makes and models practically every set required the attention of a

[^1]
Bumell toonoos anf filters "SHRUNK to FIT"

ur newest se of the in actual production we are fiving up to our reputation for progressiveness.

The tiny "cheerio" toroids are already being employed in filters small enough to hice with your thumb. Although the applications for these are myriad, the "cheerios" lend themselves perfectly to printed circuit applications as illustrated and are being sold at a cost comparable to'standard' miniature toroids.

Write for new and enlarged 16 page catalog 102A Exclusive Manufocturers of Communications Network Components

Burnell $\&$ Co., Cuc .
serviceman for installation.

- Today's Troubles-Miniature tubes that go bad mechanically or electrically are responsible for about half of in-the-carton troubles. Here the situation is stalemated by the economics of low-priced sets and the resultant squeeze on components and tube prices.

The other $7 \frac{1}{2}$ percent of in-thecarton troubles are many and varied, with no single one standing out and with the pattern changing daily. Some problems are sockets that allow miniature tubes to pop out during shipment, shifting of single-spring ion traps, components that fail en route, rosin joints, parts placement resulting in shorts, and cabinet damage.

- Yesterday's troubles-Most important factor in making sets withstand transit is development of improved deflection system mountings. capable of holding the deflection yoke and focus coil or magnet in precisely the positions at which they were set at the factory. Equally significant is the increased stature of quality control departments throughout the industry, associated with absolute authority to shut down a line that's turning out too many lemons.

Radio-tv Is Bia Business For Magnet Makers

Electronic products represent largest market; new magnets to appear

Manufacturers of electronic gear have long been the chief customers for permanent magnet makers. Each year the industry takes 50 to 70 percent of p-m output. Sales are estimated at $\$ 10$ million for last year.

Loudspeakers have used the most magnets, followed by c-r tubes, magnetrons, meters and instruments. Next important use is in toys and novelties.

- Ceramics-Nearly every major magnet maker is experimenting with ceramic-type magnets but at
present only tivo companies have them available commercially. According to one ceramic magnet maker, the new material would make the product 35 to 40 percent lower in cost than alnico 5. There are still production problems with the new material however and most magnet firms do not expect volume output in the near future.

Coming applications of the new ceramic magnets are seen centering around its unusual properties. Its high coercive force makes it suitable for use as a focusing medium on crt's and travelingwave tubes.

The material is practically a nonconductor so that it could be used for the purpose of rotation of the plane of polarization and for beam focusing or deflection.
-Future-Magnet makers are keeping pace with the developments of the electronics industry. Carboloy, for example, savs it has magnet materials under development that are 10 times more powerful than any now in existence. Other companies doing military work also see new developments coming.

TV Prices Skid To New Low

January and February wholesale price index shows declining price trend

Lower level of tv set prices is evident in the Labor Department's wholesale tv price index. In the first two months of this year the index stood at 73.5 and 73.6 respectively, the lowest levels of the past 14 months. The term "wholesale" as used with the index refers to sales in large lots and prices paid for the products in the first important commercial transaction.

As indicated by the index, factory prices for tv sets are more than 25 percent lower than they were in the 1947-1949 period of the business, a substantial drop in five years that is not duplicated by any other product in household durables except radios which dropped about 5 percent in price since the 1947-49 period. All other household durables are higher priced than they were five years ago, according to the index.

- Why-Several factors have been responsible for the recent decline in tv prices as indicated by the wholesale price index. Chief among these are the new lower priced models that have been brought out recently along with price reductions on current sets.

Emerson reports that its tv sales for January and February were up 31 percent over last year and at-

tributes the increase to the company's heavy concentration on lowcost table models. The introduction of high-priced color sets is credited with aiding sales of low-cost monochrome receivers. Crosley, which recently introduced a $\$ 139.95 \quad 17$ inch table model that uses a vertical chassis design, reports highly successful sales and predicts that compact light-weight and moderatepriced tv sets will account for the bulk of black and white sales in less than a year.

- Color-Price drops have even extended to the color field. Westinghouse has cut the suggested retail price of its 15 -inch color set from $\$ 1,295$ to $\$ 1,110$. Admiral dropped its color set price to $\$ 1,000$ bringing it in line with GE and RCA
(Continued on page 24)

QUALITY CAPACITORS BUILT BY HAMMARLUND

Performance requirements for electronic products - commercial, industrial and military - are becoming more difficult to meet. Specifications call for the finest quality components available to fulfill exacting equipment tolerances.

Hammarlund variable capacitors have been designed and built for more than 25 years to meet the most demanding of requirements. Check the general characteristics of these outstanding variables:

- Rotor and stator plates of brass stock soldered, not staked, to their supports to permanently insure perfect contact and prevent loosening of plates.
- Stator supports soldered into eyelets assembled to steatite insulators.
- Terminals hot-tinned for ease in soldering.
- Insulators of low-loss steatite, impregnated with DC 200 sili-
cone fluid to prevent absorption of moisture.
- Rotor and stator assemblies niekel or silver-plated.
- Rotor contact springs of beryllium copper or phosphor bronze, and nickel or silverplated.
- Precision soldering fixtures and assembly iigs used in fabricating to assure absolute uniformity of plate spacing.

These are basic reasons why Hammarlund capacitors should be used where highest dependability is required. Convince yourself in your engineering models and you will specify them for production.

For detailed information on Hammarlund variable capacitors write for this latest catalog. It includes complete drawings and specifications on all standard units. Ask for bulletin C21.

\#H HAMMARLOMD

Variable Capacitor

"VU" Capacitor For Up to 500 Mc

Special 3-Gang Precision Capacitor

Precision Frequency Meter Capacitor

THE HAMMARLUND MANUFACTURING COMPANY, INC. Main Plant and Offices: 460 W. 34th ST., N. Y. 1, N. Y. Midwest Sales Office: 605 N. Michigan, Chieago 11, III. Export Sales affice: 13 E. 40 th St., N. Y.
color receivers.
Reduction in the cost of color tube components has also been made. Effective April 15, the grid component for 21 -inch rectangular Lawrence tubes will be reduced by $\$ 25$ to a price of $\$ 125$.

Insulation Sales

Maintain Volume

Despite lower sales in the last quarter of 1953, the average monthly dollar sales billed by electrical insulating materials makers in 1953 were 17 percent higher than in 1952.

Sales last year were almost identical with those billed in 1951, the peak year for the industry. Components that make up the NEMA index include: Iaminated products, manufactured electrical mica, special dry process electrical porcelain, varnished fabric and paper, vulcanized fiber, varnished tubing and sleeving.

Industry Shorts

- Royalty-free use of transistors has been granted by Western Electric to the hearing aid industry.
- Final attendance figures for the 1954 IRE Convention totalled 40,108 registrations, compared to 35 ,642 last year.
- Britain's newest tv station is to be built underground beneath the site of the old Crystal Palace.
- Sales of tv sets in Britain in January were the lowest recorded

MEETINGS

May 3-6: Spring Technical Meeting sponsored by URSI and IRE, National Bureau of Standards Bldg., Washington, D. C.

MAY 3-7: 75th Semi-annual SMPTE Convention, Hotel Statler, Wash. D. C.
May 3-14: The British Industries Fair, London and Birmingham, England.
May 4-6: The 1954 Electronics Components Symposium, Department of Interior auditorium, Washington, D. C.
MAY 5-7: AIEE North Eastern District Meeting, Van Curler Hotel, Schenectady, N. Y.
May 5-7: 1954: Third International Aviation Trade Show, 71st Regiment Armory, New York, N. Y.
May 5-7: IRE Seventh Region Conference \& Electronic Exhibit, Multnomah Hotel, Portland, Oregon.
May 6-8: Eighth Annual Armed Forces Communications Association Convention, Shoreham Hotel, Washington, D. C.
May 7-8: New England Radio Engineering Meeting, IRE, Sheraton Plaza Hotel, Boston, Mass.
May 10-12: The National Conference On Airborne Electronics, Dayton Biltmore Hotel, Dayton, Ohio.
MAY 17-20: 1954 Electronic Parts show, Conrad Hilton Hotel, Chicago, Ill.
MAY 24-26, 1954: IRE, IAS, ISA, AIEE Conference On Telemetering, Morrison Hotel, Chicago, Ill.
May 25-27: Eighth NARTB Broadcast Engineering Conference, Palmer House, Chicago, Ill.
JUNE 21-25: Summer and Pacific General Meeting, AIEE, Hotel Biltmore, Los Angeles.
June 23-25: First Symposium on Global Communications, IRE, Washington, D. C.
July 16-18: High Vacuum Symposium, Committee On Vac-
uum Techniques, Berkeley Carteret Hotel, Asbury Park, N. J.

JULY 6-9, 1954: International Conference on Electron Microscopy, Joint Commission on Electron Microscopy of International Council of Scientific Unions, London, England.
July 8-12: British IRE 1954 Convention, Christ Church, Oxford, England.
Aug. 24-Sept. 4: National Radio Show of Great Britain, Earls Court, London, England.
Aug. 25-27: 1954 Western Electronic Show \& Convention, Los Angeles, Calif.
Sept. 1-16: Golden Jubilee Meeting: of the International Electrotechnical Commission, University of Pennsylvania, Philadelphia, Pa.
Sept. 2-8: Scottish Industries Exhibition, Kelvin Hall, Glasgow, Scotland.
Sept. 13-24: 1954: First International Instrument Congress And Exposition, Commercial Museum and Convention Hall, Philadelphia, Pa.
SEPT. 16-18: Joint Electron Tube Engineering Council, General Conference, Chal-fonte-Haddon Hall, Atlantic City, N. J.
Sept. 1954: International Scientific Radio Union, Amsterdam, Netherlands.
SEPT. 30-OCT. 2, 1954: Second Annual International Sipht and Sound Exposition, Palmer House Hotel, Chicago, Ill.
Oct. 4-6: National Electronics Conference, Hotel Sherman, Chicago.
Oct. 18-20: Radio Fall Meeting, Hotel Syracuse, Syracuse N. Y.

Nov. 10-11: Conference on Electronic Instrumentation and Nucleonics in Medicine, Morrison Hotel, Chicago, IIl.
Nov. 18-19: Sixth Annual Electronics Conference, Kansas City IRE, Hotel President, Kansas City, Mo.
for that month since 1949, according to the British Radio and Television Retailer's Association.

- Over 1,000 AMF bowling-pin spotters were produced in 1953 and output of 3,000 is scheduled for this year. (See Electronics, p 148, June, 1953)
- Questionnaire to be sent by FCC to 25,000 licensees holding 50,000 grants authorizing installation of more than 350,000 mobile transmitters will determine actual usage of the land-mobile services.
- Guided Missile test range stations near Cocoa, Florida and on Grand Bahama Island, British West Indies, employ about 4,000 Air Force personnel and 1,700 civilians.
- West German production of tv sets for 1953 totaled 54,475 units of which 28,400 were built in the last quarter of the year.

Alpha Poppy is the name of a new GE radiation detector designed to check work areas and clothing for sources of alpha radiation.

In Production-Minded Detroit, Westinghouse Ignitrons Deliver Up to...

400 Perfect Welds A Minute

In industrial Detroit, high-speed uniform resistance welding is a key tool of the automotive industry. Serving this production-efficient market is the Robotron Corporation, one of the outstanding manufacturers of all-electronic resistance welding controls built around Ignitrons and thyratrons.
"The automobile you drive today would cost considerably more if it weren't for this completely electronic control system made possible by the Ignitron tube," states Charles Buhler, an officer of Robotron.

The average car has about 10,000 welds. Production line demands calling for 100,000 welds an hour are a reality only hecause of the Ignitron.
"We have been using Westinghouse Ignitrons and thyratrons in various types of electronic equipment ever since our business started." says Mr Buhler. "Considering the tough operating schedules in many factories, it is amazing to find that Dife expectancy of Westinghouse Ignitrons is outstandingly high, frequently three years of continuous high production operation. Westinghouse's national program of prompt tube replacement by local distribuiors has paid big dividends in confidence, too."

If your equipment calls for lgnitrons or thyratrons. call Westinghouse. For full information about the new Westinghouse THERMOSTATIC Ignitrons, write to Dept. A-I054 at the address helow.

WESTINGHOUSE ELECTRIC CORPORATION, ELECTRONIC TUBE DIVISUON ELMIRA, N. Y.

Whether your needs are for an extremely pure sine wave voltage or for appreciable power output, EAD will make an alternator tailored to your requirements. Models are available from 30 to 1000 cps at voltages from 6 to 115 volts and in a wide range of frame sizes.

DUAL OUTPUT UNITS AVAILABLE WITH PHASE ANGLE OF ANY SPECIFIED VALUE HELD TO 1° OR BETTER

In addition to standard single frequency types, forms can be made with two separate outputs of either the same or integrally related frequencies. Phase angles between these two output waves can be held to extremely close tolerances.

Eastern Air Devices is a pioneer in the field of small permanent magnet alternators. No matter what your requirements may be, check with EAD first!

FEATURES

1. Low Distortion: Less than 2% distortion of open circuit voltage wave even in smallest sizes.
2. Dual Frequency: Models available with two separate, yet integrally related, output frequencies. Phase angle between two outputs can be any specified value.
3. Wide Size Range: Compact design. Models available in sizes as small as 1 inch in diameter.
4. High Power Output: Several hundred watts available in larger models where distortion is not critical.
5. Military Specifications: EAD alternators can be manufactured to meet the most exacting military specifications.
 of a method of sealing developed by Dewey and Almy researchers over 30 years ago, and successfully used in food container manufacture ever since.
The Darex Flowed-in Gasket Process is more than a sealing compound . . . more than a machine . . . more than an engineering service . . it's a complete Process.' So when you switch to Flowed-in Gaskets, you get all three.

Compounds- Over 800 formulations available to meet most needs. Or Dewey and Almy chemists will develop a "job-tailored" compound for you.
Machines - To apply the compound, Dewey and Almy designs and builds machines based on more than 30 years' field experience.
Service-Every machine is precisely adjusted to your specifications before it leaves the shop. When it arrives, a Dewey and Almy Engineer is on hand to install and adjust the machine. Then he trains your operators to full proficiency. And whenever you need him, the Dewey and Almy Man is at your service.

Announcing

Finest $h p$ voltmeter built-successor to

10 cps to 4 mc

Accurate within 2\% to 1 mc

0.1 millivolt to $\mathbf{3 0 0}$ volts

Input impedance 10 megohms
Reads directly in dbm
High sensitivity, stability
Light, small, portable

We believe the $-h p-400 \mathrm{D}$ is the finest vacuum tube voltmeter offered today. It is the best we have ever built, and we feel sure you will find it the most accurate, dependable and broadly useful voltmeter you have ever used.

The 400 D is a completely new instrument, combining features never before available in one voltmeter with timetested conveniences of the 400 C .

Frequency coverage is twice that of the 400 C , and accuracy is materially improved. The 400 D has a new amplifier providing approximately 56 db of feedback in mid-range. This assures highest stability and freedom from calibration change due to external conditions.

Input impedance is 10 megohms, assuring that circuits under test are very lightly loaded. New output circuitry makes possible the use of the instrument as a broad band, high gain amplifier over the full frequency range.

Model 400D is protected against overloads as great as 600 volts on all ranges. Its indicating meter is a special $1 \%, 1$ milliampere instrument with a $4^{\prime \prime}$ scale and knife-edge pointer. All coupling and bypass condensers are sealed, and electrolytic condensers are long-life type designed for more than ten years of trouble-free service. Circuitry and mechanical layout are particularly clean and provide ready access to all parts. A new, compact, streamlined metal case insures handling ease and occupies minimum bench space. Fold-out front legs tilt the instrument for more convenient reading when desired.

SIMPLE OPERATION

-hp-instruments are noted for their simple operation; - $b p$ 400D is particularly easy to use. Ranges are quickly selected on a front panel switch which changes sensitivity in precise 10 db steps. This, plus calibration of the meter in db , means direct readings are available without calculation or conversion, between -72 dbm and +52 dbm . $(0 \mathrm{dbm}=1 \mathrm{mw}$ in 600 ohms.) Meter voltage scales are arranged in multiples of $1,3,10,30$, etc., so that readings are always in the upper twothirds of the scale - where maximum accuracy is obtained. Further, a new circuit virtually eliminates switching transients.

> COMPLETE COVERAGE

NEW BROAD USEFULNESS

Its speed, accuracy and versatility permit the 400D to be used for measuring amplifier gain, network response, output level, and almost all audio and rf voltages as well as video and TV voltages. In many instances, the voltmeter will also measure hum and noise directly besides determining power circuit and broadcast high frequency voltages. It further serves as an audio level meter, a higly gain broad band amplifier; it detects nulls, monitors waveforms (in conjunction with an oscilloscope) and measures coil "Q," capaciry and resistance.

HEWLETT-PACKARD COMPANY
3033A Page Mill Road • Palo Alto, California, U.S.A.
Field representafives in all principal areas

Fig. 1. Typical variation in accuracy with line voltage changes and mutual conductance changes (geometric mean value of the four amplifier tubes).

SPECIFICATIONS

Voltage Range: 0.1 millivolt to 300 volts. 12 ranges, front panel switch. Full scale readings from 0.001 to 300 volts.

0.001	0.03	1	30	
0.003	0.1	3	100	
0.01	0.3	10	300	volts.

Frequency Range: 10 cps to 4 megacycles.
Accuracy: With line voltages of $\pm 10 \%$ (103 volts to 127 volts), overall accuracy is $\pm 2 \%$ of full scale, 20 cps to 1 $\mathrm{mc} ; \pm 3 \%$ of full scale, 20 cps to $2 \mathrm{mc} ; \pm 5 \%$ of full scale, 10 cps to 4 mc .

Long Term Stability: Reduction in (im of amplifier tubes to 75% of nominal value results in error of less than 0.5%, 20 cps to 1 mc .
Calibration: Reads r.m.s. value of sine wave. Voltase indication proportional to average value of applied wave. Linear voltage scales, 0 to 3 and 0 to 10 ; db scale, -12 db to +2 db , based on $0 \mathrm{~d} \circ \mathrm{~m}=1 \mathrm{mw}$ in 600 ohms, 10 db intervals berwcen ranges.

Input Impedance: 10 megohms shunted by $15 \mu \mu \mathrm{fd}$ on ranges l to 300 volts; $25 \mu \mu \mathrm{ft}$ on ranges 0.001 to 0.3 volts.

Amplifier: Output terminals are provided so voltmeter can be used to amplify small signals or to moniror waveforms under test with an oscilloscope. Output approximatcly 0.15 volts r.m.s. corresponding to full-scale meter deflection. Internal impedance, 50 ohms. Gain approximately 150 for 0.001 volt range.

Power Supply: $115 / 230$ volts $\pm 10 \%, 50 / 1,000 \mathrm{cps}, 70$ watts.
Size: Cabinet, $103 / 4^{\prime \prime}$ high, $7^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ deep. Rack mounting on $19^{\prime \prime} \times 7^{\prime \prime}$ panel available at $\$ 10.00$ additional.
Weight: 19 lbs.; shipping weight. approximately 24 Ibs .
Price: $\$ 225.00$ f.o.b. Palo Alto, California.
Data subject to change without notice. Prices f.o.b. factory.

ONLY IRC MAKES SO MANY JAN AND

56 different IRC resistors is today's figure-
all equivalent to JAN or MIL specifications.
And all are standard units, available on excellent delivery cycle! If you manufacture end-equipment for the armed forces and must meet these specifications, or if you apply them as standards to your own requirements, depend on IRC for everything you need. For, manufacturing the widest line of resistors in the industry- 127 different types in all-IRC is logically your best source of JAN and MIL type units.

JAN and MIL Specifications are basic guideposts for electronic advancement, whether used as engineering reference points or as procurement standards. IRC's dual emphasis on mass production and frequent, accurate performance testing assures you of the highest performance standards at the lowest possible cost.

JAN-R-29 specification

For all requirements of JAN-R-29 Specification, Amendment 4, IRC sealed precision Voltmeter Multipliers function efficiently even when exposed to the most severe humidity. Used with 1 -milliampere DC instruments, they enable voltage measurements to be made up to 6000 volts. Send for Bulletin.

JAN-R-184 specification

Unusually stable and inexpensive, IRC BW Wire Wounds meet JAN-R-184 Specification, Amendment 5, at $1 / 2$ and 1 watt. Resistance element is uniformly and tightly wound on insulated core. Molded housing provides full insulation. Widely used in meters, analyzers, high stability attenuators, low-power ignition circuits, etc. Send for Bulletin.

MIL-R-26B specification

For high power dissipation, IRC Power Wire Wounds meet every commercial requirement of MIL-R-26B Specification, Characteristic G. Tubular, flat, fixed, adjustable, inductive, noninductive, lead, lug and ferrule types provide resistors for virtually any circuit. From 5 to 225 watts. Send for Bulletin.

MIL TYPE RESISTORS

MIL-R-11A specification

IRC Advanced BT Resistors meet and beat MIL-R-11A Specification, Amendment 2. Filament-type resistance element and other exclusive features afford extremely low operating temperature and superior power dissipation in a compact, light, fully insulated unit. Available at $1 / 4,1 / 2$ and 1 watt to MIL specification and 2 watts to commercial specification. Send for Bulletin.

sealing terminal

Overcomes limitations of other types of hermetic sealing terminals.

Molded KEL-F* body-chemically inert to organic solvents, acids, oils, fumes.

Rugged construction-tough and resilient; withstands constant vibration.

Type HS. 1 Feed-Thru Terminals, provide assured hermetic sealing for electrical and electronic components. Exclusive IRC molding Technique bonds Kel.F* to metal in a superior seal. Designed to the sealing requirements of MIL-T-27. Send coupon for full data
-Trademark-M.W. KELLOGG CO.

Boron \& Deposited Carbon Precis. tors - Power Resistors Voltmeter Multipliers - Low Wattage Wire Wounds E Insulated Composition Resistors . Volume Controls

Precision Wire Wounds Ultra HF and Hi-Voltage Resistors. Selenium Rectifers - Insulated Chokes - Hermetic Sealing Terminals.

INTERNATIONAL RESISTANCE CO. 403 N. Broad St., Philadelphia 8, Pa.

In Canada: International Resistance Co., Ltd., Toronto, Licensee
Send me data on \square MF Voltmeter Multipliers, \square BW Resistors, \square Power Wire Wounds, \square Advanced BT Resistors, \square HS-1 Terminals

Name

Title
Company
Address
\qquad Stato

TWO NEW INSTRUMENTS FOR PRODUCING
 CHROMABAR

Multiple Color Bar Generator features...

- No critical circuits to adjust.
- NTSC Standard Colors: Green, Yellow, Red, Magenta, Blue, Cyan, White and Black.
- No other equipment needed to produce colors on Color TV receivers.
- Includes crystal controlled color sub-carrier and built-in horizontal sync generator.
- Can be used to modulate the single or multi-channel Mega-Pix for overall checking of color receivers.
- Self-contained power supply. Designed for engineering, production and service.

2. with the MODEL UNI-CHROME

(2) The Model Uni-Chrome Chromabar Write for details, including information on convergence checking
(1) The Model Multi-Chrome Chromabar

Specifications... oUTPUT:
Signal: All 6 NTSC standard col ors plus black and white simultaneously at video frequency. Polarity: Positive and Negative. Amplitude: Continuously variable to maximum of 1.4 volts, peak-to-peak into 75 ohm load. Higher levels across higher impedances.
Power Supply: 117 v. $\pm 10 \%$, 50 to 60 cps . Power for all circuits electronically regulated.
Price: 5795.00, f.o.b. Pine Brook, N. J.

183 ${ }^{2} 9$
KAY ELECTRIC COMPANY
14 Maple Avenue
Pine Brook, New Jersey

OHMITE

The ONLY Complete Line of RHEOSTATS

meeting the requirements of MIL-R-22A

Today's most modern design for complete pulse analysis... with HIGH VOLTAGE

The new Du Mont Type 329, in addition to the most advanced circuitry for full signal analysis, provides the ligh accelerating potential - provides the high pattern brilliance required for viewing rapidly rising wave fronts of low repetition rate and high speed single transients. Moreover with such features as the d-c amplification, and sweeps extending down to 4 seconds duration the Type 329 is ideally suited for the entire range of general laboratory applications, including cven lowfrequency, mechanical investigations.
All operating voltages are electronically regulated to provide unchanging sensitivity necessary for accurate pulse measurements.
High-level, linear sweeps, driving the most distortion-free cathode-ray tube yet made (see box below) assure precision of signal measurements.
Precision attenuators plus the low-drift, stable, regulated d-c amplifier provide accurate amplitude measuring capabilities.
Wide-range undistorted deflection of the Y-amplifier allows greatly expanded portions of signals to be positioned on screen for measurement.
Calibrated sweep expansion and delay are provided in the new Du Mont Notch Sweep. This featare permits any 5% of the pattern, such as pulse rise time, to be expanded precisely ten times while the remainder of the signal is displayed unexpanded and thus may be easily related to the expanded portion.
The latest circuit techniques and most advanced cathode-ray. tube design have been combined to make the Type 329 a truly modern, versatile high-frequency cathode-ray oscillograph. We invite your detailed examination of this fine instrument.
For full specifications or demonstration write to:
Technical Sales Department
ALLEN B. DU MONT LABORATORIES, INC.
760 Bloomfield Ave., Clifton, N. J.

TYPE 5ATP. MONO-ACCELERATOR CATHODE-RAY TUBE

The extremely high precision inherent in the design of the Type 329 would have been achieved in vain were it not for the new Du Mont Type 5ATP- Mono-accelerator Cathode-ray tube. For Du Mont's monj-accelerator tubes alone provide the superb resolution, the unprecedented freedom from distortion required to exploit fully the precision of the electronic circuits. This unretouched photo of the pulse chain illustrates the excellent edge-to-edge focus of the Type 5ATP-, as well as the fine linearity and resolution.

the NEW

DUMONT TYPE 329

 Cathode-Ray Oscillograph- D-c, wide-band oscillograph usable to 20 MC and beyond (3db down at 10 MC .
- D-c sensitivity, 0.2 volts full scale 0.14 volt per inch).
- Pulse response, 0.035 usec.
- New, high-roltage, high resolution Du Mont Type 5ATF- mono-accelerator Cathode ray Fube for optimum pattern fidelity.
- Accelerating Potential, 6000 volts; equivalent brightress of conventional tube operated at 10,000 volts.
- Precision, directly calibrated sweeps. Simple one-point re-calibration against built-in standard.
- No tube selection necessary.
- New and unique Du Mont Notch Sweep for calibrated sweep expansion and delay.
- Precision amplitude calibration from built-in voltage standard.
- Any 1.4 inch portion of 2.8 inches of undistorted vertical deflection may be positioned on-screen.
- Electronic regulation of all power sources including critical filaments for maximum stability.
domestic price $\$ 1,485$
ouMont
allen b. DU MONT laboratories, inc. 760 BLOOMFIELD AVE., CLIFTON, N. J.

F.M. DEVIATION directiy measured

THE BESSEL ZERO or "Disappearing Carrier" method of measuring deviation requires complex monitoring equipment, an accurately known modulation frequency, and, finally, mathematical interpretation of results.
With the compact and easy-to-use Marconi Deviation Meter, the modulation frequency need not be known and deviation is directly read on a meter scale.

F. M. DEVIATION METER TYPE TF 934

Carrier Frequency Range : 2.5 to 200 megacycles.
R.F. Input Level : 55 millivolts to to volts.

Unmodulated Carrier

Modulation Index 1.3
Deviation Measurement Ranges: 0 to $\pm 5 \mathrm{kc}, 0$ to $\pm 25 \mathrm{kc}$ and 0 to $\pm 75 \mathrm{kc}$. Accuracy of Deviation Measurement: $\pm 3 \%$ from full-scale to half-scale up to 12 kc and $\pm 6 \%$ up to 15 kc .

Full data and prices of any of the items listed below will be mailed immediately on request :
F.M. DEVIATION METER TF 934 • UNIVERSAL BRIDGE TF 868 FM/AM SIGNAL GENERATOR TF 995A • STANDARD SIGNAL GENERATOR TF 867 Also
VACUUM TUBE VOLTMETERS • FREQUENCY STANDARDS • OUTPUT METERS WAVEMETERS • WAVE ANALYSERS • Q METERS • BEAT FREQUENCY OSCILLATORS

MARCONI instruments

23-25 BEAVER STREET. NEW YORK 4

CANADA: CANADIAN MARCONI CO., MARCON: BUILDING, 2442 TRENTON AVENUE, MONTREAL ENGLAND: Head Office: MARCONI INSTRUMENTS LIMITED, ST. ALBANS, HERTFORDSHIRE
Managing Agents in Export: MARCONI'S wIRELESS TELEGRAPH COMPANY LIMITED, MARCONI HOUSE, STRAND, LONDON, W.C.2

Executive Offices: 1521 E. Grand Ave., El Segundo,Calif. Phone: ORegon 8-6281 Chicago Branch Office: 205 West Wacker Drive. Phone: franklin 2-3889 New York Branch Office: 501 Madison Avenue. phone: Plaza 5-8665

The Tektronix Type 524-0 Cscillo scope features a builitin sunc separator, variable delayed sweeps at the frame rote, dic ta $10 \times \mathrm{mc}$ frequency response, wide sweep range, 4 kv accelerating potential.

TEKTRONIX TYPE 524-D OSCILLOSCOPE

uses 243 Bradleyunits and 21 Bradleyometers

This portable, precision cathoderay oscilloscope, made by Tektronix, Inc., of Portland, Oregon, is specifically designed for maintenance of television transmitter and studio equipment.

Its network of circuits employs hundreds of Allen-Bradley fixed and adjustable resisfors... 264 units in all. Since these units are
rated at 70 C . . . instead of 40 C . . . stability of the oscilloscope circuit characteristics is assured. Bradleyunits and Bradleyometers withstand extremes of temperature and hemidity. So, if your electronic equipment must give quality performance, avoid trouble by specifying AllenBradley radio resistors.

Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee 4, Wis.

FIXED \& ADJUSTABLERADIORESISTORS

[^2]The Type J Bradleyometer has a solid molded resistar ring which can be made to satisfy any re-sistance-rotation requirement. All ferrous parts are made of corro-sion-resistant metal. There are no rivefed, welded, or soldered connections in the Bradleyometer.

Years of experience proves to users... the dependability of

K O VAR

Glass-sealing Alloy

The ideal alloy for glass sealing, Kovar matches the expansivity of certain hard glasses over the entire working temperature range. It resists mercury attack, has ample mechanical strength and seals readily. A permanent and impervious bond is obtained by a closely controlled thickness of oxide on Kovar alloy interfused with hard glass.
Kovar is a cobalt, nickel, iron alloy, manufactured under very carefully controlled contitions, and supplied by Stupakoff in the form of: SHEET', ROD. WIRE, FOIL, TUBING, EYELETS, LEADS and FABRICATED SHAPES. The prominent users of KOVAR and the length of time they have employed this metal are convincing proof of satisfaction
Full information on the use of Kovar is given in Stupakoff Bulletin 145 , which we will send upon request.

Stupakoff CERAMIC \& MFG. CO.

12 YEARS

11 YEARS
 6 YEARS

15 YEARS

VARIAN
assecinfes
18 YEARS

The "skin" we love to watch

The "skin," or plated coating, on CTC terminals gets extremely close scrutiny from our quality control engineers. And we take pleasure in this careful watching because -

We know, as a result, that you can depend on CTC terminals for electroplated coatings of guaranteed minimum thickness - whether to government specifications or your own.

Qur "watching" of these coatings includes periodic bend tests for adhesion, and periodic microscopic inspection of cross sections for coating thickness. These are but two of many examples of quality control that enable us to offer customers guaranteed electronic components. . custom or standard.

Besides terminals, we pay close attention to the production of CTC terminal boards, capacitors, swagers, hardware, insulated terminals, coil forms and coils. For all specifications and prices, write to Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38,

Mass. West Coast Manufacturers contact: E. V. Roberts, 5068 West Washington Blvd., Los Angeles 16 and 988 Market St., San Francisco, California.

Terminal Data: Our standard terminal line includes 30 types, each in varied shank lengths. Made of silver plated brass, coated with water dip lacquer to keep them chemically clean for soldering. Also available: combination screw and solder terminals in 3 sizes, and a complete line of phenolic and ceramic insulated terminals. All materials, processes and Sphes tin, electrotin, cadmium plate or gold plate.

Standard CTC Terminal Boards as well as those made to your own specifications by СТС are available. Standard in cotton fabric phenolic, nylon phenolic or grade L- 5 silicone impregnated ceramic. Custom made in cloth, paper phenolic, melamine, or silicone fibreglas laminates, imprinted as re quired and lacquered or varnished to specifica

CAMBRIDGE THERMIONIC CORPORATION

makers of guaranteed electronic components, custom or standard

General Ceramics ALUMINA CERAMIC*

- Conforms to the requirements of Grade L.5A in accordance with JAN-1.10.

soluerneal hernitic terninal.

THE ITEMS SHOWN ARE STANDARD STOCK TERMINALS. DIMENSIONAL TOLERANCE, $\pm 11 / 2 \%$ BUT NOT LESS THAN $\pm .010^{\prime \prime}$

These terminals are made of glazed Alumina Ceramic. Lugs and eyelets are hot tinned brass and metallized areas are silver fired on ceramic, copper electroplated and tin. fused for soft soldering. Im-
mersion in $60 / 40$ solder at $450^{\circ} \mathrm{F}$ for $1 \frac{1}{2}$ minutes for dip soldering will not injure the metallic coating. For complete information and quotations call, write or wire today.

CERAMICS CORPORATION

GENERAL OFFICES and PLANT: KEASBEY, NEW JERSEY
makers of steatite, alumina, zircon, porcelain, solderseal terhinals, light duty refractories, chemical stoneware, impervioys graphite, ferramic magnetic cores

FOR DEPENDABLE MEASURING INSTRUMENTS

Designed to give precision performance over a single tuning range. Has negligible leakage and very low spurious outputs. No auxiliary frequency changer unit required.
SPECIFICATIONS
Tuning Range: $27-230 \mathrm{mc}$
Output: $0.02 \cdot 100,000$ microvolts
Int. Mod.: 400 and 1000 cycles (2.) 0.150 kc

VIF-UHF NOISE SOURCE MODEL 175

Ideal for measuring receiver noise in television tuners, receivers and other applications between 10 and 900 mc . Designed for operation with 300 ohm receivers with less than 0.5 db error. Noise figure $0-19 \mathrm{db}$

hicromave generator MODEL 155

Designed to operate between $2700-3400 \mathrm{mc}$. Can be pulse modulated and is suitable for testing receivers and transmitters.
specifications
Power Output: Atten. calib. to RF Power Input: Measure averread peak power output in db age power up to 200 mw . below 1 mw in 50 ohm load. Leakage: Less than 95 dbm .

Other products manufactured by New London Instrument Company include: High Gain Wide Band Amplifier-UHF Grid Dip Oscillator - Square Wave Generator-Balun. Write for detailed specifications and catalog on our complete line of measuring equipment.

Gemerel Phte Padectets that solve your Electronic Problems

truflex thermostat metals
TRUFLEX thermostat metals are manufactured in a wide variety of types, each with a different reaction to temperature. Uniformity of metal insures accurate and consistent performance. Precision parts fabricated to exact specifications.

COMPOSITE CONTACT MATERIAL
Precious metals and alloys bonded to base metals available in following types single and double inlay, Top-Lay, ready for you to fabricate into contacts.

COMPOSITE METALS
Available in practically any combination of precious to precious, precious to base or base to base metals. Combinations for
electronics include aluminum-clad iron, nickel-clad iron for anode materials.

General Plate can supply all types of fabricated composite contacts, buttons. rivets, contact assemblies made to cusgive electrical conductivity and long life
giver give electrical cond
at reduced costs.

ALCUPLATE
Copper-clad aluminum for component cases or cans, chassis, cooling fins, etc., light weight, excellent conductivity. Copper surface is ideal for soft soldering and electroplating.

WAVE GUIDE and COLLECTOR RINGS RECTANGULAR WAVE GUIDES. Solid silver, silver lined brass or aluminum. COLLECTOR RINGS precious metal on base metal. All sizes.

GENERAL PLATE PRODUCTS

- Alfer, Alnifer, Niter-Alumi-- Alfer, Ainifer, Nel-clad steel for anode plates.
Alcuplate (®) Copper-clad aluminum for component cases, chassis cooling fins, cases, chasslades, etc.
Alsiplate ${ }^{(11)}$ - Silver-clad alu. - Alsiplate (10) - Silver-chad conminum for
densers, etc.
densers, etc.
- Composite Contacts ond Contact - Composite Contacts ond Congth Materials-longer life at reduced and
cost.
- Fabricated
- Collector Rings - Fabricals or from solid precious metals metals. precious-clad from fraction of Sizes ranging fromiractom feer in diaman inch eter.
- Truflex(11) Thermosiat Metai Sheet, strip, formed elemed to and assembl
specification
- Thin Gauge Metais-Beryllium copper nickel, pure beryl copper, nickel, Stellite alloys, lium, etc.
- Platinum-Group Metals - Sheet wire, tubing, parts of all ypes. Complete assay and refning facilities for platinumfining tacials.
- Silver and Gold Brazing Alloys Silver and Gold brazing sheet, wire,
Available as sarts. Available ${ }^{\text {as }}$ fabricated parts.
Bondwich - Solder-clad braz-- Bondwich for carbide-tipped tools.
- Bronco - Phosphor Bronzeclad copper for high conductive springs.
- Conflex - Copper-clad spring confel for elecrical and thersteel conductive springs at mal cond
- 720 Manganese Age-Hardening
- 720 Manganese Alloy - Corrosion resistant Alioy mating matial for dia spring mos, springs, finger stock, etc.
- Rectanguiar Wave Guide Tubing - Rectangular Wave fizes to government specifications. H'rite for catalog PR700

General Plate Composite Metals, made by metallur. gically bonding one metal to another, are available in sheet, strip, tubing or wire in various widths, thicknesses and diameters.

Silver, gold and platinum-group metals bonded on base metals give solid precious metal performance at a fraction of the cost of solid precious metal. The precious metal provides specific performance requirements such as electrical conductivity and corrosion resistance while the base metal provides workability, strength, and solderability.

Composite base metals provide a new group of engineering metals with properties not available in solid metals. Their use frequently results in lower material costs as compared to solid metals.

In many electronic applications further economy results when General Plate supplies fabricated parts ready for assembly into your product. General Plate makes an infinite variety of fabricated parts, such as electrical contacts, collector rings and TRUFLEX thermostat metal parts to customer's exact specifications.

General Plate Engineers will gladly help you with your problems.

You can profit by using General Plate Composite Metals!

METALS \& CONTROLS CORPORATION GENERAL PLATE DIVISION

C747 MIDGET

 400 CYCLE CHOPPER
PROVEN PERFORMANGE

in large volume production is your hest guarantee of quality!

- AIRPAX has huilt

 nearly $1 / 4$ million choppers- AIRPAX maintains an engineering staff constantly striving to imprive choppers
- AIRPAX has ample capacity for large volume production of choppers
- And AIRPAX choppers have proven performance
life and reliability

$-b p-490 \mathrm{~A}$ and 491 A Traveling-Wave Tube Amplifiers are precision broad band linear instruments making readily available a group of measurements hitherto almost unobtainable.

These distinctly different new amplifiers provide a convenient, straightforward method of amplification, modulation or power increase to 1 watt. They are ideal rf amplifiers for receiver and detector applications, and greatly simplify measurement of antenna patterns and wide range attenuators. They are also exceptionally useful as general purpose, low level, low noise laboratory amplifiers. Connected to a signal generator of 1 milliwatt output, $-b p-490 \mathrm{~A}$ amplifier will provide a full watt of output for high level measurements.

COMPLETELY NEW DESIGN

Since 1946, when traveling-wave tube amplifiers were first described, the radio industry has been unable to benefit from
them because of the difficulty in coupling signals in and out of the tube. $-b p-$ has developed a simple new broad band coupling method employing helices. (See Figure 3.) There is no mechanical connection to the inner helix, yet full energy transfer is effected. The difficulties found in previous experimental amplifiers using multi-element networks, tapers and direct vacuum leads have been overcome. Thus, for the first time, a practical broad band high gain travel-ing-wave tube amplifier has been produced.

TWO AMPLIFIERS OFFERED

$-h p-490 \mathrm{~A}$ is designed for high gain, low level applications. It provides at least 35 db gain, noise level is less than 25 db , and pulse modulation characteristics are remarkably good. (See Fig. 1.) $-h p-491 \mathrm{~A}$ has 1 watt output full range. Minimum gain is 30 db . Thus, the equipment, together with a 1 mw " S "
band signal generator such as $-h p-$ 616 A , provides a versatile 1 watt source for high power testing throughout the 2 to 4 kmc range.

Both instruments include simple controls for varying traveling-wave tube anode and helix voltages for best performance. Further, a panel meter and selector permit ready measurement of cathode, anode, helix, and collector currents for performance evaluation or continuous monitoring. No adjustments are necessary during operation.

Figure 2. -hp-capsulated Traveling-Wave Tube. Note input and ouput coaxial lines with Type N plugs for connection to front panal of amplifier.

New $h p$ 490/491A

Traveling-Wave Tube Amplifiers

- Radically new coupled-helix design
- Full " S " band coverage-2 to $\mathbf{4} \mathrm{kmc}$
- 1 watt output; 30 and 35 db gain
- Millimicrosecond pulse modulation
- Compact, portable, easy to use

high gain low noise for "S" band! and manufactured by Huggins Laboratories.

REPLACEMENT TUBES

To eliminate critical adjustments and assure that tubes an coupled helix com-
ponents are properly matched, $-h p-$ replacement tubes are capsulated in a unit wherein the tube and coupling helices
are integral. When delivered, the replacement tube is thoroughly tested, ready to plug in and use.

-hp- 490A

Frequency Range: 2 kmc to 4 kmc .
Gain: 35 db minimum.
Output Power: 25 milliwatts minimum.
Noise Figure: Less than 25 db .
Pulse Rise \& Decay Time: Order of a few millimicroseconds.
Pulse Delay: Approximately 50 millimicroseconds.
Modulating Voltage: Requires approx. 50 volts peak: negative to reduce output to 0.1% of initial value. Input impedance: 50 ohms.
Hum, Spurious Modulation: At least 30 db below signal level.
Meter Monitors: Cathode Current, Anode Current, Helix Current, Collector Current.
Connectors, rF: Input and Output, Type N; Modulation Input, BNC
Size: Approximately $7^{\prime \prime}$ wide x $103 /$ " $^{\prime \prime}$ high $\times 18^{\prime \prime}$ deep.

SPECIFICATIONS

Weight: Approximately 70 pounds net, 90 pounds packed.
Power Supply: 115 volts $\pm 10 \%, 50-60$ cps, approximately 125 watts.
Replacement Tube Price: Including Capsulation, $\$ 650.00$ less $\$ 125.00$ credit for return of defective tube and capsule. Specify-hp-490A-73A.
Price: Traveling-Wave Tube Amplifier, complete including capsulated tube. \$1,100.00 F.O B. factory.
-hp- 491A
Frequency Range: 2 kmc to 4 kmc .
Gain: 30 db minimum.
Output Power: 1 watt minimum.
Noise Figure: Less than 30 db .
Pulse Rise \& Decay Time: Modulation not provided.
Pulse Delay: Modulation not provided.
Modulating Voltage: Modulation not provided.
Hum, Spurious Modulation: At least 30 db below signal level.

Meter Monitors: Cathode Current, Anode Current, Helix Current, Collector Current.
Connectors, RF: Input and Output, Type N; Modulation Input, not provided.
Size: Approximately $7^{\prime \prime}$ wide $\times 103 / 4^{\prime \prime}$ high $\times 18^{\prime \prime}$ deep.
Weight: Approximately 75 pounds net, 95 pounds packed.
Power Supply: 115 volts $\pm 10 \%, 50-60$ cps , approximately 250 watts.
Replacement Tube Price: Including Capsulation, $\$ 650.00$, less $\$ 125.00$ credit for return of defective tube and capsule.
Price: Traveling-Wave Tube Amplifier, complete including capsulated tube. \$1,100.00 F.O.B. factory.

Above Data subject to change without notice

HEWLETT-PACKARD CO.

2997A Page Mill Road • Palo Alto, Calif., U.S.A FIELD ENGINEERS IN ALL PRINCIPAL AREAS

A New Development from the RMC Technical Ceramic Laboratories

RADIO MATERIALS CORPORATION GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.

FACTORIES AT CHICAGO, ILL. AND ATTICA, IND. DISTRIBUTORS: Confact Jobbers Sales Co., 146 Broadway, Paterson I, N. J.

IDEAS that start in a BELLOWS

WHY ADJUST A COLOR TV TUBE FROM WITHIN?

If you can physically move the deflection plates within a TV tube without breaking the hermetic seal, you will get much finer tuning, clearer images. But how can this be done?

BELLOWS GIVES PROPER SEAL

To make any physical adjustment within a vacuum, you need a seal that is both leakproof and flexible. This is what you get when you use a Clifford Bellows. For instance -

HERE'S HOW IT CAN BE DONE

In the diagram, you can see how a Clifford Bellows (A) can be inserted in the deflection plate circuit. Plates can be adjusted within the TV tube without affecting the vacuum.

Have you ever worked with Bellows?

Although bellows aren't always featured in engineering courses, they have proved a welcome solution to many engineering problems.
The color TV tube application outliner above is but one of many ways in which these leakproof, flexible assemblies can prove useful. For instance, in the electronic field, Clifford Hydron Bellows change the frequence inside magnetron tubes, make adjustments inside hermeti-cally-sealed instruments, move variable plates inside vacuum capacitors. They also act as expansion chambers in mercury-filled wave guides, oil-filled transformers and other electronic and electrical equipment.
Clifford Hydron Bellows permit extension, retraction and 360° rotations with 100% metallic seal.

CLIFFORD MANUFACTURING COMPANY, Grove Street, Waltham 54, Massachusetts. Div. of Standard-Thomson Corporation. Sales offices in New York; Detroit; Chicago; Los Angeles; Waltham, Massachusetts.

CLIFFORD MANUFACTURING COMPANY

119 Grove Street, Waltham 54, Massachusetts

Gentlemen:

Please send me information on bellows application for vacuum tube adjustments. Also for: \square Transmitting motion between mediums \square Controlling and indicating temperature \square Sealing rotary shafts or packless valves \square Transmitting motion hydraulically to remote points \square Providing for thermal expansion \square Providing shock mounting or vibration dampening \square Differential pressure maintenance
\qquad
\qquad No. and Street
\qquad

DISTRIBUTION SWITCHBOARDS . CONTROL BOARDS . TEST PANELS AND UNITS PRECISION TIMERS • CHRONO-TACHOMETERS • PIPELINE NETWORK ANALYZERS

Anchored Sleeves of Du Pont Nylon Resist Corrosives, Heat, High Electrical Currents

 One-piece nylon part permits installation

 One-piece nylon part permits installation of cable terminals in five fewer steps

\section*{TV tube carrying

TV tube carrying $\mathbf{2 0 , 0 0 0}$ volts insulated $\mathbf{2 0 , 0 0 0}$ volts insulated with Du Pont "Alathon"

 A ring and sleeve extruded of Du Pont "Alathon" polyethylene resin is now being used by many television-set manufacturers to insulate the outer portion of their metal picture tubes that carry up to 20,000 volts."Alathon" has excellent dielectric strength, low dielectric constant (2.3) and low power factor (0.0005).

Because of its very low moistureabsorption rate (0.01 by A.S.T. M.

test D-570-42), "Alathon" easily passed exacting humidity tests necessary to maintain prolonged insulating value.

Du Pont "Alathon" offers another important advantage. Its flexibility simplified installation. Shipping costs are reduced because "Alathon" absorbs shock, making it possible to pack sets as units and thus eliminate shipping the delicate tubes separately. And reassembly time and labor costs at outlets are eliminated.

Du Pont "Alathon" is also widely used for such insulating applications as TV lead-in wire, and police and fire alarm cables.

A molded, one-piece insulating sleeve of Du Pont nylon has been developed by The Thomas \& Betts Co., Inc. This sleeve is permanently staked on the terminal barrels of their Sta-Kon terminals, for conductor sizes from \#22

Properties of Du Pont
 "Lucite" acrylic resin

Du Pont "Lucite" provides a combination of properties of potential use to electrical design engineers. These properties include:

MECHANICAL: Tensile strength at $73^{\circ} \mathrm{F}: 9,000 \mathrm{psi}$; at $170^{\circ} \mathbf{F}, 4,300$ psi. Modulus of elasticity at $77^{\circ} \mathrm{F}$: $400,000 \mathrm{psi}$. Shear sirength: $9,000 \mathrm{psi}$.
thermal: Coefficient of linear thermal expansion per ${ }^{\circ} \mathrm{F}$: 5×10^{-5}. Thermal conductivity: $1.4 \mathrm{BTU} / \mathrm{hr} / \mathrm{sq}$ $\mathrm{ft} .{ }^{\circ} \mathrm{F} / \mathrm{in}$.

Electrical: Dielectric strength, short time, 400 $\mathrm{v} / \mathrm{mit}$. Dielectric constant, 60 cycles: $3.9 ; 10^{6}$ cycles: 2.9. Power factor, 60 cycles: $0.042 ; 10^{6}$ cycles: 0.025 . Properties unaffected by moisture, aging, weather, or fungus.
OPTICAL: "Lučite" transmits up to 92% of incident light. Refractive index: 1.49. Clarity unimpaired by aging or weather.
CHEMICAL: Dilute solutions of strong acids (like battery acids) or alkalies do not attack "Lucite". Nor will dilute alcohols, aliphatic hydrocarbons, and petroleum oils.
WEATHERING: "Lucite" does not craze or lose transparency after long outdoor exposure. Colorless "Lucite" is unaffected by sunlight.

AWG to 250 MCM.
Du Pont nylon is a good insulating material . . 6,000 volts can be applied to the staked area without puncturing the nylon insulation. Molded nylon resists temperatures as high as $250^{\circ} \mathrm{F}$., as well as aircraft hydraulic fluids, fuels, aromatic oils and corrosive attack. Nylon is also extremely resilient. It absorbs shock without chipping or cracking, and does not break down under flexing strains or crimping pressures.

Because of the efficient design of this molded Du Pont nylon sleeve, Thomas \& Betts Co. has been able to eliminate five of the eight steps formerly required to insulate wire and cable terminals, thus saving time and reducing installation costs.

Parts made of Du Pont nylon are mass-produced rapidly, and economically, by injection-molding. Its wide range of valuable properties offer many advantages for you in the electrical field.

NO. 2

Parts for experimental purposes can often be machined of Du Pont nylon from standard shapes such as rod, strip or cylinders. Nylon is readily machinable to close tolerances. In cutting, high-speed steel tools, ground for minimum drag, should be

Investigate Du Pont plastic engineering materials in your product development programs One of the family of these versatile engineering materials is often a key factor in product improvement or new product design.

The wide range of properties available with "Alathon"* polyethylene resin, "Lucite"'* acrylic resin, "Teflon"* tetrafluorocthylene resin, and Du Pont nylon are helping solve industrial design problems.

NEED MORE INFORMATION?

Clip the coupon for additional data on the properties and applications of Du Pont plastic engineering materials.
used. Cutting tools should be kept sharp and vibration of machinery avoided. Coolants such as water and soluble oils allow higher cutting speeds. When working to close tolerances, make all measurements at room temperature.

Nylon can be sawed with regular band saws, jig saws and table saws without modifications. Hollowground metal cutting blades placed in a conventional table saw will yield a smooth cut at high speeds. Again coolants are useful.

Small parts machined from nylon rod. These parts are readily machinable to close tolerances.

Nylon is drilled satisfactorily with ordinary twist drills. To obtain a smooth hole of uniform diameter, use a slow, uniform feed with the highest speed that will not cause "gumming" or burning. Keep holes chip-free by removing the drill from the hole frequently.

Expansion-type reamers are preferred for nylon, but it can also be reamed with the usual types. Cuts taken with a fixed reamer will tend to be undersized because of the resiliency of nylon. Remove at least 0.010 inch with the final ream to get a hole of the correct size.

Threading and tapping of nylon can be done with conventional equipment. A lubricant or coolant is useful for tapping and threading
E. I. DU PONT DE NEMOURS \& CO. (INC.)

Polychemicals Department
Room 225, Du Pont Building, Wilmington 98, Delaware
Please send me more information on the Du Pont plastic engincering materials checked: \square Du Pont nylon; \square "Alathon"; \square "Teflon"; \square "Lucite". I am interested in evaluating these materials for

NAME POSITION
COMPANY
STREET ADDRESS
CITY STATE

TYPE OF BUSINESS
*"Alathon", "Lucite","Teflon"'are registered trade-marks of E. I. du Pont de Nemours \& Co. (Inc.)
but isn't always required. Conventional thread cutting techniques can be used and successive cuts should be made, as in metal. Finish cut should be no less than 0.005 inch.

For turning nylon, use bits with minimum drag. Nylon has exceptional abrasion resistance and resiliency, so finishing should be done with power-driven rotary steel burrs, abrasive disks, or high speed grinders.

Nylon can be cemented with a number of commercial adhesives.

The machined test parts should be stress relieved to insure dimensional stability. This is best accomplished by heating to $350^{\circ} \mathrm{F}$ in "Glycowax" or "Hitec" salt. In experimental work, where equipment is not available for high temperature stress relieving, boiling water will be adequate in many cases. Close tolerances can be maintained with nylon, as with other engineering materials, by following prescribed procedures.

Electrical properties of Du Pont "Teflon"

"Teflon" tetrafluoroethylene resin retains its electrical, chemical, and mechanical properties over a wide temperature range. Its exceptional thermal stability makes it suitable for use to $250^{\circ} \mathrm{C}$. Yet "Teflon" is still tough and strong at $-268^{\circ} \mathrm{C}$.

Enamels made from "Teflon" are used as wire insulation in fhp motors, electronic transformers, thermocouples, and control equipment. The high service temperature and low power loss of "Teflon" make it ideal for these applications. Wires carrying high voltages and operating at high temperatures utilize thickwalled insulation of "Teflon". Power factor of "Teflon" is less than 0.0005 over the spectrum measured so far, 60 cycles to 30,000 megacycles. Volume resistivity is greater than 10-16 ohm-cm. "Teflon" absorbs no water, by ASTM D-570-42. Surface resistivity stays as high as 10^{13} ohms at 100% relative humidity.

For more information mail this Coupon

Trouble-Znee

 BUSS FUSES can help you build CUSTOMER SATISFACTIONManufacturers and service organizations know from experience that BUSS fuses won't let them down. For over 39 years, under all service conditions, BUSS fuses have given dependable electrical protection.

Rigid quality control is the reason for "trouble-free" BUSS fuses. Every BUSS fuse normally used by the electronic industries is tested in a sensitive electronic device that rejects any fuse not properly constructed, correctly calibrated and right in all physical dimensions.

So for the finest possible electrical protection, turn with confidence to BUSS fuses. The fuse that can be relied on to protect when there is trouble in the circuit. The fuse that eliminates those needless blows, which otherwise could be so annoying to your customer.

And there is another reason it pays to standardize on BUSS fuses. You can simplify your buying, stock handling and records by using BUSS as the one source for fuses. The line is complete: - standard type, dualelement (slow blowing), renewable and one-time types ... in sizes from $1 / 500$ ampere up.

If you have a special problem in electrical protection, Buss places at your service the world's largest fuse research laboratory and its staff of engineers. Let our engineers, who are fuse specialists, save the time of your engineers by helping you select the right fuse and fuse mounting for your job-if possible a fuse that is already available in local wholesalers' stocks.

Makers of a complete line of fuses for home, form, commercial, electronic\& industrial use.

radictor Television CHOOSES

INSUROK

T-725 INSULATING LAMINATE

The RCA Victor name is a symbol for the highest quality in electronic equipment. To meet their exacting standards, RCA Victor engineers selected INSUROK Grade T-725 phenolic laminate for their television receivers.

INSUROK T-725 provides RCA Victor with a unique combination of electrical properties It is used in the R.F. tuners, to maintain insulation resistance under high temperatures and humidities... in the I.F. tube sockets, to minimize capacity changes with changes in humidity ... and in the high-voltage compartment, to provide high dielectric strength and surface resistivity.

For the "tough spots" in your product, write or phone about T-725

TWTERFERENCE FRE"" means

The newest types of Interference-Free Radar, Inter-ference-Free Radio Transmitters, Interference-Free Receivers, Interference-Free Motor-Generator Sets, Interference-Free Inverters, Interference-Free Aircraft, Interference-Free Electronic Systems and numerous other "restricted" equipments incorporate FILTERS BY FILTRON.
Our complete engineering and manufacturing organization is devoted exclusively to the research, design
and production of RF interference filters to make YOUR products noise-free.
The Filtron Company is a complete engineering and manufacturing organization that pioneered the development of special filter types: subminiatures, high attenuation, completely hiermetically sealed, high altitude, high temperature and wide-band multi-section units. Today we are producing more filters than ever before.

ENGINEERING: FILTRON'S highly specialized filter on gineers will discuss, fest, and design RF filters to make your products "noise-free". They will moet with you af your plonf, or in our own shielded laboratorias.

TEST \& DEVELOPMENT: FIITRON'S tost and development facilifies ore equipped with All interference-measuring and est equipment, in strict accordance with all Military Specifications.

MANUFACTURING: FILTRON'S modern production tocilitios comprise the following departments: Capacitor Manufacturing Division - Coil Winding Division - Tool and Die Departments - Environmental Test Department - Metal Drawing Fabricating and Stamping Departments.

WHEN YOU HAVE A RF FILTER PROBLEM, CONSULT FILTRON-THE MOST DEPENDABLE NAME IN RF INTER. ference filters.

SALES REPRESENTATIVES

G. S. Marshall Co., Pasadena, Cal. - Roy J. Mognuson, Chisago, III. - Massey Associates, Inc., Narbeth, Pa., Washington, D. C. - Holliday-Hathaway, Cambridge, Mass., Canaan, Conn., New York, N. Y., Great Neck, N. Y., Rochester, N. Y., Binghamion, N. Y.. Wood-Ridge, N. J.

frerguenct ftandareis
 DESIGNED AS A
 Mlocliluar sustem

The Type 2001-2 series provides frequencies from 30 to 30,000 cycles with an accuracy of $.001 \%$ (at room temperatures) in units suitable for integration with instruments of your own design - or for panel rack mounting with your own power sources - or for line operation.

 \title{
CUSTOM NEEDS
}
 \title{
CUSTOM NEEDS
}

WHICH WILL MEET YOUR

FROM A COMBINATION OF STOCK UNITS

TYPICAL COMBINATIONS

$2001-2$	$2001-2+M$
$2001-2+L$	$2001-2+M+P$
$2001-2+L+P$	$2001-2+L+P+R$
$2001-2+H$	$2001-2+H+P+R$
$2001-2+H+P$	$2001-2+M+P+R$

TYPE '2001-2"
FREQUENCY STANDARD
Frequencies, 200 to 3,000 cycles. Output, approximate sine wave at 5 volts.

"L" UNIT.
DIVIDER, (MULTI-VIBRATOR TYPE)
Provides frequencies from 30 to 200. controlled by the 2001-2 unit.
Output, approx. 5V. Approx. sine wave.

"M" UNIT
AMPLIFIER
Provides 2 watts at 6 and 110 volts.
"D" UNIT.
DIVIDER, (COUNTER TYPE)
Provides 40 to 200 cycles controlled by the 2001-2 unit. (fail safe)

"p" UNIT
POWER SUPPLY
Provides power for combinations of units illustrated, if other sources are in. convenient or not available.
"H" UNIT
MULTIPLIER
Provides frequencies from 3,000 to 30,000 cycles, controlled by the 2001-2 unit. Output, approximately 5 volts.
"R" UNIT PANEL MOUNTING Accommodates up to three units. Standard size is $83 / 4$ inches high, 19 inches long.

For details, please request our "Type 2001-2" Booklet.

American Time Products, Inc.

ANöне SSomac

BL-58 patent applied for

BL-58 CHARACTERISTICS

TR tube operation
same as 1B63A
Shutter operation
Insertion loss
Vibration $\quad 16 \mathrm{~g}$.
40 db min.
Coil ratings to open $6.0 \mathrm{Vdc} \pm 0.3 \mathrm{y}$ for 8 to 12 milliseconds approx. 5 amps dc
Coil ratings to hold open 0.65 Vdc (min.) to 0.75 (max.) $500-600 \mathrm{ma}$. $50,000 \sim$ @ $1 \sim / s e c$.
Accessories are available to operate the shutter feature in TR at any voltage up to and including 28 Vdc .

the $N E W_{T R}$ shutter tube

Bomarc offers to microwave equipment designers the first "complete package prolection" -

wave guide shorting plus $T R$ tube action

The Bomarc BL -58 shown above is the first TR tube to offer continuous crystal protection.

When equipment is not in use, or is in standby condition with TR keep-alive voltage off, the fail-safe shutter provides a minimum of

40 db insertion loss ahead of the crystal. When equipment is in operation with voltages applied, the shutter action is automatically removed, and the TR functions normally.

This latest Bomarc engineering achievement affords the user substantial savings in size and weight.

Bomarc shutter tubes are available for other bands.

We invite your inquiries regarding

- ENGINEERING道 DEVELOPMENT国 PRODUCTION

Sornac Laboratories, Inc.

BEVERLY, MASSACHUSETTS
GAS SWITCHING TUBES • DIODES - HYOROGENTHYRATRONS DUPLEXERS MAGNETRONS MODULATORS

Catalog on request. Write (on your comparty letterhead) Dept. E-5 BOMAC Laboratories, Inc. Beverly, Mass.

with the help of MB equipment like this

D- you have to vibration-test your product to meet military specifications? Want to apply shake-testing to improve product design or to control quality? If so, do what many leading companies have done-enlist the help of MB.

First, you get the right equipment. MB offers a complete line of vibration exciters from 10 pounds force all the way to the largest developed today 10,000 pounds! All are quality built to stand up and do the job right to specifications. Electromagnetic in operation, they're easily and quickly adjusted for force and frequency. And, second, you get the benefit of MB's wide experience in applying this relatively new and valuable technique for product improvement.

Among the well known companies working with MB products, Bendix Aviation Corporation's Eclipse-Pioneer division is outstandingly equipped with several MB Vibration Exciters. The photograph shows one - MB Model C-25, rated at 2500 pounds
of force - vibrating an electronic component to insure dependability under severest conditions. Such testing can uncover, in minutes, trouble that might take months to develop.

VIBRATION PICKUP ANOTHER USEFUL TESTING TOOL

When you want to detect vibration and determine its nature, you'll want an MB Vibration Pickup. While the pickup detects even slightest vibratory motion, it was built for grueling service as well. Model 122 withstands temperatures up to $500^{\circ} \mathrm{F}$.

Control panels for all MB shakers, as in the photo above, can be furnished with MB Vibration Meter for use with pickup. This meter gives direct velocity, acceleration and amplitudes of the picked-up vibration.

You can see why a job with Ford Instrument offers young engineers a challenge. If you can qualify, there may be a spot for you in automatic control development at Ford. Write for brochure about products or job opportunities. State your preference.

FORD INSTRUMENT COMPANY
DIVISION OF THE SPERRY CORPORATION
31-10 Thomson Avenue, Long Island City I, N. Y.

MORE evidence of the extra VALUE in TELECHRON timing motors...

Lubrication is only part of the Telechiron motor story. Lightweight rotors assure quick starting. Gears are hobbed for quiet operation. Power-line accuracy means true synchronous performance. Separation of the field from the rotor results in cooler operation and longer life.

The accurate, dependable, inexpensive Telechron Synchronous Motor is the heart of timinc you see everywliere... in clock-radios, washers and dryers; in heating controls, fefrigerator defrosters and air conditioners. . . in industrial time switches, recorders and instrumentation.

CAPILLARY ACTION FEEDS OIL TO MOVING PARTS

One secret of the lasting accuracy of a Telechron timing motor is its exclusive sealed-in system of lubrication.

Each Telechron motor carries just the right amount of oil, locked-in against dirt and dust. The oil is drawn up the spaces between bearings and capillary plates by the same free-flowing process that pulls water up the hollow stem of a plant-or a glass tube Bearings are constantly covered with a thin coating of oil.

This way the oil lasts the life of the motor-which, with a Telechron timing motor, can be for years and years.

Write for complete catalog and full information on our Application Engineering Service. Telechron Department, General Electric Company, 45 Homer Avenue, Ashland, Mass.

ONLY ONE-OUT of many-IS FIRST

A spanking breeze across the bay ... the echoing boom of the race steward's deck cannon ... ropes and sails straining for advantage of position. Each boat, sleek and ship-shape, is out to win - but only one will come in first.

... most capacitors start even, too

. . . but EL MENCO Capacitors always win first place in specification requirements because their superiority and dependability have been proven. They're factory-tested at more than double their working voltage . . . they're guaranteed stable under the most adverse conditions of application.
No matter what your requirements - from the mighty highcapacity CM-35 (5-10,000 mmf) to the midget low-capacity CM-15 (2.525 mmf) - EL MENCO gives you superior jobrated, job-tested performance. They're built to win!
Electro Motive is now supplying special silvered mica films for the electronic and communication industries in any quantity just send us your specifications.

> Jobbers and Distribulors are requested to write for information to Arco Electronics, Inc., 103 Lafayette St., New York, N. Y. - large stocks on hand - spot shipments for immediate delivery. Sole Agent for Jobbers and Distributors in U. S. and Canada.

foreign Electronic Manufacturers Get Information Direct from our Export Dept. at Willimantic, Conna
the electro motive mfg, co., inc.
WILLIMANTIC, CONNECTICUT

Emac Klystron Report

- Beam modulation
- Easy pulsing
- Increased efficiency

X557 modulating anode klystron

AAnw concept in klystron design is introduced by Eimac with the X557 modulating anode klystron. An insulated modulating anode placed between the cathode and drift tube section permits:

- Controlled variation of beam current independent of beam voltage through regulation of the modulating anode voltage
- Easy pulse modulation with low pulsing power
- Amplitude modulation with low modulating power
- 30% efficiency at carrier level with 100% amplitide modulation on top of the carrier
- Additional research and operational functions

The modulating anode klystrons are another of Eimac's klystron developments which already include high power amplifiers for UHF, including TV, and reflex klystrons for use in conditions of severe shock, vibration and sustained acceleration at frequencies to 9600 mc .

- For a horough guestion and ansuer discussion of klystrons, write our Technicul Seruices depurtment for a free copy of the 20-page booklet, "Klystron Facts."

Micro-miniature Tantalytic capacitors give new design flexibility

Smallest electrolytic capacitors commercially available

Micro-miniature Tantalytic capacitors can now be supplied in ratings up to 20 volts, or, up to 8 microfarads in the ${ }^{5} 5^{\prime \prime}$ long case-higher capacitance in a ${ }^{1} 2^{\prime \prime}$ case size . . . with -0% to $+100 \%$ capacitance tolerance. They give you new design flexibility in low-voltage, d-c circuits-particularly transistorized subminiature assemblies where space is at a premium.

Designed especially for nonresonant, noncritical applications such as coupling, by-pass and filtering, G-E microminiature Tantalytic capacitors outperform aluminum electrolytics in electrical stability, operating and shelf life because of the inert characteristics of tantalum metal. They operate over a -20 C to +50 C range and may be stored at -65 C . With some capacitance derating, Tantalytic capacitors perform well below -20 C -with some life limitations they will also perform satisfactorily above +50 C .

You may obtain samples 2 to 3 weeks after your order is received at the factory. Production lots are supplied 6 to 8 weeks after the order is received. For more information see your G-E Apparatus Sales representative, or write for Bulletin GEA-6065.

G.E. builds dependability into electronic transformers -3 ways

From laboratory samples to the last production model, dependability is built into G-E electronic transformers. Here's how:

1. INTEGRATED FACILITIES: G-E labs, testing facilities, and materials sources are co-ordinated to help get you the transformers you want-when you want them.
2. MECHANIZATION: The G-E plant is mechanized and staffed to handle large-quantity production, while maintaining laboratory sample quality.
3. EXPERIENCE: G-E personnel have worked hand-inhand with electronics manufacturers for years and consequently keep your problems in mind as they produce transformers for your particular, specialized applications. See your G-E Apparatus Sales representative for more information.

TIMELY HIGHLIGHTS ON G-E COMPONENTS

New electronic relays have high sensitivity

This new electronc resistance-sensitive relay is able to amplify minute currents carried by very delicate contacts. Even a wet thread will provide enough signal for it to operate.

Sensitivity level is set by adjusting dial, which can be locked in place. The relay may be remotely controlled from as far away as 500 feet Each can be set for either "normal" (relay "drops-out") or "reverse" (relay "picks-up") operation of the magnetic relay included in the device.

Built for long life, its enclosure is weather resistant and dust-tight. Terminals are easily accessible; all components of this G-E relay are open for ease in servicing. For further information send for Bulletin GEA-5893.

Fast, accurate circuit analysis

This self-contained, highly stable G-E self-balancing potentiometer rapidly converts small d-c voltages to measureable currents-without loading the measured circuit -for analysis of electronic circuits. It is consistently accurate because simple controls, and automatic, rapid circuit balance minimize operator errors. Easily changed resistor permits selection of input ranges from 100 microvolts to one volt d-c full scale with 5 -milliampere d-c output. See Bulletin GEC-367.

Tiny signals amplified

Combining amplifying and rectifying elements in a unit, G-E amplistats (selfsaturating magnetic amplifiers) "sense" small signal changes, amplify them greatly, and impart the amplified signal to a system to obtain the desired control. They give you the practical advantages of virtually instanstaneous response, low power consumption, long life, and electrical signal isolation. Obtain assistance in applying G-E amplistats at your G-E Apparatus Sales Office. See Bulletin

Small rectifier has high output

G-E germanium rectifiers offer the highest output in the smallest of rectifiers. For example, the dime-sized, sealed, air-cooled type is available in ratings up to 50 volts, 0.4 amperes $d-c$. Germanium rectifiers have these advantages : high efficiency-operate 98% to 99% efficient; compactness-small size and weight per watt output means you can build more compact assemblies; and long life-two-year life tests show no detectable aging. Write for Bulletin GEA-5773.

EQUIPMENT FOR ELECTRONIC MANUFACTURERS

Components

Meters, instrumerits Dynamotors Capacitors Transformers Pulse-forming networks Delay lines Reactors
Motor-generator sets Inductrols
Resistors
Voltage stabilizers

Fractional-hp motors
Rectifiers
Timers
Indicating lights
Control switches Generators Selsyns Relays Amplidynes Amplistats Terminol boards Push buttons Photovoltaic cells Glass bushings

Development and Production

Equipment

Soldering irons
Resistance-welding control
Current-limited highpotentiol tester Insulation testers Vacuum-tube voltmeter Photoelectric recorders Demagnetizers

General Electric Company, Apparatus Sales Division Section A667-28, Schenectady 5, New York

Please send me the following bulletins:
$\sqrt{ }$ for reference only $\quad X$ for planning an immediate project
\square GEA-5773 Germanium Rectifiers
GEA. 5893 Electronic Resistance Sensitive Relay
GEA-5950 Amplistats
\square GEA-5950 Amplistats
\square GEA-6065 Miero-miniature Tantalytic Capacitors
GEC-367 Self-balancing Potentiameter

...the foamed-in-place plastic

Where Can YOU Best Use These Properties?

Near-perfect Radar Transmission
Ease of Fabrication It's "poured-in-place" Great Strength
with Light Weight Great Strength
with Light Weight
Excellent Electrical Properties $6 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$ Lockfoam tested at 9.375 KMC Dielectric Constant 1.05 Loss Tangent 0005
Good Thermal Insulation "K" Factors .018 at $8 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$ to. 025 at $11 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$

Wide Range of Densities From 2 to $35 \mathrm{lb} / \mathrm{cu} \mathrm{ft}$

Great Versatility 50 different formulations available +

that places no limits on

your ingenuity!

The magnificent range of physical and electrical properties of Nopco Lockfoam-plus its unique pour-in-place versatility and convenience-is rapidly finding many applications in electrical and electronic manufacturing, as well as in aviation.

For Nopco Lockfoam literally "goes where you want it" -fills exactly the configurations of any cavity into which it is poured. It is ideal for fabricating lenses for electronic devices. It is ideal as a space-saving vibration-free potting material for holding electrical components of circuits in a fixed position. It is sure to find many other practical uses.

You'll surely want the full story. Write today for the Nopco Lockfoam booklet.

AIRPLANE RADOMES, for both military and civilian planes, are but one of the first conspicuous uses which have taken advantage of Nopco Lockfoam's excellent elecirical properties, its strength/ weight ratios, and the simplicity and economy resulting from ifs pour-in-place technique.

Plastics Division
 Cedartown, Ga. • Richmond, Calif.

NEW los angeles branch. To aid West Coast manufacturers with complete field service on Nopco Lockfoam, our new office at 4858 Valley Blvd., Los Angeles 32, is now ready to serve you. Drop in and get acquainted, or write.

TAPER PINS FOR MULTIPLE CONNEC. TORS, AN AND DTHER TYPES
Amphenol, Canron, Continental and Amphenol, Canron, Continental and
Winchester Connectors now are availWinchester Connectors now are avail-
able with tapered receptacles for A-MP able with tapered receptacles for A-MP
self-locking TAPER PINS. Saves over 80% of your wire assembly time and provides uniformly higher quality connections at lower cost.

taper tab receptacle applica. TIONS
More and more flat tabs on relays, switches and other components are being tapered to receive A-MP TAPER TAB RECEPTACLES. Fast easy assembly reduces costs and provides higher quality connections.

NEW TAPER-BLOK FOR A-MP'S TAPER PINS HELPS YOU SAVE SPACE AND WEIGHT, SPEEDS UP WIRING ASSEMBLY, SIMPLIFIES DESIGN, AND REDUCES COST!
The TAPER-BLOK shown has receptacles for 1000 connections, yet measures only $4^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime \prime}$! Receptacles are designed to receive A-MP self-locking Taper Pins which can be easily pushed in place with A-MP's CERTI-LOK measured energy insertion tool.

Extremely high contact pressure assures dependable, uniform, low resistance connections for electric and electronic circuits.
Assembled TAPER-BLOKS are available in 10 and 20 connector sizes with single or dual receptacles. TAPER-BLOK strips can be assembled by stacking to provide the number of connections required for your design. Write for specific information and latest prints.

AMP Trade Mark Reg. U.S. Pat. Off. © AMP

ABRCRAFT-MARINE PRODUCTS, INC. 2100 paxton Street, Harrisburg, Pennsylvania

In Canada - AIRCRAFT-MARINE PRODUCTS. INC. 1764 Avenue Road, Joronto 12, Ontario, Canada

LAMBDAS NEW "600 MA" SERIES

 OF HEAVY DUTY, PRECISION REGULATED POWER SUPPLIES

 OF HEAVY DUTY, PRECISION REGULATED POWER SUPPLIES}

foUR VOLTAGE RANGES...WITH AND WITHOUT METERS

Rack Model 62 (without meters) \$239.50 (Also illustrates Models 63, 64 and 65)

Rack Model 62M (with merers) $\$ 269.50$
(Also illustrates Models $63 \mathrm{M}, 64 \mathrm{M}$ and 65 M)

These new, compactly engineered LAMBDA models supply load currents up to 600 MA in the following voltage ranges:

Model 62 and 62 M Model 63 and 63 M Model 64 and 64 M Model 65 and 65 M

245-305 VDC @ 0-600 MA, regulated 195-255 VDC @ 0.600 MA, regulated 100-200 VDC @ 0-600 MA, regulated 0-100 VDC @ 50-600 MA, regulated Equipment in the " 600 MA" series is designed for standard 19 " rack mounting. Efficient design has made possible a panel height of only $12 \frac{1}{4}$ " with a depth behind panel of only $9^{\prime \prime}$. Intended primarily for fixed voltage use, these models are adjustable over the voltage ranges indicated. Models 62, 63, 64 and 65 are excellent sources of power for racks of equipment. Representative applications are for television studio and transmitter equipment, tube ageing
apparatus, computer installations, and multi-channel equipment. These models are well suited to all installations where comparatively large amounts of power are required. They are rated for industrial applications, based on continuous-duty operation at maximum ratings.

SCHEDULE OF PRICES

Model 62	239.50	M	64	
Model 62M	50	Model	64M.	274.50
Model 63	239.50	Model	65	2
Model 63M	269.5	Mod	65M	279.50
Available fo				

SPECIFICATIONS FOR "600 MA" SERIES

Input:

105-125VAC, 50-60C, 775W (Model 62);
715W (Model 63); 675W (Model 64); 585W (Model 65)
DC Oułpuł (regulated)
Voltage and currents:

Models	Voltage range*	Current range*:
62862 M	$245-305 \mathrm{VDC}$	$0-600 \mathrm{MA}$
63863 M	$195-255 \mathrm{VDC}$	$0-600 \mathrm{MA}$
64864 M	$100-200 \mathrm{VDC}$	$0-600 \mathrm{MA}$
$65 \& 65 \mathrm{M}$	$0-100 \mathrm{VDC}$	$50-600 \mathrm{MA}$

$65 \& 65 \mathrm{M} \quad 0-100 \mathrm{VDC} \quad 50-600 \mathrm{MA}$
*Voltage range for any siven model is completely covered in four continuously variable bands.
**Current rating applies over entire voltage range.
Regulation (line).
Better than 0.15% or 0.3 V
Regulation (load)
Better than 0.25% or 0.3 V Impedance

Less than 2 ohms
Ripple and Noise. Less than 5 millivolts rms Polarity.... Either positive or negative may be grounded
AC Oułpuł (unregulated):
6.5 VAC at 20 A (at 115 VAC input). Allows for voltage drop in connecting leads. Isolated and ungrounded.
Ambient Temperature and Duty Cycle:
Continuous duty at full load up to $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ ambient.

Controls, Terminals and Overload Protection:
DC output controls:
Band-switches and screwdriver adjusting verniercontrol, rear of chassis
AC and DC switches: Front panel
External overload protection: $A C$ and $D C$ fuses, front panel
Internal failure protection: Input and output terminals:

Fuses, rear of chassis

Mefers:

Barrier terminal block, rear of chassis
$31 / 2$ " rectangular voltmeter and milliameter (Models 62 M , $63 \mathrm{M}, 64 \mathrm{M}$ and 65 M only).

Voltage Reference Tube:

A stable 5651 voltage reference tube is used to obtain superior long-time voltage stability.

Time-Delay Relay Circuit:

A 30 -second time-delay relay circuit is provided to allow tube heaters to come to proper operating temperatures before high-voltage can be applied.
Size, Weight, Panel Finish:
Size: Standard 19" relay-rack mounting
$121 / 4^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 9^{\prime \prime} \mathrm{D}$
Weight: $\quad 70 \mathrm{lb}$. net; $140 \mathrm{lb} .$, shipping
Panel Finish: Black ripple enamel (standard)

They'll be safely across before the traffic starts

thanks to Ward Leonard relays in Trafflex

Controllers that time Buffalo's lights

- Unfailing performance twenty-four hours a day is vital in the Crouse-Hinds Trafflex control system that directs traffic in Buffalo, N.Y., and many other major cities.

The safe continuous movement of traffic is automatically regulated by predetermined timing cycles in Trafflex Master Controllers. They speed up or slow down the secondary controllers that operate the traffic lights.

Four Ward Leonard relays in each master control are used for the automatic selection of five timing cycles that control the Trafflex Secondaries and the lights themselves. Two more of these dependable relays provide for remote control of off-duty flashing amber signals and signal shut-down. Two others indicate which of three timing dials in the Trafflex Secondary Controls is operating.

If long life and thorough dependability under the most adverse operating conditions are important in your product, it will pay you to select electrical controls from Ward Leonard's complete line.

WARD LeONARD bulletim 110 eflays n Trafflex Master Controller are used for: A. Automatic selection of one of five timing cycles. F. Operation of pilot lights indicating which of three timing dials in Trafflex Secondaries is in use. C. Remote control of off-duty flashing amber and remote control of signal shut-down for entire system.

ARMATURE-FRAME - has semi "knife-edge" construction with good flux path; resists wear and guarantees fast, trouble-free operation.

CONTACT FINGERS - alloy leaf-spring type especially manufactured to Ward Leonard's own rigid specifications gives millions of trouble-free operations.

SPECIFICATIONS

Type: Bulletin 110 Multipole Midget No. of Poles: 3 max., Double Throw Contact Ratings: 10 amps., 115 volts, A.C. max. Standard Coils: up to 115 volts, A.C. or D.C. Dimensions: 2-Pole, $17 / 8^{\prime \prime} \times 3^{\prime \prime} \times 1 / 8^{\prime \prime}$ high 3-Pole, $25 / 16^{\prime \prime} \times 35 / 6^{\prime \prime} \times 17 /{ }^{\prime \prime}$ high
Mounting: Adaptable to plug-in mounting

Here's why you get long life from Ward Leonard relays

- When applied properly and given normal care, Bulletin 110 relays, shown above, have a life expectancy of several million operations. Such exceptionally long life, typical of Ward Leonard's relay line, is made possible by: 1. Good mechanical design. 2. Quality-controlled manufacturing methods and materials. 3. Ample "safety-factor" electrically and mechanically.

Whether your product is a complex electronic instrument or a simple household gadget, our engineers will be glad to help you select the dependable electrical controls you need. Write Ward Leonard Electric Co., 200 South St., Mount Vernon, New York.

SHOWN AT RIGHT are typical Ward Leonard relays designed to meet your specific requirements in dimensions, methods of mounting, circuit connections, contact materials, coils and other features.

STABILINE TYpEIE

Instantaneous Electronic
AUTOMATIC VOLTAGE REGULATORS

Here's how the Stabiline type IE measures up: Stabilizing and regulating ability - For all conditions maximum variation less than $\pm .25$ of 1%. For input voltage changes, variation less than ± 0.1 of 1%. Load current change or power factor change from lagging .5 to leading .9 will vary output voltage less than $\pm .15$ of 1%.
Correction speed - Comparatively instantaneous - 3 to 10 cycles.
Waveform distortion - Never exceeds 3%. Is generally under 2%.
Input Range-For nominal 115 volts output, input range is 95 to 135 volts. For nominal 230 volts output, input range is 195 to 255 volts.

Outpuł Range - Output voltage on 115 volt units can be adjusted from 110 to 120 volts; on 230 volt units from 220 to 240 volts.
Furthermore, the Stabiline type IE has a circuit simplicity and mechanical ruggedness that minimizes maintenance.
Check all these characteristics against all other automatic voltage regulators and you will find Stabiline type IE is superior in design, construction and performance.
Stabiline automatic voltage regulators type IE are available in ratings from .25 to 5.0 KV V. Special types will be application engineered to meet specific requirements.

Send Coupon Today for Bulletin $\mathbf{5 3 5 1}$
THE SUPERIOR ELECTRIC CO.

Our tape engineers made these recommendations...

1
"Scotch" Electrical Tape No. 8 to insulate bobbin cores on solenoid gas valves. Acetate fibre backing prevents wire cutting thru to metal bobbin at $90^{\circ} \mathrm{C}$. Provides a dielectric barrier.

2 "Scotch" Electrical Tape No. 38 to hold end discs in place. Thermosetting adhesive is heat-cured for powerful bond. Gives positive placement at $90^{\circ} \mathrm{C}$.
3 "Scotch" Electrical Tape No. 29 to anchor valve coil leads for gas furnaces. Cloth backing and thermosetting adhesive resist $90^{\circ} \mathrm{C}$. operating temperature. No. 29 has maximum conformance and holding power. Good abrasion resistance.

Our engineers got this assignment from one of the world's largest manufacturers of electronic controls. Our engineers checked the properties of over 25 pres-sure-sensitive tapes in the "Scotch" Brand Electrical Tape family before they chose the three best tapes for the jobs.

Our engineers can be your engineers whenever you have a job for tape. Just write Minnesota Mining and Manufacturing Company, Dept. ES-54, St. Paul 6, Minnesota, outlining your needs. That's the easiest way to make certain of top-quality results with no money wasted. There's no charge or obligation.

SCOTCH Electrical Tapes

[^3] 122 E. 42 nd St., New York 17, N. Y. In Canada: London, Ont., Can.

COMPLETE METAL TO CERAMIC SEAL. Gas-tight ceramic cases with metalized ends permit solder seal to nickel pins.
MOISTURE PROOF. These new diodes exceed the requirements of JAN humidity specifications.
required electrical properties. More than two years of development were necessary to perfect this combination of hermetic seal and superior performance.
MECHANICAL STABILITY. Platinum-rhuthenium whisker is welded to the germanium pellet.
LONG-LIFE. The elimination of moisture effects adds years to the life of your equipment!
Sou can put your confitence in-
MAXIMUM RATINGS (AI $25^{\circ} \mathrm{C}$)

Hermetically Sealed DIODES	1N69	1N70	1N81*
Peak Inverse Voltage	75	125	50
Continuous Operating Inverse Voltage	60	100	40
Min. Forward Current (MA) ot + IV	5.0	3.0	3.0
$\begin{aligned} & \text { Max Inve Current }\left(\begin{array}{l} \text { a } \end{array}\right. \\ & \text { At } 500 \\ & \text { At } 10 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 850 \\ 50 \end{array}$	$\begin{array}{r} 300 \\ 25 \end{array}$	10
AV Rectified Current (MA)	40	30	30
Peak Rectified Current (MA)	125	90	90
Surge Current (MA)	400	350	350

*JAN approval applied for

GENERAL ELECTRIC

PHELPS DODGE round, square and rectangular Formvar magnet wires are the result of the finest engineering and research. They offer better space factors, outstanding forming and winding propertics, excellent abrasion and solvent resistance. When used in the proper design, Phelps Dodge Formvars permit quality improvements in the insulation system that result in reduction of over-all costs.

Any lime magnet wire is your problem, consult Phelps Dodge for the quichest, easiest answer!

Firstfor Lasting Quality-from Mine to Market!

ロロロGE FロRMVAR HAS becロme

YARDSTICK FOR WIRE QUALITY：

Leader in Application Engineering
Pioneered Development of Square and Rectangular Formvar

Quality Controlled for Maximum Performance
Experience Over Complete Range

PHELPS DODEE COPPER PRODUETS CORPORATION

electrical
characteristics

INPUT IMPEDANCE

1500 ohms
CURRENT SENSITIVITY
0.6×10^{-9} amperes per millimeter
VOLTAGE SENSITIVITY
1 microvolt
per millimeter
OPERATING VOLTAGE
115 volts, 60 cycles

If you use galvanometers, you'll be interested in the new ElectroniK Null Indicator. For here, at last, is the lab man's ideal d-c null balance detector . . . completely free from all the limitations of galvanometers.
It's easy to use-no "loss of spot" from excess signal; bridge balancing operation is simplified.
It's self-profecting - will take heavy over-loads without damage.
It's vibration-proof-undisturbed by nearby traffic or machinery.
It goes anywhere-needs no leveling or special mounting; plugs into 115-volt 60 -cycle line; small case fits readily into experimentalset-ups.
It's stable-holds steady zero after warm-up.
It's fast-indicates in less than one second; ideal for production testing.
It's sensitive-suitable for use with high precision measuring circuits.
The ElectroniK Null Indicator is priced within reach of any budget. It will be a valuable asset to your lab. Write today for complete information.
Minneapolis-Honeywell Regulator Co., Industrial Division, Wayne and Windrim Avenues, Philadelphia 44, Pa.

- REFERENCE DATA: Write for Instrumentation Data Sheet No. 10.0-12.

Honeỳyo well
BROWNINSTRUMENTS

New Sub-Miniafure Relay

APPLICABLETO PRINTED CIRCUITS

ELECTRICAL SPECIFICATIONS:
CONTACTS: Max.imum of double pole rated at .25 amperes at 26.5 volts DC or 115 volts $A C$ resistive
COIL: Sensitivity-nominal 1.0 watts, maximum 0.3 watts
Resistance-up to 1500 ohms
Voltage-up to 40 volts DC
TEMPERATURE: Minus $60^{\circ} \mathrm{C}$ to plus $125^{\circ} \mathrm{C}$ VIBRATION: 10G up to 500 cycles
SHOCK: 50G plus (operating)
SPEED OF OPERATION: 1.5 millisecond at nominal voltage direct from battery supply and I millisecond with series resistance
ALTITUDE: 70,000 feet or 1.3 inches of mercury
TERMINAL TYPES: Printed circuit, solder terminals and plug-in
CAPACITY: N. O. confact to case 0.85 mmf

ALLIED TYPEKH RELAY
weighs $32 \mathrm{oz} .-$
has low capacity for
RF switching

Write for catalog sheet giving complete information

Fast Movers or Shelf Warmers?

 big ones from the little ones, the red ones from the green ones - in manufacturing, sales, accounting, researching and what not!

Vary-Tallies will do any counting job you want in any combination up to 6 banks high, 12 units wide (with a minimum of 2 units wide). Yes, you can count on 'em or with 'em to your profit -- note these features of construction:

- Easily Readable from Any Angle . . . Bold figures Always Centered in Window . . . No Glare . . . Fig ures not Covered by Fingers in Operation
- Easily Portable, yet Ruggedly Built for Lang Wear
- All Parts Corrosion-Resistant; Working parts of Hardened Steel
- Separate Counting Units Can be Rotated like Tires on a Car, to Distribute Wear Evenly
- Not Affected by Extreme Heat or Cold
- Individual Tag Above Each Counter-Window - Not Strip Tabs
- Veeder-Root Quality in Every Part

The Name that Counts

[^4]
VEEDER-ROOT INC.

HARTFORD 2, CONNECTICUT

New $3 / 4$ "Sensitive Relay APPLICABLETO PRINTED CIRCUITS

For Weighing Important Decisions ...

Ucinite's Judicial Gravity scale is worth its weight in paper work. It balances opinions, senses trends and shows which way the wind blows. A built-in tilting mechanism enables it to lean over backwards to be fair. Extra equipment includes a special attachment that automatically delivers weighty judgments. Though this revolutionary device has not yet been released for civilian or government use, its
component parts are all available in quantity from Ucinite.

With an experienced staff of design engineers, plus complete facilities for volume production, Ucinite is capable of supplying practically any need for metal or metal-and plastics assemblies. Call your nearest Ucinite or United-Carr representative for full information or write directly to us.

The UCINITE CD.
 Newtonville 60, Mass.
 Division of United-Carr Fastener Corp.

Specialists in

ELECTRICAL ASSEMBLIES,

RADIO AND AUTOMOTIVE

219
. . . and this amazing new power tool wraps wire around a terminal to make a permanent electrical connection. Costly hand wrapping and soldering are eliminated . . . production goes up while costs go down.

Hour after hour, this new lightweight "Wire-Wrap" Tool makes uniform connections without fatigue to the operator. Wire-Wrap connections retain their characteristics under severe conditions of corrosion, vibration, or aging.

For lower costs, fewer rejects, faster production, product compactness, and strong, low-resistance connections, investigate this revolutionary new tool.

Available in air or electric models

SOLDERLESS WIRE-WRAP CONNECTIONS

are made by wrapping wire tightly around rectangular terminals. Each quarter turn is locked under tension, providing a permanent mechanical and electrical bond. These clean, high-pressure connections have a contact area greater than the cross section of the wire yet can be easily removed when desired. Send for Bulletin No. 11 for detailed information.

Clire-Urap Division
 KELLER TOOL COMPANY

1335 Fulton Street

HONEYWELL Mercury Switches
 A PRINCIPLEOF GOOD DESIGN

These Heavy Duty HONEYWELL Mercury Switches combine long life and reliability with the capacity to make and break steady state currents up to 45 amperes. They will handle inrush currents as high as 144 amperes.

Whenever your design or application shows a mercury switch to be indicated, there is a HONEYwELL Mercury Switch to meet your requirement. Among these are:

- Protected mercury switches
- General purpose mercury switches
- Small mercury switches
- Sensitive mercury switches

MICRO SWITCH engineers, experienced in every type of switching problem, are located at 16 branch offices to help you select the switch for your application. Call the nearest MICRO SWITCH branch office. Ask for Mercury Switch Catalog 90.

FAST DELIVERY . . . Our own die shop and four modern plants speed deliveries.

LARGE OR SMALL QUANTITIES ... We have the most complete press facilities in the industry

ECONOMICAL PRODUCTION . . . The right press for every job permits utmost economy.

ON SPECIFICATION . . . Backed : oy a reputation for accurate compliance with specifications for more than half a century

WIDEST CHOICE OF MATERIALS . . . AlSiMag property chart gives more compositions and more physical data thain any other source.

ENGINEERING COOPERATION . . . Send sketch and details of requirements for practical, costsaving, delivery-expediting suggestions.

S3RD YEAR OF CERAMIC LEADERSHIP AMERICAN LAVA CORPORATION

SEE OUR DISPLAY
BOOTH NO. 340
BASIC MATERIALS EXPOSITION

The Product Development Show CHICAGO - MAY 17-20. 1954

DEFINITELY DEPENDABLE!

Aerocom's Dual Automatic Radio Beacon

Reliability is built into every part of this dual 1000-watt aerophare unit. Ruggedly constructed and conservatively rated, it provides trouble-free unattended service, and at truly low operating and maintenance cost. It operates in the frequency range $200-415 \mathrm{kcs}$, using plug-in crystal for desired frequency.

Uses single phase power supply, nominal 220 volts, 50 or 60 cycles. Consists of two 1 kw transmitters with keyer (2 keyers if desired), automatic transfer unit and weatherproof antenna tuner. Each transmitter housed in separate standard rack cabinet, with controls in rack cabinet between the transmitters.

Nominal carrier power is 1000 watts. High level plate modulation of final amplifier is used, giving $30 \%-35 \%$ tone modulation. P-T switch interrupts tone, permitting voice operation. Operates in ambient temperatures from $-35^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, humidity up to 95%.

Standby transmitter is placed in operation when main transmitter suffers loss (or low level) of carrier power or modulatior, or continuous (30 sec .) tone. Audible indication in monitoring receiver tells when standby transmitter is in operation.

Antenna may be either vertical tower or symmetrical T type.

(®)
TYPE BC-30
(2-waH)

TYPE BC-25
(1-wat)

STABLE-rypical cvercge change after 1000 hours loced life test 0.2%.

ACCURAIE-witin $\mathbf{1 , 2 , 5 \%}$ on all standard types.

LOW T.C. -200 p.e.m. per ${ }^{\circ} \mathrm{c}$ above 20K. 100 p.p.m. per ${ }^{\circ} \mathrm{C}$ kelow 20K.

RUGGED-Epoxy resin costing remains elastic, cannct crack or chip.

Shallcross Borohm resistors are unusually stable, accurate, and long-lived as a result of Shallcross' basic research on carbon films and manufactaring processes. Complete control of the quality and distribution of the boro-carbon film on specially formulated ceramic rods assures minimum film variation withia each unit, as well as from unit to unit.

Automatic machine handling of resistors throughout the carbon deposition process prevents contamination. Rigid automatic control of rod and gas temperatures during deposition eliminates soot formation in the carbon film. Resistance for a given size =od is therefore both predictable and reproducible.

Borohm resistors have negligible voitage coefficient, consistent temperature coefficient, and stability proven by temperature cycling, moisture resistance, and load life tests.

For detailed information as to sizes, styles, ratings, and performance test data results wrize for the new Shallcruss Engineering Bulletin L-33.

The victory over time and darkness is certain with Kollsman instruments. Certain because of our quarter century dedication to accuracy in controls and instrumentation.
Today our activities encompass four fields:
AIRCRAFT INSTRUMEMTS AND CONTROLS
OPTICAL PARTS AND DEVICES
MINIATURE AC MOTORS
RADIO COMMUNICATIONS AND NAVIGATION EQUIPMENT
Our manufacturing and research facilities . . . our skills and talents, are available to those seeking solutions to instrumentation and control problems.

- In industry today magnetic recorders can "remember" and re-create the motions of skilled machinists, the forces encountered by a truck driving down a test road, the reflections from underground shock waves, the complex control of chemical processes.
- Magnetic recorders have long been at work recording complex data and reproducing it in its original electrical form - ready for automatic reduction and analysis.
- With greater accuracy and less cost than any other method, magnetic tape can "remember" situations encountered in your business - laboratory data, motions, processes and hundreds of kinds of information.

Get the facts in this important new bulletin from the company that has been building magnetic recorders for scientific purposes longer than any other firm. Written in clear, non-technical language, it tells what magnetic recording can do for you.

BRANCH OFFICES: New York, Chicago, Atlanta, San Francisco and College Park, Maryland (Washington D. C. area)

Send for your copy today; write Dept. E-1711
934 CHARTER STREET • REDWOOD CITY, CALIFORNIA

DISTRIBUTORS: Radio Shack, Boston; Bing Crosby Enterprises, Los Angeles; Southwestern Engineering \& Equipment, Dallas and Houston; Canadian General Electric Company, Canada

Keeps Production to Capacity . . . All DayLong!

 anti-fatigue features assure full-work-day efficiency!

SET AT ANY DESIRED ANGLE FOR GREATEST COMFORT - FITS ANY WORK AREA
Only the B\&L Transistor Microscope provides this individualized comfort. Full 180° rotatability of inclined eyepiece assembly permits setting at exact angle for natural position of head and neck. Operator is free from strain, able to work better, faster.

LARGE, UNOBSTRUCTED WORK SPACE PERMITS FASTER, EASIER ASSEMBLY
Ample clearance between objective lens and stage for hands, tweezers, tools. Focusing knobs are set back, within effortless reach, yet out of the way of jigs and tools.

SHOCKPROOF, DUSTPROOF FOR LIFE SAVES MAINTENANCE COSTS, KEEPS PRODUCTION ROLLING

Clamps and gibs lock prisms into lifetime alignment, safe from shock damage. Permits safe, trouble-free mounting in machine or fixture. Patented Neoprene ring seals out dust. Saves money on repairs, down-time.

WRITE NOW for descriptive literature (D-1036) and for on-the-job demonstration on your own production lines. Bausch $\&$ Lomb Optical Co., 61429.St. Paul St., Rochester 2, N. Y.

PRECISION MICROWAVE TEST EQUIPMENT

SPECTRUM ANALYZER

 for S-Band and X-Bandwith interchangeable R-F Heads

finest in the extreme
 - for highest quality at lowest cost!

Large scale production usually implies units built to a price. At FXR quality materials and performance are the prime factors. But with its expanded facilities and specialized engineering staff, FXR more than doubles its volume of precision manufacture. This reflects in lower costs to you, and speedy delivery (only 3 weeks for Spectrum Analyzers). Why pay a premium? Why wait?

- newly improved design
- fully engineered and field-tested units
- designed for use in the S-Band and X-Band Microwave Regions
- interchangeable R-F Heads - compactly built, stable operation, long life

FXR Type No.

| 2400 to 3400 Mc | S700A |
| :--- | :--- | :--- |
| 3000 to 3700 Mc | S700B |
| 8500 to 9600 Mc | $X 700 \mathrm{~A}$ |

- only FXR precision microwave components are used in the R-F Head

Get full details
on the COMPLETE LINE of
FXR Precision Microwave Test Equipment

50
llaite todnufor Complete pt ar
 44-14 ASTORIA BOULEVARD, LQNG ISLAND CITY 3, N. Y.
\qquad
Electronics \& X -Ray Division F-R MACHINE WORKS, Inc.

Perhaps. But the only time we won't consider a special purpose development request is when Ohm's Law says "No." Tough assignments are an Islip specialty, and our engineering staff is at YOUR service.

TRANSFORMERS

colls

RELAYS

ISLIP SUPERIOR COMPONENTS FOR EVERY NEED EXCEEDING COMMERCIAL AND MIL T-27 REQUIREMENTS

How may we help you? Write . . .

Waldes Truarc Rings Cut Costs $\$ 3.26$ per Unit, Reduce Size and Weight of Air Cylinder!

OLD STYLE air cylinder, with thread-secured head, required costly tapping, chasing and assembly operations. Also, satisfactory maintenance of packing unit necessitated use of pipe wrenches on painted surfaces.

NEW cylinder head is secured with precision-ground Waldes Truarc Rings. This produces perfect alignment of head within the housing. difficult to obtain with screw-thread seating. Maintenance is quick and easy.

- The A. K. Allen Company of Brooklyn, New York, maker of AllenÂir cylinders, now uses two Waldes Truarc Inverted Rings (series 5008) to secure heads rigidly within tubes.
- TRUARC Rings, in this application, are ground parallel by A. K. Allen to .001 tolerance. In a static hydraulic bursting fest, the $3^{\prime \prime}$ unit (recommended for 350 p.s.i.) withstands a pressure of 2000 p.s.i. And at bursting-point, the brass
groove gives way; the Truarc Ring remains intact.
- Waldes Truarc Retaining Rings are precision-engineered. . . quick and easy to assemble and to disassemble. They can be used over and over again. There's a Waldes Truare Ring to answer every fas. tening problem.
- Find out what Waldes Truarc Retaining Rings can do for you. Send your blueprints to Waldes Truarc engineers.

For precision internal grooving and undercutting ... Waldes Truarc Grooving Tool

New Du Pont MILLAR film offers reg. u. s. pat. off. a balance of properties never before available for electrical uses!

Du Pont "Mylar" polyester film has a balance of properties that make it suitable for a wide variety of electrical applications.

"Mylar" film used to insulate this motor stator is about half as thick as the material it replaces.

Fiexibility and strength of new "Mylar" polyester film make it ideal for wire and cable insulation.

Miniaturization of eapacitors, transformers and other electrical equipment is made possible by the use of "Mylar."

High diefectric strength, combined with toughness, makes "Mylar" adaptable to a variety of coil-insulation uses.

Out of Du Pont research comes a new product-"Mylar" polyester filmwith a balance of electrical, mechanical and chemical properties so unusual that it opens new possibilities in the design of electrical equipment.
"Mylar" exhibits high dielectric strength, high volume resistivity and high surface resistivity. In addition to its good insulating properties, "Mylar" has outstanding mechanical properties. Its tensile strength is $17,000-25,000$ p.s.i. It is tough and durable. And it retains its remarkable properties over a wide temperature range, remaining flexible and stable from -60° to $150^{\circ} \mathrm{C}$.
"Mylar" is moisture insensitive ... impermeable to many organic and inorganic gases. Its resistance to fungus is excellent, making it suitable for applications under a variety of climatic conditions.

These properties of "Mylar" are already being used to advantage in motors, cables, capacitors, coils and transformers. If you would like to investigate the possibilities of improving your own products with Du Pont "Mylar," write for further information to: E. I. du Pont de Nemours \& Co. (Inc.), Film Dept., Room E, Wilmington 98, Delaware.

DU PONT MYLAR ${ }^{\circ}$

Polvester Film

BETTER THINGS FOR BETTER LIVING . . . THROUGH CHEMISTRY

Norwood Controls representafives are located in principal cities. Complete tectrical information will be supplied upon request.

PROGRESS OF A PROBLEM

To design and manufacturc advanced radar and fire control systems for military all-weather fighters and interceptorsequipment that must be light in weight, versatile, and capable of accurate operation day or night under extreme conditions.

At Hughes the answers to these requirements for complexly interacting systems involving advanced radar and fire control have been under continuing development from 194^{8} and in production since 1949 . Even more advanced systems are currently in process of development for supersonic aircraft.
Beginning with systems engincering and analysis, the military studies are initially concerned with evaluation of the strategic and tactical needs of the services in order to establislı design objectives. This is followed by the analysis of problems involving noise, smoothing and prediction, multi-loop nonlinear servos, aircraft dynamics and controls, and the propertics peculiar to conversion of analog information to digital quantities. From the analytic stage evolve the requirements for systems design and circuitry, designs of computing sub-systems, microwave transmitting and receiving equipment, the presentation of information to an airplane pilot, and advanced testing needed to optimize over-all system performance.

Aircraft shown in the accompanying photographs are among those equipped with Hughes radar and fire control systems.

SYSTEMS ENGINEERS

CIRCUIT

ENGINEERS

Further advancements in the fields of radar and fire control are creating new positions on our Staff for engineers experienced in the fields of systems engineering and circuit design, or for those interested in entering these areas.

Assurance is required that relocation of the applicant will not cause disruption of an urgent military project.

SCIENTIFIC
AND
ENGINEERING
STAFP

HUGHES

RESEARCH AND DEVELOPMENT LABORATORIES

Culver City, Los Angeles County
California

Hughes Diodes

Recovery Time Characteristics

at 25° Centigrade
Type 1N191
$50 \mathrm{~K} \Omega @ 0.5 \mu \mathrm{sec}$ and $400 \mathrm{~K} \Omega$ @ $3.5 \mu \mathrm{sec}$ maximum
Type 1N192
$50 \mathrm{~K} \Omega @ 0.5 \mu \mathrm{sec}$ and $200 \mathrm{~K} \Omega$ @ $3.5 \mu \mathrm{sec}$ maximum

Maximum Back Current

at 55° Centigrade

$$
\text { Type } 1 \text { N191 }
$$

$400 \mathrm{~K} \Omega \mathrm{~min}$. between -10 and -50 V
Type 1 N192
$200 \mathrm{~K}!\mathrm{min}$. between -10 and -50 V
To measure pulse recovery for both types, diodes are pulsed at 30 mA in the forward direction and then a back voltage of -35 volts is applied.

Now, as part of the continuing program to meet the expanding requirements for computer components, Hughes announces the registration of Diode Types 1 N191 and 1N192. Both are selected for their outstanding performance in computer service.

These computer type diodes, like all Hughes diodes, are designed to ensure extremely high moisture resistance . . . thermal stability...electrical stability...subminiature size . . .thorough dependability. These fcatures mean long life with minimum maintenance.

If you need special computer type diodes, chances are that we can furnish them on a production basis-because we are constantly producing and providing mamy types to meet literally hundreds of electronics and communications applications. Anong these are high forward conductance, low-voltage diodes, used for certain computer applications.

Just Off the Press

A new, eight-page descriptive brochure Lists and describes all the more widely-used retma, jan and special types in the Hughes line. Just write for your copy of Bulletin SP-2.

... exacting quality in capacitors and resistors

EFIE High Voltage Capacitors
Erie offers a wide selection of dis: and malded type ceramicons for high voltage service up to 30 KV .

ERIE "Hi-Stab" Deposited Carbon Resistors
The Style 155 Pyrolytic resistor fulfills a long standing need for an extremely stable, moderately priced, molded insulated $1 / 2$ watt resistar. Available from 100 ohms to $1 / 2$ megohm in tolerances as close as $\pm 1 \%$.

ERIE
 dependable electronic components

ERIE "K-LOK" Hight-stability Disc Ceramicons
Values up to .0047 mfd at 500 volts are available in tolerances as close as $\pm 5 \%$. Capacity variations with temperature, age, and voltage are exceptionally small. A truly premium capacitor.

ERIE Trimmer Capacitors
The largest and most versatile family of plastic and lemperature compensating ceramic trimmer capacitors are available from Erie, to meet difficul tuner and converter requirements.

ERIE By-Pass and Compensating Ceramicons
To meet the exacting temperature compensation and by-pass requirements of color circuitry. Compensating units available from . 75 to 1380 mmf . "Hi-K" by-pass units available from 100 mmf , to .01 mfd .

ERIE Stand-off and Feed-thru Ceramicons
Manufactured in values up tc 1500 mmf . to overcome radiation and critical by-passing problems.

$$
\begin{aligned}
& \text { New WBSTION } \\
& \text { Inductronico D-C AMPLIFIER } \\
& \text { Measures Milivolts } \\
& \text { to } 0.1 \% \text { !... }
\end{aligned}
$$

The new Weston Inductronic D-C Amplifier measures both millivalts and microamperes to an accuracy previously unheard of. A product of Weston Electrical Instrument Corp., Newark, N. J.

Its resistor network uses D-H ALLOY Gesurn HIGH STABILITY and AGCURAGY

When it's millivolts or microamperes you are measuring, you talk.in terms of accuracy in the order of 0.1%. Here is the most accurate measuring instrument yet developed - the Weston Inductronic D.C Amplifier. This amazing instrument makes potential measurements down to microvolts, current measurements to fractions of a microampere.
By using this 200 kc frequency shift amplifier in connection with thermocouples, radiation receivers, bolometers, strain gages, pressure transducers, resistance thermometers, photocells, ionization gages, etc., related physical quantities can be measured with speed and accuracy far superior to any other method previously known,
The amplifying system is essentially an auto-
matic potentiometer, wherein an output current is maintained in balance against the input through a method of accurately adjusted resistors determining the balanced ratio of output to input. With a high gain in the amplification of error unbalance, the accuracy of amplification ratio is of course dependent almost entirely upon the stability and precision of the resistor network.
For this most exacting function Weston uses Driver-Harris MANGANIN, an alloy of such fixed stability that maximum change in resistance between $15^{\circ} \mathrm{C}$. and $35^{\circ} \mathrm{C}$. is less than 15 parts per million per degree Centigrade.
If fixed stability and constant resistance under normally variable operating conditions are "musts" in your resistor designs, let us have your specifications. We'll gladly put at your disposal 50 years of alloy manufacturing experience to help solve your problem.
-TM, Reg. US. Pot. Off

Driver-Harris Company
 HARRISON, NEW JERSEY

BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco, Louisville
in Conodo: The B. GREENING WIRE COMPANY, Lid., Hamilton, Ontario

PRODUCTION MANAGERS SAY...

 "Specify
hermetic-seal, compression type

CANS \& COVERS

built to meet MIL-T-27 \& Commercial Specifications

ASSEMBLY SERVICE

from assembly of bushings in covers to actual hermetic sealing of your component.

YOUR electronic and nuclear equipment or components deserve HELDOR treatment. Be wise . . . time-wise, dollar-wise, quality-wise and delivery-wise - send your specifications or prints to HELDOR for "quotes". Do it now!
because Heldor gives -fast delivery

2-3 weeks on Cans, Covers \& Assemblies. Prototype and special size cans and covers in $3-4$ weeks. Bushings immediately from stock.

oconsistent quality

Advanced quality-control procedures result in new lows for rejects, etc.

- LOWER COSTS

No tool or die costs on Standard Cans, Covers. "Knowhow" provides real economies on Bushings and assembly service. $7 \sqrt{7}$

WRITE FOR NEW, LOW PRICE LIST
AND CATALOG

G-E SUBMINIATURE METAL-CLAD CAPACITORS With silicone end-seals and solid dielectric operate from -55 C to +125 C without derating

These G-E subminiature metal-clad capacitors are specifically designed to provide the utmost reliability under severe operating conditions. For over three years, Permafil (solid) dielectric has proved its reliability in aircraft engine control, airborne radio and radar communication equipment, ground radio communication and airborne fire control systems.

G-E subminiature metal-clad capacitors offer two important, unique features:

- Solid dielectric-G.E.'s Permafil-provides excellent electrical characteristics and eliminates the possibility of leakage.
- Silicone end seals-for high thermal and physical shock resistance exceeding MIL-C-25A requirements.
- Microfarad ratings range from .001 to 1.0 uf in voltage ratings of $100,200,300,400$ and 600 volts d-c working. They can be operated at full voltage up to altitudes of 50,000 feet.

Case sizes range from . 235 inches in diameter and $11 / 16$ inches in length to 1 inch in diameter and $25 / 8$ inches in length.

Liquid-filled metal-clad line also available with G-E Pyranol* dielectric for operation from -55 C to +85 C without derating. Lower-cost, they incorporate all the operating advantages of the solid dielectric line and are supplied in the same ratings.

For more information see your G-E Apparatus Sales Office, or write for bulletin GEC-987 to General Electric Co., Sect. 442-18, Schenectady 5, N. Y.

*Reg. trademark of General Electric Co.
 Qou can put your confidence in .

G-E SILICONE END SEAL

1. Solder right up to the case with new G-E silicone end seal - no need to waste $1 / 4$ inch of valuable space because of danger of cracking glass.

2. Withstands vibration and rough handling. This view shows a glass-bead-sealed capacitor and a silliconesealed capacitor being dropped.

3. Undamaged by drapping, the two capacitors are shown here-note that there are no cracks in the G-E siliconesealed unit.
4. At +125 degrees centigrade, the capacitor consistently maintains 100 percent capacitance.

5. Al -55 degrees centigrade, the subminiature G-E metal-clad capacitor with Permafil dielectric shows less than 7 percent loss in capacitance.

6. Capacitance vs. Temperature is shown by this typical curve. G-E capacitors with Permafil dielectric have very little capacitance change throughout the entire range from -55 C to +125 C .

temperature in degrees centigrade

Stainless Steel screw; .022"
long; 200 threads per inch; slotted head .0.36" in diameter.
this is precision

COMPANY Allied Products Division

928 WHEATLAND AVE., LANCASTER, PA.

Are you ready for a major electronic and electrical firstMagnetics, Inc. "Performance Guaranted" Shields for shichling of stancard cathode ray and chher tubes anainst moderate and high flue extermal fields . . and custom-designed "PerformanceGuaranced" Shields for specilic shiclelins problems:"

Here are shields which elim natte waste. . . are wuaranteed to your pe-formance specification... and we sold al slandard prices

THE WIDEST CHOICE IS YOURS

MATERIaLS . . Premimm quality Performance Guaranted Shields are ustally made from Mmmetal or A.E.D. F50, dry-hydrogen anmealed lor optimum isolating properaties. Shiclads can be made from any other commercially ayablable magnetic and uom-mater netic materials when required by perlomance specifications.

METHOL OF MANUFACTURE . . Performance-Guarantecel Shickers can be abricated or drawn by Magnetics, Inc., depending upon which is most economical for your requirements.

FINISH . . Performance-Guatanted Shields can be furnished painted. lacquered or unfinished, as your requirements dictate. Pamt color can be matched to atiy copupment shade you select. Pre-panting by Magnetics. Inc. eliminates danger of damage to shields in painting operations in your plant . . provides you with shiclds immediately ready for your assembly operations.
free engineering design . . Our Engineering Department will carry ont all phases of your shiekl desigrn . . including magnetic analysis . . . mechanical design . . . and production enginecring to your cost requirements.

The greatly increased protection made possible by the development of our high-temperature gray enamel is the most important improvement of these resistors, but it is not all. True, this enamel is thermo-shock-proof and crazeless; but in addition

THESE RESISTORS OFFER . . .

- Stronger core with higher resistance to vibration and shock.
- Finer resistance wire-made to H-H specifications, especially adapted to these resistors. More uniformly wound, so that failures under stress are eliminated.
- Special alloy terminals more securely fastened to the ceramic body by spot-welding--highly resistant to corrosion.
- All wire connections are protected by a positive non-corrosive bonding.
The fixed, the ferrule and the flat types are especially designed for and manufacturd in accordance with JAN-R-26A specifications.

HARDWICK, HINDLE, INC.

Rheostats and Resistors
Subsidiary of
THE NATIONAL LOCK WASHER COMPANY
Establisned 1886

Newark 5, N. J.
the mark
U. S. A.
of quality

Hardwick, Hindle, Inc.
40 Hermon St., Newark 5, N. J.
Please send additional informatioa about your new resistors and rheostats.

Name
Title \qquad Company

Address
for more than a quarter of a century

(R)
 Hipersil Cores now rustproof

A new process now coats a microscopic film of rustproof iron phosphate on all Westinghouse Hipersil Cores. This coating will not chip, scratch or flake, nor will it affect core performance.

Rustproofing eliminates all possibility of deterioration. This means you can safely carry samples or a stock of cores in advance of immediate production needs . . . keep your assembly lines flowing smoothly.
This thin coat prevents any loss of the inherently high flux carrying capacity . . . another reason why Hipersil Cores make it unnecessary to design excess

Butt joint section of 5 -mil Hipersil Core, magnified 10 times. Distinct separation between the laminations channels the flux, increases core efficiency.
core material, and, therefore excess size and weight, into your transformer assemblies.

Advancements like this continue to make the Westinghouse Hipersil Core the best on the market today. Because they are 100% active in carrying flux, they solve size, weight and loss problems for you. The simple, two-piece assembly helps cut your transformer fabricating costs. Get a more complete story by writing today for Booklet B-5402. Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.
J. 70694

How does AVIEN maintain this "BALANCE OF POWER"?

A current tanker aircraft specification calls for large fuel tanks fore and aft. Obviously the pilot must know the fuel quantities in both systems. What is more, this stored power must be distributed "in balance" equally between the two.

Control of the plane's center of gravity and constant, accurate indication of fuel quantities are both handled automatically by an Avien voltage-fed balancing system and the well-known Avien Fuel Gages.

Fuel weight distribution data are supplied by one additional potentiometer in each fuel gage indicator.

A typical Avien safety feature is incorporated in the balancing amplifier. It detects and warns of a pump or valve failure in either system.

The entire installation has been achieved by Avien with a minimum of weight, complexity and cost. This
is another example of the essential adaptability of the Avien fuel-gaging system which can be "tailored" to the exact specifications of many different aircraft.

Every month, Avien produces over ten thous: major instrument components for the aviation inc. try. They have been specified for more than fifty diff. ent aircraft models.

If you have a fuel gage or fuel management problem, call on us.

Parts are molded by Central Molded Products Co.
(Chicago); Mayfair Molded Products Corp. (Chicago); Wilcox Plastics, Inc. (Montebello, Calif.)

Electronic precision with

mass production economy ...

thanks to masere ALKYD

World's largest producer of TV tuners is Standard Coil Products Co., Inc. Reasons for Standard Coil's leadership in this field, according to company executives, are: 1) product superiority, 2) mass production methods.

Thirty-seven vital parts of the Standard Coil tuner are made of mineral and glass fiber reinforced Plaskon Alkyds. The fast molding characteristics of Plaskon mineral-filled Alkyd facilitates mass production. And the Alkyds' excellent dielectric properties and
dimensional stability assure the excellent tuner performance that keeps Standard Coil's customers happy.

Standard Coil is one of hundreds of manufacturers who have used Plaskon materials and technical assistance to increase productivity and strengthen product superiority. Perhaps one of these materials can help you, too. The experience and extensive modern research facilities of the Plaskon man are at your disposal.

For further information on PLASKON plastics and resins address Barrett Division, Allied Chemical \& Dye Corporation, 40 Rector Street,
New York 6, N.Y., Whitehall 4-0800

Tests tubes under actual circuit operating potentials.
Tube characteristic operating curves can be plotted for comparison with manufacturer's specifications.
Transconductance can be measured directly without need for null adjustments or correction factors.
Voltage Ratio method of measuring transconductance meets the IRE Standard 50 IRE 7.S2 paragraph 7.2.2.4.
Completely self-contained with all necessary power supplies, meters and switching for performing short tests, static characteristic measurements and grid to plate transconductance measurements.

A well filtered d-c power source is supplied, making it possible to test tubes with d-c potentials which can be accurately adjusted to correspond to actual circuit voltage operating conditions.
Precision meter shunts and multipliers are wire wound to 0.5 per cent accuracy.

Special circuitry makes meter loading effects negligible.
Regulated grid bias supply keeps this most critical voltage constant. Plate and screen supplies do not affect grid bias setting.
Wide range si measurement of transconductance provides good readings on all tubes from small subminiature types to large power control types. The true transconductance is obtained on all triodes and pentodes, including low mu control tubes having plate resistance as low as 250 ohms.

