
for Milifary Components
UTC was the largest supplier of transformer componetis in World War II. Present UTC production is on a similar basis. Illustrated below are a few of the thousand military trpes in UTC 1953 production.


Typical hermet cally sealed power ransformers for 60 =ycle service.


Her metically sealed audio and pulse transtormers.


SO cycle and 400 cycle components hernet cally secled and fosterized.

Miniatu-ized audio units, masnetic amplifiers, etc.


#### Abstract

MEDICAL BETATRON IRRADIATES PHANTOM MAN_-Preporing for test exposure to check distribution of highenergy x-rays from $24-m e v$ betatron, designed especially for cancer therapy, at Memorial Center for Cancer and Allied Diseases, New York City. Wood and cork model simulating human body is constructed to allow insertion of anthracene crystal probe at selected spots. Photo by Syd Karsen. (See p 146).

COVER


FIGURES OF THE MONTH, includes Electronic Output Index ..... 4
INDUSTRY REPORT, top-level news, trends and market interpretations ..... 5
PRODUCTION TECHNIQUES IN TRANSISTOR MANUFACTURE, by James D. Fahnestock ..... 130
BACKWARD-WAVE TUBE, by H. Heffner ..... 135
REMOTE-CONTROL SYSTEM FOR F-M BROADCASTING, by A. V. Tidmore ..... 139
MAGNETICS IN GEOLOGY, by Harold Mooney ..... 143
HIGH-POWER BETATRON FOR CANCER THERAPY, by J. S. Laughlin, J. Ovadia, G. Shapiro and Z. Abdun-Nabi ..... 146
MICROSECOND TIMER CHECKS CONCRETE BEAMS, by J. H. J. Filter. ..... 152
SIMULATING PIANO TONES ELECTRONICALLY, by Leon Katx ..... 155
SMALL-SIGNAL TRANSISTOR OPERATION, by Abraham Coblenz and Harry L. Owens ..... 158
SIGNAL-NOISE METER CHECKS TV LINKS, by Roy Moffett ..... 164
NONLINEAR CAPACITORS FOR DIELECTRIC AMPLIFIERS, by George S. Shaw and James L. Jenkins. ..... 166
ELECTRON-BEAM HEAD FOR MAGNETIC TAPE PLAYBACK, by A. M. Skellett, L. E. Leveridge and J. W. Gratian ..... 168
FLUOROSCOPE IMAGE AMPLIFYING TUBE, by Fitz-Hugh Marshall ..... 172
BRIDGE-STABILIZED ULTRASONIC OSCILLATOR, by Louis W. Erath ..... 174
MEASURING IMPEDANCE OF HIGH-FREQUENCY RESISTORS, by Charles L. Wellard ..... 176
CERAMIC TILE SORTER, by F. Lepri and R. Sanna ..... 180
TRANSISTORIZED RADAR SCOPE DISPLAY UNIT, by Raymond S. Markowitz ..... 182
NEUTRALIZING PENTODES IN RADAR I-F STAGES, by Joseph C. Tellier. ..... 184
TELEVISION MONITORS ROCKET ENGINE FLAME, by Frank A. Friswold ..... 187
CAPACITOR-MODULATED WIDE-RANGE F-M SYSTEM, by Maurice Apstein and H. H. Wieder ..... 190
AUDIO TRANSFORMER DESIGN CHARTS, by Theodore Halabi ..... 193

W. W. MacDONALD, Editor; VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzie, James Fahnestock, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, David A. Findlay, Assistant Editors; Marilyn Wood, Editorial Assistant; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Editorial Director
H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotion \& Research Assistant; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; Charles Wardner, James T. Hauptli, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Robert H. Sidur, Atlanta

Single conies $75 \phi$ for United States and possessions, and Canada; $\$ 1.50$ for Latin America; $\$ 2.00$ for all other foreign countries. Buyers' Guide $\$ 2.00$. Subscription rat -United States and possessions, $\$ 6.00$ a year; $\$ 9.00$ for two years, Canada, $\$ 10.00$ a year; $\$ 16.00$ for two years. Other western hemisphere countries, $\$ 15.00$ in year; $\$ 25.00$ for two years, All other countries $\$ 20.00$ a year; $\$ 30.00$ for two years. Entered as second class matter Augrust 29 , 1936 , at the Post Offle at Albany, N. Y., under act of Mar. 3, 1879. Printed in U.S.A. Copyright 1953 by McGraw-Hifl Publishiag Co., Inc.-All Rights Reserved. BRANCH OFFICES: 520 . North Michigan Avenue. Chicago 11,


## when power fluctuations affect processes .. you NEED SORENSEN AC line regulators

Timber Structures, Inc., of Portland, Oregon, are the largest producers of engineered timber structures in the country. RF is used for pre-gluing scarf joints of lumber to be laminated into very large arches, and also for gluing the firm's "Timberib" barn rafters on a mass production basis. The RF presses were developed by Timber Structures, Inc., engineers.
Voltage to the four RF generators varied greatly due to constantly changing loads throughout the plant. The serious fluctuations necessitated the repair of $5 \%$ of total output and scrapping of another $5 \%$ as total loss. Unsuccessful attempts were made to remedy the condition through the use of additional and separate service transformers.
The local Sorensen representative surveyed the situation and recommended installation of a 15KVA Sorensen Regulator. The result - complete elimination of product loss or damage through erratic voltage.
The installation was made nearly five years ago. Since then - complete satisfaction! The only service required by the Sorensen Regulator during this period has been the installation of one set of new tubes.
We know that a great many manufacturing difficulties are caused by line fluctuations, most of which could be eliminated quickly and economically by Sorensen AC Regulators. Find out more about this, at no obligation, from your Sorensen representative - write us for his address. Sorensen \& Co., Inc., 375 Fairfield Avenue, Stamford, Conn.

## SORENSEN

375 FAIRFIELD AVENUE, STAMFORD, CONN.


TAB RECEPTACLES


## WHAT IS A

## "BLIND" RIVET?

It is a type of fastener used to rivet together two or more pieces of material when access to the work is possible from only one side

But SOUTHCO "Blind" Drive Rivets do much more than that. They provide maximumstrength and reduce production costs. For installation you just hit the pin ... and the rivet is in. At the same time, a powerful pull-up force is exerted to produce the kind of a tight joint you get when a rivet is bucked from both sides.

There is no finishing operation required with SOUTHCO Rivets, no wasted material, no noise, no special tools to buy or maintain. Fastening metal parts is as simple as driving a nail.

## FOR EITHER BLIND OR ACCESS APPLICATIONS

Even when there is access to both sides, SOUTHCO Drive Rivets are specified because they make a one-man job of a two-man operation. They are so simple that costs are reduced through faster riveting.

For the full story on SOUTHCO Drive Rivets, write to Southco Division, South Chester Corporation, 1417 Finance Bldg., Philadelphia 2, Penna:


Well, not exactly, but you can hook-up to receive weather charts measuring $18^{\prime \prime} \times 22^{\prime \prime}$ for hours at a time without an operator.
If the weather is your concern, or indeed if the transmission of any graphic material-drawings, newspapers, legal documents - is a problem, maybe we can help you; write now.

18" MUFAX CHART RECORDER TECHNICALITIES

Maximum chart size $18^{\prime \prime}$ wide $\times 22^{\prime \prime}$ long Index of co-operation 576
Helix speed I or 2 r.p.s.
Scanning rate 96 lines/inch
Maximum input signal (black) +5 to - 15 db ref 1 mW
Signal frequency
AM: $1500 \mathrm{c} / \mathrm{s}$
FM: 1500c/s black 2300c/s white
Power supply $95-125 \mathrm{~V}, 60 \mathrm{c} / \mathrm{s}$
 or 200-250V, $50 \mathrm{c} / \mathrm{s}$.


FIGURES OF THE MONTH

|  | Year <br> Ago | Previous Month | Lotest Month |  | Year <br> Ago | Previous Month | Latest Month |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RECEIVER <br> PRODUCTION |  |  |  | TV AUDIENCE |  |  |  |
|  |  |  |  | (Source: NBC Research Dept.) | Aug. ' 52 | July ' 53 | Aug. 53 |
| (Source: RETMA) | July ' 52 | June '53 | July ' 53 | Sets in Use-total | 18,354,300 | 24,519,000 | 24,895,000 |
| Television sets | 198,921 | 524,479 | 316,289172,197 |  |  |  |  |
| Home sets | 203,868 | 287,724 |  | BROADCAST STATIONS |  |  |  |
| Clock Radios | 61,295 | 131,144 | $\begin{aligned} & 87,620 \\ & 78,434 \end{aligned}$ |  |  |  |  |
| Portable sets | 81,353 | 239,189 |  | (Source: FCC) | Aug. 52 | July 53224 | Aug. 53 |
| Auto sets | 95,220 | 505,774 | 336,208 | TV Stations on Air <br> TV Stns CPs-not on air <br> TV Stns-Applications | 109 |  | 253 |
|  |  |  |  |  | 34 | 284 | 270 |
|  |  |  |  |  | 855 | 524 | 521 |
|  | RECEIVER SALES |  |  |  | AM Stations on Air... <br> AM Stns CPs-not on air | 2,356 | 2,466 | 2,476 |
|  |  |  |  |  | 112 291 | 122 251 | 117 |
| (Source: RETMA) | July '52 | $\begin{aligned} & 431,089 \\ & 449,116 \end{aligned}$ | 340,406 | FM Stations on Air. |  | 622 | 578 | 579 |
| Television sets, units Radio sets (except auto) |  |  | 366,666 | FM Stns CPs-not on airFM Stns-Applications | 21 | 21 | 18 |
|  |  |  |  |  | 12 | 8 | 7 |
| RECEIVING TUBE SALES |  |  |  | COMMUNICATION AUTHORIZATIONS |  |  |  |
| (Source: RETMA) | July '52 | June ' 53 | July '53 | (Source: FCC) | June '52 | May '53 | June '53 |
| Receiv. tubes, total units | 20,944,831 | 42,505,685 | 26,462,069 | Aeronautical | 32,603 | 42,213 | 39,315 |
| Receiving tubes, new sets | 11,504,503 | 26,478,801 | 15,393,307 | Marine | 35,500 | 40,076 | 40,357 |
| Rec. tubes, replacement | 6,795,252 | 12,965,382 | 9,480,208 | Police, fire, etc. .... | 11,143 | 13,238 | 13,631 |
| Receiving tubes, gov't. | 1,956,905 | 708,174 | 313,684 | Industrial | 13,680 | 16,850 | 17,378 |
| Receiving tubes, export | 688,171 | 2,353,328 | 1,274,870 | Land Transportation | 5,027 | 5,830 | 5,922 |
| Picture tubes, to mfrs. | 239,625 | 517,395 | 421,248 | Amateur | 113,092 | 121,011 | 111,289 |
|  |  |  |  | Citizens Radio | 1,401 | 2,124 | 3,829 |
|  |  |  |  | Disaster | 71 | 189 | 191 |
|  |  |  |  | Experimental | 488 | 439 | 414 |
| SEMICONDUCTOR SALES |  |  |  | Common carrier | 985 | 1,193 | 1,214 |
| (Source: RETMA) | July '52 | June '53 | July '53 |  |  |  |  |
| Germanium Diodes | . . . . | 1,344,636 | 3,868,026 | EMPLOYMENT AND PAYROLLS |  |  |  |
|  |  |  |  | (Source: Bur. Labor Statistics) | ) June'52 | May ' 53 | June '53 |
|  | $\overbrace{\text { Quorterly Figures }}$ |  |  | Prod. workers, comm. equip. Av. wkly. earnings, comm. | 268,200 | 408,200-r | 400,200 |
|  |  |  |  | \$64.80 | \$65.20-r | \$65.93 |
|  | Yeor Ago | Previous Quarter | Lotest Quarter |  | Av. wkly. earnings, radio | \$61.58 | \$62.49-r | \$63.60 |
| INDUSTRIAL TUBE SALES |  |  |  | AV. weekly hours, comm. | 40.5 | 40.0 -r | 40.2 |
|  |  |  |  | Av. weekly hours, radio | 40.3 | 39.3 -r | 39.5 |
| (Source: NEMA) | 2nd '52 | 1st '53 | 2nd '53 |  |  |  |  |
| Vacuum (non-receiving) | \$12,110,000 | \$11,340,000 | \$10,400,000 | STOCK PRICE AVERAGES |  |  |  |
| Gas or vapor . . . . . . | \$3,150,000 | \$930,000 | $\begin{array}{r} \$ 3,300,000 \\ \$ 700,000 \end{array}$ | (Source: Standard and Poor's) | Aug. 52 | July ' 53 | Aug. '53 |
| Phototubes ......... | \$480,000 |  |  | Radio-TV \& Electronics | 291.1 | 272.4 | 280.0 |
| Magnetrons and velocity modulation tubes. |  | \$10,070,000 | \$10,500,000 | Radio Broadcasters... | 279.6 | 269.3 | 274.8 |
| Gaps and T/R boxes... | \$2,140,000 | \$2,050,000 | \$1,700,000 | p-provisional; r-revised |  |  |  |

## FIGURES OF THE YEAR

Television set production
Radio set production
Television set sales
Radio set sales (except auto)
Receiving tube sales
Cathode-ray tube sales

| 1952 Total |
| ---: |
| $6,096,279$ |
| $10,934,872$ |
| $6,144,990$ |
| $6,878,547$ |
| $368,519,243$ |
| $6,120,292$ |


| TOTALS FOR | FIRST SEVEN MONTHS |  |
| :---: | :---: | :---: |
| 1952 | 1953 | Percent Change |
| $2,517,157$ | $4,150,525$ | +64.8 |
| $5,280,079$ | $7,941,001$ | +50.3 |
| $\ldots \ldots$ | $3,116,306$ | $\cdots$ |
| $181,128,357$ | $3,383,862$ | $\cdots$ |
| $2,084,934$ | $269,622,417$ | +48.8 |
|  | $4,571,931$ | +119.2 |

# INDUSTRY REPORT 

## Signal Corps Radio Uses Five Transistors

A wRIST radio worthy of mention in even the most imaginative comic strip has been developed by the Army Signal Corps.

Using five transistors and capable of receiving stations as much as 40 miles distant, the two and fiveeighths ounce experimental receiver is contained in a plastic case two inches long, one and an eighth inches wide and three quarters of an inch thick. The small size is made possible through the use of transistors and miniature components, such as the mercury battery scarcely larger than the tip of a pencil. A printed-circuit chassis is used.

A short antenna and the cord connecting the hearing-aid type ear piece, are concealed by the user's sleeve. A miniature on-off switch and a frequency control knob on the face of the set are the only adjustments.

The set operates over the upper part of the standard broadcast band from 1,000 to $1,500 \mathrm{kc}$.


Five transistors ore used in Signal Corps wrist radio, which can pull in broodcost stations 40 miles away


PROJECT TINKERTOY combines printed-circuit techniques and assembly equipment with a system of equipment design so that a ...

## Robot Plant Makes Electronic Gear

## Joint NBS-BuAer project yields building-block system for design and production

DEvelopment of a system for the automatic production of electronic equipment was announced September 19 by the Navy Bureau of Aєronautics and the National Bureau of Standards.

The program, code-named Project Tinkertoy, resulted in the simultaneous development of two systems: a production system utilizing automatic fabrication and assembly equipment, and a compatible, general system of electronic equipment design using a modular concept. The two systems exploit printed-circuit techniques, the use
of conducting paints for wires, thin ceramic capacitors, adhesive-tape resistors, and automatic dip soldering.

From June, 1950, through June, 1953 , approximately $\$ 4,700,000$ was allocated by the Navy to the National Bureau of Standards for Project Tinkertoy. About 85 percent of this amount was expended in the procurement of equipment from industry largely through subcontracts.

- Companies Involved-Design and construction of most of the production equipment was done by the Kaiser Electronics Division of Willys Motor Co. Some special machines were also designed and built by the Doughnut Corp. of America
at Ellicott City, Md. Specially designed automatic production test equipment was obtained principally from Communication Measurements Laboratory, Inc. of Plainfield, N. J. Some major engineering applications to equipment were made by Sanders Associates, Inc., Nashua, N. H., including environmental studies of completed units. The Davis Laboratories, of Riverdale, Md. and the Navy Post Graduate School at Monterey, Calif. also rendered assistance in some phases of the work.
- MDE Design System-The Modular Design of Electronics system employs a series of mechanicallystandardized and uniform modules (or building blocks), producible within a wide range of electrical characteristics.

Each module consists of 4 to 6 thin ceramic wafers, bearing various circuits associated with an electronic stage. Individual modules are combined to form a major subassembly of tubes and components.

- MPE Production System-The Mechanized Production of Electronics system consists of the mechanized production of ceramic wafers, titanate capacitors, and tape resistors and their automatic mechanical assembly and testing. The wafers and tube sockets are made from a controlled combination of talc, kaolin and barium carbonate. The three minerals are mixed, filtered and dried to a powder which is further refined and loaded into a mechanical device which presses the wafers or tube sockets and cuts riser-wire notches.
- Automatic Inspection - During each stage in the mechanized production provision is made for $100-$ percent automatic inspection by both physical gaging and electronic comparison. Printed circuits, resistors and capacitors are compared with their electronic equivalents both before and after assembly by use of electronic computers, bridge circuits and other comparison devices. The testing code is contained on punched cards that accompany the wafers all through the production process.


## Color TV Timetable

Industry thinks FCC will formally adopt NTSC color tv standards before the end of 1953. At Commission's Sept. 8 deadline, no major objections had been filed against adoption. Interest now centers in date color receivers and color programs will be generally available.

Commission is scheduling color demonstrations and tests to cover all possible conditions . . . various light levels . . . via coaxial cable and microwave . . . close-ups . . . indoor and outdoor shots, including rapid motion . . . slides.

Estimates on how many
sets at what price by when are variable . . . W. R. G. Baker of GE says up to 75,000 at $\$ 800$ next year . . . Emerson's Ben Abrams pledges a price only 25 percent above black and white 18 months after FCC decisions . . CBS thinks first color receivers will be around $\$ 1,000$.

Crux of getting color to the viewers soon seems to be cost of receiver tube and threeeyed tv camera . . RCA color picture tube is quoted at anywhere from $\$ 175$ to $\$ 250$. . . Lawrence tube is claimed possible at $\$ 100 \ldots$ CBS estimates cost of matched trio of camera orthicons at $\$ 5,700$.

## Broadcasting Is Up On All Fronts

## Income and employment as well

 as wages and taxes have moved up substantially since 1949Broad view of the financial pattern that radio and tv broadcasting has followed in the past 4 years is seen in figures recently released by the Department of Commerce.

People and pay have increased steadily. A total of 65,000 full and part-time employees, 11,000 more than were employed in 1949, were working for stations last year. Average annual earnings for fulltime employees increased during the period, from $\$ 4,469$ to $\$ 5,559$.

- Income-Radio and tv broadcasters took in $\$ 404$ million in 1952. In 1949 , the figure was $\$ 262$ million. Breakdown for last year's amount shows that broadcasting corporations paid out $\$ 339$ million in wages, salaries and extras; $\$ 31$ million in taxes; $\$ 23$ million in dividends, leaving $\$ 7$ million as undis-

tributed corporate income. The remaining $\$ 4$ million represents income of unincorporated stations.

In 1949, the following payments were made: wages and salaries, $\$ 227$ million; taxes, $\$ 16$ million; dividends, $\$ 8$ million. Undistributed corporate income amounted to $\$ 9$ million. Unincorporated stations received the remaining $\$ 2$ million in 1949.

- Corporations-Most radio and tv stations are set up as corporate org-
(Continued on page 8)


## Sylvania announces...



## ... the most important advance in <br> TR Tube design in the past 4 years

Sylvania engineers are engaged in a continuing program to provide increased dependability and longer life to their electronic tubes . . . for both commercial and civilian applications.

One of the most important results of this program is the recent development of the cermet ignitor electrode. This new electrode is capable of withstanding extremely high temperatures for long
periods of time, thus making possible Sylvania's 1000-hour tube, the 1B63B.

This new ignitor is an important step forward in TR Tube design . . . one more reason why it pays to specify SYLVANIA!
For further information concerning the full line of Sylvania TR and ATR Tubes, simply mail the coupon.


LIGHTING • RADIO • ELECTRONICS • TELEVISION

In Canada: Sylvania Electric (Canada) Ltd
University Tower Bldg
St. Catherine St., Montreal, P. Q

Sylvania Electric Products Inc Dept. 3E-1010, 1740 Broadway


New York 19, N. Y.
Please send me further data on Sylvania's improved 1B63B Tube. Also new descriptive folder showing the full line of $T R$ and $A T R$ Tubes.

Name

Strect $\qquad$

Cify $\qquad$ Zone State
anizations at present. However, there are still a number of unincorporated stations. According to the Commerce Department, there are 1,000 stations in the U. S. owned by entrepreneurs or partnerships and the number has remained constant for the past 4 years. Nearly all new stations that have come on the air since 1949 have been set up as corporations.

## U. S. Studies Electronic Employment Trends

Higif employment in the electronics industry will not only be sustained throughout this year but may even go higher than the top 546,000 workers set in March of this year, if the brisk radio and tv market anticipated by manufacturers develops, according to a Labor Department study of employment trends in the industry.

While indications are that military contracts will begin to taper off the last of the year, it is expected that there will be substantial amount of military electronic production for several years, making use of a sizeable number of workers. In mid-1953, almost 200,000 workers were estimated to be engaced in military electronics production, according to the report.

- Future-Although radio and tv set production probably will employ a smaller proportion of the industry's work force in the years ahead than before Korea, the study concludes that it will be the most important determinant of electronic employment for the next decade. The report predicts that while electronic tube manufacturing is likely to decline moderately after the defense peak, it will remain at a high level due to the large replacement market for defense equipment along with growing civilian markets.

Commercial and industrial electronics manufacturing is seen as having great expansion in the future but the report notes that this segment of the industry employs only a relatively small part of the electronics work force.


THIRTY-YEAR trend in transocean telegraph shows clear crossover point, as

## Wireless Finally Passes Cable

## Radiotelegraph carriers handle most paid traffic; overseas phone calls rise

Three dots picked out of the zther at St. Johns, Newfoundland a half century ago marked the birth of a precocious infant in the world of communications.

Proponents of transoceanic radiotelegraph were quick to foretell the demise of the ocean cable and the rapid ascendancy of the new art. However, change is not always accomplished overnight even in electronics and it has only been within the past two years that Marconi's brainchild, now matured to a mellow middle age, has become the prime carrier of international communications.

- Trends-The chart depicts thirty years of international communications in and out of the United States. A steady growth in radiotelegraph traffic is evident through the years.

The large decline in traffic during the war years may be misleading since only paid messages are counted. During the war, both radio and cable facilities were placed at the disposal of the government and total traffic for the period is not available. The smaller peaks and valleys primarily denote world business fluctuations.

The ocean-cable business, already
a mature industry in the early twenties, shows a slight decline. However, the cables are still vital and for several reasons, particularly their use in diplomatic communications, will retain an important role for many years to come. (Note: Prior to 1942 ocean-cable traffic figures were made available only at 5year intervals.)

- Radio Expansion - Radiotelegraph carriers have been steadily expanding their plants. In 1948, 69 countries were linked with the U. S. by radiotelegraph circuits; by 1952 this had grown to 84. Traffic handling capacity has likewise been upped by increasing use of automatic equipment and various kinds of multiplex systems. Customer convenience has been enhanced by pri-vate-line arrangements that make international communications as simple as typing a memo.
- Transients-The marked postwar decline in cable traffic is largely accounted for by a reduction in the number of messages transiting the U. S. on their way to other countries. Traditionally these messages have made at least one leg of their journey over the important North Atlantic cable circuits. In recent years, there has been a trend to direct radiotelegraph communication even between the smaller coun-
(Continued on page 10 )



## is why Sprague Type DFP Twist-Loks* are the preferred


tries of the world.
A drop in cable traffic also occurred when the Commercial Pacific Cable suspended operations in November 1951. Transpacific traffic
is now handled by radiotelegraph.

- Telephone-A bustling parvenu in the communications picture is radiotelephone. From a prewar average of 50,000 paid calls yearly, international telephone now handles nearly one million calls a year. Radiotelephone service is available to 93 countries as against 81 in 1948.

Increasing use of single sideband and multiplexing equipment is an important trend in radiotelephone too.

- Economics - International telegraph is a thirty-million-dollar business. Profits accruing to the stockholders are, however frequently measured in only five figures-even for large companies. The pie-chart illustrates how the three largest interocean carriers divide the total.


## Where TV Sales Are Higher This Year



Pennsylvania led all other states in increased tv set business for the first six months of 1953 with a 75 ,000 unit increase over shipments for the same period last year.

Thirteen other states, shown in
bar chart, had increases of over 20,000 sets each. Far and mid-west states fared best in increased sales. All states had a higher volume except Connecticut, Delaware, New Jersey and Rhode Island.

# Supply of Technicians Is Critically Short 

## Lack of subprofessional aids aggravates engineer shortage; training programs lagging

Electronics engineers are still critically short in number and college enrollment figures indicate that the shortage will persist at least through 1956. Industry can make the best use of available engineers by freeing professionally trained engineers from routine chores and aiding them in implementing their designs. Both these tasks require well-trained technicians and competent craftsmen. Unfortunately, the supply of qualified electronics technicians is also critically short and apprentice training has been on the downgrade for some time.

- Technical Institutes-Technician training is the function of 67 technical institutes throughout the U.S. Toal enrollment, including part-time and evening students, is over 50,000 . Eleven of these schools with a full-time enrollment of 1,858 and a part-time enrollment of 1,594 are devoted entirely to training electronics technicians; 38 other schools offer courses in electronics to their 13,303 full and 22,877 parttime students. The schools include state and municipal institutes, private endowed and proprietary institutes, extension divisions of colleges and universities and YMCA schools.
- Management-Proprietary institutes have long held the lead in electronics training. But the balance is shifting as college extension programs expand rapidly. In 1951, 90 percent of all electronics technicians came from proprietary schools as against 81 percent in 1952. Graduates of college extension programs accounted for 1 . percent of the class of 1951 and $11 \frac{1}{2}$ percent of 1952 graduates.
- Curriculum-Technical institutes offer intensive training in vacuum-
(Continued on page 14)


## To G Lill THIE MIISST II




Model 1 Radiohm Miniature

Model 2 Radiohm


Model 2 Radiohm (including JAN types)


Wirewound Radiohm Three watts


Model 2 EXPRESS ( $\dagger$ ) for immediate production needs


Series 20 Miniature with a.c. line switch


Series 30 Dual Concentric Switch and Control


Series 30
Dual Concentric Control and Switch


Series 30
Dual Concentric Dual Switch


Standard Phenolic

## (3) capiactors



Industrial Switch Kit


BC Tubular


BC Dises


Stand-off


Feed-Thru HI-KAPS ${ }^{\text {® }}$


Miniature
Feed-Thru HI-KAPS ${ }^{(1)}$


High Accuracy Capacitors


## 4 (rantid niccrowic checuis


 (balanced load diode filter)


Standard Triode Couplate ${ }^{(6)}$


Vertical Integrator


Special Plates to suit manufacturer's requirements


Audet ${ }^{(6)}$
Audio-detector plate


Pendet (t) (Pentode detector coupler)


Model II Ampec ${ }^{\text {要 }}$
Standard 3 -stage amplifier

tube technology, basic science and mathematics. Options are available in radio and television, electronics, and industrial instrumentation. Graduates qualify for various positions in plants and laboratories. These positions range from produc-tion-line tester to junior engineer. Placement figures for a typical class in advanced electronic technology give the following percentage breakdown by job title:

| Job Title | Percent |
| :---: | :---: |
| Junior engineer | 8.8 |
| Laboratory technician | 37.0 |
| Instructor | 9.5 |
| Transmitter engineer (radio) | 12.8 |
| Tv technician (production) | 24.3 |
| Tv final tester (production) | 7.6 |
|  | 100.0 |

- Typical School-A branch of New York State University, the Long Island Agricultural and Technical Institute at Farmingdale offers study options in radio communications, electronic equipment and industrial instrumentation. Full-time students take an intensive twoyear course that presents roughly the technical content of a four-year E. E. course less the advanced math and design problems. Since 1948, 274 students have been graduated in the electrical-technology curriculum.
- Job History-A typical 1948 graduate shows that his first job was as a production technician, later moving to production supervisor and finally taking charge of a line. Thirty-three 1952 graduates responding to a job questionnaire listed their occupations as follows: junior engineer, 2; customer engineer, 3; transmitter engineer, 1; instructor, 1; technician, 6; tester, 15 ; instrument repairman, 1 ; utility layout man, 1 ; meter man, 1 ; and electrician's helper, 2.

In addition, the institute runs an evening division in which electronics courses are also offered. About 250 students are participating. Regular courses include radio and tv servicing and are pursued both vocationally and avocationally. Special courses are frequently run in conjunction with local industry for upgrading personnel.

- Craftsmen-Industry is likewise plagued by a manpower shortage on the skilled craftsman level. Here
the shortage is being combatted chiefly through in-plant apprenticetraining and skill-improvement programs. A survey of 510 electronics plants showed 1,756 apprentices training-largely in the metal trades. Other in-plant training, mostly short term, was being given
to 30,439 workers. Training programs are confined mainly to larger establishments; 62 percent of the plants with 5,000 or more workers maintained training programs while among plants having 100 or fewer employees, only 14 percent had training programs.


NTSC CHAIRMAN W. R. G. Baker presents FCC Chairman Rosel H. Hyde 52 pounds of technical documents supporting the NTSC-proposed color television standards while . . .

## Hopes Run High For Color TV In 1954

## Early adoption of new standards seen spurring receivers and programming

Pointing UP the electronic industry's almost unanimous support of FCC's proposed adoption of NTSC color television standards was the formal presentation of fifty-two pounds of technical documents. W. R. G. Baker, chairman of NTSC, handed over 3,823 pages of data representing a million engineering man-hours to FCC Chairman Rosel H. Hyde. The $\$ 10$ million cost of this research was borne by the industry.

Besides their concurrence in the NTSC petition, several companies independently filed endorsements.

They included Admiral, GE, Hazeltine, Motorola, Philco, RCA and Sylvania. CBS, whose incompatible system is favored by existing rules, came out strongly for the new standards.

Objections by U. A. Sanabria's American Television, Inc. were economic rather than technical; want the Department of Commerce to study the effect upon industry and the general economy before final FCC action.

- Closing the Books-Interested parties filed all petitions and comments with FCC by Sept. 23, at which time the books closed and the Commission began its final deliberations. In the opinion of (Continued on page 16)


## SHOCK - VIBRATION - NOISE ISOLATION NOTES



A PHOTO-ENGRAVER'S CAMERA
"floated" on Barrymounts, is isolated from floor vibrations. Result: sharper images and faster operation.


GRINDER ACCURACY PROTECTED
Barrymounts, used to isolate grinders from building-borne vibration, eliminale chatter marks. Result: higher output and better finish.


MEET DEMANDS OF MILITARY SERVICE
Barry unit vibration isolators and mounting bases protect delicate electronic equipment in military aircraft and in guided missiles.


## INSTRUMENT AND CONTROL PANELS

mounted on Barry isolators, are unaffected by vibration from nearby heavy machinery. Result: sensitive adjustments "stay put," and frequent recalibrations are avoided.

## IN ANY FIELD OF MILITARY OR INDUSTRIAL INTEREST

the wide range of Barry products, and the experience of Barry engineers, can help you solve shock, vibration, and noise problems. Call our nearby sales representative, or write directly to us.


707 PLEASANT ST.. WATERTOWN 72, MASSACHUSETTS
SALES REPRESENTATIVIES IN
Atlonta Battimore Cmicage Cleveland Dallan Dayton Detralt Los Angeles Minnmapells Now York
Phllodelphio Pisonix Recheqster St. Louis San Franclice Soottie Teromio Washingta
industry leaders, the outcome is bound to be favorable, but will not be announced until around the first of the year.

- Pioneer Lookers-Because there are always lobbyists, engineers and others able or willing to pay some $\$ 1,000$ for an early model, the first color programs will not be seen merely by the vast audience with monochrome receivers. By the end of 1954, according to one estimate, there may be upwards of 75,000 color receivers in operation.

Engineers will have at least a year of grace in which to get the bugs out of their more complex equipment; studio technicians will learn to handle stronger lights.

## Instrument Business Sets Volume Record

## Shipments have increased $\$ 100$ million in 5 years and expansion continues

Value of electrical instrument shipments reached a total of over $\$ 273$ million last year, an increase of $\$ 117$ million over 1947 shipments, according to figures released by the Bureau of Census. The volume confirms the growth of the business that has been evident from the plant expansions and acquisitions of firms in the field during the past few years.

- Breakdown-Census divides measuring instruments into three groups, integrating instruments, test equipment and other instruments. Of the three, test equipment for testing electrical, radio and communications circuits and motors was the big item, accounting for $\$ 139$ million of the grand total last year. The other categories accounted for $\$ 58$ million and $\$ 75$ million respectively. In 1949 test equipment shipments were valued at $\$ 54$ million while integrating instruments totaled $\$ 63$ million and other measuring instruments reached a volume of $\$ 37$ million.
- Companies-Indication of how companies in the field fared last
year is seen in the following sales figures taken from a list compiled by the National City Bank of New York:

- Expansions-Further indication of the growth of the instrument business is seen in the following plant expansions and acquisitions that have been announced since the

first of the year by companies in the field:

American Car \& Foundry entered the business recently with the purchase of Avion Instruments; Beckman Instruments has announced plans for a $\$ 2$ million plant in California and has opened a large new plant in New Jersey; Bendix entered the field with the purchase of the Ultra-Viscoson, a device that meters fluid flow; DuMont opened a $118,000 \mathrm{sq} \mathrm{ft}$ plant for the manufacture of cathode-ray instruments this year; T. A. Edison acquired Measurements Corp.; General Instrument has acquired a fourth plant; G. M. Giannini built a $\$ 500$,000 plant and opened a European subsidiary; Texas Instruments is completing a $\$ 1$ million plant in Dallas.

- Abroad-Companies overseas are also cashing in on increasing instrument business. H. F. Dever,
president of Brown Instrument Division of Minneapolis Honeywell estimated that the use of instrumentation and automatic control equipment in Great Britain and on the continent had increased at least 50 percent since the end of World War II.


## U. S. Surveys TV Purchasing Plans

## More people plan to buy receivers this year than last and expect higher cost

Proportion of people planning to buy tv sets this year increased substantially over the proportion with such plans last year, according to the Federal Reserve's survey of consumer finances made early this year. The higher level of tv sales so far this year seems to substantiate the survey's results.

According to the study of all appliance purchases planned in 1953 , ranging from to to washing machines, plans to buy tv sets showed the largest increase along with furniture. The figure for those people with definite or probable plans to buy tv sets increased by 3 percent since 1951. The proportion of those people that only indicated uncertain tv spending plans also increased in the two-year period by 1.4 percent.

- Cost-Although the percentage of respondents to the survey expecting prices in general to be stable or to decline during 1953 was much larger than a year earlier, the amount to be spent on specific items was expected to be greater. For tv sets, people expected to spend $\$ 250$ in 1951, $\$ 300$ in 1952 and $\$ 320$ in 1953.
- Income Factor-The survey shows that in 1952 people with incomes of $\$ 5,000$ or more purchased tv sets much less frequently than in 1951 while the lower income brackets bought at about the same or a slightly higher rate. This difference probably reflects the ac-
(Continued on page 18)


The new DURATRAK coasing is one of the mos: inportant improvements in VARIACS; another step in the contimuing
process of development which makes the VARIAC the best process of development which makes the VARAC veltage contral available

ALL "V" TYPE VARIACS
have / EWDUratrak construction for Increased Performance

Even Longer Life
The new DURATRAK brushtrack coating eliminates all brush track oxidization problems which formerly might become critical under severe conditions of operation.

DURATRAK construction adds these features to increase the utility of VARIACS:
Long Life - insures a life as long as that of fixed-ratio power transformers
operated at rated loads
Unaffected By Surges - VARIACS with DURATRAK will withstand initial surges as high as ten times rated current
Minimum Maintenance - the brush track will not deteriorate under normal operation - only maintenance needed is occasional wiping of track with alcohol-moistened rag

Write for the NEW VARIAC BULLETIN for Complete Specifications
Admittance Mreters to Coanial Elements \& Decade Capacilors Decade Inductors \& Decads Resistors \& Distorlion Meters Frequency Milers मे Frequency Standards \& Geiger Counters Impedance Bridges M Modulation Meters \& Oscillators Variacs Light Melers \& Hegohmmelers \& Motor Controls Noise Meters Null Detectors Precision Capacitors Pulse Generators \& Signal Generators \& Vibration Meters Stroboscopes \& Wave Fitter: $\boldsymbol{U}-\boldsymbol{H}-\boldsymbol{F}$ Measuring Equipment $\& V-T$ Vellmeters \& Wave Analyzers \& Polariscopes
quisition of sets by the higher income groups in previous years.

In early 1952, more than one-half of the respondents with incomes of $\$ 5,000$ or more owned tv sets as compared with much smaller proportions among the lower income groups.

- Where-Nearly one-half of the people surveyed in northeastern states owned sets in early 1952 in contrast to about three-tenths in the west and one-eighth in the south.


## Electronic Firms Size Up The Sales Dollar

## Material and labor costs took almost 90 cents from each consumer dollar collected

Shiny Sales Figures set down by companies in the electronics field so far this year lose some of their luster when an analysis is made of where sales dollars go. Last year, for every dollar collected from customers by eight major electronic manufacturers, only 2.5 cents was left, by the time all bills were paid, for payments to shareholders and for reinvestment in the business. This year, the amount may be even smaller if material and labor costs keep rising and cannot be offset by price increases.

In 1952, materials, supplies and services bought from outside suppliers by these companies took 52.8 cents out of each sales dollar. Employment costs took an additional 36.2 cents, taxes accounted for 6.3 cents, depreciation cost 2.2 cents for each dollar leaving 1.2 cents for shareholders and 1.3 cents for reinvestment in the business.

- Companies-Breakdown of expenditures for each of the eight firms varied considerably, however, for some of the items. For materials, top payment was 66.4 cents of each sales dollar. The low was 42.3 cents. Wages ranged from 28.2 cents to 41.5 cents. Taxes also varied widely from 2.1 cents to 16.4 cents. Payments for depreciation, to

shareholders and for reinvestment in the business were relatively constant for the group during 1952.
- Changes-Compared to 1951, material costs for many electronic manufacturers went up substantially last year, as much as 5 cents for each sales dollar collected, in some cases. Higher sales volume last year over 1951 dropped labor's percentage of the sales dollar however, even though the total cost was higher. Other items showed relatively little change for the years 1951 and 1952.

Indications are that material and labor costs are taking a still bigger bite out of the sales dollar this year. Most recent price increases have been blamed on rising labor and material costs. However, rising sales may lower the percentage.


ALUMINIZED picture tube output gains in volume as

## Picture Tube Makers Expand Plants

Some tube manufacturers are jumping on the aluminizing bandwagon; others hold out

Television picture tube production is way ahead of last year's output yet some manufacturers are still expanding facilities and expect even greater production in the future. Output of picture tubes through July of this year is more than
double last year's production for the period.

- Pro-One reason for the plant expansions in the face of present high output is that some companies see a continuing rise in the demand for aluminized tubes from set-makers and they want to be ready for it. They feel that, like the rectangular
(Continued on page 20)


# Designers - The right tube ....find it with G.E's NEW SPOT-RATING SERVICE ON THYRATRONS! 

YOUR electronic circuit may require a control tube with special performance. Even General Electric's 36 thyratrons-largest choice in the industry-may not include a type whose published ratings are identical with the tube you need.
Here G. E.'s Thyratron Spot-rating Service takes over. Published tube ratings, such as those listed on this page, apply to only one set of pre-established conditions. Under different circuit conditions, a G-E thyratron's voltage or current capacity may be greater. For exam-
ple, if your peak voltage is less than 1250 v , Type GL-3C23 in practice may be found able to handle in excess of 1.5 amp current.
General Electric always is glad to recommend such possibilities, after study. You can have a thyratron that custom-fits your circuitat the same time, one that's industry-tested for performance. You will save by installing a type already in large production! . . With the list below as your guide, write pinpointing your thyratron needs! General Electric Company, Tube Department, Schenectady 5, N. Y.

FOR EVERY APPLICATION, A CHOICE OF PROVED G-E THYRATRONS!

| Primary application and type number | Average amp | Peok anm | Peak volis, inverse | Primary application and type number | Average omp | Peak amp | Peak valts, inverse |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOTOR CONTROL |  |  |  | GL-393-A | 1.5 | 6 | 1250 |
| GL-CIJ | 1 | 8 | 700 | FG-27-A | 2.5 | 10 | 1000 |
| GL-3C23 | 1.5 | 6 | 1250 | GL-5728/FG-67 | 2.5 | 15 | 1000 |
| GL-5720/FG-33 (3 electrodes) | 2.5 | 15 | 1000 | GL-5830/FG-41 | 12.5 | 75 | 10000 |
| GL-5560/FG-95 (4 electrodes) | 2.5 | 15 | 1000 | HIGH CURRENT AMPLIFICATION |  |  |  |
| GL-5544 | 3.2 | 40 | 1500 | GL-5663 | 0.02 | 0.06 | 500 |
| FG-172 | 6.4 | 40 | 2000 | GL-2D21 | 0.1 | 0.5 | 1300 |
| FG-105 | 6.4 | 40 | 2500 | GL-5727 (special heater-cathode construction) | 0.1 | 0.5 | 1300 |
| GL-6044 | 6.4 | 77 | 500 | GL-502-A (metal) | 0.1 | 1 | 1300 |
| GL-5545 | 64 | 80 | 1500 | Gl-2050 (glass) | 0.1 | 1 | 1300 |
| GL-414 | 12.5 | 100 | 2000 | GL-627 | 0.64 | 2.5 | 2500 |
| GL-5855 | 12.5 | 150 | 1500 | GL-678 | 1.6 | 6 | 15000 |
| WELDING CONTROL |  |  |  | FG-154 | 2.5 | 10 | 500 |
| GL-5560/FG-95 | 0.5 | 30 | 1000 | GL-5559/FG-57 | 2.5 | 15 | 1000 |
| GL-5632 (gas) | 2.5 | 30 | 1250 | GL-672-A | 3.2 | 40 | 2500 |
| GL-6011 (gas and mercury) | 2.5 | 30 | 1250 | MODULATOR SERVICE |  |  |  |
| FG. 172 (metal) | 2.5 | 77 | 750 | GL. 6130 | 0.045 | 35 | 3000 |
| FG-105 (glass) | $\begin{aligned} & 2.5 \\ & 4 \end{aligned}$ | $\begin{aligned} & 77 \\ & 16 \end{aligned}$ | $\begin{array}{r} 750 \\ 10000 \end{array}$ | GL-5948 | 1 | 1000 | 25000 |
| REGULATED POWER SUPPLY |  |  |  | SPECIAL APPLICATIONS |  |  |  |
| FG-81-A (3 electrodes) | 0.5 | 2 | 500 | *GL-5662 | (fuse tube) |  | 200 |
| FG-98-A (4 electrodes) | 0.5 | 2 | 500 | **GL-885 (2.5-v heater) | 0.075 | 0.3 | 350 |
| FG-97 | 05 | 2 | 1000 |  | 0.075 | 0.3 | 350 |
| GL-5557/FG-17 | 0.5 | 2 | 5000 | *for electronic-hlanket control **for oscilloscope sweep circuits |  |  |  |

tube, the aluminized tube is here to stay and is a feature that will not be by-passed.

Aluminizing proponents estimate that it increases the light output by approximately 2 to 1 over nonaluminized tubes. They say that the tubes enable set makers to use smaller power tubes because of the increased brightness. One major tube maker now estimates that aluminized tubes account for half of its total production and may reach 75 percent when new facilities are completed.

- Other side-But not all tube manufacturers are convinced that aluminizing is worth the problems that it brings about. Dissenters point out that the aluminizing operation takes as much space as the exhausting operation and substantially decreases the number of tubes that can be produced in a day.

With rejects higher and costs up between 10 and 15 percent on each tube, these companies do not at present favor the operation. They say the difference in picture brightness is affected by viewing conditions so that in the wrong light, the difference in picture brightness is not noticeable. They also point out, that despite statements made by aluminizing proponents, the demand for the tubes has not been an important factor.

## Radio-TV Fair Trade Hearing Set By FTC

The Federal Trade Commission has announced a hearing on proposed business rules for the radio and television industry to be held in Washington at the Federal Trade Commission Building on October 8 th.

The business rules represent a proposed revision and extension of rules promulgated in 1939 for the radio receiving set manufacturing industry (Electronics, March, 1952, p. 6). Rules have to do with misbranding, misrepresentation and deceptive selling methods.

The purpose of the proceedings is to provide for a cooperative prevention of unfair and deceptive
practices in the radio and television industry. Interested parties may submit their views not later than October 8th, at which time they will be given an opportunity to be heard orally. Copies of the proposed rules may be obtained from the Commission.

## Industrial Television Sales Outlook Is Bright

## Companies see $\$ 6$ million in sales for this year as applications and output increase

Despite the large amount of promotion that industrial television has received, sales of equipment in the past have not been large. But now, with more companies in the field, better equipment and lower prices, sales of the units have become substantial and manufacturers estimates indicate that sales this year may reach $\$ 6$ million, a ten-fold increase over last year's estimated business.

This year prices roughly average $\$ 2,000$ for a camera and the prediction of $\$ 6$ million in sales represents the beginning of sizable production. The vidicon tube has come down in price, from approximately $\$ 500$ at its introduction to a July price of about $\$ 345$. Sales managers and customers agree that similar price reductions have been a main factor accounting for sales increases this year. They expect prices to be even lower next year.

- Applications-Finding new ways to use tv is still a problem, despite price reductions. One company recently demonstrated that the equipment could be used in a butcher shop to show shoppers at the counter choice cuts of meat from inside the icebox. The military is also taking to tv. GI's trucked cameras to mock battle lines so that brass hats could witness the progress of battle as it took place.

Perhaps the most unusual application made recently took place in Hollywood, California. There the equipment was used to detect a

gang of thieves in the act of pilfering the stockroom of an RCA television service branch. The camera, concealed in the rafters and focused on the loading platform, gave Hollywood police watching a receiver in an upstairs room a front-row seat.

## Financial Roundup

Bright profits for this year continued to be reported by companies in the electronics field along with new security transactions. In almost every case, firm's reported earnings substantially above those for similar periods in 1952. For 19 companies, the net profit picture for six months looked as follows:

|  | Net Profit |  |
| :---: | :---: | :---: |
| Company | 1953 | 1952 |
| American Phenolic | \$688,889 | \$573,651 |
| AT\&T | 204,994,197 | 174,946,339 |
| Arvin (3 m) | 910,596 | 778,639 |
| Audio Devices | 74,165 | 53,883 |
| Bendix ( m) | 4,021,952 | 3,797,119 |
| Clevite Corp. | 2,015,419 | 1,786,379 |
| CBS (26 wks) | 4,003,377 | 2,851,415 |
| Daystrom (3 m) | 324,219 | 401,499 |
| Decca Records | 430,0ti3 | 270,923 |
| T. A. Edison | 560.227 | 316,095 |
| Federal Mfg. \& |  |  |
| Eng. (12 m) ... | 176,783 | $\bigcirc 12.696$ |
| General Precision | 1,469,067 | 61,112 |
| IBM | 15,575,997 | 13,937,142 |
| Sangamo Electric | 1,186,714 | 1,027,749 |
| Servomechanisms. | 183,716 | 179,040 |
| Sperry | 7,997,470 | 6,575.265 |
| Standard Coil | 2,736,431 | 1.490,547 |
| Webster-Chicago | 345,973 | *272,432 |

$\rightarrow$ Offerings-G. M. Giannini offered an issue of 18,316 shares of common stock (par \$1) at $\$ 12$ per share. Proceeds will be used for general corporate purposes.

Soundscriber offered to common stockholders the right to subscribe for 15,588 additional shares of common (no par) at $\$ 6.25$ per share, at the rate of 1 new for 74 shares
(Continued on page 22)

## BIGGER-BETTER RAYTHEOR <br> Picturé Tubes



The very newest equipment, and the most advanced production rechniques combine in this great new Raytheon plant, to produce the finest quality big screen ( $21^{\prime \prime}, 24^{\prime \prime}, 27^{\prime \prime}$ ) TV Picture Tubes ever made.

To make possible efficient mass production of giant size picture tubes, Raytheon had to originate specifica-
 tions for some of the world's largest tube manufacturing units.

Under this one roof, to insure perfect screens and most economical production, you'll find

- THE WORLD'S LARGEST SETTLING CON. VEYOR, capable of handling two hundred and ten $27^{\prime \prime}$ tubes at a time
- A BAKE-OUT OVEN 103 FEET LONG; the largest built
- THE BIGGEST EXHAUST MACHINE EVER BUILT; 303 feetlong; asteel-lined, electrically fired beauty that conveys the blg iubes smoothly on specially designed tube car. riers supported from the side instead of on undesirable foor reils

Add to these major manufacturing miracles, mechanical handling, automatic testing and super-automatic processing equipment that (1) flashes the getter, (2) bases the tube, (3) solders the leads to the base, (4) sparks the tube, (5) ages the tube.

## It totals up to this:

## RAYTHEON PICTURE TUBES

 areRight for Sight!

RAYTHEON MANUFAGTURING GOMPANY

Newton, Mass. Blgelow 4.7500 Chicago, If. NAtional 2-2770 - New York, N. Y. Whitehall 3-4980 Los Angeles, Catik. Richmond 7-5524 RAYTHEON MAKFS ALL THESE:

held. Proceeds are for notes and general corporate purposes.

- Filings-Raytheon filed with SEC covering 6,000 shares of common (par $\$ 5$ ) to be offered at market (estimated $\$ 9.75$ per share). Proceeds are to be used for general corporate purposes.

Clary Multiplier filed with SEC covering 30,000 shares of common (par \$1) to be offered at market, (approximately $\$ 6.75$ per share). Net proceeds are to be used for working capital.

Dynatronics of Reno, Nevada filed with SEC covering 200,000 shares of common stock to be offered at par (\$1 per share). Proceeds are to be used for working capital for electronic equipment.

Sonic Research filed with SEC covering $\$ 40,000$ of 6 -percent notes convertible into no par common to be sold at par in $\$ 1,000$ units. Proceeds will be used for working capital to develop sonic and vibration equipment.

AT\&T plans to issue, in what is said to be the largest offering ever made by any company, about $\$ 625$ million of new convertible debentures, if stockholders approve. Proceeds are to be used to continue construction of new facilities to meet demands for telephone service. Some half-million people are waiting for service and over a million party-line customers want better service, the company said. The offering will help finance the expansion.

## British Setmakers Show Wares

Radio show spotlights \$350-million industry; export models featured

Early this month, Britain's electronics industry flexed its muscles at the 20th national radio and television show in London. Employing 135,000 workers, the industry produces $\$ 350$-million worth of equipment annually; nearly $\$ 70$ million of this is earmarked for export. Over 100 firms were represented at the show.

- Television-British setmakers are following U.S. trends in homeinstrument design. Nearly every manufacturer is introducing a 17 inch table model this year and at least two firms have 21 -inch sets. Rectangular tubes have now been generally adopted. Many tubes are both aluminized and provided with an ion trap to prevent screen burning. Major circuit improvement of the year is automatic picture control that keeps brightness and contrast despite signal-strength variation.
Although British sets generally have but one channel, multichannel sets made to both North American and European scanning standards
are being produced for export. Radio and tv home-instrument sales account for about $\frac{1}{3}$ of Britain's electronics export business. In all, more than 120 television receivers were on display at the show of which more than half were making their commercial debut.
- Electronics-Other new devices shown included a public clock controlled by radio standard time pulses, medical electronic equipment for testing heart and lungs, electronic equipment for factory and office, a microscope with tv-sized screen and one of Britain's elec-tronically-controlled guided missiles.

Several lines of improved electronic components were displayed and a strong trend towards miniaturization noted.

- Poachers-An interesting piece of equipment shown was a radio direction finder used by the General Post Office to ferret out operators of unlicensed television receivers. Britain's noncommercial tv service is sustained by an annual $\$ 2.80$ license fee collected by the GPO from each viewer.

An estimated 200,000 unlicensed sets are in operation. Licenses outstanding total nearly $2,500,000$.

## TV Equipment Makers Look Ahead



Major tv broadeast equipment manufacturers seem to agree in general with these station predictions mode by one company in the field. Next year may be the peak for transmitter sales. At $\$ 250,000$ a station, this schedule could mean potential sales of nearly $\$ 400$ million for manufacturers over the next 8 years

## Radar Safety Beacons Urged For Aircraft

## Equipment would be similar to ground racons that are now in operation

Primary radar now in use at many airports has several limitations resulting from its basic nature. A revolving antenna sprays out high energy pulses and receives relatively weak pulses reflected from objects within its range.

Often weather fronts and precipitation adversely affect performance. Sometimes the antenna pattern has holes at certain angles and the aircraft is lost for a time.

Jet-turbine aircraft are so small that the radar often has difficulty obtaining sufficient reflection to track them. When a plane is flying near fixed obstacles it is sometimes obscured. And, worst of all, all blips on the airport primary radar look the same. The Radio Technical Com-

[^0]
## Newest in the line ...

## A single instrument for Process control

 Leak detection ResearchThe latest mass spectrometer in America's accepted standard line is the Consolidated Model 21-610, a precision electronic instrument with extreme stability for unattended process monitoring in the petro-chemical industries. Used with a handheld probe it, operates as a detector for tracing leaks of any gas within its mass range. The Model $21-610$ is suitable for qualitative and quantitative component determinations in gaseous and lightliquid mixtures. Moderately priced and economical to operate, needing no expensive refrigerants, this new instrument brings mass spectrometry as a control procedure within reach of small refineries and chemical manufacturers.

Write for Bulletin CEC-1824-XII.


All components are accessible: either by removing side panels or by pull-out chassis containing circuits and controls.


Electronic and vacuum/analyzer assemblies may be removed intact and operated independently.

## Model 21-610 Mass Spectrometer

## Consolidated Engineering

CORPORATION

300 North Sierra Madre Villa, Pasadena 15, California
Sales and Service through CEC INSTRUMENTS, INC.,
a subsidiary with offices in: Pasadena, New York, Chicago, Washington, D. C., Philadelphia, Dallas.
analytical instruments for science and industry
mittee for Aeronautics therefore urges that a plan be formulated for equipping aircraft with a special transmitter to send out a coded signal when triggered by the airport radar pulse.

- Racons in Use-This direct-transmission idea is not new, having been used during the war on military craft under the designation IFF (Identification Friend or Foe). The scheme is now being used in reverse to identify ground locations. Racons (Radar Beacons) are triggered by the radar pulses from aircraft or surface vessels and send out an identifying code.

At present, there is a total of 117 listed as operating throughout the world. Eight of them in the United States operate at $3,256 \mathrm{mc}$ and 77 on $9,310 \mathrm{mc}$. There are seven in Alaska and the Pacific Isles. Twen-ty-five others are scattered throughout the world.

## Insulating Materials Head For Big Year

Electronic manufacturers have been responsible for a large part of the record sales set by companies in the electrical insulating materials

field during the first six months of this year.

Billings have been higher for the period than in any previous first half on record for laminated products, electrical mica, porcelain, varnished fabric and paper, vulcanized fiber and the other components that make up the NEMA index.

## MEETINGS

SEpp. 28-30: Ninth annual National Electronics Conference, Sherman Hotel, Chicago, Ill. Sept. 29-Oct. 1: AIEE Middle Eastern District Meeting, Daniel Boone Hotel, Charleston, W. Va.
Oct. 2-11: First Annual Na tional Electronic Show, Santa Monica Pier, Santa Monica, Calif.
Ocr. 5-8: Fall Technical Meeting sponsored by Canadian National Committee, URSI and IRE Antenna Group, Ottawa, Canada.
Oct. 13: Joint Meeting AIEEIRE, Some Recent Advances in Microwave Tubes, Stewart Avenue School, Garden City, L. I., N. Y.

Oct. 13-15: National Conference On Tube Techniques sponsored by the Subpanel On Tube Techniques of the Department of Defense, Western Union Auditorium, New York, N. Y.
Oct. 14-16: Sixth Annual AIEE Special Conference on Machine Tools, Hotel Cleveland, Cleveland, Ohio.
Oct. 14-17: Audio Fair And 5 th Annual Convention of the Audio Engincering Society, Hotel New Yorker, New York, N. Y.

Oct. 17-23: 35TH National Metal Congress and Exposition, Cleveland, Ohio.

Oct. 20-22: Thirtieth Annual Session Of A.A.R. Communications Section, Hotel Plaza, San Antonio, Texas.
Oct. 22-Nov. 1: First Brazilian Exposition of Radio, Television, Electronics and Telecommunications, Automobile Club of Brazil, Rio de Janeiro, Brazil.
Oct. 26-28: Radio Fall Meeting, RETMA, RTMA of Canada and IRE, King Edward Hotel, Toronto, Ontario, Canada.
Nov. 9-12: National Electrical Manufacturers Association, Haddon Hall Hotel, Atlantic City, N. J.
Nov. 9-12: Conference on Radio Meteorology, Austin, Texas.
Nov. 12-13: IRE Fourth Annual Meeting of Professional Group On Vehicular Communications, Hotel Somerset, Boston, Mass.
Nov. 13-14: Annual Electronics Conference, Hotel President, Kansas City, Missouri.
Dec. 8-10: Joint AIEE-IREACM Computer Conference and Exhibition, Statler Hotel, Washington, D. C.
SEPT. 13-24, 1954: First International Instrument Congress And Exposition, Commercial Museum and Convention Hall, Philadelphia, Pa.
SEpt. 1954: International Scientific Radio Union, Amsterdam, Netherlands.

## Industry Shorts

- Combination of the world's most powerful electron linear accelerator with a high-energy electron scattering apparatus that can peer 10 times deeper into the atom than ever before, enough to distinguish particles within nucleus only two one-hundredths of a trillionth of an inch apart, has been perfected by Stanford University physicists.
- Air-conditioning field garners another electronic manufacturer with Emerson introducing a line of units next spring.
- Passengers on Southern Pacific's "Cascade" streamliner are now able to talk by radio-telephone with any part of the world through facilities installed recently by Bell.
- Number of technical session, technical papers, exhibitors, booths and total attendance at the 1953 West-
ern Electronic Show and Convention all approximately doubled over those at the show held in 1951.
- Intricate laboratory apparatus, including a photometer and an oscilloscope, was used by GE scientists recently to determine that the average light output of Cleveland fireflies was 6 -thousandths of a lumen, and the brightest produced 9 -thousandths of a lumen.
- Canadian Broadcasting Corp. has selected Vancouver, B. C. as the site for its fourth tv station and has ordered complete equipment for it from Marconi.
- Patent held by Celanese Corp. on an electronic device designed for increasing efficiency in production of warp-knit fabrics is being made available on a royalty-free basis to the entire textile industry.


## $130^{\circ} \mathrm{C}$.

## WITH IMPROVED BH "649"

Laboratory tested for retention of flexibility and original rated electrical protection after

$$
\begin{aligned}
& 130 C^{\circ}-1500 \text { hours } \\
& 150 C^{\circ}-500 \text { hours } \\
& 160 C^{\circ}-24 \text { hours } \\
& 232 C^{\circ}-3 \text { hours }
\end{aligned}
$$

BH " 649 " is a braided Fiberglas sleeving coated with an improved vinyl-chloride formulation. Available in all standard sizes and colors, in grades A-1 ( 7000 V.) , B-1 ( 4000 V.) and C-1 (1500 V.). Send for data sheets and samples from current production.

## Another Bentley, Harris First!

Bentley, Harris Manufacturing Co. Conshohocken, Pa .
Address Dept. E-10



# The Reader <br> His Mark <br> (ind 

T1 HE ABC that appears in the symbol at the top of this page stands for Audit Bureau of Circulations. The symbol itself is an emblem of cooperation. in which every subscriber to this magazine has an interest.
The Audit Bureau of Circulations is a voluntary, non-profit, cooperative association. It was founded in 1914 and now consists of 8450 advertisers, advertising agencies and publishers in the United States and Canada. This magazine is proud to be a member.

ABC originally was set up to help take the racket out of publishing, to eliminate the waste and guesswork then so prevalent in publishing and advertising, to establish order and confidence in place of the misunderstanding and misrepresentation that arose from unverified circulation claims and dubious circulation practices. Its mission was to protect the interests of both readers and advertisers.

THis re did by first defining the term "paid circulation." Then it established standards and rules to govern subscription sales practices and records. Finally it set up an auditing organization to verify the claims and report the facts concerning the circulation of each member pubs. lication. It now maintains on that job a working staff of sixty-five full-time auditors. So the $A B C$ symbol has becrme the hallmark of circulation standards and advertising values. Each member publication must maintain those standards if it wishes to retain its membership and display the ABC symbol.
This ABC audit is no perfunctory aflair. When a business publication, such as this one, beromes a member of the Bureau, it agrees that the auditors shall have "the right of access to all books and records." Their inspection, therefore, may cover any part of its operations. Original subscription orders, payments from subscribers. paper purchases, postal receipts, arrears of payments, and many more items are painstakingly ehecked by the auditors. In many instances they
go behind the records to seek verification from subscribers themselves as to the terms of their subscriptions.

IN doing its job, ABC has created many values for both publishers and readers as well as for advertisers. That is because the publication that becomes a nember of ABC thereby offers the strongest possible guarantee of its primary devotion to the interests of its readers. The function of a business magazine is to be useful to its readers. When this service is rendered by an ABC publication, it is constantly subject to the practical test of reader acceptance and approval. As each subscriber has the right to purchase or relrain from purchasing an ABC publication, that collective right confers upon the readers the power to say whether or not the publication will survive. Thus the report on its ABC audit provides the most direct assurance that a publication stays in business only because of a voluntary demand by readers who find its editorial service responsive to their needs.
Naturally, the editor of each business publication follows closely the score thus racked up by his paper in its ABC reports. In the scope and tone of his editorial coverage and treatment, in the selection and presentation of his editorial content, he must constantly lator to maintain and enhance the readers' acceptance of his efforts. That is why the editorial standards established by ABC publications set the editorial standards for all publishing. That is how the ABC constantly stimulates its member publications to become even more useful to their readers.

ANi that is why the ABC symbol has become the Mark of the Reader, a constant reminder that his willingness to pay for an ABC publication is the acid test of its value both to him and to its advertisers.

## McGraw-Hill Publishing Company

## Almost as easy as this...



When you need wire, it's good to know that there's a dependable SYNKOTE construction for every conceivable electrical and electronic use. If we don't have it in stock, we'll manufacture it to meet your requirements. For prices, samples or technical assistance, contact your nearest Plastoid representative . . . or call these men:

CHIEF ENGINEER: J. Tomey; phone: FRanklin Boro 7-2311 (New Jersey) SALES-SERVICE: Don Nichols; phone: FRanklin Boro 7-2311 (New Jersey) N. Y.C.SALESSERVICE: W. Grant; phone: STillwell 6.6200 (New York)

## PIASIOAD <br> Cor,ooration - offices: 42-61 24th St., Long lstand City, N.Y. plant: $\operatorname{HAMBURG}, \mathrm{N} . \mathrm{J}$



## ONLY FHM TYPE RBSISTORS MEET HIGHER



Advancing requirements of instrumentation, military electronics and television focus emphasis on greater stability for non-wire wound resistors. IRC believes its filament type construction offers the best answer to more exacting standards. For over 28 years the film type resistance element has proved its superior stability-even in today's newest IRC Boron-Carbon Precistor.

high economy - high stability
Type DC Deposited Carbon Resistors combine accuracy and economy with high stability. Excellent where carbon compositions are unsuitable and wire wound precisions too large or expensive. Available in $1 / 2,1$ and 2 watts. Use coupon for further facts.

## STABILITY STANDARDS



## high accuracy-high stability

The ultimate in stable non-wire wound resistors, Type BOC Boron-Carbon Precistors conform to all requirements of MIL-R-10509. Voltage coefficient less than 20 parts per million per volt. Extraordinary load life. $1 / 2,1$ and 2 watts. Send for Bulletin.
high popularity—high stability
More IRC Filament Type B'T Resistors are used in radio and TV sets than any other brand. They meet and beat JAN-R-11 specifications, and have been tested and approved by most producers of government equipment. Exceptionally stable-in $1 / 3,1 / 2,1$ and 2 watts. Send coupon for Data Bulletin.

## high voltage - high stability

IRC Type MV High Voltage Resistors offer outstanding stability even in very high resistance values. Filament resistance coating in helical turns on ceramic tube provides a long, effective conducting path. 2 to 90 watts. Check the coupon for detailed information.


Eliminates Possibility of End-Cap Trouble


Eliminates Danger of Mechanical Damage

Improved Electrical Characteristics

The new Type MBC' $1 / 2$ "watt, $1 \%$ resistor offer's the inherent superiority of a BoronCarbon resistor plus the advantage of a fully insulated unit. Send coupon for full details.

Boron \& Deposited Carbon Precistors - Power Resistors - Voltmeter Multipliers - Low Wattage Wire Wounds • Insulated Composition Resistors . Volume Controls.

Precision Wire Wounds - Ultra HF and Hi-Voltage Resistors. Low Value Capacitors. Selenium Rectifiers - Insulated Chokes. Hermetic Seal Terminals.

# A NEW TERMINATION TECHNIQUE FOR 

- COMPUTERS
- SWITCHBOARDS AND INSIDE PLANT EQUIPMENT
- RELAYS, SWITCHES, AND MULTI-CIRCUIT COMPONENTS



## AMP FLAT TAPER

If you are concerned with the wiring of close spaced equipment, investigate the new AMP Solderless TAPER TAB RECEPTACLE for flat relay or switch tabs shown at right. It is self locking when installed on a male tab with matching $31 / 2^{\circ}$ taper, yet can be removed and reconnected any number of times without solder or special tools. These terminals are supplied on reels in continuous strip. Customer crimps them on wires using AMP automatic machines at speeds up to 4,000 per hour!

Performance of these miniature connectors meets exacting requirements for millivolt drop, corrosion resistance, and vibration. They are suited for critical low level circuits or power circuits up to several amperes.

Write to AMP Electronics Division for complete information concerning AMP TAPER TAB RECEPTACLES . . . you will receive data and samples by return mail.

An example of the savings possible with Taper Tabs and Receptacles. This disconnect block in Remington Rand's new electronic computer had more than 1,000 wires soldered to tabs in a space approximately $5^{\prime \prime} \times 9^{\prime \prime}$-an assembly operation requiring two weeks' time. After tabs were modified to taper shape (See picture insert), the same operator can now assemble two blocks per daya 20 to 1 increase-using A-MP's Taper Tab Receptacle No. 41355. There are neither loose wire ends nor drops of solder in the assembly to cause shorts nor cold or rosin joints to open up in the field. Installation is simply a mechanical operation requiring little operator skill, resulting in greater uniformity.
*For connector plugs and other applications where a round pin is more adaptable, see AMP taper pins.

PHOTO AT RIGHT SHOWS AMP SELF LOCKING TAPER TAB RECEPTACLES BEING APPLIED TO MATING TABS ON A STEPPING SWITCH. LOCKING ACTION GIVES MAXIMUM ELECTRICAL AND MECHANICAL SECURITY ... CONNECTIONS ARE SUITABLE FOR CRITICAL LOW LEVEL CIRCUITS.

(C) AMP




Layer-wound Cotton Insulated Coils are automatically wound on this No. 96 Universal Coil Winder. Such coils include meter coils (square), solenoid coils (round) and meter potentiometers (flat wire).
This machine winds both cotton-interwoven and uninsulated coils. On cotton interwoven, it eliminates need for flanged coil bobbins, provides ample insulation where current is most apt to short circuit. It can also produce coils with Glassine or Kraft insulating papers (manually inserted) and is widely used for laboratory and experimental work as well as for quantity production.

$\downarrow$
Cross-wound Coils for TV, Radio and General Electronics are wound on this No. 84 Universal Coil Winder. Such coils include intermediate frequency transformers, television flyback transformers, progressive wound coils, linearity coils, large diameter pie-windings and peaking coils.
Producing up to four coils at once, the No. 84 machine gives a high rate of production. Coils are wound with extreme accuracy assuring highest efficiency and uniformity, thus reducing rejects.

Three to Fourteen Paperinsulated Coils in Stick Form are wound simultaneously on the No. 104 Universal AutomaticFeed Coil Winder now equipped with an electronic drive. Such coils include round or square coils, fluorescent ballasts, oil burner secondaries, automotive ignition secondaries and outboard ignition secondaries.

This machine handles papers of various grades and thicknesses such as Glassine, Kraft and Acetate film.

(Four to Thirty Paperinsulated Coils in Stick Form are wound on the No. 108 Universal HandFeed Coil Winder.
This machine meets the need for a modern handfeed winder with quick set-up features where varied lot sizes and short runs are called for. Operator can make principle adjustments in three minutes with its easily operated external controls. No gears, or cams to remove. Set-up time is reduced to a minimum.


4 Four to Thirty Paperinsulated Coils in Stick Form are wound simultaneously on the No. 107 Universal AutomaticFeed Coil Winder.
This machine provides the quickest, easiest way to wind paper-insulated coils accurately. You can safely handle wire sizes from No. 19 to No. 42 ( $\mathrm{B} \& \mathrm{~S}$ ). The electronic drive assures a slow smooth start that results in less breaks when winding fine wires.

FREE! Separate, 4-page bulletins on each of the machines described above can be had by writing us direct. Bulletins contain detailed specifications.


Demonstration Room, above, located at the Universal Winding Co. plant, Cranston, Rhode Island. Chicago Demonstration Room is located at 9 South Clinton Street, Chicago, Illinois.

YOU'RE CORDIALLY INVITED' to visit our Cranston and Chicago Demonstration Rooms.

Watch Universal Coil Winders in action - see for yourself the benefits of their individual features of design. Discuss your own coil-winding problems with the technically-trained Universal people in charge. If you wish, bring along samples of the coils you are now winding - or specifications of

You will find that Universal with their long experience in the coil-winding field can offer you helpful ways to improve your production. Our Demonstration Rooms are open daily, Mondays through Fridays. To arrange for a demonstration, write to: Universal Winding Company, P. O. Box 1605, Providence 1, Rhode Island, or 9 South Clinton St., Chicago 6, Ill.

# the coils you are considering winding. <br> $\lim _{T E}^{T}$ <br> <br> UNIVERSAL WINDING COMPANY 

 <br> <br> UNIVERSAL WINDING COMPANY}

P. O. BOX 1605, PROVIDENCE 1, RHODE ISLAND

Stackpole GA fixed composition capacitors represent the simplest, most inexpensive capacitor design ever produced-and their operasing stability is more than ample for the great majority of applications.

Pioneered by Stackpole, these sturdy little units are now available in an expanded range of values from 0.10 to 10.0 mmf . Insulated bodies, dielectrics and electrodes are integrally molded for maximum stability and durability. Leads are securely anchored and treated for easy soldering.

Although Stackpole GA capacitor bodies range only from $0.330^{\prime \prime}$ to $0.170^{\prime \prime}$ in length, they can now be supplied with as many as four easily distinguished color bands.

## Up to 4

Color bands

## STACKPOLE

TYPE GA
FIXED COMPOSITION
CAPACITORS
RTMA PREFERRED VALUES in Imf
fixed composition CAPACITORS

## 22 new values

 FORTHEULTRAHIGHS

Electronic Components Division STACKPOLE CARBON COMPANY, St. Marys, Pa.


## NOW CELENAMEL IS AVAILABLE

## IN SIZES \#40 TO \#48



# Powerstat 

AN EFFICIENT, ACCURATE, DEPENDABLE SOURCE of CONTINUOUSLY-ADJUSTABLE A-C VOLTAGES

## any type

MANUALLY-OPERATED OR MOTOR-DRIVEN . . . LOCAL OR REMOTE CONTROL ... WALL, BENCH or BACK-OF-PANEL MOUNTING . . . EXPOSED OR ENCLOSED TERMINAL BOARD . . . FUSED or UNFUSED . . . DIRECT WIRING OR CORD-PLUG WITH OUTPUT RECEPTACLE CONNECTIONS


TYPE 116


FROM 150 VA TO 100 KVA
SINGLE AND MULTIPLE PHASE DUTY . . . 120, 240 and 480 VOLT SERVICE ... FREQUENCIES OF 25, 50/60, 400/800 CYCLES ... FROM ZERO TO OR ABOVE LINE OUTPUT VOLTAGES WITH THE MAXIMUM OUTPUT CURRENT AVAILABLE AT ANY SETTING

## for any job

IN THE EXPERIMENTAL AND RESEARCH LABORATORY . . THE TESTING AND INSPECTION DEPARTMENTS ... ON THE PRODUCTION LINE ...AS THE VARIABLE A-C VOLTAGE COMPONENT OF ANY EQUIPMENT WHEREVER A CONTINUOUSLY-ADJUSTABLE VOLTAGE IS REQUIRED TO CONTROL HEAT, LIGHT, SOUND, POWER OR ELECTRONIC APPARATUS



TYPE MWI156-6


AIR-COOLED ASSEMBLIES FOR NORMAL SURROUNDINGS . . . OIL-COOLED and EXPLOSION-PROOF UNITS FOR USE IN CORROSIVE or HAZARDOUS ATMOSPHERES . . . SPECIAL DESIGNS FOR SHIPBOARD, AIRBORNE and other MILITARY APPLICATIONS


TYPE X-1126


400/800 CYCLE MIDGET FRAME SIZE

## and all featuring

EXCELLENT REGULATION... HIGH EFFICIENCY...CONSERVATIVE RATINGS... ZERO WAVEFORM DISTORTION...RUGGED MECHANICAL CONSTRUCTION...SMOOTH CONTROL...EASY MOUNTING

SEND NOW FOR COMPLETE INFORMATION



THE SUPERIOR ELECTRIC CO.
210 Mae Avenue, Bristol, Conn.
Please send liferature on POWERSTAT variable transformers.

NAME $\qquad$
POSITION $\qquad$
COMPANY $\qquad$
CO. ADDRESS
CITY___Z__Z__STATE


Now a single cathode-ray oscilloscope with its associated plug-in pre-amplifiers does the work of three or more separate highquality laboratory oscilloscopes.


## ... the Tekfronix Type 535

Quickly Adaptable to Changing Requirements with Plug-in Vertical Pre-amplifiers

1. Dual-Trace Unit-Performance superior to dual-beam scope in most applications.
2. Differential-Input High-Gain DC Unit-Sensitivity to 1 millivolt $/ \mathrm{cm}$.
3. Wide-Band DC Unit - 10 megacycle bandwidth.

New Sweep Circuit Provides Widest Range Ever Offered

1. Accurately calibrated time bases from $0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$.
2. New sweep delay permits jitter-free display of details in puise trains.
3. Calibrated interval between sweeps.

High Intensity for Low Repetition Rates and Single Sweeps

1. 10 KV accelerating potential.
2. New Tektronix $5^{\prime \prime}$ flat-faced metallized cathode-ray tube.

The fast growth of the electronic industry is bringing more complex problems to the engineer every day. The need for an oscilloscope quickly adaptable to almost any phase of laboratory investigation is evident. The Type 535 Cathode-Ray Oscilloscope is designed to fill this need.

Plug-in vertical pre-amplifiers enable the Type 535 to cope with a wide variety of signals. Wide range time base has single shot,
recurrent, and triggered operation to permit observation of the very slow as well as the very fast. Flexible sweep delay circuitry provides both jitter-free delay and stable viewing of time-modulated or jittery signals. High crt accelerating potential increases the brightness at low repetition rates. With dual-trace plug-in unit precise time comparisons may be made, free from errors inherent in dual-beam cathode-ray tubes.

## CHARACTERISTICS

## Basic Unit

TIME BASE RANGE - MAIN SWEEP
24 calibrated time bases from $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to 5 $\mathrm{sec} / \mathrm{cm}$. Continuously variable uncalibrated time base from $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $10 \mathrm{sec} / \mathrm{cm}$.

## SWEEP MAGNIFIER

Accurate $5 \times$ magnification on all ranges including the $0.1 \mu \mathrm{sec} / \mathrm{cm}$ range.

## DELAYING SAWTOOTH

Automatic main sweep lockout with controllable reset. Permits delaying the start of the main sweep from $10 \mu_{\mathrm{sec}}$ to $20,000 \mu \mathrm{sec}$ in 9 calibrated ranges. Calibrated interval between sweeps, 20 to 20,000 $\mu_{\mathrm{sec}}(50 \mathrm{cps}$ to 50 kc ).

## TRIGGER SELECTION

Automatic triggering or amplitude selection.
BALANCED DELAY NETWORK
$0.25 \mu_{\text {sec, }}$ superior transient response.
10 KV ACCELERATING POTENTIAL
New Tektronix $5^{\prime \prime}$ metallized cathode-ray tube, Type 51P2.

## AMPLITUDE CALIBRATOR

0.2 mv to 100 r square wave.

Price (with Type 53A Plug-in Unit) - $\$ 1385$

## Plug-In Vertical Pre-Amplifiers

Type 53C-Dual-frace Unit
Two identical ampifier channels, activated on alternate sweeps-or nonsynchronously at approximately 100 kc .
Risetime $-0.04 \mu \mathrm{sec}$.
Bandpass (with Type 535) - DC to 8.5 mc . Sensitivity - $0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$, ac or dc, in 9 calibrated steps. $0.05 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$ continuously variable. 4 position ac-dc and polarity reversal switches.
Price—\$275
Type 53D-Differential-input High-gain Unit Sensitivity- $1 \mathrm{mv} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$ in 24 calibrated steps. Sensitivity variable between steps.
Bandpass- $D C$ to 250 kc at $1 \mathrm{mv} / \mathrm{cm}$ to $D C$ to 750 kc at $50 \mathrm{mv} / \mathrm{cm}$ and lower.
Price- $\$ 145$
Type 53A - Wide-band DC Unit
Risetime - $0.035 \mu_{\mathrm{sec}}$.
Bandpass (with Type 535) - DC to 10 mc .
Sensitivity - $0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$, ac or dc, in 9 calibrated steps. $0.05 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$ continvously variable.
Two signal inputs - 60 db isolation.
Price - $\$ 85$


Input signal displayed on the delaying sawtooth. Position of the main sweep is indicated by a bright region on the delaying sawtooth.


Same signal displayed on the main sweep. The main sweep may be ranged out along the delaying sawtooth and positioned to start after the desired amount of delay.

PLEASE WRITE FOR COMPLETE SPECIFICATIONS

# Tektronix, Inc. 

## Waldes îruarc Ring Saves'2.84 Per Unit, Cuts Labor-Time and Materials in Hydraulic Packing Unit



OLD STYLE stuffing box required skilled worker to install packing rings one at a time, then adjust packing glands by trial and error. Disassembly was equally difficult, time-consuming and costly.

NEW Monopak Cartridge is smaller, lighter, streamlined and installed with one Truarc Retaining Ring. Disassembly and reassembly with new cartridge takes unskilled worker just 1 minute.

Hydraulic Accessories Company of Van Dyke, Michigan, uses a single Waldes Truarc Inverted Ring (internal series 5008) to hold Monopak Cartridge in cylinder head.

New design eliminates costly machining and saves $21 / 8 \mathrm{lbs}$. of material. Re-design with Waldes Truarc Retaining Ring reduces stuffing box diameter from $31 / 2^{\prime \prime}$ to $27 / 8^{\prime \prime}$, and reduces length from $57 / 8^{\prime \prime}$ to $43 / 8^{\prime \prime}$. Allows savings in assembly, adjusting and testing.

NEW DESIGN USING WALDES TRUARC RING PERMITTED THESE SAVINGS PER UNIT

## Machine time saved:

Chucking, facing and boring . . . $\mathbf{\$ 2}$
Drilling and tapping 3 holes . . . 18
Drilling and counterbaring 3 hales . 12
Assembling, adjusting, testing . . . . 90
material sayed:
$11 / 2 \mathrm{lbs}$. cast iron . . . . . . . . 30
l/2 lb. bronze . . . . . . . . . 23
3 studs . . . . . . . . . . 36
3 nuts
TOTAL $\$ 2.84$

Waldes Truarc Retaining Rings are precision-engineered... quick and easy to assemble and disassemble. Always circular to give a never-failing grip. They can be used over and over again. There's a Waldes Truarc Ring to answer every fastening problem.

Find out what Waldes Truare Retaining Rings can do for you. Send your blueprints to Waldes Truarc engineers for individual attention, without obligation.

For precision internal grooving and undercutting .. . Waldes Truarc Grooving Tool.



When you need a slip ring assembly - large or miniature, complex or simple, of any capacity - PM Industries can be of value to you. We have pioneered in the development of slip ring assemblies to meet widely diverse requirements, both electrical and mechanical, and can put at your disposal over twelve years of design and manufacturing experience.
In meeting your specifications, we will employ the methods best suited to producing, at minimum cost, a unit that gives maximum performance. Your particular slip ring needs may require a molded rotor, a plated rotor, or a built-up assembly; we are set up to manufacture by any of these processes. Your specific electrical and mechanical requirements will be fulfilled through our design experience using all brush and ring materials and techniques. You will save time and save money by calling upon our skills.
The following summary indicates PMI's technical experience on production units. Our experimental work reveals that the values shown are conservative.
FREQUENCY: from DC to more than 60 mc
VOLTAGE RANGE: from microvolts to more than 20,000 volts, corona-free
CURRENT RANGE: from microamps to more than 600 amps
NUMBER OF CIRCUITS: max. to date, more than 500 (space requirement the limiting factor)
brush life: min., 7 million linear ft.
SIZE: from synchro and resolver type rotors to $36^{\prime \prime}$ diam. $x 8^{\prime}$ height NOISE LEVEL: at 600 amps , an average peak to peak amplitude of 0.15 volts; at microamp levels, noise not detectable

## ENVIRONMENTAL SPECIFICATIONS:

High Altitude: to $60,000 \mathrm{ft}$.
Water-tightness: MIL-E-2036A
Shock and Vibration: MIL-T-17113
Fungus Resistance: acceptable to all Govt. agency requirements
Corrosion Resistance: 200 hour Salt Spray test
Whether your requirements are complex or simple, consult PMI. We'll be happy to discuss your problems without obligation. If you want preliminary information, write for our Facilities Report and our new brochure "Slip Ring Assemblies to Your Specs."

 Good mechanical strength and moisture resistance

C-D-F is a dependable source of supply for all of your coil form spiral tubing needs. Uniform, high product quality is maintained by rigid standards of manufacture. C-I).F offers you fabricating skill, backed by exacting technical and inspection control. A recent C-D-F development is Grade 5 Constant Torque Tubing for use in coil forms. Alter the threaded iron tuning core is inserted and finally adjusted, you obtain the same stable torque rating.
Constant Torque features: exact internal threading . . . every thread engaged. 3-point contact with core prevents binding and permits positive tuning and re-tuning. Outer surface of tube has no weak spots, no external embossing to cause cement leakage. Available in lengths up to $14^{\prime \prime}$ to take $.248^{\prime \prime}$ to $.250^{\prime \prime}$ core with 28 threads per inch and also $6-32,8-32$ and $10-32$ screw sizes Write lor samples.
Grade 5 Tubing is also custom-fabricated by C-D-F in conventional shapes to accommodate other sizes of tuming cores.
C-D-F produces spiral tubing in grades to meet most requirements. Use the Grade Selector Chart when requesting samples and additional information.

## AYAILABLE GRADES

## IMPREGNATED

```
Generol Electrical ond Mechanicol Grade. O
IA Electrical and Mechanical Grade-Special Punching. \(O\)
2 Mild Stopling, Riveting. ond Post Forming Quality. O
2 A intermediate Fabricating and Stapling Quality. O
3 Severe Stapling, Riveting, and Post Forming Quality. O
5 Constont Torque and Formed-to-Shape Coil Form tubing. 0 b Special for High Humidity Applications. O
6A Extra Mord, High Strength Tubing. \(O\)
7 Soft Varnished Kroft Tubing. \(0 \square \square\)
7 A Hard, Rigid Rectongular Tubing.
8 Varnished Diamond Insulation
"Deflection Coil" Tubing. \(O\)
0 Larger Size, Meavy wall Tubing for Mechanical Uses. O
```


## UNIMPREGNATED

```
20 Special Wound in Specified Combinations of kraft paper, fish poper, etc. \(\bigcirc \square \square\) Plain Kraft Paper Tubing. \(\bigcirc \square \square\)
22 Plain Diamand Insulation Tubing. O
23 Ploin Chipboard Tubing. O ORound
0 Formed (fluted shope)
```

 Squere, Retangular

```


\section*{SELECTION OF THE PROPER GRADE}

While the differences between some of the grades are not great, they are quite distinct when specific requirements are considered. For most uses, the proper grade can be selected from the descriptions, size range, and properties tables in our catalog. If this should prove difficult in some cases, it is desirable for our C-D-F sales engincer to have as much information as possible about the application, especially fabricating requirements, in order that we may make suggestions. Your blueprint is usually sufficient if it carries some indication as to the quality desired. In other cases, the following check list will be found to be helpful:

Type of Application.
P'roperties required or the customer's specification for the material. Fabricating quality desired. This is important where stapling, riveting, punching, or forming operations are to be performed by the customer.
Any unusual conditions which may aftect the suitability of the material for the job. For tubing that is to accommodate tuning cores, actual samples of the cores are essential along with torque requirements (if known).
Get all the facts. Write for 8-page Technical Folder ST-53 describing standard grades of C-D-F Spiral Tubing, their properties, sizes and tolerances, and how to select the proper grade for your application. Free test samples are available upon request. Call your C-D.F Sales Engineer (offices in principal cities). He's a good man to know!
the name to remember


SPIRAL TUBING


\section*{FIRST In Features: \\ Vacuum Sealed Junction Welded Seam Construction}

\%NCE again you have proof of the inherent quality...superior performance... of a General Electric product painstakingly developed through intensive research. Not just an ordinary transistor to answer current application demands; new G-E vacuum sealed junction transistors represent a design with radically improved characteristics and keyed to the tools of mass production for low component cost.
First junction diodes and now junction transistors. This logical product sequence has given General Electric almost two years of production experience on junction devices before announcing junction transistors. The result: anticipation and solution of many problems plus the addition of unique features to enhance the range of application.

Your decision to use this new G-E product assures you of a basic component that is thoroughly tested and proved superior in every performance characteristic!
- HERMETIC SEAL ... unaffected by moisture.
- VACUUM SEALED JUNCTION...contaminating gasses permanently eliminated!WELDED SEAM CONSTRUCTION...free from solder-flux contamination.
- HIGH POWER OUTPUT... Case design makes possible a collector dissipation of 150 MW .HIGH FREQUENCY PERFORMANCE ...Completely successful operation at audio and supersonic frequencies. - HIGH TEMPERATURE OPERATION ... Rated for a maximum junction temperature of \(100^{\circ} \mathrm{C}\).
- LONG LIFE....stable performance throughout the life of your equipment.
- SMALL SIZE...extremely compact design provides added flexibility for all applications.

\section*{JUNCTION TRANSISTORS}

\section*{FIRST In Performance: High Power Output}


TRANSISTOR REFERENCE GUIDE and new TRANSISTOR BULLETINS NOW AVAILABLE!

Write to: General Electric Company, Section 4103, Electronics Park, Syracuse, New York.


\section*{NEWS FROM OUR ADVANCED DEVELOPMENT LABORATORIES}
- Double-base junction diodes are semi-conductor devices having thy-ratron-like properties. Lab units have been used successfully in lowvoltage circuits to switch currents larger than \(1 / 2\) ampere.


\section*{PERMANENT MAGNETS and ASSEMBLIES for Magnetrons and Traveling Wave Tubes}

The group of magnets illustrated above, weighing from a fraction
of a pound up to 75 pounds, are indicative of the wide range of Arnold production in this field. We can supply these permanent magnets in any size or shape you may need, with die-cast or sand-cast aluminum jackets, Celastic covers, etc. Complete assemblies may be supplied with Permendur, steel or aluminum bases, inserts and keepers as specified . . . magnetized and stabilized as desired. - Let Arnold bandle your magnetron and traveling wave tube permanent magnet requirements.

Made to your Specifications
. . . ANY SIZE, SHAPE

W* 46 ge

\section*{The Arnold Engineering Company \\ subsidiary of allegheny ludium steel corforation General Office \& Plant: Marengo, llinois DISTRICT SALES OFFICES... Nan York: 350 Fith Ave. Los Angeles: 3450 Wilshire Blvd. \\ Bostons 200 Berkeley St.}

\section*{OR COATING REQUIRED}

\section*{* We'll welcome your inquiries}

\section*{CROSLEY}

Hoffman
Admiral
Magnavox

\section*{GREAT NAMES IN COMMUNICATIONS...}

\section*{RELY ON midland CRYSTALS} f

These companies - and many others in leadership position in the field-depend on Midland crystals for completely reliable frequency control in their products.

THAT FACT IN ITSELF is testimonial enough to the kind of performance Midland Quality Control has built into millions of crystals for every communications use.

Whatever your Coital meed. comentional or highly specialized When it has to be exactly right, contact

\section*{Do you have any of these problems?}

1. Need a combination of gasket sealing and mechanical and electrical properties? Various grades of LAMICOID \({ }^{(\beta)}\) - Iamincted plastic made with organic and inorganic binders-are combinad with natural or synthetic rubber to obtain the excelient insulating and mechanical properties of LAMICOID and the sealing properries of rubber.

3. Need accurately punched mica stampings for filament, grid and plate supports? MICO produces mica stampings to extremely fine tolerances. Whenever you need precision-fabricated mica parts of the highest quality, call on MICO. We have 60 years of experience in this field.

2. Need a mica tape that can be run on taping machines at high speed? \(15 O \mathrm{MICA}\) * tapes are made fram long rolls of thin continuous mica sheet... are more uniform in mechanical and dielectric strength... have no high spots or voids. For electrical insulotion of class B or class H motors, generators and transformers.

4. Need special mechanical and electrital properties for brackets, termi nal blocks, access panels, etc.? LAMICOID \({ }^{\circledR}\) ) is halt as heavy as aluminum and, weight for weight, stronger than steel. Offers high impact strength, high dielectric strength, excellent abrasion and moisture resistance.

Whatever electrical insulating materials you need, MICO makes them best. We mamufacture all standard types and many special materials, and fabricate parts to your specifications. Send us your blueprints or problems today.
*Trademark


Offices in Principal Cities
LAMICOID (Laminated Plastic) - MICANITE (Built-up Misa). EMPIRE (Varnished Fabrics and Paper). FABRICATED MICA - ISOMICA -

\title{
WIDERRANEE POWER OSGILLATOR
}

\section*{CONTINUOUS CONTROL WITHIN RANGES}

FROM 300 to 900 mc and 900 to \(2,500 \mathrm{mc}\) SEPARATE OUTPUT COUPLING CONTROL

300 to 2500 mc More than 10 w to 1200 mc More than 2.5w to 2500 mc

\section*{\$2,285.00}
f.o.B. MINEOLA, N.Y.

The 124A Power Oscillator consists of a grid-separation coaxial oscillator employing a 2C39A disc seal triode, an audio oscillator and modulation section, and a self-contained rectifier power supply. A selector switch is provided for the following: internal modulation of 400 or \(1,000 \mathrm{cps}, \mathrm{cw}\), or external modulation by pulse or square wave sources. Grid-cathode and grid-plate lines are coupled to a single tuning control, with provision for individual adjustment of the grid cathode line when desired. Countertype indicalors show the position of the tuning elements. An output coupling control with counter indicator is provided.
This is one of a series of especially fine instruments and components that have been developed by AlL to meet our own exacting requirements. Our research and development work has demanded equipment not ordinarily available in the electronics market. Thus, we have developed devices that are considerably advanced over those usually available for purchase. Originally we were requested to produce limited quantities for our established clientele. The demand has grown to a point where limited production runs have become necessary. Under these circumstances immediate delivery is often possible.

We suggest that you write at once
for specifications and delivery schedules.

\title{
Airborne Instruments Laboratory \\ INCORPORATED
}


\section*{Consumer Market}

Perpetual energy is at work all around us. Shown here are only a few of the many examples of permanent magnets at work-all of which add to the salability of the product.

\section*{Artificial Magnetic Eyes-}

An artificial cye looks practically normal if it moves in unison with the natural one. To achieve this, a New York doctor developed an implant wherein is imbedded an Alnico permanent magnet.

After removal of a diseased or injured eye, recti muscles, originally attached to the natural eye, are attached to an implant, thereby imparting motility to this implant. Further operative procedure requires that the implant be covered with layers of tissue (tenons and conjunctiva) in order that the implant may be completely buried.

A custom-fitted plastic artificial eye is then made which also has a very thin Alnico magnet. As a result of the attraction between the magnet in the implant and the one in the artificial eye, and also due to the shape of the artificial eye, the eye can then move in unison with the natural one, as motility is imparted from the recti muscles to the implant and, in turn, to the artificial eye.

Applications: Among other consumer products that rely on permanent magnets are can openers with a magnetic lid-lifter, and the thermostat used in your home.

nuclear resonance resedich assembly


\section*{Basic Research}

Research-A highly specialized example of the use of permanent magnets in research is the nuclear resonance assembly shown on the left.

The Alnico \(V\) permanent magnets used in this assembly built for the University of Chicago by INDIANA produce a field of approximately 5,500 gauss. The assembly not only is much less costly than the electromagnetic models but it also does not require much of the expensive equipment required to maintain a stable field.

\section*{Permanent}

Magnet

\section*{Can Work For You!}

Perpetual Magnetic Energy...a Timeless Force...

\author{
is hard af work in many fields and in many products...from Artificial Magnetic Eyes \\ to Nuclear Resonance Research!
}

You can't see it . . . smell it . . . or hear it. Nor can you taste it or feel it, but the "perpetual energy" of permanent magnets is at work for you in each one of these applications-and thousands more. Permanent magnets won't wear out. They can't be used up. They're a source of permanent energy instilled in your product "perpetually."

Unlimited are the future possibilities of permanent magnets in new product designs. The field produced by the myriad of spinning electrons, the essence of permanent magnets, can work for you in these three ways: transformation of mechanical to electrical energy - transformation of electrical to mechanical energy tractive effort. If you need a component to perform one of these three functions, INDIANA PERMANENT MAGNETS may be the solution to your design problem.

INDIANA provides you with the largest facilities in the world for the manufacture of permanent magnets and complete permanent magnet subassemblies. It will pay you to take advantage of INDIANA's wealth of experience, research leadership, and specialized engineering "know-how."

\section*{The Indiana Steel Products Co. \\ VALPARAISO, INDIANA}

SALES OFFICES FROM COAST TO COAST-BOSTON - CHICAGO CLEVELAND - NEW YORK • PHILADELPHIA•ROCHESTER•LOS ANGELES


Write for design manual No. 4-Alo cast catalog No. 11-Alo siniered catalog No. 12-A10


Generators-A well-known application in the elec trical field is the permanent magnet generator. This 15 kva, \(120 / 208\)-volt, 400 -cycle model incorporates 2 Hyflux Alnico V, bar-shaped permanent magnets.
Long service and minimum mointenance are two things sought by users of generators. Permanent mag nets help to provide these qualities. Elimination of slip rings and commutators means no sparking or radio in terference. And there's no heat from the field coils nor is excitation power needed.
Applications: Magnetos, motors, gyroscopes.

\section*{In 24 Hours-You can have INDIANA PERMANENT MAGNETS for your experimental work}

Loudspeakers-Typical of the applications in this field is this 15 -inch high fidelity speaker which uses a \(101 / 2 \mathrm{lb}\) INDIANA Hyflux Alnico \(V\) magnet to achieve a frequency range from 30 to 16.500 cycles per second INDIANA Hyflux Alnico \(V\) provides an energy product of \(51 / 4\) million BH Max or more, thereby assuring a magnetic field of high strength. Permanent magnets in this case, are a functional necessity to this design in this case, are a functional
no substitute can do the job.
Applications: INDIANA magnets are consistently doing an outstanding job in many other typical products in this field such as focusing coils, ion traps, centering devices, radar, and guided missiles.

Electronic
Industry
 Magnet

Magnetic Separators - There is atmost an endless list of mechanical or holding applications. One of the more widespread, industrial applications is this permanent magnet separator, using three or more Hyflux Alnico V. U-shaped magnets each of which can exert a pul of 150 lb .

Here permanent magnets exert an effective pulling force through a distance of several inches. . . permitting your product to do the job better and safer, insure uninferrupfed production flow by snatch ing "tramp"iron from materials to be processed... thereby preventing damage to machinery. And permanent magnets require no electrica power, no wiring... hence, they never spark, eliminating a definite fire hazard.
Applicotions: Among the many mechanical applications are: mag netic conveyors, magnetic sweepers, magnetic chucks and clutches

Watt Hour Meters - One of the hundreds of different instruments requiring permanent magnets is this singlephase, 15 -amp, 240 -volt rating for 3 -wire services watt hour meter. It uses an Alnico 1, horseshoe-shaped magnet weighing only \(0,2 \mathrm{lb}\).
Here, the high quality of this permanent magne material provides the uniformity and stability of fiel so necessary for maintaining the initial accuracy of this meter over a long period of years.
Applications: Mass spectrometers, vibration pick ups, galvanometers, medical instruments, speed ups, galvanometer
ometers, fluxmeters


WATT HOUR METER

\section*{Why do 50 companies make}

F'OR one thing, it's easy to make an ordinary relay. Requirements are not rigid. Little equipment is nceded. You can even buy the component parts in a pinch. Dozens of companies do a good job of making these relays, as long as the service requirements are not too severe.

But when you need top reliability, when you need relays that will withstand temperature extremes, tremendous shock loads, moisture, continuous servicecome to an expert to get the kind of relay performance you need.

Union Switch \& Signal has been making relays for over 70 years, most of them in vital railroad signaling service. Many of them operate continuously, yet remain unattended for years. In fact, we regularly encounter "Union" relays that have been in service for over 40 years. And they are still in good operating condition.

This vast relay engineering skill has been used to produce the "Union" type M miniature relay. Hermetically sealed, weighing only \(31 / 2\) ounces, this 26.5 v.d.c. relay meets all requirements of Military Specifications MIL-R-5757 A \& B.
"Union" type M relays are available in quantity now-in either 6-pole or 4-pole doublethrow models. Write for more information.

\title{
GENERAL APPARATUS SALES \\ UNION SWITCH \& SIGNAL
}

DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY
PITTSBURGH 18

\section*{many}

TYPICAL PERFORMANCE DATA


\section*{PROBLEM:}

\section*{Reduce Fabrication and Assembly Costs for} Electrical Contact and Switch Blade Assemblies

\section*{SOLUTION:}

\section*{General Plate Provided the Solution with Fabricated Composite Contact Elements Ready for Assembly}


A leading manufacturer of Antenna Rotators required contact and switch blade assemblies for a control switch that operated two synchronized circuits. To produce the assemblies by attaching a separate contact, rivet or button to the spring blades meant high fabrication and assembly costs and special machinery.

The problem was presented to General Plate whose engineers provided an economical solution with fabricated composite contact elements ready for assembly.

The complete contact and blade elements are made from a General Plate striped composite metal. The contact is a silver alloy which gives the necessary electrical performance. The blade is phosphor bronze which provides the spring properties required for the contact supporting member.

The result - initial savings of \(\$ 7,000\) in assembly costs alone by using General Plate fabricated composite contact elements.

By letting General Plate fabricate your complete contact assemblies, you will save money, time and trouble ... needless equipment cost and problems of scrap
disposal are eliminated . . contacts and/or contact assemblies made to your exact specifications are shipped to you ready for installation.

If you fabricate your own parts, General Plate Composite Contact Materials will still save you money and allow you to make contact assemblies superior to those produced by other methods.

The long experience, diverse facilities, and manufacturing skill of General Plate will benefit you in the form of service, quality, and savings.

Write for complete information and Catalog PR 700.

You can profit by using General Plate Composite Metals!

\section*{METALS \& CONTROLS CORPORATION GENERAL PLATE DIVISION \\ 310 FOREST STREET, ATTLEBORO, MASS.}

\title{
Another MEW Shunt Diode by UNITHD
}

High peak power capabilities of type X-80 in relation to its physical size have been accomplished through an unusually forceful combination of design features.
1. Exclusive UNITED bonded thoria tungsten core filament for high electron emissivity.
2. Exclusive UNITED graphite anode for maximum thermal dissipation.
3. Exclusive UNITED isolated getter traps for retention of hard vacuum and high voltage internal insulation.

Type X-80 will serve importantly as a high current clipper tube in radar equipment employing the large hydrogen thyratrons, as well as in power supply rectifier applications.

Write for detailed specifications.
\begin{tabular}{c|c}
\begin{tabular}{c}
40 \\
Kilovolis \\
Inverse Peak
\end{tabular} & \begin{tabular}{c}
80 \\
Amperes \\
as shate Current diode
\end{tabular} \\
\hline \begin{tabular}{c}
800 mAde \\
laveragel \\
as a rectifier
\end{tabular} & \begin{tabular}{c} 
Filament \\
Roltings \\
Volts Nominal \\
15.5 Amperes
\end{tabular}
\end{tabular}


Jets must conserve their power for actual flight. Thus on the flying field the big engines are turned over by means of a starter.

Almost six years ago our customer, Ther Electric \& Machine Works, Chicago, developed the portable jet engine starter pictured here, in cooperation with a famous engine manufacturer who was dissatisfied with previous units. Important components in each Ther starter are four Model FH1BA6S1G Seletron selenium rectifier stacks.

Ther tells us the service record of the jet engine starters has been outstanding during six grueling years, and credits trouble-free Seletron rectifiers for much of the topflight performance. "They have proved far superior to other similar units."

When rectification is indicated, Seletron engineers can certainly assist you with circuit information as well as the right type of Seletron rectifier to do the job. We make them from the small half-wave ones for radio and TV, all the way up to giants for industrial use. See our catalog in Sweet's Product Design file-or write t.s.



Ther's Portable Jet Engine Starter
750 amps; \(24-30\) volt DC output. Adjustable to compensate for line and load fluctuations. Includes four Seletron rectifiers, Model FHIBA6SIG.

Also Ther-built with Seletron selenium rectifiers: an oil-immersed cathodic protection unit for the Navy, built for location in hazardous atmosphere. Arcing contacts are immersed in oil or in sealed-off explosion proof fittings. Includes 2 Seletron Model WHIBA2SIG rectifier stacks.


52 ND YEAR OF CERAMIC LEADERSHIP

\section*{ ano movoctianco comane}

\footnotetext{
 NEW ENGLAND: 1374 Mass. Ave., Cambridge, Moss., Kiekland J-4928 - PhILADELPHIA: 1649 N. Broad S!, Stevensan 4-2823 - ST. LCalls: 1123 Washington Ave., Gerfield 4959

}

Relyon PHELPS DODEE for Magnet Wire and
THE RIGHT MIRE TRANEFORMER,


Firstfor Lasting Quality - from Mine to Market!


Vast and varied experience in every field of electrical and electronic manufacture.

Unexcelled research, manufacturing and quality control facilities -most complete and up-to-date line of magnet wire in the industry.


Practical help in selecting correct size, shape and insulation to meet exact design specifications.

\section*{ALLIED CONTROL'S}


\section*{SIX DIFFERENT MOUNTINGS}


\section*{FEATURES}

Wide Ambient Temperature Range: \(55^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) standard - \(65^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C} \mathrm{MHB}\)-type Vibration Resistant: 15G's vibration 10500 cycles - Operating Shock: no contact chatter to over 50G's

High Altitude: seal-tested to 70,000 feet
Dependable Operation: life expectancy of over 1 million operations at rated load
High Speed: operate-to-make time under 8 ms .
release-to-make time under 4 ms .
release-to-break time under 2 ms .

\section*{Put your finger on}

CHESTER means dependability plus in wires and cables for every electronic and electrical application. The compounds used in all CHESTER Wire and Cable constructions are made in the CHESTER plant. Thus, complete control over selection of raw materials and manufacturing techniques, provides full control of quality . . . your assurance of uniformity in every foos of conductor bearing the CHESTER labell


by specifying...

\section*{JAN-C. 76 WIRES \({ }^{*}\) serf selv}
\(105^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}\), apporove, \(120^{\circ} \mathrm{C}\)
SHIELDED WIRES \& CABLES

\section*{FLEXIBLE CORD}

\section*{TV LEAD.IN WIRES}

\section*{INSTRUMENT WIRES}

COMMUNICATION WIRES seceatics io
COAXIAL CABLE
LACQUERED COMVERYON WIRES
SPECLAL WIRES \({ }^{\text {schable fio }}\) SPECIAL WIRES specifications
-Solid colors or spiral marking

 (above), adaptor cable, and crystal ovens.

\section*{SPECIFICATIONS - MODEL ST-13A}

Measures both carrier frequency displacement and square wave modulation with direct reading on 2 -range \(31 / 2^{11}\) meter

Here is a quality FM Communications instrument with features that are unmatched in the industry! The ST-13A is engineered to give you hairline accuracy ... lowest possible cost . . . plus full provision with oven accessories for future split-channel adjustments. This unit meets today's demand for accuracy and economy and provides for tomorrow's more stringent needs. Two RF outputs for receiver testing and alignment. New case design is durable and good looking.

\section*{G-E OSCILLOSCOPE-MODEL ST-2A}

Here's the ideal scope for shop and general laboratory use. Size and weight have been held to a minimum yet you are assured of quality G-E construction and materials. Features high sensitivity ...exceptional stability. Special features incte to a DC vertical amplifier to adapt the equipmentern a wide range of applications. Diameter expands to several times tube diameter


CITY..

\section*{FREQUENCY RANGES}

One or two specified frequencies in the following range - 25 MC to 50 MC 72 MC to 76 MC 148 MC to 174 MC Quartz crystal operating range: 4 MC to 6 MC

\section*{REFERENCE OSCILLATOR ACCURACY}
\(001 \%\) from \(32^{\circ} \mathrm{F}\) to \(122^{\circ} \mathrm{F}\)
Greater accuracy will be obtained over a more limited temperature range External connection, internal wising and a socket are provided for \(6 \vee\) oven operation where wider temperature range with greater accuracy is available

MODULATION ACCURACY
\(\pm(5 \%+200\) cycles \()\)
On sinusoidal or square wave modulation (complete limiting)
METER RANGES
0 to 10 KC and 0 to 20 KC . These scales are calibrated in terms of carrier fre quency displacement from the internal reference oscillator and deviation due to square wave modulation. Simusoidal modulation is 1.57 times this value. A conversion curve appears in the cover

\section*{INPUTS}

Eighteen-inch collapsible whip antenna.
Fifty-ohm BNC connector. This input can handle only limited power as it is followed by a molded carbon potentiometer attenuator.

\section*{OUTPUTS}

Low RF output-adjustable around 1 microvolt.
High RF output-adjustable from about 100 to several thousand microvolts depending on frequency.
Both outputs come out on \(50-\mathrm{hm}\) BNC connectors
POWER-INTERNAL BATTERIES
\(2-45\) volt batteries; \(2-1.5\) volt flash light cells; \(2-1.5\) volt pen light cells
TUBE COMPLEMENT
2-1L4, 2-1U4

General Electric Company, Section 4103
Flectronics Park, Syracuse, N. Y.
Please send me a copy of the following bulletins \(\square\) ST-13A (ECL-15) \(\square\) ST-2A (ECL-9)
NAME.
COMPANY
ADDRESS.
...................STATE.


As a Direc-Reading Instrument The extreme sensitivity of the d-c amplifier is utilized to check plasticizer insulation resistance values in the megamegohm range.


As a Recorder Preamplifier The rack-mounted amplifier above is being used to increase the sensitivity of a recorder in *unning special tests of switches.


As a Null Detector The d-c Amplifier is bcing used aboce for factory checking and calibration of instruments.

\section*{L\&N Low Level d-c Amplifiers are}

\section*{Tiphel Pupode... for Triple Service}
- In response to the constant demand for versatility in precision instruments, these d-c Indicating Amplifiers combine the functions of three useful instruments in one:
1. A Direct-Reading Instrument that is always ready to use . . . never any readjusting of zero, either initially or during a series of readings. Simply select the range in which you want to work by turning scale-multiplier knob.
2. A Recorder Preamplifier - Values measured by Stabilized d-c Amplifiers can be recorded directly on Speedomax recorders.
3. A Null Detector more sensitive than most reflecting galvanometers, yet with full scale response time of only 2 to 3 seconds. These instruments are unaffected by vibration; leveling is not necessary. At the turn of a range knob, a wide choice of sensitivities can be obtained without external shunts. A non-linear response characteristic is also available for easy balancing.

These amplifiers are suitable for handling low level measurements with thermocouples, strain gages, bolometers-bridge and potentiometer circuits ionization, leakage and phototube currents-almost any measurement of extremely small direct current or voltage.

Self-contained, the unit can either be used "as is" or removed from case and mounted on a 19 " relay rack.
For details, including complete specifications, send for Folder EM9-51 (1). Write our nearest office, or 4979 Stenton Ave., Phila. 44, Penna.

BLOCKING
OSCILLATOR
OSCILLATOR
DELAY
IINE
LOW LEVEL
FILTER
PULSE
TRANSFORMER


\section*{A HIGH \(-\mu\) POT CORE}


\section*{WITH GREAT VERSATILITY}

\section*{... designed for modern miniaturization}

Alert designers of electrenic circuits are finding this versatile pat-core structure superior ir a wide variety of applications. Of a size compatible with modein miniaturization requirements, this core assures high effective permeability with negligible external fields and low losses.

Extremely easy to use and irstall-mount Ferroxcube Part 7F160 anywhere with a single screw. It is being used with excellent results in single and multiple stasking arrangements. Some of the very successful large scale applications are: Blocking oscillaiors, Delay lines, Low level filters, \(P\) jise transformers, etc.

Ferroxcube miniature pot core Part 7F160 is production geared for large quantity deliveries. For your convenience, nylon bobbins designed specifically for use with 7F160 are carried in stock too, to make your winding problem even easiet.

The performance, versatility and usefulness of this part are unusual It deserves careful investigation.

Write for detailed engineering bulletin giving complete data. Your copy will be sent to you ct once.


\section*{FERROXCUBE CORPORATION OF AMERICA}
- A Joint Affiliate of Sprague Electric Co. and Philips Industries, Managed by Sprague *

\section*{PREMIUM...}

\section*{with}

\section*{Now available for incorporation into your own designs}

Check the specifications on the chart below. If your equipment design calls for a stable oscillator in any of the frequency ranges shown, a major portion of your design problem is solved. Collins precision oscillators, long famous for their accuracy and stability, are now available for incorporation into your own designs.

The years of research and development work that have gone into every detail of these oscillators can im-
prove your equipment and effect a substantial saving in your developinent costs.

Collins oscillators are mechanically stable, sealed against atmospheric changes, compensated for changes in temperature and voltage. Their output frequency is essentially independent of environment. We are now supplying engineering samples and quotations on production quantities.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE & 70E-1 & 70E-8A/B & 70E-12 & 70E-15 & 70H-2 & 70H-3 \\
\hline Frequency Range Calibration Linearity & \[
\begin{aligned}
& 1.0-1.5 \mathrm{mc} \\
& \pm 750 \mathrm{cycles}
\end{aligned}
\] & \[
\begin{aligned}
& 1.6-2.0 \mathrm{mc} \\
& \pm 750 \mathrm{cycles}
\end{aligned}
\] & \[
\begin{aligned}
& 1.955-2.955 \mathrm{mc} \\
& \pm 1000 \mathrm{cycles}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0-3.0 \mathrm{mc} \\
& \pm 750 \mathrm{cycles}
\end{aligned}
\] & \[
\begin{aligned}
& 2.455-3.455 \mathrm{mic} \\
& \pm 500 \text { cycles }
\end{aligned}
\] & \[
\begin{aligned}
& 1.5-3.0 \mathrm{mc} \\
& \pm 1000 \mathrm{cycles}
\end{aligned}
\] \\
\hline Maximum Frequency Drift \(40^{\circ} \mathrm{F}\) to \(120^{\circ} \mathrm{F}\). & 250 cycles & 400 cycles & 600 cycle & 400 cycle & 100 cycles oven on & 600 cycles \\
\hline Max. Drift with \(\pm 10 \%\) Plate Voltage Change & 75 cycles & 75 cycles & 150 cycles & 150 cycles & 100 cycles & 100 cycles \\
\hline RF Output. & 13-30v rms & \(5.5-12 \mathrm{v} \mathrm{rms}\)
33 mmf & \(0.5-2.0 \mathrm{v}\) rms & \(1.2-2.5 \mathrm{v}\) rms 100 mmf load & \[
2 \mathrm{v} \mathrm{mms}
\] & \[
5-13 \mathrm{v} \mathrm{rms}
\] no load \\
\hline Plate & 25 mmf load
250 v (10) 7 ma & 33 mmf load 180v@ 8 ma & \[
150 \mathrm{v} @ 12 \mathrm{ma}
\] & 100 mmf load
\[
150 \mathrm{v} @ 12 \mathrm{ma}
\] & 180v (11) 10 ma & 150v@12 ma \\
\hline Heater Power & 12.6v@150 ma & 6.3 v @ 300 ma & 6.3v@ 600 ma & \(6.3 \mathrm{v} @ 600 \mathrm{ma}\) & 6.3 v (10 300 ma & 12.6v@300 ma \\
\hline Oven Power . . . . & &  & none solder & none solder & 26v@2.0 amp pluy & 26 v (1) 3.0 amp plug \\
\hline Electrical Connections Tubes & plug one 12SJ7 & \begin{tabular}{l}
plug \\
one 6SJ7
\end{tabular} & two 6BA6 & two 6BA6 & \[
\text { one } 5749
\] & \[
\text { two } 5749
\] \\
\hline Shaft Size & 0.1869-0.1873 & 0.2488-0.2498 & 0.1869-0.1872 & 0.1869-0.1872 & 0.1869-0.187 & 0.1869-0.1872 \\
\hline Rotation for & & & counter- & \begin{tabular}{l}
counter- \\
clockwise
\end{tabular} & counterclock wise & counterclockwise \\
\hline Increased Frequency & clockwise & \begin{tabular}{l}
clockwise \\
\(25 \mathrm{kc} /\) turn
\end{tabular} & clockwise \(100 \mathrm{kc} / \mathrm{turn}\) & clockwise \(100 \mathrm{kc} / \mathrm{turn}\) & clockwise \(100 \mathrm{kc} / \mathrm{turn}\) & clockwise \(150 \mathrm{kc} /\) turn \\
\hline Tuning Rate. & \(50 \mathrm{kc} /\) turn
\(3-4\) inch oz & \(25 \mathrm{kc} /\) turn 10 inch \(o z\) & \(100 \mathrm{kc} / \mathrm{turn}\) 10 inch oz & \(100 \mathrm{kc} / \mathrm{turn}\) 10 inch oz & \begin{tabular}{l}
100 kc turn \\
10 inch oz
\end{tabular} & 10 inch oz \\
\hline Tuning Torque Size . . . . . . & 3-4 inch oz
\[
23 / 4 " s q \cdot \times 5^{\prime \prime}
\] & 10 inch oz
\[
23 / 4^{\prime \prime} \text { sq. } \times 4 \frac{111^{\prime \prime}}{}
\] & 10 inch oz
\[
21 / 2^{\prime \prime} \text { dia. } 6 \frac{11^{\prime \prime}}{14}
\] & \[
\begin{aligned}
& 10 \text { inch } o z \\
& 21 / 2^{\prime \prime} \text { dia. } \times 5^{\prime \prime}
\end{aligned}
\] & \[
\begin{aligned}
& 10 \text { inch oz } \\
& 31 / 2^{\prime \prime} \text { dia. } x 6-5 / 32^{\prime \prime}
\end{aligned}
\] & \[
2-27 / 32^{\prime \prime} \text { dia.x } 6 \frac{5}{16}{ }^{\prime \prime}
\] \\
\hline
\end{tabular}
Collins Radio Co., Cedar Rapids, lowa
\begin{tabular}{l} 
Please send complete information on your \\
permeability tuned precision oscillators. \\
Nime \\
Company \\
Andress \\
Ciry
\end{tabular} State

\section*{COLLINS RADIO COMPANY \\ Cedar Rapids, lowa}

\author{
11 W. 42nd St. \\ New York 36 \\ 1930 Hi-Line Drive \\ Dallas 2 \\ 2700 W. Olive Ave. Burbank
}



\section*{Hipersil Cores}

\section*{now rustproof}

A new process now coats a microscopic film of rustproof iron phosphate on all Westinghouse Hipersil Cores. This coating will not chip, scratch or flake, nor will it affect core performance.

Rustproofing eliminates all possibility of deterioration. This means you can safely carry samples or a stock of cores in advance of immediate production needs . . . keep your assembly lines flowing smoothly.

This thin coat prevents any loss of the inherently high flux carrying capacity . . . another reason why Hipersil Cores make it unnecessary to design excess


Butt joint section of 5 -mil Hipersil Core, magnified 10 times. Distinct separation between the laminations channels the flux, increases core efficiency.
core material, and, therefore excess size and weight, into your transformer assemblies.

Advancements like this continue to make the Westinghouse Hipersil Core the best on the market today. Because they are \(100 \%\) active in carrying flux, they solve size, weight and loss problems for you. The simple, two-piece assembly helps cut your transformer fabricating costs. Get a more complete story by writing today for Booklet B-5402. Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.
J. 70694

\section*{Precision Connectors Use Kel-F to Provide Superior RF Insulation ...5,000v. Capacity...Cut Moisture Dissipation}

Consistently high RF insulation and dimensional stability were prime requirements for the dielectric inserts in connectors required for an Atomic Energy installation. "Kel-F" plastic was found to be the material answering these and other "tough" requirements.
"Kel-F" maintains high RF insulation under conditions that cause other materials to fail. It is readily molded or machined to within \(.002^{\prime \prime}\) of the critical dimensions required for the parts. And, because of its excellent wear characteristics, "Kel-F" maintains the precision of the critical insulators for a longer time. Frequent "connects", "disconnects" and operational vibration have negligible effect on the insulation because of the high strength-impact, compressive and flexural-of this fluorocarbon plastic. It takes rough handling without chipping, cracking or "freezing".

Exposure of the insulators made of "Kel-F" to high humidity fails to affect their dimensional stability or superior electrical properties. Zero water absorption and "nonstick" properties of this plastic reduce the need for maintenance by preventing the formation of fungus under high humidity or the accumulation of conductive residues.

The precision RF connectors illustrated are manufactured by the Dage Electric Company, Inc. of Beech Grove, Ind. for use in electronic equipment specified for nuclear studies. One of the insulating parts of "Kel-F"' used is injection-molded for this company by the Brilhart Plastics Corporation of Mineola, N. Y. Another is machined from extruded Kel-F by Insulating Fabricators of New England, Inc., Watertown, Mass. The precision parts are then incorporated in special metal connector housings that are gold-plated.

Itefer to Report E-115


> Sea-Going "Pot" of Kel-F Harnesses \(\mathbf{1 0 , 0 0 0}\) Volt Currents...Maintains Hermetic Seal Under Shock and Vibration...At All Temperatures

At the polar cap or in the humid tropics, in the "moth ball fleet" or on the firing line, the variable capacitor "pot" shown here guards against leakage of \(10,000 \mathrm{v}\). currents and loss or contamination of the insulating "potting" oil. Molded of "Kel-F"' trifluorochloroethylene polymer plastic, this sixpound unit will maintain a high level of insulation resistance indefinitely due to the high dielectric strength of the plastic . . . at high

and low temperatures (-320 to \(390^{\circ} \mathrm{F}\) ) and in spite of salt-laden sea air. The chemical inertness of "Kel-F" polymer eliminates any corrosion from the insulating oil, loss of the oil or dimensional change resulting in a break in hermetic seal. The toughness-high tensile, impact and compressive strength of the polymer prevents cracking of the pot or loosening of electrical leads under shock or vibration, even during "big gun" salvos.

The variable capacitor "pot", one of the heaviest single pieces ever molded from "Kel-F" trifluorochloroethylene polymer, is com-pression-molded for the Armed Forces by Fluoro Plastic, Inc. of Philadelphia, Pa. Mounting lugs, undercuts and the dimensions of the bore of the pot and cover are all provided for during molding, on standard molding equipment. The choice of "Kel-F"' plastic was based also on its zero water absorption, non-porosity and "non-stick" properties which prevent any current shorting caused by water or exposure to high humidity.


\title{
Improved Terminals Handle Currents up to 7500 Volts RMS Without "Flash"...Under High Humidity... Maintain Hermetic Seal Under Stress
}

Rough handling, severe operational current and temperature cycling and environmental restrictions are all taken in stride by the new hermetically sealed terminal pictured here. Two factors make this an outstanding terminal: The use of Kel-Fr polymer plastic as the insulation and important refinements in the art of terminal manufacture.
"Kel-F" trifluorochloroethylene polymer was chosen to insulate this terminal, enabling it to handle 15

Interesting and unusual applications of "Kel-F" polymer plastics in the chemical industries will be displayed at the "Kel-F" Booth Nos. 835, 839 and 843 at the 24th EXPOSITION OF CHEMICAL INDUSTRIES, November 30th to December 5th, 1953. The place: Commercial Museum and Convention Hall, Philadelphia, Pa.
ampere currents up to more than 2,000 volts RMS without corona . . . up past 7,500 volts RMS without flash-over or tracking. Injectionmolded under precise control, these terminals of "Kel-F" have higher heat and cold resistance . . providing perfect electrical insulation at minus \(148^{\circ} \mathrm{F}\), as well as at over \(300^{\circ} \mathrm{F}\). The consistent dimensional stability of "Kel-F" at both high and low temperatures, combined with a new method of crimping the conductor prevent loss of the vital hermetic seal-"Kel-F"" refuses to shrink, swell or age and the special crimping prevents lateral or longitudinal movement of the conductor.
Brilhart Plastics Corporation, Mineola, N. Y., produces these improved terminals by injection molding, using standard methods and multi-cavity molds. All parts of the terminal, designated as the "Type BTX-1"* are made in this company's plant. The new terminal uses specially-designed parts and a "post-molding'" treatment to achieve a hermetic seal that will pass a 20 psi pressure test after "wiggle" and "pull" tests that cause other terminals to fail.
*Patented

\section*{Molders of the Month}

Leading molders and extruders specialize in fatrication of materials and parts made of Kel-F. . earh month this column will spollight sereral of these companies with their principal services and produrts.

\section*{Cinch Manufacturing} Corporation
Chicago, III.
Injection Molding
Electrical \& Electronic Components Tube Sockets \& Connectors

Elastic Stop Nut Corporation of America Union, N. J.

Injection Molding Elastic Stop Nuts \& Fasteners

Industrial Coatings Corporation Chicago, III.

Dispersion Coating
Jet Specialties Company Los Angeles, Calif.

Extrusion
Rod \& Tube
Juno Tool Corporation Minneapolis, Minn.

Compression \& Transfer Molding Injection Molding
Electrical \& Electronic Components.
Molding Corporation of America Providence, R. I.

Compression \& Transfer Molding Electrical \& Electronic Components Tubes, Sockets \& Connectors Terminals
Pump، Valve Diaphragms \& Parts

For complete information regarding any item mentioned in DESIGN AND PRODUCTION NEWS, ask for defailed APPLICATION REPORTS, wrife


\section*{TIME PROVED}

Eimac 4W20,000A gives 25 kw peak sync power output through channel 13 with only 500 watts driving power

\section*{TYPICAL OPERATION}

Class-8 Linear Amplifier-Television Visual Service (Per tube, 5 mc bandwidth, 216 mc .)

Load Impedance
D.C Plate Voltage

D-C Screen Voltage
D.C Control-Grid Voltage
D.C Plate Current

D-C Screen Current
D.C Grid Current

Peak RF Grid Voltage
Driving Power
Plate Power Input
Plate Dissipation
Useful Plate Power Output

650 ohms 7000 volts
1200 volts -150 volts
Peak
Sync Level

Black Level
4.5 amps

100 ma
230
0
90
45 ma
220 volts
300 watts
32 kw
16.5 kw
15.5 kw

FOR THREE YEARS THE EIMAAC 4W20,000A has been proving itself an outstanding power tube in a variety of electronic applications. In VHF-TV operation it gives an easy 25 kw peak sync power output with only 500 watts driving power. This high power output with low driving power requirements is typical of Eimac radial-beam power tetrodes. Rugged 4W20,000A construction includes a ceramic envelope that minimizes losses and increases operational life. In pulse service, FM and TV operבtion the \(4 \mathrm{~W} 20,000 \mathrm{~A}\) is the only time proved tetriode in its power class.


Things are humming in Wapakoneta, Ohio. There, about 10 miles west of the Dayton-Toledo coaxial cable is the new plant of Superior Tube Company. This plant complements the production capabilities of the Superior main plant, takes care of your ever-increasing demands for television and military purposes.

Superior nickel cathodes are made in a wide range of types, O.D.'s, wall thicknesses and lengths-with or without bead-and in active, normal and passive alloys, depending upon the application and the degree of emission required.
Superior produces both Seamless and Lockseam \(\dagger\) nickel cathodes. For many electron tubes Lockseam
*Main Superior Tube plant al Norristown, Po.
**NEW Superior Tube plant at Wapakoneta, Ohio
-made by a patented process from strip stock - has an economic advantage. Superior Seamless shows great advantages in uniformity, close tolerances, and small O.D. for sub-miniature tubes.

Superior equipment is more than matched by the care taken in production. Each melt of alloys is laboratory-checked for emission and performance. Many extraordinary precautions are taken in manufacture to avoid contamination.

Before you order cathodes, first see what Superior engineering, quality, and delivery can do for you.

\footnotetext{
Many other types of nickel cathodes-made in Lockseam \(\dagger\) from nickel strip, disc cathodes, and a wide variety of anodes, grid cups and other tubular fabricated parts are available from Superior. For information and Free Bulletin, address Superior Tube Company, Electronics Division, 2500 Germantown Avenue, Norristown, Pa.
}



\section*{A Robot's Secret}

Iron Fireman learned many years ago that the real secret of any automatic device is in the controls and instruments which regulate its operation. This is the reason that Iron Fireman has long had a separate division for producing the instruments, controls and motors used with its world-
famous heating equipment.
Today, many types of precision devices are mass-produced at the large Electronics Division plant-by people with a quartercentury of experience. This experience has made possible aircraft and electronics components featuring new and better designs.


Vertical Gyros


Motor-driven Timers


Fire and Heat Detectors


Hi-Speed Relays
and Choppers


Spin Motors

For more information write

IRON FIREMAN


\section*{VOLTAGE REGULATED POWER SUPPLY MODEL 700}

The Kepco Model 700 features one regulated voltage supply with excellent regulation, low ripple content and low output impedance.


\section*{SPECIFICATIONS}

OUTPUT VOLTAGE DC: 0.350 volts continuously variable.
OUTPUT CURRENT DC: 0.750 milliamperes continuous duty.

REGULATION: In the range 30.350 volts the output voltage variation is less than \(1 / 2 \%\) for both line fluctuations from \(105-125\) volts and load variation from minimum to maximum current.

RIPPLE VOLTAGE: Less than 10 millivolts.
FUSE PROTECTION: Input and output fuses on front panel. Tîme delay relay is included to protect rectifier tubes.

POWER REQUIREMENTS: \(105-125\) volts, \(50-60\) cycles.
OUTPUT TERMINATIONS: DC terminals are clearly marked on the front panel. Either positive or negative terminal of the supply may be grounded. DC terminals are isolated from the chassis. A binding post mounted on the front of the panel is available for
connecting to the chassis. All terminals are also brought out at the back of the chassis.

\section*{METERS:}

Ammeter: 0-1 ampere, \(4^{\prime \prime}\) rectangular. Voltmeter: \(0-500\) volts, \(4^{\prime \prime}\) rectangular.

PHYSICAL SPECIFICATIONS: Cabinet height \(22^{3 / 4^{\prime \prime}}\), width \(213 / 4^{\prime \prime}\), depth \(151^{\prime \prime} 4^{\prime \prime}\). Rack panel height \(21^{\prime \prime}\), width \(19^{\prime \prime}\), color gray, panel engraved.

CONTROLS: Power on-off switch, H.V. on-off switch, H.V. control.


\section*{KEPCO LABORATORIES}


\section*{Ofens of © recision Enginecining}

GLASS-TO-METAL VACUUM SEALS COMPETITIVELY PRICED

These glass-to-metal vacuum seals are quality products manufactured from glass and metals carefully selected for their closely matched expansion coefficients. Thermal shock tests are performed on every seal during the hot tin dipping operation which is conducted at the extreme temperature of \(530^{\circ} \mathrm{F}\). This plating procedure insures clean parts which will solder readily whether heating is accomplished by hot plate,
soldering iron, hot strip, or soft flame, AND WITHOUT DANGER OF BREAKAGE DUE TO THERMAL SHOCK.

Experience, selected materials, engineering skill, and controlled manufacturing combine to make Constantin vacuum seals leaders for their sturdiness, long life, and excellent electrical performance.

Seals are available in both High Compression and Kovar to hard glass types.


MULTI-PIN CON PLUGS
A wide variety of stand ard sizes and configurations available. Leaders in the field specify CON STANTIN CONNECTORS for their ruggedness and reliable performance.


MULTI-PIN HEADERS
Vacuum tight, glass-tometal sealing makes CONSTANTIN HEADERS ideal for use in products demanding a stabilized atmosphere, and protection from temperature extremes and climatic conditions.


\section*{TRANSISTOR MOUNTS}

Constantin glass-10-metal vacuum sealed transistor mounts are available as a standard line in various sizes and configurations. Other types may be fabricated to your design specifications.


\section*{TERMINALS}

Available in all combinations of hooks, eyes, tubes and pierced flats. Precision built and especially noted for sturdiness and high electrical performance.


CONDENSER END SEALS Manufactured to assure a stabilized atmosphere under any conditions, these seals are excellent for capacitors, filters, delay lines, and precision resistors.

\section*{L.L.Constantin \&'bo.}

MANUFACTURING ENGINEERS
Rt. 46 and Franklin Ave., Lodi, N. J.


\section*{Robot Electronic Thermotipple...}

Being the only genuine thermotipple in existence, she's apt to be temperamental. At low frequencies, her transient response gets so transient it takes a shot of plutonium to make her respond at all. The only thing that keeps her from being outright neurotic is the fact that all her components are standard Ucinite parts and assemblies. Switches, connectors, sockets, mountings . . . every one of the precision-made devices shown
here is evidence of our ability to fill the varied and highly specialized requirements of our customers.
With an experienced staff of design engineers... plus complete facilities for volume production, we are capable of supplying practically any need for metal or metal-and-plastics assemblies. Call your nearest Ucinite or United-Carr representative for full information, or write directly to us.


\section*{Specialists in}


Write Dept. E-10 today for new illustrated brochure


NATIONAL SALES OFFICES: 624 SOUTH NICHIGAN BLVD. CHICAGO 5, ILLINOIS • HARRISON 7-6050


\title{
INSTRUMENTS
}

\section*{SIGNAL} GENERATORS


\section*{BRIEF SPECIFICATIONS}

Frequency Range: 3,800 to \(7,600 \mathrm{mc} .1\) band.
Calibration: Direct. Accuracy better than \(1 \%\).
Stability: Frequency: less than \(0.006 \%\) per \({ }^{\circ} \mathrm{C}\) change.
Line Variation: \(\pm 10 \vee\) causes less than \(0.01 \%\) frequency change.

Output: \(1 \mathrm{mw} / 0.223\) v to \(0.1 \mu v\) into 52 ohms. ( 0 to -127 dbm ).

Modulation: Internal or external pulse, fm, of internal square wave.

External Sync: (1) Sine wave 40 to \(4,000 \mathrm{cps}\), 5 to 50 v rms .
(2) Pulse signals 40 to 4,000 pps, 5 to 50 v (pos. and neg.). Pulse width 0.5 to \(5 \mu \mathrm{sec}\). Rise time 0.1 to \(1.0 \mu\) sec.

Size: Cabinet \(16 \frac{1}{4 \prime \prime} \times 13 \frac{1}{2 \prime \prime} \times 16^{\prime \prime}\) deep.
Price: \(\$ \mathbf{2 , 2 5 0 . 0 0}\)
-hp- 618B - VARIED PULSING CAPABILITIES, DIRECT READING. RANGE 3,800 TO \(\mathbf{7 , 6 0 0} \mathbf{~ m c}\)

Model 618B offers faster, more accurate measurement of component performance in radar, radio relay and TV carrier systems and similar field and laboratory applications. Frequency is generated in a reflex klystron oscillator; accuracy and stability are high throughout the instrument's wide frequency range. Frequency and voltage are directly set and read. Dial tuning is tracked automatically, and no voltage adjustment is required during operation.

Extremely wide pulsing capabilities have been built into -hp-618B. The instrument may be internally or externally pulse modulated, internally square wave modulated and frequency modulated. The repetition rate is continuously variable between 40 and 4,000 pps. Pulse width is variable 0.5 to \(10 \mu \mathrm{sec}\). Syng-out signals are simultaneous with the rf pulse or in advance by any time-span from 3 to \(300 \mu \mathrm{sec}\). The instrument also may be synchronized with an external sine wave, or with positive or negative pulse signals.

\section*{1,800 TO 4,000 mc}
-hp-616A UHF Signal Generator offers the same simple operation, wide pulsing capabilities, high stability and accuracy as -hp618 B , but is designed for UHF frequencies. Output ranges from \(0.1 \mu \mathrm{v}\) to 0.223 v ( 1 mw ) into a 50 -ohm load. Accuracy is \(\pm 1\) db . Output may be cw, fm or pulsed. Modulation and synchronizing features are similar with -hp-618B. Oscillator section is a reflex klystron. Frequency changes are automatically tracked and no voltage adjustment is needed during operation. Frequency and output are directly set and read on large, carefully calibrated dials. No charts or interpolation are needed. \(\$ 1.950 .00\)


For complete details, see your -hp-field representative or write direct
HEWLETT-PACKARD COMPANY
2524A PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U. S. A.
Export: FRAZAR \& HANSEN, LTD., San Francisco • Los Angeles • New York
INSTRUMENTS


\title{
You Can Depend on COMMUNICATION ACCESSORIES for
} ADVANCED DESGIN

THROW AWAY the special washers and tubings used in your present mechanical mountings of toroids. C-A-C Advanced Design provides a molded-in brass bushing with center hole sizes to clear (type A) or tapped (type B) for a \(6 / 32\) serew.

PRESSURE ENCAPSULATION in low loss plastic provides a dense molding of extremely uniform dimension. We've cycled them from \(-73^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)-boiled them for hours in salt water-without any significant change.

TERMINALS are brass, silver-plated. Located for ease of connection. Any reasonable number of terminals may be provided. Units may be stacked and mounted with a single serew.


THE C-AsC. MP (molded plastic) Toroid is the result of years of development and exhaustive tests to determine the most suitable materials and method of manufacture. The small, extra cost of the molded unit is more thar justified by the superior protection of the unit from damage in assembly and operation-and the elimination of complicated mounting arrangements. The assemblies are compact (see table for dimensions). Complete data available on request: samples will be furnished for your evaluation.

\section*{}


\section*{Campressian MOLDED PLASTIC TOROIDS}

Normal Appr. Size Useful Freq. Qmax lac- 10-50 KC 10.50 KC
\(30-75 \mathrm{KC}\) \(30-75 \mathrm{KC}\)
\(30-75 \mathrm{KC}\) \(30-75 \mathrm{KC}\)
\(50-200 \mathrm{KC}\) 50-200 KC

\section*{REMARKS}

Qmax-Values taken at approx. . 01 lac. \(Q\) decreases with increasing current to about .50 Qmax of 1.0 lac-higher inductance values have lower Yosses of lower frequency due to dielectric values are for inductors wound with Heavy Formex wire.
T.C.-Temperature characteristics as follows:

1-approx. 100 ppm \(/{ }^{\circ} \mathrm{F}\)
2 - \(=.1 \% 55\) to \(90^{\circ} \mathrm{F}\)
\(3-.1 \% 30\) to \(130^{\circ} \mathrm{F}\)
(most types with temp. characteristic I are available with characteristic 3 at no sacrifice in performance)
loc-r.m.s, current which raises 0.1 Hy inductor to max. ( \(2 \%\) above initial) inductance - ( \(1 \%\) increase occurs at approx 0.35 lac .
* FINISHED SIZE - 1-1/16* O.D. x 1/2" THICK
* * FINISHED SIZE \(-1.5 / 16^{*}\) O. O.. \(\times 11 / 16^{\prime \prime}\) THICK

Via C.A.C. Beecherafh wo ore only hours away from yovi-w solicit the invisation 10 edigeuss your problems seross your own desk

\section*{COMMUNICATION ACCESSORIES Compoany.}

HICKMAN MHLS; MISSOUURI

\section*{A N N ○ U NG ING...}


Shown approximatoly full size.

\section*{C.T.C.'s new CST-50 capacitor} with greatly increased range, greater stability


Exploded view of the CST-50 capacitor shows (1) ring terminal with two soldering spaces; (2) metallized ceramic form; (3) spring-type S-shoped funing sleeve*; (4) split mounting stud; (5) locking nut.
- Potent Applied for

Surpasses the range of capacitors many times larger in physical size.
The new CST-50 variable ceramic capacitor embodies a tunable* element of such unusual design it practically eliminnates losses due to air dielectric. As a result, a large minimum to maximum capacity range ( 1.5 to 12 MMFD ) is realized - despite the small physical size of the capacitor. This tunable* element is a spring-type, S -shaped tuning sleeve* which maintains constant maximum pressure against the inside wall of the ceramic form.

\section*{Other Design Features}

The CST-50 stands only 19/32" high when mounted, is less than \(1 / 4^{\prime \prime}\) in diameter and has an 8-32 threaded
mounting stud. The mounting stud is split so that the tuning sleeve* can be securely locked without causing an unwanted change in capacity. The tuning sleeve* is at ground potential. The CST- 50 is provided with a ring terminal which has two soldering spaces.

All C.T.C. materials, methods and processes meet applicable government specifications. For further information on C.T.C. components and C.T.C.'s consulting service (available without extra charge) write us direct. Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast manufacturers contact: E. V. Roberts, 5068 West Washington Blvd., Los Angeles and 988 Market St., San Francisco, California.

\section*{CAMBRIDGETHERMIONIC CORPORATION}

\author{
custom or standard. .the daranteed components
}

Write for Free Catalog \#400 containing complete data on the entire CTC line.

mineral oll impregnated*
Extremely stable over wide operating temperature range.

\section*{BONDED} SEAL
Positive, heat resistant, noninflammable bond seals leads and shell, locks out humidity. and Performance

\section*{DRY ASSEMBLED}

\section*{A Major Achievementit in} Modded Capacitor Construction


Positive, heat resistant, non-inflammable bond seals leads and shell, locks out humidity.

\section*{tight seal}
.. BONDED BLUE-POINT

\section*{ATTRACTIVE YELLOW MOLDED}

PLASTIC SHELL
Non-inflammable. Will not burn or melt under soldering iron or flame.

FIRMLY SECURED LEAD
Can't be pulled out, even under soldering iron heat.

DEPEND ON - INSIST ON


\section*{Now - Heat and Moisture PROTECTION To A Degree Never Before Possible!}

Outstanding Performance in Hot and Humid Climates!
Here at last is a capacitor that affords absolute protection under every condition-a capacitor you can rely on completely-ASTRON BLUE-POINT, the bonded capacitor.
This capacitor is produced by an exclusive new design and manufacturing process (patent pending) developed by Astron engineers.
The all-important blue point which distinguishes this new capacitor actually bonds itself to the tough, heat-resistant outer shell and leads-forming the tightest seal against moisture ever produced!

The Blue-Point dry-assembly process-as used in hermetically sealed metal encased capac-itors-prevents contamination, provides still further protection against moisture, and assures uniform quality and dependability for every Blue-Point.
The Blue-Point is mineral oil impregnated* for continuous operation at \(85^{\circ} \mathrm{C}\). The blue

\section*{TOUGH SHELL}

\author{
... MOLDED PLASTIC TUBULAR
}
point seal itself makes ingenious use of a special thermo-setting, heat-resistant, non-inflammable bonding agent as a positive protection against moisture.

With the Astron Blue-Point, you may solder leads as close to the capacitor as you like. Leads will not pull out, nor will the heat of the soldering iron damage the lead or the connection.

Further, every Blue-Point is clearly marked with rated voltage and capacitance, and is imprinted with outside foil identification.

The Astron Blue-Point Capacitor gives you greater protection against heat and moisture at every stage-assuring long life and dependable performance from every unit-to a degree never before possible with molded plastic capacitors.

From now on, look for the Blue-Point-ask for exclusive Astron Blue-Point Capacitors by name... more than ever before, depend on, insist on... ASTRON!
*For bulletin AB-20A, with complete englneering data and listings,
write: Astron Corporation, 255 Grant Avenue, East Nowark, N. J.
Astron manufactures a complete line of dry electrolytic capacitors, metallized paper capacitors, plastic molded capacitors, standard and subminiature paper capacitors and RF interference filters for every radio, television and electronic use.

\section*{mitchellrand}

\section*{miraglas -A fiberglas tapes}
for general purpose class A electrical insulation

\section*{COMPARED WITH COTTON OR RAYON FOR GENERAL PURPOSE CLASS A APPARATUS}

\section*{Miraglas-a fiberglas tapes ARE MUCH MORE ECONOMICAL...}
being half as thick they cover more area. . . having twice the tensile strength they provide longer life and better performance . . . woven of long staple fiberglas yarn they withstand high temperatures and won't burn or rot . . . and MIRAGLAS-A FIBERGLAS TAPES are specially treated for machine or hand winding.

\section*{MITCHELL-RAND CAN MAKE IMMEDIATE DELIVERIES}
miraglas-a fiberglas tapes
FOR CLASS A INSULATION USE
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE & CX p & plain weave & \multicolumn{2}{|l|}{THICKNESS} & .004" \\
\hline Available Widths & 1/2" & \(3 / 411\) & \(1 "\) & 114" \({ }^{\prime \prime}\) & 11/2" \\
\hline \begin{tabular}{l}
Approx. \\
Yds./Lb.
\end{tabular} & 280 & 224 & 168 & 134 & 100 \\
\hline & & total ends & type yarn & \multicolumn{2}{|l|}{\begin{tabular}{l}
nominal \\
breaking strength
\end{tabular}} \\
\hline \multirow{5}{*}{WARP} & 1/2" & 26 & 150 1/0 waxed & & 65 \\
\hline & \(3 / 4^{\prime \prime}\) & 38 & \(150{ }^{\prime \prime}\) & & 90 \\
\hline & \(1^{\prime \prime}\) & 50 & 150 " & & 125 \\
\hline & \(11 / 4^{\prime \prime}\) & 62 & 150 " & & 150 \\
\hline & \(11 / 2^{\prime \prime}\) & 74 & 150 & & 180 \\
\hline FILUNG & \multicolumn{5}{|c|}{24 ends per inch-150 1/0 waxed yarn} \\
\hline
\end{tabular}


Write to MITCHELL-RAND for free samples and descriptive data.

\title{
mitchell-rand
}

\section*{INSULATION COMPANY, INC.}

51 MURRAY ST. • COrtlandt 7-9264 • NEW YORK 7, N.Y.
miraglas varnished tapes, cloths and sleevings - miraglas tapes, braided sleevings and tying cords - miraglas silicone treated cloths, tapes and TUBINGS - MICA TAPES, CLOTHS AND MICA-FIBERGLAS COMBINATIONS - FIBRE, PHENOL FIBRE AND MIRALITE POLYESTER RESIN SHEET INSULATING PAPERS-DURO FISH, PRESSBOARD, ETC. - VARNISHED CAMBRIC TAPES, CLOTH AND SLOT INSULATIONS - COTTON TAPES AND SLEEVINGS. TWINES AND TIE TAPES - ASBESTOS TAPES, SLEEVINGS AND CLOTH, TRANSITE AND ASBESTOS EBONY - ARMATURE WEDGES AND BANDING WIRE - VARNISHED TUBINGS, HYGRADE, MIRAGLAS, HYGRADE VF, MIRAGLAS SLEEVINGS AND CLOTH, TRANSITE AND ASBESTOS EBONY. ARMATURE WEDES AND BANDING WIRE • VARNISHED TUBINGS, HYGRADE, MIRAGLAS, HYGRADE VF, MIRAGLAS
SILICONE. THERMOFLEX AND FLEXITE EXTRUDED PLASTIC TUBING. PERMACEL MASKING TAPES AND ELECTRICAL TAPES - BI-SEAL, BI-PRENE; FRICTION TAPES AND RUBBER SPLICE - COMPOUNDS-TRANSFORMER, CABLE FILLING, POTHEAD, ETC. INSULATING VARNISHES OF ALL TYPES.


\section*{Compare these RC-7 features:}
- Instantaneous speed accuracy
- Dynamic range better than 50 db . at \(3 \%\) distortion
- Three-motor drive
- No friction clutch or friction brakes
- Heavy duty construction throughout
- Separate-erase-recordingplayback heads
- Twin speed: \(71 / 2 \mathrm{~m} / \mathrm{sec}\), or \(15^{\prime \prime} / \mathrm{sec}\).
- Frequency response to \(15,000 \mathrm{cps}\).
- Reel size: to \(10 \frac{1 / 2 "}{}{ }^{\prime \prime}\) (with RA-1 adapter)

Purchase of a tape recorder is a major investment. And, with so many unproven brands on the market, it simply does not pay to select anything but a recognized, precision built and proven recorder.
The presto RC-7 is just such a unit. Designed and manufactured by the world's foremost producer of precision recording equipment, the RC-7 with RA-l reel adapter is today's No. 1 buy in fine tape recorders. Here is a unit that is fully portable for field recording, yet with the rugged construction and precision operation characteristic of the finest studio equipment.
If you're planning to replace an existing unit or add an additional tape recorder, your selection of a PRESTO RC-7 will pay long term dividends in faultless service, ease of operation and the genuine satisfaction of owning the best.

Do you own a Presto RC-7? The RA-1 adapler will allow you to use reels up to \(101 / 2^{\prime \prime}\) diameter. Write for full defails and price.

paramus, NEW Jersey
Export Division: Canadian Division:

25 Warren Street, New York 7, N. Y.
Walter P. Downs, Lid., Dominion Square Bldg., Montreal

\title{
WESTON \\ \\ Ruggedized
} \\ \\ Ruggedized
}

Instruments
have EXCIUSIVE
zero correctors

Connection ferminals molded into internal rubber increase current carrying capacity.

Tough, flat plastic windows reduce glare and are really shock resistant.


No desirable instrument features were sacrificed in order to produce these truly ruggedized and effectively sealed instruments. With typical weston thoroughness, every feature has been retained including even the zero corrector. And true ruggedness has been achieved by new but thoroughly proved design concepts, such as shock-resistant spring backed jewels . . . flat windows of tough, anti-static, and glare reducing plastic . . . new high-strength tubular pointers, and a method of shock mounting and sealing that assures accurate indications under extremes of shock, vibration, temperatures, humidity, and downright abuse. Available in \(21 / 2^{\prime \prime}\) and \(31 / 2^{\prime \prime}\) D-C, R-F, A-C movable iron and rectifier types. WESTON Electrical Instrument Corporation, 614 Frelinghuysen Avenue, Newark 5, New Jersey.


\section*{New Pressure Sensitive Silicone Adhesives Stick To Most Surfaces; Retain Their Excellent Adhesive Strength From-55F To Over 250F}

The newest products to come out of our development laboratories are pressure sensitive silicone adhesives that stick to almost any materials including silicones and Teflon. Adhesive strengths in the range of 1800 grams per inch at -55 F and over 1200 grams per inch at 265 F , are far superior to those of conventional pressure sensitive tapes. The adhesive strength between a stainless steel surface and glass tape coated with silicone adhesives is plotted against temperatures ranging from - 75 to 285 F in this Figure.


Uses for tapes coated with silicone adhesives include high temperature electrical and electronic applications; weather and moisture resistant wrapping and sealing tapes for low temperature applications. One electrical equipment manufacturer is already using these pressure sensitive adhesives to bond mica matt and integrated mica to glass cloth.

No. 1

\section*{Silicone-based Aluminum Paints \\ Outlast Organic Finishes 10 to 1 at Sterilizing Temperatures}

Trays containing vials of aureomycin and other antibiotics at the Lederle Laboratories Division of American Cyanamid Company are loaded onto racks and sterilized for 3 hours at 446 F to destroy pyrogens.
The organic aluminum finish on these racks began to crack and peel, permitting rust to form, after 9 to 15 (continued p.ige 2)


\section*{Flexible Silastic* Tubes Carry Air at 500 F; Prevent Engine Failure Due to Icing Over Jet Air Scoops}

\author{
Reinforced with stainless steel braid, Silastic tubing requires minimum space; endures heat and high frequency vibration.
}

It was discovered shortly after certain jet engines were put into service that the formation of ice over air intake scoops could choke off the air supply and cause engine failure.
The obvious solution to this problem was to pipe air at 500 F from the compressor to the scoops. But that simple solution involved many problems.
The jet engines were so tightly fitted in their nacelles, that very little room was left for hot air ducts of any kind. High frequency vibration set up by the engine and plane introduced the problem of fatigue failure.
This was a job for a flexible tubing, a tubirg that could carry hot air without melting, withstand the vibration and permit fast and easy assembly and disassembly. Engineers of the Aeroquip Corporation of Jackson, Michigan, solved the problem with flexible Silastic tubing. Reinforced with stainless steel braid, Silastic tubing is light and flexible. It is held mechanically to the stainless steel braid so tightly that the tube will not collapse even when subjected to a vacuum.
The high temperature problem of attaching a fitting to the hose was ingeniously solved by the new Aeroquip "Little Gem" fittings. The total assembly proved to be so effective that these anti-icing hoses have become standard equipment.

Despite internal and external temperatures as high as 500 F , the Silastic
hoses are still in excellent condition after hundreds of hours of service. Aeroquip has supplied thousands of them to jet manufacturers. From 5 to 20 are required per engine, depending upon its design.

The usefulness of Silastic in this application confirms data collected by our development engineers on effects of accelerated aging at high temperatures on the properties of Silastic. Heat resistant organic rubber becomes brittle in a few hours; Silastic 80 does not crack on flexing over a \(3 / 8\) inch mandrel, and hardness increases only 9 points after more than 670 hours of continuous aging with all surfaces of the test sample exposed in an air circulating oven at 480 F .
Silastic 80 readily meets SAE-ASTM Specification TA805 which requires that it have a minimum tensile strength of 500 psi ; a minimum ultimate elongation of 50 percent. After 70 hours aging in an air oven at 450 F , increase in hardness is not more than 15 points; drop in tensile strength is less than 25 percent and loss of ultimate elongation, less than 40 percent.
In oil resistance tests, decrease in hardness is less than 45 points; increase in volume, less than 60 percent after 70 hours immersion in ASTM No. 3 oil at 300 F . After 70 hours immersion in ASTM No. 1 oil at 300 F , losis in tensile strength and ultimate elongation is less than 20 percent; decrease in hardness, (continued page 2)

\section*{NEW DEVELOPMENT AND TECHNICAL DATA}

For copies of any of the publications reviewed in this column or for data relating to any of the articles printed in this issue of the Dow Corning Silicone News, simply circle the corresponding reference number on the coupon below.

Expansible resins. Two new silicone resins, Dow Corning XR-543 and XR-544, can be expanded to produce heat-stable, non-flammable, unicellular foams with densities from 8 to 24 lbs per cubic foot. Highly resistant to thermal shock, these silisone foams show practically no structural or dimensional change after 20 hours at 700 F . Weight loss after 220 hours at 570 F is less than \(2 \%\); moisture absorption less than \(0.05 \%\) after 7 days at \(96 \%\) RH. Resins are easily foamed in place, made up as sandwich structures or machined with wood working tools. No. 5

Dow Corning 1109, a durable new silicone water repellent treatment for leather footwear, gloves, luggage and sporting goods; minimizes water absorption and transmission; improves resistance to oils and chemicals without changing the "breathing" characteristics of leather. No. 6 -

Now available, the new 1953-54 Reference Guide to Dow Corning Silicone Products summarizes properties and applications for commercially available silicones. A complete revision of previous guide which some designers have reported to be one of the most helpful catalogs ever produced.

No. 7
Silastic 6-127 paste, an excellent cloth coating material and bonding agent for silicone rubber, retains good dielectric properties over a wide range of temperatures and frequencies. It has superior resistance to heat and moisture; remains flexible down to -100 F . No. 8 -
"Tall Tales and Fabulous Facts" is a new 24 page booklet built around the idea that, in our times, the tallest tales are told in technical terms. In this publication, the tall tales our ancestors told about such legendary characters as Paul Bunyan, Davy Crockett and Pecos Bill are related to some equally fabulous facts about Dow Corning silicone products. No. 9

Air drying silicone water repellent for application to glass, plastic and ceramic insulator bodies and to electronic parts and components maintains high surface resistivity under humid conditions; minimizes adhesion of dirt and chemical dust; reduces maintenance.

No. 10

\section*{Small Electric Machines and Electronic Parts Can Now Be Designed to Operate at 180 C .}

Life and reliability can be increased, or the size and weight of electronic devices and fractional or miniature motors can be reduced through the use of bare magnet wire insulated with Dow Corning 1360 Wire Enamel
Flexibility, scrape hardness and dielectric strength compare favorably with those of the best organic wire enamels. Dow Corning 1360 coated wire also shows superior resistance to a wide variety of solvents, oils and salt water. The results to date of the accelerated life testing at temperatures in the range of 200 to 275 C of several electric motors wound according to standard commercial procedures with 1360 coated wire are plotted in the chart at right. These data show that motors wound with magnet wire insulated with Dow Corning 1360 Wire Enamel have a life in the range of 1500 hours at 225 C ( 437 F ), compared with 30 hours for identical motors wound with the best grade of Class A wire.
Based on the results to date of this motor test program, we expect that the

\section*{SILASTIC coninued}
less than 15 points. It shows no shrinkage and swell is less than 20 percent.
After 168 hours immersion in water at 158 F , swell is less than 10 percent and decrease in hardness is less than 10 points. It does not become brittle on continuous exposure at -65 F .
Silastic 80 offers another advantage in that it can be blended with Silastic 50 to fabricate parts having any Shore hardness between 50 and 80 . These stocks can be blended to fabricate parts that meet SAE-ASTM Specification TA604. Heat-stable pigments can be used to give these stocks almost any desired color.
In electrical applications such as wire covering and cable coating, Silastic 80 retains excellent dielectric properties over a wide range of temperatures and frequencies. Cable insulated with Silastic 80 has a dielectric strength of 450 volts \(/ \mathrm{mil}\) at 50 C ; 430 volts \(/ \mathrm{mil}\) at 250 C .

No. 3

life of machines wound with 1360 coated wire at 180 C will be comparable to that of identical machines wound with conventional Class \(A\) wire at their maximum operating temperature of 105 C . Extrapolating from the data plotted above, we find that the life expectancy at 180 C of magnet wire insulated with this new enamel is in the range of 50,000 hours compared with 200 hours for wire insulated with the best organic enamels.

No. 4
PAINTS continued
hours of such service. That introduced a costly hazard because any bit of rust or paint chips in a tray could cause rejection of a whole rack of carefully prepared antibiotics.
Some time ago, the racks were sand blasted, sprayed with a silicone-based aluminum paint. So far, the silicone finished racks have endured 150 hours at sterilizing temperatures with no sign of deterioration. As a result of that experience, Lederle is now using sili-cone-based paint to refinish sterilizing equipment throughout their plant.

At temperatures in the range of 500 to 1000 F . silicone-based aluminum finishes are used to protect stacks, exhaust mufflers, dryers, and furnaces. Modified silicone enamels in a wide variety of colors are used to protect appliances such as stoves, space heaters and incinerators at temperatures in the range of 400 to \(700 \mathbf{F}\).

No. 2
dow corning Corporation - Dept. bel- 10
Midland, Michigan


NAME
COMPANY
title

