

DEW "W" TYPE TORODS Mwesin

UTC Permalloy Dust Toroids have been the standard of the industry for over is years. The MQ series of coils provide the highest Q factor in their class (see surves below), with miniaturized dimensions. All unlts are hermetically sealed to MIL-T-27 Specifications.

The stability is excellent. For the MQE-7 the inductance change is less than 1% for voltages from . 1 to 3 volts. The MQA- 13 change is less than 1% for applied voltages from . 1 to 20 volts. The MQB-5 change is less than 1% for applied voltages from . 1 to 50 volts. OC is permissible through the coil (values listed below). Inductance is virtually independenf of frequency temperature and vibration.

Hum pickup is extremely low due to the toroidal winding structure, with windings uniformly spread over the core. The case is of high permeability, affording additional shielding such that close spacing of units can be effected, the coupling attenuation being approximately 80 DB.

Other values of inductance than those listed are available on special order of the price of the nexp higher listed value.

TYPICAL Q CURVES

MQA TYPES			
Type No.	Inductance		*DC Max.
MQA-1	7	mhy.	250
MQA-2	12	mhy.	200
MQA-3	20	mhy.	150
MQA-4	30	mhy.	125
MQA-5	50	mhy.	100
MQAA-6	70	mhy.	80
MQA-7	120	mhy.	60
MQA-8	.2 hy.	50	
MQA-9	.3 hy.	40	
MQA-10	.5	hy.	30
MQA-11	.7	hy.	25
MQA-12	1.5 hy.	20	
MQA-13	1.5	hy.	17
MQA-14	2.5	hy.	13
MQA-15	4	hy.	10
MQA-16	6	hy.	9
MQA-17	10	hy.	7
MQA-18	15	hy.	5
MQA-19	22	hy.	4

*This value of D.C. (MA) will drop the coil inductance 5%. Values of D.C. below this will show proportionately (inear) less inductance drop. For ex. ample, MQE-1 will drop $1 / 2 \%$ in L with 13.5 MA.

-

-
MQB TYPES

- Type No. Inductance *DC Max.

-	Type No.	Inductance		*DC Max.
-	MAB-1	10	mhy.	400
	MQB-2	30	mhy.	250
-	MaB-3	70	mhy.	170
-	MQB-4	120	mhy.	120
	MaB-5	. 5	hy.	60
-	MQB-6	1	hy.	40
	MQB-7	2	hy.	30
-	MAB-8	3.5	hy.	22
-	MQB-9	7.5	ny.	16
-	Mas-10	12	hy.	11
-	MQB-11	18	hy.	9
-	MQB-12	25	hy.	8

HOW TUBES WHIRL 3-BILLION ELECTRON-VOLT PROTONS—Radio-frequency generator develops $100-\mathrm{kw}$ f-m signal across accelerating gap of Brookhaven National Laboratory's 3-billion electron-volt cosmotron (see p 160)
 COVER

W. W. MacDONALD, Editor; VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzie, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, David A. Findlay, Assistant Editors; Marilyn Wood, Gloria J. Filippone, Arlene Schilp, Editorial Assistants; Keith Henney, Consulting Editor; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant
H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; Frank H. Ward, Business Manager; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; Charles Wardner, James T. Hauptli, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los

February, 1954

ELECTRONICS

Vol. 27. No. 2
Member ABC and ABP
Published monthly with an additional issue in June by McGraw-Hill Publishing Company, Inc., James H. McGraw (1860-1948), Founder. Publication Office, 99-129 North
Executive, Editorial and Advertising Offices: McGraw-Hill Building, 330 W. 42 St., Now York 36, N. Y. Donald C. MeGraw, President; Wllard Chevalier, Executive Vicel'resident; Joseph A. Gerardi, Vice-President and Treasurer: John J. Cooke, Secretary; Paul Montgomery, Senior Vice-President, Presidicat; Willard Chevalier, Executive Vice-
 month for change of address. Suhscriptions are solicited only from persons ongaged In theory, research, design, prodiction. maintenance and use of electronic and industrial
control components, parts and end products. Position and compary connection must be indicated on subscription orders.
Single coples 75t for United States and possessions, and Canada: $\$ 1.50$ for Latin A merica; $\$ 2.00$ for all other foreign countries.
United States and possessions. \$6.110 a vear; $\$ 9.00$ for two vars. Canada, $\$ 10.00$ a year; $\$ 16.00$ for two years. Other western
 Ill, 68 Post Street, San Francisco 4; MrGraw-Ifill House. London, Publishing Co., Inc. - All Rights Reserved. RRANCH OFFICES: 520 North Michigan Arenue, Chicago 11 .

Here's the versatile, regulated DC source you've been looking forNOBATRON: Ramger

$100-300 \mathrm{VDC}$ at $1-10 \mathrm{amps}$ (model SR2)
5-135VDC at 1-10 amps
(model SR100)
$5-30 \mathrm{VDC}$ at $\mathbf{3 - 3 0} \mathrm{amps}$
(model SR30)
with $\pm 0.25 \%$
regulation accuracy!

The Sorensen Nobatron-Ranger is essentially an adaptation of the proved Nobatron circuit ${ }^{* *}$, with the added feature of continuously adjustable output voltage over a wide range. This makes the RANGER an exceptionally good investment for the many laboratories and test installations where a multi-purpose DC source can be used to advantage.

ELECTRICAL CHARACTERISTICS

Input voltage range $95-130 \mathrm{VAC}, 1 \varnothing, 50-60 \sim$ for models SR30 and SR100
190-260VAC, $10,50-60 \sim$ for model SR2

Output voltage and
load range

Regulation accuracy

$5-30 \mathrm{VDC}$ at $3-30 \mathrm{amps}$ in model SR30
5.135 VDC at 1.10 amps in model SR100
$100-300 \mathrm{VDC}$ at 1.10 amps in model SR2
$\pm 0.25 \%$ at any output voltage setting with an input between 105 and 125 VAC . The accuracy will be slightly less at the extreme value of the input.
1% RMS max. of output setting

All RANGERS are $22^{\prime \prime}$ wide by $171 / 4^{\prime \prime}$ deep by $471 / 4^{\prime \prime}$ high. They are self contained in handsome cabinets, equipped with casters for easy mobility. Meters are furnished as standard equipment, and there is adequate protection against overload, overvoltage, and tube filament failure.

Write for further information, and for your free copy of the new Sorensen general catalog, to Sorensen \& Co., Inc., 375 Fairfield Ave., Stamford, Conn. In Europe, please correspond directly with Sorensen A.G., Gartenstrasse 26, Zurich 2, Switzerland.
${ }^{*}$ Reg. U. S. Pat. Off./**Model SR2 uses a circuit device patented by Wm. J. Brown.

THE NEW MUIRHEAD-WIGAN DECADE OSCILLATOR

THIS precision laboratory oscillator, which covers a range of 1 to $111,100 c / s$ with an overall frequency accuracy of $\pm 0.2 \%$ or $\pm 0.5 \mathrm{c} / \mathrm{s}$, employs the decade tuning system, by means of which the frequency can be set quickly and accurately on four decade dials and a range switch. This system of tuning ensures the highest possible frequency accuracy and stability. It also enables a given frequency setting to be repeated exactly, and permits the addition or subtraction of a fixed number of cycles per second, thus giving an incremental accuracy of an extremely high order. No other type of oscillator possesses all these advantages.
FEATURES

Frequency range: $1-11,110 \mathrm{c} / \mathrm{s}$ and $10-111,100 \mathrm{c} / \mathrm{s}$.
Frequency accuracy: $\pm 0.2 \%$ or $\pm 0.5 \mathrm{c} / \mathrm{s}$.
Hourly frequency stability: $\pm 0.02 \%$ over most of range.
Maximum output: 2 W into 8000 ohms above $20 \mathrm{c} / \mathrm{s}$. 50 mW into 8000 ohms below $20 \mathrm{c} / \mathrm{s}$.

Harmonic content: 1% at IW output.
Hum level: -80 db relative to maximum output at $1000 \mathrm{c} / \mathrm{s}$.
Power supply: $95-125 \mathrm{~V}, 60 \mathrm{c} / \mathrm{s}$; 90 W .
Dimensions: $17 \frac{1}{4} \mathrm{in}$. wide $\times 10 \frac{1}{2} \mathrm{in}$. high $\times 13 \mathrm{in}$. deep.
Weight: 83 lb .

MAIL THIS COUPON FOR DESCRIPTIVE BROCHURE

NAME

POSITION
COMPANY

ADDRESS to which BROCHURE should be sent.

FIGURES OF THE MONTH

1952	1953	Percent Change
$5,175,193$	$6,765,000$	+30.7
$9,436,614$	$12,267,441$	+30.0
$5,095,220$	$5,600,423$	+09.9
$5,363,859$	$5,608,477$	+04.6
$324,512,611$	$413,687,529$	+30.2
$4,736,823$	$7,168,838$	+51.3

INDUSTRY REPORT

electronics—FEBRUARY • 1954

Single-Gun Color Tubes Studied By Industry

Abstract

Manufacturers intrigued by shortcuts inherent in phosphorstrip type

Several television receiver makers are studying with renewed interest tricolor picture tubes of the Chromatron type (p 29, Dec. 1951) employing a single electron gun, phosphor strips and switching at wire grids near the screen.

Among the potential advantages of such tubes are simplification of the color registry problem and good light efficiency. Among the initial disadvantages are relative picture coarseness and the necessity for fairly large amounts of switching power, with attendent radiation difficulties.

- Hazeltine Helps-Current interest is due in large measure to experimental work recently done by the Hazeltine Corporation, an organization which contributed
heavily to the development of NTSC standards and is responsible for a number of circuits that are proving valuable in the operation of phosphor-dot shadow-mask picture tubes.

Working independently of tube and set manufacturers, this laboratory has
(1) Demonstrated that it is possible to directly translate color signals transmitted simultaneously into signals that can be decoded essentially by the Chromatron itself for sequential display.
(2) Indicated that redesign of the framework holding the tube's grid wires, plus reasonable shielding and circuit refinements can materially reduce radiation at the color subcarrier frequency.

- More Work Ahead-At least three tube makers are working toward further refinement of design, with emphasis upon reduction of picture coarseness, re-
moval of support structures which cast some electronic shadows, selection of phosphors providing warmer tones when receiving monochrome programs and greater precision of parts placement in production models.
At least two set makers have made progress in the direction of circuits that minimize colorswitching power requirements and, particularly, in the development of circuits that simplify factory adjustment of color balance or grey scales and reduce the need for subsequent adjustment in the field.

Experiments with single-gun tubes of the phosphor-dot shadowmask variety have in the past indicated that the color registry problem is not unlike that encountered in connection with three-gun types. The experiments are no doubt continuing but results of recent work have not been publicly divulged.

Output Is Up, But Stocks Drop

> Buyers of stock are cautious about electronic stocks despite industry's solid output

Electronic stocks reached their high point in December of 1952. Since then, according to Standard \& Poor's electronic stock index, they have declined steadily by 54.4 points from 322.7 in Dec 1952 to 268.3 in December, 1953.

The index for 90 stocks, repre-
senting all industries, fell to 197.7 in December, 1953 from 204.7 in December of 1952, a decline of only 6.8 points. Electronic stocks dropped more and faster than the market in general.

Despite the decline, the output of the electronics industry as reflected in Electronics output index has shown only a slight readjustment. In December of 1952, the output index stood at 245.5 and
in November of 1953 , a month when cutbacks in employees and output took place, the index stood at 246.0 , a slight increase for the industry during the period.

- Why-Financial observers see several factors as the cause of the decline in electronic stock prices despite the continuing high output of the industry. They point to the declining ratio of net profits to sales, the apparent slowing of black-and-white sales in the final quarter of 1953 , dim prospects of substantial color sales in 1954 , tough. competitive selling for the industry in 1954, higher inventories, a possible decline in defense business for 1954, and the possible drag on black-and-white tr sales in 1954 due to color.
- Industry-Some electronics industry leaders are not inclined to agree with all the possible deterrents that security buyers foresee. They point out that excess profits tax relief will help raise the ratio of net profits to sales, that black-and-white sales slowed only temporarily in the fourth quarter and actually spurted in the final weeks of the vear. They feel that color sales may be more substantial in 1954 than estimates indicate and forecast that as many as 200,000 color sets may be sold. But, many electronic manufacturers go along with financial observers who see tougher competition in 1954.

NEARLY 600 hand-soldering operations are eliminated and production and material costs are reduced as

TV Set Uses Tinkertoy Construction

Commercial application of Project Tinkertoy modular construction was demonstrated in a tv receiver shown by Sanders Associates, Inc., Nashua, N. H. Using thirteen modular units on three plug-in printed circuit chassis, the set eliminates almost all hand soldering and wiring in assembly operations.

The set was built to show manufacturers the possibilities in this type of construction. No cost figures were given, but reduced hand labor and lower materials costs indicate that savings in manufacturing will be obtained using the teshniques.

- Drawings Available-Specifications for hand tools required to set up pilot runs or for model shop production of electronic modules are now available to the public.

The drawings, including those of jigs, dies and fixtures and an engineering handbook of the hand tool process (PB 111277), are now available at the Office of Technical Services, Department of Commerce, Washington 25, D.C.

Code name Froject Tinkertoy has been dropped for Modular Design of Electronics (MDE) and Mechanized Production of Electronics (MPE).

Silicon Transistor Announced

New surface-barrier units give excellent current gain, withstand high temperatures

CONTINUED development of the silicon transistor, announced last month by Philco's research division, may open the way for design of extremely compact, low-power electronic equipment useful at temperatures up to 300 C . The new tran-
sistor should be particularly useful in airborne and military gear and in power output stages where the perverse high-temperature behavior of germanium has limited the use of conventional transistors.

- Performance--Silicon transistors having current gains of 0.95 appear readily realizable; the highest gain reported was over 0.995 . Dozens of experimental units have
been produced and close uniformity of electrical characteristics noted. Frequency response is above 10 mc . Effect of humidity on silicon appears to differ little from that observed with germanium. In any event, the units are hermetically sealed.
- Production - The surface-barrier technique (Electronics, p 10, Jan. 1954) is used to prepare the silicon transistors. A thin slab of monocrystalline silicon is etched
(Continued on page 8)

S

 Y

 Y

 LVA

 LVA

 ROCKET TUBES

 ROCKET TUBES}

(PLANAR TRIODES)

The Answer to Efficient Power at 1000 to 4000 Megacycles

Still more reasors why it pays to SPECIFY SYLVANIA

For complete information concern. ing Sylvania Rocket Tubes or other electronic tubes write to Sylvania, Dept. 4E-1602.

LIGHTING • RADIO • ELECTRONICS • TELEVISION

In Canada: Sylvania Electric (Canada) Ltd., University Tatwer Bldg., St. Cotherine St., Montrect, P. Q.
away by opposing jets of currentcarrying salt solution directed against its broad faces. A current reversal then plates out metal, in this case zinc, on the freshly etched surface. Work has been done with both n and p type silicon.

- Problems--Philco officials stress that the silicon transistors produced are laboratory models only and that commercial manufacture is some ways off. A major problem is developing a source of silicon pure enough for transistor work. The silicon used in the transistors thus far made was obtained by a costly and tedious repurification process. What is desired is a convenient supply of extremely pure polycrystalline metallic silicon. Several military contracts to study the problem have been let. Among the firms engaged are Du Pont and Eagle.

Better Cabinets Needed Navy Study Discloses

STUDY of 270 shipboard units carried out at Naval Research Laboratory over an eight-year period indicates that 90 -percent of damage to equipment from shock and vibration can be eliminated by proper equipment design.

- Design problems-Greatest improvement can be made in the mechanical design of chassis, cabinets and frame structures. What seems to be needed is greater structural rigidity along with proper use of shock mounts.

The study found that vibration was as serious a problem as shock although the gravity forces encountered in vibration were low compared to those encountered in shock.

- Component parts-In general, standard components withstood shock and vibration well when properly placed and mounted. Only the performance of electron tubes and relays was found to be critical with regard to shock and vibration. An apparent cure for tube and relay problems is use of ruggedized electron tubes and completely enclosed rotary-type relays.

GUIDED-MISSILE test range spans Caribbean area, where...

Industry Enters Rocket Testing

Pan American will operate range with RCA handling radio and radar facilities

Flight-testing of long-range guided missiles at Patrick Air Force Base, Cocoa, Fla. will be handled by private industry on a contract basis under terms of an agreement between Pan American Airlines and the Air Force. Pan American will operate and maintain the 1,500 -mile over-water range that extends from the launching site at Cape Canaveral, Fla. southeastward over the Bahama Islands, Santo Domingo and Puerto Rico.

- Electronics-Radar tracking and telemetering at the launching site and seven down-range tracking stations (Electronics, p106, May 1952) will be handled by the RCA Service Corp., subcontractor, as will radio communications for the range and miscellaneous electronic instrumentation.

Transfer of range maintenance and operation together with data gathering and reduction chores to private firms is in line with Defense Department policy of calling upon industry whenever this proves to be the best and most economical course.

Some missile-range operations
at White Sands Proving Grounds, N. M. have for some time been handled for Army Ordnance by been handled for Army Ordnance by Land-Air Inc., a private firm. Wind tunnel test at the Air Force's Arnold Engineering Development Center, Tullahoma, Tenn. is done under contract by ARO Inc., of St. Louis.

FCC Surveys Post-
 Freeze TV Stations

Despite limitations, report indicates early trends in ty station operating finances

Study made by the Federal Communications Commission of postfreeze ty stations shows that of 83 stations reporting, 16 had overall profitable operations while 67 reported an overall loss, as of August 1, 1953.

However, as the report points out, the survey has limitations. The average reporting station had only been in operation 4.9 months at the time of the survey and the stations covered represent less than 50 percent of the number of stations on the air in December, 1953. In addition, most stations (Continued on page 10)

high VOLTAGE

Specifically enginecred for reliable service in the high voltage supply filter circuits of modern television receivers and cathode ray instruments are Sprague's new molded jacket "doorknob" capacitors.

These moderately priced units incorporate an improved ceramic diclectric element encased in a thermosetting, non-flammable housing for maximum protection. Fifteen different terminal combinations are standard to mect practically every mounting requirement.

Standard capacitance rating is 500 mmf . Voltages are $30,000,25,000$, and 20,000 volts d-c to fit all applications in television receivers from 27 -inch down to 17 -inch screen size.
Complete enginecring information on these capacitors is contained in Bulletin 606 A , available on letterhead request to Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.

Sprague, on re7ticst. will provide you with complete oppli:ation engineering service for aplimum resulfs in the use of ceromic capacilors.

SPRAGUE

surveyed were alone in their communities and only two of the uhf stations covered were in markets with pre-freeze vhf stations. Finally, the survey was conducted during months that are normally below other months in station business activity.

- Markets-Stations in the largersized markets generally fared better than those in smaller cities although four of the profitable vhf stations were in small cities and four were in markets of over 100,000 . Total of 33 of the 41 reporting uhf stations were located in markets above 100,000 compared to 18 for the reporting vhf stations.
- Equipment-RETMA advised FCC that during the period of Jan. 1, 1952 to Aug. 31, 1953, a total of 124 vhf and 108 uhf transmitters had been manufactured. The vhf transmitter power ratings ranged up to 50 kw and uhf up to 12 kw . Bulk of the vhf were 10 kw or less while most of the uhf had 1-kw rated power. The major transmitter manufacturers indicated that uhf transmitters of 50 -kw rated power are not expected to be in commercial production until late 1955 or early 1956.

RETMA also reported that during the period up to August 31, 1953 , a total of 2.4 million units, sets or devices to equip sets for uhf, had been produced. Approximately 1.0 million uhf sets and 0.7 million tuners and converters were shipped by manufacturers;
tuners and converters and sets in factory inventory totalled 0.7 million units.

During the same period up to August 31, 1953, a total of 1.4 million uhf strips were produced. About 15 percent of all sets made from January to July, 1953, were uhf equipped, according to RETMA. In subsequent months, the percentage of uhf sets to total production increased as follows: Aug., 17.3; Sept., 25.1; Oct., 29.8; Nov., 35.0.

- Reaction-Comment came quickly from the UHF Television Association. It is reported that the association has asked FCC to conduct a follow-up study as soon as possible since the report applied only to those post-freeze stations on the air prior to August 1, 1953. The association feels that the survey did not adequately cover the current situation since it did not. for the most part, include uhf stations in areas where vhf stations are in operation.

TELEVISION receiver with two superimposed images that can be separated by polaroid glasses is shown by Dumont as

TV Set Makers Show New Models

Color sets and lower priced black-and-white receivers dominate manufacturers' displays

In January, many tv set manufacturers demonstrated color sets to the trade, added new monochrome models to their lines or lowered prices on some existing models.

- Color-The colorcast of the Tournament of Roses parade goaded set makers into demonstrating color tv sets in January and at least 10 major producers had experimental models on display in
cities receiving the colorcast. One manufacturers has set a price of $\$ 1,175$ on a color console and is ready to take orders. Another plans to introduce a color console shortly that will retail for $\$ 975$.
- Monochrome-New black-andwhite sets have been added to existing tv lines. Lower priced 21 -inch sets dominate the new additions, as low as $\$ 179.95$ for a table model. In the face of the strong low-price trend, other set manufacturers reduced prices on some cur-
(Continued on page 12)

in TAPE-WOUND CORES JUST NAME YOUR REQUIREMENTS!

RANGE OF MATERIALS

Depending upon the specific properties required by the application, Arnold Tape-Wound Cores are available made of DELTAMAX - 4-79 MO-PERMALLOY . . SUPERMALLOY . . . MUMETȦA் ... 4750 ELECTRICAL METAL . . or SILECTRON (grain-oriented silicon steel).

RANGE OF SIZES

Practically any size Tape-Wound Core can be supplied, from a fraction of a gram to several hundred pounds in weight. Toroidal cores are made in twenty-two standard sizes with protective nylon cases. Special sizes of toroidal cores-and all cut cores, square or rectangular
cores-are manufactured to meet your individual requirements.

RANGE OF TYPES

In each of the magnetic materials named, Arnold Tape-Wound Cores are produced in the following standard tape thicknesses: . $012^{\prime \prime}$,' $.008^{\prime \prime}, .004^{\prime \prime}, .002^{\prime \prime}, . .001^{\prime \prime}$, .0005 ${ }^{\prime \prime}$, or $.00025^{\prime \prime}$, as required.

Applications

Let us help with your problems of cores for Magnetic Amplifiers, Pulse Transformers, Current Transformers, Wide-Band Transformers, Non-Linear Retard Coils, Peaking Strips, Reactors, etc.

Address: ENG. DEPT. E

Arnold Engineering Company
SUBSIDIARY OF ALLEGHENY LIDLUM STEEE CORPORATION General Office \& Plant: Marengo, llinois . DISTRICT SALES OFFICES . . New York: 350 Fifith Ave. Los Angeles: 3450 Wishire Blvd. Boston: 200 Berkeley St.
rent 21 -inch sets in their lines.
Notable, also, in the new b-w introductions was the number of set manufacturers who displayed new 17 -inch sets at lower prices, some as low as $\$ 159.95$. RCA, one of the last of the major set producers without a 24 -inch set in its line, introduced its first 24 -inch sets in January. Last season, the company produced 21 -inch, 27-inch and 17-inch receivers.

Of 12 manufacturers introducing new sets, only one added a new combination set. All five receivers introduced by one manufacturer were 21 -inch table models.

Electronic Firms Review 1953; Preview 1954

RETMA and major manufacturers outline accomplishments and assess prospects

Combination of high production of radio and tv sets, transmitters, components and an even greater output of military electronic equipment and parts made the year 1953 the most productive to date in the history of the electronics industry, according to RETMA.

- Sets-About 7.2 million ty receivers with a factory value of $\$ 1.2$ billion and more than 13 million radios, including 5 million auto sets, valued at $\$ 0.25$ billion were made by the industry, according to preliminary estimates. The figures represent better than a million more tv sets and two million more radios than were produced in 1952. Tr set retail sales volume for 1953 may exceed that of 1950 , when production reached 7.4 million unite.
- TV Stations-Transmitter manufacturers provided equipment for 225 new tv stations during 1953. GE announced that it delivered 40 uhf transmitters of the 12 -kw type during the year. RCA mapped production schedules in 1953 to provide more than 30 stations with necessary color equipment to broadcast network-originated programs. DuMont's transmitter division al-
most doubled its output during 1953.
- Military-Greatest dollar volume of business for the electronics industry was military in 1953, as in 1952. Estimates indicate that between $\$ 2.7$ and $\$ 3$ billion in electronic and communications products were manufactured.

Estimates placed GE's 1953 defense business at $\$ 800$ to $\$ 900$ million. RCA estimated that government business accounted for $\$ 160$ million, or 19 percent of its total sales in 1953. The company back\log at the end of 1953 was estimated to be $\$ 500$ million. Sylvania estimated that approximately 22 percent of its total sales were for defense, compared to 30 percent in 1952. The current backlog of unfilled defense orders for the company totals $\$ 90$ million against $\$ 85$ million at the end of 1952 .

- Future-RETMA expects that
the electronics industry should be able to sell at least 6 million tv sets and 10 million radios in 1954. Individual manufacturers estimate that between 100,000 and 200,000 color sets will be made this year and they expect from 200 to 250 new tv stations to go on the air.

Other 1954 business estimates covering a wide range of products have been made by electronic manufacturers. GE sees a high level of military electronics production this year with a trend away. in the late part of the vear, from standardized field equipment toward development and manufacturing of advanced forms of electronic apparatus. It sees the market for germanium devices reaching $\$ 17$ million this year. Admiral estimates that the hi-fi potential for 1954 will exceed $\$ 200$ million. RCA predicts a 10 -percent rise in phonograph record sales for 1954, pushing industry volume past the $\$ 250$-million mark.

Parts Business Outlook Is Bright

Steady increase in dollar volume of component manufacturers seen continuing in the future

Electronic manufacturers in the component parts business look forward to bigger than ever dollar volume in 1954 and the years ahead.

Business has steadily increased in the past four years as the chart indicates. Value of shipments of electronic components for communications equipment alone in 1952 totaled over $\$ 1.1$ billion, an increase of over $\$ 300$ million over 1951 shipments. Projection for 1953 business puts it at $\$ 1.4$ billion. Sales of replacement parts alcne in 1953 are estimated at $\$ 500$ million for radio and tv sets.

- Sels-More than 700 million resistors and 500 million capacitors were produced and sold for radio and tv sets by parts makers in 1953. Adding sales for communications equipment, industrial and military electronic equipment

swells unit output to astronomical totals.
- Companies-Size of the parts business is indicated by the fact that there were over 100 resistor manufacturers and 100 capacitor makers in the electronics industry in 1953.

How parts firms fared in 1953
(Continued on page 14)

is indicated in profit statements. Corneil-Dubilier reported net profits of $\$ 1.2$ million in the first nine months of its fiscal year in 1953 compared to $\$ 1.1$ million in the comparable period in 1952. For the first 9 months of 1953 Sangamo reported $\$ 1.6$ million compared to $\$ 1.4$ million in 1952. Standard Coil, recently sold to Storer Broadcasting for about $\$ 8$ million, reported net profits of $\$ 3.3$ million for the first 9 months of 1953 compared to $\$ 1.9$ million in 1952.

- Future-Color tv is one main
reason why component parts makers look to the future with optimism. There are approximately 250 capacitors and nearly 300 resistors, approximately 2.5 times as many of these parts alone, in color sets compared to black and white, in addition to the many other components used.

With more critical circuits in color sets, higher unit prices for certain components are expected. Thus, though the total number of tv sets sold may drop in 1954, dollar volume for parts sales may very well increase.

U.S. Analyzes Electronics Work Force

Occupational make up of production and nonproduction workers varies with product

Changes in electronics equipment production techniques as well as changes brought about by military electronics production have had their effect on the occupational composition of the electronics industry. An analysis made by the Department of Labor of job patterns in electronics in 1953 shows the status of the electronics workforce.

- Production Workers-In 1953, over 76 percent of the industry's
workforce were in production jobs. Almost 30 percent of these employees were estimated to be in assembly occupations and 9 percent were in inspection and testing jobs. Less than 3 percent were in metal-machining occupations and about 10 percent were employed in fabricating and processing work.
\rightarrow Products-In military and industrial electronics manufacturing, according to the analysis, fewer inspection and testing workers were employed than in either radio and tv sets or parts manufacturing but over twice as many production machinists and machine tool operators were employed. Military elec-
tronics plants employed a higher proportion of skilled workers in almost all occupational groups, especially in assembly, inspection and testing operations and a higher proportion of stock control workers.
-Non-Production WorkersNearly 24 percent of the electronics industry's workforce was employed in stenographic jobs and executive, professional, technical and administrative occupations. About one out of every 14 non-production employees was a professional or technical worker such as an engineer, draftsman or engineering aide.

Engineers comprised 8.4 percent of the total workforce in military and commercial electronics plants compared to 4.7 percent in receiver and tube plants and only 2 percent in parts factories. Draftsmen represented 2.2 percent of employees in military and commercial plants and 0.6 percent of those in other electronics plants.

- Size-Although plant size affects the make-up of electronic occupations less than product, indications vere that small plants with less than 500 employees had a higher proportion of skilled workers and less semiskilled and unskilled employees than large factories. The ratio of all engineers to all employees in large plants with over 500 employees was twice the ratio in small plants and the proportion of engineering aides and draftsmen was also substantially higher.

Computer Translates Russian Language

Linguists of Georgetown University and IBM engineers recently demonstrated a new application of a standard digital computer-translation of Russian into English.

Text to be translated is fed into the computer on standard punch cards. Using stored dictionary, syntax and grammar information, the computer finds the proper English equivalents of Russian words and prints them in smooth-reading English sentences. For example,

[^0]
SHOCK, VBRATION and NOISE

DO YOU W Complete DATA?

CATALOG 523-A. Air.
damped Barrymounts for shock and vibration protection of military airborne equipment.
BULLETIN 532. Vibration isolator Type 915, for isolating vibration and noise caused by high-speed motors or motor-driven equip. ment.
BULLETIN 533. Me dium-impact shock machine Type 150-400 VD, for qualification and acceptance shock tests up to 77 g .
BULLETIN 534. Series M44 ALL-METL vibration isolators and Series TOMA mounting bases, for military airborne equipment under extreme operating conditions.
BULLETIN 535. Component shock machine Type 20 VI , for qualification and acceptance shock tests up to 210 g .

> BULLETIN 536. Series M64 ALL-METL vibration isolators and Series AOMA and NOMA mounting bases, for military airborne equipment under extreme operating conditions.
> BULLETIN 537 . Series $262 / 633$ vibration isolators, for isolating vibration and noise caused by medium-speed motors or motor-driven machinery.

BULLETIN 538. Series 670/297 shock and vibration isolators, for isolating shock caused by impact-type machines, and vibration and noise caused by heavy rotating or reciprocating machines.

Here are complete engineering data, application information, and pointers to profits in every field of shock and vibration isolation. Write TODAY for your free copies of the ones you need.

707 PLEASANT St., WATERTOWN Ti, MASSACHUSETTS
the Russian sentence "VYELYICHYINA UGLA OPRYEDYELYAYETSA OTNOSHYENYIYEM DLYINI DUGI K RADYIUSU" is translated "Magnitude of angle is determined by the relation of length of are to radius."

- Future-In three to five years, sufficient work will be completed in the mechanics of various languages to permit multilingual translations in such highly specialized fields as enginering and medicine. This would release valuable information not now available because of translation difficulties.

Industry Concenirales On Marketing Plans

INCREASED buyers' resistance in 1954 is expected by most manufacturers in the electronics industry. As one major producer put it, "The 14 -year old sellers' market is gone. Many industries are now adjusting their operations to meet the demands of a buyers market. Careful planning and hard selling are needed to maintain volume."
-Spending-A National Industrial Conference Board survey of 155 manufacturing companies, which included 10 firms in the electronics field, shows that 70 percent expect their 1954 promotion budgets to equal 1953 expenditures, despite possible lower output. Fifty percent of the surveyed firms expect to increase their over-all sales expense expenditures in 1954, partly as a result of intensified sales efforts and partly because of rising costs. It is reported that GE expects to spend $\$ 45$ million to $\$ 50$ million in 1954 on sales-bolstering work, which is about $\$ 10$ million more than was spent in 1953.
-Salesmen-Manufacturers are intensifying their efforts to recruit salesmen. A third of 155 companies surveyed by NICB intend to put more men in the field this vear. About half of the new sales recruits will come from colleges and universities. This is especially true for technical sales personnel, according to the Board.

New England Surveys Electronics

And finds it is young, specialized and tast growing, with plans to grow more

Composition of New England's electronics industry is revealed in replies of 170 companies in the field to a survey by the Federal Reserve Bank of Boston.

As shown in the chart, Yankee electronics producers specialize in component parts manufacturing, services and raw materials and in test equipment. No major tv receiver manufacturers have assembly plants in the area so set manufacturing is virtually nonexistent.

New England electronics manufacturers vary considerably in size and employ from two to several thousand workers. Slightly over one-third of the reporting firms had less than 50 employees in January, 1953.

The electronics industry is the most rapidly growing one in New England, according to the survey. Total employment in 142 electronics firms advanced from 38,466 in January, 1951 to 58,697 in January, 1953, for a 53 -percent increase. And it is young. Nearly half of the reporting companies started operations since the end of World War IL.
-Sales-New England electronics manufacturers sales are about evenly divided between the northeastern states and the rest of the U. S. The typical concern ships one-fifth of its products to other companies located in New England, one-fourth to firms in New York and New Jersey and almost one-half of its total output to other parts of the U. S. Only two out of 5 firms reported any export business and for them, foreign sales averaged only 3 percent of total sales.

Defense sales accounted for a large part of the electronics business. From 35 to 50 percent of the typical company's sales denended

on the defense program in the spring of 1953.

- Competition-Most important outside competitors of New England electronic producers are located in New York, New Jersey, Pennsylvania, Illinois and California. New York competitors were mentioned more than twice as frequently as those from any other non-New England state. About 25 companies reported important competition from New Jersey, Pennsylvania and Illinois concerns. Competition from the West Coast was reported by 15 firms.

Army Opens Electronic Proving Grounds

Department of Army has set up a large proving ground at Fort Huachuca, Arizona for testing weapons that use electronics.

It was found that Signal Corps electronic and aviation activities require more experimental space than is available at Fort Monmouth N. J., where they have been located. The area of Fort Huachuca, in stand-by status since June, 1953, was selected as the oniy suitable and economical site of those studied.

The major Signal Corps activities at Fort Monmouth, including resoarch and develonment laboratories and the Signal Corps school, (Continued on page 18)

the Chief Engineers' Best Friend

EVEN BEFOREGETTING ON THEAIR!

The G-R Type 1183-T TV-Station Monitor is one of the most reliable frequency-indicating devices commercially available. It is, in addition, an accurate measuring tool which is indispensible to station operating personnel...even before the transmitter is on the air.

Chief Engineers, who have had this TV Monitor at their disposal during preliminary transmitter setting-up stages, are its most enthusiastic supporters. They are impressed by its adaptability to a wide variety of station measuring problems during the early periods of operation. These men stress the importance of having one of these monitors available at the station at the earliest possible time.

Current deliveries are within 60 days from date of order.

A few of the many ways in which the Type 1183-T TV-Station Monitor

 will aid you, in the adjusting and testing period preceeding commercial operation:\star By indicating correct tuning of aural and visual transmitter frequencies and insuring correctness of inter-carrier spacing
\star Providing reliable indications of mod. ulation percentage, useful for calibrating transmitting-station audio circuits

* Helping locate, analyze and eliminate distortion and noise in transmitter aural channel
* Measuring a-m noise in f-m channel when usce in conjunction with the Type 1932-A Distortion Meter and Type 1932-P1 A-M Detector Unit

The Type 1183-T TV.Station Monitor has evolved over a quarter century of G-R leadership in the development and manufacture of precision frequency-measuring instruments. It indicates carrier-frequency deviations with an accuracy of much better than one part in one million, and faithfully monitors distortion, noise and modulation level for "proof of performance" testing.
This instrument meets every requirement of the FCC for offset carrier operation. It will indicate correct intercarrier spacing within 300 cycles for 30 days and within 500 cycles for 6 months - more than ac. curate enough to meet FCC specifications for NTSC color broadcasting.

Type 1183-T
T.V Station Monitor now in use by nearly every television station $\$ 2830$ to $\$ 2905$
depending on frequency

FEATURES

* Sound and video carrier frequencies are compared with multiplied frequency of highty-stable crystal osclllator invented and patented by $G-R-$ crystal oscillator invented and patented by G-R two arge scale, illuminated
quency deviations of carriers
\star Aural modulation in both percentage and db is shown on third meter; panel switch provides for indication of positive peak, negative peak, or both peaks simultaneously - for convenience, over-modulation-alarm-lamp flashes when aural modulation exceeds predetermined level set by dial
\star Visual carrier indications accurate within ± 500 cycles. Aural carrier indication within ± 1000 cycles
On all v-h-f channels, the above accuracy is guaranteed for at least thirty days-al the lower u-h-f frequencies, the period is over sixteen days-at the higher u-h-f fre. quencies, the period is ten days or more
* High fidelity audio output provided for distortion and noise-level measurements, and for audio monitoring -- residual noise level is down 70 db or better for 25 kc deviation
* Overall monitor distortion is less than 0.1\% for $\pm 25 \mathrm{kc}$ swing, allowing measurement of very low-level transmitter distortion
* VHF Monitor has high impedance and sensitivity of l-volt or better - 500 mw sensitivity for lowimpedance UHF input
\star Signal to noise ratio is excellent through channel 83
\star Complete remote metering facilities - terminals are provided for connecting remote center frequency meters and additional modulation and over-modulation indicators
* Center.frequency indications and distortion measurements are accurate even under heavy modulation - counter-type discriminator has excellent linearity over $\pm 100 \mathrm{kc}$ range
* Separate power input for crystal-oven heaters enables direct connection to station standby power
* Convenience in operation - pilot lamps on front panel indicate adequate input power -input-level meters at rear are immediately adjacent to input-level adjustments
* For safety, all a-c power leads are fused on both sides of the line - short to ground cannot cause fire - fusible link in crystal oven prevents accidental overheating
* Cabinet is arranged for maximum heat dissipation and easy installation - interior is readily accessible for servicing
remain unaffected by the transfer.
- Personnel-Commanding officer for the new Army electronic proving ground is Brig. Gen. Emil Lenzner, formerly chief of Signal Corps plans and operations division in Washington, D. C. Executive officer of the new center is Col. Earle Cook, previously commanding officer of White Sands Signal Corps Agency, White Sands, New Mex.

Color TV Service Training Programs Set

Several major tv set manufacturers have announced plans for color tv service training.

Westinghouse has held a twoweek color ty service school for its field service engineers who will train distributor service personnel. RCA held color tv servicing clinics for receiving-set licensees in January and will begin a series of two-day technical clinics for servicemen to be held in 65 cities starting early in February. RCA Institutes will start a color tv home study course for technicians.

General Electric has invited service personnel and technicians from its distributors and key dealers to a color to symposium in January for 35 hours of indoctrination into all phases of color ty.

Raytheon has announced a new pictorial system which enables a tv set owner to identify reception troubles of a color or b-w set to a serviceman by telephone.

- Set Design-Color tv servicing is already having its effect on the design of color sets and methods of shipments. One manufacturer expects to make the tops of all color tv sets removable to make alignment and adjustment easier.

As in the early days of monochrome tv, color sets and picture tubes may be shipped in separate cartons to reduce possible shipping damage. As a result, a technician will most likely have to make an initial call to install the tube. Such extra calls and other factors are expected to set service contract prices for color sets high.

Tube Registrations Increased In 1953

New tube types up nearly 60 percent; transistors and crystals quadruple

More than 250 new tube designs were registered with RETMA by tube makers in 1953 compared to about 160 in 1952.

- Types-Classed with tubes, the largest increase in 1953 was in the solid-state device category which includes transistors and crystal devices. In 1952 only 11 registrations were made in this field while last year 53 were registered.

Cathode-ray tubes were next in registration growth, with over 30 more registrations than in 1952 for a total of 88 . About 60 registrations were made in the transmitting and industrial tube classification in 1952 compared to 97 in 1953. Only classification to show a decrease in new registrations in 1953 was receiving tubes which dropped to 31 registrations from 34 in 1952.

- Companies-Tube manufacturers registering new tube types in 1953 cover almost the complete roster of the tube industry. Solidstate device registrations reported by RETMA for the first 11 months of 1953 show Hughes registered 12; GE, 11; CBS-Hytron, 10; RCA, 4; Amperex, Lansdale, National Union and Sylvania had 3 each and National Semiconductor \& Microwave Assoc. registered 2 each.

DuMont accounted for about 40 percent of new c-r tube registrations in 1953 with 35 registrations. Westinghouse and Electronic Tubes of England registered 9 each. National Union and GE listed 7 and 5 respectively and 8 other manufacturers registered from 1 to 4 new crt types.

Sylvania led in receiving-tube registrations in 1953 with 9 registrations and five foreign tube manufacturers registered 9 new receiv-ing-tube types during the period. Six other U. S. manufacturers registered 3 or less during the year.

For transmitting and industrial

tubes, Amperex registered 31 new tube types during the year followed by GE with 11, Sylvania with 10 , Raytheon with 8; RCA, 8; Bendix, 7. Eleven other manufacturers registered 6 or less.

Magnetic Tape Seen For Court Reporting

Approximately 5,000 court reporters may be consiclered as prospects for magnetic tape recording systems when suitable equipment for their needs is made available.

Total dollar business could range from $\$ 5$ million to $\$ 50$ million, depending on the system chosen. Portable systems would find use at conventions, legislative sessions and other affairs requiring a record of spoken words.

- Choice of System—First design decision to be made is whether main reliance shall be on man or machine, to continue the present role of shorthand and use tape to increase accuracy, or eliminate shorthand, with the reporter to monitor and identify each speaker. The choice depends on cost, complexity and interference with courtroom procedure.
- Supplementary Version-Use as an aid to shorthand would require a machine that will record up to four hours without attention. A minimal but satisfactory system
(Continued on page 20)

These types are available in production quantities through Newton, Chicago and Los Angeles sales offices. They are also stocked by over 500 Raytheon Special Tube Distributors.
E.rcellence in Elachaonion

ДAYTHEON MANUFACTURING COMPANY

Receiving tube Division - for application information call
Newlon, Mass, Blgelow 4-7500 Chicago, III. NAtianol 2-2770 New York, N. Y. Whitehall 3.4980 Los Angeles, Cnlif Richmond 7.4321
RELABELE SUBMINIATURE AND MIHIATURE TUBES - SEMICONDUCIOR DIODES ANO TRANSISTORS - NUCLEONIC TUBES - MICROWAYE TUBES - RECELYING ANO PICTHRE TUBES
should include four unidirecional microphones at $\$ 60$ each, special avc amplifiers and mixers at $\$ 500$ and a recorder at about $\$ 200$, for a total of about $\$ 1,000$ before modification and installation.

- Robot Version-With tape replacing shorthand completely, system failure could not be tolerated. This would mean duplicate three-channel tape machines and amplifiers, and a battery-operated reserve power supply.

Microphones for the judge and the prosecuting or plaintiff's attorney could share one recording track. The witness and the defense attorney could have the second
track. The reporter at the controls would use his own mike on a third track to identify speakers and describe visual events.

Probably a permanent installation, the robot system would comprise two $\$ 2,500$ three-channel tape machines, a $\$ 2,000$ control center including duplicated components, at least six mikes, a reserve power supply and accessories that would total upwards of $\$ 7,500$.
This look into the future of court reporting was given by Vincent Salmon of Stanford Research Institute before a San Francisco convention session of the Na tional Shorthand Reporters Association.

Educators Start Using Channels

Chart shows status of educational television using both reserved and com mercial (nonreserved) channels. Data was taken from JCET report

Total of 30 stations expected on air by end of year; more may come

With two noncommercial stations on the air (KUHT, Houston and KTHE, Los Angeles) and one commercial license assigned to a college (WOI-TV), Ames, Iowa), educational tv is beginning to roll.

Despite predictions of alarmists, frequencies are still being kept available and money is trickling in.

As shown in the chart, educators have filed a total of 46 applications, have been granted 26 construction permits and 3 STA's (special temporary authorizations to operate).

Municipal and educational insti-
tutions have filed a total of 12 applications for nonreserved (commercial) channels. Stations in St. Louis and Green Bay are testing and may be on the air within the next couple of months. Educational programs furnish revenue to several commercial tv outlets.

- Future Bright-The National Citizens Committee for Educational TV forecasts a total of 25 to 30 educational stations on the air before the close of the year. Says Robert R: Mullen, executive director of NCCET, "many of the most famous educational and cultural institutions of the United States will be engaged actively in noncommercial television programming."

Industry Scrutinizes Foreign Trade Status

NEMA study of exports, imports and labor yields picture of electronic foreign business

Comprehensive report made by the National Industrial Conference Board for the electrical manufacturing industry shows the position of the industry in foreign trade.

Conclusions of the 240-page NEMA report are: Wage differentials between U.S. electrical equipment manufacturers and their foreign competitors have broadened; Subsidies and aids by foreign nations exceed those enjoyed by U.S. competitors; Exchange controls and other restraints on foreign trade have increased and discriminate against the U.S.; Dollar gap in foreign bal-ance-of-payment-positions has been replaced by a dollar surplus; Trade taking the place of aid might benefit Germany more than our World War II Allies.

- Exports-For the electronics industry, the study shows that Mexico, Cuba, Canal Zone and the other areas between the Rio Grande and the Panama Canal were the biggest customers for electronic equipment mainly because they were volume buyers of tv sets. These countries bought as many tv sets as all of the other world areas covered in the study did, combined. This area, along with South America, was also the electronics industry's biggest foreign customer for radios, radiophonographs and broadcast equipment in 1952.

Canada, which ranked second as customer of U.S. electronic exports, was only $\$ 2.0$ million under the combined countries listed previously. It ranked as the number one market for radio and tv set components using almost onethird more than the rest of the world areas combined. The Dominion was also one of the leading importers of radio and tv re-
(Continued on page, 22)

A New Level in Engineering is Achieved in the Functional Design of Toroidal Decades

This unique development permitting precision toroids to be combined in decade steps of in= ductance will appeal to all engineers who are familiar with the disadvantages of the ordinary type of inductance decade box.

All the decade units in the plug-in decade series are higher Q toroids such as are employed in the Burnell attenuation filters. They are guaranteed to a tolerance of 1% of the marked inductance and have extremely good stability of inductance vs. voltage and tempera-
ture.

отнer begent Burnell achevenents IN TOROIDS AND FILTER NETWORKS SIDE BAND FILTERS
Our most recent engineering development in commurtications filters has already stirred the interest of the leading receiver manufacturers in the country.

The new side band filters which eliminate, for most applications, the necessity for expensive crystal filters are expected to accelerate the advancement of single side band communications. MINIATURE TELEMETERING FILTERS
In recognizing the need for miniaturization of the presently bulky telemetering equipment, our engineering staff has succeeded in reducing the size of telemetering filters to as little as 25 to 50% of the original volume.

SUB MINIATURE TOROIDS
Toroids for intermediate frequencies of 100 KC to 1 megacycle. A wide variety of coils ranging in size from $5 / 8$ inch provides high Q in the frequency range betweeen audio and RF.

The tiny toroid about the size of a dime has been welcomed by designers of sub miniature electronic equipment for the tramsistor, guided missile and printed circuit field.

Literature for all the above available on request

Write for new and enlarged 16 page catalog 102A See us at the IRE show booth 678 Kingsbridge

Armory, N. Y. City, March 22-23-24-25,
Exclusive Manufacturers of Communications Network Components

ceiving tubes ranking second only to all of South America.

- Labor-The survey indicated that foreign manufacturers of electronic and electrical products have a large labor cost advantage over U.S. companies. In 1952, total monetary hourly wages and
wage supplements of nine nations covered by the survey ranged between 10 percent of U.S. nigures in Japan to 33 percent in Belgium and Sweden.
- Private Study-A U.S. manufacturer of electrical equipment recently made a study of prevailing labor rates and general efficiency in the use of labor and materials in the industry in seven foreign countries. For electronic equipment producers, it showed the following:

Country	Iroduct	$\begin{aligned} & \text { Wercent of } \\ & \text { U. S. } \\ & \text { Lanor Rate } \end{aligned}$
England	Radio Tubes	35\%
Germany	Electionics	22\%
Holland	Electronics-x-ray	38\%

The effectiveness of labor, compared to the U.S., was 50 percent for England, 110 percent for Germany, and 75 percent for Holland.

This study concluded that labor costs of various electrical products in the seven countries ranged between 20 and 75 percent of U.S. labor costs of the same products.

Ignitron Sales Gain In Volume

Resistance-welding equipment and power rectification for railroads are growth markets

Continued increasing sales of ignitrons by electronic manufacturers are indicated by current developments in the field. As shown in the chart, resistance welding represents a substantial and growing market for the units. Sales to this market in 1953 are estimated at nearly $\$ 1$ million.

- Market Change-Survey of ignitrons in use in the U. S., made by AIEE in 1950, covering about 44 percent of all users, shows that the electrochemical field was the leading market for the tubes. Indications are that now resistance welding and railroading may take the lead market-wise.
- Railroads-Accenting increased sales to railroads, application in quantity of new rectifier equipment

to multiple-unit railroad cars will be made on the New York, New Haven and Hartford Railroad early this year.

One-hundred such cars, using ignitron rectifiers to convert $11,000-$ volt, 25 -cycle alternating current from the trolley to nominal 600
volts of direct current will be placed in service shortly, according to Westinghouse engineers. The rectified power will operate four spring-supported motors on each car.

- Ahead-A new General Electric ignitron is temperature controlled and can save industrial users hundreds of thousands of gallons of water normally used for cooling these tubes. This development may substantially increase sales of units to welders.

Increased use of ignitrons in steel mills is also predicted. Westinghouse engineers report that ignitron rectifiers have proved to be well suited as main power supplies for hot-strip mill drives. Units have been installed for the purpose at the Fairless Works of U. S. Steel.

Financial Roundup

More manufacturers in the electronics field report substantial profits from 1953 business and stock offerings continue to be active. Eight firms reported net profits for varying periods of 1953:

Nrt Prolit	
1953	195%
$\$ 7,559,000$	$\$ 5,435,000$
$1,016,000$	524,000
293,422	190,793
$2,283,830$	890,433
$24,092,078$	$21,251,233$
$1,639,000$	$1,913,000$
$5,325,769$	6.827 .794
268,818	105,441

- Registrations - Eitel-McCullough registered with SEC covering 114,000 outstanding shares of capital stock (par \$1) to be offered at $\$ 7.30$ per share. No part of the proceeds will be received by the company. The selling stockholders, W. W. Eitel, president, and J. A. McCullough, vice-presidenttreasurer, own 207,000 and 267,000 shares respectively constituting 30.4 percent and 39.2 percent of the outstanding stock. Eitel will sell 45,000 shares and McCullough, 69,000 shares.

Decca Records registered with
(Continued on page 24)

INDUSTRIAL REMOTE CONTROL SYSTEMS CAN GREATLY REDUCE YOUR OPERATING COSTS

Hammarlund equipment centralizes control, ups man-hour output!

A careful review of operations within your plant may disclose the fact that a variety of functions are inefficiently handled manually . . turning "off" and "on" valves, switches, or operating other controls at remote points. Perhaps the persons performing these functions do so only after receiving telephoned orders from a central dispatch point, and otherwise have little else to do.

Shift these men to more worthwhile activities. Their former duties can be handled direct from the central control point by use of highly-reliable Hammarlund remote control equipment. This all-electronic system requires only one telephone circuit (or microwave or radio circuit) to each remote point for complete control and metering of all your required operations.

Proven Performance

Refineries, pipelines, utilities, railroads and other industrial organizations who have need for centralized control of their wide-spread operations are finding that Hammarlund has a remote control system to fulfill their needs. These systems are now in operation by many progressing industries - a listing is available on request.
Two basic factors, carefully pre-determined for the equipment, were flexibility and versatility. Because it is designed on the building-block principle, using standard service-proven sections in the most efficient combinations, great flexibility has been achieved. For all practical purposes, each customer gets a custom engineered installation at a standard system cost.

Fill out and send the coupon below, or write immediately for detailed information on how you can cut your operating costs by using Hammarlund Remote Control and Signaling Equipment. If you send a brief description of your requirements, Hammarlund engineers will analyze them and suggest the most efficient system. No cbligation, of course.

(1) HAMMABLUND
 Since 1910

[^1]

Hammarlund Company

460 W. 34th St., New York City
Please send me detailed literature describing your Industrial Remote Control Systems.
$\square \mathrm{I}$ am sending a brief deseription of my requirements.
Name
Title
Company
Address

SEC covering 145,842 shares of capital stock (par 50 cents) to be issued only in exchange for shares of common stock ($\$ 1$ par) of Universal Pictures.

- Offerings And Filings-Clary Multiplier filed with SEC covering 16,000 shares of common stock (par $\$ 1$) to be offered at $\$ 6.25$ per share or the last sales price at the Los Angeles Stock Exchange, whichever is lower. Proceeds will be added to working capital.

Packard-Bell offered and sold 4,000 shares of capital stock (par 50 cents) at $\$ 12$ per share. Proceeds go to H. A. Bell, the selling stockholder.

Raytheon placed privately an issue of $\$ 7.5$ million in $4 \frac{3}{4} \%$ notes due Nov. 15, 1965. Proceeds will be used to repay loans totaling $\$ 3.3$ million and for working capital.

Consolidated Engineering borrowed $\$ 1$ million through sale of $4 \ddagger \%$ promissory notes due June 1 . 1955 to 1968 . Proceeds are to be used to repay bank loans, finance plant expansion and increase working capital.

Philco will acquire The Dexter Co., home laundry equipment manufacturers, in stock exchange of 1.05 shares of Philco common stock for each 3 shares of Dexter. Total of 70,000 shares of Philco common stock will be used.

Industry Shorts

- Masnetic recording manufacturers licensed by Armour Research total some 60 companies throughout the world.
- Isle of Man has been chosen as the site for a low-power temporary tv station by the BBC.
- Hair-removing equipment users have asked FCC for additional time to meet regulations governing their equipment.
- Airborne radar tests conducted by United Air Lines show that Cband radar will penetrate a minimum of 15 miles of 60 mm per hour rainfall, using a transmitter power of 75 kw , and is the optimum for

MEETINGS

Feb. 4-6, 1954: Sixth Annual IRE Conference And Electronics Show, Hotel Tulsa, Tulsa, Oklahoma.
Feb. 4-6: West Coast Audio Fair, Los Angeles, Calif.
Feb. 11-12, 1954; Joint IRE, AIEE, ACM West Coast Computer Conference, Ambassador Hotel, Los Angeles, Calif.
Feb. 18-19: IRE, AIEE Conference on Transistor Circuits, Philidelphia, Pa.
Mar. 22-25: IRE National Convention, Waldorf-Astoria Hotel and Kingsbridge Armory, New York, N. Y.
Feb. 24: Cleveland IRE, Electronic Show, Tomlinson Hall, Case Institute of Technology, Cleveland, Ohio.
April 5-10: International Convention of Soundtrack Recording, Paris, France.
APRIL 15-16: RETMA Conference On Reliability of Electrical Connections, Illinois Institute of Technology, Chicago.
APRIL 19-20: Symposium on the Automatic Production of Electronic Equipment sponsored by Stanford Research Institute and U.S. Air Force, Fairmont Hotel, San Francisco.
April 22-23, 1954: AIEE Conference On Feedback Control, Claridge Hotel, Atlantic City, N. J.

April 24, 1954: Eighth Annual Spring Technical Conference, Cincinnati IRE, Cincinnati.
April 27-29: AIEE Electronic Components Conference, Washington, D. C.
MAy 4-6: The 1954 Electronic Components Symposium, Department of Interior auditorium, Washington, D. C.
May 5-7: 1954: Third International Aviation Trade Show, 71st. Regiment Armory, New York, N. Y.
May 5-7: IRE Seventh Region Conference \& Electronic Ex-
hibit, Multnomah Hotel, Portland, Oregon.
May 7-8: New England Radio Engineering Meeting, IRE, Sheraton Plaza Hotel, Boston, Mass.
May 10-12: The National Conference On Airborne Electronics, Dayton Biltmore Hotel, Dayton, Ohio.
MAY 17-20: 1954 Electronic Parts show, Conrad Hilton Hotel, Chicago, Ill.
MAY 24-26, 1954: IRE, IAS, ISA, AIEE Conference On Telemetering, Morrison Hotel, Chicago, IIl.
May 25-27: Eighth NARTB Broadcast Engineering Conference, Palner House, Chicago, Ill.
JULY 6-9, 1954: International Conference On Electron Microscopy, Joint Commission on Electron Microscopy of International Council of Scientific Unions, London, England.
July 8-12: British IRE 1954 Convention, Christ Church, Oxford, England.
Aug. 24-Sept. 4: National Radio Show of Great Britain, Earls Court, London, England.
Aug. 25-27: 1954 Western Electronic Show \& Convention, Los Angeles, Calif.
SEPT. 1-16: Golden Jubilee Meeting of the International Electrotechnical Commission, University of Pennsylvania, Philadelphia, Pa .
SEpt 13-24: 1954: First International Instrument Congress And Exposition, Commercial Museum and Convention Hall, Philadelphia, Pa.
SEpr. 1954: International Scientific Radio Union, Amsterdam, Netherlands.
Sept. 30-Oct. 2, 1954: Second Annual International Sight and Sound Exposition, Palmer House Hotel, Chicago, IIl.
airborne weather mapping purposes.

- Price-to set manufacturers of $\$ 175$ has been set by RCA for its color tv tube.
-Tuna fish catch of 55 tons, valued at $\$ 20,000$, was landed in one day by use of Honeywell's sea scanar in commercial tuna fishing.
- Proposal of FCC may help f-m broadcasters income by allowing second program on multiplex channel at any time or beep radio during nonbroadcast hours. Beep system
uses ultrasonic tone to activate special receivers.
- Reports of interference requiring FCC investigation rose from 10,124 to 21,749 in last fiscal year with tv cases predominating.
- Russian decree has been issued calling for the manufacture of 2.8 million radios and 325,000 tv sets in 1954.
- Commercial f-m transmitters are on the air in four Austrian cities and there are plans to place three more in operation.

THIS IS 13 SQUARE INCHES

I3s.u. BIGGER PICTURE 3..SHORTER CABINEI

WITH NEW WESTINGHOUSE 90, 21-INCH TUBE

The new Westinghouse 90° deflection picture tubes give you a 5 percent larger picture than any other 21 -inch tube - 13 square inches more actual picture area than that of the largest 70° tubes.

What's more, the overall length of the tube has been cut at least three inches. Here's the way to reduce TV cabinet depth - or to eliminate the "hat" from the back of the set.

But still more, the new Westinghouse 90° tubes will actually produce a sharper picture than old 70° types. Electrostatic types are equipped with the new Westinghouse electrostatic focus gun which produces sharp, clearly defined pictures because of its smaller spot size. Magnetic focus tubes contain the simply constructed magnetic focus gun which gives crisp pictures in all areas.

New Westinghouse aluminized screens are available, too.

Investigate these Westinghouse 90° deflection 21 -inch tubes today. They will make your black-and-white sets sell faster in the months ahead. Call your Westinghouse sales representatives for complete data and sample tubes or write, wire or phone Dept. A-2024 at the address below.

21-INCH WESTINGHOUSE 90° DEFLECTION TUBES ARE AVAILABLE WITH:

- Electrostatic Focus
- Electromagnetic Focus
- Aluminized Screens
- Non-Aluminized Screens

$$
\left[\begin{array}{rrr}
\frac{5}{2} & \frac{\pi}{2} & \frac{\pi}{5} \\
\frac{1}{5}-5 & -5 \frac{1}{3}
\end{array}\right]
$$

One big family with a single thought

Whether you need terminals, clips, coils, chokes; capacitors - or any of a number of electronic components - you can be sure they're right if they're made by CTC.

One continuing basic idea governs the manufacture of every CTC product. And that idea is: quality control. We could not guarantee our products as we do without a constant check of numerous details that determine reliable performance. Our quality control engineers see to it that these manufacturing standards are consistently maintained - from close scrutiny of raw materials right through to inspection of finished product.

Pictured here are a number of components available at CTC including our
three kits. These components come in standard form and are also custom engineered to meet your particular requirements. We would be glad to give you complete details, including specifications and prices, on any or all CTC units - as well as information on how CTC components can be specially designed to solve your electronic components problems.

You will find it well worthwhile to use components that are guaranteed. Write to Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast Manufacturers contact: E. V. Roberts, 5068 West Washington Blvd., Los Angeles 16 and 988 Market Street, San Francisco, California.

[^2]
Presenting INDOXI...A

4 Demagnetization and Energy Product Curve for INDOX I
. . . Opens
New Fields for Product Designs

INVESTIGATE THESE CHARACTERISTICS

- Higher coercive force than any other commercial permanent magnet material.
- Negligible hysteresis and eddy-current losses in magnetic circuits having an alternating-current component.
- High electrical resistivity.
- No critical materials required.
- Lightweight.
- Magnetization practical prior to assembly.

Let our forty-three years of accumulated permanent magnet experience help you to utilize this new magnet in your products. Write to Dept. 2A for complete details.

INDIANA PERMANENT MAGNETS

Keep TABS on

PERFO with-

Tested and
 Approved
 Beyond Specification

Chester ENGINEERED plastic insulation, laboratory and field tested to more than meet specifications provides both easier working qualities and longer service life. These rugged plastic coatings offer maximum immunity to abrasion, weather, oil and most chemicals. Smooth and pliable, they pull through channels and conduit
easily and offer excellent appearance in open wiring. Chester single or multiconductor wires and cables are available for electrical, electronic, TV, radio, telephone and many other industries. Call or write for illustrated bulletins, today!

JAN-C-76
WIRES ${ }^{\circ}$
SRIR, SRHY, SRRF. WI
$105^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}$
UL APPROYED; $120^{\circ}{ }^{\circ}$

TV LeAD-IN WIRES

COMMUNICATION WIRES \& CABLES TO SpECIFICATIONS

LaCQUERED
 AND NYLON WIRES

${ }^{9}$ SHIELDED WIRES \& CABLES
\qquad INSTRUMENT WIRES

COAXIAL CABLE

SPECIAL WIRES \& CABLES TO SPELIFICATIONS

ONLY FILM TYPE RESISTORS MEET HIGMER

Advancing requirements of instrumentation, military electronics and television focus emphasis on greater stability for non-wire wound resistors. IRC believes its filament type construction offers the best answer to more exacting standards. For over 28 years the film type resistance element has proved its superior stability-even in today's newest IRC Boron-Carbon Precistor.

high economy-high stability

Type DC Deposited Carbon Resistors combine accuracy and economy with high stability. Excellent where carbon compositions are unsuitable and wire wound precisions too large or expensive. Available in $1 / 2,1$ and 2 watts. Use coupon for further facts. tested and approved by most producers of government equipment. Exceptionally stable-in $1 / 3,1 / 2,1$ and 2 watts. Send coupon for Data Bulletin.
high voltage—high stability
IRC Type MV High Voltage Resistors offer outstanding stability even in very high resistance values. Filament resistance coating in helical turns on ceramic tube provides a long, effective conducting path. 2 to 90 watts. Check the coupon for detailed information.
high popularity—high stability
More IRC Filament Type BT Resistors are used in radio and TV sets than any other brand. They meet and beat JAN-R-11 specifications, and have been conducting path. 2 to 90 watts. Check

STABHLTY STANDARDS

high accuracy-high stability

The ultimate in stable non-wire wound resistors. Type BOC Boron-Carbon $1 / 2$ watt Precistors are ideally suited for critical circuits where stability and high accuracy under widely varying temperatures are important. Extraordinary load life. Send for Bulletin.

Boron\& Deposited CarbonPrecistors - Power Resistors a V Voltmeter Multipliers - Low Wattage Wire Wounds I Insulated Composition Resistors - Volume Cantrols. Prection Wire Wounds • Ultra HF and Hi-Voltage Resistors - Low Value Capacitors - Sélenium Rectifiers - Insulated Chokes. Hermetic Seal Terminals.

INTERNATIONAL RESISTANCE CO.

 403 N. Broad St., Philadelphia 8, Pa.In Canada: International Resistance Co., Ltd., Toronto, Licensee

Send me full data on : \square DC Deposited Carbon; \square BT Insulated Filament Type Resistors; $\square \mathrm{MV}$ High Voltage Resistors; \square BOC Boron-Carbon Precistors; \square MBC Molded Boron-Carbon Precistors

Name
Title
Company \qquad
Address
City \qquad State

Belinid the radar curtini that glarids our shores

Source of UHF waves that make possible the radar screen guarding our continental perimeter is the magnetron.

Essential elements of the magnetron, and the anodes and cathodes of the companion direct-reading oscilloscope are produced by Superior Tube Company. For example, in the Raytheon magnetron above, Superior furnishes: A. The cathode (heart of the magnetron); B The anode; C. The sleeve on the wave trap (or choke) assembly.

All of these parts are made from Superior seamless nickel tubing. As a matter of fact, there is Superior tubing in every one of the 400 different types of Raytheon magnetrons-a record possible only because of great satisfaction with Superior alloys, fabrication, deliveries and service. Put your chief dependence upon Superior. Superior Tube Company, 2500 Germantown Ave., Norristown, Pa.

All, analyses . $010^{\circ \prime}$ to $5 / /^{\prime \prime}$ OD.
Certain analyses in Light Certain analyses in Light
Walls up to $21 / 16^{\circ "} \mathrm{OD}$.

[^3] Lockseam* Nickel Cothode Round, vertical emboss $.045^{\prime \prime}$ OD $\times .0021^{\prime \prime}$ Wall. 26.5 mm long.

OHMIE

 RHEOSTATS

MADE TO ORDER TO SOLVE YOUR UNUSUAL CONTROL PROBLEMS

PROBLEM - A manufacturer of electric motors and speed regulators needed a control device, operated by one knob, that could be used to test and demonstrate various methods of A-C motor speed regulation.

SOLUTION - Ohmite produced a special combination of four rheostats and three 11 -position switches, all coupled together in tandem. and operated by one Lnob. The tap switches are loosely roupled to the rheostats so when the quich-make tapeclose. the rheostat aettinge are not changed. All units are clectricall! imlependent. An! unit or all units can be contneeted in the circuit to be teatid. and can he wired
in any desired manner. A a rezult of this special control device, test and development worh was greatly spereded up.

Ohmite is prepared to dev elop special combinations of standard rheostats, resistors. and tap switches to meet your individual requirements. Consult rour Ohmite representative.

MODEL 212-11-T3 TANDEM TAP SWITCH

OHMITE CAN SUPPLY IT!

In addition to standard rheostats, Ohmite offers rheostats with a wide variety of special features. All have the distinctive Ohmite design features: smoothly gliding metal-graphite brush; all-ceramic construction; insulated shaft and mounting; windings permanently locked in place by vitreous enamel.

BUSHINGS FOR SPECIAL PANEL THICKNESS

Extratlong bush. ings and shafts allow mounting on panels up to 2 inches in thickness. Seven busting lengths are available,
from $1 / 4$ to inches.

SCREW DRIVER SLOT SHAFT

Where infre. quent adjustments are need. ed, shaft ends can lee slotted for operation with a serew. driver. Tampering with the shaft setting is thus minimized.

TANDEM ASSEMBLIES

Ohmite rheostats can be mounted two or more intandem, for simultaneous operation of several circuits. Universal joints provide smooth, positive mechanical action.
360° WINDING

Two small mod. els available with continuous circular core and endless winding. Unlimited rotation of shaft and contact arm. Taps supplied at any desired angle on windings.

SEALED, ENCLOSED CAGES

Compact, corro. sion-resisting metal enclosure, permanemily scaled by a double sean, protects the unit completely. Available with rheostat Models H and J.

DEAD LUG OFF POSITION

Opens the cir. cuit at the high or low resistthecontact passes on to the lug, which is discomected from
the winding. Recommended for light duty.

SNAP-ACTION OFF POSITION

Opens the rheostat circuit at the high or low resistance position. The circuit is opened as the brush snaps into an insulated notch next to the lug, providing indexing.

TOGGLE SWITCH

Toggle switch is operated with a positive smap by the movement arm. Opens the rheostat circuit or switches an independent circuit. Avaibable for all moilels.
 ROTATION

Rheostats can be supplied with winding space and angle of rotation less than standard. Rheostats can also be supplied with fixed or adjust-
able stops.

WRITE on Company Letterhead for Cata\log and Engineering Manual No. 40.

IDEAS that stated in a BELLOWS

PROBLEM: TO START UP A REFRIGERATOR AUTOMATICALLY

To run efficiently, refrigerators must be defrosted periodically. They must also be started up again within a definite time. How to do this automatically, without relying on the housewife's judgment, was once a problem.

Have you ever worked with Bellows?

Although bellows seldom get the spotlight in engineering courses, they have proved invaluable in solving some of today's important engineering problems.

Clifford vapor-actuated thermostatic bellows assemblies are simply designed, dependable and easy to install. They provide an accurate temperature control that is not costly.

They have gained wide acceptance for temperature control for this purpose in all types of Diesel engines, stationary and automotive, as well as truck and passenger car gasoline engines. They are used, too, in water heating or cooling tanks, steam coolers, acid baths, glue heaters, bottle washers, tempering baths, and other equipment. For"additional in-

NOW "STANDARD PROCEDURE"

Automatic timers now start defrosting process at a pre-determined time. Thermostat then automatically turns current on when temperature reaches pre-determined point. Food spoilage is averted and frozen foods kept from melting.

AND HERE'S THE ANSWER

 Autonatically starting up refrigerating units atlow cast was solved through the use of bellows low cast was solved through the use of bellows
assemblies by Haydon Manufacturing Company. This vapor-actuated assembly gives the close temperature control essential.
formation, fill out and mail coupon below. Clifford Manufacturing Company, Waltham 54, Massachusetts. Division of Standard-Thomson Corporation. Sales offices in New York; Detroit; Chicago; Los Angeles; Waltham, Mass.

MODEL 700

OUTPUT DC: 0.350 volts, 750 ma .
REGULATION: $1 / 2 \%$ for both line, $105-125$ volts, and load RIPPLE: 10 millivolts.
This unit is available delivering: $\left\{\begin{array}{l}1.50 \mathrm{amp} \text {-Model } 720 \\ 2.25 \mathrm{amp} \text {-Model } 730\end{array}\right.$

KEPCO

Voltage Regulated Power Supplies are conservatively rated. The regulation specified for each unit is available under all line and load conditions within the range of the instrument.

DC POWER SUPPLY SPECIFICATIONS

REGULATION: As shown in table for both line fluctuations from 105-125 volts and load variations from minimum to maximum current.
*REGULATION FOR BIAS SUPPLIES: 10 millivolts for line $105-125$ volts. $1 / 2 \%$ for load at 150 volts.
\dagger All $A C$ Voltages are unregulated.
All units are metered except Models 131, 315 and 3100.

All units are designed for relay rack mounting or bench use.

WORKMANSHIP

Workmanship is of a quality with the highest existing production standards and best instrument electronic practices consistent with the intended use of the item as a continuous duty voltage regulated power supply. Oil filled paper condensers and resistor-board construction are included in the design.

 efficiency.

Gramer TINYFORMERS, first choice of design engineers, are pacing the transistor to shrink otherwise large devices down to minute size. Gramer TINY FORMERS match inputs and outputs in transistor circuits, improve their frequency response, will help reduce your product to minimum size while maintaining the highest degree of operating

17 types available for immediate delivery!

Part no	TYPE	MATCH, IMPEDANCE		D.C. RESISTANCE		$\begin{gathered} \text { SIZE } \\ \text { IN INCHES } \end{gathered}$	WiLBS
		PR\%.	ste.	Pri.	SEC		
M 1	Interstage	20.000	1.000	1,150	175	$11 / 32 \times 3 / 8 \times 3 / 8$. 005
M2	Interstage	20.000	1.000	930	95	$11 / 32 \times 3 / 8 \times 3 / 8$. 005
M4	Output	800	50	66	7.7	$11 / 32 \times 3 / 8 \times 3 / 8$. 005
MS	Output	400	50	70	9.3	$11 / 32 \times 3 / 8 \times 3 / 8$. 005
M6	Input	200,000	1.000	2.800	135	$11 / 32 \times 3 / 8 \times 3 / 8$. 005
M7	Output	1.000	50/60	160	9	$11 / 32 \times 3 / 8 \times 3 / 8$	005
M1O	Choke	$\begin{aligned} & 12 \mathrm{Hy} . \\ & O D C . \end{aligned}$		830		$21 / 64 \times 3 / 8 \times 3 / 8$. 005

A COMPLETE LINE OF TRANSFORMERS FOR EVERY TYPE OF INDUSTRY

Meet MIL-T-27 Grade 1, Class A or B; and Grade 2, Class C Specifications.

Send your specifications now for
cost-free recommendations

GRAMER

 available not only in D-C but in movable iron A-C, rectifier type A-C and thermo. All are supplied with essential sealed zero correctors-shock-resisting flat plastic windows - and connection terminals molded into internal rubber, leakproof, breakproof and cffectively insulated. For complete details, write for bulletin. Weston Electrical Instrument Corporation, 614 Frelinghuysen Avenue, Newark 5, New Jersey.

Insulated, breakproof connection terminals are molded into internal rubber.

Tough, flat plastic windows are really shock resistant.

WESTON ruggedized instruments

glass:tometal

seals

A complete range of sizes and designs of terrinals, lead-ins and stand-offs for hermetic sealing is offered by Stupakoff. Made with Kovar metal, the ideal alloy for sealing to hard glass, Stupakoff Seals are durable and dependable. These are not mechanical compression seals but are permanently fused by chemical interaction. They may be installed by conventional assembly techniques.

Write for a copy of the new Stupakof Catalog 453, giving detoils of over a thousond sises and stwles of Stupakof Seols.

STUPAKOFF CERAMIC \& MANUFACTURING COMPANY

BIG
 SCOREBOARD

for Scores of Manufacturing Processes

Added

This husky long-lived Box-type Counter is available with 6 figures, in either the ratchet model, or in the new geared model with bearing inserts. This new gearing permits speeds of 1,000 counts per minute, which makes the counter adaptable to proctically any manufacturing process where large figures are wanted for
easy reading at a distance. Figure out how this counter can be built into your product as a new sales advantage over competition. Write:
VEEDER-ROOT INCORPORATED HARTFORD 2, CONNECTICUT
Chicago 6, III. * New York 19, N. Y. - Greenville, S. C. Montreal 2, Canada - Dundee, Scotland Offices and Agents in Principal Cities
"The Name that Counts"

The Right Match

for miniature equipment requiring a dependable miniature chopper.. .

AIRPAX $\mathbf{C 7 4 7}$
"MIDGET"
400 CYCLE CHOPPER

- weighs only 12 ounces
- meets military environmenter than larger units - pertormance equal or beare socket and stield - fiesstandard 7 pin miniatur and leboratory

Statistics prove that Airpax leads the nation in quantity and quality of choppers. Model C747 is available in quantity for immediate delivery from separate facilities at either of our two plants. Performance, rating and life are equal and better than that of our larger models. The MiDGET has 6.3 volt, 400 gycle drive, phase angle of 65°, SPDT contacts of about 135° dwell time. Con-act our Sales Department for complete specification details, our Engineering Department for quick assistance with your application.

The books said it couldn't be donebut Andrew engineers went ahead and designed an antenna that gives excellent coverage mounted inside the tower! This ingenious development enabled station WTOP in Washington, DC to use their television tower for FM too-and so save thousands of dollars.

Whatever your problem in antennas Andrew ingenuity will find the answer.

Be sure to consult us.

363 EAST 75TH STREET, CHICAGO 19

THINGS ARE

AS THEY SEEM...

The long lines are strictly parallelthat they appear otherwise is an optical illusion.

This fuse merely has the metal caps cemented to the glass.

The difference between these two fuses is no illusion...

This Littelfuse has the caps locked to glass like this.
The ends of the glass are formed ${ }^{A}$. The solder which is bonded in a separate operation to the cap reflows through the small aperture and spreads out to form a permanent collar-button lock ${ }^{\text {b }}$ between cap and glassimpervious to moisture and vibration. The exclusive Littelfuse feature eliminates fuse failure due to loose caps.

Littelfuse leads all other fuse mannfacturers in design patents on fuses. Lock-cap assembly patent no. 1922642

R, Cand L accurately measured

RESISTANCE, CAPACITANCE, INDUCTANCE and power factor measured quickly and accurately on this self-contained and robust instrument. Its industrialdesigned appearance fits well in modern surroundings and partners its outstanding electrical performance.

UNIVERSAL BRIDGE TYPE TF 868

Resistance from 0.1Ω to $10 \mathrm{M} \Omega$, Capacitance from $1_{\mu, R} F$ to $100_{\mu} \mathbf{F}$, and Inductance from $1, \mathrm{H}$ to 100 H .

Single direct reading L.C.R. dial-no multiplying factors involved.

Continuousiy variable bridge voltage and automatic detector sensitivity control.

Full dota and prices of any of the items listed below will be mailed immediately on request:
UNIVERSAL BRIDGE TF 868 • FM DEVIATION METER TF 934 FM/AM SIGNAL GENERATOR TF995 • STANDARD SIGNAL GENERATOR TF 867 ALSO
VACUUM TUBE VOLTMETERS • FREQUENCY STANDARDS OUTPUT METERS WAVEMETERS . WAVE ANALYSERS • Q METERS - BEAT FREQUENCY OSCILLATORS

MARCONI instruments

23-25 BEAVER STREET:NEW YORK 4

CANADA : CANADIAN MARCONI CO., MARCONI BUILDING, 242 TRENTON AVENUE. MÓNTREAL
ENGLAND: Head Office: MARCONI INSTRUMENTS LIMITED, ST. ALBANS, HERTFORDSHIRE
Managing Agents in Export: MARCONI'S WIRELESS TELEGRAPH COMPANY LIMITED, MARCONI HOUSE, STRAND, LONDON, W.C. 2

Waldes Truarc Ring Replaces Nut and Washer ...Cuts Costs $\$ 5.28$ Per M...Speeds Assembly by 50%

OLD WAY. Main shaft required costly threading. Assembly was slowed by the double application of washer and nut and time-consuming tightening operation.

TRUARC WAY. Truarc Retaining Ring snaps quickly and simply over shaft. Lock assembly is secured in one fast operation. Virtually all play is eliminated from lock.

NEW DESIGN USING WALDES TRUARC RING PERMITTED THESE SAYINGS

OLD WAY

Cost of Nut \$10.00 per thousand Cost of Washer 3.80
Labor for Threading . . . 2.00
Assembly 3.00
TOTAL $\$ 18.80$

TRUARC WAY

Cost of Truarc Ring and
Grooving Operation . . \$11.52 per thousand
Assembly 2.00
J. Chesler and Sons, Inc., Brooklyn, N.Y., manufacturers of the preassembled "Reddi-Mount" cylindrical lockset, uses a single Waldes Truarc Retaining Ring instead of an old fashioned nut and washer to secure the entire assembly of their lock. This new, improved fastening method enables Chesler to eliminate costly threading ... save money on material . . . speed assembly time by 50% and produce an improved, more durable product.

You, too, can save money with Truarc Rings. Wherever you use machined shoulders, bolts, snap rings, cotter pins, there's a Waldes Truarc Retaining Ring designed to do a better, more economical job. Waldes Truarc Rings are precision-engineered . . . quick and easy to assemble and disassemble.

Find out what Waldes Truarc Retaining Rings can do for you. Send your blueprints to Waldes Truarc engineers.

For precision internal grooving and undercutting... Waldes Truarc Grooving Tool

SEND FOR NEW CATALOG
WAEDES

RETAINING RINGS

WALDES KOHINOOR. INC., LONG ISLAND CITY 1, NEW YORK
waldes truarc betaining rings and pliers are protegted by one or more of the FOLLOWINGU.S.PATENTS: 2.382.947: 2.382.948: 2.416.852: 2.42日.341: 2,430.705: 2.44:.446: ANO OTHER PATENTS PENDINC

 give you reliable performance in your products requiring temperature control, indication or compensation required.
Advanced General Plate production methods coupled with the best equipment available insure positive consistency in thermal and mechanical performance, and in maintaining close dimensional tolerances, hardness, etc. Every lot, whether it is 10 or 10,000 , is a duplicate of the original, thus eliminating rejects and costly adjustments in assembly.
General Plate Truflex fabricated assemblies are engineered and manufactured to your specifications, ready for installation into your products. They eliminate costly fabrication problems... needless special equipment costs ... experimental and assembly adjustments.

For you who desire to manufacture your own parts, Truffex Thermostat Metals are available as strip in coils or flat cut lengths.
It will pay you to investigate General Plate Truflex Thermostat Metals for your requirements، Write for engineering assistance and catalog.

METALS \& CONTROLS CORPORATION GENERAL PLATE DIVISION
32 FOREST STREET, ATTLEBORO, MASS.

New! HICH REGULATION Power Supply

REGULATION 0.01\%

- 0.1 MILLISECOND TRANSIENT RESPONSE
- INTERNAL IMPEDANCE 0.1 OHM, $25 \mu \mathrm{H}$
- HUM LESS THAN $500 \mu \mathrm{~V}$
- SEALED TRANSFORMERS, CHOKES, CONDENSERS

-hp- 712B Power Supply

Model 712B Power Supply is deliberately designed to give you the finest performance obtainable plus broadest usefulness and the lowest price consistent with quality. It offers high regulation, low internal impedance, low ripple, and the exceptionally fast transient response of 0.1 milliseconds. It also provides four outputs for maximum applicability, and less than 50 millivolts change (no-load to full-load) at any regulated output voltage. The instrument has a 0 to 500 volt, 200 ma regulated supply, and a fixed -300 volt tap making a vailable a 50 ma, 300 to 800 volt variable supply for klystron operation. Continuously variable bias voltages, separate voltage and current meters, and generous overload protection are provided.

Model 712B will meet the most exacting requirements of heavy duty laboratory or production work. It is particularly useful in powering temporary setups, oscillators, small transmitters, complex systems and certain types of klystrons.

To insure long, trouble-free operation, Model 712B has sealed transformers and chokes, oil-filled filter condensers, and is fully fused. Only high quality components are used, and no electrolytic condensers are employed.

OTHER -hp- POWER SUPPLIES

-hp-also offers two other high stability, high regulation DC or AC power supplies. -hp-710A provides output continuously variable 180 to 360 volts with regulation of 1% and hum less than 0.005 volts. -bp-710B is identical except has voltage range of 100 to 360 volts. $-h p-710 \mathrm{~A}, \$ 85.00$; $-h p-710 \mathrm{~B}$, $\$ 100.00$ f.o.b. factory.

For complete information, see your -hp- field
representative or write direct

HEWLETT-PACKARD COMPANY
2948D Page Mill Road • Palo Alto, California, U. S. A.

OUTPUT VOLTAGES:
DC Regulated High Voltage: 0 to +500 volts (without switching), 200 ma . max. load.
DC Regulated Fixed Bias: -300 volts, 50 ma. max. load.
DC Variable Bias: 0 to -150 volts, 5 ma . max. load.
AC Unregulated: 6.3 volts CT, 10 amps max. load.
REGULATION
(for line voltage 115 volts $\pm 10 \%$)
DC Regulated High Voltage: Less than 50 millivolts change no-load to full-load at any output voltage.
DC Regulated Fixed Bias: Less than 50 millivolts change no-load to full-load.
DC Variable Bias: Regulated against line voltage changes. Internal impedance 0 to 10,000 ohms depending on bias control setting.

SPECIFICATIONS

RIPPLE: Less than 500 microvolts.

INTERNAL IMPEDANCE:

DC Regulated High Voltage: (For frequencies above 20 cps .)
Full-iood: 0.1 ohm in series with $25 \mu \mathrm{H}$ max.
No-load: 1 ohm in series with $50 \mu \mathrm{H}$ max.
RECOVERY TIME: Upon application of fullload: 0.1 millisecond max.
Upon decrease from full-load to:
(a) 0 ma. -0.5 millisecond max.
(b) 25 ma . -0.1 millisecond max

Maximum transient voltage -1 volt.
METERING: Current Meter: 0 to 200 ma. (high voltage only).
Voltmeter: Three ranges, 0 to +500 volts, 0 to +150 volts and 0 to -150 volts. Panel switch connects meter to $D C$ regulated high voltage or $D C$ variable bias and selects range.

TERMINALS: Either positive or negative $D C$ regulated high voltage terminal may be grounded. Positive terminals of both bias supplies and negative terminal of $D C$ regulated high voltage are common.
OVERLOAD PROTECTION: AC line, DC reg. ulated high voltage, $D C$ regulated fixed bias and filament supply are separately fused. DC regulated high voltage drops to zero if bias fuse blows.
POWER SUPPLY: 115 volts $\pm 10 \%, 50$ to 1000 cps .

CABINET: Rack Mount. $10 \frac{1}{2}{ }^{\prime \prime}$ high $\times 19^{\prime \prime}$ wide $\times 14 \frac{1}{8}$ " deep. Detachable End Frames with handles for bench use, $\$ 5.00$ pair. (Specify hp- 17 End Frames.)
WEIGHT: 62 lbs . net, shipping weight 100 lbs . PRICE: $\$ 350.00$ f.o.b. factory

Data subject to change without notice.

See the 712B and many other new -hp-instruments at the I. R. E. Show-Booths 248, 250
af I. R.E.
Corner INSTRUMENTS AVENUE and RADIO ROAD

Thiniature slip ring assemblies for synchros • gyros • resolvers

For more than 12 years, PMI has engaged intensively in the design, development, and manufacture of Slip Ring Assemblies, including the miniature "synchro type" slip rings. These are now being produced on a high-volume, low-cost basis, with the same precision and high quality found in PMI's large and highly complex units.

PMI is widely recognized as a leading designer and manufacturer of trouble-free, long-lived, heavy duty Slip Rìng Assemblies for radar antennas, gun directors, aircraft detectors, strain gage instrumentation, and similar applications. PMI experience includes the use of all known acceptable materials and all practicable assembly techniques.

PMI miniature Slip Ring Assemblies are manufactured in accordance with customer or government specifications. All units are subjected to 100% inspection prior to shipment. Government source inspection is also available if desired.

Your request for further information will receive prompt attention. Please write on your business or professional letterhead to P M Industries, Inc., Stamford, Conn.

The Uniline section is a new development specifically designed for use in test measurements particularly where the impedance of the load is variable. For example, one of the several possible applications for the Uniline is as a replacement for the loss-type attenuator commonly used for isolation between source and load. In this instance, very substantial isolation is provided with negligible loss in transmitted power. Up to 100 times as much power is available for test purposes when the Uniline is used. The Uniline is a truly non-reciprocal transmission line element, not a directional coupler.

THE MICROWAVE AMPLITUDEMODULATOR

This new ferromagnetic resonance device is essentially a continuously variable microwave attenuator controlled by an applied magnetic field. Amplitude modulation of a CW microwave signal may be obtained by varying the magnitude of the magnetic field by means of an external modulating source. The Gyraline thus permits the microwave oscillator to be operated on a CW basis to eliminate undesirable frequency modulation and double moding frequently present when one of the klystron elements is directly modulated. The Gyraline also offers many possibilities as an electronically controlled microwave attenuator.

TECHNICAL SPECIFICATIONS

FREQUENCY RANGES: (Five models available) . . 5900.6400 , 6400.6900 , $6900.7400,8800.9600$, 9600-10,400 megacycles.
ATTENUATION, FORWARD DIRECTION: Less than 1 DB.
ATTENUATION, REVERSE DIRECTION: 20 DB. (Approx.)
VOLTAGE STANDING WAVE RATIO: 1.3:1,(orless) either direction.
D. 92 AUDIO DRIVER FOR GYRALINE

Provides a flexible and convenient source of audio power for operating the Gyraline.

Circuit consists of an audio oscillator which provides sine wave modulation trom 800 to 1200 eps. This oseillator drives on 8 watt output amplifier which is matched to the Gyraline coil. The goin of the D-92 Driver is sufficient $\mathbf{G y r a l}{ }^{\text {ane to greater than }}$
 Gyraline to greater
90% modulation.

Complete information upon request.

FREQUENCY RANGES: (Five models available) . .
5900-6400, 6400-6900, 6900-7400, 8500-9900,
9600-11,200 megacycles.
INSERTION LOSS: Less than 1 decibel MODULATION FREQUENCY: Up to 3000 c.p.s. . .
VOLTAGE STANDING WAVE RATIO:
1.4 to 1. (or less)

POWER HANDLING CAPABILITIES:
Maximum continuous microwave power dissipation, 2 watts.....
COIL IMPEDANCE:
Nominal coil impedance at 1000 cps : 500 or 2000 ohms (either).

Write for descriptive bulletins.

8

For high voltage wiring...

CORONA SHIELDS by Ucinite

Specially designed for television and other high voltage circuits, these Ucinite corona shields are made of cadmium-plated brass. With all sharp edges turned inward for maximum corona resistance, they provide excellent protection in electrical connections.

Ucinite is equipped to manufacture, assemble and wire to your specifications, a wide variety of electrical parts and assemblies for use in electronic apparatus of all types. For full information, call your nearest Ucinite or United-Carr representative, or write directly to us.

Specialists in

ELECTRICAL ASSEMBLIES,
RADID AND AUTOMOTIVE

ELIMINATES DAMAGE due to welded or staked studs

' Not this

Welded or staked studs are easily damaged in transit from one department to the next or during processing, painting, polishing, etc. The bolts themselves can cause serious damage, denting, scratching or chipping painted or polished surfaces.

But this

QUICKEY SNAPS IN just before final assembly . . . allows finished parts to be nested for economical transportation without protruding studs of any kind. Installed at the last moment, every Quickey is perfect. If damaged during later assembly operations, any Quickey can be removed and replaced easily and quickly, even in blind assemblies.

Like thousands of other fasteners and allied devices, designed and manufactured by United-Carr, Quickey helps speed assembly and cut costs. Available in a complete range of sizes and in volume quantities; further details on request. Write for JAN Resistor Bulletin J-2.

STACKPOLE

Cost-saver bushingless controls

Similar to standard Stackpole LR-2 controls except that a plate with sturdy mounting lugs replaces the conventional threaded brass bushing for easier assembly.

. . A dependable source of reliable components for over 30 years

 Single, kanged and concentric shaft dual types in smallest sizes consistent with real dependability offer long, and trouble-free performance for todays requirements. Gold plated "ringspring" contactors assure low noise level. A complete array of unique midset line switches offers practically any desired switching arrangement, with types for both civilian and military use.

Cost-saving, low-value,
 fixed types

Originated by Stackpole, these tiny units not only represent the simplest, most inexpensive capacitor design yet produced - but likewise have charac. teristics that make them more desir. able than larger, more costly capacitors for many uses. 47 standard types, 0.1 to 10.0 mmf . Write for Stackpole GA Capacitor Bulletin.

CAPACITORS
 STACKPOLE Composition

. to match any electrical or mechanical specification Pioneers in modern iron core development, stackpolt assured unify of both tically any desired style characteristics. Bulletin.
electrical and mechanita for Iron Core Bullet.

.. the economy switches of 1001 uses!

Over 20 types of these inexpensive little Stackpole slide switches cover just about every mechanical and electrical switching requirement for radio and television equipment, smompletors, ap liances, electrical toys, instruments, etc. For complete details, write for Stackpole Switch Bulletin RC-9B.

Engineering

 Samples are proof of the pudding:Engineering samples of standard Stackpole comparents are available to quantity users. Send details of your requirement for recommendafion by Stackpole engineers.

ELECTRONTC COMPONENTS -DIVISION

STACKPOLE CAREON COMPANY, St,Marys, Pq.

If you are interested in \quad E

24 hour duty performance

GET ALL THE FACTS ABOUT NW $\begin{aligned} & \text { NOTHELFER } \\ & \text { TRANSFORMERS }\end{aligned}$

4. All units individually tested to assure quality performance.
5. Only the highest quality materials used.
6. We sincerely believe NWL Transformers are superior, and we hove built our business on this policy.

* HIGH Efficiency

TRANSFORMERS
FOR:
HEATING
TESTING
POWER
ELECTRONIC
ELECTRIC FURNACE
SPECIAL WELDING
PHASE CHANGING
PRECIPITATION
CONTROLLING
RESEARCH
LIGHTING
INDUSTRIAL
MEASURING
SIGNALING
HIGH and LOW VOLTAGE

SEND FOR 8 PAGE BULLETIN
No Charge At Any Time For

OUR 34th YEAR

SIX DIFFERENT MOUNTINGS

FEATURES

Wide Ambient Temperature Range: $55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ standard— $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ MHB-type Vibration Resistant: 15G's vibration to 500 cycles - Operating Shock: no contact chatter to over 50G's

High Altitude: seal-tested to 70,000 Jeet
Dependable Operation: life expectancy of over 1 million operations at rated load
High Speed: operate-to-make time under 8 ms .
release-to-make time under 4 ms .
release-to-break time under 2 ms .

Save production dollars

with \mathbb{R}

tapered
 Germanium Diodes

Speed Assembly
In Your Circuitry

Eliminate
Errors!

With a unit as tiny as a germanium diode chances of error in assembly are multiplied. . . . But the tapered design of the Radio Receptor diode case works for you to eliminate these problems.

Allowing polarity identification at a glance or touch, the taper goes a long way to reduce error in connecting the diodes into your circuit. The hexagon shape assures ease of handling and prevents rolling, especially when the leads are cut off to permit mounting the diode in clips. All this means less rejects, increased production and real dollar savings!

Precision made to meet strictest requirements, Radio Receptor diodes are being specified in an ever increasing number of electronic circuits where stability, dependability and durability are of prime importance.

Our engineers will gladly submit their recommendations. Write us today-without obligation, of course. We also manufacture Germanium Transistors and Seletron Selenium Rectifiers.

Need Smenthing Speciolien a

SPECIAL OR FRACTIONAL RATILGS

Close tolerances of protection may be obtained by precise, fractional rating between 10 milliamperes and 100 amperes.

ALARM COLTACTS

Alarm contacts are available on certain models to permit visual or audible signal on tripping of circuit breaker.

DUAL RATILGS

A single circuif breaker may be furnished with two coils for operation on different currents.

SPECIAL RESPOWSE CURVES

Timevs. per cent overload response curves may be selected to match protection characteristics to the requirements of your product.

WRITE FOR BULLETIN SW

HEINEMANN ELECTRIC CO.

97 PLUM STREET
TRENTON 2, N. J.

HEINEMANN Circuit Breakers... One, Iwo and three pole... 10 milliamps to 100 amperes

HIGH VOLTAGE RECTIFIER CARTRIDGE TYPE

Case Diameter: From $1 / 4^{\prime \prime}$ to $1 / 4^{\prime \prime}$
Length: From $1 / 2^{\prime \prime}$ to $12^{\prime \prime}$. Current, Half-wave: 1.5 ma to 60 ma .

Voltage, DC Output: 20 volts to 200,000 volts.
Write for Bulletin H-1

POWEIR RECTIEIERS Widest range in the Industry Power Factor 95% Ratings to 250 KW Efficiencyta 87% Wrife for Bulletir:

MINIATURE RECTHEIERS

Hatf-wave, Full wave and Voltage Doubler Units. Input Ratings from 25 to 195 volis AC.
DC Output Current from 65 ma to 1200 ma.

Write for Bulletin ER-178

POWRR RECTIFIERS
MINIATURE RECTHFIERS

[^4]
Take, for instance, the finely engineered

PRESTO RG-7 TAPE RECORDER

EQUIPMENT SPECIFICATIONS

- Dynamic range better than 50 db at 3% distortion.
- Three-motor drive sistem.
- No friction clutch or friction brakes.
- Heary-duty construction throughout.
- Separate erase-recording-playback heads.
- Twin speed: 71/2"/sec. or $15^{\prime \prime} / \mathrm{sec}$.
- Frequency response 50 to 15,000 cps.
- Reel size: $7^{\prime \prime}$ standard, $101 / 2^{\prime \prime}$ with RA-1 adapter.
- Flutter: at $7 \frac{1}{2 \prime \prime} / \mathrm{sec}$., 0.25 - at 15"/sec., 0.20.
- Available in 110 or 220 volts and 60 or 50 cycles.
- Weight: 41 lbs

The completely portable presso RC-7 is a precision recorder in every detail. Yet it's rugged and durable for heary-duty field recording, and equipped with every feature this service demands. Built around a sturdy 3 -motor drive, the RC- 7 contains the same high-quality components found in Presto's fine studio equipment.

The RC-7 has separate recording and reproducing heads. Monitoring from tape is instantaneous. Mechanical friction devices, which always require constant adjusting, are totally eliminated from the RC-7, and virtually no adjustment is needed throughout the life of the machine. Note the FC-7's other features in the column at the left.

All of presto's engineering experience as the world's foremost producer of precision recording equipment has been devcted to making the RC-7 the outstanding leader in fine tape recorders, in flawless performance, simplicity of operation, and long and thoroughly satisfactory service.

Write for complete engineering data and price

PARAMUS, NEW JERSEY
Export Division: Canadian Division:

Facts behind the S-I TIMER'S extraordinary

Formula S-7: Expensive high torque, ball bearing motor, low inertia of moving parts, high proportion of precision and ground parts, no thrust bearings as found in ordinary clutches.

- High torque (2 inch-ounce at 100 RPM) industrial grade motor (\#1) with no internal gear train so small changes in load due to binds or hand acceleration cause no phase shift between rotor and rotating field...runs continuously to eliminate starting error.
- Precision cut gears (\#2, \#3). Any eccentricity or inaccuracies in gearing reflect directly in timer reading.
- Slip clutch composed of hardened steel spring (\#4) riding a V-grooved graphited (for long wear) collet, applies .6 inch-ounces of torque to aluminum (for low inertia) control disc (\#5) with over 314 tiny teeth in its periphery.
- To hold control disc (\#5) at rest, 2 hardened steel brake shoes (\#6), ground to square knife edges, grip periphery of control disc in 4 places...control disc position to under $1 / 2$ of a degree (1/720 second).
- Electro magnet (\#8) pulls brake shoes away from control disc through armatures (\#7). Air gaps kept to minimum for speed. Precision made fulcrums prevent stickiness or unequal movement of armatures.
- Adjusting screw (\#11) adjusts tension of armature spring (\#10) so that time between energizing magnet coil and starting of control disc is same as time between de-energizing magnet coil and stopping of control disc. This compensates for starting and stopping errors.
- Second friction clutch (\#12) transfers control disc motion to center staff (\#13); allows hands to be reset when control disc is held stationary.

To Split the Split Second with ACCURACY, Take a Minute Now and Write Us for Engineering Data

Consistently Dependable
 Cornell-Dubilier
 electrolytic capacitors

Whether you order 1 or 1,000,000 you can rely on C-D electrolytics.

The consistent demand for C-D, year after. year, by the country's leading manufacturers is proof of the uniform quality of C-D Electrolytics. Whatever your Electrolytic requirement you will find that
Cornell-Dubilier's consistent dependability is unmatched in the field-even to the new, real small (miniature) ELECTROLYTICS.

Engineering samples sent on request. For your special design and application problems, use our Technical Advisory Service. Write to :

Cornell-Dubilier Electric Corp., Dept. K-24 South Plainfield, New Jersey.

THERE ARE MORE C.D CAPACITORS IN USE TODAY THAN ANY OTHER MAKE

CORNELL Capacitors
 (

 indianapolis, ing, fuguay springs and samford m ano subsidiary the radiart corporation. cleyelamo. ohio

New Jobs
for the World's
Most Useful
Metal
-Straits Tin

Tin mining in Malaya. Here a test boring is being removed.

New tin-alloy platings improve products, cut costs

The number of new ways you can use Straits Tin to make better products at lower cost is today growing faster than ever, and lower cost means higher profit.

New tin-alloy platings, for example, are giving increased protection against corrosion to steel.

Tin-zinc and tin-cadmium platings have been found to be many times as resistant to corrosion as either zinc or cadmium alone.

Tin-copper electrocoatings are increasingly useful. Red bronze can now be used as a more durable undercoating for chrome-white bronze for applications similar to those of silver plate.

And because tin is as handsome as it's adaptable, a new tin-nickel alloy is proving itself a more attractive, more corrosion-resistant decorative plating than the conventional chromium on nickel copper.

New plating alloys represent just one of the ways Straits Tin can do more for you today.

Over a third of the global tin output is mined and smelted in Malaya. Known as Straita Tin, this metal is over 99.87%
pure, and is world-famous for its absolute reliability of grade.
Whether you're planning a new product, working to improve an old one, or simply seeking ways to avoid the squeeze between rising manufacturing costs and resistance to higher product prices, a careful reappraisal of the properties of Straits Tin may uncover a profitable answer to your problem.

Write now for any information you may need about versatile, plentiful, economical Straits Tin.

A free copy of our riew bulletin ${ }^{4}$ How Straits Tin Can Help You," is yours for the asking.

THE MALAYAN TIN BUREAU
Dept. 386, 1028 Connecticut Ave., Washington 6, D.C.

THESE EXTREMES -or anything in between!

TRANSFORMERS

-custom-built to military specifications

 or your specific performance needsYou can depend on LANGEVIN for every transformer requirement, large ot, small, including pulse transformers, charging reactors, saturable reactors, high cycle transformers and units built to the most rigorous specifications. Highly specialized facilities permit fast handling of short or long runs with maximum economy and rigid quality control. For prompt quotations or engineering collaboration, call or write today without obligation.

LANGEVIN MANUFACTURING CORPORATION

37 WEST 65 th STREET, NEW YORK 23 3, N. Y.
a subsidiary of the w. L. maxson corporation

[^5]R. B. Sivernell

1900 Queen St,
Fort Worth, Texas
Edword A. Ossmonn \& Assoc.
3 Juniper St.
Rochester 10, New York

You know his first concern is you...

CONFIDENCE is born in one look at the eyes... the set of the shoulders... "the cut of his jib". In a second, you know he's had years of training and weathered it well. You know you couldn't be in better hands... and if anyone can get you there, he will.

Yes, it takes years to build confidence like this, in any line. And the whole organization of Bristol Brass . . . young yet experienced . . . is keyed to keep the confidence that any promised shipment of Bristol Brass sheet, rod, or wire will get there at the promised time, if it's
humanly and meehanically possible to do so. In fact, that's what "Bristcl-Fashion" means . . . a term still in use that came to be first applied to the old clipper ships out of Bristol. England... always shipshape, correctly marifested, and right on time.

The Bristol Brass Corporation, makers of Brass since 1850 in Bristol, Conn. Offices or warehouses in Boston, Chicago, Cleveland, Dayton, Detroit, Los Angeles, Milwaukee, New York, Philadelphia, Pittsburgh, Providence, Rochester.

Cosmotron's 17,000 Parts of Kel-F Keep 11 Million Joules in Check... Under $5 \times 10^{6} \mathrm{~mm}$. Vacuum!

Consistently high dielectric and mechanical strength and an extremely low gassing rate are three of the unique combinations of properties of "Kel-F" polymer which are utilized in Brookhaven National Laboratory's famed Cosmotron.
Each of the Cosmotron's 2432 magnet grid bars is effectively insulated with "boots" and bolt covers whose dielectric strength remains consistently high in presence of large magnetic and electrical fields. "Kel-F" - non-porous and non-volatile-assists in maintaining the vacuum chamber at the required low pressure.

The insulating "boots" were fabricated from $1 / 32^{\prime \prime}$ polymer sheet stock precision-molded by Reiss Manufacturing Corporation, New York, N. Y., from unplasticized "Kel-F", polymer Grade 300. Plastone Products Company, Inc., Lindenhurst, N. Y., blanked, punched and formed the sheet to dimension. The Brookhaven Na tional Laboratory molded the insulating washers and bushings.
For further information ash for
Application feport E-120

Brookhaten Cosmotron's 2432 magnet grid bars, operating in high vacuum, are "gapped" and insulated with "Kel-F" plastic.

Have You Checked These Recent Significant Developments in Kel-F?

Coating on Aluminum-bond between "Kel-F" and metal strong enough to permit forming without damaging chemically-inert coating Coating-. $005^{\prime \prime}$ to $.010^{\prime \prime}$ thickhas no pinholes, cannot peel or be stripped or damaged by bending metal. New England firm furnishes this service including coating and forming.

OILS
WAXES
GREASES

dircratt Antemna Molded in Kel.F to Cut Cavitation and Corrosion... Prevent Leaks at ligh Altitutes!

MOLDING FOWDERS
. casing of "Kel-F" trifluorochloroethylene polymer plastic, on this slidepath antemnae "takes" operating conditions prohibitive to other materials. Exposed to ice abrasion, thermal cyeling and corrosive gases, it maintains top performance in RF communication
High dielectric strength through thermal cycling, and under ligh humidity prevents signal dissipation at ground level or at high altitudes. High impact. compressive strength prevents damage from wind loads or airborne solids.

The new antennae is injection molded of "Kel-F"' trifluorochloroethylene polymer by Auburn Button Works. Inc.. Auburn, N. Y., for the Technical Appliance Corporation, Sherburne, N. Y. It was specified by the Boeing Airplane Company.

For further information ask for Application Repory E./12I

Molders \& Fabricators of the Month

- I.eading molders, extrwders and fabiricators specialize in the production of materials and parts marde of "Kel-F". . each month this column will spolliyht several of these companies with their principal

Chicago Gasket Company

 Chicago, Ill.Compression \& Tronsfer Molding Rod Sheet \& Tube
Cortland Industries, Inc.
Chicago, III.
Machining Production
Sealing of Film
Electronic Wave Products, Inc. New York, New York
Sealing of Film
Forming
Gaskets Container Liners

Perma-Line Rubber Products,

 Corp.Chicago, MI.
Corrosion Control Dispersion Application

The Rex Corporation
West Acton, Mass.
Extrusion
Extruded Rod Tube \& Spaghetti Insulated Wire

Reusable "Chases" Keep

 Portable Receiver Crystals "on the beam"RF ervstal "chases" or frames of "Kel-F" extend the effeetive life and improve operating characteristies of portable, fixed-frequenc.v military radios. Excellent dielectric strength insulates against leakage of RF pulses. unbreakable frames prevent damage and permit re-use.
The $3 / 4^{\prime \prime} \mathrm{x} 3 / 4^{\prime \prime}$ "clases" are in jection molded from unplasticized "Kel-F" by Electronic Mechanies, Inc.. Clifton, N.J.

For further information ash for Applicarion Heport Vo. E-IIS

Hop sure fove harre the HeIT IBUYEIRN GITIIDE far Kel-Fiparts and sprecicos:

For complete information regarding any item mentioned in DESIGN AND PRODUCTION NEWS, osk for defailed APPLICATION REPORTS, write
Technical Service CHEMIGAL MANUF:CTURING DIIISION TME
M. W. KELLOGG COMPANY
P. O. Box 469, Jersey City 3, N. d or offices in Boston, Chicago, Dayton, Los, Angeles and New York

and you will specify

STABILINE TYPEIE

Instantaneous Electronic
AUTOMATIC VOLTAGE REGULATORS

Here's how the Stabiline type IE measures up: Stabilizing and regulating ability -- For all conditions maximum variation less than $\pm .25$ of 1%. For input voltage changes, variation less than ± 0.1 of 1%. Load current change or power factor change from lagging .5 to leading .9 will vary output voltage less than $\pm .15$ of 1%.
Correction speed - Comparatively instantaneous - 3 to 10 cycles.
Waveform distortion - Never exceeds 3%. Is generally under 2%.
Input Range-For nominal 115 volts output, input range is 95 to 135 volts. For nominal 230 volts output, input range is 195 to 255 volts.

Output Range - Output voltage on 115 volt units can be adjusted from 110 to 120 volts; on 230 volt units from 220 to 240 volts.
Furthermore, the Stabiline type IE has a circuit simplicity and mechanical ruggedness that minimizes maintenance.
Check all these characteristics against all other automatic voltage regulators and you will find Stabiline type IE is superior in design, construction and performance.
Stabiline automatic voltage regulators type IE are available in ratings from .25 to 5.0 KVA. Special types will be application engineered to meet specific requirements.

zero to 70,000
 cycles per second

... recorded on one tape recorder, the Ampex Model 311

This versatile Ampex recorder is a combination of a wide-range direct recorder for high frequency phenomena and an fm-carrier recorder for highly transient or extremely low frequency phenomena requiring excellent am. plitude accuracy. It provides a means for recording nearly every type of data encountered in laboratories and in industry.
The Ampex 311 uses two parallel channels on quarter-inch tape. The direct recording channel handles frequencies from 300 to 70,000 cycles per second. The fm-carrier channel has high transient accuracy in the range from 0 to $5,000 \mathrm{cps}$.
The Ampex 311 can record diverse types of data signals with a common time base. For instance, the fm channel might record high transient phenomena or low frequency signals while the direct channel records wide-band multiplexed signals or other high frequency information.
Even where serving only one need, the Ampex 311 is effectively a two-channel recorder, since the channel not being used to record data can be used for time signals. Thus, it can serve the same purposes in many cases as either a two-channel direct recorder or a two-channel fm -carrier recorder.

AMPEX Model 311 Combination Recorder Two parallel channels cover a wide range of data situations:

The fm channel

- Frequency response, 0 to $5,000 \mathrm{cps} \pm 1$ db.
- Transient accuracy independent of minor tape flaws and irregularities.

The direct channel

- Frequency response, 300 to $70,000 \mathrm{cps}$. $\pm 3 \mathrm{db}$.
- Wide band multiplexed or fm-carrier data
- High frequency phenomena

For further information write to Dept. E-1370R-B

NEW LOW PRICES FOR GEE ALUMINIZED TUBES Help You In The Black-and-White TV Market!

EXTRA COST IS HALVED. NOW YOU CAN FEATURE TOP PICTURE QUALITY IN EVERY SET YOU BUILD!

G.E. LOWERS PRICES for aluminized tubes, to strengthen your position in the 1954 volume black-and-white market. The cost differential on many types has been cut in half. Now you cardesign into all TV sets the greater brightness and contrast which aluminized tubes give. Ycu can use a tinted safety glass with no sacrifice of picture brightness. You can offer topnotch. video at moderate voltages.

G-E SERVICE to TV builders on aluminized tubes follows a pattern that started with basic development of the product. Later, G.E. pioneered process after process of manufacture ... finally, through scientific quantity production, achieved savings that now are being passed on to the whole television industry.

GET THE figures! Phone, wire, or write for latest prices on G-E Aluminized Tubes! Learn how little more it will cost to provide pictures up to 100% brighter-your answer to today's stiff TV competition! Tube Department, General Electric Company, Schenectady 5, N. Y.

How the cost differential on one popular 21 "tube-aluminized vs. non-aluminized - has been cut by General Electric largescale production economies. Both tubes have come down in price, with the aluminized type leading.

WIDEST RANGE OF TYPES! A dozen G-E Aluminized Picture Tubes are available for your design requirements, sizes $5^{\prime \prime}$ to 27 ". They include the following:

10FP4-A
5TP4 (projection type)
12KP4-A *17BP4-B *21ZP4-B
16KP4-A

$$
\begin{array}{ll}
* 21 E P 4-B & * 21 A C P 4-A \\
* 21 Y P 4-A & * 24 C P 4-A
\end{array}
$$

27EP4 *27RP4
*Recommended iypes

Higher dielectric strength

 than any other insulating spray on the market!Proven by twenty years of use by leading component parts manufacturers -

Now packaged in easy-to-use

 Spra-tainer especially for you!Contract service calls cost money. Spray every TV installation with Insl-x E-16 and eliminate return calls. The extremely high dielectric strength of Insl-x E-16 assures positive insulation. Insl-x dries to a hard but extremely flexible finish of unusual thickness.
Use Insl-x, the material that was designed to do one specific jobINSULATE.

Specify Insl-x E-26 for complete insulation of electrical equipment and wiring.

See your jobber, or write for complete technlcal data, Dept. 402

[^6]
MICROWAVE

SIGNAL $=$
 GENERATORS
 with Polarad single dial operation

Four new Microwave Signal Generators covering the range $950-10,800 \mathrm{mcs} / \mathrm{sec}$. All with famous Polarad single dial operation. Each provides the maximum working range possible in one compact signal generator. And, additional Polarad Signal Generators are available to cover 12.8 to 39.7 kmc .

These features on all MSG units assure fast and simple operation: direct reading, single dial frequency control that tracks reflector voltages automatically . . . direct reading attenuator dial . . . conveniently placed controls, in logical sequence . . . high visibility on the face of each instrument.

Polarad Signal Generators are built to the same high standards required for military equipment. They are practical for the factory assembly line-engineered ventilation assures continuous and stable operation of all instrument functions. Components are readily accessible for easy maintenance. And laboratory accuracy is guaranteed under the most rigorous operating conditions.

Write directly to Polarad or your nearest Polarad representative for details.

| | | | |
| :--- | :--- | :--- | :--- | :--- |

"the finest signal generators of their kino" Polarad ELECTRONICS CORPORATION
100 metropolitan avenue, BROOKLYN 11, NEW YORK

[^7]

New Klectranik recorder for high impedance circuits

2 mv . The amplifier can be used separately in many high impedance servo systems.

Excellent stray rejection, meeting the most stringent specifications, is incorporated in the new circuit. Stray a-c voltages, equal to full scale span for the 2 -second model and up to 10 times the span for the 24 -second model, are rejected with no appreciable loss in instrument sensitivity.

Your nearby Honeywell sales engineer will be glad to discuss your applications . . . and he's as near as your phone.
Minneapolis-Honeywell Regulator Co., Industrial Division, Wayne and Windrim Aves., Philadelphia 44, Pa:

ANEW MODEL of the ElectroniK instrument now makes it possible to record data from high impedance sources without resorting to external pre-amplifiers. It can measure voltages originating in sources with impedances ranging from 0 to $50,000 \mathrm{ohms}$ without appreciable change in sensitivity, damping or speed.
Because of its high input impedance, the instrument can be applied to voltage measurements with negligible loading effect on the source. It is also applicable to current measurements in conjunction with photocells, spectographs and similar devices.
The recorder is supplied with pen speed of $24,12,41 / 2$ or 2 seconds, for spans down to

Vacuum-Processed Bradley Rectifiers laboratory quality at production line cost

Edge shorting of the counter-electrade under vibration is a performance hazard you can't foresee. Routine tests may or may not disclose its existence. Like any flaw, if it is slight, you won't know about it until the customer complains.

A sure way to eliminate counter-electrode shorting as a threat to your circuit's operation is to specify Bradley rectifiers. They are made to prevent shorting. Does this mean you pay a premium price for Bradley rectifiers? It does not. You get laboratory quality, but you pay production line costs. Try us and see. Specify Bradley as a source when you next consider rectifiers. Special problems are welcomed.

The complete selenium rectifier line - from microamperes to thousands of amperes

bradiey laboratories, inc., 168 e Columbus Avenue, New Haven 11, Conn.

NETV!

1 FOR AUTOMATION : EXCLUSIVE NEW Self-Supporting Snap-in Bracket Mounting. (See Type YGC-B45.)
2 NEW Twist-ear Mounting. (See Types XP45 and UPM45.)
3 PLUG-IN BLADE-TYPE TERMINALS for vertical or horizontal mounting of control to printed circuit panel. (See all photos.)

4 Threaded Bushing Mounting. (See Types XGC-45, GC-U45 and minialurized U70.)

Consultation without obligation available on variable resistors for your printed circuit applications. Write today.

YERTAGALY MOUNTE1 to Printed Circuit Panel. Shaft above panel. (Types YGC-B45, XP45 and XGC-45.)

- NO shaft protection needed during soldering.
- PARALLEL terminals permit small round connecting holes instead of large elongated slots necessary for fan shaped terminals.
- Terminals available in $7 / 8^{\prime \prime}$ or $1-1 / 32^{\prime \prime}$ lengths from control's center.

Type Yec-b45 FOR AUTOWATION: EXCLUSIVE NEW Self-Supporting Snap-in Bracket

- Snaps instantly into place.
- Stays firmly put during soldering. Solder permanently anchors control to circuit panel.
- Terminal connections cannot loosen; bracket prevents mounting or operating strain on control or switch terminals.

Suggested panel piercing.

Type XP45

For TV preset control applications using a mounting chassis to support printed circuit panel. Twisting 2 ears holds control rigidly to mounting chassis. Available in finger adjusted shaft lengths of $1 / 2^{\prime \prime}, 5 / 8^{\prime \prime}, 11 / 16^{\prime \prime}, 7 / 8^{\prime \prime}$ and $1^{\prime \prime}$ from control's mounting surface. Also available with recessed screw driver slotted shaft (Type XPM45).

- No mounting hardware, no separate supporting panel needed.
- No strain on printed circuit panel. Anchor tabs attach bracket to cabinet.
- Adequate clearance for circuit paths provided by ample spacing between terminals and by design of mounting lugs on bracket.

WIEW FROM COUTRO 2 HOLES .025" $2.001^{\prime \prime}$

Type XGO-45

For applications using a mounting chassis to support printed circuit panel. Threaded bushing mounting

CIRCUTAS
 OF VARIABLE E RESISTORS

horizontally MOUTHED

to Printed Circuit Panel. Shaft extends through panel. (Types U70, GC-U45 and UPM45.)

Type GC-U45

Threaded bushing mounting. Terminils extend perpendicularly $7 / 32^{\prime \prime}$ from control's mounting surface. Available with or without associted switches.

Type 070

(Miniaturized)
Threaded bushing mounting. Terminails extend perpendicularly $5 / 32^{\circ}$ from control's mounting surface. ping. Control may be held rigidly to
panel before soldering by twisting 2
ears. If ears areleftstraight, the solder will permanently anchor control to circuit panel. Terminals extend perpendicularly $7 / 3 z^{\prime \prime}$ from control's mounting surface.

Type UPM45

 Recessed screw-driver slotted shaft remains solder-free during panel dipping. Control may be held rigidly toFor TV preset control applications.

\qquad

REPRESENTATIVES
 Henry E. Sanders, McClatchy Bldg.

 69th \& Market St., Upper Darby, Penna. Phone: Flanders ?-4420 W. S. Harmon Company, 1638 So. La Cienega Blvd.,Los Angeles 35, California
Phone: Bradshaw 2-3321
John A. Green Company, 6815 Oriole Drive, Dallas 9 , Texas
CANADIAN MANUFACTURING AFFILIATE
C. C. Meredith \& Co., Ltd., Streetsville, Ontario SOUTH AMERICA Jose Luis Porter, Bueno Aires, Argentina Montevideo, Uruguay - Rio de Janeiro, Brazil . Sac Paula, Brazil OTHER EXPORT

Sylvan Ginsbury, 8 West 40th Street, New York 18, M. Y.

GHIGACO TELEPHONE SUPPLY Corporation

ELKHART • INDIANA
General tolerance all decimal dimensions $\pm .005^{\prime \prime}$.

Can your shipping cases pass this test?

To protect costly aerial cameras and other precision instruments, the U.S. Air Force has developed a special Fiberglas case, now being manufactured in quantity by Koch of California. (Specification MILC 4150 A-USAF).

In one test, this special case was submerged in 43 feet of water without leaking. In another, the case was dropped by parachute from a plane flying 250 miles an hour at 600 feet altitude (equivalent to a free fall of 25 feet). Both case and contents were undamaged.

Koch Fiberglas cases double as shipping cases,
carrying cases and storage cases. No crating or other outer protection is necessary for overseas shipment. Vapor and moisture transmission rate is zero. The cases are fungus and mildew proof. They won't dent - are actually lighter than steel, yet much stronger.

If you manufacture a valuable product that needs this kind of protection, it may pay you to investigate our facilities and experience. streamship, anywhere in the world.

Where

ordinary relays won't do... ...that's where you find CLARE RELAYS

- View of subcarrier frame of Mooorcla Microwave TV Relay System. Hand lifts cover of one of four Clare Type J Relays use 1 in the push-to-ring circuit of the service channel. Clare relays also provide deperdable service in the push-to-telk and the receiver noise squelch circuits. Lower photo shows the Moto:cla installation reaz Denver.

MOTOROLA'S Microwave TV Relay System

 uses 4 Clare Relays per terminal- High on Lookout Mountain, 3000 feet above the city of Denver, four Clare Type J Relays are in 24 -hour service in Motorola's Microwave TV Relay System.

This Motorola Microwave TV Relay System is unique in that a single RF channel is used for a broadcast-quality video signal, a high fidelity audio program channel and a twoway service channel for orders and cuing.

The four Clare relays are mounted under the metallic covers on the subcarrier frame. They were chosen because of the need for maximum reliability of performance and long-life dependability.

This choice is typical of the confidence placed in Clare relays by engineers in every phase of industry. Clare sales engineers are located in principal cities to consult with you on your specific relay problems. Call the nearest Clare office or write: C. P. Clare \& Co., 4719 West Sunnyside Avenue, Chicago 30, Illinois. In Canada: Canadian Line Materials Ltd., Toronto 13. Cable Address: Clarelay.

FIRST IN THE UNDUSTRIAL FIELD
?

DESIGN MEN SAY...

 "Specify A

-BUSHINGS

hermetic-seal, compression type

-ASSEMBLY
 SERVICE

 from assembly of bushingsin covers to actual hermetic

B

BECAUSE these design men know that when they incorporate any one of Heldor's hundreds of standard and non-standard cans, covers and hermetic-seal bushings into their prototypes, production will be increased, costs will be lowered and deliveries speeded up. And, when Heldor is used for assembly of cans and terminals, further economies will be effected.
If you manufacture electronic or nuclear components - and can use any of Heldor's products or services you'll find it most advantageous to investigate HELDOR. As a "convincer", send your specifications or prints today for a money-saving quotation.

EXTRUDED

METAL-CERAMIC COMBINATIONS

WIDEST CHOICE OF CERAMIC MATERIALS TO MEET YOUR SPECIFIC REQUIREMENTS Send blue prints and specifications and let us show you what we can do for you.

MORE THAN 50 YEARS OF KNOW-HOW MEANS

ASSURED
QUALITY

52 ND YEAR OF CERAMIC LEADERSHIP

american lava corporation
 a subsidiary of minnesota mining A WD MANUFACTURING COMPANY

CHATTANOOGA 5, TENNESSEE
OFFICES: METROPOLITAN AREA: 671 Brood St., Newark, N.J., Mitchell 2-8159 - SYRACUSE, N. Y.: 330 Arlington Ave., Phone 76-5068 - CLEVELAND: 5012 Euclid Ave., Room 2007, Express 1-6685 NEW ENGLAND: 1374 Mass. Ave, Combridge, Mass., Kirkland 7.4498 - PHILADELPHIA: 1649 N . Brood St., Stevenson 4.2823 - ST. LOUIS: 1123 Washington Ave., Garfield 4959 CHICAGO: 228 N. LOSalte St., Centrol 6.1721 - SOUTHWEST: John A Green Co., 6815 Oriole Dr., Dollos 9, Dixon 9918 e LOS ANGELES: 5603 N. Huntington Dr., Capital l.9114

HOW Berkeley EQUIPMENT HESPED SOLVE A PRoblem for RCA Communications, Inc.

RESULIS:
Using the BERKELEY Model 5570, frequency determination to an accuracy of 1 part in $10^{7} \pm$ 1 cycle with a new measurement every 4 seconds is now a simple routine. Previous method required 10 to 15 minutes.

For the Automatic Monitoring System

Additionel equipment provides automa-ie recording of the last 6 digits of the mezsured frequency on standard adding machine tape. This is accomplished by use of the R-6 Digital Recorder in conjunction with the Frequency Meter, Model 5570.