Transconductance ranges are available in the following combinations of range and grid signal voltages:
Descriptive literature on Model 686 gladly sent on request. WESTON Electrical Instrument Corporation, 614 Frelinghuysen Ave., Newark 5, N. J.

WESTON

Grid Signal	1.0	0.5	0.2	0.1	Volts
Gm $\times 1$	300	600	1500	3000	Micromhos
Gm $\times 10$	3000	6000	15000	30000	Micromhos

The $\mathrm{Gm} \times 1$ range is especially useful in the measurement of subminiature tubes having low transconductance.
Reliability, Dependability and Accuracy assured by sound engineering, skilled manufacture and high quality components.

now available

ASSEMBLIES

or SUB-ASSEMBLIES foryour sOPNER sUPLiEs

- UNITIZED RECTIFIERS
- PLATE-FILAMENT-REACTOR ASSEMBLIES

- PLATE TRANSFORMERS

- filament transformers

- FILTER REACTORS

Moloney now offers complete power supplies custom built to your needs Complete power supplies or any subassembly can be had, manufactured to your most rigid specifications.

High Power or High Voltage offers no problem to Moloney, long experienced in the manufacture of quality transformers. Moloney, supplying transformers to the electrical industry for over 58 years, stands ready to apply this exper. ience to the manufacture of your most exacting requirement for power supplies.

> Per $\left\{\begin{array}{c}\text { RETMA } \\ \text { MIL-T-27 }\end{array}\right\}$ Standards OIL • ASKAREL DRY (Class A, B \& H. $)$

Write today for Bulletin ST-3505 describing Specialiy Transformers

Poratant formerso Unit Substations Natworb Transformevs. Constant Gurrent Trausformers. Capacitors - Tíansformers For itectronics SALES OFFICES IN ALL PRINCIPAL CITIES • FACTORIES AT ST. LOUIS 20, MO. AND TORONTO, ONT., CANADA

BRIDGEPORT WAREHOUSE SERVICE

The Bridgeport warehouses are designed to supply from stock limited quantities of sheet, rod, wire or tubing. It is the policy of the company to maintain adequate warehouse stocks at all times so that small orders can be filled without delay.

The fabricator is in a position to obtain promptly metal to fill orders for experimental work or to start production runs, while woiting for mill shipments.

Bridgeport warehouses make every effort to carry the variety of alloys, sizes and gages which fulfill the requirements of the locality they serve.

To take care of the maximum range of widths of strip metal, slitting service is available-not only to serve warehouse stocks, but also to make customers' stocks of non-ferrous strip metal more flexible.

Bridgeport's Warehouse Stocklist carries weight tables and a technical digest giving the properties of the most popular copper-base alloys. If you do not have a copy, ask your nearest Bridgeport office.

Mills in Bridgeporf, Conn. and Indianapolis, Ind.
In Canada: Noranda Copper and Brass Limited, Montreal

BRIDGEPORT BRASS COMPANY

30 GRAND STREET, BRIDGEPORT 2, CONNECTICUT
 based on the output accuracy of the potentiometer as the controlling factor. Gold-flashed connector-type terminals permit ease of connection where accessibility is limited.

* Based upon a method originated by IBM Corporation under U.S. Government Contract

Mechanical Specifications
Base and Bearings: One piese machined' aluminum base houses springloaded ball bearings in a single through bore for greater accuracy and rigidity.
Finish: Red Alumilite, corrosion resistant per AN-@Q-A-696A.
Mounting: The stainless steel register or pilot formed by the outer race of the bearings is as accurate as the bearing with respect to concentricity and diameter. For synchro type mounting, a high precision outer registe: used for ussembly with gears prepinned to the shaft.
Şhaft: Centerless ground stainiess steel $.2500^{\prime \prime}+.0000-.0003$ diameter. Mechanical Rotation: Angle between stops $3660^{\circ} \pm 2.5^{\circ}$.
Stops: Mechanical stops of lead screw type tested to withstand torques exceeding 100 inch pounds, assure reliability and ruggedness.
Dimensions: Diameter 1.820", Length 2-"/16".

[^5]
Tehtulogey Istrimen Corp.

The need for a reasonably-priced and medium sized high-fidelity loudspeaker ha been met by the Research Laboratories of Goodmans lndustries who ate constantly in touch and, indeed, in sympathy with the requirements of the high-fidelity enthusiast. To a certain extent this demand can be related to the present-day restrictions on living space and the fact that enthusiasts are seeking a londspeaker which, when suitably housed. will occupy the minimum of space, and yet still faithfully reproduce their particular choice of music.
From the start it was decided that the new loudspeaker would be housed on an 8 im . chassis and to set a really new trend, a special hyperbolic cone was designed.

specification

Frequency Range	$40-15,000 \mathrm{c} / \mathrm{s}$
Fundamental Resonance	$65 \mathrm{c} / \mathrm{s}$ (nominal)
Voice Coil Diameter	$1 \mathrm{in} .(2.5 \mathrm{cms*}$)
Voice Coil Impedance	15 ohms.
Flux Density	13,500 gauss
Total Flux	51.200 Maxwella
Maximum Power Handling	5 watts peak A.C.
Overall Diameter	81 in. (20.63 cmm.)
Overall Depth	$3 \mathrm{Hf}^{\text {in. (}}$ (10 cms.$\left.\right)$
Bafle Hole Diameter	7 in . (17.8 cms.)
Mounting Holes 4	$\begin{aligned} & \text { x } \frac{7}{52} \text { in. (} 5.5 \mathrm{mms} \text {) } \\ & \text { (} 19.36 \mathrm{cms} .) \text { P.C.D. } \end{aligned}$
Nett Weight	3 1bs. (1.47 kgs.)
Finish	ey Rivelling Enamel

audiophile nett price \$21.30

Exclusively Distributed by:-

EAST:
Goody Audio Center Inc.
235 West 49th St., New York 19, N. Y
SOUTH \& SOUTH-WEST
Hign Fidelity SSS,
606 Peachtree, N.E., Atlanta, Ga.

WEST:
Hollywood Electronics,
7460 Melrose Ave., Los Angeles 46, Calif
CANADIAN SALES OFFICE:
A. C. Simmonds \& Sons Lid.,

100 Merton Street, Toronto 12.
gCOdmans industries ltd., axiom works, wembley, middlesex, england

लिPHसNo

Yes, in a way, a second helping-for we are trying to express the factors which have helped raise the american phenolic corporation by its boot straps in a little over twenty years. In the early thirties amphenol was just another struggling industrial infant in one small factory and our main concern then was radio sockets. Today there are r̂ve modern plants producing over 11,000 cataloged products ranging all the way from AN connectors to television antennas.
"A little more of everything"-we think a little more courage, a little more imagination, a little more faith have been responsible for the growth of amphenol during the last two decades. And we look forward to the same "little more" qualities, a second helping of the same, to keep amphenol a vital member of the electronics industry for many, many years to come.

Hit

 and how to magnify

 and how to magnify

 a precision system

 a precision system} PORTY PICKET

One typical DV Development

COST-CUTTING FIXTURES
Maintaining precision tolerances on relatively short production runs is often a difficult problem involving costly tooling.

In a recent DV development, these costs have been chopped drastically by a series of new-type master reaming fixtures which eliminate jig-boring operations combined with time-consuming pre-assembly and alignment with special tools. In a single setup, the reaming fixtures (one of which is shown in the hands of a skilled DV toolmaker) perform all the finish boring operations on a cast-magnesium radarantenna housing.

With this straightforward, routine technique, interchangeable parts are fabricated to near-zero dimensional limits.

If an airborne radar antenna makes you think of a small, intricate mechanism, take another look at the 29 by 20 by 7 foot radome hanging under this Air Force RC-121C radar picket plane-one of the giant early-warning Lockheed Super Constellations patrolling U.S. shorelines against attack. Inside, the Dalmo-Victor-developed antenna illustrated-the largest airborne antenna ever built-plays its part in extending the range of detection beyond 200 miles, horizon to horizon.
A primary engineering requirement, of course, was integration of this antenna system into the six tons of electronic equipment aboard the high-altitude reconnaissance ship: including weather radar, relay links for transmitting radar pictures to ground-control stations, and equipment for vectoring fighters or missiles onto targets.
Dalmo Victor's contribution of this antenna to the most powerful search radar equipment yet designed for aircraft, called for an application of all the skills and techniques developed during years of engineering light-weight precision electromechanical systems.
Whether your requirements call for the largest, the smallest, or something in-between; the design, development, and production facilities of Dalmo Victor's versatile organization can be put at your disposal.

A New low volłage POWER SUPPLY

MODEL K101F

Designed to meet the critical D.C. power requirements of the aircraft industry, the Klolf incorporates many custom engineered features, such as:

- An automatic ammeter cutout circuit for dynamotor and inverter starting.
- Delay type overload protection.
- Permanently etched control designations.
- Over-current warning indicator.
- Stepless output control.
- Compact, portable design.
- Zero maintenance.

0-28 Volts D.C. 20 Amperes 1\% Ripple

$\$ 195$

SPECIFICATIONS:

OUTPUT VOLTAGE: 0.28 V.D.C., continuously variable. OUTPUT CURRENT: 20 Amperes, continuous duty at $35^{\circ} \mathrm{C}$ ambient OVERLOAD : RIPPLE VOLTAGE:
REGULATION:
METERS:
CONTROLS:
TERMINALS: INPUT: DIMENSIONS: MOUNTING:
400% for $1 / 2$ minute, 200% for 2 minutes.
One Percent at full load.
D.C.V. at Full Load: 28.5. D.C.V. at $1 / 10$ Load: 33.
0.50 V.D.C., 2% accuracy, $4^{\prime \prime}$ rectangular. 0-25 A.D.C., 2% accuracy, $4^{\prime \prime}$ rectangular.
Power switch, voltage control, pilot light, overload warning light.
Panel binding posts plus rear terminal board. 115 V.A.C., 60 cycles, single phase. 19" W, x 121/4" H, x 141/4" D. Standard Rack.

Write for Bulletin No. 150
71-2 WARREN STREET • NEW YORK 7, N. Y.

Another C-D" "first"

Consistently
 Cornell-Dubilier
 Budroc* steati
 Dependable

The outstanding capacitor
for high fidelity and high frequency applications

To the long list of Cornell-Dubilier "firsts" add another important development : the C-D Budroc* steatite-cased tubular capacitor. It is unquestionably the finest paper tubular ever made for the initial equipment manufacturer.

Budroc capacitors are non-inductively wound and housed in a tube of the finest ceramic (steatite) completely fabricated in our own plant, under close and constant supervision and quality control from start to finish. The specially developed C-D end fill will not soften, melt or flow at any rated operating temperature.
Send for engineering samples of this superb humidity proof, new C-D capacitor! Use our Technical Advisory Service for your special application problems. Bulletin NB-154 on request.

Cornell-Dubilier Electric Corp., Dept. K-54 South Plainfield, New Jersey.

THERE ARE MORE C.D CAPACITORS IN USE TODAY THAN ANY OTHER MAKE

CORNELL DUBILIER

antenmas

HYEREMス

NOW AVAILABLE

No. S Speaker Magnets

 withG MILLON BaHdmax
 GUARANTEED!

Now. . . for the First Time

the RETMA Standard No. 9 Loudspeaker Magnet is available with a minimum energy product of over 6 million BH max. Made of Hyflux

Alnico $\mathrm{V}^{(H E}$, it provides the highest energy product of any commercial Alnico.

The immediate advantages it offers to users of the RETMA No. 9 Magnet are:

- The highest sound level possible.
- A better transient response-resulting from the higher gap density which increases the damping factor-assures a full range of tones and overtones.
- The truest possible reproduction of sound.

High Energy-grain-oriented Alnico V.

The Indiana Steel Products Company is proud to introduce this improved No. 9 speaker magnet to the audio industry.
Investigate its distinct advantages for your speaker. Price and delivery information upon request.

THE INDIANA STEEL PRODUCTS COMPANY Valparaiso, Indiana
Wolbs Largest Mamiffacturer of Permanent Magnets

МNDIANA PERMANEMT MAGMETS

-.. meticulously tailored MAGNETIC AMPLIFIER SERYO SYSTEMS

Typical characteristics of some magnetic amplifier and two-phase servo motor combinations available from Ketay.

On the other side of this page are listed some of the synchros for which the combinations were specially designed.
Ketay supplies complete systems including gear trains and stabilization for given kinematic requirements.

Servo motor-tachometer generator combinations are also available.
Ketay welcomes the opportunity to design and fabricate amplifiers of both the conventional and miniaturized types to customer's specifications.

RESOLVERS • MAGNETIC AMPLIFIERS AIRBORNE INSTRUMENTS
 AUTOMATIC CONTROL SYSTEMS

SYNCHROS • SERVO MOTORS

1-SERVO MOTOR, Size 10 Frame, O.D. .937"
2-SYNCHRO, Size 10 Frame, O.D. $937^{\prime \prime}$ (Transmitter, Receiver, Resolver, Differential Transmitter, Control Transformer)
3-SERVO MOTOR, Size 10 Frame, O.D. $937^{\prime \prime}$
4-SYNCHRO, Size II Frame, O.D. $1.062^{\prime \prime}$ (Transmitter, Resolver, Control Transformer)
5-SERVO MOTOR, Mk 14, Size ll Frame, O.D. 1.062"
6-SYNCHRO, size 15 Frame, O.D. $1.437^{\prime \prime}$ (Transmitter, Receiver, Resolver, Differential Transmitter. Control Transformer)
7-SERVO MOTOR Mk 7, Size 15 Frame, O.D. I.437"
\&-SYNCHRO, Size 15 Frame, O.D. 1.437" (Transmitter, Receiver, Resolver, Differential Transmitter, Control Transformer)
9-LINEAR TYPE CONTROL TRANSFORMER, O.D. $1.625^{\prime \prime}$
10-SERVO MOTOR, Mk 8, Size 18 Frame, O.D. $1.75^{\prime \prime}$
11 -INDUCTION MOTOR, Size 20 Frame, O.D. $1.95^{\prime \prime}$
12-SYNCHRO, Size 16 Frame, O.D. $1.537^{\prime \prime}$ (Transmitter, Receiver, Control Transformer)
13-SYNCHRO, Size 18 Frame, O.D. 1.750" (Transmitter, Receiver, Differential Transmitter, Contral Transformer)
14-INDUCTION MOTOR, Size 18 Frame, O.D. 1.750". 3 Phase, 2 Pole
15-5YNCHRO. Size 19 Frame, O.D. $1.90^{\prime \prime}$ (Transmitter Receiver, Control Transformer)
16-5YNCHRO Type IF IHCT or IHG Size 1 Frame O.D. 2.250" (Receiver, Transmitter, Control Transformer)

17-INDUCTION MOTOR, size 1 Frame, O.D. 2.250"
18-SYNCHRO, Size 23 Frame, O.D. 2.250" (Transmitter, Receiver, Resolver, Differential Transmitter, Contral Transformer)
19-SERVO MOTOR, Size 23 Frame, O.D. 2.250"
20-5YNCHRO, Size 31 Frame, O.D. 3.10" (Transmitter. Receiver, Differential Receiver, Differential Transmitter) Typical characteristics of 116 units are available.

ADDITIONAL FACILITIES TO

SERVE THE INDUSTRY

This plant, recently acquired at Commack, Long Island, adds air-conditioned work space that brings Ketay's total area to over 200,000 square feet, accommodating over 2,000 employees in the five divisions. Modern in every detail, the new plant has the latest equipment for precision volume production.

EXPERIENCE世RESEARCH

HPERFORMANCE =LEADERSHIP

New developments and applications...increased facilities for volume production of components and complete systems... all the things reported on these pages are characteristic of Ketaya firm with broad experience and specialized knowledge that adds up to leadership in the field of electrical devices and controls. This experience and knowledge is yours to command. In addition to synchros, servo motors and resolvers, it includes, but is not limited to: gyro components; aircraft engine instruments; computers; magnetic, resolver and synchro amplifiers; remote indicators and automatic control systems. Ketay's completely staffed and equipped Research and Development Division can be of greatest service during the design stage of applications involving Ketay products. You are invited to avail yourself of this service.

MANUFACTURING CORP.
Executive Offices 555 Broadway, New York 12, N. Y. Pacific Division, 12833 Simms Avenue, Hawthorne, California

New York Division - Kinetix Instrument Division - Pacific Division Electronic Instrument Division - Research \& Development Division

All these from one experienced source

TITEFLEX DESIGNS AND MANUFACTURES - to customer specifications rigid waveguides and combinations of rigid and flexible waveguides. Where there is, or should be, no movement, or where complicated accessories must be connected, Titeflex rigid waveguides are specially recommended.

WAVEFLEX ${ }^{(8)}$ FLEXIBLE WAVEGUIDES are fabricated to retain critical dimensions - regardless of twisting or bending. Waveflex waveguides make assembly easy, improve design, compensate for expansion or movement. Rubber iacketing protects against weather, corrosion, physical abuse.

IITEFLEX CUSTOM WIRING SYSTEMS are corrosion resistant, moisture proof, pressure-tight and efficient at temperatures of $-65^{\circ} \mathrm{F}$. to $+400^{\circ} \mathrm{F}$. Can be furnished with Titeflex or standard AN connectors for a wide range of service requirements. Can be sheathed with metal braids, fiber glass or nylon-and jacketed with silicone or other compounds.

MORE THAN 37 YEARS of developmental experience make Titeflex a logical source of the components pictured on this page. We are currently in a position to supply connectors and wiring systems to makers of aviation and electronic equipment. If you have a problem requiring our unusual combination of products and engineering, let us quote on your requirements. The coupon will bring you information on our products.

Carefully engineered wires and cables help keep IBM equipment "on the beam"

Equipment manufactured by International Business Machines Corporation has established a record for accuracy and service that's hard to beat.

Much of the reason for this record is the fact that IBM uses only the finest components in their equipment.

This is one of the reasons IBM often comes to Rome Cable for top quality, specially engineered wires and cables. One of these is the 136 conductor cable (pictured top center) which is used in several IBM machines.

Others are various types of hook-up wire, a few of which are shown on the multiple spool rack (top left). Millions of feet of this Rome hook-up wire, manufactured to exacting specifications, are used by IBM every year.

In addition to the constructions shown, Rome manufactures a wide range of military and commercial type hook-up wires, intercommunication cables, coaxial cables, R. F. transmission line, television camera cables and other special constructions, engineered to the application involved.

Commercial type HOOK-UP WIRES

Rome offers commercial hook-up wires with three standard insulations.

Rome Hi-Temp-a rubber insulation with exceptionally high resistance to heat. Underwriters' approved for $75^{\circ} \mathrm{C}$.

Rome Synthinol-a polyvinyl chloride thermoplastic compound, highly resistant to acids, oils, alkalies, moisture and flame. Underwriters' approved for $80^{\circ} \mathrm{C}$

Rome Synthinol 901-offers all the advantages of Synthinol plus higher resistance to heat deformation, shrinkage and cracking, also improved solderability. Underwriters' approved up to $105^{\circ} \mathrm{C}$.

MILITARY HOOK-UP WIRES

Rome manufactures military type SRIR, SRHV and WL, complying with ArmyNavy Joint Specification JAN-C-76, as well as shipboard types SRI and SRIB conforming to Specification MIL-C-915. Insulated with Rome Synthinol, these wires are made in a complete range of specification sizes.

ROME CABLE CORPORATION, Dept. EL-5, Rome, N. Y Please send me the Rome Cable Hook-up Wire Bulletin TR. 5.

Name
Company
Address
City
Zone
State

News About Created-Metals

Thermistors Stabilize Circuit Resistance

A Carboloy Thermistor improves the accuracy and sensitivity of the Tektolog Electronic Recorder.
Matching the negative temperature coefficient of a Thermistor and a lowresistance manganin shunt to the positive temperature coefficient of the copper coil results in a circuit of constant resistance within $\pm 5 \%$ for ambient temperature from $32^{\circ} \mathrm{F}$. to $150^{\circ} \mathrm{F}$.
The high degree of compensation is achieved with a relatively low resistance and makes possible accurate recording of voltages as low as 20 millivolts full-scale.

For more information on Thermistors for temperature compensation and detection, warning devices and controls, write: Carboloy Department of General Electric Company, 11139 E. 8 Mile Blvd., Detroit 32, Michigan.

Many Uses Found for

 Cemented Carbides

The electronics and electrical industries are cutting costs and improving products with wear-resistant cemented carbides.
For example, tough grades of Carboloy cemented carbide are extending the life expectancy of telegraph relay contacts. Carbide-tipped tools are saving time and money in woodworking and cabinetry.
Carbide wire dies for making elec-tric-light filaments and draw dies for making component parts far outlast steel dies. Bearings of chrome carbide are light, strong, nonmagnetic.

Industry is daily finding new uses for cemented carbides. The Carboloy Engineering Appraisal Service will help you put carbides to work in your plant. For more information, write: Carboloy Department of General Electric Company, 11139 E. \& Mile Blvd., Detroit 32, Michigan.

Small size, light weight and permanent power are essential in military headsets. Carboloy Alnico 2 permanent magnets permit a thinner, lighter receiver with high output and level response.

Public-address loudspeakers utilize the acoustic action of powerful Carboloy permanent magnets. The uniformity and strength of these magnets help produce truer tone.

Permanent Magnets

Two Carboloy cast Alnico 6 permanent magnets cut manufacturing costs in this new telephone built by Connecticut Telephone \& Electric, Meriden, Conn. One magnet provides acoustic action for receiver; other magnet supplies generator action to operate bell ringer. The magnets' consistent field holds postassembly adjustment to a minimum.

Basic functions of permanent magnets

Convert electrical energy to mechanical motion

Eddy current braking
Motor action
Instrument action
Acoustic action
Electron beam control

Convert mechanical motion to electrical energy

Generator action Magneto action
Sound pick-up

Control of torque

Snap action
Separation Holding and lifting

The heart of this Gibson electric guitar is the magnetic pick-up. Steel strings vibrate in the field set up by two small Carboloy permanent magnets, generating minute electrical impulses.

New all-magnetic, all-transistor hearing aid uces permanent magnets in both microphone and receiver. These tiny magnets eliminate hearing-aid failure caused by operational heat, and by humidity.

improve sound pick-up and acoustic action

They make possible simplified design, lower costs, and improved performance in communication devices and in many other important fields

Carboloy ${ }_{\text {B }}$ Alnico permanent magnets are replacing electro-magnets in both the input and output elements of communication devices.
Because permanent magnets convert mechanical motion to electrical energy, they improve sound pick-up action for microphones and other transducers. And because they convert electrical energy back into mechanical motion, they provide the acoustic action necessary in telephone receivers and loudspeakers.
Carboloy permanent magnets supply a uniform source of stable, low-cost energy. By using power-packed permanent magnets,
you'll eliminate coils, wires and other operating parts. Design is simplified; product size and manufacturing costs reduced.
Carboloy permanent magnets are available sintered, as well as cast. Sintered magnets hold closer tolerances, permit more complex shapes.
Perhaps Carboloy permanent magnets can improve your products or equipment. Specially trained engineers of the Carboloy Engineering Appraisal Service will work with you on permanent magnet design and application. Send coupon, today, for catalog or design manual.

With 27,000 vibrations a second at her fingertips She cuts tungsten carbide easily!

This tool easily euts a pattern as fine as lace in tungsten carbide. Yet its full potentiatities in intricate machining are only beginning to be realized.
Ultrasonic waves, generated by magnetostriction, do the work in this new tool made by Raytheon Manufacturing Company, Waltham, Mass.

Back in 1935, Raytheon wanted to build a better oscillator for echo depth sounding. A core of laminated Nickel did the trick, and made possible the development of the Fathometer, which has proved so successful in depth sounding and in mapping the ocean floor.

Nickel did the trick because of its unequalled practical magnetostrictive efficiency. This makes Nickel the ideal core material in transducers for creating ultrasonic vibrations.

Ravtheon engineers have been applying this magnetostrictive efficiency of Nickel to other uses ever since. Perhaps they have already developed the ultrasonic device you are looking for. They make the Ultrasonic Machine Tool pictured above . . . and an oscillator used by pharmaceutical houses in making a more effective whooping cough serum. . . a vibrator that cracks glass and salvages tungsten from vacuum tubes . . . and oscillators to accelerate the growth of bacteria, the germination of seeds, and treatment of emulsions.

All these stem from just one characteristic of Nickel. If your new idea can be helped along by any of the versatile Inco Nickel Alloys, let's get together on it now. You can write to Inco today, to get us started on your problem.
THE INTERNATIONAL NICKEL COMPANY, INC. 67 Wall Street

New York 5, N. Y.

Inco Nickel Alloys

NO. 1 NO. 3
SERIES SERIES

TRANSISTOR Closures
(SHOWN actual s(ze)
write for these catalogs

- BULLETIN 949-A On hermetically sealed ter minols. Discusses cushioned gloss construction thermal shock resistance, preferred types and spe cial terminals.
- BULLETIN 950-A On hermetically sealed mul. tiple headers. Explains vocuum tight feoture, cush ioned glass construction, strain-tree qualities. - BLLLETIN 951 With camplete information on octal type plug-in and multiple heoders. Salid metal blanks insure maximum mechanical strength and rigidity.
- BULLETIN 952 Complete infarmation on E.l end seals for hermetic sealing candensers, resistars and other tubular electranic and electrical campanents. e BULLETIN 953 individuol, color-coded her. metically sealed terminals. Avallable with glass inserts calored in standard, casily identified RMA color codes.
- BULLETIN 960 Compression type mulfiple heoders. Super rugged, absolutely risid and prac tically indestructible. Guaranteed vacuum-tight.

tions to your order.

FOR COMPLETE DATA AND PRICES ON SPECIFIC TYPES OF MINIATURE Closures, CALL OR WRITE,

this fellow is trained in your business. His main duty is to travel the country - and world - penetrating the plants, laboratories and management councils . . . reporting back to you every significant innovation in technology, selling tactics, management strategy. He functions as your all-seeing, all-hearing, all-reporting business communications system.
the man we mean is a composite of the editorial staff of this magazine. For, obviously, no one individual could ever accomplish such a vast business news job. It's the result of many qualified men of diversified and specialized talents_

AND, THERE'S ANOTHER SIDE TO THIS "COMPOSITE maN," another complete news service which complements the editorial section of this magazine the advertising pages. It's been said that in a business publication the editorial pages tell "how they do it"-"they" being all the industry's front line of innovators and improvers - and the advertising pages tell "with what." Each issue unfolds an industrial exposition before you-giving a ready panorama of up-to-date tools, materials, equipment.
such a "man" is on your payroll. Be sure to "listen" regularly and carefully to the practical business information he gathers.

McGRAW-HILL PUBLICATIONS

Now a new Polarad spectrum analyzer only 21 inches high that covers the entice frequency range 10 to 22,000 mcs with but 3 interchangeable $R-F$ tuning heads. The model TSA operates simply-single dial frequency controlwith utmost frequency stability. It provides highest accuracy, and reliabilits for observation and true evaluation of performance over the entire $R-F$ spectrum-saving engineering manhours.
This instrument is desiged for maximum utility and versatility in the laboratory and on the procuction line providing an easy-to-read 5 inch CRT display of the $R-F$ spectrum.
The model TSA Spectrum Analyzer has these exclusive Polarad design and opeating features:

- Single frequency control with direct reading dial, No klystron modes to set. Tuning dial accuracy 1%.
- Only three interc a angeable $R-F$ tuning units for the entire frequency range 10 to 22,000 mcs.
- Temperature conpensation of Klystron Oscillator.
- Swept IF provides 250 kc to 25 mc display independent of $\mathrm{R}-\mathrm{F}$ frequency setting.
- Internal R-F attenuator.
- Frequency marker for measuring frequency differences from 100 kc to 25 mc .
Write today to your nearest Polarad representative, or directly to the factory
 for complete information.

ELECTRONICS CORPORATION
100 METROPOLITAN AVENUE, BROOKLYN 11, NEW YORK
10 mc
REPRESENTATIVES - Albuquerque - Atlanta - Boston - Chicago - Cleveland - Fort Worth - Kansas City - Los Angeles - New York

MODELS 901-903

 TEN-TURN POTENTIOMETERSDesigned for the utmost versatility and adaptability, Borg Micropors eliminate the need for special design. New Standard Borg Micropots are available in single or double shaft models with exceptionally rigid servomount or bushing-mount at either or both ends.

MODELS 931-935

THREE-TURN POTENTIOMETERS

All potentiometers are available with double end support to assure efficient operation where subjected to excessive vibration. Precision ball bearings and precision rolled lead-screw provide higher accuracies and longer life. Ganged units are accurately phased before coupling.

- One-piece centerless-ground stainless steel shaft
- One-piece lead-screw and servo-mount permits rigid mounting and maintains true shaft alignment
- Servo or bushing mountings of exceptionally rigid design available at either or both ends of any 900 series Micropot
- Drive assembly gives higher accuracy in the four basic types of linearity without additional modification
- Contact carrier assembly design permits no backlash between shaft rotation and electrical rotation
- Coupling band provides accurate alignment between mounting surface and housing
- $49^{\prime \prime}$ Kohlrausch wound resistance helix permits finer resolution
- Dual Spring contacts assure accurate transmission of voltages from carrier assembly to terminal

901 B

902SS

903BK

$9315 K$

$9335 S$

935BB

BORG EQUIPMENT DIVISION

THE GEORGE W. BORG CORPORATION JANESVILLE, WISCONSIN

telling the story of 'dag' dispersions

Try 'dag' resin-bonded dry films for permanent lubrication

Double Barrel Advertising

Advertising men agree - to do a complete advertising job you need the double effect of both Display Advertising and Direct Mail.

Display Advertising keeps your name before the public and builds prestige.

Direct Mail supplements your display advertising. It pin-points your message right to the executive you want to reach the person who buys or influences the purchases.

More and more companies are constantly increasing their use of Direct Mail because

it does a job that no other form of advertising will do.

McGraw-Hill has a special Direct Mail Service that permits the use of McGrawHill lists for mailings. Our names give complete coverage in all the industries served by McGraw-Hill publications - gives your message the undivided personal attention of the topnotch executives in the industrial firms. They put you in direct touch with the men who make policy decisions.

Some people have a wrong conception of Direct Mail. There's no hocus-pocus to itthere's no secret formula-nor is there need for an extensive department to plan and execute your mailing program. You don't even need your own mailing lists.

Probably no other organization is as well equipped as McGraw-Hill to solve the complicated problem of list maintenance in industrial personnel. Our lists are compiled from exclusive sources, based on hundreds of thousands of mail questionnaires and the reports of a nationwide field staff, and are maintained on a twenty-four hour basis.

In view of present day difficulties in maintaining your own mailing lists, this efficient personalized service is particularly important in securing the comprehensive market coverage you need and want.

Ask for more detailed information today. You'll be surprised at the low over-all cost and the tested effectiveness of these handpicked selections.

OECIMAL KEYBOARD: Consists of a three-decimal bank for each axis with associated pus-minus keys. Depresing plot bar initiates plot and clears keyboerd automatically Also manual clear button. jize: $81 / 2 \times 11$ in., Weight 12 Lbs.

PUNCHED CARD CONVERTER: Converts punched card data to an analog form suitable for input to X-Y Plotter from Gang Summary or Reproducing punches. Display Monitor. Total tube complement 26 tubes.

X-Y plotter and recorder

 simplified recording of two independentA compact, desk-size unit that accepts either analog or digital inputs. Standard digital converters: Decimal keyboard, Decimal punched card, and Binary for

Computer Outputs. Handles remote mechanical shaft rotetions directly without modification. Modifications available to customer specifications. Full chart visibility allows observer to view curve generation at al times. Unique pen travel for fast, dependable performance, Write for full catalog information.

Engineers, physicists and mathematicians in search of interesting assignments, rapid advancement, and job security are requested to write Dick Hastings, Personnel Director.

variables with greater selection of input devices

D.C. INPUTS: 5 millivolt full scale sensitivity on both axes. Infinite input impedance for signals to .5 volts. 2 megohms input impedance above .5 volts.

OESCRIPTION:

Desk or Rack Mounted
(RCA or RMA)
Accuracy: $.1 \%$
Weight: 70 lbs. Uses Standard Graph Papers: $11^{\prime \prime} \times 161 / 2^{\prime \prime}$, or $81 / 2^{\prime \prime} \times 11^{\prime \prime}$
Power Consumption:
150 watts, 115 volts, 60 cycles

If its your iot to AVOID PRODUCTION DELAYS...

Call American Airines AIRFREILHT

The Right Space At The Right Place Means Prompt Delivery of Component Parts

When manufacturers can receive electronic parts in hours, they have greater protection from production delays. Inventories can be slashed, making possible quick engineering modifications without obsoleting huge stocks of component parts.
This is a job airfreight can do for any manufacturer-but, one American can co best of all. For, in addition to having the greatest cargo capacity, only American Airlines provides fast and frequent service to all twenty-three leading industrial states! American Airlines, Cargo Sales Division, 100 Park Avenue, New York 17, N. Y.

AMERICAN AIRFREIGHT ALSO LEADS IN
SPEED-American was first with the DC-6A, largest, fastest carrier in the commercial cargo field.
COVEFAGE-American serves more leading retail markets as well as the most industrial states.

EXPERIENCE-Fioneer in airfreight service, American assures you of prompt, expert handling.

you are looking at 560 electronics engineers

This concentration of mindpower-the equivalent of nearly 4,000 ycars of experience in the new science of electronics - is part of a team of 2200 specialists in the Engineering Division of Martin. It is also part of a major development in the aircraft industry

For the electronics requirements of today's weapons systems are an increasingly critical factor in the cost of airpower, involving navigation, guidance, search, fire control, communications and a rapidly growing number of operational functions.

Martin's top-rated electronics resources are a vital part
of the balanced and integrated system of enginecring skills essential today to the production of optimum weapons systems at maximum efficiency and economy.

Take the case of the U.S.A.F. B-61 Matador, America's first successful pilotless bomber:

This major weapon is being produced for a fraction of the cost-per-pound of equivalent piloted aircraft... another long-range payoff on Martin Systems Engincering, which is delivering more airpower at less cost to ourr Government and the American taxpayer

You will hear more about Martin!

SPECIFY MAllLORY
 precious-metal contacts

IF YOU use precious metal contacts in your equipment, it will pay you to get acquainted with what Mallory can do for you. Mallory contacts have earned a reputation, among leading manufacturers of electrical and electronic products, for being expertly designed... precision manufactured . . . and economically priced for the intended use. Here are some of the reasons behind this reputation:

VARIETY OF MATERIALS: includes the Elkonium ${ }^{(1)}$ family of platinum and palladium alloys; Mallory fine silver, coin silver; and Silver Elhonium alloys of copper, gold, platinum and palladium. . . all products of Mallory's extensive metallurgical rescarch.

FABRICATION TECHNIQUES: specialized methods developed by Mallory for brazing, welding and direct bonding permit maximum economy of costly metals, and assure good contact life.

ECONOMICAL ASSEMBLY: many manufacturers have found that by utilizing Mallory's facilities for producing complete contact assemblies, they can reduce overall costs and eliminate the uncertainties and re-shipment problems that come with divided responsibility.

Mallory also offers paraflel facilities and a full selection of contacts for heavy-duty and other applications beyond the scope of precious metals.

New Catalog Available

A 60 -page eatalog, "Mallory Contacts and Contact Assemblies," describes the many types of Mallory contact materials and assemblies... includes valuable selection data and design information. Write for your copy today.

Expect More . . Get More from MAllory

cross

- TRENDS . . . A month of intensive field work leads to the conclusion that the electronics industry is well aware of current conditions in our economy and is adapting itself to the market.

Curtailment of television receiver production last fall hit component parts manufacturers hard. But they are now building back volume by effecting production economies and selling at lower prices. They realize that more, rather than less, business will be required in 1954 if they are to take in as many dollars.

Shifting of the military program from mass production of relatively simple and inexpensive items required by a large army to more carefully controlled production of sophisticated and expensive items needed by a highly specialized but smaller striking force has led manufacturers to shift in either one of two directions: (1) greater concentration upon military design and development as well as production contracts or (2) return to the civilian market. There is less tendency in the industry to carry water on both shoulders.

Growing realization that electronic instruments useful to all industry represent perhaps the most stable element in our entire field is leading more manufactur-
ers in this direction. Adaptation of instruments originally designed for the military to the commercial market is proceeding at a steppedup pace. Refinement of existing instruments will probably make this year a standout from the standpoint of new products.
\rightarrow RESEARCH . . . A strong plug for scientific research in general and basic research in particular was included in President Eisenhower's recent executive order outlining the part that various government agencies are expected to play in future programs. Said the President: "Only a small fraction of the Federal funds is being used to stimulate and support the vital basic research which makes possible practical scientific progress."

Significantly, the President suggested in his budget for 1955 that the National Science Foundation receive $\$ 14$ million. It received $\$ 8$ in the ' 54 budget and less than $\$ 5$ million in '53. NSF is given primary responsibility for stimulating and coordinating govern-ment-supported basic research. Other agencies are urged in the direction of applied research.

- SHOWS . . . This is the heavy season for conventions and ex-
hibits and a good time to point out a pitfall. Let's take the recent IRE meeting in New York as an example and discuss one distressing aspect of this otherwise excellent affair:

Some 240-odd technical papers were presented in four days at 54 sessions, as many as seven running concurrently. The sessions were well planned but there were so many that it was difficult even for specialists to completely cover their own specialty.

There were 604 interesting exhibits. With the aid of our office abacus we have figured out that if a man listened to none of the papers, gave up his lunch and dinner and moved with the speed of light from booth to booth he could spend just 4 minutes 16 sec onds in each before exhibitors pulled up stakes.

Maybe growth of our industry requires that shows be kingsize. If so, the amount of time devoted to them must expand too.

- UTOPIA . . . In our recent travels we met a well-heeled physicist who had just imported a swank new Mercedes automobile from Germany. Apple of his eye was the built-in shortwave receiver . . . which enables him to set the dashboard clock by WWV.

One of several car antennas giving essentially omnidirectional reception

Mobile F-M Broadcast

> Simple circuits developed for f-m programs in moving vehicles or for sky-wave multipath reception use limiter and discriminator with bandwidth nearly twelve times that of normal receiver pass band. Experimental sets enhance fidelity by reducing distortion

CONVENTIONAL broadcast f-m receivers, being subject to multipath interference, cannot bs used well in vehicles on the move. Even with some stationary receivers, distortion will result if the f-m signals arriving by different paths are nearly equal in amplitude. Such interference may occur at short distances owing to reflection and absorption from buildings, hills and other objects such as airplanes.

As early as 1930, Eckersley ${ }^{1}$ reported on multipath distortion experienced during long-range a-m reception, which was found to result from incidental frequency modulation at the transmitter. Later Crosby ${ }^{2,3}$ made a series of longrange propagation tests using $\mathrm{f}-\mathrm{m}$ signals and found that severe interference was caused by multipath transmission. Thus, although f-m
offers many advantages such as relative freedom from cochannel interference and noise, it suffers more from long-distance multipath distortion than x -m.

The theory of multipath distortion for f-m signals is well covered in the literature, particularly by Crosby, Corrington ${ }^{4}$, Plusc ${ }^{6}$, Arguimbau and Granlund. For the purpose of this paper, the following brief and simplified explanation may be helpful.

Multipath Effects

When an $f-m$ signal arrives at the receiver by two transmission paths, there will be two signals that vary in phase and amplitude depending on the delay and absorption suffered during transmission. These two waves add in the linear circuits of an f-m receiver and their re-
sultant can be found by combining them vectorially according to the parallelogram law.

In addition to the amplitude ratio and phase difference of the two waves, the resultant also depends on the modulation frequency and deviation. The two waves will reinforce or cancel each other depending on their instantaneous phase, thus producing undesired amplitude modulation of the resultant carrier. Furthermore, during the instant the two waves go out of phase, undesired frequency modulation is produced because of the rapid phase shift of the resultant voltage.

This effect results in spikes in the output of the discriminator. These two effects are responsible for producing distortion in f-m receivers and become worse when the amplitudes of the two signals are nearly

Complete experimental receiver occupies small chassis

Receiver Design

By KERIM ONDER
Circuil Research Laboratory New York, N. Y.

equal. Distortion increases with both the modulation frequency and deviation.

From this oversimplified explanation it would appear that to reduce distortion, it is first necessary to check the amplitude variation of the resultant wave by passing it through an effective amplitude limiter. When this is done, the character of the original resultant wave is radically altered.

The limited resultant wave with constant amplitude now contains higher order terms that are several times the modulation bandwidth of the original f-m signal. In other words the frequency deviation is effectively widened many times. Plusc showed the extent of this widened deviation to be from $F_{c n} /$ $(\rho+1)$ to $F_{c n} /(\rho-1)$ kc where $F_{c n}$ is the beat frequency in ke between
the two signals (or the frequency deviation) and ρ is their amplitude ratio >1. In conclusion, he suggested that the bandwidth of the discriminator be widened to reduce distortion.

In a later paper, Arguimbau and Granlund ${ }^{8}$ analyzed the whole problem of multipath interference and showed both theoretically and by experiment the advantages of the wide-band principle in reducing multipath distortion. They built an experimental receiver along conventional lines but using a wide band limiter and discriminator".

De-emphasis of Spikes

As regards the spikes produced in the output of the discriminator owing to undesired frequency modulation, fortunately these are predominantly ultrasonic and the de-
emphasis circuits in an f-m receiver remove the higher audio frequencies. However, any interference within the lower audio range will pass through.

There are two other types of receivers claimed to reduce multipath interference, the locked-in oscillator ${ }^{\mathrm{s}, 9}$ and the feedback type ${ }^{10,11}$.

The problem of cochannel interference is essentially the same as multipath interference and an f-m receiver capable of separating two signals very close in amplitude will be relatively free from both kinds of distortion. However if the frequency difference between the two stations falls within the audio range, there seems to be at present nothing that can be done to improve reception.

Practical Receiver

The receiver described below is based on the wideband principle. The amount of extra bandwidth required depends on amplitude ratio of the two signals to be separated and may be determined from Fig. 1. For an $\mathrm{f}-\mathrm{m}$ broadcast station using a bandwidth of 150 kc , the discriminator bandwidth should be increased by a factor of 11.5 to pick out the stronger of two signals differing by 1.5 db in amplitude.

It is necessary to widen only the bandwidth of the nonlinear circuits of the receiver, the limiter and frequency detector. The bandwidth of the r -f and the i-f stages remain 150 -kc wide, since the two signals can coexist in the linear portions of the receiver. It is only required that their response be flat within the normal pass band of 150 kc . The

VIG. 1-Bandwidth multiplication factor for various amplitude ratios
limiter and f-m detector circuits must be fast-acting to follow rapid changes of the resultant signal within an audio cycle.

Figure 2 shows the block diagram of a simple $f-m$ receiver using the wide-band principle. It consists essentially of a tuned r-f amplifier, an oscillating detector, an untuned amplifier and limiter, a counter-type f-m detector and combined filter and de-emphasis circuit.

The receiver circuit is shown in Fig. 3, with the exception of the audio amplifier. The detector oscillates at a frequency slightly off the carrier, the difference being equal to one half the widened bandwidth as indicated above. Only the difference frequency appears in the plate circuit of the oscillating detector, since the carrier and the sum frequencies are bypassed to ground through C.

This difference signal, which carries the frequency modulation, is progressively amplified and limited until it becomes a square wave of constant amplitude but varying in frequency according to the audio signal. These square waves are differentiated and rectified to emerge as small unidirectional bursts of constant amplitude and area in the output of the counter detector. The difference frequency is filtered out by the network $R_{2} C_{2}$ that also provides the standard deemphasis of 75 microseconds.

Detector Response

The response of the limiter-detector of this receiver is shown in Fig. 4. It has a slope of 0.5 v per 100 kc , thus producing 0.7 v peak-to-peak of audio signal for 100 -percent modulation. The center frequency is adjusted to approximately 500 kc . An input voltage of 2.5 mv at the amplifier is sufficient for full limiting and the output remains constant above that value.

Performance

Such a simple receiver suffers from poor adjacent selectivity and image rejection. Of two or more signals reaching the limiter, the stronger takes over when its amplitude is about 2 db above the others. Each station appears at two points on the dial separated by twice the difference frequency and

FIG. 2-Block diagram of simple receiver in which f_{s} is signal frequency and f_{c} the center frequency or half the widened bandwidth
severe distortion is produced in the middle region during the tuning process. This distortion occurs as the difference frequency becomes less than the deviation frequency.

A tuning device such as a meter, eye tube or a squelch circuit, should be provided to turn on the audio when the difference frequency is correctly centered. Such control is easily effected since several d-c volts are available at the center frequency. Pushbutton tuning is another possibility. With care, a station can be tuned in without these facilities or a vernier. Because the receiver has poor sensitivity, in the order of $300 \mu \mathrm{v}$, another r-f stage should be added for better results.

On the other hand, the performance of this simple receiver is satisfactory from several viewpoints since at least five f-m stations can be received with excellent quality in New York City. In addition to its relative freedom from multipath and cochannel interference, it is virtually free from amplitude distortion; since the nonlinearity of the diodes in the counter-type detector does not show up as distortion as in conventional discriminators.

The output of this receiver remains constant regardless of input level and it does not respond to amplitude modulation or to noise. No afc is required since the limitercounter response is wide; hence, frequency drift in the oscillating detector will not affect the quality of reproduction. The set is free from hum and microphonics when tuned.

One feature of this receiver is its simplicity of design using a mini-
mum of part types, rendering it suitable for miniaturization and printed circuitry. No alignment is required during production and servicing other than that of the r-f circuit. It is also adaptable for a-c/ d-c operation with no hum or shock troubles since the audio output is isolated from the rest of the receiver by the differentiator capacitor and the antenna is inductively coupled.

Improved Receiver

The performance of this receiver can be greatly improved by using the front end of a conventional f-m receiver and one or more $10.7-\mathrm{mc}$ i-f stages as shown in Fig. 5. An oscillating detector, similar to the circuit shown in Fig. 3, is used after the last i-f stage and the difference frequency is fed directly to the limiter. An experimental receiver based on this scheme was built and tested with good results. However, only one i-f stage was used and the first converter was likewise of the self-oscillating type but the difference frequency was tunable to 10.7 mc . The second oscillating detector was fixed at 10.2 mc .

This receiver has adequate selectivity and sensitivity and no centering device is necessary for proper tuning. In addition, it is relatively free from multipath and cochannel interference depending on how large a difference frequency is used after the second detector.

It is also possible to increase the adjacent selectivity and the sensitivity of the receiver by using a tuned amplifier between the oscillating detector and the limiter. This amplifier should have a flat bandwidth of 150 kc centered on the dif-

FIG. 3 - Simple receiver using single r-f amplifier, oscillating detecfor, triple limiter and counter detector
ference frequency that is chosen. A simplified version of this receiver is particularly suitable for tv receivers using intercarrier sound. As show in Fig. 6 it consists of a fixed oscillating detector at about 4.3 mc , an untuned limited amplifier, a counter-type f-m detector and a combined filter and de-emphasis circuit. A high center frequency is not necessary in this case, since the deviation frequency is only $\pm 25 \mathrm{kc}$. Therefore, the differentiator time constant ($R_{1} C_{1}$) shown in Fig. 3 can be made longer giving higher audio output. Furthermore, the limiter will also completely remove any amplitude modulation resulting from picture signals.

This scheme can be adapted to other kinds of tv receivers by using an oscillating detector slightly off the sound carrier frequency.

Car Radio

A complete f-m broadcast receiver with audio amplifier and vibrator power supply was built to test the wide-band principle in automobiles.

With the car stationary, an f-m station was tuned in and the difference frequency adjusted to about 80 kc . When the car was driven around blocks of apartment buildings, severe distortion was caused in the form of several loud swishes of short duration, These also occurred every time a car or a bus passed by with the result that continuous reception was almost impossible.

The difference frequency was gradually increased, producing a wider bandwidth, while counting the number of swishes heard in going around the same block sev-

FIG. 4-Response of limiter and f-m delector showing deviation from linearity

FIG. 5-Block representation of improved receiver using commercial tuner

FIG. 6-Circuit can be used to improve tv sound
eral times. With a center frequency of about 600 kc it was possible to reduce the number of these swishes to about two or three. Unfortunately, the poor adjacent selectivity of this experimental receiver did not permit increasing the difference frequency any further to get rid of
the remaining swishes. It is also likely that two of these disturbances resulted from the directivity patterns of the antennas used.

These experiments also showed that no ignition interference or other car noises were heard, even with the suppressors removed. However, it was found necessary to shield the early stages of the audio amplifier against direct pickup and the battery leads had to be filtered.

As a result of these experiments it can be safely concluded that satisfactory $f-m$ reception is possible in automobiles if a wide-band f-m receiver is used. Thus, the benefits of clear f-m reception can be enjoyed in cars, particularly during summer months when ordinary a-m reception is marred with static.

It should be noted that with mobile f-m services such as taxi radio, the problem of multipath interference is not so apparent since both the audio and deviation frequencies used are low.

References

(1) T. L. Eckersley, Frequency Modulation and Distortion, Experimental Wireless and the Wiveless Engineer. Sept. 1930. (2) Murray G. Crosby, ErequencyProc IRE, June 1936 .
(3) Murray G. Crosby, Observation of Frequency-Modulation Propagation on 26 Mesacycles, Proc IR D, July 1941.
(4) M. S. Corrington, Frequency Modulation Distortion Caused By Common And Adjacent-Channel Interference, RCA Review, Dec. 1946 .
(5) Igor Plusc, Investigation of Fre-quency-Modulation Signal Interference, Proc IRE, Oct. 1947.
(b) J. B. Arguimbau and J. Granlund, The Possibility of Trans-Atlantic Communication by Means of Frequency Modulation, Proc NEC. Chicago, Nov. 1947.
(7) L. B. Arguimbau and J. Graniund, Sky-Wave F-M Receiver, Electronics, Dec. 1949.
(8) G. I. Beers, A Frequency-Dividing Locked-in Oscillator Frequency-Modulation Receiver. Proc IRE Dec 1944
(9) Murlan S . Corrington, Locked-ín Oscillator for TV Sound, Electronics, Oscillator
Mar. 1951
Mar. 1951.
(10) R . M. Wilmote. Reduction of Interference in FM Receiver By Feedback Across The Limiter, Procirk, Jan, 1952 terference, letter, Proc IRE, Mar, 1953.

Removing Tramp Iron

Pickup coil in steady magnetic field acts with electronic system to detect and reject the equivalent of a half-inch length of bailing wire in moist chopped hay traveling at up to 10,000 feet per minute through an 8 -inch blower pipe

By J. B. DOBIE and F. G. JACOB
Department of Agricultural Engineering University of California Davis, Calif.

THE PReValence of tramp iron in hay and feed annually creates significant losses for dairymen. Hardware sickness (traumatic gastritis) of cattle is caused by penetration of the stomach wall by a nail or piece of wire.

Various forms of magnets or air flotation devices successfully remove tramp iron from liquid, ground or granular feeds, but when stemmy materials such as hay or silage are handled by pneumatic conveyor, another method is needed.

The iron remover described here uses an iron detector to control a bypass or reject gate. On detection, an iron piece is rejected, along with a small wad of hay, by momentary deflection at the gate.

Several metal detectors have been described, both experimental and commercial models, that use an alternating magnetic inspection field ${ }^{1,2}$ and operate with conveyor
speeds up to several hundred feet per minute. This method is unsuitable for pneumatically conveyed chopped hay, which moves at speeds of 6,000 to 10,000 feet per minute and may have a moisture content above 30 percent. If the frequency of an alternating field is high enough to detect at this conveyor speed, the detector becomes responsive to moisture also.
Since the metal to be removed is ferromagnetic, the high conveyor speed becomes an advantage in combination with the use of a steady magnetic inspection field. ${ }^{3,4}$ The momentary change in magnetic path reluctance created by passage of a piece of iron generates several millivolts in the associated inspection coil. This voltage is amplified by a high- μ double triode, and the positive portion operates a biased thyratron having in its plate circuit a solenoid that operates the rejec-
tion gate. The general arrangement is shown in Fig. 1.

Inspection Coil

The inspection coil has an $8 \frac{1}{2}$-inch aperture, for placement around an 8 -inch blower pipe. The magnetizing winding of 15,000 turns carries a current of 100 ma , giving a field strength on its axis of about 100 gauss. This arrangement produces sufficient response from a length of baling wire as short as $\frac{1}{2}$ inch, traveling through the least sensitive part of the aperture.

To minimize internal vibration, absorbing material that reduces transmission of vibration is used for mounting the coil assembly on a 3 -foot section of aluminum pipe.

The pickup coils for the experimental model are split and wired in series opposing. This arrangement helps cancel undesired external influences, particularly ripple in the

FIG. 1 -Iron detector system

FIG. 2-Circuit of detecior, amplifier and control system

from Chopped Hay

First field trial of tramp-iron remover. Total of 34 pieces of dangerous wire and nails was removed from this haystack in tirst pass through setup, and none on second pass
current that supplies the magnetizing winding. The desired signal is not cancelled, for the two halves of the split pickup winding are on opposite ends of the magnetizing winding. Their centers are about 6 inches apart and there is a time difference in the signal produced in the two halves. A permanent magnet for the field and a single pickup winding could be used for simplification.

The nature of the electrical signal varies with length, orientation and speed of baling wire or other iron object. In one half of the pickup winding an impulse of one polarity is induced as the wire enters the magnetic field and another impulse of opposite polarity appears as the wire leaves the field. The other half of the winding reacts the same, with the time difference mentioned above.

Each induced impulse may be lik-
ened to one half-cycle of a sine wave, but (depending on geometry and speed of the wire) the two halfcycles are not necessarily adjacent. Taking the length of the pickup coil assembly as $\frac{1}{2}$ foot and the wire speed as 100 feet per second, the wire traverses the coil in $1 / 200$ second and the coil output therefore has a fundamental frequency of 200 cycles per second.

Amplifier and Control

The complete circuit of the amplifier and control is given in Fig. 2. The amplifier gain is 54 db , with pass band centered at 200 to 300 cps. Response below 100 cps or above $1,000 \mathrm{cps}$ not only contributes little to the desired information but offers more opportunity for interference from irrelevant signals, such as those produced by vibration of the inspection coil.

The extra cost of an industrial
type of tube is well justified by its longer life and freedom from influence by vibration. Since the heater currents of this tube and the thyratron are the same, the coil of an a-c relay and the heaters can be connected in series so that interruption of current by a tube burnout will operate a warning buzzer. Another relay, in the line carrying the inspection coil magnetizing current, and a test button in the input stage cathode circuit offer further service reliability; otherwise the iron detector would not give warning in the event of equipment failure. The test button produces a signal by momentarily removing the bias on the first stage.

In the quiescent state the thyratron is nonconducting, the oil-filled hold-time capacitor in its plate circuit is charged to about 275 volts, and the thyratron relay is energized, thus keeping the circuit in
readiness. A signal large enough to overcome the bias on the thyratron grid causes that tube to conduct, discharging the hold-time capacitor. When the capacitor voltage has fallen, the thyratron relay releases, opening the plate circuit and extinguishing the thyratron. The current flowing to recharge the hold-time capacitor passes through the coil of the solenoid-circuit power relay, operating the reject gate.

The reject gate is held in the operated position until the voltage on the hold-time capacitor rises, thereby reducing the charging current below the drop-out current for the power relay. Earlier in the cycle the voltage on the capacitor is sufficiently high to reclose the thyratron relay. This makes the device ready for a second operation even before the cycle for the first operation is complete.

The thyratron plate circuit components do more, then, than just provide a hold-open time for the reject gate. If additional signals occur during the hold time, the hold-time capacitor is repeatedly discharged, keeping the reject gate open until the last iron piece has cleared. This is essential for a detector operating with farm blower equipment. It is not unusual for a length of wire picked up with hay in the field to be cut into many small pieces when the hay is chopped, and these pieces may arrive at the detector in rapid sequence.

Much of the speed and accuracy of operation of the tramp iron remover depends on the reject gate, and special attention has been given

FIG. 3-Two types of reject gates used to divert contaminated hay
to its construction. ${ }^{\text {s }}$ Several factors establish 100 milliseconds as a desirable maximum operating time for the gate. These factors include the position of the iron-removing equipment in the pneumatic conveyor, the influences that give variability to the time of travel of a particle between the detector coil and reject gate and the need to keep rejected hay at a minimum.

Reject Gate

A gate of relatively simple unbalanced construction as in Fig. 3A has performed well on 6 -inch pipe, but its use is precluded on 8 -inch pipe by the effect of static air pressure on the larger vane. It is therefore desirable, although the inertia is doubled, to use the balanced construction of Fig. 3B where half the vane serves no function except counteraction of air pressure, thereby making the operation independent of static pressure in the pneumatic system.

From the first, the possibility has been recognized that the blower system may become plugged at the reject gate. Every effort has been made to maintain a smooth and uninterrupted flow-path for the hay in both the normal and reject positions of the gate. Results with dry hay have been satisfactory; with hay of 30 -percent moisture content or above, the system is encouraging but not yet foolproof. Further development is needed to eliminate occasional plugging by such stickier material.

A Cutler-Hammer d-c solenoid, size D-3, rated for 230 volts and $\frac{1}{4}$ time duty, has been used effectively to operate the gate. The rated pull
at a $1 \frac{1}{2}$-inch stroke is $27 \frac{1}{2}$ pounds for 85 percent voltage. A voltage-tripling selenium rectifier operating from 115 volts 60 cycles charges a $160-\mu \mathrm{f}$ capacitor to 450 volts at no load; this power supply and the solenoid coil in series comprise the solenoid circuit, as indicated in Fig. 2. Soon after the solenoid coil is energized this voltage falls to 230 volts because of regulation, but the momentary impulse provides additional acceleration to the gate vane. The spark-suppressing components are required to protect the relay contacts from the inductive surge when the contacts are broken.

Field Tests

Thirty-four pieces of wire and nails were removed from about 3 tons of a farmer's hay, restoring it from a condemned condition to usable hay. In another field test, the equipment was exposed to rain and fog and operated intermittently over a five-month period. About 200 tons of hay were inspected, from which 472 pieces of ironmostly nails and wire, ranging from $\frac{1}{2}$ inch to 12 inches in length-were removed. No electronic maintenance problems developed during these tests.

References

(1) C. R. Schafer, Industrial Metal Detector Design, Electronics, p 86, Nov. 1951.
(2) C. W. Clapp, Detecting Tramp Metal in Logs and Iron Ore, Electronics, p 88. Mar. 1951.
(3) V.W. Breitenstein, Metal Detection Device, U. S. Pat. 2,315,045, Mar. 30, 1943.
(4) C. M. Marquardt, Simple Tramp Iron Detector Effective at Lower Cost. Engineering and Mining Journal, $\mathbf{p} 96$, Sept. 1952.
(5) J. B. Dobie, F. C. Jacob and L. C. Kleist, Electronic Detection and Remova of Tramp Iron from Chnnped Hay Agrt cultural Engineering, p 377, June 1953.

Amplifier and control unit, with coil and gate sockets at front

Circuit of gun (below) and relay actuator for gunshot generator in receiver detector output, surrounded by loof

Transistor gun, showing snap-switch. transistor and battery together with inductor and capacitor in handle

Transistor Gun for TV

By RAYMOND E. LAFFERTY

Engineering Development Group
National Broadcasting Co.
tional Broadcasting
New York. N.Y.

Single-transistor oscillator in dummy gun shoots medium-frequency radio wave to brassribbon pickup loop on floor of studio. Impulse picked up on broadcast-type receiver actuates relay in detector circuit to operate electronic sound-effects generator at exact instant that actor presses trigger

EIven before the development and construction of the NBC electronic shot generator, ${ }^{1,2}$ it was apparent that a gun capable of activating a gunshot sound-effects device, without connecting wires, would be useful for television.

Once several shot effects generators were built and made available in television studios, the need for such a gun became increasingly evident. Perfect synchronization between trigger action and the sound of the report is difficult, if not impossible, for sound-effects technicians. To the discriminating viewer, the delayed, or anticipatory report, is ludicrous.

Accordingly, a simple but effective application of transistors was employed to build an electronic gun. Located in the interior of the gun, which was built by the NBC Special

Effects Department, is an oscillator with its associated coil and capacitor. The magnetic field established in this coil couples energy to a nearby receiving loop. The voltage induced in the loop, after amplification and detection, closes a relay that fires the gunshot generator. The actor with the gun is free to turn in any direction and may fire the gun any place within the receiving loop (taped to the studio floor and camouflaged, if necessary, with paint). The gun can be fired outside the loop if special circumstances dictate, but best results are achieved inside the confines of the loop.

Choice of Weapons

The circuit of the system is shown, as is a typical gun with its battery, transistor, coil and capaci-
tor. The flexibility of the electronic shot effects generator permits the use of pistols, rifles or machine guns. The latter weapon will fire for as long as the trigger is held. Ricochets can be incorporated with either pistols or rifles by properly presetting the generator.

Legal Requirement

The frequency of operation has been tentatively set at 525 kc . At this frequency, FCC Rule 15.2 (c) allows 300 feet between the gun (oscillator) and the 15 microvolt-per-meter contour. Measured distances to this contour show it to be only about 50 feet.

References

[^6]
Balloon-Borne Radiation

By G. M. BURGWALD and L, REIFFEL
Armour Research Fowndation
Illinois Institute of Technology
Technology Center, Chicago, Ill.

TELEMETERING SYstems for highaltitude research with rocketborne equipment have received considerable attention. Corresponding systems for balloon-borne apparatus have not undergone comparable development. While many of the problems are similar, there are sufficient basic differences to make a direct carry-over from wellengineered rocket systems to bal-loon-borne devices impractical.

A balloon-borne radiation detection and telemetering system based on a scintillation counter is
described which is capable of measuring the low-energy gammaray component of cosmic rays to altitudes as high as 115,000 feet.

Use of a scintillation counter as the radiation detector offers advantages not attainable with Geiger counters, although the circuitry required is somewhat more complex and necessarily heavier. Scintillation counter pulses are channeled to a differential pulse-height discriminator and then to a pulse-scaling circuit. The output pulse of the scaling circuit is used to in-
terrupt the carrier of a crystalcontrolled r-f transmitter.

Altitude information is obtained by varying the carrier frequency of a transmitter as a function of altitude and measuring the frequency shift at the ground station. Lowfrequency transmitters for counting rate and altitude information permit use of crystal-controlled oscillators and nondirectional receiving antenna at the ground station.

A circuit diagram of the balloonborne unit is shown in Fig. 1. The

Plastic balloon used to carry telemetering equipment being inflated. Diagram at right shows balloon rigging

Telemetering System

Abstract

Phototube scintillation counter measures low-energy gamma radiation at altitudes up to 22 miles. Pulse-modulated f-m transmitter used to convey data to ground station. At maximum altitude signal level is down only 15 to 20 db from ground reference

radiation detector consists of a 5819 multiplier phototube, V_{1}, viewing the light given off by a thalliumactivated sodium-iodide crystal. The crystal responds to radiation by emitting a flash of light whose intensity is related to the energy of the radiation. Lucite as a light pipe is placed between the crystal and the window of the phototube to improve the optical light coupling. Mineral oil is used to fill small air spaces between the mating surfaces.

Detection of gamma rays in the energy range of 0.1 to 2.0 mev is principally by photoelectric and Compton absorption in the crystal. The output of the multiplier phototube is a series of random pulses whose amplitude is proportional to the energy given up by the electrons ejected by the gamma rays.

High voltage for the dynode network is supplied by a regulated supply consisting of a CK 1038, 900volt corona regulator tube supplied from four 300 -volt batteries in series. The regulated voltage varies by only a few volts as the current through the CK 1038 varies from 0 to 50 microamperes. This is important since the gain of the multiplier phototube changes as about the 9 th power of applied voltage. The voltage across the dynode network may be set at from 650 to 900 volts so that the output pulse height of different tubes can be standardized. The detector and the high-voltage regulator circuit are enclosed in a light and pressure sealed container, the regulator circuit being maintained at atmospheric pressure to eliminate the problem of corona at high altitudes.

Pulse-Height Discriminator

Pulses from the multiplier phototube are amplified by V_{2} and V_{3} and

Complete gondola with radiation detector. High-voltage supply is located behind detector unit

Ground station for receiving count data
are then coupled to the upper and lower gate circuit by the dual diode, V_{4}. The lower gate consists of an amplifier V_{s}, and a monostable multivibrator, V_{8} and V_{7}. When the pulse height of V_{3} exceeds the bias on the diode, V_{4}, the pulse is amplified, and triggers the multivibrator. Resistor R_{1} adjusts the bias on the diode to determine the triggering level. The upper gate circuit consists of V_{8} and V_{0} and its operation is similar to that of the lower gate.

The output pulses from the upper gate are coupled to the suppressor grid of the output tube in the lower gate circuit, $V_{\%}$. When the input pulse height is at an intermediate value between the two gate settings, only the lower gate will trigger and the output pulse is counted by the counting circuit. If the pulse exceeds the bias setting of the upper gate, both multivibrators start to trigger, but the pulse from the upper gate paralyzes the output stage of the lower gate, so that no pulse appears in its output.

The width of the upper-gate pulse is somewhat wider than that of the lower gate to insure proper anticoincidence action, at least for counting rates for which the recovery time of the circuits are negligible. The triggering levels are set to correspond to 0.1 and 2.0 million electron volts to insure a 20-to-1 ratio in levels.

Pulse Counter and Modulator Circuit

Output pulses from the lower gate circuit are coupled to a stepcharge counting circuit having an adjustable scaling factor variable from eight to thirteen. The energystorage capacitor is located in the cathode circuit of a monostable multivibrator circuit, V_{12}. Each pulse reduces the voltage on the

FIG. 1-Balloon-borne unit employs sodium-iodide crystal as radiation detector. High-voltage regula tor circuit is maintained at
storage capacitor until the gridcathode voltage of the normally cut-off section reaches the conduction value and then the multivibrator triggers, supplying an output pulse to the modulator circuit and recharging the storage capacitor to its original value. Triode V_{11} allows the storage capacitor to be charged in linear steps permitting the use of somewhat higher scaling factors. The modulator circuit consists of a thyratron, V_{13}, which is normally cut off. The output pulse from the scaling circuit triggers the thyratron and its output pulse is used to modulate the carrier of the transmitter. Capacitor C_{1} is normally charged to the $B+$ volt-
age and quenches the thyration.
The transmitter consists of an oscillator and a power-amplifier stage. Tube $V_{1 s}$ is a crystal-controlled Pierce oscillator which requires no tuned circuits in its operation. The output of the poweramplifier stage, V_{15}, drives a centerfed half-wave antenna. The power output of the unit is approximately 14 watts.
The negative pulses from the modulator circuit are coupled to the grid of the oscillator stage, and cut off the carrier for approximately 600 microseconds. It is necessary to transmit pulses of at least this width because of the high selectivity of the receiver amplifier. Carrier
frequency is in the 6-me region.
The signal containing pulse data is received at the ground station by a communications receiver. The pulses appearing in the detected output of the receiver are amplified so that they will drive a scaler and count-rate meter. A recorder may be used to give a permanent record of counting-rate as a function of time.

Best reception has been obtained using a vertical center-fed halfwave antenna approximately 75 feet in length. An end-fed vertical antenna connected to a small captive balloon is also effective, but can be used only during periods of relatively low wind velocity.

FIG. 2-Schematic and picture of altitude transmitter. Pressure sensitive capacitors at input are alternately switched to created frequency difference indicating altitude

atmospheric pressure in sealed container to eliminate corona problems at high altitude

With the receiver r-f gain set at maximum the indicated signal strength on the S-meter at the time of balloon launching is approximately 40 db above S-9. When the balloon reaches maximum altitude, the signal level is usually between 20 and 25 db above S-9. During the parachute descent, the signal level varies between S-9 and 10 db above S-9; reception is not as good during the descent because of swinging of the transmitting antenna. In general, when the signal strength is less than S-9, the signal to noise ratio makes it difficult to obtain good data.

Altitude Transmitter

A separate transmitter and receiver are used to obtain altitude data. A circuit diagram of the altitude transmitter is shown in Fig. 2 with a photograph of the unit. A variable capacitor, connected to an aneroid element, is shunted across the crystal in the oscillator circuit. The capacitance changes with altitude and shifts the carrier frequency by a small amount. For a carrier frequency of 1.75 mc , the frequency shifts approximately 500 cps as the altitude changes from zero to 100,000 feet.

The variable capacitor consists of a movable plate positioned between two fixed plates. A motordriven set of contacts alternately switches from one fixed plate to the
other so that the capacitance between the movable plate and one of the fixed plates appears across the crystal. Switching occurs at approximately 30 -second intervals and the frequency difference obtained due to capacitance switching is used as a measure of altitude. The transmitter employs a crystal oscillator and a power amplifier stage delivering a power output of ap-

FIG. 3-Altitude-transmitter frequency shift as a function of altitude

FIG. 4-Representative radiation curve obtained in flights at a latitude of 28 deg north
proximately $1 \frac{1}{4}$ watts.
At the ground receiving station the input signal is mixed with a local oscillator operating at the transmitter frequency and the frequency difference at the receiver output is measured with a frequency meter and plotted on a recorder. A typical frequency-altitude curve is shown in Fig. 3.

Balloon Data

The balloons used on all flights were of a plastic, nonexpansible type about 85 feet in diameter. A release timer located at the bottom of the balloon cuts it loose from the equipment after a predetermined interval. Upon release, the equipment is lowered to the ground by a 28 -foot parachute. The average rate of rise of the balloon is about 600 feet per minute. During the first part of the descent the velocity approaches the free-fall rate until 60,000 feet is reached.

To insure a successful launching, surface wind must be less than 15 mph and it is desirable to have a wind screen, such as a hangar, to shield the balloon during inflation.

The aid rendered by General Mills personnel, in particular C. P. Merrill is hereby acknowledged. The authors are indebted to J. C. Beynon, C. A. Stone and F. G. Rest of Armour Research Foundation for important and valuable contributions.

An R-F Generator for

Oscillator tube with cooling system consisting of water coils and air blowers housed in movable compartment to facilitate servicing

LARGE SYNCHROCYCLOTRONS require radio-frequency supplies that can deliver large amounts of power and can be modulated over a wide frequency range. ${ }^{1}$ In some machines it is also desirable to pulse the r-f system on during the desired part of the frequency-modulation cycle and to control the pulsing intervals. This article describes the equipment used for these purposes in the 170 -inch synchrocyclotron at the University of Chicago.

The basic design of the r-f system is identical with that developed by MacKenzie for the same use at the University of California. ${ }^{2}$ The system is inherently capable of covering both proton and deuteron ranges with minor adjustments. The rotary tuning capacitor is located at a point of low magnetic field and d-c bias for the dee is easily provided to avoid ion loading.

Protons start at a magnetic field of 18,600 gauss and reach a final energy of 450 million electron volts at a radius of 76 inches and a
field of 17,600 gauss. The frequency range required is 28.4 to 18.2 mc .

The accelerating voltage is applied between a single dee and a grounded dummy dee. The dee, which is approximately semicircular, is 164 in . in diameter and has the characteristics of a transmission line of about 6 ohms . The dee voltage is of the order of 10 to 15 kv , safficient for a repetition rate of about 60 pulses per second.

General Design

In this system the dee is connected to a rotating capacitor through a section of transmission line. The other side of the capacitor is connected to ground through a transmission-line stub. It is possible to proportion the dimensions of the system so that it behaves like a uniform transmission line shorted at one end and open at the other with the rotating capacitor at a point about one-third of the way from the shorted end.

The minimum frequency is ap-

By LESTER KORNBLITH, JR.
Institute for Nuclear Studies
University of Chicago
Chicago, Ill.
proached as the capacitance is made very large and the system behaves as a resonant quarter-wave line. As the capacitance approaches zero the system behaves as a three-quarter wave line with a 180-degree phase shift at the capacitor. The theoretical ratio of maximum to minimum frequency is three.

In practice, the attainable ratio is appreciably less than three because of the finite capacitance limits of the rotating capacitor and the difficulty of arranging an efficient coupling to the oscillator tube over a wide frequency range. The coupling for the tube is designed to avoid undesired modes of oscillation. A particularly troublesome parasitic mode is a three-quarter wave mode that places no voltage across the capacitor. In this mode the capacitor has no control over the frequency at which the system resonates. Since the capacitor losses do not appear, this mode has a higher Q than the proper operating mode.

If the capacitor losses are excessive, the capacitor can behave as a mode selector tending to favor the incorrect mode. For this reason the capacitor must be designed to have as small a loss as possible.

Oscillator Tube

The oscillator tube is coupled across the capacitor through long high-impedance lines, as shown in Fig. 1, designed so that the excitation phase is incorrect for the ${ }^{3}$-wave untunable mode. The tube is operated grounded-grid, to take advantage of the inherent freedom from oscillator parasitics that this type of operation can afford. The oscillator excitation is supplied to the cathode, which must be driven

Nuclear Energy Studies

Abstract

Accelerating voltage for $450-\mathrm{mev}$ synchrocyclotron is supplied by $40-\mathrm{kw}$ sweep-frequency generator. Motor driven capacitor tunes oscillator from 18.2 to 28.4 mc . Output is keyed by phototube circuit actuated from mirrors on capacitor shaft

in phase with the plate.
The cathode is indirectly coupled by a loop suspended inside the dee to induce a voltage which, transformed through a long line, drives the cathode with enough amplitude in the proper phase. Because of the resistive component of the drive impedance, the actual phase must be corrected by capacitive loading of the cathode. The plate is coupled directly by a long line connected in parallel with the stub line.

The resonant system, consisting of the dee and its line and capacitor stator, the rotor, and the grounded stub line and its stator, is suspended and operated in a vacuum. To dissipate the heat produced in the system, all parts in the vacuum as well as the support rods are water cooled. The rotor of the capacitor, which is $18 \frac{1}{2}$ inches in diameter and about 4 feet long, has 6 rows of blades with 85 blades in each row. It was machined from a solid steel forging and copper plated. The rotor blades mesh with stator blades to leave a minimum gap of 0.110 inch. This gives a total capacitance of 3,600 u. f.

The oscillator tube is mounted in a compartment shown in photograph. Since the tube is operated with the grid grounded, the box is divided into an upper cathode section and a lower anode section to minimize coupling between these electrodes. The box is mounted on wheels and tracks to facilitate servicing other parts of the machine.

The tube is a 5770 thoriatedtungsten filament, water and aircooled triode especially designed for grounded-grid operation. It has a plate dissipation rating of $40-\mathrm{kw}$ at 30 mc . It is mounted in a $\frac{1}{2}$-inch
mild-steel jacket to provide shielding against the stray field of the cyclotron magnet, which is about 300 gauss at this point. Cooling is provided by a water coil made from two 20 -foot lengths of 1 -inch nylonjacketed Tygon tubing wound on an insulating support. Blowers cool plate, filament and grid seals.

Vacuum capacitors were origi-
nally used for plate blocking, grid grounding and cathode phasing. When trouble was experienced with voltage breakdown of the plate blocking capacitor, the vacuum units were replaced with ceramic capacitors. Eight $500-\mu \mu \mathrm{f}, 15,000-$ volt units are used in parallel. The vacuum capacitors used for grid grounding were replaced by a paral-

FIG. 1-Sweep-frequency oscillator generates $40-\mathrm{kw}$ r-f signal

FIG. 2-Pulser circuit turns oscillator on and off to accelerate particles during descending part of the f-m cycle
lel-plate capacitor using Teflon insulation to eliminate resonances. The photograph was taken before these changes were made.

The oscillator power supply is rated at 200 kw and can deliver 11.5 amperes at 17.4 kv . The voltage is continuously variable from about 1 kv to maximum at rated current. The rectifier output is filtered through a choke-input filter with a $58-\mu \mathrm{f}$ output capacitance to reduce supply droop during pulsed operation. A 70 -ohm resistor in series with the output protects the oscillator from flash-are damage by limiting the arc current until the supply breaker trips.

Oscillator Pulser

Since acceleration takes place only during the descending part of the frequency-modulation cycle, a pulser has been constructed to turn the oscillator on and off at appropriate times. A block diagram of the system is shown in Fig. 2.
Timing signals for operating the pulser are obtained from two multiplier phototubes receiving light from a mirror mounted on the rotary capacitor shaft. The mirror has six sides, corresponding to the six sets of blades on the rotor, and is fixed with respect to the blades. The phototube housings are
mounted on carriages that move on a semicircular track concentric with the rotor shaft. The carriages are driven by selsyns operated from the control room.
The output of the multiplier phototubes is sent through two cathode followers to the control room. There the two pulses are used after amplification and shaping to start and end a control-multivibrator pulse. The automatic turn-off multivibrator puts out a pulse at an adjustable time after the on phototube pulse. This pulse will turn off the control multivibrator in the absence of a pulse from the off phototube. The output of the control multivibrator is fed through a cathode follower to the pulsing unit. The pulser uses a 6 V 6 as a 5.4 -mc oscillator feeding an 807 power amplifier through a 6L6 keyed buffer. The control-multivibrator pulse is fed through a 6V6 amplifier to the cathode of the keyed buffer. A switch is provided to ground the buffer cathode permitting it to operate continuously.

The grid of the main oscillator tube is normally held at about $-1,200$ volts by a separate bias supply. During the pulse, this bias is overcome by the voltage developed across the cathode resistor of the pulsing tube. Three parallel

FIG. 3-Control system provides for several modes of operation including normal continuous operation, series of pulses per control pulse and l puise for a group of control pulses

FIG. 4-Nulltype servo system indicates position of pulser photorubes

304 TL pulsing tubes are used, driven by the rectified voltage from a tuned circuit inductively coupled to the 807 power amplifier.

This arrangement is used so that the low-level stages are not required to operate at oscillator bias potential. Suitably insulated power supplies are required and interlocks provided to insure that plate voltage cannot be supplied to the cyclotron oscillator unless all required voltages are present in the pulser.

Pulser Control

It is sometimes desirable to operate under conditions other than the normal 50 or 60 pulses per second. Plug-in units are inserted between the on multiplier phototube and the pulser to provide several modes of operation. The arrangement is shown in Fig. 3. The modes selected include normal continuous operation, n pulses per control pulse and 1 pulse for each n control pulses, where n is any power of two from zero to five.

In addition, a time clock is provided to determine the length of operating time under the first and third modes. Control pulses may be supplied from an external source such as a piece of experimental apparatus or a one-second pulser available in the cyclotron. The cyclotron cannot be operated directly from the control pulses because the pulses must come at the proper point in the capacitor-rotation cycle. It is however pulsed at the proper time in the first cycle following the control pulse. Two output channels are provided, one for triggering the cyclotron and one for
triggering experimental apparatus.
The on phototube pulse is amplified and inverted in a cathode fol-lower-inverter and used to trigger blocking oscillator 1 . The blockingoscillator pulse is fed through a cathode follower to the main gate. Pulses passed by the main gate trigger another blocking oscillator that drives the output cathode followers. Control pulses are formed in a one-shot multivibrator and applied to two gates. For continuous operation gate 1 is opened, turning on the control flip-flop. For the second type of operation, n pulses per control pulse, gate 1 is again opened. Gates 3 and 4 are also opened. Pulses from oscillator 2 are now fed through a cathode follower and gate 3 into the scaler unit. The scaler counts to n and sends a pulse through a cathode follower-inverter and gate 4 to turn off the control flip-flop. This cycle is repeated for each control pulse. For the third mode of operation, one pulse for each n control pulses, gates 2, 5 and 6 are opened. Control pulses go through gate 2 to the scaler which counts n of them and then sends a pulse through gate 5 to turn on the control flipflop. The output pulse from blocking oscillator 2 is then fed through the cathode follower and gate 6 back to the control flip-flop to turn it off.

Position Indicator

A device is required in the control room to indicate the position of the pulser phototubes and other remotely controlled units. The indicator consists of two separate channels each of which has a tenposition switch for selecting the unit whose position is to be indicated.
A block diagram of one channel is shown in Fig. 4. The system is a null-type servo system employing two helical potentiometers, one mechanically driven by the component to be indicated and one driven by a servomotor. Both potentiometers are energized through a transformer from the $110-\mathrm{v} 60-$ cycle line. The movable arm of the remote potentiometer is grounded and an amplifier connected between that of the local potentiometer and

Water-cooled stator of $3,600 \cdot \mu \mu \mathrm{f}$ capacitor is mounted in a vacuum with other parts of cyclotron r-i system
ground. The amplifier output is fed to a phase-sensitive power amplifier and then to the control field of the servomotor. The local potentiometer has double shaft extensions coupling on one end to the motor and on the other end to an indicator dial. The position is readable to one part in 1,000 or 2,500 , depending upon the channel and may be estimated to twice this accuracy. The sensitivity of the system is great enough so that the reproducibility is limited primarily by the number of turns of wire on the potentiometer. Accuracy is limited by the linearity of the potentiometers, which is one percent for the two units.

Operating Characteristics

Radio-frequency systems of this sort have operating difficulties at practical vacuum levels due to ion loading. These troubles are caused by ions between the high-voltage components and grounded surfaces oscillating under the influence of the electric field. In oscillating they ionize additional gas molecules until the loading on the oscillator is so severe that it stops oscillating. This condition can be prevented by biasing the components of the system to eliminate the ions.

This is done in the case of the dee and the capacitor rotor. The grounded stub line cannot be biased, however, so an arrangement of clearing wires and skins is provided in the region between the stub line and the ground skin. The clearing wires are isolated from both stub and ground and are bi-
ased. Care must be exercised to avoid resonances in the clearing wires at frequencies covered by the oscillator as such a resonance could destroy a set of mounting insulators. The biases for the rotor, dee and clearing wires are supplied from 300-ma rectifiers adjustable from $0-3 \mathrm{kv}$ negative and are applied through 7,000 -ohm resistors. In addition, each clearing wire is decoupled from the set of clearing wires by an individual 5,000 -ohm resistor. This leaves voltage on the rest of the wires if one is shorted or grounded. Bias voltages are supplied to the rotor and dee through choke coils, which are grounded at r-f by large capacitors.

The oscillator normally operates with a plate voltage of about 10 kv . At this voltage there is an average plate current of about 1.5 amperes and about a half ampere of grid current. The input to the oscillator during the pulse is approximately 40 kw . About five percent of the power appears in the ions that strike the target.

Most of the equipment described in this paper is the result of the cooperation of a group working under the direction and guidance of H. L. Anderson. The project has been supported in large part by the Office of Naval Research, the Atomic Energy Commission and the University of Chicago.

References

(1) A. J. Pote, Radio-Frequency for a Synchrocyciotron, ELectronics, 24, p 100 , Nor: 1951
(2) K. R. Mackenzie, The ProtonDeuteron R-F System for the Berkeley Synchrocyclotron, Rev Sci Inst, 22, p 302, May 1951.

Equipment for generating pulses indicating shaft position uses flip-flop circuit which is immune to false triggering

Marker Pulse Shows Shaft Position

Synchro-triggered circuit produces pulse indication when shaft reaches reference position. Angular position of reference can be varied by use of differential synchro. System is useful in operation and testing of control systems and automatic equipment

CONTROL SYSTEMS and automatic equipment operation or testing frequently make it necessary to produce a marker or signal indicating when a shaft has reached a given reference position. The shaft in question may be inaccessible, or the equipment may have originally been built without provision for attaching a reference position indicator.

As originally built, the circuit operated from a small synchro in the remote equipment, however, induction resolvers, potentiometer resolvers, and center-tapped potenti-

By F. B. WOESTEMEYER

Aeronautic and Oranance Systems Division General Eleotric Company Schenectady, N. Y.
ometers can also be used.
The circuit for generating marker pulses consists basically of a flip-flop triggered by two polarized gates, with clipping, biasing, and phase shifting circuits.

Operation

The amplifier input stages are biased so that the synchro signal reaches the gates whenever it ex-
ceeds a predetermined magnitude. The gates are polarized so that gate A passes the synchro signal when it is in phase with the carrier and gate B passes it when it is 180 deg out of phase, Fig. 1.
A signal through gate A triggers the flip-flop circuit to the flip position and a signal through gate B triggers it to flop. The flip-flop gives out a negative pulse on each flip. The flop is a reset operation.
The synchro is connected as a generator and the line to line output of one phase is used.
The signal envelope starting

FIG. 1-Synchro output exceeds bias during part of each half revolution producing pulse to trigger flip-flop

FIG. 2-Flip-flop triggered through two polarized gates generate marker pulses indicating shaft position
from null proceeds sinusoidally to null again at 180 deg during a half revolution in which the signal is in phase with the carrier. During the other half revolution, the amplitude also follows a sinusoidal envelope but the signal is shifted in phase 180 deg from the carrier.

The gates are operated by the carrier, gate A opening during the positive half cycle and B during the negative half cycle. When the synchro signal exceeds the bias level, it is fed to the gate tube grids.

Three cycles of the synchro output exceed the bias during each half revolution, and are applied to both gates. During the first half
revolution, they occur when gate A is open. In the second half revolution they coincide with gate B.

The first pulse through gate A flips the flip-flop which in turn produces a pulse indicating that the variable reference position has been reached. Succeeding pulses through gate A produce no response.

The first pulse through gate B resets the flip-flop. Succeeding pulses again are ignored. On the next half revolution, the first cycle that exceeds the bias level will again flip the flip-flop. Hence, the marker pulse is generated within one cycle of the carrier after the synchro reaches the reference posi-
tion, the position where its output exceeds the bias level. For accuracy the bias is set above the noise level, but low enough to be on the steep portion of the sine-wave envelope. Increasing the frequency of the synchro excitation also increases the accuracy, especially at high shaft speeds.

Circuit Description

In the circuit shown in Fig. 2, the carrier signal is fed to the grid of $V_{\tau \mathrm{B}}$, a phase splitter which, with C_{1} and R_{1} produces a phase shift adjusted to compensate for phase shift in the synchro.

Tube $V_{7 A}$, a cathode follower, drives a one-shot multivibrator, $V_{6.1}$ and $V_{o \mathfrak{s}}$. Capacitor C_{2} is so chosen that the multivibrator does not reset itself but is controlled by $V_{\text {ra }}$. This multivibrator converts the carrier to a square wave.

Phase splitter, $V_{3 \mathrm{~B}}$ has a gain such that equal control signals of opposite phase are applied to the gates V_{5}, gate A and V_{4}, gate B.

The output of the synchro is fed to amplifier stages $V_{1 A}$ and $V_{1 B}$. Tube $V_{2 d}$ is connected as a diode and produces the bias and negative clipping. Positive clipping to avoid overdriving cathode follower $V_{3 s}$ and the gates is furnished by $V_{2 B}$ also connected as a diode.

The plates of gates V_{4} and V_{6} are coupled to the flip-flop $V_{8, ~}$ and $V_{\text {sB }}$. A cycle of signal through V. flips the flip-flop, dropping the plate potential of V_{BI}, and producing an output pulse. The plate voltage of V_{sp} is now lower than the voltage at point X, the junction of R_{15} and R_{18}. Because of the diodes D_{1} and D_{2}, V_{4} now has the voltage at X as its plate supply. Tube V_{5} has the same action. Any further cycles of signal passing through either gate after the flip-flop has been operated are thus diverted from the flip-flop avoiding the possibility of false triggering.
Two levels of B+ and B- are not strictly necessary. The positive and negative 150 volt buses are obtained from a tie into associated circuits in this installation.

As shown, the reference position of the synchro is fixed. If it is desired to make this variable, a differential synchro can be used to shift the reference angle

Beam-Deflection Tube

By ROBERT adLer and charles heuer
Zenith Radio Corporation
Chicago, Illinois

COLOR INFORMATION appears in NTSC color receivers in the form of amplitude and phase modulation of a suppressed subcarrier. Two synchronous detectors to which reconstituted subcarrier signals are supplied in phase quadrature extract the color difference signals.

The synchronous detection process requires multiplying the incoming chrominance signal with a locally generated reference signal. This process is akin to frequency conversion and in principle any tube or device which is suitable as a frequency converter may be used, including diodes, triodes, crystals and other nonlinear circuit elements. Multigrid tubes are most commonly used because they permit separation of the two signal inputs.

A beam tube, in which a control grid is used for one input signal and a pair of deflectors for the other, appears to have advantages over the multigrid-converter. Figure 1 shows how such a tube is used. The chrominance signal S is applied between a conventional control grid and the cathode. Reference signal R, the locally reconstituted subcarrier, is applied in push-pull between a pair of balanced

FIG. I-Schematic representation of beam-deflection tube

Cut-away view of General Electric 6AR8 beam-deflection tube
deflectors. The intensity-modulated beam is thus swept back and forth at reference frequency between the two anodes. The desired output appears across the two load resistors as two equal and opposite signals.

Tube Construction

The tube uses elements of con-

FIG. 2-Cross section showing location of beam-tube elements
ventional length and is mounted in a 9 -pin miniature envelope.

The cross section of a practical tube is shown in Fig. 2. A solid accelerator box, having one narrow slot on each side of the cathode, is substituted for the wire screen grid shown in Fig. 1. Between control grid and accelerator there is a grounded focusing electrode which has wider slots.

Electrons attracted by the accelerator pass through the control grid at right angles to the grid wires. Later, in the lens field of the focusing electrode, they are forced to converge so that they pass through the accelerator slot; less than one percent get caught on the edges of the slot.

The regions between the accelerator and the leading edges of the deflectors form final projection lenses for the two sheet beams emerging from the accelerator slots. The greater the spacing between the deflectors, the lower is the d-c potential which must be applied to them to focus the beams.

Initial circuit work was carried out with tubes which focused at plus 50 volts, with 250 volts on the accelerator. Recently, tubes have been built which focus at zero volts,

FIG. 3-Deflector characteristics for - 1 , -3 and -5 volts control-grid bias

Simplifies Color Decoders

Sheet-beam synchronous detector eliminates color-difference phase-splitting stages in color receivers. Low injection-power requirement permits both I and Q demodulators to be driven directly by subcarrier reference oscillator

FIG. 4-Color decoder using 6AS6 demodulator tubes and low-level matrixing
regardless of accelerator potential. Focusing potentials are not critical; deflection sensitivity merely reaches a broad maximum in the vicinity of correct focus.

Deflector Characteristics

The deflectors, operating near ground potential, do double duty as suppressors. An additional grounded vane prevents the interchange of secondary electrons between anodes. The relative positions of anodes, deflectors and vane determine the quality of suppression. An effort has been made to keep this quality high to permit use of high anode-load impedances.

Figure 3 shows plots of the two anode currents against the voltage applied between deflectors for three
different grid bias potentials. At minimum bias, the current exceeds 25 ma . A potential of about 25 volts between deflectors is sufficient to direct all current to one set of anodes, yet more than 100 volts may be applied before overload effects are encountered. Thus the reference signal amplitude may rary over a wide range.
Total deflector current is only a small fraction of one ma and loading of the reference oscillator is negligible. There is no noticeable stray coupling between signal grid and deflectors.

Conventional Decoder

Figure 4 is a block diagram of a typical decoder using conventional 6AS6 synchronous detectors or de-
modulators. ${ }^{1}$ This diagram shows $I-Q$ demodulation and low-level matrixing to R, B and G, the signals required for a three-gun color tube. Several points should be mentioned:
(1) Both polarities of I and Q are needed in the matrix; additional tubes provide the phase inversion and amplification, at the same time adding stability problems and increasing current drain.
(2) Space charge coupling and suppressor to signal grid capacitance can cause excessive local oscillator voltage to appear at the signal

FIG. 5-Demodulator circuit using beamdeflection tube

FIG. 6-Demodulator characteristics of 6AS6 (A) and beam-deflection tube with 0 -signal cathode current of 10 ma (B) and 16 ma (C)

FIG. 7-Coloi decoder with 6AS6 demodulators replaced by beam-deflection tubes
grid unless the grid is driven from a low-impedance source. The 500ohm source used represents a compromise.
(3) To make most effective use of the 6AS6 the suppressor grids must be driven positive and consume power. Space-charge coupling and grid current cause modulation of the injection by video and the 6AS6 is somewhat sensitive to injection amplitude variations. In some designs this has led to additional injection circuitry to provide decoupling and power.

In tubes like the 6AS6 and 6BE6 the primary role played by the local oscillator injection is to switch a part of the total cathode current periodically between plate and screen grid. Thus the a-c plate and screen currents in a 6AS6 are essentially equal and 180 degrees out of phase. In a demodulator whose plate output is the color difference signal I, the screen current is a potential source of a $-I$ signal, but unfortunately is inconvenient to use.

Beam-Tube Decoder Design

Injection to the beam tube of Fig. 5 still switches current from one tube element to another. Here it is from plate to plate and each plate can drive a video load. The beam deflection tube features which are of interest in decoder design are

FIG. 8-Beam-deflection tubes supplying chrominance information from color decoder directly to picture tube
as follows:
(1) No color-difference phasesplitting tubes are necessary since each demodulator supplies plus and minus outputs of equal peak-to-peak current swing.
(2) Deflection voltages of the order of 50 volts peak-to-peak between deflectors are required to approach maximum demodulation efficiency. When 60 to 80 volts nominal injection is used the demodulator is very insensitive to changes in injection amplitude.
(3) The deflectors draw negligible current, hence very little injection power is required. Both demodulators can be driven by one tube, with a suitable 90 -degree phase-shifting network. It is likely
that the driving tube can be the oscillator itself. No modulation of injection by video has been observed.
(4) There is no space-charge coupling between the deflectors and signal grid. Moreover, interelectrode capacitances, small to begin with, tend to be balanced. A high 3.58 -mc impedance can be used in the signal-grid circuit without developing appreciable local oscillator voltage on this grid.
(5) Screen or accelerator current is less than 5 percent of cathode current at operating bias, compared to 30 percent in the 6AS6.

Comparative Characteristics

Typical operating characteristics of beam deflection and 6AS6 demodulators are given in Fig. 6. The ordinate shows plate current swing per plate from the no-signal value. Peak-to-peak $3.58-\mathrm{mc}$ c-w input to the signal grid is given by the abscissa; plus values indicate sig-nal-grid inputs in phase with injection, minus values are inputs 180 degrees out of phase with injection.

Curve A is a replot of data given by Pritchard and Rhodes ${ }^{3}$ as optimum operation of a 6AS6. Curve B was taken on a developmental beam tube with cathode bias and accelerator voltage adjusted for zero-signal cathode current of 10 ma. Curve C is for the same beam tube with voltages set for 16 ma zero-signal cathode current.

All three curves are with no degeneration. As in conventional tubes, cathode degeneration is helpful in improving beam-tube linearity at a given cathode current. Required increased drive is more readily obtained in the beam-tube circuit because the signal-grid driving impedance can be several times that used with the 6AS6.

Typical Beam-Tube Decoders

Figure 7 is the block diagram which results when the 6AS6's of Fig. 4 are replaced by beam-deflection demodulators. A 5,000 -ohm band-pass circuit supplies the chrominance drive required by degenerative I and Q demodulators. A variable cathode resistor in one demodulator serves to adjust relative gains. The demodulator outputs (balanced $\pm I$ and $\pm Q$ currents)
and the Y-amplifier output (Y current) feed a passive matrix containing no tubes and no adjustments. The matrix need not be a lossy one to minimize crosstalk between output channels; a proper matrix can be calculated where the impedance at the grids of the output tubes is of the same order of magnitude as the impedance presented to the driving plates.

A decoder using ($R-Y$) and $(B-Y)$ demodulators and matrixing in the picture tube is shown in Fig. 8. The $(-Y),(R-Y)$, and $(B-Y)$ outputs are applied directly to the reproducer while $-(R-Y)$ and $-(B-Y)$ currents are passively matrixed so that $(G-Y)$ voltage appears across the output resistor and at the green grid.

Of the conventional converter and mixer tube types, only the 7AK7 (30 ma cathode current at operating bias) has adequate output to drive the picture tube directly; all such tubes require phase inversion in the $(G-Y)$ channel. A deflection tube having about 11 ma operating cathode current supplied direct drive in an equal-bandwidth receiver used on NTSC field tests from April to June 1953. Although this receiver did not lack drive, to handle all picture tubes with a reasonable safety factor, a tube having 15 to 16 ma cathode current at operating bias seems desirable.

Direct drive with $I-Q$ demodulators and matrixing would reanire considerably more current than

Fig. 9-Waveforms of $+Q$ and $-Q$ oufputs on bar pattern signal with chrominance siqnal applied to deflectors. Peak-to-peak voltages are 180 volts across 15,000 -ohm plate loads
this. The equivalent of $I-Q$ operation can be achieved by Q bandwidth limitation and matrixing to $(R-Y)$ and $(B-Y)$ before demodulation.

When high output currents are desired, it appears advantageous to interchange the signal inputs to the demodulator, using the chrominance signal for push-pull deflection and putting the reference carrier on the control grid. This type of operation requires additional video drive and makes the demodulator somewhat more sensitive to injection amplitude variations.

On the other hand, using the substantially linear deflection characteristic for chrominance results in a worthwhile improvement in output linearity. High-level operation is illustrated in Fig. 9: outputs of 180 volts peak-to-peak on each of the two anodes of the Q demodulator show excellent symmetry.

The NTSC field-test receiver also used a beam-deflection tube to per-

FIG. 10-Beam-deflection burst gate cir. cuit. Only shaded portion of input pulse is effective in deflecting beam from plate to plate
form the burst-gating function. In a color receiver, it is necessary to have a gate which accepts the colorsynchronizing burst and rejects the rest of the chrominance signal. It is also desirable to turn off the chrominance channel at a horizontal rate during burst time, especially if d-c restorers are used at the display. These two operations have been performed separately, by turning on and off separate amplifiers or diode gates.

Functionally the beam-deflection tube is a spdt switch and can perform both operations at once. In Fig. 10 the full chrominance signal is put on the signal grid and the beam is statically deflected to the left plate by putting plus 30 volts

FIG. 11--Burst-gate input chrominance signal (A), gated output to chrominance channel (B) and gated output to burst channel (C)
d-c on the left deflector. This plate is connected to the chrominance channel.

A positive gating pulse derived from horizontal flyback pulls the entire beam to the burst-output plate during retrace time, so that the burst is reproduced only in this channel. The tube performs the additional function of double clip. ping of the gating pulse, since only a thin slice of the pulse (shown shaded in the figure) is actually effective in moving the beam from plate to plate.

The burst plate load is normally a high impedance and neutralization of plate-to-plate capacitance is necessary if the burst channel is to be completely free of chrominance information. Burst gate input and both output waveforms are shown in Fig. 11.

Experience with beam-deflection tubes in color-television receivers has shown them to be well suited to the applications described here. A fundamental asset of such a tube as a demodulator is the actual elimination of decoder functions, primarily matrix inversion. The resulting decoders are stable and are as straightforward as their block diagrams.

References

(1) Petition of RCA-NBC before the FCC, p 359. June 25, 1953.
(2) D. H. Pritchard and R. N. Rhodes, Color-Television-Signal Receiver Demodu lators, RCA Rev, 14, p 221, June 1953.

Bistable units for use in highspeed computers employ the magnetic-saturation characteristics of iron-cored solenoicis to produce two stable output conditions.

The basic circuit of a ferroresonant flip-flop is shown in Fig. 1A. Two solenoid inductors are alternately caused to saturate forming a resonant circuit with their series capacitors. Saturation of the core material allows the effective inductance of the solenoid to remain at its low resonant value. The resonant operating condition is not at true resonance but at a point on the capacitive side of resonance.

Flipping is produced by a d-c signal applied to the trigger winding. When current flows through the trigger winding associated with the side that is not in resonance, it will cause the impedance of that inductor to be lowered and allow it to go into resonance. This will lower the voltage across the other leg of the circuit so that the other side no longer can remain in resonance. The current through the trigger winding can be in either direction. Detailed operation has been previously described ${ }^{1}$ and this article will deal with physical and practical application of the units.

Triggering Methods

Several schemes have been employed for alternately triggering one side and then the other, one of these is shown in Fig. 1B. An r-f choke has been added as a d-c return path for the rectified output current.

The rectified output voltage will callse a small bias clirrent to flow through the trigger winding in the side to be triggered next. Resistor R_{b} is chosen large enough so that the bias current is insufficient to trigger the flip-flop. A negative

Table I-Design Variations of Ferroresonant Flip-Flop

Output voltage	5 to 100 v
Output power	up to 2 watts
Resonant to nonresonant	
voltage ratio	$4: 1$ to $16: 1$
Generator frequency	200 kc to 2 mc
Generator output	3 to 30 v rms
Flip-flop input	0.05 to $5.0 \mathrm{v}-\mathrm{a}$
Voltage variation	± 20 percent
Frequency variation	± 10 percent
Flipping rate	$11 p$ to 100 kc

Complete ferroresonant flip-flop unit with coupling capacitor and diodes

Ferroresonant

By RUDOLPH W, RUTISHAUSER
Computer Research ('mp) IIanthorne. Calit

pulse on the order of 1 to 4 microseconds through the trigger capacitor C_{t} will cause enough additional current to flow in the trigger winding to change the state of the flipflop. No current flows in the other trigger winding because there is a back voltage across the diode connected to the other trigger coil.

By having many turns on the trigger winding, the current requirement for triggering can be made extremely small, but the time constant of the circuit will be increased. Units have been built that can be triggered with as little as 2 ampere-turns. With 10,000 turns of small wire in the trigger coil, only about 200 microamperes are required.

A flip-flop is a ring of two stages. These ferroresonant units can be connected into larger rings as shown in Fig. 1C. A ring of 32 stages has operated satisfactorily. Indications are that about 50 stages would be the upper limit.

Practical flip-flop design is ac-
complished by graphical means based on an experimentally obtained plot of effective inductance versus a-c current through the inductor.

The resonant voltage across C, is considered as the output voltage: The ratio of resonant to nonresonant voltage may vary from 4-to-1 to 16 -to- 1 with a ratio of about 8 -to-1 generally being used.

The output voltage is designed to be compatible with the output requirement.

Output power is related to input, therefore, the manner in which the input is expressed will first be explained.

Assume that in the design of a particular unit, the series capacitor C_{s} is $500 \mu \mu \mathrm{f}$, the operating frequency is 1.3 mc and rectified output is about 25 volts peak. A capacitance of 500 u.uf at 1.3 mc is about 250 ohms. Peak current is about 100 ma or about 70 ma rms . Generator voltage for this unit would probably be about 7 volts. The in-

FIG. 1-Basic flip.flop unit (A) can be triggered as shown in (B). Five stage ring counter (C) shows simplicity of circuit

Flip-Flop Design

Abstract

Application of ferroresonant switching units made to replace tubes in high-speed computer systems. Triggering and counting circuits are given with input and output requirements, switching rates and tolerances

put power, therefore, is about 0.5 volt-ampere.

Since the units draw reactive power, the magnitude in volt-amperes that the generator must be able to supply can be calculated. Units have been built having input requirements from $0.05 \mathrm{v}-\mathrm{a}$ to 5.0 v-a.

The maximum output power in watts that can be obtained without impairing the bistability of the unit is approximately $1 / 3$ the v -a rating of the unit. In the example mentioned, the maximum d-c output current probably would be about 7 ma since $0.007 \mathrm{ma} \times 25 \mathrm{v}=0.175$ watts which is about $\frac{1}{3} \times 0.5 \mathrm{v}-\mathrm{a}$.

Operating Characteristics

The a-c frequency requirement have been based on several factors. Since it requires about 3 to 4 cycles of the generator frequency for a flip-flop to change its state, it would be desirable to use as high a flipping frequency as possible. To keep a constant output impedance
the physical size of both the capacitor and the inductor decrease as the frequency increases. Core losses increase with frequency. The core material will determine the upper range of frequency. Using $1 / 8 \mathrm{mil}$ 4-79 MO-Permalloy, a frequency of 1 to 2 mc can be used

The input voltage is determined by the design of the flip-flop, however, it is generally of the order of 5 to 10 volts rms. If low v-a flipflops are used, it is easy to drive 10 units from a single 6C4 Colpitts oscillator or 25 to 50 units from a single 6AQ5 oscillator.

One of the desirable features of ferroresonant flip-flops is their operational tolerances. They maintain their bistability and generally can be operated within at least a ± 20 percent in a-c supply voltage. Frequency can vary about ± 10 percent without changing basic operating characteristics.

The rate at which the flip-flops can be triggered depends on the type of triggering. However, units
using a nominal a-c generator frequency of about 1.3 mc , have been made to flip with triggering pulses at somewhat greater than a 100 kc rate. In general the lower the power, the slower will be the flipping rate since less power is available for opening and closing of gates. An R-C or R/L time constant will generally appear and determine minimum gating time.

The author acknowledges the cooperation of Carl Isborn and the Computer Research Corporation.

Reference

(1) Carl Isborn, Ferroresonant FlipFlops, Electronics, p 121, Apr. 1952.

Bibliography

Claude Summers, An Unstable NonLinear Circuit, Elect Eng, May 1940 . P. H. Odessey and E. Weber, Critical Conditions in Ferroresonance, AIEE Trans. Aug. 1938.

Suits Non-Linear Circuits Applied to Relays, Elect Eng, Apr. 1933.
C. G. Suits, Non-Linear Circuits for Relay Applications, Elect Eng, Dec. 1931. W. T. Thomson, Resonant Non-Linear Control Circuit, AIEE Trans, Aug. 1938 . E. G. Keller, Resonant Theory Series May 1938.
May 1938 . Suits, Studies in Non-Linear Circuits, AIEE Trans. June 1931.

Low-frequency transmitter complete with band-switching and other controls

Tankless Low-Frequency

Equipment in use by Canadian Department of Transport avoids expense of large capacitors and inductors by novel design employing transformers wound on ferrite cores. Broadband amplifier is driven by oscillator coupled through a low-pass filter

Antenna tuning unit includes low-pass filter, variometer and tap tuning as well as relay controls to change frequency

TRansmitters operating in the region of 200 to 500 kc are usually equipped with one or more class-C stages employing tuned plate circuits. The bulk and cost of both coil and capacitor in such circuits grow quickly with increasing transmitter power. In an effort to provide more compact and economical designs, Westinghouse Corp. ${ }^{1}$ and lately Canadian Westinghouse

[^7]

Final stage uses eight type 807 tubes in push-pull parallel

Transmitter

By PREBEN GOMARD*
T. S. Farley, Ltd.
Hamilton, Ontario
Canada

have built transmitters without tank circuits in the usual sense.

The transmitter is built as a straight broadband amplifier with interstage coupling transformers wound on ferrite cores. Figure 1 is a block diagram of the transmitter panel. This particular transmitter covers two bands, 280 to 330 kc and 400 to 510 kc . The oscillator is conventional, with a number of fixed frequencies in each band. The output is R-C coupled to the limiter,
which uses a 6AQ5 with a resistive $2,000-\mathrm{ohm}$ plate load.

The following low-pass filter is an m-derived constant- k type and is shown in Fig. 2A. It will be seen that the filter consists of $2 L$'s and one π. Each L section gives the response shown on Fig. 2B. When combined with the response of the π section on Fig. 2C, an overall response like that of Fig. 2D is obtained. The filter is terminated in a 2,000 -ohm potentiometer and the
harmonic content at this point is 2 percent or less at any frequency in both bands.

Since the second harmonic of the lowest frequency ($2 \times 280 \mathrm{kc}=$ 560 kc) is close to the highest transmitter frequency (510 kc) it is desirable to have a separate filter for each band.

From the potentiometer marked drive Level in Fig. 1, the signal goes to a transformer with centertapped secondary, which in turn applies voltage to a class-A push-pull stage using sharp-cutoff pentodes. These are R-C coupled to two 6AQ5 cathode followers. The cathode load is a stepdown transformer so that a low drive impedance for the output stage is ensured.

The output stage comprises eight 807's in push-pull parallel and works with 600 volts into a pushpull transformer with a secondary impedance of 50 ohms. The plate efficiency of this stage is approximately 60 percent with full modulation.

A modulating 1,000 -cycle note is generated by an $L C$ audio oscillator and is applied through an amplifier to the grids of the push-pull classA stage. A certain amount of distortion is desirable to avoid the monotonous sound of a sine wave. This is obtained in the stage following the audio oscillator. It is feasible to grid-modulate a class-A stage up to 90 or 95 percent. If the tubes have nearly parabolic $\boldsymbol{E}_{g}-I_{p}$ characteristics, the intelligibility of speech remains excellent up to the modulation level specified.

The ideal wav to key a transmitter is to stop the oscillator in the key-up position. In this way no

Push-pull output transformer couples type 807 amplifier into unbalanced 50 ohm impedance

FIG. 1-Layout of low-frequency transmitter employing tone modulation
signal is generated and nothing is transmitted. It has been found by long experience that on-off keying of low-frequency oscillators often results in greatly decreased crystal life. To ensure dependability in this respect, keying is obtained by blocking the class-A push-pull stage. With this arrangement the radiated signal with the key up is 50 db or more below the transmitting level.

The modulated r-f is thus applied to the grids of the output tubes and the characteristics of this stage must be such as to handle the signal without excessive grid current or cutoff. A conventional class-C transmitter would have only four tubes in the output stage, but an additional four together with a transformer are required to give high-level modulation. The expensive modulation transformer is avoided in this design.

Antenna Matching Panel

The harmonic content at the 50ohm output terminals of the transmitter is approximately 5 percent or -26 db . To decrease the level further a low-pass filter of the type shown in Fig. 2A is introduced. An extra attenuation of 40 db or more brings the total harmonic content to -66 db or better. This filter is terminated in a transformer that brings the impedance of the tuned antenna up to the 50 -ohm level.

The Q of the shortest specified antenna at the lowest frequency was 292 and the resistive component 3 ohms. By using 96 -strand Litz wire and a welded aluminum cabinet a variometer was built with a Q of slightly over 300 at this frequency. If the loss in the matching transformer is neglected, the total Q of the antenna circuit becomes

FIG. 2-Low pass filter (A) gives L section response as in (B), π-section response as in (C) and combined characteristic (D)
150. The response is thus 3 db down at 0.93 kc off resonance and an original modulation depth of 95 percent is consequently reduced to approximately 67 percent. At higher frequencies and with longer antennas this effect decreases.

A variometer is used for each band. The antenna is switched by a vacuum relay.

Transformer Design

As an example of ferrite transformer design the power output transformer will be considered in detail. Two type 807 tubes in class AB_{2} with 600 -volts on the plates need a plate-to-plate load impedance of $6,400 \mathrm{ohms}$. The c-w power that can be expected is 80 watts. For eight tubes the figures become 1,600 ohms and 320 watts. The rms voltage is 715 volts, giving $B A N=\mathbf{5 . 7 5}$ $\times 10^{4}$ at 280 kc when B is induction in gauss, A is core area in sq cm and N is number of turns.

A core with $A=2 \mathrm{sqcm}$ and a volume of 45 cu cm was chosen. According to information published by Rogers Majestic in Toronto, the temperature rise in a ferrite core
approximates $\Delta T=400 w / v \sqrt{ } A$ $\operatorname{deg} \mathrm{C}$, where w / v is the loss per cu cm . If 40 C is specified, $w / v=$ 0.07 watts per cu cm. A value of $B=350$ gauss at 280 kc will, according to this information, result in approximately such a loss.

The actual primary consists of 75 turns, giving $B=384$ gauss.

In the actual transmitter a total of 170 watts is measured at the secondary terminals owing to the modulation being less than 100 percent. The temperature rise over the ambient was found to be 37 to 39 C for eight transformers. The agreement with the data is thus fair.

The inductance of the primary in henrys is $L=4 \pi 10^{-9} n^{2}: 2$ (A / I) or approximately 6 mh .

The leakage between the two halves of the primary together with the distributed capacitance gives a resonance that can be measured. It proves to be approximately 1.5 mc . No radiation on this frequency is detectable when the transmitter operates. The primary-to-secondary leakage is approximately 5 percent, giving a $3-\mathrm{db}$ cutoff frequency of approximately 900 kc for the transformer alone.

Since ferrite is a good insulator it is possible to wind directly on the core after the sharp corners have been taped. This results in an extremely inexpensive component. The cost of materials does not exceed two dollars.

It has been found that these transformers stand up well in service. If the antenna load is removed while full drive is applied to the output stage, no damage is done to the equipment. This is in contrast to the voltage breakdown a class-C transmitter would suffer if sufficient overvoltage protection is lacking.

The writer is indebted to H. Rice of Canadian Westinghouse for permission to publish this article, to B. P. Jacobsen for his variometer design and to J. O. Nielsen at the Royal Technical High School of Denmark for his lectures on transformers.

Reference

(1) L. F. Deise and L. W. Gregory, Iron-Core interstage and Output ${ }_{3}-\mathrm{KW}$ MF Transmitter Design, Communications, Oct-Dec. 1949 .

Magnetic-matrix switch before potting illustrates details. Top of chassis view of binary counter shows how switch clamps in place

Magnetic-Matrix Switch Reads Binary Output

Saturable-core magnetic matrix functions as fast-operating eight-position stepping switch to read numbers stored in electronic binary counter. Switch and counter form part of flight-test instrumentation for airborne fire-control equipment

BINARY NUMBERS stored in an electronic counter can be read rapidly by an eight-position stepping switch that uses a saturablecore magnetic matrix. The switch and its counter are components of a system for flight-testing airborne fire-control equipment.

The equipment simultaneously records data by means of two synchronized movie cameras and a multichannel recording oscillo-

By JOHN W. BREAN
Servomechanisms Laboratory Massachusetts Institute of Technology Cambridge, Mass.
graph. Time synchronization is provided from a time code generated by the binary counter and magnetic-matrix switch.

The matrix is composed of eight magnetic-switch elements arranged to sense the last eight stages of
an eleven-stage-counter singly and in a predetermined, repeated sequence. The idealized matrix output is a modulated $400-\mathrm{cps}$ carrier (Fig. 1A) and represents consecutive eight-digit binary numbers produced one digit at a time. One digit is produced for each rotation of the master camera shutter and the code is transferred to the films with small neon lamps.

Physically, the switch is a bank

FIG. 1-Idealized switch output (A) with schematic of important core windings (B) and operating characteristics of magnetic circuit (C)

FIG. 2-Basic circuit of magnetic-matrix stepping switch illustrates how the principle of core saturation can be uitized in a switching operation
of ten matrix-connected toroidal transformers stacked horizontally on an aluminum plate. Eight of the transformers have five windings each and two have three windings each. The finished assembly is plastic encapsulated with the connecting leads brought out through a 32 -pin connector. Overall dimensions are $5 \frac{1}{2} \times 1{ }^{7} \times 2 \frac{5}{8} \mathrm{in}$.

The magnetic-matrix switch's step-delay time is 0.1 millisecond. The stepping rate is limited by the reaction of the matrix transformers on the associated electronic flip-flops in the binary counter. The switch operates satisfactorily up to 30 steps per second; the actual upper limit on the stepping rate has not been determined.

Switch Principle

The principle of operation of the matrix switch is illustrated in Fig. 1B. This saturable-core transformer has windings for excitation, sensing and output. The idealized hysteresis curve of a typical core is shown in Fig. 1C. Switching is accomplished by passing through the sensing winding a direct current of sufficient magnitude to saturate the core. When a sinusoidal voltage is impressed on the excitation winding and the sensing winding current is zero, normal transformer action takes place and a voltage appears at the output winding.

The operating point about which the sinusoidal magnetomotive force varies is shown in Fig. 1C as point

1. If a direct current is now caused to flow through the sensing winding, a constant magnetizing force is superposed on the sinusoidal one and the operating point is forced into the region of saturation, point 2. During operation about point 2 the core permeability is reduced to unity, negligible coupling exists between the excitation and output windings and essentially zero voltage appears at the output.

Matrix Configuration

The principle of core saturation for switching is used in the matrix shown in Fig. 2. Each toroidal transformer core and its windings is called an element. The circuits into which the windings are connected are divided into control, sensing and output groups. The control group determines which of the eight sensing windings is allowed to control the transmission of the $400-\mathrm{cps}$ carrier at a given time. Each sensing winding when chosen by the control group is capable of blocking or allowing the transmission of the carrier depending upon the sensing-winding current. A single output is obtained by connecting the eight windings of the output group in series.

Each element has six windings. Three correspond to the sensing, excitation and output windings. The additional windings are interconnected in the control group. The six circuits of the control group are
divided into three control pairs called the $2^{0}, 2^{1}$ and 2^{2} pairs. When d-c flows through one circuit in each control pair, control winding mmf appears in all but one of the element cores and forces them into saturation. The one element not subjected to saturation is the selected element. Some cores in the matrix will have current in two or three control windings at the same time increasing the saturation.

The matrix control-group windings select the elements in order by causing $d-c$ to flow alternately through the circuits of each control pair according to a prescribed binary pattern. The binary pattern is developed by the number of switching operations of the 2° pair as the counting reference and switching the second and third pairs after every 2^{1} and 2^{2} counts.

Number Generation

To obtain the desired series of consecutive eight-digit binary numbers, it is necessary to read the last eight stages of the eleven-stage counter in order and in a repeated sequence. The binary number represented by the eight counting stages increases by one for every eight camera pulses entering the counter; it is therefore necessary to read one counting stage for each camera pulse.

A convenient method of reading a counting stage is to insert the sensing winding of a matrix element in series with one flip-flop cathode of that stage as illustrated in Fig. 3. The cathode current and the saturated condition of the element indicate the binary digit.

The matrix selects the elements corresponding to the eight counting stages in the desired order by connecting the $2^{0}, 2^{1}$ and 2^{2} circuits of the control group to the $2^{0}, 2^{1}$ and 2^{2} stages of the counter. For every eight pulses entering the counter the matrix selects and reads in sequence the eight digits of the binary number stored in the last eight stages.

Winding Modification

The number of windings required on each element can be reduced from six to five by replacing the direct current in the 2° control pair by sinusoidal excitation eliminating
the separate excitation winding. The element-selecting ability of the matrix control circuits is not affected by this simplification. The circuit of Fig. 3 employs this simplified matrix.

Introduction of a-c excitation throughout the 2^{0} control pair requires d-c control of the excitation. This is provided by adding two three-winding elements to the 2° control circuits. The two control elements receive their excitation from a common a-c source.

The sensing windings of the matrix elements are connected in series with one cathode of each counting stage. When the state of the flip-flop is such that no current flows in the sensing winding of a selected element a voltage appears at the output winding of that element and a 1 is indicated. If current does flow the element is saturated so no voltage appears at the output and a 0 is indicated.

Control Circuits

The control pairs are operated by the flip-flop action of the first three stages of the counter. The 2^{0} control pair is connected by the d-c control elements to the first stage of the counter that provides the refer-
ence count and alternates the excitation between the circuits of the pair at every count. The 2^{1} control pair operates directly from the cathode currents of the second stage This stage alternates the control currents between the circuits of this pair after every two control reference counts. The 2^{2} control pair operates from the cathode currents of the third stage of the counter. This stage alternates the control currents between the circuits of this pair after every fourth control reference count.

Stages 1, 2 and 3 of the counter and their associated control circuits change the binary number in the counting stages at every eighth con-trol-reference count, select the elements in sequence and sense and represent as output voltages the conditions of the counting stages.