```

Manufacturers of-
Siliconc Fluids
Silicone Abhesives
Silicone Adhesives
Silicone Release Agents
Silicone Compounds
Silicone Greases
Silicone Water Repellents
Silcone Water Repellent
Silicone Electrical Insulating Varnishes
Silicone Molding Compounds
Expansible Silicone Resins
Expansible Silicone Resins
Silicone Defoamers
Silastic
Silicone Greases

```
    In England: Midland Silicones Ltd., London
CITY _ ZONE_. STATE


0
OME of our customers are equipped to do their own sub-assembly work; others find it more economical to have us do it.
Either way, we deliver the finest in sheet metal cabinets, chassis, housings and enclosures.

If we do your sub-assembly, all that's left for you to do is that which you and you alone must supervise-the wiring, assembly and testing of your equipment. The result: faster, cheaper, more efficient assembly.

\section*{Another Karp facility-sub-assembly:}

\section*{the gathering place for extra enclosure-economies}

And like our Assembly Department, the entire plant is dedicated to the principle of producing the finest sheet metal cabinets, chassis, housings and enclosures at the lowest possible price. How well we live up to the principle is easily proved: simply send us your blueprints. We'll promptly quote prices and delivery.


\section*{0 Products of Scientific Research}

Products of Pye scientific research cover ever-widening fields of application, Information gained through experiment on each project is constantly used to develop and improve all allied manufactures. Through advances thus achieved Pye lead the world in quality and design of radio, television and telecommunications equipment.


TELEVISION CAMERAS

" REPORTER "
MOBILE V.H.F
RADIO-TELEPHONE

INFRARED SPECTROMETER

UNDERWATER
TELEVISION CAMERA


MULTI-WAVEBAND RADIO RECEIVER
pH METER AND MILLIVOLTMETER




The following styies of proven VAC-TITE compression seals are available:
1. Individual terminals and feedthroughs with a full range of hooked, flattened and pierced, turret and lug-type terminations for every application.
2. All-glass construction multiterminal headers featuring larger leakage paths and an absence of moisture pockets.
3. Individually glassed plates available in a mulifplicity of standard designs and easily adaptable to special designs in a variety of shapes and sizes for every requirement.
C. Plugs for standard sockets in seyeral mounting types . . . such as octal, 7 -pin miniature, noval as well as rectangular shapes.

Write for complete information on how HERMETIC engineers can apply "All-Glass" Compression Seals to your regular or special applications. Available, too, is HERMETIC's Brochure CS on Compression Seals, as well as a 32-page catalog on its standard line.

\section*{to use Hemetic's New Uastite Compression Seals}

vacuum tightness is a requisite, HERMETIC's proven compression seals are guaranteed to be vacuum fight, as evidenced by Mass Spectromełer Test.

a RUGGED seal is required for application under adverse design conditions, the massive compression construction resists dest-uctive deflection and permits direct mounting of


\section*{}

Electronic Calculator by



IBM's "701," designed to shatter the time barrier confronting technicians working on vital defense projects, is the latest development in electronic calculators. Its overall speed is 25 times that of its predecessor, the IBM Selective Sequence Electronic Calculator, popularly known as "the electronic brain." The " 701 ," known as the IBM Electronic Data Processing Machines, consists of eleven compact and connected units. It performs in a few minutes calculations which would require seven years for a competent operator using desk model calculating machines.

The actual calculations are performed in the Electronic Analytical Control Unit. Erie assembles and wires 274 different eight tube multiple pluggable units similar to that shown above for every IBM "701." Erie also furnishes the four tube units used in the tape amplifiers. Erie Disc Filter Capacitors are used on inputs of all the DC service voltages supplied to the pluggable units, and all ceramic capacitors in the Power unit are Erie products.

For several years Erie has had in operation a department engaged exclusively in electronic subassemblies of this nature.

Write for further details.



In addition to accomplishing these new highs in stability with variability, Type 173 Model 1 is so easy to operate that it can be handled by completely unskilled personnel.

It is excellent as the basic control oscillator for diversity receivers, HF transmitters, and other communication devices, or as a laboratory standard. It also provides both a crystalcontrolled BFO and a time base 100 kc crystal oscillator as a secondary standard; stability of the latter is 1 part in 5 million.

Northern Radio has long specialized in the design and construction of Frequency Shift equipment of the types listed below. Their dependable performance for U. S. and Allied Commerce, Governments and Armed Forces all over the world has earned for Northern Radio a reputation for unquestioned leadership in communications engineering and precision manufacture.

Write for complete information.

\section*{Frequency Shift Keyers}

Master Oscillators
Diversity Receivers
Frequency Shift Converters
Multi-Channel Tone Systems
Tone Keyers
Demodulators
Radio Multiplex Systems
Monitors
Tone Filters
Line Amplifiers


These Industrial Timer Corporation timers provide accurate and highly dependable instruments for control of a single operation or multiple operations (simultaneously or in sequence).

OUTSTANDING FEATURES ARE:
(I) the wide range of over-all time cycles obtainable from any one model;
(2) the ease with which over-all time cycles can be changed;
(3) the simplicity with which individual cams can be adjusted for ON and OFF periods, and positioned in specific timing sequence.

\section*{Highly Dependable}

\section*{Synchronous \\ Motor Driven} Cam Timers

Series CM CAM RECYCLING TIMERS
The Series CM Cam Recycling Timer repeats a definite electrical ON and OFF time cycle continuously. The cam is coupled to the motor by means of a simple gear and rack assembly-and the over-all time cycle can be easily changed by substituting gear racks. (Bulletin 33)
Series MC MULTI-CAM TIMERS
The Series MC Timer is identical to the CM Timer, but operates 2 to 6 circuits. All cams are mounted on a single shaft, which assures a common time cycle for all circuits. Each cam, however, is independently adjustable for a specific timing sequence. (Bulletin 34)

\section*{Series RA SINGLE CYCLE CAM TIMERS}

The Series RA Timer provides a single time cycle upon being actuated electrically from remote control. A pawl on the cam eliminates necessity for prolonged closing of relay switch when starting. (Bulletin 35)
Series RC SINGLE CYCLE MULTI-CAM TIMERS
The RC is identical to the RA, but operates from 1 to 6 additional circuits. Thus it provides all the features of the Series MC Timer, plus the single cycle control afforded by the RA. (Bulletin 35)
Send us specifications, and we shall make recommendations based on your particular needs. Bulletins sent free on request.
MANUFACTURERS OF THESE AND OTHER TIMERS AND CONTROLS FOR INDUSTRY- Time Delay Timers • Manual Set Timers - Tandem Automatic Recycling Timers - Running Time Mefers - Instantaneous Reset Timers

INDUSTRIAL TIMER CORPORATION
H3, OGDEN STREET, NEWARK 4, Ni.s.

\section*{Vacuum Processed Bradley Rectifiers}
a plus in your circuit but not in your cost


Plates for Bradley rectifiers - from miniature types to large power stacks - havě selenium applied under vacuum, Vacuum processing removes undesirable impurities and permits closely controlled modification of selenium with desired "impurities".

Vacuum processing also prevents entry of atmospheric impurities during the crystallization of selenium on the plate - a most critical period. Better crystallization results and this, in turn, means a better rectifier.

RECTIFIER STABILITY, longevity and uniformity are the sum of many things. One determining factor is the quality of the selenium crystalline structure. The better or more closely controlled this structure, the better the rectifier. Bradley, through its unique vacuum process, uses the most advanced safeguards to assure excellent crystalline structure. It's one big reason why we can rate our rectifiers conservatively, why you can be sure of Bradley stability and long life under operating conditions. Vacuum processing is coupled at Bradley with engineer inspection at all points of production. This laboratory control saves time and materials, which are translated into low unit cost to you. For a plus in your circuit but not in your cost, specify Bradley rectifiers.
For further information or consultation, write or phone our sales engineering department. Special problems are welcomed.

The complete selenium rectifier line - from microamperes to thousands of amperes

bradley laboratories, inc., 168E Columbus Avenue, New Haven 11, Conn.


\title{
New metal-clad subminiature capacitors withstand extreme temperatures
}


RUGGEDLY CONSTRUCTED G-E subminiature metal-clad capacitors meet all requirements of JAN-C-25 and the proposed MIL-C-25.

\section*{Permafil solid dielectric permits operation up to 125 C without derating}

Here's a complete new line of General Electric metal-clad subminiature capacitors designed to meet difficult operating conditions. Now you need no increase in capacitor size for applications with high working temperatures.
G.E.'s exclusive permafil solid dielectric eliminates the possibility of leakage without derating from -55 C to \(+125 \mathrm{C}-\) and up to +150 C with proper derating. Silicone bushings give high shock resistance-both thermal and physical - and leads can be soldered right up to the bushing.

Muf ratings range from .001 to 1.0 muf in \(100,200,400\) and 600 volts d-c working. They can be operated at full voltage up to altitudes of 50,000 feet.

If you need even smaller capacitors, G.E. has introduced another line of new Pyranol* (liquid-filled) metal-clad capacitors. These are designed for operation from -55 C to +85 C without derating and offer the same electrical advantages as their permafil cousins. For further information on permafil capacitors, send for new Bulletin GEC-987.

\section*{DIGEST \\ TIMELY HIGHLIGHTS ON G-E COMPONENTS}

\section*{Compact high-voltage components built for extra long service life}

These G-E high-voltage components offer a continuous-service life for long periods under extreme temperatures and mechanical shocks. All are oil-filled and hermetically sealed to resist moisture, dirt and dust. For applications 5000 volts and higher, where corona must be held to a minimum, a wide range of ratings can be tailored to meet your needs. In your inquiry, please include all functional requirements, any physical limitations, and expected quantities. Contact your G-E Apparatus Sales representative for more information.


Rectifiers


Reactors


Transformers


\section*{Detects, measures light accurately}

G-E photovoltaic cells-for applications where electronic amplifiers are not practical-provide extra-high output with stability and long life in capturing light energy and converting it into electrical energy. This self-generating power plant can detect, measure, and control light-and can measure variations in colors. These G-E cells are available in a hermetically sealed series with standard mountings, and in a wide variety of mounted and unmounted sizes. See Bulletin GEC-690.


\section*{Speeds solution to field problems}

The G-E analog field plotter offers a valuable aid to electronics equipment engineers in simplifying complex field studies. Problems in electrostatics, electromagnetics, and many other fields are rapidly solved with this sensitive, versatile plotting board and associated equipment. It needs only a low-voltage d-c supply, and is not affected by linevoltage variations. Explanation and instructions are covered in a 50 -page manual accompanying plotter. For details, see Bulletin GEC-851.


Cover wide temperature range From -55C through +100 C -that's the wide range covered by these new G-E miniature selenium rectifiers. Stacks-available for either lead or bracket mounting - have the same outstanding features as larger G-E selenium cells: long life, good regulation, high reverse resistance, and low heat rise. For protection, they are enclosed in either Textolite* tubes, or hermetically sealed in metal-clad casings. For more data, contact your G-E Apparatus Sales representative

\section*{EQUIPMENT FOR ELECTRONICS MANUFACTURERS}

General Electric Company,
Apparatus Sales Division, Section B667-26

\section*{Schenectady 5, New York}

Please send me the following bulletins:
\[
\sqrt{ } \text { for reference }
\]
\(\times\) for immediate project
\begin{tabular}{lll}
\(\square\) & GEC-690 & Photovoltaic Cells \\
\(\square\) & GEC-851 & Analog Field Plotter
\end{tabular}
\(\square\) GEC. 987 Permafil Capacitors



\section*{"Scrap" Iron!}

This lady has "pressing problems". She's all set to iron but suddenly the fasteners that hold her gleaming new iron together have disappeared. Without them, her beautiful iron is just scrap.

This is graphic proof that the "unseen workmen' - the fasteners that hold your products together ARE important. Without them there is no product.
So take a tip from Lamson and pay attention to the bolts, nuts and screws that go into your prod-
uct. Chances are there are many opportunities for you to save time and money on the assembly line by using more efficient, or less expensive fasteners.


PHILLIPS HEAD SCREWS
Self-aligning and stroight-driv. ing features assure you of fast, economical assembly.
Their neal, modern appearance in the finished product show the potential customer the careful ottention to detail spent on the praduct. Sales often "hinge" on iust such attention.

Lamson \& Sessions will
be happy to help you ferret out these opportunities for saving money on fasteners. Just call on us . . . anytime.

\section*{Lampar Sessiors}

\section*{The LAMSON \& SESSIONS Co.}

1971 West 85th St. - Cleveland 2, Ohio
Plants at Cleveland and Kent, Ohio - Birmingham • Chicago


\section*{MACHINE SCREWS}

Precisionmadefor
fost, ecanomical
assembly.


PLUG NUTS Ideol for blind or hord.to-reach places.


Choice of round, pan, truss, flat oval, hexagon ond Phillips heads.

CAP SCREWS "1035" Hi-Tensile Heat.treated steel.


Also semi-finished, hot pressed and cold punched nuts.


10CK NUTS Economical, vibration proof. Can be used repeotedly.


Steel, brass, aluminum and stain. less steel.


Cup point type heat-treated.

\section*{Wide Selection of Material is} Imperative to Lowest Cost Paper Tube Production

Stone has mare than \(Z^{\prime}(1)\) Einds, gredes and thicknesses of materials available for the production of your small diameter poper נbes.

This wide selec-ion \(n \in\) ars that Stone spiral wound paper tubes have a flexibity of application not found in other more standardic ed marerials. Naturally, this results in the lowest possibe ©st to you.

Included in this extersive selection of more than 200 stocked by Stone for mmediate production are numerzus \(\mathfrak{y r a d e s}\) cf hi-c el:ctric kraft, fisin paper, absorbent papers, asbestos, and stastic films such as acetates and solys'yreres.

Stone's well kncwn frecisio p production methods guarantee that these matericls wil meet your most rigid specifications. Call or write us today for prompt attention.

\section*{STONE PAPER TUBE COMPANY, incorporated STONIZED PRODUCTS COMPANY, INC.}

900-922 Franklin Street, N. E., Washington 17, D. C.


MIL-R-93A NEW SEALED TYPES

Over 2 years of laboratory development and testing were required to achieve a sealed resistor design up to Mepco's standard of quality. No sacrifice of our standard time-proven features has been made in order to perfect this sealed resistor.
Completely hermetically sealed, these resistors provide perfect protection against immersion and high humidity.
All requirements of MIL-R-93A and JAN-R-93 are exceeded.
The operating temperature is \(-65^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}\). Temperature coefficients of \(\pm .003 \% /{ }^{\circ} \mathrm{C} 10 \pm .017 \% /{ }^{\circ} \mathrm{C}\) depending upon your requirements. (Refer to MIL-R-93A).
Other sizes available on special order.

\section*{MIL-R-93A JAN-R-93 STANDARD TYPES}

Our standard time proven JAN, MIL and Commercial lug terminal resistor.
Manufactured and \(100 \%\) tested in occordance with the applicable specifications, these resistors are used by every major electronic equipment manufacpurer in the country.

Reversed and balanced Pl-windings for low inductance, with use of only the finest resistance alloys.

Impregnated with approval fungus, moisture and salf waterproofing compounds.

JAN approved non-hydroscopic steatite bobbin, specially treated prior to winding in order to provide additional protection for fine enameled wire.

Protective fungi resistant acetate label.
Rigid hot solder coated brass terminats for easier soldering.

\section*{WIRE TERMINAL TYPES}

Designed for direct connection into circuit without use of additional leads.
These resistors are of the same basic construction and materials as standard JAN and MIL types therefore providing equal dependability and long life.
Low Temperature Coefficient alloys provide \(\pm .003 \% /{ }^{\circ} \mathrm{C}\) from \(-65^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) unless otherwise specified by your requirements.

Resistance tolerances range from \(\pm 1 \%\) down \(10 \pm .02 \%\). Sets. of matched resistors can be supplied \(\pm .005 \%\) or lower.

Special types not shown can be manufactured to your exact specificalions.

\section*{JAN-R-29 METER MULTIPTIERS}

Surpass oll requirements of JAN-R-29
HERMETICALLY SEALED: Insures dependable operotion under most severe moisture conditions.
STEATITE PROTECTIVE CASING: Glazed surface prevents high voltage leakage. WINDINGS: "Certified" low temperature coefficient resistance alloys properly "aged" to provide long term stability.
REPLACEABLE INTERNAL SECTIONS: Eliminate complete loss of unit if domoged.

FERRULE TERMINALS: Heavy nickel plated brass. Corrosive resistant. Fit standard fuse clips.


\section*{MEPC@, ING. morristown.w. J.}

\section*{class h insulation}
by National Vulcanized Fibre Co.

\author{
used by Pennsylvania
}

Transformer Co. to build
new, safe, and reliable Sealed

\section*{Dry Type Transformers}


Transformes or \(=\) anc call asiembly under full volfagz excitation witbstan ds heary water shower. The insulation mesistance remair \(e\) of infintr megorms during the entire two-hour water test.

Class H inscleion resigti fre a ad combustion. The heat of the \(5000^{\circ} \mathrm{F}\). Oryen-acer lane torch, appliec for the scme interval, burned tf oosk the 2 -inch steel plate, vet meraly melted some of the cous tob-ie in the borrier.


Using Class H nsulation (Phenolite silicone-fiberglas laminate), the Pennsylvania Transformer Company (a McGraw Electric Co. Division) builds Sealed Dry Type Transformers hav ng many superior and safe operation features. The Class H Insulation eliminates the hazards of fire and explosion, permits up to 50 per cent weight reduction, makes possible eficient operation in humid atmosphere, reduces maintenance, allows operation at high temperatures, and permits frequent overloads. The coil barriers are made from \(1 / 32\) inch silicone sheets bonded with silicone rubber. The sheets are rolled directly onto the lathe during the coil winding operation, saving the high cost of a mandre.. Ideal for station auxiliary, unit substation and network service, these Sealed Dry Type Transformers are an outstanding example of National cooperative engineering and research. Perhaps you have an insulating problem where National Vulcanized Fibre Company can give you real help in solving your particular problem ... economically. Write us-our engineering service is immediately available.

> National lamincted plastics nationally knou"q—nationally accepted

> NATIONAED FIBRRE

economy, quality and uniformity. Our customers'
smooth running production lines tell the story best.
Specify a Moldite core specially designed.
and precision made for you,
with absolute uniformity from first to last.


MAGNETIC IRON CORES
FERRITE CORES
MOLDED COIL FORMS
(iron and phenolic)
MAGNETIC IRON CORES
FILTER CORES
THREADED CORES
SLEEVE CORES
CUP CORES
Samples promptly submitted upon request for design, pre-production, and test purposes
NATIONAL

\(\underset{\text { 1410.CHESTNUT AVE., HILISIDE }}{\text { C. N. J. }}\)
\(\begin{array}{lcccc}\text { Robert T. Murray } & \text { Jerry Golten Co. } & \text { Martin P. Andrews } & \text { Perlmuth-Coleman \& Assoc. } & \text { Jose Luis Ponte } \\ 614 \text { Central Ave. } & 2750 \text { W. North Ave. } & \text { Mott Road } & 1335 \text { South Flower } & \text { Cardoba } 1472 \\ \text { East Orange, N.J. } & \text { Chicago 22, III. } & \text { Fayetteville, N.Y. } & \text { Los Angeles, Cal. } & \text { Buenos Aires }\end{array}\)


\section*{Electronics . . . and The Nationa! City Bank of New York}

Midget electronic marvel is mcking science-fiction stories come true

A tiny electronic device called the transistor has brought the magical world of robots much nearer tian most people realize. No bigger tian half a pea, this electronic marvel may make it practical for mechanical brains to run factories, operate inventory and warehouse control systems, read utility meters, make out bills, and perform other equally amazing feats.

The transistor does about the same work as a vacuum tube. But it takes up much less space, uses much
less power, generates alrosi no heat, and lests almost ind \(\operatorname{li}\) initel. Consequently, it holds ou the promise co smaller, lighter, more durable designs in electronic equipment ike radio
 electronics frontier tremerciously.

How rapidly that frontier fas alreacy been expandirg ray be gleaned from the fact tiat in 193 total roduction of electonice equament totaled about \(\{\subset C O\) millior Last year production was civer \(\$ 4 . \sum\) bilior, and the to el cond reac: more than \(\$ 5\) billior this vear.
-ike fast-growing compenies in other fields, electronies mar facturers have found Nacionel Cizy's \(\$\) E biliol in resources, 141 gears of
experience, and world-wide Janking facilities invaluable. \(F_{\varepsilon}\) 予ities inclıde 57 Branches Jversas, and ccrrespondent banks in ミvEZy commercially important city of the world. In this country, National C.ty has correspondent janks in every state and 68 Brarshes in Greater New York. For help in sclving your banking \(c\) Inancial problems, large or small, warite
T ie National City Bark of New York, 55 Wall Street, Nes. York City.

Moniber Federal heyosit Ingumeeco deration

First in World Wide Benking

\section*{for YOUR product}

\section*{WHICH PILOT LIGHT DO YOU NEED?}

This Pilot Light Assembly was first made to accommodate the \(S\) - 11 lamp and was intended for use in the cabs of great diesel locomotives.

\section*{Dialco HAS THE COMPLETE LINE OF INDICATOR and PANEL LIGHTS}

\author{
This BIG one
}

or

\section*{THE LITTLE ONE}

The miniaturization program on defense products required the development of this sub-miniature light. It is used on communication equipment and aircraft. Midget flanged base bulbs to fit are rated \(1.3,6,12\), and 28 volts.

to suit your own special conditions and requirements will be sent promptly and without cost. Just outline your needs. Let our engineering department assist
 in selecting the right lamp and the best pilot light for YOU.

Write for the Dialco HANDBOOK of PILOT LIGHTS
Foremost Manufacturer of Pilot Lights


\title{
* WAS to help
}
- soed defense production

You'll find SHAKEPROOF fastenings at many vital connection points on modern military equipment . . from tanks to walkie-talkies. Those shown here, and hundreds of others, are used by the millions by leading manufacturers because they save assembly time and assure dependable performance. Whether your plant is engaged in military or civilian production-or both-Shakeproof engineers are at your service to help your staff develop fast, economical and acceptable solutions to specific assembly problems. Call them in today. "Frastening Headquailers" DIVISION OF ILLINOIS TOOL WORKS St. Charles Road, Elgin, Ilinois Tools Limited, Toronto, Ontario In Canada: Canada llinois Tools Limited, Toronio, Onta

\section*{* SEMS-by-sMamainoof}
... pre-assembled serews and SHAKEPROOF Lock Washers eliminate separate washer handling, save assembly time.


\section*{* chamzpioore uhisand-cuhtrie SCIINS}
cut their oven threads in metal or plastic, positively eliminate costly tapping operations.

* rapso
. . speed assembly operations because nut and lock washer 3 ? \(\ddagger\) pre-assembled. . . every nut is locked against vibration loosening.

\section*{TTincisto * IHAISSISLORS} in instrumentation...
*Transistor's are capsule-size assemblies which utilize the physics of semi-conducting solids to produce the same effects as on eleatronic tube...; but without cothode and/or filament and their circuitry components.

\title{
When ?
}

\author{
A timely statement from Walter P. Wills, Director of Research, Brown Instruments Division \\ Minneapolis-Honeywell Regulator Co., Philadelphia 44, Pa.
}

"PPERHAPS you've wondered when transistors, with their widely publicized characteristics, will be put to work in industrial instrumentation. Naturally, I can speak only for my company, but I'd like to give you a research man's view on where transistors stand today.
"We agree that transistors have a tremendous future in all of electronics, including automatic control. Many problems, however, must yet be solved. Will they be made of germanium or silicon? Can they be made more reproducible and able to handle enough power at desired voltages? New circuits and new transistor types are needed. Today's costs are much too high. And let's not forget that the vacuum tube is still being developed after more than 40 years of existence.
"Even with extensive research and development programs, much more work remains before transistors can be broadly utilized in their natural markets-radio, television, and other communication equipment. Similarly, the few types now available do not nearly satisfy the requirements of industrial instrumentation.
"A 'tubeless' electronic instrument is theo-
retically possible today, and, on the basis of safety and reliability expected of modern instruments, it is anticipated that such a product is completely possible and practical in the future.
"So we're attacking the problem on a broad front. For upwards of five years, we've been devoting a large portion of our research facilities to studying ways to utilize transistors ... looking on them not solely as replacements for tubes, but as the starting point for totally new instrument circuits.
"In addition, we have invested in the patent licenses and the know-how of Bell Telephone Laboratories, the pioneer of transistors. We have a large stake in providing instrumentation for the manufacture of transistors and hence are examining all facets of the transistor business . . . even to the extent of making some with our own hands.
"Honeywell instruments and other Honeywell controls using transistors will be on the market. When they are, you can be sure they will be great products-new, but the same kind of reliable, versatile, well-engineered products we sell today."

\section*{"O.K. But what's your price for performance?"}


Here's a purchasing agent buying resistors on a price basis. But doing it the right way.

Some day we may even be able to quote resistor prices in terms of performance - so many cents per thousand hours of trouble-free operation. Then we'll be able to tell you exactly how much less Ward Leonard resistors really cost than the so-called "bargain" resistors now on the market.

But until then, remember, it's performance you pay for when you're buying resistors. There's a lot more than just a few cents difference in the performance you'll get from the two resistors above.

The one made by Ward Leonard will perform at
its rated value for the life of the product it goes into. There's a chance the so-called "bargain" resistor will too. But you can't afford to take any chances on your product's failure - even once out of a hundred times. Not when you consider the actual cost of such failure, figured in terms of returned merchandise, replacement cost, customer and dealer dissatisfaction.

That's why, even on a price basis, the accuracy, dependability and uniformity of Ward Leonard resistors make them far better buys than any of the questionable bargains you'll find on the market. Send for new Resistor Catalog No. 15. Ward Leonard Electric Co., 31 South Street, Mount Vernon, N. Y.


MOUNT VERNON, NEW YORK
Beunt- تrgineurd Cartab Since 1892

\section*{This check list shows you how to get the most for your money in terms of resistor performance}



RESISTOE CORE. Ward Leonard's own manufactured cores upon which the resistance elements are wound consist of a perfectly cylindrical ceramie body of high density, low porosity, and high dielectric strength, with a thermal coefficient of expansion correlated to the expansion of the enamel.
coating. Vitrohm enamel coating of all Ward Leonard resistors provides a complete hermetic seal highly resistant to shock, high humidity, extreme temperatures, acids, alkalies, and electrolysis. Unlike most resistor manufacturers, we manufacture our own vitreous enamel.

resistance wire. The resistance wire is drawn to Ward Leonard's own specifications for each partieular resistor type. It is capable of withstanding heavy overloads, has a uniformly low coefficient of resistivity. Many of the "bargain" resistors are wound with resistance wire of ordinary grade.



A rolling, pitching ship... under attack from speedy, diving aircraft... counts on its anti-aircraft guns for protection... these guns must be able to stay on the target regardless of sea conditions. That's why the Ford Instrument Company was called on to design and build a control system that tracks and holds the target range with deadly accuracy.

This is typical of the problems that Ford has solved since 1915. For from the vast engineering and production facilities of the Ford Instrument Company, come the mechanical, hydraulic, electro-mechanical, magnetic and electronic instruments that bring us our "tomorrows" today. Control problems of both Industry and the Military are Ford specialties.

You can see why a job with Ford Instrument offers young engineers a challenge. If you can qualify, there may be a spof for you in automatic control development at Ford. Write for brochure about products or jobopportunities. State your preference.

\section*{FORD INSTRUMENT COMPANY}

DIVISION OF THE SPERRY CORPORATION 31-10 Thomson Avenue, Long Island City 1, N. Y.

\section*{TAylor Bone Grade Vulcanized Fibre}
is an extremely tough and dense grade of vulcanized fibre. It is excellent for applications where difficult machining operations are required . . . resistant to organic solvents, oils and gasoline. . . has excellent electrical characteristics.

\section*{Want to make something of it?}

Make it into gears, cams, fairleads, bushings and grommets, slot wedges, threaded and tapped pieces, rail joint insulation and other applications where mechanical strength, good finish and intricate machining are required. Color: gray.
Make it from sheets or rolls with these specifications:


Make it from turned rods. Diameters from \(1 / 8^{\prime \prime}\) through \(1 / 2^{\prime \prime}\) with ground or buffed finish.
Make it easy for yourself the next time you are looking for an extremely dense, abrasion resistant material. Call your Taylor Engineer . . . he will be glad to work with you . . . go over your requirements . . . and help you select the correct grade of Taylor Vulcanized Fibre to fit your needs-Bone, Commercial, Super White, Abrasive and Built Up. Ask him about Taylor Laminated Plastics, too. He will be glad to give you samples of Phenol, Melamine and Silicone Laminates for your inspection.

Taylor Fibre Co., Norristown, Pennsylvania-La Verne, California


We have used every type of GA\&F Carbonyl Iron Powder thus far produced. The overall quality and batch-to-batch uniformity of your products have always been gratifying to us. Because of this pròduct dependability, we feel that incoming inspection of your powders is unnecessary.


\section*{that makes inspection unnecessary}

G A \& F Carbonyl Iron Powders are used to produce cores for transfermer and inductor coilsto increase \(Q\) values, to vary coil inductances, to reduce the size of coils, to confine stray fields and to increase transformer coupling factors.

These powders are microscopic, almost perfect spheres of extremely pure iron. They are today produced in eight carefully controlled types, ranging in average particle-size from three to twenty microns in diameter. The Carbonyl Process assures the quality and uniformity of each type.

We urge you to ask your core maker, your coil winder, your industrial designer, how G A \& F Carbonyl Iron Powders can increase the efficiency and performance of the equipment or product you make, while reducing both the cost and the weight. We also invite inquiries for powders whose performance characteristics are different from those exhibited by any of our existing types.


This 32-page book offers you the most comprehensive treatment yet given to the characteristics and applications of G A \& F Carbonyl Iron Powders. \(80 \%\) of the story is told with photomicrographs, diagrams, performance charts and tables. For your copy-without obligationkindly address Department 56.

\section*{Here's how to plot a plane's Angle-of-Climb...}


New take-off technique yields an \(8^{\circ}\) climb, as this progressive single photo shows. And this is \(100 \%\) improvement over old techniques . . . increasing safety and decreasing noise-annoyance at city airports.
Here you actually see 53 separate exposures. And each, reading from bottom up, shows the date and number of the flight photographed. Next above is a device which records the time ...exact to \(1 / 1,000\) th of a second. And in the heart of this device is a Veeder-Root Counter.

So here again you see one of the heretofore uncounted ways in which "Everyone Can Count on Veeder-Root". What's your problem? Let us put our mathematical eyes on it. Write:

VEEDER-ROOT INCORPORATED HARTFORD 2, CONNECTICUT

Chicago 6, III. • New York 19, N. Y. - Greenvilie, S. C.
Montreal 2, Canada - Dundee, Scotland Offices and Agents in Principal Cities

\section*{ABOVE AND BEYOND MIL-R-93A SPECIFICATIONS}

\section*{MIMMEF \\ ACCURATE WIREWOUND RESISTORS}

durameg wattage ratings are based on full rated dissipation at \(105^{\circ}\) ambient. these ratings are from 4 TO 5 TIMES THE \(85^{\circ} \mathrm{C}\) MIL RATINGS FOR THE BEST OF CONVENTIONAL RESISTORS.

The engineered combination of Ceron wire, Durameg molding technique and aging treatment permits dissipation of full rated wattage at \(105^{\circ} \mathrm{C}\)-the same temperature at which MIL ratings prescribe zero dissipation.

Equipment designers who must consider initial resistance tolerance as well as shifts in resistance value with repeated temperature cycling and operation at full load, are using Duramegs with outstanding results.

Durameg long-term stability and positive protection against electrolysis failure enable you to design now for dependable, permanent, peak performance.

Duramegs are the first high-accuracy wirewound resistors to operate successfully up to a hot spot temperature of \(150^{\circ} \mathrm{C}\) as against the usual \(105^{\circ}\) limit-made possible with Sprague's patented ceramic insulated Ceron wire.

Durameg molded phenolic housings are tough and resistant to mechanical damage-installations require no secondary insulation for mounting they'll even withstand the salt water immersion cycling for characteristic \(A\) in former specification JAN-R-93.

Durameg Resistors are now available for commercial application in dimensions identical to MIL styles. We will be pleased to send you complete data upon request. \(\star \star \star \star \star \star\)

)
"た

\section*{For benefits* like these, use}

Here are typical benefits which you can expect and get by using Carboloy permanent magnets in your electrical products.
Check these case histories. Maybe a Carboloy permanent magnet can improve your product, too. Why not contact a Carboloy magnet engineed without delay. He'll lend you a hand in magnet design and application. His services will cost you nothing.

Carboloy permanent magnets retain their efficiency under most conditions of temperature, shock and vibration . . . high resistance to demagnetizing influence of stray magnetic fields . . . provide powerful, lasting magnetic energy.

Available in all sizes and shapes; can be cast or sintered to your needs. Send coupon for catalog and for design manual.

* Finer product performance

A small, powerful Carboloy permanent magnet enabled Thomas A. Edison, Inc. to design a revolutionary sensitive relay capable of operating from the current generated by a heated thermocouple. This power-packed magnet eliminated the need for electronic amplification, thus greatly simplified design of their aircraft fire-detecting system.

\section*{* YOU GET All these advantages from carboloy permanent magnets}
- Cool-generate no heat
- Require no electrical energy
- Cost nothing to operate
- Eliminate coils, windings, wiring, etc.
- Need no maintenance-no coils to burn out, no slip rings to clean or replace, etc.
- Simplify mechanical assembliesexert strong tractive force for holding, lifting and separating devices that eliminates component parts, makes product design and fabricaion simple
- Save space-great magnetic strength in small sizes
- Powerful-and power is constant
- Combine electrical and mechanical features-transform electrical energy into mechanical motion mechanical motion into electrical energy
- No power failures ever
- Resist moisture-no coils to collect dampness
- Give uninterrupted operation
- Create savings -often eliminate costly, power-supplying parts
- Simple -no operating parts
- Reduce weight, product size
- Supply a permanent source of energy

\section*{Carboloy permanent magnets}

* Fewer

Pants

New GE I-M-F television picture tube has its ion trap and magnetic focus device inside end of tube. Pictyres are clearer, prefocused and many parts are eliminated . . . thanks to Carboloy permanent magnets.

*/improved
Design

In this circuit breaker a Carboloy magnet assembly simplifies the trip element. It eliminates a coil and polarizing connection... makes possible reverse-current tripping independent of system voltage.

> *More dependability

> New all -magnetic, all - transistor hearing aid (by E. A. Myers \& Sons, Inc., Pitts.) uses magnets in both microphone and receiver. Hearing aid failure caused by operational heat and humidity is now eliminated.

* Less weight and space

Fig. A shows chrome magnet rotor once used in Scintilla aircraft magnett. It weighed 4 lbs. 9 ozs. New rotor (Fig. B) is made of Carboloy Alnico. It weighs only 2 lbs. 4 ozs., is considerably smaller.

Carboloy Department of General Electric Company 11139 E. 8 Mile Ave., Detroit 32, Michigan

Rush me, without cost or obligation, copies of Permanent Magnet Design Manual PM-101 and Standard Stork Catalog PM-100.
\(\qquad\)
"Carboloy" is the trademark for the products of the Carboloy Department of General Electric Company

\section*{If you use relays-Clare's New Plant is}

\section*{CLARE RELAYS are now built in the most modern plant ever specifically designed for relay manufacture}

Light eight times better than average for industrial plants -75 foot candles of shadowproof light at bench level.

All air electrostatically washed -avoids danger of contamir nation in such operations as contact welding.
\(100 \%\) inspection of all Clare relays with most modern test equipment. Light on this test set gives 125 foot candles.

- Building of precision relays requires more than technical skill. It requires an atmosphere of utmost freedom from dirt. Air temperature and humidity must be closely controlled. Assembly of small parts must be done under powerful, yet shadowfree light.

All these important features and many more are provided in the new Clare relay plant. Never before have so many manufacturing advantages been provided in one plant-for one purpose-to give you relays of unequalled quality.

Quality and long-life dependability of Clare relays have made them first choice of designers as components for critical equipment. Wherever failure cannot be tolerated, when only the best is good enough, Clare relays are indicated.

Two important factors contribute to this Clare superiority. Production of relays has always been the exclusive business of

\section*{FIRST IN THE INDUSTRIAL FIELD}

\section*{\(B / G\) NHENS}
C. P. Clare \& Co. This is a young-minded progressive organization, ever alert to discover and test new and better materials and manufacturing methods.

The new plant is the product of years of research and experiment. It is the natural development of Clare's unwillingness to offer their customers anything less than the most perfect relays that can be built.

If yours is a product whose long life, reliable performance and freedom from maintenance depend on the use of relaysit will pay you to know ALL about Clare relays. A sales representative, fully experienced in every type of relay problem, is located near you. Consult him, or write C. P. Clare \& Co., 4719 West Sunnyside Avenue, Chicago 30, Illinois. In Canada: Canadian Line Materials, Ltd., Toronto 13. Cable Address: CLARELAY.

\section*{ELAREB BELATS}


Multiple test circuits of variable voltages on bench chan: nels facilitate adjusting of relays to customers' specifications.

Diminutive parts of high frequency impulse relay require laboratory-clean assembly conditions.

New G-E low-temperature Pyranol* subminiature capacitor averages \(20 \%\) smaller than a comparable oil-filled unit. It is as small as the old subminiature wax unit, yet has superior life characteristics.

\title{
BRITONS CAN HAVE PROSPERITY -If They Want It
}

What is required to get Britain, our key ally in the grand alliance of the free world, firmly back on her economic feet? The purpose of this message is to throw light on this crucial problem, which afflicts our other European allies also.

At the moment, Britain is enjoying a respite from the economic crises (of 1947, 1949 and 1951-52) which have plagued her postwar course. This respite may well continue for some time. But almost no one whose judgment is trustworthy believes that Britain has acquired sufficient economic strength to safeguard her against further economic crises in the years immediately ahead.

\section*{Two British Views}

New and clear light on what should be done to that end has recently been shed by two noteworthy British publications. One is a book, "We Too Can Prosper," by Graham Hutton, distinguished British economic writer and administrator. The other is an article, "The Riddle of Prosperity," published by The (London) Economist, Europe's most eminent economic journal.

Combined, these two publications present
in sharp relief the basic problem that must be handled successfully if Britain is to be safely solvent. As is implied by its title, the Hutton book demonstrates that Britain can be made prosperous by readily feasible procedures, patterned on what has been done in the United States, to increase its industrial efficiency. But, says THE ECONOMIST, with Mr. Hutton's book in mind, this is not the most brasic problem, which is, "How shall we make the British people determined to be prosperous?" This is a problem of incentive or motivation.

Compared with that of the United States, average industrial efficiency in Britain, as in most of Western Europe, is low. In his book Mr. Hutton remarks that "fifty years ago an American industrial worker turned out roughly the same amount in a day as his opposite number in Britain, Germany or France. . . . Today, he turns out from two to five times as much."

In large part it is this lag in output per hour or "productivity," as the technicians call it, which makes Britain and other key countries in Western Europe a continuing prey to economic crises. Moreover, the great disparity in productivity between the U.S.A. and most
of Western Europe is a major barrier to knitting the free world into a smoothly working economic whole. As one observer put it, "when the American economy catches a cold, the European economy gets pneumonia." This is largely because Europe is so much weaker in productive strength.

\section*{No Shortage of Knowledge}

Yet the knowledge which would enable the countries of Western Europe, and particularly Britain, to increase their industrial productivity has been mobilized and is readily available to them. It is with this process for Britain that Mr. Hutton's book is concerned. In the book he summarizes the findings and conclusions, virtually all of them unanimous, of 66 teams, composed of British industrial managers, technicians, shop workers and labor leaders. Over a period of three years these teams completed a comprehensive series of inspection and study trips in the United States under the sponsorship of the AngloAmerican Council on Productivity. The product of that effort, he remarks, is "a set of documents the like of which, on such a scale and of such practical value, has never been seen in the history of international and cultural borrowing."

\section*{Psychology the Key}

From study of these documents, Mr. Hutton concludes that better capital equipment is the key technical ingredient of higher industrial productivity in Britain, and constitutes "the most urgent . . . need of British industry." But he finds that even without new capital equipment a " \(15 \%\) rise in productivity can still be achieved by reorganization of work," and that such an increase would "solve Britain's chief social and economic problems."

Then why is not such an increase in productivity, demonstrated by the Anglo-American
productivity teams to be so clearly within technical grasp, promptly forthcoming? Mr. Hutton, quoting one of the team reports, remarks that, "the greatest obstacles to increased productivity are psychological rather than technical.' We have to deal first and foremost with men, not machines." And The Economist, pursuing the line of inquiry suggested, reaches the conclusion that, by and large, the people of Britain do not want to prosper by being more efficient. The EconoMIST says:
"The real secret of American productivity is that American society is imbued through and through with the desirability, the rightness, the morality of production. .. . But in Britain, if any moral feeling at all survives about economic matters, it is usually a vague suspicion that economic success is reprehensible and unworthy. From this difference in attitudes everything else follows."
"How," asks THE ECONOMIST, "shall we set about restoring some belief in the rightness of effort, the morality of success?" For this question it has no ready answer. Neither have we. We are confident that the British people will neither be cajoled nor coerced into trying to match our productivity. Basically the problem seems to be to demonstrate clearly to them the truth of the proposition, set down by Graham Hutton, that "there is no goal, aim or end before a Good Society which the raising of that society's material productivity cannot render easier of achievement." Doing that in an old and settled country like Britain is obviously an extremely formidable undertaking. But until it is done, the crucial job of getting Britain and the rest of Western Europe firmly on its economic feet will remain to torment all of us.

\section*{McGraw-Hill Publishing Company, Inc.}

\section*{twenty times}
 secled transistors

EVERY Texas Instruments grown junction
and point contact transistor must pass more than 20 tests-in addition to continual visual checks-before it is granted the TI trademark and shipped to the user.

Texas Instruments inspects all transistors all along the manufacturing process.

This \(100 \%\) inspection insures that the completed product will adhere closely to published specifications (see distribution curves at lower right).

All TI transistors have moisture. proof glass-to-metal hermetic sealing. And they are all aged a minimum of 24 hours a: rated output as a positive operating double-check.

If you want transistors of this insured high quality, they are now available frcm Texas Instruments Incorporated. Write for new junction transistor bulletin DL-S 310.


\section*{ELECTRICAL DATA}

RATINGS, RECOMMENDED MAXIMUM:
-
Type 200 Type 201 Collector Cut-Off Current
Collector Capacitance
Noise Factor (average value) \(12 \mu \mu \mathrm{fd}\). \(\quad 12 \mu \mu \mathrm{fd}\)
22 db .
\(12 \mu \mu \mathrm{fd}\).
22 db .

Collector Voltage
Collector Dissipation (at \(30^{\circ} \mathrm{C}\) )
Ambient Temperature

\section*{AVERAGE CHARACTERISTICS (at \(30^{\circ} \mathrm{C}\) ):}
Collector Voltage
Emitter Current
Emitter Current ................... 5 volts Collector Resistance (minimum) . . . . 0.2 megohms 0.4 megohms Base Resistance 150 ohms 150 ohms Emitter Resistance Current Amplification Factor (minimum)

30 volts \(\quad 30\) volts 5 ma .5 ma . 50 mw . \(\quad 50 \mathrm{mw}\). \(50^{\circ} \mathrm{C}\)
\(50^{\circ} \mathrm{C}\)



\section*{REX-KF \({ }^{\dagger}\) tнe WONDER WIRE}
( WITH KEL-F* INSULATION)
The Rex Corporation announces REX-KF Wire (Kel-F* insulated) with one, two, or three stripes in any combination of ten colors. Over 300 sharply distinguishing color codes are now easily available.

Striping removes the final obstacle to the broader use of wonderful trifluorochlorethylene insulation.

Write for full information on this remarkable advance in wire technology, and the story of REX-KF Wire, champion in every quality that makes wire good.
*T. M. of M. W. Kellogg Co.
\(\dagger\) T. M. of The Rex Corporation
*Reg. U. S. Pat. Off

\section*{this ins comporituon}

Insulated Wiré Specialties, Microwall Wire, Cast Plastics, Rexolite U. H. F. Insulating Materials, Rextrude** 105 Electrical Tubing and Custom Plastic Extrusions.
WEST ACTON, MASSACHUSETTS

\section*{SYNTHANE - making bigger payloads pay off}

Synthane bushings, spacers, and bearings in the landing gear of this giant of the skies share the landing shock loads of twenty-five tons. But Synthane parts have many virtues in addition to their ability to withstand the jolts of heavy landings.
Parts made of this hard-working laminated plastic are unaffected by oils, and are dimensionally stable. They resist abrasion, and weigh half as much as aluminum.
Because Synthane is so easy to machine,
it is appropriate for fair-leads and cablesheaves in control systems. Because it is an excellent electrical insulator, you will find it at work in engine ignition systems, flight instruments, automatic controls, and radar sets. Because Synthane is light and corrosion-resistant, it's used for the flapper valves in fuel cell baffles.
Synthane has all these properties and many more. It might be a good material for you to try. Start by sending for the complete Synthanc Catalog. Synthane Corporation, 17 River Road, Oaks, Penna.


\section*{Synthane . . . in Aviation}

A Propeller brush block base
B Separator ring for propeller hub
C Propeller brake plug base
D Brush carrier
E Card drun
F Propeller brush block base

LAMINATED PLASTICS

\section*{WIDE RANGE \\ FAST-PULSE GENERATOR}

PG-200A Pulse Generator PGA-210 Range Extenders

\section*{SPECIFICATIONS}

\section*{PULSE POWER}
- Amplitude 100 volts open circuit
- Continuously variable over a range of \(-10 \mathrm{db}\)
- 50 db attenuation in steps of approx 10 db
- Driving impedance 50 ohms or less
- Max. average current (50 ohms load) 0.1 amp for pos. pulses, 0.07 amp . for neg. pulses
- Max. recurrence rate af least 20,000 pps
- Max. duty cycle \(50 \%\), min. pulse interval (trailing edge to leading edge) approx. \(40 \mu \mathrm{~s}\)

PULSE WAVEFORM
- Rise and decay times 0.03 us or less ( \(10 \%\) to \(90 \%\) amplitude)
- Crest and base line overshoots and ripple less than \(5 \%\) of average pulse amplitude
- Duration calibrated 0.1 to \(50 \mu \mathrm{~s}\), accuracy below 5000 pps within \(5 \%\) or 0.1 дs whichever is greater, accuracy above 5000 pps subject to additional 0.3 ms error, min. pulse width less than 0.05 us ( \(50 \%\) amplitude)

\section*{PULSE POSITION}
- Delay after external sync signal fixed at approx. 10 us or adjustable from approx. 20 to 70 us
- Advance or delay with respect to sync out trigger calibrated 0.1 to \(50 \mu \mathrm{~s}\), accu. racy below 5000 pps within \(5 \%\) or 0.1 us whichever is greater, accuracy above 5000 pps subject to additional 0.3 us error

RANGE EXTENDER
- 19 additional time increments of 50 us each
- Continuous calibrated coverage from 0.1 to \(1000 \mu \mathrm{~s}\), accuracy within \(5 \%\)
- Plugs into top of Pulse Generator directly above position or duration control

SYNCHRONIZATION
- Externally by almost any 5 volt waveform from essentially 0 to 20,000 per sec.
- Internal single pulses power line freq. or adjustable from 20 to \(20,000 \mathrm{pps}\)
- Recurrence rate meter, accuracy within 5\%
- Sync out trigger 50 volts, 1 us duration

\title{
TELETRONICS LABORATORY INc.
}

\section*{25\% LESS WEIGHT!}

FIXED WIREWOUND POWER RESISTORS
... new homogeneous core and coating \(\checkmark\) REDUCES SIZE AND WEIGHT
\(\mathcal{V}\) ELIMINATES SHORTED TURNS
- \(350^{\circ} \mathrm{C}\) hot spot operation
- Higher power dissipation with less weight, smaller diameters
- Higher maximum resistances
- Closer tolerances-to \(1 \%\) ( \(5 \%\) standard)
- Better heat conductivity
- Exceptional resistance to thermal shock

By eliminating the heavy ceramic core with the wire-bunching and shorted turns characteristic of vitreous enamel types, Shallcross has developed a radically new wirewound resistor that outperforms all other types of high temperature fixed power resistors. Through a unique process, the windings are imbedded in a special ceramic which forms an integral coating and core. Designed to MIL-R-10566 specifications, Castohms are destined to leave MIL-R-26A types far behind.
Find out how Castohms can reduce size and weight in your equipment - improve efficiency and reliability as well. Write, wire or phone for details. Ask for Engineering Bulletin L-29. SHALLCROSS MANUFACTURING CO., 522 Pusey Avenue, Collingdale, Pa.


\section*{You know you're on the right track}

Director of destinations, the towerman deftly sorts out traffic. . . fans it out far and wide, so that the right shipments get to the right places at the right time.
The same practiced precision goes into traffic control in the modern mills at Bristol. Here every operation is safe in hands that have the same deft touch . . . that keep things moving so that every shipment of Brass sheet, rod and wire gets through to its destination without switch-
ing, sidetracking, or running behind time.
And this is just part of what is meant by "Bristol-Fashion".

The Bristol Brass Corporation, makers of Brass since 1850 in Bristol, Conn. Offices or warehouses in Boston, Chicago, Cleveland, Dayton, Detroit, Los Angeles, Milwaukee, New York, Philadelphia, Pittsburgh, Providence, Rochester.

\section*{Nom .NEW MINIATURE added to HUSKY LINE OF TELEPHONE-TYPE RELAYS!}


\section*{SPECIFIGATIONS}

OpERATING VOLTAGES: 6 to 48 volts DC. MAXIMUM COIL RESISTANCE: 5,000 ohms. CONTACT CAPACITY: Standard contacts are rated at 3 amps 115 volts AC or 24 volts DC, non-inductive. CONTACT COMBINATIONS: UP to 6 Form \(A\), or 4 Form C (total of 12 springs).

\section*{SMALL! LIGHT! RELIABLE!}

The latest addition to the Husky line of telephone-type relays, and our answer to the demand for smaller, lighter-weight aircraft relays is the series 5500-available in open style or hermetically sealed.

The series 5500 relay meets all applicable requirements of MIL-R-6106. It is a miniaturized conventional relay, designed to keep pace with the trend towards reduction in size and weight in electronic equipment, especially for aircraft applications.

\section*{HERMETIGALLY SEALED}

The 5500 HS (hermetically-sealed model) provides complete protection against tampering or harmful atmospheric conditions, including moisture, salt spray, dust and temperature extremes. Altitude tests reveal no leakage at 81,000 feet.

\section*{Unique Husky construction features}
1. Longer, more flexible contact arms, resulting in reliable operation with low coil wattage.
2. Single stack screw, with positive locating pins (in stack) assuring precision contact alignment.
3. Specially designed spring- tempered clamp plate and high tensile strength screw prevents loosening of stacks under severest conditions of shock, vibration and temperature variations.

Specify Husky Series 5500 relays for all applications where reliability, small size and light weight are prime factors. Write, wire or phone for further information . . File 5500.



\section*{Tole these unigue designo fealtures:}
(1) Protection against bending during handling is achieved by recessing each blade-type terminal in a notch in the bakelite base of the control.
(2) Valuable mounting space is conserved on the printed circuit panel by placing the terminals close in to the mounting bushing.
(3) Adequate clearance for circuit paths is provided by ample spacing between terminals.
(4) Available in miniaturized \(3 / 4^{\prime \prime}\) diameter (U70) and in \(13 / 16^{\prime \prime}\) diameter (U45, GC-U45, WF-U45).

For your printed circuit applications, CTS offers consultation without obligation.


Ample spacing between printed circuit terminal openings for the miniature Type U70 series provides adequate clearance for circuit paths.


Ample spacing between printed circuit terminal openings for Types U45, GC-U45 and WF-U45 provides adequate clearance for circuit paths.


\title{
Everything In Electrical Insulating Materials
}

\section*{DEPEND ON IWI FOR THESE PRODUCTS}

Varnished Cambric Products
Insulating Paper
Varnished Tubing
Saturated Sleeving
Insulating Varnish
Vulcanized Fibre
Phenolite
Fibre Wedges
Wood Wedges
Built-up Mica Products
Asbestos Insulation
Woven Glass Insulation
Pressure Sensitive Tape
Cotton Tape
Cotton Sleeving
Commutators Built To Specifications
Teflon
Silicone Resins
Silicone Insulations

INSULATION \& WIRES INCORPORATED

Warehouses Strategically Located to give you service anywhere.
Nationally Advertised Quality Products, approved and used by leading electrical manufacturers everywhere.

Experienced Fleld Service Representatives offer technical assistance without obligation on any problem involving electrical insulating materials.

Large Stocks Of Production Materiais in every warehouse. Quick delivery will eliminate many of your inventory problems.

Rely On IWI For Immediate Serucee. Dependable Zualty

\section*{A NATIOMAL NETWORK OF WAREHOUSES SERVING ELECTRICAL MANUFACTURERS}

\title{
INSULATION AND WIRES INGORPORATED \\ 3435 Chouteau Avenue - St. Louis 3, Missouri
}

Write For the Address of The Warehouse Nearest Your Plant

\title{
Wrap up your circuitry in these tremendously flexible plug-ins to get these vital advantages!
}

(1)
get "i-shot engineering" - you pre-solve Parts Design, Production Layout and Procurement all in "one shot"

SLASH ASSEMBLY COSTS - manufacture goes fast at low cost, because subdivided into units on which operations are simple and out-in-the-open.
YOUR CUSTOMERS SAY "WONDERFUL!" - Installation simplified to non-technical push-in connects done in the field as fast as unloaded. Reliability of service provided by 30 -second plug in of replacement spares when tell-tales warn.


ALDEN BASIC PLUG-IN CHASSIS

To move circuitry from layout to completed equipment - IT'S AS SIMPLE AS THIS

4 SIZES OF ALDEN BASIC CHASSIS


Subdivided function by function, your circuitry drops naturally onto Alden Terminal Mounting Cards -


\title{
introducing the goodmans
}

\section*{PERMANENT MAGNET}


THESE shakers provide vibratory sinusoidal forces of frequency and amplitude by which specific vibratory conditions can accurately be simulated. They provide the means of assesssing the effects of sudden acceleration on materials, structures and components; and are being extensively applied to FATIGUE TESTING, ELECTRICAL COMPONENT TESTING, FLEXTURE TESTING OF PLASTICS, ETC., and SPECIALISED GUIDED WEAPON RESEARCH. For certain pre-knowledge of vibration and its effects consult GOODMANS.

MODEL 390A A medium producing an alternating force of approximately 25 lbs
Thrust........ Force factor 4.7 lbs Force fact
per amp.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Mox. Continuous Current Rating (R.M.S.)} & \begin{tabular}{l}
per amp. \\
2 amps. unco
\end{tabular} \\
\hline & amps. with air cooling of approx. 5 lbs. per \\
\hline Strok & sq. in. \\
\hline impedanc & 8 ohms matching. \\
\hline Frequency Range. & \(U_{p}\) to \(10,000 \mathrm{c} / \mathrm{s}\). \\
\hline Weight of Moving & \\
\hline System & 0.16 lbs. \\
\hline Stray Fields & Operating zone \\
\hline & an 100 gaus \\
\hline ux Density & 11.000 gauss. \\
\hline 促 & 26 lbs \\
\hline
\end{tabular}

\section*{DRIVING EQUIPMENT}

A range of appropriate driving equipments is available and takes the form of High-Power Amplifiers, Stabilised Power Supply Units and precisioned R.C. Oscillators specifically designed to give continuous power output to drive the particular shaker concerned.

MODEL 790 For Vibrating MODEL 790 for Vibrating ponents, and is capable of producing a force of \(\pm \mathbf{5 0}\) lbs.
This unit has a force factor of approximately 9.2 lbs. per amp. and a cotal current capacity, with air cooling. of 4 amps. (R.M.S.).
\(\begin{array}{ll}\text { Stroke. ........ } & 0.5 \text { in total excuirsion } \\ \text { Impedance. .... } 24 \text { ohms matchin }\end{array}\) impedance.... 24 ohms matching Frequency Range. Weight of Moving System .il…... O. Operating zone Flux Density. ... than 100 gauss. Tocal Weight ... 11.000 gauss. (inc. trunnion)

MODEL 8/600
For the vibration of heavy loads or complete assemblies. Has a total force of approximately \(\pm 300\) lbs. Stroke ....... I in. total Impedance .... to suit driving equipment. Frequency Range Up to 3,000 Weight of Moving
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{(approx.)} \\
\hline \multirow[t]{3}{*}{Stray Fields} & \\
\hline & \\
\hline & than \\
\hline \multirow[b]{2}{*}{Flux Density} & \\
\hline & \\
\hline \multirow[t]{2}{*}{Total Weight (inc. trunnion)} & \\
\hline & \\
\hline \multicolumn{2}{|l|}{This unit can be fitted with} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
(a) built in air cooling blower \\
(b) switch to give high or low impedance armature coil and (c)pick-up unit for monitoring wave form and amplitude.
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{LAI THIS COUPON}

TO GOODMANS INDUSTRIES LIMITED AXIOM WORKS, WEMBLEY, MIDDX., ENGLAND

Please mail me your catalogue and technical data sheets in connection with your PERMANENT MAGNET Shakers.

NAME.
COMPANY \(\qquad\)
\(\qquad\)
CITY

MODEL V47 for the vibration of components, opticall-cell research, hair pring torque testing etc research, hairspring torque testing etc.
 Flux Density . . . . 1 , dot gauss.
Weight . . . . . 2 bss Weight . . ...... \(2 \|\) bs

ODEL 390A
\[
8103
\]



\begin{abstract}

\end{abstract}







The greatly increased protection made possible by the development of our high-temperature gray enamel is the most important improvement of these resistors, but it is not all. True, this enamel is thermo-shock-proof and crazeless; but in addition

THESE RESISTORS OFFER . .
- Stronger core with higher resistance to vibration and shock.
- Finer resistance wire-made to H-H specifications, especially adapted to these resistors. More uniformly wound, so that failures under stress are climinated.
- Special alloy terminals more securely fastened to the ceramic body by spot-welding-highly resistant to corrosion.
- All wire connections are protected by a positive non-corrosive bonding.
The fixed, the ferrule and the flat types are especially designed for and manufacturd in aecordance with JAN-R-26A specifications.

\section*{HARDWICK, HINDLE, INC.}

Rheostats and Resistors
Subsidiary of
THE NATIONAL LOCK WASHER COMPANY Established 1886

Newark 5, N. J.

U. S. A.
of quality
for more than a quarter of a century

Hardwick, Hindle, Inc.
40 Hermon St., Newark 5, N. J.
Please send additional information about your new resistors and rheostats.

Name
Title
Company
Address \(\qquad\)


Here at ETC we can start from scratch, assimilate your circuitry and follow through so that your special transformers are customdesigned and custom-built to your exacting requirements.
That's what we've been doing intensively since 1938 for both government and industry.
If the prints call for specials, our staff of highly trained transformer engineers is at your service. Supporting these experts is our modern laboratory as well as a production shop geared for transformer pilot production up to several thousand units.

Let us prove that we are on the ball. We'll gladly make recommendations without obligation if you outline your problem to us.

\section*{ELECTRONIC TRANSFORMER COMPANY}

Transformers, Reactors and Filters Tailored to your Needs
209 WEST 25 th STREET - NEW YORK 1, N. Y. Telephone: WAtkins 4-0880



\section*{IRVINGTON extra-flexible Silicone Rubber-Coated Fiberglas* Tubing}

The extreme flexibility of Irvington's Silicone Rubber-Coated Fiber-glas-at both high and low temperatures-was an important factor in its acceptance by the electrical industry when this new Class " H " insulation was introduced almost two years ago.
Originally, Irvington Silicone Rubber-Coated Fiberglas Tubing was supplied only in white. Because of its rapidly growing use, Irvington has now taken steps to supply this tubing in a range of colors also-

\section*{Look to}

for Insulation Leadership insulating varnishes VARNISHED CAMBRIC VARNISHED PAPER VARNISHED FIBERGLAS insulating tubing CLASS "H" INSULATION

Immediate delivery can be made on white tubing for wire sizes from \#24 to \#0-prices and deliveries will be quoted on request on colored tubing.
For preliminary technical data, just mail the coupon below.


\section*{Send this convenient coupon now}

\title{
Irvington
}

VARNISH \& INSULATOR
COMPANY

11 Argyle Terrace, Irvington 11, New Jersey
Plants: Irvington, N. J.; Monrovia, Calif.; Hamilton, Ontario, Canada

\section*{Irvington Varnish \& Insulator Company} 11 Argyle Terrace, Irvington 11, New Jersey Gentlemen:
Please send me technical data sheet on Silicone Rubber-Coated Fiberglas Tubing.
Name. Title
Company
Street



MORE NEWS:
This factory assembled dual carhon control, with or without switch, is part of a completely new line of half-watt carbon controls for TV and radio service.

The line incorporates a new carhon element of unusual density and smoothess which assures a low noise level and greatly reduced resistance drift. They are available in resistances from 250 ohms through 10 megohms.

TTurse new resistors are designed especially for television and radio applications, where the combination of high quality and low cost is a prime requisite. They are conservatively rated . . will withstand overloads up to \(100 \%\) of rated value. Resistance values are held to \(\pm 10 \%\).
Check over these advantages . . . then be sure your next axial-lead ceramic resistors are Mallory.

Rigid resistance values are maintained over the entire operating range by the exclusive Mallory Yard-ohm wire. The wire is accurately wound on a braided Fiberglas core. There is no otganic material to burn, blister or erach.
Securety clinched, high-grade timed leads prevent open circuits, resistance changes and pull-onts. Resistor ends are scaled by special heat and moisture resistant compound that assures high stability . . . even in humid at mosphere.
Resistance element is securely held by special inorganic cement that prevents corrosion. The cement is injected under pressure to eliminate air pochets ... assuring inaximum heat dissipation and long life.
Sturdy, non-porous steatite tubes afford ample protection against thermal and mechanical shock.
Be sure and get in touch with Mallory engineers while your new motels are still in the design stage. They will be glad to wo:k with you... help you matel telated circuit components.
Expect more.. Get more from MALLORY
Parts distributors in all major cities stock Mallory standard components for your convenience


SERVING INDUSTRY WITH THESE PRODUCTS: Elettromechanical - Resistors - Switches - Television Tuners - Vibrotors Electrochemical-Capacitors - Rectifiers - Mercury Batteries Metallurgical-Contacts • Special Metals and Ceramics•Welding Materials

\section*{CROSS}

TALK
- TIMETABLE . . Everything points toward early adoption of NTSC-proposed compatible-colortv standards by the FCC. The effect of the new standards upon our industry is already being widely discounted.

The speed with which color-tv will become a major factor in the market is a profitable subject for speculation. There are too many economic and technical problems still ahead to permit preparation of a bulletproof timetable, but we will say this: We're bullish on color-tv, won't sell it short.
- ARMISTICE . . Since the Korean cease-fire many market forecasters have asked us how much electronics business is military and how much civilian.

The question is impossible to answer with accuracy because of the extremely varied nature of products within our field, the difficulty of determining end-point use in many cases and the fact that neither the military people nor our own draw a particularly fine bookkeeping line between electronic and allied products.

Some few manufacturers of electronic equipment are selling almost exclusively to the government, but it is our impression that these companies are for the most part small. Middle-size firms seem to have their hands about equally on both markets. Larger companies appear to be heavy on the civilian rather than the military side.

Estimates on the military slice of the overall pie range from about 20 percent to 50 percent.

We are inclined to believe that the first-mentioned figure is nearer the mark.


CURTIS WHITTLESEY McGRAW
Everybody who knows Electrovics has hnown Curtis McGraw, President and Chairman of the Board of the McGraw-Hill Pub. lishing Company. The enduring mark of his leadership in the lask of keeping business well-informed, shaping the technical development of industry, and holding the nation to an awareness of its power for greatness and goodness must remain on these pages. But it is something out of the lives of all of us that he died last month.

\section*{Production Techniques in}

Point-contact and junction transistors require germanium slabs cut from single-crystals


REDUCTION of germanium dioxide powder is achieved by heating in hydrogen asmosphere at carefully controlled temperatures up to \(1,050 \mathrm{C}\). The metallic germanium undergoes a two-hour cooling period with the furnace turned off


ZONE-REFINING process further purifies metallic germanium. Boats containing metal are pulled ihrough six zones

Fabrication of point-contact units involves use of mechanical and optical aids that per-


GERMANIUM PELLET for point-contact transistor is held in place by needle-point fixture for welding to tinned shelf that also serves as base connection. Point-contact peliets are 0.045 in . square


ETCHING to ensure uncontcminated surfaces is achieved on merry-go-round fixture that moves pellets under acid

Care must be taken in encasing point-contact transistors to see that the points remain


ASSEMBLY of point-contact transistors is accomplished using high power microscope and micromanipulator to se contacts at a tolerance of 0.00025 in.


FOLYISOBUTYLENE, a nonhardening resilient wax, is applied to the pointcontact area to provide semi-fluid environment. A protective coating of quick-hcrdening polystyrene dope holds the wax in place

\section*{Transistor Manufacture}
of controlled impurity ...


GROWING of single germanium crystals comprises final step in germanium preparation. Subsequent process is sawing

> Complete details of the many steps involved, including pertinent timing data, temperatures, materials, dimensions, etching and other special processes. First technical article describing transistor manufacture at RCA's Harrison plant

By JAMES D. FAHNESTOCK
Associate Editor, Electronics
mit close point spacing ...


POINT CONTACTS are shaped in machine shown from spools of wire. Hairthin cantacts are visible as blur
fixed on base block . . .


ARALDITE, an opaque white plastic is poured over the transistor, using medicincl capsules as molds

ALTHOUGH TRANSISTORS are currently available on a commercial basis, many of the production methods used in their manufacture are small-scale operations in comparison with modern mechanized tube-making techniques. The processes to be described are those presently in use at RCA's commercial pilot-production setup at Harrison, New Jersey.

Industry needs for transistors are expected to exceed tens of thousands per day within a few years, and obviously automatic production methods will become mandatory to meet those demands.

\section*{Germanium Preparation}

The first step in manufacturing transistors is the preparation of ultrapure germanium. The main source of germanium in this country is germanium dioxide, a byproduct of the zinc-refining process. Removing the oxygen from the white germanium dioxide powder is accomplished by placing a boat containing approximately 450 grams of the oxide in a long tube inside a reducing furnace.

Inside the furnace a constantly circulating stream of dried and purified hydrogen is passed over the oxide. A cam-operated timing mechanism heats the germanium dioxide to a temperature of 650 C for 3 hours, 850 C for 1 hour, and
\(1,050 \mathrm{C}\) for 1 hour. During this time the powder becomes metallic as oxygen is removed (in the form of water vapor) by the hydrogen.

The metallic germanium resulting from this preliminary purification process has a volume resistivity of between \(1 \frac{1}{2}\) and 3 ohm-cm, but is still much too variable in its characteristics for use in transistors. A second process, called zone refining, is used to further purify the metal to a volume resistivity of as high as 50 ohm-cm. The intrinsic volume resistivity for pure germanium is 60 ohm-cm.

In RCA's zone refining process, the semi-pure germanium from the reduction furnace is pulled through one of two tubes in a boat similar to the one used in the reduction furnace. The boat must pass through six sets of induction heating coils each of which heats the metallic germanium under its turns to the melting point.

As the germanium leaves the influence of each set of coils, it again cools and solidifies and since most of the impurities commonly found in germanium prefer to be in molten metal rather than in solid metal, these impurities actually move toward the trailing end of the boat in each melting zone.

The result of the zone refining process is a bar of germanium, roughly 65 percent of the weig] \(t\) of


CURING AND TESTING comprise final steps in manufacture of point-contact transistors. Araldite polymerizes during 72 hour baking at 105 C . Shrinkage is held to about 0.5 percent. Testing position at right contains all necessary circuits for checking electrical parameters of transistors
germanium dioxide used, with resistivity ranging from \(50 \mathrm{ohm}-\mathrm{cm}\) at one end and falling of to about 30 ohm-em two thirds of the way toward the end that trailed in traversing the furnace. The six-foot tubes in the zone refining machine are traversed in two to three hours in an atmosphere of 90-10 forming gas.

\section*{Crystal Growing}

The proper amount of impurity is added and the bar of germanium formed into a single crystal for transistors, in the vertical "growing" machine. The zone-purified
germanium is melted in a hydro-gen-atmosphere furnace. By a precise mechanical linkage a single germanium crystal or seed is carefully lowered onto the top of the germanium puddle. The germanium immediately begins to crystallize around this seed. Complete and instantaneous crystallization is prevented by mechanically pulling the crystallized part away from the melt while imparting a spimning motion. Pulling speed is approximately 0.032 inch per minute, and the forming crystal is spun about its axis at 60 rpm .

This growing process takes sev-
eral hours. The result is a single crystal of germanium (some impurities are added prior to the growing process to obtain the desired characteristics) about as big as a thumb and six or eight inches in length. These bars are subsequently sawed with diamond wheels into minute pieces for use in transistors. The dimensions for the pellets used in point-contact transistors are 0.045 in . square by 0.010 in. thick and for the junction transistors the pellets are \(0.090 \times 0.130\) \(\times 0.005\) inch.

\section*{Point-Contact Units}

The \(0.045-\mathrm{in}\). square pellet coming from the diamond saw contains mechanical surface irregularities that cannot be tolerated in transistors. An even surface is obtained by placing the pellets in a pre-etch bath. After the etch, the pellet is soldered to a support that has previously been tinned (with pure tin). The tinned surface of the support is first coated with Diveo No. 335 solder flux, the germanium pellet placed on this surface, and a small soldering iron is then applied underneath the support to form a bond between the pellet and the support without contamination.

The next process involves the squirting of a fine stream of hydrogen peroxide and hydrofluoric acid on the surface of the pellet as one of the final cleaning steps before

Processing junction transistors also requires close tolerances in dimensions, temperatures


JUNCTION-TRANSISTOR base slabs are gaged to proper thickness by Ames gage. Thin slabs are rejected; thick slabs are re-etched


ALLOYING process takes place in hydrogen-atmosphere oven at about 550 C . Twenty-five base slabs are placed in machined holes in jig along with nickel tab that will serve as base connection
applying the point contacts. This special etching process is carried on in a merry-go-round device in which the supports are fixed to the spokes of a rimless wheel in such a way that when the wheel rotates the pellets come under the nozzles of the acid streams and subsequent wash-water streams.

Used acid is collected beneath the wheel, and only fresh acid touches the germanium. When the supports reappear at the opening, the pellets have been completely processed and are ready for the locating of cat-whisker emitter and collector and the base lead.

A preformed point subassembly comprises three parallel wires 0.018 inch in diameter and held together by a glass bead. The center lead is shorter than the two outside leads which are formed to meet at one end for temporary mechanical rigidity. This assembly is held firmly in the movable portion of a jig that also serves as one electrode of a precision resistance welder of the type commonly used in tube manufacture.

The first step in assembly is to weld the almost invisible preformed emitter and collector wires to the side rods. The latter operation is done with the aid of a 10 -power microscope.

The germanium pellet and its support are next placed in the fixed portion of the jig, which is ar-
ranged to slide the points into contact with the germanium pellet. Again, using a microscope, the operator determines the position at which both emitter and collector points come in contact with the germanium plus 0.002 in., causing the cat-whiskers to exert slight pressure on the surface of the germanium. The base commection is then welded to the center lead of the glass bead assembly.

A third step in this operation, using a modified optical comparator, consists of bending the side rods closer together or farther apart to adjust spacing between the bevelled points. This process sets the spacing to within 0.00025 in. of the desired value, which is 0.0015 to 0.002 in . depending on the resistivity of the germanium.

The transistor is now assembled, but mechanical, thermal, moisture, and light protection must be added. First, a coating of polyisobutylene is applied to the contact area by an operator using a toothpick and a magnifying glass. Since this material is resilient, a protective covering such as quick-hardening Amphenol 912 polystyrene is applied over it for mechanical protection. The latter hardens in air in about 3 minutes.

The point-contact transistor is finished by surrounding it with an ordinary medicinal capsule. A small paint brush and an ordinary
eve dropper are used to seal and fill the capsule with Araldite, an opaque white plastic chosen for its low shrinkage. The transistors are then baked in electric ovens for 72 hours at 105 C to polymerize the Araldite-by this treatment shrinkage is held to about 0.5 percent. The electrical forming process consists of discharging a charged capacitor across the col-lector-base terminals of the transistor a number of times to obtain certain specified electrical properties. This process has been discussed in the literature and will not be explained here.

\section*{Alloyed-Junction Transistors}

The alloyed-junction transistor uses the same germanium base material as the point-contact transistor, but the dimensions are different as mentioned previously. A small slab \(0.090 \times 0.130 \mathrm{in}\). by 0.005 in. thick is desired. These slabs are saw cut slightly over-size, so that an initial etching process to obtain surface smoothness may be applied.

After this etching process, the individual slabs are gaged and divided, according to thickness, into ten groups. Those having thicknesses less than 0.0045 in, are scrapped. Those between 0.00475 and 0.00525 are suitable for use. Those thicker than 0.00525 in . are re-etched in batches for a length of
and timing. Testing before final fabrication saves time and minimizes rejects . . .


ETCHING position for germanium base with collector and emitter pellets in place. Wash bath and air blast are behind etch dish


RESISTANCE of alloyed junctions is checked prior to assembly. Operator holds transistor base in tweezers that form one contact of ohmmeter which checks back resistance


HOT HYDROGEN melts solder that attaches tinned wires to emitter and collector pellets on opposite sides of junction transistor base
time depending on the amount of germanium to be removed. After the second etch, thickness is again checked. The slabs falling into the 0.0045 to 0.00475 in. category are held aside for a special subsequent processing.

Next comes the process in which emitter and collector pellets are fixed on opposite sides of the germanium slab. To make pnp junctions, indium pellets are used; for \(n p n\) junctions, lead-antimony pellets are used. The pellets are cylindrical in shape, with an axial length thickness of 0.015 in . The emitter pellet has a diameter of 0.015 in., while the collector pellet is 0.045 in . in diameter.

\section*{Base Contact}

Twenty-five of the germanium slabs are placed in precision slots in a jig. At the same time a tinned nickel tab is placed in contact with the germanium slab to serve as a contact point for the base connection. First, the collector pellets are brought into contact with one side of the wafers. The jig is then inserted in a close-fitting nichrome tube through which 100 amperes of current flows. The resulting heat penetrates the stainless-steel jig and fuses the tinned nickel tab and the collector pellet to the germanium slab.

The atmosphere in the furnace is one of purified and dehumidified hydrogen. The temperature is controlled in the range of 520 to 550 C to secure proper penetration of the


FINAL ASSEMBLY is checked for me. chanical strength and arrangement of leads adjusted by inspector using pair of tweezers and magnifying glass
pellet material into the germanium slab. After \(1^{\frac{1}{2}}\) minutes in the furnace, the jig is removed, turned over, and the emitter pellets are inserted in the smaller holes on the opposite side of the germanium. The jig is then returned to the oven for a 4 -minute firing. Shorter times are used for the undersize germanium slabs.

The individual transistors are then immersed in an etch solution of nitric and hydrofluoric acids for 25 seconds to remove any contamination on the exposed junction surface, taking care not to dip the nickel tab in the solution with the accompanying possibility of cross deposition of the metal. The acid action is stopped by washing the transistor in a circulating bath of hot water and a blast of purified air removes water particles for the short-circuit test that follows.

\section*{Resistance Testing}

To facilitate rapid testing for low barrier resistance, a special ohmmeter is adjacent to the etching position. The nickel tab is held in a pair of metal tweezers. The tweezers are placed across a metal bar which forms one side of a circuit containing a 3 -volt battery and a 0 to 100 microammeter. The circuit is completed by bringing the collector pellet in contact with a spring contact.

A current reading of \(6 \mu\) represents a collector barrier resistance of 500,000 ohms which is the low limit for acceptance on an initial


PLASTIC ENCASEMENT completes junction transistor manufacture. Junction is first dipped in polystyrene and then covered with black paint and Araldite
etch. If more than \(6 \mu \mathrm{a}\) is indicated, the resistance is too low and the transistor is re-etched. If reetching the second or third time is successful the transistor is ac-cepted-if not, it is scrapped. A reversing switch on the tester permits testing of \(n p n\) as well as \(p n p\) junctions.

The next step in the fabrication of RCA alloyed-junction transistors involves the connection of 0.005 inch copper-plated tungsten wires to the collector and emitter pellets and the base lead. This is accomplished by first tinning the ends of the wires with Cerrobend, a solder having a melting point of 90 C . The base wire is welded to the nickel tab by means of a small resistance welder. The emitter and collector wires, which have previously been welded to the base assembly, are brought into contact with the indium pellets in a stream of hot hydrogen. This operation is observed through a microscope to ensure a thorough bond. No flux is used in this operation. An inspector pulls on the soldered wires to insure firm mechanical bond.

The finished junction is then dipped in Amphenol 912 polystyrene. Because of the photosensitivity of the junction a coat of black paint is anplied over the polystyrene and allowed to dry. The unit is then cast in room-setting Araldite using flexible molds similar to plastic ice-cube trays, to facilitate easy removal after the plastic hardens.

\title{
Backward-Wave Tube
}

\begin{abstract}
Electron-stream amplifier utilizing backward-wave mode forms microwave oscillator continuously tunable over a three-to-one bandwidth by a single voltage control. Tubes have been built for frequency bands centering about \(6,000,10,000\) and \(50,000 \mathrm{mc}\)
\end{abstract}

VARIATION OF electromagnetic waves along an electron stream is the principle underlying much recent work in broadband microwave amplifiers and oscillators.

The backward-wave tube is a wave-type device that can form a microwave oscillator continuously tunable over a three-to-one frequency bandwidth merely by varying a single voltage. The tube can also be made to function as an extremely narrow-band, high-gain amplifier likewise tunable by varying a single voltage. Power outputs range from milliwatts to watts.

\section*{Loaded Waveguides}

Any loaded waveguide capable of slowing down an electromagnetic wave is a potentially useful circuit for a traveling-wave tube. These loaded guides can often be described simply in terms of the lumped-constant filter analogy. In a filter composed of many identical sections of the type shown in Fig. 1 A , the phase shift per section is approximately given by
\[
\sqrt{B X}=\omega \sqrt{L C}
\]
where \(B\) is the shunt susceptance and \(X\) is the series reactance. For energy fed in at the left, the phase progresses to the right. Thus energy traveling to the right has a progression of phase or phase velocity to the right given by
\[
\left[v_{p}=\omega / \sqrt{B X}=\omega^{2} / \sqrt{\overline{L C}}\right.
\]

If \(L\) and \(C\) are made large enough, the wave travels slowly enough to keep in step with an electron beam. Figure 2 illustrates one method of loading a guide to slow down the phase velocity and indicates its equivalent lumped-constant filter circuit.

If the amplified output of the

\author{
By H. HEFFNER
}

Bell Telephone Laboratories Murray Hill, N.J.
tube is fed back directly to the input, oscillations are built up at the frequency for which the output is in phase with the input. Although it would appear that the frequency could be continuously tuned by adjusting the phase shift in the feedback loop so that the total phase shift remained \(2 n\) r. as frequency changed, in practice this scheme never worked very well. Since the circuit must be many wavelengths long to give reasonable gain, and the gain occurs over a large frequency range, one adjustment of the phase allowed favorable outputinput addition at many different frequencies depending upon the number of wavelengths total phase shift. Thus as the phase shifter was tuned the oscillations would jump from mode to mode rather than tune continuously. Although several schemes were invented to circumvent the moding, they operated only over narrow bandwidths.

Energy traveling from left to
right along a filter composed of several sections of series capacitance and shunt inductance as shown in Fig. 1B experiences a phase advance to the right. The phase shift per section is approximately
\[
-\sqrt{B X}=-1 / \omega \sqrt{L C}
\]
where \(B\) is the shunt susceptance and \(X\) the series reactance. The phase velocity of the wave is
\[
v_{p}=-\omega / \sqrt{B X}=-\omega^{2} / \sqrt{L \bar{C}}
\]

Unlike the previous case, the direction of the phase velocity is opposite to the direction of energy transfer. Thus, the circuit is said to support a backward wave.

\section*{Backward Wave}

The phase velocity of a back-ward-wave circuit is a rapidly changing function of frequency as contrasted with forward-wave circuits, which may have an essentially flat velocity-frequency characteristic. Figure 3 shows typical variations of phase velocity with frequency for forward and back-ward-wave circuits. Despite the fact that a backward-wave circuit changes phase velocity rapidly with


Millman \(50,000-\mathrm{mc}\) amplifier in which backvrard-wave oscillations were observed
frequency, orer a large band the phase relocity may be much slower than the velocity of light.

\section*{Feedback Circuit}

A backward-wave tube is shown schematically in Fig. 4. Consider a feedback loop composed of an r-f electromagnetic field propagating energywise from right to left and and r-f conduction current induced by this field flowing from left to right which itself induces the original field on the circuit.

The electric field traveling alons the backward-wave circuit experiences a phase advance of \(\omega L / v_{\mu}\) where \(L\) is the total circuit length and \(v_{p}\) the circuit phase velocity. The electric field velocity modulates the electrons within the beam traveling along with it. One quarter of a cycle later, these electrons by virtue of the speeding up or slowing down have formed bunches giving rise to an r-f current. Thus the \(r\)-f current lags the electric field by 90 deg or \(-/ 2\) radians. This r-f current travels down the tube with the beam velocity, \(u_{n}\), and in a length \(L\) suffers a phase delay of \(\omega L / u_{"}\). This r-f beam current in turn induces an electric field on the circuit. It can be shown that the conversion process introduces an additional \(90-\mathrm{deg}\) phase lag.

For the returned field to add in phase with the originating field, the total phase shift must be an integral number of cycles. Thus adding the phase advance on the circuit, the \(\pi / 2\) phase lag in converting electric field to current, the phase delay in the electron beam and the additional \(\pi / 2\) phase lag in converting again to the electric field gives
\(\left(\omega L / v_{n}\right)-\pi / 2-\left(\omega L L^{\prime} u_{0}\right)-\pi / 2=2 n_{\pi}\)

O1'
\(\left(1 / v_{p}-1 / u_{0}\right) \omega L=\left(2_{n}+1\right) \pi\) as the condition for phase reinforcement.

\section*{Loop Gain}

Integral phase shift is not the only condition for oscillation; loop gain must equal unity. Because there is loss inevitably present, the tube must amplify by traveling-wave-type interaction to satisfy this condition.

In any traveling-wave tube, the amount of amplification per wavelength is dependent upon the ratio of circuit impedance, \(Z\), to d-c beam impedance \(V / I\), and the difference between the electron velocity and the circuit phase velocity. The relative beam and circuit velocity is fixed by the condition that the feedback loop be an integral number of wavelengths. The condition to start oscillations is
\[
Z \Lambda^{N_{3}} I / V=\text { constant }
\]
where \(N\) is the length of the circuit in wavelengths and the constant depends upon which integer value of \(n\) is picked in the phase-reinforcement relation. As \(n\) becomes larger so does the value of the constant, indicating that more beam current is required to start oscillations for the higher oscillation points. This is to be expected since a larger value of \(n\) means that the difference between beam velocity and phase velocity is larger with the result that the wave and beam tend to get out of step, causing the amplification to fall off.

\section*{Backward-Wave Oscillator}

If the beam current is adjusted to the value required to start oscillations for the \(n=0\) conditions, the
tube will oscillate at a frequency determined by the phase-reinforcement relation
\[
\omega=\pi /\left(1 / v_{p}-1 / u_{0}\right) L
\]

When the beam velocity \(u_{\text {" }}\) is changed by varying the beam voltage, the frequency also changes. Since the phase velocity of the circuit is a smoothly varying function of frequency, the frequency will be a smoothly varying function of beam velocity and the oscillator will exhibit no holes or jumps. It will be continuously voltage tunable.

\section*{Backward-Wave Amplifier}

Such a regenerative-type oscillator acts as a high-gain amplifier when operated just below the startoscillation current. The gain is a maximum for the frequency at which the length of the feedback path insures exact phase addition and falls off rapidly as the frequency changes and the feedback goes from positive to negative. Gains of 40 to 50 db can be achieved depending upon how close the beam current is to the start-oscillation value. Figure 5A shows a typical variation of gain as a function of current. The formal relation of gain as a function of current at the frequency of maximum gain may be expressed as
\[
\text { Power-gain ratio }=K /\left(I-I_{s}\right)^{2}
\]
where \(K\) is a constant depending upon the impedance and tube length and \(I_{s}\) is the start-oscillation current.

Gain falls off rapidly away from the critical frequency-velocity point where the feedback is positive, that is, when circuit phase shift minus beam phase shift is equal to \(\pi\).
Since for many tubes, the magni-


FIG. 1-Filter that propagates a for-ward-wave (A) and backward-wave (B)


FIG, 2-Loaded waveguide (A) and its equivalent representation using the lumped constant filter analogy (B)
tudes of these phase shifts may be near 100 , it requires only a small frequency change to make their difference vary from \(\pi\) to \(2 \pi\) resulting in a change from positive regenerative feedback to negative degenerative feedback. The effective \(Q\) of the backward-wave amplifier is defined as the ratio of the frequency deviation required to reduce the gain by half to the frequency of maximum gain. On this basis, backward-wave tubes have been built which have values of Q running into the thousands. These tubes have been constructed not only in the centimeter-wave region but also in the millimeter-wave band where cavity Q's above several hundred are nearly impossible to attain.

\section*{Selectivity and Bandwidth}

Figure 5B illustrates the variation in amplification with frequency in the backward-wave amplifier. As the beam current becomes closer to the start-oscillation value the maximum gain increases but in addition the gain curve becomes more sharply peaked indicating that the effective Q increases with increased current.

The phase-shift relation that insures regenerative feedback indicates that the entire gain curve can be shifted along the frequency axis by merely changing beam velocity. Thus it is possible to build a highgain microwave amplifier that can he swept over a wide band at rates up to several million times a second and can distinguish with a high degree of resolution between two signals differing only slightly in frequency.

Bandwidth of a backward-wave oscillator depends upon the circuit


FIG. 5-Variation of backward-wave gain with beam current ( \(A\) ) and power-gain as a function of frequency
used, its pass band and the detailed phase velocity variation of frequency. See Fig. 3. The oscillation bandwidth can be no greater than the circuit bandwidth, but it can be less. For example, the phase velocity can become so high that it is difficult or even impossible for electrons within the beam to travel fast enough to satisfy the phase relation for regeneration. Nevertheless circuits are known that allow the frequency to be tuned over a three or even four-toone ratio. A backward-wave oscillator has been buit that will tune anywhere from 3,000 to \(9,000 \mathrm{mc}\).

\section*{Other Advantages}

Another great advantage of the backward-wave tube is its immunity to frequency pulling. Unlike the magnetron and the klystron, the frequency of oscillation does not change as the impedance of the load is changed. This characteristic makes unnecessary the


FIG. 3-Phase-velocity variation in forward and backward-wave circuits


FIG. 4-Operating principle of backward-wave tube
insertion of an isolation element such as a fixed attenuator between oscillator and load.

The efficiency of early backwardwave oscillators, defined as the ratio of r-f power developed to d-c beam power, was low, probably less than one percent. Since then, by the use of better circuits and better focused electron beams, the efficiency and the power output have been increased such that a group working at Stanford University has reported continuous power outputs of 125 watts with 12 -percent efficiency.

Frequency modulation of a back-ward-wave oscillator is obtained by varying the beam voltage, while amplitude modulation results from bean-current variations. The resultant modulation of the back-ward-wave oscillator, in common with most electron-beam-type oscillators, is not pure frequency or pure amplitude variation. There is a small amplitude variation as beam voltage is changed and a small frequency variation as beam current is changed. These effects are not so pronounced as they are in the klystron but under certain circumstances they may be troublesome enough to require correction.

\section*{Bibliography}
S. Millman, A Spatial-Harmonic Travel-ng-Wvare Amplifier for Six-Millimeters Wavelength, Proc \(I R E\), p 1,03 oे, Sept. 1951. II. Hefner, Stanford University E. R. L. Tech. Rpt 48, June 18, 1952 .
H. R. Johnson and .T. R. Whinnery, Traveling-Wave Tube Tunes Electroncally, ELECTRONICS, p 177 , Aug. 1953. 1:. Komptner, Bacliward-Wave Oscillator, hell Labs. I' ecord, p 281, Aug. 1953.


Top riew of control chassis


Top view of remote chassla

\section*{Remote-Control System}

By A. V. TIDMORE \({ }^{-\quad \text { owner and General Manage }}\)
rottsville \(P\) a


FIG. 1-Block diagram of complete transmitter remote-control system

\section*{TABLE I—FCC SPECIFICATIONS FOR TMANSMITTER REMOTE-CONTROL EQUIPMENT}

\begin{abstract}
The equipment at the operating and transmitting positions shall be on the premises under the control and supervision of the licensee at all times and shall not be accessible to persons other than the licensee or his agents.
The control circuits from the operating position to the transmitter shall provide positive on-and-off control and shall be such that open circuits, short circuits, grounds or other line faults will not actuate the transmitter; and any fault causing loss of such control will automatically place the transmitter in an inoperative condition.
A metering system shall be provided so that the operator at the remote-control position shall have indications of the operating constants of the last radio stage (total plate current and plate voltage) and the r-f transmissionline meter reading.
\end{abstract}

Means shall be provided for calibration and adjustment of the metering system to provide the accuracy prescribed in the Standards of Good Engineering Practice concerning f.m broadcast stations.
Means shall be provided so that the operator at the remote-control position shall have an indication as to the condition of the tower lighting.
Frequency and modulation monitors shall be installed at the remote-control position to indicate continuously the carrier frequency and percentage of modulation.
Provision shall be made so that the necessary tuning of the transmitter and control of its output can be accomplished from the remote-control position

\title{
For F-M Broadcasting
}

> Positive and fail-safe operation of remote f-m broadcast transmitter is achieved using stepping-switch function selector and audio-tone control working over telephone lines. Remote metering circuits monitor five important circuit functions

REmOTE CONTROL of WPPA's transmitter is provided by the equipment to be described. The operate-control unit is located at the a-m transmitter site and the remote-control unit is installed at the \(f-m\) transmitter ten miles away. Two telephone lines are used to operate the transmitter. One line connects meters mounted on a panel at the operating location to appropriate circuits at the transmitter. The other carries dial impulses and audio tones to tune the transmitter. Output of the f-m transmitter is monitored off the air by a vhf receiver installed at the operating point.

\section*{Metering Panel}

Six quantities are metered remotely: power-amplifier plate voltage, transmission-line current (in percent of maximum), poweramplifier plate current, inter-mediate-power-amplifier cathode current, number of tower lights lit
and resistance of the metering line. Lamps on the metering panel indicate the condition of the tuningcontrol latching relay. A red lamp indicates that the latching relay is in ON position and that the transmitter is tunable by remote control. The green lamp denotes that the relay is in OFF position and that remote controls are inoperable.

The function to be monitored is selected by a telephone-type dial that sends a series of d-c pulses over a phantom circuit on the tonecontrol line. The number of pulses corresponds to the number dialed and actuates a stepping-switch relay that selects the transmitter function to be monitored.

Tuning is accomplished remotely by a tone-control system. Trans-mission-line current and poweramplifier grid and plate currents are adjusted by tuning motors in the transmitter. Audio tones sent over the line in response to left or right motion of double-throw key-
type switches determine whether the tuning motors will advance the controls clockwise or counterclockwise. Audio tones are also used to turn the plate-reset relay off and on and to control tower lights. A separate audio tone holds the transmitter plate relay on and releases in case of control-equipment or line failure, putting the transmitter off the air.

Ten lamps on the control panel show what transmitter function is currently being monitored. Many of the fuses in the remote-control equipment are equipped with failure-alarm lamps to facilitate troubleshooting. Table I lists specifications for transmitter re-mote-control equipment as established by the Federal Communications Commission.

\section*{Dial System}

The block diagram, Fig. 1, shows the operate-control unit at the a-m transmitter and the remote-control


FIG. 2-Operate control unit includes three audio oscillators that provide control tones
unit at the f-m transmitter. Both are coupled to the connecting telephone line through transformers. The center tap of each transformer is connected to ground through a keying relay. Either telephone dial puts 100 -volt pulses on both keying relays so the system can be operated from either the operate or remotecontrol point. This allows the engineer to check equipment performance by operating it at the remote site. Dial points and keying-relay contacts have \(0.1-\mu \mathrm{f}\) capacitors connected across them to suppress arcing.

When either telephone dial is dialed clockwise, a pulse or pulse train is impressed from the center taps of both transformers to ground through the two keying relays. The keying relay in the oper-ate-control unit is shown in Fig. 2 and the keying relay in the remotecontrol unit may be seen in Fig. 3. Both relays are designated \(R E_{2}\). Dialing circuits for both units are practically identical.
The keying relays close intermittently at both transmitter and control point in response to pulses from the telephone dial. This supplies 14 volts d-c to a pair of slow-
release relays, \(R E_{3}\) and \(R E_{4}\). Protecting relays, \(R E_{b}\), prevent voltage from arcing on the contacts of the stepping-switch relay, \(R E_{1}\), during the switching operation. The protecting relays are energized through the normally-open contacts of slow-release relays, \(R E_{4}\), and are kept energized through the nor-mally-closed contacts on the same relays while they are energized.
Before slow-release relay, \(R E_{8}\), can operate in response to the signal from the keying relay, the release relay, \(R E_{5}\), is actuated through the normally-closed contacts of the slow-release relay. The release relay resets the stepping relay, \(R E_{1}\), to its initial position. The stepping relay is then energized through the normally-open contacts on the slow-release relay, \(R E_{3}\), and the stepping switch is set to position 1.

When number 1 is dialed, no pulses are applied since the steping relay is automatically set to position 1 as it comes to rest. The dial pulse consists of removing the 14 volts d-c for a fraction of a second.

When number 2 is dialed the counterclockwise movement of the
dial impresses one pulse on the tone-control line to ground and also across keying, stepping and slowrelease relays. The dial pulse has no effect on the slow-release relays but actuates the stepping relay, moving the switch arm to position 2.

Ten positions can be achieved with nine pulses from the telephone dial. The stepping relay automatically resets on each clockwise motion of the dial. When the dial is at rest, all relays are dëenergized. The pulses of the dial can be heard by connecting a pair of earphones from the center tap of either line transformer to ground.

\section*{Operate-Control Unit}

The operate-control unit incorporates three audio oscillators that generate control tones for the f-m transmitter. Transitron oscillators tuned to \(925,1,025\) and \(1,200 \mathrm{cps}\) are coupled to the tone-control line through a two-stage amplifier. The 1,025 and \(1,200-\mathrm{cps}\) tones control transmitter switches and tuning motors when actuated by tuningcontrol key switches. The \(925-\mathrm{cps}\) tone is always on the line when the transmitter is operating under remote control. It actuates the


FIG. 3-Remote-conirol unit has sharp-bandpass filters that feed control tones to proper thyratron relay tube
transmitter plate relay through circuits in the remote control unit,

The stepping switch consists of three decks of ten contacts each. The first deck connects to a bank of ten lamps that tell the operator at a glance what position the arm is in. The second deck selects one of the first nine control key switches. The arm is connected to 14 volts \(d-c\). The tenth key switch is connected through contacts on the third stepping-switch deck and actuates an ohmmeter used for checking line resistance.

Each key switch controls a transmitter adjustment. When the key is moved to the right, 14 volts d-c is applied to a relay in the plate circuit of the \(1,025-\mathrm{cps}\) oscillator that connects its output to the tone amplifier. When the key is moved to the left, the \(1,200-\mathrm{cps}\) tone is put on the line. The outputs of both tone oscillators are normally loaded to ground and disconnected from the tone amplifier. The 1,025 and \(1,200-\mathrm{cps}\) tones are used either to turn tuning motors clockwise or counterclockwise or to turn switches off and on at the f-m transmitter.

The third deck of the stepping switch selects one of six meters.

Meters one to five read: p-a plate voltage, transmission-line current (in percent), p-a plate current, ipa cathode current and number of tower lights lit. The meters have 500-microampere movements and 33,000 -ohm multipliers. Sixteen volts d-c across the metering line causes full-scale deflection.

When number 10 is dialed, an ohmmeter is connected into the circuit. The ohmmeter has a 1-milliampere movement. When key switch 10 is thrown to the right,
the ohmmeter may be calibrated to zero; when thrown to the left, the ohmmeter reads the resistance of the metering line. The line-compensating resistor (LINE ADJ) is used to adjust line resistance to the value determined when the meters were calibrated. Line resistance changes little, however, and has little effect on the meter readings.

The tuning-control latching relay provides a safety feature that prevents the transmitter's being tuned accidentally. Before a tuning


FIG. 4-Radio-frequency amplifier used in off-air monitoring


FIG. 5-Electronic switch permits simultaneous monitoring of a-m and f-m signals
control can be actuated, it is first necessary to place the latching relay in ON position. This is done by dialing number 9 . This connects 14 volts \(\mathrm{d}-\mathrm{c}\) to the line to energize the sensitive relay, \(R E\); in the operate-control unit. The sensitive relay in turn applies 14 volts d -c to the latching relay \(R E_{8}\) turning it on. The on position is indicated by a red lamp. With the tuning-control latching relay in on position, \(R E\), and \(R E_{10}\) in the remote-control unit are energized. These relays are in the tuning-control circuits and permit the control relays to be actuated in response to tone signals.

When number 10 is dialed at either control point, the tuning-control latching relay is placed on 0 FF position.

\section*{Remote-Control Unit}

The signals from the tone-control line are transformer-coupled to a two-stage audio amplifier. After amplification, the audio tones are separated by three parallel bandpass filters sharply tuned to 925 , 1,025 and \(1,200 \mathrm{cps}\) respectively. The output each filter is amplified, rectified and applied to the grid of a 2050 thyratron. Each thyratron has a relay in its plate circuit that is energized when the tube conducts. The \(925-\mathrm{cps}\) tone is always on the line and the output of this channel keeps the transmitter plate relay energized.

The 1,025 and \(1,200-\mathrm{cps}\) channels carrying tuning control signals. The switch arm of deck number three of the stepping switch selects a set of relays from \(R E_{11}\) to \(R E_{19}\) depending upon the number dialed by the operator. These control relays actuate tuning motors or throw
switches depending upon the transmitter function being adjusted. The relays are energized when current flows in the thyratron relay tube and the frequency of the audio tone thus determines the direction of tuning-motor rotation.

Number-two deck of the stepping switch connects one of ten indicator lamps to give visual indication of the position of the arm. Numberone deck is connected to 8 potentiometers. One end of each potentiometer is connected to its individual transmitter metering circuit. The other end is connected to ground. The potentiometers are adjusted so that remote meter readings correspond to meter readings of the f-m transmitter. Transmitter meter readings are taken from the ground side of the transmitter circuits. Protective parallel resistors are placed in circuits where high voltage is found. Should one of the resistors open or become defective, high voltage will not appear in the remote-control units. Since it was impossible to get a true sampling current from the p-a grid and still keep one side


FIG. 6-Simple circuit indicates number of tower lights burning
of the transm iter metering circuit grounded, the ipa cathode current is metered instead.

\section*{CONELRAD}

The remote-control equipment complies with the CONELRAD requirement. The transmitter is taken off the air if any of the following units fail: tone-control line, two-stage tone preamplifiers 6 F 6 plate-relay circuit (the 6 F 6 plate removes the 110 volts a-c from the thyratron), \(925-\mathrm{cps}\) sharp-bandpass filter, three-stage amplifier, thyratron control tubes or the d-c plate voltage supply.

\section*{R-F Amplifier}

The frequency and modulation monitor is operated off the air by picking up the f-m signal on 101.9 mc , at the operate-control point using an eight-element Yagi antenna and amplifying the r-f signal in the four-stage r-f amplifier shown in Fig. 4. Several lowpower tubes are used to reduce television interference. The r-f amplifier can pass f-m with sufficient bandwidth. The d-c power supply is electronically regulated.

\section*{Electronic Switch}

The off-the-air audio monitor is operated by an electronic switch (Fig. 5) through the use of a multivibrator circuit. The f-m and a-m monitoring program is fed to the master monitoring amplifier with three-second periods of f-m alternating with three-second periods of \(\mathrm{f}-\mathrm{m}\) and \(\mathrm{a}-\mathrm{m}\). Lamps indicate which program is in operation. The \(\mathrm{f}-\mathrm{m}\) and a-m signals can be monitored separately by turning the test switch to the left for \(\mathrm{f}-\mathrm{m}\) or to the right for a-m. The center position is used for the a-m and f-m monitoring.

\section*{Tower-Light Metering}

The tower-light metering circuit is shown in Fig. 6. This consists of a current transformer and a fullwave selenium rectifier. This unit is calibrated to register on the meter the exact number of lamps lit. Arrangements are also provided for talking between operate and remotecontrol points by capacitively connecting a telephone to the metering line.

\title{
Magnetics In Geology
}

Three-coil sensing head and bridge circuit measure the magnetic susceptibility of rocks in the ground for correlation with readings obtained with airborne magnetometer. Change in self-inductance of coil ordinarily caused by rock irregularities is avoided in desigh that is also independent of frequency

\author{
By HAROLD MOONEY
}

Aesistant Professor of Geophysics
University of Minnesota
Minneapolis, Minn.

INTERPRETATION of aeromagnetic measurements must generally be made in terms of magnetic rock studies since the magnetic effect produced by a given structure depends upon the contrast between it and surrounding rock. The instrument to be described was developed for measuring magnetic susceptibility of rocks in place.

All previously published data on the magnetic susceptibilities of rocks have been based on laboratory methods using a few grams of sample. It has been shown \({ }^{1}\) that many such measurements are needed to describe adequately the magnetic properties of a large rock body.

\section*{Reducing Errors}

Measurements made on the rock in place should reduce sampling errors, since the effective volume of rock under measurement is several thousand times greater than for laboratory measurements. It should eliminate changes in magnetic properties produced by crushing or


Surveys with sensitive magnetometer suspended below plane indicate possible presence of iron ore and oil in land below
grinding, eliminate demagnetization errors and permit direct correlation with geology.

The basic instrument consists of three coils and a portable bridge for measuring mutual inductance. Coils \(A\) and \(B\) are connected in series, so wound that their fields nearly cancel at the position of coil \(C\). Mutual inductance between \(C\) and
the system \(A\) and \(B\) then reduces to a small value, about \(200 \mu \mathrm{~h}\) for the particular arrangement used here. When the assembly is placed on a rock surface, asymmetry of the coil system causes the mutual inductance to change. Magnetic susceptibility of the rock can be related to measurable electrical quantities through the following analysis.

The mutual inductance between two coaxial circular coils is
\[
M=8 \pi n_{1} n_{z} \sqrt{r_{1} r_{2}}
\]
\[
\begin{equation*}
\left[\left(1-\frac{t^{2}}{2}\right) K-E\right] 10^{-3} \mu \mathrm{~h} \tag{1}
\end{equation*}
\]
where \(K(t)\) and \(E(t)\) are complete elliptic integrals of the first and second kinds, \(t^{2}=4 r_{1} r_{2} /\left[\left(r_{1}+r_{2}\right)^{2}\right.\) \(\left.+z^{2}\right]\) and \(n, r\) and \(z\) represent respectively number of turns.


Analysis of airborne magnetometer findings depends upon field surveys. Portable instrument mounted on aripod is also used directly above reck formations
radius in em, and axial oflset in cm .
Smythe derives an equivalent equation. The change in mutual or self-inductance owing to the rock can be calculated in terms of the mutual inductance between a particular coil and the image of the same or another coil. The image, of strength \(2 \pi k /(1+2 \pi k)\) where \(k\) represents magnetic susceptibility, is located at the reflection position.

\section*{Inductance Calculation}

To illustrate; the mutual inductance between two coplanar coils 5 cm above the level surface of a rock of susceptibility \(k\) would be determined from the above formula with \(z=0\). The change in mutual inductance \(\Delta M\) due to the rock would be calculated by the same formula with \(z=10\) and \(M\) multiplied by \(2 \pi k /(1+2 \pi k)\). A change in self-inductance can be computed as the mutual inductance between the coil and its image.

It is convenient to separate each of the results into a factor \(G\) dependent on the geometry of the system and a factor \(k /(1+2 \pi k)\) involving only rock susceptibilities. The effects produced by the rock can then be written as a change in mutual inductance \(\Delta M=G_{i} k /(1+\) \(2 \pi k\) ) and a change in self-inductance \(\Delta L=G_{k} k /(1+2 \pi k)\), where each \(G\) is the sum of one or more terms in the form of Eq. 1. Typical values for \(G_{\text {e }}\) and \(G_{2}\) are 9,608 and 10,220 microhenrys, calculated for
the cimensions shown in Fig. 1.
Let it be assumed that the magnetic properties of the rock have changed the apparent coil constants to \(M+\Delta M, L_{c}+\Delta L_{c}\), and \(R_{c}\) \(+\Delta R_{c}\); the bridge is now found to balance at \(R_{1}+\Delta R_{1}, R_{3}+\Delta R_{5}\). By substituting these new values into the balance conditions shown in Fig. 2 it may be shown that
\(\frac{\Delta R_{3}}{R_{3}}=\frac{M \Delta L_{c}-L_{c} \Delta M}{\left(L_{c}-M\right)(M+\Delta M)}\)
where the changes are not restricted to small values because products such as \(\Delta R_{3} \Delta M\) have not been dropped. Approximating \(L_{\text {c }}\) - \(M\) by \(L_{c}\), the final relationship becomes
\(\Delta R_{3}=\frac{k}{1+2 \pi / 3} \frac{\frac{R_{2} R_{3}}{R_{2}+R_{3}} G_{2}-R_{3} G_{1}}{M+G_{1} \frac{k}{1+2 \pi k}}\)
The bridge readings give \(R_{s}, \Delta R_{3}\) and (from the balance conditions) \(M\). The unknown \(k\) can then be calculated from the electrical and geometrical constants of the system. In principle, \(M\) should be constant for a given coil arrangement, but temperature change and mechanical shock produce small changes that cannot be neglected.

For this reason each susceptibility determination is preceded by a base reading of \(R_{3}\), on a tripod well away from the rock. A small correction for the effect of the rock must be applied to the tripod reading. In practice, Eq. 3 is plotted as a calibration curve of \(k\) vs \(\Delta R_{3}\), using three values of \(R_{:}\)as param-
eter for each point of the curve.
The unusual coil arrangement of Fig. 1 minimizes an important source of error, that due to irregularities of the rock surface. The calibration equation assumes an infinite plane surface; failure to satisfy these assumptions may produce large errors.

\section*{Rock Irregularities}

It has been shown \({ }^{2}\) that, for this instrument, a hemisphere of \(50-\mathrm{cm}\) radius will approximate an infinite half space. In addition, Eq. 3 can be used to demonstrate that, with a proper choice of coil arrangement, the electrical change \(\Delta R_{3}\) produced by a given rock can be made to pass through a maximum as the coils are lifted from the rock surface. The maximum occurs at \(F=3.3 \mathrm{~cm}\) in Fig. 1.

At the peak, therefore, small errors in measuring \(F\) produce only slight errors in \(\Delta R_{3}\). This predicted effect has been verified experimentally. To the extent that surface irregularities are equivalent to an error in measuring \(F\), the coil arrangement of Fig. 1 will minimize their effect.

Paterson \({ }^{3}\) and Duffin \({ }^{4}\) have described instruments for determining magnetic susceptibility on rock outcrops. Paterson measured the change of self-inductance of a coil laid on the rock; Duffin measured mutual inductance for the three coplanar coils of a model 625 mine detector. Maximum sensitivity for both instruments coincides with maximum variation with distance from the rock surface, as shown in Fig. 3, As a result, surface irregularities can cause large errors.

To provide comparative data on outcrop vs laboratory measurements, a laboratory instrument similar to one described by Duffin was constructed. Coils were so wound that the same measuring circuit could be used as for the outcrop instrument.

\section*{Circuits}

The complete circuit shown in Fig. 4 includes oscillator, bridge and detector.

The null-measurement characteristic of a bridge was chosen over a direct-reading meter to avoid un-
certainties produced by variable oscillator output and variable amplification. The circuit, essentially a Heydweiller bridge, has three features desirable for this application: balance conditions are independent of frequency, so oscillator stability is not critical. Both variable adjustments are resistive and balance conditions are independent, which permits quick, accurate balancing.

To provide the desired accuracy, changes in \(R_{3}\) must be measurable to about 1 part in 5,000 (although \(R_{3}\) itself need not be known this closely). Resistance \(R_{3}\) has been built up, therefore, as a series of five fixed and one variable resistor as shown in Fig. 4. Indiviđual shorting switches across the fixed resistors permit coarse variation in \(R_{3}\). A type-A Helipot, linear within 0.5 percent, provides the required accuracy in the variable resistance.

Resistance \(R_{1}\) includes components similar to \(R_{3}\). It has not proved necessary to measure the out-of-phase component given by \(R_{1}\), although this could be used to determine rock conductivity.

The chief requirement on the fixed bridge components is stability rather than precision, since the actual values can be measured on a laboratory bridge. Wire-wound resistors and a mica capacitor provide this stability.

\section*{Oscillator}

The oscillator circuit includes a 1G6 duotriode oscillator, a 1G4 buf-fer-amplifier, and a 1G6 push-pull triode output. Requirements of the oscillator include low harmonic content, fair amplitude and frequency stability, frequency low enough to avoid effects due to rock conductivity and output voltage sufficient


FIC. 1--Design of three-coil sensing head


FIG. 2-Diagram of bridge circuit using three coils


FIG. 3-Improved performance of new magnetic instrument shown graphically
to produce a magnetic field of 0.5 oersted near the coils.
Geologic considerations dictate the last requirement; rock susceptibility varies with field strength, so measurements should be made at a magnetic intensity roughly equal to that of the earth. This requires about 15 v input to the bridge circuit, a setting that is made by means of a dropping resistor at the grid of the buffer tube.

The oscillator combines simplicity with stability. The tuned grid circuit using a toroidal permalloy inductor determines the frequency of 975 cps . Cathode coupling introduces negative feedback for amplitude stability.

The buffer stage proved necessary to maintain good waveform. Power is supplied by three flashlight cells and a 90 -volt battery. The oscillator is completely shielded.

Output from the bridge feeds through a step-up transformer and volume control to the grid of a 1U4. Two stages of class-A R-C amplification lead to a cathode follower, which provides an impedance match to the phones. The plate circuits are tuned to 575 cps , well below the oscillator frequency, to reduce harmonics. The maximum voltage gain is 1,325 , input trans former to phones. This characteristic drops 0.5 db at \(975 \mathrm{cps}, 4 \mathrm{db}\) at 1,950 and 25 db at \(4,875 \mathrm{cps}\).

\section*{References}
(1) II. Mr. Mooney, Magnetic Susceptibility Measurements in Minnesota. Part I Geophysics 17, p 531, 1952, Part II, Geophysics 18, 1953.
(2) W. R. Smythe, "Static and Dynamic Electricity'. McGraw-Hill, 1950
(3) R. G. Paterson, Determination of Magnetic Susceptibilities of Rocks in Situ. Am. Inst. Min. Met. Eng. Transactions, 164, 1915.
(4) R. J. Duffin, Measurement of Magnetic Susceptibility with the Hughes Induction Balance, Ter Magn Elec 51, p 419, \(19+6\).


FIG. 4-Oscillator, bridge and detector units are battery powered for portability in the field


Wooden phantom constructed to simulate density of the human body is used to determine dosages from \(24-\mathrm{mev}\) medical betatron. Scintillation crystal placed within phantom transmits light to multiplier phototube in housing, right

\section*{THE BASIC BETATRON}

The betatron is a magnetic-induction accelerator in which electrons are continuously accelerated in a circular orbit by a changing magnetic field. The evacuated acceleration chamber, or donut, has a toroidal shape. The time rate of increase of flux in the core of the magnet at the center of the donut produces a continuous increase in momentum of the electrons.

As the momentum of the electrons increases, the field intensity at the orbit must be increased to keep the electrons in a stable orbit of fixed radius.

Radial and vertical stability are obtained by shaping the magnet pole faces. At approximately 12 microseconds following zero field, electrons are injected into the donut. The injector consists of a tungsten filament mounted inside a molybdenum grid and plate structure having an opening in the direction of injection.

After the electrons have been injected, they are continuously accelerated by increasing magnetic flux. When the electrons have reached the desired energy they can either be brought out as a beam or caused to strike a target mounted in the donut and produce x-rays.

In the Memorial betatron, a shunt consisting of laminated magnetic material with high permeability and high limit of saturation is used to extract the beam. It contains a horizontal slot tangent to, and just outside the equilibrium orbit of the electrons. When the electrons have been accelerated to the desired energy, an outomatic pulse through a coil inside the equilibrium orbit causes the instantaneous electron orbit to expand to larger radii. The

\title{
High-Power Betatron
}

Twenty-four mev medical betatron irradiates deep-seated tumors with minimum damage to surrounding tissue. Electronic equipment controls acceleration of electron beam and measures high-energy x-ray output

IN THE last two decades a variety of high-energy accelerators have been built to operate at contimually increasing energies. Though most of these accelerators have been used almost exclusively for nuclear research, the betatron has found practical applications in medical therapy and diagnosis in hospitals and medical institutes.

Low-energy x-ray beams produced by ordinary medical x-ray equipment produce their maximum dose on the skin, do not penetrate to great depths in tissue, are not well defined because of scatter and are particularly destructive of bone. The high-energy \(x\)-ray beam pro-
duced by the \(24-m e v\) betatron at the Sloan-Kettering Institute, Memorial Center for Cancer and Allied Diseases, New York has been effective in irradiating deep-seated tumors in the human body with minimum damage to surrounding tissue. The electron beam of the betatron can be used in the treatment of lesions near the surface with a minimum of penetration.

\section*{Electronic Equipment}

All of the timing and control operations of the \(24-\mathrm{mev}\) medical betatron, as well as associated instruments for various measurements, involve electronic circuits.

Accurately timed pulses a few microseconds in duration are required for injection of the electrons and expansion of the orbit. This pulse timing is critical and must be adjustable to a fraction of a microsecond.

\section*{Primary Power Circuit}

The primary betatron power circuit is shown in Fig. 1. The primaries of the static frequencytripling transformers are wye connected and the secondaries are in delta connection. In the saturation range of the silicon-steel tripler transformers, the third harmonic is approximately 60 percent
shunt provides a field-free region where electrons entering the slot can escape the guiding magnetic field.

The presence of this magnetic shunt inside the donut perturbs the orbit somewhat at injection time and prevents the capture by the orbit of all the injected electrons. This effect is minimized by placing around the shunt a coil that is energized at injection time in such a way as to oppose the magnetic field induced in the shunt.

X-rays are produced by having an accelerated beam of electrons strike a target. The relative efficiency of electrons for the production of \(x\)-roys depends on their energy and the atomic number of the target material. The higher the energy of the electron and the greater ine atomic number of the target material, the greater is the percentage of the energy of the electron that will produce x-roys.

As is true of all x-ray spectra produced by electrons striking a target, the spectrum of \(x\)-rays from the betctron is continuous. The maximum energy of the x-rays is determined by the maximum energy of the electrons. Taking into consideration the relativistic change of mass of the electron, the maximum energy of the betatron is
\[
E=3 \times 10^{-4} \mathrm{Hr}-0.51
\]
where \(H\) is expressef in gauss, \(r\) in cm , and \(E\) in mev Lr the Memorial betatron, \(H\) is a little over 4,000 gauss, \(r\) is about 20 cm and the maximum enersy is 24 mev. To reach this energy the electron makes approxin:ately 250,000 revolutions during the quarter cycle of \(1 / 720\) second


Betatron control room has water window through which oper ator can watch patient under radiation. High-energy x-ray beam makes possible treatment of deep-seated tumors with minimum damage to surrounding tissue

\title{
for Cancer Therapy
}

\author{
by J. S. laughlin, J. ovadia, g. Shapiro and Z. ABDUN-NABI \\ Department ó Physics and Biophysics \\ Sloan-Kettering Institute \\ Memorial Center for Cancer and Allied Diseases, New York, N. Y.
}
of the fundamental. The other harmonics are suppressed or negligible. A capacitor neutralizes the inductance of the tripling transformer. The capacitance in the tuned betatron circuit consists of four banks of air-cooled capacitors with approximately \(41 \frac{1}{2}\). f in each bank.
An auxiliary transformer provides \(180-\mathrm{cps}\) power for other circuits. The betatron's main tuned circuit is resonated by varying the number of capacitors in the bank or by varying the inductance. The inductance can be adjusted by changing the air gap in the three legs of the betatron magnet.

Injection of electrons occurs in a burst a few microseconds in duration about 12 microseconds after the magnetic field passes through zero. Injection voltage and injection time are related so that the momentum of the injected electrons will equal the momentum equivalent of the magnetic field of the equipment.

Injection voltage is usually set somewhere in the neighborhood of 60,000 volts, which corresponds to 12 microseconds after zero-field time for the \(24-\mathrm{mev}\) betatron.

Figure 2, shows the essential features of the injection circuit. Capacitor \(C\) is periodically charged
through the power supply and is discharged when the 5C22 hydrogen thyratron is triggered. The capacitor discharges into the injector pulse transformer producing a secondary pulse of 60 kv , negative with respect to ground.

\section*{Pulsing}

The output winding of the filament transformer is connected to the pulse-transformer secondary so that the betatron's filament is pulsed approximately 60 kv negative with respect to the plate which is grounded. A grid structure partially surrounds the filament and is attached to it. The grid focuses
the electrons from the filament towards the opening in the plate. The plate and grid are constructed of molybdenum, and the filament is made of thoriated-tungsten wire.

The trigger pulse originates in a secondary winding on a strip of high-permeability material across the gap of the pulse transformer in the primary betatron circuit. This strip is saturated during all of the cycle except when the current and magnetic field pass through zero. The reversal of flux in this strip at that time induces the trigger pulse at zero-field time. A bias winding fluxes the strip to change the time at which the strip actually passes through its zero-field value. By changing the current in the bias winding the pulse can be varied for approximately 40 microseconds on either


FIG. I-Primary power circuit of betatron. Magnet coils and capacitor bank form 180 -cps tuned circuit
side of normal zero-field time.

\section*{Contraction}

The entire injector structure is at a larger radius than the equilibrium orbit. If all the injected electrons are to be captured in the equilibrium orbit, it is important that they do not strike the injector structure on their first few revolutions after injection. This requires that their instantaneous orbit radius be rapidly contracted to the radius of the equilibrium accelerating orbit.

Contraction of the orbit of the rotating electrons at the critical injection time is facilitated by providing flux in opposition to the main field flux by the circuit of Fig. 3A. Two coils having a radius slightly greater than the normal orbit are located on the poles of the betatron, one above and one below the donut. When the GL5632 thyratron is triggered, the contractor coils are essentially shorted through a 25 -ohm resistor. The main magnetic-field flux passing through these coils will induce a counteracting flux in the opposite direction that serves to contract the orbit.

Since the thyratron is triggered at zero-field time when the time rate of change of flux is maximum, the contraction effect is also maximum at this time. As the mag-netic-field intensity increases and the time rate of flux change decreases, this contraction effect becomes less important, disappearing by the time maximum acceleration is reached.

The thyration is triggered by a
pulse from a winding on another strip of high-permeability material on the same pulse transformer used to trigger the injector circuit. A separate bias winding is provided for this strip so that the actual time at which the thyratron is triggered can be varied to produce maximum capture of electrons during injection.

\section*{Expansion}

To produce x-rays the electrons are deflected from their normal equilibrium orbit and caused to strike a target. In this betatron the target is mounted on the end of the injector, just outside the normal equilibrium orbit. To strike the target, the radius of the beam orbit must be increased. The flux through the orbit is increased by passing a current pulse through two series-connected coils located above and below the donut on the poles of the betatron. The coils have a radius slightly smaller than the equilibrium orbit. Figure 3 B shows the circuit employed to pass the current pulse through these coils.

Since the electrons have their maximum energy when the magnetic field has reached its maximum value, expansion is timed to occur at the end of the quarter cycle when the field is at its maximum. Capacitor C, of Fig. 3B, is periodically charged through an FG-280 mercury-vapor rectifier. The power source can be either the auxiliary transformer in the primary betatron circuit or a couple of windings around one of the legs of the betatron magnet. When the GL-415


FIG. 2-Electron injection system. Electrons are injected into donut by 60 -kv pulse every \(1 / 180\) second
FIG. 3-Contractor (A) and expander (B) circuits bring electron beam into proper orbit, expand it to hit x-ray producing target

ignitron is triggered, \(C\) will be discharged through the two coils on the poles of the betatron adding to the flux provided by the main betatron coils.

The ignitron is fired by the discharge of the \(C^{\prime}\) that occurs when the KU-673 thyratron is triggered. This thyratron fires when its grid passes through zero value and becomes positive. The grid is connected to a leg turn so that its potential varies sinusoidally 90 deg out of phase with the magneticfield intensity. This phase relation causes the expansion pulse to occur when the magnetic field is at its maximum value.

A variation of a few microseconds in the firing time of this circuit will not cause any important variation in the maximum energy of the electrons, since the mag-netic-field intensity changes slowly near its peak value.

\section*{Beam Monitor}

When the betatron is being used to produce x -rays the beam is monitored by an ionization chamber. This chamber is mounted on the inside of the lead shield in front of the betatron in the path of the x-ray beam. The ion chamber consists of nine aluminum plates, two millimeters apart. The chamber is sealed air tight so that its calibration will not change with fluctuation in ambient pressure and temperature. A 385 -volt potential difference between aluminum plates is supplied by the circuit shown in Fig. 4.

This circuit uses the ionization collected in the ion chamber to give


Porcelain donut of medical betation can be seen between magnet-coil boxes. Output tube and monitoring apparatus are mounted on heavily shielded door, right
a continuous indication of the rate of x-ray output, and also to integrate the total output in any desired interval of time.

Upon irradiation, capacitor \(C\) is discharged. The potential of the grid of the 2 A 3 triode is about -385 volts, which is also the potential of the collecting plates in the ion chamber. As a result of the irradiation and the consequent production of ionization in the gas of the monitor ion chamber, a charge accumulates on \(C\) and the potential of the 2 A 3 grid begins to increase expotentially.

The 2A3 is a low grid-current triode and extreme measures are taken to prevent any leakage from the grid to other electrodes. The 2 A 3 is coupled as a cathode fol-


FIG. 4-Beam-monitor circuit measures beam intensity using ion chamber and indicates total exposure on mechanical counter
lower to the grid of the 502A thyratron.

Before the grid of the 2A3 has increased sufficiently to affect the collection efficiency of the ion chamber, the 502 A fires, operating a relay that discharges \(C\), and returns the potential across the ion chamber to 385 volts. At the same time the relay also operates a mechanical counter. By adjusting circuit constants the mechanical counter can be made to indicate a specific number of roentgens in the x-ray beam.

Indication of the continuous rate of x-ray production is accomplished by the amplifier circuit, which includes the 6C8G triode. The potential across grid resistor \(R\) is proportional to the rate of charging of \(C\). This potential appears on the grid of one of the triode sections and determines the potential drop across \(R\). The unbalance of the cathode resistor network of the 6 C 8 G is indicated by the meter and is proportional to the rate of x -ray production. The timing controls of the injector and contractor circuits are arljusted to maximize the rate indicated by the meter.

\section*{Pulse Monitor}

The actual width of the x-ray or electron pulses from the betatron can be displayed on an oscilloscope by the circuit in Fig. 5. The radiation burst is detected in an anthra-
cene crystal. Fluorescence caused in this crystal by absorption of the radiation is amplified by a 1 P 21 multiplier phototube. This signal is applied to the grid of a 6AK5 used as a cathode follower to feed an oscilloscope.

The anthracene crystal has a response time of \(10^{-8} \mathrm{sec}\) and radia-tion-pulse widths of less than a microsecond are easily displayed. The width of the betatron beam can be varied from less than a microsecond to over 100 microseconds. The injection pulse can be displayed simultaneously on the oscilloscope with the radiation pulse, and the time between these pulses, normally \(1 / 720 \mathrm{sec}\), can be measured.

\section*{Beam-Energy Control}

The maximum energy of the x-ray beam or the absolute energy of the homogenous external electron beam can be varied from 2 to 24 mev . This is accomplished by varying the maximum amplitude of the magnetic-field intensity. The internal electron beam is still expanded against the target or into
the magnetic shunt, depending upon whether an x-ray or electron beam is desired, when the field is at its maximum. The energy is proportional to the value of this maximun-field intensity at the orbit.

\section*{Calorimetric Measurement}

Although the output of the betatron is continuously monitored with a ion chamber, a further measurement is necessary for absolute calibration. This is accomplished by totally absorbing the x-ray beam in a thermally insulated absorbing block. Under certain conditions the total heat rise in this block is equal to the total energy absorbed from the beam.

The temperature rise in the \(a b-\) sorbing block is measured with thermistors. A thermistor in one arm of a bridge circuit is mounted in the beam-absorbing block and a thermistor in a nonirradiated block is used in an opposite arm. Precision resistors are used in the other arms of the bridge and the unbalance of the bridge is amplified by a chopper amplifier.


\footnotetext{
Water bath with ion chamber used for plolting isodose curves that indicate regiens of like dosage produced by x-ray beam
}


FIG. 5-Pulse monitor measures duration of radiation burst from betatron


FIG. 6-Absorption coefficients of body tissues. At higher beam energies the absorption values are about the same

Use of a chopper amplifier makes it possible to utilize a-c amplifier stability for a small d-c signal. The output of this amplifier is recorded on a strip-chart recorder. It is possible to measure temperature changes of the order of \(10^{-5}\) \(\operatorname{deg} \mathrm{C}\) with this calorimeter.

\section*{Automatic Isodosimetry}

In conducting a cancer treatment with the betatron it is important for the doctor to know precisely what dose he is giving the lesion and any other irradiated portions of the patient's body. The absorption of radiation by the human body can be simulated very closely by water or with wood having a unit density. A large water bath used for dose measurements is shown in the photograph. A small ionization chamber is positioned inside the water tank, usually termed a water phantom, to measure ionization. An ion chamber is located on the end of a rod attached to a preamplifier. The output of the preamplifier goes to a d-c linear amplifier in the control room. The actual position of the small ion chamber in the water phantom can be controlled from the control room by synchro motors. The betatron output is measured by an ion cham-
ber connecteu to another d-c amplifier and the ratio of these two ion currents is measured by a third amplifier. By making ratio measurements, fluctuations in the output of the betatron do not affect the measured dose distributions. A scintillation crystal and multiplier phototube can be used alternatively with the ion chamber and preamplifier.

A servo loop to balance the output of one amplifier against the other is used to obtain the ratio. By incorporating the position of the small detecting ionization chamber into the overall servo loop, a balance is obtained for any preset ratio. An isodose curve representing the contours of the region in which the dose is uniform, is obtained when the detector chamber is scanned across the x-ray beam. A complete set of isodose curves can be obtained automatically for a horizontal plane. As shown in the illustration, wood phantoms can also be used for determination of the dose at any desired point in a simulated human body. The lungs are represented with cork, and air passages are present as in the normal body. Films are also used as well as ion chambers and scintillation crystals in this phantom.

\section*{Medical Applications}

Use of high energy betatron x -rays in cancer therapy has the advantage of low skin dose. Great penetration is also possible because of the high energy of the x-rays, making it possible to produce an effective dose at great depths in the body.

Maximum radiation dose is produced 3 to 5 cm below the skin of the patient and side scatter is negligible. At these energies the beam is well defined permitting effective localization of the dose. As indicated in Fig. 6, when highenergy x-rays are used, bone does not absorb any more per unit mass than tissue. This consideration removes a serious limitation present in lower-voltage therapy.

In Fig. 7, top, the path of a highenergy x-ray beam from the betatron is shown on a film. This film was mounted inside a block of tissue-like material and exposed
with the film parallel to the x-ray beam. The film density is proportional to radiation dose. The minimum dose on the skin, the maximum at a depth of a few cm , the lack of side scatter and the great penetration are evident. These factors make this type of beam particularly applicable to deepseated lesions in the human body.

\section*{Absorption of Electrons}

Absorption of electrons is quite different from the absorption of x -rays. In a substance of low atomic number such as water or human tissue, over 90 percent of the energy of the electron will be absorbed by ionization and excitation processes.


FIG. 7-The ex-ray beam, top, produces a narrow beam of great penetration in phanton body with minimum exposure near the surface. High-energy electron beam, bottom, has uniform exposure to a definite, adjustable depth. Radiographs not to scale

These processes occur with uniform probability over most of the length of the electron track. As a consequence, the energy dissipated by the electrons is fairly uniform along the beam and terminates very abruptly at a definite range. The range of the electrons in tissue or water is directly proportional to the energy. An approximate rule is that the electrons penetrate 1 cm for every 2 mev of energy.

Figure 7 shows the density path in a film exposed parallel to a \(17-\mathrm{mev}\) electron beam from the betatron. There is a definite maximum depth of penetration proportional to the incident energy. The rate of decrease near the end of the penetration is steep, so that
healthy tissue at greater depths is not exposed. The dose is uniform from the surface to the end of penetration, making the highenergy electron beam applicable for the treatment of lesions adjacent to the body surface. The lesion will be exposed uniformly, from the skin to any desired depth, with rapid decrease of radiation dose immediately beyond the lesion.

\section*{Diagnostic Applictations}

High-energy x-rays also have diagnostic applications. Low-energy x-rays are absorbed in bone to a greater extent than in tissue. This is advantageous in making radiographs since the greater absorption in bone will cause the bone to stand out sharply relative to tissue. However, there are other applications in which it is desired that the contrast of bone not be great relative to tissue. For such applications, the high-energy x-rays produced by the betatron are advantageous.

\section*{Bibliography}
D. W. Kerst. Acceleration of Electrons by Magnetic Induction, Phys Rev, 58 , p S4, 1940
T. J. Wang, The Betatron, Electronics, 18. June 1945
J. Slepian, U. S. Patent No. 1, 645,304 1927).
R. Wiederoe, Archiv fur Elektrotechnik 1. p 387, 1928
T. S. Walton, Proc. Cambridge Philosophical Society, 25, p 469.1929
M. Steenbeck, U. S. Patent No. 2, 103 303 (1937).
D. W. Kerst, and R. Serber, Electronic Orbits in Induction Accelerator, Phys Rev, (i0. p 53, 1941.
K. Gund and W. Paul, Experiments with a \(6-\mathrm{mev}\) Betatron, Nucleonics, \%, p 36, 1950.
H. C. Pollock. M. H. Herbb and P. C. Voble, General Electric Rpt No. RL-S46, 1951.
J. D. Lawson, H. E. Walford and .J. H. Aram, Extraction of the Electron Beam rom a \(30-\mathrm{mev}\) Synchrotron, Nature, 166 p 234. 1950
R. S. Foote, National Bur
F. C. Crittenden. Jr. and W. F. Parkins, Methods for Betatron or Synchrotron Beam Removal, J. App. Phys., 17, D 444, 1946 .
L. S. Skaggs, J. S. Laughlin and L. H. Lanzl, Techniaue of Producing all Exter nal Beam of Nlectrons from the Betatron, Phys. Rev., \%(), p 95. Jul. 1946.
L. S. Skaggs, J. S. Laughlin and L. H. Lanzl, Technique of Producing an External Beam of Electrons from the Betatron Phys. Rev.. 73. n 1.223, May 1948.
L. S. Skaggs, Depth Dose of Electrons from the Betatron, Radiology 53, p 868 , Dec. 1949.
J. P. Girard and C. D. Adams, Application of the Betatron to Practical Radioraphy, Trans. of the Amer. Ins. of Elec R Ars.: \({ }^{65}\). 1946.
R. A. Harvey, L. L. Hass and J. S. diology, 58, 23,1952 .
H. Quastler, et. al., Techniques for Apication of Betatron to Medical Therapy. Am. J. Roentgenol. and Radium Therapy, 11, p 591. 1949
'W. Heitler, "The Quantum Theory of Radiation". Oxford Press, 1944.
J. S. Laughlin, "Physical Aspects of Betatron Therapy,", Charles C. Thomas, Springfield, Ill., 1953

\title{
Microsecond Timer
}

\title{
Velocity of shock wave traveling down a concrete beam is measured by microsecond interval timer during nondestructive elasticity test. Timer has one-microsecond accuracy and is useful in a wide variety of timing applications
}

\author{
By J. H. J. FILTER \\ National Physical Laboratory \\ Sonth African Council for Scientific and Industrial liesearch \\ Protoria, South Africa
}

ELASTICITY of concrete beams may be determined nondestructively by a microsecond-interval timer used in conjunction with two phonograph pickups. The timer operates by measuring voltage across a capacitor charged from a constant-current source during the interval of interest. \({ }^{1}\) It has five ranges covering time intervals from 50 to \(5,000 \mathrm{mic}\) roseconds. Its accuracy, independent of tube characteristics, is \(\pm\) one microsecond or two percent whichever is larger.

In a long thin bean \(K=(E / d)^{1 / 2}\) where \(K=\) velocity of longitudinal compression waves in the beam; \(E\), Young's modulus of elasticity; and \(d\), density of the material.

The instrument measures the time taken for a longitudinal shock wave, applied at one end of the beam, to pass two phonograph pickups placed a convenient and known distance apart. Assuming \(d\) is known, \(K\) and hence \(E\) can be calculated. The instrument can also be used for a large variety of other timing applications.

\section*{Circuit Design}

A block diagram of the system is shown in Fig. 1. The amplified pulses from the pickups actuate switching circuits that start and stop a constant charging current through a capacitor. The voltage across the capacitor is measured and is proportional to the time taken for the shock wave to pass the pickups.

The circuit is shown in Fig. 2.

Pentode \(V_{\text {g }}\) controls the current through the timing capacitor, the voltage across which is measured by \(V_{10}\).

Switching the current through a pentode can be done by any one or more of its three grids. However, the current through \(V_{8}\) is switched by the control grid only; the magnitude of the current passed is regulated by adjusting the screen voltage. This has the disadvantage that the pentode cannot be completely cutoff as the screen is at a positive potential.
The charging current must be large so that the ratio of charging to discharging or cutoff current is large. Investigation of several pentodes showed that all types gave the same order of cutoff current. A type 6AG7 was chosen since it can handle fairly large currents and, because of its high transconductance, the bias voltage excursions can be relatively small. The plate


FIG. 1-Block diagram of test setup
current of the 6AG7 is constant for fairly large variations in plate voltage, thus providing a good con-stant-current source.

For the vacuum-tube voltmeter \(V_{10}\) a differential amplifier was used to give a linear voltage scale and minimize the effect of changes in tube constants and of power-supply variations. Best results were obtained when the meter was more or less critically damped. Resistor \(R_{1}\) provides damping and is also used as a fine-sensitivity control for one particular range. The maximum current that can flow through the meter, when the left-hand grid of \(V_{10}\) is at zero potential, is limited to approximately 700 microamperes, thus protecting the meter against overloads.

Switch \(S_{3}\) connects various resistors between the cathodes to change the sensitivity, at the same time selecting the capacitor for the appropriate time scale. Electrical zero is adjusted by \(R_{2}\).

The switch circuit consists of two flip-flops \(V_{7}\) and \(V_{8}\). The circuit components are so chosen that when \(V_{\tau A}\) and \(V_{8 B}\) are both cutoff the voltage at the grid of \(V_{B}\) is slightly positive. The low grid-input resistance for positive voltages minimizes the effect of any changes in plate voltage of \(V_{i=1}\) and \(V_{8 ;}\) on the voltage at the grid of \(V_{0}\). When either \(V_{\square A}\) or \(V_{\mathrm{s} B}\) is conducting the resulting voltage at the grid is approximately -35 volts, cutting off \(V_{\mathrm{g}}\).
When the RESET switch \(S_{1}\) is in position \(a\), resistances are connected in series with the negative

\title{
Checks Concrete Beams
}


FIG. 2-Vacuum-tube voltmeter measures potential across capacitor charged from a constant-current source during interval of interest, Tube \(V_{8}\) is the switch tube in the stop channei
supply to the grids of \(V_{i A}\) and \(V_{8 A}\), and the two triodes conduct. At the same time the capacitor is discharged through \(R_{c}\). The flip-flops remain reset when \(S_{1}\) is returned to position \(b\).

A negative puise through \(V_{0}\) cuts off \(V_{i A}\), the voltage at the grid of \(V_{9}\) rises to zero, and the capacitor is charged through \(V_{8}\). A negative pulse through \(V_{8}\) cuts off \(V_{84}, V_{8 B}\) conducts and \(V_{\theta}\) is cutoff. Positive pulses and any subsequent negative pulses cannot alter the state of the flip-flops until they have been reset. Neon indicators show the state of the flip-flops, the circuit being reset when both neons glow.

Two-stage 6AG5 amplifiers with high-frequency boost amplify the signals from the pickups that have to be so placed that a negative impulse is obtained when the compression wave arrives. The sensitivity is varied by changing the positive bias on the cathodes of \(V_{5}\) and \(V_{0}\) by \(R_{3}\).

Various currents, such as: leakage through the capacitor, switches and tube bases; cutoff current of
the pentode and grid current of the vacuum-tube voltmeter charge or discharge the capacitor. To reduce leakage, high-quality components were used. The vacuum-tube voltmeter could have been so designed that the grid current was either positive or negative, as required to balance all the currents for a certain potential at the plate of \(V_{0}\). This potential could then have been chosen as the zero of the vacuumtube voltmeter. The potential was found, however, to vary with variations both in pentode cutoff and in vacuum-tube voltmeter grid currents due to changes in tube temperature, heater voltage and characteristics of different tubes.

\section*{Compensating Current}

It was decided, therefore to balance the leakage currents by injecting an adjustable compensating current. As the leakage currents were found to be more or less constant with changes in potential at the left-hand grid of \(V_{10}\) the compensating current had to be more or less constant. To eliminate use
of a floating battery and to avoid to some extent the disadvantages of using a fixed voltage point, the compensating current is injected through a \(100-\) megohm resistor from a voltage tapped between the plate and cathode of the vacuumtube voltmeter. As the cathode follows to some extent the potential at the grid, especially when the cathode-to-cathode resistor is large, the voltage across the 100 -megohm resistor tends to be more constant. This gives better compensation over the whole range, especially those ranges where the voltage changes at the left-hand grid have to be large, and the meter does not return to zero as quickly as when injecting current from a fixed voltage.

\section*{Range Constants}

The values of the range constants are obtained from the equation: \(V=I \times t / C\). Where: \(V=\) voltage across capacitor for full scale deflection of vacuum tube voltmeter; \(C\), capacitance of capacitor; \(I\), charging current; and \(t\), full-scale time range. A capacitor charging
current of only 20 milliamperes was chosen due to limited power-supply regulation. The range constants were chosen as shown below :


Smaller voltages for full-scale deflection made the meter sensitive to plate-supply voltage and tube variations and use of larger voltages caused errors due to changes in charging current with plate voltage of the pentode.

\section*{Calibration Technique}

Calibration is by a variable voltage supply and voltmeter connected across the grids of the vacuum-tube voltmeter with the negative to the left-hand grid. The range switch is set to either 500 or 5,000 microseconds. The voltage between the grids is set to 50 and the meter deflection to 500 microamperes with the shunting resistor \(R_{5}\). The voltage is then adjusted to 20 volts for the 200 or 2,000 -microsecond ranges and the meter again set to full-scale deflection using \(R_{1}\). The process is repeated for the 50 -microsecond scale with the voltage set to 5 and adjusting \(R_{5}\).

If the capacitance of the timing capacitor is known, the exact value of the integrating current necessary to give the values in the table can be calculated. In this case two timing capacitors are used and thus two values of charging current are necessary.

The value of the calibrating resistor \(R_{c}\) is measured and the voltage drop across it calculated for the respective charging currents. This will be approximately 40 volts. When switch \(S_{2}\) is in position \(b\) the flip-flops are switched so that the bias on \(V_{0}\) is zero. At the same time the voltmeter is switched to 50 volts full scale and \(R_{c}\) is connected between the vtvm grids.

The current is then set to the desired value by adjusting the screen voltage of \(V_{0}\) until the voltmeter is made to indicate the calculated reading.

Switch \(S_{2}\) automatically returns to position \(a\) when released and its function is independent of the position of the reset switch \(S_{1}\).

Consider pentode \(V_{8}\) to be a con-stant-current generator giving a current \(I\) and shunted with its plate resistance \(R_{p}\). Let \(C\) be the capacitor connected in parallel with \(R\), so that the pentode current charges \(C\). The current flowing through the plate resistance \(I=V / R_{p}\) where \(V\) is the voltage across the capacitor. The differential equation for the voltage across the capacitor is \(d v=(1 / C)\left(I-V / R_{p}\right) d t\). The solution is \(V=I R_{p}\left(1-\epsilon^{(-t / R p C)}\right.\) \(I R_{p}\) (1-e exponential \(-t / R_{p} C\) ).


FIG. 3-Measured and calculated results show close agreement

Expanding the exponential term as a series
\(V=\frac{I \times t}{C}\left(1-\frac{t}{2 R_{p} C}+\frac{t^{2}}{6 R_{p}{ }^{2} C^{2}}-\ldots.\right)\)

\section*{Errors}

The greatest error will be introduced for large values of \(V\), that is on the 50 -volt ranges; \(R_{s}\) was found to be approximately 250,000 ohms for the working range. Thus for \(t=500\) microseconds, \(C=0.2 \mu \mathrm{f}\); or \(t=5,000 \mu \mathrm{sec}, C=2 \mu \mathrm{f}\); the meter will read 0.5 percent low at full scale. This was considered good enough.

The current gain of the vacuumtube voltmeter is approximately given by
\[
\begin{aligned}
& \frac{\text { Output current }}{\text { grid-to-grid voltage }}= \\
& \frac{-\mu}{2\left[R_{p}+\frac{(\mu+1) R_{k} R_{c}}{2 R_{k}+R_{c}}\right]}
\end{aligned}
\]
where. \(R_{p}=\) plate resistance of triode; \(R_{k}\), cathode-to-ground re-
sistor; and \(R_{c}\), cathode-to-cathode resistor.

In the worst case, for the 50microsecond range ( \(R_{c}\) approximately 4,000 ohms, \(R_{k}=100,000\) ohms), the gain changes approximately 2 percent for a 10 -percent variation in \(R_{p}\) for a 6SN7. As each range is adjusted at full scale, variations in sensitivity do not introduce a large absolute error for less than full-scale deflection. For the 20 and 50 -volt ranges the change for a 10 -percent variation in \(R_{p}\) is 0.6 percent and 0.2 percent respectively.

\section*{Tests}

The instrument was tested by checking it against a steel rod in which the velocity of sound had been previously determined. Figure 3 shows an example of the results. The curve is displaced to the right of the ideal curve due to differences between the pickups. If the pickups are interchanged the curve lies to the left of the ideal curve.

The energy of the impact has to be fairly constant. An increase in energy tends to move the curve nearer to the theoretical curve. For each sample a zero correction has to be determined by taking readings for at least two different distances between the pickups. With these precautions an accuracy of \(\pm 1 \mathrm{mi}\) cro second or \(\pm 2\) percent, whichever is the greater, can be obtained.

The instrument is fairly independent of vacuum-tube characteristics and can be easily and accurately calibrated without the use of pulses of known time interval. The time scale is linear so that the scale need not be specially graduated or calibration charts used, and the capacitor holds its charge long enough for readings to be taken accurately.

\section*{Acknowledgements}

The author wishes to thank members of the Electrical Standards staff for advice and help in the development of the instrument.

This paper is published by permission of the South African Council for Scientific and Industrial Research.

\section*{Reference}
(1) P. B. Weisz Electronic Timer for Microsecond Intervals, Electronics, p 108 , Apr. 1944.

\title{
Simulating Piano Tones Electronically
}

\author{
All-electronic instrument uses phase-shift oscillators and distortion amplifiers to simulate decay curve of piano notes. System duplicates three-string tonal timbre and provides controls for loud, soft and sustaining effects obtained from a standard piano
}

\section*{By LEON KATZ}

New York, N. Y.

SimUlating the tone of a particular instrument is achieved by producing a wave shape comparable to that instrument. This can and has been done by innumerable electrical, mechanical or electronic means.

Since the piano is a percussion and string instrument, it presents several difficulties. For many of the tones of the piano, three strings are used; for others, two, and for the very low notes, one string is used. The purpose of the multiple strings struck simultaneously by the same hammer is to render a dramatic quality to the sound through the production of beats. An extremely slight detuning of the two or three strings of the same note will produce the familiar throbbing sensation of the tone due to the subjective production of the beat frequency. This is due to the nonlinearity of the ear.

Although this is a subjective sensation, it is of the utmost importance in duplicating a true piano sensation. Two additional tone production systems must be added intentionally to produce slightly detuned signals. The three separate signals of one tone are, however, still combined by straight addition, not by heterodyning.

The second additional difficulty in reproducing a piano tone is in matching its amplitude-time envelope. Almost all stringed musical instruments, including the piano,


Chassis holds (left to right) keying tubes, distortion amplifiers, linear amplifier and cathode follower, resistance adder and phase-shift oscillators
contain one or more large radiating surfaces known as sound boards. The energy of the vibrating string is transmitted to the sound board by a mechanical structure common to the string and sound board known as the bridge. It is the sound board thus excited that radiates most of the sound energy.

\section*{Tone Curve}

The decay curve of a piano tone depends on the absorption and radiation characteristic of all components. An idealized typical intensity time curve for the piano is shown in Fig. 1.

The ordinate is plotted to a decibel scale to give a rough indication of the sound sensation and to indicate the deviation from exponential response, which would
show as a straight line on a logarithmic plot.

An all-electronic method of producing a piano tone is shown in block diagram form in Fig. 2. Any audio frequency sine wave oscillator may be used.

For any particular note, for example 440 cps , the off-frequency oscillators are best detuned by ear. In general, detuning is a fraction of a cps. The distortion amplifiers used are overdriven amplifiers. Since the piano tone contains both even and odd harmonics, the distortion circuit should be proportioned to destroy half-wave symmetry that might tend to exist from symmetrical cutoff.
The standard piano is so designed that the string is struck near one end, about one seventh


FIG. 1-TYpical piano tone decay curve
to one ninth of the total length from that end, so that the resultant vibration is lacking only some of the higher frequency components.

The adding circuit may be any one of the many electronic adding circuits used in analog computer work, or addition may be done directly at the input of the keying circuit by means of a resistance adding network.

The keying circuit itself prevents a tone from being produced until the key is depressed and then gives the tone the proper amplitude-time envelope after the key is depressed.

\section*{Keying}

The keying circuit depends on two properties of the pentode tube when used as an ordinary amplifier. First, within the limits of proper design, the gain is given by the well-known expression \(K=-g_{m} Z_{L}\). Secondly, for pentodes the \(g_{m}\) may be considered a function only of grid bias, provided all signal voltages on the grids are small and plate voltage variations are not too large.

Thus for a pentode, variation of the bias of one of the grids will vary the gain; and therefore the signal voltage output will vary for fixed signal voltage input. This is the familiar principle of automatic volume control and the reactancetube f-m modulator.

The keying circuit (Fig. 3) and the characteristic curves (Fig. 4) aid in showing how these principles are used in forming an intensitytime envelope approximating that of a piano. The note involved is prevented from appearing at the input of the linear amplifier by means of the hold-off bias of the keying tube (enough greater than the cutoff value to prevent even
the slightest conduction on the positive peaks of the signal) in spite of the continual appearance of the tone voltage in the grid circuit of the keying tube.
When the key corresponding to the tone is depressed, the capacitor which has been maintained at a steady d-c voltage somewhat below the hold-off bias is connected across the resistor in the grid circuit forming an \(R C\) discharge circuit. This brings the bias suddenly from below cutoff to a value only slightly negative. The discharge of the capacitor allows the bias to again approach the hold-off,
value exponentially.
The variation of bias with time will vary the \(g_{m}\) of the tube and therefore the intensity-time envelope of the output will vary also, since \(E_{o}=-g_{m} Z_{L} E_{,}(E\), is small compared to the hold-off bias).

Experimental adjustment of the hold-off bias, the peak voltage to which the \(C\) is charged, the \(R C\) time constant of the keying circuit, and the type and operating voltages of the tube used all provide endless variety to the amplitude-time curves available. Although the value of \(R C\) determines intensitytime envelope, a quick recharge in


FIG. 2-Block diagram for one key circuit


FIG. 3-Schematic of keying tube circuit
readiness for rapid restriking of the key dictates as large a value of \(R\) and small value for \(C\) as the grid circuit resistance limitations of the tube permit.

Typical operating values found to give fair simulation of the piano tone were with two sine-wave oscillators set at 440 cps feeding overdriven amplifiers each putting a 1 volt rms signal into the grid circuit of the keying tube, a hold-off bias of 19 volts, a charging voltage of 16 volts; a charging capacitor of 1 \(\mu \mathrm{f}\), and discharge resistor of 2.5 megohms ( \(R C=2.5\) seconds).

The sudden lowering of keying tube plate voltage due to the sudden application of the capacitor voltage to the grid circuit of the keying tube will produce momentary grid blocking of the following linear amplifier. This will be of negligible duration, however, if the time constant of the coupling circuit is made as short as possible and yet long enough adequately to couple the signal frequency into the grid circuit of the linear amplifier. These are not difficult conditions to meet.

\section*{Complete Circuit}

The complete piano would consist of 88 combinations of oscillators, distortion amplifiers, and keying tubes, one set for each key. Only one linear amplifier is necessary


FIG. 4-Pentode characteristics in keying tube circuit
since the signals from the separate keying tubes are coupled to it by a straight adding circuit. The addition could also take place after one stage of linear amplification for each keying tube, acting as a buffer.

Dynamics could be handled in either of two ways. The first would be to control the gain of one of the overall linear amplifiers by varying its \(g_{m}\) with a bias voltage controlled by a pedal. The second method, which would more nearly approach the performance of the piano, would be to have the keying capacitor charged to a voltage which would depend upon the velocity of the key. This could be effected by having the charging voltage developed by electromagnetic induction. Such an arrangement would complicate the mechanical and electrical design of the key,
but would produce dynamics which would depend upon how each key is struck, which is the way dynamics are produced on the standard piano.

The effect of the loud pedal could be simulated by introducing a small positive voltage in the grid circuit of all the keying tubes when the loud pedal is depressed. This will produce the almost constant background of sound characteristic oí the loud pedal of the piano.

The effect of the soft pedal would require only a reduction of the gain of the linear amplifier. The sostenuto effect would be accomplished by keeping the capacitor of any depressed key connected across its discharge resistor even after the key is released, provided the sostenuto pedal is held in the depressed position. The proper mechanical feel of the key or action, as it is called, can be obtained by providing the key with the mass, elastance, and viscous damping that the piano key has.

\section*{Babliography}

John Tyndal, "Sound," 3rd ed., I. Appleton \& Co., New York, 1896 .
Erwin Meyer, "Electro-Acoustics," Dell \& Sons Itd., london, 1939.
Harry F. Olson, "Elements of Acoustical Engineering," 2nd ed., D. Van Nostrand Co. Inc., New York, 1947 .
Samuel Seely, "Electron-Tube Circuits," McGraw-Hill Eook "Co, New York, 1950 , Harry F . Olson, "Musical Ensineering," McGraw-Hill Book Co., New York. 1952. B. F. Meissner, Electronic Musical Instruments, Proc. \(1 R E, 24\), No. 11, p 1,427
1936 .


FIG. 5-Complete circuit diagram for one key ( \(\{=220 \mathrm{cps}\) )

\section*{TRANSISTORS: Theory and Application}

Part VIII

\author{
By ABRAHAM COBLENZ and HARRY L, OWENS \\ Signal Corps Engineering Laboratories \\ Fort Monmouth, New Jersey
}

SMALL-SIGNAL parameters are of considerable importance in specifying transistor operation. Most of the parameters discussed thus far in this series are based on small-signal operation, and large errors can result from neglect of this qualifying phrase.

\section*{Power Gain}

In Part VII of this series, equations were developed which express the input and output resistance and the voltage gain of point-contact and junction transistors. Typical numerical values were given to serve as a general orientation with regard to orders of magnitude (see Table I). The power gain of an electrical device is, obviously, an important concept to the design engineer and equations will be developed for computation of this parameter of a transistor.

Figure 1 shows the familiar circuit of a generator with voltage \(e\), and internal resistance \(R_{g}\) supplying a load whose resistance is

\section*{INDEX TO PREVIOUS ARTICLES IN THIS SERIES}

Port I, p 98, March 1953.
Port II, p 138, April 1953.
Part III, p 162, May 1953.
Part IV, p 164, June 1953.
Part V, p 158, July 1953.
Port VI, p 156, August 1953.
Part VII, p 156, September 1953
\(R_{L}\). The maximum power that can be developed across \(R_{L}\) for a given generator may be found as follows: Since
\[
\begin{gather*}
E=\frac{e_{\sigma} R_{L}}{R_{\sigma}+R_{L}}  \tag{1}\\
P_{o}=\frac{e_{o}{ }^{2} R_{L}}{\left(R_{g}+R_{L}\right)^{2}} \tag{2}
\end{gather*}
\]

Differentiation with respect to \(R_{L}\) shows that the power delivered across the load will be a maximum if \(R_{g}\) is equal to \(R_{L}\). Under these conditions the maximum possible power that can be drawn from generator \(e_{0}\) under any circumstances will be
\[
\begin{equation*}
P_{m}=\frac{e_{g}^{2}}{4 R_{g}} \tag{3}
\end{equation*}
\]

The power output of a groundedbase transistor amplifier (Fig. 2) is in general given by \(i_{2}^{2} R_{L}\) where \(i_{2}\) is
\[
\begin{equation*}
i_{2}=\frac{-e_{o}\left(r_{b}+r_{m}\right)}{\left[\left(R_{b}+r_{b}+r_{b}\right)\left(R_{L}+r_{b}+r_{c}\right)\right.} \tag{4}
\end{equation*}
\]

The power gain of the transistor will then be given by the ratio of \(i_{2}^{2} R_{L}\) to \(P_{m}\), the maximum power which may possibly be drawn from the generator (generator internal resistance exactly matched by input resistance of the transistor). In general, this will not be the case and less power will be drawn from the generator than is indicated by Eq. 3. The power gain is given by
\[
\begin{equation*}
P G=\frac{i_{2}{ }^{2} R_{L}}{e_{G}^{2} / 4 R_{a}}=\frac{4 R_{L} R_{g} i_{2}{ }^{2}}{e_{g}{ }^{2}} \tag{5}
\end{equation*}
\]

The power gain so determined for a given value of \(i_{2}\) and \(R_{L}\) will be a lower limit or a minimum value since the power expression in the denominator is the maximum pos-


FIG. 1-Equivalent circuit illustrates condition for maximum load power
sible under these conditions.
Substituting the value of \(i_{2}\) from Eq. 4 into the expression for the power gain in Eq. 5
\[
\begin{equation*}
P G=\frac{4 R_{L} R_{o}\left(r_{b}+r_{m}\right)^{2}}{\left[\left(R_{a}+r_{b}+r_{b}\right)\left(R_{L}+r_{b}\left(r_{b}+r_{m}\right)\right]^{2}+r_{c}\right)} \tag{6}
\end{equation*}
\]

This expression can be simplified somewhat since \(r_{b}\) is small compared to \(r_{c}\) or \(r_{m}\) (see Table I) and Eq. 6 becomes
\[
P G=\frac{4 R_{L} R_{b} r_{m}{ }^{3}}{\left[\left(R_{\sigma}+r_{b}+r_{\sigma}\right)\left(R_{L}+r_{c}\right)-r_{b} r_{m}\right]^{2}}
\]

\section*{Typical Values}

Using the typical values of the parameters as given in Table I for the point-contact transistor, a typical power gain is very nearly 100 representing 20 db whereas for the junction type a typical power gain is very nearly 440 representing 46 db.

\section*{Importance of Alpha}

It is often desirable to know power gain as a function of the alpha of the circuit. Dividing numerator and denominator of Eq. 6 by \(\left(r_{0}+r_{b}\right)^{2}\)

\title{
Transistor Operation
}

\section*{Different approaches to mathematical analysis of small-signal transistor operation are explained in detail, along with listings of advantages and disadvantages of each. Power gain and other important parameters are discussed.}


FIG. 2--Equivalent circuit of grounded-base transistor from which design equations for small-signal operation are devised
\[
\begin{gathered}
I^{\prime} G=\frac{4 R_{L} R_{g} \alpha^{2}}{\left[\left(R_{\sigma}+r_{b}+r_{e}\right)\left(1+\frac{R_{L}}{\left(r_{e}+r_{b}\right)}\right)\right.} \\
\left.\left.-r_{b} \alpha\right)\right]^{2}
\end{gathered}
\]

Similarly, the power gain may be expressed as a function of \(V G\) and \(\alpha\).
\[
\begin{equation*}
P G=\frac{4 R_{o} \alpha(V G)}{\left(R_{g}+r_{e}+r_{b}\right)\left(1+\frac{R_{L}}{r_{b}+r_{\theta}}\right)} \tag{9}
\end{equation*}
\]

Also, the expression for the \(V G\) obtained in the previous article \({ }^{1}\) may be written as a function of \(\alpha\).
\[
\begin{equation*}
V G=\frac{\alpha R_{L}}{\left(R_{a}+r_{b}+r_{b}\right)\left(\frac{R_{L}}{r_{b}+r_{c}}+1\right)} \tag{10}
\end{equation*}
\]

Equations 8, 9 and 10 show why alpha is one of the important parameters for evaluation and comparison of transistors. Also, the relation \(\alpha=-i_{o} / i_{\text {e }}\) shows the further usefulness of alpha as a comparison number for current gain.

\section*{Grounded-Base Equations}

In the previous article of this series \({ }^{1}\), Eq. 11 and 12 were derived
(8) to express conditions in the grounded-base transistor arrangement.
\[
\begin{equation*}
i_{1}\left(R_{a}+r_{e}+r_{b}\right)+i_{2} r_{b}-e_{\theta}=0 \tag{11}
\end{equation*}
\]
\(i_{1}\left(r_{b}+r_{m}\right)+i_{2}\left(R_{L}+r_{b}+r_{c}\right)=0\)
If in Eq. \(11 r_{e}+r_{b}=r_{11}\) and \(r_{12}\) \(=r_{b}\) according to the definitions laid down in the previous article \({ }^{1}\), and \(v_{1}=e_{g}-i_{1} R_{g}\), which is the net voltage acting at the transistor terminals, Eq. 11 becomes
\[
\begin{equation*}
v_{1}=r_{11} i_{1}+r_{12} i_{2} \tag{13}
\end{equation*}
\]

In deriving Eq. 12 it was assumed that there was no generator voltage acting in loop 2 of Fig. 2. If there were, Eq. 12 could be written as
\[
\begin{equation*}
r_{21} i_{1}+i_{2} R_{L}+i_{2} r_{22}=e_{92} \tag{14}
\end{equation*}
\] where again \(r_{m}+r_{b}=r_{21}\) and \(r_{0}\) \(+r_{b}=r_{22}\). As before, if \(v_{2}=\) \(e_{02}-i_{2} R_{L}\), the net effective voltage after the \(i_{2} R_{L}\) drop in Eq. 14 becomes
\[
\begin{equation*}
v_{2}=r_{21} i_{1}+r_{22} i_{2} \tag{15}
\end{equation*}
\]

\section*{Small-Signal Parameters}

Consider a dependent variable \(y\) which varies with, or is a function of an independent variable \(x\). Mathematically
\[
\begin{equation*}
y=y(x) \tag{16}
\end{equation*}
\]

Differentiating both sides with respect to \(x\)
\[
\begin{equation*}
\frac{d y}{d y}=\frac{d y(x)}{d x} \tag{17}
\end{equation*}
\]

Essentially, Eq. 17 is a tautology, or self-evident identity, and does not provide any particularly useful information. But in the form
\[
\begin{align*}
d y & =\frac{d y(x)}{d x} d x  \tag{18}\\
& =y^{\prime} d x
\end{align*}
\]
the equation states a very important and useful fact. Equation 16 will, in general, avoiding special curves, give a graph like in Fig. 3.

Equation 18 says that if, for a given or selected change in \(x\), say of \(d x\), it is desired to find the corresponding change in the value of \(y\), when \(y\) depends on \(x\) in the manner shown in Fig. 3 and symbolized in mathematics shorthand by Eq. 16 , the slope of the curve at the point in question is multiplied by the given value of \(d x\).

If \(y\) is a dependent variable which varies with either or both of two parameters, \(x\) and \(z\), Eq. 16
\begin{tabular}{|ccc|}
\hline Table I-Typical Transistor \\
\multicolumn{3}{c|}{\begin{tabular}{c} 
Parameters
\end{tabular}} \\
Param- & Point \\
eter & Contact & Junction \\
\(r_{o}\) & 150 ohms & 25 ohms \\
\(r_{b}\) & 120 ohms & 500 ohms \\
\(r_{m}\) & 35 kilohms & 0.96 megolm \\
\(r_{e}\) & 15 kilohms & 1.0 megohm \\
\(R_{\sigma}\) & 500 ohms & 500 ohms \\
\(R_{L}\) & 20 kilohms & 100 kilohms \\
\(\alpha\) & 2.3 & 0.96 \\
\(e_{\sigma}\) & 0.01 volt & 0.001 volt \\
& & \\
\hline
\end{tabular}
will then become
\[
\begin{equation*}
y=y(x, z) \tag{19}
\end{equation*}
\]

Since a change in \(y, d y\), may now be due to a change in either or both of \(x\) and \(z\), an equation entirely analogous to Eq. 17 would be Eq. 20
\[
\left.\left.d y=\frac{d y}{d x}\right]_{z-k} d x+\frac{d y}{d z}\right]_{x-k} d z \quad(20)
\]

This is usually written
\[
\left.\left.d y=\frac{\partial y}{\partial x}\right]_{z} d x+\frac{\partial y}{\partial z}\right]_{x} d z
\]

The dimension of each term on the right-hand side of Eq. 20 is \(d y\), since \(d x\) and \(d z\) cancel-at least dimensionally. This must be so for any physically valid interpretation. Also \(d y / d x\), the first term righthand side, is not quite the same as in Eq. 17 because the change in \(d y\) is measured for a unit change in \(d x\), while \(z\) is kept constant. A similar remark applies to \(d y / d z\) for \(x=\) constant.
In general, \(V_{e}\), the d-c emitter voltage, will depend on the emitter and collector currents or on the operating point. Thus
\[
\begin{equation*}
V_{e}=V_{e}\left(I_{c}, I_{c}\right) \tag{21}
\end{equation*}
\]

Applied to Eq. 19, \(y \approx V_{e}, I_{c} \approx x\), \(I_{c} \approx z\). The dependent variable is voltage \(V\). and the independent variables are \(I_{e}\) and \(I_{c}\). This shows that the transistor is a currentoperated device and the currents are the independent variables. In transistor work the currents are adjusted to the correct operating point, and the voltages appearing are then fixed by the current values.