40 to 510 Megacycles

VHF and UHF converter units are available for use with the Model 5570 (0 to 42 megacycles) Frequency Meter.
Model 5575 extends range of Model 5570 to 150 megacycles. Model 5580 covers one 30 megacycle band width from 150 to 510 megacycles when used with Model 5570. Plug-in units select the 30 megacycle band width over which the Model 5580 is to operate. Reading is made in digital form as sum of base frequency of plug-in unit and direct indication on Model 5570.

May we help solve your problem?

If it involves faster, more accurate, easier and simpler ways to measure frequency, flow, pressure, velocity, r.p.m., time intervals, viscosity, - or high speed counting and counting plus pre-set control - chances are that BERKELEY can help you solve it. Complete data sheets covering many applications in these fields are yours for the asking - check the handy coupon below and mail it NOW!

Instruments \& Transformers Gas

SEND FOR COMPLETミ CATALOG OF FREED INSTRUMENTS AMD TRANSFORMEES

Vacuur Tube Voltmeter

No. 1210
Null Detector $\&$ Vacuum- Tube Yolimeter

FREED
MILITARY PULSE TRANSFORMERS
IN STOCK FOR IMMEDIATE DELIVERY
HERMETICALLY SEALED PULSE TRANSFORMERS for use in blocking oscilators, low level interstage coupling, and modulator outputs. Made ir accordance with MIL-T-27 specifications. These pulse transformers are designed for maximam power, efficiency and optimun pulse performance. Balanced coil structures permit series or parallel connection of windings for turn ratios other than unity. Pulse characteristics, voltages and imperance levels will depend upon interconnections made.

No. $101{ }^{\circ}$ Comparison Bridge

Mo. 1110A incremental Inductance Bridge

FRES TRANSFORMER•CO. HNC. 1722 WEIRFIELD ST. (RIDGEWOOD) EROOKLYN 27. N.Y.

Cut equipment costs with RCA Preferred Tube Types

As a guide to cutting costs when choosing electron tubes for the design of new electronic equipment, RCA offers its current list of RCA Preferred Tube Types.

These key tube types-generally preferred for their performance in radio, television, and other widely used circuits-offer the cost saving advantages of volume produced types. Because they can be manufactured at a more uniform rate, Preferred Tube Types bring special benefits of year 'round availability, stocking economies,
uniformly high quality, and initial lower cost which make for low equipment cost to designers, distributors, and consumers alike.

For standardization of your designs and simplification in the manufacture and maintenance of your equipment, consider the importance of Preferred Tube Types. Ask your RCA representative for details on how RCA Preferred Tube Types can actually reduce your manufacturing costs and increase your profit picture.

RCA PREFERRED TUBE TYPES for new Equipment Design
Types For AM and FM Receiver Applications

Amplifiers, Oscillators, \& Mixers				
Triodes		Pentodes		
Twin	with Diodes	Sharp Cutaff	Remote Cutoff	with Diodes
12AU7 ${ }^{\text {- }}$	$\begin{aligned} & \text { 6AVG } \\ & 12 A V 6 \end{aligned}$	104 6 6U6 6CB6	174 6BA6 128A6	IU5

Rectifiers and Diade Detectors	Converters	Ouiput Amplifiers
	1 R5	$\begin{aligned} & 354 \\ & 3 V 4 \end{aligned}$
5U4-G	68E6	6 6Q5
5Y3-GT	6X8	6K6-GT
6 6L5		6V6-GT
6×4		
	128E6	35 C 5
35W4		50C5

Types For Television Receiver Applications

Amplifiers			
IF	Videa	Audio	Deflection
6AU6	6AU6	6AQ5	6S4
6BQ7-A	6CL6	6AV6	68Q6-GT
6CB6		6K6-GT	6CD6-G

$\begin{gathered} \text { RF } \\ \text { Tuner Tubes } \end{gathered}$	Deflection Oscillators	Control Circuits\#
$\begin{aligned} & 6 A F 4^{*} \\ & 6 B Q 7-A^{*} \\ & 6 J 6 \\ & 6 \times 8 \end{aligned}$	$\begin{aligned} & 65 N 7-G T \\ & 12 A U 7 \diamond \\ & 12 B H 7 \diamond \end{aligned}$	6AU6 65N7-GT 12AU7 \diamond 128H7 $)$

Rectifiers		Damper Tuber	 Video Defector
High- Voltage	Low- Voltage		6AL5
183-GT	5U4-G	6W4	

Miniature types are shown in italics

* For UHF
\diamond Tapped heater, for 6.3 -volt or 12.6 -volt operation
\# Including synchronizing functions, AGC, etc.

SMALL TYPES FOR INDUSTRIAL AND COMMUNICATION SERVICES

Home Entertainment Types of Special Interest \#	Vacuum Types For Critical Applications	Types For Regulator Service	Glow Discharge Triode
6AK6	6L6-G	1620	
6AQ6	65C7		OA2
6BJ6	65L7-GT	5690	5823
6C4	$12 A X 7$	5691	"Special Red"
		5692	Types
		5693	

Minioture types are shown in italics * For UHF \Leftrightarrow Tapped heater, for 6.3 -valt or 12.6 -volt operation
\# Also see types for AM, FM, \& TV Receivers

[^8]

This compact, electro-mechanical controller provides sensitivity, speed of response and system stabilization under severe operating conditions. Its design and operating features have made Regohm uscful for automatic control systems in which heavier, more expensive and complex, but less accurate equipment had previously been the only available solution.
§ 2 small sIze \cdot Regolim is a compact, plug-in device; lightweight, extremely rugged and position-free. The unit's small size does not limit its power-handling capacity. This makes Regohm a "natural" where economy of space and weight are your major considerations.
22 power amplifying • Regohm is a high-gain electro-mechanical power amplifier. Milliwatt variations in signal energy can control energy changes millions of times greater.
32 impedance matching - Signal and controlled circuits are isolated, both electrically and structurally. Signal coils may have ratings from 0.01 to 350 amperes. Controlled resistors on a panel in which Regohm is plugged, can have values from zero to infinity, depending on the controlled system.
4. system stabilizing - A thoroughly reliable, sturdy dashpot aids in system damping. It can easily and readily be adjusted over a wide range to match the dynamic character-
istics of the Regohm to those of your present system.
(5) analytically definable. The response of Regohm is independent of the rest of the servo system. Its response characteristic can be expressed in terms of conventional "transfer functions." Regohm acts as an integrating error-rate proportional controller. No appreciable steady-state error can occur. Regohm's effect can be calculated in advance, simplifying design and facilitating prediction of performance.
© 6 continuous control - In "closed loop" systems a highspeed averaging effect occurs as Regolm's armature oscillates over a small amplitude. This provides intermediate values between step resistances and results in continuous, stepless control in systems operating at power frequencies and below.
52 long life - In properly engineered installations, Regohm's life is measured in years. Plug-in feature simplifies replacement and maintenance-there are no parts to renew or lubricate. Shelf life is substantially unlimited.

Our engineering and research facilities can help you apply Regohm to your servo system or regulator problem. Write for Bulletin 505.00 , containing a complete discussion of Regohm's characteristics and applications. Address Dept. E, Electric Regulator Corp,, Norwalk, Conn.

all this and color too!

 ...with EIMAC UHF TV KlystronsHIGH GAIN - SIMPLE TRANSMITTER. Eimac klystrons are inherently ideal for the final linear amplifier in UHF color TV transmitters. There is no need for by-pass condensers, rf chokes or feedback loops, and through low driving power and high power gain, the preceding circuits are simplified, and the smallest number of rf stages is required.
LOW NOISE LEVEL. Eimac klystrons operate below the noise level specified by the NTSC color television standards. The low noise level of these klystrons is amply demonstrated in UHF television transmitters now in daily operation.
NO TRANSIT TIME PHASE SHIFT EFFECTS. Regardless of amplitude level, the transit time of electrons in klystrons is substantially constant, and, having excellent linearity, a klystron will provide the amplitude and phase responses necessary for faithful transmission of color values.
WIDE BANDWIDTH. The rf resonant cavities are completed external to the tube, permitting the optimum arrangement of the rf circuits for bandwidths greater than six mc - more than enough for color TV.
RELIABLE-ECONOMICAL. Because of the sheer simplicity of these klystrons, they are light weight, readily mass produced, and give long, reliable life.

Eimac Klystrons for UHF-TV

| TYPe | channels saivation |
| :---: | :---: | :---: |
| POWER | |

For further information contact our Application Engineering Department

EITEL-MCCULLOUGH, INC. SAN BRUNO, CALIFORNIA

Export Agents: Frazer \& Hansen, 301 Clay St., San Francisco, California

There is a reason manufacturers and service organizations have learned to rely on BUSS fuses to operate properly under all service conditions. Every BUSS fuse normally used by the Electronic Industries is tested in a sensitive electronic device that rejects any fuse that is not correctly calibrated, properly constructed and right in all physical dimensions.

Once properly installed, a BUSS fuse will blow only to protect. If a BUSS fuse does blow, you can be sure there is trouble in the circuit. When the trouble is corrected and a new BUSS fuse installed the job is finished. The user won't be annoyed and your equipment won't be out of service by the fuse failing to operate properly... because a BUSS fuse will carry its rated current and it is properly constructed to prevent poor contact heating causing needless blows.

And by standardizing on BUSS fuses, you can fill your exact fuse needs from one source. The line is complete-dual-element (slow-blowing), renewable and one time types ... in sizes from $1 / 500$ ampere up.

Should you have a special problem in electrical protection-

Our fuse research laboratory and its staff of engineers are at your service to help you select the right fuse for the job - and if possible a fuse already available in wholesalers stocks.

MULTI-CHANNEL OSCILLOGRAPHS

Brush instruments reduce your engineering costs

Simultaneous recording of several electrical or mechanical phenomena with Brush multi-channel oscillographs saves engineering time and simplifies your testing. These precision instruments give you immediate answers in writingstress, strain, torque, vibration, pressure, flow, electrical characteristics, and other variables.

For complete description of time-saving Brush instruments, ask your nearby Brush representative to call . . . or write for your copy of "Modern Measurements." Brush Electronics Company, Department K-2, 3405 Perkins Avenue, Cleveland 14, Ohio.

COMPANY

formerly

The Brush Development Co. Brush Electronics Company is an operating unit of

SLANT

y

tequiremen 各s 富 INSTRUMENT CORP. OF AMERIGA

for miniafure

SIIP RIIIC AIIC COMHUUAA
 This Instrument Corporation of America

 plant contains the most modern and complete facilities available anywhere in the world for the exclusive production of Miniature Slip-Ring and Commutator Assemblies to precision standards. It is now in full scale production to meet your requirements in the fastest possible time at the lowest possible cost.
COMPLETE ENGINEERING AND PRODUCTION FACILITEES AVAILABLE

Our assemblies can be supplied at low cost. Quality is the highest in the industry. Dimensional accuracy and other characteristics are excellent and these ruits are highly recommended for instruments such as synchros, etc.

ONE PIECE ELECTRO-plated

TYPES FOR EXTREME ACCURACY
Wherever extrome dimensional precision, accurate concentricity and high dielectric qualities are required, the electro-deposition method is recommended. the production of which is licensed under an exclusive

THIS NEW MIDGET GERMANIUM RECTIFIER HAS AN OUTPUT OF OVER TWO KILOWATIS

Get High Power and Save Space With G-E Germanium Rectifiers

Germanium is a material to stimulate the imagination, so endless are its possible applications. Germanium rectifiers, pioneered by General Electric, offer design engineers tremendous possibilities for product improvement. Combining extreme compactness with the highest efficiency of any metallic rectifier known, G-E germanium cells show practically no aging. D-C power supplies for welders, battery chargers, and electrochemical processes are just a lew of the possible applications.
COMPACT-The compactness of germanium rectifiers makes possible real savings in space, volume, and weight. The dime-sized cell, pictured above with its heat exchanger, has a rating of two kilowatts with air cooling at a rate of 1000 fpm . Six of these tiny rectifiers connected in a three-phase bridge will deliver up to

65 volts d-c with a rated capacity of over 14 kw . To do a comparable job with selenium would take six stacks of 30 cells each, or a total of 180 selenium plates.

OTHER RATINGS-Besides the rectifier illustrated above, two other types are available. One is a sealed convection-cooled unit with a halfwave rating of 0.4 amperes $\mathrm{d}-\mathrm{c}$ output with up to 125 r.m.s. volts a-c input. A second is the plate-mounted convection or fan-cooled rectifier with half-wave ratings of from 4 to 20 amperes d-c output. All assemblies can be used in doubler, center-tap, and full-wave bridge circuits with corresponding increases in ratings.
MORE INFORMATION is available from your nearest G-E Apparatus Sales Office, or write Section 461-32, General Electric, Schenectady 5, N. Y.

MINIATURE ELECTRONIC COMPONENTS BY FORTIPHONE LTD, ENGLAND
 Component quality determines equipment performance!

< NEW MIDCET TRANSFORMER, TYPES

This new series of Fortiphone midget transformers, type S, has been specially designed for use with junction-type transistors when the size of the apparatus must be kept to a minimum. These new transformers are so tiny $(0.375 \times 0.375 \times$ 0.250 in .) as to be smaller than the transistor itself!
Most requirements can be met from the range of Fortiphone type S transformers
available. On receipt of details we will be glad to recommend suitable transformers from stock or, if necessary, make a specimen transformer specially for your purpose.
Every transformer is tested before final assembly for short-circuited turns, frequency response, and general efficiency Overall dimensions: $0.375 \times 0.375 \times 0.250 \mathrm{in}$., or $0.952 \times 0.952 \times 0.635 \mathrm{~cm}$. Weight: 0.068 oz . or 1.92 grams.

TRANSFORMEB TWPET

Designed for use in circuits employing subminiature valves or junction-type transistors, Fortiphone type T transformers are larger than Fortiphone type S transformers and are intended for use where smallness is not the first consideration. The connection contacts on these transformers are molded into the cheek of the bobbin.

Fortiphone type T transformers are available in over fifty different specifications. We
will recommend suitable transformers, or if necessary make a specimen transformer specially suited to your purpose, on receipt of details of your requirements.
Every transformer is tested before final assembly for short-circuited turns, frequency response, and general efficiency. Overall dimensions : $0.660 \times 0.484 \times 0.460 \mathrm{in}$., or $1.675 \times 1.228 \times 1.170 \mathrm{cms}$. Weight: 0.068 oz . or 1.92 grams.

MISIATURE RECEIVERS

Although so small, Fortiphone miniature electro-magnetic receivers are robust, highly efficient, and very reliable, and there is a wide range available. They can be supplied in a number of impedances from 30 ohms to 1,000 ohms, and with a variety of response curves; they can also be fitted with non-reversible receiver plugs and
sockets for use in junction-type transistor circuits. Fortiphone miniature receivers wilt accept standard American earmolds.

Overall dimensions: Diameter, 0.82 in . or 2.08 cm .; width (excl. nipple), 0.38 in . or 0.97 cm .; width (incl. nipple), 0.47 in . or 1.20 cm . Weight : 0.3 oz . or 8.5 grams.

OTHER FORTIPHONE MINIATURE COMPONENTS AVAILABLE

MINIATURE FINGERTIP VOLUME CONTROLS: MINIATURE FINGERTIP VOLUME CONTROLS WITH COMBINED ON/OFF SWITCH M: NIATURE FINGERTIP SWITCHES: MICROPHONES: FLEXIBLE CONNECTORS: PLUGS: SOCKETS: DISC EARPHONES HEARING AIDS: TELEPHONE PICK-UP COILS: HEADBANDS: ETC., ETC.

Cable or write for prices, further details, and samples. Please state probable quantities required
FORTIPHONE LIMITED
FORTIPHONE HOUSE, 247 REGENT STREET, LONDON, WI, ENGLAND
Established 1925
Cables: Sonomax, Wesdo, London
SPEEDY DELIVERY!

WhWhen it's millivolts or microamperes you are measuring, you talk-in terms of accuracy in the order of 0.1%. Here is the most accurate measuring instrument yet developed - the Weston Inductronic D.C Amplifier. This amazing instrument makes potential measurements down to microvolts, current measurements to fractions of a microampere.
By using this 200 kc frequency shift amplifier in connection with thermocouples, radiation receivers, bolometers, strain gages, pressure transducers, resistance thermometers, photocells, ionization gages, etc., related physical quantities can be measured with speed and accuracy far superior to any other method previously known.
The amplifying system is essentially an auto-
matic potentiometer, wherein an output current is maintained in balance against the input through a method of accurately adjusted resistors determining the balanced ratio of output to input. With a high gain in the amplification of error unbalance, the accuracy of amplification ratio is of course dependent almost entirely upon the stability and precision of the resistor network.
For this most exacting function Weston uses Driver-Harris MANGANIN, an alloy of such fixed stability that maximum change in resistance between $15^{\circ} \mathrm{C}$. and $35^{\circ} \mathrm{C}$. is less than 15 parts per million per degree Centigrade.
If fixed stability and constant resistance under normally variable operating conditions are "musts" in your resistor designs, let us have your specifications. We'll gladly put at your disposal 50 years of alloy manufacturing experience to help solve your problem.

HARRISON, NEW JERSEY
BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco, Louisville
In Canada; The B, GREENING WIRE COMPANY, Lid., Hamilion, Oniario

MAKERS OF THE MOST COMPLETE LINE OF ELECTRIC HEATING, RESISTANCE, AND ELECTRONIC ALLOYS IN THE WORLD

Want more per hour . . . or more accuracy . . . or less cost?

However you want your coil winding improved . . . there's likely to be a Universal Coil Winder that will do the job.

Higher-production machines. More versatile machines. Machines that will give you greater accuracy.

See for yourself by visiting the Universal Demonstration Room nearest you - in Cranston, R. I. or Chicago, Ill. Watch how coils are turned out at top speed, see how convenient the
machines are for operators, observe how accurately the coils are wound.

Write us to set up a date for a visit. Address UNIVERSAL WINDING COMPANY, P.O.Box 1605, Providence 1, R. I., or 9 South Clinton St., Chicago, Ill.

And use the coupon to obtain information on latest developments in coil winding.

New Instruments and Components to Aid in Design and Reduce Costs

Unique Variable Pulser
 is Valuable Laboratory Aid

The Technitrol Variable Pulser is a reliable, versatile instrument which converts the output of a laboratory oscillator into a series of pulses.
One use has been as a low pulse rate device to study the response of components and networks to isolated pulses. Another use has been as a variable pulse rate source to study P.R.F. sensitivity. Still another use has been as a constant high frequency source for a temporary clock pulse generator.

Characteristics

- Wide range of frequencies from 2 cps to over 2.0 mcs .
- Pulse characteristics optimized with rise and fall times approximately 0.04 μ_{s}. and $0.06 \mu_{\mathrm{s}}$. respectively.
- Duration of pulse variable from $0.2 \mu \mathrm{~s}$. to $5.0 \mu \mathrm{~s}$. in steps of $0.1 \mu \mathrm{~s}$.
- Accurate, stable pulse duration controlled by electric delay lines.
- Amplitude continuously variable without distortion from 0 to 45 volts.
- Trigger pulse precedes output pulse to synchronize oscilloscopes, etc.

Very Compact Delay Lines Designed to Fit Your Need

Tiny Encapsulated
 Pulse Transformers

Wound to Your Requirements
Technitrol Pulse Transformers are wound on ferrite cores and cast in resin to form a $3 / 4^{\prime \prime}$ sealed unit.

Type TE has 2 -inch pigtail leads of No. 20 wire. Type TP has 7 -pin plug-in for miniature tube sockets. Lends itself admirably to printed circuits where holes can be drilled in the circuit board, the transformer plugged into these and the pins soldered to the circuit leads on the side opposite the body of the transformer

When writing
for information Specify application and requirements

TECHNITROL

ENGINEERING COMPANY

2751 North Fourth Street
Philadelphia 33, Pennsylvania

A Technitrol Delay Line-with not more than $1 / 4$ " diameter and $61 / 4$ " length, or in a package - will be designed for your particular circuit application. A variety of mountings offers you a wide choice.

- Delay: 0.01 to $1.6 \mu \mathrm{~s}$
- Characteristic Impedance: 400 to 2500 ohms.
- Wide Frequency Response: $0.5 \mu \mathrm{~s}$. at 1200 ohms
3 db down at 5 mcs
6 db down at 8 mcs
10 db down at 10 mcs
Continuing intensive research and development is expected to make available even greater band-widths.
- Linear Phase: to 9 mcs and beyond

The continuously wound Technitrol Delay Lines provide minimum pulse distortion and are extremely stable with temperature variations. A covering protects the winding from abrasion and mechanical damage.

"Scotchcast" is an epoxy-type electrical embedment resin that gives dependable insulation and protects against oil, moisture, chemicals and weather. The R-B-M Division of Essex Wire Corp. finds it ideal for industrial controller coils.
"Scotchcast" is a cold pouring resin that is supplied as a liquid. After liquid hardener is added, it cures
and acquires long-lasting protective and insulating properties.
"Scotchcast" can be mixed with suitable filler to give better electrical properties, lower coefficient of expansion, higher heat dissipation.
For complete data, write Minnesota Mining and Manufacturing Co., Dept. ES-254, St. Paul 6, Minn.

are fitted into plastic cases

"SCOTCHCAST" Electrical Embedment Resins

[^9]
LITTON ENGINEERING NEWS

NOW! Dependable pressure monitoring of high vacuum systems during processing

The new Litton Ionization Gauge is a rugged and completely dependable production tool for monitoring pressures from 10^{-4} to $10^{-7} \mathrm{~mm} \mathrm{Hg}$. The instrument is a Philips-type gauge*, specifically engineered for constant production monitoring of high vacuum pressures. It eliminates annoyance and costs of burned-out gauges, activation of poisoned cathodes, heating of grids, etc. Even in steady, day-after-day use, it requires no attention other than a chemical cleaning about twice a year.

Cold Cathode Emitter

The Type L-3032 gauge was developed within Litton Engineering Laboratories to facilitate our own manufacturing of vacuum tubes. It utilizes crossed electric and magnetic fields which enhance collision probability in a small volume so that a cold cathode emitter can be used. Thus operation, even at atmospheric pressure, will not damage the tube. (In normal use, the tube is not operated until black-out of the vacuum system is reached. Good relative pressure readings are available throughout the range of 10^{-4} to 10^{-7} mm Hg .) Type L-3032 tubes have been tested during the past two years on Litton vacuum tube production lines. They are now installed on every exhaust station in our plant.

Monel-Encased

The Ion Gauge Tube is composed of a monel-encased interaction space with the case near ground potential. A nichrome wire anode at 2,500 volts is centered within the case. An outgassing 6.3 volt heater is mounted near the

Type L-3032 Ionization Gauge (above) with adapter for glass systems monel case, but insulated from it. A $3 / 4^{\prime \prime}$ diameter kovar tube, insulated from the monel case by a glass seal, is supplied for connection to the vacuum line. The magnetic field is provided by permanent magnets mounted in a sheet steel shell. This shell also serves as a
return magnetic path, connection block, package envelope and oven for the outgassing heater. Electrical connections are made to binding posts on the steel case. The tube weighs but 22 oz . and measures $7^{\prime \prime} \times 5^{\prime \prime} \times 31 / 2 " . \$ 60.00$.

Model 4301

Ionization Gauge Amplifier

This amplifier is a companion instrument for Type L-3032 Ionization Gauge Tube. It includes a range switch for measuring from 10^{-4} to $10^{-8} \mathrm{~mm} \mathrm{Hg}$., a special leak-check control providing full scale deflection at any pressure, a zero adjustment control, and a gauge heater supply switch.

Model 4301 Amplifier
It consists of a high voltage rf power supply, a vacuum tube voltmeter circuit with current-sampling resistors, a 6.3 -volt transformer (to provide current for the outgassing heater in Type L-3032 Ionization Gauge Tube) and a selfregulating low voltage power supply providing wide input voltage variation without affecting performance. Electrical connection is by cable with banana plugs to Type L-3032 Ion Gauge. Power supply requirements are 110 volts, 60 cps. The instrument measures $10^{\prime \prime} \times 8^{\prime \prime}$ x $8^{\prime \prime}$. Weight is $171 / 2$ lbs. $\$ 255.00$.

No Room for Industrial Complacency

Do you believe that American industry is equipped with remarkably up-to-date and efficient machinery? If you do, you are mistaken. The fact is that a large share of American industry's equipment is ancient, of obsolete design and incapable of attaining the efficiency that is made possible by modern production techniques.

This fact is documented by the Seventh Inventory of Metalworking Equipment, just completed by American Machinist, a McGraw-Hill publication. In brief, American Machinist shows that:

1. More than half (56%) of American industry's most basic production equip-ment-machine tools and metal-forming units - is overage, and much of it is so old that it has very limited usefulness.
2. Since Korea, the situation has become dangerously worse.

Facts vs. Plausible Theory

These conclusions contradict the widely-held
impression that America's industrial equipment is in better physical shape than ever before. The prevalence of this impression is not surprising. We, as a nation, have spent about $\$ 125$ billion for new industrial plant and equipment since World War II. That is more than in any previous period in our history. During 1953, American industry invested $\$ 21$ billion in new plant and equipment, an all-time high. From this, it would be reasonable to infer that our industrial plant and equipment must be in fine condition.

But the facts do not support that inference with respect to the machine tools and other metalworking equipment that are so crucial to our economy in war and peace. Here are the key findings of the American Machinist Inventory:
(1) More than one million machine tools - out of a total of less than two million in the metalworking industries - are at least ten years old. Many of these, after day and night operation
during the war years and the recent rush to rearm, are actually much older production-wise than their age in years indicates. In most cases, these machines are unable to produce goods as efficiently as modern equipment can, thus needlessly increasing costs.
(2) Almost one out of five machine tools is more than twenty years old. Most of these machines are so outdated by modern standards that they have little more than scrap value. And an even larger portion of our metal-forming equipment (presses, brakes and shears, bending and straightening machines) has passed the 20 -year mark and is beyond normal retirement age.
(3) Two out of three machine tools are of designs predating World War II, though many of them have been built since the war. Thus, two-thirds of our machine tools fail to incorporate the many major postwar improvements in design and operating methods.
(4) Never before has outmoded highcost equipment been so widely diffused throughout American industry. In every one of fifteen major divisions of metalworking production, more than 45% of the machine tools are at least ten years old.
(5) Not since the depression days of the 1930's has the average age of machine tools risen so rapidly as it has in the past four years. Today, 55% are ten years old or older, compared with 43% just before Korea.

Quality vs. Quantity

Why has the condition of our metalworking equipment been steadily deteriorating since the end of World War II? Part of the explanation lies in the fact that, in the immediate postwar years, production of metalworking equipment lagged behind the production of industrial equipment generally. The larger part of the explanation, however, lies in the tremendous postwar expansion of the American economy. This expansion, which has more than doubled our total industrial capacity, has imposed requirements for metalworking machinery that have been met only by more extensive use of old and obsolete tools. In the critically important field of metalworking, the job of providing up-to-date tools is bigger than it ever has been.

There are those who argue that the time has come to cut back investment in new industrial plant and equipment and divert more of the national income into current consumption. They cite both the great increase in the nation's total industrial capacity since World War II and the fact that some industries now have more than ample producing capacity to meet their needs. But this type of calculation leaves out the efficiency of that producing capacity.

The AMERICAN MACHINIST Inventory makes it manifest that in the key field of metalworking we are alarmingly short of first-rate, low-cost producing capacity. If we fail to remedy this situation by speeding the replacement of obsolete tools, it will be at the peril of our prosperity, at the peril of a sustained increase in our standard of living and of our national security.

McGraw-Hill Publishing Company, Inc.

KARP METAL PRODUCTS co. featured in"Special Report tolnuustry" by AMERCCAN MACHINST MAGAZZINE

America's leading metalworking magazine, in its Special Report No. 350, describes and illustrates methods, facilities and skills which make Karp Metal Products Co. the leading fabricator of sheet metal cabinets, chassis, housings and enclosures for the electronics industry.

Here's what the editors of American Machinist said: "The important factor in the Karp plant is how a minimum of special tooling and a maximum of experience and personal initiative on the shop floor combine to produce special-purpose enclosures at reasonable cost."

The report highlights:

- Karp's vault of $\mathbf{3 0 0 0}$ stock dies-how it minimizes or eliminates total tooling costs in production of cabinets, chassis, housings and enclosures...

Karp's presses, press brakes and other equipment-and how they have been modified to maintain highest quality and keep production time and costs to a minimum...

- Karp's spot, gas, arc, and heliarc welding facilities-and how they are set up for economical, thoroughly dependable welding of ferrous and non-ferrous materials...

enclowires epllect the akilla within
FACILITIES FOR ENGINEERED SHEET METAL FABRICATIONS: in aluminum or steel • long run or short - spot, arc, gas or heliarc welding - any type finish
- Modern plant-3 city blocks long - U. S. Air Force Certified Welding Facilifies
- Thousands of dies available Air-conditioned spray room....complete
- Most modern of sheet metal baking facilities
- Complete sub-assembly facilities

Come
 Again

Radio-Electronic Men!

Just as you have been coming since 1945 to the IRE National Convention and Radio Engineering Show - coming by the thousands, 35,642 in ' 53 - so come again to see and hear all that is new in the engineering advances of your industry.

Fifty-four in '54!

- 243 scientific and engineering papers will be presented, skillfully grouped by related interests into 54 technical sessions. More than half these sessions are organized by IRE Professional Groups, thus making the IRE National a federation of 21 conferences in one. The whole provides a practical summary of radio-electronic progress.

Abstract

A 600 Exhibitors "spotlight the new!" - A mile and a half of exhibits line the avenues of this show, intriguingly named for the elements of radio - such as "Instruments," "Components," "Airborne," "Radar," "Transistor," "Audio," "Microwave," etc., filling the four acres of the great Kingsbridge Armory to capacity. An expanding radio industry shows why it is growing by proving how engineering research pays out in new products. The exhibits themselves are an education, condensed to one place - reviewed in four days.

Only the combined facilities of the Waldorf-Astoria Hotel, plus the three great halls in the Kingsbridge Armory, seating 906,720 , and 500 respectively, are able to keep pace with the increased technical papers pro-
vide space for 200 new firms to exhibit, as well as seat greater audiences at the high-interest sessions. In addition to the subways, free busses leave the Waldorf every ten minutes in which you may travel in the congenial company of fellow engineers, direct to Kingsbridge.

A Admission by registration only! Registration serves for the four day period. It is $\$ 1$. for IRE members, $\$ 3$. for non-members, covering sessions and exhibits. Social events priced separately.

you need absolute dependability ... you need ADLAKE Mercury Relays!

Because they're designed and built to meet the most exacting needs of industry...in jobs that conventional relays can do in an uncertain manner at best... adlake Mercury Relays have won a reputation for absolute dependability! And no wonder, because each adlake Relay offers:
Positive leak-proof sealing-assured by the use of properly selected metals and glass components with properly matched thermal expansion characteristics.
Liquid, mercury-to-mercury contacts - completely eliminate failures caused by low contact pressure, contact burning, pitting and sticking. And the inherent high surface tension of mercury imparts an ideal snap action to the contacts.
Arc-resisting ceramics-used to reduce any destructive effect caused by the arc.
Yes, as thousands of enthusiastic users in every branch of industry know, adLake means dependability every way! Write for your free copy of the adlake Relay catalog today. The Adams \& Westlake Company, 1171 N. Michigan, Elkhart, Indiana. In Canada, write PowerLite Devices, Limited, of Toronto.

EVERY ADLAKE RELAY IS TESTED -AND GUARANTEED -TO MEET SPECIFICATIONS!

me Adams \& Westlake comenur

Established 1857 - ELKHART, INDIANA - Chicago - New York Manufacturers of ADLAKE Hermetically Sealed Mercury Relays

These successful uses of

PHELPS DODGE BONDEZE

 magnet wire . . . Gerper
coILs

TRANSFORMERS

MOTORS

Random-wound, Layer or Paper-section for potentiometers, telephones, brakes and clutches, clocks and timers, hearing aids, instruments, speakers, relays, television, radio and other applications.

Paper-section, Random-wound, Oil-filled, Aircooled and High Voltage for distribution, current, X-ray, telcvision, radio and other applications.

Windings for shaded pole, series fields, instruments, induction and others.

First for Lasting Quality-from Mine to Market!

APPLICATIONS :

Redesigning? BONDEZE may provide one answer to your overall cost reduction program!

BONDEZE is Phelps Dodge magnet wire with a special thermo-plastic film applied over the insulation. It offers a quick, economical means of bonding wires together, turn to turn, through single application of heat or solvents.

BONDEZE offers unusual opportunities for redesign of windings and in many cases influences finished product design with overall savings to the user.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer.
*BONDEZE is a Phelps Dodge Trademark

CORPORATION

INCA MANUFACTURING DIVISION
FORT WAYNE, INDIANA

Have you a similar fastening problem?

File: Simmons LINK-LOCK

When the armed forces needed a positive, highstrength fastening device for instrument housings, transit cases, and storage boxes, Simmons developed LINK-LOCK. This brand-new device doesn't use springs, yet works with fingertip pressure through a unique mechanical arrangement: the vertical sliding latch is moved in and out of locking positron by a disc rotated with a wing nut. The fastener is immune to low temperatures, is easy to operate even with arctic mittens, furnishes up to 450 lb . pull-down pressure. Open or closed, it lies flat against the side of the case it fastens.

LINK-LOCK may be the answer to your fastening problem. If your design involves heavy fastening pressures, watertight sealing, high strength, resistance to impact, ask about link-Lock. Simmons can furnish it with special engagement-latch details, or for operation by bolt or screwhead instead of wing nut. Write for LINk-LOCK data sheet today. It gives complete details and dimensions. A Simmons engineer will be glad to work with you on your fastening problems.

SIMMONS FASTENER CORPORATION, 1750 No. Broadway, Albany 1, New York

News About Created-Metals

Thermistors Provide Vital Time Delay

Smoky starts, puff-back and flutter in oil burners were checked by using a Carboloy Thermistor in the burner's electrical control.
The Thermistor delays the opening of a solenoid valve until the combustion chamber is ready to receive properly aerated oil. A mechanical timer is eliminated, and the cost of the unit reduced.
Thermistors are the most thermally sensitive resistor material known. Their resistance - unlike metals - changes negatively with tempcrature increases. They are ideal for temperature compensation, temperature detection, warning devices and controls. For more information, write: Carboloy Department of General Electric Company, 11139 E. 8 Mile Ave., Detroit 32, Michigan.

Hevimet Containers Stop "Hot Atoms"

Containers made of Carboloy Hevimet are making the job of handling and transporting radioactive materials easier and safer.
Because Hevimet is almost 50% heavier than lead, and provides 40% more gamma ray protection, these containers are smaller, less bulky . . . yet safer than lead.
Hevimet is an ideal material for all radioactive shielding. It is readily machinable, dimensionally stable and of high tensile strength For more information, write: Carboloy Department of General Electric Company, 11139 E. 8 Mile Ave., Detroit 32, Michigan.
 Control Torque Basic functions of permanent magnets

Change electrical energy to mechanical motion

Change mechanical motion to electrical energy

Generator action Magneto action
Eddy current braking Motor action
Instrument action

Change mechanical energy
to thermal energy
Control of torque
Snap action
Separation
Holding and lifting

G.E. jet tachometer generator had to be kept small and light. Engineers used permanent magnet's ability to change mechanical motion to electrical energy Magnets eliminated coils and wires; provided powerful energy.

Minneapolis - Honeywell Step Controller employs snap switch based on mechanical holding function of Carboloy Alnico permanent magnets. Magnets reduced weight, improved design, and increased performance

Rochester Liquid Level Gauge utilizes synchronous magnetic torque drive principle to operate pointer, keep gauge head pressuretight. Magnets eliminate stuffing box and shaft permit mounting gauge in any position without danger of leakage.

with Permanent Magnets

In hysteresis brakes, permanent magnets convert mechanical energy to thermal energy. Other inherent properties make permanent magnets ideal for many electrical and mechanical applications.

Carboloy Alnico permanent magnets, in hysteresis brakes, provide smooth, frictionless torque control. Tension and torque are adjustable and constant.
The hysteresis brake is only one of the ways permanent magnets can control torque. And permanent magnets can be used to convert electrical energy to mechanical motion . . . or mechanical motion to electrical energy, or for mechanical holding.
Permanent magnets offer many production savings. They can eliminate parts, reduce costs, simplify design, save weight
and improve performance. They retain their efficiency under varying conditions of temperature, shock, vibration. They resist the demagnetizing influence of stray magnetic fields . . . provide powerful, permanent energy sources. Available in all sizes and shapes, cast or sintered.

Perhaps Carboloy permanent magnets can improve your products or equipment. Specially trained engineers of the Carboloy Engineering Appraisal Service will work with you on permanent-magnet design and application. Send coupon, today, for free catalog or design manual.

Get Longer Die Life With This Core Material

Here's a coil of Armco Tran-Cor Di-MaX, a hot-reduced electrical steel with a cold-rol'ed finish, that will give you flatter laminations and better die life. Besides,
THE COLD FINISHING MEANS:
Excellent stacking factor
THE HOT-ROLLED STRUCTURE GIVES YOU:
High permeability at all inductions
ARMCO PRACTICES BRING YOU:
Magnetic properties fully developed at the mill; lang butt-welded coils that eliminate end-of-sheet scap losses; No. 4 Insulation or CARLITE where extra interlamination resistance is required.
Armco Tran-Cor Di-Max is available in cails in AISI Types M.19, -22, -27, -36 and -43. Let us show you what DI-MAX can do for you.
ARMCO STEEL CORPORATICN
1384 Curtis Street, Middletown, Ohio Export: The Armco International Corporation

Division of

MANUFACTURING COMPANY

 Brooklyn 4, N. Y.SERVES THESE GREAT JAMES

Admiral ANDREA

Sendix
AVIATION
componation

crosiey TOMOUT

Emerson

0
 FORD INSTRUMENT

hallicrafters
Hesnower Motorola NARCO Pilot

RADIO CORPORATION of AMERICA

SIGNAL CORPS U. S. ARMY

IN THEIR

REQUIREMENTS

BECAUSE OF THESE FEATURES

Approximately zero temperature coefficient (with quartz and invar construction).
Approximately ± 50 PPM per degree C. (with glass and INVAR construction).
One-piece spring loaded piston and screw prevent backlash.
Silver band fused to exterior of precision drawn quartz or glass tube serves as optimum stationary electrode.
"Q" as high as 7,000 at 1 mc .
Dielectric strength equals 1,000 volts DC at sea level pressure and 500 volts at 3.4 inches of mercury.
10,000 megohms insulation resistance minimum.
Operating temperatures -55 C . to +125 C . with glass dielectric. -55 C . to +200 C . with quartz dielectric.
Over 100 megohms moisture resistance after 24 hours exposure to 95% humidity of room temperature.
Piston dimensional accuracy is held to close tolerance maintaining minimum air gap between piston and cylinder wall.

NEW
 DEVELOPMENTS

- Capacitance ranges in miniature size units from $\mathbf{1 . 0}$ to $\mathbf{2 0 0 . 0} \mathbf{~ m m f}$.
- Dust-proof metal caps with ex. truded lead-in.
- Baked-in water repellent plating.

WITH THESE:

JFD piston type variable trimmer capacitor shown actual size (one inch).

(Silver plating throughout is available at slight extra cost on every model for better performance on UHF and microwave frequencies.) JFD Piston type variable trimmer capacitors.

Call cn JFD engineers for your piston capacitor requirements. Write for form 220 catalog of standard items available or send blueprints, specifications or details of application to Piston Capacitor Department, JFD Electronics Division, JFD Manufacturing Company, Inc., Brooklyn 19, New York.

the new CCIE oscilloscope (type 104) performs the functions of several types

By using interchangeable D.C. Amplifier and Time Base Units, one CAE Oscilloscope performs the operations of several different types of oscilloscopes resulting in a considerable saving in capital expenditure.
Highly functional, it is constructed on the unitized principle and its unique system of cuntrols makes it simple to operate with highly accurate results.

the Cde

Oscilloscope (TYPE 104)

INTERCHANGEABLE
AMPLIFIERS provide suitable combinations of-

- wide band, from D.C. up to $10 \mathrm{MC} / \mathrm{S}$
- rise time down to 0.05 micro-seconds
- voltage gain up to 500,000
- inherent noise as low as 1 micro-volt

INTERCHANGEABLE

TIME BASE UNITS provide suitable combinations of--

- sweep velocity $10 \mathrm{~cm} /$ micro-seconds to $5 \mathrm{~cm} /$ seconds
- triggered or continuous sweeps
- automatic synchronization
- linearity 1%
- voltage, frequency and time calibration accuracy 2%

Ask for Bulletin No. SIE-30101

For complete details of CAE Oscilloscope, Type 104, call or write the CAE office nearest you.

Lord Vibration Control
Mountings . . . The Most Effective Protection For Electronic Equipment

In the rapidly advancing field of electronics, the control of destructive vibration and isolation of damaging shock are prime factors in the consideration of design engineers. Lord, Headquarters for Vibration Control, is constantly working with electronics engineers to improve the methods for protecting sensitive mechanisms.

For instance, Varo Static Converters which change alternating to direct current for aircraft with less than 1% voltage ripple are protected against shock and yibration by Lord Mountings. High fidelity Audio frequency electronic equipment such as Collins Radio Company manufactures is protected from vibration and shock through the use of Lord Mountings. The 212A-1 Broadcast Station Speech Input Console by Collins requires 28 Lord square Plate Form Mountings to protect each amplifier stage individually. This prevents mechanical interaction between stages and lessens acoustical feed-back effects.

Again the Agnew Spark Plug Welder by Agnew Electric Company uses Lord Mountings to support the electronic weld timers to prolong the useful service life of Mercury Vapor Tubes.

Lord Mountings, which you see illustrated in the accompanying advertisement, are used in a wide diversity of applications to protect electronic equipment and sensitive instruments. Business machines and such sensitive mechanisms, the accuracy of which must be perfect, are improved in operation and protected from damaging vibration and shock by Lord Mountings.

The Lord Manufacturing Company, Erie, Pa., offers a vast reservoir of recorded experience in the solution of vibration and shock problems. Your request for help on your own problem is welcomed.

LOR D MOUNTINGS PROTETT Instruments and ELECTRONIC EQUIPMENT fram VIBRATION and SHOCK DAMAGE . . .

BUREANK, CALIFORNIA DALLAS, TEXAS PHILADELPHIA 7 PENNSYLVANIA DAYTCN 2, OHIO 233 Souti Third Street 313 Fidelity Union 725 Widene-Building 410 Wes. First Street Life Building
DETRJIT 2, MICHIGAN NEW YORK 16, NEW YORK CHICAGO 11, IL_INOIS CLEVELAVD 15, OHIO 311 Curtis Building 280 Madiscn Avenue 520 N , Michigan Ave. 811 Henaa Bldg.

LORD MANUFACTURING COMPANY - ERIE, PA.

Sensitive Controls

The important components for your thermal, light, vaccum or R.F. actuated control systems are now immediately available at RELAY SALES.

ASSEMBLY PRODUCTS

Contact Meter-Relays

A highly sensitive locking relay for control of chemical processes and mechanical operations through either alarm, automatic shut-off or continuous on and off control. Contact Meters automatically maintain upper and lower limits (or both) of temperature, voltage, current, speed, light or liquid flow rate with extreme accuracy. Applications include their use in electronic circuits for quality control of piezo crystals and other components, switching of standby equipment in micro-wave communications, control of carbon feed in arc furnaces, as warning of bearing temperatures in turbines and generators, and a variety of speed controls for machines.

Contact Meter-Relays are current or voltage sensitive down to $2 / 10$ microampere or $1 / 10$ milliwatt. Contact ratings from 100 mils to 1 ampere. They are available in a wide selection of standard types. Special types engineered to your needs. Phone, write or wire Relay Salles for additional information.

TERADO

Miniature Micro Relay A hermetically sealed sensitive relay, with particular application to airborne equipment, mounts in a standard 7-pin miniature tube socket. Its S.P.S.T. switch will operate on 60 milliwatts. Insulation: 500 Volts between any terminal and ground Temperature range: $+85^{\circ} \mathrm{C}$. to $-55^{\circ} \mathrm{C}$. Shock 50 G . Coil resistance, contact current and other specifications to your requirements. Send us your prints.

RS Phototubes
Phototubes, either gas filled or vacuum type, are available for all photo cell applications. RS Phototubes have superior operating characteristics in high output current, extreme sensitivity to small variations in light intensity, excellent response in infra-red regions, low dark current-all with notably longer tube life. Write for catalog.

Immediate Delivery of Relays of all Types

You will receive 24 hour shipment on any material in our Phone huge stock of practically any conceivable type of relay. SEeley contactor or motor control. Phone or wire your requirements. 8-4146

CETRON

Grid Controlled Rectifiers Due to the ever increasing demand for Grid Controlled Rectifiers, which are so closely allied to relay applications, ReLAY SALES has arranged for the distribution of these special purpose tubes made by America's oldest and foremost manufacturer.

Write for New 1954

 Relay Sales Catalag e-5JUST OUT:

"Put our Motor Experience to Work for You!"

"Here at Holtzer-Cabot, we have a superb team of motor specialists who can-and do-solve practically any motor problem that is given them.
"I've been connected with the motor business for nearly 30 years, yet every now and then our design and development engineers will come up with a motor innovation, adaptation or solution that makes me blink!
"Our sales representatives, too, are something to be proud of. They're men of long experience in motor application problems, they have a thorough knowledge of the business,
and give customers sound advice and help.
"If you have a problem in small-motor applications, take advantage of Holtzer-Cabot's organizational skill and depth of experience. The same engineering ingenuity and manufacturing excellence that have made Holtzer-Cabot the standard of high quality in motors and related electrical apparatus for 78 years are yours to command.
"Write, wire or phone. There is, of course, no obligation on your part by doing so. Your problem will get expert and prompt - attention."
 operating double-check. If you want transistors combining small size with high quality, they are now in production and available in five types from Texas Instruments Incorporated. Write for bulletins DL.S 310 (junction) and DL-S 312 (point-contact). Custom-built units also are available.

ELECTRICAL DATA:

n-p-n junction transistors
RATINGS; RECOMMENDED MAXIMUM: type 200 type 201 type 202
Collector Voltage
Collector Current
Collector Dissipation (at $25^{\circ} \mathrm{C}$)
Ambient Temperature

30	30	30	volts
5	5	5	ma.
50	50	50	mw.
$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	

AVERAGE CHARACTERSTICS (AT $25^{\circ} \mathrm{C}$.):

Coilector Voltage	5	5	5	volts
Emitter Current.	-1	-1	-1	
Collector Resistance (Minimum)	4	4	4	megohms
Base Resistance	150	170	200	ohms
Emitter Resistance	22	22	35	ohms
Current Amplification Factor* (Minimum)	9	19	49	
Collector Cutoff Current (Maximum)	10	10	10	
Collector Capacitance	15	17	19	$\mu \mu \mathrm{fd}$.
Noise Factor** $\left(\mathrm{V}_{C}=2.5 \mathrm{~V}, \mathrm{I}_{C}=-.5 \mathrm{ma}\right)$	26	23	20	db
Frequency Cutoff** ($\propto_{\text {co }}$)	90	110	1.30	m.

STATISTICAL DISTRIBUTION CURVES Based on 100 transistors of each type

$\alpha_{c o}$ - Alpha Cutoff frequency - megacycles

THESE miniature HERMETICALLY SEALED PRECISION RESISTORS won't fail you!

Submersion in boiling salt water, ice cold salt water; temperature or humidity cycling; sudden altitude changes; will not affect the performance of these resistors. They are specifically designed and engineered for the utmost in permanence and stability under severely adverse conditions.

RPC's miniature Hermetically Sealed Resistors are solder sealed, insuring a true, permanent seal. All parts are metal or steatite, eliminating shrinkage or deterioration. Not affected by time or unusual conditions. 100% vacuum tested under water.

Requirements of JAN-R-93 and proposed oddition to MIL-R93 A are fully met. Available in resistance tolerances to 0.1%.

RPC makes a complete line of precision wire wound resistors. Test equipment and standards are on a level matched by only the outstanding laboratories. Advanced methods of production enable RPC to fill large or small orders promptly and at moderate cost.

Write for complete catalog.

resistance productis co.
 714 RACE ST.
 haRRISBURG PENNA.

Are you Design Competitive...

Do your products feature Microdof advantages?

Write for full information on Microdot standard coax connectors, pressurized coax connectors, coax cable types including Mininoise ${ }^{\sqrt{ß}}$. . . assemblies and harnesses.

- the pioneer of micro-miniature components

MICRODOT DIVISION • FELTS CORPORATION
1826 Fremont Avenue, South Pasadena, California

New G-E subminiature metal-clad capacitor line features solid dielectric and silicone end seals

FOR OPERATION FROM -55 C TO +125 C WITHOUT DERATING

Solder right up to tre bushing with G-E Silicone end $s \in a l$ to danger of cracking glass.

[^10]

Designed specifically for electronic equipment, this new line of General Electric subminiature capacitors provides the utmost reliability under the most severe operating conditions combined with small size, no liquid leak age, and high insulation resistance. They will operate from -55 C to +125 C without derating and up to +150 C with proper derating.
These G-E subminiature metal-clad capacitors meet all test requirements of JAN-C-25 and the proposed MIL $\mathrm{C}-25 \mathrm{~A}$ and can be supplied in both tab and exposed foil designs.
Excellent electrical characteristics are assured by the use of Permafil solid dielectric. Capacitance varies only 1 percent over the temperature range from 0 C to +125 C and only 7 percent over the entire range from -55 C to +125 C .
Exceptional shock resistance provided by exclusive G-E silicone end seals. This seal meets the moisture resistance tests of JAN-C-25 with d-c potential applied.

Muf ratings of these new G-E subminiature capacitors range from .001 to 1.0 muf in voltage ratings of 100 , 200, 400 and 600 volts d-c working. They can be operated at full voltage up to altitudes of 50,000 feet.
Case sizes range from, 235 inches in diameter and $\frac{11}{16}$ in length to 1 inch diameter and $25 / 8$ inches in length.

Liquid-filled metal-clad line also available with G-E Pyranol* dielectric for operation from -55 C to +85 C without derating. These subminiature capacitors also incorporate the silicone end seal for maximum shock resistance and can be supplied in either tab or foil designs in ratings from .001 to 1.0 muf in voltages of $100,200,400$, and 600 volts $\mathrm{d}-\mathrm{c}$ working.

If your requirements demand the highest performance standards for subminiature capacitors, check with your nearest G-E Apparatus Sales Office for exact delivery information or write to General Electric Co., Section 442-8, Schenectady 5, N. Y.

A NEW TERMINATION

- RELAYS, SWITCHES, AND MULTI-CIRCUIT COMPONENTS

If you are concerned with the wiring of close spaced equipment, investigate the new AMP Solderless TAPER TAB RECEPTACLE for flat relay or switch tabs shown at right. It is self locking when installed on a male tab with matching $31 / 2^{\circ}$ taper, yet can be removed and reconnected any number of times without solder or special tools. These terminals are supplied on reels in continuous strip. Customer crimps them on wires using AMP automatic machines at speeds up to $\mathbf{4 , 0 0 0}$ per hour!

Performance of these miniature connectors meets exacting requirements for millivolt drop, corrosion resistance, and vibration. They are suited for critical low level circuits or power circuits up to several amperes.

Write to AMP Electronics Division for complete information concerning AMP TAPER TAB RECEPTACLES... you will receive data and samples by return mail.

PHOTO SHOWS AMP SELF LOCKING TAPER TAB RECEPTACLES BEING APPLIED TO MATING TABS ON A STEPPING SWITCH. LOCKING ACTION GIVES MAXIMUM ELECTRICAL AND MECHANICAL SECURITY . . CONNECTIONS ARE SUITABLE FOR CRITICAL LOW LEVEL CIRCUITS.
(C) AMP

AMP Trade-Mark Reg. U. S. Pat. Off.

AIRCRAFT-MARINE PRODUCTS, INC.

[^11]

When it comes to Specials

Electronic Transformer Co. is always on the ball!'"

Here at ETC we can start from scratch, assimilate your circuitry and follow through so that your special transformers are custom-designed and custom built to your exacting requirements.

That's what we've been doing intensively since 1938 for both government and industry.

Our staff of highly trained transformer engineers is at your service. Supporting these experts are our modern laboratory and plant geared for both pilot and production runs.

Let us prove that we are on the ball. We'll gladly make recommendations without obligation if you outline your problem to us.

ELECTRONIC TRANSFORMER COMPANY

Transformers, Reactors and Filters Engineered to your Needs

209 WEST 25 \&h STREET • NEW YORK 1, N. Y. Telephone: WAtkins 4-0880

for better performance

THE NEW RIBBON R2 BEARING

Our engineers are amazed at the improved performance of the New MICRO R2 bearing with two-piece ribbon retainer over the original R2 bearing with one-piece crown retainer.

The old R2 has been standard since before World War II. The streamlined running torque test trace shows complete elimination of sticking due to balls winding up or hanging up, causing wide variations.

Available also with flange and straight O.D. for simplified hous-
ings, easier mounting and solid straight O.D. for simplified hous-
ings, easier mounting and solid seating.
and ASSEMBLY NEW HAMPSHIRE CPGRY COU CIO BALL BEARINGS, INC.
MICRO CIRCLE - PETERBOROUGH, N. H. - TELEPHONE 424

Streamlining
of Running
For angular contact construc-
ion phenolic plastic retainers
For angular contact construc-
tion phenolic plastic retainers are used.
New MICRO
Ribbon R2
Each small
Division
Represents
$.095 \mathrm{gm} . \mathrm{cm}$.
You may specify maximum breakaway of 140 dyne-cm measured with 75 gram thrust load with no special testing. and as low as
100 by selection peratures.
 $1+1$

Torque

Test
Trace
of

 ?

Ask for Complete details on The New MICRO Ribbon R2 Bearing.

Plot Input vs. Angular Displacement . . . automatically...

with this Speedomax ${ }^{8}$ Polar Recorder

If you are measuring . . . or contemplate measuring . . . a signal or quantity as a function of angular displacement, it will pay you to investigate this new Speedomax Polar Recorder. Tedious point-by-point plotting is completely eliminated with the use of this instrument. You can use it to measure automatically antennae or sonar patterns, light distribution patterns, computer outputs, or any physical quantity that may be measured as a function of angular displacement.

Here's how it operates. Any change in the "r" signal causes the instrument recording pen to move, while any change in angular position causes the instrument chart to rotate.

The "r"function has a newly designed 5 inch pentravel with zero at the chart center. A fast balancing speed less than 2 seconds across a 5 inch radius enables the instrument to record deviations of input signal rapidly. Quantities such as millivolts, power level, light intensity -and many others - can be used as the "r" function.

The " θ " variable or angular rotation of the chart paper is accomplished by means of a syncro-
servo system consisting of a syncro-generator (external to the recorder), syncro control transformer, a-c amplifier and balancing motor. As the antemna, or other element, is rotated, its position is transmitted through this syncro-servo system to the balancing motor which rotates the chart in step with the antenna. Positional accuracy of the chart is better than three-fourths of a degree in relation to the syncro-generator. Maximum speed of chart rotation is 60 angular degrees per second.

Additional features include: chart table with illuminated center to help align the chart, an electrically energized pen lifter to facilitate setups, and 90 degree index lines on chart table with single index line on frame to align chart table.

For more facts on this versatile, time saving recorder, contact your nearest L\&N Sales Office or write to Leeds \& Northrup Co., 4979 Stenton Ave., Philadelphia 44, Pa.

for convenient point-to-point wiring...

MINIATURIZED 5 AND 10 WATT AXIAL LEAD WIRE-WOUND RESISTORS

Here are two truly miniaturized self-mounting wire-wound power resistors to simplify your TV and industrial electronic production where space is a factor. They're ideal for point-topoint wiring, terminal board mounting, and processed wiring boards, where they fit in admirably in dip-soldered subassemblies.

Axial lead Blue Jackets are rugged vitreous enamel power resistors built to withstand the severe humidity performance requirements of RETMA and MIL Specifications. They have been field-tested for a full year-successfully! As for economy, these newest members of the Sprague Blue Jacket family are low in cost . . .
eliminate need for extra hardware , . . save time and labor in mounting!
You can get these outstanding new Blue Jacket Resistors without delay in any quantity you require. Sprague Engineering Bulletin 111 gives full data on these and all other commercial Blue Jacket Resistors. Send for your copy.

SPRAGUE ELECTRIC COMPANY

35 Marshall Street, North Adams, Mass.

SPRAGUE TYPE NO. WATTAGE RATING	DIMENSIONS L (inches)	MAXIMUM RESISTANCE		
$27 E$	5	$11 / 8$	$5 / 6$	$17,500 \Omega$
$28 E$	10	$17 / 8$	$5 / 16$	$35,000 \Omega$

Standard Resistance Tolerance: $\pm 5 \%$
(2)

PIONEERS IN ELECTRIC AND ELECTRONIC DEVELOPMENT

You a target?

Let's face it... we're all targets!

If your plant is not ready with a disaster plan, better act now. There's not a single American plant that's out of range of an intercontinental bomber-and fires, floods, tornadoes or explosions can kill you just as dead as an atom bomb.

It costs next to nothing to take a few simple steps which may save hundreds of lives. Here they are. Check them off today.
\square Call your Iocal Civil Defense Director. He'll help you set up a plan for your offices and plant-a plan that's safer, because it's integrated with community Civil Defense action.
\square Check contents and locations of first-aid kits. Be sure they're adequate and up to date. Here,
again, your CD Director can help. He'll advise you on supplies needed for injuries due to blast, radiation, etc.
\square Encourage personnel to attend Red Cross FirstAid Training Courses. They may save your life.
\square Encourage your staff and your community to have their homes prepared. Run ads in your plant paper, in local newspapers, over TV and radio, on bulletin boards. Your CD Director can show you ads that you can sponsor locally. Set the standard of preparedness in your plant city. There's no better way of building prestige and good community relations-and no greater way of helping America.
Act now . . . check of these four simple points . . . lives are at stake . . . have you a right to delay?

GENERAL ELECTRIC

MOLONEYELECTRIC COMPANY

Manufacturers of Power Transformers - Distribution Transformers - Load Ratio Control Transformers - Step Voltage Regulators - Unit Substations

Wo Prouldy Present

A NEW ANALOG COMPUTER A NEW LOW IN PRICE
 A NEW HIGH IN QUALITY A NEW ADVANCE IN ACCURACY

$C_{\text {NTPS } 16: 3 / R}$

(OIIPITITR

Twenty Operational Amplifiers - Four Servo Multipliers - Removable Metal Patch Panel - Controlled Network Environment - Six Diode Limiters - Two Function Relays - Thirty Two Attenuators Electronically Regulated Power Supplies - Provisions for Future Expansion

With this highly reliable computer, which is efficient and easy to operate, you can obtain accurate answers to your complex engineering problems quickly and conveniently. Requests for detailed information will receive promp: attention.

WRITE DEPT. - E

the man in the ELECTRONIC SUIT

He's the man we have in mind when we design an instrument - the man who will use it ... the engineer, the laboratory technician, the serviceman. Whether he is in radio, television, nucleonics or in government and defense departments, he appreciates "inside out" design...good functional design. Instruments designed around the needs and purposes of the engineer who will use them.

As a result of this forward looking policy, RCP equipment works so smoothly, you are hardly conscious of it. Takes little space. Costs less. Does so much more.

RCP quality has been a "buy-word" for over 25 years. This quality is now also at work for the armed services producing miniature portable multi-testers, meghommeters for printed circuit and cable insulation test, audio level indicators, precise frequency meters, sensitive high frequency vacuum tube voltmeters, signal generators, etc.

Every man in an Electronic Suit can depend upon . . .

famous the world over tor test equipment designed tor - RADIO . . TELEVISION . . INDUSTRY . . DEFENSE

RADIO CITY PRODUCTS COMPANY, INC.

Expect more...

Get more from MALLORY

Choose Your Carbon Controls from this Complete Mallory Line

You can select Mallory Carhon Controls in any construction you may require. This complete line includes single, dual concentrix and dual tamem types, with or withont switch, in values from 200 ohans to 10 megolims.

Electrically, these controls assure you of the highest performance. 'They have a mique carbon clement, with exceptionally high density and surface smoothness. It has set new standards of low noise level, minimum resistance drift and lone life.

Mechanically, Mallory Controls are built to withstand vibration, and production lime handing. . through such features as welled construction, firmly clinehod terminals, and sturdier fastenings. Switches have long-lasting silver contactors and heavy gange terminals.

Mallory resistor engineers will weleome the opportunity of analyzing your specific circnits to see how engincered selection of resistors can help reduce your manulacturing costs. We will be glad to send you the complete new catalog on Mallory Fiaed and Variable Resistors... including both cartoon and wire-wound types.

FOR SPECIAL REQUIREMENTS

Get in touch with Mallow any time von need carbon controls with special tapers, nonstandard resistance values, insulated shafis or bushingless momtings.
Our flexible mamfacturing facilities euable us to produce, at economical cost, sperial controls which can solve your inlividual design or manulacturing probleus.

Parts distributors in all major cities stock Mallory standard components for your convenience.

Serving Industry with These Products:

Electromechanical-Resistors - Switches - Television Tuners - Vibrators
Electrochemical-Capacitors - Rectifiers - Mercury Batteries
Metallurgical-Contacts - Special Metals and Ceramics - Welding Materials

W. W. MacDONALD, Editor

FEBRUARY •

- 1954

\section*{| CROSS | |
| :---: | :---: |
| | TALK |}

- COLOR . . . Now that the FCC has established compatible color television standards two forces in temporary opposition will dictate the sales timetable. The consumer will want large color pictures at a low price. The industry will initially find it difficult to meet either of these requirements.

In the early stages color sets providing small pictures at a relatively high price will sell to people with money and those who somehow manage to be first in their neighborhood with something new. Monochrome sets will continue to be responsible for most of the volume, particularly in areas having new uhf stations, with still larger picture sizes or lower prices or both tipping the scale in their favor.

The sales crossover point between monochrome and color will not be reached in a rush. The transition will take several years to accomplish, and in this period there will be many market adjustments. We believe that overall television business will continue at a high level while these adjustments are being made.

- EDUCATIONAL TV . . . The idea that there should be special television stations to spread supplementary educational programs is neither dormant nor dead. Two groups in particular, the Joint Committee on Educational Tele-
vision and the National Citizens Committee, are dispensing good advice to prospective operators.

Experience in programming can perhaps best be gained by initially using the facilities of existing commercial stations. It is becoming apparent, for example, that television may be particularly useful for pre-school teaching. Use during school hours may be of secondary importance. Afterschool tutoring appears to have possibilities. Adult education should not be discounted.

Financing the purchase of a station continues to be the chief stumbling block. It is suggested that a college might hurdle it by making provision for the expense in its regular budget (much as is done when, say, a new laboratory is planned), by soliciting public subscriptions or by enlisting the aid of an established foundation.

INSTRUMENTS . . . No part of our business has grown faster, since the war, than the instrument division. The capacity to design and produce laboratory, test and service instruments has, in fact, been so expanded that additional markets are needed.

In all probability the key to further expansion of the instrument business is greater concentration on the design of devices that can become part of production machinery or production
processes. This part of the market is farthest from saturation. And manufacturers of many kinds are currently preoccupied with the development of more automatic equipment. They are looking for help.
-SOMETHING NEW . . . Jim Lamb of Remington-Rand tells the story about a young engineer who was assigned the task of developing a more efficient relay. While experimenting with powderedmetal cores he noted an interesting phenomenon and became so enthused that he wrote a detailed report and submitted it to his supervisor.
"Joe," said the old timer seriously after studying the report, "let me offer my congratulations. You have invented the coherer."

- INDEXES . . . Batelle Institute's Clyde Williams says some authorities believe that as much as 25 percent of the time required to complete a research project may be needed to find, correlate and assimilate past knowledge.
This reminds us to remind you that Electronics publishes an annual index of its editorial material in each December issue, and that in our Buyers Guide issues published in mid-June of 1951 and 1952 we published in two bites a cumulative index covering our first 20 years in business (1930-1950).

Single-Transistor

Actual-size photograph of assembled transmitter is shown at left and transmitter and battery with case removed (right)

Nine noncritical components, including point-contact tramsistor, produce frequencymodulated sionals in commercial f-m broadcast band. Modulation is produced by alpha-cutoff frequency-shift technique analyzed in text. Can be used as wireless microphone unit in public address systems

EXTENSION of point-contact transistor operation to the vhf region has resulted both from device development and circuit investigation.

The c-w oscillator, being a selfcontained system that is suitable for accurate analysis, was chosen as a tool for studying the electrical characteristics of the transistor at vhf frequencies. The concept of frequency modulation by alphacutoff frequency shift originated as a result of this $\mathrm{c}-\mathrm{w}$ oscillator circuit study.
The experimental single-transistor f-m transmitter to be described employs this principle to produce signals in the commercial $\mathrm{f}-\mathrm{m}$ band. The circuit is Fig. 1.
The oscillator operates at a frequency well above the alpha cutoff
frequency of the transistor. This is possible since transistors have potential gain at frequencies several times their alpha cutoff frequency.

The major problems present in the design of a vhf point-contact transistor $\mathrm{c}-\mathrm{w}$ oscillator operating in the frequency cutoff region are the result of the transistor internal base resistance and the phase shift associated with alpha cutoff.

In considering the solution to these problems, it is convenient to consider only those elements of the transmitter which are important at radio frequencies. These are shown in the equivalent r-f circuit of Fig. 2A. The parasitic inter-element capacitances of the transistor itself are shown in dashed lines.

Feedback arising from the tran-
sistor internal base resistance causes the cutoff frequency ${ }^{1}$ of the transistor as an amplifier to be lowered. This may result in a lowering of the maximum c-w oscillating frequency. This possibility is avoided by making the external emitter-to-base impedance at the oscillating frequency high compared to the emitter resistance by returning the emitter to r-f ground through a relatively high r-f resistance R_{1}.

Relaxation and blocking oscillations may occur. This is best understood from an examination of the effective circuit of the transmitter at radio frequencies well below the oscillating frequencr, as shown in Fig. 2B. The circuit can become a relaxation oscillator if the emitter-to-ground capacitance

F-M Transmitter

By D. E. THOMAS
Fell Telephone Laboratories
Murray Hill. New Jevey

FIG. 1-Complete circuit diagram of vht $\mathrm{f}-\mathrm{m}$ transmitter capable of being picked up at several hundred feet when modulated with crystal phonograph pickup
is sufficiently high. This possibility is also avoided by the use of the high r-f resistance R_{1} to return the emitter to r-f ground. All emit-ter-to-ground capacitance other than the parasitic capacitances of the transistor itself is thereby eliminated, and these capacitances are sufficiently low to avoid the relaxation mode being considered.

Oscillator Circuit

The oscillator circuit is simplified as a result of the phase shift in alpha at the oscillating frequency. Because of this phase shift, the only feedback coupling required in the circuit is the inherent emitter-to-collector capacitance of the transistor itself. This may be shown by an analysis of the equivalent circuit of the oscillator (Fig. 2C) at frequencies in the vicinity of the oscillating frequency. No impedance appears directly between the emitter and base since this circuit is effectively opened at r-f by the resistance R_{i}. A resistance R_{L} now
appears across the tank circuit to take care of tank-circuit losses and radiation resistance. The equations relating the voltages and currents of this circuit are

$$
\begin{align*}
i_{1}\left(r_{e}+r_{c}+\eta_{g}-r_{m}\right)-i_{o} r_{c} & =0 \\
i_{1}\left(r_{m}-r_{c}\right)+i_{2}\left(r_{c}+r_{b}+Z_{L}\right) & =0 \tag{1}
\end{align*}
$$

The feedback loop gain $\mu \beta$ is given by ${ }^{2}$

$$
\begin{align*}
& \mu \beta=\frac{\Delta_{0}-\Delta}{\Delta_{0}}= \\
& \frac{\alpha}{1+\frac{Z_{\theta}}{r_{0}+Z_{L}}+\frac{Z_{\theta}}{r_{\theta}}} \tag{2}
\end{align*}
$$

where Δ is the circuit determinant of Eq. 1, Δ_{0} is the circuit determinant when r_{m} is $0, r_{0} \ll Z_{g}+$ r_{c}, and α is substituted for r_{m} / r_{c}.

Although Eq. 2 is in convenient form for computing μ, β, an exactly equivalent expression which is more suitable for examining the phase of the feedback loop gain is given by

$$
\mu \beta=\frac{\alpha Z_{C L}}{Z_{0}}
$$

where $Z_{c L}$ is the impedance of the combination of elements shown in Fig. 2C. This is the effective load impedance of the transistor in parallel with the collector impedance τ_{c}. It closely approximates a moderately high-Q parallel-tuned circuit.

Oscillation Requirements

To maintain $c-w$ oscillations, it is necessary for $\alpha \beta$ to enclose the point (1,0) when plotted on polar coordinates. ${ }^{3}$ For this particular circuit, this criterion is met if the magnitude of $\mu \cdot \beta$ exceeds unity when its phase is zero. In addition to the requirement for oscillation there is also the practical requirement that the frequency of oscillation be near the frequency of maximum magnitude of $Z_{C L}$ if reasonably effective loading of the transistor is to be obtained.

At frequencies in the vicinity of maximum $Z_{C L}$ the phase of $Z_{C L}$ is small. Since the phase of Z_{0} is -90 degrees, the phase of alpha

[^12]

FIG. 2-High-frequency equivalent circuits of transistor oscillator
must be close to -90 degrees (Eq. 3) if the condition of zero phase for $\mu \beta$ required for oscillation is to be met.

If alpha were constant with frequency and therefore without phase shift, the circuit under consideration would not oscillate $c-w$ at the desired frequency. However, alpha is not constant but falls off in magnitude above a certain frequency in a manner similar to the impedance of a parallel R-C circuit. Accompanying this change in magnitude of alpha, there is a corresponding phase shift. It has been found that the following expression for alpha closely approximates its magnitude and phase as a function of frequency

$$
\begin{equation*}
\alpha=|\boldsymbol{\alpha}| \angle \theta=\frac{\boldsymbol{\alpha}_{o}}{1+j / / f_{c}} \tag{4}
\end{equation*}
$$

where α_{0} is the low-frequency magnitude of α, and f_{c} is the frequency at which the magnitude of α is down by 3 db from its low-frequency value.

The magnitude and phase of alpha computed from Eq. 4 for a cutoff frequency of 40 mc is plotted in Fig 3. Forty megacycles is the order of magnitude of the cutoff
frequency of the transistor used in the transmitter. In the vicinity of 105 mc (the desired oscillating frequency) the phase shift of alpha is approximately - 70 degrees. It is therefore apparent that the phase of μ, β will pass through zero if the phase of $Z_{C L}$ is approximately -20 degrees, at which point the magnitude of $Z_{o L}$ is still close to its maximum value.

The above discussion shows that the phase of the simple coupling circuit used is correct for $c-w$ oscillation. However, it is also required that the amplitude of $\mu \beta$ be in excess of unity when the phase is zero. To determine whether this requirement is satisfied it is convenient to compute $\mu \beta$ from Eq. 2 above. This was done for a range of frequencies in the vicinity of the desired oscillating frequency. Circuit constants not already given are $\alpha_{\circ}=2.4, f_{\circ}=40 \mathrm{mc}, r_{c}=5,000$, $R_{L}=10,000, r_{n}=100$ and $C_{\theta 0}=$ $1 \mu u f$.

The computed magnitude and phase of $\mu \beta$ are plotted on Fig. 4. In the vicinity of 105 mc , where the phase of μ, β passes through zero, it is seen that the magnitude of $\mu \beta$ is in excess of unity. Thus the circuit oscillates near this frequency.

Low Frequencies

The effective circuit of the transmitter at d-c and audio frequencies is shown in Fig. 5. The varistor V_{1} in the base circuit is a self-biasing element which makes possible efficient and d-c stable operation of the transistor with a single-battery power source. ${ }^{*}$ Resistor R_{2} provides a d-c path for the emitter current and is sufficiently high to avoid shunting the audio input.

Alpha cutoff frequency of the transistor is shifted by both emit-ter-current and collector-voltage changes. Since these changes are both proportional to the amplitude of the audio signal, the frequency of α cutoff is therefore also controlled by the audio signal amplitude. This shift in alpha-cutoff frequency produces frequency modulation of the oscillator.

Frequency Modulation

When the alpha-cutoff frequency is shifted, the entire phase charac-
teristic of alpha as shown on Fig. 3 is also shifted in frequency. As a result, the frequency at which the phase of $\mu \beta$ passes through zero, and consequently the oscillator frequency, is also shifted.

Figure 6 gives expanded curves of the magnitude and phase of $\mu \beta$ plotted for a very narrow frequency range in the vicinity of the oscillating frequency and for a number of values of alpha-cutoff frequency. The frequency of zero phase and therefore the frequency of oscillation is seen to shift with the alpha cutoff frequency. The amplitude of $\mu \beta$ at the zero-phase-shift frequency varies only $\pm 0.5 \mathrm{db}$ for a $\pm 75-\mathrm{kc}$ frequency deviation. Therefore, the frequency modulation will not be accompanied by appreciable

FIG. 3-Magnitude and phase of current amplification factor

FIG. 4-Magnitude and phase of $\mu \beta$ in oscillating frequency region
amplitude modulation. No precise measurement has been made of the magnitude of the amplitude modulation of the actual transmitter. It is, however, believed to be less than ten percent.

To determine the degree of linearity of the circuit, the departure from linearity of the frequency deviation due to change in alpha-cutoff frequency was computed. This departure is plotted as a function of frequency deviation in Fig. 7. This curve shows that for a deviation of 75 kc , which is the standard maximum for commercial f-m broadcasting, the actual frequency deviation departs only a half of one percent from that which would be obtained if the relationship between alpha-cutoff frequency and oscillation frequency were absolutely linear. To determine the linearity of the relationship between oscillation frequency and audio signal amplitude, the relationship between audio signal amplitude and alpha-cutoff frequency must be known.

Preliminary measurements indicate that the departure from linearity for emitter currents in excess of 0.5 ma is of the order of six percent and in the opposite direction to that caused by the lack of linearity between alpha-cutoff frequency and oscillation frequency. The net nonlinearity in the region above 0.5 ma emitter current would therefore be of the order of twice that permitted for commercial f-m broadcasts. To get increased modulation sensitivity the transmitter described in this paper is operated at emitter currents less than 0.5 ma , where the linearity is slightly poorer. It is, however, sufficiently linear to provide good transmission of high-fidelity recordings.

Working Model

The transmitter shown in the photographs has been demonstrated by modulating it with the audio signal from a crystal phonograph pickup matched to the audio input of the transmitter with a suitable transformer. The $f-m$ signal radiated from the transmitter is then received by a nearby standard commercial f-m receiver.

Since the output level of a crystal microphone is considerably lower

FIG. 5-Equivalent of oscillator circuit at d-c and audio frequencies

FIG. 6-Expanded section of Fig. 4 in vicinity of zero phase angle

FIG. 7--Departure of frequency deviation from linear with alpha-cutolf

FIG. 8-Audio amplifier added to circuit of Fig. 1 for crystal microphone
than that of a crystal phonograph pickup, some additional audio amplification is necessary for public address work. This is provided with a single-stage $n p n$ transistor amplifier as shown in Fig. 8. The npm amplifier shown has no provision for stabilization of the d-c operating point. It is not therefore recommended for other than experimental use.

The experimental systems described and illustrated are limited in power to that necessary for transmission over a few hundred feet. Furthermore, variable tank capacitance is provided to permit adjustment of carrier frequency to be clear of local $f-m$ stations.

The transmitter described has not been optimized electrically nor engineered mechanically. It was built only to demonstrate experimentally the vhf possibilities of point-contact transistors and the principle of frequency modulation by alpha-cutoff frequency shift. The carrier frequency range was chosen for convenience in using commercially available receivers for demonstration purposes. It does not represent the maximum frequency available with current developmental models of vhf pointcontact transistors.

The fact that the transmitter represents only an experimental design is not intended to indicate that it cannot be duplicated. Circuit element values are not critical. Approximately a dozen of these transmitters have been constructed. All worked with no adjustment other than that of tank-circuit frequency and the value of R_{3}. Twenty different transistors functioned in one of the transmitters with no circuit adjustment required to compensate for the variation in transistor parameters between units.

Acknowledgement

The transistor used in the transmitter was developed as part of an engineering services contract sponsored by the Joint Services. The oscillator circuit analysis which led to the frequency-modulation technique used in the transmitter was performed as part of the same contract: Contract DA-36-039sc-5589.

The author wishes to thank Miss J. D. Goeltz of the Bell Telephone Laboratories for computing the data used in this paper.

References

[^13]
Audio Equipment for

Portable dual-channel preamplifier-mixer and monitor amplifier supplement standard control-room console. Response is flat within 1 db from 30 to $20,000 \mathrm{cps}$; harmonic distortion is less than 0.6 percent and noise level is 110 db down

BROADCASTERS having both an $a-m$ and $f-m$ channel can easily provide their listeners with binaural or stereophonic sound rather than duplicated monaural reception. Station WQXR began its binaural broadcasting with demonstration programs during New York's 1952 Audio Fair. Listener interest and demand sustained a small but regular binaural transmission schedule. Now after one year, the entire live-music origination schedule of WQXR is broadcast binaurally

Binaura! Broadcasting

Binaural programs are originated by sampling the live-program source in the studio from two perspectives without degrading either channel monaurally. A balanced but completely separated transmission is maintained over each channel. The listener puts the two components together by using two receivers, an a-m set and an f-m set, thus adding depth and directivity to his radio listening.

By LOUIS J. KLEINKLAUS
Chief Engineer WQXR
New York, N. Y.

The advantage of this method of binaural broadcasting is that existing equipment is used, both in the broadcast station and in the listener's home.
However', equipment in radio-station control rooms such as at WQXR was designed for monaural programming. Although a great number of hookups are possible with existing jack bays, the use of a monaural equipment installation for binaural transmission presents several awkward arrangements. These generally require additional manpower.

To overcome these handicans, two portable units were constructed to complement equipment already installed in each control room. The first unit is a binaural preamplifiermixer that provides for single-control monitoring of each pair of bi-
naural microphones, with outputs fed to the existing control-room console. The control-room consoles already contain dual program channels complete with v-u meters. The second unit is a binaural monitor amplifier that takes the output of the console program channels at line level and feeds ten watts to each of two specially mounted binaural wall speakers. Figure 1 shows the binaural equipment setup.

Portable Units

Portability of the units enables a binaural equipment setup to be installed in any one of three control rooms from which live musical programs originate.

Studio designed selection need be based only upon considerations such as whether an audience attends, the esthetic needs of the performing artists in the selection of pianos or surroundings and the availability of studios.

The binaural preamplifier mixer shown in Fig. 2 is similar in design to the add-a-unit equipment fre-

FIG. 1-Typical binaural broadcasting setup showing use of preamplifier.mixer and monitor

FIG. 2-Preamplifier-mixer unit

Binaural Broadcasts

Microphone arrangement for a binaural broadcast. Announcer's microphones are at right near control-room window
quently used to increase the number. of microphone preamplifiers available to existing control-room consoles. The triode-connected 5879 provides a gain of approximately 14 db.

High-level mixing is accomplished with multisection carbon controls in which two mixing channels are ganged on a single shaft. Frequency response is within 1.0 db from 30 to $20,000 \mathrm{cps}$. Harmonic distortion is 0.6 percent or less over the frequency range of 30 to 20,000 cps. Noise level is approximately 110 db down at full gain.

The binaural monitor amplifier (Fig. 3) is provided with two $10,000-\mathrm{ohm}$ bridging inputs feeding a dual control.

Cascade triode stages using the two halves of a $12 A X 7$ feed a pair of miniature 6AQ5 beam-power amplifiers in push pull. Noise level is approximately 65 db down at 10 watts output.

Switching

A switch interlock system, operable from the control room, permits the engineer, on cue, to energize relays that line up the two channels

FIG. 3-Monitar amplifier furnishes 10 watts to each of two wall-mounted speakers
for proper transmitter-line disposal.
The engineer in the control room can check the functioning of the bi-naurail-monitoring result by manipulating the console-channel line keys in balancing the program. As the two wall-mounted speakers operating from the binaural monitor amplifier are invariably used for the complete binaural program, a check for quality can be made with the conventional control-room monitor speaker, which can be switched to either console channel at will.

Aural Directivity

Station WQXR's lìve musical originations center almost wholly on small musical or chamber groups. In each case, announcements are also transmitted binaurally. For correct directivity, every binaural broadcast has left-hand microphones feeding the f-m channel and right-hand microphones feeding $\mathrm{a}-\mathrm{m}$. Thus the listener can be certain of the placement of his receivers to hear the violins on the left where they belong.

Credit must go to H. F. Kuch and Z. N. Masoomian of the WQXR engineering staff for their work on this project, also to Fred J. Sass for the photograph.

Design Techniques for

Abstract

New circuit arrangements for reception of NTSC color television signals are discussed in detail and methods for optimizing their design are presented. Two actual designs typify ceiling-performance and economy receivers

CIRCUITRY required for reception of NTSC color transmissions includes the basic elements of the black-and-white tv receiver, plus those stages necessary to decode, synchronize and amplify the chrominance information. Additional circuitry is also required for convergence in the current type of tricolor picture tube.
Figure 1 shows a block diagram of the basic color receiver. The tuner and video i-f amplifier are of the conventional intercarrier type but considerably greater care must be taken in such design considerations as oscillator tuning range, bandpass, traps and sound takeoff.

Due to requirements of the chrominance signal, the pass band of the tuner and i-f system should be flat to about 4.0 mc . This is an increase of about 30 percent in i-f bandpass over present black-andwhite receivers and attendant decrease in gain per stage of the i-f amplifier.

It is therefore good practice to use at least four, and preferably five stages of i-f amplification in the color receiver instead of three, as is commonly used in medium and low-cost monochrome designs. A
variation of this approach is the use of a bandpass flat to about 3.6 mc , with compensating peaking obtained in the chrominance amplifier bandpass filter.

I-F Problems

Practical experience has shown that relatively small deviations from the ideal bandpass characteristic may produce noticeable picture degradation by introducing crosstalk between the quadrature components of the chrominance signal. This crosstalk is manifested as poor transient response in the color picture and is the result of improper utilization of the double-sideband chrominance transmission.

Another problem which necessitates special treatment relates to the 4.5 -mc intercarrier sound component. It is necessary to provide high rejection of the sound carrier at the video detector so that the $4.5-\mathrm{mc}$ component will not beat with the color carrier. Inadequate soundcarrier rejection produces a troublesome beat which may occur at the video detector or at the color demodulators. The possibility of this beat (920 kc) may be minimized by increased sound-carrier rejection in the video i-f stages. A $26-\mathrm{db}$ video-
sound carrier ratio at the video detector has been adequate in black-and-white receivers but a ratio of approximately 40 db or more appears necessary in color receivers. In order that the sensitivity and noise performance of the sound channel are not impaired with this increased rejection, a sound takeoff of the type shown in Fig. 2 is suggested.

These two requirements, relatively wide pass-band and high sound rejection, also limit the range of the fine tuning control. If the local oscillator frequency is varied over a range of about 200 kc , noticeable crosstalk, or considerable 920 kc sound-color carrier beat may result. Therefore it is desirable that the frequency range of the fine tuning be made as small as possible, consistent with long-term stability of the local oscillator.

Video System

The video system of the color receiver consists of monochrome video amplifiers, a chrominance bandpass amplifier, color demodulators and a matrix system that performs a function which is the inverse of that in the transmitter. Following the video detector, the

FIG. l-Stages of basic receiver, emphasizing sections handling color signals

FIG. 2-Suggested sound takeoff

Color Television Receivers

By MARVIN H. KRONENBERG

Senior Project Engineer

EDWARD S. WHITE

Chief Engineer
Advanced Ievelopmemt Dept
CBS-Columbia Division of Columbia Broadcasting System Long Island City, New Iork
monochrome and chrominance signals are divided into two separate channels. The chrominance signal is fed through a bandpass amplifier to the color demodulators. The outputs of the color demodulators are matrixed in adders with the correct amplitude of monochrome signal $E^{\prime}{ }_{z}$ to produce the primary color signals $E_{R}^{\prime}, E_{G}^{\prime}$ and $E^{\prime}{ }_{B}$.

To achieve correct color rendition, it is important that the relative gains of the chrominance and the monochrome channels be held constant regardless of video signal level. Since excellent linearity in the video system is required, it is considered good practice to design amplifier stages for at least 50 -percent greater gain capability than is indicated by picture-tube drive requirements.

There are several ways in which the video system may be arranged to convert the composite color video signal (after detection) to its three primary color components $E^{\prime}{ }_{k}, E^{\prime}{ }_{\sigma}$ and $E^{\prime}{ }_{b}$. These color signals are the same signals that appear at the output of the gamma amplifiers in the transmitter, except that in some receiver circuits they may be modified to take into account variation in efficiency of the red, green and blue phosphors of present-day tricolor tubes.

Two types of color video systems will be described. The first uses demodulators which operate on the I-Q axes. The matrix system following the I-Q demodulators performs necessary additions, subtractions and amplifications to produce the desired $E^{\prime}{ }_{R}, E^{\prime}{ }_{G}, E_{B}^{\prime}$ color signals. This is a "ceiling performance" receiver and utilizes the full potentialities of the system.

A discussion of an "economy" re-
ceiver will also be given. In this system, the color demodulators operate on the ($E_{R}^{\prime}-E_{Y}^{\prime}$) and $\left(E_{B}^{\prime}-E_{y}^{\prime}\right)$ axes of the chrominance signal. In this circuit, the monochrome signal is bypassed to the grids of the picture tube, and the color difference signals are applied to the cathodes. The kinescope performs the necessary addition to produce the required color signal voltages. The color bandwidth of this economy receiver is approximately 0.5 mc . Several simplifications in circuitry accrue from use of this circuit.

The $E_{I}^{\prime}-E_{Q}^{\prime}$ Video System

The block diagram of Fig. : shows a basic arrangement for a video system with I and Q color demodulators. The detected video signal contains both the monochrome and chrominance information, and may be described by:
$E_{M}=E_{Y}^{\prime}{ }_{Y}+\left[E^{\prime} Q_{Q} \sin \left(\omega t+33^{\circ}\right)+E_{r}^{\prime}\right.$ $\left.\cos \left(\omega^{\prime}+33^{\circ}\right)\right] \ldots$
For color-difference signal components below 0.5 mc , the video signal may also be described by:
$E_{M}=E_{Y}^{*}+\left[\frac{1}{2.03}\left(E_{B}^{\prime}-E_{Y}^{\prime}\right) \sin \omega t\right.$
$\left.+\frac{1}{1.14}\left(E^{\prime}{ }_{R}-E^{\prime}{ }_{Y}\right) \cos \omega t\right]$.
As shown in Fig. 3, this signal is amplified by a wide-band stage (video preamp) and then divided into separate channels, monochrome and chrominance. The monochrome channel is conventional up to the adder stages except that it contains a delay line. The $E^{\prime}{ }_{r}$ delay line is necessary so that the monochrome and chrominance components arrive in time coincidence at the adders.

To apply a suitable signal to the

FIG. 3--Video system for ceiling-performance receiver

FIG. 4-Arrangement of the I-Q color demodulators in the receiver

FIG. 5-Stages of the I-Q matrix

FIG. 6-The I-Q video system for a ceiling performance receiver contains several new types of tubes

FIG. 7-Excessive $E^{\prime}{ }_{y}$ gain (A) results in desalurated red vertical bar. Low $E^{\prime}{ }_{G}-E^{\prime}{ }_{y}$ gain (B) adds green component

I-Q demodulators, the composite signal is amplified and its bandwidth restricted by a bandpass filter in the output of the chrominance amplifier.

The required E^{\prime}, and E_{0}^{\prime} components are obtained by product demodulation. A typical demodulator circuit is shown in Fig. 4. The outputs of the demodulators are the results of the products of the signals applied to their control grids.

In its simplest form, the output of the Q demodulator may be expressed as follows:
$\left|E^{\prime}{ }_{Q} \sin \left(\omega t+33^{\circ}\right)+E^{\prime}{ }_{J} \cos \left(\omega t+33^{\circ}\right)\right|$ $\left[\sin \left(\omega l+33^{\circ}\right) \mid \times\right.$ Gain $=$

$$
\begin{align*}
& {\left[\frac{E^{\prime}}{2} 0-\frac{E^{\prime}}{2} \cos 2\left(\omega t+33^{\circ}\right)+\right.} \\
& \left.\frac{E^{\prime} t}{2} \sin 2\left(\omega t+33^{\circ}\right)\right] \times \text { Gain } \tag{2}
\end{align*}
$$

With suitable filtering in the plate circuit of the demodulator, only the first term, or the $E^{\prime}{ }_{\phi}$ component, will appear at the output of the Q demodulator. Similarly, application of a demodulating signal to the I demodulator will result in the E^{\prime}, component only appearing at the output of the I demodulator.

The I demodulator output circuit is designed for a pass band of about 1.5 mc . However, since color signal
components in the I band (0.5 mc to 1.5 mc) are essentially single-sideband transmissions as compared to the lower frequency double-sideband components, the I demodulator output should theoretically have a rising characteristic in this region. The Q demodulator load should be flat to about 0.5 mc . Figure 3 shows bandpass characteristics of the I and Q demodulators.

In designing the I and Q load circuits, consideration should be given to their relative. delays. If both pass-bands were flat it would be possible to equalize their relative delays with suitable filter design. However since it is desirable to design the I channel filter with a rising characteristic, this will alter the delay in the I channel in the 0.5 to $1.5-\mathrm{mc}$ region and so a compromise dictated by practical experience is required.

After extracting the E_{I}^{\prime} and $E^{\prime}{ }_{Q}$ color components from the composite video signal, the next step is to combine them in the proper proportions to form the three primary color-difference signals. The signal make-up, as produced by the transmitter matrix, may be described by the following equations:

$E^{\prime}{ }_{Y}=0.59 E^{\prime}{ }_{G}+0.30 E_{R}^{\prime}+0.11 E_{B}^{\prime} \quad$ (3)
$E_{I}^{\prime}=0.74\left(E^{\prime}{ }_{R}-E_{Y}^{\prime}\right)-0.27\left(E_{B}^{\prime}-E_{Y}^{\prime}\right)(4)$
$E^{\prime}{ }_{Q}=0.48\left(E_{R}^{\prime}-E_{Y}^{\prime}\right)+0.41\left(E_{B}^{\prime}-E_{Y}^{\prime}\right)$
From Eq. 4 and 5,
$\left(E_{B}^{\prime}-E_{Y}^{\prime}\right)=-1.11 E_{I}^{\prime}+1.71 E_{Q}^{\prime}$
$\left(E_{R}^{\prime}-E^{\prime}{ }_{Y}\right)=0.945 E^{\prime}{ }_{I}+0.624 E^{\prime}{ }_{Q}$
Rearranging Eq. 3,
$\left(E_{G}^{\prime}-E^{\prime}{ }_{r}\right)=$
$-0.186\left(E_{B}^{\prime}-E^{\prime}{ }_{Y}\right)-0.509\left(E^{\prime}{ }_{R}-E^{\prime}{ }_{Y}\right)$
Substituting Eq. 6 and 7 in 8 ,
$\left(E_{G}^{\prime}-E^{\prime}{ }^{\prime}\right)=$
$-0.275 E^{\prime}{ }_{l}-0.636 E_{Q}^{\prime}$
From Eq. 6, 7 and 9 the coefficients of $E^{\prime}{ }_{5}$ and $E^{\prime}{ }_{e}$ may be used to form a matrix that produces the desired color-difference signals as shown in Fig. 5. The color-difference signals are then added to the monochrome component to produce the desired color signals.

The significance of the asterisk shown in Fig. 5 is that it is necessary to design for proper ratio of $E^{\prime}{ }_{r}$ to color difference signals. The overall gain of the $E^{\prime}{ }_{r}$ channel with respect to the gain of the color-difference channels, including the I-Q demodulators, must be correct for proper color rendition. To facilitate the adjustment of chrominance and/or monochrome gain, as well as to provide some flexibility in re-
ceiver operation, it is customary to provide both overall contrast and chrominance gain controls.

A schematic of a complete I-Q video system is shown in Fig. 6.

When the relative gains of the color-difference channels are correct, only saturation variations will result as the chrominance is independertly varied. If however the relative color difference gains have not been properly adjusted, chrominance control variations will result in hue, as well as saturation, changes. Examples follow.

A saturated red bar transmission is received on (1) a receiver with correct color-difference gain adjustments but excessive luminance gain; and (2) with incorrect color difference gain adjustments. Waveforms at the kinescope are shown in Fig. 7.

In the first case, the addition of a white component results in desaturation of the received picture. The second case is that of insufficient gain in the green color-difference channel. The result is hue contamination of the red bar by the addition of a green component.

When properly designed, the action of the chrominance control is analogous to a tone control. This
emphasizes the necessity for proper matrixing as well as excellent linearity in the video system.

Economy System

An economy color video system which utilizes only that chrominance information characterized by double-sideband transmission may be used instead of the I-Q system. One feature of this arrangement is in the use of the picture tube to perform the function of the color adders. This method of adding the $E^{\prime}{ }_{\mathrm{r}}$ and the color-difference components to form $E^{\prime}{ }_{R}, E_{G}^{\prime}$ and E_{n}^{\prime} color signals is optional, but is used in conjunction with the economy receiver as it may result in reduced complexity. However, kinescope adding may also be used in conjunction with the I-Q system if desired.

Since the receiver color bandwidth is restricted in its video section to 0.5 mc , only double-sideband color components are utilized. From Eq. 1B, the relative gains required for the red and blue color-difference channels are obtained. The equation for the green color-difference signal in terms of the red and blue colordifference signals has already been developed as Eq. 8. Information is available to set up a suitable video
system in simple form.
Figures 8 and 9 show the economy video system. As compared to the I-Q system, there is a net reduction of two adder stages. Since the color demodulators have equal bandpass, there is no problem of equalizing their relative delays.
Further simplification of this type of video system might be affected by driving the kinescope cathodes directly from the colordifference demodulators and the green color-difference adder. This would result in the elimination of the three color-difference amplifiers. Until such time that suitable tubes are available, or tricolor kinescope gun sensitivities increased, it may be difficult to obtain sufficient drive with adequate linearity.
The action of the color demodulators in the economy receiver is the same as in the previously described system, except that the phasing of the locally derived demodulator signals are slightly different. Although the demodulator voltages are supplied in quadrature, as before, it is not necessary to shift them 33 degrees as in the I-Q system. This

FIG. 8-Video system for an economy color television receiver design

FIG. 9-The R.Y, B-Y matrix for economy color television receiver design
detail is of small consequence since it is a simple matter to control the phase of the demodulating voltages with respect to the reference burst by means of simple networks in the color sync section.

Color Balance

One of the problems encountered in designing and adjusting the color receiver is that of color balance. Although almost identical gun structures are used in present day three-gun picture tubes, phos-

FIG. 10-Equal signal drive for color balance in one type of operation
phor efficiencies differ. That is, for equal second-anode currents, the blue, green and red phosphors will supply light energies in the approximate ratio $1: 0.7: 0.3$, respectively. This means that the drive and supply voltage requirements of each gun must be altered accordingly so that the receiver will produce Illuminant C for monochrome signals regardless of video signal level.

A most exacting test of color balance may be made by use of a monochrome gamma-scale test pattern. With proper adjustment, the tricolor kinescope should produce only monochrome shades from black to white. Improper balance will be indicated by the predominance of some hue in the gray scale. Color unbalance will thus affect monochrome picture rendition and, if severe, will impair color fidelity. Pastel shades, such as flesh tones, are particularly affected.

It has been assumed that the desired output of the viden matrix is
$E^{\prime}{ }_{z}, E^{\prime}{ }_{g}$ and $E^{\prime}{ }_{B}$. If equal signal drives are to be used, it is necessary that suitable $e_{g 2}$ and $e_{\rho 1}$ supply voltages of the tricolor kinescope be selected to compensate for unequal phosphor efficiencies. An approximately correct color balance may be obtained by this method.

Color balance using equal signal drive may be achieved by selection of e_{91} and $e_{g 2}$ d-c supply voltages so that the red, green and blue gun currents (I_{B}, I_{σ} and I_{B}) will have a constant ratio (approximately 1:0.7: 0.3) from zero to maximum signal. To illustrate the method of setting up the tricolor kinescope, typical operating curves for balanced operation appear in Fig. 10.
The d -c supply values have been chosen so that $I_{B}: I_{a}: I_{s}$ are in correct ratio at approximately the center of grid signal swing. These ratios will not remain precisely constant over the entire range. However, good balance may be obtained with this method although the adjustments are rather critical.

A more precise method of obtaining color balance involves the use of unequal signal grid drives and approximately equal $e_{g 2}$ and $e_{0,}$ supply voltages. This method of setting up the tricolor kinescope is illustrated in Fig. 11.

Due to the curvature of the $I_{p}-E_{f}$ characteristic, the ratios of the drive voltages do not have to be as great as might be supposed from the relative phosphor efficiencies. For present tricolor kinescope designs, driving voltage ratios in the order of $1: 0.8: 0.7$ have been used. The color balance of the unequal drive method is theoretically not exact. However, experience has shown this method to be easier to adjust and somewhat superior to the equal drive system.

If the unequal drive system is to be used, it is necessary to alter the relative gains of the color adder stages in the I-Q system or the gains of the color amplifiers in the economy system. These adjustments are not critical since they may be compensated by variation of kinescope supply voltages.

D-C Restoration

The considerations for d-c restoration in the color receiver are the
same as in the black-and-white receiver except that three color signals must be handled. Referring to Fig. 8, the d-c restorers are connected between the picture-tube grids and cathodes. It is not sufficient to restore the monochrome information alone. If only the monochrome information is d-c restored, color saturation will be a function of picture content.

A problem peculiar to color receiver d-c restoration arises from the fact that the reference burst, which is transmitted 180 degrees out of phase with the blue colordifference vector, is demodulated in the chrominance channel as color information. Although the burst occurs during the horizontal blanking period and should not normally be visible on the kinescope, it may cause small differences in the developed d-c of the restorer tubes.

This effect is due to a slightly different waveform in the blue color-difference channel where recovered burst information consists of a pulse of slightly less width and approximately the same amplitude as the horizontal sync pulse which exists in the monochrome channel as shown in Fig. 12.

If the waveforms are applied to a peak rectifier, as in the conventional restorer circuit, the blue restorer will develop a somewhat higher d-c potential than the red and green restorers. Setting up of the blue restorer on burst will upset the color balance, particularly at low video levels. This difficulty may be eliminated by supplying a suitably delayed and shaped blanking pulse (derived from the horizontal deflection circuits) to the chrominance amplifier, thus preventing the burst from reaching the color demodulators.

Color Synchronization

Accurate and stable phasing of the locally generated demodulation signal is necessary to decode the color signal correctly. The reference phase information is transmitted as a burst of approximately 9 cycles duration of 3.58 mc . This burst is situated on the back porch of the horizontal sync signal and its phase in relation to the colordifference vectors shown in Fig. 13.

The phasing information in this burst may be utilized in a number of ways for purposes of color synchronization. First it is necessary to separate the burst from the composite video signal. This is done in a gated amplifier which is keyed on during the burst period by means of a pulse usually derived from the horizontal deflection circuit. It is necessary to delay the gating pulse and shape it so that it will occur precisely coincident with the color sync burst.

Although the gating pulse may be derived from other points of the receiver, such as the sync clipper, it is advantageous to use a horizontal deflection pulse since then the gating pulse has the same degree of impulse noise immunity as the horizontal afc. Care must be taken to design the horizontal afc circuit so that the gating pulse phase will not vary greatly over the horizontal hold control range.

Considerations in the design of color sync systems are basically the same as in any synchronization system. Prime considerations are noise performance, pull-in time, pull-in range, and static phase ac-

FIG. 11-Unequal signad drive takes advantage of tube curve

FIG. 12-Setting up of 'blue' dog restorer on recovered burst

FIG. 13-Relationship between $E^{\prime}{ }_{r}, E^{\prime}{ }_{0}$ and color difference signals
curacy. Unlike deflection sync problems where impulse noise is an important factor in determining performance limitations, due to the frequency spectrum involved (region of 3.58 mc) thermal noise becomes of primary importance.

The noise performance of a color sync circuit may be expressed in terms of the probable phase error introduced into the color sync system at specified signal to thermal noise ratios. In a properly designed color sync system it is theoretically possible to hold color sync accurately (within $\pm 5 \mathrm{deg}$) at signal to noise ratios so low that video information is no longer usable. In practical circuits, however, the considerations mentioned, as well as economic factors, necessitate compromises in design.

Perhaps the simplest form of
color sync circuit is the crystal filter, or ringing circuit. In this system, shown in Fig. 14, the gated burst is passed through a narrowband filter and lets through only the fundamental frequency component of the separated sync burst. Thus a c-w signal is generated which is amplified, phased and fed directly to the color demodulators. Noise immunity of this circuit depends upon the integrating effect of the filter. If the filter has a Q of about 500 , integration is relatively short, and phasing information is utilized on a line-to-line basis.

The system when operating with such relatively low Q's is analogous to an impulse sync system such as is commonly used in vertical deflection, and in the presence of thermal noise is subject to relatively high phase error. For adequate noise performance much higher integration times (lower noise band-

FIG. 14 -Basic elements of crystal filter color sync circuit
widths) are required. High Q's of the order of 10,000 to 20,000 provide excellent noise immunity but transmitter frequency, tuning of the filter and the constants of the crystal become extremely critical.

If the filter, considered as a single parallel resonant circuit, is driven from a constant current source (during the burst interval) the static phase error of the system is given by

$$
\begin{equation*}
\lambda \phi=\tan ^{-1} 2 Q \frac{\Delta f}{f} \tag{10}
\end{equation*}
$$

Since it is desirable to use Q's in the order of 10,000 to 20,000 to attain good noise performance, the limitation on design of this circuit is due to static phase errors resulting from drift or mistuning of the filter elements, plus tolerance errors in the transmitter subcarrier frequency. For example, with filter Q's in the order of 10,000 to 20,000 (attainable with good crystal filt-
ers) excellent noise performance may be obtained, but with questionable static phase reliability unless a crystal with an unusually low temperature versus frequency coefficient is chosen, or it is housed in a temperature-stabilizing oven. Lower filter Q permits a lower cost crystal filter but with considerable compromise in weak-signal performance.

Another serious limitation in weak-signal performance of passive circuits arises from the fact that noise introduces amplitude as well as phase variations in the color sync signal. A high degree of limiting is therefore required to prevent these amplitude variations from reaching the color demodulators.

A complete crystal filter color sync circuit is shown in Fig. 15.

Automatic Phase Control

At present, conventional automatic phase control circuits have been applied to color synchronization with satisfactory results. The basic apc circuit is shown in Fig. 16.

The action of the integrator is analogous to that of the crystal filter in that it averages the phasing information over a period of
time which is proportional to the reciprocal of its bandwidth. For equal degrees of noise immunity the ape integrator noise bandwidth is one-half that of the crystal filter circuit. For optimum performance under marginal signal to noise conditions, noise bandwidths of approximately 100 to 300 cps are desired.

There is considerable similarity between horizontal afc and color apc. In Fig. 16, the integrating network is charged by pulses, occurring at a line rate, whose amplitude is a function of the phase difference between local oscillator and burst.

The information fed to the integrating network is very much the same as in a horizontal afc system. Furthermore, the degree of required static phase accuracy is approximately the same in both systems. An error of ± 5 degrees is considered as the maximum allowable shift in color reference phase for negligible effect upon color fidelity.

The main difference between the systems is in the free-running stability of the controlled oscillator. In horizontal systems, it is practical to design oscillators so that their free-running frequency will

FlG. 15-Crystal filler and associated circuits for color sync

FIG. 16-Block diagram of automatic phase control circuit for color sync

FIG. 17-The automatic phase control color sync circait
remain within about 200 cps of the line frequency. This is a difficult requirement for an economical $3.58-\mathrm{mc}$ oscillator.

The significance of this requirement is that the required pull-in time be as small as possible, a condition which is easily obtained in horizontal afc circuits. Since the pull-in time is approximately proportional to $(\Delta F)^{2}$, it becomes quite significant where the color oscillators may have to be pulled in from a difference frequency of perhaps 2 kc .

In a particular optimum design for an ape system using an integration time of about $1 / 200$ second, approximately 2 seconds would be required for the system to stabilize from an initial signal-oscillator difference of 2 kc . Compromises in design, such as reduced integration (increased noise bandwidth) will reduce the required pull-in time. Use of a crystal-controlled oscillator, with free-running frequency stability of a few hundred cycles, simplifies the over-all problem.

A complete ape color sync circuit is shown in Fig. 17.

Interference

Due to the character of the most commonly encountered impulse noise interferences, very little of its energy is distributed within the color information bandpass. As a result, the chrominance circuits as well as the color apc system are relatively immune to the effect of impulse noise. The existence of an R-C time constant in the grid of
the chrominance bandpass amplifier or the derivation of the color sync gating pulse from a source ahead of horizontal afc could cause the color section of the receiver to be upset by impulse noise. However, with suitable design it will be found that thermal noise in the chrominance section as well as in color apc provides the limit for weak signal performance.

The effect that thermal noise may have on the color information (in addition to that which it has on the monochrome information) may be shown by tracing noise interference through the system. The noise spectrum is limited by a bandpass amplifier to approximately 2.3 mc (Fig. 3).

Random phase and amplitude fluctuations due to thermal noise are demodulated in the color demodulators and thereby converted to 0 to $0.5-\mathrm{mc}$ and 0 to $1.5-\mathrm{mc}$ spectrums. This results in the appearance of rather coarse-grained color snow which is added to the usual snow experienced in weak monochrome pictures encountered in weak-signal areas.

This additional color noise component may be eliminated when the color receiver is used to receive monochrome pictures by the addition of a circuit known as the color killer The function of this stage is to sense whether or not the burst is being transmitted and thus whether or not color information is being sent.

This information is converted to a bias component which cuts off the
chrominance bandpass amplifier when the burst is absent. Thus the chrominance channel may be rendered inoperative during reception of monochrome pictures.

Other forms of interference to which the color receiver is peculiarly susceptible include sinewave interference to the color carrier. A strong carrier in the vicinity of the color carrier may result in a beat developed by the color demodulators. This beat, in the order of a few hundred kc, will result in an interference pattern, which would not exist on an ordinary monochrome receiver under the same conditions. Fortunately, due to the constant-luminance feature of the system, the effects of such interferences (as well as thermal noise) have been minimized.

Radiation

Extensive tests have shown that the color receiver is also capable of causing interference particularly in the $3.58-\mathrm{mc}$ region and harmonics thereof. The receiver is capable, unless properly shielded, of radiating energy from its local $3.58-\mathrm{mc}$ oscillator and also radiating video color information. The demodulators may be particularly efficient harmonic generators. The magnitude of such radiations has been found to be somewhat greater than sweep radiation, but may be eliminated effectively by relatively simple shielding and design procedures.

Other design considerations relate to the tricolor tube, its deflection convergence, and power supply requirements. The supply for the picture tube must receive special consideration since present tubes require at least 18 to 20 kv (regulated) and at least three times the second anode current required of black and white kinescopes. Suitable fly-back components for this application have been designed.

Circuits and procedures for convergence have been treated elsewhere and are available. Particular attention must be directed toward elimination of $60-\mathrm{cps}$ hum components in the picture due to the asynchronous nature of the vertical deflection sync signal.

View of instantaneous multiplier with cover removed. Top section is power supply

FIG. 1-Block diagram of multiplier

Instantaneous Multiplier

Cascaded curvature-type balanced modulators perform multiplication of two voltage functions of time and give direct indication of product whether positive or negative. Standard i-f coupling transformers and other available components are used

INSTANTANEOUS multiplication of two voltage functions of time is accomplished by the instrument shown in the photographs. As indicated in the block diagram of Fig. 1, the output is proportional to the product of the two inputs whether positive or negative.

The voltage input functions may contain components from 0 to $\overline{5}, 000$ cps and the dynamic range of the output may be 50 to 1 . When maximum peak amplitudes of the input functions (approximately 2 volts peak to zero of any polarity) are
applied to both input channels concurrently the extraneous terms or errors in the output will have a combined peak amplitude less than 10 percent of the peak amplitude of true product terms.

Circuit Details

Referring to the complete circuit diagram, Fig. 2, a carrier voltage $E_{c} \cos \omega_{c} t$ is effectively applied in parallel to both sections of a balanced modulator through cathode follower V_{1}. The carrier voltage is supplied, as indicated, from crystal oscillator V_{s}. An additional
function of V_{1} is to furnish an essentially push-puil low-frequency input voltage function $f_{1}(t)$ to the balanced modulator when Input 1 consists of such a function. The input voltage function $f_{1}(t)$ is applied to one grid of the balanced modulator and also, through a voltage divider, to the grid of the cathode follower. The low-frequency voltage output of V_{1} is one-half the amplitude of the input voltage function. The low-frequency inputs applied between each balanced modulator grid and the V_{1} cathode are thus equal and of opposite polarity,

FIG. 2-Complete schematic of multiplier shows use of standard components

for Computers

By MARTIN MEHRON and WALTER OTTO
Aircraft Radiation Laboratory
Wright Air Development Center
Wright-Patterson Air Force Base. Ohio
since one such voltage is $f_{i}(t)$ $f_{1}(t) / 2$ while the other voltage, considering the cathode of V_{1} as the reference point, is $-f_{1}(t) / 2$.

If the low-frequency input voltage function $f_{1}(t)$ is of zero amplitude and if the characteristics of each section of the balanced modulator are identical, then the voltages at the carrier frequency measured from each balanced-modulator plate to ground will be of equal amplitude and like phase. Since a resonant filter consisting of coupled tuned circuits is connected between these two points and since no net
voltage exists across the filter, the filter's voltage output will be zero. Each half of the balanced modulator is operated as a nonlinear device.

When the low-frequency input function $f_{1}(t)$ has some value other than zero, a voltage will appear at the output of the resonant filter. This voltage having the form $K_{1} f_{1}(t) \cos \omega_{c} t$ is applied to the grid of the cathode follower in series with a part of Input 2, lowfrequency input function $f_{2}(t)$. The operation of the second balanced modulator V_{1} is essentially the same

Correlation computer. Top chassis is timer and integrator: second and third are instantaneous multipliers
as that of the first modulator.
The voltage output from the secondary of the resonant filters in the plate circuit of V_{4} is of the form $K f_{1}(t) f_{2}(t) \cos \omega_{c} t$ and is applied to cathode follower V_{s}. The output of V_{5} is amplified by V_{8} and applied as one input to a phase sensitive detector V_{7}. The other input to $V_{5}, A \cos \omega_{c} t$, is obtained from V_{s}.

Multiplying Process

The reference carrier, $A \cos \omega_{0} t$, obtained from the plate circuit of crystal oscillator V_{B} is larger than the peak value of the maximum signal input $K f_{1}(t) f_{2}(t) \cos \omega_{c} t$. Assuming that either $f_{1}(t)$ or $f_{2}(t)$ is zero, this reference carrier will produce zero-frequency voltage drops across the two diode load resistors R_{1} and R_{2} (See Fig. 3). These voltages will have opposing polarities as shown, and by adjusting R for balance the output voltage will be zero.

This is the method of subtracting out the direct voltage produced by the injected carrier. The voltage across R_{1} is a constant d-c voltage approximately equal to the peak value of the reference carrier, while the voltage across R_{2} is the result of rectifying the vector sum of the input signal and the reference carrier. The output voltage is equal to the voltage across R_{a} minus the voltage across R_{1}.

For example, if the d-c voltages produced by the reference carrier are equal to A and if $f_{1}(t)$ and $f_{2}(t)$ are d-c voltages then the signal input will consist of a carrier frequency voltage $B \cos \omega_{c} t$. If this signal voltage is in phase with

FIG. 3-Basic circuit of phase sensitive detector and output signal vectors
the reference voltage a d-c voltage whose magnitude is A plus B will appear across R_{z} while a voltage A will appear across R_{1}. The output will be a d-c voltage of a value B. Since the product of two d-c voltages is a d-e voltage, it can be seen that the correct form of output voltage has been obtained.

If either $f_{1}(t)$ or $f_{2}(t)$ is reversed in polarity, the polarity of the output voltage will likewise reverse. These vector relationships are shown in Fig. 3. Becaluse of

Preduct of sawtooth and different ampliludes of $500 \cdot \mathrm{cps}$ square wave
rector addition in the detector circuit the carrier-frequency voltage output of amplifier V_{G} must be either in phase or 180 degrees out of phase with the detector's reference carrier for the output to be linear with respect to the inputs. This necessary phase relationship is obtained by tuning the oscillator's resonant filters for optimum operation.

Adjustment

The potentiometers and variable capacitors in the balanced modulator cathode and plate circuits are for adjusting tube and circuit parameters to obtain proper operating conditions. These adjustments, while not critical are, unfortunately, interacting so that several adjustments and readjustments may be necessary. A typical alignment procedure is described in a later paragraph.

Crystal oscillator V_{s} functions essentially as a Pierce oscillator with independent outputs taken from both the grid and plate circuits. This arrangement permits the plate output to be shorted, as required in one step of the align-
ment procedure, without substantially affecting the grid output.

The frequency components of the input functions which the balanced modulator multiplier may accommodate without excessive distortion are primarily limited by ability of the various tuned filters to pass the sidebands which are produced. By employing a carrier frequency of 456 ke and by moderately damping the tuned filters, an overall bandpass of from zero frectuency to 5 kc may be achieved. Input functions

Lower waveform is square of complex waveform shown above
with all their frequency components within this range may be multiplied without excessive distortions caused by bandpass restrictions.

The tuned filter in the second balanced modulator plate circuit will, in general, require wider bandwidth than the tuned filter in the first balanced modulator, if an instantaneous product is desired. The following equations will clarify this need. If $f_{1}(t)=\cos \omega_{1} t$ and $f_{z}(t)=\cos \omega_{2} t$, the output of the first balanced modulator will contain two sidebands. since $\cos \omega_{1} t \times \cos$ ($\omega t \propto \cos \left(\omega_{0} \pm \omega_{1}\right) t$. The output of the second balanced modulator will contain four sidebands, since cos $\omega_{1} t \times \cos \omega_{2} t \times \cos \omega_{0} t \propto \cos$ $\left(\omega_{c} \pm \omega_{1} \pm \omega_{2}\right) t$. Thus the first balanced modulator tuned filter requires a bandwidth of 2ω, while the second tuned filter, and subsequent filters. require a bandwidth of $2\left(\omega_{1}+\omega_{2}\right)$.

If the product's $d-c$ component alone is of interest, somewhat different requirements are placed on the respective bandwidths of the two balanced modulator tuned filters. A d-c component exists in the
product only when à carrier-frequency component is produced at the output of the second balanced modulator. Such a component will exist only when $f_{1}(t)$ and $f_{2}(t)$ are of the same frequency or contain components of the same frequency. For example, if $f_{1}(t)=f_{2}(t)=\cos$ ωt the output of the first balanced modulator will contain two sidebands, since $\cos \omega t \times \cos \omega_{c} t \propto$ $\cos \left(\omega_{c} \pm \omega\right) t$. The corresponding output of the second balanced modulator will contain frequencies \cos $\omega_{e} t \times \cos \omega t \times \cos \omega t \propto \cos \omega_{c} t+$ $\cos \left(\omega_{c} \pm 2 \omega\right) t$. The required bandwidth of the first balanced modulator tuned filter is the same as in the previous case where an instantaneous product was desired. However, the bandwidth of the second balanced modulator tuned filter, and subsequent filters, need pass only the carrier-frequency component, when averaging multiplica-

Third line is product of first two. Fourth is product obtained by adding d-c to lowfrequency input and multiplying this sum by higher frequency input
tion alone is desired. Thus, such filters may be sharply tuned.

The present instantaneous multiplying device can obtain a product of two input functions whose frequency components may be as high as approximately 1 percent of the carrier frequency employed. By employing a much higher carrier frequency it should be possible to multiply input functions whose fre-

FIG. 4-Block diagram of circuit for obtaining autocorrelation of a function
quency components are in the order of several megacycles.

Alignment

The only instrument necessary to align the balanced modulator instantaneous multiplying device is a zero-center, vacuum-tube voltmeter; a 20,000 ohm-per-volt meter may be used but polarity reversing

Sine wave (first line) applled to both inputs gives squared waveform (second line). Fourth line is squared version of sawtooth shown in third line
will be required. Two 1.5 -volt batteries and a $0.01-\mu \mathrm{f}$ capacitor or larger are also required.

The vtvm is connected across the output of the multiplier while the capacitor is used to effectively short the plate output of crystal oscillator V_{8}. The batteries are connected to apply +1.5 volts to each multiplier input channel. The cathode and plate-balancing poten-
tiometers and capacitors are set at approximately the center of their adjustable ranges. The secondary windings of the tuned filters in the balanced modulators and both primary and secondary windings of the tuned filter in the amplifier's plate circuit are then adjusted for maximum voltage reading on the vtvm.

The +1.5 -volt battery input to the second balanced modulator is disconnected and the cathode-balance potentiometer of this stage is adjusted for minimum voltage reading on the vtvm. The platebalance potentiometer and the primary tuning of this stage are then recurrently adjusted for zero reading on the vtvm. The battery is reconnected and the vtvm reading noted. The polarity of the battery is then reversed and the meter reading is again noted. These two meter readings should be approximately equal. If a difference between these readings exists, the cathode-balance potentiometer of this stage is adjusted until the difference between the readings is approximately doubled. The battery is then disconnected and the platebalance potentiometer and capacitor adjusted for zero reading on the vtvm. The balance capacitor is a somewhat more convenient means for accomplishing an action similar to that of the balanced modulator's primary tuning. The battery is reconnected and the preceding checks and readjustments are made until there is no difference in the vtvm reading between a positive or negative 1.5 -volt input.

A battery is connected to the second balanced modulator stage, and the battery input to the first stage disconnected. Adjustments similar

Amplitude range of input functions over which true product is obtained
to those described in the preceding paragraph are then made on the first balanced modulator stage.

With both batteries disconnected, the $0.01-\mu \mathrm{f}$ shorting capacitor removed and the vtvm connected to the junction of the two $100-\mathrm{K}$ resistors in the phase-detector circuit, the primary and secondary tuning capacitors in the crystal oscillator plate circuit are adjusted for maximum reading on the vtvm. With the vtum again connected to the output of the multiplier, the phase detector's zero-set potentiometer is adjusted for zero reading on the vtvm.

With +1.5 volts connected to each input channel the tuning capacitors in the crystal oscillator plate circuit are now very slightly adjusted for maximum reading on the vtvm. Both a positive and a negative maximum may be obtained; the adjustments which provide the largest absolute maximum correspond to the desired operational settings. The voltage reading of the vtvm is noted and the polarity of one of the batteries reversed. The voltage reading of the vtvm should likewise reverse. Further slight readjustments in the tuning of the oscillator tuned circuits may be necessary to achieve equal and opposite vtvm voltage readings as the polarity of one of the batteries is reversed.

To obtain optimum operating conditions, the alignment procedure may be repeated using the preceding obtained control settings as initial adjustments.

Autocorrelation of sine wave. Stability of equipment is indicated by absence of discontinuity at point where machine was turned off for sixteen hours

The balanced-modulator instantaneous multiplying device may be employed as an element in an electronic computer. A typical example of such an application in a statistical computer is shown in Fig. 4, which indicates the interconnections required for obtaining the autocorrelation of a function.

The mathematical operation which a computer performs to obtain the autocorrelation of a function $f(t)$ may be expressed as

$$
\varphi(\tau)=\int_{0}{ }^{\tau} f(t) f(t+\tau) d t
$$

where $\varphi(\tau)$ is the autocorrelation function of $f(t), \tau$ is the time-delay parameter and T is a constant integrating time which is large compared to the period of the lowest frequency component of $f(t)$.

During any one integrating period T there is a fixed amount of delay. The multiplier forms the product $f(t) f(t+-)$ which, in general, consists of a d-c component and higher frequency components. If T is large compared to the period of the higher frequency components the integrator acts as an averaging or smoothing device.

For example, if the output of the multiplier is of the general form $E_{\mathrm{d}-\mathrm{c}}+A \sin \omega_{1} t+B \sin \omega_{2} t+\ldots$ the output of the integrator will be $\int_{0}{ }^{T}\left(E_{\mathrm{d}-\mathrm{e}}+A \sin \omega_{1}+B \sin \omega_{2} t\right.$ $+\ldots) d t \propto E_{\text {a-c }}$.

During any one integrating period T the pen recorder will follow a linear voltage whose final value at time T is one point of the autocorrelation function corresponding to $\tau=\tau_{1}$. At the end of the integrating period the inte-
grator timer dumps the integrator to zero output and a new value of delay $\tau=\tau_{2}$ is set in. This will result in a new final value (τ_{2}) for the pen recorder which is a second point of the autocorrelation function corresponding to $\tau=\tau_{2}$. After a sufficient number of delays have been set in, the final values on the pen recorder may be joined to form a curve which is the autocorrelation function of $f(t)$.

With signals whose frequency components are lower than may be accommodated by usual recording means, such as magnetic-tape recorder, the balanced-modulator multiplier may be employed to place the low-frequency information on a suitable audio-frequency carrier which is within the recorder's range. This modulation process may be accomplished by applying the low-frequency signal voltage functions $f(t)$ plus a d-c voltage E_{i-c} to one input of the multiplier and a suitable audio-frequency carrier voltage $E_{c} \sin \omega_{c} t$ to the other input. The output of the multiplier will be the audio-frequency carrier modulated by $f(t)$ since $E_{\text {out }}=K e_{1} e_{2}=K\left\lceil E_{\mathrm{d}-\mathrm{r}}+f_{1}\right.$ $(t)] E_{c} \sin \omega_{c} t$.

The preceding equation is the mathematical relation involved in amplitude modulation. By adjusting $E_{\mathrm{d}-\mathrm{c}}$, the index of modulation may be controlled. Normally, $E_{\text {d- }}$ is made large compared to the peak value of $f(t)$ and a diode detector is employed at the output of the recorder to recover the low-frequency time function.

Crucible Heat Control

Photoelectric pyrometer setup measures temperature of snall graphite crucible mounted between electrodes of electric furnace. Associated two-point electronic control holds temperature within 8 deg of $1,700 \mathrm{C}$ by shorting out resistors in d-c circuit of reactor

PRODUCTION of ignitors or starters for ignitrons involves placing the boron constituents and a graphite shank in a crucible for sintering at about $1,700 \mathrm{C}$. To maintain control of the quality and uniformity of the finished product, both temperature and time of the sintering operation must be controlled within close limits. This is accomplished with the automatic furnace control circuit shown in Fig. 1.

An optical system focuses radiant heat from the crucible onto the cathode of a gas phototube connected into the control-grid circuit of a $6 J 7$ pentode. A suppressedzero temperature-indicating milliammeter in the plate circuit of this tube is calibrated periodically with an optical pyrometer. Corrections are made by adjusting the phototube aperture disk and the range and sensitivity controls.

For sintering at $1,700 \mathrm{C}$, panel controls would be set so that thy-

By JOHN H. SIAU
Factory Engineer, Tube Department
General Electric Co.. Scheneciady. N.

Openator removes heated crucible with tongs after power has been shut off by 30 -sec fimer in control box of furnace
ratron V_{1} fires at $1,600 \mathrm{C}$ and pulls in its relay, thereby inserting $R_{\text {, }}$ in the d-c control circuit of the saturable reactor and decreasing power to the crucible. This decreases the rate of temperature rise, preventing overshooting. When the temperature reaches $1,708 \mathrm{C}$, thyratron V_{2} fires and pulls in its relay, inserting R_{2} and decreasing crucible power enough further so that the temperature starts dropping. When it drops to $1,692 \mathrm{C}, V$ blocks and its relay opens to short out R_{2}, increasing power and temperature. The temperature thus oscillates up and down about the control temperature.