Output Circuits

The output circuits rectify and clip the matrix a-c output signals to form pulses of uniform amplitudes that are sent to two neon camera indicating lamps and the recording oscillograph. Some leakage exists under the saturated conditions. The leakage voltages are not always the same magnitude and together with
nonumiform 1 or on-signals cause nonuniform switching ratios. To obtain uniformly effective 1 voltages and improve the switching ratio a high-gain triode amplifier and a clipper are used.

The first stage is a 12 AX 7 amplifier. The second stage, a 12 AX 7 cathode follower, is a low-impedance source that drives the two 12AT7 clippers. These clippers are biased below cutoff by an amount equal to the largest leakage-voltage peaks and operate only on positive grid-signal peaks corresponding to true 1 signals. The neon indicating lamps operate directly from the voltages developed across the plateload resistors of the 12 AT 7 tubes.

Before reaching the oscillograph, carried is removed by a low-pass R-C network R_{3} and C_{1} of Fig. 3.
This research was made possible through the support extended the Massachusetts Institute of Technology Servo-mechanisms Laboratory by the USAF Armament Laboratory, Wright Air Development Center under Contract No. W33$038 \mathrm{ac}-13969$. The initial design of the binary register with a solenoidoperated stepping switch was done by J. B. Harper at M.I.T. Instrumentation Laboratory.

FIG. 3--Schematic diagram of electronic binary counter with magnetic-matrix switch readout. Unit is used in flight-testing airborne firecontrol equipment

Bottom and rear views of complete pulser. Power supply with diode bridge is mounted on back of panel

Transistors Convert

Circuit uses eight point-contact transistors to amplify, square and differentiate sinewave input to give fast-rise positive and negative pulses. Power supply uses junction diodes in bridge circuit to make completely tubeless unit

By R, E, McMAHON, I, L, LEBOW and R. H. BAKER
Project Lincoln
Massuchusetts Institute of Technology
Cambridge, Mass.

Positive, top, and negative, bottorn, outputs of transistor pulse zonverter

Atransistorized pulser for converting a sine wave or pulse input to a large pulse output of low impedance has been built and displays useful characteristics.

The block diagram, Fig. 1, shows the four sections of the pulser. The sine-wave clipper shapes the input into a flat-topped positive pulse which is differentiated and fed to the one-shot multivibrator. The multivibrator output is inverted and coupled to the power stages through a pulse transformer. Shaping and differentiating the input insures that the multivibrator will trigger only once for each positive cycle of the sine wave.
The diagram of Fig. 2 shows the complete circuit. All the transistors are point-contact types. There are two power stages, one for posi-
tive and one for negative output. Each have three transistors effectively in parallel. This parallel connection not only increases the power capabilities and reduces the output impedance of the stage but increases regeneration, so that extremely fast rise times are obtained. Measured rise times of the pulses are of the order of 0.05 sec .

Power Supply

The power supply uses 4JAIAl junction diodes in a bridge network. The diodes are capable of handling currents of the order of 200 ma and above, depending on the duty cycle. They were used experimentally to reduce the size of the power supply, which is the largest part of the unit.

To determine the power dissipa-

FIG. 2 -Sine-wave-to-pulse converter uses diode bridge power supply. Pulse transformer in negative output inverts pulse

Sine Waves to Pulses

FIG. 1-Positive and negative output stages are separate in pulsing unit

Table I-Characteristics of Sine Wave-to-Pulse Converter

Frequency range, 10 cps to 200 kc
Minimum sine-wave input, 5 v
Pulse output, 35 v max
Pulse rise time, $<.05 \mu \mathrm{sec}$
Pulse width (adjustable from 0.3 to
$1 \mu \mathrm{sec}), \approx 0.3$ to $1 \mu \mathrm{sec}$
Output impedance,
≈ 300 to 400 ohms

FIG. 3-Equivalent circuit used in cal culating power requirements
tion required of the transistors Adler's equivalent circuit is used to represent the three parallel stages. Resistance R_{e} is the external emitter resistance, r_{s} and r_{c} are internal emitter and collector resistances respectively.

From Fig. 3 it can be seen that the collector current of each transistor will be one third of the load current $i_{c t}$. Experimentally it is found that v_{c}, the collector to base voltage, is -5 volts when the stages are on, and i_{c} is the voltage across the load (30 v) divided by the load resistance, (1 K) giving 30 ma. This means each stage has a peak current of 10 ma and a peak power of 50 mw . If the unit is operated at 200 kc with a pulse width of 0.5 usec , then the average peak power (peak power \times duty cycle) is

5 mw per transistor. For lower repetition rates peak power will be less.

The value of v_{c} when the power stage is off is -40 volts, giving as a d-c power 67 mw for each transistor. Total average power, then, is the average peak power and the average d-c standby power which, in this case, totals 72 mw .

The transistors used were originally rated at 120 mw , but recently some transistor manufacturers have lowered the maximum collector dissipation to about 50 mw . However, most failures of transistors in circuits of this type seem to be a function of the average peak power and peak currents. The value of 10 ma peak current for the power stages is large but average peak power is low and justification for
operating the stages at these ratings is found in the fact that after several hundred hours of operation no failures have occurred.

The oscillograms show positive and negative outputs of the transistorized converter. Sweep speed in both cases is $0.1 \mu \mathrm{sec}$ per cm. Use of pulse transformer reduces rise time of negative pulse.

The research in this document was supported jointly by the Army, Navy, and Air Force under contract with the Massachusetts Institute of Technology.

Bibliography

[^8]

Television raster (left) displays unique appearance of horizontal deflection coil unbalance. Enlarged section of same raster (right) has scan lines emphasized and shows magnetic field lines

How to Handle Ringing

By LEO BEISER

CBS-Coltmibia Division of Columbia Broatcasting System Long Island City, New York

RINGING IN HORIZONTAL WIDTH AND LINEARITY COILS

Distinctive Appearance

Velocity and intensity modulation of relotively low frequency-up to 100 kc

MODERN television receiver design provides an extra measure of performance with improved picture fidelity under adverse conditions and at reduced cost. Yet, there exists a lack of information regarding a picture fault capable of detracting from that extra measure of performance. Observers call it shading, vertical bars or horizontal ringing.

Deflection system ringing is a series of transient oscillations in the output circuits. It is displayed as vertical bars, starting at the left edge of the raster and decaying gradually to the right, sometimes extending completely across the screen. Many television receivers suffer from this defect. In color receivers the effect is not only one of varying picture brightness, but since the magnetic field within the

RINGING DUE TO HORIZONTAL DEFLECTION COIL UNBALANCE

(A)

Distinctive Appearance
Velocity modulation with synchronous vertical ripples; most severe at top and bottom of raster; modulation apparently cancelled near center of rester; frequency range $100-150 \mathrm{kc}$
(B)

(C)

Corrective Measures

1. Balancing capacitor C placed across top half of deflection coil-Circuit (A)
2. Deflection coil center top returned to electrical center of horizontal output transformer-Circuit (B)
3. Both halves of harizontal deflection coil connected in parallel-Circuit (C)

in Television Design

Proper design of horizontal and vertical coils, output transformers and other receiver deflection system components avoids undesired vertical bar pattern on raster caused by transient oscillations in the output circuits
deflection yoke is distorted, color misconvergence may result in shadow-mask picture tubes. Most of the treatments described here are applicable to both monochrome and color television.

The steep wave fronts associated with horizontal deflection circuits excite the horizontal output transformer, yoke, width coil and horizontal linearity coil into transient oscillations. Ringing can therefore be considered as a train of transient oscillations, decaying exponentially after excitation by the sharp flyback waveform. The decrement or rapidity of decay is determined by the Q of the ringing circuit.

Effects of Ringing

Ringing can affect the picture in two ways. The first is by velocity

RINGING IN VERTICAL DEFLECTION COIL. AND OUTPUT

Distinctive Appearance
Intensity modulation only (result of vertical blanking) at relatively low frequency -up to 100 kc

Corrective Measures

1. Obtaining vertical-blanking voltage from source other than verticaldeflection coil
2. Reducing yoke crosstalk by quadrature orientation of yoke coils; by-passing vertical output circuit, C, and choice of low-impedance vertical-deflection coil
modulation of the electron beam causing successive localized bunches of beam current at the screen. The resulting brightness variation is more discernible than the resulting geometric distortion.

The second effect is intensity modulation of the picture tube, either by undesired pickup in video circuits or as a result of blanking. Both vertical and horizontal blanking waveforms often have the undesired ringing superimposed upon them. Velocity and intensity modulation can occur simultaneously since they are both often a direct result of the same cause.

Horizontal Width and Linearity Coils

In many modern television receivers, the horizontal width and linearity coils are connected in series with the horizontal deflection coil and damper tube respectively. In these circuits, they form isolated appendages to the horizontal output circuit and can easily resonate with their physical and stray capacitances upon shock excitation by the steep flyback pulses. This is particularly true of the width coil for unlike the correctly adjusted linearity coil, the width can be resonant at almost any frequency. Since this ringing will be transmitted throughout the horizontal circuit, it can best manifest itself in both velocity modulation and intensity modulation. Adequate resistive damping across the width coil and
correct linearity adjustment will minimize these sources of trouble.

Yoke Crosstalk

Leakage inductance in the vertical components would be of little consequence to the horizontal deflection circuit were it not for yoke crosstalk and vertical blanking.

A deflection yoke with high crosstalk will show appreciable horizontal energy transfer to the vertical deflection coil. This energy will set into oscillation the resonant circuit formed by the vertical output circuit leakage inductance and physical plus stray capacitance. By the vertical blanking, this transient oscillation is impressed on the picture tube resulting in intensity modulation.

If vertical blanking from the yoke circuit must be used, there are three approaches to the reduction of crosstalk. First, the yoke coils may be oriented to approach magnetic quadrature between horizontal and vertical coils and means provided to maintain this relationship. A crosstalk voltage ratio of at least 250 to 1 is a practical and necessary deflection yoke requirement. A second solution is to by-pass the vertical circuit leakage inductance thus reducing the ringing voltage and frequency. This is best accomplished by shunting an $0.02-0.1 \mu . \mathrm{f}$ capacitor directly across the vertical output transformer secondary. The vertical blanking waveform and vertical circuit performance
will remain relatively unaffected.
Finally, lower impedance verticaldeflection coils will reduce crosstalk.

Yoke Unbalance

Ringing due to horizontal deflection coil unbalance can be identified by the symptoms shown in the photographs. Methods for minimizing this disturbance include use of a balancing network across the top half of deflection coil; center tap return to the horizontal output transformer and parallel connection of the halves of the horizontal deflection coil.

Figure 1A shows a horizontal deflection coil and its associated circuits. Since each half of the deflection coil, L_{T}, and L_{i}, is a physical mass above ground potential, there exists from each half distributed and stray capacitances, C_{B} and C_{0}. Across L_{r}, the top half of the deflection coil, there exists a distributed capacitance C_{r}. Capacitances C_{T} and C_{b} are unequal since C_{B} includes both distributed and stray capacitance. Figure 1B is a more complete representation of the horizontal deflection coil circuit.

Transfer of energy from one half of the deflection coil to the other is such that an increase of leakage current in one half causes a decrease in the other. This $180-\mathrm{deg}$ phase relationship is illustrated in Fig. 1C where the output transformer is omitted for convenience.

Voltages \boldsymbol{e}_{T} and e_{B} are indicated

FIG. I-Simple circuit of horizontal-deflection coil (\mathbf{A}) is redrawn (B) to show leakage tuned circuits. Equivalent circuit (C) illustrates how coil balancing cancels ringing currents
to denote the polarities at the start of the rings, since these voltages exist only during the time driving energy is transferred to the leakage tuned circuits. The polarities of e_{T} and e_{B} must be as shown since the driving pulse initiating the ring is unipotential with respect to ground and hence passes through all coils in the same direction.

With e_{r} as indicated a current $i_{\text {rr }}$ will flow through the top loop and up through $L_{T}{ }^{\prime}$.

Current $i_{T r}$ will produce a current $i_{T B}$ in the secondary loop, both currents being opposite in polarity with respect to ground. By transformer action, current $i_{T R}$ is opposite in phase to current $i_{\beta n}$.

Balancing Capacitor

By adjusting capacitance C_{T} so that the top ringing frequency is identical to that at the bottom, any tendency towards yoke ringing is suppressed. As $i_{B B}$ tends to increase due to initial bottom shock excitation e_{B}, an opposing current $i_{r B}$ tends to decrease due to initial top shock excitation e_{r}. The result is complete cancellation in both top and bottom loops.

With dissimilar resonant frequencies of the leakage circuits, when $i_{B B}$ tends to increase it is opposed by a current $i_{r b}$, which decreases either too rapidly or too slowly. Thus the ringing current never cancels during that first impulse and energy transfer continues with the top modifying the bottom and vice versa; the two halves always maintain their characteristic out-of-phase condition.

This interacting condition is seen as opposite shading of the top and bottom of the raster when capacitive balance is not attained. Current balance is most favorable when the Q's as well as the frequencies of the ringing circuits are identical. A small resistance is often added in series with the balancing capacitor, since the Q of stray and distributed capacitances is lower than that of a physical component.

Deflection Coil Center Tap

The deflection coil center tap connection to the electrical center of the horizontal output transformer, shown in Fig. 2A, achieves almost perfect capacitive balance. This is

FlG. 2-Other means to combat deflection yoke ringing: connecting deflection coil center tap to center of output transformer (A) and connecting deflection coil windings in parallel (B)
accomplished not only by the swamping action of the added transformer capacitances, but by the equalizing action of improved top-to-bottom coupling that reflects more nearly equal capacitances across each half of the circuit.

Parallel Windings

Connecting the halves of the horizontal deflection coil in parallel as in Fig. 2B eliminates capacitance inequality across each half of the coil and lumps coil capacitance with transformer capacitance. Although coil leakage inductances still exist, ringing cancellation will be maintained so long as the coil halves are sufficiently similar in construction. Deflection coil inductances, leakage inductances and distributed capacitances will be the same, thus generating the same ringing frequencies to effect cancellation.

To understand the vertical displacement of the horizontal line structure coincident with brightness variation, visualize the horizontal deflection coil suspended in space; the top half above, and the bottom half below the neck of the picture tube. To generate brightness variations similar to those in the right-hand photograph, the magnetic field developed by the coil arrangement must be such that there exist compressions and rarefactions of the magnetic lines of force. This field distortion must vary with time as shown in the left-hand photo to accomplish the varying beam velocity. Any tilting of the field indicates an undesirable horizontal direction field component. It is this horizontal field
component that deflects the beam vertically in synchronism with the raster shading.

A complication in yoke ringing is the effect of the vertical deflection coil upon the vertical ripple of the scan lines. Omission of the 560 -ohm resistors across each half of the vertical-deflection coil will accentuate this ripple. The vertical deflection coil affects the vertical ripple through transformer action. The vertical deflection coil is energized by the undesirable horizontal direction component. The loading on the horizontal-deflection coil through reflected impedances thus influences the magnitude and damping of the horizontal component.

No degree of quadrature yoke adjustment can reduce this interaction.

Horizontal Transformer

Ringing originating in the horizontal output transformer is generally the most difficult to cope with. Horizontal output transformer ringing manifests itself in the two basic forms: intensity modulation of the picture tube through the blanking waveform and brightness variation due to velocity modulation of the raster. These effects can be controlled individually or mutually to accomplish ringing reduction.

The most important ringing sources are plate leakage and h-v tertiary leakage. Plate or primary ringing is generally at a higher frequency than tertiary ringing, the former ranging from 300 to 500 kc ; the latter from 100 to 200 kc. Identification of the ringing
portion is relatively simple. Since stray capacitance determines the ringing frequency, addition of small physical capacitance across the portion in question will be most effectively applied across the related leakage inductance and the ringing frequency reduced. Another technique in substantiating tertiary ringing is to remove the tertiary winding completely and to supply high voltage from another source. Ringing resulting from tertiary leakage inductance will be eliminated.

Four methods of flyback ringing reduction are: (1) increasing the transformer coefficient of coupling -a basic requirement with many
tertiary--the primary, as it would be in an autotransformer. Within the primary winding is the damper tap, yoke tap and driver plate tap. Increasing coupling between the damper and deflection coil provides the most pronounced improvement for the damper effectively shunts any ringing appearing across the deflection coil. Reduction of leakage inductance in series with the driver plate will reduce the ringing contribution from that source.

Another technique is to reduce coil-form diameter. Coupling is increased by proximity between core and coil. Increase of coil widths also accomplishes decrease of coil diameter. However, excessive in-

FIG. 3-Cancellation of ringing results when deflection coil is raised electrically from its normal position (A) to new balanced position (B)
complications; (2) carefully choosing the yoke-damper relationshiputilizing damper action to suppress ringing; (3) connecting deflection coil with low side above a-c ground -balancing arrangement for cancellation; and (4) choosing blanking amplitude and phase to accomplish cancellation through intensity modulation.

Coefficient of Coupling

One of the most complex requirements of a horizontal output transformer is its coefficient of coupling. At present leakage inductance reduction is a compromise with several other factors such as voltage breakdown, temperature rise and retrace time.

Leakage may be reduced by reducing the physical size of the coil. Most important is the reduction of the mean turn diameter of that portion containing all but the $\mathrm{h}-\mathrm{v}$
crease of coil width may reduce tertiary ringing at the expense of increasing primary ringing. There is a narrow range of optimum coil width for a given yoke and damper connection.

Tertiary diameter and width, important in tertiary ringing, are found to be the most unpredictable factors. Each transformer design must be handled individually.

The wire sizes and density of windings are important mainly in contributing to the above dimensions.

Yoke-Damper Circuit

After the geometric considerations described above have reached their compromise point, other approaches are available. The most important of these depends upon more effective use of the damper tube. If a deflection coil impedance is chosen which when connected
across the damper presents the correct tube loading, advantage is taken of the vastly reduced ringing appearing at the damper. The correct deflection-coil impedance varies between 18 and 30 mh as opposed to the 8.3 mh impedance long maintained as standard. This effect is a desirable by-product of the trend to higher yoke impedances for improved efficiency. With higher yoke impedances come higher voltage pulses and the yoke must be built with this extra stress in mind.

Yoke Connections

Another transformer-yoke damper relationship results in successful cancellation of the ringing component. This is accomplished, even with the standard low-impedance yokes, by moving the horizontal deflection winding of the yoke from its customary connection, Fig. 3A, to a new connection, Fig. 3B, while maintaining the number of turns across the winding constant. This new balanced position is found to be one where the top of the coil is much closer to the damper than the bottom of the coil is to ground.

In Fig. 4A the low side of the coil is at a-c ground and the high side is at some potential below that of the damper. The most important leakage inductance is that appearing between the damper tube and the transformer. This inductance L isolates the desired damping action from the rest of the transformer. The voltage appearing between 1 and ground is the desired driving pulse plus the undesired ringing component. The voltage appearing at 2 is the driving voltage minus the ringing component, the ringing component remaining across the hypothetical leakage inductance L. Inductance L is not necessarily generating the ringing. The voltage at 3 is identical to 1 but smaller in amplitude. Across the deflection coil, then, is the voltage E_{y}, identical to 3 and containing the ringing component.

In Fig. 4B one end of the deflection coil is connected to the damper and the other end to 4 , some point above ground potential. The voltage at 2 is again the clean pulse, while the voltages at 1 and 4 are

FIG. 4-How deflection coil connections cancel ringing: normal position (A) fails to make use of damper: raising bottom of coil above ground is intermediate step (B); clean waveform results when balance is achieved (C)
the same in form and different in amplitude. The voltage across the deflection coil E_{y} shows the ringing superimposed upon the driving pulse and inverted due to the subtraction of voltage 4 from voltage 2.

The next step, Fig. 4C, requires a nonconventional representation where a new hypothetical inductance has been added. Voltage 5 is now a cross between 2 and 3 where the ringing voltage has been vastly reduced. Voltage 6 also represents a vastly reduced ringing voltage. If the ringing voltage at 5 is made equal to that at 6 , then all ringing across the deflection coil is cancelled since the voltage across the coil E_{v} is now $E_{5}-E_{8}$.

Horizontal Blanking

If the use of horizontal blanking, care must be exercised not to insert excessive blanking when employing the last two methods of ringing reduction. Although the ringing voltage has been eliminated from the deflection coil, it will still exist superimposed upon the blanking waveform.

Another approach to transformer ringing reduction is to circumvent the transformer entirely. Brightness variation due to horizontal blanking is opposite in phase to brightness variation due to velocity modulation. The two basic symptoms of ringing can therefore be used to cancel each other. Unfortunately, this cancellation occurs at one setting of background brightness. The designer must choose the amount of blanking voltage that satisfies blanking requirements and provides ringing cancellation over the most important brightness range. He must also deliver this blanking waveform to

FIG. 5-Two basic ringing systems can. cel one another
the picture tube without destroying the desirable 180 deg phase relationship.

The reason for this single cancellation point is one of subjective contrast ratios. The ringing superimposed upon the blanking voltage is assumed fixed in amplitude and hence will appear as low contrast at high brightness and high contrast at low brightness, shown in Fig. 5. The ringing resulting from velocity modulation, however, varies in intensity with the background brightness, thus maintaining a uniform subjective contrast ratio with brightness. The cancellation point occurs at the intersection of the curves; this point subject to adjustment by setting the blanking amplitude.

Bibliography

[^9]
Low-Frequency Switch

ACOMMON METHOD of recording transients is to feed the output voltage of the circuit under study to a graphic recorder while applying a step-function input with a manual or motor-driven switch. However, most pen or stylus recorders have poor frequency response above 80 or 100 cps and transients containing higher frequency components are distorted by such recordings.

An oscilloscope with a low-frequency sweep circuit and d-c amplifiers is an ideal tool for the observation and recording of such transients. The major problem is then one of synchronizing the transientinitiating switch with the oscilloscope sweep to obtain identical recurring patterns on the screen.

Operation

The circuit described here was originally designed to study the delay times in magnetic-amplifier circuits operating on supply voltages of 60 and 400 cps . Heart of the circuit is a relay that operates in synchronism with the oscilloscope sweep over a wide range of frequencies and with two different modes of operation.

The electronic switch is connected to an oscilloscope and the circuit under study as shown in Fig. 1. The sawtooth sweep voltage from the oscilloscope sweep oscillator is fed into the switch circuit and triggers the relay. The relay in turn introduces a step function in the observed circuit and its output voltage is applied to the vertical amplifier of the oscilloscope.
In one mode of operation, the relay coil is energized at the beginning of one sweep and remains energized throughout that sweep. At the beginning of the next sweep, the relay coil is de-energized and remains so until the next consecutive sweep. As a result, the relay contacts alternate with each sweep. Therefore two sweeps are necessary to complete one operational cycle and hence two traces are re-
corded. This mode of operation was used to obtain the trace in Fig. 2A, the position response of a servo output member to a step-function input.

When two overlapping sweeps tend to obliterate each other, a second mode of operation can be used. In this mode, the relay coil is energized for the first part of a sweep and de-energized for the remainder of the sweep. This action produces two step functions, one at the start of the sweep and another near the center of the sweep. The cycle is accurately repeated for all subsequent sweeps.

This mode was used in photographing the traces of Fig. 2B and 2C. The trace in Fig. 2B is the output voltage of a magnetic amplifier as the input control current is switched between two different values by the relay. Figure 2C is a plot of the instantaneous speed of a motor as the power to the motor is switched between zero and maximum. The vertical voltage in this case was taken from a d-c tachometer generator geared to the motor shaft.

Circuit Details

Figure 3 is a schematic diagram of the circuit. The sawtooth voltage from the oscilloscope sweep generator is fed into coupling circuit $R_{1} C_{1}$. The time constant of this coupling is small with respect to the shortest sweep time used. Consequently the sawtooth is differentiated and a narrow negative pulse impressed on the grid of V_{14} immediately preceding each sweep. Tube $V_{1 A}$ produces an amplified positive pulse that triggers singleshot multivibrator $V_{\&}$ and is also applied to $V_{1 n}$ for further amplification. The negative pulse taken from $V_{1 s}$ triggers the flip-flop circuit consisting of V_{2} and V_{3}.

Modes

Switch S_{2} selects the mode of operation of the relay by connecting the grid of the relay control

By HARRY B. CORDES

Electric Boat Division
General Dynamics Corp
Groton, Conn

FIG. 1-Switch setup for operation as synchronous step-function producer. Sawtooth sweep input triggers relay
tube $V_{\overline{5}}$ either to the fiip-flop (mode 1) or to the multivibrator (mode $2)$.

Mode 1

Thus, during mode 1 operation, the initiation of a new sweep triggers the fiip-flop into one of its stable states and the relay contacts assume a corresponding position. At the start of the next sweep, the flip-flop is triggered to its other stable state and the relay contacts move to the alternate position and remain there.

Mode 2

If switch S_{z} connects the grid of the relay driving tube to the multivibrator, the following sequence of events takes place. The trigger pulse causes the multivibrator to assume its short-time stable state and the relay coil is energized. After a period of time during the same sweep, the multivibrator reverts to its normal state and the relay coil is de-energized. The next sweep again triggers the multivibrator and the cycle is repeated.
Potentiometer R_{2} and selector switch S_{1}, with the three capacitors, allow the dwell time of the contacts in either position to be varied over a fairly wide range. With the values for R_{2}, C_{2}, C_{3} and C_{4} shown, the

for Recording Transients

Relay initiates step-function test voltage for analysis of transient response of lowfrequency circuits and various electromechanical devices. Oscilloscope sweep synchronizes relay to produce identical recurring transient waveforms for recording

FIG. 2-Step-function response of servo system in mode 1 operation (A). Output of reversible-phase magnetic amplifier with input switched between two different values in mode 2 operation (B). Instanfaneous speed of low-inertia servo motor under load with input switched between zero and maximum in mode 2 operation (C)
dwell times can be varied from 5 seconds to 16 milliseconds. Thus, the second transient can be placed in the center of the sweep over a sweep-frequency range of 0.1 to 30 sweeps per second. By varying R_{2}, the second transient can be moved along the sweep to provide the best observable pattern.

Switch S_{2} is provided with two additional positions, one grounding the grid of V_{5} and the other connecting grid and cathode. These are provided so the relay contacts may be switched to either position, facilitating adjustment of the circuit under study without disconnecting and reconnecting leads.

The relay used in this unit is a

Sigma type 4F-8000-S. With proper adjustment of contact spacing and spring tension, this relay will respond up to frequencies of 30 cps . Beyond this frequency, contact bounce and pull-in times become appreciable and affect the transient trace.

Initial Adjustments

In mode 1 operation, pulse gain control R_{1} is advanced until positive triggering occurs. This is easily perceived by listening to the relay contacts click at the initiation of the sweep. The sweep of the oscilloscope can then be adjusted to any desired frequency.

Mode 2 operation requires a few

FIG. 3-Swith S_{2} provides mode 1 operation in position 1 and mode 2 in position 2. Potentiometer R_{2} and S_{1} with $C_{2}, C_{3}, C_{4}(20.2,0.05 \mu \mathrm{~F}$ respectively) permit the dwell time of the contacts to be varied from 5 sec to 16 millisec
additional adjustments. The sweep frequency of the oscilloscope is first adjusted to the desired value. The corresponding gate capacitor is selected by S_{1} and R_{2} is adjusted to give zero resistance. Pulse gain control R_{1} is then advanced until positive triggering occurs. The desired gating is adjusted by R_{z}.

The multivibrator tends to become unstable if greatly overdriven. For this reason it is desirable to set the pulse gain control just above the point where triggering occurs. Both modes will trigger on sweep voltages as low as two volts peak to peak. If very large sweep voltages are used, it would be desirable to use additional attenuation at the input of the pulse amplifier.

Oscilloscope

This circuit may be used with any oscilloscope with good low-frequency response, but in some cases minor modifications are necessary. When the oscilloscope is not provided with external sawtooth output connections, the voltage may be taken directly from the horizontal plates. Proper polarity must be observed since a negative sawtooth will not trigger the circuits. Additional capacitors can usually be added to the sweep circuits to provide longer sweep times.

Output Windows for

By T, S, CHEN

Tube Deparatment
Radio Corvoration of 4 merica
Harrison, N.J.

FIG. 1-Location of output window in magnetron output waveguide

0UTPUT SEAL of several types of magnetrons consists of a resonant iris and a rectangular plate of thin ceramic which fills the iris opening. The entire structure is brazed across the transverse section of the waveguide and serves as an air-tight seal for the magnetron output while allowing power to be supplied to the load. Figure 1 shows the location of a window in the output waveguide of a magnetron.

Equivalent Circuit

The resonant iris shown in Fig. 2 A is a combination of inductive and capacitive diaphragms. Both inductive and capacitive susceptances, therefore, act across the waveguide at the plane of the iris.

In the equivalent circuit Fig. 2B, the inductance and capacitance are placed in parallel across the transmission line. At resonance, the circuit has zero admittance. Consequently, the principal wave passes over the resonant obstacle without reflection. Provided the dimensions are chosen correctly, the local magnetic and electric fields of the inductive and capacitive portions of the iris can be made to store equal amounts of energy. During oscillation, the stored energy is exchanged between these fields and no energy is drawn from, and returned to, the incident $\mathrm{TE}_{10}\left(\mathrm{H}_{10}\right)$ wave.

Resonant Dimensions

A method for determining the resonant dimensions of such an iris has been given by J. C. Slater. ${ }^{2}$

Figure 3 shows a rectangular

FIG. 2-Cross section (A) and equiva. lent circuit (B) of typical resonant iris
waveguide having a as the longer and b as the shorter internal dimension of the cross section. If the TE E_{0} mode is transmitted along the waveguide, the characteristic impedance of the guide may be defined as the ratio of the voltage between the top and bottom plates to the longitudinal current in one plate. This impedance Z may be expressed as
$Z=$

$$
\begin{equation*}
-\frac{\pi}{2} \sqrt{\frac{\mu_{0}}{\epsilon_{o}}} \frac{b}{a} \sqrt{\sqrt{1-\left(\frac{\lambda}{2 a}\right)^{2}}} \tag{1}
\end{equation*}
$$

where μ_{0} and ϵ_{ω} are respectively the permeability and permittivity of free space and λ is the free-space wavelength. ${ }^{2}$ In this expression, the same unit of measurement is used for a, b and λ.

The iris diaphragm may be considered as a short section of waveguide having dimensions different from those of the main waveguide. If a^{\prime} and b^{\prime} are the longer and
shorter sides respectively of the iris opening, the characteristic impedance Z^{\prime} of this short section of waveguide is

$$
\begin{align*}
& Z^{\prime}= \\
& \frac{\pi}{2} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \frac{b^{\prime}}{a^{\prime}} \frac{1}{\sqrt{1-\left(\frac{\lambda}{2 a^{\prime}}\right)^{2}}} \tag{2}
\end{align*}
$$

At resonance, the characteristic impedance of the iris opening should match that of the main waveguide to eliminate reflection. Equations 1 and 2 may therefore be equated to obtain

$$
\begin{align*}
& \frac{a}{b} \sqrt{1-\left(\frac{\lambda}{2 a}\right)^{2}}= \\
& \frac{a^{\prime}}{b^{\prime}} \sqrt{1-\left(\frac{\lambda}{2 a^{\prime}}\right)^{2}} \tag{3}
\end{align*}
$$

Equation 3 gives the resonant free-space wavelength of an iris having an opening $a^{\prime} \times b^{\prime}$ in a waveguide of cross section $a \times b$ when the dominant mode is propagating. In this simplified derivation, the local waves (or evanescent modes) set up at the diaphragm have been neglected.

Equation 3 reveals that a^{\prime} should be greater than $\lambda / 2$. The corners of the possible composite irises, shown as the dotted rectangle in Fig. 3, fall on a hyperbola having vertices $\lambda / 2$ apart. The equation of the hyperbola may be written

$$
\begin{equation*}
\left(x^{2} / m^{2}\right)-\left(y^{2} / n^{2}\right)=1 \tag{4}
\end{equation*}
$$

where x and y are the coordinates of the upper right-hand corner of the iris as shown in Fig. 3 and m and n are parameters to be determined.

When $x= \pm i / 4, y=0$ and $m=$

Tunable Magnetrons

Ceramic plate set in resonant iris provides air-tight seal in X-band waveguide; replaces probe for coupling magnetron power output to transmission line. Nomographs aid determination of window and resonant iris parameters
$\pm \lambda / 4$. If this value of m is substituted in Eq. 4, and the values $x=$ $a / 2$ and $y=b / 2$ used
$n^{2}=\left(\frac{b}{2}\right)^{2}\left(\frac{\lambda}{4}\right)^{2} /\left[\left(\frac{a}{2}\right)^{2}-\left(\frac{\lambda}{4}\right)^{2}\right]$
Substitution of the values of m^{2} and n^{2} in Eq. 4 gives
$x^{2}\left(\frac{b}{2}\right)^{2}-y^{2}\left[\left(\frac{a}{2}\right)^{2}-\left(\frac{\lambda}{4}\right)^{2}\right]$

$$
\begin{equation*}
=\left(\frac{b}{2}\right)^{2}\left(\frac{\lambda}{4}\right)^{2} \tag{6}
\end{equation*}
$$

When x and y are replaced by $a^{\prime} / 2$

FIG. 3-Sectional view of rectanэular waveguide
and $b^{\prime} / 2$ respectively, Eq .6 reduces to the form of Eq. 3.

Substitution of the empirical factor $\lambda / 0.985$ for $亠$ in Eq. 3 results in the corrected formula for resonant wavelength.

$$
\begin{align*}
& \frac{a}{b} \sqrt{1-\left(\frac{\lambda}{1.97 a}\right)^{2}}= \\
& \frac{a^{\prime}}{b^{\prime}} \sqrt{1-\left(\frac{\lambda}{1.97 a^{\prime}}\right)^{2}} \tag{7}
\end{align*}
$$

When the iris dimensions shown in Table I are substituted in Eq. 7, the resonant frequencies listed in the last column of the table are obtained. These values are sufficiently
close to the measured frequencies. Because the iris is a highly fre-quency-sensitive element, minor irregularities in material, or the use of large tolerances, can cause great disparity between the calculated and measured values of resonant frequency.

Iris Q

There are an infinite number of resonant structures corresponding to different combinations of a^{\prime} and b^{\prime} for any given waveguide and wavelength. The dimensions of the opening, however, are also chosen to produce the desired sharpness of the resonant curve of the iris and the required power-handling capability. Although the design of these irises may be such that the section of the waveguide is almost com-
pletely occupied by metal, in one case the only opening being a 0.014 inch slit, power is transmitted through the slot without substantial reflection at the resonant frequency of the iris.

Iris Nomograph

A nomograph, Fig. 4, has been constructed to determine iris dimensions for a waveguide 0.900×0.400 inch. When a^{\prime} and b^{\prime} are known, the wavelength λ, can easily be found. Conversely, if the wavelength λ is given, a reasonable value may be assumed for either a^{\prime} or b^{\prime} and the other dimension found from the chart.
Example 1-A symmetrical resonant iris having an opening for which $a^{\prime}=0.706$ inch (1.793 cm) and $b^{\prime}=0.140$ inch $(0.356 \mathrm{~cm})$ is

Table I-Resonant Frequencies of Rectangular Irises (TE_{10} Mode) for X-Band Waveguide With Internal Dimensions $0.900 \times 0.400 \mathrm{in}$.

Iris Dimensions		Resonant Frequency Calculated from Eq. 3 (mc)	Measured Resonant Frequency (mc)	Frequency Calculated from Corrected Eq. 7 (mc)
$\begin{gathered} a^{\prime} \\ (\text { inches) } \end{gathered}$	b^{\prime} (inches)			
0.706	0.140	8,760	8,900	8,900
		8,760	8,900	8,900
		8,760	8,980	8,900
		8,760	8,900	8,900
0.698	0.140		9,100	9,040
		$8,900$	9,050	9,040
0.721	0.140	8,510	8,700	8,700
		8,510	8,700	8,700
0.680	0.125	9,060	9,120	9,180
		9,060	9,130	9,180
		9,060	9,220	9,180

stamped out of oxygen-free high conductivity copper sheet 20 mils thick. The internal dimensions of the waveguide in which the iris is to be placed are $a=0.900$ inch $(2.286 \mathrm{~cm})$ and $b=0.400$ inch (1.016 cm) . The resonant wavelength of this iris diaphragm can be found either by Eq. 7 or the nomograph, Fig. 4.

To use the nomograph, a straight line is drawn from 0.356 on the right-hand b^{\prime} scale through the point 1.793 on the a^{\prime} scale to intersect the center scale. The point of intersection on the center scale is then joined with the point 0.356 on the left-hand b^{\prime} scale by a second straight line which intersects the λ scale at the point 3.36 cm .

Single-Frame

The first type of ceramic window consists of a single metallic frame into the opening of which a rectangular ceramic plate 0.040 -inch thick is fitted. ${ }^{3}$ Figure 5A illustrates the construction details of this type of window. This ceramic window has sharper resonant characteristics than an open iris. The approximate relationship between the wavelength and the resonant dimensions is

$$
\begin{gather*}
\frac{\prime \prime}{b} \sqrt{1-\left(\frac{\lambda}{2 a}\right)^{2}}= \\
\frac{a^{\prime}}{b^{\prime}} \sqrt{1-\left(\frac{\lambda}{2 a^{\prime} \sqrt{ }}\right)^{2}} \tag{8}
\end{gather*}
$$

Table II-Resonant Frequencies of Sondwich-Type Ceramic Windows. Waveguide: 0.900×0.400 in.; Ceramic: AlSiMag 243, er $=6$

Window Dimensions	Measured Resonant Frequency (me)	Resonant Frequency Calculated from Eq. 9 (me)
a^{\prime} (inches)	b^{\prime} (inches)	
0.474	0.250	$\mathbf{7 , 8 0 0}$
0.474	0.250	7,800
0.474	0.250	7,670
0.490	0.250	8,600
0.498	0.250	8,900

where ϵ_{r} is the dielectric constant of the ceramic. No adequate theoretical basis can be given for this relationship. The dielectric constant of the ceramic enters into Eq. 7 to affect the phase velocity, but it does not appear in the intrinsic-impedance factor $\sqrt{\mu_{0} / \epsilon_{o}}$, in Eq. 2.

Sandwich Type Windows

The second type of output window for magnetrons consists of a 0.040 -inch ceramic plate which fills the entire section of the waveguide and two resonant iris frames, one on each side of the plate. The details of this structure are shown in Fig. 5B.

During the construction of the sandwich-type window, the four edges of the ceramic plate and the area which makes contact with the

FIG. 4-Nomograph for determining iris dimensions for a waveguide $0.900 \times$ 0.400 inch ($2.286 \times 1.016 \mathrm{~cm}$)
iris frames are metalized. This metalizing process insures a more intimate bond between the ceramic and metal parts, thus improving vacuum seal at the window. The construction of the iris frames shown in Fig. 5B is mechanically superior to that of the iris frame shown in Fig. 5A because several bends have been omitted. The omission of the bends also reduces the variation of the internal dimensions a^{\prime} and b^{\prime} in the finished window.

Although the sandwich-type structure contains more frequencysensitive elements than the singleframe window, it acts essentially as a resonant iris but has a much higher reflection off resonance. The resonant wavelength of this type of window can be predicted from

$$
\begin{align*}
& \frac{a}{b} \sqrt{1-\left(\frac{\lambda}{2.38 a}\right)^{2}}= \\
& \frac{a^{\prime}}{b^{\prime}} \sqrt{1-\left(\frac{\lambda}{2.38 \sqrt{\epsilon_{r}} a^{\prime}}\right)^{2}} \tag{9}
\end{align*}
$$

Table II shows both the measured and the calculated resonant frequencies for ceramic windows having various dimensions.

The amount of inaccuracy observed in frequency prediction based on Eq. 9 is not serious because this difference can be compensated by broadbanding techniques which provide a bandwidth of $1,500 \mathrm{mc}$ having low vswr.

Nomograph

Figure 6 is a nomograph to determine the unknown parameters in Eq. 9. The dielectric constant ϵ_{r} of the ceramic has a fixed value of 6 in this nomograph. The chart shows that the value of b^{\prime} equal to 0.414 cm (0.163 inch) cannot be
used for the combination in which the waveguide is 0.900×0.400 inch in cross section and the ceramic material has a dielectric constant of 6. This value of b^{\prime} renders Eq. 9 independent of wavelength.

Caution should be exercised in applying Eq. 9 to the calculation of resonant wavelengths for windows made of ceramic material different from that used for these experiments. The resonant wavelength is affected by a change in dielectric constant of the ceramic and to a lesser extent, by a change in thickness of the plate.
Example 2-A sandwich-type ceramic window is to be designed for use in a magnetron-output waveguide having dimensions $0.900 \times$ 0.400 inch ($2.286 \times 1.016 \mathrm{~cm}$). The ceramic plate is 40 mils thick and has a dielectric constant of 6 . The window frames are made of 5 -mil, No. 52 alloy (52 percent nickel and 48 percent iron). The required size of the frame opening for a resonant frequency of $8,900 \mathrm{mc}(3.369 \mathrm{~cm})$ can be determined by substitution in Eq. 9 or by the nomograph given in Fig. 6.

If maximum power-handling capability is to be obtained, the height of the frame opening should be as large as the manufacturing process permits. A suitable value for b^{\prime} is 0.250 inch (0.635 cm).

In using Fig. 6, a straight line is drawn from the point 0.635 on the left-hand b^{\prime} scale through the point 3.369 on the λ scale to intersect the center scale. The point of intersection on the center scale is then joined with the point 0.635 on the right-hand b^{\prime} scale by a second straight line which intersects the a^{\prime} scale at the correct value of 1.26 cm .

The author wishes to express appreciation to B. B. Brown for valuable guidance during this development, to H. K. Jenny who initiated the program and contributed much at its inception and to K. Kovach for constant help and advice during the course of the work.

References

(1) J. C. Slater, "Microwave Transmission, McGraw-Hil Book Co. Inc., Nd. Y,

 (3) Geering, L. Ragan, "Microwave Transmission Circuits,' MIT Rad Lab Series, Vol. 9, MeGraw-Hill Book Co. Inc., N. Y.

FIG. 5-Ceramic output windows with ceramic plate fitted into single metallic frame-single-frame type (A) and between two metallic frames-sandwich type (B)

FIG. 6-Nomograph for determining resonant wavelength of sandwich-type ceramic output windows for α waveguide 0.900×0.400 inch with $\epsilon_{r}=6$

Arc-Lamp Tachistoscope Improves Reading Speed

Abstract

Printed cards in light-tight box are illuminated for predetermined fraction of secoud by concentrated-are tube controlled by pulse from univibrator circuit, for improving perception of vision by training eye to read more characters in less time

By WILLIAM J. SPAVEN
Fada Radio \& Electric Co, Inc.
Belleville, N. J.

MOST PEOPLE read at only 20 percent of their capacity, but it is possible to improve reading skill by suitable training. Following the completion of a speedreading course, a group of fifty executives had improved their reading speed from an average of 275 to an average of 420 words per minute and, equally important, comprehension increased 85 percent.

The key to speedier reading lies in increasing perception-how much can be seen at one glance. Everyone reads across a line in steps, a good reader taking fewer steps than a poor reader. The eyes are not focused when they are in motion; if fewer steps are needed to read a line, reading speed will increase.

Tachistoscope Training Aid

The tachistoscope is a training aid used to improve the reading speed and comprehension of a reader. Figure 1A is a diagram of the basic tachistoscope. Essentially this device consists of a card having several digits or letters printed upon it, a means of illuminating the card for a predetermined short period of time, a means of controlling the duration of the illumination period from 0.01 to 0.10 second and a light-tight box to reduce the effect of ambient room light.

The observer is able to see the
card only during the illumination period. Starting with an illumination period of 0.1 second and a card having four digits, the observer views the card and records the digits viewed. A second card, with a different combination of four digits, is insertel in the machine, and the digits are again recorded. Several cards are viewed and then the recorded digits are compared with the actual digits on the cards for accuracy. When a desirable accuracy is attained, the illumination period is reduced and cards containing more digits are employed. It is possible for an observer with 15 hours of training to see and remember as many as 8 digits or 23 letters viewed during a 0.01 second interval.

In a mechanical type of tachistoscope, an incandescent lamp serves as the light source and a springloaded shutter as the timing device. The shutter is necessary because of the inherently high thermal mass in this type of lamp.

A lamp that has a short response time and can be turned on and off electrically makes possible the elimination of the shutter mechanism. The enclosed high-intensity concen-trated-are lamp meets this requirement. It consists of two electrodes, an anode and a specially prepared cathode, sealed into a glass envelope filled with argon gas. The lightemitting surface may be as small as 0.003 inch in diameter and have a brightness of up to 65,000 candles per square inch. Of the sixteen dif-
ferent types of lamps available, the type K-2 2-watt lamp was selected for its short response time, low power supply requirements, small physical size and low price.

Arc Lamp Power Supply

The concentrated-arc lamp used operates from a direct current supply of 200 volts or more and requires a pulse of 1,000 volts to start the arc. Figure $1 B$ is a simple schematic diagram of the circuit required to start and operate the lamp.

Initially, the arc lamp in nonconducting, and a current is flowing through the coil, resistor and normally closed switch. The magnitude of the current is limited by the resistor. To operate the lamp, the momentary-contact switch is opened, causing a voltage pulse to be developed across the inductance. By selecting the proper value of inductance. it is possible to develop a voltage pulse in excess of the 1,000 volts as required to start the arc. Once the arc is started, a normal current flows through the lamp.

The lamp is extinguished by permitting the momentary-contact switch to close, shorting the lamp. Thus the illumination period duration can be controlled by the length of time the switch is held open.

Electronic Switch

Unfortunately, it is not possible to control the switch manually so it will remain open for the short

FIG. 1-Example of tachistoscope construction, simplified diagram of arc-lamp control system and complete control circut:
periods of time required; however, it is possible to utilize an electron tube as the switch. By placing a heavily conducting tube in parallel with the arc lamp, it is possible to maintain a relatively low voltage across the arc lamp, preventing the lamp from conducting. The application of a negative-going pulse to the grid of the switch tube causes the tube to be nonconducting, analogous to the open position of the man-ually-operated switch. The duration of the negative-going pulse can be accurately controlled by developing the pulse electronically.

Circuit Design

The complete circuit consists of a means of developing a trigger pulse, a univibrator circuit, a switching tube and an arc lamp, as shown in Fig. 1C.

A trigger pulse of indeterminate duration is developed by closing and releasing momentary-contact switch $S W_{1}$. This causes a positivegoing square-wave pulse to be developed across resistor R_{7}. The pulse is differentiated in the R-C circuit made up of R_{4} and C_{1}. To insure the generation of only one pulse for each operation of the momentarycontact switch, a type 1 N48 germanium diode is employed, causing only the positive-going spike of the waveform to appear as the trigger pulse for the univibrator.

The univibrator circuit consists of two triode sections (V_{1}), two plate load resistors (R_{5} and R_{f}), a common cathode resistor R_{8} to pro-
vide bias voltage, a direct-coupled positive feedback circuit (R_{7} and R_{9}) that causes V_{18} to be nonconducting and a capacitor-coupled positive feedback path that establishes the duration of the pulse ($R_{\text {, }}$, R_{3} and C_{3}).

Initially $V_{I A}$ is conducting heavily since the grid leak resistors return to a high positive potential. The $d-c$ voltage measured at the plate of $V_{1, ~}$ is relatively low. Because of the voltage divider action of resistors $R_{\text {- }}$ and R_{s}, the grid voltage of $V_{, B}$ is such that it is nonconducting. The circuit is stable.

When a positive-going trigger pulse is applied at the plate of $V_{1, ~}$, $V_{1 B}$ is made to conduct by virtue of the positive feedback loops. The circuit then becomes regenerative and is quickly transferred to a second state, which is temporarily stable. In this state the voltage at the plate of V_{18} drops. The grid of $V_{1 A}$ is driven beyond cutoff. The sloping waveform at the grid of $V_{1,}$ is part of an exponential curve having a time constant $T=\left(R_{2}+R_{3}\right)$ C_{3}. When the voltage reaches a point where the grid-to-cathode voltage is equal to the cutoff voltage, $V_{\text {is }}$ starts conducting and the univibrator rapidly returns to the first stable state.

The circuit remains in this state until the trigger pulse is applied again. The duration of the output pulse is controlled by varying potentiometer $R_{\text {: }}$. It is possible to vary the pulse duration from 0.01 to 0.10 second.

The negative-going waveform is compled to the grid of V_{3}, which is normally conducting heavily. When the negative-going pulse is applied, V_{z} is cut off, causing a high voltage to be developed across L_{1} which ignites arc lamp V_{3}.

The arc lamp conducts for the duration of the pulse. When the pulse is removed, V_{2} conducts again and the plate voltage is reduced so that the arc cannot be maintained by the circuit.

The circuit consisting of V_{4} and capacitors C_{5} and C_{6} comprises a full-wave voltage-doubler d-c power supply.

Neon lamp $V_{\bar{\sigma}}$ is included to aid the operator in focusing his eyes to the point where the letters appear on the test card.

A second lamp, V_{6}, is operated by switch $S W_{2}$ and permits comparing the correct digits from the test card with the digits recorded during the short-duration illumination period.

Conclusions

It is conceivable that the electronic circuit could be included as a modification to the existing tachistoscope training device (made by Stereo-Optical Co., Chicago) by replacing the mechanical shutter. It is believed that the all-electronic tachistoscope presents a reliable eouipment that offers the advantage of ease of operation.

Acknowledgement is made to Dr . Harold Wiener for his kind assistance and advice.

Bioelectric Integrator

Compact transistor integrator (left) replaces bulky electron-tube unit mounted in rack at right

FIG. 1-Bioelectric integvator includes push-pull voltage amplifier using two pnp junction transistors with base input

FIG. 2-Characteristics of direct and R.C coupling to transistor amplifier (A) and integrator capacitor charging characteristic (B)

By ADELBERT FORD

Department of Psychology
Lehigh University
Bellhehem. Pa.

ELECTRONiC integration of bioelectric potentials ${ }^{1}$ has lead to the discovery of new facts concerning human work, strain and effort. Recent work has disclosed evidence relating severe mental effort to the bioelectric output of the heart and the frontal lobes of the brain. ${ }^{2,3}$ Current investigations are expected to show extensive ramifications of muscular potentials with pure mental work.

Meanwhile, use of transistors for voltage amplification ${ }^{4}$ has provided considerable simplification of the electronic equipment employed. Electronic integration involves summing the area under an irregular curve representing the energy output from a particular spot of live human tissue. This is done by measuring the charge stored on a capacitor.

The equipment used comprises a balanced voltage amplifier, fullwave rectifier and storage capacitors with their associated switching circuits. Figure 1 shows the final design of the transistor bioelectric integrator.

The equipment employs a balanced three-wire input so that it will work with bioelectric instruments such as the electroencephalograph (eeg), electromyograph (emg) and electrocardiograph (ecg). The integrator works directly from a Grass P-4 batterypowered preamplifier with a gain setting of 20,000 and an output impedance of 6,000 ohms. Coupling values are chosen to favor low frequencies.

Circuit Design

Use of transistors in a three-wire system was successfui only because

Uses Two Transistors

Abstract

Effects of human strain and effort are measured by bioelectric integrator that employs two $p n p$ junction transistors in a push-pull voltage amplifier. Performance is comparable to electron-tube unit but size is much reduced and circuit simplified

of luck in matching. Four CK-722 $p n p$ junction transistors were tested to find two that would match. Out of six possible combinations only one pair exhibited amplification characteristics different by only seven percent.

Critical test points in Fig. 1 are labeled $E-E^{\prime}, A-A^{\prime}, B-B^{\prime}$ and $C-C^{\prime}$. Matching is done by measuring peak-to-peak voltage from points B and B^{\prime} to ground with all resistors at matched values. The match is considered usable if there is less than a ten-percent mismatch.

Balance is achieved by potentiometer R_{4} that alters the ratios of resistance values for each transistor bringing the better one down to the level of the poorer one. A d-c vtum is placed across $A-A^{\prime}$ and a $20-\mathrm{cps}$ signal admitted at $E-E^{\prime}$. The input should be such as to produce about 0.5 -volt peak to peak from A and A^{\prime} to ground. If the system is out of balance there will be a d-c bias across $A-A^{\prime}$. Adjusting R_{1} should remove this bias and result in zero d-c voltage. A similar test can be made by connecting the vtum across $B-B^{\prime}$. Again adjustment of $R_{\text {}}$ will remove the d-c potential.
When a good balance is achieved, the reading of the voltmeter across $B-B^{\prime}$ at its most sensitive setting shows a tendency to wobble back and forth across zero. This is the result of inherent instability of the transistor system and will be integrated as a small error of unbalance. This undesired output has been reduced to 0.03 volt with a total signal of 3.0 volts. It was fairly constant on successive samples and is simply subtracted from each of the research integrations.

Balance and instability are measured before and after each research session.

Frequency Characteristics

Figure 2A shows the integration capacitor charge after constant time periods of 7.5 seconds when the input is direct coupled to the bases of the pair of transistors and

Integrator permits quick change of resistors to match transistor characteristics
when the R-C coupling shown in Fig. 1 is used.

The direct-coupled input is constant for all usable frequencies and would be highly desirable if the input were not really the output of a cascade of preamplifiers and almost certain to have a d-c bias superimposed on the a-c waveform. Theoretically, push-pull amplifiers are balanced, but actually this is not always true. The R-C coupling is a protection against heavy integrations of d-c bias errors.

Possibly use of a Barber-Coleman micropositioner on the output of the preamplifiers can correct the balance against gradual shifts that throw unexpected d-c bias on the a-c waveforms but this will require more research in automatic controls.

Figure 2B shows the integrator
capacitor charges plotted against input voltages for a constant frequency after a constant time interval of 7.5 seconds. The integrator capacitor charge is never quite zero for zero input. This is due to a small instability of the transistors and slight failures to achieve a perfect balance. The region is small, however, and electron-tube integrators usually have shown a similar defect.

There is, however, an upper limit to the allowable voltage in the integrator capacitors -3.5 volts. For this reason R_{2} is inserted between the rectifying network and the capacitor integration storage. Whenever the voltmeter approaches current 3.5 volts, resistance is added to reduce the charging.

Comparisons

The electron-tube system used previously was generally operated with 285 volts on the amplifier plate and used 50 uf storage capacitors. It was permissible to allow voltages in the storage capacitors to rise as high as 35 volts before encountering serious nonlinearity.

With the transistor model using battery power at 22.5 volts, it is possible to allow a maximum voltage in the $2-\mu \mathrm{f}$ storage capacitors of only 3.5 volts before nonlinearity becomes a serious error.

References

(1) Arlelhert Ford. Bioelectric Integrator Gages Strain and Effort. FitecrmonTCS, p 172 , A1以. 195%.
(2) Bioelectric Fotentials and Mental Effort: 1. Cardiac Effects, I Comp and Physiol Psychol. Oct. 105%.
(3) Bioelectric Potentials and Menta] Effort: 2. Frontal Lobe Effects, ,/ Comp and Physiol Psychol. Feb. I 953.
(4) E'eter G. Sulzer, Jumetion Transistor Circuit Aphlication, Elfecraonics, p tor Circuit Ap
170, Aug. 195%.

FIG. 1-Oscillator, pulse generator and delay generator circaits have power supply, input and output leads connected to pins of plug-in socket. Frequency and delay-time control potentiometers are mounted on main chassis

Multipulse Generator

Multipulse generat or using eight plug-in units. Controls for all units are brought out to main chassis

Plug-in unit with rase removed. Octal socket makes connections to main chassis and socket at top accepts miniature tube

USING ONLY two different circuits, a pulse-generating system has been designed that will provide three independently variable pulses. These pulses can be used for range-tracking tests, gating, counting and as crt markers.

The pulses are generated by low-impedance sources-making it possible to cascade generating units to obtain a wider variety of output pulses. Another advantage of this circuit is that it is adaptable to remote operation.

The usual method utilizes three complete synchronized pulse generators. In the method described here, a free-running, symmetrical multivibrator is used as a source of variable frequency. Each pulsegenerator circuit and each delay circuit is identical. The circuits are

FIG. 2-Block diagram of typical delay-generator system made up of plug-in units described in text

FIG. 3-Alternate plug-in pulse-generator circuit can be used when low power consumption is important

Has Variable Delay

Interchangeable plug-in units of multipulse generator provide three independently variable pulses. Pulse width can be varied with delay times up to 100 microseconds between pulses. Applications include radar tracking tests, gating and counting systems and crt marker generation
shown in Fig. 1. Plug-in type construction permits rapid interchangeability of complete circuits. This approach makes it possible to obtain a number of time-delay pulse-width combinations. Figure 2 is a block diagram of one possible combination.

Pulses at the output of each pulse generator are of fixed amplitude and width and are established by selecting proper values for C, R, and R_{κ} in the pulse generator circuit.

If a pulse of variable width be needed, it can be obtained from the output of any one of the delay circuits.

Unit Construction

Each unit is housed in a $1 \frac{3}{4} \times$ $1_{5}^{7} \times 2^{7}$ inch metal case. An octal plug on the base is used to connect
the unit to the main chassis. Parts are mounted circumferentially about a rod extending the full height of the case. A noval tube socket on the upper end of the rod accepts the tube.

Circuit Operation

Operating requirements for each pulse generator are identical. The input must be a minimum of 20 volts negative. The circuit is designed to accept the output of any one of the delay-generator units. The output of each unit is a positive pulse of approximately 70 volts amplitude and 0.5 usec wide.

Each delay generator requires a minimum of 30 -volts positive input, and will accept the output of any pulse-generator unit. The output of the delay generator is a vari-able-width pulse with an amplitude
of approximately 100 volts.
Repetition rate is determined by the frequency of the free-running multivibrator shown in Fig. 1. Frequency is controlled by a potentiometer in the grid circuit. The range can be further extended by selection of different coupling capacitors.

Zero Time Pulse

The output of the multivibrator is differentiated and fed to the grid of a trigger tube in the pulse generator. The positive peak of the differentiated pulse is clipped by a germanium diode and the negative pulse is amplified by $V_{2,1}$ and inverted to provide a positive pulse for triggering a blocking oscillator, $V_{2 n}$.

The output of the blocking oscillator is taken from the 91 -ohm
cathode resistor and is used to trigger the oscilloscope and two separate variable delays. This is the zero-time reference pulse.

The delay circuit is a cathodecoupled multivibrator. The input is a positive pulse from the previous pulse generator to the grid of $V_{3.4}$, which is normally cut off. The output pulse is derived from the plate of $V_{3 k}$ which is normally on.

When a triggering pulse is received from the previous unit the output tube produces a positivegoing voltage and remains off until the circuit returns to its original condition. This period is determined by the time constant of the coupling capacitor and grid resistor.

Delay Pulse

The delay is achieved by utilizing the trailing edge of the pulse to trigger the next pulse generator. When the output pulse is differentiated, this trailing edge produces a negative-going pulse that is applied to the grid of the next pulsegenerator trigger tube at a time determined by the setting of the po-
tentiometer in the grid circuit. Delay times up to 100 usec can be obtained with the values shown. The output of the second pulse generator is applied to another identical delay unit and this is used to produce a third pulse delayed from zero time by the sum of the two delays.

The second pulse can be varied independently about either pulse, the lower limit being the time of the original pulse. By varying the parameters of the blocking-oscillator circuit, frequency division can be obtained to provide for more than one repetition-rate frequency.

The natural recurrence period of a biased blocking oscillator is
$T=t+R C \ln \frac{E_{c}+E}{E_{c}-E_{o}}$, where T is the period, t the length of conducting period, E_{c} the bias voltage, E_{0} the cutoff voltage and E the supply voltage.

Alternate Pulse Generator

To decrease power consumption, an alternate triggering circuit, shown in Fig. 3, can be employed

Wiring of main chassis is simplified by plug-in construction. Potentiometers control delay time
with the blocking oscillator.
In this circuit the trigger tube is normally cut off by fixed cathode bias. The negative pulse developed by the trailing edge of the delay-multivibrator pulse applied to the cathode of the first section causes this tube to conduct.

The tube acts as a grounded-grid amplifier and the output pulse is of the same polarity as the input. Parallel triggering is used with the pulse transformer to produce a positive triggering pulse on the grid of the blocking-oscillator section.

This isolates the oscillator from its trigger source. Because of the low impedence of the cathode circuit of the trigger tube when it conducts, it is helpful to keep the source of the delay pulse as low as possible.

Power Requirements

A well-regulated supply for both positive and negative voltages is recommended. Both supplies can be 300 volts. Current requirements are 14 ma for the delay generator and 12 ma for the pulse generator. Filament current for the 5687, the only tube type used, is 0.9 ampere.

The oscilloscope waveforms shown in the picture are obtained from the unit described. The photograph of the main chassis shows the simplicity of wiring obtained by use of packaged units.

Acknowledgement is made to Jerome Steinberg who performed the construction work and aided in testing the completed unit.

References

 cuits, D 3*6, Marataw-Hill book Co. 1950.
(2) MIT Radar Sohool Staff. "Trincioles of Radar". 2nd edition. p 2. Meratawmies of Radar". 2nd e
(3) William Fdson. "Vacuum Tube Os cillators', D 307. Thbin Wiles and Soms.

Output waveform of multipulse generator, left, with maximum delay time. Oscilloscope sweep speed was 20 microseconds per cm. Trace of pulse-generator output, center, was made with 0.1 microsecond-percm sweep. Output of delay generator, right, shows maximum and minimum pulse widths obtainable. Sweep speed in this oscillogram was 20 microseconds per em

FIG. 1-Distortion of pulse shape after passing through various sections of cascaded delay line

FIG. 2-Pulse distortion is reduced by inserting parallel resistance between delay line sections

TransistorAmplifiersReduce Delay Line Attenuation

Attenuation of nine-section 70 -usec delay line is reduced from 110 db to 0 db by transistor amplifiers. Pulse distortion through cascaded distributed-constant delay sections is minimized by parallel resistors between sections

DElay and storage devices are employed in pulsed radar, electronic computers and other equipment requiring control and measurement of the time interval between series of pulses.
Video delay lines are useful for delays up to a few microseconds. For greater delays it is difficult to design lines that have small dispersion and low loss. If a line is made too long attenuation ultimately reduces the signal below the noise level. Repeater amplifiers can be used at intervals along the line to

By ALLEN H. SCHOOLEY
saval Research Laboratory Washington, D. C.

keep the signal appreciably above the noise level.

Distributed-parameter delay lines are usually practicable for impedances ranging from about 200 ohms to 3,000 ohms ${ }^{\text {. }}$. This range is suitable for application of transistor amplifiers. This article reports the results of an experimental study of the characteristics of a 70 -usec
delay line composed of a series of nine commercially available delay sections.

Line Characteristics

The individual delay-line sections are distributed-constant lines hermetically sealed in metal containers. These sections have a characteristic impedance of $1,000 \mathrm{ohms}$, time delay of $7.8 \mu \mathrm{sec}$ and band-pass of 0 to 2 mc . A comparison is made of the performance of the line with no amplifiers and the performance of the same line with uniformly spaced
simple point-contact transistor amplifiers.

Figure 1 shows the output response to a rectangular $10-\mu \mathrm{sec}$ pulse with the pulse generator connected directly to the matched termination and through 1,3 and 6 delay sections. The slight displacement of the top of the pulse at far right in Fig. 1 indicates some ver-

FIG. 3-Frequency response curves for three sections of delay line (A), with parallel resistors inserted (B), and with transistor amplifiers added (C)
tical signal feeding into the horizontal sweep.

The buildup time plus decay time was measured to be less than 0.1 usec by decreasing the input pulse width to the point where the pulse amplitude on the oscillograph was down 6 db and then reading the pulse width setting on the pulse generator. Thus, the buildup time and decay time are approximately one-half of this figure, or $0.05 \mu \mathrm{sec}$ each. The pulse shape after passing through nine sections of the delay line was so distorted that it was impossible to show it adequately without changing the scale of the pictures.

Distortion

After passing through three or more sections of line the waveform shows a buildup in amplitude during the time represented by the top of the pulse. This type of integration distortion is characteristic of a filter that has a relatively large low-frequency response with a lesser response at medium and high frequencies. This distortion limits the usefulness of the cascaded delay line for many applications.

It is possible to minimize this
difficulty by inserting a parallel resistor of proper value between each section of the line. A suitable resistor value was determined experimentally by connecting the pulse generator through four sections of the delay line and observing the pulse shape across the input to the oscilloscope as the resistances of four ganged rheostats were varied. The resistance value that gave the best delayed reproduction of the input pulse was approximately 1,000 ohms.

Figure 2 shows the pulse shape with parallel 1,000 ohm resistors after passing through $0,1,3$ and 6 filter sections. Comparison of the shape of the pulses in Fig. 2 with those in Fig. 1 indicates that frequency response has been improved by the addition of resistance across the line at each section.

This agrees with the experimental frequency-response curves shown in Fig. 3. The frequency-response curves were measured using three sections of the delay line. Experimental phase-versus-frequency characteristics were found to be straight and identical for the conditions being considered.

Insertion of parallel resistances across the line improves frequency response, however it also increases attenuation. The nine-section line at $20,000 \mathrm{cps}$ has a total attenuation of about 60 db without parallel resistors and an attenuation of over 110 db if 1,000 ohm resistors are used. The latter attenuation figure was obtained by extrapolation because of gain and noise limitations
of the experimental equipment.
The circuit of the nine-section delay line with transistor amplifiers inserted between each section is shown in Fig. 4. Type 1698 transistors were used because they have sufficient high-frequency response and were readily available.

No selection process or preferred placement of the transistors was used. The emitter and collector circuit resistances were optimized experimentally for class A operation by observing the shape of both positive and negative input pulses after passing through four sections of the transistorized line. Two fourgang rheostats were initially used for varying these resistances independently. Optimum values of emitter and collector supply voltages were found in a similar manner.

Figure 5 shows the output pulse shape when a $10 \mu \mathrm{sec}$ positive input pulse had traveled through 1, 3, 6 and 9 delay sections connected as shown in Fig. 4. Similar oscillograms of negative input pulses showed output pulses having substantially similar shapes. Comparing these waveforms with Fig. 2, it can be seen that use of transistor amplifiers has caused deterioration of the high-frequency response.

When six sections of the filter were used the buildup-plus-decay time was found to be $0.8 \mu \mathrm{sec}$ for the transistorized delay line as compared with $0.4 \mu \mathrm{sec}$ for the nontransistorized line. The buildup-plus-decay time was found to be about $1.8 \mu \mathrm{sec}$ for the transistor-

FIG. 4-Nine-section transistorized delay line using cascaded distributed-constant sections of $7.8-\mu$ sec delay each

Test setup of $70-\mu \mathrm{sec}$ delay line with transis. tors and coupling capacitors mounted on top of delay-line sections
ized unit, or approximately 0.9 psec for the individual sections.

The frequency-response characteristic of three sections of the transistorized line is shown in Fig. 3C. The phase response is linear over the frequency range of 100 cps to 1 mc .

The top of the pulse in Fig. 5 shows irregularity that is not evident in Fig. 2. This may be caused by spurious pickup in the oscilloscope amplifiers from the pulse generator since Fig. 5 was photographed at a lower signal level than was Fig. 2.

There is also evidence of a small response delayed by about twice the delay time of a single section indicating that the transistor amplifiers do not match the delay line. A confirmation of this was obtained by measuring the input and output impedances of each of the nine transistor amplifiers. Average input impedance was 120 ohms with a maximum of 245 and a minimum of 60 ohms . Average output impedance was 1,400 ohms with a maximum of 1,770 and a minimum of 635 ohms. The wide spread of impedance value is due to the nonuniformity of

the operating characteristics of the transistors under the operating conditions employed.

These measurements indicate that the output of each delay-line section is terminated with approximately 120 ohms and the input of the next section represents about 1,400 ohms. The pulse is less distorted, except for buildup and decay time, after going through 6 sections of the transistorized line than after traversing 6 sections of the line without transistor amplifiers.

Overall attenuation of the ninesection line has been reduced to zero by the transistor amplifiers. The actual voltage gain of each amplifier averaged abont 21 db indicating that the nine-section line had about 190 db loss with the transistor amplifiers in place. A considerable part of this attenuation is due to the low input impedance of the amplifiers.

Power Consumption

An emitter supply of 0.8 volt and a collector supply of 6.3 volts was used. Total current drawn from the emitter supply was 3.6 ma and the current drawn from the collector
supply was 12.4 ma. Thus the total power taken from both supplies was about 0.08 watt.

The gain versus number-of-sections curve can be made to slope up or down by changing the supply voltages. The gain at the ninth section will increase about 1.7 db per one-tenth volt decrease in emitter supply voltage, and increase about 0.9 db per one-tenth volt increase in collector supply voltage.

In cases where it is desirable to keep amplitude distortion to a minimum it is desirable to keep the attenuation along the line substantially zero. If the gain is greatly different from this, there will be overloading of the first or last transistor amplifier stages, depending on whether the gain increases or decreases along the line. Where the overall attenuation is zero, a 20 ke sinusoidal signal will start to show some amplitude distortion when the input amplitude is over one volt peak-to-peak.

Reference

(1) J., F. Blackburn, "Components Irandbook", Vol. 17, MI'T Fad. Lab. Series, p 192, McGraw-Hill Bock:- Co., Inc., New York, \. Y., 1919.

FIG. 5-Transistorized delay line output pulse shape after passing through 1,3.6 and 9 sections

Signal-Operated

Tone-compensation controls which vary bass response and volume usually do not adequately compensate for the reduced response of the ear to high frequencies. A separate tone control is usually required.

The circuit to be described boosts high and low frequencies simultaneously without affecting apparent volume; the amount of boost varies automatically with the input level.

Circuit Description

The basic bass and treble boost circuits of Fig. 1A and 1 B respectively can be combined to obtain the combination boost circuit Fig. 1C. In this circuit, R_{3}, R_{2} and R_{3} form a T-pad, with R_{1} as the variable. Replacing R_{1} in Fig. 1C with the plate resistance of a triode, as in Fig. 1D, will allow automatic tone compression-increasing high and low-frequency response as volume diminishes. The circuit will however introduce sufficient loss to require another triode stage of amplification.

In Fig. 1C, when the resistance of R_{1} is a maximum, the high and low boosts will also be maximum. It is not necessary to reduce R_{1} to

By ED C. MILLER

Chiel Engineer ann Technical Director Radio station WHWI

Weiser. Jloho
zero to obtain a nearly flat response. The range of R_{1} can vary from slightly less than 1,000 ohms to approximately 50,000 ohms to give a 6 db boost at 100 and 10,000 cycles with a 1,000 -cycle reference.
Figure 2 shows an arrangement which will cause the 1,000 -cycle output to be slightly greater than the input. The amount of bass and treble boost is inversely proportional to the input signal level.

Design Considerations

In designing the boost networks, it is necessary to think of them removed from the final circuit and plan them around Fig. 1C.

The effective input impedance of the low-frequency portion is controlled primarily by $R_{\text {s }}$ and should be relatively constant. This requires that R_{1} be at least ten times the total series impedance of R_{5}, R_{6} and C_{1}. Capacitor C_{2} should have a
very high impedance at frequemies below 1,000 cycles. The total impedance of the circuit at 1,000 cycles is used to determine the source impedance.

Component values can be determined accurately by disregarding the combined impedance and phase and working only from the reactance of the capacitors at specific frequencies. The bass and treble boost sections can be designed separately as long as a terminal is provided where the degree of boost can be controlled with a single variable resistance. However, they can be designed more simply by using the formulas $R_{\text {i }}=2.5 Z_{i}, R_{5}+R_{6}=$ $R_{s}=0.03 Z_{\mathrm{i}}, R_{5}=R_{5 /} / 2, R_{2}=2 R_{\text {s, }}$ $C_{1}=1 / 4,140 R_{4}$ and $C_{2}=1 / 75 R_{\mathrm{s}}$ where Z_{i} is input impedance, resistance is in ohms and capacitance in microfarads.
Considerable deviation from design values will not adversely affect

FIG. 1-Low.frequency (A) and high-frequency (B) boost circuits are combined to obtain combination boost circuit (C). Basic tone-compensation control (D) uses triode plate resistance as arm of T-pad

Tone Compensation

Triode operates as variable element of T-pad which automatically varies frequency response of audio amplifier to compensate for frequency characteristics of human ear. Circuit boosts high and low frequencies up to 6 db
operation, making it possible to use the nearest standard value for each component. The formulas above will provide an attenuation characteristic closely following that shown in Fig. 3. When greater boost at the frequency extremes is desired, two or more circuits may be connected in cascade, with intervening amplifiers, or the bass and treble may be controlled separately and phased to approach cancellation at 1,000 cycles at maximum boost. The latter method is preferable when more than 12 or 15 db boost at either or both ends of the frequency passband is desired.

Adjustment

The output potentiometer in Fig. 2 is adjusted for full room volume with the input potentiometer set at maximum. Thereafter, only the input potentiometer should be used to adjust program level. With this setting, only when volume drops, or is adjusted to the point where the average human ear does not adequately reproduce high and low frequencies, will tone compensation take effect. The amount of compensation is dependent upon the plate resistance of the control tube, which varies inversely with the input signal strength. There is no sudden change in response, but rather a gradual change reaching a maximum at the lowest audible level of sound. The input voltage present at the arm of the input potentiometer determines the response curve, therefore compensation will be introduced in equal amounts, whether to compensate for a low-level passage of recorded

FIG. 2-Audio-frequency voltage amplifier incorporating tone-compensation control

FIG. 3-Response of amplifier to different input signal levels
sound, or for turning down input control.

Construction

Any triode may be used for the control and rectifier portions of this circuit. The circuit of Fig. 2 uses two 6SL7GT tubes. Use of these tubes permits operation from the power supply of the associated amplifier, since their plate current drain is small. Only usual precau-
tions need be observed in wiring. When the output impedance of the first stage is between 50,000 and 250,000 ohms, wiring capacitance will have insignificant effect on circuit operation.

Bibliography

E. C. Miller and Tad Jones, An Electronic Loss Compensator, Radio \& Tel News, p 64. Nov. 1950.

Ed Inller, The Ham-Lim, Radio \& Tel News, p ti4 Nov, 1451.
lad C Miller, Vacuum-Tube T-Pad LoGarithmic Attenuator, ELECTronics, p 148 ,
Feb, 1953.

Cavity-Resonator

Abstract

Physical dimensions and tuning range free from spurious mode interference can be determined for cavity resonators by use of mode charts. Design data for cavities of both square and circular cross section can be obtained graphically

Several graphical presentations have been developed to display the resonant conditions of a cavity. These displays and mode charts relate the physical dimensions of the cavity to its resonant wavelength and modes of resonance. The mode charts described by I. G. Wilson, display resonance in each mode as a straight line on a rectangular graph. ${ }^{1}$ Another presentation can be done on nomograms as described by R. N. Bracewell. ${ }^{2}$ To extend the utility of straightline charts the coordinates have been normalized to provide dimensionless quantities.

The types of cavities to be treated are simple right cylinders having a cross-sectional shape of either a square or a circle. Straight-line mode charts of the square cylinder have not been previously published. However, square cylinders are preferable to circular cylinders for some purposes. Both types of cylinders provide matched

By NED A. SPENGER
Wheeler L, aboratories, Inc. Great Neck. N. Y.

crossed modes, two identical uncoupled modes in the same volume with the same tuning characteristics.

Mode Charts

The typical resonant cavity is a section of hollow cylindrical waveguide short circuited at both ends and having a length equal to an integral number of half-wavelengths in the guide. The wavelength in the guide is related to the free-space wavelength by
$\left(\frac{1}{\lambda}\right)^{2}=\left(\frac{1}{\lambda_{e}}\right)^{2}+\left(\frac{1}{\lambda_{\theta}}\right)^{2}$
where $\lambda=$ free-space wavelength, $\lambda_{e}=$ cutoff wavelength and $\lambda_{g}=$ guide wavelength.

The free-space wavelength is the desired resonant wavelength of the cavity. Cutoff wavelength

Table I-Relation of Field Pattern to Mode Index Numbers

Gencral Mode Description	Index Designation	Mode Designation
Circular cylinder		
Noncircular E or II	$\begin{aligned} & l= \text { number of :axial planes where } \mathrm{E} \\ & \text { is normal } \\ & m= \text { number of coaxial cylinders, } \\ & \text { including boundary, where } \mathrm{E} \text { is } \\ & \text { normal } \end{aligned}$	$\mathbf{T E}_{l m,}, \mathbf{T M}_{l m}$
Circular E	$\begin{aligned} & l=0 \\ & m=\text { number of cylinders, including } \\ & \text { boundary, where E vanishes } \end{aligned}$	$\mathrm{TE}_{0 m}$
Circular II	$\begin{aligned} & l= 0 \\ & m= \text { number of cylinders, including } \\ & \text { houndary, where } \mathrm{E} \text { is normal } \end{aligned}$	TM ${ }_{0 \times m}$
Siquare cylinder	$l=$ number of half perind viriations of field along one axis of square $m=$ number of half period variations of field along other axis of square	$\mathrm{TE}_{l n}, \mathrm{TM}_{t m}$

is that free-space wavelength above which the waveguide will not propagate energy. This wavelength is different for each mode of propagation and is determined by the size and shape of the waveguide cross section.
The cavity length must be an integral number of half-wavelengths in the guide for resonance to occur. This can be incorporated into Eq. 1 to obtain

$$
\begin{equation*}
\left(\frac{1}{\lambda}\right)^{2}=\left(\frac{1}{\lambda_{c}}\right)^{2}+\left(\frac{n}{2 L}\right)^{2} \tag{2}
\end{equation*}
$$

where n is the number of halfwavelengths in the guide and L is the length of guide forming the cavity.

This expression can be multiplied by the perimeter of the cross section to obtain the general formula
$\left(\frac{P}{\lambda}\right)^{2}=\left(\frac{P}{\lambda_{0}}\right)^{2}+n^{2}\left(\frac{P}{2 L}\right)^{2}$
where P is the perimeter.
This is a general dimensionless form of the resonance equation for a cavity resonator. The middle ratio squared assumes a significant numerical value which, in the square cylinder, is an integer and, in the circular cylinder, is the value of some root of a Bessel function. The desired family of straight lines is obtained by plotting the first squared ratio as ordinate against the last squared ratio as abscissa so the slope of each line is n^{2}.

Figures 1A and 1B are plots of the normalized equations. They are the straight-line mode charts for square and circular cavities. The region for which these charts are drawn is chosen arbitrarily. However, a chart for any particular region may easily

Design Charts

FIG. 1-Mode charts for square (A) and circular (B) cross sections. Shaded areas are incomplete. In B, every mode has a pair of crossed orientations unless the first index is zero
be constructed from the equations.

Modes of resonance in the cylinders are classified as $\mathrm{TE}_{1 m n}$ or $\mathrm{TM}_{t m n}$. The first two indices (l, m) describe the mode of propagation in the cylinder. These are defined in the same manner as given in the IRE Standards. ${ }^{3}$ The third index (n) states the number of half guide-wavelengths along the axis of the cylinder. Table I correlates the mode indices with the field configuration.

Solving for λ_{c} and substituting in Eq. 3, the following equations are obtained: for square cylinders

$$
\begin{align*}
& \left(-\frac{4 A}{\lambda}\right)^{2}=4\left(l^{2}+n^{2}\right)+ \\
& n^{2}\left(\frac{4 A}{2 L}\right)^{2} \tag{4~A}
\end{align*}
$$

and for circular cylinders

$$
\begin{equation*}
\left(\frac{\pi D}{\lambda}\right)^{2}=\left(x_{l m}\right)^{2}+n^{2}\left(\frac{\pi D}{2 L}\right)^{2} \tag{4B}
\end{equation*}
$$

where $x_{1 m}=m^{\text {th }}$ root of $J_{i}^{\prime}(x)=$ 0 for TE modes and $x_{m}=m^{\text {th }}$ root of $J_{i}(x)=0$ for TM modes.

Values of $x_{1 m}$ are given in Table II for the first 10 modes.

The intersection of the mode lines with the vertical axis, in Fig. 1 and 2, is cutoff for that particular family of modes. For example, in the square cylinder, the cutoff for the TE_{20} family of modes is at $(4 A / \lambda)^{2}=16$.

The dashed lines in Fig. 1A and $1 B$ are of special interest when the cavity is to be tuned by a movable noncontact short-circuit plunger. With this type of tuning plunger, a thin clearance gap separates the plunger from the walls of the cavity. A ring resonance occurs in this gap whenever the frequency is such
that the perimeter of the gap is approximately an integral number of wavelengths in free space. ${ }^{4}$ The dashed lines in Fig. 1 A and 1 B are drawn at each place that this condition occurs (each integer-squared on the scale of ordinates). If the tuning curve avoids these lines, the operation will be free of interference with such resonances.

Any particular ring resonance may be either coupled or uncoupled to the mode in the cavity. If coupled, the ring resonance must be avoided, as the tuning plunger would be ineffective over an appreciable frequency band. If the ring resonance is uncoupled, it may be permissible to let the region of operation include this resonance. In this case, some damping of the resonance may be desirable and effective in (continued on page 188)

Cavity-Resonator Design Charts-

(Continued from p. 187)

removing any effects excited by accidental asymmetries.

Two-Mode Tuner

The mode chart for square cylinders was prepared especially to aid in the development of a tunable band-pass selector utilizing two crossed modes. ${ }^{\text {T}}$

The tunable filter is patterned after a Radiation Laboratory design for a fixed-tuned filter. ${ }^{6}$ That design proved the feasibility of using two crossed modes to provide a doubly resonant circuit. The filter consists of a circular cylinder resonating in the two crossed TE_{11} modes. More recent work has been done on this principle. ${ }^{?}$

The main advantage of a twomode resonator over two onemode resonators is the simultaneous tuning of both resonances by one plunger so their tracking is automatic. A further practical advantage is the saving in space obtained by requiring only one cavity and one drive mechanism.

The square cylinder was chosen for the cavity of the tuner, because interference-free tuning ranges are greater than those of the circular cylinder. Comparison of Fig. 1A and 1B shows this to be a general rule. This is a consequence of the square cylinder having more coincidences of various modes, so the undesired modes contaminate less of the area on the chart.

It is in this stage of the design that the mode chart proves most useful. It is quite possible that a number of regions on the mode chart would appear to be acceptable. With the aid of the mode chart, the relative advantages of each potential design may be quickly evaluated. The various objectives in the design can then be weighed and the best compromise selected.

Design Procedure

In Fig. 2, a portion of the mode chart is drawn to show

FIG. 2-Region of mode chart (above) chosen for crossed-mode tuner of square cross section (below)
the procedure followed in the design of this tuner. An area on the mode chart is chosen which includes the desired crossed modes but no other modes, over the required tuning range of frequencies. The shaded rectangle shows the excursions of the final cavity over the tuning range. Only the desired modes are in this rectangle and the rectangle is approximately

Table II-Roots of $J_{l}(x)$ and $J_{1}(x)$

Morde Order	TE modes	TM modes	$x_{1 m}$
1	11		1.841
2		01	2.405
3	21		3.054
1,5	01	11	3.832
6	31		4.201
7		21	5.136
8	41		5.318
9	12	02	5.331
10		02.520	

centered between two plunger resonances (dashed lines).

Another factor in the choice of modes is the desire for a cavity one wavelength long. A shorter (half-wave) cavity will have a smaller resonance ratio (Q), and will provide insufficient space for coupling holes and a cup-shaped plunger. A longer cavity will reduce the clear spaces available on the chart. The dotted rectangles of Fig. 2 show other acceptable cavity designs but because of the shorter cavity (one-half wavelength) these designs are not chosen.

An elementary sketch of the tuner is shown in Fig. 2. The magnetic fields of the two desired modes are also depicted. Coupling with the respective modes is accomplished by holes in the walls of the cylinder. Tuning is accomplished by moving the quarter-wave cup axially in the cylinder.

The author acknowledges the effort of H. A. Wheeler, under whose direction this work was performed and who suggested the normalized presentation for the mode charts.

References

(1) I. G. Wilson, C. W. Sehranmm and J. P. Kinzer. High-Q Resonant Catities for Microwave Testing. $B 心$ NJ, p 408 , Jul. 1946 .
(2) R. N. Bracewell. Charts for Fesonant Frequencies of Cavities, proc /RE. 1) 830, Aur. 1947
(3) ". Standards on Radio Wave Propagation-Definitions of Terms Reating to Guilled Waves", IRE, New York $1!45$.
(4) W. IL. Huggins, Broad-Band Soncontacting Short Circuits for Coaxial Lines, Part II, Proc IRE. $P 1,085$, Oct. 1947.
(5) N. A. Spencer. "X'-Band CrossedMode Selector'", Wheeler Labs. Rpt 421 to Bell Telephone Labs. 1950.
(6) A. W. Tawson and R. M. Fano, "Microwave Transmission Circuits". MIT Rad Lab Series, Yol. 9, p 673, McGraw-Hill Book Co., Inc., New Yorl, 1948. (Fixed-tuned cross-mode cavities)
(7) W. Lin, Microwave Filters Fmploying a Single Cavity Excited in More Than One Mode, Jow Appl Phys, 989. Aug. 1951

Bibliography

M. R. Currie, The Utilization of Degenerate Modes in a Spherical Cavity, Jow Appl Phys. p 998, Aug. 1953. W. H. Hugsins, R. A. Kirkman and M. Kline, Discussion on the Transverse Dlectric Modes in Coaxial Cavities, Proc IRE. p 931, Sept. 1947.
R. Beringer, "Technique of MicroWave Measurements', MTT Rad Lab Series, Vol. I1, Chap 5, McGraw-Hill
Book Co., Inc. New York, 1947 .

meeting requirements as needed with sound engineering design, volume production, efficient and prompt handing, these form the basis of CINCH service.

CONSULT CINCH

Countless problems have been solved by the large variety of adequate CINCH components. Flexibility of CINCH design and production meets emergencies and changes in application; supplies custom made components to fit when occasion demands.

CINCH SOCKETS:

Tube (Receiver, Transmitter and Special): Battery, all types

C-R Tube

Crystal
Electrolytic
Glass Type: 4 to 7 prong laminated
Infra-red Ray Tube
High Altitude Airborne Types Kinescope; Magnal, Duodecal, Diheptal
Loktal-Miniature-Multiplug-Noval-Octal (Molded bakelite, steatite, teflon, Kel-F and laminated)

CINCH electronic componets are available at leading jobbers-every-

Plexicon

Printed Circuit
Special Sockets to Specs
Sub-Minicture; Hearing Aid Types
TV; 110 Circuit Breakaway
Vibrator
Pencil Tube Transistor
Diode

Precision-built metal plastic assemblies, such as the Plexicon socket equipped with ceramic condensers, are in constant and continuous production. CINCH demonstrates ability to hold tolerances on mica, to mold high dielectric powders, to meet the most exacting requirements in metal plastic assemblies.

CINCH-ERIE

Tube Socket, a joint development of ERIERESISTOR CORP., and CINCH MANUFACTURING CORP. now in universal use, commercial and military types: available also in Octal, Loktal and Noval types.
provides shortest electrical path to ground . . . simplifies wiring reduces space required by circuit components.

Cinch Manufacturing Corporation

1026 South Homan Ave., Chicago 24, Illinois
Subsidiary of United-Carr Fastener Corporation, Cambridge, Mass.

Shielding Nomograph

Attenuation chart simplifies design calculations for shielded rooms, filter enclosures, coaxial cables and chassis construction materials. Effectiveness of shielding can be determined for both magnetic and nonmagnetic materials

AtTEnUATION of a metal surface depends upon resistivity, permeability and thickness of the material. A pure copper partition presents an attenuation in db per 0.001 -inch thickness of

$$
\begin{equation*}
A=3.338 \sqrt{f} \tag{1}
\end{equation*}
$$

where f is frequency in mc.
For other materials attenuation in db per mil is

$$
\begin{equation*}
L=A \sqrt{\frac{1.72 \mu}{\mathrm{R}}} \tag{2}
\end{equation*}
$$

By JOSEPH F. SODARO
Registered Engineer
Los Angeles, Calif.
where R is resistivity in microhms per cubic centimeter, α is magnetic permeability and A is attenuation from Eq. 1.

Magnetic permeability is essentially unity for all nonmagnetic materials. The permeability of magnetic materials depends

on magnetic-flux density and previous magnetic history of the material. Typical values for commonly used metals are given in the table. Initial and maximum permeabilities are given.

For a material such as highconductivity copper, select the frequency on the f scale and read attenuation on scale A in db per mil. Multiply by thickness in mils to obtain total attenuation.

For other metals locate resistivity on the R scale and permeability on the u scale and join these points by a line. At the intersection of this line with the T scale, locate a turning point. Construct a line from the turning point to the frequency value on the f scale. Read attenuation per mil on the L scale.

As an example, determine attenuation at 1 mc for a chassis partition 10 mils thick if the material is steel having a resistivity of 10 microhms per cucm and a permeability of 500 .

Locate 10 on the R scale and 500 on the μ scale and join these points with a straight line. From the intersection point of this line with the T scale draw a line to 1 mc on the f scale. Where this line intersects the L scale estimate 30 db per mil. Multiply by 10 to obtain total attenuation of 300 db .

Bibliography

[^10]

For Silverlytic Subminiature Capacitors

Compare these characteristics of Type ALA Silverlytic Capacitors

Ratinge available:

4imfir. 4 volts DC max.
2 unlid. 5 volis DC max.
1 infil. 10 volis DC max.
.5 mifd. 10 volts DC max.
.3 mild. 10 volt: DC max.
.2 unf. 10 volts DC mas.
.1 mfid . 10 voles DC mas.
Temperature range: - 30° to $+65^{\circ} \mathrm{C}$.
(other types for $-.55^{\circ} 10+8.5^{\circ} \mathrm{C}$.
available)
Capacity tolerance: -10% to + infinity Max. leakage curcent: 2 mictoamps. after 5 min. at rated voltage
i When you're designing transistor circuits and other miniature electronic equipment, Mallory Silverlytic Capacitors are a spacesaving solution to your low-voltage capacitor problems. They provide high capacitance in a case so small that it fits into the tightest chassis layouts. They're only $7 / 32$ inch in diameter and $3 / 8$ inch long.
Silverlyties can be mounted by their leads with complete assurance of reliable operation. An improved method of attarling the axial lead wires eliminates the danger of intermittent open circuits under normal production line handling and service vibration.
An outstanding product of Mallory's continuing program of research in the field of transistor circuit eomponents, Silverlyties offer electrical characteristics comparable with those of latger electrolytics. Our new Techical Bulletin gives complete data on these newest members of the Mallory line of electrolytic capacitors that have set the standard of the electronic industry. Write for your copy today.

Expect more ... Get more from MAlloior

Parts distributors in all major cities stock Mallory standard components for your convenience.

MALLORY

ELECTRONS AT WORK

Edited by ALEXANDER A. McKENZIE

Transistors Simplify Telephone Plant... 192
Water Flow Safety Interlock. 194
Threshing Machine for Missile Data. 194
Silicon Surface-Barrier Transistors 194
The Front Cover 196
Tones Provide Private Line 196
Diffraction-Gain Transmission 196
Crystal Oscillator Circuits 200
Portable Transceiver 204
Starlings Scare Starlings 212
Video Recorder Uses Shutterless Cam
era 214
Britain Uses Industrial Controls 216
Accelerator Fights Cance 220
High Power Visual Amplifier for TV... 22Photographs Changed to Line Drawings 228Magnetic Recording of PWM Signals . . 232Mobile Receiver Speeds Police. 242Pertinent Patents242

OTHER DEPARTMENTS

featured in this issue:

Page

Production Techniques . 248
New Products 308

Plants and People....... 354
New Books 408
Backtalk 418

Phenolic plates with circuits etched in advance eliminate elaborate wiring and permit cheaper soldering methods for new rural-line carrier equipment that also includes transistors of the type shown
tem can operate economically over distances as short as five miles.

The new system is being tried over one line $11 \frac{1}{2}$ miles long and over another 15 miles in length, both extending from the central office in Americus, which is about 135 miles south of Atlanta. Outward terminals of the carrier systems are mounted on telephone poles. Beyond the terminals, conventional wire circuits are employed, one for each carrier circuit.
Between central office and outward terminals are repeaters or amplifiers to compensate losses in the wires. Because the transistor requires little power, small batteries can be used, mounted directly on the poles that carry the electronic equipment. Each terminal requires only a twentieth of an ampere at 20 volts as compared with some 20 to 30 times as much

power for comparable vacuum-tube equipments.

Mass-production of similar carrier equipment, after more field experience has been obtained, will reflect more compact packaging than equipment now undergoing field trials. All the illustrations shown here are merely preproduction prototypes.

Water Flow
 Safety Interlock

By Robert W. Woods

> Biophysicist
> College of Medical Evangelists Los Angeles. Calif.

Uncertainties in the supply of cooling water for the diffusion pump in an electron microscope required a safety interlock that would operate on 3 -cc-per-sec flow. Interlocks are supplied commercially for large flow applications but nothing is available for such small flow. The circuit shown solved the problem.

A 3 -amp, 110 -v d-c relay operates positively on the plate and screen current of a 117 N 7 tube. Resistance

Safety interlock disconnects main power supply when water flow falls below 3 ec per sec
of the stream of tap water flowing from the diffusion pump was measured and found to be constant at 0.1 megohm. By using this resistance and a 1 -megohm grid resistor as a voltage divider across the bias section of the power-supply bleeder, the grid remains below cutoff in the absence of flow and operates at small bias with the flow present.

This circuit is capable of providing flow-interlock service with extremely small flow. It is only necessary to make the orifice small enough and the gap short enough
that a continuous stream of water will span the gap, thus providing positive contact. The gap must be constructed to prevent the retention of a drop of water in the gap by surface tension in the absence of flow. This condition was accomplished by causing the stream to fall vertically and strike the terminal side of the gap at an angle. Leakage paths owing to moisture must also be avoided, since the resistance of the stream is in the order of 100,000 ohms.

When constructed and placed in operation, this circuit gave perfect control. It was necessary to introduce C_{1} across the flow gap to provide a longer time constant. Without C_{1} the relay chatters at every bubble of air that passes with the flowing water. The time constant of 0.25 second was sufficient to make it insensitive to such transient interruptions of service, without affecting its operation as a safety device against flow failure.

While this unit was designed for an electron microscope, it can be used with practically any vacuum or cooling system.

Threshing Machine for Missile Data

As many as 30,000 readings per minute received from quided-missile test instruments are recorded on tape at upper right. The electronic data-separator winnows out individual instrument reports and presents flight conditions in usable form for Lockheed electronics engineers

Silicon Surface-Barrier

Transistors

Transistor researchers are unanimous in their desire to escape from the high-temperature limitations of germanium. Much industry effort is being concentrated on the use of silicon as the semiconductor. This month's cover shows a jet-etched silicon wafer, enlarged 60 times (diameter of pit is 0.013 in .) which has been through the first phase of the surface-barrier transistor process (Electronics, p 6, Feb. 1954.)

A wafer of high-lifetime silicon is positioned between the pair of axially aligned glass nozzles as shown in the illustration. For the etching phase, the silicon is the anode of an electrolytic system in which the jets of an appropriate

When you choose a turns-counting dial, remember that it's a mighty important adjunct to "the works"...for it tells you what is going on inside...where it counts.

The duodial * counts the turns of a multi-turn component accurately...to a hundreth of a turn. And it does this so well that it is being used in all sorts of electrical, mechanical, hydraulic and pneumatic applications.
How If Works...The DUODIAL consists of two coaxial dials . . . the inner dial is calibrated to count hundreths of each turn... and drives the outer dial which counts the number of completed turns. Thus, if the outer dial reads 4 and the inner dial 37 , the reading is 4 complete turns plus 37 hundreths of the fifth turn (4.37 turns). The inner dial and integral knob are fastened directly to the shaft of the rotating device... the critical readings of the inner dial are, therefore, free from backlash.

Also . . . since the DUODIAL can be rotated by either the knob or the shaft... it will set a device to a desired number of turns . . . or will count precisely the full and partial revolutions of a powerdriven device.

duodials are designed to add a note of distinction to even the finest instrument panels. Several models are available...offering a choice of sizes .. . a choice of finishes and colors... a choice of outer-dial capacities (10 -turn, 15 turn, 25 -turn and 40 -turn models). Several models are available with locking mechanisms... and they are available to fit shafts of various diameters. It is possible to order some models with special calibrations... or even without calibrations of any kind.
Dafa File... For information and specifications on all dUODIALS, write for Data File 502

Helipot Corporation/South Pasadena, California Engineering representatives in principal cities a division of BECKMAN INSTRUMENTS, INC.

Glass nozzles direct jets of salt solution onto silicon water. Jets are negative for etching cycle, positive for plating phase
metal salt serve as the cathodes. The silicon atoms under the jets go into solution as atomic sawdust.

Crystalline silicon several mils thick is opaque in the visible spectrum, but efficiently transmits in-
frared of wavelengths longer than about 1.2 millimicrons. As the etching jets drill into opposite sides of the silicon wafer, the thickness of the silicon window is reduced ultimately to a few ten-thousandths of an inch. As the window becomes thinner, the silicon begins to transmit visible light. The etch pit shows a dull red glow, which changes to bright red, then orange and yellow and finally white as the jets break through.

In the language of an electronics engineer, the visible spectrum falls on the high-frequency sharp-cutoff portion of the silicon passband characteristic. The eye, as the detector, monitors only the visible light transmission. In the visible spectrum the silicon acts as a frequencyselective attenuator.

Decreasing the thickness decreases the attenuation. The attenuator first passes a detectable amount of the long wavelength red and then extends the transmission through the orange and yellow to all colors-white.

When the window has reached the proper thickness, metal electrodes are deposited in the etch pits to form the emitter and collector surface barriers.

Tones Provide Private Line

Recently approved by Civil Aeronautics Administration is selective-calling equip. ment for use in ground-to-air transmissions. Each aircraft is equipped with a selective-calling (Selcal) decoder for ecch radio channel to be monitored. Upon reception of a code created from 12 basic tones, the decoder rings a bell or lights a lamp to show the call. In the photograph, a Pan American dispatcher in Auckland, N. Z. signals aircraft with a Motorola tone selector

FIG. 1-Unobstructed path A compared with path B over knife-edge used for diffraction observations

Diffraction-Gain

Transmission

Recently reported experiments with long-range vhf transmission in mountainous regions confirm theory and earlier observations as to the possible efficacy of diffraction in extending communications. Material from various sources, such as National Bureau of Standards, Signal Corps and Radio Corporation of America indicates that in the region from 30 to 100 mc so-called obstacle-gain techniques can be effective.

Based upon the optical phenomenon of light waves passing across a knife-edge in a homogenous medium, the radio application was published by Schelleng, Burrows and Ferrell in 1933. In brief, they postulated that if a transmitter and receiver were separated by a mountain, radio waves would be received by these mechanisms:
(1) Diffraction at the top of the obstacle,
(2) Reflection from the ground between the transmitter and the obstacle and then diffraction over the obstacle,
(3) Diffraction over the obstacle and reflection from the ground between the obstacle and the receiver,
(4) Combination of the two ground reflections with diffraction over the obstacle.

A requirement for increased signal strength is that the height of the obstruction must be greater than the elevation of the common horizon. For example, losses will be considerably reduced at 100 mc if a knife-edge obstacle for a 150 -mile circuit is at the midpoint of the

...DEPENDABLE...LOW COST BORO-CARBON FILM RESISTORS

IN $1 / 2,1$, AND 2 WATt RATINGS

Now for the first time you can obtain a superior yet relatively low cost film-type resistor for military electronic gear-resistors that not only meet the severe performance requirements of Military Specification MHL-R-10509A, but are capable of full wattage dissipation at $70^{\circ} \mathrm{C}$ ambient!

Sprague Type 4E, 5E, and 6E Filmite B resistors are housed in a dense molded jacket which not only provides unexcelled physical protection for the film resistance element but serves as a barrier to moisture and vapor, the twin enemies of all film-type resistors.

Boro-carbon films are unusually sensitive to moisture. Protection against moisture in any form is a primary requirement for successful long term stability of resistance. The low-loss phenolic housings on molded Filmite resistors not only shed water but are vapor resistant and inert to the film material. There
is minimum possibility of field failure through electrolytic action and penetration of moisture or vapor through the dense molded jacket.

Other features of molded Filmite B resistors are special low-contact-resistance, low noise end terminations held rigidly in place on special ceramic cores, extremely low temperature and voltage coefficients of resistance, and excellent load-life and high frequency characteristics.
For complete engineering data, write for Engineering Bulletin No. 130 to:

SPRAGUE ELECTRIC COMPANY,
35 Marshall Street, North Adams, Mass.

SPRAGUE TYPE NO.	WATTAGE RATING	DIME (IN L	$\begin{aligned} & \text { ONS } \\ & \text { SJ } \\ & \text { D } \end{aligned}$	RESISTANCE (OHMS) Min. Max.		VOLTAGE (Max)
$4 E$	1/2	$3 / 4$	1/4	100	1 Meg.	350
$5 E$	1	11/6	$3 / 8$	100	2 Meg .	500
$6 E$	2	23/16	3/8	200	10 Meg .	750

[^11]
PIONEERS IN ELECTRIC AND ELECTRONIC DEVELOPMENT

"w Leack ANGLE MOUNTED LATCHING RELAYS

For Unlimited Control
Applications...

Designed to take it...

Resistant to vibration and shock, these new Leach commercial and industrial relays incorporate unique principal of angle mounting for coil mechanism. These compact and rugged relays are designed to give efficient, dependable performance mounted in any position - vertical, diagonal, etc.
New Wedge Action . . . Utilizing latch faces with a slight radius plus end to end operation of latch mechanism, positive latching is assured regardless of wear or play in armature hinge joints. Standard coils are varnish impregnated and surfaces of frame, base, bracket, etc., are electro-plated.

SCHEMATIC

CHARACTERISTICS CONTACTS: DPDT or 4PDT. CONTACT RATING:
8 amps.@115VAC non-inductive or 8 amps . @ 29 VDC resistive load. COIL: Continuous or intermittent duty with resistance to 10,000 ohms. Maximum voltage 120 VAC 60 cycle or 120 VDC. Special series coils available. WEIGHT: 38 lb .

Unusual opportunities in research, design and development for engineers! Submit resume of qualifications and experience.
For Better Controls Through Better Relays - Specify Leach Specialists in Electronics and Electro-Mechanics

LEA CH REGAY

5915 AVALON BOULEVARD • LOS ANGELES 3, CALIFORNIA
Representatives in Principal Cities of U.S. and Canada
path and about 1,300 feet above surrounding terrain. Theoretically, these conditions should result in $30-\mathrm{db}$ decrease in loss over that calculated without the obstacle. Net effect is a power gain of 1,000 in increased received signal strength.

Other practical experiments carried out in the mid-1930's by J. A. Pierce and H. Selvidge, both of Cruft Laboratory, Harvard University, showed, among other phenomena, that horizontally polarized waves were diffracted more than those vertically polarized when propagated over a horizontal knifeedge.

Making ingenious use of natural topography, the Harvard experimenters set up transmitting equipment atop Mt. Cadillac, Maine. By carrying receiving equipment in a boat, they were able to observe along paths A and B shown in Fig. 1. Mount Cadillac is 1,532 above sea level and the knife-edge formed by Schoodic Peninsula is 437 feet high for a length of a quarter mile.

FIG. 2-Path A propagation at 55 mc over sea water. Dashed lines show computed values; free-space (F), horizontal (H) and vertical (V) polarization

Tests were made using 55 and 110 mc . Propagation for 55 mc over path A is shown in Fig. 2 and that for path B in Fig. 3. Unexplained are the sharp peaks in the deep shadow region although continued observations showed them to be reproducible.

In the more-recently reported observations is a $38-\mathrm{mc}, 160$-mile circuit in Alaska, passing over Mt. Fairweather. Calculations show that the obstacle-gain transmission loss should be 80 ab above the

Get ready for color TV with

to aluminize screens

*or color plates

to evacuate tubes

The "high vacuum" equipment you will need for color TV tube production is already under design at CVCwe'll be ready to go when you are.

For several years our sales and engineering staffs have maintained regular contacts with the laboratories working on "color." We've helped solve krotty aluminizing and vacuum pumping problems in the lab and are translating what we've learned into designs of
efficient production equipment. This is why we now stand in a unique position to recommend the right high vacuum equipment.

Please call on us to help you with any vacuum processing problems on color TV tubes. Consolidated $V^{\text {Facuum }}$ Corporation, Rochester 3, N. Y. (a subsidiary of Consolidated Engineering Corporation, Pasadena, California).

INDUSTRIAL:
CONTACTORS:
with Plasti-Clad Magnet Coil

Write for Bulletin 600
-

GENERAL PURPOSE RELAYS

Write for Bulletin 570 -

2-8 poles Non-Reversing.

2-5 poles Reversing. 25 Amp - 600 AC Max.
Contacts can be replaced without removing wiring. To change coil, remove magnet frame and coil assembly only. 10 and 15 amp . poles can be changed from normally open to normally closed by using screwdriver only.

Other R-B-M products include: motor overload protectors, motor starting relays and low voltage DC electrical devices.
Consult R-B-M On Your Control Problems - Write Department A-5

Low cost. Small size.

 Dependable performance. Available in many contact arrangements.Whatever your needs for inexpensive, dependable relays for commercial applications-investigate R-B-M General Purpose Relays.

FIG. 3-Diffraction over knife edge with path A curves shown for comparison). Horizontal (H) and vertical (V) polarization. Frequency is 55 mc
smooth-earth calculated loss. Measurements show a gain of 73 db , which is in close agreement. The actual loss over the circuit is approximately 134 db . This loss varied by less than $\pm 2 \mathrm{db}$ from a mean value, indicating that tropospheric propagation effects must have been very slight.

Some engineers have predicted that although tv broadcast listeners may benefit from the phenomenon, it will be principally useful for point-to-point communications serv-ices.-A. A. Mck.

FIG. 1-Pierce oscillator circuit (A) and Miller circuit (B)

Crystal Oscillator Circuits

Oscillators of the Pierce (Fig. 1A) and Miller (Fig. 1B) types operate the crystal as a reactance and normally as an inductance. The Pierce circuit has the advantage

SPECIFICATIONS
Tubes Cooled
4×150A, 4×150G
5588 and 6161
Altitude
Up to 50,000'
Fan Model
Joy Axivane
AV-3.5-2.75-120D
Size
$3^{1 / 2} 2^{\prime \prime}$ diameter
Weight
5 lbs.
Duty
60 CFM @ $5^{\prime \prime}$ WG
Motor
27V DC-4.7 Amps.

(®)
 Only a JOY AXIVANE FAN can handle this Electronic Tube cooling job at altitudes up to 50,000 feet

Cooling the above-specified tubes in airborne applications is a critical problem because of the extremely light air. The difficulty is particularly severe at elevations of 40,000 or 50,000 feet.
An extensive series of tests were recently initiated in an attempt to determine an effective cooling process. The tubes and sockets were mounted in pairs in a special cabinet designed to equalize the air distribution for each tube. The problem was to discover a method of heat dissipation that would hold the temperature of the glass-to-metal seals below the design operating level.

Of all the blowers tested, only this Joy AXIVANE fan was able to meet the rigid specifications. The tubes were cooled with $25^{\circ} \mathrm{C}$ air at an elevation of

This is just one of an extensive line of AXIVANE fans specially designed for economical efficiency in cooling electronic equipment. All are built of aluminum and magnesium for light weight, sturdily constructed for maximum resistance to shock and vibration, and feature the space-saving compactness inherent in vaneaxial design.

Each fan can be modified to fit individual requirements for cooling all types of electronic equipment under any conditions. Let us help solve your problem. - Joy Manufacturing Company, Oliver Building, Pittsburgh 22, Pa. In Canada: Joy Manufacturing Company (Canada) Limited, Galt, Ontario.

A single relay in your Micro Wave System stops functioning... what happens until service is restored? That break may be but a matter of seconds... but think of the amount of equipment you must maintain ... to minimize such interruptions!

Now MICRO-POWER ... ELIMINATES all the hazards of POWER OUTAGES! MICRO-POWER provides CONTINUOUS power for UN-INTERRUPTED micro wave operation!
AND WHAT'S MORE . . . Micro-Power does it WITHOUT costly investment in standby electric plants, battery banks, rectifiers and motor generator sets.

IN NEW installations, Micro-Power can save up to $\$ 300$ per mile! INVESTIGATE MICRO-POWER. Write "U.S." for complete details . . . or ask your supplier of Communication equipment... INSIST on U.S. MICRO-POWER in your next micro wave installation.

UNITED STATES MOTORS CORPORATION

553 Nebraska Street
OSHKOSH, WISCONSIN
that no tuning is required and frequency selection is accomplished on a plug-in basis.

In the parallel-resonant circuits of Fig. 1, frequency is adjusted by a variable capacitor in shunt with the crystal. Long-term stability of the frequency of oscillation will increase as C_{T} (the circuit capacitance) is made large with respect to stray circuit and tube capacitances, but output will decrease because of lower operating impedance. In general, frequency instability not greater than 0.003 percent can

FIG. 2-Simple series oscillator (A), cathode-coupled (B), Bridged-T (C), Meacham bridge, transformer coupled (D) and Meacham oscillator with R.C. feedback (E)
be expected from this type of circuit.

Series-resonant oscillators of the types shown in Fig. 2, with the crystal used as a low resistance, are most suitable for practical applica-

Compare

Machlett
High Vacuum

Rectifier Tubes

with any
other make

ML-102A
ML-5575/100 ML-5576/200 ML-199*

ML .5575/100 compared with competitive high vacuum rectifiers having conventional design features and identical peak ratings.
Conditions: Bridge-type rectifier circuit.
Waveform: Square, where
Anode Dissipation $=\frac{\text { Forward Volts } \times \text { Amperes }}{2}$
Filament Volts, each tube: 20

ML-5575/100 operates at 100% of current rating with 300% safety factor for anode dissipation. Competitive high vacuum rectifier lube operating at 65% of peak anode current is at limit of anode dissipation.
Machlett High Vacuum Rectifier Tubes give maximum rectification efficiency and high working load capacity with no increase in anode dissipation requirements, because . . unique Machlett catenary type filament, eliminating need for electrostatic shielding, gives . . .

Highest Operating Efficiency Coolest Running Anode Highest Working Power Level Highest Overload Capacity Longest Life

For particle precipitation, chemical recovery, hold-off diode application and general high voltage requirements, a broad range of Machlett High Vacuum Rectifier Tubes are available. Included among the higher power tubes are:
75 PKV, 0.75 max anode amps; 750 watts anode dissipation. $100 \mathrm{PKV}, 1.00$ max anode amps; 750 watts anode dissipation. 150 PKV, 2.00 max anode amps; 1000 watts anode dissipation. 110 PKV, 10.00 max anode amps; 1500 watts anode dissipation. *Thorialed Tungsten Filament.

MAXIMUM STABILITY Where constants depend on unvarying capacity

For
Precision Circuitry in:
U.H.F. Components

Wave Shaping and Pulsating Circuits
RC Circuits
Countless Other
Electronic and Industrial Uses

Industrial Condenser Corp. can design, engineer, or, in most cases, meet your capacitor requirements directly from stock. Send now for Catalog 1117. Complete with performance curves, characteristics and suggested applications, this valuable booklet should be in your file for instant reference.

3249 N. CALIFORNIA AVE.,

Outstanding Operating Characteristics

Insulation resistance ot $+20^{\circ} \mathrm{C}$. after three minutes charge: 900,000 megohm microfarads
Insulation resistance at $+75^{\circ} \mathrm{C}$. 78,000 megohm microfarads
Insulation resistance at $-75^{\circ} \mathrm{C}$. In excess of one million megohm microfarads
Change in capacitance from $+25^{\circ}$ $+0.76 \%$
Self time canstant of 10 mfd capacitor: 4800 hours
Q of 50 kilocycles: 10,000
Power Factar at 1 ke: 0.00025

CHICAGO 18, ILLINOIS
tion when it is desired to reduce frequency instability below 0.002 percent.

Frequency can be adjusted above or below the resonant frequency of the crystal unit by connecting a variable capacitor or inductor in series. This has the disadvantage of operating the crystal as an inductance or a capacitance, thereby increasing impedance of the crystal network and decreasing stability.

The fundamental cathode-coupled circuit widely used in vhf and uhf communications equipment and shown in Fig. 2B is satisfactory up to about 50 mc .

Advantage of the bridge-T oscillator (Fig. 2C) over other vhf circuits is that one side of the crystal unit can be grounded, power output is high and frequency stability as a function of plate voltage is excellent.

The Meacham bridge circuit (Fig. 2D and 2E) is enhanced at low and medium frequencies. Its great stability results from control of the level of oscillation in the feedback circuit.

Circuits and information abstracted here are taken from "Current Status of Quartz Crystal Units and Circuitry for Frequency Control", by Douglas A. Venn, an interim report of the Naval Research Laboratory.

Portable Transceiver

By H. S. Knaack
Project Engineer Project Engineer
Stewart-Warner Flicago, Ill.

Portable transceiver intended for short-range communication in the class B Citizens Radio band extending from 462 to 468 mc provides reliable communication along a true line of sight for considerable distances. Its ability to work through obstructions is limited because of low power output and because of the character of the frequency at which it operates.

A hand-held instrument combining the functions of both receiver and transmitter in a single unit, it has an external power supply and a removable folding dipole antenna. Each unit may be operated from a

every TV station needs

 that local sponsors can afford

Here's how the GRAY Telop screens out high production costs

Install a Gray Telop as part of your basic TV broadcast equipment for commercials. "screen" out high production costs! Use with any television film camera, including the new Vidicon camera. Projects opaque cards, photographs, artwork, $31 / 4^{\prime \prime} \times 4^{\prime \prime}$ transparent glass slides, strip material, even small objects . . . pens, watches, cigarette lighters, pipes, etc., or small models of large products.

A Gray Telop . . . at low initial cost . . . projects these economical materials and small objects with all the professional versatility of major "network" effects . . . without using costly film strips or live talent. Sponsors' copy can be prepared quickly, easily, for a variety of effects that is virtually unlimited. Gray's Telop will help you to sell more revenue producing commercials ... Increase Your Profits!

GRAY TELOP I

Division of the GRAY MANUFACTURING COMPANY
Originatora of the Tray Telephone Pay Station and the Gray Audogragh and PhonAndogrspli.

Seeing is Believing

 seen to be appreciated... for greater audience interest... price that local sponsors can offord!- Gray Telop projection of commersials must be
- You gel dual projection, superposition, lap dissolve, fade-out . . . with a single lens system.
- You can project 'cinematic', exciting visual effects
- Your Gray Telop will pack punch and profit into every minute of your TV commercials . . . at a

WRITE FOR:
Visual proof of the proft making polential of Gray Telops. Request "TV Anytown," the complefely illustrated, detailed descripfion of Gray Tolops.

MADE TO YOUR EXACT SPECIFICATIONS IN ANY SIZE.SHAPE•QUANTITY

Precision coil bobbins are fabricated from high dielectric materials and quality controlled to the most minute tolerances . . . Yet, because they are made on special high production equipment, they're available to you for prompt delivery at low unit cost.
Cores are spirally wound dielectric kraft, fish paper, acetate, phenol impregnated or combinations. Flanges are cut to any specification for all types of mountings.
Request illustrated bulletin. Send specifications for samples.
High Strength Low Cost Paper Tubes

Accurately fabricated in any size, shape, ID or OD. Spirally wound from select dielectric materials. Crush resistant, with excellent dimensional stability. Subject to rigid control and inspection for tolerance and uniformity.

Ask for samples and Arbor List of over 2000 sizes.
Sales Representatives in:

New England

Framingham, Messachusetts. Fiamingham 7091
Metropolitan New York, New Jersey
Jersey City, New Jersey, Journal Square 4-3574
Upstate New York:
Syracuse, New York, Syracuse 76-8056 Northern Ohio, Western Pennsylvania: Cleveland. Ohio, Atlantic 1-1060
Indiana, Southern Ohio:
logansport. Indiono, Logansport 2555

Missouri, Southern Illinois, lowa
St. Lovis. Missouri, Sterling 2318 Maryland:
Boltimore, Maryland, Plaza 2-3211
Philadelohia, Camden:
Philadelphia, Pa., Chestnut Hill 8-0282 California:
Pasodena, Colifornio, Sycamore 8.3919
Canada
Montreal. Quebec, Conoda, Walnut 2715
${ }_{2041}$
W. CHARLESTON ST.

CHICAGO 47.ILL.
Plant No. 2: 79 Chapel St., Hartford, Conn.
battery pack that fits into a carrying case or by a 110 -volt a-c power supply. Six volt d-c and 12 volt d-c power packs are also available for use with mobile equipment.

The microphone and earphone are positioned in the case by bakelite covers and as these covers are screwed on, connections are made to pressure type contacts mounted on sub-assemblies within the case. Microphone contacts are mounted on a bakelite board that also holds the microphone transformer and

Exploded view of portable transceiver
the battery-cable contacts. The assembly is indexed with a pin forced directly into the casting, which makes it impossible to misalign the battery contacts bearing against a row of circuit contacts on the chassis itself.

The chassis contains all working parts of the circuit with the exception of the antenna matching coils and the microphone transformer. No circuit adjustments are used except in the oscillator section and the chassis employs printed circuits for speed in assembly, to reduce the room required for the wiring and to eliminate errors in wiring. Working contacts are silver plated to eliminate the effects of corrosion and to provide low resistance.

The antenna is a broad-band fold-

118-122 SO. FOURTEENTH STREET, NEWARK 7, NEW JERSEY
ASK FOR YOUR COPY TODAY! New engineerdesigner file catalog includes complete information on economical HUDSON standard and special closures. Call or write without obligation -

HOW YOU CAN EVALUATE Shielded Enclosures

Selecting the proper shielded enclosures today is a big job . . . and no wonder! The unqualified statements and ambiguous terminology of some enclosure manufacturers makes intelligent purchasing extremely difficult.

To eliminate these difficulties, ACE has prepared a definitive booklet: Evaluating Shielded Enclosures, by Richard B. Schulz, noted authority on the suppression of r-f interference, and consultant to ACE. Here are free, factual data you should be acquainted with... for only by applying a realistic approach to shielded enclosure selection can you be sure of getting what you pay for.
 Free Booklet

you always get your money's worth with ACE

ACE long ago eliminated guesswork as a factor in the design of shielded enclosures. Every ACE claim is backed by complete guaranteed test data, for every design is thoroughly analyzed and approved by independent engineering laboratories. Whether
you need a galvanized screen room, a copper screen room, or a solid sheet RFI enclosure (Lindsay Structure), you can depend on top performance when you choose ACE...first and still foremost in the design and manufacture of every type of shielded enclosure.