To illustrate further the effect of this concept in practice, the static characteristics of transistors are plotted, by common consent, with current as abcissa and voltage as ordinate, in keeping with the mathematical convention of plotting the independent variable along the \(x\) direction.

Analogous to Eq. 20, obtained from 19, is Eq. 22 for Eq. 21.
\(\left.\left.d V_{e}=\frac{d V_{e}}{d I_{e}}\right]_{I c-k} d I_{e}+\frac{d V_{e}}{d I_{c}}\right]_{I e-k} d I_{c}\)
The d-c collector voltage also depends on emitter and collector currents, and
\[
\begin{equation*}
V_{c}=V_{c}\left(I_{e}, I_{z}\right) \tag{23}
\end{equation*}
\]

Again on differentiating
\(\left.\left.d V_{e}=\frac{d V_{e}}{d I_{e}}\right]_{i=-k} d I_{e}+\frac{d V_{e}}{d I_{c}}\right]_{l_{e-k}} d I_{c}\)


FIG. 3-Typical curve showing \(y\) as \(a\) function of \(x\). Slope is \(y^{\prime}=d y(x) / d x\)


FIG. 4-Sinusoidal voltage (or current) used to simulate differential increments


FIG. 5-Plot of emitter voltage versus emitter current

Equations 22 and 24 are extremely important in transistor analysis.

\section*{Small Changes}

A simple explanation of Eq. 24 might be based on an a-c voltage and current wave as shown in Fig. 4, where the sinusoidal voltage wave \(v=v_{m} \sin \omega t\) where \(v_{m}=d v\).

In an interval \(\omega t=\pi / 2\), the amplitude changes from 0 to \(d v\), and in the next interval of time from \(d v\) to 0 , so that, disregarding the sign, the amplitude changes by \(d v\) for each \(\frac{3}{4}\) cycle. In general, Eq. 22 and 24 apply properly if \(d v\) is actually infinitesimal, or extremely small, but in actual application a practical value of \(d v\) may be used.

In Fig. 5 is shown a possible plot of d-c values of voltage vs cur-
rent, say of the emitter voltage \(V\) e and emitter current \(I_{e}\) for a transistor. Assuming the operating point of the transistor is at \(V_{e}{ }^{\prime}, I_{e}{ }^{\prime}\), if the emitter current is modulated sinusoidally by a small signal so that \(I_{e}\) varies at most by \(d I_{e}\), then \(I_{e}\) will vary from \(I_{e}{ }^{\prime}\) to \(I_{e}{ }^{\prime}\) \(+d I_{e}\), from \(I_{e}{ }^{\prime}+d I_{e}\) to \(I_{e}{ }^{\prime}\), from \(I_{s}{ }^{\prime}\) to \(I_{e}{ }^{\prime}-d I_{e}\), and so forth. The quantitative relation between the change \(d I_{e}\) in \(I_{e}{ }^{\prime}\) and the change \(d V\) e in \(V_{\mathrm{e}}\), assuming that \(V_{\mathrm{e}}\) depends on \(I_{\mathrm{e}}\) alone, is
\[
d V_{e}=\frac{d V_{e}}{d I_{e}} d I_{e}
\]
as in Eq. 18.
Just as \(d y / d x=y^{\prime}\) is the slope of the \(y=y(x)\) curve, so \(d V_{e} / d I_{e}\) is the slope of the characteristic curve of Fig. 5. (Note that \(d V_{e} / d I_{e}\) has the dimensions of a resistance, so that in this case the slope is a resistance, hence designated by \(R\).) The slope of the curve must be taken virtually at a point if the relation is to be true.
\[
\begin{equation*}
d V_{t}=R d I_{t} \tag{25}
\end{equation*}
\]

\section*{Signal Limitations}

If in using Eq. 25 the slope over a large region is used the condition shown in Fig. 6 occurs. The slope at point ( \(V_{e}{ }^{\prime}, I_{\varepsilon}{ }^{\prime}\) ) is actually \(S_{1}\) as shown, but using a large swing about ( \(V_{e}{ }^{\prime}, I_{e}{ }^{\prime}\) ) gives a slope \(S_{2}\) which is in general not equal to \(S_{1}\). Thus, using a large distance about the point in question to compute the slope may introduce large errors; the larger the distance used, the larger may be the error, particularly as the curve departs more and more from a straight line. If a sinusoidal current is used to simulate \(d I_{e}\), it must be a very small current or signal, or else large errors may be introduced.

In view of these remarks, the differential quantity \(d V\). is representable, for purposes of a laboratory experiment, by an a-c voltage, and \(d I_{\text {. by an a-c current, provided }}\) they are suitably small.

Regardless of whether \(V_{e}\) is a function of one or two variables, the remarks about the size of the signal are still valid.

Equations 22 and 24 may be written (Eq. 26 and 27 respectively) in terms of small a-c \(v\) 's and \(i\) 's by applying the foregoing principles.
\[
\begin{align*}
& \left.\left.v_{e}=\frac{v_{e}}{i_{e}}\right]_{I_{c}=k} i_{e}+\frac{v_{e}}{i_{c}}\right]_{I_{e}=k^{i}}^{i_{c}}  \tag{26}\\
& \left.v_{c}=\frac{v_{c}}{i_{e}}\right]_{I_{c}=k}^{\left.i_{e}+\frac{v_{c}}{i_{c}}\right]_{I_{\varepsilon}=k^{i c}}^{i_{c}}} \tag{27}
\end{align*}
\]

There are several comments which must be made about these two equations: (1) Note the use of small letters for a-c values, and capitals for d-c values, in keeping with the convention adopted by the authors for this series, and which is a proposed standard.
(2) Consider the \(I_{c}=k, I_{e}=k\) factors of Eq. 26 and 27 . If a change \(d I\) is representable by a small a-c current, \(i \sin \omega t\), as has been shown, of amplitude \(i\), then 0 change in d-c current, \(I_{c}=k\), or \(I_{e}=k\), will be represented by an a-c current of 0 amplitude. Using this fact we may properly write Eq. 26 and 27 as
\[
\begin{align*}
& \left.\left.v_{e}=\frac{v_{e}}{i_{e}}\right]_{i_{c}=0} i_{c}+\frac{v_{e}}{i_{c}}\right]_{i_{e}=0} i_{c}  \tag{2S}\\
& \left.\left.v_{c}=\frac{v_{c}}{i_{e}}\right]_{i_{c}=0} i_{e}+\frac{v_{c}}{i_{c}}\right]_{i_{e}=0} i_{c} \tag{29}
\end{align*}
\]
(3) At \(i_{o}=0, v_{e} / i_{s}\) is \(r_{11}\) as described in Part VII of this series.
\[
\begin{equation*}
\left.r_{1 i}=\frac{v_{e}}{i_{e}}\right]_{i_{c}=0} \tag{30}
\end{equation*}
\]

Using the definitions laid down in Part VII
\[
\begin{aligned}
& \left.\frac{v_{e}}{i_{c}}\right]_{i_{e}=0}=r_{12} \\
& \left.\frac{v_{c}}{i_{e}}\right]_{i_{c}=0}=r_{21} \\
& \left.\frac{v_{c}}{i_{c}}\right]_{i_{e}=0}=r_{22} \\
&
\end{aligned}
\]

Hence Eq. 28 and 29 can be rewritten
\[
\begin{align*}
& v_{e}=r_{11} i_{e}+r_{12} i_{c}  \tag{31}\\
& v_{c}=r_{21} i_{e}+r_{22} i_{c} \tag{32}
\end{align*}
\]

Equation 31 states that a potential \(v_{e}\) is acting in a circuit and produces the two potential drops \(r_{11} i_{\text {e }}\) and \(r_{12} i_{\text {s }}\) which together make up \(v_{e}\). Similar remarks apply to Eq. 32. Replacing subscript \(e\) in the emitter circuit by subscript 1 , and subscript \(c\) by 2, Eq. 31 and 32 become
\[
\begin{align*}
& v_{1}=r_{11} i_{1}+r_{12} i_{2}  \tag{33}\\
& r_{2}=r_{21} i_{1}+r_{22} i_{2} \tag{34}
\end{align*}
\]

Equations 13 and 15 are identical to Eq. 33 and 34 respectively, but were arrived at by entirely different methods of reasoning. Equa-
tions 13 and 15 were obtained from a circuit analysis using Kirchhoff's law for the voltage loops; Eq. 33 and 34 were derived on a mathematical basis from the simple concept that \(V_{e}\) and \(V_{c}\) are dependent on both \(I_{c}\) and \(I_{e}\) in small-signal operation.

As has been mentioned, the ultimate fact mathematically expressed by these equations is that, given all the other data, it is possible to find two numbers, \(i_{1}\) and \(i_{2}\), that satisfy these equations. The fact that they happen to represent a current, in milliamperes perhaps, does not influence the mathematical description of how to determine these two numbers. Since Eq. 33 and 34 are linear equations (that is, they contain no products like \(i_{1} \times \ddot{i}_{2}\), or \(i\) raised to some power) the delineation is unique; that is, the equations will define only one pair of values, \(i_{1}\) and \(i_{2}\), and no other.

Consequently, whatever assumptions were made to find Eq. 33 and 34 are also binding on Eq. 13 and


FIG. 6 - Sketch shows error in determining slope with large signal input


FIG. 7-Connections for measuring \(r_{11}\)


FIG. 8-Equivalent pi circuit of transistor

15 because they represent the same numbers.

\section*{Assumptions}

First, from the discussion in connection with Eq. 31 and 32 , the parameters are open-circuit values, that is, \(i_{c}=0\), when measuring \(r_{11}\) and \(r_{21}\) and \(i_{e}=0\) when measuring \(r_{12}\) and \(r_{r 2}\) This condition has already been met for Eq. 13 and \(15^{1}\).

Second, from the discussion in connection with Eq. 26 and 27, the parameters are measured using ratios of a-c values. This condition has also been met \({ }^{\text {t }}\).

Third, the symbol convention that
\[
\begin{aligned}
& v_{1}=e_{g t}-i_{1} R_{g} \\
& v_{2}=e_{g 2}-i_{2} R_{L}
\end{aligned}
\]
assumed to obtain Eq. 13 and 15, is binding on Eq. 33 and 34.

Last, and probably most important, from the discussion in connection with Eq. 26 and 27, the use of small signals is assumed. This means that the four-pole parameters \(r_{11}, r_{12}, r_{21}\) and \(r_{22}\) are small-signal parameters.

In selecting an amplitude for the measurement of the four-pole parameters, several factors must be considered.

If the signal is not truly small, different signal amplitudes will give different values of parameters.

In practice, a signal of some convenient size is selected, and the parameter, say \(r_{i 1}\), measured. Then the signal is reduced slightly, and the parameter measured again. If the value of \(r_{11}\) obtained in the second trial is close to the \(r_{11}\) originally obtained, within the accuracy desired, the signal is a small signal and conversely.

It might appear that there is no objection to using a very small amplitude signal originally, so that there is no question about the signal being small. If the \(V-I\) characteristic is very curved, it is very difficult to guess what constitutes a truly small signal. The test suggested above should therefore always be made. Too small a signal introduces measuring problems such as noise and the general difficulty of measuring fractions of a microvolt at a-c.

When feasible, the parameter may be measured by the volt-ammeter method tacitly assumed here,
and the resulting value compared to that obtained by using an entirely different measuring scheme. Other possible methods include the bridge method, scope presentation, and variations and combinations of these. The results must compare within the accuracy desired if the signal is truly small.

\section*{Open Circuit}

Let us now review in a general way the data that has been assembled regarding \(r_{11}, r_{12}, r_{21}\) and \(r_{22}\). Because these parameters are so important in the specification of transistor characteristics, much experimental and theoretical work has been done and is continuing regarding these and other suitable parameters.

These parameters are called small-signal open-circuit groundedbase four-pole parameters. In this and previous articles the terms small-signal, grounded-base, and four-pole parameters have been explained. To understand the opencircuit term, consider Fig. 7 which shows the circuit arrangement for measurement of \(r_{11}\).

Both \(V_{1}\) and \(V_{2}\) are vacuum-tube voltmeters, and \(R\) is a small resistance of known value placed in the signal generator return to measure the current \(i_{1}=V_{1} / R\). Voltmeter \(V_{2}\) measures the voltage across the input of the transistor, and \(r_{11}=\) \(V_{2} / i_{1}\). There is not a true open circuit across the output or collector circuit since whatever scheme is used to bias the collector, a d-c return path to the base is essential, and thus a d-c path is always present to act as a closed circuit across the collector. The internal resistance of the d-c bias supply may be made very high by using a choke of several hundred henries but not infinite. In most tests \(f=270 \mathrm{cps}\).

Also, there is an a-c shunting path always present due to internal transistor and stray capacitance. The impedance of this shunting path decreases as the frequency increases.

A typical value of \(C_{c}\), the collector capacitance, is 50 u.f.f and a typical circuit may have an additional stray capacitance of \(10 \mu \mu \mathrm{f}\). At \(270 \mathrm{cps}, X_{c}=9.8\) megohms. If \(r_{\mathrm{og}}\) were three megohms, at 270 cps


FIG. 9-Sketches show connections for measuring g's or short-circuit conductances
the 9.8 megohms would represent a shunt path of some importance, and it is not true that measurements are being made under opencircuit conditions.

Two principal approaches to this problem have been adopted.
(1) The arbitrary convention that the circuit is open if the shunt resistance is fifty times the internal transistor resistance. Thus when measuring \(r_{11}\) and \(r_{21}\), where the collector circuit must be open, the shunt path shall be \(50 \times r_{22}\); and when measuring \(r_{12}\) or \(r_{22}\) the shunt path shall be \(50 \times r_{11}\). Or, where feasible, the collector-to-base resistance (or emitter-to-base resistance) may be doubled. If the value of the parameter measured remains invariant within the accuracy desired, the circuit is truly an open circuit.
(2) Measurement of other parameters such as the \(g\) 's and \(h\) 's described below to characterize transistor operation, whose measurement does not require the use of an open circuit across high impedance elements. Then, if desired, parameters such as the \(r\) 's may be derived mathematically from the quantities measured. Or, the performance of the transistor may be expressed in terms of these new parameters directly, it being assumed that with experience engineers will readily compare transistor performance in terms of these parameters.

\section*{Conductances}

It was mentioned that the equivalent \(T\) as characterized by Eq. 13 and 15 is not the only equivalent circuit for the specification of the
allegorical black box. The black box or transistor is equally well represented by an equivalent circuit which is a \(\pi\) network, \({ }^{2}\) as in Fig. 8. This circuit is analyzed by means of Eq. 35 and 36 using conductances.
\[
\begin{align*}
& i_{1}=g_{11} v_{1}+g_{12} v_{2}  \tag{35}\\
& i_{2}=g_{21} v_{1}+g_{22} v_{2} \tag{36}
\end{align*}
\]

Using Eq. 35 and 36 all the four \(g\) 's can be measured. For illustration, setting \(v_{2}=0, g_{11}=i_{1} / v_{1}\) and similarly one can find \(g_{13}, g_{27}\) and \(g_{22}\); see Fig. 9. These \(g\) 's are sometimes called the short-circuit conductances.

While it is true that resistances and conductances are reciprocals, the \(r_{11}\) which appears in Eq. 13 is not the reciprocal of \(g_{11}\). In Eq, 13 \(r_{11}\) was obtained using an opencircuited collector, but \(g_{11}\) is obtained by using a short-circuited collector. Hence, \(r_{1 s}\) is not \(1 / g_{11}\) and is, in fact, given by
\[
\begin{equation*}
r_{11}=\frac{g_{22}}{g_{11} g_{22}-g_{12} g_{21}} \tag{37}
\end{equation*}
\]

To obtain \(g_{11}, v_{2}\) is set to 0 . In other words, the output is short circuited. This does away with the need for establishing an open circuit. Like any other good idea in engineering, it has its drawbacks. To find \(g_{12}\) the emitter circuit may be shorted, making \(v_{1}=0\), and so on for all the other parameters.

The disadvantage of the \(g\) method is that some point-contact transistors may be short-circuit unstable. If the input or the output is a-c short-circuited, the units may break into parasitic oscillations. Fortunately, the applicability of this method is greatest for junction types, where this instabil-


FIG. 10-Circuits for measuring h's or hybrid transistor parameters
ity is not normally encountered. The inference is that for point-contact units, the \(r\) 's may be suitable, and with junction units, the \(g\) 's may be preferable.

\section*{Hybrid Parameters}

Because the use of the \(g\) 's suggests that two different parameters are needed to take care of pointcontact and junction units, an entirely different set has been suggested. \({ }^{3}\) These are the hybrid parameters, or \(h\) 's, characterizing the transistor by the following equations
\[
\begin{align*}
& v_{1}=h_{11} i_{1}+h_{12} v_{2}  \tag{38}\\
& i_{2}=h_{2} i_{1}+h_{22} v_{2} \tag{39}
\end{align*}
\]

To find \(h_{11}\), the output is shorted, (see Fig. 10) \(v_{\mathrm{o}}=0\), and
\[
\begin{equation*}
h_{11}=\frac{v_{1}}{i_{1}} \tag{40}
\end{equation*}
\]

The \(r_{11}\) of Eq. 13 was obtained with open-circuited output, hence \(h_{11}\) is not the same as \(r_{11}\). As \(g_{11}\) was obtained with \(v_{2}=0, h_{11}=\) \(1 / g_{11}\), so that the \(g_{11}\) of Eq. 35 is the reciprocal of \(h_{71}\) in Eq. 35 ; and since the reciprocal of a conductance is a resistance, \(h_{11}\) is of the nature of a resistance, dimensionally.

To find \(h_{12}, i_{1}\) is made 0 by making the input an open circuit, placing the generator in the collector circuit, and measuring \(v_{1}\) and \(v_{2}\). Then
\[
\begin{equation*}
h_{: 2}=\frac{v_{1}}{v_{2}} \tag{41}
\end{equation*}
\]

As this is the ratio of two voltages, \(h_{12}\) has no dimensions. A similar analysis will show, for Eq. 39, that \(h_{21}=i_{2} / i_{1}\) for a short-circuited
collector. This is \(x_{c e}\) by definition; \(h_{22}=i_{2} / v_{2}\) is conductance but not identical with \(g_{22}\) of Eq. 36 since all the parameters of Eq. 36 are obtained under short-circuit conditions. Note that \(h_{22}\) is obtained under open-circuit conditions.

Thus the hybrid parameters contain two pure numerics, \(h_{12}\) and \(h_{21}\), a resistance \(h_{11}\) and a conductance \(h_{\text {m. }}\). They possess, however, some of the advantages of both the \(r\) 's and the \(g\) 's:
(1) In the matter of avoiding the necessity for maintaining an open circuit in the high-resistance collector, the \(h\) method shares the advantage of the \(g\) system in that \(h_{11}\) and \(h_{21}\) are made with collector shorted.

In the matter of avoiding the necessity for maintaining a short circuit in the low-resistance emitter circuit, the \(h\) system shares the advantage of the \(r\) system, since both \(h_{12}\) and \(h_{22}\) are made with emitter open circuited. Since the input resistance of some transistors may be quite low, of the order of tens of ohms, difficulties are encountered in effectively a-c short circuiting such impedances. In the \(h\) system, the input is open circuited for such measurements ( \(h_{12}\) and \(h_{29}\) ).
(2) Measurements for alpha in the \(g\) and \(r\) methods are indirect. In the \(r\) method, \(r_{91}\) and \(r_{92}\) are found; their ratio is alpha \(=r_{21} / r_{22}\). In the \(g\) method, alpha \(=g_{21} / g_{22}\); but in the hybrid parameter method, alpha \(=-h_{21}\) directly.

The principal disadvantages of the \(h\) 's is that they are not directly amenable to circuit analysis. Whereas most engineers are acquainted with resistances and con-
ductances and use them readily in circuit analysis, few are prepared to use \(h\) 's directly. If transformations are necessary, and these are quite cumbersome, the advantages mentioned above may well be overshadowed. Engineers are currently studying the relative merits of each set of parameters. The indications are that considerable additional experience is needed before a single set of parameters to characterize transistors will be generally adopted.

\section*{Resume}

In resume, the following are the salient points:
(1) Typical power gains that are possible with the grounded-base transistor connection are: pointcontact, 20 db ; junction, 46 db .
(2) In transistor terminology \(r_{11}, r_{12}, r_{21}\) and \(r_{22}\) are called smallsignal, grounded-base, open-circuit, four-pole, equivalent-circuit parameters. Each part of the name has significance.
(3) A test to determine whether a signal is truly a small signal is to measure the parameters using a selected amplitude of signal, decrease the signal by approximately 50 percent and remeasure the parameters. The measured values must compare within the orders of accuracy required.
(4) Either the \(r\) 's, or the \(g\) 's or \(h\) 's may be used to characterize the transistor equivalent circuit. Considerations such as common usage, short-circuit stability, and effective open and short circuit are involved in selecting the parameters for a given analysis.

\section*{References}
(1) Abrahan Coblenz and Harry \(L\) Owens, Equivalent Transistor Circuits and Equations. TRANSISTORS. Theory and Application, Part VII, ELECTRONICS, p 156 , Sep. 1953.
(2) L. J. Giacoletto, Junction Transistor Equivalent Circuits and Vacuum tube Analogy, Proc \(I R E\), p 1490, v 40 11, Nov 1952.
(3) D. A. Alsberg of Bell Telephone Laboratories, Murray Hill, N. J., before IRE, March, 1953 , in talk entitled "Transistor Metrology."
(4) R. M. Ryder and R. J. Kircher Some Circuit Aspects of the Transistor, \(B S T J\), p 367, 28, 3 Jul. 1949.
(5) Measurement of transistor parameters, including the z's, g's and \(h\) 's, in Signal Corps Interim Basic Section on Transistors, entitled: "Transistors, Crystal Diodes, and Related Semiconductor Devices" MIL-T-12679 (Sig C). Requests from concerns and individuals activery engared in semiconductor device activity should be addressed: Director, Evans Signal T.aboratory, Belmar, N.J., Att'n: Thermionies Branch.

\title{
Signal-Noise Meter
}

\section*{Checks TV Links}

\begin{abstract}
Noise ratio of studio-transmitter microwave links, intraplant coaxial cables and other broadcasting equipment are determined with a single portable meter. Techniques and equipment applied to propagation studies on \(7-\mathrm{kmc}\) relay paths are applicable to broadband communications circuits
\end{abstract}

INCREASED USE of television program networks and improvement of transmission standards has created a need for a simple device for testing and maintenance of circuits. A signal-noise meter described below was used originally to align, test and maintain the NBC Phila-delphia-to-Washington microwave relay. The technique depends upon using test tones in the region between 60 and 300 cycles and a noise amplifier with cutoff below 1,000 cycles. It can be employed to measure the signal-to-noise ratio of single or cascaded links. Noise measurements of coaxial cable lines within the television plant can likewise be made.

This meter measures the peak-to-peak signal to the peak-topeak noise ratio in db . The signal-noise ratios measured between microwave facilities are usually about 10 db less than freespace calculations made on a power basis, that is, signal watts to noise watts. It should be noted that noise can be other than the thermal noise originating in the head-end of a receiver. For example, it could be interference from an f-m station introduced into the i-f amplifier of the receiver.

The noise on long runs of coaxial cable within a tv plant can also be measured using this equipment. Usually these cables are a few

\section*{By ROY MOFFETT}

Staff Engineer.
Development Engineering National Broadcasting Co. New York, N. Y.
hundred to a thousand feet long. The noise is of random nature and therefore a cro is used to measure the noise output of the amplifier. It is not necessary to use a 60-to300 cycle test signal in this case. The noise is amplified to a one-volt level and the amplification required in db is the signal-noise ratio, since 1 volt peak-to-peak is standard picture level,

\section*{Elements of System}

The block diagram of the signalnoise meter is shown in Fig. 1. The meter comprises a \(60-\mathrm{db}\) video attenuator that can be adjusted in \(2-\mathrm{db}\) steps, a \(1-\mathrm{kc}\) to \(10-\mathrm{mc}\) ampli-


FIG. 1-Block diagram of signal-to-noise measurement meter used for tv
fier having a maximum gain of 60 db, a peak-to-peak vacuum-tube voltmeter and a 1 -mc calibrating oscillator. The cathode and grid \(R C\) time constants of the amplifier were selected so that the amplifier has a cutoff below 1,000 cycles.

The schematic diagram of this test instrument is shown in Fig. 2. Filaments and plate wiring have been isolated by means of suitable filters. The plate supply with total drain of about 60 ma is regulated by means of a type VR-150. It is important that there be no feedback between the NOISE and SIGNAL sides of the switch to avoid oscillation.

\section*{Measurement Procedure}

The meter can be calibrated in the following manner: arbitrarily set the attenuators for \(50-\mathrm{db}\) attenuation, turn on the \(1-\mathrm{mc}\) calibrating oscillator and read the level of the 1-mc calibrating signal on the vtvm with switch on SIGNAL; connect the vtvm to the output of the amplifier, switch on NOISE, and adjust the gain of the amplifier until the 1-mc signal level is the same as it was out of the oscillator. Note that the peak-to-peak vtvm is not calibrated in volts but is used to match the readings. The instrument is now calibrated and the 1-me calibrating oscillator can be turned off.

The following procedure is used


FIG. 2-Schematic diagram of portable meter used in lining up NBC microwave tv links
in making a signal-noise measurement on a studio-transmitter type microwave relay. Modulate the transmitter with an audio oscillator using a sine wave somewhere in the frequency range between 60 and 300 cycles and having the same peak-to-peak amplituce as the normal composite picture signal. The output signal from the microwave receiver is fed to the input of the signal-noise meter. Switch the vtvm to SIGNAL and note the scale reading. Now switch the vtvm to Noise and then decrease the attenuators until the readings are the same within 1 db . The value in db removed from the attenuators is the signal-noise ratio in db . For example, if the attenuators were decreased from 50 db to 20 db , then the ratio is 30 db .

\section*{Field Measurements}

Many measurements have been made during the last five years on television microwave relays in both the 2,000 and \(7,000-\mathrm{mc}\) bands. A plot of miles vs signal-to-noise ratio in db for \(7,000-\mathrm{mc}\) equipment is shown in Fig. 3. An arbitrary line has been drawn to average the individual measurements. A good
example of a relay path under different conditions of both transmission propagation and equipment is shown by the two dots plotted at 31 miles; there is a \(6-\mathrm{db}\) difference in the signal-noise ratios.

A bench test of microwave equipment, using an attenuating coupler that approximates 10 miles of transmission, is likewise plotted. Various equipments and attenuators were used in this example. It will be noted that there is a good \(6-d b\) spread between the various measurements. Both the output power of the transmitter and the noise factor of the receiver, beside variations in the attenuators, would account for the discrepancy.


FIG. 3-Comparison of bench and field tests of \(7-\mathrm{kmc}\) equipment using \(4-\mathrm{ft}\) parabolic reflectors and about 0.1 watt

An attenuating coupler that has a known transmission-path attenuation in db or miles can be used to check transmitter and receiver. The transmitter and receiver are aligned and tuned using a sinewave test signal and also a composite resolution test pattern. Modulation should be at the same peak-to-peak level with a 60 to 300 cycle sine wave.

\section*{Improvements}

If the measured signal-noise ratio is below that expected, various portions of the system can be checked. The crystal in the head end of the receiver should be changed, and also the first and second tubes following the microwave converter, likewise the output klystron of the transmitter.

The transmission path is checked next. It is assumed that this relay path provides line-of-sight transmission. The parabolic reflector dishes should be panned in using the signal-noise meter for determining minimum noise. The signal should also be observed on a cro. This method is more accurate than using carrier meter on microwave receiver for checking signal.


Tiny dielectric amplifier capacitors bebefore mounting


Dielector with leads for applications where sealing is unnecessary


Complete hermetically sealed unit is shown at roughly half normal size

\title{
Nonlinear Capacitors for
}


FIG. 1-Curves show incremental capacitance as a function of voltage for several typical dielectors


FIG. 2-Typical application for nonlinear capacitors is modulator circuit

\author{
By GEORGE S. SHAW and JAMES Li JENKINS
}

Radiation, Incorporated
Melbourne, Florida

ALTHOUGH somewhat overshadowed in recent years by transistor developments, the dielectric amplifier still promises to be an important factor in the electronics industry of the future. Extremely versatile dielectric amplifiers have been built, but their operation is presently limited to environments of carefully-controlled conditions.

Continuing research for new and better materials for use in dielectric amplifiers is showing profitable results day by day.

Incremental capacitance is plotted as a function of d-c voltage applied to several typical dielectors in Fig. 1. Such information pro-
vides certain useful criteria for designing amplifiers and other circuitry. The linearity of this type of curve is a measure of linearity of the output signal of the amplifier. The gain of a dielectric amplifier is proportional to the slope of this curve which can be evaluated by defining \(o\) as \(\frac{2\left(C_{1}-C_{2}\right)}{\left(E_{1}-E_{2}\right)\left(C_{1}+C_{2}\right)}\) which is the mean fractional change in capacitance per unit change in bias voltage in the interval between \(E_{1}\) and \(E_{2}\).

For certain compositions, values of \(\delta\) of 0.08 have been obtained, with values as large as 0.1 being realized under special conditions. These bodies should by no means be


FIG. 3-Circuit of small broadeast receiver using dielectric amplifiers at rif and a-f frequencies


Two dielectors are installed in temperature-controlled oven that maintains 90 deg \(C\)


Laboratory model of two-stage audio amplifier that gives 300 mw output. The r-f power source is shown at center

\title{
Dielectric Amplifiers
}

\title{
Using an r-f power source, a typical two-stage dielectric amplifier produces 300 milliwatts output from a 0.3 milliwatt signal source. Although still vulnerable to atmospheric conditions, progress is being made in developing new materials
}
considered as optimum since there is a great deal of research work yet to be done before the mechanism of voltage sensitivity will be fully understood and controllable.

At the present time, all of the dielectrics known to be appreciably voltage sensitive have dielectric constants in the order of 2,000 to 6,000 . Dielectors suitable for circuit applications at the higher frequencies and with small signal voltages must have small capacitance values and must be made from thin dielectrics so that the signal voltage gradient will be adequate.

This immediately presents a problem since a capacitor having a value of 100 , f. with a dielectric material 0.005 in . thick, and having a dielectric constant of 4,000 would be approximately 0.0236 inch square, or less than \(1 / 32\) inch on each side. This is small indeed and presents serious problems in manufacture and mounting. Nevertheless dielectors are currently being produced with a dielectric thickness as small as 0.005 in. and with zero-voltage capacitances as low as 100 upf.

At the present time, the voltage
sensitivity of the commercial dielectric amplifier capacitors shown in the photographs, varies somewhat with temperature. For operation in circuits where the sensitivity must be constant, the units may be operated in a small temperaturecontrolled oven as shown.

\section*{Circuit Application}

Usable amplification is obtainable from dielectors in several ways. An example is shown in Fig. 2 A , representing a typical arrangement for a modulator-amplifier. A qualitative explanation of the circuit can best be given by considering Fig. 2B.

A value of capacitance is chosen such that an operating point is established on one side of the resonance curve. If the capacitance is varied by some means, such as a small signal voltage applied to a dielector, the voltage \(E\) will vary. Thus there is produced an ampli-tude-modulated r-f voltage which can be demodulated to recover the amplified signal. No energy is required from the signal except to replenish the small capacitor losses since all the energy supplied to the
load as an amplified signal comes from the r-f carrier supply. It is evident that the higher the Q of the circuit, the greater will be the change in voltage \(E\) for a small change in capacitance.

Figure 3 is a diagram of a twostage audio-frequency dielectric amplifier which has been built that has an overall power gain of 30 db . The input signal power is 0.3 milliwatt and the power output is 300 milliwatts.

As a nonlinear circuit element the dielector has possible applications other than in amplifiers; the more obvious being in multivibrators, memory and storage devices, frequency and amplitude modulators, and electrically-adjustable filters.

Appreciation is expressed to L. R. Culver of Radiation, Inc. for his suggestions and assistance, and to Josephine LeGault for the exhaustive experimental work entailed.

\section*{Bibliography}

\footnotetext{
A. N. Solomon. Flectrical Report 9, Titanium Alloy M fg . Co., Sept. 17, 1942 . Report 9 Titanium Alloy Mfg Co Jan 9.1943, vincent Dielectric Amplifier Findamentals, Electronics, p 84. Dec. 1951.
}

\title{
Electron-Beam Head for
}

\begin{abstract}
Standard magnetic tape run over neck of special miniature cathode-ray tube causes electron beam to deflect between two collecting plates alternately at the recorded audio rate, so that current output of tube is linearly proportional to magnetization on tape
\end{abstract}


Bench setup used in obtaining performance characteristics of new tape playback head, just visible inside triple-shielded housing from which cover has been removed. Magnetic fields as weak as one-hundredth of the earth's magnetic field will give an output voltage, hence the need for magnetic shielding

SInce the time of Poulson's invention \({ }^{1}\) of magnetic recording ever 50 years ago only one principle of reproduction has been employed. This is the generation of a varying electric current in a coil by the variations of magnetic flux from the tape.

A disadvantage of this kind of reproduction lies in the fact that the output signal is proportional to the rate of change of the flux in the tape rather than to the instantaneous values. The resulting frequency characteristic increases from zero linearly until limited by
the gap size. \({ }^{2}\) Since flux here is directly proportional to the input signal, the output from a conventional head is not a true reproduction of what was recorded. Equalizing networks must be incorporated in the reproducing circuits to restore the balance between low and high frequencies so the reproduction will sound like the recorded signal.

\section*{Beam-Type Head}

In the new pickup head \({ }^{3}\) described herein, the magnetic flux in the tape is guided by a magnetic structure into a tiny cathode-ray tube
where it deflects the electron beam in proportion to the instantaneous magnitude of the flux. The magnitude of the output signal is independent of the recorded frequency and of the speed of the tape. In fact, if the tape is moved very slowly or even stopped altogether the amplitude of the output signal is not decreased. The tube also acts as a deflection type of amplifier, giving output voltages many times those from conventional heads.

Figure 1A shows a sectional view of the new type of reproducing head, with the old type shown in Fig. 1B for comparison. The new head has a conventional gap in contact with the tape, and a magnetic core structure which guides the flux through the glass walls of the tube. The internal magnetic pole pieces carry the flux into the deflecting region where it produces a magnetic field that deflects the electron beam.

Figure 1C shows a cutaway view of the tube. The miniaturized electron gun at the left sends a beam of electrons between the pole pieces toward the split target. The deflection of the electrons is at right angles to the flux and hence parallel to the pole faces. This property of magnetic deflection is advantageous in increasing the sensitivity since the pole pieces never get in the way of the deflected beam. The pole pieces are thin moly-permalloy and the other metal parts of the tube are nonmagnetic stainless steel.

Figure 2 shows the basic circuit connections. The small plate located just behind the slit between the target plates is grounded to repel

\title{
Magnetic Tape Playback
}

\author{
By A. MELVIN SKELLETT, \\ Vational Union Radio Corp. Orange, N.J.
}

\author{
Lawrence e. Leveridge \\ National Union Radio Corp \\ Orange, N. J.
}

\section*{J. WARREN GRATIAN}

Stromberg-Carlson Co.
Rochester, N. Y.
those electrons that pass through the slit and thus reduces the effective slit width. For zero flux and zero deflection the beam is equally split between the output plates of the larget, giving zero output voltage across the 100,000 -ohm load
resistors. In operation the beam swings back and forth between the two plates depending on whether the flux is negative or positive. When the beam is deflected the target currents are no longer equal and hence a net output voltage is
developed across the two load resistors.

The output characteristic in Fig. 3 shows output voltage measured across the output plates for different values of flux in the beamgap. The characteristic is linear


Tube structure and bulb before sealing


MAGNETIC CORE
STRUCTURE
(C) CUTAWAY VIEW OF TUBE
(B) OLD HEAD

FIG. 1-Cross-sections of new and conventional magnetic tape playback heads, and cutaway view of cathoderay tube used in new head
over a range of \(\pm 1\) gauss. This range is about 50 times greater than the maximum flux variation from standard 4 -inch magnetic tape when used with the complete head under typical operating conditions.

\section*{Magnetic Structure}

The magnetic head structure design of Fig. 1A was abandoned early in the work, in favor of the strip-type magnetic structure shown in Fig. 4. The magnetic gap caused by the deflecting region in the tube introduces a very high reluctance, making the reluctance of the elements in the magnetic circuit negligible in comparison with the beam-gap reluctance. The magnetic elements may therefore be reduced to the smallest practical dimensions without appreciable loss of flux. A single lamination of Mu metal 0.014 inch thick proved to be adequate.

The strip-type structure is assembled by using Hysol thermosetting casting resin, which has good adhesion to the metal and is easy to handle. A molybdenum spacer 0.0003 inch thick controls the pickup gap. The wings of the head extend out in the direction of the tape to increase the effective length of the magnetic core, and also act to extend and flatten the low-frequency response of the


FIG. 2-Cathode-ray tube circuit


FIG. 3-Output characteristic of new electron-beam playback head
pickup, for improved performance.

\section*{Sensitivity}

To determine the flux density at the electron beam, a calibrated vibrating probe was used to measure the flux density in the gap between a pair of dummy pole pieces mounted in proper relation to the external magnetic structure. With a saturated tape recording, a field intensity of approximately 0.04 gauss was available for de-
flection of the electron beam.
Reluctances and leakage factors of the various portions of the magnetic circuit were determined by additional measurements and calculations. Using these values, it was shown that the total flux in the beam gap should approximate 8 percent of that available from the recording. The cross-section area of the magnetic tape coating was approximately \(1 / 1,200\) that of the beam gap. A saturated recording on a typical tape having a retentivity of 600 gausses should provide a beam-gap flux density of 600 \(\times 0.08 \times 1 / 1,200=0.04\) gauss, which is in agreement with the earlier measurements.

Tube sensitivity was determined by measuring the tube voltage output with a known applied magnetomotive force. The beam-gap flux density was calculated from the known mmf and previously determined magnetic circuit parameters, thus permitting the tube sensitivity to be expressed in terms of tube voltage output per gauss of beam-gap flux density. With the sensitivity of the tube equal to 15 volts per gauss and a beam-gap flux density of 0.04 gauss, a maximum output voltage of 0.6 volt peak plate-to-plate was expected. Tests with recordings on tape confirmed these figures within


Complete head, with cathode ray tube in position. Tape runs over smoothly curved wings of core


FIG. 4-Components and assembly of experimental winged core used with new head
experimental error.
These figures indicate the high sensitivity of the cathode-ray tube. It will give satisfactory output voltages on field strengths from one-tenth to one-hundredth the strength of the earth's magnetic field.

\section*{Frequency Characteristics}

Curve \(A\) of Fig. 5 gives the frequency response of the new head without any equalization. Curve \(B\), shown for comparison, is the frequency characteristic of a conventional pickup head, also without equalization. It should be noted that the scales are quite different for curves \(A\) and \(B\). For example, the maximum output obtained by the conventional head is only 10 millivolts, whereas the level of most of the frequency range of the new head is about 0.2 volt. These curves were taken with conventional longitudinal recordings, and demonstrate the superior lowfrequency performance of the new head.

At the upper-frequency end of the curves the deterioration in output is caused by the so-called gap effect which comes about because the gap itself is comparable in length with the wavelength of the recorded pattern. The curves show that this effect is more serious with the new type of head. The reason is that the steeply ascending curve of the conventional head partly compensates for this gap effect, whereas the flat characteristic of the new head has no compensating feature

Calculation indicates that a simple single-section R-C equalizing network used in conjunction with the new head will modify the characteristic to curve \(C\). A two section \(R-C\) filter will give an even better effect, as shown by curve \(D\).

\section*{Magnetization Pattern on Tape}

All of the discussion given above was based upon conventional longitudinal recording on the tape. For very low frequencies, corresponding to long wavelengths in the tape, this is not the optimum type of recording pattern. For the long


FIG. 5-Frequency response curves for cathode-ray and conventional heads
wavelength the gap has access only to the leakage flux near the center of the elementary magnet; therefore, as the head is moved slowly over a long recording, such as for a square wave, the response will be a maximum at the ends and a minimum at the center of the square pulse.

Either perpendicular or transverse magnetization would be more suitable, but both of these suffer at the high-frequency end. The work to date has been restricted in general to longitudinal recording since the overall response was more important than the low-frequency end of the spectrum.

\section*{Applications}

Work is being carried on, however, on perpendicular recording involving magnetization through the tape. Indications are that this may be made to give much superior results at the low-frequency end without too great a loss at the high-frequency end of the spectrum.

This new type of head offers advantages over conventional heads in a number of uses. In spite of the excellent results obtained with wellequalized conventional recording of music, it is believed that ultimately the quality obtained with the new head will surpass that possible
with conventional types.
There are certain commercial and military applications where it is desirable to record very low frequencies, d-c levels or pulses without distortion. For these the new head is ideally suited, whereas the old type will not perform adequately without considerable complexity of the apparatus, such as the dithering head and the use of frequency modulation for \(d-c\) recording.

The inherent amplification of the tube and the cheaper equalization circuits required by the new head give rise to the hope that a simpler, cheaper magnetic tape recorder may be possible. This would further popularize and widen the field of magnetic tape recording.

This development has been sponsored by the Bureau of Ships of the United States Navy under Contract NObsr-57452. The tube has been under development at National Union Radio Corp, and the magnetic head structure at Stromberg-Carlson Co. This paper was presented at a meeting of the Institute of Radio Engineers in San Antonio, Texas on Feb. 7, 1953.

\section*{References}
(1) V. Poulson. U. S. Patent No. \(661,619\). November 13. 1900.
(2) S. J. Becrun, "Magnetic Fecording," n 81, Murray Hill Rooks, Inc., New York
City. 1949.
\(\left.\begin{array}{c}\text { (3) A } \\ 2,165,30 \%\end{array}\right) \mathrm{M}\). Skellett. \(T\). S. Patent No.

\title{
Fluoroscope Image
}


FIG. 1-Cross-section of image-amplifier tube, showing method of brightening x-ray image


Closeup of amplifier tube. Image is viewed on screen in neck of tube through lens system

THE ELECTRONIC fluoroscope is a device designed to replace the conventional medical fluoroscopic screen on which the physician sees the x-ray shadowgraph of the patient. It presents the x-ray image in the same size but increased in brightness by a factor of 200 .

For a standard abdomen examination the best fluoroscopic resolution is about 20 lines per inch, obtained after several minutes of dark adaptation by the physician. The brightness amplification of the electronic fluoroscope doubles this, yielding 40 lines per inch without long dark adaptation.

\section*{Operating Principle}

The heart of the new device is the large image tube shown in the photograph and Fig. 1. X-rays pass through the patient and through the glass window of the tube, to strike the input fluorescent screen, similar to a conventional fluoroscopic screen. The resulting light from the screen releases photoelectrons from a photosurface deposited on the back of the screen. Amplification is accomplished by accelerating the photoelectrons through a \(30-\mathrm{kv}\) potential difference. The accelerated electrons strike an output fluorescent screen, releasing more light than was released from the input screen by x-rays. The brightened output image on the other side of this screen is viewed through a system of
optical lenses and mirrors.
By present manufacturing specifications the total brightness amplification of the x-ray image tube is 200. However, true amplification by voltage acceleration accomplishes only about 10 of this amplification. The remaining factor of 20 is obtained by geometrical size reduction of the image. An electrostatic electron-optical system is used to form an output image reduced in size relative to the input image by a factor of about 4.5 in diameter, or 20 in area. Brightness, or emerging light flux per area. is thereby increased by a factor of 20 . Light from the output screen emerges diffused into all forward directions.

The 20 -fold increase in brightness is not lost when the image is magnified back to size in the light-optical system. The eye is effectively brought very close to the image at the output screen by a lens introduced to accommodate the focus of the eye. Brightness remains unchanged, for the increased magnification is exactly balanced by the increased solid angle of light intercepted by the pupil as the eye is brought closer. This action holds for any magnifier system having an exit aperture larger than the pupil of the eye.

\section*{Focusing Lenses}

The main electron-optical lens of the image tube is an eighth-inch gap between electrodes across which
most of a \(30-\mathrm{kv}\) potential difference is applied. A partially satisfactory image can be obtained using only this main lens, but the resolution is good only at the center. The system of weak auxiliary electron lenses corrects the image for good resolution over its full diameter.

\section*{Screens}

The input x-ray phosphor must have high efficiency and its light must be spectrally matched to the photosurface. Phosphors in the zinc sulfide and zine cadmium sulfide family have given the best results.

The intermediate photosurface uses blue-sensitive cesium antimony which has a high threshold energy for escape of any large number of thermal electrons at room temperature. As a result, the output image shows no detectable background glow due to thermally emitted electrons, yet the threshold energy is not so high as to involve photoelectron velocities great enough to cause difficulty in focusing.

For the output electron phosphor, zinc cadmium sulfide was chosen because of high efficiency and because its yellow-green spectral output matches the response of the eye. This screen is aluminumbacked to increase forward light yield and prevent feedback of light.

The electron-optical demagnification ratio was determined from an estimate of the maximum magnifi-

\title{
Amplifying Tube
}

\title{
New tube converts x-ray image into photoelectron stream for intensification by \(30-\mathrm{kv}\) electron lenses. Resulting image on aluminum-backed output screen appears 200 times brighter than standard fluoroscope when viewed at original size through magnifiying optical system
}
cation which could be expected from a satisfactory light-optical system.

Amplification in the image tube brought out a defect of phosphorescence in the input phosphor which was not anticipated. The zinc sulfide was shown to have a composite phosphorescence, with several different decay constants. It was found that persistence gradually builds up due to low-intensity components with very long decay constants. As successive patients were examined, the output image was so obscured by a general background glow that the tube became useless until the next day. The brightness of this persistence glow was too low to be seen directly at the blue-emitting screen itself, but it was brought out by the amplification of the tube. The defect was first corrected by the use of in-

\section*{By FITZ-HUGH MARSHALL}

Research Department
Westinghouse Electric Corp.
East Pittsburgh, Pa.
frared light for quenching between exposures, but recent improvements in the cathode composition has reduced the persistence to satisfactory levels.

\section*{Amplification}

Another problem encountered during development work concerned the difficulty of measuring the amplification of the tube. The conventional screen emits light on the green side of yellow-green, for best response of the dark-adapted eye. The output light of the electronic fluoroscope is on the yellow side of yellow-green, matching the unadapted eye.

Comparison photometry must be


Image amplifier tube and optical system in housing over patient take the place of \(\alpha\) regular fluoroscope screen. The X-ray tube is here located under the table. Intensified image, magnified by optical system at top of housing is viewed in mirror of Fluorex machine
done at some one brightness, but visual amplification varies with brightness level. With some spectral combinations amplification at high brightness has probably been as much as double the value at low brightness. However, apparent amplification also seems to vary with such observer factors as time in the dark, recent hours in bright sunlight and tendency to look offcenter to bring in parafoveal vision, all of which influence the effective degree of observer dark adaptation.

Amplification also varies with quality of the radiation, as influenced by x-ray voltage and equivalent patient thickness. To avoid confusion, an arbitrary specification of conditions for amplification measurement has been adopted. The actual comparison measurements are now made by phototube.

A value of 500 was originally suggested as a reasonable practical amplification limit. \({ }^{1}\) Actually, this amplification has been exceeded in some tubes under some conditions.

In the meantime, the Patterson \(B\) conventional fluoroscope screen has been superseded by the brighter Patterson B-2 screen, changing the comparison standard. Relative to the old standard, the present specified amplification of 200 would be nearer 300 . The remaining difference represents an effort to be conservative, both in avoiding nontypical conditions of measurement and in accepting a production goal which can be met in reasonable quantity.

\section*{Reference}
(1) J. W. Coltman, Fluoroscopic Image Brightening by Electronic Means, Radiology, 5t, p 359, Sept. 1948.

\author{
By LOUIS W. ERATH \\ Vice-President \\ Southwestern Industrial Electronics Co. Houston, Texas
}

BY modifying a conventional Wien bridge type of R-C oscillator so no arm of the bridge is shunted by a low impedance, the influence of vacuum tubes on the oscillator can be virtually eliminated. The only bridge shunting elements then are vacuum-tube grids. This unique arrangement gives extreme frequency stability and very low harmonic distortion. The oscillator has a small general drift for several hours due to warm-up, but the short-time frequency stability is of the order of 1 part per 100,000 over an operating range of 1 cps to \(120,000 \mathrm{cps}\). One application for an instrument with this degree of stability is in conjunction with digital-type frequency counters used in designing sharply tuned filters. The wide frequency coverage, from 1 to 120,000 cps in five overlapping ranges, is useful as well for research in geophysics, medicine and ordnance.

A well-regulated power supply minimizes the influence of line voltage variations on frequency and contributes to a low hum level.
The type of output circuit used provides a low generator impedance. The output level control keeps the undesired voltages at a constant percentage of the desired output voltage, which may be as high as 20 volts.

\section*{Circuit Details}

The oscillator circuit is composed of two separate amplifiers, joined together by a bridge network as shown in Fig. 1. This network is both frequency and amplitude sensitive with respect to the conditions of its balance.

The two amplifiers are entirely separate, except that the screens and cathodes of \(V_{1}\) and \(V_{z}\) are fed from the same points on the volt-age-divider networks as are the corresponding electrodes of \(V_{3}\) and \(V_{4}\). This is done to avoid the necessity of bypassing the a-c currents in these elements to ground with capacitors.

Four-terminal network \(A-B-C-D\)


Test setup, with R-C oscillator at left. Frequency ranges are so chosen that read. ings of single \(1-120\) scale on tuning dial are multiplied by powers of 10

\section*{Bridge-Stabilized}
serves to connect the two amplifiers together. This network is a Wien bridge which has been modified to be amplitude-sensitive by the use of quasilinear elements in the resistive bridge arms. At zero and infinite frequencies, terminals \(A\) and \(C\) are at the same potential. Amplifier No. 1 then has its output connected directly to its input degeneratively, and the amount of negative feedback is equal to the gain of this amplifier alone.

At a frequency which is determined by the reactive arms of the bridge, the two amplifiers are coupled together regeneratively by a network having a loss which is less than the gain of the amplifiers; under these conditions, oscillations start. As the amplitude of the oscillations increases, the loss in the bridge network also increases until it has become numerically equal to the average gain of the two amplifiers. This is the stable operating condition.

The voltage across \(R_{3}\) contains the fundamental frequency plus about \(\frac{1}{2}\) percent of even-order harmonic distortion. The voltage across \(R_{4}\) contains an out-of-phase fundamental component, but the even-order harmonic components
are in phase with those appearing across \(R_{3}\). A special amplifier having dual input circuits is used to combine these voltages into a single voltage with respect to ground, which is essentially free of evenorder harmonic distortion.

Both the oscillator and the amplifier have been provided with overall d-c negative feedback, and the internal potentials of the vacuum tubes have practically no effect on the d-c operating potentials of the circuit. Approximately 40 db of negative a-c feedback is used in the amplifier, adjustable through choice of values for \(R_{5}\) and \(R_{8}\). The net a-c gain of the amplifier is less than 2.

Tube \(V_{7}\) has been used as a load resistor for \(V_{\theta}\) so that all of the signal power may be delivered to the load.

The power line frequency comparator tube \(V_{8}\) has its target powered by the low-angle peaks of the 450 -volt power transformer secondary. This allows frequencies which are related to the power line frequency by the factors \(\frac{1}{3}, \frac{7}{2}, 1,2\), 3,4 and 5 to be spotted with ease.

\section*{Performance}

When the oscillator is operating properly, the harmonic content of


FIG. l-Circuit of oscillator. Stabilized power supply, not shown, uses \(5 \mathrm{U} 4-\mathrm{G}\) as full-wave rectifier with 900 -v c-t transformer, with two 6Y6.G, one 6AU6 and one \(0 B 2\) in regulator circuit

\title{
Ultrasonic Oscillator
}

\section*{Two-amplifier variation of Wien-bridge R-C oscillator gives exceptional frequency stability and low harmonic distortion, for digital-type frequency counters as well as for audio and ultrasonic research. Five overlapping ranges cover 1 cps to \(120,000 \mathrm{cps}\)}
the output voltage is about 0.1 percent in the range from 20 to 20,000 cycles per second. Above 20,000 cycles per second, the second harmonic increases slightly due to the increased loading by the stray capacitances to ground. Below 20 cps, the third harmonic increases slightly due to cooling of the thermal avc element during the cycle. It reaches a value of about 1 percent at 1 cps .

Low distortion at low frequencies may be obtained by replacing the 6 -watt 120 -volt lamp in the bridge circuit (Fig. 2) with a 10 watt 120 -volt lamp and changing \(R_{7}\) to 560 ohms. Under this condition the output drops to about 6 volts, and the harmonic content at 1 cps is less than 0.2 percent. With the 10 -watt lamp, the amplitude requires a much longer time to stabilize after a change in frequency is made, but otherwise the performance of the instrument is the same.

Extreme amplitude stability may be had at a sacrifice of good waveform at the lower frequencies by replacing \(R_{\mathrm{s}}\) and \(R_{0}\) with a type 1C thermistor and leaving the 6 -watt lamp in place. Under these conditions, the harmonic content at 10 cps is about 2 percent and increases


FIG. 2-Bridge circuit and range switch. The ten resistors in the frequency-determining legs of the bridge. below the switch, are all 1 percent deposited carbon units. Frequencies for the five switch positions are: \(1-1-12 \mathrm{cps}\); \(2-10\) \(120 \mathrm{cps} ; 3-100-1,200 \mathrm{cps} ; 4-1,000-12\), \(000 \mathrm{cps} ; 5-10,000 \cdot 120,000 \mathrm{cps}\)
rapidly at lower frequencies. The distortion decreases at frequencies above 10 cps . The harmonic content may be observed by using a parallel-T null network to reject the fundamental and an a-c millivoltmeter for measuring the rms value of harmonics which remain.

Current passed by the \(125-\mu \mathrm{f}\) electrolytic output coupling capacitor gives in the output a d-c voltage that is less than 1 percent of the output signal.

The 20 -volt output circuit has a variable internal impedance which reaches a maximum of about 1,250 ohms when the control is set at half value. If a lower output impedance is desired, 2 volts can be produced across a 100 -ohm resistor which is connected across the 20 -volt output terminals. The 1 -volt output circuit has a constant internal impedance of 300 ohms. Output currents up to 20 ma rms can be drawn without an increase in distortion.

\title{
Measuring Impedance of
}

\begin{abstract}
Unknown resistor is connected across a special coaxial cavity that is fed by an unmodulated signal generator and is tuned linearly to resonance by an inward-projecting precision micrometer spindle. Resulting voltage across resistor is detected, measured and converted to impedance with accuracy better than 5 percent up to 400 mc
\end{abstract}

\author{
By CHarles L. WELLARD \\ International Resistance Co. Philadelphia, Pa.
}

MEASUREMENT of resistor impedance in the so-called middle band of frequencies around 400 mc necessitates the application of special techniques since this range is too high for conventional bridge methods and too low for convenient use of slotted line and waveguide techniques. The band of frequencies between 30 mc and 400 me may be thought of as the region of transition from lumped parameters to distributed parameter circuits.

The special middle-band equip-
ment to be described uses a tuned coaxial cavity of the correct length for resonance at the desired frequency. Measurements are made at the discrete frequencies of 2,10 , \(25,50,100,200,300\) and 400 mc on impedances up to and including one megohm. The measurements at frequencies below 100 mc are obtained by adding lumped inductances on the end of the cavity.

An earlier cavity application for this purpose \({ }^{1}\) allowed comparative measurements to be made at discrete points, namely \(100,200,300\) and 400 mc . One cavity was essentially designed for \(200-\mathrm{mc}\) operation, but by reducing the length of the inner conductor, satisfactory


FIG. 1-Three-step simplification of tunable resonant circuit to arrangement fed by current source \(I\), along with basic relations for the simplified circuits and the equations for two methods of using the circuit for measuring high-frequency impedance


Adjustable padders and tuning stubs used across generator output line to vary cavity impedance
\(400-\mathrm{mc}\) operation was attained. However, the cavity could not make use of the susceptance variation technique, and as such had to depend on a comparison with impedances established by other methods.

A number of other approaches to measurement of impedances in this frequency range have been tried, \({ }^{2}\) but all of them had serious drawbacks. The cavity-type equipment described here overcomes these limitations and yet provides adequate range and excellent stability.

\section*{Theory of Cavity Operation}

Consider a tunable resonant circuit connected to a generator of internal impedance \(r+j \omega l\) as shown in Fig. 1. This circuit can be simplified in the successive steps of Fig. 1B and 1C to a resonant circuit fed by a current source \(I\).

The unknown under consideration is indicated as \(R_{z}\) and \(C_{x}\). The impedance \(R_{\text {o }}\) of the tuned circuit at resonance is a function of the original tuned circuit and the internal impedance of the generator supply.

\section*{High-Frequency Resistors}


Complete measuring setup using modified Signal Corps Engineering Laborarories design of cavity (in foreground) which is permanently tuned to 400 mc . Signal generator is Measurements Corp. model 80, measuring instrument at right is Millivac vivm with built-in d-c amplifier. Calibrated attenuator is on wooden stand in front of generator

Essentially, the two methods which may be employed with such a setup to measure an unknown are the resistance variation method and the susceptance variation method.

\section*{Resistance Methad}

To understand the resistance variation technique, consider the resonant circuit of Fig. 1C. The circuit is tuned to resonance first without the unknown. The voltage \(V_{r}\) across the resonant circuit then is equal to \(I_{1} R_{0}\), where \(S_{1}\) is the current from the source. The tuning capacitor is now at \(C_{1}\). Next, the unknown is inserted and resonance is again obtained by retuning the variable capacitor to \(\mathbb{C}_{2}\). The current generator output \(I_{1}\) is then increased to a value \(I_{2}\) such that \(V_{r}\) is made equal to the same value as before the unknown was inserted. Equations 1, 2 and 8 in Fig. 1 por-
tray these conditions, and give Eq. 4 as the value of \(R_{r}\). If an attenuator is employed on the generator, the ration \(I_{2} / I_{1}\) may be expressed in decibels as in Eq. 5, giving for \(R_{x}\) the more convenient expression of Eq. 6.

In this analysis \(R_{o}\) has been assumed constant, which requires the output impedance of the signal generator to be constant for all attenuator settings. A piston-type


FIG. 2-Measuring setup, showing how unknown resistor is connected across resonant coaxial carvity
attenuator essentially fulfils this requirement.

\section*{Susceptance Method}

In the susceptance variation method, the parallel combination \(R_{\text {t }}\) of \(R_{x}\) and \(R_{0}\) is Eq. 7 of Fig. 1. At resonance, \(V\), is then given by Eq. 8. If the resonant circuit is now detuned by a known amount \(\Delta C\), Eq. 9 gives the circuit impedance.

If the output of the generator is next increased to some value \(I_{2}\) such that the same value of \(V_{r}\) is maintained, then \(V_{r}=I_{2}|Z|\) where \(Z\) is given by Eq. 9. The two expressions for \(V_{r}\) can be equated, solved for \(R_{t}\) and simplified to the form of Eq. 10.

If the generator has a pistontype attenuator, Eq. 11 can be used. Here \(R_{t}\) is given in terms of the change in attenuator setting and the known change in \(\Delta C\). Since
without any unknown impedance connected into the circuit \(R_{t}=R_{0}\), this relationship may be utilized to measure the \(R_{0}\) of the resonant circuit. It may be desirable to prepare tables such that only a few seconds are needed to convert attenuator and capacitor readings into actual resistance values.

\section*{Circuit Arrangement}

A block diagram of the equipment is shown in Fig. 2. A resonant coaxial cavity is fed by the unmodulated output of a signal generator equipped with a pistontype attenuator. The output of the resonant cavity is converted into a d-c voltage by a detector circuit, and amplified and measured by a commercially available d-c amplifier with built-in output meter.

For practical reasons, three separate cavities have been used. Although all are essentially the same in principle, they vary in design. The input is inductively coupled into the cavity, and the degree of coupling may be varied by rotating the coupling loop. Sections are available for operation at \(100,200,300\) or 400 mc , as shown in Fig. 3. In addition, a set of coils is available for measurements at 2 , 10,25 and 50 mc .

One cavity has been used principally for measurements at 2 , \(10,25,50\) and 100 mc , because assembly and disassembly of the cavity results in a change in characteristics, particularly in \(R_{0}\), necessitating a new determination of \(R_{\bullet}\) for each use, while two others are left permanently at 200 and

400 mc respectively.
The capacitor design causes some trouble at 400 mc after long periods of use. This is because the electrical contacts become dirty, and is remedied by disassembly and cleaning.

\section*{Construction}

The cavity has a center conductor that increases in diameter at one end to accommodate a linear capacitor. The center conductor has a coaxial hole bored down the center on the enlarged diameter end. A special micrometer for waveguide use is inserted in this hole to provide a linear capacitance variation of \(5 \mu \mu \mathrm{f}\) per inch, which allows incremental values of capacitance as low as 0.001 u \(\mu\) to be measured.

A capacitive probe provides the


FIG. 3-Three views of coaxial cavity arrangement. For 400 mc , end plate at left is fastened directly to tuning section. For 300 mc , shortest tube is inserted between tuner and end plate. For 200 mc , medium-length tube is inserted. For 100 mc , largest tube is inserted.

For still lower frequencies, low-frequency adapter having lumped inductances is used on 100 -me tube in place of end plate


Cavity setup for \(100-\mathrm{mc}\) measurements. Unknown resistor is connec'ed between screw terminals projecting forward from tuning section at right; grounded ferminal can be inserted in one of seven different holes to accommodate different lengths of resistors
input to the detector and is adjustable in position. A crystal arrangement is used as the detector.

One of the cavities is kept at the \(100-\mathrm{mc}\) position for measurements at \(2,10,25,50\) and 100 mc . Two cavities of modified Signal Corps Engineering Laboratories design are permanently set, one at 200 mc and the other at 400 mc . A shield on each cavity eliminates the effects of variable stray capacitance.

Components of various diameters and lengths are accommodated by moving the ground terminal. Units of various sizes (within limitations) are all given the same lead length, same orientation and same parallel distance to a grounded conducting plane, all without adding losses to the system.

\section*{Cavity Impedance}

The impedance \(R_{\text {o }}\) of the \(400-\mathrm{mc}\) cavity is in the order of 90,000 ohms. Former cavities were limited to approximately 50,000 ohms at 400 mc . This increased \(R_{o}\) comes as a result of special precautions in plating the interior of the cavity and improved mechanical connections of the cavity. It is important, however, to be able to control the \(R\). of the cavity since the greatest accuracy occurs when the value of \(R_{0}\) is near the value to be measured.

To increase the range of \(R_{\circ}\) ma-
terially, simple adjustable padder and tuning stubs may be connected across the line from the generator to the resonant cavity. These give characteristic impedances of anything from a few thousand ohms to \(12,000 \mathrm{ohms}\) at 400 mc . The range attainable increases as the frequency decreases.

\section*{Results}

Typical high-frequency performance curves obtained with this equipment are given in Fig. 4. It was found that in all cases performance suffered as resistance value increased. There are exceptions to this, but usually they are limited to performance over a very narrow bandwidth. The data on this curve may also be used to draw a composite curve which plots percent of d-c resistance versus fre-


FIG. 4-Typical frequency characteristics for different values of special high-frequency carbon resistors, showing that highest ohmic values drop fastest with frequency
quency times resistance if that type of relationship is desired.

The accuracy of this method of measurement is dependent only on the signal generator, the ability to accurately measure db , and the ability to calibrate a linear capacitor. The precision is a function of how well the attenuator, capacitor and output meter can be read. A consideration of the possible errors and a square-root sum-of-thesquares analysis indicate an accuracy no worse than 2.5 percent.

The work described was done under Signal Corps Contract W36-039-SC-44526, sponsored by Signal Corps Engineering Laboratories and the United States Air Force. Development of the cavity was done in cooperation with the Moore School of the University of Pennsylvania in the initial phases. Acknowledgement is made to the following individuals: I. Bady, Signal Corps Engineering Laboratories; R. Showers, University of Pennsylvania; W. Littleton, International Resistance Co.; S. Parker, formerly International Resistance Co.; E. Thompson, International Resistance Co.

\section*{References}
(1) I. Bady, Techniques in the Measurements of Several Components, Proc. Nat'l Electronics Conf., Chicago, 1951.
(2) "Components Handbook", Vol. 17 , MIT Radiation Laboratory Series, Mc-Graw-Hill Book Co., New York, 1949.

\title{
Ceramic Tile Sorter
}

\begin{abstract}
Automatically matches colored bathroom and kitchen wall tiles against a standard, then accurately sorts into acceptable, light and dark glazes at speeds up to 60 tiles per minute. Phototube output pulses feed special d-c amplifier which is free from slow drift
\end{abstract}

RANDOM CHANGES of color occur in ceramic tiles during the manufacturing process. Differences in temperature and atmosphere of baking ovens and variations in the biscuit base are some of the causes. The daily production of an averagesize ceramic tile works ranges from 20,000 to 50,000 pieces, hence visual inspection and manual sorting are impractical. The problem led to development of a pulse-type electronic color comparator.

\section*{Principle of Operation}

A standard tile of the desired color is placed in a receptacle of a gravity-roller conveyor, with its enameled face slightly below the upper edge of the rollers, as shown in Fig. 1. A parallel light beam is projected onto this standard surface, and the 45 -degree reflected light is collected by a lens system for projecting through a colored glass filter onto the cathode of a high-vacuum phototube.

Samples to be checked roll over the standard surface, intercepting the light beam and substituting their reflected light for that of the standard during a short comparison time. Thus there appears across the phototube terminals an electric pulse having an amplitude and polarity which depend on the color difference between standard and sample. This pulse is measured after amplification in a memoryfree pulse amplifier. The ordinate of the flat top of the pulse gives, by amplitude and sign, the amount of color difference between sample and standard.
The instrumental condition thus obtained is that of the best labora-tory-type colorimeters, involving only one phototube, one lamp, one

By F. LEPRI and R. SANNA
Coelettronic Co.
Rome, Italy
beam and one filter. Moreover, the pulse-comparison principle enables the device to work in a condition known as suppressed zero without the need of a bucking emf. A further advantage is the absence of zero drift and instability.

\section*{Circuits}

A first model employed a conventional \(R\)-C coupled negativefeedback pulse amplifier, followed by a double-triode symmetrical difference amplifier. Pulses of opposite signs coming off the plate circuits of this stage feed two externallygated triode amplitude discriminators switched on during the middle portion of the pulse by means of a multivibrator. The latter is triggered by a mechanical switch located at a convenient point on the conveyor and operated by the samples in their run.

Positive pulses from the lighter samples start a control signal coming off the first discriminator, while


FIG. 1-Gravity roller conveyor carries tiles past photoelectric color comparator to sorting gates at bottom of conveyor
the darker samples operate the second discriminator. Two power tubes driven by the discriminators trigger an electromechanical threeway deviator located at the output end of the conveyor, effecting automatic direction of samples into three bins according to their color shade.

Although good sensitivity, stability and speed were obtained, the exceedingly slow recovery of the amplifier was a drawback. This consideration led to specifying directcoupled amplifiers having the following overall characteristics: Gain \(-10,000\) to 20,000 to obtain a \(10-\mathrm{v}\) output pulse corresponding to the slightest perceivable color difference of the darker samples; zero drift-less than 0.5 v output, or equivalent to a referred-to-input drift of less than 50 microvolts; frequency response-flat from zero to \(1,000 \mathrm{cps}\) or more, so the height of the flat top of the pulse is independent of the transit speed of the sample within the limits of 1.5 to 16 feet per second; recovery time-\(10^{-2} \mathrm{sec}\), corresponding to a memory of the order of one tenth of the 0.1 to 0.5 sec pulse duration or less, or nearly null overshoot; overloadthe amplifier must stand a severe overloading without blocking.

\section*{D-C Amplifiers}

The absence of coupling and decoupling capacitors renders d-c amplifiers basically free from memory, averaging and blocking. However, conventional d-c amplifiers, even when equipped with the more elaborate antidrift provisions, have far too large a slow drift to be employed for factory equipment required to work continuously without attendance and to give uniform


FIG. 2-Circuit of d-c pulse amplifier, showing use of negative feedback to one section of cathode-coupled double input tube. Phototube output pulse produced by sliding tile goes to other section of input tube. Snap-action switch actuated by tile operates feedback control relay as a tile reaches the color-comparing position on the machine
results within close tolerance limits.
The desired amplifier stability can be obtained with a d-c pulse amplifier in which overall negative feedback provides zero setting during the rest period between samples, while full gain is allowed during the operating period when the negative feedback loop is disconnected.

The d-c amplifier circuit used is shown in Fig. 2. The negative feedback is applied from the output terminal to the input grid of the amplifier through relay contacts that are closed during the rest period.

If no voltage is applied across the input terminals, the input and output levels are set by the negative feedback to a common value depending upon the characteristics of the coupling networks between the plate of the first tube and the grid of the cathode follower. Any change in output level due to heater voltage drift, changes in interstage coupling resistors or other causes is immediately counteracted by the negative feedback; the amplifier gain being very high, the output level drift is equal to the referred-to-grid drift of the first tube considered alone.

With the feedback relay contacts closed, capacitor \(C\) is in parallel with the cathode load of the cathode-follower output stage; when these contacts are open, \(C\) is simply in series with the input.

The function of \(C\) is to maintain the input grid bias during the operating time at the level reached during the rest time, this level being whatever is needed to counteract the output level shifts.

The cathode-follower output stage provides a low-impedance charging path for \(C\); if a 6SN7 is used, an equivalent resistance of some 1,000 ohms can be relied on in evaluating the time constant of this circuit. If \(C=4 \mu \mathrm{f}, 16\) milliseconds is the reset time needed to compensate any output change due to drift.
The photoelectric input circuit is isolated from capacitor \(C\) and the negative feedback grid by using a cathode-coupled double input tube. Here \(V_{1}\) is a cathode follower, the grid of which is connected to the negative-feedback network, while the input is applied to the grid of pentode \(V_{2}\). In this manner amplification between the grid of \(V_{1}\) and the plate of \(V_{g}\) is accomplished without inversion, which allows an even number of stages to be used with proper feedback.

No other special features are provided elsewhere in the circuit, which is a straight direct-coupled amplifier with interstage coupling circuits returned to a negative potential to obtain proper grid bias for \(V_{3}\) and \(V_{4}\).

Stability against phase-shift oscillations is achieved by means of small adjustable capacitors \(C_{1}\) and \(C_{2}\) in parallel with the plate resistors of \(V_{2}\) and \(V_{3}\). These capacitors are adjusted to overcompensate slightly the frequency characteristics of the interstage dividers, thus making the total phase shift less than 180 degrees when the high-frequency gain reaches unity. The proper setting is found experimentally by connecting the output to a cathode-ray oscilloscope having an input gain of 100. A saw-
tooth oscillation occurs at a frequency between 1,000 and 10,000 cps when the capacitors are both set to zero; the two capacitors are then adjusted until a stable nonoscillating condition is reached.

Sensitivity control is accomplished by means of a \(10-\mathrm{meg}\) step attenuator in the control grid circuit of \(V_{2}\). The setting of this attenuator changes the input tube grid level (depending on steady current of phototube \(V_{5}\) ) and hence the output level.

A reference-level potentiometer in the cathode circuit of \(V_{1}\) is used in conjunction with a microammeter to adjust to zero the high output terminal. This potentiometer has to compensate for a maximum of up to 2 volts difference, corresponding to the maximum sensivity setting and the maximum phototube illumination.

The microammeter also allows the amplifier to be used for steadystate comparison measurements of samples for standardization purposes. A full-scale sensitivity of 25 microamperes is enough to measure the slightest shade differences of the dark samples. With the feedback switch closed and the meter connected, the amplifier acts as a precision negative-feedback tube voltmeter of high stability.

Associated circuits serve for pulse comparison, for directing samples, for operation of the feedback control relay and for the generation of a single-shot sweep to be used with a cro for testing purposes.

The relay timing circuit and the single-sweep generator are conventional. Operation of both is started by a mechanical trigger consisting of a snap-action switch operated by the front edge of the sample at the correct location on the gravity conveyor.

Pulse-comparison is accomplished by an externally gated time selector circuit centered to operate at the middle of the pulse, followed by multiple comparison stages and power output stages feeding the electromechanical sorting devices. These circuits are conventional.

Direct coupling is employed integrally, and the recovery of all associated circuits is equally as fast as that of the amplifier.

\title{
Transistorized Radar
}


Transistorized scope display unit shows location of point-contact transistors around crt socket. Power consumption is one-tenth that of vacuum-tube predecessor


FIG. 1-Bloc! diagram shows functions of four point-contact transistors in radar scope display unit


FIG. 2-Complete circuit of radar display unit. Two batteries were used to provide plus and minus 45 volts, but any 90 -volt center-tapped d-c source could be used

\section*{By \\ RAYMOND S. MARKOWITZ}

Senion Enyineer
philalelphia, Pennsylvani,

SUBSTITUTING four transistors and a crystal diode for the vacuum-tubes in a standard airborne radar indicator has reduced power consumption to one tenth without sacrificing performance.

Other advantages of the transistorized version are greater mechanical ruggedness and the possibility of increased miniaturization limited only by the size of other components which themselves may be derated in many cases because of the lower power and lower internal operating temperatures.

\section*{Frequency Response}

It is worthwhile to review the basic frequency limitations of presently available point-contact transistors. The base, emitter and collector resistances are substantially independent of frequency, and the transistor frequency response can be expressed by the variation in \(r_{\mu}\), a forward transfer impedance, or the current gain, alpha, as a function of frequency. Alpha cutoff, defined as the frequency where alpha is 3 db down from its low-frequency value, occurs as a result of the difference in the path length of the holes arriving at the collector. An approximation for transit time in seconds of the hole carriers going from emitter to collector is : \(=S^{s} /\) ue \(I_{\text {e }}\) where \(S\) is the point spacing in centimeters, \(\mu\) is the mobility in centimeters per volt second, \(I\). is the emitter current in amperes, \(\rho\) is the germanium resistivity in ohm-centimeters and \(\tau\) is an inverse function of frequency response.

Collector capacitance is generally negligible in point-contact transistors, except in the case of very high impedance circuits, while the

\title{
Scope Display Unit
}

\title{
Four point-contact transistors and a crystal diode replace four tubes (two multipurpose) with accompanying simplification and reduction of power drain from ten watts to one watt. Reduced size and weight with increased ruggedness are added advantages
}
emitter impedance makes the emitter capacitance negligible also. Available point contacts for video application are rated at about 5 mc , but considerable selection is necessary to obtain usable transistors. Type 1698 transistors were employed in the indicator unit although other transistors having equally good high-frequency characteristics with much improved temperature coefficients will be available shortly.

\section*{General Description}

The unit was designed to handle a maximum peak positive pulse of 2 volts, to drive the cathode of a 5BP7 display scope, requiring approximately 20 to 30 volts drive for blooming. The indicator is powered by two 45 -volt batteries. The original model employed four tubes and six tube functions, including two d-c restorers; four transistors and a crystal diode (only one d-c restorer is needed) are used as the replacement. As shown, video and marker signals are separately amplified and combined, amplified again and coupled to the crt.

The unit is essentially a video voltage amplifier. The problem is to obtain stability at all levels and with all changes in operating point without overload and with minimum distortion, and still to achieve the required gain and bandwidth (4 mc) with polarity inversion. No attempt was made to achieve unrestricted transistor interchange, although design centers were chosen to allow a maximum of replaceability, at least without the introduction of instability among transistors having the required alpha cutoff.

Two grounded-emitter amplifiers
working into a common load impedance (the input impedance of the grounded-collector stage) are employed for video mixing, giving at the same time the required 180 degree phase reversal. The signal input stage is direct-coupled to the base of the grounded-emitter stage, whereas the marker stage is a-c coupled. This was done to miniimize collector dissipation of the grounded-collector stage and make it easier to establish the optimum operating points of the respective stages. The mutual loading between the grounded-emitter stages necessitated the insertion of isolating impedances in the respective collector circuits. Since this reduces the gain somewhat, a more efficient mixing system has been devised employing a diode-coupling network.

The master brilliance control varies the collector potential of both the grounded-collector and the marker grounded-emitter stages, and though the control variation is rather nonlinear, it is the simplest method of variation in which the signal does not appear on the control itself (no tendency toward instability is encountered).

The grounded-collector stage, having a relatively high input impedance and low output impedance, is loaded by the grounded-base input impedance plus the series emitter impedance, which establishes the saturation level with a 3-ma emit-ter-current bias. The last stage has a voltage gain of 16 db , and can deliver approximately a 25 -volt peak pulse to the crt.

The video signal is brought to the indicator through a cable terminated in 100 ohms . The problem of a-c coupling into the low input
impedance ( 300 ohms) of the grounded-emitter stage arises here. The most immediate solution is the use of tantalum capacitors having high capacitance and low voltage ratings plus small size. Future designs, however, will incorporate d-c coupling, but this is now difficult because of the nature of the operating bias at the cathode follower in the receiver video amplifier.

\section*{Temperature Test}

The indicator was tested in accordance with standard temperature specifications. When the overall unit was operated at 70 C, a marked deterioration in gain resulted ( 18 db ) because of the shift in operating point resulting in a decrease in \(r_{c}\) and an increase in alpha. As was expected, the greatest change occurred in the grounded-emitter and groundedcollector stages.

Up to about 60 C , the groundedbase stage remained practically unchanged. It appears that tempera-ture-compensating circuitry plus optimization of operating point as a function of variation of alpha and \(r_{0}\) might stabilize the unit up to 60 C . However, reports of developmental 1689 and 1729 pointcontact transistors having a temperature variation of -1 percent per degree for \(r_{c}\) as compared with -5 percent per degree with 1698 , while performing a similar function, indicates that satisfactory operation at 70 C should be obtainable (although the temperature specification on transistorized equipment might be subject to change). The present model, however, is rated at 50 C maximum temperature.

\title{
Neutralizing Pentodes
}

\title{
Design procedure for canceling the effect of grid-plate capacitance in pentode amplifiers without use of additional components, tapped coils or balanced tuned circuits. Two experimental methods are given for determining proper capacitor values for radar and television applications
}

\author{
By JOSEPH C. TELLIER
}

Research Division
Philco Corp.
philadelphia, Pa.

GRID-PLATE capacitance of pentode voltage amplifiers used in television and radar i-f stages, although relatively small, may have an appreciable effect on the stability and passband characteristics of the amplifier.

Where the plate tuned circuit of the amplifier is at resonance, a slight increase in the grid-toground voltage will result in a larger increase, of opposite polarity, in the plate-to-ground voltage. The net voltage change across the grid-plate capacitance is therefore much larger than the grid voltage increase alone, and more current flows in this capacitance than would flow if the amplifier had no gain. The value of the capacitance, as seen looking into the grid, is thus exaggerated.

The mathematics of this situation are well treated in the literature. \({ }^{3,2}\) From a purely physical viewpoint, however, it may be inferred that the effect of grid-plate capacitance is proportional to stage gain. Also, when the plate circuit is not resonant at the frequency of the grid input signal, the effect of grid-plate capacitance is lessened. Since the plate voltage is not in exact phase opposition with the grid voltage, a positive or negative re-sistive-damping term is reflected into the grid circuit in addition to the exaggerated capacitance.

These factors affect circuit de-
sign adversely because they produce interaction between amplifier stages that is a function of gain and frequency. If agc is applied to the amplifier, the effect on passband characteristics is ordinarily intolerable.

\section*{Neutralizing Circuit}

A circuit which provides for the neutralization of the grid-plate capacitance without using additional components, tapped coils or balanced tuned circuits is shown in Fig. 1A. The screen neutralizing capacitor, \(C_{N}\), occupies the position in the circuit normally assigned to the screen bypass capacitor. Basically, the circuit functions by providing slightly less than complete screen bypassing.

In determining the value of \(C_{N}\), this circuit is usually assumed to


FIG. 1-Voltage-amplifier circuit (A) and equivalent bridge ( \(B\) ) used to calculate value of neutralizing capacitor
be a bridge, and the plate and screen are taken as the output terminals of the tube. Almost all of the output voltage occurs across inductance \(L\). For a single-tuned stage, the bridge-circuit concept gives an accurate-value for the neutralizing capacitor, but in doubletuned stages the error introduced by considering the plate and screen as the tube output terminals is considerable. The bridge circuit is most useful, therefore, in stages with single-tuned circuits.
The elements of the bridge are shown in Fig. 1B. Here, \(C_{p p}\) is the conventional grid-plate capacitance and \(C_{0}\) is the total output capacitance, including the input capacitance of the next stage and stray capacitances from plate to ground. The neutralizing capacitance is \(C_{5}\), The portion of the input capacitance between grid and screen is \(C_{g e}\). It is normally about one-third of the total input capacitance and for a 6 CB 6 is about 2.2 puf.

The bridge theory states that for the voltage \(E_{L}\), developed across \(L\), to produce zero voltage from grid to ground, the balance relation is
\[
C_{N}=\frac{C_{0 s}}{C_{v p}} C_{0}
\]

For a single-tuned stage using a 6 CB 6 tube, this gives
\[
C_{N}=\frac{2.2}{0.02} \times 1.5 \mu \mu \mathrm{f}=1.650 \mu \mu \mathrm{f}
\]

When a double-tuned stage or an

\section*{in Radar I-F Stages}


FIG. 2-Doubletuned (A) and absorption-trap (B) stages. In making calculations all capacitances to the right of dotted line must be substituted for \(C_{0}\) of Fig. 1B


FIG. 3-Amplifier circuit having an output capacitance varying with frequency
absorption-trap stage is used, \(C_{o}\) is an effective capacitance varying with frequency, and the required value of \(C_{N^{*}}\) would apparently be a function of frequency. These stages are shown in Fig. 2A and 2B respectively. In both circuits everything to the right of the dashed line must be substituted for \(C_{o}\) in the bridge circuit of Fig. 1B.

A more accurate representation of the neutralizing circuit will show that no trouble is actually encountered from effective cajacitance. It will also show that \(C_{N}\) is determined by the reactance of \(L\), and this does vary with frequency. This variation is not as drastic, however, as the variation of the equivalent value of \(C_{0}\) in the circuits of Fig. 2.

In Fig. 3, regardless of the impedance of \(Z\) relative to \(L\) and \(C_{s}\), some current \(I_{1}\) will flow in the latter portion of the plate tank. This current will vary, as will \(I_{\mathrm{s}}\), if \(Z\) varies rapidly with frequency, but whatever current flows through \(L\) will also flow through \(C_{N}\). This is true because \(C_{N}\) is an order of magnitude greater than \(C_{y s}\). The polarity of voltage drops across \(L\) and \(C_{y}\) will be as shown, and the screen side will be below ground potential when the plate is above. The grid of \(V_{2}\) can be established at ground potential by choosing \(C_{x}\) such that the screen has the correct potential, since the grid is
established at a potential between plate and screen by the divider \(C_{o p}\) and \(C_{g s}\). The required value of \(C_{\kappa}\) is
\[
\omega C_{N}=\frac{C_{g v}}{C_{g D}} \frac{1}{\omega L}
\]

Although \(C_{y}\) will vary somewhat with frequency, over a relatively narrow band the change will be small. In the example given, a variation of 1 percent in frequency will cause a 2 -percent change in \(C_{N}\). It is more important that \(C_{0}\) does not appear in the expression.

In the single-tuned stage, over the bandwidth of interest, \(1 / \omega L\) can be closely approximated by \(\omega C_{\circ}\). When this substitution is made, the two formulas become identical.

\section*{Practical Considerations}

Depending on the tube used, type of circuit and operating frequency, the calculated value of \(C_{N}\) may or may not be easy to obtain. For example, consider the value of 1,650 pup obtained previously for 6 CB 6 single-tuned stages. At 40 mc , the lead inductance of a capacitor of this value could be large enough to cause the combination to approach series resonance, increasing the effective value of the capacitor. In such instances a smaller nominal value must be chosen, such that the effective capacitance is the correct value for neutralization. Care must then be exercised to maintain control of lead lengths in order to ob-
tain the correct value consistently.
Occasionally, when a neutralizing capacitor is selected by experimentation, a value is found which is greatly different from the calculated value. If lead length does not account for the discrepancy, this is usually a sign that some form of feedback other than grid-plate capacitance is being neutralized, or that improper design has increased the effective grid-plate capacitance of the pentode.

The use of an unbypassed cathode resistor to neutralize variations of the input capacitance with bias has a slight effect on the neutralizing capacitance required. The effect is not very great unless the value of the cathode resistor becomes very large, or unless the suppressor is internally connected to the cathode.

A degree of neutralization may still be obtained in the latter case, but it is generally unsatisfactory and wherever possible a tube having the suppressor brought out separately should be used. The suppressor should then be grounded by the shortest possible lead to the chassis. The neutralizing capacitor should be returned to this same ground point.

Most of the output capacitance of a pentode is between plate and suppressor elements. Consequently, large values of current flow in the lead from suppressor to ground,


FIG. 4 -Neutralization of stages in cascade. Two techniques for determining value of neutralizing capacitor are described in text
because this lead is part of the resonant plate tank circuit.

In tubes where the suppressor grid is brought out to a pin adjacent to the grid lead, the mutual coupling between the leads is sufficient at high frequencies to cause plate tank current to induce an appreciable voltage in the grid lead. As a result the effective grid-plate capacitance of the tube is increased, the added value being proportional to the square of the frequency. \({ }^{\text {b }}\) For a 6BA6, the increase is from \(0.0035 \mu \mu \mathrm{f}\) at zero frequency to 0.008 u.uf at 32 mc . In amplifiers for operation at 40 mc or higher, a tube having the suppressor lead well removed from the grid lead should be used.

It is difficult to neutralize tubes in which the nominal grid-plate capacitance is large. Under these conditions a very small value of neutralizing capacitance is called for, and as a result the screen is poorly bypassed. This not only leads to instability, but results in the effective grid-plate capacitance becoming larger, since the screen is no longer an effective shield.

Sometimes it is found that there are apparently two values of \(C_{N}\) which give neutralization. One of these, the larger, is the normal one. The second, usually much smaller, is caused by an increase in effective grid-plate capacitance due to poor shielding by the screen.

\section*{Test Procedures}

The methods used to determine experimentally the optimum value of neutralizing capacitance are described with reference to Fig. 4. The tube to be neutralized is \(V_{2}\), and it is necessary that both plate
and grid circuits of this tube be operating normally.

The first method to be described is used when \(C_{N}\) is to be determined very precisely. A low-impedance signal generator, amplitude-modulated at a particular audio frequency, is connected to the grid of \(V_{1}\), effectively shorting out any fre-quency-selective circuits in the input of \(V_{1}\). Next, an i-f detector is coupled very lightly to the grid of \(V_{\varepsilon}\). Two methods of coupling have been found satisfactory. When \(Z_{1}\) is a single-tuned circuit, or any other two-terminal network, and the same signal exists at the plate of \(V_{1}\) and the grid of \(V_{2}\), it is convenient to return the external shield of \(V_{1}\) to ground through an impedance of several hundred ohms, and to connect the detector directly to the shield. Because of the capacitance between the plate of \(V_{1}\) and the shield, an adequate signal will be presented to the detector. When \(Z_{1}\) is a four-terminal network, such as a double-tuned transformer, it may be more satisfactory to connect the detector directly to the grid of \(V_{2}\) through a 1 -u, f capacitor.

The detector is followed by a high-gain audio amplifier, preferably tuned to the audio frequency with which the signal generator is modulated. If it is so tuned, high gain may be used without interference from hum or other sources of spurious audio-frequency signals, The output of this amplifier is then presented either as a scope or as a voltmeter indication. The carrier frequency of the signal generator is then adjusted to be within the i-f passband. The degree of neutralization is checked by
varying the tuning of the plate tank circuit of \(V_{2}\). If a change is observed in the output, neutralization is incomplete. The magnitude of the change is a measure of the departure from correct neutralization. The value of \(C_{N}\) is then varied, until a minimum change is noted.

It may be desirable, in searching for the correct value of \(C_{v}\), to remove part or all of the damping from \(Z_{1}\) and from the tank circuit. This will greatly magnify the effect of grid-plate feedback, and will make the null point, as \(C_{N}\) is varied, much sharper. It will also be desirable, when the correct value of \(C_{N}\) has been found, to make a check of the completeness of neutralization by shorting coil \(L\). If there is negligible difference in output between the conditions of normal \(L\) and shorted \(L\), neutralization is good.

As a final step, the carrier frequency of the generator should be adjusted to various frequencies in the i-f passband, and the tests repeated to insure that neutralization is complete over the entire range of frequencies to be used. When the precision of measurement required is not so great, a second method of testing for neutralization is useful. In this method, the modulated signal generator is replaced by a sweep-frequency generator, connected to \(V_{1}\) grid. The high-gain audio amplifier following the detector is replaced by an oscilloscope. When the frequency of the generator is swept, the response observed on the scope will be that of impedance \(Z_{1}\). In fact, the correct response may be observed by shorting the coil \(L\), or connecting a 1,000 uf capacitor from the plate of \(V_{2}\) to ground. When \(L\) is unshorted the observed response curve should not change, and kinks and ripples should not pass through it when the tuning of the plate tank circuit is varied. When the curve remains unchanged under these conditions, neutralization is complete.

\section*{References}
(1) J. Millman and S. Seely, "Electronics', p 533 , McGraw-Hill Book Co., 1951 . (2) F. E. Terman, "Radio Englneering", Third Edition, p 362, McGraw-Hill Book Co., 1947.
(3) RCA Application Note AN-133, "Improved Arrangement of Base-Pin Connections in New Miniature Tube Types".


FIG. 1-Vidicon mounted in small supersonic wind tunnel (left) shows Schlieren picture of shock waves and airflow around supersonic probes (right)

\title{
Television Monitors Rocket Engine Flame
}

Industrial ty cameras used in propulsion research probe inaccessible locations, reduce personnel hazards and promote economy. Special design problems include high noise level, corrosive atmosphere and need for fine detail despite wide range of light intensities

MUCH functional know-how has been gained in recent years with television as an observation instrument. Television has been particularly useful in research, on rocket engines, where many untried propellants are poisonous and corrosive.

To insure safety of personnel conducting hazardous experiments with untried propellants, a re-motely-located test cell has been equipped with television to permit remote viewing of the rocket in operation. A special cubical,

By FRANK A. FRISWOLD
Aeronautical Research Scientist
Lewis Flight Propulsion Laboratory National Advisory Comm, for Aeronautics Cleveland, Ohio
mounted on skids to facilitate moving, houses the television camera.

During a 30 -second rocket firing, with scarce propellants, television can justify itself on a purely economic basis.

In one test, the television monitor warned that a propellant valve had failed to open and the operating
engineer immediately shut down the rocket. If the test had continued, a quantity of expensive propellant would have been wasted.

In another instance, while a re-mote-controlled rocket was being observed by television, observers saw a hole that had been burned through the injection head. Flame started to issue from this aperture and the test equipment was in danger of being seriously damaged; but quick action in shutting down the engine prevented a serious fire.

Liquified gases at very low tem-


FIG. 2-Console for remote controls, 10 -inch monitor and power supply for image orthicon equipment


FIG. 3-Twenty-inch viewer for rocket specialists


FIG. 4-Image orthicon camera televising rocket test
peratures for use as propellants warrant investigation. In one series of tests, to conserve expensive and scarce fuel, an inexpensive oxidant was injected first to reduce the temperature of the combustion chamber below that of the fuel. Spilling of the oxidant as a liquid rather than a vapor indicated the proper conditions. Television provided the most satisfactory and consistent means of monitoring this operation.

\section*{Camera Tubes}

Cameras using an industrialtype vidicon, the image dissector and the image orthicon were tested to determine applicability under various conditions.

The industrial vidicon was first tried in a small supersonic tunnel (Fig. 1). Research on the design of supersonic probes was being carried on with the aid of Schlieren
apparatus. This equipment renders visible the shock waves and airflow around the probe. By observing the televised Schlieren image at the control room, the tunnel operator can easily control the airflow through the tunnel to obtain the required Schlieren pattern. Resolution was more than adequate; noise level was about 100 db and had no effect on the picture.

Observation of flame by television is always difficult because of blooming. When the vidicon was used, the blooming was not objectionable. The noise level on this particular test was in excess of 140 db and there were noise striations visible on the kinescope. An acoustic shield around the camera probably would have eliminated this difficulty.

Because the image dissector is not a storage-type device, it can cover a wide range of luminosity
without adjustment of controls. This is useful in observing flame since there is no blooming, and it is possible to observe a brilliant flame and still see details of the rocket engine and its auxiliary equipment which are at lower light levels. The image dissector is an instantaneous device and when it is observing rapidly-moving objects, a stroboscopic phenomena occurs. This effect was noticeable when the flame issuing from the rocket nozzle was televised, but was not considered detrimental. The pickup tube was not sensitive to noise in the \(110-\mathrm{db}\) range.

The image orthicon suffers from blooming and accordingly cannot be used successfully for flame studies. Because of the multiplicity of elements within the tube, it is prone to microphonism and is not recommended for use in high-noise-level areas. The resolution of


FIG. 5-Circuit diagram for twenty-inch viewer
this equipment is good and the illumination required on the viewed object is easily obtained. Some early-type image orthicons tend to be noisy. Care must be taken to scan only the area of the orthicon face on which the picture actually appears since over-scanning will contribute to the noise factor.

\section*{Monitor}

A control console housing all controls except optical focusing, and having an a-c power supply and a 10 -inch monitor was constructed. This unit is shown in Fig. 2. The following standards which produced a 320 -line picture were adopted: vertical scanning rate 60 cycles per second noninterlaced; horizontal scanning 19,200 cycles. The commercial 10 -inch monitor used has its own power supply and contains a two-stage video amplifier. This monitor is used in ad-
justing the picture quality. A 20 inch viewer was constructed for the use of research engineers in the control rooms and is shown in Fig. 3.

Figure 4 shows the camera mounted above an experimental rocket installation. The picture is televised back to the control room where the research engineer can view the experiment. Figure 5 shows the viewer schematically.

\section*{Color}

Frame-sequential color television was tried in the altitude wind tunnel (Fig. 6) with a view toward using it in rocket research. The subject viewed was the tail cone of a jet engine after-burner. For combustion study, the color of a flame contains a wealth of information concerning its characteristics. Observation of the flame becomes of increased importance since it provides the only method of obtaining certain information.

The color rendition of the framesequential system was excellent on highly illuminated slow-moving objects. However, when the camera was viewing something as rapidly moving and randomly fluctuating as flame from a high-pressure combustor, serious color break-up occurred.

The color camera was operated at the following standards: vertical scanning 180 frames per second, horizontal scanning 525 lines per frame. The required bandwidth of the video amplifiers was 18 megacycles.

The conversion of the image orthicon was supervised by George Rohrer, formerly with this laboratory.


FIG. 6-Frame-sequential color television camera mounted at port of high-altitude wind tunnel views tail cone of jet engine afterburner inside tunnel


FIG. 1-Capacitance versus polarizing potential for barium titanate capacitor at 28 C


FIG. 2-Inductively coupled resonant circuit (A) and its equivalent circuit (B). Circuits (C) and (D) are equivalent circuits for the two possible operating modes of the resonant system

\title{
Capacitor-Modulated
}

\begin{abstract}
Barium titanate capacitor coupled to oscillator tank circuit gives f-m deviations up to \(\pm 2\) percent of carrier frequency in 50 to 500 mc range. Response is flat to better than 100 kc . Multichannel telemetering systems, portable and mobile equipment are among applications
\end{abstract}

Several papers on the behavior and applications of titanate dielectrics \({ }^{1,2}\) have suggested that the voltage coefficient of capacitance of these ferroelectrics be used as the basis of a simple frequencymodulation system. The system would employ a titanate ceramic capacitor as one element of an oscillator tank circuit, its capacitance being varied by means of a modulating voltage. Such a system would be useful in uhf and vhf applications where conventional react-ance-tube and phase-modulation methods are unwieldy. However, the direct application has proved unfruitful because the dielectric constant of suitable titanates is so high that a practical capacitance for the high frequencies presents manufacturing difficulties. Additional difficulty is encountered in excessive r-f losses at high frequencies, and temperature variation of the capacitance value, as well as the voltage coefficient of capacitance.

This paper describes a method of coupling the titanate capacitor to
the tuned circuit in such manner that these drawbacks are largely overcome.

\section*{Capacitor Operation}

The typical nonlinear behavior of a titanate ceramic capacitor as a function of the polarizing potential is shown in Fig. 1. The linear region of the curve is suitable for modulation purposes. The d-c polarizing potential impressed upon the titanate defines the operating point and a center value of capacitance \(C_{o}\). A superimposed a-c signal or pulse varies the capacitance about this operating point. The highest voltage coefficient of capacitance occurs at the Curie point of the ceramic, the Curie point being defined as the temperature at which the dielectric constant of the material is a maximum.

For f-m circuit applications, a nonlinear dielectric having a maximum voltage coefficient of capacitance and minimum temperature coefficient of capacitance is desired. By using a solid mixture of barium and strontium titanates with small
amounts of lead zirconate, a ceramic dielectric is obtained having a broad Curie point over an extended temperature range at the expense of only a slight decrease in the voltage coefficient of capacitance of the unit. \({ }^{3}\)

A typical titanate material would require a \(10-\mu u\) f capacitor for use at 100 mc to be a disk 0.010 -inch thick and 0.04 inch in diameter. Use of such a minute capacitor at a temperature near the Curie point in a practical oscillator results in such severe local heating that a degenerative loss cycle results. As the temperature increases the losses become more severe, causing a further rise in temperature. This not only reduces the sensitivity of the titanate capacitor to the modulating voltage, but eventually causes permanent damage to the capacitor.

\section*{Transformer Coupling}

For high-frequency applications of titanates, a circuit is required that effectively reduces the potential across the titanate to a low


Potted ceramic capacitors used in f -m modulator make use of the nonlinear variation of capacitance with applied voltage exhibited by barium titanate. Capacitors at left comprise two series-connected \(100 \mu \mu \mathrm{f}\) units. Center and right are dual units of 100 and \(500 \mu \mu \mathrm{f}\), respectively

\section*{Wide-Range F-M System}

\author{
By MAURICE APSTEIN and H, H, WIEDER \\ National Bureau of Standards \\ Washington, D. C.
}
value to minimize the dielectric heating effect while retaining its nonlinear characteristics.

Figures 2A and 2B show how the difficulties outlined above may be overcome by transformer-coupling the titanate capacitor to the resonant circuit. Such a circuit has two modes of operation depending upon whether the coupled resonant frequency is above or below the uncoupled resonant frequency of the circuit.

\section*{Operating Modes}

The equations for the resonance modes of the circuit are
\[
\begin{gather*}
\left(\omega^{\prime}\right)^{2}=\frac{1}{L\left(C_{1}+\alpha C_{2}\right)}  \tag{1}\\
\left(\omega^{\prime \prime}\right)^{2}=\frac{1}{L_{1} \frac{\alpha C_{1} C_{2}}{C_{1}+\alpha C_{2}}}  \tag{2}\\
K=\frac{L_{2}+M}{\sqrt{L L_{2}}} \equiv 0.5 \quad \alpha=\frac{L_{2}}{L}
\end{gather*}
\]

Figure 2C indicates the behavior of the circuit of Fig. 2A for the \(\omega^{\prime}\) mode. The titanate capacitor
\(C_{2}\) will appear in shunt with the main tuning capacitor and have a value of \(\alpha C_{2}\). For the \(\omega^{\prime \prime}\) mode, as shown in Fig. 2D, \(C_{2}\) will appear in series with the main tuning capacitor, with \(a\) the transformation ratio. In addition, the total apparent inductance will be reduced by \(L^{\prime}=L\left(1-K^{2}\right)\).
The \(Q^{\prime} s\) corresponding to the two resonant modes are
\[
\begin{gather*}
Q^{\prime}=Q_{2}\left(1+\frac{C_{1}}{\alpha C_{2}}\right)^{1.5}  \tag{4}\\
Q^{\prime \prime}=Q_{2}\left[\left(1+\frac{\alpha C_{2}}{C_{1}}\right)\left(1-K^{2}\right)\right] \tag{5}
\end{gather*}
\]
where \(Q_{3}\) is the reciprocal of the loss tangent of the titanate capacitor.

If the circuit described above is used as the tank circuit of an oscillator, Eq. 4 and 5 determine the mode of operation. The circuit will oscillate in the mode having the higher \(Q\).

\section*{Practical Oscillator Design}

The oscillator shown in Fig. 3 was built using the tank circuit de-


FIG. 3-Circuit of experimental f.m oscillator using transformer-coupled titanate capacitor modulator


FIG. 4-Relationship of change in oscillator frequency to change in d.c polarizing potential
sign equations outlined above. The modulating capacitor is composed of two barium titanate ceramic capacitors, of the type shown in the photograph, connected in series with respect to the r-f potential and in parallel with respect to the modulating potential.

The polarization potential \(V_{\text {d-c }}\) defines the center value of capacitance \(C_{0}\). If a sinusoidal voltage is superimposed upon the d-c bias, the instantaneous capacitance of the titanate over its linear range is
\[
\begin{equation*}
C={ }_{2} C_{0}^{a}-n V_{\max } \cos \omega_{m} t \tag{6}
\end{equation*}
\]
where \(n=\Delta C / \Delta V, f_{m}\) is modulating frequency and \(V_{\text {max }}\) the peak a-c modulating voltage. The instantaneous frequency for the \(\omega^{\prime}\) mode is \(f^{\prime}=f^{\prime}{ }_{c}\left(1+m_{\rho} \cos \omega_{m} t\right)\). The modulation index \(m_{r}\) is
\[
\begin{equation*}
m_{f}^{\prime}=\frac{n V_{\operatorname{tax}}}{2\left(C_{1}+\alpha C_{0}\right)} \tag{7}
\end{equation*}
\]
and \(f_{c}\) is the carrier frequency. For the \(\omega^{\prime \prime}\) mode, the modulation index is
\[
\begin{equation*}
m_{f}^{\prime \prime}=\frac{n C_{1} V_{\max }}{2 C_{0}\left(C_{1}+\alpha C_{0}\right)} \tag{8}
\end{equation*}
\]

Figure 4 indicates the static curves of frequency versus d-c polarization potential for the \(\omega^{\prime}\) mode. Good agreement was obtained between the measured and calculated curves. Similar results were obtained for the \(\omega^{\prime \prime}\) mode.

Figure 5 indicates dynamic measurements of deviation by the use of proper Bessel function harmonics for the \(\omega^{\prime}\) mode. Pushpull, cathode-coupled, and Colpitts resonant-line oscillator circuits gave essentially similar results. In the frequency range of 50 to 500 me, deviations of \(\pm 2\) percent were obtained in either mode. Under
extreme conditions the a-m is appreciable but not serious for many applications. For smaller deviations the a-m is negligible.

The frequency deviation versus modulation frequency curve shown in Fig. 6 is for the \(\omega^{\prime}\) mode using the experimental oscillator described. Results indicate that excellent broad-band response is obtainable up to 100 kc . It has been experimentally verified that the modulation frequency may be raised to 500 kc for a pure sinewave signal with good linearity response.

\section*{Temperature Compensation}

No complete study of oscillator performance with respect to temperature has been made. However, the curves of Fig. 7 show that the nonlinear capacitors used have a considerable temperature coefficient. If the oscillator is to be used over an extended temperature range, a temperature-regulated enclosure operated at approximately 100 deg F would be required.

Problems of capacitance creep with age, electrostatic memory effects and other unsolved problems for the entire ferroelectric family of materials may make an additional means compensation necessary. There are a number of methods for obtaining temperature compensation with presently available materials. Use of a larger proportion of barium zirconate with barium strontium titanate will produce a nonlinear dielectric having a broader Curie region with only a slight decrease in the voltage coefficient of capacitance. If two or more capacitors having different


FlG. 5-Deviation in ke as a function of modulating signal on a 60 -me carrier with \(450 \cdot\) volt polarizing potential


FIG. 6-Deviation in percent as related to modulating frequency


FIG. 7-Frequency-temperature characteristics of barium titanate capacitor

Curie points are connected in series, the Curie region can be staggered over a broader temperature range. Another method of compensation is to use a conventional afc system whose rectified output would be used to bias the titanate capacitor in such a manner as to keep the carrier frequency constant.

\section*{Conclusion}

The system should find application in vehicular communication systems, portable uhf equipment and multichannel f-m telemetering systems that require both a wide deviation and broad frequency response.
The principle of coupling the nonlinear element into the main frequency-determining circuit can be extended to include distributed lines and cavity resonators. Preliminary experiments indicate that a reflex klystron can be successfully modulated by this method over a wider band than that obtainable by repeller voltage modulation alone.

\section*{References}
(1) S. Roberts, "Barium and Strontium Titanates as Non-Linear Dielectrics": D.Sc. Thesis, E. E. Dept., M. I. T.
(2) A. I. Dranetz. G. N. Howatt and J. W. Crownover, Barium Titanates as Circuit Elements, Tele-Tech. June 1949. (3) "Development and Application of Barium Titanate Ceramics as Non-Linear Circuit Elements" Glenco Corporation Final Report No. TV 36-039-SC 44606 ; A पू. 15.1950.
(f) H. L. Donley, Barium Titanate and Birium Strontium Titanate Resonators, MCA Review, 9, June 1948 .


FIG. 1-Primary inductance insertion-loss curves. Curve marked grid refers to an abscissa for \(X / R_{s}\)

FIG. 2-Characteristics of several lamination types for 4-percent silicon steel, 29 gage, laminated \(1 \times 1\), square stack only

\title{
Audio Transformer Design Charts
}

Six graphs showing primary-inductance insertion loss, 60 -cycle inductance, leakage inductance, insertion loss from leakage inductance, phase shift and effect of open-circuit impedance on reflected impedance speed design of power and audio transformers

PROGRESS in transformers for electronic applications has kept well abreast of advances in electronics, but the art of their design has long been esoteric. In the past few years, several good books have been published that enable the average engineer, unfamiliar with transformers, to initiate an original product design.

Several time-saving charts for audio transformers used by the writer and other engineers are shown. Two of the curves are empirical while the others are calculated.

Figure 1 is a calculated plot of the familiar db or insertion-loss curve employed for low-frequencyresponse calculations. It is used primarily to find the inductance required for a given db loss. The ad-

\title{
By THEODORE HALABI
}

Chief Engineer
1.IF Industries

vantage of the curve in this form is that it covers all types of audio transformers on one graph. It includes matching transformers where \(R_{\text {Load }}=R_{\text {sormen }}\); triode-output transformers where \(R_{\text {Lоal }}=\) \(2 R_{\text {sounce }}\); pentode or beam-poweroutput transformers where \(R\) soorce: \(=5\) to \(10 R\) zoad ; bridging transformers where \(R_{\text {source }}=0.1 R_{\text {Los }}\); and grid transformers where \(R_{\text {Los }}\) is infinite.

For pentode-output transformers where \(R_{\text {source }}=20 R_{\text {Load }}\) the curve of \(R_{\text {sotrca }}=10 R_{\text {tosd }}\) may be used in Fig. 1 since the curves practically coincide. Another advantage of Fig. 1 is that the unknown quantity \(X\),
the primary reactanee, is found in terms of the load impedance instead of the source impedance as is often done. Specifying \(X\) in terms of the source impedance leads to confusion when the exact source impedance is unknown, as in numerous pentode output transformers. For grid transformers with an unloaded secondary, \(X\) is obtained from the chart in terms of the specified source impedance. A loaded grid transformer is treated as a matching transformer.

After obtaining the inductance from Fig. 1, the turns required to meet that inductance on a given lamination size can be calculated from two types of graphs. If there is a net unbalanced d-c in the transformer, Hanna's curves, or some variation of them, are most com-
monly used for the incremental inductance calculations. If there is no d-c in the coil the turns can be calculated from permeability curves. A faster method is the use of a set of graphs similar to Fig. 2. For comprehensive designs including all types of transformers a more complete set of graphs covering various types of steels and lamination sizes is necessary.

Figure 2 is an empirical set of curves of 60 -cycle inductance on 29 gage silicon-steel laminations, interleaved \(1 \times 1\). Its use is illustrated by the problem: find the inductance at 2 volts, 60 cycles of a 700 -turn coil on an EI-75 lamination with a square stack. Two volts at 60 cycles on 700 turns is equivalent to 2.85 volts on a 1,000 -turn coil for the same flux density. From the curve is obtained an inductance of 9 henrys per 1,000 turns.

Since inductance varies as the square of the turns, \(L=9(700 /-\) \(1,000)^{2}=4.4\) henrys. If the coil had been on a stack of \(1 \frac{1}{2}\) inch, the inductance would be found on the curve at 1.42 volts per 1,000 turns since the flux density is one half of that on a square stack. At this


FIG. 3-Leakage inductance vs turns for square-stack layer-wound coils of two windings only
voltage \(L\) from the curves is 6.6 henrys per 1,000 turns. Hence the inductance of the coil is (700/\(1,000)^{2} \times 6.6(1.5 / 0.75)=6.4\) henrys. This last calculation utilizes the fact that the inductance of a given lamination varies directly as the volume.

Figure 3 shows an empirical
graph of leakage inductance against turns as obtained from measurements on various transformers. Since the lines are so close together, the leakage inductance of standard lamination sizes that are missing can be extrapolated easily. This chart can be used to find the leakage inductance only for two winding coils, of square stacks, normal winding lengths and normal insulation between windings.

If the deviations for a given coil from these requirements are too great, the theoretical formulas as listed in standard reference handbooks should be used to calculate the leakage. In many cases, where the leakage inductance is sought, however, an approximate value will usually suffice. Hence if the coil margins are larger than normal or if there is unusual insulation in the transformer or if even part of the window space is occupied by a third winding, Fig. 3 can still be used to determine the order of magnitude of the leakage.

Leakage inductance obtained from Fig. 3 is employed mainly in audio-transformer design for predicting high-frequency response
(continued on p 196)


FIG. 4-Insertion loss due to leakage reaclance for six different types of transformers

FIG. 5-Phase shift vs \(X / R_{L}\) for varying ratios of \(R_{L} / R_{B}\) as explained in the text

\title{
QUANTITY PRODUCTION OF LOW LOSS MICA COMPONENTS...QUICKLY
}
exclusively a CINCH feature, and a factor in the choice of CINCH electronic components as STANDARD. CINCH constantly demonstrates ability to hold tolerances on Mica moldings . . . to mold high dielectric powders, and Mica . . . to meet the most exacting requirements in small metal plastic assemblies for components of higher quality materials held to closer tolerances.

SUB-MINIATURE
SOCKETS SHOWN ENLARGED TWICE

CINCH components are available at leading jobbers - everywhere

The CINCH sub-miniature socket insures positive electrical contact, holds tubes securely in place, permits easy maintenance and replacement, yields maximum insulation resistance and minimum high frequency loss. And provides manufacturers of electrical controls, transmitters, receivers, trans-ceivers, airbourne equipment, etc., and hearing aids . . a labor saving chassis installation which serves terminal board functions while permitting designers to obtain maximum space afforded by the standard flat base tubes. For mounting perpendicular tubes, retainer rings and saddles are available, when socket cannot be staked. Contacts silver plated beryllium copper.
Sockets are available in quantities because of \(\mathrm{CINCH}^{\prime}\) 'S extensive and modern molding facilifies for mica filled low loss bakelite. For the Standard sub-miniature socket in quantity, quickly,

\author{
1026 South Homan Ave., Chicago 24, Illinois
}
and Fig. 4 is used for these calculations. This type of curve neglects the capacitance in the windings and can be used with reasonable accuracy if the impedance of the transformer is less than 12,000 ohms or the highest frequency of the transformer is less than 10,000 cycles. These curves can also be used for power transformers with a frequency range of 50 to 2,400 cycles for estimating the voltage loss due to leakage inductance at the high-frequency end. For power transformers the loss in db as obtained from the curve is converted to percent voltage drop.

Figure 5 is a plot of phase-shift calculations at the low-frequency end of an audio transformer due to primary or open-circuit inductance. The graph may be also used for phase shift in power transformers between the primary d-c resistance and inductance, in which case \(R_{s}\), the source impedance is actually the primary resistance.

\section*{Phase Shift vs \(\mathbf{X} / \boldsymbol{R}_{s}\)}

Figure 6 can be used for quick and fairly accurate calculations of the shunting effect on reflected impedance \(R_{L}\) by the open-circuit inductance. The graph will not only give the total impedance but the phase angle, the resistive and reactive components. In instances where a more nearly exact impedance looking into the transformer is required, the primary shunt loss (core loss) and the leakage reactance must be added vectorially to the impedance from the curves.

The following example illustrates the use of five curves in a typical design. It is desired to design an output transformer for a beampower tube, \(7,000 \mathrm{ohms}\) to 500 ohms , 5 watts output, 42 ma d-c in the primary and a tube plate resistance \(R\), of 75,000 ohms. The required frequency response is to be \(\pm\) one db from 300 to 6,000 cycles.

In Fig. 1 at \(R_{a}=10 R_{L}\), for \(1-\mathrm{db}\) loss, \(X / R_{L}\) equals 1.8 from which the necessary primary inductance can be calculated. At 300 cycles, \(L=1.8 \times 7,000 / 2 \pi 300=6.7\) henrys. From tabulated data on output transformers, the lamination size is determined as an EI 625 (square stack) using 29 gage silicon steel. Hanna's curves for this


FIG. 6-Efiect of primary inductance on reflected impedance
lamination size and 6.7 henrys of inductance indicate 2,600 turns for the primary.

For an impedance ratio of 7,000 on the primary and 500 ohms on the secondary, the secondary turns are then 700 , since turns ratio equals the square root of impedance ratio. Assuming equal primary and secondary copper losses, the wire chart for an EI 625 shows 38 wire for the primary and 32 on the secondary. Primary d-c resistance is 580 ohms and that of the secondary 32 ohms. To check the high-frequency end of the transformer the leakage inductance of the transformer referred to the primary is found from Fig. 3. The EI 625 lamination is not listed but the inductance can be estimated as being roughly halfway between the EI 75 and the EI 21.

In addition, the turns listed do not go up to 2,600 on the chart but since \(L\) varies as \(N^{2}\) the value at 260 turns can be used. This yields a leakage inductance of 130 millihenrys, which is equal to 4,900 ohms reactance at 6,000 cycles. Neglecting the d-c resistance, the ratio \(X_{L} / R_{L}=0.7\). From the curve \(R\), \(=10 R_{L}\) in Fig. 4 loss due to leakage reactance is less than 0.1 db and therefore well within the \(1-\mathrm{db}\) requirement. Figure 5 shows the phase shift of the transformer at 300 cycles. For this case, the secondary resistance should be included in the calculations. The value of \(R_{L}\) is then 7,400 ohms or 500
ohms plus 32 ohms times the turns ratio squared.

The ratio \(X / R_{L}\) is 1.7 at which point on the curve \(R_{L} / R_{2}=0.1\) is found a phase shift of 28 degrees. This high phase shift results from the high plate resistance of the beam-power tube. A triode for the same response and load impedance would have a phase shift of 15 degrees. Figure 6 can now be used to check the primary impedance. For the impedance at 300 cycles, \(X / R_{L}\) \(=1.7\) where again \(R_{L}\) includes the secondary resistance. From the curve at this point, \(R^{\prime} / R=0.75\) or \(R^{\prime}=5,550\) ohms and \(X^{\prime} / R_{L}=j\) 0.44 or \(X^{\prime}=3,250\) ohms.

This represents the reflected impedance as viewed from the primary side of the transformer converted into a series value of resistance and inductive components. Adding the primary d-c resistance, \(Z_{\mathrm{PR1}}=5,550\) \(+580+j 3,250=6,800\) ohms. A more exact calculation of primary impedance would have required adding 130 millihenrys of leakage inductance and the shunt core loss vectorially.

\section*{Bibliography}

Reuben Lee, "Electronic Transformers and Circuits",'John Wiley and Sons, New York, 1947.

MIT Dept. of E. E. Staff, "Magnetic Circuits and Transformers', Principles of Electrical Engineering Series, John Wiley and Sons, New York, 1943.
F. C. Connelly, "Transformers, Their Principle and Design for Light Electrical Engineers", Sir Isaac Pitman and Sons, London.
Federal Telephone and Radio Corp; third edition, New York, 1951.


\section*{For Constant Voltages... Use Mallory Mercury Batteries}


The constant discharge voltages shown in the curves are characteristic of the uniform, dependable power delivered by Mallory Mercury Batterics. This is especially important in mobile commonications equipment, hearing aids, delicate optical equipment and many hinds of instruments in which constant discharge voltages are imperative for best performance.
This is only one advantage of Mallory Mercury Batteries, However. They operate dependably at micromperes or drains of 50 amperes... intermittently or continuously . . . always providing a dependable, uniform source of power -ceven after long periods of storage.

If these characteristies will improve the operation of your equipment, then let us send you complete information. Multi-cell battery stacks and packs can be designed to fit your exact needs.

Use Mallory Mercurv Balleries
for applications where:
Constant voltage or current is required Size and weight are important Longs storage periods are involved Battery leakage ramot be tolerated Wide temperature and pressure ranges are encountered
Severe impact and shock is cxpected

\section*{For Transistor Applications}

Mallory Mercury Batteries are especially suited for transistor applications ... where constant voltage and constant current are required.

\section*{SERVING INDUSTRY WITH THESE PRODUCTS:}

Electromechanical-Resistors - Switches - Television Tuners • Vibrators Electrochemical-Capacitors - Rectifiers - Mercury Dry Batteries
Metallurgical-Contacts•Special Metals and Ceramics - Welding Materials
P. R. MALLORY\& CO. INC., BATTERY DIVISION, NORTH TARRYTOWN, N.Y.

\section*{ELECTRONS AT WORK}

\section*{Including INDUSTRIALCONTROL}

\author{
Edited by ALEXANDER A. McKENZIE
}
Transistor Test Board Speeds Circuit Choice ..... 198
ASR Using MTI Feeds PAR ..... 198
Sync Circuit Noise Reduction. ..... 200
Suppressor Grid Frequency Doubler. ..... 200
Four.Track Film for Stereo Sound . 200
Kerosene Cooled Transistors. ..... 202
Increasing Range of Geiger Tubes byPulsed Operation .................... . . 206Commercial, Ruggedized, and PremiumTubesDesign Equations for Broadbanding byStagger Tuning ......................... 220
ansmission Characteristics of Non- symmetrical Networks ............... 226Shape Factor as a Criterion of SkirtSelectivity232
Loss and Singing Margins in Radio and Carrier Channels ..... 238
Ferrite Applications at Microwave Frequencies ..... 246

OTHER DEPARTMENTS
featured in this issue:

\section*{Page}

Production Techniques .. 258
New Products ........... 310
Plants and People....... 382
New Books ............... 436

Backtalk
451

\section*{Transistor Test Board Speeds Circuit Choice}


Front-panel view shows spring clips (top center) to hold transistor leads


Fig. I-Circuit of the transistor hookup device to speed testing employs switches

By R. L. Riddle
Radio Corp. of America Princeton, N.J.

In testing a new electronic device it is often easiest to connect it directly into a circuit to determine its operating characteristics. For rapid fabrication of a multitude of transistor circuits the test board described below was constructed.

This board comprises two sets of transistor sockets, a metering circuit, bias supply controls and a selected group of circuit elements.

Of the two sets of transistor sockets one set is connected into a metering circuit that enables the measurement of emitter, collector and base currents and voltages. This circuit arrangement is shown
in Fig. 1 and the photograph. In addition to the above-mentioned currents that may be measured, a set of terminals is included that permits the measurement of currents anywhere in the external circuit by inserting the appropriate leads in the terminals marked \(I_{d}\).

The circuit components included are four decades of resistors, four decades of capacitors, a set of electrolytic capacitors and two centertapped coils. These components permit the construction of many transistor circuits.

A second set of transistor sockets is included to enable two-stage transistor circuits to be constructed.

With the use of this test board
and simple external equipment the characteristics of transistor circuits may be obtained rapidly.

\section*{ASR Using MTI Feeds PAR}

NEW AND IMPROVED airport surveillance radar system (ASR) recently installed at Norfolk, Va. Municipal Airport gives CAA traffic controllers a clearer picture of aircraft within a 60 -mile radius. Equipped with moving-target-indicator (MTI) circuits, it automatically blanks out permanent or stationary radar targets and displays only moving aircraft. During periods of poor visibility the device helps the control tower feed


\section*{You can get complete FM-AM} coverage 100 KC to 216 MC

The Type 202.B FM-AM Signal Generator and the Type 207-A Univerter provide complete FM-AM signal coverage from 100 KC continuously through 216 MC in two compact portable units.

The Type 202-B FM-AM Signal Generator was designed to meet the exacting requirements set forth by leading engineers throughout the country and has found widespread acceptance as the essential laboratory instrument for receiver development and research work.

The Type 207-A Univerter was designed to provide additional frequency coverage of commonly used intermediate and radio frequencies and enables the modulation and attenuation calibration features of the 202-B to be utilized at these FM MODULATION: 0-240 KC continuously variable. FM DISTORTION: Less than \(2 \%\) at 75 KC. AM MOLULATION: 0-50\% continuously variable. AM DISTORTION: Approximately \(5 \%\) al \(50 \%\) AM. INTERNAI MODULATING FREQUENCIES: \(50,100,400\) cycles; 1 . 5, \(7.5,10,15 \mathrm{KC}\).
R. F. OUTPUT VOLTAGE: 0.1 to 200,000 microvolts continueusly variable from souree impedance of 26.5 ohms.
POWER SUPPLY: \(105-125\) volts, \(50 / 60\) cycles (infernally regulated)

\section*{UNIVERTER Type 207-A}
(When used with 202-B) SPECIFICATIONS
FREQUENCY RANGE: \(100 \mathrm{KKC}-55 \mathrm{MC}\).
FREQUENCY RESPONSE: Flat within \(\pm 1 \mathrm{db}\). over frequency range. FM-AM MODULATION: See 202-B.
FM DISTORTION: No appreciable distortion at any level.
AM DISTORTION: No appreciable distortion at carrier levels below 0.05 voll and modulation of \(50 \%\).
RF OUTPUT VOLTAGE: 0.1 to 100,000 microvolts conlinuausly variable from source impedance of \(\mathbf{2 6 . 5}\) chms; also approximately 1.5 volts from \(\mathbf{3 3 0}\) ohms inta apen circuit. POWER SUPPLY: 90-130 volts, 60 eycles (internally regulated).

Write for CATALOG "J"

PRICE: \(\$ 345.00\)
F. O. B. Baanton, N. J.


First of 23 GE surveillance radars for CAA was installed at Noriolk, Va. Only moving aircraft are displayed on confroller's screen above
arriving planes into the precision approach radar system (PAR) most efficiently.

Map overlays show controllers the locations of obstructions dangerous to approaching aircraft, Two-way radio from ground to plane permits passing the information from airport to pilot.
The radar set and its rotating antenna can be located up to two miles from the airport control tower with incoming information to the viewing screen brought from the antenna by coaxial cable.

\section*{Sync-Circuit Noise Reduction}

NoISE PULSES entering the sync circuit of ty receivers can be cancelled or greatly reduced by the circuit shown in Fig. 1. A noise pulse at the grid of the 3rdi-f will appear as a negative pulse at the screen grid. The same noise pulse will appear as


FIG. 1-Noise reduction circuit couples i-f screen to sync take-off point to cancel noise pulses
a positive spike at the sync takeoff point in the plate of the video amplifier. By direct-coupling the 3rd i-f screen to the sync take-off, the noise pulse entering the sync circuit is reduced by the negative pulse from the screen.
A resonant filter, consisting of coil \(L_{1}\) and capacitor \(C_{1}\), on the screen of the 3rd i-f bypasses the intermediate frequencies but does not lose sync and video frequencies.

The circuit greatly improves both vertical and horizontal sync stability, particularly in the medium fringe and fringe areas.

Another feature of this circuit is that no control is needed to adjust for different signal levels or various types of noise.

The circuit was developed by Albert Massman and Richard Kraft of Motorola, Inc.

\section*{Suppressor Grid Frequency Doubler}
W. G. Sherard
'hysical Resentely Unit
Bocing Arplanc Company Socing Airplane Company
Scratle, Wushingtw,

Total cathode emission in the type fask pentode is fairly constant for a fixed control-grid voltage, but the path that the electrons take is controlled by the sup-pressor-grid voltage. The main electron path is to the screen grid for a large negative suppressor voltage and to the plate for a zero or positive suppressor voltage. The suppressor grid, therefore, can act as a second control grid as far as plate current is concerned. These characteristics make the gAs6 useful as a freguency doubler.

If 180-dey out-of-phase sinewave signals are placed on the control grid and suppressor grid simultaneously, it will be found that although the total cathode current is a sine wave of the original frequency, the electron flow reaching the plate contains a large amount of second harmonic.

This may be explained by the fact that as the electron-flow cycle reaches its maximum the electrons are deflected to the screen grid because the suppressor grid is most negative at this time. This causes the plate current to decrease at the peak of every cycle of total elec-
tron flow as well as at the minimum of every cycle; thus accounting for the frequency doubling. If the incoming sine waves are of the proper amplitude, the fundamental is almost entirely eliminated, leaving a fairly good sine wave at the doubled frequency.

A practical circuit for frequency doubling is shown in Fig. 1. The unbypassed cathode resistor effectively develops the \(180-\mathrm{deg}\) out-ofphase signal on the suppressor even though the suppressor is grounded, because the cathode tends to follow the grid signal, and such a signal at the cathode has the same effect as a \(180-\mathrm{deg}\) out-of-phase signal placed directly on the suppressor. In the circuit shown, the input signal should be about 1.2 volts, which produces an output of approximately 2.4 volts.

A frequency doubler of this type will work down to the lowest frequencies, but its top useful fre-


FIG. 1-Frequency-doubler circuit uses unbypassed cathode resistor to produce effect of \(180-\mathrm{deg}\) out-or-phase signal on suppressor grid
quency without employing tuned circuits is probably around 100 kc . Various capacitances interfere with proper operation at frequencies higher than this and other methods of frequency doubling are more satisfactory at these higher frequencies.

\section*{Four-Track Film for Stereo Sound}

By narrowing the size of the picture frame and cutting the width of the sprocket holes along the edge of the film, four sound tracks for a stereophonic system can be placed on the same strip of film as the picture.
The new system permits the showing of films using stereophonic

\title{
Having the RIGHT CONNECTIONS \\ is a big help!
}


Helipot*... first in precision potentiometers... makes sure that, in every Helipot, you do have the right connections. No pressure-type connections are used in any Helipot. Tap connections are spot-welded by a Helipot-developed process, and other electrical connections are soldered . . . they all stay put!

The spot welding process is a particularly interesting one ... and more important, it offers a very real advantage to users of Helipot precision potentiometers. Skilled workers, using binocular microscopes, employ a new technique in spot welding the very fine electrical connections. This technique assures that tap connections are attached to a single turn only of the resistance wire, rather than to several adjacent turns as is usually the case with the conventional method. Thus the high resolution, so important to the proper functioning of a precision potentiometer, is not reduced, and none of the wire turns adjacent to the one tapped are shorted out.

The spot welding process offers the further advantage of providing the strongest possible type of connections ... vibration proof, shock proof, corrosion proof, unaffected by temperature and humidity changes. And to cap the climax, the new process is efficient and economical... another example of the Helipot policy offering the lowest price consistent with the high quality you expect in Helipot products.

For information about Helipot's complete line of precision potentiometers, call your nearest Helipot representative or write direct!
-T.M. Reg. U.S. Pot. Off.


WRITE FOR YOUR COPY!
Your copy of the HELIPOT Condensed Catelog describing every moidel of HELIPOr Preciston Pofentiometers and Duodials is now ready. Please write for it on your company letterhead. Ask for Data file \# 160-1002.
\(\qquad\)
- divition of BECKMAN INSTRUMENTS, INC.

SOUTHPASADENA, CALIFORNIA
PIANTS AT SOUTH PASADENA. CALIFORNIA A MOUNIAINSIDE, NEW JERSEY ENGINEERING REPRESENTATIVES IN PRINCIPAL CITIES


Path of film through magnetic-pickup unit. Rollers act as mechanical filter to prevent flutter and wow. Pickup head contains four pickup units side by side


FIG. 1-Four magnetic sound strips are placed on same film with picture. Smaller sprocket holes are made possible by higher dimensional stability of new tilm materials
sound with minimum adaptation of projection room equipment. Changes required in the projector are the installation of the mag-netic-tape pickup unit shown in the photograph and an alteration in the size and spacing of the film sprocket wheels. The alterations do not affect the running of regular
ms in the projector.
The new film, introduced by 20 th Century-Fox for use with their Cinemascope wide-screen pictures is shown in Fig. 1. Three sound tracks 0.063 inch wide provide a separate channel for sound to speaker systems placed to the right, center and left of the theater. A fourth track, narrower than the others is used for recording background and special-effect sounds such as thunder or crowd noises.

Response of the tape tracks is llat to 8,000 cycles \(\pm 1 \mathrm{db}\), with a 50 db signal level as compared to 40 db for a regular optical sound track. The film is run through the projector at standard speed, giving a tape speed of 18 inches per second. Crosstalk between strips is down 40 db at 1,000 cycles.

The tape coating 0.005 to 0.007 inch thick is painted on the film in an acetate solvent. The solvent softens the acetate film base and when dry the magnetic-tape strip has become an integral part of the film.

\section*{Kerosene Cooled Transistors}

By J. E. Maynard and R. L. Brock
Physical Research Unit
Boeing Airplane Co.
Boeing Airplane Co.
A solution to the problem of selfheating of the contacts of pointcontact transistors consists in the use of a fluid to remove heat. External means of cooling may be applied in addition in order to control ambient conditions. An indication
of the problem of self-heating at the point contact may be gained from a calculation of the current density that may be encountered. With a contact area one thousandth of an inch in diameter and a contact current of three milliamperes, the current density would be 3,820 amperes per square inch. The essential feature of the transistor
unit described here is that kerosene coolant is circulated around the junction between the point contact wires and the germanium. Circulation is maintained by the natural convection currents set up in the fluid as a result of the temperature differential between the contacts and the surrounding fluid. Temperature rise at the contact point is considerably reduced.

During normal continuous operation the point-contact temperature is lower for given external ambient conditions than the contact temperature that exists when the transistor contacts are enclosed by a viscous or solid material. The measure of control over contact temperature achieved by convection cooling results in greatly improved stability of operation in transistor circuits, with some subsequent extension at the upper end of the allowable ambient temperature range.

\section*{Method of Stabilization}

The transistor unit shown in the photograph is one in which the point contacts and surrounding region are fully exposed to the cooling fluid. Convection currents in the fluid minimize the initial temperature rise at the contacts and maintain continued reduced temperature contributing to more stable and predictable operation of the transistor.

\section*{Coolant}

Cooling fluids having dielectric constants much greater than unity would introduce large, undesirable capacitance effects about the transistor elements. Low viscosity and a large thermal expansion coefficient are necessary to obtain satisfactory convection currents. A large thermal capacity is necessary to absorb rapid temperature rise in the contact region. Some of the


FIG. 1-Bistable multivibrator circuit used in temperature stability experiments


\title{
control RELAYS
}

\section*{FOR UNEXCELLED}

Furnishing Relays that excel in performonce is a Leach specialty. Their rugged strength and smooth endurance provide uniform control, protection and dependability.

No matter what your Relay application, we invite you to share our nearly four decades of experience and facilities as designers, engineers and manufacturers of a complate line of relays.


CHARACTERISTICS

Leach Part No. 9072 Hermetically Sealed, Screw Terminals. CONTACTS:
Arrangement-4 Pole, Double Throw, Rating-10 amps resistive and inductive at \(29 \mathrm{vd}-\mathrm{c}, 6 \mathrm{amps}\) motor lood at \(29 \mathrm{rd}-\mathrm{c}, 10 \mathrm{amps}\) resistive at \(115 \mathrm{va}-\mathrm{c}, 400 \mathrm{cps}\).
COIL: 135 ohms, \(28 \mathrm{v} \mathrm{d-c}\).
WEIGHT: .70 lb .
Also available with Solder Terminals -Leach Part No. 903955.


Leach Part No. 9039 Sealed
AN Connector Mounting. Some Characteristics as above. APPROVED:
AN3310-1 port per spec. MIL-R-6106
WEIGHT:
.57 lb .

Hermetically Sealed and Sealed - Midgets - Circuit Controls - Aircraft Relays \& Contactors - Special Purpose - Radio \& High Frequency
- Keying

For your specific requirements and for BETTER CONTROLS THROUGH BETTER RELAYS-Contact leoch

\title{
[EAGHEEMAY CO
}

\footnotetext{
5915 AVALON BOULEVARD • LOS ANGELES 3, CALIFORNIA Representatives in Principal Cities of U.S. and Canada
}


FIG. 2-Variation of pulse duration during warmup of transistor multivibrators
liquids that meet these requirements are light petroleum, turpentine, carbon tetrachloride, benzene, trichloro-ethylene and kerosene.

First laboratory tests were made with benzene as the coolant, but the benzene was found to attack the germanium surface. The aromatic hydrocarbons, of which benzene is a member, cause significant damage to the back-voltage characteristic of crystal diodes. \({ }^{1}\) The same action would be experienced at least qualitatively by a transistor immersed in such a liquid, and the results would be such as to impair greatly the ability of the transistor to perform as an amplifier.

Aliphatic hydrocarbons do not in general exhibit these effects. Kerosene, one of this group, was chosen as the coolant for the preliminary experiments. The results have been excellent with no deleterious effects observed in many hours of operation in the kerosene.

The experimental model used for testing the temperature stabilization process is a Western Electric type 1698 point-contact transistor having the insulation material removed by soaking in trichloro-


Kerosene caoled transistor unit removed from tube to show construction


\section*{It's easy to convert} tube exhaust systems with these pump and port units


\section*{For most rotary exhaust machines -}

CVC's Oil Diffusion Pump model MB-10 and port type TP-02 offer the maximum compactness and performance:
- Together they measure only \(83 / 4\) " high; operate through any sweep and sliding valve combinations.
- The pump speed is 10 liters/second; ultimate pressure in the port is \(10^{-3} \mathrm{~mm} \mathrm{Hg}\) or lower; high limiting forepressure is 0.5 mm Hg .
- The two-position mechanically operated port and valve with its rugged mounting flange is easily attached to standard rotary machines.
- There's a readily removable jet assembly; jet parts separate to facilitate cleaning.
- The heater operates directly from any 115 volt power supply.



OPEN TYPE. Circuit switching - power and dynamotor loads - plate circuit - low capacitance.
HERMETICALLY SEALED. Stud or bushing mounting solder or plug-in headers - circuił switching - power low loss applications.
TRANSPARENT PLASTIC COVER. Most R-B-M relays now available in low cost transparent plastic cover.

OTHER PRODUCTS: Motor starting relays and overload protectors for refrigeration, appliance and general purpose motors. Industrial contactors and across-the-line starters. NEMA size 1 and smaller. Low cost general purpose relays. Low voltage D.C. manual and magnetic devices.

\author{
Let R-B-M engineering and production facilities \\ serve you. Contact us immediately-Phone 5121 \\ Write Dedt. B-10 For ASR Bulletin.
}

\section*{R-B-朗 DIVISION ESSEX WIRE CORP. Logansport, Indiana}

ethylene. The transistor, mounted in a suitable socket, was inserted in a brass tube. The tube was then sealed at one end with a Kovar glass-to-metal seal and filled with kerosene. The other end was made with a tight fitting cover.

The monostable multivibrator circuit shown in Fig. 1 was used in the temperature stability experiments. The curves in Fig. 2 indicate the variation of time duration of the quasistable state of the multivibrator as a function of time elapsed after initiation of the supply voltages and trigger pulses. For the two transistors compared in the grease-filled and the kero-sene-filled conditions there is essentially no significant thermal creep in pulse duration during or after warmup when operated in kerosene. The other transistor tested was given a small polyweld globule, covering a surface area of about 0.1 mm diameter, on the contact junctions and then immersed in the kerosene. The curves for this transistor indicate a small reduction in creep effect when operated in kerosene over that existing for grease-filled operation; comparison with the curves of the two other transistors clearly indicates the necessity for allowing the coolant to be in direct contact with the collector and emitter point contacts.

In further observations made with cooled transistors operating both in single and double transistor bistable multivibrator circuits, milliammeters in the collector circuits indicated an absence of the usually observed thermal creep.
The assistance of Robert C. McCarty and Tom Ross of the Physical Research Unit is gratefully acknowledged.

\section*{References}
(1) O. M. Steutzer. Junction Fieldistors, Proc. IRE, 40, p 1377, Nov. 1952.

\section*{Increasing Range of Geiger Tubes by Pulsed Operation}

When operated at a constant potential, the upper limit of Geiger tube operation is governed by the time required for deionization of the gas after discharge. When the interval between counts approaches


\author{
in Television • Radio - Radar • Instruments • Controls • Avionics
}

\section*{And there's - \\ A Complete line \\ OF FUSE BLOCKS, CLIPS AND HOLDERS}


For 38 years, BUSS has emphasized quality . . . finding new ways to make fuses better . . . designing new testing equipment . . . developing precision production methods.

Today, every BUSS fuse is electronically tested on highly sensitive devices for proper construction, correct calibration and accurate physical dimensions.

These safeguards assure you and your customers perfect electrical protection . . . whenever it is needed. ON NEW PROTECTION PROBLEMS . . . BUSS Fuse engineers will gladly assist you in selecting the fuse that will suit your needs best . . . if possible, a fuse that is available from local wholesalers' stocks.


the discharge time, saturation occurs. Further extension of the radiation intensity measuring range requires either the use of Geiger tubes having lowered sensitive volumes or their replacement with other devices more suitable for use in strong radiation fields.

Two methods developed by the Naval Research Laboratory \({ }^{1}\) for extending the range of Geiger tubes use a pulsed voltage for tube operation. One method uses a pulsed voltage superimposed on a constant d-c potential to improve quenching action of the tube. The other method employs the pulsing voltage alone to gate the Geiger tube, permitting measurement of radiation only during the brief interval of pulse duration.

\section*{Continuous Sensitivity}

The extension of range possible with the superimposed pulse method is illustrated in the graph in Fig. 1. The pulse acts as a catalyst, speeding recovery from discharge without materially affecting performance below the saturation point for d-c alone. The degree of range extension possible by this method is dependent on tube dead time. and the width, amplitude and repetition rate of the pulse.

Variation of the tube nperating voltage within the Geiger operating plateau has only a small effect on the range extension, provided the pulse amplitude is maintained at not less than 20 percent of the tube voltage.

Pulse rate should be selected so that the period of the pulse is equal to the dead time interval of the tube. If the pulse period is longer than this the tube will become saturated and blocking up will occur. If the period is shorter there


FIG. 1-Curves showing increase in tube current in a type GC-120 counter tube by use of superimposed 2,550-pps pulse. Pulse width is \(20 \mu \mathrm{sec}\)


Earl Fersen, Psesident of Puritan Dress Company, tells how

\section*{He leads the world's biggest dress parade!}
astions are perishable," says Cart Rosen, head of the world's argest wome is dress house. "The seasen is short - speed is the essence.
"F ist we est new styles in key markets to see how they cint. New dresses reach the stores or tine - via Air Express.

Then we celease the best sty es, timed co go on sale when on: 2-page acs appear in Sunda- papers all over the country. Tt cse dresses reach every part of the nation overnight - via Air Espress. Finally, our efforts دay of in a hood of reorders!
'And again we turn to Air Express, to replace stocks as fast as they sell cut. This dexencable speed is the lifeslood of our business. It is absolutely essential to us.
"Yer the majority of our Air Express shizments go at lower rates than any other comme-cial air service
"Busers and salesmen krow shey ean depend on us. We depend on Air Express!"

It pays to exprass yourself clea-ly. Say Air Express! Division of Railvay Express Agency.


Amphenol has always led the way in every improvement on A N connectors. And, realizing from past experience the value of gold-plating contacts, AMPHENOL has pioneered a provision for gold-plating of contacts in government A N specifications. Amphenol is first again-and with gold-plated contacts as standard on all A N connectors now offers these added features:
\[
\begin{array}{ll}
\text { GOLD } & \begin{array}{l}
\text { plated contacts give each amphenot A } N \text { connector a } \\
\text { superior contact surface, electrically and mechanically. }
\end{array}
\end{array}
\]

G OLD plated contacts end forever the problem of oxidation, as with ordinary silver contacts. One result: like-new appearance and indefinite stock life.


G OLD
plated contacts make soldering easier and faster than with silverno pre-tinning of solder cups is required.

AMPHENOL builds to the Future of Electronics-

\section*{Aमझाइतo}

AN connectors and fittings catalog .... write AMPHENOL today for your copy of catalog A-3.

\footnotetext{
AMERICAN PHENOLIC CORPORAIION chicago 50, illinois
}


\section*{(Advertisement)}

\section*{AMPHENOL \\ AN CONNECTORS}

First with melamine inserts, first with the new improved dielectric material 1-501 diallyl phthalate, first with machined coupling rings. Amphenol now has made yet another improvement in AN connectors with the introduction of gold-plated contacts as standard. And, since Amphenol first began to manufacture AN connectors, the record has been one of constant improvements, leading to one result : superior efficiency in every application with the use of Amphenol AN connectors. Because of this record, Amphenol today is the leading manufacturer of approved AN connectors.

Every Amphenol AN connector is made to government specifications, but if alternate processes in manufacture are allowed, Amphenol has always adopted the highest quality interpretation. Thus, many features of Amphenol AN connectors exceed the requirements of the specifications and are unique with Amphenol. Gold-plating contacts is the newest Amphenol improvement in AN's and is representative of the plus values built into Amphenol connectors to save the user time and money and to assure the best possible performance.

For, not only in design are Amphenol AN connectors superior but in performance, too. Highly trained personnel, modern manufacturing facilities and rigid quality control procedures combine to insure that every Amphenol AN connector will perform with precision - for years.

Amphenol AN connectors, while designed for the armed services, are ideal for commercial and industrial uses where the same dependability is mandatory. AN connectors are being widely employed in electrical and electronic industrial equipment, laboratory apparatus and therapeutic devices. Many industries - railroads, aircraft, textiles, radio and television - use types of circuits in which Amphenol AN connectors perform to great advantage.
will not be complete recovery between pulses with consequent lowering of the range and maximum Geiger current.

Pulse width must be much less than tube dead time. In experimental work improvement in measuring range was evident down to the narrowest pulse used, about one half microsecond. Theoretical work indicates that a reduction of pulse width will be accompanied by a corresponding increase in counting range until the pulse becomes sufficiently narrow as to approximate the transit time of the electrons. In this region the behavior of the counter tube would alter markedly in accordance with transit time theory. One of the changes would probably be a reduction in the influence of the pulses upon tube performance.

\section*{Intermittent Operation}

The second method, using only a pulse voltage, extends the range of the tube by allowing it to measure the radiation for brief intervals at a periodic rate. When the pulse is used to trigger the tube in this manner the measured count rate will be a fraction of the count measured with constant voltage applied to the tube.

The ratio between the two count rates may be called the scale factor SF. Experimental work has shown that measurement rate varies directly with pulse width, repetition rate and the intensity level of the radiation field. For pulse widths considerably less than the tube dead time, SF is equal to the reciprocal of the duty factor
\[
\mathrm{SF}=1 / w f
\]
where \(w\) is the pulse width and \(f\) is the repetition frequency.

This relationship shows that by pulsed trigger operation the total potential count at the tube is lowered by the duty factor \(w f\). This feature for all practical purposes removes the saturation limitations of Geiger tubes in high radiation fields.

The trigger pulse repetition rate must not exceed the rate prescribed by the reciprocal of the deionization time of the tube. Otherwise the discharge will be reignited by the triggering pulse and will be self-sus-

hese latest of all Carter DC to AC Converters are specially engineered for professional and commercial applications requiring a high capacity source of 60 cycle AC from a DC power supply. Operates from storage batteries, or from DC line voltage. Three "Custom" models, delivering 300, 400 , or 500 watts 115 or 220 V. AC. Wide range of input voltage, 12, 24, \(32,64,110\) or 230 V . DC. Unequalled capacity for operating professional recording, sound movie equipment and large screen TV receivers. Available with or without manual frequency control feature.


Magmaro
MAIL COUPON FOR CATALOG
Carter Rotary Power Supplies are made in a wide variety of types and capacities for communications, laboratory and industrial applications. Used in aircraft, marine, and mobile radio, geophysical instruments, ignition, timing, etc. MAIL COUPON NOW for complete Dynamotor and Converter Catalogs, with specifications and performance charts on the complete line.

2646 N. Maplewood
Carter Motor Co.
2646 N. Maplewood Ave., Chicago 47 Please send new catalogs containing complete information on Carter "Custom" Converters and other Rotary Power Supplies. Name
Address
City
Want more information? Use post card on last page


This compact 3 -speed phonomotor is ideally suited for both phonographs and combinations in which quality reproduction and limited size are important prerequisites. Incorporating General Industries' novel vertical idler shifting principle, the Model SS provides smooth, dependable performance at all three operating speeds. Moving shift lever to "OFF" position automatically disengages idler wheel from motor shaft during non-operating periods.

Specifications and quantity price quotations on the Model SS, or its companion, the Model DSS, with 4-pole motor for high-fidelity reproduction, will be furnished promptly upon request.


THE GENERAL INDUSTRIES CO. DEPARTMENT MA - ELYRIA, OHIO


\title{
"Unitized" Pulse Control Equipment saves engineering time and money
}
\(W_{\text {hen }}\) you use Burroughs "Unitized" Pulse Control Equipment, you eliminate much of the costly, time-consuming work of developing electronic test circuits. There is a Burroughs pulse control unit for practically every basic function in pulse circuit engineering. You need only plan a block diagram of the pulse circuits you want, assemble the necessary Burroughs units in the plug-in rack and interconnect them with the various standard coaxial cables and accessories. This can be done because each unit performs one basic operation such as generating, counting, mixing, gating, or delay.

\section*{JUSt "PLUG IN" A BURROUGHS PULSE GENERATOR}

Any of the three pulse generators offered by Burroughs demonstrates the practical one-basic-function principlc behind Burroughs "Unitized" Pulse Control Equipment. . . you simply select the pulse generator for the job and plug in the cables.
Burroughs Pulse Generator, Type 1002B, generates 0.1 mic osecond pulses at frequencies contintously variable from 0.2 megacycles to 4.5 megacycles in four overlapping bands. A calibrated, L-C controlled, sine-wave oscillator controls
the frequency. Output implitude, which is only aflected by frequency changes in the ranges above 2 megacycles, can be varied from 10 to 32 volis and the polarity of the output pulse is reversible.
Like other Burroughs units, this pulse generator is designed and engineered so that it can be added to equipment now in use, selected as a basic component of new equipment, or used repeatedly for testing or as a component in luture pulse control jobs.

For full mformation on Burroughs "Unitized" P'ulse Control Eiqupment, zerite or call Dequartment 12D, Eleatronic Iustruments Division, Burroughs Corporation, 511 i . Broud Sl., Ihiludelphia 23, Pa.

PULSE GENERATORS COINCIDENCE DETECTORS PULSE DELAY CIRCUITS FLIP-FLOP CIRCUITS PULSE GATERS CHANNEL SELECTORS MIXERS


\section*{SEEING IS BELIEVING}

Supplying the right answers to pilots and navigators by means of accurate, reliable instruments has been our work for more than twenty-four years.

AIRCRAFT INSTRUMENTS AND CONTROLS
© OPTICAL PARTS AND DEVICES
\(>\) MINIATURE AC MOTORS
© RADIO COMMUNICATIONS AND
NAVIGATION EQUIPMENT
Current production is largely destined for our defense forces; but our research facilities, our skills and talents, are available to scientists seeking solutions to instrumentation and control problems.

\section*{kollsman}

ELMHURST, NEW YORK - GLEMDALE, GALIFORNIA - sUBSIDIARY OF Stardard coil products co., inc.


FIG. 2-Aging curves of nine 6AK5's show change in \(\mathrm{gm}_{m}\)
ever, JAN tubes unless they are inspected at the factory under a qualified inspector and labeled JAN, showing that sample batches have passed certain qualification tests.

JAN specifications state the conditions to be met before tubes can be stamped with the letters JAN. Since some commercial specifications are more rigid than JAN specifications, it has been suggested by tube companies that a JAN-stamped tube is not necessarily better than a commercial tube. Since ruggedized and premium tubes are improved commercial tubes, JAN specifications for these types are less meaningful than for commercial tubes.

Table I compares the various

Table I-Comparison of Tube Controls
\(\begin{array}{llll}\hline & \begin{array}{l}\text { Com- } \\ \text { mercial }\end{array} & \text { Ruggedized } & \text { Premium } \\ \text { Visual } \\ \text { inspection }\end{array}\) limited general \(\left.\begin{array}{l}\text { 100 percent } \\ \text { individual- } \\ \text { element } \\ \text { inspection }\end{array}\right\}\)


\section*{RESET TIMER INSURES ACCURATE PHOTOCOPYING ON REMINGTON RAND DEXIGRAPH}

An outstanding feature of this versatile photocopying machine is the Cramer Reset Timer, which controls exposures to split-second açcuracy and ensures copy prints of absolutely uniform quality. The Type RE Reset Timer is an ideal choice for this application. Its micrometer adjusting dial allows time settings to be changed

easily and quickly; yet setting can be made to a high degree of accuracy. A double pointer system is used which indicates not only the time setting but also the time remaining during any particular cycle. The pushbutton for starting the timing cycle is right on the front of the timer; a flick of the finger controls the machine. The convenient one-hole meter-type mounting also makes for easy assembly in your factory. Note, too, how well the timer blends in with the design of the machine itself.

Remington Rand is only one of the many large equipment manufacturers who look to Cramer when they have a problem in time control. Cramer has a timer for almost any need, ranging from the simplest interval timers up to complex multi-circuit types. Why not consult Cramer for your timing needs?


\section*{There's More to a Good Filter Than Meets the Eye!}


All of these 66 parts are from a single B \& W Toroidal-coil type discriminator only \(13 / 4^{\prime \prime}\) square by \(31 / 2^{\prime \prime}\) long exclusive of terminals!

Throughout, the job is one calling for precision components plus a wealth of engineering "know how" in producing and assembling them for maximum performance and effectiveness.

Like all other B \& W Special Components, the one illustrated here was designed and produced for a specific application-in this instance a critical military use.

\section*{FILTERS}

In addition to "tailor-made" discriminators, B \& W offers a complete line of performanceproved filters including highpass, low-pass, band-pass and band suppression types.

\section*{TOROIDS}

B \& W Toroidal Coils of vari* ous styles and sizes are avail able in a wide range of inductance values in open, shielded, potted and hermetically sealed types.


FIG. 3-Nine type 5654 tubes show aging characteristics
tests and the characteristics of comimercial, ruggedized, and premium tubes as reported by tube manufacturers. From this comparison it can be generally concluded that premium tubes have better quality control than commercial tubes as well as the other advantages shown.

A sampling of 100 tubes of the commercial type 6AK5 and 100 tubes of the premium type 5654 was carried out at this laboratory. Table II shows the mean transconductance \(g_{\text {m }}\) of each group of tubes, and a calculation shows the standard deviation value of each group.

Most electronic systems using d-c amplifiers and \(r\)-f amplifiers require good electrical stability. If there is a change in tube characteristics, a variation of gain or an unbalanced condition could result. It has been known for some time that a tubeaging curve that plots \(g_{m}\) vs time of new tubes has a peculiar shape described in Fig. 1.

The reason for the projection in this curve other than aging is unexplained by tube engineers, but all

Table II-Mean Transconductance of Tube Groups
\begin{tabular}{|c|c|c|c|}
\hline 'Tirlm & Guautity & Mean Ma in \(\mu\) inhos & \begin{tabular}{l}
Slandard \\
Deviation \\
if \(\mu \mathrm{mhos}\)
\end{tabular} \\
\hline 6吹, & 100 & 4.717 & 4.84 \\
\hline 56.1) (1'reminum 6 A (15) & 300 & 5,04.1 & 375 \\
\hline
\end{tabular}


Clevelite ensures satisfactory performance wherever high dielectric strength, low moisture absorption, mechanical strength, low loss and good machinability are of prime importance.

Clevelite is made in SEVEN GRADES - Time Tested!
Grade

\section*{APPLICATION}

E Improved post-cure falbrication and stapling.
EX Special grade for TV yoke sleeves.
EE Improved general purpose.
EEX Superior electrical and moisture absorption properties.
EEE Critical electrical and high voltage application.
XAX Special grade fur government phenolic specifications.
SLF Special for very thin wall tubing having less than .010 wall.
When you specify and use CLEVELITE you obtain High Quality and Fine Service.

\section*{Send for our new Clevelite}

Folder just off the press.
WHY PAY MORE? For the best . . . Call CLEVELAND!
Reg. U. S. Pat. Off


\title{
New Ballantine SENSITIVE INVERTER
}
for the precise measurement of small DC potentials

\section*{from}

\section*{\(10 \mathrm{yv}-100 \mathrm{v}\)}

\author{
Threshold Sensitivity 1 Jv
}

FOR USE WITH
Vacuum Tube Volimeters
Oscilloscopes
Voltage Amplifiers Multimeters

Servo-Amplifiers
MODEL 700

\section*{FEATURES}
- Built-in Calibrator
- High Sensitivity
- High Input Resistance
- Distortion-free Output
- Low Noise Level
- Accurate for 50-70 cps Line Frequencies

- Polarity Sensing
- Immune to 60 cps Stray Magnetic Fields

Table III-Change in Transconductance
\begin{tabular}{|c|c|c|c|c|}
\hline Quantity & Type & \begin{tabular}{l}
Hours \\
Aged by \\
Factory
\end{tabular} & Mean \(g_{m}\) in \(\mu\) mhos & Average
Change
of \({ }^{\text {gm }}\)
from First
o Tenth
Minute
\((\%)\) \\
\hline & 6AK5 & 1 & 4,500 & 5.3 \\
\hline 9 & 5654 & 48 & 4,400 & 1.9 \\
\hline 8 & 5654 & 500 & 3,700 & 1.9 \\
\hline
\end{tabular}
agree that it exists. Its general location is in the 10 -to- 50 -hour region. The apex of the projection may deviate from a fraction of a percent to several percent and either in the positive or the negative direction. This is one of the reasons why premium tubes are aged 48 hours. Some programs call for additional aging. Having been aged beyond this projection point, premium tubes can be expected to have a more stable electrical life than commercial tubes.

To compare the speed required for variously aged tubes to reach stability after application of JAN voltages, 26 tubes were used in a test that measured the \(g_{m}\) of each tube every minute for 10 minutes. The following tubes were used: nine \(6 \mathrm{AK5}\) 's, nine 5654 's, and eight \(500-\) hour 5654's. The individual curves of each tube showing \(g_{m}\) vs time are plotted in Fig. 2, 3 and 4, respectively.

Defining \(g_{m}\) stability in a vacuum tube as the time in which \(\Delta g_{m} / \Delta_{t m_{m}}\) \(\leq 20\) percent \(/ \mathrm{hr}=1\) percent \(/ 3 \mathrm{~min}\) the graphs of the 26 tubes show that 6AK5's required 3.6 minutes


FIG. 4-Eight 500 hour 5654 's show less aging than in Fig. 3

\section*{Admiral's switch to PLASKON ALKYD jumps vital-part output 300\%}


\section*{No Additional Equipment Required}

When Admiral upped its prcduction schedule to \(1,000,000\) television sets in 1953, faster production of its vital power tube became a "must."
So Admiral went to fast-molding Plaskon Alkyd. And Plaskon Alkyd gave Admiral \(300 \%\) more powertube bases in the same period of time and on the same equipment!

Plaskon Alkyd's dielectric strength, high resistance to arcing, heat resistance and dimensional stability, enable electronics engineers to design parts more compactly, without reducing margins of safety or performance.
These properties have earned Plaskon Alkyd increasing applications in TV electronics, as shown below. For information or technical assistance, write, today, to Plaskon Division, Libbey•Owens• Ford Glass Co., Toledo 3, Ohio.

\section*{PLASKON ALKYD HAS BECOME THE PREFERRED MATERIAL FOR TV...}

Miniature and Subminiature Precision Connectors Tuners - Trimmers - Contact Plates - Tube Bases
Sockets - Tube Support Containers - Rectifiers
Coils - Trimmer Capacitors - Supfort Bracket
Trimmer Cups - Capacitors - Potor Boards
Intermediate Transformer


PLASKON DIVISION
Libhey • Owens • Ford Glass Company Toledo 3, Ohio District Offices:
Boaton . Charlotte, N. C. Chicago. Cincinmati Boaton • Charlotte N. C. - Chicago - Cincinnati
Cleveland. Detroit. Los Angeles. New York Plailadelphia - Wabhington, D. C.
Manufacturers of Molding Compounts, Resin Glues, Coating Resins In Canada:
Canadian Industries, Ltd. Montreal, \(\mathbf{I}\) '. Q.

Molded by Central Molded Products Chicago, Illinois


This power-fube socket, molded of Plasken Alkyd, carries 1200 volis, and is riveted to the underside of the chassis in every Admiral telovision set. High dielecfric strength and heat resistance, plus exceptional dimansional stabilify, make Plaskon Alkyd ideal for this TV application.

\section*{PEM WELD FASTENERS}

MAKE SENSE because they SAVE DOLLARS


\author{
* Penn Engineering \& Manufacturing Corp., Doylestown, Pa.
}

\section*{PEM}

\section*{(©)}



Since the Wright Brothers ushered in the age of flight, aviation has soared beyond the speed of sound and into the outer reaches of the earth's atmosphere. Heiland Recording Oscillographs are a vital factor in this dramatic conquest of the air. These highly sensitive, extremely accurate and dependable instruments enable testing engineers and scientists to solve the wide variety of aeronautical problems involving the measurement of physical phenomena such as strains, stresses, vibrations, pressures, temperatures, accelerations, impact, etc. This technical information, provided by Heiland Recording Oscillographs, makes possible the design and production of superior aircraft. Other industries the world over have proven these instruments to be invaluable in meeting similar demands in their applications.

\section*{FEATURES AND SPECIFICATIONS}

\section*{Heiland Model 500B Portable Recording Oscillograph}
- Compact and lightweight
- Provides maximum portability and versatility where desired to record up to 12 phenomena
- Direct monitoring while recording
- 4 record speeds instantly selectable

Galvanometers: Up to 12. Record width: 4" Magazine capacity: 100'. Record speeds 3, 6, 12 and 24 inches per second selected by levers on control panel. Other speeds, ranging from \(1 / 32^{\prime \prime}\) to \(24^{\prime \prime}\) per second, can be obtained by changing drive sprockets and motor gear box ratios. Drive: Two-speed governor controlled motor. Power supply: 23.5 to 28.25 volts D.C. Timer: Chronometric timing unit projects 100 time lines per second across record width, the \(1 / 10\) second lines being heavier, \(1 / 10\) and 1 second time lines are available. Mounts: Detachable shock or vibration mounted base. Case dịmensions: \(6 \cdot 3 / 4^{\prime \prime} \times 9 \cdot 13 / 16^{\prime \prime} \times 12 \cdot 3 / 4^{\prime \prime}\). Weight: 33 lbs,

Write today for free catalog of Heiland equipment inchinding 50013 and A-401 Portable Recording Oscillographs, "700" series Multi-Channel Recording Oscillog,aphs, "82-6" Bridge Balance and Strain Indicator, Amplifier System, Galvanometers and accessories.
semiellipse.
The procedure for finding the \(Z_{n}\) 's is not difficult and is discussed elsewhere \({ }^{1,2}\). Equation 1, however, is laborious to solve by brute force since it relates complex quantities. This is especially true when several stagger schemes must be computed to compare their relative merits.

In "Broadbanding by Stagger Tuning" (Electronics, p 118, Feb. 52) a nomograph for Eq. 1 is presented for the designer's use. The nomograph is difficult to read, however, for small values of \(\left|Z_{n}\right|\) and also when the individual bandwidths of the stagger are small. The latter case usually arises in the Tschebyscheff stagger and also when the number of stages in the stagger is large. For example, a seven-pole Tschebyscheff stagger with a fractional bandwidth of unity and a gain tolerance of 1 db can not be read with sufficient accuracy from the nomograph.

In the method for obtaining \(f_{n}\) from \(Z_{n}\) given below the final \(\mathrm{E}_{4}\). 12 and Eq. \(12^{\prime}\) are exact, but an approximation is made in their solution. For \(\left|Z_{n}\right| \leqq 1\) the error in the worst case is no more than 3 percent. The specification that \(\left|Z_{n}\right| \leqq 1\) is a range large enough to cover most cases. For \(\left|Z_{n}\right| \leqq\) 1.5, by the way, the error is no more than 8 percent in the worst case. Let
\[
\begin{align*}
& f_{0}=\text { center frequency of the overall } \\
& \quad \text { response }  \tag{2}\\
& f_{n} / f_{0}=R_{n}<\psi_{n}, \text { where }  \tag{3}\\
& R_{n} f_{0}=\text { center frequency of the } n^{\text {th }} \text { st qge. } \\
& \quad \text { and }  \tag{4}\\
& 2 f_{0} R_{n} \sin \psi=\text { bandwidth of the } n^{\text {th }} \\
& \quad \text { stage } \\
& Z_{n}=\rho_{n}^{\rho} n<\theta_{n}=\text { pole position of the }  \tag{6}\\
& n^{\text {th }} \text { stage in the Z-plane }
\end{align*}
\]

Instead of starting from Eq. 1, solve the inverse form
\[
\begin{equation*}
Z_{n}=\frac{f_{n}}{f_{0}}-\frac{f_{0}}{f_{n}} \tag{7}
\end{equation*}
\]

From the substitutions into Eq. 7
\[
\begin{align*}
& Z_{n}= \rho_{n}<\theta_{n}=\rho_{n} \cos \theta+j \rho_{n} \sin \\
& \theta_{n_{1}}=\operatorname{Re}\left(Z_{n}\right)+j \operatorname{lm}\left(Z_{n}\right) \tag{8}
\end{align*}
\]
and
\[
\begin{equation*}
\frac{f_{n}}{f_{0}}=R_{n}^{-}<\psi_{n} \tag{9}
\end{equation*}
\]
obtain
\[
\begin{equation*}
Z_{n}=R_{n} e^{i \psi n}-\frac{1}{R_{n}} e^{-j \psi n} \tag{10}
\end{equation*}
\]
or


\section*{Authorized Distributors of Electronic Equipment and Components, on the Opening of Their New Salesrooms in
 af 35 WILLIAM STREET}

Everybody in-Electronics welcomes the great new HUDSON Sales rooms just opened in the heart of the mighty New Jersey market to provicte the same Huge Stocks, Low Prices, and Superlative Service that have made our two New York Stores the Leading
Electronic Supply Centers of the East!

Radio and TV Dealers and Servicemen, Industrial Users of Elec tronic Equipment and Components, Radio Amateurs, High-Fidelity Enthusiasts. all have come to learn that "HUDSON has EVERY. THING IN ELECTRONICS-at the LOWEST Published Price of Them
All!" Visit our Newark Store, you Jersey Area Patrons-see our Huge Stocks and Facilities, meet our Friendly, Helpful Peopleyou'll enjoy the experience!


These Nationally Famous Manufacturers of Standard Brand Top Quality Electronic Products and High Fidelity Components, whose Complete Lines are found in ALL THRE Great HUDSON Salesrooms, join in congratulating us on the Opening of the Newark Store:

Acro Products