A timer, started by an extra set of contacts on the relay of V_{1}, operates after 30 seconds and turns off the power. The equipment is then ready to begin another cycle as soon as a new crucible is placed between the electrodes.

FIG. 1-Complete circuit of stabilized photoelectric amplifier as used for two-point control of temperature in graphite crucible

FIG. 1-Construction of variocap components

FIG. 2-Single-stage dielectric amplitier circuits using nonlinear variocaps in tour ways

Building and Using Dielectric Amplifiers

Step-by-step instructions for constructing nonlinear barium-strontium-titanate capacitors giving power gain up to 10,000 per stage in dielectric amplifiers. Circuits include cascaded two-stage voltage amplifier and output stage capable of driving loudspeaker

Nonlinear barium-strontiumtitanate capacitors, designated variocaps for convenience showed early promise as dielectric amplifiers. Research involving various capacitor configurations and circuits confirmed this and showed stable operation to be entirely possible. Potential advantages over electron-tube amplifiers are compactness, sturdiness, freedom from microphonics and noise, low distortion, high power gain, wide frequency response, absence of heater supply and practically no heat production.

A variety of forms were considered and tried for fabrication of the small titanate capacitors. However, the final type is so superior to the others, in point of convenience and ease of production both for the smallest and larger sizes, that a detailed description of the process will be given.

Construction of Variocaps

The ($\mathrm{Ba}-\mathrm{Sr}$) TiO_{3} capacitors are available in the form of small sheets

[^14]by abraham silverstein

National Bureau of Standards Washington, D. C.*

up to 3×5 inches in surface area and from 5 to 20 mils thick. They will normally have a Curie point at room temperature. Unless bare ceramic is requested, the sheets are painted on both sides by the manufacturer with a special silver paint made of finely divided silver, plastic, thinner and constituents for a vitreous binder. After drying, the painted ceramic is fired at about $1,300 \mathrm{~F}$. The plastic binder is driven off, while the silver and glass constituents form a combination having nearly the conductivity of silver but vitreous enough to adhere firmly to the titanate ceramic. In this form, the silver electrode will take solder, but if the molten solder is kept in contact with the electrode for more than a few seconds the silver is likely to go into solution with the lead and tin, leaving the ceramic bare.

There is available a plastic-cored
solder consisting of lead and tin with about 4 percent of silver. The silver admixture appears to reduce the tendency to dissolve the electrode.

These are the raw materials. It remains to fabricate them into a useful form.

A round head $0-80$ brass screw is fitted to a tapped mandrel, secured with a lock nut as in Fig. 1A and turned down in a lathe so that the slot is removed from the head and a flat plane is left, with no burrs.
The screw is placed in a body-size hole in a piece of Bakelite, wood or other poor conductor of heat. Then, using a small pointed iron, the flat surface is tinned lightly, taking care not to solder the thread below.

A silvered sheet of ceramic capacitor is placed on a flat, slightly yielding surface such as a few sheets of paper on a table. Then, by pressure with a backed singleedge razor blade, the sheet is cut into strips and then into $2-\mathrm{mm}$ squares. A ceramic square is placed on the tinned screw top which has been swabbed with a

Top and botiom views of cascaded two-stage dielectric ampinier, with $6 A 0$ corrier-source oscillator at righ! end of chassis. Arrows point to the variocaps under the chassis. Extra input cad ouiput termanals and controls are provided here for expermertal purposes
solution of rosin in alcohol. Now, placing a dry soldering iron under the screw top, a flat poothpick is placed on the ceramic as in Fig. 1B. When the solder melts, the ceramic square is worked to and fio on the screwhead until the silver has been thoroughly wetted by the solder and the square slides with friction against the brass. The square is then brought to the center of the. screwhead and the iron is renored while messure is maintained on the ceramic. When cooled, the ceramic is fromly attached to the brass. A toothpick is used because a good conductor of heat would shatter the ceramic.

The sorew is again placed in the mandrel, secured with a locknut and the assembly is put into a lathe or fastened to a small motor shaft. (A drill press was used here.) Using a small flat file with smooth edoes. the thickness of the brass head is reduced from below by placing the smooth edge of the file against the screw thread and pressing lightly with the cutting edge against the under side of the screwhead but stopping before the
ceramic is reached. Then, with sandpaper (No. 2/0 at first) backed by a light slab of wood or plastic, the head and the capacitor itself are worn down at the sides by light strokes from the top dorn iowari the mandrel until a shape as in Fig. 1C is achieved.

If the finest grade of abrasive paper is used to finish the shaping, the brass and ceramic look pe!fectly polished under a mediumpower microscope. The brass-silverceramic junction shows no discontinuity and no evidence of the solder laver can be seen. This method of mounting appears to damp out all traces of piezoelectric resonances. The conduction of heat from the ceramic is better than through a soldered lead.

The essence of the technique is that light, yielding tools are apmied to the metal-ceramic junction. A rigid grinder would seize the soft brass and shatter the ceramic.

Using a vertical drill press, monnted capacitors have been turned down in about 4 minutes. Tho artua! soldering of silvered ceramic to brass takes ahout 5
seconds of working time.
In whf applications, the capacitor screvs are inserted in tapped posts of cerannic terminal strips. Contact to the upper electrode is made by spring tension from an adjacent post as in Fig. 1D. Arcing between the electrodes through air has been eliminated by putting a dab of vinyl carbazole plastic over the spring-screw junction.

Thin Capacitors

For use in the dielectric amplifier to be described, some extrasensitive capacitors 2.5 mils thick were made in sizes up to several thousand micromicrofarads. The ceramic was ground down from thicker stock in equipment used to geind quartz crystal wafers to frequency. The mean sensitivity was $\frac{1}{2}$ percent change in canacitance per volt. Special precautions were requiced in selecting and silvering the wafers, but the mounting procedure was much the same as for the thicker material excent that rounding of the finished unit was omitted. This was done because of the larger values of capacitance
required (over $2,000 \mu \mu \mathrm{f}$).
The basic variocap circuit, shown in Fig. 2A, involves using the variocap as part of a resonant tank circuit. Signal voltage applied to the variocap serves to shift the resonant frequency. The response of the tank circuit to a fixed-frequency carrier source then changes by a greater voltage than that of the signal.

Variocap Circuits

This circuit finds particular usefulness in applications where the source impedance is too large for high-Q series resonance and too low for parallel resonance. Capacitor C_{2} is generally kent considerably smaller than C. When detuned slightly from the resonant frequency of $L C$, the inductive impedance is opposed by the capacitive impedance of C_{1} and a voltage step-up is achieved across $L C$ at approximately the frequency of the $L C$ combination. The exact value of C_{1} is a compromise between voltage step-up required and degree of decoupling from source desired.

The next development was the circuit of Fig. 2B, in which a single variocap is modulated in a resonant circuit. The carrier source was a simple tickler-coil oscillator using a 6AQ5. The output was tunable between 1 and 3 mc and output voltage was variable between 5 and 150 volts. The $2.5-\mathrm{mil}$ variocap used had a mean sensitivity of $\frac{1}{2}$-percent change in capacitance per volt over the useful range. The corresponding frequency change in a resonant circuit was therefore about 4 -percent per volt. The coil and capacitor in combination had a Q of 50.

Calculation shows that for a carrier level of 1 volt at resonance, a voltage gain of about 0.1 may be expected if the circuit is detuned to the steepest part of the resonance curve. Doubling the carrier should double the voltage gain and such was actually the case when the carrier was kept less than about 15 volts rms for the 2.5 -mil variocaps. Beyond this value, the increase in carrier voltage yielded no increase in gain because the wide swings of carrier were running into the flatter nortions of the capacitance-vs-bias curve and be-
yond the bias voltage. Also, the loss tangent probably increased with amplitude, thereby lowering the Q .

While the exact voltage gain varied with the particular variocap used, the usual peak gain was only about 1.5 for the circuit of Fig. 2B. The circuit modification of Fig. 2C was therefore tried next. Here the carrier voltage is divided between two equal variocaps in series and the signal applied to the parallel combination. The applied carrier can now be increased to twice that of the first case. A doubling of voltage gain is achieved.

In Fig. 2D, four variocaps are again in series to the carrier voltage but in parallel for the signal voltage. The principle cannot be extended indefinitely since the loss in the chokes or resistors used to separate the carrier from the signal would limit the gain.

Considering the direct voltage amplification, it might appear that the gain per stage is very moderate unless at least four thin variocaps are placed in series. A calculation of the power gain, however, shows that whether a single variocap is used or several are stacked, the power gain is high. For a $2.7-\mathrm{mc}$ carrier frequency and a $100-\mathrm{cps}$ signal frequency the gain is over 10,000 . The power gain arises from the fact that the variocaps have a high impedance to the signal frequencies and a relatively low output impedance because of the much higher carrier frequency. For very low signal frequencies the power gain appears to increase without limit. Noise is very low, an advantange over the transistor.

Characteristics

A number of basic properties of the dielectric amplifier may be stated:
(1) The higher the carrier frequency for a given output impedance the greater the power gain, since the ratio of signal input impedance to r-f output impedance is increased. The input choke can be more efficient when the ratio of carrier to signal frequency is high.
(2) If the dielectric is subdivided into series elements for the carrier while the input signal is applied in
parallel, the voltage gain will increase but the power gain is not changed since the input admittance is correspondingly increased.
(3) Thinness of variocaps is not an aid to gain since by applying the larger permissible carrier voltage to thick capacitors, the same gain can be realized as with sensitive, thin capacitors. However, the smaller the total thickness of the resonant variocap, the lower the optimum carrier voltage and carrier power consumption.
(4) For a power-output stage where the desired voltage swing is larger, the total dielectric thickness should be larger so that a carrier about three times the output signal may be used. Several thin variocaps in series are superior to a single thicker variocap of equivalent capacitance, since the heat conduction from the dielectric is greater.

Cascaded Dielectric Amplifiet

After construction of the singlestage dielectric amplifier, the twostage voltage amplifier of Fig. 3A was built using the same principles. For experimental reasons the bias, C and L were made variable. The resonant inductances were slug. tuned solenoids having 85 turns of No. 30 enameled silk-covered wire on a $\frac{1}{2}$-inch ceramic coil form. This gave an inductance of between 0.030 and 0.045 mh with a Q of 150 at 5 mc with 30 y.uf, and 105 at 2 mc with 150 y.f. Maximum gain was achieved with about 60 volts bias and a carrier of 40 volts rms across variocaps.

When compactness with good gain is most important, it would be best to use fixed universal wound coils in polyiron shells. Then if variocaps and coils are closely matched, the stages may be aligned with small bias adjustments at little cost in gain.

When the oscillator impedance was increased by decreasing the tank capacitance, the amplifier broke into oscillation at about 20 kc , which is the resonant frequency of the $35-\mathrm{mh}$ chokes with the input capacitance of the second stage. This constituted a dielectric oscillator. Decreasing the oscillator impedance remedied the condition.

FIG. 3-Examples of dielectric voltage and power amplifier circuits using carrier sources. These circuit techniques are also adaptable to the small capacitance value used in vhf f-m oscillators. Mathematical derivations and further details are given in the original NBS reports by the author, 13.4-74R and 13.4-102R, available from the NBS Technical Reports Section

A dielectric power-output stage capable of driving a loudspeaker was constructed next. The circuits of Fig. 2 are not adapted to driving a loudspeaker because the output energy is dissipated in heating the load resistor. If a high-inductance transformer with resistive load were substituted for the resistor, the load would be determined by the resistor for audio frequencies, but for very low frequencies and direct current the transformer would be a short. Unlike vacuumtube stages, this is not permissible in the dielectric amplifier since the energy lost in d-c flow would destroy the Q and hence the amplification of the stage. This condition can be avoided by using the R-C limiter for direct current, as shown in Fig. 3B.
Calculation shows an interesting property. If $L / C=r^{2}$ and $r=R$, then the combination will be indistinguishable at all frequencies from a resistor of value r, at least ideally. These proportions are attainable with $L=10$ henrys, $C=$ $0.1 \mu \mathrm{f}$ and $r=10,000$ ohms. In practice r may be increased up to the point where peak clipping begins, in order to limit d-c flow as much as possible.

These ideas were incorporated in the power stage of Fig. 3C, which has four thin variocaps stacked in series for better heat dissipation.

The optimum loading of a dielectric amplifier stage differs from most sources because the load drops not only the r-f output voltage but also the degree of modulation since this is dependent on Q. Calculation
shows the optimum load resistance to be three times that of the source.

Feedback

Positive feedback may be achieved in a single stage of dielectric amplifier using only R-C components. With increase in β, the portion of output voltage fed back, there will be an increase in gain, at least for the peak frequency. When the feedback voltage equals the input the amplifier will oscillate at the peak frequency. However, because of the low voltage gain, feedback is more conveniently achieved with a transformer.

Negative feedback can be applied to any degree without oscillation, providing cumulative phase shifts do not reverse the phase of the output signal.

It would be an advantage if the dielectric amplifier had positive feedback for signal frequencies and negative feedback for very low frequencies and direct potentials. Figure 3D illustrates a circuit in which a transformer winding gives limited positive feedback in series with the signal input, while the entire voltage across the d-c limiter is used to provide negative feedback for counteracting drift.

Phase Considerations

The output phase of a dielectric amplifier stage is determined by three factors: (1) Whether the carrier is above or below resonance of the tank circuit; (2) The polarity of the rectifier used to detect the carrier modulation; (3) The polarity of the bias voltage on
the variocaps. It follows that β will be reversed by a reversal of any of these factors.

The oscillations encountered in the circuit of Fig. 3A illustrate a different kind of feedback, in that no signal frequency component is fed back. If the first and second stages are tuned to opposite sides of resonance (the diode polarity is immaterial), positive feedback results across the common r-f impedance in the carrier source. A rise in carrier current due to a signal in the second stage will reinforce a corresponding drop in the output of the first. The degenerative rise in carrier voltage due to the drop in the first stage will not be so large as the first effect because of the lower amplitude.

A small capacitor may be placed in series with the oscillator output to increase the impedance.

The titanate dielectric used in all the amplifier work was Gulton No. $87-12$, a ($\mathrm{Ba}-\mathrm{Sr}$) TiO_{3} ceramic having a broad Curie point at room temperature. With no attempt at temperature stabilization, the amplifiers run for hours without requiring retuning.

A leveling of temperature response could be achieved by placing in parallel two variocaps, one with a Curie point above and the other below the intended temperature. Such a plan might be sufficient for some applications. Where larger variations are expected, an operating temperature could be chosen above the highest ambient temperature expected, and maintained with a heater-thermostat arrangement.

Magnetic Recording for

Tape transport mechanism and associated units mounted in truck. Voice channel is provided for commentary on changing road amal test conditions, so that any section of resulting tape recording can be readily identified

Six crystal-pickup or bridge-type accelerometer channels plus voice and timing channels are recorded simultaneously on half-inch magnetic tape during performance tests of military vehicles on rough terrain. Use of f-m carrier recording system for data and ruggedized low-flutter tape transport make equipment immune to road shock

Mechanical research and test work on the behavior of vehicles and of the electronic equipment installed in such vehicles during road tests can be greatly simplified, facilitated and economized by the use of suitable recording equipment. Such equipment should record the signals picked up by mechanical-electrical transducers, should be undisturbed by external shock and vibration and should be
capable of faithfully reproducing the stored information many times.

Magnetic recording seems suitable for such applications. However, conventional audio recorders have several deficiencies for recording of stress, strain, shock and vibration. Few will record signals at a frequency as low as 20 cps and none will record zero cps. Faithful recording of complex waves is impossible because of appreciable
phase shift. Amplitude variations are present in the reproduced signal which are due to imperfections in the tape coating. Finally, the recorders will not perform satisfactorily while being subjected to extreme shock and vibration.
The first three deficiencies can be eliminated by use of an f-m carrier recording system, and the fourth can be overcome by a ruggedized, low-flutter tape transport mechan-

Vehicular Research

FIG. i-Block diagram of eight-channel magretic tape reccrder

FIG. 2 -Arrangement of reproducing equipment used at laboratory

By G. K. GUTTWEIN and J. M. LESLIE, Jr.
Signal Corps Engineerino Laboratories Fort Monmouth, New Jersey
Ampex Corponation

ism. Under these conditions magnetic tape recording becomes suitable for vehicular research and test work.

Since a need for such equipment existed at the Aberdeen Proving Ground and the Signal Corps Engineering Laboratories needed a multichannel recorder tailored to the requirements of vehicular research and test work, the development of such equipment was
initiated. The development, design and construction work was carried out by Ampex Corp. under Signal Corps contract.
The recording portion of the equipment, shown in Fig. 1, uses multiple tracks on half-inch magnetic tape and is capable of recording eight channels simultaneously. Six data-recording channels utilize an f-m carrier system and have a frequency response from 0 to 1,000
cus. The seventh chamel is a direct high-frequency bias recording channel with response from 100 to $10,000 \mathrm{cps}$ for voice recording. The eighth channel records automatically a tuning-fork timing signal. The recorder provides up to 15 minutes of continuous recording at a tape speed of 30 inches per second.

Typical Data

Each data-recording channel is designed to accommodate the two types of pickups most widely used as mechanical-electrical transducers: (1) high-impedance self-generating pickups, particularly piezoelectric accelerometers; (2) lowimpedance, bridge-type transducers which require the supply of external carrier power, like wire strain gages, mutual inductance gages and accelerometers based on the strain-gage principle. The signal from each channel is amplified and fed to an f-m modulator. The carrier frequency modulated by the input signal is then coupled directly to the record head.

Channel 7 accommodates a highimpedance microphone or other similar pickup device.

Channel 8 is a timing channel which records automatically a 60 cps waveform on the tape. The same $60-\mathrm{cps}$ source is amplified and used to drive the motor on the tape transport mechanism.

The eight record heads are arranged in two equal stacks, with the head cores interlaced so that channel 1 is at bottom right, channel 2 at bottom left-then finally, channel 7 at top right and channel 8 at top left. The head assembly records eight separate 0.044 -inch tracks on half-inch tape simultaneously; the separation between tracks on the tape is 0.020 inch. The heads are interlaced so as to provide the additional space required for winding the coils about the head cores.

Two power supplies are available

Reproducing equipment, with analyzer mounted on vertical rack at rear

FIG. 3-Two-channel analyzer employed for detailed analysis of recoiding
for the recorder. One operates from 115 volts 60 cps and the other from 24 volts d-c. Size and weight of all recording units are kept as small as possible. One stringent requirement was imposed by the fact that all units must pass through the manhole in a tank.

Reproducing Equipment

The reproducer also uses a hori-zontally-mounted tape transport mechanism, along with eight separate data-extracting channels arranged as in Fig. 2.
The reproducer head assembly is basically identical to the record head assembly, except for the addition of a full-track erase head for erasing the signals from all channels simultaneously when desired.

For channels 1 through 6, the voltage from the playback head of each channel is fed through a series of amplifier-limiter stages to eliminate amplitude variations from the frequency-modulated carrier voltage. The carrier is then demodulated, filtered, amplified and fed to the output connector of the respective data channel.
Channels 7 and 8 have identical voltage amplifier, equalizer and puwer amplifier circuits.

The playback speed can be equal to one-third, or one-tenth that of the recorder. Therefore, recorded phenomena can be decreased in frequency by one-third or onetenth if desired. In this manner, frequencies from 0 to $1,000 \mathrm{cps}$ can be reproduced on a standard ink recorder.

Another means for facilitating the evaluation and analysis of the recorded data is the analyzer, shown in Fig. 3. This consists of a second tape transport mechanism having associated recording and playback amplifiers and handling \ddagger inch wide tape. The analyzer can record and play back two channels simultaneously: The tape can be formed into a loop, if desired, to provide continuous repetition of a recorded interval of up to 3 seconds without cutting the original master tape. One of the two analyzer channels can record the signal from any one of the six reproducer data channels. The second analyzer channel can record either the voice or timing channel signal from the

FIG. 4-Circuit used in each of the six f-m recording channels of vehicular research recording equipment shown in photographs
reproducer for purposes of the test.

Recording Circuits

The circuit used in each of the six data-recording channels is shown in Fig. 4, with the selector switch set for the bridge position for 0.1 - to 2 -volt input sensitivity. If the switch were rotated one position clockwise, the sensitivity would be increased so as to accommodate 0.001 - to 0.1 -volt input signals.

The circuit operation can best be described by starting at the multivibrator. This is of balanced design and would have a free-running frequency of approximately 3 kc if the grid resistors were returned directly to the cathodes. However, the grid resistors are connected to a point which is approximately 30 volts positive in respect to the cathodes; this raises the free-running frequency to 10 kc . If the biasing voltage is varied in amplitude from 0 to 60 volts, the frequency will increase linearly from 3 kc to 17 kc . A modulating signal of 30 -volt peak amplitude superimposed upon a fixed 30 -volt positive bias will cause a 70-percent peak deviation of the multivibrator
carrier frequency, for example.
In practice, the multivibrator is operated at 35 -percent peak deviation which is arbitrarily defined as 100-percent modulation; this is to allow an overload safety factor of 2 . The neon level indicator flashes when the modulating signal reaches the 100 -percent value.

In the bridge position shown, the amplitude-modulated carrier waveform from the pickup device is fed through the selector switch to amplifier stages V_{2} and V_{3}. The signal at the plate of V_{3} is a 5 -kc carrier amplitude-modulated by the data signal; if the bridge-type trarsducer were perfectly balanced, a data signal of either polarity would cause an increase of the 5 -kc voltage here, but of opposite phases for each of the two polarities. Advantage is taken of the phase of the 5 -kc carrier coming from the transducer to obtain sensing as to polarity of the data signal.

The signal from the plate of V_{3} is mixed with an unmodulated 5 -kc bias voltage at the input of V_{4}, hence this tube receives a signal which adds to or subtracts from the 5 -kc bias voltage; C_{1} and R_{1} form a phase correction circuit.

The signal from V_{t} is demodulated by half-wave rectifier V_{σ}, whose output is coupled by cathode follower $V_{6,}$ to a low-pass filter which passes only the desired data signal. The data signal then modulates the multivibrator.

In the crystal position, the shunting impedance across the pickup device is greater than 100 megohms by virtue of pentode cathode follower V_{1}. In this manner the lowfrequency response of piezoelectric pickup devices is extended down to a few cycles per second. The signal from the cathode follower is amplified by V_{2}, V_{3} and V_{4}, and then coupled to the multivibrator by cathode follower $V_{a s}$.

One of the major design considerations of this amplifier was maintaining flat response down to 2 cps . Both screen and cathode bypass capacitors were eliminated and resistor voltage dividers used in their place. In the case of V_{1} the screen-to-cathode voltage was stabilized by use of a neon bulb.

The 5 -kc master oscillator that feeds to each of the six f-m channels is a Wien bridge circuit having low distortion and constant output amplitude. Low output impedance

Recorder head assembly, showing staggered arrangement of the eight recording heads
is provided by a cathode follower.
The $60-\mathrm{cps}$ timing signal, which also serves as the frequency used to drive the capstan drive motor on the tape transport mechanism, is generated and amplified in the circuit of Fig. 5. The tuning fork oscillator consists of a 360 -cps tuning fork, with $V_{1 A}$ applying the necessary gain around the loop to sustain oscillations. Tube V_{2}, with the assistance of grid current flow of $V_{1 \mathbf{B}}$, limits the amplitude of oscillations to the proper value. The free-running frequency of multivibrator V_{3} is slightly lower than 60 cps ; it is locked at 60 cps by the tuning fork oscillator. The pushpull output of the multivibrator is amplified by V_{4}, V_{5} and V_{6}.

Tape Transport Mechanism

The basic layout of the tape transport mechanism is conventional, in that the recording heads are located between a flywheelloaded idler and the capstan shaft. A rubber-tired idler presses the tape against the capstan.

Since shock and vibration tend to affect the velocity of moving parts, careful design and precise mechanical work were necessary to minimize such interferences. A relatively high tape speed of 30 inches per second is used to provide high flywheel inertia with small flywheel mass. For the same reason, a highspeed motor is employed for driving the capstan. The number of rotating parts is kept to a minimum. The center of gravity of all flywheels is located near bearings to minimize the bending of the shafts. The main construction element is a rigid, cast aluminum top plate.

The heads and all rotating parts are mounted to the top plate. Only one motor is employed, a hysteresistype synchronous motor to which the capstan is directly attached. The takeup reel is driven by means of a friction clutch. This arrangement operates with a minimum of power. No facilities exist for rewinding the tape, since this can be done on the reproducer.

Reproducer

The top plate which carries the entire drive system is attached to the cabinet by means of vibration mounts which are located in the horizontal plane of the center of gravity of the top plate. Soft airdamped rubber mounts provide a high degree of vibration insulation and have satisfactory shock characteristics because of their damping action on rough terrain.

The reproducer tape transport mechanism is an Ampex model 300 in which a three-step pulley arrangement is incorporated between the capstan drive motor and the capstan shaft to give playback speeds of 30,10 or 3 inches per second.

Due to the three-speed drive, the carrier frequency at the input of the playback amplifier circuit in Fig. 6 is either 10 kc (same as recorded), 3.3 kc or 1 kc .

Demodulator

The output voltage from the playback head is amplified and clipped severely in a series of amplifierlimiter stages extending from V_{1} through V_{13}. The waveform at the junction of diodes V_{12} and V_{13} is a square wave having extremely fast rise and decay times and being frequency-modulated with the original pickup data. The waveform is then differentiated by C_{1} and R_{1}. The differentiated output is fed through a split-load phase inverter $V_{1-.}$. Its push-pull output is rectified by a full-wave rectifier using diodes $V_{1,}$ and V_{15}. Across R_{2} appears a series of identical positive pulses whose repetition rate varies in exact accordance with that of the modulation of the carrier. This waveform is coupled by cathode follower V_{15} to a low-pass filter which removes the carrier components.

This type of demodulator system has the advantage of being linear from 300 cps to over $20,000 \mathrm{cps}$.

FIG. 5-Method of using tuning fork to generate precise $60-\mathrm{cps}$ power for capstan drive molor and for timing purposes during analysis of the tape recordings

FIG. 6-Playback amplifier and demodulator for f-m channels. A separate channel amplifies voice and timing signals

Three filter cutoff frequencies are provided, one for each tape speed; the cutoff frequencies are $1,000 \mathrm{cps}, 333 \mathrm{cps}$ and 100 cps . The output of the filter is direct-coupled to phase inverter V_{17} which in turn is fed to the output connector through direct-coupled push-pull cathode followers V_{18} and V_{19}. A constant voltage drop is maintained between the plates of V_{17} and the respective grids of V_{18} and V_{18} with NE-2 neon bulbs. The push-pull output stage is capable of driving an ink recorder to full deflection.

The tape transport mechanism for the analyzer is standard except for a disabling switch for the rewind and takeup motors so that loop operation is quickly obtainable.

The analyzer provides two channels. One channel is similar to that of the recorder-reproducer voice track, except that the con-stant-current amplifier can receive a signal from either the reproducer voice or timing channel. The second analyzer channel is for f-m recording whereby the frequency-modulated carrier from any one of the six reproducer f-m channels can
be recorded upon the tape by coupling to the analyzer record head with a cathode follower. The analyzer playback circuit for the $\mathrm{f}-\mathrm{m}$ channel is the same as that shown in Fig. 6.

Applications

An example of the results obtained in using the equipment is shown in Fig. 7. This is a copy of an ink recorder chart pertaining to an investigation of electronic equipment mounted in a $2 \frac{1}{2}$ ton 6×6 truck. The accelerations encountered were recorded while the vehicle was running over a test course containing single corrugations. The peak accelerations can be obtained from the top graph, but considerably more information is rendered by a frequency analysis which shows the acceleration amplitudes at different frequencies. It is a tedious and time-consuming job to work out a graphical analysis based on the paper chart; the recording equipment enables the operator to perform this work much more quickly and economically by electrical means, since the information
stored on the tape can be repeated over and over again. This is one of the most valuable features offered by the magnetic recording system.

To make this frequency analysis, the reproducer was connected to a bandpass filter which was followed by the ink recorder. The same section of the magnetic tape was repeatedly played back through the filter. The pass band was varied to desired limits and the output of the filter was recorded on a paper chart. The reproducer was operated at one-tenth of normal tape speed for this analysis.

The magnetic recorder equipment is easily adaptable to computing machinery and can also be employed for statistical evaluations, for which pulse counters in connection with amplitude discriminators have already been used successfully.

The equipment has been used so far in investigations pertaining to tanks, trucks, weapon carriers, railroad cars and guided missiles and has proven itself as a tool of great value.

FIG. 1-How r-f generator frequency tracks cosmotron's magnetic field. Desired frequency vs field strength characteristic (\mathcal{A}) is achieved by using voltage analog of magnetic field-strength variation to control oscillator tuning current

Generating R-F Power

PROTONS ARE ACCELERATED in the cosmotron to energy levels in the billion electron volt range by a radio-frequency voltage impressed across an insulated gap in the ferrite-loaded accelerating cavity of the vacuum chamber. To
maintain a constant orbit radius as the beam is accelerated, the frequency of the accelerating voltage must increase from the initial value of 370 kc to $4,200 \mathrm{kc}$ during the one-second magnet pulse. Over the entire 11-to-1 frequency range,

HOW THE COSMOTRON WORKS

Positive atomic particles—protons-from the Van de Graaff generator in the foreground, enter the cosmotron at energy levels above three million electron volts. The magnetic field of the cosmatron forces the protons to travel in a circular orbit around the doughnut-shaped vacuum chamber. During the ons-second accelerating pulse, the protons make more than three million trips around the circle.

Each time the proton cloud passes the cosmotron's accelerating gap, it receives a kick from the r-f accelerating system that adds about 800 electron-volts to the energy of the protons. Since the speed of the protons increases with each trip around the circle, the frequency of the r-f generator must increase accordingly so that the kicks are delivered ot the proper time.

When the protons have attained energy levels in the biilion electron volt region, a target is rapidly inserted in the vacuum chamber. The atomic frogments that are produced when the high-energy protons collide with target atoms are studied for clues to the nuclear structure of the otem
a minimum gap voltage of 1,800 volts peak must be maintained. At every instant during the magnet pulse, the frequency of this voltage must be a predetermined function of the magnet field. Frequency errors greater than about 0.2 percent result in loss of beam due to excessive radius changes. Smaller frequency errors that recur at a rapid rate can excite undesirable phase oscillations in the beam. As little as 0.005 -percent frequency modulation can result in total beam loss if it recurs at a rapid rate.

Frequency-Control System

The correct frequency of the accelerating voltage in the cosmotron is given by

$$
f=4.034 \times 10^{6} \times B\left(B^{2}+0.1171\right)^{-3 / 2}
$$

where f is the frequency in mc and B is the field in the magnet gap in webers per sq meter. This function is plotted in Fig. 1A. Because the field in the cosmotron is not reproduced exactly from pulse to pulse, it is necessary to tailor the frequency sweep individually for each pulse.

The oscillator employs a version of the series-tuned Colpitts or Clapp circuit in which the usual air-core tank inductor is replaced by a coil wound on a saturable core made of manganese-zinc ferrite. Permeability tuning is accomplished by varying the current in a saturating winding on the core. The measured frequency-vs-current

Radio-frequency field accelerates proton beam to energy level of cosmic rays; r-f generator sweeps 11 -to-1 frequency range during one-second magnet pulse while maintaining a minimum potential of 1,800 volts across ferrite-Ioaded gap

By E. J. ROGERS and M. PLOTKIN

Brookhaven National Laboratory Upton, New York

for 3-BEV Accelerator

characteristic of the oscillator is shown in Fig. 1B.

Integrator Circuit

A pickup coil in the magnet gap delivers a voltage proportional to the rate of change of the magnetic field, $d B / d t$. Electronic integration of this signal yields a voltage that is proportional to the magnetic field B at any instant during the magnet pulse. The controi-current function required in the oscillatorcore saturating winding to produce the desired frequency-to-field relationship may be obtained graphically by eliminating the frequency parameter between Fig. 1A and 1B. The resulting curve, shown in Fig. 1C, gives the relationship between the output voltage of the integrator and the control current in the oscillator-core saturating winding.

A nonlinear resistance network, whose voltage-transfer characteristic is a close approximation to Fig. 1 C , is connected to the output of the integrator. The output voltage of this network is therefore proportional to the required oscillatorcore saturating current. This voltage drives an amplifier that has a large output-current to input-voltage feedback, producing a saturating current that is an accurate replica of the output voltage of the nonlinear network. The output frequency of the oscillator is thus controlled by the instantaneous value of the magnetic field during the
entire one-second magnet pulse. Figure 2 is a block diaglam of the frequency-control system.

The pickup coil in the cosmotron magnet has 12 turns per magnet quadrant, six turns on each pole face. The windings are of plasticinsulated wire contained within a
copper tube that serves as a Faraday shield. A shielded-pair transmission line carries the Faraday shield and the ends of the pickup coil to the control room. The only external ground in the system is where this line is connected to the integrator input connector. Here

FIG. 2-Block diagram of frequency-control system illustrates how feedback from cosmotron magnet controls r-t generator frequency

FIG. 3-Integrator and electronic switch provide voltage analog of magnetic field strength variation. Integrator uses Miller feedback circuit with d-c amplifier
the integrator chassis, the shield and the positive side of the shielded line are grounded. The output signal from the pickup coil has a value of about - 300 volts during most of the magnet pulse. The voltage drops off somewhat toward the end of the pulse when the iron in the magnet begins to saturate.

The integrator and its associated electronic switch are shown schematically in Fig. 3. To obtain good linearity, the integrator time constant was made as long as practicable. Direct-current leakage considerations and the highest capacitance available in a polysty-rene-film capacitor limit integrator resistance and capacitance to 11 megohms and $0.1 \mu \mathrm{f}$ respectively. These components, used in a Miller. feedback integrator circuit incorporating a $d-c$ amplifier with a gain of 500 , comprise an integrator with an effective time constant of 550 seconds.

FIG. 4-Diode network converts voltage wave'crm from integrator to corresponding oscillator contrel signal

The integrator output signal reaches its peak value of +300 volts at the end of the magnet pulse. A pair of triodes connected in series with their junction tied to the tap between the 1 -megohm and 10 -megohm sections of the integrator resistor turn the integrator on and oif. When the tubes are conducting, their plate resistance furnishes an effective short-circuit to ground for the 10 -megohm driv-ing-source impedance. A univibrator is triggered on by a peaking strip 2 in the stray field of the magnet and furnishes a gate pulse that biases the triodes off. This starts the integrator at the appropriate time. A timing-trigger at the end of the 1 -second magnet pulse turns the univibrator off.

A second univibrator circuit operates a relay to discharge the integrating capacitor during the off period insuring that the integration starts at true zero. The second univibrator also switches a high-gain, chopper-type servo amplifier into the output circuit of the integrator during the off period. The accompanying two-phase servo motor adjusts a balancing potentiometer in the d-c amplifier to maintain the amplifier output voltage at zero while the input is grounded, thus compensating for drift in the d-c amplifier. The resistors are low-drift deposited-film units, while the capacitor is a poly-styrene-film dielectric unit. This was the only type of capacitor that displayed sufficiently small soak
effects to maintain required accuracy.

Diode Network

The nonlinear computer network consists of a voltage divider formed by a 100,000 -ohm series resistor and 28 shunt resistors, each of which is connected in series with a biased diode. Three of the 28 sec tions are shown in Fig. 4.

Since the diode bias voltages increase progrossively, the curve of Fig. 1C is approximated by 29 line segments of progressively decreasing slope. The transitional points may be changed by adjusting the diode bias voltages, while the slope of each segment is determined by the resistance in series with each diode. These parameters are variable over a small range to allow a precise curve fit despite Edisoneffect voltages and individual resistance variations in the diodes.

A graphical construction indicated that the ideal characteristic could be approximated with a maximum error of about 0.1 percent by using 28 sections in the network. However, curvature in the diode characteristics smooths out transitions between individual line segments and an even better curve fit results.

Diode-connected 6SN7 triodes were found to possess better stability than conventional diodes. The filaments are operated from a voltage-regulated d-c supply for good stability and freedom from a-c pickup. At the end of the mag-

FIG. 5-Control amplifier delivers desired current waveform to control winding on oscillator tuning coil

FIG. 6-Permeability-funed masier oscillator sweeps in frequency from 370 kc to 4.2 mc during the cne-second cosmotron magnet pulse

FIG. 7-Intermediate and high-level power amplifiers deliver 2,000 -volf f -m signal
net pulse, the diode-network output signal reaches its peak value of +30 volts.

Control Amplifier

The high-impedance output-voltage signal of the diode network is converted to a proportional-current signal in the control amplifier. This consists of two sections, shown schematically in Fig. 5. The first section, called the buffer amplifier has a nominal voltage gain of one. It provides independent small adjustments of initial level and amplitude of the frequency-control signal. A large amount of feedback with a loop gain of 500 effectively stabilizes this amplifier against drifts in gain and output level.

The second section consists of a two-stage voltage amplifier with a gain of 500 driving five paralleled triode-connected 6BG6 beam power tubes with the oscillator core saturating coil in their plate circuit. Current feedback from the 6BG6 cathodes to the input grid circuit of the voltage amplifier provides an overall feedback factor of 1,500 at the peak output current of 400 ma . Since the mutual conductance of the 6BG6's falls off rapidly at currents below two ma per tube, the minimum output current must be held above 10 ma to insure sufficient loop gain for adequate stability. To allow a full frequency sweep, a bucking field is applied to the oscillator core by a current in an auxiliary winding, so that the net magnetomotive force in the core has an initial value of zero. At 10 ma output current, loop gain is still greater than 350 , a value ample for the stability requirements. The $10-\mathrm{ma}$ to $400-\mathrm{ma}$ output current sweeps the oscillator
frequency over the required range.
Although the acceleration of the beam is started at 370 kc , the initial frequency of the oscillator is set at 335 kc . This allows about 4 milliseconds for the frequency sweep to get under way before the r-f power amplifier is gated on, insuring that starting and switching transients will not appear in the beam-accelerating voltage.
The permeability-tuned oscillator in Fig. 6, which has been described in detail elsewhere, ${ }^{2}$ delivers an output signal of 2.8 volts over the entire frequency range. This signal is applied to the r-f power amplifier through a 75 -ohm transmission line driven by a cathode follower at the oscillator output.

Intermediate Amplifier

The input signal to the inter-mediate-level amplifier is approximately 2.8 volts rms. This must be amplified enough to develop 1,800 volts peak-to-peak across a ferriteloaded cavity. In addition provisions must be made for avc, gating and slow turn-off. These functions will be described in detail. A block diagram is shown in Fig. 7.

The intermediate-level amplifier consists of four stages, a 6SK7, 6SJ7, 6AG7 and 829B. The 6SJ7 is used as the avc-control tube because of the large changes in the overall gain of the amplifiers due to the nonlinearities in the ferrite load. Early in the frequency cycle the control tube must be almost cut off. The two sections of the 829B are connected in parallel and operate as a cathode follower to drive a $75-\mathrm{ohm}$ line terminated in a small transformer. This transformer is wound on a ferrite core of the type used in television horizontal-output
transformers and serves to convert the single-ended signal on the line to a push-pull signal for the grids of the first stage of the power amplifier. All the stages in the intermediate amplifier are shunt peaked to obtain a bandwidth of 4.5 mc . The component values are adjusted to give an essentially flat response characteristic from the input to the secondary of the ferrite transformer. The maximum level at the grids of the first power-amplifier stage is about 20 volts rms.

Power Amplifier

The power amplifier is a fourstage push-pull unit. The first stage is operated class A and uses four 813's in push-pull parallel. The second stage uses four 833A's in pushpull parallel class B, the third stage has two 5917's operated class A_{2}, and the final stage uses two 5681's in class A_{2}. The choice of class of operation in each stage was made for maximum output to the ferrite core. A great deal of attention was paid to parasitic suppression since the tubes used in the final stages are of the ring-seal type capable of supporting oscillations up to 100 mc. Noninductive parasitic-suppression resistors were added at the plates and grids of all the stages except the final stage. The maximum signal d-c input to this stage is 150 kw . When parasitic oscillations occurred during the testing period several of the components were severely damaged or over heated.

To achieve the required bandwidth, shunt and series peaking elements are used in all stages. In addition, resonance peaking is used in the grid of the final stage to increase the drive at the high-fre-
quency end of the band. It was found that increasing the grid impedance beyond a certain value would lead to parasitic oscillations at 44 mc . By putting in a low-Q circuit shunt resonant at 3.5 mc in series with the grid resistor, the grid impedance is raised for frequencies of 3 to 4 mc only.

Instead of trying to design each stage for a flat resconse, peaking circuits were chosen that tended to make overall response flat. In this respect only moderate success was achieved because of the extreme nonlinearity of the load characteristic. The ferrite-loaded cavity, shown in Fig. 8, contains 2,800 pounds of nickel-zinc ferrite surrounding the accelerating gap essentially as the core of an autotransformer. The equivalent circuit includes the tube and distributed capacitances C_{d}, the gap capacitance C_{g}, the leakage inductance L_{L}, the peaking inductance $L_{\text {, }}$ and a series resonant circuit $C_{s}-L_{s}-$ R_{z}. Figure 9 shows the reason for this circuit. Due to the shunt resonance at 1.2 mc , when the frequency passes through 400 kc the
impedance of the load to the third harmonic is about 20 times the impedance to the fundamental. This leads to severe waveshape distortion.

With the series-resonant damping circuit the change in impedance at the low end of the band (370) kc) is practically eliminated. At the high end of the band (4.2 mc), however, a series resonance involving the leakage and peaking inductances and the gap capacitance occurs. Although the net impedance of the load at this time is essentially zero, the resonant voltage rise across the gap offsets the load-voltage drop.

For ave action, a portion of the gap voltage is rectified using a 1 B 3 diode, divided down, and fed back to the intermediate-level amplifier in series with a bucking voltage. The bucking voltage serves three purposes. First, by bucking out a portion of the rectified signal it increases ave sensitivity; second, it provides a convenient level control; third, it enables the r-f to be turned off slowly when cosmotron experiments so reguire. The last function

FIG. 8—Power-output sysiem of r-f generator: push-pull 5681 triodes operating in class $\bar{A}:$ deliver 100 kilowatts to ferrite-loaded output loop

FIG. 9-Impedance of ferrite core with and without series resonant damping
is achieved by developing the bucking voltage across the cathode resistor in a cathode follower and gating off the grid through an R-C time constant. Originally, gating and avc were performed in separate stages of the intermediate amplifier. However, when the gate opened, the avc was wide open and a large turn-on transient spike occurred. To eliminate this, the gate is opened before r-f turn-on is required and a prebias voltage establishes a simulated ave voltage. When turn-on is needed, the prebias is gated off and the output voltage rises smoothly.

In addition to the ave diode at the accelerating gap, several other diodes and networks are also connected here. The additional diodes feed a voltmeter and an oscilloscope. The detector circuit for the oscilloscope diode has a short time constant to allow frequency transients, parasitics and fast level changes to be seen.

For examination of the r-f waveform across the gap, a frequency compensated voltage divider is used to feed directly the deflection plates of an oscilloscope. With a fast sweep and trigger pulses at any time during the cycle, the actual waveshape of the radio-frequency gap voltage can be observed.

Design of the r-f accelerating system includes the work of J. P. Blewett, S. Giordano, D. Griffin, J. Logue, A. I. Pressman and W. Surber. J. Rebman has performed a vital role in maintaining and operating the system as well as in constructing many of the components. Assistance of F. Janik in construction and testing the noweramplifier system is acknowledged, as well as the assistance of $\mathrm{G} . \mathrm{K}$. Green, H. S. Snyder and L. C. L. Yuan. The work described in this paper was performed under the auspices of the U. S. Atomic Energy Commission.

References

 (1) S. Giordano, G. K. Green and F. J. III-Peaking Strips. Rev Sci Inst, $94, \mathrm{p}$ III-Peaking S(2) A. I. Pressman and T. P. Blewett, $\therefore 300$ to 4000 Flectricaliv Tumer Os cillator, Proc IRE. 39. p 74, Jan. 195.1. (3) M. Plotkin and L. C. L. Fuan. Cos-motron-Fiadio-Frartuence Sustom. Part 1IT-Power Amplifier, Rev Sci Inst. ©4. p 789 Sent 1953.
(4) J. P Blewett. M. Pinthin and E. J Rocers, Cosmalron Ranio-Fyeatency Systam. Port JV-A celerating U'nit, Rev Sci Inst, 24. p 795. Sent. 1953.

FIG. 1-Switching tone is superimposed upon one of five transmitter lines

Equipment in use at New York makes provis on for control of five broadcast stations, but circuits can be modified for additional transmititers

Random Sequence

 SwitchingDesigned for automatic control of a cluster of radio broadcasting stations during Conelrad exercises, this five-channel device is arranged to permit fewer participating transmitters or can be modified to care for additional stations. No correlation exists between interval duration and the switching sequence

Basis of FCC's Conelrad plan is to conceal the identity of radio broadcasting stations by shifting all operating transmitters to one or two frequencies, either 640 or $1,240 \mathrm{kc}$. Local civil defense headquarters provide a single source of program material that is fed to all transmitters in the area. Transmitter carriers are then switched on and off in a manner that will not interfere with reception of the program service by the general public, yet will result in confusion for an operator of direc-tion-finding equipment. Maximum confusion to enemy attackers can be caused if this switching is accomplished in a random manner.

Several different modes of switching are specified in the FCC

By ADRIAN B. ETTLINGER

Radio Engineer
CBS Television
New York, V. Y
plan, depending upon the number of stations operating in the locality and whether intermittent or continuous broadcasting service is to be maintained. For continuous service in a large metropolitan area the sequential mode is employed. Co-operating stations are assigned to form a cluster for integrated operation on a single frequency. Clusters normally number from three to six stations.
In each cluster, transmitter carriers are so keyed that only one of the group radiates a signal at any
given time. The maximum time interval for continuous radiation by one station is specified at forty seconds; the minimum is five seconds. Successive timing intervals vary in a random manner and the switching sequence among stations is noncyclic and likewise random in nature.

The unit described here is designed to satisfy these switching requirements for a maximum of five channels on a fully automatic and random basis. The principle may be applied, however, to requirements for more channels.

System Details

Keying circuits of the CBS random switcher are designed for use with a method of operation in
which program material is continuously fed to all transmitter locations in the cluster. Each transmitter is equipped with a tone-operated relay so that power is applied only when a 7 -kc tone is superimposed on the audio program line. A bridging coil constitutes a high-impedance source for superimposition of this tone on one line at a time. Individual line amplifiers are thus necessary for proper isolation, as shown in Fig. 1.

The circuits within the switching unit itself may be divided into two sections, each having a separate and distinct function. The random information is generated in the impulse section and supplied, in the form of short switching impulses, to the control section. The control section, which contains the transmitter keying circuits, is essentially a preset-type relay switching system that can be operated manually as well as automatically.

Control Section

A schematic diagram of the control section is shown in Fig. 2. The basic circuit is one in which presetting is accomplished by means of a stepping switch. Operation of the stepping switch (either by the manual PRESET pushbutton or by the impulse section) selects in rotating sequence one of five relay circuits. The relay thus preset can be energized either manually by the switch pushbutton or automatically by the switching output of the impulse section.

The design of the control section (Fig. 2B), therefore, requires that the impulse section supply to it a short switching impulse at random time intervals varying from five to forty seconds. During the intervals between switching impulses, the stepping switch must receive a succession of impulses, numbering from one to four. By arranging for the number of these impulses during successive intervals to vary in a random manner, a random selection sequence is achieved,

To permit operation of the unit with less than five active channels, the control section also contains lift circuits that nermit elimination of any keving circuit by causing the stenning switch to skin by the correspondine nosition and there pre-
vent presetting to that channel. In addition, a positive interlock is provided to prevent the stepping switch from stopping in a position corresponding to the most recently selected channel, so that an excessively long switching interval cannot be caused by consecutive selection of the same channel. The interlock circuits associated with the lift switches serve the purpose of preventing continuous operation of the stepping switch in the event of accidental closure of four or more lift switches.

Indicator lamps indicate the ON AIR and Preset channels, either for automatic or manual operation.

Design Principles

In approaching this problem of random information generation, it has been assumed that the spirit of the FCC specifications requires a relatively smooth probability distribution of timing-interval durations and that no correlation should exist between interval duration and switching sequence.

There are numerous possible sources, both electrical and mechanical, of random information of normal distribution. The translation of such information, however, into timing intervals having discrete limits of duration, yet uniform probability distribution, is a problem of some magnitude. The approach, therefore, has been to devise a system that would have inherent randomness within the desired limits.

To maintain the desired duration limits with reasonable accuracy, the basic timing element to be used must have reliably consistent characteristics. For this reason, synchronous electrical timing motor assemblies are employed as a basic circuit component. A total of six motors is so used in four assemblies. These assemblies are interconnected with the necessary relays to obtain a continuous sequence operation that generates the required switching and presetting outputs.

To avoid recurring pattern offerts. it is necessary to insert into the circuit a timinc element of variable. nonconsistent characteristics. This is provided in the form of a thermal delav device. so con-
nected that small variations in its random performance are greatly amplified in their effect upon the final timing intervals. The limits of duration of these intervals, however, retain the tolerance fixed by the accuracy of the timing motors.
The schematic diagram of the impulse section is shown in Fig. 2A. Motor M_{2} with associated cams and snap-action switches is a fivesecond sequence timer that operates after each switching pulse.

Motor assemblies M_{1} and M_{3} are used, respectively, to time the basic switching interval and to determine the number of presetting pulses.

These assemblies are identically constructed, differing only in speed of operation. Their basic purpose is to create successively variable time delays. The time delay is in each case established by the B motor and then clocked off by the A motor.

Dual-Motor Switch

Each motor drives a shaft carrying a projecting arm. On the ends of each arm are mounted meeting electrical contacts. The direction of rotation of the A motor is such as to close the contacts, while rotation of the B motor opens them. Thus after the contacts have been closed by rotation of the A motor the B motor will move its contact away through an arc of variable size, determining the time interval for which the A motor must next operate to reclose the contacts. The B motor in each case operates at the higher speed, so that a long time delay is predetermined within the space of a shorter time.

Motor $M_{: /}$operates at 1 rpm and clocks off the basic timing interval. The assembly is reset during the 5 -second timer sequence by motor $M_{1 B}$, which operates its contact arm at $46 \frac{2}{3} \mathrm{rpm}$ and has a maximum operating interval of 番 second.

Assembly M_{3} establishes the number of presetting pulses. Both stages of operation occur during the 5 -second timer sequence. Motor $M_{s /}(15 \mathrm{rpm})$ has a maximum operating interval of 4 seconds. during which the presetting pulses, generated at a rate of one per second by a cam on M (the 5 second sequence timer), are per-

FIG. 2-Complete circuit of the impulse and control sections of the keyer. Synchronous motors provide pulses that are random because of thermal-delay relay. Relays are preset by stepping switch
mitted to go to the control section. Motor $M_{3 B}$ (60 rpm) resets the assembly with a maximum operating interval of 1 second.

Motor M_{4}, which carries a cam that repeats a $\frac{3}{4}$-second on-off cycle, represents with the thermal delay element the ultimate source of the system's randomness. The phase position of this motor relative to the other timing events determines the resetting operating periods of the B motors. The thermal delay element is employed to scramble the phase position of this motor in such a complex, and in the long run, nonconsistent manner that, while no
claim is made of purely random performance in the strict mathematical sense, little possibility exists that calculation or statistical analysis could predict any useful probabilities of future performance.

Removing Channels

Although the random switcher is constructed for five-channel operation, it is usable without modification for fewer channels by means of the lift feature provided. The principles of the design are readily adaptable to any requirement for a greater number of channels. In
addition, the output circuits can be readily adapted for application to systems of transmitter keying other than the tone-operated relay method for which this unit is wired.

In spite of the large number of parts involved, the unit constitutes little more than an unconventional arrangement of conventional components. None of the mechanical assembly involves unorthodox designs whose stability might be open to question. Although the complete circuit has the appearance of complexity, inherent reliability is assured by the simplicity of the individual components.

How Long-Line Effect

Signal Corps installation showing van-mounted radar set with antenna on rooi to permit a relatively short run of cutput line, but even this may be too long at higher microwave frequencies. To avoid frequency-jumping. X-band output line lengths must be less than 12 feet, and K-band lengths under 4 feet

FIG. 1-Tuning curves of radar magnetron oscillator connected to long mismatched transmission line, and equivalent circuit for load mismatch

Analysis of conditions under which long mismatched output lines cause frequencyjumping in tunable pulsed or continuous-wave magnetrons of high-power radar sets. Equations and nomographs present practical engineering criteria for eliminating holes in tuning range when r-f generator cannot be mounted directly on antema

WITH Tile advent of highpower micrewave oscillator tubes in radar and other electronic devices during Warld War II, the problen of frequency instability due to long mismatched output lines was encountered and studied. The
effect of such lines on the generated frequency and power has been called long-line effect, and is caused by the line acting as a resonant circuit. The result of long-line effect on the overall operation of conventional radar sets, for example, is to
destroy the spectrum of the output signal whenever the antema feed line is not of the proper length. The effect on tunable radar sets employing power oscillators is to leave periodically spaced holes in the tuning range. The necessity of elimi-

Impairs Tunable Radar

By JOSEPH F. HULL, GABRIEL NOVICK and RICHARD CORDRAY

Signal Corps Engineering Laboratories, Fort Mommoult. S. J

nating these holes multiplies the problems of long-line effect, especially at microwave frequencies whenever the oscillator tube is not mounted directly on the antenna.

Long-Line Effect

Studies have been made of longline effect on pulsed magnetrons ${ }^{1}$ and on continuous-wave magnetrons. ${ }^{2}$ It is the purpose of this paper to put the theory of longline effect for both pulsed and c-w oscillator tubes on a useful quantitative engineering basis.

It should be pointed out that long-line effect is not confined to the magnetron, nor even to microwave tubes. Any self-excited oscillator whose frequency is affected by the output loading can experience frequency-jumping due to long-line effect if the vswr at the tube is sufficiently high and if the line is sufficiently long. A figure of merit which is a measure of the immunity of an oscillator tube to this effect is the effective external Q of the tube when oscillating. For most oscillator tubes using highimpedance tank circuits, such as the magnetrons, klystrons or tetrodes, this value is nearly equal to the cold external Q of the tank circuit.

Some of the more important manifestations of long-line effect are the alteration of the tuning curve of mechanically tunable oscillator tubes, the alteration of the modulation characteristics of $\mathrm{f}-\mathrm{m}$ tubes and the alteration of the output spectrum of either f-m or a-m.

Curve m of Fig. 1A shows the tuning curve of a tunable oscilla-
tor tube whose output line, though several wavelengths long, is terminated in a matched output load. Curve n is the same except that a slight frequency-insensitive impedance mismatch exists at the load end of the line. The periodicity in frequency, with which the tuning rate is alternately greater and then less than that of the flat line tuning rate, is

$$
\begin{equation*}
f_{n}-f_{n-1}=\frac{f}{2 \lambda_{\theta}}\left(1-\frac{f_{c}^{2}}{f^{2}}\right) \tag{1}
\end{equation*}
$$

where N_{0} is the number of guide wavelengths on output line and f_{c} is cutoff frequency of guide.

If the mismatch at the end of the output line is increased, the tuning characteristic becomes that shown in Fig. 1B. For pulsed oscillator tubes, as the tuner setting is increased, the frequency increases smoothly until point t is reached, where the frequency jumps to t^{\prime}; similarly, as the tuner setting is decreased the frequency jumps from t^{\prime} to t. When the tuner setting of a pulsed tube is t^{\prime} the tube pulses randomly at frequencies corresponding to t and t^{\prime}, with approximately equal division of pulses. When the tuner setting is deviated from t^{\prime} the percentage of pulses rapidly increases to 100 percent on the side of the tuning curve which has the steepest slope. This is due to the fact that the effective Q of the overall sustem can be shown to be higher where the slope of the tuning curve is steeper, and the oscillator prefers to start in the mode with higher overall Q.

The tuning behavior of continu-ous-wave tubes with long output lines is considerably different from
that of pulsed tubes because frequency hysteresis occurs. In Fig. $1 B$, as the setting is increased, the frequency increases smoothly until the point r is reached, when the frequency jumps to r^{\prime}.

As the tuner setting is decreased, the frequency decreases smoothly until s is reached, when the frequency jumps to s^{\prime}. Thus the frequency hysteresis permits operation in the frequency range s^{\prime} to r only when the frequency is increased, and in the frequency range r^{\prime} to s only when frequency is decreased. With no external circuit changes, the range from r to s can never be realized with stable oscillation.

If the vswr is still further increased, a tuning curve corresponding to Fig. 1C is obtained, where more than two possible frequencies can occur with one tuner setting. Pulsed tubes will usually start at the frequency corresponding to the steepest slope of the tuning curve; c-w tubes, when tuned continuously in one direction or the other. will follow the paths shown by heavy lines with arrows. (The dotted portions of these heavy lines correspond to frequencyjumping.)

Unstable Regions

The frequency regions from r to s and from u to v cannot be realized with stable oscillation. The frequency range from s to v^{\prime} is covered only when tuning downward. and the range from r^{\prime} to u is covered only when tuning upward. However. by special manipulation of the tuning knob every point in the tuning range can be realized except those in ranges correspond-
ing to r to s and u to v.
Everything that has been said previously applies also to the volt-age-versus-frequency characteristic of a frequency-modulated oscillator, provided the period of the modulation frequency is considerably greater than the transient time of the frequency-jumping phenomenon. The only alteration of a pure amplitude-modulation spectrum by long-line effect is that caused by the fact that the effective loaded Q of the tube for the various frequencies of the carrier and sidebands is greater or less than the loaded Q of the tube when operating into a flat line.

Frequency-Jumping Criteria

The most important relationship in the theory of long-line effect is the critical condition which determines the onset of frequency-jumping. This corresponds to the transition between the curves of Fig. 1A and 1B. The condition for this transition will now be derived. Figure 1D shows the equivalent circuit of an oscillator tube connected to a long line mismatched at the load. (Assume only one fre-quency-insensitive discontinuity in the transmission line located at the load.) The effective admittance of the electron cloud in the tube is included in C_{b} and G_{s}. The condition for stable oscillation is that the total admittance across $A A$ is zero. The total susceptance $B_{A A}$ is therefore

$$
\begin{align*}
B_{A A}= & \omega C \cdot-\frac{1}{\omega L .} \\
& +\frac{\left(\rho_{t}^{2}-1\right) Y_{0} \tan \beta l}{\rho_{t}^{2}+\tan ^{2} \beta l}=0 \tag{2}
\end{align*}
$$

where ρ i is vswr at the tube, C. is effective capacitance of the equivalent circuit of the tube in farads, L_{0} is effective inductance of the equivalent circuit of the tube in henrys, Y_{0} is characteristic admittance of the output line in mhos, β is phase constant of the output line in radians per meter and l is line length in meters.

The value of of is expressed in terms of the vswr at the load by

$$
\begin{equation*}
\rho_{\mathrm{t}}=\frac{\rho_{L}+\tanh \alpha l}{1+\rho_{L} \tanh \alpha l} \tag{3}
\end{equation*}
$$

where α is attenuation constant of

FIG. 2-Rieke diagram showing frequency-jumping contours for pulsed tube
the line in nepers per meter and p_{L} is vswr at the load.

For a nontunable tube, or with a given tuner setting of a tunable tube, the plot of $B_{4 A}$ versus frequency has the same shape as the tuning curves of Fig. 1. The condition for onset of frequencyjumping for a tunable tube is that the minimum slope of the $B_{A A}$ curve is equal to zero. From this condition

$$
\begin{equation*}
\rho_{c t t^{2}}=1+\frac{Q_{x h}}{\pi N_{\theta}}\left(1-\frac{f_{c}^{2}}{f^{2}}\right) \tag{4}
\end{equation*}
$$

where p_{0} is critical vswr at the tube for onset of frequency-jumping, N_{g} is the number of guide wavelengths on the line, f_{o} is the cutoff frequency of the line in mc and $Q_{z n}$ is the effective external Q of the tube when the tube is oscillating.

The effective external Q for any oscillator tube is defined as $Q_{x h}$ by

$$
\begin{equation*}
Q_{x h}=\frac{f}{2 Y_{0}} \frac{d\left(B_{o}\right)}{d f} \tag{5}
\end{equation*}
$$

where B_{n} is susceptance of output line at the tube output terminals.

For conventional microwave os-
cillators such as magnetrons and klystrons the value of $Q_{\Delta n}$ is related to the pulling figure ${ }^{2}$ by

$$
\begin{equation*}
Q_{x h}=\frac{5}{12} \frac{f}{\Delta f} \sec \theta \tag{5a}
\end{equation*}
$$

where Δf is pulling figure of the tube and θ is angle between con-stant-frequency and constant-susceptance contours on a Rieke diagram. Typical values of $\sec \theta$ for magnetrons lie between 1.0 and 1.1.

For microwave oscillators which use a high-impedance tank circuit, the value of $Q_{x n}$ is essentially independent of the loading and the

FIG. 3-Percent of tuning range accessible to pulsed magnetrons

FIG. 4-Example of frequency-jumping behavior of a continuous-wave tube
power output of the tube, and differs from the cold external Q by only a few percent.

When the vswr at the tube is less than $\rho_{c i}$, no frequency-jumping occuis. As the vswr is increased and approaches $\rho_{o t}$, the tuning rate becomes periodically faster and slower than the normal tuning rate with a reflectionless line. The ratio of actual tuning rate to normal tuning rate is

$$
\begin{align*}
& \frac{R_{\text {actual }}}{R_{\text {normal }}}= \\
& \frac{1}{1+\left(\frac{\rho_{t}{ }^{2}-1}{\rho_{c t} t^{2}-1}\right) \frac{\left(\rho_{t}^{2} \cos ^{2} \beta l-\sin ^{2} \beta l\right)}{\left(\rho_{t} \cos ^{2} \beta l+\cos ^{2} \beta l\right)^{2}}} \tag{6}
\end{align*}
$$

The ratio of maximum tuning rate to normal tuning rate is

$$
\begin{equation*}
\frac{R_{\text {maximumi }}}{R_{\text {normal }}}=\frac{\rho_{c t t^{2}}-1}{\rho_{c t}{ }^{2}-\rho_{t}^{2}} \tag{7}
\end{equation*}
$$

When ρ_{t} is less than $\sqrt{3}$ and less than $o_{c 1}$ the ratio of minimum tuning rate to normal tuning rate is

$$
\begin{equation*}
\frac{R_{\text {minimum }}}{R_{\text {normal }}}=\frac{\rho_{c t t^{4}}}{\rho_{c t^{2}}-\frac{1}{\rho_{t}{ }^{2}}} \tag{8}
\end{equation*}
$$

When o, is greater than $\sqrt{3}$, the
ratio of minimum tuning rate to normal tuning rate is

$$
\begin{equation*}
\frac{R_{\text {minimum }}}{R_{\text {normal }}}=\frac{1}{1+\frac{\left(\rho_{t}^{2}-1\right)^{3}}{\left(\rho_{c t^{2}}-1\right)\left(\rho_{t}^{2}+1\right) \rho_{t}^{2}}} \tag{9}
\end{equation*}
$$

Equations 6 through 9 represent also the factor by which the density of the slow-rate f-m spectrum of the tube is compressed or expanded by long-line effect. When the vswr at the tube is greater than $o_{c t}$, fre-quency-jumping occurs as the tube is tuned. Since the frequencyjumping behavior of pulsed tubes is considerably different from that of continuous-wave tubes, the following discussion is divided accordingly..

Frequency-Jumping of Pulsed Tubes

The two parameters p_{t} and $p_{\text {ot }}$ determine the width of the frequency breaks as a fraction of the irequency spacing of the modes on the line, $\left(f / 2 N_{g}\right)\left(1-f_{c}^{2} / f^{2}\right)$. Therefore, the single parameter pct completely characterizes the Smith chart presentation of the fre-
quency-jumping behavior of a pulsed oscillator. For any given physical situation the value of p c may be determined from $Q_{z a}$, line length and frequency (Eq. 4). The frequency instability region boundaries, shown in Fig. 2, were determined graphically from plots of Eq. 2.

As a pulsed tube is tuned, the point on the Rieke diagram representing the line impedance at the tube moves around the Smith chart in a circle which is concentric with the center of the chart, with a radius corresponding to the vswr. (This assumes that the load is not frequency-sensitive.) When the impedance point reaches a frequency instability region boundary, the point jumps to the opposite side of the frequency instability region on the Smith chart. Practically speaking, however, when the impedance point is in the neighborhood of the frequency instability boundary, the tube fires randomly on either side of the region, so that the boundaries for stable operation are not very definite.

The transient that occurs during frequency-jumping is considerably longer than the ratio of twice the line length to the group velocity of the waves on the line. Therefore, when the line length is greater than 100 feet, the transient may not be completed during a onemicrosecond pulse. If the line length is greater than that which is equivalent to 500 feet of airdielectric coaxial line, the line will appear to be reflectionless for a one-microsecond pulse.

Figure 3 shows the percent of the tuning range accessible to pulsed tubes with long-line effect present.

Frequency-Jumping of C-W Tubes

The single parameter pot again characterizes the Smith chart presentation of the frequency-jumping behavior of a c-w oscillator, but in this case the behavior is complicated by hysteresis. Figure 4 shows the frequency instability regions (heavy lines) for a value of oct equal to 1.2. When the line impedance at the tube falls within region A, no frequency-jumping can occur, but only a nonuniformity

FIG. 5-Rieke diagram showing frequency-jumping contours for c-w tube
of the tuning rate exists.
Region B is unconditionally unstable for any manner of tuning, while region E is not accessible when tuning one way or the other. Region C is realizable only when tuning downward in frequency, while region D is realizable only when tuning upward. The two sets of concentric circles shown with light lines illustrate the frequencyjumping behavior for two different values of vswr and for both directions of tuning. The solid lines represent stable tuning, while the dotted lines represent the fre-quencr-jumping transient.

Frequency-Jumping Contours

From Fig. 4 together with Eq. 1 all frequency-jumping information can be obtained for pot equal to 1.2 . A family of curves similar to Fig. 4 could be plotted but would be rather complex, hence in Fig. 5 a family of half-curves is plotted, giving the complete story for tuning upward in frequency. A mirror reflection of the curves around the zero-reactance line completes the picture for downward tuming.

Figure 6 shows the percent of
the frequency band accessible to c-w oscillators with long-line effect present as the tube is tuned both ways. For each curve the abrupt change in slope corresponds to point a in Fig. 4, where the two regions of frequency-jumping begin to overlap each other.

Critical VSWR Ratios

For vswr values greater than that corresponding to region A the only operable regions correspond to short frequency intervals, spaced $\left(f / 2 N_{g}\right)\left(1-f_{c}{ }^{2} / f^{2}\right)$ apart when tuning in one direction, and similar short frequency intervals spaced between the first set when tuning in the other direction.

Thus far in the discussion the emphasis has been placed on the viswr at the tube, whereas the vswr at the load is usually the known quantity. Therefore, in most practical problems Eq. 3 and 4 must both be solved. The nomograph in Fig. 7 simplifies the solution of these two relatively complex equations by giving the critical standing wave ratios $p_{0 t}$ and por directly from the system constants.

The dashed lines on the nomo-
graph illustrate its use for a specific problem, involving a 10 -foot length of RG $48 / \mathrm{U}$ brass S -band waveguide. At $3,000 \mathrm{mc}$, attenuation per 100 feet is 1.2 db . Assume the external Q of the tube is 200 . The cutoff wavelength is 14.42 mc , and at $3,000 \mathrm{mc}$ the free-space wavelength is 10 cm . Now $1-f_{\mathrm{c}}{ }^{2} / f^{2}=$ $1-\lambda^{2} / \lambda_{0}{ }^{2}=0.519$ and $\lambda_{0}=$ $\lambda / \sqrt{1-\lambda^{2} / \lambda_{c}{ }^{2}}=0.139$ meter. Thus, $Q_{z i i} \imath_{g}\left(1-f_{c}^{2} / f^{2}\right)=14.42$.

Using this value and $l=10$ feet on the right-hand side of the nomograph gives $\varphi_{\mathrm{c}}=1.58$. Transferring this value to the left-hand side of the nomograph and using. with 0.12 db for total attenuation of 10 feet of line gives 1.6 for critical vswr ocs at the load.

Alternatively, it is possible to eliminate c_{c} and work in terms of $\rho_{c s}$. Eliminating $\rho_{o t}$ between Eq. 2 and 3 and solving for pos gives

$$
\begin{equation*}
\rho_{c L}=\frac{\sqrt{1+Q_{x h}}{ }^{\pi \Lambda_{n}}\left(1-\frac{f_{c}{ }^{2}}{f^{2}}\right)-\tanh \alpha l}{1-\sqrt{1+Q_{\pi, h}\left(1-\frac{f_{c^{2}}^{2}}{f^{2}}\right) \tanh \alpha l}} \tag{10}
\end{equation*}
$$

As the line length is increased, the value of sob decreases until a minimum is reached, after which it increases again and becomes infinite. At line lengths greater than that corresponding to $p_{0 L}=\infty$, Eq. 10 is no longer valid: ρ t is always less than oct for any pcc. Plots of ocl versus line length for S-band, X -band and K -band waveguides for various values of $Q_{x n}$ are shown in Fig. 8. Since attenuation and guide wavelength vary over the frequency range of a given waveguide, the curves shift as the tube is tuned. The expressions for minimum crit-

FIG. 6-Percent of tuning range accessible to continuous-wave oscillators when tube is tuncd bo is mays
ical vswr at the load, and the line length at which this occurs, are given in Eq. 11 and 12.
$\rho_{c L-m i n i m u m}=$

$$
\frac{\left.\sqrt{1+\frac{2}{\zeta}\left(1-f_{c}^{2}\right.} f^{2}\right)-\tanh \frac{\alpha \lambda_{s} Q_{x h} \zeta}{2 \pi}}{1-\sqrt{1+{ }_{\zeta}^{2}\left(1-\begin{array}{c}
f_{c}^{2} \\
f_{Q} \tag{11}
\end{array}\right) \tanh \frac{\alpha \lambda_{g} Q_{x h} \zeta}{2 \pi}}}
$$

For minimum $\rho_{v L}, l=\frac{\lambda_{2} Q_{x i} ;}{2 \pi}$
where $\zeta=\sqrt{1+\left(\frac{\pi}{Q_{x} \alpha \alpha \lambda_{0}}\right)^{2}-1}$
From Eq. 11 and 12, $\rho_{c L}$ becomes a minimum at a line length corresponding to about 4 db attenuation, and ocl becomes infinite for

FIG. 7-Nomegraph for calculation of the critical voltage standing-wave ratio at which frequency-jumping begins in the oscillator tube

FIG. 8--Curves giving critical voltage standing-wave ratios at load as function of system constanis. Curves shift as tube is tuned through the operating range
a line length corresponding to about 25 db for the usual range of values of $Q_{x \lambda}$.

Conclusions

A nomograph, a set of curves and some simple equations have been evolved which simplify calculations of long-line effect. From these studies it may be seen that line lengths of the order of 75 guide wavelengths render ordinary microwave oscillator tubes useless for applications where smooth tuning is required when the line is terminated in standing-wave ratios presented by typical broadband antennas. This means, for example, that to avoid frequency-jumping, X -band line lengths must be less than 12 feet, and K-band line lengths must be less than 4 feet.

Elimination of frequency-jumping is most easily achieved by designing the system for a short line length. Another solution is to introduce sufficient attenuation, but this causes substantial power loss and is hence not suitable for highpower work.

Line stretchers may be employed whenever the application tolerates their use. No long-line frequencyjumping is experienced when the microwave generator is an amplifier driven by a well-buffered master oscillator. Ferrite gyrators ${ }^{3}$ or other types of one-way transmission lines may solve the longline problem when the peak power is low.

Carcinotron

A new type of oscillator tube, the carcinotron ${ }^{4.5}$ (backward-wave oscillator) employing basically new principles of operation, is presently in development and shows promise of having a much higher effective external Q than those ordinarily encountered. These tubes should be very insensitive to long-line effect.

References

(1) G. B. Collins, "Microwave Magnetrons', p 320, Vol. 6, MIT Rad Lab Series, (2) Radio Research Laboratory, 1948. "Very High Frearen Lathoratory Technigues", 515. McGraw-IIIl Book Co.. New York, 1947.
(3) C. I. Hogan, The Mierowave Gyrator, BSTJ. p 1. Jan. 1951
(4) R. Warnecke. P. Guenard, O Doehler and B . Epsiztein, The M Carcinotion, publication pending
(5) P. Komnfner, A Backward Wave Oscillator, IRE Electron Tיbe Pesearch Conference, June 1952. Ottawa, Canada.

Electronic filter occupies one fiftieth the space required by equivalent L.C filter

Cutaway view of Navy tactics trainer using central d-c power supply with electronic filter to replace prohibitively bulky inductance-capacitance filter

Electronic Filter For

Economy of rack space and improved filtering action result from using electronic filter in central power supply for multi-unit analog computer. Typical filter described remove ripple from 300 -volt 18 -ampere d-c supply for Navy tactics trainer

By R. N, RIGGS and J, D, GRONIN
Engineering and Research Corporation Riverdale, Maryland

Central power supplies for electronic computers are rapidly replacing the numerous isolated power supplies that existed in the past. They have the advantages of lower cost and less waste of expensive rack space.

These advantages, however, are accompanied by many severe problems which must be solved if the supply is to be suitable for analog computer applications. Such computer supplies must have low d-c regulation, low a-c output impedance from d-c through the audio range and low ripple within the pass band of the computer components. Failure to accomplish these objectives could cause severe noise and interaction between computer elements; in the extreme case, it could cause the system to break into oscillation.

Isolated power supplies do not usually present such interaction problems. Solution of the ripple and impedance problems by a simple L-C filter, for a typical 300 -volt d-c 18 -ampere 3 -phase supply, would require an inductance occupying about two-thirds cubic foot and an oil-filled capacitor of about fifty cubic feet. These can be replaced

FIG. 1-Basic a.c equivalent circuit of electronic power supply filter
by an error-actuated electronic filter occupying about one cubic foot, at a small fraction of the cost.

The a-c equivalent block diagram of such a filter is shown in Fig. 1. Taking each component of the a-c ripple individually, it can be shown that ripple reduction varies with the gain of the amplifier, while the power (volt-amperes) required for filtering is an inverse function of amplifier gain.

$$
\begin{aligned}
& E_{o}=E_{I N}-A E_{o} \\
& E_{o}(1+A)=E_{I N} \\
& E_{o}=E_{I N} /(1+A)=E_{I N} / A \text { for } A \gg \\
& V A=A E_{0} \frac{E_{0}}{Z_{L}}=\frac{E_{I N^{2}}}{A Z_{L}}
\end{aligned}
$$

The amplifier indicated in Fig. 1 is a two-stage unit with attenuation and phase-shift compensating networks. Nyquist's criteria for stability was applied with the stipu-

FIG. 2-Low-frequency (A) and highfrequency (B) networks and responses

FIG. 3-Complete circuit diagram of electronic filter for 300 -volt 18 -ampere power supply. Equivalent L-C filter would require 50 cubic-foot capacitor

Central Power Supplies

FIG. 4-Curves showing filter attenuation and amplifier gain and output impedance vs frequency
lated safety factor that the gain would not exceed 0 db when the phase shift reached 150 degrees, nor exceed - 10 db when the phase
shift reached 180 degrees.
Two types of attenuation and phase-shift networks are used; one is effective at low frequencies, the other at high frequencies. The low-frequency network is shown in Fig. 2A. The number of octaves between f_{2} and f_{3} can be controlled to give some attenuation without excessive phase shift. The attenuation is accomplished at 6 db per octave. The use of a coupling capacitor large enough to cause blocking is avoided, while the break frequency of f_{1} nevertheless occurs at a very low frequency.

The high-frequency networks are of the type shown in Fig. 2B. Attenuation is accomplished at 6 db per octave per network. In the case of the interstage network the 6AU6 load resistor acts as the series arm. The complete amplifier employing these circuits is shown in Fig. 3.

The total ripple attenuation is the sum of that due to a conventional L-C (capacitor C and the secondary of T_{1}) filter network action and that due to the amplifier. The plot, in Fig. 4A, of ripple attenuation vs frequency shows the total attenuation due to both for one of the filter types developed. The curves of the amplifier openloop characteristics (Fig. 4B), show the effects of the amplifier network alone as measured by the setup shown in Fig. 5. The curve of output impedance vs fre-
quency, in Fig. 4C, was carculated by passing a known current from the simulated load impedance into the filter unit and measuring the voltage drop across it as shown below in Fig. 5.

Load Power Factor

Since the capacitive component of the load is not very predictable,

FIG. 5-Circuit arrangements for measuring filtering action
and output transformer phase and gain response is a function of the capacitance across its output terminals, it was necessary to parallel the load with a capacitor C such that any increased capacitance in the load would not cause increased phase shift which would endanger stability. The consequent amplifier gain reduction was compensated for by L-C filter action. The sum of these two effects is included in the total attenuation vs frequency plot of Fig. 4A. The stability criteria plot in Fig. 4B shows the gain of the amplifier, this being the inverse of the attenuation produced.

Audio Amplifier Matches

View of transformerless amplifier including preamplifier

Chassis of 18 -wath amplifier includes preamplifier and pewor supply

TRANSFORMERS are used in power amplifiers for impedance transformation to deliver maximum power to a given load with minimum distortion and to isolate the load from direct-current components in the circuit. An ideal transformer should perform these functions without introducing any distortion and power loss. However, a practical audio transformer is far from the ideal and it is the heaviest, bulkiest and most expensive item in an audio amplifier-including even the power supply transformer
(on a watt per watt basis).
The equivalent circuit of an ironcore push-pull output transformer is shown in Fig. 1 and requires little comment other than that it now represents an impedance that varies both with frequency and operating level or excitation.

Amplitude distortion will be caused due to the nonlinearity of the B-H characteristics of the core material and will become worse at low frequencies as can be seen from the relation

$$
\begin{equation*}
E_{p}=4.44 \mathrm{fBAN} \times 10^{-8} \text { volt } \tag{1}
\end{equation*}
$$

By KERIM ONDER
Circuit Research Laboratory

Investigation of nonlinear distortion caused by transformer core materials shows that the total harmonic distortion may run. up to several percent. ${ }^{1}$ Additional amplitude distortion will be generated due to mismatch between the load and the tubes as a result of transformer impedance variation particularly at low and high frequencies.

The amplitude falls off at low frequencies due to the finite value of the primary inductance and due to leakage inductance and winding capacitances at high frequencies. Resonance effects are also produced at certain frequencies.

Frequency distortion will be accompanied by phase distortion and this becomes an important consideration when feedback is applied around a loop including the output transformer. At certain frequencies the nature of feedback may exceed the stability requirements where a safety margin of 30 degrees and $15-\mathrm{db}$ loss around the feedback loop must be allowed. This requires that the cutoff rate at both ends of the frequency response curve should not exceed 10 db per octave. Some feedback amplifiers which seem to be stable under steady conditions show poor transient response and instability when subjected to the tone burst method of testing. ${ }^{2}$

The efficiency of an audio output transformer is often overlooked. However there are commercial transformers in which the losses including the total core and copper losses may be as high as 50 percent. The core losses vary with both frequency and flux density according to the well known relation

$$
\begin{equation*}
\text { 핑ㅁ } P=k_{n} f B_{m}^{n}+!k_{e} f^{2} B_{m}^{2} \text { watts } \tag{2}
\end{equation*}
$$

Voice-Coil Impedance

Abstract

Balanced transformerless amplifier is characterized by low distortion, wide frequency range and good transient response. Typical amplifier produces 18 watts of audio and weighs only 4 pounds including preamplifier and power supply

FIG. 1-Equivalent circuit of a typical output transformer illustrates its frequency dependence

As a result of this, the frequency response of an amplifier will look quite different at various power levels.

Furthermore with push-pull output transformers, there is the problem of symmetry and coupling between each half of the primary as well as the secondary windings; and unless a coupling factor of one is realized, the flux due to the d-c components cannot be completely cancelled out while maintaining a-c symmetry. This is of particular importance in class-B audio amplifiers.

Thus, the performance of an audio amplifier is intimately linked with the quality of the output transformer. It is by no means an easy task to design a good audio output transformer even if cost, weight and size are of no consideration. Hence, many attempts have been made to eliminate the output transformer. ${ }^{5,4,5}$

Some objectives may be prescribed for a transformerless amplifier. The circuit should be symmetrical with no d-c through the load and it should not be necessary
to use large electrolytic capacitors to block the d-c components. The tubes should be easily driven in the right phases, without using transformers; but in-phase components, such as hum, should not appear in the load. The output impedance should be as low as possible and no taps should be used in the loudspeaker voice coil. Inverse feedback should be easily applied without using complicated circuits.

Transformerless Amplifier

Figure 2 shows the circuit of a power amplifier consisting of four tubes connected in a balanced bridge circuit and so driven that each tube delivers equal power to the load. The tubes are properly biased to establish normal operating plate voltages and currents. The lower tubes in the bridge are biased with the total plate currents flowing through R_{k}. The upper tubes are positively biased by the bleeder network R_{1}, R_{2} and R_{3}, so that the
correct negative bias is established between their grids and cathodes. The bias voltage should be equal in all tubes.

The loudspeaker or load is connected between points 5 and 6 and no current should flow through it in the absence of a signal. A d-c balancing control R_{3} is provided to zero adjust the circuit if necessary. However, due to the nature of the circuit, out-of-balance current with tube replacement is very small, even without this control.

A push-pull voltage amplifier drives the output tubes in the proper phase and amplitude. Since less drive is required for the lower tubes, taps are provided in the plate load resistors of this amplifier. The drive may be termed diagonal phasing, since the tubes on the same diagonal are driven in phase whereas the tubes on the other diagonal are 180 degrees out of phase. The drive voltage e_{i} for the upper tubes depends on the value

FIG. 2-Basic circuit diagram of transformerless amplifier

FIG. 3-Equivalent circuit of amplifier
of the load resistance and is given approximately by the expression

$$
\begin{equation*}
e_{i}=e_{g}+\frac{e_{0}}{2} \tag{3}
\end{equation*}
$$

where e_{0} is the output voltage.
The equivalent a-c circuit of the power amplifier stage is shown in Fig. 3A and may be represented by a generator of voltage $2 \mu e_{y}$ in series with the plate resistance r_{p} (Fig. $3 B$). Thus the total power is 4 times that of a single tube. It should be noted that e_{g} is the net a-c driving voltage between grid and cathode.

Circuit Variations

Several varieties of this circuit are possible. For instance, the grids of the upper tubes may be directly connected to the plates of the voltage amplifier as shown in Fig. 4. In this way the coupling capacitors and the biasing resistors are eliminated. Then the d-c balancing of the power amplifier is adjusted by potentiometer R in the voltage amplifier cathode circuit. An audio amplifier using this variation was built and used for sometime with good results. Furthermore the tubes may be biased for class-AB or class-B operation for higher plate efficiencies. With the directcoupled circuit, however, the filaments of the push-pull amplifier cannot be placed in the cathode lead.

Feedback can be connected between either point 5 or 6 and a suitable point in the early stages of the amplifier virtually to eliminate amplitude distortion. It can also be applied in push-pull from both points in the output. Poorly filtered d-c plate supply voltage can be used with no audible hum in the output. In this case feedback must be applied in push-pull.

A complete audio amplifier using this circuit in the output stage is
shown in Fig. 5. A see-saw type of phase inverter is used although other types are equally satisfactory. The filaments of the voltage amplifier and the phase inverter tubes are placed in the common cathode circuit of the power output stage. In this way filament hum is eliminated and some saving both in power and parts realized.

Audio Characteristics

Overall negative feedback of about 15 db is applied from the correct output terminal to the cathode of the input tube. With a total plate current of 215 ma at 270 volts and using a load of 400 ohms the output power is 9 watts with an intermodulation distortion of only 0.7 percent. Plate efficiency under these conditions (class-A operation) is 20 percent. Power output versus load impedance is shown in Fig. 6A. Intermodulation distortion versus power output with and without feedback are shown in Fig. 6B.

No special comments are necessary for the frequency response of this amplifier; since the only limiting factors are the tube and stray capacitances at high frequencies and the size of the coupling capacitors at low frequencies. It is flat within the audible range and the response is the same at all levels of operation. This is not true for transformer amplifiers. An input voltage of 0.3 volts rms is required for full power output.

One criticism which may be directed against this transformerless amplifier is the fact that a com-
paratively high impedance loudspeaker is required for full power output. However, even with a 4 ohm loudspeaker, sufficient volume without noticeable distortion can be obtained in an average-size room.

18-Watt Amplifier

With the object of increasing the power output and at the same time reducing the load impedance, another amplifier was built using four type 6082 tubes. These tubes are industrial versions of the wellknown 6AS7G and require 26.5 volts for the filaments. Hence it is possible to connect all the tubes in series across the power line without using a filament transformer.

As seen from Fig. 6 the ideal loudspeaker for use with the amplifier described should have a voice-coil impedance of 400 ohms. However, satisfactory results are also obtained with a 16 -ohm loudspeaker. Several speakers may be connected in series to obtain an approximate match to the amplifier; for example, four 50 -ohm fiveinch intercom speakers mounted in a suitable enclosure make an ideal system.

One of the best speakers tried with the system is a special DeLuxe 12 Bakers loudspeaker having a voice-coil impedance of 250 ohms . This unit has a power rating of 15 watts and its frequency range is 18 to $17,000 \mathrm{cps}$.

The cone is suspended with a cloth ring and has a fundamental resonant frequency of about 35 cps.

FIG. 4-Basic circuit of transformerless amplifier using direct coupling

FIG. 5-Complete transformerless amplifier capable of outputs of 8 watts. Bridge-type ouptut circuit matches voice-coil impedance

If desired, an output transformer can be used with advantage, since the requirements imposed on the transformer would be far less than a conventional push-pull audio output transformer. This can be of simple construction, with only two windings and having a small turns ratio. Such a transformer will be comparatively free from the troubles outlined in the beginning of this paper and will cost far less. In fact, an ordinary filament transformer has been used successfully with large amounts of negative feedback applied over the secondary winding.

Applications

The amplifier circuit described above is not restricted to the circuits, tubes and mode of operation described. Other tubes, such as the 12B4 and the 6SN7 may be used, but with some sacrifice in power output. Also the total plate current may be reduced to 150 ma or to 300 ma to simplify the cathode load circuit and provide heater current for the voltage amplifiers. Several varieties using the basic idea may be used. Furthermore, several applications of this amplifier circuit are possible, besides its use as a straight audio amplifier. It can be used with advantage in recording amplifiers, in ultrasonics, in wide-
band amplifiers, in aircraft, in commercial, military and other equipment where reduction of weight, and compactness are the objectives.

Cathode-Ray Circuits

This transformerless amplifier circuit is particularly suitable for magnetic deflection of cathode-ray tubes in television, radar and other applications. The linearity of the forward trace will be greatly improved due to the wide frequency response and no high transient voltages will be produced during the return trace other than across the yoke inductance. A damper diode may be connected across the output to reduce these transient voltages. Furthermore the efficiency of the system will be greatly
improved, particularly in the line drive circuit where the frequency is high. In contrast to push-pull deflection systems, there will be no direct current through the yoke and no center tap is necessary. The linearity of the tubes may be improved by the application of negative feedback as discussed above.

References

(1) Norman Partridge, Harmonic Distortion in Audio-Frequency Transform ers, Wioreless Engineer, Sept., Oct. and Nov. 1942.
(2) Kerim Onder, A Tone-Burst Generator, Jour Acoust. Soc. America, Nov, 1453.
(3) Fletcher and Cooke, Cathode-Fol lower Loudspeaker Coupling. ElectronICS, Nov. 1951.
(4) A. Peterson and D, B. Sinclair, A Single-Ended Push-Pull Audio Amplifier, Proc IRE, 40, p 7, Jan. 1952 .

Commercial O-T-L, Amplifier of Unique Design, Audio Engineering. Aug. 1952.

FIG. 6-Curves show output versus load (A) and distortion (B)

Multiexposure Flash

Hydrogen thyratrons triggered by ring counter provide ten one-microsecond flashes for series photography of rapidly occurring phenomena, and use in making Schlieren and shadowgraph pictures. Flash timing can be synchronized with camera operation

Microsecond flash equipment with high-speed camera at left. Pulse generator supplies triggering pulses for series of ten flashes

Thyratrons of pulser unit connect energy storage capacitors at bottom if picture across light source when triggered by counter circuit

SEquence photography of phenomena such as projectile motion, explosive reactions, and rapid mechanical motions require a timed series of short-duration flashes. The system described in this article provides a group of ten one-microsecond pulses synchronized with camera operation.
The equipment consists of a tim-ing-pulse source and driver, a pulser with energy storage and power supply, a light source and a photographic recorder.

The light source can be either a magnesium gap or a gas-filled strobe lamp and will dissipate 32 watt-seconds of energy for each pulse. Time interval between light flashes can be adjusted from 100 $\mu \mathrm{sec}$ upward.

A block diagram of the complete photographic system in shown in Fig. 1. The timing unit provides

[^15]synchronization of the light impulses with camera operation.
When a high-speed movie camera is used, a magnetic pickup coil is aligned with the film-sprocket tooth, causing a pulsed signal to flash the light approximately at the

FIG. 1-Block diagram of flash system. Pulser connects series of charged capacitors across flashlamp
center of each frame time. If a rotating-mirror camera is used the light flashes are controlled by a time-mark generator.
The driver, which contains a tenstage gas-tube counter, shapes and counts the time marks for the pulser circuit. Driver action can be triggered by the phenomenon being observed.
The pulser consists of energystorage capacitors and thyratron switching tubes. These tubes connect the stored energy into the light source as each successive pulse is received from the driver. An 18 -kv power supply charges the storage capacitors for each cycle.

Driver

The driver unit, shown in Fig. 2, is composed of a pulse-shaping circuit, gate amplifier, control multivibrator, ten-stage thyratron counter and ten output circuits.
A two-stage limiting-type amplifier and a monostable multi-

for High-Speed Cameras

By L, D, FINDLEY E, S, KENNEDY AND J, H, VAN HORN
Midwest Research Institute
Kansas City, Missouri
Telecom. Inc.
Kansas City, Missouri

vibrator make up the pulse-shaping circuit. The timing signal is squared by the amplifier and this square-wave is differentiated to obtain a trigger signal for the multivibrator. Amplifier sensitivity is such that the multivibrator is triggered with a one-volt input signal.

For sine-wave input, sensitivity is somewhat dependent upon the frequency; at frequencies of 3.5 kc and higher, one volt rms is sufficient; at lower frequencies the amplitude must be increased slightly. With pulsed-signal inputs, repetition frequency is immaterial. Pulses having an amplitude slightly greater than one volt and a rise time of a few microseconds are satisfactory.

The output pulse of the shaper is obtained from the trailing edge of the multivibrator pulse. This pulse can be adjusted in width from about 10 to $85 \mu \mathrm{sec}$, and, hence, the timing pulses can be delayed by a controlled amount within this range. This delay is used for centering the light pulses in the frame exposure time.

A 6AS6 tube is used as a gate. Pulses from the shaper are applied to its control grid and its suppressor voltage is controlled by a bistable multivibrator. In its normal reset state, the multivibrator clamps the gate suppressor at a negative bias level and blocks the timing pulses. When a start pulse occurs, this bias is removed and the pulses pass through to the counter. The gate remains open until the counter has received ten pulses. At this time an end pulse is generated resetting the control multivibrator.

Pulses out of the gate are applied in parallel to the grids of all thyratrons in the counter. Since this requires more power than the

FIG. 2-Driver unit, shown in block form, supplies ten pulses to the pulser unit when triggered by signal from marker generator or magnetic pickup

FIG. 3-Two of ten ring-counter stages. Circuit constants give a maximum count of 10.000 per second using component values indicated

6AS6 can deliver, the gate circuit is followed by an amplifier and căthode follower.

Counter

The counter is a version of a gastube ring counter in which the ring has been opened. A typical pair of counter stages is shown in Fig. 3. In the normal reset state, all thyratrons of the counter are nonconducting. The voltage-divider network in the cathode circuit of each stage places a negative bias on the screen of the succeeding stage. This bias is sufficient to prevent the thyratron from being fired by any pulses present at its grid. If the thyratron in the preceding stage conducts, the voltage drop across its cathode resistor decreases the screen bias to approximately zero. When the bias is removed, the stage will fire on the next pulse.

The screen of the thyratron in the first stage of the counter is clamped at zero bias voltage. Therefore, this stage will fire on the first pulse that is passed by the gate to the counter. A $1,000-\mu u f$ capacitor across the screen of each stage forms, in conjunction with the divider of the preceding stage, a slow-time-constant charging circuit. This R-C circuit prevents the screen voltage from changing so rapidly that two stages of the counter will fire on a single pulse. The plate load of each stage is such that conduction will continue after each stage is fired. This prevents the counter from counting through more than one cycle without being manually reset. For the circuit constants shown in Fig. 3, the counter is limited in counting speed to about 10,000 counts per second.

The large negative signal that occurs in each stage as it is fired is fed through a biased diode to an output stage. This clipping of the signal removes hash appearing at the thyratron plate during conduction.

Each output stage of the driver unit is composed of a triode inverter, one-half a 12 AU 7 and a 2D21 thyratron pulser. The cathode of the thyratron is cableconnected to the $25-\mathrm{ohm}$ grid circuit of a hydrogen-thyratron discharge circuit in the pulser unit. A 150 volt pulse is developed across 25
ohms by this circuit arrangement. It was found necessary, however, to place approximately 100 -volt bias on the control grids of the 2D21 pulser circuits. This is to counteract the large negative pulse fed back through the cable from the pulser unit when the hydrogen thyratrons corresponding to other output circuits are discharged. This large pulse is due to the plategrid capacitance of the 5 C 22 thyratrons.

Power for the driver unit is supplied by a conventional low-voltage supply. A series-type voltage regu-

FIG. 4-Series of 5C22 thyratrons sequentially switches ten $0.25-\mu \mathrm{f}$ energy. storage capacitors across flashlamp
lator controls the voltage to the counter thyratrons. Other voltages are obtained by taps on a bleeder circuit or across glow-discharge regulator tubes.

Pulser

The light-source pulser consists of ten 5C22 thyratrons and sequentially switches ten energy-storage capacitors into the light source. A circuit diagram of this unit is shown in Fig. 4.

A negative excursion toward zero will occur for all thyratron anodes except the one firing, or those that have been previously fired. Due to capacitive coupling between the anodes and grids of the 5C22's, the grids are also driven negative and if the grid impedance is high enough the grids will be driven positive as the anodes return to
full d-c level. Since this would result in the firing of all tubes simultaneously, a resistive grid impedance of 25 -ohms has been chosen for proper operation of this pulser. Each grid receives its driving pulse through a 50 -ohm coaxial cable from the driver unit.

In each pulser stage, a $0.25-\mu \mathrm{f}$ energy-storage capacitor gives a one-microsecond light pulse when used with light-source impedances of four to five ohms. The capacitors are charged to 16 kv through 18 -megohm resistors. This resistance was selected to isolate the individual pulse stages and to reduce the high-voltage power supply charging current following each operation cycle. The 5C22 thyratrons are in shunt across the high voltage, and the capacitors are connected from each anode to ground through the light source. A wirewound resistor shunts the light source to provide a d-c charging path to the capacitors. Under pulse conditions this resistor has negligible effect, owing to its high inductive impedance.

The power supply is a conventional voltage-doubler system using 371B rectifiers and is capable of supplying up to 18 kv at 50 ma .

Surge fields inside the pulser cabinet are severe enough to disturb the reference amplifier in the low-voltage driver supply. For this reason the driver supply and driver are located in another cabinet external to the pulser.

Normally the 5C22 thyratron is not forced-air cooled, but with a compact array of 10 tubes whose heater consumption totals 650 watts, fan cooling is necessary.

The development described in this article was carried out under a contract with the Small Arms Branch, Research and Development Division, Office of Chief of Ordnance. The authors also wish to acknowledge with gratitude the assistance of Messrs. Goll, Williams, Rosine and Rendina of the Midwest Research Institute Staff.

Bibliography

[^16]
Gain-Stabilized

Transistor Amplifier

Abstract

Junction transistor amplifier uses unbypassed emitter resistor to obtain a predictable, stable gain and wide range of input impedances. Audio and instrumentation equipment are among possible circuit applications

INHERENT low input impedance and wide variation in gain of transistor amplifiers often necessitate transformer coupling and widerange amplitude control. The grounded-collector circuit has a high input impedance, but a gain of less than unity. The amplifier circuit described here possesses the high input impedance of the grounded-collector connection, the amplification possibilities of the grounded-emitter connection, and a predictable and stable gain.

Analogy between the groundedemitter transistor amplifier and the grounded-cathode vacuum-tube amplifier indicates that gain stability may be obtained by an unbypassed resistor between emitter and ground. This produces negative current feedback, causing increased gain stability at the cost of lowered overall gain. In the case of the transistor, the increased input impedance obtained may compensate for the gain reduction.

Theoretical Basis

The transistor amplifier and its conventional low-frequency equivalent circuit are shown in Fig. 1. The symbols used are standard: e_{i} is the a-c input voltage, e_{o} the a-c collector voltage output, e_{0}^{\prime} the a-c emitter voltage output, r_{e}, r_{b}, r_{c} and r_{m}, are the transistor parameters, ${ }^{1} I_{c}=-\left(I_{2}+I_{s}\right)$ is the emitter current, $I_{c}=-I_{e}$ is the collector current, \boldsymbol{R}_{e} is the external emitter resistor, R_{c} is the external collector

By charles a, krause
 Computer Research Corp. Mawthorne, Calif.

resistor and $E_{c c}$ is the collector bias voltage.
By straightforward analysis

$$
\begin{align*}
& R_{\mathrm{in}}= \frac{e_{i}}{I_{1}}=r_{b}+r_{e}+R_{e} \\
&+ \frac{\left(r_{e}+R_{e}\right)\left(r_{m}-r_{e}-R_{e}\right)}{R_{c}+r_{c}+R_{e}+r_{e}-r_{m}} \tag{1}\\
& A=\frac{e_{o}}{e_{i}}=\frac{-R_{c}\left(r_{m}-r_{e}-R_{e}\right)}{\left[r_{b}\left(R_{c}+r_{c}+R_{e}+r_{e}-r_{m}\right)+\right.} \tag{2}\\
& \begin{array}{c}
\left.\left(R_{e}+r_{e}\right)\left(R_{c}+r_{c}\right)\right]
\end{array}
\end{align*}
$$

and

$$
A^{\prime}=\frac{e_{o}^{\prime}}{e_{i}}=\frac{R_{e}\left(R_{c}+r_{c}\right)}{\left[\begin{array}{l}
{\left[r_{b}\left(R_{e}+r_{c}+R_{e}+r_{e}-r_{m}\right)+\right.} \tag{3}\\
\left.\left(R_{e}+r_{e}\right)\left(R_{c}+r_{c}\right)\right]
\end{array}\right.}
$$

Since junction-type transistors are generally used in the groundedemitter circuit, it may be assumed

FIG. 1-Grounded-emitter Transistor amplifier (A) and low-frequency equivalent circuit (B)
that r_{m} and r_{c} are much larger than R_{e} and R_{c}, which are in turn much larger than r_{v} and r_{θ} (remembering that $r_{m} \approx \alpha r_{c}{ }^{\prime}$). Values used in calculations are, $r_{c}=0.7 \mathrm{meg}, r_{b}=350$ ohms, $r_{e}=20$ ohms and $\alpha=0.975$.

Values of R_{e} and R_{c} will generally be between 1,000 and 50,000 ohms. Application of these assumptions to Eq. 1, 2 and 3 shows that

$$
\begin{align*}
A & \approx-\alpha \frac{R_{c}}{R_{e}} \tag{4}\\
R_{\mathrm{in}} & \approx R_{e}+\frac{r_{m} R_{e}}{R_{e}+R_{c}+(1-\alpha) r_{c}} \tag{5}\\
A^{\prime} & \approx 1 \tag{6}
\end{align*}
$$

If it is assumed further that α is very nearly unity, Eq. 4 and 5 reduce to

$$
\begin{align*}
& A \approx \frac{R_{e}}{R_{e}} \tag{7}\\
& R_{\mathrm{in}} \approx R_{e}+\frac{r_{c}}{1-A} \tag{8}
\end{align*}
$$

Equation 8 shows that this amplifier may possess high input impedances. While Eq. 7 and 8 are over-simplifications, they serve to indicate the magnitudes of the gains and input impedances which may be achieved.
The output impedance of this amplifier is essentially equal to R_{c}. This indicates that the smallest possible value of output impedance is determined by the maximum voltage swing desired. If a 10 -volt peak-to-peak swing is desired from a transistor whose maximum practical collector current is 2 ma above cutoff current, the minimum output
impedance is 5,000 ohms. Thus very low output impedances may be achieved in low-level stages where the maximum voltage output is small.

The condition where $R_{s}=R_{c}$ is the transistor equivalent of the vacuum-tube phase splitter. If q were unity the a-c collector and emitter currents would be equal, and the two a-c voltage outputs would be equal in magnitude and opposite in phase. In the junction transistor, balanced outputs can be achieved by making the ratio of the

FIG. 2-Amplifier circuit used to obtain data given in Table I
emitter resistor to the collector resistor equal to α. This means that R_{c} is about five percent larger than R.

For the CK721 transistors tested, the gain of a single amplifier was flat to about 20 kc , falling off 6 db at about 100 kc .

The gain obtained from cascaded stages, however, will fall off more rapidly due to decrease of input impedance with frequency. This will be discussed further as apparent input capacitance.

Measurements

The circuit of Fig. 2 was used to make gain and input impedance measurements. Bias applied at the base through a 1 -megohm resistor increases the undistorted output of the amplifier by allowing the input to become somewhat positive before the emitter current is cut off. This biasing resistor is a direct shunt upon the input impedance of the amplifier, and its effect has been removed from the tabulated values of R_{t}.

The data of Table I, taken from the circuit of Fig. 2, have measured gain accuracies ranging from about

5 percent when R_{e} is zero to aboul 1 percent in the unity-gain condition.
The input-resistance measurements have approximately 5 -percent accuracy. Computed values given in the table were obtained from Eq. 1, 2 and 3.

The data of Table I indicate the increased input impedance and gain stability produced by the emitter resistor. They also show that gain can be predicted quite accurately when an emitter resistor is present. Note that unit No. 1, whose gain without degeneration is much lower than any of the others, continues to have less gain in the presence of current feedback but by a much smaller percentage.

Calculations

The degree of correlation between computed and measured gain is at least as good as anticipated, since Eq. 4 has shown that the gain must vary at least as widely as α. For the CK721, this variation is about 5 percent. ${ }^{2}$

No great accuracy of prediction of input impedance is expected, since it is a function of r_{c}. Collector
resistance varies widely between units and with voltage and current conditions for a given unit. The fact that the computed gain is high and the computed input resistance is low in the absence of degeneration could be explained by the r_{e} for all of the units being larger than usual. In this condition ($R_{\varepsilon}=0$), the gain and impedance of the amplifier reflect the variability of transistor parameters.

Thus the lack of correlation between computed and measured values is to be expected, indicating the value of the current-feedback method.

A relatively low frequency of measurement, $1,000 \mathrm{cps}$, was chosen to eliminate the effects of the apparent input capacitance of the amplifier. While gain is constant to about 20 kc , the input impedance is not.

Apparent Input Capacitance

The apparent input capacitance is so-called because it is felt that this is at least partially a transittime effect. The large values of capacitance measured are not con-

Table I-Voltage Gain and Input Impedance Data from the Circuit of Fig. 2

Transistor Unit No.	$R_{c}=10,000 \mathrm{ohms}$								
	$R_{s}=0$		R • $=1,050$ ohms		$R_{\mathrm{s}}=4,900$ ohmes		$R_{s}=10,500$ ohms		
	Gain collector output	$\begin{gathered} R_{\text {in }} \\ \left(\text { ohms }^{2}\right) \end{gathered}$	Gain collector output	$\begin{gathered} R_{\text {in }} \\ (\text { olıms }) \end{gathered}$	Gain collector output	$\underset{\substack{R_{\text {in }} \\(\text { ohms })}}{ }$	Gain collector output	Gain emitter output	$\begin{gathered} R_{\mathrm{in}} \\ \text { (ohms) } \end{gathered}$
1	70	1,500	8.1	12,000	1.80	5,000	0.85	0.99	11,500
2	205	1,100	9.2	18,000	1.87	7,000	0.87	1.00	13,500
3	195	1,700	9.3	34.000	1.96	15,000	0.93	1.01	27,000
4.	150	1,600	9.1	20,000	1.93	11,500	0.91	1.00	21,500
Computed	290	870	8.9	27,000	1.88	10,300	0.89	0.98	19,700
	$R_{c}=25,000 \mathrm{ohms}$								
Transistor Unit No.	$R_{s}=0$		$R_{s}=2,300$ ohms		$R_{0}=10,500$ ohms		$R_{\text {c }}=23,000 \mathrm{ohms}$		
	Gain collector output	$R_{\text {in }}$ (ohms)	Gatin colleclor output	$\begin{gathered} R_{\text {in }} \\ (\mathrm{ohms}) \end{gathered}$	Gain collector output	$\begin{gathered} R_{\text {in }} \\ (\text { ohmis }) \end{gathered}$	Gain collector ōutput	Gain emitter output	
1	180	1,300	9.4	20,000	2.08	105,000	0.93	1.00	195,000
2	310	900	10.0	40,000	2.16	145,000	0.96	1.01	255,000
3	330	1,700	10.4	48,000	2.25	205,000	$1 . c 1$	1.01	420,000
4	280	1,600	10.2	45,000	2.24	185,000	1.01	1.01	355,000
Computed	- 580	690	10.0	35,000	2.15	145,000	(0.98	0.99	255,000

firmed by the transistor manufacturer ${ }^{8}$ or by bridge measurement, nor is it possible to obtain a marked peak of input impedance at one frequency when a high-Q coil of the proper magnitude is shunted across the input. It seems possible that the inherent transit time of the semiconductor could cause an effect analogous to input capacitance. That is, the current flowing through the emitter and collector in series, lags the current in the emitter-base circuit in much the same way as the current through the resistor of a parallel R-C combination lags the current through the capacitor. The phase of the output current is then not proper for current degeneration, lowering the input impedance just as the impedance of the parallel $\mathrm{R}-\mathrm{C}$ is decreased due to the presence of the capacitor. The effect of transit time increases with frequency just as does the effect of a shunt capacitor.

Input Impedance

The circuit shown in Fig. 3 was used to measure the input impedance of the amplifier. If this input impedance is assumed to be a resistor $R_{1 \mathrm{n}}$, shunted by a capacitor, C_{in}, then

$$
\begin{equation*}
\left(\frac{e_{1}}{e_{2}}\right)^{2}=\left(1+\frac{R}{R_{\mathrm{in}}}\right)^{2}+\left(2_{\pi} f C_{\mathrm{in}} R\right)^{2} \tag{9}
\end{equation*}
$$

Measurements indicated that $C_{1 n}$ was about $100 \mu \mathrm{f}$. Essentially the same result was obtained at several frequencies, indicating that the assumed form of input impedance gives usable results. As a further check, the loading effects of the amplifier on a $10,000-\mathrm{ohm}$ squarewave source were observed and compared with results obtained by loading with a simple capacitor. The two effects were similar in all respects, showing the same deterioration of rise time.

A phenomenon similar to the Miller effect in the vacuum-tube amplifier was observed. Apparent input capacitance increased with amplifier gain according to the equation

$$
\begin{equation*}
C_{\mathrm{in}} \approx C_{1}+A C_{2} \tag{10}
\end{equation*}
$$

For the units tested, C_{1} was of

FIG. 3-Circuit used in measuring input impedance of transistor amplifier

FIG. 4-Four-stage transistor amplifier using emitter degeneration to stabilize gain and raise input impedances. Values for R_{c} and R_{e} are given in text
the order of $100 \mu \mu \mathrm{f}$ and C_{ε} about 10 un.f. It seems possible that C_{8} is the true base-to-collector capacitance, increasing in effect with gain exactly as does the grid-to-plate capacitance of the grounded-cathode vacuum-tube amplifier, while C_{1} is primarily a transit-time effect.

Cascading of Stages

Since the gain of each stage decreases as its input impedance increases, the use of current degeneration does not produce increased overall gain of cascaded stages. If an amplifier having a gain of A and input resistance of $r_{c} /(1-A)$ is used to amplify the voltage from a source of output impedance R_{n}, the net gain, A_{o}, becomes
$A_{o}=\frac{\frac{r_{c}}{1-A}(A)}{\frac{r_{c}}{1-A}+R_{o}}=\frac{A}{1+(1-A) \frac{R_{o}}{r_{c}}}$
Since A must always be negative, the largest value of A_{0} is obtained where A is very large and the input resistance very small.
There are, however, distinct advantages of this amplifier. It may be used to amplify the output of a high-impedance source without overloading the source. It also eliminates the large-range volume controls which are required without
gain stabilization in order to allow unit interchangeability.

To illustrate that these amplifiers may be cascaded by simple capacitance coupling, the four units tested were placed in the circuit of Fig. 4. With $R_{c}=10,000$ ohms and $R_{e}=4,700 \mathrm{ohms}$, the gain of each stage should be 2.015 , the inputimpedance $93,500 \mathrm{ohms}$ (including the effect of the 1 -megohm biasing resistor), and the output impedance about 10,000 ohms. Operating from a zero-impedance source into a very high impedance load, the gain should be

$$
(2.015)^{4}\left(\frac{93,000}{93,000+10,000}\right)^{3}=12.14
$$

Using 5-percent resistors, the measured gain was 12 .

In the same circuit with $R_{\text {e }}$ changed to 1,000 ohms, the computed total gain becomes 2,600 (including the attenuation due to the $0.1 u$ f coupling capacitors) and the measured gain was 2,000 . The accuracy of prediction has been reduced with the decreased degeneration. It is, however, at least as good as the predictability of a single stage without degeneration. The total gain was down 3 db at 16 kc for four amplifiers in cascade.

Conclusions

High input impedance and gain stability may be obtained at the sacrifice of total gain for a transistor amplifier. The gain stability feature reduces the troublesome temperature variability of these devices.

Lower quality transistors will also produce satisfactory results in the circuit, but the results will be inferior since both α and r_{c} are smaller in magnitude.

The author acknowledges the aid of Rufus P. Turner in the solution of certain practical problems, in the taking of valuable data and in the wording of explanations.

References

(1) Herbert J. Reich, Transistors and Transistor Circuits, Electrical Manufacturing. n 10 f , Notr. 1952
(2) F. M. Dulsat. "Characteristics of Experimental Junction 'Transistors." Ravtheon Manufacturing Company, Receiving Tuhe Division.
(3) Private Communication with Raytheon Manufacturing Company, Receiving Tube Division.

(A) BASIC UNILATERAL NETWORK

FOR IDEAL DIODES:
$e_{R}=e_{G}\left[\frac{R_{1} R_{2}}{R_{1}\left(R_{S}+R_{2}+R_{R}\right)+R_{S}\left(R_{2}+R_{R}\right)}\right]$
(B) UNIPOLAR VERSION
$F O R R_{2}=R_{2}^{1}:$

$$
e_{R}=e_{g}\left[\frac{R_{1}\left(\frac{R_{R} R_{2}}{R_{R}+R_{2}}\right)}{R_{1}\left(R_{S}+R_{2}+\frac{R_{R} R_{2}}{R_{R}+R_{2}}\right)+R_{S}\left(R_{2}+\frac{R_{R} R_{2}}{R_{R}+R_{2}}\right)}\right]
$$

FOR MINIMUM FORWARD LOSS:
R_{2} (OPTIMUM) $=\sqrt{R_{R} R_{S}}$ AND $e_{R}=e_{q}\left(\frac{1}{\frac{R_{S}}{R_{R}}+2 \sqrt{\frac{R_{S}}{R_{R}}}+2}\right)$
(C) BIPOLAR VERSION

(D) CASCADED BIPOLAR VERSION

(E) oscillator APPLICATION

(F) AMPLIFIER ISOLATION

Unilateral Four-Terminal

Directional couplers made up from carbon resistors and germanium diodes reduce weight, size and power consumption of electronic equipment and improve reliability. Applications include isolation of subcarrier oscillators in control system to prevent pulling

CIRCUITS made up of four rectifying elements and two resistors may be made to provide unidirectional coupling over a band of frequencies limited only by the frequency response of the rectifiers. Such circuits may be used in place of isolation amplifiers to effect economies of weight, space, energy consumption and first cost, and to improve ruggedness and reliability.

When used to replace lossy isolation pads, unilateral networks achieve an effective gain in the direction of desired transmission without introducing added loss in the direction of undesired transmission. Applications include decoupling bridged inputs or outputs to reduce interaction, reduction of forward leakage in feedback circuits and, in general, reduction of reaction of the controlled on the controlling circuits.

The basic unilateral circuit of Fig. 1A (above) was built up from
unselected 10 percent resistors and crystal diodes, to give forward-toreverse transmission ratios at 1,000 cps of 28 db and a forward transmission loss of 3 db , with distortion less than 5 percent.

The circuit action may be illustrated by referring to the unipolar case in Fig. 1B. This circuit passes only positive-going waves from left to right. Values of R_{1} and R_{2} are not critical, but depend on the terminating impedances, the diodes and the maximum forward and minimum reverse attenuation allowed.

For ideal diodes, it is assumed that C_{1} is shorted and C_{9} open to obtain the equivalent circuit for the positive half-cycle, and vice versa for the negative half-cycle. Similarly, equivalent circuits can be deduced either with the diodes reversed or with generator and load interchanged.

The composite bipolar circuit of Fig. 1C will transmit both half-
cycles from left to right only. The equation for output voltage differs from that of Fig. 1B because of mutual loading of the two unipolar networks. Transmission in the reverse direction is zero for ideal diodes, in the equivalent circuit.

Design Criteria

Although series resistor R_{2} in Fig. 1C is not critical, there is an optimum value for minimum forward loss. Since the reverse transmission is zero in this ideal case, reverse transmission need not be a consideration in optimizing R_{2},

If the source and receiving impedances can be adjusted so that an impedance match at the input and output of the unilateral circuit is obtained, R_{2} becomes equal to 1.414 R_{R} or $0.707 R_{s}$. The relationship between R_{R} and R_{s} which must hold for impedance matching is then R_{s} $/ R_{R}=2$.

Directional couplers have been

(G) FEEDBACK LEAKAGE CONTROL

(H) LINE MEASUREMENT

Circuits

By J. S. FOLEY
Fiont Wayme, Indiana

built and tested under various conditions of frequency, forward and reverse signal strength, terminating impedances and d-c bias. An experimental model was made up using 1 N54 crystals because they were readily available. In any application the choice of rectifier would be governed by signal level, terminating impedances, frequency and attenuation desired. The series resistance, determined experimentally for greatest forward-to-reverse transmission ratio, was 24,000 ohms. The equal terminating impedances, optimized on the same basis as the series resistance, were 7,500 ohms.

With these values and a 3 -volt signal, the reverse insertion loss was 33.8 db and the forward insertion loss was 9.4 db , making the for-ward-to-reverse transmission ratio 24.4 db . These values were constant for a signal frequency ranging from 20 to $200,000 \mathrm{cps}$.

The input impedance of this di-
rectional coupler was measured with various terminating impedances. With a signal frequency of 1,000 cps and an input of 4 volts, the input impedance varied from 21,000 ohms to $39,000 \mathrm{ohms}$ as the load impedance varied from short-circuit to open-circuit.

Performance Characteristics

This same directional coupler was also tested to determine the effect of the presence of a desired signal on the rejection of the undesired signal. The test was made with desired and undesired signals of equal levels but different frequencies. The rejection of the undesired sigual was diminished 6 db ; the transmission of the desired signal was not affected.

Another bipolar directional coupler was built up with the same diodes but with ganged variable series resistors. The input and output impedances were varied independently from $20,000 \mathrm{ohms}$ to 560 ,000 ohms , and the series resistors were adjusted to obtain minimum forward loss for every terminal impedance setting. Observation of the forward-to-reverse transmission ratio showed degradation as either input or output impedance increased. The maximum degradation of forward-to-reverse transmission ratio occurred when input and output impedances were both maximum. The highest forward-to-reverse transmission ratio occurs when both the input and output impedances are minimum.
The forward insertion loss is highest for the case of maximum input and output impedances, as was true for forward-to-reverse transmission ratio. One important difference is that lowest forward insertion loss is obtained when the input impedance is large and the output impedance is small.

With the high-impedance terminations, distortion was most noticeable. This was corrected by individual adjustment of the series resistors.

Bias and Signal Level

The presence of a large d-c bias in the direction of maximum transmission causes the directional coupler to conduct signals in both directions. A d-c bias in the direction of
maximum attenuation causes the directional coupler to block signals coming from either direction.

Tests were made to determine the dependence of the forward-to-reverse transmission ratio and the forward insertion loss on signal level. The tests showed serious degradation of these parameters as the signal level became comparatively small. For a change in level from 10 volts to 0.1 volt, the for-ward-to-reverse transmission ratio for one circuit dropped from 26 db to 2 db and the forward insertion loss rose from 8 db to 14 db . This points up the importance of choosing the most suitable diode for the application.

A pair of directional couplers was connected in cascade as shown in Fig. 1D. The forward-to-reverse transmission ratio for the pair was 6 db higher than for a single circuit, but the forward insertion loss increased only 0.5 db . The cascading might be extended with good effect.

Examples of Applications

When two or more oscillators must be connected together without the output of one pulling the other off frequency, directional couplers may be used as shown in Fig. 1E. More output can now be obtained from the oscillators than if lossy pads had been used to provide the necessary isolation. Circuit complications, energy consumption and other evils of buffer amplifiers are also avoided.

When the inputs of two feedback amplifiers must be connected together, couplers may be used as shown in Fig. 1F to prevent interaction.

Forward leakage in a feedback amplifier can be minimized as illustrated in Fig. 1G.

Finally, the directional coupler is suggested as an aid in making lowfrequency measurements on transmission lines. A proposed circuit is shown in Fig. 1H. Here V_{2} will read the sum of the transmitted wave (traveling from left to right) and the reflected wave (traveling from right to left), and V, will read only the transmitted wave since the directional coupler stops reflected waves coming from the right. These voltages may be used to find the reflection coefficient of the transmission line.

Phase-Selective Detectors

Half-wave, full-wave and electromechanical circuits for use in self-balancing bridges, phase discriminators and a-c null detectors. Applications include automatic machine control and operation, radar search-track and navigation systems

By CURTIS R. SCHAFER

he Aerotec Corp

IN ALL DETECTOR applications it is desirable to operate at fairly high current and voltage levels to minimize errors due to unbalance in the circuit.

Input V_{1} is the unknown signal, or carrier modulated by the unknown signal. The other input V_{2} is a reference voltage of the same frequency and phase as the signal to be detected. Output is a pulsating d-c.

References

(1) Walter, Zeits. fur Tech. Phys., 13, p 363,1932 . p 237 Hảgu (3) Paporale, Status of VHF Fap 90 for Aviation, Electronics, 20,

Basic Operation

Half-Wave Type

WALTER PHASE-SELECTIVE RECTIFIER ${ }^{1,2}$ - Gives square-law response, with sensitivity decreasing near balance point. Meter reads zero if V_{1} and V_{2} are 90 deg out of phase
(4) Chance, Williams, Hughes, Sayre and MacNichol, "Waveforms", p 511, Vol 19, MIT Rad. Lab. Series, McGraw-Hill Book Co., New York, 1949.
(5) Mamon, Reverse Power Relay, vlec. Mfg., p 294, Apr. 1952.
(6) Livingston, A Rectifier-Type Phase-Sequence Indicator, Jour. Soi. Inst., p 246 , Sept. 1950.
(7) Cosens, Proc. Phys. Soc., 46, p 818, 1934.
(8) "Greenwood, Holdam and MacRae, "Electronic Instruments", p 385, oll 1, Mis Co
(2) Book CO 1949
(9) Minneapolis-Honeywell Regulator Co., Instrumentation Data Sheet
tor Co., Instrumentation Data Sheet
No. $10.20-3$.
(10) Batcher \& Moulic, "Electronic Control Handbook", p 213, CaldwellControl Handbook ' p ${ }^{213,}{ }^{\text {Clents Inc., New York, } 1946 \text {. }}$
(11) Macnamara, A New Type of Bridge Balance Indicator, Rev. Sci. Brisge Balance Indicator, Rev. Sci.
(12), \mathbf{y} 343, 1931.
(12) Chance, Williams, Hughes, Sayre and MacNichol, "Waveforms", ol Mit Rad. Lab. Series, McGraw(13) Morton, Trans. Faraday Soc., $33, \mathrm{p} 474,1937$.
full-wave

VARIATION OF WALTER CIRCUIT - Suitable for output stage of amplifier in self-balancing bridge. Germanium power rectifiers or diffusedjunction diodes can be used
(14) Suggestions from R. Adler of Zenith Radio Corp. and F. Thrift of General Electric Co. Williams, Hughes, Sayre and MacNichol, "Waveforms", Vol 19, MIT Rad. Lab. Series, Mc-Graw-Hill Book Co., New York, 1949. (16) Hathaway Instrument Co., Dener, Colo.
(17) Precision Thermometer and Instrument Co., Philadelphia, Pa.
(18) W. R. Ahrendt and J. F. Tap$\mathrm{lin}_{\text {, "Automatic Feedback Control", } p}$ 255, McGraw-Hill Book Co., New York, 1953
(19) R. L. Frank, Harmonic Insensitive Rectifiers for A-C Measurement, roc. Ch 1952
(20) Chance, Hulsizer, Williams and ments", Vol 20 ectronic Mime Measurements", Vol 20, p 412, MIT Rad. Lab. York, 1949 .
(21) Chance, Hulsizer, Williams and MacNichol, "Electronic Time Measurements', Vol 20, MIT Rad. Lab. Series, McGraw-Hill Book Co., New York 1949.
(22) S. Wald, Electromechanical Phase Indicator, Radio a Television News, p 14, Jul. 1949

VHF RADIO-RANGE COMPARATOR ${ }^{3}$ - Meter indicates zero when V_{1} and V_{2} are 90 degrees out of phase or when either or both voltages are zero. Used to demodulate 10-ke f-m subcarrier

PHASE-SENSITIVE DEMODULA-TOR4- Has push-pull output. Input may be from balanced or single-ended carrier. Carrier signal is reference

MAMON PHASE DISCRIMINATOR ${ }^{5}$ - Uses balanced, polarized magnetic amplifier to boost output of phase-selective detector. Application shown is used to operate relay to disconnect alternator in case of field-excitation failure, loss of synchronization or drive failure

COSENS PHASE-SELECTIVE BRIDGE ${ }^{7}$ - Triode amplification provides high sensitivity. Output proportional to phase angle divided by $V_{1} V_{2}$

MODIFIED COSENS BRIDGE DE-TECTORs-Applicable to servo control. Coils L_{1} and L_{2} are differential relay coils or fields of $d-c$ servo motor

BRIDGE-BALANCE DETECTOR ${ }^{10}$ - Current in meter is proportional to $E_{1} E_{2} \cos \theta$. By adjusting phase of E_{1}, output current can be made dependent on only the reactive or resistive component of either voltage. Phase is adjusted by dual potentiometer in phase shifting circuit

MACNAMARA PHASE BRIDGE ${ }^{11}$ - Has accuracy of 0.1 percent with an input of 20 volts at frequencies up to 50 kc

GATED-CATHODE DETECTORsSimilar in operation to gated-grid circuit except that pulses are applied to cathodes. Common cathode resistor for all tubes provides nearly push-pull grid-cathode voltages

CATHODE-GATED DETECTOR WITH CURRENT OUTPUT8- Used with d-c servo motor. Coils L_{1} and L_{2} are split field of servo motor or differential relay. Provides differential current with low output impedance

MORTON SCREEN-GRID PHASE DETECTOR ${ }^{13-}$ Reference voltage V_{2} is applied to control grids and variable voltage V_{1} is applied to screens. System puts light load on power supply of variable phase

PENTODE PHASE DETECTOR ${ }^{12}$ - Used in radar units. Has a gain of 70 using 6SJ7 tubes; with 6AS6 tubes gain is 120 with 40 -volt, $2,000-\mathrm{cps}$ reference voltage on V_{2}

GATED-BEAM PHASE DETECTOR ${ }^{\mu}$ - Plate current is at maximum for in-phase operation, and at a minimum for 180-degree phase difference

BALANCED-TRIODE DEMODULATOR ${ }^{15}$ - Push-pull modulated signal is applied to grids. Unmodulated carrier is used as reference and to supply plate voltage. Output is push-pull error signal

VHF OMNIRANGE DEMODULATOR - Recovers 60-cps modulating signal from $10-\mathrm{kc} \mathrm{f}-\mathrm{m}$ subcarrier

Full-Wave Type

PHASESELECTIVE DETECTOR FOR BRIDGES ${ }^{17}$ - Double-bridge system for use at high frequencies

DOUBLE-BRIDGE PHASE DETECTOR - Used in CAA landing system as part of crossed-pointer indicator

DENSITROL RECTIFIER BRIDGE ${ }^{18}$ - Core of differential transformer is actuated by float
(confinued on p 192)

SOCKETS...