Don't be misled! There is only one ACE. You gef ACE quality only when you deal with ACE Recognized Representatives.
A COMPLETE LINE OF ENCLOSURES FOR INDUSTRY, SCIENCE AND MILITARY, FEATURING HIGHEST ATTENUATION, FULL INTERCHANGEABILITY, INSIDE BOLTING*

Exceeding JAN.1.225; 16E4 (ships); MIL-16910; MIL-S. 4957
(Write for RF1 Bulletin No. 1, and ACE Bulletins Nos. 3 \& 5)
(*Patents Pending)
ACE ENGINEERING \& MACHINE CO., INC.
3644 N. Lawrence Street - Philadelphia 40, Pennsylvania
ing dipole with integral matching section approximately a quarter wavelength long and is plugged into a pair of contacts at the top of the unit. It is roughly directional with a figure-eight pattern that does not have zero nulls. The effect of the directivity is not acutely felt until the units are approximately at their extreme range of usefulness.

The transceiver has FCC typeapproval making it possible for the owner to transmit without an operator's license, although a station license is needed.

The oscillator is a Colpitts type using a 6AK4 subminiature tube and a miniature 3A4 as the modulator, with its input comnected to the microphone circuit. Tuning is accomplished by a small variable capacitor integral with the oscillator plate, or by adjustment of the position of the tuning loop. The antenna is inductively coupled to the tank by means of a single-turn hairpin loop on the rear, tube side, of the ceramic plate on which the tank coil is plated.

Coupling Compensutor

Thus the physical relation of the tank and antenna coils is fixed permanently is such manner that changes in coupling cannot be made except by deformation of the plate itself. This deformation is carefully controlled, becoming part of the temperature-compensating mechanism. Other elements of this temperature compensation are the grid capacitor and tuning capacitor insulator materials. With this type of frequency control, it is possible to design the oscillator to be subject to less than 200 kc variation at 465 megacycles owing to temperature effects.

Humidity effects are reduced to a minimum by fusing the ceramic plate so that it is impervious to moisture short of submersion. Humidity effects on frequency are reduced to less than 500 kc for humidities varying from 30 to 95 percent. Frequency deviations from changes in battery voltages are somewhat offset by the temperature compensation, which is in the other direction. When the power input is reduced and the tempera-

Arthur R. Wiley, National Warehouse Manager of A. G. Spalding \& Bros., Inc., tells why:

He's famous for his fast delivery!

"Imagine the stands filled," says Spalding's Arthur Wiley, "the major league teams in their dug-outs, the mounting expectation - and no baseballs!
"It sounded like an 'emergency.' The balls used in all major league games are specially tested for perfection. The club was half-way across the country from our Chicopee, Mass. plant and a double-header scheduled.
"But we're used to delivering fast. We solve situations like this week-in and week-out by relying on Air Express.
"So, we just called Air Express on this job. The balls were flown west, were delivered and actually in play on the field a few hours later.
"We use Air Express throughout the year to ship all kinds of sports equipment throughout the country.
"Practically all these shipments cost less with Air Express than with any other air service."

It pays to express yourself clearly. Say Air Express! Division of Railway Express Agency.

... STOCK TYPES FOR QUICK DELIVERIES
 ...SAMPLES AND "SPECIALS" 70 EXACT SPECIFICATIONS

As engineering specialists in both wire winding and electronic equipment assemblies, Shallcross offers complete facilities for the design and largescale production of delay lines in a variety of open and encapsulated styles for both highly critical as well as commercial uses.

Typical applications include use as compensating delays for color television, in signal delays for TV synchronizing signal generators, and in wideband distributed-type amplifiers.

Now available for prompt delivery is the Shallcross open-type 380 described below This is a typical lumped parameter delay line using silvered mica capacitors conforming to JAN Style CM-15, CharacteristicE. Many other types can be readily designed for specific applications. Quick delivery of prototypes! Send your specifications for prompt consideration by Shallcross engineers. SHALLCROSS MFG. CO., 522 Pusey Avenue, Collingdale, Pa,

Shallcross type 380 delay line
SIZE:
Open Type: $21 / 4^{\prime \prime} \times 11 / 2^{\prime \prime} \times 5 / 16^{\prime \prime}$ Encapsulated Type: $21 / 4^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$
ELECTRICAL CHARACTERISTICS:
Maximum pulse voltage: ± 100 volts
Rise time: 0.04 microseconds Total delay: 0.3 ± 0.03 microseconds
ture of the oscillator decreases the two effects tend to cancel. Overall drift from temperature, humidity and changes in battery voltage over the recommended range are less than plus or minus 1.2 mc .

Battery voltage is controlled by using a special battery pack that contains A, B and C batteries for the unit. These cells are designed so they run down in a specified manner, with the A cells going last. The existence of reasonable B-battery voltage is indicated by a small neon lamp under the antema socket that ilhminates the base of the antenna as long as the B-battery voltage is over 90 volts. When the lamp no longer lights, or when its degree of illumination changes as the press-to-talk button is pushed, the battery is replaced since frequency deviation beyond the tolerance authorized by the FCC may exist.

Movement of the tuning knob has been deliberately restricted since the oscillator does not have any degree of drift that would require a greater movement of the tuning knob.

Switching assembly detail, tuning control and tuning loop

In the receive position, the 6 AK4 is a self-blocking superregenerative oscillator and the 3A4 tube acts as an audio amplifier. Sensitivity in this position for a readable signal is approximately 12 microvolts. Variation of the position of the short-circuited loop adjacent to the oscillator tank is used to tune the receiver to the desired frequency. This is accomplished by moving the receiver tuning knob. Total tuning range of the loop is approximately 7 megacycles. As noted, actual tuning is provided over a lesser range.

Switching from receive to transmit involves shorting part of the oscillator grid lead, switching the

"Impossible" precision jobs are naturals ... for the + ${ }^{\text {HE }}$ folbhite INDUSTRIAL "AIRBRASJVE" UNIT

the s. s. white indestrial "alrbrasive" unit is consistently solving many of the jobs in the product design and development field that have hitherto been considered impossible to do by conventional means. It has already been used successfully to cut germanium to drill and scribe glass and other hard, brittle materials - to cut and shape fragile crystals - to remove deposited surface coatings - to etch - to produce matte finishes and to do light deburring inside small I.D. parts.
A typical job is illustrated above in which the S.S. White "Airbrasive" Unit was used to cut a 24 pitch thread on the inside wall of a $1 / 2^{\prime \prime}$ I.D. glass tube. The tube is rotated on a small bench lathe and a standard right-angle "Airbrasive" nozzle is held in a traveling tool holder. A similar operation has been performed in a $170^{\prime \prime}$ I.D. tube with a specially designed "Airbrasive" nozzle tip.
The principle of the "Airbrasive" Unit makes these jobs feasible. A cutting
effect is produced by the kinetic energy of a high speed gas-propelled stream of microscopic abrasive particles. There's no contact of a tool with the work, consequently there's no heat, no shock, no vibration and the accuracy of the cut is unaffected by surface irregularities in the work. The depth and type of cut can also be accurately controlled to maintain extremely fine tolerances.
We'll be glad to demonstrate the unit to you or perform tests on your parts at either our New York or California office.

The "Airbrasive" Unit operates on 110 V , 60 cycle A.C. current. Any DRY cylinder gas can be used as a propellant.

WRITE FOR bULLETIN 5307 It contains complete information on how and where the S.S. White "Airbrasive" Unit can be used.

THE OUCNIUC INDUSTRIAL DIVISION DENTAL MFG. CO.

Dept, EB, 10 East 40th St. NEW YORK 16, N. Y.

Western Distriat Office - Times Building, Long Beach, California
input of the 3A4 from the circuit of the oscillator to the microphone and connecting the modulation transformer to the earphone instead of the plate circuit of the oscillator. All this is accomplished by four spdt snap-action switches that are operated in an almost simultaneous pattern by a leaf actuated directly by the transmit button. Depressing this button also returns the tuning loop to the correct position so the oscillator will operate on 465 mc .

Power output of the transmitter is approximately 300 milliwatts with a maximum power input of 2.6 watts to the oscillator. Range varies from very short distances under adverse conditions to many miles where suitable line of sight exists, as from air to ground.

Range under average conditions of terrain and obstructions in open country is line of sight plus the distance in which the signal can be expected to have useful value after single or multiple reflections from structures or terrain. Range within steel structures is surprisingly good. Exact tuning is more critical near the limit of operating range and exact positioning of the listener or transmitter may be critical in some structures where standing-wave patterns exist.

Starlings Scare Starlings

Magnetic-tape recording is the latest weapon in the electronics arsenal to be leveled against superabundance of feathered friends. When the city of State College, Pa. was recently troubled by too many starlings, members of the department of zoology and entomology devised an effective antidote.

A captured bird was held by its legs near a microphone. Its startled chirp, identified as a distress call, was recorded and a continuous, hour-long tape fabricated.
The recording, amplified to a level of 120 db , was played an hour and a half for three nights from a sound truck that toured the city. It was estimated that only about 200 birds remained, the others being frightened away.

Although the recording was dis-

Colors available in production quantities include:
Natural . . . white . . . yellow (two shades) buff . . . orange . . . pastel red . . . red dark red . . . brown ... green . . . blue . . . black.

SPECIFICATIONS: GPG Rod

Flexural strength	65,000-85,000 psi.
Compressive strength (radial)	950-1,100 psi.
Arc resistance	120 sec .
Water absorption.	0.10-0.20\%
Resin content	50\%
Specific gravity	1.60
Standard diameter	$1 / 8^{\prime \prime}$ to $1 / 2^{\prime \prime}$
an	$4{ }^{\prime \prime}$

Also available Chalk-Filled (GPG-C) and Flame-Retardant (GPF). Imquiries invited for larger diameters, longer lengths and special shapes.

Here's good news for your product...

TAYLOR

 POLYESTER GLASS RODSAn unusual material developed by Taylor - polyester glass rods in natural, white, black and ten attractive colors-offers unlimited possibilities in many of the products you manufacture. For the first time, you can have a glass-reinforced plastic that is uniformly colored all the way through. Drill it . . . cut it . . . grind it . . . you'll see no fibrous appearance of glass filaments. Although this new material weighs only one-fifth as much, it possesses flexural and tensile strength equal to that of low carbon steel. It's non-corrosive, and resists deformation from bending. Picture how you can use its color for decoration, identification, or coding . . . its high strength-to-weight ratio for structural parts . . . its excellent electrical properties in shafts for electronic components.
Taylor specialists will be glad to talk over the ways you can put this material to work. They'll be glad to discuss, too, the improvements in production and product quality that you can realize through the use of Taylor Vulcanized Fibre and Taylor Melamine, Phenolic and Silicone Laminates.

TAYLOR FIBRE CO. Norristown, Pa.-La Verne, Calif.

Auto-Shift tables help get the work done

About 250 square feet occommodate twe more Auto-Shifts than separate boards and desks. Auto-Shift puts a large reference surface and drawer directly behind each draftsman for maximum space and operating efficiency - especially effective in row installations.

trinotion thert

with much less draftsman fatigue

Auto-Shift has greater flexibility. Note the foot and hand releases (circled above) to adjust board height and slope instantly. Fully counterbalanced top moves effortlessly. Draftsman can change working position often-fatigue is sharply reduced-and the work gets done with Auto-Shift.

tressing to human beings, they wère spared some discomfort by aiming the loudspeakers upwards into the trees. The sound affected only the starlings and had no effect upon common grackles or American robins.

Television recording system designed for military operation comprises special film camera focused on kinescope. Ancillary electronic equipment enclosed in relay-rack cabinet is not shown

Video Recorder Uses Shutterless Camera

An experimental video recording system using a free-running, shutterless camera and an electronic shutter that provides a variety of television line and frame rates has been constructed at the Naval Research Laboratory.

The electronic shutter, replacing the more familiar mechanical shutter, operates by blanking and unblanking the recording kinescope.

Used in a 525 -line system with a camera having a pull-down time of 72 degrees or less, 80 percent of

Block diagram shows interconnection of special tv recording system developed at Naval Research Laboratory

TELEPHONE SCIENCE GUIDES A FUMCM

NO ENEMY CAN DODGE

(Upper left) - Nike's missile climbs to destroy an enemy. under guidance of complex efectronic controls.
A radar is shown at risht. Nike (pronomed Syee) is mames after the direek goddess of bictory.

Is it possible to guide an anti-aircraft missile so that it will track down and destroy a rapidly manemvering target?

BELL TELEPHONE
LABORATORIES No one knew the answer for sure when the U. S. Army put this question to Bell Telephone Laboratories in 1945.

The sperial skills and termiques developed to create the mation's commmmications network uniquely fitted Bell seientists to answer this question. They recommended a new system, Nike, and then worked to bring it into being with
emgineers from Amy Ordnance. Western Electric Company and Douglan Aircraft Company.

The first Nike installation has been made and more will follow. Thus. America's defenses grow stronger through a new extension of frontiers in the communications art. It is a promd athesement of the knowledge and skills first developed at Bell Telephome Latomatories to make the nation's telephone service ever belter.

the recognized leader in the Hi-Cycle field offers these performance characteristics-

LOW HARMONICS

CLOSE VOLTAGE REGULATION

400 CYCLE REGARDLESS OF LOAD \& INPUT VARIATIONS

For example, Bogue special 400 cycle single shaft, two-bearing synchronous motor driven units eliminate belts, gears and other special speed changers, yet, faithfully deliver 400 cycles-exactly-no load to full load regatdless of voltage variations.... truly the standard of 400 cycle power the reason so many prominent companies have been depending on equipment built by Bogue Electric Manufacturing Company ...

Variable frequency 320 to 1000 cycle M-G set. Bogue magnetic amplifier maintains voltage and

5 KW low harmonic set. 400 cycle regardless of input voltage, loading or heafing.

400 cycle voltage \& frequency regulated inverter. Operates from 28 volt DC supply.

56 IOWA AVENUE - PATERSON, 3, NEW JERSEY

Dual output $10 \mathrm{KW}, 400$ cycle and 200 amp. 28 volt output, portable unit.
the televised information can be recorded, with a 24 frame per second recording rate. This system, applicable to military operations, does not include simultaneous sound recording.

Britain Uses Industrial Controls

By John H. Jupe
Rogart, Hillside Road Chorleywood. Herts England

INCREASED PRODUCTIVITY results from use of machinery, which is often dependent upon development of industrial control mechanisms. Several of the devices described below have recently been put to work in Great Britain.

Elongation Gage

A technique that has been developed in Britain for the accurate measurement of the elongation occurring when steel or other ferrous strip is rolled, depends in principle on the measurement of the wavelength of a magnetic pattern. This is printed on the strip before rolling and is subsequently redetermined after rolling. During the passage of the metal through the mill, the peaks of the pattern will become separated, that is, their wavelength will increase and therefore the time interval between peaks before and after rolling can be a measure of the elongation that has taken place.

Level Indicator

A new type of level indicator that can be used for liquids, powders or granular solids, incorporates an arrangement that makes it independent of all reasonable changes of tube characteristics, supply voltage or general loading of the apparatus.

The indication of level of the desired material is given on a meter that measures the out-of-balance voltage of a capacitance bridge, one arm of which is composed of the capacitance to ground of a vertically mounted probe.

Constancy of output from the oscillator that supplies the bridge

For Grain-OIriented Magnetic Material, Come To Irnco!

ORTHONIK

Ulira-thin (l to $1 / 8$-mil) Armco 48 Orthonik is highly grain-oriented. Its extreme thinness and rectangular hysteresis loop make it especially useful in memory cores of digital computers and reactors in other servo-networks requiring a high rale of change of flux with respect to time.

THIN SILICON STEELS

Armco Thin Oriented Silicon Steels are made in thicknesses of 4,2 and 1 mil. Used for frequencies of 400 to 200,000 cycles per second for radio, television and other electric devices. They have exceptionally high permeabilities, low hysteresis losses for such thin material and excellent lamination factors.

STANDARD GAGE ORIENTED

In 14-mil thickness, Armco Oriented silicon steels are ideal in power and distribution transformers and generators. These steels, known as Armco Orr-
ented M-8X and M-7X, are supplied in coils or cut lengths, usually Carlite Insulated. They are ideal for stacked cores so designed that flux passage is predominantly in the rolling direction of the sheet.

For wound cores, there are Armco

Oriented M-7W and M-6W, supplied only in coils 12 mils thick to wind more readily than 14 -mil material, into compact cores.

For further information on these oriented magnetic materials, just fill out the coupon and mail it to us.

ARMCO STEEL CORPORATION
 3174 Curtis Street, Middletown, Ohio - Export: The Armico International Corporation

ARMCO STEEL CORPORATION

3174 Curtis Street, Middletown, Ohio
Send me information on Armco Oriented magnetic material for:

These are our requirements:

Name

Firm
Street
City_____Z_Zone_
State.

London August 24-September 4

[^12]is obtained in a unique way. An auxiliary output circuit on the oscillator takes off a proportion of the output and passes it via a metal rectifier to a moving-coil meter element. This element has the conventional pointer replaced by a light metal vane. The capacitance between this vane and another fixed vane is connected into a feedback circuit in the oscillator in such sense that if there is any tendency for the oscillator output to drift, for any reason at all, the change will move the vane on the meter element in such a direction as to secure compensation.

Photoelectric Leveling Device

A device has been developed for automatically controlling the tilt of a platform. The arrangement consists of a light source and a photocell, with the bubble of a spirit level between them, mounted in such a way that movements of the bubble cause the illumination on the cell to vary.

Between the cell and the bubble is a vane with a narrow slot in it, so that the slot covers a portion of the width of the bubble and in such a way that when the light passes through the liquid alone, the illumination on the cell is at a maximum. When the platform is tilted the bubble moves and causes the focus of the light rays to move away from the slot in the vane and so decreases the amount of light falling on the photocell. The output of this cell is compared with that from a twin cell that is in the direct beam of the light and thus a difference signal is obtained.

This signal provides a correcting force to restore the platform to a level position. If desired, two leveling units can be placed at right angles.

Accelerometer

In an accelerometer instrument, the moving system used is the same as the moving system employed in electrical indicating instruments. It is adapted as a sensing element by deliberately upsetting the balance of the system by means of a small weight attached to the coil. When the instrument is subjected to an accelerating force in the right direction, the inertia of the moving-

Our plant becomes an extrusion of your plant

Our engineering and manufacturing facilities can make our plant a vital extension of your plant. We make nothing but electron tubes-no sets-no equipment. We are completely independent,
 so we are in a position to keep your plans in strict confidence-to work with you with as much loyalty and secrecy as if we were in your own organization.

TUNG-SOL ELECTRIC INC. Newark 4, N. J.

Sales Offices: Atlanta, Chicago, Columbus, Culver City (Los Angeles), Dallas, Denver, Detroit, Newark, Seattle.

TUNG-SOL MAKES All.Glass Seleded Beam Lamps, Miniauture Lamps, Signal Flashers, Picture Tubes, Radio, TV and Special Purpose Electron Tubes and Semiconductor Products.

The LAB PULSESCOPE, model S-5-A, is a JANized (Gov't Model No. OS-26) compact, wide band laboratory oscilloscope for the study of all attributes of complex waveforms. The video amplifier response is up to 11 MC and provides an equivalent pulse rise time of 0.035 microseconds. Its 0.1 volt p to $\mathrm{p} / \mathrm{inch}$ sensitivity and 0.55 microsecond fixed delay assure portrayal of the leading edge when the sweep is triggered by the displayed signal. An adjustable precision calibration voltage is incorporated. The sweep may be operated in either triggered or repetitive modes from 1.2 to 120,000 microseconds. Optional sweep expansion of 10 to 1 and built-in markers of $0.2,1,10,100$, and 500 microseconds, which are automatically synchronized with the sweep, extend time interpretations to a new dimension. Either polarity of the internally generated trigger voltage is available for synchronizing any associated test apparatus. Operation from 50 to 400 cps at 115 volts widens the field application of the unit. These and countless additional features of the LAB PULSESCOPE make it a MUST for every electronic laboratory.

WATERMAN PRODUCTS CO., INC.

PHILADELPHIA 25, PA.
CABLE ADDRESS: POKETSCOPE

WATERMAN PRODUCTS INCLUDE

> S-4-C SAR PULSESCOPE 3 S-5-A LAB PULSESCOPE S-6-A OROADBAND PULSESCOPE S-11-A INDUSTRIAL OOCKETSCOPE $®$. S-12-B JANIzEd RAKSCOPI® S-14-A HIGH GAIN POCKE-SCOPE S-14-B WIDE BAND FOCKETSCOPE S-15-A TWIN TUBE POCKEISCOPE RAYONIC® CathodeRaYTwbes Ond Otber Associated Equipment
coil system causes the coil to rotate in the permanent-magnet field system and so generates a small direct current. This can be displayed on a suitable galvanometer or can be amplified by electronic means for transmission to a distant point.

Junior Linear

Accelerator

Fights Cancer
Six-million-volt electron bullets will be fired at cancerous laboratory animals from a small linear accelerator of which the prototype gun is shown in the photograph above. The gun will be attached to a 6-foot copper tube. Electrons, accelerated by superhigh-frequency radio waves from a klystron fube, will fly towards their target at nearly the speed of light. Stanford University scientists are completing a $1,000,000,000$-volt, 200 foot electron linear accelerator using the same principles

High-Power Visual

Amplifier for TV
By John Ruston
Allen B. DuMont Laboratories, Iac. Clifton, N. J.

Extended power range of lowband ty transmitters is accomplished with the high-power visual amplifier shown in Fig. 1. A single type 4 W 20000 A tetrode is used in a quasi-grounded cathode circuif and is operated at a power gain of 50 . This enables the high-power ampli-

How to measure the depth of D. Jones' locker

Best msurance agamst ruming aground is somat echo sounding equipment.
RCA Victor Division of Radio Corporation of America uses the phenomenon of magnetostriction to send and receive supersonic pulses and so determine the distance to a submerged object on the ocean's floor.

Magnetostriction-the familiar "Joule Effect" of your textbook days-is the ability of a ferromagnetic metal to change dimensions when magnetized. The metal of RCA echo sounding equipment is Superior Grade "A" nickel tubing.
70 pieces of Superior seamless nickel tubing, cold drawn to $3 / 8^{\prime \prime}$ O.D. x . 020' wall thickness and cut to $1 / 4$ of the wave length of the alternating current signal, are soldered to a plate. Each length is enclosed by a coil.

Energizing the coil with alternating current, the tube expands and contracts, creating a piston effect on plate and diaphragm, sending out a supersonic wave. Likewise, reception of the echo wave by the diaphragnr agam causes the nickel tubes to pulsate and induce a current on the coil.

RCA Victor looks to Superior for accuracy and uniformity of analysis, precision drawing and cutting in large quantities. For cathodes, anodes, or tubing specialties, and tubing technology-ask Superior.Superior Tube Company, 2500 Germantown Avenue, Norristown, Pa.

Many types of nickel cathodes-mode in Lockseam* from nickel strip dise camodes, and a wide variely of anodes, grip cups and other fubula fabricated parts are available fram Superior. For information and Free Bulletin, oddress Superior Tube Company, Electronics Division, 2500 Germantown Avenue, Norristown, Pa.
*Monufactured under U.S. Porenls.

Cabinet mounting of vhf amplifier. Anode bypass capacitor is at leff of tube
fier to be driven by a 500 -watt transmitter without an intermediate amplifier. Rated peak power output is 25 kw . With an antenna of reasonable power gain, the amplifier provides the maximum permissible erp of 100 kw on channels 2 through 6.

The circuit differs from the conventional grounded-cathode type by the inclusion of a small variable inductor between cathode and ground. This provides adjustable degeneration that effectively loads the input circuit' to give the desired bandwidth and counteracts the reinsertion of lower sideband voltages removed by a filter in the driver. No sideband and filter external to the transmitter is then required.

The amplifier input circuit is connected to the double-tuned output circuit of the driver with a short length of coaxial cable. The complete coupling system is virtually a triple-tuned circuit and is aligned by using the conventional procedure for such circuits. The amplifier output is a double-tuned circuit capacitively coupled to the coaxial output transmission line.

Construction

The r-f circuit is contained in a shielded compartment divided into input and output sections by a horizontal grounded partition. The $4 W 20000 \mathrm{~A}$ tube is mounted with the anode downwards. Spring fingers connect the screen terminal ring to a plate forming a bypass capacitor with the underside of the partition; the plate and partition

Iteiland Amplifier System

The most complete, yet easiest to operate amplifier system ever developed for oscillographic recording

Model 119 Carrier and Linear or Integrating Amplifier System.

Heiland's model 119 Amplifier System, used in conjunction with Heiland Recording Oscillographs, has received wide acclaim from engineers for its extreme versatility, accuracy and simplicity of operation in the amplification of static and dynamic current phenomena.

This small, compact instrument, which can be provided for either rack, table, or shock mounting with available accessories, is housed in a rugged, yet lightweight cast aluminum case finished in attractive silver-gray gloss enamel. For complete specifications write or wire for our Bulletin 107.

Complete information on other Heiland products will be supplied on request.

Power Supply Assembly (Rear View)

Amplifier Assembly (Rear View) -
are separated by sheets of Teflon. The anode tuning inductor, consisting of two pieces of tubing joined by a movable shorting bar, is connected between the anode terminal and another plate that forms a bypass capacitor with the underside of the screen plate (Fig. 2).

The output inductor is of similar type and is resonated by an airdielectric capacitor on the underside of the partition. Coupling between anode and output circuits is adjusted by swinging the output inductor as indicated by the arrows.

FIG. 1-Circuit of $25 . \mathrm{kw}$ amplifier showing coupling methods used

The circuits are aligned as a pair of slightly overcoupled tuned circuits to give a substantially uniform response, adequate bandwidth and optimum load impedance for the tube.

In the upper section of the shielded compartment, the grid ring terminal is connected by spring fingers to a circular plate supported on insulators from a grounded bracket. The input tuning inductor connected between grid and ground consists of two parallel strips joined by a movable shorting block. A d-c isolating capacitor is built into the lower strip and bias voltage is applied through an r-f choke. The coaxial cable from the driver is tapped onto the input inductor as shown. Spring fingers connect the cathode terminal of the tube to a plate supported on insulators above the grounded bracket. This plate is connected to ground through an

leading Hi-Fi producers specify CRUCIBLE PERMANENT MAGNETS for maximum energy....minimum size
Crucible alnico permanent magnets are unsurpassed in their magnetic properties. They provide consistently higher energy product . . . which results in smaller, more powerful magnets.

That's why not only leading producers of high fidelity sound equipment, but hundreds of other discriminating manufacturers of instriments, controls, motors and other magnet-equipped devices, prefer Crucible alnico permanent magnets.

Crucible has been one of the largest proclucers of this type of magnet since the alnico alloys were first developed. And backing up

Crucible steel company of america, general sales offices, oliver building, pittsburgh, pa. REX HIGH SPEED - TOOL • REZISTAL STAINLESS • ALLOY • MAX-EL - SPECIALPURPOSESTEELS

how small can a wave guide get?

Well, alongside some of the stuff we're working with now, the radar plumbing we used during World War II gets to look like air-conditioning duct. What's more, some of our boys here seem to regard anything below S-band as practically pure D.C. Naturally, we're up to our hips as usual in work on military equipment. However, we do occasionally have some extra creative capacity available, so if you have a problem involving something special in wave guide components (real small ones, too) and like that, maybe we can help. Drop us a line.
adjustable inductor consisting of another pair of parallel strips joined by a movable shorting block.

The inductors all have sufficient range of adjustment to cover lowband tv channels 2 to 6 , the shorting bars being preset for the desired channel. Fine tuning of the input, anode and output cricuits is obtained by small variable capacitors operated by control knobs on the front of the unit.

FIG. 2-Mounting of tube and tuning capacitors in $25-\mathrm{kw}$ visual amplifier

The r-f compartment, as shown in the photograph, is mounted in a cabinet having the same size and styling as those used for the driver. The lower part of the cabinet contains voltage-dropping coils, Flowrator for anode cooling water and the upper part houses a blower for tube-seal cooling. All power supplies and control circuits for the amplifier are contained in a separate cabinet. The only component external to the cabinets is the platesupply transformer.

Measured performance approaches the maximum theoretically possible with this tube type ${ }^{2}$, it being possible to obtain a peak power output somewhat greater than 30 kw at a power gain of more than 100. Normal operation at 25 kw peak power and a power gain of 50 thus provides an adequate safety factor. If operation at less than the rated output is desired, power gain can be reduced by means of the adjustable cathode inductor. The amplifier is very stable with no tendency to self-oscillation even when operated at maximum power gain of which it is capable. This can be attributed to the effective shielding between input and output circuits made possible by ring-seal type of tube construction and the self-neutralizing characteristic of

Because it car withstand high manufacturing and operating temperatures, Warrenite Teflon Hook-up and Lead Wire is used extensively in guided missiles, ordnance, aircraft, marine and Signal Corps electric and electronic equipment and installations.

CHECK THESE POINTS

$\sqrt{ }$ Class H Insulation $\left(-100^{\circ} \mathrm{C}\right.$ to $\left.250^{\circ} \mathrm{C}\right) \sqrt{ }$ Good Space Factor $\sqrt{ }$ Impervious to all solvents and acids $\sqrt{ }$ Excellent Flexibility (can be wound on its own diameter) $\sqrt{ }$ Very low water absorption

WARREN WIRE COMPANY

 Plant and Main Office: POWNAL, VERMONT CLEVELAND* * DETROIT * CHICAGO* • TT. LOUIS* • ST. PAUL • LOS ANGELES* • SAN FRANCISCOMonufocfisers of Plain Enamel, Nyonel, Formvar, Nyform, Bondvar, sllicone and Teflon
Magnet Vire. . . Teflan Hook-up and Lead Wire . . . Tinned, Bare and Bunched Copper Wire.

A Revolutionary New Relay Development...

of utmost importance to

 electrical and electronic design engineersThe Mullenbach Capaswiteh uses an entirely new and different concept in relay design to transfer the contacts; provides extreme sensitivity, low power requirements, high current-carying capacity.
The revolutionary new Capaswitch is basically an ultra-sensitive relay with unusual current carrying capacity. It will perform all of the jobs of conventional magnetic-coil relays within the same current carrying capacity, plus many jobs that magnetic-coil relays camot do. However, in design it departs radically from comentional relays. Instad of the usual electromagnetic armature, a unique electrostrictive capacitive element provides the mechanical energy to open and close the contacts. Only 0.5 milli-watt-seconds of operating power (150 volts d.c.) is required to close the contacts. To keep them closed reduires less than 0.1 milliwatt, or less than one-hundredth the power required to keep a conventional magnetic-coil relay closed! This low power requirement opens up a vast new field of applications, eliminating need for much pre-anmplifier equipment.
How the Capaswitch works-Application of an actuating voltage creates a bending moment in the electrostrictive capacitive element, closing the contacts. Renoval of the actuating voltage and discharge of the electrostatic element through external circuits or through a resistor, removes the bending moment, opening the contacts.
Time Delay Function-If appropriate resistances are applied in the circuit, the Capaswitch will function as a time clelay relay to open or close the contacts. For longer time delays a larger condenser may be paralleled to the capacitive element.
Pulse Characteristics-Initial closing time of the Capaswitch is 10 milliseconds. However, it can be actuated by pulses as short as 10 microseconds or less. The electrostatic element may also be used to store low power pulses until sufficient voltage has been acemmulated to operate the relay. However, present models cannot be used for accurate counting.
High Overvoltage Capacitance-Absence of a coil enables the Capaswitch to withstand wide voltage variations. As much as 200% overvoltage may be applied to the electrostatic element without danage. Low power requirements virtually climinate leat and resulting dissipation problems, and reduce the number of needed components, saving space and weight.
Available now-Until recently the Capaswitch has been available only in linited quantities. Now, however, stepped-up production schedules assure increasing supplies.

Write today for complete specifications and prices!

ELECTRICAL MANUFACTURING CO.
Established in 1927
2300 East 27th Street - Los Angeles 58, California
the tetrode tube in the whf band ${ }^{3}$. As a result of the isolation of input and output circuits, they can be tuned independently with negligible interaction thus simplfying their alignment for broadband operation.

References

(1) F. E. Terman, "Radio Engineer's Handbook,' p 472, McGraw-Hill Book Co. Inc., New Fork, N. Y., 1943.
Hirh J. Ruston, High Gain Amplifiers for Record of the TV Transmitters, Convention Convention.
ting Tetrode. Wagener 500-MC Transmit $I R \mathscr{F}, 36$ De Design Considerations, Proc Photographs Changed to Line Drawings

THE EXPERIMENTAL opticoelectronic system shown in Fig. 1 was developed by H. M. Joseph of the National Bureau of Standards in consultation with L. S. G. Kovasznay of Johns Hopkins University to produce outline pictures from halftone photographs. It may find use in automatic recognition of patterns such as fingerprints or biological specimens.

FIG. 1-Image feedback system produces desired type pattern on slave oscilloscope

The system uses patterns in the form of photographic transparencies placed between a cathode-ray tube moving-spot scanner and a multiplier phototube. Signals resulting from scanning the picture are amplified and fed back to the crt intensity control such that a picture is produced upon its screen.

Negative feedback thus obtained improves tonal rendition of the picture. The same signals are also applied to another amplifier and the resulting signal is used to control a monitor crt tube that reproduces the same picture. Modifying cir-

Raytheon KTE-100 Microwave was designed with color in mind. More than two years ago, Raytheon foresaw microwave as an important component in the transmission of color television. Through sound design plus pioneering developments in subcarrier multiplexing, Raytheon now presents microwave equipment which will handle color television of the highest
quality. Act now to insure early delivery of Raytheon's advanced design KTR-100 microwave for STL, remotes or network interconnection. Write for complete information.

Address Department 6270 E

SEE THE
NEW RAYTHEON KTR-100
BOOTH No. 10
NARTB CONVENTION

At the Hathanay Instrument Company, tiny galvamometer coils are wound with wire so fine that it is almost invisible to the unaided eye. Ingenious tooling and use of an $A O$ Stereossopic Microscope assure fast, precise norkmanship.

These unique AO Microscopes provide two complete optical systems (one for each eye) to enhance the perception of depth and to provide three-dimensional reality plus an exceptionally wide field of view. Unlike ordinary microscopes, objects and move. ments are not inverted. Instead they appear in their natural directions. Because AO Stereoscopic Microscopes are unequalled for fabrication, assembly, inspection of minute precision parts, they are widely used in electronics, metal working, food and many other industries.
Let AO Stereoscopic Microscopes help you achieve high precision at low cost. Mail coupon below.

$A_{\text {merican }} \mathrm{Optical}$

> (AD) INSTRUMENT DIVISION iuFfalo is, miv roox

You NEED

Stereoscopic Microscopes
cuits between phototube and monitor alter the image.

Any scanning pattern may be used, but the electronic circuits are simplest when the scanning velocity is the same in two orthogonal directions. Triangular waves are applied to the horizontal deflection of the scanner and a slightly differentfrequency wave to the vertical deflection. The result is a Lissajous figure of rectangular shape that changes its proportions with the instantaneous phase between the two waves. The same waves are applied to the monitor for identical scanning.
This system has been emploved in the enhancement of contours in photographs and for production of outline pictures from halftone photographs as shown in Fig. 2. The process of contour enhancement is essentially that of increasing the abruptness of tone transition at contour lines.

FIG. 2-Video picture (left) produced from original photo negative. At right, outline resulting from singly differentiated and rectified video signals that were then amplified and clipped at constant level

Sharpening of tone transitions for contour enhancement is accomplished by electrically adding the negative of the second derivative from the original signal. Mathematical analysis of the process indicates that a first approximation to a correctly focused picture is obtained when this process is applied to an incorrectly focused picture. Used in this way, the system is a two-dimensional visual analogue of a high-frequency compensated audio system.

When signals from a differentiating network are rectified, a positive pulse is obtained as the light spot passes over a region of sharp tone gradient. The application of such signals to the intensity control of the monitor results in pictures

GAMEYELL PRECISION POTENTIOMETERS

Top companies that demand quality components are constantly turning to Gamewell.

Take the case of Avien, Inc. who were making a fuel gauge for aircraft use . . . Gamewell engineers designed a special precision potentiometer which has helped Avien maintain its high standards.
Put Gamewell experience and know-how to work on your problem . . . write today for our free booklet.

THE GAMEWELL COMPANY
Newton Upper Falls 64, Massachusetts

PRECISION POTENTIOMETERS
Manufacturers of Precision Electrical Equipment Since 1855
that show only the contour lines, like line drawings.

This process may be used for automatic production of sketch maps from terrain photographs or the display of contours on x-ray pictures or coronagraphs. In picture transmission where line drawings are acceptable, economies in bandwidth are possible through reduction in the information that must be transmitted. Also, contrast enhancement may be used in television to reduce the effects of low transmission bandwidth.

The convenience and rapidity with which the position of the picture on the tube screen can be manipulated, as well as the possibility of scale changes in any direction, may permit automatic recognition of patterns by auto-correlation techniques. Among the patterns that might be recognized or compared in this way are military targets, fingerprints, printed or written matter, pathological blood cells or various types of crystals.

Magnetic Recording of PWM Signals

By Max L. Van Doren
Research Engineer
Douglas Aircraft Co. Santa Monica, Calif.

A TELEMETERING SYSTEM suitable for the flight testing of piloted aircraft transmits to ground recording equipment information from 88 input devices having d-c outputs in the millivolt range. A high-speed switch is used to commutate the input devices to a common amplifying system. The information is then converted to pulse-width form and transmitted to the receiving station on a single, frequency-modulated r-f carrier. The rate of commutation is approximately 16 rps , thus, each input device is sampled and recorded 16 times per second for the duration of the flight. Since there are 88 input instruments, there are approximately 1,400 discrete data points recorded each second. About eight of the input channels are used to carry calibration, linearity checks and time-correlation information leaving 80

Color television brings a new set of critical demands for precision frequency control. Accuracy, stability and uniformity of crystals used in this application must be as nearly perfect as materials, methods, and quality controls can make them.

Midland meets this demand not only with a crystal of complete reliability in this new field, but also with a solid background of pioneering in the development of frequency control crystals and circuits for this and many other exacting applications.

Midland is prepared NOW to supply you in quantity with Color TV Crystals to meet your exact specifications, and to counsel on all matters concerned with this subject.

Whatever your Crystal meed, conventional or specialized When it has to be exactly right, contact

ELECTRICAL DESCRIPTION-The Spectrum Analyzer, a self contained portable unit, is a very sensitive microwave receiver whose output is displayed on a 3 inch cathode-ray tube. The analyzer employs a resonant cavity type frequency-meter calibrated to read directly in megacycles, a frequency-swept (Velocity Modulated) R-F oscillator, a crystal mixer and associated plumbing, narrow band I-F amplifiers, and both regulated and unregulated power supplies.
This versatile equipment provides a visual indication of the spectra of R-F oscillators within the range of 8470 to 9630 megacycles per second as a function of power versus frequency. Other uses are:

$$
\begin{aligned}
& \text { 1. As a frequency meter for measuring fre- } \\
& \text { quencies of resonant cavities, echo boxes, } \\
& \text { magnetrons, and local oscillators within the } \\
& \text { range of } 8470 \text { to } 9630 \mathrm{MC} / \mathrm{S} \text {. The Analyer } \\
& \text { is so sensitive that a magnetron signal can } \\
& \text { usually be picked up at some distance from } \\
& \text { the source without the use of connecting } \\
& \text { cables. } \\
& \text { 2. As a measuring device for setting the } \\
& \text { frequeney of radar and beacon local oscil- } \\
& \text { lators in radar sets. }
\end{aligned}
$$

3. As a frequency modulated oscillator for tuning T / R Boxes and R / T Boxes in transmitter converters. It can be used to check magnetron pulling and AFC circuits.
4. As a performance tester for local oscillator tubes. Type 2 K 25 and $723 A / B$ tubes may be tested by inserting them in the their output curves on the analyzer scope. 5. As a means of measuring band-widths

MECHANICAL DESCRIPTION-The equipment is built into a sheet aluminum housing. The electrical components are built on an aluminum chassis located inside the removable dust cover. As many components as possible are mounted on terminal boards to facilitate quick and easy servicing. The Analyzer is transported with an Auxiliary and Spare Parts Box in a carrying case. The Analyzer is cushioned in a shock mounted carriage. This carriage can be removed from the carrying case if it is necessary to provide a shock mounting for the Analyzer when it is used outside of the carrying case.

(A)

(B)

FIG. 1-Scope presentation of 88 pwm channels (A). Commutation system permits viewing selected groups of channels (B)
channels to carry flight test data.
At the ground station, the signal is received and presented in a lines raster form on the monitor scope as shown in Fig. 1 and is simultaneously recorded on magnetic tape. All of the test-data channels may be surveyed on the scope or by electronic decommutation any one channel or group of channels may be observed independently. By feeding the tape output to the automatic data reduction system, data from any given channel or group of channels may be reduced to the desired form.

The output of any channel may be continuously compared to the calibration channels, either visually or electrically, to determine applicable scale value. Since the calibration information originates at the input to the airborne system, any transmission errors are automatically compensated.

Basically, the information from each input device is commutated in

They use Fast Vacumm

In the lamp and tube manufacturing business, you will find many "house vacuum" systems like this . . . built around super-dependable Kinney High Vacuum Pumps. This particular room, in the plant of a leading manufacturer of electronic and electrical equipment, cantains seven Kinney Model DVD 18.14.20 Pumps with a combined vacuum potential of 5,000 cubic feet per minute. This is the heart of the vacuum exhausting process ...
the key to fast pump-down and fast production. Whatever your vacuum problem - whether it's a laboratory job requiring a 2 CFM pump or a full scale production problem like this - there's a Kinney Pump to fit your needs. Kinney district offices are staffed with competent vacuum engineers, ready to help you get the right vacuum pump for each application.
SEND COUPON FOR COMPLETE DETAILS.

Electrically proven in every way, and over a twenty year period, there's really nothing "new" about tantalum capacitors except in the significantly increased demand for them, and the continually expanding list of their applications.

Incorporating a porous tantalum anode assembly, tantalum capacitors derive their unusual stability from the characteristics inherent in tantalum itself - the most stable of all anodic film forming metals. It has been observed consistently that no important changes of characteristics occur in long periods of operation; there is no shelf aging. Large capacity in extremely small size is also an important advantage.

The growing demand for Tantalum Capacitors is being adequately met by Fanstecl and other leading manufacturers. Write for current technical bulletins.

NEW...
Power factor Slide Rule All plostic, $8^{\prime \prime}$ circular mile gives power factor of capacitars from power foctor of capacitarstram
$0.061010,000 \mathrm{mfd}$., at a glance.

Send a dollar bill with your le". lerhead to cover partial cost of rule, postage and handling. No C O.D.s or charges, please.

NORTH CHICAGO, ILLINOIS, U.S.A.
Tantalum Capacitors. . . Dependable Since 1930
sequence forming a chain of 88 pulses with the 89 th and 90 th pulses omitted for synchronization purposes. Each pulse varies in width: as a function of the commutated' input voltage. The transfer function expressing this relation is
$P W_{n}=44.44 E_{n} \times 10^{3}+120 \mu \mathrm{sec}$
$E_{n}=$ input voltage of channel n in volts
$P W_{n}=$ resultant pulse width of pulse n in μ sec
The minimum input voltage for any channel is zero and the maximum 9 mv . This results in minimum and maximum pulse widths of 120 and $520 \mu \mathrm{sec}$ respectively. The commutation rate is 90 channels in 60 milliseconds, therefore, the pulse spacing is approximately $666 \mu \mathrm{sec}$. Under maximum pulse width conditions there will be a minimum space between adjacent pulses of 146 $\mu \mathrm{sec}$.

FIG. 2-Waveforms in pwm recorder. Trailing edge of output pulses coincide with leading edge of input pulses

With this recording rate a onehour flight requires the recording of over 5 million data points. Recording this photographically would require 12,000 feet of film and would be a costly operation. For this reason use of magnetic tape recording was investigated.

With the development of recording heads employing air gaps of 0.00025 inch and improved magnetic instrumentation tape, the main problem to be solved was the design of a suitable integrator. Basically, the problem is simple, a

Save Development Time...

REDUCE COSTS

E
valuation of design without actual construction of preliminary models is today an engineering necessity. The MILAC Analog Computer makes this short-cut possible by rapid solution of mathemati-cal-electronic models of new systems or structures. Different approaches and solutions may be tried out more freely, for the cost of construction and test of prototypes for each design change is eliminated. Development costs and engineering manhours are thus vastly reduced, for the MILAC accurately predicts and rules out faulity designs before final performance tests.

To denonstrate the usefulness of the MILAC Computer in engineer$\mathrm{ng} d \Rightarrow \operatorname{sign}$ and analysis, Wm. Miller Instruments maintains an Analog

K

PASADENA

WM MILLER INSTRUMENTS, INC.
CUSTOM INSTRUMENT DESIGNERS AND MANUFACTURERS
325 N. HALSTEAD AVENUE•PASADENA 8. CALIFORNIA•RYAN 1-6317

TURRET ATTENUATOR featuriag "PULL-TURN.PUSH" action

SINGLE "IN-THE-LINE" ATTENUATOR PADS and
 50 ohm COAXIAL TERMINATION

STODDART AIRCRAFT RADIO Co., Inc.

6644-A Santa Monica Blvd., Hollywood 38, California • Hollywood 4.9294
near continuous train of rectangular pulses is to be recorded on tape and reproduced on playback with no change in pulse width. When recording the pulse, it is desirable to reduce the magnetic diffusion on the tape so that the magnetized area will be as small as possible. This will provide a sharply defined leading and trailing edge for each recorded pulse. To accomplish this the record head current was made the differential of the input voltage resulting in a current spike of approximately 2 usec pulse width

FIG. 3-Integrator circuit sensitive to amplitude and rate polarities near zero

In reproducing this pulse the output of the playback head will be the differential of the magnetic density recorded on the tape. The net result of the record and playback operation is that the output on playback will approximate the second derivative of the recorded waveform. In the process of recording and playback, magnetictape and tape-head diffusion will cause pulse distortion and smoothing such that the results will appear approximately as shown in Fig. 2.

In Fig. 2, when the output voltage crosses the zero axis at maximum negative rate it is coincident with the leading edge of the recorded pulse. Conversely, if it crosses while a maximum positive rate it corresponds to the trailing edge of the input pulse. From these observations it is determined that any integrating device should be sensitive to rate polarity and amplitudes near zero. Such a device is shown in Fig. 3.

The pulse reformer has an input

It is difficult to write about Teflon without appearing to exaggerate. For in many different ways this almost magic plasticthe most important derivative of the new wonder chemical fluorocarbon-is making the seemingly impossible possible. Parts made of R / M Teflon have already brought many startling, improvements to the electronics and electrical manufacturing fields. And everyone working with it senses that the surface has barely been scratched-that hundreds of applications remain to be revealed.

There undoubtedly are ways in which Teflon can be profitably put to use in your own plant. So we have this suggestion to make to you: consider the properties of Teflon listed below-then get in touch with us if you think that any of them might make a contribution to your operation. We will fabricate parts to your own specifications or supply you with Teflon in the form of rods, sheets, tubes or tape.

Properties

High resistance to acids and gases even at high temperatures • Moisture absorption zero - Unaffected by weather - Excellent heat stability up to $500^{\circ} \mathrm{F}$. in continuous operation - As tape, leaves no carbon residue along discharge path - High impact resistance - Nonadhesive Stretches easily • Tensile strength $1500-2500$ psi

* Du Pont's trade-mark for its tetrafluoroetbylene resin

RAYBESTOS-MANHATTAN, INC.

ASBESTOS TEXTILE DIVISION

MANHEIM, PA.

STANDARD

Provide delays ranging from 2 to 120 seconds.

- Actuated by a heater, they operate on A.C., D.C., or Pulsating Current.
- Hermetically sealed. Not affected by altitude, moisture, or other climate changes.
- Circuits: SPST only - normally open or normally closed.
Amperite Thermostatic Delay Relays are compensated for ambient temperature changes from -55° to $+70^{\circ} \mathrm{C}$. Heaters consume approximately 2 W . and may be operated continuously. The units are most compact, rugged, explosion-proot, long-lived, and - inexpensive! TYPES: Standard Hadio Octal, and 9-Pin Miniature.
PROBLEM? Send for Bulletin No. TR-81

BALLAST-REGULATORS

- Amperite Regulators are designed to keep the current in a circuit automatically regulated at a definite value (for example, 0.5 amp).
- For currents of 60 ma . to 5 amps . Operates on A.C., D.C., Pulsating Current.
- Hermetically sealed, light, compact, and most inexpensive.

Maximum Wattage Dissipation: T61/2L—5W. T9—10W.

Amperite Regulators are the simplest, most effective method for obtaining automatic regulation of current or voltage. Hermetically sealed, they are not affected by changes in altitude, ambient temperature (-55° to $+90^{\circ} \mathrm{C}$), or humidity. Rugged; no moving parts; changed as easily as a radio tube.

Write for 4 -page Technical Bulletin No. AB-51
> - mperite CO. Inc., 561 Broadway, New York 12, N. Y.

In Canada: Allas Radio Corp., Ltd., 560 King St. W., Toronto 2B

FIG. 4-Pulse sequence in integrator circuit. Shaded area indicates plate current is cut off by suppressor grid
phase inverter, $V_{I A}$, feeding two gated trigger tubes, V_{2} ON and V_{3} off. Tube V_{4} is a bistable multivibrator forming the output pulse and gate signals for the trigger tubes. Tube $V_{1 B}$ is a cathode follower with an output impedance of approximately 300 ohms.

Operation and Design

If the integrator is to have no greater ambiguity than one microsecond, a control-voltage amplitude no greater than 3 volts should be considered. To do this a 6AS6 was chosen. The necessity of gating the trigger signal is obvious when both leading and trailing edge signals have positive components. One of these should be eliminated to avoid ambiguity. The positive component of the leading-edge signal and the negative component of the trailing-edge signal are removed by gating so that the only effective portions remaining are the trigger pulses themselves. This gating is accomplished in the suppressor circuit of the trigger tubes.

With the cathodes of the 6AS6's held at +45 volts, the suppressor divider is connected such that the suppressor voltage is $9 / 40$ of the plate to ground voltage minus 45 volts. With +200 volts at the plate, suppressor voltage would be zero. In this condition V_{2} could conduct when V_{48} is cut off if its control grid were above cutoff. When $V_{A B}$ conducts, its plate voltage falls to approximately 100 volts. This results in a suppressor voltage at V_{2} of -25 volts and it cannot conduct. The same is true for V_{14} and V_{3-} When V_{2} conducts it pulls down the

MAGNETIC COMPONENTS for Standard and Special Applications

POWER TRANSFORMERS

Top quality Class A military type power and pulse transformers-made to your electrical specifications! Class A types meet Transformer and Reactor Specification MIL-T.27. Available in standard or special MIL cases.

The LFE Transformer Division is superbly equipped for designing and developing numerous types of magnetic components, including solenoids, coils and transformers. We can readily accommodate your order whether for custom-built models or for limited or large-scale production of standard units.

OPEN-TYPE AIRCRAFT TRANSFORMERS 380.2400 Cycles

Lightweight, compact, high temperature opentype units. Utilize Class H materials throughout. Vacumm-impregnated with silicone resin. Hipersil C type cores utilize 4 mil thick lamination material.

SOLENOIDS and BIFILAR R. F. COILS
Silicone-treated, vinyl-sleeved or molded. Available in a wide range of types and sizes.

For data sheets and detailed information, write:

This

Is Production

Time is being used for soldering:

- not wasted on filing tips

Big difference is use of Stanley Armor Clad Soldering Tips. Armor Clads don't need filing - all production time can be used for soldering. More! Whereas ordinary tips are usually finished after soldering 3000 joints, Stanley Armor Clads are only
getting "warmed up." They last from 3 to 10 times longer.
You'll get better work, too, from Stanley's uniform tip length and unvarying heat. 41 sizes and shapes - screw or plug type - to fit all kinds of electric soldering irons.

Fast! Dependable! Economical!

Stanley Plug Type Electric Soldering Iron

An easy-to-handle lightweight. Has new, replaceable heating element cool, comfortable, hardwood handle. Six models to choose from.
Call your industrial supply distributor for Stanley Armor Clad Tips and Soldering Irons, or write Stanley Tools, 108 Elm Street, New Britain,

THE TOOL BOX
hardware • ELECTRIC TOOLS • STEEL STRAPPING • STEEL
plate voltage of $V_{t s i}$ and locks itself out of operation while enabling V, to conduct when its control grid signal is greater than cutoff. The grid bias for the trigger tubes is held at approximately - 13 volts since the 6AS6 under these conditions cuts off at about - 10 volts.

The results of this design may be seen by reference to Fig. 4. The entire sequence of operation is interrupted if there is an added extraneous pulse or a missing desirable one. For this reason dropouts due to magnetic tape imperfections are highly undesirable.

Mobile Receiver Speeds Police

Foot patrolmen in Atlantic City, N. J. are scheduled soon to obtain the benefits of police radio. A four-tube, two-cubic-inch receiver shown at left fits into the standard peaked cap. The fiveounce device uses a short antenna at tached to the hat shield as modeled by the sergeant at the right

PERTINENT PATENTS

By Norman L. Chalfin
Hughes Aircraft Co Culver City, Calif.

VAPOR DETECTION and video-amplifier design are included in this month's abstracts of devices interesting to electronics engineers.

Vapor Detector

An interesting application of electronic vacuum-tube technique to detection of the presence of certain compounds in vapors is the subject of patent 2,652,532 issued to P. D. Zemany for an "Electrical Vapor Detector". The patent is assigned

You can simplify purchasing . . . improve design . . . speed production

mumimpover C-D.F DIILCTO amminates

Only C-D-F, the Continental-Diamond Fibre Company, makes Dilecto laminated plastic, just as only Cadillac makes a Cadillac. Dilecto is 50 different materials with more combinations and variations in desired properties than we can tell you here.

But Dilecto has three important qualities that you should think about if you buy, design, or machine laminated plastics.

DILECTO HAS HIGH MECHANICAL STRENGTH

Mechanical strength is frequently an important determining factor in the selection of an insulating material. Insulating parts used in large electrical power equipment are frequently bulky. The high mechanical strength of Dilecto helps reduce size-dimensions of insulating parts without danger of failure. Instruments, meters and small motors frequently require very small insulating parts which must withstand comparatively large mechanical stresses. Insulation for use in high frequency circuits should have a minimum bulk factor for minimum dielectric losses. Dilecto fulfills these requirements with a combination of high mechanical strength and low loss factor, characteristic of the better C-D-F electrical grades.

So C-D-F selects for your Dilecto insulation grade the correct, highest quality base material, paper, cotton, nylon, glass. These are used in combination with improved penetrating resins: Improved Phenolic, New Melamine, New Silicone, New Tellon, all synthetic, well polymerized resins.

Both the base and the resin are good insulators by themselves. But C-D-F sells them to you in an improved, practical form . . Dilecto. Uniform sheets, tight tubes, strong rods, close tolerance machined and formed specialties, high bond strength metal clads.

Why does Dilecto combine so well mechanical strength with dielectric strength and dimensional stability? Because Dilecto is almost homogencous, a true blend of resin and base.

DILECTO IS ALMOST HOMOGENEOUS

A poor laminate absorbs moisture at its edges, loses its insulating properties fast. Entrapped moisture and other volatiles within the cured structure causes inconsistent dielectric strength, with ultimate puncture and breakdown.

Punch press and bench saw operators know how much time and material is saved when the laminated plastic is uniform and homogeneous in nature like Dilecto.

DILECTO IS IMPROVED

Yes, C-D-F Dilecto is an improved laminated plastic, due to high standards and advances in resin and manufacturing techniques. It is watched by skilled workers in our modern plants, checked against rigid standards ... C-D-F standards . . . by our quality control people. It is easy to machine, and the C-D-F shops are doing a booming business in specialties.

Table I-Typical Improved Phenolic Laminates				
Commercial designation ${ }^{\text {a }}$	Resin	Filler	Improved properties	Improvement due to:
MEC-5	Phenolic	Nylon fabric	Insulation resistance; moisture resistance	Filler
XXHV-2 ${ }^{\text {b }}$	Phenolic	Paper	High dielectric strength paralIel to laminations	Resin and manufacturing technique
CRD	Phenolic	Cotton mat	Better machining	Filler
XXXP-26 ${ }^{\text {b }}$	Phenolic	Paper	Insulation resistance; moisture resistance	Resin and manufacturing technique
C-92	Xylenolc ${ }^{\text {c }}$	Cotton fabric	Alkali resist ance	Resin
CF	Modified phenolic	Cotton fabric	Postforming	Resin

[^13] NEW Phenolics", 「'art 11 .

The next time you think of laminated plastics, the name to remember is C-D-F Dilecto. The improved, high strength, uniform material that makes insulation buying and using more a science, less a puzzle. New grades, new applications, new savings are just part of the Dilecto
 success story. Look up the facts in Sweet's Design File, or write for catalog. Send us your blueprint for quotation ... tell us your design dream...C-D-F wants to work with you.

CONTINENTAL-DIAMOND FIBRE COMPANY NEWARK 16, DELAWARE

A NEW PLANT

A modern building designed specifically for relay manufacture is another step in the continuing effort to improve Struthers-Dunn services and maintain maximum production of high quality products at favorable prices.

A NEW LOCATION

The entire Struthers-Dunn factory and headquarter offices have been moved to a new location, approximately 15 miles Southeast of the PhiladelphiaCamden Area.

NEW ADDRESS

LAMB'S ROAD • PITMAN, N. J.
NEW TELEPHONE
PITMAN 3.7500

STRUTHITRSSDINN 5,348 RELAY TYPES

Dual-Trace Applications

WITH THE TEKTRONIX TYPE 535 OSCILLOSCOPE AND TYPE 53C DUAL-TRACE PLUG-IN PREAMPLIFIER

Here is a combination ideally suited to mosi applications involving accurate comparisons of two signals.
The Type 53C Dual-Trace Unit contains two identical amplifier channels that can be electronically switched either by the oscilloscope sweep or at a free-running rate of approximately 100 kc . When amplifier switching is triggered by the sweep, the two signals to be compared appear on alternate sweeps. Because the sweeps are identical, and time-delay characteristics of the two amplifier channels are closely controlled, time comparisons accurate within I mases san be made. Two simultaneous transients may be viewed by free-running the 5 witching. Transients of as little as 1 msec duration are well delineated, having about 100 elements in each trace. For many purposes, shorter transients can be adequately observed

The Type 535 Oscilloscope is designed to use plug-in preamplifiers. It has an exceptionally wide sweep range, high accelerating potential, new accurate sweep-delay circuitry, and many

Please write for complete specifications
other important features. Four Plug-In Preamplifiers have been developed for use with the Type 535, to provide an unusually high degree of flexibility in a single oscilloscope.
 Response of two networks excited by a single pulse shows free-running operation of the Dual-Trace Unit in a one-
shot applicatian. A single $200-\mu \mathrm{sec} / \mathrm{cm}$ sweep is used for this display.

ALTERNATE-SWEEP PRESENTATION
Output of an RC network superimposed on the input pulse. Both waveforms appear on alternate $0.04 \mu \mathrm{sec} / \mathrm{cm}$ sweeps, accurotely measuring the risetime deterioration caused by passage through the network.

MAIN OSCILLOSCOPE FEATURES

$600,000,000$ to 1 Sweep Range $-0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $12 \mathrm{sec} / \mathrm{cm}$, continuously voriable. Calibrated- 0.02 $\mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$, accurate within 3%. 10 KV Accelerating Potential - Brighter display at low repetition rates.
Flexible Sweep Delay - $1 / 1 \mathrm{sec}$ to 0.1 sec, jitter free, incremental accuracy within 0.2% of full scale. Type 535 Oscilloscope - $\$ 1300$ plus price of desired plug-in units.

DUAL-TRACE PLUG-IN PREAMPLIFIER
Type 53C Specifications
Two Identical Amplifier Channels
Frequency Response - DC to 8.5 mc .
Risetime- $0.04 \mu \mathrm{sec}$
Sensitivity- $0.05 \mathrm{y} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$ calibrated, continuously varioble ta $50 \mathrm{v} / \mathrm{cm}$.
Electronic Switching
Triggered - actuates alternate sweeps.
Free-running rate- 100 kc , approximately. Type 53C Dual-Trace Unit- $\$ 275$.

OTHER PLUG-IN PREAMPLIFIERS

Type 53A Wide-Bond DC Unit-\$85.
Type 53B Wide-Band High-Gain Unit--\$125 Type 53D High-Gain Differential Unit-- \$145. Prices f.o.b. Portland (Beaverton), Oregon.

Tektronix, Inc.
P. O. Box 83IA - Portland 7, Oregon - Cable: TEKTRONIX

FIG. 2-Circuit of the broadband video amplifier employing feedback
when the same feedback circuit is applied to the video amplifier. Oscillation then results at the higher frequencies.

A way around this problem is proposed in the invention of E. L. C. White of Iver, England who was granted U. S. patent $2,652,459$. The patent is asssigned to Electric and Musical Industries Ltd., Hayes, England.

The circuit of White's invention is shown in Fig. 2. Sweep frequencies of a sawtooth character are applied to V_{1}, which is cathodecoupled to V_{2}. Tube V_{3} is the output amplifier. The output transformer has a split secondary that feeds a scanning yoke. A resistor is placed in each return leg of the split secondary. From one of these through R_{1} and C_{1} feedback voltage is applied to the grid of V_{2}. Capacitor C_{1} is of fairly large value. A small capacitor C_{2} feeds some of the feedback voltage to the cathode of V_{3}. The cathode of V_{3} is also connected to the grid of V_{0} through R_{2}, a large resistance.

Low-frequency components are phased properly in the feedback resistor R_{4} for negative feedback but owing to transformer characteristics high frequency components would be of a positive phase. At the cathode of V_{1} the low frequencies are in phase with those at the resistor R_{i} while the high frequencies are at least partly out of phase at the cathode of V_{1} with respect to resistor R_{1}.

The small capacitor C_{2} has a high impedance to low frequencies and low impedance to high frequencies thereby providing an out-of-phase high-f requency component to counteract the phase shift noted above.

Thus the tendency of such an amplifier to oscillation owing to a nonuniform phase shift is overcome and it will have a very wide band of linear operation.

How many of these electrical insulation problems do you have?

1. Looking for an efficient cail wrapping for small spaces? EMPIRE ${ }^{\circledR}$ varnished bias-cut nylon tape is highly flexible, strong and efficient . . . makes a thin insulation of unusually high dielectric strength with good resistance to sil and water.

2. Looking for a better material for wiring diagrams, controls, instruments, dials and nameplates? DECORATIVE LAMICOID ${ }^{8}$ resists wear, aging, weathering, bils, corrosive vapors, moisture and temperature extremes. Won't warp, check or chip. Good electrical properties. Wipes clean with a damp cloth.

3. Need accurately punched mica stampings for filament, grid and plate supports? MICO produces mica stampings to extremely fine tolerances. Whenever you need precision-fabricated mica parts of the highest quality, call on MICO.

4. Need a class H segment plate that's easy to work with? ISOMICA* Segment Plate - made of built-up continuous mica sheet - shows no tendency to split or flake. Small segments of heavy thickness may be punched, and larger segments can be accurately sawed, milled, punched, etc.

Whatever electrical insulation material you need - standard or special class A to class H - MICO makes it best. We manufacture it, cut it to size, or labricate it to your specification. Send us your blueprints or problems today.
*Trade-mark

Schenectady 1, New York

> Offices in Principal Cities

Production Techniques

Edited by JOHN MARKUS

torage Racks Protect Assemblies	
Color Tube Al	248
Three-Position Turntable Speeds Induction Soldering	
Standardized Plastic Containers Pr tect Precision Parts	
Lamps Call Supervisor	55
Neoprene Gasket Cutter	
Air-Operated Guillotine Cuts Sleeving for Leads	25
Number Wheel Shows Picture Tube Sequence	
Running In Oscillators	262
Leak Detector for Magnetrons	26
Tenth-of-Hour Clocks	
Pipe Nipples Hold Pots and Wafer	
wi	268

Cutting and Bending Tube Stem Wires. 270
Grooving Recorder Heads With Abrasixe Wire

272
Dip-Soldering Printed Video I-F Amplifier
Writing Serial Numbers with Vibrating
Tool 278
Plug-In Detector Checks Dessicant in Packages 280
Coining Cuts Costs of Magnetron Anodes
Phonograph Spreads Photo Resist on Copper-Clad Phenolic294

Impact Tester For Tube Envelopes. . . . 296
Clam Shell Housing Speeds Cooling of Picture Tubes 298
Optical Methods Speed Tube Compon. ents Inspection301

Storage Racks Protect Turret Assemblies

Plywood boards containing turret assemblies are stored conveniently in a clothes closet type of rack until needed by final assembly in the Redwood City, Calif. plant of Ampex Electric Corp. Each board has two screw eyes in its upper edge. These fit over hooks screwed into the under sides of the top horizontal members of the rack.

Metal pegs projecting down from the bottom edge of each rack fit into holes drilled in the work bench at each operator's position, to hold the rack upright while loading the finished turrets on it one by one. The turrets slip over long finishing
nails driven into the rack at an upward angle.
The metal pegs are bolted to the racks in such a way that they can be swung up at right angles when not desired. Angle brackets bolted to opposite faces of each rack at the bottom then serve to hold the rack upright on a bench that does not have drilled holes for the pegs.

The storage rack itself has slots in the bottom member to accommodate the downward projecting pegs. This prevents the racks from swinging sideways on their hooks and bumping each other. Ordinary ore-inch lumber is used.

Color Tube Alignment

A point-source are light and an ultraviolet lamp are used in conjunction with a low-power microscope to achieve exact alignment of the color picture tube shadow mask with the phosphor screen, in a pilot-plant technique used in the picture-tube development laboratory at Electronics Park, Syracuse, N. Y. Each of the 200,000 tiny holes in the metal mask must exactly match its corresponding

Color mask alignment setup, showing crater lamp mounted on cross-feed screws under bench. Operator is holding portable ultraviolet light source in right hand to activate phosphors

REMEMBER, MERLIN, WAND WAVING IS

 STRICTLY HOCUS-POCUS!Pulling a rabbit out of a hat is fine for entertainment, we agree. But not even a magician can make good on the fantastic claims attributed to cheaper solders, the mystery alloys with a secret ingredient, that are supposed to equal the performance of higher tin content solders. Today, as always, Kester believes, the quality of the soldered connection is what counts . . . not an infinitesimal saving. That's why Kester Solder has been a "star performer" for more than 50 years!

For your specific solder requirements, remember Kester " 44 " Resin, "Resin-Five" or Plastic Rosin-Core Solder... with exact core size or
flux-content "tailored" to every iob.

cluster of three dots (red, blue, green) on the screen.

A concentrated are light below the platform simulates the electron beam, to cast a shadow of the aper-
ture plate on the phosphor screen above it.

An ultraviolet light in the operator's right hand excites phosphor dots so the aperture plate and phos-
phor plate can be aligned visually over the entire area. Three knobs control vertical and horizontal alignment of the aperture plate and phosphor screen.

Three-Position Turntable Speeds Induction Soldering

An induction heater is used in place of a soldering iron in many instances at the Lenkurt Electric Co., San Carlos, Calif. By interchanging work coils, soldering can be done quickly and efficiently on fabricated cans, hermetic-seal terminals and can tops. The induction heater is a standard model supplied by Induction Heating Corp. of Brooklyn, N. Y.

In soldering headers to tops of filter cans, the operator first places the top in a jig and positions the header, then rotates the turntable to place the assembly under the work coil. Heating time is controlled by a timer on the machine or a foot switch. The operator de-
termines the correct time initially by watching how the heat affects the color of the metal.

When the proper amount of heat has been applied, the operator lowers and spins the turntable to bring the heated top close to her. She then applies solder wire in a fast sweeping motion. The solder spreads over the desired area.

Three stages of processing go on at the same time. While one top is being heated, another is being soldered and a third is loaded.

Applying solder to heated header, while second unit is being heated by work coil and third unit is cooling

Standardized Plastic Containers Protect Precision Parts

Typical use of hinged-cover containers at work bench. Only one subassembly is removed at a time from the protective tray, to minimize chances of damage

TRANSPARENT plastic containers and trays for electronic components and sub-assemblies have reduced rejects appreciably in the Teterboro, N. J. plant of the Eclipse-Pioneer Division of Bendix Aviation Corp. In addition, standardization on 22 different styles of inserts for the containers provides flexibility at a lower cost per container and an overall economy of space.

Introduction of the new containers throughout the plant was achieved by setting up a centralized control over all phases of material handling operations, headed by a materials handling administrator. His responsibilities include approval of container design and construction, cleaning and maintenance of equipment and containers, the placement, replacement and disposal of containers, the choice of containers for particular parts going through process, and the general methods and procedures used in the modernized material handling operations.

The tote containers and insert trays are produced from a thermo-

FREED

 This bridge has an impedance range of one millihenry to 1000 henries in five ranges and can be extended to 10,000 henries through the use of external resistance. The inductance values are read directly from a four diel decade and multiplier switch.

The inductance accuracy is vithin plus or minus 1% through the frequency range from 60 to 1000 cycles. For the largest multiplier at 1000 cyles, the azcuracy of the bridge is decreased to 2%.

On the 1000 henries range, the D.C. is limited to 20 MA . On the 10 henries range the D.C. is limited to 200 MA . On all lower ranges, one ampere D.C can be used.

No. 1150-UNIVERSAL 8RIDGE
Offers a variety of five possible bridge circuits. A range of capacitance, inductance, impedance, and phase angle measurement can be made throughout the frequency spectrum from 20 cycles to 20,000 cycles. By using decade resistors in the variable arms the unknown can be measured to four significant figures. Operation is simple with terminals and controls arranged for convenience and ease of measurements.

Frequency range 20 cycles to 20,000 cycles. Inductor Range: 100 microhenries to 1000 henries. Capacitor Range: 1 micromicrofarad to 1 microfarad. Accuracy: 0.5% @ 1000 cycles. Condensers smaller than 0.001 mf should be measured by the substitution method.

No. 1180 - A.C. SUPPLY A valuable laboratory instrument with continuous variable output from .I velt to 100 volts at 50 cycles.

No. 1170 - D.C. POWEP SUPPLY A stabilized Power supply primarily intended to be used as a D.C. supply for Incremental Irductance Bridge Type 11 OA. Provides 4 continuously variable currenf ranges: 5 milliamps, 25 milliamps, 100 m lliamperes, and 500 milliamperes. Maximum Output voltage 270 V.D.C. Noise level - 92 Db.

No. 1210A-NULL DETECTOR \& VACUUM TUBE VOLTMETER Provides simultaneous measurement of the voltage across the unknown and the balance of the bridge. Vacuum tibe valt meter Sensitivity I. I, 10,100 volts. Frequency range $20-$ 20,000 eycles. Null Detector part of instrument same as Type 1140A.

GENERAL ELECTRIC chose AIRECO, INC.
TO DESIGN, ENGINEER AND INSTALL ENVIRONMENTAL EQUIPMENT IN THEIR NEW FRENCH ROAD PLANT AT U'IICA, NEW YORF'

Custom \mathscr{B} uill

ENVIRONMENTAL TESTING EQUIPMENT

AIRECO, INC. are lesigners and builders of Environmental Testing Equipment and Weapons Ranges for maintaining thermo. sub-zero and stratosphere conditions. Information gained by these tests further the program and development of Aircraft, Guided Aissiles, Firing Equipment and Component Parts. Each one is individually designed for its specilic purposes and will produce and maintain temperatures from
$150^{\circ} \mathrm{F}$. to $+250^{\circ} \mathrm{F}$. altitudes from sea level to 140,000 feet and humidity from 20% to 95%.

AIRECO, INC. wrill design, engineer and install "CustomBuilt" Test Equipment to meet your special requirements. All installations are backed by a One Year Service Guarantee. You supply the requirements and AIRECO, INC. will do the complete installation.
if your problem is not a catalogue item consult AIRECO,
INC. All AlRECO, INC. equipment has built-in additional capacity to take care of ever-chunging M.I.L. specifications.

2315 Second Ave. Carman
Schenectady, New York
Telephone: Schenectady 3-3673-74

Examples of molded plastic inserts used with containers. Standarcized styles were carefully selected to accommodate future components as well as those now in production
plastic material havirg high impact resistance, such as U. S. Royalite or Boltaron. These materials permit use of wood dies for molding from sheets, thereby reducing the cost of producing relatively small quantities of special trays and inserts. Container sizes were standardized

Hinged container with six-compartment insert for large components

Molded feet on contaimers and molded recesses in covers permit stacking without risk of slippage

Head and feet for an office worker who neither errs nor tires

readily printed on its surface.
On tabulating machines, casters that are friendly to office-type flooring are needed. Casters of molded-macerated Synthane fill the bill. Synthane caster wheels are strong, do not flatten by constant pressure, and do not mar. office floors.

Should you require a versatile ma-terial-one with many properties in combination-Synthane may be your answer. Our catalog tells the full story. To receive yours, drop us a note on your letter-head. Synthane Corporation, 12 River Road, Oaks, Pa .

Our 25th Year
symithane corporation, oaks, pa.

SYNTHANE
 PLASTIC
 LAMINATED

- The uncanny ability of tabulating machines to do complicated jobs quickly and accurately is famous. One of the materials which helps to make this possible is Synthane-a laminated plastic.

Synthane serves as the base for the brains of the machines-the plug boards upon which the control circuits are set up. Synthane is excellent for the purpose because of its combination of high dielectric strength, resistance to moisture, dimensional stability and ease of machining. Synthane is printable, too-circuit designations are
in five different depths-2,3,4,5 and 6 inches. All are the same dimensions- 12 inches wide and 16 inches long. Some containers are made without covers, while others have transparent plastic hinged covers with attached metal locking latches. Manufacturer of the containers and trays is Product Engineering Labs. Co., Inc., Newark, N. J.

All 22 styles of inserts fit in any container. Some inserts have rectangular or round recesses for individual subassemblies, while others have molded studs on which tubular components are supported.
The trays are self stacking either with or without covers. Normally,

Roller-rack dolly for transporting plastic containers. Runners eliminate dust-catching drawbacks of conventional shelves. Runners can be moved up or down on vertical slides by loosening screws to accommodate different depths of con. tainers used for various sizes of parts
trays are stacked only while on workbenches, and at other times are stored on special racks that are open on all sides and have runners for supporting individual trays.

Lamps Call Supervisor

At the Lenkurt Electric Co. in San Carlos, Calif., a worker doesn't need to leave her work position when she wants additional materials or requires advice or assistance from her supervisor. Within easy reach of each assembler or toroidal-machine

Signal lamp and stepdown transformer are mounted in small metal box at supervisor's position. At assembly benches in rear, lamps and switch are on small metal plate fastened to bench
operator is a switch that turns on a small colored light at the top of her workbench and at the same time turns on a light at the desk of her supervisor, who may be as far as 30 feet away.

When the supervisor sees her desk light go on, she knows her assistance is needed somewhere on the production line. By looking to see which bench light was turned on, she can tell immediately where to go.

Colored series-type Christmas tree bulbs are used for the lights. The entire installation is both simple and inexpensive, since voltage is under 20 volts and ordinary bell wire or hookup wire can be used.

Neoprene Gasket Cutter

Accurate cutting of extremely thin neoprene or rubber washers at high production rates was accomplished by adding Stoner roll feed to a standard four-ton Kenco press made by Kenco Mfg. Co., 5211 Telegraph Road, Los Angeles 22, Calif. With this combination it proved possible to produce 24,000 washers per hour from material which is 0.019 inch in thickness. Although Navy requirements permitted $1 \frac{1}{3}$ percent rejects, spot checking showed the reject rate to be only 0.0133 percent.

Three additional units are now being completed by Stoner Engineering Co., 1924 Harcourt Ave.,

SYNTHANE S

laminated plastics at work

In heavy equipment a num.

ber of Synthane parts are used in this kingsized power shovel. Electrical strength, chemical resistance and mechanical durability are all required for this application.

In light equipment Tiny, but highly accurate, Synthane ball retainers are used in this sensitive aircraft instrument. Durability, light weight and minimum friction are all needed on this job.

In shock struts the landing gear pistons on some of our largest planes are made of Synthane. Properties of light weight, toughness, durability and shock resistance were needed; Synthone sup. plied them.

[^14]
BIG STRAY ROUNDUP for balky r.f. frequency drift

Pard: you've roped yourself a winner!
Centralab Temperature Compensating HII-KAPS put the strays in their place ...for keeps!
Use this size-capacity chart to pick the right Centralab TC HI-KAP® tubular capacitors to stabilize your circuits.

CC2O					Tube Size		
T.C.	Min.	Max.	CC25	CC30	CC32	CC35	CC45
P120	4.5	22	60	45	99	199	301
PO30	4.5	22	60	45	99	199	301
NPO	1	22	60	45	99	199	301
NO30	1	22	60	45	99	199	301
NO80	1	22	60	45	99	199	301
N150	1.5	22	60	45	99	199	301
N220	1.7	31	81	60	152	263	399
N330	2.5	36	94	69	152	304	461
N470	3.6	44	114	84	185	369	558
N750	4.2	63	163	120	275	550	795
N1500	9.5	95	244	120	396	791	1197
N2200	24.5	133	343	170	558	1113	1685
N3300	37	204	524	259	852	1699	2572
N4700	59	323	832	412	1352	2695	4080
N5250	73	401	1031	510	1675	3340	5055

Capacities shown are in mmf and (except for CC20 size) are the maximum values obtainable on the respective size tubular. All capacitor bodies are standard construction and price. Lower capacities than minimum shown can be obtained by special capacitor bodies (at extra cost). Extended range from N1500

Centralab

A Division of Globe-Union Inc. 914E E. Keefe Avenue - Milwaukee 1, Wisconsin In Conada: 804 Mt. Pleasant Road, Toronto, Ontario

Industry's greatest source of standard and special electronic components

Precision gasket-punching machine in operation. Air blast from vacuum cleaner, acting through pipe at front of press, blows finished washers into hopper at rear of machine

Los Angeles for the gasket manufacturer, West American Rubber Co., 410 North Ave., Los Angeles, Calif. The four machines will then be placed in a circle, so the scrap materials will be ejected into a central container. This setup will allow one man to operate all four presses and produce 96,000 washers per hour.

One of the production problems involved getting the material to roll in without distortion. The unique roll feed accomplished this satisfactorily. The cutting die is so designed that washers within the 0.005 inch tolerance of the specified thickness are blown out of the die into the hopper in the rear of the press by an air blast. Washers which are too thick or too thin stay in the die. This automatically prevents defective washers from getting into the hopper.

Air-Operated Guillotine Cuts Sleeving for Leads

Four different lengths of sleeving are cut simultaneously at one location on the production line in the television receiver plant of $\mathrm{E} . \mathrm{K}$. Cole Ltd., Southend-on-Sea, England, for use as needed in insulating leads of r-f and i-f coils. This

FREE SAMPLES!

Avery labeling specialists, experiencec with the requirements and problems of many industries, are at your service to help you develop improved, low-cost labeling methods. No obligation.. free samples... write today!

There's an Avery Dispensereither manual or electric - especially suited for your particular labeling job. Both models feed individually die-cut labels from rolls, one-at-a-time, ready to be applied to any clean, smooth surface - with production-line speed!

KEARFOTT vertical gyros providing continuous vertical reference within two minutes of arc under bench conditions typify the engineering knowhow and production skills available to you in the field of precision gyros for airborne control applications.

Designed for particular applications with stringent performance requirements, a wide variety of vertical gyros now in production are being used extensively in aircraft and missile control systems demanding the most precise gyro reference obtainable.

Kearfott gyros incorporate many unique features permitting operation under extreme operational or environmental conditions. A true hermetic seal in dry inert gas provides positive environmental protection. Synchro pick-offs and rigid structural clements assure performance during adverse conditions of vibration or shock.

TECHNICAL DATA SHEETS

Complete technical data in tabular form on Kearfott Precision Vertical Gyros are available on request. Send for copies for your files. Write today.

KEARFOTT COMPANY, INC., LITTLE FALLS, N. J.

Midwest Office: 188 W . Randolph Street, Chicago, III. South Central Office: 6115 Denton Drive, Dallas, Texas West Coast Office: 253 N . Vinedo Avenue, Posadena, Calif.
A GENERAI PRECISION EQUIPMENT CORPORATION SUBSIDIARY

Inpul end of sleeving chopper, showing iwo reels in foreground. Other two are off to lleft and right. The four springs pull back the levers on the knurled wheels afte: each operation. Five-position pointer. fixed in position, car be seen between the springs
machine arrangement reduces waste by eliminating overproduction of odd sleeving lengths. There are five settings on the machine, each giving a different combination of four sleeve lengths required for lead insulation and identification. The four reels that feed the machine each contain a different color of sleeving.

Feed and cutoff are achieved with a single air cylinder mounted under the bench, with its actuating rod coming up through the bench. The first portion of the cylinder movement serves to rotate four knurled

Rear view of sleeving machine, showing output chute. Drum housing slides on two horizontal bars to give choice of five different combinations of sleeve lengths

Whatever the job...

Find out how you can use self-sticking tape
write Permacel Tape Corporation, New Brunswick, N.J

EDISON TIME DELAY RELAY'S Basic Extras at No Extra Cost

Operating Time: 2 to 300 seconds
Heater: 5 watts continuous excitation at 6.3, 26.5 and 117 V . $\mathrm{AC} / \mathrm{DC}$
Contact Rating: 6 Amps Max.
Vibration \& Shock: $1 / 16^{\prime \prime}$ overall amplitude at 55 cps .50 g .

Features

Hermetically Sealed Micanol base is standard on all types Over 400 variations to choose from Delivery from a stock of many types Greatest range of time delays available in any thermal relay.
feed-wheels. The amount of rotation of each wheel determines the length to which its sleeving will be cut. This rotation in turn is controlled by the distance that levers attached to the wheels are allowed to rotate before hitting a stop. The wheels are friction-mounted on the drive shaft so they can rotate independently.

The levers of the feed wheels project outward through an aperture in the drum-shaped housing of the machine. The upper edge of this aperture is stepped, and the housing can be slid horizontally so that different steps of the aperture line up with the four levers. A stationary pointer positioned over a scale on the sliding drum identifies which one of the five possible combinations of four sleeve lengths is being produced.

After sleeves have been advanced the varying correct amounts by the feed wheels, the remaining movement of the cylinder serves to pull down a guillotine blade for chopping the sleeving. Each operation of the foot valve repeats the sequence of rotating the knurled feed wheels and operating the guillotine.

Number Wheel Shows Picture Tube Sequence

Maintaining desired flow of proper bulb sizes is vital to maximum utilization of machine capacity at General Electric's picture tube plant in Electronics Park, Syracuse, N. Y. A pointer on a large wood pattern wheel indicates at a glance the size of tube which should next be placed on the conveyor so the tube will arrive at the subsequent

Pattern wheel at conveyor loading position, with air-actuated pawl on shelf at left rear of wheel

Microwave TEST COMPONENTS

PRD offers a complete line of test equipment for precise measurements in the Microwave region.

This equipment, the finest obtainable anywhere, includes Frequency Measuring Devices, Signal Sources and Receivers, Attenuators and Terminations, Impedance Measurement and Transformation Devices, Detection and Power Measurement Equipment, Bolometers and Accessories.

When you test, use the best-

TYPE 250-A BROADBAND PROBE - Frequency range of 1 to $12.4 \mathrm{Kmc} / \mathrm{s}$; two luning knobs permit precise adjusiment for maximum power transfer from the probe tip to the crystal or bolometer detector; third knob controls depth of probe tip insertion.

SLOTTED SECTIONS-The mechanical and electrical design of PRD slotted sections emphasizes these important features: Instrument accuracy assured indef. initely by virtue of three bearing carriage suspension to minimize wear; waveguide section machined from solid aluminum alloy stock, to avoid warpage no castings are used.

TYPE 275 VSWR AN.PLIFIER Featuring high gain; A.G.C to maintain oulput constant far sow veriation in r-f power source; low inplt noise level of 0.03 microvolts; wide I'SWR ranges of $1: 1.3,1: 3,3: 10,1030$, and $30: 100$; greater accuracy because VSWR scale on meter is linear.

Ss WESTERN SALES Office
$7411 / 2$ NO. SEWARD ST., HOLIYWOOD 38, CALIF. MIDWEST SALES OFFICE:
I SO. NORTHWEST HWY., PARK RIDGE, ILL.

Details of pawl
processing stations at the correct time.

Each passing conveyor trolley closes an electrical switch, which in turn actuates an air cylinder that moves a pawl against the teeth cut into the circumference of the plywood wheel. This advances the wheel to the next number. Blanks between numbers mean that a trolley should be left empty.

Patterns on the wheel may be changed at any time to meet production demands. Several different bulb sizes may be patterned effectively.

Running In Oscillators

A SOLENOID-OPERATED clutch actuated by a limit switch arrangement on a feed screw serves to turn the dial of a precision signal generator back and forth through its entire tuning range of 20 revolutions automatically for running in the bearings and mechanical linkages.

In the arrangement used for this purpose by Hewlett-Packard Co., Palo Alto, Calif., an electric motor drives the two metal disks of a disk

Setup for running in the funing mechanism of a five-band oscillator by rotat. ing the tuning dial 20 turns in each direction alternately. Clutch-reversing solenoids are at left

the stiffer the "specs" the better we like it

Abstract

Virtually every project in the electronics manufacturing field involves operations within the scope of the D. E. Makepeace Company. As specialists, Makepeace is able to supply electronic assemblies for components which meet the most exacting specifications.

WAVEGUIDE TUBING AND MICROWAVE ASSEMBLIES

Long experience in the manufacture of precision drawn waveguide tubing, enables Makepeace to meet tolerances much tighter than specified in MIL-T. $85 \cdot \mathrm{~B}$. This precision is maintained in the production of components such as rotary joints, crystal mixers, antenna feeds, and many specialized assemblies to meet various requirements.

We shall be glad to confer with you on the design and manufacture of prototypes and production runs. Our exceptional testing facilities are at your disposal.

COLLECTOR RINGS AND BRUSHES

Because Makepeace pioneered in the production of solid and laminated precious metal slip rings, a range of sizes and special alloys is available to meet almost any requirement for space, weight, electrical noise, torque, or power handling capability.

In addition to the rings and brushes themselves, Makepeace has utilized its experience in this field in the design and mamufacture of complete self contained ring and brush assemblies. The design of such a unit often poses unusual problems. The Makepeace engineering group having met many of these problems, can plan and manufacture a unit to meet your specifications. Before such an assembly is shipped, it is checked out and completely tested for electrical noise, voltage breakdown, impedance matching, power handling capatility, and other test specifications as required.

PRECISION RECTANGULAR WAVEGUIDE TUBING MICROWAVE COMPONENTS - MICROWAVE TRANSMISSION ASSEMBLIES • ELECTRICAL CONTACT MATERIAL - FORMED ELECTRICAL CONTACTS GROSSBAR WELDED CONTACTS - SLIP RING AND SLIP RING ASSEMBLIES • BRUSH ASSEMBLIES PRECIOUS METALS CLAD TO BASE METALS SHEET-TUBING-WIRE AND ASSEMBLIES SENDZIMIR PRECISION ROLLING
electronic assemblies and components by

Makepeace

D. E. MAKEPEACE COMPANY
Division of Union Plate and Wire Co.
\section*{Attleboro, Mass.}
Sales Offices: New York - Chicago - Los Angeles - Columbus

Six Telephone or Teleprinter Channels, plus Independent Order Wire Circuit. Full Supervisory and Control Facilities. Alternative Radio Frequency Bands.

Write for leaflet No. 198/10

available for early delivery

Standard Telephones and Cables Limited
 Registered Office: Connaught House, Aldwych, Loridon. W.C. z

RADIO DIVISION • New Southgate • London • N. II • England AnITGT
clutch continuously through reduction gears. A rubber-tired wheel mounted at right angles between the disks takes power from one or the other by friction. Two solenoids with armatures bolted together to operate in tandem move the pair of metal disks against spring loading to achieve reversal. The shaft of the rubber-tired wheel drives the tuning dial of the oscillator. On this shaft is a machined spiral on which rides a follower block. Adjustable stops on an adjacent sliding shaft can be set so that the block strikes one of them after any desired number of revolutions in one direction, to move the shaft and actuate a snap-action switch which energizes or deenergizes the solenoids to give reversal. The block then moves in the other direction until it hits the other stop on the sliding shaft and causes another reversal.

Leak Detector for Magnetrons

PUMPING-Down time during routine production inspection of type $4 J 57$ magnetrons for leaks is appreciably reduced by an arrangement for checking four tubes at a

Placing helium-filled bell jar over magnetron sealed into vacuum line of mass spectrometer type of leak detector
time in the Hicksville, Long Island plant of Amperex Electronic Corp. The vacuum tubulations of the tubes are sealed to the vacuum system of a model 24-101A Leak Detector made by Consolidated Engineering Corp., Pasadena, Calif. After the vacuum has been pulled down suffi-

From "The House of Resistors"

 Precise

> Give your products the advantages of military experience with...

GANNON "AN" PLUGS

"AN" (Air Force-Navy) Connectors were pioneered by Cannon and the armed services in the interests of standardization, efficiency and economy. Since the first "AN" specification appeared in 1939, Cannon Electric has continued to work closely with all branches of the service, improving and expanding the "AN" Series to meet the ever-increasing demands placed upon them by technical advances in all engineering fields. Today, there is an "AN" Series Connector to meet the needs of practically every environmental condition. Designed, tooled, and manufactured in one plant by technicians and artisans of long experience. You'll find Cannon "AN" Connectors...

Lightweight / Uniform in Quality / Polarized for Safety / Positive in Contact / Split or Solid Shells / New High-Quality Finish / Threaded Coupling Nut Safety Locked / Shock Resisting/Rapid and Easy Disconnect / Maintenance and Inspection Easy / Fully Warranted

Investigate the application of Cannon "AN" Connectors to your product. Our highly trained field engineers will be glad to help you.

WRITE FOR COMPLETE 148-PAGE CANNON

 "AN" CONNECTOR BULLETIN...TODAYContains history, application, classification, insert arrangements available, "how to select", all technical details of the "AN" line. Get yours NOW!

CANNON ELECTRIC CO., 3209 Humboldt St., Los Angeles 31, Colif. Factories in Los Angeles; New Haven; Toronto, Canada; London, England. Representatives and distributors in all principal cities.

THE CANNON "AN" LINE HAS UNIVERSAL USE

NEW AN3106E PLUG

GS02 RECEPTACLE

AN3057A CLAMP

Using helium probe to find exact location of leak in magnetron after bell jar indicated that leak was present
ciently to meet the requirements of the mass spectrometer, a bell jar is placed over each tube in turn. This jar is filled with helium, which is lighter than air and hence stays inside. Any helium entering the tube through minute leaks actuates the audio alarm of the leak detector. The operator then removes the bell jar and moves a helium probe around the tube to find the exact location of the leak.

When not in use, the helium probe is hung on the hook of an economizer valve. The weight of the probe on the valve arm cuts off the helium supply, thereby preventing wastage.

Tenth-of-Hour Clock

Time spent on various work projects is recorded hourly in tenths at the Lenkurt Electric Co., San Carlos, Calif. For example, a production worker who begins a certain assignment at $9: 37$ a.m. and completes it at 11:04 a.m. would mark on his time card that he begin the job at 9.7 and finished it at 11.1.

Conversion of minutes into hourly tenths is facilitated by having wall clock dials throughout the company divided into tenths of hours. This is done by painting each alternate six-minute segment in a light gray shade. Each of these segments is numbered near the center of the clock. Thus at a glance any worker can tell in which tenth of

- Stable-surface processed.
- Hermetically sealed.
- Every transistor periodically observed for two weeks on all parameters: alpha, $I_{c o}, R 11, R 22$, power gain and noise figure.
- Low noise units observed for an hour of operation for any noise drift.
- Only transistors stable within error of measurement are accepted.
- Samples of each lot subjected to JAN 193 humidity and temperature cycling.

RESULT?

- Of thousands of $\mathrm{RR}_{\mathrm{co}}$ transistors in use in the field for about a year, over 99% are giving continuing service.

If you have an application where audio transistors will ft, we'll be glad to discuss it without obligation.

NEW! Photo Transistors as displayed at the I.R.E. Show.

Seletron and Germanium Division RADIO RECEPTOR COMPANY,INc.
In Radio and Electronics Since 1922
SALES DEPT.: 251 WEST 19TH STREET, NEW YORK 11, TEL.: WATKINS 4-3633 Factories in Brooklyn, N. Y.

Method of marking clock to read in tenths of hours
the hour a certain job was begun and in which tenth it was finished.

This system of time recording gives a uniformity not possible if various other fractions of hours are used. The painted clock faces enable workers with little or no mathematical training to record their time accurately.

Pipe Nipples Hold Pots and Wafer Switches
Pipe nipples of various standard sizes are used as jigs for holding potentiometers and wafer switches during subassembly work in the Redwood City, Calif. plant of Ampex Electric Corp. The assembly is

To load switch in pipe-nipple holding jig, operator inserts the assembly and gives it a clockwise spin

BENDIX RADIO DIVISION,

 TOWSON, MD.The nation's airlines and more than 45 of the major railroads depend on Bendix* Radio for precision clectronic equipment. In the field of radar, radio communications and navigation equipment, Bendix Radio enjoys a reputation second to none.

ECLIPSE-PIONEER DIVISION, TETERBORO, N. J.

Famous for over 30 years for the quality and design superiority of its tremendous varicty of aviation instruments and accessories, Eclipse-Pioneer is today a major supplier of precision components for the electronic industry.

RED BANK DIVISION, EATONTOWN, N. J.

Specialists in extensive coverage of clectronics. Units designed for durability to mect exacting requirements. Special-purpose tubes such as Klystron regulators and spark gaps arc available for nonstandard applications.

SCINTILLA DIVISION, SIDNEY, N.Y.

Bendix Scinflex Electrical Connectors arc completely pressurized and arc for all contact sizes and pin arrangements-full ACN approval. Bendix Ignition Analyzer checks efficiency of both ignition units and spark plugs, and detects incipient failures.

PACIFIC DIVISION,

NORTH HOLLYWOOD, CALIFORNIA This division has attained outstanding leadership in the field of sonar, telemetering, airborne radar, hydraulic servomechanisms and radio control-a striking example of Bendix talent in combining advance engineering design with modern production facilities.
*reg. u.s. pat. off

Method of nsing jig
screwed into the smallest nipple. The larger nipple is heavy enough to provide rigidity while inserting, crimping and soldering the leads of small parts, yet can easily be rotated or moved around on the bench for maximum convenience. The nipples also serve as holders for storing the subassemblies or for passing them down the bench to the next working position. When a unit is completed, a quick spin unscrews the subassembly.

Cutting and Bending Tube Stem Wires

The nine wires sealed irto the glass stem of a miniature tube are cut to precisely the correct lengths

Wire-culting setup, located at output od conveyor coming from stem machine. Bending machine is on same bench, in background

What has this symbol to do with

Plenty: You'll recognize this symbol as a conventional thermosdynamic cycle. But there's nothing conventional in the new developments in thermodynamics at I-T-E. These revolutionary developments may well usher in new horizons in the field of power generation.

Development work in thermodynamics is only one of the many projects on which the Special Products Division of I-T-E is engaged. Other challenging assignments include development and fabrication of a number of close-tolerance devices for extreme service conditions.

Whether your problem is new development to performance specifications, or fabrication with new and hard-to-work alloys, you'll want to know how this unique organization can help you.

RADAR ANTENNA SYSTEMS design, development and fabrication JET ENGINES
\qquad

THERMODYNAMICS

design, development and fabrication of equipment to operate on odvonced theories
GUIDED MISSILES
advanced fabricating techniques
TITANIUM
proven welding, forging, forming. spinning techniques with this hord-to-work metal

SPINNING

combining spinning and drawing to on almost limitless variety of designs in a wide range of metals
Send for Publication SP-IOO today.

TECHNOLOGY

ABILITY

I-T-E CIRCUIT BREAKER COMPANY
601 E. Erie Avenue - Philadelphia 34, Pa.

Progress through Problem Solutions Spio.3

"Precision airborne commúnication equipment must have a dynamotor of consistently reliable quality . . . that's why we specify Winco." says Mr. Poul Wulfsberg, Ass't. Director Engineering ond Reseorch COLLINS RADIO COMPANY,
Cedor Ropids, lowo.

Collins 185 Transmitter/Recciver, extensively used for reliable HF communications in major air-lines and executive aircraft uses o WincoEngineered Frame 51 Dynamotor.

WINCO DYNAMOTORS are manufactured on a wide range of rugged frames that allow for broad design applications. Winco engineers have a decade of experience in successfully designing dynamotors to rigid military and commercial specifications. They tackle each power conversion and/or supply problem individually, either modifying a standard Winco machine, or designing a special unit to meet your exact requirements. Winco specialists then plan its manufacture on a production basis to keep costs down and final performance quality at its best.

Winco dynamotors are lightweight, compact and totally enclosed and ventilated. Precise static and dynamic balance is assured by the most modern machines - each dynamotor is thoroughly tested with periodically calkbated precision meters.

Contact Winco* for reliable, efficient dynamotors and power supplics produced in volume at low cost.

WINCHARGER CORPORATION

Sioux City 2, Iowa
Subsidiory of ZENITH Rodio Corporation

Sangano Type MA- 25 Current Transformers are designed for indoor service on metering applications. They are wound type with single primary and single secondary. and meet A.S.A. 2.5 KV insulation class teat requirements -15 KV at 60 cycles and 45 KV full wave impulsc. Natvar 400 Extruded Vinyl Tape is used "because of high insulation value, resistance to heat and ability to form itself to the shape of parts being insulated.

Sangano Single phase combination Watthour and Demand Meters like the Type J2TS illustrated are built and tested for sustained accuracy under varying temperatures, ease of calibration and repair, resistance to corrosive almosphere, and ample capacity to measure heavy loads. Naivar 400 Extruded Vinyl Tubing is used for insulation because it meets the requirement: with plenty to spare.
spected names in the electrical industry. For more than fifty years Sangamo meters have measured electricity with great accuracy, have required little maintenance, and have been easy to test and repair. Meters and associated equipment are made in the Sangamo Electric Company plant in Springfield, Illinois.

They safeguard performance through good design for each requirement, individual tests at various stages of manufacture. and careful selection of materials. Natvar 400 Extruded Vinyl Tubing and Tape are used because of their uniformly good electrical and physical properties-particularly the ability to resist heat, oil, corrosive atmosphere and abrasion.

All Natvar flexible insulations are uniformly dependable no matter where or when purchased. They are available either from your wholesalers' stock or direct from our own.

Natvar Products

- Varnished cambric-cloth and tape
- Varnished canvas and duck
- Varnished silk and special rayon
- Varnished-Silicone coated Fiberglas
- Varnished papers-rope and kraft
- Slot cell combinations, Aboglas ${ }^{(8)}$
- Varnished-lacquered fubing and sleeving
- Extruded vinyl fubing and tape
- Styroflex ${ }^{117}$ fexible polystyrene tape
- Extruded identification markers

Ask for Catalog No. 22

Write for bulletin and belp with your particular problems.
G-V CONTROLS INC. 24 Hollywood Plaza East Orange, New Jersey
U. S. and Foreign Palents Pending
provided in the abrasive wire. The technique was developed by Fort Wayne Metals, Inc., 32 II MacArthur Drive, Fort Wayne, Ind.

Dip-Soldering Printed Video I-F Amplifier

A single immersion in a pool of molten solder simultaneously serves to mount all parts and make all connections for a three-tube video i-f amplifier designed for use in inter-carrier-sound television receivers. The amplifier employs etched-circuit i-f transformers, coils and traps arranged in tandem, as well as etched wiring on the main panel.

In the assembly procecture developed for these new printed components in one parts plant all components are pushed into previously punched holes in the plastic panel, working from the rear of the strip.

Coil components have small reetangular punched holes for their etched terminals and for the grounding lugs of the shield can. Special sockets are pushed into keyed round holes with fingers, so

Method of inserting etched i-f transformer in etched video amplifier panel. Wiring is on othe: side of panel

Permeability plus Stability

DEPENDABLE EQUIPMENT

High. Precision Tuner

QUALITY ThRoughout

Automatically Right:
top quantity production of top quality items

Second to None for Power and Sensitivity

THE MOST DEPENDABLE IN RADIONIC HISTORY

Remarkable stability of performance
...most accurate magnetic tester

WHEN LEADIMG FIRMS

with long experience make superlative claims

ULTRA-STABLE COILS

 SUCH AS THESE...

... when America's best known manufacturers make such claims as these-for their radio, television, radar ard similar equipment-they're basing their statements largely upon the cores in their equipment. And they know that these cores are made of G A \& F Carbonyl Iron Powders.
Heat, cold, humidity, atmospheric influences, straly Tholds and similar conditions-any of these can have adverse effect on the core materials and on the linal performance of the equipment.
An iron core made with G A \& F Carbonyl Iron

Powders has a high degree of stability -and is therely protected against these many influences.

We urge you to ask your core maker, your coil winder, your industrial designer, how G A \& F Carbonyl Iron Powders can increase the efficiency and performance of the equipment or product you make, while reducing both the cost and the weight.

We also invite inquiries for powders whose performance characteristics are different from those exhibited by any of our existing types.

This 32-page book offers you the most comprehensive treatment yet given to the characteristics and applications of G A \& F Carhonyl Iron P'owders. 80% of the story is told with photomicrographs, diagrams, performance charts and tables. For your copy-without obligation-kindly address Department 66

GA\&F CARBONYL IRON POWDERS

ANTABA ANTARA CHEMICALS
MEMER
A SALES DIVISION OF GENERAL ANILINE \& FILM CORPORATION
mpa

NEW LOW PRICES on CORNING Metallized Glass Trimmer Capacitors

They're the same tough, stable trimmers we've been making for years, but with new terminations, new mountings, and new low prices. And, they're available in standard types from .3 to 12 u.u.f., or can be designed to meet your specific requirements.

Corning Metallized Glass Midget Trimmer Capacitors are produced by permanently bonding metal to tubes made of glass with practically zero
temperature coefficients in the VHF range. This means negligible capacity shift, even with widely variable ambient temperatures. Produced on automatic machinery, they can be manufactured in quantity with electrical characteristics held to very close tolerances.

For complete information on the new Corning Trimmers, including the new prices, mail the coupon below.

Corring meant research inc Glass

CORNING GLASS WORKS DEPT. E-5, CORNING, N. Y.

Please send me information on CORNING Metallized Glass Trimmer Capacitors
\qquad

THE CHOICE FOR

Federal onsicomome COAXIAL CABLES

.. . serve on the Seven Seas with the same dependability they bring to ALL transmission requirements of

FEDERAL'S Armored RC Types Outstanding for ruggedness, efficiency and reliability

RG-10/U \cdot RG-12/U•RG-18/U
RG-20/U \cdot RG-35/U•RG-74/U
RG-79/U

RG-18/U

Remember: Federal is the manufacturer of "Ameri* ca's most complete line of solid dielectriccables." Tell us your needs!

AVIATION

TEST EQUIPMENT

YOURS FOR THE

 ASKING: Federal's new 28-page buying guide contains a world of information on Federal information onquality-controlled wiras quality-controlled and cables, plus
numerous tables and numerous tables and copy write to the copy write to the
department above. communications and industry!

On ships at sea ... plowing through all kinds of weather... from sub-zero regions to the tropics! That's where coaxial cables receive the supreme test of dependability . . . operating radar, direction finders, Loran, RF power and general communications .. . safeguarding human life and valuable cargoes!
Marine applications are only one of the many fields where Federal quality-controlled coaxial cables are the choice of designers and engineers for trustworthy transmission!
In aviation, indūstry, broadcasting, TV, test, experimental, pulse or special purpose ... for HF, VHF or UHF anywhere . . . you'll find the best in quality and performance in Federal's RG types. Write us today about your specific requirements, to Dept. D-113.

RADAR, PULSE, EXPERIMENTAL EQUIPMENT AND SPECIAL TYPES

Federal Telephone and Radio Company

A Division of INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION SELENIUM-INTELIN DEPARTMENT
100 KINGSLAND ROAD, CLIFTON, N. J.
In Carada: Federal Electric Manufacturing Company, L4d., Montreal, P. Q.
Exporf Distributors: International Standard Electric Corp., 67 Broad St., N. Y.

Appearence of panel after dip soldering at 425 F in $60-40$ solder. Gaps up to 0.008 inch can be bridged by the solder
true protection in humid locations.
The rigidity and uniformity of etched wiring provides a high degree of uniformity and stability in the amplifier, permiting prealignment before mounting in a television receiver. Stray capacitances and their variations are minimized. All components are on top of the panel, and all adjustments are likewise accessible from the top.

Writing Serial Numbers with Vibrating Tool

IDENTIFYING serial numbers are applied to ins of type 4552 magnetrons with a Burgess Vibra-Tool just before brazing of the fins in the Hicksville, Long Island plant of

Writing serial numbers on magnetron cavity assembly with vibrating tool

Scinflex ASSURES

LOW MAINTENANCE BECAUSE

IT PERMITS SIMPLICITY

When operating conditions demand an electrical connector that will stand up under the most rugged requirements, always choose Bendix Scinflex Electrical Connectors. The insert material, an exclusive Bendix development, is one of our contributions to the electrical connector industry. The dielectric strength remains well above requirements within the temperature range of $-67^{\circ} \mathrm{F}$ to $+275^{\circ} \mathrm{F}$. It makes possible a design increasing resistance to flashover and creepage. It withstands maximum conditions of current and voltage without breakdown. But that is only part of the story. It's also the reason why they are vibration-proof and moisture-proof. So, naturally, it pays to specify Bendix Scinflex Connectors and get this extra protection. Our sales department will be glad to furnish complete information on request.

- Moisture-Proof - Radio Quiet - Single Piece Inserts Vibration-Proof - Light Weight • High Insulation Resistance - High Resistance to Fuels and Oils - Fungus Resistent Easy Assembly and Disassembly - Fewer Parts than ony other Connector - No odditional solder required.

BENDIX SCINFIEX

ELECTRICAL CONNECTORS

SCINTILLA DIVISION of Bemdír SIDNEY, NEW YORK

Export Sales: Bendix International Division, 205 E. 42 nd Streel, New York 17, N. y. factory branch offices: 117 E. Providencia Ave., Burbank, Calif. - Stephensan Bldg., 6560 Cass Ave., Detroit 2, Michigan - 512 West Ave., Jenkintawn, Pa. Brouwer Bldg., 176 W. Wisconsin Avenue, Milwaukee, Wisconsin - Americon Building, 4 South Moin St., Dayton 2, Ohio - 8401 Cedar Springs Road, Dallas 19, Texas

Only A "MULTI-CHANNEL" SCOPE

LETS YOU SEE, MEASURE, AND RECORD Simul-Scopic* SIGNALS LIKE THESE

Take any two simultaneous events ... the input and output of a circuit, speed and vibration, velocity and acceleration. To compare them you might rig up two ordinary scopes. But from there on in you've got double-trouble. You either get a stiff neck looking from one scope to the

THE STIFF-NECK STINT
other, or you diverge your eyes and let 'er rip.
If you don't happen to be gifted with double vision, you might turn

THE WIDE-EYED WATCH

to science's substitute-an optical system. Now the two traces of light are bounced from the c-r tube faces to a single viewing screen. If you are lucky enough to approach this delicate monstrosity without damaging it by breathing, you still might not find those elusive pips you're after. Somewhere along the long

THE OPTICAL OPPRESSION

light path, your signals got all bounced out, maybe right out of the picture.

In case you're also not gifted with a high-frequency switching neck, you can always fall upon an electronic switch. With this built-in gadget, a single tube switches rapidly from one phenomenon to another for you. And the switching is so fast, that two traces appear on the face
of the tube. Although such traces are sometimes optimistically called "dual-trace", only the limitation of your own eyes keeps you from seeing them blink like a neon sign. And if the signal you're after should be faster than the switch, you've missed it. If it's a one-shot measurement, you've had it!

THE MISSED-SWITCH METHOD
These shortcomings become proportionately worse as the number of phenomena you wish to measure increases. An optical system gets bulkier losing more light at the same time, while an electronic switch leaves you less of a chance to catch those high speed transients.
Actually, it's not economical to consider either. Both approach or even exceed the cost of the only practical system-ETC multi-channel oscilloscopes. Through the combination of 2,3,4,6, or even eight electron guns in a single ETC cathode ray tube, you can see all the necessary phenomena on a single screen . . . just as clearly, just as accurately, and just as completely as the presentation on a single channel

THE Simal-Scopic system

scope. There is no other solution so easy to use, so comprehensive in its presentation, and so economically practical. Our new catalog, Oscillography. . . Key to the Unknown shows you many more reasons why ETC scopes and tubes are best for simultaneous display. Write for your copy.

Amperex Electronic Corp. The hardened steel point of the vibrating tool produces identifying numbers that are clearly visible, permanent and produce no contamination of the metal.

Plug-In Detector Checks Dessicant in Packages

INCORPORATION of a small sensing element in packages of electronic equipment having type II protection (sealed moistureproof packaging with dessicant) permits nondestructive checking of conditions inside the package at any desired time intervals during prolonged storage. Inspection merely involves plugging a portable moisture detector into jacks provided for this

Method of using portable indicator to check condition of dessicant inside sealed package in crate
purpose in the outer package or shipping crate. The new moisturedetecting system was developed for the Army Corps of Engineers by American Instrument Co., Silver Spring, Md.

The sensing unit for a package, selling complete for under $\$ 4$, comprises a sensing element that goes inside the paper, a feed-through gasket that is sealed into the paper wrapping, a simple two-terminal plug for the outer crate and associated twin-lead conductors.

The sensing element is a dual winding of precious metal wire on a polystyrene cylinder, coated with a water-absorbent film that changes its electrical resistance instantly

TO MARKET. . .TO MARKET

Your engineered electronic components and products, however dandy or well designed, won't get you anywhere at all or to be more precise get you any dollars unless you devote at least equal selling energy toward marketing them.
Is this a dilemma not easily solved?
Of course not!
You display your products where they will be seen by the greatest number of potential purchasers.

And where is this?
In ELECTRONICS, naturally, where over 35,000 key engineers and executives go to keep informed of new developments, new products and new applications of these products.

(10) electronics 반

PEC 615 Series.

Accuracy and reliability are the main reasons! PEC 615 models 'have already passed "on the job" tests-assuring trouble-free power supplies for various sections of many of the larger electronic computer installations. In addition, it was found that only a small amount of maintenance was needed. Space-saving, functional design accounts for much of this economy.

For complete specifications, write for Bulletin No. 109 today.

$$
\begin{aligned}
& \text { SPECIAL FEATURES } \\
& \text { - Each power supply is insulated from } \\
& \text { ground so that either polarity may be } \\
& \text { grounded as required. } \\
& \text { - Each power supply is equipped with a } \\
& \text { "high-low" protective system. } \\
& \text { - All fubes used are operated at conserva- } \\
& \text { tive ratings to provide long-life, with a mini- } \\
& \text { mum of maintenance. } \\
& \text { - At the time of starting, the voltage is auto- } \\
& \text { matically applied and slowly raised to the } \\
& \text { operating condifion to protect the tubes and } \\
& \text { condensers. } \\
& \text { - Fuses are provided in each thyratron tube } \\
& \text { plate lead for maximum protection. }
\end{aligned}
$$

POWER EQUIPMENT

peco Custam Built regulated rectifiers

To meet the requirements of closely regulated and filtered rectifier type power supplies, where the total amount of power is too great to be assembled into a single cabinet, Power Equipment Company is prepared to build equipments arranged for mounting on racks, and designed to generally conform with the customer's existing or proposed apparatus. For complete specifications, write for Bulletin No. 108.
 ompany

S740 NEVADA, EAST

[^15]

Half-circie punch (left) and small round punch for making gasket holes in moisture-proofing material
with microchanges in moisture content. The resistance of this element is measured with the portable instrument, using alternating current in order to avoid polarization of the hygroscopic film and consequent destruction of the element. The a-c power for measuring is obtained from a vibrator power supply operating from a 3 -volt dry battery.

Installation takes only about 3 minutes using special tools developed for the purpose. One of these tools is a half-circle punch which cuts the round hole for inserting the sensing element gaskets into the package. The moistureproof packaging material is doubled and inserted in the jaws of the punch,

Sensing element, leed-through gasket and terminal plug (in hands) and example of hole required in moistureproof wrapping material for installation of feed-through gasket

OTHER SANBORN
IMPROVEMENTS

- Extended frequency response.
- Impreved regulated power supply.
- Individual siylus temperature control for EACH channel.
- Improved, single coniral, paper speed selecior. Nine speeds -0.25 to $100 \mathrm{~mm} / \mathrm{sec}$.
- Recorder slides out, if desired, for better view of recorded events, or for notarions on record (illustrated at right).
- Impröved control of inpetsignals by use of 1, 2, 5 ratios on athenuator.

The BASIC fourm channel assembly includes: Cabinet, Recorder, and, for each channel, a BUILT-IN unit (A), which comprises a Driver Amplifier with frame, and a Power Supply with control panel.
(A)

The new Sanborn 150 Series offers greater operating efficiency and convenience, and encompasses a variety of uses which include the accurate recording of almost every phenomenon whose frequency spectrum lies in the range from 0 to 100 cycles per second.

A wide selection of plug-in preamplifiers, or "front end" units, such as (B) above, are completely interchangeable in any or all channels of the 150 Series amplifier section, where they simply plug in to the driver amplifier and power supply, (A) above, which are already in place.

Available plug-in Preamplifiers include: AC-DC, CARRIER, SERVO-MONITOR, DC COUPLING, LOG-AUDIO, and LOW LEVEL. Blank plug-in assemblies are also available for users to make input circuits for special measurement problems.

And, there are the popular Sanborn advantages: a high torque movement (200,000 dyne cms per cm deflection), direct inkless recording in true rectangular coordinates, and provision for code and time markings.

A new catalog on Sanborn Oscillographic Recording Systems and their components will be sent gladly on request.

PHOTOCIRCUITS, INC. selects NEW HUBBEL Interlock SUB-MINIATURE CONNECTORS FOR WIRING PRINTED CIRCUITS!

Made for each other! Hubbell Interlock's sub-miniature connectors make wiring of printed circuits fast and safe. Note how Interlock Type "C" Connectors pass through set-in eyelets from back and lock automatically on opposite side. Eyelets manufactured by United Shoe Machinery Corp. Eyelet setting machines are available.

Hubbell Interlock sub-miniature Type " C " Connector. Simplicity of design is the key to its constant low contact resistance and ease of installation features.

Hubbell Interlock's latest development, the sul-miniature Type "C" Connector, featuring low contact resistance, automatic locking - quick disconnect wiring, found immediate application to another recent advancement in the electronic field - the "printed" circuit. The tiny connectors met every requirement for wiring the illustrated rotary switch plate circuit manufactured by Photocircuits, Inc. of Glen Cove, N.Y. Their automatic locking - quick disconnect feature eliminated difficult soldering and made possible fast, easy wiring maintenance. The exclusive Hubbell Interlock locking mechanism assured a vibration-proof, constant low contact resistance.
For Difficult Wiring Problems Requiring Sub-Miniature Connectors, Our Development Laboratory Will Cooperate With Your Engineers To Adapt Interlock For Your Specific Applications.

See Booth \#406 at the IRE Show, Kingsbridge Armory, N.Y.C.

For Further Information, Write Dept. A:
against the plastic limit notch. Operation of the tool then cuts a half-circle through the folded material to give the required round hole. Another punch with a plastic limit step is then used to punch the two small round holes outside this circle, through which the gasket is bolted to the moisture barrier material.

The sensing element can be reclaimed when the package is finally opened for use by the military unit. Even without the reusable feature, cost of a 2 -percent destructive sampling inspection pays for $100-$ percent inspection with this Hydrotector system, with the result that only packages found to be faulty are repackaged.

Coining Cuts Costs of Magnetron Anodes

By L. J. Caprarola
Tube Depurtment
Rutio Corporation of America Harrison, N. J.

The fabrication of intricate precision copper parts for magnetrons has always been a challenge to elec-tron-tube manufacturers. When such parts are to be produced in large quantities, costs may often be reduced by the use of a coining technique in place of conventional machining methods. Although coining requires expensive tooling and is limited in flexibility and application, it offers such advantages as low cost in large quantity, uniformity of product, use of semiskilled operators and good control with a minimum of supervision.

Coining denotes the process of metal working by which a metal

FIG. 1-Small coining die used in preliminary experiments with this technique

A New, Rugged, Disc-Sealed TETRCDE with...

Fast, accurate determination of match, load impedance, power- 10 kc to 3 mc

Model 139 Directional Coupler

These new Sierra Couplers provide fast, accurate and continuous readings of transmission line characteristics over a wide frequency, power and impedance range. Designed for operation up to 15 kw , they consist of a wide band, torroidal ferrite core transformer connected internally to a $10 \mu \mu \mathrm{fd}$ coaxial capacitor. The instruments are very simple to install, operate in any position, and are usable with coaxial or open-wire line, or with a lumped linear passive network.

Transformers in Model 139 are rated 25 ± 2 millihenrys; capacitor is rated 4.25 kv rms f frequency range is 10 kc to 3 mc . The couplers are moderately priced and available for immediate shipment.

Nominal coupling factor of Model 139 is 50 db and directivity is 62 db . However, the coupling and directivity are easily adjustable over a wide range, depending on auxiliary circuitry.

REQUEST BULLETIN 101 FOR FORMULAS AND DETAILED INFORMATION.

sierra

 line. Frequency range 30 to $1,500 \mathrm{mc}$, coupling factor 70 to 35 db . Dieectivity throughout range greater than $46 \mathbf{d b}$. Rugged construction; Type N fittings.Model 1.38 Similar to Model 137 except offers a coupling factor ranging from 59 to 24 db .
(Sierra also offers Models 137A and 138A,
ilentical with above except primary line impedance 50.0 ohms. 1
Model 148 Crystal Detector Sensitive readout for VHF. UHF coupers. 50 ohms impedance, built-in low pass fiter.
shape having approximately the dimensions desired is cold-worked in the confines of a hardened-steel cavity made to the precise dimensions. A small coining die, shown in Fig. 1, was used to acquire some general information and to determine some of the limitations of coining. The cavity of this die is a circular cyinder having a $\frac{1}{2}$-inch diameter and a height dependent upon the amount of copper used. Pressure from the ram is appied to the copper in the cavity by means of the upper and lower punches. All of the parts which form the cavity are made of tool steel having a Rockwell C hardness of approximately 60 to 62 . The soft-steel casing surrounding the coining die is principally a safety precaution.

A number of annealed copper cylinders were cold-worked in the cavity under different pressures to determine the smallest working stress for coining. Pressures between 60,000 pounds per square inch and 100,000 pounds per square inch gave satisfactory coining action. At pressures above 100,000 pounds per square inch, the slug, when removed from the cavity would be as much as 0.002 inch larger than the cavity in diameter. Because it is advantageous from the standpoint of tool life to operate at the lowest possible stress, a value of 60,000 pounds per square inch is used.