Adrance Elec. \& Relay Co Aerovox Corp. Alliance Mfg. Co. Altec-Lansing Corp American Elec. Heater Co. Amer. Telev. \& Rad. Co. Amperex Electronic Corp. Amperite Co., Inc Arco Electronics Arrow-Hart Hegeman Elec. Astatic Corp. Audak Co.
Audio Devices, Inc. Barker \& Williamson, Inc. Belden Mfg. Co Bell Sound Systems, Inc. Berlant Associates Birnbach Radio Co., Inc. Bliley Electric Co. David Bogen Co.,
Brach Mfg. Corp. British Industries Corp. Brook Electronics, Inc.
Browning Labs. Inc.
Brush Development Co
Burgess Battery Co.
Cambridge Co.
Camburn Inc
Cannon Electric Co.
Carter Motor Co.
Centralab
Chicago Stand. Transformer
Cinch-jones Sales
Clarkstan Corp.
Clarostat Mfg. Co., Inc.
Consolidated Wire
Cornell-Dubilier
Cornish Wire Co., Inc.

Crest Transformer Corp. Croname Inc Dial Light Co. of Amer. Dow-Key, Inc. R. Drake \(\&\) Co. Drake Electric Works Allen B, Dumont Labs, Inc. Dunavox Corp Inc. Hugh H Eby Inc. Eitel-McCullough Inc. Electric Sold. Iron Inc. Electronic Indicator Corp. Electronic Instrument Corp. El Menco Electro-Voice, Inc. Erie Resistor Corp. Equipto Co. Espey Mrg. Co. Fahnestock Electric Co. Fairchild Recording Fairchid Recording Federal Telephone \& Rad.
Fisher Radio Corp Fisher Radio Corp G. \& H. Wood Prodists Gem Elec. Mig. Co., Inc. General Cement Mfg. Co., General Electric Co. Genl. Hardware Mfg. Co., I General Industries Co. Gonset Co. Gordon specialties Co. Gray Research \& Develop. Greenlee Tool Co. Guardian Electric Mfg. Co. Halicrafters Co. Hammarlund Mfg. Co. Harvey-Wells Electronics Hickok Electrical Inst. Co. Harvey Hubbell Co.
Hytron Radio \& Electronics
I.D.E.A. Inc. (Regency Div.) Presto Recording Corp. Insuline Corp of America Pyramid Electric Co International Resistance Co. Quam-Nichols Co. \(\begin{array}{ll}\text { Jersey Tech Labs } & \begin{array}{l}\text { Racon Electric Co., Inc. } \\ \text { Radiart Co. }\end{array}\end{array}\) Jennings Radio Mig. Co. Radio Apparatus Corp. lensen Industries, Inc. \(\quad\) Radio City Products Co. ensen industries, inc FD Mig. \({ }^{2}\)
E. F. Johnson' Co. Kester Solder Co.
Mathias Klein \& Sons Kraeuter \& Co.
a Pointe Electronics, Inc. Littelfuse, Inc.
Livingston Electronic Corp ysco Mfg. Co., Inc. P. R. Mallory \& Co., Inc. Mark Simpson Mfg. Co. Meissner Mfg.
Merit Transformer Corp. Morrow Radio Mifg. Co Mosley Electronics Mueller Electric Co. National Co. National Union Radio Corp Ohmite Mfg. Co. Oxford Electric Corp. Park Metalware Co., Inc. Peerless Products Indust. Pentron Corp. Perma-Power Co. Permoflux Corp. Philmore Mfg. Co., Inc. Pickering \& Co., Inc ilot Radio Corp Precision Apearatus, Inc. Precision Apparatus Co. Precision Electronics, Inc. Premier Metal Products

Radio City Products Co., Inc.
Radio Corp. of America
Radio Mfg. Engineers, Inc
Radio Receptor Co., Inc.
Raytheon Mfg. Co.
Reeves Soundcraft Corp.
|Rek-O-Kut Co., Inc
Howard W. Sams \& Co.
Sangamo Electric Co.
Sarkes-Tarzian Inc.
Walter L. Schott Co.
Shallcross Mfg. Co.
Shure Bros., Inc.
Simpson Electric Co.
Herman H. Smith, Inc.
Snap-On Drawer Co
Sonar Radio Corp.
Sonar Radio Corp.
Sprague Products Co.
Stanwyk Winding co.
Stephens Mig. Corp.
Stephens Mig. Corp.
Stromberg.Carlson Co.
Switcheraft, Inc.
Sylvania Electric Products Taylor Tubes Inc. Tech-Master Products Co. Triad Transformer Mfg. Co. Triplett Elec. Instruments Turner Co.
Ungar Electric Tools, Inc. Union Carbide \& Carbon United Transformer Corp. University Loudspeakers, Inc Vector Electronic Co Vibroplex
Walter L. Schott Co. Westinghouse Eago Corp. Westof Elec. Instrument Co
write for complete.
new 1954 Giant
Hudson Catalog!
Dept. M-10

NEWARK, N. J.
35 William Street


Adjoining Radio City
48 West 48th St., N. Y. 36
Phone: Circle 6-4060
\[
\begin{align*}
Z_{n}= & \left(l_{n}-\frac{1}{R_{n}}\right) \cos \psi \eta \\
& +j\left(R_{n}+\frac{1}{R_{n}^{\prime}}\right) \sin \psi_{n} \tag{11}
\end{align*}
\]

Equating imaginaries and reals \(y\) ields
\[
\begin{align*}
& \operatorname{Le}\left(Z_{n}\right)=\left(l_{n}^{\prime}-\frac{1}{R_{n}}\right) \cos \psi_{n}  \tag{12}\\
& \operatorname{Im}\left(Z_{n}\right)=\left(R_{n}+\frac{1}{R_{n}}\right) \sin \psi_{n}
\end{align*}
\]

The fuantities on the left-hand sides of the above equations are numbers that have already been obtained. The equations must be solved for \(R_{n}\) and \(\sin \psi_{n}\) so that the center frequency and bandwidth of the \(n^{\text {th }}\) stage may be obtained.

The approximation is now made that \(\cos \psi_{n}=1\). Even when \(\psi_{n}=30\) deg, corresponding to a fractional bandwidth for the \(n^{\text {t" }}\) stage equal to unity, cos \(\psi=0.87\). Equation 12 is a quadratic, however,
\[
\left(R_{n}-\frac{1}{R_{n}}-\frac{\left(Z_{n}\right) \text { real }}{\cos \psi_{n}}=0\right)
\]
of which \(\cos \psi_{w}\) affects only one term, so that the error introduced in \(R_{n}\) by the approximation is much less than the error in cos \(\psi_{n}\) itself. With the approximation, it follows that
\[
\begin{align*}
& \operatorname{Re}\left(K_{n}\right)=I_{n}-\frac{1}{R_{n}}  \tag{13}\\
& \operatorname{Im}\left(K_{n}\right)=\left(R_{n}+\frac{1}{R_{n}}\right) \sin \psi
\end{align*}
\]

Equation 13 is a simple quadratic from which \(R_{n}\) may be readily ob tained with the positive root only heing retained. With \(R_{n}\) known, Eq. \(13^{\prime}\) may be solved for \(\sin \psi_{n}\). The center frequency of the \(n^{\text {th }}\) stage is \(f_{0} R_{n}\), and its bandwidth is \(2 f_{0} R_{\mathrm{n}} \sin \psi\).

The above method was found useful in the design of a Tschebyscheff staggered octuple. Calculations were first made for a septuple with various gain tolerances, and it was found that the requisite gain could not be obtained. Calculations were then made for an octuple with various gain tolerances, and the smallest gain tolerance yielding sufficient gain was chosen. The computations would have been laborious indeed if Eq. 1 were solved for each case and each stage. Comparison of results obtained from Eq. 13 and \(13^{\prime}\) and those obtained from the original

\section*{New Ulltra-Stable Microwave Osillator}

\section*{MODEL 803}

Also Available: LFE Model 802 for ultra-stable microwave frequencies in the \(\mathbf{X}\)-Band of highly stabilized microwave in many orher applications and general and feature. The main microwave measurements, or in measurements, SWR measur frequency is an imporr loop which consists of is required, such as \(Q\) measurabated directly in frequabilizing monitor loop power supply work. A dial accurately calie kylstron oscillator, a staply. elements of the unit reference caviry, a feedback am
calibrated dual-mode
\[
\begin{aligned}
& \text { - Frequency Coverage } \\
& \text { Means are provided for modured } 2700-2950 \text { Mc. S-Band }
\end{aligned}
\]
- Dial CalibrationCalibrated directly in frequency-1 Mc. per division.- Frequency StabilityShort Term Deviation - less than one part in \(10^{8}\).Long Term Drift - less than \(100 \mathrm{Kc} / \mathrm{sec}\) fromoriginal setting.
- ModulationCan be modulated \(25 \%\) when stabilized; \(100 \%\)modulation possible when stabilization is removed.
- AttenuationAttenuator provides 100 db . range of control.
- Power Output
15 milliwatts.
Output Connector - Type N.
- Power Consumption150 watts.
\(10^{1 / 2^{\prime \prime}} \times 19^{\prime \prime \prime}\) front panel, \(141^{\prime \prime}\) deep, cabinet with
rack mounting panel.
- Weight

100 lbs .
- Size

For complete information, see your LFE engincering representative or write -


HITIF \& DAVGH


17 FACTORIES AND MILLS. OOSALES OFFICES
exact equation show an error of 3 percent for values of \(p\) less than or equal to 1 . For \(\rho\) equal to 1.5 the maximum error was 8 percent.

\section*{References}
(1) R. C. Wittenberg. Broadbanding by Stagger Tuning, ELECTRONICS, 25, \(p\) 118, Feb- 1952.
(2) W. H. Huggins, The Natural Behavior of Broadband Circuits, Electronics Research Lab., ERL Report Ē̄013A.

Transmission Characteristics of Nonsymmetrical Networks


FIG. 1-Simplification of circuit for cal culation of insertion loss

THOUGH FOUR-TERMINAL networks will usually be inserted between equal resistance terminations there are cases where this condition cannot be fulfilled. The E. J. Purington \({ }^{1}\) paper provides an excellent means for an easy and rapid calculation of the transmission characteristic of four-terminal-networks that possess electrical and structural symmetry. It seems, therefore, reasonable to extend his method to the nonsymmetrical case.

This is done only for the T-configuration, inserted between nonequal resistance terminations, though the method is applicable to other forms of four-terminal networks. Three steps are necessary:

\section*{shane migure}

Kahle's new cathcde ray tube Sealing Machine (Wodel 2307) is probably the largest buil to date in the industry, taking tube sizes up oo \(27^{\prime \prime}\), diameter or diagonal or all 16 heads filled
Production rates cf 140 (27") tubes par hour cre easily obtained! New* design permits constant heal speeds\(e^{\text {ven }}\) when indexing! Foot pedal allows irstant control by cperator. Steam preheater (elestrical) is driven by the machine in synchronism. Takes larger tubes using alternate heads. Independert dual motor driva-one for the head; one for the indexing.
Model 2307 is another example of the 4(' years of engineering ingen wity which keep Kahle ¿ar in ádvance as a leading
manufacturer cf custom machinery for electronics and the glass industry.
If you have eny production problers that can be sclved with general pu-pose or specia Jurpose machines, write Kahle now.
*And now for the first tim the Kahle
NOVAR drive whict meens constant
head speed. Ccnstant while the turret
indexes; constan: wiile the tarret dwells.
As the turret sow y starts, accelerates,
and slowly stops, there is atsolutely no
variation in the RPM of the jeads. Fric-
tion clutch elininates sudde starting of
the head. For the first time in the history
of the industr:s a rew and significant
advance in mact ine engineering that en-
sures absolute Lriformity anc the nearest
approach to perfection of sealing or other
operations. Now available (optional) on
all Kahle mactines.


1310 SEVENTH STREET
\(131 O\) SEVENTH BERGEN, N.

\section*{ENGINEERINGCOMPANY \\ \(1 / 21\)}

ENGINEE


\section*{SYNCHRONOUS TIMING MOTOR}

The basic HAYDON motor is unique in its field in the number of advantages it offers. Its performance is dependable, it is small in size, is totally enclosed, operates in any position, has controlled lubrication and its assembly is simple. The basic HAYDON motor offers a wide range of standard speeds from 1 second to 1 hour per revolution and other speeds down to 1 revolution in 4 hours in the 1600 Series, from 6 hours to 1 week in the 4400 Series.

\section*{Write for Catalog No. 322, Electric Timing Motors}

Other literature available on request on Timing Devices, Clock Movements, 400 cycle Elapsed Time Indicators, 400 cycle Time Delay Relay, 400 cycle Motors, D.C. Motors.
*TRADEMARK Reg. U. S. Paf. Off.


\section*{HAYDON}

AT TORRINGTON


FIG. 2 -Determination of T-network with desired characteristics
(1) Calculation of the insertion loss of the T-network.
(2) Determination of a T-network that will, for given terminals, produce the desired transmission characteristic.
(3) Determination of the transmission characteristic of a given T-network provided that it satisfies a certain condition given below.

In the network of Fig. 1, inser-
tion loss \(=\frac{1}{2} \cdot \frac{E}{E_{1}}\)
Rearranging Fig. 1A in the manner of Fig. 1B it is simple to obtain the insertion loss by considering voltage ratios in the different parts of the circuit. For this purpose the value of the impedance \(Z_{T}\) in Fig. 1C is needed. This can be obtained by simple comparison with Fig. 1B. From this follows
\[
\begin{aligned}
& \frac{1}{Z_{T}}=\frac{1}{Z_{2}}+\frac{1}{Z_{3}+R_{4}}= \\
& \frac{Z_{1}+Z_{2}+R_{4}}{Z_{2}\left(Z_{3}+R_{4}\right)}
\end{aligned}
\]
\(01{ }^{\circ}\)
\[
\begin{equation*}
Z_{T}=\frac{Z_{2}\left(Z_{3}+R_{4}\right)}{Z_{2}+Z_{3}+R_{4}} \tag{2}
\end{equation*}
\]

From Fig. 1B and 1C
\[
\begin{aligned}
\frac{L_{T}^{\prime}}{L_{1}} & =\frac{Z_{3}+R_{4}}{R_{4}} \\
\frac{E}{E_{T}} & =\frac{\left(R_{0}+Z_{1}\right)+Z_{T}}{Z_{T}}
\end{aligned}
\]

Therefore
insertion loss \(=\)
\[
\frac{E}{2 E_{1}}=\frac{1}{2} \cdot \frac{Z_{3}+R_{4}}{R_{4}} \cdot \frac{R_{0}+Z_{1}+Z_{T}}{Z_{T}}
\]

Introducing the above value for \(Z\) insertion loss \(=\)



The new 2 KVA VOLTAGE STABILIZER with magnetic-amplifier control is the latest product of Raytheon's skill and experience in providing the electrical characteristics you want in the most convenient, compact and economical form.
Among the many advantages offered by this unit are lower harmonic content without special filters, less cubic space required and ability to take heavy overload without damage. Write for full information.

\section*{SPECIFICATIONS}
- Input: 115 volts, \(\pm 10 \%, 58.62\) cycles, single phase.
- Output: 115 volts, 2000 va.
- Fixed load stabilized to \(\pm 1 / 2 \%\) for line change.
- Fixed load stabilized to \(\pm 1 \%\) for frequency change.
- No load to full load ( \(85 \%\) power factor); \(1 \%\) maximum.
- Temperature rise of components; \(50^{\circ} \mathrm{c}\) maximum.
- Harmonics (at 60 cycles input); less than \(5 \%\) total.
- Efficiency at full load ( \(100 \%\) power factor) \(; 90 \%\) minimum.
- Mounting: Bench, floor, wall or relay rack.

\section*{RAYTHEON}

\section*{MANUFACTURING COMPANY EQUIPMENT SALES DIVISION}

DEPT. 6270.A WALTHAM 54, MASSACHUSETTS district offices: boston, new york, clevelano, chicago, new orleans, los angeles (wilmington), san francisco, seattle INTERNATIONAL DIVISION: 19 RECTOR ST., NEW YORK CITY

\footnotetext{
RAYTHEON PRODUCTS INCLUOE: WELDPOWER* welders;
Voltage stabilizers (regulators); Transformers; Sonic oscil. lators for laboratory research; Standard control knobs; Electronic calculators and computers; Radio, television, subminiature and special purpose tubes and other electronic equipment.
*Reg. U.S. Pat. Off.
}

Raytheon Voltage Stabilizers rated from 15 ta 2000 watts are carried in stock by 125 to coast. Custom-engineered units are alsa available


\title{
For research and development of electro-mechanical radar and computing equipment.
}

\author{
Significant advancements in the fields of airborne radar and fire control systems are requiring further applications of electro-mechanical techniques in the Hughes Radur Laboratory.
}

\section*{The company}

Hughes Research and Development Laboratories. located in Southern California. form one of the nation's leading electronics organizations. The Laboratories are presently engaged in the development of advanced electronic systems and devices which are produced by the Hughes manufacturing divisions.

\section*{Areas of work}

The work calls for devising reliable, maintainable, manufacturable designs for precision equipment developed in the Hughes Radar Laboratory. The equipment consists of mechanical. electronic and microwave devices and systems to be manufactured in quantity. The equipment designs require the use of such advanced techniques as subminiaturization, unitized "plug-in" construction, with emphasis on design for volume production. Knowledge of electronic components, materials, finishes and specifications is useful.

\section*{The future}

Engineers experienced in the field of electro-mechanical design for production or those interested in entering this field will find outlets for their abilities and imagination in these activity areas. New electro-mechanical techniques are opening new applications for airborne electronic equipment. Hughes engineers will have the full benefit of working experience in these fundamental developments.

Assurance is required
that the relocation of the applicant will not cause the disruption of an wrgent military project.

\section*{Scientific and Engineering Staff} Hughes

\footnotetext{
Research and Development Laboratories
Culver City, Los Angeles County, California
}
metrical T-network.
Therefore, the two insertion ratios for the symmetrical and the nonsymmetrical T-network have the same value but for the mismatching factor \((2-i)\). This factor cannot be avoided and will be equally present without inserting the T-network between the two terminal resistance.

The physical meaning of the conversion equations 6 and 7 is to maintain the same relative imped-ance-level throughout the nonsymmetrical network as in the symmetrical network. In both cases the amount of impedance is approximately the same because
\[
Z_{1}+Z_{3}=2 Z_{1} P_{3}+R_{4}=2 R_{1} Z_{2} \approx Y
\]
as long as
\[
\lambda(2-\lambda)=4 \cdot \frac{R_{0} R_{4}}{\left(R_{0}+R_{4}\right)^{2}} \approx 1
\]

The inverse problem, to calculate the transmission characteristic of a given nonsymmetrical T-network, can naturally only be solved if the two impedances \(Z_{1}\) and \(Z_{3}\) satisfy the condition
\[
\frac{R_{0}}{R_{3}}=\frac{Z_{1}}{Z_{3}}=\frac{\lambda}{2-\lambda}=\begin{array}{r}
\text { resl con- } \\
\text { stant }
\end{array}
\]
which implies that these impedances are of the same nature. In this case we can convert the nonsymmetrical T-network to symmetrical one by means of Eq. 6 and 7 and calculate the transmission characteristic by the method previously indicated.

\section*{References}
(1) E. S. Purington, Symmetrical Electrical Systems, Electronics, 15, p 54 , Nov. 1942

\author{
Shape Factor as a Criterion of Skirt Selectivity
}

By John J. Dougherty, Lt. USN
U. S. S. Benniangton. CVA20
c/o FPO, New Tork. N. Y.
Shape factor is a term being used to specify the degree of skirt selectivity required of an i-f amplifier. It is defined usually as the width of the passband \(60-\mathrm{db}\) down from maximum response divided by the passband width 6-db down. Figure 1 shows the theoretically minimum shape factor obtainable from a given i-f transformer using equal


GLASS-TO-METAL fusion sealing for electrical stability is an exclusive feature of Hughes Germanium Diodes. The final seal in precision assembly operations is made at a temperature exceeding \(700^{\circ} \mathrm{C}\).

Proved in billions of vacuum tubes, the glass-to-metal seal has been incorporated to full advantage in diode manufacture for the first time by the Hughes-developed process of fusion sealing. The result is a unique germanium diode whose elements are encased in a rigid one-piece glass envelope, which assures permanent freedom from moisture penetration.
the hughes Germanium Diode, developed by Hughes Research and Development Laboratories, employs no wax or solder, and has no mechanical joints or pressed-in parts to shift position.

To insure the satisfactory operation of Hughes Diodes under adverse conditions of moisture, vibration, and severe shock, a 100 per cent testing procedure has been devised which invites instabilities to occur prior to shipment and assures rejection of every defective diode. Each Hughes Diode is humiditycycled, temperature-cycled, and JAN shocktested.
hughes Germanium Diodes have proved consistently able to meet exacting requirements in airborne electronic equipment for navigation, fire control and guided missiles.

Volume orders for most types of Hughes Diodes can be filled from stock. Diodes are also tested to special specifications, including high-temperature electrical requirements.


\title{
11 \\ "Calar Teleuision"
}

A special issue containing

\section*{- 15 N.T.S.C. Monographs-}

The National Television Systems Committee has authorized IRE to publish its long awaited Monographs in the January 1954 special Color Television issue of "Proceedings of the \(I \cdot R \cdot E "\) - thus giving them industry-wide distribution for the first time in print.

\section*{- 25 additional Color TV articles -}
will also appear in this issue, which brings the reader up-to-the-minute on the developments of Color Television. Copies of the first Color Television issue are still available and combined with this second Color Television issue will form a complete bibliography of major historical importance. Also included in the January issue will be a complete listing of the N.T.S.C. system specifications as submitted to the F.C.C.; and field test reports on the system's performance.

\section*{in "Proceedings of the I•R•E" January '54}

Available to non-members for \(\$ 3.00\). Extra copies to I R E members are \(\$ 1.25\). All members get one copy free!

'IG. I-Variation of shape factor. coupling, number of single or double tuned stages, and peak to valley ratio
\(Q, L\), and \(C\) in the primary and secondary, and shows that shaipe factor improves as coupling is in creased.

Shrinkage factor is the amount by which the \(3-\mathrm{db}\) passband width of a parallel resonant circuit is increased or decreased as an identical circuit is coupled to an increasing degree until critical coupling is reached, and then \(n\) such transformers are cascaded to form an i-f strip.

In a resonant circuit with a \(Q\) of 100 , at 1 me the expected passband would be simply the ratio of the two, or 10 kc . The resonant impedance would be \(Q\) times the inductive or capacitive reactance of either branch.

As the secondary is coupled, the response approaches that of two resonant circuits coupled by a very high impedance. If this impedance be a pentode, the response is that of a pair of cascaded synchronouslytuned singles. As coupling increases until critical is reached, the passband has increased by the square root of two. This is the shrinkage factor. The resonant impedance, due to the presence of the secondary, is decreased to half its decoupled value. If the tuned circuit is the plate load of a pentode, the gain is half its former value, but in i-f design, this decrease is compensated for by doubling the \(L / C\) ratio.

As \(n\) such transformers, sepa-

\section*{A link between sensors and recorders}

\section*{Doelcam}

\section*{Voltage regulation}

Frequency stabilization
Linear demodulation


\(T\)The doelcam VFDD provides precise excitation to rate gyros, free gyros, position indicators or synchros for accurate measurement of flight parameters. In addition, the instrument includes 3 demodulator channels to transform 400
cps data to d-c signals for use with recording galvanometers.

\section*{Doelcam CORPORATION \\ SOLDIERS FIELD ROAD, BOSTON 35, MASS. West Coast Office: 304 Tejon PI., Palos Verdes, Calif. Instruments for Measurement and Control Gyroscopic Instrumentation. Servomechanisms Synchros - Microsyns - Servo Motors}


\section*{American Beauty} makes perfect soldered connections for SYLVANIA

RADIO and


There are over 2,000 soldered connections in a good television receiver. Sylvania calls on Amer. ican Beauty to help produce top quality products, maintain its reputation as a maker of expertly crafted receivers.

\section*{IN CHOOSING SOLDERING} IRONS, look to the oldest, largest manufacturer in America. Look to AMERICAN BEAUTY, the Standard of Perfection on the world's production lines, and to these features that make AMER. ICAN BEAUTY the largest-selling of all soldering irons . . .
- Nickel-coated, corrosion-resistant tips, easily and quickly replaced
- Super-flexible cord, American Beauty-made, reduces worker fatigue

\section*{Build better with Solder... Solder better with American Beauty}

Electric Soldering Trons-Since 1894
lated by pentodes, we cascaded, the shrinkage factor decreases and becomes, for \(n\) such stages
\[
\begin{equation*}
S=\frac{\sqrt{2}}{1.1 n^{1 / 4}} \tag{1}
\end{equation*}
\]

These factors can be combined into one simple equation giving the required tuning capacitance directly, providing that identical transformers and tuned circuits are used for primary and secondary. This effration is
\[
\begin{equation*}
C=\frac{S g_{n n} n}{1 \pi B A} \tag{z}
\end{equation*}
\]
where \(S\) is the shrinkage factor, \(B\) is the overall \(3-\mathrm{db}\) bandwidth desired and \(A\) is the overall gain, as a pure number, from the grid of the tube preceding the first transformer to the input of the tube following the last transformer. The output load must exceed by a factor of ten the load impedance of the transformer ( \(\frac{1}{2} Q X_{L}\) ),

The geometrical mean transconductance of tubes involved, \(g_{m}\), is the \(n\)th root of the product of all transconductances involved. These may not all be the same. For example, if the first tube is a mixer, then its mutual conductance as a mixer must be used. And if the cathodes of the tubes to which agc is applied are left unbypassed to minimize the Miller effect, then the \(g_{m}\) of those tubes must be decreased by that negative-feedback factor.

Having solved for the required tuning capacitance, the required inductance can be found from the resonance equation. All factors have now been found except the required \(Q\) of the coil being used. This is simply the ratio of the operating frequency multiplied by the shrinkage factor to the overall \(3-\mathrm{db}\) passband width.
\[
\begin{equation*}
Q_{c o i l}=\frac{S f}{B} \tag{3}
\end{equation*}
\]

Should the inherent \(Q\) of the coils be much higher than this they may be loaded down by calculating a parallel resistance which will decrease the resonant impedance to the desired value, and connecting such a value across both primary and secondary.

If required to begin calculations with a required shape factor, then from Fig. 1 the required number


\title{
C \\ 0 N
}

\section*{RESEARCH \\ and \\ DEVELOPMENT}


HAS ENABLED US TO PRODUCE ONE OF THE FINEST COMPUTERS AVAILABLE TODAY.

AMPLIFIER GROUP, TYPE 16.31Cprovides 28 contact stabilized op. erational amplifiers for use as sum. mers, differentiators, integrators, and inverters. Also in the cabine are all necessary power supplies and a complete test panel.


MULTIPLIER GROUP, TYPE 16-31Lis a servo-mechanical mult'plier and incremental function generator There are 20 channels, each of which is capable of multiplying four variables by a fifth.

RESOLVER GROUP, TYPE 16-31Dfurnishes 4 resolving channels and 12 operational amplifiers. Each resolving channel may also be used for multiplying three variables by a fourth. Furnished complate with test panel, reference supplies, and power supplies.


CONTROL CONSOLE, TYPE 16-24EHouses the grounded metal problem board and its bay, attenuators, in. itial condition potentiometers, networks, limiters, and all operating controls.

\section*{-}

SERVO GROUP, TYPE 16-31P-For the operations of resolving and multlplying when used with external amplifiers. There are two resolving and four servo-multiplying channels. The equipment is furnished with test panel and power supplies.

\section*{ELECTRONIC \\ ASSOCIATES \\ Sxcosshonated}

LONG BRANCH, NEW JERSEY
of stages could be estimated and degree of coupling required. The curves show that a considerable improvement in shape factor is obtained by the use of critically coupled transformers over cascaded singles, and over under-coupled transformers. Since Eq. 1, 2 and 3 apply only to the critically coupled case, this simplified design would be a strong point in the favor of using critically coupled transformers. If, however, shape factor requirements are very stringent, a further improvement is possible by using overcoupled transformers, as well as an approach to the more desirable flat-top response. The solution here calls for a higher \(Q\) coil, and the solution for the circuit constants is simplified by readilyavailable nomographs covering overcoupled circuits.

Figure 1 can be used to estimate quite closely the degree of coupling of a given transformer. By merely taking its \(6-\mathrm{db}\) and \(60-\mathrm{db}\) bandwidths, dividing them, and entering the curves for \(n=1\), a value for \(Q K\) is determined.

By using Fig. 1, and cooling techniques it was recently possible in a five-tube, five-transformer i-f strip to achieve a shape factor of 2.9. only seven percent higher than the theoretical minimum, with a stable gain of 140 db (ten million) at ten megacycles.

\section*{References}
(1) Valley, Wallman, "V acuum Tubn Anmlifiers." MIT Radiation Lahoratory Strjes 18. p 201, Menraw-Will Book Co. 1318.
(2) Nturlev, "Hadio Receiver Design," 1) 3no. Wiley and Sons, 1949.
(3) Federal T"lephone and Radio Corp. "Fedoral Band-Pass Nomographs 1-3."

\section*{Loss and Singing Margins in Radio and Carrier Channels}

\author{
Br Howazd H. Smith \\ Fedteral Telenhone and Reulio Cown. Clititon. N. J.
}

Basically, any radio or carrier circuit consists of two one-way transmission paths. At various places in the transmission path, the original voice-frequency currents may be changed into single or double-sideband carrier currents, pulse-modulation signals, or amplitude or frequency-modulated radio-frefuency currents. The net

\section*{EXGLUSIVE MITH}


RT Series potentiometers are compact, rugged, metal.cased, and fully sealed. They exceed military requirements for
- salt spray
- corrosion
- vibration
- humidity
- fungus
- shock

\section*{Packed into I/4 of a} cubic inch are all these features:

- 10 to 50,000 ohms resistance range.
- \(0.002 \%\) per degree C temperature coeflicient.
- -55 degrees C to +85 degrees C ambient temperature range.
- 3 watts dissipation at 80 degrees C.
- 1000 volts de dielectric strength.
- \(1,000,000\) revolutions rotational life.
- complete reliability.

Write for full technical information and prices.

\section*{\(T\) \\ MFG.INC.}


FIG. 1-Hybrid transformer circuit showing the effect of an open drop on the trans-hybrid loss
effect provides a stable voice-frequency transmission path between input and output terminals that may be adjusted to give an overall gain or loss as desired. The two one-way transmission paths together are known as the four-wire portion of the channel.

Carrier or radio chamnels must usually be connected to ordinary two-wire telephone circuits at both ends. If the sending and receiving circuits were merely connected in parallel to the two-wire circuits, part of the received speech would enter the sending circuit and travel around the circuit as circulating currents causing the circuit either to sing or be resonant and hollow sounding. A Wheatstone bridge or a differen-tial-balance hybrid transformer circuit may be used to prevent this.

In either arrangement, the demodulator and modulator circuits are connected so that a null condition is obtained by balancing a dummy two-wire circuit against the real one. When balance is perfect no current can pass from the demodulator (oscillator or battery) to the modulator (detector or galvanometer). A Wheatstone bridge causes a 6 db loss, since the energy fed into it divides between four arms. A hybrid transformer circuit substitutes a pair of equal or differential windings for the ratio arms of a Wheatstone bridge, saving half of the energy loss. The output of the demodulator is divided equally between the drop and the balancing network. This reduces the theoretical loss to 3 \(n b\), but transformer losses usually raise the practical figure to 3.5 or 4 db .

This is the insertion loss to the


\section*{Du Pont TEFLON* provides excellent dielectric properties...}


Coaxial connectors and cable made by Microdot Division, Felts Corporation, S. Pasadena, Calif.


\section*{heat resistance and strength}

\section*{in new miniature parts}

The demand for micro-miniature components in scale with miniaturized circuit designs has created an insulating problem. Miniature circuits often develop high heat and carry an increased electrical load that can result in failure of these tiny components.

The Felts Corporation faced such a problem with its miniature coaxial connector. They needed a material for the connector and primary wire insulation that had good dielectric properties and a wide resistance to heat, chemicals and corrosion. It also had to be moistureresistant and strong.

After testing many materials, they chose Du Pont "Teflon" tetrafluoroethylene resin. "Teflon" is an excellent insulator. It has a dielectric constant of 2.0 and a loss factor of 0.0005 . Its power factor is less than \(0.05 \%\) even at frequencies as high as 30,000 megacycles. And these dielectric properties are unaffected by temperatures from \(-80^{\circ} \mathrm{F}\). to \(500^{\circ} \mathrm{F}\). Du Pont "Teflon" is inert to all chemicals except molten alkali metals and fluorine. It is tough and durable-will not crack or arc. "Teflon" has zero water absorption and helps reduce self-generated noise at high termination impedances.

Du Pont "Teflon" serves many uses in electrical equipment-stand-off and feed-thru insulator terminals, insulation for wire, cables and motor windings, and other parts where high temperatures, dielectric strength and durability are required. Perhaps "Teflon" can help you improve or develop a product. For full information, write: E. I. du Pont de Nemours \& Co. (Inc.), Polychemicals Department, Room 2210T. Du Pont Bldg., Wilmington 98, Delaware.
*reg. u. s. pat. off.


For carrying cooling water which must undergo a change in potential, use of Lapp porcelain eliminates troubles arising from water contamination and conductivity, sludging and electrolytic attack of fittings. Permanent cleanness and high resistance of cooling water are assured-for positive cooling and long tube life.

\section*{LAPP PORCELAIN PIPE}

Inside diameters \(3 / 4^{\prime \prime}\) to \(3^{\prime \prime}\), in straight pipe, \(90^{\circ}\) and \(180^{\circ}\) elbows, fittings. Swivel-type connections. Standoff insulators attach directly to fitting bolts.


\section*{LAPP PORCELAIN WATER COILS}

Twin-hole and single-hole modefs in sizes to provide flow of cooling water from 2 to 90 gallons per min. Cast aluminum mounting bases; lead pipe or flexible metal hose for attachment.
WRITE for Bulletin 301, with complete description and specification data. Lapp Insulator Co., Inc., Radio Specialties Division, 106 Sumner St., Le Roy, N. Y.

speech currents passing through the hybrid circuit. Similar loss is introduced in the path from the drop to the input of the modulator, energy being equally divided between the modulator input and the demodulator output circuits. In passing over a channel from twowire drop to two-wire drop, the speech currents pass through two hybrid circuits, with a total insertion loss of about 6 db . The fourwire circuit can be adjusted to obtain the desired overall net loss.

The null or balanced condition is reached only if equal speech voltages generated in the differential windings of the hybrid coil cause equal currents to flow in the drop and network circuits. This must be true for all frequencies that can pass over the four-wire portion of the circuit, usually a range of about 200 to \(3,400 \mathrm{cps}\). Accurately matching the impedance of the actual drop over this frequency band requires a network including from three to five elements comprising resistance, capacitance and sometimes inductance. Such precision is seldom required except for hybrids associated with two-wire telephone repeaters where an overall twowire gain up to 15 db or more must be obtained.
The impedance connected to the drop side of a channel hybrid through a switchboard may vary from an open circuit in the idle condition, to a few hundred or thousand ohms, including capacitance or inductance as well. Changing the network to match each different connection that might be made would be difficult, but if the channel is operated at an overall loss of several decibels or more the degree of balance is not critical. Circuits between switchboards may be operated with losses between 2 or 3 and 8 or 10 db , using a fixed network.
The effectiveness of the hybrid circuit in keeping the demodulator output out of the modulator input circuit is measured by its transhybrid loss. If the balance is perfect the loss is infinite; in actual practice it will be less. Worst balance usually occurs during idle condition when the drop circuit is


MARION MODEL PMI INDUCTION SOLDERING UNIT Low cost, low powered and portable. .. Size \(153 / 4^{\prime \prime} \times 21 \frac{1}{2} 2^{\prime \prime} \times 15^{\prime \prime}\) 150 lbs. Power supply: 115 volts 60 cycles. Draws 775 watts full load, 100 watts standby.


\title{
IMPROVED SOLDERING OF \\ \\ SMALL PARTS AND ASSEMBLIES
} \\ \\ SMALL PARTS AND ASSEMBLIES
}

Typical of the Marion developments that have helped make Marion stand for "advancement in instrument design" is the Marion Model PMI Induction Soldering Unit. Originally designed and presently used by Marion for true glass-to-metal hermetic sealing of Marion meters, it also has proven to be a valuable production tool for many purposes. Illustrated above, for example, is Marion's use of the PMI in the saldering of magnet assemblies where quality and uniformity result.


Other manufacturerg use Marion PMl units in the production of magnet assemblies, relay amatures, connectors, capacitors, fransformer cans, etc., as well as in other fields such as jewelry, watches, toys, and automotive parts. Shewn here is a battery of Marion PM1 units at the Clyde, N. Y. plant of the General Electric Company where, on the whislier diode line, a small pellet of germanium metal is soldered to the end of a nickel pin.


The Marion Model PM1 speeds up production, reduces cosis and improves quality. Heat is generated withir the work itself - even in parts otherwise inaccessible. Oxidation, scaling and damage to surlace finish are minimized. Soldering of an entire seam or several jig-located parts at one time is readily accomplished.
This is an example of how Marion's betief in "Advanoenent in Instrument Design" has produced a production tool which not only improves Marion instruments but also provides other manulacturers with better soldering equipment. Marion Electrical Instrument Company, 401 Canal Street. Manchester, N. H.
marion meters
MANUFACTURERS OF RUGGEDIZED AND "REGULAR" METERS AND RELATED PRODUCTS

\section*{Linear Versus Logarithmic Meter Dials}

A New AC-VTVM Settles an Old Dispute
The new Millivac MV-12A AC voltmeter is an exceptionally versatile instrument. Designed to be used as an

AC-vacuum tube voltmeter, AC-vacuum tube ammeter, Scope-sensitizer, Current in addition to voltage wave shape observer,
it also has the new "Engel" dial which satisfies both logarithmic and linear scale requirements.


A logarithmic volt-scale unavoidably has heavy non-linear compression of its divisions in the upper region making reading difficult and inaccurate even if the instrument itself has an inherent high accuracy. A linear volt-scale, on the other hand, causes heavy logarithmic compression of DB divisions at the low end which is equally undesirable. The new Engel dial shown below meets both logarithmic and linear requirements by having a suppressed zero in much the same manner in which logarithmic volt-scales are suppressed. The resultant spreading of both volt and DB divisions improves the reading comfort of the instrument and makes it superior to the old straight logarithmic system, not only on volts but eyen on DB. Best proof of the easy reading of the new

dial is that without artificial galvanometer illumination it can be read from a longer distance than logarithmic dials with artificial illumination.

The MV-12A is an ideal scope-amplifier because it has no change-over switch for meter or amplifier operation. Simultaneous measuring and wave-shape observation is therefore possible. By plugging our MV121 shunt box into the instrument, currents ranging from \(1 \mu \mathrm{~A}\) to 3 A can also be measured and their wave shopes observed.

Highest measuring accuracy and convenience in servicing are obtained by individual range calibration-controls in both the MV-12A voltmeter and the MV-121 shunt box.

Specifications (MV-12A)
Total Ranges: 12, in 10 DB steps covering \(700 \mu \mathrm{~V}\) to 1 kV .
Frequency: 20 CPS to 250 KC .
Accuracy: \(\mathbf{2 \%}\) of full scale throughout entire voltage and frequency range.

Calibration: RMS Sine Wave, with instrument measuring full wave average. Amplifier Output: 3 V corresponding to full scale reading, 60 DB gain. Tubes: 7-6AK5, 2-6V6GT, 1-0B2, 1-6X4.
MAX. SCOPE SENSITIVITY: \(1 / 2\) millivolt per inch on lowest 3 mV range.
\[
\begin{gathered}
\text { MILLIVACINSTRUMENTAORPORATION } \\
\text { BOX 997, SCHENECTADY, N.Y. } \\
\text { "Time Progresses And So Do } W \text { " }
\end{gathered}
\]
practically an open circuit. At this time energy entering the hybrid from the demodulator output tries to divide equally between the network and the drop, with a loss of 3 db . However, the open drop cannot absorb the energy and reflects it back into the drop windings of the hybrid. There it divides into two equal parts again, half going back into the demodulator branch and half going into the modulator circuit accounting for \(3-\mathrm{db}\) more loss. Thus the minimum transhybrid loss is about 6 db . With transformer losses, the figure will be nearer 8 db .

If the hybrid circuits at both ends of a circuit are unbalanced, a path exists for currents to circulate. If the sum of the net gains of the two sides of the four-wire portion is greater than the sum of the actual transhybrid losses of the two hybrid circuits, any sound starting around this path will increase in amplitude each time around resulting in a sustained oscillation. If the gains are slightly less than the losses, sounds will circulate for a long time, giving a hollow or mushy effect. If the gains are considerably less than the losses, circulating currents rapidly die out.

If the channel is adjusted for zero net loss, each side of the four-wire circuit will have a net gain of about 8 db , giving a fourwire loop gain of 16 db . This is just equal to the sum of the two transhybrid losses if both ends of the circuit are in the open-circuited idle condition. Thus the circuit is on the verge of singing, and will sound hollow. If the net loss is increased from zero to 6 db , the four-wire loop gain will be reduced by 12 db . The circulating current path now has a loss of 12 db , and will rapidly damp out circulating currents, resulting in a circuit virtually free from echoes.

For each decibel that the overall circuit net loss is increased above zero, the loss to circulating currents is increased two decibels. In the interests of stability and quiet operation, therefore, it is desirable to operate radio relay and carrier telephone channels at a fair overall net loss. A value of 6



> For Precision Electrical Parts Made of Teflon*, Kel-F \({ }^{\ddagger}\), Nylon, or Polythene .. .

\section*{SEND YOUR INQUIRIES TO GARLOCK}

The Garlock Packing Company, manufacturers of mechanical packings since 1887, places at your disposal a completely-equipped, modern plastics plant under expert technical supervision. Our complete facilities enable us to mold, extrude, machine or otherwise fabricate (from powder) electrical parts to the same high quality standards to which Garlock has rigidly adhered for over 65 years.
Garlock, therefore, invites your inquiries on:
1. Finished Electrical Parts-molded or machined-of Teflon, Kel-F, Nylon or Polythene.
2. Teflon Tape-Electrical grade-pretested for dielectric fault'(maximum 85 per 100 feet of \(0.005^{\prime \prime}\) tape).

\section*{SHEETS, TUBES, SLEEVES AND OTHER SHAPES AVAILABLE IN TEFLON OR KEL-F}

For fabricators of finished parts, Garlock can furnish Teflon and Kel-F in sheets, tubes, sleeves and a wide variety of other shapes. Teflon sheets can be supplied in sizes as large as \(48^{\prime \prime}\) squarc; Kel-F sheets and dises as large as \(48^{\prime \prime}\) diameter.
Mail Your Inquiries to Dept. 34, Palmyra, N. Y., or contact one of our branch offices shown below and a Garlock representative will call.

THE GARLOCK PACKING COMPANY, PALMYRA, NEW YORK
Branch Offices: Baltimore, Birmingham, Boston, Buffalo, Chicago, Cincinnati, Cleveland, Denver, Detroit, Houston, Los Angeles, Sew Orleans, Jew York City, Philadelphia, Pittsburgh, Portland (Ore.), Salt Lake City, San Francisco, Sí. Louis, Seattle, Spokane, Tulsa.
In Canada: The Garlock Packing Co. of Conada Lid., Toronto, Ont.
Branch Offices: Calgary, Hamilton, Montreal, Vancouver, Winnipeg
* du Pont's trademark for its tetrafluorethylene resin
\(\ddagger\) Registered trademark for M. W. Kellogg Company's triAuorochloroethylene polymers

to 8 db is generally quite satisfactory for use in average private communication systems.

To select the proper circuit net loss, several things must be considered. The microphone in a commercial telephone set gives considerable amplification. If two telephones are connected over a circuit with zero loss, the received speech will be very loud. Loss between telephones can be increased to 25 to 30 db or more if the circuit is not very noisy, and satisfactory conversations can be held.

In a private telephone system, where no telephone is very far from a switchboard, and where not more than two or three circuits will ever be used in tandem between switchboards, the net loss of individual circuits can be 6 to 8 db . Since this is in accordance with the desirable loss from a circulating current standpoint 6 to 8 db turns out to be the optimum range for such private systems. This avoids the need for adjustable balancing networks, and the overall performance of connections involving from one to three such circuits in tandem through switchboards will be quite satisfactory from a loss standpoint.

\section*{Ferrite Applications at Microwave Frequencies}

By Dwight Caswell
Cascade Research Corp. Los Gatos, Calif

Utilization of the unusual highfrequency characteristics of ferrite materials makes it possible to build transmission lines that will transmit energy in one direction and not in the other, or have different electrical lengths when measured in opposite directions. Switches and variable attenuators can be built with no moving parts, as well as antennas that may be electrically scanned.

The ferrites have high resistivity which classes them as dielectrics. They also exhibit the Faraday effect, characterized by a rotation of the microwave polarization when a magnetic field is applied in the direction of propagation or in the

\section*{RCA's newest aid for designers}

\section*{Other Industry-Famous RCA Technical Publications}


RCA Tube Handbook HB-3. The bible of the industry. Over 3000 pages of data and curves on RCA receiving tubes and kinescopes, power tubes, cathode-ray tubes, phototubes, and special tubes. Available on subscription basis. Price \(\$ 13.50\), including service for first year


Popular RCA Receiving Tube Manual-RC-16. Latest data on more than 330 receiving tubes, including miniatures and kinescopes. Tube theory for the layman. Includes application data, circuits, etc. Price 50 cents.


Quick-reference data booklets-Power and Gas Tubes PG-101A (15 cents); Phototubes, Cathode-Ray and Special Tubes CRPS-102A ( 15 cents); Receiving Tubes for AM, FM, and TV Broadcast \#1 275-F (15 cents); RCA Interchangeability Directory of Non-Receiving Electron Tubes ID-1020 (15 cents); RCA Power-Tube Fittings PTF-1012 (25 cents); RCA Preferred Types List PTL-501B (Free).


Technical Data Bulletins on individual tube types, transistors, and crystal diodes are available free on request. Be sure to mention type desired.
prices apply in U.S. A. and are subject to change without notice.

\section*{1500-page Radiotron Designer's Handbook expands RCA's extensive technical service to electronic equipment designers}

Inspired and edited by F. Lang. ford-Smith for engineers, students, and experimenters, this new expanded reference-4 times bigger than any previous Radiotron Designer's Hand-book-includes 1000 illustrations, more than 2500 references, and hundreds of useful circuit designs, curves, drawings, and charts. Here's the technical book that treats circuit design from both the theoretical-mathematical standpoint, as well as the
practical viewpoint of the circuit man.
The 4th Edition of the Radiotron Designer's Handbook is a valuable addition to RCA's vast library of technical literature (which includes RCA's industry-famous Application Notes, Tube Handbook HB-3, Receiving Tube Manual, and many other well-known publications). Order through RCA Commercial Engineering, Section 42JR, 415 S. Fifth St. Harrison. N. I
 plete technical reference of its kind in the industry.


VECO THERMISTORS' electrical resistance varies extensively with relatively minute thermal changes. They are made in the forms of rods, discs, washers, and beads, and stocked in a wide range of temperature-resistance characteristics - can also be produced in quantity to your requirements.

Where unusual problems in thermal conductivity or temperature control may require laboratory development of radically new types of Veco Thermistors, with associated circuits, VECO RESEARCH AND MANUFAC'TURING KNOW-HOW ARE AVAILABLE ON CONTRACT.

A request on business stationery will bring you the VECO DATA BOOK containing specific technical information, characteristics, and applications.

VECO VARISTORS react instantaneously to current or voltage changes, and have innumerable uses such as arc suppressing and regulating source voltages. They are electrically stable, do not polarize and, in proper use, do not age

VECO GAS ANALYSIS CELLS employ Veco glass-coated Thermistors as sensing and reference elements. They are sturdy, compact, and accurate instruments for industrial and laboratory use, and can be furnished with any desired reference gas.


FIG. l-Unidirectional transmission line uses nonreciprocal ferrite rotator to bring wave coming from unwanted direction, into line with wave type absorber
opposite direction. The rotation of the microwave field is determined by the direction of the magnetic field and is independent of the direction of propagation of the microwave energy. This is a non-reciprocal effect. In a reciprocal device, rotation of the microwave field is related to the direction of propagation rather than a direction in space. The amount of rotation is a function of the magnetic field applied to the material

The Faraday effect is caused by the interaction of electron-magnetic moments of the ferrite with the applied magnetic field. A planepolarized wave passing through a material can be resolved into two circularly-polarized waves of opposite rotation. Normally the index of refraction of these two waves is the same, so they may be combined at any point and a plane wave of unaltered polarization is obtained. However, for materials exhibiting the Faraday effect, the index of refraction for waves propagated in the direction of the magnetic field is different for the two circularly polarized components. When these circularly polarized components are combined a plane wave will result, but the plane of polarization will be found to rotate as the wave progresses through the material.

\section*{Unidirectional Transmission Line}

The rotation of a plane-polarized wave in a cylindrical waveguide is always in the same direction with
... so states INSTRUMENT RESISTORS COMPANY, of Union, New Jersey, manufacturers of IN-RES-CO quality-built resistors for every electrical and electronic application

IN-RES-CO resistors are wound to meet the most critical requirements without excessive cost; standard inductive and noninductive units are available in resistance ranges from 0.01 ohm to several megohms - with power ratings from a fraction of a watt to 10 watts. Included, are types especially suited to counter excessive humidity, fungus, space limitations, and temperature rise.

Says Instrument Resistors Company: "For 23 years, we have devoted our facilities exclusively to the development and manufacture of quality resistance components. The fact that today, with such a wealth of experience to our credit, we specify Nichrome, Karma, and D.H Manganin wire for wind-
ings, constitutes the strongest endorsement we can offer of these Driver-Harris products."

Nichrome*, Karma*, and D-H Manganin deliver top-level performance-their characteristic electrical and physical properties remaining unchanged even under exceptionally exacting operating conditions. They are ready to go to work for you, too-as are more than 80 other Driver-Harris alloys. Profit by consulting with us. We shall be glad to make recommendations based on your particular needs . . . and are confident we can meet your resistance requirements with D-H alloys that will assure the best possible results.


\section*{Driver-Harris Company}

\section*{HARRISON, NEW JERSEY}

BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco
In Canada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, Ontario.



FIG. 2-Waveguide with ferrite rotator produces effect of longer electrical length in one direction by rotating wave 180 degrees
respect to the magnetic field, independent of the direction of propagation. This in shown in Fig. 1. A vane type absorber is located in the input end with the absorber lying in a plane perpendicular to the E-field of the input wave; in this position it does not absorb appreciable energy. The wave is then passed through a piece of ferrite located in the field of either a permanent or electromagnet that causes a rotation of 45 degrees. A transformer-to-rectangular waveguide or other output is provided at the second end at an ancle of 45 degrees to the input. Energy is thus coupled out unattenuated. Energy traveling in the reverse direction, as shown in Fig 1B, is introduced into the cylindrical waveguide at 45 degrees to the input and is rotated an additional 45 degrees upon passing through the ferrite material. The E-field now lies in the plane of the absorber and is absorbed. This unit is particularly useful in isolating the load from a magnetron or klystron power source with essentially no power loss

\section*{Microurtue Gyrator}

The gyrator is a microwave transmission line having an electrical length 180 deg longer in one direction than in the other. In construction it resembles the unidirectional transmission line except that the rotation introduced by the ferrite material is 90 degrees instead


\title{
dependability through extra value features...in Adlake Mercury Relays
}

Dependability is the sum of many things . . . and adLake's dependability is built on a combination of plus features like these:

Positive leak-proof sealing-assured by the use of properly selected metals and glass components with properly matched thermal expansion characteristics.

Arc-resisting ceramics-ceramics with great temperature-resistance are used to reduce any destructive effect caused by the arc.

Liquid mercury-to-mercury contacts-completely eliminate failures caused by low contact pressure, contact burning, pitting and sticking . . . and the inherent high surface tension of mercury imparts an ideal snap action to contacts.

What's more, every adlake Relay is absolutely safe . . silent and chatterless . . . and requires no maintenance whatsoever. Get the complete story today ... write for your free copy of the adlake Relay Catalog. The Adams \& Westlake Company, 1171 N. Michigan, Elkhart, Indiana; in Canada, write Powerlite Devices, Ltd., of Toronto.

Every ADLAKE Relay is fested.... and guaranteed . . . to mee? specifications!


Type 5000 ADLAKE
Sensitive Relay Contact Normally Open or Closed

\section*{COMPANY}

Established 1857 - ELKHART, INDIANA • New York • Chicago
Manufacturers of ADLAKE Hermetically Sealed Mercury Relays


\section*{ELECTRO-TECHNICAL PRODUCTS}
dIVISION OF SUN ChEMICAL CORPORATION
113 East Cenfre Street, Nutley 10, N. J.
of 45 degrees and no absorber is required. Operation is shown in Fig. 2. A 90 deg twist is provided so that the flanges will have similar orientations. If the \(E\)-vectors entering and leaving the gyrator are in the same direction when the propagation is from left to right, they appear to be an integer number of wavelengths apart. If the propagation is from right to left, the directions of the \(E\)-vectors are opposite, hence the electrical distance appears to be an integer number of wavelengths apart plus 180 deg . The difference in the electrical length of the line as measured in the two directions is 180 degrees plus an integer, with the integer normally equalling zero.

\section*{Microwave Switch}

Operation of the microwave switch is based on the rotation of the plane of polarization of the microwave energy as a function of the applied magnetic field. This is illustrated in Fig. 3. With no magnetic field, guide \(A\) is excited so that energy is propagated in this guide and not in guide \(B\). If a magnetic field is applied such that the plan of polarization is rotated 90 degrees, then guide \(B\) is excited and energy is propagated in this guide rather than in guide \(A\). Switching action is thus accomplished.

\section*{Microwave Modulator}

The modulator is similar to the microwave switch except that an absorber is placed on the output of one of the guides. The output in the other guide may be modulated by varying the applied electromagnetic field. In actual practice a vane type absorber and a single-


FIG. 3-Ferrite microwave switch rotates wave to selected guide, either \(A\) or \(B\). Switch can be used as a modulator by varing the magnetic field producing the rotation


\section*{The Electronic Piano-Organ uses over 500 Bradleyunit Resistors}

Lowrey Organo is the first electronic instrument to produce organ tonalities using the keyboard of any piano as the organ manual.

It has a key switch frame mechanism containing 60 switches which close and open as the various piano keys are depressed and released by the organist. The closing of a key switch energizes certain electronic tubes producing organ tones in single notes or full chords. The piano tones may be muted or retained in combination with the organ tones.

The Organo tone chassis, at left, has 68 tubes and over 500 Allen-Bradley Bradleyunit fixed resistors. Obviously, in a chassis of such complexity, reliability of performance and stability of characteristics are basic essentials. The failure of a single unit is a serious matter . . . particularly in an instrument often used for public performances by some of the world's leading entertainers.

Bradleyunit resistors are standard equipment on Organo electronic piano-organs because they are accurately and conservatively rated . . . rugged in construction . . . and with ample reserve capacity for emergencies. You can build reliability into your electronic devices, too, by standardizing on Bradleyunit resistors. Send for data, today.

Allen-Bradley Co., 110 W. Greenfield Avenue Milwaukee 4, Wis.
water immersion tests. The resistor leads are differentially tempered to prevent sharp bends.
BRADLEYUNITS are rated at 70C... not 40C
Molded fixed resistors are usually rated at an ambient temperature of 40 C , but Bradleyunits are rated at 70 C . They will operate at full rating for 1,000 hours with less than 5 per cent resistance change.

Bradleyunits need no wax impregnation to pass salt

ORGANO TONE CHASSIS Loud-speaker and qube chassib with over 500 Bradleyunits.


2
-
\(\underset{\text { Axto }}{\text { ALEN }}\) N FIXED \& ADJUSTABLE RADIO RESISTORS
Sold exclumaly to montactoveres


1902 West Minnehaha Avenue, Dept. E-16, St. Paul W4, Minnesota

\footnotetext{
DIGITAL COMPUTERS . . DATA-HANDIING SYSTEMS . . . MAGNETIC STORAGE SYSTEMS.
INSTRUMENTS . . . ANALOG MAGNETIC RECORDING SYSTEMS . . . COMPUTING SERVICE
}

\section*{Piok the Winner}


\section*{THEY ALL STARTED EQUAL... BUT ONLY ONE WON!}

Yes, they all started equal in this year's Boston 26-mile Marathon. But only Keizo Yamada WON in the record time of 2 hours, 18 minutes and 51 seconds. Why? Because he had the capacity to run farther faster.

\section*{ALL CAPACITORS START EQUAL, TOO}
but El-Menco Capacitors always win because they're factory-tested at more than double their working voltage. You can know for sure that they have a wide margin of victory over the adverse conditions of any application.

So whether you pick the midget CM-15 ( \(2-525 \mathrm{mmf}\). cap) or the mighty CM-35 (5-10,000 mmf . cap), you're sure of a winner . . . in any military or civilian service.

Jobbers and distributors are requested to write for information to Arco Electronics, Inc., 103 Lafayette St., New York, N. Y. - Sole Agent for Jobbers and Distributars in U. S. and Canada.


Foreign and Electranic Manufacturers Get Information Direst from our Export Dept. at Willimantic, Conn. THE ELECTRO MOTIVE MFG. CO.,INC.


\section*{Sangamo HUMIDITITE*Mica}

\section*{Capacitors are available in Quantity}

When Sangamo HUMIDITITE Molded Mica Capacitors were first put on the market, the great interest shown in these remarkably moisture resistant capacitors far exceeded our expectations. We have increased our manufacturing facilities and our production capacity ... initial demands have been met . . . and we can now handle quantity orders for Humiditite Micas with full assurance that delivery requirements will be met.

\section*{*what is HUMIDITITE?}

Humiditite is the very effective new plastic molding compound, devel-
oped by Sangamoo, that gives Sangamo Mica Capacitors moisture
resistance properties far superior to any others on the market.
Sangamo Humiditite Micas, under the standard moisture resistance
tests described in MIL-C-5A (proposed) Specification, tested in excess
of 50,000 megohms -more than 500 times the specification requirements.
Humiditite is just another example of the advanced
engineering that enables Sangamo to meet the existing
and future needs of the electronic industry. For addi-
tional information about HUMIDITIT, write for
Engineering Bulletin No. TS-111.
Thase whoknow...

chove Sanganos SANGAMO ELECTRIC COMPANY

MARION, ILIINOIS
signal from \(100-\mathrm{kc}\) oscillator used as a time and frequency standard. The frequency of this oscillator is measured to better than one part in a billion by comparison with other standard oscillators and astronomical observations made at the Naval Observatory.
The \(100-\mathrm{kc}\) oscillator, using a Meacham bridge circuit, has a short-time stability of one part in \(10^{10}\) and a long-time stability of \(10^{\circ}\).
Two multiplying systems are used to obtain the high-frequency standards. As a variable standard conventional tube circuits yield frequencies up to several hundred megacycles. For frequencies up to 25 kmc , klystron multipliers are used. Beyond 25 kmc the standard frequencies are obtained by crystalrectifier harmonic generators. The desired frequency is selected through transmission cavity filter.

\section*{Fixed-Standard Method}

The fixed-frequency standard, the second method used, gives a higher output than the variable standard but sacrifices versatility. The signal is obtained by mixing a number of standard frequencies. The strongest signals are obtained at the following mixing combinations: 10 -mc intervals through \(5,000 \mathrm{mc} ; 50-\mathrm{mc}\) intervals through \(25,000 \mathrm{mc}\); and \(250-\mathrm{mc}\) intervals through \(40,000 \mathrm{mc}\). The klystron amplifiers and multipliers used are placed in a temperature-regulated oil bath and are operated well below their ratings in order to obtain good power stability and long life.
When relatively high power outputs, on the order of one milliwatt, are needed, \(\mathrm{c}-\mathrm{w}\) klystron oscillators are synchronized with the standard oscillator. There is some loss of precision with this method.
In calibration of secondary standards the signal from the primary standard and the output of the secondary standard are applied to a crystal-diode mixer that generates all the sum and difference combinations of the signals inserted. The signal wanted is selected by a tunable transmission filter. The resulting intermediate frequency is fed to a spectrum analyzer and the matching sections are adjusted for maximum signal strength.


\section*{TELEPHONY}

For years the accepted way to connect wires to telephone apparatus was with solder. Now, Bell Laboratories engineers have discovered how to make connections faster and better-without solder.

Solder, they reasoned, wouldn't be needed if wire and terminal could be kept tightly pressed together. But, for economy, this had to be done with the wire alone-without complicating screws and springs.

They found the answer in using a properly dimensioned terminal with sharp edges ... whipping the wire around it under high tension. The terminal bites into the wire, locking it securely into position. Thereafter the squeezed edges maintain a contact pressure of at least 15,000 pounds persquare inch-even under vibration that cracks soldered joints.

The new connections can be made in half the time-a big moneysaver in the billion connections that Western Electric makes each year for the Bell System. It's another example of the way Bell Telephone Laboratories works continually to keep costs low.

\section*{BELL TELEPHONE LABORATORIES}

IMPROVING TELEPHONE SERVICE FOR AMERICA PROVIDES CAREERS FOR CREATIVE MEN IN MECHANICAL ENGINEERING


Cross section of solderless connection. Note terminal biting into wire. In a six-turn connection there are at least 20 clean contact areas impervious to moisture and corrosive gases, offering current a low resistance path.


Power tool whips wire on terminal in fraction of a second. There is no heat which could damage miniature components . . . no dropped solder or wire clippings to cause trouble later.

\section*{Production Techniques}

\section*{Edited by JOHN MARKUS}


\section*{OTHER DEPARTMENTS \\ featured in this issue:}

\section*{Page}

Electrons At Work...... 198
New Products . . . . . . . . . 310
Plants and People . . . . . 382
New Books ............ . 436
Backtalk . . .............. . 451

\section*{Assembling for Dip-Soldering}

To guide operators who insert leads of component parts in the tubular terminals of the dip-soldered subassembly used in some GE


Inserting small parts in panel set into metal carrier on moving conveyor line. Sample panels hang from overhead wire. After all parts have been inserted, conveyor brings panel over pool of molten solder, and air cylinders bring up solder pot to solder all joints simultaneously
television receivers, a sample panel is kept in front of each work position. Only the parts that are to be inserted at a particular position are mounted on the sample panel.

A stranded steel cable running the length of the assembly line just over the heads of the operators serves to support the panels, as well as schedule cards and other records applying to the job that is on the line. Wide spring steel paper clips slide along this line and serve to

grip either panels or cards.
Since the leads of most parts have been cut and preformed in preliminary operations, operators are able to insert parts rapidly. To facilitate reaching for parts, special metal parts bins with larger openings are used on the mechanized dip-solder assembly lines.

\section*{Taking Temperature on Life Runs}

To obtain temperature readings conveniently during life tests of a-c motor-starting capacitors, ordinary glass thermometers are fastened to the capacitor housings with masking tape. Each thermometer is positioned for maximum ease of reading before being taped.

In this particular test, full 115volt a-c line voltage is applied for \(\frac{1}{2}\)
second every half minute. A twowatt neon lamp is connected to each capacitor to serve as a failure indicator in the East Newark, N. J. plant of Astron Corp.


Taking temperature of capacitors on life runs with taped-on thermometers

\section*{Moth Balls Protect Silver-Plated Cavities}

To PREVENT SILVER-PLATED component parts of r-f coaxial tuners from tarnishing during pre-assembly storage, Motorola Inc. of Chicago packs standard home-variety
paradichlorobenzene moth balls in the closed containers used for the parts. Unless protected, the heavily silver-plated parts would tarnish quickly upon exposure to an indus-


Transferring silver-plated cavities from moth balls to soldering fixture built around work coils of induction heater controlled from pushbutton station at right on bench. Finished units go into vhf two-way radio funer in operator's left hand
trial atmosphere containing gases of sulphur-bearing fuels. Tarnish interferes with efficient soldering by induction soldering units.

The necessity of replating the tuned cavities for appearance after soldering is eliminated by keeping the component parts within the vapor of the moth balls. Immediately following the soldering and assembly a protective lacquer is applied. If applied before soldering, this lacquer would interfere with soldering.

\section*{Masking Capacitor Ends for Molten-Metal Spray}

TO PROVIDE a solid metallic surface to which connecting leads can be soldered, the ends of metallized


Applying masking tape to prevent sprayed molten metal from entirely covering ends of metallized paper capacitor units. Simple wood stand on bench. anchored by weight of solder spool, supports rolls of tape
paper capacitor units are sprayed with molten metal. Since impregnating compound must be able to penetrate between the layers of foil in a subsequent process, it is necessary to leave a portion of each end exposed.

This problem is solved at the Pyramid Electric 'o. plant in North Bergen, N. J. by the use of masking tape. Before being sprayed with metal, the capacitor bodies are placed in a box-like band of corrugated cardboard so that both ends of the bodies are accessible. Pieces

Instruments \& Transformers


\section*{Meet the Redheads... fops for tape recording}

See how the latest additions to the Brush family of magnetic recording components can improve your tape recorders!
The BK-1090 record-reproduce head has the standard track width designed for dual track recording on \(1 / 4\) inch tape. It provides unusually high resolution and uniformity over an extended frequency range. Cast resin construction assures dimensional stability, minimizes moisture absorption, and affords freedom from microphonics. Its balanced magnetic construction, precision lapped gap, Mu-metal housing, and single-hole mounting provide important design advantages.
The BK-1110 erase head has the same basic construction as the companion record-reproduce unit. Its outstanding feature is its efficient erasing at low power consumption-less than \(1 / 2\) voltampere.

Investigate these new "Redheads" for your magnetic recording. Your inquirios will receive the attention of capable engineers. Write Brush Mlectronics Company, Department K-10, 3405 Perkins Avenue, (leveland 14, Ohio.

\section*{BRUSH ELECTRONICS}
industrial and research instruments PIEzo-ELECTRIC MATERIALS - ACOUSTIC DEVICES MAGNETIC RECORDING EQUIPMENT ultrasonic equipment


\section*{COMPANY} formerly
The Brush Development Co. Brush Electronics Company is an operating unit of Clevite Corporation.
of rolled cardboard are used to fill out empty spaces and prevent the molten metal from getting on the sides of the bodies. The box is then set on a wood jig that supports it at an angle within easy reach of the operator. Strips of quarter-inch masking tape are placed across the ends of the capacitors in such a way that a strip goes across the center of each end. The strips are anchored to the sides of the box, and are asily pulled of after spraying.

\section*{Water-Cooled Setup for Silver Brazing}

An imfrovised lathe driven by an elacirie motor rotates a length of copper tubing slowly during the operation of silver- brazing brass ferrules to the ends of the tubing. Water-coling arrangements prevent heat from traveling far in either direction from each joint.

In the operating procedure derised by Weller Mfg. Co. for its


Setup for brazing ferrules for copper tubing. Air cylinder at tailstock end of lathe is operated by foot pedal to move tailstock in and out for easy loading and unloading. Operator applies silver solder flux with inexpensive paint brush while tubing is rotating slowly under the flames of the two acetylene torches, which can be swung out of the way when the desired flow of solder occurs

\section*{CUT COST \\ retain quality .".}

Hel
- HERMETIC SEAL BUSHINGS - COMPLETE ASSEMBLIES

TToday, more than ever before, lower production costs, consistent quality and delivery-on-time are the tools to meet competitive selling. And, HELDOR can be your answer . . . if you use hermetic-seal bushings, cans and covers built to meet MIL-T-27 or commercial specifications.

Many a prominent manufacturer of electronic components today uses Heldor's assembly service-bushings assembled to covers and, in many cases, all operations through the final hermetic sealing - to effect further production savings.

If you are cost-conscious and quality-minded, it will pay you to send us your specifications (or prints). Our quotation will amaze you. Do it today!


MAIL COUPON TODAY
Please send data on:
\(\square\) Cans \(\square\) Bushings Title.
Name
Company
Address

\section*{‘DIAMOND H’ RELAYS}


THE HART MFG. CU


CAT. NO. R115B17t
...now even mightier


\section*{midgets}

Shown Actual Size

New characteristics engineered into famous "Diamond H" Series \(R\) Relays have now broadened their adaptability for such applications as guided missiles, jet aircraft, fire control and fire detection, radar, communication, high speed camera, geophysical and computer apparatus . . . wherever positive operation is demanded under critical conditions.
A 4PDT hermetically sealed, miniature aircraft relay basically, they are now also available DPDT with two independent coils, either or both of which will operate the units.

In their field still the smallest and lightest, ( \(1.6 \mathrm{cu} . \mathrm{in} .3 .76\) oz.) combining highest operating shock resistance (to 50 " G " and higher), widest temperature range \(\left(-65^{\circ}\right.\) to \(+200^{\circ}\) C. ) and greatest ability to break high currents and high voltages, Series l Relays consistently operate over 400,000 cycles without failure at 5 A . and go 3.500 or more under 30 A . at 30 V., D.C., resistive. They carry voltages up to 300 D.C. at \(4 / 10 \mathrm{~A}\). for more than 400 , 000 cycles. With low contact
loading, life expectancy is 10 million cycles or better.

Operating time is 10 ms . or less; drop out time 3 ms . or less. Coil resistances up to 35,000 ohms are standard; to 50,000 olms available for special units. Sensitivity approaches 100 mw . at 30 " G " operational shock resistance. Inter-electrode capacitance is less than 5 mmf . contacts to case-less than \(21 / 2 \mathrm{mmf}\). between contacts, even with plug-in type relay and socket. Vibration range is from 0 to 500 cycles per second and upward at 15 " G " without chatter.

All standard mounting arrangements, including ceramic socket, are available. Uniquely simple design permits compact grouping . . . and a firm bond between relay and chassis.

Designed to meet all requirements of USAF Spec. MIL-R-5757B, they far surpass many. Bulletin R-150, giving basic performance data under varying conditions, is yours on request. Our engineers are prepared to work with you to develop variations to meet your specific requirements. Tell us your needs.

\section*{THE HART MANUFACTURING COMPANY}

202 Bartholomew Avenue . Hartford, Connecticut


Headstock end of lathe, showing torch in foreground and stream of cooling water directed onto copper tubing at right of flame. Aluminum wheel rotating in water at left of flame cools end of brass ferrule, to prevent internal threads from oxidizing
plant in Bayamon, Puerto Rico, the operator assembles the brass ferrules and ring-shaped silver solder preforms on a length of tubing, inserts the tubing between aluminum discs on the headstock and tailstock of the lathe, then applies silver solder flux to each joint with a brush as the joints are heated by oxyacetylene torches. The discs rotate in pans of cold water and thereby serve to draw heat away from the ferrules. An electric motor drives the lathe through a gear box and speed-reducing belt.

The water-cooling arrangement is used to prevent the intense heat of brazing from discoloring the ferrules and tubing, and to prevent the internal threads of the ferrules from oxidizing. A stream of cold water is directed at each end of the copper tubing about an inch away from its torch flame. Thus, at each joint an aluminum disc keeps the ferrule end cooled on one side of the flame and the water stream cools the tubing on the other side of the flame.

After brazing, the tubing is bent to form the single-turn secondary winding for the Weller soldering gun.

\section*{Cable Cutter}

MULTIPLE-CONDUCTOR cable is cut precisely to correct length with an Amphenol-recommended procedure that permits quick readjustment to any other length.

On the front of the bench allo-


\section*{Single Stage}
\begin{tabular}{lr} 
Model DVH 27.20.34 & 1800 CFM \\
Model DVM 18.14.20 & 780 CFM \\
Model DVD 14.14.18 & 486 CFM \\
Model DVD 14.9.18 & 311 CFM \\
Model DVM 12.8.14 & 218 CFM \\
Model DVD 8.8.10 & 110 CFM \\
Model VSD 8.8.11 & 52 CFM \\
Model VSM 7.7.8 & 27 CFM \\
Model VSM 5.5.6 & 13 CFM
\end{tabular}

\section*{Compound}
\begin{tabular}{lr} 
Model CVM 8.6.10 & 46 CFM \\
Model CVM 5.5.6 & 15 CFM \\
Madel CVM 3534 & 5 CFM \\
Model CVM 3153 & 2 CFM
\end{tabular}

\section*{SOLID BRASS Eliectronic HARDWARE AND FITTINGS}
for
Industrial
and Marine
Applications


Precision machined from solid brass . . . plated to your requirements.

Spherical seat (ball and cone type). RF fittings including ferrules, adapters, couplings, nuts; receptacles, etc. Made in accordance with BuShips drawing RE-49A-501A for use with flexible metal hose, conduit, tubing, etc.
Rapid delivery on standard or special sizes. Let's discuss your needs! Write or phone, today.

HARDWARE DIVISION


FACTORY: 2082 Lincoln Ave. Altadena, Calif. Sycamore 8-1185
Offices in WASHINGTON, D. C.
and DETROIT

266


Cutting multiple-conductor cable with arbor press while second operator holds end of cable against stop in precision length-measuring trough
cated for cable cutting is a \(V\) trough consisting of a length of angle iron as long as the longest cable to be cut. A section of steel tape measure is bolted to the inside of this trough to provide an accurate, easy-reading length scale for the operators.

An adjustable cable stop is so machined that it slides freely on the trough but comes down over the outer sides and hence cannot be lifted off. A locking lever-handle screw pushes a V-shaped solid metal stop against the inside bottom of the trough to lock the stop in position at the desired point.

Two operators are needed for this cutoff arrangement. One runs the cable into the trough from a reel off to the left. The other brings this cable up to the stop and holds it there, after smoothing out any irregularities so the cable lies flat in the bottom of the trough. The first operator now operates a modified arbor press having a slicing blade that gives smooth, precise cutoff of the cable at the desired point.

\section*{Visual Inspection of Mica}

A single Sylvania 14 -watt daylight fluorescent lamp mounted under a sheet of frosted glass serves as an inspection table for detecting defects in punched mica

ACME STAR COMPOUND FOR MIL-T-27, GRADE 1 CLASS A TRANSFORMERS


A Raytheon transformer molded with Acme Star Compound

NOTE THESE
OUTSTANDING ADVANTAGES:
- Non-toxic
- Non-corrosive
- Eliminates Voids
- Thorough impregnation
- Simple one-phase molding process
- Tenacious adhesion to metal
- Assures complete moistureproof seal

Acme Star Compound also passes Specification MIL-C-16923 (Ships), Compound, Embedding (Electronic Equipment), Type C.

Exterior cases are not required, as the compound alone provides protection.


\section*{ACME WIRE CO.}

NEW HAVEN, CONN.
MAGNET WIRE - COILS
VARNISHED INSULATIONS
INSULATING VARNISHES

\section*{IDEAS that staretel in a BELLOWS}


\section*{ONCE THOUGHT IMPOSSIBLE}

How to reach into a high vacuum tube without breaking the seal - once stumped many an engineer.

\section*{Have you ever worked with Bellows?}
"Bellows" haven't been in the engineering courses - but they have helped to solve some of today's knottiest engineering puzzles.

Cliftord Hydron Bellows make flexible hermetic seals, permit extension, retratction and \(360^{\circ}\) rotation with \(100 \%\) metallic seal.

In the electronic field Clifford Hydron Bellows are used for changing frequency inside magnetron tubes, making adjustments inside hermetically-sealed instruments, moving variable plates inside vacuum capacitors. They are also being used as expansion chambers in mercuryfilled wave guides, oil filled transformers and other electronic and electrical equipment.

Clifford Bellows come in monel, stainless steel and other metals having very low gas transmission and emission properties. They are assembled to meet indi-


\section*{NOW "STANDARD PROCEDURE"}

Today Clifford supplies a whole line of bellows to make a wide range of adjustments and settings inside a vacuum.
vidual requirements. Coupon will bring you additional information.
Clafrord Manufacturing Company, 119 Grove Street, Waltham 54, Massachusetts. Division of Standard-Thomson Corporaliom. Sales oflices in New York; Detroit; Chicago; Los Angeles; Wallham, Massachusetts.


\section*{AND HERE'S THE ANSWER}

Moving variable plate inside vacuum capacitor was the problem solved through the use of Clifford Hydron bellows assemblies by Jennings Radio Manufacturing Company. Being leakproof and flexible, Clifford Hydron bellows form a perfect seal for the vacuum while permitting full movement of the variable plate.



BURBANK, CALIFORNIA DALLAS, TEXAS PHILADELPHIA 7, PENNSYLVANIA DAYTON 2, OHIO 233 South Third Street 413 Fidelity Union 725 Widener Building 410 West First Street Life Building
DETROIT 2, MICHIGAN NEW YORK 16, NEW YORK CHICAGO 11, ILLINOIS CLEVELAND 15, OHIO 311 Curtis Building . 280 Madison Avenue 520 N . Michigan Ave. Room 811 Hanna Building LORD MANUFACTURING COMPANY • ERIE, PA.

spacers for tubes. The glass is set over a hole cut in the bench, with the lamp mounted about four inches below the glass under the bench, in the arrangement used by Sylvania Electric of P. R. Inc., Rio Piedras, Puerto Rico.


Frosted glass illuminated from below permits inspection for defects just as last as operator can separate mica spacers with her nimble fingers

Applying Cement and Pitch
Ends of tubular paper capacitors are sealed with creamy white cement at high speed in a special filling setup at Pyramid Electric Co., using 60 to 80 lb air pressure


Squirting cement into ends of tubular paper capacitors with high-pressure cement gun. Racks are inverted for filling other ends of units



Write for further information.


Pectifier (Jivision

\author{
Dept. E5 415 North College Avenue BLOOMINGTON, INDIANA
}

In Conada: 50 St. Clair Ave. W., Toronto
to force the cement out of the nozzle of a trigger-operated gun. The operator can aim and control the cement flow precisely, making it easier to fill the end of each unit completely and smoothly without overflow.

Capacitors are prepared for cementing by inserting empty cardboard tubes between the two wood strips of the rack, then tightening wing nuts just enough to hold the tubes in position. This loading is done over a jig that centers the tubes lengthwise. At another position, an operator inserts a rolled capacitor unit in each tube and bends its leads over metal rods. This insures that the rolled units will stay in place when the loaded rack is turned over for filling the other end of each capacitor. The pressure tank utilizes air from the master air pressure system of the plant.

\section*{Production Control Chart}

When daily production of each subassembly for a large electronic system is plotted on a vertical bartype chart, subassemblies that are lagging behind the production schedule can be seen at a glance. The lowest bar also serves to tell


Foreman Victor Berlingieri increases height of bar for terminal board No. 5535 with blue pencil, to incorporate previous day's production of this unit of a military radar system

\section*{Are you overlooking the advantages of Corning metallized glass components？}


Corning Metallized Glass Induct－ ances are noted for their exception－ ally high electrical stability and negli－ gible drift characteristics，even under widely variable ambient temperatures． High Q is inherent．They can be fur－ nished with uniform，variable，or double－pitch windings and for fixed tuned，permealility tuned，or perme－ ability tuned inductance trimmer com－ binations．They can be duplicated within very close tolerances in any quantity．


Corning Metallized Glass Instru－ ment Windows are made of tem－ pered glass with a metallized band on the edge．They are easy to solder， provide a perfect hermetic seal．Tem－ perature and humidity changes re－ sulting from leaks in gaskets，cements and oils are virtually eliminated．These windows are available in a number of standard sizes，or can be furnished to your specifications．


Corning Film－Type Resistors afford a tough unit with unusual stability and capable of withstanding high ambient and high operating tempera－ tures．Type N has a resistance toler－ ance of \(1 \%\) and is capable of operat－ ing at ambient temperatures up to \(140^{\circ} \mathrm{C}\) ．；Type S has a normal resist－ ance tolerance of \(2 \%\) and is capable of operating at ambient temperatures up to \(200^{\circ} \mathrm{C}\) ．


Corning Metallized Glass Tubes for hermetic encasement of capacitors， resistor＇s．Selenium rectifiers and other electronic components offer a number of advantages．The metallizing makes possible a true hermetic seal，the elec－ trical characteristics of the glass are excellent，transparency permits visual inspection，units are impervious to moisture，corrosive atmospheres， molds，elc．Available in 15 sizes rang． ing from 11／2＂to \(7^{\prime \prime}\) in length，O．D． \(155^{\prime \prime}\) ，I．D． \(2955^{\prime \prime}\) ．


Corning Metallized Glass Midget Trimmer Capacitors have practi－ cally zero temperature coefficients in the VHF range．Capacity shift is negli－ gible even with widely variable am－ bient temperatures．They are availatle in standard types from .3 to 12 u．u．f．， or can be designed to meet your spe－ cific requirements．With direct traverse trimming．there is negligible capacity shift under vibrations，and an abso－ lutely smooth capacity curve．


Corning Metallized Glass Bush－ ings and Standoff Insulators are ideal for high voltage applications． The bushings provide hermetically sealed insulators for high－voltage ca－ pacitors and transformers，are avail－ able in 12 standard sizes ranging from \(25 / 32^{\prime \prime}\) to \(7 / 32^{\prime \prime}\) in length．Installation is fast and easy．The standoff insula－ tors are made of tempered，low－loss glass，are completely nonhy groscopic． Both these components can be fur－ nished in special sizes on order． It will pay you to investigate the possibilities of Corning Metallized Glass Components．The coupon below will bring you the detailed information you need，or write and give us the details of the application you have in mind．

\section*{Corning Glass Works}

\author{
New Products Division
}


Corning mecans rescarct in Glass

CORNING GLASS WORKS，Dept．EL－10，Corning，N．Y．
Plecse send me information on \(\square\) Inductances \(\square\) Resistors \(\square\) Copacitars \(\square\) Instrument
Windows \(\square\) Tubes \(\square\) Bushings \(\square\) Standoff Insulators．

Company．
Address

－－－－ーーーーーーー


\section*{CALIDYNE DOES}

From time to time vacuum tube manufacturers and users have asked us if we make a standard shaker system or coúld build one for vibration testing vacuum tubes. The answer is that we do make one and can build others to suit your particular requirements. The value of such a system is obvious from both sales and use points of view.

\section*{VIBRATION IS OUR BUSINESS}


CALL ON CALIDYNE
If you make or use vacuum tubes for computers, guided missiles, radar, sonar or mobile applications, you must recognize the importance of de-pendable tubes proved by pretesting. Outline your problem in detail and let us see what we can do with it. You may then be able to pretest your vacuum tubes for vibration before putting them in the field.

how many complete systems can be turned out with the subassemblies already produced.

In the plant of Caribe Aircraft Radio Corp. in Coamo, Puerto Rico, this type of chart is mounted on a large piece of plywood fastened to the end of one of the assembly lines. As soon as production figures for the day are available, the foreman increases the heighth of the bar for each subassembly in accordance with the number of subassemblies produced during the working day. The height of each bar then represents the total number of units produced to date.

\section*{Cutting Metal Tubing for Capacitor Housings}

Two methons of cutting metal housings for hermetically-sealed tubular capacitors are employed at the plant of Pyramid Electric Co. One method, used when trimming


Improvised lathe for cutting metal tubing to size for capacitor housings. Pressure of cutting tool makes arbor rotate tubing which is loosely held by right hand of operator
drawn cap-shaped housings to length for single-lead capacitors, employs an ordinary metal-working lathe and a disk-type cutoff tool. An arbor, grooved to the shape of the cutting blade, is mounted in the headstock of the lathe. The drawn brass housing is placed over the rotating arbor with the closed end firmly against the end of the arbor. The cutoff disk in the tool holder is then brought forward by depressing a foot pedal to cut off the excess metal. Pressure of the cutting tool against the housing

\section*{from 20 mm to 60 mm with}

\section*{Panclinar}

Lens for TV Cameras


For broadcast TV... Industrial TV .. . open or closed circuits...more stations and industries are discovering the tremendous savings possible with this versatile lens!
Introduced a year ago, it has been a godsend to every budgetconscious purchaser.

At last the small station TV cameraman can follow action . . . hold action. . create action and a virtually unlimited variety of special effects from one camera position! Rock-steady pictures are assured because dolly-ins are done optically. Zooming-in for close-ups is a 'must' in TV commercials. With the Pan Cinor, just a touch of the turret lever . . . and you're in!

The industrial user training his camera on factory operations or demonstrations can re-direct his attention from close-up to telephoto from a flat-footed stance. RCA reports most
focusing can be remotely controlled automatically, and Dage assures us they can operate the turret lever by push-button if desired.
In addition . . . the Pan Cinor has a standard "C" mount . . . it fits not only the Dage and RCA TV cameras, but can be used on a majority of the 16 mm movic cameras used in studios and industry today.
Maximum aperture \(F: \mathbf{2 . 8}\). Focusing range: 5 feet to infinity. Diaphragm stops to F:2 2. Weight, including viewfinder, 2.1 lbs. All lens elements are coated. Complete with coupled viewfinder for use with 16 mm
\(\$ A 47^{\circ}\) movie cameras. Som Eerthiot Pan Cinor lens

See your Bolex Franchised Dealer or write for illustrated pamphlet to: Sole U.S. Distributors, Paillard Products, Inc. 100 Sixth Ave., N. Y. 13, N. Y.


Pan Cinor Zoom-type lens with coupled viewfinder has standard "C" mount. Fits most 16 mm movie cameras without modifications:


Budget size TV camera zooms in for a commercial close-up with the Pan Cinor Lens.
R.C.A. industrial TV camera with Pan Cinor.


\section*{"Most consistent}
'chopper' on the market"

That's what a lot of people who use vibrators say about the Honeywell Synchronous Vibrator WG-178.

They know from experience that performance is consistent from one unit to the next-a most important consideration. This high consistency in the performance of the WG-178 is a direct result of the quality of design and workmanship that is a distinctive feature of all products manufactured by the Honeywell Aero Division.

Here are some of the other characteristics of the little "chopper":
1. It's versatile, can be used as a DCAC modulator, or as a rectifier.
2. It's longer-lived, operating for an average of 500 hours.
3. It's adiustable. Open and closed times can be varied.
4. It's tough. When shock mounted (in any position) it exceeds rigid Air Force environmental specs.
5. It's a precision instrument. Quality design guarantees exceptionally clean signals.

If you'd like to know more about the WG-178 Synchronous Vibrator, we'd be pleased to send details. The address is Honeywell Aero Division, Dept. 401 (E), Minneapolis 13, Minnesota.


\section*{Specifications for Synchronous Vibrator WG-178}

Coil Supply: Suggested supply voltage is 115 volts, 400 cps for WG-178A and 12.6 volss, 400 cps for WG-178B when suitable voltage-dropping resistors are included in the circuit with the field coil.
Power: Approximately 0.7 watts, excluding the phasing circuit.
Contact Rating: Conract rating depends on circuit in which units are used. All applications should be referred to our engineering department for approval. The devices have been for approval. The devices have been
used in circuits with approximately used in circuits with approximately
one milliampere ( nominal) current and up to 35 volts de supply.
Environment: When used on a shock mounted chassis type mounting the units contorm to Spec 41065B as called for in AF27500D as follows: Humidity Test: 10 day ( 24 -hour cycle). Temperature Test: \(-65^{\circ} \mathrm{F}\). to \(160^{\circ} \mathrm{F}\). ( \(-54^{\circ} \mathrm{C}\). to \(71^{\circ} \mathrm{C}\).).
Altitude Test: 55,000 feet.
Vibration Test: Up to 200 cps ( 3 G maximum). This is a modified test. Sand and Dust Test: As specified. Mildew Resistonce Test: 28 days. Salt Spray Test. 50 hours. Waight: Approximately 0.5 lb .

\section*{Honeywell}


Lathe setup for trimming brass caps to length. After making a cut, the operator pushes off the finished housing and the waste metal with her fingers
gives the required friction between housing and arbor to get the rotation needed for cutting action.

The second method, for cutting tubing to short lengths for housings of two-lead capacitors, uses a drill chuck and motor mounted on a metal plate. A short grooved arbor is placed in the drill chuck. The footoperated cutting disk works exactly the same as on the lathe. The length of the cut is governed by the distance of the cutoff tool from the jaws of the chuck. The position of the cutoff tool is adjusted by moving it along a shaft parallel to the arbor, and the arbor is then correspondingly positioned in the chuck.

\section*{Insulating Cold-Headed Iron Core-Bobbin}

Use of an Iron core as its own bobbin for aircraft relays eliminated the cost and other drawbacks of separate bobbins but presented the problem of achieving adequate insulation between core and winding. This was solved in the plant of Phillips Control Corp. in San Juan, Puerto Rico, by using split acetate tubing and split fiber-base plastic washers.

The flanges that serve to hold in the winding are cold-headed on each end of the solid iron rod used as the relay core. One end of the core is

s-e midget and g-e lughtweight improve soldering efficiency and speed in tight places.

\section*{Now-2 G-E Irons for Hard-to-solder Places}

\section*{FAST PRODUCTION WITH THE G-E LIGHTWEIGHT}

Quick heat recovery and easy haudling combine to give you quality production athigh speed. The thitn, \({ }_{16}^{5}\)-inch dianeter shank allows easy soldering where a hulkier iron can't reach or would cause damage to insulation and surrounding parts.

\section*{PINPOINT ACCURACY WITH THE G-E MIDGET}

Soldering difficult joints is as casy ats writing with a pencil when you use the slender, \(1^{3 / 4}\)-ounce, 6 -volt midget iron. Power cosis are cut to onte-fourth those of a regular iron, and tip heat can be closely controlled with the op. tional four-iap translormer

\section*{BOTH LIGHTWEIGHT AND MIDGET IRONS OFFER YOU:}

\section*{Longer Service, Lower Maintenance} -Extra long wearing Ironclad tips resist pitting and corrosion, giving you longer service for both high-speed repetitive production line soldering and intermittent work. General Electric Calrod* heaters provide dependable, efficient operation throughout their long life. The tip and heater unit is casily replaced by unscrewing it from the handle.

Reduced Operator Fatigue-Both irons are light in weight, well balanced and have comfortable handles. Fasy handling helps cut rejects and increase operator speed and efficiency.

\section*{SOLVE YOUR SOLDERING PROBLEMS TODAY}

For the complete story on the G-E Lightweight and Midget soldering irons contact your G.E Apparatus Sales Office or Distributor. Additional information is yours by mailing the coupon below.
*Reg. Trade-mark of General Electric Company

Section C720-115
General Electric Co.
Schenectady 5, N. Y.
Please send me the following bulletins:
\(\square\) For immediate project \(\square\) For reference
\(\square\) GED-1583, G-E Lightweight Soldering Iron.
\(\square\) GEA-4519D, G-E Industrial Soldering Irons.
Name

Company

Address

State


For pressurized or corrosion resistant service, Cannon's de Solenoids offer positive hermetic sealing, sound construction, painstaking workmanship and highest quality materials. A vitreous insulating material is heat-fused to shell and contact terminals, creating a perfect seal. Other parts are silver brazed. The entire solenoid is then copper-nickel-chrome plated to insure complete coverage, high corrosion resistance and long, trouble-free service. Solenoid No. 19760, above, the first hermetically sealed product of this type, is built for continuous duty on 28 v dc systems. Fitted with other coils, it renders intermittent duty as characterized by the chart at right. Cannon's hermetically sealed solenoid series reflects the same uncompromising attention to details of sound design, engincering and workmanship that has made the name "Cannon" synonymous with "quality" for more than 38 years. For complete information write for new Solenoid Bulletin DCS41953 showing 105 different assemblies.


Applying split acetate sleeve to iron core-bobbin


Placing split laminated washer over insulated core


Applying tab of tape to hold together the two types of insulaling washers
flush, while the other has an extension that is used later for staking the core to the relay frame.

The core is insulated first by slipping a length of split acetate tubing over the smaller headed end. This tubing has sufficient curl so that it laps over itself when on the core.

Two laminated fiber-base Bakelite header washers, each split along a radius, are next slipped over the insulated core and pushed against each header. Split acetate headers of similar size are put on next and pushed against each of the laminated headers, in such a way that the splits of adjacent washers do not line up. Finally, a small tab of Scotch No. 6 yellow

model no. dz1uhp. 1 (ACtUAL SIze)


SPECIFICATIONS Capacitor run induction moCapacis volts, 400 cycles, single tor, 11000 R.P.M., 1 Amp., phase, 11,000 MFD.- 220 . \(1 / 300\) th H.P., . M .ight- \(31 / 2 \mathrm{oz}\). \(35 \%\) efficiency, weight

APPLICATIONS
Fans, blowers, instruments, controls and low power drives.


Another outstanding EAD contribution to the miniaturization program is this extremely small, precision motor. Engineered for long life and high efficiency, it is especially designed for operation in confined areas where minimum size and weight is essential.
Units are available in this small frame size for 400 cycle or variable frequency operation, with 400 cycle power ratings ranging up to approximately \(1 / 100\) H.P. Modifications include high ambient and high altitude versions as well as servo, synchronous and gear motors.

400 CYCLE OPERATING CHARACTERISTICS
\begin{tabular}{lrrr}
\hline APPROXIMATE R.P.M. & 7,000 & 10,500 & 21,000 \\
PHASES & 1,2 & \(1,2,3\) & \(1,2,3\) \\
INPUT VOLTAGE & 115 & 115 & 115 \\
\(\quad\) (MAXIMUM) & & & \\
\hline
\end{tabular}

\section*{Fastern /ara Devices ne.}

585 DEAN ST., BROOKLYN 17, NEW YORK


Vichers refines its own selenium for uniform, dependable performance

Automatic
electro forming "pre-stresses" cells


Performance matching of cells prevents overloading-overheating

Hydraulic assembly assures constant mechanical strength


These reasons alone would be assurance of Vickers rectifier superiority. Add the many other refinements of design and construction ... the experience and careful workmanship . . and you will be sure that Vickers is the best answer to your rectifying needs, large or small.

Write for Bulletin 3000. Vickers engineering service is available without obligation.
ICKERS ELECTRIC DIVISION


Methed of inserling relay assembly in fixtare preparatory to staking the two cores to the frame. Recesses in bottom of fixture serve to center the coils. Upper plunger is released by rotating back knob 90 degrees, to hold frame cgainst fixture. Lower plunger is used to push sliding fixture in under staking dies oi press
acetate tape is applied over the split in each acetate header and broaght outward over the other type of washer to hold the two together. The insulated core is now ready for the winding machine.

The coils are wound on a Leesona No. 102 three-spindle semiautomatic winding machine modified to take the cold-headed bobbins. A typical coil would get 3,700 turns of No. 34 enameled copper wire.

While the machine is winding automatically, the operator keeps busy by soldering insulated lead wires to the enameled leads of previously wound cores. Other in-be-


Operator withdraws slide by pulling out knob after press has staked cores to frame


The Bridgeport warehouses are designed to supply from stock limited quantities of sheet, rod, wire or tubing. It is the policy of the company to maintain adequate warehouse stocks at all times so that small orders can be filled without delay.

The fabricator is in a position to obtain promptly metal to fill orders for experimental work or to start production runs, while waiting for mill shipments.

Bridgeport warehouses make every effort to carry the variety of alloys, sizes and gages which fulfill the requirements of the locality they serve.

To take care of the maximum range of widths of strip metal, slitting service is available-not only to serve warehouse stocks, but also to make customers' stocks of non-ferrous strip metal more flexible.

Bridgeport's Worehouse Stocklist carries weight tables and a technical digest giving the properties of the most popular copper-base alloys. If you do not have a copy, ask your nearest Bridgeport office.

Mills in Bridgeport, Conn and Indianapolis, Ind.
In Canada: Noranda Copper and Brass Limited, Montreal

BRIDGEPDRTBRASS COMPANY
30 GRAND STREET, BRIDGEPORT 2, CONNECTICUT


\section*{urn to FINNFLEX for relief !}

FINNFLEX offers MAXIMUM PRO. TECTION for VITAL EQUIPMENT by means of:-

\section*{AIRBORNE MOUNTING BASES VIBRATION ISOLATORS SHOCK MOUNTS}

Conform to JAN-C-172A, but are actually made to exceed MIL-E-5400 (Superseding AN-E-19) Drop Test requirements.
FINNFLEX Mounts isolate vibration and shock from Electronic, Communication, and Control Equipment. They offer unimpaired efficiency from - \(80^{\circ}\) to \(+250^{\circ} \mathrm{F}\)., "Selective Action" friction dampening, non-linear steel springs, and other features. Many sizes, load ratings available.

FINNFLEX 3-POINT SERVICE for SPECIAL PROBLEMS: (1) Testing: We have complete laboratory facilities for Vibration, Shock and Drop Testing ... (2) Designing: We design and recommend a Shock or Vibration Mount best suited to your special needs . . . (3) Manufacturing: We have substantial facilities for manufacturing the desired unit in any quantity, economically, and on schedule.
Send us your problem foday, or wrife for Catalog MB-110.


These units have exceptional ruggedness, plus a special reinforced structure to withstand shock far in excess of 30 " G ". This characteristic makes these bases ideal for use in carrier-based aircraft.


TYPE "CG" MOUNTING BASE
Especially designed for equipment having eccentric CG permitting a wide variation in the loads applied to the individual mounting. The use of FINNFLEX Vibration and Shock Material assures you of superlative Industrial or Governmental Bases and Mounts.
tween duties include cutting tabs of Scotch tape in readiness for anchoring the start and finish of each winding on the machine.

The next step is staking the cores into position on a relay frame. Each relay gets two coils. The projecting core ends are inserted in their frame holes and the assembly is placed in the slide of a holding fixture mounted on the bed of a punch press. A spring-loaded rod holds the frame in position. Re-


Machine used for winding three aircraft relay coils at a time on insulated solid iron core-bobbins
cesses in the fixture serve to center the lower ends of the coils precisely. The operator now pushes the slide in and operates the press. This stakes both cores in one operation. A spring-loaded pushrod in between the staking dies holds the frame tightly against the cores during staking.

\section*{Resistor Coating Techniques}

Motor-Stirred varnish dispensers and tilted drying racks permit efficient manual application of protective coatings to deposited carbon resistors at Radell Corp., San Juan, Puerto Rico.

One protective coating employed for this purpose is a mica-filled melamine varnish. This is applied cold but is kept thoroughly stirred by means of a stirring fan on the shaft of a fractional horse-power motor. The dispensing container is completely covered to prevent splattering as well as to minimize evaporation, with the exception of an opening only slightly larger than the resistor to be coated, located at the nozzle-shaped front end of the dispenser. The operator grasps

Skill and care matk every operation in the meticulous mabufacture of Moloney HiperCore Electrofic Cores. Under the watchful eyes of conscientious craftsmen, the windings of cold-rolled, poriented silicon steel are annealed in an iniet gas atmosphere at carefully controlled tempedatures to relieve any stresses that might affect their 3uperior qualities. To prevent physical distortion, the dres are impregnated with a thermo-setting resin that bonds the insulated laminations into rigid, heat resistant units. Because of this planning and caré, Moloney HiperCore
Electronic Cores can be accurately cut to eliminate many costly operations \(\frac{2 a}{l}\) your assembly line. Because Moloney HiperGogre Electronic Cores have lower losses and greater flux carrying capacities, they enable you to make a better product. Moloney Hiperfre Electronic Cores

\section*{BETTERCORES}
 are wound cores thatidfer the advantages of

if your pr-)duct demands better performance, smaller size and less weight, specify Moloney Electronic Cores. Available in 1000 standard s:zes-or bult: to your spec:fications.

Write loday fer Bulletin SR-205 contciring sjecifications, performanze da'a and prices.

\section*{MOLONEY}

Manufacturers of Power Transformers - Distribution Transformers - Laad Ratio Control Transformers - Step Voltage Regulators - Unit Substations


\section*{THE BASIC SYSTEMS INCLUDE}

TACHOMETER PICKUP connected directly or indirectly to the rotating device to produce an electrical pulse at each revolution, or any desired fraction of a revolution. Standard BERKELEY magnetic and reflecting photoelectric types are available.

CONTROL UNIT receives pulses from pickup and amplifies them, passing them to the speed indicating device during the selected time interval (usually 1 second). Control Units are available with or without integral time base. The latter unit requires a Master Time Base, which is designed to drive a number of Control Units simultaneously This provides greatest possible flex. ibility for multi-unit installations

DECADE INDICATOR displays rpm in direct-reading digital form on a bank of five Decimal Counting Units. Display time is continuously variable from 1 to 5 seconds; unit may be recycled manually or automatically. Decade Indicator may be installed remote from pick. up or Control Unit. BERKELEY Printed Readout may be added to provide permanent record on standard adding machine tape.
METER INDICATORS may also be used in conjunction with the system at any desired remote location, and is merely plugged in to Control Unit. 7" scale may be calibrated in rpm or fraction of rpm.

\section*{SPECIFICATIONS}
\begin{tabular}{|c|c|c|c|}
\hline Range: & 0 to \(100,000 \mathrm{rpm}\) for Decade Indicator and Meter Indicator & Cabinet Size: & \begin{tabular}{l}
EPUT Control Unit .. \(203 / 4^{\omega} \times 1042^{\omega} \times 15^{\prime \prime}\) \\
Decade Indicator ... 165/8" \(\times 101 / 2^{\prime \prime} \times 13^{\prime \prime}\)
\end{tabular} \\
\hline Aceuracy: & \begin{tabular}{l}
\(\pm 1\) rani for Decade Indicator \\
\(\pm 10 \%\) for Meter Indicator
\end{tabular} & & \begin{tabular}{l}
Meter Indicator .... No cabinet \\
Master Time Base . . \(203 / 4^{* *} \times 101 / 2^{\prime \prime} \times 15^{\prime \prime}\)
\end{tabular} \\
\hline Input Sensitivity: & 0.2 volts rms to 20 volts rms maximum Designed to operate from Berkeley Tachometer Plckups & Price: & Model 5600 Control Unit ........... \(\$ 1375.00\) Model 5601 Control Unit . . . . . . . . \(\$ 1160.00\) Model 5621 Decade Speed Indicator \$ 740.00 Model 5621E Decade Speed Indicator \\
\hline Reset: & Elther automatic or manual & & with extinguishing feature ..... \$840.00 Model 5623 Meter Indicator ...... \(\$ 80.00\) \\
\hline Display rime: & Continuously variable 1 to 5 seconds & & Model 5630 Master Time Base .... \$980.00 Model 461 Tachometer Pickup .... \$ 100.00 \\
\hline Panel & EPUT Control Unit . . . . \(19^{\prime \prime} \times 83 / 4 /\) & & Model 464 Tachometer Pickup .... \$ 275.00 \\
\hline Sire: & Decade Indicator ...... \(553 / 6^{\circ \prime} \times 834^{\circ}\) & & Model 465 Tachometer Pickup .... \$ 325.00 \\
\hline & \begin{tabular}{l}
Meter Indicator ...... \(51 / 2^{\prime \prime} \times 54 / 2^{\prime \prime}\) \\
Master Time Base ..... \(19^{*} \times 83 / 4\) "
\end{tabular} & & \begin{tabular}{l}
Model 440 Reflecting Tachometer \\
Pickup \(\qquad\)
\end{tabular} \\
\hline
\end{tabular}

Prices are A.0.b. Richmond, Californla. Speciflcations subject to change without notice.

\section*{APPLICATION ENGINEERING ASSISTANCE}

The benefit of experience gained on scores of BERKELEY tachometry installations is yours for the asking. Our engineers will gladly assist you in planning instrumentation to meet your specific needs. For details, please request Bulletin G-10.
division
October, 1953 - ELECTRONICS

\title{
Shrimp boats are a'comin'.
}

\(S\)
hrimp boats encounter rough seas. Their safe return can depend upon the reliable electrical power supply, provided by Onan generators.

To insure performance for these and all AC and DC, military and commercial regulated power units they manufacture, D. W. Onan \& Sons Inc., has standardized on Regohm voltage regulators. Whether on sea, land or air applications, this low cost, compact, electro-mechanical controller dem-


\section*{Powered by Onan Electric Generators}

\section*{Controlled by}

\section*{Regohm}

\section*{Voltage Regulators}

onstrates rugged ability to withstand severe vibration, shock or ambient temperature conditions. And you can't beat the band of Regohm's voltage regulation. Standard models provide constant voltage output within less than \(\pm 2 \%\).

Onan Engineers like these additional advantages of Regohm Voltage Regulators:
1. Size-Regohm is small in size, light in weight, but big in performance. It is a natural where cconomy of space and weight are major considerations.
2. Low Cost-Regohm costs less, does more, than the complex equipment that once was the only available solution to control problems.
3. System Stabilizing - With its high speed averaging effect and a built-in, thoroughly reliable dashpot, Regohm will stabilize control systems with widely varying characteristics.
4. Low Operating Power-Low signal power requirement of one watt for solenoid bias makes Regohm easily applicable to special units.
5. Long Life-In properly engincered installations, Regohm's life is measured in years. Shelf life is sub)stantially unlimited.
6. Simplified Maintenance-Regohm's plug-in feature simplifies replacement and maintenance-there are no parts to rencw or lubricate.

Call on our engineering and research farilities to belp you develop optimonn design for your equipment and system. Learm how Regohm can belp you with your regulation problem. Write for Bulletin 505.00. Address Dept. E, Electric Regulator Corp., Norwalk, Cormecticut.


Your information on glass-to-steel hermetic terminals is not up-to-date until you have seen this new Fusite catalog. Many brand-new types of terminals and many new variations are now
 available in this most famous line. Write today for your copy, Dept. A-3.

6000 FERNVIEW AVE., CINCINNATI 13; OHIO


Placing resistor on slanting rack used for draining off sumplus coating. Note that coating does mot drain down the resistor leads. Wrapping paper fastened to benches with masking tape is replaced each day to give clean appearance to messy job
thermosetting material is baked onto a rack, it cannot be cleaned off with solvent.

Liquid level is maintained at the dipping opening of the dispenser by tipping the entire dispenser forward as the coating material is consumed. This is made possible by a mounting involving a shaft with locking wing nut.

\section*{Cutting Phenolic Plastic}

Masking tape and cardboard serve to improvise an inexpensive means of collecting the irritating phenolic dust produced when cutting off one section of a five-terminal molded plastic strip, in the San


Dust-collecting setup used in cutting phenolic terminal strips


For applications requiring a really stable capacitor specify RMC Type D DISCAPS. Designed primarily for coupling, by-passing and filter networks, Type D DISCAPS have proven performance records where close tolerances are required over a wide temperature range. Capacity will not vary more than \(+15 \%-5 \%\) from \(25^{\circ} \mathrm{C}\) value as temperature is varied from \(+10^{\circ} \mathrm{C}\) to \(+65^{\circ} \mathrm{C}\) (See Curve). Available in capacities between 220 MMF and \(5000 \mathrm{MMF} \pm 20 \%\) or GMV. Power factor \(1 \%\) or less.
Type D DISCAPS are rated at 1000 volts D.C. working and are laboratory tested at double their working voltage to assure highest standards of performance. Rugged construction and lower initial cost offer production line ease and overall savings.
RMC engineers can help you with design problems requiring standard or special types of ceramic capacitors. Your inquiry is invited.


SEND FOR SAMPLES AND TECHNICAL DATA


RADIO MATERIALS CORPORATION
GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.
FACTORIES AT CHICAGO, ILL. AND ATTICA, IND. DISTRIBUTORS: Contact Jobber Sales Co., 146 Broadway, Paterson I, N. J.


The new Bendix-Pacific TOR-6 Oscillator gives improved performance with resistance type strain gages and variable resistance type temperature pickups. The unit operates with unusual stability under extreme conditions of environment.
Unbalance of the resistance bridge provides a voltage which is used to change the frequency of the oscillator. The magnitude and direction of the frequency change is proportional to the magnitude and phase of the bridge output.

\section*{SPECIFICATIONS}

Bridge Impedance: 120 ohm*
Sensitivity: \(\pm 7.5 \%\) change of \(f_{0}\) for \(0.125 \%\) change in resistance in each of our active arms*. (This is RDB specified ubcarrier bandwidth)
from DC to \(10 \%\) of bandwidth
rom DC to \(10 \%\) of bandwidth
inearity: Within \(1.0 \%\) of best straigh
Stability: Drift less than \(0.5 \%\) of bandwidth \(\left(0.07 \%\right.\) of fu) for 8 hours at \(25^{\circ} \mathrm{C}\). after 15 minute warmup.
Temperature Effect: \(f_{0}\) changes less than \(0.08 \%\) of bandwidth per degree centigrade. Vibration Effect: \(1.0 \%\) maximum noise at \(10 \mathrm{~g}, 20\) to 1000 cps .
Supply Voltage Effect:
Plate Supply: Drift does not exceed \(1.0 \%\) of bandwidth for \(\pm 10 \%\) change of plate supply voltage
Heater Supply: Drift does not exceed 1.0\%
of bandwidth for \(+10 \%\) change of heater voltage Output: 1.5 volts rms into 100 kilohms resistive load. Generator impedance 750 kilohms.
Harmonic Distortion: 2.0\% maximum. Power Requirements:
0.015 A at 108 volts DC
0.800 A at 6.0 volts \(D C\) or rms AC. Bands of Operation: Standard RDB bands 1.7 through 14.5 kc *

Size: \(4.5^{\prime \prime}\) long \(\times 1.45^{\prime \prime}\) wide \(\times 1.35^{\prime \prime}\) high; occupies 2 sections of Bendix IJS Com. ponent Mounting Assembly. Weight: 0.4 pounds.
*Available for other bridge impedances, sensitivities, and bands of operation on ment \(+0.5 \%\) chance of resistance in one arm produces \(+7.5 \%\) change of \(f u\).

Write for complete information.

Pacife Division Bendix Aviation Corporation nonra nourwooe caty.

Juan, Puerto Rico plant of Phillips Control Corp. of P. R. The tape served to complete the enclosing of the cutoff wheel on the grinder. Cardboard combined with tape provided a dust-tight collecting box under the sliding holder on which the terminal strips were placed.

The cutoff operation permitted salvaging strips on hand for use in a redesigned product, without waiting for delivery of new strips.

\section*{Preparing Cable Leads}

In the assembly procedure recommended by Amphenol for preparing leads of multiple-conductor cables for soldering to the contacts of audio connectors, the cable is first cut to length and its outer jacket stripped off with an Artos auto-


Recommended method of using gas flame for burning off excess strands of filler on multiple-conductor audio cable. Gas torch is supported in \(V\) notch of wood fixture
matic machine. The wrapping cord and filler are then unraveled and cut off. Under proper control, using the fixture shown. a gas torch can be used to burn off the excess strands of filler rapidly and cleanly.

The next operation involves cutting the individual leads and stay cords to length. A simple pattern drawn on paper and cemented to the workbench can be used to do this quickly and accurately. The operator places the outer jacket at the reference line on the drawing, places a heavy metal block over the cable to hold it in this position, then cuts each wire in turn to the indicated length with special Wiss in-
a paragraph worth reading from the BIG

meet MIL-T-27
Grade 1-Class A Specifications with in-plant testing facilities


COMPLETE LINE

\section*{INTERNATIONAL RECTIFIER}
\(\begin{array}{lllllllllll}C & O & R & P & O & R & A & T & 1 & O & N\end{array}\)
1521 E. Grand Ave., El Segundo, Galif - Phone: ORegon 8-3778 CHICAGO: 205 W. Wacker Drive • Phone: Franklin 2-3889 NEW YoRK: 501 Madison Avenue - Phone: Plaza 5-8665

LARGEST
SUPPLIERS



Using diagram cemented to bench as guide for cutting cable conductors to correct length while metal block holds cable in position
dustrial shears. If the conductors are color-coded, the drawing can be similarly colored. The stay cord is cut out at this time also, if it is not needed for strain relief purposes.

The next operation is stripping of individual conductors. This can be done either with a commercial hand-operated wire stripper or with the simple diagonal cutter setup shown. Here, one handle of an ordinary pair of diagonal cutters is welded to a metal plate that is clamped to the bench. A section of pipe welded to the plate provides additional support at the pivot of the cutters.

To use the stripping tool, the operator inserts a conductor in a notch in the cutter jaws, applies pressure with her left hand to the movable upper handle of the cutters to cut through the insulation, then pulls on the conductor to strip off the insulation. An upright metal plate, also welded to the base plate, serves as a stop or guide for insuring that exactly the correct length


Diagonal cutters, welded to metal plate that is clamped to bench, serve for stripping leads of audio cable. Cutter blades are notched to prevent damage to inner conductor

\section*{If You Use Dielectrics-Here's an Important}
new technical bulletin ON GENERAL CHEMICAL SULFUR HEXAFLUORIDE
inert, non-foxic, dielectric gas


\section*{an important new dielectric gas,}

General Chemical's Sulfur Hexafluoride is gaining attention for a wide range of highand low-voltage electrical and electronic equipment. Many now consider Sulfur Hexafluoride to be superior to any other available gaseous insulation from the standpoint of dielectric strength, chemical stability, and non-condensing characteristics. Under certain conditions, the dielectric strength of \(\mathrm{SF}_{6}\) is superior to liquid insulating materials.

TO HELP YOU KNOW MORE about this inert, non-toxic gas, General Chemical is offering its specially prepared Sulfur Hexafluoride Technical Bulletin ( \(\mathrm{SF}_{6} \mathrm{~A}\) ). The bulletin contains selected data on the physical properties of Sulfur Hexafluoride, as well as details concerning the advantages of its use for high voltage electrical equipment. The information in this bulletin may suggest applications for your products and processes which you will want to investigate further. Sulfur Hexafluoride In TRANSFORMERS Oil- and gas-filled; also dry types
In CAPACITORS \& CONDENSORS
In NUCLEAR RESEARCH
Van de Graaff Electrostatic Generators High Energy Positive-Ion Accelerators
In X-RAY APPARATUS For both large, highvoltage, and small, low-voltage equipment used for diagnostic and therapeutic purposes
For industrial radiograp High energy electron equipment for sterilization of pharmaceuticals and food in ELECTRONICS
Co-axial cables for television, etc. Radar equipment, wave guides, similar apparatus

\section*{GENERAL CHEMICAL DIVISION \\ Allied Chemical \& Dye Corporation \\ 40 Rector Street, New York 6, N. Y.}

FOR YOUR FREE COPY of the
Please send my free copy of your Sulfur Hexafluoride Technical Bulletin No. \(\mathrm{SF}_{6}{ }^{\text {A. }}\).


General Chemical Sulfur Hexafluoride Technical Bulletin
FILL. IN AND
Name \(\qquad\) MAIL COUPON


American Electric supplies these complete, "packaged unit" power supplies for all high frequency requirements. Noted for their rugged, reliable performance, the amazingly low maintenance factor of American Electric alternators results from a unique and exclusive design principle: a rotating inductor without coils; without springs, slip rings or brushes! Nothing to wear out, nothing to service... as maintenance-free as its two sealed ball bearings!


Semi-portable, skid-mounted missile launching power supply completely weother protected.


Stafianary installation, vee belt drive, resilient mounted for loboratory h.f. test equipment.

Variable


\section*{Correct Power Supply for Every Installation}

Portable, semi-portable or stationary types, open models or completely enclosed for weather protection. Caster or pneumatic tire mounts, skid mounts and resilient rubber mounts on stationary types.

\section*{Wide Frequency Ranges}

Fixed Frequencies from 250 cycles to 2400 cycles (up to 4000 cycles in the lower ratings). Variable Frequencies from 380 cycles to 1200 cycles and 1200 cycles to 2400 cycles.
Excellent Voltage Regulation: Standard \(\pm 1 \%\) to as low as \(\pm .5 \%\) depending upon choice of drive. Electronic regulators or magnetic amplifier regulators supplied.
Motor Drives-Common shoft, direct connected. Vee belt or positive, no-stip timing belt types. Variable speed on variable frequency models.

\section*{Low Harmonic Content}

Less than \(2 \%\) on single phase.
less than \(1 \%\) on three phase.
Exceedingly low harmonic content results directly from alternator design without use of filters.
Output Ranges
single phase-500 watts to 15 KVA
three phase- 500 watts to 30 KVA
poutputs up to 75 KVA available in other alternator designs.)
WHATEVER YOUR GROUND POWER SUPPLY REQUIREMENT:S
Ask American Electric for quotation
NOW! Ask for Details!
American Electric Auxiliary Airborne MISSILE POWER SUPPLIES

\section*{RIGHT ON TOP}

\section*{Burnell records a few of} it's most recent engineering achievements in Toroids and Filter Networks.

SIDE BAND FILTERS


Our most recent engineering achievement in communications filters has already stirred the interest of the leading receiver manufacturers in the country.

Our new side band filters which eliminate, for most applications, the necessity for expensive crystal filters are expected to accelerate the advancement of single side band communications.



\section*{Burnell \& Campany} YONKERS 2, NEW YORK

\section*{SUB MENIATURE TOROIDS}

Toroids for intermediate frequencies of 100 KC to 1 megacycle. \(\boldsymbol{A}\) wide variety of coils ranging in size from \(1 / 2\) inch provides high \(Q\) in the freauency range between audio and RF

The tiny toroid aboul the size of a dime has been welcomed by designers of sub miniatare electronic equipment tor the transistor, guided missile and printed circait field.
 available ... new standards and specifications Whew test and quality control procedures . . . Wheeler's 43 years of experience as magnet wire manufacturing specialists may be very helpful in deciding the best type of wire to use for your particular applications.

Wheeler, as a division of The Sperry Corporation, has developed an engineering staff exceptionally skilled in the magnet wire needs of precision electrical and electronic equipment. manufacturers, with special emphasis on the smaller wire sizes and close control of electrical specifications. Production-wise, our exceptional facilities carry through from raw copper wire to the finished, insulated and tested product ... under one roof and under one high standard of quality control every step of the way.

Your problems in Magnet Wire may safely be entrusted to our experts . . . whether standard or special . . . and including completed coils, transformers and other wire-wound components. We welcome your inquiries.


SEND FOR NEW MAGNET WIRE SHEETS


We will be glad to send you this practical engineering data tolder. Just giveus an outline of your standard or special needs.

MAKES THESE PRODUCTS A Spociaty
THE WHEELER INSULATED WIRECOMPANY, INC. Division of The Sperry Corp. - 1101 EAST AURORA ST., WATERBURY 20, CONN. 13WH53


In the position shown here, the capacitor in the fingers of the operctor is being discharged by the lowest electrodes on the slide. Where capacitance need not be checked, only the two lower pairs of electrodes on the slide are used
leaky or shorted unit gives a bright glow that is easily recognized by the operator. The charged unit is then slid down onto the third pair of electrodes for discharging through a resistance load.
In practice, a capacitor is moved from the top to the bottom of the slide in one steady motion. This permits testing at a production rate that can be as high as 50 per minute.

\section*{Interlocking Parts Trays}

Small trays made from galvanized sheet metal by Caribe Aircraft Radio Corp. of Coamo, Puerto Rico, are so designed that any desired number can be quickly locked together to hold the various parts


Method of locking trays together. Pieces of masking tape applied to front, bottom and rear end of tray serve as easily changed identifying labels for contents

\title{
Accurate Field Testing of X-Band Radars
}

\author{
WITH MICROLINE* TEST SET
}

ANID RANGE CALIBRATOR
Included in Sperry's complete line of Microline instruments are the 38A Test Set (TS 147B/UP) and the AN/UPM-11 Range Calibrator for the accurate testing of \(X\)-band radars. These equipments, of rugged design for field usage, can also be employed in laboratory and production testing.


MODEL 38A Test Set (TS 147 B UPd
This portable test set is suitahle for measurements on all radar, beacon or missile systems in the \(8500-9600 \mathrm{mc}\). range. It supplies microwave signals of known frequency and power, either continuous wave, frequency modulated or externally modulated. It also measures the power and frequency of external signals in the above frequency range. Model 38A contains a direct reading frequency meter, wattmeter and signal generator which allow the measurement of power and frequency of radar transmitters as well as receiver sensitivity, bandwidth, recovery time and AFC action. Tuning of the frequency meter is accomplished with both a direct and a 5 to 1 reduced drive mechanism for case of determining narrow pulsed signals as short as 0.2 microseconds.

\section*{SPECIFICATIONS:}

R-F Power Output: Adjustahle from -7 to -85 dbm (decibels relative to one milliwatt).
\(R\)-F Power Input: From +7 to +30 dbm .
Accuracy: \(\pm 1.5 \mathrm{db}\). A calibration chart is supplied.
Frequency Meter Accuracy: \(\pm 2.5 \mathrm{mc}\). absolute at \(25^{\circ} \mathrm{C}\) and \(60 \% \mathrm{RH}\). Calibration point \(9310 \pm 1.0 \mathrm{mc}\).

Our nearest district office will be happy to supply further information on these and other Microline instruments.


\section*{MODEL AN/UPM-11} RANGE CALIBRATOR
This instrument is used to test X-band fire-control radars which operate in the 8500-9600 mc. frequency band. It receives microwave signals from a radar and responds with accurately spaced pulses thereby providing a means of calibrating the radar range. It can also be used to boresight the antenna axis of any X-hand radar system.

\section*{SPECIFICATIONS:}

Range Markers: 200 to \(50,000 \mathrm{vds}\) depending on delay line Accuracy: \(\pm 5\) yards
Repeatability of readings (same radar system): \(\pm 1\) yard Tuning: Manual or AFC
*T. m. reg. u.s. pat. off.

\section*{SPFPRY omserer cauner}
great neck, new york - CLEVELAND - NEW OrLEANS • brooklyn • Los angeles • san francisco - seattle IN CANADA - SPERRY GYROSCOPE COMPANY OF CANADA, LIMITED, MONTREAL, QUEBEC
needed at a particular work position during production of small joblot quantities of electronic subassemblies.

The tray design, shown on the accompanying diagram, permits fabrication without need for soldering or riveting. After bending the cut-out sheet, the tray is ready for use. The locking cuts on the sides at the rear serve to lock adjacent trays together.


Pattern for self-locking nesting trays
1. Units are pre-heated for moisture removal.
2. Open transformer is inserted, in molds.
3. Ken-Seal is poured at room temperature.
4. Vacuum is created to impregnate filled molds.
5. Molds are removed from vacuum tanks and baked.
6. Unit is taken from molds and baked for final curing.

\section*{KEN-SEAL MOLDED TRANSFORMERS}

No matter what your transformer requirements may be contact Kenyon first. Our engineers will endeavor to show you how you can increase efficiency at low cost by choosing a transformer from the complete Kenyon line.

Kenyon Transformer Co., Inc., 840 Barry St., New York 59


\section*{giant Supermagnets}

Quinorgo Electrical Insulations are high dielectric, heat-resistant sheet materials made of purified asbestos for use on equipment up to 130 C . Available in tape and roll forms.

\title{

}

Protecting colls in giant C-H Supermagnets is difficult because of the neat generated by the tightly packed pancake coils. This problem is complicated by the need to utilize every bit of space to gain maximum lifting power. After experimenting with many insulating materials, including coatings, Cutler-Hammer chose Quinorgo No. 3000 for Supermagnet strap insulation.
Quinorgo fully meets the exacting requirements of Cutler-Hammer - as well as those of other wellknown electrical manufacturers. Quinorgo is a moderate priced, high-temperature insulation, for
use alone or in "composites." Available in two types with slightly different impregnation characteristics. Both types combine high dielectric and mechanical strengths, with uniform texture and caliper. They maintain these properties under operating temperatures up to 130 C .
Quinorgo Electrical Insulations may lower your production costs and improve product performance. For more information write for the 32 -page booklet "PYROLysis Protection Pays Well." (EL-40A) Johns-Manville, Box 60, New York 16, N. Y. In Canada, 199 Bay Street, Toronto 1, Ontario.


Cutler-Hammer's success with Quinorgo No. 3000 on giant Supermagnets led the company to use this insulation as a component of the series wound Type " M " magnetic brakes which are so widely known throughout the industry.


Let us quote on manufacturing your sub-assemblies. Use our complete production facilities for PRINTING ETCHING • PLATING • LAMINATING • FABRICATING - MACHINING • FORMING • ASSEMBLING • DIP SOLDERING - ENCAPSULATING . . . as well as DESIGN DEVELOPMENT • ENGINEERING • DRAFTING.

For full information call or torile

Pioneers in Cost-Cutting Printed Circuit Techniques

"Trade Mark


Dept. E-10, GLEN COVE, NEW YORK Glen Cove 4-4000 - Flushing 3-5050

BOSTON: 25 HUNTINGTON AVENUE - COpley 6.7705 CHICAGO: 4258 W. IRVING PARK RD. - PAlisades 5-1170 PHILAOELPHIA: 1531 SPRUCE STREET - KIngsley 5-1205 ROCHESTER, N. Y.: 3 JUNIPER STREET - CUIVER 7635 TORONTO, CAN.: 290 LAWRENCE AVE., W. - ORChard 3003


Method of extracting air from bag during packaging of control box for electronic equipment. Here the vacuum cleaner is mounted directly on top of the automatic heat sealer
plant of Cargo Packers, Inc.
The flat nozzle of an ordinary vacuum cleaner is inserted in one of the flaps of the moisture-proof wrapping material and left there throughout the sealing operation on the automatic sealing equipment. This removes air and moisture from within the bag.

Stamping Tubular Paper Capacitor Cases
Stamping of part numbers and capacitance ratings on metallized capacitors is accomplished rapidly on a jig used at Pyramid Electric Co.

A rubber-stamp holder slides on


Jig used for stamping ratings and type numbers on capacitors. Pressure of rubber stamp rotates capacitor as stamp is moved

\section*{How can GLOBAR volage SENSHITVE RESISTORS} out your product's cost...yet add to its reputation?

OUR ENGINEERS will be glad to show you, without obligation, how globar Ceramic Resistors can help you make a better product at less cost. Write, giving details of your problem, to The Carborundum Company, Dept. E 87.313, Niagara Falls, New York.

Engineering data on these and other important uses for globar Type bnr resistors ... in Bulletin GR-2. Write for your copy
\(\Rightarrow\) Many manufacturers count on GLOBAR type BNR voltage sensitive resistors to reduce surge voltages and contact arcing time - in both AC and DC circuits. Because their resistance decreases sharply as applied voltage is increased, BNR resistors:

Reduce surge voltage peaks from \(\mathbf{5 0 \%}\) to \(\mathbf{9 0 \%}\).
This feature permits use of lower voltage ratings in your components... saves product costs.

Reduce contact arcing time up to \(\mathbf{9 5 \%}\). By drastically limiting the duration of arcing after a circuit break, contacts last much longer. . . with less pitting, less sticking. Cuts maintenance costs for your customer, helps give your product a better reputation.

Used in low voltage devices, BNR resistors also substantially reduce radiations which interfere with radio and television receivers.


GLOBAR Type BNR resistors are built for long life. They withstand repeated high voltage stresses without danger of sudden failure. They are manufactured in both cylindrical and disc shapes ... to meet your exact circuit and engineering requirements.

\section*{GLOBAR' Ceramic Resistors}

CONVENTIONAL - TEMPERATURE SENSITIVE - VOLTAGE SENSITIVE byCARBORUNDUM

\section*{D.C. to 5-MEGACYCLE SCOPE}

\section*{model}

OA-16

\section*{for}

\author{
MEASUREMENTS OVER \\ WIDE RANGES
}


\section*{Self-cantained ... Calibrated ...}

\section*{D.C. "BUCK-OUT" VOLTAGE}
permits HIGH GAIN examination of small
D.C. level shifts and hard-to-see
A.C. COMPONENTS


The above photograph shaws a 5 -volt peak-to-peak signal at a D.C. level of 400 volts. By bucking out the 400 -volt component, high gain can be used to give a large image for detailed study. With such a presentation, a D.C. level shift of as little as \(0.25 \%\) is readily observable.
- 5X sweep expansion
- Trace position stability
- Broadband X axis amplifier
- Accurate \(X\) and \(Y\) axis calibrations
- Triggered or recurrent sweeps

MODEL OA-16
OSCILLOSYNCHROSCOPE

\section*{\({ }^{5} 745^{\circ 0}\)}
f.o.b. Winchester

Write for detailed literature

\section*{SPECIFICATIONS}
- Vertical amplifier - D.C. to 5 megacycles - \(.08 \mu \mathrm{sec}\) rise time - sensitivity 50 millivolts peak-to-peak/inch signal delay line.
- D.C. "buckout" voltage up to 600 volts depending on vertical attenuator setting.
- Triggered or recurrent sweeps - 10 seconds total sweep time to 0.4 micro. seconds per centimeter.
- 5 X sweep expansion.
- Horizontal amplifier - D.C. to 1 megacycle - sensitivity 120 millivolts peak-to-peak/ inch.
- Regulated plate and heater supplies for best trace stability.
- Flat-faced 5" cathode-ray tube. Deflection plates brought out for direct connections.
- Vertical deflection calibration accuracy \(5 \%\). Sweep calibration accuracy \(10 \%\).
- Blower cooling.
- Edgelighted rule screen.


Springs on edges of rack prevent capacitors from coming in contact with each other while varnish coating is drying
two rods projecting from a metal frame. The capacitor is placed on two pairs of rotating disks beneath the stamp-pad guides. When slid down the track toward the frame, the rubber stamp rotates and imprints the capacitor.

A screw and locknut at each end of the frame permit raising or lowering of guide rods to accomodate various sizes of capacitors.

After stamping, the capacitor markings are coated with varnish. To keep the units from touching each other while the varnish is still wet, a rack is used having a coil spring stretched along each side and one in the center. When placed in the rack, the leads of the capacitors lay within the turns of the spring.

Tuner Shaft-Centering Jig InStallation of uhf tuners in cabinets is expedited by slipping a tapered wood jig over the tuner shaft from the front of the cabinet after placing the tuner in position;


Shaft-centering jig which can be turned down from a piece of broom handle

- An assembly with 14 cancentric, hard silver rings electro deposited into machined plastic blank. Dovetail locks rings in place. Machined blank insures accuracy. Diameter approx. 11", thickness opprox. 5/16".

Hy assembly with 30 rings of various widths to accommodate various current requirements. Unit is approx. 4.5/16" lang, designed for flange mounting.
- Cylinder type assembly opprox. \(33 / 4^{\prime \prime}\) long with 24 hard silver rings. \(15 / s^{\prime \prime}\) O.D. with wall thickness less thon \(1 / 4^{\prime \prime}\).
*PATENTS PENDING
- Cylir dical assembly with 25 rings. Ttree wide r ms accommo. date lage contact oreal orushes for nigh curre 1 copacit. Length " 4 ", O.D. afp ox. \(5 \% /{ }^{\prime \prime}\)


ELECTRO TEC is now tooled up, with new expanded facilities for production of large Slip Ring Assemblies to exact customer specification. Sizes range up to \(24^{\prime \prime}\) in diameter, either cylindrical or disc type.
The exclusive ELECTRO TEC PROCESS*-the electro-deposition of hard silver rings into an accurately machined plastic blank-consistently yields a high degree of dimensional accuracy, excellent concentricity, and a jewel-like ring finish. This process also eliminates expensive tooling and mold charges, frequently lowers costs to \(30 \%\) of other methods of manufacture. The silver rings are uniformly hard for long life-75-90 Brinell.
ELECTRO TEC one-piece construction precludes dimensional variation due to accumulated errors. The plastic base is fully cured before rings are plated into it, thus preventing separation of base material from the rings.
ELECTRO TEC LARGE SLIP RING Assemblies are widely used in Radar Equipment, Fire Control Systems, Test Tables and many other critical applications. Light weight combined with rugged durability recommends their use in airborne applications.
Every user knows the ELECTRO TEC reputation for quality and superiority in miniature and sub-miniature slip ring assemblies.

Our Engineering Departmert is ovailable for consultation on any of your slip ring problems without obligation.

\section*{MARKE}

\section*{IDENTIFICATION MARKING} FOR CONTRACT AND OVERSEAS PACKING


In contract and export packing of parts, assemblies, etc., certain JAN specifications call for three packaging stages: (1) enclosure in scrimback or polyethylene lined heat sealing envelope, (2) intermediate packing in a folding box, (3) final packing in corrugated carton. Each of these three types of containers must be marked for instant and permanent identification. Many manufacturers, dissatisfied with conventional marking with crayon, stencil, labeling or other form of hand stamping, have not only found great savings in time and money, but also obtained more legible, longer lasting identification using a Markem Method. One Markem machine (with appropriate Markem type and Markem ink) prints desired information on all three containers. The vapor barrier of the envelope is not broken. Desired information is changed rapidly. By printing quantities of containers as and when needed, inventory problems are minimized. In this way, the Markem Method insures positive identification when the items reach their destination.


CAN MARKEM Identification printing for contract and overseas packaging is but an example of how Markem solves industry's marking problems. Markem has been providing industry with production techniques and HELP YOU? tify, decorate or designate its products, parts and equipment to identi. Markem also provides technically trained men packages savailable in your area to assure continued satisfaction with Markem methods and equipment.
When you have a marking problem, tell us about it and send a sample of the item to be marked. Perhaps a complete Markem Method has already been developed to solve your problem. If not, Markem will work out a practical solution.

Markem Machine Company, Keene 5, N. H., U.S.A.

when the jig is pushed into the cabinet hole, the shaft is precisely centered. The jig leaves both hands free for tightening the mounting screws. The idea is the suggestion of Parke M. Good of Lancaster, Pa., and received a Philco Idea Award.

\section*{Bending Tiny Leads in Ceramic Molds}

LEADS of components for subminiature subassemblies are precisionbent on specially designed ceramic


Examples of ceramic molds used for preforming leads of small parts. Hooks at ends are formed around steel pins embedded in the molds. Where pins are at right angles as in botiom mold, one is made movable and spring-loaded so it can be retracted to remove finished componenl after bending

\title{
For Alive Applications
}

\section*{Triplet 630-A Has No Counterpart}

with a Mirror-Scale


Try This Volt-0hm-Mil-Ammeter


J
Speeding Electronic Progress


This new JK G-12 is designed for ultra stable frequency control in applications such as frequency standards, timing and counting circuits, broadcast equipment and frequency monitors. Electrodes are deposited directly on the large, precisionmade quartz plate shockmounted in an evacuated glass envelope. Frequency range 500 kc to 1500 kc . Crystal may be desined for a minimum temperature coefficient of from \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\) or for tempercture controlled operation at \(60^{\circ} \mathrm{C}\) with a JKO7E-115V Oven. Approximate height above chassis, \(23 / 4^{\prime \prime}\). Maximum diameter of octal base, \(13 / 4^{\prime \prime}\). Consult us on specific applications.

JK STABILIEED G-12 CRYSTAL
For the "Difficult" 500 kc to 1500 kc Range

\section*{Tomorrow's Crystals}

molds in Raytheon's Brighton, Mass. plant. The leads then fall automatically into the correct positions for soldering when assembly workers place them inside a crowded chassis with tweezers. Preforming of leads in this manner eliminates the necessity of providing room for inserting pliers or fingers, and thus reduces the overall size of the product.

Ceramic molds were used for preforming because they could be duplicated in any quantity once the master was made. Individual machining of the required curved molds from steel would have proved much more costly. Each mold is cemented on a metal plate which in turn is fastened to an appropriately labeled plastic base.


Example of subassembly requiring pre. formed leads on miniature components. This discriminator transformer is assembled with tweezers, needle nose pliers, soldering pencils and additional special tools

\section*{Knob Springs Installed With Arbor Press}

Although insertion of springs in television receiver tuning knobs is a relatively simple operation, repetition of this task hour after hour results in operator fatigue and a sore thumb. Changeover to an arbor press simplifies the operation, improving operator morale, speeding output and reducing rejects.

A fixture was made for the base of the press to hold the front face of the knob securely without scratching it. The operator places a knob in this fixture, drops at spring into the hole with her left


You can get rod or drawn bar of Chase FreeCutting Brass, Copper or a wide variety of other copper alloys at one stop - the Chase Warehouse nearest you!

When you want free-cutting materials, it pays to buy Chase - for Chase rod and drawn bar yield the shorter chips that make for easier machining, longer tool life. They produce smooth, clean-surfaced products - less expensive to buff or polish before lacquering, enameling or plating.

And when it comes to re-ordering, remember that Chase alloys are uniform - repeat orders of the same alloy always have the same cutting characteristics.
\begin{tabular}{|c|c|c|c|c|}
\hline Albany \(\dagger\) & Cleveland & Xansas City, Mo. & Naw York & San francisce \\
\hline Atlanta & Oailas & Los Angeles & Philadalohia & atl \\
\hline Baltimore & Danver \(\dagger\) & Milwauke & Pittsburgh & Waterbury \\
\hline Boston & Detroit & Minneapol's & Providence & \\
\hline Chicago & Houston & Newark & Rochester \(\dagger\) & †tsal \\
\hline Cincinnăti & Indianapolis & New Orieans & St. Louis & offict only) \\
\hline
\end{tabular}

\section*{ATTENUATION \\ }

IN NEW SHIELDEDENCLOSURE

\section*{Air-Conditioned • Portable • Weatherproof}

Now! Attenuation of radio frequency energy higher than ever before . . . attenuation over the widest frequency range . . . attenuation beyond measure over 1 mc with present instruments.

All this becomes reality in the new RFI Shielded Enclosure. Built of heavy copper sheet panelssolid floors, solid walls, solid ceil-ings-this new enclosure shuts r-f interference in or out more effectively than any other type of structure. The reason? Patented Lindsay Construction-in which solid cop-

per panels are joined at rigid, copper-plated steel channels and tightly bolted together. Tensioners at the seams, further serve to stop any interference that might find its way through the almost leak-proof channel and panel joints.
The result is a revolutionary advancement in shielding effectiveness. An independent laboratory conservatively plotted it for 100 dh from .15 mc to 1000 mc .


This unique construction also offers you the greatest strength-toweight ratio. Superior rigidity enables you to mount the enclosure on a truck as a mobile unit. Or, carry it to a testing station. Unload it. And later move it to another location, all without disassembling.

Weatherproofed, RFI Shielded Enclosurescan withstand the rigors of climates hot or cold, damp or dry. For warmer climates, they can be air-conditioned with units of any size.


Actually there's no end to the many advantages you'll find in this new type of shielded enclosure. Bulletin No. 2 gives most of the details. Write, wire, or phone for your copy now!


3634 N. Lawrence Street - Philadelphia 40, Pa. - Phone: REgent 9-2537


Using arbor press to force spring into turing knob
hand, ther operates the lever of the press with her right hand to drive the pin home. The end of the moving arbor is appropriately machined to do this withont damaging the plastic knob.

\section*{Testing High-Voltage Power Supplies}

Power supplies used to provide the accelerating potentials for four different types of Tektronix cath-ode-ray oseilloscopes are produc-tion-tested with a single compact


Power supply tester in use at Portland. Oregon plani of Tektronix, Ine. Unit at right has its own leads. Unit at left has only terminals hence clip leads were attached to these for the test. Daly one unit is tested at a time

\title{
the new CCIE oscilloscope (type 104) performs the functions of several types
}


By using interchangeable
D. C. Amplifier and Time Base Units, one CAE Oscilloscope performs the operations of several different types of oscilloscopes resulting in a considerable saving in capital expenditure.

Highly functional, it is constructed on the unitized principle and its unique system of controls makes it simple to operate with highly accurate results.

\section*{the CPIe}

Oscilloscope (TYPE 104)
INTERCHANGEABLE AMPLIFIERS provide suitable combinations of-
- wide band, from D.C. up to \(10 \mathrm{MC} / \mathrm{S}\)
- rise time down to 0.05 micro-seconds
- voltage gain up 10500,000
- inherent noise as low as 1 micro-volt

\section*{INTERCHANGEABLE} TIME BASE UNITS provide suitable combinations of-
- sweep velocity \(10 \mathrm{~cm} /\) micro-seconds to \(5 \mathrm{~cm} /\) seconds
- triggered or continuous sweeps
- automatic synchronization
- linearity \(1 \%\)
- voltage, frequency and time calibration accuracy \(2 \%\)

\section*{Ask for Bulletin No. SIE-30101}

\section*{Canadian ©iation Clectronics, Ltd.}

8280 St. Lawrence Boulevard, Montreal
Toronto
Winnipeg
- Vancouver

For complete details of CAE Oscilloscope, Type 104, call or write the CAE office nearest you.


Handiest selector you ever saw!
Simplifies your job; saves time, speeds choice of right fastener. Easy to read, easy to use, handsomely lithographed in red, white and blue. Shows various tubular and split rivets, part catalog number, normal clinch allowance, size of clearance hole in work and other details to aid your product manufacturing. Sturdily riveted together for lasting use. Write for yours today!

\section*{}

The name to RIVET in your memory for fasteners.
THE MILFORD RIVET \& MACHINE COMPANY
855 BRIDGEPORT AVENUE, MILFORD, CONNECTICUT
806 ILLINOIS AVENUE, AURORA, ILLINOIS
1106 WEST RIVER STREET, ELYRIA, OHIO
26 PLATT STREET, HATBORO, PENNSYLVANIA
715 SO. PALM AVENUE, ALHAMBRA, CALIFORNIA


Closeup of tester, showing how four different types of power supplies for cathode-ray oscilloscopes are connected to the test positions. Meter at left reads output kilovoltage, and meter at right reads average oscillator current
test set having quick connectors. In practice, only one of the four test positions is used at ayme, for checking a production run of one particular unit.

When changing to a different unit, the meters are switched to a different set of clips and the controls are reset for the required new test voltages and current ranges. Even though possible, testing of different units one after another would be confusing to the operator because each unit has different output voltages and loads the oscillators differently.

Use of Grayhill No. 2-0 panel mount test clips contributes to the high testing speed of less than one minute per unit.

Some or all of the oscillator circuit components are mounted on the high-voltage unit. These are connected into the tester's oscillator tube circuit when the unit is being tested. Plate, screen and bias voltages are provided by the tester. Rectifier filament voltage for each high-voltage unit is supplied from a winding on its own transformer. Measurements are made of positive and negative d-c output voltages and average oscillator current.

\section*{Air-Operated Pot Jig}

In SUBASSEMBLY work involving assembly and soldering of leads and small parts on combination volume controls and on-off switches for a-m radios, an air-operated diaphragm is used to hold seven controls at a time in a wood jig.

A flip of the foot pedal opens the


\section*{Federal Telephone and Radio Companu}

SELENIUM-INTELIN DEPARTMENT • 100 KINGSLAND ROAD, CLIFTON, N. J.

\footnotetext{
In Canada: Federal Electric Manufacturing Company, Ltd., Montreal, P, Q.
Export Distributors: International Standard Electric Corp., 67 Broad St., N. Y.
}


Also available 60 cycle types.

All military specifications met. Liberal safety factors to meet emergency conditions.


\section*{EXAMPLES:}

Frequency tolerance \(0-500 \mathrm{cps}\).
Coil Voltage Tolerance:
\(+30 \%-20 \%\)
Noise level 200 microvolts.

\title{
remenct Trmane \\ \\ DESIGNED AS A
} \\ \\ DESIGNED AS A
}

The Type 2001-2 series provides frequencies from 30 to 30,000 cycles with an accuracy of \(.001 \%\) (at room temperatures) in units suitable for integration with instruments of your own design - or for panel rack mounting with your own power sources - or for


WHICH WILL MEET YOUR

\section*{CUSTOM NEEDS}

FROM A COMBINATION OF STOCK UNITS

TYPICAL COMBINATIONS
2001-2 2001-2 +M
\(2001-2+L \quad 2001.2+M+P\)
\(2001-2+L+P \quad 2001.2+L+P+R\)
\(2001.2+\mathrm{H} \quad 2001-2+\mathrm{H}+\mathrm{P}+\mathrm{R}\)
\(2001.2+H+P \quad 2001-2+M+P+R\)

\section*{TYPE "2001-2"}

FREQUENCY STANDARD
Frequencies, 200 to 3,000 cycles. Output, approximate sine wave at 5 volts.

\section*{ACCESSORY UNITS}

"'L" UNIT.
DIVIDER, (MULTI-VIBRATOR TYPE)
Provides frequencies from 30 to 200 , controlled by the 2001-2 unit.
Output, approx. 5V. Approx. sine wave.
"D" UNIT.
DIVIDER, (COUNTER TYPE)
Provides 40 to 200 cycles controlled by the 2001-2 unit. (fail safe)
"H" UNIT MULTIPLIER
Provides frequencies from 3,000 to 30,000 cycles, controlled by the 2001-2 unit. Output, approximately 5 volts.

'M' UNIT
AMPLIFIER
Provides 2 watts at 6 and 110 volts.
"P" UNIT
POWER SUPPLY
Provides power for combinations of units illustrated, if other sources are in. convenient or not available.

"R" UNIT
PANEL MOUNTING
Accommodates up to three units. Standard size is \(83 / 4\) inches high, 19 inches long.

For details, please request our "Type 2001-2" Booklet.

\title{
American Time Products, Inc.
}

\section*{580 Fifth Avenue}

New York 36, N. Y.
OPERATING UNDER PATENTS OF WESTERN ELECTRIC COMPANY

\section*{NEW PRODUCTS}

\author{
Edited by WILLIAM P. O'BRIEN
}

Control. Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered . . . Fifty-Eight Trade Bulletins Reviewed


\section*{SELENIUM RECTIFIERS are glass-encased}

Bradley Laboratories, Inc., New Haven, Conn., is producing a new series of glass-encased high-voltage selenium rectifiers, dubbed the SE6L. It is hermetically sealed in a \(\frac{3}{8}\)-in. diameter high-strength glass (pyrex) tube which has fewer high-voltage installation problems than the metal tube with glass-to-metal sealed end caps. The units are rated 1.5 milliamperes d-c and have maximum peak inverse ratings up to 6,000 volts. They meet government requirements for highvoltage hermetically sealed rectiflers.


\section*{POWER SUPPLY for circuit analyzers}

Lee Electronic Labs., Inc., 233 Dudley St., Boston 19, Mass., have developed a new miniature electronic power supply, model PS-1 for use with their model E-C or

E-A circuit analyzers. The new unit provides both a-c and d-c test voltages, permitting an extremely wide range of resistance and continuity tests and increases the sensitivity of the aforementioned models to over 200 megohms. It features a miniature selenium rectifier and dual-capacitor R-C filter network in a special circuit, which permits testing of capacitors for leakage with actual d-c voltages applied and quick indication of intermittently open capacitors with a-c applied. It will withstand direct short and all output terminals may be safely grounded without damage.


\section*{TRANSDUCERS of the potentiometer type}

Rahm Instruments Inc., 12 W . Broadway, New York 7, N. Y. The \(S\) series potentiometer pressure transducers include a number of instruments in the 0 to 5 and 0 to 30 -psi range for the measurement of gage, differential or absolute pressure. The brush of a precision potentiometer is actuated by a change in pressure to produce a change in resistance-ratio or voltage. Small size is effected without sacrifice of resolution or linearity. All instruments in this series weigh 0.43 lb and are 2 in . in

OTHER DEPARTMENTS
featured in this issue:

\section*{Page}

Electrons at Work....... 198
Production Techniques . 258
Plants and People ...... 382
New Books .............. 436
Băcktalk ..................451
length and \(2{ }^{2}\) in. in diameter. Instruments for operation to 285 \(C\) are available. Standard units for operation at normal ambient temperatures can be fluid filled.


\section*{MAGNETIC RECORDER with slanted top design}

Ampex Electric Corp., \(934^{\circ}\) Charter St., Redwood City, Calif. Model 350 magnetic recorder for professional and semiprofessional use features a new cabinet design. Sloped at a \(30-\mathrm{deg}\) angle, the tape transport mechanism is within easy reach of an operator, sitting or standing. The electronic control panel, also slanted, is just in front of the tape transport. Since all operative units are contained in the upper portion of the console, the machine may be placed on a desk or table if the user does not desire to use the base which is furnished. Pushbutton control permits rapid shuttling between fast forward and rewind, facilitating rapid editing. A two-speed machine, it may be ob-

\title{
IMPROVED ELECTRONIC COMPONENTS FROM SYLVANIA
}

C YLVAnia's complete line of electronic components S now includes tube sockets, shields, plugs and con nectors . . either standard or precision-made to your own specifications
The tube socket line inchudes both molded and laminated types, supplied for either top or bottom mounting, a vide variety of saddles and with or without center shield and ground connections. Brass, phosphor bromze or beryllimin copper contacts are
either cadmium or silver plated. Socket insulators inchude general purpose phenolic, low-loss phenolic, ceramic or NEMA grade laminated phenolic.
Sylvania plugs and comectors are offered to meet every electronic designer's need.

For complete information on any of Sylvania's quality electronic components, write today to: Sylvania Electric Products Inc., Dept. BA-10I0, 17.40 Broad way, New York 19, N. Y

tained to operate at \(3^{3}\) and \(7 \frac{1}{3} \mathrm{ips}\), or at \(7 \frac{1}{4}\) and 15 ips . Frequency response to \(15,000 \mathrm{cps}\) is avatilable at both the \(7 \frac{1}{3}\) and \(15-\mathrm{in}\). speeds. At the \(3^{3}-\mathrm{in}\). speed, response is flat from 50 to \(7,500 \mathrm{cps}\).


\section*{IGNITRON}

\section*{for a-c control use}

National Electronics, Inc., Geneva, Ill., has added a new class-B ignitron to its line of industrial tubes. The NL-5551 is a metal, water-cooled, mercury-pool tube designed especially for welder control and similar a-c control applications. Its rating is approximately equivalent to a 300 -ampere magnetic contactor. The tube is a strong, compact design of stainless steel, seam-welded construction. The mercury-pool cathode permits the tube to handle extremely high currents on an intermittent basis.


\section*{COIL WINDER features dual head}

British Industries Corp., 164 Duane St., New York 13, N. Y., has added a new AVO coil winding machine to the more than 30 models
already available in the U.S. The Douglas and Matcadie dual-head coil winder is designed for the winding of coils where the setup time is long compared to the actual winding time. While one coil is being wound, the other can be finished and replaced by a new bobbin ready to start another coil. This durable high-speed production machine features a predetermined revolution counter, magnetic clutch for positive control, lead-screw traverse, easily changed gears for quick setup, micrometer traverse adjustment, foot control and tension devices of an advanced design. One of the operating features of the coil winder is a rapid change of direction of the traverse at the end of each layer: This prevents any risk of the wire piling up against the cheeks of the coil. The winder will handle round, square or rectangular coils from 量 in . to 4 in . in length and up to 2 i in. diameter or diagonal. It will handle wires from 47 gage to 26 grage.


\section*{TAPE RECORDER is self-contained unit}

Presto Co., Paramus, N. J. Model RC-11 is a tape-transport mechanism of almost absolute accuracy, with separate heads for recording, playback and tape erasing. Built on a unitized construction principle it employs a capstan drive unit containing a precision motor, endless nylon belt, brass flywheel, capstan shaft, pressure pulley and solenoid. The entire unit is self-contained and instantly removable for maintenance or replacement. It accommodates reels up to \(10 \frac{2}{2}\)-in. diameter and will record at \(7 \frac{1}{2}\) or 15 in .
per second. Brakes and capstan pressure pulley are actuated by solenoids, making the unit ideal for remote control.


\section*{SOLDERING IRON} is extremely lightweight
The Lenk Mfg. Co., 30-38 Cummington St., Boston 15, Mass., announces a new pencil-type electric soldering iron for industrial, professional and hobby use. The tool weighs 2 oz and is available in two popular wattage ratings- 25 w and 40 w . The handle is made of plastic ; the tip is \(\frac{1}{} \mathrm{in}\). in diameter; and the unit measures 7 in. overall. It is especially recommended for soldering electronic components, precision instruments, radio and tv parts on a continuous speedy pro-duction-line basis. Outstanding feature is light weight and perfect balance-both of which materially reduce worker fatigue.


\section*{CROSSBAR SWITCH} adaptable to many uses
.James Cunningham, Son \& Co., Inc., Rochester 8, N. Y., has announced a new type of crossbar switch adaptable to a wide range of uses in multiple switching of audio and video circuits, in computer systems and many other applications. The switch is especially distinguished by its ability to handle high frequencies, its extremely low

\section*{Now...The Most Compact and Only Complete VOR System \\ }

\section*{SPECIFICATIONS:}

Frequency Range: 112 to 118 megacycles
Frequency Control: Crystal accuracy \(0.001 \%\); crystal frequency 12.4444 to 13.1 MC .

Power Oufput 200 watts; power in sidebands 25 watts.

Modulation: Speech \(30 \% \mathrm{AM}\); Identification Code, \(10 \%\) AM at 1020 cycles; Reference Signal, 10 KC subcarrier at \(30 \%\); frequency modulated \(\pm 480\) cycles at 30 cycle rate. Equipment is capable of \(85 \%\) modulation.

Power Requirements: 230 volis, 60 cycles single phase, maximum demand 6 kilowatts, normal demand 4 kilowatts, power factor approx. \(85 \%\).

Total Weight: 2250 pounds less antenna equipment.

\section*{Another Lavoie First}

Lavoie, and only Lavoie, manufactures a complete VOR System for short range aircraft navigation. By its use, accurate course, bearing and position are easily determined.

As perfected by Lavoie Laboratories, Inc., two fields are radiated by the system. One rotates at 30 revolutions per second; the other carries a reference 30 cycle signal in all directions. Only one small control panel in the control tower console, plus an extremely compact amplifier monitor are all that are required for complete, efficient transmitter control. The transmitter itself may be located up to 30 miles from the tower. All control functions, including voice modulation from the tower, are handled by one telephone pair.

Built to military standards of ruggedness and precision, the Lavoie VHF Omni Range system may be used with maximum efficiency in any part of the world. A mobile unit is also available.

We shall be glad to give you complete details on this unique, compact, thoroughly reliable Omnidirectional Radio Range System.

crosstalk level, its rapid operation and its compactness. It is available with 4 or 10 link levels, and either 10 or 25 line levels. Each circuit may have up to 3 conductors. Excellent transmission is achieved at frequencies as high as 70 mc . Bridging capacitance between adjacent conductors is 15 u.f. Crosstalk level between two circuits with common ground, and adjacent in both line and link levels, is down more than 65 db at 10 mc . The unit is particularly suitable for application to tv circuits for studio or master control, monitoring or other purposes. Computers, lab test apparatus, radar monitoring equipment and other devices requiring multiple switching in complex patterns and at high frequencies, also are uses to which the crossbar switch can be applied.


\section*{METER}

\section*{measures phase shift}

Industrial Test Equipment Co., 55 E. 11th St., New York 3, N. Y. Model 200A Phazor phasemeter readily permits accurate phaseshift measurements even though the input signal is complicated by noise and harmonic voltages. The device is extremely useful in the measurement of phase shift in transformers, amplifiers, filters and phase-displacement networks. It can also be employed to measure either in-phase or quadrature voltage components. Self-calibrating action assures high accuracy. It measures 0 to 360 deg. Readings are not affected by noise and harmonics. Some other features are high sensitivity, broad frequency range, high input impedance, wide input voltage range and electronic limiting to prevent instrument


The ceramics with the "million dollar" body! Even the body is made by C-D, in the newest, most modern ceramic body plant in the world. You'll be as thoroughly "sold" on C-D ceramics as you are on C-D Dykanols*, micas and electrolytics. Write for Engineering Bulletins to: Dept.K-103, General Offices, Cornell-Dubilier Electric Corp., South Plainfield, New Jersey.

\section*{CORNELL-DUBILIER}
world's largest manufacturers of capacitors


rotators


CAPACITORS

vierators

cunverters


\section*{TYPE 756-}

\section*{Fairchild's latest single-turn PRECISION POTENTIOMETER}

\section*{Gives you all these advantages...}

1Extremely low noise level and longer life with sustained high accuracy result from improved windings and wiper design. These improvements also permit higher rotational speeds with minimum of wear.
2 Higher resolution ( \(0.05 \%\) at 2,000 turns) and close functional tolerances (linear \(\pm 0.25 \%\); non-linear \(0.35 \%\) with \(3: 1\) slope ratio in higl resistance ranges) give higher point-to-point tracking qualities.
3 Standard electrical functional angle is 320 deg. nominal with ORV tolerance of \(\pm 5 \%\) in resistance range from 800 to 40,000 ohns. Electrical functional angle of 350 deg. nominal with ORV tolerance of \(\pm 3 \%\) in resistance ranges of 50 to 45,000 ohms can be supplied on special order.
4 Greater Hexibility - For non-linear functions as many as 13 taps can be provided by adding extra terminal boards.
5
All the desirable qualities of the well-known Type 746 unit, including easy and more accurate phasing, ganging up to 20 units on a single slaaft, all-metal precision-machined housing and shaft, low torque, etc., are included in the Type 756.
Full information alout the ontire line of Fairchild Precision Potentiometers, including specifications of the Type 756 unit and how we can help solve your potentiometer problems, is available for the asking. Write to Potentiometer Division, Fairchild Camera and Instrument Corporation, Park Avenue, Hicksville, Long Island, New York, Department 140-39A 2.

NEW PRODUCTS
(continued)
overload. Dimensions are 9 in. high \(\times 15 \mathrm{in}\). wide \(\times 8 \mathrm{in}\). deep.


\section*{DECADE INDUCTOR with toroidal construction}

Torocoil Co., 1374 Mobile Court, St. Louis 10, Mo., has available a line of decade inductors that are particularly adaptable to design problems involving the need for precision, high-Q inductors such as wave filters, tuned circuits, and elements in oscillators and analyzers, where the advantage of a simple method for component substitution can be obtained over a wide range. The four basic decade steps: 1 to \(10 \mathrm{mh}, 10\) to 100 mh , 100 to \(1,000 \mathrm{mh}\) and 1 to 10 henrys, are available as single units. Each range is encased in a heavy drawn metal container which protects it at all times from possible damage, and at the same time acts as an efficient electrostatic shield.


\section*{NOISE DETECTOR has audio-video features}

Anco Instrument Division, American Name Plate \& Mfg. Co., 4254 W. Aithington St., Chicago 24, Ill., has introduced the Elec-Detec

\section*{G-E Photoelectric Relays Sort, Count, Signal - Automatically}


ELECTRONIC TIMER CR7504-A142


Handles timing over three ranges. .06-1.2, .6-12, 6-120 seconds. Highly accurate, versatile. Bulletin GEA-5255.

\section*{ELECTRONIC RELAY CR7511-A126G2}

A versatile new relay which oper ates wherever there is sufficient change in circuit resistance. Bulletin GEA-5893.

\section*{CR7505-K100}

Simple, Inexpensive, Dependable
Ideal for applications not requiring extreme accuracy or extra high speeds, the K 100 can relieve costly personnel for more productive jobs. A good example is the application at left, where this relay is being used to operate a counter on a conveyor line. The K 100 is furnished in a sturdy NEMA Type I enclosure. Bulletin GEA-3533D.

\section*{CR7505-K201}

\section*{High-quality, General-purpose Relay}

The K201 photoelectric relay, shown at left counting small cans on a highspeed conveyor line, offers sufficient sensitivity and operating speed for most applications.

The K201 is available in either weather-resistant and dust-tight (NEMA III and V) or explosion-proof (NEMA VII) or water-tight (NEMA V). Bulletin GEA-5920.

\section*{CR7505-N210}

High Speed, High Sensitivity
The N 210 relay is an extremely sensitive device designed for operation at very high speeds.

In the example shown here, it is used on a conveyor to separate cans according to markings. It can also be used to sort unlabeled cans from correctly labeled ones. Available in same enclosure types as K201. Bulletin GEA-5921.


\section*{SPECIFICATIONS}

\section*{Maximum operating speed:}

K100: 150 per minute
K201: 450 per minute
N210: 600 per minute

\section*{Maximum operałing distance:}

K100: 30 feet
K201: 70 feet
N210: 210 feet

\section*{Sensitivity*:}
(Minimum light intensity at phototube for successful operation) K100: 40 fc .
K 201 : 3 fc .
N210: 1 fc
* Depending on combination selected.

\section*{High contact rating}

Can start f-hp motors directly, and operates all a-c motor starters through NEMA Size 4, without additional relay. Meets all NEMA standards.

\section*{Forging Stronger Links}

\section*{in Microwave Relay}

\section*{OTAN STANDBY ELECTRIC PLANTS}

\section*{New 5CW \\ 5,000 watts A.C. \\ Air-cooled gasoline powered}
- COMPACT-Toke less thon one cubic yord of spoce. Eosier to install. Connection box provided for quick hook-up.
- UNI-DUCT COOLING-Cooling oir is drown by vocuum through generator and over engine. All heated air is ex. pelled through one small vent which also discharges engine exhoust. Quiet operoting.
- BUILT FOR HEAVY DUTY-Smoothrunning, twin-cylinder, horizontollyopposed, 4-cycle cir-cooled engines deliver Unusually lorge bearing sur. foces for long life.
- DE LUXE EQUIPMENT-Nothing extro to buy. Impulse-coupled, high-tension mogneto, radio shielded. Oil-bath air cleoner, fuel filter, oil pressure gouge, fuel tonk, muffler and exhoust tubing. All heoted and moving ports sofely enclosed.

Microwave transmission is only as dependable as each of its relay links. If one repeater station cannot operate, messages do not get through.
To assure electric power for transmission, hundreds of microwave relay stations across the country are equipped with Onan Standby Electric Plants. When central station power is interrupted, the Onan plant starts automatically, supplies power for as long as the emergency lasts, then stops automatically. Controls are available to provide a time interval between power interruption and starting.

Onan Standby Electric Plants have been proved indispensable in installations serving oil and gas pipelines, utilities, railroads, TV networks, police and other government law enforcement departments.
If you have a problem in standby power for microwave radio, or any application, write our sales engineers. Onan Standby Electric Plants range from 1,000 to 35,000 watts.
model V, a portable electronic instrument designed for locating noise sources in all types of mechanical equipment. The unit includes a milliammeter for checking sound impulses visually, in addition to the standard headphones for audible operation. The accurate performance of the new video unit is assured by the use of a highly stable germanium crystal diode in the circuit. This crystal serves to rectify the current to record the electrical impulses accurately on the d-c milliammeter, and to provide the wide frequency response required.


\section*{ADHESIVE MARKERS simplify identification}

The Northshore Nameplate Co., Glenwood Landing, L. I., N. Y., announces a new line of Speedy Marx identification markers. Using an adhesive stock, these markers can be supplied in easy-to-read type styles, resulting in a simple and permanent marker for wire, transmission cable and other electronic products. Standard cards are available in black-and-white or in any regular NEMA colors. Special coating cards in any size, color or design are also available.

\section*{TV ANTENNA designed for fringe areas}

Wells \& Winegard, Television Accessory Mrg., Burlington, Iowa,


\section*{CONVAIR}

Consolidated Vultee Aircraft Corporation is one of the many famous manufacturers who consistently use nationally-known KAY-LAB PRECISE ELECTRONIC INSTRUMENTS.

\section*{KAY-LAB ABSOLUTE} D. C. POWER SUPPLIES These units are absolute sources of D.C. voltage independent of output load and line voltage variations. The output voltage is constontly compared against the internal standard sell and thus, absolute calibration and stability with reference to the cell is insured.

SPECIFICATIONS:
Long Time Driff Stability: . \(01 \%\) Output Voltage Calibration: to . \(01 \%\) Output Impedance : 0.1 hm
Output hum and naise: Under 1 millivalt Output Voltage: Models from microvolts ta kilavoles
Output Current: Models fram ma to amps

KALBFELL LABORATORIES, INC. 1090 MORENA BLVD.
SAN DIEGO 10, CALIFORNIA


SEND NOW FOR COMPLETE DETAILS FREE!

for electronic instruments

Now in its ninth year of operation, Saratoga Industries, Inc. has built a solid reputation for the manufacture of precision windings: Approved for in-plant testing under MIL-T-27. Saratoga Industries, Inc. is also prepared to handle all types of commercial production. Saratoga engineers invite your inquiry to help solve your problems relating to reactors, transformers, filters and windings of all types.

\author{
saratoga industries, inc., saratuga sprines. n. y.
}
has added the model CP-1 Clipper to its antenna line. The Clipper, a high-gain fringe-area unit engineered for complete coverage of all vhf channels, offers high uniform gain, perfect 300 -ohm match, one major forward lobe, a narrow beam to reduce ghosts and noise pickup and high signal-to-noise ratio. Good front-to-back ratio also eliminates troublesome cochannel interference. Other outstanding features are its light, rigid construction and easy assembly. The Clipper can be quickly installed to any height, and because of its compactness, offers unusually low wind resistance.


\section*{OSCILLOGRAPH TUBE}
has 6 in. \(\times 2\) in. screen area
Mullard Lid., Century House, Shaftesbury Ave., London WC2, England, has available the DG16-21 rectangular oscillograph tube. Although developed primarily for radar azimuth-trace applications, this tube should also find use in more conventional oscilloscopes where the packing factor in the horizontal plane is of importance. It has a screen area of \(6 \mathrm{in} . \times 2 \mathrm{in}\). and is characterized by a high deflection sensitivity and small spot size.


\section*{DRUM CALCULATOR for data processing}

International Business Machines Corp., 590 Madison Ave.,

\section*{hallett}


\section*{HALLET}


\section*{hallett manufacturing company}

Main Plant: 1601 West Florence Avenue, Inglewood, California, Oregon 8-4751 ; Districr Sales Offices: Washington, D.C., 13th and E Streets, District 7.0217 ; Detroit, Mich., Book Tower Bldg., Woodward 1.9553 ; New 'York, N. Y., Grand Central Bldg., Murrayhill 3.4752; Chicago, III., 600 South Michigan Blvd., Wabash 2.1343

\section*{QUICK DISCONNECT COUPLINGS FOR COAXIAL CABLE USE}

Investigate the advantages of compact, lightweight Hallett Quick
Discannect Cauplings far caaxial cables, TV and radio installations, computers, etc. Manufactured ta meet rigid military specifications and all vibration and thermal shack tests. Write for catalag and prices.

\section*{dIESEL ELECTRIC GENERATOR SETS}

Hatlett dependable full Diesel power from \(21 / 2 \mathrm{KW}\) to 10 KW in both water and air cooled models for standby power, portable, mobile and stationary units - also available, bare engines with power take-offs for all power applications from 5 HP to 18 HP . Write for catalog concerning your power requirements.

\section*{radio interference reduction and control equipment}

Stock kits for most engines and tailor-made for special applications. Hallett radio interference reduction and control equipment is the standard of the industry - positively shields out all noise indefinitely. Manufactured in accordance with Government specifications.

Technical data upon request.

Gentlemen: Please send me miore information concerning:Hallett Diesels
Quick Disconnect Couplings for Coaxial Cable Use
Radio Interference Reduction and Control Equipment
Name
Firm Name
Address
City \(\qquad\) Zone State


For Inverting D.C. to A.C. . . . Specially Designed for operating A.C. Radios, Tape Recorders, Wire Recorders, Record Changers, Television Sets, Amplifiers, A.ddress Systems, Radio Test Equipment and most small electrical and electronic devices from D. C. Voltages in Vehicles, Ships, Trains, Planes and in D. C. Districts.

See your fobber or curite factary
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Input
DC Volts & A.C. Output 60 Cycles & Output Int. & Wattage Cont. & Consumer Net Price \\
\hline 6-LIF & 6 & 110 volts & 40 & 35 & \$25.55 \\
\hline 12-LIF & 12 & 110 & 50 & 35 & 25.55 \\
\hline * 6-RSD & 6 & 110 & 85 & 75 & 39.25 \\
\hline * 12 -RSD & 12 & 110 & 125 & 100 & 39.25 \\
\hline 32-RSD & 32 & 110 & 150 & 100 & 34.25 \\
\hline 110-KSD & 110 & 110 & 250 & 150 & 39.25 \\
\hline *12T-HSG & 12 & 110 & 250 & 200 & 96.45 \\
\hline 110AT-12HE & 110 & 110 & 325 & 250 & 56.95 \\
\hline
\end{tabular}

\section*{026}

There is on ATR model for most any application. Available with leather carrying handle at \(\$ 1.00\) additional-optional.
"A" Battery Eliminalors, DC-AC Inverters, Auto Radlo Vibrators


American Televison \& Radio Co.
Zualcty Produets Since 1931
SAINT PAUL 1, MINNESOTA-U. S. A.

New York 22, N. Y., has introduced the magnetic drum calculator, a new machine that combines one of the advanced memory devices and the stored program concept of IBM's 701 with new high speed reading capacity in the conventional punched card equipment to achieve a powerful data processing machine for commercial and engineering requirements. In addition to its usefulness as an accounting and computing tool, the calculator will be a vital factor in familiarizing business and industry with the stored program principles fundamental to electronic data-processing equipment. A numeric decimal machine, it has up to 20,000 memory positions and can accept as many as 2,000 individual operating instructions to facilitate commercial and scientific computations. It consists of three units: a magnetic drum unit with electronic calculating components, an input and output unit, and a converter.


\section*{ELECTRONIC RELAY is resistance sensitive}

General Electric Co., Schenectady 5, N. Y., has announced a new electronic relay that is highly sensitive to resistance changes and can be varied by a stepless dial. It may be used to start or stop a frac-tional-hp motor directly when a contact-making ammeter, voltmeter or wattmeter reaches a required meter reading. Other uses include liquid-level control, sorting of small parts, and operating of lights, solenoids and contactors wherever there is sufficient change in the resistance of a circuit. Two spdt con-


The work of the Westinghouse Electronics Division, located in Baltimore, is well balanced between civilian and military production. We are expanding, and currently there are several excellent key openings which are both stimulating and challenging. The rewards offered are exceptional, and include : Open salaries, commensurate with experience and ability; a patentaward plan famous throughout the industry; opportunities for advanced degrees; relocation expenses; and exceptional opportunities for advancement.

\section*{TWO OPENINGS}

POSITION: Low Noise Microwave Receiver Designer DUTIES: Microwave techniques and measurements. Mathematical analysis of crystal mixer performance. Coordination of T-R cavity, crystal mixer and receiver input circuit designs to obtain best possible noise figure. Knowledge of microwave mixers is important.
REQUIREMENTS: Three or more years' experience and a BS degree in Electrical Engineering or in Physics.

\section*{TWO OPENINGS}

POSITION: Antenna and Waveguide Plumbing Designers
DUTIES: Microwave techniques and measurements. Development and design of radar antennas and necessary associated waveguide and transmission line equipment. Involves mathematical design and analysis and experimental work.
REQUIREMENTS: Three or more years' experience and a BS or Advanced Degree with specialities in the field of antennas, waveguides, electromagnetic theory, or boundary value problems.

\section*{to}

\title{
9 ENGINEERS \\ who are chariting
}

\section*{their future} in the electronics industry. . .

\section*{THREE OPENINGS}

POSITION: Systems Engineer
DUTIES: Systems analysis and evaluation; systems coordination; and systems test planning. Involves feedback systems, computers, video systems, indicators, switching, etc.
REQUIREMENTS: Three or more years' experience and a BS Degree in Electrical Engineering or in Physics.

TWO OPENINGS
POSITION: Mechanical Engineers
DUTIES: Mechanical design of efficient, compact, accessible electronic apparatus. Structural design of radar antennas and supporting structures.
REQUIREMENTS: Three or more years' experience and a BS Degree in Mechanical Engineering.

We are prepared to pay interviewing and relocation expenses to qualified men. To apply, send resume to
R. M. Swisher, Jr.

Employment Supervisor, Dept. OE
Westinghouse Electric Corporation
109 W. Lombard Street
Battimore 1, Maryland

BALTIMORE, MARYLAND

\section*{Circuit Magnification Meter tr 329 G}

For the measurement of the \(Q\) of a circuit, there are no better instruments than Marconi. Model TF 329 G applies to the frequency range 50 kc to 50 mc . In addition to direct \(Q\) readings, the \(T F 329 \mathrm{G}\) can be used for a considerable range of indirect measurements carried out by the normal resonance methods. These include inductance of coils, capacitance and phase defect of condensers, the characteristics of transmission lines. Special jigs are available for investigating dielectric losses.


\section*{MARCONI INSTRUMENTS}

SIGNAL GENERATORS • VACUUM TUBE VOLTMETERS
frequency standards output meters - wavemeters wave analysers : Q meters beat frequency oscillators

23-25 BEAVER STREET • NEW YORK 4
```