"QUALITY IN *QUANTITY"

WHATEVER, WHENEVER THE NEED

CONSULT CINCH

*QUANTITY PRODUCTION OF LOW LOSS MICA COMPONENTS...QUICKLY

. . . exclusively a CINCH feature. CINCH constantly demonstrates ability to hold tolerances on Mica moldings . . . to meet the most exacting requirements in small metal plastic assemblies for components of higher quality materials held to closer tolerances.
Cinch components are ovailable at leading jobbers - everywhere

CINCH sockets in large variety of sizes, shapes and types are available in quantities because of CINCH's extensive and modern molding facilities for mica filled low loss bakelite, and are Standard in service because of durability and performance.

When requirements are exacting and the need urgent

CONSULT CINCH

Cinch Manufacturing Corporation

1026 South Homan Ave., Chicago 24, Illinois

Subsidiary of United-Carr Fastener Corporation, Cambridge, Mass.

FULL-WAVE DEMODULATOR ${ }^{15}$ - Push-pull inputs and output. Inputs are carrier-halanced. Signal V_{1} is compared to unmodulated carrier signal V_{2}

R. L. FRANK PHASE COMPARATOR ${ }^{20}$ - Insensitive to the third and all even harmonics of both input voltages. Combines two 120-degree-conduction cascade doubler circuits

DOUBLE-CLAMP PHASE DETECTOR ${ }^{20}$ - Used in British omnidirectional beacon. A 200-pps signal is applied to sinecosine potentiometer as a reference signal. Output is indicated on a zero-center course meter

WARD-LEONARD SYSTEM DETECTOR ${ }^{18}$ - Commercial variation of full-wave demodulator system. Output is used to control d-c motor through d-c amplifier

AMPLIDYNE SYSTEM PHASE DETECTOR ${ }^{18}$ - Has provision for antihunt signal injection from rate generator. Circuit gives high power amplification

SCR-615 PHASE-SENSITIVE AMPLIFIER ${ }^{16}$ - Radar application with cathode-ray tube display. Cathodes are gated by sine-wave generator. Reference voltage comes from twophase generator synchrononized with antenna

Electromechanical Type

WALD PHASE INDICATOR22-Has high input impedance. Accuracy is \pm 1 percent. Average output current $I_{\text {max }} \cos \theta / \pi$. Upper frequency limit is determined by chopper used

WALD REBALANCING PHASE INDICATOR ${ }^{22}$ - Similar to Wald indicator, but higher precision. Resolver is rotated so meter indicates zero. Phase shift is indicated on resolver dial

SERVO MOTOR PHASE DETECTOR - Phase detection is accomplished in two-phase motor. Output is a mechanical torque of reversible polarity. $\quad E_{1}=V_{1}+V_{2}, E_{2}=V_{1}-V_{2}$

New, Compact Front End Unit

 tunes all UHF television channelsWhen you're designing receivers for the new TV bands, take a look at the new Mallory UllF Front-End Assembly. lt's so compactly built that it fits readily into crowded chassis layouts. It comes as a complete unit that cuts assembly costs on your production line.

'The circuit will tane continuously from 460 to 910 megacyeles (channels 14 to 83) in 180° rotation of the single tuning shaft. It works into any IF amplifier that operates over the 41.25 to 45.75 band. The assembly consists of a double-luned RF preselector, oscillator, crystal mixer and tuned IF coil.

Solder tab terminals are provided for connection to a 300 -ohm balanced antenna feed, and to heater and " $3+$ +" power suppls. 'Trimmer capacitances are readily accessible on the same site of the chassis as the tube. Output imperance is nominally 50 ohms. The tuning shaft rotation can be either clockwise or counterclock wise, as desired.

In performance and over-all stability, this UHF front end sets the standard for modern receiver design. We'll be glad to give detailed technical facts; just write or call Mallory today.

Expect more... Get more from MAllory

Serving Industry with These Products:
Electromechanical-Resistors * Switches - Television Tuners * Vibrators Elecfrochemical-Capacitors - Rectifiers . Mercury Batteries Metallurgical-Contacts - Special Metals and Ceramics - Welding Materials

ELECTRONS AT WORK

Edited by ALEXANDER A. McKENZIE

Pointer and Line Locator Aids Blind. . . . 194
Binaural Broadcasts Use Multiplexed
Optical Measurement Controls Gas Concentration

TV Distributor's Pickup Uses Wire Horn. 198
Faraday Shutter Freezes Transient..... 198
Stain Counter Totals Droplets. 202

Square-Wave Amplifier 214

Frequency Response in Four-Terminal Networks 220
Phototube Tester Checks Anode Current228
Frequency Synthesizer 230
Extending Multivibrator Delay Time 232

FOSDIC Feeds Fiqures.................. . 236
Frequency-Modulated UHF Transmitter. 238
Whammer 242
Inductor Control Gives AFC. 244
Pertinent Patents 246

Equipment for blind has battery drain of $30 \mu \mathrm{amp}$ resulting in 700 -hour life

Pointer and Line Locator Aids Blind

Ability to locate pointers under glass would allow the blind to engage in work involving the reading of meters and the like. A simple device has been developed for this purpose, based upon a similar principle already described (Electronics, p 80, June 1949).

Both circuit and equipment are much simpler than those of comparable devices considered in the past. As shown in Fig. 1, the circuit consists basically of two small 0.04 -watt neon lamps connected as relaxation oscillators. A Photoswitch A4-116 lead sulfide photocell is used as resistance element in one oscillator and a small potenti-
ometer is employed in the other.
Light from a penlight bulb in one section of the v-shaped tube, illustrated, emerges from its apex through a small hole and is reflected in to the other side of the tube from whatever lies outside the hole.

Since variations in the reflected light will produce small variations in cell resistance, there will be small variations in the frequency of the oscillator. The second oscillator can be tuned to zero beat with the cell oscillator for any given light intensity. A slight change in light intensity will then produce a beat frequency.

The unit described is sensitive

FIG. 1-Two neon-tube relaxation oscillators are initially tuned to same frequency so that discontinuity in reflected light shows up as beat frequency. Effect is caused when light variations produce small variations in cell resistance
enough to detect most printing and locate meter pointer positions easily. In the latter service, the v-tube shown is replaced by one in which the apex is milled off to make the point of maximum sensitivity of the system about 0.312 inch beyond the common opening.

Developed by C. M. Witcher and L. Washington, Jr. at Research Laboratory of Electronics, MIT, the device will be the subject of a more complete report in future.

Binaural Broadcasts
 Use Multiplexed F-M

RECENTLY PUBLISHED results of experiments show that it is possible to transmit two different programs on the same f-m broadcast channel. A successful system described by E. H. Armstrong and J. H. Bose utilizes principles shown in Figure

absolute
 Qmeasurements to 038

Here, for the first time, is a Q-Standard which provides an accurately known Q and reactance for precise measurements. It also provides a convenient way to check overall Q-Meter performance.

This Q-Standard consists of a specially developed winding of Litz wire on a low loss, stable, steatite coil form which is mounted in a hermetically sealed copper shield can filled with dry helium; individual calibration data appears on a decal. A convenient wooden carrying and storage case is included with each unit.

Each inductor is calibrated in terms of effective Q (Qe_{e}) nominal circuit $\mathrm{Q}\left(\mathrm{Q}_{\mathrm{i}}\right)$ readings for the Types $160-\mathrm{A}$ and $260-\mathrm{A}$ Q-Meters are also provided.

Due to the construction of the unit, humidity has negligible effect on the electrical characteristics. Temperature correction data for Q_{e} is furnished; L and Cd have negligible temperature coefficients.

BOONTON RADIO orporation

- Hermetically sealed agains humidity effects.

Inductance accurate to $\pm 1 \%$.
Temperature coefficient daia furnished.

SPECIFICATIONS:

INDUCTANCE (L)

Nominal Value: $250 \mu \mathrm{~h}$ Accuracy: $\pm 1 \%$.

DISTRIBUTED CAPACITANCE (Cd)

(When mounted on Type 160-A or 260-A Q-Meter).
Nominal Value: 9.0 nuf. Accuracy: $\pm 2 \%$.
EFFECTIVE $Q\left(Q_{e}\right)$
(§pecified at $0.5,1.0$, and 1.5 mc. and $22^{\circ} \mathrm{C}$).
Nominal Value: 180 to 250
Accuracy: $\pm 3 \%$.

1, wherein subcarrier modulation is introduced through an auxiliary phase-shift modulator following the main modulator. Serrasoid-type modulators are used in both cases.
Enhanced noise modulation resulting from frequency multiplication required with the phase-shift method makes use of a good modulator mandatory.

FIG. 1-Method of introducing subearrier in multiplex f -m system

When the main-channel deviation is $\pm 75 \mathrm{kc}$ and the side-channel is $\pm 20 \mathrm{kc}$, cross modulation into the second channel for full modulation on the main channel by the most troublesome frequencies can be held to better than - 60 db . In experiments carried on by station KE2XCC at Alpine, N. J. a subcarrier frequency of 27.5 kc was used.

A workable auxiliary-channel section for receiving the subcarrier transmission is shown in Fig. 2. It comprises a $15-\mathrm{kc}$ high-pass filter, resistance-coupled amplifier and band-pass filter. A frequency-sensitive network, followed by limiters, drives a 6BN6 detector. The $10-\mathrm{kc}$ low-pass filter that prevents overload of the subcarrier audio amplifier is predicated upon the present maximum modulating frequency of 7.5 kc for that channel.

The main channel is presently capable of handling 30 to 15,000 cycles with a maximum deviation held to 50 kc . Binaural or two different programs can therefore be broadcast simultaneously in this system.

The information abstracted here
has been taken from a paper published in Proc Radio Club of Am, 30, No. 2.

FIG. 2-Auxiliary channel section of multiplex broadcast receiver

FIG. 1-Circuit diagram of the electronic colorimeter used in gas detector

Optical Measurement Controls Gas Concentration

A versatile gas detector of sensitivity intermediate to that between conventional infrared instruments and mass spectrometers has been developed from the Colorede gen-
eral-purpose optical measuring device (Electronics, p 102, Aug. 1951).

As shown in the drawing, the tristimulus colorimeter is actuated

Gas detector uses treated tape that reacts to gas. Tape color is detected by colorimeter. Information fed into servomotor provides direct process control

The first characteristic which the user has a right to expect in a precision potentiometer is accurate performance... and in precision potentiometers, performance depends upon the coil.

In an accurate linear potentiometer, any given amount of slider travel must result in a corresponding voltage change...no matter which portion of the coil is traversed.

To achieve this, a potentiometer manufacturer is careful to select resistance wire of uniform thickness ... and to space it as accurately as possible when winding it around the core.

Like all manufacturers of precision potentiometers, we select our resistance wires from the good ones available from several sources... picking the proper alloy and size to meet your requirements.

Up to this point, making precision potentiometers is not particularly difficult.

The first critical phase is the series of operations involved in coil winding... and Helipot Corporation engineers have developed a special machine...unique in the industry ...which performs the coil-making operations in continuous sequence.

First the core wire travels through pressure rollers which take out all kinks. Next...in a dustfree chamber ...the resistance wire is wrapped around the core. To insure even spacing, the rate of travel of the core wire and the speed at which the resistance wire is wound are both minutely controlled.

The wire travels on...through a small pre-heater...then past jets which coat it with just the right amount of insulating varnish...and through an infrared oven to dry the varnish. Finally, the wire is coiled into a helix of the correct diameter by another set of rollers... and cut to the desired length of one to forty turns.

All this is done by the machine in a continuous operation...carefully controlled at each step...followed by microscopic inspection and rigorous testing of the completed coils.

At Helipot's Pasadena plant, a battery of these high-speed coilwinding machines assures full-scale production of high-quality coils... produced automatically with considerable saving of time and effort.

Helipot makes a complete line of single-turn and multi-turn precision potentiometers, and turns-counting Duodials. Many models are regularly carried in stock for immediate shipment

Helipot*... first in precision potentiometers... makes sure that, in every Helipot, you do have a better coil. Specially-developed coil winding machines are but one of the many ways in which Helipot has pioneered, in the manufacture of better precision potentiometers.

The coil winding machine is another example of how Helipot has applied mass-production techniques to delicate operations requiring extreme accuracy ... insuring the lowest price consistent with the high quality you expect in Helipot products.

WRITE FOR YOURS TODAY!

The Helipot Model Selector enables you to determine...quickly and easily...the electrical and mechanical characteristics of all Helipors. Ohms Law formulae, temperature conversion formulae, and other tables make it doubly useful.

ASK FOR M.S. No. 202
*T.M. Reg. U.S. Pat. Off.

PLANTS AT SOUTH PASADENA, CALIFORNIA \& MOUNTAINSIDE, NEW JERSEY
ENGINEERING REPRESENTATIVESIN PRINCIPALCITIES
first in precision potentiometers
by a paper tape treated with a chemical indicator reagent. A servoslit system drives the instrument to balance to compensate for differences in transmittance of the paper in the two beams.

The gas sample is then directed as shown. One sample goes directly to the first beam area. A second sample, diverted through a scrubber for the gas under measurement, is applied to the second beam area. Operation is cyclic, allowing integration for several seconds or minutes. A number of gases may be thus surveyed in concentrations as low as a few parts in 10^{4}.

The so-called Microsensor developed by Vitro Corp. of America
utilizes circuit details not found in the original description, including dry-disk rectifiers, ruggedized tubes and an output servomotor for direct process control.
The improved photoelectric control circuit is shown in Fig. 1. Output of the multiplier phototube is a combined direct and alternating current. The d-c component is a function of mean flux from sample and standard, while the a-c is a function of difference between the two.

The d-c signal is amplified and fed back to control the plate resistance of the regulator tube, thereby reducing effective multiplier plate supply as incident flux increases. The tightness of this loop is such
that the mean multiplier anode current remains substantially constant for all practical ranges of incident energy.

Alternating-current signals thus become a direct measure of the brightness ratio of sample and standard. This signal is amplified and synchronously rectified by the flicker-motor commutator system so that a full-scale output of 1 volt d-c can be obtained into a 10,000 -ohm load for a relative difference of as little as 1 percent for net transmission as low as 10^{-4}.

Information abstracted here is taken from a report by Phillip M. Engel and George P. Bentley of Instrument Development Laboratories, Inc.

TV Distributor's Pickup Uses Wire Horn

Remote pickup of television broadcasts for distribution over a wire system requires adequate signal strength. This is obtained in Vermont Television's Barre installation by means of a directive antenna. The horn shown, com-
prising three miles of wires, picks up Boston on channel 4 and Schenectady on channel 6.

Length of the horn is 120 feet and its opening is 65 feet. It is supported by poles 60 feet high. Gain of the horn antenna is 20 db .

FIG. 1-Rotational effect of two polari. zers and an analyzer

Faraday Shutter
 Freezes Transient

Fast-transient, self-luminous subjects requiring exposures less than 100 microseconds are difficult to record on moving film. A part of the problem may often be solved by use of several single-exposure cameras, each having a high-speed shutter.

Of the several types of electrooptical shutters available, that employing the Faraday effect has recently been developed for the Atomic Energy Commission. Faraday found that the plane of polarization of light traversing a material in a magnetic field is rotated when the light is traveling in a direction parallel to the lines of force.

A practical shutter using this principle requires that crossed

Stonized spiral phenolic coil forms, of many products of the electronics
lug callars, bushings, and printed and electrical industries, among
covers are used as component parts them being:
r.f., i.f., and oscillator, and other coils for radio ano iv * permeability tuners * tubular condensers transformer coils e electric motors - selemium rectifiers * relays time control assembles

Why Don't You Write Us?

WE HAVE a lot to offer you, particularly if you manufacture any of the items or related products listed on this page.
Stone, alone in the paper tube field, can place at your service the experience gained from an industrial heritage of 126 years. Down through the years, we have been able to improve our accuracy of manufacturing and our mass production techniques to such a point that we can assure you quality products at low cost. Many hundreds of the country's leading manufacturer's know this to be true.
Small diameter spiral wound insulating fubing from $3 / 64^{\prime \prime}$ to $1^{\prime \prime}$ ID is our specialty although the larger sizes are available. All Stone tubes are custom-made despite the fact
they are mass produced and can be furnished in hi-dielectric kraft, fish paper, and plastic films in various wall thicknesses and lengths. They can also be formed, notched, punched, printed, dipped or impregnated with a variety of waxes and resins.

Why don't you write us or better still, get in touch with our nearest representative? Stone makes many thousands of different items and we are sure that we can either adapt one of the products to your own requirements . . . or develop one specifically for you. You will be certain to find an organization ready and able to offer you unsurpassed service . . . the kind that has made Stone one of the world's largest small diameter paper tube manufacturers.

900-922 Franklin Street, N. E., Washington 17, D. C.
polarizing elements be used, together with a light-transmitting medium free from mechanical strain. If perfect polarizers are used, the shutter will reject all light when it is in the crossed or closed condition. The quality of available polarizers and the accuracy to which two of them can be crossed does not produce perfect light rejection. However, a third polarizer behind a second shutter element can be added as shown in Fig. 1.

The Rapatronic camera produced by Edgerton, Germeshausen and Grier is a three-polarizer type that opens to $1 / 30$ transmission and closes to $1 / 1,000,000,000$. An open-to-closed transmission ratio of about $30,000,000$ is needed to photograph such phenomena as nuclear explosions.

FIG. 2-Basis of a single-element mag. neto-optical shutter

Because commercially available polarizing material was not suitable, Polaroid Corp. developed HN-22 Polaroid to provide adequate attenuation. Best practical choice of the optical medium proved to be Faraday's original material, extra-dense flint glass. Having a high content of lead, this glass is used because it produces a considerable degree of magneto-optic rotation and can be manufactured with a controlled, low-strain quality.

Elements of the new camera are shown in Fig. 2. Crossed polarizers P_{1} and P_{2} provide adequate light attenuation. Electrical energy required to rotate the plane of polarization is stored in capacitor C. The shutter is triggered by a light pulse from the subject or from a separate flash unit to the phototube. An impulse passes through the variable
(ADVERTISEMENT)

Plain Pointers

 on ProjectionMOST optical textbooks mention the French physicist Augustin Jean Fresnel in connection with his work in helping to establish the wave theory of light. However, Fresnel also contributed greatly to the design of optics used for lighthouses. His work in this field, which forms the basis upon which lighthouse opticians still work, has led to the coupling of his name with a distinctive "flat" lens type.
At first glance this might seem removed from the field of optical gaging and the use of contour projectors throughout industry. The truth of the matter is, however, just the opposite. In designing the Kodak Contour Projector, our optical engineers have included a Fresnel lens directly behind the instrument's ground-glass screen.

> Fig. I. Steps of the Fresnel tens duplicate the curvature of conventional condensers, moking it possible to "collapse" a lens into a flat plane.

This flat plastic lens is illustrated sche* matically above (Fig. 1). In effect, a curved surface is collapsed into a series of minute steps which reduce the mass of the lens to a practical size. A conventional lens used for the same purpose, of diameter to equal the projector screen, would be more than 5" thick, heavy, and not inexpensive

ig. 2. Diffusing properties of ground-glass screen scatter oblique light away from viewer's eye.

Use of the Fresnel lens in this manner serves a double purpose: 1) it effectively increases screen brilliance by directing the light on the screen directly at the operator's position; and 2) it provides even illumination over the entire screen area.

Because of this our projectors may be used under normal shop illumination without hoods or curtains--both of which sometimes tend to give a feeling of claustrophobia. In addition, the over-all screen brilliance makes possible easy reading of critical tolerances at any point on the projector screen. Together, these attributes tend to make your personnel more contented and efficient... help to make contour projection suited to mass inspection needs.

How rapid, accurate inspection on Kodak Contour Projectors keeps a production line moving

When you receive a great many precision parts from a great many suppliers, quality control checks can be a real production bottleneck.

At General Electric's jet engine plant at Cincinnati, Ohio, engineers have solved one such problem using Kodak Contour Projectors. Rotor blades arriving in lots of 2000 to 5000 are given a 4 per cent AQL check by the young ladies seated above. Eleven dimensions, including angles and radii, are checked on the dovetail contour, and 14 different dimensions checked on the rotor blade root-all at a rate of approximately 150 pieces per hour. Optical gaging has lightened the load, reduces inspection
time, hellps to keep the production line moving.
The Kodak Contour Projector is particularly suitable for such rouxine production inspection. It requires no hoods, curtains, or darkened room (the column at the left tells you why). Operators work rapidly and accurately in comfort-require little training. And, simply by changing chartgages and staging fixtures, all sorts of complex parts, large and small, can be inspected.
To find out more about the Kodak Contour Projector and how it can work for you, send for our 12-page booklet. Ot, write for details on a sound movie, "Optical Gaging."

the KODAK CONTOUR PROJECTOR

EASTMAN KODAK COMPANY

Special Products Sales Division, Rochester 4, N. Y.

Please send me a copy of your booklet, "The Kodak Contcur Projector."
 TITLE

COMPANY

ADDRESS

- Reduce stray capacities where not wanted.
- One part instead of 9 or 10 .
- Saves up to 80% of soldered connections.
- Combine capacitance, resistance and wiring on one plate.
- 100 or $1,000,000$ plates all identical - all tested.
- Save stocking space, ordering, handling time, and paper work.
- 30 standard plates stocked for immediate delivery.
- Special plates on order.

NEW PENDET

- a complete pentode detector and autio coupler circuit that replaces 9 parts . . 9 soldered connections.
There are actually 4 resistors and 5 capacitors screened and fired to a single Ceramic $-X$ plate. Unit is only $15 / 16 \times 7 / 8 \times$ $11 / 6_{4}^{\prime \prime}$ thick. Leads are $21 / 2^{\prime \prime}$ long.

Trademark -
*Printed Electronic Circuits

A Division of Globe-Union Inc.
914 E. Keefe Avenue - Milwaukee 1, Wisconsin In Canada: 804 Mt . Pleasant Road, Toronto, Ontario

Industry's greatest source of standard and special electronic components
time-delay unit and triggers the capacitor-discharge circuit.
Energy surges through the coil and the resulting magnetic field causes rotation of the polarized beam as it passes through the glass, effectively opening the shutter. The damping resistor prevents oscillation that would cause the shutter to open several times. It is possible to open the shutter for as short a period as 1 microsecond.

Stain Counter Totals Droplets

By Wiluiam L. Clink

Suffield Experimental Station Defence Research Board Ralston, Alberta Canada

The stain counter is an instrument for the sizing and counting of the stains on a representative area of a droplet-stained card.

A spiral-shaped area of the card is scanned at a constant linear rate. The output of the scanner is an electrical pulse corresponding in length to the maximum chord of the indi-

FIG. 1-Block diagram of the stain counter uses spiral scanner
vidual stain scanned. The length of the pulse is transformed into a pulse of related amplitude by the pulse converter section. The pulse amplitude in turn governs which pulse sorter section shall trip a corresponding electromechanical counter. A block diagram of the stain counter is shown in Fig. 1.

The Scanner

The scanner consists of an optical system and a photomultiplier.

A positive multielement lens scans the rotating subject material and focuses the image on a narrow slit aperture placed in front of a photomultiplier tube. The slit is formed by two ground razor blade edges providing a slit accurate to $\pm 5 \mu$. A slit width of 50μ to 100μ

Distributor plate, molded of Monsanto's new Resinox 3700 the mosetting material by Specialty Insulation Manufacturing Company, Hoosick Falls, N. Y. for American Hoosick Falls, N. Y. for American
Bosch Corporation, Springfield 7, Massachusetts.

See how new Resinox 3700

 improves electrical parts two waysResinox 3700 is a special thermosetting arc-resistant material developed by Monsanto research for low-cost superior performance in magneto ignitions, motor control and power transmission circuits, and other electrical applications. This new mineral-filled molding powder stands out from other materials because:

It delivers high arc-resistance with outstanding dimensional stability ... eliminates undesirable after-shrinkage.

It imparts relatively good impact strength ... and has excellent moldability (very good transfer molding properties).

Another advantage of Resinox 3700 is its good heat resistance. You'll find Resinox 3700 , in short, an all-around better material for electrical parts. Why not write today for full information as related to your own product. The coupon is for your convenience. Resinox: Reg. U.s. Pat orf.

MONSANTO CHEmICAL COMPANY, Plastics Division, Room 2501
Springfield 2. Mass.
Please send me full information on Monsanto's new Resinox 3700 arc-resistant material.

Name \& Title
Company
Address
City, Zone, State

Under all conditions, the delicate mechanisms of Kollsman products must function with accuracy and rugged dependability.

Se AIRCRAFT INSTRUMENTS AND CONTROLS
OPTICAL PARTS AND DEVICES
< MINIATURE AC MOTORS
Se RADIO COMMUNICATIONS AND NAVIGATION EQUIPMENT

Current production is largely destined for our defense forces; but our research facilities, our skills and talents, are available to scientists seeking solutions to instrumentation and control problems.

ELMHURST, NEW York - glendale, california - subsidiary of Standard coil products co., inc.

ELECTRONS AT WORK

has been found best for general use. The output of the photomultiplier is coupled through a cathode-follower to the pulse converter.

Three 120 -volt 7 -watt bulbs fed in series from a regulated 400 -volt d-c source provide even lighting of the scanned material.

> Pulse Converter

The pulse converter provides a sharp output pulse whose amplitude is a unique function of the time width of the initiating pulse. A ca-pacitor-charging circuit is used with a thyratron discharge of the

FIG. 2-Phototube, amplifier and pulse converter circuits used in counter
capacitor to provide a sharp positive output pulse. The input to the unit consists of wanted signals resembling half-wave sinusoidal forms of amplitudes up to 100 v and unwanted noise signals whose amplitude and time duration are largely dependent on the material being scanned. There is also an ambient base voltage level that is a function of the photomultiplier sensitivity, light level and scanned material reflectivity.

The base level of the input signal is determined by the diode V_{2} clamping circuit that feeds the grid of the triode V_{3}. This tube acts as a cathode follower to supply approximately 35 volts to the regulator. section of the photomultiplier power supply. The feedback circuit, thus provided, acts to maintain a constant input voltage base level of approximately 25 volts. The output of V_{s} also provides a constant cathode bias of 11 volts to V_{4} and

This

talks to you

Bell Laboratories engincers liave developed a new and highly economical way to record sound magnetically.

Instad of tape or wire they use ad misture of rubber and iron oxides which is formed into a band and mounted on a whecl. This simple and very rugged "talking rubber" can play back messages clearly millions of times.

Talking rubber is alrcadv at work for the Bell System amouncing weather and answering customers who call vacant or disconnected numbers. It promises
to have many other uses. In a new machine, it answers your telephone in your own voice when you are awayand takes a message for you in the voice of your caller.

Many businesses, too, other than telephone, are expected to find a variety of ways to use talking rubber-especially whencver a message must be given quickly to many pcople.

Talking rubber proves again the downright practicality of Bell Laboratorics' research to improve telephone service.

One of a bank of recorder-reproducers opereted by the New York Telephone Company for the New York Stock Exchange They give instant stock quotatiors to, brokers who dial a code number. Recording and pickup heads are shown above wheel

BELL TELEPHONE LABORATORIES

Improving telephone service for America provides careers
for creative men in scientific and fechnical fields.

Here's your authoritative guide to Button Miea Capacitors

TECHNICAL DATA ENGINEERING SPECIFICATIONS

Just clip the coupon below for your copy of this valuable reference catalog for the electronic designer. Catalog No. 830A fully describes Sangamo Button Micas - the most complete line in the industry by far.

SANGAMO ELECTRIC COMPANY, Dept. D, MARION, ILLINOIS

Please send me, by return mail, my copy of Catalag Na: 830A.

Nome

Title
Company
Address
City Stote

New, compact photo-record processor

for paper oscillograms and other rolled paper photo-records

Tile test engineer's dilemma-how to develop and dry large quantities of test data on rolled sensitized paper-is solved by Consolidated's new Type 23-109 Oscillogram Processor. Built for operation at the actual testing site, this self-contained instrument, capable of processing records as rapidly as 15 feet per minute, requires no external water supply and can be used in daylight or in a normally illuminated room. Simplified loading, processing and unloading techniques permit operation by personnel without previous photo-lab experience. The Type 23-109 processor is compact, portable and fast, requiring only electric power for the paper-transport motor and the drying drum. Where the problem is to save time in processing voluminous test data on photo-record paper, CEC's new oscillogram processor is the practical answer. Write for Bulletin CEC $1537 \mathrm{~A}-\mathrm{X} 9$.

Consolidated Type 23-109

Reduces time lag between test and interpretation of data. Requires no dark room for operation. Built for testing-site use without external source of water. 250 foot capacity for photo-record paper up to 12 " widths.
Thermostatically controlled solution temperature.
Automatic squecgeeing for longer solution lifc.
Cumulative processed-footage indicator.

 racks threads the short leador quickly and casily.

Consolidated Engineering
CORPORATION
300 North Sierra Madre Villa, Pasadena 15, California
Sales and Service through CEC INSTRUMENTS, INC., a subsidiary with offices in:
Pasadena, New York, Chicago, Washington, D. C., Philadelphia, Dallas.

OVER 200 BASIC TYPES TO CHOOSE FROM

Do audio attenuator problems cost you money? Chances are Shallcross has a model to match your specifications exactly - and at moderate cost.
Shallcross attenuators are made in over 200 basic types. Each type can be supplied with a choice of attenuation characteristics . . . with a positive detent mechanism . . and in numerous input and output impedances. Where calibration must be extremely accurate, Shallcross precision wire-wound resistors are used. For less critical applications, models with high grade composi. tion resistors can be supplied-often at lower cost.
A complete description of all Shallcross attenuators - mountings, characteristics, and circuits is yours for the asking in Bulletin L-4A. SHALLCROSS MFG. CO., 522 Pusey Avenue,
tude is a uniquie, but not linear, function of the time duration of the input signal.

If the input signal were abnormally long it would be possible for the output capacitor to charge fully reducing the thyratron grid potential to a value that would permit the thyratron to ionize. The thyratron would subsequently deionize, the capacitor would charge again and the cycle would be repeated. To prevent this type of oscillation, a diode V. clipping stage prevents the capacitor from charging to lower than 35 volts above reference ground. At this point there is still sufficient bias on the thyratron grid to prevent ionization and the circuit remains in this state until the end of the signal.

As there exists a minimum potential below which a zero-biased thyratron will not fire, there exists a possible source of error in the output. The output capacitor may not be fully discharged at the beginning of a cycle due to the charge collected from one or more extremely small signal or noise pulses preceding the cycle. It is necessary to reduce this minimum to as low a value as possible and to determine its effect.

It was found that the thyratron used in this circuit required a minimum of 35 volts plate potential to produce ionization when all grids were zero biased. However, with the introduction of the capacitively coupled positive pulse to the thyratron grid as used in this circuit, the minimum plate potential for ionization by signals likely to be present was reduced to 14 volts. There exists in the output pulse of the converter, a possible error ranging up to -14 volts. The use of a nonlinear conversion relationship reduces the overall effect of this error.

Pulse Sorter

The pulse sorter consists of two stages, the thyratron discriminator stage, and the driver stage that operates a mechanical counter. The signal output of the converter unit is differentiated by an input R-C coupling network (having a time constant of $120 \mu \mathrm{sec}$). On the nega-tive-going portion of the signal the maximum signal voltage at the grid of the thyratron is -1.7 volt. Thus

BOY, HAVE WE GOT

HIIGH COMPRESSION

GLASS-T0-METAL

VACLUMM SEALS!

MULT-PIN HEADERS
The new vacuum tight, HIGH COMPRESSION glass-lo-metal seal makes CONSTANTIN HEADERS ideal for use in the monufacture of sealed reloys, transformers, inductances and practically any product which demants a stabilized almosphere and protection from moisture. All seak are hot tin dipped at $530^{\circ} \mathrm{F}$. 10 focilitato soldering and eliminatz rejections due to thermal shoek. Ingenious seal engineoring and flexible manufocturing -methóds permir numerous additional configurations, and solve the problems of odapting CONSTANTIN HEADERS 10 ony requiremens.

CONDENSER END SEALS
Constantin offers a complete line of special END SEALS that assures a stabilized atmosphere, thus making them especially adaptable to capacitors, fitters, delay lines and precision resistors. The normal finish is achieved by hot fin dipping of $530^{\circ} \mathrm{F}$. Special finishes can be supplied upon request.

TERMINALS

Constanfin's extensive line of HIGH COMPRESSION TERMINALS are available in all combinations of hooks, oyes, túbes and pierced flats. Hot tin dipping at $530^{\circ} \mathrm{F}$. allows easy soldering and prevents rejecfions oceuring from thermal shosk.
Engineering know-how and controlied manufacturing procedures go info producing these fine examples of glass-tometal sealing. Stondard units of the complete line have test ratings from 1,000 to 15,000 volts R.M.S. and 5 to 25 amperes.
Cansult our engineering department for furthes information aboul standard or special items.

4.L. Constantin \& Co.

MANUFACTURING ENGINEERS
Rt. 46 and Franklin Ave., Lodi, N. J.
Also manufacturers of - TRANSISTOR MOUNTS CRYSTAL HOLDERS MULTI.PIN CON PLUGS VACUUM COATING EQUIPMENT

FEATURES AND SPECIFICATIONS Heiland Model 500B Portable Recording Oscillograph

\author{

- Compact and lightweight
 - Provides maximum portability and versatility where desired to record up to 12 phenomena
}

- Direct monitoring while

 recording- 4 record speeds instantly selectable

Galvanometers: U_{p} to 12 . Record width: $4^{\prime \prime}$ Magazine capacity: 100°. Record speeds 3, 6, 12 and 24 inches per second selected by levers on control panel. Other speeds, ranging from $1 / 32^{\prime \prime}$ to $24^{\prime \prime}$ per second, can be obtained by changing drive sprockets and motor gear box ratios. Drive: Two-speed governor controlled motor. Power supply: 23.5 to 28.25 volts D.C. Timer: Chronomettic timing unit projects 100 time lines per second across record width, the $1 / 10$ seeond lines being heavier. $1 / 10$ and 1 second time lines are available. Mounts: Detachable shock or vibration mounted base Case ctimensions: $6.3 / 4^{\prime \prime} \times 9.13 / 16^{\prime \prime} \times 12-3 / 4^{\prime \prime}$. Weight: 33 lbs.
W'rite today for free culalog of Heiland equipment inctuding 5001 b and A-tol portable Recording Oscillographs, "700" series Amilit Cbamel Recording Ossillographs. "\$2-6" Bridge Batance and Sirain Indicator, Amplifier System, Gatianometers and accessories.

Helland Pesearch Corportion 1 soter pan ne. Denver, Colorado

practically all of the signal appears across the coupling capacitor. The instantaneous ($0.5 \quad \mu \mathrm{sec}$) positive pulse that follows is coupled directly to the grid through the $10,000-\mathrm{ohm}$ grid stopper. If this pulse is sufficient to overcome the negative bias applied to the stage then the thyratron fires.

It was found that a delay of up to 6 usec could occur before the thyratron would fire if the pulse was only slightly greater than bias. This made necessary the use of a rather

FIG. 3-Pulse sorter and counter outputs are handled in this stage by the thyratron circuits shown
long time constant ($120 \mu \mathrm{sec}$) in the input network in order that no significant change in instantaneous grid voltage would take place in 6 μ.sec.

The plate and cathode loads of the thyratron are in impedance ratio of 10 -to-1 and are composed of R-C networks with decay time constants of 1.5 milliseconds each. This ratio is important as it controls the blanking of lower units in the multiple sorter setup. A resistor divider network also in ratio of 10-to-1 connects, through a d-c blocking capacitor, the cathode of one stage to the plate of the next higher stage. If both stages are tripped then there can be no signal at the midpoint of the divider due to mutual cancellation. Thus, it can be said the higher unit has blanked the lower unit. If only the lower unit is tripped, a positive signal of 91 percent of the cathode

G A \&F Carbonyl Iron Powders are used to produce cores for transformer and inductor coils-to increase Q values, to vary coil inductances, to reduce the size of coils, to confine stray fields and to increase transformer coupling factors.

These powders are microscopic, almost perfect spheres of extremely pure iron. They are today produced in eight carefully controlled types, ranging in average particlesize from three to twenty microns in diameter. The Carbonyl Process assures the quality and uniformity of each type.
We urge you to ask your core maker, your coil winder, your industrial designer, how G A \& F Carbonyl Iron Powders can increase the efficiency and perfornance of the equipment or product you
 make, while reducing both the cost and the weight. We also invite inquiries for powders whose performance characteristics are different from those exhibited by any of our existing types.

This 32-page book offers you the nost comprehensive treat ment yet given to the characteristics and applications of G A\&F Carbonyl Iron Powders. 80% of the story is told with photomicrographs, diagrams, performance charts and tables. For your copy - without obliga-tion-kindly address Department 76

fabricate our

Fansteel

TUNGSTEN ond molybenive

A short molybdenum rod (1) was hot forged to form basic cone (2), and the part () was finished by machir. ing and drilling.

COMPONENTS

More and more tungsten and molybdenum users are finding Fansteel fabrication the answer to complicated and costly production problems. Fansteel's long-experienced engineers and technicians not only recommend the material to be used but also the shape best adapted to solve a specific problem. Why not use Fansteel fabrication to your advantage, too? Fansteel will help you effect important cost savings by eliminating the scrap and reject problem, minimizing inspection costs, and releasing

WORID'S LARGEST
PRODUCEF OF
REFRACTORY METALS METALS equipment and personnel for other work.

Write for the informative booklet: "FAHSTEEL TUNGSTEN AND MOLYBDENUM"
 TungSten a Molybdenum
 $22503 C$

Fansteel Metallurgical Corporation norin chicaco, ulunois, u.s.a.
signal appears at the divider midpoint.

A high-conductance triode is used to drive a high speed relay-operated counter. The output from the previous stage consists of a pulse of approximately 35 -volt amplitude and with a decay time of 1.5 milliseconds. The triode is biased just beyond current cutoff by a positive fixed potential of 20 volts applied to the cathode. The input signal to the stage, due to the large resistive impedance of its source, is clipped by grid-current action to a squale pulse of 20 -volt amplitude and 1.5 millisecond duration. The length of the pulse is sufficient to charge a $0.1 \mu \mathrm{f}$ capacitor to 300 volts through the fully conducting triode. The resulting discharge of the capacitor into the relay of the counter provides ample actuating force. The discharge is of a strongly damped oscillatory nature with a period of oscillation of approximately 15 milliseconds. A neon bulb in the output of each unit indicates visually the correct operation of the unit. A Cyclotron Specialities high-speed counter is used with each sorter unit.

The variable, regulated highvoltage negative supply for the photomultiplier uses a standard rectifier circuit. Regulation is achieved through a series regulator tube controlled by an output from the control section of the converter unit. The voltage range of the supply is zero to 1,000 rolts.

Acknowledgment is made to G. O. Langstroth and R. A. Kendall for their initiation of and early work on the problem of stain counting and sizing.

Germanium-Diode

Push-Pull Voltmeter
By D. D. Davis,
General Blectric Co
Pittsfield. Mass.
A simple push-pull voltmeter circuit has been devised having advantages of low cost, good linearity and good frequency response. It is an average-reading type of a-c voltmeter and has full-scale sensitivity of 10 volts.

In the circuit shown in Fig. 1, two germanium diodes of opposite polarity rectify the alternate halfcycles of the input voltage. The re-

SEALTRON ANNOUNCES

un Payp STuar

BALLANTINE Sensitive, Wirte Band Electronic Voltmeter

MODEL 314
Price \$285

When used without probe, sensitivity is increased to 100 MICRO. VOLTS but impedance is reduced to 25 mmfds and 1 megohm

Featuring customary Balkntine

SENSITIVITY - ACCURACY - STABILITY

- Same accuracy at $A L L$ points on a logarithmic voltage scale and uniform DB scale.
- Only ONE voltage scale to read with decade range switching.
- No "turnover" discrepancy on unsymmetrical waves.
- Easy-to-use probe with self-holding connector tip and unique supporting clamp.
- Low impedance ground return provided by supporting clamp.
- Stabilized by generous use of negative feedback.
- Can be used as 60 DB high fidelity video pre-amplifier

Write for calalog for more informalion aboul this and other BALLANTINE voltmeters, amplifiers, and accessories.
 8 P. D. T. Switch and this overriding master unit instantly switches or disconnects 8 primary circuits. Constant contact pressure (4 ounces per point) is maintained throughout the stroke until positive snap-action occurs in either direction. No dead center. Contacts handle 5 amps , 28 V. D.C. inductive-10 Amps, 115 V. A.C. non-inductive- 60 to 400 cycles. Unit mounts on $11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}$ panel area to conserve space and decrease overall costs. Sand and dust type enclosure easily removed for inspection. Designers of processing machínes seeking to improve multiple control of any machine or a battery of machines can increase the efficiency and safety factors with the Guardian 8 Pole Double Throw Switch. Built to exceed military specification ANS-63 applicable to this type switch to resist shock and vibration and to operate at $-65^{\circ} \mathrm{F}$. to $+160^{\circ} \mathrm{F}$. Easy to wire - easy to mount - compact low cost. Available with auxiliary "push-to-test" S.P.D.T.circuit and dial light.

Pole Double Throw

 Designed for Easy Multiple Wiring to Each Terminal.Stop carriers-release machine loads-sfop ma-chines-reverse processing -resume operations. For efficient control of multiple machine operations use the Guardian 8 P.D.T. Switch. Shuts off boiler feeds-dumps fuel-starts extinguishers.

For example:

-consider the "Lavite" F7B FERRITE MATERIAL, another product of Steward's private research and development, which has set a standard for antenna rods. It offers sufficiently low losses in the broadcast frequency range, permeability of relatively high value and excellent temperature stability - "must" characteristics for that application. Yet, this is only one of many property combinations of our ferrite materials, which provide the desirable basic advantages of high saturation, higher permeabilities, high Q and FM frequencies, low temperature coefficient, etc. "Lavite" Ferrites may well reduce the size and weight of your components, and materially reduce production costs of these parts as well. Send me your specifications and let me get in a huddle with our engineers-no obligation.
D. H. STEWARD MFG. COMPANY

Ask for gesesal charaiteristic dala on all "La*ite" Tecbnical Ceramics - ("Lavi"e" stestibe, 'Lavite"
Titanates, "Latite" Ferrites, and others).
and rectifying the combination roltage in such a way that the noise components are cancelled over a period of time that is long compared to the period of the reference soltage. In this way, the performance of a narrow-band amplifier having a bandwidth of perhaps a fraction of a cycle per second can be obtained, but without the serious problems of drift and detuning that may occur with a conventional amplifier. The practical necessity of having the signal and a reference voltage derived from the same source restricts the range of application of the lock-in amplifier.

FIG. 1-Synchronous amplifier combines reference square wave with signal to obfain error voltage across filter circuit

The circuit shown in Fig. 1 was developed primarily as a result of attempts to minimize the number of balancing adjustments and to improve the linearity of response in a lock-in amplifier circuit.

A square-wave generator V_{1}, V_{2} and V_{3} impresses a grounded-based, negative square wave upon the plate of one of the diodes V_{4}, and it impresses a similar square wave of opposite phase upon the plate of the other diode. The combination of the square-wave generator and the diodes serves as a synchronous rectifier, charging the two filters, on alternate half-cycles of the reference voltage. The difference voltage between points a and b is proportional to the reference-frequency component of voltage ap-

ALLEN-BRADLEY CERAMIC CAPACITORS from 0.00001 to $0.022 \mathbf{m f d}$.

The Allen-Bradley line of ceramic capacitors has been expanded to include new capacitors of lower values. For example, the $1 / 4$-inch capacitors now go as low as 0.00001 mfd., making a total of 28 Allen-Bradley capacitors available from 0.00001 mfd . up to 0.022 mfd .

Every step in the manufacture of these ceramic capacifors is performed in the Allen-Bradley plant ... from the molding and sintering of the ceramic discs to the final
impregnating and testing of the finished capacitors. AllenBradley ceramic capacitors are approved by the engineering departments of the leading electronic, electrical, and telephone laboratories. Allen-Bradley ... long famed for the design and production of high quality electronic components. . . is at your service as a major supplier of ceramic capacitors of superlative quality.

Samples will be submitted for your qualification tests.

Allen-Bradley Co., 110 W . Greenfield Ave., Milwaukee 4, Wis

ALLEN-BRADLEY
 RADIO \& TELEVISION COMPONENTS

plied to the signal input multiplied by a phase-angle factor, provided the signal is smaller than the reference voltage. The voltage between a and b is observed on vacuum-tube voltmeter circuit V_{5}.

Since the output voltage from each terminal of the square-wave generator is used only to cut off the associated diode, it is not necessary that the two output voltages be equal. The only critical adjustment occurs in matching the two time constants $R_{1} C_{1}$ and $R_{2} C_{2}$. If these time constants are unequal, a low-frequency noise component will develop unequal voltages across the two filter sections. To balance the time constants, it is convenient to disconnect both plates from the square-wave generator and ground them. A variable-frequency audio oscillator is then connected to the signal-input terminals. As the oscillator frequency is reduced toward the lower end of the useful range, the meter deflection will usually be found to increase rapidly. One of the resistors should be adjusted for minimum frequency deviation.

Reference Level

Although the two output voltages of the square-wave generator do not have to be balanced in magnitude, it is essential that the ratio of the two off periods be independent of the reference-voltage amplitude, if there is a possibility that the reference level may change.

Since the output of a lock-in amplifier depends upon the phase angle between the reference voltage and the signal voltage, a phase shifter should be included either in the signal path or in the reference voltage circuit.

The use of a square-wave switching voltage causes the lock-in amplifier to respond to noise components which are exactly odd harmonics of the reference frequency. This is not believed to be a serious disadvantage, however, for it is relatively easy in most applications to introduce a low-pass or band-pass filter having any desired attenuation at the third and higher harmonics of the signal frequency.

With the circuit values and components indicated in Fig. 1, the response is essentially uniform for a signal frequency between 10 cps

Designed for Application

Mu Metal Shields

The James Millen Mfg. Co. Inc. has for many years specialized in the production of magnetic metal cathode ray tube shields for the entire electronics industry, supplying magnetic metal shields to manufacturing companies, laboratories and research organizations. Stock shiclds are immediately available for all of the more popular sizes and types of cathode ray tubes as well as bezels for $2^{\prime \prime}, 3^{\prime \prime}$ and $5^{\prime \prime}$ size tubes.

Many production problems, however, make desirable special shields designed in conjunction with the specialized requirement of the basic apparatus. Herewith, are illustrated a number of such custom built shields. Our custom design and fabrication department is at the service of our customers for the development and manufacture of magnetic metal shields of either nicoloi or mumetal for such specialized applications.

Man office $c^{c} \frac{L^{3}}{}{ }^{3}$ and factony

MALDEN, MASSACHUSETTS, U.S. A

and 500 cps . The range for 70 percent response is 7 cps to 2 kc . With a 1 -ma recorder movement displaced mechanically to zero center, full-scale deflection oczurs for approximately 10 volts at the signal input. The performance of this instrument is limited largely by the electrical characteristics of the two transformers, especially T_{1} and there appears to be no reason why the frequency range should not be extended to around 100 kc , provided appropriate transformers are used or R-C coupling is employed instead of transformers.

This article has been abstracted from a paper "An Improved LockIn Amplifier", by H. L. Cox, Jr., appearing in the April 1953 issue of The Review of Scientific Instruments.

Freduency Response in Four-Terminal Networks

By Robert L. Konigsberg Rescarch Associate. Johns Hopkins University Baltimore, $M d$.

There are several methods of measuring the amplitude-frequency response of a four-terminal network driven by a constant-current source.
If the network were driven by a vacuum tube, the measurements would be fairly straightforward. The constant-current source, i, in Fig. 1 would be $i=g_{m} e$ where g_{m} is transconductance, and e_{g} grid voltage. If R_{I} and C_{1} are part of the input circuit of the network, these quantities should include the shunt effect of the plate resistance and plate-to-ground capacitance, respectively, of the tube. That is, the network would be designed so that R_{1} and C_{1} included these effects. Then, by definition, the network response G_{n} would be

$$
G_{n}=\frac{e_{o}}{i}=\frac{1}{g_{m}}\left(\frac{e_{o}}{e_{o}}\right)
$$

If g_{m} remains a constant in all measurements, measuring e_{0} and e_{9}, and forming their ratio will give the response at any one frequency. Repeating these measurements at other frequencies will give the required relative response data.

Now, suppose the driving source

g-e midget and g-e ughtweight improve soldering efficiency and speed in tight places.

Now-2 G-E lrons for Hard-to-solder Places

FAST PRODUCTION

 WITH THE G-E LIGHTWE|GHTQuick heat recovery and easy handling combine to give you quality production at high speed. The thin, $\frac{5}{16}$-inch diameter shank allows easy soldering where a bulkier iron can't reach or would cause damage to insulation and surrounding parts.

PINPOINT ACCURACY WITH THE G-E MIDGET

Soldering difficult joints is as easy as writing with a pencil when yon use the slender, $13 / 4$-ounce, 6 -volt midget iron. Power costs are cut to one-fourth those of a regular iron, and tip heat can be closely controlled with the optional four-tap transformer.

BOTH LIGHTWEIGHT AND MIDGET IRONS OFFER YOU:

Longer Service, Lower Maintenance -Extra long wearing Ironclad lips resist pitling and corrosion, giving you longer service for both high-speed repetitive production line soldering and intermitent work. General Electric Calrod* heaters provide dependable. efficient operation throughout their long life. The tip and heater unit is easily replaced by unscrewing it from the handle.

Reduced Operator Fatigue - Both ions are light in weight, well balanced, and have comfortable handles. Easy handling helps cut rejects and increase operator speed and efficiency.

SOLVE YOUR SOLDERING PROBLEMS TODAY

For the complete story on the G-E Lightweight and Midget soldering irons contact your G.E Apparatus Sales Office or Distributor. Additional information is yours by mailing the coupon below.
*Reg. Trode-mark of General Electric Company

Section G720-115
General Electric Co.
Schenectady 5, N. Y.
Please send me the following bulletins:
\square For immediafe project \square For reference
\square GED-1 583, G-E Laghtweight Soldering Iron.
\square GEA-4519D, G-EIndustrial Soldering Irons.

Name

Company

Address

City
State.

Users and prospective buyers of Magnet Wire may expect from Wheeler a technical service that gets right to the heart of their problems . . . for radio, electronics, television or other applications. Since 1909, we've accumulated a wealth of practical experience that has been of considerable value to manufacturers in these fields.

From our initial operation of drawing electrolytic copper "rod" down to finished wire in sizes from AWG \#22 to \#50 . . through our automatic Formvar and other insulating machines . . . high speed enameling production lines . . . or textile yarn wire covering machines . . . there's no let-up on testing and inspection to insure top quality of product.

Wheeler engineers and representatives are competent, friendly and willing cooperators.

MAKES THESE PR•JDUCTS A

THE WHEELER INSULATE WIRE COMPANY, INC. Division of the Sperry Corp. - 1101 east aurora st., waterbury 20, conn.
is a low-impedance device such as a crevstal diode in a heterodyne mixer circuit. Fig. 2A. In this case, the network would be designed to pass the i-f currents generated by the nonlinear crystal. The equivalent

FIG. 1-Network driven by constantcurrent source
circuit for the crystal, r-f circuitry and network would be represented by Fig. 2B. The input circuit of the network must be desigiaed to include the shunt-loading effect of the equivalent source admittance of the r-f and crystal-diode circuits at intermediate frequencies. These are represented by shunt elements R_{F} and C_{r} in Fig. 2B. In this case, the value of R_{r} will be of the order of 300 or 400 ohms since the equivalent shunt source resistance for the crystal and 1 -f circuits is of this order:

FIG. 2-Hetroydne mixer circuit (A) and its equivalent (B) af intermediate frequencies
Constant-current response of the network can be measured by replacing the crystal diode and r-f circuits by an admittance, with R and C shunt components, equal to the equivalent source admittance of these circuits. This admittance is connected across the input terminals of the network, making up the net R_{1} and C_{2} for which the network

Dudley J. Scholten, Vice Pesident of Argus Cameras, explains why:

He doesn't believe in negatives!

When dealers phone for more stock fast-bccause customers want Argus cameras now- Dudley Scholten doesn't believe in negatives. He won't say "No." He uses Air Express.
"Last December 23, for example," he will tell you, "a large Indianapolis camera shop ran out of Model $75^{\circ} \mathrm{s}$, called us in Ann Arbor headquarters.

We got together half a gross by noon of December 24 and Ict Air Express take over from there. That night, the dealer phoned again to say 'Thanks.' The Air Express delivery had arrived early in the afternoon-and by closing time he had sold out the whole order!
"There's no doubt that the astounding growth of Argus owes much to this policy of reliable, fast distribution. Argus sales rose from a net of some 5 -million dollars at the end of 1950 to about 19 -million in 1953
"We ship by Air Express to our outlets all over the country in weights from 4 to 30 pounds, often as much as 120 pounds. Air Express always comes through for us, and we have found that most of cur shipments cost us less than with any other air service."

It pays to express yourself clearly. Say Air Express! Division of Raiiway Express Agency.

They're practically look-alikes. Both were designed to serve as rubber-tipped leveling screws on the bottom corners of metal kitchen cabinets. The part on the right does much the better job - its special collar prevents the rubber cap from slipping over the shank. Produced on Cold Forming equipment, it costs $\$ 6.00$ less per thousand than the screw machine part previously used!

Result: Savings of over $\$ 20,000$ a year for one of America's leading makers of kitchen cabinets!

COLD FORMING and Good Design turned the trick!

Your annual investment for fasteners and small special parts is undoubtedly sulstantial in your plant. Savings that total thousands of dollars are not unusual when such parts are Cold Formed without waste or scrap on hiph-specd automatio equipment and designed for high-speed automatic or semiautomatic application.
Thanks to long experience in Cors Forming, Milford engincers, designers and product
research experts are ready and able to help you cut small-parts costs substantially. They bring to your servicc Milford's leadership and know-how in the manufacture of semi-tubular, tubular and special rivets, as well as automatic rivet-setting machines.
So put us to uork for you on products you're making now or those you're planning to produce. Chances are we can help you make some major savings - in looll time and money!

NORWALK

CAlIf.

ELYRIA

OHIO

AURORA
 IILINOIS

hATBORO PENNA.

ERIE High Voltage Capacitors

Erie cffers a wice selection of disc and molded ype ceramicons for high voltage service up to $30 \mathrm{k} \cdot \sqrt{ }$ ．

ERIE＂Hi－Stab＂Deposited Carbon Resistors
The Style 15之 Pyrolyti：resistor EIfills a long standing need for ar extremely stable，moderately priced， molded insulated $1 / 2$ watt res ster Available from $1: 00$ ohms to $1 / 2$ megohm ir tolerenc 3 ：as close as $\pm 1 \sigma_{\%}$ ．

dependable electronic components

IRIE＂K－LOK＂High－stability Dise Ceramicons
Values up to .0047 mfd at 500 volts are avoilable in blerances as close as $\pm 5 \%$ ．Capacity ratiations with temperature，age，and voltage are excミptionally small．A truly premium capacitor．

ERIE Trimmer Capacitors

The largest and most versatile family of plastic and hemperature compensating ceramic trimmer＝a sacitors are available from Erie，to meet difficult tumer and converter requirements．

ERIE By－Pass and Compe 1sating Ceramicors
To meet the exacting temp r ature compensation and by－pass requirements of coker circ jitry．Compenzating units avai able fron． 75 to 1330 mmf ．＂Hi－K＂by－pass units avai able fron 100 mmf ．to .31 mfd ．

ERIE Stand－off cnd Feed－hru Ceramicons
Manufactured in values up to 1502 mmf ．to over：one radiation and critical by－つasing problems．

IBM's new "701", designed to assist engineers and scientists working on vital defense projects, is capable of performing an average of 14,000 mathematical operations per second! Compared with previous methods, the new "701" solves involved mathematical problems in an unbelievably shorter time period. Below left, is illustrated the time comparisons of a typical problem.

POWER EQUIPMENT

Battery Chargers B Battery Eliminators \& D.C. Power Supply Units it Regulated Exciters is and other Special Communicgtions Equipment
lated filament power, for the IBM "701" is furnished in equipment manufactured by Power Equipment Company. For your computer, or for other applications where accurate regulation and speed of response are required, PECO is qualified to design, develop and manufacture rectifier type power supplies in a wide range of sizes.

5740 NEVADA, EAST
DETROIT 34, MICHIGAN
is a measure of the relative response of the network.

In this case, using the Thevenin constant-current equivalent circuit, the response of the network can be shown to be very nearly

$$
G_{n}=\frac{e_{0}}{i}=\left(\frac{e_{0}}{e_{I N}}\right) R_{1}
$$

Now, if R_{1} can be held fairly constant over the test frequency band, then the ratio of $e_{u} / e_{1 N}$ is a measure of the relative response of the network.

Values of e_{0} and $e_{i s}$ may be measured indirectly by amplitude modulating the signal source at an audio-frequency rate. Then $e_{\text {, and }}$ $e_{i N}$ are measured in terms of the detected audio sigmals using a square-law detector of the german-ium-crystal type. Associated with the detector output circuit may be a tuned audio amplifier with an output meter calibrated directly in db response. It is assumed that the detector has a high enough input impedance and will not affect the measured values. In many cases, Z_{a} can be made small enough so that the measurement of $e_{I,}$ is unchanged by the presence of the detector. If R_{2} is not small compared to the detector impedance, the value obtained for e_{o} may be in error. In broadband networks, R_{z} is usually small enough so that this error can be made negligibly small, but in narrow-band networks it may be necessary to compensate the network output constants for the presence of the detector.

A precaution should be observed in making constant-current response measurements when the signal generator is terminated in a low impedance such as Z_{n} in Fig. $3 B$. Because the input voltage, $e_{I N}$, is developed across a low impedance, Z_{a}, a relatively large current is drawn by Z_{a}. If more than one chassis ground path exists, part of this current may pass through a chassis ground path common to the network.

At high frequencies, a significant voltage drop can be produced across the common ground path, the inductance of which is not insignificant. This voltage drop is then applied to the network and considerably alters the response characteristic. To eliminate this

How can GLOBAR cohage SENSHITVE RESISTORS

cut your product's

 cost...yet add to its reputation?OUR ENGINEERS will be glad to show you, without obligation, how globar Ceramic Resistors can help you make a better product a- less cost. Write, giving details of your problern, to The Carborundum Company, Dept. E 87-313, Niagara Falls, New York.

- Engineering data on these and other important uses for globar Type Bnr resistors ... in Bulletin GR-2. Write for your copy.

GLOBAR Type BNR resistors are built for long life. They withstand repeated high voltage stresses without danger of sudden failure. They are manufactured in both cylindrical and disc shapes ...to meet your exact circuit and engineering requirements.

GLOBAR Ceamic Resistos

CONVENTIONAL - TEMPERATURE SENSITIVE - VOLTAGE SENSITIVE by CARBORUNDUM

S
PECIFY Centralab Model 2 Radiohms - it's a move in the right direction to new production simplicity ... new, finer performance. Model 2's are only $15 / 1 \mathrm{c}^{\prime \prime}$ in diameter, and rated at $1 / 2$ watt. You get lower noise level, longer life, more value for your money.

Imagine the larger variety of uses in TV, radio, sound and test applications. Available in two switch ratings - 5 amps (a) 125 volts a-c and 8 amps @ 125 volts a-c. There are six different switching combinations for real flexibility and greater circuit simplification.

For complete technical data, write for Bulletin 42-164.

Centralab

A Division of Globe-Union Inc.
914 E . Keefe Avenue - Milwaukee 1, Wisconsin In Conada: 804 Mi. Pleasant Road, Toronto, Ontario

CERAMIC
CAPACIIORS PRINTED
CIECTRONIC circuins

Industry's greatest source of standard and special electronic components
source of error, it is necessary to insure that there are no network ground paths common to those through which the current drawn by Z_{a} is passing. This usually means that the test circuit should be grounded to the chassis at only one point.

Phototube Tester Checks Anode Current

By Milton Aidelman, Robert ${ }^{\text {ºn }}$ Burhe and Reuben.t. Leirowitz

$$
\begin{gathered}
\text { Phototube Unit } \\
\text { Naval Haterial Laboratory } \\
\text { Broolvm. } \mathrm{N} \text {. Y. }
\end{gathered}
$$

Of the several measurable phototube characteristics, anode current has been designated by military specifications as the sole criterion for determining the end of useful life for all vacuum and gas phototubes, except for photomultipliers, where the characteristic of amplification is measured. Anode current, however, is an important factor in determining amplification, and therefore furnishes a reliable indication of the end of useful photomultiplier tube life.

FIG. 1-A node current checker for phototubes used in Navy equipment

Apparently, shelf life causes no prohibitive increase in dark current of tubes that were within specification limits when originally stocked. The equipment described below was designed to test all the 97 diverse stock phototube types and constructed at the Material Laboratory of the New York Naval Shipyard in Brooklyn, N. Y.

Complete equipment shown in Fig. 1 includes an electronically regulated high-voltage d-c power supply adjustable from 700 to 1,600 v , with output of 10 ma . Ripple voltage of 0.3 v at any load current is too small to affect voltages from

CRUCIBLE first name in special purpose steels
54 years of FFing strelmating

PERMANENT ALNICO MAGNETS

Keeping Communications on the $=\left[\begin{array}{l}=1 \\ 0\end{array}\right.$

OII COMPLETE SYSTEMS FOR

- Frequency-Shift Radio Teletype and Telephone Mobile or Point-to-Point
- V-H-F Radio Relay
- Radio, Radar, Microwave, and Direction Finding

For dependable radio communications . . . linking stations that are fixed or mobile . . . with conventional radio gear or high speed teletype and telephone . . . B\&W offers a line of complete systems and special equipment that has been proved and approved by both industry and military.

For example, in the time-tested Mobile FrequencyShift Radio Teletype Unit illustrated above, B\&W has designed and built, from the drawing board up, the necessary:

- Dual Diversity Receivers and Converters
- Frequency-Shift Exciters
- Transmitters
- High Power R-F Amplifiers
- Speech Amplifiers
- Frequency Meters
- Control Units

Once assembled, these units are installed in shelters with all associated equipment, ready for immediate use. If you have a problem concerning the design or construction of radio communications systems, B\&W engineers would like you to take advantage of the same facility. Write for details.
divider networks across the output. Voltages for the photomultiplier dynodes and other tube types are provided by two networks made up of precision resistors. Each network draws 5 ma.

Since the low anode current, ranging from 0.2 to 200 microamperes, cannot be directly measured by a meter, a d-c amplifier is required. This amplifier, operating push-pull, is calibrated to cause fullscale deflection at 1.5 v on a 200 microampere movement. The meter is marked and scaled so that the latter $3 / 5$ is colored green and

FIG. 2-Black box with end-on tube under test. Proper luminous flux is obtained by interposing different area apertures between light and photocath. odes
marked to indicate good tubes.
The relatively low internal resistance of gas-filled, as compared to vacuum phototubes, is compensated by adjustment of input resistance.

Voltage supply for the standard exciting lamp comprises a small constant-voltage transformer feeding into an autotransformer that, in turn, controls the voltage to a low-voltage, high-current, stepdown transformer. The resultant output voltage is constant within less than plus or minus 1 percent for total input variation of 30 percent. Available regulated d-c supplies for the current range were too expensive and bulky.

Frequency Synthesizer

AN EQUIPMENT has been developed in Britain to act as a source in which any individual frequency between 1 kc and 100 mc can be produced quickly and accurately.

The principle used is that of synthesis of frequencies, with static filters to select the wanted products in mixer outputs. The required output is arranged to have a small sideband component of

BLILEY BANTAM BX FREC: 15me-100me

The new BANTAM BX has wire leads for mounting in a miniature selector switch or can be soldered to a printed circait terminal board.

The new BANTAM BX does not sacrifice precision or dependability. It meets same performance and tolerance requirements as larger crystal units such as MIL types CR-23 or CR-32,

The new BANTAM BX is fully described in Bulletin 46. Now available for prototypes or in production quantities.

Now Know Power fed to Antennu while operating

- Measures power flowing through transmission line to antenna under wide range of standing wave conditions and antenna impedances.
- Direct reading meter with 4 calibrated ranges; 0.25-5, 5-15, 15-50 and 50-150 watts. Meter has adjustable reference pointer for noting any change in power.
- Precision 50 ohm slotted line with solid dielectric, type N connectors and centimeter scale.
- Accurate step type wire wound controls indicate standing wave ratio (SWR).
- Model 60 is a complete set of equipment for impedance measurements by slotted line method lonly r.f. power source required).

Write for details
about 0.05 percent. Selection of the necessary static filters is by means of a system of motor-driven Geneva mechanisms and switches and the entire selection routine is a simple manual operation.

A certainty of frequency division from the standard is guaranteed by use of harmonic selector circuits. Because the output is a sine wave, it is possible to establish the fundamental frequency of a complex input.

Extending Multivibrator Delay Time

By George Eliot Kaufer Hilectronics Research Laboratories Department of Electrical Engineering Columbia University, New York, N. Y
FOR A GIVEN multivibrator and trigger rate a definite limitation is imposed on the maximum obtainable delay interval. As the delay is increased, exponential decay of the waveform, as shown in Fig. 1, moves farther to the right. Eventually, a point A will be reached

FIG. 1-Vo'tage between cathode and ground in monostable multivibrator showing effect of increasing delcy time
where the next trigger occurs at an instant when the timing capacitor is not fully charged. The subsequent delay will not be constant. Delays of greater than 80 percent of the total period are usually difficult to obtain unless additional techniques are employed.

A remedy is to effect more rapid discharge of the timing capacitor. A simple method of accomplishing this is to shunt R_{k} with a biased diode as in Fig. 2. For best results, bias should be a volt or two above the value $I_{s} R_{k}$ where I_{z} is the full on current of V_{0} and must be derived from a low-impedance source.

When V_{z} conducts and C begins to charge through R_{k}, the diode short-circuits and presents a lowimpedance path. Charging-time constant is thus reduced and the

STEP UP

with QUALITY CONTROLLED

Notice anything different about this building? A step-up design in the new FXR plant has been scientifically achieved, not only to cover the particular landscape, but to cover every need of industry for Precision Microwave Test Equipment. Here, in one huge integrated plant, FXRdesigns and produces precision-built electronic component units....or complete "meant-for-each-other" assemblies for specific or multiple application. FXR sound engineering practices and
fine reputation for quality products at realistic costs have, in the ten years of our growth, developed an imposing client roster of some of the leading companies in the nation. A top staff of FXR engineers is ready to serve you.

Visit our Booth \#387
at the I. R. E. Show
in New York City

Design, Development, and Marrufacture of GUIDED MISSILE MICROWAVE PLUMBING ANTENNA PATTERN ANALYZERS HIGH POWER MAGNETRON MODULATORS RADAR COMPONENTS
Rotary Joints - Antenna Scanner Devices Dummy Loads *irectional Couplers

Electronises \& - Pny Divisiom

 F-R MACHINE WORKS, Inc.44-14 ASTORIA BOULEVARD LONG ISLAND CITY 3, N.Y. Astoria 8-2800

- NO EXPENSIVE TEST EQUIPMENT NeEDED . . . Built-in measuring panel provides fast over-all system line-ups, even by nontechnical personnel. No more testing trips up and down the line.
- EQUALIZATION OF NON-CONforming lines... with built-in slope control.
- easier inspection and maintenance . . . with RyCom separate panel construction.
- easier installation in less time . . . The CFD-B is packaged in a single rack for space and labor savings. Shipped complete in one package.

Immediate Deliveries Now Being Made!
 Order now for early delivery. RyCom engineers will be glad to talk over your specific installation needs. Write or phone today for complete details, specifications, prices!
 Rely on Bycem For Highest Quelity di Minimum Cost

Raytown, Missouri, U.S.A. Phone: FLeming 2100

Export Office: 13 East 40th 5 . New York 16, N. Y.
delay may be stretched as much as 10 or even 15 percent further.

A capacitor in series with the diode shunts R_{k} at the instant an output pulse is being generated increasing gain, with a resultant rise in output delay pulse magnitude.

Addition of capacitor C_{1} from the pulse-coupling transformer to ground, will cause the plate of $V=$ to take a finite time (determined by the values of the plate resistor and capacitor) to reach the supply voltage.

FIG. 2-Circuit of multivibrator cathode. shunt diode and plate-shunt capacitor to extend delay time

Minimum delay obtainable is not appreciably affected by the added capacitor since in all cases the value of capacitance will be small enough to allow for a short time constant. At the conclusion of the delay interval V_{2} is turned on and its plate voltage falls.

The diode opposes current flow and acts as an open circuit, causing the changing current plus the discharge of C_{1} to flow through the transformer primary. This additional capacitor current, which flows for a time equivalent to the output pulse duration (due to proper selection of the discharge time constant) increases the rate of change of transformer primary current and results in greater output voltage.

As it is desirable to discharge the plate capacitor rapidly, a low-resistance path is beneficial. Diode clipping in the cathode circuit is used further establishing the advantages of these components.

The value of the plate capacitor should be such that the dischargetime constant of C_{1} and the internal tube resistance in parallel with the current-limiting resistor is equal to or greater than the output-pulse width. Its maximum value is limited by the trigger-pulse repeti-

lfe SOLID delay lines stop time!

Now available for applications

 such as video integration, computers, time markers, moving target indication.LFE solid ultrasonic delay lines utilize fused quartz as the delay medium and offer many advantages in obtaining precise delay intervals for pulse or modulated signals:

DELAY LINE SPECIFICATIONS
FOR 500 MICROSECOND STORAGE TYPE

Other delay lines from 1-5000 microseconds and 5-100 megacycles are produced to customer specifications.

For further information, write: SPECIALTIES DIVISION

HUBBELL Interlock provides automatic locking...

 low contact resistance connection for BRUNO MULTIMETERS!
meter leads

 cannot disconnect accidentally!Hubbell Inter. lock connectors, shown, are nylon insulated color-coded in black and red with a terminal wire connection.
The Type S connectors used in Bruno Multimeters accommodate wire sizes \#14 to \#18 with 15 amps . capacity.

Bruno Multimeters take advantage of Hubleell Interlock's exclusive contact and locking features. Leads lock automatically when plugged into meter - disconnect only when in. tended. Contact resistance is extremely low, and stays constant because of unchanging coil spring pressure. Exclusive design and nylon insulation make Interlock jacks waterproof and weatherproof.

Hubbell Interlock connectors may be put to a multiplicity of uses for both electrical and electronic devices. Our development laboratory will cooperate with your engineers to adapt Interlock for your specific applications.

For Further Information, Write Dept. A:

HARVEY HUBBELL, Inc. Interlock Dept., Bridgeport 2, Conn.

tion frequency, since the plate voltage of V_{z} must fall to the full-on value before the appearance of the next trigger.

Microfilmed documents previously marked are read off by flying-spot scanner in new technique developed for computer inpul

FOSDIC Feeds Figures

A FILM optical sensing device for input to computers (FOSDIC) converts ordinary pencil marks appearing on microfilmed copies of documents into electrical pulses that are recorded on magnetic tape for data processing machines.

The device is designed to reduce the work now necessary to convert written records into a medium suitable for feeding computers. FOSDIC allows considerable freedom in design of documents and requires no special writing equipment.

Mark sensing is based upon the detection of specific blacked-in areas or ovals in a large field of possible answers arranged on a sheet of paper. A yes-no answer is given two ovals, while a numerical answer is supplied with a vertical column of 10 ovals for each decade.

Scanning is carried out frame by frame. Each frame is a microfilmed picture of one side of a sheet that may be as large as 14 by 16 inches. The film is placed in an optical assembly between a cathoderay spot-scanning tube and a phototube that produces a varying electrical signal from the interrupted light beam as indicated in Fig. 1. Present maximum capacity is 2,800 marks a sheet. The individual film is scanned in 0.5 to 0.9 second. Average information rate is 2,000

ELECTRONS AT WORK

binary digits or 250 decimal digits a second.

An index recognition circuit determines when the scanning beam is at the top edge of a solid mark

FIG. 1-Flying spot scanner and com-puter-input tape recorder
between 0.24 and 0.36 inch high. Means are provided to make a column count on each document. If a column is missed, owing to a film defect, a special signal on the magnetic tape informs the computer that the information may be unreliable.

FOSDIC was developed by M. L. Greenough, H. D. Cook and M. Martens of the National Bureau of Standards at the request of the Bureau of the Census.

Frequency-Modulated UHF Transmitter

Harry W. Gates
Electronics Engineer Capehart-Farnsworth Corp Fort Waye, Indiana

THE OSCILLATOR-TRANSMITTER described in this article was designed for frequency-modulated operation in the 400 - to $500-\mathrm{mc}$ region. Pen-cil-type uhf triodes are particularly well-suited for use in this range, and a power output of five to seven watts may be easily obtained using two tubes in a push-pull circuit. However, the planar construction of the pencil triode is basically better suited to coaxial and cavity circuits than to parallel lines. Therefore, it has been necessary to construct mechanical mounts to permit the use of pencil triodes in parallelline circuits. Figure 1 is a sketch of one such mount.

This mount not only serves as a mechanical support for the tubes but is also the grid feedback loop. The dimensions given are for 400 to 450 mc with a six to seven-watt output. Since the length of this

Famous Kings in History

FERDINAND V, 1452-1516, was the Spanish King of Castile and Leon. As Ferdinand Π he was also King of Aragon. His policies, though severe, founded Spain's imperial greatness. He married Isabella of Castile. King Ferdinand is best-known $t o$ Americans because he and the Queen aided Christopher Columbus in his famed woyages of discovery.

In the field of electronics, industries all over Amer ca have discovered th.at they can always depend upon Kings Connectors for bort standard and special applications. Because of the highest standards of ranufacture, pus long experience, the Kings organization can meet your awn spec fic connector requirements, whatever they may be. You'l be glad you called on Kings first.

BNC SERIES

ENGINEERS

$A N D$

PHYSICISTS

Latest developments in your fields will be presented at the

NATIONAL CONVENTION AND
 RADIO ENGINEERING SHOW

New York City, March 22•23•24-25
HEADQUARTERS, WALDORF.ASTORIA HOTEL EXHIBITS, KINGSBRIDGE ARMORY

You are cordially

 invited to visit the Hughes exhibits, Kingsbridge Armory.Hughes research, development and manufacturing in the field of advanced electronics have led to significant achievements for the military, as well as for commercial applications.

GROUND and AIRBORNE RADAR
FIRE CONTROL SYSTEMS GUIDED MISSILE SYSTEMS
AIRBORNE DIGITAL COMPUTERS
ELECTRONIC BUSINESS SYSTEMS
MINIATURIZATION and ADVANCED PACKAGING COMMUNICATION SYSTEMS MICROWAVE FERRITE DEVICES
ANTENNAS and RADOMES
INDICATOR and MICROWAVE TUBES SEMICONDUCTOR DEVICES
loop determines primarily the amount of feedback and to a much lesser extent the frequency, the dimensions can be fixed at an op-

FIG. 1-Mounting bracket for twa pen cil triodes is grid-feed back loop
timum value of power output for over a greater than 10 -percent range of frequency.

The block used to support the cathode clips and the grid clip is made of material having a low loss factor at 500 mc . Care should be taken to avoid placing supports near the plate lines since the power output may be reduced as much as 50 -percent by leakage.

UHF frequency-modulated transmitter uses two pencil triodes in output

Tuning is accomplished by a shorting bar between the plate lines. A three or four-digit counter in conjunction with a gear train permits the sliding short to be reset to one one-thousandth of an inch, or at a nominal frequency of 400 mc . to the nearest 50 kc . A calibration chart is used to correlate dial settings with carrier frequency.

In the application for which the oscillator-transmitter was designed, the carrier is frequency-modulated with six different audio signals which can be applied either separately or in combinations up to all six at once. This means that the modulating signal can be a complex wave with frequencies as high

HUGHES

A New

Standard of

Reliability

Reliability in a germanium

 diode is determilted principally by permanent freedom from the two major causes of diode failuremoisture penetration of the diode envelope, and electrical instability under extreme operating conditions.hughes germanium diodes are designed to prevent such failures through two exclusive features:

1. Fusion Sealing-The glass-tometal seal, proved in billions of vacuum tubes, is incorporated to full advantage in diode manufacture by the Hughes-developed process of fusion sealing at high temperature. The result is a rigid one-piece glass envelope impervious to moisture.
2. 100\% Testing-Hughes 100% testing procedures invite instabilities to occur prior to shipment,
assuring rejection of defective diodes. Each hughes diode is humidity-cycled, temperaturecycled, Jan shock-tested, and electrically tested under vibration. This testing procedure insures operation of hughes diodes under adverse conditions of moisture, temperature, vibration and severe shock.
Reliability of hughes diodes has been proved in advanced airborne military radar and fire control systems, and for guided missiles.

a cool customer

Type AXB-2107-100 CFM output with input of $27 \mathrm{~V} D C, 115 \mathrm{~V} A C, 60$ or 400 cycle.
Lightweight, motor-driven axial-flow blower

OSTER AVIONIC

 PRODUCTS INCLUDE:- Special motors of all types, such as servós for auto-pilots, computers, fire control, for drives, blowers and fans.
- Synchro generators, control transformers, transmitters, differentials, receivers and resolvers. Two-speed synchros and reference generators.
- Tachometer generators.
- Aircraft astuators, both linear and rotary.

Just one of many electro-mechanical products by Oster that meet all the exacting requirements of airborne applications.
OSTER Avionic Products conform to military specifications for altitude, high and low temperature, life, shock, vibration, humidity, fungicidal treatment and salt spray.

You can depend on OSTER for
superior quality that assures SAFER FLIGHT, EXTRA FIGHT.

It will pay you to contact us.

as 120 kc. Assuming a deviation ratio of three it is necessary to allow for a frequency deviation of $\pm 200 \mathrm{kc}$. For this, the modulator shown in Fig. 2 was developed.

FIG. 2-Crystal in cathode circuit of f -m transmitter applies modulation

The modulator circuit applies the reactance-variation principle of a crystal, capacitor and loop combination to the push-pull circuit. Statically, replacing the crystal with various values of resistance will give a frequency deviation at 400 mc from zero to 400 kc . This, of course, is the same effect that would be obtained if the $1-\mu . \mathrm{f}$ capacitor were varied. Passing from

Whammer

Atter an eight-year study, including analysis of 270 items, Naval Research Lab engineers conclude that 90 percent of the damages resulting from shock and vibration can be eliminated in future by proper choice of components and suitable mounting. Vibration has been found as damaging as shock. Good design inherent in equipment on testing machine, results from low-mounted transformers and aluminum mounting feet set in from bottom edge to permit greater deflection of bottom panel

DESIGNERS-Cut New-Equipment Costs

F-6366 ${ }^{F-6367}$ 7 KW 12 KW

...incorporating built-in savings and

 proved design features that increase tube dependability and life and multiply the performance quality of new units
For Electronic Heating, Broadcast and Communications Service

High-Efficiency Radiator requires reduced pressure drop . cuts blower cost for new equipment.
Grid and Filament Leads Attached for convenience of designers ... for extra savings.
(3) Double Helical Filament of thoriated tungsten...for high peak emission... lower temperature.
(4) No Internal Insulators to expose tubes to danger of arcover and gassiness.
5 Internal Corona Ring eliminates trouble with hot-spots and glass cracks.
6 Kovar Terminal Cups used throughout for ruggedness required in industrial service.
Full Voltage can be safely applied to the cold filament... no step starting or high reactance transformers necessary.

Federal's F-6366 and F-6367 are the power triodes that new equipment designers have been waiting for ... to boost the efficiency of induction and dielectric heating units, broadcast and communications equipments ...to bring important savings to production lines!

Both tubes not only provide more ruggedness, longer service life and higher-quality performance, but they actually cut costs for manufacturers... saving as much as 80% on blower costs, while factory-attached grid and filament leads eliminate this expense.

Federal's new triodes feature simplified construction... with fewer potential trouble spots. Wide element spacing gives better protection against filament-grid shorts. Rated filament voltage may be applied to cold filament, eliminating need for step starting or high reactance filament transformers. Both tubes are operable up to $30 \mathrm{Mc} / \mathrm{SEC}$ at full ratings . . . anode up or anode down.

Equipment manufacturers now using the F-6366 and F-6367 in new designs report they are "extremely well pleased" with their stamina and performance. For prices and technical data, write to Federal, Dept. K-413.

Handbook of Tube Operation

Federal Telephone and Radio Company

VACUUM TUBE DEPARTMENT 100 KINGSLAND ROAD, CLIFTON, N. J.
In Canada: Federal Electric Manufacturing Company, Ltd., Montreal, P. Q. Export Distributars: International Standard Electric Corp., 67 Broad St., N. Y.

ederal's 72 -page booklet gives complete data on efficient operation of tubes in service. Mail your relisted above.

G. I. has the phonomotor

Single speed . . . two speeds . . . or three speeds . . . there's no limitation on combination or type when you choose from General Industries' broad line of phonomotors.

For example, shown above are two of General Industries' newest three-speed developments: Model SS, an extremely compact design with 2 -pole motor; and Model DSS, with 4 -pole motor and heavy-duty construction features for high fidelity reproduction. Both models incorporate the General Industries' unique, stepped-shaft drive principle which assures accurate reproduction and trouble-free long life. Both contain an "OFF" position in which the idler wheel is released from contact with the turntable rim. "OFF" position on Model DSS also cuts off current to motor.

For complete information, specifications, dimensions, and quantity-price quotations on these, or other phonomotors in the famous Smooth Power line, write us today.
zero to 3 ma d-c through the 1 N 39 crystal at point A in Fig. 2 closely approximates this change in resistance and if a corresponding amount of a-c is applied it is possible to obtain ± 200 kilocycles.

The output coupling consists of a conventional series tuner for use with 50 -ohm coaxial cable. Variable matching may be used in the output coupling, but for simplicity a shorted quarter-wave section of coaxial cable will give an approximate match over a 10 -percent tuning range at 400 mc .

The mechanical design and layout of this oscillator transmitter was done by Carl Hubartt of Cape-hart-Farnsworth Corp.

Inductor Control Gives AFC

SWEEP OSCILLATORS sometimes require automatic frequency control of center frequency. A high-Q, high-frequency saturable-reactor type device can be used for this purpose, particularly as applied to telemetering.

The circuit of a remotely controlled oscillator covering the range between 30 and 100 kc is shown in Fig. 1. Half a double triode serves as the oscillator. Part of the output is fed to a discriminator circuit comprising a 6AL5 operated as described below.

One diode is driven through an integrating circuit to provide response inversely proportional to frequency. The other diode is fed directly from the oscillator to give rectified output of opposite polarity across a potentiometer. The two rectified voltages are placed in series and the output taken from the lap of the potentiometer.

Zero output for ans freduency within range of the oscillator may

MODEL NO. D21UHP. 1 (ACTUAL SIZE)

SPECIFICATIONS Capacitor run induction motor, 115 volts, 400 cycles, single tor, 11,000 R.P.M., 1 Amp., phase, 11,1 P. . 1 MFD.- 220 V., $1 / 300$ th H.P., 1 MFight $-31 / 2 \mathrm{oz}$. 35% efficiency, weight

APPLICATIONS Fans, blowers, instruments, Fans, blowers,
controls and low power drives.

Another outstanding EAD contribution to the miniaturization program is this extremely small, precision motor. Engineered for long life and high efficiency, it is especially designed for operation in confined areas where minimum size and weight is essential.
Units are available in this small frame size for 400 cycle or variable frequency operation, with 400 cycle power ratings ranging up to approximately $1 / 100 \mathrm{H} . \mathrm{P}$. Modifications include high ambient and high altitude versions as well as servo, synchronous and gear motors.

400 CYCLE OPERATING CHARACTERISTICS

APPROXIMATE R.P.M.	7,000	10,500	21,000
PHASES	1,2	$1,2,3$	$1,2,3$
INPUT VOLTAGE	115	115	115
\quad (MAXIMUM)			

EAD

EASTEIRN ATR DETTCES, inc.

15 WASHINGTON ST., DOVER, N. H.

AIR FORCE and BUREAU of AERONAUTICS MIL-L-7806 DRAWING MS-25010

DIALCO No. TT-51 (Red filter-black top) . . or, No. TT-51A, complete with No. 327 Lamp

ALSO MADE

with other filter colors and with light-emitting top (for indication)

ALL Of THE ASSEMBLIES ILLUSTRATED

 ACCOMMODATE LAMPS NOS. 327, 328, 330, and 331. ANY ASSEMBLY AV AILABLE COMPLETE WITH LAMP SAMPLES ON REQUEST - NO CHARGEForemost Manufacturer of Pilot Lights DIALLGHT CORPORATION
60 Stewart avenue, brooklyn 37, n. y.
HYACINTH 7.7600
be obtained by adjustment of the potentiometer, The discriminator output is fed to a d-c amplifier commising a pentode directly coupled to the other double-triode section.

The closed control loop forces the oscillator to generate a frequency close to that for which the

FIG. 1-Low-frequency closed-loop telemetering control uses inductor
discriminator output is zero. Oscillator frequency therefore depends primarily upon the potentiometer setting alone. Temperature drift, hysteresis effects and nonlinear control current are all reduced.

By incorporating a limiter before the discriminator, the oscillator frequency can be controlled by an input voltage. Such an arrangement gives oscillator stabilities better than 1 percent and can be used effectively for telemetering.

Information on this frequency control has been abstracted from a report on applications of high-frequency saturable reactors by Carl G. Sontheimer of CGS Laboratories, Inc., Stamford, Conn.

PERTINENT PATENTS

The statement, "there isn't anything you can't do with electronics" is nowhere better indicated than in the Electronic Egg Grader, which was granted U. S. Patent $2,636,925$ for the invention of T. Gascoigne of Cloverdale, British Columbia, Canada.

The inventor applies a comparatively weak r-f field through an egg in a special pair of egg cups. Detecting the energy passing

TAYLOR Forming Materials are specially made for use in intricate shapes, compound curves and relatively deep draws. They are available with a wide variety of physical, mechanical and slectrical characteristics.

Want to make something of them?

Make them into all kinds of panels, guards, barriers, ribs, masks, covers, ducts, containers, shields, shims or any other complicated formed part your product may require. While many grades of Taylor Vulcanized Fibre and Laminated Plastic can be formed to some degree, these four grades are ideally suited for most forming operations.

LAMINATED PLASTICS:

Grade C-7-for applications requiring toughness, resilience, mechanical strength and abrasion resistance.
Grade XX-7-for applications where mechanical strength is secondary to good electrical properties and low cost.

VULCANIZED FIBRE:

Trunk Fibre-for applications requiring good mechanical strength, toughness, abrasion resistance, surface finish and resistance to organic solvents.
Taylor Insulation-for applications requiring superior dielectric strength, toughness and abrasion resistance as well as good mechanical strength. Make your products better and easier to assemble. Call your Taylor Engineer, he will be glad to work with you on your design problems and recommend the Taylor material that can be best formed to meet your particular requirements. Other grades of Taylor Vulcanized Fibre ... as well as Phenol, Melamine and Silicone Laminated Plastics . . . may also fit into your design plans. Your Taylor Engineer will be glad to show you samples and discuss specifications.
Taylor Fibre Co., Norristown, Pennsylvania-L La Verne, California

Which Way Up? vertical gyro

It's not always easy, when an airplane is maneuvering through the sky, to know where "up" isespecially if you have to know accurately. This is why Iron Fireman's Vertical Gyro is so valuable in aircraft and guided missile control systems. It establishes a true vertical and transmits the information to other components of the control system.

The demonstrated superior performance of the Iron Fireman Vertical Gyro in our finest jet aircraft is due to new and exclusive features.

Available for IMMEDIATE DELIVERY

Iron Fireman Clectronises 2800 S. E. 9th Ave., Portland 2, Ore.
through the egg and rectifying the detected energy, the inventor claims he is able to determine the quality or hatchability of the egg.

The circuit of the invention is shown in Fig. 1. It consists of an

FIG. 1-Radio-frequency oscillator and detector system used for grading eggs
r-f oscillator operated from a regulated power supply, a resonant output circuit and a detector system delivering an output in microamperes or microvolts. The test assembly is shown in Fig. 2.

FIG. 2-Arrangement of electrodes in electronic eqg grader

The condition of the egg would appear to be some function of the rectified r-f energy.

Curvent Integrator

Patent 2,638,491 has been issued to George K. Turner of Consolidated Engineering Corp., Pasadena, Calif. for a Microcoulometer. The patent is assigned to the company.

A microcoulometer is a meter arranged to measure the quantity of electricity passing through a conductor. The coulometer integrates the current for some period of time.

This device is particularly adaptable to the integration of very small currents.

It employs a vacuum-tube circuit for charging a capacitor in pro-

Color television brings a new set of critical demands for precision frequency control. Accuracy, stability and uniformity of crystals used in this application must be as nearly perfect as materials, methods, and quality controls can make them.

Midland meets this demand not only with a crystal of complete reliability in this new field, but also with a solid background of pioneering in the development of frequency control crystals and circuits for this and many other exacting applications.

Midland is prepared NOW to supply you in quantity with Color TV Crystals to meet your exact specifications, and to counsel on all matters concerned with this subject.

> SEE OUR EXHIBIT in Booth No. 143
> Radio Engineering Show, March 22-25.
> Kingsbridge Armory, New York City.

Whatever your Byytal meed, conventional or specialized

PROBLEM

Direct-current-operated valves were the key to improved performance of an automatic milking machine, but in field tests, the mechanically driven DC power supply for actuating the valves required excessive maintenance. In humid dairy barns, too-frequent cleanings and adjustments were necessary to obtain dependable operation.

SOLUTION

Rectifier power supplies, using Vickers Selenium Rectifiers, solved this DC supply problem. Vickers rectifiers require no maintenance or adjustment, are completely dependable in humid and other pletely dependable in humid and other
corrosive atmospheres. With Vickers Electric Division engineering assistance,
this manufacturer not only solved his Electric Division engineering assistance,
this manufacturer not only solved his performance problems but was able to reduce product costs.

When your plans for product development or improvement indizate a need for dependable DC power, consult Vickers'experienced rectifier engineers. There's no obligation.
portion to the magnitude of the current to be measured.

As shown in Fig. 3, a gaseousdischarge tube is connected across the capacitor and to an amplifier so the capacitor is discharged through the amplifier network when the voltage across the capacitor is equal to the breakdown potential of the gas tube.

FIG. 3-Integrator circuit for small currents recerds counts

Because all gas tubes have a residual operating potential the capacitor would normally retain a charge equal to the operating voltage of the gas tube. In this invention each time the capacitor discharges, a pulse is applied to an amplifier tube that results in operation of a relay in its plate circuit.

The relay contacts completely discharge the capacitor. A resistor across the charging capacitor linearizes the charge that may start from substantially a zero value. A bias control in the charging-tube circuit sets the circuit either for some minimum operating value or variations in supply voltage.

For each operation of the relay circuit a counter is actuated.

If the input to the coulometer is a-c. a bridge rectifier is provided as shown in the figure. For a d-c input, the potential or current is applied across the input resistor directly.

P'orellel Tube Control
In patent $2,646.472$ recently issued to R. J. Rockwell of the Crosley Broadcasting Corporation. Cincinnati, Ohio, there is described an Amplifier Control System. The patent is assigned to the company.

As is known among broadcast engineers production of high power amplifier tuhes doesn't keep up with the needs of the broadcasting industry and broadcasters are required as a result to parallel some

How To

Gauge a Vacuum

From 1 to $\mathbf{1} \times 10^{-\mathbf{3}} \mathbf{~ m m ~ H g}$
 NRC'S Model 516 Pirani Vacuum Gauge

This gauge is a simple, sensitive way to measure gas pressures. It is also an effective leak detector below 0.2 mm Hg . Completely integrated, no external accessories are needed other than the Pirani head and AC power cord. Sturdy. Dependable. Accuracy is not affected by changes in room temperature.

From 1 to $1 \times 10^{-8} \mathbf{~ m m ~ H g}$
 NRC'S Model 710 Thermocouple Ionization Gauge Control

This gauge provides all that's needed for scientific or commercial work in high vacuum. Contains one ionization and two thermocouple gauges. A quick-acting protective relay guards against burnout due to pressure surges. Complete with alarm or control circuit, stabilized grid current, low-leakage cable, and outgassing circuit.

From 1000 to $1 \times 10^{-4} \mathrm{~mm} \mathrm{Hg}$
 NRC'S Model 511 Alphatron Gauge

This gauge is latest refinement of well-known radium source ionization principle. As there is no filament to burn out, the gauge cannot be damaged by exposure to air or gas at atmospheric pressure. Speed of response is essentially instantaneous. Readings are linear, accurate to $\pm 2 \%$ full scale. Maintains original factory calibration indefinitely.

For more information write:

National
 Research Corporation

Equipment Division

 160 CHARLEMONT STREET, NEWTON HIGHLANDS 61, MASS.

SYNCHRONOUS TIMING MOTOR

The basic HAYDON motor is unique in its field in the number of advantages it offers. Its performance is dependable, it is small in size, is totally enclosed, operates in any position, has controlled lubrication and its assembly is simple. The basic HAYDON motor offers a wide range of standard speeds from 1 second to 1 hour per revolution and other speeds down to 1 revolution in 4 hours in the 1600 Series, from 6 hours to 1 week in the 4400 Series.

Write for Catalog No. 322, Electric Timing Motors

Other literature available on request on Tim. ing Devices, Clock Movements, 400 eycle Elapsed Time Indicators, 400 cycle Time Delay Relay, 400 cycle Motors, D.C. Motors.
*TRADEMARK Reg. U. S. Pat. Off.

HAYDON

AT TORRINGTON

HAYDON Mfg. Co., Inc.

Subsidiary of GENERAL TIME CORP.

HEADQUARTERS FOR

TIMING
number of lower power types in order to operate transmitters at higher power.

Equalization of the load among the several tubes in parallel is a problem that these broadcast engineers have faced many times with great difficulty in finding a solution.

The solution defined in this patent is shown schematically in Fig. 4. The signal applied to a push-pull parallel power-output stage is divided among the parallel tubes of each side through parallel potentiometers so that the signal on each grid may be adjusted independently of the others.

FIG. 4 -Power tubes in push-pull parallel with bias adjustment

The adjustment is made to provide both a bias and signal adjustment simultaneously. In practice, the potentiometers are first adjusted to equalize the idle current of each tube in the absence of a signal. When this adjustment has been made there is always an equal division of plate-current flow among the tubes when signal is applied. There is a linear relationship between the signal amplitude and the bias voltage required to maintain similar plate-current excursions in the various parallel connected tubes.

Although the principle of load division by controlling the signal swing of parallel tubes has been known before, the inventor in this case has found that there is a particular relationship in this principle and he has taken advantage of it to reduce the necessary cut-andtry used in prior techniques.

If one of the tubes in the parallel group may be considered as the norm and the bias applied to its grid circuit as the standard, the percentage change in bias-voltage value applied to another tube with higher φ in the parallel grouping to make the other tube operate at the same idle current can be de-

Do you have any of these problems?

1. Need a combination of gasket sealing and mechanical and electrical properties? Various grades of LAMICOID (- laminated plastic made with organic and inorganic binders-are combined with nctural or synthetic rubber to obtain the excellent insulating and mechanical properties of LAMICOID and the sealing properties of rubber.

2. Need accurately punched misa stampings for filamept, grid and plate supports? MICO produces mica stampings to extremely fine tolerances. Whenever you need precision-fabricated mica parts of the highest quality, call on MICO. We have 60 years of experience in this field.

3. Need a mica tape that can be run on taping machines af high speed? ISOMICA* tapes are made from long rolls of thin continuous mica sheet... are more uniform in mechanical and dielectric strength... have no high spots or voids. For electrical insulation of class B or class H motors, gen. erators and transformers.

4. Need special mechanical and electricg properties for brackefty terminal blocks access panels, etc.? high dielectric strength, excellent abrasion and moisture resistance.

Whatever electrical insulating materials you nced. MlCO makes them best. We manufacture all standard types and many special materials, and fabricate parts to your specifications. Send us your blueprints or problems today.
*Trademark

Offices in Principal Cities

Yon are invited．．．

Abstract

to submit your tough cord set and cable assembly problems to Whitney Blake Engineering and Design Department to enable them to give you the benefit of their knowledge and experience in designing cord sets with molded－on devices or special attachments．

Whitney Blake Company specializes in manufacturing those hard－to－figure cord sets and cable assemblies and is equipped to be truly helpful in development work．

Write us details of your prob－ lems．Ask for a free copy of our Design Guide for Custom Built Cord Sets．

Well Built Wires Since 1899

〈＊ャ〉 WHITNEY BLAKE COMPANY

New Haven 14 ，Connecticut
termined．It is equal to the per－ centare by which the amplitude of the input signal to the higher μ tube must be changed with refer－ ence to the signal applied to the norm tube to make the plate－current swing of the second tube the same as that of the first．This is a linear relationship．

Bridge Amplifier

R．W．Bordewieck of Southboro， Mass，is the inventor of a novel bridge amplifier circuit described in patent $2,637,786$ ．The patent is assigned to Moore Electronic Lab－ oratories，Inc．，of Worcester，Mass．

FIG．5－Regulator tube is used in cath－ ode－follower for bridge amplifier

The bridge amplifier is shown in Fig．5．Its operation is described by the inventor as follows．

With no signal impressed on the input circuit the balance adjust－ ment is varied until perfect balance is obtained in the plate voltages of the pentode input tubes．It is possible if desirable to so make this adjustment that there may be a plate voltage differential of some predetermined amount in either polarity．
By the addition of a cathode－bias regulator tube to the output cathode followers of the bridge circuit an extremely low－output am－ pedance is effected without losing any of the advantages of the bridge amplifier．

Since the output cathode follow－ ers have such low impedance the driving tubes may use higher plate－ load impedances whereas it is not possible to accomplish the same result if the driver tubes were required to drive the load directly． The inventor claims that his major element of novelty resides in the use of the cathode follower with voltage－regulated cathode circuits．

American Time Products, Inc.

Production Techniques

Edited by JOHN MARKUS

Air Cylinders Speed Terminal Spinning. 272
Dip Brazing of Microwave Components 274
Plastic Sleeving Dispensers........... 290
Green Conveyor Belt Reduces Eye Fatigue

Demonstrating Efficiency of Sampling Techniques
.294
Cementing Metal Screens to Cathode-
Ray Tubes . 300
Pin and Tip Gage for Miniature Tubes. 304

OTHER DEPARTMENTS
featured in this issue:

Page
Electrons At Work...... 194

New Products 308

Plants and People. 350

New Books 406

Backtalk
417

Canvas-Covered Rubbing Block Brings Carbon Resistors to Value

DEPOSITED carbon resistors are brought to within 1 percent of specified value by rubbing with a canvas-covered wood block while measuring the resistance with a setup employing an Eico push-pull oscilloscope and a Rubicon galvanometer as indicators in connection with a Shallcross model 617 percent limit bridge. Heavy spring clips mounted on a wood block maintain good contact while permitting rotation.

The operator drops the resistor between the test clips and rubs the carbon coating with the canvas
while watching the oscilloscope pattern, to bring the resistor up in resistance to approximately the required value. She then switches over to the galvanometer and continues rubbing slowly until the galvanometer is zeroed. This indicates that the resistor is within 1 percent tolerance. A deflection of 1 cm on the galvanometer scale corresponds to a deviation of $\frac{1}{4}$ percent in value.
The horizontal input terminals of the scope are fed with a 60 -cycle signal obtained from a Variac located in the power supply for the
setup. This Variac is so connected that it varies the d-c voltage for the limit bridge along with the a-c voltage. The scope indicates a-c balance when the trace approximates an ellipse marked with red crayon on the screen.

After d-c balance is obtained by using the galvanometer as indicated, the operator switches back to the scope for a final check on a-c balance before passing the resistor.

After testing, the resistors are placed in self-counting tote trays made by drilling holes for the axial leads in a panel of quarter-inch

Pressdwood or one-inch white pine mounted on corner blocks. The blocks allow leads to project down without touching the bench.

The 120 -cycle ripple of the a-c power supply proved essential for this setup; battery power for the limit bridge failed to give satis-
factory repeatable measurements. This adjustment and test procedure is used in the plant of Radell Corp. San Juan, Puerto Rico.

Square-Bottom Test Gage for Glass Bases of Subminiature Tubes

A V-block and a small pivoted indicator constitute a simple and efficient means of measuring the amount in degrees by which the bottom of a subminiature tube is off square from the plane of the tube. The tube is placed in the machined V of the metal block and

Square-boltom tester for subminiature tubes. Each tube must be turned several times in its V-shaped cradle to determine the greatest deviation from squareness. The tube is pulled back each time before rotating, to clear the pins
pushed forward until the base of the pointer goes between the tube pins and rests in close contact with the bottom surface of the tube. If this surface is square, the pointer end of the indicator will read zero.

Normal tolerance is three degrees on each side of zero. The scale area beyond 3 on each side is darkened, so that the operator can easily tell when the pointer is in the bad area. This gage was developed by W. P. Koechel for use in the quality-control department of Tung-Sol's Bloomfield, N. J. plant.

Fabricating Tubular Frames for Large Shipboard Radar Screens

Radar scanning screens for naval vessels are mounted high in the ship's superstructure. This imposes severe requirements for light weight, yet demands great strength to resist the winds, vibrations and pitching and tossing movements that occur in this high and exposed position. Also, though large, these

screens must be accurately shaped and must retain this shape to preserve the operating characteristics of the radar.

To achieve all this, engineers of ITE Circuit Breaker Co. departed from the usual design approach of forming the screen's supporting frame entirely of girder sections.

Instead, they formed the frame of vertical ribs, but connected these by tubular spanning members across the top and bottom.

Standard stainless-steel tubing type ATSI 304, made by Superior Tube Co. of Norristown, Pa., was available with the required strength and lightness to form the top and

- An assembly with 14 concentric, hard silver rings electro deposited into mochined plastic blank. Dovelail locks rings in place. Machined blank insures accuracy. Diamefer approx. 11", thickness approx. $5 / 16^{\prime \prime}$.
- An assembly with 30 rings of various widths to accommodate various current requirements. Unit is approx. 4.5/16" long, designed for flange mounting.
aylinder type assembly approx. $33 / 4^{\prime \prime}$ long with 24 hord silver rings. $15 / \mathrm{s}^{\prime \prime}$ O.D. with wall thickness less than $1 / 4^{\prime \prime}$.
*PATENTS PENDING

Eylindrical assembly vith 25 ings. Three vide rings accam.nodahe large conla=" crea brushes far high current cofacity. Length 14", O.D apprx. $53 / 3^{-1}$

ELECTRO TEC is now tooled up, with new expanded facilities for production of large Slip Ring Assemblies to exact customer specification. Sizes range up to $24^{\prime \prime}$ in diameter, either cylindrical or disc type.
The exclusive ELECTRO TEC PROCESS*-the electro-deposition of hard silver rings into an accurately machined plastic blank-consistently yields a high degree of dimensional accuracy, excellent concentricity, and a jewel-like ring finish. This process also eliminates expensive tooling and mold charges, frequently lowers costs to 30% of other methods of manufacture. The silver rings are uniformly hard for long life-75-90 Brinell.
ELECTRO TEC one-piece construction precludes dimensional variation due to accumulated errors. The plastic base is fully cured before rings are plated into it, thus preventing separation of base material from the rings.

ELECTRO TEC LARGE SLIP RING Assemblies are widely used in Radar Equipment, Fire Control Systems, Test Tables and many other critical applications. Light weight combined with rugged durability recommends their use in airborne applications.

Every user knows the ELECTRO TEC reputation for quality and superiority in miniature and sub-miniature slip ring assemblies.

Our Engineering Department is ovailable for consultyion on any of your slip risg problems without obligetion,

The basic design of the 2300 Frame Motor has been used in scores of individual modifications. Many of these designs are complete and available-others for new equipment can readily be developed.

ELECTRICAL

Serias or shunt wound High starting torque Low starting current High efficiency Low RF interference Unidirectional or reversible Armature and field windings varnish impregnated and baked

MECHANICAL
Low weight factor Unusual compactness Completely enclosed Base or flange mounting Laminated field poles Precision ball bearings Segment-built commutator Permanent end play adjustment

2300 FRAME MOTORS		$\begin{gathered} 2318 \\ \text { Series } \end{gathered}$	$\begin{aligned} & 2310 \\ & \text { Shunt } \\ & \hline \end{aligned}$
Watts Output, Int.	(max.)	160	50
Torque at 6000 RPM	(in. oz.)	40	10
Torque at 3800 RPM	(in. oz.)	57	-
Lock Torque	(in. oz.)	120	14
Volts Input	(min.)	5	5
Volts Input	(max.)	110	28
Temperature Rise	(int.)	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
Diameter		25/16"	25/16"
Length less shaft		$45 / 32^{\prime \prime}$	23/4"
Shaft Dia.	(max.)	. $312^{\prime \prime}$. 312 "
Weight	(lbs.)	2.4	1.5

Eicor, Onc. 1501 w. Congress St., Chicago 7, Illinois
WEST COAST OFFICE: 2661 South Myrtle Avenue, Monrovia, California MANUFACTURERS of Dynamotors - D.C. Motors - Inverters - Converters and a Complete Line of TAPE RECORDERS

One end of tubing, showing how it is plug-welded to the corner braces

Setup for bending tubing to precise shape by hand without using mandrels inside tubing and without distorting the tubing cross-section. Three men are ased for the shaping operation. Small lever-action clamps hold the tubing against the curved template. The operalor is bere positioning the structural back frame of the screen for subsequent welding to the tubing

Use of three special shaping zolls to give required parabolic shape no shorter lengths of half-inch tubing. Several passes are used, with the degree of arc increased for each pass. No mandrel is needed to prevent deformation

Another RMC Fiust

The Ideal Cost-Saving Replacement for

Paper or General Purpose Mica Capacitors

Type JL DISCAPS, the result of extensive research in the RMC Technical Ceramic Laboratories, afford exceptional stability throughout an extended temperature range. The maximum capacity change between $-60^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ is only $\pm 7.5 \%$ of capacity at $25^{\circ} \mathrm{C}$. Type JL DISCAPS are available in tolerances of $\pm 10 \%$ or $\pm 20 \%$. Standard working voltage is 1000 V.D.C.
Manufactured in a wide range of capacities, Type JL DISCAPS offer the advantages of longer life, dependability, and lower initial cost. Their smaller size and greater mechanical strength provide additional economies in assembly line operations.
It will pay you to investigate the advantages of using Type JL DISCAPS as replacements for paper or general purpose mica capacitors. Your inquiry is invited.

Type JL Ceramic D SCADB
 (B)

SPECIFICATIONS

POWER FACTOR: 1% max. (1 1 KC (initial) POWER FACTOR: 2.5% max. (a) $1 \mathrm{~K} C$, after humidity WORKING VOLTAGE: 1000 V.D.C. TEST VOLTAGE (FLASH): 2000 V.D.C. LEADS: No. 22 tinned copper (. 026 dia.) INSULATION: Durez phenolic-vacuum waxed
INITIAL LEAKAGE RESISTANCE: Guaranteed higher than 7500 megohms
AFTER HUMIDITY LEAKAGE RESISTANCE: Guaranteed higher than 1000 megohms
CAPACITY TOLERANCE: $\pm 10 \% \pm 20 \%$ at $25^{\circ} \mathrm{C}$

SEND FOR SAMPLES AND TECHNICAL DATA

RADIO MATERIALS CORPORATION

GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.
FACTORIES AT CHICAGO, ILL. AND ATTICA, IND. DISTRIBUTORS: Contact Jobbers Sales Co., 146 Broadway, Paterson 1, N. J.

Speeding Electronic Progress

JK Stabilized G-1 Crystal in the 1000 CPS to 10 ke range

Designing a New Product?
We can serve you best when you consult us at the beginning of your frequency control problems. An early consultation lets you integrate the newest JK developments and findings with your own product design research. Our extensive research facilities are here to serve you.

THE JAMES KNIGHTS COMPANY

Sandwich, Illinois

CRYSTAL HANDBOO

CRYSTAL

RESEARCH

Now, the rat-e of the JK G-9J has been extended to cover 1000 çcles to 10 kc . This provides a convenient source of stable time base for a wide variety o measuremenl problems, with a minimum of circuitry. Ideal or applications such as compact digital counters in te audio range. Balanced nodal-point mounting mirizes microphonics found in other resonators ir his frequency range. Write for appli-
through
cation and e-gineering information.

After the tubing has been shaped to the right curvature, a hydraulic press flattens it for easy joining to radar-screen rib ends. Rapid and uniform pressure of the press insures a perfectly flat joining surface without affecting the tube's parabolic shape, without distorting the sections along spans where rigidity is specified and without unduly stressing the metal at flattened areas

Using electric hand welding machine for welding preshaped tubing to stainless steel joint flanges which in turn ara shot-welded to the vertical ribs of the radar screen. Welder is supported from ceiling on track carriage. Assembly is done on shaped wood forms having positioned brackets
bottom spanning members of the parabolic frame. This tubing in the 1.0 -inch O.D. size was used for the top spanning member and the 0.50 -inch size for the lower edge of the radar-screen frame. A simple

Skilled hands-1500 pairs of them are busy every day at Daystrom Instrument--performing research, development and manufacturing tasks on a wide variety of precision electrical and mechanical instruments. Daystrom specialists are prepared and ready to analyze your requirements and translate them from drawing board to finished productsall within our own modern plant of 350,000 square fect. All development and manufacturing are achieved through advanced techniques. We are proud of the fire control and radar equipment we produce for our Army and Navy. Daystrom products include computors, gyros, servo amplifiers, electronic chassis, shect metal cabinets, test equipment, gear assemblies, scrvo controls, radio and precision potentiometers,

Write today for our facilities report.DAYSTROM

ARCHBALD, PENNA.

Affiliates:

American Type Founders, Inc., Elizabeth, N.J.; Daystrom Furniture Div., Olean, N. Y.; Daystrom Electric Corf., Poughkeepsic, N.Y

ATTENTION TIP JACK BUYERS JOHNSON NYLON TIP JACKS* Low capacity to panel - high DC breakdown

Made of tough, low-loss nylon, these JOHNSON tip jacks are completely insulated and impervious to heat damage up to 105° Centigrade. Injection molded, they will not split or chip even under rapid or extreme temperature changes. With a leakage resistance of 2000 megohms, JOHNSON Nylon Tip Jacks were subjected to 100% relative humidity for seven days, and at the end of this accelerated humidity test still retained a leakage resistance of more than 700 megohms. Machined beryllium copper contacts are silver plated and chamfered for speedy insertion. Extremely low contact resistance; live spring action eliminates fatigue failure - will not rake a set. Available in 11 bright colors, JOHNSON Nylon Tip Jacks are ideally suited to coded application. Recommend ed for aircraft and military use, all materials meet JAN and MIL specifications.

Final joining of half-inch tube members to the radar screen frame is accomplished by shot-welding the tacked joints. Lower assembly of the screen skeleton has been removed from wood shaping form and is now ready to be joined to upper assembly

Top and bottom edges are welded on face of screen. Excess screening is clipped one inch beyond tubing, rolled over and tacked along reverse side
fabricating procedure was developed by taking advantage of the bending and welding properties of this tubing. The net result of this new structural design and new fabricating technique is a radar screen of the required lightness, strength

THE HOUSE

THE CALIDYNE STORY

\star Six years ago it was only an idea. Then, a little company was formed to harness the destructive force of vibration and put it to constructive uses. The word "Calidyne" was coined. It combined "calibrate" and "dynamics" and implied the "measurement of a dynamic force" such as vibration. The beginning was humble and at first management itself constituted the only "employees." Progress was slow and the future doubtful.

By 1951 the company had become known and recognized. A demand developed for its products and expansion began in earnest. In 1953 Calidyne moved out of various obsolete buildings and consolidated operations in one modern, streamlined, sunlit structure of its own. Today the company consists of one hundred and twenty highly skilled people.

* Calidyne's primary interest is to develop a complete line of vibration test and measurement equipment. Of this line Calidyne's custom-built Shakers are now the best known. They are produced in many sizes to meet individual requirements and are used for shake-testing (vibrating) various objects (assemblies, machines, vacuum tubes, etc.) to see what effect vibration will have on them in actual service. Many product manufacturers now find that they fill a very basic need. Perhaps you should investigate them too?

THE

CALIDYNE C O M P A N Y

120 CROSS STREET, WINCHESTER, MASSACHUSETTS

SALES REPRESENTATIVES:
NEW YORK (Long Island)
G. C. Engel, Rector 2-0091 NEW JERSEY
G. C. Engel, Ridgewood 0.7878 PHILADELPHIA, PA.
G. C. Engel, Chestnut Hill 8.0892

Cleveland, ohio
M. P. Odell Co., Prospect 1 - 6171

DAYTON, OHIO
M. P. Odell Co., Oregon 444 FLORIDA
A. H. Lynch and Assoc. Fort Myers 5.6762

WASHINGTON, D.C.
F. R. Jodon, Inc., Woodley 6.2615 CHICAGO, ILLINOIS Hugh Marsland Co. Ambassador 2.1555 DALLAS, TEXAS John A. Green Co., Dixon 9918 WALTHAM, MASS. Robert A. Waters, Inc. Waltham 5-6900

ALBUQUERQUE, NEW MEXICO G. B. Miller Co Albuquerque 5.8600 SAN FRANCISCO, CALIF. G. B. Miller, Lytell 3.3438 MINNEAPOLIS, MINN. H. M. Richardson and Co Geneva 4078
ARNPRIOR, ONTARIO, CANADA Measurement Engineering Limited Arnprior 400
NEW HAVEN, CONN. Robert A. Woters, Inc. Fulton 7-6760
and shape, but produced faster, at lower cost, with less use of skilled labor and with less consumption of strategic materials than were formerly needed.

A step-by-step explanation of the fabricating procedure is given in the accompanying illustrations.

Automatic Turntable Speeds Plastic Sealing

A self-indexing turntable with a choice of $4,6,8,12$ and 24 stops per revolution makes possible automatic operation of any electronic heat-sealing generator and press for vinyl plastic components of electronic equipment.

Loading trays, or stations, are spaced around the outer edge. The items to be sealed are loaded into the trays by one or more operators. At the start of the cycle, the table rotates until the first tray is automatically indexed under the sealing electrode. The table stops, the press closes and remains closed until the seal is completed. This dwell is controlled by an electric timer. The press then opens and the turntable moves to the next position. This cycle is automatically repeated for each station, and speed can be set to the fastest operator's pace.

Safety factor is increased since

MICRO Precision Switches

Why 64 MICRO Subminiature Switches are used in Collins Radio airborne navigation system

- Engineers of Collins Radio Company chose MICRO subminiature switches for this sensational new navigation development because they combined small size with the utmost precision and reliability required in such delicately adjusted equipment.

These small, precision subminiature switches are mounted on the inside panel of the card reader of Collins Navigation System (Type NC 101).

The switches are actuated by the business machine-like punched holes in the navigation card, transferring information from the punched
cards to the computer. This tunes the VHF receivers and gives the pilot a continuous fix measured in miles along his course line which tells him how far he is from and how to get to his destination.

Electronic engineers in every field of industry are finding MICRO switches peculiarly suitable for use in devices where small size must go hand in hand with precise action and reliable performance. MICRO field engineers are located in 16 branch offices. Consultation with them on difficult switch problems involves no obligation, can save you time and money.

There is a MICRO switch to meet every switch requirement. They are available in a wide variety of sizes, shapes, weights, housings, mountings, actuators and electrical characteristics.

MICRO SWITCH
a division of minneapolis-honeywell regulator company FREEPORT, ILLINOIS

$125^{\circ} \mathrm{C}$ Operation without Derating

High Insulation Resistance Impregnated with X-250*

Specify Astron METEOR Subminiature Paper Capacitors with confidence in applications where high operating temperatures,
capacitance stability and uniform quality are among your exacting requirements. Positive hermetic sealing with glass-to-metal terminals combined with the amazingly effective new X-250* impregnant is your assurance of rugged performance and long life. Specifically designed to meet the most exacting government requirements, Astron Meteors are provided in a wide range of JAN case styles and sizes. They are available with both extended foil and inserted tab construction for maximum size reduction.

WRITE TODAY TO DEPT. E
for Bulletin AB-18 containing complete engineering specifications

DEPEND ON-INSIST ON

ASTRON CORPORATION

255 Grant Avenue, East Newark, New Jersey
Export Division: Rocke International Corp., 13 East 40 St., New York, N.Y.
In Canada: Charles W. Pointon, 6 Alcina Ave., Toronto 10, Ontario
there is much less handling of the unit to be sealed. The automatic operation of the turntable and the easy feeding facilities leave the operator free to work faster and achieve a higher output.

The controls, mounted in a. single box, consist of a cooling timer, indicator lights and à selector for manual, semiautomatic or fully automatic operation. Remote starting and stopping controls are also provided. The equipment is made by Thermatron Division, Radio Receptor Co., Inc., 251 West 19th St., New York, N. Y.

The unit is completely safetyinterlocked. Power cannot go on until the press is down. The press cannot close unless a tray is properly indexed under the sealing electrode, nor can the turntable index unless the press is up.

Inspecting Tube Micas with Optical Comparator
To Expedite and improve sampling inspection of tiny punched mica spacers for vacuum tubes, a transparent plastic overlay is used in connection with a Bausch and Lomb optical comparator in the qualitycontrol department of Tung-Sol's

Acareerin

advanced

 electronic development

Designers for Industry, Inc. is helping many well-known electronics manufacturers meet the "claallenge of change" by providing a pool of technical talent unsurpassed by any product development organization.
Our 180-man engineering organization not only generates product ideas. We are atso equipped, by experience and facilities, to carry the project through its various stages of developnient to a final, tested, pre-production model.

In the Electronics field, the DFI organization has built a particularly strong background in miniaturization and modular construction techniques. Sonne of the many types of development projects we handle are listed below.

Opportunities for unlimited advancement

are available at DFI for engineers who have proven records in electronics, electrical, electromechanical, hydraulic and mechanical engineering. Write for further information regarding opportunities in creative engineering work at DFI, as well as DFI employee benefits.

DFI development work in electronics includes:

COMMUNICATIONS
VHF, UHF, and HF Receivers
Television Receivers
VHF and UHF Transmitters Microwave Systems
Mobile and Specialized Military Equipment

MISSILE GUIDANCE
Systems
Servomechanisms

RADAR
Circuitry
Servo Systems
Display Systems Mechanisms
Beacons
Systems
Fire Control
CONTROLS
Electromechanical
Servomechanisms

COMPUTERS

Test Equipment Systems Planning Circuitry
Servomechanisms
Intricate High-speed Mechanisins

COMPONENT PARTS
Mechanisms
Evaluation Programs
Special Componerits

LOOK!

CORROSION-RESISTANT PYGMY MOTOR GENERATORS

Ebelinse-Pioncer

TYPICAL ELECTRICAL CHARACTERISTICS GENERATOR DATA

Linearity- $1 / 2$ of 1% to 4000 rpm
Output-300 mv/ 1000 rpm with 18 volt, 400 cycle excitation
Null- 10 mv or less
MOTOR DATA
18 or 26 volt, 400 cycle, 2 -phase low inertia motor

As one of the world's oldest and largest producers of synchro-type equipment, we are ideally qualified to provide you with the right answer to your motor generator needs. Why not take advantage of our long, practical experience? Call on us for recommendations based on handling your individual problem most efficiently.

ECLIPSE-PIONEER DIVISIoN of
For full details, write Department C.
TETERBORO, N. J.
Export Sales: Bendix International Division, 205 East 42nd 51., New York 17, N. Y.

Bloomfield, N. J. radio tube plant.
On the plastic overlay the correct outlines for the spacer are scratched with a steel stylus at 40 times normal size. Spring-steel strips hold the overlay over the viewing screen of the comparator. The operator places a mica spacer in the machine and adjusts its position until the projected outline coincides with that on the overlay. She can then readily check positions and sizes of critical holes visually to see if they are within tolerance

Noise-Generating Cart

To PROVIDE a quick check of the ability of television and radio receivers to withstand different types of electrical interference, various types of noise generators are mounted on a rolling cart for use in the CBS-Columbia plant in Brooklyn, N. Y.
One unit simulates the ignition system of an automobile. Here an electric phonograph motor drives the distributor of a six-cylinder engine, the spark plugs for which are mounted on a metal bracket alongside. The ignition coil is bolted to the mounting board also. When the motor is plugged into an a-c line, the resulting spark display at the gaps in the plugs creates far more interference than would be

"SOME of these tubes have served 7,500 hours-have been on the job 24 hours a day, 7 days a week, in the two-way radio stations we use to contact our trouble-shooting trucks. Many of the stations are re-mote-control, which puts a heavy load of responsibility on the tube complement. G-E 5-Star Tubes are everything we could ask for in reliability."

If you wish to build and sell communications equipment that will "take it"-will stand the gaff of hard, continuous service-specify 5-Star high-reliability tubes! Their amazingly low failure rate, shock-resistant characteristics, long service life, add up to minimum maintenance time and cost for your customers.

Practically all your receiving-tube needs can be met with G-E 5-Star types. Ask for complete facts. Tube Department, General Electric Co., Schenectady 5, N. Y.

G-E tube service helps you with new low 5-Star prices!

[^17]

- General Electric 5-Star Tubes serve Wisconsin Public Service Corporation in 23 key locations! Fast, sure contact with troubleshooting crews is maintained by radio transmitting-receiving stations in Green Bay and 22 other cities and towns. These in turn control 175 mobile service units.

- Power demand from elients in northern Wisconsin taxes the output of several large generating plants like this $192,500-\mathrm{kw}$ " J . P. Pulliam" station. The power is kept moving to all points by a widespread service organization on duty around the clock, and always in radio touch with headquarters.