Experience with this die indicated that a very light film of castor oil prevents metal pickup on the tool. If oil is applied in excess, however, a void results in the finished cylinder. The original punch-and-die clearance of 0.0005 inch on the diameter produced a large burr or flash at the edges of the slug. This burr or flash was eliminated by two changes. The clearance was reduced to 0.0002 inch, and the

FIG. 2-Dimensions and tolerances required for copper anode blocks of a magnetron

Moldite has taken the initiative in establishing accepted electrical standards long required by the electronic industry. Every coil and set manufacturer, every engineer has designed coils to utilize Moldite "standards".
The reasons are obvious. Moldite Core Standards Offer . . .

ECONOMY
 AVAILABILITY
 HIGH QUALITY
 INTERCHANGEABILITY
 UNIFORMITY
 FLEXIBILITY

MOLDITE

FERRICORES
 MOLDITE MOLDED COIL FORMS
 MOLDITE MAGNETIC IRON CORES
 S

This means a better product backed by years of

Moldite leadership in engineering and research. No one has done more than Moldite to give the industry a superlative core or coil form for every electronic application. So Design with Moldite Core Standards.

FERRITE CORES MOLDED COIL FORMS
(iron and phenolic)
MAGNETIC IRON CORES FILTER CORES
THREADED CORES SLEEVE CORES
CUP CORES

Samples promptly submitted upon request for design, pre-production, and test purposes

NATIDAL
 MDLDITE Robert T. Murray Jerry Golten Co. Arnold Andrews Perlmuth-Coleman \& Assoc. Jose Luis Ponte 614 Centrol Ave. 2750 W. North Ave, 521 Cumberland Ave. 1335 South Flower Cardoba 1472 East Orange, N. J. Chicago 22, Ill. Syracuse, N. Y. Los Angeles, Cal. Buenos Aires

Modern PEC* hero plugs profit leaks for étched chassis users

> Printed Electronic Circuits now available with exclusive, fast-soldering tapered tab leads

Plug-in PEC's are 100% standardized... for your immediate production use

- 30 STANDARD PEC PLATES - PC-156, illustrated, contains 3 resistors, 4 capacitors. Eliminates 8 parts, 9 extra soldered points. Simplifies circuit board pattern. Cuts down size and cost of circuit board. ${ }^{*}$
- STANDARDIZED FOR FASTER LOCATING - uniform tabs spaced. $172^{\prime \prime}$ ctr. to ctr., or multiples of $.172^{\prime \prime}$ ctr. to ctr. Uniform leads are $.344^{\prime \prime}$ long, and .045 .049" wide at base.
- standardized for automatic centering - twin taper tabs jamı-fit in holes to hold plate away from chassis for above and below soldering. No accidental drop-outs.
- standardized for positive soldering - tab ends shapedflat to facilitate accurate soldering. Terminals fit $1 / 16^{\prime \prime}$ dia. (round) or $1 / 16^{\prime \prime} \times 1 / 16^{\prime \prime}$ square holes. One shot of a solder-gun or dip soldering completes the job.

Who but Centralab would you expect to introduce "firsts" like Plug-in PEC's . . . Centralab is the industry's only thoroughly experienced PEC engineering and production source.
**Need 100 or $1,000,000$ Plug in PEC's? Centralab has 'em! Write for Bulletin EP- 40 for complete details.

Standard PEC's with wire leads are available at your local CRL distributor - see Catalog 28.

Centralab

A Division of Globe-Union Inc.
914 E E. Kefe Avenue - Milwaukee 1, Wisconsin In Canada: 804 Mt . Pleasant Road, Toronto, Ontario
rough cylinder was chamfered slightly at the points where flash normally occurred. The effect of the chamfer was to provide room for the metal to cold-work sufficiently before it filled the cavity. Experiments with this coining die showed that the diameter of annealed copper slugs could be controlled within plus or minus 0.00025 inch.

Magnetron Anode Dies

The magnetron anode blocks which were to be made by the coining process are shown in Fig. 2. Although the part may look relatively easy to make, the tolerances on each individual block for dimensions A and C are half the values indicated on the assembly drawing. The radius, therefore, must be held to a tolerance of plus or minus 0.00025 inch and the step to a tolerance of plus zero, minus 0.0005 inch.

The anode block is, in general, a rectangular prism having sharp edges and corners. Because it was desirable to make fabrication of the tools as easy as possible, the die was made in four sections. A problem with this type of construction is to hold each section of the die in its proper position when the large forces used during coining are exerted. The construction used is shown in Fig. 3. When assembled, the four sections of the die provide an opening having the same length and thickness as the anode block.

The outer surface of the die forms a circular cylinder having a two-degree taper. This taper mates with an identical taper cut into a barrel of Elastuff 44, a strong tough material. The die sections are

FIG. 3-Coining die used for anode blocks

Now - Du Mont offers the first truly complete line of Multiplier Phototubes-from the miniature Type K1193, only $3 / 4$-inch in diameter, to the fiveinch Type 6364, the largest Multiplier Phototube commercially available.
All of these tubes are characterized by the same superlative performance, the same high cathodesensitivity, low noise, cathode-uniformity, and remarkable stability thot have won such immediate ceceptance for the Du Mont Types 6291 and 6292.
All are sold under the well known Du Mont guarantee to meet or surpass all published specifications. You are assured that every Du Mont Multiplier Phototube will perform the way you would expect.

The following Du Mont Multiplier Phototubes are presently available:

Type	Diameter \& No. of Dynodes		Frice
6364	5 in.	10	$\$ 150$
6363	3 in.	10	115
6292	2 in.	10	55
6291	$11 / 2 \mathrm{in}$.	10	55
6467	$11 / 4 \mathrm{in}$.	10	55
K 1193	$3 / 4 \mathrm{in}$	10	$*$
K 1211	$3 / 4 \mathrm{in}$.	6	25

*Price on request
Manufacturers' prices on request
DUMONT

pressed into the barrel with approximately 65 tons of force. The two remaining surfaces of the cavity are formed by an upper and a lower punch. The upper punch contains the less critical contour and the lower punch all of the critical dimensions. This arrangement, which is very favorable, is possible because of the design of the parts to be made and not because of the design of the tools.

The lower punch was originally made to correspond exactly to the

FIG. 4-Effect of springback of copper Steps in coining an anode block
dimensions of the part to be coined. When sample parts were made and removed from the cavity, however, they no longer conformed to the dimensions of the punch. Figure 4 shows the outline of the punch used and the outline of the resulting part. The variations were due to the springback of the material. Although these variations were small, they were nevertheless objectionable. A new punch was made which compensated for the material springback. When this punch was used, the parts matched the contour of the original punch within a tolerance of plus or minus 0.00025 inch.

Fabrication of Anode Blocks
The raw material used for the magnetron anode blocks is standard $\frac{1}{4}$-inch by ${ }_{4}^{3}$-inch oxygen-free, highconductivity copper bar stock. The bar is fed into a blanking die which shears it to approximately the desired outline. The copper blanks are then flattened to a thickness of 0.197 inch; this flattening operation produces an outline larger than the original and reduces the thickness to approximately the finished size.
The flattened parts are then reblanked in the original blanking die set. This operation is actually a shaving process because little ma-

STABLE CLEVITE Point Contact Transistors

as Low as $90^{〔}$ EACH in Production Quantities

Immediately Available

2N32 Low Speed Switch
2N33 50 Mc . Oscillator
2N50 Medium Speed Switch
2N51 High Speed Switch
2N52 Low Speed Switch or Amplifier
2N53 Very High Speed Switch
2A 50 Kc . Amplifier-1 Mc. Oscillator
2C Special Purpose Medium Speed Switch
2D 2 Mc . Amplifier-10 Mc. Oscillator
2E 50 Kc . Amplifier
2G Ultra High Speed Switch
2H Special Purpose Audio Amplifier

THIMBLE SIZE FM TRANSMITTER

Ideal for miniature remote radio control systems.

Features:

- Controlled production
- Uniform characteristics from unit to unit
- High stability of characteristics within each unit
- Factory aging - life and pre-shipment testing to insure uniformity of product
- Fast rise time
- Resistant to unfavorable environment

For more information mail this coupon today

TRANSISTOR PRODUCTS, INC.,
Snow and Union Streets, Boston 35, Mass., Dept. E5
\square Please have applications engineer call
\square Send complete data sheets on point contact transistors
Name . .
Title.
Company
Address. .
City and Zone . State.

Transistor Products, Inc.

This Time Signal Generator was built for Air Forec ballistics testing by Vitro Laboratories, a division of Vitro Corporation of America. It employs Grant Industrial Slides.

We asked Charles K. Raynsford, project group leader, why Grant Slides were used here. His answer:
"Primarily for the convenience of the service tcchnician. Each of those eleven sections contains approximately 150 vacuum tubes. Even with the low tube failure rate of 2% per 1000 hours, fast serving for preventive maintenance becomes quite important!
"In addition, this compactness would have heen impossible without the Slides. In a conventional arrangement, the unit would have been twice as large."
"May we quote you on that?" we asked.
"Well," he answered, "say 'appreciably larger'. That would have increased the wiring capacitance, which, in turn, would have required more power to get the same band width."
"All in all, we're proud of this design," he added.
That makes it even. We're proud of our Slides.

Grant Industrial Slides

A product of Grant Pulley and Hardware Corporation 31.73 Whitestone Parkway, Flushing, New York

Steps in coining anode
terial is removed from the parts. During the shaving operation, the flattened part is nested in the die set so that a minimum amount of material is removed from the critical contour. The object of this shaving operation is to reduce the curvature which occurs on the under side of any blanked part and, therefore, to minimize the amount of cold-working necessary during the coining After the shaving operation, the parts are annealed at 750 C in hydrogen for 20 minutes. The parts

BH

$\left\{\begin{array}{l}\text { use of Fiberglas } \\ \text { heat-treated Fiberglas } \\ \text { true high temperature flexibility } \\ \text { vinyl-coated Fiberglas } \\ \text { silicone rubber coating. } \\ \text { colors in silicone rubber } \\ \text { true Class } \mathrm{B}\left(130^{\circ} \mathrm{C} \text {.) protection }\right.\end{array}\right.$

- BH "Ex-Flex" doesn't stiffen with age, won't crack or fray.
- BH "Ex-Flex" resists harmful gases encountered when motors and generators require special attention for direct current equipment.
- BH "Ex-Flex" prevents short circuits caused by shunts coming in contact with the opposite polarity.
- BH "Ex-Flex" - Bentley, Harris Extra Flexible Fiberglas Sleeving - is one of a large family of tubings and sleevings each designed to meet specific requirements for particular applications - electrical insulation that has offered quality protection to successful manufacturers for more than a quarter of a century.
BENTLEY, HARRIS MANUFACTURING CO. 1305 Barclay Street Conshohocken, Pennsylvania Tclephone: Conshohocken 6-0634

Winchester Electronics

...for ALL Winchester Electronics' Series "MRE" Connectors

- Another NEW development of Winchester Electronics to strikingly demonstrate and further the service-ability and dependability of Winchester Electronics' Connector designs!
- Write or wire us for further information on the Vibration Lock and for a catalog of WINCHESTER ELECTRONICS CONNECTORS.

Winchester Electronics
 INCORPORATED

GLENBROOK, CONN., U.S.A.

The New
Vhration lock FEATURES:

1) locks automatically on ENGAGEMENT. Simply depress levers to disengage.
2) SIMPLEST DESIGN - POSITIVE LOCking.
3) AYOIDS SCREW-TO-10CK (OR UHLOCK) NUISANCE.
4) CUICK ASSEMBLY TO "MRE" CCNNECTORS NOW IN FIELD SEZVICE.
5) MAY BE "SAFETY-WIRED."
6) CADMIUM PLATED FOR DURABlIITY.

> Winchester Electronics, Inc. Products and Designs are Available Only from Winchester Electronics, Inc.

West Coast Bronch:

1729 Wilshire Blvd., Sonte Monice, Colifornio
are then coined, deburred, annealed, finish coined and deburred. Because of width requirements on the anode block, it is necessary to turn the less critical side in a lathe.

The factory cost of fabricating these magnetron anode blocks has been reduced by as much as 80 percent by the use of this coining technique. When the cost of the tools is considered, the break-even point for this process is 378 parts; that is, the savings realized in the fabrication costs for 378 anode blocks is sufficient to cover the cost of the tooling.

The author expresses his appreciation to Lloyd P. Garner and his group of the RCA Tube Department at Lancaster, Pennsylvania for recommending the use of Elastuff as the die-barrel material, the general construction of the anodecoining tools and use of a chamfer.

The author also expresses his appreciation to William J. Bachman of the RCA Tube Department at Harrison, N. J. for his suggestion to investigate the coining technique as well as the direct contributions that he made.

Phonograph Spreads Photo Resist on Copper-Clad Phenolic

Laboratory production of etched circuitry in experimental quantities is expedited by using an ordinary 78-rpm phonograph motor and turntable as a whirler. The sheet of copper-clad phenolic is sensitized by pouring a quantity of photo resist solution on the surface, then placing the sheet on the turntable and starting the motor. A few seconds

Pouring photo resist solution on copperclad phenolic sheet

i.e.r.c. heat-dissipating

TUBE CLAMPING SHIELDS

give lower bulb temperatures and increased tube reliability!
I.E.R.C. tube clamping shields solve electron tube heat and vibration problems. Temperature reduction is made possible by conducting heat directly from bulb to the chassis or heat sink providing greater reliability.

Tested, Proven, Accepted...

AVAILABLE!

I.E.R.C. shields will meet environmental requirements for present and future industrial and military electronic equipment.

WRITE TODAYI For complete information send inquiries to Infernational Electronic Research Corporation, 175 West Magnolia Boulevard, Burbank, Calif.

[^16]

DC-AC CONVERTER

These latest of all Carter DC to AC Converters are specially engineered for professional and commercial ap. plications requiring a high capacity source of 60 cycle AC from a DC power supply. Operates from storage batteries, or from DC line voltage. Three "Custom" models, delivering 300, 400 , or 500 watts 115 or 220 V. AC. Wide range of input voltage, 12, 24, 32, 64, 110 or 230 V . DC. Unequalled capacity for operating professional recording, sound movie equipment and large screen TV receivers. Available with or without manual frequency control feature.

MAIL COUPON FOR CATALOG
Carter Rotary Power Supplies are made in a wide variety of types and capacities for communications, laboratory and industrial applications. Used in aircraft, marine, and mobile radio, geophysical instruments, ignition, timing, etc. MAIL COUPON NOW for complete Dynamotor and Converter Catalogs, with specifications and per. formance charts on the complete line.

THE CORRECT COMBINATION OF SIZE AID POWER RATING offered by Jennings Vacuum Capacitors

The wide choice of size and power ratings for a given capacity range is illustrated by these four units all having maximum capacities of 1000 mmfd . JENNINGS functional designs thus permit you to select the smallest vacuum capacitor that will meet your voltage and current requirements.
Please let us suggest the capacitor that will best meet your specific circuit conditions.

Literafure mailed upon request
JENNINGS RADIO MANUFAGTURING CORPORATION - 970 MELAUGHLIN AVE. P. 0. BOX 1278 - SAN JOSE 8, GALIFORNIA

Spinning sheet on turntable to distribute solution evenly
of whirling distributes the solution uniformly over the sheet. This prepares the sheet for exposure conventionally with the negative made from the drawing of the wiring layout. The turntable technique is used by Electionic Engineering Co. of Calit., Los Angeles.

Impact Tester For Tube Envelopes
Envelopes of glass tubes are checked for structural strength on a sampling basis at Tung-Sol with a gravity-type impact tester patterned after a corresponding instrument developed by the Naval Material Laboratory in the form of a pendulum tapper for checking microphonism in vacuum tubes. The amount of impact can be accurately controlled by adjusting the angle from which the pendulum is released. The tube to be tested

let WILLIAMS help you apply
 ferric oxides

 to the manufacture of your
 FERRITES

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites. Williams Ferric Oxides analyze better than $99 \% \quad \mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.
Tell us your requirements . . . we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

WIILIAMS

C. K. WILLAMMS \& CO.

Easton, Pa. - East St. Louis, IIl. Eméryvillo, Cal.
F. We also produce IRN Magnetic Iron dustry, the Magnetic Tape Recording Indue pry and athers. Write for complete fechnical informatlon.

The versatility of Ledex Relays makes it possible to produce special switching combinations tor specific applications. Step. ping or selective controls are available depending upon the requirements. A wide range of operating voltages con be used by selecting the proper Ledex coil wire size.

HERE'S HOW A LEDEX RELAY OPERATES
A LEDEX ROTARY SOLENOID provides the mechanical power to drive the gang of rotary, wafer type switches. SELECTIVE CONTROL drive the gang of roll control water switch makes it possible to selet the ontrol wafer switch makes it possible to select to be connected by a single manually operated switch. RATCHETS are used to transmit the oscillating action of the Rotary Solenoid to the Relay rotor shaft. CIRCUIT WAFERS are produced in combin ations of 8, 10, 12, 18 and 24 positions. All wafer sections are versotile in application. For example the 12 position wafer switch may be designed to utilize almost any of the factors of 12 such as $1 \mathrm{P}-12 \mathrm{~T}, 2 \mathrm{P}-6 \mathrm{~T}, 3 \mathrm{P} .4 \mathrm{~T}$, or $4 \mathrm{P}-3 \mathrm{~T}$. The clips and rotors of the wofer switches are of silver alloy. For most applications the switch insulation is of wax-impregnated bakelite. Ledex Relays are available with foot flange or panel mountings.

The Engineering stoff of G. H. Leland, Inc., will assist you in de. veloping solenoid operated Relays best suited to your products! WRITE FOR DESCRIPTIVE LITERATURE TODAY!

123 WEBSTER ST., DAYTON 2, OHIO

PLUG-IN CAPACITORS fit YOUR NEEDS...

\author{

- easy field replacement
 - rugged and dependable
 - withstand $100^{\circ} \mathrm{C}$ temperafure
 - moisture and humidity proof
 - vibration proof
 - capacitors and special networks
}

Everything you want and need in plug-in capacitors you get with POTTER.
Here are quality components designed and built for longtime, dependable performance . . . and when field replacement eventually becomes neces* sary, non-technical personnel can make the change easily, instantly, surely.

Yes, if your product calls for plug-ins, your call should be for POITER

Close-up of tube holder, with pendulum resting at point of impact
is held in position on the anvil with a spring wire clip. The position of this anvil is adjustable on the base of the tester, to permit locating the point of impact directly under zero of the overhead quadrant scale regardless of the size and shape of the tube. On this quadrant scale is the pendulum-holding slide that can be set and locked at any desired angular position away from the vertical. When ready for a test, a button on the holding slide is pushed to release the pendulum.

Clam Shell Housing Speeds

 Cooling of Picture TubesA metal enclosure that somewhat resembles a clam shell has been developed by Corning Glass Works to protect glass picture tubes from drafts while they are being ex-

Clam shell melal housing for picture tube. The two latches lock over studs on the lower part when the cover is down

During the past 20 years Collins Radio Company has pioneered many of the outstanding advancements in the radio-communications and electronies industry. Collins engineers had to develop unique and unusual systems and components to meet the superior standards of Collins equipment. These components, plus application recommendations, are now available to the electronics industry. Collins industrial components can help you. Send the coupon below for complete information.

Callines hysteresis motors

Useful for driving timing devices, facsimile equipment, commutators, or any device which must rotate at an absolutely constant speed regardless of load or line voltage variations. Type 370A-1 Wide Band Synchronous Motor is illustrated ... produces synchronous rotation from motionless to 30,000 RPM.

Collind oscauators

Long famous for their accuracy and stability, Collins Variable Frequency Oscillators are now available. They give transmitters, receivers, frequency standards or test equipment accurate linear dial calibration and superb stability. Collins Oscillators are available in a number of frequency ranges.

Callins autotunes and AUTOPOSITIONERS COllins Auto-

 tunes, the basis for both remotely and directly controlling automatic tuning of high quality communication equipment, are suitable for many industrial applications. Collins Autopositioners are used where up to 20 , or nore, pre-cletermined, fixed positions are needed. Available as individual units or in complete systems.

COLLINS RADIO COMPANY
Cedar Rapids, lowa
11 W, 42nd Street, NEW YORK 36
1930 Hi -Line Drive, DALLAS 2
2700 W. Olive Avenue, BURBANK
COLLINS RADIO COMPANY OF CANADA, LTD.
74 Sparks St., OTTAWA, ONTARIO

Priced

SPECIFICATIONS:
Diehl Number: FPE 25.79.1 10 Watts Maximum Output

115 Volts
Main Phase $1 \overline{15 \text { Volts }}$ Control Phase

2 Poles
2 Phase
12.5 oz.-in. Locked Torque
23.0 oz.-in. Torque at minus 3000 R.P.M.

125 oz.-in. 2 Moment of Inertia 1.6 lbs . in Weight

38,600 Radians per Second ${ }^{2}$ Theoretical Acceleration

This newly designed Diehl "HI-AC-CEL" Servo Motor affords high response and is suitable for a broad range of military and industrial servo-mechanism applications.

FEATURES:

1. Cogging (Slot effect) is Negligible

2. No Single-Phasing

3. Speed-Torque curve extends into the negative speed range at approximately the same slope.

Diehl "HI-AC-CEL" Servo Motors are obtainable in ratings from 5 to 25 watts output with standard 115 volt control phase windings and also with high impedance control phase windings. All ratings can be furnished with either A.C. or D.C. integrally mounted tachometer generators.

Our wealth of experience in producing quality motors is at your service to help you select the unit best suited to your specific requirements. Copy of Technical Manual No. EL-0554 describing Diehl Servo Motors and related equipment is yours for the asking.

Other Available Components:
D.C. SERVO SETS - RESOLVERS MINIATURE PERMANENT MAGNET D.C. MOTORS DIEHL MANUFACTURING COMPANY

Electrical Division of THE SINGER MANUFACTURING CO.
Finderne Plant, SOMERVILE, N. J
Arlanta Baltimore Boston Chicago Detroit New York Philadelphia Worcester
hausted and cooled. This technique permits coolirg down the tubes from their pumping temperature of 400 C much more rapidly than was heretofore possible. The time required for a safe cooling schedule that did not introduce strains in the glass had been the bottleneck

Lowering protected picture tube onto exhaust cart with overhead hoist haring a fork-type lift
before in television picture tube production plants.

If the metal shells are blackened on all surfaces to absorb heat radiation, a glass tube placed in the clam on an exhaust cart can be thrust immediately into the heating oven and bronght up to adequate exhausting temperature in about 19 minutes. The exhausted tubes can be pullec out of the oven into an open room and safely cooled without breakage even when giant fans are used to force the cooling.

Use of the metal shells permits final closure or tipping out very shortly after the tube is brought out into room temperature. This is desirable because maximum evacuation occurs when the tube is very hot. A second and more important advantage lies in being able to take the tube and its metal enclosure off the valuable exhaust equipment about 25 minutes after it has been put on, as compared to the 65 to 90 minutes previously required. Ex-

Tipping off picture tubes as they emerge from exhaust oven. Metal clam shells protect tubes from plant drafts that might cause strains in glass walls
haust oven temperature need not be regulated as precisely as before, it being necessary only to maintain a uniform temperature in the whole oven rather than a carefully calculated heating and cooling cycle.

The metal clans of individual tubes also serve to prevent a chain reaction by broken pieces of glass hitting neighboring tubes if one does break. Operating personnel are completely protected against injury during the most critical phases of the operation.

Finally, the clam shell makes it easier to handle the heavier tubes mechanically without risking breakage, since the shell need not be handled as carefully as an unprotected tube. Hooks or projections can easily be placed on the shells for engaging a hoist or lifting aid.

Optical Methods Speed Tube Components Inspection

By W. F. Wiebach
Westinghouse Electric Corp.

ADAPTION of optical inspection techniques to checking electronic-tube components has played an important part in helping attain desired quality levels at the Westinghouse Electric Corporation's new tube plant at Bath, N. Y. Contour projection has largely replaced conventional gages and micrometers for checking grids, measuring mica spacers, and gaging stem assemblies. Parts which fail to meet required specifications are thereby

Senior ELECTRONIC
 Engineers

in Lockheed's expanding Missile Systems Division

Recently formed from other Lockheed engineering organizations, the Missile Systems Division has a few openings for highly-qualified engineers in various phases of electronics.
The Division's expansion program - along with the type of work involved in its contracts makes these openings outstanding opportunities for achievement. Engineers who qualify have probably worked on missile, radar-computer, counter-measure, IFF, AMTI or similar projects.

Lockheed has openings for:

- Senior Electronic Engineers with experience in the development, packaging, and specification of small, rugged components including resistors, capacitors and all types of magnetic parts.
- Senior Servomechanisms Engineers with circuit, autopilot or electro-mechanical experience (aircraft or missile experience preferred).
- Senior Electronic Design Engireers with experience in sub-miniature packaging techniques. Previous experience with potted plug-in units, etched and printed circuits is desirable.
- Senior Electronic Engineers with development and analysis experience in one or more of the following fields:

A. Guidance systems analysis
B. Microwave antenaas
C. Radome design
D. Microwave transmitters
E. Advariced packaging techniques
F. Waveguide componert's
G. Component specification
H. IF receivers and FM discriminator circuits
I. Synchronization and timing circuits
J. Memory circuits (tubes, magnetic drums, delay lines, etc).
K. High voltage power supply and CRT display circuits
L. Analogue computors
M. Video pulse, delay, gating, range and range rate tracking circuits

In addition to outstanding career opportunities, the Missile Systems Division offers you excellent salaries commensurate with pour experience, generous travel and moving allowances, an unusually wide range of employee tenefits and a chance for you and your family to enjoy life in Southern California.

Coupon below is for your convenience.

The "NEW LOOK" in ELECTRONIC EQUPMENT

HEROUOK н-p ceramic Power

Get the FACTS!

Abstract

Radically different, H-P ceramic-dielectric capacitors serve heavy-duty functions heretofore limited to mica types. Now manufactured and distributed by Aerovox under license, being based on ceramic developments by French engineers and scientists of the C.S.F. mrganization. H-P capacitors are particularly suitable for broadcasting, radio communications, industrial high-frequency equipment and medical appliances. Tens of thousands such units are serving daily in Europe and even under the climatic extremes of Indo-China.

In both disc ("double-saucer") and cylindrical ("tubular") ceramic dielectric bodies, H-P units are great space- and weight-savers (from 50% to 90% reduction over corresponding micas.). Competitively priced. Provide complete independence from imported mica or other strategic materials.

Other outstanding features: Ease of mounting; ease of wiring in series or parallel; very low inductance connections; exceptional immunity to humidity, heat, cold, atmospheric pressure; wide range of designs, sizes, capacitances, voltages. Radically different!

Detailed technical data on request. Let our engineer-specialists collaborate in adapting H-P capacitors to your equipment for that "New Look."

AEROVOX CORPORATION New seforoc, mass

$\begin{aligned} & \text { HI-Q } \\ & \text { DIVISION } \\ & \text { OLEAN, } N . Y . \end{aligned}$	ACME ELECTRONICS, INC. MONROVIA, CALIF	CINEMA engineering co. BURBANK, CALIF.
In Conode: AEROVOX CANADA ITD., Momilton, Ont. 		

detected prior to investment of assembly time. The method has also proved applicable in final inspection of finished tubes.

The magnitude of the inspection problem indicated use of statistical methods of quality control and standard sampling procedures. Using these methods, go-no go gaging alone was insufficient. Where parts failed to fall within tolerance limits, measurement was required so deviations might be plotted and adjustments made to production machinery.

Since the plant represented a new facility, choice of contour projection as the preferred method of inspection was unhampered by considerations of existing gage inventories. The choice was based on the following factors:
(1) The necessity of holding size and spacings to measurements in tenths of thousandths. Such tolerances can be readily checked where parts are magnified by the optical system of a contour projector.
(2) The necessity of avoiding distortion of delicate components during inspection, pointing up the advantage of using light as a gaging medium.
(3) The ease with which inspectors may be trained to use visual methods.
(4) The speed with which complex parts may be gaged optically on a go-no go basis, and the ease with which measurements may be made to supplement go-no go readings.
(5) The chance afforded production personnel to actually see errors in components on the contour projector screen, reducing possible misunderstandings between the inspection and production groups.

Inspecting Grids

Inspection of a typical grid involves checking the length of the supporting side rods, the length of

Example of wound grid. showing dimensions and profiles requiring inspection

Checking grids with contour projectors. Operator at left is using calibrated enlarged glass scale to measure departure of grid from tolerance on minor diameter. Screen charts for other types of grids are stored in rack between the two projectors
grid windings themselves and their relation to the overall length, the major and minor diameters and the characteristic profile shape. In the course of this inspection the operator may also pick up any bowing of the side rods and irregularities in the spacing between the turns, called windows.

Using a simple staging fixture, an operator may quickly check length of both side rods and windings and the major diameter of the grid by comparing its enlarged shadow with the master chart mounted on the contour-projector screen. Rotating the fixture 90 degrees gives a profile image of its shape. With the grid held in place magnetically, minor diameter can be checked over its entire length by flopping the fixture on its horizontal axis.

Sample grids are checked each hour from each grid lathe in oper-

Portion of typical plot of grid-lathe performance when winding 6CB6 control grids. Major diameter was over specifications at 1 and immediately corrected. At 2, maior was over specification and minor was under specification
 HI-Q CARTUHEELS have that unique sealing!

Heavy' ceramic bods positively.bonded elecfrodes; intima-ely-joned termimals-such details are common to all "slug" ceramic capacitcrs. The assambh is then sealed-and thet's whare $\mathrm{HI}-\mathrm{Q}$ "Cartwhezls" are diferent,
"Cartwheels" feature 3 cast casing, cempletely and permanently sealed in one operation. The exclusile potting compjund results in meticulors jacketing.

Especially developed or Color-TV, HI-Q Cartwheels" mean ratings up to 30 KV ; much higher coronastarting voltases; aceatly increased dielectric strength; excellent arc-resistant propertiest $)$ oulation resistance greater thar 50,000 , megohms; jower faztor or 1.5% max. at 10010 cps ; greatest immunity to humidis and heat; 0 - -standing service life.

Enlargement of CinemaScope film shows bou' picture is "compressed" This scene is from 'Prince Valiant', pradraced by Tuentieth-Century Fox.

IN CINEMASCOPE TOO...

Brush magnetic heads play a leading role

New treatment of both sight and sound give CinemaScope exciting realism. In addition to the picture image, the film carries four strips of magnetic coatings-lor three separate sound tracks and a control channel.

As the film passes over the Brush magnetic head, the magnetic recordings are translated into true direc. tional sound. It's a demanding job, for perfect synchronism is a must. Since the sound is recorded by one set of heads at the studio and reproduced by separate heads in the theatre, all gaps in each head must be in precise alignment. These recpuired close tolerances are met by Brush's advanced production techniques and precision workmanship.

The use of Brush magnetic heads for CinemaScope is another example of the quality of Brush magnetic components. Can they help improve your products? For complete information on the full line of magnetic: heads, write Brush Electronics Company, Dept. K-5, 3405 Perkins Ave., Cleveland 14, Ohio.

COMPANY

ation. Formed grids, which are stretched on removal from the lathe, are checked after stretching; those not formed are checked directly as they come from the lathe. Whenever two sample grids fail to meet specifications, sampling is repeated. If the second sample bears out the findings of the first, the inspector makes a failure report slip which is immediately delivered to the foreman concerned. Copies of the report slip go to the superintendent of manufacture and the supervisor of quality control. A quality control stop may be placed on the machine itself.

Since most grid tolerances are in thousandths, departures from tolerance may be measured by using a glass rule scaled to the magnification in use on the projector, in this case 20 X . This scale provides a quick reading of sufficient accuracy to indicate the amount by which grids may exceed tolerance. This information is of value to the production department in making required adjustments to the grid lathes, and also enables the qualitycontrol group to keep a running record of lathe performance on grids with troublesome histories.

Since the grid-holding fixture accommodates a number of grids of different types, the operator may switch from checking one type of grid to another merely by changing the chart on the screen. Charts are stored alongside the contour projector and the changeover time is not excessive. With comparatively little training an operator can handle the hourly checks, including the measurement and paper work, for as many as 15 lathes each winding a different type grid.

Inspecting Micas

More critical tolerances are encountered in the inspection of mica spacers, which serve for insulating and locating component parts in electronic tubes. Sequential sampling methods are employed in receiving inspection to hold a 1 percent averaqe quality level. A typical mica may call for checking upwards of 20 pierced holes for size, location and shape or concentricity, with the diameters held to ± 0.0005 inch and location to ± 0.00075 inch.

The advantages of contour pro-

Checking locations and diameters of holes in mica spacers. Light from vertical illuminator at top projects shadow of mica resting on glass staging table
jection here, as contrasted with mechanical gaging, are both economic and operational. From the economic standpoint, a single chart for the projector replaces numerous mechanical gages, many of which would of necessity be complex since mica piercings are of ten non-symmetrical. In operation, the chart provides a means of determining, literally at a glance, what dimensions may be in error as the location of an individual hole in the mica is shown in relationship to all other holes.

Sequential sampling of micas is done on a go-no go basis, usually at 20 or 31.25 magnifications. Fixturing is avoided by using the projector's vertical light source and a glass staging table. The mica is simply positioned on the stage and aligned with the master chart.

The same light source and stage are used in the even more critical task of measuring dimensions when new dies are placed in production. In such cases, as a check on the dies, first-run micas are magnified 50 times and all dimensions measured using the instrument's micrometer attachments. Such dimensions may include linear measurements, measurements of radii and angles.

Inspecting Tube Stems

Optical methods are particularly helpful where angularity must be measured. This is of major importance in checking the molded stems used for different tube types, where

compact,

THE JKO9 CRYSTAL OVEN

- Only $1.28^{\prime \prime}$ dia.x $1.70^{\prime \prime}$ high and weighs only 1.5 oz .
- Mirinum tempecarure gradi. ent at crystal.
- Rapid warm up with no overshoot.
- Will meet a specification of $75^{\circ}+1^{\circ} \mathrm{C}$ over a temperature range of -55° to $+70^{\circ} \mathrm{C}$.
- Economical and reliable because design permits tooling for uniform production.

STABILITY

Thru "Thermaflow" Design ${ }^{*}$

Temperature, like water, seeks its own level. Instead of trying to "dam up" heat within the oven, by use of massive heat retaining elements, the JKO9 oven is designed to permit a uniform loss and uniform replacement of heat. Heat is simply replaced as it is lost from the low mass, high conductivity shell. And within this shell the crystal unit remains wrapped in a blanket of warm air. Because sufficient heat is always lost by the shell none need be yielded by the crystal.

Symbol of Service

THROUGH RESEARCH STABILITY AVAILABILITY

The compact, light, inexpensive JKO9 matches the performance of many ovens employing multistage heaters ovens employing multistage heaters
and massive heat-retaining elements. It houses one or two crystals, plugs into an octal tube socket, is available with an octal tube socket, is available with
a choice of heater voltage from 6 to 28 volts. It is another JK step in the volts. It is another $J K$ step in the extreme stability. Write us for complete engineering information.

The James Knights Company Sandwich, III.

AVALLABILITY

A COMPLETE LINE

The JKO9 is the newest of the many fequency control units that comprise the JK line of Crystals for the Critical.

IMPROVED OPERATION OF LITERALLY HUNDREDS OF MECHANCCL PRODCCTS HAS BEEN EFFECTED WTH ACCO TRULAY FLEXBBLE PUSH/-PULL CONTROLS

If you would like more information, after reading this brief summary of the characteristics and widespread use of this versatile Remote Control, just ask us to send you our IDEA FILE with complete Application Data.
Tru-Lay Push-Pull Controls provide positive remote-action
over long or short distances... with fixed or movable anchorages ...for light loads or loads up to 1,000 lbs., and these units are frequently and successfully used in conjunction with Electrical, Hydraulic and Air Controls.

Flexibility makes it possible to snake around obstructions . . . simplifies installation... reduces the number of working parts . . .
 929-B Connceticut Ave., Bridgeport 2, Conn

Checking length and angularity of leads in tube stems with contour projector, using screen chart having two views of stem and staging table that rotates and moves stem 90 deg for comparison with each view in turn
the length and form of the lead wires must be gaged.

To inspect stems on the contour projector, a two-position staging fixture is used. The screen chart includes two views of the stems, opposed by 90 degrees. Working at 10 magnifications, the operator places the stem on the fixture and aligns it in the first position. By shifting the fixture to the right and rotating it to a fixed stop, the stem is aligned in the second position. The opposing views provide a measure of angle and length. The shadow image is quickly compared with the tolerance lines scribed on the screen chart.

Using this method, an operator can inspect as many as 200 stems per hour, a number sufficient to provide an adequate sample from the output of more than 15 forming machines. Where stems are malformed, the setup man can determine from the screen image the information needed to adjust the former for acceptable production. Changeover time for inspecting various types of stems is short.

Inspecting Tube Assemblies

Reliability standards have also led to use of a special projector for inspection of tube assemblies prior to evacuation. This instrument is equipped with additional light sources supplementing the conventional surface and shadow sources on the standard projector. These

Special multiple-lamp contour projector used for inspecting tube assemblies prior to evacuation

Details of multiple-lamp projector, show. ing rotatable staging table
provide a brilliant screen image of the part and enable the operator to detect any windows, non-uniformity of spacing between grids and cathode and the condition of numerous welds as the tube is rotated on its fixture. Magnification is changed by the use of a hand lever. Various planes of the tube are imaged successively by changing focus. Rejection rates on completed assemblies, tested functionally, have decreased by 5 percent since this special projector has been in use.

Save for this special projector, the contour projectors used at the Bath plant are all stock models made by Eastman Kodak Co., Rochester, N. Y. Since many of the holding fistures on which components are staged are universal in nature, little gaging cost is encountered. When new tube types are put in production, new screen charts showing required specifications are prepared by the plant's own engineering department.

\section*{OMF} Ulva Migh Frequencies 4 | 2 | 0 | 0 | |
| :---: | :---: | :---: | :---: |
| $\frac{2}{6}$ | 0 | 0 | 8 |
| 0 | 0 | 6 | |

RADIO INTIRFERENCE : and FIELD INTENSITY* : measuring equipment

: Stoddart NM-50A • 375 mc to 1000 mc
 - Commercial Equivalent of AN/URM-17
 -

ULTRA HIGH FREQUENCY OPERATION Frequencies covered include UHF and color television assignments and Citizen's Band. Used by IV transmitter engineers for plotting antenna patterns, adjusting transmitters and measuring spurious radiation. RECEIVING APPLICATIONS ... Excellent for measuring local oscillator radiation, interference location, field intensity measurements for fringe reception condifions and antenna adjustment and design.
SLIDE-BACK CIRCUIT... This circuit enables the meter to measure the effect of the peak value of an interfering pulse, taking into account the shaping due to bandwidth. QUASI-PEAK FUNCTION . . . An aid in measuring pulse-fype interference, the QuasiPeak function is just one of the many features of this specially designed, rugged unit, representing the ultimate in UHF radio interference-field intensity equipment. ACCURATE CALIBRATION .. Competent engineers "hand calibrate" each NM-50A unit. This data is presented in simplified chart form for easy reference.
SENSITIVITY. . . Published sensitivity figures are based on the use of the NM-50A with a simple dipole antenna or RF probe. However, the sensitivity of this fine instrument is limited only by the antenna used. The sensitivity af the NM-50A is better than ten microvolts across the 50 ohm input.

Stoddart RI-FI* Meters cover the frequency range 14 kc to 1000 mc

VLF

NM-10A, 14ke to 250kc
Commercial Equivalent of AN/URM-6B. Very low frequencies.

> HF NM-20B, 150kc to 25 mc Commercial Equivalent of AN/PRM-1A. Self-contained batteries. A.C. supply optional. includes stondard broadcast band, radio range. WWV, and communications frequencies. Has BFO.

VHF

NM-30A, 20 me to 400 me Commercial Equivalent of AN/URM-47. Frequency range neludes FM and TV bands.

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

53 New Products and 55 Manufacturers' Bulletins Are Reviewed . . . Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered

SIGNAL SPLITTER

provides jam-free bandwidth

J. L. A. Mclaughlin Corp., La Jolla, Calif., announces production of the type MCL-50/50 series signal splitter, a complete variable bandwidth single-sideband converter. It provides the exact realistic jam-free bandwidth for all longrange reception of short-wave single-sideband transmissions. The unit is a complete variable band-

width s-s converter and is used with general purpose communications receivers to provide the ultimate in

OTHER DEPARTMENTS
featured in this issue:
Page
Electrons At Work 192
Production Techniques . . 248
Plants and People....... 354
New Books 408
Backtalk 418
reception of double or single-sideband, program, voice or fsk transmissions. It provides exalted carrier reception for full and reduced carrier transmissions. Jamming attenuation is $60 \mathrm{db}, 500 \mathrm{cps}$ outside passband.

GERMANIUM DIODES

for high temperature use

International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif., is producing a Red-Dot series of germanium diodes for high temperature applications. Each unit is so well sealed that exposure to 95 plus percent relative humidity for 500 -hours at temperatures from

0 to 85 C will not appreciably change back resistance or cause appearance of hysteresis. Type G44 has a minimum of 100,000 -ohms resistance at -30 v and 100 C . Other types are available to customer specifications. The Red-Dot series is designed for either clip-in or solderin application, measuring ${ }^{5} \mathrm{in}$. in diameter and ${ }_{4}^{3} \mathrm{in}$. in length with ${ }_{3}^{3}$ in. clip pins.

FUNCTION GENERATOR

is six-channel unit
Mid-Century Instrumatic Corp., 611 Broadway, New York 12, N. Y. The MC-600 six-channel function generator is designed as a valuable tool in analog computer applications. It is a self-contained unit consisting of $6 \mathrm{c}-\mathrm{r}$ tubes for the generation of arbitrary functions. A camera unit is provided for transforming the given curves onto 31 in. $\times 4 \frac{4}{4}$ in. slides which are inserted between the face of the tube and the photocell. Among the features are its ability to handle functions whose slope does not exceed 80 deg , a maximum noise output of less than 0.1 v , an amplitude response which is essentially flat to 30 cps at which frequency the phase

shift is less than 2 deg, a transient response which for a step input
gives a rise time of less than 3 milliseconds with an overshoot of less than 10 percent. Accuracy in the output waveform is 0.5 v or better, and total drift is less than 0.25 v over an 8-hour period for a straight line input of unity slope. Bandwidth may be broadened to 400 cps at the expense of increased noise.

TINY CONNECTOR

is single-pin type

De.JUR-AMSCO CORP., 45-01 Northern Blvd., Long Island City, N. Y. Miniature precision connector series FHL is a tiny round-shaped connector that provides easy means for passing a single lead through a rack and panel arrangement. It may

The name SYLVANIA on an Aluminized Picture Tube is an endorsement of dependability! It signifies that the tube has passed 781 quality-control tests, plus a series of final inspections after a 48 -hour hold period.

> Sylvania Aluminized Picture Tubes offer all these Advantages

1. More Usable Light Output resulting from reflection of wanted light from back of screen.
2. Better Picture Contrast and Increased Contrast Range due to elimination of reflected unwanted light from inside the tube.
3. More Uniform Screen Color Tube for Tube because of tighter screen color quality limits.
4. Longer Screen Life due to the protection of aluminum film on back of screen.
5. Greater Picture Brightness and Sharpness result from the elimination of electron "sticking."
6. Longer Tube Life due to a controlled degree of getter action in the aluminum film.

Lower Aluminized Picfure Tube Prices!

Sylvania aluminized picture tube prices have now been reduced to slightly above regular television picture tube prices. Now you can offer your sets with 50% brighter pictures at practically no additional cost. For detailed data sheets drop a line to Dept. 4R-1605, Sylvania, today!

Type	15 Popular Sylvania Aluminized Tube Types AVAILABLE NOW				
	Focus	Deflection Hor. Angle		Ion Trap Magnet	Length
$17 \mathrm{HP4}$	Lo Es	Mag			
21ALP4A	Lo Es	Mag	65° 85°	S	$193 / 16^{\prime \prime}$
$21 \mathrm{AMP4A}$	Mag	Mag	85°	S	$207 / 16^{\prime \prime}$
$21 E P 4 B *$	Mag	Mag	85°	S	$207 / 16^{\prime \prime}$
21FP4C*	Lo Es	Mag	65°	S	23"
21 WP4A	Mag	Mag	65°	S	
$21 \times P 4 A$	Mag	Mag	66°	S	
21 YP 4 A	Lo Es	Mag	65°	S	22 1/4
217P4B	Lo Es	Mag	65°	S	22 1/4'
24CP4A	Mag	Mag	65°	S	23'1 23 ,
24DP4A	Mag	Mag	85°	S	23 1/32"
24VP4A	Lo Es	Mag	85°	S	21 1/8"
27EP4	Mag	Mag	85°	S	21 1/8"
27EP4	Mag	Mag	85°	S	21 1/8"
$27 \mathrm{LP4}$ $27 \mathrm{RP4}$	Mag	Mag	85°	S	$231 / 16^{\prime \prime}$
27RP4	Mag	Mag	85° 	S	24 23/64"
*Cylindrical Face. All others have Spherical Face Plates Mag-Magnefic Lo Es-Low Voltage Electrostatic S-Single Ion Trap					

Sylvania Electric Products Inc., 1740 Broadway, New York 19, New York In Canada: Sylvania Electric (Canada) Lid. University Tower Bldg., St. Catherine St., Montreal, P. Q.

LIGHTING•RADIO•ELECTRONICS P TELEVISION

also be applied as a feed-through disconnect. It has high dielectric characteristics and features the use of one-piece molding available in three insulating materials: mineral (asbestos) filled Melamine for high dielectric and mechanical strength; Plaskon reinforced (glass) Alkyd type 440 A for unusually high im-

pact strength and arc resistance; and Diallyl Phthalate (blue) with high dimensional stability plus excellent dielectric properties. Pre-cision-machined socket and pin contacts are of spring temper phosphor bronze and brass respectively, gold plate over silver giving low contact resistance and ease of soldering.

P-M GENERATOR

for instrument indicating

Dalmotor Co., 1329 Clay St., Santa Clara, Calif. Rated for continuous duty with an output frequency of 20 cps and a maximum of 3 -percent harmonic distortion, type 44A generator is recommended for instrument indicating and other similar applications. Voltage is linear with speed, and the unit develops 33 v of 2 -phase a-c at 4,500 rpm. Internal
winding resistance is 30,000 ohms per phase. Weighing a total of 8 oz , it is 13 in . in outside diameter by $2 \frac{1}{8} \mathrm{in}$. long, and has a ${ }^{\frac{5}{2}}$-in. shaft extending 0.340 in . Special shaft arrangements including splines, keyways and gears can be supplied. The generator is pressure-sealed and has permanently-lubricated bearings. Electrical leads or terminations can be supplied in a number of different types as may be required.

SYNCHRO

for airborne mounting

Clifton Precision Products Co., Inc., Marple at Broadway, Clifton Heights, Pa., has developed type SG-17-1-A synchro designed for gimbal mounting in airborne gyroscopic instruments. Maximum error spread when used as a transmitter is less than 6 minutes. Maximum depth is less than 0.500 in. Overall diameter is 1.625 in. Rotor

input to the synchro is $26 \mathrm{v}, 400$ cps . Stator output is 11.8 v . Input power when loaded with one control transformer is 0.973 w and sensitivity at control transformer output is 397 mv per deg. The synchro reflects to its shaft no measurable cogging effects or mechanical loading. Outline drawings, mounting information, complete characteristic basic data and typical error curves will be mailed on request to the company.

TWIN TRIODE

for aircraft and industry

Bendix Aviation Corp., Red Bank Division, Eatontown, N. J. The

6385 twin triode amplifier incorporates features that promote long life and is designed to replace the $2 \mathrm{C} 51 / 5670$ and other such tube types. Each 6385 is run-in tested and aged under vibration with all operating voltages applied for 45 hours to indicate that it will withstand extreme shock and vibration. These tubes have a cathode type structure with extruded ceramic heater insulator and a coil type heater instead of a filament structure. This construction, along with the ruggedized mount structure, virtually eliminates heater failures,
shorts and other adverse effects of shock and vibration. The tube has a 9 -pin miniature button base and can operate at altitudes up to 80,000 ft .

POWER MEGAPHONE is all-electronic device

Audio Equipment Co., Inc., 805 Middle Neck Road, Great Neck, N. Y., has developed a powerful single-unit electronic megaphone. With an acoustic output of 112 to 115 db at 5 ft it permits effective speech transmission up to $3,000 \mathrm{ft}$, depending on atmospheric and sur-

4Here's a professional magnetic sound recording tape that offers a new high in permanence and durability. It can be used and stored under the most extreme conditions of temperature and humidity without any ill effects. For all practical purposes, it is virtually unbreakable. Now available on $1,11 / 2$ and 2 mil Mylar*, in standard sizes from 600 to $2,500 \mathrm{ft}$. Write for Bulletin No. 201.

The new EP Audiotape provides the extra precision that is so important to deperdable magnetic data recording and reproduction. It is especially produced to meet the most exacting requirements for uniformity and freedom from microscopic imperfections. Available in $1 / 4^{\prime \prime}$ to $2^{\prime \prime}$ widths, 1,225 to 5,000 feet. Write for Bulletin No. 207.

1Audiotape, now available on green, blue or brown plastic base - and Audiotape reels in red, yellow, green, blue and clear plasticprovide instant identification that can simplify your cueing, filing, recording and playback problems. Write for Bulletin No. 209.

AUDIO DEVICES, Inc.

Dept. A3, 444 Madison Ave., New York, 22, N. Y. Export Dept., 13 East 40th St., New York 16, N. Y. Cables "ARLAB"

A month or so ago we ran this advertisement. He've hada lot of replies a lot of collar bills and 5 dollar bills. Yet, we've had a certain amount of confusion that we'd like to straighten out.

In the first place, we don't require that you pay five dollars for the privilege of buying a Sigma relay. The manual is designed to make available all we know about our products and their application. It is a basic user's manual for Sigma relays (not relays in general-we had to give one man's money back on that one). If you do have use for such a manual, the price includes one year's subscription to whatever additional pages are issued. After the first year, renewal is one dollar.

For those that don't know how interested they are in our products, we have a free four page bulletin highlighting the basic Sigma relay types. The next step from this is that, in response to a specific inquiry we will send, also free, the specific manual pages that we believe will apply to your problem.

The "Ink" offer stands. You get for one dollar a collection of our favorite correspondence which easily outdoes anything in the ads. (We get the opportunity to expose you to our ads again.) So far, no one's asked for his dollar back.

SIGMA INSTRUMENTS, INC., 62 PEARL ST., SO. BRAINTREE, BOSTON 85, MASS.

rounding noise conditions. Outstanding feature is the virtual elimination of acoustic feedback. The present unit is completely selfcontained with batteries and 3 stage vacuum-tube amplifier in the main housing. It is small and light, only weighing slightly over 5 lb , and being just over a foot long. The form-fitting handle incorporates a press-to-talk trigger switch.

A-C VOLTMETER features expanded scale

Arga Division, Beckman Instruments, Inc., 220 Pasadena Ave., South Pasadena, Calif. An advanced a-c voltmeter featuring both scale expansion and recording over the 100 to 500 -v range has been announced. The instrument covers the voltage range in 39 easy-to-read $10-v$ steps, full scale. True rms readings are obtained with accuracies better than ± 0.25 percent of input voltage. Frequency response is uniform between 50 and 2,000 cps. The new voltmeter offers builtin recorder connections for continuous recording of line voltage fluctu-

INSTRUMENT CORPORATION OF AMERICA

 assures high accuracy and super-dependability to the most rigid specifications.Specify Instrumenf Corporation of America Slip Ring and Commutator Assembles for closer tolerances, absolute uniformity anc the ultimate n miniaturization. Wherever extreme dimensioncl
 precision, accurate-concentricity and high dielectric qualities, are reqsired, Instrument Carporation of America assemblies are specified with confidenze. One-piece, unitized construction eliminates dimensional variation due to accumulated errors, provides jewel-like finish, uniform ring hardness and reduced weight. Engineering "know-how" resulting from years of specialization and continuous collaborition with leading manufacturers all over the world is of your immediate service.

SIZES: .035" to 24" Diameter, Cylindrical ar Flat CROSS-SECTIONS Ring Thickness COS'" $^{\prime \prime}$ to 050 or Mare
er 1
FINISH: 4 Micro-Inches or Belter
BREAKDOWN: 1000 V or More H -? ?
Inter-Circuit
RING HARDNESS: 75 to 90 Brinell
SURFACE PROTECTION: Palladium and Rhocium, or Gold Prevent Tarnish, Minimize Wear \& Noise

INSTRUMENT CORPORATION OF AMERICA

BLACKSBURG•VIRGINIA

- electro deposition process avallaele uvoer exclusive aicense agrement with electao tec corp.

(Potentiometer is shown in actual size)

NEW

Fairchild Precision Potentiometer
 Fairc
 This metallic film potentiometer offers infinite resolution, high temperature operation ($225^{\circ} \mathrm{C}$.), high wattage dissipation, and 100 to 200,000 ohms resistance range in a case only ${ }^{\frac{3}{4} / \prime \prime}$ in diameter and $y_{2}^{\prime \prime \prime \prime}$ long. The infinite resolution of a metallic film resistance element in servo applications limits hunting and oscillating. Available with servo flange or threaded bushing mounting. Gold-plated terminals. Now manufactured to target specifications for engineering evaluation; sample orders are accepted in standard resistance values only.

 Ariother reason why

 Ariother reason why Fairchild can supply ALL your Fairchild can supply ALL your precision potentiometer needs

 precision potentiometer needs}Fairchild makes a complete line of precision potentiometers to fill all your needs-linear and nonlinear potentiometers, singly or in ganged combinations . . . single-turn and helical . . . with servo or threaded bushing mounts . . . and with resistance elements to meet your requirements.

Fairchild guarantees accuracy of $\pm 1 \%$ or better in nonlinear types and $\pm 0.5 \%$ or better in linear types. Highly accurate production methods and close mechanical tolerances, plus thorough type-testing and quality control, provide high resolution, long life, low torque and low electrical noise level in every Fairchild potentiometer. For more information, or for help in meeting your potentiometer problems, call on Fairchild Camera and Instrument Corp., Potentiometer Division, 225 Park Avenme, Hicksville, L. I., N. Y., Department 140-51 A.

ations with a 1-ma d-c recorder, greatly simplifying problems of voltage regulation or stabilization in any a-c system.

DELAY LINES are solid ultrasonic type
Bliley Electric Co., Union Station Building, Erie, Pa. Solid ultrasonic delay lines provide precise delay intervals for electronic equipment. Type SDL-15 has the equivalent of 1,000 yards or 3.051 microseconds. Type SDL-16 has the equivalent of 2,000 yards or 6.102 micro-seconds. Each unit is in an hermetically sealed case. Carrier frequency is 30 mc . Attenuation is 26 db into 1,000 ohms ; and bandwidth, 8 mc .

MARKER OSCILLATOR tunes 400 to 930 -mc range

Telonic Industries, 444 South Rural St., Indianapolis, Ind., announce their new uhf marker oscillator that tunes the range of from 400 to 930 mc . The compact unit with built-in, regulated power supply measures 5 in. $\times 7$ in. $\times 5$ in. The black anodized, 4-in. aluminum dial is individually calibrated and is carefully engraved to maintain an accuracy of ± 0.25 percent. A
smooth action, 5 to 1 vernier is used for easy tuning. The 50 -ohm output is attenuated by 0,20 and 40 db .

TINY ACELEROMETER

 is strain wire typeGeneral Scientific Corp., Los Angeles, Calif., has available a subsubminiature accelerometer (strain wire type) with a maximum length of 1 in . and a weight of 14 grams. It offers a range of ± 0.5 to 100 g and accuracy of 1.0 percent full scale. Natural frequency is 30 to 250 cps , with damping factor of 0.7 of critical. Used for acceleration measurements, flutter analysis, vibration investigations, impact research and guided missile telemetering, the accelerometer minimizes space and weight requirements, disturbances and distortion.

THYRATRON TUBE

 for industrial equipmentNational Electronics, Inc., Geneva, Ill., has announced a new high-current thyratron with bracket base for panel mounting. Type NL-760P has a 6.4 -ampere d-c and 77 -ampere peak rating. It is designed for motor speed control,

Write for Bulletin 3000. Vickers engineering service is available without obligation

The self-tapping screw at left, used in a fluorescent light fixture, cost $\$ 12$ per thousand. It was replaced by the cold-formed Milford screw at right - which costs only $\$ 9$ per thousand. More important, the Milford screw is being set automatically in less than one-third the time!

Net results? Seven assemblies are now completed in the time that used to be needed for two! And annual savings in the cost of parts run well over five figures!

COLD FORMING and Good Design turned the trick!

Hundreds of manufacturers have found that Milford cold-forming and technical know-how really pay off - BIG ! The cost of small parts and the expense of installing them is one of the few areas in which sizable savings can still be made - and there are two very sound reasons why Milford can help you make them.

First, Milford cold-formed parts cost far less because you don't pay for metal you don't get and because they can be produced far faster. They're made from wire stock - without scrap or waste - on very high-speed equipment.
Second, Milford engineers, designers and product researchers are expert in re-designing your small parts to take full advantage
of cold-forming economies and to permit faster and more efficient methods of installation. The men from Milford can also help you increase production through the use of modern highspeed power tools or special automatic rivet-setters, a field in which Milford has had broad and intensive experience over a period of many years.
Since you risk nothing, and stand to gain a great deal, why not put Milford to work for you? Let Milford show you how to reduce costs and save time through the use of cold-formed parts. Most important, call us in on the new products your're planning before designs are frozen. You'll be taking the high road that can lead to very substantial savings - in both time and money.

HATBORO PENNA.
welding control, and regulated rectifier applications. The tube is gas and mercury filled for quick starting and constancy of characteristics within wide temperature limits. Other rating details are: filament voltage, 2.5 v ; filament current, 21 amperes; and peak inverse voltage, $1,250 \mathrm{v}$.

TERMINAL BOARDS are custom fabricated

DeJur-Amsco Corp., 45-01 Northern Blvd., Long Island City, N. Y., can supply a wide variety of custom fabricated terminal boards to government and civilian users. Many different terminals and base materials make possible a proper design for every application. The boards can be finished or impregnated, and coding is accomplished by silk screening. In addition, Continental terminal boards can be made with any number of contacts and in any size or contact arrangement.

RECEIVER-CONVERTER weighs only 22 lb .

Servo Corp, of America, 20-20 Jericho Turnpike, New Hyde Park, N. Y. This unit extends the frequency range of a standard h-f receiver into the vhf range of 50 to 200 mc . It has a self-contained
power supply which facilitates installation. No modification of the receiver is reguired. The rhf antenna is connected to the converter which is connected to the h-f receiver. Power input is 35 w from nominal $115 \mathrm{v}, 50 / 60$ cycles. Small and compact, the unit weighs only 22 lb.

POWER SUPPLY
 has industry and lab uses

Summit Electronics, Inc., 7 Industrial Place, Summit, N. J. A new adjustable atc regulated power supply is designed to operate from a 60 -cycle a-c line. The supply is particularly suitable for application in industrial production and inspection operations as well as in laboratory work. Several models are available for varying output requirements, ranging from a minimum of 0.1 ampere to a maximum of 100 amperes. Output voltages are readily variable by a simple front-panel control, while easily read meters make possible rapid adjustment to desired voltage and current. Intended for rack mounting, the equipment measures $12^{\frac{1}{4}} \times$ $19 \times 6 \mathrm{in}$.

ELECTRONIC TIMER is continuously variable

Mt. Sopris Instrument Corr., 1320 Pearl St., Boulder, Colorado. Per-cent-on time from 25 to 75 percent

OURNS

 sub-miniature TRIM POTS

PROVIDE THE ULTIMATE IN CIRCUIT TRIMMING

Simple screwdriver adjustment...

The TRIMPOT is a 25 turn, fully adjustable wirewound potentiometer designed and manufactured exclusively by Bourns Laboratories. Electrical settings in increments of $1 / 4$ to $1 / 2 \%$ are securely maintained during vibration of 20 G 's up to $2,000 \mathrm{cps}$ or sustained acceleration of 100 G's. Bourns' unique self-locking design eliminates cumbersome locknuts. Power rating is $1 / 4$ watt at $100^{\circ} \mathrm{F}$. Standard resistance values from 250 ohms to 25,000 ohms are available for immediate delivery. Information on higher and lower resistances on request.
BoURNS TRIMPOTS are accepted as standard components by aircraft and missile manufacturers and major industrial corporations.

> 9 TRIM POTS TAKE LESS SPACE THAN A $2 ¢$ STAMP

Tiny cross-sectional size-only $1 / 4^{\prime \prime} \times 5 / 16^{\prime \prime}$-and rectangular shape save valuable panel space. Instruments are easy to mount individually or in stacked assemblies with two standard screws through the body eyelets.

Bourns also manufactures precision potentiometers to measure Linear Motion; Gage, Absolute, and Differential Pressure and Acceleration.

6135 MAGNOLIA AVENUE - RIVERSIDE, CALIFORNIA
Technical Bulletin On Request, Dept. 12

Your source for 2K50

REFLEX KLYSTRON TUBES

Abstract

The new Bendix Red Bank 2 K 50 is the perfect answer for those who want a thermally-tuned Reflex Klystron tube for K -band operation. The 2 K 50 has two primary applications-first, as a local oscillator in small, compact, lightweight, high definition radar and, second, as an oscillator in microwave spectrometers, signal generators and spectrum analyzers. Because of its thermal feature, the 2 K 50 may be tuned automatically. Thus, it is ideally suited for difficult locations . . . in aircraft, for example ... where direct or mechanical tuning is not practical. Perfection of the complex, ultra-precision 2 K 50 . . . one of the most difficult electron tubes to manufacture . . . is a tribute to the unique talents of our engineers and production men. It demonstrates why you can depend on Bendix Red Bank for the answer to any special-purpose electron tube problem you may have.

MAXIMUM RATINGS

Resonator Voltage.	330 volts D.
Reflector Voltage.	-150 volts D
Tuner Grid Voltage	-50 volts D.C.
Filament Voltage	$6.3 \pm 8 \%$
Gun Cathode Curr	28 ma
Cathode	10 m

ELECTRICAL CHARACTERISTICS

Heater Voltage (A.C. or D.C.).......... 6.3 volts Heater Current............... 755 amps . Thermal Tuning Range . 23216 to $24751 \mathrm{Mc} /$ Sec. Min. Power Output at $23504 \mathrm{Mc} / \mathrm{Sec} \ldots \quad 8.5 \mathrm{~mW}$. Min. Power Output at $23984 \mathrm{Mc} /$ Sec... 10.0 mW Min. Power Output at $24464 \mathrm{Mc} /$ Sec. . . 8.5 mW . Min. Electronic Tuning at Mid-Band. . $55 \mathrm{Mc} / \mathrm{Sec}$.

PHYSICAL CHARACTERISTICS

- Dimensions: Maximum seated height 21/4" - Base: Small Octal 8-Pin, B8-21, Low Loss Phenolic Wafer - Coupling to Wave Guide: Direct, by means of an insulating fitting Cooling: Convection - Mounting Position: Any - Cavity: Silver Plated Steel (integral within the bulb) - Bulb: Metal - Output Window: Low loss glass

Manufacturers of SpecialPurpose Electron Tubes, Inverters, Dynamotors and Fractional HP D.C. Mofors

DIVISION OF
EATONTOWN, N. J.
West Coast Sales and Service: 117 E. Providencia, Burbank, Calif. Export Sales: Bendix International Division, 205 E. 42nd St., New York 17, N. Y. Canadian Distributor: Aviation Electric Lfd., P.O. Box 6102, Montreal, P.Q.
feature increases the usefulness of this electronic timer in such timing operations as product life testing, energizing solenoids and feeding machines. Both cycles-per-minute and percent-on time are continuously variable. Either may be changed without disturbing the other and may be adjusted with the equipment in operation. Model T-1 covers a frequency range of from 10 to 50 cycles per minute and T-2 is a dual range model with a total frequency coverage from 2 to 100 cycles per minute. Standard accuracy including line voltage variation ± 10 percent is within 10 percent. The timers are operable from $115 \mathrm{v}, 50-60$ cycles.

CRT CHECKER
 tests 5 tubes at once

Research Electronics, Roslyn, Pa. Model 404 c-r intermittent checker tests up to five tubes at once for intermittent shorts and opens of all elements of any standard tw picture tube. By a unique cycling action it forces intermittents to show very quickly, announces any failure by an alarm bell, and the type of short or open is indicated by lamps. The unit measures $12 \times 12 \times 18$ in.

RESISTANCE ANALYZER is a high precision unit

The Kuljian Corp., Philadelphia, Pa., amounces a resistance analyzer designed to measure accurately the voltage coefficient of a wide range of resistances. Primarily a high precision, general purpose, resistance measuring laboratory instrument, it measures resistances ranging from 1,000 ohms to 111 megohms to within 0.1 percent. The voltage coefficient of any

resistor up to a power rating of 1.5 w can be determined down as low as 0.0002 percent per volt. Voltage across the measured resistance is continuously variable in two ranges from 0 to 500 v by a selfcontained regulated power supply. Sensitivity of balance is within 0.04 percent on all ranges. It is designed for $115-\mathrm{v}, 60$-cycle operation.

CAMERA CHAIN for televising film

Federal Telecommunication Laboratories, Nutley, N. J., announces a newly developed camera for televising film. Using a small photoconductive camera tube, the camera chain (FTL-105A) features high definition and excellent contrast range in addition to low initial and operating cost. Consisting of a very small camera head weighing only $7 \frac{1}{2} \mathrm{lb}$, a control monitor, and a rackmounted power supply, this camera may be used in a number of flexible operating arrangements, none of which requires a shading operator. When used with this camera, an ingenious optical multiplexer (FTL287 A) provides pictures from two film projectors, a $2-\mathrm{in} . \times 2$-in. slide projector, and a 4 -in. $\times 5$-in. opaque

If you have to snoop for switch

you need Centralab miniatures!

Smaller than a match book, the Centralab miniature switch you're looking at is only $11 / 2^{\prime \prime}$ in diameter. It's the biggest space-saving clue to new switch performance in crowded commercial or military low-power, high-frequency electronic equipment ever offered!

- Miniatures available with either steatite or phenolic sections in botted or staked construction, and in combination with variable resistors and line switches.
- Single and multiple sections - exceptional design adaptability.
- Standard or special combinations - up to 12 positions or up to 6 poles per section.
- Steatite insulation is JAN Grade L-5 for low loss characteristics.
- Fhenolic insulation-only high grades used. NEMA Grade XXXP. Mil grade P3115B.
- Indexing 30° or 60° (standard or miniature). 90° (standard only).
- Shorting and non-shorting types
- Now available-new Series 100 Sub-Miniature for military application only ($11 / 8^{\prime \prime}$ dia.). Centralab hos been solving switch problems for nearly 30 years!
- Centralab switches have been called the prototype of all selector switches in use today. - Choose from the widest variety available from any manufacturer: slide, lever, rotary, power, able at your local (CRI.) distributor - see able at you
Catalog 28.

WRITE NOW FOR BULLETINS 42-156 (Series 20), 42-157 (Series 30), EP-SW-1 (Series 100).

Centralab

A Division of Globe-Union Inc.
914E E. Keefe Avenue - Milwaukee 1, Wisconsin In Canada: 804 Mr . Pleasant Road, Toronto, Ontario
 electronic components

Men qualified to handle high level assignments in electronics are offered a challenging opportunity in Boston, under ideal working conditions divorced from production. The laboratory provides stimulating projects, an atmosphere of scientific progress and provides assistance towards your personal advancement or professional recognition You will work with a top level technical staff possessing the finest facilities. Admin istrative positions are open to men qualified to guide the efforts of others.

MICROWAVE ENGINEERS

Senior engineers to handle design and development projects and provide tech. nical direction of other top-level engineers. working on microwave circuits and microwave plumbing in the development of military airborne electronic equipment. Should have 5 years' experience in such work and at least a BS degree.

ELECTROMECHANICAL

ENGINEERS

Senior engineers to direct groups of top level engineers working on mechanical designs of airborne electronic equipment. Should be able to estimate operating and development expenses to judge and coordinate staff work. Should have 5 years' experience in the field and at least a BS degree

ELECTRONIC Engineer-in-Charge

To plan, direct and control the activities of engineers engaged in design and
development of large, complex electronic equipment. Must have at least 5 years experience in military electronic equipment and be familiar with latest techniques used in airborne electronic methods. Must have at least a BS degree.

ENGINEERING SPECIALIST
 (Weight Control)

Experienced in the mechanical design of airborne electronic equipment. Should have a BS degree and approximately 5 years experience in aircraft weight control and high strength-to-weight ratio structures. Should be qualified to direct the work of a group of engineers.

RADAR SYSTEMS AND CIRCUIT ENGINEER

To assume responsibility for electronic circuit design for major elements of complex airborne electronic equipment. Should have a BS degree and about 5 years' experience.

Sylvania provides financial support for advanced education as well as a liberal insurance, pension and medical program. Investigate a career with Sylvania
INTERVIEWS BY APPOINTMENT
Don Bradley, Personnel Manager Boston Engineering Laboratory

SYLVANIA

ELECTRIC PRODUCTS INC.

70 Forsyth Street - Boston, Massachusetts - KEnmore 6-8900

projector-all automatically controlled and providing for the ultimate in operating smoothness.

CONNECTOR

for printed circuits
Gorn Electric Co., 857 Main St., Stamford, Conn., has available a new receptacle connector with 6,8 , $10,12,15,18$ or 22 contacts to receive printed circuit cards. The body is compression molded Melamine for high dielectric and mechanical strength. Contacts are of spring tempered beryllium copper, gold plated over silver for ease of soldering and prevention of corrosion. Design of the contacts provides positive mating of the connector with printed circuit cards of from 0.061 in . to 0.071 in . thickness. Voltage breakdown at sea level is 2,500 volts rms , and at $60,000 \mathrm{ft}$ is 700 volts rms. Minimum creepage is $\frac{1}{4} \mathrm{in}$; minimum air space is $\frac{1}{8}$ in.; mechanical spacing is ${ }^{\frac{5}{2}} \mathrm{in}$. It is designed for use with wire size No. 16.

TINY TUBE HOLDER features light weight
Atlas E-E Corp., Bedford Airport, Bedford, Mass. A new lightweight subminiature tube holder made of cadmium-plated spring steel with
silver-plated brass tube shield provides space saving, economical and convenient methods for firm holding in fixed positions in relation to a mounting surface. Subminiature tubes, held in place by the holders, withstand high shock and vibration encountered in mobile electronics such as guided missiles. Equipment using this construction technique has withstood tests of 10 to 500 cps from 5 to 20 g for 8 hours without resonance. The holders provide ready removability of the tube should replacement of the component be needed; efficient conduction of heat from the component to the body on which the holder is mounted; and automatic adaptation to thermally caused dimensional changes, thus minimizing thermal stress between component and holder.

GERMANIUM DIODES are hermetically-sealed
General Electric Co., Syracuse, N. Y. Three JAN types (1N69, 1 N70 and 1 N 81) and some commercial computer types of hermet-ically-sealed ceramic germanium diodes are now available. As in the past, the platinum-ruthenium whisker is welded to the germanium pellet. The hermetic seal is metal to ceramic. Gas-tight ceramic cases with metalized ends permit solder seal to nickel pins. The diodes exceed the requirements of JAN humidity specifications.

PRINTING MACHINES for wire lead components

Markem Machine Co., Keene 41, N. H. A printing machine that MICROWAVE VSWR AMPLIFIER

FEATURES:

- Crystal current and power monitoring
Two channel input
VSWR to 60 db
Set-up signal sources

for faster, more accurate readings... easier operation

WAVELINE, precision leader in the manufacture of microwave test equipment, now offers you the ultimate in advance-design VSWR AMPLIFIERS.
This NEW Standing Wave Amplifier is the culmination of extensive research and testing ... directed at developing new concepts of instrument function and design for microwave test equipment.
Exclusive combinations of features make WAVELINE microwave instruments the most valuable test equipment available today!

Technical data on microwave
instruments covering the range 1,000 to 40,000 MCS available on request.

NeW mODEL 2000
 Standing Wave Amplifier

Crystal Current Measurement - a fea. ture is incorporated making the meter available for monitoring crystal current and power.
Two Channel Input - provides in one in. strument:

1. By atternate use of two channels a pulsed 1. oscillator in combination with a calibrated attenuator provides a substitute for a costly signal generator.
2. Monitoring crystal current and measuring VSWR.
3. Both channels measure VSWR.
4. Monitoring power with bolometer and measuring VSWR.
5. Monitoring power at two points.

Sensifivity - Full scale deflection; minimum 0.3 microvolts; maximum 0.3 volts.

Sefectivity-0verall Q of approx. 20.
Calibration-Calibrated for use with a
square law detector. 60 db over-all range in 6 steps. Accuracy $\pm 0.1 \mathrm{db}$ per 10 db .
Defector--Crystal rectifier or bolometer with 8.75 Ma . or 4.0 Ma . bolometer bias for standard 200 hm bolometer, barretter or 1/100 amp instrument fuse.
Modulation Requirements - For VSWR measurement the RF source must be modumeasurement the sf source Pust in units for frequencies 250 to 2500 CPS available.
Price - $\$ 200$. F.O.B. Caldwell, N. J.
Sales Engineers in All Principal Cities

Facing new antenna problems?
Find important new ideas and advanced techniques leading to the ultimate answers in Gabriel's new Facilities Report. For design... development . . . or production, you need this 24 -page well illustrated brochure.
It is, we believe, by far the most complete in the field. A few of the projects described - typical of Gabriel experience that can help you - are:
RADAR - Design and production of search antennas; IFF parasitic antennas; conical scan for gunlaying and tracking.
missiles - Flush-mounted antennas for intelligence transmission; beacon antennas for tracking.
AIRCRAFT - Blade, flush mounted, and block antennas for navigational radar, Shoran, communications, and homing.
microwave relar - For mobile military communications, railroad, TV network, and public utilities.
*Executives and Engineers at Management level.
SEND FOR YOUR COPY. Write on your letterhead, please, indicating antenna problem involved. Address Consulting Engineering Department.

GABRIEL ELECTRONICS DIVISION

Formerly Workshop Assaciates Division
THE GABRIEL COMPANY, 300 Endicott Sireet, Norwood, Mass.

automatically feeds, prints and ejects small cylindrical objects with wire leads is available for in-plant printing. It prints trade name, trade mark, specifications, etc., on jtems such as resistors, capacitors. diodes, triodes, transistors and subminiature electronic tubes or other cylindrical objects when a special feed adapter is used. The machine incorporates a chute feed which easily adjusts to handle items up to 2 in. long by in. o.d. The unit, powered by a -hp motor equipped with a variable speed drive, is mounted on a floor stand and occupies space 45 in . deep, $15 \frac{1}{2} \mathrm{in}$. wide and 56 in . high.

POWER CONNECTORS with coaxial contacts

dejur-Amsco Corf., 45-01 Northern Blyd., Long Island City, N. Y. A new type of "Easy-Release" connector designed for use with small r-f cables where nonconstant impedance is required, has been added to the Continental connector line. This connector uses coaxial contacts instead of the standard guide pins to minimize electrical discontinuits in a coax line. Electrically they are
similar to the BNC type connector. Polarization is positive with the two coaxial contacts serving not only as a means for polarization, but also as a self-aligning guide pin and socket. Plugs and receptacles may be used with cables RG-55, 58, 59 and $71 / \mathrm{U}$.

SWEEP GENERATOR

 is a high-speed unitSpencer-Kennedy Laboratories, Inc., 186 Massachusetts Ave., Cambridge 39, Mass. Model 610 highspeed sweep generator was designed to supply extremely fast sweeps for cathode-ray indicators or other applicators or other applications requiring a rapidly rising linear voltage. It will provide continuously adjustable sweep speeds of from 0.05 to 500 cm per unit can be triggered for single or repetitive sweeps. It will also provide a brightening pulse and gate outputs. All controls and connectors are conveniently grouped on the front panel and include sweep-speed controls, trigger input, gate output and external horizontal-deflectioninput jacks. All power connections are made to the rear of the chassis.

SERVO MOTOR for high acceleration

Raytheon Mfg. Co., 148 California St Newton 58, Mass.. The motor illustrated was designed for an application requiring high acceleration. Minimum starting torque is 0.6 oz -in. and the measured average acceleration is 26,500 radians per second. A tachometer generator is incorporated in this design for applications where tachometric

To meet the ever-expanding need for accurate impedance and VSWR measurements, Gabriel Laboratories has designed several high precision coaxial slotted lines. For VHF, models are available for frequencies ranging down to 50 mc . These lines can be supplied with a characteristic impedance of 51.1 or 50 ohms. Unique design of the center conductor supports, permits accurate, adjustable centering of the line. Residual VSWR is less than 1.02.

Two probe types are available: (1) RF output for use with receiver, and (2) tuned probe with self-contained bolometer or crystal. The lines are supplied with precision tapers for measurement in systems employing either standard $7 / 8$-inch flanges or type N connectors. Tapers for RTMA $31 / 8$-inch lines, $15 / 8$-inch lines and RG17/U cable connectors can be supplied. Standard models are 6 -foot allowing for measurements down to 100 mc ., and 10 -foot for measurements down to 50 mc . Both models are efficient, rugged and come equipped with handles for ease in handling.

For precision UHF impedance measurement in systems employing RTMA standard transmission lines, a special slotted line is available. It connects directly to RTMA standard flanges, $31 / 8$-inch or $15 / 8$-inch. Residual VSWR is less than 1.02 . Standard lengths are 18 inches and 25 inches to suit the use of UHF TV measurements. The lines are supplied with either RF or tuned bolometer probes. A single adaptor to a type N connector simplifies connecting the signal generator.

For further information write Gabriel Laboratories, 135 Crescent Street, Needham Heights, Massachusetts, or phone NEedham 3-0005.

THE GABRIEL LABORATORIES
THE GABRIEL COMPANY, 135 Crescent Street, Needham Heights, Mass.

JOHNSON "R" CAPACITORS RUGGED and RELIABLE

Catalog Number	Type Number	"M" Dimension
$149-1^{*}$	$20 R 12$	$1-7 / 32^{\prime \prime}$
$149-2^{*}$	$35 R 12$	$1-7 / 32^{\prime \prime}$
$149-3^{*}$	$50 R 12$	$1-7 / 32^{\prime \prime}$
$149-4^{*}$	$75 R 12$	$1-7 / 32^{\prime \prime}$
$149-5^{*}$	$100 R 12$	$1-13 / 32^{\prime \prime}$
$149-6^{*}$	$140 R 12$	$1-19 / 32^{\prime \prime}$
$149-8$	$200 R 12$	$2^{\prime \prime}$
$149-10$	$250 R 12$	$2-5 / 16^{\prime \prime}$
$149-11$	$325 R 12$	$2-23 / 32^{\prime \prime}$

Nickel plated brass plates, .0226" -full soldered construction. Standard air gap, .024"-Steatite insulation, grade 44 or better. Silver plated beryllium copper rotor contact. Integral mounting feet and panel mounting bushing. All models of double bearing construction, with dual stator terminals and a .250" shaft with rear extension.

Specials can be furnished with . $036^{\prime \prime}$, .050", .071", and .095" spacing, and with special plating, panel mountings, shaft extensions, or high torque bearings.
*Stock items. All other capacitors made to customers' order. Orders for "non-stock" or special capacitors should be of sufficiently large quantity to insure economical production runs.

For complete pricing and descriptive data on these and other types of JOHNSON capacitors, write for your copy of General Products Catalog 973.

feedback is required. The no-load speed is $10,500 \mathrm{rpm}$, and the motor will accelerate to full speed, no load, in 0.03 sec . For complete technical information, write for bulletin DL-Y-14.

FREQUENCY METER

 for 8,200-12,400 mc rangeNARDA-Nassau Research \& Development Associates, Inc., 66 Main St., Mineola, N. Y.. has developed a frequency meter for the 8,200 to $12,400-\mathrm{mc}$ range for use by microwave laboratories in the X band region. It features high Q, accuracy of 0.1 percent, ease of tuning, calibration chart mounted on cavity and large reactive dip for rapid location of resonance. The meter consists of a resonant cavity in the TE ${ }_{1 I}$ mode, which is tumable by varying the cavity length with a noncontacting shorting plunger. The calvity is mounted on a short length of $1 \times 1 \mathrm{in}$. waveguide,
which is terminated in LG-39/L cover flamges.

RECTIFIER

is tiny double-bridge type
Raytheon Mfg. Co., 148 California St., Newton 58, Mass. This unit contains two full-wave selenium bridge rectifiers and associated resistors, designed to operate as a phase comparator and packaged to withstand high shock and vibration. The package is completely sealed. Overall dimensions are $1 \mathrm{in} . \times{ }_{8}^{7} \mathrm{in}$. $\times \frac{\text { in }}{}$. Weight is slightly over $\frac{1}{2}$ oz. For complete details write for bulletin DL-Y'-19.

DEFLECTION YOKE for tv camera tube

I-T-E Crecuit Breaker Co., 1924 Hamilton St., Philadelphia 30, Pa. Function of the camera deflection yoke illustrated is to control the electron scanning beam as it moves vertically and horizontally. Each raster is scanned at the rate of 525 lines per second, the same as commercial broadcast to camera and home receivers. The yoke, weighing approximately 4 oz , meatsures 1 s in. in diameter by 4 in . in length. Hori-

RELAYS • SOLENOIDS • COILS : TRANSFORMERS • SWITCHES • HERMETIC SEALING
 Not so unusual, that is, that B\&W filter engineers haven't already run into something similar in their collective 265 years of experience. And the broad range of experience which these engineers possess is matched by the production skill of B\&W's manufacturing personnel . . . with a full complement of high-quality, high-capacity test and production equipment at their disposal.

Whether your problems are in the research, design, development, or production stage . . . in electronics, television, computing, radio broadcasting, or radio communications... you'll find the complete facilities of Barker \& Williamson ready, willing and able to solve them.
Write now for complete information on B\&W filter manufacturing facilities.

LOW-PASS FILTERS

Barker \& Williamson is proud to announce that it is now operating the new Boesch Subminiature Toroidal Coil Winding Machine, and invites your inquiries in this new field of effort.

TOROIDAL COILS

zontal resistance is 3.59 ohms; vertical resistance, 161 ohms. Horizontal inductance is 0.92 mh ; vertical inductance, 53.2 mh .

TINY C-W MAGNETRON for 9,800 to $10,000 \mathrm{mc}$

Microwave Associates, Inc., 22 Cummington St., Boston 15, Mass. A new c-w magnetron resembling physically a standard receiving tube and operating from a plate supply of 450 to 500 v and a heater supply of 6 v is now available for use at a range from 9,800 to $10,000 \mathrm{mc}$. The 6444 is fixed-tuned, incorporates the new long-life Philips dispenser-type cathode and delivers 1 w of $\mathrm{c}-\mathrm{w}$ energy in a standard klystron octal socket. The magnet is an integral part of the tube package. The 6444 is extremely rugged, nonmicrophonic and is exceptionally suited for Doppler-type radar and other field and laboratory use.

FLARE MACHINE operates automatically

Kahle Engineering Co., 1307 Seventh St., North Bergen, N. J. ModeJ

2310 automatic flare machine combines two production operations in one unit to save labor costs and reduce the percentage of breakage. It produces flared necks at rates of approximately 800 each hour for c-r tubes from standard lengths of tubing. The machine feeds, cuts and flares antomatically. Cutting is by the hot-chill technique. The matchine can also be used as a tubing cutter by locking out the flaring mechanism.

D-C SCOPES are very highly sensitive

Volkers \& Schaffer Mfg. Corp., 1679 Broadway, Schenectady 6, N. Y. The VS-900 series of oscillographs sets a new standard for sensitivity and stability in d-c scopes. They have an exceptionally high a-c sensitivity and unusual freedom from distortion. Their d-c sensitivity is $700 \mu \mathrm{v}$ per cm , and a-c sensitivity, $10 \mu \mathrm{v}$ per cm . Direct current drifts, after a 5 -minute warmup period, seldom exceed 1 mv . Four distinctive design features are: heavy overall feedback (including d-c), d-c heated electronically regulated filaments, the starved amplifier circuit, and gas-diode coupling in a new circuit. Frequency range has an upper limit of 500 kc (3 db down).

SEALED RELAYS
 for small space

Magnecraft Electric Co., 1442 W. Van Buren St., Chicago 7, Ill. Developed to meet application requirements where space is limited, these

Something BIG'S going to happen to PROFITS

 when you design with Centralab ceramics!

Let industry's most experienced ceramic source help you design greater "sell" into your line. Then watch BIG things happen to profits! Centralab gives you all this:

1. Thousands of ceramic formulas "ready-togo" to solve your particular problem.
2. Ceramics to meet JAN-I-8 and JAN-I-10 specifications without exception.
3. Grade L-5 steatite always supplied. Centratab's best! Unequaled for:

- High dielectric strength -240 volts per mil.
- Less loss at bigh frequency-Loss factor at $1 \mathrm{MC}-.007$.
- High mechanical strength - 18,000 psi modulus of rupture.
- Harder than quartz - 7.5 Mohs' scale.
- Impervious to moisture or acids-. 005% absorption.

4. Plus hundreds of standard types of CRL JAN ceramic standoffs and feed-thru bushings - immediately available from stock.

Got a ceramic problem? Then don't wait another minute - send your specs to Centralab

- Centralab manufactures from basic powders to finished product right in its own modern plants.
- Completely mechanized facilities to mix, mold, stainp, drill and tap.
- Quality controlled with inspection after each major operation.
- Standard items are available at
your local (CRI.) distributor-see
Catalog 28 or JAN Bulletin 42-181.

Centralab

A Division of Globe-Union Inc. 914E E. Keefe Avenue - Milwaukee 1, Wisconsin In Canada: 804 Mt. Pleasant Road, Toronto, Ontario
 electronic components

small d-c relays are hermetically sealed in metal containers $1 \frac{1}{8} \times 1_{10}^{9}$ $\times 1{ }^{3}$ 各 in. high. They are available with 14 -pin miniature plug or solder terminals. Relay and con tainer interlock so weight of the relay puts no strain on the solder seals. They are furnished for any voltage to $115 \mathrm{v} \mathrm{d}-\mathrm{c}$, and with contact combinations up to 4 -pole, double throw. Added contact combinations are available in larger containers. Resistance range is 0.12 to 11,000 ohms. Weight is approximately 5 oz .

OUTPUT PENTODE

 for mobile radio useMullard Ltd., Century House, Shaftesbury Ave., London, WC2, England. The EL-85 a-f and r-f output pentode is a noval-based tube intended for a-c power line operation. Heater rating is $6.3 \mathrm{v}, 0.2$ ampere, which is low in view of the maximum cathode current rating of 35 ma. The EL85, which has an anode dissipation of 6 w , may be used as on a-f output tube or as an r-f amplifier up to 120 mc . As a class-A audio amplifier it gives an output of 2.8 w when operated with a $\mathrm{h}-\mathrm{v}$ supply of 225 v and an anode current of 26 ma . As an r-f
amplifier it will deliver 2 w at 100 mc . It should be useful for equipments requiring moderate power output and where low voltage drain is important. It is particularly suitable for mobile transmitters and receivers, where it may be used as a driver, modulator or audio output tube.

RESISTORS are high-voltage insulated

Bradford Components, Inc., 33-35 Bishop St., Bradford, Pa., is manufacturing a high-voltage insulated precision wire-wound resistor called the Cer-Ohm. Its h-v ceramic insulation plus conservative power ratings make this COP type unit ideal where cost is a large factor. CerOhm units are fabricated with 2 w , $3 \mathrm{w}, 5 \mathrm{w}, 7 \mathrm{w}, 10 \mathrm{w}, 15 \mathrm{w}$ and 20 w ratings using Tophet C, Evanohm or other recognized good resistance wire. They are produced with standard 5 percent and 10 percent tolerances but are made to close tolerances with special characteristics when so specified.

SHEET-BEAM TUBE for synchronous detecting

General Electric Co., Schenectady $5, \mathrm{~N}$. Y. The 6 AR 8 is a miniature double-plate sheet beam tube which incorporates a pair of balanced deflectors to direct the elestron beam to either of the two plates and a control grid to vary the intensity of the beam. The tube is especially suited for service as a synchronous detector in color ty receivers. In this application, relatively large, balanced output signals of both positive and negative polarities are developed which eliminate the need for phase-inversion functions in the matrix circuits. Other features of the 6AR8 syn-

Cut your enclosure costs with KARP

Cut your inventory costs

Karp will schedule production of your enclosures to match your assembly requirements, thus keeping your inventory to a minimum.

Cut your tooling costs

We have an accumulation of over 3000 Karpowned tools and dies, all of which are available for your use.

Cut your extra-handling costs

Karp gives you a complete package-ready for your components. No need to re-ship for painting, silk-screening or sub-assembly.

Cut design and engineering costs

Karp's Engineering Department, staffed with competent sheet metal specialists, can do your design and engineering quickly, accurately and economically.
Thousands of our customers, large and small, from coast to coast, know that Karp enclosures are their most economical buy. They find the initial cost low, and the extra "hidden" costs eliminated. Prove it to yourself: send us samples, sketches or prints and a prompt quote will follow.

KARP METAL PRODUCTS CO. Division of $H \dot{\leftrightarrow} B$ American Machine Company

 215 63RD STREET, BROOKLYN 20,N. Y.enclosures rafled the skills within

FACILITIES FOR ENGINEERED SHEET METAL FABRICATIONS: in
FACILITIES FOR ENGINEERED Shert spot, arc, gas or holiare welding - any type finish.

- Modern plant-
3 city blocks long
- Thousands of dies available
- Most modern of sheet metal

Most modern of sheet

[^17]
GTC Transformers

 Unisual Applications

Du Mont, to maintain leadership in television scanner production and development, specifies only the finest parts - including GTC trans. formers.

Your products undoubtedly necessitate the use of the finest transformers for standard as well as unusual applications... why not specify GTC?

We invitc your inquiries
GENERAL TRANSFORMER COMPANY
serving industry since 1928
18240 Harwood Avenue, Homewood, Illinois
(Suburb of Chicago)

chronous detector circuit include low oscillator injection power requirements freedom from the spacecharge coupled effects which are present in dual-control pentodes and heptodes, linear output voltages, insensitiveness to variations in oscillator amplitude over a wide range, and a high ratio of plate to accelerator current. Complete technical information is given in six catalog pages designated ET-T840.

NEW SWITCH features rugged frame

Switchcraft, Inc., 1328 N. Halsted St., Chicago 22, Ill., has announced a telephone type switch called Telever that features an unusual T-beam, rugged frame construction. It is available in many contact arrangements in 2 and 3 position types. Size is $4 \frac{1}{2} \mathrm{in}$. long overall by approximately 1 西 in . \times (1) in. It features a welded cross bar palladium contact rated at 3 :mperes, 120 v a-c noninductive load. Insulation is natural paper base phenolic spacers and tubing in stack assembly. The switch is designed for applications requiring

4omydita

RESIN BOBBIN
 for resistor sealing

Thor Ceramics, Inc., 225 Belleville Ave., Bloomfield, N. J. A new type Epoxide resin bobbin has been developed especially for use in hermetically sealing wire-wound resistors. The new bobbin, featuring outstanding adhesion quality, is fabricated from a thermosetting resin with excellent physical and electrical characteristics - high tensile strength, low water absorption, a dielectric constant of 3.70 at 60 cycles, and a low loss factor of 0.009 at 60 cycles.

TINY INDUCTORS

weighing $1 / 2$ oz
Mico Instrument Co., 80 Trovbridge St., Cambridge 38 , Mass., has available a line of miniature inductors particularly suited for use as inductor elements in tuned circuits and filter networks and as chokes in receiving, telemetering and navigational systems. They are also ideal for chokes in the low power sections of transmitters where a compact, stable and durable

LARGE INSTALLATION

This large computer is used for the rapid solution of aero-dynamic problems. it consists of 50 operational amplifiers, 10 servo multiplying channels, 4 resolving channels, and a control console with two pre-patch bays, 156 attenuators, two voltmeters, and all necessary operational controls.

SINGLE PACKAGE COMPUTER

Our Type 16-31R Computer is a single package computer capable of solving differential equations with many simultaneous elements which are often encounfered in the simulation of dynamic systems. It contains 20 operational amplifiers, 4 servo multipliers, thirtyotwo aftenuators, all-metal removable problem board, and complete control panel.

PLOTTING EQUIPMENT

For presentation of problem solutions, the Variplotter Plotting Boards provide an accurate inked record. Typical uses include the automatic plotting of: Anolog Computer output; guided missile data; engine performance characteristics; and control of manufacturing processes. With accessory equipment the range of applications can be greatly extended.

Write Dept. E

HOW MUCH ARE

JAMMED SWITCHEOARDS

 COSTINC YOU EACH HEAFY
The answer will surprise you!

The answer - they could cost you enough to pay for a RyCom CFD-B Packaged Carrier Telephone System in a year! These units immediately add four more voice channels to each of your present lines . . . and will quickly pay for themselves by slashing your long distance telephone costs!

- NO EXPENSIVE TEST EQUIPMENT NEEDED . . . Built-ir measuring panel provides fast over-all system line-ups, eren by nontechnical personnel. No more testing trips up and down the line.
- EQUALIZATION OF NON-CON. FORMING LINES... with built-in slope control.
- EASIER INSPECTION AND MAINTENANCE . . . with RyCom separate panel construction.
- easier installation in less time . . . The CFJ.B is packaged in a singe rack for space and labor savings. Shipped complete in cne package.

Immediate Deliveries
Now Being Made!
Order now for early delivery. RyCom engineers will be glad to talk over your specific installation needs. Write or phone today for complete details. specifications, prices!
rely on Byex forthighest Quesity at Minimum cot

Raytown, Missouri, US.4. Phone: FLeming 21C0
 New York 16, N .
inductor is required. Full description, chief features, specifications and ordering data are given in a single-page bulletin now available.

CRO SWEEP operates automatically

Audio Instrument Co., Inc., 133 W. 14th St., New York 11, N. Y., announces a device that halves the time required to use a cro. Model 54 automatic oscilloscope sweep locks onto a signal of 0.1 to 50 v , in the frequency range of 20 to $30,000 \mathrm{cps}$, and automatically generates a sawtooth sweep voltage of constant amplitude, perfectly synchronized. This saw-tooth voltage may be fed to the X -axis amplifier of any oscilloscope. Both positive and negative sweep polarities are available. Input impedance is 1 megohm. Sweep frequency is always one-half the signal frequency, so that two cycles of the signal are displayed on the oscilloscope screen.

UHF-VHF STAND-OFF is easily installed

Argyle Electronic Co., 8 W. 18th St., New York 11, N. Y. The new universal stand-off eliminates the metal ring from around the transmission line and thus completely overcomes the problems of standing waves and voltage losses. It permits the closest approach possible to running a transmission line in free space. The gromet is of pure polyethelene, heavy construction, which accommodates all types of transmission line without the need to thread. The installation time is reduced to about one-fifth that of the ring type stand-offs. The new
standoffs are available in wood screw and mast types, singles, duals and triples.

CURVE TRACER determines envelope delay

Telechrome, Inc., 88 Merrick Road, Amityville, L. I., N. Y. Model 1603-AR envelope delay curve tracer provides rapid determination of the envelope delay and amplitude characteristics of any network, video amplifier or system. It saves time and provides accurate performance checks for leading research laboratories, manufacturers and broadcasters. Measurements can be made to an accuracy of 0.01 usec in absolute value, and to even greater accuracy in terms of relative values.

ALUMINUM HOODS for electrical connectors

Winchester Electronics, Inc., Glenbrook, Conn. New hoods for the series M miniature electrical connectors offer greater protection, sturdier support and strain relief for the cable. Hood bodies with cable clamps are machined from top

This Story is full of Holes...

1808 to be ACCURATE!

WHEN the W. L. Maxson Corp. and Electronic Associates, Inc., needed gear train panels for their computing machines, Universal got the nod for ore important reason! Notwithstanding our years of experience and an enviable record for producing precision work-this job came to us primarily because we had the equipment* to do the job best

Working to tolerances of $\pm .0005$ between holes, and tolerances of $\pm .0002$ on the holes themselves, interior of holes finished to 4 to 6 micro-inches, this preci sion boring operation on 24 ST alumi-

Medium resistance pyrometers (4 ohms per millivolt.). Automatic, bimetal cold junction correction. Compensated for copper error. With adjusting resistor to take thermocouples up to external resistance shown in table. When specified will be adjusted for mounting in steel panel. Accuracy 2\%.
Contact pyrometers have same size and appearance but include contacts, adjustable to close at

FACE

Several intermediate ranges not listed.
Thermocouples:-(not included). Chromel-alumel (C/A) 14 ga. insulated 5 leads $\$ 4.00$. Iron-constantan (I/C) or copper-constantan (C/C) 20 ga. insulated 5^{\prime} leads $\$ 2.90$.
quality aluminum bar stock, thus providing greater strength than is possible to obtain when die cast methods are employed. Weight is kept to a minimum. Cadmium plating with clear iridite finish assures maximum resistance against corrosion. The compact, lightweight series M connectors are available in arrangements of $4,5,7$ and 9 contacts for No. 20 Awg cable wires. Molded mineral-filled Melemine insulator bodies provide high dielectric and mechanical strength. Mating plugs and receptacles are positively polarized and locking mechanisms prevent accidental disconnection.

REMOTE CONTROL for unattended stations

Schuttig and Co., Inc., 9th and Kearny St., N. S., Washington 17, D. C., has announced a new remote control system for unattended communications stations. Because only a single telephone line is required to turn a transmitter on and off, select operating frequency, carry the outgoing voice signal to the transmitter and return a receiver signal to the control center, the savings in toll charges for the average installation will soon offset the initial cost. Provisions are included for operating six separate circuits with a single operator's control unit. No d-c is used on the line, permitting use over any ordinary speech telephone line or radio link, regardless of the number of repeaters used. Plug-in subassemblies pro vide fllexibility and easy maintenance. The equipment is designed for airways radio communications control, but is adaptable for use with any equipment using on-off
switching and dial selection for control.

RESISTORS

sealed in steatite housing
Mepco, Inc., Morristown, N. J., announces a complete line of hermetically sealed deposited carbon resistors with ratings from 0.25 w to 2 w. Unlike the usual varnishcoated types, they are completely sealed in steatite housing, assuring positive protection against moisture. Available also are resincoated types manufactured to MIL-R-10509A, glass enclosed and helium filled high stability types, and high-frequency rod and disk units.

TR SHUTTER TUBE offers waveguide shorting

Bomac Laboratories, Inc., Salem Road, Beverly, Mass. The BL-58 TR shutter tube offers waveguide shorting plus t-r tube action. It has continuous crystal protection, all in one complete package. When equipment is not in use, or is in standby condition with t-r keepalive voltage off, an automatic, failsafe shatter provides a minimum of 40 db insertion loss ahead of the crystal. When equipment is in operation with voltage applied, the shutter action is automatically removed and the $t-r$ tube functions normally. The complete package

Combining unusually small size with direct sensing diaphragms that permit flush mounting to eliminate turbulence or cavity resonance effects, CEC's 4-310 and 4-311 "star type" pressure pickups are unsurpassed for gage pressure measurements in the 5 to 5000 psi range. The outstanding hysteresis and linearity characteristics of these variable resistance instruments make them widely applicable in recording, indicating and controlling circuits. Wide temperature range permits use from -100 to $+250^{\circ} \mathrm{F}$. Their response to acceleration and vibration is negligible. Either A-C or D-C excitation may be applied to these pickups. Stainless steel construction withstands corrosion in extreme environments. The versatility of CEC's miniature "star type" pressure pickups makes them ideally suited for such applications as aerodynamic pressure surveys and other high frequency liquid or gaseous pressure studies. Send for Bulletin CEC-1503P-X2.

Consolidated Engineering
 CORPORATION

ANALYTICAL INSTRUMENTS FOR SCIENCE AND INDUSTRY
300 North Sierra Madre Villa, Pasadena 15, Califormia
besidiary with offices in:
Pasadena, Atlanta, Chicago, Dallas, Detroit, New York, Philadelphia, Washington, D. C.

ELECTROPLATED

Preferrec for:

- Corresion Resistence
- Better Solderability
- Suppession of Crid Erission
- Improvemert of Electrical

Chorac-eristics

GOLD, SILVER, RHCCIUM, FLATINUM and other metals, epplied to many different types of wire to meet your pecifications. Uriform plat179, saient fically cortmelled. Write fer lafest list of protucts.

SIGMUND COHN MFG. CO., INC.

121 So. Columbus Avenue . Mount Vernon, N. Y
protection affords the user substantial savings in both size and weight.

BEAM TRIODE

 is high-voltage regulatorRadio Corp. of America, Harrison, N. J. The 6BD4 is a low-current beam triode of the sharp-cutoff type designed specifically for the voltage regulation of high-voltage, low-current d-c power supplies, such as the power supply with the 15GP22 tricolor kinescope. The 6BD4 has a maximum d-c plate-voltage rating of $20,000 \mathrm{v}$, a maximum d-c platecurrent rating of 1.5 ma , and a maximum plate-dissipation rating of 20 w .

D-C POWER SUPPLIES are low-cost units

Dressen-Barnes Corp., 250 N. Vinedo Ave., Pasadena 8, Calif., announces a new line of low-priced d-c power supplies for laboratory and experimental applications. The units come in two types: model 3-150-L, a cabinet-mounted unit with an output voltage range up to 300 ; and a series of subchassis mounting type packages with d-c voltages ranging from 150 to 500 . Ripple on all
units is below 0.01 v , peak to peak at full load. Regulation ranges from 0.5 percent to 1 percent from no load to full lond with 10 percent plus or minus line voltage variation.

GEAR TRAINS

for electronic computers

Universal Mfg. Co., 402 Hillside Ave., Hillside, N. J., has available jig bored gear trains 10 tolerances of ± 0.0005 between holes, and ± 0.0002 on the holes themselves, with interiors of holes finished to 4 to 6 microinches. Material used is 24 ST aluminum sheets. The jig boring machine used for this operation employs an optical measuring system instead of the usual threaded spindle, and attains an accuracy not found in other machines.

WIDE-BAND AMPLIFIER features very high gain

C. J. Applegate \& Co., 1816 Grove St., Boulder, Colorado. The Uniplug illustrated is a wide-band gen-

Magnecord M80 professional tape rucorder

NEW Low Level Mixer - For three 50 -ohm microphones. Mounts on same standard panel as Throwover Switch and Voice-Operated Relay.

Your deater is listed umder "Recorders" in the classified telephone directors.

225 WEST OHIO STREET, Dept.E 5 CHICAGO 10, ILIINOIS

EVEN I CAN REPLACE RECTIFIERS!

Request pluc-Ins

THE UNIVERSAL SELENIUM RECTIFIERS

Rectifier failures are infrequent-BUT-here is a power rectifier that can be replaced on a moment's notice without tools. Bring your equipment up to date by installing Sarkes Tarzian Plug-In Rectifiers. Our engineers will design these rectifiers for your application. Please send us your requests.

New 72-page Selenium Rectifier Handbook Available. Latest Engineering Information. Send For Your Copy.

RECTIFIER DIVISION

415 N. College Ave., Dept. E-3, Bloomington, Indiana In Canada - 50 St. Clair Ave., N. W., Toronto

eral-purpose amplifier featuring high gain, low noise, high input and low output impedance, high stability, 3 feedback loops, uniplug convenience. small size and low price. The company has available a data sheet giving complete technical specifications.

CONTROL PANEL

 for-h-v breakdown testingIndustrial Instruments, Inc., 89 Commerce Road, Cedar Grove, N. J., announce the series $C P$ control panel for the control of high-voltage power supplies in breakdown test equipment. It is available as a standard RETMA rack-mounted unit or as a self-contained cabinet model. A motor-actuated Variac uniformly increases voltage at a rate of either 500 v or $1,000 \mathrm{v}$ per second. An electromagnetic clutch is employed as driving mechanism, permitting instantaneous disengagement at any point in the cycle. Variac operates from 0 to a maximum of $130 \mathrm{va-c}, 60 \mathrm{cps}$.

FOCUSING MAGNET uses sintered ferrite

Heppner Mfg. Co., Round Lake, [ll., has available the new economical Focomag for accurately focusing tv tubes up to 27 in . The compact design requires only one ferrite magnet instead of the usual two. As the sintered ferrite is extremely uniform throughout, the magnetic field is more uniform, resulting in superior focusing. Other new features are an extended focus range with a very fine adjustment to exact focus and a built-in centering device. There is no harmful external field because the entire unit is completely shielded. The flexible nylon adjusting shaft elim-
inates any possibility of breakage. A convenient lever accurately positions the tv picture. A variety of mounting arrangements are available to suit any requirement.

Literature

\qquad

Magnetic Separators. Basco Mfg. Co., 5 Woodside St. Stamford, Conn. Complete information on the construction and uses of magnetic separators for fast and easy handling of steel sheets and plates is included in a new 4-page catalog. The booklet also describes how these units speed up production, reduce damage to machinery and eliminate injuries to operators. The booklet also contains handy magnet performance charts and a table of U.S. standard gages for sheet and plate steel.

Ultrasensitive Oscillographs. Volkers \& Schaffer Mfg. Corp., Box 996, Schenectady, N. Y. An 8-page illustrated brochure covers the VS900 series ultrasensitive oscillographs. Outstanding performance of the d-c scopes described is made possible by the combination of four distinctive design features: heavy overall feedback (including d-c); d-c heated electronically regulated filaments; the starved amplifier circuit; and gas-diode coupling in a new circuit. One of the most important features of the scopes discussed is that enough amplification is provided in them to extend their sensitivity to the limit of visible tube noise. A price list and information on scope preamplifiers are inserted in the booklet.

Multiturn Potentiometers. The George W. Borg Corp., 120 South Main St., Janesville, Wisc. A new 8 -page folder, covering the 900 series micropots, deals with the new standard of precision multiturn potentiometers. It discusses models 901-903 ten turn and models 931-935 three-turn units. Included are cutaway photographs showing advantages of construction, dimensional drawings showing special

Buy the components which comprise a servo system from several manufacturers, and chances are that you are butchering. After you waste time, labor, machinery, and material, modifying each component to make it usable, you still have to be satisfied with the limited system efficiency provided by unmatched units.

Case histories prove that complete assemblies of Transicoil components not only assure improved system performance but actually cost less than the total purchase price of the individual components acquired from several sources.

If you are now purchasing components from several manufacturers, a serious talk with Transicoil might well pay you dividends in lower costs and better results. But if your problem requires only an individual component, you can be sure of optimum performance from the Transicoil units you specify.

The complete MS (Military Standard) line of Hermetically-Sealed Power \& Filament Transformers

Chicago transformer now offers all units in the Military Standard (MS) line, as established jointly by the three armed forces (Army Signal Corps, Navy Bureau of Ships, and Air Force) working through asesa (ArmedServices ElectronicStandards Agency) and in cooperation with the transformer industry. The complete line is housed in chicago's one-piece drawn-steel cases. Outside case dimensions and mounting dimensions are within the tolerances of the Military Standard specification. Terminal arrangements and markings are also in accordance with the same specification. Tests conducted in the Chicago transformer laboratories indicate that all units will meet the requirements of Grade 1, MIL-T-27 specifications for Class A operation. The Military Standard line should find wide usage in military airborne, marine, and ground communication equipment, and particularly for research and development applications, pilot runs and pre-production models.

POWER TRANSFORMERS-JNPUT REACTOR SYSTEMS (PRIMARY-105/115/125 V.-Frequency $54-66$ cycles)

CATALOG NUMBER	$\begin{aligned} & \text { MIL-T-27 } \\ & \text { PART NO. } \end{aligned}$	HIGH VOLTAGE SECONDARY A-C Volis D.C MA.		D.C V OUTPUT	RECT. FIL. Volis Amps.		FIL. NO. 2 Volts Amps.		WT. LBS.
PMS 70	MS-90026	200-100-0-100-200	070	385	6.3/5	2	6.3	3	4
PMS.70A	MS.90027	325-0-325	70	260	$6.3 / 5$	2	6.3	4	5
PMS-150	MS-90028	325-0.325	150	245	6.3	5	5	3	71/4
PMS-175	MS-90029	400-0-400	175	318	5	3	6.3	8	10
PMS-250	MS-90030	450.0.450	250	345	5	3	6.3	8	13
PMS-350	MS-90031	350-0.350	250	255					$71 / 2$
PMS-550	MS.90032	550.0.550	250	419					11
PMS-800	MS-90036	800-0-800	250	640					161/2

FILAMENT TRANSFORMERS (PRIMARY:-105/115/125 V.-Frequency 54-66 cycles)

CATALOG NUMBER	MIL-T-27 PART NO.	SECONDARY Volts Amps		INSULATION VOLTS RMS	WT. LBS.
FMS-23	MS.90016	2.5	3.0	2500	$11 / 2$
FMS. 210	MS-90017	2.5	10	2500	$21 / 2$
FMS-53	MS-90018	5.0	3.0	2500	$13 / 4$
FMS-510	MS-90019	5.0	10	2500	4
FMS. 62	MS-90020	6.3	2.0	2500	$13 / 4$
FMS-65	MS-90021	6.3	5.0	2500	$23 / 4$
FMS. 610	MS-90022	6.3 CT	10	2500	5
FMS-620	MS-90023	6.3	20	2500	8
FMS-210H	MS.90024	2.5	10	10000	43/4
FMS.510H	MS-90025	5.0	10	10000	7

Free "New Equipment" Catalog
You'll also want the full details on CHICAGO'S
New Equipment tine of fomous "Sealed-in-Steel" Transformers.
Write for Free Catalog CT. 153 today, or get it from your
elestronis parts distributor.
CHICACO STANDARD TRANSFORMER CORP. 3501 W. ADDISON ST., CHICAGO 18, ML.
lengths available and complete technical specifications. Also given are ordering information and data on standard features and optional features.

Oil-Filled Capacitors. Industrial Condenser Corp., 3243 N. California Ave., Chicago 18, Ill. A 4 -page brochure covers a complete line of tubular oil-filled capacitors. The G and H type capacitors illustrated and described fill a definite need where chassis space and ease of mounting are prime factors. Complete technical data are given.

Power Connectors. DeJUR-AMSCO Corp., 45-01 Northern Blyd., Long Island City, N. Y. A 1-sheet bulletin in color deals with the Continental series E-Z 16 precision power connectors with coaxial contacts. It includes schematic drawings, special features and suitable cable types that can be used. The reverse side of the bulletin gives complete information on the series E-Z 16 connectors with bayonet locks.

Printed Circuit Controls. Chicago Telephone Supply Corp., Elkhart, Ind. Data sheet 168 illustrates and completely describes the new type YGC-B45 variable resistor with unique self-supporting snapin bracket and a complete line of other controls for printed circuit applications. Electrical and mechanical specifications and 17 diagrams are given.

Electronic Package Element. Sanders Associates Inc., Nashua, N. H. A pocket-size six-page folder covers the Reliacube, a compact electronic package element containing all components in a complete circuit, and featuring repeatibility, reliability and reduced cost. Included are photographs, circuit diagrams, price information and an outline of the company's services.

Capacitor Manual. Astron Corp., 255 Grant Ave., East Newark, N. J., has available a new capacitor manual, AC-4, containing detailed engineering data and specification information on a complete line of capacitors and filters for radio, ty and electronic application. Capac-
itors are grouped into three broad categories: electrolytic, paper and metalized paper, bringing together in one volume the Astron Metalite, Hy-Met, Meteor, Blue Point and Safety Margin, electrolytic and paper tubular capacitors. Within each category, capacitor types are grouped according to operating temperature range and the construction styles and ratings that are available as standard.

Parts Catalog. Clum Mfg. Co., 611 W. National, Milwaukee 4, Wisc. Form 3547 is an 8-page catalog illustrating and describing a line of electronic parts. Items covered include antennas, tv coils, video clears, r-f chokes, lock switches, terminal strips and oscillator coils. Prices are given.

Modular Tools for Industry. Sanders Associates, Inc., Nashua, N. H. A small folder illustrates such modular tools as the silk screener, module dip, resistor stick-down gun, rotary drying oven and module assembly jig. Basic components and a circuit are shown. The folder also gives an approximate price for a complete semimechanized module production line in a plant.

Transistor Reference Guide. General Electric Co., Syracuse 1, N. Y., has available a 16 -page booklet containing excerpts from "Principles of Transistor Circuits." Included are information on equivalent circuits, desirable values for the parameters of junction transistors, a large signal equivalent circuit, bias connections, audio amplifiers, transformer coupling, output stages, oscillators, h-f operation, noise in transistors and basic measurement circuits.

Subminiature Ceramic Capacitors. Mucon Corp., 9 St. Francis St., Newark 5, N. J. A 4-page folder covers a line of tiny capacitors that are used extensively in military equipment such as the handietalkie, walkie-talkie and airborne equipment, as well as commercial equipment such as hearing aids, to tuners, filters and radar. Included are general specifications for this line of subminiature ceramic ca-

FOR GLEGIRICAL AMD GIECIROUIC USES..

SILVER-because of its superior electrical conductivity, its equally superior thermal conductivity, its excellent resistance to corrosion and its ready workability - is used in many different forms on a wide variety of applications in the electrical and electronic industries.
As a leading fabricator of silver and its alloys, Handy \& Harman has developed silver in many forms to meet the industries' needs.
The list at the right is typical of the silver products readily available for your use. In addition, we are equipped to produce special silver alloys to meet special requirements. Our engineering and research departments are always ready to cooperate in solving your particular problems.
Write us if you want information about the uses of silver and its alloys.

- Fine silver (wire \& strip)
- Silver anodes and grain for plating
- Silver contact alloys
- Silver powders
- Silver flakes and paints
- Silver brazing alloys
- Special electronic solders
- Silver sintered metals
- Solder-flushed silver alloys
- Silver chloride and oxide
- Special silver alloys to your requirements

STRONG AND NON-MAGNETIC!

 Plus resistance to corrosion, abrasion and high temperatures-longer life! Precisionmade to the closest of specifications!AVAILABILITY! Starting with machine screws as small as \#0-80, Anti-Corrosive's IN STOCK inventory of more than 9,000 varieties and sizes of stainless steel fastenings means immediate delivery of your requirements. Special orders are delivered faster, too, due to streamlined production schedules for these important items!

LOWER COST! Superior production capacity and know-how means lower costs, helps you stay within production budgets! Remember, Anti-Corrosive is America's oldest and largest firm dealing exclusively in stainless fastenings.

Write for FREE Product List 54I - lists complete range of items, sizes and analyses available from stock or by special order.
pacitors, as well as information on area, multiple plate units, thickness, leads, coating, insulation resistance and the company's engineering service. Also given are maximum capacitance values for uhf subminiature ceramic capacitors.

Color TV Test Equipment. Philco Corp., Philadelphia, Pa. Three units of test equipment for color television are illustrated and described in a recent single-sheet bulletin. Applications specifications are given for model 7200 color convergence generator, model 6300 anode current meter and model 7100 color bar generator.

Video Line Amplifier. Linear Equipment Laboratories, Inc., Brightwater Place, Massapequa, L. I., N. Y., has available a singlepage bulletin illustrating and describing the model LA-2 video line amplifier designed for color tv. Included are a listing of specifications, tube complement data and chief features.

Environment Resistant Connector. Scintilla Division, Bendix Aviation Corp., Sidney, N. Y., has published a brochure covering the type E environment resisting connector. Illustrations and specifications are given for the AN3100E wall mounting receptacle, the AN3102E box mounting receptacle, the AN3101E cable connecting receptacle, the AN3106 E straight plug assembly and the AN3108E 90-deg elbow assembly. The units described are mois-ture-proof, vibration proof, corrosion resistant, pressurized and easily serviced.

Polyethylene. Bakelite Corp., 300 Madison Ave., New York 17, N. Y. Information about molding, extruding, and other ways to use Bakelite polyethylene as well as properties of resins is presented in a new 8-page folder. Entitled "Bakelite Polyethylene", the folder also contains photographs showing principal applications of the material for packaging, wire corering, housewares, pipe and industrial products. Three tables list
properties of various Bakelite polyethylene resins available in commercial and experimental quantities and also of compound; that are blended with suitable colorants, and antioxidants and made arailable as molding, extrusion and electrical compounds.

Precision Electrical Instruments. Muirhead \& Co., Ltd., Beckenham, Kent, England, has published a well illustrated catalog over 175 pages long, dealing with a wide line of equipment. Contents include : resistors and resistance networks; capacitors and inductors, a-e bridges; oscillators, tuning forks and phonic motors; d-c laboratory equipment; components; Magslips (symehros) and servo components; and specialized testing equipment.

Engineering Services. The International Testing Service, 321 North Hamilton St., Saginaw, Mich., has issued a 28 -page brochure listing services available in research, develonment, consulting engineering, automatic process control, special instrumentation, field testing and laboratory testing. The organization specializes in providing engineering and scientific talent to handle unusual problems. Instruments will be custom designed to customer specifications. The brochure contains a partial roster of key personnel and other inform $n-$ tion pertinent to its qualifications. Laboratory facilities are illustrated.

Time Delay Relay. Elastic Stop Nut Corp. of America, 1027 Newark Ave., Elizabeth, N. J. Model SF Agastat hermetically sealed time delay is described in bulletin SR5. Extremely compact, the unit described measures only $2 \frac{1}{8} \times 2 \frac{5}{2} \times$ $3^{7} \mathrm{in}$., and weighs only 1.2 lb . It meets requirements of MIL-R-6106 and MIL-R-5757B for vibration, shock, acceleration, temperature resistance, and it is unaffected by voltare variations. Sealing against dust, moisture and effect of altitude on accuracy is proven by mass spectrometer tests of the equivalent of $80,000 \mathrm{ft}$. Length of time delay is externally adjustable over a rance from 0.030 to 120 seconds The 4-mage bulletin, illustrated in color, includes complete mechanical

The IMPROVED Model 310A BALLANTINE Sensitive Electronic Voltmeter

> To measure. 40 microvolts to 100 valts
> from............... 10 cycles to 2 megacycles
> with accuracy $(>100 \mu \mathrm{v}) . .3 \%$ to $1 \mathrm{mc} ; 5 \%$ above
> Input impedance. 2 megohms shunted by 15 mmfd below 10 mv ; and by 8 mmfd above Usable as null detector sensitive to $10 \mu \mathrm{v}$ from 5 xps to 4 mc

Improvements include lower noise level; enhanced frequency response; reduced susceptibility to line voltage variations; incorporation of premium tubes throughout amplifier system, etc.

Featuring Customary BALLANTINE
 SENSITIVITY - ACCURACY — STABILITY

II rite for catalog for more information about this and other BALLANTINE voltmeters, calibrators, amplifiers and accessories.

Special Shapes and Features? . . . Tolerances within . $0005^{\prime \prime}$. . . Lat our experience in supplying prec sion small and medim sized gears with such featires solve these frodiction problems for you . . . Ask for quotation on your job specifications. Cirsular on Request.

тне Finest

1021 PARMELESTREET, ROCKFORD, ILLINOIS

and electrical specifications, wiring diagrams and mounting dimensions.