CANADA: CANADIAN MARCONI CO., MARCONI BUILDING, 2.4.42 TRENTON AVENUR, MONTREAL
eNGLAND: head office: marconi instruments limited, st, albans, hertfordshire
Managing Agents in Export:

```
marconi's wireless telegraph compainy limited, marconi house, strand, london, w.c. 2
tacts permit control of independent systems, and a simple jumper change sets the relay for normal or reversed operation. Selection of the most favorable relay operating point is facilitated through a sensitivity dial located on the front of the unit. The dial may be remotely controlled from as farlaway as 500 ft , and may be locked when set.


\section*{POTENTIOMETERS \\ feature high precision}

Helipot Corp., South Pasadena, Calif., is producing the model L series of 360 deg , continuous rotation, 3 -in. o.d., high precision potentiometers. Variations on the basic design include the model L with bushing mounting and sleeve bearings, model LS with servo lid mounting and Oilite bearings, and model LSP with servo lid mounting and ball bearings. Models \(L\) and LS have standard linearities of \(\pm\) 0.5 percent in resistance ranges from 10 K to 100 K ohms. Other versions with linearities as high as \(\pm 0.1\) percent ( 5 K ohms and above) can be manufactured to order.


\section*{CAPACITORS for uhf applications}

Stackpole Carbon Co., St. Marys, Pa., has added to its lines 39 new

\section*{PRECISION 60-GYCLE \\ POWER SUPPLY}

Accurate 60 -cycle frequency stabilization with up to 70 watts power output is furnished by the Ampex 375. To provide frequencies other than 60 cycles, the power amplifier section may be indepen-
\[
\begin{aligned}
& \text { recise } 60 \text { cycles using } \\
& \text { oefficient } 5 \text { parts per million per suing sexternal signal oscillato } \\
& 50 \text { to } 400 \mathrm{cycles} \text { using }
\end{aligned}
\] dently driven by an external signal generator instead of by the built-in tuning fork oscillator.
The 375 was originally designed to provide the precise 60-
\[
115 \text { to } 125 \text { volts }
\] cycle power required by Ampex tape recorders. Hence it is ideally
INPUT VOLTAGE:
\[
275 \text { watts }
\] suited to any application where constant speed of electric motors
\[
\begin{aligned}
& 275 \text { watts } \\
& \text { INPUT POWER: }\left\{\begin{array}{l}
\text { standard } 19 \text { inch rack mounting }
\end{array} \text { inght: } 12 / 4\right. \text { inches }
\end{aligned}
\] is a prime requisite. Typical of these are precision electric motor drives for turntables, stroboscopic timing devices, time bases, timekeeping, high-speed cameras, chronographs, astronomical units, geophysical units and viscometers.
output voltage:
70 watts
output frequency:
\[
\begin{aligned}
& \text { precise } 60 \text { cyles using builtion per degree } 5 \text { parts per million } \\
& \text { coefticient salignal osillator } \\
& \text { cycles using external sable }
\end{aligned}
\]

INPUT FREQUENCY
\[
5010400 \text { cycles }
\]
\[
\begin{array}{c|l}
\text { NPUT POWER: } & \begin{array}{l}
\text { Standard } 19 \text { inch } \\
\text { DIMENSION \& }
\end{array} \\
\text { WEIGHT: }
\end{array} \begin{aligned}
& \text { panel } \\
& \text { Height: } 121 / 4 \\
& \text { Weight: } 60 \text { pounds }
\end{aligned}
\]


ELECTRIC CORPORATION
Wrife Dept. E-1038 today for further information
AMPEX ELECTRIC CORPORATION 934 CHARTER STREET • REDWOOD CITY, CALIF.


RG 59/U COAXIAL CABLE

Strict control over every phase of manufacture assures you of highest performance from Carol RG 59/U Coaxial Cables. The dielectric is Carol Polyethylene, extruded by precision methods under accurate temperature control... to guarantee perfect"end to end" uniformity, solidity, and flexibility.

The cable is jacketed in Carol Vinyl-especially compounded in our laboratories for maximum oil resistance, abrasion resistance, and ability to withstand exposure to acids, alkalis, moisture and flame.

A selection of RG types is available. We also manufacture special coaxial cable to your own specifications.

For details on our complete line of cable for electronic equipment, write or call Carol today.

\section*{NEW PRODUCTS}
values in fixed composition capacitors (type GA). The complete range now includes 46 RTMA preferred values from \(0.10 \mu \mu \mathrm{f}\) to 10.0 \(\mu \mu \mathrm{f}\), in standard tolerances of 5 , 10 and 20 percent. The many new values are designed to meet the growing need for inexpensive, lowvalue fixed composition capacitors for communications and uhf tv applications. The body of these tiny capacitors measures only 0.160 in. in diameter by 0.150 to 0.400 in . long depending on capacitance. Rated for a working voltage of 500 \(v\) d-c, the type GA capacitors are molded from titanium dioxide or other hirh dielectric-constant body materjal to provide insulation resistance in excess of 1,000 megohms. Temperature coefficient is less than \(\pm 2\) percent of 20 C value from -55 C to +85 C .


\section*{TERMINAL BLOCKS have phenolic structure}

Lenkurt Electric Co., County Road, San Carlos, Calif., has available phenolic terminal blocks for electronic and communications equipment. Four different arrangements are offered providing 40, 60, 80 or 100 pre-tinned, doublenotched terminals securely fastened between phenolic strips. The terminal assembly is fastened to a base of the same material. Advantages provided by all phenolic block construction are excellent electrical characteristics, clean design, high structural stability and low water absorption. Specifications and prices are given in bulletin B1-P2.

\section*{MOLDING COMPOUND is moisture resistant}

Sangamo Electric Co., Marion, Ill., has developed Humiditite, a
 is a self-contained, directly calibrated generator of continuous-wave or pulse modulated radio frequency signals. It is a reliable source of accurate signals for:
- testing radio and radar equipment in the frequency band from 900 to 2100 \(\mathrm{MC} / \mathrm{S}\) (single dial control directly calibrated to \(\pm 1 \%\) ),
- receiver measurements and other applications that require less than one milliwatt of CW or pulsed type r-f signals in this band,
- generating delayed and undelayed video pulse that can be used by external equipment,
- accurate determination of small increments of frequency, as required in certain types of selectivity and filter characteristics.

\section*{Specifications:}

Frequency Range
Frequency Stability Power Output Output Impedance
\(\qquad\) Warm up drift less than \(0.2 \%\); ambient drift less than \(0.005 \%\) per \({ }^{\circ} \mathrm{C}\)
\(\qquad\) Zero dbm to -120 dbm continuously adjustable.
R. F. Pulse Shape
(a) Rise time: less than 0.5 microseconds.
(b) Decay time: less than 0.9 microseconds.
(c) Flatness: within \(10 \%\) of amplitude of initial rise.

Modulation
(a) by external pulses, positive or negative.
(b) by internal pulse generator.
(c) by synchronization to an external pulse generator.
(d) by synchronization to an external sine wave generator.

Power Requirement ............................. \(115 \mathrm{~V} \pm 10 \%\), 50 to 1600 cycles, single phase, 200 watts.
Size \(173 / \mathrm{s}\) inches wide, \(10 \frac{1}{2}\) inches high, 12 inches deep.
Weight
43 pounds (less transit case).
We will gladly furnish all details regarding specifications, prices and delivery.

new molding compound for capacitors used where high moisture resistance is required. The standard moisture-resistance test described in MIL-C-5A (Proposed) Specification requires mica capacitors to offer at least 100 megohms of insulation resistance after ten 24 hour cycles in a humidity chamber at 90 to 95 -percent relative humidity. Humiditite micas all tested in excess of 50,000 megohms of insulation resistance. Continued tests - beyond the requirements proved them capable of withstanding from 21 to 52 cycles (from smallest sizes to the largest) before failure to measure 100 megohms. Engineering bulletin TS-111 contains complete information.


\section*{CAPACITOR}
is adjustable \(\pm 1\) percent
Southern Electronics Co., 239 W. Orange Grove Ave., Burbank, Calif., recently developed a capacitor that is being used in high accuracy computation work. Its dielectric material is polystyrene. Capacitance is adjustable \(\pm 1\) percent from the mean value and is resettable to one part in 10,000 . Its dielectric hysteresis, insulation resistance, dissipation factor and temperature coefficient are equal to the highest values obtainable in polystyrene. The \(1-\) g.f 330 -v hermetically sealed unit measures \(2 \mathrm{in}, \times 2 \mathrm{in} . \times 1 \mathrm{in}\).

\section*{SILICONE COATINGS have high strength}

Mica Insulator Co., Schenectady 1, N. Y., has available a new class

\title{
Meet the New President of Sealtron
}

\author{
This is the story of Bill Sage... pioneer of the hermetic seal.
}


William C. Sage

It all started with Pearl Harbor. Electronic equipment designed for temperate climates was rushed to the South Pacific, was put to the test of destructive humidity, fungus, temperature extremes - and failed! The country needed good hermetic sealing and needed it fast!

So, one night, Bill Sage got together with an old friend, an electronics manufacturer, and they thrashed out the knotty problem of providing practical air-tight, water-tight, moisture-tight, insulated terminals-to feed current into hermetically-sealed transformer "cans," sorely needed by the Armed Forces.

Combining his experience in the technical phases of glass making and his training in electrical engineering, Bill saw a way that glass might solve the problem. He worked long nights and before long was "cooking" America's first glass-to-low-carbon-steel hermetic seals, right in the oven of his kitchen stove.

These home-made seals were the forerunners of production-line versions that gave top sealing and insulating performance-stood up under severest tests. * Soon they were on the job out in the Pacific. Bill Sage was in the hermetic seal business for certain now, and he succeeded in helping establish a business that specialized in hermetic seal work.

The more he worked with seals, the more he realized their possibilities in electronics were limitless. One large company making complicated radar gear was having trouble soldering miniaturized terminals into a compact panel. Bill suggested using seals as feed-through and stand-off terminals and further sug-
gested that Sealtron install the seals in the panel for them. After all, Sealtron technicians with their specialized experience in seal work could do the job faster and cheaper, could take a difficult production problem off their hands.

The manufacturer agreed-and the Sealtron Seal Assembly was born. Since then Sealtron has produced thousands upon thousands of such assemblies, large and small, simple and complex, for leading electronics manufacturers ** all over the country - and saved them countless man-hours and many dollars besides.

Another large radar manufacturer was having trouble with the "close-quarters" soldering of lead wires onto multiple header pins. Bill showed them how Sealtron could butt-weld flexible lead wires onto the pins for them, could save them valuable space with this less bulky connection. Now all they do is slip "spaghetti" sleeving right over the "built-in" flexible leads and connect directly into electronic assemblies.

Today, Bill Sage is realizing the dream that most of us have - he's the head of a Company that exists largely through his own efforts. That's something for Bill to be proud of. And rest assured we're mighty proud of Bill.

\footnotetext{
* Typical tests-
}

Pressure-up to 5000 lbs . per sq. inch without failing.
Thermal Shock-dry ice to boiling water.
Insulation-100,000 megohms after water immersion.
**Names on request.

\section*{SEALTRONCORPORATION}
 he compact, powerful number five Ledex Rotary Solenoid is used to replace the bulky old type solenoid in the Cincinnafi series 800, Automatic Time Recorder. By comparison Ledex Rotary Solenoids have \(1 / 7\) the weight . . . produce twice the power output with the same electrical input . .. proved to be more dependable and easier to install ... and reduced the cost of this component \(70 \%\). The actual size illustration of the solenoids show the advantage of Ledex compactness . . . \(1 / 6\) the volume.

Let Ledex Engineers assist you in choosing rotary solenoids that will save production costs and help increase the efficiency of your products. Six basic models range in diamesers from \(11 / \mathbf{s}^{\prime \prime}\) to \(3 \%\) ", with torque values from \(1 / 4\) to 50 pound-inches. Various power linkages and types of mountings are available. Write today for descriptive literature.


H silicone-rubler-coated mlass cloth insulation with unusually high dielectric strength and increased tensile strength. Both the electrical grade, E-944, and the mechanical grade, E-959, have a dielectric strength approximately twice that required by military specification MIL-C-2194A which requires the material to withstand at least 500 v per mil after conditioning of 96 hours at 25 C and 96 -percent relative humidity. Both grades also possess excellent bending qualities due to a high tensile strength. Data sheets are available.


\section*{MOUNTING SYSTEM}
for vibration control
Robinson Aviation Inc., Teterboro, N. J., has designed a center-of-gravity type mounting system for use as vibration and shock control in combat aircraft. The MET-L-FLEX (fabricated steel wire) resilient cushions are located at the top and bottom of the the assembly in such a way that the diagonal plane between the top and bottom cushions passes through the center of gravity of the equipment. This provides maximum protection and stability.


\section*{REJECTION FILTER for 20 cps to 200 kc}

Krohn-Hite Instrument Co., 580 Massachusetts Ave., Cambridge 39,


\section*{YOU CAN ALWAYS RELY ON EDISON COMPONENTS}

Communications Equipment Because of:

HERMETICAL SEALING in rigid glass.
TAMPER-PROOF stability that defies time and abuse.
ACCURACY. Patented feature permits calibration after sealing.


\section*{THERMAL TIME DELAY RELAYS}

Cathode and filament protection - Gyro Erection • Prevent surges and false starts in sensitive auxiliary equipment - Miscellaneous circuit switching specifications
Standard Octal Base
Delays .... 2 seconds to 5 minutes
Heater ... 5 wates nominal, continuous operation Voltages: 6.3, 26.5 and 117
Contacts . . . 6 amps maximum, 3 amps to 450 volts a.c. or d.c

Vibration . . .1/16 \({ }^{\prime \prime}\) amplitude at 55 cps .50 g shock. Ambient . . . -60 to \(+85^{\circ} \mathrm{C}\) Seated Height...31/4 max.

\section*{Miniature 7-Pin Base}

Delays... 5 seconds to 75 seconds
Heater ... 2.5 watts nominal, continuous operation Voltages: 6.3 and 27.5
Confacts . . . 2.5 amps max. 1 amp at 125 volts d.c. Vibration... 1/16" amplitude at 55 cps .50 g shock. Ambient ... -60 to \(+85^{\circ} \mathrm{C}\) Seated Height ... \(21 / 4\) max.


SPECIFICATIONS

Heavy duty-type D8
Max. temp. . . \(320^{\circ} \mathrm{C}\)
Max. watts . . . 1000
Max. amps. .. 8.0 d.c.
Calibrotion tolerance... \(\pm 2.5^{\circ} \mathrm{C}\)
Length, \(23 / 4^{\prime \prime} ;\) dia., \(9 / 16^{\prime \prime}\) (approx.)

Precision control-type \(\$ 1\)
Max. temp. . . \(190^{\circ} \mathrm{C}\)
Max. watts . . . 150
Max. amps . . . . 1.0
Control differential at \(1 / 4 \mathrm{amp}=0.1^{\circ} \mathrm{F}\)
length, \(21 / 2^{\prime \prime}\); dia., \(3 / 8^{\prime \prime}\) (approx.)

Write for free bulletins and application data to:

I N C ORPORATED
Instrument Division
DEPT. 54, WEST ORANGE, NEW JERSEY

\section*{YOU CAN ALWAYS RELY ON EDISON}

\section*{SEALED THERMOSTATS}

Ambient protection for frequency standards - Precision heat control for electronic laboratory instruments - Overheat detecfion and fire alarm

\title{
Ohomas \(a \varepsilon_{\text {disom }}\)
}

Mass. Model \(360-\mathrm{A}\) adjustable rejection filter provides either a rejection band in which the gain falls at a rate of 24 db per octave or a sharp single-frequency null. A peaking factor is used to reduce the attenuation at the cutoff frequencies. Both the high and low cutoff frequencies are independently adjustable from 20 cps to 200 kc. Rejection bandwidth is thus continuously variable up to the maximum width covering the entire range from 20 cps to 200 kc . The sharp null may be obtained at any frequency from 100 cps to 50 kc. The unit is especially useful for any audio or ultrasonic work requiring selective amplification and for stabilization of a-c servos. The complete instrument weighs 14 lb.

\section*{SELENIUM RECTIFIER rated up to 130 v a-c}

Bradley Laboratories, Inc., New Haven, Conn., has announced a new series of hermetically sealed selenium rectifiers. The new series, designed SE3P, offers greater efficiency and much better heat dissipation than previous similar hermetically sealed units. Rated up to 130 v a-c, 12 milliamperes continuous d-c, the rectifier will meet JAN and MIL specifications for high temperature, vibration, shock and salt spray. SE3P's are designed for use in d-c relays, bias supply and surge suppressors. The unit measures \(\frac{9}{16}\) in. in diameter and is \(?_{8} \mathrm{in}\). long.


\section*{LEAKAGE TESTER is high-potential unit}

Cinetech Co., Inc., 106 West End Ave., New York 23, N. Y., has

\section*{FILLING STATION} ... FOR LONG-LIFE lubrication


\section*{Telechron Synchronous Timing Motors}


MODEL H-10. Low-cost, light-duty motor capable of handling high momentary peak loads. Ideal for washing machines, dish. washers, refrigerators, and other appliance timer uses.

Seal the oil in with the moving parts, and they'll both last longer. That's the simple reason behind the long, depeņable life of Telechron Synchronous Timing Notors.
Into each motor goes a measured amount of special oil-carefully formulated for the particular service the motor is to perform. Then the unit is sealed. Dirt and dust can't get in. Lubricant is lifted by capillary action from the reservoir to all bearings, and flows continuously to all gears, efficiently... so efficiently, in fact, that many Telechron motors are still operating accurately and dependably after 20 years of continuous use.
There are other advantages, too, in Telechron Synchronous Timing Motors. Quick starting, due to the lightweight rotor. Power-line accuracy, because of true synchronous operation. Cool running, with the field coil isolated from the rotor unit. Altogether, a combination of worth-while features unique in the field of electric timing
Telechron motors are available in a wide range of speeds and torque ratings, and for any standard AC power source. Get full details. Write Telechron Department, General Electric Co., 410 Homer Ave., Ashland, Mass.


\section*{Quick way to measure low currents}

Here's o slmple way to measure currents down to \(10^{.24}\) ampere. A Keithley Electrometer and Shunt give fast results, accurate to within \(3 \%\)

The Keithley Vacuum Tube Electrometer is a compact vacuum tube voltmeter with an input impedance greater than \(10^{14}\) ohms. It is quickly converted to a highly sensitive directreading micromicroammeter by clipping an accessory shunt over the high terminal. When an ammeter drop of 0.5 volt is available. the Electrometer outperforms wall galvanometers in speed and sensitivity.

Seven standard shunts provide a measurement range from \(10^{-5}\) to \(10^{-14}\) ampere. Uses in clude measuring capacitor and insulation leak. ages, currents in photocells, ion chambers, and vacuum-tube grids.

Voltage, Resistance, Capacirance and Static chorges are also easily measured by the Keithley Electrometer and accessory equip. ment. For complete literature, write-

\section*{KEITHLEY INSTRUMENTS \\ 3868 Carnegie Avenue Cleveland 15 , Ohio}

\footnotetext{
Want more information? Use post card on last page.
}
available a nondestructive device that will determine leakage at elevated potentials in delicate and expensive equipment. The instrument will indicate satisfactory performance when connected to an equivalent resistance of 100,000 to 110,000 ohms at one of three available voltage ranges- \(300,1,000\) and \(1,500 \mathrm{v}\) a-c. It will reject instantly without destructive effects to the equipment under test, when the equivalent resistance of the tested material is less than 100,000 ohms with high voltage applied. This action is so fast that complete safety to the equipment under test as well as to the operator is always assured because the high voltage normally present is immediately removed.


\section*{POWER SUPPLY}

\section*{a variable frequency unit}

International Research AssociATES, 2221 Warwick Ave., Santa Monica, Calif. Model D-50 variable frequency power supply can furnish 500 w of power at \(115 \mathrm{va-c}\). Output voltage is adjustable by means of a level control from 0 to 125 v a-c. The frequency required can be supplied either by a tuning fork, if extreme accuracy is mandatory, or by a variable frequency audio oscillator capable of supplying 3 v rms. The unit can be employed for continuous-duty cycles and for applications such as servospin tables or "G" tables.

\section*{C-R OSCILLOGRAPH \\ in rack-mounted version}

Allen B. DuMont Laboratories, Inc., 760 Bloomfield Ave., Clifton, N. J. The type \(304-A R\) rack-

THE"Field-Proved"STANDARD IN COMMUNICATIONS... INTRODUCES A NEW

\section*{тipHMN hanosit}
...the first Handset specially engineered for two-way communicafions
- 2-Way Radio Communications
- Inter-Com

Systems
- Airplane

Announce
Systems
- P. A. Systems

\section*{Specially Designed to Suit Your Specific Applications}

Here is a truly modern functional handset specifically designed for 2 -way communications! A producto f the Shure Laboratories with many years of experience in safety mobile communications, the TH10 Handset brings you thesc features: . . . the field-proved controlled reluctunce assembly as a receiver . . . high output balanced response carbon transmitter . . oversize switch cavity providing flexibility in stacking of famous Shure long-life leaf blades . . . cored handle for maximum number of conductors ... no solder connections . . . rugged shock resistant handle . . . design smart to the eye, natural in th.
hand. The answer to your
SHIUR
complex circuitry!

For more complete information
urite to
SALES DIVISION SMITESBPTMERSInc.
Manutacturers of Microphones \& Acoustic Devices 225 W. HURON ST., CHICAGO 10, ILL.
Cable Address: SHUREMICRO
Want more information? Use post card on last page.
October, 1953 - ELECTRONICS

\section*{from}

\section*{millivolts to hundreds}

\section*{of volts}

\section*{AIRPAX CHOPPERS}

\section*{operate well}

\section*{and reliably}

positive performance

\section*{from \(70^{\circ}\) below}

\section*{to \(100^{\circ} \mathrm{C}\)}

\section*{or while being}
vibrated or shocked

\section*{far beyond}

\section*{usual test extremes!}

mounted version of the 304-A c-1. oscillograph features the same built-in voltage calibration. The illuminated screen is calibrated by a pushbutton control on the operating panel which applies a standardizing potential to the screen. The oscillograph requires only \(8 \frac{3}{4}\) in. vertically in a standard relay iack. Voltage reading range on a 4 -in. scale is from 0.10 v to \(1,000 \mathrm{v}\), full scale. Frequency response is flat at d-c and extends to \(300 \mathrm{kc}, 50\) percent down. Overall dimensions are: height, 8 : in., width, 19 in., depth, \(19 \frac{1}{2}\) in. Weight is 50 lb .


\section*{MEMORY UNIT \\ in 1 plug-in type chassis}

Computer Control Co., 106 Concord Ave., Belmont 78, Mass. Model 3C1-384 memory unit is composed of a solid acoustic delay line and associated circuitry. The unit is a complete package ready for installation in a computer. The design includes the entire memory circuit in one plug-in type chassis. The unit stores 384 bits at a pulse repetition rate of 1 mc . Input voltage reguirement into write-erase gate is 10 v . The reshaped output signal level is 15 v into a 100 -ohm impedance load. Carrier frequency is 20 mc . All circuits are degenerated, with reserve gain in the wide band i-f amplifier. There is a gain control for initial adjustment of the i-f stage. No tuning is necessary. The unit is especially fitted for airborne use and is insensitive to shock.

\section*{SHIELDED ROOMS suppress r-f radiations}

Ace Engineering \& Machine Co., 3644 N. Lawrence St., Philadelphia


Fabricafed by Micro-Matic Screw Co., Inc., Linden, M. I.

\section*{IT'S MADE OF}

\section*{BEEYYCO} BERYLLIUM COPPER

This critical connector, used in new, improved radar devices, is made of Berylco beryllium copper for its many recognized advantages. Beryllium copper offers the designer desirable combinations of properties such as strength, spring action and formability in high degree.
As in all radar and electronic equipment, the material used for connectors, plugs, adapters, etc., musthave currentcarrying capacity. Berylco certainly has that. It must also retain firm contacl pressure for a long time; it must be noncorrosive; it must be indifferent to wide temperature variations; it must not be subject to fatigue.

Berylco offers all these qualities to a superlative degree. For this particular part, which must be turned and threaded to close tolerance, machinobility is imporfant. In this respect beryllium copper offers special advantages through its age-hardening feature. This means that parts can be readily machined in a relatively soft condition and then hardened to give the desired combination of final properties.
You will undoubtedly want to include Berylco berylliun copper in your plans for the fulture if you have not already done so. Take advantage of the know-how of the world's largest
producer. Call or write any of the offices below for sample naterial or engineering help.

\section*{VALUABLE ENGINERING INFORMAIIDN}
on Berylco beryllium copper is contained in a series of technical bulletins, published monthly. To receive your copy regularly, write on your business letterhead.

TOMORROW'S PRODUCTS ARE
PLANNED TODAY - WITH
BERYLCO BERYLLIUM COPPER


PHEOLL FOR:
Machine Screws
Sems
Wood Screws Tapping (Sheet Metal) Screws
Cap Screws
Thread-Cutting Screws
Set Screws
Thumb Screws Drive Screws Phillips Recessed Head Screws
\(\mathrm{Hi}_{\mathrm{i}}\) Shear Rivets
Aircraft Screws and Nuts
Threaded Rods
Stove, Carriage, Machine, Lag Bolts
Machine Screw Nuts
Semi-Finished Nuts
Cold Punched Nuts
Wing, Cap, Knurled Nuts
Brass Washers
Special Fasteners

\section*{PHEOLL}

Manufacturing Company
SCREWS BOLTS
NUTS 5700 Roosevelf Rood, chicogo 50,111 .

Want more information? Use post card on last page.

40, Pa., has amounced a complete line of galvanized single-shielded enclosures for suppressing the r-f radiations of induction heating, dielectric sealing, diathermy, and other industrial and laboratory equipment. They provide more than 40 db attenuation from 14 kc to 400 mc . Up to 66 db attenuation at standard vhf-ty frequencies can be expected. The enclosures consist of a number of standard size panels rigidiy bolted together from the inside. Each panel is a frame work of klin-dried, select white pine covered with a single layer of 22 -mesh galvanized steel screening. The entire enclosure is easily erected, enlarged or dismantled in just a few hours.


NOW FOR THE FIRST TIME... a rugged Potentiometer that will give long, noise-free performance when subjected to vibration, dither and other environmental conditions.

Absolute precision linearity with clear, sharp signal, because the Humphrey unit is exclusive in internal design. It is fully tested and has been qualified for use in many military applications. Humphrey design service is available to meet your special requirements.

Also available are Humphrey Rate and Free Gyros and Accelerometers. Special Potentiometers Custom-built.

WRITE OUR NEAREST OFFICE, DEPT. E5

TUNED ELEMENTS available in two types

Granco Products, Inc., 36-17 20th Ave., Long Island City 5, N. Y.. announces the availability of two


\section*{For Electronics:}

\section*{Faster Assembly... Better Design}

Why do leading electronic manufacturers order and re-order Simmons' Quick-Locks in quantity? For good dollar-wise reasons:
in assembly-
- No special tools are needed for installation.
- Flexible mounting takes care of curved sheets and misalignment.
- Various material thichnesses cari be handled.

IN DESIGN -
- Initial Ioads taken by helical spring. Increased loads carried on solid supports.
- 90)-deg. rotation locks and unlocks fastener.
- Stud is self-ejecting when unlocked.
- Stud is self-aligning. Makes mounting and demounting detachable panels simple.
QUICk-LOCK can help reduce your assembly costs and can add unusual advanlages to your designs. Send for data and samples today.

SIMMONS F゙ASTENER CORPORATION 1750 No. Broadway, Albany 1, New York

Simmons
QUICK.LOCK SPRING-LOCK ROTO.LOCK LINK-LOCK JUST out! NEW 3G-PAGE CATALOG WITA-APPLICATIGCS. SEND FOR ITI

Fasteners that improve products and reduce assemblycosts.

\section*{talk about a beating!} multiplex radio telephony systems must take it...
that's why REL specifies


\section*{W Woudsts Touqhest Trand ormend}

Absolute dependability under the most rugged operating conditions is a prime requirement in all rec Multiplex Radio Telephony Systems. That's why you'll find chicago "Sealed-in Steel' 'transformers used throughout rel equipments. These world's toughest transformers are available in 3 mountings, each featuring one-piece seamless design enclosing an electronically perfect construction Available for every application: Power, Bias, Filament, Filter Reactor, Audio, MIL-T-27, Stepdown. Ask for them at your electronic parts distributor.

Illustrated above at right: rel 900 MC Transmitter, Series 707-757. Illustrated immediately above: REL Model 75970 MC Dual Transmitters and Receivers. These systems make wide use of chicago C-Type
"Sealed-in-Steel" transformer units.

Free "New Equipment" Catalog


You'll want the full details on CHICAGO'S New Equipment Linecovering the complete range of "Sealed-In-Steel" transformers designed for every modern circuit application. Write for your Free copy of this important catalog today, or get it from your
electronic parts distributor.

\section*{C-TYPE}

With 10" color-eoded leads brought out leads brought out
through fibre board through hibre board
base cover. Lead ends base cover. Lead ends
are stripped and tinned prer easy soldering. Flange-mounted unit.

\section*{CHICACO TRANSFORMER}
dIVISION OF ESSEX WIRE CORPORATION
3501 ADDISON STREET, CHICACO 18, ILL.

Export Sales Div.: Scheel International, Inc. 4237 N . Lincoln Ave Chicago, III., U.S.A. CABLE ADDRESS: HARSHEEL
types of uhf coaxial tuned elements. Model UHO is an oscillator element with a built-in 6AF4 tube. Model UHR is a preselector element. Both models incorporate resonant-cavity tuning which features a moving plunger permitting coverage of the entire uhf-tv band. All elements are completely wired and tested.


\section*{INDUSTRIAL PAPERS made of fibrous glass}

Owens-Corning Fiberglas Corp., Toledo 1, Ohio, manufactures a fibrous glass which, in its wool form, can be processed and made into incombustible, inorganic industrial papers for the filtration of hot and/or corrosive air, gases and liquids. The papers are also finding application as base sheets in specialty electrical laminates as gasketing material, and as plate separators in aircraft and other special batteries. In such applications, the inherent high temperature resistance and excellent elec-trical-chemical properties of the product are very desirable.


THERMAL SWITCH for superhigh temperature
Control Products Inc., Sussex St., Harrison, N. J. The ASA-21-2 is a 2 -wire thermal switch designed

\section*{All these from one experienced source}


TITEFLEX DESIGNS AND MANUFACTURES - to customer specificationsrigid waveguides and combinations of rigid and flexible waveguides. Where there is, or should be, no movement, or where complicated accessories must be connected, Titeflex rigid waveguides are specially recommended.

TITEFLEX CONNECTOR-lightweight, corrosion and moisture resistant with temperature ranges of \(-65^{\circ} \mathrm{F}\). to \(+400^{\circ} \mathrm{F}\). This connector's insulation properties will permit 3500 volts at sea level, 1200 volts at 50,000 feet altitude. Connector is available with 2 or 3 pins. 7 amperes. Weight \(2 / 3\) of ounce. Size \(2^{\prime \prime}\) in length.


WAVEFLEX(18) FLEXIBLE WAVEGUIDES are fabricated to retain critical dimensions - regardless of twisting or bending. Waveflex waveguides make assembly easy, improve design, compensate for expansion or move. ment. Rubber jacketing protects against weather, corrosion, physical abuse.


IITEFLEX CUSTOM WIRING SYSTEMS are corrosion resistant, moisture proof, pressure-tight and efficient at temperatures of \(-65^{\circ} \mathrm{F}\). to \(+400^{\circ} \mathrm{F}\). Can be furnished with Titeflex or standard AN connectors for a wide range of service requirements. Can be sheathed with metal braids, fiber glass or nylon-and jacketed with silicone or other compounds.

MORE THAN 37 YEARS of developmental experience make Titeflex a logical source of the components pictured on this page. We are currently in a position to supply connectors and wiring systems to makers of aviation and electronic equipment. If you have a problem requiring our umsual combination of products and engineering, let us quote on your requirements. The coupon will bring you information on our products.



\section*{FAIRCHILD}

Complete-all calibrating circuits built-in. Needs only standord DC oscilloscope.


Developed by Fairchild in its progrom for transistorizing Missile Guidance Systems and other intricate electronic circuits.
Rapidly Plots Static and Dynamic Characteristics of All Transistors... point contact and junction. Designed on basic principles, to meet future transistor needs.
Complete Families of Curves obtainable in 10 incremental steps for each of 5 ranges. Sweeping technique shows up anomalies.


Presents on the Scope:
Alpha vs. Emifter Current
Collector, Emifter and Transfer Characterisfics

Collector Characteristics in Grounded Emitter Connection


WRITE FOR DETAILED TECHNICAL BULLETIN

\section*{FAIRCHILD} Guided Missiles Durision Wyandanch, I. I., N. Y.
Other Divisions: Aircraft Division, Hagerstown, Md
Enginc Division, Farmingdale, N. Y.

NEW PRODUCTS
(continucd)
for extremely high temperature applications in jet engines, gas turbines, afterburner controls or wherever temperature warning is required to \(2,000 \mathrm{~F}\). It is a nongrounded switch and has maintained set calibration for 100 hours at \(1,500 \mathrm{~F}\) with a variation of only 10 F . It will withstand any degree of overshoot or undershoot up to the ability of the metal to stand the temperature rise, and offers maximum vibration resistance. Contacts are welded on flexing arms for long life.


\section*{TAPE RECORDER weighs only 19 lb}

Amplifier Corp. of America, 398 Broadway, New York 13, N. Y., has available the Magnematic 110 v a-c portable tape recorder that weighs 19 lb and attains a frequency response of 50 to 15,000 cycles at \(7 \frac{1}{2} \mathrm{ips}\). Completely operated by push-button control, it features solenoid operated clutch controlled capstan drive to start and stop tape travel within \(1 / 20\) th of a second. It incorporates relay operated modified Geneva movement to control high speed rewind and 60 ips fast-forward functions. A built-in preamplifier provides for low level, low impedance microphone input.

\section*{COIL WINDERS have variety of uses}

Rex Rheostat Co., 3 Foxhurst Rd., Baldwin, L. I., N. Y. A line of automatic toroidal coilwinding machines designed and made in Germany is available in 4 sizes for a minimum inner


UG-564/U


C Series Conrectors are a greatly improved mechenical and electrical type of co-axial connector. They are constant impedonce and are designed for use with 50 ohm, middle size RF cables.

The C Series like every co-axial connector made by Kings is the result of constant research and development. Engineering ingenuity and precision manufacture nave put "Connectors by Kings" in the front-line of communicafions equipment for industry and the armed services.

If you have c connector problem consult Kings. You'll be glad you called on Kings first.



122－101－14


122－217－8


122－21．1－14

\section*{Engincered for longer life Designed for top performance}

JOHNSON electrical components include a complete line of special sockets for virtually every electronic application．Engineering skill，the result of years of specialized experience，and the most modern manu－ facturing facilities assure you of stock or custom－ fabricated sockets that are both durable and de－ pendable．

The special sockets shown here，variations of JOHNSON standard types，were designed to meet the punishing requirements of the 100 hour salt spray test．Construction successfully resists salt water cor－ rosion，moisture condensation，and fungus growth；all contacts and contact springs are heavily silver plated to insure low loss and a positive electrical connection． Terminals are hot tin dipped，bases are of grade L－4 Steatite insulation with glazed top and sides．To pro－ vide added protection，all other surfaces are DC－200 impregnated．

122－101－14－Designed for Septar base tubes such as the \(826,829,832\) ，etc．，this special socket has an anodized aluminum shell and provision for mounting mica button capacitors directly to the socket base．Five nickel plated，phosphor bronze retaining springs hold tubes securely in place and per－ springs hold tubes securely in place and per－
mit trouble－free operation in any position．A recessed base，solidly mounted on fungus re－ sistant，phenolic washers，positively eliminates any contact movement．
122－217－8 thru 122－228－8－A series of cer． amic wafer sockets designed to accommo date standard receiving tubes．locating grooves speed tube insertion ．．．beryllium copper retaining springs hold tubes firmly in place．Recessed phosphor bronze contacts
prevent movement；countersunk rivets and boss located mounting holes permit sub－panel mounting．

122－211－14－A bayonet type socket for all tubes equipped with＂ 50 watt＂bases．Double beryllium copper filament contacts（．0005＂ silver plated），and hot tin dipped integral solder terminals insure positive contact with a minimum loss．Brass shell is ． \(0003^{\prime \prime}\) nickel plated－ceramic base extends beyond con－ tacts，increasing breakdown voltage rating．

JOHNSON special sockets，made to order in production quantities，meet all JAN material specification requirements．The complete JOHNSON standard socket line is listed in catalog 973，available on request．

Inquires are invited，and wherever possible we will gladly quote on＂specials＂to meet military requirements．

CAPACITORS，INDUGYORS，SOCXEYS，IMSULAYORS，PLUCS，JAGKS，EIALS，AND DILOR GIGMYS
diameter of \(\frac{5}{16} \mathrm{in}\) ．，\(\frac{1}{3} \frac{5}{2} \mathrm{in}\) ．，\(\frac{2 ⿱ 丷 天}{2} \mathrm{in}\) ． and \(\frac{13}{13}\) in．after winding．They are used for winding toroidal coils， filters，variable transformers，rheo－ stats and potentiometers．Rings are revolved automatically through an adjustable gearing，and the feed is adjustable during operation．An adjustable brake is provided．Coils can be wound continuously around 360 dey or in sector forms．


\section*{SIGNAL BOOSTER provides extra i－f stage}

Grayburne Mfg．Co．，Inc．，4－6 Radford Place，Yonkers，N．Y．，an－ nounces production of model TSB－1， an i－f signal booster for uhf and vhf．The unit provides an extra stage of i－f to amplify both uhf and vhf signals without switching．The booster，which is supplied in adap－ tor form，is installed in an existing tube socket and requires but one wire connection to ground．It is designed to improve performance in near fringe areas，increase pic－ ture brightness，amplify signals over 20 percent and clear snow effects．

\section*{MEGOHMMETER tests leakage resistance}

Freed Transformer Co．， 1718 Weirfield St．，Brooklyn 27，N．Y． Type 1020－B megohmmeter is a self contained and a－c operated instru－ ment equally useful in the lab or for production testing of the leak－ age resistance of insulation ma－ terials，capacitors，cables，motors and transformer windings．Re－



\section*{byTRIAD}

Designed by Triad to meet exacting military requirements for airborne telemetering equipment, the tiny electric wave filter shown above actually contains eleven precision components: 2 toroidal inductors, 5 JAN-C-5 capacitors, and A precision wirewound resistors. the resulting attenuation slope is over 50 decibels per octave.


The same brilliant design and controlled manufacturing that goes into Triad's distinguished line of hermetically sealed military transformers is available to you for licking the tough. est wave filter problems. Call Triad first!

For specifications and prices on Triad's general line of transformers, write for Catalog TR-53G


4055 Redwood Ave. - Venice, Calif.
Want more information? Usc post eard on last page. 346
sistance values are indicated directly on a 4 -in. meter protected against overload. It is rapid and safe to use, with test voltage removed from terminals and capacitive component discharged to ground in all positions of multiplier switch. Low resistance in series with components under test provides very short charging time for even the very largest capacitors. Calibration position is provided to check accuracy of \(500 \mathrm{v} \mathrm{d-c}\) potential. The \(500-\mathrm{v}\) test supply is electronically regulated. The megohmmeter's range is from 1 megohm to \(2,000,000\) megohms in six overlapping ranges selected by a multiplier switch. The unit weighs 18 lb , and measures \(9 \frac{1}{2} \times 10 \frac{1}{2} \times 8 \mathrm{in}\).


\section*{D-C POWER SUPPLY uses semiconductor diodes}

Electronic Research Associates, Box 29, Caldwell, N. J., announces a new dual tubeless regulated d-c supply especially designed for transistor applications. The new design utilizes semiconductor diodes in a bridge rectification circuit together with saturable reactors to provide for input line regulation. Good d-c regulation results from low diode voltage drop, coupled with the use of low-resistance filter components. Output No. 1 , which is rated at 60 ma maximum can be adjusted for any of three ranges: 0 to 1,0 to 10 or 0 to 100 v . Output No. 2, also rated at 60 ma maximum, yields an output of from 0 to 100 vd de. Internal impedance is low, being approximately 100 ohms or less. Ripple measures less than 0.01 percent for an input variation of 95 to 125 v , 60 cycles. Maximum power consumption is 20 w . Dimensions are


For Dependable Leading Manufacturers Choose UNILECTRIC Wiring Systems
Year after year . . . for over ten years . . . UNILECTRIC has produced millions of wiring systems for over 150 leading manufacturers of electric and electronic products. If you still fabricate your own electronic wiring it will pay you to in. vestigate UNILECTRIC.

\section*{There is Only ONE \\ Standard of Quality af UNILECTRIC}

This intricate wir. ing harness for a iet auto pilos must meet the most rigid specificotions. A pilot's life and perhops a moior battle de. pend on it.


The samo work.
manship. the same standards of quality protect your product wiring and your product's reputation for dependability.

To assure utmost dependability plus cost saving engineering assisfance, low-cost produc. lion, and "on. schedule deliv. err.
UNILECTRICtoday.

\section*{UNILECTRIC QUALITY Protects Your Products}

Investigate UNILECTRIC Today!
Unem

\section*{Whanes Satiws}

Manufactured by
UNITED MANUFACTURING \& SERVICE CO. 409 South oth Street - Milwaukec, Wisconsin

Want more information? Use post card on last page October, 1953 - ELECTRONIC\$

\section*{Vacuum Fusion Gas Analyzer with complete installation and instruction}


\section*{A packaged unit to determine the content of oxygen, nitrogen and hydrogen in metals}

A wide variety of metals and alloys can be analyzed to determine the amount of oxygen, nitrogen and hydrogen contained either as combined or dissolved gas, in the range from one per cent to approximately \(10^{-4}\) per cent by weight.

The oxygen and hydrogen content of titanium is reported within the same range of accuracy as for other metals.

The apparatus incorporates the best features and techniques reported in the literature or known to our laboratory and has been employed for some time in connection with our own metallurgical research activities.

Operating procedure is relatively simple and can be readily mastered. Installation, final testing and instruction of your operator is performed by one of our trained analysts.

Write for details of Type 09-1240 Vacuum Fusion Gas Analysis Apparatus.

\section*{analytical service}

Write for information about NRC Gas Analysis Service if your requirements do not justify the purchase of an instrument.

\title{
INDUSTRIAL RESEARCH \\ CHEMISTRY, METALLURGY high vacuum engineering \\ PROCESS DEVELOPMENT \\ PHYSICS, DEHYDRATION \\ distillation, vacuum coating \\ National Research Corporation \\ EQUIPMENT DIVISION
}

SEVENTY MEMORIAL DRIVE, CAMBRIDGE 42, MASSACHUSETTS

MORE WAYSTO SQUEEZE PENNIES

\section*{OUT OF}

\section*{UPSET SPECIALS COSTS}

Specially designed upset products are solving thousands of problems. Dozens of design pointers on them are yours for the asking. Send us your sketches, prints, finished products for suggestions.


\section*{machine screws and special fasteners are our business}

\(19 \mathrm{in} . \times 5 \ddagger \mathrm{in} .\), with a 7 -in. dust cover depth. Weight is 24 lb .


\section*{TINY SERVOVALVE weighs 2.8 lb}

Midwestern Geophysical Laboratory, 3401 S. Harvard, Tulsa, Oklahoma. Model 4 miniature singlestage uncompensated servovalve was designed for use in hydraulic servosystems where fast response, reliability and small size are prime considerations. Due to its balanced symmetrical twin-piston design, it will operate smoothly under adverse vibration and lateral acceleration conditions. The valve has no external leakage (a small drain line returns leakage oil to the sump). Both pistons are readily accessible for mechanical actuation and may be utilized for safety limit stops in servosystems. The body and pistons are hardened, precision-lapped alloy steel which insures dependable servovalve operation under dirty oil conditions. The model 4 servovalve may be manifolded directly to the load actuator.


\section*{D-C VOLTMETER is lab standard unit}

Computer Corp. of America, 149 Church St., New York 7, N. Y. Model PVM-4 laboratory standard (l-c voltmeter features a resolution

\section*{Now...another \(\mathbb{R R}\) JAN TYPE}


Many other types of diodes are available too, including a range of computer diodes made to meet special requirements. Radio Receptor also makes Germanium Transistors and Seletron Selenium Rectifiers. Our engineers will gladly study your problems without obligation and submit their recommendations.

Seletron and Germanium Division

RADIO RECEPTOR COMPANY, INC.
QR Since 1922 in Radio and Electronics RR
SALES DEPT: 251 West 19th Street, New York 11, N. Y. FACTORY: 84 North 9th Street, Brooklyn 11, N. Y.

\section*{LOOK!}

of better than 50 mv over the entire range of 0 to 600 v . The 0 to \(10-\mathrm{v}\) scale affords resolution of better than 5 mv in that range. Accuracy is better than 0.2 percent. Linearity is better than 0.1 percent. Input impedance is infinite. The unit is extremely rugged, completely protected against overload, and simple enough in operation to be equally suited to laboratory or production line use. It is expected that the PVM-4 will find wide application, particularly in the testing of power supply regulation, analog computer measurements, meter calibration, capacitor storage measurements and battery voltage measurements.


\section*{RADIOPHONE weighs only 14 lb}

Communication Research \& Development Co., Inc., 9530 Aurora Ave., Seattle 3, Wash. Model B-3 emergency radiophone is completely self-contained and weighs only 14 lb . The set utilizes port-able-radio batteries and can be supplied for any frequency from 2 to 30 mc with crystal control of both sending and receiving.


\section*{SHORTING SWITCH} for transmission lines
Trylon Tower Division, Wind Turbine Co., West Chester, Pa., has introduced a new h-f shorting

\footnotetext{
Export Sales: Bendix International Division, 205 East 42nd St., New York 17, N. Y.
}


\section*{Automatic, maintenance-free, instantaneous voltage stabilization}

Static-magnetic constant voltage transformers are a practical and efficient solution for controlling input voltage to voltage-sensitive electrical and electronic equipment.

Sola Constant Voltage Transformers are wicely used both as built-in components and as accessory units. They differ from regulators which depend solely upon saturation of core materials for their regulating action, or electronic types employing tubes. Sola Constant Voltage Transformers have the following characteristics:
1. Regulation within \(\pm 1 \%\), with primary voltage (transient or continuous) variations as great as \(30 \%\).
2. Response time less than \(11 / 2\) cycles.
3. No moving or wearing mechanical parts, nor vacuum tubes; requires no manual adjustments.
4. Completely automatic, continuous regulation.
5. Self-protecting against short-circuits on output.
6. Current-limiting characteristics protects load equipment.
7. Can often be substituted in place of conventional non-regulating transformers.
8. Generally smaller than other types of regulators for similar duty.
9. Isolates the input and output circuits.

Forty-three Sola stock units are available in a wide variety of ratings, voltages and types. In addition, customdesigned units can be manufactured (in production quantities) to meet specific requirements.

The experience of the world's largest manufacturer of constant voltage transformers is available to you. We invite you to discuss your voltage stabilizing problems with a Sola Sales Engineer.

WRITE FOR LITERATURE. Sola Constant Voltage Transformers are completely described in a 24 page manual. Write for a copy of D-CV-142 on your letterhead, please.

\footnotetext{
Transformers far: Constant Voltage - Fluarescent Lighting - Cold Cathode Lighting - Mercury Vapor Lighting - Luminous Tube Signs SOLA ELECTRIC CO., 4633 W . 16th Street, Chicago 30 , lllinois, Blshop 2-1414 G Lighting NEW YORK 35: 103 E. 125ih St., TRafalgar 6-6464 PHILADELPHIA: Commercial Trust Bldg... Rlltenhouse 6.4988 . BOSTON: 272 Centro St.. Newlon 58 , Mass., B/gelow \(4-3354\) CIEVELAND 15: 1836 Euclid Ave., PROSpect \(1-8400\) - KANSAS CITY 2, MO.: 406 W. 34th St., Jefferton 4382 - Reps. in Other Principal Cities
}

\section*{All business}

\section*{is specialized}

\author{
... and nothing \\ specializes \\ on your business
}
like your business paper


You can sell suntan lotion on Broadway or Beacon Street, but this seagoing salesman can sell a whale of a lot more . . . because he specializes.

Your business is specialized, too. That's why it pays to keep up with your business paper. It specializes on business problems you meet every day. It helps you do a whale of a lot better job by keeping you posted on your whole field. You can move ahead when you know what's ahead; you can make quicker, surer decisions when you have a clear perspective on what's happening; and you get all this from your business paper.
Every page counts. The editors gather facts, weigh and interpret them. The advertisers line up new products,
materials and equipment . . . tell you what they do and where to buy them. To know what's new that's important to you, read every issue-thoroughly! It will keep you one of the best informed people in your field.

This business paper in your hand has a plus for you, because it's a member of the Associated Business Publications. It's a paid circulation paper that must earn its readership by its quality... And it's one of a leadership group of business papers that work together to add new values, new usefulness, new ways to make the time you give to your business paper still more profitable time.


A copy of this quick-reading, 8-page booklet is yours for the asking. It contains many facts on the benefits derived from your business paper and tips on how to read more profitably. Write for the "WHY and HOW booklet." Room 2710.

McGRAW-HILL PUBLISHING COMPANY
330 West 42 nd St., New York 36, N. Y.
 high precision and stability lies in proper selection of mica capacitors, made possible through our ability to provide ANY CAPACITY at ANY TOLERANCE with the highest characteristics within the ranges specified for molded mica capacitors.


TRIPLE UP TO 45000 MMF

\section*{Any Capacity}

Any Tolerance (to \(\pm 0.5 \%\) ) JAN Characteristic "F" or Better for Most Capacity Values.

> All capacitors are ELMENCO and are manufactured in accordance with JAN-C-5 specifications. Known the world over for their reliability under all operating conditions, ELMENCO CAPACITORS are chosen by manufacturers requiring the highest quality components for their products.

> Write for our free descriptive catalog and for information regarding your special product requirements.

\section*{ARCO ELECTRONICS INC. \\ 103 Lafayette St., N. Y. 13, N. Y.}

Want more information? Use post card on last page ELECTRONICS - October, 1953

NEW PRODUCTS
(continued)
switch for two-wire open transmission lines having 12 -in. spacing. Designed for flexible remote control in antenna "parks," the switch can be used for short circuiting two or more frequency tuning stubs; shorting transmission-line acceptreject circuits; or as a grounding device for transmission lines or other high-voltage a-c or d-c circuits. The switch causes a minimum of line disturbance in the open position and is conservatively rated to handle 30 kv wire-to-wire or 15 kv to ground. The heavy steatite-insulated shorting bar is controlled by a low-voltage, d-c motor equipped with limit switches and an electromechanical brake that stops the motor instantly at the end of the stroke.


\section*{TRANSDUCERS useful as pressure pickups}

Atlantic Research Corp., Alexandria, Va., presents a new series of barium-titanite pressure transducers, models BC-10, BC-30, and BC50 , that are generally useful as transient pressure pickups in liquid and gaseous systems. The gages produce large voltage response (up to 0.6 v psi ) flat over wide frequency ranges ( 3 cps to 75 \(\mathrm{kc}, 1 \mathrm{cps}\) to 40 kc and 0.5 cps to 30 kc , respectively). Sensitive elements of the instruments are hermetically sealed and covered with tough neoprene sheath. Construction eliminates possibility of water leakage. The d-c input resistances are maintained above 500 megohms. These models have withstood transient pressures of 10,000 psi and static pressures in excess of \(5,000 \mathrm{psi}\). The gages are particularly suitable for underground-


Want more information? Use post card on last page

"Special" sciss
WITH
MOLDED FITTINGS
FROM
WHITNEY BLAKE

Whitney Blake Company is equipped to mold rubber and plastic fittings onto flexible cord, shielded communications wires and multiple conduc. tor cables - in addition to making the cordage itself.
Whitney Blake has wide experience in designing and manufacturing shielded multiple conductor cables and assembling intricate connectors for electronic applications. Skilled workers, modern equipment, efficient production methods and careful quality control assure dependable, first quality cord sets.

Where standard molds are unsuitable, Whitney Blake will design and make special plugs, connectors, strain reliefs and junction box blocks that provide the water- and impact-resistance, small size, light weight and protection from tampering required for many new applications.
For help with your special cord set problems, contact us for the address of your nearest Whitney Blake representative. He will be glad to work with you. If your product is in the design stage, information on its intended use may enable him to suggest a cord set construction using conventional parts at savings to you.

WELL.BUILT WIRES SINCE 1899
〈ผอ〉 WHITNEY BLAKE CO.

NEW HAVEN 14, CONNECTICUT
underwater explosion studies, sonar and geophysical exploration.


\section*{PRESSURE SWITCH is \(21 / 2 \mathrm{in}\). in diameter}
G. M. Giannini \& Co., Inc., 117 E. Colorado St., Pasadena 1, Calif. Model 44517 pressure switch, of very simple construction and \(2 \frac{1}{2} \mathrm{in}\). in diameter, is comprised of a pressure responsive element which actuates a switch that can be set at the factory to a predetermined pressure. It can be used in applications that include control system actuation and pressure warning or shut-off devices. The unit will operate within a temperature variation of -54 to +71 C and at altitudes up to \(50,000 \mathrm{ft}\). It can withstand and operate under 0.032 in . double amplitude vibration from 10 to 55 cps . The switch section will handle 5 amperes at 125 or 250 v a-c and 3 amperes inductive motor load at 30 v d-c, sea level.


NEW PLIER
shears hardest wire
Mathias Klein \& Sons, 3200 Belmont Ave., Chicago 18, Ill., offers a new kind of plier specially de-

\section*{for PROVEN RESULTS specity}

\section*{McGRAW-HILL} Mailing Lists

\section*{You can save time, avoid needless expense, increase your results by having McGraw-Hill Lists do your mail advertising job!}

Three quarters of a century of practical experience is made available to you when you turn your direct mail jobs over to McGraw-Hill. And these seventy-five years of leadership in the development and perfection of lists assure you the maximum results at the lowest cost per order or inquiry.

Those who are acquainted with mailing lists know that year-after-year acceptance of lists does not come by chance or luck. Accepted lists, like McGraw-Hill's, hold their places by merit alone. Nor does success one day guarantee success the next. Vigilant eyes must constantly add new names, delete, change, check, recheck, etc. Inferior lists are dropped as soon as shortcomings are noticed . . . "good lists" yield. to better lists.

For seventy-five years expert list users have preferred McGraw-Hill by long odds. No matter how few names you use-whether your business is large or small-the best lists, McGraw-Hill Lists, are the most economical in the long run.

The world-wide reputation McGraw-Hill has earned as builders of the finest mailing lists was born of constant research in our office and in the field-constantly adding new names . . . developing new markets, new avenues of revenue for direct mail list users.

McGraw-Hill Mailing Lists are built -and constantly maintained-to provide, as accurately as humanly possible, complete rosters of the industries we serve.

Investigate their tremendous possibilities in relation to your own product or service. Your specifications are our guide in recommending the particular McGrawHill lists that best cover your market. When planning your industrial advertising and sales promotional activities, ask for more facts or, better still, write today. No obligation, of course.

McGraw-Hill Publishing Co., Inc.
DIRECT MAIL DIVISION
330 W. 42nd Street, New York 36, N. Y.

\footnotetext{
Direct Mail Division, McGraw-Hill Publishing Co. 330 West 42nd Street, New lork 36, N. Y.
Please send me, at no cost, mailing list information that will cover my markets.

Name
Tille.
Company . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Address

Product or Service.
}

\section*{STOP RF LEAKAGE OX THE DRAWING BOARD}
... When you design metex electronic weatherstripping into your equipment you get its positive shielding effectiveness -at maximum overall economy
Plan now to take full advantage of Metex Electronic Weatherstripping's unusual effectiveness in shielding all types of electronic equipment. Because it is made of knitted wire mesh, Metex Electronic Weatherstripping is both conductive and resilient. It assures positive metal-to-metal contact between all mating surfaces. And being resilient it accommodates itself positively to surface inequalities.
In reality, Metex Electronic Weatherstripping can do more for you than just shield RF leakage. It can cut the cost of machining mating surfaces to close tolerances. It can eliminate the need for extra fasteners and many other costly means of making joints RF tight.
To get the best results and lowest production costs, design with Metex Electronic Weatherstripping, available in 3 basic forms:
1 Continuous lengths in various cross sectional shapes with or without fin for attachment.
2 Die-formed shielding gaskets, and
3 Sealing gaskets where the knitted wire gasket is combined with a sealing medium.


For detailed information on METEX
- ELECTRONIC PRODUCTS, write for FREE copy of "Metex Electronic "Metex Electron or outline your SPECIFIC shielding problem - it will receive our immediate attention.

Each of these is made in various sizes and shapes which are readily adaptable to practically any equipment. The resiliency can be varied where necessary to meet specific requirements.
Applications in which Metex Electronic Weatherstripping has already proved its effectiveness include pulse modulator shields, wave-guide choke-flange gaskets, local oscillators o: TV sets. diclectric heaters, etc.

\section*{METAL TEXTILE CORPORATION}

KNITTERS OF WIRE MESH FOR MORE THAN A QUARTER CENTURY

Roselle, New Jersey
veloped for cutting tungsten filaments, music wire, springs and other hard wire. It operates on a shearing principle which eliminates the need for regular cutting knives. No adjustment is required even if accidentally nicked. A replaceable tempered steel spring keeps the plier in open position, ready for immediate use. Overall length is approximately \(5 \frac{1}{2} \mathrm{in}\). Refer to No. 05:3-L for plier with leaf spring and 053 for plier without leaf spring.


\section*{HIGH-SPEED COUNTER} requires \(100-\mathrm{mv}\) input
Decade Instruments Co., Box 153, Caldwell, N. J. The Decavider 100-1 is a precision high-speed counter for use in extending the range of standard 100,000 -cycle counters to 1 mc . One of the new features consist of an output circuit providing square waves at one-tenth of the input frequency. Another output circuit furnishes sharp positiveor negative-going pulses having a rise time of 0.25 sec at an amplitude of 40 v . Input recuirements are \(100 \mathrm{mv}, 100\) cycles to 1.2 mc . Dimensions of the unit are 18 in . wide x 10 in . high x 12 in . deep.


\section*{POWER SUPPLIES}
for h-v r-f use
Neutronic Associates, 83-56 Vietor Ave., Elmhurst 73, N. Y., have added four new models to their line
of high-voltage r-f power supplies. The new models are unusual in that they may be reversed in polarity by a conveniently located lever on the front panel. The reversible feature is useful where data are needed for both positive ground and negative ground hookups, or where quick reversing in polarity is desirable in the kilovolt range. A further advantage offered is the increased usefulness to the laboratory of a single power supply with both positive and negative output. The additions consist of two regulated and two unregulated bench type models.


\section*{H-F ALTERNATOR is a tiny, high-speed unit}

D \& R, Ltd., 402 E. Gutierrez St., Santa Barbara, Calif. Very high power outputs for their size and weight characterize a new line of miniaturized high-frequency alternators. Operating shaft speeds are from 10,000 to \(50,000 \mathrm{rpm}\). The present line includes units with power output ratings from 125 to \(4,000 \mathrm{w}\) at \(5,000 \mathrm{cps}\). As an example, the model A-17 illustrated is \(2 \frac{1}{2} \mathrm{in}\). in diameter, weighs 22 oz , and delivers \(350-w\) output at 5,000 cycles with a shaft speed of \(25,000 \mathrm{rpm}\).


\section*{PHOTOELECTRIC UNIT for plate-circuit control}

The Autotron Co., Box \(722-\mathrm{H}\), Danville, Ill. Actuation of electric

USE IT FOR
- TV SETS
- RADIOS
- TRANSMITTERS
- BROADCASTING EQUIPMENT
- HOME APPLIANCES
- TWO-WAY RADIO COMMUNICATIONSTSN'STEMS
- PHONE LINES
- alr conditioning systems
- STARTER CONTROLS
- AUTO IGNITLONS, GENERATORS, BATTERIES
- MOVIE EQUIPMENT
- PANEL INSTRUMENTS
- tV CAMERAS
- AUTO LIGHTING SYSTEMS
- GENERATORS
- VOLTAGE SOURCES
- "HAM" RADIO EQUIPMENT
- CABLES
- CONNECTORS

AUDIO FREQUENCY SOUND CURRENTS
\(\therefore\) and write for your complimentary copy of
50 pages of uses.

\section*{RANGES}
20.000 OHMS PER VOLT DC
1.000 OHMS PER VOLT AC

VOLTS. AC AND DC: \(2.5,10,50,250,1.000,5,000\)
OUTPUT: 2.5, 10. 50, 250. 1.000
MILLIAMPERES, DC: \(10,100,500\)
MICROAMPERES. DC: 100
AMPERES, DC: 10
DEC:BELS (5 RANGE5): - 12 TO +55 DB
OHMS: \(0-2000\) ( 12 OHMS CENTER), \(0-200.000\) (12 200
OHMS CENTER). O-20 MEGOHMS ( 120.000 OHMS CENTER:

SIMPSON ELECTRIC COMPANY
5200 W. Kinzie St. Chicago 44 - EStehrook \(9.1 \mathrm{P} 2_{1} 1\)


In Canasia Bactesimnson, Lid., Londng, Ont

counters and other derices directly in the plate circuit instead of through the conventional platecircuit relay is provided by an improved photoelectric unit called the Shadowswitch. Particularly in photoelectric counting, elimination of the conventional relay makes obtainable much higher counting speeds and increases the service life of counters. The amplifier is preadjusted to maximum sensitivity. Adjustments for specific applications are made with the light beam which can be focused for interruption by objects as small as \(\frac{3}{16}\) in. in diameter. Even sharper focus is obtainable through use of an extra lens. The photoamplifier has positive lock tube shields and rubber base tube sockets. Maximum output of the plate circuit is 110 v di-c.


\section*{FREQUENCY STANDARD for the \(200-11,000 \mathrm{mc}\) range}

Presto Recording Corp., P.O. Box 500, Paramus, N. J. Model 100 microwave secondary frequency standard provides a versatile instrument to generate accurate test signals over the range of 200 to approximately \(11,000 \mathrm{mc}\). Accuracy is \(\pm 0.005\) percent. The unit delivers to the 50 -ohm input of a typical microwave receiver an uninterrupted series of \(c-w\) signals spaced every 100 and 200 mc over the complete frequency range, and \(50-\mathrm{mc}\) marker output useful up to approximately \(9,000 \mathrm{mc}\). Signals are all delivered simultaneously without any frequency tuning. The only variable adjustment on the front panel of the instrument is an output level control. Identification
of signals in any \(200-\mathrm{mc}\) sector is accomplished by comparing their relative amplitudes since the amplitude of the \(200-\mathrm{mc}\) signals is greater than the \(100-\mathrm{mc}\) signals and the \(100-\mathrm{mc}\) output is greater than the \(50-\mathrm{mc}\) output.


\section*{MINIATURE GEARBOX designed for 300 to 1 ratio}

Belock Instrument Corp., 13-11 111th St., College Point, N. Y. The new miniature gearbox features stainless steel construction and ball bearings used throughout. It is designed to meet aircraft vibration specifications and is built to take the Kearfott R-118-1B motor. It can be supplied with any potentiometer having a \(\frac{1}{8}-\mathrm{in}\). shaft to form a packaged miniature servo system. Integrally cut cluster gears substantially reduce backlash to a minimum. The following data were taken while the unit was operating on standard \(28-\mathrm{v}\) aircraft supply: output torque, 8 in . oz with maximum backlash of 0.007 in . at the input; starting voltage, 1.5 v ; and operation in temperatures from -65 C to +125 C . Life expectancy is \(2,000 \mathrm{hr}\) under normal applications and running conditions. The present design is for a 300 -to- 1 ratio.

\section*{POWER SUPPLY is voltage stabilized}

Power Designs Inc., 119-22 Atlantic Ave., Richmond Hill 19, N. Y. Model 351 voltage stabilized power supply is designed to furnish d-c power to equipment where unusually close performance tolerances, rapid recovery time and freedom from transient responses are required. Rated for 100 -percent
 duction of the Waterman RAYONIC 3MP1 for miniaturized oscilloscopes and the Waterman developed rectangular 3SP CATHODE RAY TUBE, scientists in our laboratories have diligently searched for a more perfect answer to the perplexing problem of trace brightness versus deflection sensitivity. The 3XP RAYONIC CATHODE. RAY TUBE is their answer to providing a brilliant and sharply defined trace and high deflection sensitivity at medium anode potentials. When the 3RP or 3SP tubes are operated at 1000 Volts second
anode and compared against the 3 XP at 2000 Volts on the second anode, the results are astonishing. For the same size spot, the 3XP light output is improved by a factor of 4 and its vertical sensitivity is improved by a factor of 2 , with the horizontal sensitivity remaining equal to that of the other tubes. Because the \(3 \times P\) is enclosed in a shorter envelope and is equivalent to the 3RP and 3SP with respect to interelectrode capacities, it lends itself readily for high frequency video work, as well as for low repetitive operation.

SIZE:
3XP TECHNICAL DATA


WATERMAN PRODUCTS CO., INC.

PHILADELPHIA 25, PA.
CABLE ADDRESS: POKETSCOPE


WATERMAN PRODUCTS INCLUDE

3JPI \& 3JP7 JAN RAYONIC CR TUBES 3JP2 \& 3JPII RAYONIC CR TUBES 3MP7 \& 3MPII RAYONIC CR TUBES 3RP1, 2, 7,11 RAYONIC CR TUBES 3SP1, 2, 7, 11 RAYONIC CR TUBES POCKETSCOPES PULSESCOPES RAKSCOPES
And Other Associated Equipment


\section*{DEVELOPING A SENSITIVE \(90^{\circ}\) CONTROL}

A manufacturer of analytical balances wanted to provide his equipment with a vernier slide control which could be operated outside the case in which the balance was housed. He found that he could do this by mounting a control knob on the side of the case, but by so doing the axis of the control knob would be at right angles to the vernier control shaft. The problem was how to make the necessary \(90^{\circ}\) turn with a coupling that would have minimum "backlash" and would still be easy to assemble. He found the answer in -

\section*{THE LOW-COST SOLUTION}
an S.S.Whiteremote control flexible shaft


As shown by the drawing at the left a single, easily installed .130" diameter shaft was all that was needed. This shaft has negligible deflection characteristics and met all requirements of the application including sensitivity, simplicity and low cost. Why not discuss your remote control problems with S.S.White engineers. They can suggest many ways in which flexible shafts can be used to reduce costs and improve product design.

Send for the Flexible Shaft Handbook
It has full information on flexible shaft selection and application. A free copy will be sent if you write for it direct to us on your business letterhead.


Dept. E, 10 East 40th St. NEW YORK 16, N. Y.

\author{
Western District Office - Times Buildirg, Long Beach, California
}
duty cycle, regulation is held to \(\pm 0.1\) percent for line variations from 150 to 125 v , and load variations from 0 to maximum output current ratings. Ripple and noise level is less than 1 mv ; internal impedance, less than 0.4 ohm; recovery time for instantaneous application of full load from a no load condition, less than 8 milliseconds; and stability, guaranteed to within 0.5 percent per day. Operating range is 150 to \(350 \mathrm{v} \mathrm{d}-\mathrm{c}\) with a load of 0 to 150 ma maximum.


\section*{SOLID DELAY LINES utilize fused quartz}

Laboratory for Electronics, Inc., 75 Pitts St., Boston 14, Mass., has announced that its new solid delay lines are now available for applications such as video integration, computers and time markers. These ultrasonic delay lines utilize fused quartz as a delay medium. A delay time of 1 to 3,000 . sec can be provided with a high degree of accuracy. Frequency range specifications are from 5 to 100 mc . Spurious response is up to 60 db below desired signal. The delay lines are of minimum size and weight, and offer many advantages in obtaining precise delay intervals for pulse or modulated signals.


\section*{PRECISION RESISTOR is noninductively wound}

The Daven Co., 191 Central Ave., Newark, N. J., has developed the type 1119 precision wire-wound resistor especially for application where a high value of resistance is necessary in a very small resistor
size. The new resistor, although it measures only \(21 / 64 \mathrm{in}\). diameter \(\times 25 / 32\) in. long, is available in values up to \(1,000,000\) ohms. This unit is rated at \(\frac{\mathrm{w}}{} \mathrm{w}\) and is noninductively wound. Standard resistance tolerance is \(\pm 1.0\) percent; however it can be supplied in accuracies to \(\pm 0.05\) percent. The unit is designed to withstand severe shock and vibration and will function satisfactorily under conditions of high humidity and extreme temperature changes.


\section*{TRANSDUCERS measure altitude, airspeed}

Rahm Instruments Inc., 12 W Broadway, New York 7, N. Y., has available a series of potentiometer transducers for the measurement of altitude, rate-of-climb and airspeed, in which the brush of a precision potentiometer is actuated by a change in pressure to produce an output linear with altitude, rate-ofclimb or airspeed. Indicators of the ratio type are available as monitors. The altitude transducer series covers the ranges from 0 to \(70,000 \mathrm{ft}\); linearities of +0.5 percent over full range are standard. The airspeed transducer series in the 50 to 700 mph range exhibiting \(\pm 0.75\)-percent linearity and 0.25 percent resolution over full range are standard.

\section*{C-R OSCILLOSCOPE for ty alignment}

The Hickok Electrical InstruMENT Co., 10514 Dupont Ave., Cleveland 8, Ohio. Model 665 is a 5 -in. cro with a frequency range from 0.5 cycle to 700 kc , down 3 db . It has excellent stability, no drift, less than 1-percent tilt, and less than 2 -percent overshoot. The accelerating potential is \(1,775 \mathrm{v}\) and power consumption is 35 w . Square


The type RVP3-5121 solves the following mathematical equation:
\[
\frac{E o}{E i n}=\left(\frac{\theta}{180}\right)^{2}, \quad-180^{\circ} \leqq \theta \leqq+180^{\circ}
\]

\section*{SPECIFICATIONS}
- Total resistance: \(2500 \pm 5 \%\)
- Conformity to function: \(\pm 0.25 \%\) Ein
- Function Angle: \(\pm 180^{\circ}\)
- Mechanical Rotation: \(360^{\circ}\)
- Dissipation: 2 watts at \(25^{\circ} \mathrm{C}\).
- Life: \(1,000,000\) cycles


Your analog computations in control processes, computers, servomechanisms, and telemetering may likewise be solved by Technology Instrument Corporation precision potentiometers, with ease, economy and extreme accuracy. Precision non-linear potentiometers may be designed to meet your requirements from either implicit functions or empirical data. Submit your problem today for our analysis and recommendations.

A complete line of standard sizes is available, ranging from \(7^{\prime \prime}\) to \(1 / 2^{\prime \prime}\) in diameter. Greatly expanded facilities plus mass production techniques will meet your volume needs yet maintain precision tolerances in both linear and non-linear potentiometers. Write for catalog for complete information.

\section*{Engineering Representatives}

Cleveland, Ohio - PRospect 1-6171
Cleveland, Ohio Prospect 1-6 Rochester, N. Y. - Monroe 3143 Rochester, N. Y. - Monroe 3143
Canaan, Conn. - Canaan 649 Danaan, Conn. - Canaan 649 Baltimore, Md. - Plaza 7694

Arnprior, Ont.. Can. - Arnprior 400 New York, N. Y. - MUrray Hill 8-5858 Cambridge, Mass. - ELiot 4-1751 Hollywood, Cal. - HOllywood 9-6305 Dallas, Texas - Dixon 9918 Binghamton, N.Y.-Binghamton 3-1511

\section*{Teghnolocr Msirtment Corr.}

\author{
535 Main Streef, Acton, Massachusetts, Phone Acton 3.7711
}
wave response is flat from 60 cps to 100 kc . A dual fuse is provided su that the B-plus line is entirely fused. The scope withstands shock, vibration and humidity, and has been designed with push-pull amplifiers with a vertical sensitivity of 0.020 mv per in. Horizontal sensitivity is 0.030 mv per in. Verticalinput impedance is \(15 \mu \mu \mathrm{f}, 2.2 \mathrm{meg}\) ohms; harizontal impedance, 52 u, f, 0.1 megohm.


\section*{DOUBLE STUB TUNER} for coaxial lines
Weinschel Engineering \& MFg. Corp., 10513 Metropolitan Ave., Kensington, Md. Model DS-109 coaxial double stub tuner is designed to match a wide range of impedances to a transmission line. This is done by adjusting the tuning elements to provide a variable shunt susceptance across the line. The unit comes with one male and one female type-N connector. The stand can be adjusted for use on lines from \(2_{18}^{\frac{5}{8}}\) in. to \(3 t \mathrm{in}\). in height. The stubs have a travel length of 5 롱 in . giving the unit a frequency range of 1 to 10 kmc . The stubs have adjustable stops which can be locked for operation at a fixed frequency with a fixed load. A \(\frac{\delta^{5}-i n . ~ A l l e n ~ w r e n c h ~ f o r ~ a ~}{\text { a }}\) No. 8 screw is enclosed to lock adjustable stops.

\section*{ACCELEROMETERS are potentiometer type}

Rahm Instruments Inc., 12 W . Broadway, New York 7, N. Y. A line of linear acceleration transducers are potentiometer type in-
struments in which the brush of a precision potentiometer is actuated in response to linear acceleration. Special emphasis is placed on a number of low response instruments in the \(\pm 1 \mathrm{~g}\) to \(\pm 5 \mathrm{~g}\) range. Damping of all the instruments in this series is atcomplished by means of an encapsulated fluid system. All units are 2.5 in. in diameter and between \(3^{\frac{1}{4}} \mathrm{in}\). and \(3^{\frac{1}{2}} \mathrm{in}\). in length and weigh \(1 \frac{1}{3}\) to 3 lb .


\section*{MICROPHONE SWIVEL for desk or floor stand}

Atlas Sound Corp., 1451 39th St., Brooklyn 18, N. Y. Model SW-1 Gyromatic swivel offers a great many applications in microphone positioning due to its ability to adjust to any angle with any microphone. It swivels through 360 deg and can be used on any desk stand or floor stand. It locks safely in any position by a turn of the locking knob. Length is \(4 \frac{1}{2}\) in. Male and female threads are \(\frac{5}{8}-27\).


\section*{VSWR CALIBRATORS for 8,500-9,600 mc range}

Technicraft Laboratories, Inc., Thomaston-Waterbury Road, Thomaston, Conn., has developed and

\section*{Technology Instrument Corp. Presents a Compactly-Built Wide-Band Decade Amplifier}

Featured by its wide band response, high input impedance, low output impedance, and compact dimensions, TIC's Type \(500-\mathrm{A}\) wide band decade amplifier is excellent as a general purpose laboratory instrument. Here is an instrument for special applications requiring a zero phase shift and high stability of gain. TIC increases the general utility of this amplifier by including a self-contained power supply and cabinet or rack mounting.


SPECIFICATIONS:
Amplification: 10, 100 and 1000 times, selected by 3-position rotary switch.
Frequency Response: Flat to \(\pm .5 \mathrm{db}\) from 5 cycles to 2 mc on gain of 10 ; Flat to \(\pm .5 \mathrm{db}\) from 5 cycles to 1.5 mc on gain of 100 ; Flat to \(\pm .8 \mathrm{db}\) from 5 cycles to 1 mc on gain of 1000 .


Amplification Accuracy: \(\pm 2 \%\) of nominal - dependent on precision resistors only ; Unaffected by normal tube characteristics or line variations.
Phase Shift on All Ranges: 0 to \(\pm 2^{\circ}\) from 20 cycles through 100 kc
Gain Stability on All Ranges: Constant with line voltages of 105 to 124 volts. Noise and Hum: 60 db below maximum output voltage with input shorted. Input Impedance: Approximately 160 megohms shunted by \(7 \mu \mu f\).
Outpul Impedance: Approximately 200 ohms.
Output Voltage on All Ranges: 20 volts maximum output across a load of \(20 \mathrm{k} \Omega\) or greater.
Power Supply: \(105-125\) volts, \(50-60\) cycles self-contained power supply requiring approx. 30 watts. ( 230 volt, 50-60 cycles models available)
Mounting Dimensions: Single, in cabinet: \(131 / 4^{\prime \prime}\) wide \(\times 5^{\prime \prime}\) high \(\times 93 / 8^{\prime \prime}\) deep. ( \(111 / 4^{\prime \prime}\) \(\times 31 / 2^{\prime \prime}\) panel) Single, for rack: \(19^{\prime \prime}\) wide \(\times 31 / 2^{\prime \prime}\) high \(\times 81 / 2^{\prime \prime}\) deep.
The low distortion is a feature much desired in amplifiers of this type.
Further information and details gladly sent upon request.
Engineering Representatives

Chicago, Ill - UPtown 8-1 141 Cleveland, Ohio - PRospect 1-6171 Waltham, Mass. - WAltham 5-6900 Rochester, N. Y. - MOnroe 3143 Dayton, Ohio - Michigan-8721

Arrprior, Ont., Carr. - Arnprior 400
Hollywood, Cal. HOnywood 9.6305 Dallas, Texas - DIxon 9918
Roseland, New Jersey - Caldwell 6.4545
Wyncote, Pa, - Ogontz 8805 Sligo 7-550

Silver Spring, Md.

\section*{Technology Thsirtiment Corp.}

535 Main Street, Acton, Massauchusetts, Tel. ACton 3-7711


\section*{"EXTRAS" ARE STANDARD / WITH BOWSER}

Bowser test chambers have the engineered 'extras' as standard equipment. Bowser engineers have designed their units with your needs in mind.

Consider, for example, lights in the Bowser high altitude chamber shown above. They are swivel type for convenient operation... vapor proof and recessed in stainless steel to permit full utilization of test area.
Performance characteristics of this Bowser chamber include:


With outside dimensions of \(13^{\prime} 2^{\prime \prime}\) wide \(x\) \(11^{\prime} 2^{\prime \prime}\) high \(\times 16^{\prime \prime} 6^{\prime \prime}\) long, this standard model chamber has an interior working area of \(10^{\prime} \times 10^{\prime} \times 8^{\prime}\) high. Door is \(5^{\prime}\) wide \(\times 8^{\prime}\) high, its window \(30^{\prime \prime} \times 30^{\prime \prime}\), and wall window 36" \(\times 36^{\prime \prime}\).
Whatever your needs in environmental test chamber equipment . . . high altitude, humidity, sand and dust, explosion, nonmagnetic, etc. . . . check with Bowser, the pioneer.


\section*{BOWSER TECHNLCAL REFRIGERAIION}
division bowste, inc. terayviliz connecticut

\section*{let WILIIAMS help you apply}

\section*{ferric oxides}

\section*{to the manufacture of your}

\section*{FERRITES}

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.

Williams Ferric Oxides analyze better than \(99 \% \quad \mathrm{Fe}_{2} \mathrm{O}_{3}\). They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.
Tell us your requirements... we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

\section*{WIILIAMS \\ COLORS \& PIGMENTS.}
C. K. WILLIAMS \& CO.

Easton, Pa. - East St. Lovis; ill. Eméryville, Cal.

\footnotetext{
F. We also produce IRN Magnetic Iron powders for the Electronic Core Industry, the Magnetic Tape Recording Indusinformation.

Want more information? Use post card on last page. ELECTRONICS - October, 1953
}
tion, 0 to 150 v . The unit is housed in a 4 in. x 5 in. x 6 in. cabinet and weighs about 3 lb .

\section*{TRANSDUCER is altitude controller}

Rahm Instruments Inc., 12 W . Broadway, New York 7, N. Y. The altitude controller illustrated is a potentiometer type transducer in which the brush of a precision potentiometer is actuated by a pressure difference. Equal pressure is maintained on each side of the pressure sensitive diaphragm until a solenoid valve is closed entrapping a fixed reference pressure on one side of the diaphragm. The instrument then responds to and indicates differential changes from the reference pressure. Specifications and installation drawings are given in bulletin 653-6 now available.


\section*{OSCILLOGRAPH \\ for flight testing}

Minwestern Geophysical Laboratory, 3401 South Harvard, Tulsa, Oklahoma. Model 580 oscillograph was designed for dependable operation as a flight-test instrument, although it is equally useful in


\section*{TWO SPEEDS • SINGLE CONTRCL} FREE OF BACKLASH

Accuracy of scale reading \(100 \%\)
Coarse searching speed plus fine setting control.
Single control knob displaced axially to select the speed ratio \(i_{i}\)

Spring-loaded gears with automatic take-up of any wear or play between primary and secondary drives.

Pointers geared directly to centre spindle.
Security in operation: friction clutch obviaţes overdriving.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
TYPE \\
No.
\end{tabular}} & \multirow[t]{2}{*}{NUMBER OF DIAL MARKINGS} & \multirow[t]{2}{*}{EFFECTIVE SCALE LENGTH} & \multicolumn{2}{|l|}{SPEED RATIOS} \\
\hline & & & COARSE & FINE \\
\hline 52 & 1.000 & 3.3 feer & 1:8 & 1. 120 \\
\hline 63 & 1.000 & 3.3 fert & 1.8 & 1:120 \\
\hline 57 & 2,000 & 6.6 iscer & 1:15 & 1:200 \\
\hline 56 & 2.000 & 6.6 feet & 1:15 & 1:200 \\
\hline 53 & 2.000 & 6.6 feet & 1:15 & 1200 \\
\hline
\end{tabular}

We are specially organized to handle direct enquiries and orders from U.S.A.
Billed in dollars. Settlement by your check.
CABLE OR AIRMAIL TO-DAY
TRANSRADIO LTD
CONTRACTORS TO H.M. GOVERNMENT I3BA CKOMWELL ROAD, JONDON, S.W.7., ENGLAND
CABLES 'TRANSRAD, LONDON
other field and lab applications. Among its more important features are: (1) 14 channels of separate data; (2) rigid cast aluminum alloy construction; (3) full-width timing lines at 0.01 sec with \(\pm 0.1 \mathrm{sec}\) lines accentuated or 0.1 sec lines only; (4) shutter-type g proof precision timer; (5) trace identification (beam-interrupter type); and (6) record numbering. The oscillograph speeds may be varied through a wide range by a positive gear drive. The company offers a wide variety of precision galvanometers for use in this oscillograph which have undamped natural frequencies up to \(3,500 \mathrm{cps}\).


You have to expect some erasures here and there on your drawings. But watch out! When those drawings get to the blueprint stage, lines can become weak and washed out . . . just ghosts of their former selves.

That's why Arkwright Tracing Cloth is preferred by so many architects, engineers and draftsmen. Arkwright is especially treated to take all the erasing youll normally ever give it . . . and still provide good, clear blueprints.

Arkwright supplies a perfect working surface . . . free of heavy threads, pinholes and other imperfections. And Arkwright defies old age, too. Edges never get ragged; drawings never turn yellow or brittle. They retain their transparency, year after year - giving you the permanency you want.
Here's a fair offer. At our expense, accept a free sample of Arkwright Tracing Cloth. Work with it. See if you don't agree that Arkwright has well-earned the title "America's Standard". Arkwright Finishing Co., Industrial Tru't Building, Providence, R. I.

\section*{ARKWRIGHT Tracing Cloths}


TESTING YOKE eliminates down time

Syntronic Instruments, Inc., 100 Industrial Road, Addison, Ill. Costly down time is completely eliminated in testing c-r tubes with the new magnetic deflection yoke now available. From 150,000 to 250,000 tubes may be continuously tested without yoke damage or faihure. Three types, identical except in deflection angle, are available. Type Y29 has a deflection angle up to 50 deg, type Y29-2 up to 70 deg and type Y29-4 up to 90 deg. The three types are available in \(8.5-\mathrm{mh}, 13.5-\mathrm{mh}\) and \(24-\mathrm{mh}\) horizontal impedances, and in 3\(\mathrm{mh}, 40-\mathrm{mh}\) and \(60-\mathrm{mh}\) vertical impedances in any combination. Any \({ }_{1 \frac{1}{2}}\) in. neck diameter c-r tube may be tested.

\section*{Literature}

Relays and TV Deflection Yokes. Davis Electric Co., 230 N. Spring St., Cape Girardeau, Mo. An illustrated catalog of Decohm products
is now available. The \(8 \frac{1}{2} \times 11\)-in. booklet is printed in three colors and lists complete technical data regarding the various molded-coil type open relays, hermetically sealed cannister type relays and tv deflection yokes. Information is included on the operating characteristics, range and sensitivity of the devices.

Magnetic Deflection Yokes. Syntronic Instruments, Inc., 100 In dustrial Rd., Addison, Ill. Three new deflection yokes for military and oscilloscope applications are described in a new catalog page now available. Type Y15-5 is illustrated. Complete technical information is given, including dimensional drawing, electrical and mechanical data, and complete tables of push-pull and singleended deflection coil data.

Servocalculator. Technology Instrument Corp. 531 Main St., Acton, Mass. Laboratory Report No. 7 features the theory and application of the Servocalculator. Derivation of Servocalculator scale, as well as examples of basic equation and its solution by the device are explained. Accuracy limitations are defined, with explanatory reference to treatment of functions with end resistance and changes of slope sign.

Transducers. Rahm Instruments Inc., 12 W. Broadway, New York 7, N. Y. Catalog 653 details a number of types of potentiometer transducers for the measurement of pressure, altitude, airspeed and acceleration. It gives an illustrated description, along with performance data and environmental data for each. The information contained therein may be augmented by a request for detailed specifications covering any instrument of the general types outlined.

Shop Equipment. The Industrial Bench \& Equipment Mfg. Co., 98 South St., New Britain, Conn., has issued catalog No. 653 describing its steel shop equipment. The catalog features many new items in laminated wood top benches, smooth top steel benches, pressed steel bench legs, steel bench drawers, all steel work stands, all

\section*{Seive
Systems}


MOTOR-DRIVEN induction generators

PLUG-IN ASSEMBLIES OF CONTROL MOTOR, GEAR TRAIN, POTENTIOMETER \& SYNCHRO


Transicoil servo systems feature integrated design--every component is made to match all the others . . . coordinated to insure maximum efficiency and top performance.
For systems of your own design, Transicoil can supply precision components designed to meet your requirements . . . their effectiveness limited only by the restrictions you impose.
Complete data will be sent on request.


\author{
Engineering-Sales Representatives in:
}

Boston, Mass. - Buffalo, N. Y. - Chicago, III. - Cleveland, Ohio - Dallas, Tex. Kansas City, Mo. - Los Angeles, Calif. - Minneapolis, Minn. - Netcong, N. J. Philadelphia, Pa. - Phoenix, Ariz. - San Francisco, Calif. - Seattle, Wash. Syracuse, N. Y. - Washington, D. C.


\section*{FUMNTMTIN FNITTEED} capacitors but units engineered to your circuitry, associated components and operational conditions.
\(\mathrm{H}_{1}-\mathrm{Q}\) specialists are ready to collaborate
with your engineers for the ideal application.
\[
\begin{gathered}
\text { your } \\
\text { needs }
\end{gathered}
\]


These trimmers, stand off capacitors and resistor-capacitor combinations are typical of \(\mathrm{H}_{1}\)-Q special components developed largely to meet special needs. They suggest what Hi-Q specialists can accomplish in designing and producing ceramic units for any and all purposes.

Capacitor elements in H1-Q special components meet all requirements as established by RTMA for Class 2 ceramic dielectric capocitors specifically suited for by-pass and coupling applications, or for frequency discriminating circuits where \(Q\) and stability of capacitance are not of major importance. Where Class 1 capacitors are required, Hi-Q specialists are again ready to study your most rigid specifications.

Hi-CAEROVOX CORPORATION OLEAN, N. Y.


Expert: 41 E. 43nd 5t, Now York 17, N. Y. - Cable: AEROCAP. N. Y.
steel machine stands, steel tote boxes, welding benches, bench parts and accessories. Construction, sizes, styles and other data are included.

Voltage and Current Standard. Radiation, Inc., Melbourne, Florida. A single-page bulletin illustrates and describes the type M-DC-2 super-regulated voltage and current standard. The instrument discussed is designed for general laboratory and production use, and replaces the potentiometer and its accessories, such as galvanometers. standard cells, power supplies and precision resistors. Complete technical specifications are included.

TV Film Accessory Equipment. Radio Corp. of America, Camden, N. J. Catalog B. 375 covers a line of Neumade film accessories designed and selected to accommodate practically every editing and film handling need of tv broadcasters for \(16-\mathrm{mm}\) programming. The new equipment listed includes film splicers, rewinds, viewers, measuring machines, editing tables, storage cabinets, reels and other handy accessories.
"Dag" Dispersions for Industry. Acheson Colloids Co., A Division of Acheson Industries, Inc.. Port Huron, Mich. A 4-page folder lists 37 products of its current "dag" dispersions for industry. The tabulated data gives information on dispersed substance, carrier, solids content, particle size, consistency, density, diluent agitation before use and typical applications. The pamphlet is available unon request.

Transformer Catalog. Chicago Standard Transformer Corp., Elston \& Addison, Chicago 18, III. A new 24-page booklet carries complete electrical and physical specifications on almost 500 transformers for radio, tv, high fidelity, amateur, military and other electronic applications. There are 25 new units listed, including 13 ty components and 5 transistor transformers. The ty section has been increased to 4 pages. listing 129 tv components. The high-fidelity sec-
tion has been expanded to include the new miniature audio transformers and more detailed information on the Stancor-Williamson amplifier. A cross index chart between obsolete power transformers and the current 8400 -series power transformers has been included.

Power-Line Carrier. Westinghouse Electric Corp., 2519 Wilkens Ave., Baltimore 3, Md. A 16-page booklet describes the new type FD power-line carrier equipment. The carrier assemblies most commonly used for such functions as relaying, telemetering, supervisory control, remote control, teletypewriter service and telephone service are described, with photographs of the assemblies. Such features of the equipment as crystal control, selectivity and sensitivity are discussed. Ask for booklet 84-000.

Electric Test Equipment. Industrial Instruments, Inc., 89 Commerce Road, Cedar Grove, N. J. Catalog No. 19 A is a 12 -page electric test equipment booklet now being offered by the company. A large selection of electric test instruments for both laboratory and production applications are listed along with full specifications on each. In addition to the instruments, necessary accessories and test jigs are listed and described.

Ceramic Products. Stupakoff Ceramic \& Mfg. Co., Latrobe, Pa. Bulletin 653 is a 4-page brochure on the company's products for the world of electronics. Included are photographs and descriptive details on: glass-to-metal seals, steatite and other ceramics, printed circuits and ceramic-metal assemblies. A section also is devoted to a description of the characteristics of Kovar glass-sealing alloy,

Electrolytic Capacitors. Astron Corp., 255 Grant Ave., East Newark, N. J., has announced availability of its new catalog supplement, AC-3A, for its expanded line of twist-prong electrolytic capacitors. The new supplement provides complete listings of catalog numhers, capacitance and voltage ratings, case sizes and list prices of all


Type S-525: Band Pass 8 KC Filter...
Impedance: 600 ohms, in and out
Insertion Loss: 2 db@8KC
Response: plus/minus 1.5 db 7700 cps to 8300 cps ;
minus 28 db or more@ 8750 cps and 7250 cps
Effective Magnetic Shielding: (minimum) minus 40 db

Type S-528: Band Pass 32 KC Filter...
Impedance: 5000 ohms, in and out
Insertion Loss: 1 db @ 32 KC
Response: plus/minus \(1 \mathbf{d b} 22 \mathrm{KC}\) to 42 KC ;
minus 80 db or more@ 77 KC and 87 KC
Phase Shift Difference between units does not exceed \(0.5^{\circ}\).

\section*{Type S-531: Low Pass Filter...}

Impedance: 6000 ohms; in and out
Insertion Loss: 4 db@ 500 cps
Response: minus 40 db or more @ 100 cps ref. 10500 cps minus 15 db or more@ 400 cps ref. 10500 cps minus 45 db or more@ 1000 cps ref. to 500 cps minus 55 db or more@ 1500 cps ref. 10500 cps
Phase Shift: Change less than \(5^{\circ}\) from minus \(55^{\circ} \mathrm{C}\) to plus \(85^{\circ} \mathrm{C}\), and \(2^{\circ}\) or less with change of input level from 2 volts to 4 volts.

Type S-921: High Pass 70 Cycle Filter...
Impedance: 0 to 1100 ohms input; 10,000 ohms output
Insertion Loss: 0.3 db or less at 1 KC
Response: 0.4 db or less @ 70 cps
minus 20 db or more @ 40 cps
minus 70 db or more @ 10 cps
Response Characteristics: Maintained, with input impedance varying from 0 to 1100 ohms.
* function-fitted

Send us your filtering problems. Acme has a standard unit available or will develop and build a special unit, either way. function-fitted to your precise needs. Literature on request.

Specify "ACME". That means mobilizing a corps of specialists to work on your wave-filter problems and requirements. Two exceptionally-equipped laboratories are ready to develop all varieties of filter designs. Adequate production facilities can swing into action to meet any quantity and quality requirements. Depending on required frequencies, Acme can supply standard or miniaturized filters with either toroidal or laminated inductors for airborne radar, sonar, communications systems of all categories, and all other applications. Representative units shown herewith are typical of Acme's versatility and convenience to you.


\section*{AEROVOX CORPORATION \\ PASADENA, CALIF.}

\section*{AEROVOX corporation \\ NEW BEDFORD MASS}

In Conode: AEROVOX CANADA ITD., Mamilion, Ont. JÓbBER ADDRESS: 740 Belleville Ave.; New Bedford, Mass. Export: 11 E. 42nd St., New York 17. N. Y. Coble: AEROCAP, N, Y. -

standard twist-prong capacitors to fulfill every radio and television replacement need.

Precision Potentiometers. The Gamewell Co., Newton Upper Falls 64, Mass. A new booklet describes the company's line of linear and nonlinear precision potentiometers. In addition to descriptions of standard products and condensed specifications, the booklet discusses windings available and contains a glossary of terms used by engineers working with potentiometers.

Magnetic Ferrites. Mullard Ltd., Century House, Shaftesbury Ave., London WC2, England, has issued a comprehensive source of reference on Ferroxcube magnetic ferrites. This 46-page publication should prove of considerable value to the equipment designer. It comprises five chapters. The first chapter gives an historical survey of magnetic ferrites followed by details of their physical structure. The second chapter deals with the electrical and magnetic properties of Ferroxcube. Subsequent chapters are devoted to the mechanical properties of the material, application data and standard core shapes and dimensions.

Electronic Control Equipment. Haledy Electronics Co., 57 William St., New York 5, N. Y., has available a new 4-page folder, No. 453 , that describes and illustrates the use and application of controls for industrial and test equipment, featuring electronic counters, photoelectric equipment, relays, timers and liquid-level equipment.

\section*{Electronic Design \& Production} Facilities. Manson Laboratories, 207 Greenwich Ave., Stamford, Conn., have released an 8-page booklet describing their facilities devoted to special projects for the design and production of electronic and electromechanical instruments for laboratory and industrial use. A number of their products are illustrated, and pertinent data are given regarding their specifications and performance. Notable among the products described and illustrated are: regulated d-c power

NEW PRODUCTS
(continued)
supplies and \(h\)-f pulse and multiplepulse generators with a wide variety of characteristics; transmit-ing-tube checkers and, modulators for testing magnetrons, pulse and microwave components at all power levels up to 40 megawatts peak power; and test equipment for the wire and cable industry.

Fiber Glass Yarns. Libbey-OwensFord Glass Co., Toledo 3, Ohio, has announced a new folder giving technical data on fiber glass yarns for electrical insulation. Tensile strength of the yarns described ( \(250,000 \mathrm{lb}\) per sq in.) permits tight, fast wire covering and coil taping even at extremely high operating temperatures. The folder contains complete information on standard packaging yarn specifications, and data on thermal conductivity, heat and acid resistance, moisture absorption, insulation resistance, dielectric strength, and cites numerous specific applications.

Transistor Bulletins. Electronic Research Associates, Inc., P.O. Box 29, Caldwell, N. J., offers a new bulletin on available types of transistors, manufacturers and other supplementary data. Also available is a several-page bulletin on the model TT-11 transistor tester. Data are also available on the model CC-60 constant current converter and the model-110 transistor power supply.

Electronic Load Weighing. Bald-win-Lima-Hamilton Corp., Philadelphia 42, Pa. How to weigh the contents of tanks, bins and hoppers electronically with type SR-4 load cells is explained in bulletin 4106 , a new 8-page, illustrated brochure. The bulletin covers installation design considerations, such as mountings, temperature effects and vibrations; indicating and recording instruments; weighing accuracy; and the company's engineering services. A questionnaire designed to provide the data needed in specifying proper SR-4 weighing equipment is included.

Design Engineering. Designers for Industry, Inc., 2915 Detroit Ave., Cleveland 13, Ohio, has pub-

EACH CORE SHOWN BELOW IS PHOTOGRAPHED THREE TIMES ACTUAL SIZE TO SHOW DETAIL


\section*{We make powdered iron cores}


Our design engineers have an impressive record of success in developing new miniature types of cores for highly specialized applications, and are ready to take on your toughest problem jobs. Our engineering consultant service is yours without cost.

Pyroferric works to closest electrical and mechanical tolerances, on newly-devel oped pilot models and quantity production runs. You are assured of uniformity, strict quality control and rigid conformity to specifications.

Pyroferric makes iron cores in a complete size range from the smallest to the largest, for all applications. M. P. A. data sheets and tables give complete information including recommended sizes and tolerances as well as a cross-reference index of manufacturers' material designations


Please send me M.P.A. data sheetśs and tables No. 305.

Write on your let. terhead for latest Catalog No. 230


\title{
FILTERS \\ when you choose them, don't overlook the thinking behind them.
}

To the coils and capacitors that normally comprise a filter, Lenkurt adds something extra - specialized engineering experience. This means consistent laboratory quality even in mass production quantities. And in filter design problems, Lenkurt offers sound background experience combined with a fresh creative approach.

An excellent example is furnished by a recent filter miniaturization problem. A 140 kc low-pass filter was required to isolate signals up to 140 kc from others over 164 kc . Lenkurt engineers succeeded in reducing it to \(1 / 10 \mathrm{th}\) the normal size for such a filter. Subminiature toroids were used and a series-derived network eliminated many capaci-
tors. For its performance see the accompanying graph.

Lenkurt can serve both your routine filter requirements and your special needs. Write today for further information.

Photo shows a miniaturized filter an example of Lenkurt engineering development.

Performance chart of the Lenkurt miniaturized filter (described in the text).

NEW PRODUCTS
lished a 4-page folder that describes the importance of designing industrial products for both function and appearance in meeting required standards of performance, size, weight and cost. It includes all the steps involved in design engineering, from preliminary design through the building and testing of prototypes. Three typical products are pictured with descriptions of design features, plus a partial listing of over 70 designed and commercially developed products.

Measurement Instruments. Brush Electronics Co., 3405 Perkins Ave,, Cleveland 14, Ohio. "Instruments for Modern Measurements" is the title of a new 34 -page book published in two colors. It illustrates and describes over 37 different instruments, especially engineered and produced for: electrical measurements, physical measurements. resistance-welding measurements, textile measurements, ultrasonic energy applications and electroacoustical measurements. The booklet will be of special interest to research engineers, methods and production engineers, factory superintendents and other production and research executives.

Plastic Components. Tri-Point Mfg. \& Development Co., 401 Grand St., Brooklyn 11, N. Y., offers a new 4 -page brochure describing and illustrating the company's various types of plastic components. Plastics such as Teflon, Kel-F, Nylon, Formica, Rexolite, polystyrene, polyethylene and laminated phenolics are covered. The brochure tells how tolerances of 0.001 are held on production runs on components made in standard sizes or to specification.

Picture Tube Substitution. CBSHytron, Division of Columbia Broadcasting System, Inc., Danvers, Mass., has compiled a timesaving substitution chart for to picture tubes. The chart includes all electromagnetically deflected tubes, regardless of make. An index leads to the proper substitution group listing all readily interchangeable types, and from this
group one can pick an available type with the least number of necessary service adjustments. Outline and basing diagrams are included.

Amplifier Instruction Sheet. Standard Transformer Corp., 3580 Elston Ave., Chicago 18, Ill. A revised edition of the Stancor Williamson amplifier instruction sheet has been issued. It is complete with performance curves, schematic, parts list, chassis layout and diagrams. The sheet notes that the excellent frequency-response curve recorded at the 8 -watt level remains unchanged at the low level of 0.5 w , a factor frequently overlooked in amplifier evaluation. It points out that intermodulation distortion measures only 3 percent at 8 -w output, and total harmonic distortion at 1,000 cycles is extremely low and may be considered nonexistent below the \(10-\mathrm{w}\) power level.

Mica Review. Mica Fabricators Association, 420 Lexington Ave., New York 17, N. Y., has published the first issue of the Mica Review. It is the intention of the members of the M.F.A. to include in the Review practical information for purchasing agents, engineers, and all those who handle the mineral mica. The Review will be concerned with only the two major types of mica -Muscovite and Phlogopite. The first issue discusses sources of supply, size, thickness and quality.

Taper Technique. Aircraft-Marine Products Inc., 2100 Paxton St., Harrisburg, Pa. An 8-page fully illustrated folder deals with new electronic uses for an old principle of mechanics. It covers a line of self-locking taper terminals that combine miniature size with remarkable electrical characteristics. Included are development information, test results, applications, specifications and catalog numbers for taper pins and taper tab receptacles.

Meter Calibrator. Kalbfell Laboratories, Inc., 1090 Morena Blvd., San Diego 10, Calif. A recent mailing piece illustrates and describes a meter calibrator that produces an absolutely calibrated \(d-c\) voltage,


Until a few years ago, full utilization of microwave communications was hampered by the lack of multiplexing equipment which provided necessary transmission quality and flexibility of arrangements. Lenkurt helped remove these "shackles" by providing multiplex equipment for radio using frequency division techniques to achieve the desired objectives.

Frequency division multiplexing, highly developed for wireline and cable telephone carrier equipment, has many advantages for microwave systems. With each channel occupying a separate portion of the frequency spectrum, individual channels or groups of channels can easily be dropped out at repeater points and terminated or arranged for party-line operation. Total frequency spectrum is conserved because groups of channels can be transmitted with much less r-f bandwidth than is required for other multiplexing methods.

Radio channelizing equipment by Lenkurt, leading independent manufacturer of telephone carrier systems, provides from 4 to 72 toll-quality voice channels over a single radio transmission path. It is widely used with the VHF and microwave equipment of major



Lather that oozes into your barber's hand from his counter dispenser, does so because of the action of a Honeywell Mercury Switch.

Depressing the plunger on the top of this dispenser, made by Campbell Products Company, tilts a mercury switch. This starts the motor and a plastic worm screw forces the lather from the device.

Honeywell Mercury Switches meet the special demands of this equipment because the glass-enclosed contacts are unaffected by the moist environment in which the switch must operate. The tiny switch fits easily into the streamlined design.

There is a Honeywell Mercury Switch to meet the requirements of every type of application where tilt motion can be supplied and where conditions indicate a mercury switch as the proper switch unit. MICRO field engineers, experienced in every type of switch problem, are available to help you select the proper switch to meet your needs. Write or call the nearest MICRO branch office:

A DIVISION OF
MINNEAPOLIS-HONEYWELL REGULATOR COMPANY
MAKERS OF PRECISION SWITCHES
FREEPORT, ILLINOIS
H
independent of input line voltage and output load variations. Included are an illustration, wiring diagram and complete technical specifications. The company invites you to write for a bulletin on this unit, as well as such other precision electronic instruments as a decade amplifier, Micro-Miker, super regulator and absolute d-c power supplies.

Instrumentation for Industry. Beckman Instruments, Inc., South Pasadena 1, Calif. The growing importance of instrumentation to nearly every modern industry, large or small, is dramatized by actual case histories appearing in the latest "Beckman Bulletin", a house organ. An instrument for analyzing flame color, for instance, enabled American Potash and Chemical Corp. to cut control time on its main product-potassium chloride-by a factor of eight. Another article summarizes the advantages found by a brewery in using a spectrophotometer for routine color control of beer. To find out about other applications ask for bulletin BB-11-59.

Engineering Reports. Polytechnic Research \& Development Co., Inc., 202 Tillary St., Brooklyn 1, N. Y., has available a line of reports published quarterly designed for engineers, scientists and interested persons in industrial or educational organizations. The bulletins cover such subjects as frequency measurement devices, noise figure and some measurement aspects, microwave power measurements, metallized glass microwave attenuators, ridged waveguide, and a wideband sweep generator for both uhf and uhf tv. The bulletins are completely illustrated and give technical specifications. Write to the company and get your name on the mailing list.

Feed-Through Bushings. Thor Ceramics, Inc., 225 Belleville Ave., Bloomfield, N. J. A complete line of standard Steatite miniature feed-through bushings for efficient low and high-frequency equipment is illustrated and fully described in catalog bulletin No. 153. Complete
with full engineering data, specifications and dimensional drawings, it covers the company's standard miniature feed-through bushings, made to conform to government and commercial specifications.

Tower Lighting. Crouse-Hinds Co., Syracuse 10, N. Y., has issued booklet \(381-\mathrm{F}\), a 20 -page publication entitled "Tower Lighting", that describes methods and materials necessary for installing obstruction lighting equipment on radio, tv and microwave relay towers. It includes layout drawings with complete bills of material for lighting towers of all heights. All information meets the requirements of the FCC and CAA. For example, a complete line of alarm relay equipment is available for remote indication of lamp failure as required by the FCC for unattended stations.

Tower Bulletin. Blaw-Knox Co., Farmers Bank Building, Pittsburgh 22, Pa., has published a 20 page bulletin, No. 2417, describing its a-m, f-m, tv, microwave, communications and radar towers. Various types of guyed and selfsupporting towers are described. A photograph of the company's testing frame is shown. By use of this frame, any combination of loads representing wind and antenna load can be applied to a tower. Actual deflection and twist can be measured and tower tested to destruction if desired. The RETMA standard specifications are given in the bulletin.

Ground Station Receiver. Collins Radio Co., Cedar Rapids, Iowa, has issued a 2 -page bulletin dealing with the \(51 \mathrm{~N}-2\) ground station receiver, a unit that is engineered for unattended continuous airline duty and other applications calling for A1, A2 and A3 reception at any one frequency within the range of 2 to 24 mc . Included are illustrations, a complete description, technical specifications and information on operating conditions.

Frequency Meter. Nassau Research \& Development Associates Inc., 66 Main St., Mineola, N. Y. A one-page brochure illustrates and


WRITE FOR FACTUAL DATA SHEETS ON THESE AS WELI AS YOUR OTHER COMPONENT REQUIREMENTS


Let me first emphasize the essential difference between "Latite" Ferrites and general Ferrites. When you use "Lavite" Ferrites, you first have all of the desirable basic advantages of this type of material. These advantages are many varieties in composition to better meet specific electrical properties that may be required as to high saturation, higher permeabilities, high \(Q\) and FM frequencies, low temperature coefficient, etc.

Ask for general characteristic data on all "Lavite" Technical Ceramics - ("Lavite" Steatite, "Lavite" Titanates, "Lavite" Ferrites, and others).

To this is added the plus value of:
1. Steward's private research and development,
2. Steward's modern and highly efficient facilities to produce your "Lavite" Ferrite components to greater accuracy in both material and size.
3. Interestingly low production costs of these parts, and
4. Prompe delivery.

And in addition to all this, you are invited to consult Steward engineers, without obligation, for scientific answers to your specific problems. Send me your specifications.
> D. M. STEWARD MANUFACTURING CO.
> 3604 Jerome Ave, Chattanooga, Tennessee Sales Offices in Principal Cities
describes the model 802 frequency meter designed for the 2,400 to 10,200 -me range. Accuracy of the unit discussed is 0.2 percent, and sensitivity is 10 mw to 5 W .

IV Transformer Replacement.
Chicago Standard Transformer Corp., Addison and Elston, Chicago 18, Ill., has available the first edition of the 1953 Stancor tv transformer replacement guide. The 32 -page reference book contains transformer replacement information on over 5,600 tv models and chassis. It covers 101 brands of tv sets, in alphabetical order, by model and chassis number. A special catalog section lists electrical and physical specifications on 125 Stancor tv replacement components.

Components and Products Catalog. Waldom Electronies, Inc., 911 North Larrabee St., Chicago 10, III. Catalog No. 5C3 lists more than 2,000 electronic components and Croname products. Included are tuner assemblies; mask, glass and escutcheon kits; title plates, dial and switch plates; knobs; instrument drives and dials; terminal lugs, cases and dial locks; terminal strips; pushbutton and control knobs; ty replacement items and accessories; sockets and shield bases and other components.

Titanium. Mallory-Sharon Titanium Corp., Niles, Ohio. A recent technical booklet, "Properties of Titanium and Titanium Alloys," provides current information on different production methods, general properties of various alloys, standard production classifications and testing procedures, and specific qualities of the five types of titanium and its alloys supplied by the company. Presently, titanium and its alloys are being used or considered as a replacement material for stainless steel and aluminum because of its high strength-to-weight ratio.

Locknuts and Collars. Standard Pressed Steel Co., Box No. 596, Jenkintown, Pa. Two four-page bulletins, one on Flexloc self-locking nuts and the other on Hallowell steel shaft collars, have been prepared. Both give information in
text and illustrations on product properties and applications. The Flexloc locknuts described are one piece and all metal, do not have to seat to lock, and can be used as stop nuts because they will stay put at any point on a bolt or stud. Steel nuts are unaffected by temperatures up to 550 F , and corrosion-resisting steel nuts up to 750 deg. Sample applications are shown. The bulletin on steel collars lists the 42 standard sizes for shafts from \({ }^{\frac{3}{8}}\) in. to 3 in. in diameter. It shows the Hallowell collar in use in various applications.

External Phasing Potentiometer. DeJur Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. Bulletin 100 is a single-sheet publication illustrating and describing the series C-200 external phasing potentiometer. Eighteen features of the unit are outlined. Also included are dimensional diagrams and general specifications.

Technical Ceramics. American Lava Corp., Chattanooga 5, Tennessee. Bulletin No. 533 describes and illustrates technical ceramics for use in the electronic and electrical fields. The purpose of the 12-page primer is to tell some of the outstanding advantages of AlSiMag technical ceramics quickly and in nontechnical terms.

Hermetically Sealed Transistors. Texas Instruments Inc., 6000 Lemmon Ave., Dallas 9, Texas. Two new production types of hermetically sealed, grown-junction transistors are covered in bulletin DL-S 310. It describes the types 200 and 201-both npn triodes with glass to metal hermetic sealing-which differ principally in collector resistance and amplification factor. The new bulletin contains two pages on the theory and application of junction transistors, as well as detailed specifications and curves on the company's units. Alpha (current amplification factor) is a guaranteed minimum of 0.90 in type- 200 and 0.95 in type- 201 transistors.

Electrical Insulating Materials. Insulation and Wires Inc., 3435 Chouteau Ave., St. Louis 3, Mo.,


PRECISION wire wound RESISTORS


\section*{Specifications:}

Power Rating: \(1 / 4\) to 1 watt
Resistance Range: \(\mathbf{1}\) ohm to 2 megohms
Size: \(1 / 4^{" 1}\) Dia. \(\times 1 / 2^{\prime \prime}\) Long to
7/16" Dia. \(\times 114^{\prime \prime}\) Long
Tolerance: \(1 \%\) to \(.05 \%\)
Non-Inductive Winding



ANTI-CORFOSIVE METAL PRODUCTS CO., INC.
Castleton-on-Hudson, New York
has available a 48 -page catalog dealing with a wide line of electrical insulating materials. Over 225 items are indexed. Descriptions, specifications and prices are included. This catalog is published periodically and so kept up to date on prices.

Portable pH Meters. Beckman Instruments, Inc., South Pasadena 1, Calif., has released a 4-page folder designed to simplify the choice of pH equipment. Salient performance features and pictures distinguish the four pH meters in the series. They include a highly accurate instrument for laboratory and research studies; a line-operated model for routine measurements in the control laboratory; and two lightweight portables for plant and field applications. The booklet also lists typical industries where these instruments are used. Ask for bulletin 322-59.

UHF Transmitter. Allen B. DuMont Laboratories, Inc., 1500 Main Ave., Clifton, N. J. Bulletin No. TTD-T201 covers the company's 1kw uhf tv transmitter. It outlines the design and operational features of the unit. Block diagrams, photos and graphs explain the basic circuitry of the visual and aural transmitters that make up the \(1-\mathrm{kw}\) transmitter. In addition, information required by FCC Form 301, Section V-C is provided for the convenience of station applicants.

Coaxial Cable. Andrew Corp., 363 E. 75th St., Chicago 19, Ill. Bulletin 48 - A is a 4 -page folder illustrating and describing a \(\bar{z}\)-in. diameter. semiflexible coaxial cable (type 737). It gives power ratings, mechanical and electrical characteristics, and a table of attenuation and efficiency. Included are a page of applications with typical hills of materials, installation information and an illustrated list of accessories.

Picture Tube Components. Sylvania Electric Products Inc., Towanda, Pa . Tungsten and chemical components for to picture tubes are described in a 4-page booklet. Among the components described we screen phosphors, potassium
silicate for screen settling, tungsten wire for cathode heaters, and triple carbonate cathode coatings. Also included is a description of stranded tungsten coils and filaments for vacuum metallizing. They are used in the aluminizing of picture tube screens.

Wire Identification. Alpha Wire Corp., 430 Broadway, New York 13, N. Y. One of the many new features contained in the 28 -page catalog No. 53 is a 2-page identification chart for electronic wire and cable. It is designed to allow even the inexperienced to correlate positively and quickly an Alpha product from a vague general description.

Equipment Catalog. Perma-Power Co., 4727 North Damen Ave., Chicago 25 , Ill., has published a 4 -page, multicolored catalog on its complete line of electronic equipment. Items listed in the catalog include a new to voltage regulator; a new model tv tube brightener; a tv insulated high-voltage grid cap assembly; a tv high-voltage spring clip assembly; a tv replacement socket; tv tube extensions; and the three battery eliminators-models \(A, B\) and \(E\).

Remote Control Equipment. The Hammarlund Mfg. Co., Inc., 460 W. 34th St., New York 1, N. Y. A new 4 -page 2 -color bulletin describes the Multi-Gate remote supervisory control system designed for use by petroleum refineries, pipeline, railroads, power companies, and other organizations that have widespread physical facilities. The equipment described is designed for operation over wirelines, microwave, or radio lengths, or combinations of these to provide on-off control, switching or signaling at one or several remote points. Control of a given station or other remote point may be exercised from one or more control centers; and report back on the operations may likewise be obtained at any or all of the controlling stations.

Screen Rooms. Erik A. Lindgren \& Associates, 4515-17 N. Ravenswood Ave., Chicago 40, Ill., has issued a pamphlet on its doubleshielded type, heavy duty portable


Photo Courtesy Dalmo-Victor

\section*{Whinaturized Amtenna Motor Flter}

\author{
Eliminates Interference . . . Fits Existing Mounting Bracket
}

PROBLEM-A large radar antenna manufacturer wanted to use a certain motor to train radar antemas. However, the notor brushes caused serious radio interference as the equipment was pulsed.

SQLUTION-The motor manufacturer's engineers contacted Sprague's Radio Noise Suppression Laboratories in Culver City to design a noise filter to neet a tight deadline. The unit would have to (1) reduce the interference to meet the requirements of MIL-I6181, (2) fit the existing mounting bracket on the motor. The solution, outstanding for its superior attenvation characteristics, is shown in the photo.

RESULT-Production motors for this application are now supplied with the Sprague filter attached.

PRODUCTION SCHEDULES for such filters designed by Sprague's California labs are regularly met by Sprague's extensive pilot plant and mass-manufacturing facilities, the former for those sizzling rush orders, the latter for volume needs. For help with your radio noise filter applications, write, wire, or phone Sprague Electric Co., 11325 Washington Blvd., Culver City, Calif. (TExas 0-7491) or North Adams, Mass. (North Adams 423).

SPRAGUE


\section*{. . . the difference is Design}

In this \(4^{\prime}\) dia., \(5^{\prime}\) long chamber you can simulate the effects of explosions of any predetermined magnitude at pressures of any altitude up to 80,000 feet - with maximum accuracy and safety. Using commercial Butane gas, thoroughly mixed by blower and fan, explosions are ignited by a timed spark and controlled (manually or automatically) throughout all phases of synthesis and evacuation. For maximum versatility and action tests, two \(100-\) point terminal pads ( 25 amps., 230 volts AC), as well as two hand turning shafts, are provided as accessories.

Control of explosions is only one of the many phases of Tenney's experience in
designing and building precision atmospheric test equipment. Others include all types of environmental testing chambers - temperature, humidity, altitude, vacuum - to provide manufacturers and researchers with the most accurate means of predetermining behavior of products under unusual conditions. From the early days of this now-vital industry, Tenney engineers have been meeting and solving problems with challenging specifications by imaginative design and skilled craftsmanship. It is this background that assures more and more product planners that the right way to right results is to "talk it over with Tenney,"

For further information and bulletin write:

construction screen rooms that feature minimum r-f interference. The illustrated brochure describes such features as easy assembly, leak-proof doors, ball bearing hinges, heavy-duty latches and floor panels that are faced with 4 -in. waterproof plywood and are laid over the double screened, sectional substructure. Complete specifications are included.

High-Temperature Alloy Fastenings. The H. M. Harper Co., Morton Grove, Ill. Bulletin HTA covers high-temperature alloys such as Refractaloy, Discaloy, Iriconel, Hastelloy and Austenitic alloys, with a special section on titanium. This bulletin contains data on these superalloys, together with a section on the characteristics of high-temperature bolting. Tables give mechanical properties and chemical composition of various alloys and illustrate many types of fastenings produced from super alloys and titanium.

Public-Address Equipment. Newcomb Audio Products Co., 6824 Lexington Ave., Hollywood, Calif., announces a new 20 -page catalog of public-address equipment. It contains illustrated information on all three lines of Newcomb amplifiers, portable systems and accessories, as well as rack and panel assemblies.

Electrical Insulation. L. Frank Markel \& Sons, Norristown, Pa., have published a technical bulletin on improved types of a class H insulating tubing made of fiber glass base sleeving coated with Silicone rubber. It includes information on grades and electrical characteristics, thermal and chemical characteristics, flexibility, abrasion resistance, flammability, fungi resistance and sizes.

Carbon and Graphite Products. Stackpole Carbon Co., St. Marys, Pa. Standard and special carbon and graphite components and materials for chemical, electrical and mechanical applications are described in catalog 40A. Recently revised and enlarged, the 44 -page catalog contains a wealth of data
on carbon and graphite as applied to products ranging from battery and welding carbons to tube anodes, electrical contacts, bearing materials, seal rings, rail bonding molds, graphite for spectrographic analysis and many others. It is designed more as a guide to the many uses of carbon and graphite than as a restrictive listing of standard products. As a result, there is considerable engineering information on the physical and electrical properties of carbon and graphite as compared with metals and other refractory materials.

Beam Switching Tubes. Burroughs Adding Machine Co., Research Div., 511 N. Broad St., Philadelphia \(23, \mathrm{~Pa}\)., has available the reprint of an article by one of its engineers dealing with multi-output beam switching tubes for computers and general purpose use. The booklet contains a well illustrated technical description along with a history of beam switching tubes.

Polyester Film. E. I. DuPont de Nemours \& Co., Wilmington 98, Del., has issued a technical bulletin containing 14 pages of information on the physical, electrical and chemical properties of Mylar polyester film, and suggested applications. It is complete with charts, diagrams and tables. The electrical properties section covers such things as dielectric strength, insulation resistance, and volume and surface resistivity.

The Engineering Profession. Stevens Institute of Technology, Castle Point, Hoboken, N. J. An increasing interest in engineering, shown by high school students of late, has led to publication of a new booklet about the profession. Designed to answer questions about the work engineers do, the 16-page publication also discusses the scholastic attainments and special aptitudes which indicate whether a student should seek admission to an engineering college. The booklet, entitled "What's Engineering?", was written with an eye to aiding both students and counselors.

James is the complete source for all vibratory products!* THE ENGINEER'S STANDARD SINCE 1936
*Send your engineering problems to us


The new James Angle Drive Interrupter Vibrator is now available in manufacturer's quantities at competitive prices. Dependable starting, long life, hushed performance are inherent features of this new vibrator. Write for engineering samples and circuit consultation.


\title{
PLANTS AND PEOPLE
}

\author{
Edited by WILLIAM G. ARNOLD
}

\author{
Everitt To Receive IRE Medal Of Honor
}

William L. Everitt, Dean of the College of Engineering, University of Illinois, has been named to receive the Institute of Radio Engineer's medal of honor for 1954. The Institute gave the award "for his distinguished career as author, educator and scientist; for his contributions in establishing electronics and communications as a major branch of electrical engineering; for his unselfish service to his country; for his leadership in the affairs of the IRE."

Dr. Everitt had held teaching posts at Cornell University, University of Michigan and Ohio State University before coming to the University of Illinois in 1945 as head of the department of electrical engineering. He was appointed Dean of the College of Engineering in 1949.

In 1940 Everitt became a member of the Communications Section
of the National Defense Research Committee and during World War II served as Director of Operational Research in the Office of the Chief Signal Officer. In 1950 he served as a member of the Senate Advisory Committee on Color Television. In April of this year, the IRE nominated him to serve on a committee of scientists formed to study the National Bureau of Standards.
The presentation of the medal of honor will be made during the annual banquet at the WaldorfAstoria Hotel, New York, N. Y. on March 24, 1954 during the IRE National Convention.

\section*{RETMA Committee}

Chairmen Named
Following the action of the Radio-Television Manufacturers Association in changing its name

\section*{Elgin Watch Seeks Electronics Firms}


Elgin National Watch Co, is actively seeking companies in the electronics and precision instrument fields with "a view to affiliation," J. G. Shennan, president, recently announced. Reasons why the 89 -year-old company wishes to enter the electronics field are pointed out above by president Shennan who said the prime motives are need for higher return on capital and greater long-term stability. The company plans continued aggressive activity in its basic field of watchmaking

\section*{OTHER DEPARTMENTS \\ featured in this issue:}

Page
Electrons At Work...... 198
Production Techniques . 258
New Products .......... 310
New Books ............ 436
Backtalk .................. 451
to the Radio-Electronics-Television Manufacturers Association and approving a reorganization plan which established a Radio-Television Industry Committee and an Electronics Industry Committee of the board of directors, board chairman Robert C. Sprague appointed the following committee chairmen:
F. R. Lack, vice-president of Western Electric Co., was appointed temporary chairman of the electronics industry committee and has designated himself as temporary chairman of the radio-television industry committee, pending election of permanent chairmen of both committees.

Leslie F. Muter of The Muter Co. was reappointed chairman of the annual awards committee. The committee has the responsibility for nominating the recipient of the RETMA medal of honor, presented annually to the person, company or organization which, in their opinion, has made the greatest contribution to the radio-televisionelectronics industry.

John B, Swan, Jr. of Philco Corp, and William L. Fogelson of P. R. Mallory \& Co. were appointed chairman and vice-chairman respectively of RETMA's traffic committee.

The committee and its subcommittees will continue to work during the coming year to promote and protect the best interests of the industry in the field of traffic problems.

Paul V. Galvin of Motorola was reappointed chairman of RETMA's committee to survey subscription television. During the coming year, the committee will continue to study the nontechnical phases of subscription television with particular reference to its possible effects on the telecasting of sports, theatrical presentations and other

entertainment activities.
H. A. Pope of National Union Radio Corp. was reappointed as chairman of the association's credit committee for the coming fiscal year. During the coming year the group will continue its active surveillance of the credit position of both manufacturers and distributors in the electronics field for circulation within the electronics industry.

Glen McDaniel, as general counsel of RETMA, was reappointed chairman of the association's legal committee for fiscal year 1953-54. During the coming year the committee will continue to watch state and local legislative proposals which affect the radio-tv electronics industry. It also will continue to work with the RETMA tax committee on current tax problems and to keep the association's members informed of various other legal matters of industry-wide interest.
A. M. Freeman of RCA Victor was reappointed chairman of the tax committee. The group will continue its work to keep the membership informed on current federal tax developments and to present the association's position on tax matters before appropriate federal agencies or the Congress.
W. R. G. Baker of GE was reappointed chairman of the television committee. The committee will continue to operate as the association's top policy group on television matters and formulate recommendations in this field for submission to the board of directors.

Frank W. Mansfield of Sylvania Electric was reappointed chairman of the industry statistics committee for the coming year.

Leslie E. Woods of Raytheon was reappointed chairman of the association's industrial relations committee for the ensuing year. One of RETMA's largest and most active groups, the committee is credited with many outstanding accomplishments in industrial and labor relations.

Harold J. Schulman of the Allen B. Du Mont Laboratories has been appointed chairman of the service committee. He succeeds R. J. Yeranko of Magnavox. The group has done much to improve service relations.

\section*{Quarles Appointed To Defense Post}

Donald A. Quarles, vice-president of Western Electric Co and president of its subsidiary, Sandia Corp. of Albuquerque, New Mexico has been named by President Eisenhower as assistant secretary of defense, for research and development. He formerly served as chairman of joint RDB electronics committee.

Mr. Quarles graduated from Yale in 1916, was a graduate student at Columbia for the next four years after which he joined Bell Labs as an engineer. In 1948, he became vice-president of the company, leaving in 1952 to become vice-president of Western Electric.

\section*{Audio Convention Sets Technical Program}

Arrangements have been completed for 28 papers to be delivered at the Audio Engineering Society's forthcoming Fifth Annual Conven-
tion and Audio Fair to be held in New York City October 14-17, 195:3.

Three papers on loudspeakers will be delivered at the morning session on Oct. 14. In the afternoon audio-system design session, four papers will be delivered.

On Oct. 15, four papers on dise reproduction and others on new audio developments will be presented.

Friday, Oct. 16, amplifier circuit design and home music systems will be discussed.

Multichannel sound reproduction papers will be given on Oct. 17.

\section*{Westinghouse Makes New Moves}

Westinghouse Electric Corporation has purchased the large gov-ernment-owned plant in Lansdowne, Md., which the company has operated under lease since its construction in 1942.

The plant is a large-scale producer of electronic equipment for the armed services and for indus-

\section*{Sylvania Has Produced Five Million TV Tubes}


Mayor of Seneca Falls W. J. Cousin (right) congratulates Sylvania's division general manager, W. H. Lamb (left) on the production of the five-millionth picture tube to be made at the company's two picture tube plants in Seneca Falls, N. Y. and Ottawa, Ohio. Willis C. Toner, Seneca Falls plant manager (center), stands behind the 27 -inch tube. The company also announced that another cathode-raytube plant will be built at Fullerton, Calif.

\section*{ACCURATE MEASUREMENT OF COMPLEX WAVESHAPES}


\section*{Quickly... Accurately DO-ALL Model 655. .}

\section*{ONLY \({ }^{5950}\)}
...gives a true reading measurement of complex and sinusoidal voltages with necessary peak-topeak or RMS value read directly, for the analysis of waveforms in rideo, sync and deflection circuits.

Now TV efficiency is given greater effectiveness because sets can be serviced as the manufacturers say-the peak-to-peak way. The combination of this \(P\). to \(P\). meter and service notes to match, take the guesswork out of service and speed up your service operation. Versatility of measurement, built into each Model 655, serves a variety of industrial applications in the service of vibrator power supplies, \(A C\) generators and all equipment utilizing any type of waveform or DC.
Match the Model 655 with any peak-topeak VTVM-You will find that comparable performance can only be found
in much higher priced instruments. Of high impedance design, the Model 655 makes use of an electronic balanced push-pull circuit and peak-to-peak rectification. The result is an absence of circuit loading, waveform error or frequency distortion.

This handsome looking unit has a brushed aluminum panel, etched for durability and uses an attractive clear plastic meter. Comes complete with our new "RCP SOLDERLESS TEST LEADS" for operation on 105 to \(125 \vee A C\).

\section*{-FOR TELEVISION SERVICE AND INDUSTRIAL MAINTENANCE \\ - PEAK-TO-PEAK AC measurements of from 2 V to 4200 V on 7 ranges. \\ - AC RMS measurements of . 1 V to 1500 V on 7 ranges. \\ - DC measurements of from .02 V to 1500 V on 7 ranges. \\ - RESISTANCE measurements of from . 2 ohms to 1000 Megohms on 7 ranges.}

\section*{RADIO GTTY PRODUCTS CO., NC.}

152 WEST 25th STREET - NEW YORK 1, N. Y.

PULSE


Designed for extremely low temperature rise when used in pulse-forming networks above 25,000 volts. Can pass 2500 amperes at 0.0005 duty cycle.
\begin{tabular}{|c|c|c|c|}
\hline Catalos No. & Mifd. & Peat KV & Body Dimensions (in.) \\
\hline RPC-906000* & 0.0006 & 90 & \(5 \times 8 \times 9\) \\
\hline GPC-601672 & 0.0167 & 60 & \(7 \times 8 \times 24\) \\
\hline RPC. 402502 & 0.025 & 40 & \(6 \times 7 \times 24{ }^{5} / 8\) \\
\hline RPC-402902 & 0.029 & 40 & \(6 \times 7 \times 94{ }^{5} / 8\) \\
\hline APC. 401672 & 0.0167 & 40 & \(5 \times 6 \times 94\) \\
\hline RPC-4326251 & \(2 \times 0.00625\) & 40 & \(6 \times 7 \times 18\) \\
\hline KPC. 357501 & 0.0075 & 35 & \(5 \times 7 \times 83 / 8\) \\
\hline RPC-381252 & 0.0125 & 32 & \(5 \times 6 \times 93 / 4\) \\
\hline
\end{tabular}

\section*{Write for data slreet listing pulse capacitors
and standard pulse-forming networks. \\ Write for data slreet listing pulse capacitors
and standard pulse-forming networks. \\ B \\ TOBE DEUTSCHMANN \\ CORPORATION NORWOOD, MASSACHUSETTS}
trial and commercial customers. The plant is now producing induction heating equipment, radio transmitters and certain radar components.

Increasing peacetime electronic demands on the plant's facilities was an important factor in the company's decision to buy the 60acre installation. Westinghouse built the plant for the government during World War II to fill the urgent need for electronic equipment for defense. Recent peacetime demands for electronic equipment have caused that type of production at the plant to equal its military output. In view of the fact that this would have necessitated an eventual expansion of the plant's manufacturing capacity, Westinghouse decided to acquire the property.
In another move in the electronics division, Robert C. Cheek has been appointed to the newly-created post of assistant manager of engineering of the division, according to an announcement by F. S. Mabry, division engineering manager.

Prior to his present promotion, Cheek was assistant division sales manager. In his new capacity, he will supervise administrative and organizational activities under Mabry. He joined Westinghouse in 1939 and was a specialist in carrier and microwave applications. In 1949, he was named "outstanding young electrical engineer", by the Eta Kappa Nu national technical fraternity.
In the company's electronic tube division, Clarence M. Clark has been appointed manager of the division's plant at Bath, N. Y. He has been manager of accounting at the Elmira plant and joined the electronic tube division last May, Formerly with the company's special products division at Pittsburgh, Pa., he has been associated with Westinghouse for 27 years.

\section*{Rand Receives ARRL Merit Award}

Philip S. Rand, a project engineer at the Remington-Rand Laboratory of Advanced Research at South Norwalk, Conn., was recipient of


\section*{For High Dielectric} Strength, specify -

\section*{THNEOLON \\ TEFLON-INSULATED WIRE \& CABLE}
- 14 COLORS
- free-

STRIPPING
- EXTRA

FLEXIBILITY
- TOUGH TEFLON INSULATION
- TEMPERATURE RATING:
\(-90^{\circ}{ }^{10}\)
\(+250^{\circ} \mathrm{C}\)
For an extra margin of dependability at maximum operating temperatures, specify these rugged Teflon insulated hook-up wires. Available in stranded sizes from 20 to 30 AWG with shields and teflon jackets or lacquered braids. Constructed to meet highest government and commercial standards. Tensolon Wires feature the new Tensulated-Teflon covering that eliminates pin holes and other imperfections.

ASSORTED TENSOLON HIGH-TEMP WIRES

IN LABORATORY AND TEST QUANTITIES

An economical sample kit for desiçers, engineers, testing departments and development laboratories. Prices on request.

\section*{WRITE FOR CATALOG TODAY}

TENSOLITE INSULATED WIRE CO., INC., TARRYTOWN, NEW YORK

\section*{WAVEGUIDE}

Componcuts
TO SPECIFICATIONS SINCE 1943
\begin{tabular}{lr} 
Tees & Bends \\
Mixers & Ratraces \\
Duplexers & Cavilies \\
Rotating Joints & Pads \\
Filters & Phasers \\
Attenuators & Flanges
\end{tabular}

Electronic Assemblies
Special Purpose Components
For the complete story on Premier's fully integrated engineering, production and testing facilities, write Dept. \(E\) today for our new brochure.


the American Radio Relay League's merit award given at the Seventh ARRL National Convention in Houston, Texas. Goodwin L. Dosland, president of the ARRL, presented a plaque to Rand in recognition of his advancement of the welfare of amateur radio through outstanding leadership and technical accomplishment in reduction oi tv interference.

\section*{Program Announced \\ For Radio Fall Meeting}

Technical program of the Radio Fall Meeting sponsored by the RETMA engineering department, the RTMA of Canada and the IRE Professional Groups Committee has been established. The meeting will be held at the King Edward Hotel, Toronto, Ontario, Canada on October 26, 27 and 28.

\section*{Electronic Parts Show Elects Officers}

Harry A. Ehle of International Resistance Co. was elected president of the Radio Parts and Electronic Equipment Shows, sponsors of the Electronic Parts Show, at the annual meeting of the show board.
H. M. Carpenter of Thorow Distributors was chosen vice-president; Francis F. Florsheim, Columbia Wire and Supply Co., secretary; Bernard L. Cahn, Insuline Corp. of America, treasurer.

The 1954 show will be held at the Conrad Hilton Hotel in Chicago May 17 to May 20.

\section*{Air Materiel Command Reorganizes}

Air Force Secretary Harold E. Talbott announced that the Air Materiel Command, the U. S. Air Force's logistical arm, will eliminate seven of its subordinate headquarters by December 31, 1953.

Lieutenant General E. W. Rawlings, AMC's commander, said: "We have been making thorough studies of our operations and organization to comply with new Air Force programs. Consequently we have come up with this plan which not only will result in substantial

\section*{Specialty Transformers \\ HIGH QUALITY DESIGNS FOR MIL-T-27}

Pulse \& Filter Networks with Ferrite Cores AUDIO POWER CHOKE MODULATION

Facilities also available for COMMERCIAL UNITS AIRDESIGN averaged 30 day delivery during 1952

UNUSUALLY SHORT DELIVERY ON PREPRODUCTION MODELS


241 FAIRFIELD AVE., UPPER DARBY, PA. Telephone: GRanite 4-8000


There's a RAPID Bench Rectifier for YOUR application...

Rapid Electric Co. makes Bench Selenium Rectifiers in 18 standard models -- each covering a different DC output range and each completely portable. You buy the model that exactly fits your needs. If one of our standard models can't do the job, we can design and build special equipment that will.

ALL Rapid Rectifiers require no warmup, no maintenance, have long life even in continuous full load service, are easy to operate; with regulation, ripple and efficiency to meet your specifications. Cost is low, too-prices start at \(\$ 79.50\) with full controls.

Write for Catalog S.

the nameplate that means "More Powre tu You!"
RAPID ELECTRIC CO. 2879 MIDDLETOWN nOAD, NEW YORK 61, N. Y. Phone: Talmadge 8-2200


HOLD

\section*{THEM}

TIGHT
with a

\section*{BIRTCHER CLAMP}

There is a Birtcher Clamp... or one can be designed. . for every tube you use or intend to use.

Regardless of the type tube or plug-in component your operation requires... and regardless of the vibration and impact to which it will be subjected... a Birtcher Tube Clamp will hold it securely and rigidly in place.
Catalog and samples sent by return mail,

\section*{The BIRTCHER CORPORATION}

- 4371 Valley Blyd.

Los Angeles 32, Calit.

Please send catalog and samples by return mail.

Company
of: \(\qquad\)
Attention o
Address
City \(\qquad\) State


Write Dept. EHS-10, DeJUR AMSCO CORP., 45-0 1 Northern Bivd., Long Island City 1, N. Y.
savings of taxpayers' dollars but actually will increase our efficiency."
General Rawlings emphasized that the organizational change will have no effect upon the present method of contract placement.

The headquarters being eliminated are the six Air Procurement Districts. They are: Eastern APD, New York, N. Y.; Northeastern APD, Boston, Mass. ; Central APD. Detroit, Mich.; Midcentral APD, Chicago, Ill.; Southern APD, Fort Worth, Tex. and Western APD, Los Angeles, Calif.

The seventh headquarters being eliminated is at Olmsted Air Force Base, Middletown, Pa., where the Middletown Air Materiel Area headquarters has been separate from the Olmsted base and Middletown depot organizations. These now will be consolidated into the Middletown AMA headquarters.
These six district headquarters, each assigned a geographical area, administer over 14,000 USAF contracts, with a \(\$ 16.86\) billion value, with industry. Under the reorganization, the field supervision of contract administration will be absorbed into AMC's eight Air Materiel Area organizations. The Air Regional Offices now will report to the AMA's rather than to the present Districts.
The AMA organizations will support all USAF bases, installations and activities (including overseas) within their areas in matters of supply and maintenance (overhaul and repair).

The eight Air Materiel Area headquarters now taking over supervision of contract administration are: Middletown AMA, Olmsted Air Force Base, Pa.; Mobile AMA, Brookley AFB, Okla.; San Antonio AMA, Kelly AFB, Tex.; Ogden AMA, Hill AFB, Utah; Sacramento AMA, Mc Clellan AFB, Calif.; and San Berrardino AMA, Norton AFB, Calif.

\section*{Otis Elevator \\ Acquires TEMCO}

Otis Elevator Co. has acquired the Transmitter Manufacturing Co. of New York which manufactures radio communication and electronic equipment for the U.S. Govern-


WITH THE PACEMAKER IN AVIATION PROGRESS


\section*{NEEDS} MISSILE

\section*{Engineers and Technicians} For Field Test Positions

\section*{NEW MEXICO}
"The Land of Enchantment"

\section*{ON}

GUIDANCE
FLIGHT TESTING
SERVOMECHANISMS
telemetering
TEST EQUIPMENT
AIRBORNE ELECTRONICS EQUIPMENT

\author{
IDEAL WORKING CONDITIONS
}

\section*{WRITE:}

Field Test Director Bell Aircraft Corporation

Post Office Box 391
Holloman Air Development Center Alamagordo, New Mexico
model 1200
z continuous duty
REVERSIBLE DC MOTORS

18 to 30 volts with or without brake . . .
 generators
- Ambient temperature: \(-55^{\circ} \mathrm{C}\) to \(+105^{\circ} \mathrm{C}\).
- Size: 1.25 in. diameter, 2.18 in . long.
- Weighs 5.3 ounces . . . without brake.

We can manufacture these motors to meet your specifications. This particular motor is used on an actuator for aircraft use.

Let's discuss your need!
\(W^{W}\) rite orwireus, TODAY

\section*{M1OMORDBTME} Dept. J, 2661 S. Myrtle Ave. MONROVIA, CALIFORNIA

\section*{IN-RESSCO} TYPES SM-15 \& SM-30 wet womp RESISTORS

\section*{SUB -MINNATURE weathat tested miggots} SPEED CONTROL GOVERNORS

MAGNETIC SERYO AMPLIFIERS

MAGNETIC CONTROLS \& CIRCUITS pelays TRANSFORMERS contis 1 cincuis

TNS.

Type SM-15 and SM-30 Resistors offer three vital advantages - subminiature size, weather resistant construction and high resistance. The elimination of center hole mounting and the inclusion of axial leads increases winding area and results in \(25 \%\) greater resistance value than resistors of standard Jesign. Special coating is moisture and fungus proof and designed to meet JAN-R-93 specifications. Sealed in Bakelite construction affords additional climatic protectection. As ratings are conservative, types SM-15 and SM-30 can be specified with confidence for service under rigorous conditions.



TYPE SM-15 5/16" DIA. \(\times 3 / 8\) "LG.


TYPE SN. 30 5/16" DIA. \(\times 3 / 4^{\prime \prime}\) LG.



\section*{Standard of Quality}

\section*{CUSTOMMADE CORD SETS BY PHAL!}

Just a short time back the custom-made cord set shown here did not exist! It was custom created and produced for a very special application by PHALO!
PHALO has an industry-wide reputation for designing and producing the unusual in cords and cord sets . . . and in so doing, solving the "unsolvable" problems!
See the PHALOCORD section of the new PHALO CATALOG for details. ASK FOR CATALOG.

New York, N. Y.
Rochester, N. Y. Philadelphia, Pa. Greensboro, N. C. Wichita, Kansas Natick, Mass.

\section*{PHALO PLASTICS CORPORATION}
corner of commercial st. - worcester - mass.
Insulated Wire and Cables - Cord Set Assemblies

ASK ALSO FOR THE NAME OF YOUR NEAREST PHALO sales representative in the following cities:

Cleveland, Ohio Houston, Texas Phoenix, Ariz. Chicago, III Detroit, Mich. Los Angeles, Cal. San Francisco, Cal.




Morton B. Kahn
ment and industry
At the same time, announcement was made of the establishment of the electronics division of Otis, of which Morton B. Kahn, president of TEMCO, will be manager. The electronics division will execute existing government contracts held by Otis for electronic bomber and navigational trainers and other contracts for electronic equipment under negotiation. In addition, it will carry on research and development work for Otis in the field of electronics. The electronics division will be located in Brooklyn, N . Y.

Mr. Kahn, who founded TEMCO in 1936, will continue as president. The company will remain in operation to complete its existing contracts.

\section*{IRC Builds Second} North Carolina Plant
COnstruction of a plant located in Boone, North Carolina has been started by the International Resistance Co. of Philadelphia. The plant, to be situated on a 20 -acre tract recently purchased by IRC, will have \(40,000 \mathrm{sq} \mathrm{ft}\) of work space. Building cost has been estimated at \(\$ 400,000\). Completion and actual production in the plant is expected by January 1, 1954.

Initially, IRC will employ approximately 200 persons. Eventually about 500 workers will be employed, of which 80 percent will be women. Various types of power wire-wound and precision resistors


This book will save you

\section*{30 Minutes}


\section*{FIND TUBE RATINGS, CONNECTIONS IN SECONDS}

This big new Westinghouse Ready-Guide is a completely new kind of handbook of receiving tube data. Designed to save time for busy servicemen and engineers. Eliminates "squinting" at tiny data listings.
BIG - BOLD - CLEAR
Just 9 tube types are listed on each \(81 / 2^{\prime \prime} \times 11^{\prime \prime}\) page. Not 30 or 40 tiny type listings as in most condensed data books. Best of all, large clear base diagrams are located on the same page as ratings. Bothersome cross referencing, footnotes cut to the bone
COMPLETE, ACCURATE, UP-TO-DATE
This new Westinghouse Ready-Guide lists complete data on receiving tubes which account for more than \(98 \%\) of tube usage. 48 pages 385 pictures and diagrams. 342 types listed

\section*{SPECIAL: 3 for \(\$ 1.00\)}

This Readv-Guide is being sold at less than cost as an introductory offer only. Price is only \(35 ¢-3\) for \(\$ 1.00\). Order from your nearest RELIATRON Tube Distributor or mail coupon below
Westinghouse tubes
Westinghouse Electric Corporation Electronic Tube Division. Dept. A-210 Bux 284, Elmira, N.Y

Enclosed is \(\$ 1.00\) for 3 copies of Ready-Guide
Enclosed is 35 for I copy
NAME
ADDRESS
CITY
Please Print

RELIATRON

will be produced in the new plant. John Kane, who has been associated with IRC in Philadelphia for many years, has been appointed plant manager.

The plant is the second in North Carolina for the company. In March of this year, IRC started production of volume controls in its Asheville, N. C. plant.

\section*{Rectifier Corp. Opens Puerto Rican Plant}

BEGINNing of operations in a new plant located in Fajardo, P. R. was announced by Rectifier Corp. The new company has been incorporated under the Island's laws to manufacture selenium rectifiers and related electronic equipment.

Lloyd J. Hughlett, president of the new company, announced that the plant's facilities have been organized to produce a complete line of radio stacks for radio and tv receivers and comparable equipment requiring current conversion. Markets will be on the mainland, Hughlett stated, and delivery from the Island to points on the Eastern seaboard and Midwest can be as rapid as from suppliers in the States.

Magnavox Elects Two New Vice-Presidents


John A. Rankin

\author{
STODDART AIRCRAFT RADIO CO., INC. 6644-A SANTA MONICA BLVD., HOLLYWOOD 38, CALIFORNIA Hollywood 4-9294
}

Election of John A. Rankin and John S. Sturgeon as vice-presidents of the Magnavox Co. was announced by Frank Freimann, presi-

\section*{High Sensitivity . . Logarithmic AC VOLTMETERS}

These extremely sensitive and highly stable instruments serve simultaneously amplifiers. Built-in limiting circuit protects mirror scale indicating meter against all overloads (maximum input vollage on most sensitive range)

\section*{MODEL 47} \(\pm 2 \%\) 15C to 30 KC 50 MICROVOLTS to 500 VOLTS Write for
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Mod. & Voltage Range & \begin{tabular}{l}
Frequency \\
Response
\end{tabular} & Input Impedance & Approx. Feedback & Overlap. Scale & Amp. Gain \\
\hline 45 & .0005-500 & 5C-1600KC & \[
\begin{aligned}
& 2 \text { Mesohms } \\
& 12 \mathrm{MMF}
\end{aligned}
\] & 22 DB & NO & 1600 \\
\hline \(45 B\) & .0005-500 & 10C-250KC & \[
\begin{aligned}
& 5 \text { Mexohms } \\
& 12 \mathrm{MMF}
\end{aligned}
\] & 39 DB & NO & 1600 \\
\hline 47 & .00005-500 & 15C- 30 KC & \[
\begin{aligned}
& 1 \text { Megohm } \\
& 15 \text { MMF }
\end{aligned}
\] & 29 DB & 10 DB & 23000 \\
\hline 47B & .00005-15 & 15C-30KC & 50 Megohms 15 MMF & 27 DB & NO & 23000 \\
\hline 53 & .00015-500 & 10C-250KC & \[
\begin{aligned}
& 5 \text { Medohms } \\
& 12 \mathrm{MMP}^{2}
\end{aligned}
\] & 35 DI3 & 10 DB & 5300 \\
\hline
\end{tabular}

\section*{Instrument Electronics Corp. poort wastilncrovi, n. r.}

if you are concerned with

\section*{POWER SUPPLIES}
you should have the new and comprehensive

\section*{LAMBDA}
catalog
of electronically regulated laboratory power supplies. Manufactured by one of America's pioneer specialists, this field-proven precision equipment is priced surprisingly low.


\section*{SEND FOR NEW CATALOG}

Lambda Electronics Corp.
103-02 Northern Blvd., Corona 68, N. Y Please send me the new Lambda Power Supplies Catalog as soon as it comes of the press.

Name
Title
(Please print)

Company
Street_
City_Z_Zone__State_ \begin{tabular}{l} 
F.10 \\
1353 \\
\hline
\end{tabular}

dent, late this summer.
Sturgeon is treasurer of the tv and radio-phonograph concern, while Rankin serves as director of engineering.
Sturgeon joined Magnavox in 1940 as comptroller and in 1949 was elected treasurer. Prior to that he served as senior accountant with Price, Waterhouse and Co. in Chicago for six years and in a similar capacity with Haskin and Sells.

Rankin joined Magnavox in 1951 as director of engineering. He is in charge of development, design and engineering for production of all civilian and military equipment.

Prior to joining Magnavox he served for a number of years as an executive engineer in the radio and electronics industry, including prominent positions with Belmont Radio Corp. and RCA.
The new vice-presidents will make their headquarters at the company's main office in Fort Wayne, Indiana.

\section*{LaPointe Buys Printed Circuit Company}

LaPointe Electronics has purchased a 95 percent interest in Circuitron, manufacturer of printed circuits, it was announced by Jerome E. Respess, president. "By acquiring and managing Circuitron," Mr. Respess stated, "LaPointe is assured of a continuing supply of the printed circuits used in the Vee-D-X Mighty Match and other tv accessories. In addition, LaPointe will manufacture printed circuits for a wide variety of fields within the electronic industry."

Circuitron is being moved to Rockville, Conn. where it will take over space in another factory building near the main LaPointe plant. Initially, approximately 50 people will be employed to operate Circuitron, with aditional personnel being acquired as expansion continues.

\section*{GE Plans Increase}

\section*{In Aluminized TV Tubes}

A fifty-percent increase in its production of aluminized tv picture tubes is expected by GE when a multimillion-dollar retooling project, now under way at its Buffalo



\section*{"STOCK" SHIELDS AVAILABLE}


Now Multi-Metal offers you "STOCK" magnetic shields-for immediate delivery. These shields are accurately fabricated to meet your highest standards of quality and provide maximum production economy. Let us quote on your requirements.

Multi-Metal also serves your special needs for custom-built shields, cabinets, chassis, panels and other sheet metal components, including large assemblies . . . long or short runs. Our engineering staff will help you solve design and production problems. For prompt quotations, send us your blueprints and specs.

\section*{PRECISION FABRICATION}

Cabinets - Chassis
Shields - Panels
Dust Covers - Racks
Brackets - Dial Plates

\section*{You Can Depend on}


FABRICATION IN ALL METALS
MULTI-METAL COMPANY
1350 Garrison Avenue New York 59, N. Y

\section*{Winchester Electronics INCORPORATED}

\section*{MINIATURE CONNECTORS*}
are employed in many advanced, quality designs of AIRBORNE ELECTRONICS EQUIPMENT to meet miniaturization requirements
miniature high-voltage Type "PM"


SUB-MINIATURE RECTANGULAR Type "SMRE"


WINCHESTER PRODUCTS and winchester desicns Are Avallable only from binchester electronics INCORPORATED


These Miniature Connectors are available with various numbers of contacts. Please send your inquiries for variations of these types... or for entirely new designs...to our Engineering Department.


West Coast Branch (Engrg. \& Sales Offices): 1727 Wilshire Blvd., Santa Monica, Calif.
WRITE OR WIRE TODAY FOR FULL DETAILS

PLANTS AND PEOPLE
and Syracuse plants, is completed.
Almost three-quarters of GE picture-tube production then will be in the aluminized tubes, according to J. Milton Lang, general manager of the GE tube department.

Lang said increased production of the tubes is necessary because the company presently cannot meet the demand for them in both initial equipment and replacement use.
The retooling operation affected more than 60 percent of the Buffalo plant equipment, and about 90 percent of the Syracuse plant equipment. Work began early this year, and a major share of the project was completed at both plants during the two-week vacation shutdown early in July.

The tube department is also converting a former GE dishwasher plant at Scranton, Pa., for full-scale production of hydrogen-thyratron tubes for the nation's radar fence.


Herman L. Weckler

Election of Herman L. Weckler as vice-president, operations, of Clevite Corp. was announced by James L. Myers, president.

Weckler retired on April 30 from Chrysier Corp. where he was vicepresident, general manager and a director for the past 13 years. In his new post he will have general responsibility for the operations of Clevite Corp's manufacturing and selling units including Cleveland Graphite Bronze Co., Brush Electronics Co., Harris Products Co.,
(Advertisement)

\section*{NONINDICATING METER-RELAY}

\(1 \%\) accuracy - 0.2 microampere sensitivity - 100 watts load contact rating. These are some of the features you get in a nonindicaling meter-relay like the one in the pholo. It is a moving coil relay and it will do things you never expected without vacuum lubes.

\section*{Accuracy}

Factory adjustment is within \(2 \%\) of the specified current or voltage for most units. It can be adjusted at installation to better than \(1 \%\). In fact, one customer (name on request) reports \(1 / 4 \%\) on a battery charger shutoff.

\section*{Sensitivity}

Any selting between 0.2 microamperes and 50 amperes, or from .05 millivolts to 500 volts can be furnished. Higher ranges can be made with external multipllers, The sensitivity is adjustable at installation over a wide range to meet specific needs.

\section*{Contacts}
S.P.S.T. or S.P.D.T. in several ratings. Normal contacts have ratings up 10 100 DC milliamperes for "make" only. Heavy duty contacts
 are rated 1 ampere at 115 V . AC or 32 V . DC for "make" or "break." The diagram shows the internal arrangement and auxiliary equipment needed for the heavy duly contacts.

\section*{Speed}

Design variations allow for a range of response time from 1 millisecond to 10 seconds on most sensitivities.

\section*{Case Style}

The clear plastic case shown is in production. It is approximately \(21 / 2^{\prime \prime}\) cube, including terminals. This relay is adaptable to other mountings, including hermetically sealed plug-in cans.

\section*{Shock \& Vibration}

Samples have withstood roll and pitch tests required for shipboard use. Internal shock mounting might be used to make it stand most shock and vibration tests. For further specifications, write or call Bradley Thomp. son at Assembly Products, Inc., Chagrin Falls 43. Ohio: phone CH 7-7374.

\section*{SMALL METAL STAMPINGS}

Send your srints for regular or special stamping jobs to Patton-MacGlyer where spec al zad eng neering experience and toolmaking still combine to produce stamped retal parts azcurately, economically, promptly. A depsidcble soirce for civer 35 years, F-M is compleiely equipped in an extensive modern plar for large volume production -o meet te mosi exacting requirements. Modera'e die charges; precision work; prompt service.
F.n velcomes the opportunity of working with rour enginears in the nitial stazes of their specijl stamping designs when the acamulated spec lized knovledge of our Technical Staf will =id them ir obtaining the most efficient stamping at the lowest cost.

\section*{TERMINALS for ELECTRIC 'NIRES}

Sptridizing in teminals, P-M has dies to proture over \(\$ 00\) fifferet cirds of terninals. We olso provide pre-soldated andenterninals supplied on reels, with machinz that attccbes and Elders at rates up to 1200 perfect terminctions ser hoir. Send for catalog.

\section*{PATTON:MacCUYZRCOMPANY}

201 Chapman Street, Providence, R. I.


\section*{DEPEND ON}


With electronic controls taking over more and more operational functions in aircraft, it's becoming increasingly important that the electron tubes used be dependable under conditions of high altitude, continuous vibration, varying voltages and frequent shock. Because of their advanced design and construction . . born of never-ceasing research and special production skills . . . Bendix Red Bank Reliable Electron Tubes have the dependability necessary to meet these severe operating conditions. You can depend on our long, specialized experience to give you the right answer . . . for all types of regular as well as special-purpose tube applications. Call on us for full details.

Manufacturers of Special-Purpose Electron Tubes, Inverters, Dynomotors and Fractional D. C. Motors
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{type and model index} & \multicolumn{3}{|l|}{typical operating CONDITIONS} \\
\hline Bendix Ne. & RTMA & \[
\begin{aligned}
& \text { JaN } \\
& \text { No }
\end{aligned}
\] & General Type & Heater Voltage & Plate
Viltage
Per
Plate & M.A. \\
\hline TE-2 & & 5839 & OCTAL FULL WAVE RECTIFIER & 26.5 & 350 & 70 \\
\hline TE-3 & 5838 & & OCTAL FULL WAVE RECTIFIER & 12.6 & 350 & 70 \\
\hline TE-S & & 5852 & OCTAL FULL WAVE RECTIFIER & 6.3 & 350 & 70 \\
\hline TE. 10 & 5993 & & MINIATURE FULL WAVE RECTIFIER & 6.3 & \[
350
\] & 70 \\
\hline TE-22 & 6106 & & OCTAL fULL WAVE RECTIFIER & 5.0 & 350 & 100 \\
\hline
\end{tabular}


EATONTOWN, N. J.
Export Sales: Bendix International Division, 205 East 42nd St., New York 17, N. Y.

Clevite Service and Clevite of Canada.
At Chrysler Mr. Weckler was made vice-president for labor relations in 1935, and the same year was also put in charge of the De Soto division. In 1940 he became vicepresident, general manager and director of Chrysler Corp. During World War II he served in addition as president of the Dodge division.

\section*{Westinghouse Patents \\ For Public Use}

Westinghouse Electric Corp. recently turned over to U.S. Patent Office for public use 231 patents, primarily related to the electronics field. These patents may be used by anyone, without license or payment of royalties.
On the list are a number of patents dealing with electronic-discharge devices, transformers, amplifiers, resistors, rectifiers, circuit breakers and dynamo-electric machines.
A complete list of patents as well as a pamphlet with 609 patents previously available for free unrestricted use may be obtained without charge from the U.S. Patent Office, Washington 25, D. C.

\section*{Mullard Appoints \\ Joint Lab Managers}
P. E. Trier and G. Knott have been appointed joint managers of the Mullard Research Laboratories in England.

Trier was engaged at the Admiralty Signal and Radar Establishment from 1941 until 1950. During the War he developed direction finding techniques in the meter and centimeter-wave regions. Later he was head of the vhf communications group. He joined Mullard in 1950 as head of the communications and radar division.

In his present appointment, Trier will direct the electronics laboratory and be responsible for work in the fields of communications, radar, special-circuit techniques, particle accelerators, special components and materials, tube applications, ultrasonics and metal physics. He will also act in the capacity of plant head.

Knott commenced his career as


Miniature and Sub-Miniature

\section*{SLIP RING ASSEMBLIES BRUSH BLOCK ASSEMBLIES COMMUTATORS}
and other Electro-Mechanical Components

\section*{PRECISION MADE}

TO YOUR OWN SPECIFICATIONS
Precision molded products with exacting tolerances in precious and non-precious solid metals of all alloys. All types of Thermo-Plastic and Thermo-Setting materials.

> Slip Ring Assemblies fabricated or one-piece precision molded to your specifications in Nylon, Kel-F, Mineral filled Mellamine, Phenolic, and other materials. Rings and leads spot welded ar brazed together for positive electrical circuit.

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

\section*{COLLECTRON CORPORATION}

MUrray Hill 2-8473 - 216 East 45th Street • New York 17, N. Y.

\section*{MAKTIG TRANSFORMEIS IS OUB BUSINESS}


Ssok multimeter xit \(\$ 12.90\) Wired s14.80
, 000 ahmm/roth \$000 ahms/ woh ద

\(425 \times 5^{\prime \prime} 5\) scope Kit \(\$ 44.95\).
Wired \(\$ 79.05\),

\section*{YOU BUILD}

सान KITS IN ONE EVENING-

\author{
but they last a lifetime... and you save 50\%
}

24 INSTRUMENTS =
the Industry's most complete line of MATCHED TEST INSTRUMENTS
- For more than 35 years Acme Electric transformers have become components of all types of electrical and electronic equipment. The vast technical experience accumulated during this time is now available to west coast manufacturers through our Los Angeles branch.


ACMEELECTRIC CORPORATION MAIN PLANT: 3110 Water Street - Cuba, N. Y. West Coast Engineering Laboratories: 1375 W. Jefferson Blvd. - Los Angeles, Calif. In Conoda: ACME ELECTRIC CORP. LTD. - 50 Norih Line Rd. Toronto, Ont.

\title{
Acme AMiP Flectric \\ TAANSFA A M E A S
}



For latest precision engineering, finest components, smart professional appearance, lifetime performance and rock-bottom economy - see and compare the EICO line at your jobber's today before you buy any higher-priced equipment! You'll agree with over 100,000 others that only EICO Kits and Instruments give you the industry's greatest values at lowest cost.

Write NOW for FREE latest Catalog
\(1 / 4\) - million EICO Instruments are now in use the world aver! That's the praof af EICO's leadership in Value. NEW 377R
Sine \& Squarra Wave Aucio Oln
Kit 331,Qs. Wirec salit



\section*{MIFILM subminiature CAPACITORS WITH PLASTIC "MYLAR"* DIELECTRIC}

Good-All production tech. niques make it possible for MIFILM capacitors ta be available in sizes smaller than other miniaturized brands. All Good-All MIFILM miniaturized metal enclosed hermetically sealed capacitors normally operate between \(-65^{\circ} \mathrm{C}\) and \(+150^{\circ} \mathrm{C}\). Insulation Resistance, \(10^{15}\) ohms. Power Factor less than \(.5 \%\). Sizes from . \(173^{\prime \prime}\) dia. \(\times 21 / 32^{\prime \prime}\) long (.001 mfd, 600 VDC ) to \(.750^{\prime \prime}\) dia. \(x\) \(1.15 / 16^{\prime \prime}\) long ( \(1 \mathrm{mfd}, 600\) VDC) slightly larger sizes to 1000 VDC. We invite sample orders for your inspection.


\section*{}


\section*{MARBELITE}
"Hord as marble," and popularly priced, this Good-All development is the standard for leading Radio and TV manufacturers. Generally smaller than RTMA specifications MARBELITE capacitors normally operate in the \(-30^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) range. Built for any climate, MARBELITE capacitors ean be further miniaturized to meet your needs. Standard sizes from .001 mfd to 1 mfd in 100 to 1000 VDC. Write for catalog sheets M.503.

MIRACLE X
Paper dielectric, metal enclosed, hermetically sealed, MIRACLE X impregnated capacitors. Capacity change less than \(5 \%\) from \(-50^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). Meets or exceeds size requiremenis of MIL.C.25. Available with all type mounts. Sizes from \(.235^{\prime \prime}\) dia. \(\times 11 / 16^{\prime \prime}\) long (. 001 mfd , 600 VDC) ta \(1^{\prime \prime}\) dia. \(\times 2-3 / 16^{\prime \prime}\) long ( 1 mfd , 600 VDC ).

\section*{*DUPONT'S}

Trademark for its POLYESTER FILM
- Capacitors are wound on Cood.All developed, enclosed, automatic winding machines-no finger acid, dirt or dust. Good-All engineers invite your inquiries and problems regarding tubular capacitors. The difficult and unusual inferest us.

Write for complete cafckog covering all Good-All long life capacitors.

114 W. FIRST ST. Phone 112-113 OGALLALA, NEBR.
ROBERT A. GOODALL, President Cable Address, "GOODALLA"
a physicist to the Calico Printers Association in 1935. From 1937 until 1940 he was engaged in research on x-ray crystallography at Cambridge University.
In 1940, he joined Mullard first as development engineer on transmitting tubes and later on vhf tubes. He was placed in charge of the Mullard vacuum physics laboratory when it was formed in 1946. He will continue to direct the work of this laboratory in his new appointment and will be responsible for vhf tubes, gas discharge tubes and photoelectric devices.

\section*{Minnesota Mining Buys Irvington Varnish}

Purchase of Irvington Varnish and Insulator Co. of Irvington, N. J., by Minnesota Mining \& Manufacturing Co. was announced.
Herbert P. Buetow, 3M president, said the directors of 3 M have approved a \(\$ 7\)-million agreement by which Irvington becomes a division of 3M. Mr. Buetow said Irvington stockholders will receive 3M common stock and cash in exchange for their Irvington stock.

Buetow and Arthur E. Jones, Irvington president, said the move is a natural one in view of their respective interests in the field of electrical insulation.
"Like 3M, Irvington Varnish and Insulator Co. has had a long-term research program aimed at improving existing products and developing new products," Buetow said. "We think it is of tremendous importance to our company's continued growth to expand our services to the electronics industry. This industry is already one of the largest in America even though many phases of its development are just getting started."

According to president Buetow, 3 M has no plans to change Irvington Varnish and Insulator's operating policies or its management team. Jones will continue as president of the division. All other officers and executives will continue in their present capacities.
Robert L. Westbee, who was recently elected a vice-president of 3M, will be responsible for liaison between the parent company and

\section*{TEST CHAMBERS}


Send for complete illustrated brochure

HIGH \& LOW TEMPERATURES

\section*{CONTROLLED} HUMIDITY
- \(-150^{\circ}\) F. to \(+200^{\circ} \mathrm{F}\).
- \(20 \%\) to \(95 \%\) R.H.
- 1 cu . ft. to \(75 \mathrm{cu} . \mathrm{ft}\). cabinets.

\section*{Walk-in Rooms}

Temperature Baths
Electronic or pneumatic recording or indicating control systems

CUSTOM CHAMBERS built to specifications.


Years of satisfactory service!
55 Washington Avenue Caristadt, New Jersey

\section*{WAVECUIDE and MICROWAVE COMPONENIS}

\section*{for attenuators}
and TERMINATIONS
- SIGNAL SOURCE
- IMPEDANCE MEASUREMENT
- FREQUENCY MEASUREMENT
- TRANSMISSION LINE COMPONENTS
- DETECTION and POWER MEASUREMENT
...the emblem associated with
PRECISION... DEPENDABILITY
Our engineering staff will cooperate in making custom components to your specifications write now for complete information to:

\footnotetext{
UNIVERSAL MANUFACTURING COMPANY, INC. MICROWAVE DIVISION 410 Hillside Avenue - HILLSIDE, NEW JERSEY
}

\section*{PRECISION}

SYNCHROS SERVO MOTORS RATE GENERATORS


Infra Electronic Corporation is playing on insportont part in the precision manufacture and assembly of elec-
tronic and elect rechanical system components for Milifory.
We invite your inguiry hen commercill not
avallable units will meet your demonds. Custom design, development, and manufacture of Test. Sets, Kits and Consoles for preflight check out and ! ground maintenance of ;
INFRA

\section*{Electranic Coцn.}
- Roseland, New Jersey Manufacturers of Precision Synchius


\section*{Torque 4.5 in. oz. of 5800 RPM}


The power output of this precision motor is excep. tionally high in proportion to its light weight and small size. Originally developed for numerous aircraft and portable applications, the characteristics of its performance can readily be modified for a variety of new uses.
fEATURES
ELECTRICAL MECHANICAL

Series or shunt wound Unidirectional or reversible High storting forque Low starting current Low RF interference
Armature and field windings Varnish impregnated and baked

Complotely enclosed
Adaptable for any mounting Laminated field poles Stainless steel shoft Two precision ball bearings Mica insulated commutator Permanent end play adjustment
\begin{tabular}{|lc|c|c|}
\hline \multicolumn{1}{|c|}{1600 FRAME MOTORS } & Series & Shunt \\
\hline Watts Output, Int. & (max.) & 22 & \\
Watts Output, Con. & (max.) & & 5 \\
Torque at 8500 RPM & (in. oz.) & 3 & \\
Torque at 5800 RPM & (in. oz.) & 4.5 & 1 \\
Lock Torque & (in. oz.) & 12 & 3 \\
Volts Input & (min.) & 5 & 5 \\
Volts Input & (max.) & 32 & 32 \\
Shaft Diameter & (max.) & \(.250^{\prime \prime}\) & \(.250^{\prime \prime}\) \\
Temperature Rise & & \(50^{\circ} \mathrm{C}\). & \(40^{\circ} \mathrm{C}\). \\
Weight & 12 oz. & 12 oz. \\
\hline
\end{tabular}

\section*{Ultraviolet Laboratory Equipment}

UTILITY MODEL QUARTZ LAMP

A high pressure, quartz mercury arc lamp. It is ideally applicable for use with the microscope, polarimeter, spectrometer, and general laboratory applications.


A source of "black light" for making rapid qualitative analyses by visual observation.


\section*{OPTOSIL}

Fused quartz suitable for many optical uses. Hanovia's special manufacturing process greatly reduces the size and number of air bubbles as compared to general commercial grades. Higher optical grades available.

Write for technical data on these or other ultraviolet laboratory equipment.

\section*{HAIIOUIA}

CHEMICAL \& MFG. CO.
(Special Products Division)
100 chesthut sireet، newark 5, N. J. - Depf. E-1053

\section*{U. G. CONNECTORS}

\section*{Our Coaxial Cable} Connectors Meet All Government Specifications
\(\star\) ALL ORDERS DELIVERED PROMPILY \(\star\)

\section*{Manufacturers of} Higbest Quality Connectors
alled INDUSTRIES, INC. 1023 S. 21st STREET LOUISVILLE 10, KY.

Phone Arlington 4640


\section*{in BRONZE}

Guaranted attenuation \(126-128\) DB in Branze. 142 - 146 DB in Capper. Used by world's largest industrial and electronic equipment manufacturers and U.S. Government engineers. Meets largest industrial and etectronic equipment mate or single frame madels. Complete line of portable standard sizes... or special sizes. MAIL COUPON for illusirated circular with construction diagrams and performance charts.


\title{
GENERATOR SETS
}


WJR-Detroit, Michigan, uses 200 kw . GM Diesel generator set as stand-by power for 50,000 -watt transmitter. Compactness of unit permitted installation in garage adjoining transmitter building - eliminating cost of a specially designed building.


WKTV-UTICA, N. Y., uses a 100 kw . General Motors Diesel generator set for stand-by power. Set can be started remotely from the control room. Low vibration characteristic of engine permitted installation in room adjacent to transmitter and within 30 feet of studio.

If you are planning stand-by power, be sure to check the advantages of General Motors Diesel generator sets, listed briefly below. GM Diesel generators are meeting the exacting requirements of military service in all parts of the world. They supply emergency power for more than 1100 telephone and telegraph exchanges-for microwave relay stations, for hospitals, government buildings, banks, airports. There is a GM Diesel distributor near you who will analyze your power requirements and make his recommendations without obligation. Look in the yellow pages of your phone book for his listing, or write direct to us.
- Wide range of models- \(12 \frac{1}{2}\) to 200 kw ., 220 or 440 volts, single or threephase current.
- Excellent frequency and voltage regulation for the most exacting requirements.
- Powered by General Motors Diesel en-gines-dependable, smooth 2-cycle operation-low cost maintenance eosy to service.
- Built by one manufacturer-one warranty, one responsibility for both engine and power generator.

\footnotetext{
- Instant push-button power starting on safe Diesel fuel-or fully automatic starting. Immediate power, no "warmup" period.
- Dependable starting - no spark ignition system to fail because of dampness or corrosion-always ready to start.
- Easy to install-compact-lightweight -requires no special building, no special bose. Complete instrumentation provided.
- Distributors and Dealers throughout the country.
}

\section*{DETROIT DIESEL ENGINE DIVISIOR}

GENERAL MOTORS - DETROIT 28, MICHIGAN
SINGLE ENGINES . . 16 10 275 H.P. MULTIPLE UNITS . . Up to 840 H.P

then with Mackay Radio and Hearst Radio. Returning to the Navy in 1941 he became assistant chief and later chief of the Frequency Section of Naval Communications in the period to 1945. His naval service won him the Legion of Merit.

\section*{Answers From A Computer 500 Miles Away}

A. W. Jacobsen, director of the Wayne University Compulation Laboratory in Michigan, left, and Harry Huskey, technical director, watch as a test problem is fed to the teletype by research tech. nician Gerald Licht. The message went instontly into the Burroughs Corp. electronic digital computer (right) in the firm's Philadelphia Research Laboratory where it solved the problem in seconds and sent the answer back to the teletype receiver at Wayne. Remote-control operation of the Burroughs computer will enable studenis attending a special two. week course on computers to gain practical experience in the use of giant calculators

\section*{Stanford Research Expands Air Lab}

The Engineering Division of Stanford Research Institute has revised and expanded the organization of its aircraft radiation systems laboratory.

Thomas H. Morrin, director of engineering research, has announced that expansion of industrial services in aircraft and communications programs has necessitated regrouping of related technical sections under a radio systems laboratory, by which name the new arrangement will be known.

Morrin has further announced that the broadened scope of research and development on the areas of radio communications at


Available for envelope types T7, T8, MY8, T9, T12, ST12, T127DI, ST14, S14, ST16, TS \(1 / 2\), T6 \(1 / 2\), MIIIC, ST19, T14, ST128CT-9.

Manufacturers of Electronic Components

\section*{JAMES IPPOLITO \& CO.. INC. 401 CONCORD AVENUE, BRONX 54, N. Y.}

the Institute has made it desirable to change the name of the single sideband communications group to the communications group. Formerly a separate research section, the communications group will henceforth be a part of the radio systems laboratory.

Heading the new structure will be J. V. N. Granger, assistant chairman of the engineering department. Assistant head is John T. Bolljahn.

The groups now assigned to the radio systems laboratory are: communications, John F. Honey, head, and F. W. Clelland, supervisor; antenna research, J. T. Bolljahn, head; antenna development, Allen Ellis, head; airborne applications, D. R. Scheuch, head, Henry Blanchard, supervisor; microwave, Seymour Cohn, head.
Morrin has emphased that the revamped organization indicates no reduction in the scope of work for the aircraft industry.

\section*{Leeds \& Northrup Elects New President}

The election of I. Melville Stein as president of Leeds and Northrup Co. was announced by the board of directors. Stein, formerly executive vice-president, succeeds C. S. Redding who, after 14 years as president, becomes chairman of the board, a post that has been vacant since the death of Morris E. Leeds in 1952.
Other changes in management responsibilities also were announced. D. H. Schultz, who has been secretary and treasurer since 1940, succeeds Stein as executive vice-president while retaining the duties of treasurer. George W. Tall, Jr., vice-president, assumes the additional post of secretary.
Stein joined Leeds and Northrup as a salesman in 1919. During World War I he had been personal assistant to Thomas A. Edison when the inventor was chairman of the Naval Advisory Board. In 1928 he was appointed director of research at Leeds and Northrup. He was elected a vice-president in 1944, and in 1951 became executive vice-president.
Redding, now chairman of the board, first joined the company in



\section*{2 OUT OF 3} Engineers Depend On BURGESS BATTERIES

\section*{FOR INDUSTRIAL ELECTRONIC APPLICATIONS}


No, 4FH

No. Z30NX
 pletely equipped to meet your exact, dry battery equirements.

Burgess provides its customers with a FRee engi nopering thanual listing the complete line of BURGESS BATTERIES and specifications. Aiso a check stieet to enter new bottery specifications. Write to Burgess for the name of your iocal distributor or, if you have a special applico-
BURGESS BATTERIES BURGESS BATTERY COMPANY FREEPORT, ILLINOIS


\section*{New Booklet on Gamewell Precision Potentiometers}


CONTENTS
- Methods of Manufacture
- Windings Available
- Linear Potentiometers
- Non-Linear Potentiometers description condensed specifications description
- Special Applications
condensed specifications
- Glossary of Terms Used

For ycur copy of this new Gamewell Precision Potentiometer booklet, just send us a note on your company letterhead, Your copy will be mailed immediately, at no obligation to you.

THE GAMEWELL COMPANY - Newton Upper Falls 64, Massachusetts


1901 as a draftsman. He rejoined the company in 1909, was appointed associate sales manager in 1917 and held successively more important executive posts in the company. He was elected president just before the company was plunged into the whirl of production for World War II. Under his leadership Leeds and Northrup made its contribution to the allied war effort, including the manufacture of thousands of precision instruments used in the atomic-bomb project.

\section*{GE Resumes}

\section*{Latin-American Broadcasts}

Robert B. Hanna, manager of GE broadcasting stations, announced that programs beamed at Latin America will be resumed from GE shortwave station KGEI in San Francisco.

KGEI suspended broadcasting June 27 after the Federal government curtailed the Voice of America program. The station had been America's voice in Latin America and parts of the Far East for 11 years.

Programming is being resumed on a three-hours-a-day basis* under the noncommercial sponsorship of GE, Hanna said. He added that the company decided to replace the former government-sponsored programs because of the continued need for good will and understanding among the peoples of the world.
GE started shortwave broadcasting from the San Francisco Bay area in 1939 at the Golden Gate International Exposition. KGEI was the first international broadcasting station west of the Mississippi. After two years at the exposition, KGEI's transmitter was moved to San Carlos, near San Francisco and was boosted in power to 50,000 watts.

\section*{JFD Appoints}

\section*{Carpenter And Hall}

Douglas Carpenter has been named chief antenna development engineer of JFD Manufacturing Co. He is inaugurating an expanded engineering program at the company, incorporating new highgain designs into its antenna line.

Carpenter previously served as

\section*{SNTTEKLEAAFT "MNT-MIX"}

\section*{MINIATURE 2~INPUT AUDIO MIXER}
- Size—Oniy \(21 / 16^{\prime \prime} \times 113 / 16^{\prime \prime} \times 11 / 16^{\prime \prime}\)
- Weighs only 3 ounces.
- No external cables-connects directly to equipment.
- Many other new exclusive features

\section*{LOW COST \(\$ 795\)}
U.S.A. LIST PRICE Ideal for use with Tape, Wire or Disc Recorders; Amplitiers, Musical Instruments, etc. Separate gain controls for mixing. Shint "Stray Pickups". No
shielded housing minimizes "Stan shielded housing minimizes colthersome projections. Gain control knobs located directly "in line" with inputs eliminates confusion directly in line with inputs eliminales cosenickel plated accessories. Write for details.
SWITCHCRAFT "ADAPTERS"

\section*{Big Time Savers}
nectors.


\section*{7 Different "Adapters" Available}

Complete description and dimentional drawings will he ound in our Catalog No. S-52. sead for copy.


No. 344 Phono Jack Connector


\section*{HOW \\ Barnstead}
pURE WATER

\section*{HELPS RCA}


> RCA requires Pura Water . copper-free to an extreme degree and free from organic impurities for troublefree TV picture tubes. That is why RCA makes use of Barnstead 200 gph double-effect Stills in combination with Barnstead 1000 gph Demineralizers. RCA
THOUSANDS OF PLANTS THE WORLD OVER MAKE USE OF BARNSTEAD EQUIPMENT FOR OBTAINING PURE WATER

If you use water, in any of countless manufacturing and processing operations, you will find that Barnstead equipment producing either demineralized or distilled water, or both, will insure better products, consistent results, fewer rejects; and will cut your costs in many ways. Join the thousands of companies the world over who look to Barnstead for the solution to their Pure Water problems Write today stating your problem. Our enuineers will make recommendations without obligation ... recommendations that will cut costs and increase production


84 Lanesville Terrace, Boston 31, Mass.

1. FUIL EXTENSION - Continuous ball beaking action permits smooth, non-jar thassis removal. locks in fully extended position, must be un. locked to return.

2. PIVOT RELEASE - Withdrawing release rods disengages them from quadrant mechanism, enables perfeetly bolanced unit to be tilted by simply raising.

3. \(49^{\circ}\) PIVOT-Unit locks in 45 degree or 90 degree position, Special pirated positions can be obtoined to fit individual requirements.

4. FULL TILT-Maintenance and repoirs easily made. Access to component is gained in a few seconds. Speciol slides can provide plus or minu: \(90^{\circ}\) tilt

Why put up

with this costly, time-wasting step any longer?...

\section*{Design} accessibility into your equipment

When repairs and maintenance of electronic equipment are needed, wasted time costs money! Alert manufacturers have totally eliminated the laborious step of "getting al" vital components by installing Grant Industrial Slides. Is your equipment mechanically up to its high electronic standards? I/ not, Grant offers you: Stock Slides. A great variety of types. suitable for most needs available for immediate delivery. Custom Slides. Our engineering staff will assist you at your plant and develop slides that fit your requirements perfectly.

\section*{Grant Industrial Slides}


Write for our complete I-ndustrial Slide Catalog. Grant Pulley and Hardware Corporation
31.73 Whitestone Parkway, Flushing, New York


Douglas Carpenter
chief engineer for the Vee-D-X division of La Pointe Electronics, the Summit Engineering Co. and Mc-Murdo-Silver, all in Connecticut.

James Hall has been appointed associate antenna test engineer at JFD, assisting Carpenter in development and field testing of antennas. He was previously associated with the CAA and the aviation electronics operations of the U.S. Navy as a design and research engineer.

\section*{Battelle Names \\ Stone And Moncreiff}

James Stone and Bruce Moncreiff have joined the staff of Battelle Institute, Columbus, Ohio.

Stone will conduct engineering research leading to the development of digital computing systems and components for the handling of both technological information and mathematical problems. Prior to joining Battelle, Stone was employed as an electronic development engineer at the Oak Ridge National Laboratory. It was while there that he developed what is now called the Oak Ridge National Laboratory reactor-controls com-puter-an analog-digital computer with special applications in the study of reactors.

Previously, he was senior electronics engineer on the NEPA project conducted by the Fairchild Engine and Airplane Corp. at Oak Ridge.

Moncreiff's principal interest at the Institute is in the development of information-handling devices


Shaw terminal blocks produced to Navy specifications are now available from stock.

Supplied with complementary hardware if desired.

Shaw's reputation as anexperienced custom molder assures you the highest quality precision-made terminal blocks.

Write to
Shaw today for complete specifications and prices.

\footnotetext{
 पNSTOL MG: BQM~~MT 151 coit ST., IRvington 11; N. I. sINC: nep
}


SUnset 3-3860
11423 VANOWEN ST., NORTH HOLLYWOOD, CALIFORNA
Manufacturers of Precision Resistors, Toroid Inductozs and Electric Wave Filters

\section*{REPRESENTATIVES}

Jack Beebe, 5707 W . Lake Street, Chicago, Himbis
George E. Harris \& Co., Box 3005, Municipal Airport, Wichita, Karsas Marvin E. Nulsen, 5376 E. Washington St., Indianapolis 19, Indiara Burlingame Associates, 103 Lafayette Street, New York City Canada: John R. Tilton, 1166-A Lake Shore"Road, Long Branch, Ontaric
- For further information - contast your nearest Hycor representative or write for Bulletin \(\mathbb{R}\)

\section*{Wlaw 800-2600 frequencr \(800-2600\) mes meters Lightweight - Portable Units SPECIFICATIONS \\ 1. ACCURACY \\ Better than \(.05 \%\) from \(20^{\circ} \mathrm{F}\) to \(120^{\circ} \mathrm{F}\) \\ 2. SENSITIVITY \\ Usable indication with 1 milliwatt ingut Adjustable for higher levels \\ 8. INDICATOR \\ 50 Microammeter \\ 4. INPUT \\ 50 Ohm Type N Connector \\ E. EXTERNAL DCOUTPUT Pin Jacks \\ 6. EXCURSION OF MICROMETER One-half inch \\ 7. MICROMETER SCALE \\ at \(1000 \mathrm{Mc}-\) \\ 1 Division equals 290 KC at 1400 Mc - \\ 1 Division equals 350 KC at 2000 Mc - \\ 1 Division equals 450 KC at 2600 Mc - \\ 1 Division equals 555 KC \\ 8. EXTERNAL SIZE \\ \(61 / 2 \times 93 / 4 \times 7^{\prime \prime}\) \\ 8. WEIGHT \\ Four pounds \\ (Cavity units are also available for custom housirg) \\ frecuency standards \\ P. 0. Box 504. Asbury Park, New Jersey}


\title{
With Complete New Tube Line-up Including separate oscillator and mixer!
}

The "HQ-140-X" is a new superheterodyne receiver that incorporates all the advantages of modern professional design and circuitry. In addition, all the outstanding features that have made Hammarlund "HQ's" famous for quality and performance have been retained.
It is ideally designed for either professional or amateur use. Frequency coverage is continuously tunable from 540 Kc to 31 Mc ( 555 to 9.7 meters) in six bands with selectivity that makes it possible to read the desired signal when the band is extremely congested.

\section*{IMPROVED DESIGN}

The special patented Hammarlund crystal filter (the same one that's in the "SP-600") provides extreme selectivity for the high attenuation of closely adjacent interfering signals. Improved sensitivity, stability and image ratio are featured in this receiver.
Band-spread tuning is available on the four higher frequency ranges, with direct calibration for the \(80,40,20,15\), and 10 meter amateur bands.

\section*{MODERN FEATURES}

Use of a separate mixer ( \(6 B E 6\) ) and oscillator ( \(6 C 4\) ) contribute to the high degree of oscillator stability. 6BA6's are used for the RF amplifier and for all three stages of IF amplification for maximum efficiency.
Large, comfortable and conveniently positioned controls, in addition to the many other outstanding features, make it a truly professional type receiver, the ideal instrument for operating in today's crowded shortwave bands.

For Detailed Information Write For Bulletin H1.

\section*{(1) HAMMABLUMD}

THE HAMMARIUND MANUFACTURING CO., INC. MAIN PLANT \& OFFICES: 460 W. 34th St., N. Y. 1, N. Y. Mid-West Sales, Office: 605 N. Michigan, Chicago 11, III. - Export Sales Office: 13 E. 40 hh St., N. Y.
and techniques for applying them to problems of business and industry. He comes to the center from the Prudential Insurance Co. of America where he was employed as senior methods analyst. While there, he supervised research aimed at finding applications for digital computers in the company's clerical operations. Prior to joining Prudential Moncreiff was engaged in operations planning at GE.

Noebels Heads Beckman Applications Division


Henrý J. Noebels

Appointment of Henry J. Noebels to head the applications engineering division of Beckman Instruments has been announced by W. H. Steinkamp, vice-president and general sales manager.

Mr. Noebels has been associated for the past eight years with the Heyden Chemical Co., in charge of the physical instrumental analytical research lab. He worked also as Adjunct-Professor of Analytical Instrumentation at the Newark, N. J. College of Engineering. His appointment follows a set-up in applications engineering activities at Beckman.

\section*{Motorola Establishes \\ New Test Lab In Ohio}

A new test lab for Motorola products is being established at Loyal Oak, Ohio, it was announced by A. T. Alexander, national service

Engineering

WRITERS

ENGINEERS, E. E. or PHYSICS GRADUATES, for preparation of technical manuals...

HUGHES RESEARCH AND DEVELOPMENT LABORATORIES' expanding program for production of radar, electronic digital computers, guided missiles and other military advanced electronic systems and devices requires the following:

\section*{1 electrical engineering and} PHYSICS GRADUATES to prepare operating, servicing and overhauling instructions for complex electronic equipment. Those with previous maintenance experience on military equipment preferred. Writers will participate in a three-month program in our technical training school to become familiar with the latest Hughes equipment prior to writing assignments.

\section*{\(Z_{\text {engineers experienced in the }}\)} writing and preparation of maintenance manuals for electronic equipment or guided missiles. These specialists will work step-by-step with the people designing, developing and manufacturing the products involved. Experience in the writing of engineering reports is of value.

HOW TO APPLY
Write full details
of your qualifications to

HUGHES

Research and Development Laboratories

SCIENTIFIC AND ENGINEERING STAFF
Culver City. Los Angeles County California

Assurance is required that relocation of the applicant will not cause disruption of the applicant will not caus
of an urgent military project.

\section*{SYNCHRONOUS MOTORS 2 \begin{tabular}{c} 
INCHES \\
DAMERER \\
\hline
\end{tabular}}

"Circle b" timing motors - Provide exceptional power. Up to 16 in . oz. torque continuous duty, and 84 in . oz. intermittent duty at 1 r.p.m. Compact \(-2^{\prime \prime}\) diameter by \(17 / 64^{\prime \prime}\) deep. Speeds from 1/6 r.p.m. to 1800 r.p.m. Operate in any position.
ELAPGED TIME INDICATORS - For industrial or laboratory applications. \(2^{\prime \prime}\) diameter by \(21 / 8^{\prime \prime}\) deep.
LOW SPEED MOTORS - Ranging from 10 revolutions per hour to 1 revolution per month. \(2^{\prime \prime}\) diameter by \(15 / 8^{\prime \prime}\) deep.
Bristol Motors are available for 24,110 , or 220 volts, 50 60 cycles. They are widely specified for timing devices, motion displays, defrosters, clocks, washers, ranges, dryers, time delay relays, general control equipment, and many other applications.

CIRCLE Write for folder B-I

PR/STO VOCALINE COMPANY OF AMERICA, INC 254 Coulter St., Old Saybrook, Conn.


SIGMUND COHN CORP. 121 so Columbus Avenue - Mount Vernon. N.


The costly headaches and limitations of loose tolerances-which have vexed the engineer with variations of \(1 / 32^{\prime \prime}\) in permanent magnet design-have been virtually eliminated by Thomas \& Skinner, specialists in magnetics for more than half a century.

Now your engineers can specify the intricate casting shapes-with sharply defined relief-which in the past have been too difficult or too expensive to produce. Through radically new techniques, Thomas \&

Skinner permanent magnets are cast with such close precision that little or no grinding and finishing is required for dimensional accuracy.
Call in a Thomas \& Skinner en-gineer-let him work with your own development specialists-learn how your permanent magnet problems of close tolerances and intricate designs may be solved by the new Thomas \& Skinner techniquenow! Write today-ask for the new Thomas \& Skinner Permanent Mag. net Bulletin, No. 151.

THOMAS \& SKINNER Steel Products Company 1120 East 23 rd Street : Indianapolis, Indiana
director. Although the site is especially suited to tv testing because of the number of vhf and uhf stations in the area, the company will also test its home and auto radios there.

Each week sets picked at random will be shipped to the Akron suburb to undergo quality-control checks. Arthur Pape of Motorola's service department will supervise testing operations. Up to the time of the move, testing was conducted in Lakewood, N. J.

\section*{RETMA Sets Plans}

\section*{For TV Service Conrse}

Television technicians in the New York area selected by the New York Trade School to participate in RETMA's first training course will learn modern service techniques by working on the latest tv sets and utilizing the most modern test equipment.

RETMA member companies have donated approximately \(\$ 80,000\) in money and equipment for the course. The pilot program is designed to develop an industry-approved upgrading course for tv service men to be used in trade and vocational schools throughout the country. It is expected that it will improve the technical proficiency and business technique of practicing tv servicemen.

\section*{CBS-Columbia Names Three Engineers}

LeOpOLD M. Kay, vice-president of engineering of CBS-Columbia, announced the appointments of Jerome Goldman, Eugene Lieberman and Robert S. Sterling to the company's engineering staff.

Goldman, who has been appointed senior electronic engineer on government equipment, was formerly associated with Tele King Corp., where he worked on uhf tuners. He also was an engineer with Western Electric Co. and with Techno Scientific Co.

Lieberman, who was named liaison engineer for the product engineering staff, will be in charge of coordinating activities between the engineering, production and qual-ity-control departments. He was

\section*{The S.S. WHITE 80X HIGH VOLTAGE RESISTOR}

\section*{( \(1 / 2\) Actual Size) \\ 4 watts - 100 to 1-00,000 megohms}

Developed for use as potential dividers in high voltage electrostatic generators, S.S.White 80X Resistors have many characteris-tics-particularly negative temperature and voltage coefficients -which make them suitable for other high voltage applications.
They are constructed of a mixture of conducting material and
binder made by a process which assures adequate mechanica! strength and durability. This material is non-hygroscopic and, therefore, moisture - resistant. The resistors are also coated with General Electric Dri-film which further protects them against humidity and also stabilizes the resistors.

\section*{WRITE FOR BULLETIN 4906}
lt gives complete information on S.S.WWite resistors. A free copy and price list will be sent on request. Send for a copy.

 Dept. R, 10 East 40th St. \(\qquad\) NEW YORK 16, N. Y.
WESTERN DISTRICT OFFICE: Times Building, Long Beach, Calif.

for maximum economy..: 5KW VACUUM TUBE BON:3A: DA
OR MDUCTIONI
HEANG UNIT
Simple...Easy to Operate...Economical Standardization of Unit Makes This New Low Price Possible.
Maximum economies can be obtained only by use of correct frequency and power combinations when apply. ing the techniques of induction heating to manufacturing processes.
It is significant that only Scientific Electric in the present morket, can offer you a selection of frequencies depending on power required, in wide power range. 2-3 \(1 / 2-5-6.71 / 2-10-121 / 2-15-18-25-40-60 \mathrm{KW}\) (all units above 60 KW are considered custom built). This means that electronic heating equipment produced by Scientific Electric is tailored to your needs.. . filted perfectly to the task entrusted to it, enabling you to keep your initial investment in equipment to a minimum while affording you all the proven advantages of electronic heating.
Write now for complete information or send samples of work to be processed. Specify time cycle for your particular job. We will quote on proper size unit for your requirements.
DESIGNERS AND MANUFACTURERS OF HIGH FREQUENCY AND HIGH VOLTAGE EQUIPMENT SINCE 1921
 Specials For RADAR, ELECTRONIC and INSTRUMENT APPLICATIONS


High speed degree-type counter to in: dicate degrees, minutes and tenths of minutes for navigating equipment.
 used in navigating instruments


Special counter for use on Tape Recorder to indicate the position of tape passing through the recorder.


\section*{WRITE FOR LITERATURE}

DURANT MANUFACTURING CO.
1912 N. Buffum 5t,, Milwaukee 1, Wis.
112 Orange Street, Providence 3, R. I.
PRODUGTVIFTRRS
snct 1879
Count Everuthing

\section*{KEARFOTT GYROS}


KEARFOTT vertical gyros providing continuous vertical reference within two minutes of arc under bench conditions typify the engineering know-how and production skills available to you in the field of precision gyros for airborn control applications.

Designed for particular applications with stringent performance requirements, a wide variety of free, vertical and rate gyros now in production are being used extensively in aircraft and missile control systems demanding the most precise gyro reference obtainable.

\section*{KEARFOTT COMPONENTS INCLUDE:}

Gyros, Servo Motors, Syn. chros, Servo and Magnetic Amplifiers, Tachometer Gen. erators, Hermetic Rotory Seals, Aircraff Navigational Systems, and other high ac. curacy mechanical, electrical and electronic componenis.

KEARFOTT COMPANY, INC., 1150 McBride Ave., Little Falls, N.J. Midwest Office: 188 W . Randolph St., Chicago 1, Illinois West Coost Office: 253 N. Vinedo Ave., Pasadena, Calif.

A General Precision Equipment Corporotion Subsidiory
formerly with Emerson Radio in the test engineering department.

Mr. Sterling, who was appointed electronic engineer assigned to military equipment projects, formerly was with the Link Radio Corp. where he worked on communications equipment.

Commander Sergeant Joins Navy's Electronic Supply


Commander R. C. Sergeant

Commander Russell C. Sergeant, USNR, has reported to the Navy's Electronic Supply Office, Great Lakes, IIl. to assume the position of technical division officer. His duties will include technical and engineering research relating to procurement, inventory control and distribution of electronic material. He will also serve as a liaison officer between the Navy and the electronics industry.

The Electronic Supply Office is the control point of the entire electronic supply system of the U.S. Navy.

As a Signal Corps enlisted man in the 1920's Commander Sergeant was operator in charge of the Nome, Alaska radio station.

Before entering the Naval Service in 1940 he was employed by the Mackay Radio and Telegraph Co. for 14 years, first as a radio operator and later as radio supervisor of the San Francisco office.

During World War II, he served in the Aleutians, on the staff of

JNTERMETALL semiconduc tors research-and fabrica tion program comprises diodes, transisto-s and related jevices as well as subsidiary equipnent for producion and resting of semi-cc.nductors as \(\mathrm{Ge}, \mathrm{S}\) and intermeta lic compounds




3. RECOMMENDED EQUIPMENT PLUS FULL facilities
Transmits, receives, monitors and analyzes, composite NTSC color pictures.
By Acquiring Units as Your Requirements Develop.
1. BASIC EQUIPMENT

Produces NTSC encoded signals from color bars.
2. SUPPLEMENTAL EQUIP. MENT
Creates accurately certified NTSC encoded pictures from color transparencies Feeds phase equalized picFeeds phase equalized picture and sound transmitter.


Illustroted Literature on Request
The Nation's teading Suppliers of Color TV Eiquipment

\section*{T}

88: Merrici Road Amiłyville, N. Y. AMityville \(\mathbf{4 - 4 4 4 6}\)

Spring Efection
Guide Contact (Disengagement Aid Auxiliary Spring Contact)

DOUBLE FEATURES Greate demand for U.S.C. 980 Series-12-18-24-34 CONNECTORS

*Double wiping (internal \& external) contacts assure positive contact under all conditions.
**Spring loading on guide contacts reduces the separation force in disengagement of connectors. Also provides additional guide contact dependability.
USC's complete engineering. tooling and pro duction facilities are geared to produce quality connectors, allied components and assemblies.
U.S.C. 980 series Brochures available on request
U. S. CDMFPONENTS. Inc.

Associated with U. S. Tool and Mitg. Co., ine. 454-462 Ecst 148'h Street, New York 55. N. Y. CYpress 2-6525-6

\title{

}

PLANTS AND PEOPLE
the Commander-in-Chief Pacific and in 1946 he reported to the Office of the Chief of Naval Operations where, for 7 years, he was engaged in the research and development of electronic countermeasures equipment.

For two and a half years, Commander Sergeant was chairman of the Panel on Electronic Warfare, under the Joint Chiefs of Staff.

\section*{Kimble Readies New TV Bulb Warehouse}

SCHEDULED FOR COMPLETION this month, a new warehouse, to be used for storage of all-glass tv bulbs, is under construction at the Kimble Glass Co. plant in Columbus, Ohio. The one-story building will provide \(200,000 \mathrm{sq} \mathrm{ft}\) of floor space.

\section*{Emerson Promotes Stanley Abrams}

Stanley L. Abrams, director of purchases of Emerson Radio, has been promoted to director of the Material Division, it was announced by Benjamin Abrams, Emerson's president.

The director of the newly created division will supervise overall logistics at Emerson and is charged with the duty of maintaining a constant and smooth flow of all materials throughout the organization. Included in the division will be the departments of expediting, inspection, stock control and production planning.

Mr. Abrams joined Emerson in 1946. In 1948 he was appointed manager of the purchasing division which post he held until January, 1952, when he was advanced to Emerson's director of purchases.

Robert J. Bahr, formerly manager of purchasing and traffic of GE's Electronics Division, has been named director of purchases succeeding Mr. Abrams.

\section*{Allied Radio Moves To New Building}

The Allied Radio Corp. moved into its new \(\$ 2\)-million building in Chicago. The two-story structure, with a total area of \(147,000 \mathrm{sq} \mathrm{ft}\), covers a square block in the geo-

\section*{for lacings that stay put!} dermatitis

Write for FREE
samples and prices.
* Patent Pending.

\section*{R. F. WATTMETER ME-82/U}

\section*{Model MM-625 Series 50 to more than 1000 MCS.}


This series of instruments was designed to measure RF power up to 400 watts, and
serve as an excellent dummy antenna load over the frequency range 50 to more than 1000 MCS in 52 ohm cooxial line circuits.

Some of the outstanding features are:
1. Directional coupler pick-up probe
which eliminates high frequency reso-
nant responses and errors due to slight
deviations in the load impedance.
2. Rugged construction for field and laboratory use.
3. Hermetically sealed and ruggedized indicating instrument in accordance with specifications MIL-M-10304.
4. Two spare crystal rectifier supplied with each instrument.
5. Model MM-625 has recently been as
signed the Armed Forces nomenclature ME-82/U.

\section*{SPECIFICATIONS}

Impedance
Frequency Range
52 Ohms
50 to over 1000 MCS.
Maximum VSWR
RF Power Scale Model MM-625 Model MM-626
Model MM-627
Accuracy
RF Connector

Size
Weight
1.2

120 watts
40 watts
400 watts
\(\pm 5 \%\) of full scale Type C (Adapters available for other types) \(6 \times 71 / 8 \times 13-9 / 16\) \(91 / 2 \mathrm{lbs}\).

BRAIDED NYLON LACING TAPE*

A New and Revolutionary Type of Lacing
- Saves time, saves money, greatly reduces the number of rejects
- Won't "bite through" insulation
- Won't cut wiremen's fingers or cause
- Ties easier, ties tighter and cuts down on slipping of knots

Let GUDELACE answer your lacing problems.

GUDEBROD BROS. SILK CO., INC. Electronics Division, Dept A
Main Office: 12 South 12th Street, Philadelphia 7, Pa. 225 West 34 th Street, New York I, N.Y.

\section*{60-DAY FREE TRAL}
of Ameriea's most popular bench assembly stool


A tired worker costs MUCH more than a good chair
- 4-way adiustable backrest
- Scroll shaped posture seat
- Tamper-proof tubular all-welded construction
- Adiustable height ranges from \(17^{\prime \prime}\) to \(25^{\prime \prime}\) or \(24^{\prime \prime}\) to \(32^{\prime \prime}\)

Now test Royal's famous No. 515 stool in your own plant without cost or obligation. See why the country's top firms choose it for superior versatility and durability. Write for free trial stool today!
metal furniture since ' 97


Royal Metal Manufacturing Co.
175 North Michigan Avenue, Dept. 21 Io. Chitago 1
Factories: Los Angeles - Michigan City, Indiana
Warren, Pa. - Walden, N. Y. - Galt, Dntario
Showrooms: Chicago - Los Angeles - San Francisco
New York City - Authorized Dealers Ever ywhere

\section*{MAIL TODAY}

\footnotetext{
Royal Mefal Mfg. Co., 175 N. Michigan Ave Dept. 2110 , Chicago I, Ill.
- We want to test your No. 515 stool for 60 days with out obligation. Send shoremodel \(\square\) Please send your new catalog of industrial seating.

Name
Firm Name
Address
City \(\qquad\) Zone State
}

ELECTRONICS COMPANY BRISTOL, CONNECTICUT
Distributed outside of Continental U.S.A. by RCA International DiY., N.Y., N.Y., U.S.A.


THE NEW 20X2 R. F. HEAD provides band coverage from 6150 to \(7500 \mathrm{mc} / \mathrm{s}\). With the recently announced \(20 \mathrm{C} 2(4240-4910 \mathrm{mc} / \mathrm{s})\) and \(20 \mathrm{C} 1(4900.6150 \mathrm{mc} / \mathrm{s})\) Vectron's Microwave Spectrum Analyzer now provides a choice of operating frequencies from 4240 to \(7500 \mathrm{mc} / \mathrm{s}\). Additional X-band operating frequencies, 8500 to \(10,250 \mathrm{mc} / \mathrm{s}\), are covered by the \(20 \mathrm{XI} \mathrm{R}, \mathrm{F}\). head and its variants. Other R. F. assemblies are available for L-band (20C1) and S-band (20S1).
VETRON:S R. F. HEADS are all interchangeable and ready for immediate operation in the Display Unit SA20, without conversion or adaptation. Display Units and R. F. Heads can be purchased separately as needed without the bulk and expense of equipment covering large areas in unused bands.
Early Delivery . . . Individual R.F. Heads and SA20 Analyzers are available for early delivery. Other new Heads are well along in development and will be announced soon. Send for Bulletin SA20 (see below) and specify the frequencies you need.

For Microwave Radar and Communications Equipment The Vectron SA20 Spectrum Analyzer presents visually the frequency distribution spectrum of the power output of pulsed or CW microwave oscillators and can be used as a sensitive R. F. detector for checks and measurements in the design, production and maintenance of microwave radar and communications equipment and componenrs.

Vectron's development program includes additional R. F. Heads to cover microwave frequencies newly opened for military and civilian use. For information on these additional R. F. Heads
 and for complete engineering data, send for Bulletin SA20. Write today and be sure to specify the operating frequencies you need.

\section*{FEATURES}

Large, cleor \(5^{\prime \prime}\) oscilloscope pottern
Standard bezel to accent comera, hood or fitter Minimum number of controls . . . maximum operating convenience
Double conversion assures I. F. alignment stability
Built in regulated supply for Klystron ascillator
Easy access for maintenonce or adjustment New Provision for D.C. Filament supply for Klystron oscillator

\section*{SPECIFICATIONS}

Overall Gain- 130 decibels
Sensitivity - At least 60 dbm for 1 usec. pulse - 80 dbm for CW
If Bondwidth-Choise of 50 kc , recommended for CW and \(0 . ?\) to 2 usec, pulse widths, or 20 kc bandwith to 5 uses. Sweep Frequency - 10 to 30 eps standard - ovailable to 2 cps and with long persistence tube
Power supply 105-125V, \(50-400\) cycles
New Low-noise 20ke IF strip for higher useable gain.

graphic center of the city
A. D. Davis, president, pointed out that the need for Allied's new facilities was dictated by the growth of the electronic parts industry. Shortly after World War II, the company carried about 8,000 separate stock items. Allied's 1954 catalog will list over 20,000 separate items. An increase of \(25,-\) 000 items is anticipated within a few years.

\section*{Harvard Names}
F. V. Hunt
F. V. Hunt, Gordon McKay Professor of Applied Physics and wartime director of the Harvard Underwater Sound Laboratory, has been named Rumford Professor of Physics at Harvard University, Provost Paul H. Buck announced.

Hunt succeeds retiring Rumford Professor E. L. Chaffee in the 137 -year-old chair. He will continue as Gordon McKay Professor of Applied Physics.

A member of the Harvard faculty since 1927 , Hunt organized in 1941 and directed until 1946 the Harvard Underwater Sound Lab. which, operating with the Office of Scientific Research and Development, developed an efficient sonar system for detecting the presence of enemy submarines. For his part in the development of the bearing deviation indicator which enabled sonar operators to train their sound projectors on stibmarines with greater speed and accuracy and his work with acoustic torpedoes, he received a presidential Medal for Merit in 1947.

Since the war, Hunt has been continuing his acoustics research for the Nary and is a member of the National Research Council Committee on Undersea Warfare. During 1947-49 he served as chairman of the Panel on Acoustics of the Research and Development Board.

\section*{Philco International Promotes Jeffery}

Sydney L. Capell, president of Philco International Corp., announced the promotion of W. H. Jeffery to vice-president and general manager of Philco Corp. of

\section*{Superior Service}

The smallest, most efficicnt and economical diodes commercially available, Transistor Products germanium diodes offer superior advantages in many applications.

All TP diodes have uniform characteristics and low shunt capacity; specific types meet highest forward current requirements and have a minimum voltage drop.


Transistor Prochucts germanium diodes give dependable performance because they are designed and assembled for maximum mechanical strength. These diodes have the gold electrically bonded to the germanium - creating a welded alloy which meets shock resistance requirements. Only \({ }^{3} /\) /r \(^{\prime \prime}\) in diameter, they are compact and ideal for sub-miniature assembly. TP germanium cliodes also have tinned copper leads which permit easier soldering in production lines.

For data sheets and complete information on Transistor Products diodes, transistors and transistor test set, write Dept. E10.


Transistor Products, inc. SNOW and UNION STREETS, BOSTON 35, MASSACHUSETTS
AN OPERATING UNIT OF CLEVITE CORPORATION


\section*{PANTOGRAPHIC PROFILING ON METALS AND PLASTICS \\ rapidly done by unskilled labor with}

NEW HERMES
To


Write direct to us for Literoture.
Bemch Type Madel HI 29 (weight 200 lbs.)
Pcrtable Modell lini atiso ovailable

NEW HERMES, INC. 13-19 University Plase, N. Y. 3
Represertotions in oll paincipol cities. Konado-35\% St. Jomes St, Montreal


\section*{printed wiring IS Competitive NOW}

Utilization of Printed Wiring Panels offers the volume electronics manufacturer competitive advantage now - even in the infancy of this new concept, the user will find overall costs comparing favorably with conventional assembly methods which have been in process of refinement for many years. \({ }^{\circ}\) The advantages in experience and refinement of design and assembly technique accruing to pioneer users are obvious.


Illustrated is the Rex Electronic Corp. ingenious UHF funer utilizing a "printed" tank circuit which is tuned by sliding silver contacts. Etched conductors extend to the socket aperture in order to minimize lead lengths from tank circuit to tube. Remarkable for its efficiency, stability and simplicity, the tuner represents a significant and interesting application of prefabricored circuitry.

It is to the user's advantage that the manufacture of pirinted wiring panels is already a crowded and competitive field, a situation which stimutates rapid advancement. A foresighted study of the possibilities for printed wiring in most mass-produced electronic devices is indicated. Similarly, analysis of Methode's combination of experience and demonstrated ability in this line warrants study where volume requirements are under consideration.
We invite your inquiries.

Canada, located in Toronto.
This position was previously held by Mr. Capell who transferred from Toronto to Philadelphia to become president of Philco International and assume direction of all Philco manufacturing and sales activities outside the U. S. At that time, Mr. Jeffery was named general manager.
Mr. Jeffery has been associated with Philco of Canada since 1945, first as a division manager and later as general sales manager. Before joining Philco he was associated with British Columbia Power Corp. as sales engineer and with the Canadian National Steamship Co.

New Company Enters Electronics Industry

F. Gordon Schermerhorn

A NEW COMPONENT manufacturer, Bradford Components, has entered the electronics industry to develop and produce wire-wound precision resistors of low and medium power, wind precision coils and handle component subassemblies of all types.

The firm has a completely renovated plant of approximately 12,000 sq ft located in Bradford, Pa.

The company is headed by \(F\). Gordon Schermerhorn, president, who has had many years of executive experience in the electroniccomponent manufacturing industry. For several years he was production manager and produc-tion-control manager of the \(\mathrm{Hi}-\mathrm{Q}\) division of the Aerovox Corp. Recently, as division manager of the Speer Resistor Corp., he was re-


AC Type H-16 STANDARD COURSE-CHECKER
For Omni Signal Generafors
- This newly developed instrument is a means for checking precisely the phase-accuracy of the modulation on VOR (Omnirange) Signal Generators. Now that the use of omnirange receivers and signal generators is so widespread, it is necessary to have a means of measuring the phase differences between the 30 cps envelope of the 9960 \(\pm 480 \mathrm{cps}\) reference modulation, and of the 30 cps variable modulation when that difference is required to be 0,15 , 180 or 195 degrees.
- An important feature of the \(\mathrm{H}-16\) is a built-in self-checking circuit to insure, 1 degree accuracy. Errors may be read directly on a 3 -inch meter, calibrated to read \(\pm 4\) degrees.

Write for detailed specifications


Dependable Airborne Electronic Equipment Since 1928

\section*{Aircraft Radio Corporation boonton new jersey}


GRC WING NUTS
Exclusive, finger-grip design; easy to assemble, disassemble; brightly finished; clean threads.

\section*{ZINC ALLOY FASTENIIGS}

\section*{GRC CAP NUTS}

Die Cast, not turned! Free of tool marks, and cut-off burrs; class 2 threads tapped square with face of nut.


GRC SMALL TUBULAR RIVETS
Die cast, not headed! Closer tolerances, more uniform heads for greater rivetina efficiency Dia. up to \(9 / 16^{\prime \prime}\); lengths to \(5 / 16^{\prime \prime}\).
- RUSTPROOF
- DEPENDABLE
- DURABLE

Grics die cast zinc alloy fastenings are durable custproof economical, too! All Gries fasten ings may be used without protective finishes in most applications. Furnished in all commercial fin ishes when desired. Prompt delivery on standard sizes-specials to order.

WRITE TODAY FOR SAMPLES AND PRICES

\section*{(}
denio
151 Beechwood Ave., New Rochelle, N. Y. - Phone NEw Rochelle 3-8600


\section*{STERLING}

\section*{A DEPENDABLE SOURCE FOR}

\section*{TRANSFORMERS \\ MIL-T-27 \& COMMERCIAL}

- Pulse
- Audio
- Power
- Filter Choke
- Filament
- RF Coils

Custom Built to your Specifications


STERAIIG


\section*{Fansteel Fabrication of Tungsten \(\&\) Molybdenum Components}


We MAKE both Tungsten and Molybdenum. From raw ore to finished ingot, bar, rod or sheet, you can expect us to know more about these metals-about forming them, about stamping, bending, deep drawing, machining, forging, brazing or welding them.

\section*{\({ }^{1+5}\) Fansteel}

\section*{INSURE YOUR COST CONTROL of TUNGSTEN and MOLYBDENUM COMPONENTS}

You can expect us to arrive at the best way of making your component, to produce it at the least cost--to guarantee you, when we do your fabrication, against the vagaries of rejects, scrap loss, equipment and personnel tie-up.

Bluntly, you can expect us to be experts. For, in all modesty, that's just what we are. And our experience is yours for the asking.


FANSTEEL WORLD'S LARGEST producer of REFRACTORY METALS

Write for Free Booklet!
*FANSTEEL TUNGSTEN AND MOLYBDENUM"

\footnotetext{
Fansteel Metallurgical Gorporation nokin cricaco itunois, us.a.
}
sponsible for the completion and organization of their new composi-tion-resistor manufacturing unit at Bradford, Pa.

The company's director of engineering is Lawrence Lopez, who has been associated with the elec-tronic-component industry for over twenty years. He recently was project and development engineer in charge of coils and resistors for the Hi-Q division of the Aerovox Corp. Prior to that he was president and general manager of the R.K.L. Electro Winding Corp. at Delevan, N. Y. Before that he had many years of engineering and executive experience with such firms as General Winding Co. and Cornell-Dubilier Corp.

\section*{Albuquerque Set \\ For TV Network Connection}

Direct connections with national television networks and additional long-distance telephone facilities will be available to Albuquerque, N. M. by mid-1954, according to Wayne Coy, president and general manager of the Albuquerque Broadcasting Co., which owns and onerates stations KOB and KOB TV.

Making the new service possible is construction of AT\&T's coaxial cable from Oklahoma City to Amarillo, and a microwave relay system from Amarillo to Albuquerque, and on to the Pacific Coast through Phoenix.

Albuquerque, which has been getting its TV shows on film for the last five years, with an average time lag of a week, will have three tv stations on the air when the new facilities are completed. KOB-TV will be affiliated with NRC and Du Mont; KOAT-TV, which plans to be on the air this fall, will be affiliated with ABC; and KGGMTV, which has set a November opening date, is linked to CBS.

\section*{General Instrument}

Elects Hutchison
Malcolm C. Hutchison has been elected a director of the General Instrument Corp., it was announced by Abraham Blumenkrantz, chairman of the board.

Hutchison is a former vice-presi-

\section*{For SPECIFIED PERFORMANCE Specify JELLIFF RESISTANCE WIRE \\ COMPLETE CONTROL OF MANUFACTURE . . A WIDE RANGE OF EXPERIENCE . . A WIDE RANGE OF ALLOYS . .}
make JELLIFF the ideal source of
Resistance Wire to assure your Product's

\section*{Performance According to Specs.}

Precision resistors—rheostats-relays-thermocouples-ohmmeters —bridges—high-temperature furnaces can all benefit from the PLUS-PERFORMANCE of JELLIFF RESISTANCE WIRE


Detailed Enquiries Welcomed. Address Dept. 25

\section*{EXACTLY your type and size in Spiral Wound PAPER TU:ES}


WRITE ON COMPANY LETTERHEAD FOR
STOCK ARBOR LIST
OF OVER 2000 SIZES

\section*{SQUARE, RECTANGULAR, ROUND}

Standard-type PARAMOUNT paper tubes used for millions of coil forms and other applications. Hi-Dielectric. Hi-Strength. Kraft, Fish Paper, Red Rope, Acetate, or any combination wound on automatic machines. Any size from \(1 / 2^{\prime \prime}\) to \(30^{\prime \prime}\) long, from \(.450^{\prime \prime}\) to \(25^{\prime \prime}\) I.P. Produced from wide range of stock arbors or specially engineered for you.

\section*{NEW "PARAFORMED" TUBES} SQUARE OR RECTANGULAR
Entirely new technique in tube making developed and perfected by PAKAMOUNT Perfectly flat side walls, sharp square inside corners, and very small radius on the four outside corners. Spiral wound, not die formed. No sharp outside edges to cut wire. No need for wedges to tighten winding on laminated core. Full rigidity and physical strength. Permits winding coils to closer tolerances. Allows faster automatic stacking of coils. Approved and used by leading manufacturers. No extra cost!

\section*{PARAMOUNT} PAPER TUBE CORP. 616 LAFAYETTE ST., FORT WAYNE, IND. Standard of the Coil Winding Industry for Over 20 Years

\section*{2 MUSTS}

\section*{For Low-Cost Servicing of Mobile Radio Systems}

Lampkin equipment gives you the lowest cost per channel, whether you supervise a large multiplefrequency system, or whether you service numerous smaller installations! Lampkin equipment measures center frequency and modulation deviation, to FCC specifications!

The Type 205 FM Modulation Meter For Multiple Mobile Frequencies.


The Type 205 FM Modulation Meter meas ures peak frequency swing due to voice modulation of \(F M\) transmitters, as required by the FCC. Indicates \(0-25 \mathrm{KC}\). deviation 25 MC . to 200 MC . Simple to use. Direc reading. No charts. Price Net \(\$ 240.00\)

For Any Number of Frequencies, AM or FM. The Type 105-B Micrometer Frequency Meter


The Type 105-B Micrometer Frequency Meter measures center-frequency deviotion on any number of transmitters, from 100 KC . to 175 MC . also precisely simulates weak transmitter signols, for mobile Overall accuracy, within 0.00250 with spot check on WWV Price 5220.00 net

Return coupon TODAY for complete literature


\section*{now...TEFLON* with Certified performance}


\section*{Conformance to specifications assured in FLUOROFLEX \({ }^{\circledR}\). rod, sheet, tube}

Resistoflex will certify each shipment of "electrical grade" Fluoroflex-T products on six vital physical and electrical properties. Qualification tests are performed on all incoming Teflon powder to determine whether it will yield rods, tubes and sheets which are in conformance with specification AMS-3651 "Polytetrafluoroethylene." Processing under a quality control and inspection system approved by the USAF under MIL-Q-5923 specification maintains the identity of each lot of material through all stages of manufacture - from virgin powder to finished product.

An affidavit accompanies each shipment attesting to its conformance with AMS-3651. Certified test reports of the actual properties of any shipment will be furnished whenever they are requested.

Be sure of optimum performance in Teflon by specifying electrical grade Fluoroflex-T. Remember, too-Fluoroflex-T products are non-porous and stress-relieved. This means better dimensional stability, less costly machining and fewer rejects. For more details, write or phone...
*Dupont trade mark for its tetrafluoroethylene resin.
(BResistoflex trade mark for products from fuorocarbon resins.

\author{
Belleville 9, N. J.
}

PLANTS AND PEOPLE
(continued)
dent of the Irving Trust Co., from which he retired last May after more than 30 years service, He also is a director of the American Colortype Co., the Bankers Commercial Corp., the Longines-Wittnauer Watch Co. and Seeman Brothers, wholesale grocers.

\section*{Raytheon Wins \\ Hearing-Aid Award}

The 1953 engineering award of the Society of Hearing-Aid Audiologists has been presented to Raytheon Manufacturing Co. The professional group, comprising some 500 dealers and consultants engaged in the hearing-aid business, made the award "in recognition of Raytheon's outstanding achievement in transistor design and production."

The company announced the availability of junction transistors for hearing aids in September 1952, began shipments in January of this year, and has since shipped well over 100,000 of them.

\section*{Greenhouse Joins \\ Ferroxcube Corp.}

Harold M. Greenhouse, formerly of the Ohio State University Research Foundation, has joined the research department of the Ferroxcube Corp. of America. Greenhouse will be employed in research on development of new types of ferrite magnetic materials, it was announced by W. W. Stifler, Jr., general manager.

\section*{Simpson Doubled Production Facilities}

Within the past year, facilities for the production of electrical testing equipment of the Simpson Electric Co. have doubled, according to Robert Brand, factory manager of the company's Chicago plant.

The company recently extended its Lac du Flambeau plant in Wisconsin, one of three now operated by the firm for the production of testing equipment.

At the plant, which is on the Lac du Flambeau reservation, home of the Lake Superior Chippewa indians, the company is uti-

\section*{MIDGET TELEPHONE TYPE RELAYS in hermetically sealed containers}


Surface mounting, open type, Series 80 Relay size: \(1^{15 / 32 " 1} 1 . \times 5 / 8^{\prime \prime}\) w. x \(125 / 64^{\prime \prime} \mathrm{h}\).

Compact, multiple contact with vibration and shock-proof characteristics. Designed to meet various operating requirements typical of Armed Services applications. Unique pile-up arrangement reduces width below the conventional relay, thereby reducing over-all space volume.

Coils are varnish-impregnated to resist high humidity conditions. All ferrous parts are treated to pass salt-spray tests.

\section*{Engineering Representatives in Principal Cities}

WRITE FOR


\section*{}
- Vacuum Tight-Glass to Metal
- Standard Types from Stock
- Special Designs to Fit Your Product
- Write or Call for Full Information


MINIATURE 20
Sales Agency:
WESTERLUND \& CO.
618 Calvert St.
Baltimore, Md.
SCIENTIFIC ELECTRONIC LABS, INC.
866 Bergen St. Bigelow 8-6553 Newark 8, N. J.

\section*{23 MILLION IN STOCK! \\ why EthoLoc" cable clips?}
1. Made of tough, durable Ethyl Cellulose plastic-no danger of shorts or grounds
2. Flexible and easy to apply - no sharp edges 3. Light in weight
4. Low in cos \(\dagger\) 7 - 7 reduction in prices on many popular sizes. We thank our customers for large vol-
Wrife for Sample and



\section*{metal working tool!}

\section*{di-acro* BOX FINGER BRAKE}

Accurately, Easily, Quickly Form and Duplicate a Wide Variety of Shapes in Metal as Heavy as 16 Gauge-Widths up to 24" -with Versatile Di-Acro Brakes.

A number of forming jobs can be done with the Di-Acro Box Finger Brake, by simply adjusting or changing the type of mounting bar on the contact surface. Di-Acro Finger Brake is:
- Box and Pan Brake - when equipped with a complete set of Box Fingers.
- Open End Brake - when Open End Finger is installed in place of Box Fingers.
- Bar Folder - when an Acute Angle Bar replaces the Box Finger Bar mounting.
- Standard Brake - when a Forming Bar is mounted for heavy operations.

Di-Acro Standard and Radius Brakes are also available. Ten models in all.
pronounced Die-ack-ro

\section*{WANT MORE INFORMATION?}


Send for New 32-Page Catalog
Gives facts on Di-Acro Brakes and also both hand and power operated Di-Acro Benders, Notchers, Punch Presses, Rod Parters, Rollers and Shears. Mail your request today.
Creators of
"Die.Less Duplicafing"

O'NEIL-IRWIN
MFG. CO.
321 Eighth Ave.
Lake City, Minn.


\section*{Precision Crystal Oven}
lizing the dexterity of the Indians in mass-production techniques. About 95 percent of the plant's employees are native members of the Chippewa tribe on the reservation.

In appreciation for the opportunities given the Flambeau Indians, both Raymond Simpson, founder of the company, and Wallace Carroll, current president and owner of the firm, have been adopted as honorary members of the Tribe.

Corbett Retires
From Sparks-Withington


William J. Corbett
William J. Corbett, vice-president of The Sparks-Withington Co., Jackson, Mich., was guest of honor at a dinner given by business associates and friends in Jackson on the occasion of his retirement from the company at the completion of 44 years service.

He was a member of the board of directors for 33 years and 28 years vice-president of The Sparks-Withington Co. He has been president of the firm's automotive division since 1938.

\section*{Machine Works Forms \\ Electronic Division}

Hufford Machine Works of El Segundo, Calif. has formed a new electronic division, according to J. A. Helget, president.

Located in a new \(10,000 \mathrm{sq}\) ft plant in Los Angeles, the new division will specialize in the development and production of d-c regulated and unregulated rectifier-type

\section*{DEPENDABLE \#Cumature RADIO FILTERS}

-Saves space!
-115 V ac/dc, 20 amp.
-Excellent attenuation
-Feed through installation
-Flange mounting bracket
-Corrosion \& fungus resistant
If you have radio interference problems, write or wire us, TODAY!

\section*{HดРKINS Ingineering 0}

FACTORY: 2082 Lincoln Ave., Altadena, Calif. SYcamore 8-1185 Offices in washington, D. C. and DETROIT

\section*{PHAOO FHASE Pat. Pend. METER MODEL 200A}


Measures phase shift in †ransformers, amplifiers, Filters, and phase displacement networks.
- Measures from 0 to 360 degrees.
- Readings not affected by noise and harmonics.
- Phase shifts of the order of .01 degree can be measured employing special circuit techniques. - Measures in•phase and quadrature components separately.

> SPECIFICATIONS
\(\qquad\)
Accuracy-Basic accuracy plus or minus 2 de. grees. Plus or minus 1 degree due to neter erro
Noise and Harmonic Rejection 40 db , down Sensitivity . 6 millivolts full scale aak ........... 25 volts RMS 20 to \(20,000 \mathrm{cts}\) Input I mpedance 20 to \(20,000 \mathrm{cps}\)
nput Impedance
High Gain 2.0 megohm shunted by 25 mmfd . Reference lnput 2.5 megohm shunted by 10 mmfd , Power Supply 105 to 125 volts, 60 cps., 25 watts Dimensions-Length 15 in. \(\mathrm{Hgt}, 9\) in. Depth 8 in Weight.................. 25 pounds

INDUSTRIAL TEST EQUIPMENT CO. 55 EAST 11th ST., N. Y. 3-Tel: GR. 3-4684


Augat two-tension loop clamps are the longsought answer for uses where tube base tolerances vary up to .040 . The bands of these sturdy clamps are made of Beryllium copper, heat treated to retain original tension and nickel plated to withstand a 96 hour salt spray test with no adverse effect.

The remaining parts of Augat's two-tension loop clamps are made of \(18 \%\) nickel silver.

Write today for catalog and samples.

\section*{AUGAT BROS. INC.}

31 PERRY AVENUE • ATTLEBORO, MASS.


\section*{DEVELOPMEKT and PRODUCTIOM METALLURGISTS}

Fine wire and ribbon in base, rare, and precious metals, and alloys for new and highly engineered applications In small units and sizes. and to close tolerances. Further defails on request.

\section*{SECON METALS CORPORATION}

7 Intervale Street, White Plains, New York WHite Plains'9.4757


We specialize in the design and production of servo motors, actuators, gear motors and torque motors. IMC motors are widely used in aircraft control, guided missiles, gunfire control, rocket control, industrial control and many other servo and instrument applications that require motors of \(1 / 1000\) to \(1 / 10\) horsepower.


For applications that require any type of fractional or subfractional horsepower motor . . . check your specs with

\section*{INDUCTION MOTORS CORP.}
 Visit us: National Instrument Exhibit, Booth 262

\section*{New Technitrol Variable Pulser}
* Wide pulse repetition frequency range from 20 cps . to 2.0 mes.
* Pulse rise and fall times are symmetrical at \(0.05 \mu \mathrm{~s}\).
* Duration of pulse variable from \(0.2 \mu \mathrm{~s}\) to \(5.0 \mu \mathrm{~s}\) in steps of \(0.1 \mu \mathrm{~s}\).
* Stable pulse duration controlled hy electric delay lines.
* Low impedance output, amplitude continuously variable from 0 to 40 volts without distortion.
* Trigger pulse precedes output pulse.


This reliable and versatile instrument, developed for our own use, has wide possithilities for application in many laboratories.

Write for Bulletin 186E. 2751 N. Hh St., Phila. 33, Pa.


TESTADAPTERS
Vector-Test Adapters are ideal for making measurements from the tube side of electronic equipment. The adapter is inserted between tube and socket, completing the circuit and providing test tabs. The short type (left) is most popular, but for some hard-to-reach locations a long type with shielded leads is available (center). For breaking circuits or changing connections the open "experimenter' type is useful (right). All types are available for octal, 7 -pin miniature and 9-pin noval sockets. Kit T-7a combines the Available at types in handy carrying case. Available a
most distributors.

Send for catalog showing complete line of adapters, socket-turrets, plugs and plug-in units.

> २EPRESENTATIVES
B. B. Taylor Co.

241 Sunrise Highway, Rockville Centre, N. Y. 4258 West Irving Park Road, Chicago 4I, III rving Park Road. Chicss
534 El Camino Real, San Carlos, California
Vector Electronic Co.
3352 San Fernando Road, Los Angeles 65



\section*{WHEN SPECIFYING A PREDETERMINED COUNTER}
for any application, check the reasons why a Potter Instrument is the only logical choice. There are important differences among predetermined counters-basic differences in simplicity of operation, in ease of maintenance, in reliability, and in versatility.

\section*{THE SIMPLEST CIRCUIT}

Potter Predetermined Counters use the "complement" circuit. Any count from one to ten can be set in the simple, straightforward four tube decade. A single output is operated when the predetermined count is reached. Other methods require the sensing of many "on" conditions. A typical three-sequence predetermined counter with four decades would require sensing 48 "on" conditions with separate tubes.

\section*{THE GREATEST RELIABILITY}

The Potter system provides automatic indication of tube
failure and stops automatically when failure occurs. Rugged, approved industrial tube types and switches, minimize maintenance, help assure trouble. free operation.

\section*{MAXIMUM VERSATILITY}

Potter Predetermined Counter Decades are especially adaptable to multiple-sequence counting. Only 12 tubes, for instance, are needed for counting in a dual-sequence, 0 to 1000 count, unit. Other systems need up to 24 tubes, yet do not equal the Potter method in performance, in space and power economy, and ease of maintenance.

\section*{GET THE COMPLETE STORY}


Get the complete story on Predetermined Counters for every application involving counting, sorting, batching, and measuring length, weight, volume, and speed. Along with it, let us prove, in detail, the superiority of Potter Instruments. For information on a unit or a system, write Department 10-C

POTTXR DSSTRUMIXIT CO., INC.
115 CUTTER MILL ROAD
GREAT NECK, N. Y
under the direction of Dr. Otis B. Young, who will be working under Dean Willis G. Swartz of the SIU Graduate School.

\section*{Ampex Electric \\ No Longer Electric}

Ampex Electric Corp. of Redwood City, Calif. is now the Ampex Corp. George I. Long, general manager, explained that the board of clirectors changed the firm's name "because of the expanding scope of Ampex activities, which makes the term "electric" no longer descriptive of the company's business."

\section*{Heldor Moves \\ To New Location}

Heldor Mfg. Corp., maker of transformer cans, capacitor cans, component parts, and national sales agent for Heldor compres-sion-type hermetic seal bushings and terminals, have announced the moving of their plant and offices to Patterson, N. J.
H. F. Elberfeld, president of Heldor, stated: "Our new plant provides more working space, better stock facilities, closer supervision of operations and quicker deliveries."

Keeping Cool
At North American


Electronic brains under development in North American Aviation's electromechanical engineering department at Downey, Calif. undergo cold tests in the firm's weather laboratory. Company employee Mary Chastain removes a frosty electronic computer unit from the cold chamber where tests are made of advanced equipment being developed for a long-range guided-missile program


\section*{H. CROSS CO.}

15 BEEKMAN ST.. N. Y. 38, N. Y. WOrth 2-2044 and COrtlandt 7.0470

Designed primarily as a laboratory machine. This assembly has found extensive use as a production winder. Provides for the winding of a wide range of wire and coil sizes. Can be provided with variable speed control.
*Available to licensees of the Western Electric Co., Inc.
Designers and Builders of coil winding machinery, special machinery and equipment. Write for brochure.

WORLD'S MOST VERSATILE WINDING MACHINES


The new SKL Model 504 Square Wave Generator is a moderately priced, compact, lightweight, high quality laboratory instrument. A square waveform with very short rise time makes the SKL Model 504 Square Wave Generator useful in obtaining a rapid determination of the transient response of electrical networks.

Other features of the SKL Model 504 Square Wave Generator are: frequency range from 0.5 cps to 1 megacycle in eight steps; provision for the generation of a square wave of any intermediate frequency; a synchronizing pulse output and external sync input to permit use with auxiliary equipment; and a self-contained regulated power supply.

\section*{NEW BOOKS}

\section*{Television and Radio Repairing}

By John Markus. McGraw-Hill Book Co., New York, 556 pages, 1953, \(\$ 7.95\).
There is so much good practical information in this new book, that it is a little unfortunate the author thought it necessary to oversell and oversimplify the business of servicing television receivers.

The book supplies the first real comprehensive description of how to get started in the service business. Even though we must disagree with the opinion that one can start with a cash investment of less than a hundred dollars, if necessary, and his idyllic and hardly realistic description of what it means "to be your own boss" in the service business, we still feel that a beginning student can get a pretty good idea of the service business by reading this book carefully.

The basic premise of the author is that a student with average intelligence can learn to handle up to 75 percent of the repair jobs that come to the average radio and television shop. While the exact percentage may be a little high, there is no doubt that the application of the knowledge found in the book's pages will enable a serious student to start right in handling service work.

This book can fill a practical need in new television areas or in existing areas where there just are not enough good servicemen to go around. For the good of the industry, though, it is hoped that most readers of this book will continue on with further studies, since this book doesn't get into circuit theory with any depth at all. A serviceman cannot be considered competent in his field until he knows quite a bit more about radio or television than is available in the text.

We believe that the book does accomplish its stated goal. It gives practical how-to-do information that can be applied to actual receivers right from the start. A seri-ous-minded, ambitious student should be encouraged by the progress he makes as he applies the sug-

\section*{WE CAN MOLD ANY POWDER} INTO YOUR DESIRED SHAPE and SIZE
Send us your powder molding problems and let us help you solve them.


WE SPECIALIZE IN ALL TYPES OF
PONDERED GLASS


IRON SEALING and KOVAR SEALING GLASS
Close tolerance maintained . . . the highest precision to satisfy your specifications.

(Quick


\section*{13 VALLEY STREET} beLleville, New Jersey
SPECIALISTS FOR THE TRADE

\(\star\) This Webber test unit, designed for production and ex perimental testing, has a temperature range from \(+250^{\circ} \mathrm{F}\)., to \(-100^{\circ} \mathrm{F}\). The pull-down to \(-100^{\circ} \mathrm{F}\), is achieved in \(45^{\prime}\) minutes, and can be cycled from \(-100^{\circ} \mathrm{F}\)., to \(+250^{\circ} \mathrm{F}\)., in 30 minutes. \(95 \%\) relative humidity is provided at tempera tures between \(75^{\circ} \mathrm{F}\)., and \(95^{\circ} \mathrm{F}\). Vacuum equipment can be added to simulate high altitudes. The test chamber, provided with a moisture-proof light for illumination, is \(41 / 2\) cubic feet, 20 inches high, 20 inches wide, 20 inches deep High and low temperatures are governed by a temperature High \(-200^{\circ} \mathrm{F}\), to \(+400^{\circ} \mathrm{F}\). controller with scale range fith a 3 degree control point differential, \(11 / 2\) degrees plus with a 3 degree control point differential, \(1 / 2\) degrees plus
and minus. The humidity is regulated by a wet and dry bulb controller. Unit size is \(60^{\circ \prime}\) long, \(45^{\prime \prime}\) wide, \(74^{\prime \prime}\) high Apertures in left side of cabinet provide for electrical cables to energize equipment being tested. Webber offers a com plete line of test units for various applications.

Write for more complete information
industrial freezer oivision
WEBBER MANUFACTURING COMPANY, INC. (Formerly Webber Appliance Co., Inc.)
2745 MADISON AVENUE I INDIANAPOLIS 3, INDIANA

\section*{Every DANO Coil is Custom-Made}

In electronic equipment success or failure is often determined by coil function. Every Dano coil is made to customer requirements and is delivered to you fit as a fiddle and ready to serve you and your products with perfect,trouble-free performance. Send us samples or specifications with quantity requirements for our recommendations. No obligation!

\section*{Also, Transformers Made To Order}

Form Wound
- Paper Section
- Acetate Bobbin
- Molded Coils
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Application


Two Pictures ONE IS ART


\section*{Onte}

Thousands of paintings have been put on canvas, but only the select few have the lasting quality of great art.

We're not artists, but we do know something about quality. Osters have produced top-notch products for over a quarter of a century. We have a group of well-trained, conscientious engineers who will design and pro. duce what you want in
blowers • MOTORS • ACTUATORS SERVOS - SYNCHROS

You'll find we're as precise as the old masters about the quality of our product.

You Can Depend on SAFER Flight... EXTRA Fight with OSTER Products

RACINE, WISCONSIN

\title{
Corrections of Product Listings for the 1953-1954 Electronics Buyers' Guide
}

The additions and corrections listed below apply to the current issue of the GUIDE.

\section*{ALTEC LANSING CORP.}

9356 Santa Monica Blvd,
Beverly Hills, Calif.
MICROPHONES-Condenser, not MICROPHONES-Carbon

THE LENK MFG. CO.
30-38 Cummington St.
Boston 15, Mass.
Listing under SOLENOIDS is in correct. Listed under IRONS -Soldering only.

FEDERAL TEL. \& RADIO CORP.
88 Kingsland Rd., Clifton, N. J.
(Additions as follows:)
AMPLIFIERS—Magnetic
AMPLIFIERS-Servo
CONTROLS-Temperature, Electronic
COUNTERS—Photoelectric
REGULATORS-Voltage Regulator and Stabilizer

J-B-T INSTRUMENTS, INC.
431 Chapel St., New Haven 8, Conn. (Addition as follows:)

SWITCHES-Toggle and Pushbutton
ERIK A. LINDGREN \& ASSOC.
4515 N. Ravenswood Ave,,
Chicago 40, III. (Addition as follows:)
ROOMS—Screen
MINNESOTA MINING \& MFG. CO.
900 Fauquier Ave., St. Paul 6, Minn.
(Additions as follows:)
INSULATION PARTS
TAPES-Insulating
POLARAD ELECTRONICS CORP.
100 Metropolitan Ave.
Brooklyn 11, N. Y. (Addition as follows:)
RECEIVERS-Microwave
STAR EXPANSION PRODUCTS CO.
147 Cedar St., New York 6, N. Y.
(Addition as follows:)
STRAIGHTENERS——Pin, Tube

Bold facing and adverlising page number are omitted in the following:

WEINSCHEL ENGINEERING CO., INC.
10511 Metropolitan Ave.,
Kensington, Md. Advertising Page 36
ATTENUATORS-Microwave
Coaxial Fixed
ATTENUATORS—Microwave Step
OSCILLATORS_Audio Frequency

In the following, the correct advertising page should be page 344, not 334:

\section*{REON RESISTOR CORP.}

117 Stanley Ave., Yonkers, N. Y.
RESISTORS
Wire Wound
17. Precision Low Voltage
12. 2 Watts and under
18. Precision High Voltage
13. 4 to 35 Watts
19. Rf non-inductive

RESISTORS-Sub-Miniature
gested techniques found in each chapter.

The book starts out by describing how you get started in servicing, what tools you need and how to make a service call. It describes briefly how television and radio sets work, including a brief discourse on electricity and magnetism.
Then the book shows you how to use a multimeter and, in three chapters, covers the subject of tube testing and replacing.

The beginner is taught how to solder, and how to test and replace the various components found in modern receivers. The chapter on phono pickups and needles is extremely valuable because this information is rarely found in such detail in servicing texts.

Chapters on repairing cabinets, and the installation and repair of radio and television antennas complete the book.
The text is very clear and easy reading. Paragraph headings, ample photographs, and review questions after each chapter add to the instructional value of the text.
Summing up the review, we find that despite some of the distortions and over simplification mentioned earlier, a beginner will be able to pick up from this book lots of good practical information he will need in servicing-information that might otherwise take months of practical experience and guidance to acquire.

Harold J. Schulman,
Allen B. Du Mont Labs,, Inc.

\section*{Introduction to Solid \\ State Physics}

By Charles Kittel. John Wiley \& Sons, Inc., New York. 396 pages, 1953, \$7.00.
In RECENT years the attention of engineers and scientists has been focused more and more sharply on the study of solid-state physics. While results have not been so spectacular or so influential in world affairs as those in nuclear physics, they are of particular interest in the field of electronics.

Early in World War II, when need for a thorough understanding of the crystal detector arose, specialists in solid-state physics were able to clarify experimental data

\footnotetext{
A McGRAW-HILI PUBL!CAT!ON, 330 WEST 42nd ST.
}


AGASIATS are used by Onan to prevent starting of their standby plant on momentary power failure, to prevent stopping of the plant until power has returned for a given time, and on some lugging presses that operate over a million times a year. Onan reports several years of service with a minimum of attention. AGASIATS are solenoid actuated and pneumatically timed. They are light, compact, dustproof and can be furnished to operate mounted in any position. There is an AGAS'PAT model that is right for your needs.

Write for Bulletin Dept. A2-104

\section*{A'G'A}

Division of Elastic Stop Nut Corporation of America 1027 Newark Avenue, Elizabeth 3, New Jersey


Get our Folders on Standard Catches and Draw Bolts and other Compression Spring Catches
NIELSEN HARDWARE CORP. 770 Wethersfield Ave., HARTFORD 14, CONN. affiliated with nielsen tool \& die co.
```