IRON CORES

Specialists in Iron cores, prepared to our own formulas, precision-made and perform-ance-tested-these are your guarantee that MOLDITE high quality is always cheaper in the long run.
produced by an automobile.
A buzzer with worm and badly adfusted contact points provides another type of electrical noise. This buzzer is mounted in a BX box, with a switch on the top plate.

A relay is hooked up to an R-C circuit in such a way that it opens and closes continuously and automatically. Arcing at the contacts then produces pulses of interfering radiation.

This noise-generating equipment could alternatively be operated from a storage battery located on the lower shelf of the cart to make it independent of power lines.

Air Cylinders Speed
 Terminal Spinning

Wrap-around terminals are quickly spun into position on long insulating terminal boards with the aid of two air cylinders mounted on a standard Walker-Turner drill press. This arrangement leaves both hands of the operator free for loading terminals and holding the work, in the military radar subassembly section of Caribe Aircraft Radio Corp. in Coamo, Puerto Rico.

On the bed of the press is mounted an air vise made by W. R.

ELECTRICAL

KEEP YOUR APPIIANCES IN SERVICE

Brown Corp. of Chicago, in which the operator inserts a terminal upside-down. The panel is now sot over this terminal.

A single foot-operated air valve is used to initiate the action of both cylinders. This valve directly controls the Mead Specialties Co. air cylinder which brings down the drill chuck and spinning tool. This cylinder also serves to open an air switch that actuates the air vise so as to grip the terminal tightly just before the spinning operation starts. On the return movement of this air cylinder after spinning, the air vise is automatically released for moving out the work and inserting the next terminal.

Dip Brazing of Microwave Components

By William J. Rudolph
Brazing Engineer lenn L. Martin Co Baltimore, $M d$

Proper design and construction of fixtures for the dip brazing of aluminum microwave components is as important as the design of the waveguide units themselves. The unit can only hold the close tolerances demanded if the fixture is built within the same close tolerances. The function of the fixture is to hold the assembled parts together during the preheat and brazing operation.

During preheating and dip brazing, the unit is exposed to temperatures ranging from $1,000 \mathrm{~F}$ for preheating to $1,100 \mathrm{~F}$ for brazing. Since the expansion of alum-

let EDO house your electronic equipment

Housing intricate electronic equipment for airborne or shipboard use to withstand shocks and forces which might cause malfunction often presents problems as difficult as the design of electronic systems themselves.

Tackling such problems for electronic manufacturers, ship and aircraft builders is a specialty of the Edo Corporation. Whether your equipment must operate properly on jet aircraft or on board ship under battle conditions, its reliability is improved if mounted in Edo-designed and built cabinets or housings.

If you have a housing problem, why not talk it over with our versatile engineering staff whose three-fold experience in the marine, aviation and electronics fields is unique and at your disposal.
to withstand...
SHOCK
 VIBRATIOA Conctission spray
ENVIRONMENTA思

TWO TYPICAL HOUSING PROBLEMS SOLVED BY EDO

1. AIRBORNE hOUSing. A volume producer of airborne radar nacelles, Edo was asked to design a pressurized external store housing capable of being flown in the trans-sonic speed range. From wind tunnel tests to completed tooling and production, Edo relieved the electronics manufacturer and the aircraft builder of these design problems.
2. SEABORNE INSTALLATIONS. To house its own electronic equipment developed and manufactured for the Navy, Edo engineers have perfected a series of standard electronic cabinets admirably suited to naval electronic equipment. Capable of housing all standard electronic units, the Edo cabinets are vibration-proof and spray-proof.

One of the features of the voice transcriber shown below is a manual control knob for regulating the voice playback speed. The designer of the unit wanted to locate this speed control knob where it would be convenient to operate and where it would be hidden from view when the cover of the machine was closed. This meant mounting the control knob shaft and the speed regulator shaft at right angles to one another. After considering various ways of coupling the two shafts, the designer chose

THE LOW-COST SOLUTION AN S.S.WHITE REMOTE CONTROL FLEXIBLE SHAFT

With an S.S.White Flexible Shaft, the designer was able to effect a simple, easily installed coupling which met all requirements of the application. No extra parts were needed, assembly time was kept to a minimum and alignment problems were eliminated. And, as the firm reported, the shaft assured the delicate sensitivity of "feather-touch control."
It's savings like these that make S. S. White flexible shafts a "must" for your own remote control applications. Investigate their use today. The cooperation of S.S.White engineers is always available without obligation.

Send for this Valuable Handbook

The S.S. White Flexible Shaft Handbook provides comprehensive data on flexible shaft selection and application. A free copy is yours if you write for it direct to us on your business letterbead.

[^18]

Example of complicated microwave plumbing, containing flanges and sev. eral pieces of waveguide tubing, as produced by dip brazing
inum is greater than that of steel, distortion will take place in the aluminum components if held tight in a steel fixture. This is eliminated in two ways: (1) Stainless steel springs are used throughout the fixture with just enough pressure to hold the unit, but permitting it to expand without distortion during preheat and brazing; (2) tack welding of the aluminum parts will hold them in the proper position during brazing: however, this is recommended only for such parts as flanges and horns. On complicated units where flanges and several pieces of waveguide tubing are joined in one operation, it is essential to have a well designed fixture.

It is advisable to construct all fixtures from stainless steel or inconel metals. Springs should be made from stainless steel. Never use any copper or brass for holding or fixturing when the unit is to go into the salt bath.

Preparation of Materials

Deburring is the first step. Use files, wire brushes or any sharp instrument that will remove burrs. If burrs are not removed, they will tend to act as barriers, causing skins to appear in the fillet.

Either vapor or solvent degreasing comes next. This is done to remove all oily films that may restrict the fluxing action, causing incomplete wetting of the brazing surface. This would result in skips. porous fillets and incomplete fusion.

It is always necessary to remove surface oxides from the parts prior to lip brazing. This is called precleaning, and is accomplished by a 30 -second immersion into caustic acid, followed by a cold water rinse. The parts are then immersed in a nitric-hydrofluoric acid solution for

industry-wide use today!

AMPLIFIERS - REGULATORS - INERT GAS AND MERCURY RECTIFIERS - MERCURY, inert gas and hydrogen thyratrons

STANDARD TYPES DIRECT FROM STOCK PLUS SPECIAL DESIGNS BUILT TO REQUIREMENTS

Chatham specializes in the development of general and special purpose tubes for both electronic and industrial applications. Many of the tubes originally developed by Chatham to fill a specialized need, now number among the most widely used tubes in the industry. For complete information on Chatham tubes - either stock items or types built to your requirements - call or write today.

- 3 B2 8 RECTIFIER

Rugged half-wave Xenon filled rectifier. Operates in any position. Ambient temperature range -75° ia $+90^{\circ} \mathrm{C}$. In verse peak anode voliage 10,000, average current 25 amps. Filament 2.5v., 5 amp .

4832 RECTIFIER

Ruggedly built, half-wave Xenon filled rectifier. Ambient temperature range -75° to $+90^{\circ} \mathrm{C}$. Inverse peak anode voltage 10,000, average anode current 1.25 omp . Filament 5 v ., 7.5 amp .

- VC-1258 MINIATURE

HYDROGEN THYRATRON
for pulse generation. Handles 10 kw peak pulse pawer

6336 TWIN TRIODE
for voltage regulation. Features high plate dissipation, hard glass envelope.

- 6394 TWIN TRIODE

Similar to 6336 except 26.5 volt heater instead of 6.3 volt heater.

- 5594 XENON THYRATRON

Operates over wide ambient emperature range $-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.

CHATHAM ELEGTRONIGS CORP.

Executive and General Offices: LIVINGSTON, NEW JERSEY
Plants and Laboratories: NEWARK and LIVINGSTON, NEW JERSEY

Midget -Glass-terminal. Fubular CAPACITORS

DOUBLE UP for SPACE SAVING

New miniaturization possibilities are now afforded by the dual-capacitance line of Tobe glass-terminal tubulars. These units give you substantial space savings by providing practically any combination of two capacitance values, at the same voltage rating, in a single, hermetically sealed housing. Total capacitance can be anywhere from 0.03 to 2.0 mfd . Ratings are from 200 to 600 volts d-c. Dual-capacitance type DG capacitors can be furnished with common terminal grounded to case, with ungrounded common terminal, or with no common terminal. Write for data sheet giving dimensions of stock sizes.

Kow- an Irvington PLASTIC INSULATING TAPE with the heat- and oil-resistance of Temflex 105 Tubing

Here is a new addition to the Irvington family of insulating tapes -
Temflex 105 Plastic Tape, based on the same formula that has made
Temflex 105 Tubing the leader where service calls for continuous operation in air at $105^{\circ} \mathrm{C}$. - or in oil at $90^{\circ} \mathrm{C}$.
Temflex 105 Tape is strong and flexible-possesses exceptional elongation. It can be easily hand wound over bus bars, coils, cables - even over very irregular surfaces - or can be used in taping heads.

Temflex 105 Tape frequently offers substantial savings as compared with varnished cambric. Easily baked to a homogeneous mass, it also offers cost economies over pzessure-sensitive tapes.
Made in thicknesses of $.007^{\prime \prime}, .010^{\prime \prime}$ and $.012^{\prime \prime}$; widths from $1 / 2^{\prime \prime}$ to $34^{\prime \prime}$.

Look to
IRYINETON
for Insulation Leadership insulating varnishes VARNISHED CAMBRIC VARNISHED PAPER VARNISHED FIBERGLAS insulating tubing CLASS "H" IMSULATION Dielectric strength as high as 1200 vpm even at $100^{\circ} \mathrm{C}$. Tensile strengths up to 3100 psi - elongation 165% to 240%.
You probably know Temflex 105 Tubing - you'll certainly want to learn about Temflex 105 Tape. Mail the coupon for technical data sheet.

IRVINGTON INARNISH \&

[^19]where only the best will do, you'll find the world's

toughest tranformers

FREE CHICAGO CATALOG
You'll want the full details on chicago's complete "Sealed-in-Steel" transformer line. There is a unit available for every circuit application Power, Bias, Filament, Filter Reactor, Audio, MIL-T-27,

Stepdown. Write for your FREE copy of Catalog CT-153, or get it
from your electronic parts
distributor who can supply you
with chicago-the world's toughest transformers

PUT CHICAGO ON YOUR TEAM
they're in the COLLINS 430 Series Commercial Transmitters
Absolute dependability under the most rugged operating conditions is the prime requirement in the precision-built Collins 430 Transmitters. They're designed for continuous service and optimum performance in ground to plane, shore-to-ship and point-topoint systems. To assure complete reliability, collins teams up with chicago-specifies and uses the world's toughest transformers throughout the Series 430 Transmitlers. Yes, wherever optimum precision and absolute dependability are the requirements, you'll find chicago Transformers on the team.

CHICAGO STANDARD TRANSFORMER CORP.

Export Sales Div Scheel International, Inc. 4237 N. Lincoln A_{y} Chicago. lit.. U.S.A CABLE ADORESS harsheel

Fixture used to hold close tolerances on a small aluminum microwave antennc during dip brazing. Flat springs on fixture are made from stainless steel

Waveguide flange assembly fixture consisting chiefly of wire springs and stainless steel spring clamps. Wire loop at top serves for placing assembly ia preheating furnace and later suspending it in dip pol
have been found the most satisfactory. These alloys are employed for irregular parts such as waveguide flanges. It has been found that investment castings employing
 Good mechanical strength and moisture resistance

C-D-F is a dependable source of supply for all of your coil lorm spiral tubing necels. Uniform, high product quality is maintaned by rigid standards of manufacture. (.-I)-F offers you lab ricating skill, backed be cxacting technical and inspection control. A recent C-D-F development is Grate 5 Constant Torque Cubing for tise in coil forms. Alter the threaded iron tuming core is inserted and fually adjusted, you obtain the same stable torgue rating.
Constant Torque teatures: exact intemal theade ing. . . every thead engaged. Opont contact with core prevents bincling and permits positive tuming and re-mming. Outer surlace of tube has no weak spots, no external embossing to canse cement leakage. Avaitable in lengths up to $14^{\prime \prime}$ to take $.218^{\prime \prime}$ to $.250^{\prime \prime}$ core with 28 threads per inch and also 6-32, 8-32 and $10-32$ screw sizes. Write for samples.
Grade 5 Tubing is also custom-fabricated by C-D-F in conventional shapes to accommodate other sizes of tuning cores.
C-D-F produces spiral tubing in grades to meet most requirements. Use the Grade Sclecton Chart when reguesting samples and additional information.

AVAILABLE GRADES

IMPREGNATED

```
Generat Electrical and Mechanical Grade. O
1A Electrical and Mechanical Grade-Special Punching. \(O\)
2 Mild Stapling, Riveting, and Post Forming Quality. \(O\)
2 A intermediate fabricating and Stopling Quality. O
3 Severe Stapling. Riveting, and Post Forming Quolity. O
5 Constant Torque and Formed-to-Shope Coll Form Tubing. 0 " O "
6 Special for High Humidity Applications. O
GA Extra Hard, High Strength Tubing. \(O\)
\(\gamma\) Sof" Vornished Kraft Tubing. \(\bigcirc \square \square\)
8 Varnished Diamond Insulation-Tubing. O
9 "Deflection Coil" Tubing. O
10 Lorger Size, Heavy Wall Tubing for Mechanical Uses. O
```


UNIMPREGNATED

20 Speciol Wound in Specified Combinations of kraft poper, fish poper, etc. $O \square \square$ Plain Kraft Paper Tubing. O
22 Ploin Diamand insulation Tubing
23 Ploin Chipboard Tubing. O
O Round
ound
$\square!\stackrel{\square}{\square}$ Formed and Natehed Square, Rectuengular

SELECTION OF THE PROPER GRADE

While the differences between some of the grades are not great, they are quite distinct when specific requiremems are considered. For most uses, the proper grade can be selected from the descriptions, size range, athd properties falales in our catalog. If this should prove diflicult in some cases, it is desimable for our C-D F sales engincer to have as much information as possible about the application, especially fabricating requirenents, in order that we may make suggestions. Yom blueprint is usually sufficient if in carries some indication as to the quality clesired. In other cases, the following check list will be found to be helpful:

Type of Application.
Properties required or the customer's specification for the material. Fabricating quality desired. This is important where stapling, riveting. punching, or forming operations are to be performed by the customer
Any monsual conditions which mas affect the suitability of the material for the job. For tubing that is to accommodate tuning cones. actual samples of the cores are essential along with torque requirements (if known).
Get ofl the facts. Write for 8 -page Technical Folder ST- 53 describing standard grades of C-D-F Spiral Tubing, their properties, sizes and tolerances, and how to select the proper grade for your application. Free test samples are available upon request. Call your C-D.F Sales Engineer (offices in principal cities). He's a good man to know!

THE NAME TO REMEMBER

SPIRAL TUBING NEWARK 16, DELAWARE

make by-pass coupling easier... more dependable

- Impervious to moisture ($.007 \%$ or less).
- Lighter in weight per capacity value.
- Small size (down to $.200^{\prime \prime} \times .400^{\prime \prime}$).
- High capacity (to . 013 MF.).
- Special insulation (CRL developed).
- Convenient leads (radial - no bending).
- Low power factor (3 to 2.0%).
- High leakage resistance (5,000 megohms).
- Maximum dependability (guaranteed).
- 100% factory tested for voltage and capacity.
- End your field troubles.

So write for bulletin 42-3 right now.

Method of placing flat brazing material in joints of aluminum waveguide in preparation for preheating
the 2 S aluminum alloy are very good for detailed parts involving close tolerances.

Brazing Materials

Through repeated tests it was found No. 718 aluminum brazing wire is most satisfactory for a gen-eral-purpose filler material. This material's flow range is from 1,070 F to 1080 F and will give very sound fillers when brazed in a range from $1,085 \mathrm{~F}$ to $1,130 \mathrm{~F}$.

The brazing material is in the form of round or flat wire. The round wire ranges from $\frac{1{ }^{16}}{16}$ to $\frac{1}{4}^{\prime \prime}$ in diameter, while the flat wire ranges from $0.003^{\prime \prime}$ thick to $0.020^{\prime \prime}$ thick. For dip brazing of microwave components the flat wire ranging from $0.003^{\prime \prime}$ to $0.006^{\prime \prime}$ in thickness is the most satisfactory in maintaining close tolerances.

Another important brazing material is brazing sheet. This is a material that has a core (J-51S or 3 material) clad with a brazing material of a lower melting point than that of the core.

Design of Brazing Joints

Proper joint design is one of the most important factors in the brazing of microwave components. Due to the very close tolerances that must be held, it is essential to design all joints or as many as possible to be self-locating. A selflocating assembly will lower the cost and time of building elaborate fixtures and will reduce the assembly time considerably.

The joint should also be designed without tight or pressed fits. Clearance between the parts is necessary to guarantee complete fillets and

TUNG-SOL ALSO MAKES ALL-GLASS SEALED BEAM LAMPS, MINIATURE LAMPS AND SIGNAL FLASHERS.

TUNG-SOL ELECTRIC INC., Newark 4, New Jersey
Sales Offices: Atlanta, Chicago, Columbus, Culver City (Los Angeles), Dallas, Denver, Detroit, Newark, Seattle.

PLUS-ALL THE TECHNIGAL SERVICE THAT GOES WITH THE

*SWR less than
to $\mathbf{3 0 0 0}$ mc. TURRET ATTENUATOR featuring "pull-TURN - Push" action with $0,10,20,30$,
$40,50 \mathrm{DB}$ steps.

Typical joint designs used with dip brazing of microwave plumbing

Complicated microwave component produced with high accuracy by dip brazing of stainless steel pieces

Completed waveguide junction, showing small fillets achieved through proper design for dip brazing
good flow of the brazing material. This flow depends chiefly on capillary action. When a joint is designed, enough clearance should be permitted between the joining surfaces to allow for the brazing material.

The design of the joint should permit complete drainage of the

DESIGN ENGINEERS... METHODS ENGINEERS...

for IDEAS on

RADAR ANTENNA SYSTEMS design, development and fabrication
jet engines new fabrication methods for major components
THERMODYNAMICS
help with your design and fabrication problems
GUIDED MISSILES new fabricating techniques for airframe members
TITANIUM
new welding, forging, forming, spinning techniques with this hard-to-work metal

- NEW DEVFLOPMENT PROBLEMS
design, development and fabrication of products nol now defined but whose performance can be specified

If you are interested in design, development and production of new and unique products or components, this 20-page booklet of I-T-E's Special Products Division will help you.

It shows what specialists in ideas have accomplished . .
shows solutions to some interesting development and fabrication problems . . . tells what this unique organization is doing to help develop products to performance specifications.

Send for Publication SP-100 today.

TECHNOLOGY

ABILITY

FACILITIES

New Booklet on Gamewell Precision Potentiometers

CONTENTS

- Methods of Manufacture
- Windings Available
- Linear Potentiometers description condensed specifications
- Non-Linear Potentiometers description condensed specifications
- Special Applications
- Glossary of Terms Used - Information Required with Orders

For your copy of this new Gamewell Precision Potentiometer booklet, just send us a note on your company letterhead. Your copy will be mailed immediately, at no obligation to you.

THE GAMEWELL COMPANY - Newton Upperfalls 64, Massachusetts

Assembly in preheating furnace
flux. Trouble occurs where flux is entrapped so hot water and an acid neutralizer cannot remove it.

Filler Specifications

Inner fillets should be small. This can only be accomplished by using a small-diameter filler wire or flat wire. A flat wire $0.003^{\prime \prime}$ thick is recommended to keep these fillets small, neat and uniform with maximum strength.

A good example for filler materials for microwave components is three times the thickness of the parts up to 名" in thickness. For example, $\frac{1}{1 / \prime}$-thick plate to be brazed would require a ${ }^{3}$ " ${ }^{\prime \prime}$ wide $0.003^{\prime \prime}$ thick strip of filler material. This would result in a $0.010^{\prime \prime}$-radius fillet in the joint. Dip brazed parts should be designed so that alignment during brazing is obtained by the fit of the parts rather than by forces exerted by jigs or fixtures.

Assembly and Preheating

After cleaning, the filler material is added to the joint areas of the parts to be brazed. These parts are then assembled and placed in the holding fixture. They should then be checked for proper seating in the fixture, proper spring loading and proper location of the parts.

The unit is placed in a preheating furnace at 950 F to $1,030 \mathrm{~F}$ for from 5 to 15 minutes depending upon the mass of material to be preheated. This operation is essential because it removes all moisture, prevents local freezing of the molten fluxes when the unit is immersed in the dip pot and eliminates distortion.

The preheat furnace can be either gas-fired or electric, but

When designer-specifiers need reliable product information,
what do they do?
Do they fumble through the files looking
for individual company catalogues?
Do they waste valuable time waiting for product information to arrive by mail?

No, they do not!*
Designer-specifiers, needing immediate electronic product data, specifications, manufacturers'names, etc.,
look for it in the easy-to-read
ELECTRONICS BUYERS' GUIDE,
the only publication
where this information is readily accessible
for the entire industry.
You, too, can profit when you
get in the habit of looking it up in the...

electronics BUVERS' GUDE

A mcGraw-hill publication
330 West 42nd Street, New York 36, N. Y.
*A number of surveys made by the Research Staff prove the preference of the ELECTRONICS BUYERS' GUIDE over manufacfurers' catalogs. Results of these surveys will be supplied on request.

STOP RF LEAKAGE ON THE DRAWING BOARD

... WHEN YOU DESIGN METEX ELECTRONIC WEATHERSTRIPPING INTO YOUR EQUIPMENT YOU GET ITS POSITIVE SHIELDING EFFECTIVENESS - AT MAXIMUM OVERALL ECONOMY

Plan now to take full advantage of Metex Electronic Weatherstripping's unusual effectiveness in shielding all types of electronic equipment. Because it is made of knitted wire mesh, Meiex Electronic Weatherstripping is both conductive and resilient. It assures positive metal-to-metal contact between all mating surfaces. And being resilient it accommodates itself positively to surface inequalities.
In reality, Metex Electronic Weatherstripping can do more for you than just shield RF leakage. It can cut the cost of machining mating surfaces to close tolerances. It can eliminate the need for extra fasteners and many other costly means of making joints RF tight.
To get the best results and lowest production costs, design with Metex Electronic Weatherstripping, available in 3 basic forms:
1 Continuous lengths in various cross sectional shapes with or without fin for attachment.
2 Die-formed shielding gaskets, and
3 Sealing gaskets where the knitted wire gasket is combined with a sealing medium.

For detailed information on METEX

- Electronic PRODUCTS, write for FREE copy of "Metex Electronic Weatherstrips or outline your SPECIFIC shielding problem - it will receive our immediate attention.

Each of these is made in various sizes and shapes which are readily adaptable to practically any equipment. The resiliency can be varied where necessary to meet specific requirements.

Applications in which Metex Electronic Weatherstripping has already proved its effectiveness include pulse modulator shields, wave-guide choke-flange gaskets, local oscillators on TV sets. dielectric heaters, etc.

METAL TEXTILE CORPORATION
KNITTERS OF WIRE MESH FOR MORE THAN A QUARTER CENTURY

Roselle, New Jersey

Removing another type of component from flux used for heating to $1,110 \mathrm{~F}$

Lowering dip-brazed part into cold water quench, for heat-treatment
should be an air-circulating type controlled to within 10 degrees F .

Dip Brazing

After preheating, the assembled parts are removed from the furnace and lowered slowly into molten No. 34 brazing flux, which is held at the proper temperature to melt the filler material and produce its flow into the joint ($1,090 \mathrm{~F}$ to $1,110 \mathrm{~F}$) for from 1 to 3 minutes.

Ceramic-lined pots are suitable for dip brazing. Electric resistance heating of the molten flux is the most satisfactory, with temperature control within 5 F of brazing temperature. The capacity of the pot should be such that sufficient flux can be melted so that the chilling effect from dipping the parts to be brazed does not drop the temperature below the lower limit. It is important that the flux be held in a container which will not cause contamination.

It is always necessary to clean

ENSURES BETTER PERFORMANCE AT LOWER PRODUCTION COSTS

ITS CHARACTERISTICS INCLUDE:

High Dielectric Strength . . .
\star
Low Moisture Absorption . . .
\star
Mechanical Strength
*
Low Loss and Good Machinability.

$$
\star \star
$$

Ask for our new Clevelite Folder.

CLEVELITE is known for its dependability-uniformity-and ability to meet required tolerances, which are particularly important in coil forms, collars, bushings, spacers, tubes and many other products. Available in diameters, wall thicknesses and lengths as desired.

Prompt deliveries are ensured by our large production facilities.
Tell us Your needs. Our Research and Engineering Laboratory is at your service.

WHY PAY MORE? For the best . . . Call CLEVELAND!

*Reg. U. S. Pat. Off.

See you jobler factong $\sqrt{ }$ NEW mODELS \checkmark NEW DESIGNS $\sqrt{ }$ NEW LITERATURE

Zualuty Produces Since 1931
SAINT PAUL I, MINNESOTA - U. S. A.
the part after a dip-brazing operation. Parts should be immersed in hot water ($190-200 \mathrm{~F}$) to remove the major portion of the flux. This is followed by a dip in concentrated nitric acid for 5 to 15 minutes, depending on the design of the parts. The acid is removed by a water rinse.

Plastic Sleeving Dispensers

By Ronald L. Ives
Williamstille, New rork

Construction of experimental, prototype and custom-built electronic devices commonly requires use of plastic insulating sleeving in a wide variety of sizes and colors. Because of its springiness, this sleeving cannot be satisfactorily stored in, or dispensed from, a conventional wire rack, and usually will not stay wound on the spools on which it is supplied.

Larger spools of sleeving can be supported on a vertical surface by use of a hinged wire bail made from a dime-store toilet-paper holder, as in the diagram. This is limited to one spool per holder, as a second spool will rotate along with the first, with resultant tangling.

A self-rereeling holder, incorporating a window-shade spring mechanism, is theoretically useful. It permits the end of the sleeving to be pulled to the working position, and the requisite amount cut off, after which the rest of the sleeving is released and automatically rewinds. Experiments with a holder of this type show that it is unsatisfactory, as the free end of the sleeving whips around in a hazardous fashion when released.

The most convenient holder for

Be Sure to Visit the

Zend/X EXHIBIT at the Southwestern I.R. E. Conference and Electronic Show

The great diversity of products designed and manufactured by Bendix presents a unique opportunity to employ electronic research, development and manufacturing in the solution of countless problems

The Bendi: Divisions exhithiting at the
Tulsa, Okla. Southwestern I.R.E. Conference how they may apply will be happy to disensence to your their knowledge and experience

$$
\begin{aligned}
& \text { specific electron } 2-3-4 \text { and } 5 \\
& \text { BOOTHS }
\end{aligned}
$$

RED BANK DIVISION, EATONTOWN, N. 1.

BENDIX RADIO DIVISIOM, TOWSON, MD.
mation's arlines and more than 45 The major railroads depend on Bendis of the majorecision electronic equipment Radio for of radar, radio communications In the field of equiprent, Beadix Radio and navigation equiprent, to none. enjoys a rep

ECLIPSE-PIONEER DIVIS'ON, TETERBORO, N. J. Famous for over 30 years for the quality Fand design superiority of its tremendous variety of aviation instrumentay a major sories, Eclipse-Pionter is today for the supplier of precinion
ccialists in extensive coverage of elec-
Specialists in extensive coverage of durtronics. Units deaigned for reguirements. romity to met exactinn Klustron ability and mose tube such as Klystron Special purnose gaps are avaitable fo regnlators and spark

SCINTILLA DIVISION, SIDNEY, N. Y. Ohix Scinflex Electrical Comnectors are hembix Seinfex Esurized and are for all concompletely pressuarrangenents-full ACN tact sizes and pendix Ignition Analyzer check approval. henh both ignition unis alures. etficiency of hoth incipient failures plugs, and

PACIFIC DIVISION, NORTH HOLLYWOOD, CALIFORNIA , nutstanding leadership in the This divion has alemetering, arborne radar, hy drample fied of son. and radio contro-a ance enginecring servonechanisins in combining alities.
of Bendix talent in conduction facilities. *REG. U.S. PAT. OFF.
lesign with modern production *REG. U.5.

A.C.ou O.C.Fenllow DIEHL
 LOW INERTIA SERVOMOTORS AND INTEGRALLY-MOUNTED TACHOMETERS

$\mathrm{R}_{\text {esponse and stabilization of Positioning Systems can be }}$ improved with the Diehl Servomotor and A.C. Tachometer.

Analog System integration is facilitated by the use of the Diehl Servomotor with D.C. Tachometer combination.
Save space... and eliminate coupling problems and backlash... with these integrally combined units, motor and generator on the same shaft.

Diehl 5 -watt output, 2 -phase, $115 / 115$ volt, 60 cycle, 2 -pole Low Inertia Servomotors are available with a drag-cup type A.C. generator or with a permanent magnet D.C. generator mounted on the Servomotor as an integral unit, as illustrated:

MOTOR WITH D.C. TACHOMETER-NO. S.S. FPE25-86-1

Stalled forque:
5.0 oz in.

Rotor moment of inertia:
$0.18 \mathrm{oz} . \mathrm{in}^{2}{ }^{2}$

Tachometer output:

6.5 volts/1000 R.P.M.

These units are also obtainable for 10 watts output. Both the 5 and 10 watt units can be supplied with control windings for operation directly from the plates of vacuum tubes, or for 400 cycle operation.

Our engineering staff will gladly help you select the units best suited to your specific requirements. A request on your letterhead will bring you a copy of Technical Manual No. EL-0254 describing Diehl Servomotors and related equipment.

Other Available Components:
D.C. SERVO SETS - RESOLVERS MINIATURE PERMANENT MAGNET D.C. MOTORS

Suspension system of dispenser
medium-sized and small spools of sleeving is a trough, which supplies adequate friction and support. A miniature wooden hog-trough is quite satisfactory here, but a metal trough, assembled from case parts of a Fairchild K-8 gunsight control unit (previously gutted for parts) is more suitable. The base of this trough is the center reinforcing member of the control unit case. The trough proper is cut from the bottom of the case. Rubber feet prevent slippage of the trough, and eliminate scuffing of shelf surfaces; cap nuts on holding screws at both ends reduce droppage when the trough is moved. Because the quality of the workmanship of assembled devices tends to reflect the quality of the equipment used during assembly, the entire device was given a coat of black crackle enamel.

Construction time, including painting, is about one hour, and this is apparently recovered, as time saved by eliminating tangling, each 50 working hours.

Green Conveyor Belt
 Reduces Eye Fatigue

AN abrasion-resistant green conveyor belt has been developed for use on assembly and inspection lines where a great deal of visual concentration is necessary.

Extensive tests have shown that eye fatigue is substantially reduced when a green belt is used for assembling or inspecting such objects as radio chassis, tubes and small parts assemblies. While the color has no effect on belt performance, a

PIONEERED BY E-I FOUR YEARS AGO

AND STILL THE

 B
-in hermetic sealing today!

SUPER-RUGGED compression sealed terminations

Over four years ago, Electrical Industries developed and brought to practical reality
the first compression sealed termination.
Field tested in thousands of applications over the intervening years, acceptance is now overwhelming. The demonstrated superiority of
the compression type seal needs little emphasis. Ability to withstand punishment is outstanding to a degree that leaves little
room for comparison with other types.
As the originators of compression sealed terminals and headers, Electrical Industries offers exceptional capabilities in meeting specific requirements with speed, precision
Types and Sizes of Every Description
Produced Promptly
at Reasonable Cost

81×8ISFR/40W
-RR.P7A

when the going gets

VARIAN klystrons can take it

The frue test of a production klystron is the ability to operate successfully when subjected to severe vibration and shock under field conditions. That's why manufacturers of mobile radar insist on VARIAN klystrons-klystrons that stand up when the going gets rough.

VARIAN KLYSTRONS ARE RUGGED

Varian makes sure that its klystrons meet field performance requirements by testing each one under severe high amplitude vibration. This production test, accurately duplicating field conditions, is rough - so rough that ordinary klystrons can't take it.

VARIAN MEANS PROVED PERFORMANCE

From design to finished product, Varian builds quality into every klystron. And quality means dependability the reason why leading system manufacturers specify Varian when klystron performance is a critical factor in the operational reliability of their product.

$$
\begin{array}{r|r}
& \text { VA-6310/V-260 } \\
\begin{array}{r}
\text { For rugged, } \\
\text { dependable, }
\end{array} & \text { VA-6312/V-270 } \\
\text { production klystrons, } & \text { VA-6313/V-280 } \\
\text { specify: } & \text { VA-6314/5 }-290 \\
& \text { VA-6316/V-153 }
\end{array}
$$

green belt aids in increasing worker efficiency. The belts are available in any width up to 132 inches, from Main Belting Co. 1241 Carpenter St., Philadelphia 47, Pa.

Demonstrating Efficiency of Sampling Techniques

Wood paddles and a jar of colored beads have proved more effective for in-plant demonstration of the laws of probability and sampling than hours of explanation or pages of reports. As one example, a foreman in the test department of an electronic-tube plant might measure ten tubes as a sample from a batch. If all are good, he optimistically assumed that the rest of the tubes in the batch are likewise good. With this jar of beads, it is easily and dramatically demonstrated the zero defects in samples of ten come up quite often even when five percent of the tubes in the batch are bad.

In the demonstration system developed by W. P. Koechel, director of quality-control for Tung-Sol Electric Inc., Bloomfield, N. J., the jar contains 4,000 beads. Of these, $\frac{1}{2}$ percent are brown, 1 percent are

Now-Du Mont offers the first truly complese I ne of Multiplier Phototubes-from the miniature Type Kll93, only $3 / 4$-inch in diameter, to the fiveinch Type 6364, the largest Multiplier Phototube commercially available.
All of these tubes are characterized by the same superlative performance, the same high cathodesensitivity, low noise, cafhode-uniformity, and remarkable stability that have won such immediate acceptance for the Du Mont Types 6291 and 6292.
All are sold under the well known Du Mont ε uarantee to meet or surpass all published speeifications. You are assured that every Dumont Multiplier Photoube will perform the way you would expect.

The following Du Ment Multiplier 'hototutes are aresenlly available:

Type	Dianeter \& No. of Dynodes		
6364	5 in.	10	Price
6363	3 in.	10	$\$ 150$
6292	$2 \mathrm{in}$.	10	115
6291	$11 / 2 \mathrm{in}$.	10	55
K 1231	$11 / 4 \mathrm{in}$.	10	55
K 1193	$3 / 4 \mathrm{in}$.	10	55
K 1211	$3 / 4 \mathrm{in}$.	6	$*$

*Price on request
DUMONT

Pis down

Illustrations by courtesy if Standard Telephones and Cables Limited. England, who say that these Goodmans J'ermanent Magnet Shakers "have been chosen as they give a faithful reproduction of the input wave form and entible high accelerations "t any frequency to be obtained".

with

 GOODMANS

 GOODMANS}RESONANCE NOISE describes a particular factor in a tube which can very seriously impair its otherwise good characteristics. Only when "R.N." is negligible can a tube operate strictly according to its published 'curve' aud data.
Complete investigation of this phenomenon is only possible by suljecting the tube to controlled vibration throughout a wide frequency range. If the tube is operated in a Class \mathbf{A} circuit, and the A.C. noise voltage appearing at the anode of the tube is presented on an oscilloscope, a resunance diagram against input frequency can lie obtained. By this means it is possible to excite the tube in the range of frequencies 20 to $10,000 \mathrm{c} / \mathrm{s}$, and the resonance noise performance checked. By the use of a twin mounting as illustrated, comparisons of tubes can he made under identical conditions.

Just another of the wide applications of Goodmans Vibration Generators. Perhaps 'CONTROLLED VIBRATION' can serve you also.

The range includes models developing a force of ± 300 lbs, to the midget model with a force output of ± 2 lbs for optical-cell research and hairspring torque testing etc.

MAIL THIS COUPON

TO GOODMANS INDUSTRIES LIMITED AXIOM WORKS, WEMBLEY, MIDDX., ENGLAND
Please mail me your catalogue and technical data sheets in connection with
your PERMANENT MAGNET Shakers. your PERMANENT MAGNET Shakers.

NAME
COMPANY

CITY

here's the help you need

voltage stabilizers

This new bulletin provides the application data, operating characteristics, graphs and detailed specifications you need to specify a voltage stabilizer for any electrical or electronic product. Raytheon Voltage Stabilizers are available in a wide range of catalog types or custom engineered to suit special needs.

ATHIED

CUSTOM BUILT TRANSFORMERS

Here's the help you need in visualizing special transformers. Information includes complete details on Raytheon's exceptional facilities for the design and production of transformers and magnetic components to meet the most rigid requirements.

Send for them today

RAYTHEON

MANUFACTURING COMPANY
EQUIPMENT SALES DIVISION
DEPT. 6270-A WALTHAM 54, MASSACHUSETTS DISTRICT OFFICES: BOSTON, NEW YORK, CLEVELAND, CHICAGO, NEW orleans, los angeles (wilmington), san francisco, seatile INTERNATIONAL DIVISION: 19 RECTOR ST., NEW YORK CITY

[^20]

Quality control distribution pattern demonstrator. Nails must be somewhat irregular and balls should vary slightly to get most elfective demonstration. Poor results would be obtained by using steel ball-bearings and precisely driven phonograph needles as pegs
beads to reduce in units of five the number picked up by this paddle.

Use of the glass jar permits a clear view of the beads inside and at the same time minimizes spilling and loss of beads.

Another bead device developed by W. P. Koechel is a pinball-type slide for demonstrating the typical distribution pattern obtained when checking quality of normal production runs. Wood beads at the top of the slide drop through a maze of nails when the release lever at the side is operated. The nails cause the beads to scatter and distribute themselves among 25 vertical channels. Most of the beads enter the central channels, with fewer and fewer spreading out to the sides. The result is a bead pattern which approximates the standard curve shown in the diagram.

Metal strips at the bottom of the slide point to the bead columns that represent the upper and lower specification limits; beads falling outside of these strips therefore represent shrinkage due to rejects. After

for PROVEN RESULTS ${ }_{\text {specity }}$

McGRAW-HILL

Mailing Lists

You can save time, avoid needless expense, increase your results by having McGraw-Hill Lists do your mail advertising job!

Three quarters of a century of practical experience is made available to you when you turn your direct mail jobs over to McGraw-Hill. And these seventy-five years of leadership in the development and perfection of lists assure you the maximum results at the lowest cost per order or inquiry.

Those who are acquainted with mailing lists know that year-after-year acceptance of lists does not come by chance or luck. Accepted lists, like McGraw-Hill's, hold their places by merit alone. Nor does success one day guarantee success the next. Vigilant eyes must constantly add new names, delete, change, check, recheck, etc. Inferior lists are dropped as soon as shortcomings are noticed . . . "good lists" yield to better lists.

For seventy-five years expert list users have preferred McGraw-Hill by long odds. No matter how few names you use-whether your business is large or small-the best lists, McGraw-Hill Lists, are the most economical in the long run.

The world-wide reputation McGraw-Hill has earned as builders of the finest mailing lists was born of constant research in our office and in the field-constantly adding new names . . . developing new markets, new avenues of revenue for direct mail list users.

McGraw-Hill Publishing Co., Inc.

DIRECT MAIL DIVISION
330 W. 42nd Street, New York 36, N. Y.

McGraw-Hill Mailing Lists are built -and constantly maintained-to provide, as accurately as humanly possible, complete rosters of the industries we serve.

Investigate their tremendous possibilities in relation to your own product or service. Your specifications are our guide in recommending the particular McGrawHill lists that best cover your market. When planning your industrial advertising and sales promotional activities, ask for more facts or, better still, write today. No obligation, of course.

[^21]

WORK DEFENSE PROGRAM. Sondia Corporalion is engaged in the devalopment and production of atomic weapons-a challeng. ing new field that offers opportunities in research and development to men with Bachelor's or advanced degrees, with or without opplicable experience. Here you con work with oble colleagues, eminent consultants and superior facilities on advanced projects of high importance - and also build a permanenl career in a rapidly expanding field with a compony that recognizes individual ability and initiative.

LIVEIN ALBUQUERQUE, THE HEART OF THE SUNNY SOUTHWEST. Located in the historic Rio Grande Valley of the foot of the Sandia Mountains, mile-high Albuquerque is famous for its climatomild, dry and sunny the year oround. A modern, cosmopolitan city of 150,000 , Albuquerque offers unique advantages as a place in which to live. Albuquerque's schools, churches, theaters, parks, and modern shopping focilitios afford advantages of metropolitan life-yet hunting, fishing, skiing and a multitude of scenic and historic aftractions may all be found within a few hours' drive of the city. New residents have little diffculty in oblaining adequate housing.

ENJOY these other impootant advantaces.

These are permanent pesitions with Sandio Corporation, a subsidiary of the Western Electric Company, which operates Sondia Laborotory under contract with the Atomic Energy Commission. Working conditions are excellent, and salaries are commensurate with qualifications. Liberal employee benefits include paid vacations, sickness ben-

a demonstration, another push rod releases beads to the bottom. The slide is then turned over to get the beads all back at the top again in readiness for another demonstration.
The wood board containing the nails is mounted loosely and held in position by a flat spring. Pulling this board partly back alters the distribution of the beads to simulate production that has gone out of control.

The nails on the sliding board are staggered, so as to give each ball a $50-50$ choice of dropping to one side or the other each time it hits a nail. Nails can readily be removed to simulate a particular condition or problem. A six-notch slide located between the exit hole and the source of the beads at the top is used to obtain normal distribution. Each traverse of this slide from one side to the other releases five beads. A wood funnel just below the release hole can be shifted to one side or the other by means of a rack-and-gear arrangement controlled by a knob at the rear. The slides are made from $\frac{1}{16}$-inch Lucite strips, and a glass or Lucite cover is used to prevent beads from falling out during a demonstration. The device is technically called a quincunx demonstrator.

Cementing Metal Screens to Cathode-Ray Tubes

By R. W. Holmes
Mechanical Engineer
Argonne National Laboratory

I, emont. Lllinois
The cementing of fine mesh screens to the faces of 5 -inch cathode-ray tubes was an important operation in the construction of the memory unit of Argonne National Laboratory's new electronic digital computer (AVIDAC). The cementing was accomplished efficiently and at low cost by use of a variation of the vacuum bag molding technique, developed by Elwin Yoder and Frank Newcom of the Laboratory's Central Shops.

A basic requirement was that the screens be in even contact with the entire face surfaces. The screens are 100×100 square-mesh wire cloth made of 0.004 -inch diameter

MAKEPEACE

 FOR ELECTRONIC ASSEMBLIES
WAVE GUIDES AND TUBING

Rotating Joints, Antenna Feeds, Crystal Mixers, and special assemblies may be made with Makepeace precision drawn Wave Guide tubing held to close tolerance to meet exacting electrical specifications.

Capacity and engineering time now available for design manufacture of prototypes and production runs. Complete testing facilities at your service.

COLLECTOR RINGS AND BRUSHES

A pioneer in the precious metal slip ring field, Makepeace offers rings in sizes from $.050^{\prime \prime} 0$. D. up to $48^{\prime \prime} 0$. D., in solid or laminated precious metal, to meet any requirement for low electrical noise, low torque, in sensitive rotating members to high current power application.

Specially engineered complete self contained assemblies are available to meet the needs of the designer or manufacturer of Radar and other rotating electro mechanical systems. Facilities include design, engineering, and testing for noise level, corrosion resistance, cross talk, and impedance matching for special circuits.

D. E. MAKEPEACE COMPANY Division of Union Plate and Wirs Co.
\section*{Attleboro, Mass.}

Sales Offices: New York - Chicago - Los Angeles - Columbas

[^22]
STILL MORE WAYS TO SQUEEZE PENNIES

OUTOF

UPSET SPECIALS COSTS
Specially designed upset products are solving thousands of problems. Dozens of design pointers on them are yours for the asking. Send us your sketches, prints, finished products for suggestions.

machine screws and special fasteners are our business

WRITE FOR our catalog

Technique used for cementing fine mesh screen to face of cathode-ray tube

Tube with screen in position on face. Connection to associated amplifier is soldered to lower left corner of screen
copper wire and annealed in a hy-drogen-atmosphere furnace. Conventional approaches to the problem, such as use of rubber pressure pads backed up with formed blocks or use of inflated bags held in close contact with the face, proved to be impractical due to nonuniformity of the tube faces and because of the excessive drying time resulting from the prevention of normal air circulation. With the vacuum bag molding technique developed for the purpose, the possibility of tube breakage is reduced to a minimum because there is no increase in pressure on the face of the tube.

A round hole about 3 inches in diameter was cut into a standard volleyball bladder. The tube face was coated with a solvent-type cement (GE No. 1202 Glyptal varnish mixed with three parts of Glyptal No. 1500 thinner) and the fine mesh screen was affixed. A soft coarse

Interior of Asheroft Duragauge at left shows where copper-base alloys are widely used because of their dependahility and corrosion resistance. Brass and Bronze are especially important at the following key points: (1) Bourdon Tube, (2) Gear Segment, (3) Rotary Geared Movement, (4) Socket. Courtesy of Manning, Maxwell \& Moore, Inc., Stratford, Conn.

Quality Gauges Rely on Copper Alloys

How many of us realize the importance of dependable gauges which are so vital to modern living. Wherever there's a need for accurate measurement, you'll find gauges. In fact, there are applications beyond number where gauges automatically safeguard lives, equipment, and uniformity of product.

Just as gauges are essential to the making of many things, copper-base alloys are vital to the accuracy and dependable performance of their sensitive yet rugged components.

Quality gauges designed for air, water, steam, oil and other media use high corrosion-resistant copper alloys because accurate readings are imperative in spite of constant surges. fluctuations, pulsations, vibrations, and corrosive attack encountered in service.

In the pressure gauge illustrated, one of the most important parts is the curved Bourdon tube whose elliptical shape and the accuracy of the tube-wall curvature, as well as the physical properties of the metal, are all very critical.

As pressure is applied inside the Bourdon tube, it tends to straighten out, resulting in deflection of the free end of the tube. This end of the Bourdon tube is linked to the gear segment in mesh with the pinion gear that moves the pivot shaft to which the pointer is attached. The amount of motion is transmitted to the pointer which moves over a calibrated scale and indicates the applied pressure.

The temper and spring characteristics of the metal in the Bourdon tube prevent it from becoming "set" after repeated flexing. Any change in its physical characteristics or corrosive attack would affect the accuracy of the gauge. Consequently, copper-base alloys are widely used in gauge construction, which comprises the rotary geared movement that is actuated by the Bourdon tube, the socket, plates, segment, columns, pivot shafts, pinion gear, hair spring, bushings, link and link screws, and closing end for the tube and the case.

Phosphor Bronze Widely Used in Rotary Geared Movement

Phosphor Bronze, Grade A, long known for its excellent spring properties, its fine resistance toward fatigue and corrosion is generally used for Bourdon tubing for pressure gauges designed for medium and low pressures and vacuum measurements. This alloy contains about 95% copper, and 5% tin.

In some instances, Alloy 21 , which contains approximately 81% copper, 1.1% tin and balance zinc, is used for making Bourdon tubing for low pressure steam gauges.

Phosphor Bronze, Grade A, is also used for the hair spring, which takes the back lash out of the rack and pinion assembly.

The gear segment bushing and link screws are also made from Phosphor Bronze on the higher quality instruments, although leaded brass is very often used for these applications.

Leaded Brass for Ease of Machining

The plates, blanked, pierced, drilled, reamed and tapped, are made of clock brass for clean, sharp blanking and free machinability. This contains about 62% copper, 2% lead, and balance zinc. The socket, into which the Bourdon tube is mounted and on which the movement is attached, whose end is threaded for pipe connection, is square free-machining brass rod, Alloy 6 copper about 61%, lead 3.4%, zinc remainder. Drilling, turning, milling, threading and tapping are done at great speeds on this high-leaded alloy.

Laboratory Service Available

The selection of the correct material for all types of products can be simplified by contacting our nearest district office for information. Machining, corrosion and other problems are discussed in our "Technical Handbook," a copy of which will be sent to you on your request. Be sure to write for your copy on your company stationery.
(1290)

INSPECTING

 Gyro Compass BEARINGS

MARK IV GYRO COMPASS Bearings demand the most precise methods of fabrication and inspection - including the use of AO Stereoscopic Microscopes with special jigs.

Calls for

For highest precision, many operations require magnificalion. While ordinary microscopes provide high magnification, they invert the object (make everything appear upside down and backward.) And magnifiers are limited in both power and size of field. AO Stereoscopic Microscopes provide sufficient power, plus wide field, and an unreversed, three dimensional image as lifelike as if the actual object were 9 to 54 times larger. They are widely used in electronics, metal working, food and many other industries.

For more information on how AO Stereoscopic Microscopes can help you achieve greater precision at lower cost, mail the coupon below.

American $O_{\text {ptical }}$

(a) instrument division

Inserting screen-faced cathode-ray tube into memory frame of computer capable of storing 1.024 twelve-digit numbers
wire screen (approximately 50×50 mesh brass wire cloth, annealed) was then placed on top of the mesh screen and the entire tube face assembly inserted into the bladder opening. An evacuating stem was connected to a vacuum pump and all air in the bladder was exhausted. There was no need to wet the bladder to obtain adhesion, as it snapped down onto the glass face like a rubber band as soon as the vacuum pump was started. An ordinary laboratory vacuum pump capable of pulling down to about 28 inches of mercury proved satisfactory.

By use of this method, very close contact over the entire face of the tube was achieved. The coarse wire screen, which was removed from the completed unit, prevented air entrapment and the evacuated space effectively accelerated the rate of solvent evaporation.

The cathode-ray tube is the heart of the Williams memory circuit. The screen is analogous to one of the plates of a capacitor, and is used to read off the information as to whether a charge is stored there or not.

Pin and Tip Gage
 for Miniature Tubes

Checking of pin length and glasstip length are important qualitycontrol steps in connection with tube production, up to now quite difficult to measure. A simple combination gage built around a micrometer dial indicator was developed by W. P. Koechel of Tung-Sol as a successful solution to this

HOW WOULD YOU SOLVE THIS PROBLEM?

PROBLEM:

In the control panel of the Edison Aircraft Fire Detection System the sensitive relay which picks up the current generated by a thermocouple inmersed in flame is not designed to carry the warning load. The problem is to design a slave relay rugged and dependable enough for aircraft service, yet moderately priced. The slave relay will carry the current load to actuate the pilot alarm system . . . it must stand up under conditions ranging from the heat of the equator to the cold of the Arctic.

SOLUTION:

Engineers ąt Price Electric Corporation, realizing that cost was an important factor, decided to experiment with an open-style relay rather than hermetically sealed units. Finally, they were able to solve the customer's problem with a modification of a standard midget-type open relay. Customer comments:

1. The relay is simply made, compact and rugged enough for aircraft use.
2. The Price relay saves considerable labor cost in production because of its simplicity. In other words, it is extremely easy to make connections to this relay, and unusual dexterity is not required.
3. The use of Cantilever Contact Springs instead of the usual tail spring eliminates unnecessary parts which might cause service difficulties.

RECOMMENDATION:

Let Price Engineers have a look at your relay problems and needs. You'll find that their abilities can save time, labor and money!

See us at 600 th No. 793 IR,G.Show. Kew York

Note ease with which connections are made.

Mepco presents a complete line of Hermetically Sealed deposited carbon resistors with ratings from .25 watts to 2 watts.

These are not the usual varnish coated types. Instead, they are completely sealed in-steatite housing, which assures positive moisture protection.

Also available are resin coated types manufactured to MIL-R-10509A, glass enclosed and helium filled high stability types, and high frequency rod and disc units.

Write for complete information. Fill-in and mail the coupon today.

MEPCO, INC.

Morristown,

New Jersey
$\square \quad$ Please send me information on Mepco deposited
carbon resistors.
$\square \quad$ Please send me information on Mepco wire wound
resistors.

NAME \qquad title \qquad
COMPANY
StREET \qquad
CITY \qquad state

AEROCOM MEANS TROUBLE-FREE SERVICE! From Ground To Air or Point to Point

WHEN SO MUCH depends on SO LTTLE...

 - it payz to specify KEYSTONE "Performunce-Tested" PEERO CRTSTRTS
More than a Millior Kestone Crystals, now in use the world orer wor frequency control in military and conme cial communications equ pment - have estatlished a solid reputation for Top Reliab lity!

Ou hyge and continuing predicion of conventlonal cuartz crystal types insures premil filling of your orders - be they large or small. For jour spectalized reaulrements, a quallfied nenbe of our engineering sulation with you _or at rojR plant or ours. We we ccire your inquiries.

Llteratura on requast to Dept. E-2

KEYSTONE ELECTRONICS COMPANY
114. Manhattan Street $_$_ Stamford. Connecticut

NEW SUB-MINIATURE TUBE CLAMPS
The Birtcher kOOL Klamps were developed for use under conditions of extreme heat and severe vibration and shock. Made from a heat treatable silver alloy of high thermal conductivity, reducing bulb temperatures by as much as $40^{\circ} \mathrm{C}$, KOOL Klamps are improving the reliability of miniaturized electronic equipment.

The Birtcher Corporation, world's largest pro. ducer of electro-surgical devices, maintains a separate division for the monufacture and sale of fube and component clamps.

The BIRTCHER CORPORATICN

4371 Valley Blvd.
Los Angeles 32, California

Please send catalog and
samples by return mail.
Company
Attention of:
Address.
City

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered . . . Thirty-Three Trade Bulletins Reviewed

PULSE GENERATOR

is block-unit constructed

OTHER DEPARTMENTS:Page
Electrons at Work 194
Production Techniques 256
Plants and People 350
New Books 406
Backtalk 417
the main pulse is 80 v maximum across an internal 93 ohm resistor and may be continuously varied within $10-\mathrm{db}$ steps. Pulse width is variable from 0.1 usec to 1,000 u sec in four ranges and flatness of the pulse top may be adjusted to within 2.0 percent on all ranges. Block-unitized circuitry and construction allows use of the instrument as an independent frequency source and cascaded or parallel time-delay generator, among other applications.

SUPPLY TRANSFORMER

is subminiaturized unit

D \& R, LTd., Santa Barbara, Calif., is producing subminiaturized supply transformers with extremely high performance characteristics in relation to their size and weight. Produced on special order in conformance with individual require-

ments and specifications, the compact transformers can withstand severe shock, wide temperature ranges and vibration. The model illustrated, DR-T 107, developed primarily for printed-circuit applications, delivers up to 5 w at 400 cps and is designed to feed a pair of synchro control transformers. Weighing only $\frac{2}{3} \mathrm{oz}$, it is $\frac{5}{8} \mathrm{in}$. high and $\frac{3}{4} \mathrm{in}$. in diameter.

INDUCTORS

are available in six different types

Boonton Radio Corp., Boonton, N. J. Type 590-A line of inductors is designed for use in the Q circuit of the company's Q meters types $170-\mathrm{A}$ and $190-\mathrm{A}$. The new inductors, available in 6 types, are useful for measuring the r-f characteristics of capacitors, resistors and insulating materials over a frequency range of 20 to 230 mc . Each inductor consists of a high-Q coil mounted in a shield and is provided
with spade lugs for connection to the coil terminals of the Q meters. The shield is connected to the lugs which connect to the low coil terminal in order to minimize any changes in characteristics caused by stray coupling to elements or to ground.

ELECTROSTATIC GUN improves beam focus

Westinghouse Electric Corp., 401 Liberty Ave., Box 2278, Pittsburgh

A new, efficient crystal diode holder

Sturdy Sylvania Holder Coniacts Pravide High Retention for Diodes

"Another improved

 part by Sylvania!"

Here's a brand new, extremely efficient Crystal Diode Holder designed for you by Sylvania.

The contacts retain diodes with terminal leads ranging from .078 to .125 diameter, with ease of insertion and withdrawal. The centerline of retention is specially located at sufficient distance from the surface of the mounting plate to allow installation of large diam-
eter Crystal Diodes. Mounting plate is made of laminated phenolic and the contacts can be furnished in either phosphor bronze or brass with silver plating. Eyelets are made of nickelplated brass.

For detailed specification sheets concerning this improved diode holder or any other Sylvania part write to Sylvania today!

30, Pa., has developed a new electrostatic gun that improves beam focus in electrostatic tv picture tubes. The smaller spot size produced by the new gun gives greater
resolution and finer definition. Tubes using the gun show more detail in highlights while diminishing snow particles. Sharper focus also means the tube is a better per-
former in fringe areas. The gun is less affected by variation in anode and screen-grid voltages, permitting the tube to maintain better focus over a wide voltage range.

TINY P-M MOTOR

conforms to JAN specifications

Pioneer Electric \& Research Corp., Forest Park, Ill., has introduced a miniature permanent-magnet motor that is smaller than a standard pack of cigarettes. It offers $h-p$ rating from 0.004 to 0.0165 , speeds from 2,000 to 20,000 rpm, with total weights from 3.5 to 9 oz . The new motor is made with its magnetic structure cast into. an aluminum housing. The lineup indices are accurately ma-

chined to fit directly into the field structure bore so a uniform air gap
between field and armature is assured. Stainless steel shaft, rotor and commutator diameters are precision ground to maintain perfect concentricity. In its basic construction, the motor fully conforms to JAN specifications for minimum weight, low current consumption and high efficiency. Voltage range is 6 to $110 \mathrm{~d}-\mathrm{c}$. Commutator is 14 bar, with 35 -bar type available for special applications. Used as a generator, the tiny motor at $6,000 \mathrm{rpm}$ offers an output range from 1.5 to 8 w .

SOLDERING TOOL

for subminiature work

Ideal Industries, Inc., 1055 Park Ave., Sycamore, Ill., has introduced the Thermo-Tip soldering tool for miniature and subminiature work, featuring extremely rapid heating light weight and small size. Consisting of a step-down transformer connected to a small soldering pen-
cil, it utilizes the principle of resistance heating with the soldered part becoming a part of the electrical circuit. Passage of high current at low voltage through the part causes rapid heating. Solder is flowed by this heat and cold-flow joints are entirely eliminated. Soldered joints can be made in $\frac{1}{2}$ sec. The soldering pencil weighs only 3 oz .

CATHODE FOLLOWER

uses latest design techniques

Endevco Corp., 180 E. California St., Pasadena 1, Calif. The new subminiature cathode follower for impedance transformation now permits vibration and shock area location of the electronic equipment associated with high impedance instruments. The cathode follower

satisfies the needs of piezoelectric accelerometers, force gages and pressure pickups. Model 2608 cathode follower is internally shockmounted and uses the latest of design techniques, including etched wiring, subminiature shock resistant tubes and tantalytic capacitors. The small size permits installation in cramped quarters. Input impedance is over 100 megohms.

PHOSPHOR BRONZE

in ultra-thin gages

Industrial Division, American Silver Co., Inc., 36-07 Prince St., Flushing 54, N. Y., has available phosphor-bronze strip, precisionrolled to very close tolerances and to thin gages and foils, for use in
the manufacture of electrical, electronic, communications and instrumentation equipment components. The metal possesses high tensile and yield strength, good ductility, resiliency, high fatigue strength,
wear resistance and good bearing qualities. It is rolled in strip up to 6 in . wide and down to 0.005 in., to tolerances as close as $\pm 0.0001 \mathrm{in}$. The strip is available in any quantity from 1 lb to thousands of pounds. Typical uses include: bellows and diaphragms; high strength springs and brushes; fuse

Efficient Economical Camera Adapter

 Now available on

 Now available on

 Lavoie Oscilloscope (Model LA-239C)

 Lavoie Oscilloscope (Model LA-239C)
 The popular Lavoie Oscilloscope LA-239C has had a new plus feature added: The ability to mount the Lavoie Camera Adapter quickly and without modification. The Camera Adapter may be readily installed by removing the bezel, and securing the Adapter with four knurled nuts supplied on the panel. Already widely used in the

 development of radar and guided missiles, this new feature makes the LA-239C Oscilloscope a more valuable tool than ever.
OSCILLOSCOPE DATA

Wider Bandwidth: Complex waves from 5 cycles to 15 megacycles. Sine waves from 3 cycles to 20 megacycles. Extended Sweep Frequencies: Linear from 10 cycles to 20 megacycles internally synchronized. Triggered sweep, from a single impulse to irregular pulse-intervals up to as high as 6 megacycles.
Square Wave Response: Rise time 0.022 microseconds, only 5% droop on flat-topped pulses as long as 30,000 microseconds duration.
Greater Stability: Electronically regulated power supplies throughout to maintain accuracy and constant operation under varying line conditions or line surges. Surges on the line from which Model LAA-239C is being powered can be displayed without distortion.
Higher Signal Sensitivity: Maximum sensitivity without Probe: 10.4 millivolts. With Probe: 100 millivolts. (Maximum signals, 125 V. Peak and 450 V . Peak respectively.)
Timing Markers: Interval: Markers of $0.2,1,5,20,100,500$ or 2,000 microseconds may be superimposed on the trace for the accurate measurement of the time base.
Voltage Calibration: Signal amplitude is referenced to a 1,000 cycle square wave (generated internally) the amplitude of which is controlled by a step-and-slide attenuator calibrated in peak volts. (A jack is provided to deliver 30 V . Peak for use in calibrating other instruments.)

Sweep Delay: Any portion of the sweep longer than a 5 microsecond section may be expanded by $10: 1$ for detailed study of that portion of the signal.
Power Source: 110 to 130 V. AC from 50 to 1,000 cycles. 295 Watts. (Fused at 4 amperes.)
Dimensions: In Bench Cabinets: $191 / 2 \mathrm{in}$. wide, $151 / 4 \mathrm{in}$. high, $163 / 4 \mathrm{in}$. deep. In Rack Mounting (with cabinet removed to fit standard relay rack): $191 / 2 \mathrm{in}$. wide, 14 in . high.

Lavoie Laboratories. Inc.

MORGANVILLE, NEW JERSEY

Designers and Manufacturers of Electronic Equipment

Remote control of radio broadcast transmitters, recently approved by the F.C.C., means that broadcasters can make more money because they don't need to have people wasting their time watching the transmitters - which incidentally can be located where real estate is dirt cheap. All checking, monitoring and adjusting are done at the studio.
As a result, everybody and his brother has jumped into the business of knocking together so-called remote control systems. Following recognized electronic design principles, they start with a couple of black boxes and jam into them as many tubes, wires, resistors and such, as Newton's law will allow (or is it Euclid's fifth axiom?).

We're proud that one of our commercial customers followed a more practical route. He believed that the fewer the components, the more foolproof would be the result. We subscribe to this theory as long as it sells our relays.
So, our friend, The Rust Industrial Company, Manchester, N. H., designed a job that has zero (0) tubes either at transmitter or studio as compared to another system which has thirty-seven (37) in the control and metering circuits, twenty four (24) of which are at the transmitter. The Rust system has but one control adjustment whereas the competitor has 23. Although nowhere near as electronic,
 the Rust system works.

Incidentally, Rust has 15 relays (as compared to 16 for the competitor) and the four sensitive ones that Rust calls the heart of the whole system are Sigma (types 5 and 7). The Sigma relays receive the signal over the remote control line and decide which function to initiate at the transmitter. Rust likes these Sigma relays so much that they are replacing other types used in some early Rust models for free. Such is the power of propaganda.

SIGMA INSTRUMENTS, INC. 6: PEARL ST., SO. BRAINTREE ${ }^{\text {r }}$ bOSTON 35 , MASS.
clips, sleeve bushings, lockwashers and fasteners; snap switches, socket and plug contacts; printed circuits; bourdon tubes; and clutch dises.

SADDLE HEADER with glass-to-metal seal
Scientific Electronic Laboratories, INc., 866 Bergen St., Newark 8, N. J., has available a miniature saddle header featuring a glass-to-metal compression seal. This miniaturized, vacuum-tight header permits locking to standard saddle socket. This is a new addition to the line of standard hermetic seals available from stock. Special designs are also available.

POWER OSCILLATOR provides 400 or $1,000 \mathrm{cps}$

The Industrial Test Equipment Co., 55 E. 11th St., New York 3, N. Y. Model 1040 power oscillator provides a frequency of either 400 or $1,000 \mathrm{cps}$ at the flick of a switch. Three watts of undistorted power (less than 1 percent) are provided at various output impedance levels. A control on the front panel allows for a continuously variable output from 0 to 120 v . Frequencies are factory set to 0.25 percent and are maintained with high stability even
with line voltage variations. It is extremely useful as a power source for all types of bridges and test setups. An isolated output transformer permits its use in modulation applications, and its high stability makes it a good frequency standard.

ATTENUATORS
 for 0 to $1,000 \mathrm{mc}$

Applied Research Inc., 163-07 Depot Road, Flushing, N. Y., has introduced the HFA-50 and HFA75 inexpensive fixed pad attenuators for the 0 to $1,000 \mathrm{mc}$ frequency ranges. The HFA-50 has an impedance of 52.5 ohms; the HFA-75, an impedance of 75 ohms. They have a maximum vswr of 1.2 up to $1,000 \mathrm{mc}$. BNC connectors are used so that the pads can be incorporateq in most equipment and test setups without the need for auxiliary adapters. Accuracy of the pads is better than 0.5 db . Nominal attenuation is $3,6,10$ or 20 db .

H-V PEAK UNIT

 in shielded brass containerSensitive Research Instrument Corp., 9 Elm Ave., Mount Vernon, N. Y. Model VPA high-voltage peak unit has the following electrical characteristics: maximum in-

This Story is full of Holes...
 1808 to be ACCURATE!

WHEN the W. L. Maxson Corp. needed gear train panels for their computing machines, Universal got the nod for one
important reason! Notwithstanding our years of experience and an enviable record for producing precision work-this job came to us primarily because we had the equipment* to do the job best!

Working to tolerances of $\pm .0005$ be tween holes, and tolerances of $\pm .0002$ on the holes themselves, interior of holes finished to 4 to 6 micro-inches, this precision boring operation on 24 ST aluminum sheets, is just one of the many jobs of its kind constantly "in work" at our plant.
*The Jig Boring Machine that handled this job, employs an optical mea. suring system instead of the usual threaded spin. dle, this machine aftains on accuracy undreamed of in other machines.

Accuracy Is A UNIVERSAL Word

high-temperature

metallized-paper CAPACITORS

Aerolene* does it! This Aerovox-exclusive solid impregnant accounts for the higher temperature ratings and longer life of Aerovox metallized-paper capacitors. The accompanying curve (Operating Voltage vs. Temperature) tells the story. Further gains from permanently-imbedded sections in solid Aerolene impregnant are: maximum immunity to vibration and rough handling. And of course minimum size and maximum convenience. Install them-forget them!

Available in a wide variety of case styles including modified molded tubular, and all types of metal-cased hermetically-sealed construction with capacitance ratings from .0005 mfd . to 100 . mfd. at voltages up to 600 VDC .

Gef the FACTS!

Ask for literature on Aerovox metallized-paper capacitors in both standard and special types. Our metallized-paper specialists will gladly collaborate on your extra-compact-capacitor needs.

AEROVOX CORPORATION NEW BEDFORD, MASS

Hi-Q
division ACME

CINEMA
division electronics, inc. ENGINEERING co olean, n. y. monrovia, calif. burbank, callf.

In Canado: Aetovox Canada Itd., Mamilion, Ont.
verse peak voltage- 30,000 v; charging time constant-10 usec; discharging time constant-5 seconds ; and frequency range- 60 cps to 10 mc . Mechanical dimensions are 6 in . in diameter and 8 in . high Weight is 5 lb .

INSTRUMENT STAND saves bench space

Shasta Division, Beckman Instruments Inc., P. O. Box 296 , Sta. A, Richmond, Calif. Model 901 TekStand brings a technique long familiar to the chemical laboratory to the electronics field. Specially constructed arms are clamped to the upright member and are firmly attached to the backs of the instrument cabinets, allowing adjustment to any position or angle. Up to three "A" size cabinets may be mounted on a single stand. Use of the Tek-Stand minimizes the bench space necessary for the instruments and facilitates their use by making them easier to attach, read and adjust. Multiple a-c outlets are provided in the base for the power cords of the instruments.

PICTURE TUBE

with aluminized screen
CBS-Hytron, Danvers, Mass., has announced the 21 FP 4 C MirrorBack picture tube. This aluminized tube features low-voltage, electrostatic focus, Electromagnetically deflected, it incorporates an allglass, rectangular bulb, and a grayglass cylindrical face plate that provides greater contrast and a re-flection-free viewing surface. The aluminum-backed screen reinforces light output and provides brighter, sharper pictures, without additional
demands on the other components of the set. The tube has an electron gun designed for use with a single-field, external ion-trap magnet. It also has an outer conductive coating which, when grounded, serves as a high-voltage filter capacitor.

LABORATORY DOLLY has 8 power outlets

Technical Service Corp., 1404 W . Market St., Louisville 3, Ky. The lab dolly illustrated has 2 shelves for instruments and a pan for miscellaneous test leads, books and the like. It has a plug mold strip with 8 power outlets rated at 115 v a-c, $1,500 \mathrm{w}$, and a $10-\mathrm{ft}$ extension cord. The dolly moves on rubbertired casters and is made of aluminum. It can be used to move equipment for testing in the lab or on the production line. It is $31 \frac{1}{3} \mathrm{in}$. high, $18 \frac{3}{+} \mathrm{in}$. wide and 27 in . long.

MOLDED POWDERS
for hermetic seals
Electronic Cframics Co., 868 Bergen St., Newark 8, N. J., are now manufacturing molded powders in-

And it's precision that lasts! Accompanying chart reports load-life test on five Type CPH $1 / 2$ watt (metal-cased) Carbofilm Resistors. Note that all five samples stay well within $\pm 0.25 \%$ after 500 hours.

The guaranteed tolerance of Carbofilm Resistors is $\pm 1 \%$. Excellent stability re. temperature and voltage coefficients, overload, ageing, noise, etc.
Made under Western Electric patents, these resistors provide the dependability of wire-wounds with the compactness of carbons.
In two types: Coated (special resin film) units for economy as well as accuracy and stability. Hermetically-sealed (metal-cased with glass-to-metal sealing) units for extraordinary protection. Both types in $1 / 2,1$ and 2 watt sizes.

\section*{Ce|the | Engineering literature on request. Let our |
| :--- | :--- | precision-resistor specialists collaborate on your precision-resistance problems.}

AEROVOX
Mi-O Copacitors
AEROVOX
CORPORATION NEW BEDFORD, MASS.

CORPORATION

ACME

ELECTRONICS, INC. MONROVIA, CALIF.

OLEAN, N. Y.

CINEMA

ENGINEERING CO. burbank, Calif.

Trouble-Free 400 Cycle" Power Supplies

with American Electric

Most rotary electrical equipment is subject to wear...in windings, slip rings, brushes, springs or other working parts. But here's an alternator with NO WEAR POINTS other than two ball bearings! Even these are grease-sealed; lubricated for life.
With American Electric's exclusive Inductor Alternator design you can forget maintenance, forget trouble! Write for details and power ratings.
${ }^{\circ}$ Also available in other fixed frequency ranges or in variable frequcncy models.
features - Low Harmonic Content, Compact Design, Quiet Operation, High Power Factor.

The Alternator with NoWear Points!

 This is the complete rotating member of an American Electric Inductor Alternator with 2 bearing commonshaft motor drive. Note absence of coils, slip rings, brushes etc. Ball Bearings are the only wear points.
stationary or

 portable designsfor laboratory, ground, production, missile and all other high frequency uses.

Many Model Varfations:

- 2 Bearing Common-Shaft
- 4 Bearing Belt Driven
- 4 Bearing Direct Connected
- Variable Speed Driving Units

Fixed and Variable Frequency Models!

2 Bearing Common Shaft Mot

Completely Portable
Motor-Alternator Set.

4811 Telegraph Road,
Los Angeles 22,
Salifornia
d-c Polyranger illustrated has 88 internal ranges in current and voltage. The ranges overlap each other so that all readings can be taken on the upper half of the scale. The unit has automatic temperature compensation on both d-c and a-c. Accuracy is 0.5 percent on d-c and 0.75 percent on a-c. Current measurements for d-c range from 0.0002 ampere to 1.5 amperes; for a-c, 0.01 ampere to 1.5 amperes. The $\mathrm{d}-\mathrm{c}$ voltage measurements range from 0.02 v to 300 v by volt range selector switch; a-c voltage measurements, from 0.05 to 500 v .

SSB ADAPTERS use toroidal coil filters

Crosby Laboratories, Inc., Box 233, Hicksville, L. I., N. Y. Type 76 single-sideband adapter incorporates the new Burnell toroidal-coil filters in place of the crystal filters used in the type 51 adapters. This makes for reduction in cost, smaller size and a saving in weight and chassis space. The unit is more suitable for field use where equipment may be subject to shock and vibration conditions. Since the type 76 has none of the multiple crystal and L-C network circuits, alignment procedures are substantially eliminated.

THERMISTOR KIT is inexpensive package

Victory Engineering Corp., Springfield Road, Union, N. J. Model 168 experimental thermistorvaristor package is an inexpensive kit for use in research work. It contains 2 plain thermistor washers, 2 thermistor dises, 2 thermistor

This is a chassis stretcher

 ...but don't buy it, use Centralab miniature switches instead- Reduce chassis crowding
- Cut down size and weight
- Cut costs
- Most complete line of switches available
- Diameter only 1-5/16"
- Widest variety in poles, positions and sections
- Double wiping quiet contacts
- One source for all your switch needs
- Phenolic (Grade LTS-E5)
- Steatite (Grade L-5).

DON'T TURN THIS PAGE until you write for technical Bulletins 42-156 and 42-157.

SERIES 20 - Staked or bolted types. Available with Steatite or phenolic insulation ... 2 to 12 positions $.30^{\circ}$ or 60° positive indexing. Steatite is grade L-5, meets JAN-I-10 specitications. Phenolic is grade LTS-E5, JAN P-13.

SERIES 30 - Switch and control combinations with concentric shafts. Fumished in three types rotary switch mounted forward, control in rear; control in front, rotary switch in rear; two rotary switches operating independently

Centralab

A Division of Globe-Union Inc.
914 E. Keefe Avenue - Milwaukee'1, Wisconsin In Canada: 804 Mt. Pleasant Road, Toronto, Ontario

beads and 1 varistor washer--plus a technical information sheet of simple circuitry and electrical characteristics of these units. The kit will aid manufacturers in simplifying circuitry, and designing for compactness and increased sensitivity.

VACUUM RECTIFIER for industry and aircraft

Radio Corp. of America, Harrison, N. J. Type 5690 is a "Special Red" vacuum rectifier tube especially designed for industrial and aircraft applications where rigid requirements for dependability, stability and long tube life are of prime importance. The tube has two separate diode units of the indirectly heated cathode type. It is conservatively rated to withstand a maximum peak inverse plate voltage of $1,120 \mathrm{v}$, a maximum peak plate current per plate of 375 ma , and a maximum d-c output current per plate of 75 ma . Minimum life is 10,000 hours when it is operated within maximum ratings. It can withstand continuous vibration of 2.5 g at a frequency of approximately 25 cps for hundreds of hours at maximum rated voltage.

PANEL METERS are side indicating type

International Instruments, Inc., P. O. Box 2954, New Haven 15, Conn. Developed to obtain greater legibility for complex instrument panels, these side-indicating panel
meters provide maximum scale length with minimum panel area. Available in a wide variety of ranges with flanges for single and back-to-back mounting, these selfcontained units can be grouped in both horizontal and vertical arrangements implementing at-aglance comparative readings while reducing the size and weight of equipment. They have an accuracy of ± 3 percent of full-scale deflection on d-c and ± 5 percent on a-c.

RESISTORS
 for industrial application

The Radell Corp., 7900 Pendleton Pike, Indianapolis 26, Ind., has announced a new line of depositedcarbon resistors for industrial and instrument applications. They feature stability and long service life. A tough, resilient outer coating seals the precisely adjusted element and protects it from physical abuse without the addition of protective sleeving. The line includes three sizes of $\frac{1}{2}$-watt rating as well as a 1 -watt and a 2 -watt unit. The designations, in order of size, are CD $\frac{1}{2} \mathrm{PA}, \mathrm{CD} \frac{1}{2} \mathrm{MA}, \mathrm{CD} \frac{1}{2} \mathrm{SA}, \mathrm{CD} 1 \mathrm{SA}$ and CD2SA.

PLASTIC WAFER guides tubes into sockets

S/C Laboratories, Inc. 37 George St., Newark, N. J. The Guide-ATube is a low loss plastic wafer designed to assure quick, safe and simple insertion of miniature tubes into their sockets. The wafer is simply slipped over the tube pins and then the tube can be inserted into

popular thyratron

 \& IGNHEON TUBESWESTINGHOUSE Thyratrons are ideal for motor control, welder control, light-operaled relays, etc. lgnitrons are espesially suited for welders and power rectification. A few of the most popular types are listed below.

WL-179	574.00
KU-627	22.00
WL-6398	89.00
WL-678A	35.00
WL-678	47.00
WL-5551/652	80.50
WL-5559/651	121.00
WL-5553/655	265.00
WL-5559/57.	29.00
WL-5683	9.43
WL-5684	15.04

All opher
 pypes availoblo

Authorized

Distributors

Quick Service $0 n$ All Types

allied stocks for quick shipment the world's most complete distributor inventory of WESTINGHOUSE special-purpose electron tubes. We specialize in supplying the needs of industrial, broadcast, governmental and other users. To save time, effort and money-phone, wire or write to ALLIED for fast, expert shipment.

FREE WESTINGHOUSE "Easy Guide"

Send for this complete catalog describing westinghouse "Reliatron" Power Tubes. Describes in detail the characteristics and applications of these famous quality special purpose tubes. Covers power, transmitting, industrial, microwave, and other special purpose tubes. A valuable feature of the "Easy Guide" is a complete "Interchangeability Chart" indicating the westinghouse types which directly replace approximately 225 tubes of other makes. Write us for your FREE copy of the westinghouse "Easy Guide."

FREE 268-PAGE ALLIED CATALOG

Send today for the 1954 complete 268page ALLIED Catalog-the authoritative buying guide to all electronic supplies. ALLIED offers the world's largest stocks of special tubes, parts, test instruments, audio equipment-complete quality lines of electronic apparatus. Save time and moneysimplify your purchasing by sending your orders to ALLIED--the single dependable electronic supply source.

ALLIED RADIO

100 N. Western Ave., Depf. 11-B-4 Chicago 80, lllinois

HAymarkef 1-6800

Everything in Electronics from one reliable source
the socket with the ease of an octal. Another important feature of the device is that it reduces microphonics and prevents tube breakage.

C-R OSCILLOSCOPE

is I-f precision calibrated

TECHNOMATIC INSTRUMENT Co., 2316 Pico Blvd., Santa Monica, Calif., has introduced a low-frequency precision calibrated c-r oscilloscope, using a $21-i n$. rectangular direct-view tube, for classroom demonstrations and more accurate laboratory measurements. Model 21 A oscilloscope is particularly suitable for large audiences in that waveforms and oscilloscope patterns in classroom and lecture hall are possible without the use of projection systems, it provides a clear image and does not require a darkened room. Maximum deflection sensitivity is 10 mv peak-to-peak per in. Extreme stability of vertical and horizontal amplifiers and a regulated power supply make it possible to calibrate the gain controls directly in volts for accurate voltage measurements.

PHENOLIC LAMINATES

in 49-in. x 49-in. sheets
Taylor Fibre Co., Norristown, Pa., has announced two new families of paper-base phenolic laminated plastics. For application where high insulation resistance is a critical factor, type XXXP- 300 meets the most rigorous punching and staking requirements. It punches perfectly at 135 C . The XP- 400 series offer a solution to the need for a true cold punching laminate having good electrical characteristics. They
punch cleanly and evenly at room temperature. Both types offer low water absorption and high flame retardance. They are available in $49 \mathrm{in} . \times 49 \mathrm{in}$. sheets.

VOLTMETER

has no wires

Electro Mechanical Instrument Co., 813 Chestnut St., Perkasie, Pa., has available a voltmeter for testing voltage right at the electric receptacle. It has no wires and needs no assembly. It is equipped with prongs and can be readily plugged into any standard 110 -v receptacle. The prongs have a swivel arrangement permitting the meter to be read easily from any position. It is precision built with a damped meter movement. The dial is colorfast and calibrated from 0 to 150 v . Accuracy is ± 5 percent.

POWER OSCILLATOR

for uhf wide-band use
The W. L. Maxson Corp., 460 W. 34th St., New York 1, N. Y., has developed a uhf wide-band oscillator for precision test and power meas-

Is 100%

DC-Power Supply Regulation Desirable?

. Surprisingly enough, it is not. It would be if voltage drops in leads could be neglected. Although some elaborate, expensive regulated power supplies hold their voltage within $.01 \%$ or better the actual voltage in the circuit fed from such seemingly "perfect" supplies, due to lead resistance, does not hold up to the same degree of high regulating accuracy.

The new Millivac RP-series of inexpensive regulated power supplies approaches the goal of perfect regulation from a different angle. Millivac RP-regulators are dynamically compensated. Their output voltage can be made to rise with increasing load to balance out the rising voltage drops in leads between power supply and consumer. The amount of com-

Type RP-4I Power Supply.
pensation is adjustable and can be matched to specific requirements. Even over-compensation is available causing a small rise of $\mathrm{B}+$ with increasing load thus providing a negative rather than positive internal impedance.

These new supplies provide a degree of protection against mo-tor-boating of amplifiers never achieved before. Three and five stage high-gain, non motor-boating amplifiers have been fed from them successfully without any stage decoupling whatsoever.

General Specifications of TYPE RP
 Dynamically Compensated DC-Power Supplies

Static Stability with $\pm 10 \%$ AC line voltage variations over full load range: 0.5%.
Dynamic Stability (voltage swing at max. rated voltage with load fluctuating at 10 cps between 100% and 50% rated load) adjustable to better than $.001 \%$.
Type RP-41: 50 to 250 V DC,
$50 \mathrm{~mA} . . .$. . Net Price $\$ 99.00$
Type RP-42: 50 to 250 V DC,
$100 \mathrm{~mA} . .$. . Net Price $\$ 155.00$
Type RP-43: 100-400V DC,
$50 \mathrm{~mA} . . .$. . Net Price $\$ 155.00$
Type RP-44: 100-400V DC,
$100 \mathrm{~mA} . .$. . Net Price $\$ 195.00$
All supplies have an outlet for unregulated 6.3V, 2A Heater Power (60 cps).

MILLIVAC INSTRUMENT CORPORATION 444 Second Street, P. O. Box 997 Schenectady, New York

SELF-BALANCING

[^23]urement. Useful in antenna radiation, field strength, wave filter, noise and interference measurements, it can be used also as a gen-eral-purpose, low-power, portable transmitter and in production testing and measurement of uhf equipment. Frequency range is 200 mc to $2,500 \mathrm{mc}$ with one simple band changeover. Varying power output depending on frequency is 50 w at 200 to $400 \mathrm{mc}, 25 \mathrm{w}$ at 400 to 1,000 $\mathrm{mc}, 10 \mathrm{w}$ at 1,000 to $2,500 \mathrm{mc}$. The unit has a 50 -ohm output impedance.

TINY CAPACITOR of the electrolytic type

P. R. Mallory \& Co., Inc.,3029 E. Washington St., Indianapolis 6, Ind., has available a subminiature electrolytic capacitor for hearing aids, miniaturized radios, personal page radios, and other transistor applications requiring high capacitance in a small container at low voltage. The Silverlytic capacitor is available in ratings of $0.1,0.2$, $0.3,0.5$ and 1.0 .f at $10 \mathrm{v} \mathrm{d}-\mathrm{c}$, and $2.0 \mu \mathrm{f}$ at 5 v d-c and $4.0 \mu \mathrm{f}$ at 4 v d-c. Its operating temperature range is -30 C to +65 C . Maximum leakage current measured in lab tests was $2 \mu \mathrm{a}$ after 5 minutes application of rated voltage. The capacitor measures $\frac{8}{8} \mathrm{in}$. long $\times{ }^{\frac{7}{32}}$ in. diameter. It may be mounted by its own leads, each of which is $1 \frac{1}{2}$ in. long No. 26 bare, tinned copper.

COMPACT BRIDGE measures pulse impedance

Clegg Laboratories, Inc., 142 So. Livingston Ave., Livingston, N. J. The PIB-100 is a compact, portable
laboratory instrument for accurate measurements of impedance, and impedance-vs-time characteristies of networks, transformers, transducers, transmission lines and delay networks. The unit is direct reading with an accuracy of better than 1 percent in the range from 1 to 1,000 ohms. Characteristics of pulse components can be examined over the range from 0.1 to $100 \mu \mathrm{sec}$. The unit is particularly useful for measuring rate of change of impedance. Slopes as high as 10 ohms per u sec can be accurately evaluated. Provisions are included for independent use of the bridge section or the pulse generator section.

L-F OSCILLATOR for 0.35 to $52,000 \mathrm{cps}$

Krohn-Hite Instrument Co., 580 Massachusetts Ave., Cambridge 39, Mass. Model 420-C low-frequency oscillator is designed for applications requiring a source of sinewave and square-wave voltage in the range from 0.35 to $52,000 \mathrm{cps}$. Special circuits have been installed to eliminate transients after tuning or band-switching. Maximum output is 30 v peak to peak across a 1,000 -ohm load. Features are low hum and distortion and good amplitude constancy. The wide frequency range makes the unit useful for servomechanism, geophysical and seismological work, for vibration checks and medical research, and for work with a-f circuits.

TOROIDAL COILS in a wide range of sizes

F. W. Sickles Division of GenERAL Instrument Corp., 829 Newark Ave., Elizabeth 3, N. J., offers a new line of toroidal coils in a wide range of sizes varying in
 vibration - fast operation - low loss while on the line - small size

- rugged construction - low cost
- years of trouble-free service

Dependable De Walt power tools need rugged, dependable components. So it's little wonder that Sterling Relays are built into De Walt equipment. De Walt, like hundreds of other manufacturers, has found you can't beat Sterling quality or service for standard and specialized work. Sterling experıence and AMF engineering know-how give you a product to meet your most rigid specifications.

General Specifications, Sterling MS Relay

- Cut-out, operate, 125 V.A.C., Nominal 120-130 V. Cut-back, drop out, 60 V.A.C., Nominal 50.70 V . Wide, adjustable differential - Large high. pressure silver contact, $3 / 8^{\prime \prime}$ diam. Overall size, $2^{1 / 4^{\prime \prime}} \times 2^{\prime \prime} \times 1^{38^{\prime \prime}}$ diam. - Weight, app. 4 oz . Mounting, 2 or $4 * 6.32$ tapped holes. Operates in any position

They're relays YOU can rely on!
AMF Products are better... by design American Machine \& Foundry Company
hotever YOUR relay requirement, you'll be glad you checked with Sterling. Write Sterling Engineering Co.. Loconia, N H

FOR ELECTRICAL AND ELECTRONIC USES.

SILVER - because of its superior electrical conductivity, its equally superior thermal conductivity, its excellent resistance to corrosion and its ready workability-is used in many different forms on a wide variety of applications in the electrical and electronic industries.
As a leading fabricator of silver and its alloys, Handy \& Harman has developed silver in many forms to meet the industries' needs.
The list at the right is typical of the silver products readily available for your use. In addition, we are equipped to produce special silver alloys to meet special requirements. Our engineering and research departments are always ready to cooperate in solving your particular problems.
Write us if you want information about the uses of silver and its alloys.
finished coil dimensions having a hole size of $\frac{5}{18} \mathrm{in}$. to coils with an 8 -in. hole size using cores of small cross section. One of the outstanding features is the close electrical tolerances that can be held in production. Units can be wound to ± 5-percent inductance, matched to a standard to 0.1-percent inductance or ± 1 turn. The finished coils are available as uncased units, hermetically sealed or embedded to meet applicable MIL specifications. If desired, the coil can be incorporated in complete wave filters or networks designed to performance specifications or to the customer's own design.

CURVE FOLLOWER

 plots $Y=f(X)$ automaticallyF. L. Moseley Co., 409 N. Fair Oaks Ave., Pasadena 3, Calif., has available the Autograf, a general purpose portable precision 2-axis graphic recording instrument. It generates, as a potentiometer setting, the function Y from a graph of the relationship $Y=f(X)$. When used as a recorder, it plots instantly $Y=f(X)$ through two independent rebalancing servo-actuated recording axes from data reduced to electrical form. The resulting cartesian coordinate graph is drawn in pen and ink on $8 \frac{1}{2}-\mathrm{in} . \times 11$-in. graph paper. When used as a curve follower, the pen is replaced with a pickup stylus. Writing or reproducing rate is 10 ips.

VHF TV TETRODE has $25-\mathrm{kw}$ power output

General Electric Co., Schenectady, N. Y., is now producing
offices and plants RHDGEPOR1, CON CHIEACO III.
CIEYELAND OHIO CIEYELAND, OHIO
 montreai. canada
the GL-6251, a vhf tv tetrode with a gain in excess of 10 and a power output of 25 kw . Maximum ratings apply up to 220 mc . Since only 5 kw are needed to drive a pair of the tubes, low-power stations now on the air can increase signal strength to top levels at moderate cost by adding two of them in an amplifier stage. New transmitters may incorporate the tubes for a maximum antenna input power of 50 kw . Because of its ratings the tube also is well adapted to use in dielectric heating equipment. It has a metal-and-ceramic envelope, and employs water and forced-air cooling.

INDUCTANCE BRIDGE includes a crt indicator

Waters Mfg., Inc., 4 Gordon St., Waltham, Mass. Type 1002-A incremental inductance bridge is completely self-contained, including a crt indicator. No accessories are required. The instrument is ready for operation when connected to the power line. To operate, the adjustment of only one balance control is necessary. The range of values obtainable is 1 to 200 henries at ± 3-percent accuracy. The operator can select d-c values of 1 to 500 ma . The unit has application for such uses as testing filter chokes, transformers, magnetic amplifiers and other iron-cored inductors in development laboratories, production lines and incoming inspection.

ALNICO ALLOY has high energy product

Thomas \& Skinner Steel ProduCts Co., Inc., Indianapolis, Ind., announces a new Alnico alloy offering an energy product of 5.70×10^{8}

TYPE 704-A Secondary Phase Standard

- Shifts phase of sinusoidal signal by any angle from 0° to 360° in four 90° ranges.
- Waveform, frequency, and amplitude characteristics of signal essentially unaffected by phase shift.
- Absolute accuracy $\pm 2^{\circ *}$
- Incremental accuracy $\pm 0.1^{\circ *}$
- Línear dials individually hand calibrated. Incremental dial has $.025^{\circ}$ basic divisions.
- Negligible distortion, noise, and phase jitter.
- Excellent long-term stability.
- High impedance input, low impedance output from cathode follower.
- Standard frequencies of 60,400, 1000 and 20,000 cps.
- Units available for any single frequency between 60 cps and 20 kc .
*Accuracies dependent on frequency remaining within $\pm 0.2 \%$ of instrument's rated frequency.
Especially suitable for measurements with:
Phase shifting capacitors Servo systems
Time base circuits Transmission networks Multi-phase voltage rotation Phase detector circuits AC thyratron control Feed back amplifiers

Synchros Resolvers
Power factor Gyros CRO sweeps

ENGINEERING REPRESENTATIVES

Chicago, Ill. - UPtown 8-1141 Waltham, Mass. - WAltham 5-6900 Rochester, N. Y. - Monroe silis Dayton, Ohio - Michigan 8721 Silver Springs, Md. - Juniper 5,7550

Arnprior, Ont., Can. - Arnprior 400
Hollywood Hollywood, Cal. - HOllywood 9-6305 Dallas. Texas - Dixon 9918 Roseland, Nety Jersey - Caldwell 6-4545 Wyncotéspa - Livingston 8.5480

bere's antenna resolution

Highly Directive, high power (20-watt) transmitter with 18 -ft. parabolic antenna, furnishes signal source.

Power-driven, remotely controlled mounts permit 3 separate, simultaneous test set-ups. Recording systems, synchro driven for angle scaling, are linear $\pm 0.25 \mathrm{db}$ over 40 db range.

FOR PRECISE RESOLUTION of your antenna problem, typified by final check-out on this 2200 -foot Test Pattern Range, Gabriel offers -

> - Integrated Facilities for your requirements from basic idea through production.

- Research and development,... pilot or full-scale production... to exact specifications of industry or defense.

For example: Large scale production of critical searchwarning radar . . . and the major share of the nation's production of Mierowave Antennas, designed and built by Gabriel . . . are "proved out" on this range.

IF your target is successful resolution of an antenna project . . .
If your problem lies in the frequency range 33 to $33,000 \mathrm{mc} \ldots$ WRITE OR PHONE - A Gabriel Antenna Specialist will talk over your needs, review specifications, make recommendations. Call him today. NOrwood 7-3300

Gabriel Electronics Division

Formerly Workshop Associates Division

The Gabriel Company • 200 Endicott Street, Norwood, Mass.

N. Y., has introduced a line of extremely miniature transformers designed for use in transistorized circuitry, such as hearing aids and radio paging units. They are available for input, interstage, output and choke applications. Size is $\frac{7}{18}$ in. $\mathrm{x} \frac{1}{2}$ in. $\mathrm{x} \frac{7}{\mathrm{I}^{7}} \mathrm{in}$. Frequency response is flat from 300 to 10,000 cycles. Special units can be constructed upon receipt of customer's specifications.

BEAM POWER AMPLIFIER is 7-pin miniature type

Radio Corp. of America, Harrison, N. J. The 12AQ5 is a beam-power amplifier of the 7 -pin miniature type intended primarily for use in the output amplifier of automobile radio receivers operating from a $12-\mathrm{v}$ storage battery. The application of directed electron beam principles in its design makes it capable of producing relatively high-power output with high sensitivity. For example, a single 12AQ5 operated with a plate and screen voltage of 250 v can deliver a maximum-signal power output of 4.5 w with a peak driving voltage of only about 12 v . These features, together with the relatively low plate-current drain, make the 12AQ5 especially suitable for use in the output stage of automobile receivers.

BRAZING POWDER melts at about $3,450 \mathrm{~F}$

American Electro Metal Corp., Yonkers, N. Y., has developed MoBraze for the brazing of Molybdenum and tungsten parts. Mo-

THETADKSmm

PRECISE CONVERSION

 of RECIILINEAR MOTION to ELECTRICAL OUTPUT with RVT TRANSLATORY POTENTIOMETERS| APPLICATION FOR RVI |
| :---: |
| POTENTIOMETERS INCLUDE |
| TESTING and MEASUREMENTS |
| - Pressures |
| - Weights |
| - Excursion |
| Liquid Levels |
| ANALYSIS |

- Derivation of components of complex motions in multiple coordi. nates, in electrical terms
- Generation of electrical functions
- Analog Computation

MONITORING AND CONTROL

- Detection and correction of motions exceeding pre-set limits
- Compensation of aberrated motions may be made by choice of poten. tiometer windings of the non-linea type
SENSING OF ANY MOTION IN HAZARDOUS AREAS
- RVT Potentiometers reliably replace the human watchman or operator in dangerous or injurious environments. and safely provide remote indica tion, alarm operation, or contro surveillance.

The exacting standard of performance that TIC has made famous in precision rotary potentiometers has been applied to the field of straight-line or rectilineal shaft motion potentiometers. A guided centerless ground stainless steel shaft is free to move longitudinally down the axis of a machined aluminum housing. The shaft carries up to three separate dual contacts of precious metal which slide upon as many precision wound resistor strips, giving resistance variation proportional to the shaft motion. Units having multi. ple strips and contacts preserve the electrical individuality of each so that many wiring combinations are possible for control of sensitivity, resolution or electric current function features.

Standard Stroke Lengths: $21 / 2^{\prime \prime} \quad 5^{\prime \prime} \quad 8^{\prime \prime} \quad 12^{\prime \prime}$
Dissipation @ $25^{\circ} \mathrm{C}$: $2.5 \mathrm{w} \quad 5 \mathrm{w} \quad 6 \mathrm{w} \quad 8 \mathrm{w}$
Independent Linearity:** $\pm 1 \%$ of total res. for $21 / 2^{\prime \prime}$ and over.
**Under $21 / 2^{\prime \prime}: \pm 2.5 \%$ to $\pm 5 \%$ of total res.
Resistance Range: 100 ohms/in. to 25,000 ohms/in.
Resistance Tolerance: $\pm 5 \%$
Overtravel: Coin silver end tabs - no change in resistance in overtravel regions.
Ambient Temp. Range: -55° to $+80^{\circ} \mathrm{C}$.
Temperature Coefficient of Resistance Wire: $.00002 /{ }^{\circ} \mathrm{C}$.
Life: $1,000,000$ traverses over resistance element @ speed of 1 '/sec. or less.
Resistance Winding: Up to three independent linear or non-linear windings may be included in one unit.
Housing: Sturdy machined aluminum with corrosion resistant anodized finish. Threaded bushing provides simple mounting. Terminals to all elements accessible at rear of housing. Housing has $1 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}$ cross sectional area, length determined by stroke. "Non standard stroke lengths $1 / 2^{"}$ to $12^{\prime \prime}$ available.

OURNS

presents

 the New
TRIMPOT

 Sub-miniature potentiometer for precise circuit trimming

Bourns TRIM POT is a wirewound potentiometer designed for miniaturized equipment. Adjustments of the 25 turn slotted shaft are made with a screw driver.

Accurate electrical settings in increments of $1 / 4$ to $1 / 2 \%$ are easily controlled and are securely retained without the use of lock-nuts.
Vibration of 15 G at $10-2000 \mathrm{cps}$ or a sustained acceleration of 100 G does not interfere with the dependable pe-formance of the TRIMPOT.
TRIMPOT s can be installed individually or in stacked assemblies with two mounting screws through the eyclets in the body.
Bourns designs and manufactures Linear Wotion, Gage Pressure, Differential Pressure, Altitude and Acceleration Potentiometers.

Braze melts at a temperature of about $3,450 \mathrm{~F}$ and forms a continuous and very strong braze upon solidifying. The brazed joint is formed quite rapidly, usually without oxidation of the part. Mo-Braze will not volatilize to any detectable extent at useful temperatures, whether in hydrogen or high vacuum. Tests for $1,000 \mathrm{hr}$ and more in $10^{-8} \mathrm{~mm}$ mercury vacuum did not indicate any poisoning of the vacuum.

FREQUENCY CHANGERS are hermetically sealed

D\&R, LTD., 402 E. Gutierrez St., Santa Barbara, Calif., is proclucing power frequency multipliers that change the frequency of line power without the use of rectifiers. Units are hermetically sealed and operate directly from a 400 -cycle, 3 -phase power line, delivering 2,000 -cycles single-phase output at a conversion efficiency of approximately 75 percent. Model F-10 illustrated delivers 5 watts at 2,000 cycles with good regulation and with a harmonic content less than 7 percent.

CRYSTAL DETECTOR
features sensitive readout
Sierra Electronic Corp., 1050 Brittan Ave., San Carlos 2, Calif. Model 148 crystal detector makes available sensitive readout from vhf-uhf directional couplers. Typi-
(al sensitivity realizable with the instrument when used with a 50 -נ.a, 1,140 -ohm meter is at least 30 a.a of rectified d-c output for an r -f input of 140 mv rms . It is designed for use with 50 -ohm transmission lines operating at frequencies from 30 to $1,500 \mathrm{mc}$. The instrument includes a 1 N 21 B crystal and a built-in low-pass output filter.

DEMONSTRATOR

 for instruction in vtrm'sElectronic Instrument Co., Inc., 84 Withers St., Brooklyn 11, N. Y., has available a dynamic demonstrator which is a special giant replica of the model 221 vtvm . Its actual size is $14^{\frac{3}{4}} \times 23 \times 3 \frac{1}{8} \mathrm{in}$. It features movable function and range switches, and a settable dial pointer . . . thus enabling the instructor to explain easily and graphically to a large group how readings are taken with the instrument, and to test students on same.

SHIFT REGISTER is space-saving unit
Raytheon Mfg. Co., 148 California St., Newton 58, Mass. This single-

PRECISION wire wound RESISTORS

... .surpass MIL-R-93A specs!

from every angle...

the TOUGHEST CONDITIONS require REON RESISTORS

Production line ruggedness with hair-line accuracy! You can be sure once it's mounted ... it stands up for good!

One of the largest sample departments in the country!
Prompt delivery of samples to your needs in approx. two weeks. Production quantities in four weeks.

High standards of quality !

Whether for Commercial or for Government equipment,
 Reon Resistors are manufactured to the same rigid specifications.

RB15, RB16, RB17, RB18, RB19
Watfage Ratings :
MIL : $1 / 4$ to 1 watt
COM: $1 / 4$ to 2 watts
WRITE... for compiete specifications on the
Reon Resistor MIL-R-93A series and for in. Reon Resistor MIL-R-93A series and for in.
formation on other standard commercial and special types. Request our application sheet.

Tolerance:
MIL: 1% to. 1%

COM: 1% to 02%
Resistance Range:

Where the

I NFIN I TE S I MA L $\quad 0 \quad 0 \quad 1$ I IMPORTANT

AS IN INSTRUMENT DIALS

"MICROSCOPIC-PRECISION"

 actually defines the minute accuracy of dials by U. S. Radium (instrument, clock, or watch), for "microscopic" checks and painstaking inspections in every step of production assure the highest degree of perfection humanly or mechanically possible.Regardless of size of the order, we take the same pains to assure a finished product in strict accordance with prints and specifications. You are welcome to avail yourself of our engineering and designing experience toward the end that your product may be both functionally satisfactory and less costly in production.

where FUNCTIONAL DESIGN

is IMPORTANT

AS IN INSTRUMENT PANELS

Special equipment and specialized persomel, plus our rigid controls, constant checking and inspection guarantee the fine finished product your order merits. Whether flat or curved, we can produce your panels edge-lighted, and either luminous or non-luminous engraved, etched, screened or lithographed, with the ultimate in uniformity and legibility.

where APPEARANCE AND ECONOMY are IMPORTANT - AS IN NAMEPLATES

The same engineering skill and same plant facilities are yours for the production of nameplates. For years we have been the major source of supply for many industries and our reputation has been built on attention to detail, prompt deliveries, and the economy effected for our customers.

FOR COMPLETE INFORMATION on items of interest to you, address United States Radium Corporation, 535 Pearl St., New York 7, N. Y. attention Dept. E-2

stage 100 -ke magnetic shift register is an extremely compact unit designed, miniaturized and packaged for space saving, reliability and ease of installation. All longlife components are sealed in a plastic case except the diode which is readily removable. It runs at a power level less than $\frac{1}{4}$ w per stage at maximum frequency of 100 kc . It has a 16 -v output with one-zero ratio of 5 to 1 . Minimum load impedance is 7,500 ohms. Wide margins of operation provide exceptional circuit stability.

TINY PREAMPLIFIER features plug-in design

Langevin Mfg. Corp., 37 W. 65th St., New York 23, N. Y. Model 5116 is a miniature plug-in two-stage, low-noise preamplifier or booster amplifier. It is ideal for installation in consoles and equipment racks. A new catalog now available from the company discusses amplifiers, power supplies and transformers for radio and ty broadcast, recording studios and sound systems.

SOLDERING UNIT adaptable for a-m connectors

Vemaline Products Co., P.O. Box 222, Hawthorne, N. J. Model J-5 Glo-Point soldering unit, with ad-
justable heat control, is very adaptable for soldering a-m connectors, terminals, subassemblies, butt soldering and terminal boards. Timing attachments and ground plates are also available for the unit. Binding posts for the use of the $\mathrm{H}-1$ or $\mathrm{H}-2$ electrode holders can be used to make the unit more practical. A single-page bulletin illustrates and describes this unit as well as the model J-4, and also gives a complete price listing.

SELENIUM RECTIFIER is plug-in type

Cinch Mfg. Co., Chicago, ill. This recent development in the selenium rectifier field facilitates field replacement of selenium rectifiers, particularly the types commonly used in radio and tv receivers. The rectifier lugs are polarized for proper circuit connection and are so designed that vibration or shock will not cause the rectifiers to fall out of the socket. It is possible to mount the plug-in rectifier in a conventional manner and solder to the lugs.

COLOR TV COMPONENTS

 for lab and prototype useCrest Laboratories, Inc., Rockaway Beach, N. Y., has introduced a line of variable inductances suitable for use with the latest color-tv circuitry, as shown in the NTSC

KAY LAB METER CALIBRATOR

THE QUALITY STANDARD DC REFERENCE!

This compact unit produces an absolutely calibrated DC voltage, independent of input line voltage and output load variations... does it faster, easier, better! Just select the voltage, set the Kay Lab Meter Calibrator, and start calibrating . . . you get instant, precise results... no time wasted because no checking required! Kay Lab's unique circuit continually compares the output voltage against the internal standard cell and thus ensures absolute cal. ibration and stability with reference to the standard cell.

INDISPENSABLE in calibration, inspec* tion and production of DC merers.

VERSATILE
a necessary part of all standardslaboratories, computer organiza tions, production lines and wherever accurate metercalibration is imperative.

KAY-LAB METER CALIBRATOR SPECIFICATIONS				
MODELS	M30B-1	M30B-1Z	M10A-10	M100A-20
Voltage Range	$1-300 \mathrm{~V}$	1-300V	0.100V	0-1000V
Current Maximum (As Voltage Cal	$10 \mathrm{ma} .$ libration)	10 mo .	100 ma .	200 ma .
Current Range			0.100 ma .	$\begin{aligned} & 0 / .1 / 1 . / 10 / 100 \\ & \text { ma. } 4 \text { ranges } \end{aligned}$
Voltage Maximum (As Current Cali	ibration)		100V	1000V
Voltage Adjust	IV. Steps Calibroted Pot.	IV. Sieps Calibrated Pot.	0.1V Steps	0.1V Steps
Current Adjust			. 1 mo Step	$\begin{aligned} & .01 / 1 / 1 . / 10 \\ & \text { Microamp Steps } \end{aligned}$
Tolerance	0.1\%	0.02\%	. 05%	
Long Time Stability	y. 01%	. 01%	. 01%	. 01%
Price	\$395.00	\$550.00	\$1190.00	\$1950.00

These competent, well-informed representatives are in your area, Write, wire, or contact them personally for FREE, complete details.

West Toronto, Conada Atlas Radio Corp.
WA. 4761
Hiah Point, North Caralina
Bivins and Caldwell
High Point 3672
Chicago 40, lllinois Alfred Crossley \& Assoc upiown 8-1141
Export Agent
Sylvan Ginsbury
PEnnsylvania 6 -8329
St. Lavis 30, Missouri Harris-Hanson SWeetbriar 5584 Konsas City 10, Missouri Harris-Hanson HIland 6744
Washington 9, D.C Hormon Associates DEcotur 2.8000
Dallos, Texas Earl Lipscomb
ELmhurst 5345

```
Seattle 99, Washington
Ron Merritt Company
GArfield 6644
Los Angeles 46, Californio
Neely Enterprises
WEbster 3-9201
San Francisco 18, California
Neely Enterprises
WAIIUt 12361
Albuquerque, New Mexico
    Albuquerque, New
    Albuquerque 55586
    Albuquerque 5558
    Phoenix, Arizono
    Neely Enterprise
    Alpine 4-7311
    Sacramento, California
    Neely Enterprises
    Neely Enterpris
    San Diego, California
    Neely Enterprises
    ACodemy 3-8106
    New York 21, New York
    RMC Associates
    TRofolgar 9-2023
```

published schematics. These variable inductances are designed for both laboratory and prototype usage. Additional information will be furnished upon request.

D-C BRIDGE is a general-purpose unit

Allegany Instrument Co., 1,000 Oldtown Rd., Cumberland, Md. The model B-1 d-c bridge was designed as a general-purpose unit for wire strain gages and transducers. Balance is effected by a 10 -turn potentiometer for all gage resistances in the range of 60 to 2,000 ohms. Input is for 1,2 and 4 -arm gages and transducers.

ROLLER BEARINGS

in seven tiny sizes
Landis \& Gyr, Inc., 45 W. 45th St., New York 36, N. Y., announces miniature roller bearings in 3 types and 7 sizes from 0.4724 in. to 1.0236 in. o.d. Identified as RMB types N, NU and NP, they are especially suitable for use in all kinds
of apparatus, machines and motors where shafts are subjected to heavy radial loads. The roller assembly is retained by a snap-ring on the inner race and a section of the shield at the outer race. This eliminates necessity of a lip on either raceway and permits production of a perfectly cylindrical race, and a superfine finish on the latter's rolling surface. In type NP (illustrated) the outer and inner races are permanently assembled. This bearing permits location of the shaft axially, provided the axial stresses are slight.

MOBILE RECEIVER

for use with converters
S \& W Electronics, 3418 W. Pico Blyd., Los Angeles 19, Calif. The Mobile-Ceiver is a compact fixedtuned receiver designed for use with mobile converters. When used with a converter it becomes a dou-ble-conversion superhet. It has variable selectivity of 5,10 or 16 kc . The stable oscillator can be adjusted for any input frequency between 1,400 and $1,600 \mathrm{kc}$. No crystal is required, thus the frequency may be shifted when necessary to avoid troublesome beats with local broadcast stations with resultant heterodynes.

NOISE GENERATOR

for test and studies
Statistical Instrument Co., P.O. Box 552, Church St. Station, New

We make powdered iron cores for all miniature applications

Our design engineers have an impressive record of success in developing new miniature types of cores for highly specialized applications, and are ready to take on your toughest froblem jobs. Our engineering consultant service is yours without cost,

Pyroferric works to closest electrical and mechanical tolerances, on newly-developed pilot models and quantity production runs. You are assured of uniformity, strict quality control and rigid conformity to specifications.

Pyroferric makes iron cores in a complete size range from the snallest to the largest, for all applications. M. P. A. data sheets and tables give complete information including recommended sizes and tolerances as well as a cross-reference index of manufacturers' material designations.

Write on your letterhead for latest Catalog No. $23 F$

Name	Title	
Firm		
Abdress	City	Stat

York 8, N. Y. Model RUG-1-10 lowfrequency noise generator makes available for simulation studies and test purposes a random voltage source of controlled frequency spectrum and probability distribution. Examples of its use are: a study of random air-load effects in airframe design, noise problems in missile guidance, study of the statistical properties of ground electromagnetic reflection, and low-frequency phenomena including chemical and thermal processes and certain bioelectrical effects. Frequency coverage is from 0 to 10 cps in three steps for the Guassian, Rayleigh and uniform distributions. The unit will deliver approximately 5 v rms at the wide bandwidth and 1 v at the narrow setting and is continuously variable to 0.1 v accuracy.

HEAVY-DUTY RELAY for control applications

Leach Relay Co., 5915 Avalon Blyd., Los Angeles 3, Calif. Part No. 9191 heavy-duty relay is designed for electrical and electronic commercial and industrial control applications. This compact, lightweight, rugged relay is capable of handling heary contact loads with low coil-power requirements. Its double-break contacts provide a large gap to extinguish the arcing associated with heavy loads. Insulation and spacing meet UL requirements for industrial control equipment. Contact life exceeds requirements for UL temperature indicating and regulating equipment. Multiple mounting holes in the bracket allow the relay to be mounted from above or below
mounting surface as required. Contacts are spst-normally open, double break.

D-C POWER SUPPLY occupies small space

Allied Engineering Div., Allied International Inc., Connecticut \& Richards Aves., South Norwalk, Conn. Model 302 power supply furnishes precise regulation with low ripple and minimum magnetic radiation. Designed to conserve bench space, its dimensions are 8 in . $x 5$ in. $\times 5 \frac{1}{2}$ in. Two outputs are available: (1) From 150 to 350 v at 0 to 80 ma , with either positive or negative grounded to chassis. Regulation is more than ± 0.05 percent against line and load variations within specifications. (2) From 0 to 150 v at 0 to 5 ma , with positive internally connected to the negative of output No. 1. Regulation is better than ± 1.0 percent against line variations only. Ripple is less than 3 mv . Ambient temperature range is 0 to 40 C .

SHORT-SLOT HYBRID for radar applications

Airtron, Inc., Linden, N. J., have available a complete series of fabricated short-slot hybrids for modern

SPECIAL FEATURES:

POLARIZING pin permits congagement in correct position only, NOTE Polarizing pin may be substituted for any contact by indicating "dash/letter" of that position to basic code number. Example...KI5S-E 15-position receptacle contains 14 contacts (solder cup type) and one polarizing pin in position " E ".

WIPING ACTION of contacts insures positive contact at all times.

MOLDED MELAMINE bodies, mineral filled, are fungus-proof and provide mechanical strength as well as high arc and dielectric resistance. Onepiece molded contsruction eliminates moisture and dust pockets.
CONTACTS are spring temper phosphor bronze, gold plated over silver plating, for low contact resistance and prevention of corrosion.

> Winchester Products and Winchester Designs are Available Only From Winchester Electronics, Inc.

SOLDER CUP or WIRE-WRAP TERMINAL CONTACTS...For attaching \#20 A.W.G. wires

Receptacles are available either with contacts having cups for soldering, or with contacts with plain terminals for wrapping lead-off wires. Add "S" to basic code number for solder cups (as K15S); add "W" to basic code number for vire-urap contacts (as K15W).

TUBULAR TERMINAL CONTACTS also

 available . . for riveting receptacle to printed circuit card. Add " T " to basic code number (as K15T).Write or phone our Sales Department for full information... or advise your suecial requirements.

West Coass Branch: 1729 WILSHIRE BOULEVARD, SANTA MONICA, CALIFORNIA

CANNON pIUGS

get good raception

P SERIRS

GB SERIES

U SERIES

TELEPHONE RECORDER

WRITE FOR PRICE FOLDER CPL- 6

The high quality audio connectors shown above are available from all Cannon Franchised Distributors. In their great variety of sizes, shapes and contact arrangements there is no problem or technical requirement in the radio, sound, TV or related fields that cannot be met. Cannon plugs are standard on leading makes of audio equipment and microphones.

CANNON ELECTRIC

Since 1915

Factories in Los Angeles. Toronto, New Haven, Benton Harbor. RepreFactories in Los Ankeles, Totives. Address inquiries to Cannon Electric sentatives in Drincipal citues. Addres inquiries 31, Californa,
radar applications. Their application in connection with mixers. power splitters, directional couplers, phase shifters and duplexers make for compact neechanical layout and simplicity. These components, with miniaturized dual-contact flanges, are adaptations of the proposed RETMA contact-flange types designed for unpressurized service. Without sacrificing electrical performance, these flanges make it possible to adapt any arrangement of components. Adapters and accessories are available for use with these short-slot hybrids. Engineering Report RR585 may be obtained upon request.

FREQUENCY METERS cover from 10 to $2,000 \mathrm{mc}$

Lavoie Laboratories, Inc., Morganville, N. J., has introduced three new precision frequency meters accurate to 0.001 percent, which cover ranges from 10 to $2,000 \mathrm{mc}$. Model LA-5 provides frequency measurements at 10 to 100 mc ; model LA-6, at 100 to 500 mc and model LA-61 at 500 to $2,000 \mathrm{mc}$. All units are extremely rugged and compact, being only two cu ft in volume. Each operates under both field and laboratory conditions.

COIL CORE

for printed circuitry

Henry L. Crowley \& Co., Inc., One Central Ave., West Orange, N. J., has announced a new h-f
powdered iron core disigned for use with printed circuits. It lends itself to the dip-soldering proness used in many radio and ty receivers, as well as com, onent printed circuits. The core consists of an upper section of powdered iron available in any of the many types suitable for practically any frequency application. Bonded to the iron core and of the same diameter is a phenolic insulator base. Four wire leads, imbedded in the phenolic section serve as leads for the two coil windings and allow quick and easy mounting of the unit when used on a phenolic base in printed wiring.

VIBRATION METER for critical testing

Consolidated Engineering Corp., 300 N. Sierra Madre Villa, Pasadena 8, Calif. Type 1-117 vibration meter may be used for on-the-spot field tests, trouble shooting, in the laboratory, or as a go-no-go gage for production quality-control testing. The meter weighs only 25 lb with three accessory filters installed and can be used wherever standard $115-\mathrm{v}, 50,60$ or 400 -cycle power is available. Suitably matched selfgenerating pickups are the only external items required for its operation. Dimensions are 8 in. high, $10 \frac{1}{2} \mathrm{in}$. wide and $9 \frac{1}{2} \mathrm{in}$. deep. Where unwanted low-frequence signals interfere with the desired frequency, three accessory high-pass filters may be used to cut off sharply at 30,70 or 110 cps. These filters plug. into the case and add nothing to its external dimensions. Measured values of both linear and torsional velocity of motion and peak-to-peak

"EXTRAS" ARE STANDARD / WITH BOWSER

Bowser test chambers have the engineered "extras" as standard equipment. Bowser engineers have designed their units with your needs in mind.
Consider, for example, lights in the Bowser high altitude chamber shown above. They are swivel type for convenient operation ... vapor proof and recessed in stainless steel to permit full utilization of test area.

Performance characteristics of this Bowser chamber include:
Temperature range from $-100^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}$.
Altitude simulation up to 85,000 feet.
Evacuation rate of 5000 F.P.M.

With outside dimensions of $13^{\prime} 2^{\prime \prime}$ wide x $11^{\prime} 2^{\prime \prime}$ high $\times 16^{\prime \prime} 6^{\prime \prime}$ long, this standard model chamber has an interior working area of $10^{\prime} \times 10^{\prime} \times 8^{\prime}$ high. Door is 5^{\prime} wide $\times 8^{\prime}$ high, its window $30^{\prime \prime} \times 30^{\prime \prime}$, and wall window $36^{\prime \prime} \times 36^{\prime \prime}$.
Whatever your needs in environmental test chamber equipment . . . high altitude, humidity, sand and dust, explosion, nonmagnetic, etc. . . . check with Bowser, the pioneer.

Cramer Percentage Timers shown above take the guess work out of finishing in the especially designed furnaces at the Industrial Finishing Company, Hartford, Connecticut.
"These Cramer timers give us the flexibility and dependability necessary to maintain uniform heat at exacting temperatures, without variation or interruption, required for today's attractive and durable paint finishes" . . . says Mr. Fred Hillier, President.

These Cramer Percentage Timers automatically control "on time" for the infra-red strip heaters in the entry and exit ends of the furnace. By pulsating the heaters on a definite time cycle, the exacting temperature control desired is automatically achieved.
Cramer fully adjustable Percentage Timers are available for panel, surface, or portable mounting in a number of standard NEMA enclosures, with time ranges from 15 seconds to 24 hours.

If you have a problem where time is a factor in control or operation, the R. W. Cramer Company can help you. Write for complete information.

The easily adjustable PE Timer, at left, repeats its cycle continuously with accuracy within 1%.

SPECIALISTS IN TIME CONTROL the R. W. CRAMER CO., INC. THMICES

BOX 3, CENTERBROOK, CONNECTICUT

CRAMER PERCENTAGE TIMERS CONTROL OVEN TEMPERATURES FOR EXACTING FINISHES

MARKING MACHINES are fully automatic

Popper \& Sons, Inc., 300 Fourth Ave., New York, N. Y., now offer the latest addition to their line of Rejafix marking machines-a new, fully automatic machine that prints
color bands around resistors, fuses and similar components in up to 8 colors, at a production rate of up to 9,000 pieces per hr , depending on the size and shape of the article. One of the color bands can be replaced by printing matter such as letters, numerals and trademarks.

TRANSFORMER TESTER

 detects shorted turnsRadio City Products Co., 152 W . 25th St., New York, N. Y. Model 123 Flybacker is a new instrument for testing the condition of flyback transformers and yokes in the hori-zontal-output circuit of ty receivels. It detects shorted turns and shows up short-circuited windings. A large clear front meter indicates on a good-bad scale conditions which could not be detected through an ohmmeter continuity test.

AUTOMATIC EVALUATOR is easy-to-use accessory
Brush Electronics Co., 3405 Perkins Ave., Cleveland 14, Ohio. Model

IMPROVED OPERRAION OF LITERALLY HUNDREDS OF MECHANCCAL PRODUCTS HAS BEEN EFFECTED WTH ACCO TRULLAY FLEXBLE PUSH-PULL CONTROLS

If you would like more information, after reading this brief summary of the characteristics and widespread use of this versatile Remote Control, just ask us to send you our IDEA FILE with complete Application Data.
Iru-Lay Push-Pull Controls provide positive remote-action
over long or short distances... with fixed or movable anchorages ... for light loads or Ioads up to $1,000 \mathrm{lbs} .$, and these units are frequently and successfully used in conjunction with Electrical, Hydraulic and Air Controls. . . .

Flexibility makes it possible to snake around obstructions . . . simplifies installation . . . reduces the number of working parts . . .

POSITIVE
REMOTE-
ACTION
and
FLEXIBILITY
together with Precision and Long Life, explain why TRU-LAY PUSHpULLS serve designers and users equally well in improving machine operations, whether the application is on such severe service jobs as Bulldozers, Power Shovels and Steel Mill Machinery, or on such light duty work as Photographic Equipment, X-Ray or Business Machines.
Immunity to Vibration makes these TRU-LAY PUSH-PULLS ideal as Remote Controls on shakers and other vibratory products.
Complete Protection Against Dirt and Moisture is a big factor in the use of this unit on machinery in Coal Mines, Cement and Steel Mills, Oil Fields and in many other industries.
Corrosion-Resistance of the unit, plated or with Stainless Steel construction as required by the use, has led to many applications in the Marine Field . . . salt water or fresh. Supplied with a rubber cover the unit operates effectively
even when conduit is completely IMMERSED.
Lubrication of the inner working member is taken care of for life.
Temperatures as low as $-70^{\circ} \mathrm{F}$. will not hinder the proper operation of this unit, and it is thoroughly effective even in the extreme high temperatures encountered on Jet Engine, Furnace Door and Glass Furnace Damper control applications.

It is more than likely that you will find acco tru-lay Flexible PUSH-PULL CONTROLS doing a good job on some or many of the products used in your own business . . . on your drinking fountains, business machines, factory lift trucks (gas or electric) to control tilt and lift, or in your power or heating plant, perhaps controlling the pitch of blades on a big exhaust fan. The full list of applications is simply tremendous.

Send for this This IDEA FILE will answer most of the quesIDEA tions you may have in mind as to how you FILE versatile and dependable tool. Write for a copy, without obligation.

AUERIGAN GHAIN \& GABLE

601 Stephenson Bldg., Detroit 2

2216 South Garfield Ave., Los Angeles 22 - Bridgeport 2, Conn.

BL-814 automatic evaluator is a direct-reading accessory for use with the company's uniformity analyzer, an instrument that accurately measures and permanently records on paper the variations in weight per unit length of yarn, roving and sliver. It is a portable, easy-to-read device that indicates the same average peak-to-peak readings that otherwise would be obtained from chart calculations. This accessory enables an operator to obtain complete nonuniformity data from a 1,000 -ft sample of yarn in $3 \frac{1}{2}$ minutes and practically eliminates the need for time-consuming chart calculations.

DATA CONVERTER for automatic industry use

J. B. Rea Co., 1723 Cloverfield Blvd., Santa Monica, Calif., has announced an automatic high-speed, analog-to-digital converter for industrial firms and governmental agencies with instrument data handling problems. Built for continuous duty, it requires 115 v , 60 cycle, single-phase power. The Reacon operates with inputs directly from strain gages, thermocouples, resistance thermoneters, and other devices producing lowlevel d-c voltages. A digital output count proportional to the input voltage is recorded on either a magnetic drum memory, a storage-type magnetic tape recorder, or on other recording media, depending on the application. The digital output can be recorded on magnetic tape at the rate of 8,000 pieces of information per sec from a continuous channel or at the rate of 640 pieces of in-
formation per sec from a number of pickups being sampled in sequence. Information can be taken at intervals selected manually or at preselected intervals from an intervalometer.