Reflection Coefficient Meter. Sierra Electronic Corp., San Carlos 2, Calif. Bulletin 106 describes operation, application and circuitry of the new model 136 A reflection coefficient meter. The meter discussed is a compact, 92 to $1,125-\mathrm{mc}$ instrument for rapid, simple measurement of reflection coefficient, vswr, matching loads to lines, or widerange laboratory receiver use.

Reducing Circuit Loading Errors. Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. "A Way to Reduce Circuit Loading Errors" is the subject of a recent edition of the company's Engineering Notes. The paper discusses the size of errors which can be expected when a measuring instrument, such as a vtvm, affects the circuit being tested. Included are charts comparing actual output of a typical circuit with output as indicated by different instruments. Also discussed is the Phantom Repeater, a decade amplifier that increases the working accuracy of vtvm's and oscilloscopes in high impedance measurements.

Analog Computer. Mid-Century Instrumatic Corp., 611 Broadway, New York 12, N. Y. A 24-page folder illustrates and describes the MC-400, a small analog computer designed to meet the requirements of a desk side computer, training device, dynamic tester, laboratory tool, or a building block which can be readily expanded or appended to other equipment. Included are a listing of components and specifications, problems, schematics and solutions.

Frequency-Selective Voltmeters. Sierra Electronic Corp., 1050 Brittan Ave., San Carlos 2, Calif. Technical bulletin 107 describes circuitry, range, application and operating techniques for four fre-quency-selective voltmeters. It contains detailed information on model 101 A voltmeter, 20 to 500 kc ; model $103 \mathrm{~A}, 3$ to 40 kc ; model 104,5 to 150 kc and model $108 \mathrm{~A}, 15$ to 500 kc . The bulletin also contains informa-
tion on other carrier-frequency measuring equipment, including model 121 wave analyzer (15 to 500 kc) and model 122 line bridging transformer.

Beryllium Copper Tubing. Superior Tube Co., 1523 Germantown Ave., Norristown, Pa. Properties, applications and advantages of seamless and Weldrawn beryllium copper tubing are presented completely in data memorandum No. 7-2. This alloy, which can be formed cold in the soft annealed or slightly workhardened condition, after heat treatment shows high strength and hardness, wear resistance and electrical conductivity. Mechanical and physical properties, heat treating procedures, welding and brazing methods, pickling solutions, corrosion resistance tables, standard production limit tables and tubing tolerances are listed.

Measuring, Indicating and Controlling Devices. Schaevitz Engineering, P. O. Box 505, Camden 1, N. J. An 8-page, illustrated, 2color folder shows measuring, indicating, recording and controlling devices for use in many different industries. Included in the folder are descriptions and illustrations of linear and angular accelerometers; linear variable differential transformers; rotary variable differential transformers; rotary accelerators for acceleration testing and one-to-five channel recorder systems for recording related information on a single recorder chart. Technical data accompany product descriptions and line drawings show applications in many instances.

Coil Catalog. Thordarson-Meissner, Mt. Carmel, 1ll. Eighty-three schematics covering approximately 300 coils, cross references to competitors' numbers, 62 new tv coils, a new r-f heater supply and complete listing of its hi-fi components and kits are contained in cata$\log 54-\mathrm{A}$.

Electrical Insulation. Insulation Manufacturers Corp., 565 W. Washington Blvd., Chicago 6, Ill., has published a 32 -page catalog that gives complete technical data, descriptions and information on applications, sizes, stocks, and use of

Insured with cramer time control

The threading accuracy of this Steinle Roll Threading Machine is directly related to the bighly dependable Cramer Timers which govern the roll slide movements. This carefully predetermined slide travel must be extremely accurate in order to insure thread precision and uniformity.
The Cromer TE Timer, at left, controls the time of dwell of the roll slide in its forward position, while the one at right dictates the exact loading interval. A simple adjustment of either timer permits slowdown or speed-up of the action. Cramer-controlled threading operations on the Steinle machine
have been speeded to 40 complete cycles per minute without sacrifice of thread accuracy. There has never been a report of timer failure.

The Steinle Machine is widely used by aircraft manufacturers and others who require extremely accurate threads. Cramer Timers are specified as original equipment for these machines due to their unusually high standards of accuracy and dependability.

If you have a time control problem, Cramer can help you. Write for complete information or technical advice.

The overall accuracy of the Type TE (inclusive of seffing) is within 2%, with repeat açcuracy within $1 / 2$ of 1%. The unif is Underwrifers' Laborafories lisfed for use in industrial control equipment.

A "look inside" will show you why you can always deped on Cramer for outstanding performance. Check the "inside" facts, today.
SFECIALISTASINTIMECONTROL

-MIFILM subminiature capacitors with PLASTIC "MYLAR"* DIELECTRIC

Good-All production tech. niques make it possible for MIFILM capacitors to be available in sizes smaller than other miniaturized brands. All Good-All MIFILM miniaturized metal enclosed hermetically sealed capacitors normally operate between $-65^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$. Insulation Resistance, 10^{15} ohms. Power Factor less than $.5 \%$. Sizes from .173" dia. $\times 21 / 32^{\prime \prime}$ long (.001 mfd, 600 VDC) to $.750^{\prime \prime}$ dia. x $1-15 / 16^{\prime \prime}$ long ($1 \mathrm{mfd}, 600$ VDC) slightly larger sizes to 1000 VDC. We invite sample orders for your inspection.

Rood dall

MARBELITE

"Hard as marble," and popularly priced, this Good-All development is the standard for leading Radio and TV manufac. turers. Generally smaller than RTMA specifications MARBELITE capacitors normally operate in the $-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ range. Built for any climate, MARBELITE capacitors can be further miniaturized to meet your needs. Standard sizes from .001 mfd to 1 mfd in 100 to 1000 VDC. Write for catalog sheets M-503.

MIRACLE X
Paper dielectric, metal enclosed, hermetically sealed, MIRACLE X impregnated capacitors. Capacity change less than 5% from $-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Neets or exceeds size requirements of MIL-C-25. Available with all type mounts. Sizes from . $235^{\prime \prime}$ dia. $\times 11 / 16^{\prime \prime}$ long (.001 mfd , 600 VDC) to $1^{\prime \prime}$ dia. $\times 2-3 / 16^{\prime \prime}$ long (1 mfd , 600 VDC).

- Capacitors are wound on Good-All developed, enclosed, automatit *DUPONT'S Trademark for its POLYESTER FILM
your inquiries and problems regarding tubular capacitors. The difficult and unusual interest us.

Write for complete catalog covering all Good-All lang life capacitors.
silicone materials for high temperature class H electrical insulation. The illustrated catalog covers silicone laminated glass cloth plastics ; silicone bonded mica products; silicone rubber and varnish treated glass tubings and sleevings; silicone rubber and resin coated glass cloth and tape; silicone treated glass cord; Silastic pastes and Silastic R tape and cloth; and silicone varnishes, resins, adhesives, compounds and grease.

Plastics. Emerson and Cuming, Inc., 869 Washington St., Canton, Mass., makes available a series of bulletins describing its lines of casting resins, plastic foam, and other r-f and microwave insulation materials. Detailed information on the physical and electrical properties of each material is given, together with recommended procedures for their use. Price lists and illustrated descriptions of typical applications are included.

Coaxial Transmission Lines and Waveguide. Prodelin Inc., 307 Bergen Ave., Kearny, N. J., announces its new catalog entitled "Coaxial Transmission Lines and Waveguide." The 20 -page 2 -color catalog contains pictures, descriptions and roughing-in dimensions of coax lines and waveguide for tv and microwave systems. Typical tower layouts and bills of material based on actual installations illustrate the positioning of components and simplify planning and ordering.

Vacuum Metallurgy. National Research Corp., 70 Memorial Drive, Cambridge 42, Mass., has available reprints of recently published articles on vacuum metallurgy. They are entitled "Development of Commercial Vacuum Furnaces for Metals and Alloys" and "Some Aspects of Vacuum Melted Metals." The reprints may be had for the asking.

Speaker Catalog. Utah Radio Products Co., Inc., 1123 E. Franklin St., Huntington, Ind., has announced a catalog listing the correct replacement speaker for most auto radio speakers in use today. The new publication is indexed by make of auto, receiver manufacturer, receiver
morlel number and speaker part number. In each instance the proper company replacement is designated. Catalog AR100 makes it unnecessary to compare either physical or electrical measurements-the correct Utah speaker is allomatically indicated.

Precision Wire-Wound Resistors. International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa. Catalog data bulletin D-1 gives comprehensive data on characteristics, applications, construction, ranges, ratings, tolerances, terminals, insulation, temperature coefficient and derating. It contains four pages with photographs, charts and graphs.

Tape Recording Accessories. Audio \& Video Products Corp., 730 Fifth Ave., New York 19, N. Y., has just released its new 6 -page tape recording accessories catalog. The catalog includes specification and descriptive material on recommended accessory items for use with magnetic tape recording equipment. Prices are included.

Radiation Measuring Equipment. The Victoreen Instrument Co., 5806 Hough Ave., Cleveland 3, Ohio, announces the availability of a new catalog of radiation measuring equipment. The 20 -page booklet contains descriptive data, illustrations and technical specifications for medical x-ray control, personnel dosimeters, health survey and isotope laboratory instruments and accessories. Specify form 3017-A.

Tiny Single Pin Connector. DeJURAMSCO Corp., 45-01 Northern Blvd., Long Island City, N. Y. Bulletin series $F H L$ is a 1 -page color treatment of a new subminiature single-pin connector. It includes schematic drawings, features and materials available. The reverse side of the bulletin gives complete information on Continental's series C-20 high-voltage single-contact cable and panel connectors.

Choppers. Stevens-Arnold, Inc., 22 Elkins St., South Boston, Mass. Catalog 3 \% describes a completely redesigned line of 60 -cycle choppers for low level operation at noise

Four extended-range precision instruments at the size and price of one! Drives digifal printer, IBM card punch converter, or digital-fo-analog converter!

Berkeley's new Model 5510 Universal Counter and Timer provides the functions of counter, time interval meter, events-per-unit-time meter and frequency meter in one compact instrument. It will:
Count at speeds to $1,000,000$ counts per second.
Count events occuring during a selectable, precise time interval.

Measure time intervals in increments of 1 microsecond over a range of 3 microseconds to $1,000,000$ seconds.

Determine frequencies and frequency ratios, from 0 cps to 1 megacycle.
Provide a secondary frequency standard (stability, 1 part in 10^{\prime}).
Operate directly into (a) the new Berkeley Model 1452 single-unit printer, (b) Berkeley digital-to-analog converter, or (c) Berkeley data processer driving IBM card punches, electric typewriters, or teletype systems.

CONDENSED SPECIFICATIONS

Input Sensitivity: 0.2 v. rms (Freq. meas.); 1.0 v. peak to peak (other functions)
Input Impedance: 10 megohms shunted by 35 mmf .
Time Bases: $1 \mathrm{mc} ; 100,10$, and $1 \mathrm{kc} ; 100,10$ and 1 cps .
Gate Times: $.00001, .0001, .001, .01,0.1,1.0$ and 10 seconds
Crystal Stability: 1 part in 10° (temp. controlled)
Display Time: 0.2 to 5 seconds
Accuracy: ± 1 count, \pm crystal stability
Power Requirements; 117 v. $(\pm 10 \%), 50-60$ cycles, 400 watts
Dimensions: $203 / 4^{\prime \prime}$ wide $\times 101 / 2^{\prime \prime}$ high $\times 15^{\prime \prime}$ deep; panel, $83 / 4^{\prime \prime} \times 19^{\prime \prime}$
Price: Model 5510, \$1,100.00 (f.o.b. factory).
Available for prompt delivery. Wire or write for technical bulletin, application data; please address dept. G-5

levels under 1 mv . Twenty-two different models are now available to meet every requirement. They are offered both in single-pole and double-pole for use in computers, business machines, recording potentiometers, servomechanisms, regulated power supplies and micro-volt meters.

TV Replacement Catalog. Rogers Electronic Corp., 43 Bleecker St., New York, N. Y., has available a 16-page catalog, reproduced in two colors, that gives a complete list of every ty set model with its fullfocus deflection yoke and flyback transformer replacement. The $8^{\frac{1}{2}}$ $\times 11 \mathrm{in}$. catalog also includes diagrams and other useful data.

Standby Electric Plants. D. W. Onan \& Sons Inc., Minneapolis, Minn. A 4-panel 2-color folder describes the wide selection of special emergency electric generating plants that meet the rigid code of approval of the Pennsylvania Industrial Board. Both gas and gasoline driven models are illustrated in sizes ranging from $1,000 \mathrm{w}$ a-c to 30,000 w a-c. Specially designed line transfer controls which make operation of the plants completely automatic are shown. Several installations are pictured in the folder.

Directional Coupler Design. Airtron, Inc., Linden, N. J. Technical bulletin T-2400 is a 6 -page publication that provides much of the basic theoretical and design information needed by the engineer in choosing the proper directional coupler for use with reflectometers, test equipment, power splitters, in local oscillator coupling and similar radar and microwave applications. Among the couplers discussed are (1) the narrow wall to narrow wall (sidewall) coupler, (2) the crossguide coupler, (3) the broad wall to narrow wall coupler, and (4) the broad wall to broad wall coupler. Each is fully described as to construction, theory of operation, electrical characteristics and typical applications. Other types of available couplers for special applications are illustrated in a range to fit waveguide sizes from $6.50 \times 3.25 \mathrm{in}$. down to $0.280 \mathrm{in} . \times 0.140 \mathrm{in}$. i.d., with couplings from 0.5 to 100 db ,
in a frequency range from 400 to $40,000 \mathrm{mc}$.

Wiring Device Catalog. Slater Electric \& Mfg. Co., Inc., Woodside, N. Y. Wiring device catalog No. 1-54 features large, clear, actual photographs of each product and a new style of tabular listings that are particularly easy to read and identify. The new catalog contains approximately 250 devices. Some of the new items shown are a complete line of 20 -ampere T-rated switches, 3 -wire crowfoot receptacles, and a complete grounding line that fills the new NEC code requirements.

Tiny Toroidal Coils and Coil Meters. Burnell \& Co., Yonkers 2, N. Y., has available a 16 -page catalog introducing a new line of subminiature toroidal coils and toroidal coil meters. It also includes valuable and complete information on toroids, high-quality coils and various audio filter networks. The catalog gives complete descriptions, attenuation and Q curves that will prove valuable for equipment design engineers. Write for catalog 102-A.

Snap-Action Switches. Acro Mfg. Co., Columbus 16, Ohio, has issued a new 36-page catalog on precision snap-action switches that gives detail specifications, dimensions and operating characteristics for two lines of switches. The lines described are Acro switches, which operate by the rolling spring principle, and Mu switches, which employ the single, prestressed blade principle. A feature designed to simplify use is the Quick-Finder index. By using this illustrated, comprehensive index engineers can quickly locate the proper switch for any application by type, size and rating.

Panel Meters. International Instruments Inc., P.O. Box 2954, New Haven 15, Conn. A newly revised and reprinted engineering data sheet gives complete information on $1_{2}^{\frac{1}{2}}$-in. db panel meters for commercial and military applications. Weighing less than 3 oz , the instruments described are constructed to meet applicable Government specifications and are housed in metal

New Lion "Hi-Strength" fastener completely assembled. Cutaway shows the heveled counter sink. Beveling substantially increases the area over which stress is distributed.

NOW! Shear strength twice that of any other fastener!

New Lion "Hi-Strength" design fills every need for parts that must be fastened, taken apart, buttoned tight quickly

Hproblem of metal-to-metal fastening where high shear stress and vibration are factors.

It's the Lion "Hi-Strength" fastener, combining speedy quarter-turn opening and closing with a shear strength of 4750 lbs !

This "Hi-Strength" fastener is remarkably strong because shear load is distributed evenly over the area of the fastened parts. The secret lies in the beveled counter sink in the sheet and the nut. It's the same high shear prin-
ciple used for years by the automotive industry for wheel lugs.

In addition to high shear strength, its tensile strength is 3000 lbs . Sheet separation is zero up to 4750 lbs . Misalignment is as much as .125 with high shear qualities. Regardless of the number of times it's opened or closed, there is no wear. It cannot be overtorqued (up to 3750 lbs .). It cannot be fastened incorrectly. It is no larger than a standard No. 5!

To test it yourself, write for a free mounted working sample. Just drop us a line on your company letterhead.

PHALI books up with progress

The highly complex electronic systems of the LINK B-47B jet flight simulator shown here with the basic C-11B jet trainer are classic examples of LINK'S progressive approach to modern flight training. PHALON hook up wires have an important role in these electronic systems and in other key wiring operations which have made the famous LINK TRAINERS synonymous with the latest and the finest in simulated flight.

> When the requirement is dependability in insulated wires, cables or cord sets, look to PHALO

PHALO PLASTICS CORPORATION

corner of commercial st. - worcester - mass. Insulated Wire and Cables - Cord Set Assemblies
cases with watertight seals. The data sheet lists the accuracy as being ± 5 percent of full scale voltage; scale length, 1.3 in .; dielectric strength, $1,500 \mathrm{v}$ a-c; and the instrument resistance at zero reading, 4,000 ohms minimum.

Equipment Brochure. Rollins Corp., Lewes, Del., has available a 6-page brochure describing its facilities engaged in the development, design and production of electronic equipment. The brochure covers the operation and the type of products manufactured by the company. Included in the corporation's product line are all types of transformers, filters, cable harnesses, control units and subassemblies.

Cord Sets. Cords Limited Division, Essex Wire Corp., 121 Dodge Ave., DeKalb, Ill. A new 30 -page, twocolor catalog combines the company's comprehensive wire cordage types and cord set components within the covers of one book. It contains 64 photographs of facilities and some typical production cord sets. A special engineering section contains 118 separate dimensional engineering drawings. There are also simplified tables showing maximum ampere and voltage ratings for various portable cordage and wire gages, with typical appliance and industrial cordage and cord sets listed.

Terminal Boards. DeJUR-AMSCO Corp., 45-01 Northern Blvd., Long Island City, N. Y. A recent singlesheet color bulletin deals with terminal boards. It gives a schematic drawing and information about available base materials and pin arrangements. Also included is illustrated information on specialdesign hermetic plugs.

Instruments and Controls. Electro Tech Equipment Co., 308 Canal St., New York 13, N. Y. Catalog No. 54 is a 190-page comprehensive buyers' guide of instruments and controls. Every item is presented in a manner purposely designed to simplify the selection of instrument needs in terms of economy, utility, manufacture and quality. Table of contents includes laboratory and portable test instruments; bridges, dec-
ades and recording instruments; panel and switchboard instruments; pyrometers, thermometers and associated equipment; service instruments; transformers, voltage regulators, rectifiers and controls; timers, counters and photoelectric controls; heaters, furnaces and accessories; switches, relays, solenoids and solenoid valves; and miscellaneous equipment.

Sound Products. Radio Corp. of America, Camden, N. J. A new $20-$ page illustrated sound products catalog lists the company's latest line of sound equipment. The booklet is divided into sections dealing with such products as microphones, amplifiers, speakers, intercommunications equipment, tv Antenaplex systems and unit-built cabinets and racks. Each section in turn presents a list of products designed to meet needs from portable systems to large sound installations. Descriptions of each model include such information as special features, uses, specifications and photographs.

Casting Alloy. The International Nickel Co., Inc., 67 Wall St., New York 5, N. Y., has issued a new technical booklet on the engineering properties of " S " Monel, an agehardenable casting alloy that provides unusual strength, hardness and anti-galling properties at temperatures up to $1,100 \mathrm{~F}$ in addition to the general corrosion resistance of Monel.

Potentiometer Noise. Helipot Corp., 916 Meridian Ave., South Pasadena, Calif. "Electrical Noise in Wire-Wound Potentiometers," a 12-page illustrated technical paper by Irving J. Hogan, examines several aspects of potentiometer noise. It describes the kinds of noise which can originate in a precision potentiometer; discusses methods of observing and measuring noise; and sets up a system of units in which noise can be expressed.

High Resistance Measurement. Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. Two accurate ways to measure high resistance are discussed in a recent issue of Engineering Notes. The

it's \mathbf{N} R\|AN... for top performance in
 every KLYSTRON application

System designers and equipment buyers specify Varian klystrons for optimum performance because they know that only Varian klystrons combine extreme ruggedness and reliability with excellent frequency stability and ample power. Designed and built by the acknowledged leader in klystron development, Varian klystrons offer outstanding performance advantages in these and many other applications:

- Microwave relay transmitters and receivers
- Telemetering systems
- UHF television transmitters
- Radar receivers-local oscillators
- Coherent and pulsed radar transmitters
- Guided missile applications
- Microwave test equipment
- Particle accelerators-power tubes

COMPARE THESE FEATURES

FOR RADARS
AND BEACONS
Unmatched high altitude
performance without pres-
surization-excellent fre.
quency stability - low
noise - rapid warm-up-
rugged - reliable.

VARIAN HAS A PRODUCTION KLYSTRON...
that meets the requirements of these typical applications:

APPLICATION	frequency range (Mezacycles)	POWER RANGE	TUBE TYPES
Radar \& Beacon Local Oscillators	$8500-10,500$	25-140 mw	V-270, V-290, V-151, V-153, V-155
Radar Transmitters	8500-11,000	$109 \mathrm{~W}-9 \mathrm{KW}$	V-23, V-63, V-27, V-82, V-45
Beacon Transmitters	$9100-12,200$	450 mw - 9 KW	V-54, V-63, V-27, V-82, V-45
Relay Local Oscillators \& Transmitters	5100-7500	$30 \mathrm{mw}-1 \mathrm{~W}$	X-26B, X-260, X-26E, X-26F
UHF Television	$470-890$	15 KW	VA-6237, $38,39,40,41$ and 42
Laboratory Testing	$8200-12,400$	$450 \mathrm{mw}-8 \mathrm{~W}$	X -13, V-21, V-27, V-54, V-58

FOR COMPLETE SPECIFICATIONS

and technical data on these outstanding Varian klystrons, and for information about special purpose klystron engineering-write to the VARIAN Application Engineering Department today.

Everything you need in quality nut drivers!

$3^{\prime \prime}$ to $6^{\prime \prime}$ Overall Regular in 3/16", $7 / 32^{\prime \prime}$, $1 / 4^{\prime \prime}, 9 / 32^{\prime \prime}{ }^{\prime \prime} 16^{\prime \prime}$ and $1 / 2^{\prime \prime}$.

Stubby $31 / 4^{\prime \prime}$ overall in $1 / 4^{\prime \prime}, 5 / 16^{\prime \prime}$ and $3 / 8^{\prime \prime}$
Your supplier has 'em! Ask him, or wite:
EXCELITE, INCORPORATED
(Formerly Park Metalware Co., Inc.) Dept. C Orchard Park, N. Y
"I said, ALL XCELITE NUT DRIVERS NOW HAVE COLOR-CODED HANDLES!"
(color flashes you the size)
Color Handle Hex Nut

Hack	3/16 ${ }^{\prime \prime}$
braw:	7/:02" and $7 / 10^{\prime \prime}$
red	1/4" antel 1/2"
oratige	9/32" and $9 / 1 i^{\prime \prime}$
yellow	-/16" and $\mathrm{g}^{\prime \prime}$
sran	11/32"
Hue	3/8"

JOBBERS! You have a date at Booth 592. Chicago Show, to see the top sellers in nerewdrivers, nut dricers, pliers and other radio-TV boons. See joul there!

SPACE SAVERS FOR MODERN CIRCUITRY MONEY SAVERS For

TNSTRUMENH

 RFSISTCRS CO.COMMERC

IN.RES.CO TYPE RE WIRE WOUND RESISTORS

The practical, low cost solution for circuit designers striving for the sub miniature. Type IR units offer prec sion resistance values capable of re. taining stablity through long periods Type IR resistors are avalable prices based on mass production methods of manufacture Wound to a tolerance of $\pm 1 \%$. they are perma nently accurate. Conservative rating allow ample safety margin in all classes of service. Special Bakelite forms eliminate shrinking, swelling and temperature effects. IN-RES-CO moisture and fungus prool coating of fers absolute protection against cl_{i} matic extremes. Specify IR Type resistors for all applications where pre cision performance and limited space are important determining factors

WRITE FOR NEW RESISTOR HANDBOOK - Contains complete data and recommended applications for resistors for every purpose.
application-designed resistors for electronics and instrumentation

OPTICAL SYSTEMS

INDUSTRIAL PERISCOPES

KOLLMORGEN

DESIGN

DEVELOPMENT

MANUFACTURE

For nearly half a century Kollmorgen has designed, developed and manufactured precision optics and optical systems for industry and the military.

We have the engineering "knowhow", the design personnel and the manufacturing capacity to help you solve your optical problem.

kolmorgen ap
 (pptical corrounarious

Plant: 347 King Street - Northampton, Mass. New York Office 30 Church Street New York 7, N. Y.
first method, involvinge a v-t electrometer and shunt, permits measurements to 124,000 megohms full scale, at an absolute accuracy of within 5 percent. The second method employs an electrometer and low-leakage capacitor, and achieves similarly high sensitivity. Both methods permit the measurement of resistances far beyond the reach of bridges, megohmeters and wall galvanometers.

Servo Motors. Ketay Mfg. Corp, 555 Broadway, New York 12, N. Y. A recent 4 -page folder covers a complete range of sizes and types of synchros, servo motors and resolvers. Tabular data give typical characteristics of two-phase servo motors, synchro control trausformers, synchro receivers, synchro resolvers, induction motors and synchro transmitters.

Controls and Resistors. Clarostat Mfg. Co., Inc., Dover, N. H. Catalog No. 54 features standard controls and resistors for radio and electronic equipment, as well as the new C-line and other industrial controls. In a new format and printed in two colors, this catalog is distinguished by its concise descriptions. informative pictures, dimensional drawings, listings, prices and standard packings.

Cathode-Ray Oscillograph. Allen B. Du Mont Laboratories, Inc., 760 Bloomfield Ave., Clifton, N. J. A new 12 -page bulletin describes the type 323 wide-band cathode-ray oscillograph. The new booklet gives complete specifications about the instrument and also contains illustrations and circuit diagrams.

Balancing Machines. Tinius Olsen Testing Machine Co., 3030 Easton Road, Willow Grove, Pa. The Electodyne, a new principle for automatically measuring the amount and indicating the angular location of unbalance by means of electronics, is comprehensively described in bulletin 49 . In addition, the bulletin describes features of the complete line of Electodyne dynamic and static balancing machines including the hori\%ontal and vertical models as well as the automatic crankshaft balancer.

YOU can't afford to be without the hathaway S14-C oscillograph

the world's most complete and versatile

LOW COST OSCILLOGRAPH

for recording electrical quantities, processes, flight functions, dynamic pressure, strain, vibration, acceleration, temperature...
for testing relays
for testing welding equipment
for biological recording
for analysis of high-speed engines and compressors

GALVANOMETERS are available for current, voltage, power, covering a most extensive range of characteristics.

ATTACHMENTS available for almost any recording need-
automatic transient recording
wave-shape measurements
wave-shape scanning
long records to 100 inches per second
short records to 1,000 inches per second
PROVE TO YOURSELF THAT THE SI4-C IS...

- The Most Versatile
- The Easiest to Maintain
- The Easiest to Operate
- The Finest in Craftsmanship

WRITE FOR BULLETIN No. 2D-IK AND
YOUR FREE COPY OF HATHAWAY ENGINEERING NEWS
4204

PLANTS AND PEOPLE

Edited by WILLIAM G. ARNOLD

```
Industry associations name new officers . . . Manulacturers announce further plant expansions . . . Engineers and executives are promoted...
```


Sylvania Begins Operations At New Facilities

Sylvania dedicated its new defense laboratory, began production in its new tv set plant and laid plans for a new tv plant in Canada.

At the dedication of the new defense lab were, left to right, Don G. Mitchell, chairman of the board of Sylvania, Maj. Gen. James D. O'Connell, deputy chief signal officer and Henry Lehne, director of the lab, shown examining a travelingwave tube.

According to O'Connell, the new lab will help defense planners develop electronic countermeasures. The structure will provide 61,000 sqft of space and will house 300 to 400 scientists and engineers doing research for the Signal Corps. Cost of the building, not including equipment, was set at $\$ 500,000$. Key scientists and engineers have been transferred to the lab from the
firm's eastern labs.
Sylvania commenced manufacturing operations at its new 422,000 sq ft tv set assembly plant in Batavia, N. Y. The first of four separate assembly lines began producing sets. Present plans call for the other three assembly lines to start operations consecutively by the end of June. When all four lines are in operation, the plant's total employment will be approximately 1,500.

The Batavia plant initially will produce only black-and-white receivers, but will ultimately manufacture color tv sets as well. The radio and tv division is now producing very limited quantities of color sets at its Buffalo plant.

In Canada, Sylvania plans to construct a new plant in Dunnville, Ontario, where tv sets will be manu-

OTHER DEPARTMENTS
featured in this issue:
Page
Electrons At Work
192
Production Techniques . 248
New Products 308
New Books 408
Backtalk 418
factured. Production is scheduled to begin in the new facility about August 1, 1954. Present plans call for the employment of 150 to 200 persons initially and about 350 to 400 when in full operation in 1955.

Regis R. Forbes, former divisional purchasing agent of the parent company's radio and tv division, has been appointed manager of the plant. With completion of the plant, Sylvania in Canada will have three manufacturing facilities in operation.

Virgil Graham Named RETMA Chief Engineer

Virgil M. Graham has been placed in charge of the RETMA engineering department. He succeeds Ralph R. Batcher, who has resigned after nearly four years of service as the association's chief engineer. Graham will retain the title of associate director of the department, which he formerly held in an honorary capacity, and will continue to perform the duties of that office as well as of chief engineer.

Associated with RETMA's engineering activities since 1929, Graham comes to the association on a full-time basis from Sylvania, where he has been director of technical relations since 1946.

Beginning his standardization work about 1925 while serving on a number of standardization committees of the Institute of Radio Engineers, Graham's major activities and contributions were in industrial standardization in the radio and electronics field. In 1929 he became editor of the Radio Manufacturers Association Stand-

- 1 CAPACITY METER

MW high range ohmmeter

Electronic "DO-ALL" model 657

\bigwedge_{-1}
 R.M.S. V.T. VOLTMETER

elele

INDUCTANCE METER
(By Reference To Charts)

Never before has there been engineered one instrument to sell for under $\$ 100$ that can possibly match the versatility, efficiency and speed of measurement built into this latest RCP design. Here are combined in one instrument five independent instruments essential in service-productiondevelopment. Outstanding in performance, measuring llow frequency sinusoidal and both low and high repetition rate non-sinusoidal waveform.

Years Ahead In Design -

- $81 / 2^{\prime \prime}$ Easy-To-View Meter provides instant measure ment recognition of the several scales.
- Simplified Cantrals save time. Illuminated individual settings of function and range.
- Carrying Handle serves as inclinable rest - tilts the insirument far maximum readability.
*

D.C. Voltage: 16 Ranges $0 \pm 1.5 \pm 3 \pm 6 \pm 30 \pm 150 \pm 600 \pm 1500 \pm 6000$ D.C. Voltage: Zero center 14 ranges $\pm .75 \pm 1.5 \pm 3 \pm 15 \pm 75 \pm 300 \pm 750$ A.C. Voltage: Peak-to-Peak 7 Ranges 0-4.2-8.5-17-85-420-1700-4200
A.C. Voltage: RMS-7 ranges 0-1.5-3-6-30-150-600-1500
A.C. High Voltage: RMS—Range $0-6000$ Volts.

Ohmmeter: 8 ranges $0-1,000-10,000-100,000$ ohms, $0-1-10$ - 100-1,000-10,000 megohms. Center Scale 10.

Capacity meter: 6 ranges 1 micro-microfarad to 1,000 microfarads; 1 - 10 uuf; .00001-.001 mfd.; .0001-.01 mfd.; 001-0.1 mfd.; . $1-10 \mathrm{mfd}$; $10-1000 \mathrm{mfd}$.

RCP VTVM Model 655 Reads

Peak-To-Peak Voltages Directly

Quickly, accurately, the DO-ALL Model 655 gives a true reading measurement of complex and sinusoidal voltages with necessary peak-to-peak or RMS value read directly, for the analysis of waveforms in video, sync and deflection circuits.
Versatility of measurement, built into each Model 655, serves a variety of industrial applications in the service of vibrator power supplies, $A C$ generators and all equipment utilizing any type of waveform or DC.

RCP Midgetscope
Model 533M

A $3^{\prime \prime}$ scope with high sensitivity and wide band response - weighs only 9 pounds. Meets the highest standards of quality, dependability and accuracy.

See your local parts distributor, or write
to Dept. E-5 for illustrated catalog.

ards and Engrineering Information.
In 1931 he assumed the chairmanship of the standards section of the RMA engineering committee which was the predecessor of the RETMA engineering department.

He was largely responsible for the development and adoption of a standardized electron tube designation system and the formalization of the central registration system for tube types.

Graham became assistant director of the RMA enginering depart-
ment in 1934 and shortly thereafter associate director. At that time he introduced the standardization system which is still used by RETMA and from then until 1946 served as chairman of its general standards committee.

In 1936 he helped establish the RMA Data Bureall (now the RETMA Engineering Office).

Early in 1947 he was appointed to the Joint Electron Tube Engineering Council (JETEC) of RTMA and NEMA.

Motorola Plans Headquarters Expansion Near Chicago

A 40-acre tract in Niles, 1ll. bordering Chicago is to be purchased by Motorola. President Paul V. Galvin said that the move was part of a long-term policy of decentralization. "The use of this particular parcel of land is an important factor in our overall planning for the progressive realignment of various operations to achieve greater efficiency and permit further orderly growth. Ultimately we expect to relocate our engineering laboratories and our administrative offices on this site comprising a headquarters campus," he said.
"In the course of the next few years it is likely our investment in the development of this property, including the land, building, utilities, laboratory and office equipment will exceed $\$ 5$ million. At the moment preliminary plans are being drawn for an initial engineering

structure of some $200,000 \mathrm{sq} \mathrm{ft}$.
'"We rave no plans calling for the construction of any manufacturing facilities on this site. It will serve our objectives best to confine the
use of the Touhy property to laboratories and offices," he stated.

Initial excavation on the site is scheduled for the spring months of the current year.

James B. Fisk

Ralph Bown

Bell Labs Promotes Fisk And Bown

James B. Fisk, director of research in physical sciences at Bell Telephone Laboratories, has been elected vice-president in charge of research. He succeeds Ralph Bown, who continues as a vice-president with a new assignment in charge of the long-range planning of programs. He will continue his present responsibilities in connection with

WHAT DAYSTROM HAS TO OFFER YOU...

UNDER ONE ROOF Daystrom Instrument can meet every one of your ensinecring and manufacturing needs in their modern 350,000 sq. ft. plant, where a full range of up-to-date equipment is available for manufacturing from raw materials to finished assemblies and systems. . . for complete electro-mechanical and electronic parts and assembly in any quantity .. for internal, external, surface and centerless grinding; low to high precision turning; jig boring and milling; welding, heat treatment and finishing; precision spur and helical gear shaping, hobbing and shaving; straight and spiral beveled gearing; test and inspection for entire range of gear production.
Daystrom's Research and Development Engineers have special skills in mathematics, radar circuitry, electronic computor design and instrumentations of a similar nature . . . Daystrom's Production Engineers are specialists in the mechanical, electronic and electromechanical fields . . . Daystrom's Manufacturing Engineers are experts in tool design, processing and tooling-with a

Write today for our facilities report.

Affiliates:

American Type Founders, Inc., Elizabeth, N.J.; Daystrom Furniture Div., Olean, N. Y.; Daystrom Electric Corp., Poughkeepsic, N.Y

This 18 Kt . market we've been having seems to be settling down to a good solid 14 Kt . market.

Simply means that everybody is going to be buying everything more carefully . . . more critically . . . with good reason.

Stone's custom-made yet mass-produced spiral paper tubes and Stonized phenolic impregnated tubes are noted for low cost adaptability. Tubes of kraft, fish paper, plastic films, phenolic impregnated can be punched, notched, slotted, fabricated and imprinted.

All at much less cost than insulating tubing of any other material. We can, however, promise 18 Kt . delivery and service. Phone or write soon.

900-922 Franklin Street, N.E., Washington 17, D. C.
the patent department.
Dr. Fisk, who joined Bell Laboratories in 1939, was for two years director of research of the Atomic Energy Commission and simultaneously Gordon McKay professor of applied physics at Harvard University. He is currently a member of the general advisory committee of the Atomic Energy Commission as well as the science advisory committee of the Office of Defense Mobilization.

During World War II he was selected to head the Magnetron development group at Bell. After the war, he was placed in charge of electronics and solid state research. It was work in this area that resulted in the invention at the Laboratories of the transistor. In 1949 when he returned to the Laboratories from the Atomic Energy Commission and Harvard, he was placed in charge of research in the physical sciences.

Dr. Bown has served for 35 years with the Bell System. Before his appointment as vice-president in charge of research of Bell Laboratories in 1952, he had served as director of research since 1946, in which post he succeeded M. J. Kelly.

Awards

Dr. Bown was awarded the Morris Liebmann Memorial Prize by the IRE for 1926. He was a division member and consultant of the National Defense Research Committee, specializing in radar. He also served as expert consultant to the Secretary of War. In 1949 he received the Institute's Annual Medal of Honor. In 1927 he served as president of the IRE. He served as a captain in the Signal Corps in World War I, prior to joining the Research and Development Department of the American Telephone and Telegraph Company.

He was named assistant director of radio research of the Laboratories in 1934, director of radio and television research in 1936, and in 1944 was appointed assistant director of research.

Thompson Products Keeps Expanding

Negotiations for the purchase of Dage Electronics Corp. by Thompson Products have taken place. The

. . WHEN YOU dESIGN METEX ELECTRONIC WEATHERSTRIPPING INTO YOUR EQUIPMENT YOU GET itS positive shielding effectiveness - AT MAXIMUM OVERALL ECONOMY

Plan now to take full advantage of Metex Electronic Weatherstripping's unusual effectiveness in shielding all types of electronic equipment. Because it is made of knitted wire mesh, Metex Electronic Weatherstripping is both conductive and resilient. It assures positive metal-to-metal contact between all mating surfaces. And being resilient it accommodates itself positively to surface inequalities.
In reality, Metex Electronic Weatherstripping can do more for you than just shield RF leakage. It can cut the cost of machining mating surfaces to close tolerances. It can eliminate the need for extra fasteners and many other costly means of making joints RF tight.
Applications in which Metex Electronic Weatherstripping has already proved its effectiveness include pulse modulator shields, wave-guide choke-flange gaskets, local oscillators on TV sets, dielectric heaters, etc.

For detailed

information on METEX
ELECTRONIC PRODUCTS, write PRODUCTS, write
for FREE copy of "Metex Electronic Weatherstrips' or outline your SPECIFIC shielding problem - it will receive our immediate attention.

METAL TEXIILE CORPORATION

[^18]

ACCURATE EASY-TO-READ
RUGGED
\bullet
DEPENDABLE

for YOU . . .

THE BENEFITS OF 50 YEARS' EXPERIENCE

${ }_{1004} \mathrm{HOYT}_{1954}$

 ELECTRICAL INDICATING INSTRUMENTSFor your particular requirements, HOYT Panel and Portable Meters provide superior service at reasonable cost: Voltmeters - Ammeters - Microammeters . . . Moving-Coil, Repulsion or Rectifier Types . . . Suppressed Zero and Differential Meters . . . all carefully designed and accurately made. Write today for literature and prices on the HOYT Meters you need.

Sole Selling Agents

BURTON-ROGERS COMPANY
42 CARLETON STREET CAMBRIDGE 42, MASS., U.S.A.

Broad Band Crystal Mixer Model CM107
INPUT VSWR: Better than 2 to 1 , without adjustments, for all frequencies within the nominal frequency range.
LOCAL OSCILLATOR POWER REQUIREMENT: 10 Milliwatts. Oscillator injector is adjustable to accommodate large variations in oscillator power.
LOCAL OSCILLATOR VSWR: Better than 2 to 1 with any L. 0 . injector adjustment.
LOCAL OSCILLATOR REJECTION AT I. F. OUTPUT: Better than 30 DB .

MODEL	FREQ. RANGE IN MC
CM-107A	225 to 400
CM-107A1	300 to 530
CM-107A2	510 to 760
CM-107B	750 to 1210
CM-107C	1120 to 1700
CM-107D	1700 to 2600
CM-107E	2600 to 4000
CM-107F	4000 to 5600

Specify Input Connector: Type "N" or UG-46/U. EMPIRE DEVICES expert engineering staff is available to give careful attention to your inquiries.

FIELD INTENSITY METERS - DISTORTION ANALYZERS • IMPULSE GENERATORS - COAXIAL ATTENUATORS - CRYSTAL MIXERS

ESSENTIAL to Every Lab

MILLIVAC MV-17C 100 MICROVOLTS to 1 KV-DC.

TIME PROGRESSES—SO DO WE MILLIVAC INSTRUMENT CORPORATION
P.O. BOX 997

SCHENECTADY, NEW YORK

Dage assembly plant, near Indianapolis, will continue in its present location, operating as a decentralized unit of Thompson's electronics division.

Founded in 1952, Dage is headed by George Fathauer, chairman, and James Lahey, president. No changes in personnel are contemplated.

Thompson electronics division, founded three and a half years ago with headquarters and manufacturing facilities in Cleveland, has expanded in several directions. It first entered the electronics field in 1950 in the development of highfrequency electronic components.

A year later the company acquired the Antema Research Laboratory of Columbus. In September, 1953 Thompson provided financial backing for the formation of the Ramo-Wooldridge Corp. of Los Angeles, organized to specialize basically in new advanced systems developments. A month later the firm purchased Bell Sound Systems.

Consolidated Forms
 Computer Subsidiary

Consolidated Engineering has established the ElectroData Corp. as a new wholly-owned subsidiary.
ElectroData of Pasadena, Calif. will continue engineering, manufacturing and sales activities formerly conducted by Consolidated's computer division.

President of the new corporation is Philip S. Fogg. He will continue as president and chairman of the

Philip S. Fogg
board of the parent company. Other officers of Electro Data are: James R. Bradburn, executive vice-presi-

for Television; Radio, Communications Applications

1.
 Coil is carefully impregnated for stability. Buill to with stand drastic temperature changes. Mechanically stable. It has excellent linearity. Once set-remains in adjust ment-vibration-resistant. Has raom for additional tie.lug on terminal base.
2.

WIDTH CONTROL COIL.
Mechanically stable winding structure. Iron core tuned. Single hole mounting. Machine staked terminals.

HORIZONTAL LINEARITY CON-
TROL COIL-Very stable winding structure Instantly adiustable with pullout shaft. Clip mounted. A favorite with leading T-V set manufacturers. Sturdy, Vibra tion resistant. Trouble free.

PICTURE I.F.
TRANSFORMER
Bifiler Winding. Iron Core Tuned. Excellent electrical Tuned. Excellent electrical and mechanical ability. Single hcle mounting.

SOUND TAKEOFF COIL
Iron Core Tuned. Machine Staked terminals. Excellent electrical and mechanical stability. Single hole mounting.
6.

ANTENNA COIL Rigidily controlled high "Q". Inductance easily adiustable. Machine staked lugs. Good electrical and mechanical stability, Eosily mounted. Small size.
TOROIDS
wide variety and range of sizes available in production quantifies to specifications. Sizes: $3 / 2^{\prime \prime}$ and up.

Above units are specified as standard equipment by leading manufacturers.

Your inquiry is invited. Write
JOHNSON ELECTRONICS DIVISION

TRANSFORMER CORPORATION

[^19]

"P" SERIES

RACKS

No. P-3618: Overall: $427 \%^{\prime \prime} \times 22^{\prime \prime} \times 18^{\prime \prime}$ Panel Space: $35 \%^{\prime \prime} \times 19^{\prime \prime}$
Mo. P. 6618 : Overall: $673 \%^{\prime \prime} \times 22^{\prime \prime} \times 18^{\prime \prime}$ Panel Space: 611/4" $\times 13^{\prime \prime}$
Mo. P-8318: Overall: $831 \mathrm{~s}^{-7} \times 22^{\prime \prime} \times 18^{\prime \prime}$ Panel Space: $77^{\prime \prime} \times 19^{\prime \prime}$

Par-Metal "p" Series Racks are ovailable on special request up to 28" deep.
" G " SERIES
TRANSMITIER RACKS
No. G-2218: Overall: $7618^{\prime \prime} \times 22^{\prime \prime} \times 18^{\prime \prime}$ Panel Space: $70^{\prime \prime} \times 19^{"}$
No. G-2219: Overall: $831 \mathrm{~s}^{\prime \prime} \times 22^{\prime \prime} \times 18^{\prime \prime}$ Panel Space: $77^{\prime \prime} \times 19^{\prime \prime}$
No. G-3024: Overall: 7618" x 33" $\times 24^{"}$ Panel Space: 70" $\times 30^{\prime \prime}$
"Pp" and " G " Series RACKS have
gandard finishes of black rip-
ple, slate grey ripplo for prime coat only).

Planning an electronic procuct? Consult Par-Metal tor

RACKS • CABINETS

 CHASSIS• PANELS Made by Electramic Specialists WRITE FOR CATALOG!PhlidilleTRL
PRODUCTS CORPORATION 32.62 - 49th ST, LONG ISLAND CITY 3, N. Y Tel. AStoria 8-8905
Export Dept.: Rocke International Corp. 13 East 40 Street. New York 16, N. Y.

... another addition to the many types of Phil-trol Relays...
Rugged dependability plus high sensitivity have made this new Phil-trol relay an immediate favorite with engineers and designers. Its compactess and adaptability to a wide range of applications and uses provide new answers to the many complex problems confronting electronic and control engineers.
Unusual features of the new $8 Q$ A relay include immediate response; fast closing and opening; contact springs with twin contacts; heavy duty, long-ifie bronze bearings; light weight.
Like all standard Phil-trol relays, the 8 Q 4 is available in a wide range of modifications. Coils may be single or double wound, and equipped with copper slugs or sleeves for slow release or for slow operation.
In all probability, there is a standard Phil-trol relay, or variation, to meet your specific need. Phit-
 ol enginecring experience and design facilities are available to help you solve any new application problem.

Phil-tod

is the registereo trade mark of PHILLIPS CONTROL CORP. JOLIET, ILLINOIS A THOR CORPORATION SUBSIDIARY OFFICES IN ALL PRINCIPAL CITIES

James R. Bradburn
dent; L, P, Robinson, vice-president; Victor J. Pollock, secretarytreasurer and Joseph B. Rice, assistant secretary-treasurer.
"The high degree of specialization required in computer design and manufacture and continual and anticipated future growth of the electronic computing industry are factors which contributed to Consolidated's decision to establish its computer operations as a separate organization," Fogg said.

James R. Bradburn, executive vice-president, served in a variety of engineering and administrative posts with GE and Eastman Kodak before joining Consolidated Engineering in 1945 as treasurer and assistant to the president. He is both a registered electrical and mechanical engineer in California. In 1946, he was named director of sales and vice-president in charge of commercial engineering at Consolidated and subsequently served as vice-president and director of engineering. In December 1953, he was made vice-president and director of the computer division.
L. P. Robinson, vice-president, was also associated with the firm's computer division and directed much of the original research and engineering work of the company's computer group. Pollock serves as secretary-treasurer of the parent corporation in addition to his new financial post. The new firm has already received orders for a number of its electronic computing instruments and expects to make

Miniature and Sub-Miniature
SLIP RING ASSEMBLIES BRUSH BLOCK ASSEMBLIES commutators
and other
Electro-Mechanical Components

PRECISION MADE TO YOUR OWN SPECIFICATIONS

Precision molded products with exacting tolerances in precious and non-precious solid metals of all alloys. All types of Thermo-Plastic and Thermo-Setting materials.

> Slip Ring Assemblies fabricated or one-piece precision molded to your specifications in Nylon, Kel-F, Mineral filled Mellamine, Phenolic, and other materials. Rings and leads spot welded or brazed together for positive electrical circuit.

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

COLLECTRON CORPORATION

MUrray Hill 2-8473 - 216 East 45th Street د New York 17, N. Y.

DUMONT
 MILCAPS

GLASS-TO-METAL HERMETICALLY SEALED SUBMINIATURE CAPACITORS

MEETS THE OPERATING REQUIREMENTS OF MILITARY SPECIFICATIONS MIL-C-25A

MILCAPS are subminiature paper capacitors hermetically sealed in tinned brass tubular cases. Perfect enclosure of the impregnated paper sections is achieved by the use of glass-to-metal solder seal terminals. MILCAPS are recommended for all applications where size is a primary consideration ... and are available in any one of the following impregnants: Stabilized Halowax ($85^{\circ} \mathrm{c}$): Mineral Oil ($85^{\circ} \mathrm{c}$: or Duroil ($125^{\circ} \mathrm{C}$).

[^20]deliveries at the rate of ore a month during the last six months of 1954.

AT\&T Engineer

Awarded Lamme Medal

Frank A. Cowan, assistant director of operations, Long Lines Department of AT\&T, has been awarded the 1953 Lamme Gold Medal by AIEE.

It will be presented at the opening session of the five-day Summer and Pacific General Meeting of the Institute at Los Angeles on June 21, by Elgin B. Robertson, president of AIEE.

Cowan was cited "For his outstanding contributions to longdistance communication and the development of modulating and transmission measuring apparatus of original design and application." He joined AT\&T in 1919 and is the holder of 17 patents in the communications field.

Sinders Associates
 Names Best

Ethridge C. Best, formerly director of the electronics division, Navy Bureau of Aeronautics, was appointed assistant to Royden C. Sanders, Jr., president of Sanders Associates. He will be chiefly concerned with contract and program coordination with government agencies.

Best is a Colonel in the U.S. Marine Corps Reserve and comes directly to the company from nearly 27 years of service with the Navy and Marine Corps. The last 3 years of this service was spent as deputy director and director of the Bureau

- Write Dept. 26-E, today.
 KFLLOEG-

KELLOGGSWITCHBOARD AND SUPPLYCOMPANY A Division of international Telephone and Telegraph Corporation SALES OFFICES: 79 W. Monroe Street, Chicago 3, Illinois

Readily Removable Terminal* does the trick!

FRONT NUT

ALSO NEW! BRASS-SHEATHED

ELEMENTS
Easier to replace -
Better Protection
Write for calalog showing 40 industrial coldering irons of every type and size; there ls no obligation.

Quick-change terminal can be removed in a second or two, permitting replacement of element in a fraction of the usual time. By simply depressing terminal guard at the finger slots, the terminal comes out in a jiffy - no longer necessary to fish element lead wires around terminal.

HEXACON - Industry's No. 1 Soldering Iron

HEXACON ELECTRIC COMPANY

130 W. ClAY AVE,, ROSELIE PARK, NEW JERSEY

1" and $1 / 2^{\prime \prime}$

SUB.MINIATURE AND MINIATURE

ELECTRICAL METERS

FOR AIRCRAFT, GUIDED MISSILES, ELECTRONIC and ATOMIC DEVELOPMENTS, COMMUNICATIONS and INDUSTRY Wherever less weight and smaller size are vital, these sub-miniature and miniature meters allow more savings. They not only provide accuracy and dependability equal to that of larger models, but, in addition, the inherently strong construction withstands shock and vibration far better than conven. tional sized instruments. A D'Arsonval type movement of excellent design, precision workmanship and materials of selected quality permit miniaturization while retaining high performance standards. Meters, resting devices and allied equipment are available for a wide variety of requirements and can be adapted for use wherever it is desired to measure quantities electrically. Instruments are engineered for unusual opplications by our staff of skill. ed technicians. Efficient production insures good delivery and low cost on both regular and special jobs. If smaller size and lighter weight can help solve your instrument problems, fill in and mail the at tached coupon today.

international instruments
 INCORPORATED

P. O. BOX 2954, NEW HAVEN 15, CONN. LIAISON ENGINEERS IN PRINCIPAL CITIES

Please send me engineering data sheets covering the International line of instruments.

NAME
POSITION
CO. NAME
ADDRESS
CITY
ZONE \qquad STATE

[^21]LICENSED UNDER PATENTS OFTHEBELLSYSTEM

Ethridge C. Best
of Aeronautics' electronics division.
A graduate of the U.S. Naval Academy and a Marine Corps pilot, he has served as Assistant Naval Attache and Assistant Naval Attache For Air at the United States Embassy, London. During World War II, he served in the Pacific.

Brown To Head NBS Boulder Labs

Frederick W. Brown has been appointed director of the Boulder (Colorado) Laboratories of the National Bureau of Standards. Currently technical director of the Naval Ordnance Test Station, China Lake, California, he will assume his new responsibilities near the end of the current fiscal year. He will direct the research, development and standards programs of the NBS Central Radio Propagation Laboratory and the NBS-AEC Cryogenics Engineering Laboratory, both of which are in Boulder.

Although only a portion of the Bureau's radio division is now in the Boulder area, the total transfer of personnel and equipment from Washington to a multimillion-dollar research center in Boulder is expected to be completed during the coming summer. The cryogenic laboratory, which conducts a research program for the Atomic Energy Commission and the U.S. Air Force, is located on the same site as the radio research center; it has been staffed and functioning since 1952.

From 1935 to 1938, Dr. Brown

Specialty Transformers HIGH QUALITY DESIGNS FOR MIL-T-27

Pulse \& Filter Networks with Ferrite Cores AUDIO POWER CHOKE MODULATION

Facilities also available for COMMERCIAL UNITS AIRDESIGN averaged 30 day delivery during 1952
UNUSUALLY SHORT DELIVERY ON PREPRODUCTION MODELS

241 FAIRFIELD AVE., UPPER DARBY, PA. Telephone: GRanite 4-8000

Accurafe LAB MEASUREMENTS
 Rapid
 INSPECTION TESTING

- Pre-set regulated reverse voltages
- $-10,-50,-100,0-150$ volts at 5 ma

MODEL

- Forward current to $\mathbf{5 0 0} \mathbf{~ m a}$ at 1.0 volt DT-100
- Controls interlocked for routine tests
- Reversed or shorted diode indication
- Test fixture allows quick connections
- Provision for accessory diode heater

Standard Navy Hand-Held
MICROPHONE

OUT-OF-STOCK DELIVERY

Beginning May, 1954
Designed to rigid Navy specifications, this dependable, lightweight microphone features long-life, high output, and all-position response. Incorporates use of long-life detent switch. Cord is reinforced by a rubber protector for maximum flexure life. Available also with coil cord on made-to-order basis.

HANGER STYLE 035
Designed for use with Style \#044

spring grip holds microphone securely, prevents vibration.

WRITE FOR COMPLETE DATA

ROANWELL CORPORATION
27 SIXTH AVE, BROOKLYN 17, N. Y.

A NEW
SUB-MINIATURE PRECISION QUARTZ CRYSTAL THAT USES ONLY $1 / 5$ th THE spACE FORMERLY REQUIRED

The McCoy M-20 "McMite" has a frequency range of 5.0 mc . to 110 mc . It's a sub-miniature hermetically sealed unit, adaptable to multi-channel design for communications and frequency control equipment. Can be plugged into a sub-miniature tube socket, wired into miniature selector switch assembly or can be soldered to a printed circuit terminal board. Meets Military Specification requirements for fundamental operation above

5 mc . and overtone operation above 15 mc .
The "McMite" does not sacrifice stability
or dependability but meets same charac-
teristics and performance requirements as
larger crystal units used by the Military.

Send for fret catalog today on the McCoy line of high quality, precision made quariz crystals.

MAC COU electronics co.
 MT. HOLLY SPRINGS? PENNSYLVANIA

taught physics at the University of Illinois and the University of Kansas City, and then became a research associate at the California Institute of Technology. In 1940 he joined the U. S. Bureau of Mines Central Experiment Station as a research physicist in the fiald of high explosives and explosions, and in 1946 he worked on nuclear reactor designs and effects of radiation on materials for North American Aviattion. While at North American he was also concerned with the analysis of guidance systems for long-range missiles. He joined the staff of the Naval Ordnance Test Station in 1949, and in 1951 was appointed technical director.

Fischer \& Porter Acquire Two Firms

Fischer and Porter have acquired the patents and engineering personnel of the Electrical Development Company and the Digi-Coder Corp. The company is now able to engineer, produce and install completely automatic control systems from the sensing element at the machine or process to the coded or tabulated digital data output. The two newly acquired corporations have been integrated into the firm as the data reduction and automation division. Robert K. Stern, formerly president of Electrical Development is manager of the new division and has retained his entire engineering staff. The company expects to develop other allomation equipment such as remote data logs, temperature and pressure scanners, sequential data recorders, remote pressure and thermocouple readout systems, and voltage-to-digital converters.

Capehart Announces Wright Resignation

Antony Wright resigned as vicepresident of the commercial products division of Capehart-Farnsworth and has joined CBS-Columbia as vice-president of enginecring.
J. F. Conway, Jr., chief engineer of the Capehart commercial products division will continue to be responsible for television and radio engineering and will direct the activities of the firm's color and

PHANS into PLASTICSS

PRECISION MACHINING OF ALL THE PLASTICS

including
POLYSTYRENE - COPOLYMER 1422 BUTYRATE • NYLON • TEFLON • KEL-F

PLASTIC FABRICATING

Printloid is equipped for the complete production of a wide variety of can. sumer and industrial items in any quan. lity. We work with any plastic material in sheets, rods and tubes. Die-cutting, deep drawing, stamping, forming, fin ishing, and assembling in our own plant.

PRINTED CIRCUITS

Fully equipped for production of printed circuits including photo etching and silk screen. Vacuum forming of plastics to your specification.
Ask for brochure illustrating various plastic products fabricated to specification by Printloid. Zar HEAVY DUT/
WORK! Severest EUTY।
 Severest Electrical Services!
 500 SERIES Proven
for 5,000 Volss, 25 Amperes per Contact Alterable by circuit Characteristics.

Socket contacts phosphor bronze, knife-switch type, cadmium plated. Plug contacts hard brass, cadmium plated. 2, 4. 6, 8, 10, and 12 contacts. Plugs and sockets polarized. Long leakage path from terminal, and terminal to ground. Caps and brackets, steel parkerized (rust-proofed). Plug and socket blocks interchangeoble in caps and brackets. Terminal connections most accessible. Cap insulated with canvas bakelite.
Write for Jones BULLETIN 20 for full details on line

Builltoo establishen standardos FOR MAXIMUM SHIELDING EFFICIENCY

A screen room is no place for makeshift construction Where RF interference must be eliminated to a known degree, SCREEN ROOMS must be built to scientific standards, not "by guess and by golly." That is why
IINDGREN double-shielded enclosures are increasing in use by so many of America's leading industries, where testing and operation must be done under controlled conditions that will not tolerate leakage or uncertainty.
highest attenuation guaranteed BRONZE SCREEN 126.128 DB COPPER SCREEN 142-146 DB;
LINDGREN screen rooms are economically manufactured at the factory. They consist of pre-fabricated Units, easily assembled where you want them conveniently portable to any location. More than 30 standard sizes available.
Used by leading manufacturers of electrical and electronic equipment . . . and more than meets government specifications.
WRITE for Descriptive Circular, Attenuation Charts, Construction Diagrams, Specifications and Prices.

Interiference

Sales Engineering
Representatives Throughout the United States

CHICAGO 40, ILL.
Phone SUnnyside 4-0710

the new wesco ac catalog is off the press-request your copy now. The catalog gives design information to help you order the right solenoid for your application. It gives engineering drawings, solenoid performance charts, work and temperature curves in easy to follow form.

Since the WesCo trademark is on AC solenoids used everywhere, you can be sure the WesCo catalog gives you real help on your solenoid problems. A request on your company letterhead brings your AC catalog promptly. Write today.

NOTICE:

If you specify DC solenoids for your company, you will find the WesCo DC solenoid catalog helpful. The pages are filled with easy to read information to help you choose the right solenoid. Sent only to requests on company letterhead.

black-and-white television and highfidelity programs. Capehart has a research and development staff of 600 people.

Production Begins At Hoffman In Kansas City

The first tv sets were produced in March in the new million-dollar Kansas City, Mo. factory of Hoffman Radio.

The plant manager, Leonard L. Roberts, said two chassis lines, now being installed, would be ready in about sixty days to begin full assembly of sets in the plant. Until then the operation will consist of final assembly work, using components supplied from company plants in Los Angeles.

With 250 employees at work, Roberts said he had scheduled production of 150 sets a day, while continuing to produce on other assembly lines 350 table model and clock radios each day and 350 hi -fi record players.

At full capacity the $8,500 \mathrm{sq} \mathrm{ft}$ plant can produce 1,000 television sets a day with an employment of 1,000 men and women.

The Kansas City plant will supply Hoffman distributors in the Midwest, South, Southwest and East.

McCrae Named Du Mont Development Manager

Harold W. McCrae, has been named manager of the development engineering department at Allen B. Du Mont Laboratories, communica-

Star Performers

 (EPCD) "quaLTr.-pus"For Industrial and Electronic Equipment DESIGNED TO COMMERCIAL \& MILITARY SPECIFICATIONS (MIL-T-27 and AN-E-19). ALSO CLASS A, B, H, AND MINIATURES.
 Sample, Short and Long Runs. Let us quote on your specifications. No obligation.

15 BEEKMAN ST., N. Y. 38, N. Y.
WOrth 2-2044 and COrtlandt 7-0470

These outstanding Series RG-60-D Magnetic Amplifiers by ATLAS provide extreme ruggedness and unfailing dependability for many voltage control applications. By improving the performance and life of circuits in which they are used, costly maintenance and repairs can be reduced. Competitive in price with other voltage control methods, ATLAS Magnetic Amplifiers have ali the features you have always desired.

WRITE to Dept. AD for Bulletins for complete specifications.

[^22]

No prior contract approval or waivers required for military orders

Cut red tape - improve performance with Centralabs! Here's how:

- CRI style RV-2 potentiometers meet JAN-R-94 characteristic \mathbf{U} requirements without exception.
- Two types available - plain and with attached switches.
- Resistance values from $\mathbf{2 5 0 0}$ ohms to 2.5 megohms.
- Humidity characteristic - available to characteristic U only - $\pm \mathbf{2 5} \%$ drift after humidity cycling.
- Available with 3 shaft styles: round, screwdriver slotted and flatted. Standard diameter $250^{\prime \prime}$.
- Special switch for military applications supplied with RV-2 potentiometers. SPST, $117-\mathrm{v}$, a-c, rated 3 amps. DPST, 117-v, a-c, rated 3 amps per section.
- Bushings: lengeh $3 / 8^{\prime \prime}$ with standard thread of $3 / 8-32$ NEF class 2 A . Custom variations to your requirements.
- Test: high dielectric strength permits breakdown rating of 1000 volts RMS.

- Material specifications to meet or exceed JAN requirements.
- Centralab developed the first composition variable resistor in 1923.
- Large staff of mechanical, electrical and chemical engineers to help you with "specials."
- Quality control progran over complete manufacturing process - controls 100% guaranteed.

Centralab

A Division of Globe-Union Inc.
914E E. Keefe Avenue - Milwaukee 1, Wisconsin In Canada: 804 MI. Pleasant Road, Toronto, Ontario

Harold W. McCrae
tion products division.
In his new post he will have direct responsibility for the engineering development of all of the electronic communication products made by the division, including transmitters, cameras and studio equipment, industrial closed-circuit television systems and mobile radio transmitting and receiving systems. McCrae first joined the company in 1951, and has been the project head in charge of its bright-screen radar program.

In 1940, McCrae joined the Na tional Research Council of Canada, doing special circuit research. He was engaged in top-secret radar development for Canadian and U.S. Armed Forces.

In 1946, he joined the transmission and development department of the Canadian Broadcasting Corporation, Montreal, where he worked on $a m, \mathrm{fm}$ \& tv projects, including the initial planning for a Canadian tv system.

In 1949, he joined CanadianMarconi as chief television engineer, handling all details of the recently awarded contract for television equipment for the Canadian Broadcasting Corp.

Carroll Named Chief Engineer of Hallicrafters

Charles T. Carroll, chief of government engineering for Hallicrafters since 1951, has been named director of engineering for the firm.

From 1948 to 1951 he was chief

NEED CABINETS, CHASSIS, or CUSTOM SHEET METAL PARTS?

Engineering, plant capacity, experienced "know how" and metal craftsmanship have made Bennett a prime source of supply for many leading electronic and electrical equipment manufacturers. Located in a suburb of Buffalo, the Bennett plant with complete facilities can deliver what you need when you want it. Send blueprints or sample parts today for prices and delivery.

Representatives THE BENNETT MANUFACTURING COMPANY ALDEN, NEW YORK

Engineers: Choose an Outstanding Career at Emerson-Electric. Challenging Opportunities for:

- ELECTRONIC ENGINEERS
- SERVO ENGINEERS
- STRESS ENGINEERS
- MECHANICAL DESIGNERS - ELECTRONIC PACKAGING ENGINEERS

[^23]

BIRTCHER KOOL KLAMPS will help keep your subminiature tubes COOL ... and hold them firm and secure, regardless of how they are shaken, or vibrated.
KOOL KLAMPS are made of a specially developed heat treatable alloy $991 / 2 \%$ pure silver of high thermal conductivity.
KOOL KLAMPS under certain conditions are able to reduce bulb temperatures as much as $40^{\circ} \mathrm{C}$. KOOL KLAMPS have proved of particular value in miniaturized electronic equipment.
Where heaf conditions are less critical, beryllium copper KOOL KLAMPS are available.

Company
Attention of
City \qquad State

At Last!
 Printed circuit Tube Seckets that

\section*{-withstand

dher

dher

 punis)- LOSS FACTOR $.014 \mathrm{at} 1 \mathrm{mc} / \mathrm{s}$
- POWER FACTOR . $0015 \mathrm{af} 1 \mathrm{mc} / \mathrm{s}$
- HIGH DIELECTRIC STRENGTH
- NO CARBONIZATION
- Zero cold flow
- IMMUNE TO FUNGUS

MYCALEX printed circuit tube sockets effectively eliminate broken or foose connections that ordinarily result from tube insertion and removal, shock and vibration. An exclusive MYCALEX contact design permits a positive mechanical attachment in conjunction with a soldered connection. The mechanical attachment safeguards against stress at all times, insures the permanence of the soldered connection between printed circuit and socket contact. Troublesome intermittent contacts, costly repairs are thus eliminated.

Application of these sockets to your printed circuit can speed production, reduce rejects, improve performance. For information call or write J. H. DuBois, Vice President-Engineering, at Clifton, N. J., address below.

NOTE: MYCALEX 410 glass-bonded mica is an exclusive formulation of and manufactured only by the Mycalex Corporation of America. It meets all the requirements for Grade L-4B under Joint Army-Navy Specifications JAN-l-10.

MYCALEX TUBE SOCKET CORPORATION
Under exclusive license of Mycalex Corporatiar of America, World's largest manufacturer of glass-bonded rica prodacts ADDRESS INQUIRIES TO-
General Offices and Plant: 114 Clifion Elvd., Clifon, N. J.
television engineer for Trav-Ler Radio and from 1945 until 1948 was an advanced development engineer for Hallicrafters.

In 1938 he joined the engineering staff of Hazeltine Research. In 1943 he became associated for two years with Hamilton Radio. He replaces Harold Adler, former director of engineering, who resigned.

McElroy Appointed FCC Engineer

FCC Commissioner John C. Doerfer announced the appointment of James B. McElroy of Ventura, Calif., as his engineering assistant.

From 1937 to 1945, McElroy was employed by the government of Guatemala as chief engineer of government-owned commercial radio stations, and from 1945 to 1949 he privately owned and operated a commercial radio station in Guatemala. Since 1950, he has been employed as an electronic engineer. by the U. S. Navy.

Aerovox Officially Opens Two Plants

Arrovox Corp. announced the formal opening of two new plants in California. One will house Cinema Engineering in Burbank, and the other will house both Acme Electronics and the pacific coast division of the firm in Monrovia.

Aerovor purchased Cinema and

B.

Acme during the past year, and has increased the productive ability of each by the erection of the new plants.

The Monrovia plant is being

PAPER TUBE PRODUCTS to Your EXACT SPECIFICATIONS

NIEMAND BROS. produce many

 types of paper tube products to meet the varied needs of the electrical and mechanical industries.Diameters from .093" to $2^{\prime \prime}$ and up-wall thicknesses of $.003^{\prime \prime \prime}$ o. $060^{\prime \prime}$-printed or plain-materials such as high dielectric kraft, fish paper, foils, special protective coated and laminated papers.

We also make precision drawn paper caps from $141^{\prime \prime}$ to $2^{\prime \prime}$ in diameter, as well as special die-cut washers and parts to required specifications.
Our modern, high-speed equipment and improved methods of production result in economy and rapid delivery. Send us your specifications - our highly trained staff will be happy to serve you.

GROUND FLOOR IN

Florida
Florida wants and needs electronics industries of special types. Florida offers what you need.
Manufacturers of tubes, resistors. coils, expensive transformers, light weight electro-mechanical components and specialized instruments and equipment will find Florida an ideal location.

Manpower of all types and skills is plentiful-and more than 1.965 new residents are moving to Florida every week. The labor climate is excellent.
Plant construction, maintenance and heating costs are lower in Florida because of the mild year-round climate.

Taxes are favorable, too. Florida has no State income tax, no State inheritance tax, no State ad valorent tax.

Florida's importance in Air Force, Army and Navy electronics programs is widely known and proximity to the big Florida operational and experimental bases could be valuable to you. So could its strategic relation. ship to Southern and Latin-American markets.

A few electronics research and development companies are already established in Florida. There's still room for more such companies on the ground floor.
For dependable information write: Industrial Development Division, State of Florida, 3306D Caldwell Building. Tallahassee, Florida.
you"童 allumays

Florida
 everything there is to know about designing the right spring for the job. That's hardly surprising in view of the thousands of tough spring problems that have been solved at lower cost by Lewis Spring Engineers.

If a spring is a vital part of your product, get acquainted with one of our Spring Engineers. Chances are good that he can show you how to realize maximum product performance at minimum cost with a Lewis spring that's engineered to the job. Behind his recommendation stand the experience, facilities and reputation of a company geared to serve you quickly and well.

LEWIS SPRING \& MANUFACTURING COMPANY 2656 W. NORTH AVE. CHICAGO 47, ILL.

The Finest Light Springs and Wireforms of Every Type and Material

equipped to manufacture most types of Aerovox capacitors. Cinema Engineering, with national distribu. tion, brings diversification in some eight product lines, all within the scientific instrument, electronic and sound fields.

The combined areas of the two plants is over 70,000 square feet, 20,000 at Cinema and 51,000 at Acme-Aerovor.

The two plants presently house over 400 employees, and it is estimated that the total will exceed that amount many times as production is expanded.

Triple Transmitter
 Building Completed

The John Poole Broadeasting Company's new television transmission center atop Mt. Wilson in California houses three transmitters.

In addition to Poole's new $12-\mathrm{kw}$ uhf transmitter for KBIC on chamel 22 , the building houses the l-kw uhf transmitter serving KTHE over channel 28, The latter is the educational station operated

SWISS SCREW

 MACHINE PRODUCTSPrecision Work to .0003" Tolerances

Capacity Up to 1" Dia.

Specializing In Electronic Parts and Materials

Complete Facilities from Cam Layout to Finished Production by SWISS Operators

We invite your inquiries

SWISS AUTOMATIC Company, Inc. 41 DIKE STREET PROVIDENCE, R. I. ELmhurst 1-4711

For consistently high purity. "Linde" M.S.C. rare gases (Mass Spectrometer Controlled)

\author{

- Helium - Argon
 - Neon - Krypton
}
- Xenon

In radar electronic equipment, nuclear radiation counters, cosmic ray cloud chambers, and thyratrons, where the purest rare gases are demanded, Linde M.S.C. Grade gases meet the specifications. They are produced under continuous mass spectrometer control to assure you of gases of known purity and consistently high quality. Linde, the world's largest producer of gases from the atmosphere, can meet your individual needs of volume, mixture, and container.

For information on the physical, chemical, and electrical properties of these gascs, send for the booklet, "Linde Rare Gases."
*

LINDE AIR PRODUCTS COMPANY

A Division of

Union Carbide and Carbon Corporation 30 E. 42nd Street एe] New York 17, N.Y.

In Canada:

Dominion Oxygen Company, Division of Union Carbide Canada Limited, Toronto The term "Linde" is a registered trade-mark of Union Carbide and Carbon Corporation.

MEV'S SMALL PARTS PLAY A BIGPART

IN PRECISION

INSTRUMENTS

NEY PRECIOUS METAL
 Allor CONTACTS

The output of any potentiometer is dependent upon the contacts. Illustrated above is a Helipot 10-turn Potentiometer (Molel A) using Ney Precious Metal Contacts between the slider and the resistance winding and for the slip ring pick-off, assuring the utmost in linearity and electrical transmission. The J. M. Ney Company has developed a number of precious Metal Alloys and fabricates these into contacts, wipers, brushes, slip rings, commutator segments and similar components for use in electrical instruments. Ney Precious Metal Alloys have just about ideal physical and electrical properties, high resistance to tarnish, and are unaffected by corrosive atmospheres. Consult the Ney Engineering Department for assistance in selecting the right Ney Precious Metal Alloy which will improve the electrical characteristics, prolong the life and accuracy of your instrument.

THE J. M. NEY COMPANY - 179 ELM STREET, HARTFORD 1, CONN. Specialists in Precious Metal Metallurgy Since 1812

3763 WEST BELMONT AVENUE CHICAGO 18 , ILLINOIS

FOR EVERY PURPOSE

Consult our Research and Engineering Laboratory.

IT IS AT YOUR SERVICE

One of the Oldest Manufacturers of Crystals in the United States.

ORDERS PROMPTLY FILLED

SCIENTIFC RADIO PRODUCTS, INC.
215 South 11 th St., Omaha, Nebr., U.S.A.

Want more information? Use post card on last page.
by the Allen Hancock Foundation of the University of Southern California.

The ground floor is occupied by radio station KFWB-FM, which has a 10,000 -watt transmitter.

Adoption of the chalet type design was dictated by the desire to provide for heavy snow loads sometimes encountered at the 5,700-foot elevation at which the three-story reinforced concrete and masonry structure is located.

Sprague Electric Reelects Officers

All directors of Sprague Electric Co. were reelected, and Robert C. Sprague, founder and chairman of the board, was elected to the additional post of treasurer, succeeding George B. Flood. Flood ramains as a member of the Board of Directors, and will make available his long experience in the company's affairs as a director-consultant.

Other officers and directors who were reelected are: Julian K. Sprague, president and director; Ernest L. Ward, executive vicepresident and director; William J. Nolan, vice-president, secretary and director; Wilbur A. Lazier, vicepresident and technical director; Neal W. Welch, vice-president in charge of sales; Preston Robinson, director-consultant; Frank A. Bond, director; Gordon W. Phelps, director; Harry C. Robbins, director and Robert C. Sprague, Jr., director.

Burroughs Organizes Special Products Division

The researcil center of the Burroughs Corp. of Philadelphia has formed a new special products division.

It will be concerned with applications of magnetics and electronics in industrial equipment and the development of defense equipment. Initial concentration will be in the fields of systems engineering, data processing systems, weapons control and other applications for digital techniques in industrial applications.

It will also conduct research and development work in telemetering, servomechanisms, process control and various applications of elec-

EFFICIENT, LOW-COST

 SPROCKET-DRIVE employs BEAD CHAII

Because of its unique characteristics, Bead Chain is frequently employed by alert designers to make a simple, lowcost and highly efficient sprocket drive. Ideal for many products, it has been proved on business machines, television tuners, venetian blinds, etc. Slippage is absolutely prevented as each bead fits into an individual pocket.

Just check the qualities you want in a drive chain against the qualities offered by Bead Chain: It will not kink, bind, jam or shrink. It is completely flexible, strong, light, rustproof and long-wearing. Because every bead acts as a universal joint, changes in direction of pull are easily made.

SOLVES MANY DESIGN PROBLEMS

BEAD CHAIN - the chain you think of first as an electric light pull is truly "the Kinkless Chain of a Thousand Uses" serving many industries and solving a wide variety of design problems. It may pay you well to check your product for opportunities to reduce costs and add sales appeal with this unique chain.

Bead Chain is available in many metals and finishes, and in five sizes, from:
00003000000090000000 $3 / 32^{\prime \prime} \quad 18-\mathrm{lb}$, test to

The BEAD CHAIN ${ }^{\text {mig. }}$ Co.

88 Mountain Grove St., Bridgeport 5, Conn. Manufacturers of: BEAD CHAIN - the kinkless chain of a thousand uses, for fishing tackle, novelty, plumbing. electrical, jewelry and industrial products; MULTI-SWAGE - the most economical method of producing small tubular metal parts for electronic and mechanical applications. Want more information? Use post card on last page.

10 mc DECADE Scaler

0.1 Microsecond Resolution
 SPECIFICATIONS
 Model 412
 INPUT CIRCUIT
 POLARITY: Positive pulses only.
 AMPLITUDE: Minimum amplitude of 5 Volts required at low counting rates, increasing to 10 volts minimum at the maximum counting rate.
 REQUIRED RATE OF RISE: Minimum of 10 volts per $\mu \mathrm{sec}$. NPUT
 RESOLVING TIME: 0.1 sec
 MAXIMUM ACCEPTABLE UNIFORM RATE: 10 mc or 10^{7} counts/second, no
 SCALING FACTOR: Decade Scale of 100 Neon light interpolation.
 OUTPUT:
 POLARITY: Positive or Negative pulse selected by front panel switch. ULSE CHARACTERISTICS: Triangular pulse of approximately $1 \mu \mathrm{sec}$. rise time, $4 \mu \mathrm{sec}$. width and 50.60 volt amplitude.
 POWER REQUIREMENTS: $105-125$ volts, $50-60$ cycles, approximately 300 SIZE:
 $\times 19^{\prime \prime} \times 13^{\prime \prime}$ deep Complete literature on request Dept. LD-4 $\varepsilon \eta \rho C \begin{aligned} & \text { ELECTRICAL \& PHYSICAL } \\ & \text { INSTRUMENT CORP. }\end{aligned}$ 42-19 27th Street, L.I.C. 1, N. Y

BE SAFE WITH

- Q-Max is widely accepted as the standard for R-F circuit components because it is chemically engineered for this sole purpose.
- Q-Max provides a clear, practically loss-free covering; penetrates deeply, seals out moisture, imparts rigidity and promotes electrical stability
- Q-Max is easy to apply, dries quickly and adheres to practically all materials. It is useful over a wide temperature range and serves as a mild flux on tinned surfaces.
- Q-Max is an ideal impregnant for "high" Q coils. Coil " Q " remains nearly constant from wet application to dry finish. In 1, 5 and 55 gallon containers.
Pincert Cumperang no
MARLBORO NEW JERSEY (MONMOUTH COUNTY) Telephone: FReehold 8-1880

SENSITIVE RELAYS

that R-E-S-I-S-T

SHOCK

TEMPERATURE

Engineering representatives in principal ©îles.

Here are miniature sensitive relays-single or double-pole types-which fullfill the most rigid requirements of space, shock, temperature and vibration in both commercial and military applications. The Series 100-105-106 relarys are hermetically sealed and have a long life expectancy. Write for Bulletin SR-6

Volliert

STAMPING GROUND FOR

 THE SURGING ELECTRONICS INDUSTRYRemember when not a roof across a whole city held a television aerial? In those very early days, Volkert was already designing and building experimental dies for producing electron gum parts for television picture tubes and pioneering in precision stampings for the electronics industry.

PRODUCING ONE-THIRD OF TOTAL GUN PARTS

As the leading independent supplier of gun parts, Volkert has mass-produced more than onethird of the metal stampings that put the picture in the tube. And by redesigning several major components, Volkert cut production costs as much as 75%. This economy helped provide American homes with low-cost televiewing.

IN PRODUCTION FOR COLOR TV

Volkert is growing with the industry it serves. In the field of color television, the company has been
supplying tricolor picture tube parts for many months.

TURNING UP THE VOLUME

When the electronics industry required volume pro-
 duction of miniature tube sockets, Volkert's creative engineering provided it. The company pioneered costsaving methods and today supplies the electronics industry with more than two million parts each day.

GROWING WITH AN INDUSTRY

To keep pace with the booming electronics industry, Volkert has expanded its facilities for the third time in the past four years and has inaugurated an extensive apprentice training program. For reports on the latest developments in precision metal stamping, write for your copy of our quarterly, THE VOLKERT VIEW.

Volliert

PRECISION STAMPINGS JOHN VOLKERT METAL STAMPINGS, INC.
 222-34 96th Avenue, Queens Village 8, L. I., N. Y.
tronic, magnetic and electromechanical techniques.

Isaac L. Auerbach has been named manager of the new division. Before its organization he was manager of the research center's magnetics department.

Auerbach, who was a radar officer with the U. S. Navy during World War II, is a registered professional engineer in Pennsylvania.

Link To Affiliate With General Precision

Link Aviation plans to affiliate with General Precision Equipment Corp. The operation of Link Aviation would continue under its present management. The affiliation is expected to provide a strengthening of the Link Aviation product base and to lead to expansion of operations.
Link reports that sales in recent years have shown a steady increase due to the broadening demand for electronic trainers. Its present backlog of orders is substantial.

Bendix-Scintilla Plant Nears Completion

A NEW factory addition at the Scintilla division of Bendix, now nearing completion, will increase plant floor area from $500,000 \mathrm{sq} \mathrm{ft}$ to $533,000 \mathrm{sq} \mathrm{ft}$.

The new addition is to be devoted to the precision manufacture of coils, capacitors, electronic devices and ignition components for the aircraft, automotive, agriculture, marine and petroleum fields.

Chromatic TV Adds Engineers

In anticipation of an upswing in color set production schedules by manufacturers, Chromatic Television has increased its staff at the West Coast Development Laboratories by more than a third.

Executive personnel changes have been necessitated by this expansion. Earl Sargent, who has been working with Chromatic at Oakland, has been made head of manufacturing at the Emeryville plant. Louis Silverman joins Sargent at Emery-

STERLING

 FOR TRANSFORMERS

- Pulse
- Audio
- Power
- Filter Choke
- Filament
- RF Coils

Custom Built to your Specifications

297 North 7th St., Brooklyn 11, N. Y.

DC MO-OR O \& EENERATOR This smell permanent magnet, ball-bearing unit-As a motor:
$1 / 125$ H.P. at 6000 RPM continuous duty is a generator output 4 watts of 6000 RPM5 volts per 1000 RPM. Dimensions: $\mathrm{T}-29 / 32^{\prime \prime} \times 1-1 / 2^{\prime \prime} \times 1$. $15 / 100^{\circ}$.

SHADED POLE MOTOR for sound recorders, air sirçulators, many other applications. 4 -pole, 2 or 4 coil construction. Will eperate from 115 volts, 60 eycle o.c.

The RIGHT power supply for mobile equipment is an EEPCO specialty

Outstanding experience in producing rotary electrical equipment to meet rigid specifications is an integral part of every EEPCO product.

Whether your problem involves an industrial or highly developed military unit, EEPCO's complete research and engineering facilities are at your disposal. Contact EEPCO today for special design assistance that can provide you with the best solution.

DYNAMOTOR OPERATES FROM 12-24-32 VOLTS

Output of this remarkably compact unit is 500 volts at .100 amperes. Dynamically balanced armature has 4 windings.

VERSATILE SIGNAL SOURCE speeds

electro-acoustical measurements
Bruel \& Kiaer Beat Frequency Oscillator, Model BL-1012

This Beat Frequency Oscillator is designed to incorporate the many features required in a complete and flexible signal source such as - continuously tuned frequency range, metered output, frequency modulating circuit, variable compression and noiseless oscillator stop switch.
When coupled with the Bruel \& Kjaer Level Recorder, the Oscillator automatically sweeps through the audio frequency range. This permits fast, accurate recording of frequency response, sound insulation properties, reverberation times, energy decay, etc. The Oscillator has a high frequency accuracy; $1 \% \pm$ one cycle per second. An incremental tuning adjustment and scale permit very accurate frequency setting. An automatic gain control circuit is utilized to maintain the desired output voltage for constant current, voltage, or sound pressure.
For complete specifications on this and other Bruel \& Kjaer instruments, write Brush Electronics Company, Dept. K-5B, 3405 Perkins Avenue, Cleveland 14, Ohio.
ACOUSTIC AND TEST INSTRUMENTS Bruel \& Kjaer insiruments, world famous for their precision and workmanship, are distributed exchusively in the United States and Canada by Brush Electronics Company.
BL-1012 Beat Frequency Oscillatar
BL-1502 Deviatian Test Bridge
BL-1604 Integration Network for Vibration Pickup. BL-4304
BL-4304 Vibration Pickup
BL-2002 Heteradyne Volimeter
BL-2 105 Frequency Anolyzer
BL-2109 Audio Frequency Spectromete
BL-2304 Level Recorder
BL-2423 Megohmmeter and D. C. Volimeter
BL-3423 Megahmmeter High Tension Accessory
BL-4002 Standing Wave Apparatus
BL-4111 Condenser Microphone
BL-4120 Microphone Calibration Apparatus and Accessory
BL. 4708 Automatic Freauency Respanse Irocer
BRUSH ELECTRONICS

TYPE 324-A VIDEO PHASE METER
This instrument of laboratory precision makes possible the rapid and accurate measurement of phase angle THROUGH THE VIDEO RANGE. It provides verification of design calculations, a
criterion for optimum adjustment of delicate

meter ranges:
Phase angles from 0° to 360° full scale; and 90° quadrants fuli scale; no ambiguity.
frequency range: $\quad 20 \mathrm{Kc}$. to 4.5 Mc . - Range down to 20 cycles may be supplied on special order.
WAVEFORMS ACCEPTED: Sine waves and any complex waves having not more than one positive-going zero axis crossing per cycle. Phase angle measurement is defined as phase difference between corresponding positive going zero axis crossings of the periodic signals being compared
AMPLITUDE RANGE: ACCURACY: 2 volts to 300 volts peak.
infut impedance:
$\pm 4^{\circ}$ on quadrant scales. Incremental change of 0.25° is easily read.

FULL DETAILS UPON REQUEST

Techoolocr Insiriment Corr.

ville as chief manufacturing engineer.
Edward J. Davenport, formerly with National Union Radio Corp. for eight years, has joined Chromatic as chief commercial engineer. Davenport came to Chromatic after a survey of tube possibilities in the color tv field. He has some 15 years of electronics and television engineering training.

Textile Firm Moves Into Electronics

Stock holders of the H \& B American Machine Co. and Susquehanna Mills approved a merger of H \& B into Susquehanna to form the H\&B American Machine Co.
Victor Nemeroff, president of H\&B, was elected president of the surviving corporation. Arnold H. Maremont and David E. Bright were elected vice-presidents. The merger is subject to the formal approval of the creditors of Susquehanna.

H \& B currently conducts operations through three divisions including the Karp Metal Products division, Brooklyn.

Color TV Clinics
 Draw Technicians

More than 27,000 television servicemen have attended the first 35 sessions in RCA's series of technical clinics on installation and maintenance of color television receivers. In New York, 2.775 technicians turned out for the meetings, in Philadelphia, 1,660 , and in Newark, N. J., 1,475. In Buffalo, N. Y., 635 servicemen attended.

Similar clinies in a total of 65 major cities are scheduled in the series. More than 80,000 copies of RCA's color servicing book have been distributed.

Kay Lab Appoints Chief Engineer

John Day, recently appointed chief television engineer for Kalbfell Laboratories of San Diego, now assumes responsibility for all development and engineering work on the new Kay Lab television camera

News that is bound to make headlines again for Elco Corporation is its new hermetically-sealed socket for use at high altitudes; and to give complete protection against moisture conditions. Floating contacts of heat-treated beryllium-copper assure complete relief of strain from glass of tubes. The Kel-F body is retained in an aluminum or brass housing, terminating with hermetic-seal on chassis end. A retainer ring lined inside with silicon rubber screws on to the housing, forming a complete seal around the tube; and also acts as tube retainer. Water absorption: 0 . Condensation inside socket: practically 0 . Contact resistance $.001 \bumpeq$ Silicon seal withstands temperature up to $525^{\circ} \mathrm{F}$. Complete contact float; excellent tube retention under pressure. Available in 7 - and 9 -pin miniature tube class, with or without shields. Drawings and prices arc yours upon request.

For Catalog Sheets, Call GArfield 6.6620 or Write ELCO Corp., 190 W. Glenwood, Phila. 40, Pa.

S.S.WHITE 80X Molded Resistors
 3 watis -100 to 100,000 megohms

S.S.White 80X Resistors have been developed to meet the exacting needs of high voltage equipment, such as electrostatic generators, X-Ray units, and specialized equipment used in atomic energy work. Their design and construction assures an unusually fine combination
of characteristics for this work, chief among which are:

- Negative temperature coefficients.
- Negative voltage coefficients.
- Excellent stability, durability and mechanical strength.
- Non-deterioration of values due to age.
- Moisture resistant, non-hygroscopic base material specially processed to insure full protection against humidity.
- Space-saving compactness.

WRITE FOR BULLETIN 4906 - It contains full information on S. S.White 80X resistors. Copy sent on request.

INDUSTRIALDIVISION
\qquad Dept. R 10 East 40th St. NEW YORK 16, N.Y.
Western District Office - Times Building, Long Beach, California

Dependable . Precision Wire Forming and Stamping Specialists

Precision Parts to meet your Production and Engineering needs. From .002" dia. to .125" dia. Radio tube parts-Stampings-Drawings. Modern facilities, high-production equipment.

Send sketch or print for quotation.

MANUFACTURING CO., Inc.

24-Ă Bedford Street Newark 3, New Jersey

dependable subminiature indicator lights

Mout w-tob-E AMGLE

VIsT:3TLIT

Light "piped" throughout entire periphery of long plastic lens assures easy visibility of signal from all sides.

Smaller, fruly subminiature size

Fully illuminated lens is clearly visible from any angle

For either standard or edge-lit panels

Designed to meet critical aviation performance standards

Larger illuminated area... smaller physical size

Smaller than most subminiature lamps, yet with uniformly bright wide-angle visibility, Hetherington L6000 Series make ideal indicator or warning lights for critical military as well as many commercial applications. Using AN-3140 lamps fitted into a heavy plastic lens $27 / 4^{\prime \prime}$ " long, these rugged lights are $11 / 32^{\prime \prime}$ overall, and mount in a $1: 3 / 32^{\prime \prime}$ hole. Details in Bulletin L2.

"Standard" Hetherington Lights Fill Most "Special" Requirements

EDGE-LIT PANEL MOUNTIMG Series L2000
for MIL-P-i788 panels. Sturdily constructed of nickel-plated brass with integral molded-in terminal and snug-fitting plastic lens that will not vibrate loose. Easy to mount. Write for Hetherington Bulletin L1.

"PUSH-TOTEST" INDICATORS Series L3000
Ideal for many military as well as industrial uses. Bulb is lit by pressing spring-mounted lens button. Supplied with or without silicone boot for moisture protection. Send for Hetherington Bulletin L1.

REGULAR PANEL MOUNTING Series L1000
Combines exceptionally small size and light weight with durable vibrationresistant construction. Sealed against moisture. Terminal is molded into the assembly. Ask for Bulletin L1.

SWITCHES WITH BUILT.IN LIGHTS . . .
Developed originally by Hetherington as hostess call lights, these compact little units are now available for a broad range of exacting commercial or military aircraft services. Write for Hetherington Catalog.

HETHERINGTON

SHARON HILL, PA.
West Coast Division: 8568 W. Washington Blyd. Culver City, California

Indicator lights - Switch-indicator light cambinations - Push-button, snap action, and toggle switches - "Hi-G" Relays - Aircraft and Electrical Equipment Assemblies.
systems and associated equipment.
He has been employed by Paramount Pictures as an electronics engineer. At the Naval Research Laboratory in Washington, he was associated with the early work by the Navy on radar equipment. He also was engaged in the design of receivers and test equipment. He participated in early work in electronics counter-measures for aircraft radar.

Day worked in the field of highfrequency propagation at the Naval Electronics Laboratory in San Diego. He developed standard procedures employed in propagation instrumentation.

At Kalbfell Laboratories, Day will be directly associated in a supervisory capacity with Kay TV, the television intercommunications systems for industry and commercial broadcasting.

General Instrument Names Valliere

B. F. Valliere has been named vice-president and general manager of the F. W. Sickles division of General Instrument.

In his new capacity, Valliere will have over-all responsibility in the Sickles division and its three plants. He joined the firm as an executive in January, 1946, after serving with Sylvania and American Bosch.

Crucible Steel Acquires Interest In Vacuum Metals

Crucible steel has acquired a 50 percent interest in Vacuum Metals

1 MFE. $2^{\prime \prime}$ II $\mathcal{Z}^{\prime} \times 1^{\text {wr }}$

0.5 MFD. $13 \pi^{\prime \prime} \times 11^{\prime \prime} \times 1 \times{ }^{\mu}$

O. 1 MFD. $1 \frac{3 / 4^{*}}{} \times 1^{\prime \prime} \times 7 / 8^{\prime \prime}$

UETRA-HIGH PRECISION POLYSTYRENE CAPACITORS

as low as 0.1% tolerance in most values

capacitance avallabie-0.05 to 10.0 MFD . voltage avallable-100 to 400 VDC INSULLTION RESISTANCE-10 MEG./MFD. TEMP. COEFF.-100 P.P.M. per ${ }^{\circ} \mathrm{C}\left(-20^{\circ}\right.$ to $140^{\circ} \mathrm{FI}$ DIELLCTRIC ABSORB.-. 015% DISSIPATION-. 0002

Special Values to Close Tolerances-Our Specialty

 SOUTHERN ELECTRONICS CORP.239 W. Orange Grove Avenue, Burbank, Calif.

Rutherford, 1 uccrownes co. maxss PRECSION TIMING IHSTRUMENTS

- Our
 TIME DELAY GENERATORS:

Each provides accurate and variable time intervals in five ranges. They feature low jitter (.008\%), linear scales, built-in calibration indicator, 1,000division dial, small repetition rate effects, blocking oscillator output and wide pulse output.

A-2 -- Range: $.8 \mu \mathrm{~s}$ to $100,000 \mu \mathrm{~s}$ Get complete data: our Bulletin E-A-2

A-4 -- Range: . 00001 to 10 secs. Get complete data: our Bulletin E-A. 4

Ruthererod

New components, designs dind techniques for HIGH VOLTAGE and CORONA SUPPRESSION

Here's a brand new technique . . . makes possible connectors and cables wherein insulation is molded right around contact and lead... to give you an integral unit that licks the problems of high voltage and corona suppression at new low cost, by -

1 Eliminating need of leakage paths at wire holes.
2 Utilizing materials more inert to ozone attack than consentional materials.
3 Scaling high voltage potential sources from air except at the point of contact mating, where there is a natural damping of corona.
This new rechnique just worked out for Color TV can give you connectors and cables for solving many prohlems involving high voluge and corona suppression.

NEW SOCKET TECHNIQUE

As illustrated in this Alden 220 FTSC Color TV Tube Connector, the new technique
 permits a jacket of high voltage insulation to he integrally molded around each high voltage contact and lead, while the low voltage leads take the resilient "figure s" clips in the regular isolated pockets providing air space leakage.

NEW CABLE TECHNIGUE

This new technique makes possible completely molded cables having all connectors and wire insulation sealed into an integral unit that licks the problems of high voltage and corona suppression. For example, the 30.000 volt anode cable iflustrated has in-line tuhe cap, high voltage disconnect and anode clip all molded together as one integrated unit tailored for a Color TV set.

ADDITIONAL ADVANTAGE-this new rechnicue gives a solidly molded unit that eliminates common catile problems of wire fatigue under vibration; insulation pullbach: strain relicf for leads.

TO GET STARTED

write for Spec Sheets on Color TV-and let us plan these sechniques to your special needs in ANI field involving high volages and corona suppression.

Hlden Products Co.
5127 N. Main 5t., Brockion 64, Mas5.
 Radio Frequency Interference Filters, Pulse Networks and Delay Lines.

Corp., formerly a wholly-owned subsidiary of National Research.

Arrangements have been completed for construction of new vacuum melting facilities to be located in Syracuse, New York, in an expansion program that is expected to increase Vacuum Metals' capacity by more than 500 percent in the next twelve months

Vacuum Metals is currently producing vacuum-melted metals and alloys in its plant in Cambridge, Mass. Present production facilities permit production at a rate in excess of $\$ 1$ million annually.

Directors of Vacuum Metals, under the joint ownership, will be:
(Representing Crucible) Joel Hunter, executive vice-president of Crucible; R. S. Poister, vice-president in charge of operations of Crucible; W. H. Wiewel, vice-president in charge of sales of Crucible; L. L. Ferrall, assistant vice-president in charge of operations of Crucible.
(Representing National Research) Richard S. Morse, president of National Research, Kenneth G. Donald, vice-president and treasurer of National Research, Robert A. Stauffer, vice-president and director of research of National Research and Richard M. Nichols, secretary of National Research.

Officers of Vacuum Metals will be: Joel Hunter, chairman of the board; Richard S. Morse, president; L. L. Ferrall, vice-president; Robert A. Stauffer, vice-president; George F. Groff, treasurer; Kenneth G. Donald, assistant treasurer; Richard M. Nichols, clerk and secretary and K. R. Vogel, assistant secretary.

General Manager in charge of operations of Vacuum Metals Corporation is James H. Moore

Wendt-Squires Firm Formed In Buffalo

The company of Wendt-Squires of Buffalo, N. Y. has been organized to engage in research, development and limited volume production in the electronics field. Approximately $2,000 \mathrm{sq} \mathrm{ft}$ of lab space are atvailable. Total personnel number seven, with additions expected.

President of the new firm is Karl R. Wendt, formerly manager of the

TEST YOUR MAGNETIC CIRCUITS

RAWSON FLUXMETER TYPE 504

The only portable fluxmeter available which returns rapidly to zero when a single hutton is depressed. Simple and tast in op ration. Convenient and light in weight. Not hmiced io a single rype for labora tories or production. Measures strength of magnets and electromagnets, permeability magnets and electromagnets, permeabity flux lines in citcuit tiux lines developed in flux lines in
llas a mechanical clamp to protect the piots and jewels when in transit

Also in production, the NEII
ROTATING.COIL GAUSSMETER

RAWSON ELECTRICAL INSTRUMENT COMPANY

III POTtER STREET. CAMBRIDGE 42, MASS

Zophar Waxes, resins and compounds to impregnate, dip, seal, embed, or pot electronic and electrical equipment or components of all types; radio, television, etc.
Cold flows from $100^{\circ} \mathrm{F}$. to $285^{\circ} \mathrm{F}$.
Special waxes non-cracking at $-76^{\circ} \mathrm{F}$.
Compounds meeting Government specifications plain or fungus resistant.
Let us help you with your engineering problems.

ZOPHAR MILLS, INC. 112-130 26th Street, Brooklyn 32, N. Y.

ang ordize TO HANDLE DIRECT ORDERS OR ENQUIRIES FROM OVERSEAS
SPOT DELIVERIES FOR U.S. BILLED IN DOLLARS -
SETTLEMENT BY YOUR CHECK
CABLE OR AIRMAIL TODAY

\section*{capacitance \& attenuation
 | TYPE | $\mu \mu$ F/F | IMPED. Ω | O.D. |
| :--- | :---: | :---: | :---: |
| C 1 | 7.3 | 150 | $.36^{\circ}$ |
| C 11 | 6.3 | 173 | $.36^{\circ}$ |
| C 2 | 6.3 | 171 | $.44^{\circ}$ |
| C 22 | 5.5 | 184 | $.44^{\circ}$ |
| C 3 | 5.4 | 197 | $.64^{\circ}$ |
| C 33 | 4.8 | 220 | $.64^{\circ}$ |
| C 4 | 4.6 | 229 | 1.03° |
| C 44 | 4.1 | 252 | 1.03° |}

NEM 'MX and SM' sUBMINIATURE GONNEGTORS
 Constant $50 \Omega-63 \Omega-70 \Omega$ impedances

TRANSRADIO LTD.138a Cromwell Rd. London SW7 ENGLAND casies: raassaa, conoon

IMDUSTRIAL HARDWARE MIg. Co., Inc.
109 PRINCE STREET . NEW YORK 12, N. Y

Whether it is for hearing aids, guided missiles, or other electronic precision needs - the uniform quality of Electra carbon coat resistors is an important asset. Electra manufactures only one quality and it is the highest that can be humanly and scientifically produced.

Regardless of the carbon coat resistor need - we at Electra believe that only the highest grade resistor is safest, lowest cost to use. That's why Electra specializes in control of quality and exacting uniformity in every production detail.

This means Electra customers actually get more for their money-a more reliable component part for their product-a resistor whose rejection rate is practically nil. If you manufacture a quality product requiring a deposited carbon resistor, then-be sure-specify Electra.

8 SIZES: $1 / 8$ watt to 2 watts and in two types - coated as well as hermetically sealed. MANUFACTURED TO SPECIFICATION MIL-R-10509A.

advance development department of Sylvania's radio and tv division since 1948. William K. Squires is vice-president of the company. He was formerly with Sylvania as uhf tv engineering specialist and supervisor in the advance development department.

Chief engineer of the new company is LaVerne H. Hardy. Previously he was a senior engineer at Sylvania and had also worked at GE's general engineering and consulting laboratory.

GE Shifts Midwest Tube Facility

A CONSOLIDATION of GE's Indiana receiving tube manufacturing at its Tell City plant will result in closing of a feeder operation, the G-E tube mount assembly plant at Huntingsburg.

Processing done formerly at Huntingburg will be shifted to a $42,000 \mathrm{sq} \mathrm{ft}$ addition completed last autumn at the Tell City plant.

Firth Sterling Elects Porterfield

C. Paul Porterfield has been elected vice-president and general manager of The Method X Co., an affiliate of Firth Sterling of Pittsburgh. He was previously chief engineer of the firm.

Porterfield has served as electronic engineer for the Chesapeake \& Ohio Railroad, chief engineer for Air Transport Maintenance Co. and radio engineer in the 7 th Naval District in Miami.

Hyman Heads Brach TV Antenna Development

Abraham Hyman has been appointed head of the recently expanded tv antenna development section of Brach Manufacturing division of General Bronze Corp. He will report to Ira Kamen, vicepresident in charge of sales and tv development.

In addition to having served as a consulting engineer in the tv antenna industry, Hyman is a former employee of the CAA and FTL.

His first assignment at Brach is

Electronics

EQUIPMENT

requiring immediafe factory space, in units of any size, and skilled experienced workers for branch operations are urged to investigate the specialized facilities in

LAWRENCE

MASSACHUSETTS
(Research Center of America)
write to:
GREATER LAWRENCE CITIZENS COMMITTEE FOR INDUSTRIAL DEVELOPMENT Lawrence, Massachuselts

dano colis Serve Modern Industry

Behind the scenes come Dano Coils-made to exact customer specifications to perform an exact electrical function...

- Molded Coils
* Form Wound
- Paper Section
- Acetate Bobbin
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Application

Also, Transformers The AN Made to Order

AN INSTRUMENT FOR ALL YOUR MAGNETIC MEASURING PROBLEMS

Dyna-Labs ${ }^{\text {² }}$ D-79 GAUSSMETER

This precision built instrument measures flux density, determines direction of flow. It locates and measures stray fields and plots variations in strength and checks production lots against a standard. Simple to operate. No ballistic readings . . . no jerking or pulling. Supplied with protective carrying case.

- Other Features -
- Reads 10 to 30,000 Gauss Flux Fields
- Probe is only .025" thick
- Active area .01 square inches
- Overall size $13^{\prime \prime} \times 6-3 / 4^{\prime \prime} \times 10-1 / 2$
- Net weight only $10-1 / 2 \mathrm{lbs}$

- Power supply 105-125 volis, 50-60 cycles

For Literature Write for Brochure E554
 Dyna-Labs ${ }^{\text {s }}$

1075 STEWART AVENUE, GARDEN CITY, L. I., N. Y.
GARDEN CITY 3.2700

Beat \cdots Heat mos ocenw cosom
 with
 TEF-COR"
 HOOK-UP WIRE

 scores another friumph with this tough, super-flexible product that has proven itself under fire.

Heat-resistant to

F.

$$
\begin{aligned}
& \text { This new super-heat wire, in- } \\
& \text { sulated with "TEFLON," is ideal } \\
& \text { for guided missile, jet and low. } \\
& \text { tension aircraft applications, } \\
& \text { transformer and coil leads. } \\
& \text { Sizes from AWG } 10 \text { through } 28 . \\
& \text { Also supplied with silver coated } \\
& \text { copper shields, and to indi- } \\
& \text { vidual customer requirements. } \\
& \text { Write for further intormation. } \\
& \text { - Cold-resistant to }-67^{\circ} \text { F } \\
& \text { - High dielectric properties } \\
& \text { - Does not support combustion } \\
& \text { - Impervious to known solvents } \\
& \text { - Perfect concensticiey } \\
& \text { - Tough, homogeneous, uniform }
\end{aligned}
$$

Companion to the famous "NOFLAME-COR"

Ground Power Supplied

by Hobart electric generators
Controlled by Regohm
Voltage Regulators

To insure reliable flight performance electronic equipment-radio, radar and navigational devices-is tested on the ground with power supplied by Regohin-controlled gencrators.
Engineers of The Hobart Brothers Company, Troy, Ohio, use Regohm regulators for their alternating current ground units. Because this low-cost, compact electro-mechanical controller is unequalled in accuracy. And under severe operating conditions, whether on land, sea or air, Regohm has performed long and unfailingly

7 Reasons why Regohm can simplify your control problem

1. Regohm is small in size-It is compact, lightweight, position-free. Surall size does not limit power-handling capacity.
2. Regohm is a high-gain power amplifier - Milliwatt variations in signal energy control energy changes millions of times greater.
3. Regohm's isolated signal and control circuits end impedance matching problemsSignal coils may have ratings from 0.01 to 350 amperes. Controlled resistors can have values from zero to infinity.
4. Regohm will correct system instability A reliable, sturdy dashpot aids system damping. It's easily adjusted over a wide range to mateh dynamic Regolm characteristics to present system.
5. Regohm's effect can be calculated in ad-vance-lts response is independent of rest of servo system. Acts as integrating error-rate proportional controller

6. Regohm assures continuous control-In

 "closed loop" systems a high speed averaging effect occurs as Regolun's armature oscillares over a small amplitude. This provides continuous, stepless control in systems operating at power frequencies and below.7. Regohm has long life-Its life is measured in ycars. lts plug-in feature simplifies replacement and mantenance; there are no parts to rencow or lubricate. Shelf life is virtually unlimited.
Our engineering and research facilities can help you apply Regohm to your control system or regulation problem. Write for Bulletin 505.00, analysing Regohm's characteristics and applications. Address Dept. E, Electric Regulator Corp., Norwalk, Conn.
the development of a new type fringe antenna for vhf and uhf for introduction at the May Parts Show.

Bross Leaves MIT

R. B. Bross, for the past 7 years manager of MIT's electromagnetic engineering section of the instrumentation laboratory, resigned from the MIT staff in order to devote full time to consulting. He will cover problems associated with design. development, production, testing and application of special electric and electromagnetic components.

Tel-Instrument Appoints Silver TV Manager

Martin Silver has been named manager of the new broadcast equipment division of Tel-Instrument. He was formerly manager of the tv division of Federal Telecommunications Laboratories.

During 1953, Silver served as manager of WTVU in Scranton, Pa. From 1941 until 1953 he was employed at Federal. He headed the tv development laboratory there until his promotion to manager of the tv division.

Electronics Plant

To Rise In India
The Proposed construction of the Bharat Electronics factory, the first enterprise of its kind for the Indian government, was scheduled to begin in March. The plant will be built on 500 acres of land near Bangalore, India.

At peak production, about 5,000 people will be employed.

El Mec Moves To New Location

El Mec Laboratories moved their plant and office to Kenilworth, N. J. The firm is engaged in the design and manufacture of special electronic and electromechanical equipments and devices, including cus-tom-designed production-testing automatic machinery.
The new location provides 50 per-

F.C.I

 TeflollCapacitors

- Operation to $200^{\circ} \mathrm{C}$
- Ulitra High IR
- High Stability
- Low Power Factor . 08%
- Low Soakage $.02 \%$
- Low Temp. Coefficient - $50 \mathrm{pmm} / \mathrm{C}$ Available in many different types of housings, in ratings from . 001 MF up, and 100 volts up.

Excellent delivery on standard and special types. Write for Catalogue F

World's Smallest Coax ... MICRODOT Connectors \& Cable

See that your products are design competitive...feature Microdot advantages. Order Microdot Kit \#553 today ... and save valuable experiment time by having the precise parts you need for multistage tests. Satisfaction is assured. Simply clip this advertisement to your letterhead with P.O. or check for $\$ 60$. Mail to address below.

For Low Power Factor
 Low Dielectric Loss Specify

STAR STEATITE

STAR STEATITE has the ideal characteristics for its effective use in high frequency electronic applications. It reduces the possibility of power loss, deformation and excessive heating of insulators that prevent proper functioning of the assembled product. It is molded into exact shapes to close tolerances; resists great mechanical shock and extreme conditions of heat and humidity. And STAR has the facilities to meet your volume requirements. Why not investigate ...NOW?

PORCELAIN COMPANY
49 Muirhead Avenue - Trenton 9, N. J.

Subject: solder

As far as cost is concemed, solder is a relatively smali item in any manufacturing operation.
But solder does a big job. You should have the best solder you can buy... Federated solder.

For printed circuits - Federated CASTOMATIC ${ }^{\text {a }}$
bar solder, the machine-cast solder
with no dross, with unijorm composition
throughout each bar.
For joining work - Federated Rosin Core
(RTS 200) wire solder in all
commercial gauges and compositions.
1'hoto courtesy l'hotocircuits Corp., Glen Cove. N. Y. .

Federated Metals Division

AMERICAN SMELTING AND REFINING COMPANY 120 BROADWAY, NEW YORK 5, N. Y.
In Canada: Federated Metals Canada, Ltd., Toronto and Montreal
Aluminum, Magnesium, Babbitts, Brass, Bronze, Anodes, Zinc Dust, Die Casting Metals, Lead and Lead Products, Solders, Type Metals
cent more effective space for engineering and development work and manufacturing.

Plating Company Doubles Capacity

American Electro Products, Waterbury, Conn., has completed construction of a wing which more than doubles the production capacity of its former plant.

According to the company, the expansion was made necessary by the increase in business which followed the perfection of the firm's "Cantavone" processes.

Norden Labs Elects Officials

Norden Laboratories' stockholders elected eight directors, including Carl F. Schaefer, Norden's technical director.

The newly-elected directors, at their meeting following the election, reappointed the corporation's officers for the coming year. They are: Paul W. Adams, president; R. M. Adams, Jr. and Dr. L. T. E. Thompson, vice-presidents; M. V. Lane, treasurer and W. W. Sisbower, secretary.

Norden, which designs, develops and produces electronic and mechanical precision instrumentation and controls, is comprised of three divisions and now has 898 employees.

Mossman Completes Move To New Plant

Donald P. Mossman, manufacturers of multiple-circuit lever, push and turn switches, are now occupying a recently completed plant at Brewster, New York.

Management, engineering and sales offices are located at the new plant. In addition, the company has manufacturing facilities at Joliet, Ill.

Chief engineer at the new plant is George C. Hills, Jr. Prior to joining the company Hills served as industrial specialist with the Dept. of Defense and had been assistant to

Complete Reliability from $-\mathbf{7 0} 0^{\circ}$ to $+\mathbf{1 5 0}{ }^{\circ} \mathbf{C}$. NWEWYN||

 with the New, Improved 'Panclimatic' Coating
Abstract

This new protective coating permits the use of these resistors under the great est extremes of temperature. In addition, it affords better moisture protection for greater stability. It resists abrasion and impact with no tackiness, and it is chemically inert to common solvents and plasticizers. Storage stability is better than 1%. Operating at 50% nominal rating, and at an ambient temperature of $100^{\circ} \mathrm{C}$, the stability of these 'Panclimatic' Coated resistors is better than 1%

The same high standards of design, construction, and performance which have established Welwyn as a leading name in the field of precision resistors, will also identify the se newly developed products

For complete data and specifications write to Dept. GE-7

ROCKBAR CORPORATION
215 East 37th Street, New York 16, N. Y.
Menufactured in England and Canada

NYLon flat-bralded lacing tapes

WAX FINISH
 GUDELACE*

Easy on Hands Easy to fie

Both tapes save time and money and cut down rejects. Neither will bite through insulation. Gudelace ties easier, tighter and cuts down
knot slippage. Gude-Nylace is the perfect product where the use of wax is not indicated.
*Patent Applied For

WRITE FOR COMPLETE INFORMATION AND A FREE TRIAL SUPPLY TODAY!

GUDEBROD BROS. SILK CO., INC.

EXECUTIVE OFFICES
225 W. 34th Street, New York 1, N.Y.
12 S. 12th Street, Philadelphia 7, Pa.

KINESCOPE RECORDING

with
Guaranteed Kesults!
OR YOUR MONEY BACK

NOW, A DUAL-PURPOSE AUR\|CON "SUPER 1200" CAMERA with TeleVision-Transcription "TV-T" Shutter...
...designed for Kinescope Recording...and also shoots regular Live Action 16 mm Sound-On-Film Talking Pictures with no Camera modification! The "Super 1200" Camera with "TV-T" Shutter (Pat. Appl'd. for 1949) can Kinescope Record a 30 minute continuous show using 1200 foot film magazines. Write today for information and prices.

Auricon 50 ft . Kinescope "TV-T" Demonstration Films are available on loan to TV Stations and Film Producers. Please. request on your letterhead.

BERNDT-BACH, INC.
7373 Beverly Blvd., Los Angeles 36, Calif.

[^24]
ROCKET TUBE
 CAVITY OSCILLATOR

The \#192A Rocket Tube Cavity Oscillator is a coaxial line cavity, employing the Sylvania UHF Planar Triode which provides a stable R.F. signal source in both a $C W$ and a pulse model. This cavity enjoys a stability possible only with a triode. The oscillator can be supplied at frequencies from 1000 to 4000 MC with a $400 \mathrm{MC} / \mathrm{S}$ tuning range. The 192A was designed with emphasis on minification. It features a single control for tuning and utilizes fixed feedback. Cavity can be furnished with a regulated supply and frequency calibration curves.

SPECIFICATIONS	Pulse repetition frequency 1000
(for a fypical pulse operation)	Pulse width. 1 u sec. Frequency of operation. $3600 \mathrm{MC} / \mathrm{s}$
	Peak out power. 200 watts
	No selection of tubes required
	Diameter of body.... 1-5/16 inches
	Root counter for calibration
	Output. BNC or type N jack

G. C. Hills, Jr.
the chief engineer of Celanese Corp., plastics division.

Jahns Named To Head Wilcox-Gay Production

Edward Jahns has been appointed vice-president in charge of production at the Recordio plants of Wil-cox-Gay. He was formerly chief development and research engineer for the Majestic Radio \& Television division for several years before becoming chief engineer of the Recordio division in June 1953. Prior to that, he served as chief engineer for several large firms.

Orville Gans has left his position of plant manager to become regional representative for all divisions.

Decker Expands Transducer Research

Decker Aviation is expanding research and development on a new transducer element. Toward this end, Theodore Kaslow, recently an instructor in aircraft instrumentation at MIT, has been named director of research and development.

Research and development will be performed in 8,000 square feet of laboratory space recently acquired adjacent to the company:

UK Firm To Open Canadian Factory

Vicom and Company, a British firm which specializes in radio and radar for aircraft, plans to open a factory in Kingston, Ontario.

Future plans include an overhaul installation base for marine radar and direction-finding equipment on

COMPLETE JEWEL ASSEMBLIES WILL SPEED YOUR PRODUCTION

You'll be time and money ahead if you specify Bird complete jewel assemblies for your product. Rejects are eliminated, jewel breakage is minimized, and Bird jewel assemblies will keep your production running smoothly.

Bird Jewel Assemblies are furnished in the right mounting, rigidly inspected according to your specifications, ready for your assembly operations. Make a test find out how Bird Jewel Assemblies can help your production. Send us a print of your specifications, and we'll provide samples for your own testing.

Our engineering staff is at your service for all small bearing problems.

Over 40 years of serving industry will Quality jewel bearings

Sapphire and glass jewels - Precision glass grinding • Ferrite precision products. Sapphire stylii 1 Spruce Street, Waltham 54, Mass.

Compact-Durable - Precision Built

acific FREE GYROS

Scientific engineering design and simpler construction permits smaller case and smaller overall dimensions (only $2.75^{\prime \prime}$ diameter). Precision potentiometer takeoffs. Extremely simple, reliable, rugged caging system. For guidance or telemetering.

VERTICAL GYROS

Small in size (only $4^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$) with gravity erection system and precision potentiometer takeoffs. D.C. torque motors actuated by mercury switches. Caging optional using same simple, reliable features as in free gyros.

Dacific rate gyros

These small precision rate gyros are ideal for stabilization and control of autopilots, computers, radar antenna systems and fire control systems used under severe environmental conditions. Dry inert gas damping, pressure sealed case and patented low hysteresis spring system.

Write for
 facy further details

1430 Grande Vista Ave., Los Angeles 23, Calif. 25 Stillman Street, San Francisco 7, California 1915 1st Avenue South, Seottle 4, Washington 111 B East Main Street, Arlington, Texas Eastern Representative: Aero Engineering Inc. Mineola, L.I., N.Y. Indianapolis • Baltimore • Ottawa
lake vessels, manufacture and servicing of two-way communication equipment for vehicles, and a motor overhaul base.

Brettell Appointed By Ampex Loud Speaker

George A. Brettell has been named chief loudspeaker engineer for the Ampex Loud Speaker Corp. of North Hollywood, Calif.

Prior to joining the company in 1953, he was in the sound engineering department of 20th Century Fox and during World War II was with the U. S. Navy Radio and Sound Laboratory at San Diego.

New Resistor Firm Formed

W. M. Kohring has formed a new manufacturing company, Wilrite Products, Cleveland, Ohio. It produces a new type of high-precision metallic film resistor for low and high-wattage use to fit requirements of color television and other highly sensitive industrial electronic equipment.

Kohring formerly owned Wilkor Products, which he sold to Aerovox in 1951.

Computer Research Names Engineers

The applications department of Computer Research Corp., manufacturer of digital electronic computers, has recently been expanded. Arnold D. Hestenes, formerly of the Institute for Numerical Analysis of the National Bureau of Standards, at University of California, Los Angeles, heads the department. Everett C. Yowell, also formerly with the Institute for Numerical Analysis, joined the applications department as an applications specialist.

Radio Craftsmen Promotes Engineers

Radio Craftsmen promoted Edward S. Miller to vice-president and John Narrace to chief engineer. Miller has been chief engineer for the past six years in charge of development of high-fidelity prod-
ucts. Narrace, formerly with WellsGardner, has been recently in charge of ty design for the firm.