FOR QUALITY HARDWARE - GOOD SERVICE TO YOUR SPECIFICATION

```


CUTOFF FREQUENCY
100-4000 Mc.

PASS BAND ATTENUATION
0.1 db . max.

PASS BAND VSWR
1.4 max.

PRICE \(\$ 30.00-\$ 40.00\)
Other models to specifications

Phone: South Orange 2-7422

\section*{MICROLAB \({ }^{301 \text { sourutherwwoop rane }}\) SOUTH ORANGE, NEW JERSEY} COAXIAL COMPONENTS and TEST EQUIPMENT

In More and More TV Installations Across the Country

POLARAD'S MODEL M-105
IS A HIGHLY VERSATILE PICTURE MONITOR FOR BOTH COLOR AND BLACK AND WHITE STANDARDS. USED IN NTSC AND CBS SYSTEMS

\section*{fétures:}

High resolution in excess of 450 lines 121/2" Kinescope
Unusually short retrace time Excellent vertical and horizontal linearity
Light weight
Complete with internal power suppily
Minimum of Maintenance
SPECIFICATIONS:
Input Video Signal... 0.25 to 2.0 volts
Signal Polarity... Peak to peak
Positive, Neg
or Balanced
Input Impedance..... 66 MMF across
Input Power \(\quad 105125\) volts
Input Power ........... \(\quad 2\) amps, \(50 / 60 \mathrm{cps}\)
Resolution...............Greater than
Kinescope
(Aluminized back).... 12 KP44
Retrace Time........... 4.2 microseconds
Focus..................... Magnetic
Linearity .......................ter than \(2 \%\)
arisonally and
hertically
vertically
Weight..................... 60 lbs.
SIze.............................19" \(19^{\prime \prime} \times 20^{\prime \prime}\)
Tube Complement.... \(3.1 \times 2 \mathrm{~A}_{;} 1-5 \mathrm{R} 4 \mathrm{GY}\);
2.6AC7; 1-6AH6;
1.6866; 1.68:797;
\(1.6 \mathrm{CD6}, 7.6 \mathrm{SN} 7\),
\(1.6 \times 5 ; 1.12 \mathrm{KP4A}\)


\section*{POLARAD ELECTRONICS CORP.}

100 Metropolitan Avenue, Brooklyn 11, N. Y

\footnotetext{
Export Dept., 13 E 40th St., N. Y. I6
representailives: Albuquerque - Allanta - Boston * Cnicago - Cleveland - Fort Worth - Kansas City Los Angeles. New York. Ontario. Pliiladelphia San Francisco - Seattle - Syracuse
}


NEW BOOKS
so completely that engineers were able to produce these devices in required quantities. The transistor, announced five years ago, provided an even greater impetus for becoming better acquainted with many of the concepts of solid-state physics, without which an understanding of transistor action cannot be had.

Interest on the part of electronics engineers in solid-state physics is not, of course, confined to its bearing on semiconductor devices such as crystal diodes and transistors. The electron theory of matter, especially as it relates to metals and insulators, electron emission, and the phosphors used in fluorescent lamps and cathode-ray tubes, is basic to much of our work in electronics. It has, in fact, been proposed by people in the field that semiconductor engineering be established as a recognized profession.

Professor Kittel's book is intended, presumably, to provide a working knowledge of the concepts in that branch of science we now call solid-state physics. For a reasonably complete understanding of the material, a knowledge of physics and mathematics beyond the first few years of college work is required. The book is, in fact, intended for senior and first-year graduate students in physics and chemistry. Electrical engineers will be able to study it with profit if they are already familiar with some concepts in modern physics such as the Bohr atom model and the wave equation for free particles.

The book contains five chapters on such topics as general properties, lattice characteristics, and thermal properties of solids; six on electric and magnetic properties including superconductivity; and five more on topics of special importance in electron devices, including the electron theory of metals, semiconductors, and the hichly interesting and important effects of imperfections in solids.

Arrangement of the material in the book is admirable. The principles of solid-statè physics are not easily made clear, and the result achieved in producing a text book on so difficult a subject is

Replaces a Chain of 10 to 20 Relays!


FULLY MEETS THESE RELAY SERVICE REQUIREMENTS
- ON-OFF
- DIFFERENTIAL
- mierlocking
- selector
- STEPPING
- SEQUENCE
- LATCH-IN
- COUNTING
- MARKING

\author{
. . . A SEQUENTIAL RELAY THAT COUNTS, STORES AND "REMEMBERS"!
}

Small! . . . Simple! . . . Saves money ! The Kellogg Magnetic Impulse Cotinter provides an ingenious and reliable answer to a host of electro-mechanical switching problems. Readily performs the counting and marking function of 10 to 20 relays or a twomagnet ten-point stepping switch-at a lower cost! Rapid operation-up to 30 pulses per second. Occupies the space of only two telephone relays. Never needs. lubrication-service life is virtually unlimited. Delivers top performance in a wide variety of industrial and commercial applications where service, speed, size and price are vital factors. Get the facts-write for complete information today!

\section*{}

KELLOGG SWITCHBOARD AND SUPPLY COMPANY Dept. 26J, 79 WEST MONROE STREET, CHICAGO 3, ILLINOIS


239 W. Orange Grove Ave.

\section*{WIRE FORMING SPECIALISTS}

Precision Parts to meet your Production and Engineering needs. From . \(002^{\prime \prime}\) dia. to \(.125^{\prime \prime}\) dia. Radio tube parts-Stampings-Drawings Modern facilities, high-production equipment.

Metal Crystal Holder Parts Send sketch or print for quotation. PIX MANUFACTURING CO., Inc. 24A Bedford St.

Newark 3, N. J.


\section*{Don'f be afraid}

\section*{to change that}

\section*{Package Design}

\section*{BRADLEY}
has a rigid plastic box for your product . . .


Series 300
\(81 / 4^{\prime \prime} \times 41 / 4^{\prime \prime} \times 11 /{ }^{\prime \prime}\)
(assorted compartments)


No. 704 H
\(27 / 8^{\prime \prime} \times 2^{\prime \prime} \times 12^{\prime \prime}\)
4 compartments.


No. 32
\(21 / 1^{\prime \prime}\) diam. x \(5 / 8^{\prime \prime}\) deen
Industrial manufacturers, especially of components, are utilizing our boxes for packaging. We have over 500 rigid poly. styrene boxes available FROM STOCK MOLDS, or we will design a box to meet your specific requirements.

Send for illustrated catalog, showing box dimensions is 'you're cordially invited to visit our new tactory and showrooms when in Chicago
World's Largest Assortment of Rigid Plastic Boxes

BRADLEY
INDUSTRIES
I650-58 Nerth Damen Ave. Chicage 47 III.


\title{
FOR EFFICIENT MAINTENANCE SPECIFY REMLER TMETV EQUIPMENT SLIDES
}

Remler slide rails for rack or cabinet mounting permit complete withdrawal or inspection of top and bottom of ap paratus chassis. Positive . . . selflocking. Full roller type . . . handles
equipment up to 75 lbs . Stainless stee for military applications. Nickel plated brass rollers; roller studs in stainless or copper flashed cold rolled steel.

> Try Remler for Service-Tested "Hard-to-Get" Components

Remler Company Ltd. 2101 Bryant 5t. San francisco IO, Calif.

Write for quantity prices.

\section*{KEYSTONE \\ piezo crystals}

Yes, they're tiny - but they carry a GIANT RESPONSIBILITY for critical frequency control in military and commercial equipment where utmost accuracy and utmost stability are a "must"

Write for Keystone
Crysial Literature
largely a matter for the reader to decide for himself. In this reviewer's opinion, Professor Kittel has done an excellent job of orderly, logical exposition; his book is certain to be widely used.-G. D. O'Neill, Sylvania Electric Products Inc., Bayside, N. Y.

\section*{Microwave Spectroscopy}

By Walter Gordy, William V. Smith and Ralph F. Trambarulo. Jolm Wiley and Sons, Inc., New Yorli, 1953, 446 pages, \(\$ 8.00\).
THE ANNOUNCED scope, and approach, of this first book on microwave spectroscopy are indeed ambitious. The wonder is that it comes so close to attaining its objective. The subject matter runs the gamut from mechanical recorders to the physics of spectroscopy, all in quite condensed form. The reader is duly warned concerning what is to come by a statement in the preface, "It is readily apparent to anyone who reads this book that microwave spectroscopy is not a single subject but rather a common method which can be applied to the study of various problems in physics, chemistry, electronics, and even astronomy."

The tremendous range of subject matter makes imperative a condensed style of presentation and places a premium on conciseness; yet the book neither looks, nor reads, like a handbook. Because page space is so important some readers will wonder about necessity for including certain items.

For example, the statement on page 11 that, "Commercially available recorders such as the Brown, the Leeds and Northrup Speedomax, and Esterline and Angus are satisfactory," while quite likely correct, somehow adds little to an understanding of the problems of spectroscopy-but does use space. Much of page 29 is used to show a dimensioned sketch of a magic tee, a standard microwave component, which immediately becomes nearly useless because iris thickness dimensions are omitted. The original source is given but a comparison soon reveals that certain dimensions differ by the waveguide wall thickness-a formidable discrepancy at K-band.

Occasionally certain parts in the microwave and electronic sections

\section*{COAXWITCH}

\section*{COAXIAL SELECTOR SWITCH}

50 Ohms-

\section*{Type N Conneciors-Manually Controlled Low VSWR-4 Models}
are emphasized in a way which almost seems to promise striking results which then are not forthcoming. For example, small but important space is used on page 11 to call attention to the relation between spectrograph sensitivity and bandwidth appearing later (Eq. \(1.32,1.33\) ) on page 64 . Inspection of the two equations indicates the not entirely unexpected dependency of the sensitivity on the square root of bandwidth.

Statements like, "Seldom are all components of the absorption line moved completely out of the range of the source frequency during a period of modulation," (page 64) should perhaps be revised to make life a little easier for the reader. Then sometimes, in attempting to be brief, unwarranted generalizations appear. To illustrate, (page 80 in section 1.6 b ) the statement concerning the spacing of side frequencies from the integral harmonic frequency is not general. It can be true but only in particular cases. Such particular systems require harmonic generators with input-output characteristics such that the predominant output term is the first order side frequency of the harmonic. In addition this predominance must be maintained in the detection system which follows. Another small example of larger implication is in the last paragraph on page 3. A system of time as defined by a spectral line probably does wend its way toward infinity with more uniformity than in a system defined in more conventional astronomical fashion. However, it is a little hard to see why it should be that time intervals defined by the first system should necessarily be more "accurate" when the particular use for the interval so defined is completely unspecified, especially when intervals defined by the older system are presumably simultaneously available to all users of such information. A simple statement that time defined by a spectral line progresses more uniformly than time defined by astronomical methods, might lead to more agreement.

These cited cases are random

The COAXWITCH is an RF switch for use in coaxial circuits where is is important that the 50 OHM impedance of the cables be meintained. In a circuir sense. this switch consists of two pairs of "N" connectors consists \(41 / 2^{\prime \prime}\) apart using RG-8/U as the con. oecting link. The COAXWITCH itself ineroduces no VSWR orher than that of connectors. Characteristic impedance is amintained thru all switch details. Cut-a-
way view shows that shield as well as center conductor is switched. Beryllium ropper contacts, on the gooseneck. mate directly with male " \(N\) " (Type UG-21B/U) con. aectors, which connect directly to bach plate of switch. Since all connectors come out in line with axis of switch. right angle connectors are usually unnecessary.

Literature Gladly Sent

aratoga
 ndustries * * stap parfonanave is MANTFAGTUERS OF TRAMSFORMERS, REAGTORS, FILTERS, TORODAL colls for the elegronics noustry

Now in its ninth year of operation, Saratoga Industries, Inc. has built a solid reputation for the manufacture of precision windings. Approved for in-plant testing under MIL-T-27, Saratoga Industries, Inc. is also prepared to handle all types of commercial production. Saratoga engineers invite your inquiry to help solve your problems relating to reactors, transformers, filters and windings of all types.

SARATOGA INDUSTRIES, INC., SARATOGA SPRINGS, K. Y.

STANDARD SIGNAL GENERATOR

and isolated but typical of others. The objections are relatively minor. The book contains a tremendous amount of preponderantly well presented information. The style, because of the scope of the effort, is somewhat dogmatic, but the statements are well buttressed and fortified by an excellent bibliography which in itself would almost justify the appearance of this book. -L. E. Norton, RCA Laboratories Division, Radio Corporation of America, Princeton, N. J.

Treatise on the Theory of Antenna Systems with Complete or Partial Rotational Symmetry
("Bidrag til teorien for antennesystemer med hel eller delvis rotationssymmetri") By H. Lottrup Knudsen, 228 pages + figures, I Kommission Hos Telnisk Forlag, Copenhagen, 1953.

This B00k, written in Danish, is the most complete treatise published to date on antenna systems possessing rotational symmetry. Radially oriented dipoles arranged like the spokes of a wheel, tangentially oriented dipoles forming the equivalent of a loop, and obliquely oriented dipoles situated in planes tangential to a circular cylinder are some of the forms analyzed. Cases are treated where the elements are all in the same phase and also where the phase increases progressively around the array. In general, the pattern is expressed by a principal term which is independent of the number of elements and correction terms which are a function of the number. Turnstile and helical antennas are included in the discussion and one chapter is devoted to supergain.

The book is restricted to antennas, such as mentioned above, possessing at least partial rotational symmetry and the author has combined, with numerous references to the literature, the results of many investigators and has integrated them with contributions of his own. The book includes a 7 -page summary in English. It is illustrated with many antenna patterns and contains an extensive bibliography. The author, H. Lottrup Knudsen, is lecturer at the Royal


\section*{Model 539A}


Most Accurate LABORATORY PORTABLE TUBE TESTER
- Accurately tests all Receiver tubes. including high-gain types,
Choice of 3 AC Signals and 3 - Cboice of 3 AC Stgnals and - The leading tube tester in the
- Write for technical details.

THE HIGKOK ELEGTRGAL IMSTRUMENT CO
10527 Dupont Ave. • Cleveland 8, Ohio

\section*{Equal to 800,000 Operations}


THINK YOU'LL NEED MORE? THAT'S THE APPROXIMATE LIFE EXPECTANCY OF THIS RUGGED NON-SNAP ACTION MOMENTARY CONTACT S.P.S.T. SWITCH - WHEN USED AT THE FACTORY RATING. SOLDER TYPE TERMINALS ONLY. HOUSING AND button are both molded phenolic. RATED \(1 / 2\) AMP. 115 V., AC, NON. INDUCTIVE. BUSHINGS 15/32-32 NS-2 thread. AVAILABLE AS NO. 4001 NORMAL OPENOR, NO. 4002 NORMAL CLOSED.

Write or phone for complete data

523 Hillgrave Avenue LaGrange, Illinois Phone: LaGrange 8000

\section*{BRTRTBACH sumeneaic WIRE \& CABLE}

For ALL Your Wiring Needs! GOVT. SPEC. HOOKUP WIRE
- JAN-C. 76 SRIR-SRHV

JAN-C. 76 S
PLASTIC
Polid Colors or Spiral Markinez
- WL-EXTRUDED NYLON JACKET
Solld Colory or Spiral Maridngs
- AIRCRAFT WIRE-NYLON JACKET
MIL-W-5086 (Supersedes
AN.J-C-48a) also
078 (with shield)
COMP

- \(105^{\circ}\) C. U.L. APPROVED Thermoplastle Hookup Wire
- Jan C. 76 wL-glass braid Solld or Tracer Colors
- multiconductor shield.
ED CABLES
(4) 1 to 8 cond., Rubber
covered, sinit
unshielded.
REHOUSE STOCKS
- Vinyl Extruded : Shlelded WIres


- Tinned a leare - Switechos,

- Formvar Wire - Terminal Strip


Quality Products for the Electronics Industries since 1923


Look at the extremely high power output of this new Westinghouse Type FG variablefrequency amplifier. It can take an audio signal of about 10 milliwatts from any conventional 30 to \(20,000 \mathrm{cps}\) source . . . and build it up to 5 or 10 KW with uniform response and low distortion.
This suggests uses such as: powering vibration shakers . . . powering supersonic transducers . . . exploring high-frequency vibration phenomena . . . producing supply power at any audio frequency . . . testing equipment under laboratory-controlled conditions.
The Type IG amplifier is completely selfcontained, and self-protected against overload or blower failure. Fasily installed, the unit requires only 23 square feet of floor space. Conversion from 5 KW to 10 KW is simple. For information write Westinghouse Electric Corporation, Flectronics Division, I.E. Devices Section, 2519 Wilkens Avenue, Baltimore 3, Maryland.

\title{
vo can u s sure....r ris Westinghouse J. 02275 \\  \\ Whatever your specific needs, depend on PRECISION PAPER TUBES to meet all requirements. Spirally wound under pressure, PRECISION PAPER TUBES are subjected to rigid tolerance control to insure strict adherence to specifications and provide maximum winding space. PRECISION PAPER TUBES possess 15 to \(20 \%\) greater strength, yet are light in weight. \\ Made from the finest dielectric kraft or fish paper, phenol impregnated, acetate or combinations, PRECISION PAPER TUBES afford high insulation, heat dissipation and moisture resistance. Available in any size, shape, I.D., O.D.any quantity. \\ Write today for Arbor List of over 2000 sizes . . . Send specifications for free sample. \\ PREGETON PAPER TUBE COA \\ 2041 W. CHARLESTON ST. \\ CHICAGO 47, ILL. \\ Plant No. 2: 79 Chapel St., Hartford Conn. Also Mfrs, of PRECISION Coil Bobbins
}

Technical University of Denmark in Copenhagen.-John D. Kraus, Ohio State University, Columbus, Ohio.

\section*{Complex Analysis}

By Lars V. Ahlfors. McGraw-Hill Book Co., New York, 1953, 247 pages, \(\$ 5.00\).
This bоok was written for use as a text in the first year graduate course in complex variables which is given at most universities. It is the reviewer's opinion that the author has in fact largely succeeded in creating a text which is concise, rigorous, teachable and authoritative, and inasmuch as a real need exists for a text at this level, this one appears certain to enjoy wide use.
Although the author writes for the mathematician, geometric visualization is stressed in the hope that the reader's intuitive grasp of the matter is developed even though he might not follow the proofs in detail. The author's approach may be a bit abstract for the tastes of most engineers working in applied mathematics. Moreover, most of the results which are of importance in applied mathematics may be found stated elsewhere without rigorous proofs.

In the first chapter, the arithmetic operations satisfied by the complex numbers are introduced and an outline of the justification of the process is presented (i.e., a proof of the existence of the com-plex-number field). This is followed by the geometric representation of complex numbers. The author is careful to point out that while a geometric argument cannot replace an analytic proof, still geometry is a useful tool for guiding the intuition. This tool is then applied to lead the discussion through the spherical representation (Reimann sphere) and the linear transformations.
The second chapter is devoted to the concept of a complex function as a mapping from one complex plane to another. After a tentative definition of analytic functions, the elementary functions are discussed. Only those topological concepts necessary for function theory are then introduced. Based on those concepts arbitrary analytic func-
tions are presented, concluding with a discussion of elementary Reimann surfaces.
The third chapter covers complex integration. The author considers his delay in introducing integration (until the student has mastered the mappings of the previous chapter) an essential feature of the book. Cauchy's theorem is proved in great generality. The notions of removable singularities, Taylor expansions, zeros and poles, and exact differentials are also introduced. The chapter ends with a discussion of the calculus of residues including an excellent section on the evaluation of real integrals.

The fourth chapter deals with infinite sequences and associated ideas including topics such as uniform convergence, power series, partial fractions, and infinite products. The Reimann mapping theorem ends the chapter.

The fifth chapter is devoted to harmonic functions. These are defined and some of their properties (e.g. maximum principle, Poisson's formula, Harnack's principle, Jensen's formula, the symmetry principle) are proved. The Dirichlet problem is solved by the use of subharmonic functions (Perron's method). Finally, by use of the notion of harmonic measure, mappings of multiple-valued functions are discussed.

The last chapter covers the theory of multiple-valued functions. By the notion of analytic continuation, the general analytic function is defined. From this follows a definition of a Reimann surface and the monodromy theorem. The algebraic functions are studied. The book ends with a discussion of linear differential equations.-S. G. Kneale and G. W. Preston, Philco Corporation, Philadelphia, Pa.

\section*{Applied Electricity}

By H. Cotton. The Industrial Press, New York, \(480 \mathrm{p}, 1953, \$ 4.50\).
The first edition of this book, introduced in England in 1951, is now revised and somewhat increased in scope, and made available for American use. It is a primary book, aimed at technical schools or as a first course in colleges, and deals with the elements and machinery of direct and alter-


For Low Power Factor
Low Dielectric Loss . . . . . . Specify

\section*{STAR STEATITE}

STAR STEATITE has the ideal characteristics for its effective use in high frequency electronic applications. It reduces the possibility of power loss, deformation and excessive heating of insulators that prevent proper functioning of the assembled product. It is molded into exact shapes to close tolerances; resists great mechanical shock and extreme conditions of heat and humidity. And STAR has the facilities to meet your volume requirements. Why not investigate ...NOW?


Dependable
Components
Dependable delivery schedules

Designers and Custom Builders-small and medium quantities-from milliwatts to 50 KVA , single or polyphase.

May We Bid On Your Requirements?
\(=4=-\frac{1}{2}\) MFG CO.
1901 CLYBOURN AVENUE

IF IT'S NEW . . . IF IT'S NEWS ... IT'S FROM ELL


News indeed, is Elco Corporation's new transistor socket, point contact and junction type. The transistor is now emerging as a tremendous new tool for practical everyday electronics; and Elco, with a deep background of experience in transistor socket development for laboratory use, now offers these same highly-refined sockets in mass production for commercial applications. And, as with all Elco products, the use of Elco transistor sockets offers many advantages previously unavailable.

New contact design automatically centers the transistor pins in position, eliminating strain on the transistor body. Positive contact resistance assures excellent circuit performance. Insulator construction affords adaption for printed circuitry, a decided extra advantage; and creates a longer creepage path between contacts. Mounting retainer securely locks body of socket to chassis and is self-adjusting to any variation in chassis thickness from \(.015^{\prime \prime}\) to \(.062^{\prime \prime}\). The retainer is of heattreated steel cadmium plated; the insulator of low-loss mica filled phenolic. Elco also offers many other new sub-miniature, miniature and printed circuit types. Complete details are yours upon request, as is full information about Elco's quality line of sockets, shields, and sensational new Varicon connectors.

For Catalog Sheets, Call GArfield 6-6620 or Write ELCO Corp., 190 W. Glenwood, Phila. 40, Pa.

nating currents. Since some of the concepts introduced are not explained (integrals and differentials for example) a teacher or previous knowledge of these tools would be required.

The fundamentals are composed of chapters on the electric circuit, magnetism, electrostatics, conduction in electrolytes and thermoelectricity. Then follow chapters on d-c machines, a-c currents and circuits, resonance, polyphase circuits, transformers, alternators, synchronous and induction motors, electronics (32 pages), illumination, measuring instruments and a final section on units and dimensions.

The text is easy to read; there are numerous examples worked out in detail and a great many problems with answers. By the chapter headings it is seen that it deals mostly with fundamentals and with power equipment rather than with electronics. While the slant is definitely English, it would be useful in an American technical school. -K. н.

\section*{Design of Machine Elements}

By M. F. Spotts. Prentice-Hall, Inc., New York, 1953, 496 pages, \(\$ 9.65\).
In the preface, the author states that this book was designed to provide an introduction to the design of machine elements in a comprehensible manner. These aims have, in general, been carried out with admirable results.

When first published in 1948, this book was enthusiastically received. Now the author has gone over his entire book to make it even more comprehensible, more approachable, more flexible than before. He has done this by introducing many additional topics and by going into greater detail than previously. Sufficient definition has been incorporated to acquaint all interested readers with a perspective of each major step.
"Design of Machine Elements", as the title indicates, does not deal with the broader aspects of the design of complete machines, but explains the fundamental principles required for the correct design of the separate elements which compose the machine. If a complete

\section*{"INDUSTRIAL"}
for
ELECTRONIC
COMPONENTS
precision engineered electronic components and connecting devices for all your needs.

- ANODE CONNECTORS
- INTERLOCK PLUGS
- LAMINATED TUBE SOCKETS
- WEREDALSEMBLIES
- METAL or BAKELITE STAMPINGS
- TERMINAL BOARD ASSEMBLIES
- SCREW MACHINE PARTS
——NEW ITEMS
- TUNER STRIPS, SOCKETS
and BRACKETS for UHF


Our exteasive desion and production Pacilities are avaliable for devoloping your speciai requirements and applications. Representatives in prinolpal cities inroughout U.S.A. Call or Write
ORegon
\(7-1881\).

INDUSTRIAL HARDWARE Mfg. Co., Inc. 108 P, INLE STREET • NEW YORK 12, N. Y.

for 5,000 Volts, 25 Amperes per Contact Alter able by circult Characteristics.

Sockat contocts phosphor bronze, hnife-switch type, cadmium plated. Plug contacts hard brass, cadmium plated. \(2,4,6,8,10\), and 12 contacts. Plugs and sockets polarized. Long leakage path from terminal, and torminal to ground. Caps and brackets, steal parkerized (rust-proofed). Plug and socket blocks interchangeable in cops and brackess. Terminal connections most accessible. Cop insulated with canvas bakelite.

Write for Jones BULLETIN 19 for full details on line.


\section*{IF ITS \\ \(L \mathbb{M} A D\)}

* WILMAD PRECISION BORE TUBING
is arailable in miformity and accuracy neter before knotun passible for Amerlca's electronics industry


WILMAD GLASS C0. INC.
Landisville, new Jersey
Speceatioses ro Researck and Industry


machine is to be designed, the text will serve as a reference work or source book for information on the various elements.

The chapter headings are as follows: 1. Fundamental Principles; 2. Working Stresses; 3. Theory of Torsion; 4. Springs; 5. Screws; 6. Belts, Clutches, Brakes; 7. Welded and Riveted Connections; 8. Lubrication; 9. Ball and Roller Bearings; 10. Spur Gears; 11. Bevel, Worm and Helical Gears; 12. Miscellaneous Machine Elements; 13. Dimensioning and Details; and 14. Engineering Materials.

The well-known basic theories of design are clearly presented, as now being employed. Mathematical derivations are given in full, but have been simplified wherever possible. Tables are included giving the properties of engineering materials as determined by laboratory tests; however, design data usually obtained from catalogs and handbooks have been omitted. The text contains many illustrative examples, problems and solutions. Each chapter is concluded with a brief bibliography for those who may wish to pursue the study of the various machine elements more extensively. Engineers and designers in industry will find this book to be of value as a reference.

Professor Spotts has had many years of experience in teaching machine design, and he has also spent years as a practising engineer in industry. Author of numerous articles on this subject, he is Professor of Mechanical Engineering, The Technolooical Institute. Northwestern University. Evanston, Illi-nois.-Eugenf T. Martin. Phusirs Laboratories, Sylvania Electric Products Inc., Bayside, New York

\section*{THUMBNAIL REVIEWS}

\footnotetext{
ASTM Standards on Electrical Insulating Materials. ASTM. 1916 Race St., PhiladeInhia 3. Pa.. 590 pages, 1953. \$5.25. The 1953 edition containing standards, test methods, specifications and appendices. Printed on Bible paper and with heavy paper cover.

Measurement of Linear and Non-linear Distortion in Electrodynamic Speakers, by Fritz Ingerslev, I Kommission Hos Teknisk Forlag, Copenhagen, 1953266 pages. In Danish but with a 13-page summary in English.
}

\section*{where precision}
matters...
THERMADOR
-
Transformers for Television ... Radar... Aircraft... Geophysics. . . Radio

You will find Thermador ready, willing and fully qualified to handle your transformer requirements. Engineering experience and manufacturing know. how, developed over a period of 35 years, form the hard core that makes Thermador today's largest West Coast manufacturer of electrical appliances and transformers. We would like to work with you on your next project involving the design and production of transformers for specific requirements...including joint Army-Navy specifications.

\section*{transformers:}

Audio Auto Geophysical Driver Filament High-Fidelity Audio

Input-Output Midget Plug-In
Plate Power Television Tube to Line
...also Chokes and Reactors

\section*{thermador electrical MANUFACTURING CO. \\ 3.320}

5110 District Boulevard - Los Angeles 22, Calif. Want more information? Usc post card on last page. ELECTRONICS - October, 1953

\section*{BACKTALK}

\section*{QRA}

Dear Sirs:
In Your July issue you carried a story (p10) on the first share-time authorization for television operation, that of Stations KMBY-TV and KSBW-TV in Monterey and Salinas, Galifornia. As consulting engineer for these two stations, I would like to compliment you on the article. It is regretted, however, that the call letters for the Monterey station were erroneously shown as WMBY-I'V.

Construction of these stations is now proceeding and they are expected to be in operation at an early date.

Robert L. Hammett
Consulting Fadio Engineer San lruncisco, Califarmia

\section*{Loaded}

Dear Sirs:
I Have read the article in the July, 1953, issue of ELECTRONICS, "How to Design Small Boat Antennas" by Elbert Robberson, and found it very interesting.

We are in agreement with Robberson's comments and conclusions. However we feel that enough emphasis was not placed on the conclusions relative to the gains to be made by locating the loading coil near the base of the antenna.

From our work in the field of high-Q loading coils for the \(75-\) meter (and \(40,20,11\), etc.) mobile radio amateurs we have come to the conclusion that the amateurs, and some others, have been taking the term center-loading a bit too literally. It becomes obvious that with amateur mobile antemas in the range of 100 to 130 inches in total length, with a loading coil placed at the exact center, the top section will have too little capacitance to tune the coil properly. Also the coil will have more turns, reducing the gain made in resistance loss by moving the coil hallf way up the whip.

Physically, an efficient loading coil is much more easily mounted at or near the bottom of the antenna where it will ride much better and probably result in the antenna being in tune a higher percentage

\section*{ELECTRONIC LENSES?}

Pennsphuania Optical, ane of the aldest optical housed in the nation, is now successfully applying spectacle making mass production methods to the lens problems of the Electronios Industry.

We're pround of the lemses ue are now making for same of the largest mamufacturess of dectranic equipment. Picture tube face phate lensed. Lenses for Magnetrons, Iconascapes Atamic Radiction Windoust qiller Lenses of all kinds. A hast of allied "prodtem chitdren." We take a lat of pride in our cantral of flot surfaces, of prism tolerances, and diameters.

We are inviting additianal specialiged lens wark in the electranics field, leading to natume orders. We're equipped for everpthing from basic research to mahing our oun tools to meet its demands. Will yan let us know yan lens prodioms?

\title{
PENKSYLVANIA OPTIGAL GOMPANY
}

234 So. Eighth St.; Reading, Pa. Telephone: Reading 4-8397

\section*{MICROWAVE ATTENUATORS}
eisler b head auto indexing stem machine


We make Transformers, Spot and Wire Butt Welders. Wire Cutting Machines and 500 other items, indispensable in your production. Eisler Engineers are constantly developing New Equipment. If you prefer your own designs. let us build them for you. Write to Charles Eisler who has served The Industry over 33 years.

Dr. Charles Eisler, President
EISLER ENGINEERING CO., INC.


\section*{For Precision Measurements 2,600 MCS To 26,500 MCS}


Type \(612-8.20\) to \(12.4 \mathrm{Kmc} / \mathrm{sec}\). Wave guide size: \(1^{\prime \prime} \times 1 / 2^{\prime \prime}\) O.D. Range: 40 db Calibrated to an accuracy of \(\pm 0.3 \mathrm{db}\)

Type \(312-3.95\) to \(5.85 \mathrm{Kmc} . / \mathrm{sec}\), Wave guide size: \(2^{\prime \prime} \times 1^{\prime \prime \prime}\) O.D. Range: 50 db .


Latest brochure with detailed specifications and prices on complete line of attenuators available on request
WhVELINE iNC., CALDWELL, N.J.

Formerly: MICROWAVE EQUIPMENT CO.

\section*{ELECTRONIC GLASS WORKING EQUIPMENT}

\author{
For Radio, Television Tubes, Incandescent
} Lamps, Glass Lathes for Television Tubes


Type \(712-12.4\) to \(18.0 \mathrm{Kmc} / \mathrm{sec}\). Waveguide size: \(.702^{\prime \prime} \times .391^{\prime \prime}\) O.D. Range: 40 db . Calibrated to an accuracy of \(\pm 0.3 \mathrm{db}\).




TURNTABLES


> More Eisler Stem and Sealing Machines are in use in the Electronics Lndustry than all other makes combined. There is a reason; they are simple, well-built, compact, last long, have good production, and are constantly being improved to give more production. We make over 100 types We make over 100 types
of turntables; tilting models and positioners.

\section*{WANT THE BEST IN CAPACITORS?}


Many, many notable advances in the art of capacitor design and manufacture have been made by the ILLINOIS CON DENSER COMPANY. As an example ILLINOIS CONDENSER COMPANY has recently been awarded a patent on their unique and exclusive molded capacitor construction as fectured in the UMP types. For aImost two decades, ILLINOIS CONDENSER COMPANY has been build ing quality capacitors and regular users include most all of the largest manuiac turers of TV and radio sets. Their names literally compose the "blue book' of electronics,
to meet the ever increasing demand ILLINOIS CONDENSER COMPANY has ILLINOIS CONDENSER COMPANY has production. Why don't you, too, discover production. Why dont you, 100 , discover choice" of so many!

Write for Catalog?

ILLINOIS GONPRNSER CO.
1616 NORTH THROOP STREET - CHICAGO 22, ILL.

\section*{DOUBLE BARREL ADVERTISING}

Advertising men agree-to do a complete edvertising job you need the double effect of both Display Advertising and Direct Mall.
Display Advertising keeps your name before the public and builds prestige.

Direct Mail supplements your Display Advertiaing. It pin-points your measage right to the executive you want to reach -the person who buys or influences the purchases.
In view of present day difficulties in medntaining your own mailing lists, our eficient personalized service is particularly traportant in securing the comprehensive unarket coverage you need and want.
Alt for more detailed information today. You'll be surprised at the low overall coes and the tested effectivenear of ther hand-picked eelections.


MeGraw-Hill Publishing Co., Inc. \(\mathbf{5} 50\) West 42nd 5t., New York 36, N. Y.


\title{
vaN METERS
}

MODEL 101
SUPERSONIC FREQUENCY RANGE 20 (ps to 200,000 (ps

MODEL 102
low power factor RANGE 20 cps to 20,000 (ps

\section*{for measurement of Volts - Amps - Watts}

\section*{MÓDEL 101}
- POWER RANGE: 100 " W to 9 Kw .
- input impedance: I megohm.
- voltage rance: full scale o.iv to 300V.
- current range: full scale .001 to 30A.

MODEL 102
- reads watts at full scale at both \(10 \%\) AND UNITY POWER FACTORS.
- input impedaince: 1 megohm
- power range: full scale, 225 かW 1018 KW
- voltage range: full scale, 1.5 V to boov. - current range: full scale, . 0015a to 30A.

WRITE
WIRE
PHONE

FOR POWER and LOSS MEASUREMENTS in Cables . in Iron Cores - in Transformers Copper, Core and Impedances - in Classes A, B, C Amplifier Inputs and Outpuis - at Aircraft Upper Power Frequencies - in Underwater Sound Equipment - in Loud Speakers - in Synchro. Motor, and General Servo Circuitry - in Carrier Current Equipment - in Complex Waveforms - in Circuit Analysis, both Linear and Non-linear in Sound and Noise Analysis. These are but a few of the nearly unlimited applications of the VAW meters.

Our Engineers will be happy to discuss the afplication of the VAW Meter to solve your particular problem. Write Dept. E-10. Literature available on request.

\section*{JOHN FLUKE ENCINEERING COMPANY}

1111 WEST NICKERSON STREET, SEATTLE 99, WASHINGTON
Represented by . . YEWELL ASSOCIATES, Bridgeport \& Boston; HORMAN ASSOCIATES, Wash ington, D. C.: GERALD B. MILLER CO., Hollywood. San Franeisco, Abuquer que, Seattle: M. P. O'DELL CO.. Cleveland, Dayton; HUGH MARSLAND \& CO..
Chicago: EARL LIPSCOMB ASSOCIATES, Dallas, Houston: RMC ASSOCIATES, New York. N. Y. Bogota, N. J. THE I.E. ROBINSON CO., Upoer Darby, Pa., Ashury Park, N. J.; J. D. RYERSON. Syracuse, N. Y.; H. M.
RICKARDSON, MInneapolis. Minn.


Wide range of grades available for standard and special applications．
Brush holders and coin silver slip rings avail－ able for use with Silver Graphalloy Brushes．

\section*{OTHER GRAPHALLOY PRODUCTS：}

Oil－free self－lubricating Bushings and Bearings，Oil－ free Piston Rings，Seal Rings， Thrust and Friction Washers， Pump Vanes．


Write us for Dota Sheets and further information．

\section*{Graphite Metallizing coiroration}

1055 nepperhan avenue－yonkers，new york


Please send dota on Graphalloy BRUSHES and CONTACTS．
Send dota on bushings．
NAME \＆TITIE
COMPAN
STREET
 454
backtalk
mention that their latest model has many improvements，but have published no new literature since 1934.

If you are in a position to ob－ tain any information as to the firm manufacturing or selling this equipment，we will appreciate your information．We are sure that you must know about several new in－ ventions that could be used in the field in which we are interested． Having explained to you our re－ quirements we trust you will be of help to us．

John H．G．Baldwin
General Manager
I＇romocion
Asturien．I＇eraguay

\section*{More Treasure}

Dear Sirs：
I have had the pleasure of reading your magazine Electronics in the American Section of the Melbourne Public Library，and I was inter－ ested in the wide field of your activities，regarding electronics．

The nature of my inquiry is one regarding an electrical or magnetic appliance that will locate buried treasure（gold，silver，etc．，approx－ imately 300 tons）buried about 8 feet under the earth in a chamber built of stone，containing boxes， which were placed therein about 155 years ago．
I would not like a heavy instru－ ment，because the country to be surveyed is very rough and steep in places；therefore the lighter the instrument the better．I would be glad to hear from you or any of your readers who might be able to help me．

N．Dalton
Victoria，Australia
（Editor＇s Note：The above are typi－ cal of the many letters received at this office enlisting our help in find ing a good treasure finder．Almost without exception the writers ap－ pear to have definite treasures in mind，and cost seems to be of little importance，since a successful in－ strument would pay for itself many times over．

We have asked Curt Schafer who has had wide experience in the field of detecting buried objects，to explain briefly the situation in this country as he sees it，in the hope that his observations will be of


Want more information？Use post card on last page． Ostober， 1953 －ELECTRONICS


> PRECISION
> RF STEP
ATTENUATOR

Model AT-1 200 to 1000 MC
Small, rugged ladder attenuator achieves attenuation accuracy and low vswr from dc to uhf. Suitable for all signal and sweep generators in this frequency range.
Care in design assures maximum flexibility in mounting, drive, and types of input and output connections.
Easily adaptable for inclusion in different types of test equipment and in laboratory and production test applications.

\section*{SPECIFICATIONS}

\section*{MAXIMUM STEPS}

Ten (eleven contact positions)

\section*{antemarow nume}

Up to 120 db total
Attenuation per step optional
OUTPUT IMPEDANCE
50 or 75 ohms nominal
INPUT IMPEDANCE
100 or 150 ohms nominal
50 or 75 ohms optional
INPUT AND OUTPUT VSWR
1.1 to 1000 mc at 50 ohms

\section*{accuracy}
\(\pm .3 \mathrm{db}\) per 20 db step from its dc value up to 1000 ma .
-PAT, PENDING


TELEVISION CORPORATION

1001 FIRST AVENUE
ASBURY PARK, N. J.

BACKTALK
(continued)
value to other readers in their quest for hidden riches.)

Expert Advice
Dear Sirs:
IT is certainly a privilege to have the opportunity to comment on such fascinating letters as the above. At the same time, it is difficult to relinquish the luxury of daydreaming about buried gold long enough to gather some pertinent observations on the subject.

There are two primary requirements for treasure locators: sensitivity and stability. The equipment must have grood sensitivity or it is useless; but sensitivity without stability is an abomination. There are secondary requirements, such as portability, ease of maintenance, overall weight, and the ability to discriminate between ferrous and nonferrous metals. The last feature is important, for it will save digging up tons and tons of scrap iron.

The writer has personally tested several treasure and pipe locators during the past few months. In each case the instrument was compared directly to the SCR-625 land mine detector which was purchased (new) from a surplus outlet store. The SCR-625 located a buried U.S. silver dollar at a distance of 22 inches; a \(6 \times 6 \times \frac{1}{8}-i n\). copper plate at a distance of 38 inches; and a standard \(11 \times 17 \times 2-i n\). steel radio chassis at a distance of 5 feet. No commercial treasure or pipe locator tested was able to even appronch this sensitivity in the case of the dollar or the copper plate; only one model did better in the case of the steel chassis, detecting it at a distance of 73 inches.

The SCR-625 was originally designed to give the maximum possible sensitivity that its use over the slightly magnetic soil of long Island would permit. It is highly recommmended as a treasure locator (although commercial models are lighter in weight).

If the magnetic permeability of the soil in Paraguay is low, a more sensitive device than the SCR-625 would be useful. The mine detector written up in Electronics for January 1946 ("Vehicular-Mounted Mine Detector", by Dall, Lebourg and Miller) was supplied to the
now - the first time available
 TAPE WOUND
CORES


ONLY MAGNETICS, INC.
offers Performance-Guaranteed Tape Wound Cores. Guaranteed performance to specifications means truly economical production of high permeability magnetic devices in your plant and controlled buying by your purchasing department. If you haven't investigated Perform-ance-Guaranteed Tape Wound Cores, why not let us send you the complete story?

\section*{FACTORY CORE MATCHING}

For applications in which closely matched characteristics are required, save time and money by using the Magnetics, Inc. factory core matching service.
free engineering design service for high permeability magnetic applications

Magnetics, Inc. engineering is second to none in the field of high permeability magnetics. Services are free to customers.

Write for full information

\section*{MAGNETICS,inc.} Specializing in High Permeability Magnetics

Dept.E-2 BUTLER, PA

Want more information? Use past card on lost page.

U.S. War Department as mine detector set AN/VRS-1, and it is described in War Department Technical Manual TM-11-1138. Increased sensitivity was obtained by increased oscillator output, made practical by the fact that the batteries could be carried in a jeep instead of on a soldier's back. Two other very important features were the automatic drift stabilizing system which saves rebalancing every fifteen minutes or so, and a phase selective circuit which permits the detector to be made responsive to either ferrous or nonferrous metals, but not to both.

The sensitivity of any metal detector is inversely proportional to the sixth nower of the distance between the radiating and the detector coils when this distance is measured via the object to be detected. Hence it is readily seen that the sensitivity falls off very rapidly as the distance is increased. The sensitivity could be regained, for objects at a greater depth, by increasing both the oscillator power and the amplifier gain, if the magnetic permeability and resistivity of the soil permitted. This is not always practical, however, for the point is sometimes reached at which the detector gives a continuous indication due to the presence of the ground itself, for almost all soil, sand, and rock show some magnetic susceptibility.

For those seeking custom-desimned equipment, Electro-Mechanical Research, Inc., in Ridgefield. Connecticut, has done some fine work in the design of metal and ore locators. We believe that an excellent treasure locator could be built by combining the best features of the SCR-625 and the AN/VRS-1; it could be carried by two persons, one handling the search coil and the other carrying the electronic gear and batteries. We feel that it would be wise to get a good engineering firm to design and build a treasure locator, taking into account the magnetic permeability and resistivity of the soil and rocks in the area where the instrument will be used.

Curtiss R. Schafer
Chief Engineer Electronics Division

\footnotetext{
The Aeroter Corporation
cireenvotch, Connectiont
}

\title{
Professional Services
}

\section*{ANNIS ELECTRIC RESEARCH LABORATORY, INC. \\ consulutio - hasearch- det eiopment and desige or matio And hitectionic Antennas, Wave Propagation, Information Storage, Computers, Impedance Matching, and Variable SDeed A-C Motor:
P. Box 581 \\ Champaign, III. \\ \(14011 / 2\) S. Neil St. Tel. 6-1780}

\section*{CROSBY LABORATORIES, INC. \\ Murray G, Crosby \& Staff Radio- Flectronic \\ Research Development \& Manufacturing Communications, FM \& TV Robbins Lane, Hicksville, N. Y. Hicksville 3-3191}

\section*{EDGERTON, GERMESHAUSEN} \& GRIER, INC
Consulting Engineers
Hesparch, Development and Manufacture Specialists in Higll-Speed Photography 160 Erookline Avenue Boston 15, Mass.

Eldico of New York, Inc.
Pinneers of Television Interference Elimination from Transmitters, Induction Heaters, Diathermy and

Donald J. S. Merten \& Enginecring Staff 44-31 Douglaston Pkwy Douglaston, N. Y Bayside 9-868f

ERCO RADIO LABORATORIES, INC.
Radio Communications Equipment Fngineering - Design - Development - Iroduction Pioneers in Frequency Shift Telegrap
Garden City - Jong Island - New York

\section*{HARRIS GALLAY}

\section*{Consultant}

Electronic l'roject Development for Industry Day, Week and Duration of Project Services Our Laboratory Facilities Optional Plymouth 9-4237 60 Perry St., Belleville 9, N. J.

\section*{GORDON ASSOCIATES, INC.}

Government Contract Liaison and Consulting Specializing in Slgnal Corps Electronic Requirements, Technical Manuals, Tabular List of Parts, Drawings.
L. Gordon, Pres. P. Treston, Ch. Engr. 157 Broad Street
Red Bank, New Jersey Red Lank 6-2743

\section*{HANSON-GORRILL-BRIAN INC.}

Products E Mfg. Development ELECTRICAL - ELLECTRONIC HYDRAULIC - MECHANICAL
One Continental Hill Glen Cove, N. Y. Glen Cove 4-7300

\section*{HIGHLAND ENGINEERING CO.}

William R. Spittal \& Staff design pevelormert and manfacturb O TRANSOMERS, CHOKES, HTC. hiectronic. industrial \& allied fields Main \& Urban. Westbury, L.I., N.Y.

\section*{READERS MAY CONTACT}
the consultants whose cards appear on this page with the confidence justified by the offering of these special services NATIONALLY.

\section*{HOGAN LABORATORIES, INC.}

John V. L. IIogan, Pres.
Applied Research, Development, Envineerino
Est. 1929. Electronics, Optics, Mechanlsms, Fracsimile Communication, Digital Computers (Circle),
Electro-sensitive recording media, Instrumentation, Electro-sensitive recording media, Instrumentation. 155 I'erry Street, New york 14. CHelsea 2-7855

\section*{INTERFERENCE MEASUREMENT} LABORATORY
Interference Study per Government Specifications Shielded Space for Interference Investigation Field Surveys for F.C.C. Certification of Induction
748 McDonald Avenue Brooklyn 18, New York Gedney 5-3488

\section*{THE KULJIAN CORPORATION}

Consultants - Engineers - Constructors
Electronic Control Specialists
Utility • Industrial - Chemical
1200 N. Broad St.
Phila 21, Pa.

\section*{MAGNETIC INDUSTRIES, INC.}

Development \& Manufacture
Serro Magnetic Amplifiers and Special Relays
2640 Huldy
Houston 6, Texas

\section*{Measurements Corporation}

Research \& Manufacturing Engineers Harry W. IIouck John M. van Beuren Jerry B. Minter John M. van Beuren
Specialists in the Design and
Development of Electronic Test Instruments Boonton, New Jersey

\section*{Eugene Mittelmann, E.E. Ph. D.}

Consulting Engineers \(\mathcal{E}\) Pbysicist
High Frequency Heating-Industrial Electronics Applied Physics and Mathematics
549 W Washington Blvd. Chicago 6, 11. State 2-8021

\section*{NEW ROCHELLE TOOL CORP.}

Fol CERTIFICATION OF INDUCTION
AND DIELECTRIC IHEATING EQUIPMENT
iN ACCORDANCE WTH F.C.C. FULNGS
320 Main St.,
New Rochelle, New York Phone NE 2-5555
Mobile Test Unit Available Entire U. S.

\section*{NIAGARA ELECTRON LABORATORIES} CONSULTATION - DESIGN - CONSTRUCTION Suecializing in solution of problens of electronic and electro-physical instrumentation for the research of analyticil laboratory. Industrial plant problems also invited.
Andover, New York Cable Address: NLATRONLAB

MAURICE I. PARISIER \& CO.
Communications Expert International Engineering Consulting
RADIO BROADCASTING \& COMMUNICATIONS Planning \& Installation Supervisioa Communication Equipment for Armed Ferces 1475 Broadway New York 36, N. Y. LOngacre 4-5434 Offices: Paris-Buenos Aires - Sao Paulo-Bornbay

\section*{PICKARD AND BURNS, INC.}

Consulting Electronics Engineer Analrsis and Evaluation
of Radio Systems
Research, Development and Production
of Special Electronic Equipment 240 Highland Ave. Needham 94, Mass.

\section*{ALBERT PREISMAN}

Consulting Engincer
Television, Pulse Technlaues, Video
Amplifiers, Phasing Networks,
Industrial appliances
Industrial Appliance
MANAGEMEN''-TRAJNING ASSOCIATES 3308-14th St. N. W. Washington 16. D. C.

\section*{JOSEPH RACKER COMPANY}

Radar Consultants \& Editors Technical Manuals
Rosearch and Development
140 Nassau Street New Yerk 38, N. Y.
Worth 4-1463

\section*{ROTRON RESEARCH CORPORATION}

Research and Development
Fluid Dynamics and Heat Transfer.
Exclusirely Electronic Applications
Cooling Problems, Heat Exchangers, Fans,
Woodstock, Nurbines and lump Designs Phone 2468

SKINNER, HARLAN AND IRELAND, INC.
Consulting Engineer
Specializing in Magnetic Materials and Thelr Application
1122 E. 23 rd St. Indianapolis 7, Indiana

\section*{THE TECHNICAL \\ MATERIEL CORPORATION}

Communications Consultants Systems Engineering
General Offices and Laboratory
121 Spencer Place, Mamaroneck, N. Y

\section*{WHEELER LABORATORIES, INC}

Radio and Electronics
Consulting-Research-Development
\(H-F\)
Mlcrowave Components-Test Equibment
Harold A. Wheeler and Engineering Staf
Great Neck, N. Y.
Great Neck 2-7806

\section*{YARDNEY LABORATORIES, INC.}

Research-Design - Development
Electro-Chemical Generators of Energy
105 Charnbers Street
Worth 2-3534. 35. 30
New lork 7, N. Y.


520 TENTH ST., N.W. - WASHINGTON, D.C.


\section*{SUB-CONTRACTING}

MILITARY and COMMERCIAL
receivers-test equipment transmitters-controls sub-assemblies
TELETRONICS LABORATORY, INC Westbury, L. I., N. Y. Westbury 7-1028


> A PRIVATE TECHNICAL PLATING SERVICE
> offering .... PALADULUM
flash, intermediate and heovy electrodeposits. in Information regarding electroplated thicknesses upbn request.
Brown's Lane
DANIEL D. ZIELIK
MILITARY-SUB-CONTRACTING-COMM. Electronic-Mechanical Devices
Full Metal, Machine Shop Facilities From Raw Metal to Finished Device No Order Too Small
universal manufacturing co.

\footnotetext{
Rector 2-1997
196 Bowery
New York 12, N. Y.
}

\section*{- CONTACTS}

FOR THE FIELD OF EIECTRONICS


EISLER MANUFACTURES COMPLETE EQUIPMENT WELDERS FOR SPOT \& WIRE BUTT RADIO, TV TUBE EQUIPMENT \& REPAIR UNITS NCANOESCENT. FLUORESCENT MFG EQUIPMENT EEON SIGN MAKERS EQUIPMENT, GLASS LATHES Wot GLIass SLICINGQUPMENT, VACUUM PUMPS, Eto. TRANSFORMERS, SPECIAL \& STANDARD TYPES Use EISLER ENGINEERING CO., INC.
751 So. 13th St.
NC.


\section*{Shorted Turn Indicator}

Sensitive,rugged, mon-shocking
for unmounted coils; \$150. f.o.b.
HUNTINGTON BEACH, CALIF.
KARTRON

WALKIE-RECORDALL s BE miniztire BATTERY
Cuntlauous, Dermanent, Indesed recurding, up to \(\frac{4}{} \mathrm{hrs}\). Cuntlauous, Dermanent, Indezed recurding, up to 4 hrs, up sound up to 60 ft . Records conferences, lectures, lic tation, 2 -way phone \& sales talks; while walking, riding or tlying. Records in close brtefcase with "aldden palke" MIT mit mbevide co ma si2 EROAOWAY Dodt. E- 10 NEW YORK 3, N. Y.

\section*{Searchlight Section}

\section*{ENGINEER WAITING . . .}

\section*{THE OPPORTUNITY OF A LIFETIME FOR QUALIFIED} MAN WITH A GOOD SOUND PRODUCT
We are AAA-1 manufacturers of electro-mechanical components, located in electro-mechanical in expanding our operations into diversified branches of the electro-mechanical and electronic components field.

> IF YOU ARE ABLE TO ORGANIZE AND SETUP an operation in your own specialty
we will give you control of a separate division of our company, created and staffed to fill your own specifications.
... YDU will hove complete backing and cooperation
. . WU will earn and enjoy the highest remuneration possible, receiving the prevailing solary scale plus on attractive profit-sharing arrangement.

If you hove a product you think we can use-if you want a chance to make your skill and "know-how" pay off-please write us giving a complete outline of your experience and the product you have in mind. Your reply will be held in strictest confidence. Box E 1094, 221 W. 41 St., N. Y. 36

\section*{GENERAL MAGNETICS INC.}
has openings for

\section*{ELECTRICAL ENGINEERS}

With at least three years experience in design and development of MAGNETIC SERVO AMPLIFIERS and Voltage Regulators. A chance to grow with a young and progressive company. Salary and advancement commensurate with ability. State education, experience and salary requirements.
Address all inquiries to:
GENERAL MAGNETICS INC.
135 Bloomfield Ave.
Bloomfield, N. J.

\section*{ENGINEERS:}

\section*{TV COLOR TUBE OPPORTUNITIES}

Leading Tube Manufacturer has several engineering positions opening in the West in design and development on color picture tubes. Write giving full resume to

P-9080, Electronics
68 Post St., San Francisco 4, Calif.

REPLIES (Box No.): Address 10 office mearest you NEW YORK: \(3.30 \mathrm{~W} .42 n d \mathrm{st}\). (36) CHICAGO: 520 N, Michigan \(4 v e .(11)\)
SAN FLANCISOO: 68 Post St. (4)

\section*{POSITION VACANT}

ELECTRONICS ENGINELEJS and Physicists interested in Research and Development on trigger circuits and high speed sweeps. Opportunity to do orjginal work on transducer applications to specialized problems in shocks and detonations. P-8i66, Electronics.

\section*{SELLING OPPORTUNITY OFFERED}

ESTABLISHED TRANSFOINTER company seeks additional representation for line of commercial and military power and electronic transformers. Especially interested in Eastern

\section*{SELLING OPPORTUNITIES WANTED}

SALES ENGINEERING--College training, with 15 years varied experience in communications -electronics. Presently employed as chief engineer regional broadcast station. Desire to represent reputable company in southern terElectronics.

THE REDUCED Government Budget will require intensive representation in Washington to retain your position or gain new business. I can represent one additional electronic account. RA-918: Llectronics

\section*{BUSINESS OPPORTUNITIES}

Patunt Newest Development in Rotary Generators direct current (Modulus). No brushes no collector slip-ring. Owner will sell, apply Car-
nus 6033 Hutchinson Montreal, Canada.

Manufacturing farility. Tools \& equipment of Electronic Mig. shop available for cash, or interest in estahlished enterprise. List on request. West Coast only. Bo-9034. Electronics, 68 Post St., San Francisco 4, Calit.

\section*{CONTRACT WORK}

ELDCTRONICS TECHNICIAN would like to manutacture small items or parts. Willing to buy special shop equipment. CW-9187, Flectronics.

ADD'L LINES WANTED
MFR'S. REPRESENTATIVE actively covering CALIFORNIA, ARIZONA, NEV.

Specialize in electronic components \& instruments

EXCELLENT ESTABLISHED SALES CONTACTS

\section*{Write}

RA-9164, Electronics 68 Post St., San Francisco 4, Calif.

\section*{ENEINEERS, PHYSILISTS, and APPLIELI MATHEMATICIANS NEEDED \\ fur Research and Develnpment Programs}

Design of electronic instrumentation for underwater ordnance, ineluding high gain amplifiers, conventional filters, power amplifiers, oscillators and detectors in the ultra sonic range.
Transducer design, fundamenial problems in underwater acoustics involving transmission attenuation, reflection, etc. Problems in sound control and noise reduction.

Mathematical treatment of original scientific research problems in the fields of hydrodynamics, acoustics, electronics, mechanics, network theory, servomechanisms, communication and information theory, and operations research.

Excellent Opportunities for Graduate Study
Liberal Vacation Policies
Excellent Working Conditions
Write Personnel Director
ORDNANCE RESEARCH LABORATORY the pennsylvania state college

State College, Pennsylvania

\section*{ELECTRONIC DEVELOPMENT IS MOVING WEST*}

ENGINEERS-Take this opportunity to join the staff of a Western electronics pioneer \& leader.

Creative ability finds expression with us!

\section*{- IRESEARTI \\ - DEVELDIPMENT}

Broad project variety in special receivers, transmitters \& other devices. Advanced design techniques.
* Figures show \(20 \%\) U. S. activity in So. California

Relocation expenses-excellent working conditions-Central location. Scheduled reviews \& advances. FIne insurance plan. Move should not disturb urgent military projects.
Send complete resume with income history \& requirements to engineering employment mgr.

3761 SO. HILL ST.
(A Subsidiary of Hoffman Radio Corp.)
LOS ANGELES 7, CALIF.

\section*{ELECTRICAL SALES \&}

ENGINEERING REPRESENTATIVE
Nationally known California Corparation desires sales engineering rempesentative for Eastern U. S.
with sound nackground in general electrical insula. tion fleld. to promote sale of new line of yarns and textile materials for high temperature apolication. Must have car and he free to travel. Salary and expenses. KW-8960, Electronics 1111 Wilslije Blvd., Los Angeles 17, Calif.

\section*{FIELD ENGINEERS}

Pacific Division, Bendix Aviation Corporation, needs electronic field engineers to form a new Field Engineering Group offering excellent opportunities for growth. The job requires supervision of installation and maintenance, and instruction in the operation of Bendix airborne radar at aircraft plants and Air Force Bases within U. S. limits.

Positions are open at several levels, and inquiries are also invited from recent graduates. Salaries based on ability, experience, and education. Travel allowance in addition to salary.

Address inquiries to W. S. Leitch, Chief Electronics Engineer, 11600 Sherman Way, North Hollywood, California.


\section*{te Spark Plug Division - GEIERAL MOTORS CORPDRATIOW \\ Milfwaukee 2, wis.}


\section*{Pleasant Working Conditions}

So we're exaggerating a little! If you want to get technical about it (and you probably do) your life at our company won't be quite this cushy. We can promise this though-even the sky's not the limit for future opportunity. You work with a congenial group of engineers. 'People will listen to your ideas. The boss's door is always open. Who you are-You're an Electronic or Mechanical Engineer. You're experienced in air communication and navigation circuitry and development. You have worked with low or high frequency circuits, instrumentation, component utilization or associated problems.
What you do now -Simple! Just contact:
Arthur E. Harrison, Vice President, Engineering
wilcox Electric Company, Inc.
Fourteenth \& Chestnut, Kansas City 27, Mo.


Advanced Electronic Circuits and Systems

\section*{Microwave Radar}

Microwave Receivers
and Transmitters
Also Engineering Design and Analysls relating to fields such as:Analogue and Digital Computers Servomechanisms Communications Navigation Fire Control
Requirements emphasize odranced analytical ond/or management experience on and electro-mpex electronic tems. Kindly send resume and salary requirements to



RCA offers opportunities now-real career opportunities-for qualified Electronic, Computer, Electrical, Mechanical and Communications Engineers . . Physicists . . Metallurgists . . Physical Chemists . . . Ceramists... Glass Technologists.

Positions are open in research, development, design and application. Long range work in many fields is being carried on both for commercial developments and military projects for war and peace.

At RCA you'll work in an exciting professional atmosphere, with technical and laboratory facilities unsurpassed anywhere in the radio-electronic industry. You are in close and constant
association with leading scientists and engineers. Individual accomplishment is not only recognized, it is sought out. Delightful suburban living is easily available for your family. And there's ample opportunity for income and position advancement.
Plus, Company-paid hospitalization for you and your family ... accident and life insurance . . . progressive retirement plan... fine recreational program . . . modern tuition-refund plan at recognized universities for advanced study.
Join the team at RCA, world leader in electronic development, first in radio, first in recorded music, first in television. Rest easy in the knowledge that your future is secure, the rewards many and varied.

Positions Open In : RESEARCH -DEVELOPMENT-DESIGN-APPLICATION in any of the following fields:

RADAR-Circuitry-Antemna Design-Servo Sys-tems-Information Display Systems-Grear Trains-Stable Elements-Intricate Mechanisms

COMPUTERS - Digital and Analog-Systems Plan-ning-Storage Technique-Circuitry-Servo Mechanisms-Assembly Design-High Speed Intricate Mechanisms

COMMUNICATIONS - Microwave - Aviation -Mobile-Specialized Military Systems

MISSIL E GUIDA NCE-Systems Planning and Design - Radar and Fire Control-Servo Mechanisms - Vibration and Shock Prohlems

NAVIGATIONAL AIDS - Loran-Shoran-Altim-eters-Airborne Radar

TELEVISION DEVELOPMENT-Receivers -Transmitters and Sludio Equipment

COMPONENT PARTS-'Transformer-Coil—Relay -Capacitor-Switch-Motor-Resistor

ELECTRONIC TUBE DEVELOPMENT-Receiving-
Transmitting-Cathode-Ray-Phototubes and Magnetrons

ELECTRONIC EQUIPMENT FIELD ENGINEERS Specialists for domestic and overseas assignment on military electronic communications
and detection gear.

\section*{ENGINEERS... \\ Tie in your future with \\ ADMIRAL}
. ... at the steadily expanding electronics engineering activity of our Chicago, Illinois, plant.

Can your professional experience be more fully recognized? Think of your future . ... investigate these opportunities at Admiral.

Openings exist in all classifications for Junior, Intermediate and Senior Project Engineers.
They are for Research, Development, and Product Development in the following fields:

\author{
MONOCHROME AND COLOR TV RECEIVERS \\ COLOR GENERATING TEST EQUIPMENT UHF SYSTEMS \\ RADIO RECEIVERS \\ RADAR SYSTEMS \\ LABORATORY TEST EQUIPMENT
}

All with the security and possibilities for advancement inherent in this type of work.

Chicago is foremost among cities in supplying unsurpassed educational and recreational facilities. Individuals with a technical educational background will have the opportunity of furthering their experience and education by working with qualified engineering personnel. Excellent opportunities exist in the Chicago area for further study and education including postgraduate work.

We suggest you write Mr. Walter Wecker, Personnel Division, giving educational qualifications and related experience. Interviews will be arranged at your convenience.

\section*{Admiral Corporation mow comems Chicago 47, Illingis}

\section*{}

\section*{ELECTRONIC ENGINEEIRS}

EE or ME degree, minimum 3 years' experience in research and development work involving microwave circuits and antennas, circuit development, servo-mechanisms, analogue computers or related equipment.

\section*{FIELD REPRESENTATIVES}

A few openings for groduate engineers only with backgrounds similar to above. Continental U.S.A.


\section*{good reasoms for choosing}

\section*{GENEIEAL IPIBECISIDN LAABOIRATOIBY}
1. OPPORTUNITY Because we are a comparatively small company with a elose working relationshif between management and staff, recognition and advancement are more rapid-as evidenced by the nomber of young men
2. STABILITY GPL provides interesting work with a great measure of stability due to our association with a large, diversitied parent organizalion.
3. GOOD LIVING Considur the opportunity to live in a fine suburban community in westehester county, N. Y., living.

Expenses will be paid for cualified
anplicants who come for interviews.
Please submit complete resume to:
Mr. H. F. Ware

\section*{GENERAL PRECISION LABORATORY, Inc.}

A subsidiary of General Precision Equipment Corp. 63 Bedford Road, Pleasantville, New York

Electrical Engineers and \(\mathbf{P}\) bysicists
- Radar Simulation
- Advanced Circuitry
- Analog Computors
- Ballistics
- Mapping
- Telemetering

Senior and Junior Engineers

\section*{A Job widh}

\section*{Good "Contacts"}

We offer you the opportunity to come in contact with an entire project, not with just a segment of the overall job. Here is your chance to join a firm with a future . . . to grow with us
to gain individual recognition by working closely with technical management. You will live and work in a delightful suburban community . . . associate with other top-notch engineers. If you are looking for a job with good contacts, write:

Industrial Pesearch Laboratories
Hilliop and Frederick Roads Bältimore 28, Maryland
GOODYEAR AIRCRAFT CORPORATION, pioneer and
 leader in lighter-than-air craft, offers you a new employment opportunity with a well-established and fastgrowing company where "careers are planned."
DESIGN AND DEVELOPMENT engineering opportunities are available for capable and imaginative men and women in the field of airships, aircraft and aircraft components.
RESEARCH AND DEVELOPMENT projects - missiles, elec-
tric and electronics systems, servomechanisms, new special devices, fiber resin laminates - all present an urgent need for engineers with fresh talent, aptitude and ambition.

POSITIONS ARE OPEN at several levels in various fields with salaries based on education, ability and experience.
\begin{tabular}{ll} 
Physicists & Civil engineers \\
Mechanical engineers & Electrical engineers \\
Aeronautical engineers & Technical editors \\
Welding engineers & Technical illustrators
\end{tabular}
AKRON, THE HOME OF GOODYEAR AIRCRAFT, is located in the lake region of northeastern Ohio. Cosmopolitan living, year-round sports and recreation, cultural and educational advantages make this thriving city an ideal
 spot for a pleasant home.
YES, BUILD YOUR FUTURE - TODAY! Write, giving your qualifications, or requesting an application form.


\section*{ENGINEERS, EE}
1. Development of radio and radar components and systems.
2. Design of components for the magnetle deflection of Cathode Ray Tubes.
3. For component and system development work in airborne novigational equipment.

\section*{DESIGNERS}
1. For work in the design of electro-mechanical navigational computers.


\section*{HOUSTON, TEXAS}

Precision equipment manufacturer needs qualified experienced engineer for audio and sub-audio trangformer design and development. Experience with high permeability alloys desirable. Knowledge of magnetic circuitry must be sufficient for development work on maqnetic anaplifiers. Salary commensurate with ability.

\section*{SOUTHWESTERN \\ INOUSTRIAL ELECTRONICS CO.}
P. O. BOX 13058, HOUSTON 19, TEXAS

\section*{ELECTRONICS ENGINEERS}

This established electronics manufacturer located in the heart of western New York requires men with design experience. Permanent positions available for senior and junior men with EE degree or equivalent experience. Fine cultural community in which to live with good schools, homes, and progressive associates. Please write to:

CHIEF ELECTRONICS ENGINEER
STROMBERG-CARLSON COMPANY
ROCHESTER 3, NEW YORK

\section*{CHIEF ELECTRONIC ENGINEER}

For design and development of electronic measuring and test equipment. Unusual opportunity for man qualified by experience and ability to assume the responsibilities of a chiel engineer. Com. pany moderate sized, long established with top reputation in the industry. Located in Metropolitan New York area. Send complete resume including education, experience, income hisfory and requirements.

P-9149, Electronics
330 W. 42 St., New York 36, N. Y.

\section*{ENGINEERS}

Responsible, permanent positions open in ELECTRICAL and ELECTRONIC engineering for development and research in circuitry and instrumentation design utilizing semi-conductors. Established electronic manufacturer with modern, well-equipped, air conditioned plant located in Northern New Jersey.

P-9129, Electronics
330 W. 42 nd St., New York 36, N. Y.


Hydrobuoyant Spheremotor
A chain of flexibly coupled, hollow rubber spheres loop over drive pulley and through ait-filled "J" chamber. Underwater end of " \(J\) " chamber forms water seal as spheres go through aperture. Neglecting friction: Will this machine operate? If so, which way does it go? *

\section*{Design,}
development engineers...

\section*{Like to solve}

\section*{interesting problems?}

Most engineers do-of the off-beat variety like the one above as well as the more practical ones you're always running into at Honeywell.

Right now we need a

\section*{FLIGHT}

CONTROL ENGINEER,
a systems, analysis or component design man, with experience in calibrators, recorders, amplifiers, computing receivers or circuits.

Honeywell offers this man professional engineering assignments, creative opportunities, a fine place to work and many benefits.

Write J. A. Johnson, Engineering Placement Director, Dept EL-10-189, Honeywell, Minneapolis 8, Minnesota Learn in detail about the interesting opportunities at Honeywell. Ask for our book, "Emphasis on Research."
\({ }^{*}\) Mathematical solution to above problem on request.

\section*{Honeywiell}

First in Controls


\section*{SPECIAL OPPORTUNITIES FOR SENIOR ENGINEERS}

Convair in beautiful, sunshiny San Diego invites you to join on "engineers" engineering department. Interesting, challenging, essential long-range projects in commercial aircraft, militory aircroft, missiles, engineering research and electronics development. Positions open in these specialized fields:
Electrical Design Servo-mechanisms Mechanical Design Aerodynamics Structural Design Thermodynamics Structures Operation Analysis Weights System Analysis
Generous travel allowances to those accepted. Generous travel allowances to those ace
For free brochure, write Mr. H. T. Brooks, For free brochure, writ
Engineering Dept. 900


IN BEAUTIFUL


3302 PACIFIC HIWAY SAN DIEGO 12, CALIFORNIA


\section*{Copehert}
announces, with pride, new facilities which provide truly unexcelled opportunities for professional growth in Electronics.
Research, Development, and Production Engineers are needed to staff our growing operations in Radar and Pulse Systems, Microwaves, Guided Missle Guidance Systems, Antennas, Radio, Television, Computers, Vacuum Tubes, Servomechanisms, Solid State Physics, etc.
These positions are enhanced by an easy, relaxed, continuous welcome in one of America's most pleasant Communities.

> R.S. U.P.

TO
EMPLOYMENT DIRECTOR

\section*{CAPEHART-FARNSWORTH}

\section*{ELECTRONIC ENGINEERS \&}

\section*{TELEVISION ENGINEERS}

The Standard Coil Products Co., Inc., a leading electronics manufacturer, has started operations at their new plant located in North Dighton. Applications are now being accepted for experienced personnel in the above mentioned classifications, preferably with experience in UHF-VHF tuners, I. F. strips, high voltage and fly-back coils and test equipment design. Excellent opportunity with our fast growing organization which is not dependent upon defense contracts. Plant pleasantly located in small New England town near Providence and Boston. Good housing and schools. In resume state salary requirements and send to Personnel Manager.

\section*{STANDARD COIL PRODUCTS CO., INC.}

SPRING STREET,
NORTH DIGHTON, MASS.

\section*{WANTED}

ENGINEER WITH EXPERIENCE IN VHF or UHF

Interesting creative work with the most resourceful and progressive firm in the field of television equipment.

This position is permonent. It will offer every opportunity for unlimited advancement and for developing a successful career. The plant. is now housed in a newly-acquired larger building, only 22 miles from downtown New York City. The surroundings and atmosphere are stimulating and congenial.

\section*{Attractive Salary}

Write stating qualifications.

\section*{BLONDER-TONGUE LABORATORIES} 526-536 NORTH AVENUE WESTFIELD, NEW JERSEY

\section*{LOS ALAMOS requires}

\section*{ELECTRONICS ENGINEERS}
for design and development work. B.S.E.E. or Physcis with progressive and independent experience in the field. Write John A. Stevenson

> Los Alamos Scientific Laboratory of the
> University of California

Los Alamos
New Mexico


\title{
Exceptional Oppartunities for...
}

electrical engineers mechanical engineers mechanical designers
in the field of electronic computers and associated equipment for use in business machines.
Write, giving education and experience to Employment Manager.
Reply to Department A.

\author{
THE NATIONAL CASH REGISTER COMPANY, Dayton 9, Ohio
}

\section*{ENGINEERS}

AND

\section*{PHYSICISTS BS-MS-Ph.D:}

Responsible positions in mechanical, electrical or electronic engineering, physics or engineering physics for advanced development and design of special equipment and instruments. Prefer men with minimum of two years' experience in experimental research design and development of equipment, instruments, intricate mcchanisms, electronic apparatus, optical equipment, servomechanisms, control devices and allied subjects. Positions are of immediate and permanent importance to our operations. Southwestern location in medium sized community. Excellent employee benefits. Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential.

Ind. Rel. Manager
Research \& Development Dept.

\section*{PHILLIPS}

PETRCLEUM COMPANY
Bartlesville Oklahoma

\section*{Bell Telephone Lailonratories}
has career openings for experienced electrical engineers mechanical engineers physicists

For work on Guided Missiles, Radar, Fire Control and Underwater Systems in New Jersey ( 20 miles from New Yorlc City).
The compary that has pioncered many of the major developments in the fields of communications and electronics now offers you anr opportunity to join its staff. Here you will gain lenging diversified nature of the work. To qualify, you must be a coliege graduate (preferably not over 40 years of age) with related experience of the following types:

Systems Engineering
Analysis
Coordination Evaluation Planning Studies


Fundamental Development Circuit Design Mechanical Design Equipment Development Field Testing

Write, giving fall details of education and experience to:

\section*{BELL TELEPHONE LABORATORIES Inc.}

Employment Director, Box 2, New York 14, N. Y.

\section*{THE BIGGEST AND THE BEST}


NEW, UNUSED equipment, designed for Psychological Warfare (Propaganda) and Armed Forces Radio-Troop entertainment, this equipment will meet FCC specs for carrier stability (crystal-controlled) and fidelity. Freq. Range is 1,100 to \(1,500 \mathrm{KC}\), and design provides either crystal control or VFO. Modulation is \(100 \%\) using a special hi-efficiency circuit. Operation is from 90 to 240 Volts, \(50 / 60\) cycles \(A C\), and total drain at full modulation - 725 watts. Audio Response is within 1 db from 100 . to \(5,000 \mathrm{cps}\), and distortion less than
\(5 \%\) rms at \(100 \%\) modulation. Design provides for use with quarter-wave antenna against ground, with loading coil of sufficient inductance included within transmitter to permit use of smaller antenna where conditions do not allow proper size. THE EQUIPMENT SUPPLIED FORMS A COMPLETE MOBILE OR PORTABLE BROADCAST STATION, except for \(A C\) Power. The following are the various units supplied, with net weights and dimensions:

TRANSMITTERS—RECEIVERS
ETC.
TDQ VHF 100-156 MC. 50W. AM X-mttr for \(110 \mathrm{~V} .50 / 60 \mathrm{C} . \mathrm{AC}\).
BC- 797 VF
VHF
. fior \(110 / \mathrm{V}\). \({ }^{50 / 60}\) C. AC. CR-510/610. FM Trans-Receiver, 20 to 28
and 28 to 37 mc respectively. With PE . 117 or 120 Vibrator Power Supply and
SCR-619. FM Trans-Receiver, 27 to 38.9 mc ,
 Trans-Recvg.' Eqt. for Plane or Ground Communications,
SCR-511, Walky-Talky, 3-6 MC, Crysta
Controlled Trans-Rcvg. with Plug-In CC-611 and MAB HANDY and WALKIESCALKIES
SCR-284 Field Radio Equipment, A1, A3 emission. Complete with all Accessories, BC-221 Frequency Meters, Excellent condiCion, Complete with crystal and matching BC-312/342 Recriver
BC-312/34Z Receivers. Like New Units. SYSTEMS for Airports, Shipyards, Amuse. ment Parks, Civilian Defense, Etc. Write for Prices and Literature.
TCS X-mttr-Receivers for Shlp or Shore. TBK HF \(600 \mathrm{~W}, 2-20 \mathrm{Mc}\). Transmitter with TAJ 500 W . Output, \(175-550 \mathrm{Kc}\). with M.G. for AC or DC operation. output, with MG.
TBL 350 W. Output, A1, A3, I.F. \& H.F. for AC or DC operation.
APN-4 Loran Eqpt. R-9A/APN-4 Recelvers and 1D-6A \& 6B Indicators, with tubes, crystal, etc. Reconditioned to like-new
WRITE FOR PRICES GO-9 \({ }_{100 / 125} \mathrm{~W}\) PRICES. HF
Transmitter \({ }^{\text {IF }}\), HF Ship or Aircraft New with spares. and A2 Emission. All ATD Aircraft Transmitters. 50 W . A1 \& A3. t. 5 to 9.05 MO . NEW.

GP-7 Aircraft Transmitters.
ZCR-3 1 LAS R Eqp.
SCR-283 Rcvg. \& X-mttng Eqpt: Complete. RADIOSONDES AN/AMQ-1A to D. New. PE-75U Gas Englne Generators. NEW. T-1/Gpares for locating Arthlery Fire.
NAA Underwater Beacon Equipment.
BD-57.B Switchboards, telephone.
AN-Cis T-1A Sonobuoys.
DZ-2 DIRECTION-FINDERS, Aircraft or Marine, 15 to 1750 KC in 6 bands. Por \(24 / 28\)
V.D.C. operation. With \(34^{\prime \prime}\) or \(55^{\prime \prime}\) Loop V.D.C. operation. With 34" or \(55^{\prime \prime}\) Loop
Extension Shaft. Complete. NEW eqpt. Extension Shaft. Complete. NEW eqpt.
WIth Dynamotor, Loop Extension Shaft and Control, Cables, Instruction Manual, etc., all export packed in 2 cases per set.
WRITE FOR PRICES

\section*{EXTRA}

PE-104 POWER SUPPLIES for Receiver of SCR-284, NEW, with Spare Vibrator. Export-Packed. Large Quantity Available. WRITE FOR PRICES.

\section*{LIST OF MATERIAL PER SET}
\begin{tabular}{|c|c|c|c|c|}
\hline Qty. Item & H & W. & D. & Wt. (lb.) \\
\hline 1 Radio Broadcast Transmitter TWT PB-50A & \(111 / 4\) & 183/4 & 171/8 & 491/2 \\
\hline 1 Transmitter Power Supply, Type PB-50 & \(101 / 2\) & 121/2 & 16 & \(891 / 4\) \\
\hline 1 Pressure Cooling and Voltage Selector Unit, Type B2. & 111/8 & 9 & 171/8 & \(541 / 4\) \\
\hline 1 Control Console Mixer, Type 2C4.............. & 11 & 18 & 93/8 & 35 \\
\hline 1 Phonograph Turntable, Type T2, two-speed \(331 / 3\) \& 78 RPM & 63/4 & 201/4 & 18 & 20 \\
\hline 2 Dynamic microphones, cables, connectors. & & & & \\
\hline 1 Set of operating tubes for all units.... & & & & \\
\hline 9 Connecting cables for all units. & & & & \\
\hline 1 Auxiliary Antenna Kit, Type 10B & 12 & 12 & 3 & 20 \\
\hline 1 Set of spare operating tubes for all units & & & & \\
\hline 1 Set of spare parts . ............ & & & & \\
\hline 1 Kit of small tools for maintenance & & & & \\
\hline 1 Technical manual, TM 11-825, Portable Radio Broad. cast Transmitter TWT PB-50A. & & & & \\
\hline 5 Armored Trunks for Transporting & 20 & 283/4 & \(121 / 2\) & \(321 / 2\) \\
\hline
\end{tabular}

The five armored trunks are supplied as part of the equipment.
They serve as carrying cases, with the various units packed.
PRICE, PER COMPLETE SET AS LISTED ABOVE, NEW—UNUSED.

\section*{600 WATT W. E. AUDIO OR SUPERSONIC POWER AMP.}


NEW, Western Electrlc Audlo Power Amplifers in wooden transportable case, 600 watts
max. output, for use as PA anıplifer, modulators, or use as 400 to 1200 cycle power source to tent gervos, radar, test enpt., etc., requiring 110 V., 400 to 1200 eycles AC up to 600 watts. Requires 40 watts max. to drive to full output. Less than \(10 \%\) total harmonics in output. Input imped. \(250 / 500\) 4- 805's (supplied) in push-pull parallel. H.v. Power Supply uses selenlum rectifers (no tubes) and motor blower for forced-alr cooling. Operates from 115, 3-Phase, 60 cycles, or 208V., 4 -wire (3-phase) 60 cycles AC. Rugged design and construction. Freq. response 200-6000 cycles (amplifier only) Supersonic Driver \& Amplifier for teating, operating magneto-striction unlts, by operating maznetostriction units,
changing input o
output transformers
(20 to 25 KC available. AC additlonal cost). Dim: \(21^{\prime \prime} \times 24^{\prime \prime} \mathrm{X} 28^{\prime \prime}\) overall. NEW, UNPRICE, EACF
 Driver
tubes
Amprifier, WE, for above, wilh
\(\$ 175.00\) Speaker 12 units. PM horn type in 2 sec tions, shock and blast proof, with 6 lb . \#5 20-25KC (Tunabie) Inpot \& Output Transformers, for conversion of above, for
TELEMARINE 3040 W. 21 st B'KLYN 24,

\title{
IN SURPLUS COMMUNIC WATTS RADIOTELEPHONE EQPT.
}
* Provides Complete 2-Way Long or Short Distance Radiotelephone Communication
* Frequency Range-2 to 20 MC
t 30 Channels Transmit \& Receive. All Crystal Controlled
t Monitors 3 Separate Channels Simultaneously
t Voice-Operated Carrier Control or Push-ToTalk, as Desired
* Motor-Driven Channel Switching Controlled by Channel Selector
* Highest Degree of Construction, Salt Air Corrosion Resistant, Hermetically Sealed Transformers, Etc.

The Model 248A Radiotelephone Equipment was developed at Bell Telephone Laboratories to furnish powerful, dependable radiotelephone communication, especially on the high seas. It is ideal for ship installation, and fixed-radio instaliation, since its design and construction are of the highest possible degree.
Each 248A Equipment consist of: 1-48A Radiotelephone Transmitter; 1-48A Radio Receiver (cabinet has provision for a total of 3 receivers, the 48 A Receiver provides 10 channels in the \(2-6 \mathrm{MC}\) range; a 48 B Receiver provides 10 channels in the 4 to 20 MC range, ovailable at additional cost. The 2nd and 3rd receiver may be either a 48A or 48B, available at extra cost); 1-43A Control Unit (may be installed remotely); and, 1-104A Antenno Tuning Unit (medium frequency). A 104B Antenna Unit with whip ontenno for the higher frequency, is available at additional cost.

The 48A Radiotelephone Transmitter provides 30 channels of transmission, all crystal controlled, and is rated at 250 watts output However, a Western Electric Modification Kit is supplied with each, which will increase the power to \(300 / 350\) watts. Features of this trans mitter include automatic variable-gain audio amplifier; sidetone (hearing of one's own voice in the telephone receiver); interlock safety relays; provision for Selective Ringer installation within cabinet (up to

3 units, 1 for each receiver) for outomatic selective calling; motor driven switches for channel selection, controlled by the 43A Remote Control Unit which incorporates a telephone handset, monitoring loud speaker; ventilating fan for cooling and providing filtered air within cabinet; hinged transmitter and individual receivers for easy access to ports, etc.
Operation of this equipment is from \(115 \mathrm{~V} ., 50 / 60\) cycles AC .
This equipment is NOT GOVERNMENT SURPLUS, and is NEWUNUSED. Additional accessories and full spares al'so available Priced far below original selling price!!

WRITE FOR DESCRIPTIVE LITERATURE AND PRICES.

\section*{W. E. MODEL 107A SELECTIVE RINGER}

Latest design W.E. Selective Ringer, for use With any size Ship-to-Shore Radiotelephone. Operates from radiotelephone's receiver to call for you. Compact, easily installed. Dim \(157 /{ }^{\prime \prime} \mathrm{L}^{2} \times 81 / 2 " H . \times 51 / s^{\prime \prime} \mathrm{W}\). Nt. Wt. 18 lbs PRICE, FACH

\section*{SCR-296-A SHORE RADAR}

Designed to determine accurately range and azimuth of surface craft and to furnish this information for fire (shore battery) control purposes. It is a fixed radar installation with following Specs: Range - 100,000 yards max., Min. 600
yards. Acruracy - pl Azimutit range) 360 degrees. Peak Power 40 KW.
Indicators-5" Class A scope for Range \(3^{\prime \prime}\) for Azimuth.
Frequency- 700 MC ( 43 centimeters) Frequency- 700 MC ( 43 centimet
Operation- 120 V .60 cycles A.C. Oprration- 120 V. 60 cycles A.C. with all amplidynes, servos, synchros concentric transmission line and plumbing, tubes, spare parts, etc., in 29 cases
per set. WRITE FOR PRICES, or per set. WR

\section*{GE 10 KW FM POWER AMPLIFIERS and RECTIFIERS}

RRAND NEW, not war surplus, 10 KW FM Power Amplifiers with associated separate Power Rectifiers, designed for boosting low power FM broadcasting stations. Can be used for increasing power of television
stations (sound portion), or by changing statians \(C\) can be converted to power ampllfier on other frequencies. Present range 88-108 MC. Rectifier Power Supply delivers approximately \(5,000 \mathrm{~V}\). at 18.4 KVA . Operates from 220 V., \(50 / 60\) Cycles, 3 phase AC. Power Amplifier uses \({ }^{2}\) GL5s18 (not supplied) forced-air cooled GE high efficiency flectometer amplifier (with tubes) and GL. 8008 rectiffer tubes. Beautifully constructed new equipment at terrific price savings! PHICES Type BF゙-3-A 10 KW RF FM Ampli fler and Separate Rectifier, less RF Final RECTIFIER ONLY, if desired. WRITE FOR PRICE.

\section*{SPECIAL!!}

PE-218D Inverters, 25-28 V. DC Input \(115 \mathrm{~V} ., 380-500\) cycles output at 1500 VA. NEW UNITS. OUR PRICE, EACH \$19.9

\section*{COMMUNICATIONS CO.}

STREET
NEW YORK,
All Prices F.O.B. N.Y.C.


All Material Offered Subject to Prior Sale

\section*{Reliance \\ Speciald}

\section*{SOUND POWERED HANDSET}

Brand New


TS. In Type-includes 5 ft. cord, TELAAL POWER SOUNCE EX TERAL POWER SOURICE PAIR- 18.95
SOUND POWERED HEAD \& CHEST SET Nary Type M Head and Chest Set. Brand New For Work Requiring Free Use of Hands. Heary Duty-Consists of Rubber Cord ...............EEACH \$14.88

TELEPHONE FIELD WIRE
W/110-B
\(1 / 2\) MILE COIL..... \(\$ 7.95\)
HAYDON TIMING MOTOR 1 R.P.M. 115 V., 60 Cycle. . \(\$ 1.95\)

TIMING MOTOR 8 RPM 115 V 60 eye E. Ingraham Co.

.79 Timer-Industrial Timer Corp 15 min. on 15 min. off


TIME DELAY RELAY
Min. Delen CPX \({ }^{24166}\)
\(2 y_{3}\) second recyeling time spring retu


JONES BARRIERS STRIPS
 \begin{tabular}{l}
\(\begin{array}{l}3-1403 / 2 \\
6-1.10 \mathrm{~W} \\
10-140 \mathrm{~W}\end{array}\) \\
\hline
\end{tabular} \(3-141 \mathrm{~W}\)
\(4=1+1\)
\(5-141\)

Brand New Meters-Guaranteed
 SELENIUM RECTIFIERS Folf Wave 100 Ma 115 V .
\(\begin{array}{r}\$ 1.70 \\ \hline\end{array}\)


SILVER MICA_POSTAGE STAMP AVAILABLE IN ALL STANDARD RMA VALUES 10 mmf to 910 mmf . .0022 nfd

\section*{ASSORTMENTS}

GEARS-100 SMALI GEARS, BUSHINGS \& SIIAFTS. RESISTORS 200 3/2 WATT ALL INSULATED AMHRN-HARDWARE-5

\section*{PULSE TRANSFORMERS}

KS88696, KS98000 K SS9862. KS13161
JEFFERSON ELECTRIC-C-12A-1318

T-1229621-60

\section*{AN CONNECTORS \\ See Our Ad Fehruary, 1953 Electronics PHONE! WIRE! WRITE! YOUR NEEDS}

\footnotetext{
TERMS
C.O.D. Net
10 Net F.O.B. Our Warehouse.
}
\begin{tabular}{|cc|}
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{OIL FILLED CONDENSERS} \\
\hline MFD & v.D.c. & Price & MFD & v.D.C. & Price \\
\hline 5.2 & 50 & 50.89 & 0.5 & 3.000 & \$2.40 \\
\hline 6 & 400 & . 85 & 2 & 3,000 & 4.50 \\
\hline \(3 \times 3\) & 400 & 1.00 & 2 & 4,000 & 7.95 \\
\hline 4 & 500 & . 85 & 0.01 & 5,000 & . 95 \\
\hline 1 & 600 & . 55 & 1 & 5,000 & 4.88 \\
\hline 0.5-0.5 & 610 & . 40 & 0.03-0.03 & 6,000 & 1.50 \\
\hline 2 & 600 & . 75 & . & 6,000 & 9.95 \\
\hline 4 & 610 & 1.75 & 0.02-0.02 & 7,000 & 1.55 \\
\hline 8 & 600 & 1.85 & 0.1 & 7,000 & 1.79 \\
\hline 10 & 600 & 3.25 & 0.1-0.1 & 7,000 & 5.95 \\
\hline \(4 \times 3\) & 600 & 2.50 & 0.1 & 7,500 & 2.25 \\
\hline 8-8 & 600 & 1.95 & 0.075-0.075 & -8,000 & 6.50 \\
\hline 1 & 800 & . 60 & 0.15-0.15 & 8,000 & 6.95 \\
\hline 1 & 1,000 & . 69 & 0.25 & 20,000 & 19.95 \\
\hline 2 & 1,000 & . 95 & & & \\
\hline 3 & 1.000 & 1.70 & & & \\
\hline 1 & 1,500 & 1.45 & & & \\
\hline 0.02 & 2,000 & . 65 & At & & \\
\hline  & 2,000
2,000 & 1.30 & (1) & & \\
\hline 0.5 & 2,000 & 1.65 & 4 & & \\
\hline 3 & 2.000 & 3.75 & & & \\
\hline 8 & 2,000 & 7.95 & & & \\
\hline 0.25 & 3.000 & 2.25 & & & \\
\hline & \multicolumn{5}{|l|}{OIL FILLED AC CONDENSERS} \\
\hline MFD & V.A.C. & Price & MFD V & V.A.C. & Price \\
\hline 7.5 & 220 & \$2.00 & & 440 & 56.25 \\
\hline 20 & 220 & 4.95 & 1 & 660 & 2.95 \\
\hline 1 & 236 & . 49 & 2.9 & 660 & 4.35 \\
\hline 4 & 236 & 1.60 & 3 & 660 & 4.45 \\
\hline 8 & 236 & 1.95 & 4 & 660 & 4.95 \\
\hline 3 & 330 & 1.45 & 5 & 660 & 5.45 \\
\hline 4 & 330 & 2.25 & 6 & 6100 & 5.95 \\
\hline 20 & 330 & 6.75 & 8 & 660 & 7.50 \\
\hline 25 & 330 & 7.50 & 0.2 & 750 & . 69 \\
\hline 4.4 & 375 & 2.15 & & & \\
\hline
\end{tabular}

COAXIAL CABLE CONNECTORS

\begin{tabular}{|c|c|c|c|c|c|}
\hline 83-1AC & \$0.42 & PL-274 & \$1.10 & UG-88/U & \$ 9.90 \\
\hline 83-1AP & . 30 & PL-275 & 2.10 & UG-89/U & 1.10 \\
\hline 83-113C & . 35 & SO-239 & . 40 & UG-102/J & . 80 \\
\hline 83-1F & 1.10 & UG-13/U & 1.70 & UG-103/U & . 68 \\
\hline 83-1H & . 12 & UGG-1813/U & 1.05 & [JG-10 \(/\) /U & 1.40 \\
\hline 83-11P & . 22 & UG-2013/U & 1.60 & UG-105/U & 1.50 \\
\hline 83-1.J & .73 & UG-21/TI & . 85 & UG-106/U & 15 \\
\hline 83-111 & . 40 & UG-21R/J & 1.00 & UG-107B/U & 2.75 \\
\hline 83-1HTY & . 65 & U(i-21C/U & 1.05 & TJG \(-146 / \mathrm{U}\) & 2.00 \\
\hline \(83-1 \mathrm{SP}\) & . 45 & UG-21b/U & 1.45 & UG-167/U & 3.75 \\
\hline 83-1SPN & . 50 & UG-22/U & 1.30 & UG-175/U & . 12 \\
\hline 83-1T & 1.10 & UG-22A/U & 1.60 & UG-176/U & . 12 \\
\hline \(83-2 \mathrm{AP}\) & 1.95 & ITG-22H/U & 1.20 & TTG-185/U & . 95 \\
\hline 83-2J & 2.10 & UG-23/U & 1.20 & ITG-196/U & 1.65 \\
\hline \(83-2 \mathrm{R}\) & 1.65 & UG-23R/U & 1.50 & IJG-203/U & 65 \\
\hline 83-22AP & 1.40 & UG-23C/U & 1.10 & UTG-22t/ & 1.15 \\
\hline 83-22F & 2.10 & UG-21/U & 1.30 & UG-255/U & 1.95 \\
\hline 83-22J & 1.40 & [G-27/U & 1.25 & UT-260/U & 85 \\
\hline 83-22 & . 68 & UG-27A/U & 2.25 & 1/G-261/J & 1.10 \\
\hline 83-22SP & . 80 & ITS-27B/TJ & 2.95 & UG-262/U & 1.10 \\
\hline 83-22T & 1.95 & UG-29A/U & 2.95 & UG-273/U & 1.45 \\
\hline 83-168 & . 12 & UG-2913/U & 1.75 & ITG-274/U & 2.30 \\
\hline 83-185 & . 12 & UG-30/U & 2.30 & UG-290/U & . 90 \\
\hline CW-123A/U & . 45 & UG \(-5713 / \mathrm{U}\) & 1.85 & ITr-291/U & . 95 \\
\hline M-358 & 1.30 & UG-58/U & . 70 & UG-306/U & 2.65 \\
\hline M-359 & . 30 & UG-58, U & . 90 & UG-414/U & 1.95 \\
\hline M-359A & . 65 & UG-59A/U & 1.90 & UG-199/U & 1.25 \\
\hline PL-258 & . 75 & [7G-88/U & 1.75 & UG-625/U & 1.35 \\
\hline PL-259 & . 45 & ITG-85/J & 1.65 & & \\
\hline PL-259A & . 50 & UG-87/U & 1.40 & & \\
\hline
\end{tabular}


\section*{SELSYN MOTORS}
rmy Ordnance Trpe C-78248 115 V .60 Cy . Transmitter Approx. \(3-3 / 8^{\prime \prime}\) dia. x \(5-3 / 8^{\prime \prime}\) L. Lilie new. EACH \(\$ 27.50\)

\section*{SELSYN MOTORS}

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
DIFFERENTIAL Used \(\$ 4.95\) \\
115 VC, 60 Cycle New \(\$ 9.95\)
\#C78249 \\
\(338^{\prime \prime}\) dia. x \(53 / 8^{\prime \prime}\) long \\
Used between two Ci8248's as a dampener. Can be converted to \(3600 \mathrm{Il}{ }^{\prime} \mathrm{M}\) Motor in 10 minutes. Conpersion sheet snpplied. (Converted).......... \(\$ 5.50\) Mounting Brackets-Bakelite for selsyns. and dipferentials shown alove. ....................... . . 35t pair
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{PRECISION RESISTORS} (WIRE WOUND SPOOL TYPE)


SS: Scrow driver slot.
*: Split locking bushing.
\(\$ 1.25 \mathrm{EACH}\)

\section*{TYPE "JJ" POTENTIOMETERS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ohms & Shaft & Ohms & Shaft & Ohms & Shatt \\
\hline & & & & 90K-3K & \\
\hline 10k-10K & SS & †With & itch. & 90土-3K & \\
\hline
\end{tabular}

PRICE—\$2.50 EACH
High Current Filament Transformer Amertran type W Pri. \(105-125 \mathrm{~V}\). 60 ev . I Phase- Sec .
5 V . 190 amps. .97 KVA 35 KV . RMS Incul. Test \(7 \times 10 \mathrm{x}\) 5V. 190 amps.- 97 K
12: \(\mathbf{W t}\). 80 lbs . Ideal For Use As Are WPElder. \(\$ 29.50\) ea. Kenyon S.14940 S.C. \#2Z9943-1073 Pri. 105-125. V 60 Cy. Spe. \(5 \mathrm{~V}, 115\) Amps
Kenyon S. 13377 S.C. \(\$ 2 z 0943-7\) Pri. 115 V .60 Cy . Se.
\(5 \mathrm{~V}, 60\) Amps. ................................. \(\$ 15.25\) ea.

RAYTHEON PLATE TRANSFORMER TYPE U8355A



2JIGI SELSYNS \(\$ 8.50\)
400 CYCLE BRAND NEW 400 CYCLE INVERTERS

Leland Electric Co.
\#10800 in: \(20-28\) Y.D.C., 92 A. 8000 I.P.M. Out: 115 V . \(\frac{400 \text { Cyc. I phase, } 1500 \text { V.A. } 90 \text { PF................... } \$ 29.50}{\text { Minimun Orders } \$ 3}\)

\title{
RELLANCE merichanuzance co.
}

Arch St., Cor. Croskey Phila. 3, Pa. Telephone Rittenhouse 6-4927

\section*{AIRCRAFT SOLENOID CONTACTORS}


18 to 29 VDC Double Make Confacts
25-Amn Contacts Contiduous 50-Amp Surge; SPST: Spec.
\(\# 94-321850 ; 160\) olim; 6.5 oz
 , ua، dian 33557 (B2A) \#nish 3. E. CR2791A102A10 (B2. \({ }^{(12)}\) 18377 Gun 6iHx \(\times 10^{2}\) R2.1) \(=\mathrm{R} 378 \mathrm{~B} \quad 61 \mathrm{HX} \times 2.2\) intler \(\underset{132 \text { ) }}{\text { Hammer }} 6041 \mathrm{H} 60 \mathrm{~A}\) Square "D" Class 9350 (152 1 )
718380 . \(\$ 2.25\) RBM B2A \#T381 Ward Leonard B2 \(\# 382 \$ 1.95\)
RM B2 \(\# 383\) Allen Bradley B2A + R38 Leach 1227-24 (B2A) \(\begin{array}{r}\text { \# } \\ \$ 2.385 \\ \$ 2.25\end{array}\)

200-Amp Contacts. Continuous, 800-Amp Surge, SPST SPEC. 94-32324C; AN-R-20A Square "D" B4 \#R386. \$4.95 Autolite B4 BIH174..... \(\$ 3.95\)
Autolite B4A \#1.

50. Amp Contaets: Cantinuous; \(100-\) Amp Surge; SPST: Spec Alien Bradley X91419 (135A) \(\begin{array}{lll}\text { \#ll105 } \\ \text { Hart } & 692 \mathrm{R4} & \text { (B5A) }\end{array}\) Squars "D" B5A \#R25. \$2.50 Cutler Hammer 6041H2A (B5)
\#1t390

\section*{Cutler}
(B5A) \#1224mer \(6041 \mathrm{H2B}\) Cutler Hammer 604iH79A (1204-1 or B513)
Leach 7064298
(1204-1 B518) \#18391 …...... \(\$ 3.50\)

100-Amp Contacts; Continu ous; Spec. \(94-32352:\) SPST
Allen Bradley \(\times 95545 ; 6\) Ohm: Identical to NAF \(1204-2\)
(A-BX 95395 ) except coil con-(A-BX95395) except coil con-
nection screws inverted;
\#I606

200-Amp Contacts; ContinuOus: 800-Amp Surge Arrow, H \& H 39169; Spee.
\(94-32353:\) SPST : B7A; 10/110 ohm; \# 1320 ........ \(\$+.95\) Guardian 1204-3:10/110 ohm;
\# IR321 \({ }_{\text {\# llen }}\) Bratley \(\times 95396\) : 84.95 1204-3; 60 olims; \#R322 \$4.95

200-Amp Contacts, \(10 \mathrm{MHF-Amp}\) Surge: 10 ohm 8-28VDC: ln. SPST
Autolite B8; \#R128..... \(\$ 2.95\) Guardian 34056 \#R129.. \(\$ 3.95\)
Hart 694R15A R60) Cutler Hammer 6041 Hi 39 A
\# R13 Leach \(7210-24\) \# \(\mathrm{\#}\) 1602... \(\$ 3.95\)

15-Amp Inductive: SPDT
Time Delay 0.050 sec make) ; Spec. \(\# 32429\); 180 ohms 71/20z approx Leach 2069-147 \#R323.
Geardian 3464 \# R324.
\# 200-Amp Contacts: \(18-29 \mathrm{~V}\)
Snce. \(94.32183 ;\) SPST
Eclipse CJ-73110-521-1; 80 Eclipse C1.73110-521-1; 80
Ohm; \#11325 .......... \(\$ 4.95\)

200-Amp Contacts: \(8-28 \mathrm{~V}\) DG Sntermittent Duty \(\quad\) :94-32181; SPST felipse D1-66198-518-2: 6 ohms; \#R126
Cutbr Hammer 604iH6iA;
ohms; \# \# 292

1204-1 (B5B): 50-Anrp Contacts: Spec. 569a: SPST chms: \#12294 … 159

1204-2 (B6B) 100-Amn Contacts; Sper. 569a; SPST
Allen Bradley \(\times 95395\); 65 ohms; Identical to B6B (A-B
olams i5) except coil connecting screws inverted: \#R327es4.25
\(1204-3\) (B7B) \(200-\mathrm{Amp}\) Con-1204-3 (B7B) 200-Amp Con-
tacts; Spec. M569a; SPST tacts; Spec. M569a; SPST
Allen Bradley X95396:
 ohms: \#12295....... \(\$ 1.95\)
 Struthers
24VDC; 240 ohms;
ohn
\#R604
\(\$ 2.95\)


CUTLER-HAMMER AIRCRAFT \& COMMERCIAL. D-C CONTACTORS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
A A F
\] & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { COIL } \\
& \text { Volts } \\
& \text { D.C. Ohms }
\end{aligned}
\]}} & \({ }_{\text {Cir- }}^{\text {CONT }}\) & ACTS & Stock & \multirow[t]{2}{*}{Price Ea.} \\
\hline C-H No. & & & & cuit & Amps & & \\
\hline 6041 H 2 A & B5 & 24 & 100 & SIST & 50 & R298 & 2.50 \\
\hline 6041H2B & B5A & 24 & 100 & SIST & 50 & I224 & 2.75 \\
\hline 6041H6A & & 24 & 100 & SPS' & 50 & R288 & 2.75 \\
\hline 6041H12A & & 24 & 6.5 & SPST & 100 & R12 & 3.50 \\
\hline 6041H17C & B4 & 24 & 65 & SPST & 200 & R289 & 4.95 \\
\hline 6041 H 36 A & A3 & 12 & 17 & SPS & 200 & R121 & \\
\hline 6041 H 50 A & & 12 & 17 & DI'ST & 50 & R290 & 3.50 \\
\hline 6041H54A & & 24 & 100 & SPDT & 50 & R299 & 3.95 \\
\hline 6041H60A & B2 & 24 & 160 & SPSI & 25 & R291 & 1.95 \\
\hline 6041 H 61 A & D1 & 24 & 50 & SPST & 200 & I292 & 4.95 \\
\hline 6041H63B & & 24 & 50 & SIST & 100 & R293 & 3.95 \\
\hline 6041H79A & \[
\left\{\begin{array}{l}
15 B \\
1201-1
\end{array}\right.
\] & 18-29 & 150 & SPST & 50 & R294 & 3.50 \\
\hline 6041 H 81 A & B73 & & & & & & \\
\hline & 1204-3 & 18-29 & 65 & SPST & 200 & R295 & 4.95 \\
\hline 6041 H84A & & 12 & 25 & No Con & ntacts & R296 & 1.75 \\
\hline 6041H139A & 138 & 10-24 & 10 & SPST & 200 & R130 & 4.95 \\
\hline \(6041 \mathrm{H158A}\) & & 12 & 25 & SP'ST & 50 & R128 & 2.75 \\
\hline 6041H169A & 3350-2 & 224 & 100 & SPST & 50 & R2297 & 3.95 \\
\hline \(9565 \mathrm{H}_{2} \mathrm{~B}\) & & 24 & 25 & SrST & 50 & R300 & 6.95 \\
\hline
\end{tabular}


\section*{MAGNECON CONTACTORS}

200 Amp Contacts SPST, Double Make 05381-2, \(36 \mathrm{VDC}, 14\) ohm Start, 140 ohm Hold. \#1R589 ............................ \(\$ 4.95\) 305381-3, 72 VDC, 60 ohm Start, 600 ohm
Hold. \(\#\) R \(590 \ldots . . . . . . . . . . . . . . . . .50\). \(\$ 05281-4,120 \mathrm{VDC}, 200 \mathrm{ohm}\) Start, 2000 ohm
Hold. 4 R 591 ...................... \(\$ 5.95\) Hold. \#R591

\section*{LEACH CONTACTORS}

Leach or Volts COIL Cir- CiACTS Stock Price \(\begin{array}{llll}\text { Leach or } & \text { Volts } & \text { Cir- } \\ \text { No. NAF } & \text { D.C. Ohms cuit Amps No. Price }\end{array}\) 1227-24 B2A 18-29 160 SPST 25 R385 2.25
 \(\begin{array}{llcccccc} & & 18-29 & 180 & \text { SPDT } & 15 & \text { R323 } & 2.25 \\ \text { 5023CG17 } & - & 24 & 100 & \text { SPDT } & 60 & \text { R282 } & 5.00\end{array}\) 5030 CSP 5030 CSP
5031 LA 5035 5035
\(\mathbf{5 0 3 5 C s}\)
\(\mathbf{3 0 3 5 - 3}\) 5035-3 5037
5050 5051GM 5053 S
5055 5055
5057 5057
5058 5058CDWG17 5058-1G17 7058-12C 7064-278 NAF120 7210-24 \(\begin{array}{cccrcrrr}\text { B8 } & \text { B } & 18-29 & 100 & \text { SPST } & 50 & \text { R391 } & 3.50 \\ \text { B6 } & \text { SPST } & 200 & \text { R602 } & 3.95\end{array}\)
 Orders Under \(\$ 10\) Remit. tance With
Orcler, Plus A proximate \(5 h i p g i n g\)
\(c h a r g e s ~\)
Charges
(overage will
be returned)

0be returned.)


ARC 3 \& ARC 5 RELAYS


23025 RBM 48VDC: SPDT; 8000 ohm; 6 ma; \#R428 55251 (K 403, K.105) Telechron: 24 VDC; SPST; \(\begin{aligned} & \$ 2.50 \\ & \text { n.0. }\end{aligned}\) 55340 (K203) Price; 24VDC; SIST n. o., (11): \(\$ 1.25\)
 300 ohm; Anti-Capacity Armis; Low Loss Bakelite 5.76 (Kiol) Clare: 12211 DC : Co-Axial Antenna Melay: SIPDT (1C); 275 ohms; \#R421........ \(\$ 9.95\)
\(55526(K 109\), K116) Cook: 24VIC: (1A, 1C): 300


 55589 (K102) G E: 2 -24VDC: DIST n.o 280 ohm: \#1245 ..... 24 VDC : SPDT: 250 ohin
 \(55837^{\circ}\) (K401, K402) RBM: Same as \#R108G \(\underset{55837}{\# R 108}\) (K 401 , K402) Allied: Same as \#R108G 23012-0 RBM ; 24 VDC ; SiPTT; 250 ohms; \#1R1:2 6385 ARC: \(12-24 \mathrm{VDC}:\) SPST n.o. (1A), 10 Amp Contacts: ARC; 24VDC; SPDT; (iC); 300 ohm; \#R406 7252 ARC; 24VDC: DPST n.o. (2A) ; 300 ohm; \#R354 7735 ARC: 24 VDC ; Antenna Relay; SPDT (1C) : 200
ohm; \#R799.................................. \(\$ 3.95\)

\section*{OTHER CONTACTORS}


\section*{Dual Electrical Latching} G.E. \(\begin{array}{llllll}\text { CR2792B118A3 } & 24 & 150 & \text { SIST } & 50 & \text { R23 }^{--} \\ 2.95\end{array}\) \(\begin{array}{llllllll}\text { G.E. } \\ \text { CR2792D116W2 } & 12 & 30 & \text { SPST } & 100 & \text { R719 } & 5.50\end{array}\) \(\begin{array}{llllllll}\text { CR2800-384A3 } & 24 & 50 & \text { SPST } & 200 & \text { R720 } & 5.95\end{array}\) \(\begin{array}{llllllll}\text { G.E. } \\ \text { CR953K100A2 } & 24 & 240 & 2 B ; 1 A & 15 & \text { R132 } & 9.95\end{array}\) G.E.M29.J682-1 \(10-12 \quad 30\) No Contacts 121671.25 \(\begin{array}{lllllll}\text { G.E.M29.J682-1 } & 10-12 & 30 & \text { No Contacts } & \text { R167 } & 1.25 \\ \text { EPCO S47D } & 12 & 35 & \text { SPST } & 50 & \text { R122 } & 2.50\end{array}\) \(\begin{array}{lrrlrll}\text { EPCO S47D } & 12 & 35 & \text { SPST } & 50 & \text { R122 } & 2.50 \\ \text { A-B X86382 } & 24 & 40 & \text { SPST } & 100 & \text { R722 } & 3.50 \\ \text { Autolite } & 12 & 17 & \text { SPST } & 50 & \text { R74 } & 2.50 \\ \text { Alliol AN1332 } & 21 & 175 & \text { SiST } & 75 & \text { R436 } & 3.95\end{array}\) \(\begin{array}{lrrrrrr}\text { Allied AN1332 } & 24 & 175 & \text { SPST } & 75 & \text { R436 } & 3.95 \\ \text { Allied AN1328 } & 6 & 14.2 & \text { SIST } & 75 & \text { R721 } & 4.50\end{array}\)

\section*{ACCESSORIES FOR}

TELEPHONE TYPE RELAYS
Clare CR1 Molded Bakelite Cover \# R1..
Clare BR2 Long Relay Bracket *BR2.
.90
.20 Clare BR4 Short Relay Bracket fBR4....... . 15

\section*{CARBON MONOXIDE DETEGTOR SIGNAL ASSEMBLY}

MINE SAFETY APPLIANCES CO. Type K-1 and KI-N-Manufacturer's Part No. SK 1557 and SK 1557-1-Spec. No. 27493 NEW! REG. PRICE \$300

3 for \(\$ 250.00\) 10 for \(\$ 825.00\)

Delivery From Stock While They Last! 324 CANAL ST., N.Y.C., 13, N.Y. WAlker 5-9642

SEARCHLIGHT SECTION

BENDIX AIRCRAFT TYPE GENERATOR Bendix-Eclipse Aviation; Type 1235
Counter-clockwise rotation. Speed 2500-4500 RPM; 28.5 VDC @ 15 A. A. Two-Brush ball bearing generator suitable for any applica-
tion where 28 volt output is required. Field tion where 28 volt output is required. Field and armature taps for adjustment of volt-
age from 12 to 28 volts.........NEW \(\$ 15.00\)


\section*{G. E. GENERATORS} General Electric Type 5 -ASB-31JJ3: 400 cycles out at 115 volts; 7.2
amps; \(8,000 \mathrm{rpm} . ;\) slze \(6^{\prime \prime}\) long x \(6^{\prime \prime}\) dia... \(\$ 99.50\) ea

\section*{SINE-COSINE GENERATORS}

Dehl Type FJE43-9 (Rers)
Deno tator windings \(90^{\circ}\) ingle Phase Rotor) outputs equal to the sine and cosine of the angular rotor displacement. Input voltage 115 volts, 400 cycle.............. \(\$ 30.00\) ea Dlehl Type FPE-43-1 same as FJE-43-9 ex cept it supplies maximum stator voltage of
220
volts with 115 volts applied to rotor. 220 volts with 115 volts applied to rotor. Arma Resolver Type 213014; equal in size to size 5 aynchro; \(55-60\) cycle; single phase pri-
mary, 2 phase secondary.

VOLTAGE GENERATORS (RATE) ALNICO MIDGET D.C. VOLTAGE GENER ALNRCOMB-35-D. ATOR Type B-44-D
A.C. GENERATOR:
.015 Amps. Type PM-1, 1200 R.P.M... \(\$ 15.00\)
SYNCHRONOUS

\section*{SELSYNS}

110 volt, 60 cycle,
brass cased, approx.
\(4^{\prime \prime}\) dia. \(\mathrm{x} 6^{\prime \prime}\) long.
Mfg, by Diehl and
Bendix.
Quantities Available.
\[
\$ 20.00 \text { ea. }
\] TRA NSMITTERS
\(\$ 20.00\) ea.
AUTOSYN MOTOR TYPE
115 VAC; 60 cycle; 1 -phase; DR. \# CB 4279

\section*{SELSYN GENERATOR}

General Electric MOD. \(2 \mathrm{~J} 15 \mathrm{M1}\); 115-57.5 SYNCHROS
AUTOSIN MTR. KOL.LSMAN Type \#403 32 VAC; 60 cycle; single phase ....... \(\$ 22.50\) VAC: 60 cycle single phase.... KEAKFOTT
GYNCHRO TRANSMTMER. KR Type R-212-1A-A Rotor; 26 Volts; single
phase; Stator; 11.8 Volts; 3-phase; 400 cycle
LF Spechial Repeater Type \(1 \mathrm{C}-006-\mathrm{A}, \ldots\).
\(\mathbf{\$ 3 5} .00\) LF 2.J1F 3 Generator ( \(115-400\) cyc.).
5CT Control Transformer: \(90-50\) CY Motor ( \(115 / 90\) volt- 60 cyc.).... \(\$ 15.00\) ea GG Gotor ( \(115 / 90\) Volt- 60 cyc.)..\(\$ 50.00\) ea. 8/DG Differentlai Generator cy. \(\$ 50.00\) ea. 400 cyc.)
 SN MOTOR ( 115 Volts/ 60 Cycle) .... \(\$ 22.50\) REPEATER, BENDIX C-78410; REPEATER, AC synchronous 115 V, 60 REPEATER, DIEHK MíG. No. FJE 22-2 115 Volt; 400 Cy; Secondary \(90 \mathrm{~V} \ldots . . \$ 27.50\) cycle) Synchro Generator ( \(115 / 90\) volt 60 6DG Synchro Differntial Gener..... S60.01 6DG Synchro Differential Generator (90/90 2-JF5-J cycle) olts: 60 Cycle 60 cycle Selsyn Generator: 115-105 Volts; S12 50 2J1H1 DIFFERENTIAL GENERATOR:
 PIONEER TOROUE UNITS.50 ea PIONEER TORQUE UNITS
pled to output shaft through 125.1 gear repled to output shaft through 125.1 gear resyn, follow-up (AY43), TYPE 12604-3-A: Same as 12606-1-A excent it has a \(30: 1\) ratio between output shaft and
 TYPE 12602-1-A: Same as 12606-1-A except It has base mounting type cover for motor
and gear train............................

\section*{Immediate Delivery}
all EQuIPMENT FULLY GUARANTEED

\section*{INVERTERS}

10563 LELAND ELECTRIC Output: 115 VAC; 400 cycle; 3-phase;
115 VA; 75 PF. Input: 28.5 VDC; 12 amp. VDC; 12
\(\$ 69.50\) ea.

\section*{PIONEER 12126}

OUTPUT: 10 VAC; 10V AMP; FREQ 400 cycle; 3-phase 60 P.F. INPUT: 28 VDC; 1.25 PIONEER 12117
OUTPUT: 26 volts; 400 cycles; 6 volt amperes, 1-Phase LNPUT: 24 VDC; 1 amp.

\section*{ALTERNATOR, CARTER}

Mfg. Carter Motor Co.; OUTPUT: 7 VAC; 9.7 amp . ; 658 cycles, and \(295 \mathrm{VDC}\).200 amps . INPUT: 26.5 VDC ; \(10.5 \mathrm{amps;}{ }^{6500 \mathrm{rpm}} \mathbf{\$ 4 9 . 5 0 \mathrm { ea } .}\)

PE 218 LELAND ELECTRIC
Output: 115 VAC; Single Phase; PF 90 ;
\(380 / 500\) cycle 1500 VA. INPUT: \(26-28\) VDC 92 amps; 8000 RPM; Exc. Volts 27.5 . BKAND NEW ……….................

PE 109 LELAND ELECTRIC
Output; 115 VAC; 400 cyc.; single phase;


MG-0.7S ONAN
Navy Type PU/11 ... Output: 115 VAC; 480 cyc.; single phase; 5.3 amp and 26 VDC
3.8 amp. Input: \(115 / 230\) VAC; 60 cyc. (9) 8 amp. Input: \(115 / 230\) VAC; 60 eyc.
single phase

MG 153 HOLTZER-CABOT
Input: \(24 \mathrm{~V}, \mathrm{DC}, 52\) amps; Output : 115 volts 400 cycles, 3 -phase, 750 VA . and 26 Volt-
400 cycle, 250 VA. Voltage and frequency regulated pIONFER \(12130-3-8\).

PIONEER 12130-3-B
Output: 125.5 VAC, 1.15 amps. 400 cycle single phase, 141 VA. Input: \(20-30 \mathrm{VDC}\),
\(18-12\)
amps. Voltage and frequency regulated amps.

12116-2-A PIONEER
Output: 115 VAC; 400 cyc.; single phase 285 LEAND ELECTRIC. \(\$ 900\) es
10285 LELAND ELECTRIC
Output: 115 Volts AC, 750 V.A., 3 phase 400 cycle, 90 PF , and 26 Volts , 50 amps Vingle phase, 400 cycle, 40 PF cont. duty, 6000 RPM. Voltage and Frequency regulated, 10486 LEL
VAtput: 115 VAC; 400 Cycle; 3 -phase; 17 . Duty .... 80 . Input: \(27.5 \mathrm{DC} ; 12.5 \mathrm{amp}\); Cont.
PIONEER 10042-1-A
DC INPUT 14 VoIts; OUTPUT: 110 Volts;
400 Cycle 1 -Phase; 50 Watt......... \(\$ 90.00\)
94-32270-A LELAND ELECTRIC


\section*{PIONEER AUTOSYNS}

 AY20-26 Volt-400 cyc .............. \(\$ 12.50\) ea.
PORTABLE GAMMA SURVEY METER Model 247B: For detect er intensities of Gamma radiations while obtaining discrimination against other radiations Range switch permits se-
lection on scales of zero to 50 , zero to 500 , zero to 5000 , and zero to 50 , 000 milliroetgens/hour (MR/HR). Entirely selfht aluminum unit consists of a water sealed detector assembly, hermencally ponents with power supply of \(1-45 \mathrm{~V}\) dry battery and \(1-300 \mathrm{~V}\) dry battery. Dimensions are \(10-3 / 4\) " wide; \(12-59 / 64^{\prime \prime}\) high; weight 12-3/4" lbs. incl, batteries. Mfg. Victoreen Instrument Co. Original A.E.C. cost over \(\$ 300\). Buy it at a tremendous savings.
\(\$ 89.50\)


\section*{ALNICO FIELD MOTORS} Approx. size overall DELCO TYPE \#5069600: PM Motors Delco Type 4506937 , \(\$ 19.95\) DC Alnico Field; 10,000 r.p.m.; dimenaions eter \(0.125^{\prime \prime}\).................................... \(\$ 15.00\)

PIONEER GYRO FLUX GATE AMPLIFIER
Type 12076-1-A, complete with tubes
27.50 ea.

\section*{AC CONTROL MOTOR}
A. C. SYNCHRONOUS MOTOR Type RBC 2505; Volts 115 ; Cycles 60 ; RPM 2; MPG. \(25 /{ }^{\prime \prime} \times 25 / 8^{\prime \prime} \times 25 / 8^{\prime \prime} . . .\).

\section*{400 CYCLE MOTORS}

PIONEER: TYPE CK5 2 Phase; 400 cycles EASTERN AIR DEVICES TYPE \$49A: 115 V; \(0.1 \mathrm{~A} ; 7000 \mathrm{r} . \mathrm{p} . \mathrm{m}\). Single phase 400 cycle ARESEARCH : 115 V .400 CPS. \(\$ 17.50\) ea. phase 6500 RPM ; 1.4 amp ; Torque 4.6 ln OZ: HP . 03 AIK DEVVICES TYPE JM6B: 200 VAC; 1 amp; 3 phase; 400 cycles GASTERN AIR DEVICES, TYPE J31R HASTERN AIR DEVICES, TYPE J31B: AIRESEARCH: AC induction, 200 V Phase, 400 Cycle, 2 H.P.; 11,000 RPM AIREARCH: AC Induction. 200 V79.50 V . Phase, 400 Cycle, 12 H.P. 6500 RPM: Electric Motor: PNT- 1400 - A1- \(\$ 25.00\) Electric Motor: PNT-1400-A1-1A Serial No. 207, \(208 \mathrm{~V} ., 400\) Cycles, 3 phase Kearfutt
Co., Inc. . ................................. SERVO MOTOR 10047-2-A; 2 Phase; 400 Cycle, with 40-1 Reduction Gear SMALL DC MOTORS
DELCO \#5072000: \(27.5 \mathrm{VDC} ; 11.75 \mathrm{rpm}\) DELCO \#5068\%50 : constant speed : \(27 \stackrel{\$ 15.00}{\mathrm{VDC}}\) 160 RPM; built-in reduction gears and governor
 (Approx. size General Electric Type 5AB10AJ3z: 27 volts, DC; 5 amps. 8 oz. inches torque; 250 RPM. General Electric Mod reversible. \(\$ 15.00\) ea. inches torque, \(12 \mathrm{DC}, 50 \mathrm{RPM}, 1.02 \mathrm{amp}\). General Electric Type 5BA10AJ52C: 27 Volts, \(D C\); 5 amps. 8 oz. inches torque;
145 RPM ; shunt wound; 4 leads; reversible GENERAL ELECTRIC DC MOTOR Mod. 5BA10AJ64, 160 r.p.m: 65 mmp 12 Mod. torque: \({ }^{27 V}\) DC D. MOTOK-Mf Co; Type 1454-MO; 24 VDC; 4000 RPM; 100

\section*{115 VOLT GENERATORS}


Brand new Eclipse generators: 115 VAC; 9.4 amp ;
1000 watts; single phase; 1000 watts; single phase;
800 cycles, \(2400-4200 \mathrm{rpm}\). 800 cycles, \(2400-4200 \mathrm{rpm}\).
DC output is 30 volts at 25 amp. Unit has spline drive shaft and is self-

\section*{MICROPOSITIONER}

Barber Colman AYLZ 2133-I Polarized D.C. Relay: Double Coil Differential sensitive, Alnico P. M. Polarised field. 24 V contacts; synchronizing, control, etc. ..... \(\$ 12.50\) ea,

\section*{BLOWER}

Eastern Air Devices, Type J31B; 115 volt: quency Cycle; single phase; variable fre approx. \(22 \mathrm{cu}, \mathrm{ft} . / \mathrm{min}\). ................ \(\$ 15.00\)

\section*{BLOWER ASSEMBLY}

115 Volt, 400 Cycle, Westinghouse Type FL, New …....................................

\section*{SENSITIVE ALTIMETERS}

Pioneer Sensitive altimeters,
\(0-35,000 \mathrm{ft}\). range brated in 100 's of feet. Barometric setting adjustment. No
hook-up required .. \(\$ 12.95\) ea.

\section*{A LEADIMG SUPPL
A.C.
SYNCHRONOUS
MOTORS \\ 110 Vt. 60 Cycle}
HAYDON TYPE 1600, 1/240 RPM HAYDON TYPE 1600, \(1 / 60\) RPM HAYDON TYPE 1600, 4/5 RPM HAYDON TYPE 1600, 1 RPM HAYDON TYPE 1600, 1 1/5 RPM telechron type b3, 2 RPM TELECHRON TYPE BC, 60 RPM
HOLTER CABOT, TYPE RBC 2505, 2 RPM, 60 oz .1 in . tórque.

\section*{SERVO MOTORS}
PIONEER TYPE CKI, \(2 \phi 400\) CYCLE PIONEER TYPE 10047-2-A, 2 中, 400 CYCLE, with \(40: 1\) reduction gear.

\section*{D. C. MOTORS}
BODINE NFHG-12, 27 VTS., governor controlled, constant speed 3600 RPM, 1/30 HP.
DELCO TYPE 5068750, 27 VTS., 160 RPM, built in brake.
DUMORE, TYPE EIY2PB, 24 VTS., 5 AMP., .05 HP., 200 RPM.
GENERAL ELECTRIC, TYPE 5BAIOAJ18D, 27 VTS., 110 RPM, 1 oz. 1 ft . torque.
GENERAL ELECTRIC, TYPE 5BAIOAJ37C, 27 VTS., 250 RPM, 8 oz. 1 in . torque
BARBER COLMAN ACTUATOR TYPE AYLC 5091, 27 VTS., 7 amp., 1 RPM, 500 in. lbs. torque.
WHITE ROGER ACTUATOR TYPE 6905, 12 VT., \(1.3 \mathrm{cmp} ., 11 / 2 \mathrm{RPM}, 75 \mathrm{in}\). lbs. torque.

\section*{AMPLIDYNE AND MOTOR}
AMPLIDYNE, GEN. ELEC. 5AM31NJIBA input 27 vis., at 44 amp. output 60 vts. at \(8.8 \mathrm{omp} ., 530\) watts.
MOTOR, GEN. ELEC. 5BA50LJ22, armature 60 vis. at 8.3 amp., field 27 vis. at 2.9 amp. \(1 / 2\) HP., 4000 RPM.

\section*{PIONEER AUTOSYNS 400 CYCLE}
TYPE AY1, AY5, AYI4G, AY14D, AY20, AY27D, AY38D, AY54D.
PIONEER AUTOSYN POSITION.
INDICATORS \& TRANSMITTERS.
TYPE 5907-17, single, ind. dial graduated 0 to \(360^{\circ}, 26\) vts., 400 cycle.
TYPE 6007-39, dual Ind., dial graduated 0 to \(360^{\circ}, 26\) vts., 400 cycle.
TYPE 4550-2-A, Transmitter, 2:1 gear ratio

\section*{INVERTERS}

WINCHARGER CORP. PU 16/AP, MG750, input 24 vts. 60 amps. outputs \(115 \mathrm{vts} .\), 400 cycle, \(6.5 \mathrm{dmp} ., 1\) phase.
HOLTZER CABOT, TYPE 149F, input 24 vts. at 36 amps., output 26 vts. at 250 V.A. and 115 vts. at 500 V.A., both 400 cycle, 1 phase.
PIONEER TYPE 12117, input 12 vts., output 26 vts. at 6 V.A., 400 cycle.
PIONEER TYPE 12117, input 24 vts., output 26 vts. at 6 V.A., 400 cyele.
WINCHARGER CORP., PU/7, MG2500 input 24 vts. at 160 amp ., output 115 vts . at 21.6 amp., 400 cycle, 1 phase.

GENERAL ELECTRIC, TYPE 5D21NJ3A, input 24 vts. at \(35 \mathrm{amps} .\), output 115 vts. at 485 V.A., 400 cycle, 1 phase.
LELAND, PE 218 , input 24 vts. at 90 amps. output 115 vts. at 1.5 K.V.A., 400 cyele, 1 phase.
LELAND, TYPE D.A. input 28 vts., af 12 amp. output 115 vts, at 115 V.A.s 400 cycle, 3 phase.

\section*{ENGINE HOUR METER}

JOHN W. HOBBS, MODEL MI-277 records time up to 1000 hours, and repeats, operates from 20 to \(\mathbf{3 0}\) volts.

\section*{VOLTAGE REGULATOR}

LELAND ELEC. CO. TYPE B, CARBON PILE. Input 21 to 30 volts D.C. regulated output 18.25 vts . at 5 amp .
WESTERN ELEC. TYPE BC937B, input 110 to 120 volts, 400 cycle. Output variation 0 to 7.2 ohms at 5 to 2.75 amps .
WESTERN ELEC. TRANSTAT, input 115 vts., 400 cycle output adjustable fröm 92 to 115 vts., rating . 5 K.V.A.
AMERICAN TRANS. CO., Transtat input 115 vts., 400 cycle output 75 to 120 vts. or 0 to 45 volts, rating .72 K.V.A.

\section*{SYNCHROS}

1 F SPECIAL REPEATER 115 vts. 400 cycle. \(21 F 1\) GENERATOR, 115 vts. 400 cycie. \(211 F 3\) GENERATOR, 115 vts, 400 cycle.
2 2IG1 CONTROL TRANSFORMER 57.5 rts . 400 cycle.
2J1H1 DIFFERENTIAL GEN. 57.5/57.5 vts. 400 cycle.
5G GENERATOR, 115 vts. 60 cycle.
5DG DIFFERENTIAL GEN. \(90 / 90\) vts. 60 cycle.
5HCT CONTROL TRAN. \(90 / 55\) vts. 60 cycle.
SCT CONTROL TRAN. 90/55 vts. 60 cycle. 5SDG DIFFERENTIAL GEN. \(90 / 90\) vts. 400

26 vts., 400 cycle. cycle.


ALL PRICES
F. O. B.

GREAT NECK

\section*{TACHOMETER GENERATOR \& INDICATOR}

GENERAL ELECTRIC, GEN, TYPE AN5531-1, Pad mounting 3 phase variable frequency output.
GENERAL ELECTRIC, GEN. TYPE AN5531-2, Screw mounting 3 phase variable frequency output.
GENERAL ELECTRIC, IND. 8DJI3AAA, works in conjunction with above generators, range 0 to 3500 RPM.

\section*{D. C. ALNICO FIELD MOTOR}

DIEHL TYPE FD6-23, 27 vts. 10,000 RPM.

\section*{GENERAL ELECTRIC} D. C. SELSYNS

8T59-PAB TRANSMITTER 24 VTS.
8TJ11- INDICATOR, dial 0 to \(360^{\circ}, 24\) vis.

\section*{RECTIFIER POWER SUPPLY}

HAMMETT ELECTRIC MFG. CO. MODEL SPS-130. Input voltage 208 or 230 volts, 60 cycle, 3 phase, 21 amps. Output 28 volts at 130 amps. continuous duty, 8 point tap switch, voltmeter ammeter, thermo reset all on front panel.

\section*{MISCELLANEOUS}

PIONEER MAGNETIC AMPLIFIER ASSEMBLY Saturable reactor type, designed to supply variable voltage to a servo motor such as CK1, CK2, CK5 or 10047.
SPERRY A5 CONTROL UNIT, part No. 644836.

SPERRY A5 AZIMUTH FOLLOW-UP AMPLIFIER, part No. 656030.
SPERRY A5 DIRECTIONAL GYRO, part No. 656029, 115 rt. 400 cycle, 3 phase.
SPERRY A5 PILOT DIRECTION INDICATOR, part No. 645262 contalns AY 20. ALLEN CALCULATOR, TYPE C1, TURN \& BANK IND., part No. 21500, 28 vts. D. C.

TYPE C1, AUTO-PILOT FORMATION STICK, part No. G1080A3.
PIONEEQ GYRO FLUX GATE AMPLIFIER, Type 12076-1-A, 115 vt. 400 cycle.

\title{
Buy TOP Radio-Electronic Values!
}

HEAVY DUTY SWITCHES


H\&H 4.P.D.T. Toggle Switch. 5 AMP. @ 250 Volt. 10 Amp. @ 125 Volt. Single \(3 / 4^{\text {" }}\) hole mount. Stuck
No. 6203 A Price
Each
\$1.95
CUTLER HAMMER TYPE 8905K628 + Pole D.T. Neutral Center Toggle Switch. Lumi-
 No. 6291 A Each
\(\$ 1.95\)

\section*{TOGGLE SWITCH}

CUTLER HAMMER \(=8803\) K5


\section*{SWEEP CAPACITOR}
5. 10 MMFD. Sweep Generator Capacitor. Has cylindrical sliver plated rotor, concentric to silver plated stator plates. Rotor has high speed bali housing. Ideal for moner driven sweep bederators \(\begin{array}{lll}\text { Stock } & \text { Price } & \mathbf{E a c h}\end{array} \quad \mathbf{\$ 2 . 0 0}\)
HIGH VOLTAGE TRANSFORMER 21.000 volt 100 MA . Half Wave oil filted. Maloney \(\begin{array}{lll}\text { Electock } & \text { Price } & \$ 300.00\end{array}\)

PLATE TRANSFORMER
Thordarson Tru.Fidelity Plate Transfornier Primary \(208-210-220 \cdot 230-240\) Volts 60 Cycle. Sec
ondary 3310 V.c.T. \(@ 86\) Amps. 10,000 Volt in sulation. Brand new-limited quantity. \(\$ \mathbf{S t o c k} \begin{aligned} & \text { Price }\end{aligned}\)

No. \(6399 \quad \begin{aligned} & \text { Price }\end{aligned}\)
\(\$ 60.00\)

\section*{FILTER REACTORS}

4 Henry @ 1.75 Amps. Thordarson Tru-Fidelity
15,000 Volt Test. 100 himis D.c. \begin{tabular}{c} 
Stock \\
No. 6400 A \\
\(\substack{\text { Price } \\
\text { Eacli }}\) \\
\hline \(\mathbf{y y y}\)
\end{tabular}

Swinging Choke. Thordarson Tru-Fidelity. 10-20 Henry @ 500 to \(50 \mathrm{M} . \mathrm{A}\). 7500 Volt Test. 55 hms .C. stock

Price
Each
\(\$ 20.00\)
SCOPE TRANSFORMERS
2500 Volt @ 1.6 M.A. Secondary, 115 Volt 60 strap mountime \(35{ }^{3}\) " centerso Min hy Thardarsen \begin{tabular}{ccc}
\(\begin{array}{c}\text { Stock } \\
\text { No. } 6387 \mathrm{~A}\end{array}\) & \(\begin{array}{c}\text { Price } \\
\text { Each }\end{array}\) & \(\$ 1.50\) \\
\hline
\end{tabular}

\section*{FILAMENT TRANSFORMER} 20 VOLTS TAPPED AT 14 VOLTS @ 20 AMPS. PRIMARY TAPPED IN 5 VOLT STEPS FROM
210 TD 240 VOLTS \(50-60\) CYCLE STANCOR SSI0696.
\(\$ 4.95\)
\begin{tabular}{|c} 
Stock \\
1.0. 6292 A \\
\hline
\end{tabular}
MIL-T-27
FILAMENT TRANSFORMER
PRIMARY: 107.5: 112.5; 117.5; 122.5
SECONDARY: \(225 ; 235\) and 245 Volts \(50 / 60\) cycle Volts @ 3 AMPS. Ceramic bushings with solder lug terminals. Rated for continuous duty under sealed 27. Class "A"' Grade I specs. Hermetically


\section*{RESISTORS PRODUCTION QUANTITIES}
n stock of late carbon and wire wound re Large Quantities such os
Pieces
\begin{tabular}{|c|c|c|c|}
\hline 150 & 220 ohm & \(1 / 2\) Watt & 20\% IRC \\
\hline 500,000 & 100 ohm & 1 Watt & 10\% IRC \\
\hline 1,000,000 & 220 ohm & 1 Watt & 10\% IRC \\
\hline 100,000 & 390 ohm & 1 Watt & 10\% IRC \\
\hline 150,000 & 1000 hm & 1 Watt & 10\% IRC \\
\hline 75,000 & 6.8 megohm & 1 Watt & 10\% IRC \\
\hline 100,000 & 100 ohm & 2 Watt & 10\% St'CPo \\
\hline 100,000 & 4700 ohm & 2 Watt & 10\% St'CPo \\
\hline 50,000 & 2200 ohm & 2 Watt & 20\% St'CPo \\
\hline 60,000 & 470 ohm & 4 Watt W/W & 10\% Cl'R sta \\
\hline 90,000 & 13000 ohm & 10 Watt W/W & 15\% Cl'Rstat \\
\hline
\end{tabular}


Stock No. T48500
Price 5.50 ea.

\section*{THORDSON BAND PASS FILTERS}

1700 cyc
1700 cycles to 3300 cycles
Attenuation 250 OB at 1450
cycles or or 50 oc at ar
Size: \(6^{\prime \prime} \times 680^{\prime \prime}\) cycles.
STANDARD BRAND RESISTORS
\begin{tabular}{|c|c|c|}
\hline 10 ohm & Watt & 10\% \\
\hline 100 ohm & Watt & 10\% \\
\hline 6.8 megohm & \({ }_{2}{ }^{\frac{1}{2}}\) Watt & \(20 \%\) \\
\hline 820 ohm & 1 Watt & 5\% \\
\hline 4300 ohm & 1 Watt & \(5 \%\) \\
\hline 30,000 ohm & 1 Watt & 5\% \\
\hline 62,000 ohm & 1 Watt & 5\% \\
\hline 300,000 ohm & 1 Watt & 10\% \\
\hline 12 megohm & 2 Watt & 10\% \\
\hline 18 megohm & 2 Watt & \(10 \%\) \\
\hline 22 ohm & 2 Watt & \(20 \%\) \\
\hline 22 ohm & 2 Watt & 200 \\
\hline 6800 ohm & 2 Watt & 20.0 \\
\hline 15,000 ohm & 2 Watt & 20\% \\
\hline
\end{tabular}

HI-_VOLTAGE RESISTORS
\begin{tabular}{lllll}
10 meg & MVX-1 & 1 Watt & \(15 \%\) & IRC \\
12 meg & MVX-1 & 1 Watt & \(15 \%\) & IRC \\
15 Watt & \(15 \%\) & RPC \\
15 meg & BBF & 1 Watt & \(15 \%\) & RPC \\
25 meg & MVX-2 & 2 Watt & \(15 \%\) & RC \\
200 meg & BBR & 3 Watt & \(15 \%\) & RPC
\end{tabular}

TYPE "J" POTENTIOMETERS
500 Ohm-2 Watt Type J Pot. \(3 / 8^{/ 2}\) Long Shatt. \(1 / 4^{* /}\) Knob.

> Stock No. AB/123
\(\qquad\) Price
Each \(\qquad\) 49 ¢

100 ohm Type 1 with \({ }^{3 / 8}\) " bushing and locking nut. Screw-driver slot.
\(\begin{array}{lll}\text { Stock } & \text { Price } & \$ .49\end{array}\)

\section*{LAB. POTENTIOMETERS}

MODEL 260. 6 Watt 20,000 OHM Laboratory, PO entiometer Resistance tolerance plus or minuis Dianı. \(\times 1 / 4^{\circ}\) Ling.
\[
\begin{array}{cc}
\text { Stock } \\
\text { No. } 6277 \mathrm{~A} & \begin{array}{c}
\text { Price } \\
\text { Each }
\end{array}
\end{array}
\]
\(\$ 1.50\) ments, or ask for our catalog listing by Signal
Corns Numbers. DON'T DELAY!
```