TRANSISTOR TESTER is self-contained unit

Owen Laboratories, 412 Woodward Blvd., Pasadena 10, Calif. Type 210 transistor test set is a completely self-contained instrument intended for use in the circuit laboratory, inspection department, and on the production line. It measures the equivalent circuit parameters of both junction and pointcontact units over a wide range of d-c conditions. No accessory equipment is necessary, and operation is simple and straightforward. The unit is designed to be of maximum value in the design and development of transistor circuits, giving quickly and directly the most useful and easily applied information.

AUDIO AMPLIFIERS for monitoring purposes

Beam Instruments Corp., 350 Fifth Ave., New York, N. Y., has available the new Acoustical QUAD II amplifiers for monitoring use by broadcast operators. They feature 1 to 4 v input for 15 -w output,

Thompson's wingaa~~~ MICROWAVE WAVEMETER
 for fast, accurate readings

THIS SINGLE UNIT is designed to accurately measure the wavelength of microwave signals in one rapid reading. Wavelengths from 6 to 60 cms . (500-5000 mcs.) can be measured to an accuracy of greater than 1%.

One setting of the control is all that is necessary to operate this wavemeter. There is no subtracting of readings, no finding two peaks, no multiplying by two. You merely maximize the meter indication and read the wavelength.

Designed, developed and manu-
factured by the Electronics Division of Thomspon Products, this model WIN6AA wavemeter has been engineered for portability. It is compact, lightweight, and equipped with a convenient carrying handle, priced at only $\$ 290$, F.O.B. Cleveland.

Thompson

Products. Inc.

ELECTRONICS DIVISION, 2196 CLARKWOOD RD., CLEVELAND 3, OHIO

- Gears are the motivating force in such units as highly sensi-
 tive instruments, fishing reels, timers, tuning devices, or gear reducers. The smooth operation and often the success of these units depends on the quality of gears used.
- Quality-made gears reflect the ability and experience of their maker. In turn, they also reflect the reliability of 1021 PARMELE STREET, ROCKFORD, ILLINOIS.

Independent surveys show $\mathbf{2}$ out of $\mathbf{3}$ enginears prefer BURGESS BATTERIES over other industrial dry batteries. There's an important reas on for this popularity! BURGESS BATTERIES are backed by more years of engineering "know-how" than any other dry batteries. More and more engineers are switching to Burgess, exclusively, because they know what to expect from every BURGESS BATTERY they buy... lop performance and long Bfe. Whatever the application, Burgess is completely equipped to meet your exact, dry battery requirements.

Burgess provides its customers with a FREE engineerting manuol listing the complete line of
BURGESS BATTERIES and secifications. Alsoa check sheet to enter new batiery specifications. chek sheet Burgess for the name of your local distributor or, if you have a special applicadistributor of, if you have a special ap
tion, weite for the FREE check sheet.

BURGESS BATTERIES BURGESS BATTERY COMPANY

 FREEPORT, ILLINOIS20 to $20,000 \mathrm{cps}$ inclusive within 0.2 db ; a 14 -section output tramsformer and balanced feedback with complete stability; low noise level -minus 80 db at 15 w . Total distortion with 25 -percent tube mismatch is less than 0.25 percent. Weight is $18 \frac{1}{2} \mathrm{lb}$. Size is $13 \mathrm{in} . \times$ $4 \frac{3}{4} \times 6 \frac{1}{2} \mathrm{in}$.

Literature

Unit Amplifier. General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Volume 28 No. 6 of the Experimenter illustrates and describes type $1206-\mathrm{B}$ unit amplifier designed for general laboratory use. Complete circuit diagram, operating characteristics, uses and specifications are given. Also included in the bulletin are an article on oscillator considerations and one on electrolytic capacitor testing at 120 cycles.

Chemo-Carbon Resistors. Arnhold Ceramics, Inc., 1 E. 57 th St., New York 22, N. Y. A single-sheet bul.. letin illustrates and describes Stemag Chemo-Carbon subminiature and miniature resistors. Tabular information gives dimensions and resistance (dependent on rating and tolerance). Included are diagrams showing styles, full technical data, and a listing of the various types of Chemo-Carbon resistors available.

Deposited Carbon Resistors. Arnhold Ceramics. Inc., 1 E. 57 th St., New York 22. N. Y., is distributing a single-page bulletin ilfustrating and describing Radiac high-stability deposited-carbon resistors. The resistors discussed are available in wattages from $\frac{1}{5}$ to 4 w and come in tolerances of $\pm 1, \pm 2, \pm 5, \pm 10$ and ± 20 percent. All types described are provided with a molded insulation which completely covers the resistor element and guarantees a good protection against mechanical damages.

Test Equipment. Heath Co., Benton Harbor, Mich., has published its 1954 catalog covering a line of electronic equipment for testing ampli-
fiers, receivers and amateur radio. Fifty-two different instruments available in kit form are indexed and illustrated. Chief features, design information, specifications and applications are given. Prices are included.

Microwave Test Equipment. NARDA-Nassau Research \& Development Associates Inc., 66 Main St., Mineola, N. Y. An 8-page catalog presents the company's line of microwave test equipment for general laboratory use. Descriptions, illustrations and specifications are included. A price list covering all items is attached to each catalog.

Molded Boron-Carbon Resistors. International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa. Catalog bulletin B-8 deals with molded Boron-carbon resistors (type MBC). Comprehensive data on characteristics, applications, tolerance, windings, terminations, dimensions, insulation, charts and graphs are given.

UHF TV Transmission-Line Equipment. Radio Corp. of America, Camden 2, N. J. A 28-page catalog describes new low-loss coax transmission lines and fittings for uhf tv broadcasting stations. The illustrated booklet (Form B. 767) provides important information on $3 \frac{1}{8}$ and $6 \frac{1}{8}-\mathrm{in}$. transmission lines, fittings and accessories with complete tables of efficiencies for channels 2 to 83, inclusive, for distances ranging from 100 to $1,600 \mathrm{ft}$. In addition to complete technical specifications, the brochure provides important information on layouts and installation.

Magnetic Impulse Counter. Kellogg Switchboard and Supply Co., 79 W. Monroe St., Chicago 3, Ill., has issued a 4-page folder illustrating and describing its magnetic impulse counter. The countless applications of the unit described include computer design, industrial control, selective signalling, simplified circuitry, and vhf radio and microphone.

Curve Follower. Goodyear Aircraft Corp., Akron 15, Ohio. A 4page folder discusses the TI GEDA

Buy the components which comprise a servo system from several manufacturers, and chances are that you are butchering. After you waste time, labor, machinery, and material, modifying each component to make it usable, you still have to be satisfied with the limited system efficiency provided by unmatched units.

Case histories prove that complete assemblies of Transicoil components not only assure improved system performance but actually cost less than the total purchase price of the individual components acquired from several sources.

If you are now purchasing components from several manufacturers, a serious talk with Transicoil might well pay you dividends in lower costs and better results. But if your problem requires only an individual component, you can be sure of optimum performance from the Transicoil units you specify.

Ruggedized and aged

that combines a function generator (input unit) and a function plotter (output unit) in a single compact instrument. A radical departure from conventional input units, the T1 illustrated and described generates functions from continuous pencilled graphs, including curves having small step discontinuities, into proportional voltages for direct introduction to differential analyzers. Complete specifications are given for function generator and function plotter.

Power-Line Carrier. Westinghouse Electric Corp., Box 2099, Pittsburgh 30, Pa. The complete line of power-line carrier equipment (type FD) is described in the 12 -page booklet B-5873. Some features of the equipment described are improved receiver selectivity, operation from station batteries, fila-ment-current regulation and accessibility of assemblies. Use of carrier for relaying, telemetering, supervisory control and voice communications is discussed.

R-F Noise Suppression Filters. Aerovox Corp., New Bedford, Mass. High reliability r-f noise suppression filters of high current ratings and high attenuation, compactly housed in hermetically-sealed metal cases are dealt with in the bulletin "Aerovox R-F Noise Suppression Filters." The bulletin lists seven filter types, together with their dimensions and drawings, electrical factors, attenuation curves and approximate weights.

Uniformity Analyzer. Brush Electronics Co., 3405 Perkins Ave., Cleveland 14, Ohio. A 4-page folder tells how quality control of yarn, roving and sliver is provided by the company's uniformity analyzer. The electronic instrument described and illustrated consists of an amplifier, measuring heads, a direct-writing oscillograph, a material drive unit and the necessary material handling equipment.

Photoelectric Relays. General Electric Co., Schenectady, N. Y. Two 4-page bulletins discuss a line of photoelectric relays. Bulletin GEA-5920 covers the CR7505-K201 and K202 types designed for up to

450 operations per minute. Bulletin GEA-5921 deals with types CR-$7505-\mathrm{N} 210$ and 211 units meant for use at up to 600 operations per minute and featuring high sensitivity and high speed. Both bulletins are well illustrated contain chief features of the units, accessory information and application data.

Inaugurating Color TV. Telechrome Inc., 88 Merrick Road, Amityville, L. I., N. Y., has published a brochure entitled "Color TV-How to Inaugurate It With Minimum Investment." Included are block diagrams and descriptions of three packages of NTSC color signal generating, testing, analyzing and monitoring equipment.

Bimetal Disk Thermostats. Stevens Mfg. Co., Inc., 69 S . Walnut St., Mansfield, Ohio, announces a bulletin describing the company's line of type-M bimetal disk thermostats for appliances, electronic devices and apparatus. Hermetically sealed and open types are discussed. Punched for insertion in standard 3 -ring binders, bulletin F-2009 describes the operating principle and illustrates it with a schematic diagram. Ratings, typical performance curve, dimensions, construction, and various available terminal arrangements are shown in diagrams, tabular data and photographs.

I-F Transformer and TV Coils. Electrometric, Inc., Woodstock, Ill., has issued a new catalog page. One side gives detailed information on type TX100 miniature i-f transformer for any application requiring a $\frac{3}{4}$-in. i-f transformer. Clearly illustrated is the single-end tuning whereby both coils can be tuned from the same end, either from the top or from the bottom. The other side describes a complete line of $t v$ coils, including $40-\mathrm{mc}$ i-f coils, trap coils, sound-takeoff coils and ratiodetector coils. Illustrated in the catalog are six standardized coils available for immediate delivery.

VTVM and Tube Testers. The Hickok Electrical Instrument Co., 10527 Dupont Ave., Cleveland 8, Ohio. Form 209A2 (a 4-page bulletin), lists technical specifications and uses of the multipurpose model-209A capacitance tester and

Why you get greater stability with Corning metallized glass inductances and capacitors

To begin with, specially selected glass is used that has excellent temperature and electrical characteristics. Then we fire in metal to make
an integral contact with the glass forms. The result is a rugged unit with unusually high electrical and thermal stability.

Corning Midget Trimmer Capacitors - have practically zero temperature coefficients in the VHF range. Capacity shift is negligible even with widely variable ambient temperatures. They're availabie in standard types covering the ranges of .3 to 3 , 1 to 8 , and 1 to 12 u.u.f., or we'll design them to your special requirements. With direct traverse trimming, there is negligible capacity shift under vibrations and an absolutely smooth capacity curve.
 ally high electrical stability and negligible drift characteristics, even under widely variable ambient temperatures. High Q is inherent. They can be furnished with uniform, variable or double-pitch windings and for fixed tuned, permeability tuned inductance trimmer combinations.

Corning metallized glass inductances and midget trimmer capacitors are mass-produced on automatic machinery to close tolerances that
can be consistently duplicated in any quantity. Our engineers will be glad to work with you on design. Use coupon for complete information.

STABILITY! ACCURACY! PRECISION!

Carefully crafted for matchless performance, Silicohm and Dalohm resistors are designed and made to survive the most severe environmental, shock and bration conditions.

Miniafure Wire Wound

 POWER RESISTORSComplete welded construction from terminal to terminal. Temperature coefficient $0.0000^{2} /$ deg. C. Ranges f'rom 0.1 Ohm to 55.000 Ohms, depending on Type. Tolerance $0.05 \%, 0.1 \%, 0.25 \%, 0.5 \%$. $1 \%, 3 \%, 5 \%$

RH TYPE - Available n 25. 50 and 250 watt sizes. Silicone sealed in die-cast black anodized radiator finned housing for maximum heat dissipation

RS TYPE - Available in 2 watt. 5 watt, and 10 watt sizes. Silicone sealed offering maximum resistance to abrasion high thermal conductivity and high dielectric strength.

Dalohm precision deposited carbon resistors offer the best in accuracy. stability, deperdable performance and economy. Available in $1 / 2$ watt. 1 watt and 2 watt sizes.

NEW PRODUCTS
(continued)
v-t volt-ohm-milliammeter. A 4-page form TT5A1 describes ten dynamic mutual conductance tube testers including those for the radio and tv technicians as well as the highly accurate design lab and final manufacturing inspection line models. Graphic explanation is included.

Radio Compass Control Panel. North American Philips Co., Inc., 750 S. Fulton Ave., Mt. Vernon, N. Y., has available a bulletin giving technical information on a miniaturized radio-compass control panel. Dimension drawings and circuit diagrams are included in the bulletin for the ED-100 and ED-200 models which provide for complete control of a receiver ARN6 from a remote location by electrical or mechanical coupling. The bulletin covers a new control panel which is exactly half standard control size. It measures $5 \frac{3}{4}$ in. $\times 4 \frac{1}{2}$ in. $\times 4 \mathrm{in}$.; weighs 2.8 lb ; is designed for console or rack mounting, and conforms to latest MIL specifications.

Twin Magnetic Receiver. Telex, Inc., Telex Park, St. Paul, Minn., has issued a two-color, $8 \frac{1}{2} \times 11-i n$. catalog sheet on its Twinset. The twin magnetic receiver described weighs only 1.6 oz and it operates through two receivers resting on the temples (not on the ears) piping the sound through a slender, tubular sound arm directly into the ear. The catalog sheet lists the specifications and advantages of the Twinset and explains its many professional, business and technical uses from stenography to aviation.

Subminiature Capacitors. DumontAirplane \& Marine Instruments, Inc., 15 William St., New York 5, N. Y. Catalog No. 53 is a 20 -page booklet illustrating and describing a line of Milcaps (glass-to-metal hermetically sealed subminiature capacitors). Included are an identification guide, catalog numbering system, application data, temperature characteristics, construction notes, styles and engineering data.

High-Performance Plastics. Flek Corp., 2252 E. 37th St., Los Angeles 58, Calif., offers a new illustrated brochure describing the company's services and facilities for precision

FREQUENCY ANALYZER

for measurement of audio

frequency phenomena

BRUEL \& KJAER MODEL BL-2105

This frequency-selective vacuum tube voltmeter simplifies frequency analysis in all kinds of acoustical, electroacoustical, and vibration studies. This versatile instrument may be used to:
Measure vibration and noise spectra... giving a spectrogram presentation of frequencies from 47 to 12,000 cycles per second
Check sound or noise levels . . . providing an accurate measurement conforming to A.S.A. standards.
Measure audio voltages . . . from 10 microvolts to 1000 volts.
Analyze harmonics ... measures harmonics as low as 2%, down to 0.01% when used with the Frequency and Distortion Measuring Bridge, BL-1602. For complete specifications on this and other Bruel \& Kjaer Instruments, write Brush Electronics Company, Dpt K-2B, 3405 Perkins Ave., Cleveland 14, Ohio

ACOUSTIC AND TEST INSTRUMENTS

Bruel \& Kjaer instruments, world famous for their precision and work. manship, are distributed exclusively in the United States and Canada by Brush Electronics Company.

BL-1012 Beat Frequency Oscillator
BL-1502 Deviation Test Bridge
BL-1604 Integration Network for Vibration Pickup BL-4304 BL-4304
BL-4304 Vibration Pickup
BL-2002 Heterodyne Voltmeter
BL-2105 Frequency Analyzer
BL-2109 Audio Frequency Spectrometer
Bl-2304 Level Recorder
BL-2423 Megohmmeter and D.C. Voltmeter BL-3423 Megohmmeter High Tension Accessory BL-4002 Standing Wave Apparatus
BL-4120 Microphone Calibration
BL-4120 Microphone Calibration Apparatus and 8L-4708 Autamatic

BRUSH ELECTRONICS

 COMPANY
molding and extrusion of Kel-F, Teflon and Nylon. Applications for each of the plastics are given.

Accelerometer. Gulton Mfg. Corp., Metuchen, N. J. A single-page bulletin covers the model-105 accelerometer designed for high impact shock measurements. The unit described and illustrated is useful to $5,000 \mathrm{~g}$ and is extremely rugged. It features excellent sensitivity and high accuracy. Characteristics are given

TV Picture Tube Chart. Sylvania Electric Products Inc., 1740 Broadway. New York 19, N. Y., has released a revised version of its tv picture tube comparison chart. Over 160 different picture tube types are listed. Added informational features in the chart include ion-trap listings and base diagrams. Face, body, focus, deflection angles, basings and length in inches on all tubes are also given.

Rotary Electric and Electronic Equipment. Mission-Western Engineers, Inc., 132 West Colorado Blvd., Pasadena 1, Calif., has prepared a new bulletin of essential data and information on rotary electric and electronic equipment, as an aid to engineers, designers and users of electric equipment. Write on your company letterhead for bulletin No. 153.

Magnetic Tape Splicing. Minnesota Mining and Mfg. Co., 900 Fauquier St., St. Paul 6, Minn. Splicing techniques for magnetic tape are covered in Sound Talk bulletin No. 26. The 3-page technical bulletin discusses general considerations in magnetic tape splicing including the solutions to such problems as splice weakness, loss of recorded signal due to poor head contact and adhesive transfer causing sticky layers. Detailed instructions for splicing magnetic tape for audio recording are given, as well as information on splicing critical recordings used in computer work and instrumentation.

Nondestructive Testing Instruments. J. W. Dice Co., 1 Engle St., Englewood, N. J. Bulletin 32 pictures a line of unusual nondestruc-

1 Al-11022-High voltage quick discon1 nect plug similar to but does not mote with BNC. Weatherproof. Teflon insept. For use with RG-59, 62, and 71/U cable. Constant impedance of 50 ohms. Operoting voltage- 5 kilovolts. Operates satisfactorily to 10,000 megacycles.

2 UG-154/U-A1-11070-Type LC Plug for use with RG-17/U cable. Fifty ohm rating. It may be used with RG-19/U cable at a rating of 10 kilovolts.

3 UG-21D/U-AI-11072-Improved Type and Plug. Mates with stondard type N and mproved Type N Jacks. For use wirf Performance is good to 10,000 megocycles Nominal impedance- 50 ohms. May be used with 70 ohm cable if impedance matching is not important.
$4 \mathrm{MX}-554 / \mathrm{U}$-Al-11039-Type BNC Ter and mination. Mates with BNC Receptacles desired impedance. Operating frequencies same as standard BNC

5 Al-11047--High voltage quick disconneet right angle adapter. One malemademale end. Similar to, but does Tef lon inserts. Constant impedance of 50 ohms. Operating voltage-5 kilovolts. Op erates satisfactorily to 10,000 megacycles

6 UG-355/U-And UG-356/U-A1-11006 - Klystron Coupler. The UG-355/ couples two type N Jacks to 0726 Klystron. The UG-356/U couples two type N Jacks to a 2 K 29 Klystron.
$7 \underset{\text { UG-37ic insert, pressurized, high }}{\text { UG }}$ voltage receptac insert, Aressurized, Oper ating voltage- 15 kilowatts. Flash ove does not break down insulation. May be operated with high temperatures with no break down in pressure sed.

ALLIED INDUSTRIES, Inc

2500 WOODLAND AVE. LOUISVILLE 10, KY

Since Teflon first became available, "John Crane" has successfully engineered its application to solve innumerable and widely varying problems. Typical of this is the development of packings and other products for handling corrosice liquids and gases. Other important examples include production of electronic parts of high dielectric strength and low loss factor for thi. uhf. and microwave insulation; also in the employment of its anti-stick characteristics in the handling of adhesive materials

These and other application developments are closely tied with "John Crane's" fabricating technique, which has resulted in Teflon products of the finest uniformity, controlled density, product purity and accurate dimension.

Tetlon is available in rods, tubing or sheets or in special molded and machined forms such as bellows, "C-V" Rings, braided packings, valve (discs, electrical parts, washers, dough sheeting rolls, heat sealing jaws and countless other forms. Glass, carbon or graphite filled Teflon is also available

Consult "John Crane" on your requirements Send for 12 -page illustrated catalog, The Best in Teflon, containing important data and suggested applications. Crane Packing Company, 1802 Cuyler Ave., Chicago 13, Ill.
tive and physical testing and measuring instruments for quality control. Included are metal-testing instruments, tramp metal detectors. electronic micrometers, powerequipment testers and pressuremeasuring equipment.

Test Set. Gulton Mfg. Corp. Metuchen, N. J. Bulletin KA-1A covers the Glennite KA-1 test set, a unit designed specifically to meet rigid Signal Corps requirements The accelerometers included in the unit illustrated and described have been made extremely rugged by the use of stainless steel housing: Also announced in the bulletin is the company's series of aluminum accelerometers for use with the same units. Technical specifications are given.

Synchronizing Generator. Dage Electronics Corp., 69 N. Second St. Beech Grove, Ind. Bulletin 400-A-1 illustrates and describes a sync generator of ultra-portable design for field or studio use. Output of the unit discussed is 4 v negative peak-to-peak at 75 -ohm impedance The generator described measure $14 \mathrm{in} . \times 9 \frac{3}{8} \mathrm{in} . \times 4 \frac{5}{8} \mathrm{in}$. and weighs less than 20 lb . Power required for operation is approximately 100 w .

Kits and Instruments. Electronic Instrument Co., Inc., 84 Withers St., Brooklyn 11, N. Y., has released its 1954 catalog listing and illustrating the complete EICO line of 30 kits and 33 factory-wired instruments. Features, specifications and applications are given for each instrument. The catalog also describes the company's engineering laboratories, quality control department and other facilities.

Cord Sets. Whitney Blake Co., New Haven 14, Conn., has available bulletin CS-1, a 12-page design guide for custom-built cord sets. Developed primarily for design engineers, the bulletin illustrates the standard molded parts available, including male plugs, female connectors, strain reliefs and junction boxes, and the types of flexible cord on which they can be molded by this company. In addition. one section of the bulletin shows what information must be
supplied by the customer when ordering a cord set and, if there are no unusual features, allows him to sketch the cord set he desires by tracing the illustrated components without the necessity for having a blue-print made.

Module Cabinets. Hudson Bay Division, Refrigeration Systems, Inc., 646 W. Washington Blvd., Chicago 6, Ill., has published a 2-page bulletin dealing with a line of module cabinets for operation at temperatures down to -100 F . Each of the three models of the 0.8 cu-ft mechanically refrigerated unit described is available for operation in a different temperature range. The bulletin covers the application of the unit in the cloud-and-pour testing of petroleum products as well as for general laboratory testing and processing. The side-byside module arrangement of cabinets according to the user's requirements is also illustrated.

Pneumatic Time Delay Relays. Elastic Stop Nut Corp. of America, 1027 Newark Ave., Elizabeth, N. J. Bulletin SR-3 covers a complete line of solenoid-actuated, pneumaticallycontrolled time delay relays. The 4page illustrated catalog describes two basic types of Agastat relays: one with time delay beginning when the coil is energized; and one with time delay beginning when the coil is deenergized. The catalog includes mounting dimensions and wiring diagrams. Typical applications, from elevator and traffic controls to jet plane ignition systems, are listed.

Service Replacement Capacitors. Cornell-Dubilier Electric Corp., South Plainfield, N. J. All the data for any of the 134 types of C-D replacement capacitors is presented in clear, concise form in a new 36 -page catalog. The items listed have been selected for broad coverage in each class, yet are streamlined to cover the practical day-today requirements of the radio, tv, electrical and electronic service industry. Many of the capacitors listed will also be of interest to industrial and experimental users. Information includes specifications, diagrams, photographs and prices

INDUSTRIAL "AJRBRASJVE" PROCESS

With this revolutionary new cutting technique, a tiny stream of finely graded abrasive particles traveling at ultra high speeds does the work. There's no heat, no shock and no vibration. Consequently, the crystalline structure and other characteristics of the material remain unaffected. What's more, the process is fast and accurate and can be readily controlled.
Shown above is one of the many applications on which the "Airbrasive" process has been successfully used. In this case, the problen was to drill contact depressions $030^{\prime \prime}$ in diameter and $.015^{\prime \prime}$ deep in a quartz disc. With the "Airbrasive" process, this was just another routine operation!

The "Airbrasive" process has solved many such "problem" jobs for electronics manufacturers - many of then considered impossible to do by conventional means. It has proved to be highly successful in cutting germaniam and other hard, brittle materials-in "trimming" resistance elements on printed circuits-in removing deposited surface coatings -and in shaping fragile crystals used in neutron diffraction work.
Perhaps you have a similat problentWhy not arrange for a demonstration at our New York or California office. Or - if you prefer - we'll conduct rests on your samples and advise you as to the suitability of the process for your needs.

GET THE FACTS. BULLETIN 5307 has full information on where and how the "Airbrasive" process can be used. Send for your copy today.

THE

THE DRE WENTLC INDUSTRIAL DIVISION WIX Dept. EB, 10 East 40th St. NEW YORK 16, N. Y.

[^24]
PLANTS AND PEOPLE

Edited by WILLIAM G. ARNOLD

Electronic manufacturers continue plant expansions . . . Associations and universities announce new activities . . Engineers and management executives are promoted . . .

OTHER DEPARTMENTS
featured in this issue:

Page
Electrons At Work. 194
Production Techniques . 256
New Products 308
New Books 406
Backtalk 417

New Military Radar Engineering and Development Plant Opened by RCA Victor

A TRANSISTORIZED transmitter was used by L. W. Teegarden, executive vice-president of RCA, to raise a flag at the dedication ceremony of the firm's new radar plant in Moorestown, N. J.

The plant was established to handle expanded government study and production projects in radar engineering. Its projects will include the conception, development and design of all types of ground and marine radar equipment, according to W. Walter Watts, vicepresident in charge of technical products. Projects range from basic studies of possible new developments to final production design of complete equipments, it was stated, and are undertaken for virtually all branches of the military service.

The plant buildings, containing more than $145,000 \mathrm{sq} \mathrm{ft}$ of floor space, occupy a portion of a 420 acre tract acquired by the company in Morrestown, N. J. The additional acreage was required to provide the necessary separation of terminals for transmission of test signals, but the unused land between transmission points is being
rented to local farmers for cultivation.

The plant already employs about 600 men and women. Separate laboratories are provided for general engineering of various radar activities. The heavy equipment laboratory is four stories high and equipped with a five-ton crane to handle massive units of equipment. Outside the antenna test lab, housed in its own building a mile away from the main structure, is a twostory hoist on a track for use in raising heavy antennas to the roof for performance measurements The model shop is fitted with the newest machines and other equipment for turning out accurate developmental prototypes of apparafrom engineering designs. A self-service stockroom contains, in indexed bins, more than 64,000 different items.

RCA Victor also started construction on a group of buildings to serve as administration and laboratory headquarters for its Home Instrument and Service Company activities.

The project, which was almost a year in planning, will contain five
inter-connected buildings and will be located on a 58 -acre tract in the suburban Cherry Hill section of Camden. It is scheduled for completion in the fall of 1954.

About 1,400 persons will be housed in the buildings, including the engineering and administrative staffs of the RCA Victor Home Instrument Department, which have been located at their present site in Camden since 1898.

The project will also accommodate the main laboratory and office facilities of the RCA Service Co., now located in Gloucester, N. J.

The buildings, which will provide $325,000 \mathrm{sq} \mathrm{ft}$ of office and laboratory space, have been designed in line with the modern trend toward landscaped business structures.

Califormia Polytechnic Surveys Its Graduates

Recent graduates of the electronics engineering department of California State Polytechnic college are finding it much easier to find good paying jobs than their predecessors did.

Statistics recently compiled by a

department survey show that the growth of the electronics industry in California has made it unnecessary for electronic engineering graduates to go east for employment. However, employment in the east still has an attraction because of the extended training programs offered by some of the large companies, according to Clarence Ra-
dius, department head.
The survey shows: Salaries for engineers began their upward trend in 1950. Average starting salaries received by engineers from Cal Poly during 1953 compared favorably with those received by graduates of engineering of other schools. New York University reports $\$ 345$, Illinois Institute of

Technology $\$ 362$ and Cal Poly $\$ 355$.
Cal Poly electronic engineering graduates seem to prefer to remain in California to ply their trade. Only 19 percent of the graduates have elected to work elsewhere. More than 25 percent of the graduates work in aircraft electronics. More than 21 percent work for electronic equipment manufacturers.

Homer R. Oldfield

Walter Hausz

A. Donald Arsem

General Electric Appoints Three Laboratory Engineering Managers

Homer r. oldfield, JR. was appointed manager of plans and product applications in the newly formed laboratories department of GE's Electronics Division. He had been manager of the GE advắnced electronics center at Cornell University.

Walter Hausz was appointed manager of the advanced electronics center at Cornell University. He had been manager of development engineering in the GE electronics laboratory at Syracuse.
A. Donald Arsem was appointed manager of advanced products development engineering in the GE electronics laboratory in Syracuse.

He has served in the laboratory on electronics applications for guided missiles and had been section engineer on magnetic materials since November, 1952.

Oldfield was a research associate and instructor at MIT prior to World War II and was in charge of the instrument laboratory. From 1941 to 1945 he held key posts as chief of the electronics section of the Anti-aircraft Artillery Board and was in charge of the Air Force program for developing airborne fire control radar systems. He joined GE in 1945 as manager of Electronics Division sales to the Air

Force. He became manager of the advanced electronics center at Cornell when it was created in January, 1952.

Hausz joined the electronics laboratory at Schenectady in 1945 and specialized in guided missile work until 1948. He has held positions as section engineer, assistant to the manager and sections head. He became manager of development engineering in 1952.

Arsem joined GE's electronics laboratory in 1948 after service with the National Bureau of Standards and with the Radio Corporation of America.

Los Angeles WCEMA Elects Officers

The West Coast Electronic Manufacturers' Association, Los Angeles Council, selected E. P. Gertsch of Gertsch Products as chairman for 1954.
R. G. Leitner of Packard-Bell was named vice-chairman of the group and Gramer Yarbrough of Ameri-
can Microphone became secretarytreasurer. New directors are: Ed Grigsby of Altec-Lansing; Don Duncan of Helipot; W. V. Phillips of Hoffman and Thomas J. Walker of Triad Transformer.

The WCEMA organization has a total of over 160 member companies throughout the West. There are two councils, the other being in San Francisco.

Environmental Equipment Group Elects Officers

The Instirute of Environmental Equipment Manufacturers elected the following officers: Monroe Seligman of Tenney Engineering, president; C. M. Shelburn of Webber Manufacturing, executive vicepresident; R. S. Jamison of SubZero Products, vice-president of the

Transistor Products, Inc. is now offering the first commercially available Power Junction Transistor. Specifically designed for use in Class B audio circuits requiring
two watts of power output, it can also be used as a Class A amplifier at reduced ratings.

2LECRROML DANA

Typical operating conditions: Class B, common emitter, no heat sink. (values are for two units)
Collector roltage
Collector current (no signal)
Collector current (maximaun signal)
Emitter current (no signal)
Load impedance (collector-collector)
Input impedance (base-base) approximately
Driving power
Output power
Power gain*
Efficiency
*While these units will operate Class B at collector voltages less than 45 V ., the power gain drops as the collector voltage is reduced. Operation below 30 volts is not recommended.

FOR MORE INFORMATION mail this coupon today
Transistor Products,ine.

Maximum Continuous Ratings

(in $25^{\circ} \mathrm{C}$. free air):
Collector voltage 45 v . Collector current 50 ma . (without heat sink) 100 ma. (with heat sink)
Collector dissipation
2.25 watts (without heat sink)
4.50 watts (with heat siuk)

Operating frequency
10 kc max. more than 2 watts more than 10 db . more than 50%

The DeJUR $2^{1 / 2^{\prime \prime}}$ RUGGEDIZED

Round Panel Meter

\star Exceptional resistance to shock and vibration.
\star Internal shock mounts are symmelrical for uniform tateral and horizontal excursion.

* Unique external shock mount at flange cushions scale window, supplements internal shockproofing.
* Special shock mount rubber provides high dielectric strength, good low temperature characteristics, resistance to corrosion due to heat.
* Hermetically sealed window and terminals are soldered to a one-piece drawn steel housing for positive immersion and weather resistance.
\star Qualified under spec. MIL M-10304 SIG. C.

Monroe Seligman
low temperature division; Albert J. Deeb of International Radiant, vicepresident of the high altitude division; David H. Leatherman of Bemco, vice-president of the special equipment division.

IRE Group On Component Parts Formed

A COMPONENT parts professional group has been organized in the Institute of Radio Engineers for the purpose of promoting continued improvement of electronic components and providing channels for exchanging both functional and environmental test information on component parts among research, development and production organizations. Membership is open to all IRE members.

Floyd A. Paul of Northrop Aircraft has been elected chairman of this group whose field of interest includes the characteristics, limitations, applications, development, performance and reliability of component parts.

The group, with the cooperation of AIEE, RETMA, WCEMA, the U. S. Department of Defense and the National Bureau of Standards, will sponsor the Electronic Components Symposium scheduled to be held in the auditorium of the Department of Interior in Washington, D. C., on May 4, 5, 6. 1954. Session topics to be presented are as follows: First session: The Executive Views Components; Second: Relationship of Materials Developments to Component Progress ; Third: Automation-Its Impact on Components; Fourth: Solid State Devices and Companion Components; Fifth: New Frontiers In Component Development; Sixth: Component Requirements For Computers, Color TV, Guided Missiles

Most
 Versatile

 WINDING MACHIN
LABORATORY and PRODUCTION USE!

. COMPARISON WILL SHOW THAT THE MODEL W is:

- more RUGGED
CONVENIENT-easy to set up PRICED RIGHT!

Most versatile of all models is our Model W which is widely used in schools and laboratories. With a few simple accessories this machine will wind virtually every coil used in the electrical and electronics industries. Write for detailed listing and description.

Coil Winding Equipment Co. OYSTER BAY, LONG ISLAND

- For more than 35 years Acme Electric transformers have become components of all types of electrical and electronic equipment. The vast technical experience accumulated during this time is now available to west coast manufacturers through our Los Angeles branch.

ACME ELECTRIC CORPORATION MAIN PLANT: 312 Water Street Cuba, N. Y. West Coast Engineering Laboratories: 1375 W. Jefferson Blvd. - Los Angeles, Calif. In Canada: ACME ELECTRIC CORP. LTD. - 50 North Line Rd. - Toronto, Ont.

Acme $4 M m$ Electric
 TA AN SF DA M EA 5

ONLY THE

Servoscope

HAS ALL THESE FEATURES

- applicable to both AC carrier and DC servo systems.
- built-in low frequency sine wave generator for obtaining frequency response of DC servo systems.
- built-in electronic sweep with no sweep potentiometer to wear out and require replacement.
- dynamic frequency control range of 200 to 1 .

SERVOSCOPE is a versatile, time-saving test instrument for use in the development of all types of Servomechanisms and Process Controls.

For detuiled specifications
urite Dept. E-2

and Other New Applications.

The technical committee, under A. W. Rogers of the Signal Corps, is introducing a new concept into the electronic symposium field. The program of the forthcoming meeting is designed to emphasize quality and reliability of components in electronic systems as distinguished from the former emphasis on individual components. The committee is carrying the problem a step further in concerning itself with the development, fabrication and application of component parts into electronic systems.

National Union Radio Makes New Moves

As 1953 Closed, National Union Radio Corp. delivered its first color tv tube to a major set manufacturer and announced that it would be in quantity production as soon as it can obtain bulbs and other materials from suppliers.

The firm also created two new positions to tie National Union's expanding research activities more closely to manufacturing to meet the competitive challenge of color tv and other industry developments.
A. Melvin Skellett, head of the research division, was promoted to the newly created position of vicepresident in charge of manufacturing and engineering. Lawrence L. Hardin, Jr., was named director of the research division.
"National Union is prepared to meet aggressively the competitive challenge of 1954 with new and better products while carrying on its work in established fields," top company officers said in a joint state-

A. Melvin Skellett

JE4FF										
A $L(0) \sqrt{0}(0)(0)$ RESISTANCE WIRE										
forminiaturized precision-instrument components										
the ideal resistance wire for										
fixed and variable resistors of high ohmage - resistance boxes and briders - voltmeter and wattmeler multiphiars - and other minature wice-womd mits.										
Where space is at a premium and performance is a "must" - these outstanding qualities of Jelliff Alloy 800										
High resistivity, 800 ohms/chif - Lan Trmperature (io. fficiont, $\pm 2 p$ pur per ${ }^{\circ} \mathrm{C}$ - Non-2hametic - Highly Stahle Electrically and Mechanically - Diametera From 0.06009" to $0.0056^{\prime \prime}$ - Bare, enamplid or oxidized, or insulated with silk, Nyton or cotton - Solders and Winds easily.										

The WAVEGUIDE House
 Lnder our roof are all facilities needed for high quality production of microwave components, supervised by a top-flight engineering staff-quality is controlled every step of the way -

Whether your equipment is similar to this mixerduplexer combination for military radar or

low-cost, high quality waveguides for microwave link equipment, consult us!

Brochure on request

TRADE MARK

PREMIER
 INSTRUMENT CORP.

52 West Houston Street
New York 12, N. Y.

Lawrence L. Hardin. Jr.
ment. "Despite the feverish race for leadership in the field of chromatic television, it will be our continued policy in 1954 to give all of our customers what they need. Although some companies are shutting down assembly lines, we are presently continuing our production of black and white television tubes at 50 percent of our normal output in belief that the opening of stations in new areas, impatient consumers who will not wait for color, and replacements will create continued demand."

Skellett spent 15 years with Bell Telephone Laboratories before joining National Union in 1944 as head of research.

Hardin, who will be in charge of the company's Orange, New Jersey, custom research work under Skellett's supervision, served with the Army Signal Corps and with RCA before joining the company in 1945.

Emerson Establishes Research Laboratories

The Emerson Research Laboratories will be established in Washington, D. C., operating as a division of Emerson Radio for research and advance development work, it was announced by Benjamin Abrams, president.

Activities of the new research center will be directed primarily toward research and development in the field of electronics. It will also engage in other research and development projects. Several research projects have been scheduled to start immediately after the opening of the center in January, 1954.

The research operation will be

TO A
 $\mathbb{S E N D O R}$ ENGINEER

 Interested In a Challenge As Great As All Tomorrowyou're the man we hope you are, you now have a good position. Per. haps you have not thought of a change but will consider the right opportunity.

You have from 5 to 25 years of experience in electronics or an allied field. You desire to do more than just carry assignments to satisfac. tory conclusions.
You would appreciate an opportunity and the "go ahead" to pioneer . . . with the assistance of your own staff of specialists . . . you now want to know what you personally can achieve through your creative engineering talent.
If you fill these qualifications, we have an opportunity that will fascinate you. You will work on the development of the most interesting electronics equipment with one of the foremost engineering teams in the world. You will work in the Boston Engineering Laboratory located only minutes away from Harvard, MIT and Northeastern Universities, entirely separated from the problems of production. The last word in equipment would be at your fingertips. No richer benefits are offered anywhere... regardless of the standards by which you measure.
... Are YOU the man we are seek. ing? If so, phone us or send in a resume to ...

Don Bradley. Personnel Supervisor

SYLVANIA

 electric products inc.Boston Engineering Laboratory 70 Forsyth Street, Boston, Mass

Phone: Kenmore 6-8900

Frequency Coverage 2KC to 300 KC

Center Frequency:
Variable and calibrated between 2 KC and 200 KC

Sweepwidth:

Variable and calibrated from 200 KC down to 0 KC .

Selected sweepwidth remains constant as center frequency is varied.

Amplitude Scale:
Linear of two decade log Amplitude range 50 db overall.

Sweep Rate:

6.7 c.p.s.

Voltage Output:
2.5 volts, flat to $\pm 1.5 \mathrm{db}$

Internal Source
Impedance
600 ohms
Output Attenuation:
Toggle switch operated
75 db with steps of $40^{\text {d }} \mathrm{db}$
20 db .10 db and 5 db
Phoramic
RADIO PRODUCTS, INC.

DIRECT READING

ULTRASONIC RESPONSE INDICATOR

Used as an adjunct to the Model SB-7 Panoramic Ultrasonic Analyzer the G-3 now makes possible high speed yet accurate visual inspection of amplitude versus frequency characteristies of networks and devices between 2 KC and 300 KC .

The combination, a complete package, serves as a frequency sweep source and synchronous selective detector which insures indications of fundamental responses only.

Direct readings of frequency, amplitude, sweepwidth and center frequency are availahle from the calimated dials and screen of the SB- 7 Panoramic Ultrasonic Analyzer.

Write today for complete information, price and delivery.

10 SOUTH SECOND AVENUE MOUNT VERNON, NEW YORK
conducted under the active supervision of Harold Goldberg as director and Donald P. Burcham as assistant director. A substantial number of scientists and engineers will be engaged to participate in the activities of the labs.

The center will supplement the research and development activities engaged in by the company. Emerson will also continue to expand its program of laboratory work in engineering and manufacturing techniques.
"This new research center for our company", Abrams said, "is in integral part of Emerson's expansion plans which include a recentlycompleted 3 -story addition to our Jersey City plant and the purchase of a ten-story building in New York City which will house our administrative and engineering division."

Both Goldberg and Burcham, for the past six years, have directed the Ordnance Division of the Nattional Bureau of Standards, the activities of which have centered on guided missiles. Goldberg has done research in the fields of microwave radar, air navigation systems and tv.

Burcham has done work for the Navy on underwater defense, magnetics and acoustics. He also has done research on magnetic torpedo exploders.

Heising Awarded Armstrong Medal
Raymond A. Heising was presented the Armstrong Medal by the Radio Club of America at its 44 th annual banquet, in recognition of his many notable contributions. He was an

ELECTRONIC MEASUREMENTS

Covers measurement fundamentals in many fields
heyond conventional heyond conventional radio, includug telerision
 othre areas who use electronics in their instrumentation. Treats circuit constants and lumperl ancuits: Wave-form, phase, and time intervis generators of special waveforms; attenuators and jignal
 Terman, Dean, School of Eng., of Elec. Eng. Stanford Univ. 2nd Ed., 683 pp., 450 illus.. $\$ 10.00$

PRINCIPLES OF RADAR

Deals it th the fundawrotal concents and techninues of puse radar. PreDulse circuits and the high-frequency devices common to nearly all radar systems. Describes the geueral featuzes of radar ssatems and system comtion to radar modulators, indicators, and receivers. Covers radio-frequency áspects of radar, including basic concepts pertaining to transmission line Wave-guides, cavity resonators, and antennas, and the techntques of thelr use in radar systerns. By Staff. Pevised by J. F. Reintjes. MIIT, and G. T. Coate, formerly of mit, उrd Ed., 887 np., 565 illus., \$7.75

TELEVISION BROADCASTING

 Just Published!Practical manual for radio engineers. operations personnel, and others interested in the technical aspects of telerision broadcasting. Covers in detail
the quipment. ficilities, and techniques involued il the running of it television studio-topics such in lighting. Staging. television recording. and color
telerision equipment. Gives a valuahle insiant into the whule field without into use of complex matheut the
By Howard A. bia Broadeasting System. 688 pp., 346 illus., $\$ 10.00$

10-DAY FREE TRIAL

New ALNICO 5Cb* has 5.70 million energy product nominal

A new permanent magnet alloy -with the highest energy product of any Alnico-has been developed by Thomas \& Skinner research engineers. With an energy product of $5.70 \times 10^{6} \mathrm{Bd} \mathrm{Hd}$ nominal, the new alloy-5Cb-has a residual flux density of 13,300 and a coercive force of 650 .

Composition of new Alnico 5 Cb includes aluminum, cobalt, copper and iron (like other Alnico grades) -plus T\&S-added columbium. It is the addition of this relatively rare element that gives Alnico 5 Cb the stability necessary to provide consistently high magnetic values.

Graph shows typical demagnetization and energy product curve of new $T \& S$ Alnico 5 Cb . This new alloy offers an energy product of 5.70 million nominal, and through the addition of columbium has greater stability with consistently high magnetic values.

Applicable to all designs now utilizing the magnetic properties of any Alnico grade, Alnico 5 Cb adds the advantage of increased gap flux density. Immediate benefit to present meter and motor applications, for example, is corresponding increase in torque.

Whatever your design problem -microphones, meters, klystrons, radar, magnetic pickups, speakers -the answer may be the new

T\&S Alnico 5Cb. For detailed information, write today for Bulletin 1253.

Specialists in Magnetic Materials

1122 East 23rd Street INDIANAPOLIS, INDIANA
early worker with electron tubes and invented the system of modulation which solved a radio telephone problem simply and practically. The system today bears his name.

In 1914 Dr. Heising entered the laboratories of the Western Electric Co., specializing in the development and construction of radio transmitters of increasing power.

His other activities include carrier currents. piezo-electrics and fundamental research. He retired recently from the Bell Laboratories after 39 years of service.

William H. Martin

Morris H. Cook

Executives Change At Bell Laboratories

William H, Martin, Bell Telephone Laboratories vice-president in charge of station apparatus and outside plant development. quality assurance and design engineering has resigned to become Deputy Assistant Secretary of Defense (Applications Engineering). He will

60-DAY FREE TRIAL

of Americe's most popular bench assembly stool

A tired worker costs MUCH more than a good chair

- 4-way adiustable backres
- Seroll shaped posture seat
- Tamper-proof tubular all-welded construction
- Adiustable height ranges from $17^{\prime \prime}$ to $25^{\prime \prime}$ or $24^{\prime \prime}$ to $32^{\prime \prime}$

Now test Royal's famous No. 515 stool in your own plant without cost or obligation. See why the country's top firms choose it for superior versatility and durability. Write for free trial stool today!
metal furniture since '97

Royal Metal Manufacturing Co.
175 North Michigon Avenue, Dept. 2102, Thicago 1
Factories: Los Angeles - Michizan City, Indiana
Warren, Pa. - Walden, N. Y. - Galt, Ontario
Showrooms: Chicago - Los Angeles - San Franeisco
New York City - Authorized Dealers Everywhers

CAIL TODAX

[^25]

hermetically sealed TO MIL-T-27 SPECIFICATIONS

NYT offers a wide variety of transformer types to meet military and civilian specifications, designed and manufactured by specialists in transformer development.
Latest NYT service for customers is a complete test laboratory equipped and approved for on-the-spot MIL-T-27 testing and faster approvals.

NEW YORK TRANEFORMER CO. ING. ALPHA, NEW JERSEY

be succeeded by Morris H. Cook who has been elected a vice-president of the laboratories.

IRE Organizes Group
 On Management

Institute of Radio Engineers has organized a professional group on engineering management in electronics.

The group is sponsoring a course, through March 5, 1954, on "Engineering Management in the Electronics Industry" and meets regularly in Los Angeles. A new series is planned for shortly after March 5 because of the interest shown in the course by IRE members.
Twenty-seven companies in the Southern California electronics field are represented in the discussion group. T. W. Jarmie, division engineer of the L. A. division of the Electronic Engineering Co. of California, is chairman of the group.

Fielden Instrument Appoints Malthy
Frederick L. Maltby was appointed technical director in charge of all research, development and design facilities at the Fielden Instrument Division of RobertshawFulton Controls Co.

Previous to joining the company, he served in various capacities from senior development engineer to technical director of the Bristol Co. of Waterbury, Conn. from 1944 to

IF IT'S NEW ... IF IT'S NEWS ... IT'S FROM

Again, there is much that is new and much that is news from Elco Corporation. Tlis time, it is the introduction of Elco's UHF tule-socket - the critical link in the UHF clazin. And, as with all other Elco products, the UHF socket you see illustrated here has been developed and produced with highestefficiency as its goal. With its use, electrical and mechanical stability is assured. The low-loss phenolic body has been designed for strength and low capacitance. Contacts provide good retention of the tube; and short contact-path greatly reduces contact resistance. All metal parts are cadnium plated for durability and resistance to wear, thereby insuring ligig quality performance claracteristic of Elco products. Upon your request, we will for ward complete technical data to you. Full information is also available concerning Elco Corporation's complete quality line of miniature and sulb-miniature tube-sockets, slields and Varicons - the sensational miniature connector now available with covers, brackets and landles.

For Catalog Sheets, Call GArfield 6.6620 or Write ELCO Corp., 190 W. Glenwood, Phila. 40, Pa.

Dropping, knocking against metal surfaces and faulty line-up are major causes of damaged threads. Allen's new unthreaded leader point sulstantially reduces the causes of screw thread injury, or damage to threaded holes. Grip IIeads, precision fit sockets that adhere to the key, plus the new leader points, make Allens the world's casiest starting cap screws, particularly in inaccessible spots. Sold only thru leading Industrial Distributors.

Made with Du Pont Mylar Film
TYPE T (MYLAR FILM) GOOD UP TO $135^{\circ} \mathrm{C}$
TYPE TF (TEFLON FILM) GOOD UP TO $250^{\circ} \mathrm{C}$

Several sales territories now open. Contact us for details.
Write for Descriptive Bulletin \#40

[^26]1952. Prior to that, he was an electrical engineer at Wurlitzer and taught physics and communications at the University of Buffalo.

Blonder-Tongue Names Rogers
Donald H. Rogers has been appointed chief engineer of BonderTongue Laboratories of Westfield, N. J. He is enlarging the staff of the engineering department and will accelerate the firm's research and development programs.

Rogers, who has been associated with Blonder-Tongue for over one year, previously supervised electronic development work for Western Electric and Utility Electronics Corp.

NBC Elects President And Vice-President

Sylvester L. Weaver, Jr. was elected president of the National Broadcasting Company and Robert W. Sarnoff was named executive vice-president.

Weaver joined NBC in 1949 as head of its tv operations after 23 years in the broadcasting and advertising business, including service as vice-president in charge of broadcasting for Young \& Rubicam and advertising manager for the American Tobacco Co. He was put in charge of both radio and television networks for NBC in the summer of 1952 and became vicechairman of the board in December of that year.

Sarnoff, son of Brig. General David Sarnoff, joined NBC in 1948

Our expanding program in the development of highly specialized equipment such as radar, electronic computers and guided missile ground control devices has created excellent opportunities for experienced engineers from the B.S. to Ph.D. level.

The Electronics Division offers a variety of challenging problems requiring design engineers with a high degree of originality and ingenuity.

In addition to professional recognition and industrial stability, Westinghouse positions offer, for example:

ONE OPENING
SENIOR SYSTEMS ENGINEER -FIRE CONTROL
DUTIES: Systems analysis and planning of fire control systems for all types of weapons including mortars, anti-aircraft and missles Block diagraming. Preparation of block specifications. Recommending for study or laboratory investigation of "off-the-curve" techniques.
Coordination of junior engineers in such laboratory investigations. Preparation of technical proposals.
REQUIREMENTS: At least a Master's degree in Mathematics, Physics or E.E, and 5 to 10 years experience including several years design work.

FOUR OPENINGS

SENIOR RADAR ENGINEER

DUTIES: Applied research, development and design of advanced radar, fire control and missle guidance equipment. Openings exist in the fields of pulsed. circuits, video, simulators, preamplifiers, linear and logarithmic post amplifiers and MTI and in analysis and synthesis of complex radar systems.

REQUIREMENTS: B.S. degree in E.E. or Physics and 3 or more years design experience.

Opportunities, at company expense, for advanced degrees.

Exceedingly liberal patent disclosure compensation.
Salaries individually determined accordiftg to experience and ability.

Promotion on basis of individual merit.
Assure yourself of a chance to be considered for one of the following opportunities. Write today!

THREE OPENINGS

SENIOR RADAR INDICATOR SYSTEMS ENGINEER

DUTIES: Systems planning, studying, proposing, carrying on applied research, development and design of advanced radar indicator systems for all types of radar systems including search, fire control and missle guidance. Coordination of 5 to 10 subordinates.

REQUIREMENTS: B.S. degree in E.E. or in Physics and 5 to 10 years design experience in the radar field with emphasis on indicators and analog devices.

THREE OPENINGS
 TECHNICAL WRITERS

DUTIES: Preparation and editing of technical reports and instruction manuals for communications, radar and missle guidance equipment.

REQUIREMENTS: B.S. degree in

 E.E. or Physics and 3 years technical writing experience.Or, if you have experience in fields of antennas and waveguides, high frequency heating applications, servo mechanisms, magnetic amplifiers, magnetic deflection yokes, magnetic materials, transformers, or components, send resume at once!

Product Development Company manufactures parazolic antennas, omni-directional and bi-directional arrays, corner reflectors, coaxial cable and associated system components for various types of commercial and military service. Investigate Prodelin "Job-

305 Bergen Avenue Kearny, New Jersey

[^27]where he served in a variety of executive capacities and launched "Victory at Sea", the NBC-Navy documentary, for which he received the Navy's Distinguished Public Service Award. He was elected a vice-president in 1951, named head of the NBC film division a year later, became Weaver's executive officer last September, and was elected to the board of directors in October of 1953.

Motorola Appoints Tansey
Service Head

John P. TANSEY, formerly service contract manager, was named national service manager of Motorola's Communications and Electronics division. He succeeds Fred Schnell who has been designated staff assistant to Daniel E. Noble, vice-president in charge of the division.

Motorola now has over 700 authorized service stations, which are privately owned, located throughout the U. S. to handle service for two-way radio users.

Stindard Engineers Society Elects Officers

The Standards Engineers Society announced the reelection of William L. Healy of GE as president for 1954. Others elected include: Madhu S. Gokhale of RCA Victor, reelected as vice-president; Harold J. Nugent, manufacturers' representative, treasurer and Fred M. Oberlander of RCA Victor, secretary.

Reelected to the board of directors are: Herbert G. Arlt of Bell Laboratories; W. G. Baird of IBM and

HOW
 BarnsteadPURE WATER

RCA requires Pure Water ext copper-freo to an extreme deg:ee impurities for trouble. free TV picture tobes. That is why RCA makes use of Barnstead 200 gph double-effect Stills giph double-effect Stils Barnstead 1000 gph
Demineralixers.
like RCA
...
THOUSANDS OF PLANTS THE WORLD OVER MAKE USE OF BARNSTEAD EQUIP. MENT FOR OBTAINING PURE WATER

If you use water, in any of countless manufacturing and processing operations, you will find that Barnstead equipment producing either demineralized or distilled water, or both, will insure better products, consistent resuits, fewer rejects; and will cut your costs in many ways. Join the thousands of companies the world over who look to Barnstead for the solution to their Pure Water problems. Write today stating your problem. Our engineers will make recommendations without obligation ... recommendations that will cut costs and increase production

The Right We Make Equipment For Your Pure Water Needs

84 Lanesville Terrace, Boston 31, Mass.

FOR MARKING...

PLASTIC •METAL GLASS - PAPER RUBBER•CERAMIC CARDBOARD
in such products as Resisfors, capacitors, valves, tubes, labels, sleeves, spark plugs, cartons, efc., efc.
THESE PRODUCTS AND MANY OTHERS OF ALMOST ANY MATERIAL AND SHAPE CAN BE IMPRINTED
ON THE

REJAFIX
 MARKING MACHINE

Why not send us samples of your products? They will be test-printed and returned to you for your examination!

> REJAFIX HAND-OPERATED MODELS FOR SMALL RUNS. FULLY AUTOMATIC MODELS FOR MASS PRODUCTION.

EST. 1922

DOPDEB O SONG INC. 300 FOURTH AVENUE NEW YORK 10, N.Y.

INTRODUCING the "RUNT"

Sub-Miniature

NM-2 Precision
 Wire Wound
 Resistors

A remarkable new sub-miniature addition to the famous " N -Cap" line of precision wire wound resistors. Measures a mere $1 / 4$ " x $1 / 4$ ". Power rating .1 watt. Values up to $60 \mathrm{~K} \pm .1 \%$. Hermetically sealed to withstand rugged environmental conditions.
" N-Caps" also available in all standard MIL-R 93A sizes.
lllustrated Catalog on "N-Caps" and other precision, wire wound products contains valuable engineering data. Write for it today.

EASTERN PRECISION RESISTOR CO.
Richmond Hill 18, New York

equipment

When repairs and maintenance of electronic equipment are needed,
wasted time costs money! Alert manufacturers have totally eliminated the laborious step of "getting at" vital components by installing Grant Industrial Slides. Is your equipment mechanically up to its high electronic standards? I/ not, Grant offers you.

Stock Slides. A great variety of types, suitable for most needs is in stock and available for immediate delivery. Custom Slides. Our engineering staff will assist you at your plant and develop slides that fit your requirements perfectly. Write today for our complete Industrial Slide Catalog.

Grant Industrial Slides

Grant Pulley and Hardware Corporation 31-73 Whitestone Parkway, Flushing, New York

Victor S. Gittens of Philco.
Jerome L. Steen of Sylvania and John Gaillard of the American Standards Association have become new members-at-large on the board of directors.

Helipot's New Plant
 Officially Open

Helipot Corp., a division of Beckman Instruments, officially opened its new eastern plant in Mountainside, N. J.

The new plant provides 14,000 sq ft of space in which many models of the company's line of precision potentiometers and turns-counting Duodials will be made.

An additional $6,000 \mathrm{sq} \mathrm{ft}$ in the new plant will be occupied by the eastern regional offices and showrooms of the Beckman division of the company.

David C. McNeely, formerly sales manager of the Philadelphia Gear Works, has been appointed national sales manager of Helipot Corp., according to D. C. Duncan, vice-president and general manager.

Educational TV Group Names Braum

Cyril M. Braum, former chief of the television facilities division of FCC, joined the consultant staff of the Joint Committee on Educational Television.
"Braum will provide general engineering assistance to educational channel applicants", explained Ralph Steetle, JCET's exeeutive director. "He will also be available to consult with engineers employed by educators to prepare station applications. He will keep the educa-

let WILLIAMS help you apply ferric oxides

 FERRITES

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.

Williams Ferric Oxides analyze better than $99 \% \quad \mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.

Tell us your requirements . . . we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

WIILIAMS
 COLORS \& PIGMENTS

C. K. WILLIAMS \& CO.
tastoni, Pa. - East St. Louit, ill. Imoryville col:
P. We also produce IRN Magnetic Iron powders for the Electronic Core Industry, the Magnetic Tape Recording Industry and others. Write for complete technical
4 information.

ENGIAVE

NAME PLATES • PANELS • DIALS

10,000 IN USE Acceped by all leading manufacturers as the sprediest, most mersatile portable engraver. Only the NEW HERMES has these patented features:

- Adjustable for 15 ratios. - Self-centering holding vise.
- Aatomasic depth regulator. - Adjustable copy holders.

SEND FOR BOOKLET 1M-29
NEW HEITMES ENGIBAVING MACHINE CORP. 13.19 University Pl.

New York 3, New York

Versatile mawaion Meters

For development . . . production . . . and communication testing!

Heterodyne-type, uses one crystal to measure all frequencies from 0.1 to 175 mc . Accuracy better than 0.005%. Readings in absolute frequency, or percentage of error from desired frequency. Useful as precision, lowlevel, CW signal generator, 20 mc . up. Price $\$ 220.00$

MEET FCC SPECS-fo: mobile-radio mainterance. SMALL SIZE-less than $13^{\prime \prime}$ wide, less than 14 lbs ., apiece.

For technical dafa, mail éoupon today?

LAMTKIN LABORATORIES, INC
 Bradenton, Florida ${ }^{4}$ 者

FM MODULATION METER
Direct indication of peak deviation on voice modulation, 0.25 ke . positive or negative. Tunable 25.200 mc . in one band. Doubles as relative field-strength meter. Euilt-in speaker. Jack for oscilloscope. Price $\$ 240$.

[^28]

$80 \cdots$ STANDOFFS in stock

Stop searching - Centralab has' em!

- All JAN standoffs carried in stock.
- All standoffs grade L-5
(JAN-I-8, JAN-I-10).
- High dielectric strength
(240 volts per mil.).
- Low loss at high frequencies
(Loss factor at $1 \mathrm{MC} .-.007$).
- High mechanical strength
(18,000 psi. modulus of rupture).
- Harder than quartz (7.5 Mohs' scale).
- Impervious to moisture or acids
(0 to $.02 \%$ absorption).

Centralab

A Division of Globe-Union Inc. 914 E. Keefe Avenue Milwaukee 1, Wiscor.sin In Canada: 804 Mt. Pleasant Road, Toronto, Ontario

Cyril M. Braum
tors informed about important technical to developments through participation in conferences and written reports," Steetle said.

A registered professional engineer in the District of Columbia, Braum has been with FCC since 1937.

As chief of the ty facilities division he has had responsibility for processing both educational and commercial tv applications

According to Steetle, Braum will also be available as engineering consultant for the National Citizens Committee for Educational Television.

McMillan Laboratory Appoints Overholt
Edward B. McMillan, president of McMillan Laboratory of Ipswich, Mass., announced the appointment of Ray Overholt, formerly director of the laminated plastics and metals Palmer Laboratory of the United

These outstanding Series RG-60-D Magnetic Amplifiers by ATLAS provide extreme ruggedness and unfailing dependability for many voltage control applications. By improving the performance and life of circuits in which they are used, costly maintenance and repairs can be reduced. Competitive in price with other voltage control methods, ATLAS Magnetic Amplifiers have all the features you have always desired.

WRITE to Dept. AD for Bulletins for complete specifications.

ATLAS
 ATLAS ENGINEERING CO., Inc.
 3 EDGEWOOD ST., ROXBURY, MASS.

PRECISION

SYNCHROS MOTORS SERVO MOTORS hate generators

Infra Electronic Corporation is playing on important port in the precision manufacture and assembly of electronic and electro mechanical system components for the Milifary.
We invite your inquiry when commercially available units will not meet your demands.
Custom design, development, and monuíacture of Test Sets, Kits and Consoles for preflight check out and । ground maintenance of 1 airborne systems.

INFRA

Electranic Coup.
를 Roseland, New Jersey 를
Manufacturers of Precision Synchres

U.S.C. 990 Series Connectors Time Tested Performance

 positive and dependable contact under conditions of severe vibration or shock.

990-S Series connectors with short contacts assure quick engagement and disengagement.

Let us work out your specific problems. See us at the IRE Show - booth 625

States Plywood Corp., as technical director of the manufacturing division.
During the past 16 years, he has been associated with the chemical field while with Du Pont and later, with electronics in radome engineering and production while associated with United States Plywood.

He will continue his work on the advancement of radome manufacturing techniques which he has been doing since the first stages of World War II.

Hill Named Pentron Research Director

Leslie Hill was appointed director of research for the Pentron Corp. of Chicago. He joined Pentron in November of 1953. Formerly, he developed electronic and mechanical devices for the British and Egyptian governments.

Johns Hopkins Names Henry Porter

Henry H. Porter, supervisor of the Johns Hopkins University applied physics laboratory's Bumblebee guided missile program since 1948, was named as an assistant director of the laboratory for planning. He will be chiefly concerned with laboratory planning, policy and objectives.

The laboratory, established in 1942 to continue development of the proximity fuze, is now engaged in guided missile research and development for the Navy.

During World War II, Porter worked on the development of

Augat Adjustable Tube Clamps are 3 ways more dependable!

1. Made of 18% nickel silver for greater fatigue value, tensile strength and durability.
2. Available in an endless variety for standard and special type tubes.
3. Rigidly tested; meets all requirements of government specifications.

Write foday for Cafalog and Samples

AUGAT BROS. INC.

31 PERRY AVENUE - ATtLEBORO, MASS.

Army-
 Navy

Certified

pressurized cases for sealing electronic systems

Shecialisis' in producing pressurized coses for mo: ior companies for over 10 years, Henny ond miler Indsustries, Inc, hove com: pletely solved the problems involved in welding distorion, leckege, round ness ond Actiness of sect. ing ring. Now producing cotes from $11^{1 /}$ to 37 diometer.
Hoving ony trouble with your pressurized cosess? Weille glad to consulw with you without obligetion:

HENRY AND MILLER INDUSTRIES, ING.
 675 Garfield Ave., Jersey City, N. J.
 Offices N. Y. C.

EQUAL TO OUR
GOVERNMENT TYPE DESIGNATION UPM-33

- NEW AND IMPROVED DESIGN
- OUTSTANDING PERFORMANCE
- MORE RUGGED CONSTRUCTION

Specifications . . .
Attenuation (Spectrum Amplitude): 3-70 db uncol.
Frequency range: 8430 Mcs- 9660 Mcs.
Frequency sweep: $10-30 \mathrm{cps}$ continuous
Frequency swing (FM sawtooth) of onalyzer r-f oscillator: 40-50 Mcs.
Maximum error: ± 4 Mcs.
Moximum dispersion of spectrum: 1.5 Mcs per inch.
Overall i-f bandwidth of half power point: 50 Kcs.
Sensitivity to CW:
a. Spectrum amplified position: 80 db below I W per inch deflection on oscillascope screen.
b. Spectrum position: 55 db below 1 W per inch deflection on oscilloscope screen.
Weight: 86 pounds ((complete in ormored cose with all accessories).

> Write or wire for prices and delivery schedule

GaM EQUIPMENT Co., Inc.
"Whare Hi-Quality Is Fumitimental"

7309 VARNA AVENUE NORTH HOLLYWOOD, CALIF. Phone: POplar 5-4185

KEN-SEAL

 MOLDED TRANSFORMERS[^29]Kenyon Transformer Co., Inc., 840 Barry St., New York 59
a proximity fuze for use in guns, naval gun directors and guided missiles. During the Korean war, he was assigned to the Far East as a representative of the operations evaluation group of the Department of Defense.

CBS-Columbia Appoints Maken And Petrany

Guy Maken has been named manager and Joseph Petrany, assistant manager of the material control department for CBS-Columbia, it was announced by Charles J. Kayko, administrative vice-president.

Maken has been connected with electrical manufacturing organizations since 1928. Prior to coming to CBS-Columbia last August, he was manager of material control for Emerson Radio for five years. Prior to that, he held a similar position at Olympic Radio.

Jacobs of GE
Wins Award
John E. Jacobs has been selected as one of the nation's outstanding young electrical engineers by Eta Kappa Nu and will receive an honorable mention award.

The 33-year old scientist developed the x-ray-sensitive cadmium sulfide crystal detector which is known for its application in automatically assuring full and accurate levels of beer and other liquids in cans at unprecedented speeds.

Dr. Jacobs first became associated with GE as a shipping clerk at the company's Kansas City office. He received GE's highest honor to em-

offer a unique combination of
FRACTIONAL CAPACITANCE

HIGH
IMPEDANCE
MINIMUM ATTENUATION

ALONG WITH

EXCEPTIONAL

 FLEXIBILITYLIGHT WEIGHT
38 ST0CK TYPES
FOR ANY OF YOUR STANDARD OR SPECIAL APPLICATIONS

A few of the very low capacitance types are :

Type No	Capacitance $\mu \mu$ F/ft.	Impedance ohms	O.D.
C. 44	4.1	252	$1.03^{\prime \prime}$
C. 4	4.6	229	$1.03^{\prime \prime}$
C.33	4.8	220	$0.64^{\prime \prime}$
C.3	5.4	197	$0.64^{\prime \prime}$
C.22	5.5	184	$0.44^{\prime \prime}$
C.2	6.3	171	$0.44^{\prime \prime}$
C.II	6.3	173	$0.36^{\prime \prime}$
C.I	7.3	150	$0.36^{\prime \prime}$

We are specially organized to handle direct ORDERS OR ENQUIRIES FROM OVERSEAS
SPOT DELIVERIES FOR U.S.
billed in dollars - settlement by your check CABLE OR AIRMAIL TODAY

TRANSRADIO
 contractors to h.m. GOVERNMENT

138a CROMWELL RD., LONDON, S.W. 7 ENGLAND
CABLES: TRANSRAD LONDON

1445 HUDSON BOULEVARD

Why You Should Depend on BENNETT For

\checkmark CABINETS \checkmark CHASSIS \checkmark CUSTOM SHEET METAL PARTS

4Typical examples of the wide range of metal fabricated parts produced by Bennett.

MANY LEADING ELECTRONIC COMPANIES DO

Enginecring, plant capacity. experienced "know how" and metal craftsmanship have made Bennett a prime source of supply for many leading electronic and electrical zquipment manufacturers. Located in a suburb of Buffalo, the Bennett plant with complete facilities can deliver what you need when you want it. Send blueprints or sample parts today for prices and delivery.

THE BENWEEMMANUFACTURING COMPANY

 REPLESENTATIVES INQUIRIESSOLICITED

ALDEN, NEW YORK WIDER TAPE WIDTHS HANDLES TELETYPE TAPE
 in 5 milliseconds with the NEW cring

DIGTAL MBANETCTAPE HANOLERS

	SPECIFICATIONS			
	901 A	901 B		902
Model Number	$30 / 15$	$30 / 15$	$60 / 15$	
Tape Speeds (in./sec.)	$1 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	$1 / 4^{\prime \prime}$,	$1 / 2^{\prime \prime}$,
Tape Widths	6	2	2	6
Number of Tracks	5 msec	5 msec	5	
Start-Stop Time	$2,400^{\prime}$	$2,400^{\prime}$	5 msec	
Reel Capacity	$101 / 2^{\prime \prime}$	$101 / 2^{\prime \prime}$	$1,200^{\prime}$	
Reel Size			$8^{\prime \prime}$	

High-speed magnetic-tape recorders having low start-stop times give a new dimension to data handling by absorbing digital information when and where it is made and making it available when and where it is needed.

Digital information corresponding to any phenomenon can be recorded as the phenomenon occurs, continuously or intermittently, fast or slow, and later fed at optimum speed into reduction devicés such as computers, punch cards and printers.

Speeds of 60 inches per second with 5 -millisecond start-stop times permit digital techniques to be applied to jobs that previously required more expensive but less reliable methods. Typical applications include business machine problems, control of machine tools and other highspeed industrial processes, study of fast-moving missiles and telemetering.

Potter Magnetic Tape Handlers offer, in addition to the new higher tape speeds mentioned, wider tape widths for more channels with lower tape tension controlled by photoelectric servos. And, the price is but a fraction of that of much less versatile recorders. Other data handling components and complete systems are also available for special problems.

FOR FULL INFORMATION, WRITE DEPT. I-C

121
POTTER WSTRUMIXNT CO., INC.
115 CUTTER MILL ROAD
GREAT NECK, N. Y.
ployees, the Charles A. Coffin Award, given for major contributions to science and company welfare.

Sylvania Names Gunn General Sales Manager

D. W. Gunn has been appointed general sales manager of electronic products, for Sylvania succeeding Harold P. Gilpin, who has retired,

He will be responsible for the sales of products of the radio tube division, the tv picture tube division and the electronics division.

Gunn, who has been a member of Sylvania since 1931, started as a factory engineer with the company. He was appointed equipment sales manager in 1951, and until his new appointment, has been assistant general sales manager of the electronics product sales division.

Representatives In Los Angeles Elect Officers

The Los Angeles chapter of Representatives installed its 1954 officers. George Davis, chapter vicepresident, was elected president. A. J. Rissi, secretary-treasurer, became vice-president and Frank A. Emmet was elected secretary-treasurer.

John J. Hill, retiring president, became chairman of the five-man board of directors which includes: John B. Tubergen, E. V. Roberts, H. A. Kittleson and Gerald B. Miller.

Ralph L. Power is executive sec-retary-treasurer.

The organization, formed originally as the Radio Boosters Club and later affiliated with the national

Fill Your Need to a

JESIGNED TO COMMERCIAL AND MILITARY SPECIFICATIONS
(MIL-T-27 and AN-E-19)

EPCO Products Inc.
 2500 Atlantic Ave.

Brooklyn 7. New York
Ideal for
ANIENNA CONNECTIONS ANTENNA CHOTO-CELL WORK PHOTO-CELONNECTIONS MICROPHONE CON =1 MES SHIELDED TYPE
PLUGS \& SOCKETS

Low toss muos ano SOCKETS POR HICH PREQUENCY CONNICTIONS. SUPPLID IN 1 AND 2 CONTACT TYPIS:
101 Series can be furnished with $1 / 4^{\prime \prime} .2^{290}$ $5 / 16^{\prime \prime}, 3 / 2^{\prime \prime}$ or $1 / 2^{\prime \prime}$ forrula for cable entrance. Knurled nut securely fastens unit together. Plugs hove ceramic insulation and sockets have bokelite. Quality construction. Fine finish. Assembly meets Navy specifications.
For full details and engineering data ask for Jones Catalog

No. CS-18.
JONES MEANS Proven QUALITY

GALVANOMEIER SUSPENSION RIBBON

FINE WIRE and RIBBON OF CLOSER-THAN-COMMEREIAL TOLERANCES CONTROL, WITHIN CLOSE LIMITS OF THE FOLLOWING CHARACTERIStics: Size; Elongation; Tensile Sprength; Torsional Properties; Electrixal Resistance; Temperoture Coefisient of Resistance: Weight per Unit length; Purity, . Weite to dato and somplese list of products.

[^30]

developed by INDUSTRIAL in the research and design of quality

CAPACITORS

Addition of the 8 mfd . and dual 4 mfd . (600 vdc .) and dual 2 mfd . (1000 vdc .) makes Industrial's series of small case size inverted single-stud-mounting tubular oil-filled capacitors one of the most extensive in its class. Similar important units of the same type in the 600, 1000 and 1500 v . range keep this line fully abreast of the rigid demands of today's electronic progress.

Whatever your requirements may be, you'll find the answer in Industrial's complete line of oil, wax, electrolytic, Stabelex $(B$ " and special capacitors.
We are not just engaged in the manu facture of electronic components-we are specialists in the research, design and development of quality capacitors. Our experienced engineering staff is ready to serve you. Send now for full information, including illustrated catalogs.
body as a local chapter, was formed 20 years ago and currently has a roster of 60 seniors and associates.

Standard Coil Appoints Adams
Stanley Adams was named general manager of the Chicago plants of Standard Coil Products Co., it was announced by Glen E. Siwanson, president. Associated with the radio and tv industry since 1939, Adams, for the past seven years, has been manager of Standard Coil's plant at Bangor, Michigan.

Standard Coil operates four plants in the Chicago area, having about $200,000 \mathrm{sq} \mathrm{ft}$ of combined production space. Other plants are located in Los Angeles, Aurora, Ill. and North Dighton, Mass.

Nunan Named President Of Consolidated Vacumm

Election of J. Kneeland Nunan as president of Consolidated Vacuum Corp. of Rochester, N. Y., a subsidiary of Consolidated Engineering Corp. of Pasadena, Calif., was announced by Philip S. Fogg, president of the parent company and board chairman of Consolidated Vacuum.

Nunan, who was named executive vice-president of the Rochester firm in early 1953, succeeds Fogg as president. Fogg will continue as chairman of the board.

Consolidated Vacuum, which was formerly the vacuum equipment department of Distillation Products Industries, a division of Eastman

Kodak, was acquired by Consolidated Engineering in December, 1952. Year-end sales figures for the subsidiary are expected to exceed $\$ 4.5$ million.
Prior to becoming associated with Consolidated Engineering in 1952 as vice-president in charge of sales, Nunan was employed by Howard Hughes. Before joining Hughes, he served as general manager of the motion picture department of the

J. Kneelard Nunan

Ansco Division of General Aniline and Film Corp. and introduced the Ansco color process to the motion picture industry in 1946.

He was formerly assistant dean of engineering and assistant professor of electrical engineering at the University of Southern California.

Clevite Makes
 Personnel Changes

Douglas c. LyNCH has been promoted to executive vice-president of Brush Electronics, one of the units of the Clevite Corp. He has been vice-president of sales and, along with his new duties, will continue to direct the sales division. He joined the company in 1952, previously having been assistant general manager for Westinghouse International.
C. J. Mayers, who has been treasurer and controller, advanced to vice-president and treasurer. He has been with Brush since 1943.
B. H. Van Houten becomes a vicepresident and will continue as director of employee relations.

Arthur D. Schwope joined the

A NEW BROCHURE

Fresh off the press, and full of interesting information, here is a brand-new brochure telling you all about the industrial advantages of the Long Beach area - in the rich market of Southern California.

Everything from A to Z (airports and zephyrs) is summarized. Get the facts on the vast pool of skilled and semi-skilled labor. Learn for your self the twelve reasons why Long Beach has become one of the leading industrial centers. Read how you will benefit from locating your plant here

WRITE FOR YOUR COPY

The compact brochure lists 12 rea sons for locating your plant in the Long Beach area. Plenty of skilled labor; savings in transportation, taxes, utilities and insurance; low. cost land, construction and operation; and good housing facilities are a few of the profit-making factors.
Write today for full information Free - and confidential, of course.

CHAMBER OF COMMERCE • DEPARTMENT OF INDUSTRY

200 East Ocean Boulevard, Long Beach 2, California
 SISTANCE. Their SMALL SIZE and EXTREME SENSITIVITY TO THERMAL CHANGES offer engineers a circuit element which can be utilized in new designs, and in improving old equipment.
VECO THERMISTORS have HIGH STABILITY, UNLIMITED LIFE when operated within their temperature ratings, and NO HYSTERESIS effects. These COMPACT, SHOCK-RESISTANT, semi-conductors are STOCKED in a WIDE RANGE of temperature rs. resistance char-acteristics-can also be produced to YOUR SPECIFICATIONS. Types of construction include RODS, DISCS, WASHERS, and BEADS, in a VARIETY of SIZES and MOUNTINGS.
A FEW PRESENT USES: Time delay - Gas analysis • Volume limiting - Surge protection - Vacuum manometry - Flow measurement - Temperature control - Temperature measurement - Radar power measurement - Temperature compensation - Oscillator stabilization - Additional applications being developed every day.
Have you considered all the possibilities of SIMPLIFYING YOUR CIRCUITRY-of designing for COMPACTNESS and INCREASED SENSITIVITY? A request on your business stationery will bring the VECO DATA BOOK, which contains specific technical information, characteristics, and applications of VECO THERMISTORS.

Visit Victory at the IRE Show
$\$ 5.00$ cash or money order, plus postage will bring you the VECO Experimental THERMISTORVARISTOR package, No. 168-7 items and application circuitry -over a $\$ 15.00$ value!

Brush Laboratories Division of Clevite as director of metalurgical research. He was previously division chief of mechanical metallurgy at Battelle Memorial Institute. In his new post he will direct immediate and long-range basic and applied research projects in metals for Clevite.

Harry W. Dodds has been appointed vice-president of engineering services for Brush laboratories. He will continue as director of engineering services and pilot plants. Dodds has been with the company for three years and was previously associated with Brush Beryllium.

Circuit Research
 Lab Formed

Establishment of Circuit Research Laboratory in New York City was announced by the company. Its activities will be devoted to research and development work in radio, tv, audio and electronics including design and development of experimental and production models and special test equipment.

According to the firm, a new f-m receiver, free from multi-path interference, and an audio amplifier using no transformers have been developed.

Kerim Onder is the engineer-incharge of the laboratory. He has had 15 years experience on the staffs of several companys, including Marconi in England and RCA Laboratories in Princeton, N. J.

Westinghouse Names Tube Sales Manager
John A. Curtis has been appointed general sales manager of the Westinghouse Electronic Tube Division succeeding Harold G. Cheney, who has been named assistant to E. W. Ritter, vice-president in charge of the division.

From 1938 to 1941, Curtis worked on the development of railway radio-telephone communications systems. From 1942 to 1945 he was vice-president of the Halstead Traffic Communications Corp.

Later, he became manager of the mobile communications division of Farnsworth and directed its development of the first train-wide passenger entertainment system in-

AGMA INTERPRETATION

 OF YOUR GEAR DATA GRAPHICALIY PRESENTEDTo avoid possible inacsurate interpretation of the quality gear you require we enclose, with our quotation, a chart detailing the tolerances to which we will manufacture your gear.

We base our price on the class of gear depicted on the chart. Our interpretation is based on AGMA Standards for fine-pitch gears.

Dexter machine proiucti, inc.
Phones: Detroir WE 3-1694-Chelsea 2-1791

Negative temperature and voltage coefficients

S.S.WHITE 80X Molded Resistors
 3 watts -100 to 100,000 megohms

S.S.White 80X Resistors have been developed to meet the exacting needs of high voltage equipment, such as electrostatic generators, X-Ray units, and specialized equip. ment used in atomic energy work Their design and construction assures an unusually fine combination
of characteristics for this work, chief among which are:

- Negative temperature coefficients.
- Negative voltage coefficients.
- Excellent stability, durability and mechanical strength.
- Non-deterioration of values due to age.
- Moisture resistant, non-hygroscopic base materialspecially processed to insure full prolection against humidity.
- Space-saving compactness.

WRITE FOR BULLETIN 4906 - It contains full information on S.S. White $80 X$ resistors. Copy sent on request.

Kearfott developed Synchros
 ... in production

series R200

Control Transformers, Transmitters and Resolvers-maximum error spread
20 minutes of arc. Repeaters and Differentials-maximum error spread 30 minutes of arc. For 26 volt operation. Certain models for 115 volt and with variations in shaft dimensions also available.

series Rif00

Rugged, environmental-resistant initized construction with guaranteed maximum error 7 minutes of arc from electrical zero. Average error spreads within 5 minutes. The accuracy of this series eliminates the need for complicated 2 -speed Synchro systems in many applications. Advanced manufacturing techniques now make these performance advantages available at minimized cost.

Technical Data on other Synchro develop. ments in various size ranges and for special applications available.

KEARFOTT COMPONENTS INCLUDE:
Gyros. Servo Motors. Synchros, Servo and Magnetic Amplifiers, Tachometer Generators, Hermetic Rotary Seals. Aircraft Navigational Systems, and other high accuracy mechanical, electrical and electronic components.

KEARFOTT COMPANY, INC., 1150 MCBRIDE AVENUE, LITTLE FALLS, N.J. Midwest office: 188 W. Randolph St., Chicago 1, III. West Coast office: 253 N . Vinedo Ave., Pasadena, Calif, A General Precision Equipment Corporation Subsidiary
troduced on the Santa Fe's Superchief in 1949.

Before joining Westinghouse, Curtis was manager of the track equipment department of the Pull-man-Standard Car Manufacturing Co., responsible for the development and sale of railway track maintenance machinery.

Hopkins Joins
CBS-Columbia
David J. Hopkins has been named director of sales for CBS-Columbia, it was announced by Harry Schecter, vice-president in charge of sales.

In making the announcement, Schecter said that Hopkins' appointment is in line with the firm's program of reorganization and expansion of its national sales force.

Hopkins resigned as director of sales and advertising for Emerson Radio, with whom he has been associated for 9 years, to accept his present post.

Minneapolis-Honeywell Elects New Officers

Harold W. Sweatt, president of Minneapolis-Honeywell Regulator Co. since 1934 , was elected chairman of the board, succeeding Mark C. Honeywell, who was named honorary chairman.

Paul B. Wishart, vice-president and general manager of the company, was elected to succeed Sweatt as president.

At the same time, two other
officers of the company were elected directors, enlarging the board's membership to 10 . The new directors are Tom McDonald, vice-president in charge of sales and A. W. Wilson, vice-president in charge of the firm's aeronautical division.

Changes in Honeywell management came with the retirement of five officials under the company's executive retirement plan established in 1943.

The retiring officials include, in addition to Honeywell, W. L. Huff, director, executive vice-president and former treasurer; R. P. Brown, vice-president and chairman of the board of the company's industrial division; George A. DuToit, vicepresident in charge of manufacturing and L. Morton Morley, vicepresident and formerly in charge of sales for the industrial division.

Honeywell, Huff and Brown will continue as directors.

When Sweatt became president of the company in 1934, it had 1,000 employees and annual sales of about $\$ 5$ million. Honeywell now employs 24.000 persons in factories and sales offices in both the U. S. and foreign countries and has annual sales approatching $\$ 200$ million.

Link Radio Plans Reorganization

Link Radio Corp. of New York, manufacturers of mobile radio equipment, announced the transfer of stockholding interests to Murray Platt. who was elected president.

A complete reorganization is planned to extend the company's activities in the mobile communications field, both domestically and

Murray Platt
 since more than justified that enthusiasm. From a mechanical standpoint alone, this acceptance has been based upon the fact that two 3SP cathode ray tubes occupy the same space as a single 3 inch round tube-a feature which makes the tube an outstanding performer in multi-trace work. Up to ten tubes have been mounted across a standard relay rack panel without crowding. The

low deflection factors of the 3SP have still further widened its use in single cathode ray tube video devices. The choice of screen is optional and available in P1, P2, P7 and P11 phosphors. We are authorized to supply the 3SP1 with JAN stamping. Let the 3SP type Waterman RAYONIC cathode ray tubes add their new concept of compactness to your own equipment.

SIZE:
3SP TECHNICAL DATA

WATERMAN PRODUCTS CO., INC. PHILADELPHIA 25, PA.

 CABLE ADDRESS: POKETSCOPE

3JPI \& 3JPT JANRAYONIC CR TUBES 3JP2 \& 3JPII RAYONIC CK TIJBES 3MP7 \& 3MPII RAYONIC CR TUBES 3RPI, 2, 7, II RAYONIC CR TUBES 3KP1,2,7, 11 RAYONIC CR TUBES POCKETSCOPES PULSESCOPES RAKSCOPES
And Other Associated Equipment

- Suppression of low-order harmonics in transmitters operating below 400 mc is the prime function of Model 844 Low Pass Filter. 40 db or more attenuation of 2 nd to 5 th harmonics of transmitters operating between $225-400 \mathrm{mc}$ is afforded. Insertion loss andVSWR are very low thruout the pass band. Teflon insulation and rugged construction thruout assures reliability.

FREQUENCY RANGE - poss band 0.400 mc . Stop band $500-2000 \mathrm{mc}$.
POWER RANGE - 150 watts maximum.
IMPEDANCE - 50 ohms. VSWR better than 1.35 thru pass band.

CONNECTORS - Type N. One male and one female. Filter is reversible with equal results. ATTENUATION - pass band : 3 db or less below 400 mc . Stop band 40 db or more 500 to 2000 mc . 500 to 2000 mc

IN-RES-CO TYPES SM-15 \& SM-30 wire wound RESISTORS

SUB-MIMIATURE weathertesped milgets

Type SM-15 and SM-30 Resistors offer three vital advantages - subminiature size, weather resistant construction and high resistance. The elimination of center hole mounting and the inclusion of axial leads increases winding area and results in 25% greater resistance value than resistors of standard design. Special coating is moisture and fungus proof and designed to meet JAN-R-93 specifications. Sealed in Bakelite construction affords additional climatic protectection. As ratings are conservative, types SM-15 and SM-30 can be specified with confidence for service under rigorous conditions.

TYPE SM-15 5/16" DIA. x 3/8" LG

TYPE SM-30 5/16" DIA. x 3/4"LG

internationally.
Platt is also president of Platt Manufacturing of New York which is engaged in the manufacture of a new line of mobile radio equipment as well as U. S. defense production. The entire engineering and production facilities of Link and Platt will be combined for greater output and economy.

Associated with Platt will be James B. Ferguson, chief engineer and Larry Straw, sales manager, formerly of Bendix.

Radio City Appoints Chief Engineer

Robert E. Ricketts has been appointed chief engineer of Radio City Products.

He was formerly associated with DuMont Laboratories and with GE after having been a manufacturer of laboratory test equipment and wired music electronic systems.

Stanford Research Names Duvall And LeMay

Two research physicists, George E. Duvall and Charlotte Z. LeMay, have joined the staff of Stanford Research Institute.

Duvall, formerly with GE, will work as a theoretical physicist in high explosives with SRI's department of physics. From 1946 to 1948 he was a research associate in the research laboratory of electronics at MIT. Earlier, he worked five years with the University of California's division of war research.

LeMay, formerly in the transistor program at Texas Instruments of Dallas, will undertake a research

COMPARE THESE SUPERIOR FEATURES

- Engraves in 2 or 2 dimensions.
- Pantograpli permits 4 reduction ratios
- Micrometer depth control graduated in tloou
- Handths of an inch.
- Chuck H/s $^{\text {a to take rariety of small tools. }}$ burrs, mounted points, as well as standard
- Available accessories make possible a wide variety of engraving tasks. possible a wide Send for Illustrated Catalog
MICO INSTRUMENT CO.
75-E Trowbridge St
Cambridge 38, Mass

CARTRIDGE

Concentrated electric heat for small areas.

Brass sheath for temperatures up to about 750°. Other metals foz higher temperatures.
Standard sizes and types listed in the Vulcan catalog, or size, sheath, terminals and lead wires adcrpted to your specific problems.

Dependable
Components
Dependable delivery schedules

Designers and Custom Builders-small and medium quantities-from milliwatts to 50 KVA , single or polyphase.

May We Bid On Your Requirements?
$=7$ HTM MFG. CO.
1901 CLYBOURN AVENUE. CHICAGO 14, ILIINOIS

This is a modern dynamic micro. phone all right . . with Alnico V Magnets and moving coils for maximum sensitivity to voice and music. Wide response range and outstanding sound characteristics make it ideal for tape recorder, PA, or commercial broadcasting use. Its design is certainly modern, too ... trim, handsome, functional.
And abou: that price. We call it "old fashioned" because it's so much lower than you would expect to pay in these expensive days. Only $\$ 35.00$ list
Frequency resporise, 70 to 10,000
cp?: outaut level, 58 db; 20 ft .
removablo grey plastic cabie set;
stendard $5 / 8^{-27}$ coupler;
$\begin{aligned} & \text { high impedance wired single ended } \\ & \text { (single conductor shielded coble); }\end{aligned}$
$\begin{aligned} & \text { (single conductor shielded cable); } \\ & 50 \text {, } 200 \text { or } 500 \text { chms wired for }\end{aligned}$
50.200 , or 500 chms wired for
$\begin{aligned} & \text { balanced line (two conductor } \\ & \text { shielded zable). About } 81 / 2^{\prime \prime} \text { high. }\end{aligned}$
ADA 950 . List Frice.
$\$ 35.00$
ADAS 950. List Price
with slide switch..
-\$38.50

THE TURIR COMPANY
 905 17th St., N.E., Cedar Rafids, Iowa

CANADA: Canadian Marconi Co., Toronto, Ont. and Branches
EXPORT: Ad. Auriema, Inc.
89 Broad Street, New York 4, N. Y.
Want more infarmation? Use post card on last page.

PLANTS AND PEOPLE
(continued)

George E. Duvall

SRI's engineering division. She was an instructor in physics at Mt. Holyoke College and at Louisiana State University. At Monsanto Chemical Co., during the war, she did research on the dielectric properties of plastics.

Dage Appoints
 Chief Engincer

Dage Laboratories, which handles design and development for Dage Electronics, announced the appointment of H. E. Crow as chief engineer.

He has served as chief engineer of WHEN in Syracuse and WBKB in Chicago. He has also been connected with RCA, Zenith and the Thorgeson Manufacturing Co. He served as a radio technician with the Navy training program and has had experience in broadcast equipment design in which he is presently engaged.

Appointment of Clifford Bruhn as production manager was announced by Dage Electronics. He was formerly associated with AC Spark Plug.

CBS-Columbia
 Promotes Schoenbrun

Maurice Schoenbrun has been promoted to director of cabinet engineering for CBS-Columbia. He previously was assistant product design manager for the firm. He has had more than six years product design experience in the radiotv field. Prior to that, he was an

NEW! Subminiature Metallized Paper CAPACITORS Funginert Plastic Encased

\checkmark Resin impregnated and rectangular shaped for maximum space conservation
1 Completely encased in a non-nutrient plastic for maximum fungus and humidity protection
\checkmark Operating temperature range $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
ν Temperature coefficient $+.07 \% /^{\circ} \mathrm{C}$
\checkmark Excellent capacity retrace

> Also available in HERMETICALLY SEALED
drawn metal containers
(shou', approx. $1 / 2$ aclual size)

multiplicy or size is ilate in A muitiplicity of sizes is available in either plastic encased or hermetically sealed
capacitors. Special designed units also made capacitors. Special designed units also made to your exact specifications

FACTORY: 2082 Lincoln Ave. Altadena, Calif. SYcamore 8-1185 Offices in WASHINGTON, D. C. and DETROIT
aircraft designer, working on experimental airframe structures.

Gramer Transformer Acquires Company

Four executives of the Gramer Transformer Corp. of Chicago have acquired controlling interest in Johnson Electronics of Orlando, Fla., manufacturers of coils and component parts.

Production facilities of Johnson Electronics in Orlando will be expanded and Gramer Transformer will serve as its exclusive national sales agency

The Johnson plant consists of more than $10,000 \mathrm{sq} \mathrm{ft}$ of space and employs more than 100 people.

James M. Blacklidge, president of Gramer, will serve as board chairman and treasurer of Johnson. Other new principals from Gramer include Burt Anderson, general sales manager; Ralph L. Weber, secretary and Fred R. Cooper, chief engineer.
E. S. Johnson, president of Johnson, will continue in that position. Charles Edwards of Orlando is vicepresident of manufacturing in the new organization.

IRE Aviation Group
 Sets Sessions

"Aviation Electronics Days," sponsored by the Institute of Radio Engineers' professional group on Aeronautical and Navigational Electronics to commemorate the 50th anniversary of powered flight, has been scheduled for March 22-23 during the national IRE convention in New York City. The event will include three consecutive technical sessions and a luncheon, on March 23, at the Hotel Shelton. The Institute of the Aeronautical Sciences is also participating in the program.

British IRE Sets
 Convention Theme

The Theme of the 1954 convention of the British Institution of Radio Engineers, to be held at Christ Church, Oxford, from July 9 to 12, is "Electronic Aids to Production."

The subject has not been covered in previous post-war conventions and is expected to give opportunity

PRECISION PAPER TUBE CO.

2041 W. Charleston St.
Plont No. 2: 79 Chapel St., Hortford, Conn
Chicago 47, III. Also Mfrs. of Precision Bobbins

This FREE BOOK will show you

dozens of ways to
save with electric
heating units

Contains Such Valuable Informafion as:

- How to determine wattage requirements
- Specific heat tables for solids, liquids, gases
- Heat loss tables
- Energy charts for heating air \& water

SEND for
PLUS how to select and apply Watlow's complete line of Strip, Cylindrical, Ring, Cartridge, Tubular and Immersion Heaters to meet your particular needs. Your Copy Today!

Our specially designed machines now wind Toroidal Coils quicker and with more accuracy than other standard methods. Universal Toroidal Coils in any size wire to your specifications-are economical in materials and possess the smallest external leakage field of all other shapes.

Universal Toroids wound to Mil-T-27 specs. Wire sizes \# $42(.00249$ mils) to \# 10 (. 1019 mils). Excellent Delivery in small or large quantity.
 Engineering Service Available. "ACCURACY IS A UNIVERSAL WORD''

for demonstrating the contribution of the radio and electronics engineer towards improving industrial production.

It is anticipated that the subject will attract wide attention because of its interest to many engineers engaged in other branches of industry.

Lynch Carrier
 Names Noller

Walter E. Noller joined the engineering department of Lynch Carrier Systems in an executive capacity.

He was previously with Bell Laboratories where he was engaged in the design and development of voice operated devices and fire control radar equipment. He received the Naval Ordinance Development Award as a result of this work. He subsequently held the position of senior engineer with the Pacific Telephone and Telegraph Co. working on toll transmission, inductive coordination, protection and toll plant extension engineering.

Insuline Buys Plant In New England

To supplement its present manufacturing operations in Long Island City, N. Y., the Insuline Corp. of America has purchased a four-story factory in Manchester, N. H. The building has $281,000 \mathrm{sq} \mathrm{ft}$ of space.

The facilities afforded by this new plant will permit Insuline to implement a long-planned expansion program, according to S. J. Spector, president. The firm expects to turn out ten times as many tv antennas and three times as many auto antennas as it is now making.

Automatic and conveyorized machinery for spraying, baking, plating and finishing is being installed in the plant. The company will continue to maintain its New York production facilities and administrative staff.

Western Electric
 Names F. B. Smith

Fred B. Smith, personnel director and treasurer of Sandia Corp. in Albuquerque, N. M., for the past four years, has been appointed

363 PUTNAM AVE., CAMBRIDGE, MASS.

MAve Universal WAVEGUIDE and MICROWAVE COMPONENTS MICROWAVE COMPONENTS

ATTENUATORS-TERMINATIONS
SIGNAL SOURCE
IMPEDANCE MEASUREMENT FREQUENCY MEASUREMENT TRANSMISSION LINE COMPONENTS DETECTION \& POWER MEASUREMENT

The increasing use of Universal Test Equipment throughout the electronics field, altests to the higher-than-high degree of accuracy on every type of testing operation . . . plus its larger measure of day-in and day-out dependability!
When next confronted with the necessity to acquire equipment of this type, it will pay you to specify "Universal"!

Excellent Opportunities for Graduate

ENGINEERS

- Electronic \& Mechanical

Experience in Design and Development of Radar and Sonar necessary.
Senior Engineers with Degree or equiva lent and at least 5 years experience in cuit design, filter network design, precision components (capacitors - resistors), and communications.
Broad knowledge of Search and Fire Con trol Systems: Servo Mechanisms, Special Weapons, Microwave, Antennas and An tenna Mounts, etc. Mechanical Engineer should also have experience in packaging of Electronic Equipment to Gov't. specifications including design of complex cabinets, shock mounts and sway brace structures.

- Field Engineers

Qualified to instruct in the operation and supervise installation, maintenance and repair of Radar, Sonar and allied electronic equipments in the Field.
Senior engineers with degree or equivalent and at least 5 years' experience in flight simulators, radar and sonar trainers.
A chance to grow with a young and progressive company; salary and advance ment commensurate with ability; liberal vacation, sick leave, 9 paid holidays, group life, sickness and accident insurance plans, and a worthwhile pension system.

STAUD
 ENGINEERING, ING.

PERSONNEL: 312 PARK AVENUE Plainfield, N. J., PLainfield 6.4806

NOW...SOLVE YOUR HIGH VOLTAGE PROBLEMS with BETTEREQUIPMENT

34 KW 17,000 V.D.C.

Our years of experience gives you MAGNATRAN Heavy Duty High Voltage products . . . built for longer life and rugged performance

\leftarrow NEW UNITIZED RECTIFIERS

For high voltage D.C. sources... lower initial cost . . . minimum upkeep . . . convenient - ready to connect to $A C$. line and D.C. load ... compact - requires minimum floor space.

AIR . . . OIL . . . ASKAREL Plate Transformers. Filament Transformers. Filter Reactors. Modulation Transformers. Distribution Transformers. Pulse Transformers. Testing Transformers. Precipitation Transformers. General Purpose Transformers. Hi-Voltage Transformers.

Askarel Immersed Filter Reactor 50,000 Volt Test

Write for detailed information meets standards of aiee-nema

A NAME SYNONYMOUS WITH EXPERIENCE
MAGNATRAN INCORPORATE
transformers and electrical equipment walter garlick, jr., president
246 SCHUYLER AVE, KEARNY, NEW JERSEY

(8)

ANY SIZE-SQUARE OR RECTANGULAR
Entirely new technique in tube making developed and perfected by PARAMOUNT now for the first time solves many coil winding problems, yet costs you no more! Hi-Dielectric. Hi-Strength. Kraft, Fish Paper, Acetate, Red Rope or any combination wound on automatic machines. Produced from stock arbors or special sizes engineered for you. Write on Company letterhead for Stock Arbor List of over 2000 sizes

- No sharp outside edges to cut wire
- Has full rigidity and physical strength
- Permits winding coils to closer tolerances
- No need for wedges to tighten wire
- Allows faster stacking of wound coils
comptroller of Western Electric's. Hawthorne Works in Chicago.

Succeeding Smith at Sandia Corp. as treasurer will be Philip D. Wesson, who will also continue to serve as the general attorney.

Smith started as a test equipment repairman at the Hawthorne Works in 1928. He held a succession of inspection, test equipment and manufacturing assignments and was in charge of Hawthorne's vacuum tube production during World War II. In 1948 he was placed in charge of Western Electric's plant at Lincoln, Nebr. He left there in 1949 to accept his position at Sandia.

Crescent Industries
 \section*{Elects Officers}

Henry H. Gefvert, formerly president of Crescent Industries, was elected chairman of the board of directors and J. Russell Duncan, formerly president of Electric Sprayit and Moe Bridges of Sheboygan, Wisc., was elected president and general manager of Crescent. Nelson Lenberg will continue as vice-president and Donald E. Heinisch will continue as secretary and treasurer.

The change in executive responsibilities was made in accordance with plans for strengthening the business which now employs 1.300 people.

Webcor To Establish New Branch Plant

Webster-Chicago Corp. will establish a branch assembly plant at New Ulm, Minn., early in 1954, according to R. F. Blash, president. The building will be constructed by the city of New Ulm and leased to Webcor.

While the building is under construction, Webcor will lease an existing building nearby. Several items in the company's line will be assembled at New Ulm.

FCC Names Barr
 Broadcast Chief

FCC announced the consolidation of the aural facilities division and the television facilities division of its Broadcast Bureau and has desig-
nated James E. Barr to be chief of the new Broadcast Facilities Division.

Stromberg Makes New Appointments

R. C. Tait, president of StrombergCarlson, announced the promotions of Arthur F. Gibson, formerly general manager of the firm's telephone division, as corporate secretary of the company, and John H. Voss, formerly chief telephone engineer, as general manager of the telephone division.

Harry M. Bruckart and Robert R. Dobbin have been appointed chief engineer and assistant chief engineer, respectively, of the division.

Bruckart, formerly in charge of systems engineering for the telephone division, has been with the company since 1946.

Dobbin was formerly in charge of telephone apparatus design and also joined the firm in 1946.

General Ceramics Sets
 Technical Agreement

The General Ceramics and Steatite Corp. of Keasbey, N. J. has established an agreement with Techno Ceramica, S.A., to supply technical knowledge for the manufacture of high frequency insulators in Techno's plant at Sao Paulo, Brazil.

Techno Ceramica, producer of high tension porcelain insulators, sees growing requirements for high frequency insulators in the territory it serves.

Wilson Moves To

West Virginia
G. C. Wilson \& Co., designers and manufacturers of electronic timers, moved its offices and plant from Chatham, N. J. to Huntington, W. Va. The move was made, according to G. C. Wilson, president, to provide increased facilities for production and service.

Jerrold Names

Two Executives
Caywood C. Cooley has been appointed vice-president and general manager of Jerrold Service Corp.,

Specify Injection Molded SILICONE RUBBER

Designers of original equipment now specify silicone rubber parts if they must undergo extreme temperature changes or if they require constant dielectric properties. Insulators, bushings, grommets and other small units are in continuous mass-production in our plants. Prompt quotations on receipt of your sample or blueprint.

MINNESOTA SILICONE RUBBER CO.
 5724 West 36 th Street - MINNEAPOLIS 16, MINNESOTA

New Acheveveners

 in precise wire-wound trimmer potentiometers

 in precise wire-wound trimmer potentiometers}

fenotum Micro-miniature
 Series AP $1 / 2$

- Two watts continuous at 80 degrees C .
- Resistances from 10 ohms to 20,000 ohms.
- Diameter $1 / 2$ inch, depth $1 / 2$ inch.
- Temperature coefficient 0.00002 part per degree C.
- Weight $1 / 4$ ounce.
- Sealed well enough to permit potting.

Available also as ganged units.

Series AP $1 / 1 / \mathrm{B}_{-2}$

These new potentiometers embody many features that are usually found only in much more costly units. They are precision machined throughout, with bodies of anodized aluminum, line-reamed phosphor bronze bushings, centerlessground stainless steel shafts, and gold-plated forktype terminals. All electrical connections are soldered, except for precíous metal sliders and slip rings. All units are fully sealed, and treated with Service-approved moisture-proofing and fungicidal materials.

In addition, all Aerobm potentiometers are individually checked through a quality-control system that.guarantees you full performance from every unit in your order.

according to Milton J. Shapp, president of Jerrold Electronics. Cooley was formerly assistant to the president, engineering, and recently completed supervising the installation of the first Jerrold five-channel community antenna system at Mahanoy City, Pa.

Robert J. Tarlton, who formerly headed the Jerrold Service Corp., became manager of Jerrold's community operations division. In his new capacity, Tarlton will be responsible for the installation and organization of community antenna companies where Jerrold has management responsibilities. Tariton has been active in the community antenna system industry since the time of the establishment of the first antenna company in Lansfold, Pa.

Minnesola Mining Promotes Brown

Promotion of Erwin W. Brown to the position of division engineer for its electrical products group was announced by Minnesota Mining \& Manufacturing.

He joined the firm in 1947, was transferred to 3M's engineering department as a chemical engineer in 1948 and became a member of the new products engineering staff in 1950. He became division engineer for sound recording tape in 1951 and last year was given the additional responsibilities of division engineer for 3M's staff laboratories.

The company also announced the appointment of Daniel J. MacDonald as assistant division engineer. for the electrical products group. MacDonald has been a project engineer for staff laboratories for the past four years.

New London Instrument Acquires Atlantic

Samuel Gubin, partner in the New London Instrument Co. of New London, Conn., announced the acquisition of the Atlantic Transformer Corp., formerly A.J.F. Industries, in Brooklyn, N. Y.

The equipment and facilities of Atlantic have been moved to new and expanded quarters in Groton, Conn.

The company has retained the

INCREMENTAL INDUCTANCE

quickly
simply accurately

The new Type 1002-A Incre. mental Inductance Bridge combines outstanding features of compactness, ease of operation, accuracy, and wide range of measurement. A visual balance indicator allows measurements to be made in a few seconds even in noisy locations. Maximum sensitivity at the balance point greatly improves the accuracy of balance. Only a single balance control is used, with crt indication.

Inductance range is from one to 200 henries. Direct current through the reactor under test is accurately controllable from one to 500 milliamperes, limited only by the resistance of the coil windings. The effect of a change of dc on the inductance value is immediately measurable, by simple rebalancing. The inductance is measured at a constant frequency of 120 cps .

For design and test work on ironcore inductors, transformers, filter chokes, and plate reactors, this compact selfcontained instrument is unsurpassed.

Write today for technical details and price information.
services of key engineering and production personnel of Atlantic and will continue to manufacture custom-built transformers.

Solar Manufacturing Names Das Gupta

Asru K. Das Gupta, who came to the U. S. from India in 1946, has been promoted to director of engineering of Solar Manufacturing Corp.

He has been associated with several industries engaged in the manufacture of electrical ceramics. He received his Ph.D in 1949 from Ohio State University with a major in ceramic engineering.

He joined the Solar organization in 1950 as director of ceramic operations, a position he held until his present appointment.

Hogan Named By Harvard University

Clarence L. Hogan, formerly of Bell Laboratories, has been appointed associate professor of applied physics at Harvard University. He has served as lecturer on applied science during the past fall term.

Dr. Hogan successfully constructed the microwave gyrator which, in principle, permits the simultaneous transmission and reception of a single frequency from the same antenna.

He was employed as engineer for Anaconda Copper in 1942-43. Dur-
ing the war he served with the U. S. Navy and worked on establishing and maintaining the acoustical torpedo shop at Pearl Harbor. Since 1950 he has been in the physical research department of Bell Laboratories. In addition to his work on the gyrator there, he also participated in the development of borocarbon resistors.

Broadcasters Attend RCA Color Clinies

A total of 210 broadcasters have had training in theory and operation of color tv equipment at three clinics held by RCA Victor in Camden. The company plans to continue the program in 1954.

Complete technical information on RCA's color tv broadcast equipment was presented by means of lectures, demonstrations and a laboratory tour conducted by color tv specialists and design engineers of the company's Engineering Products Department.

Instrument Engineering Changes Its Name

Robert D. Richardson, director of engineering, announced a change of name for his organization. Formerly the Instrument Engineering Service, of Michigan City, Indiana, the firm is now known as the Thermaco Laboratories.

Burlingame Elects New President

A. B. Bogin has been elected president of Burlingame Associates. He has been associated with the firm

The type 198 Klystron Cavity Oscillator is a signal source designed to accommodate the Sylvania 6BL6 and 6BM6 Klystrons. Utilizing both tubes and two modes of operation, it is possible to generate a CW signal tunable over a frequency range from 1 KMC to 4 KMC . For the exact frequency range of each tube in either of its modes, as well as power output, consult the Sylvania specification sheets for 6BL6 and 6BM6 Klystrons. It is possible to gain full performance from these tubes in the type 198 Cavity Oscillator because the precision machined component parts of the best quality materials available have been held to exacting requirements of accuracy.

FEATURES

- A tuning accuracy in the center frequencies of $\pm 1 \mathrm{MC}$, made possible by the precision machined tuning mechanism incorporating a Root counter for ease of calibration and observation.
- A quick release tube sockef assembly, making tube changing a simple operation.
- A standard rack panel machined for secure attachment of the cavity, assembling neatly into your equipment.
- Silver plated conducting surfaces providing high radio frequency surface conductivity; Rhodium flash preventing corrosion.
- Female type \mathbf{N} coaxial output connection.

Overall size, including panel, is $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $12^{\prime \prime}$ deep. Finish is smooth gray or black lacquer on cavity, with nickel plate trim, and gray or black baked wrinkle enamel on panel.
Shipped with tubes, if desired, at extra cost.
ROCKET TUBE CAVITY

The \#192 Rocket Tube Cavity is for utilizing the Sylvania UHF Planar Triode tube. It is a cavity oscillator of small physical size, with a tuning range of between 200 and 250 MC . This cavity operates on a cavity line principle. Due to the design, only a single knob is required. The only other adjustment required is the depth of the output probe.

MECHANICAL SPECIFICATIONS

Frequency Coverage: 500 to 3500 MC , with a $\pm 100 \mathrm{MC}$ tuning.
Overall Length: Designed for 3000MC: $73 / 4^{\prime \prime}$.
Diameter: 1-5/16".
Cavity may be supplied with either BNC or type \mathbf{N} constant impedance coaxial fittings.

Pulse operation and maximum plate operation: 2000 peak volts. CW Operation: $\mathbf{2 5 0}$ volts.

that don't NEED incoming check

Problem:

To find a potentiometer that will -
... Dissipate 3 watts continuously at 80 degrees C, through 50,000 ohms total resistance.
... Occupy no more space than absolutely necessary.
... Weigh as little as possible.
... Maintain accurate resistance setting, over a wide range of temperatures.
... Not require YOU to do productioncontrol checking for the manufacturer.

Solution:

Waters Series RT- $7 / 8$ and RTS- $7 / 8$ -

- Precision wire-wound construction.
- Three watts continuous, to 80 degrees C.
- Resistances from 10 ohms to 50,000 ohms.
- Diameter $7 / 8^{\prime \prime}$, depth $3 / 8^{\prime \prime}$
- Weight, approximately $1 / 2$ ounce per section - multiple ganging easily provided.
- Temperature coefficient of resistance 0.002% per degree C.
- Manufactured to rigid military specifications.
- Individually checked through a production quality control system that guarantees you full performance from EVERY unit in your order.

Write today for full technical information and prices.

WATERS MANUFACTUZINSG, inc.

Waltham 54, Massachusetts
applicaiton enginerang orrices in imincipat cities
Want more information? Use post card on last page. 398
for four years as legal counsel and general manager.

His election follows the recent death of past president and founder of the company, Bruce Burlingame.

Weston Plans Plant In Puerto Rico
Weston Electric Co. of New Jersey plans to establish a plant at Ponce, Puerto Rico, to manufacture photo-meters. It expects to employ about 200 operators with an annual payroll of approximately $\$ 100,000$.

With the aid of the industrial promotion division of the Puerto Rico Industrial Development Co., Weston expects to start a training program for workers in order to prepare enough personnel to begin operations early in 1954.

The manufacture of precision instruments and parts is tax exempted on the island in accordance with the provision of the tax holiday act of Puerto Rico.

Holzman Joins JFD
 As Field Engineer

The JFD Manufacturing Co, of Brooklyn appointed Simon Holzman to the new post of field engineer. His duties will include field testing antennas and other electrical tv accessories in tv areas throughout the country and speaking at dealer antennd clinics. He was formerly associated with Federal Radio and Engineering Corp. where he did research work on U. S. projects involving uhf equipment.

Miller Instruments Makes Changes

Several major changes in the management set-up of William Miller Instruments of Pasadena, Calif. have been announced by E. E. Goskins, recently elected president.

New appointees include: George W. Downs, vice-president and chief engineer; Edwin M. Graham, vicepresident and treasurer; Charles T, Munger, secretary; Rex Welch, general sales manager and Paul Ashway, production manager. Completing the management staff are Raymond C. Olesen, senior development engineer; John F. Kalbach, development engineer; Paul A.

A COMPLETE TWO-WAY RADIO GROUND STATION

especially designed to fill the VHF radio needs of airline; and private airports.

OUTSTANDING because it's . . .
RELIABLE-TCA/ff 's conservative design and quality construction redace maintenarce.

SIMPLE—No highly skilled personnel required for installation and operation.
VERSATILE- Fe/-Air can be usec in more situations. Designed for lacal and remete operation, with additional receivers or other accessory equipment.

PERFORMANCE—Better performance is not available from any equipment. 10 watt transmitter is ample for most locetions. Receiver sensitivity (1 microvolt at 10 cb S/N ratio), sharp selectivity brimg in clearly the weakest, noisiest signals.

Write today for descriptive literasure.
schumila and co. P $N \subset O \quad R \quad P \quad R \quad A \quad T \quad E$ NINTH AND KEARNY ST., N. E. WASHINGTON 17, D. C.

Want more information? Use post card en last page. February, 1954 - ELECTRONICS

AVAILABLE for IMMEDIATE DELIVERY... FTL-30A SLOTTED LINE

the UtMost in PRECISION ... for VHF-UHF IMPEDANCE MEASUREMENTS
in the range of 60 to 1000 megacycles per second Accuracy $\pm 2 \%$

The FTL-30A also covers - with slightly reduced accuracy - the 1000 to 2000 megacycle range. It is a coaxial line 250 centimeters long. . . having a surge impedance of $51.0 \mathrm{ohms} \pm 0.5 \mathrm{ohms}$.

Special design features include: extremely rigid construction . high sensitivity and selectivity due to efficient probe tuning... end connectors adapted to use of Type N connectors . . . full utility down to 60 megacycles.

For complete details, write for Brochure FTL-30A

Federal Telecommunication Laboratories

A Division of International Telephone and Telegraph Corporation 500 WASHINGTON AVENUE

NUTLEY, NEW JERSEY

new location and expanded facilities to manufacture

- audio, pulse, power and magnetic amplifier transformers
- specializing in difficult-to-make and custom-built transformers

formerty AJf industries inc. of Brookiyn, N.S. 30 hynes avenue, groton, conn.

Printed Gircuil

is a WIRING DEVICE

Yes, a Printed Circuit, more accurately termed a Printed Wiring Board, is nothing more nor less than a Wiring Devire. It is a most significant wiring device in that volume applications in conjunction with multiple soldering techniques permit the simultaneous production of up to 100 electrical connections within a few seconds.

A five rube superhererodyne in volume production utilizing multiple soldering and semi-automotic assembly techniques . . . on excellent application of printed wiring methods by Raytheon Manufaefuring Company.

Printed Wiring Boards can be made to your engineering specifieations by Methode, an electronic wiring device manufacturer equipped and experienced in the specialized manufacturing techniques necessary to support continuous high production. Typically, the printed wiring panel will be a smaller cost item than most other major component portions of an electronic device.

METHODE
Manufacturing Company
2021 w. Churchill st.
Chicago 47, II.
Geared to produce
Plastic and Metal Electronic Components

Brush heads give perfect time-phase accuracy

This Brush multi-channel magnetic head (Model BK-1500 series) features precision gap alignment. When you use tape recorders incorporating these heads. you can record data on one machine, and play back on anotherwith all signals remaining in perfect time-phase relationship. As many as

14 tracks can be recorded on a single tape $13 / 4$ inches wide.

Brush produces a complete line of magnetic recording heads, with models available for all existing applications. For complete information, write Brush Electronics Company, Dept. K-2A, 3405 Perkins Avenue, Cleveland 14, Ohio.

BRUSH ELECTRONICS	BRUSH	COMPANY formerly
industrial and researchinstruments piezo-electric materials - acoustic devices magnetic recording equipment ultrasonic equipment		The Brush Devolofment Co Brush Electronics Company s an operatmg nut of Clevite Curporation.

AGF "ON and OFF" BLOWPIPES

Excellent for braxing flexible tubing, for soldering jewelry and for carbide tipping tools. Write for complete Burner Catalog.

American Gas Furnace Co

 130 SPRING STREET - ELIZABETH 4, N. J.Dennis, research engineer and Donald F. Hydrick, industrial engineer.

Radio Sales Acquires
 Two Companies

Radio Merchandising Sales of New York has acquired the controlling interests in the Ames Mfg. Corp., manufacturers of wire products, and in the JEB Sales Corp., producers of the JEB rotator.

The sales program for all three companies will be handled by Martin Bettan, present sales manager of RMS.

Edison Named By RCA Victor

EdWard Edison was appointed broadcast field sales representative in RCA Victor's western region.

He joined the RCA Service Co. in 1942 as a field engineer and served with it for nine years, five of which he was manager of consumer products branch offices. In 1.951 he joined KLAC-TV in Hollywood as assistant chief engineer and in 1952 transferred to NBC in Hollywood as tv engineer assigned to development work on audio and video engineering problems.

National Company Names Three

George R. Loux was appointed vicepresident in charge of manufacturing and Thomas D. Walsh was named vice-president and controller of the National Company, it was announced by Raymond C. Cosgrove, chairman of the board.

Loux was formerly works manager of the radio and tv division of Federal Telephone \& Radio Co., works manager of General Instrument, plant manager of Sylvania and an industrial engineer with RCA.

Walsh has been with the company since 1946, serving previously as assistant treasurer and controller. He was formerly assistant to the treasurer of the American Marine Hull Insurance and with a New York firm of CPA's.
E. MacDonald Nyhen, former chief of the products braneh, electrical division of the National Production Authority, was appointed
industrial contracts sales manager of the company.

Federal Radio Appoints McDevitt

J. J. McDevitt, Jr., former manager of mobile radio for Federal Telephone and Radio, has been appointed government sales manager for the company. He succeeds J. A. Frabutt, recently named general sales manager.

McDevitt has been associated with Federal since 1949, serving as manager of the mobile radio division since February, 1952. Prior to that time, he occupied posts of sales manager for mobile radio and service manager of the Telephone and Radio Divisions.

Molloy And Runge Promoted By Vitro

The West Orange, N. J. laboratory of Vitro Corp. of America has announced the promotion of Charles T. Molloy to manager of the newly created department of physics research. He was formerly analysis group leader of the physical research and development department.

Arnold W. Runge was made manager of the department of fabrication services. He was formerly group leader of product fabrication.

Arthur R. Soffel remains as manager of development engineering, formerly the product development department.

National Fibre Plans Expansion

A PLAN for the enlargement of manufacturing facilities and product development activities at Na tional Vulcanized Fibre of Wilmington, Del. has been announced by E. R. Perry, president.

Part of the plan involves organization of a new development and research department devoted to improving company products, solving chemical problems and developing new materials for manufacturing. The program also includes plans for a half-million dollar building and facilities expansion at the company's Phenolite plant in Pa .
H. H. Street has been appointed

Output from this rugged Genisco Acselerometer (GLH NODELS)
is measured in volts . . . not millivolts!

minimizes need for amplifying devices!

IMPORTANT

 GLH PERFORMANEE CHARACTERISTICSDamping Factor: Instruments ap :o Damping factor: Instruments ap :o
$\pm 7.5 \mathrm{G}$'s inclusive can be damzed 2 $\pm 7.5 \mathrm{G}$ s inclusive can be damzed 2 to 6 critical ± 7.5 G's to $\pm 11] G$ incl. . 35 to .55 critical; above $\supset \mathrm{G}$'s . 3 to. 5 critical.
Range: $\pm 2 \mathrm{G}$'s to +30 G 's; zeo az
celeration at midpoint. celeration at midpoint.
Natural Frequencies: 6 to 25 cp 3 (depending upon range).
Potentionieter Resistance: Frorf 10CC to 10,000.
Resolution: Normally from $=5$ to Resolution: Normally from $=516$
$.3 \%$, depending upon resistan $\rightleftharpoons \mathrm{re}$. quirements.
Steady State Acceleration: Can withstand 75 G's in all planes w hout damage; somewhat less along zensitive axis in low range units.
Linearity: $\pm 0.5 \%$ of best staight line through calibration points Resistance to shock: 40 G 's i- ary
lateral direction: shock lateral direction; shock loads ir 2 directions, equal to range, w hout damage.

A precision built potentiometer is the secret behind the high output of Genisco's GLH Accelerometer As nuuch is 50 volts can be put across the potentiometer of the standard GLH, and up to 72 volts on special models. Since the wiper scans the full voltage range, use of the GLH oliminates the need for amplifying devices in many guided missile control and flight test applications.

Kecping the resistance winding free from foreign materials during assembly, carcfil adjustment of the wiper pressure to precise tolerances, and hermetic sealing of the instrument in inert gas result in electrical output noise so low it can be considered negligibleover a life span in excess of 4 million cucles.
Complete specifications and prices on the CLH are available from Cenisco, Inc., 22:33 Federal Ave., Los Angeles 64, California. Write today.

Crosstalk error: Less than 1% c ange caused by lateral acceleration quiv-
alent to total range of instrujen:. Weight: 2 to $21 / 4 \mathrm{lbs}$, dependi g an "G" range.
Overall Physical Size: $31 / 4^{\prime \prime} x=/ e^{\prime \prime} x$ 25/8"
Static Friction: 075 G max. up tand including +7.5 G 's.
0.5% full scale output above $=7.5$ G's.
(special modifications for higher natural frequencies and greater damping can be supplied.)

A parallelogram suspension confines the mass of the GLH to a virtual straight line motion and provides excellent lateral rigidity.

Have You Taken a Good Look Lately at...

 CERAMIICS?

Very possibly you need the properties
of FRENCHTOWN
engineered ceramics to give you resistance to high temperatures and low thermal expansion; excellent mechanical strength and wear resistance; superior dielectric strength at both high and low frequencies.

Why not send for this chart showing electrical and mechanical characteristics of ERENCHTOWN high-performanceceramic bodies. Name your problem; we'll also send test samples.
plant manager of the company's Yorklyn, Del., plant. He formerly was assistant plant manager.

Workshop Associates Changes Its Name

WORKSHOP Associates Division of The Gabriel Company of Norwood, Mass. is now known as the Gabriel Electronics Division. The change, according to the company, is required by the broadened scope of operations and is in line with current plans for further expansion during 1954.

Workshop Associates, which developed, at the outbreak of World War II, from a small group of home workshop hobbyists, was acquired by the Gabriel Company of Cleveland early in 1951. Shortly afterward it outgrew its plant facilities at Needham, Mass., and now occupies six buildings with over 100,000 sq ft at its Norwood site.

Majestic Radio Adds Another Plant

Majestic Radio \& Television acquired an additional manufacturing plant near their main Brooklyn plant as part of an expansion program for increased production of tv sets. The new structure adds $50,000 \mathrm{sq} \mathrm{ft}$ of floor space and includes two new production lines for final assembly and additional warehousing facilities to serve the main plant.

Leonard Ashbach, president, explained that the plant will relieve congestion in the main plant, eventually resulting in a reduced overhead.

Phen-O.Tron Names Schotter And Bayha

Appointment of Richard D. Schotter as vice-president and Jack Bayha as chief engineer of Phen-O-Tron's new printed circuit plant was announced by Robert L. Coryell, president.

Schotter brings years of experience in the fabrication of phenolic and allied materials.