Trio Acquires Falcon Electronics

Falcon Electronics of Quincy, Ill. and its line of antennas was purchased by Trio Manufacturing Co. of Griggsville, Ill.

Roy Wade, formerly general manager of Falcon, has been appointed general sales manager for Trio.

The entire Falcon operations will be moved to the new Trio plant in Griggsville. All Falcon representatives have been retained and will work with Trio representatives. Trio recently installed a tube mill to process its tubing.

International Testing Adds Electronics Section

International Testing Service of Saginaw, Mich. has added a specialized electronics section devoted to development and research services. Electronics work was previously conducted by the instrumentation department. The electronics section is also being supplemented by a theoretical physics section under the direction of Robert L. Echols, formerly consulting physicist for the Applied Physics Laboratory of Johns Hopkins University, and head theoretical physicist for the Fairchild Aircraft NEPA Atomic Project. Experimental services are currently under the direction of Warren J. Deshotels, formerly chairman of the physics department at Xavier University.

MIT Sets Up Course On Automation

Plans have been announced for a two-week special summer program in the Automatic Control of Machine Tools, to be held from August 23 to September 3 in the servomechanisms laboratory at the Massachusetts Institute of Technology. The program will be under the direction of Professor J. Francis Reintjes, director of the MIT servomechanisms laboratory in the department of electrical engineer-

you could raise your own steak...

But it won't pay unless you're set up for cattle raising.
It's the same way with coils. You can make them, and perhaps you do. But in most cases we at Coto-Coil can make them for you faster, better and at less cost. We have nearly 40 years of coil design and manufacturing experience. We know the best types of materials for each type of coil. We have automatic production equipment, the most modern testing devices.

Find out what this cost-saving combination can do for you.
Coto-Coil Company, 65 Pavilion Avenue, Providence 5, R. I. New York Office: 10 E. 43rd Street, New York 17.

IF YOU NEED IT -

Dage can make it!

LEFT: DAGE Type BNC Connectors are used in this Avien capacitor type two unit fuel goge.

Dage CBSN-552 Snap-on BNC Connector

Dage Radio Frequency Connectors

Your special RF Connector requirements receive special attention at DAGE . . . masters of custom design and manufacture.

DAGE makes all standard connectors, including new sub-miniatures, to precise military and commercial specifications.

DAGE invites your request for details,

Write DAGE todayl
quotations, recommendations, and your order for standard or special RF Connectors.

$$
\begin{aligned}
& \text { DAGE MAKES RF CONNECTORS FOR- } \\
& \text { Federol Telephone \& Radio Corp. } \\
& \text { The Magnovox Company } \\
& \text { Capehart-Farnsworth Company } \\
& \text { Radio Receptor Company, Inc. } \\
& \text { Bendix Aviation Corp. } \\
& \text { Motorola Inc. } \\
& \text { Federal Telecommunication Laboratories } \\
& \text { Boeing Airlane Company } \\
& \text { Lavoie Laboratories, Inc. } \\
& \text { Thompson Products. Inc. } \\
& \text { Western Electric Company } \\
& \text { Stamford Electronics Company } \\
& \text { AND MANY OTHERS }
\end{aligned}
$$

DAGE ELECTRIC COMPANY, INC. - BEECH GROYE, INDIANA

INCREMENTAL INDUCTANCE quickly - simply - accurately

The new Type 1002-A Incremental Inductance Bridge combines outstanding features of compactness, ease of operation, accuracy, and wide range of measurement. A visual balance indicator allows measurements to be made in a few seconds, even in noisy locations. Maximum sensitivity at the balance point greatly increases the accuracy of balance. Only a single balance control is used, with cathode ray tube indication.
Inductance can be measured from one to 200 henries. Direct current through the reactor under test is accurately controllable from one to 500 ma , depending on the resistance of the coil windings. The effect of a change of dc on the inductance value is immediately measurable, by simple re-balancing. The inductance is measured at a constant frequency of 120 cps .

For design and test work on iron-core inductors, filter chokes, transformers, and plate reactors, this compact and self-contained instrument is unsurpassed.

Write today for technical details and price information.

WATERS MANUFAGTURING, inc.
Waltham 54, Massachusetts

MINIATURE Wound POTENTIOMETERS that don't NEED incoming check

 Problem: To find a potentiometer that -- Dissipates 3 watts continuously at 80° C,through 50,000 ohms total resistance.
- Occupies no more space than absolutely necessary.
- Weighs as little as possible.
- Maintains accurate resistance settings, over a wide range of temperatures.
- Will not require YOU to do produc-tion-control checking for the manufacturer.

Solution: Waters Series RT- $1 / 8$ and RTS- $1 / 8$ -

- Precision wire-wound construction.
- Three watts continuous, to 80 degrees C.
- Resistances from 10 ohms to 50,000 ohms.
- Diameter $7 / 8^{\prime \prime}$, depth $3 / 8^{\prime \prime}$.
- Weight about $1 / 2$ ounce per section - multiple ganging easily provided.
- Temperature coefficient of resistance 0.00002 parts per degree C.
- Individually checked through a production quality control system that guarantees you full performance from EVERY unit in your order.

WATERS MANUFACTURING, inc.

Waltham 57, Massachusetts
aptication encinetring officts in muncirat cines

Write today for technical details and price information.

ing, who will be assisted by other members of the laboratory staff.
Morning sessions of the two-week program will be devoted to studies of systems and components, including the following topics: principles of information processing as applied to the use of machine tools; numerical control systems and their machine tool applications; equipment design for numerical control systems, including data input and storage devices, computational equipment and servomechanisms for machine tool control; design considerations for system reliability; management, operation and maintenance of numerically controlled machine tools.

In addition, there will be less formal afternoon sessions devoted to programming techniques, using the numerically controlled milling machine developed in the Servomechanisms Laboratory under U. S. Air Force sponsorship. Topics in these sessions will include the mathematics of programming, practical procedures and machine aids.

Overlakes Appoints Kindquist Vice-President
Eric B. T. Kindquist, former wire mill superintendent and assistant works manager for the Eastwood Nealley Corp., has been appointed vice-president and general manager for the Garfield Wire Division of the Overlakes Corp.

He began his metallurgical career in the research laboratory of the International Nickel Co. at Bayonne, N. J., later becoming research engineer for RCA at Harri-

RELAYS

POWER AND SENSITIVE TYPES

COILS • SOLENOIDS

Send us your prints and specifications for prompt quotations. Literature available on request.

THE FIVE STAR COMPANY
WEST MAIN STREET PLANTSVILLE, CONN.

363 PUTNAM AVE., CAMBRIDGE, MASS.

All Aerohm potentiometers are individually checked through a quality-control system that guarantees you full performance from every unit in your order.
 check list enclosed types of transformers used for standard electronic applications, Acme Electric has complete manufacturing and processing facilities for building special units to meet exacting requirements. It's good business to depend upon Acme Electric as your source of supply for specials as well as standard transformers.

ACME ELECTRIC CORPORATION

315 WATERST •CUBA N Y West Coast Engineering Laboratories: 50 Northline Road, Toronto, Ontorio

Acme © in Flectric

introducing the miniature EPSYLON MULTITRACK TAPE RECORDING SYSTEM

for special instrumentation

niUltitrack magnetic heads
for 2,3 , or 4 tracks on $1 / 4 \mathrm{in}$. tape, 8 tracks on $1 / 2 \mathrm{in}$. tape, and 16 tracks on

1 in . tape. Designed with a separate unit head for each track. Meticulously precision engineered. High performance from audio through ultrasonic range.

Special head to grid transtormers.
Unit-type, section-built record/ playback miniature amplifiers with plug-in correctors for all tapes at all speeds. Accurate tape transport mechanisms
for all tape sizes with tape speeds from $1 \mathrm{in} . / \mathrm{sec}$. to 60 in . $/ \mathrm{sec}$.
further particulars from

EPSYLONRESEARCH

AND DEVELOPMENT CO.LTD.

The Barons - St. Margarets Middlesex - England

Telephone
Popesgrove 445I-5
Cables:
Erd. Twickenham, Middlesex
son, N. J. For several years he was associated with the Battelle Memorial Institute at Columbus, Ohio, as a research engineer specializing in the physical metallurgy of nonferrous metals.

Thomas \& Betts Promotes Engineers

Martin D. Bergan has been appointed engineering technical director of the Thomas \& Betts Co. He was formerly director of research and will guide, review and approve proposals for new product designs

Martin D. Bergan
prior to their submission to the company's development executive committee.

Bergan will explore the electrical field for new product ideas and will serve as technical consultant to all company departments.
L. M. Curtiss, formerly executive, engineer was named assistant chief engineer in charge of development. Curtiss will supervise product investigation, research and development. As head of the company's laboratory he will oversee the planning of test programs, reporting to C. A. Badeau, chief engineer.

Brown Joins Statham Labs

S. Leroy Brown, developer of one of the first mechanical brains, has joined Statham Laboratories, Los Angeles scientific instrument manu-
facturer, as director of research. His former post was at the University of Texas, where he was chairman of the physics department. Prior to that, he taught physics at the University of California, Purdue University and Lehigh University. His mechanical brain, developed in 1938, was called the multiharmonograph. Brown has been with the University of Texas for 42 years.

Columbia Establishes
 Plastics Division

Cryton Precision Products, a new division for manufacturing a general line of precision molded plastic products, will be formed by Columbia Records.

James Hunter will be vice-president and general manager of the new division. He has directed Co-

James E. Hunter
lumbia's recent new developments in the record manufacturing industry.

Columbia intends through its new division to divert some of its facilities to products other than discs. The company recently completed a million-dollar plant expansion program which involves installation of injection molding equipment.

Columbia is equipped to manufacture the original precision molds by electrodeposition, as well as the finished plastic product.

Precision Potentiometer Company Formed

Precision Potentiometers Corp. of Los Angeles, Calif., has been

JELLIFF ALLOY 800 REsISTANCE WIRE
forminiaturized precision-instrument components

the ideal resistance wire for

fised and variable resistors of high ohmage - resistance boves and bridges - voltumeter and waltmeter multipliers - and other miniature wire-wound units.

Where space is at a premium and performance is a "must" - these outstanding qualities of Jelliff Alloy 800 will assure that your products conform to the tightest specs.

Hiyh resistivity, 800 ohms/cmf - Low Temperature Coefficient, ± 20 ppm per ${ }^{\circ} \mathrm{C}-$ Non-Magnctic-Hiphly Stable Electrically imd Mechanically - Diameters from 0.0009" to $0.0056^{\prime \prime}$ - Bare, cnameled or oxidized, or insulated with silk, Nylon or cotton - Solders and Winds easily.

For Complete Data Address
Department 17

VECO THERMISTORS, as components, ore supplying
the solutions to many design and circuitry problems.
VECO THERMISTORS have an extremely high negative temperature coefficient of electrical resistance. Their small size and extreme sensitivity to thermal changes offer engineers a circuit element which can be utilized in new designs, and in improving old equipment.
Some Present Uses: Time delay - Gas analysis - Volume limiting - Surge protection - Vacuam manometry - Flow measurement - Temperature control - Temperature measurement - Radar power measurement - Temperature compensation - Oscillator stabilization - and many others,

VECO THERMISTOR DATA
BOOK available

Manufacturers of:
 ELECTRONIC G THERMAL
 CONTROL INSTRUMENTS
 TEMPERATURE SENSINC DEVICES
 COMBUSTION ANALYZERS

$\$ 5.00$ cash or money order will bring you the VECO THERMISTOR-VARISTOR package, No. 168-7 items and application circuitry-over a $\$ 15.00$ value!

Designed for

Crystal Holder Sockets 33002, 33102 , and 33202
Plus new 33302 for CR7
In addition to the original 33002, 33102 and 33202 exclusive Millen "Designed for Application" steatite crystal holder sockets, there is now olso available the new 33302 for the new CR7 holder. Essential data:

Type		Pin Dia.
$33002 \ldots \ldots \ldots$	Pin Spacing	
$33102 \ldots \ldots \ldots$.	.095	.550
$33202 \ldots \ldots \ldots .$.	.125	.500
$33302 \ldots \ldots \ldots$.	.050	.500

JAMES MILLEN MFG. CO., INC.

MAIN OfFICE AND factory MALDEN
MASSACHUSETTS
organized as a majority-owned subsidiary of Master Mobile Mounts. It will manufacture high-precision potentiometer's and precision windings, according to Samuel E. Goldstein, president of the two companies.
Other officers of the new firm are Walter H. Donaldson, potentiometer design engineer, and Karl A. Kopetzky.

Onondaga Appoints Electronics Director

Onondaga Pottery Co. appointed Conan A. Priest as director of the electronics division. He formerly was manager of the transmitter division of GE.

Struthers-Dunn Moves To New Plant

Struthers-Dunn, relay manufacturer, moved from Philadelphia to Pitman, N. J. New office and factory buildings comprising more than 54,000 square feet of space and specifically designed for relay engineering and production have been completed in Pitman.

WCEMA Begins
 Scholarship Drive

Members of WCEMA (West Coast Electronic Manufacturer's Association have begun their 1954 scholarship fund drive. As in past years, all money raised in the drive will go toward helping outstanding prospective electronic engineers com-

Complete Testing Equipment for

OMN

 LOCALIZER RECEIVERSA.R.C. Type H-14 Signal Generator

For a quick and accurate check by pilot before take-off, or for maintenance on the bench, this is the favored and dependable instrument. Checks up to 24 omni courses, omni course sensitivity, to-from and flagalarm operation, and left-centerright on localizer. For ramp check, RF output 1 volt into 52 ohm line; for bench checks, $0-10,000$ microvolts.
The H-16 Standard Course Checker is a companion instrument to the $\mathrm{H}-14$. It makes possible a precise check on the course-accuracy of the $\mathrm{H}-14$ or of any other omni signal generator. Just as a frcquency meter is necessary in connection with a variable frequency signal generator, the H-16 Standard Course Checker is required in connection with a VOR signal generator for a precise measurement of phase accuracy.
These instruments sold only direct from factory.

Write for detailed literature

WIRE WOUND RESISTORS

FIXED TYPE

5 to 250 Watts
1 to 100,000 Ohms
adJustable type

5 to 250 Watts 1 to 100,000 Ohms Send for New Catalog
Sce us at the Conrad Hilton Hotel, May 17-20

ATLAS RESISTOR CO. DIV.

PHILA. ELECTRONICS INC.
24 East Coulter St., Phila. 44, Pa. VI-4-5174

OTHER PRODUCIS

Simplex WIRE STRIPPERS \& CUTTERS

- TOOLS AND DIES
- METAL STAMPINGS
- WIRE SPECIALTIES
- REPLACEMENT TIPS for Electric Soldering Irons
Send samples or specifications for quotations. Descriptive bulletin on request.
WENCO MANUFACTURING CO.
1133 W. Mubbard St., Chicage 22, III., U.S.A.

Specially Fabricated Product

Sheet Metal Fabrication

Our large facilities, expert workmanship, 25 years of experience and manufacturing "know-how" assure quality products. Leading firms have iound stantial savings in time and cost.
Bud makes over 1500 different electronic components and sheet metal products. This enables Bud to meet your needs economically for a single part or for a production run specially designed and fabricated. Often a slight change in one of our standard models will give you exactly what you want without requiring special tools and dies. Write us for the name of Your nearest Bud distributor. He carries the complete Bud line of products, any one of which may meet your requirements.
You can save time and money by consulting with Bud on all your requirements. Don't invest in expensive machinery ... don't tie up valuable floor space. Send us your blueprints for estimates . . . there's no obligation. Write for new catalog 54.

Simplifying HF Power Measurement Madel 67 TERMALINE DIRECT-READING R-F WATTMETER

30 mc to 500 mc

Triple Range 0.25 watts (Adapfor for PL-259 supplied) Wattmeter than the well-known AN-ME 11/U (our Model 611) R-F Watemeter Specifically designed forfixed station transmitters to 500 watts output, it may be used nicely on low range for mobile gear. Provided with an aluminum cased, shock. mounted meter, Model 67 is as simple to use as a $D C$ voltmeter. Now in general use throughour the industry. TERMALINE Wattmeters may be depended upon for fast accurate and repeatable power readings
(10 1000 mc if specified)

50 ohms

 $0-100$ " $0-500$Type N Input Connector

- Model 67 is a larger rype

NON-RADIATING
... Accuracy - 5\%
RUGGED CONSTRUCTION
...Size-17"×9" $\times 6^{\prime \prime}$
$\mathbf{W g h t}_{\text {gh }}-30$ pounds
ELECTRONIC CORP
 Itidalune Coxial Ine Instuments

ENTERPRISES
Hollywood - San Francisco Albuquerque
EARL LIPSCOMB ASSOCIATES Dallas - Houston

plete their college educations. Last year, WCEMA distributed $\$ 6,400$ to students of nine west coast schools, as a result of contributions from 56 electronic firms.

The scholarship program was first set up in 1952, under the chairmanship of E. P. Gertsch of Gertsch Products, to help solve the problem of attracting more qualified men into the electronics field. Only about 15 out of every 100 graduates of western engineering schools are headed for electronics, according to WCEMA.

Precision To Occupy New Plant By Mid-Summer
Precision Apparatus Co., manufacturers of test equipment, plans to move from Elmhurst to a new plant in Glendale, Long Island, by mid-summer of 1954.
It will provide expanded facilities for the concern and its whollyowned meter manufacturing subsidiary.

Tenney Engineering
Moves Into New Plant
Tenny Engineering is carrying on full-scale operations in its new en- Union, N. J.
The current expansion marks the third in recent years.

The new Union plant is a onestory, $30,000 \mathrm{sq} \mathrm{ft}$ building. It will employ some 300 people and is situated on a 7 -acre site to allow for future expansion.

Barkley Joins General Mills Research

John E. Barkley, formerly head of physical-chemistry research at Armour Research Foundation, where he directed a number of research projects, has been named manager of physics and chemistry research for the mechanical division of General Mills. He will have responsibility for applied research in physical and chemical analysis and measurements applicable to instrumentation for automatic control of processes in petroleum, chemical, food and other fields.

A specialist in the study of infrared rays, Dr. Barkley has played an important role in the interchange of knowledge and ideas between British and American scientists. Both groups have been experimenting with the possible military and civilian uses of infrared photocells and photoconductors. Recently, he has been concerned with the possibilities of extending the spectral range of infrared photocells.

Edison Makes Patent Agreement

Thomas A. Edison Company and International Electronics Co. have

A manufacturer wanted to devise a means of controlling a telescoping car radio antenna which would allow the antenna to be installed in any automobile, regardless of make or model. The control set-up not only had to be adaptable to different conditions, but it also had to be economical. That's why this manufacturer chose

THE LOW-COST SOLUTION an s.s.white remote control flexible shaft

Using a flesible shaft to connect the adjusting reel on the antenna to the control knob allowed the knob to be mounted wherever desired. Since the shaft was made especially for control service it provided smooth, casy

Flexible Shaft Facts For You

Get your copy of the 256 -page S.S.Wbite Flexible Shaft Handbook. Address your request direat to us on your business letterbead.

THE COUNWLINDUSTRIAL DIVISION DEMTA MFC.co. Dept. E, 1 C East 40th St., NEW YORK 16, N. Y.
Western District Office - Times Building, Long Beach, California

If there's one thing for which we want to be famous (and maybe we are), it's precision.

A lot of folks can lick us on making, say, kitchen appliances, because we specialize on jobs calling for quality and accuracy.

This kind of quality makes money for you in the long run by keeping: (1) your production lines running smoothly; (2) your maintenance and repair inventory and costs down, and (3) your own sales up. We call it "profitable precision."

CONRAD \& MOSER

Workers in Aluminum, Brass, Steel \& Plastics designing
engineering - manufacturing MECHANISMS • MACHINES
parts - tools - dies • molds stampings - castings machining - sheet metal enclosures \& Chassis $1 / 8$ to $1 / 1 /$ NAVY SPEC ALUMINUM SPOT WELDING AND heliarc welding.

2 Borden Ave. Long Island City 1, N.Y.

PLANTS AND PEOPLE (continued) made an agreement under which Edison acquires the license to operate under all the patent rights of International and has the power to grant licenses under this right to others.

Commenting on the agreement, Henry G. Riter, III, president of Edison, said, "In some magnetic fields we expect to follow a policy of granting licenses to others under these patent rights. In certain other fields, especially that of office dictation in which Edison is engaged in active research of its own, we plan to maintain our license as an exclusive one."

Avien Names Engineer; Forms New Firm

Avien of Woodside, N. Y., manufacturers of aircraft fuel management systems, appointed Everett M. Patterson as director of engineering.

He was associated with Bell Labs for twelve years, during which time he was active in the development of anti-aircraft fire control systems and sonar. As director of research and engineering of U.S. Time Corp., he was responsible for work in the navigational and engine instrumentation fields.

Patterson was more recently president of Patterson, Moos \& Co., engaged in chemical, electronic and nuclear research for the military.

The company also established Avien Service Corp. in Los Angeles. The new corp., headed by L. A. Weiss, president of Avien, will handle the firm's sales and engineering services in California areas.

The new firm will be under the direction of Anthony G. Brown, vice-president.

How to whip your relay problems!

Just call ADVANCE...
we're ready and
willing to make the relays you need.

CONTACTS, for example
Say the word and we'll up the sizes... switch from fine silver to tungsten, palladium, silvercadmium oxide, gold contacts, or ... you name it!

For

ELECTRONIC USES
We build a vast variety of sensitive, reliable relays...create superior new designs quickly. You'll find our quality control is now the tightest in the industry.

Write-and let us solve your relay problems

ADVANCE ELECTRIC and relay co.

2435-F NORTH NAOMI STREET BURBANK, CALIFORNIA

AIRCRAFT SERVO COMPONENT

Condensed Data
Range: 0-14.7 psi, absolute Resistance: 7500 ohms Maximum voltage: 75 volts Resolution: $1 / 3 \%$ Accuracy: 2% of full scale

Typical Applications
Servos-Vary servo loop gain as a function of Computers-Voltage divider, P total/ \mathbf{P} statle. Fire Control-Air density measurements. Recording-Pressure transducer.
Write for
Bulletin No.
further details

Price:
hatt delivery

The Type 71.5 Baroresistor is a pressure actuated potentiameter desig
craft. It features:
HERMETICALLY SEALED MECHANISM
The potentiometer winding and operating parts are heremetically sealed in a vacuumi. Pressure is applied inside the bellows only. Therefore, the Tyne 71.5 Baror
moisture.

RUGGEDIZED CONSTRUCTION
A special high force mechanism was developed for the Trans-Sonics Baroresistor to avoid the neeessity for employing micro force potentionieter elements.
Shock of 30 g in any direction will not cause elecrical discontinuity.

MACHINE CALIBRATION

Each instrument is calibrated by machine and its performanee is automatically recorded as a graph of resistance inspected. All electrical characteristics are automatically checked in an eleven stage in spection cycle.
TECHNICAL REPRESENTATIVES
Los Angeles, Calif. Dayton, 0 .
Telephone: $3.4183 \quad$ Telephone.
Cumbertand $3.4183 \quad$ Hentock 1254
San Carlos, Calif.
Teiephone:
Boston, Mass,
Boston, Mass
Capitol 7.9797
St. Louis, Ma.
Telephone:
Sweethriar 2175
Detroit, Mich, Telophone:
Broadway 3-2900 Home Office: Telephone Lexington 9-2508

Trans-Sonics, inc.

5 Forest Street Bedford, Mass.

New! FLAP ATTENUATOR

X—BAND
FEATURES EXCLUSIVE LOCKING MECHANISM Max. Attenuation30db Max. VSWR at $8200 \mathrm{mc} . .$. 1.25 Max. VSWR above $9100 \mathrm{mc}1 .15$ Min. Insertion Loss.................negligible Price . . . $\$ 40.00$

OTHER X-BAND COMPONENTS

- Terminations
- Fixed Attenuators
$\$ 22.00$
- Tees, Shunt and Series.
- Slide Screw Tuners...

Make your Ferrites

Purified synthetic products of reagent quality. Controlled particle size and shape contribute to effective control of packing and shrinkage. Our know-how can help you accomplish best results. -
Manufactured by highly modern processes under rigid laboratory control. This ad elipped to your lefterhead will bring a working sample.

COLUMBIAN CARBON COMPANY

MAPICO COLOR DIVISION MANUFACTURER
BINNY \& SMITH INC., Distributor 380 MADISON AVENUE, NEW YOŔK 17, N. Y.

HIGH PURITY
 MAPICO
 RED FERRIC OXIDES for top performance

A Division of EDDCO
57 State St., Dept. M, Newark, N. J.
for changing your storage battery current to A.C. Hausehald electricity Anqwhere
 standard 110 volt A. C. . .

- tape recorders - dictating machines
- wire recorders - electric razors

for

- executives - outdoor men
- salesmen - reporters
- public officials - field inspectors
- policemen - doctors
- firemen - Lawyers, etc.

See yaur jabler an urite factary $\sqrt{ }$ new monels $\sqrt{ }$ hew designs $\sqrt{ }$ hew literature " A " Battery Eliminators, DC-AC Inverters, Auto Radio Vibrators

American Television \& Radio Co.
Zuality Products Simee 1931
SAINT PAUL 1, MINNESOTA, U.S. A.

eliminate
 HEADACHES:

...in purchasing

VINYL SLEEVING

Problems in buying vinyl sleeving are far fewer when you do business with Resin Industries for these reasons: Strict adherence to exacting specifications. Meticulous compounding by skilled chemists. Precision workmanship. Absolute uniformity. Rigid quality control. Prompt and understanding service. That's why Resinite is the largest supplier of vinyl sleeving to the aircraft industry. Write for samples and prices.

[^25]
NEW BOOKS

Advances in Electronics Volume 5

Edited by L. Marton. Academic Press, Inc., New York, N. Y., 1953, 398 pages, $\$ 9.50$.
The new volume of "Advances in Electronics" is among the best to date in achieving the original goal, that of providing monographs serving both as reviews of progress and introductions to special topics in the field of electronics. Contents are:

Performance of Detectors for Visible and Infrared Radiation, by R. Clark Jones, Research Laboratory, Polaroid Corporation, Cambridge, Mass.
Beta-Ray Spectrometers, by R. W. Hayward, National Bureau of Standards, Washington, D. C.
Solid-State Luminescence, by F. E. Williams, General Electric Research Laboratory, Schenectady, N. Y.

Thorium Oxide and Electronics, by W. E. Danforth, The Bartol Research Foundation of the Franklin Institute, Swarthmore, Pa.

A Review of Modern Vacuum Pumps in Electronics Manufacturing, by H. C. Weingartner and S. W. Kennedy, National Research Corporation, Cambridge, Mass.

On the Steady-State Theory of the Magnetron, by R. Q. Twiss, Services Electronics Research Laboratory, Baldock, Herts, England.

A Review of Recent Work in Color Television, by C. J. Hirsch, Research Division, Hazeltine Corporation, Little Neck, N. Y.

Junction Transistor Applications, by J. S. Schaffner, General Electric Company Electronics Laboratory, Syracuse, N. Y.
Some of these papers are of interest mostly to research workers, especially the first two, while the magnetron paper is somewhat mathematical for most persons interested in making, testing, or using magnetrons.

Although solid-state luminescence and electron emission from thorium oxide are still somewhat specialized topics, the articles by Williams and Danforth are both timely and useful.

The rapidly expanding activity

9503 W. JEFFERSON BLVO., CULVER CITY, CALIF. TELEPHONE: TExas 0.5581 - VErmont 8.6402

Want more information? Use post card on last page.
May, 1954 - ELECTRONICS
in color television and growth of interest in such fields as electroluminescence, have increased greatly the number of people whose work will be materially aided by a better understanding of solid-state luminescence.

While the sintered thoria cathode has not yet succeded in becoming of major commercial importance in the electronics industry, there are many who believe this will eventually be a reality. The work done during and since the war has served to emphasize the practical difficutties encountered while, at the same time, holding the promise for successful application. Mr. Danforth's paper will, therefore, be of special interest to many readers whose activities are in electron-tube design or research.

The Weingartner and Kennedy article gives a description of pump operation. It does not go deeply into the effects of cold traps on pumping speed or ultimate vacuum.

Transistors-Television

Of particular interest to readers of Electronics are the last two monographs, by Hirsch and Schaffner, respectively. They are both excellent and deserve special mention.

Mr. Hirsch's contribution, while requiring some knowledge of television and optical principles for complete understanding, provides a fairly comprehensive description of the color-television system evolved and standardized by the National Television System Committee of which he was an active member until the work was completed and the Committee disbanded early this year. Readers will recall his article in Electronics on the NTSC system about two years ago. The present monograph is 75 pages in length and presents the facts as they are understood in the first year of regularly scheduled color telecasting; it is very well done and worthy of being placed on the re-quired-reading list for engineers entering this exciting field.

In "Junction Transistor Applications" Mr. Schaffner develops this topic somewhat farther than it was carried in "Principles of Transistor Circuits" of which he was coauthor ${ }^{1}$.* The general approach is
 Under MILITARY SPECIFICATION MIL-M-10304

- Will withstand Hi-Impact Shock Tests, extensive vibration and tumbling requirements, extreme thermal shock, humidity and temperature tests.
- Glass to metal type seal with molded vulcanized rubber terminal connections capable of carrying 30 amps for selfcontained units.
- Magnetically shielded.
- Black satin anodized aluminum bezel.
- D'Arsonval permanent magnet type movement-for all D. C. Ranges.
- Available in $2-1 / 2^{\prime \prime}$ and $3 \cdot 1 / 2^{\prime \prime}$ round case types.
- Guaranteed one year against defective workmanship and materials.

BURLINGTON INSTRUMENTS ALSO AVAILABLE IN HERMETICALLY
SEALED OR BAKELITE CASES IN $1-1 / 2^{\prime \prime}$ THROUGH $4-1 / 2^{\prime \prime}$ SIZES.

BURLINGTON INSTRUMENT COMPANY
127 THIRDSTREET, BURLINGTON, IOWA

Our specially designed machines now wind Toroidal Coils quicker and with more accuracy than other standard methods. Universal Toroidal Coils in any size wire to your specifications-are economical in materials and possess the smallest external leakage field of all other shapes.

Universal Toroids wound to Mil-T-27 specs.
Wire sizes \#42 $(.00249$ mils) to \# $10(.1019$ mils $)$. Excellent Delivery in small or large quantity.

Engineering Service Available.
"ACCURACY IS A UNIVERSAL WORD"

the same, but newer material, such as the papers in the Transistor Issue of the Proceedings of the Institute of Radio Engineer's (November 1952), has been digested and incorporated into a unified presentation. The author stated in his concluding remarks that he hopes "that this article will not become obsolete too fast in view of this rapid development"; as of the moment, it is by all odds the clearest and most useful review of this topic available.

As usual, all reviews are appended with carefully selected bibliographies and are excellent starting points for more intensive study.George D. O'Neill, Sylvania Electric Products Inc., Bayside, New York
(1) "Principles of Transistor Circuits," edited by Richard F. Shea; John Wiley \& Sons, Inc., New York, N. Y.

Practical Television Engineering

By Scott Helt. Rinehart Books, Inc., second edition, 744 pages, 1953, $\$ 7.50$.
THIS is a book on the principles of television engineering, and its scope embraces the entire system. Its greatest usefulness would appear to be as a textbook for a student entering the field, but the practicing engineer will find it of considerable value as a reference book also. For the student, review questions are included at the end of each chapter. It deals primarly with equipment design and treats this subject in detail.

Much information is given on the techniques of broadcasting, and to this extent its scope overlaps that of "Television Broadcasting" by Howard Chinn. It seems to this reviewer, however, that the two books are largely complementary, and most engineers will find use for both as references. Mr. Helt's book contains much of the fundamental knowledge considered prerequisite to a proper understanding of the book by Mr. Chinn. With regard' to those areas of broadcasting technique in which the two books overlap, it is believed that Mr. Chinn has given a more comprehensive treatment of the subject.

The present text is a second edition of a book originally published in 1950. It contains 36 pages more

NEW HORIZONS

Today's horizons in electronic engineering are limited only by the vision of the individual himself. To those qualified men who desire to stand on the constantly. changing frontiers of electronic development, we offer a chance to pioneer and grow with a soundly-established, yet young and progressive company.

- Electronics

 Field EngineersLocal \& Field Assignments Available
At least 5 years' experience in any one of these fields: Servo Mechanisms; Special Weapons; Microwaves; Antennas; Circuit Design: Flight Simulators; Radio Propagation: Electronic Computers and Communi cations.
Qualified to instruct in the operation and Qupervise installation, maintenance and repair of Radar, Sonar, Flight Simulators and allied electronic equipment in the field.
Salary and advancement commensurate with ability; liberal vacation, sick leave holidays, group life, sickness and accident insurance plans, and a worthwhile pension system.

STAVID ENGINEERING, ING.

Personnel Office, 312 Park Avenue Plainfield, N. J.-PLainfield 6-4806

Describes over 2000 Books
Here is a guide to practical, expert information on many business and terfinical subjiects. This eatalogue contains clear, concise descriptions of more than 2000 books written by your copy now. In it you will find an up-to-date listing of books that give you facts, experience, and data you need in solving your particular problems.

McGraw-Hill boaks bring yau the experience of experts in your field

> Spocity Universal WAVEGUIDE and MICROWAVE COMPONENTS

ATTENUATORS-TERMINATIONS SIGNAL SOURCE
IMPEDANCE MEASUREMENT FREQUENCY MEASUREMENT TRANSMISSION LINE COMPONENTS DETECTION \& POWER MEASUREMENT

MICROWAVE CORPORATION
380 Hillside Ave.
Hillside, N.J.
formerly Universal Manufacturing Company, Inc.

Dropping, knocking against metal surfaces and faulty line-up are major causes of damaged threads. Allen's new unthreaded leader point substantially reduces the causes of screw thread injury, or damage to threaded holes. Grip Heads, precision fit sockets that adhere to the key, plus the new leader points, make Allens the world's easiest starting cap screws, particularly in inaccessible spots. Sold only thru leading Industrial Distributors.

MANUFACTURING COMPANY
Hartford 2, Connecticut, U.S.A.

Want more information? Use post card on last page.
than the original edition, due mainly to the addition of a chapter on uhf and color television. The treatment given to uhf includes much sound material on fundamentals which will continue to be useful. On the other hand, the few paragraphs on color television which have been added to this edition are of little value today. They merely constitute an acknowledgment by the author that important activity was taking place in this field at the time he revised the text.

Some new material also has been added on television transmitters and kinescopes of more recent design. It is regrettable that the opportunity was not taken to update the book in other important areas. To be sure, fundamentals, if well presented, do not go out of date and there is a great deal of sound material in this category which is of enduring value. Nevertheless, this art is progressing at a swift pace, and it is a little disconcerting to find references in this most recent edition to image orthicon tubes of the type 2P23, and other types which have long since been discontinued.

This reviewer would quarrel with the confusing presentation of certain subjects, such as the following statement on page 433 concerning transmission of the d-c component:
"The result is that it has been found necessary to amplify the video and d-c brightness components of the signal separately. After being separately amplified, the d-c component is introduced directly into the radio-frequency modulated amplifier grid bias without having passed the video amplifier coupling capacitors of the video amplifier system. It is seen therefore, that the carrier is not only sync components of simpla the video and mitted picture carrier leval, but the transvary slowly as changes level is made to brightness as changes in average picture arightness take place. It follows that a average d-c brightness component before picture carrier modulation takes place."

It seems that a textbook of this type is hardly the place to crusade against the widespread use of incandescent light sources in television studio lighting. The space devoted to this might better have been given to a compiete listing of the FCC Technical Standards, for example, or to a brief treatment of factors affecting propagation of vhf and uhf waves and the FCC criteria for allocation of tv stations. Many operating engineers are likely to take issue with the recommendation in the section under

MERCURY BATTERIES and SILVERLYTIC CAPACITORS

Designed Specifically for TRANSISTOR APPLICATIONS
Available Now in PRODUCTION QUANTITIES

 Available as single cells or multi-cell packs in a wide range of voltages, they deliver the constant energy output needed for best results.

Also perfectly suited to transistor applications, these tiny, Mallorydeveloped Silverlytic Capacitors have been expressly designed for the requirements of low voltage circuits and miniaturization.

> For complete data, write to P. R. Mallory \& Co. Inc. Indianapolis 6, Indiana
maintenance procedures which calls for checking every tube used in video amplifiers at least once a week.

A thorough and useful exposition of the cathode-ray oscilloscope is given, but there is relatively little information on other test equipment. Most experienced television broadcasters will note the lack of any treatment on the subject of set-up in the video signal.

Despite the shortcomings noted here, and a few others, the book is a good one on the whole, particularly the sections which treat of basic fundamentals of engineering which do not go out of date.Robert E. Shelby, National Broadcasting Co.

Fields and Waves in Modern Radio

By Simon Ramo and John R. Whinnery, 2nd Edition, John Wiley and Sons, 1953, 576 pages, \$8.75.
THIS BOOK is a somewhat revised version of a text which first appeared ten years ago. Although a number of other texts on the same general subject have appeared in the interim, the book under review remains one of the better treatments of electromagnetic theory as applied to high-frequency problems. The book is intermediate in difficulty between the introductory text by Skilling and the more advanced texts by Stratton and by Schelkunoff.

The book starts off with some introductory material on wave fundamentals and then goes into the subject of static-field problems. This is followed by a chapter on Maxwell's equations and one on circuit concepts. This material, which makes up the first 40-percent of the book, constitutes an excellent introduction to electromagnetic theory. Such vector analysis as the student needs is worked into the text as the need for it arises in connection with problems of physical interest.

The latter part of the book is concerned with the development of field theory as it pertains to the numerous problems which are of everyday concern to the microwave engineer. The topics which are treated include skin effect, propagation, guided

E) No. 11-1930.111; mechanical dimmer. No. 3.1930-111; polaroid dimmer. All assemblies accommodate midget flanged base lamps like this one (actual size); easily replaced. Available for voltages of 1.3, 2.7, 6, 14, and 28.
Any assembly available complete with lamp.
SAMPLES ON REQUEST - NO CHARGE
Write for Catalogue L-153

IGHT SHIELD ASSEMBLY

60 STEWART AVE. - BROOKLYN 37, N. Y. HYACINTH 7.7600

VSWR and RF POWER MEASURING EQUIPMENT

MM 570 SERIES MM 700 SERIES

Micnollutch

 models are available as components for incorporating directly into transmitters or as complete independent test equipments for measuring RF power and VSWR from 500 KCS . to over 4,000 MCS., and power levels from 10 milliwatts to 120 kilowatts. These instruments are being used as test and monitoring equipment by Government Agencies, transmitter manufacturers, FM \& TV Stations, Laboratories, Mobile Communication Agencies, etc.Write for complete fiterature on: THE MICROMATCH - RF ABSORPTION TYPE WATTMETERS © DUMMY LOAD RESISTORS - STATION GUARDIAN FOR TRANSMITTER PROTECTION • DIRECTIONAL COUPLERS.

Distributed outside of U.S.A. by RCA International Div., N.Y., N.Y., U.S.A.

at the I. R. E. Show, thousands discovered

HOW TO SAVE MONEY BY SAVING TIME WITH PANORAMIC EQUPMENT

- Direct Frequency Reading, 50MC-950MC

10MC scannnig width, continuously reducible to almost OKC

- Variable resolution 9KC-100KC
- Hweep Rates: $1 \mathrm{cps}, 5 \mathrm{cps}, 30 \mathrm{cps}$ and $25-35 \mathrm{cps}$, variable
- High inherent stability Low cost

Panoramic's NEW

Model SG-1 Sweep Generator

for Accurate Inspection of Responses of Sonic and Ultrasonic Systems and Devices

- Direct Frequence and Amplitude Ieading Screen for slave - Fropes

Frequency lange: focjs-20KC. 40heps-200KC, selectable - Frequency scales:

- Amplinude scales: Jin+ar of 2 decade logarithmic, selectable
- Incernal frequencs marliepe
- scan rate leps internal; 60-0.040rs external with Model
 TW-1 Triangular Wave Genelator

Panoramic's NEW

 Model FM-1 FM Monitor A Low Cost Portable Package for Rapid Visual Measurement of Actual Bandwidth of Mobile FM Transmissions- Instantaneous fanoramic presentations of carrier and sidebands of voice transmissions
- IIelus prevent chamnel spillover
- Indicates modulation symunetry

Aecurately measures deviation by constant tones Has band limit markers
If you missed the I.R.E. Show-and the PANORAMIC demonstration of these new and important instruments at work on actual problems-write today for full information.

Inquiries invited on Pamoramic Spectrum Analyzers for Special Problems.
10 South Second Avenue - Mount Vernon, N. Y. MOunt Vernon 4-3970
waves, waveguides and transmission lines, cavities, microwave networks and radiation. Although not all of the topics are treated exhaustively, they are treated in sufficient detail to give the reader a thorough grounding in basic principles and some idea of how the theory may be applied in actual engineering problems.

Some new material of interest has been added to the chapters on waveguides and on radiation. One of the more important additions to the book has been a chapter on microwave networks. The network representation of microwave circuits has found increasing use, and the chapter referred to gives a good introduction to this topic. However, there is no mention of the important work in this field which has recently been done by Deschamps.

One very worth-while change in the second edition has been the use of MKS units throughout the entire book. This is in line with the present universal use of this system in the engineering field. A number of new problems have also been added to the book.

All in all, the second edition represents a distinct improvement over the first edition and, like its predecessor, it should find wide application not only for classroom use but also as a handy reference source for the practicing engineer.Henry Jasik, Consulting Engineer, Mineola, New York

Applied Electronics

By Truman S. Gray, Associate Professor of Engineering Electronics, MIT. John Wiley \& Sons, Inc., New York, N. Y., Second Edition, 1954, 881 pages, $\$ 9.00$.

THIS is a major revision of an important text first published in 1943. Since that time "electronics has come of age" as the author states. And since that time a tremendous expansion has taken place in the concepts on which the whole science of electrical engineering is founded. For new students, these concepts are of vastly greater importance than the machines erected upon them. At MIT, at least, an overhaul of the whole department will result in primary emphasis on these principles and the facts that all the

> Precision HIGH SPEED Rotary MULTICONTACT SWITCHES
> and SAMPLING DEVICES for Military or Industrial Low Current Applications Check this representative list

Uned in:

\square COMPUTING DEVICES

- DATA HANDLING SYST
\qquad FM-FM TELEMETERING SYSTEMS
\square DATA CORRELATORS
CHOPPER DEVICES
\square MULTICHANNEL TEMPERATURE ALARMS
\square PAM TELEMETERING SYSTEMS
\square PWM TELEMETERING SYSTEMS
\square RADAR DISPLAY SYSTEMS
\square SYNCHRONOUS DEMODULATORS
\square TRANSISTOR ANALYZERS
Used for:

AUTOMATIC CALIBRATION
COMMUTATION AND SUB-COMMUTATION \square FUNCTION GENERATION
\square MULTICHANNEL LOW LEVEL
AMPLIFICATION
MULTIPLE AMPLIFIER STABILIZATION
] MULTIPLEXING RECORDER CHANNELS
PARAMETER DISPLAY ON CRO
MULTISIGNAL COMPARISON
STRAIN GAUGE SAMPLING
SYNCHRONIZED MULTICHANNEL
SAMPLING
\square THERMOCOUPLE SAMPLING
Related Specialties:
CODED SHAFT ROTATION
LOW SPEED PRECISION SWITCHES MILTICHANNEL CAPACITATIVE DEVICES - MULTICHANNEL ELECTRONIC SWITCHES MULTICHANNEL MAGNETIC PICKUP DEVICES
$\square \mathrm{PH}$ PHOTO-ETCHED SWITCHESSPECIAL MOLDED SWITCHES
SPECIAL MOLDED CONTACT PLATES SUBMINIATURE PRECISION SWITCHES
\square VERY LARGE NUMBER OF CONTACTS OR POLES
\square VERY HIGH SPEED SWITCHES
Send for convenient spec sheet

GENERAL DEVICES, Inc.

Box 253, Princeton, New Jersey

> Associated with

McLean Engineering Laboratories Princeton, N.J Manufacturers of:
Electronic Cabinet Cooling Fons

MICROWAVE DEVELOPMENTS

Wheeler Laboratories is an engineering organization offering consulting and engineering services in the fields of radio and radar

One test equipment developed by the Laboratories contains on oscillator sweeping over the $12 \% \times$-band at a rate of 12 round trips per second. As pictured above, an alternating pair of traces simultaneously display two characteristics of a network-in this case, the reflection coefficient and the differential phase angle in transmission; these are utilized while adjusting a multiple-tuned filter in a waveguide

At present, Wheeler Laboratories includes a staff of twenty engineers under the personal direction of Harold A. Wheeler, a group of designers, and a model shop. Regulai additions to the staff are continuing in order to keep pace with our expanding program of work.

Inquiries are welcomed regarding specialized problems in microwave design; a brief summary of our work is available on request.
Wheeler Laboratories, Inc.
122 Cutter Mill Road, Great Neck, N. Y.
HUnter 2.7876

Double Barrel Advertising

Advertising men agree - to do a complete advertising job you need the double effect of both Display Advertising and Direct Mail.

Display Advertising keeps your name before the public and builds prestige.
Direct Mail supplements your Display Advertising. It pin-points your message right to the executive you want to reach-the person who buys or influences the purchases.

More and more companies are constantly increasing their use of Direct Mail because it does a job that no other form of advertising will do.

McGraw-Hill has a special Direct Mail Service that permits the use of McGraw-Hill lists for mailings. Our names give complete coverage in all the industries served by McGraw-Hill publications - gives your message the undivided personal attention of the top-notch executives in the industrial firms. They put you in direct touch with the men who make policy decisions.

In view of present day difficulties in maintaining your own mailing lists, our efficient personalized service is particularly important in securing the comprehensive market coverage you need and want.

Ask for more detailed information today. You'll be surprised at the low over-all cost and the tested effectiveness of these hand-picked selections.

McGraw-Hill Publishing Co., Inc.

machines--generators, transformers, tubes, waveguides - obey fundamentally the same laws. We need only remember how new are such matters as feedback, the new information theory, data collection and transmission, or servomechanisms to realize how rapidly this art changes and grows.

The new Applied Electronics is part and parcel of the "new look" at electrical engineering taking place at MIT. The changes in it from the earlier edition are vast and basic. It is now in the hands of Professor Gray who accepts the job of organizing, synthesizing and correlating the material so that it is a unified whole.

While there are 13 chapters, several appendices and a bibliography there are really four parts to the book, first a discussion of the physical phenomena involved in electronic tubes; then an explanation of the way in which the phenomena combine to produce the characteristics and possibilities of the devices; then the applications of tubes to the several branches of electrical engineering, and finally, a considerable amount of material on those new prodigies, the transistor and other semiconductor devices.

A further description of the contents would only reveal what one knows intuitively-this is a complete course in electronics and a very good one. While it is aimed for use by students, there is no doubt that it will be very valuable to anyone who is long out of school.-K. H.

Dislocations In Crystals

By W. T. Read, Jr. McGraw-Hill Book Company, Inc., New York, 1953 , 228 pages, \$5.00.
BEFORE 1946, the field of dislocations in crystals was remote to the interests of the electrical engineer. However, with the discovery of the point-contact transistor, germanium and other semiconducting solids have attained a key position in the future of the electronics industry. Recent research on germanium has shown the tremendous importance of dislocations as the sites for impurities, as scattering

Want a FRESH VIEWPOINT?

RAM thrives on tough assignments in electro-mechanical and electronic componentsboth development and manufacturing.

A Typical Example

RAM redesigned this Transmitter Commutator for the Sperry Gyro Compass. Over 200 parts were eliminated by a special process for molding the segments, interconnecting links, terminals and mounting bosses into one compact, integral unit, now readily replaceable in the field. Substantial savings in unit costs were effected through RAM's flexibility in manufacturing and pioneering design.

Perhaps
we can
help you, too
Send for new Brochure $K 54$ for a more complete explanation of where we may fit into YOUR picture.

BAIM Mitern,w
 Founded 1936

1102 Hilton Road Ferndale

DETROIT 20, MICHIGAN
Telephone LIncoln 4-7220
Want more information? Use post card on last page ELECTRONICS - May, 1954
centers for the electrons and holes, and as lifetime killers.

To the novice seeking to get a toehold into dislocation theory, Dr. Read offers a book which presents primarily the better established aspects of dislocation theory. There are exercises and examples at the end of each chapter as aids to those using the book for individual study. The book would also serve well as a text for college seniors or graduate students in science or engineering.

Dr. Read's book is concerned primarily with the production, geometry, and motion of dislocations, their interactions with each other, and their relation to crystal growth and to grain boundaries. The interaction of dislocations with impurities and lattice defects are discussed only briefly and the reader is referred to Cottrell ${ }^{1 *}$ for details on this important phase of dislocation theory.

Dr. Read is a member of the Technical Staff of the Bell Telephone Laboratories and is an expert on semiconductor physics as well as dislocation theory. His book is strongly recommended as a competent presentation of the role of dislocations in crystals.-SUMNER Mayburg, Sylvania Electric Products Inc., Bayside, New York.
(1) A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford, 1953.

THUMBNAIL REVIEWS

How To Use Meters. By John F. Rider. John F. Rider Publisher, Inc., New York, N. Y., 1954, 140 pages, paper-covered, $\$ 2.40$. Description of meters, their several characteristics and uses. Applications are given for measurements in tv and radio servicins, transmitter installation and repair, laboratory practice and industrial applications.

The Mechanism of Economic Systems. By Arnold Tustin. Harvard University Press, Cambridge, Mass., 1954, 161 pages, $\$ 5.00$. Application of con-trol-systems technique to manipulation of economic quantities such as income and investment. Of interest to economists because it suggests new tools, it likewise discusses business problems in terms with which the engineer is familiar.

Dial Cord Stringing Guide, DC-3 and 4. Howard W. Sams \& Co., Inc., Indianapolis 5 , Ind., 96 pages each, $5 \frac{1}{2}$, x $8 \frac{1}{2}, 1954, \$ 1.00$. Continuation of the dial stringing series.

SOlider SLIP RINGS

...AND SUP RING ASSEMBLES

. Use SILVER GRAPHALLOY for applycations requiring low electrical noise; low and constant contact drop; high current density and minimum wear.

EXTENSIVELY USED IN:
SELSYMS - GUN FIRE CONTROLS ROTATING THERMOCOUPLE and STRAIN GAGE CIRCUITS ROTATING JOINTS • DYNAMOTORS

Wide range of grades available for standard and special applications.

Oil-fire, self-lubristing Bust inns and Bearings (applicable. inns on d Bearings lapplitable
$-100^{\circ} 10+300^{\circ} \mathrm{F}$; with c x pension deficient half that
of steel will not seize shall at of steel will not seize shall at
low temperofurel: oil-frea
 Thus and Friction Washers,

GRAPHITE METALLIZING CORPORATION

```
    | i055 nEPPERHAN AVE. - Yonkers, New York
    Please send dota on Graphotloy Bru5HES and CONIACTS.
send doto on BuSHINGS
```


name \& titi

COMPANY
STR
Want more information? Use post card on last page.

BACKTALK

Teacher vs Engineer

Dear Sirs:
I Have Just read the letter in the March issue from Lawrence Fleming concerning engineers in industry and in teaching.

Having taught in two large state universities, a larger A \& M college, and worked in the research laboratories of two leading concerns, I cannot agree with the tendative belief set forth by Mr . Fleming to the effect that the standards of educational institutions must be higher because of the emigration of engineers from schools to industry.

The faculty standards of schools today are related in direct proporton to annual salaries. No fewer than 35 former university and college teachers of Electrical Engineering, Physics, and Mathematics are within my range of vision while writing this reply. Their present annual salaries are from 2 to 4 times their former teaching annual incomes.

The trend should be obvious.
A. W. McMurtrey, Jr. Senior Aerophysics Engineer Consolidated V ute Aircraft Corp. Fort Worth, Texas
(Editor's Note: As Mr. Fleming suggested, more information and discussion do indeed seem desirable. The editors would welcome more corvespondence on this subject, especially from engineers who have gone into teaching.)

Current-Step Waveform Generator

Print-Shop gremlins were at work last month when an extraneous drawing was substituted for Fig. 7 of Dr. Babits' article, "Current-Step Waveform Generator" (ElectronICS, p 167, March 1954). The correct drawing and its caption appear here. For the convenience of readers a portion of the text is reprinted below:

The details of driver and output are shown in Fig. 7.

The basic voltage-step waveform is fed to the grids of a parallel6L6 cathode follower that has its

C/ianuini

Codes: Binary, Binary.Grey,
Binary-Decimal with
non -ambiguous outputs

Immediate Delivery from stock on standard models having following characteristics:

- 1,000 counts decimal
$\left(300^{\circ}\right.$ to $\left.360^{\circ}\right)$
- 1024 counts-binary, $\operatorname{grey}\left(300^{\circ}\right.$ to $\left.360^{\circ}\right)$
- torque -0.5 oz. in ball bearings
- inertia -400 gm. cm<super>2
- micrometer zero adjustment
- automatic alignment-no gears

CUSTOM COMMUTATORS

Commutators can be furnished
to fit specific applications by either modification of standard models or wholly new designs.
Some variations now available are:

- non-Jinear coding
- high-count multi-turn units
- ultra low torque models
- miniature size, geared units
- direct decimal coding
G. M. GIANNINI \& CO., INC.

LABORATORY APPARATUS DIVISION PASADENA 1, CALIFORNIA
Offices: New York: Phone Judson 6-7500 Los Angeles: Phone Ryan 1.7152

High-speed, quality production with custom-made precision. Wire formed to any shape for every need.

WIIEE HOIRMS
0015 to . 125 diameter

STIRAIGHTENING \& CUTTING
Perfect straight lengths to 12 ft . .0015 to .125 diameter

SMALL METAL STAMPINGS

.0025 to .035 thickness .062 to 3 inches wide.

Specializing in Production of Parts for Electronic, Cathode Ray Tubes \& Transistors

Write for illustrated folder. Send Blueprints or Samples for Estimate.

\cdots 1 BOYDEN PLACE NEWARK, 2, N. J.

Developed and produced for manufacturers of electronic components and other electrical units.

Specifications and samples available on request.
Information relative to your problem or application will enable us to make suggestions and recommendations.

Price $\$ 42$ each F.O.B. Quincy, Mass.

AINSLIE 'Scope Dolly

Practical - substantially built - attractive appearance
Completely assembled. Just slip four ball-bearing casters in place and it's ready for use. Finished in grey wrinkle-tone baked enamel, black enamel handles. Dolly accommodates scopes up to $143 / 4 \times 231 / 2$. Ample space for accessories on handy lower shelf. Hght. (front) $361 /^{\prime \prime}$, hght. (rear 281/4", width $17^{\prime \prime}$. With two $3^{\prime \prime}$ free-wheeling rubher-tired casters and two side-brake rubber-tired casters. Adjustable loracket. Shipping weight, 48 lbs; dolly, 38 lbs.

Ainslie Electronic Products, Inc.

 312 Quincy AveQuincy, Mass.
Designers and Manufacturers of
Radar Reflectors and Equipment; Precision Fabricators

Your career can go up

with Lockheed's expanding Missile Systems Division

- Recently formed from other Lockheed engineering organizations to prepare for the era of automatic flight, the Missile Systems Division offers a few Research Engineers the career opportunity of a lifetime.
- For Research engineers of ability, experience and initiative, this is an unparalleled opportunity for advancement and achievement.
- The positions now open call for experience in airborne weapons systems problems such as: weapons design, system evaluation, guidance methods, sub-system requirements and operational problems.
- In addition to outstanding career opportunities, the Lockheed Missile Systems Division offers you excellent salaries commensurate with your experience, generous travel and moving allowances, and a better life for you and your family in Southern California.
- Coupon below is for your convenience.

Mr. L. R. Osgood Dept. E-MRE-5
LOCKHEED MISSILE SYSTEMS DIVISION 7701 Woodley Avenue, Van Nuys, California Dear Sir: Please send me information on the Missile Systems Division.

my name

my field of engineering

my street address

my city and state

STANLESS 2 .sTTOCK

All types and sizes of screws (slotted, Phillips, socket, hex head), bolts, nuts, washers, rivets, keys and pins

Over 9000 items in stock means immediate de. livery from one source

- New Garden City plonf now operoting of top speed and quality
- Unsurpassed facilities for quantity fabrication of specials
- A staff of seasoned engineers always available for consultation
- Pioneers in the monufacture of stainless steel fosteners

WRITE NOW FOR FREE COPY OF FASTENER MANUAL PIO

"N-CAPS" Your assurance of utmost protection against salt water and shock

EPR "RUNT"
Hermetically sealed subminiature NM-2 . 1 wati . . . values up 1060 K $\pm .1 \% \times 14^{\prime \prime} \times 14^{\prime \prime}$ Highly siabil. ized matched temperatufa coefficient precision wire wound resistors

EPR research does it again! EPR gives you the resistor that triumphs over the ravages of heat - Hi-Temperature resistors withstand continuous heat up to $200^{\circ} \mathrm{C}$. - They are completely encased in ceramic with axial lead mounting for easy connecting - Available with glass, silicone or teflon covered wire.

SURPASSES ALL MIL-R-93A SPECS

New illustrated catalog containing valuable engineering data. Write for it today

FIG. 7-Driver and output circuits provide high-voltage pulses and couple combined waveform to coil
own isolated 300 -volt power supply, the negative terminal of which is 400 volts below ground potential. The final stage, which provides the steady-state current in the currentstep waveform, consists of two 811's in parallel, their cathodes being 400 volts below ground potential.

The swing of the grid voltage of this output stage is from 45 -volts negative to 60 -volts positive. The plates of the 811's are connected through the output coil to ground.

Transistor Mechanics

Dear Sirs:
The account of Philco's surfacebarrier transistor on page 10 of the January issue of Electronics described accurately the fabrication techniques and the improvement which has been obtained in highfrequency performance compared with that of commercially available junction transistors.

We would, however, like to point out that the following statement quoted from your article is incorrect: "The indium deposits formed become emitter and collector of a junction transistor by virtue of an effect which causes the germanium

Want more informostion? Use post card on last page ELECTRONICS - May, 1954
near the surface of the deposited indium to take on an impurity character opposite to that of the germanium base."

We have found evidence that there is no diffusion of the metal into the germanium. Thus, the metal tin forms an excellent surface barrier rectifier when deposited electrolytically at room temperature upon n-type germanium in strong contrast to its operation when allowed to diffuse into the germanium at high temperature.

Again, the mechanism of rectification is different from that of a junction.

In the $p-n$ junction, both the hole and electron currents are limited by diffusion, whereas in the surface barrier transistor only the minority carrier current is diffusion limited. The majority carrier current is limited by the potential barrier at the interface between metal and semiconductor.
W. E. Bradley

Director of Research-Techinical Philadelphia, Pet.

Staircase Generator

Dear Sirs:
In my article, "Staircase Generator Counts Pulses", published in your March 1954 issue, there are several errors.

The values of minimum deviation from linearity in Table I on page 188 are in percent and should read from top to bottom: $\pm 0.7 V_{\text {max }} / E_{B}$; $\pm 0.2 V_{\max } / E_{n} ; \pm 0.1 \quad V_{\max } / E_{\beta}$.

In Table II, page 189, the SM5LS relay has a 10,000 -ohm coil. The second, fourth, and sixth columns refer to both halves of the tube connected in parallel.

The equation at the top of the second column on page 188 should read:
$\%$ Deviation $=$

$$
\pm 100 \times \frac{1}{8}\left(\frac{E_{c o}}{E_{B}}+\frac{C_{g}}{C_{3}}\right) \frac{V_{\max }}{E_{B}} \text { if } R_{K} \gg \frac{1}{g_{m}}
$$

The comment in the next-to-last paragraph of the text regarding the heater-to-cathode voltage of V_{1} applies also to V_{2}.

NATHAN SOKAL
Lincoln Laboratory, MIT
Cambridge, Mass.

FOR HICH-SPEED SEARCHING

GIANNINI

TELEMETERING COMMUTATORS

Precision-engineered to sample at rates as high as 1800 per second, Giamini Commutators are ideal for use in such applications as radio and wired telemetering-automatic programming-sequence switching - synchronization of mechanical motion with electrical operation. Rhodium plated printed circuits of almost endless variety meet individual requirements - and switching may be either "make-before-break" or "break-before-make".

Available as either single or double pole model-with up to 60 channels per pole. Dustproof construction and an unusual contact cleaning device keep the switch noise-free during an exceptionally long life.

GIANNINI
 Motor Driven Telemefering Commutator

85562

Incorporates all the features of the 85561-and is motor driven at a constant speed, governor-controlled; at variable speed controlled linearly uith applied voltage; or with other special drives.

Goัต๓ณอั๓กํ

Further information? Special problem? Please write:

G. M. GIANNINI \& CO.. INC.

ElectroMechanical Division

East Orange - New Jersey

and RESISTORS UP TO 2000 WATT
WRITE FOR NEW CATALOG NO. 5

Shorted Turn Indicator

Sensitive,rugged,non-shocking

FM MODULATION METER
Measures moximum modulation deviation on mobile-system. FM transmitrers, all frequencies, 25 to 200 MC . Price $\$ 240.00$.
LAMPKIN LABORATORIES, INC. bradenton, florida

A Cement for Every Purpose . . . for
 METALS PLASTICS
WOODS FABRICS
RUBBER RUBBER TO METAL PAPER FIBRE
Write to Dept. X for complete catalog general cement meg. Co., 911 Taylor Ave., Rockford, Illinois

> SUPPLIES

MODEL 281 MULTICYCLE
115 V CAPACITY 100 V.A. Send for bulletin E6

Scientific (8|(155) Instruments 107 ELMWOOD AVENUE ITHACA. N Y

DISPLAY ADVERTISING

- AROUSES INTEREST
- CREATES PREFERENCE

DIRECT MAIL

- GETS PERSONAL ATTENTION
- triggers action

After your prospect has been convinced by display adventising, he still must take one giant step. He must act. A personalized mailing piece direct to his desk, in conjunction with a display campaign, is a powerful action getter.

McGraw-Hill has a Direct Mail Division ready to serve you with over 150 specialized lists in the Industrial field.

To get your copy of our free industrial direct mall catalogue (1954) containing complete, detailed information about our services, fill in the coupon below and mail it to McGraw-Hill.

Do it now! The best advertising programs are planned well in advance.

Dired Mail Division,
McGraw-Hill Publishing Co., Inc. 330 West 42nd St., N. Y. 36, N. Y.

Please forward my free copy of the McGraw. Hill 'Industrial Direct Mail Catalogue."

Professional Services

ALPHA ENGINEERING LABS

TROUBIE-SHOOTING SPECIALISTS
Waveguide tube twisting, bending and forming. Broaching. Tooling design, improvements and inethods.

AVDRE TEMPE
P. O. Bor 107 Phone Budd Lake, N. J

ANNIS ELECTRIC RESEARCH

 LABORATORY, INC.CONSULTING- RESEARCH - DEVELOPMENT AND DESIGN OF RADIO AND ELECTTIONIC Antennas, Ware Plopatgation, Information Storage Computers, Impedance Matching and Variable Speed A-C Motors.
P. O. Box 581
$14011 / 2 \mathrm{~S}$. Nell St.

W. J. BROWN

Registered Prof, Engr. Connecticut, Ohio, Enoland ELECTRONIC CON'TROL SYSTEMS Consulting - Research - Development INTERNATIONAL CLIENTELE
71 Gurley Road Stamford 4-4876

CODETYPER LABORATORIES

PRINTED CIRCUITS, EMBEDMENT CELLS AND MINIATURIZATION ENGINEERS Dedesign your standard product using cost and labor and supuly you with Ma perform all enk neering tion. Reasonable, fast service.
550 Fisth Arenue, New York 10.
JU6 4487

```
CROSBY LABORATORIES, INC.
    Murray G. Crosby & Staff
            Radio-Electronic
    Research Develonment & Manufacturing
        Communications, FM & TV
        Robbins Iathe, Hickspille, N. Y
            Hicksville 3-3191
```


EDGERTON, GERMESHAUSEN

 \& GRIER, INC.Consulting Engineer
Hesearch Development and Manufacture
Specialists in High-speed Photography 160 Brooktine Ayenue Boston 15, Mass.

Eldico of New York, Inc.
Ploncers of Television Interference Elimination from Transmitters, Induction Heaters, Diathermy and etc.

Donald J. S. Merten \& Engineering Staft
i2 E. Second St.
Mineola. L. I. N. I.

ELECTRONIC RESEARCH ASSOCIATES, INC.

"TRANSISTORIZE" YOUR PRODUCT! Complete Service in consulting, research, development, and production on dransistor circuitrs; proc

ERCO RADIO LABORATORIES, INC.

Radio Communications Equipment Engineering- Jesign. Development - Production (ianeers Garden City - Long Istand - New York

Professional

Assistance
in solving your most difficult problems in the specialized field of electronic devices is offered by consultants whose cards appear on this page.

HANSON-GORRILL-BRIAN INC.

Products \& Mfg. Development electrical - Electronic hydradlic - mechanical
One Continental Hill $\underset{\text { Glen Cove 4-i300 }}{ }$
Glen Cove 4-i300

HIGHLAND ENGINEERING CO.

William R. Spittal \& Staff design, DEvelorment and MavuFacture OF TRANSFOMMERS, CH
electronic. industrial \& allied fields
Main \& Urban, West bur, L. I., N. Y.

HOGAN LABORATORIES, INC.

John V. L. Hogan. Pres.
Anplied Research. Derelopment, Engineering Est. 1929. Elecironics, Optics, Mechanisms, Facsimile Communication. The Circle Digital Computer, Electro-sensitive recording media, Instrumentation. 155 Perry Street, New York 14. CHelsea $2-7855$

INTERFERENCE MEASUREMENT

 LABORATORYInterference Study per Government Specifications Shielded Space for Interierence Investigation
ijeld Suryeys ior F.C.Certiflcation of Induction Field Surveys ior F.C.C. Certiflcation of Induction
1844 Utical avenue
Brooklyn 34, New York Navare 8-1248
the kuljian corporation
Consultants - Engineers - Constractors Eleetronic Control Specialists
Utility - Industrial - Chemical
1200 N. Broad St .
Phila 21, Pa

Measurements Corporation

Research \& Manufacturing Engineers Harry W. Houck John M. van Beuren Specialists in the Design and
Develonment of Electronic Test Instruments Boonton, New Jersey

NEW ROCHELLE TOOL CORP.

FOR CERTIFICTHON of Induction
AND DIEIECTRIC BEATLVG EQUMPMEAT
Mobile Test Unit Arailable Fntire U. S.
320 Main St.
New Ruchelle, New York
Plone Ne, 2-5555

NIAGARA ELECTRON LABORATORIES

CONSULTATION DESIGN CONSTRLCTION MFG. THE THEMMOCA' HELAY
Specializing in solution of problems of electronic and elfectro-physical inst cumentation for the research or analytical laboratory. Industrial plaut probletus also invited.
Andover. New York Cable Address: Miatlonlads

MAURICE I. PARISIER \& CO.

Communications Expert
International Engineering Consulting
badio broadcasting \& ComMLNICATIONS
Panning \& Installation Supervision
Communication Fquipment for Armed Forces
475 Broadsay New York 36, N. Y. LOngacre 4-5434 1475 Broadsray New York 36, N. S. LOngacre 4-

PICKARD \& BURNS, INC.
Consulting Electronics Engineers

> Analysig and Evaluation
> of Radio Systems

Meseareh, Development and Production of Special Electronic Equipment
240 Filighland Ave. Needham 94, Muss.

JOSEPH RACKER COMPANY

Radar Consultanis E Editors Technical Manuals Research and Develomment
140 Nassau Street Worth $4-1463{ }^{\text {New }}$

ROGER BARRETT BROSS
Consulting Engineer
SPECIAL ELFCTRIC MACHINES
ELECTROMLAGNETIC COMPONENTS
Design-Develomment - Manufacture
25 Curtis Kd
OL 3.9235
Hox 157, Natick, Mass.

THE TECHNICAL
 MATERIAL CORPORATION

Communications Consultants systems Engineering
General Offices and Laboratory
700 Fenimore $\mathbf{H} \mathrm{d}$., Maruaronects, N .

WHEELER LABORATORIES, INC. Hadio and Electronics
 Consulting - Research - Develomment R-F Circuits - Lines - Anternas R-F Circuits - Lines - Antennas
 Microwave Compenents - Trest Equipment
 Harold A. Wheeler and Engineering Staff
 Great Neck, N. Y.
 IUUater 2-7876

YARDNEY LABORATORIES, INC.

Research - Design - Development
Electro-Chemical Generators of Energy
105 Chambers Street
Worth 2-5500
New York ? S. Y

CLASSIFIED

 Searchlicht Section
UNDISPLAYED RATE

$\mathbf{\$ 1 . 8 0}$ a line, minimum 3 lines. To figure advance payment count 5 average words as a line. POSITION WANTED undisplayed advertising rate is one-half of above rate, payable in advance.
BOX NUMBERS count 1 line additional.

INFORMATION

DISCOUNT 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals). EQUIPMENT WANTED OR FOR SALE Advertisements acceptable only in Displayed Style.

DISPLAYED-RATE PER INCH
The advertising rate is $\$ 16.10$ per inch for all advertising appearing on other than a contract basis. Contract rates quoted on request.
AN ADVERTISING INCH is measured $7 / 8$ inch vertically on one column, 3 columns- 30 inches -to a page.

ELECT.

Send NEW ADVERTISEMENTS to N. Y. Office, 330 W. $425 t$., N. Y. 36, for the June issue closing May 3rd. The publisher cannot accept advertising in the Searchlight Section, which lists the names of the manufacturers of resistors, capacitors, sehostats, and potentiometers or other names designed to describe such products

REPLIES (Box No.): Address to office nearest you NEW YORK: 380 W , द2nd S1. (36)

CHICAGO: 520 N. Wichigan Ave. (1t)
SAN FRANCISCO: 68 Post St.(4)

POSITIONS VACANT

TECHNICAL WRITER-Interesting and challenging work in the exacting field of reporting the progress ot engineering and scientific
projects at a leading university-affiliated reprojects at a leading university-affiliated refessional experience is required, with emphasis replies contidential. Box P-2304, Electronics.

RADIO-TELEVISION - Electronics Engineer. One of the outstanding vocational schools in the country offering courses in Radio-Tele-vision-Electronics has an excellent opportunity
for the right man. If you want freedom in your for the right man. If you want freedom in your
job, salary commensurate with your ability, ex. cellent working conditions, security, bonus and above all, a challenge in accomplishing a fascinating job... and, if you have qualifications which we reciuire... proven executive ahility: engineering degree. ambition, ability to work With others, supervise personnel, and can write technical materials suitable for instructional purposes prompt and to us. Your inquiry will P-2363, Electronics.

MID-WEST MANUFACTURER of electrical indicating instruments requires men with ex perience in design of D'Arsonval. Dynamometer not essential. Experience will qualify. In reply give full details of education and experience and salary requirements. P-2384. Electronics.

POSITIONS WANTED

ELECTRON TUBES Engineer-Physicist with designy of numers experience in development and (vacuum ant gas filled) desires suitable posi tion. Box PW-2 +20 . Electronics.

MARRIED MAN. age 27. B.S.E.E.. Flectronics machanical field. pW-232

ELECTRONIC ENGINFER, BSSE, Supervisory and adminisirative experience R\&D Engry Buyer, Purchasing Agent, Sales Administration administrative position medium size man. Desire firm. Prefer Rocky Mt. West Coast or South. west location. PW-2219, Electronics.

BUSINESS OPPORTUNITY

Patent awailable-clectronically controlled relay. New approach to energy control in elecprocesses using light. heat, etc. Fspecially tronics.

CONTRACT WORK WANTED

Manofacturers not small lot assembly and harness making specialists. 20 years experience May we serve you. Write: P.O. Box 262-West Cheshire. Conn.

MANUFACTURERS

Agoresslve sales organization in Middle Atlantlc States can provide representation for additional electronic or electrical equipment or parts.

MACLEN CORPORATION
Manufacturers Representative
3226 Ninth Street, N.E. Washington 17, D. C.

DESIGN ENGINEERS

The Pacific Division, Bendix Aviation Corporation has openings for design engineers in development of radar, sonar and telemetering offering excellent opportunities for growth with the corporation and the opportunity to live in Southern California. Positions are open at several levels.

Please Address Inquiries to
W. C. WALKER

ENGINEERING EMPLOYMENT MANAGER
11600 Sherman Way
North Hollywood, California

//I

FIELD ENGINEERS

$/ / / / \begin{aligned} & \text { Young EE graduates with experience } \\ & \text { tary or private industry required for } \\ & \text { tic and overseas positions. \$10 per diy } \\ & \text { liberal overseas bonus. Opportunity } \\ & \text { vancement is excellent. } \\ & \text { SERVOMECHANISMS, INC. } \\ & \text { Post and Stewart Avenues }\end{aligned}$
 WESTBURY, LONG ISLAND, N. Y.

Quantity-100—30" Flyback

 TRANSFORMERSUsed by DuMont on Model \#RA119 Original Boxes
Quantity-500 R.C.A. Flyback TRANSFORMERS No. 75585
Quantity-100-Three Tube
PHONO

Uses 5016-35
ess Tubes Quantity Prices on Request
WANTED! ELECTRONIC TUBES AND PARTS
PLEASE SEND LIST AND LOWEST PRICES
ADAMSON ELECTRONICS CO.

- 591 E. TREMONT AV.
Y. $57, \mathrm{~N}$.

SPECIAL DEAL!
 $100^{\text {TH }}$

 DISCOUNT ON QUANTITY ORDERS

$330 \mathrm{~W} \underset{42 \mathrm{nd}}{ } \mathrm{S}$ St., New Yorks 36, N. Y.

WANTED

WANTED - BC-221
Heterodyne Frequency Meters
 Any quantity, any model-we will purchase for cash, provided only that each unit is complete with original Calibration Book, tubes, crystul and cabinet.
Large numbers needed.
Write, wire or telephone
Weston Laboratories, Inc. HARVARD MASSACHUSETTS

WILL BUY

All ARTI3/type T47A $\$ 200.00$; ARTI3 type T47 $\$ 150.00$; BC348 unmodified $\$ 65.00$; BC348 modiffed $\$ 50.00$; APN 9 \$20.00; ARC3 complete $\$ 350.00$; R77 Receiver $\$ 200.00$; ARCI Radio $\$ 200.00$; BC312
$\$ 60.00$ BC342 60000 : subject to inspection to sNEGAN
49 Washington Ave. Little Ferry, N. J.

Emblem ... of Engineering Opportunity ... and Professional Progress DEVELOPMENT • DESIGN • SYSTEMS ENGINEERING

Consider RCA's engineering opportunities listed below! For professional association in the field of your choice, write:

John R. Weld, Employment Manager
Dept. 300E Radio Corporation of America 30 Rockefeller Plaza, New York 20, N. Y.

Air Conditioners - Altimeters - Ampule Inspection - Analog Computers - Antenaplex - Antenna Systems - Aviation Radio - Beverage Inspection - Broadeast (AM and FM) - Calibration Equipment - Camera Tubes - Cafhode Ray Tubes Color and Monochrome TV Cameras, Receivers, Studio Equipment, Transmitters - Communications Equipment - Counter Measures - Custom Recordings Digital Computers - Directian Finders - Early Warning - Electron Microscopes - Electronic Components - Engineering Services - Facsimile Apparatus - Field Services - Gas Tubes - High Fidelity • Industrial Products • Information Displays • Inter-Comm Equipment - Kinescope Tubes - Loran - Microphones - Microwave - Microwave Tubes - Missile Guidance - Mobile Communications Oscillograph Tubes - Phonograph Records - Pnoto Tubes - Power Tubes - Public Address Systems - Radar - Radio Receivers - Receiving Tubes - Rectifier Tubes - Semi-Conductors . Servo-Mechanisms. Shoran - Sonar - Sound Film Projectors - Sound Powered Phones - Special Apparatus - Storage Tubes - Tape Recorders - Teletypewriter - Test Equipment - Theater Equipment - Theater Television • Transistors - Tube Parts . "Victrola'" Phonographs

"An Unexcelled $O_{\text {pportunity }}$
 For Professional Grouth " ELECTRONIC ENGINEERS \& PHYSICISTS

IN RESEARCH AND DEVELOPMENT
GUIDED MISSILE - GUIDANCE SYSTEMS - RADAR •
VACUUM TUBES - ELECTRONIC NAVIGATION TELEVISION • MICROWAVES • ANTENNAS SOLID STATE PHYSICS • COMPUTERS •

DIRECT INQUIRIES TO:
THE EMPLOYMENT DEPT.

PROGRESSIVE ENGINEERS LOOK WEST

Qualified Electronic and Electro-Mechanical engineers find happy association with a Western electronics pioneer and leader.

```
- DEGIGN
- DEVEIL|PMENT
- PIRODIDCTION
```

Commercial and military projects. Radar, DME, Communications. Noise, Test Equipment including color T.V.-Many others with real interest $\&$ challenge.

Relocation expenses-excellent working conditions-Central location. Scheduled reviews \& advances. Fine insurance plan. Move should not disturb urgent military projects.

Send complete resume with income history
\& requirements to engineering employment mgr

3761 SO. HILL ST.
LABORATORIES, Inc.
LOS ANGELES 7, CALIF. (A Subsidiary of Hoffman Radio Corp.)

CHIEF ENGINEER

Important electronics organization in metropolitan New York with engineering staff of 100, requires a mature Chief Engineer with heavy experience in design and development of radio and radar transmitters, receivers and test equipment; servos, telemetering, computers, scalers and related equipment.

Should have adequate academic background and be a strong administrator, a meticulous analyst; know military specifications, be capable of estimating and preparing bids and proposals, evaluating and negotiating technical terms and conditions of military contracts, and be skilled in engineering load planning and scheduling of prototype production.

Our staff knows of this ad. Submit resume to

P-2354, Electronics

330 W. 42 St., New York 36, N. Y.

[^26]BLILD YOUR CAREER and help build tomorrow's world with
the pioneer and leader in lighter-than-air craft. There's a clear, bright future at Goodyear Aircraff for engineers with talent, aptitude and ambition.
FORCEFUL, CREATIVE THINKING is the key to Goodyear's progressive research and development programs in missiles, electrical and electronic systems, servomechanisms, new special devices and fiber resin laminates. Design and development engineering opportunities are many and varied . . . are now available to capable and imaginative men and women in the field of airships, aircrafi and aircraft components.
POSITIONS ARE OPEN in several fields with salaries based on education, obility and experience.

Physicists	Civil engineers
Mechanical engineers	Welding engineers
Aeranautical engineers	Electrical engineers

IMAGINATION

Got more than your share? Like to have the freedom to use it, with commensurate recognition? 'Then, you've come to the right ad!

That is, if you're an electronic or mechanical engineer with practical experience in the electronic industry.

We need engineers with imagination. We're growing and going you're just in time to go with us. You'll enjoy the job plus the advantage of pleasant living conditions in a large, modern city ... without the disadvantage of big city pressure.

The man to contact is Arthur E. Harrison, Vice-President of Engineering. The time is now! You'll never regret it!

wilcox

Aviation Communications and Navigation Fourteenth \& Chestnut, Kansas City 27, Mo.

[^27]
SALES ENGINEER TRAINEES

Leading manufacturer of analog computing equipment has available openings for qualified trainees.

EE degree or equivalent and/or experience in analog devices is desirable.

Ideal opportunity for young men in a growing company. Must be willing to travel.
Interested persons should forward resume, and photograph if available, to

STANDARD PRODUCTS SALES DEPT.

Why?
 Here Is Why Bendix Radio Is The Place For you To Work

Challenging work in

 The development of: Radar (Airborne and Ground) Auto Radio and Test Equip. Airborne \& Mobile Comm. Equip. Missile Guidance Systems Computer ApplicationsResearch \& Development (Incl. Transistors and Printed Circsitsy)

Excellent salaries.
Semi-annual work reviews with advance. ment on merit.
Modern, air-conditioned plant located in beautiful suburban area with ample housing, good schools, attractive shopping centers, major league sports.
Numerous employee benefits.

Call, wire or write Mr.L.H. Noggle, Dept. J

Bendix Radio

DIVISION OF BENDIX AVIATION CORPORATION BALTIMORE-4, MD. Phone VAlley 3-2200

ENGINEERS

DESIGNERS

Investigate opportunities at DRAETSMEN

We point to our achievements at ERCO with pride to the Ercoupe, our electronic flight simulators, machine tools, and armament products, which we have designed and built . . . to the plant which offers diversified tools for electro-mechanical and mechanical fabrications, enabling us to build what we design . . . to the men who work at ERCO and who have made this progress possible
But we are constantly on the alert for new men to add fresh impetus to that progress paying top salaries to capable people.
ERCO is convenient loo-whether you drive, ride, or fly Transit and railway lines are handy, parking facilities are ample, and ERCO Field is available to those who fly.
You can choose a home from a number of fine nearby residential areas convenient to both shopping centers and plant
and you can further your education at the many
nearby universities.
You will find that although ERCO is the largest privately
owned design and manufacturing plant in the Washington area, it is small enough to recognize and reward individual initiative.

ERCO now needs Electronic Engineers (all levels with some overseas positions available), Aerodynamicists, Computer Engineers, Mechanical Designers, and Machinery Designers. For further information, call WA. 7-4444-ext. 106.

ENGINEERING AND RESEARCH CORPORATION RIVERDALE - MARYLAND

RECEIVER ENGINEERS

With Experience in VHF and UHF Frequencies

Career Opportunities
With Old Established
Central Connecticut Firm
Interesting Projects
Top Salaries Suburban Living

Replies Held in Strict Confidence
Write or Phone Collect
Personnel Mgr.-SHerwood 7.2741
THE
ALLEN D. CARDWELL MFG. CORP.
Plainville, Connecticut

MAN WHO CAI CBFAIF A STRONG EIECTRONCS DEPT.

Missile manufacturer having large mechanical design staff but small electronics group is seeking a man capable of creating and heading an expanding electronics department. Will be responsible for design of electronic systems which are optimum for a given missile, and the choice, coordination, and packaging of component equipment. Salary range $\$ 10,000$ to $\$ 15,000$ per year.

Please send resume of background including a snapshot, if available, and de tails of related experience to

> P-2405, Electronics

520 N. Michigan Ave., Chicago 11, I11.

Career opportunities now with RCA in

AVIATION ELECTRONICS FIRE CONTROL

SYSTEMS, ANALYSIS, DEVELOPMENT and DESIGN ENGINEERING
Radar - Analog Computers - Digital Computers • Servo-Mechanisms - Shock and Vibration • Circuitry • HeatTransfer - Remote Controls - Sub-Miniaturization • Automatic Flight - Transistorization - Design for Automation

RCA needs electrical and mechanical engineers and physicists - with 4 or more years' professional experience.

RCA advantages include tuition-refund plan for groduate study . . . professional recognition for accomplishment . . . unexcelled facilities... plus many other company-paid benefits. Pleasant suburban or country living.
Send education and experience resume to
Mr. John R. Weld, Employment Manager pt. B.454E, Radio Corporation of America Camden 2, New Jersey
RADIO CORPORATION OF AMERICA Tmks. (1)

ELECTRONIC

ENGINEERS:

Westinghouse is a CAREER!

Long-range expansion programs in two Westinghouse divisions have created excellent ground-floor openings in career positions.

AIR ARM DIVISION:

World-leader in the field of aviation-electronics. Work involves computer, autopilot, radar and other advanced projects.

ELECTRONICS DIVISION:

Currently developing highly specialized equipment such as radar, electronic computers and guided missile ground control devices.

THESE DIVISIONS HAVE OPENINGS FOR -

ELECTRICAL ENGINEERS • MECHANICAL ENGINEERS

 PHYSICISTS - MATHEMATICIANS - FIELD SERVICE ENGINEERS • ENGINEERING TECHNICAL WRITERSOPPORTUNITIES AND ADVANTAGES
PROFESSIONAL Opportunitics for advanced study, at company RECOGNITION expense, and liberal patent disclosure compen-

WORKING
ATMOSPHERE

SALARY Salary compensation individually determined according to experience and ability, and promotions based on individual merit.
HOUSING CONDITIONS sation.
to design and develop high-speed electronic digital equipment involving vacuum-lube and magnetic-core circuilry.

Openings are also available for outstanding candidates to work on use of high-speed digital computers to control large physical systems. This involves study of control requirements of the whole system, reduction of them to a simple pattern of control instructions. and translation of the pattern into computer code. Position requires appreciation for physical systems, ingenuity, and imagination. Training in computer principles provided as necessary.

Persons from other fields wishing experience in digital computers for industrial and military uses are encouraged to apply. Positions carry opportunity for advancement. Salary appropriate to candidate's experience and training. Address:

DIGITAL COMPUTER LABORATORY, MIT
211 Massachusetts Avenue
Cambridge 39, Massachusetts
SEND TODAY FOR BROCHURE AND APPLICATION!
R. M. Swisher, Jr

Employment Supervisor, Dept. MA-2
Westinghouse Electric Corporation 109 West Lombard Street Baltimore 1, Maryland

COLLINS RADIO

NEEDS SALES ENGINEERS NOW

- broadcast
 - communications
 - industrial components

Demand for Collins equipment in these fields is going up and experienced sales engineers are needed immediately. Positions are open in all five Collins regional offices*. Send complete personal resume, including your experience in either broadcast-communciations or in-
dustrial components, plus salary requirements to the Collins office nearest you. If you qualify for any of these opportunities, Collins will contact you for a personal interview. Take advantage of this chance to get ahead . . . write today.

*COLLINS RADIO COMPANY

855 35th St. N.E., Cedar Rapids, lowa 11 W. 42nd Street, New York 36, New York 2700 W. Olive Avenue, Burbank, California 1930 Hi-Line Drive, Dallas 2, Texas

COLLINS RADIO COMPANY OF CANADA, LTD., 74 Sparks St., OTTAWA, ONTARIO

ARMAMENT ENGINEERING DIVISION NEEDS ENGINEERS

WHITE-RODGERS ELECTRIC CO. for RESEARCH. DESIGN, DEVELOPMENT

MISSILE GUIDANCE SYSTEMS AUTOMATIC FLIGHT FORMATION SYSTEMS and ASSOCIATED COMPONENTS

To formulate dynamics and computer equations, and to design and develop experimentally electro-mechanical computers and instrument servo-mechanisms

> SEND RESUME TO EMPLOYMENT MANAGER 1201 CASS AVE. ST. LOUIS 6, MO.

ELECTRICAL ENGINEERS

We've been commissioned to find Grad. Electrical Engineers with 5 to 10 yrs . exp. in: Digital \& Ana log-Systems Planning-Storage Techniques-As sembly Design-Servos-Cricuitory-High Speed In tricate Mechanisms-Logical Design for work on open as Supervisors also.

SALARY FROM $\$ 10,000$
EASTERN COAST OF USA COMPANY PROVIDES FREE:
COMPANY PROVIDES FREE:
Life, Accident, sickness, hospliday al: merit review pi. for promotions; ments for pay ments for patents; awarded up to $\$ 7.500$ for ac cepted ideas; Help in obtaining suitable housing relocation assistance.
SEND TWO COPIES OF RESUME TO
Mr. R. P. Waite, Director of Personnel
SNELLING \& SNELLING, Management Consultants
Suite 701, Mkt. St. Nat1. Bank Bld
Philadelphia 7, Pennsylvanla

WANTED SALES REPRESENTATION

Leading Eastern Manufacturer of Magnetic Amplifiers, Servo Systems, Voltage Regulators, Motor-Generator Regulator Sets is seeking additional representation by technically qualified sales organization with experience in Servo Mechanisms. Several important U. S. and Canadian territories open. Your reply stating experience, all lines carried, refer ences etc will be held in strict confidence.

Write: RW-2476, Electronics
330 W. 42 St., New York 36 , N゙. Y

Prompt ANSWERS

to business problems

MisCellaneous business problems are daily being solved quickly and aasily by the use of the Searchlight (clossified advertising) Section of this and other McGraw-Hill publications.

When you want additional employees, want to buy or sell used or surplus new equipment, want additional products to manufacture, seek additional capital, or have other business wants-advertise them in the Searchlight Section for quick, profitable results

American Machlnist
Aviatlon Weok
Business Weok
Bus Transportatlon Chomlcal Eng. Chemical Woe
Coal Age
Constructlon Methad
\& Equipment
Elec. Construction \&
Maintenance
Elactrlcal Morch
Electrlcal World
Electronics
Engineorling \& Mining

Journal
Englnearlns Newe
Record
E. \& M. J. Markets

Factory Mts. 4
Malntenanoe
Fleat Owner
Food Engineering
National Petroleum News
Nucteonics
Petroleum Processing
Power
Product Engloberim
Toxtile World
Welding Englneer

Classified Advertising Division

McGraw-Hill Publishing Co., Inc.

330 W. 42nd St.
New York City 36, N. Y.

ENGINEERS

Have you developed a

 "Success Perspective"?|F A year or two of practical experience has given you the youthful maturity that demands more than just a job, you may be interested in our "career opportunities" in color TV, crystal products and electronic tubes.

Submit resume or address request for personal interview to D. Bellat, Personnel Director.

TUNG-SOL ELECTRIC INC.

200 Bloomfield Avenue Bloomfield, N. J.

ELECTRONIC ENGINEERS

for design \& development work with a rounc proerissive company \checkmark digital techniques
\checkmark computers
\checkmark radar
send resume of expreisnce and tduCATION, WITH SALARY RECUREMENTS, TO

NTO ENGINEER becomes just "cog in the wheel" at Melpar. Instead, everybody has his own responsibility - is rewarded and advanced for a job well done. That's why so many young engineers hold the top jobs here. Melpar is growing and new top jobs open up regularly. Maybe you re just the man for onc of them. Why not find out - now!

Experience desired in one or more of these or allied fields: Data Handing Equipment (magnetic corcs, magnetic recording equipment, analogue to digital conversion, shaft digitizers) - Flight Simulation (servomechamsms, pulse Antonnas - Audio and Video Circuit Design - Antennas Mechanisms Desien - Mechanical Packaging and Electronic Components - Heat Transter and Thermodynamics - Design of reciprocating compressors, hot gas generators and diesel engines
Address: Personnel Director, Dept. E-5

Galen Street, Watertown, Mass. - 440 Swann Ave., Alexandria, Va, A SUBSIDIARY OF THE WESTINGHOUSE AIR BRAKE COMPANY

OPPORTUNITIES for ELECTRONICS ENGINEERS

with design experience and ability to analyze circuits using low-frequency amplifiers with feedback. Interesting work witt liberal salary and employee benefits in a successful organization. Send resume of qualifications to

$$
\text { P. O. Box } 550
$$ P. O. Box 550

Ridgefield, Conn P. O. Box 550
Ridgefield, Conn.

```
EMPLOYMENT · BUSINESSUIPMENT
```

EMPLOYMENT · BUSINESSUIPMENT
OPPORTUNITIES
OPPORTUNITIES
Whatever your need-
Whatever your need-
think "SEARCHLIGHT" FIRST

```
    think "SEARCHLIGHT" FIRST
```


Stability and opportunity for ELEGTPOMGENGNEEPS

at the "Laboratory in the Sky"
One of America's leading centers of long-range radio and electronie developments offers outstanding opportunities for accomplishment, advancement and stability. Write for booklet describing projects, facilities and employee benefits.

INTERESTING ASSIGNMENTS IN:

Microwase Links • Pulse Networks • Radar Direction Finders - Air Natigation Systems
Television Transmitters and Studio Equipment Autennas - Computers • Guided Missiles Telephone and Wire Tramsmission Systems
Microwave and Gas Discharge 'lubes • Dielectrics

MAIL THIS COUPON TODAY

 Federal Telecommunication LabotatoriesA Division of International Telephone and Telegroph Corporation

Federal Telecommunication Laboratories
500 Washington Ave., Nutlev, N. J.
Please send me a copy of "Your future is with FTL.

SYNCHROS

Size 1, 3, 5, 6, 7 and 8 Generators, Motors, Con-

SEND FOR COMPLETE LISTING
SYNCHRO CAPACITORS IN STOCK

OIL FILLED CONDENSERS						
mFD	voc		Price	mfi	voc	Price
${ }_{5}^{2}-5$	400 400		S. 55	i^{5}	3000 3000	\$ 3.40
${ }_{1}{ }^{\text {S-5 }}$	coi		$\begin{array}{r}1.65 \\ \hline 5\end{array}$	2	3000 3000	3.40 5.85
$\frac{2}{2}$	600 600		1.65	${ }_{2} \times 12$	4000 4000	2.95 7.95
${ }_{3}^{2-2}$	6608		$\begin{array}{r}1.65 \\ \hline 95\end{array}$		4000 5000	7.95
4	$6{ }_{60}$		1.65	2	5000	12.50
5	600		1.75	${ }^{5} .01-.03$	S000	29.50
6	618		1.85	-01-.0s	6000	$\underline{1.95}$
8	600	R'd	1.85	. 1	$7000 \mathrm{R} \cdot \mathrm{d}$	1.79
8 8-4-4			2.50	${ }_{-1}^{1-1}$	7000 7500	5.95 2.85
-4, 3	600\%		2. 2.50	${ }_{-}^{1}$	7500 7500	2.85
$1{ }^{10}$	600		3.25	i-1	7500	26.50
$\frac{1}{2}$	1009		. 65	. $5.575-.075$	${ }_{9}^{8 K V}$	\% $\begin{array}{r}6.50 \\ 29.50\end{array}$
	108		.95		10 KY	29.50
3.5-. 5	1008		1.85	${ }^{1}$	12 KV	8.95
4	1080 1000		1,95	i^{2}	15 KV 15 kV	17.50 47.50
10	1000		4.25	${ }^{-25}$	10 20	19.50 19.95
1-1-1	1200 1280		1.85	1	20 KV 25 KV	54.00 $\mathbf{8 5 . 0 0}$
$1{ }^{1-1}$	1510			. 03	30 KV	27.50
${ }^{1} 1-.5$	2508	R'd	1.45	. 001	50 KV 50 K	24.50 3450 3
. 25.	2008		1.95	. 025	${ }_{50 \mathrm{KV}}$	34.50 37.50
. 3	2046		1.30	-2	50 KV	67.50
5	2080	R.d	1.65	-25	50 KV	70.00
${ }_{2}^{1} 1$	2008		21.95	${ }^{7} 5$	220 VAC	${ }^{1} .95$
12	2080		8.95	1-3	330 VAC	3.95
1	250		2.75	12.75	330 VAC	4.10
1-1	250		3.85	15	330 VAC	4.50
4	2500		6.95	2.9		33.50
30	2500		14.75	7	660 VAC	4.25
32	250		15.80	8	660VAC	4.50
OILMITES						
MFD		S00		$O_{0}^{T Y P}$		Price
. 05		600		OM-6	O5	. 48
- 12		600		OM-		. 51
- 5 .		600		$\mathrm{O}_{\mathrm{M}-6}$. 65
1.0		600		OM-6		. 85

COAXIAL CONNECTORS

COAXIAL CABLE

WESTINGHOUSE HYPERSIL

TRANSFORMER
IPRI-115V. 60 CY. $3 / 15 \mathrm{KVA}$: SEC. $=1-240 \mathrm{~V} 1.56$ NEW ORIG. CONTAINER \$14.50 ea.

Puise Transformers
 IN STOCK-IMMEDIATE DELIVERY

 G.E.-K2464; K2468; K2469; K2744B; 68G627; WESTINGHOUSE-132AW2; 130DWVF; 166AW2F; RAYAW2F; 187AW2F;
PHILCO-352-7071; 352-7149; 352-7150; 352-7178: W.E.-D-161310; D-163247; D-163325; D-164661.

GENERATORS

OUTPUT-15 AMP 28 VDC-Pioneer 1235-3A. $\$ 15.50$ OUTPUT-60 AMP. 30VDC and 10.4 AMP. ${ }^{115 V A C}$
$800-1400$ cy. 1 PII-PIONEER $716-3 A$ (NAYY
 OUTP UT-200 AMP. 28VDC-GE 2CM8OB5... $\$ 47.50$ OUTPUT-20 AMP. 28 VDC -GE 2CM80B5... $\$ 47.50$
ALL ARE 2500 - 4500 RPM-CCW ROTATION

PRECISION POTENTIOMETERS

HELIPOT TYPE CI-5K Ω 3W.-3 TURNS- 0.1% LELIIOT TYPE CCI-DUAL SFCTION-5K $\$ 9.50$ 10K 3 3W. each SECTION-3 TURNS- 0.1% HFLIIPOT TYPE Di-10K Ω 15W.-25 TURNS 0.1% LINEARETY
 T.I.C. TYPE RVC2-40K $\Omega 2 \%$ 4W.-0.5\% Linear T.I.C. TYPE RV3- $10 \mathrm{~K} \Omega 2 \% 8 \mathrm{~W}-1 \%$ Linear. $\$ 3.60$
T.I.C. TYPE RV3- $20 \mathrm{~K} \Omega$
4%
$12 \mathrm{~W} .-1 \%$
Linear. $\$ 4.75$

CONSTANT VOLTAGE TRANSFORMER

ENCL CASE-SUPPLIED WITH EXTEIRNAI SPECLAL VALUE- $\$ 33.50$ EA. IN LOTS OF 10.

MERCURY RELAY

SPDT 5 Amp mercury wetted, glass sealed contacts; eater Coil- 275 VDC, 250 ohms 011 Hermetically Sealed Octal plug-in hase-Useful for hi speed keving \& computing Operations. Mfd. hy Western Elec

Lots of $10 \quad \$ 7.75$

[^28]
CAPACITORS
 1 MFD, 25000 VDC CAPACITORS
 TYPE 25100
 $\$ 59.50 \mathrm{ea}$. CAPACITOR; Type F-156.42 Vitamin Q, 5 mfd. Mfd. 8000 VIDC CAPACITOR; Tyロe CAT 25 F 659.25 MUFF

SINE-COSINE GENERATORS

(Resolvers)
Diehi Type FJE-43-9 (Single Phase Rotor). Two sta-
tor windings 90^{-}apart inovides tor windings 90° apart, , provides two output sequel to thput roltage 115 volts, 400 cycle. $\$ 30.00$ ea. Dieh1 Type FPE-43.1 same as F.IF- $43-9$ except it supplies maximum stator voltage of 220 volts with 115
volts apolied to rotor. $\$ 25.00$ ea.

VOLTAGE GENERATORS (RATE)

 ALNICO MIDGET D.C. VOLTAGE GENERATOR ALNICO MDETYLE BICO MIDGET D.C. VOLTAGE GENERATOR type R-44-J)
A.C. GENERATOR: 67 V.
Amps. TyDe PM-1.
1200
B.P.

FT 237 MOUNTS

For BC 603, 683 and BC 604, 684.
${ }_{\$ 22.50}$

SYNCHRONOUS
 SELSYNS
 110 volt, 60 eycle, brass cased, approx. $4^{\prime \prime}$ dian x $0^{\prime \prime}$ long. Mfg by liehl and Bendix.
 Quantities Available

REPEATERS

AUTOSYN MOTOR TYPE 1

115 VAC: 60 crcle; 1 -phnse; DR. \# 4279 Foot mount-

SYNCHROS

General Electric MOD. 2J15M1; 115-57.5 Volts 400 CYCle A TOSYN MTR. KOLLSMAN Type $\# 403 ; 32$ YAC
60 cycle; single phase
AUTOSYN MTR. BE
cycle; sinyle phase.
MICROSYN UNIT. T
MICROSYN UNIT, Type iC-006-A................ $\$ 32.50$
IF Special Rejeater (115 -400 .
1F Special Repeater (115V-400 Cy.)......\$15.00 ea.
${ }_{5}^{25}$ CT Generator ($115-400$ cyc.). 5F Motor ($115 / 90$ Volt- 60 cyc.)............ $\$ 45.00$ 5SDG Differential Generator ($90-94$ volts -400 TRANSMITYER, BENDIX C.78248: iis V30.00 ea. Differential-c-78249; i15 Y $\quad 60$ Cy............ $\$ 5.60$ 5N MOTOR (115 Volts/60 Cycle $)$
REPEATER. BENDIX C-78410: 115 REPEATER, AC synchronous 115 . \forall. $\$ 37.50$ ea C-78863. AC synchronous $115 \quad$ V., 60 cycle REPEATER, DIEHL MFG, NO. FJE 22-2; 115 Volt 400 Cy. Secondary 90 V
5 G GENERATOR
$(115 / 90)$ cycles. $\$ 45.00$ 7G Synchro Generator ($115 / 90$ volts: 60 cycle) . $\$ 75.00$ 6G Synchro Generator ($115 / 90$ volt: 60 cycle). $\$ 60.00$ cycle)
$2 J 5 \mathrm{~F}$ (Selsyn Control Transfornier: $105-55$ Volts 215 FI Selsyn Control Transfornier: 105-55 Volts.
60 Cycle ${ }_{\text {oycle }}^{2 J \text { DSHAI Solsyn Generator: } 115-105 \text { volts: } 60}$ OUCle GENERATOR: $115-57.5$ Volt; 400 cycle. 2JHI DIFFERENTIAL GENERATOR: $\$ 7.5 \frac{50}{} \mathbf{5 7 . 5}$ 2JIGI CONTROL TRANSFORMER: $57.5-57.5$ Volt 400 cycle
2 J 5 HI SELSYN GENERATOR: Mf. G. F. $\$ 7.50$ ea.
$115-105$ Volts, B0 Cycle. $\$ 27.50$

Immediate Delivery ALL EQUIPMENT FULLY GUARANTEED All prices net FOB Pasadena, Calif.

INVERTERS

10563 LELAND ELECTRIC Output: 115 V.tc; 400 cycle; 3-phase, 115 VA:
75 IFF. Input: 28.5 VDC; 12 amp....... $\$ 59.50$

PIONEER 12117
OUTPUT:
Plase. INPUT:

ALTERNATOR, CARTER

Mfg. Carter Motor Co.; OUTPIT: 7 VAC; 9 amp.

PE 218 LELAND ELECTRIC

Output: 115 VAC: Slncle Phase; PF 90; 380/500 cycle; 1500 VA INPUT: $25-28$ VDC: 92 amps; 8000 RPM; Fxc. Voits, 27.5

PE 109 LELAND ELECTRIC

MG 153 HOLTZER-CABOT

Input: 24 V . DC. 52 amps output: 115 rolts - 400 cycles, 3 -phase, 750 VA. and 26 voit - 400 cycle. 250
VA. Voltage and frenuency resulated. $9 . .595 .00$ ea.

PIONEER 12130-3-B
Output: $125.5 \mathrm{VAC} ; 1.5$ amps. 400 cyelo single phase $1 \neq 1 \mathrm{VA}$ I Input: $20-30 \mathrm{VDC}, 18-12$ amps. Voltage and
trequency
$\$ 75.00$

12116-2-A PIONEER

Output: 115 VAC; 400 cve. : single phase: 45 amp
Input: 24 VDe 5 amp.
10285 LELAND ELECTRIC
Output: 115 Volts $A C, 750$ V.A., 3 pliase, 400 cycle, .90 IF, and 26 volts. 50 amps, single phase, 400 cycle. : 40 IPF input: 27.5 VDC. 60 amps. cont. duts, 6000

10486 LELAND ELECTRIC

Output: 115 VAC; 400 Cycle; 3 -phase; 175 VA: 80 P1F. Input: 27.5 DC; 12.5 amp; Cont. Duty. $\$ 9.00$ ea.

PIONEER 10042-1-A
DC INPUT 14 Volts; OUTPUT: 115 Volts; 400 Cycle

94-32270-A LELAND ELECTRIC

Ontput: 115 Volts: 190 VA; Single Phase ; ${ }^{400}$ Cycle: mput: 27.5 and $\begin{aligned} & 26 \\ & \text { DC } \\ & 18 \\ & \text { amps cont. duty, voltage and }\end{aligned}$ freq. regulated

PIONEER 12147-1
OUTPUT: 115 VAC 400 cycle; Single phase. INPUT:
MG $149 F$ HOLTZER CABOT
OUTPUT: ${ }^{26} \mathrm{VAC}$ Plaase: 400 cycle. INPUT: 24 VDC @ 036 amps.
EICOR CLASS "A" NO. 1-3012/08-7 OUTPUT: 125 VAC: 400 cycle; single phase; 100 VA .
iNPUT: $24-30$ VDC; 11 amps; Duty int voltage vind
Frequency Regulator

HAZELTINE PULSE GENERATOR MODEL 1017

Electrical Characteristics: Pulse Freq: initiating and sliding pulse-external. Pulse Width: initiating and sliding pulses, 10 microseconds. Pulse Amplitude: ini-
tiating and sliding pulses, plas 150 volts. Sliding tiating and sliding pulses, plus 150 volts. Sliding
Fulse Delar: rariable over full trace length. Swrop Pulse Delay: rariable over full trace lengs. Stion: 50 200, and 1000 microsconds. TUlBES

 phit: $110-125$ volts, 60 cyc. single phase; batteries
nolie. Dimenslons: $131 / 2^{\prime \prime} \times 201 / 2^{\prime \prime} \times 23^{\prime \prime}$. Weight 85 Ibs.

ALNICO FIELD MOTORS

(Approx. size owerall . . . $334^{\prime \prime}$ x 11"
 PM Motors Delco Type 5506937 I: 27.5 voits: DC Alnico Field; ; 10,000 I. P. M. : dimensions $1^{\prime \prime} \times 1^{\prime \prime} \times 2^{\prime \prime}$ long; shaft extension Type 12076.1.A, coinplete with tubes........... $\$ 22.50$

AC CONTROL MOTOR
A.C. SYNCHRONOUS MOTOR TYBE RRC 255 Colts 115: Cycles 80; FHPM $2 ;$ Mig 110 UTZE1"

400 CYCLE MOTORS

EASTERN AIR DEVICES \# 133 Synchronous Motor
 EASTERN AIR DEVICES TYPE J49A: 115 Vio. 0 A
 AIRESEARCH: M'M; Th amp Torque 4.6 in oz.; HP, 03 . EASTERN AIR DEVICES TYPE JM6B: $\mathbf{2 0 0} \mathbf{V A C}$ 1 amp: 3 phase; 400 cecles, B000 MPM.. $\$ 12.50$ ea. EASTEERN AIR DEVICES, TYPE J3IB: 115 V. 400 AIRESEAARCH: AC induction, $200 \mathrm{~V} ; 3$ Plase, 400 Cxcle, 2 H.P.; 11,000 RPM; 8 amps.
Crele, 12 H. P. 6500 RPM ; 1.5 mmps Electric Motor: PNT-1400-A1-1A Seri... $\$ 25.00$ 208 V., 400 Cycles, 3 Phase Kearfott Corial No. 207.

SERYO MOTOR 10047-2-A: 2 Phase
SRVO MOTOR 10047-2-A; 2 Phase 400 Cycle, with 40-1 Reduction Gear $\$ 17.50$

SMALL DC MOTORS

GENERAL ELECTRIC \#5BAIOAJI8... 27 YDC;
 DELCO $\# 5069625 \ldots 27$ VDC; 120 RPM; Governor

 duction gears J. OSTER: serles reversible motor iFOOt HP. 10 , 000 R1PM; $271 / y^{2}$ "VDC; ${ }^{2}$ amps; SPERRY \quad \#806069 approx
Gizeneral
Electric
Is
 General Electric. Mod 5 Bisiofis3: 12 oz. Inches
 anuss 8 oz. inches torque; 145 RIM ; shunt wound 4 leads: reversisc Pic DC GENERAL ELECTRIC DC MOTOB MON. SBA10AJ-

115 VOLT GENERATORS
Brand new Eclipse generators: 115 single phase; 800 cycles, $2400-$
4200 rpm. DC output is 30 volts 4200 rpm. DC output is 30 volts at 25 amp. is and is self-excited. $\$ 29.95$

MICROPOSITIONER

Barber Colman AYLZ 2133.1 Polarized D.C. Relay Double Coil Difterential sensitive Alnico P.M. Polar: ized fleld. 24 V contact. 5 amps; 28 V . Used for remote positioning, synchronizing, control, ete. 120 ca

BLOWER

Eastern Air Devices, Type J31R: 115 volt: 400-1200 Cycle: single phase: variable frequency; continuous

BLOWER: Mfg. Tohn Oster Type C2A-1B; 27 VDC; 63 Series Wound $\$ 9.95 \mathrm{ea}$ BLOWER ASSEMBLY 115 Volt, 400 Cycle, Westinghouse Tyde FL. 17 CFM ,
complete with cadacitor. New.

TEST EQUIPMENT TS-45/APM For measuring relative output power and transmitted rea. of radars and adjusting receivers. Components of the set are a thermistor-type power meter, coaxtor, line-type freq. meter, a choke coupling. Set is designed for continuous wave operation, with jack provided for external puls-
Electrical Characteristics: Freq. Range.
Alrborne Electrical Characteristics: Freq. Range. Alrborne Signal input: if power; minus 10 to plusi 37 dbm Signal output: C. W. av. power 10 mw (wlus 10 dbm). Attenuator: Calibrated, adjustable $0-30$ ab loss, Power: $110-130$ volts, $60-2400$ cycles, 55 wath, 150-30. Batteries: None. Mechanical Characterlstics:
 -Band $\cdots \cdots$ TS-13-AP; 3 cm . Signal Generator, TS-35 A/Al'; X-Band Signal Generator, pulsed, calihrated power meter, frequency meter, calibrated at-
tenuator, 110 V., $60-800 \mathrm{cps} \$ 395.00$

COMMUNIGATIONSEOUIPMENTCO.

PICROWAVE COMPONENTS

'S Band,"

RG48/U Waveguide
10 CM ECHO BOX: Tunable front $3200-3333 \mathrm{Mc}$. For sheck etce. Complete with pickups, for spectrum analy 10 CM ANTENNA ASSEMBLY: $3000-3300$ ie $\$ 27.50$ bolic Dish. 29 inch Diam. Fed from dipole Rotation 20 Deg. Azilluth at speeds of 20 and 10 RPM. Tilt:
 tained from Azimuth potentiometer. Net weight 65 POWER SPLITTER for use with type 726 or any 10 ant Shepherd Klystron Energs is fed from Klystron DIRECTIONAL COUPLER. Broadmand S22.50 EACH Coupling, 20 db . with std tlanres, Naty \ddagger CABV47ALHTR, LLGHTHOUSE ASSEMBLY. Parts of RT3: w/assoc. TT Carity and Typ
 BEACON LIGHTHOUSE cavity D/O UPN-2 Beacon MAGNETRON TO WAVEGUUDE COupler Duplaxer Carity, wold plated
and sox complet" with tube and tung plongMONALLY KLYSTRON CAVITIES for TOTis or 2 K 28 Choke Flanke Silver Plad Coax "Doorknor" Adapter ASIAA AP. 10 CM Pick up Didole with HOLMDELLTO-TYPE '. $\mathrm{N}^{\prime \prime}$ Male Adapters, 1.F. AMP. STRP 30 MO, 30 d.b. kain, 4 MC BEACON ANTENNA, AS31/APN-7 in Lucite S 24.0 ANTENNA, AT49A/APA: Broadband Conic $\$ 22.5$ "E" PLANE BENDS. 90 deg. less flanges

X Band-

RG 52/U Wareguide
3 CM ANTENNA ASSEMBLY: Uses $17^{\prime \prime}$ paraboloid 5 deg. in both Azimuth and eleration Beam pattert over 20 deg, at 35 scans mer minute Elevation Scan
orver 2 deg. Tilt: ores 24 deg. $\$ 85.00$
 Main Guide is $6^{6 \prime \prime}$ Long. with 90 log "E" Plane
bend at one end, and is fitted nith Stu. UG 39/UN 40 flanges. Coupling flyure: 20 db Noninal. $\$ \$ 22.50$

3CM Motor-Driven Echo Box

 any (a is 30,000 . Tuning range 80 me hotor operates from ${ }^{24}$ inlut

HORN FEED, Mounted at end of I' run. Designed VSWR Measuring Section. Consisting of of, $\$ 15.00$

 Rotating-joints supplied either with or length $\$ 7.50$ miounting. With UGite Hanges.each, s17.50 Bulkhead Feed-thru Assemily. Pressure Gauge Section 15 lb . gauge and press nipole Pressure Gauge, 0-15 1bs Directional Coupler, UG-40/U Take ofr 20db. 90 degree elbows. "E plane $21 /$ In $^{\prime \prime}$ radius.
Microwave Receiver, 3 CM Sensitivity:
Complete with L.O. and AFC Mixer and 13μ Watts. Input Circuits, 8 I.F. Stages give approximaveguide width; 2 Mit. Mses latest tyve AFC. Viduo Band. plete with all tubes, including $723 \mathrm{~A} / \mathrm{B}$ Local OscilADAPTER, waveruido to tyve N . UG 81 U, $\mathrm{D} / \mathrm{D} / \mathrm{TSS}$ ADAPTER, UGG-163U round cover io special ist.
Flange for TS- 45 , etc

11/4" $\times 5 / 8^{\prime \prime}$ WAVEGUIDE

VSWR SECTION, B'L, with 2-type "N" pickups

 Slug Tuner Attenuator w.E. guide. gold plated $\$ 5650$ coupling .al coupler. Tspe ' N " Takeoff ${ }^{25}$ db. B1-Directional Counter, UG-52. Takeotr 25 db waveguide-to-Type "ion Adapter. Broadband.... $\$ 24.50$

I. F. AMPLIFIER STRIPS

modet so: 30 Moctain figure is 120 db . Bandwistur

 Model APS.4: Miniature IF strib, using 6.AK 5 's 60 . 1 c center Fret. Gain: 95 db at Mandwidth of 2.7 Mic.
Less tubes......................................$~$ 45.00

15 KV CONTACTOR

VARISTORS

D. 167208 D. 171858

$\$ 1.35$	D. 171812
$\$ 1.42$	0.172155
$\$ 1.35$	0.167176

$\$ 1.63$
$\$ 150$
$\$ 1.2$.

THERMISTORS

D-164699 Bead Type DCR: 1525-2550 Ohms @ 75 Deg. F. Coefficient: 2% Per. Deg. Fahr. Max. Curient
 D-167613 Disk Type DCR: 355 ohms @ 75 Deq. F.P. ${ }^{25}$ 0.166228 Disk Type $71200 \mathrm{hms} @ 60^{\circ} \mathrm{F} .4220 \mathrm{ohms}$ @ $80^{\circ} \mathrm{F} .2590 \mathrm{hms} @ 100^{\circ} \mathrm{F}$., 1640 Ohms @ $120^{\circ} \mathrm{F} \$ 1.35$

-IN STOCK_			
AlA	APS-4	APT-4	SJ-1
APA-9	APS-6	MKIV	TAJ
APA-10	ASD	MKX	TBK
APN-3	ASH	RC145	TBL
APN-7	BG	RC148	SCR590*
APN-9*	DAS \dagger	SO-1	SCR521
APS-9	DBS \dagger	SO.8	SCR518
APS-3	APT-2	SG-1	
*COMPONENTS. \dagger LORAN EQUIPMENT			
TS-10			TS. 159
TS-36			TS-268
TS-47			TS-270

MAGNETRTONS

Type	Freq. Range (MC)	Peak Power Out (KW)	Duty Ratio	Price
23214	3345-9405	50		\$8.75
2122	3267-3333	265		7.50
2.27	2965-2992	275	. 002	19.95
2131	2820-2860	285	. 002	24.50
2132	2780-2820	285	. 002	28.50
$2138 *$	3249-3263	5		16.50
2339	3267-3333	8.7		24.50
2148	9310-9320	50	. 001	24.50
$2 J 49$	9000-9160	50	. 001	59.50
2156**	9215-9275	50	. 001	132.50
$2.61+$	3000-3100	35	. 002	34.50
${ }^{21162 \dagger}$	2914-3010	35	. 002	34.50
3531	24-27KMC	50	. 001	85.00
434	2740-2780	900		125.00
5323	1044-1056	475	. 001	49.00
7008	690-700	40	. 002	22.50
700 D	710-720	40	. 002	39.75
$706 E Y$	3038-3069	200	. 0001	32.50
706CY	2976-3007	200	. 001	32.50
725-A	9345-9405	50	. 001	Write
730-A	9345-9405	50	. 001	24.50
4338	3550-3600	750	. 001	169.45
*-Packaged with magnet. \dagger-Tunablejp ever indicated range				
KLYSTRONS				
$\begin{aligned} & 732 \mathrm{~A} \\ & 237 \mathrm{~A} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \$ 12.50 \\ & 19.50 \end{aligned}$	2K25/723	/B	$\$ 27.50$ 17.50

70 WATT MAGNETRONS

 These tubes provide a simple, ruged, inexpensivesource of C.W.energy. An inex pensive power supply
is all that's reauired.

CHARACTERISTICS:

Heater: 6.3 V

 Anode V . 1250 Pk. Input: 200 watts Power out: $70 \mathrm{w}, \mathrm{cw}$Anode Each thbe is wackuked with in in interral magnet, TYPE RANGE (MC.) TYPE RANGE (MC.) OK
QK
62
6.