        MALLORY M200R
        200 ohm 4 watt Rheostat
    ```

```

    No. 6137 A per 100 Each
    ```

SIGNAL CORPS \& NAVY TRANSFORMERS Over 200.000 transformers, chokes etc. For Signal Corps and Navy Equipment. Send Ls your require


\(\begin{array}{ll}\text { Size: } 6^{\prime \prime} \times{ }^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime} & \\ \text { Stock } & \text { Price } \\ \text { No. } 5897 \mathrm{~A} & \text { Each }\end{array}\)
\(\$ 8.00\)
LOW PASS FILTER
500 Ohm to 500 Ohm. 200 to 2000 Cycles. Sig


SENSITIVE RELAYS


MJDGET TYPE RELAYS
Automatic Electric Type R-45. 6c 00 ohm Coils \(\begin{array}{lll}\text { Normally ojen contacts excert as noterl. } \\ \text { Stock No. } & \text { Contents } & \text { M. A. } \\ \text { Nrice } & \text { Each } \\ 102152 & \text { 5.P.S.T. } & 2.0\end{array}\) \(\begin{array}{llll}102152 & \text { 5.P.S.T. } & 2.0 & \$ 1.25 \\ 102249 & \text { 2.P.S.T. } & 4.5 & 1.50 \\ 102264 & \text { 3.P.T } & 0.0 & \end{array}\) \(\begin{array}{llll}102264 & \text { 2.P.S.I. } & 4.5 & 1.50 \\ & \text { 3.P.T. } & 6.0 & 2.00\end{array}\) Same type and style as above. but has 24 V.A.C coil. Intermittent duty, Will operato on 6 V.D.C
Continuous duty. Contacts: S.P.S.T.-N.O. and Continuous duty. Contacts:
S.P.D.T.

No. \(102248 \mathrm{~A} \quad\) Price
\(\$ 1.25\)
304TL'S EIMAC JAN 304TL's
individually boxed sio.95

\section*{RADAR ANTENNA}

NAVY TYPE CBM 66AFT-1 Antenna As sembly. Part of SF-1 Radar Equipment, has two selsyns 115 V 60 cycle-MKI MOD. 4 type 5G MFG. by Bendix and 2-115VDC fractional motors, complete assembly with cover.
\(\$ 150.00\) each

\section*{TINNED WIRE}
\(1 / 4 \mathrm{lli}\). spools of No. 20 solid tinned wire. Indii
\(\begin{array}{ccccc}\substack{\text { stack } \\ \text { No. } 6391 \mathrm{~A}} & \begin{array}{c}\text { Case of } 100 \\ \text { at } 520.00\end{array} & \begin{array}{c}\text { Price } \\ \text { Each }\end{array} & 25 ¢\end{array}\)

\section*{\(\stackrel{0}{0}\)}

TERMS:
Open Accounts to roted or Acceptable Ireference accounts. Others pre-pay-
 subject to change without notice. Mer-
IORDER TODAY!

732 South Sherman Street Chicago 5, Illinois Phone: HA rrison 7-5923

\subsection*{6.3 VOLT FILAMENT TRANSFORMERS}

Primary 115 Volt 60 Cycie 1600 Insulation Three 6.4 Volt Secondaries
6.3 Volts @ 4.9 Amps. 6.3 Volts @ 1.1 Amps.

Stock No.
510 ck
5254 K

Horizontal Half Shell Mounting. 21/2" \(x\)
2 13/16" Mounting Centers. 2 13/16" \(x\) 33/8" Core Size. 21/2" above Chassis. Soder Lug Terminals-All Terminals Marked.

sen to calibrate field strength of magnets from \(50 n\) to 4000 gaus and indieate nolarity. Probe has garn
of \(144^{\prime \prime}\) Beatutifuly built in hardwood case with hinged cover. Instructions for operation olt unfict side of cover size \(12 x \times x .86\) in. hieal tor lal and
school use. jew. An exceptional value at... \(\$ 29.50\)

\section*{CRYSTAL DIODE}
Sylvania 1 N2nth. Indiridually boxed and packed in
leaded foil................................ \(\$ 3.00\)
HIGH POT TRANSFORMER
 set up. ©. T. merounded.................... \(\$ 29.50\)

\section*{INVERTERS}
 60 cy, 1 Hh. Output: 15,480 cy., 1 Th., 1.29 hw Onan M-G,.075. Napy type PU 11 IIpht: 125/230, 60 cy, 1 Pht Output: 115,480 cy., 1 Ph., 5.3 anps.
and 266 VDC (O) 3.8 Amps. New. \(\$ 225.00\) Loland Elec. Co. PEU06A, Input: 28id at 38 Amps.
 G.E. 5 ASI 15155 IIA. Model 218J. Input: 28 DC. 532.50
 Holtzer-Gabo M, G , i64 input: 440, 3 Ph. 60 c. Elcor. 7IDC to \(110 \mathrm{AC}, 60 \mathrm{cy}\).1 Ph , at 2.4 Amps.

\section*{DYNAMOTORS}
Navy type CAJO-2/144. 1mput: 105 to 130DC. OutNint: eillher 26 DC at 20 amps , or 13 DC at 40 amps , katio filtered and conplete with line switch. Tyne PE94CM, For scia- 522. Band new in orerseas ases. Has wide band input and output filters.

\section*{AMPLIDYNES}
G.E. 5 AM2IJJ7. Input: 27 VDC, Output: 60 VDC . 150 Watts, 4601 RPM, Type MG- 27 -B. New . 534.50



SMALL D.C. MOTORS
G.E. 5 SABOLJ2A. Armature 27 VDC at 8.3 Amps. rield 6000DC at 2.3A RIMI 4000 H.P. 0.5 . Oster E.7-5. 27.50C. 1/201i1', 360011PM. Shunt Wumore Co. type ELBG. eqvic, \(40-1\) gear ratio.
 250V. 1725 RiPsi New
400 CY. BLOWERS


\section*{SYNCHROS}
 Arnor, Snemro bifferential Generator. Type \({ }^{\$ 722.50}\).

STEP BY STEP MOTOR Bendix-Type CAL 14810 (MK1 Mod 0). 70 Volts
DC input

\section*{RAYTHEON VOLTAGE REGULATORS} Adj. input taps \(95-130 \mathrm{~V}, 60 \mathrm{ey}, 1 \mathrm{Ph}\). Output.
 \(x\) onstructed. I'ronicalized.
con
TERMS: Rated Concerns Net 30, FOB Bronxville, New York. All Merchandise Guaranteed Prices Subject to Change



High speed ball
bearings. Split
stator silver
plated coaxigl
type \(5 / 10\) mmfd.
Brand new.
Price \(\$ 2.25\)

ELECTRONICRAFT
27 MILBURN ST. BRONXVILLE 8, N. Y. PHONE: BRONXVILLE 2-0044


PRICE—NEW \(\$ 16.75\)

\section*{Westorn high qualit TEST EQUIPMENT}


\section*{WL-II7 WAVEMETER}

A precision wavemeter having a range from 2400 mc to 3400 mc with an accuracy of better than 0.1 \% over the entire range. The resonant cavity has a \(Q\) of not less than 1000
and normally from 1000 to 2000 . The unit, supplied with a pickup dipole interconnecting cable and adapters. may also be used for elative field strength measurements

PRICE: \(\$ 390,00\)


WL- 13 SIGNAL GENERATOR
A versatile \(x\)-band signal generator providing a source of pulsed or CW power and havtooth modulation. Accurate monitoring of the RF output is accomplished with a thermistor bridge and a calibrated attenuator. The power supply is electronically regulated to insure
stable operation of the \(723 \mathrm{~A} / \mathrm{B}\) Klystron os cillator. PRICE: \$1275.00


\section*{WL- 125 POWER METER}

This instrument is a compact, battery oper ated thermistor bridge designed to measure power in the range of 2400 to 3335 mc ., and having a full-scale sensitivity of 2 miturats Among other applications. it check standing wave ratio and determine average or peak powers. A complete set of accessories, includ ing a 10 db and 16 db attenuator pad for with the unit. PRICE: \(\mathbf{\$ 3 9 0 . 0 0}\)


\section*{C-221 FREQUENCY METER}

This universally used and sime-tested instrument is a precision meter designed to mensure or radiate R.F. impulses bet ween 125 and \(20,000 \mathrm{KC}\). The overall accuracy of the unit is 0.034 over the entire operating range. It is portable and completely self contained or sunply for 115 volt operation.

Withou PRICE:
\begin{tabular}{l} 
Without Modulation \(\$ 125.00\) \\
With Modulation \\
\hline 65.00
\end{tabular}
\(\begin{array}{ll}\text { With Modulation } \\ \mathbf{1 1 5 v} \text { Power } 5 \text { upply } & \mathbf{1 6 5 . 0 0} \\ \mathbf{3 5 . 0 0}\end{array}\)


W1-82
ECHO BOX
A portable ringlog cavity for mi crowave research; the unit has a
frequency range from 9320 to 9420 me, with a \(Q\) ol 50.000 to 80.000 . The echo box is used for relative power measurements. spectrum analysis. frequency checks. tests for unstable operation and a host of othe PRICE: \$550.00

\section*{ \\ WL-89 VOLTAGE DIVIDER} An indispensable aid in high power radar and transmitter measurements and \(10: 1\) valtage division. It can be used with an oscilloscope to measure video pulses between 200 and 20.000 ratio accuracy is within \(+15 \%\) and ratio accuracy is within \(+15 \%\) and
transmission is within 2 db from 150 cycles to 5 megacycles. \(P\) PRICE: \(\$ 45.00\)


SG-8/U NOISE GENERATOR This popular model. employing a 5722 temperature limited diode as an absolute means of receiver noise measurements as well as for fundamental studies. The normal input impedance is 270 ohmis but a 50 ohm
adaptor is supplied with the unit as a standard accessory.price: \(\$ 290.00\)


This instrument can be used with This instrument can be used with a linear sweep as a general be used with a circular sweep as a precision range calibrator. It has a PRF rate input-15 volts at 100 volts per microsecond rise. Trigger output120 volts ( +20 volts). It can be used for detecting "jitter" in trigger ger pulse. and also for determining and adjusting division rate \(\mathbf{P R I C E}\) : \(\mathbf{5 5 0 , 0 0}\)


\section*{WL- 108 TERMINATION}

This \(1^{\prime \prime} \times 1 / 2^{\prime \prime \prime}\) waveguide hi-power load is kilowatts and an average power of 150 watts. The VSWR is less than 1.10 over the entire requency range of 9300 to 9450 mc . All accessories including carrying case and cou pling adapters are supplied with the unit.
PRICE: \(\$ 90.00\)


WL- 102 PULSE GENERATOR
Equivalent to the TS-102/AP Range Calibrator, this crystal controlled pulse generator ing pulse of .8 microseconds at a prf of \(400^{\circ}\) 800.1600 or 2000 cps. and a triangulat marker pulse of 0.4 microseconds duration at a pri corresponding to a pulse-echo distance sync. pulses is continuously variable from
-180 to +180 degrees. PRICE: \(\$ 550 ; 09\)


WL-90 DUMMY LOAD
Provides a 50 ohm termination in the form of a 50 to 1 ratio voltage divider for making as the AN/APQ-7, \(13,13 \mathrm{~A}, 23\) and a host of other equipments in this frequency and power range. The 49 and 1 ohm resistor elements are carbon coated ceramic rods in helium ing up to 500 watts at a peak voltage of 5000 volts.


WL-2S8B/U CRYSTAL RECTIFIER TEST SET
A combination ohmmeter-ammeter dcsigned to measure the electrical characteristics of microwave crystal rectifiers such as the in 23 series. The instrument is completel self contained and requires only a single 1 th or 2 -volts cell for operating power. \(\begin{gathered}\text { Price: } \$ 53.75\end{gathered}\)

\section*{LABORATORIES, INC.}

HARVARD, MASS.
Tel: HARVARD 250-AYER 300-TWX HARV 193 Cable: WESLAB


\section*{SEARCHLIGHT SECTION}

\section*{COMMUNIGATIONSEOUIPMENTCO.}



\section*{APS-2 SPARE PLUMBING \\ 


}

\section*{PLUMBING}

\section*{\(X\) Band RG 52/U WAVEGUIDE}


 Pressure Gauge Directional Coupler, UG-40/U Take ofr 20 dio. \(\$ 17.50\) TR-AYR Duploxer section for above.......... \(\$ 8.50\)
 Waveguide section \(2 / 2 / 2 \mathrm{t}\). long silver plated with
Rotary joint choke to choke with deck monnting 90 degree elbows. "F'" or "'1[" plane \(2 y_{2}\) " \(\underset{\$ 1250}{\$ 17}-50\)

\section*{15 degree twist}

Microwave Receiver, cil sensitivity: \(10-1 ?, \ldots\) Wat
Complere with It is and AFC Mixer and Waveguide DV yain at a bandwidth of 1.7 Mic. Video Bandwidth: 2 Mt: Uses latest type AFC circuit com Latar ADAPTER, Wavegude to type vi, UG 81/U. p/oTS ADAPYER, UG-163/U round cover is special bly.
\(\qquad\)

\section*{APS-15 \\ SPARE WAVEGUIDE PARTS}
 2-607 Dwo. Symbol. Apurox 150 degree \(\$ 12.50\) each 2-607 Dwo. Symbol. Approx. 150 degree lend with 90
 tor: appro \(156-1142\), Co124/APS-15A. Wape-seledplane) 20 db couplint. 13 deg. lemt at cente \$12.50 Philco 348-1425, 180 deg. bend. with plessure fit-z-609, Philco \(\begin{gathered}\text { ting } \\ \text { - } \\ \text { 2 }\end{gathered}\) z-606: \(\mathbf{8}^{\prime \prime}\) sun with (the (leg. bend (w-plane) one end
 CGI/APS-3 rhilco 358

\section*{WAVEGUIDE FLANGES}

\(K\) Band
RG 53/U WAVEGUIDE APS-34 Rotating joint, 1 Right Angle Bend E


TR-ATR-Section ('holie to core
Flexible Section 1" choke to clowk
"S" Curve (hole to cover........
APS-34 K-Band lilliox Artema Mation
\(\$ 12.00\)
\(\$ 12.00\) APS-34 K-Mand rilliox Anterin. .................. \(\$ 4.00\)

\section*{MAGARTHONG}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \({ }_{\text {Price }}\) & Tryer & \({ }_{\text {Priee }}\) & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} \\
\hline & \({ }^{7} \mathbf{7} .50\) & - 21198 &  & & \\
\hline & \({ }_{28.50}^{2+50}\) & - \({ }^{21162}\) & 34.50 & & \\
\hline & 12.50
16.50
16.5 & 723.
730 A
73 & coick & & \\
\hline & & 60, 61, & -585 & & \\
\hline
\end{tabular}

KLYSTRONS

527.50
17.50
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{SELSYNS} \\
\hline 115 VAC & 60 CYCLES & 1 PHASE \\
\hline \[
\begin{aligned}
& \text { 1-Transmi } \\
& \text { 1-Differen }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ter \#C-78248 } \\
& \text { tial } \# \mathrm{C}-78249
\end{aligned}
\] & \[
\begin{aligned}
& \text { Per Set } \\
& \$ 24.50
\end{aligned}
\] \\
\hline Transmitter & Units Only & \$17. \\
\hline
\end{tabular}

\author{
Transmitter Units Only
}
D. 167332
D. 167613

D-166228
tubes

\section*{PULSE EQUIPMENT}

HIT. MOD. \({ }^{3}\) HARD TUBE PULSER: Output Pulse vol max. Pulse duration: \(0.5,1,0,2.0\) microsec. Input voltage : 115 v .400 to 2400 eps. Úses: 1-71P, \(4-89-13\). APQ-13 PULSE MODULATOR. Mulse Width Less Cover Micro Sec. Rep, rate 624 to -348 PDs. Pk DWr. out 25
KW Energy 0.018 Joules.............. \(\$ 9.00\) KW Energe 0.018 Joules............... \(\$ 49.00\) \(\mathrm{KW}(1200 \mathrm{KW} \mathrm{pk})\) : pulse rate \(200 \mathrm{PPS} 1.5 \mathrm{micro}-\) sec. pulse line impedance 50 ohms. Circuit series charging rersion of DC Resonance type. Uses two with all tubes

\section*{PULSE TRANSFORMERS}


Primary, \(9.33 \mathrm{KV}, 50\) ohms lump Secondary: \(28 \mathrm{KV}, 450\) ohms Pulse length: \(1.0 / 5\) usec @ \(685 / 120\) PI'S. Pli. Power Out: \(1,740 \mathrm{KW}\)
0.5 100 2000 IDS IPk. 1, \(\$ 2.50\)
 KY I'k, Nec. volts 11.5 KV Pk. Biflar rated at 1.3
Amp. Fitted with magnetron well............ \(\$ 39.50\) K-2745. 1rimars: \(3.1 / 2.8 \mathrm{KV}, 50\) ohms Z . Secondary:
 @ 600/600 I'PS. 1'k., Pover 200/150 KW. Biflar: 1.3 K-246IA. Primary: \(3.1 / 2.6\) ǏV- -50 ohms (line). Sec ondary \(14 / 11.5 \mathrm{KV}-1000\) ohms Z. Pulse Length. Bitllar': 1.3 Amp, Fitted with magnetron well. . \$39.75 UTAH X-15IT-1: Dual Transformer, 2 Wdgs. jer sec-
tion \(1: 1\) Itatio per sec 13 MHI fiductance 30 ohngs UTAH X-I50T-I: Two sections, 3 Wags. per section. 68G711: Ratio: \(4: 16.7\) Ohms. Pri: 0.23 Ohnis sec. \(\$ 4.50\) TR1049: Ratio: 2:1 Pri, \(220 \mathrm{M} \mathbf{M I}\), 50 Ohms, sec. 0.75 H.
 Ray UX 7896 - Puise Output Pri. 5v. ser. \(418 . \ldots . . \$ 7.50\) Ray UX 8142 - \({ }^{2}\) ulse inversion- \(40 \mathrm{v}+40 \mathrm{v}\). . PHILCO \(352-7250.352-7251.352\).
RAYYHEON: UX8693. UX5986. \(9800, \mathrm{~K} 99948\) YAH \(\$ 9262\), with Cracked Beads, but will operate
 .......... \(\$ 5.00\)


\section*{PULSE NET WORKS}

15A-1.400-50: 15 KV . " A " CKT. 1 microsec. 400 PPS,
 ChT Dual Unit: Unit 1, 3 sections. 0.84 Microsec. 810 Pl's, foy ohims imp.'; Unit \(\because\), \& sections, \(2.2+\) -5E3-1-200-67P. - 5 KV "'F"' Circuit, 1 microsec
 \({ }_{5 \text { microsec, } 60 ~ P 1 ' s . ~ o 7 ~ o h m s ~ i m p e d a n c e . ~ . . . . . . ~}^{6} 15.00\) PDS 200-67P. 3 . mirrosec. 200 K \(\$ 8865\) CHARGING CHOKE: 1is 150 II © . 02A. \(22-\)




\section*{THERMISTORS}

D-164699 Bead Type DCR: 1525-2550 Ohms @ 75 Deg. F, Coeflicient: \(2 \%\) Per Deg Fahr. Type. DCR is \(1525-2550\) 0hms. Rated 25 MA at \(825-1.175\) VDC
Disk Type DCR: 355 0hms @ 75 Deg. F. P.M. \(2.5 \%\), I Watt Disk Type 7120 Ohms @ \(60^{\circ} \mathrm{F} .4220\) 1640 Ohms @ \(120^{\circ} \mathrm{F}\)

\section*{10 CM R.F. HEAD}

Complete R.F. Head and Modulator delivers 50 \(K W\) Peak R.F. at 3000 MC . Pulser delivers 12 KV pulse at 12 Amp . to magnetron of 5 , 1 , or 2 micro\(115 \mathrm{~V}, 400-2400\) Cycles, 1 phase @ 3.5A. Also \(24-28\) VDC'@ 2 A . Exiernal syrc. Pulse of 120 V Req'd. Brand New, Complete with sehematic and ali
tubes

MICROWAVE ANTENNA EQUIPMENT


RAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D RATED CONCERNS SEND P. O. ALL MDSE SUBJECT TO PRIOR SALE AND PRICES SUBJECT TO CHANGE WITHOUT NOTICE
PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED YIA CHEAPEST TRUCK OR RAILEX


Full-Wave Bridge Types
\begin{tabular}{|c|c|c|c|c|}
\hline Current (Cont|nuons) & \[
\begin{gathered}
18 / 14 \\
\text { Volts }
\end{gathered}
\] & \[
\begin{aligned}
& 36 / 28 \\
& \text { Volts }
\end{aligned}
\] & \[
\begin{aligned}
& 54 / 42 \\
& \text { Volts }
\end{aligned}
\] & \[
\begin{aligned}
& 130 / 100 \\
& \text { Volts }
\end{aligned}
\] \\
\hline 1 Amp. & \$1.35 & 52.15 & \$3.70 & 58.50 \\
\hline 2 Amps. & 2.20 & 4.20 & 5.40 & 10.50 \\
\hline \(21 / 2\) Amps. & & & 6.00 & 13.00 \\
\hline 4 Amps. & 4.25 & 7.95 & 12.95 & 25.25 \\
\hline 6 Amps. & 4.75 & 9.00 & 13.50 & 33.00 \\
\hline 10 Amps. & 6.75 & 12.75 & 20.00 & 44.95 \\
\hline 12 Amps. & 8.50 & 16.25 & 20.50 & 49.00 \\
\hline 20 Amps. & 13.25 & 25.50 & 38.00 & 79.50 \\
\hline 24 Amps. & 16.25 & 32.50 & 45.00 & 90.00 \\
\hline 30 Amps. & 20.00 & 38.50 & & \\
\hline 36 Amps. & 25.00 & 48.50 & & \\
\hline
\end{tabular}


\section*{APN-3 SPARE PARTS}

K-901684.501: SCS \#229632.306, Trans.
 K. 901698.501
\(\mathrm{~K} .901695-501\)


\section*{POMER TRYMSEORMERS}
co mb. Transformers- \(115 \mathrm{~V} / 50-60 \mathrm{cps}\) Inpu \(\begin{array}{lll}\text { CT-766 } & 300-0-300 \mathrm{~V} / 120 \mathrm{MA}, 2 \times 5 \mathrm{~V} / 3 \mathrm{AA}, 2.5 \mathrm{~V} / 5 \mathrm{SA} . & \mathbf{5 3 . 9 5} \\ \text { CT-129 } & 550-0-550 \mathrm{~V} \text { (63) } 150 \mathrm{MA}, 6.3 \mathrm{~V} / 4 \mathrm{~A}, 2.5 \mathrm{VCT}\end{array}\) CT-003 \(450-0-450 \mathrm{~V}\) (ल⿵ \(200 \mathrm{~mA}, 10 \mathrm{~V} / 1.5 A, 2.5 \mathrm{~V}\)


\(\$ 2.49\)
2.45
2.49
2.45
2,49
3.45
352-7039



\section*{TRANSFORMER SPECIAL}
 ondary: 300-0-300 V @ 120 MA. D.C.
\(2-5 V\) WDGS@ 3 A ea, A1so 2.5 VCT


DOO CYCLE TRANSFORMERE


\section*{"SEA-DOG" CONVERTER}

Designed for Buships, this ruged. compact dyna motor is rated as follows: 115 VDC- 6 AMPS

OUTPUT: 2613 VDC at 40 AMPS OR- 26 VDC at 20 AMPS Brand, Spanking, New; Original
Packing \(\mathbf{8 9 . 5 0}\) Packing

\section*{VOLTAGE REGULATORS:}

CARBON—PILE TYPES
 Heg, Iesistance: \(1.5-2.5\) oblus
with \(1.2-3.3\) Amps. for 80 V .


ELAND TYPE "C"": Spee: VR \(9000-2\) C. Injut: 20 WEBSTER . \(35 \times 025\). 1*hico 451-1035 Input 21 , Price, Any Model

\section*{GN 35 HAND GENERATORS}

BRAND NEW, IN ORIGINAL CARTONS. WILL DE-
 CRANKS. A GREAT VALUE \(\$ 17.50\)

\section*{CIRCUIT BREAKERS}

HEINEMANN: 01 A .2340 V -Insulated for 5000 V . \(=1510 \mathrm{M}-7: 7 \mathrm{~A} .24 \mathrm{VDC}\) SCS \#311900-7-3...... \$1.65 =AM 16|4-100:100 Amps. 24 VDC ................ \$I. 65

 SCS \(\mathrm{\#} 3 \mathrm{H} 900 \cdot 10-3: 10 \mathrm{VDC}, 10\) Amps.............. \(\$ 1.65\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{TEST OSCILLATOR TS-47/APR} \\
\hline \multicolumn{4}{|l|}{,} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{Fermens :} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline
\end{tabular}

\section*{HIGH-POWER GEAR}

\section*{TRANSTAT:}

Type TH45BG: Input \(130 / 260 \mathrm{~V} .50\) -
60 cy. 1 ph. Output Rango: 60 cy. 1 ph. Output Range:
\(0.260 \mathrm{~V}, 45 \mathrm{~A}\). Max. 11.7 KVA twounit bank. parallet connected.
Completely enclosed in cabinet \(\begin{aligned} & \text { with handwheel } \\ & \text { atop. Brand New }\end{aligned} \$ 235,00\)

\section*{CIRCUIT BREAKER:}

VAC at \(115 A\). Break time adjust able from instant. to 10 mmsuc.
justable from 115 A to \(1000 \%\) over. justable from
load. Brand New

\section*{ALTERNATOR:}

Louis-Allis Co. Type "AL", \(198-C . \quad\) Output \(110 / 220 \mathrm{~V}\)
-1 ph. 60 cy. 9 P.F. 1200 RPM, completely self. regulating with huilt-in exciter. \(\$ 795.00\)

\(\$ 15.00\)

Brand new, original crates..

\footnotetext{
MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.OBB. NEW YORK CITY, SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D. RATED CONCERNS PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED VIA CHEAPEST TRUCK OR RAILEX
}

\section*{WANTED}

ARC-7, 3, ART-13, BC-342, 348, APS-10, 15, TS-13, 35, I46, 147, 148, I74, 175, 263 ETC. All SCR,
\(B C, A N, T S\). ALL TUBES.

TERMS-Minimum order \(\$ 25.00\) all prices FOB New York City. \(25 \%\) deposit with order, balance COD. Rated firms open account. Prices subject to change without notice.

\section*{ALL TUBES STANDARD BRAND, NEW, GUARANTEED}



\section*{TEST EQUIPMENT}

\section*{TSK1/SE K Band Spectrum Analyzer} TS3A/AP Frequency and power meter \(S\) Band 225.00

RF4A/AP Phantom Target \(S\) Band
TS10/APN Altimeter Test Set 35.00
TS12/AP VSWR Test Set for \(X\) Band
TS/13-AP X Band Signal Generator 1000.00
TS14/AP Signal Generator
TS15/AP Flux Meter
TS19/APQ 5 Calibrator
TS-23/APN Altimeter Test Set
TS33/AP X Band Power and Frequency Meter TS/34AP Western El. Synchroscope 240.00
TS35/AP X Band Signal Generator
TS36/AP X Band Power Meter
TS.45/APM-3 X Band Signal Generator 300.00 TS/47/APR 40-400MC Signal Generator TS-56/AP L. Band Slotted Line
TS-59/APN Altimeter Test Set TS-61/AP S Band Echo Box TS-62/AP X Band Echo Box TS69/AP Frequency Meter 400 -1000 MC TS-76/APM-3 Wave Guide Kit for TS-45 TS-89/AP Voltage Divider
TS100 Scope
TS102A/AP Range Calibrator TS 108 Power Load
TSI10/AP S Band Echo Box TS125/AP S Band Power Meter TS126/AP Synchroscope TS146/UP X-Band Test Set TS \(147 \times\) Band Signal Generator TS-148 X Band Spectrum Analyzer TS-173/UP Frequency Meter 550.00 TS174/AP Freq. Meter
TS175 Freq. Meter
TS-250/APN Test Set for Altimeter
TS251 Range Calibrator APN9
TS270 S-Band Echo Box
256B\&R Synchroscope-Mfg DuMont
TSX-45E 3 CM Spectrum Analyzer

\section*{AN/APN-3 SHORAN}

A hlgh precision navigation and bomblng equipment for use in aircraft or shlps. Used with AN/CPN-2 ground beacons. Complete sets available: indicator, computer, comparator etc. Mfg: RCA. Write

\section*{MILITARY ELECTRONICS}

SCR-284 Portable Field Radio, Frequency Range 3-5 Mc. 6 or 12v D.C. . \(\$ 280.00\) SCR-522 Transceiver 10156 Mc. 4 CH . xtal control 24 V \(\$ 129.00\) SCR-536 HANDIE TALKIE. . \(\$ 200.00\) pr. SCR-555 Direction Finder \(18-35 \mathrm{mc}\). Complete installations. \(12 v\) D.C. Input . . . . . . . . . . . . . . . . . . POR
SCR-619 ARMY FIELD RADIO 27-38.9 me. Xtal Control 6-12v D.C. Input. POR
SCR-718A, B, C, High Alt. Altimeter \(0-50,000 \mathrm{ft} .2\) ranges \(110 \mathrm{v} 400-2600\) cyc. \(\quad . . . . . . . . . .\).
AN/ARC-1 Transceiver 100-156 mc xtal controlled \(10 \mathrm{CH} .24 \vee 20\) and 50 CH . available
\(\$ 750.00\)
AN/ARC-3 Transceiver 100-156 mc. xtal controlled \(8 \mathrm{CH}, 24 \mathrm{v} \ldots \$ 1350.00\) AN/ARC-4 Transceiver 140-144 Mc. Xtal control \(4 \mathrm{CH} .12-24 \mathrm{v} \ldots . \$ 65.00\) APT-4 RADAR JAMMER TRANSMITTER 165-780 mc. \(110 \mathrm{v} .400 \mathrm{cyc} . .\). P.O.R. APT-5 RADAR JAMMER TRANSMITTER 30 watt output, uses \(3 C 22\) tube.
\$159.50
AN/APR-1 Receiver \(38-1000 \mathrm{mc}\). in 3 Tuning units. \(110 \mathrm{v} \quad 60-2600\) cyc.
\(\$ 895.00\)

\section*{AN/TPQ-2 K-BAND GROUND RADAR}

Very late moodel set. Used to plat trajectary of artillary and mortar shells and to enable counter battery fire with extreme accuracy. This Radar is so accurate and sensitive if will pick ap movements of personnel on the battletield. It can also be Used to measure height of cloud cover for TRIC. Write

AN/APR-4 Receiver \(38-4000 \mathrm{mc} .5\) Tuning units. 110 v 60 cyc..... POR AN/APR-5 Receiver 1000-3100 mc. 10 mc. IF. bandwidth. 30MC IF 110 v 60 cyc Input . . . . . . . . . \(\$ 475.00\) AN/APR-6 Receiver 6000-10,000 Mc. uses 30 mc . IF 110 v 40 cyc. Input. \(\$ 475.00\) AN/APA-11 Pulse Analyzer used to measure pulse char. of any signal fed to it
. POR BC-639 100-156 MC VHF Receiver with PWR Supply 110 v 60 cyc.....P.O.R AN / APN-9 LORAN RECEIVER Airborne Navigation Equipment . . ..... P.O.R. BC-348 Receiver 28 v Freq. Range, 1.7-18 \(B C-348 \mathrm{R}\) or \(Q\) Receiver 28 v Iate model.

\section*{RADAR}

TS-250 ALTIMETER TEST SET Can be used with APN-1, SCR-718 or most any airborne altimeter. Operates 24 v. D.C. Brand new Mfg'r. . . . . . . . . . . . . . . . P.O.R.
BC-312 Receiver 1-7.18 mc. \(12 v\) D.C. \(\$ 159.50\) BC-342 Receiver \(1.7-18 \mathrm{mc} .110 \mathrm{v}\) A.C. \$159.50 AN/APS-2 S Band Radar Airborne Range 5-100 miles 5" P.P.1. 3" A Scope
AN/APS-3 \(\times\) Band Radar-Search and Homing 5" Screen. Provides Class B indication
\(\$ 950.00\)
AN/APS-4 X Band Search Homing Radar Presentation 3" B Scope . . . \(\$ 950.00\) AN/APS- \(6 \times\) Band Search and Gun Fireing RADAR. Range \(3-100\) miles.
\(\$ 2500.00\)
Micro Wave Radio Telephone \& Relay Equipment 6400-7200 MC. Complete Equipment in 6 ft . rack cabinets. Manufactured Sperry-Gyroscope. POR

\section*{10 CM STANDARD FREQUENCY BEACON CAVITIES Mfg. Bernard Rice. Price \(\$ 18.50\) each}

AN/APS-10 LIGHTWEIGHT SEARCH AND NAVIGATION RADAR. Freq. 9375 mc . Range approx. 90 miles. 110v 400 cyc. 5"' P.P.I. ....... .POR AN/APS-15A and B High Resolution \(X\) BAND Navigation and Blind Bombing Radar. Presentation on \(5^{\prime \prime} \mathrm{PPI}\) and \(3^{\prime \prime}\) \(\mathrm{A}^{\prime \prime}\) Scope. Output 40 KW . 115 v 400 cye.

POR
AN/APN-2 Complete Sets available checked out, also SCR-729 available. POR
UPN-2 S Band Radar Beacon. Has range 35 miles, used to send coded signals to Radars. \(110 v 60\) cye Input. \(\$ 350.00\) UPN-4 Portable 3 cm Radar Beacon. Used to send coded signals to Radar 12 v D.C. Input \(\cdots \cdots\). . . . . . . .

SO-8 MARINE RADAR S-BAND. \(\$ 2000\) SO-13 MARINE RADAR S-BAND \$2250

\section*{SCR 291A}

Long range automatic direction finder. Used to take bearings on aircraft, shlps, ete. Freq. range \(1.5-30 \mathrm{Mc}\). input 110 l
60 cycle. Coomplete sets ovalible includ60 eycle. Coomplete sets avaliable includ-
ing receiver, indicator, antennees, cables, etc. Write



\section*{Prompt ANSWERS} to business problems

MISCELLANEOUS business problems are daily being solved quickly and easily by the use of the Searchlight (classified advertising) Sections of this and other McGraw-Hill publications.

When you want additional employees, want to buy or sell used or surplus new equipment; want additional products to manufacture, seek additional capital, or have other business wants-advertise them in the Searchlight Section for quick, profitable results.

\author{
American Machinist \\ Aviation Week \\ Business Week \\ Bus Transportation \\ Chemical Engineering \\ Chemical Week \\ Coal Age \\ Construction Methods \& Equipment \\ Electrical Construction \& Maintenance \\ Electrical Merchandising \\ Electrical World \\ Electronics
}

Eng. \& Mining Journal
E. \& M. J. Markets

Engineering News-Record
Factory Mgt. \& Maintenance
Fleet Owner
Food Engineering
Nucleonics
Power
Product Engineering
Textile World
Welding Engineer
Classified Advertising Division

\section*{McGRAW-HILL PUBLISHING CO.}

330 W. 42nd St., New York City 36, N. Y.
A.C. INDUCTION MOTOR

115 volis 60 cYCLE 1.9 RPM; Torgue oz In. 7 ; ; mad Nicro Switah monuted in bracket Assy. Whitzen Cabot Motor Tsper fiwe \(2505-\mathrm{Price}\)......... \(\$ 24.95\)


\section*{COAXIAL CABLES:}

RG-B/U (Sl'bCIAL) 56.5 ohmis, Same size as Her
 olls (a) \(6 / 2 c\) per tt

\section*{PE-103 DYNAMOTOR}

Witll lilear Imasa and Cables, 6 or 12 VIC input:
\(\$ 29.95\)
TRANSFORMERS-100V. 60 Cycle Pri. 5 VOLT CT-25A-10.000 1 . Ins. OPEN FRAME-
 Sec. 24 Volt 6 Amps.
Sec. \(6-24\) or 30 Volts, 8 Amps............................ \(\$ 5.95\)

\section*{MOTORS: 24 VOLT DC \(1 / 10 \mathrm{HP}\).}
 GEAR HEAD tor above motor, Rall Rearing Geared Nhaft., 11 in 1 reduction. Price................ \(\$ 5.95\)
COMBINATION: Motor \& Reduction Gear.... \(\$ 10.00\) COMBINATION: Moror \& Reduction Gear.... \(\$ 10.00\)
24 VAC OPEN FRAME 20 RIMI Douhle Shaft Back 24 VAC OPEN FRAME-20 RIPMI DOnhe Shat Bach 24/VAC OPEN FRAME-- RPM Back (iear Motor. 21 VOC REVERSIBLE-5000 JITM with Mamotic IFinkt. Filange Mount spline Shaft-size: \(5 / \beta^{\prime \prime} \times 3 / 16^{\prime \prime}\)
 2f VOC AIRWAY MOTOR - Model =Z 350 An-
 26 VOLT 60 CYCLE - fo ISLM Syuchronous Cramer




24 VDC REVERSIBLE



 Mornt ge: \(x .3-1 / 2\). Air Assor. No, EE-763. \(\$ 6.9\)

 \(\$ 5.95\)

FREE SURPLUS LISTING Sheet the press! Send for wour FIRSE copy today. Mailed promptls on request

L O O K at these items we have in stock! many, many more NOT LISTED! WRITE US YOUR NEEDS-IMMEDIATE REPLY!
\begin{tabular}{|c|c|c|c|}
\hline ANTENNAS : & DV'NAMOTORS : & RADAR* & Miscellaneous : \\
\hline AN-104B & DM-21 & TRANSMITTERS: & RL-4213 \\
\hline A-104A
\(\mathrm{AN}-109\) & DM-25 & APS-3. & \(\underset{\mathrm{MC}-235}{ }\) \\
\hline AN-117 & DM-36 & APT-5/APS-4 & \(\mathrm{Mr} \mathrm{m}_{\mathbf{M}}\) \\
\hline AN-130 & DM-40 & T-28 APT & M-359 \\
\hline AN-131 & DM-41 & T-39/APQ-9 & BC-434A \\
\hline AN-147 & DM-42 & AM-14/APT & \(13 \mathrm{C}-1366\) \\
\hline \(\mathrm{AN-95}^{\mathrm{MS}}\)-49 56 & DM-43 & AM-18/APT & BC-450 \\
\hline \[
\begin{aligned}
& \text { MS-49 to } 56 \\
& \text { AH-38-GR }
\end{aligned}
\] & PM-45 \({ }^{\text {PE }}\) &  & (11C-476 \\
\hline RC-173 & PE-94 &  & WT-7. \\
\hline AT1/APN-2 & PE-103 & \(13 \mathrm{C}-454\) & H-10A \\
\hline AT2/APN-2 & BD-77 & BC. 455 & ME-57 \\
\hline AT37/APT & BD-87 & 13C-456 & BC-347 \\
\hline AT38/APT & \(13 \mathrm{D}-93\)
\(\mathrm{DY}-22\) & RA-101) & B6.709 \\
\hline AT49/APR-4 & D. \({ }^{\text {D }}\) - & RT-7APN-1 & B)-72
(1)-116 \\
\hline AS27/ARN-5 & MP-2813: & \(\mathrm{r}^{\circ}-2 / \mathrm{CRN}-1\) & EE-6.5 \\
\hline AS61/ARN-5 & MP-10G & M ARK II & K-13 \\
\hline AS62/APR-2 & PE-206 & SCR-284 & N-6A \\
\hline
\end{tabular}

\section*{}

\section*{PULSE TRANSFORMER}


TMPE UX 7350 Each Coil-50-T\#36E Max. DC Res, Ohms \(1 \& 8=4.02 \Omega\) \(2 \& 7=4.5428\) \(3 \& 4=2.357 \Omega\)
\(5 \& 6=2.185 \Omega\)

Tube base plug in type
Here are precision made, high quality compact pulse transformers wound on hypersil cores. They are built in octal bakelite tube bases and can be adapted to many uses. They are completely impregnated and sealed. SUGGGESTED USES
- Blocking Oscillator, Multivibrator and
- Wherever Accurate Timing and Triggering are necessary. Unexcelled in circuit applications for gen. erating low power and low voltage pulses. - Can be used in circuits utilizing repetition rates from 0 to well over 1 MC and pulse widths ranging from 05 Microsecond up.
Price \(\$ 4.50\) each Immediate Delivery

the Leoctinelectronics
B11 Boylston St., Boston 16, Mass. CO 7-4700

\section*{SAVE ON TUBES BRAND NEW TUBES GUARANTEED TUBES}


\section*{QUARTZ CRYSTALS}

Standard makes such as crystal Research, Bliley, etc. made to a tolerance of \(.03 \%\) or better and are available in the following frequencier and types: Type FT-243 (Pin Spacing 0.485, Pin dia. 0.093')
Price \(\$ 1.15\) each. In lots of 25 (can be ordered in various frequencies) Price \(\$ 23.75\)
NOTE:-ln the frequencies listed below, those shown sinqly are in quantities of 50 or more, while others showing two frequencies with the word "to" in between indicates a variety of frequencies, between these limits, In small quantities, for example:-" 3761 to 2770 " indicates availability in 3762, 3763-3770 KC.

FREQUENCY (IN KILOCYCLES)


BE1205-We can supply Crystals ground to a tolerance of \(.01 \%\) to a frequency close in value to those crystals ltemized in BEI201, BE1202, or BE1203.
EDLIE ELECTRONICS, INC.

\section*{SEARCHLIGHT SECTION}

\section*{CONDENSERS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{OIL . . CONDENSER SPECIALS . . MICA} \\
\hline \(6 \mathrm{mfd}-150 \mathrm{~V}\). . . . . . . \$ & \(312 \mathrm{mfd}-450 \mathrm{~V}\). . . . \(\$ .69\) \\
\hline Three term. dual 3nid. oil cond. com- & OVER 16,000 SOLD \({ }^{\text {a }}\) Rectangular ease-Electrolytic \\
\hline  & \(10 \mathrm{mfd}-600 \mathrm{~V}\). . \(\$ .98\). \(00025 \mathrm{mfd}-1200 \mathrm{~V}\)... \$. 19 \\
\hline wrorks. \({ }^{\text {a }} 1 \mathrm{mfd}-230\) VAC . . \$ &  \\
\hline 2 S . T. Bathtub &  \\
\hline \(7 \mathrm{mfd}-600 \mathrm{~V}\). \(\$ 1.4\) &  \\
\hline  &  \\
\hline \(4 \mathrm{mfd}-600 \mathrm{~V} . . . . . . \$ 1.10\) &  \\
\hline Dual 2mifd section; 4 glasseal term &  \\
\hline
\end{tabular}


TRANS. MICA CONDS.
 BATH


Available in Other Sizes

CHANNEL CONDS.


METAL TUBULAR OIL CONDS.


\section*{MICA CONDENSERS}
5. 6, 8. 10, 15, 15, 25, 30, 34, 39, \(50,70,75,100\),
\(140,150,185,200,230,240,250,300,350\), \(540,150,185,200,230,240,250,300,350\),
\(140,400,470,500,510.600,650,700,750\), \begin{tabular}{l}
\(390,400,470,500.510,600650,700,750\), \\
\(1000,1200+1550.1400,1500.2000,2200\), \\
12000 \\
\hline
\end{tabular} \(2400,300,3300,3700.3900,4000,470\),
\(5000,5100,6600,620,6500,7900,7950\), 7960, \(8000,9100 \& 10,000 \mathrm{MMId}\).

\section*{PRICE SCHEDULE}

5 to 750 mmid 1000
2000
to
5000
500
mmind
,
Special Mica Kit—100@ \(\$ 3.50\)

Write: ART HANKINS, Owner

\section*{WHOLESALE ONLY}

ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT HYDRAULICS

RADIO \& ELECTRONIC SURPLUS 13933-9 BRUSH STREET
Delroif 3, Mich. TO 3, 3403

\section*{GLASS TUBING \\ PYREX - NONEX - URANIUM} BULBS \& CYLINDERS WRITE FOR FREE MONTHLY LIST HOUDE SUPPLY COMPANY PHONE KEYPORT 7-128 M. R. \#1 Box 86X
```