Bayha was senior engineer of Emerson Radio prior to his association with Phen-O-Tron. He developed the "Autobrader", an

Model AT-120 0 to 1000 MC

Small, rugged ladder attenuator achieves attenuation accuracy and low vswr from do to uhf. Suitable for all signal and sweep generators in this frequency range.
Care in design assures maximum flexibility in mounting, drive, and types of input and output connections.
Easily adaptable for inclusion in different types of test equipment and in laboratory and production test applications.

MAXIMUM STEPS

Ten (eleven contact positions)

ATTENUATION RANGE

Up to 120 db total

OUTPUT IMPEDANCE

50 or 75 ohms nominal

INPUT IMPEDANCE

100 or 150 ohms nominal 50 or 75 ohms optional
INPUT AND OUTPUT VSWR
1.1 to 1000 mc at 50 ohms

Quick delivery on Standard Models. Prompt attention given to special requirements.

Want more information? Use post card on last page
February, 1954 - ELECTRONICS

STANDARD SIGNAL GENERATOR

20 Cycles io 50 Mc .
FREQUENCY RANGE: 20 cycles to 200 Kc . in four ranges. 80 Kc . to 50 Mc . in seven ranges.
OUTPUT VOLTAGE: 0 to 50 volts across 7500 ohmis from 20 cycles to 200 Kc. 0.1 microvolt to 1 volt across 50 ohms over most of range from 80 Kc . to 50 Mc .
MODULATION: Continuously variable 0 to 50% from 20 cycles to 20 Kc . POWER SUPPLY: 117 volts, 50/60 cycles. 75 watts.
DIMENSIONS: $15^{\prime \prime} \times 19^{\prime \prime} \times 12^{\prime \prime}$. Weight, 50 lbs.

MEASUREMENTS CORPORATION

NEW JERSEY

Miniature and Sub-Miniature

SLIP RING ASSEMBLIES BRUSH BLOCK ASSEMBLIES COMMUTATORS

and other
Electro-Mechanical Components

PRECISION MADE

TO YOUR OWN SPECIFICATIONS
Precision molded products with exacting tolerances in precious and non-precious solid metals of all alloys. All types of Thermo-Plastic and Thermo-Setting materials.

Slip Ring Assemblies fabricated or one-piece precision molded to your specifications in Nylon, Kel-F, Mineral filled Mellamine, Phenolis, and other materials. Rings and leads spot welded or brazed together for positive electrical circuit.

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

COLLECTRON CORPORATION

MUrray Hill 2-8473 - 216 East 45th Street • New York 17, N. Y.

WORLD'S MOST VERSATILE WINDING MACHINES

SUBminiature size with SUPERprecision

automatic resistor abrading device developed at Emerson.

New Antenna Company Established In Iowa

Welco Manufacturing Co. of Burlington, Iowa is a new tv antenna manufacturing firm which has been established and is owned and managed by John R. Wells. The new plant is in operation at its recently acquired building in Burlington.

Wells has been associated for several years in the sale and manufacture of tv equipment, most recently as a partner in Wells \& Winegard, tv accessory manufacturers.

Bell Heads Toledo Scale Electronics Research

Robert E. Bell has been appointed manager of the electronics research engineering department at Toledo Scale Co. in Toledo, Ohio. The organization of this separate department has been necessitated by the rapid expansion of the company's activities in the field of industrial electronics, according to R. O. Bradley, director of engineering.

Bell has previously held positions as electronic design section head and assistant to the chief engineer at Lear.

Lansing Sound Moves
 Into New Plant

James B. Lansing sound of Los Angeles, makers of speakers, units and systems, has moved into its new $12,000 \mathrm{sq} \mathrm{ft}$ building adjoining its

Specifically designed for the Band Coverage you require.

H-BAND	2011	800-2400 me/s
S-BAND	2051	$2400-3650 \mathrm{mc} / \mathrm{s}$
	2051a	2400-4050 r3e/s
C-BAND	20 Cl	$4900-6200 \mathrm{mc} / \mathrm{s}$
	20 C 2	$4240-4910 \mathrm{mc} / \mathrm{s}$
X-BAND	20×1	$8500-9660 \mathrm{mc} / \mathrm{s}$
	20×1a	$8500-10,250 \mathrm{mc} / \mathrm{s}$
	20×1b	$9500-10,250 \mathrm{mc} / \mathrm{s}$
	20×2	$6150-7500 \mathrm{mc} / \mathrm{s}$
K-BAND	20 Kl	$14.7-18.0$ kmc/s
	$20 \mathrm{K2}$	$20.0-25.0 \mathrm{kmc} / \mathrm{s}$
	$20 \mathrm{KQ1}$	$34.5-38.6 \mathrm{kmc} / \mathrm{s}$
UHF-TV	20TV1	$300-900 \mathrm{mc} / \mathrm{s}$
	Now under development-other heads to be announced soon.	
custom MEADS	Custom Heads for special coverage and calibration to meet your specific requirements.	

All of these R. F. Heads are designed for use with Vectron SA10, SA20 and SA25 Microwave Spectrum Analyzers.

For best operafion we recommend THE NEW VECTRON SA25 See our advertisement at right

Write today for information on the specific R. F. HEADS yourequire.
 Electomic and Slector-Muchanical Sopupment

OOA MAIN STREET, WALTHAM 54, MASS.

Want more information? Use post card on last page. ELECTRONICS - February, 1954

PLANTS AND PEOPLE (continued)
main building. The main building is now used entirely for production.

The move doubles the number of factory and office employees. The new building contains offices, a cabinet and paint shop, a research and development laboratory, warehouse facilities and limited production space.

Besides its manufactured line for the electronics field, the company has added a new department for theater system components under the direction of George F. Halkides, production manager.

California Chassis
 Moves To New Plant

California Chassis has moved its plant from South Gate, Calif. to its new one-story building with 10,000 sq ft of floor space in Lynwood, Calif. An additional two acres was purchased next to the site for future expansion.

The new facilities include quarters for its fabrication department, baking and spraying rooms and complete production and administrative areas.

Magnecord Names Bixler Vice-President

Отto C. Bixler, director of engineering and research at Magnecord of Chicago, has been elected vicepresident by the board of directors.

He joined Magnecord in 1951 as chief engineer. From 1949 to 1951 he had been a development engineer for AiResearch Manufacturing Co. in Los Angeles.

Before that, he worked eight years for Western Electric in both New York and Hollywood. He was successively field engineer, senior engineer and systems engineer.

Edwards Joins
 Cinema-Aerovox

Gordon Edwards, formerly chief engineer with Cole Instrument Co. of Los Angeles, became sales engineer with Cinema Engineering Co., a division of Aerovox, according to James L. Fouch, general manager of Cinema.
Vic Lees, formerly production manager with Cole Instrument, joined Cinema in a similar capacity.

12 NEW FEATURES

1) "Low Noise" 20 KC IF Amplifier
2) Amplified Wavemeter Indication
3) Double Range Sweep - 2 to 20 CPS
4) Extended Frequency Response
5) DC Filament Supply for Klystron
6) Longer Persistence CR Tube
7) Visual Viewing Filfer
8) Flat Face Cathode Ray Tube
9) Special Illuminated Scale
10) Improved Display Linearity
11) Improved High Speed Retrace
12) Improved Sweep Intensification

PLUS ALL THE
OUTSTANDING FEATURES OF VECTRON'S MODEL SA20 INCLUDING:
Large Clear 5" Oscilloscope Pattern
Standard Bezel to accept Camera or Hood Minimized Controls for Maximum Operating Convenience
Double Conversion for Maximum I. F. Stability Regulated Klystron Oscillator Power Supply Easy Access for Adjustment or Maintenance

And Your Choice of 12 INTERCHANGEABLE R. F. HEADS See our adverfisement af leff.

Slectionic and Electo-Mechanical Equipment

Want more information? Use post card on Iast page.
provide TIME DELAY

Carboloy ${ }^{\circledR}$ Thermistors in the electrical control of an oil burner, delay opening of solenoid valve until combustion chamber is ready to receive properly aerated oil. A mechanical timer was eliminated, and the cost of the unit reduced.

The resistance of Thermistors - unlike metals - changes negatively with temperature increases. Their inherent thermal inertia makes them ideal for signalling and warning devices and controls. Thermistors are available in two grades and in rod, disc or washer form, in a wide variety of sizes.

The Carboloy Engineering Appraisal Service will work with you on specific applications involving Thermistors. Send coupon, today, for literature.

"Carboloy" is the trodemark for the products of the Corboloy Department of General Electric Company

Want more information? Use post card on last page. 406

NEW BOOKS

Television Engineering

By S. W. Amos and D. C. Birkinshaw. Iliffe and Sons, Ltd., London, Vol. I, 302 pages, 1953, 30 shillings ($\$ 6.75$ USA) .
THis excellent volume is the first on television in the well-known series of Engineering Training Manuals of the British Broadcasting Corporation. Since the BBC has a technical staff preeminent among broadeasting organizations, it comes as no surprise that the book is technically above reproach. The treatment is refreshingly free from mathematical symbolism, as is appropriate in a textbook intended for operations and maintenance staffs. Mathematical derivations are confined to eight appendices; even here simple algebra, trigonometry and plane geometry suffice.

The elementary tone of the book is in a sense deceptive, because the so-called expert will find in it much information not conveniently gathered in one place heretofore. "Part II: Television Camera Tubes" is the most comprehensive treatment of the subject now in print. The BBC uses more kinds of camera tubes than do American broadcasters and it is necessary that the BCC staff know the nature of the several beasts. So we find not only the image orthicon and the iconoscope (the American stable) described in adequate detail, but also the image iconoscope, the orthicon, the C.P.S. emitron and the vidicon. This section, written by men who evidently have lived with the camera tubes long enough to regard them with intimacy, if not affection, is in itself worth the cost of the book.
"Part I: Fundamentals" represents a well-chosen selection of topics essential to the television broadcast engineer. It deals with scanning, synchronization and the video waveform. The latter is based on the BBC standards, but the time is past when the numerical differences between British, American and European standards are a source of confusion. Non-British readers will find this section a concise and informative statement of the technical basis of the British tv

-features improved design-miniature size and perfect performance

Especially adapted to hand operated, electrical circuit and tuning mechanisms. The unique and exclusive HHB design combines the flexibility and sealing quality of rubber, low frictional resistance of metal against bearing material, and the corrosion resistance of high grade brass. Shafts are one piece, eliminating back lash. No lubrication required.

HHB rotary shaft seals meet the requirements of the following tests.

- 100 hour 360 degree rotation and reverse fest at a speed of 17 cycles per minute, operating under water and under pressure load of 20 psi .
-100% rated pressure overload test
$-\mathbf{2 0}$ cycle humidity test
- 125 g shock test
-minus $55^{\circ} \mathrm{C}$. cold test . . $85^{\circ} \mathrm{C}$. high temperature test
-horizontal and vertical vibration tests from 10 to 55 cps at an excursion of 1/16 in.
. . . maintaining always a pressure seal.
Complete catalog data is available upon request.

H. H. BUGGIE, Inc. 726 STANTON STREET TOLEDO 4, OHIO

DEPENDABLE MKMesarie RADIO FILTERS

-Saves space!
$-115 \mathrm{~V} \mathrm{ac} / \mathrm{dc}, 20 \mathrm{amp}$.
-Excellent attenuation
-Feed through installation
-Flange mounting bracket
-Corrosion \& fungus resistant
If you have radio interference problems, write or wire us, TODAY!

HØркINS Inqineering C_{0}

FACTORY: 2082 Lincoln Ave., Altadena, Calif. SY camore 8-1185 Offices in WASHINGTON, D. C. and DETROIT

CUT COSTS AND SPEED PRODUCTION WITH "Industrial"

DUO-DECAL SOCKET
CASTING: General Purpose Molded Phenolic. CONTACT: Spring Temper Brass, Cadmium plated.
Wired to your specifications. Available for IMMEDIATE DELIVERY
Procision engineered eloctronic components and connecting devices for all your needs.

- LAMINATED TUBE SOCKFTS
- TERMINALSTRIPS
- ANODE CONNECTORS
- WIRTERLOCK PLUGS
- METALANDBAKELITE STAMPINGS
- TERMINAL BOARD ASSEMBLIES
- TUNER STRIPS, SOCKETS
and BRAGKETS UHF
Our oxtensive design and production facilities are available for developing your special requirements
and applications. Representatives in principal cities throughout U.S.A.

Write for Our New 1954
H1 Write for Our New $\begin{array}{r}\text { Reference Catalog. Dept. E-2 }\end{array}$
INOUSTRIAL HAROWARE MTg. Co., Inc.
109 PAIFACE STREET • NEW YORK 12, N. Y.

are you ready for

COLOR TELEVISION?

Optical can supply all types of high vacuum equipment in laboratory or industrial sizes.
Complete high vacuum units - Oil diffusion pumps • Aluminizing equipment - Optical Coatings - High efficiency mirrors - dichroic beam splitter - and low reflection films.

Write for literature giving detailed information.

OPTICAL FILM ENGINEERING CO.

2731-37 North 6th Street, Philadelphia 33, Penna.

 - PROOF against SHOCK - MOISTURE - TEMPERATURE

- Withstands ambient temperatures of $-40^{\circ} \mathrm{C}$. to $+100^{\circ} \mathrm{C}$.; 95% humidity.
- Resistive elements are accurate, noninductive, wire-wound and hermetically sealed in a special tough plastic compound.
- Greater power dissipation.
- Switch surface flat and smooth . . . easy to clean, BRUSHES CANNOT JRIP, exceptionally long life.
- QUIET . . . extremely low switch noise level . . . ideal audio mixer ceontrols.
- "Lubricated for life" bearings.
- Stock types available with "LADDER," "T," "H," "L" and potentiometer configurations up to 32 steps.
Send for Bulletin A-2 for specifications and prices.

Representatives:
BEEBE ASSOCIATES
1155 Waukegan Road, Glenview, Illinois
BURLINGAME ASSOCIATES
103 Lafayette Street, New York City
MARRISON J, BLIND
1616 Cord Street, Indianapolis 24, Indiana

HYCOR SALES COMPANY

 of Californin11423 VANOWEN STREET NORTH HOLIYWOOD, CALIF.

service now in operation.
"Part III: Television and Electron Optics" deals, first, with the input to the camera tube, light and manipulation of light by mirrors and lenses and, second, with the elements of electron optics as they apply to the beam focussing and deflection systems. These go as far as the intended reader has need, and no farther. The treatment of light is disappointing in one respect; it deals exclusively with luminous quantities. The fact that camera tubes can respond to radiations outside the luminous limits is not given proper emphasis. Since tube designers have conspired to keep infrared and ultra-violet sensitivity within bounds, this omission is not serious from the operations point of view.

The book concludes with appendices on aperture distortion, units of illumination and brightness, derivation of useful formulas in geometric optics, and electron forces in magnetic fields.

This first volume in the series treats but a small part of the field; it can be confidently expected that the succeeding volumes will cover the remaining topics with equal clarity and simplicity.-Donald G. Fink, Philco Corp., Philadelphia.

Television Fundamentals

By Kenneth Fowler and Harold B. Lipeert, McGraw-Hill Book Co., Inc., New York, 1953, 524 p. $\$ 7.00$.
THE BASIC material in this book, having appeared in lesson material previously, has weathered its "trial by fire" during many a "service clinic" conducted by the book's authors or their representatives.

The writing of this book spans practically the entire life of commercial television service as we know it today. Therein lies some of the virtues of the book as well as some of its faults.

Let's dispose of its faults first, so we can dwell on the many features of the book that make it worthy of study by a technician or student desiring to increase his knowledge and skill.

Essentially, the shortcomings of the book can be summed up by stating simply that the advancement
of the art ran too far ahead of the authors' revisions.

We note by the copyright that parts of the material were written in 1948. While no doubt there were many revisions and additions made during the years, the important fact to keep in mind is that the book is issued now-in 1953. It must be so judged.

The radio technician or ${ }^{\text {st }}$ tudent for whom this book was written has every right to be disappointed when he finds that this book ignores uhf as though it hardly existed. There is no mention of uhf tuners, converters, antennas or the additional care required in installing uhf receivers.

When one considers that uhf is currently playing such a large part in current service problems, this omission in a current book is serious.

Other developments that receive no mention from the authors, probably because of the difficulty in completely revising the material previously written, are the cascode-type front end, the turret tuner and self-focus picture tubes.

These errors, if we want to call them errors, are errors of omission rather than commission. The material that is found in the book, however, is excellent.

It is difficult to evaluate the real worth of good, basic knowledge, clearly explained, in terms of money-but certainly the 40-page chapter on "Automatic Frequency Control of Horizontal Sweep Generators" is alone worth the price of the book. It is the most complete and clearest description of this difficult subject this reviewer has seen in current literature.

The authors' objective is to provide "a course of study and a reference volume for radio technicians and students who may eventually have the responsibility for installing and servicing television receivers". Except for students in uhf areas, like Scranton for instance, where four uhf stations are received, the book can be said to fulfill its objective completely.

The book's 524 pages shine with good practical information. The major sections of a modern receiver are described fully and in logical

Meet
WEMPY

- regardless of finish
- regardless of size
- regardless of material
- regardless of quantity

WEMPY
is almays cady and able to serve you. Get to know him for your standard and special nuts.

WEMPY'S
ADDRESS IS .

- Write to Dept. A for Illustrative Folder

> WESTFIELD METAL PRODUCTS CO., INC. WESTFIELD, MASS.

Performance at Constant Spacing with Variable Speed

ELECTRO
 MAGNETIC PICK-UP

Generates up to 28 Volts without Contact

Model
3010-A

Convert Mechanical Motion to Electrical Energy

This vital link between the machine and the instrument generates electrical voltages proportional to the rate of speed of any metal object. It produces use ful output voltages at frequencies up to $75,000 \mathrm{cps}$, and at speeds in excess of $3^{\prime \prime} / \mathrm{sec}$. Actuated by the displacement or vibration of any magnetic material in the field of the pick-up, such as a slot or keyway in the rim of a wheel or shaft, the teeth in a gear, or any magnetic part on a moving body. Selfenergized by built-in magnet. Low price, small size and rugged construction permits use in production machinery.
A Few of Many Applications

- Indicates rate of motion
- Acceleration and velocity studies
- For precision ignition timing
- Actuates electrical counters

Write for FREE Bulletin MP 592

ELECTRO PRODUCTS LABORATORIES

4501- Eu Ravenswood Ave., Chieago 40, lll. Canada: Atlas Radio Corp., Ltd., Toronto, Ont.

"Tell-Tales" for Electronic Equipment by ALDEN

new KEL - Fimuario

 "'MINI-TEST’’ JACKS FOR pRONT PANEL VOLTAGE CHECKS

Here is a new Alden Test Point that can
1 be put in equipment going almost anywhere - because KEL-F has zero moisture absorption, smooth non-wetting surface, inhibits fungus growth. Now with Alden Mini-Test Jacks you can include this test feature where never before possible, even in equipment designed for the tropics or arctic regions - making any circuit immediately available for test at front of panel.

Famous ALDEN 360° wrap-around contact Beautiful punch press contact of beryllium
 copper, provides extra long contact path, has long life resilience good for many years.

Alden's Mini-Test Line gives complete choice of INSULATION:
 > PHENOLIC-conforms to JAN and MIL specs. NYLON-in bright colors for color-coding > KEL-F-M. W. Kellogg Company's trifluoro. chloroethylene polymer products.

 PHENOLIC-conforms to JAN and MIL specs.

 PHENOLIC-conforms to JAN and MIL specs. NYLON-in bright colors for color-coding NYLON-in bright colors for color-coding

 KEl-F-M. W. Kellogg Company's trifluoro

 KEl-F-M. W. Kellogg Company's trifluorochloroethvlene polymer products.

chloroethvlene polymer products.}Complete choice of MTG. METHODS:

(1) threaded
llobCs mounts with screw nut from back.
(2) MOUNTING PLATE

Where turning a nut does not suit your production techniques, you can spot weld, rivet or cyeler the mounting plate of this Mini-Test. No nut tension worries.
©
order. An example of the thoroughness of the authors can be gleaned from the subheadings in the chapter on video i-f circuitry: Requirements of Video I-F, Receiver Compensation for Vestigial Side Band Reception, Need for Adjacent Channel Sound Trap, Obtaining WideBand Characteristics, Video I-F Transformer Features, I-F Wave Trap Features, Contrast Control Circuits, Input Capacity of Video I-F Tubes, Over-all Video I-F circuit, and Tracking of Sound with Picture.

The material is amply illustrated with photos and drawings. The layout and type selection encourage easy reading, thus aiding student concentration. The 51-page pictorial presentation of receiver troubles, together with an analysis of possible causes, is a helpful innovation in books of this type.

Summing up, for a currently issued book on television service there are serious omissions, but the material that is presented is done well enough to warrant a serious student's attention. - HAROLD J. Schulman, Director of Service, Allen B. Du Mont Labs., Inc.

Basic Electronic
 Test Instruments

By Rufus P. Turner. Rinehart Books, Inc., New York, N. Y., 1953, 254 pages, $\$ 4.00$.
Increased use of electronic techniques requires understanding and maintenance by nonengineers or engineers from other fields. Despite the number of good electronics texts at all levels, there are still wide gaps in the printed word for those primarily concerned with instrumentation in its most practical forms.

The author has made a large contribution towards plugging these gaps by providing information for the technician. Engineers from outside the electronics field will likewise find the expositions of basic principles helpful.

Specifically, the book covers operation and use of electrical and electronic instruments from simple voltmeters through inductance checkers, audio test oscillators and r-f signal tracers to a discussion of

H-16 CHECKS the CHECKER

ARC ${ }_{\text {Type } \mathrm{H}-16}$ STANDARD COURSE-CHECKER

For Omni Signal Generators

- This newly developed instrument is a means for checking precisely the phase-accuracy of the modulation on VOR (Omnirange) Signal Generators. Now that the use of omnirange receivers and signal generators is so widespread, it is necessary to have a means of measuring the phase differences between the 30 cps envelope of the 9960 $\pm 480 \mathrm{cps}$ reference modulation, and of the 30 cps variable modulation when that difference is required to be 0,15 , 180 or 195 degrees.
\square An important feature of the $\mathrm{H}-16$ is a built-in self-checking circuit to insure .1 degree accuracy. Errors may be read directly on a 3 -inch meter, calibrated to read ± 4 degrees.

Write for defailed specifications

Dependable Airborne

Ilectronic Equipment Since 1928

Aircraft Radio Corporation
 BOONTON NEWHERSEY

Want more information? Use post card on last page.
February, 1954 - ELECTRONICS

ELECTRONIC GLASS WORKING EQUIPMENT for RADIO, TELEVISION TUBES, INCANDESCENT LAMPS, glass Lathes for TELEVISION TUBES
We make Transformers, Spot and Wire Butt Welders, Wire Cutting Machines and 500 other items, indisperisable in your production. Eister Engineers are constantly developing New Equipment. If you prefer your own designs, let us build them for you. Write to Charles Eisler who has served The Industry over 33 years.

> Machines for small Radio Tubes of all kinds:

High Temperature Hydrogen Electric Furnaces

Hydrogen atmosphere heating chamber, hydrogem drying tower, water cooled unloading chamber, heat contral with air cooled transformer with 11 position tap switch. Automatic temperature control (optional) standard furnaces from $1^{\prime \prime}$ bore $1800^{\circ} \mathrm{C}$ to $8^{\prime \prime}$ bore $1100^{\circ} \mathrm{C}$. Molybdenum wound heating units, loading and unloading chambers equipped with safety doors. Supplied with hydrogen flow gauges. Made to order in many sizes.

CROSSBAR

For details of this truly superior switch, write

For broadcast studio master control and monitor switching of audio and video circuits . . . intercoms . . . telegraph computers . . . many other applications. Extreme flexibility. Fasf and quiet swith with low crossialk level. Any group of setups may be held intact while setting up others. Provision for spot or remote control.

Model 10xio

Connects any of ten cir-
cuits in horizontal plane
to any of ten vertical.

> It's "TREATMENT" that makes DANO your Best Bet for Coils

D ANO's battery of vacuum impregnating tanks and heat controlled ovens for curing varnish impregnations is al-
ways at your service. Yes, Dano coils and Dano customers are always treated in the manner that makes your production pay dividends.

- Form Wound
- Paper Section
- Acetate Bobbin
- MoIded Coils
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Application

Send us samples or specifications with quantity requirements
for our recommendations. No obligation!
Also, Transformers Made To Order
 asking

packed with the latest and most complete information on

performance

TAPE WOUND CORES

12 Pages of Performance Curves -
Tables of Guaranteed Performance
Description of Core Matching Service
Applications - Constructions

plus much additional information
For your copy of the "Performance-
Guaranteed" Tape Wound Core Catalog
write on vour letterhead
BOX E-1

MAGMETICS,inc.

Specializing in High Permeability Magnetics BUTLER, PA.

MALLORY

MERCURY BATTERIES and SILVERLYTIC CAPACITORS

Designed Specifically for TRANSISTOR APPLICATIONS

Available Now in PRODUCTION QUANTITIES

Mallory Mercury Batteries are ideally suited for the power supply requirements of transistor circuits. Available as single cells or multi-cell packs in a wide range of voltages, they deliver the constant energy output needed for best results.

Also perfectly suited to transistor applications, these tiny, Mallorydeveloped Silverlytic Capacitors have been expressly designed for the requirements of low voltage circuits and miniaturization.

For coriplete data, write to P.R.Mallory \& Co. Inc. Indianapolis 6, Indiana

Want more information? Use post card on last page.

NEW BOOKS
tube characteristics and tube testers.

While he has had to give relatively scant coverage for important topics such as the cathode-ray oscilloscope (27 pages), the author has managed quite well to hit the high spots of particular interest to the serviceman who represents a major market for the volume. A brief but adequate series of references points the way to more specialized information for every chapter.

As a self-help, or for use by schools, there are likewise review questions summarizing what the reader should have learned from each chapter.

Of particular interest is the author's apparent preoccupation with kits that can be assembled into various pieces of test equipment. As he says in his preface, " . . . instrument kits have become established in the electronic market, have received wide acceptance, and have for the most part rendered uneconomical the design and construction of shop-built equipment unless the latter serves some special purpose."-A. A. McK.

Principles and Practices of Telecasting Operations

By Harold E. Ennes. Howard W. Sams and Co., Inc., Indianapolis 5, Indiana, 1953, 596 pages, $\$ 7.95$.
THIS book is specifically intended for engineers engaged in the field of television operations as distinguished from those involved in television research or design work. Video control engineers, cameramen, station engineers and those concerned with the technical phases of telecasting will find it a useful compilation of operating techniques and procedures as they prevailed circa 1953.

The first five chapters are devoted to a summary of elementary television theory as it affects camera chains, control rooms, studios and transmission systems. Chapters 6,7 , and 8 deal with studio operating practices and 9 and 10 with field operations. In Chapters 11 and 12 the operation and maintenance of transmitters are discussed.

Since television operators are always most concerned with the particular pieces of equipment they
bas been around (and still is!)

Trim Trol was developed in 1947 to actuate trim tabs in the prototype Grumman Albatross. This actuator proved as rugged as the new amphibian, functioned perfectly despite prolonged exposure to salt water. Soon afterward, McDonnell selected Trim Trol for the original Banshee. It has been used in every model of the series.

The same basic model continues to satisfy all demands, although aircraft design has changed radically. Trim Trol is now specified equipment in the Chance-Vought Cutlass, the Douglas Skyknight and A3D.

Mesting the requirements of MIL-A-8064 (USAF), it weighs $31 / 2 \mathrm{lb}$., has ultimate static capacity of 2000 lb . in., and produces 300 lb. in. operating torque through 160 degrees.

The story of Trim Trol is only one example of Airborne's pioneering in the actuator field. As the evolution of aircraft design poses new problems, look to Airborne for the solutions. For more information on Trim Trol, and other actuators, see our literature in the I.A.S. Catalog.

Accessories Corporation
hilliside 5, New Jersey
use, the author has dipped deeply into the manufacturers' technical literature. Specific equipments discussed in detail are the RCA TS10A switching system, the Dumont 5098-A camera, the RCA TG-1A sync generator, the RCA TM-5-A master monitor, the Dumont 5056-A remote sync phasing unit, the GE synchro-lite projection system, the GE TT-6D transmitter, the RCA TT-5A transmitter, the RCA TK 30A camera, the GE TV-16B stabilizing amplifier, the Dumont $5130-\mathrm{C} 16-\mathrm{mm}$ projector, the Eastman television recording camera, the RCA 77-D microphone, the RCA microwave equipment, the GE TT10A transmitter and the General Radio 1183-T station monitor.

The technical accuracy of the book is generally adequate for the level intended. The author, however, overstresses the superiority of the cathode follower (p 15) as compared to the plate-loaded amplifier in video amplifier output stages. Quite often, the choice of either circuit will be based on output signal polarity considerations alone, and newer developments in feedback video amplifier circuits bid fair to obsolete entirely the use of the follower circuit for coaxial cable feeds.

The diagram of the diplexers shown on p 39 is incomplete. No power will be developed in the radiators by the aural transmitter in the circuit shown.

It should be noted that the modulation bandwidth of the television aural transmitter is not simply twice 25 kc as indicated on p 33.

Certain of the faults as well as the virtues of negative modulation should have been mentioned on p 38 , including the difficulty of obtaining a linear modulating characteristic down to the maximum white point which represents zero power output. The British system of positive modulation has much to recommend it on this score.
The studio layouts shown on p 96 are not necessarily representative of current practice. A view of the studio floor from the control room is no longer considered essential.

Not all stations use the technical director system of crew control as described on p 333 et seq.

In Chapter 10, which is devoted

HOW TO SAVE MONEY WITH GRE SMALL DIE CASTINGS

it tells how to: design for GRC small die castings, cast intricate shapes, and involved contours, simplify design, make 1-pc. integral castings in place of multiple assemblies, eliminate machining operations. Contains technical data and information for designers and engineers, case histories, and other valuable facts.

GRITS REPRODUCER CORP.

World's foremost Producer of Small Die Castings
151 Beechwood Ave., New Rochelle, N. Y., New Rochelle 3-8600

Double Barrel Advertising

Advertising men agree - to do a complete advertising job you need the double effect of both Display Advertising and Direct Mail.

Display Advertising keeps your name before the public and builds prestige.
Direct Mail supplements your Display Advertising. It pin-points your message right to the executive you want to reach-the person who buys or influences the purchases.

More and more companies are constantly increasing their use of Direct Mail because it does a job that no other form of advertising will do.

McGraw-Hill has a special Direct Mail Service that permits the use of McGraw-Hill lists for mailings. Our names give complete coverage in all the industries served by McGraw-Hill publications - gives your message the undivided personal attention of the top-notch executives in the industrial firms. They put you in direct touch with the men who make policy decisions.

Mc GRAW-HILL direct mail list service

In view of present day difficulties in maintaining your own mailing lists, our efficient personalized service is particularly important in securing the comprehensive market coverage you need and want.

Ask for more detailed information today. You'll be surprised at the low over-all cost and the tested effectiveness of these hand-picked selectrons.

McGraw-Hill Publishing Co.,Inc. 330 West' 42 nd Street, New York 36, N. Y.

Facts you should know about HEYCO STRAIN RELIEFS!
 the Nylon Bushings that Anchor cord to housing

1. Absorb cord pull, push and torque

2 Insulate wire from housing

CUT PRODUCTION COSTS IMPROVE PRODUCT QUALITY APPROVED

SAMPLES? Send wire size and chassis informatio
Try HEYCOS at no cost to you - today!
MADE IN ALL SIZES FOR CLOCK WIRE TO $5 \cdot 10 / 3$ CABLE

HEYMAN MANUFACTURING COMPANY

KENILWORTH2. NEW JERSEY

Ability to solve . . . Capacity to produce send your Printed Circuit problems

TO MILMAR!

Wilmar has both ability and capacity to develop and manufacture printed circuits to solve your electronic design problems. Modern facilities are available to you for special, small-scale problems or the massproduction of dependable units. Your inquiry on Wilmar's ability to serve you or on a specific design problem will receive prompt attention!
Advantages of Wilmar Printed Circuits!
Save space, assembly time; cut errors
Minimum of wiring labor costs
Components easily accessible
Cut inspection time

- Uniform wiring; faster soldering
- Improved reliability

Write, Wire or Phone TODAY!
Get the facts right now about Wilmar Prinfed Circuits.

2715 E. 14th ST. * KANSAS CITY 27, MO.

LAB DOLLY model a

-... with 8 power outlets (1500 watts, 110 VAC) and a 10 foot heavy duty extension cord.

- Ball Bearing Swivel - Recommended by Rubber Tired Casters.
- Constructed of Aluminum. Features 2 Shelves for Equipment and a pan for test leads, notebooks, etc. Laboratories wherever used.
Priee 4950
FOB Louisville, Ky.

TECHNIGAL SERVICE GORP.

1404 W. Market St.
Louisville 3, Kentucky

- Supports 175 lbs.
- Extends to 227/8"
- Fits all standard chassis and racks
- Chassis instantly removable
- Permanently lubricated
- All hardware included
- Meets JAN salt-spray requirements
CHASSIS-TRAK CORP. 6250 E. Iona Road Indianapolis, Ind.

Don's be cfraid
to change that
Package Design
BRADLEY
has a rigid plastic box
for your product . . .

$81 / 4^{\prime \prime} \times 41 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}$
(assorted compartments)

$27 / 8^{\prime \prime} \times 2^{\prime \prime} \times 1 / 2^{\prime \prime}$
4 compartments.

No. 32
23/4 diam. $\times 5 / 8^{\prime \prime}$ deep
Industrial manufacturers, especially of components, are utilizing our boxes for paciaging. We have over 500 rigid poly styrene boxes available FROM STOCK MOLDS, or we will design a box to meet your specific requirements.

Send for illustrated catalog, showing box dimensions. . you're cordially invited to visit ouf new factory and showrooms when in Chicago.

World's Largest Assortment of Rigid Plastic Boxes

BRADLEY
INDUSTRIES
1656 North Damen Ave Chicago 47, III.

To Readers Outside North America

Tektronix export sales activities are conducted from the home office, eilher direct to the ultimate user or through the medium of engineering sales organizations located within the specific country. Tektronix products are available at the published catalog prices, f.o.b. Portland, Oregon, without added premium or markup of any kind, to users throughout the world. CIF, C \& F or FAS pro-farma invoices promptly furnished on request. For complete details on instruments, warranty and maintenance, and the name of your distributor, write to the Export Department of the address below.
is is

for MILLIMICROSECOND
 Pulse Observation

The Tektronix Type 517 Cathode-Ray Oscillascope is a specialized instrument designed primarily for the observation and photographic recording of very fast rising waveforms having a law duty cycle. Vertical amplifier risetime of $0.007 \mu_{\mathrm{sec}}$ and sweeps as fast as $0.01 \mu_{\mathrm{sec}} / \mathrm{cm}$ permit step-function reproduction with an accu racy never before attainable in a commercial oscillascope. Sufficient delay is incorporated in the vertical amplifier to permit the observed signal ta trigger the sweep. Built-in rate generator can be used to trigger the circuit under study.

Sensitivity - $0.1 \mathrm{v} / \mathrm{cm}$

Riserime
$0.007 \mu \mathrm{sec}$ or lies
Amplitude Calibrator 25 kc pulse, 0.15 v to 50 v fult scale, accurate within 4\%
Net Signal Delay (Total delay minus weep starting time) 20 to $50 \mathrm{~m} \mu \mathrm{sec}$

Accelerating Potential 24 kv
Metallized CR
Regulation - All critical voltages electronically regulated
Time Bases - 11 fixed, $0.01 \mu \mathrm{sec} / \mathrm{cm}$ to 20 $\mu \mathrm{sec} / \mathrm{cm}$, accurate within 2%

Tektranix Type 517 Cathode-Ray Oscilloscope $\$ 3500$ f.o.b. Portland, Oregon

[^31]if the reader isn't completely up to all of the text.-K.H.

Automatic Control of Heating and Air Conditioning

By John E. Haines, MinneapolisHoneywell Regulator Co. McGraw-Hill Book Co., Inc., New York, 370 pages, $\$ 6.75,1953$.
While there is nothing electronic in this book, it covers a phase of industrial and domestic life which concerns virtually every engineer in the country. The emphasis is on the controls themselves and only secondarily upon the necessity or desirability of the control. All manner of controls are described with text, diagrams and drawings. It is simple and non-mathematical and could be used for a first course on automatic control by electric or pneumatic devices. Chapters are devoted to domestic heating control. commercial heating and cooling systems, commercial refrigeration control and, finally, the problems of radiant-panel heating.-K. H.

THUMBNAIL REVIEWS

Simultaneous Linear Equations and Determination of Eigenvalues. NBS Applied Mathematics Series 29 ; U.S. Government Printing Office. Washington, D. C., 126 pages, 1953, $\$ 1.50$. Symposium of 19 papers presented at a Los Angeles meeting sponsored by NBS Institute for Numerical Analysis. Useful to physicists, chemists and aerodynamics engineers.

Introduction a L'Electronique. By P. Grau. Dunod, 92 rue Bonaparte (VI) Paris, 212 pages, 1953, 1,650 francs. An elementary and thoroughly readable book on the bases of electronic circuits and applications to communication, to industrial operations and to general measuring techniques. In French.

Selenium Rectifier Handbook. Federal Telephone and Radio Co., Clifton, N. J., 80 pages, $1953, \$.50$. Second edition. Listing of rectifier types, dimensions, circuits and design data for engineers.

Statistical Methods in Electrical Engineering. By D. A. Bell. Chapman \& Hall, Ltd., London, 175 pages, 1953, 25 shillings. Probability theory, frequency distributions, curve fitting, data reliability, quality control principles, fluctuations, entropy and information. Rather severely technical but much of it is readable by those with limited mathematical backgrounds.

Accepted and approved by leading U. S. manufacturers of electron tubes, transistors, radar, and communications equipment.
GOLD, SILVER or PLATINUM plated on wire as small as 0.0005 inch diameter.

NARL continuous process electroplating equipment and controls assure compliance with the most exacting specifica. tions.

Large size wire plating with various metals or alloys - to protect against corrosion - to resist abrasion - to improve adhesion of insulation.

FINERIBBON and STRIP electroplating up to $31 / 2 \times 0.025$ inch size

Copper plating on aluminum
Copper plating on stainless steel for die lubrication

Platinum plating on small parts such as electrical contacts
Inquiries welcomed on difficult wire, strip or small parts plating.

Research - Development Production

For Dependable Electronic Wiring Leading Manufacturers Choose UNILECTRIC Wiring Systems

Year after year . . . for over ten years UNILECTRIC has produced millions of wiring systems for over 150 leading manufacturers of electric and electronic products. If you still fabricate your own electronic wiring it will pay you to investigate UNILECTRIC.

> There is Only ONE Standard of Quality at UNILECTRIC

This intricate wir. Ing harness for a lot auto pilot must meet the most tions. A pilat's life and perhaps a maior bottle de pond on if.

The same work. manship...th same standards of qualityprotoct your product wir. dug and your pro for dependability.

To assure utmost dependability plus cost soving engi-tow-cost produc, ion ond in schedule deliv. ched investigate UNIL'ECTRICtoday

UNILECTRIC QUALITY
 Protects Your Products

Want more information? Use post card on last page ELECTRONICS - February, 1954

BACKTALK

Heat Rise

Dear Sirs:
You have no doubt had news of the recent fire in the $10-\mathrm{kc}$ Network Analyzer recently put in service at the University of Illinois. A large portion of the functions in this analyzer are performed electronically, and the construction follows the electronics pattern with standard racks and panels. In some manner a hot fire (not a "roast out") started at the bottom of one of the racks, containing the generators. The fire was sufficiently hot to melt aluminum chassis and completely destroy Micarta terminal boards. The cause has not been determined.

It does not seem possible that the combustible material in a single tray could furnish enough heat to touch off the trays above and cause destruction of all the equipment in one rack and badly destroy equipment in adjacent racks, but that appears to be the case.

Apparently the analyzer did not go quite far enough in duplicating the power systems it was designed to simulate.
F. D. White

Springfield, Illinois

Low-Frequency Resonators

Dear Sirs:
I was very interested to read the article entitled "Vibrating Wire High-Q Resonators" by A. W. Dickson and W. P. Murden in the September issue of Electronics (p 164). However, I must question a statement made in the first paragraph. It is stated that there is a gap on available resonators between 5 and 50 kc , given as the highest frequency for forks and the lowest for crystals. I am not aware of the range of crystals available in the United States, but here in England we have commercially-available units from 400 cps upwards. Such crystals can be obtained with frequency adjusted to ± 0.005 percent accuracy at stated temperature and maximum deviation over the range -10 to +70 deg C or 0.02 percent. These crystals are, of course, not

These Rugged Microphones Make Ideal Components for Small, Compact Equipment

- The new Shure MC Series of l-Inch "Controlled Rehnetance" Microphones were specially designed for use with transistor circuits-and they are highly recommended for use in transistortype hoaring aids. These I-Inch Microphones are also ideally suited for use in vacuum tule devices such as small, compact Amplifiers, Transmitters, Dictating Equip-ment-wherever size and weight are factors, and portability is extremely important. The MI: Series Micruphones normally are furnished with impedance of 1000 ohmus (other impedances are available).
'The MC Series Microphones are rurged magnetic units, relatively immunc to mechanical shock and to varying conditions of heat and Inmidits:

For technical information Write,
Wire or Coll Soles Division
W11R $\begin{aligned} & \text { Wire or Call Soles Division } \\ & \text { SMURE BROS., Inc. } \\ & 225 \text { West Huron Street } \\ & \text { Chicago 10, Illinois }\end{aligned}$
Want more information? Use post cord on last page.

Florida offers decided advantages to manufacturers in certain fields of electronics such as...

Tubes

Resistors

Coils
Expensive Transformers
Light weight electro-
mechanical components
Specialized instruments and equipment
Key personnel, engineers and good production workers are available, employee morale is high and the labor climate is excellent. More than 1,965 new residents move to Florida every week.

Florida's sunny year-round good weather assures reduced construction, plant maintenance and heating costs.

Florida is strategically situated for serving Southern and Latin-American narkets.

In Florida vou pay no state income taxes, no state ad valorem tax, no state inheritance tax.

Florida already has well established electronics research and development facilities - with room for more.

A MANUFACTURER SPEAKS

Quoting the president of a Florida electronics company:
"We are firmly convinced that our firm could not have made the strides it has made in the last three years, in any other state in the Union."

For further information write: Industrial Development Division, State of Florida, 3306A Caldwell Building, Tallahassee, Florida.

you'll culways

 dobetterimaFlorida
Want more information? Use post cord on last page. 418
cheap. We recently required a special unit of $1,667 \mathrm{cps}$ for a gated counter and the price was approximately 65 dollars. Therefore it is possible that the tungsten wire unit may be competitive in price.

It is necessary to know the frequency stability, both as regards time and temperature. Unfortunately no data on this point are given. I would be glad if the authors could furnish this information and also some idea of cost, if in commercial production, of a 2,000-cps resonator.

> J. G. G. HEMPSON Ricardo \& Co. Bridge Works Shoreham-by-Sea Sussex, England

Interference

Dear Sirs:
In CONNECTION with the CONELRAD program, has any consideration been given the effect of stacking the oscillator radiations from hundreds of receivers into a small segment of the spectrum?

Speaking of local oscillators, some uhf-tv tuners are playing havoc with the 2 -meter amateur band in areas served by channels 14 through 17, 42 through 45 and 69 through 74. Two-meter operation in Peoria, Illinois, has ceased due to this condition. Local dx-tvi record is held by W9EHX who put an identified signal into Bloomington, a distance of approximately 15 miles. At the same time, a receiver of another make was unaffected while operating in the room adjacent to the 200 watt 2 -meter transmitter.

Trouble seems to be confined to certain types of tuners, especially outboard converters.
F. D. White

Springfeld. Illinois

Correspondent

Dear Sirs:
I would like to correspond with a New York gentleman working in electronics. My purpose is to increase my English knowledge and to talk about our common interests and by exchanging letters to become friends. I am 26 years old and an electrician by profession.

Paul Csabai
XIV Czobor
Budapest, Hungary

Roller Bearings

as small as $0.4724^{7} \bullet \bullet$ an RM: first

- For heavy radial loads

- Separable raceways for easier assemblies
- Shielded against contamination
- Sizes from 0.4724"OD to 1.0236"OD
- Available now

Bring your Miniature Bearing Problems to RMB

A complete line of over 250 miniature and instrument bearings including pivot, radial and roller types are available for prompt delivery. Experimental quantities from stock.

Write for catalog 13,
or see our catalog in Sweet's Files.

BME Mingonvis

INCORPORATED
45 West 45th St. - New York 36, New York Wont more information? Use post card on last page.

February, 1954 - ELECTRONICS

this fellow is trained in your business. His main duty is to travel the country - and world - penetrating the plants, laboratories and management councils . . . reporting back to you every significant innovation in technology, selling tactics, management strategy. He functions as your all-seeing, all-hearing, all-reporting business communications system.
the man we mean is a composite of the editorial staff of this magazine. For, obviously, no one individual could ever accomplish such a vast business news job. It's the result of many qualified men of diversified and specialized talents.

AND, THERE'S ANOTHER SIDE TO THIS "COMPOSITE man," another complete news service which complements the editorial section of this magazine the advertising pages. It's been said that in a business publication the editorial pages tell "how they do it"-"they" being all the industry's front line of innovators and improvers - and the advertising pages tell "with what." Each issue unfolds an industrial exposition before you-giving a ready panorama of up-to-date tools, materials, equipment.
such a "man" is on your payroll. Be sure to "listen" regularly and carefully to the practical business information he gathers.

Have you problems in Metal to Glass Seals?
nAME IT . . . WE'LL MAKE IT! terminals headers
end seals ... Special items
QUALITY PRODUCTS CO.
387 Charles St., Providence, R. I.

Shorted Turn Indicator
Sensitive, rugged, non-shocking

ELECTRONIC PRODUCTION
Dotroit area firm has facilities available for Electrical and Electronic subcontracting. Your inquiries regarding wiring, cabling, testing and light machine work on electronic assem. blles and sub-assemblies are invited.

330 W .42 St. 1346 , Electronics
330 W. 42 St., New York 36, N .Y.

One

inexpensive modern

device . . .

can frequently help speed up operation and maintenance or production.
One product advertised in the "Contacts" Section may be the answer to your problem . . . a real money-saver.
To be informed-and re-minded-on modern aids to economical operation, maintenance and production, check "Contacts" advertising regularly . . . every issue.

McGRAW-HILL TECHNICAL WRITING SERVICE

TWS offers you a single INTEGRATED publishing service prepared to undertake a project from research and planning through finished manuscript and art, typesetting, mechanical preparation, printing and binding. Whatever the situation, whatever the type of literature you need, our editorial and art consultants can help you, bringing to your most specialized job the craft and skill of publishing experts.

WRITING EDITING ILLUSTRATING PRINTING

to Your own or GOVERNMENT SPECIFICATIONS

Whether you need an instruction book or service manual, to accompany your equipment, written to government' specifications
. or product catalogues or training booklets . . . or annual reports . . . or company histories . . . our writing staff can do the job for you, our artists can create and execute the illustrations. And McGraw-Hill printing, binding, and paper resources are among the best in the country.

save money and time

let our staff be yOUR STAFF FOR
TECHNICAL and BUSINESS publications

ASK

OUR REPRESENTATIVE TO CALL

330 W. 42nd St., N. Y. 36, N. Y. LOngacre 4-3000

Professional SERVICes

ALPHA ENGINEERING LABS

Andre Tempe-Consultant
Electronio Trouble Shooting Speclalists for wavegulde manufacturing and production. Tooling design and improvement.
P. O. Box 107

Budd Lake, N. J.

ANNIS ELECTRIC RESEARCH LABORATORY, INC.

CONSULTING - RESEARCH DEVGMOPMENT
Anteanas. Wave Propagation, Information gtorige, Computers, Impedance Matching und Variable

W. J. BROWN

Registered Prof. Bugr. Oonnootiout, Ohio, Bnglend HLECTRONIC CONTROL SYSTEMS Consulting - Research - Developenent INTERNATIONAL CLIENTEETE
1 Gurley hoad Stamford 4-4876 Stamford, Coan.

CODETYPER LABORATORIES

PRANTELD CIRCUITS, FMBEDMENT CEILS
Redesign your standard produet using cost and abor saring Printed Circuits. We perform all your production. Reasonable, fast service. 550 Fifth Avenue, New York $19 . \quad$ JU6 4487

```
CROSBY LABORATORIES, INC.
    Murray G. Crosby & Staff
        Radio - Electronic
    Research Development & Manufacturing
        Communications, FM & TV
        Robbins Lane, Hickstille, N. Y.
            Hycksville 3-3191
```

EDGERTON, GERMESHAUSEN \& GRIER, INC.
Consulting Engincers
liesearch, Development and Manufacture
of Flectronic and Stroboscopic of Electronic and Stroboscopic Equipment 160 Brookline Avenue Boston 15. Mass.

Eldico of New York, Inc.
Pioneers of Telerision Interference Elitrination from
Transmiters. Induction Heaters Transmitters, Induction Heaters, Dlathermy and etc.

Donald J. S. Merten \& Engineering Staff 44-31 Douglaston Pkwy Douglaston, N. Y. Bayside 9-8686

ELECTRONIC RESEARCH

 ASSOCIATES, INC.transistorize your producti Complete Service in consulting. research, develComplete
opment, and production on on transistor cor circuitry. ${ }_{T 15}$ Mroduct, and instrumentation. North Caldwell. N.J. Caldwell 6-6:29

ERCO RADIO

LABORATORIES, INC.
Radio Communications Equipment Engineering - Design - Development - Production Ploneers in Frequency Shift Telegraph
Garden City - Long Island - New Yort

Professional Assistance

 in solving your most difificult prob. lems in the specialized field of electronic devices is offered by consultants whose cards appear on this page.
HARRIS GALLAY

Consultant

Weetronic Project Derelopment for Industry Lay, Week and Duration of Profect Serrices Our Laboratory Faclitites Optional
Plnouth 9-4237 60 Perry st., Bellorilie 9, N. J.

HANSON-GORRILL-BRIAN INC.

Products \& Mfg. Development blectrical - bløotronic hydraulic - mbchanical
One Continental Hill Glen Cove, N. \mathbf{T}. Glen Cove 4-7300

HIGHLAND ENGINEERING CO.

William R. Spittal E Staff DESIGN, DEVELOPMENT AND MANGFACTURE OF TRANSFORMERS, CHOKES, ETC hlbetronic, industrial \& allied fields Main \& Urban, Weatbury, L. L., N. Y.

HOGAN LABORATORIES, INC.

John V. L. Hogan, Pres.
4pplied Reseorch, Deoolopment, Eingineering Est, 1929 . Electronics, Optics, Mechanisms, FseBlmile Communication, Digital Computers (Circle). Electro-sensitive recording media. Instrumentation.
155 Perry Street, New York 14 . CHelsea $2-7855$

INTERFERENCE MEASUREMENT LABORATORY
Interference Study per Government Speciffeations Shielded SDace for Interference Investigation Fled Surveys for F.C.C. Certification of Induction
and Dielectric Heating Equipment $184 \leq$ Utica Avenue ${ }_{\text {Navarre }} \mathrm{B}_{\mathrm{B}-1248}^{\text {Broklyn 34. New Tork }}$ Navarre 8-1248

THE KULJIAN CORPORATION

Cozsultants • Engineers - Constructors
Electronic Control Spectalists
Utility - Industrial - Chemfeal
120) N. Broad St.
Phila 21. Pa.

Measurements Corporation

Research \& Manufacturing Enginecrs
Hary W. Houck Martial A. Honnell
John M. van Jeuren
Specialists in the Design and
Development or Electronic Test Instruments Boonton, New Jersey

NEW ROCHELLE TOOL CORP.

FOR CEITTIFICATION OF INTUUTTION AND DIFLECTRIC HEATING EQLIPMENT
IN ACCORDANCE WITH F.C.C. RULINGS
Mobile Test Unit Avallable Fantire U. S. 320 Main St. New Rochelle, New York Phone NE 2-5555

NIAGARA ELECTRON LABORATORIES CONSULTATION DE DESIGN COCONSTRUCTION

Specializing in solution of problems of electrooie
and electro-physical instrumentation for the roand electro-physical instrumentation for the ro cal laboratory Tndustrial plan problems also invited.
Andover, New Yock Cablo Address: NLATRONLAB

MAURICE I. PARISIER \& CO.
 Communications Expert

International Engineering Consulting RADIO BROADCASTING COMMUNICATION Planning \& Installation Superviaion Communication Equipment for Armed Foroes


```
PICKARD AND BURNS, INC.
Consulting Electronics Engineer Analysis and Eraluation
of Radio Sybtems
Research, Development and Production
of Special Fiectronic Eauipment
240 Highlend Are. Needham 94, Mas.
```


ALBERT PREISMAN

Consulting Engineer
Television. Pulse Techniques, Video Ampliflers, Phasing Networks. Industila
MANAGEMENT-TRAINING ASSOCLATES
3308-14th St., N. W. Waghington IO, D. C.

```
JOSEPH RACKER COMPANY
Radar Consultants \(\mathcal{E}\) Editors
Technical Manuals
Research and Development
140 Nassau Street New Yotk 38, N. T.
Worth 4-1463
```

```
ROTRON RESEARCH CORPORATION
Research and Development
Fluid Dynamics and Eleat Trausfer
Exclusively Electrondc Applications
Cooling Problems, Feat Fkchangers, Fans.
Woodstock, N. Y. Phone 2448
```


THE TECHNICAL

MATERIEL CORPORATION

Communications Consultants Systems Engineering
General Offices and Laboratory
700 Fenimore Rd., Mamaroneck, N. T

WHEELER LABORATORIES, INC.

Hadio and Electronics
Consulting-Research-Development
R-F Circuits-ILines-Antennas
Microwave Conjonents-Test Equipment
Harold A. Wheeler and lingineering Staff
Great Neck, N . Y
IIUnter 2-7876

YARDNEY LABORATORIES, INC.
 Research - Design - Development
 Electro-Chemical Generators of Energy
 105 Chambers Street Worth 2-3554, 35. 36
 New York 7. N. Y.

UNDISPLAYED RATE

$\$ 1.80$ a line, minimum 3 lines. To figure advance payment count 5 average words as a line. POSITION WANTED undisplayed advertising rate is one-half of above rate, payable in advance.
BOX NUMBERS count 1 line additional.

DISCOUNT 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals). EQUIPMENT WANTED OR FOR SALE Advertisements acceptable only in Displayed Style.

DISPLAYED-RATE PER INCH

The advertising rate is $\$ 16.10$ per inch for all odvertising appearing on other than a contract basis. Contract rates quoted on request. AN ADVERTISING INCH is measured $1 / 8$ inch vertically on one column, 3 columns- 30 inches -to a page.

ELECT.

COMMUNICATION ENGINEERS
 ATTENTION!

The world's largest independent supplier of Carrier equipment offers permanent positions, good starting salaries, and unusual opportunity for progress. If you have had experience in any of the following fields, we can make you a very attractive offer:

1. Carrier Transmission Engineering
2. Carrier Equipment Installation and Maintenance
3. General Transmission Engineering

Write giving full details of your background to Personnel Director

1033 West Van Buren Street
Chicago 7, Illinois

Senior and Project Engineers

The Pacific Division, Bendix Aviation Corporation has openings for senior and project engineers in development and production of radar, sonar and telemetering offering excellent opportunities for growth with the corporation and the opportunity to live in Southern California. Positions are open at several levels.

Please Address Inquiries To
W. C. Walker

ENGINEERING EMPLOYMENT MANAGER
11600 Sherman Way North Hollywood, California

WANT MORE BUSINESS?

Established technical sales group has capacity for additional items in electronic or electro-mechanlcal in territory but must have high quality. Company brochure avaitable for your inspection.

WEIGHTMAN \& ASSOCIATES
1405 W. Magnolia BIvd. Burbank, Californla

MANUFACTURERS

Aggressive sales organization in Middle Atlantio States can provide representation for additional slectronic or electrical equipment or parts.

MACLEN CORPORATION
Manufacturers Representative
3226 Ninth Street, N.E. Washington 17, D. C.

Don't forget

THE BOX NUMBER.
When answertag the classitied advertise msiol. to this magazine. It's our oniy means of identify
ing the sdvertisement sou are answaring.

ASST. CHIEF ENGINEER

STARTING RANGE- $\$ 12,000$ to $\$ 15,000$ Guided missiles - project -research-development. Permanent position.

ASK FOR RAY EDWARDS
O'SHEA EMPLOYMENT SYSTEM
64 E. Jackson, Chgo., III. Tel. WAbash 2-1884

INVESTMENT OPPORTUNITY

A printed eircuit development laboratory located in Western New York needs capital investment and electronic dovices employing transistors and vacuum tubes in the radio-television, industrial and audio fields. Devolonment work is now heing done on the
ahove products. The laboratory has patent pending ahove products. The laboratory has patent pending
on rovolutionary process for printing circuits and anplications are pending on electronic components wanted by industry.
Individuals will be considered who have sound business and engineering hackgrounds with sufficient capital to invest. Proposals for neerging with an electronics firm as their printed circuit be studied. Replies may be sent in confldence to:

B0-1300. Electronics
330 W. 42 St., New York 36. N. Y

WANTED
 CHIEF ENGINEER

to direct the engineering of medium size nationally known capacitor manufacturer. Capable engineer well versed in the design and development of electrolytic, paper and similar capacitors. Once-in-c-lifetime opportunity. Write giving complete details regarding age, experience, education, etc.

P-1320, Electronics

520 N. Michigan Ave., Chicago 11, Ill.

FIELD SALES ENGINEER

Mature Elsctronic Saies Engincer with established following. Must have experience calling lished following. Must have experience calling on various Engineeringg andi Procurement $\begin{aligned} & \text { sions of the Defense Establishment and impor- }\end{aligned}$ sions of the Detense Establishment and introctronics. Exccllent opportunity for aggressive and active liaison between this organization and the cognizant Army, Navy and Air Force Departments.

Submit resume, highlighting experience, to

President

FREED ELECTRONICS and CONTROLS CORPORATION
200 Hudson St., New York 13, N. Y.

```
REPLIES (Box No.): Address to office nearest yow
    NEW Forl: 330 W. 42nd St. (36)
    CHGAGO:520 N. Michigan Ave; (11)
```


POSITIONS WANTED

ELECTRONIC ENGINEER desires European position, BSEE, 1914. Exp. in org. and mgt of Q.C. Prod. Eng., Insp. in elect!onic industry. Prof. Eng., full chg 6-figure Gov't Contr. past 2 yrs. PV-1233, Electronics.

SR, ENGINEER experienced in Vacuum technique of passworking mechanics. Tungstene-
coiling stainless steel firing, cathode mfg. \& $\underset{\text { coiling stainless steel fric welding. Best references. PW-1345, }}{\text { ele }}$ Electionics.

SELLING OPPORTUNITY WANTED

SALAS ENGTNEFRING-College training, 15 years varied experience in communications. Presently employed as chief engineer regional company in broadcast or two-way radio fleld in soutliern teritory. RA-1337, Electronics.

TUTORING

Correspondence Tutoring: Technical upgrading for technicians, engineering assistants, junfor and operating engineers. New methods, simplifical cost. 'Superior Procedures"' Douglas Matthews, 72 Vendola Drive, San Rafael, Calif.

PLANTS AND PROPERTIES

Industrial Building Gastonia, N. C. 52,500 so. ft. mill construction, wired, sprinklered, steam dustrial Diversification Commission, Box $823-\mathrm{E}$, Gastonia, N. C.

Here are 5 reasons why you will
 want to come with us if you

are a...

1. You can get in "on the ground floor" in the field of electronic computers and associated equipment for use in business machines. This means excellent opportunity for advancement.

mechanical engineer

mechanical designer
electrical engineer

2. You can plan your future with a longestablished, highly successful Company.
3. You will receive a good salary, plus substantial "fringe" benefits.
4. You and your family will enjoy Dayton . . . a clean, progressive city with outstanding school facilities.
5. You will find NCR a friendly place to work, with employee morale at a high level.

Act at once. Write today to Employment Manager, Department A, describing your education and experience.

THE NATIONAL CASH REGISTER COMPANY, Dayton 9, Ohio

HELP WANTED
This established radio \& television manufacturing firm in Western New York has openings for:

Test Engineers
Technicians
Trouble Shooters
Aligners
Applications should contain details of past experience. Write to
Personnel Manager, H. E. Dudley
STROMBERG-CARLSON COMPANY
Rochester 3, New York

wanted
 PRODUCT DESIGNER

Experience in Capacitors and Electronic Components Required. Degree preferred but not essential. West Coast's Leading Capacitor Manufacturer. Not limited to defense effort. Write, stating qualifications in full, personal history and salary desired to

P-1241, Electronics
1111 Wilshire Blvd., Los Angeles 17, Calif.

Do YOU belong in this picture of progress?

EXCEPTIONAL project diversification military and commercial - enables MELPAR to offer you individual recognition, rapid advancement and ground-floor opportunity with a progressive company.
Experience desired in one or more of these allied fields: Radar-Sonar - Fire Control Systems • Micro-Wave Techniques • Pulse Circuits • Servo Mechanisms • Electro-Mechanical Design-Speech Compression - Small Mechanisms • Antennae Design - Flight Simulators ${ }^{\text {•Subminiature }}$ Layout

If you qualify and wish to join this successful, growing organization, write now for further information about a personal interview in your area.
Address: Personnel Director, Dept. E-2.

10 Potter Street, Cambridge, Mass. - 440 Swann Ave., Alexandria, Va. A SUBSIDIARY OF THE WESTINGHOUSE AIR BRAKE COMPANY

IMAGINATION

Got more than your share? Like to have the freedom to use it, with commensurate recognition? Then, you've come to the right ad!
That is, if you're an electronic or mechanical engineer with practical experience in the electronic industry.

We need engineers with imagination. We're growing and going you're just in time to go with us. You'll enjoy the job plus the advantage of pleasant living conditions in a large, modern city ... without the disadvantage of big city pressure.

The man to contact is Arthur E. Harrison, Vice-President of Engineering. The time is now! You'll never regret it!

wilcox

Aviation Communications and Navigation Fourreenth \& Chestnut, Kansas City 27, Mo.

HOUSTON, TEXAS

Precision equipment manufacturer needs qualified experienced engineer for audio and sub-audio transformer design and development. Experience with high permeability alloys desirable. Knowledge of magnetic circuitry must be sufficient for development work on magnetic amplifiers. Salary commensurate with ability.

SOUTHWESTERN

INOUSTRIAL ELECTRONICS CO.
P. O. BOX 13058, HOUSTON 19, TEXAS

ENGINEERS

This established electronies manufacturer tocated in the heart of western New York requires man to head mechanical design group on eteetronlo equipment. Permanent position ayailable for a tronics or closely allied industry.

ALSO TELEVISION AND RADIO DESIGN ENGINEERS
Fine cultural community in which to live with Fine cultural community in which to live with
good schools, homes, and progressive associates. Please write to:

CHIEF ELECTRONICS ENGINEER STROMBERG-CARLSON COMPANY ROCHESTER 3, N. Y.

RCA, pioneer and leader in every important branch of radio-electronics, has a permanent position for you if you are an experienced Electronig Computer, Electrical, Mechanical or Communications Engrneer . . . Physicist . . . Metallurgist . . . Physical Chemist . . . Ceramist . . Glass Technologist.

You may choose to specialize in research, development, design and application. Both commercial and defense projects.

POSITIONS OPEN IN RESEARCH -DEVELOPMENT-DESIGN-APPLICATION in any of the following fields:

RADAR-

Circuitry-Antenna Design-Servo Systems Information Display Systems -Gear Trains-Stable ElementsIatricate Mechanisms

COMPUTERS -

Digital and Analog-Systems Planning -Storage Technique-CircuitryServo Mechanisms - Assembly Design-
High Speed Intricate Mechanisms

COMMUNICATIONS-

Microwave-Aviation-Mobile-Specialized Military Systems

MISSILE GUIDANCE-

Systems Planning and Design-Radar and Fire Control-Servo Mechanisms-
Vibration and Shock Problems

NAVIGATIONAL AIDS-

Loran-Shoran-Altimeters-Airborne Radar
TELEVISION DEVELOPMENT -
Receivers-Transmitters and Studio
Equipment
COMPONENT PARTS-
Transformer-Coil_Relay-Capacitor -Switch-Motor-Resistor
ELECTRONIC TUBE DEVELOPMENT-
Receiving-Transmitting - Cathode-
Ray-Phototubes and Magnetrons
ELECTRONIC EQUIPMENT
FIELD ENGINEERS -
Specialists for domestic and overseas
assignment on military electronic com-
munications and detection gear.

There's not a temporary job among them War or depression, RCA has continued to grow. .. growth in which you'll share when A career.
For many other reasons, too, RCA is a good place for you to work. IRCA affords unexcelled facilities in pleasant surroundings... every chance for advancement in rank and income...enjoyable suburban or country living conditions ... professional recognition for achievement... modern retirement program, Many Company-paid bene-tuition-refund plan for advanced study at recognized universities.

Personal interviews arranged in your city. If you qualify for any of the positions listed above, please send us a complete Please of your education and experience. Send resume to:

MR. JOHN R. WELD
Employment Manager Dept. 300 B
Radio Corporation of America,
30 Rockefeller Piaza, New York 20, N. Y.

CAREER OPPORTUNITIES
 for ENGINEERS

Desiring the challenge of interesting and diversified projects-
Wishing to work with congenial associates and modern equipment and facilitiesSeeking permanence of affiliation with a leading company and steady advancementWill find these in a career here at GENERAL MOTORS.
Positions now are open in ADVANCED DEVELOPMENT and PRODUCT DESIGN. COMMERCIAL AUTOMOBILE RADIO

military radio, radar and electronic equipment ELECTRONIC COMPONENTS

INTRICATE MECHANISMS such as tuners, telemetering, mechanical linkages, controis, etc. ACOUSTICS—loud speakers, etc.

Inquiries invited from recent and prospective graduates as well as experienced men with bachelors or advanced degrees in physics, electrical or mechanical engineering.
Salary increases based on merit and initiative.
Vacations with pay, complete insurance and retirement programs.
Relocation expenses paid for those hired.
All inquiries held in confidence and answered-WRITE or APPLY to DELCO RADIO DIN. GENERAL MOTORS CORP. Kokomo, Indiana

ELECTRONIC DEVELOPMENT IS MOVING WEST*

ENGINEERS-Take this opportunity to join the staff of a Western electronics pioneer \& leader.

Creative ability finds expression with us!

Broad project variety in special soceivers, transmitters $\&$ other devices. Advanced design techniques.

- Flgures show $\mathbf{2 0 \%}$ U. S. activity In So. California

Relocation axpenses-axcellent working condition 2-Central location. Schoduled roviows \& advances. Fine insuranco plan. Move should not disturb urgent military projeets.
Send complete resume with income history \& requirements to engineering employment mgr.

3761 SO. HILL ST.

LOS ANGELES 7, CALIF.

(A Subsidiary of Hoffman Radio Corp.)

production and design ENGIMEERS FOR TV COMPONENTS

One of the world's largest manufacturers of electronic components since 1921 - plants in the east and midwest - offers you the opportunity to grow in a dynamic organization.
Are you a qualified engineer, preferably experienced in TV tuners and sweep circuit components?
We invite you to write to us today, detailing your experience in this field.

Address all replies to: Director Industrial Relations
General Instrument Corporation
829 Newark Avenue, Elizabeth, New Jersey

WANTED INSTRUMENTATION SPECIALIST

To be in charge of electronio instrumentation in connection with research and development of higuld propellants. Permanent salaried position with oxmajor chemical company located in the northeast. Requirements include: 2 years of college plus 3 years of experlence or equivalent. Experience with electronic circuitry. high frequency transient pros-
sure measurement, and some knowledge of llquld propellents or chemistry desired. Send complete resume to

P-9565, Electronics
330 W. 42 St., New York 36, N. Y.

CHEMCAL ENGINEER

Experience in Ceramic Type Printed Circuitry Design and Knowledge of Applications thereof Required. Degree Preferred. Write, stating qualifications in full, personal history and salary desired, to

```
P-1212, Electronics
```

1111 Wilshire Blvd., Los Angeles 17, Calif. Not limited to defense effort.

ELECTRONIC ENGINEERS

for design \& development work with a young progrissive company \checkmark digital techniques
\checkmark computers
\checkmark radar
SEND RESUMÉ OR EXPERIENCE AND EDU, CAIION, WITH SALARY RECUIREMENTS, TO Flowronic Engmertug Compann
0 TBO SOUTH ALYARADO STAITI, tos anctits, s7, calloginia ounkiak 2.73s3

ENGINEER

A rare opportunity exists with a nationally known manufacturer of capacitors for an electrical engineer or equivalent, experienced with eapacitors and capable of directing and handling tech. nical sales and sales correspondence. Write stating age, education, experience, etc.

P-1323, Electronics
520 N. Michigan Ave., Chicago 11, Ill.

ALWAYS BUYING
 small and large lots of

 Screws-Nuts-Bolts-Washers Rivets-Lugs-Eyelets, Etc. and any \& all types of Radio TV, ELECTRONIC HARDWARE, PARTS etc. LOUIS E. GANCHER CO.468-472 WEST B'WAY - NEW YORK 12, N. Y. "IN RADIO SINCE 1921"
URGENT
Will Buy BC348R Receiver @ $\$ 75.00$
BC348H-K and L Receivers $\$ 70.00$
Ship via EXPRESS C.O.D., subject to th-
spection to H. FINNEGAN
49 Washington Ave., Little Ferry, N. J.

WANTED

BC-1016
TAPE RECORDERS
communication devices co.
2331 Twelfth Ave.
NYC 27,
Tel $:$. Yd
4-6174

DEVELOPMENT ENGINEERS

FOR:
Design Engineering, Practical Research, Investigations of Theories, Functional Analysis

An interesting challenge for senior design engineers to work directly with top project supervisors helping through the prototype stage new developments in:

- Automatic Control Instruments
- Airborne Armament Systems
- Electronic Navigational Aids
- Guided Missile Controls
- Magnetic Amplifiers
- Computing Equipment

For these jobs we are interested in men with two or more years experience in electro-mechanical work related to the above fields or in men with superior scholastic records in physics; electrical, electronic or mechanical engincering.

YOU'LLLIKE WORKINGATFORDINSTRUMENT

- Not too large, not too small
- Stable but progressive company
- N. Y. C. location with all its additional varied opportunities
- Above-average fringe benefits

Our policy of permanency of positions and continuity of service does not allow us to employ engineers unless there is a clear and definite need for them projected years into the future. And we promote from within. If you can qualify, we urge you to contact by mail, or if in N. Y. C. phone:
Mr. P. F. McCaffrey, Stillwell 4-9000, Extension 416

Division of the Sperry Corporation
31-10 Thomson Ave., Long Island City, N. Y. (20 minutes from the heart of New York City)

- Pension Plan
- Nine Paid Holidays
- Two Weeks vacation with pay
- Tuition assistance for further related Tuition
studies

FORD INSTRUMENT COMPANY

> WILL BUY
> All ARTI3/4ype T47A $\$ 200.00$; ARTI3 type T47 \$150.00; BC348 Unmodifed 565.00 : BC348 modined STM Roceiver $5200.00 ;$ ARCI Radio $\$ 200.00 ;$ BC312 $\$ 00.00$: BC342 560000 : ship via Expross 'C.0.D.. sublect to inspection to
> H. FINNEGAN

> 49 Washington Ave. Little Ferry, N. J.

WANTED

BC-1000 SETS and/or PARTS
also

TCS-TRANSMITTERS
W-1393, Electronice 330 W. 42 St., New York 36, N. Y.

Bendix Aviation Corporation

3 YORK Division

This NEW division of our nationally-famous corporation has openings for

ENGINEERS PHYSICISTS

Top-flight men in advanced fields of electronic research, development and product engineering are needed for challenging work under ideal conditions in our new, modern plant.

You benefit at Bendix York from our locotion in the heart of a beautiful suburban area, from high wages, paid vacations and holidays... and excellent opportunities for advancement.

Openings at all levels.
Write, Wire or Phone

Phone: York 5521 York, Penna.
 native engineers and scientists to join the staff of a progressive and self-sustaining, universityaffiliated research and development laboratory. We are desirous of expanding our permanent staff in such fields as electronic instrumentation, missile guidance, microwave applications, design of special-purpose electronic computers, and in various other applied rescarch fields of electronics and physics.

Salary structure and benefit pragrams are on a par with industry. In addition, there are many tongible advantages, such as our self-sponsored internal research policy, of interest to men with ingenuity and initiative.

AVIONIC INSTRUMENTATION goes beeond DIALS an POINTERS...

Current Stock Includes

INVERTERS • AMPLIFIERS • VOLTAGE REGULATORS PHASE CHANGERS-TRANSTATS-METERS D.C. \& A.C. SYNCHROS • SERVO MOTORS - AMPLIDYNE PIONEER AUTOSYNS • RECTIFIERS • G. E. SELSYNS

Also complete line of FLIGHT, ENGINE \& NAVIGATION INSTRUMENTS AUTHORIZED SALES and SERVICEFOR

MNSTVMEN

Contractors to the U. S. Air Force-
U.S. Navy and Dominion of Canada
 Write for Catalog NE100

... and so does

 ... INSTRUMENT ASSOCIATESa source for
EmERGENCY REPLACEMENT
MODIFICATION
OVERHAUL REPAIR SALES 0 F

INSTRUMENTS INVERTERS
MOTORS
TRANSMITTERS

AMPLIFIERS
RELAYS
GENERATORS
and

ALLIED

COMPONENTS

Instrument Associates knows that there is more to an instrument than dials and pointers. Involved in today's instrument panels are Inverters, Transmitters, Amplifiers and a multitude of other electrical and electronic components. Accordingly the laboratories of Instrument Associates are geared to the maintenance and supply of these component units as well as the indicators themselves.

Instrument Associates highly skilled instrument technicians combined with extensive laboratory facilities results in rapid and exacting workmanship. Unusual problems requiring know-how and ability find their solution in our Engineering and Development Department. Whatever your requirements in avionic instruments and their component units look to Instrument Associates for their fulfillment.
> C.A.A. APPROVED REPAIR STATION \#3564 INSTRUMENTS CLASS 1, 2, 3, 4, LIMITED ACCESSORIES

351 GREat NECK RDAD, Great neck, M. y Telephone HUnter 2.9300

RTHAYS

RELAYS

MANUFACTURERS—JOBBERS—EXPERIMENTERS——ABORATORIES

WRITE OR PHONE WALKER 5-9642 fOR YOUR RELAY REQUIREMENTS

Ask for Mr. Greenberg or Mr. Herzog
We have a large variety of standard types of relays and solenoids for a multiplicity of uses which for various reasons are not listed in our advertising. When inquiring concerning your needs give as much information as possible. Catalog numbers are not sufficiont Give coil voltage; specify $A C$ or $D C$; give current or resistance; contact current and arrangement.

PRODUCTION QUANTITIES OF MOST ITEMS AVAILABLE

ALL MERCHANDISE IS GUARANTEED AND MAY BE RETURNED FOR FULL CREDIT

TELEPHONE TYPE RELAYS

These relays have been standardized so that coils and frames of most manufacturers can be interchanged without affecting adjustments. A wide variety of applicable combinations are thus possible from a comparatively small number of relays.

Listed below are frames and coils from our stock. They may be purchased separately. However, a complete relay consists of coil and frame. In ordering complete relays speciry However, a complete relay with which frame, i.e.: F101 with K117.
Bepresentative completed relays are also listed with voltage and current ratings. Values are indicative of sensitivity that may be expected from similar combinations.

CLARE, 6500 obm .8 ma DC. 3 makes (3 As) $\#$ R276 CLARE K 104.6500 ohm , SPDT. 2 ma LC. Fast Ac-
FRAMES
(For cost of Relay Add Price
of Frame to Price of Coil)

Stock		Price	Stock		
No.	Contacts	each	No.	Contacts	
F101 1	1A	\$1.25	F108	$1 \mathrm{~B}, 1 \mathrm{~A}, 1 \mathrm{C}$	200
F102	2 A	1.50	F131	1B, 9A, 1C	00
${ }_{\text {F }} 103$	3 A	1.75	F107	$2 \mathrm{BB}, 1 \mathrm{~A}$	1.75
F104	4A	2.00	F142	2B, 2A	
F138	5A	2.25	F112	$2 \mathrm{~B}, 2 \mathrm{~A}, 2 \mathrm{C}$	3.00
F139	10.A	3.50	F129	2B, 2A, 6 C	200
F128	12A	4.00	F140	3B, ${ }_{\text {a }}$ A	275
F106	1A, 1 B	1.50	${ }_{\text {F12 }}$	${ }_{10}{ }^{\text {c }}$	1.50
$\mathrm{F}^{\mathrm{F} 107}$	${ }_{1} 1 \mathrm{~A}, 2 \mathrm{~B}$	1.75	$\stackrel{\text { F122 }}{ }$	${ }_{2} \mathrm{C}$	2.00
F140	$1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}$	2.00	${ }_{\text {F } 145}$	3 C	2.50
F109	$1 \mathrm{~A}, 1 \mathrm{C}$	1.75	F124	${ }^{4 C}$	3.00
F141	${ }^{14}, 3 \mathrm{C}$	275	F146	${ }_{1}^{6}$	1.75
FII	$2 \mathrm{~A}, 1 \mathrm{~B}$	1.75	F109	${ }_{1 \mathrm{C}} \mathrm{C}$,	200
F142	$2 \mathrm{~A}, 2 \mathrm{~B}$	2.00	${ }_{\text {F117 }}$	${ }_{10}{ }^{\text {c, }} 5$	2.75
F137	${ }_{2 A,}^{2 A}, 1 \mathrm{C}$	2.200	${ }_{\text {F133 }}^{\text {F17 }}$	1C, ${ }_{18}$	1.75
${ }_{\text {F142 }}$	${ }_{2}^{2 A}, 2 \mathrm{~B}, 2 \mathrm{C}$	3.00	F108	1C, $1 \mathrm{~A}, 1 \mathrm{~B}$	
F129	$2 \mathrm{~A}, 2 \mathrm{~B}, 6 \mathrm{C}$	5.00	F121	$1 \mathrm{C}, 5 \mathrm{~B}$	275
F114	3A. 18	2.00	${ }_{\text {F }}{ }_{\text {F }} 1421$	${ }_{2 \mathrm{C}}{ }^{\text {C, }} 2 \mathrm{AA}$ A ${ }^{\text {a }}$	2.50
F115	${ }_{5 A}{ }^{\text {A, }}$, 1 C	2.75	F112	$2 \mathrm{C}, 2 \mathrm{~A}, 2 \mathrm{~B}$	3.00
${ }_{\text {F }} \mathrm{F} 143$	6A, 4 C	4.50	F115	$2 \mathrm{C}, 3 \mathrm{~A}$	2.75
F131	9A, 1B, 1C	4.00	F141	3 C,	2.75
F147	1A, 2D	2.75	F144	${ }_{4 C,}^{6 A}$	4.50
F148	${ }_{18}^{2 A}, 1 \mathrm{D}$	1.25	${ }_{\text {F129 }}$	$6 \mathrm{C}, 2 \mathrm{~A}, 2 \mathrm{~B}$	5.00
${ }_{\text {F13 }} 120$	${ }_{2}^{1 B}$	1.50	${ }_{\text {F14 }}$	$1 \mathrm{C}, 1 \mathrm{~d}$	2.25
F134	3 B	1.75	F150	3C,	75
F106	18, 1A	1.50	${ }_{\text {F151 }}$		2.25
F111	1B, 2 A	1.75	F149	1D, 10	2.25
114	1B, 1 C	1.75	F150	1D, 3C	3.25
F144	1B, 4C	3.24	F147	2D, 1A	27

SPECIAL CONTACT ARRANGEMENTS 2 We can supply any contact arrangement up to 20 contact leaiss or form (C) for a nominal extra charge. To compute cost of custom made fiame add: 1.00 for blank frame plus .50 for each form C, plus ${ }^{25}$ for each form A or B and 2 , 2Λ, $313,1 \mathrm{C}$ would cost charge. Thus a Prame with $2 \Lambda, 318,1 \mathrm{C}$
$1.00+.50+.75+.50+2.00=4.75$

IMPULSE DIAL To open a normally closed circuit. Ten holes - capacity: 1-10 impulses. Has 3 shunt springs, arranged to make when dial is moved off normal. 10 for $\$ 42.50$

STEPPING SWITCHES

AUTOMATIC
ELECTRIC TYPE 13
Po 25 Position: Self Interrupter Springs; Norm. Oper Volts: 25 VDC; Max 30 VDC; 0.6 Amps; 30 Ohm. Three Levels Auto. Elect. RA92 \#WESTERN ELECTRIC 22 Position; Make \& Break Interrupter Springs; Normal Operat ing Voltage 6VDC; Max 8VDC 4 ohm; Five ngels \#F926 WESESERN ELECTRIC 44 Position Make \& Break Interrupter Springs; Normal OperatIng Voltage 6VDC; Max 8VDC; 4 ohm; Two
Circuit Levels \#R 92722.50

A 18258 BENDIX (Cook 102) 8-12 VDC, Copper Slug.
Slow Release. SIPDT, 200 ohm. 1Part of SCR 522 Slow Release. SI'DT, 200 ohm. 1"art of SCR 522. R5229AI AUTOMATIC GVDC, 3PST D.0. (3AS), 75 R502IAI AUTOMATIC 1300 ohm, 20 ma DC, SP'ST n.c. (1B). \#413............ $\$ 2.35$

COILS					
(For Cost of Relay Add Price of Coil to Price of Frame)					
Stock		Price	Stock		Price
No.	Ohms	each	No.	Ohms	Bach
K101	0.75	\$1.25	K107	750	1.50
K131	5.0	1.25	K135	800	1.75
K102	12	1.25	K109	1000	1.75
K156	50	1.25	K111	1300	1.75
K157	70	1.25	K158	1400	2.00
K132	175	1.25	K112	2000	2.25
K153	300	1.50	K159	2250	2.50
K154	400	1.50	K155	2500	250
K104	450	1.50	K113	3000	2.50
K105	500	1.50	K116	6500	2.75
K133	600	1.50	K118	40,000	3.25
K134	700	1.50			
SLOW-ACTION COILS					
SLOW-MAKE			SLOW-RELEASE		
Stock		Price	Stock		Price
No.	Ohms	each	No.	Ohms	each
K160	20	1.50	K161	30	1.50
K122	33	1.50	K149	3.9	1.50
K146	125/1300	2.50	K123	75 200	1.50 1.50
K147	500/1500	2.50	K150	800	2.00
K148	1300	2.00	K151	1000	2.00
K146	1300/125	2.50	K152	1300	2.25
K147	1500/50	2.50	K127	2500	2.50
DUAL COILS					
Stock		Price	Stock		Price
No.	Ohms	each	No.	Ohms	日ach 200
K1¢2	20/400	2.25	K106	$500 / 1100$	2.00 200
K163	25/200	2.25	K144	$500 / 1800$	2.50
K141	50/2000	2.25	K165	550/550	2.25
K166	125/125	2.25	K143	1000/200	2.00 2.00
K142	125/1300	2.25	K106	$1100 / 500$	2.00
K164	200/200	2.25	K142	1300/125	2.25 2.50
K163	200/25	2.25	K144	1800/500	2.50
K143	200/1000	2.00	K141	2000/50	2.25
K162	400/20	2.25			

$\begin{array}{ll}\mathrm{A}=\text { Normally open } ; & \mathrm{B}=\text { Normally closed } ; \\ \mathrm{C}=\text { Double throw } ; & \mathrm{D}=\text { Make before break }\end{array}$

ACCESSORIES FOR

TELEPHONE TYPE RELAYS
Clare CR1 Molded Bakelite Cover

$$
\begin{aligned}
& 218^{\prime \prime} \times 238^{\prime \prime} \times 414^{\prime \prime} \\
& \text { overall }
\end{aligned}
$$

Clare CR3 Steel Cover $2 \frac{5}{18} \times 1 \frac{13}{16}{ }^{\circ}$
Clare CR5 Stee! Cover 23/4" $\times 1 \frac{12}{}{ }^{\prime \prime}$
Clare BR2 448 overan *CR1. S

LEACH

WESTERN ELECTRIC

 MERCURY CONTACT RELAYSD 171584; SPDT: 1 coil of 4500 ohms plus 24 V Heater; High pressure sealed octal plug base, Operating current Overall length $\begin{aligned} & \text { m } 1 / 4^{\prime \prime} \text {; overall diameter } \\ & \text { l-316" }\end{aligned}$

10 for $\$ 65$
100 for $\$ 6 \% 5$

D.C. SENSITIVE PLATE CIRCUIT RELAYS

Alled FID; $8 \mathrm{ma} ; 1 \mathrm{~A} ; 3000$ ohm ; ${ }^{\text {\# TR916...... }} \$ 1.50$ D42. $20 \mathrm{ma}:$ DPDT: 5000 ohm. $\$ 4.95$ Allied BO6D42; 20 ma; DPDT: 500 ohm; $\$ 5.25$ HBM 23024; 6 mas; 4 ГST n.o. (4 A 's) ; 6500 ohm: RHSS 452 - $1041 ; 4$ ma; 12000 ohm; DPDT; Telephsne W. Tre: (Whelock) Ks9065; 9 ma: 1A, 1B, 1C; 2000 Clare Type J (K102): B ma; SPDT: 3500 ohm; \# Clare B 11613 (K101): 2 ms ; SPDT; 6500 Clare A11096: 12 ma ; $3 \mathrm{~A} ; 20 \mathrm{on} \mathrm{ohm}$; R94. Clare 5036; $15 \mathrm{ma} ; 2 \mathrm{~A}, 1 \mathrm{C}$; 2450 ohm: Herme Cooke Type C; 4 ms: 1A; 6500 ohm ; \#11596 Leach P3; 3 ma: SPDT; 1280 ohm: \#1Ra41. Leach 1028-434; 20 ma ; 1A. 2B; 1550 ohm: \#18301 Leach 1037; 10 ma : DPDP: 10,000 ohm ; \# R540 $\$ 7.50$ U. II. F. Insulation: High Voltage. High Current: Slgma 4 F8000s; 1 am; SPDT; 8000 ohm; \# 2887 Slgma 41FS7; 2 ma ; SPDT; 10.000 ohm; \#18月11 Slgma 41F8000S; 2.5 ma : SPDT; $8000 \mathrm{olm} ; \mathrm{Hl}^{21002}$ Stgma 4AH; 4 ma pull-in, 2.5 ma hold; SPDT ; 2000 \#R444 5 R.J $2000 \mathrm{G} ; 2.3 \mathrm{ma}$ SiPDT: 2000 ohm; Fer Sigma 5 Rispo00G; 1.4 ma; pullin; 0.4 ma hold KIPDT; Hermetically Sealed: 11281 SPD 6.95 G. M. Lab. 12917-1; $8 \mathrm{ma} ; 1 \mathrm{~B} ; 2200$ ohm; \# +i ${ }^{2}$ Advance K1604: $121 / 2 \mathrm{ma}$; DPDT; $6500 \mathrm{ohm}: ~ \$ 18.002$ Advance 1713A; $30 \mathrm{ma} ; 4$ PJYT; 1000 ohm ; \#H5:3 Advance 455 ; 20 ma : DPST (2A); 1800 ohm: \#18535

SEE OUR OTHER AD ON PAGE 453

Clare BR4 Short Relay Bracket \#BR4...... 15 (10 Plant. Rated Firms Net 10 Days: TERMS:-All prices F.O.B. Our Plant. Rated Order.
ise returnable within 10 days for full credit
Orders Under \$10 Remit-
tance With
Order. Plus tance With
Order. Plus
Approximate
 (overage will
to returned).

SELENIUM RECTIFIERS
Full-Waye Bridge Types

$\begin{aligned} & \text { Current } \\ & \text { (Con- } \\ & \text { tinuous) } \end{aligned}$	18/14	36/28	54/42	130/100
1 Amp.	\$1.35	\$2.15	53.70	58
$2^{2 \prime}$ Amps.	2. 20	3.60	5.40	10.50
Ampe.	3.10 4.25	4.20 7 95	$\begin{array}{r}6.00 \\ \hline 1205 \\ \hline 13\end{array}$	13.00 25.25
Giamps.	4.75	9.00	1295	25.25
10 Amps.	6.75	12.75	20.00	44.95
Amps.	8.50	16.25		
ps	13.25	25.50		87.50
24 Amps.	${ }^{16} 2.25$	32.50		95.00
30 Amps.	25.00	38.50 48		

We can build other Rectifiers and Trans formers to your Electrical and Mechanical
FULIY
Y
NTEED
GUARANTEED

OAR
0 A 3
0 O 2
OB
08
0_{083} /Vr90.
$\mathrm{OC3} / \mathrm{VR105}$
$\mathbf{O D 3} / \mathrm{VR150}$
$\mathrm{OD} 3 / \mathrm{V}$
OR4.
1AE4.
1AE4...

$\begin{array}{ll}183 G T & . . \\ 1822 \\ 1823 & .85 \\ 1.20 & 2 J 62 \\ 2 .\end{array}$

$\begin{array}{r}8.25 \\ 1.85 \\ 2 \mathrm{~K} 30 / 410 \mathrm{R} 320.00 \\ 5 \mathrm{JJ30} \\ \hline\end{array}$

NE SY SELENIUM RECT
Pri: 115 V. 60 cycles in.
SEC: $9,12,18,24$ and 36
Coltstinuous Ratings.

IFIER TRAN SFORMERS

NEW SELENIUM RECTIFIER CHOKES
2 Amps.- 066 Hy.-4 ohms.
4 Amps. .07 Hy. .6 ohm

24 Amps.- $.004 \mathrm{Hy} .-025 \mathrm{ohm}, \ldots$.

FILTER CAPACITORS		
Capacity	W. Voltage	Ea.
$500 \cdot$ MFO.	50 V.	
$1000 \cdot \mathrm{MFD}$.	15 V.	
6000 MFD.	.85	

VICTOREEN YXR-130

Subminiature Voltage liegulator. Brand new in cel
lop ane bag. Used as stabilizer in battery R. F:
surglies; for voltage reference \& limiting circuits supplies; for voltage reference \& limiting circuits for D.C. Amplifler Coupling, Nominal volts; 130 .
Mas. DC Sarting Voltage: 200 Resulation: 1 to
2.5 Ma . $\pm 1 \% \%$. You will find many uses for these

New Erco ${ }^{4}$ Channel Ship-to-Shore Marne Transmitter - Receiver - F.C.C. Approved Rrand New. Complete, less xtal Write for Full Details

- WESTERN ELECTRICCHOKES SMOOTHING 8 Ilenties @ 300 MA. 75 Ohms

W.E. HERM. SEALED POWER TRANSFORMER
 Insill) $514^{\prime \prime} \times 51 / 4^{\prime \prime} \times 6^{1 / 2 \prime \prime}$. Brand new.

FLUXMETER

Used to calibrate fleld strength of magnets from 500 of $11 /{ }^{\prime \prime}$. Bauss and indicate polarily built in hardwood case with hinged cover. Instructions for operation on under side of cover. Size $123 / 2 \times 9 \times 6$ int Ideal for lab and

1C6
1H4G.
156 G.
146.
1LN5.
IN21-B
IN23A.
1N21-B.
1N23A.
1N23B.
1N31....
1N34A.
iN38.
1N38A.
1N44/400B.
1N45/400C.
1N48.
iN54.
iN54.
IN64.
1N64..
1N69..
1P23...
1P28....
1P40
1P40....
1P42...
$106 \ldots .$.
1R45....
$154 \ldots .$.
$155 \ldots$
$1 T^{4} \ldots \ldots .$.
144

\section*{| . |
| :--- |
| \cdots |
| \cdots |
| .15 |
| .73 |

 }

8 3AP1 $\ldots \ldots .$.
$203 B 7 / 1291 . .$.

FOR
TS ON
.. 1

7/1291
$24 \ldots$

 1.65 9LP7.......
.7010 (Sp
.70 1.50 G. $\ldots \mathbf{Y}^{2}$
WGY

\qquad

6A3.
2.50 C6J
8.75 6C21(JAN).

$$
\begin{array}{r}
8.75 \text { 6C21(JAN) } \\
11.75 \text { 6-4/6-4B } \\
2.006 A B 4 .
\end{array}
$$

$$
1
$$

\qquad

- 1.65 9LP7
 5.00 68.56 90.006816
68 K7.

 $7010 T 1$

STANDARD BRANDS
ONLY

$\%$

SEARCHLIGHT SECTION

NEW YORK'S RADIO TUBE W\&O EXCHANGE

TS-147 C/UP TEST SET
Hard-to-get
X-Band SIGNAL GENERATOR
Now Available
Test Set TS 147 C/UP is a portable Microwave Signal Generator designed for resting and adjusting beacon equipment and radar systems which operate within the frequency range of 8500 MC to 9600 MC .

MICROWAVE TEST EQUIPMENT TS148/UP SPECTRUM ANALYZER

Field type X Band Spectrum Analyzer, Band 8430-9580 Megacycles.

Will Check Frequency and Operation of various X Band equipment such as Radar Magnetrons, Klystrons, TR Boxes. It will also measure pulse width, c-w spectrum width and Q or resonant cavities. Will also check frequency of signal generators in the X band. Can also be used as frequency modulated Signal Generator etc. Available new complete with all accessories, in carrying case.

Other test equipment, used checked out, surplus

TSK1/SE K Band Spectrum Analyzer RFAA/AP Phantom Target S Band TS12/AP VSWR Test Set for X Band TS13/AP X Band Signal Generator TSI4/AP Signal Generator TS33/AP X Band Power and Frequency Meter TS34/AP Western El Synchroscope TS36/AP \times Band Signol Generator 1-96A Signal Generator
TS45 X Band Signal Generator

TS47/APR 40-400 MC Signal Generator TS $69 /$ AP Frequency Meter $400-1000 \mathrm{MC}$ TS100 Scope
TSI02A/AP Range Colibrator TSI08 Power Load TSllo/AP S Band Echo Box TS12 $2 /$ AP S Band Power Meter TS126/AP Synchroscope TS147 X Band Signal Generator TS270 S Band Echo Box TS174/AP Signal Generator TS175/AP Signal Generator

TS226 Power Meter
TS239A Synchroscope
TS239C Synchroscope
SURPLUS EQUIPMENT
APA10 Oscilloscope and panoramic receiver APA38' Panoramic Receiver APS 3 and APS 4 Rodar APR4 Receiver
APR5A Microwave Receiver
APT2 Radar Jamming Transmitter
APT5 Radar JammingTransmitter

MINIMUM CRDER

 25 Dollars
YOU CAN REACH US ON TWX NY1-3235

Cables:
TELSERSUP

SPECIA1.

Wide Band S Band Sianal Generator $2700 / 3400 \mathrm{MC}$ using 2 K41 or PD 8365 Klystron, Internal Covity Attenuator, Precision individually calibrated FrePrecision individualy calibrated Pulse
quency measuring Cavity.
CW or Modulated, externally or internaliy.

Large quantities of quartz crystals mounted and unmounted.
Crystal Holders: FT243, FT171B others.
Quartz Crystal Comparators.
North Americon Philips Fluoroscopes Type 80 Large quantity of Polystyrene beaded coaxial Cable.

COMPASS COMMUNICATIONS CO.

A Division of COMPASS ELECTRONICS CORP.
A WELL-INTEGRATED ORGANIZATION WITH FACILITIES AND TRAINED PERSONNEL FOR-

- DESIGN, MODIFICATION, PRODUCTION, AND TESTING OF COMMUNICATIONS AND RADAR EQUIPMENT - SUPPLY AND DSTRIBUTION OF ALL TYPES OF EQUIPMENT AND TUBES

WE MAINTAIN OUR OWN FULLY EQUIPPED TESTING LABORATORY TO TEST AND GUARANTEE ANYTHING WE SELL

ALL TUBES GUARANTEED - ALL PRICES ARE FOB OUR WAREHOUSE AND SUBJEC: TO CHANGE WITHOUT NOTICE

MOTOR GENERATORS - CONVERTERS - INVERTERS • DYNAMOTORS We Have One of the Largest Stocks of Electical Conversion Eqpt in the East, including All Types of Rotating Machinery and a Variety of DC and AC Magnetic Starters and Controllers from 100 Watts to 100 Kilowatts ESCO ROTARY CONVERTERS Mounted in Steel Drip-Proof Boxes
Type R-l-4 I. Fittered. Input 110 volts. 2.5 amps, 3600 rpm . Output $110 / 1 / 60$ @ 1.8 amps. 200 wotts ESCO MOTOR GENERATORS Dual unit (a) Input 32 v d.c.@
8 amps. Output 110/1/60@ 1.5 8 omps. Output 110/1/60 @ 1.5
amps, 165 vo 150 w , 1800 rpm. (b) Input 32 volts d.c. @ 16 omps. 4 amps. Ratime $1.05 \mathrm{kva}, 3,000$ rpm. Filtered.
These two units ore mtd. together on bed plate, comp. with ctrl. de meter $\$ 32150$ switch $0-50$ y de meter - \$32.50 eo. port.
MOTOR - GENERATOR - A
NATOR-Migr.-Quality Electric 225 amps, 1800 ipm . Outputs. \#1. d.c. $500 / 1000 \mathrm{v}, ~ 0.25 / 0.3$ $150 \mathrm{v}, 0.667 \mathrm{omp}, \mathrm{kw}, 1 \mathrm{kw}$ de. ac. $115 \mathrm{v}, 0.87 \mathrm{amp}, 3000$ cycles,
0.1 kva. P.F. $-1 \ldots . . . \$ 245.00$ ESCO CONVERTER - Input 110 volts dc. Output 110 volts ac
$@ 1.2$ amps. Erand new. $\$ 45.00$ @ 1.2 amps. Erand new. $\$ 45.00$
ALLIS CHALMERS CONVFRTER 110 volts dc to 110 volts oc
@ 1.25 kva output
$\$ 165.00$ PINCOR ROTARY CONVERTER PINCOR ROTARY CONVERTER -1
Input 110 volts dc. Output $220 /$ cont. duty; $40^{\circ} \mathrm{C}$. Filtered for Radio use $\$ 60.00$ CONTINENTAL MOTOR-GENERA-TOR--350 wotts. Type CC-21991 dc@ 148 lbs. Input 115 volts dc @ 5.7 omps, 0.625 hp . Out-
put 115 volts oc, 1 ph., 60 cycles put 115 volts oc, $1 \mathrm{ph}, 60$ cycles
$@ 3.04$ amps, $1800 \mathrm{rpm}, 0.85 \mathrm{pf}$, $@_{40^{\circ} \mathrm{C}} \mathrm{O}$ temp. rise, sed. excited. FiiWestinghouse ELECTRIC ${ }^{\text {tered }}$ GEN WESTINGHOUSE ELECTRIC GEN-
ERATOR- 10 KVA-AC OUtPU ERATOR-10 KVA-AC. Output $115 / 1 / 60 @ 108.5 \mathrm{amps} ; .80 \mathrm{pf}$; excited cont duty 12500 rpm, sep. Output, 125 volts de generator Output 125 volts dc @ 8 amps. This generotor is mounted on bed plate w'th can be driven mount mechanically coupled motor do or ac or other drive...... \$195.00 MOTOR GENERATOR 8CO-1DInput 24-28 volts dc. Output 115 $v, 800$ cycles of 10.5 amps. Small and compact......... \$29.50 $\mathrm{M}-209$ - Holtzer-Cabot - Filtered.
Input $115 / 1 / 60$ Output 115 volts, $3 \phi, 233$ cycles; at 0.4 amps and 24 volts de at 6.5 amps. 3500 MG-149-Holtzer-Cabot Inverter. 2JIF1 SELSYN-115-57.5v \$49.50 cycles $\$ 4.45$ OXPERSEAS CUSTOMERS SPECIAL SERVICE TO
393 GREENWICH STREET
All phones: BEEKMAN 3-6509

NEW YORK 13, N. Y. Cable Address: COMPRADIO, N. Y.
RECEIVERS
ARB

AIRBORNE RADAR
APS. 9
APS
A
APS-3
APS-4
APS-10
APS 13
APS-15
SCR-717
SCR-790

SA	SG
SC	SJ
SD	SK
SF	SL
SN	
SO-1, 8,13	
SQ	$Y J$
$V G$	$B G$
$V J$	$B M$
YG	$B N$

and SPARE PARTS for MANY OF THESE SETS, COMPLETE AND NEW IN ORIGINAL CASES

5F, SG-SYNCHRO- 115 v, 60 CyCles UNIT TYPE 23 - Rotary POWER UNIT TYPE 23-Rotary
tronsformer, filtered. Input 24 vdc. Output 6.3 volts at 2 amps anc 200 volts of $30 \mathrm{ma} . \$ 19.50$ 98, DM-25, -28, -32, -33 , etc.

This Month's

SPECIAL OFFERS

SN-RADAR- 10 cm - Compact,

 light and portable, ranges of 5 and 20 miles. Uses 5 CPI scopeoperation from 115 volts, 60 operation from 115 volts, 60 cycle, but we can supply converter
for dc operation.... $\$ 850.00$ ea for dc operation $\mathbf{A N T E N N A}$ ASSEMBLY-Reflector ANTENNA ASSEMBLY-Reflector
is a lightweight parabolic cylinder, Ass'y has both monual and motor drive. Ideal unit for labs, classroom demonstration, smali craft, AFR-4-38-4000 mes. precision AFR-4- $38-4000$ mes. precision
receiver, complete $w / 5$ tuning receiver, complete w/5 funing
units. Operates on $115 / 1 / 60 \ldots$
s 170000 ea MAG-10cm. remarkable link radar, portable, operated from 6 and tripod. A pair at. . $\$ 1750.00$ APS-3- $\mathbf{3} \mathrm{cm}$ - Airborne radar for search and homing, 5 -in. scope. 10 brand new sets át. $\$ 750.00$ ea. APQ-13 Very late model airborne radar set, complete and new. One only at. $\$ 2,950.00$ vehicle, ontenna and power plant, pretty fair condition, sold as-is

SEARCHLIGHT SECTION

Reliance Specials

COAXIAL CONNECTORS x^{1}

FIXED COMPOSITION RESISTORS

 available in all standard rma valuesPOSTAGE STAMP MICAS

AIRCRAFT GENERATORS

OUTPUT- 115 VAC 10.4 AMPS $800-1400$ CY 1 PR. PLUS

> STORAGE BATTERIES
> BB. 54 Willard 2 rolt 20 amp. hrs, bullt \ln charge
all batteries shipped dry

PULSE TRANSFORMERS
UTAH $9262{ }^{3}$ windings-Dask 200 VDC Current 10 MA . Turns Ratio 1.1 .1 impedance varlable 0.5000 ohm MANY OTHER PULSE TRANSFORMERS IN STOCK DATA UPON REQUEST

PHASE SHIFT CAPACITOR

.75 to 2.75 mmfd ${ }^{4}$ stators-single rotor-continuounly
variable phase shift $0-360$ deg.................. $\$ 22.50$ ea.
TERMS - Cash with Order or 25\% Deposit - Balance C.O.D. Net. 10 Oays to Rat
Net F.O.B. Our Warehouso.

High Current Filament Transformer Amertran type W Pr. $105-125 \mathrm{~V}$. $60 \mathrm{Cy}$.1 Phase- Sec . 5V. 190 amps.- 97 KVA 35 KV . RMS Insul. Test 7x10x
 RAYTHEON PLATE TRANSFORMER TYPE U8355A
PRI. 110V/220V/440V/60 cy.

10 MA DC METER $3^{\prime \prime}$ rd DeJur \#310
1 MA DC METER $3^{\prime \prime}$ rd DeJur \#310.
MA DC METER Fan trie ${ }^{\prime \prime}$ \#cal
 30 VDC METER 21/2" rd C.E. 21/2w Id SUN AT-4/ARN-1 ALTIMETER ANTENNA NEW WED 77584 MERCURY RELAY
AT-48/UP 3 CM HORN ANTENNA AT-48/UP 3 GM HORN ANTENNA
INVERTER 6VDC to $110 V A C$ CY
TVW. IN34 CRYSTAL MOTOR HAYDON IIS YAC.
I RPM TIMING MPM TIMING MOTOR INGRAHAM 115 VAC .05 MFD 600 VDC bathtub cond slde term.
.06 MFD 100 VDC bathtub cond. side term .06 MFD 1000 VDC bathtub cond. side term
.1 MFD 600 VDC bathtub cond. bottom term i MFD 600 VDC bathtub cond. bottom term...
$2 \times .1$ MFD 600 VDC bathtub rond. side term.
$3 \times .1$ MF 600 DD bathtub cond. side term. .25 MFD 400 VDC bathtub cond. slde term.
.5 MFD 600 VDC bathtub cond. side term. I MFD 600 VDC bathtub cond. slde term. $\frac{2 \text { MFD finn VDC hathtub cond. side term. } \$ 1 .}{\text { RG 8/U COAX CABLE New Gov't Surplus } 100 \text { Ft- } \$ 5}$ BC:22I FREQ. METER uncalihrated.
VERNIER DRUM for BC-221 0.500°
VERNIER DAL VERNIER DIAL for BC-221 0-100 360° BC-22I MAIN TUNING COND. SDecify model BC. 221 CASE used good condition.
PRECISION POT, 12 olm 3 watt
PRECISION POT, 12 olmm 3 watt G. R. \#3ini..
PRECISION POT 12 ohm 4 watt DeJur 292. PRECISION POT 12 ohm 4 watt DeJur \#292.
PRECISION POT 20 ohm 4 watt DeJur $\# 292$.
PRECISION POT 50 ohm 4 watt DeJur $\# 292$. PRECISION POT 500 ohm 4 watt Centralab $\# 48$-60)
 PRECISION POT 5000 ohm 8 watt Muter \#314 PRECISION POT 6000 ohm 8 watt Muter \# $814 \mathrm{~A} . . .52 .50$ PRECISION POT 5000 ohm 12 watt DeJur $\# 271-\mathrm{T} . . \$ 3.50$
SET SCREWS Allen $4-40 \times 1 / \mathrm{w}$. SET SCREWS Allen $4-40 \times 1 /{ }^{\prime \prime} \ldots{ }^{\circ} \ldots$
SET SCREWS Allen $4-40 \times 3 / 16^{\prime \prime}$ SET SCREWS slotted $8-32 \times 3 / 16$
SET SCREWS souare head $8-32 \times 5 /$ LINESMAN'S PLIERS $\mathbb{R}^{\prime \prime}$, with side cutters CK.5517/1013 cold cathodo tube. 32 MFD 2500 VDC photoflash cond.
30 MFD 2500 VDC photoflash cond 30 MFD 2500 VDC Dhotoflash co
2×2 TUBES RCA. 6SN7 TUBES St or KenRad
$2001 / 2$ W RESISTORS Ass't. ali tnsulated 5 lhs. HARDWARE Ass't. nuts. holts etc.
GEAR ASS'T. IOn gerrs, bushings eto... GEAR ASS T. 100 gerrs, bushings to.
RHEOSTAT $25 \mathrm{~V}^{\prime} 145$ ohm $7 / 1 \mathrm{~m}^{\prime \prime}$ shait RHEOSTAT 25 W 370 ohm $7 / 16^{\prime \prime}$ shaft
RHEOSTAT 25 W 400 ohm $7 / 16^{\prime \prime}$ shaft RHEOSTAT 50W 8 ohm S. D, shaft... RHEOSTAT SHW 12 ohm $1^{\prime \prime}$ shaft RHA RHEOSTAT 50W 123 ohm $7 / 16^{\prime \prime}$ shaft
RHEOSTAT 50 W 200 ohm $7 / 16^{* \prime}$ shaft. RHEOSTAT 50W 300 ohm $7 / 1 \mathrm{f}^{*}$ shaft. RELENIUM RECTIFIER 200 MA 115V Puil Tave.
SELENIUM RECTIFIER 100 BA 115 V hall DM33A तrmamotor new. GLYPTAL CEMENT G.F. \#128f....................... Si. $\$ 1.15$

SELSYN MOTORS

 New …................................. $\$ 12.95$ PAIR

DIFFERENTIAL Used $\mathbf{\$ 4 . 9 5}$

 115 V., 60 Cycle New $\$ 9.95$Ssed between two C78248's as a dampener. Can be converted to 3600 RPM Motor in 10 minutes. Conversion sheof
supplited. (Converted) supplfed. (Converted) Bakeite for selsyns, and dicferentisla
Mountlng Brackets-Bown abore
shown shown above

ALUMINUM CHASSIS etched finish

Size, Inches	Pr	Slze, inches	Price
4×17.3..	$\$ 1.83$	$10 \times 12 x^{\text {² }}$..	1.
5×10	1.20	$10 \times 14 \times$	
$7 \times 7 \times 2$	996	10×178	2.28
$7 \times 9 \times 2$	1.08	$10 \times 17 \times 3$	2.56
$7 \times 11 \times 2$	1.20	$11 \times 17 \times 2$	2.37
$7 \times 15 \times 2$	1.26	$11 \times 17 \times 3$	3.00
$7 \times 15 \times 3$	2.04	12 x 17x 3	3.18
$7 \times 17 \times 3$.	2.10	$13 \times 17 \times 2$	2.82
$8 \times 17 \times 2$ 。	1.89	13x17: 3	. 3
8 $\times 17 \times 3$.,	2.27	13 $\times 17 \times 4$.	3.8

ALUMINUM MINIBOXES etched finish \begin{tabular}{lllr|llll}
L \& W \& H \& Price \& L \& W \& H \& Pric

$23 / 4$ \& $21 / 8$ \& $15 / 8$ \& 578 \& 6 \& 5 \& 4 \& 51.1

$31 / 4$ \& $21 / 8$ \& 1558 \& 578 \& 7 \& 5 \& 3 \& $1 / 2$

4 \& 2 \& $23 / 4$ \& 764 \& 8 \& 6 \& 3 \& $31 / 2$

4 \& $21 / 8$ \& $15 / 8$ \& 60 \& 10 \& 2 \& $15 / 8$ \& 90

4 \& $21 / 4$ \& $21 / 4$ \& 79ψ \& 10 \& 6 \& $31 / 2$ \& 2.2

$41 / 4$ \& $21 / 4$ \& $11 / 4$ \& $79 t$ \& 12 \& $21 / 2$ \& $21 / 4$ \& 1.2

5 \& $21 / 4$ \& $21 / 4$ \& 814 \& 12 \& 2 \& 4 \& 2.65

5 \& 4 \& $31 / 4$ \& 904 \& 17 \& 5 \& 4 \& 3.1

5 \& $21 / 8$ \& $85 t$ \& \& \& \&

\hline
\end{tabular}

A COMPLETE LINE OF CAD, STEEL CHASSIS
IN STOCK. SEND US YOUR INQUIRIES
WRITE FOR BARGAIN BULLETIN

Arch St., Cor. Croskey Phila. 3, Pa. Telephone Rittenhouse 6-4927

MOTOR GENERATORS
 Mnit of
 Brand new including soare arnature
 INVERTERS

 Type PEACM. For SCR-522 Brand
Hew in overseas casas. Has wido band innut and nutput filters

 SMALL D.C. MOTORS

 Dumore Co. type ELBG. 24 V1DC. $40-1$
gear ratio. For type B-4 intervalometer. Neww
Westinghouse Tyne FL. Westinghouse Type FL. $115 \mathrm{~V}, 40 \mathrm{cy}$,
6.700 R1M. Airlow 17C. F .31.

SYNCHROS

SYNCHROSFord Inst. Co. Synchro Diffrentar Gen-	
400 cy. . Mri. Dr. 173020. New . $\$ 12.50$	
Armor. Synchro Ditterentlal Generator.	
SOUND POWER CHEST SETS	
U. S. Instrument Co. No. A-260 Combination head set and chest nijcrophone Brand new, includink 2 , ft . of rubber sorered caheand plur … $\$ 17.50$ each	

PANADAPTER Provides 4 Types of
Presentation: (1) PanoPresentation: Aural (3)
ramic (2) Oscillographic (4) Oscilloscopic
Desicned Designed for use with re

 60 cycle source. .ianua of AN/HPA-10
80 pae inst.
arailable separately for those who wish avallable
to study
circuits

SCR-522 EQUIPMENT Complete RLC-624C receivers and BC-华ks. plugs, comectors, dynamotor Brand ne

RADAR SETS

MODEL SO. Portable radar set, 10 CM .
 Cormplete with tech manual and full set of operating spare parts.
MODEL
SG- 1.
Consists eutuipment including Radar TransnitterReceiver ClM-43AAK-3 Range andi
Traln Indicator CRP-55iBC-3, Control Amplifler Clll' 50 AAT-1, Motor Dyna-
mo-Amplifler mo-Amplifter (Amplidisne) CG-21Ad
and Antenta Assmbiy CRP-66AB-1. MODEL ASG-1 Radar unit consisting of
tiansmuter and converter assembly CIIR$43 A B C$. Antenna Assembly CleP-ACZ, Mounting Base CPR-10ABE, etc.
Sparo Pats available for Model SQ and Sparo lats
SG-1 Radar

RADAR ANTENNAS

 Tyoe so. I (10CM) assemlily with re-flector, wavegulde nozzle, drive motor, Tyne SO-3 (3 CM.) Surface Searcla trpe pluming. New in originai cases.
Tyne so-13. (10CM.) Complete assemTyne SO-13. "10CMr, Complete assem-
inl with $24^{\prime \prime}$ dish, dipole, drive motor, bearing

MISC. RADAR EQUIPMENT Modulator Units for SO-11 (CUZ-50AGD) Pulse Timer units for SD.5
Transpaitter-Receiver units $\mathrm{SO}-13$
 Marker Osciluator crystals in holder Bearing Control Units CRP-23.1EK Synchro Amplifers-liendix
90° Waveguide Rends 10 CM Bronze Simat Monitors CRP CROAN
Thepeater Amplifiers CBM-50AFO Oscillator Tube Cavilies for so-1.
etc., RF303.
 Dolarized horn output
Duflex Tees $\# 2 Z 3005-1$
Aushex Tees \#22Z3005-17 so Radar) so-1 (R1-502) Antenna Reflector Assemblies so-1 Antenna Reflector Assemblies (12F503) Antema Wavequide Hesonatce so-1 RF Coupling Wa wesulde to Trans-

RADARREPEATER ADAPTERS NAVY TYPE CBM-50AFO repeater unit for video signals trigger Duses dertigned
jurction
with
standard equilments whereit brovision is made po oneration of remoto
adapier provides four tid
pulse lines for operating

Yolts, 60 cyccles A.C. Dimensions are
$11 / 2 \times 21 \times 1 \overline{\mathrm{I}}$ in........New $\$ 97,50$
G. E. BATTERY CHARGER Charges 54 Cell Battery at from 1 to 10 ampere rate Thuut model ificisif 16 Comper Oxide bat cery charger consists of a transtomer
secontasy peactor, a conper oxide rectify ink element, a bentilating fan, contro circuits and auxiliars enuipment neces-
sary for proper olerations. Transformer Sary tor proper ojerations. Transformen
tapped for various supply Goltafe. Eight

 Complete with spare fan and fusse weight altirox. 305 lhs .

REPAIR PARTS FOR BC-348 Also BC 224 Models F. K., Coils for ant..
 blies, vol. conts. etc.
list and free diagram.

HIGH QUALITY CRYSTAL UNITS

Western Electric - type CR-1A/AR in
holders $42^{\prime \prime}$ Din spacing. ideal for net Irequency operation. Avilable in quan-
tities. $5910-6350-6370-6470-6510-6610-$
 ${ }^{\text {250 }}$ multipliers to hill fundamentals in KC . Good

SYNCHRO CAPACITORS
.6-6-.6 mfd Mark 12, Mod. 2, type 1 lC $10-10-10 \mathrm{mfd}$ Mark 1, Mod. 2, type $55.6^{3,}$

9 CONDUCTOR CABLE
Army spoc. CO-215 Weatherproof 9 Conal. plastic ins., color coded, double viny jackets aith tinned conper braid between
Dia. $9 / 16^{\prime \prime}$ made by G.F. Available 1000 Dia. $9 / 16^{\prime \prime}$ made by G.F. Available 10001 Sample 100 ft Coil
G. E. SERVO AMPLIFIERS Used in 329 planes por Central Station

PARABOLOIDS

 Two sets of mountink breckets on rear.
Opening at ance for wavegulde dipole Opening at andex for wavegulde dipole
assembly $1 / 2 \mathrm{x} 15 \%{ }^{5}$.
Brent Brand New

TUBE SPECIALS		
1N213.	1.95	3BP1
1824	${ }^{63} 6$	${ }^{3} \mathrm{CP} 1$
${ }_{2}^{2 J 62}$	${ }^{23.50}$	${ }_{861} 78$
3B22	1.95	${ }_{\mathbf{C 6}}{ }^{\circ}$

SAWTOOTH POT

Continuous winding 2 rotating and two
take oft brushes varies voltage to linar

1000-6000 MC RECEIVER
R111A/APR-5A complete with Instruc-
tion manual. Excellent condition. $\$ 395.00$
300-1200 MC. XMITTER
N/APT-5 Brand New in original cases. $\$ 139.50$

AN-APR-1 RECEIVERS

Lrss tuning units. Excellent condition $\begin{gathered}\text { sig5.co }\end{gathered}$

D.C. SELSYN MOTOR

sed ir step type for wat with porntiom Bondix
Bols

SWEEP GEN CAPACITOR COAXIAL TYPE

High speed ball bearings. Split stator silver wilated coaxial type $5 / 10$ mimfd
liram new.SPECIAL $\$ 1.95$

30-10,000 CYCLE
MODULATION TRANSF.
For 11CA. Type $250-\mathrm{K}$ Broadcast Trans mitter (MII- 7242) P to P Primary 1 mm
15.000 ohms. Secondary Load 5.030 ohms.

capacito
only..
MICA CAPACITORS

High voltage Transmitting types, thousands in stock. Wide selection of slzes.
tipes \& ratings. Alf new and made hy types \& ratings. Als new and mand hate

HIGH POT TRANSFORMER Westinghouse. Pri: 115 , 60 cy . Sec: $15 .-\mathrm{-}$
000 V C.T. 000 V C.T....0. 060 A . C. T. ungrounded.
Excellent for high-poting tests. Size 0 .

PULSE TRANSFORMERS
KS-9563 Sudplies 3500V deak from ${ }^{8037}$
Hikhe Reactance Trans. G. E. Trye Y-

60 CYCLE TRANSFCRMERS

 integral
lirackets
Plate
${ }_{440} / 220.60$ Rys. Rartheon U-5815. Pri:

400 CYCLE TRANSFORMERS
Auto.
115.
Weight
Wis

Fil Ks9553. Pri: 115 V . Sec: $8.2 \mathrm{VF}^{53.25 \mathrm{~J}}$

Plate \& Fil. Prl: $0 / 80 / 115 \mathrm{D}$. Sec: | $\$ 2.95$ |
| :--- |
| \boldsymbol{H} |

Plate. Thordarson T4n8899500 cy Pris

REACTORS

 \#2C2270/122 For Keser Unit RC 009.53 .75

FREQUENCY METER 375 to 725 MCS
 ard 1.5 V "A" and $45 V^{\prime}$ "I3" tat
tery. Mas $0-5$ Min. time switch.
Contains sturdity constructed III(Q" resonator with average " Q " ector tuble. Uses 957 . $1 \mathrm{S6}$ anc inst hook prolry and spare
of tubes
batteries.

FREQUENCY

 STANDARD Complete self contained, dual 1001000 ke crystal, multivibrator anul 1000 ke crsstal, multivibrator amul
harmonic amplifier. Calibrates
with wive and prowdes 1000 , with WWV and prordies 1000 . 100 to $45,000 \mathrm{kc}$. 115 V . 60 cycles.
vew with lastruc.

TERMS: Rated Concerns Net 30, FOB Bronxteed. Prices Subject to Change

PHONE
BRONXVILLE 2-0044

G. E. GENERATORS

General Electric Type 5-ASR${ }^{31 J J 3 ;}$ - 400 cycles out at 115

SINE-COSINE GENERATORS
(Resolvers)
Diehl Type FJE43-9 (Single Phase Rotor). Two stator Windings 80° apart. provides two output sequel to the sine and cosine of the angular rotor displacement. In-
put voltage 115 rolts, 400 cycle. $.1 .1 . \$ 30.00$ ea. Dieh! Type FPE.43-1 same as FJE-43-9 except it suppliee inaximpum stator roltage of 220 volts with 115
volts applied 10 rotor.

VOLTAGE GENERATORS (RATE)

ALNICO MIDGET D.C. VOLTAGE GENERATOR TALNIB-35-H MIDGET DC. VOLTAGE GENERATOR

AUTOSYN MOTOR TYPE 1

SELSYN GENERATORS

General Electric m0D. 2.15M1; 115-57.5 Voits
Cycle
S2

SYNCHROS

AUTOSYN MTR. KOLLSMAN TyDe \#403: 32 VAC 60 Crele: sinzle Phase
AUTOSYN MTR. BENDIX TyDe $\# 851: 32$ VAC: 60 Mictosy phase Type ic-000-i IF Special Repeater (115V-400 Cy.)........ $\$ 35.00$ 2JIF 3 Generator ($115-400$ cre.) ${ }_{5 \mathrm{~F}}^{5 \mathrm{CT}}$ Control Transformer: 0 . 50 Volt; $60 \mathrm{Cy} . .54500$ $5 / \mathrm{DG}$. Differential Geneiator ($90-\mathrm{ai}$ rolts- 400
 Differential-C.78249: $115 \mathrm{~V} .60 \mathrm{Cy} \ldots$..... 55.00
 REPEATER, AC svachronous i15 337.50 ea. REPEATER, DIEHL MFG. NO. FJE 22.2, $\quad \$ 1500$ ea
 7 G Synchro Generator $(115 / 90$ volt: 6 ercle) . 877.00 60 G Synchro Differential Generator (90/R0 volt: 60 2-JF5.j Seisyn control Transformer: $05-55$ volt 5105 HAI Selsyn Generator: $115-105$ voits. 10 2JIFI GENERATOR: $115-51.5$ voit; 400 crcle. 2गHI DIFFERENTIAL GENERATOR: $\begin{gathered}\$ 12.50 \mathrm{ea} \\ 57.5-57.5 \\ 5120\end{gathered}$ 2JGI CONTROL TRANSFORMER: $57.5-57.50$ ea

PIONEER TORQUE UNITS
TYPE 12604-3-A: Same na 12606-1-1 exrept it has a 3 nil ratie metween output shaft and follow-un Anto
 base mounting type corcr for notor and gear train TYPE 12606-1-A: Contain CK5 Montor coupled to oultShit shaft through 12.51 gear reduction train output output shaft to follow-up Alutosign is 15.1 . $\$ 70.00$ ea.

Immediate Delivery

 ALL EQUIPMENT FULLY GUARRANTEEDAll prices net FOB Pasadena, Calif.

INVERTERS

10563 LELAND ELECTRIC

PIONEER 12117

OUTPUT: ${ }^{26}$ Molts: ${ }^{400}$ evcles; 6 rolt amperes. I-
ALTERNATOR, CARTER
 650 cycles, and 295 rive 200 amps. INPUT: 26.5

PE 218 LELAND ELECTRIC

Output: 115 VAC: Single Phase; PF 90: 380/500 BPMANO FEW Wíts, 27.5

PE 109 LELAND ELECTRIC

MG 153 HOLTZER-CABOT
Input:
cycles, 3 -phase. 50 . 52 anps; Output: 115 polts- 400 A. Voltage and flequency regulated. $\$ 95.00$ ea.