QiK 61 RANGE (MC)

MICROWAVE ANTENNAS

AT+9/APR-Broadband Conical. $300-3300 \mathrm{MC} \cdot \underset{58.95}{T y}$
 N Fitting Coax Feedic retlectors approx, range 2000 to 6000 Mc . Dimensions $41 / 2^{\prime \prime} \times 3^{\prime}$. New..... \$100.00 Dipole for above. . 125 APR. $1000-3200$ mic. Stub sup- $\$ 12.00$
Cone Antenna. As 120 ported with tyde ASAength of coax and "N" connectors.......... $\$ 4.50$
AS4GA/APG-4 Yasi Antenna, 5 element array. . $\$ 22.50$ 50^{\prime} Parabolic Reflector Spun Alunlnum dish.... $\$ 4.85$ APS. 34 I'llbox Antenna, waveruide input: $24,000-$ $27,000 \mathrm{MC}$
SCR
584, Dishes Ierforated. Metal Construction $\$ 185.00$

PULSE NETHORKS

 CKT Dual Unit; Unit 1, 3 sections, 0.84 Microse
810 PI's. 50 ohms imp.; Unit 2, 8 Sections, 2.24 microsec, 405 PPS 50 ohms imp............ $\$ 6.50$
$7.5 \mathrm{E} 3.1-200 \cdot 67 \mathrm{P}$. 7.5 KV ' E . Circuit, 1 nicrosec. 200
Pr'S. 67 olims impedance 3 sections. $\$ 7.50$
 7.5E3-3-200-67P, 7.5 KV, "E' Circuit. 3 microsec, 200

 G.E. 25E5-1-350-50 1י2T E, SKT 1 Microsec ($) 35$ PPS. 50 OHMS K DCR. 9000 Vac test............................ $\$ 14.95$ G. E. $6 \mathrm{~EB}-5-200050 \mathrm{P} 2 \mathrm{~T}: 6 \mathrm{KV}$., " \mathbf{E} " Circuit 0.5 usec

PULSE EQUIPMENT

MIT. MOD. 3 HARD TUBE PULSER: Output Pulse lower 144 KW (12 KV at 12 Amp. ${ }^{\text {D }}$ Duty Ratio:
.001 max. Pulse duration: $5,1.0,2.0$ microsea Inpui TPS-3 PULSE MODULATOR. PK. power 50 amp. 2 . $\mathrm{KW}(1200 \mathrm{KW} \mathrm{pk})$: puise rate 200 PP'S. 1.5 microsec. pulse line impdance 50 ohms. Circuit series

PULSE TRANSFORMERS

RAYTHEON WX 4298E: Primary 4KY 1.0 USEC,
 WECO: KS 9948 : 1Primary 700 ohms; Sec: 50 ohms
Plate Voltage: 18 KV . Part of APQ-13........ $\$ 12.50$

| | GE \#K-2449A TRANS.
 irimary: 9.33 KV , 50 ohms Imp. Secondary: 28 KV, 450 ohms. Pulse length: $1.0 / 5$ usec @ $635 / 120$ I'r'S, lik Power Out: 1.740 KW Pitlar: 1.5 amps (as shown). $\$ 62.50$ |
| :---: | :---: | GE $\# \mathrm{~K}-2748$ - A. 0.5 usec @ 2000 Pps . Pk. Pwr. out

is 32 KW impedance $40: 100$ ohm output. Pri. foltis

$$
\begin{aligned}
& k \\
& u \\
& u \\
& u
\end{aligned}
$$

$$
k
$$ $\mathrm{K}-2745$

$14 / 1$

K-2461-A.

ondary. Prinary $31 / 2.6 \mathrm{KV}-50$ ohms (iline). $\$ 2.50$ usec @ 600 PPS. Pk. lower out: $200 / 130 \mathrm{KW}$ Biflar: 1.3 Amp. Fitted with magnetron wel. $\$ 39.75$
UTAH X-151T-1: Mual Tranformer, 2 Wggs. per sec
tlon 1:1 Ratio per sec 13 MH inductance 30 ohms UTAH X-i50T-1, Two sections, 3 Wdgs. per section
 K. DCI 100 Ohms. .904695.501: Ratio $1: 1$. Pri. Imp. 40 Ohm, \&ec. Im

 RAYTHEON: UX8693, UX5986, KS UTAH $\quad=9262$, with Cracked Reads, but will operate UX 8693 rated (SCS $\# 2 Z 9627.54$) 3 wdgs, 32 turns $\$ 18.00$ wire. DCR is: $362 / .372 / .4$ ohms Total voltage 2500 D. 166173 : Input: 50 ohnis
Wdgs. Freq. range 10 kc- 2 mc . $\mathrm{P} / 0 \mathrm{AN} / \mathrm{APQ} *-13$
$\$ 12.50$ K. 2450 : Irlise-inversion auto-transpormer: primary 13

JAN WAVEGUIDE FLANGES

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. $\mathbf{2 5 \%}$ DEPOSIT WITH ORDER. BALANCE C.O.D. RATED CONCERNS SEND P. O.

131 Liberly St., New York 7, N. Y. Depf E-5 Chas. Rosen Phone: Digby 9-6124

FILTER CHOKES

COMPASS COMMUNICATIONS $C O$.

A Division of COMPASS ELECTRONICS CORP.

A WELL-INTEGRATED ORGANIZATION WITH FACILITIES AND TRAINED PERSONNEL FOR-
 - DESIGN, MODIFICATION, PRODUCTION, AND TESTING OF COMMUNICATIONS AND
 - SUPPLY AND DISTRIBUTION OF ALL TYPES OF EQUIPMENT AND TUBES

 RADAR EQUIPMENTWe Maintain Our Oun Fully Equipped Testing Laboratory to Test and
Guarantee Anything We Sell

THIS MONTH'S SPECIAL OFFERS

TS-69/AP FREQUENCY METER, Range 3401,000 mes. Uses 0-200 microammeter; Excel-SN-RADAR- 10 cm -Compact, light and portable, ranges of 5 and 20 miles. Uses 5CPI but we can supply converter for dc operation $\$ 850.00$ ea
ANTENNA ASSEMBLY-Reflector is a lightweight parabolic cylinder, Ass'y has both man
ual and motor drive. Ideal unit for labs, class room demonstration, small craft, etc.
$\$ 99.50$ ea

TS-35A/AP-X Band Signal Generator and Yower Meter. Input-110/1/50-1200 cps. Can generate and measure RF power. MAG- $\mathbf{1 0} \mathrm{cm}$. remarkable llnk radar, portable, operated from 6 volt battery, uses folding antenna and tripod. A pair at........ $\$ 1750.00$ APS-3-3 cm-Airborne radar for search and
 APQ-13-Very late model airborne radar set, complete and new. One only at \$2,950.00 SCR-545-Complete radar set, less vehicle, an tenna and power plant, pretty fair condition,
sold as-is at $\$ 1,375.00$

MOTOR GENERATORS CONVERTERS - INVERTERS DYNAMOTORS

We Have One of the Largest Stocks of Electrical Conversion Equipment in the East, including All Types of Rotating Machinery and a Variety of DC and AC Magnetic Starters and Controllers from 100 Watts to 100 Kilowatts

SPECIAL PURPOSE and TRANSMITTING TUBES

```
THOUSANDS OF SPECIAL NETWORKS AND PULSE TRANSFORMERS JUST RECEIVED. SEND YOUR INQUIRIES TODAY.
```


We Have Equipment in Quantity:

500 Sets SCR 510 and 610
250 Sets SCR 508-528
250 Sets SCR 608-628
50 Sets SCR 808-828
200 Sets MN- 28

200 Sets SCR-269
200 Sets SCR-284
30 Sets TCS
200 Sets BD-71, 72 Switchboards Etc. Etc.

MARINE AND AIRCRAFT COMMUNICATIONS AND NAVIGATION EQUIPMENT
WHOLESALE, INDUSTRIAL AND INSTITUTIONAL SALES ONLY OUR EXPORT DEPARTMENT AVAILABLE FOR SPECIAL SERVICE TO OVERSEAS CUSTOMERS

393 GREENWICH STREET

All phones: BEEKMAN 3-6510

NEW YORK 13, N. Y.
Cable Address: COMPRADIO, N. Y.

COAXIAL CABLE \& CONNECTORS:

CD-1071 CORD-With PL-259 Phigs cach end he
movable vinylite Covering over lyuks. 50 , ohm coax Thorable vinylite Covering over Plugs, 50 (hlm coax.
2 lit long. Price: 59 c Each Or Lous of 10 @

 RG-8/U (STVCIAL) 51.5 ohm.
 Rolls (or more) @ $61 / 2 c$ per ft.
RG. $34 / \mathbf{U}-71$ olim. 145 ft length.

INVERTERS:

5D2INJ3A-27 YDC input; output 110 volt 400 cycle. PE 109 D Input 13 s VDC 29 A ; out int 15

 PE-115 or PE. 206 Innut 28 VDC
Yolts 800 cycle i .2
Amps.
 7 Amps. 1 Ihase 800 cycie Used: $\$ 39.95$
MOTORS: 24 VDC Reversible Motor MOTOR - 3.7 RPM, 40 lb .

M10tor
$5069-267$
27

 ${ }_{1}$ Price GEAR HEAD tor alove notor Ball Bearing Geared COMBINATION: Iotor \& Reduction Gear... $\$ 10.00$ 21 VAC OPEN FRAME-20 R1'M Double Shaft Back
 24 VDC SEVERSIB6 24 VDC REVERSIBLE SOOMD Mith Maknetic

 Mrir-Tornue $0 z$ in 75 ; Watts- 9 ; with variable Multiple Disc Coder Wheel and Micro Switch mount-
ed on Rracket. Assy. Holzzer Cabot Motor Type RWC GEARED HEAD MOTOR-HPaVY Duty, 24 VDC 8

FREE SURPLUS CATALOG Full of Real "BUYS"!
Send for your FREE cony now!

RECORDER, SIGNAL GENERATORAMPLIFIER, \& Voltage REGULATOR

RECORDER, SIGNAL GENERATOR-AMPLIFIER. AND VOLTAGE REGULATOR UNIT OF BC-968 TRAINER-Used for assimulated Radar identificagenerates various AC ware forms. Recorder was used to record difference in scope and generator ware forms as thided by oderator, 110 Volt 60 eycle operation
with Manual, Shipping Weight; 270
Tin OR AVAILABLEAS SEPARATE ITEMS: SIGNAL GENERATOR-AMPLIFIER: Can be insted for various wave forms, 110 Volt 60 cycle operation. Voltage regulated supply 300 Volt 100 MA . 6.3. 3, A: ${ }^{5}$ Volt ${ }^{3}$, A. Power Supply, ${ }^{15}$ Tubes: $1 / 7 \mathrm{~A} 6$, With Tubes an
Manual $\$ 19.95$
RECORDER-Completo with 115 V , 60 crele $1 / 125$
HP Gear Head Motor, Veeder Counter, $\$ 19.95$
Pen, itc. and with Manual., CONSTANT VOLTAGE REGUUAATOR- \$14.95

SOUND POWERED

 HEAD AND CHEST SET
NAVY TYPE-NO Latteries required.

 Ideal for TV Antenna instanlations,and many other uses. 20 Ft. Cord. Used Tested. Uses. Each: $\$ 5.95$ wisted, rubber covered, ${ }^{\text {medium }}$ Weight: W - 130 . 16 per ft. FIELD WIRE; 2 Cond. twisted, weatherbroof,
heary duty. $W-110,525$ Ft. Holl $\$ 4.75$

TRANSFORMERS- 110 V. 60 Cycle Pri.

TELEPHONE RELAYS
 Large Stock of

CLARE, TYPES C D \& E
COOKE, AUTOMATIC-ELEGTRIC
ALL TYPES of COILS and PILE-UPS Send Us Your Specs. for Our Quote
CLARE TYPEC STANDARD SIZE

CLARE TYPEGTHALF SIZE
SENSITIVE TELEPHONE RELAYS

	Coil	Contacts	Will Close at	Price
	$\underline{6500}$ ohms	2 A	5 MA	\$2.50 ea
	15800 oh	3A	4 MA	2.50
3	5800 ohms	2B-1C	MA	2.50
4)	4850 ohms	1 C	4 MA	2.50
4)	3600 ohms	1 C	6 MA	2.00
5)	4850 ohms	1 A	5 MA	2.00
6)	3300 ohms	(None)	ACTUATOR	1.50

operation on ilov. D. C.

1) 1300 THER TYPE C TEL, RELAYS 1) 1300 ohms $2 \mathrm{AR-1B} \quad 24$ or $48 \mathrm{~V} \quad \$ 2.75 \mathrm{ea}$

2) 200 ohms
=Norm. ODen CONTACT SYMBOL
CLARE TYPE A Tel. Relay Coil- 110 Volts AC 60 cy . Contacts-3PDT (3 form C) Price- $\$ 3.50 \mathrm{ea}$. Signal Wheelock Relays \#KS9665 Coil- 2,000 ohms
Contacts-1A $1 \mathrm{~B}, 1 \mathrm{C}$ Oper, at 9 Ma Price- $\$ 2.75$ ea GM $\# 13017$ Relays, 24 volts 150 ohm, Contacts3PDT 10 Amp..................... Price $\$ 2.00$ ва MINIATURE TEL. RELAY, 300 ohnt, 24 volt FIVE Prong CR-2791 G.E. Plug In Relays, 1) C-103C25 2200 ohms S1'in ${ }^{4.5}$ MA... $\$ 4.00$ ea. Bulletin \#700 Allen Bradley Contactors $110 \mathrm{~V}^{+} \mathrm{AC}$
G0 cy. D.1'S.T. N.O. 25 Amps........ $\$ 7.50$ ea.
 1) 24 V . 260 ohms DPDT
100 ohms DPST NO $\begin{array}{r}\$ 1.25 \text { ea. } \\ 1.00 \mathrm{ea}\end{array}$. Clare SK-5032 (Herm. Sealed) Plug-In Relays. Coil - 30 ohms 6 volts Contacts-DPDT. Price $\$ 4.00$ ea. SIGMA TYPE 5F SENSITIVE RELAYS. Has two
C ${ }^{2}$ UIISSC

CARRIER EQUIPMENT

Western Electric CF-IA 4-channel carrier telephone EE-101-A 2-channel $1000 / 20$ eycle carrier ringers. CFD-B t-channel carrier pilot regulated telephone terminals complete with four channels $1000 / 20$
cycle ringing. CFD-B 4-channe
ilat regulated telephone ropeat C-42-A V. F. telegraph in from 2- to 12-channel terminals.
FMC 1 or 2 channels carrier telephone terminals. automatic regulation, duplex signaling each channel. Carrier frequencies above 35 KC . Ideal for
adding channels above tyoe " \mathbf{C} ". Complete engineering and instalation services

RAILWAY COMMUNICATIONS, INC Raytown. Missouri
Telephone: FLeming 2121

AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to mobile accessories, 100 discone and other antennas, wavetraps accurate, compact - the aristocrat of lab receivers in this range. Write for data sheet and quotations.
We have a large varicty of other hard-to-get equipment, in cluding microwave, aircraft, communications, radar; and labo ratory clectronics of all kinds. Keleket alpha scalers and chambers, dosimeters and other nucleonics now in stock. Quality standards maintained
NEW TS-13/AP X-BAND SIGNAL GENERATORS with manual $\$ 850.00$; TS-175/U Frequency Meter $85-1,000 \mathrm{Mc}$. $\$ 625.00$;
T-47A/ART-13 Transmitters $\$ 450.00$ many more!
ENGINEERING ASSOCIATES
434 PATTERSON ROAD
25% Deposit on C.O.D. Orders

EAIR RADIO SALISS • "ungr, "Atio"

DAYTON 9, OHIO

WHOLESALE ONLY

ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT HYDRAULICS

RADIO \& ELECTRONIC SURPLUS 13933.9 BRUSH STREET

Detroit 3, Mich. TO 9,3403

We STOCK for IMMEDIATE SHIPMENT one of the MOST COMPLETE inventories of SPECIALPURPOSE, TV, \& RADIO TUBES. We offer fully guaranteed, STANDARD BRANDS at the LOWEST PRICES, consistent with HIGHEST QUALITY. SPECIAL ATTENTION to EXPORT ORDERS.

WANTED

ARC-1, 3, ART-13, BC-342, 348, APS10, 15, TS-13, 35, 146, 147, 148, 174, 175, 263 ETC. All SCR, BC, AN, TS. ALL TUBES.

MOBILE RADIO

SCR-508
10 Channel FM Keceiver and Transmitter. Frequency Range $20-27.9 \mathrm{mc}$. Receiver Is manually tuned, transmitter is crystal controlled. Consists of $2 \mathrm{BC}-603$ Receivers, $\mathrm{BC}-604$ TransControl, A- 62 Phantom Ant Headsets BC-606 and antenna Input 12 v DC. SCR-608 also

SCR-291A

$1.5-30 \mathrm{mc}$ automatic direction finder. This equipment used to take bearings on transmitters within tis freq. range. Complete equipments avallable comprising the following: BC-1147A Rec., PN 31, Power Panel, IKC-1159, automatic bearing goniometer. RC-223 antennae system consisting of 5 masts with legs, mransmitter, cables, 115 v inverters calibrating erator Complete equipment overhauled and guaranteed ..

VE REMOTE PPI INDICATOR

This is a remote PPI indicator "7 in." screen for use with any Radar for remote viewing. Contains all indicating circuits and is driven
by the main Radar. Input $115 v 60$ cyc. POR

AN/APN-3 SHORAN EQUIPMENT
This equipment is used for navigation. surveying, and automatic blind bombing. Operates in conjunction with AN/CPN-2 ground beacons. 290 mc . The accuracy is plus or minus 10 feet up to its range of 300 miles. We can supply bembing computers. if desired we can supply APN-3 spares. AN-CPN-3 ground-beacons also available

SCR_-536 HANDI TALKIE

Freq. range 3.7-5.5me crystal controlled battery operated handitalkie. The range of this equipment is approximately 2 miles. We can its range. Completely reconditioned and Within its range. Completely reconditioned and guar-

87-17 124th STAEET
Richmond Mill 18, New York Phone VIrginia 9-8101-2-3

AN-GSQ/IA SPEECH SCRAMBLER

This is a very compact unit designed to be at tached to either a radio or telephone circuit utilizes coded speech or code. This equipment ment. Unless the properly numbered card is inserted on the receiving end thered card is not be unscrambled. This provides and can ent privacy system complete an excel available consisting of: scrambler code card set, cables, etc. This equaipment can be used with any field or airborne communications equipment.
Mfg. Western Electric POR

AN/TPL-3

Portable early warning radar system. Operating frequency 600 mc . Uses a $7^{\prime \prime}$ P.P.I. and a $5^{\prime \prime}$ A scope. Search ranges $20.60,120$ miles.
Transmitter power output $200 . \mathrm{Kw}$ coverage on aircraft $30,000 \mathrm{ft}$. Range accuracy 2 miles. Azimuth accuracy 2 . Has complete anti jamming facilities. Complete in-
stallations available

SCR-522
lirborme Transceiver, Freq. 100-156 Mc. This unit is crystal controlled 4 channel. Power Rutput approx. 10 watts. Consists of: BC-624 HC-602 control box, PE-94 dynamotor antenna, plugs $\$ 187.50$

AN/TPQ-2 K-bAND GROUND RADAR

Very late model set. Used to plot trajectory of artillery and mortar shells and to enable counter battery fire with extreme accuracy. This Radar is so accurate and sensitive it will pick up movements of personnel on the batflefield. It can also be weather forecasting. Mfg; WESTERN EI EC TRIC. Write

Prices FOB NYC. Rated firms open account. Prices subject to change without notice.
CABLE: Radalab, NY
TELETYPE: NY-4-4361

AN / APR-4

$38-4000 \mathrm{mc}$ precision receiver consists of receiver and five tuning units to cover the full in me. Input 115 v 60 cyc.

RF-3A/AP X-BAND FREQUENCY SWEPT MANUALLY TUNED ECHO BOX
Frequency range $8500-9600 \mathrm{mc}$. This equipment consists of an echo box with a motor mounted on one end which provides a frequency swept response from the echo box enabling it to be easily observed on the Radar plied in 110 v 60 cyc AC.POR
AN/ART-13 AUTO-TUNE AIRCRAFT TRANSMITTER
This equipment covers the frequency range of $2-18 \mathrm{mc}$. and is automatically tuned 10 channel. Power output is 75 watts CW. 60 watts T47A transmitter. dynamotor power supply. control box, racks, antennae loading unit. etc.

AN/PPN-1 REBECCA GROUND BEACON

This equipment operates on 215 mc and is used in conjunction with AN/APN-2 or SCRcarcying the APN-2 to home on it. This equipment is completely poriable and operates from a 12 volt battery. Complete installations ANail. APN゙-2 and SCR-729 equip. avail............... AN/APN-2 and SCR-729 equip. avail, 11C-348R CAA and Military approved model.
POR AN/APT-5 $300-1200 \mathrm{mc}$ transmitter $\mathbf{3 0}$ WORts
wutput AN/APR-5 1000-3100 me receiver $\$ \mathbf{1 6 9 . 5 0}$ BC-639 $100-156 \mathrm{mc}$
AN/APS-10 3 cm airborne Radar.

Many Other Radar and Communica-

 tion Equipment Available. Write us for Quotations.Calvert Electronics 1 1B5
1 F7G
$1 H 6 G$
1 LA5
1 LC5
1 LG5
1 LH4
$1 P 5 G T$
$105 G T$
$9 A 3$
$9 \times 2 / 879$
$5 Y 4 G$
$5 Z 3$
$5 Z 4$
$6 A K 5$
$6 A L 5$
$6 A S 7 G$
$6 F 5$
$6 F 6$
$6 G O G$
1 1B5
1 F7G
$1 H 6 G$
1 LA5
1 LC5
1 LG5
1 LH4
$1 P 5 G T$
1 Q5GT
2A3
$9 \times 2 / 879$
$5 Y 4 G$
$5 Z 3$
$5 Z 4$
$6 A K 5$
$6 A L 5$
$6 A S 7 G$
$6 F 5$
$6 F 6$
$6 G 6 G$

为.45
.99
.60
.64
.64
.89
.79
.64
.95
.99
.55
.59
.59
.43
3.45
.64
.65

MICA Transmitting CAPACITORS

59 Fourth Avenue
New York 3, N. Y.
OR egon 4-3027
Cable Address "CALVERTRON"

71 A 50	2C34....... 95	93D4....... . 44
75........... . 35	2C51 3.95	1001H 6.50
76........... . 45	2E24....... 1.75	101D....... 1.19
	2J21........ 1.95	101L....... . 1.19
SPECIAL PURPOSE	21914 2.35	VU-111S ... 1.65
TRANSMITTING	2592......... 1.75	1148....... . 25
	2596 5.95	
KC4-3 19.00	2J62........ 17.75	FG-172 . 17.50
AMPEREX	${ }_{2 K 55}^{2 K 5 ~ W r i t e ~}$	
in original	2×2/879 22	311A W.E... 2.95
wooden crates	${ }^{38 P 1} 19 .75$	311 B W.E..... 3.75
Equiy. to	3B24W 9.95	316A...... 39
Westing.	3E99.... . . . 9.50	371B...... 65
WL-616 or	4C27 9.95	373A W.E... 1.90
Machlett-	4J95 99.50	374A W.E.... 1.90
ML-1000	5CP1 3.65	407A W.E.... 3.95
	5D21 10.50	408A W.E... 1.90
1824......... 6,76	78P7........ 3.75	416A W.E.... Write
$1835 \ldots \ldots . .4 .85$	15R.......... 33	421A W.E... 9.75

Coib working voitse

Reflictil PRicis

TYPE 60060 CYCLE TIMNG MOTOR
Manuf. by Synchron for 115 volt 60 cycle use. Synchronous output speed is 1 rpm . $\$ 1.25$ ea.
S-273 $\$.95$ ea. per 100
TYPE PBD-39853 SERVO MOTOR AND RATE GENERATOR

Eclipse-Pioncer two phase, low incria, induction type designed for a nominal 115 volts 400 cycles on each phase. The rate generator has two windings, one of which is excited with 115 volts 400 cycles (or 60 cycles) and the other winding supplies the rate signal of identical frequency but with an amplitude proportional to motor speed. S-414 \$29.50

G-E TYPE 70G23 PHASE CHANGING TRANSFORMER

Converts 115 volt, singie phase, 400 cycle power to three phase 115 volts. Output is 48 va ot .33 power factor. Designed to operate small 3 phase air-
craft instruments and gyros from a single phase power source. S-364 \$1.75

REVERE CAMERA SPLIT FIELD SERIES MOTOR

$24-28$ volts D.C ideal for many applications because of its compactness. Measures $2^{\prime \prime} \times 2^{\prime \prime} \times 2^{\prime \prime}$ with a $1 / 4^{\prime \prime} 9$ tooth pinion extending $1 / \mathbf{a}^{\prime \prime}$. Two leads for ease in reversing with frame being a common ground. S-3'15
DIEHL TYPE FO52-2 SHUNT MOTOR
27.5 volt $d-c$ at 2 amp . developing 3000 rpm. Used by Sperry (No. 803010) as a "follow-up motor". Semi open construction with four leads brought out. Base mounted with a length of $3-5 / 16^{\prime \prime}$. Shatt is $7 / 32^{\prime \prime}$ diam. and extends $3 / 4^{\prime \prime}$. S-363 \$4.75

LELAND TYPE 10563-115 VA INVERTER

Consumes 12 amp. of 28 volts when delivering 115 va of three phase 400 cycle power at 115 volts. Has a .75 power factor. Armature speed is 12,000 rpm. Both voltage and frequency are adjustable with variable resistors. Because of its light weight (only 8.7 lb) this is ideal for numerous uses where three phase power is required. Size $8-1 / 4^{\prime \prime} \times 4-5 / 8^{\prime \prime} \times$ $5-3 / 4^{\prime \prime}$.

S-159 \$59.50

PRODUCTS CO.
1086 Goffle Rd. Hawthorne, N.J.
HAwthorne 7-3100

GREATEST BARGAINS

CHECK AND COMPARE OUR COMPLETE STOCKS
All Equipment is Overhauled, Tested \& Guaranteed Unconditionally!

\begin{tabular}{|c|c|}
\hline ANTENNAS \& N0. 1126

\hline \& New, Original Boxes-Only

\hline ACCESSORIES \& \multirow[t]{4}{*}{Input 115V AC, 50/60 cycles. Output $0-135 V$ AC. Max. amps. output, 15 amps . 2 KVA. Overall size $83 / 16^{\prime \prime} \times 81 / 16^{\prime \prime}$. With knob and scale. Send 30% deposit with order.}

\hline \&

\hline \&

\hline RS-38 MIC
MC-253 MIC

M \&

\hline MARKER BEACON EQUIP. \&

\hline \& X-BAND SIGNAL GENERATOR

\hline \multirow[b]{3}{*}{HI-VOLTAGE CONDENSERS} \&

\hline \& \multirow[t]{9}{*}{| Portable test set T5-45 for testing ASK, AIA, AN/APS-3, N $\mathbf{2 9}$ |
| :--- |
| AN/APS-4, AN/APS-6 and AN/ APS-15 radar equip. Range of 9300 to |
| APS-15 radar equip. Range of 9300 to |
| 9450 megs to measure ${ }^{\mathrm{xmtr}}$ treq. and power output. Also a CW sig. generator |
| in revr. tests and pulsed sig. gen. Overall |
| accuracy 1.5 db for Attenuator settings |
| below 16 db and 2.5 db for settings above |
| 16 db . Attenuator alone accuracy 1db |
| (below 16 db) and 2 db (above 16 db). |
| Power source 107-127 VAC. 50-1200 CPS |
| with no appreciable change in accuracy. |
| New |}

\hline \&

\hline 4mfd 1.5KV 522.503 mfd 4 KV . 6.75 \&

\hline 10 mfd
5 mfd
2 KVV \&

\hline 8 mfd 2 KV 6.50 1 mtd 20 KV 49.50 \&

\hline \&

\hline \&

\hline HANDIE TALKIES \&

\hline BC-611-part of SCR. 536 . rge quantities-Price on request! \&

\hline
\end{tabular}

Send 25% deposit with all orders. Minimum order \$10! Shipped best way unless otherwise specified
Write for FREE CATALOG!

RADIO \& ELECTRONICS

Dept. E-2033 W. Venice Blvd., Los Angeles 5, Calif. Phone: REpublic 3-1127

THE TS-175 IS AVAILABLE NOW

The justly famous UHF Heterodyne Frequency Meter TS-175/U is now available from WESTON LABORATORIES. Of new manufacture, this improved equipment operates over the range of over $80-1000$ meg. cy. with an overall accuracy of better than .001 at fixed room temperature. Supplied complete with AT-66/U Antenna, 2 cords, spare tubes, original calibration book and instruction book at a net price of $\$ 550$. ORDER YOUR UNIT TODAY.

AN-APR-10	BC-595-T	1-117	$\begin{aligned} & 1-212 \\ & 1-222 / \mathrm{A} \end{aligned}$	$\begin{aligned} & \text { OAW } \\ & \text { P4 } \end{aligned}$	$\begin{aligned} & \text { TS-32A/TRC-1 } \\ & \mathbf{T S}-33 / A P \end{aligned}$	TS-89/AP*		$\begin{aligned} & \text { TS-218/UP } \\ & \text { TS-220/TSM } \end{aligned}$	$\begin{aligned} & \text { TS-359A/U } \\ & \text { TS-363/U } \end{aligned}$
AN-APR-4	BC-1066A	1-126	1-223/A	P4E	TS-34/AP	TS-92/AP	TS-155	TS-226A	TS-375
AN-TSM-4	BC-1201A	1-130A	1-225	SG-8/U	TS-35/AP	TS-96/TPS-1	TS-159-TPK	TS-230B	TS-377/U
AN-UPM-13	BC1203	1-134B	1-233	TAA-16WL	TS-36/AP	TS-98/AP	TS-164/AR	TS-232/TPN-	TS-389/U
AS-23	BC1236/A	1-135	1-245	TS-1ARR	TS-39/TSM	TS-100/AP	TS-170/ARN-5	TS-239B	TS-418
AT-67	BC-1255/A	1-137A	1E-21A	TS-3AP/AP	TS-45/APM-3	TS-101/AP	TS-173/UR	TS-250/APN	TS-419
AT-68 AT- 39	BC-1277 BC-1287A	1-139A	1E-36 ${ }_{\text {1F-12/C }}$	TS-8A/ ${ }^{\text {TS }}$	TS-46/AP	TS-102/AP*	TS-174/U	TS-251	TS-421/U
AT-48	${ }_{\text {BC-18B }}$	1-140A	1F-12/C	TS-10A/APN-1	TS-47/APR	TS-108/AP*	TS-175/U*	TS-257/AWR	TS-433/U
BE-67	1-49	$1-147$	15-185	TS-11/AP*	TS-51/APG	TS-110/AP	TS-182/UP	TS-263	TS-465/U
BC-221*	1-56	1-153A	LAD ${ }^{\text {L }}$	TS-12/AP**	TS-55/AP	TS-111/CP ${ }^{\text {c }}$	TS-184/AP	TS-268B*	TS-480/U
BC-376	1-61B	1-157A	LAE-2	TS-14/AP	TS-59	TS-118/AP	TS-192/CPM-4	TS-281/TRC-7	TS-505
BC-438	1-83A	1-167	LAF	TS-15B/AP	TS-60/U	TS-125/AP*	TS-194/СРM-4	TS-285/GP	TS-589/U
BC-439	1-86A	1-168	LM*	TS-16/APN	TS-61/AP	TS-127/U	TS-195/CPM-4	TS-293	TS-616/U
BC-638	1-95A	1-177	LU-2	TS-18	TS-62/AP	TS-131/AP	TS-197/CPM-4	TS-297*	TS-617/U
BC-639	1-96A	1-178	LU-3	TS-19	TS-63/AP	TS-138	TS-198/CPM-4	TS-301/U	TS-620/U
BC-996D	1-97A	1-186	LT	TS-23/AP	TS-65A/F M $2-1$	TS-142APG	TS-203/AP	IS-303/AG	TSX-4SE
BC-9188	${ }_{1}^{1-98 A}$	1-196A	ME-6/U	TS-24/APM-3	TS-69A	TS-143/CPM	TS-204/AP	TS-311/FSM-1	TSS-4SE
BC-923A	1-106A	1-198A	OA	TS-24/APR-2	TS-76-APM-3	TS-14//TRC-6	TS-205AP	TS-323	TVN-8SE
BC-936A	1-114	${ }_{\text {1-203A }}^{1-208}$	OAA-2	${ }_{\text {TS }}{ }_{\text {TS }}$	TS-78/U	TS-146 ${ }^{\text {TS }}$ *	TS-207	TS-324/U	TUN-8HU
	1-115	1-208		TS-27/TSM	TS-87 AP	TS-147/AP*	TS-210/MPM	TS-328	TTX-10RH

IUJARTZ CRYGTALS

A large quantity in frequencies ranging from 8000 KC, in 1 KC increments to 8199 KC in FT 243
holders made to a tolerance of $.01 \%$. Price. Other frequencies available, in quantity in
same type holders at a price of..........

2300 K.C.	6475	7800	8385
2400	6830	7820	8450
3105	7458.75	7825	8460
3825	7580	7840	8550
4280	7625	7850	8600
4375.834	7650	7860	8625
5500	7660	7875	8650
5633.33	7675	7880	8675
5655.55	7700	7900	8700
5677.77	7725	7925	8716.7
5722.22	7728.75	7950	8808.75
5744.44	7740	7975	8876.25
5955	7750	8250	8921.25
6175	7751.25	8260	9135
6400	7773.75	8300	9750
6470	7775	8380	16585.55

Other frequencies available in smaller quantities, write for List CE 151
If frequencies close to those outlined above are desired; we can grind these to a tolerance of $.01 \%$ at a price of $\$ 1.95$ each.

SEARCH RECEIVER

 ARD-2Measures RF signals from 80 to 3000 MCS. and pulse rates from 50 to 8000 cycles. Designed as direction finder and frequency meter for U S Navy Aircraft. Includes:
ANTENNA DETECTOR-CMD-66AFH-Vari able length antennas, diode detector and silver plated tuning stub with cali brated seale.
AMPLIFIER CMD-50ADC - Three stage pulse amplifier, trigger circuit, pulse rate counter circuit and audio amplifier, vis ual signal indicator, rectifier power sup ply operative on 115 Volts AC 60 to 2400
cycles current, regulated. cycles current, regulated.
TEST OSCILLATOR-CMD-60ABG - Cavity frequency of 400 cycles with selection of four pulse repetition rates.
ALL CABLES AND FITTINGS, ACCESSORIES AND SHOCK MOUNTED RACK for immediate installation, plus two Tech. nieal Manuals.

SPARE PARTS - Steel chest includes spare Tubes and components.

New Price each—\$375.00

SAVE ON TU:ZG BRAND NEW TU:ES GUARANTEED TUBES

OA2..... $\$.95$	2133 20.00	4C27/CV99 9.00	5J29 10.00	250TH ... 14.50	706GY. . . 29.50	829B . . . 7.50	5611 : 2115.00
OA3/VR75 1.00	$2 J 34 \cdots 17.50$	4C35 ... 17.50	$5130 \quad 19.95$	250 TL . 12.50	707B. 13.55	830B. ... 1.95	5633 … 8.95
OA5 3.50	$2 J 36$ 89.00	$4 J 22$. . . 99.50	5J33 . 7.50	251 A ... 79.50	708A . 1.95	839A	5634 ... 8.95
OB2 1.00	$2 J 42$ 105.j0	4126 . . . 99.50	5MP1 4.50	274B 2.75	713 A . 95	836	$5637 \ldots . .$.
OC3/VR105 . 90	$2 J 49 \quad 59.50$	4198 99.50	5NP1 4.95	304TL. 6.95	715A.... 3.00	837	5
OD3/VR150 . 85	2J51. 195.00	$4 \mathrm{~J} 99 \quad 99.50$	5R4GY.... 1.25	307A/RK75 2.95	715B ... 4.00	838 2.98	5643 write
1B22...... 1.20	$2 J 56$. 89.50	$4130 \ldots 149.50$	5R4WGY.. 1.60	310B 8.95	715 C . . . 13.00	851 . 35.0)	6 … 8.95
1B23. 4.00	$2 J 61$. 24.50	4J31 . . 99.50	C6L /5598 6.50	312 A..... 8.95	717A . . 90	852 ... 12.50	5651 2.50
1B24..... 6.75	$2 \mathrm{J62}$. . . 11.00					860 ... 3.50	5654...... 1.75
1B26... 1.75	2K22. 17.50					861 19.00	5656..... . 14.95
1B27, 11.00	2K23. . . 19.95			OM DD		865 98	$5657 \ldots 150.00$
1B32/532A 1.75	2K25 20.00					866 A . 1.30	5670 3.50
1B35 ... 5.50	2K26 . . . 55.00					869B 42.50	5672.... 1.29
1B42. 8.25	9K28 25.00					872A . . . 1.95	5676..... 1.29
1B63A $\quad 42.50$	2K33A . 65.00	4134.75 .00	C6J 7.25	316A . 1.25	719A 19.00	874 . 1.10	CK5678 . . . 1.00
1DY1/SN4. 3.75	2K34.... 139,50	4J36.... 129.50	6AL5W ... 1.60	323B 7.95	720BY . 125.00	880 . 300.00	5687..... 3.75
1 N\&1B.... 2.00	2K39,.... 115.00	4J42 ... 129.00	6BL6 . . . 60.00	327A . 4.50	720CY 125	884... 1750	5693 4.25
1NE3B.... 2.90	2K41 125.00	4152. . . . 199.50	6BM6 . 69.50	328A... 3.95	720EY ... 125		. 60
1N34A . 79	2K42 . 199.50	$4157 . . .299 .50$	6C21 24.50	336A writz	721 A 2.95	891R 125.00	5
1N35 1.95	2K 45 110.00	4-125A. . 19.00	6F4 3.00	337A ... 6.00	722A 1.95	GL893 A 295.00	0
1 N38.... 1.50	2K48 99.50	$4 \times 150 \mathrm{~A} \ldots 27.50$	614 . 4.50	349A.... 8.50	723 A . 7.95	922.... 1.25	0
$1 \mathrm{~N} 44 \ldots . .1 .10$	2X2A.... 1.40	4×500A . .. 750 C	6SU7GTY... 9.75	350A..... 4.50	723 A/B .. 12.00	931 A 4.95	5
$1 \mathrm{~N} 47 \ldots . .4 .50$			7C92 . . 99.50	368AS ... 4.00			RK5781 . . . 210.00
1N55 . 2.75			1 2DP7 . . . 13.00	383A write			7..... 3.10
1N63/K63.. 1.95			$12 \mathrm{GP7}$. . . 17.50	393A.... 5.95	5' DUAL	UN TUBE	$\begin{aligned} & 5787 \ldots \\ & \text { CK5787 }\end{aligned} \quad . \quad 6.00$
1 N69 59			$19 \mathrm{HP7}$... 13.50	394A ... 3.50			
1P98. . . . 7.75			$15 E . .$. KC4	$417 A \ldots . .$. $434 A .50$			$5844 \ldots . . .$.
1P99 ... 9.00	Vacu	Capacito	KC4. 39.50				5876 14.95
1P36 2,75	act	-	D42 ${ }_{\text {35TG }}$ Write	$446 A$ 1.19 $446 B$ 3.50	Long	c. Volued	5893 12.50
1P39.... 1.20	0 mmfd	15,000 v. $\$ 7.50$	35TG FG57/5559 15.00	$\begin{array}{r} 446 \mathrm{~B} \\ 450 \mathrm{TH} \quad 40.00 \end{array}$	at $\$ 200.00$. T	tube has been	5902 … 8.95
1Z2 2.75		32,000 v. $\$ 10.00$	FG57/5559 15.00 RK60/1641. 1.95				5905 12.50
VS-2. 7.50	12	32,000 v. \$10.00	RK60/1641. 1.95 RK72.... RK5	WL456 ... 59.50	rejected for	ary use.	5907 9.00
2AP1 5.50	50 mmfd	32,000 v. \$12.50	RK72 RK73 751	WL456 . . . 59.595			5908 9.00
2892.12 .95	100 mmfd .	20,000 v. $\$ 14.00$	RK73 $\quad .955$ 75 T	CK512AX $\quad 1.40$			5916...... 9.00
2C91/1642. 69			75 TL 7.95	WL530 . . 16.95			5932 . . 4.95
2C36..... 25.00		$5 \mathrm{AP1}$. . . . 2.95	83V..... 1.10	CK536AX . 95	724B 2.00	935 5.50	5591 /4038 . 3.50
2C39 12.50	$3892 \ldots . .$. 3893 $.. .95$	$\begin{aligned} & \text { 5AP1 } \\ & 5 \mathrm{BP} 1 \end{aligned} \ldots .2 .95$	FG95/5560 22.50	GL562...write	725 A 4.50	955 49	5972 4.50
9C39A. ... 13.00	3893 4.05	5BP\&A ... 4.95	ML.100 ... write	GL605 ... write	726A . 12.00	957 49	6005 2.75
2C40...... 7.85	3894.... ${ }^{\text {3B26. }}$. 3.50	$\begin{aligned} & 5 \mathrm{BPqA} \\ & 5 \mathrm{BP} 4 \ldots \\ & \ldots .95 \\ & \hline \end{aligned}$	ML.10.... 7.50 $100 \mathrm{TH} \ldots .$.	WL616 . . 99.50	726B ... 32.00	958 A . . . 89	6096 2.25
9C42..... 10.00	3826. 3 388 $\ldots .95$	5CP1A . . 14.50	HF120 9.95	GL623write	730A 20.00	959 ... 1.50	6110 8.95
9C43 9C44	$\begin{array}{r} 3 B 28 \ldots . . \\ 3 C 29 \ldots \\ 39.50 \end{array}$	5CP1A....14.50 $5 \mathrm{C} 29 . . .87 .50$	FG104 29.50	KU627 . . 17.50	802 2 2.95	CK1005 ... 69	6111 9.50
${ }^{2} \mathrm{C44} \ldots . .89$	$3 C 22 \ldots . . .78 .50$ $3 C 23 \ldots$	5CP7 97.50	FG105 ... 17.50	KU628 write	$803 \ldots 3.75$	CK1006 ... 1.95	6121..... 9.95
2C46 10.00	3C23.... 6.50 3C24/24G. 1.10	$5 C P 7 \ldots .9 .50$ 5 D 21	$\begin{aligned} & \text { FG105 } \\ & \text { F.123A } \end{aligned} .$	WL-651 . 39.50	804 (10.95	$1616 \ldots . . .90$	6201 4.50
2C51 3.69	3C24/24G.. 1.10 3C27	5FP7 1.55	$\begin{aligned} & \mathrm{F} \cdot 123 \mathrm{~A} \ldots \ldots \\ & \mathrm{VT}-127.79 \\ & \hline .75 \end{aligned}$	WL652/65739.00	805 . 2.95	1619 30	8005 4.95
2C52 3.00	3C27..... 3.75 3C33	5FP14... 7.50	Q1-127A.r 149.50	F660 write	807 1.50	1625 … 30	8012 1.95
2D21..... 1.15			FG172.... 29.50	F661 write	$808 \ldots 2.75$	1629 30	8013 … . . 4.95
9D91W . . 2.49	3C45 11.75 3 E 29	5HP1 ... 3.95 5 HP 4.9	FG172 14.50	700/B/C/D 16.50	$809 \ldots 2.75$	1630... . 89	8080 1.95
2E24...... 3.30	3E29 9.50	5HP4 \ldots. ${ }^{\text {5JP1.95 }}$ 17.50	WH200.... write	703A. 2.95	810 . 9.50	1636 . . . 1.25	8025 4.75
2E26....... 3.95	3FP7.... 1.95	5JP1 17.50	$\begin{aligned} & \text { WI } 200 \ldots . . . \text { write }^{25 .} \end{aligned}$	705A . 1.50	811 A . 3.50	1630 1.30	8025A.... 5.95
2E31....... 1.40	3GP1 1.95	5JP9 17.50	207 VTAC. ${ }^{211}$. 80		812 . . . 2.95	2051 80	9001 1.15
2E35 1.40	3JP1 12.50	5JP4 . . . 17.50	$211 / \mathrm{CT}$ $217 \mathrm{C} . .8 .805$	706BY . $\quad 27.50$	$813 \ldots . .$.	ZB3200 100.00	9009 98
2.26 5.00	3K27 199.50	5JP5 17.50	$\begin{array}{r}217 \text { A. } \\ 291.95 \\ \hline\end{array}$	706 CY . $\quad 27.50$	815 ... 3.50	5516 5.50	9003 1.30
$2 \mathrm{~S} 277 .50$	3K27 199.50 3K30 . . 199.50	5123 29.50	291 QK249 . $\quad 200.00$	706DY 27.50	898 9.95	5586 200.00	9004.... 4.4
$2 J 31 \ldots . . .20 .00$	3K30 199.50	$5123 \ldots . .$. $5126 . . .$. 120.00	QK249...200.00 950R	706DY 27.50	$8286 .90$	5933 /807W 7.50	$9005 \ldots1 .50$
2132...... 17.50	4B24 6.95	5126 120.00	250R 8.95	706 FY 27.50	829.	$5933 / 007 \mathrm{~W} 7.50$	$90051 .50$

All Prices F.O.B. Los Angeles, subject to change without notice. Minimum order $\$ 5.00$. Orders for $\$ 5.00$ should be prepaid in full.

WRITE FOR FREE CATALOG!

ELECTRONICS Dept eo 7552 Melirese Ave Les Angeles 46, estifernia

Thousands of other types in stock. Send us your requirements. RECEIVING TUBES? We carry a complete line in stock. Standard brands only!

FOR SALE-NEW

100 KW RF GENERATOR

RCA Model 100 BM induction heating unit (in original crated condition) complete including:
MI-13600-A Generator Tank Unit MI-13604-B Switchgear \& Control Unit MI. 13605 Generator Tank Unit

MI-13648 Rectifier Unit
MI-13647-B Plate Transformer
MI-13800 Water Pump
MI-13802 Water Tank
MI-13803 Water Cooler
IB-30138 Instruction Book
Less tubes. Immediate delivery, subject to prior sale.
THE PERMA PRODUCTS CO.
5455 Broodway Cleveland 27, Ohio

X-RAY

All types for industrial and experimental applications. Tubes, cables and compo nents.

MEDICAL SALVAGE CO., INC.
217 E. 23rd St. New York 10, N. Y
Murray Hill 4-4267

K-RK•ARC-UG-PL-AN CONNECTORS In Stock for Immediate Delivery Qommactor Qorporationas
 137 Hamilton St., New Haven 11, Conn. Phone: Spruce 7-251 3
 New York Phone: Exington 2-6254

> New Sola Const. Volt. Transformers
> input $95-125 \mathrm{VAC}$, Output 118 VAC 60 cycles

> Amp. $\$ 6.95$
> LAPIROW BROS.
> 1649 Hoffner St. Kirby 1285 Cincinnati, Ohio

GLASS TUBING

PYREX - NONEX - URANIUM BULB \& CYLINDERS WRITE FOR FREE MONTHLY LIST

HOUDE SUPPLY COMPANY
PHONE KEYPORT 7-1286
M. R. \#1 Box 86X

SEARCHLIGHT SECTION

811 Boylston St., Boston 16, Mass. CO 7-4700

RCA SURPLUS TV CAMERA! Only

$\$ 275.00$

Complete with 1848 iconoscope and 6-stage video amplifler and clipper. Perfect for use in morie
pickup chains, training and experimental work. Dickup chains training and experimental of ITS ORIGINAL COST! Write for complete infornaMAGNETRON TUBES

PLATE TRANSFORMER
AmerTran Spec. 29108 ; Pri. 115 V., 10.4 Kva., 60
cycles. Sec. 17,600
test. F or RA-38. Power Supply. $\quad \$ 49.50$
CONDENSERS
.25 mfd . (3) $20,000 \mathrm{~V} 1 \mathrm{mfd}$. (a) $\mathbf{1 0 , 0 0 0 \mathrm { V }}$
.25 mfd . (G) $32,500 \mathrm{~V}$. 3 mfd . (3) $7,500 \mathrm{~V}$. $\$ 19.50$ 1 mfd . (3) $6,00 \mathrm{~V} 50.00$ 1x1 mfd. (a) $3,000 \mathrm{~V} 6.50$ $\begin{array}{lll}1 \mathrm{mid} \text {. (a) } \\ 2,000 \mathrm{~V} .7 .50 & 1 \mathrm{mId} \text {. (a) } 3,000 \mathrm{~V} & 3.50\end{array}$

MICA CAPACITOR

50 mmld @ $3,000 \mathrm{~V}$.
$\$ 2.95$
TRANSMITTING CAPACITOR

of. Transmitter. BC-315.
\$2.95
7est Egciterment
RECEIVERS-TRANSMITTERS
OSCILLOSCOPE SPECIALS!

DUMONT

DUMONT
DUMONT
R.C.A.NING.
BROWNING

$* 224$	3 im.
$* 208$	5 im.
$* 168$	5 im
$* 158$	5 in.
$* P 4 E$	5 im.

ryoder
Ask for complete listing

NEW CATALOGUE NO. 113
LISTS INVENTORY OF AIRCRAFT,
INDUSTRIAL AND MILITARY ELEC-
TRONICS EQUIPMENT. NOW OFF
THE PRESS. SEND FOR YOUR COPY
TTEDAYE:

ARROW SALES INC.

 Poplar 5-1aio - Stamegy 1.6005 - Cabic address. ARROWSALES

					T	1			3	-	
	6.00	$3 \mathrm{B25}$	2.50	6G4.	3.00	289A	6.00	631-P1	4.00	833 A	35.00
1882	8.75	3826	2.50	78P7	2.75	283A	3.00	701 A	3.00		
1842	7.75	3828	3.50	$9 \mathrm{GP7}$	3.75 3	286A	5.50 6.75	702A	1.25 8.50	838 846	2.95 18500
2AP1	5.00	3 C 23	5.00	9LP7.	3.75 9.50	304 TH	6.75 500	703 C	2.50 8.50	846 849	185.00 15.00
2C33/RX-233A	2.00	3C24/94G	1.00 800	18GP7/577 FG. $17 / 555$	9.75 4.75	304 TL	5.00 3.50	703A	2.50 4.50	884 880	15.00 20.00
2C40	4.75 100	3DP1	1.00 3.00	RK-19....	1.50 1.50	307A	8.00	707B	7.75	860	2.00
$\begin{aligned} & \text { YD21 } \\ & \text { 2E29. } \end{aligned}$	1.00 1.50	3EP1 3GP1	2.00	RK. 21	1.25	310 A	3.00	708A	2.00	861	10.00
$2191{ }^{\text {A }}$	4.75	$4 \mathrm{B26}$	4.50	RK-23	1.50	311 A	5.00	709A	1.50	866 A	1.00
2 ± 29.	4.75	4B27	5.00	HK-54	3.50 175	$313 C$	3.00 100	715 A	2.50 3.50	${ }^{8698}$	50.00 8.00
2526	6.00	4C29/HF-100	7.50 9.00	RK-69 RK. 73	1.75 1.00	3163 A	1.75	715 C	3.50 16.00	$872 A$ 878	8.00 1.00
8827.	8.00 85.00	4E97/CV.92	9,00 13.00	RK-73.	9.00	328A	3.85	719A	10.00	884	1.00
$2 J 31$.	19.00	4534	75.00	F-128A	35.00	329A	5.50	781A.	1.50	885	1.35
2 3 32	19.00	$4 J 35$	100.00	HK-154	4.00	348A	6.00	793 A	14.00	891 R	. 190000
233	83.00	$4 J 42$ $58 P 1$	100.00	VT-158	20.00 5.00	349A	6.50 8.50	794 A	1.00 1.25	892 R 909 P 1	40.00
2334 236.	17.50 75.00	58P1.	2.75 2.75	FG-190 $\mathrm{HF}-200$	12.50	354A	10.00	725 A.	5.00	913	9.00
2337.	10.00	$5 \mathrm{CP1}$	3.75	C. 208	10.00	355A	10.00	726A.	8.50	923	1.00
$2 J 38$.	8.00	5C30/C5B	3.00	204 A	10.00	F-375A	10.00	7968	35.00	931 A	3.75
2140	25.00	5 S 21	8.50	205 B	1.00	393A	5.50 2.00	7268 803	35.00 8.75	${ }^{\text {C\% }}$ CK-1006	1.35 1.35
2355.	55.00	${ }^{5 F P 7}{ }^{\text {5FP }} 4$	1.00 600	$\stackrel{\text { F-207 }}{ }$	50.00 2.50	WL-417A	2.00 6.50	805	2.50 1		
2 J 61	23.00	5JP1.	9.00	WL-218	20.00	GL-434A	10.00	807	1.00	1694	1.00
2 J 68	17.00	5 JP 4.	9.00	250 R	4.50	446A	1.00	808	1.50	1904	12.00
2J-B51	4.50	5196	75.00	251 A	50.00	446B.	2.00 1000	811	2.00	2050...	1.00
9K33A	50.00	5130 5139	20.00	253A	15.00 5.00	WL-460	10.00 3.50	885	+ 15.00		85.00 35.00
9K55	50.00	5R4GY	1.00	957A	3.00	WL-468	15.00	826.	1.00	8012	1.50
3 AP1	4.00	C6A	6.00	267B	6.00	527	12.50	898.	8.75	8013	2.00
3BP1.	3.00	C6L*5528	5.00	271 A	5.00	WL-530	8.00 4.50	${ }_{839}^{830}$	1.75 600	88080	1.00
3884	3.50	6BM6	50.00 15.00	2748.	1.50 5.00	WL-531 559	4.50 1.00	832 832	6.00 7.00	${ }^{8085}$ PD8365	1.75 50.00
3824W	6.75	6C21	15.00		5.00						

western engineers

All types of radio and electronic surulus as well as standard test equipment. Please state accurate description, condition, and your lowest price. Ex-
plain modifications, if any. We pay freight charges.

Photocon Sales

$4 i 7$ N. Foothill Blvd Pasadéna 8, Galif. Photocon, Pasadena sadena

SEARCHLIGHT SECTION

FAY-BILL DISTRIBUTING CO.

LARGEST SURPLUS TUBE DEALER IN THE COUNTRY STANDARD BRANDS-TRANSMITTING \& RECEIVING

FAY-BILL

418 Broome St., N. Y. 13, N, Y. Telephone CAnal 6-8404

All boxed and fully guaranteed. Special quantity discount- 10% on 100 or more of same type. Minimum order $\$ 5.00$. Thousands of other types in stock . . . Send us your requirements. F.O.B. New York. 25\% deposit with order or if paid in advance save C.O.D. charges. Rated firms net 10 days. Prices subject to change without notice.

RESISTORS

$1 / 2$ watt 10%
1 watt 10%
2 watt 10\%
$\$ 15.50$ p Mille
24.50 p Mille
47.50 p Mille
all values
FROM STOCK
American make
Fully Guaranteed
for 5% resistors add 100%
Immediate deliveries on all types and values
G. GRINN, 4650 Livingston Ave., Riverdale 71, N. Y.

WESTON METERS

CLOSEOUT SPECIALS!
MINIMUM QUANTITIES 100 EACH TYPE
2C34....... 15¢ HY615.... 10 d
3CP1/S1.... 65\& E1148........ 19c
3B7/1291..... 28\& $7193 \ldots \ldots .$. 18c
RK34 18¢ 8011(VT90) .. 25

45Spec.(VT52) $\quad 15 ¢ \quad 6 \mathrm{amps}-\mathrm{no}$ minimum
All Tubes New and Guaranteed Perfect.
Write For Our Very Low
Quotations On Other Types.
Escriban En Espanol
Ecrivez-Nous En Francais
Schreiben Sie Uns Auf Deutsch

MARITIME

INTERNATIONAL CO.
11 STATE ST., N. Y. 4, N. Y. Cable Address: FOXCROFT Telephone Digby 4-3192

FOR SALE
 READSETS, HS-30/U
 AEMOTE CONTROL UNITS, RM-29
 DYNAMOTORS, DY 12 DYNAMOTORS, DM-32A
 DYNAMOTORS, DYMAMOTORS, DM-3
 DYNAMOTORS, DM-36
 VICTOR-BERNARD INDUSTRIES, INC.
 1511 N. 26th St., Phila. 2I, Pa.

Transmitters: BC-610-E, ART-13, TCS-12 Receivers: $\mathrm{BC}-312, \mathrm{BC}-342, \mathrm{BC}-348, \mathrm{AR}-88$ Portable Transmitter-Rec.: SCR-694-C Teletypewriters: Model 15 (TG-7-B)
ALLTRONICS, Box 19, BOSTON, 1, MASS. Telephone: Richmond 2-0048, 2-0916

TELEPHONE AND COMMUNICATION WIRE

W110B 2-Conductor \#18 ga. ea. Cond. 3 copper and 4 steel rugged rubber and fabric weather-proof insulated. 1 mile tion $\$ 16.00$. $1 / 2$ mile reels, 80 lbs condi- $\$ 9.00$. W-130 2-conductor \#22 ga. new, plastic insul. 2 mile reels $(10,560 \mathrm{ft}$.) wt. 90 $\$ 16.00$. 3500 ft . Poyout Reels
Brand new armored Burial Wire, 17 Twin Armored Telex Cable on approx. 1600 ft factory packed reels-Per M $\$ 22.50$.

Brand New
 EE-8 FIELD PHONES
 FULL LINE EE-8 PARTS

TERMS: Rated Firms Send M.O. Net 30 No Rated Send Checli with Order-F.O.B. Sact'o. Calip

LORIS SALES
907 - 2nd Street Sacramento, California Dept. EL5

Brings you What you Need and Want at HIarjo LOWEST PRICES!

RADAR EQUIPMENT APS-4 complete Radar Set
 T25/TPS 2.
R65/APN-9.
AN/APN-1 (Eureka)

TS45/APM X BAND SIGNAL GENERATOR	Western Electric HANDSET $\$ 3^{95}$
\$250.00	Standard type as used on telephomes. Con
priced low for small absifehools and sorvice shops. shoy last!	Complete with cord. Xint cond FB for mo phono systems.

POWER SUPPLIES INVERTERS MG-149F Rotary eonvertorsi Certlt HIVOLTAGEPOWER SUPPLIES

549.50
1495
125.00

CHOKES

TRANSFORMERS
HI-VOLTAGE DONUT TYPE, FILAMENT
ondans 5
 AUTOMATIC, NOLTAGE REGULATOR.Thor-

TRANSMITTERS \& RECEIVERS ARC-3 cemplete, ertitied
BC-640
\&

588.00
750.00
100.00

350.02
3 100.00
350.01
750.60

150.00 | 750.60 |
| :---: |
| 150.00 |
| 750. |

Check These Money-Saving

METER BARGAINS
PORTABLE KILOWATT HOUR METER KIT
SiANCHBLACKDIALFACE O-750 MA
SOO-O SOO M1CRO. METER
WESTON FREQ. MET
WESTON FREQ. METER. Model 814350 to 4 th
$\mathbf{5 2 4 . 9 5}$
$\mathbf{5 4 . 9 5}$

RCA TUBE HANDBOOK TYPE HB-3 IN 3 VOLUMES

the books are registered so
that supplemonts are

TUBES! TUBES! TUBES!
DumoNT 3GP1 Cathode Ray Tube. Brand new.
Boxed with sehomatic and parts list

WILLARD G-V, BATTERIES, S1,29 or 4 for 51

\qquad
FLUX METERS
527
500-4000 Gauss-Brand new inla
hardwood cases. Speclal at only
50

1000's MORE ITEMS IN STOCK
Write for information-or
VISIT OUR RETAIL SHOWROOMS

Harjo Sales Co.
 Dept. ED

4109 BURBANK BLVD.-BURBANK, CALIF P. O. Box 1187 MAGNOLIA PARK STA.

KLYSTRONS

2K22 Raytheon JAN $\$ 12.50$ 2 K 23 Western Electric 6.50

Guaranteed Perfect UNIVERSAL ELECTRONICS

6219 3rd St. N.W
Washington, D. C.

CERAMIC below factony

 CONDENSERSStandard Brand,
All Styles, Types and
T.C. Large Quantities in Stock, Immediate Delivery.

CAP ELECTRONICS INC.
102 WARREN ST., N. Y. 7, N. Y. RECTOR 2-8078

200,000 Parasitic Chokes FOR SALE
2.5 Microhenri Value Make offer for lot.
NATIONAL SURPLUS SALES CO. 723 East 18 th, K. C., Mo

TIImefs

-

TIMER RELAY
Synchronous motor operates relay for intermittent peration of any electrical device. Relay closes once dial calibrated in minutes. dal calibrated in minutes. More disc. Contacts roted at 15 amps. Master switch and fuse receptacle Housed in attractive die cast and stamped metal case with hinged door.

TIME DELAY RELAY
When cail in energized, 20 ampere contacts are mmediately closed. The delay action is accore plished by a Telechron motor with a mechanism calibrated in 15 second steps, adjustable from 15 seconds to 5 minutes. Timer contacts are S.P.D.T. cnd rated at 12 amps. INSTANTANEOUS RECYCLING. 115 VAC coil operation. Dust tight Bokelite case.

Substantial quantities in stock for immediate delivery at considerably less than market prices. Huge stocks of relays of practically every type maintained for your convenience. Phone your needs 24 hour delivery!

TELEPHONE

SEeley 8-4 146 WRITE FOR NEW 1954 RELAY SALES CATALOG C-5 JUST OUT!

4721 W. MADISON ST. DEPT. 4, CHICAGO 44, ILL.

REVERSIBLE GEARED-MOTOR Delco-PM-Permanent Magnet Alnico Field Motor

\# $50718951 / 4^{\prime \prime}$ SHAFT or $11 / 16$ GEAR... $\$ 17.50$ \#5069600 $\$ 78.50$

10 for $\$ 3.00$

MARKTIME 5 HOUR SWITCH A 10 amp. timing derice Pointer moves back to zero
after time elanses. after time elapses. Ideal for
shutting oft radlos and TV sluatting ofip radios and TV
sets when you go to bed Limited supply at this $\$ 4.90$ min. $\$ 4.90$ Also available in 15 min . $30 \mathrm{~min} ., 1 \mathrm{hr}$. at $\$ 5.90$

Genuine TELECHRON Motors

Laboratory Special 1 of Each Above $\$ 25.00$
HAYDON SYNCHRONOUS a TIMING MOTOR
110v. 60 cycle 30 RPM... \$2.60 110v. 60 escla 1 krM.... $\$ 2.85$ 230 V (1 RPM....... 1.00
60 C RPM...... 1.00

ALL PRICES F.O.B. N. Y.

64M Dey $5 t$.
New York 7, N. Y.

FOR SALE

Five New And Two Slightly Used 50 Kilovolt, 100 MA. G.E. Power Supplies. For Details Write

FS-2241, Electronics
520 N. Michigan Ave., Chicago 11. IL

QUARTZ CRYSTALS!

Available NOW!

In frequencies from 100 to $10,000 \mathrm{Kc}$. MOUNTED IN FOLLOWING TYPES HOLDERS Bendix MX-9E CR-5B U FT-249 $\begin{array}{lll}\text { Billoy AR4-W } & \text { CR-5U } & \text { FT-500 } \\ \text { Bliley AR7-W } & \text { CR-6B U } & \text { G.E }\end{array}$ $\begin{array}{ll}\text { Bliley }{ }^{2} \text { FT-164 } & \text { CR-6B U } \\ \text { Bliley FT-171-B CR-8U } & \text { G.E. } 103 \\ \text { G.E. G-43 }\end{array}$ $\begin{array}{ll}\text { Bliley FT-171-B CR-8U } & \text { J.K. TYpeF } \\ \text { Blifey IIC-7 DC-8 } & \text { MotorolaFMT }\end{array}$
 $\begin{array}{lll}\text { Blifey MO-2 } & \text { DC-10 } & \text { Piezo AA9G } \\ \text { Bliley SR-5 } & \text { DC-11-A } & \text { PlezaCR-AB U } \\ \text { Premier FT-164 }\end{array}$ $\begin{array}{lll}\text { Bliley SR-5 } & \text { DC-11-A } & \text { Premier FT-164 } \\ \text { BSD-180-G } & \text { DC-15 } & \text { Premier PL-217 }\end{array}$ $\begin{array}{ll}\text { Collins 1-C } & \text { DC-26 } \\ \text { Collins 1-D } & \text { Franklin DC-35 RCA AVA } 10 \text { MI-8412A }\end{array}$ $\begin{array}{lll}\text { Collinssi-G-1 } & \text { FT-171 } & \text { RCA MI-8412B } \\ \text { Collins TCS } & \text { FT- }\end{array}$ $\begin{array}{lll}\text { Collins TCS } & \text { FT-241-A RCAMR-1 } \\ & \text { FT-243 }\end{array}$
COMPLETE CRYSTALS D DATA \& PRICES! COMPLETE SETS
of Crystals Available for the Following Types of Units

	Yoe	Units	
ARC-1	BC-620	SCR-211	SCR-536
ARC-3	BC-659	SCR-274N	SCR-608
ARC-5	BC-669	SCR-300	SCR-609
ART-13	BC-684	SCR-508	SCR-610
BC-452	BC-745	SCR-509	SCR-619
BC-604	BC-1000	SCR-510	TRC-1
BC-610	LM	SCR-522	TRC-2
AND MANY	OTHERS WRITE	INQUIRIES TODAY!	INVITED.

TEST EQUIPMENT
Measurements Corp. 78-B Test Sot with original Calibration Chart. BC.1066A Radio Receiver,

Calibrator $620-A$ TS 35 AP
$\begin{array}{ll}\text { Calibrator 620-A } & \text { TS-35AP } \\ \text { EE-65G } & \text { TS-35-D }\end{array}$
I-96A Sig. Gen. TS-102A/AP

M Frequency Meter TS-481 U
$\begin{array}{ll}\text { TS-7/ASQ } & \text { W.E. } 178 \\ \text { TS-14/AP } & \text { W.E. 19C(SPC) }\end{array}$
Greatly Reduced Prices! Write for Data!
ELECTRONIC COMPONENTS APG-17 LOW ALTITUDE ALTIMETER. Complete with all components. NEW. In Original box BC-800. With BC- 1145 Control Box. Now.
ARC-5 5 . APQ-13 Junction Box SCR-274-N Components BC. 1333 Marker Beacon TPS. 3 Indicator

Discounts for Quantity Purchases! WE INVITE INQUIRIES FROM FOREIGN PURCHÁSERS MANUFACTURERS JXBERS WURCLESALERS AND VOLUME DEALERS.
WHOL
U. S. CRYSTALS INC.

805 S. Union Ave. Los Angeles 17, Caiif.

ECCO HAS IT!

LORANS-APN 4 B TYPE-New or Reconditioned complete with all components-including shock mounts, plugs. cables A
pretested and oper PARE.
SPARE PARTS and/or components available for above unitsalso for TCP-2 (ET-8012) 75 Watt phone mfy by IMMCA. ATORS-some test equipment-knife switches-in-Gers for Marine and Special purnose

W RITE OR WIRE YOUR REQUIREMENTS ALL INQUIRIES ANSWERED PROMPTLY
ELECTRO CRAFT COMPANY
5 Milton Avenue Dorchester 24, Massachusetts Telephones - TAlbot 5-3410 and TAlbot 5-3451
NEW YORK'S RADIO TUBE SYO EXCHANGE

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE	TYPE	PRICE		PRICE	TYPE		TYPE		TYPE	PRICE
OA2	\$1.00	$2 \mathrm{31}$.	. 24.00	3 C 24.	. 1.50	58P1.	. 3.95	$203 \mathrm{~A} .$. 7.50	$464 \mathrm{~A} \text {. }$	$\begin{array}{r} 7.50 \\ 125 \end{array}$	$802 \ldots$		$954 .$	$\begin{array}{r} .35 \\ .50 \end{array}$
OA3.	1.10	2 J 32	29.00	3 C 31.	2.95	${ }_{5}^{5} \mathrm{EPP}^{\text {2 }}$. 12.00	211.	1.95	4714	${ }^{18} 2.25$		5.95		. 75
OB2.	. 99	$2{ }^{2} 33$. 32.00	3DP1	7.50	$5 \mathrm{SP}_{4}$	3.95	217 C	- 12.00	527.	18.00	8807	4.95		. 75
OB3	1.10	2 J 34	36.00	3DP1A	. 10.00	${ }_{5} 5 \mathrm{CPl}$	7.50	242 C	. 10.00	WL530	23.00	807	1.50		. 25
0 C 3	. 96	$2 J 36$	90.00	3DP1A-	2. 10.00	${ }_{5} 5 \mathrm{CP7}$.	6.95	244 A	9.50	WL531	22.50	808	1.95 2.95	958 A	$\begin{array}{r}.60 \\ \hline .25\end{array}$
OD3	. 89	2 J 38	8.95	3EP1.	5.00	5CP7A	14.00	249C	4.25	WL532.	15.75	810	2.95 10.50		$\begin{array}{r}2.25 \\ \hline 25\end{array}$
C1B	2.95	$2] 39$	8.95	3 E 29	15.50	5D21..	18.00	250 TH	19.95	WL533	15.00	810	10.50 3	E114A	. 25
1B21	1.50	2J 40	29.00	3 FP 7	5.00	$5 \mathrm{FP}^{\text {P }}$	1.95	250 TL	12.00	HK654	35.00	811 A	3.75	${ }^{1280}$	135.95
1322	1.50	2 l 42	. 135.00	3HP7	5.00	${ }_{5} 5 \mathrm{P} 1$	27.50	274 B	2.75	$700 \mathrm{~A} / \mathrm{D}$	10.00 4.50	${ }_{812}^{812}$	3.95 13.75		135.00 75.00
1823	6.95	2 d 49	60.00	4A21	2.75	${ }_{5}^{5 J P 2}$	19.50	304 TH	10.00 10.00	701A	4.50 3.95	813 814	13.75 3.75	HK1554	75.00 5.00
1824	12.00	2 J 50	55.00	3GP1.	5.00	5JP4	27.50	304 TL	10.00		3.95	81.	3.75	1603	5.00
1826.	11.75													1613.	1.25
$\begin{aligned} & 1 \mathrm{~B} 27 . \\ & 1 \mathrm{~B} 32 . \end{aligned}$	- 2.95													1616.	1.25
1 B 38.	35.00													1619	. 45
1850	23.00														$\begin{aligned} & 1.50 \\ & 1.75 \end{aligned}$
1851.	7.50 35.00		1	7	0	11								1625.	- 1.75
1856	35.00 35.00													1626	. ${ }^{.25}$
1 N 21.	1.25												6.25	18.51	
$1 \mathrm{~N}^{21 A}$	1.75 2.75	${ }_{2}^{2 J 55}$	$\begin{aligned} & 150.00 \\ & 110.00 \end{aligned}$	4 4 26	5.40 22.50	$\mathrm{Cos}^{\text {Cid }}$	11.00		3.50 4.50	704 A	1.95 21.75	815 816	1.45	$2000 T$ 2050	150.00 1.80
1N21B	2.75 19.50	$\begin{aligned} & 2 \sqrt{26} . \\ & 2 \mathrm{~J} 61 \end{aligned}$	$\begin{array}{r} 110.00 \\ 35.00 \end{array}$	$\begin{aligned} & 4 \mathrm{C} 27 \\ & 4 \mathrm{C} 28 \end{aligned}$	22.50 35.00	$\begin{aligned} & \text { CDI } \\ & 7 \end{aligned}$	7.50 5.00	310 A 310 B	4.50	705A 7 \% / $\mathbf{F} \mathbf{Y}$	21.00	829	11.00	2051	1.80
$\begin{aligned} & 1 \mathrm{~N} 21 \mathrm{C} \\ & 1 \mathrm{~N} 22 . \end{aligned}$	13.50	2162	35.00	4 E 27.	16.00	$7 \mathrm{DP4}$	9.00	311 A .	6.50	707A......	9.75	829 A	12.00	Various	5000 and
1 N 23.	1.95	2K22.	15.00	4 J 25	150.00	1¢AP4.	50.00	312 A	3.50	707B	15.00	829 B	15.00	$66^{\prime} 00$	en of new
1N23A	2.75	2K23	15.00	4 4 26	150.00	12 DP 7	24.00	323A	15.00	714AY	18.00	830 B	2.00	pro	tio
1N23B	2.75	2K25.	. 27.50	4 J 27	150.00	LM15	225.00	327 A	3.75	715 A	4.50	832 A	45.00	8012	2.00
1 N 23 C	7.50	2K26.	68.00	4 4 28	150.00	15 E	1.75	328 A	6.75	715 B	9.00	8833	7.50	8012 A	2.50
IN25.	4.50	2 K 28.	- 35.00	4K29	150.00 15000	LER	. 75	${ }^{350 A}$		715 C	22.50 1.50	836	3.95	8613	3.00
1 N 26.	6.75 3.50	${ }_{2 K} \mathrm{~K}^{29} 8$.	35.00 95.00	5 J 30.	150.00 150.00	NE16	. 59	350 B	5.95 3.00		1.50 30.00	8837	2.75	8013 A	3.50 175
1N27. iN34A	3.50 .79	2K33A	95.00 140.00	$4{ }_{4} 41$.	150.00 150.00		8.85	${ }^{352 A} 354$.	15.00	718AY.EY.	22.50	838	2.95 5.90	8019 8020	
1 N 43	2.25	2K41.	135.00	$4{ }^{4} 33$	150.00	RX21.	8.00	357A.	15.00	720AY/GY	150.00	849	35.00 3.50	80.25	3.75
$2 \mathrm{B4} 4$.	1.25	2K45	80.00	4 J 34	100.00	HK 24G	1.50	368AS	4.95	721 A	3.50		25.00	PD8365	96.00
2B22.	1.75	2K50	275.00	$4{ }^{4} 35$	150.00	${ }^{2} \mathrm{E}$ T.	2.95	3718	1.50 40	722 A	18.00	866 A	1.50	90101.	1.25
2 C 34.	. 15	${ }_{2} \mathrm{~K}_{5} \mathrm{~L} 5$.	125.00	4 4 36	150.00 150.00	46. Specia	. 375	385 A	1.50 1.80		18.00 1.95	${ }_{869}^{868}$	67.50	9002	. 95
${ }_{2} \mathrm{C}_{4}$	9.00 12.00	${ }_{2}^{2 K 55} 5$	125.00 72.00	4J37	150.00 150.00	RK39 $1 / 450$	2.75 1.75	388 A $\mathbf{3 9 3}$	1.80 7.50	7244 B .	1.95 2.25	869 BX	50.00	96103 $9(104$	1.25
${ }_{2 C 43}$	14.50	3AP1A	10.00	4 J 39	150.00	VT52.	. 35	394 A	3.95	725A	9.00	872 A	3.50 1.50		2.75
2 C 44.	. 60	3BP1.	7.20	4 J 40	150.00	HK54.	4.50	MX408U	. 50	726 A	18.00		1.50	9006.	. 25
2 C 46	7.50	3B24.	4.50	4 J 41	150.00	RK72	1.00	417A	15.00	726 B	45.00		250.00		
2 E 22.	2.25	3 B 25.	5.50	$4 \mathrm{4J} 42$.	190.00 190.00	RK23	19.95		15.00 1.95	${ }^{7268} \mathbf{4}$ Y/GY	15.00	884	1.50		
${ }_{2}^{2 J} 21$ A 2.	12.00	3 3 26	5.00 8.00	4.51	$\underline{195.00}$	1 COTH	7.95	446 B	3.95	${ }_{730 \mathrm{~A}}$	22.50	885	1.50		mands
$2{ }_{2} 26$	15.00	EL3C	5.50	4 J 33.	225.00	P/3105	20.00	4507 T	45.00	750 TL	. 120.00	914 A	75.00		
2 J 27	15.00	3 C 22	99.00	C.5B	250.00	122 A	1.75	450 TlH	52.50	801 A	. 90	931 A	5.		

NEW TS-147 C/UP TEST SET Hard-to-get X-Band SIGNAL GENERATOR Now Available

Test Set TS 147 C/UP is a portable Microwave Signal Generator designed for testing and adjusting beacon equipment and radar systems which operate within the frequency range of 8500 MC to 9600 MC .

NEW

 MICROWAVE TEST EQUIPMENT TS148/UP SPECTRUM ANALYZER

Field type X Band Spectrum Analyzer, Band 8430-9580 Megacycles.

Will Check Frequency and Operation of various X Band equipment such os Radar Magnetrons, Klystrons, TR Boxes. It will also measure pulse width, c-w spectrum width and Q or resonant cavities. Will also check frequency of signal generators in the X band. Can also be used as frequency modulated Signal Generator etc. Available new complete with all accessories, in carrying case.

Other test equipment, used checked out, surplus

TSK1/SE K Band Spectrum Analyzer TS3A/AP Frequency and power meter S Band RF4A/AP Phantom Target S Band TS12/AP VSWR Test Set for X Band TS13/AP X Band Signal Generator TS14/AP Signal Generator TS33/AP X Band Power and Frequency Meter TS34/AP Western Electric Synchroscope T35/AP X Band Signal Generator TS36/AP X Band Power Meter 1-96A Signal Generator
TS45 X Band Signal Generator

TS47/APR 40-400 MC Signal Generator TS69/AP Frequency Meter 400 -1000MC TSICO Scope TSIO2A/AP Range Calibrator TSl08 Power Load
TSI10/AP S Band Echo Box TS125/AP S Band Power Meter TS126/AP Synchroscope TS147 X Band Signal Generator TS270 S Band Echo Box TS174/AP Signal Generator TS175/AP Signal Generator

TS226 Power Meter
TS239A-TS239C Synchroscope
TF890/1 X Band Spectrum Analyzer 834 General Radio Frequency Meter

SURPLUS EQUIPMENT

APA10 Oscilloscope and panoramic receiver APA38 Panoramic Receiver APS 3 and APS 4 Radar APR4 Receiver and Tuning Units APR5A Microwave Receiver APT2-APT5 Radar Jamming Transmitter

MINIMUM ORDER 25 Dollars

SPECIAL

Wide Band 5 Band Signal Generator 2700/3400MC using 2K41 or PD 8365 Klystron, Internal Cavity Attenuator, Precision individually calibrated Frequency measuring Cavity. CW or Pulse Modulated, externally or internally.

YOU CAN REACH US ON TWX NY1-3235
Large quantities of quartz crystals mounted and unmounted.
Crystal Holders: FT243, FT171B others:
Quartz Crystal Comparators.
North American Philips Fluoroscopes Type 80. Large quantity of Polystyrene beaded coaxial Cable.

Cables:
TELSERUP

Biggest \& Best in Surplus Communications

JUST RECEIVED

LARGE QUANTITY: SCR300 (BC-1000) Walkie-Talkies; SCR-536 (BC-611) Handy - Talkies. S P A R E PARTS for both eqpts. All units reconditioned to LIKE NEW, thoroughly tested.

BIGGEST \& BEST STOCK IN: TCS Transmitters \& Receivers with $12,24,110$ DC or 110 AC Power Supplies.
BEACHMASTER \& OTHER BATTLE ANNOUNCING PA SYSTEMS.
SCR-284; BC-224; BC-312; 342 \& 348. SCR-510, SCR511, SCR-610.

VHF EQUIPMENT: SCR-522, BC-797, SCR-624, TDQ, RCK, \& VHR-401A RECEIVERS.

FINEST STOCK OF X'MTTRS \& RADIOTELEPHONES FOR FIXED STATION INSTALLATION, 50 WATTS TO 10 KW .

Write for Prices \& Literature.
EXPORTERS, GOVERNMENT
AGENCIES, INDUSTRIALS!
We have a large stock of Transmitters,
Receivers, Walkie-Talkies, VHF Equip-
ment, Ship \& Shore Communications, FM
Broadcast Stations, Radar, Accessories,
etc. Write and tell us of your require-
ments. Descriptive literoture and prices
available upon request.

ALL MATERIAL SUBJECT TO PRIOR SALE! CABLE ADDRESS: TELEMARINE,N. Y.

-TELEMARINE-
 COMMUNICATIONS CO.

3040 W. 21 st Street, Brooklyn 24, N. Y.
Phone: ES 2.4300

WAVEGUIDE RG52/U 12^{\prime} min. 80 \& perft.
"X"

BEND 90 DEGREE.
BEND 90 DEGREE. F U If plane. Nt plated. \$10.50 Silier plated $\$ 7.50$
CRYSTAL MOUNT. Hold any IN2 type xtal, "x $1 / 2$ nulle std coan outDIRECTIONAL COUPLER. 20db type output, UG39月g. to FLEX. SECT. ADX 6%. UG39 1)g: $\$ 10.00$
TR.ATR SECTION. Luplexer assy w/UG-32 to ATR ravity 724 cplg. colge to compl. whet tuning slugs tube ROTARY JOINT. UG40 choke to choks w/mount-
ing. plate fo! easy installation. 30 deg. rotary ing. plate for easy installation. 30 deg. rotary
coupling tor lab or high speed scanner. $\$ 12.00$
-
 tuneable silver plated $\$ 10.50$ LIGHTHOUSE CAVITY. For 2C40 tube. Tuneable $2700-2900 \mathrm{mcs}$ w/suitable grid
csls. Can be frea. modulated. $\$ 22.50$ csls. Can be freq. modulated. \$22.50
STANDARD OR REFERENCE CAVITY.
2650-3050me. $2650-3050 \mathrm{mc}$. Invar tuning center con-
ductor of $3 / 4$ wave-lgth. 50 ohm coas "W's input output conn. Ime/sec. Sta-
bility. Loaded Q betwn 650 and 3001 bility. Loaded Q betwn 650 and 30011 w/xmsn
apx 60 oilo. Concentric
5 mech. lock. $\$ 18.50$
FEEDBACK DIPOLE $\%$ coax. for parabola ECHO BOX. TS-207/UP, 2700-2900mc. miero ads. $\$ 64.50$
SIGNAL GENERATOR incl. Klystron mit. cabibrated att, thermistor bridge. direct reading wavemeter, all RG66/U wave-
guide. Excellent. No power stipoly, s385. MAGIC TEE, precision milledi.. $\$ 45.00$ MARECTIONAL COUPLER bi-dir. UG116/U 1langes \$45.00
KLYSTRON OUTPUT GOUPLING for 2 K 50 . RG66/U suide 812.50
H BEND 90 deg. CGB46/U E BEND 90 deg. CG345/U. Cplg. UG-147
ADAPTERS $11 / 2^{\prime \prime}$ lg
UG116 to UGil6. UGil7 to UG117

RADIO-RESEARCH

 INSTRUMENT CO.550-5 Ave., N. Y. 36, N. Y. Tel: JU 6-4691

WHY SEARCH? AARON HAS IT!

Call Gene Morasco, Sr. WA. 1-9188

AARON ELECTRONIC SALES

6025 Mt. Elliott
Detroit 11, Michigan
New SURPLUS TUBES, FOR SALE 5,000-15R
$4,000-722 \mathrm{~A} / \mathrm{CE} 302 \mathrm{~A} / \mathrm{W} . \mathrm{E} .287 \mathrm{~A}$ 2,500 RK34

180 3CP1-Sl/1808P1
GEORGE BELLING ELECTRONICS
217-12TH ST., OAKLAND, CALIF.

An Investment!

Productive advertising is an INVEST. MENT rather than an EXPENDITURE. "Searchlight" advertisers almost invariably report prompt and satisfactory results.
BE CONVINCED - send us your advertisement. TODAY.

Address Classified Advertising Division
ELECTRONICS
330 W. 42 nd St., New York 36, N. Y.

INDEX TO THE SEARCHLIGHT ADVERTISERS

MAY, 1954

This index is published as a convenience to the readers. Care is taken to make it accurate but ELECTRONICS assumes no responsibility for errors or omissions.

SEARCHLIGHT SECTION (Classified Adrertising) H. E. Ijilty, Mgr.

EMPLOY UENT * ADVERTISERS .. $42+433$ DEX EQUIPMENT ... 434454

EQUIPMENT ADVERTISERS INDEX

 Aaron Electronics Sales..Adamson Electronics....
Allied Electronic Sales
Alltronics Electronic Equipment
Arrow Sales Inc...
Avionic Associates. 452
424

448

Barry Electronics Corp................... . 441
Belling Electronics, George 45
Blan 450
Calvert Electronics Inc.................... 442
Cap Electronics.
Chase Electronic Supply Co.
Communications Devices Co.
Communications Devices Co 440
Communications Equices Co.................. 444
Communications Equipment Co..........38. 439
Communications Co.............. 439

Edlie Electronics Inc...................... . . . 444

Empire Electronics Co... 450
Engineering Associates. 440
Fair Radio Sales.. 440
Fay-Bill Distributing Co........... 448

Grinn, G....................................... . . 448
Harjo Sales Co............................ 449

JSII Sales Ce. 445
Lapirow Bros........................ 445
Legri S Company............................ 447
Liberty Electronics
Loris Sales.................................. 448
Maritime International Co................ 448

Mogull Co., Inc... 446
National Surplus Sales Co.............. 449
Perma Products Co 445
Photocon Sales ... 447

Radalab
Radio Development \& Sales Co
Radio \& Electronic Surplus
Radio Research Instrument Co
Railway Communi
Relay Sales
R. IV. Electronics

Seriler Industries Inc.
Servo-Tek Products Co., Inc
"TAB"
Telemarine Communications Co.
Universal Electronics.
Universal General Corp
V. \& H. Radio \& Electronics

Victor-Bernard Industries
Western Engincers

HIGH-CURRENT SUPPLY KIT

XFMR-CHOKE—METER -RECTIFIER COMBO

6-12V 20 A
Priced Individually at $\mathbf{3 8 . 1 0}$
Transformer, Choke, Rectifier, Meter \& 6 Capacitors

SPECIAL!
29.95

TRANSFORMER, 24V C. T. 0.35 KVA; Open Frame, \# T160
CHOKE, Filter, 20 Amp, DC, 15 mh at 60 cyc., Open Frame, \#T161.
RECTIFIER, 18-0-18-V, Radio Receptor, Full-Wave C. T., 20 Amp., \#X101.... 6.95
METER, 20 Amp., DC, 23/4 Sq, Electro-Mechanical Inst., \#M301............ 1.25
CAPACITOR, 200 Mf. 100WVDC, W. E. Vertical Insulated Can Type, \#C70
6 for 2.00

HEAVY DUTY $115 V$ AC SOLENOID CONTACTORS

TOGGLE SWITCHES

Contacts	Mig. \& No.	Descr.	Amps	Each	Contacts	Mfg. \& No.	Descr.	Amps	Each
4PST	C.H 8883 K 3	3 Hole Mig.	15A	1.75	DPST	Carling	Toggle		. 89
3PDT**	C-H 8743 K 7	3 Hole Mig.	15A	1.75	DPDT*	Carling	Toggle	1A	. 69
DPST*	C. H C9A	Aircraft	35A 24V	1.29	DPDT	Carling	Momentary	3A	. 69
2BT	CH C6B	Momentary	20A 125V	89	SPST	C-H B5A	Aircraft	35A 24V	. 29
SPST	CH 8781 K 3	Aircraft	175A	2.50	SPST	A. H \& H	Toggle	3A	. 29
SPDT**	CH B9A	Aircraft	35A 24 V	29	1A, 1B2 ${ }^{\text {a }}$	A. H \& H	Toggle	3A	. 29
DPDT*	C-H	Aircraft	35 A 24 V	1.29	1A, 1B ${ }^{\text {米 }}$	A. $\mathrm{H} \& \mathrm{H}$	Molded To	le 6A	. 35
DPD ${ }^{* *}$	Carling	Toggle	15A	1.09	18**	T\&M Co.	Push	3A	. 25
DPDT	Carling	Toggle	15A	97	1A**		Push	6A	. 35

KOVAR GLASS TO METAL SEALS
 HIGH-VOLTAGE FEED THRU

Many types and sizes. Send us your blueprint or sample for our quote. Our prices are a fraction of original factory cost.s.
SAMPLEE KIT
96 Seqls (8 ea. 12 types)
LAB KIT
300 Seals (20 tyjes)

MU-METAL LAMINATIONS
Es, Fs, Is, Ls. Ten Sizes. Quantities Available.
 $\$ 19.75$

TERMS:-All prices F.O.B. Our Plant. Rated Firms Net 10 Days: All Others Rentittance with Order. Orders Under $\$ 10$ Remittance With Oriler, Plus Approxinate Shipping Charges (overage will be returnett.)

SOCKET ASSEMBLIES

NEW RHEOSTAT LIST

0-1 MADC WAL
 MODEL221\%":
M 120 MA RF $314 \prime \prime \prime$
WESTON 301 3 30 R

INDEX TO ADVERTISERS

Ace Engineering Machine Co., Inc..... 208 Acheson-Colloids Compan
Acme Electric Corp 123

Advance Electrio \& Reliny Co 999

Aeronautical Communications Lupupment
Aeronatical Communications Latupment, \quad Inc. ..
Aerovex Cormorution 303 803
Ainslie Electronic Products Inc. 419
Aircraft-Marine Products. Inc.
419
63
Arcraft Radie Corp402

Airdesign, Inc. 367
Aireco, Inc.
367
Airpax Producte Co
Alden Products Co.
13

Allen-Iradley Co.
Allen Co., Inc., I. IS
Allen Manufacturing Co
Allmetal Screw Products Co.. Inc....... 420
Amerac, Inc.
American Airlines. Inc
39
Automotive \& Aircraft Div., American Chain \& Cable
American Electronics Mis.. Inc 306

American Optical Co....... 230
American Phenollc Corp
American Television \& Radio Co
American Time Products. Inc.
Amperex Electronic Cory
Amperite Co., Ine
Ampex Corporation
Antara Chemicals, Div. of General Dye tuff Corp
Anti-Corrosive Metal Products Co., Inc.
Armeo Steel Corp
Arnold Engineering Co
Art Wire \& Stamping Co
Assembly Ireducts, Inc.
Associated Rescarch Inc
Atlantic Transformer Corp
Atlas Engineering Co., Inc
Inc Kesistor Co., Div. Phila. Electronics
Audio Devices, Inc
Automatic Mfg. Corporation
Avery Adhesive Label Corp
Avien-Kinickerbocker, Inc., Aviation Engineering Div.

IBomac Laboratorien. Inc
Bronton Kadio Corp
Borg Corporation, George
Bourns Laboratories
Ifridgeport IBrase Co
British National Radio Show
Hrush Elect ronics Co
Hud Radio, Inc.
Burgess Battery Co
Burlington Instriment Co
Surnell \& Co
Hurtom-Rogers Co.
Bussmann Mfg. Co

Cambridge Thermionic Corp 38
 38

Cannon Electric Co
Carboloy, Dept. of Gencral Electric Co. 116,
Carter Motor Co 295
Centralab, Div. of (ilobe-tnion Inc, 256, 288

Chassis-Trak Corp.

319,327
Chester Cable Corn
45

Chicago Standard Transformer Corp 340 Cinch Mfg. Corp.
Clarostat Mfg. Co.. Inc
. 265
Cleveland Container Co 11

Clifford Mfg. Co
Cohn Mfg. Co., Ina . 336

Collectron Corp.
 363

Colling Radio Co
Columbian Carbon Co
Comar Electrie Co. 299
viles Co 231
Communication Products Co., Inc....... $3 \% 9$ Conrad \& Moser.
Consolidated Engincering Corb Consolidated Vacuum Corp
Continental-Diamond Fibre Co
Control Enginecring Corp
Copar. Inc.
Corne $\begin{aligned} & \text {-Dubilier Electric Corp }\end{aligned}$
Corniog Glass Works.
Cornish Wire Co., Ine
Coto-coil Co.
Cramer Co., Inc., R. W
Cross Co., If
Crucible Stexl Co., of America

Barrett Div., Allied Chemical and Dye corp.
Barry Corp.
Bausch \& Lomb Optical Co................ 82
Bead Chain Mig. Co....
Benver Gear Werks, Inc
Bemar Hadio Corp 1uvislons 21.3
Bendix Aviation Corporation Red Bank Div.
Scintilla Dir.
318
Bennett Mfg. Co.
-
Bentley, Harris Mig. Co $29: 3$
Berkeley Div., Beckman Instruments, Ine.
Berndt-Ibaeli, Inc
Bird d Co., Ine., R. H
Bird Electronic Corp
Birtcher Corperation
Biwax Cerp.
Boesch Mrg. Co., Inc 395 404 373 419
403 216

Boesch Mrg. Co.. In
Bosne Electric Mfr. Co

Dage Electric Co., Ine 397
Dalmo Victor . 109
Dano Electric Co . 38 .
Daven Company 3rd Cover
Daystrom Instrument, Div. of Dayst rom Inc
DeJur-Amsco Corporation 357
DeJur-Amseo Corporation 25
Dewey and Almy Chemical Co......... 2 2
Dialight Corporation 413
Diehl Mfg. Co.
300
Driver-Marris Co
Dumont Airplane \mathbb{E} Marine Instruments,
Inc.
 Wired $\$ 14.90$
1000 ohms/vols

470K $7^{\prime \prime}$ Push. Pull $\$$ Sopa
KIT
$\$ 79.95$. WIRED $\$ 129.50$.

YOU BUILD

 KITS IN ONE EVENING-

but they last a lifetime... and you save 50\%

38 Kits and 42 Instruments the Industry's most complete line of MATCHED

TEST INSTRUMENTS

$1 / 2$ - million EICO In . struments are now in use the world over! That's the proof of EICO's leader. ship in Value.

For latest precision eng, neering, finest compo nents, smart professional appearance, lifetime performance and rock-bot. tom economy - see and compare the EICO line at your Jobber before you buy any higher-priced equipment! You'll agree with over 100.000 others that only EICO Kits and In. struments give you the in. dustry's greotest values at lowest cost

Want more information? Use post card on last pege.

Announcing PRECISION D-C VOLTMETER Model 124
 The Model 124 Precision D-C Voltmeter produces on accurately adjustable reference voltage for comparison with the voltage to be measured. A null indicating meter is used to indicate equality of the two voltages. Voltages between 0 and 510 Volts can be measured. A very stable regulated power supply circuit is used as the internal voltage source. It can be standardized against a built-in standard cell by a switch and control on the front ponel. The switch also controls the sensitivity of the null indicator when measurements are made. the null indicator when measurements are made. Two sensitivity ranges are provided and are selected by a switch on the front panel.
 On special order, the terminals of the reference valtage may be connected to a suitable receptacle Also available for relay rack mounting.
 Voltmeters for other voltage ranges supplied on special order.
 Specifications:
 VOLTAGE RANGE: 0 to 510 Volts in steps of 10 volts or 0 to 500 Volts in sieps of 100 Volts, Bath step is sublivided by a vernier dial reading 10 Millivolts or 100 Millivoits, resp., per division.
 ACCURACY: When properly standardized, wht age indications are accurate within 0.1% in the coltage difterences can the measured with an ac curavey of better than 0.1% or 5 Millivith, which-
 WRITE FOR DESCRIPTIVE LITERATURE
 FURST ELECTRONICS
 3322 W. Lawrence Ave., Chicago 25, Illinois
 INPUT IMPEDANCE: Tntinite, after mull hal ance is obtained
 DIMENSIONS: $91 / 2^{\prime \prime}$ wide tix $12^{\prime \prime}$ digh by $8^{\prime \prime \prime}$ deme. excluding carrying hande and mbler feet. Nomot panel: $81 / 2$ wide be $1 \mathrm{L"}$ high.

Dumont Laboratories, Inc., Nllen B ...33. 289 DuPont de Nemours A Co., (Inc.) E. I. 86

Polycliemicals Dept.48.4,
488
389
Eastern Air Devices. Ine 26
Eastern Precision Kesistor forb 120
Edison, Inc., Thomas A 260
Gitel-McCullongh. Jnc. 59
Hico Corporation 383
Electra Mfs. Co 388
Electric Regulator Corp 390
Electronic Corp 119
Electrical \& Physical Instrument Corp 379
Electro-Measuroments Inc. lectro-Measurements Inc. 363
Electro Engineering I'roducts Co 381
Alectronic Assochates. Inc 331
, ectrollic Instrument (o., Inc, (EICO) 455Electronic Parts Mfg. Co.. Ine
Electronie Tube Corporation 280Electrons, Ine.
Emerson Electric Nlis. ('o 222
373
Limpire Devices Products ('orp 359
Epeo Products, Inc. $3 \pi 1$
Epsylon Research \& Development Co., Ltd.
F-I Machine Works, Inc 83
Eairchild Camera \& Instrument Corj 314
Fansted Metallurgical Corp.236
077
Federal Telephone \& IRadio Co 277
Federated Metals, Diy, of American 392
Fim Film Camacitors, Inc 391
Filtron Co., Inc. 51
Five Star Co.. The 399
56
Ford Instrimint Co 55
Freed Transiorme 45 i
G-V (ontrols, Inc 274
Gabriel Latoratories. Dliv. of Gabriel Co 323
Gabriel Electronics. Div. of (abbriel CoGamewell Co.

Garod Ridio Com 232
234Gencral Cement Mfs. Co
General Ceramic corl 39
General Devices, Itur 415
General Lifertric Co. 0. 61. 91. 95
Electronics Dept.67
General Radio Co. 17
General Transformer (a) 418, 421
Good-all Flestric Mis. Co 346
Goodmans Industries, Ltd

Gramer Transformer Corp.
Grint Pulley A Hardware Corp
Graphite Melallizing Corp
Gray Research \& Development, Inc Greater Lawrence Citizens Committee
Green Instrument Co., Inc
Gries Reprodncer Corp.
Gudebrod Bros. Silk (o., Ind
fuideline Associates

Hamilton Mff. Co
214
Hamilton Watch Co., Alied l'roductis, 96 C
fammarlund Mfg. (o., Ine. 23
Handy \& Harmon
Hardwick findle. Inc
Harvey Hubbell, lue
Haydon Co.. A. W
Heath Co.
If.iland Research Corp 344
… 22
Helipot Corp., Div. of Beckman Instrinments, Ine.
Ienry \& Miller Industries. Inc........... $12 \mathbb{2}$
Hetherington, Inc. 384
ITewlett-Puckard Co. 28, 29, 44, 45
Hexacon Electric Compans. 365
Mi-Q DIv. of Aerovox Corp 302, 303
If udson Tool \& Die Co., Inc. 20%
Hughen Aircraft Co.......................... . . .
Hughes Research \& Levelopment Iaboratories
Hycor Salen Company of Calif.

I-T-E Circuit Breaker Co. Special Iroduets Div.
Indiana Steel Products Co
Indust 11
Industrial Control Co 45
Industrial Development Div. State of Florida
Industrial IIardware Mfg. Co., Inc. 38
lndustrial Test Equipment Co - 881
Instrument Corp of America.
instrument Resistors Co
391

- 42

International Electronic Research Corp. 295
International Instruments, Inc............ 36
International Nickel Co, Ine
International Rectitier Corp

Iship Transformer \& Metal Co.. Inc....... 84

DC MEASUREMENTS

 the input DC into an amplified, proportional, sinusoidal, AC voltage.

- Gain Stability: 2\%
- No Zero Drift
- Max. Gain:

1000 (volts RMS/volt DC)

- Rejects external 60 CPS pickup
- 2 Megohm Input Resistance
- 5 Decade Ranges

Makes any AC Vacuum Tube Voltmeter direct reading in DC microvolts and millivolts. With the cathode ray oscitlograph yields an extremely sensitive DC null detector.

PHONE: MIDLAND 3-7548

[^29]Hundreds in use in leading govern. ment and industrial laboratories.

for VHF, UHF and microwave requirements

Fluorocarbon Plastics Finest Insulating Materials Known to the Electronics and Electrical Industries.

DuPont Teflon and Kellogg Kel-F have demonstrated qualities superior to any other insulating materials. These fluorocarbon materials are used exclusively in Chemelec Components. They offer higher surface resistivity; lower loss factor; higher dielectric constant; wider service temperature range; zero water absorption; won't carbonize under arcing or DC plate; are chemically inert and non-gassing; non-flammable; tough, resilient to withstand installation, and shock and vibration in service.

Quality Controlled Production and Precision Manufacturing Assure Maximum Advantages from Chemelec Components

The fluorocarbon plastics used
in Chemelec Components provide maximum dimensional stability. Precision molding and machining techniques assure accuracy well within required tolerances.

COMPLETE LINE

Chemelec Components, Teflon and Kel-F insulating materials and molded and machined parts offer a complete service to the Electronics and Electrical Industries.

SPECIAL ASSEMBLIES

In addition to molding and machining parts to customers' specifications, United States Gasket Company also produces special assemblies such as aircraft electric-motor connectors, relay contact plates, high-voltage DC filters, special terminal boards, anode shields, etc.
Kahle Engineering Co... In of il is
Karp Metal Products (o., Div. of II α is 329
Kartron
Kay Electric Co.......................... . . 3 .
Kearfott Co., Inc 258
Keller Tool Co......................... is
Kellogg Switchboard \mathbb{A} Supply Co....... 36π
Kepco Iaboratories 90
Kester Solder Co. 248
Ketay Mfg. Corp.112A, 11213
Kinney Mfg. Div, New lork Air Brake Co. . 33.7
Kinights Co., James 305
Kollmorgen Optical ('urp 35\%
Kollsman Instrument Corp.............. . . . 80
Krengel Mfg. Co., Ine. 363

Laboratory for Itlectronics, Inc. 241Lambda Electronles Corp.	
Lampkin Laboratories, Ine	422
Lapp Insulator Co., Inc	328
Leach Relay Co	198
Leland, Ine.. G. II	297
Lewis Spring \& Mfg. Co	376
Librascope, Inc.	125
Linde Air I'roducts Co., Liv, of bide $\&$ Carbon Corb.	377
Lindyren \& Associates, Erik A	369
ILion Fistener, Inc.	349
Lockheed Missile Systems Di	

Machlett Laboratories. Inc. 20 .
Magnecord, lnc. 337
Magneties, Ine. 96D
Magratran Ine . 379
Makepeace Co., D. E. 263
Mallory and Co.. Inc., P. K......128, 191, 412
Marconi Instruments, Ltd 34
Martin Company, Glenn L................ 127
MB Manufacturing Co., Ine............... 54
MeCoy Electronics Co............... 368
MeGraw-11ill Book Co., Inc.............. 411
Measurements Corporation 369
Metal Textile Corporation 359
Metals \& Controls Corp., General Plate
ㄴ............... 42
Micamold Radio Corp.................... 386
Micro Switch, A Div, of Minneapolis-
Honevwell Regulator Co.................. 76
Microdot Div. of Felts Corp. 391
Midland Mfy. Co., Inc...................... 233
Milford Livet \& Machlne Co............. 316
Millen Mfg. Co., Inc., James. 402
Miller Instruments Inc., William 237
Millivac Instrument Corp. 360
Mllwaukee Transformer Co............... 270
Minneapolis-Honeywell Ikegulator Co., In-
dustrial Div. 70
Minnesota Mining \& Mfg. Co............. 66
Moloney Electric Co....................... 103
Muirhead \& Co. Ltd. 3
Mullenbach Electrical Mfg. Co.......... 228
Mycalex Corp. of Ameriea. 3:4

National Moldite Co	287
Natrar Corp.	273
New London Instrument	40
Ney Company, J. M	37%
Niemand Brothers, Inc	375
Vopeo Chemical Co	62

K-B-M. Div. of lessex Wire Corp........ 20 Kadio City Prodncts Co.. Inc 35n Kadio Corporation of America Ath Cover Radio Materials Cerp Ath Cover
46 Radio Receptor Co., Ime 46
.$\quad 267$
Kallway Commonications. Ine. 332
Railway Hxprens Arency, Air Hapress
Kam Meter, Inc
Rawson Wiectrical Instrument Co 209 417

Kaybesios-Manhattan, Inr. 3×7

Kaytheon Mfg. Company 19. 289
Repves-Hoffman Corporationt 360
Resin Industries, Inc. 108
Rex Kheostat Go. .
Richardson Company
Koanwell Corporation
Rockbar Corporation
Kome Cable Corp.
livtherford Electronies (\%

Sanborn Compray	283
sitndia Corporation	888
Sarla's Tarzian, Ine., Kectitipr Div.	338
vientifte Electric Div, of "s" Corrumat Quenclied Gap Co.	361
scientilic Instruments	42
Srientific Ladio lromucts, Ine	378
Srintilla Div, Bendix Aviation Co	2\%9
Secon Metals Corp	40.1
Servomechanimms, Inc.	16
Whalleross Mfg. Co	, 210
Nigmi Instruments, lue	
Nierra Electronic Corp	286
Signal Engineering Mfg, Co	37.
korensen \& Co., Inc	
southern Electronics	385
*prague Electric Co	19%
Starkpole Carbon Co	
Ntandard wiectrie Time Commany	
Standard Electrical IPoducts Co	34
stundard l'iezo Co	
Standaril Telephones \& (ables. Itd	6 !
Stanley Tomels Div, of standey Works.	42
Star lorcelain Co	
Statham Development Corp	
Stavid Lingineering, Inc.	
Sterling Transformer Corp	
lart Aircraft Radio Co.	

Chemelec

components, parts, assemblies, materials

MINIATURE TUBE SOCKETS TEFLON OR KEL-F

Seven or nine-pin miniatures. Saddle or can types. Catalog Nos. SO-427 and SO-439.

STAND-OFF INSULATORS

Miniature, Teflon Insulated, Screw, Stud, rivet or compression mounted. Catalog No. TE-400.

FEED-THROUGH INSULATORS

Threaded Metal Body Type: Teflon insulated miniature. Catalog No. CF-406.
Gasket Type: Moisture and oilproof. Silicone rubber "O" Ring sealed. Teflon insulated. Catalog No. CF-414.

Hermetic Seal Type: Fused Teflon-metal surface permits soldering to deck. Hermetic solder seal is capable of holding a vacuum for sustained periods. Catalog No. CF-400.

CHEMELEC TRIMMERS

Tubular miniature for low inductance and straight-line,
noise-free adjustment. High temperature polystyrene or Teflon insulated. Catalog Nos. TR-535 and TR-535X.

CAPACITOR SEALS

Teflon Multi-Bond construction with fused fluorocarbonmetal surface for hermetic solder seal. Catalog No. CA-439.

SPECIAL TECHNIQUES

The United States Gasket Co. has developed original techniques for molding Teflon around metallic structures, the applying of metal inserts in Teflon, and has developed feed-through, stand-off, mounting and contact hardware to the extent that Teflon can now replace any conventional insulating material. Send drawings for estimates of cost.

CEMENTABLE TEFLON

Teflon with specially prepared surface which permits cementing with standard commercial adhesives. Catalog No. MI-443.

TEFLON and KEL-F Sheets, rods, tape, tubing, bars, cylinders, molded and machined parts.

\checkmark more ranges

\checkmark an extra-low resistance range
\checkmark an extra-low voltage range
\checkmark an extended low current range
\checkmark a larger meter scale face
\checkmark simple, positive range selection
\checkmark POSITIVE CONTACT JACKS and PLUGS

Compare These Wide Spread Ranges and Special Features:

$\star 8$ DC voltage ranges: 20,000 ohms per volt. $\star \&$ AC VOLTAGE RANGES: 5,000 ohms per volt 0-1.2-3-12-60-300-600-1200-6000 volts.
$\star 8$ AC OUTPUT RANGES: same as $A C$ volt ranges. Built-In 600 volt blocking capacitor.
$\star 7$ dC CURRENT RANGES:
0-60-300 Microamperes. 0-1.2-12-120-600 Ma 0.12 Amperes
$\star 5$ RESISTANCE RANGES: self-contained. 0-200-2000-200,000 ohms. 0-2-20 megohms.
$\star 8$ DECIBEL RANGES: -20 DB to +77 DB . $O D B=1$ Milliwatt, 600 ohms.

* EXTRA LaRGE 51/4" RUGGED 'Pace' meter: 40 microamperes sensitivity, 2% accuracy.
$\star 1 \%$ MULTIPLIERS and SHUNTS:
Wire-wound and deposited film types.
- TWO JaCKS SERVE all standard ranges: Separately identified and isolated jacks provide for extra high ranges.
\star "TRANSIT" SAFETY POSITION on range selector protects meter during transport and storage.
\star CUSTOM-MOLDED PHENOLIC CASE and PANEL: Compact, laboratory styled instrument.

MODEL 120...complete with internal ohmmeter batteries, banana-plug test leads and detailed operating manual. Overall case dimensions operating
$53 / 8 \times 7 \times 34 / 8^{\prime \prime}$
mal

PRECISION APPARATUS CO., INC.

92-27 Horace Harding Blva., Elmhurst, L. I., N. Y
Export: 458 Groadway, New York 13, U. S. A.
Conata: At!as Radio Corp, Ltd., 560 King St.,W., Toronto, 28

Struthers-lman, linc.
211
Stupakoff Ceramic \& Mfg. Co
Superior Electric Co
4
Suparior Tube Co.. 221
Swiss Automatic Company, Inc 377 Sylvania Electrieal Produets Inc. . . 7, 309. 320 Synthane Corporation. 251, 955

Nowlite. Inc

Taylor Fibra Co.......................... . . 213
Terhuical Survice Corb........................ 395
Technology lnstrument Corp.105. 38:
Tektronix, Ine.
38
Tel-Instrument Co.. Inc 246

Telechrome. Inc. 288

Felechron Dept, of General Wlectric Co $\therefore 45$

Teletronies laborutory Ine
Terpunine Company I. H
Texas Instruments, Inc ...
Titeflux. Ine.
Tohe Dentwchmann Corp.
Transicoil Corp.

Transradio, Ltel.
$33!$
387
Trans-Nonics. Inc. 407
Triphott Electrical Instrument Co...... 964
Tung-Sol Electric, Inc

Ucinite Company
7
Union Curbide \& Curbon Corp., Libde Air Products Div. 37
United Ntates Gasket Co.............45s. 459
U. S. Motors Corp. 202

United Transformer Co 2nd Cover
Universal Manufacturing Co., Inc.... 333,410
Univerwal Microwave Corp................ 411

Variall Associates 351
Veeder-Root, Inc. \quad \%
Vickers Electric Div., Vickers Inc....... 315
Vietoreen Instrument Co
315
114
Victory Fuginerring Corp 114
101
380
Volktrt Metal Stampinge, Ine., John 380

Wheeler Laboratoriws, Luc +1.5
White Denlal Mfr. Co. S. S......212, 38*. 105
Williams \& Co., C. K 29 .
Winchartare Corp. 27%
Winchester Electronics. Inc.

SEARCHLIGHT SECTION (Classified Advertising) H. E. Hilty, Mgr.

EQUIPMENT ADVERTISERS INDEX 45气 EMPLOYMENT ADVERTISERS

Bendix Aviation Corp., Pacifle Div...... 42t
Bendix Avlation Corp., York Div......... 426
Bendix Aviation Div. of Hendix Aviation
Corp. 4
Capehart Farnsworth Corp.............. $\$ 26$
Cardwell Manufacturing Corp., Allen D.. The

430
Collins Kadio Co 13:
Convair 189
Corneli Aeronatics Laboratory Ine..... $4: 8$
Electronie Engineering Co. of California 433
Electronic Assoclates Inc. $4: 8$
Engineering \& Kesearch Corb 130
Federal Telecommunication Labs 43:3
Goodyear Aircraft Corp................. 427
Hofiman Laboratories Inc. 426
Kollsman Instrument Corp 42.
laclen Corporation $42 t$
Magnavox Company $4 \geq 4$
Dassachusetts Institute of Technology. 131
Maxson Corb. W. L.................. +30
Melpar, Inc. 433

Kadio Corp. of Amerira.425, 431
Servomechanisms, inc. 424
Suelling \& Snelling $43:$
Tung-Sol Electric Inc......................... 438
Walker, W. C............................... 424
Westinghouse Electrie Corip $4 \$ 1$
White Kodgers Nlectric Co.............. . . 432
Wileox Electric (Co., Ine.................. 428

Yhis index is published as a convenience to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibility for errors or omissions.

Series 550-RO Attenuator

In addition to Daven being the leader in audio attenuators, they have achieved equal prominence in the production of RF units. A partial listing of some types is given below.

DAVEN Radio Frequency Attenuators, by combining proper units in series, are available with losses up to 120 DB in two DB Steps or 100 DB in one DB Steps. They have a zero insertion loss and a frequency range from DC to 225 MC .

Standard impedances are 50 and 73 ohms, with special impedances available on request. Resistor accuracy is within $\pm 2 \%$ at DC. An unbalanced circuit is used which provides constant input and output impedance. The units are supplied with either UG-58/U* or UG-185/U** receptacles.

TYPE	LOSS	TOTAL DB	STANDARD IMPEDANCES
RFA* \& RFB 540**	$1,2,3,4 \mathrm{DB}$	10	$50 / 50 \Omega$ and $73 / 73 \Omega$
RFA \& RFB 541	$10,20,20,20 \mathrm{DB}$	70	$50 / 50 \Omega$ aild $73 / 73 \Omega$
RFA \& RFB 542	$2,4,6,8 \mathrm{DB}$	20	$5 C / 50 \Omega$ and $73 / 73 \Omega$
RFA \& RFB 543	$20,20,20,20$ DB	80	$51 / 50 \Omega$ and $73 / 73 \Omega$
RFA \& RFB 550	$1,2,3,4,10 \mathrm{DB}$	20	$50 / 50 \Omega$ and $73 / 73 \Omega$
RFA \& RFB 551	$10,10,20,20,20$ DB	80	$50 / 50 \Omega$ and $73 / 73 \Omega$
RFA \& RFB 552	$2,4,6,8,20$ DB	40	$50 / 50 \Omega$ and $73 / 73 \Omega$

GREATLY EXPANDED PRODUCTION FACILITIES ENABLE DAVEN TO MAKE DELIVERY FROM STOCK ON A LARGE NUMBER OF STANDARD ATTENUATOR TYPES

These units are now being used in equipment manufacłured fot the Army, Navy and Air Force.

Write for Cafalog Data.

" DAEEN ${ }^{\circ}$

191 CENTRAL AVENUE
NEWARK 4, NEW JERSEY

How RCA Makes

RCA ReceivingTlubes

YOUR BEST BUY

YoYou get more for your money when you buy RCA receiving tubes because RCA makes extra effort to keep pace with new requirements for tube applications. For instance, the 1B3-GT and 6BQ6-GT illustrate how RCA makes improvements in tube type designs . . . makes RCA receiving tubes best for top performance in your TV-receiver designs.
The RCA-1B3-GT rectifier has been $i m$ proved to handle the higher voltages required by "big-picture" TV sets. Tube safety factors have been increased.

The RCA-6BQ6-GT horizontal output tube is another improved tube. Its improvements minimize grid emission, stray emission, and TV picture "jitters."

The improvements built into RCA receiving tubes give you: (1) Superior tube performance, (2) fewer factory-line rejects and "in-warranty" failures, (3) substantially greater tube value.

For circuit application help, call your nearest RCA Field Office:
(EAST) Humboldt 5-3900
415 S. 5th St., Harrison, N. J.
(MIDWEST) Whitehall 4-2900
589 E. Illinois St., Chicago 11, Ill.
(WEST) Madison 9-3671
420 S. San Pedro St., Los Angeles 13, Cal.
FOR COLOR-TV, SPECIFY RCA TUBES
rCA PIONEERED AND DEVELOPED COMPATIBLE COLOR TELEVISION
Speciolly processed glass bulb minimizes electro!ysis, improves tube life

[^0]: (Continued on page 20)

[^1]: (Continued on page 22)

[^2]: Saldexclusively to manufacturers of radio and electronic equipment

[^3]: The term "Scotch" and the plaid design are registered trademarks for the more than 300 pressure-sensitive adhesive tapes made in U.S.A. by Minnesota Mining and Manufacturing Company, St. Paul 6, Minn. - ;also makers of "Scotch" Sound Recording Tape, "Underseal" Rubberized Coating, "Scotcolite" Reflective Sheeting, "Safety-Walk" Non-slip Surfacing, "3M" Abrasives, "3M" Adhesives. General Export:

[^4]: Chisaga 6, III. • New York 19, N. Y. .

[^5]: For further details on the new advanced performance multiturn potentiometers write, wire or call

[^6]: (1) J. L. Hathaway and R. E. Lafferty. Gunshot Reinforcers and Synthesizer, Journ AES, Jan. 1953.
 (2) J. L. Hathaway and R. E. Lafferty, Funshot Generator for Television Studios, Electronics. Feb. 1953.

[^7]: *The work described herein was done while the author was employed by Canadian Westinghouse Co., Ltd.

[^8]: R. B. Adler, "A Large Signal Equivalent Circuit for Transistor Static Character istics.' M.I.T.. R.L.E Transistor Group Rejort T-2, Aug. 1951 .
 A. W. Carlson and J, F. Spades of the Cambridge Research Center, originator of the power stage, give a more complete analysis in "Transistor Pulse Amplifier fo Power Applications". soon to be published.

[^9]: C. Torsch, High Efficiency, Low Copper Sweep Yokes with Balanced Transient Response. presented at Pacific Coast IRE Convention. Aug. 1952 .
 O. H. Schade, Magnetic Detlection Circuits for Cathode Ray Tubes, RCA Review, cuits tor Cathode

 1) $5: \% 6$, Sept. 1947.
 A. W. Friend, Television Deflection Circuits, RCA Review, p 118, March, 1947 .
 O. H. Schade, Characteristics of High Efficiency Deflection and High Voltage Supply Systems for Kinescopes, RCA Review, p 19, March, 1950.
[^10]: A. IR. Anderson, Cylindrical Shielding and its Measurement at Radio Frequencies, Proc $I R E$, p 312 , May 1946.
 F. T. Terman, "Radio Engineer's Handbook", p 2-, McGraw-Hill Book Co., New York, 195%
 H. Pender and K. Mellwain, "Electrical Engineer's Handbook", p' 2, Wiley New York, 1953.

[^11]: Standard Resistance Tolerances: 1, 2, and 5\%

[^12]: Information brochures may be obtained from
 THE RADIO INDUSTRY COUNCIL 59 Russell Square,
 London WCI England Telegrams: Oidarion, Westeent, London

[^13]: a All erales ars Continental-Diamom Fibre Company
 ${ }^{1}$ Resins have improved ponetrating properties amd the manufacturing pech. nigurs use threse properties tu providr lutter impregnalion of the filler. Since thorongl impreqnation eliminates entrapped moisture ann air. areater mois-

 from Electrical Manufacturing Article "Wider Design Opportumities with the

[^14]: Want more information? Use post card on last page.

[^15]: Battery Chargers \& Batfery Eliminators \& D.C. Power Supply Units is Regulated Exciters \& and other Special Communications Equipment

[^16]: electronic researchcorporation

[^17]: - U.S. Air Force Certified Welding Facilities
 - Air.condifioned sproy room . . . complete baking focilities
 - Complete sub-assembly facilities

[^18]: ROSELLE, NEW JERSEY

[^19]: 2134 north pulaski moad. chicaco 39 llianols

[^20]: 1) (MONT-AIRPLANE \& MARINE INSTRUMENIS. Inc. OFFICE
 15 William Street
 New York 5. N.
[^21]: a subsidiary of Claude Neon, Inc.

[^22]: ATLAS
 ATLAS ENGINEERING CO., Inc.
 3 EDGEWOOD ST., ROXBURY, MASS.

[^23]: You can select a key position in a comprehensive, long-range program developing and manufacturing turrets, radar, fire control systems, computers, servo mechanis ms, instruments, guided missiles and rocket launchers.

 Attractive benefits include modern plant and facilities, suburban location, promotion-
 from-within policy, group insurance, pension plans, paid holidays and vacations.

 Salaries are commensurate with training, experience and ability. Transportation and moving expenses paid to St. Louis. Please send resumé, salary requirements and availability to:
 Technical Employment Supervisor, Station 483-B
 THE EMERSON ELECTRIC MFG. CO.
 8100 Florissant - St. Louis 21, Missouri
 LEADERS IN THE ELECTRICAL INDUSTRY SINCE 1890

[^24]: MANUFACTURERS OF SOUND-ON-FILM
 RECORDING EQUIPMENT SINCE 1931

[^25]: Want more information? Use post card on last page.

[^26]: REPRESENTATIVES WANTED
 Manufacturer of electronic test equipment for military and commercial applications needs technically qualified representatives Write giving qualifications, lines handled, territory covered.

 RW-R178, Electronics
 1111 Wilshire Blvd., Los Angeles 17, Calif.

[^27]: For Work in Design \& Development of:

 1. Airborne navigational instruments
 2. H.F. pulse magnetic recording systems
 3. R.F., I.F., video and microwave circuits

[^28]: Terms 25% cash with order, bal. COD unless rated subject to change without notice.
 Cable address "LECTRONIC philadelphial

[^29]: James Vibrapowr Co
 396
 Jelliff Mfy. Co., C. O
 401
 Jennings Radio Mif. Corl 296
 Johnson Co., E. F........
 324
 Jones Div., Howard 13., Cinch Mfg. Co... 369