PIONEER 12130-3-B
Output: 125.5 : AC; 1.15 amos 400 cscle singie phase,

12116-2-A PIONEER
Output: 115 YAC: 409 cye : single phase: 45 amp,
Input: 24 VDC 5 amp. $\$ 65.00$

10285 LELAND ELECTRIC

 .90 PF and 26 volta, 50 amps, sininge phase, 400 eccle. R1'M. Voltage and Frequency regulated. $\$ 95.00$

10486 LELAND ELECTRIC Output: $115 \mathrm{VAC} ; 400$ Cycle: 3 -phase; $115 \mathrm{VA} ; .80$
PF. Input: $2 \pi .5 \mathrm{DC} ; 12.5$ amp Cont. Duty PF. Input: $2 \pi .5 \mathrm{DC} ; 12.5 \mathrm{amp}$; Cont. Duty $\$ 90.00 \mathrm{ea}$.

PIONEER 10042-1-A

94-32270-A LELAND ELECTRIC
Outrut: 115 Volts; 190 VA : Single Phase: 400 Cx l input: 27.5 Voits DC 18 amps int 400 Cycle, 40 PF freq. rebulated $\$ 95.00$

PIONEER 12147-1-B
output: 115 VAC 400 cycle; Single phase. INPUT: $24-30 \mathrm{VDC}: 8$ amps............................. $\$ 79.50$

MG 149F HOLTZER-CABOT
OUTPUT: 26 VAC @ 250 VA: 115 Y @ 500 VA ; Single Phase; 400 cycle. INPUT: 24 VDC @ 36 anlus.

EICOR CLASS "A" NO. 1-3012/08-7 | OUTPUT: 125 VAC: 400 crcle; single phase: 100 VA . INPUT: $24-30$ Ync: 11 amss: Duty int. Voltage and

POWER RHEOSTATS

Standard Irands: 5 Ohms: 100 Watt
4.48 antips 100 Ohms: 100 Watt: 1.0 Boxed. Brand Now with Knob $\$ 2.50$
each-or- $\$ 25.00$ per 0 O.

PIONEER AUTOSYNS

ALNICO FIELD MOTORS

(Aphrox. size overall . . . $33 / 3^{*}$ x DELCO TYPE \quad 5069600: 27.5 Oits DC: 250 kPM DELCO \#5063 Inico Fiold: 10.000 R. M. dimensions 1 , volts; DC PIONER GYRO FLUX GATE AMPLIFIER
Type 12076-1-A. conuplete with tubes.
AC CONTROL MOTOR
A. C. SYNCHRONOUS MOTOR TIDE IRBC 2505
 400 CYCLE MOTORS
eastern alr devices \# j33 Synchronous Motor
 EASTERN AIR DEVICES TYPE J49A: 115 V:0. 1

 EASTERN AIR DEVICES TYPE JM6B: $\$ 1000$ ea.
 EASO ENCle AIngle Phase......... 1212,50 ea.
 AIRESEARCH: AC Induction, 200 V; 3 Thase. 400
 208 V. 400 Cycles, 3 I lhase Kearfott Co.، Inc. 51 ga

SERVO MOTOR 10047-2-A; 2 Phase; 400 Cycle, with 40-1 Reduction Gear $\$ 17.50$

SMALL DC MOTORS

GENERAL ELECTRIC =5BAIOAJI8 .. 27 YTC
 EMERSON $¥ i 75$: is volt DC: $1 / 6 \mathrm{ch}$ HP is $\$ 22.50$ EMERSON 7175 : 12 V.olt DC: $1 / 8 \mathrm{th}$ HP; 10 qum
 duction gears 00 RPM: $271 / 2 \mathrm{VDC}, 2$ amps; SPERRY \approx Bociong:
 amps. 8 oz, inches torque; 250 MPM , shunt wound: ${ }^{4}$
 General Ela amps 8 nz. inches torgue: 145 RYM : shunt (round: ENERAL ELECTRIC DC MOTOR MOA STS ${ }^{512.50}$ 64. 160 r.p.m. 65 amp; 12 oz.-in torque 27 Dr:

115 VOLT GENERATORS

Brand new. Felipse penerators:
115 VAC: 9.4 amp: Inno matt:
 at 25 amp. Unit has suline drive

MICROPOSITIONER

Barber Colman AYLZ 2133.1 Polarized D.C. Relay: Double Coil Differential sensitive. Anico P.M. Polar zote positioning, synchronizing, contrul, etc. $\$ 12.50$ ea. BLOWER

Fastern Air Defces: Trpe JB11?: 115 volt: $400-1200$

 Cycle: Single phase : rariahte frequencr: continuous

BLOWER: Mfr. John Oster Mne C2A-11/; 27 TDC: 63 series Wound BLOWER ASSEMBLY omplete sith capacitor. New........... $\$ 12.50$ er

SENSITIVE ALTIMETER

\qquad - altimetres, 0 .

BLACK LIGHT KITS

C.W. MAGNETRONS*
 *TUNABLE, AND
PACKAGED WITH MAGNET.

$-I N$ STOCK-		
AIA ASH SO.8		
APA-9	BG	SG-1
APA-10	DAS \dagger	SJ-1
APN-3	DBS \dagger	TAJ
APN-7	APT-2	TBK
APN-9*	APT-4	TBL
APS-2	MKIV	SCR520*
APS-3	MKX	SCR521
APS-4	RC145	SCR518
APS-6	RC148	
ASD SO-1		
* Components. †loran equipment		
- TEST SETS -		
TS-10	TS-12	TS-159
TS.36	TS-56	TS-268
TS-47	TS-34	TS-270

I. F. AMPLIFIER STRIPS

MODEL SO: 30 Mc Gain figure is 120 db . Bandwidth:
 Model 15: 30 Mic center frequenc, Jiandwidh 2.5
 Strip included. Input impedance: 50 Ohmis. Metel APS. 4 Hiniature IF strip, using 6 AK Me center Freq. Gain: 95 ddb at Bandwidth of 2.7 Mc.
Less tules

BC 1203 MODULATOR

Provides $200-4,009$ PPS, Sweentime: 100 to 2,500
Pres
 marker pulse, sweep voltages, calibration voltages,
fil voltages. 0 nerates 115 vac. $50-60$ cy. Provides various type of voltage pultse outputs for the mody lation of a signal generator such as General Radio \#804B or
SCR
S

MICROWAVE ANTENNAS

AT49/APR-lroadhand Conical. $300-3300$ MC. Type ASHEed Relay System Parabelic retiectors apurox. range 2000 Dipole for alrove................................ $\$ 12.00$
 Cone Antenna. AS 125 Afli. $1000-3200 \mathrm{me}$. Stubs supASI4A/AP, 10° DIt pick up dipole assy, complete AS $46 \mathrm{~A} / \mathrm{APG}-4$ Yaxi Antenna. 5 element array $\$ 22.50$ AO Parabolic Rellector Spun Aluminum dish, $\$ 4.85$
APS. 34 Fillbox Antenna, waveguide Input: $24,000-$
 SCR 584, Dishes Pelforated, Metal Construction

RADAR ANTENNAS	
$\begin{aligned} & \text { AS }-12 / \text { APS }-3 \\ & \text { AS } 17 / A P S S-2 \\ & \text { AS } 13 / A P G-2 \\ & \text { AS } 59 / \text { APT } \end{aligned}$	AS-125/APR AS-217/APG-15 AT49/APR AS14/AP
PULS NETNORKS	

 G.E. \#3E (3-84-810) (8-2.24-405) 50P4T; 3 KV EA 810 PPS. 50 ohims imp. ; Unit 2. 8 Sections, 2.24

microsec. 405 Ir's 50 ohms imp. microsec. 405 P ' ${ }^{\prime}$, 70 ohms imp $\mathrm{KV} \mathrm{E}^{\circ}$ Circuit, i microsec. 200 PPS 67 ohms impedance 3 sections
 7-5E3-3-200-67P, 7.5 KV. "E" Circuit, 3 microsec.
200 PI'S. ohms limp. 3 sections. $\$ 12.50$
 G.Est $25 \mathbf{E} 5-1-350-50$ ग2T ${ }^{3}$ CKT 1 Microsec G.E. ${ }^{25 E 5-1-350-50}$ P2T, ${ }^{\text {Punse }}$. 350 PRS. 50 OHMS Impedance. Microsec. KS9623 CHARGING CHOKE: 16H @ $75 \mathrm{MA}, 380$
Ohms DCR, 900 Vac Test.
G usec/200 PPS $/ 50 \mathrm{ohms} / 2$ sections....... $\$ 7.50$
SPRAGUE H-615 "E" Cl rcuit 10KV, 0.85 microsec

PULSE EQUIPMENT
MIT. MOD. 3 HARD TUBE PULSER: Output Pulse Power 144 KW (12 KV at 12 Amp). Duty Ratio put voltage: 115 v. 400 to 2400 cps. Uses: $1-71513$, APQ-13 PULSE MODULATOR. Pulse Width . 5 to 1.1

 KW (1200 KW pk): pulse rate 200 PPS . 1.5 micro-
sec. pulse line lmpedance 50 nhms. Circuit serles charging version of DC Resonance type. Uses two PULSE TRANSFORMERS RAYTHEON WX ${ }^{\text {4298E: }}$ Primary 4RV, 1.0 USEC, W E C O: KS 9948: Primary 700 ohms; Sec: 50 ohnis.
 GE \#K-24-49A. Primary: 9.33 KV. 50 ohms. Imp. Serondary: 28 KV , 450
ohms. Puise length: $1.0 / 5 \mathrm{usec}$ (40

GE FK-2748-A. 0.5 usec (a) 2000 Pps. Pk. Pwr. out
is 32 KW impedance $40: 100$ ohm output. Pri. volts
2.3 KV Pk. Sec. volts 11.5 KV Pk. Piflar rated at
1.3 Amp Fitted with magnetron well...... 399.50 $\mathrm{K}-2745$. Primarv: $3.1 / 2.8 \mathrm{KV}$. 50 ohms Z. Secondary:
$14 / 2.6 \mathrm{KV}$ 1025 ohms Z. Pulse Lencth: $0.25 / 1 . \mathrm{f}$ usec @ $600 / 600$ PPS. Pk. Power 200/150 KW.
Miflar: 1.3 Amp. Has bullt-in" magnetron
well K-2461-A. Primary: $3.1 / 2.6 \mathrm{KV}-50$ ohms (line). Secondary $14 / 11.5 \mathrm{KV}-1000$ ohms Z. Pulse Length: 1 . 10 . 600 PPS. Pk. Power Out: $200 / 130 \mathrm{KW}$. nsec ©
Biflar: ${ }^{600}$ PPS. Pk. Power Amp. Fitted with magnetron
well UTAH X-15iti: Dual Transformer, 2 Wdgs. per sec-
thon 1:1 Ratio Der sec 13 MHI inductance 30 ohms UTAH X-isot-1:Two sections. 3 Wdgs. per section.
 TRI049 Ratio: $2: 1 \mathrm{Pr} 1.220 \mathrm{MH}, \mathrm{EO}$ Ohms, sec. 0.75 H. DCR 100 Ohms

Ray UX 7896 -Puise Output Pri. $5 \mathrm{v} \mathrm{sec} .41 \mathrm{w} \ldots \$ 7.50$ Ray UX ${ }^{8+42-\text { Plllse inversion }-40 v}+{ }_{352-7287}^{40 v} \ldots .$. . $\$ 7.50$ RAYTHEON: UX8693. UX5986. UTAH $\# 9262$, with Cracked Beads. that will operate ux 8693 racs $=27962-51,3$ Wdas, 32 turns $\# 18$
wire DCR is: $362 / .3$-20/.4 ohms Total voltage 2500
vde.

COMMUNIGATIONSEQUIPMENTCO.

POWIER TRANSFORMERS

Comb. Transformers $115 \mathrm{~V} / 50-60 \mathrm{cps}$ inpue CT-129 550-0-550V @ $150 \mathrm{MA} .6 .3 \mathrm{~V} / 4 \mathrm{~A}, 2.5 \mathrm{VCT}$ CT-013 $450-0-450 \mathrm{~V}$ @ $200 \mathrm{MA}, 10 \mathrm{~V} / 1.5 \mathrm{~A}, 2.5 \mathrm{~V} /$

$\$ 5.79$
 CT-071 110V $\quad .200 \mathrm{~V} \quad 33 / .200,5 \mathrm{~V} / 10 \ldots$ $\begin{array}{llll}\text { CT-367 } & 580 \mathrm{VCT} & .050 \mathrm{~A} & \mathbf{5 V C T} / 3 \mathrm{AA} \\ \text { CT-403 } & 350 \mathrm{VCT} & .026 \mathrm{~A} & 5 \mathrm{~V} / 3 \mathrm{~A}\end{array}$
 CT-43A 600-0-600V/.08A,2.5VCT/6A, $6.3 \mathrm{VCT} / 1 \mathrm{~A}$

Filament Transformers 115 V50-60 eps Input

$\begin{array}{ll}\text { FT-140 } & \text { SVCT (3) 10A } 25 \mathrm{KV} \text { Test } \\ \text { FT }-157 & \text { 4V/16A, } 2.5 \mathrm{~V} / 2.75 \mathrm{~A}\end{array}$
$\begin{array}{ll}\text { FT-157 } & 4 \mathrm{~V} / 16 A, 2.5 \mathrm{~V} / 2.75 A . \\ \text { FT-101 } & 6 \mathrm{~V} / 25 A\end{array}$

2x.4V/2A $, 16 \mathrm{~V} / 1 \mathrm{~A}, 7.2 \mathrm{~V} / 7 \mathrm{~A}, ' 6.4 \mathrm{~V} / 10 \mathrm{~A}$
 FT-38A 6.3/2.5A, $2 \times 2.5 \mathrm{~V} / 7 \mathrm{~A} . \mathrm{Cl}, \mathrm{JV} / 3 \mathrm{~A}$. 8.979

Plate Transformers, 115 V 60Cy Input PT 175 550-0-550VAC (400VDC) 157 150MA 56.30 PT 157 660-0-660 VAC (500VDC) or 550-0-550 PT 158] 1080-0-1080V (1000 VDC) at 125 MA Plus Simult. Ratings PT $159 \quad 900-0.900$ VAC (750 VDC) or 800-0-800
VAC (600 VDC at 225 MADC PT 167 1400-0-1400 VAC ($\mathbf{3 0 0 M A D C}$) or 1175-0 10.3

10 KW TRANSMITTER KIT

1) Plate XFMR: Amertran 33134. Pri: 198/220 240 V , 60 cy ., 1 ph. Sec: $3650 \mathrm{~V}, 16.7 \mathrm{KVA}, 30 \mathrm{KV}$ 1) Reactor Modulation @ 3.0 amps . DCR 80 ohms 3 3153. 50 H to 10 KC . Leve $\mathrm{I}: 63 \mathrm{DB}, 40 \mathrm{KV}$ Test. Impedance: 3000 ohms. A great value. Both
\$630
400 CYCLE TRANSFORCIERS (All Prlmaries 115V. 400 Cycles)

INTERPHONE

 AMPLIFIEREasily converted to an ideal Inter or factory. Original. New $\$ 4.75$

HI-POWER COMPONENTS

 Plate Trans. Primary: 115 V , 50-60 Cy, Sec. 17-600 V/144 MA. Has "Bilt-in" Plate Trans. Pri: $198 / 220 / 240{ }^{\circ} \mathrm{V}, 60^{\prime} \mathrm{Cy}$. late Trans. Pri: $198 / 220 / 240 \mathrm{~V}, 60 \mathrm{Cy}$.1 Ph . Sec: $3650 \mathrm{~V} / 16.7 \mathrm{KVA}, 30 \mathrm{KV}$ Insulation. Oil-Immersed, Less Oil Gauge Plafe Trans. Amertran \#31133. Pri: $110 /$ $115 / 120$ V/60 Cy/1 Phase. Sec: $3140 /$ Fil. Trans, Pri. 220 V/60 Cy/1 Phase. \$105 5 VCT/10A/30 KV Test...... $\$ 37.50$ Plate Trans, Raytheon UX6801. Pri: 115 MA/5.35 KVA. Lo-Cap. "Donut" Construction
struction
Reactor: Raytheon U-ilis33: i3.5H @ 1.0 Amp., 13.5 KV Test........... $\$ 29.95$ Reactor, Modulation: 50 H/3 A/80 Ohms DCR. Response: $03 \mathrm{Cy}-10 \mathrm{KC}$. Level: plus 63 db . 40 KV Test. Nominal Circuit Swing Reactor: $9-60 \mathrm{HY} / .05 \cdots 400 \mathrm{MA}$ 10,000 V. Test-Kenyon....... $\$ 14.95$ Transtat: Type TH45BG: Input 130/260 V. 50-60 Cy. 1 Ph . Output Range: $0-260 \mathrm{~V}$, 45 A. Max. 11.7 KVA two-unit bank, parallel connected. Completely enclosed in cabinet with handwheel atop. Brand Circuit Breaker: ite Model kJ. Will handle 600 VAC at 115 A. Break time adjustable from instant. to 10 minute. Break amperes adiustable from 115 A to
1000% overload. Brand New Alternator: Louis-Allis Co Type $198-\mathrm{C}$. Output $110 / 220 \mathrm{~V}$.-1 Ph. 60 Cy ' .9 P.F. 1200 RPM, completely self-regulafing with built-in exciter. Brand new, original crates................. $\$ 795.00$ PE-94C Power Supply, Brand New $\$ 6.95$ Plate Trans: \#218521-Pri: $115 \mathrm{~V} / 1 \mathrm{PH} . / 60$ Cy. Sec. 7500V/.06A (Half-Wave) SCS te Trans "..." +26579 . Pri: 105 $110 / 120 \mathrm{~V}, 1 \mathrm{ph} / 60 \mathrm{Cy}$. Sec. 3100-0. 3100 V ot 2 KVA . Insulated for 15 KV .
Center-Tap Grounded to Case. $\$ 135.00$

FILTER CHOKES

Stock
CH-187
CH-187 Swing. 4-16M, 150MA, 210 ohms, Pr
CH-189
CH-190 Swing. $3-14 \mathrm{Hi}, \mathbf{3 0 0} \mathrm{MA}, 80$ ohms, $\mathbf{3 K V}$
CH-CEC117: ${ }^{\text {Test }} \mathbf{9 0 H} / 05-400 \mathrm{MA}, 10 \mathrm{KiV}$ Test
$\begin{array}{ll}\text { CH-366 } & 20 \mathrm{H} / 3 \mathrm{BA} \\ \mathrm{CH}-322 & .35 \mathrm{H} / 35 \mathrm{~A}-10 \text { Ohms DCR }\end{array}$
$\begin{array}{cc}\text { CH-142 } & \text { DUA/ } 7 \mathrm{HH} / 75 \mathrm{MA}, 11 \mathrm{H} / 60 \mathrm{MA} 5 K \mathrm{~V} \text { DC }\end{array}$

$\begin{array}{ll}\text { CH-69-1 } & \text { Dual } \\ \text { CH- } & 120 \mathrm{H} / 17 \mathrm{MA} \\ 2 / .5 \mathrm{H} / 380 \mathrm{MA} / 25 \mathrm{Dh}\end{array}$
$\begin{array}{ll}\text { CH-8-35 } & 2 / .5 H / 380 \mathrm{MA} / 25 \text { Ohms } \\ \text { CH- } 7764 & 1.28 \mathrm{H} / 130 \mathrm{MA} / 75 \text { ohms } \\ \text { CH- } 344 & \text { 1.5H/145MA } \mathbf{1 2 0 0} \mathrm{V} \text { Test }\end{array}$
$\begin{array}{ll}\text { CH-344 } & 1.5 H / 145 M A / 1200 V \text { Test } \\ \text { CH-43A } & 10 \mathrm{HY} / 15 \mathrm{MA}-850 \text { ohms } \mathrm{DCR} \\ \text { CH-366 } & 20 \mathrm{H} / 300 \mathrm{MA}\end{array}$
20H /300MA - 850 ohms DCR
15HY/15MA- 400 ohms DCR
6H/80MA- $\mathbf{3 1 0}$ ohms DCR

CH-188M
CH-488
$\mathrm{CH}-791$
$\mathrm{CH}-981$
$\mathrm{CH}-22-1$
$\begin{array}{ll}\text { CH-22-1 } & 15 \mathrm{HY} .110 \mathrm{~A} \\ \mathrm{CH}\end{array}$

$\begin{array}{ll}\mathrm{CH}-922 & 10000 \mathrm{HY} \text { MA. } \\ \mathrm{CH}-043 & 2.2 \mathrm{HY} 80^{-\mathrm{MA}} . \\ \mathrm{CH}-89 \mathrm{~A} & 2 \times 2.52 \mathrm{H} \text { @ } 167 \mathrm{~A}\end{array}$
CH-89A
Mult. Choke
SECT. 1. Swing 3-12H//52-

$\mathrm{CH}-170$
$\mathbf{C H}-533$

ARTILLERY MICROPHONES

Microphone, Type T-21, condenser type, used to detect sound of Artiliery fire or shell detonation. A number of these units are placed in the ground at various field locations in Geometric patterns at denser head, acoustic chambers, and a 2 -stage Audio Amplifier
Rectuire
Rerfuires 6 flashlite Batteries and $1-" C$ " Battery-
Sold less tubes

TYPE	INPUT volts	AMPS	VOLTS	OUTPUT	PRICE
DM 416	14	6.2	330	. 170	56.75
DM 33A	28	7	540	. 250	3.95
BD AR 93	28	3.25	375	. 150	7.50
23350	27	1.75	285	. 075	3.95
B-19 Pack	12	9.4	275	. 110	8.95
DA-3A*	28	10	500	. 0501	6.95
			150	. 010	
			14.5	5.	
PE 73 CM	28	19	1000	. 350	22.50
BD 69\%	14	2.8	220	. 081	12.95
D-402†	13.5	12.2	8.8VAC ${ }^{\text {300 }}$. 200		**
SP 175					12.50 4.49
DM $25 \dagger$	12	2.3	250	. 05	6.95
Less Filter * Replacement for PE 94.					
PE 94-C, Brand New					
INVERTERS					

PE-218-H: Input: 25/28 vdc, 92 amp. Output: 115v. PE-206: cy 1500 volt-amperes. NEW Wut: 28 vdc 36 amps. Output: 80 y $\quad 800$ cy, 500 voltamps. bim: $13^{7} \times 512^{*} \times 1032^{*}$. 820 NAVY COR-21105: inp ut $22-30$ VDC/7S-6PA. 22.50
OUTPUT: $115 V / 400$ CY. 1 KVA/8.7A. RPM: 4800 With coupling provision for motor. Erand New Original packing

RECTIFIER TRANSFORMERS

Prl: 115V, 60 Cy. Sec: 28V/3.1A, $26 \mathrm{~V} / 8.4 \mathrm{~A}$
Pri: $210 / 215 / 220 / 225 / 230 / 235 / 240 \mathrm{~V}, 60 \mathrm{Cy}$., 1 . $\$ 12.95$ Sec: 11/10/7.5/5VCT @ 35A. ……........... Pri: 115V 60 Cy: Sec: 8.1V (115V 60 Cy:

12-14V SUPPLY KIT

Delivers $12-14 \mathrm{VDC}$ at 3.5 A from 115 V , $60 \mathrm{cy} . \mathrm{c}$ Kit contains 1- TransformerRated 18.5 V . Bridge

SPECIAL GEAR

MK-12 Pressurizing Unit, with DEHYDRATOR. Hand-Operated $\$ 32.50$ 2CV3A1 Servo-Amplifier (APG-2) New, Complete With Tubes....... $\$ 75.00$
T-26 APT-2 Jamming Transmitter 450710 MC .7 MC . Bandwidth Output Power 8 Watts
$\$ 75.00$
T-75/APT-4 Jomming Tronsmitter: $165-$ 780 MC Noise Modulated. Uses 5 J 30 Mognetron. Input: $115 \mathrm{~V}, 400 \mathrm{CY}$, 1500 Wotts and 28VDC New, with Tubes.
$\$ 450.00$
BARRYMOUNTS

UPRIGHT OIL CONDENSERS	
CAP. ${ }_{\text {220VAC/ } 600 \mathrm{VRC}}$	CAP. 4800 WVDC ${ }^{\text {PRIC.m }}$
${ }_{15}^{6.2} \ldots \ldots \ldots \ldots \ldots .$.	.1-.1 6000 WVDC ${ }^{\text {che }}$
$330 \mathrm{VAC} / 1000 \mathrm{VDC}{ }^{3.49}$	${ }^{1} 1.15 \cdots \cdots$ W.... 53.69
.......... ${ }^{\mathbf{5} 3.79} \mathbf{1 . 2 5}$	${ }_{1.5}^{115-15 \ldots ~}{ }^{3.10 .99}$
1000 VDC ${ }^{1.25}$	7000 WVDC ${ }^{10.98}$
.. $\begin{aligned} & \text { 5. } \\ & 1.199\end{aligned}$	${ }_{1}^{1-1.1 ~}{ }^{53.79} 9$
[1.49	${ }_{\text {. } 075-075}^{8000} \mathbf{\text { WVDC }}$
${ }_{1.5}$	10K VDC
\$1.95	15 K VDC
........ $\begin{gathered}1.59 \\ 1.79\end{gathered}$.0016.16k voc ${ }^{\text {87.95 }}$
2000 wVDC	59.5
500 WVDC ${ }^{\text {S1.79 }}$	25 20K VDC 517.50
	25 K VDC
15............ 56.95	

MOBILES!C. D. MEN! CAP!!
IDEAL DYNAMOTOR-CONVERTS EASILY $610{ }^{12}$ Volt in in put
 Brand New with Conversion Data............ $\$ 3.75$

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D. RATED CONCERNS SEND P.O. ALL MDSE. SUBJECT TO PRIOR SALE AND PRICES SUBJECT TO CHANGE WITHOUT NOTICE. PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED VIA CHEAPEST TRUCK OR RAILEX.

SAVE ON TUBES BRAND NEW TUBES GUARANTEED TUBES

All Prices F.O.B. Los Angeles, subject to change without notice. Minimum order $\$ 3.00$

ELECTRONICS Dept. E-A

 7552 Melrose ave. Los Angeles 46 CaliforniaThousand of other types in stock. Send us your requirements.

> WE BUY AND SELL GOVERNMENT SURPLUS electronic components, units, wire, etc. Your Inquiries Invited LAPIROW BROS.
> 1649 Hoffner st. KIrby 1285 ${ }^{\text {Cincinnat1 23, onlo }}$

GLASS TUBING

PYREX - NONEX - URANIUM WRITE FOR FREE MONTHLY LIST HOUDE SUPPLY COMPANY M. R. \#1 Box 86X \quad PHONE KEYPORT 7-1286 \quad Keyport, N. J.

$\mathbb{K} \cdot$ RK $\cdot A R C \cdot U G \cdot P L-A N$

CONNECTORS

 In Stock for Immediate Delivery Ronnector Qorporation137 Hamilton St., New Haven 11, Conn. Phone: Spruce 7-2513 New York Phone: LExington 2-6254

Cat. $\quad 22 \mathrm{~F}-3911 \mathrm{MFD} .600 \mathrm{~V}$ DC. . .75 ea. Cat. ${ }^{+23 F-154} 1 \mathrm{MFD} .500 \mathrm{~V}$ DC.. . 45 ea. Cat Channels Oil Filled
Cat. \#TJU-10010 1 MFD. 1,000 V DC

Ceramic-Screw Term 60 ea. | $2 J 1 G 1$ | |
| :--- | :--- |
| $2 J 1 F 3$ | OLCHNE BRANDNEW |
| 400 CYCLE | |

RELAYS - SWITCHES - SWITCHETTES
NEW YORK EIECTRONICS
218 Fulton St., N. Y. 7, N. Y. Rector 2-4137

ARROW SALESINC

GOVERNMENT SURPLUS PUMPS!

Brand new Cenco Megavac Vacuum Pumps, Model 92010A, complete with connecting cord, hose assembly and attachment plug. Specially priced at $\$ 137.50$ each, f.o.b. New York.
medical salyage co., Inc. 217 East 23rd St. New York 10, N. Y. MUrray Hill 4-4267

WHOLESALE ONLY

ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT

 HYDRAULICSRADIO \& ELECTRONIC SURPLUS 13933-9 BRUSH STREET
Detroit 3, Mich. TO'9, 3403

HIGH VOLTAGE CONDENSERS

Cat. No.	MFD	WVDC	
G.E. 26F444.	8	2 KV	9.95
G.E. 23 F 47	2	4 KV	9.95
G.E. 25F509	1	6 KV	7.50
G.E. 25 F774.	.1X. 1	7 KV	8.00
G.E. 25 F 450	. 1	75 KV	7.50
G.E. 25F360.	. 1	12 KV	9.50
C.D.	. 65	125 KV	17.50
Intereen	. 25	15 KV	19.95
G.E. 14F91	1,0	15 KV	39.50
Intereen	. 5	25 KV	49.50
Intereen	1.0	25 KV	69.50
Fast 16734	1.0	25 KV	89.50
G.E. 14F71	. 25	32.5 KV	60.00

$8 \times 8 \times 8 \mathrm{mfd}, 500 \mathrm{WVDC}$

Special \$2.69
Many other types of oil filled condensers in stock. Write for quotation on your requirements.

HIGH CURRENT MICA CONDENSERS Ceramic cased, Sangamo type G1 or similar
 7.50
12.50
15.00
15.00
12.50
14.50
14.00

Type G-2 or Simila

. $0012 \ldots$
-003...
. 000025
. 0003
. 0005 .
,00057
. 00065
. 05
. 005.
. 00015.
. 0012

Sangamo type F-2, C-D type 6, or similar
Amps

\$5.20 each					
Mfd	VDC	$\begin{aligned} & \text { aps } \\ & \mathbf{M} \\ & \hline 1 \end{aligned}$	Mfd	VDD	Mps
. 00005	5 KV	. 8	. 001	$\mathrm{S}^{\text {K }}$ V	d.
. 00009	5 KV	8	. 0012	5 KV	4.5
. 0001	5 KY	1	. 0015	5 KV	5
. 00015	5 KV	1.5	. 002	5 KV	5
. 0002	5 KV	1.7	. 002	6 KV	6.5
. 00025	5 KV	2.5	. 002	6 KV	6.5
. 00003	5 KV	2	. 0025	5 KV	

ngame type F-1, C-D type 151 or similar $\$ 3.75$ each

\$3.75 each					
. 00005	3 KV	. 6	. 0008	3 KV	2.5
. 00009	3 KV	. 8	. 001	3 KV	3
. 0001	3 KV	. 08	. 0012	2 KV	3
. 00015	3 KV	1	. 00125	2 KV	3
. 000175	3 KV	1	. 0015	3 KV	3.5
. 0002	3 KV	2	. 0016	2.5 KV	3.5
. 0003	2 KV	8	. 002	3 KV	4
. 0003	3 KV	2	. 0025	2 KV	4.5
. 0004	8 KV	4	. 003	2 KV	5
. 0005	3 KV	2	. 004	2 KV	6
. 0006	2.5 KV	2	. 005	2.5 KV	6.5
. 0006	3 KV	2	. 006	2 KV	5.5
. 000625	3 KV	2.5	. 008	1.5 KV	8
. 0007	3 KV	2.5	. 01	2 KV	14
. 00075	3 KV	2.5	. 1	1 KV	12

Sangamo type A, C-D type 9 or similar 2500WVDC 5000TVDC

mfd	price	mfd	price	mfd	price
. 00001	Pr 57	. 0003	Pr. 64	. 002	1.27
. 0000025	.57	.00035	. 64	. 0025	1.38
. 00005	. 57	. 0004	. 64	. 003	1.53
.00006	. 57	.0005	. 76	. 004	1.69
. 0001	. 57	. 00051	. 76	. 005	1.86
. 00015	. 57	. 00063	. 76	. 01	2.19
. 0002	60	. 001	. 87	. 015	2.41
.00025	. 64	. 0015	. 87	. 02	2.68

All prices $F O B$ Oakland, Calif., subject to change without notice.
Terms 25% cash with order. Balance COD.

EMMONS RADIO SUPPLY CO. 405 10th St.

Phone TWinoaks 3-7411

SEARCHLIGHT SECTION

FREE SURPLUS CATALOG
LISTING SCORES OF EXCEPTIONAL "BUYS"! SEND FOR YOUR COPY NOW!

INSULATING MATERIALS:

PHENOLIC LAMINATED SHEETS $36^{\prime \prime} \times 36^{\prime \prime} \times 1 /{ }^{\prime \prime}$ Grade XX Type 1 . Black Price: $\$ 10.00$ per , Sheet PLEXIGLASS SQUARES- $6^{\prime \prime} \times 7^{\prime \prime} \times 14^{\prime \prime}-3$ For $\$ 1.00$

MOTORS:

 2800 RPM Reversible Motor-SIze: 5-1/4" $\times 3-1 / \mathbf{c}^{\prime \prime}$ Shaft Size: $1^{\prime \prime} \mathbf{Z} x^{\prime \prime}$. Emerson No. 186-0412-Price GEAR HEAD for above motor. Ball Bearing Geared Shaft, 10 to 1 reduction, Price. COMBINATION: Motor \& leduction Cear. ... $\$ 10.00$ 21 VAC OPEN FRAME-20 RPM Double Shaft Back Gear Motor with Disengase Clutch. Shaft size: $1-1 /{ }_{2}{ }^{\prime \prime}$ 24 VAC OPEN FRAME-3 RPM Back Gear Motor 4 VDC REVERSIBLE-5000 RPMY with Mannutic Brake. Flange Mount Spline Shaft-size: $5 /{ }^{\circ}{ }^{\circ}$ x $3 / 16^{\prime \prime}$ Motor: 4^{*} L. x 2-1/2" Dia. GE Motor only \$5BA25AJ32A
24 VDC AIRWAY MOTOR-Model \#Z-350. ADprox 000 RPM. Dotor size: $2-1 / 2^{\prime \prime} \times 1-\% / 8^{\prime \prime}$. Shaft size 6 VOLT 60 CYCLE- 60 EPPI Synchronous Cramer Hotor \#1147, Shaft size: $1^{\prime \prime}$ z $1 / 2$................ $\$ 1.9$ 110 VDC $1 / 70$ HP. 1550 RPM. Motor size: $4^{\prime \prime} \times 2-12^{\prime \prime}{ }^{\circ}$ Shaft slze: $1^{\prime \prime} \times 3 / 16^{\prime \prime}$. Redmond \#157
6 VDC $1 / 20$ HP. 4000 RPM. Motor slze: $5^{* N} x 3^{\prime \prime}$
 2 VDC $1 / 30$ HP. 4500 RPM. Motor size: $3^{\prime \prime} \times 2-1 / 2^{\prime \prime}$ A.C. INDUCTION MOTOR- 115 Volts 60 cycle 1.9 Multiple Disc Coder Wheel and Micro switch mount ed on Bracket Assy. Holtzer Cabot Motor Type IrWC GEARED HEAD MOTOR-Heary Duty. 24 VDC 8 amb. 2-1/2 lb. Torque; $100 / 200$ IRPM. Shaft size

COAXIAL CABLE CONNECTORS

 AND CABLES:RG-8/U (SPECIAL) 51.5 ohm. Same size as RG8/U. Prices: 1 to 100 ft . @ 84 per 1 tt .- 100 to 500 ft
 RG-34/U-71 ohm, 145 ft . leng PL-259-Plug ea. end $\& \frac{\mathrm{ft}}{} \mathbf{2} 2^{n}-1 \mathrm{RG}-54 / \mathrm{U}-58$ ohm. 50 c UG-21/U-Plug ea. end \& $32^{\text {n }}-1 \mathrm{kG}-11 / \mathrm{U} 75 \mathrm{ohm} .50$ UG-22/U—with 4^{μ} Coaxtal Cable................... 50 c

TRANSFORMERS - 110 V. 60 Cycle Pri. 5 VOLT CT- $25 \mathrm{~A}-10,000 \mathrm{~V}$. Ins. OF'EN FRAML
 Sec. 24 V. 4 A.... $\$ 1.50$ Sec. 24 V. 1 A...... $\$ 1.95$ Sec. 6-24 or 30 Volts. 8 Amps... $\$ 545$

FAIR RADIO SALES •
 32 SOUTH MAIN $\$ T$ LIMA, OHIO

AIRCRAFT ELECHRONTCS

ARC-1's, ART-13's, RTA 1B's, BC348's
AND COMPONENT PARTS FOR ABOVE
write or call for bulletin
MERRICK ELECTRONICS
166-08 DOUGLAS AVE.
JAMAICA, N. Y. RE 9-5960

SOUND POWERED

 HEAD AND CHEST SETNAVY TYPE-No Batteries required. Ideal for TV Antenna installations, Used-Tested twisted, rubber covered, medium WIRE: 2 Cond. twisted, weatherproof, heavy duty. W-110. 525 Ft. IRoll $\$ 4.75$.
 2 Cond. solid. 1200 Ft . Roll $\$ 10.00$ or

AC TO DC POWER SUPPLY RECTIFIER POWER SUPPLY-Input 105-125

DYNAMOTORS

INPUT	OUTPUT: VOLTS MA.		STOCK		NeW
VOLTS			NO.	USED	
14	330	150	BD-87	\$6.95	\$8.95
14	250	50	DM-25	6.95	8.95
14	1000	350	BD-77	-22.50	39.95
28	230	100	DA-1A	3.95	5.95
24	250	60	DM-32	2.95	6.95
24	575	160	DM-33	2.95	
28	210	125	DY-22	7.95	
24	220	80	DM-53	3.95	
28	1000	350	PE-73	8.95	
28	300	260	$\begin{aligned} & \text { PE-94- } \\ & \mathrm{A}, \mathrm{~B}, \mathrm{CM} \end{aligned}$	5.95	10.95
	150	010			
	13	3.9 A .			
14	172	138	DM-40	6.95	8.95
28	250	60	PE-88	2.75	8.95
12 or 24	500	50	USA/0515		4.95
12 or 24	275	110	USA/0516		4.95
13 or 26	400	135			
	800	025	PE-101C	3.95	4.95
12	150	100	DM-310X	4.95	7.95
6 or 12	500	160	PE-103	29.95	39.95
12	230	90	PE-133	6.95	8.95
18	450	60	SP-175	3.00	4.95

BLOWERS:

MINIATURE BLOWERS:

24 VDC; Oblong Outlet

INVERTERS:

5 D2INJ3A-27 VDC input; outdut 110 Volt 400 cyclis. PE. Phase 485 VA. 109 - Input 13.5 VDC 29 A ; output iis $\$ 39.50$ PU.7/AP 1 Phase 1.53 Amps. PE-118-Input 28 VDC 100 A: output 115 V $\$ 890$ cycle. 1 Phase 1500 . PE-218-Input 28 VDC 100 A: output 115 Volt 900
cycle. 1 Phase 1500 VA.............. Userl: $\$ 24.95$ PE-115 or PE-206-1nput 28 VDC 36 NEW: $\$ 49.95$ TYPE 800 cycle 1.2 . Tmps new: $\$ 12.9$ TYPE 800-I-D-Input 28 volts 62 A ; ontput 115 V NhW: $\$ 75.00$

A NEW BUILDING

 IMPROVED FACILITIES for the manufacture of WESTON TEST EQUIPMENT
WL-102 PULSE GENERATOR

Equivalent to the TS-102/AP Range Calibrator, this crystal controlled pulse generator pro duces a square-topped, 50 volt synchronizing pulse of .8 microseconds at a pri of 400,800 1600 or 2000 cps. and a triangular marker pulse of 0.4 microseconds duration at a pri corresponding to a pulse-echo distance of 1500 ft . The phase between the marker and sync.

AN-APA-10	BC-595-TU	17	1-212						
AN-APR-1	BC-1060A	1-122	1-222/A	P4 ${ }^{\text {OAW }}$	TS-32A/TRE-1	TS-89/AP*	TS-148/UP*		TS-359A/U
AN-APR-4	BC-1066A	1-126	1-223/A	$\mathrm{Pa}_{\text {P4 }}$	TS-33/AP		TS-153	TS-218/ ${ }^{\text {TS }}$ SM	TS-363/U
AN-TSM-4	BC-1201A	1-130A	1-225	$\mathrm{PGE}_{\text {S }}$ / $/ \mathbf{}$	TS-34/AP	TS-92/AP	TS-155		
AN-UPM-13	BC1203	1-134 B	1-233	SG-8/U ${ }^{\text {TAA-16W }}$	TS-35/AP	TS-96/TPS-1	TS-159-TPK	TS-230B	TS-375/U
AS-23	BC1236/A	1-135	1-245	TAA-16WL	TS-36/AP	TS-98/AP	TS-164/AR	TS-232/TPN-2	TS-389/U
AT-67	BC-1255/A	1-137A	$1 \mathrm{E}-21 \mathrm{~A}$	TS-3APR ${ }^{\text {T }}$	TS.39/TSM	TS-100/AP	TS-170/ARN-5	TS-239B	TS-418
AT-68	BC-1277	1-139A	1E-36	TS-3AP/AP	TS-45/APM-3	TS-101/AP	TS-173/UR	TS-250/APN	TS-419
AT-39	BC-1287A	1-140A	1F-12/C	TS-10A/APN-1	TS-46/AP	TS-102/AP*	TS-174/U	TS-251	
AT-48	$1-48 \mathrm{~B}$	1-145	1S-185	TS-10A/APN-1	TS-47/APR TS $51 /$ PPG-4	TS-108/AP*	TS-175/U*	TS-257/AWR	TS-421/U
BE-67 ${ }^{\text {BC-221* }}$	1-49	1-147	15-189	TS-12/AP*	TS ${ }^{\text {TS } 51 / A P / A P G-4 ~}$	TS-110/AP	TS-182/UP	TS-263	TS-465/U
${ }_{\text {BC- }}$ 876	${ }_{1-618}^{1-56}$	1-153A	LAD	TS-13/AP*	TS-56/AP	TS-111/CP	TS-184/AP	TS-268B*	TS-480/U
BC-438	1-618	1-157A	LAE-2	TS $-14 / A P$	TS 5 S9	TS-117/GP*	TS-189/U	TS-270A	TS-505
BC-439	1.86A	1-168	LAF	TS. 15B/AP	TS-60/U	TS-125/AP ${ }^{\text {c }}$	TS-192/CPM-4	TS-281/TRC-7	TS.589/U
BC-638	1-95A	1-177		TS ${ }_{\text {T }}$	TS-61/AP	TS-127/U	TS-195/CPM 4		TS-615/U
BC-639	1-96A	1-178	LU-3	TS-18	TS-62/AP	TS-131/AP	TS-197/CPM-4	TS-297*	TS-616/U
BC-906D	1-97A	1-186			TS-63/AP	TS-138	TS-198/CPM-4	TS-301/U	TS-617/U
BC-9188	1-98A	1-196A	ME-6/U	TS-23/AP	TS-65A/FM2-1	TS-142APG	TS-203/AP ${ }^{\text {P }}$	TS.303/AG	TSX-4SE
BC-923A	1-106A			TS-24/APM-3	TS-69A	TS-143/CPM	TS-204/AP	TS-311/FSM-1	TSS-4SE
BC-936A	1-114	1-203A	$\text { OAA }^{2}$	TS-24/APR-2 TS-26/TSN-1*	TS-76-APM-3	TS-144/TRC-6	TS-205AP	TS-323	
BC-949/A	1-115	1-208	OAK	TS-27/TSM	TS-88/U	TS-146			
					TS-87/AP	TS-147/AP*	TS-210/MPM	$\mathrm{TS}-328$	TUN-8HU

WESTON LABORATORIES, INC.
 HARVARD, MASS.

Cable: WESLAB Tel: HARVARD 250_AYER 300_TWX— 193

1824.... 6.75	3DP1..... 2.50	RX-21... 7.50	328A... 4.00	709A... 1.75	832A.... 7.50
1B27.... 11.00	3E29.... 10.75	RK-23 . . . 2.00	329A... 7.50	715A... 3.00	833A... 28.50
1 132 1.25	3EP1.... 4.00	RK-62.... 2.00	348A... 7.50	715B.... . 4.00	836..... 2.50
1B42.... 8.00	3GP1.... 2.50	RK-72.... 1.00	349A... 7.50	715C.... 16.50	837..... 1.00
2AP1... 5.50	4B27. . . . 7.50	RK-73.... 1.00	350A. . . . 4.00	719A.... 15.00	838.... . 2.75
2C33.... 2.25	4C27.... 10.00	F-128A... 75.00	352A. . . 15.00	721A... 1.75	846 125.00
2C39A... 13.50	4E27. . . . 13.75	HK-154... 5.00	354A . . . 15.00	723A/B.. 12.00	849..... 20.00
2C40 ... 5.75	4J34.... 75.00	VT-158... 30.00	355A.... 15.00	724A.... 1.50	$860 \ldots . . .2 .00$
2C44..... 1.00	4J35 125.00	FG-190... 9.50	F-375A... 12.50	724B.... 1.75	861 13.50
2D21.... 1.00	5BP1 . . . 3.00	HF-200.. 13.50	393A... 7.50	725A.... 4.00	866A.... 1.00
2E22.... 1.75	5BP4.... 3.00	C-202... 12.50	394A... 2.50	726A... 7.50	869B.... 55.00
$2 \mathrm{~J} 21 \mathrm{~A} \ldots 6.50$	5CP1.... 3.75	204A... 25.00	417A... 7.50	726B.... 40.00	872A... 2.50
2J26.... 12.50	5D21.... 11.00	205B. . . . 1.00	GL-434A. 12.00	${ }^{726 C .}$	878..... 1.25
2J27.... 9.25	5FP7. . . . 1.00	F-207. . . . 100.00	446A... 1.00	728CY-GY 35.00	884..... 1.25
2J31.... 19.00	5FP14... 15.00	$217 \mathrm{~A} . . . \mathrm{r} 3.50$	446B. . . . 3.00	802...... 3.00	$885 \ldots . .1 .50$
2J32.... 20.00	5JP1..... 13.00	WL-218 . . 25.00	450TL.... 37.50	803..... 3.00	892R 250.00
2J33.... 20.00	5JP4.... 13.00	250R.... 55.00	WL-460. . 12.00	805.... . . 3.00	902-PP1 . 7.50
2J34.... 18.00	5JP11.... 35.00	251 A . . . 150.00	464A... 7.00	807..... . 1.25	$913{ }^{10.00}$
2J36.... 75.00	5J30.... 23.50	253A.... 6.00	WL-468 . . 20.00	808..... 1.50	$9182 .00$
2J38.... 12.50	5J32.... 60.00	267B.... 7.00	527.... 15.00	809..... 2.50	923..... 1.00
2J56.... 75.00	5R4GY... 1.00	271 A.... 5.75	WL-530. . 10.00	810..... 9.75	931 A. . . 4.25
2J61.... 28.50	C6A.... 7.50	274B.... 2.00	WL-531 . . 4.75	811..... 2.50	$9591 .50$
2K25.... 19.75	C6L..... 5.50	276A... 7.50	559.... 1.00	812...... 2.50	CK-1006 . . 1.50
3AP1 5.00	6BL6.... 50.00	282A.... 7.50	631-P1... 4.75	$813 \ldots . .10 .00$	1614.... 1.50
$3 \mathrm{BP}_{1} \ldots . . .3 .00$	6BM6... 60.00	283A.... 3.75	700A-D. . 13.50	814...... 2.50	1624.... 1.25
3B22.... 2.25	6C21.... 15.00	286A.... 6.50	701A.... 5.25	815..... 4.50	2050.... 1.25
3B24.... 3.75	6G4...... 4.75	304TH. . . 6.75	702A.... 1.50	822..... 17.50	ZB-3200. . 125.00
3B24W... 7.50	6J4.... 4.75	304TL.... 5.00	702B.... 2.50	826.... 1.00	8002R.... 85.00
3B25.... 3.50	7BP7.... 3.00	307A. . . 3.00	705 A .. ${ }^{\text {7 }} 1.00$	828...... 9.00	$8012 \ldots . .1 .75$
3B26.... 2.75	9GP7.... 7.50	310A.... 3.00	706AY-GY 35.00	829A. . . 6.00	$8013 \ldots 2.00$
3B28.... 4.00	9LP7..... 3.00	311 A.... 5.25	707A.... 5.00	829B.... 8.00	8020.... 1.00
3C23.... 6.75	12DP7... 12.50	$313 \mathrm{C} \ldots . .3 .00$	707B.... 8.75	830B.... 2.00	$8025 \ldots . . .4 .00$
3C24/24G 1.00	12GP7.... 13.50	323B..... 9.75	708A.... 2.50	832.... 6.50	PD8365... 50.00
- Prices do not include - Usual terms apply	ansportation	ELK GROVE, GEORGE WHI	ALIFORNIA NG, OWNER	- Unconditio - Subject	guarantee extended ior disposition

WANTED

ARC-1, 3, ART-13, BC-342, 348, APS10, 15, TS-13, 35, 146, 147, 148, 174, 175, 263 ETC. All SCR, BC, AN, TS. ALL TUBES.

MOBILE RADIO SCR-508

10 Channel FM Receiver and Transmitter. Frequency Range $20-27.9 \mathrm{mc}$. Recelver is manUally tuned, transmitter is crystal controlled. Consists of 2 BC- 603 Receivers,
mitter, FT- 237 mount, Box 80 xtals BC-606 mitter, FT-237 mount, Box 80 xtals BC-606 and antenna. Input 12 V DC. SCR -608 also avail. POR

SCR-291A

1.5-30nic automatic direction finder. This equipment used to take bearings on transmitters within its freq. range. Complete ing: BC-1147A Rec., PN 31, Power Panel, BC1159, automatic bearing goniometer, RC-223 antennae system consisting of 5 masts with legs, MC-412, MC-413 phase inverters calibrating transmitter, cables, 115 v 60 cyc gasohauled and guaranteed........................POR

VE REMOTE PPI INDICATOR

This is a remote. PPI indicator "7 in." screen for use with any Radar for remote viewing. Contains all indicating circuits and is driven
by the main Radar. Input 115 v 60 cyc. POR

AN/APN-3 SHORAN EQUIPMENT
This equipment is used for navigation, surveying, and automatic bind bombing. Operates in conjunction with AN/CPN-2 groundmeacons. Operating frequency of this equip10 feet up to its range of 300 miles. We can supply bombing computers, if desired we can supply APN-3 spares. AN-CPN-2 groundcons also avaliable....................... PO

SO-8 S-BAND MARINE RADAR This equipment operates in the 10 centimeter FCC approved marine band. Consists of transantennae, voltage regulator, etc. Input $115 \dot{\text { D }}$

RADALAB
 87-17 124:h STREET Richmorid Hill 18, New York Phone Virginia 9-8181-2-3

AN-GSQ/TA

SPEECH SCRAMBLER
This is a very compact unit designed to be attached to either a radio or telephone clrment utilizes coded cards in each terminal equipment. Unless the properly numbered card is inserted on the receiving end the speech can not be unscrambled. This provides an excellent privacy system. Complete equipment available consisting of: scrambler, code used with any field or airborne communications equipment
Mf. Western Electric.

SCR-506A

Mobile radio transmitter-receiver covering $2-4.5 \mathrm{mc}$ phone and CW. 1090 watts output 5 channel operation. 12 or 24 volt input. Conmicrophone headset. antennae and mounts,

AN / ARN-7

Automatic direction finder covering 100-1750 kc. Comprising Receiver, Loop, Control boxes,
Plugs, Mounts, etc.

SCR-5 22

Airborne Transceiver, Freq. $100-156 \mathrm{Mc}$. This unit is erystal controlled 4 channel. Power Receiver, BC-625 Transmitter, FT-244 mount, BC -602 control box, PE-94 dynamotor, an.
tenna, plugs $\$ 13$ \%.50

TS-102 A/AP
This crystal controlled pulse generator produces a square-topped, 50 volt synchronizing pulse of .8 microseconds at a pry of 400,800 ,
1600 ,
2000 cps . and a triangular 1600 or 2000 cps. and a triangular marker
pulse of 0.4 microseconds duration at a corresponding to a pulse-echo distance of 1500 ft. The phase between the marker and sync. pulses is continuously variable from -180 to $38-4000 \mathrm{mc}$ precision receiver consists of receiver and five tuning units to cover the full
range. Eacl tuning unit is calibrated dire range. Each tuning unit is calibrated directly
in me. Input 115 v 60 cyc...................POR

TERMS_-Minimum order $\$ 25.00$ all prices $F O B$ New York City. 25% deposit with order, balance COD. Rated firms open account. Prices subject to change without notice.

RF-3A/AP X-BAND FREQUENCY SWEPT MANUALLY TUNED ECHO BOX
Frequency range $8500-9600 \mathrm{mc}$. This equipment consists of an echo box with a motor mounted on one end which provides a frequency swept response from the echo box enabling it to be easily observed on the Rad ar
indicator. Input 28 v DC .5 amps. Can be indicator Input 28 v DC .5 amps. Can be AN/ART-13 AUTO-TUNE AIRCRAFT TRANSMITTER
Ihis equipment covers the frequency range of $2-18 \mathrm{mc}$, and is automatically tuned 10 channel. Power output is 75 watti CW. 60 Watts phone. This equipment consists of T-47 or T47A transmitter, dynamotor power
supply, control box, racks, antennae supply, control box, racks, antennae loading

AN/PPN-1 REBECCA GROUND BEACON

This equipment operates on 215 me and is used in conjunction with AN/APN-2 or SCR729. Provides a signal enabling the aircraft carrying the APN-2 to home on it. Thls ates from a 12 volt battery. Complete instal lations avail. APN-2 and SCR-729 equip............................ RC-348R CAA and Military approved model AN/APT-5 $300-1200 \mathrm{mc}$ transmitter 30 watts
 ABC-639 100-156 mc
AN/APS-10 3 cm airborne Rada...
POR
POR
AN/UPN-4 3 cm portable Radar beacon. .POR
TS-89 Voltage divider
TS-89 Voltage divider
TS-148 3 cm spectrum analyzer
TS-117/GPS-Band Echo Box

TUBES		
$2 . J 41$	$2 C 43$	$2 K 50$
$4 C 27$	814	$7 C 22$

SPECIAL VALUES

783 Output Power Meter General Radio. Like
New ${ }^{\text {New }} 3200-3370 \mathrm{mc}$ (00.30 .00 Like New 400.00 Model $228 \times$, 60 cy, with xtal calibration. Exc. $1,000.00$ controlled Signal Geniverator. crystal . Like New
Model 200C Hewlett Paekard Andio Model 200C Hewlett Packard Andio
Generator Kay Electric Mega-Sweep. 1:05/APN9 Receiver-Indicator Du Mont 208B Oscilloscope. Boonton Q-Meter 160A 50KC to 75 Mc .. Exc Turns Ratio Bridge …................Eve. 45.00 Type 726A Ge
Voltmeter 804C Federal or Goneral radio signal G $8-330 \mathrm{mc}$.
BC-221 or
BC-221AK with modulation.
 General Electric Dual Regulated Power Supply
Type ST9A
300.00 Tyde 724A Precision Wavemeter General
IRadio. 16 KC to 50 mc A LARGE STOCK OF ARCB. ARC-3. ART. 175

 *TVUR-Price upon request.

WANTED

 test equipment.
Please state accurate description, condition, and your
lowest price. Explafn modification, if any, We pay NEW CATALOG NOW AVAILABLE
Photocon Sales

17 N. Foothill Blvd , Calif. BYan 1.675 CABLE : Photocen, Pasadena.

$0 \mathrm{CJ} / \mathrm{VR} 105 \mathrm{I} 50.79$	4822/EL5B ${ }^{\text {c. }} 5$
${ }_{143}^{003 / V R-150 . .}$	$\begin{array}{lll}\text { 4825/EL6CF } & 5.50 \\ \text { EL/C5B }\end{array}$
${ }^{1} \mathbf{1 A 5 G T}$....... 62	ELC6A 5.50
${ }_{1824}^{1822}$.............. 1.195	$4 J 36$ 4.337
	${ }^{\text {58P1 }}$ …........ 4.69
(1832/532A ... 1.75	${ }_{5 \text { 5P7 }}$
${ }^{1 \times 22}$ N......... 95	5JP2 ${ }^{\text {a }}$. $\ldots \ldots \ldots .12 .50$
	6AC7
243 $\ldots \ldots \ldots \ldots \ldots . .75$	${ }_{\text {6B6GG }}^{6 \text {............... }}$. 59
2AP1 7.50	${ }^{6 C 6}$.
${ }_{2521}$	${ }_{6 S \text { 65C7 }}$
${ }^{2} 2214 \mathrm{~A}$ …… 5.95	$65 \mathrm{H7} 759$
${ }_{2527}$	
${ }^{2334}$ …....... 19.95	7E6 …......... . 45
	12A6 6.79
262 …….... .59	$12 \mathrm{C8}$ …..... . 59
${ }_{\text {3A4 }}$ 20............ 1.69	1255GT ${ }^{\text {25 }}$. 40
	125 J7GT 40
	14477 4.49
3 PP1 $306 / 1299 \cdots \cdots . .$. 2.50	15R $5 . .5$
3FP7 3GP1 3,........... 1.69	
FREE!	
FREE	
New 1954 elec. tronic parts mail-	\$K-61 50.00
Order catalog? Better than ever!	OK-72,

$F E B$.
SPECIAL FG-27A $\$ 4.90$

RADIO SHACK

CORPORATION Dept. 2E 167 Washington St., Boston 8, Mass.

The following is just a partial list of the current electronic and aircraft equipment now in Pr warehouse. Will inquiries. Prompt replies to all inquiries.

RC-103 \& AN/ARN-5 ILS
New in original cartons. Complete.
Consists of
Modified to flag alorm.
TBS 4 \& 5, NEW, COMPLETE 1E-17 TEST SET AN/ARN-7 COMPLETE
SCR-269 COMPLETE F-21/ARA-9

CR-269 COMPLETE APN-9
AN/ARC-1 VHF EQUIPMENT APN-1

BC-611 \& BC-721 HANDIE

TALKIES, Plus SPARE PARTS. Quantity available.

AN/ART-13 EQUIPMENT

 ATC XMTR T-47A/ART-13 XMTR T-47/ART-13 XMTR CU-24 ANT. LOAD CU- 25 ANT. LOAD DY-11\& 12 Dynam't'r MT-283 MOUNT 0-16 LFOMT-284 MOUNT ATC DYNAM'T'R SA-22 ANT. LOAD C. 87 CONTROL BOX

AN/APG-13A RADAR
 Absolutely complete, brand new

AN/APN-2	MG-153
SCR-729 New	APS-2, 3, \& 15
TA2J-24	Components
RTA-1B	AN/ARC-5 VHF
BC-1016	SCR-274 \& ARC-5,
APA-6 INDICATOR	Command Equipm't
APA-11 INDICATOR	R-4/ARR-2 Receivers
APA-17.RADAR	BC-640 VHF XMTR
HS-33 HEAD SETS,	SCR-510
NEW	SCR-522
MG-149F \& H SPARE	MG-153
	PARTS
SCR-720	SCR-522
SO-7	AN/ART-13
AN/ARN-7	AN/ARC-1
SCR-269	BC-611
SCR-718 A, AM, B \& C Altimeter equipment-complete	
To insure the finest of service and quality of merchandise, we have just recently put into operation our own reconditioning and function-testing plant, complete with all facilities.	
EXPORT INQUIRIES INVITED We carry an unusually large stock of Aliline Equipment, Test Equipment. Radar Sots, ito. Write for our low prices and complete infor. mation. We furnish Immediate answers to all Iríquiries. Write today!	
9	ELECTRONIC INDUSTRIES INC.

2033 West Venice Blyd.-Dept. E-23 Los Angeles 6, California Phone: REpublic 3-1127

SPECIAL SALE!

All brand new in original cartons
$7,000 \ldots 5 \mathrm{BP1}$'s
$100 \ldots 5 A P 1 ' s$
$100 \ldots 720 \mathrm{DY}$.
$300 \ldots 808$'s

AN/APR4 new and used receivers ...
Tuning Units TN-16-17-18
Write for prices on all above new catalog avallable . WRITE TODAY!

R W ELECTRONICS
 Chicago 16, III.
 PHONE: CAIUmet 5-1281-2-3

FOR SALE
 HEADSETS, HS-30/U
 REMOTE CONTROL UNITS, RM-29
 DYNAMOTORS, DY-12 DYNAMOTORS, DM-32A
 DYNAMOTORS, DM-36
 VICTOR-BERNARD INDUSTRIES, INC. 1511 N. 26th St., Phila, 21, Pa.

4 PDT RELAY
 26.5 VDC midget 425 ohm $\$ 2.95$
 Ahove frame also in:- 280 ohm @ $\$ 2.45 .12$

 double break 10 A cont. 5.3 vde 15 ohm $\$ 1.95$ RELAY 3 PDT 24 vic 250 ohm Clare Type $\mathrm{K} . \$ 2.75$ CONNECTOR 15 pin Amphenol $\pm 26.151 \ldots . .1$ 250 WATT output xiormer WE \#KS9496. 8 BAND CONVERTER Navy CG-46ABW ISOLATION XFORMER 35 watty il 15 v . \& $6.3 \begin{array}{r}89.50 \\ \text { SYNCHRO MOTOR }\end{array}$ SVNCHRO MOTOR I FS $115 / 90$ V 400 cyoles 14.95 PL-144, 80.124, PL-68, AN-3106.108-2s, 83. Variable Frequency electronic pencrator i400 watt output $300-3500 \mathrm{cy}, 220 / 60 / \mathrm{in}$. CML \# 1400 . CONDENSERS In stock ; bathtuts from . 02 400v to 2 mid- 600 v , upright olls (CP65 pyranois, YAB, otc) from $3 \times 1-600 \mathrm{y}$ to 1 mfd 600 v . Large oils from $.1-7500 \mathrm{v}$ to $1 \mathrm{mfd}-2,000 \mathrm{v}$. Also mica, sllver mica, varlables, trimmers. Write for Bulletin.
 EMPIRE ELECTRONICS COMPANY
 409 Avenue L, Brooklyn 30, N. Y. Cloverdale 2-2411

SPECIAL PURPOSE TUBES

ELECTRONIC OUTLET

3 Wolcott Ave. Lawrence, Mass.
Phone LAW 7801

CLARE, TYPES Carge sto Send V_{s} Yout CLARE TYPE C STANDARD SIZE
SEASITIVE TELEPAONE RELAYS

GLARE TYPE A Tel. Relay. Coil-55 Volts AC
60 cy. Contacts-3PDT (3 form C) Price- $\$ 2.50$ ea. Slonal Wheelock Relays \#K S9865 Coil- $\mathbf{2 . 0 0 0}$ ohms Contacts-1A, $1 \mathrm{~B}, \mathrm{iC}$ Oper. at Aa Prico- $\$ 2.75 \mathrm{ea}$. MINIATURE TEL. RELAY. 300 ohm, 24 volt FIVE Prong CR-279 G, E. Plug In Relays. 1) C-103C25 2220 ohms SPDT 4.5 MA... $\$ 4.00$ คа. Bulletin \#700 Allen Bradley Contactors 110V AC
$60 \mathrm{cy}$. D.P.S.T. N.O. 25 Amds........... $\$ 7.50$ ea. Clare SK-5032 (Herm. Sealed) Plug-In Relays, Coil -30 ohms 6 volts Contacts-DPDT. Price $\$ 4.00$ ea. SIGMA TYPE 5F SENSITIVE RELAYS. Has two
70 ohm coils. Contacts-SRDT....Price- $\$ 3.00$ ea. TYPE H TRANSMITTING MICA CONDENSERS

Chase
Electronic Supply Co.
Queens Villoge, N. Y. HOllis 4-5033

RADIO-RESEARCH INSTRUMENT CO.

CRYSTAL MOUNT. Holds any
IN23 type xtal. $1 " \times 1 / 2$ IN23 type xtal. $1^{\prime \prime} \times 1 /{ }^{\prime \prime \prime}$
guide std coax output, UG40 DIRETIO $\$ 19.50$
Uni Uir COUPLER. put, UG39fly. to UR "N" outJAN type CG-i76/AP. $\$ 39.50$ WAVEGUIDE. Std RG-52/U sharp internal corners. Any
lgth up to 12 ft . $\$ 1.25$ per ft .

Accessories
3 CM. "X" Band
BEND 90 DEGREE. E or H plane. Std radius. UG39cvr to UG40chk. Silver plated. $\$ 10.50$
TWIST 90 DEGREE. UG39 to UG40. Silver plated. $\$ 7.50$ FLEXIBLE SECTION. ApX $6^{\prime \prime}$. UG39 tigs. \$14.50

Drives

 PARABOLIC REFLECTOR 4ft.dia. RCA hi gain dish $\$ 84.50$
SELSYN 2JIG1. SELSYN 2J1G1. $57.5 \mathrm{~V}-57.5 \mathrm{~V}$ $400 c y$ w/connector $\$ 8.50$
VARIA. COND. 4 gang. 7 $144 \mathrm{mmf} / \mathrm{sect}$. Ball 7 to shaft. $\$ 3.25$ PATCHING CABLE. Male type "N" ea, end 3ft. \$2.50 4 digit. Mech. drive $\$.75$ BATHTUB COND. $2 \times . \operatorname{lmfd}$
600 V side term. CD ten for 600 V
$\$ 1.75$ APR-4 BUTTERFLY 2211151 -
3,7 rotors 8 strators $\$ 15 \mathrm{ea}$. 3.7 rotors 8 strators $\$ 15 \mathrm{ea}$.
MINIATURE IF $455 \mathrm{kc} \$ 1.85$ F-28/APN-19 FILTER CAV ITY. 2700-2900mc. Max 1.5 band, 3 db at 15 mc band ends. Meets full JAN spec Gov't source insp. available. Fully calibrated to above spec. $\$ 42.50$ each. Uncalibrated. guaranteed $\$ 28.50$ MIXER BLOCK w/P.U. IOOp. "N" fitting. \$8.50 2900mc. micro adj. \$64.50 PICKUP DIPOLE in lucite ball, type " N " output 3" o.a.
$\$ 3.75$ UG53, UG54, UG65/66 flanges, RG48 rt. angle bends E", available. $\$ 3.50$ ea. DOALL MIXER assy, pick-up complete variety material guaranteed surplus. Immediate delivery.
 Telephone: JUdson 6-4691
mmediato Delivery 550 FIFTH AVENUE, NEW YORK, N. Y

X-RAY

All types for industrial and expertmental application. Tubes, cables and compo nents.
MEDICAL SALVAGE CO., INC.
217 E. 23 rd St. New York 10, N. Y.

RELAY SPECTALISTS

 AUTHORIZED FACTGRY OISTRIBUTDRS STRUTHERS-DUNN
Biggest \& Best in

 Surplus CommunicationsWE 248-A RADIOTELEPHONE EQP'T. 250/350 Watts, 2-20 MC, 30 Channels Transmit and Receive at crystal-control.ed, monitors 3 separate channe.s simultaneously, uses standard
modern type tubes. COMPLETE, NEW (Not Gov't. Surplus): Operates from 110 Volts, $50 / 60$ Cycles AC. IDEAL FOR SHIP RADIOTELEPHONE, OR FIXED-RADIO INSTALLATION. WRITE FOR DESCRIPTIVE LITERATURE AND GE 10 KW RF POWER A.MPLIFIERS. 88-108 MC, Class "C, with separate Rectifier Power
Supply. Operation from 220 V ., 3 -phase, $50 / 60$ Cycles AC. Easily modified for other fre quencies. NEW, Not Gov't. Surplus. WRITE
FOR DESCRIPTIVE LITERATURE AND PRICE.

CLOSE-OUT SPECIALS!!

PE-218C, D, E \& H INVERTERS, BRAND NEW, 25.28 V. DC Input, 115 V. AC, 400 cycles 1.5 KVA OUTPUT. WHILE THEY LAST. .EACH $\$ 10.00$ 2327 MAGNETRONS, NEW, Original Packing. 59.50 APN-4 LORAN EQP'T. Consisting of R-9A/APN-4 and 1064 (or B) Indicator units only.
PER SET

All Prices $F O B$ Our Address

TRANSMITTERS—RECEIVERS, ETC.
TDa $111 \mathrm{~F} 100-156$ MC 50w, AM X-mer for 110 V
BC. $797 \mathrm{~F} / 11 \mathrm{~F} 110-126 \mathrm{MC} .50 \mathrm{~W}$. AM Output for 110 BC-460 Collins Autotune Transmitter

Channels 2-16
BC-447. $300 \mathrm{~W} . \mathrm{A}, 4,43.4 \mathrm{mc}, 2$-channels SCR-510/610. FM1 Trans-Receiver, 20 to 28 and 28 to 37 nic resplectively Whith re-11 or 120 vibra-
tor Power Supply and other accessoriee. SCR-619. FM. Trans-Recenter, SCR.522. YH1F, q-Chanmel, 100 -156 MC TransReRevg, Eqt for Plane or Ground Communceations
 BC-611 and mab handy and walkie-talk-SCR-300 (BC-1000) WALKIE-TALKIES, $40-48$ $\mathrm{MC}{ }^{3}$ cliannel FM Trans-lieceivers. 3 emision. Complete with all Accessories. BC-22I Frequency Misers, Excellent condition.
Compleie with crystal and matching Callbration Completo wion crystal and matching Cahbration BC.312/342 Receivers. Like New Units. BEACHMASTER 250 \& 500 WATT SOUND SYS. TEMS for Airvorts. Shidyards. Amusenent I'arks. $\underset{\substack{\text { Curili } \\ \text { tura } \\ \hline}}{ }$
TCS X-mttr-Receiver for Ship or Shore
TCS Accessories available: Renote Controls, Antenna. Loading Coils. Fitc.
TBK
HF
5000
$2-20$
Nic. Transmitter witl MG. Starter, and Spa Ses.
TAJ $50 n$ W. Output,

550 Kc. with M. G. for AC TAR. Same as TAJ above but $1,000 / 1,500 \mathrm{~W}$. outTBL 350 W. Output, A1, A3. IF. \& in.f. for AC
 T-21/GR-3-C Sound Ranging Mictoplones for NAA Underwater Reacon Equipnient.
NAA Underwatri Reacon Equinie.
YY-2 Tape Reels.
HS 23 23 Ueaddin
HS-23. ${ }^{33}$ Iteadphones.
AN-CRT-|A Sonoluora

> EXPORTERS, GOVERNMENT AGENCIES, INDUSTRIALS! We have a large stock of Transmitters, Receivers, Waikie-Takies, $\begin{aligned} & \text { UHF Equip- } \\ & \text { ment Ship \& Shore Communications, FM }\end{aligned}$ ment, Ship \& Shore Communications, broadcast Stations, Rodar, Accessolies, ments. Descriptive literature and prices available upon requst.

CABLE ADDRESS: TELEMARINE, N. Y.

[^32]
INVENTORY SALE

Deduct 10\% from all pricesthis month only.

G. E. RELAY CONTROL

(Ideal for Model Controls, Etc.) Contains a slgma midget 8,000 ohm, relay (trips of less than 2 MA), high impedance choke, bimetal strip, neon pilot and many
useful parts. The sensitive relay alone is warth much more than
the total low $\$ 1.27$ Each 10 for $\$ 9.97$
price of

anel Meters	OIL CONDENSERS
NEW GOV'T SURPLUS	${ }_{2}{ }_{2} \mathrm{MFD}$
meter-10 10	${ }_{2}{ }^{\text {M }}$
	${ }_{1}^{3}$
ps...... 56.97	so mFD
	15 MFDS 5 KVOC
Volts AC 4.97	55m
200 microamps.... 58	${ }_{5}^{25} \mathrm{MFDO} 25^{25}$

Want more information? Use post card on last page

WESTON 433
High Frequency A.C. Voltmeter Portable Laboratory Standard
Frenuency laange from 25 to 2400 Cyeles. for $0-150$ $3 /$ of 1% fronl 25 to 1000 cycles, and within $1 \% \%$ up to 2400 cycles.
The most commonly used ranges are 60 and 400 cyeles and we have tested each one against Primary curate kithin 34 of 1%. Knife plige pointer ; hand calihrated mirror scale shiplded iton vane movement: Resistance aunrox
2800 olims: scale length $4.04^{\prime \prime}$ in case $5^{m} \times 6^{\prime \prime}$ BRAND NEW--SURPLUS-GUARANTEED Only 59 in Stock
List Price Approx. $\$ 70.00$
YOUR NET COST FOB NYC $\$ 45.00$
MARITIME SWITCHBOARD
Instrument \& Accessories
336 CANAL STREET, NEW YORK $13, \mathrm{~N}$. Y WOrth 4-8216 (7)

YOUR BEST BUYS IN TUBES
 TOP DOLiAR paid for SURPLUS TUEES

ALLIED Mirimitents
 BArcloy
 7.5839
 74 Corlfandi St., New York /, N. Y.

February, 1954 - ELECTRONICS

FREE: Send for our latest listing.

We specialize exclusively in

TUBESTransmitting Receiving Special Purpose
The only thing we handle is-TUBES-of every kind and descrip-tion-serving the industry for years. Thus, we can give you a more comprehensive selection of types and the advantage of more competitive prices. All our tubes are fully guaranteed.
From amongst the 3000 different types we have in stock, for immediate delivery, we list here only a few of the common types. These are but a sampling of our immense variety-therefore we urge you to order any other unlisted types. Minimum order $\$ 10$. Please include 25% deposit with order.
ADDITIONAL DISCOUNTS: On orders for $\$ 25$ or more, deduct 3%
Prices subject to change without notice. All prices F.O.B. Our Prices subject to change without notice. All prices F.O.B. our
Worehouse, New York City. All tubes individually boxed. Worehouse, New York City. All tubes individually boxed.

TRANSMITTING AND SPECIAL PURPOSE

RECORDING THEODOLITE, PHB. 33 , 35 MM ete (write for details)
(BC-698. A TRAINER, complete with spares $\$ 125.00$ BOONTON RADIO = I30 IMC Test Set.... \$ill TEST SET 1-97-A.................................... SENSITROL RELAY, WESTON 705. Rectifier typa. approx. 300 UADC. operatos on 3 Volts $A C$,
single fixed contact closes on decreasing value. single fixed contact closes on decreasing value. comp resistor and rectifler box DC MICROAMMETER. O-EO, Electrotech ${ }^{\text {case }}$ \# 350 AWS type MR34WO50DCUA $31 / 2^{\prime \prime}$ case.
RF AMMETER. 0.8 . Weston $425,31 / 2^{\prime \prime}$ case. RF AMMETER. $0-8$. Weston $425,3 / 2$ case $\$ 10.50$ case, AWS type MR35WOOBRFAA, SC tyre RUNNING TIME METER, IIO Voit 60 Cycle. $31 / 2^{2}$ case 9.999 .9 DC VOLTMETER, O-7EO, WESTINGHDUSE NX.
 \# DW-44. $21 / 2^{3}$ case.
DC MILLLIAMMETER, $0-500$, SC type iS-22, ${ }^{1 / 2}$ GE DC MILLIAMMETEX, ${ }^{21 / 5 "}$, Electroteck $=350$ DC MiLLIAMMETER. I-O-1, SC type is-1RO.

AVIONIC ASSOCIATES
12. Birchwood Pioad Paramus, New lersey
Gilirit 5.1524 All items are hrand new, and fully quaranteed.

FOR PROMPT ANSWERS

 to your business problems useThe SEARCHLIGHT SECTIONS
(Classified Advertising)

American Machinist
Aviation Week
Business Week
Business Wcek
Bus Trans-ortation Chemıcal Engineering Chemical Week Coal Age \& Equipment Elect ical Crnstruction and Maintenance Electrical Merchandising Electrical Wholesaling Electrical Wortd Electronics

Engineering and Mining
Jolirnal
Eritimerering
Erinimering
E. E. .1. J. Markets
and fiwaintenance
Fleet Owner
National Petroleum News Nucleonics
Petroleum Processing Product Engineering Textife World Textife World
Welding Enginee

For advertising rates or other information address Clossifind Advertising Division
McGRAW-HILL PUBLISHING CO., INC. 330 W. 42 St., New York 36, N. Y.

AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to $4,000 \mathrm{Mc}$.; wideband discone and other antennas, wevetraps, mobile accessories, 100 page technical manual, etc. Vepsatile, range. Write for data sheet and quotations
We have a large variety of other hard-to-get equipment, including microwave, oircraft, communications, radar: and laboratory electronics of ali kinds. Quality standards maintained.
Get our quotations!
We will bury any Electronic Material at top prices. SCHOOLS -unload your dusty surplus for cash or credit.

ENGINEERING ASSOCIATES

434 PATTERSON ROAD
DAYTON 9, OHIO

New "SEARCHLIGHT" Advertisements
received by February 3rd will appear in the March issue subject to limitations of space available

Classified Aduertising Division ELECTRONICS
300 West 42 nd St. New York 36, N. Y.

CARRIER EQUIPMENT

Western Electric CF-IA 4-channel carrier telephene terminals.
EE-101-A 2-channel $1000 / 20$ cycla carrler ringers. CFD.B 4-channel carrier pilot regulated telephone cycie ringlng.
CFD-B
4 -channel pilot regutated telephone repeat-C.42-A V. F. tetegraph in from 2. to $\mathbf{1 2}$-channel terminals. channels carrier telephone torminals. automatic regulation, duplex signaling each chan nol. Carrier frequencies abovo 35 KC . Ideal for Completo engineering and instatiation ervices offered.

RAILWAY COMMUNICATIONS, INC. Raytown. Missouri
Telephone: FLemino 212

SAVE 85\%

Boonton 120-A Q METER
A double frequency coil set consisting of two $120-\mathrm{A}$ Boonton Q meters and two magic eye indicators built into a single unit. For checking resonence, coil inductance, and capacitance. Magic eye tube shows whether
circuit under test is tuned to each of the circuit under test is
oscillator frequencies.
Power: 115 V - 60 cycle Frequencies: $24-54 \mathrm{mc}, 70 \cdot 160 \mathrm{mc}$.

 FIELD TELEPHONE
EE-8 Portable Telephones complete with magnetoringe handset, and carrying case. and Guaranteed. As many as six phones can be used on ion. NEW wire at lo per ft Govr. cost $\$ 65.00$ each $\$ 19.95$

NEVER BEFORE
At This Low Price BC-453

Range Receiver

$190-550 \mathrm{KC} .28 \mathrm{~V}$ and 250 V . One RF and two IF stoges. Beat frequency $\$ \mathbf{8 9 5}$ oscillotor. Automatic vol. control

19
ANTENNA and BATTERY SWITCHES Square D with 2: porcelainstandoffs DPDT $\$ 15.00$ value . $\$ 2.98$ 10 Assorted Toggle Switches SPDT, SPST, DPDT, DPST \$1.99

CRYSTALS 19c We recently purchased over THREE MILLION crystals from the U.S. urilimited range of Frequencies. Send for complate inventory and price list

FLUORESCENT UTILITY LIGHTS Heavy Duty steel stond mounted on removablerub ber casters. Folds into " Extends as high os $11^{\prime} 7^{\prime \prime}$ Adjustable 6 tube fixture. Ideal for shop photography, industrial, advertising, etc. Single fixture with bracket 12.95 Heavy duty $11^{\prime} 7^{\prime \prime}$ stand 12.95 Complete stand \& three fixture; $\mathbf{3 9 . 9 5}$

SYNCHROS
H5V-60 cycle. Brond New
Delco . 8.95
We maintain an extensive stock of all types of synchr

ASSOCIATED INDUSTRIES Cable appress rimels los angeles 6855 TUJUNGA AVENUE NORTH HOLIYWOOD, CALIF.

REVERSIBLE GEARED-MOTOR
Delco-PM-1'ermanent Magnet Ainico Meld Motor

\#5071895 $1 / \mathrm{a}^{\prime \prime}$ SHAFT or $11 / 16$ GEAR... \$17.50 \#5069600
\$18.50

10 for $\$ 3.00100$ for $\$ 25.00$

Ford Spark Coil by Deico. Remy $1 / 2^{\prime \prime} \ldots \ldots . . .$. SMALL BLOWER OR AGITATOR FOR $\$ 4.50$ A Miracle Switeh that will not leave you in the
Dark. Delayed Action Light Switch

Round Tlapser Thime Meter
$\$ 13.75$

MARKTIME 5 HOUR SWITCH

A 10 amp. timing device Pointer moves back to zelo after time elapses. Ideal for
shutting off radios and Pry shutting when you go to bed. Limlted supply at this $\$ 4.90$ Also available in $15 \mathrm{~min} . .30 \mathrm{~min}$., 1 hr . at $\$ 5.90$

10 Seconds to 24 Minutes Timer A land wound electric TBMing SWITCH. Pointer
moves back to ZFiro and shuts off IRADIO-TVElectric Mixer-Photographic Devices-Time Delay etc. Furnishled with Calibration Chart and
Pointer Knob. Biggest bargain we ever had. $\mathbf{1 . 2 5}$
 Motors

NNH. - $\quad 3.25$

Laboratory Speeial 1 of Each Above. . $\$ 25.00$
HAYDON SYNCHRONOUS TIMING MOTOR
110 v. 60 evcle 30 RPM. . $\$ 2.60$ 110 v. 60 cycle 1 IRPM... \$2.85 230 V. 1 RPM $\$ 1.00$ 60 cycle 2 RPM....... $\$ 1.00$
all prices f.o.b. N. Y.

$\underset{\text { EST. }}{\text { EST }}$

64F Dey St
New York 7, N. Y.

- Save More in '54 -

Harjo

CUTS PRICES to CLEAR STOCKS!
Check your needs on this list of specially-priced aircraft and electronics equipment. Complete stocks -write for FREE CATALOG!
\checkmark TEST EQUIPMENT

545.00	TS-268....... 37.50
300.00	1E-19........ $\$ 200.00$
225.00	1-139A 12.50
14.9	I-183A
	Meter 17.50
TS-100....... ${ }_{75}^{85.00}$	I-185A Osclllat
TS-153 (1-95) ${ }^{\text {a }}$. 47.50	
184....... 45.00	BC-221 Meter. 89.50
TS-251. 650.00	BC-1287A
(compl. wlth tub	

V RADAR EQUIPMENT*
APS-4 Complete Radar Set with
Modulators. $\$ 550.00$

T116/APT5A UHF Transmitter Freq. Range 300-1500 mc.
Complete with tubes and 110 v.5-3 mc complete with tubes and $110 \mathrm{v} . \$ 175$
60 cy . fil. transf. Now

CERAMIC CONDENSERS.... \$1 ppd KIt of 100 asstd. Brand new, standard MICRO SWITCHES, new . 4 for $\$ 1.00$ SCOPE TRANSFORMERS, $\$ 2.95$ Prim. 110 v. 6
Shipping wi. 15 lb
POWER TRANSFORMERS- 79c 110 v. 60 cy . prim
150 y. 30 ma . sec.
6.3-1 Amp. Fil.

FB for grid dip klts, test equip., etc.
\checkmark TRANSMITTERS AND RECEIVERS

MORE CASH

paid for your surplus equipment. Get what
you want without red tane. Write today. 1 m mediate reply

IIARJO surplus catalo Note-all shipments F.O.B. Warehouse

Harjo Sales Co

4109 Burbank Blvd., Burbank, Calif.
P. O. Box 1187, Magnotia Park Sta.

Cable: Hario Phone: ROckwell 9-241

RELAYS!

MANUFACTURERS JOBBERS EXPERIMENTERS LABORATORIES

WRITE OR PHONE WALKER 5-9642 FOR YOUR RELAY REOUIREMENTS
Ask for Mr. Greenberg or Mr. Herzog
We have a large variety of standard types of relays and solenoids for a multiplicity of uses which for various reasons are not listed in our advertising. When inquiring concerning your needs give as much information as possible. Catalog numbers are not sufficient. Give coil voltage; specify $A C$ or $D C$; give current or resistance; contact current and arrangement.

Production Quantities of Most Items Available
ALL MERCHANDISE is GUARANTEED and MAY BE RETURNED for FULL CREDIT

WE'RE SELLING YOU RELAYS —WHAT ARE YOUR OTHER NEEDS?

Our Normal Inventory Includes Over 80,000 Different Items in the
Electronic, Radar and Radio Fields

RELAYS—Approximotely 300,000 in over

 1100 typesCAPACITORS Approximately 450,000
OIL © TUBULAR MICA FIXED and ADJUSTABLE CERAMIC FEED-THRU STAND-OFF © APC TRIMMERS - VARIABLES © SILVER MICA
RESISTORS-Over a million
CARBON © WIRE WOUND • FERRULE POTENTIOMETERS \& RHEOSTATS
DYNAMOTOR BRUSHES Approximately 400,000
FUSES-Approximately 800,000 in stock
WIRE ond CABLE-Millions of feet
SWITCHES Approximately 200,000
CHOKES and TRANSFORMERS-Approxi-COILS-RF and
motely 350000 AF CHOKES-Approxi-
TIMERS and DEL
and and DELAY RELAYS-Both clock
and thermal types
BATTERY CLIPS Approximately 50,000
Dounds CHASSISACERS-Thousands of
COAXIAL CABLE-Many sizes in stoc.
SPRINGS-Over 5000 pounds-Hundreds of
JONES CONNECTORS-Many types in stock INVERTERS
From 110 DC to 60 cycle AC
From 20 to 500 Watt
Also some 400 eycle units
RECTIFIERS-Mode to your specificotions NU-METAL LAMINATIONS-.Thousands of pounds in o dozen sizes
OOO in stock in several dozens of 400 ,CERAMIC and HI-FREQUENCY STAND-OFFS-Approximately 300 EOO in AND-TAPE-Cellulose, Textile, Masking and Electrical-Alís sizes COM SYSTEMS--Best Buys
SOLENOIDS-Approximotely 75,000 in stock TELEPHONE RELAYS, RETARDATION COILS and CAPACITORS
GROMMETS-Approximately 20,000 pounds TUBES Most receiving types and many special types in stock
IRON CORE SLUGS-Over a million in stock
Send Us Your Specific Requirements for Our Quotes

SEE OUR OTHER AD ON PAGE 432

INDEX TO THE SEARCHLLLHT ADVERTISERS

FEBRUARY, 1954

This index is published as a convenience to the readers. Core is taken to make it accurate but ELECTRONICS assumes no responsibility for errors or omissions. SEARCHLIGHT SECTION (Classified Advertising) H. E. Hilty, Mgr.

T
EQUIPMENT
$730-455$

ADVERTISERS INDEX

Allied Electronics Sales. 450
Arrow Sales Inc............................ . . . 443
Assoriated Industries. 452
Avionic Associates..................... 451
Barry Electronics Corp 433
Blan 452
C \& H Sales Co....................... . . 439, 445
Chase Electronic Supply Co............... 449
Communication Equipment Co........440, 441
Communications Devices Co.............. 428
Compass Communications Co............. 435
Connector Corp. of America.............. 442
Electronicraft Inc......................... 438
Electronics Outlet............................ 448
Electron Tube Wholesalers............... . . 451
Emeltone Electronics Co..... 449, 451
Emmons Radio Supply Co. 443
Empire Electronics Co.................... . . 448
Engireering Associates..................... 451
Fair Radio Sales . 444
Finnegan, H. 428
Gancher, Louis E. 428
Harjo Sales Co. 452
Houde Suppiy Co......................... 442
Industrial Assembly Corp. 444
Instrument Associates430, 431
JSH Sales Co.............................. . . 442
Lapirow Bros. 442
Lectronic Research Laboratories........... 437
Legri S. Co. 440
Liberty Electronics Inc...................... 434
Maritime Switchboard Co................ . 450
Medical Salvage Co.................... . . 443, 449
Merrick Electronics. 444
Migray Electronics Inc..................... . . 445
Mogull Co., A............................... 448
New York Electronics. 442
Peak Electronics Co........................ . . 450
Photocon Sales 447
Radalab 447
Radio Development \& Sales Co............ 449
Radio \& Electronic Surplus............... . 443
Radio Research Instrument Co........... 449
Radio Shack Corp. 447
Railway Communications Inc.............. 451
Reliance Merchandizing Co 436
Rose Electronics Inc....................... . . 451
R. W. Electronics. 448
"TAB"454, 455
Telemarine Communications Co............ 450
Universal General Corp. 432, 453
V \& H Electronic Industries Inc. 448
Victor-Bernard Industries 448
Wells Sales Inc. 446
Western Engineers......................... 446
Weston Laboratories Inc.................. 445
Wilgreen Industries. 453

"AN" CONNECTORS

Don't wait 'til your assembly line stops before you begin searching for vital 'AN' connectors. Let WILGREEN Industries break the production bottleneck at your plant! Just send your requirements for any connectors, in any amount to WILGREEN.

AN 3106 A

All Shell Sizes \& Types

WILGREEN INDUSTRIES is making scheduled deliveries to many firms. Can we do the same for you?

"UG" Connectors in Stock

* on accepted commitments

99 MURRAY ST.
N. Y. 7, N. Y.

WOrth 4-2490-1-2

INDEX TO ADVERTISERS

Acme Wire Co . 395	
Adams $\&$ Westlake Company. 9	
Advance Electric \& Kelay Co.......... ${ }^{\text {a }}$, 0	
Advance Electronics Co................ 456	
Aerohm Corporation 394	
	Equip- 307
Aerovax Corp.	
Airborne Accessories Cor	412
Aircraft Radio Corporation	410
Aireraft-Marine Produ	
Airpax Products Co	
Mden Preducts Compr	410
Allen-lisadley Co.	217
Allen Co., Inc., L. B	120
Allen Manufacturing Compa	365
Allied Control Company Ine	5-1, i5
Allied Industries, Inc	347
Allied Radio Corp	320
Ailmetal Screw Products Co.. Ine	373
Amerac, Inc.	39
American Chain \& Cable	339
American Electric Motors	316
American Gas Furnace Co	
American lava Corporation	\%
American Optical Co.	304
American Phenolic Cornoration	52
American Televiston \& Radios Co	290
American Time Products, Inc	255
Ampex Corp.	66
Andrew Corporation	40
Antara Chemicals, Div. of Gencral Byestuff Corp.211	
Armeo Sterl Corporation............... 100	
Arnold Engineering Co............... 11	
Astron Corporation	268
Athantic Transformer Corb 399	
Atlas Engineering Co., Ine 373	
Augat Bros., Ine	375

Harker \& Wllifamson, Inc	
Harnstead Still \& Sterilizer Co	369
Barry Corporation	
Heaver Gear Works In	34
Belden Manufacturing Company	273

Bendix Aviation Corporation, Eclipse-
Pioneer Divislon 270Hendix Radio Corporation Divisions. 291
377Bennett Manufacturing Company.......
Berkeley Div., Beckman Instruments,
Inc.
Berndt-Bach, Inc.78
Bird Eiectronje Corporation 386
Birmingham Sound Reproducers Ltd. 351
Blrtcher Corporation 307
Bllley Electric Company. 231
Boesch Manufacturing Co., Inc 403
Boonton Radio Corporation 195
Bourns Iaboratories 328
Bowser, Inc 337
355teme Wire Co
99

Calidyne Compary
Cambridge Thermionic Corb...........26. 27
Camadian Aviation Eleetronies, Itd..... 108
Cannom Electric Co....................... . . 336
Carboloy Hept, of Gineral Elactric Co... 101,
0.7. 116

Carborundum Company ${ }^{2}$
Castade Rescarch Corn
i
Centralab Division of Gilobe-Linion, Inc. . ?02,
228, 28: 317, 32:
Chassis-Trak Corp.
Chatham Eloctronics Curp.............. $2:$:
Chester Cable Corp $\quad 29$
Chicago Standard Transformer Corb.... 280
Chicago Telephone \& fiupply Corp.... ix. is
Cinch Manufatetaring Co................. It

Clare \& Co., Inc., C. P............ 5
Cleveland Container Co................ . . . as
Cliftord Manufacturing fo............... 33
Cohn Cory., Nigmund 379
Coil Winding Equipment Co.......... 355
Collectron Corporation 403
Communication Accessories Co........... 123
Conrad \& Moser . 355
Consolldated Engineering Corp......... 207
Constantine \& Co., L. L. 209
Continental-Diamond Fibre Co......... 281
Cornell-Dubilier Electric Corp........... 61
Corning Glass Works.................... . . . 345
Cosmic Radio Corporation............... 40 .
Coto-Coll Company 387
Cramer Co., Inc., R. W................. 338
Crane Packing Co., John. 348
Cross Co., H.................................. . . . 403
Crucible Steel Co. of America. 229
Cunningham Son \& Co., Inc., James..... 411

TUBE SPECIALISTS

NEW.. DELAY LINES FOR VARIABLE TIME DELAY
MINIATURE CONTINUOUSLY VARIABLE

- Fast Rise Time
- Excellent Stability
- Hairline Accuracy
TYPE 506

SPECIFICATIONS

TAPPED DELAY LINES With Excellent Transient Response
mwontuom whyand-

- Fast Rise Time, No OverShoot
- Hermetically Sealed Con struction
- Ten Output Terminals With Different Time Deiay

SPECIFICATIONS
STEP VARIABLE with Equal Input and Output Impedance

Type	Maximum Delay	Impedance	Maximum RIse	
$601 \ldots$	2.2 us	200 ohms	0.22 us	
$602 \ldots$	2.75 us	200 ohms	0.14 us	
$603 \ldots$.	27.5 us	200 olhms	1.4 us	

Type	Total Delay Mleroseconds	Delay Between Tapes	Impedance Ohms	Cutoff Frequency	Maximum Rlse
6 T 1.	0.1 us	0.01 us	75	32 mc	0.01 us
6 T 2.	0.25 us	0.025 us	95	8.5 mo	0.025 us
6 T 3.	0.5 us	0.05 us	190	6.2 mc	0.05 us
6 T 4.	1 us	0.1 us	300	3.2 nc	0.1 us
$6 T 5$.	2 us	0.2 us	750	1.6 mc	0.2 us
6 T 6.	5 us	0.5 M1/	1000	620 kc	0.5 us

WRITE FOR DATA!
451 Highland Ave.

Dumont Airplane \& Marine Instruments,
Dumont Taboratories Inc. Allem
Eastern Air Devices. linc. 245
Eastern Precision Resistor Co. 369
Eastman Kodak Co., Gpecial Products 201Sales Div.
Edo Corporation 275
Eicor, Inc. 260
Eisler Engineering Co., In 420
Eitel-MeCullough, Inc 83
Elco Corporation 365
Electran Mfg. Co 387
Electric Regulator Corp 82
Electrical Industries, Div. of Amperex
Electronic Corp 293
Electro-Mec Laboratory, Ine 404
Electro Products Laboratories 409
Electro Tec Corp $25!$
Electronic Associates Inc 125
Electronic Transformer Co 118
Epco Products, Inc.. 3 39
Erie Resistor Corp 205
F-R Machine Works, Ino 233
Fansteel Metallurgical Corp $21 ?$
Federal Telecommunication Laboratories 39Federal Telephone \& Radio Corp........ 248Fortiphone Ltd.248
Freed Transformer Co., Inc 79
Frenchtown Porcelain Company, 402
Freanency Standards 383
Fugle-Miller Taboratories 361
G \& M Equipment Co., Inc 375
Gabriel Electronics Div., Gabriel Co 3~は
Gamewell Company 286
General Electric Company
Apparatus Dept. 88, 116 221
Tube Dept. 67, 2.1
General Industries Co 244
General Radio Company 17
Genísco, Inc. 401
Gianninl \& Co., Inc., G. M 322
Good-all Electrie Mfg. Co. 103
Goodmang Industries Limited 287
Gramer Transformer Corp. 35
Grant Pulley \& Hardware Co 370
Grayhill 407
Green Instrument Co., Inc 391
Gries Reproducer Corp. 413
Guardian Electric Mfg. Co 215
Gudebrod Bros. Silk Co., Inc. 363
Hammarlund Manufacturing Co., Inc 23
Handy \& Harman 324
Harvey Hubbell, Inc..... 236Haydon Company, A. W.395
Haydon Mfg. Co. Ine. 252
Heath Company 359
Heiland Research Corp 210
Heinemann Electric Co 57
Heldor Mig. Corp. 76
Helipot Corporation, a Div. of Beckman Instruments. Inc 197
Henry \& Mller Industries, Inc 375
Hermetic Seal Products Co 127
Hewlett-Packard Company 45
Heyman Manufacturing Co. 414
Hi-Q Divislon, Aerovox Corp 315
Hopkins Englneering Co. 388, 407
Hughes Aircraft Company 241
Hughes Research \& Development Labs. 240
Hyeor Sales Co. of Callfornia. 408
Industrial Condenser Corp. 380
Industriai Development Div., State of Florida 418
Indiana Steel Products Co 28
Industrial Hardware Mig. Co., Inc. 407
Infra Electronic Cor 378
Insl-X Sales Company 68
nstitute of Radio Engineers, The 98
Instrament Corpnration of America... 87
nstrument Resistory Co. 386
Internatlonal Rectifler Corp 58
nternational Resistance Co 30. 31
Ippolito \& Co., Inc., James.
3
ron Fireman, Electronics Div. 248
Irvington Varnish \& Insulator, Div. ofMinnesota Minlng \& Mig. Co.........
I-T-E Circuit Breaker Co.. 285
dAN Hardware Manofacturing Co., Inc. 357
JFD Manufacturing Company 107
Jelliff Mfg. Corp., C. O 357
Johnson Co., E. F 264
Jones Div., Howard B. Cinch Mfg. Corp. 378
Kahle Eingineering Co 13
Kalbfell Laboratories, Inc. 332
Karp Metal I'roducts Co., Div. of H \& B
American Machine Company. 97
Kartron 420
Kaupp and Sons, C. B 237
Kearfott Company, Inc 384
Kellogg Company, M. W 64A, 641
Kenyon Transformer Co., Inc 376
Kepco Laboratories 34
Kester Solder Company 257
Keystone Electronles Company 307
Kings Electronics Co., Inc 239
Kinights Company, James 262
Koch \& Sons, H 74
Kollsman Instrumant Corp. 204
Laboratory for Electronics, Inc 235
Lampkin Laboratories Inc 371
Landis \& Gyr, Inc. 418
Langevin Manufacturing Corp 63
Lapp Insulator Co., Inc. 340

ingineering organization which offers consulting and engineering services in the fields of radio and radar

The pictured waveguide step-twist component is a typical develop ment by the Labaratories. This component, originally designed to fill the specific need of o client, has since been adapted for universal waveguide use.

At present, Wheeler Laboratories includes a staff of twenty engineers under the personal direction of Harold A. Wheeler, a group of designers, and a model shop; regular additions to the staff are continuing in order to keep pace with our expanding program.

Inquiries are welcomed regarding specialized problems in micro. wave design; a brief summary of our work is available on request.

Wheeler Laboratories, Inc.
122 Cutter Mill Road, Great Neck, N. Y. HUnter 2-7876

APPLICATIONS:
Microwave power measurement - Square Law detection - VSWR detection - Attenuator calibration .

FEATURES:

Mechanically stronger - ruggedized - silver con tacts - Copolymerstyrene cartridge : completely 00 atit 4.5 has ohms at 8.75 ma ., Sensitivity: 4.5 ohms per mw only $\$ 7.50$ ppd.

Data sheet LB-2 on request
WRITE FOR COMPLETE CATALOG LC-2

CRYSTAL SOCKETS

STAND-OFF INSULATORS

Layoie Laboratorles, Inc................. . . 311
Leeds $\mathbb{\&}$ Northrup Co...................... 120
Lewis \& Kaufman, Ltd................... . . 139
Littelfuse, Inc. 41
Litton Lingineering Laboratories......... 96
Lord Mig. Co................................ 109

Magnatran 1ncorporated 391
Magnecord Inc. 296
Magneties Inc. 411
Makepeace Company, D. E............... $\mathbf{s 0 l}$
Malayan Tin Bureau, The. 62
Mallory \& Co., Inc., P. R.128, 193, 412
Marconi Instruments 42
MeGraw-Ilill Book Co.................... . . 361
Measurements Corporation 383, 403
Mepet, Inc. 306
Metal Textile Corporation................ 288
Metals © Controls Corp., General Plate
Div. 4

Methode Manufacturing Corp............ 390
Mica Insulator Co............................ 253
Mico Instrument Co......................... . 387
Microdot E:
Microswitch, A Div. of Minneapolis-
Honeywell Regulator Co90, 267
Microwave Associates Inc. 113
Midland Mfg. Co., Inc..................... . 249
Milford Rivet $\mathbb{\&}$ Machine Co.............. 224
Millen Mfg. Co., Inc., Jumes 219
Millivac Instrument Corp 321
Minueapolis-Honeywell Regulator Co.
Industrial Division 70
Minnesota Mining \& Mfg. Co............. 95
Minnesota sllicone Rubler C•............ . 393
Moloney Electric Company.............. 124
Monsanto Chemical Co., Plastics Div.... 203
Muirhead \& Co., Limited. 3
N.R.K. Mrg. \& Engineering Co........... 379

Nassau Research \& Development Associ-
ates, Inc. 45%
National Moldite Co 272
National Pneumatic Co., Inc. \& Heltzer-
Cabot Divisions 111
National Research Corp................... 251
New Hampshire Ball Bearings, Inc...... 119
New Hermes Engraving Machine Corp... 871
New York Transformer Co., Inc......... . 364
Nielsen Hardware Corp.................... 309
North American Research Labs, Ime..... 416
Nothelfer Winding Laboratories........ 53

Ohmite Mfg. Co........................ . 32A, 32B
Optical Film Engineering Co............ 407
Oster Mfg. Co., John. 242

PM Industries Inc.......................... . . . 46
Panoramic Radio Producte, Ine........ 360
Paramount Paper Tube Corp. 8

I＇halo Plastics Corporation．．．．．．．．．．．．．．． 318
Phelps Dodge Copper Products Corp．， Inca Manufact turing Div．．．．．．．．．．．100， 101
Polarad Electronics Corp．．．．．．．．．．．．． 69
Popper \＆Sons，Inc．．．．．．．．．．．．．．．．．．．． 369
Potter Instrument Company，Inc．．．．．． 378
Power Equipment Co．．．．．．．．．．．．．．．．．．．．．．．． 226
Precision Apparatus Co．．Inc．．．．．．．．．． 160
Precision Paper＇ \mathbf{P} be Co．．．．．．．．．．．．．．．．．．．． 389
Premier Instrument Corp．．．．．．．．．．．．． 36%
Presto Recording Corp．．．．．．．．．．．．．．．．．．． 59
Price Electric Corporation．．．．．．．．．．．．． 305
I＇rodelin，Inc．．．．．．．．．．．．．．．．．．．．．．． 368
Progressive Manufacturing Co．．．．．．．．．．302
Pyramid Electric Company ．．．．．．．．．．．．3\％7
I＇sroterrí Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 333

Quaker City Gear Work ．．．．．．．．．．．．．．．．． 3 ． 38
Quality Products Co．．．．．．．．．．．．．．．．．．．．．．． 420

Radio City Products Co．，Inc．．．．．．．．．．．． 126
Radio Corp．of America．．80，81，Fourth Cover
Radio Materials Corporation．．．．．．．．．．．． 261
Radio Receptor Co．，Inc．．．．．．．．．．．．．．．．．．． 56
Railway Communications，Inc．．．．．．．．．．． 234
Railivay Express Agency，Air Express
Div，．．． 223
Rapid Electric Co．．．．．．．．．．．．．．．．．．． 395
Raytheon Manufacturing Co ．．．．．．．．．19， 298
Relay Sates ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 110
Reon Resistor Corp．．．．．．．．．．．．．．．．．．．． 329
Resin Industries，Inc．．．．．．．．．．．．．．．．．．$\$ 96$
Reslnite Corporation，Div．of Precision
Paper Tube ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 390
Resistance I＇roducts Co ．．．．．．．．．．．．．．．． 114
Rollin Company，The ．．．．．．．．．．．．．．．．．． 2.32
Royal Metal Mfg．Co．．．．．．．．．．．．．．．．．．．．．．．．． 363
Sandra Corp． 300
Sangamo Metric Company 208
Shutting © Co．，Inc 398
Scientific Electric．Div．＂g＇＂Corrugated
Quenched Gat Co．．．．．．．．．．．．．．．．．．．．．．．
Sealtron Corporation 213392
Secon Metals Corporation 408
Servo Corporation of America． 356
Servomechanisms，Inc．Shallcross Manufacturing Co218
208Share Bros．Inc．
，Bros．，Inc．．．．．．．． 417
Sigma Instruments，Inc 312
Signal Engineering \＆Mfg．Co 414
Simmons Fastener Corp． 102
Simpson Electric Company 319
Sorensen \＆Company． 2
Southern Electronics Company 393
Sprague Electric Co 121
Stackpole Carbon Company 0， 51
Standard Electric Time Co．60
Standard Piezo Company 365
Stavid Engineering Inc 391
Sterling Engineering Co． 323
Sterling Transformer Corp． 274
Stevens－Arnold Inc． 238

Quality ？．．．P PLUS \downarrow Prices ？．．Competitive $\sqrt{ }$

Specify Chemelec
 Electronic Components

Chemelec High Performance Electronic Components include a complete line of Teflon－insulated 7 and 9－pin Miniature Tube Sockets，9－pin Connectors，Crystal Sockets，Stand－off Insulators，Feed Through Insulators and Terminals．

All provide the same high performance which this superior insulating material assures．Surface resistivity $3.5 \times 10^{13} \mathrm{ohms}$ ． Loss factor less than 0.0005 ．Dielectric constant 2.0 （ 60 cycles to 30,000 megacycles）．Serviceable at $-110^{\circ} \mathrm{F}$ ．to $500^{\circ} \mathrm{F}$ ． Won＇t carbonize under arcing．Zero water absorption by ASTM Test．Unaffected by extreme humidity．Won＇t DC plate．Chemically inert，non－gassing，immune to corrosive at－ mospheres，fungus，oil，solvents．Non－flammable，tough，resili－ int，withstands and absorbs mechanical shock and vibration．

Write for Catalogs：Miniature Tube Sockets，No．SO－428； $9-$ pin Connectors，No．CN－409－M；Crystal Sockets，No． CS－441；Stand－off Insulators，No．TE－401；Feed Through Insulators and Terminals，No．CF－400．

> UNITED STARES GASKET company
> fluorocarbon 6 PRODUCTS DIVISION CAMDEN 1，NEW JERSEY Cities Throughout the world为此，revisit

\star Regulated, Push-Pull Vertical Amplifier: .02v. per inch sensitivity. 10 cycles to 1 MC response. 2 Megs. and 22 mmf. input.

* 1 Volt Peak to Peak, Regulated, Bulti-It Voltage Calibrator.
\star Compensated Vert. Input Step Attenuator. \star 'V' Phase-Reversing Switch.
\star Push-Pull Horizontal Amplifier: . 15 v . per inch deflection sensitivity. 10 cycles to 1 MC response at full galn. $1 / 2 \mathrm{Meg}$. and 20 mimf. input.
* Internal LInear Sweep: 10 cyc. to 30 KC . \star Controlled, 4-Way Synch. Selection: Internal Pos., Internal Neg., External and LIne.
* 'Z' Axis Modulation Input.
\star Internal, Phasable 60 Cyc. Beam Blanking.
\star Sinusoidal Sweep Phasing Control.
\star All 4 Horizontal and Vertical Plate Connec-
tions Directly Accessible at Rear.
* Four-Way Lab-Type Input Terminals.
\star Light Shield and Mask, removable and \star rotatable.
\star Fuliy Licensed under W.E. Co. patents.
SERIES ES-500A: In louvered, black ripple,
heavy gauge steel case. $81 / 4^{\prime \prime} \times 141 / 2^{\prime \prime} \times 18^{\prime \prime}$.
Net Price $\$ 173.70^{\circ}$

SERIES SP-5
 Oscilloscope Test Probe Set for
 WAVEFORM ANALYSIS, TROUBLE-SHOOTING, SIGNAL TRACING AND ALIGNMENT (with Series ES-500 and ES-500A) Set includes shielded Master Cable and four different, detachable probe heads:
 1. High impedance-Low Capacity Probe 2. Sign al-Tracing-Crystal Probe 2. Signal-Tracing-Crystal Probe 4. Shielded-Direct Probe
 \star In vlnyl-plastic carrying case.
 Net Price $\$ 23.50$

PRECISION APPARATUS COMPANY, INC. $\mathbf{9 2 - 2 7}$ horace hamping olvo., tlmhurst 13, N. Y. Crport Division: 458 Broadway--Mew York 13. U.S.A. - Cables-Morhanex

Steward Manufacturing Co, D. M...... 216
Stoddart Aircraft Radio Co............... 284
Stone Paper Tube Co....................... 200
Stupakoff Ceramle \& Mfg. Co............ 37
Sun Parts Distributors Ltd. 456
Superlor Electric Company.............. 65
Superlor Tube Company................... 32
Sylvania Electric Products, Inc. ...7, 309, 359

Taylor Flbre Co. 24 \%
Technical Service Corp................... . . 415
Technitrot Engineering Co............. 94
Technology Instrument Corp.........325, 327
Tektronix, Inc. 416
Telechrome, Inc. 331
Teletronles Laboratory, Inc. 404
Texas Instruments, Inc. 112
Thomas \& Skinner Steel Products Co.,
Inc. 362
Thompson-Bremer \& Co., Sub. of Amer-
Lrun Machine \& Foundry Co........... 265
Thompson Products Co., Inc. 841
Tobe Deutschmann Corporation......... 278
Trad Television Corp. 402
Transicoll Corporation 343
Transistor Products Inc. 353
Transradlo, Ltd. 3 \%
Transvision, Inc. 420
Tru-Ohm Products Div. of Model Engi-
neering \& nfg. Inc...................... . . . 8
Tung-Sol Electric, Inc. 283
Turner Company, The. 388

Ocinlte Company, Div. of Unlted Carr Fastener Corp.
United-Carr Fastener Corp. 49
United Mifg. \& \&ervice Co................ . 417
U, S. Components, Inc. 374
United States Gasket Co.............. . 458, 459
U. S. Radlum Corp. 330

United Transformer Co......... Second Cover
Unlversal Mfg. Co., Inc.......... 313, 390, 391
Universal Wlading Co 93

Varian Assoc. 294
Vectron. Inc. 405
Veeder-1koot Incorporated 38
Vickers Electric Div., Vickers, Inc...... 250
Victory Englneering Corp................ 382
Volkert Metal Stampings, Inc., John.... 334
Vulcan Electric Co........................ . 38%

Want more information? Use post card on last page

Westinghouse Electric Corp 25, 367
Weston Electrical Instrument Corp...... 36
Wheeler Insulated Wire Co., Inc. 222
Wheeler Laboratories, Inc 45%
White Dental Mff. Co., S. S. . . . 276. 349, 383
Whitney Blake Co......................... 254
Williams \& Co., C. K 37
Wilmar Manufacturing Co., Inc......... 415
Winchester Electronics Inc.............. 835

ROFESSIONAL SERVICES............. 42

SEARCHLIGHT SECTION
(Classified Advertising) H. E. Hilty, Mgr.
EQUIPMENT ADVERTISERS 453
EMPLOYMENT ADVERTISERSAutomatic Electric422
Bendix Aviation Corp., Pacific Div........ 422
Bendix Aviation Corp., York Div......... 429
Bendix Radio, Div. of Bendix Aviation Corp. 424
londer.Tongue Labs 424
Convair 429
Cornell Aeronautics Laboratory Inc... 429
Delco Radio Division, General Motors Corp. 426
Electronic Engineering Co. of California.. 426 426
428
Ford Instrument Co
Freed Electronics \& Controls Corp. 422
General Instrument Corp 426
Goodyear Aircraft Corp.. 427
Hoffman Laboratories Inc. 426
Kollsman Instrument Co. 428
Maclen Corporation. 422
Maxson, W. L 426
Melpar, Inc. 423
National Cash Register. 423
O'Shea Employment System 422
Radio Corporation of America. 485
Southwestern Industrial Electronics Co... 424
Stromberg-Carlson Co.. 424
Walker, W. C. 422
Weightman \& Assoc 422
Wilcox Electric Inc. 424

This index is published as a conveniance to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibility for errors or omissions.

to the production of Encapsulated Seald-Ohm Wire Wound Resistors

O.(D) $\triangle E A$ turns to air to keep the molding material absolutely separated from the resistance wire in its new line of Super Davohm Encapsulated SealdOhm Resistors. The wire is maintained in a slot filled with dry air . . . no external pressures are applied to it. These air pockets, between the wire and the plastic coating, guarantee absolute stability ... eliminate shorted turns.

enDADE EA matches the temperature coefficient of expansion of the molding compound with the ceramic bobbin, the resistance wire and the metal terminals. This removes the possibility of cracks or strains on the wire during cycling.

Because of the special construction used, Daven can furnish Encapsulated Wire Wound Resistors with temperature
coefficients below $\pm 20 \mathrm{P} . \mathrm{PM} /{ }^{\circ} \mathrm{C}$. when required, and with accuracies to $\pm .05 \%$.

These exclusive Daven precision, wire wound resistors are completely hermetically sealed . . . yet are no larger than standard lug-type resistors.
In addition, these units are made in accordance with MIL-R93A specifications, and are substantially more rugged than conventional resistors. They will withstand the JAN-R-93, characteristic A, salt-water immersion test, and, in addition, temperature cycling from $-65^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$. The strong molding material will resist pressures equivalent to $75,000 \mathrm{ft}$. altitude, and will not cold flow at temperatures up to $150^{\circ} \mathrm{C}$.

Write for latest Resistor Brochure

New RCA Tubes for

 Economical TV Receiver Designs
RCA-6AN8

_General-Purpose Triode-Pentode RCA-6AN8 is a general-purpose multiunit tube combining a medium-mu troue and a sharp-cutoff pentode in one en velope. It is designed for versatility in many 'IV receiver applications. A special basing arrangement, together with internal shielding, virtuatly eliminates coupling between units of the tube. All of these features contribute to economical design of TV receivers.

RCA-6AS8

Video IF Amplifier and Detector - -RCA-GAS8 features two units-a highperveance diode and a sharp-cutoff pen-tode-in a single envelope. Designed for use in the last picture if amplifier stage and video detector stage, the 6.1.58 offers a pentode ransconductance of $6200 \mu \mathrm{mhos}$ and a basing arrangement which provide effective isolation of the diode and pentode units. These features facilitate economy in TV receiver design.

RCA-6BY6

Pentagrid Amplifier
RCA-6BY6 is a pentagrid amplifier designed for gated amplifier service in TV sync-separator circuits. An important operating feature of 6 BY 6 design is its favorable ratio of plate current to grids No. 2 and No. 4 current-which permits achieving the desired output signal with relatively low power input to grids No. 2 and No. 4.

RCA-6AU4-GT

Damper Diode
RCA-6AU4-GT is half-wave rectifier of the glass-octal type. It is espectially useful as a damper diode in TV receiver circuits. This tube can withstand a maximum peak inverse plate voltage of 4500 volts (absolute), and (an supply a maximum peak plate current of 175 ma . The RCA-6AU4G'T can handle negative peak pulses up to 4500 volts between heater and rathode (with a de component as high as 900 volts).

For technical data on these important TV tubes or for help on specitic design problems-write RC: Commercial Engineering, Section B19Q, Harrison, N. J. Or call your nearest RCA Field Office:
(EAST) Humbolt 5-3900
744 Broad St.,
Newari 1, N. J.
(CENTRAL) Whitehall 4-2900
589 E. Illinois St.,
Chicago, III.
(WEST) Madison 9-3671
420 S . San l'edro St.,
Los Angeles, Cal.

Complete technical bulletins on RCA-6AN8, 6AS8, 6BY6, and 6AU4-G'T are yours for the asking-from RCA, Commercial Engineering, Section BiyQ Harrison, N. J.

RCA

Receiving Tubes

For Peak

Performance

in your

TV circuits . . .

[^0]: (Continued on page 16)

[^1]: THE HAMMARLUND MFG. CO., INC. 460 W. 34th St., New York 1, N. Y. Midwest Sales Office: 605 No. Michigan, Chicago 11, III. Export Office: 13 East 40th St., New York, N. Y.

[^2]: 4 CTC Componentsshown include: A. capacitor; B. standard and insulated terminats; C. coil form kit; D. panel hardware; E. coil kit; F. RF choke kit; G. coil forms and coils; H. standard and custom terminal boards; I. ceramic board; J. RF chokes; K. diode clips.

[^3]: No. 2 Grid Cup, 305 Stoinless Steel, Rolled edge. 499° OD $\times .010^{\circ}$ Woll $\times .262^{\prime \prime}$

 Many other types of nickel cathodes-such as Lockseam*, made from nickel strip dise cathodes, and a wide variety of siainless from nickel strip, disc cathodes, and apid and other tubular fabricated parts are available from Superior. For information and free literature on these products as well as Cathaloy A-30, A-31**, our latesi Cathode Alloys, address Superiar Tube Company, Electronics Division, 2500 Germantown Avenue, Norristown, Pa.

[^4]: General Offices: 1521 E. Grand Ave., El Segundo, Calif. - Phone: ORegon 8-6281
 Chicago Branch Office: 205 West Wacter Drive Phone: Franklin $2-3889$ New YorkBranch Office: 501 Madisom Avemue. Phone: Plaza 5-8665

[^5]: Royol J, Higgins Co.
 10105 S. Western Avenue Chicago 43, llinois W. C. King Co.

 1355 Westwood Blyd. Los Angelés 24, Coliforn o

[^6]: INSL-X SALES COMPANY, 26 Rittenhouse Place, Ardmore, Pennsylvania Ins-x Products are available in bulk for sproy, dip, and brush application.

[^7]:

[^8]: - Vacuum Types for RF and AF Power Applications - Thyratons . Ignitrons. Rectifiers. Phototubes
 - C-R Oscillograph Types . Camera and TV Studio Types A complete listing of these types is yours for the asking. For valuable assistance in choosing tube types for industrial applications, consult your RCA Field Engineer.

[^9]: The term "Scotch" and the plaid design are registered trademarks for the more than 300 pressure-sensitive adhesive tapes made in U. S. A. by Minnesolo Mining
 Mfg. Co., St. Paul 6, Minn.-also makers of "Scotch" Sound Recording Tape, "Underseal" Rubberized Coating. "Scotchlite" Reflective Sheeting, "Safety-Walk" Mig. Co., St. Paul 6, Minn,-also makers of "Scotch" Sound Recording Tape, "Underseal" Rubberized Cating, "Scotchlite" Reflective Sheeting, "Safety-Walk"
 Non-slip Surfacing, "3M" Abrasives. "3M" Adhesives, General Export: 122 E, 42nd St., New York 17, N. Y. In Canada: London, Ont., Can.

[^10]: At +125 C-11) $\%$ ea pacitance
 at - 55 C -less tan : $\%$ loss

[^11]: 2100 Paxton Street, Harrisburg, Pa.
 Aircraft-Marine Products of Canada, Ltd. 1764 Avenue Rd., Toronto 12, Ontario, Canada

[^12]: Transmitter containing extra transister audio stage for nse with crystal microphone. At left is lapel microphone model, and at right is hand microphone design in which microphone is mounted directly on transmitter housing

[^13]: (1) D. E. Thomas, Transistor Ampli-fier-Cutoff F requency, Proc $I R E$, p 1,481. 40. Nov. 1952.
 and (2) Heedback Bode, "Network Analysis and Feedback Amplifler Design", p 47, D. Van Nostrand Co., New York. BST. H. Nrguist, Regeneration Theory, RST.J. Jan. 1932 .
 (4) D. E. Thomas, Low Drain Audio Ocrillator, Proc $I R E, \mathrm{p} \mathrm{1,385,40}, \mathrm{Nov}$.
 $\begin{aligned} & \text { 1952. }\end{aligned}$

[^14]: *Now with Naval Ordnance Laloratory.

[^15]: This article is based on a paper presented at the National Electronics Conference, Chicago, 1953. The paper will appear in Proc NEC.

[^16]: J. A. Jenkins and R. A. Chippendale, some New Image Converter Tubes and Their Applications, Electronic Engineering, 24, No. 293, p 302, July 1952. Chance, Hughes, MacNichol, Sayre and Series, 512 McGraw-Hill Rook ConSeries, p bi2. McGraw-Hill Book Comipany, Inc., New York, 1949.

[^17]: . . . MANY CUT 50\% AND MORE! Large-scale production has brought about savings reflected in new economy prices for G-E 5 -Star Tubes, many of them down more than half from the original figures.
 G-E SERVICE INCLUDES dESIGN AND APPLICATION AID that concentrates on your tube problem and solves it, drawing on the extensive technical facilities of General Electric.
 G-E SERVICE FEATURES FAST TUBE DELIVERIES from coast-to-coast warehouse stocks . . . alert handling of orders . . . local-laboratory help in checking your tube and circuit performance.

[^18]: Western District Office - Times Building, Long Beach, California

[^19]: DIVISION OF MINNESOTA MINING \& MANUFACTURING COMPANY 11 ARGYLE TERRACE, IRVINGTON II, N. J. FLANTS: IRVINGTON, N. J; MONROVIA, GALIF.; HAMILTON, ONTARIO, CANADA

[^20]: RAYTHEON PRODUCTS INCIUDE: WELDPOWER* welders; Voltage stabilizers (regulators): Transformers; Sonic oscil lators for laboratory research; Standard control knobs; Electronic calculators and computers; and other electronic miniature and special purpose tubes and ${ }^{*}$ Reg. U.S. Pot. Off. equipment.

[^21]: Direct Mall Division, McGraw-Hill Publishing Co.
 330 West 42 nd Street, New York 36, N. Y.
 Please send me, at no cost, mailing list irformation that will cover ny markets.

 Name
 \qquad
 Address
 \qquad
 \qquad

[^22]: PRECISION RECTANGULAR WAVEGUIDE TUBING - MICROWAVE COMPONENTS - MICROVFAVE TRANSMISSION ASSEMBLIES • ELECIRICAL CONTACT MATERIAL • FORMED ELECTRICAL CONTACTS - CROSSBAR WELDED CONTACIS - SLIP RING AND SLIF RING ASSEMBLIES • BRUSH ASSEMBLIES * FRECIOUS METALS CLAD TO BASE METALS - SHEET-TUBING-WIRE AND ASEEMBLIES - SENDZIMIR PRECISION ROLLING

[^23]: G. M. GIANNINI \& CO., INC. • PASADENA 15, CALIF. - EAST ORANGE, NEW JERSEY

[^24]: Western District Office - Times Building, Long Beach, California

[^25]: Royal Metal Mfg. Co., 175 N. Michigan Ave. Dept. 2102, Chicago 1, III.
 \square We want to test your No. 515 stool for 60 days wilth out obligation. Send short_itili_model. \square Please send your new catalog of industrial seating. Name
 Firm Name
 Address
 Clty \qquad

[^26]: DIJMONT-AIRPLANE \& MARINE INSTRUMENTS, Inc.

 ## OFFICE

 15 William Street
 New York 5, N. Y.

 FACTORY
 Clearfield
 Pennsylvania

[^27]: Manufacturers of Antennas, Transmission Lines and Associated System Facilities

[^28]: LAMPKIN LABORATORIES, INC. INSTRUMENTS DIVISION
 BRADENTON, FLORIDA
 Without obligation, please send me data on Lampkin meters.
 Name
 Street
 City
 \qquad State

[^29]: No matter what your transformer requirements may be contact Kenyon first. Our engineers will endeavor to show you how you can increase efficiency at low cost by choosing, a transformer from the complete Kenyon line.

[^30]: SIGMUND COHN CORP. 121 So Columbus Avenue - Mount Vernon. N.t

[^31]: Want more information? Use post card on last page.

[^32]: - TELEMARINE COMMUNICATIONS CO.

 3040 W. 2 ist Street, Brooklyn 24, N. Y. Phone: ES 2-4300