NATVAR-YELLOW VARNISHED CAMBRIC
ClEARANCE SALE
Cloth:5000 LIn. Yds, .005"\#\#37" wide at 454 yd.

```

```

Seamless bias tape: 2500 Gross Y ds. Ot \$s.70 per
Gross Yds.
samples on Requegt. Quantity Discounts.
All prices F.O.B.your plan
622 Washington St. San Franclsco 11, Callf.

```

4 PDT RELAY
26.5 VDC midget 425 ohm \$2.95

Above frame also in:


 RELAY 3 PDT 24 vde 250 ohm Clare Type K. \(\$ 2.75\) CONNECTOR 15 in Amphenol \#26.151.... 8.69 SBAND CONVERTER Navy CG - 46 ABW W. \(\quad 89.50\)



 BIRTCHER CLAMPS 926A, 926B, 926 C CHOKE 2 H 70 man .100 ohm wat 5.5 oz . TOGGLE switch spst C.H. \#8280.
CONDENSERS in stock: bathtubs from 02 400v to 2 mfd-600v, upright oils (CP65 pyranols, YAB, etc) from \(3 \mathrm{x} .1-600 \mathrm{v}\) to 1 mfd 600 v . Large olis from \(-1-7500\) to 1 mfd-2,000w. Also mica, silattes. Detailed listing availiable.

PL-144. SO-124, PL-68, AN-3106-10s-28, 83-1H. 300.500 cycle 1400 watt/variable freq. electronio generator
\(2 \%\). 002 Silver Mlca- 3 AAG fusesall Material New, Olean, Guaranteed
Partial list only. Write for Bulletin E
EMPIRE ELECTRONICS CO.
409 Ave. L, Brooklyn 30, N.Y. Cloverdale 2-2411

\section*{SEARCH RECEIVER-ARD-2}

Frequency range 80 to 3000 Mcs. Measures RF signals from 80 to 3000 Mcs and pulse rates from 50 to 8000 cycles The ARD- 2 can be used as a Direction Finder to locate signals, or as a requency meter. Originally designed and used ly USN aircraft. Ideally suited for military, laboratory Equipnent consists of the following:
ANTENNA DETECTOR-CMD-GGAFH - Has variaber plated tuning stub with calibrated scale.
AMPLIFIER CMD-50ADC - has three stage pulse amplifter, a trigger circuit, a pulse rate counter circuif anditier power supoly which is operative on 115 volts AC 60 to 2400 cycles current, regulated.
TEST OSCILLATOR-CMD-60ABG-has cavity prequancy of 400 eycles with selection of four pulse repetition rates
ALL CABLES AND FITTINGS. ACCESfor immediate installation, plus two Technleal Manuals.
SPARE PARTS-Steal chest includes spares for components and two extra sets of spare tubes: Guaranteed NEW.
All the ahove in
Wt.: 113 -lbs.
Price each.... \(\$ 375^{00}\)
Radio Communications in our sfocks
TWX-N, Y. 1-223
COMMUNICATION DEVICES CO
233! Twelfth Ave.
NYC 27, N. Y.
Tol: Ad
4.6174


\section*{Electronics,INC. 92 Broad Street, Babson Park 57, Mass, - Wellesley 5-5210-1}

\section*{SPECIAL VALUES}

TV. Alicnment Signal Generator channels
Hazeltint Motlel 1314.1317 Complete
 TS-33/AP Frequency Meter 8700-9500MC. \(\begin{array}{lll}\mathrm{BC}-221 \& L M \text { Freq. Meters. .....EXCC. } & 225.00 \\ 99.50\end{array}\) \(\begin{array}{lll}\text { Signal Generator Ferris } 14 \mathrm{C} \text {. } 75.30 \text {. } & 99.50 \\ \text { OOOKC. } & 350.00\end{array}\) TS-12/AP \(X\) Band Test Sets Complete TS.13/AP X Band. Signal Generator EXC. Model 80 Signal Generator-Measurements 804 C Sinai Generator 8. 330 mc .......EXC. TS.146/UP \(X\) Band signal Generator MEIICURF Wattmeter..... LIKE NEW AN/SGG-1 Teletypo Terminal Set
Capacitance Bridge-General Radio 7 LIGB
Impedence Bridge-General Radióo \({ }_{160 \mathrm{~A}} \mathrm{EXC}\).
225.00

APNGE STOCK OF ARC-1, ARC-3, ART-13 APN4A, APN4B. APR4, ARB, BC-312, BC-342,

 TS-34/AP, TS-10/AP, TS-IB4/AP, 14C. Plugs
and Selsyns and Selsyns
PUR-Price

\section*{WANTED}

All types uf radio and electronic surplus. We es peciahy need: APA10, APN9, APR4, APN4, ARCL, ARC3, ART 13 , ATC, BC221, BC342, BC348, BC611, MGI49F, MG149H. PUI4, R5/ARN7, R5A LM18, SCR718C, TCS, TN16, T'N17. TN19, TN54, TS3
 6DG, \(6 \mathrm{G}, 115 \mathrm{~V}\), 60 , IF, IG, 5 DCT , 5DG, 5F, 5G, of Hewleft Packard, General Radio Co., Measure. ments Corp.. Boonton Radio, Ferris, Leeds \& Northrup. and other test equipment
Please state accurate doscription, condition. and your lowest price. Explain modification, if any
We pay freight charges. e pay freight charges.

NEW CATALOG NOW AVAILABLE
Photocon Sales
417 N. Foothill Blyd.
SYcamore 2.4131
CABLE: Photocon, Pasadena.

\section*{LOOKING FOR HARD-TO-FIND PARTS \& EQUIPMENT?}

Just a partial list of ous present stock:
- BC-348 - BC-342 - ART-13
- ARC-3 - APN-9 - LM
- BC-221 • BC-611
- VARIOUS TEST EQUIPMENT NEW EXPORT DIVISION FOR ALL FOREIGN ORDERS Prompt attention to all inquiries-all languages

\section*{Atten: Schools, Lobs, Hams!} WE PAY MORE FOR RADIO PARTS \& EQUIPMENT Cash in on your surplus equipmentor wo'll trade for something you really
noed. Write today!

Write for FREE Surplus Catalog.
HARJO SALES CO
4109 BURBANK BLVD. P. O. Box 1187

Magnolia Park Station BURBANK, CALIFORNIA Coble: HARJO

\section*{WESTERN EIECTRIC TUBES \\ \begin{tabular}{|c|c|c|c|}
\hline & Available & From & Stock \\
\hline 2 C 51 & 1.25 & 373 A & 4.75 \\
\hline 1010 & . 1.39 & 374 A & ........ 4.25 \\
\hline 101 F & ........... 1.39 & 343 A & . 9.75 \\
\hline 101L & . . . . . . . . . . 75 & 394 A & . 3.75 \\
\hline 102F & . . . . . . . . 1.39 & 396A & 2C5 \({ }_{\text {a }}\). . . . . 4.25 \\
\hline 102 L & .......... 1.39 & 403A & . 3.25 \\
\hline 104 D & ...... 1.39 & 403 B & ......3.50 \\
\hline 244 A & . . . . . . . . . 5.50 & 404 A & . . . . . 16.95 \\
\hline 310 A & . 4.75 & 406 A & . . . . . P.U.R. \\
\hline 310 B & .. 6.75 & 407 A & .......4.75 \\
\hline 311 A & . 4.75 & 408 A & . . . . . . . . 2.75 \\
\hline 3118 & .......... 5.75 & 412 A & …........ 3.50 \\
\hline 336 A & ...4. 25 & 416 A & . . ......P.U.R. \\
\hline 337 A & . . 4.50 & 417A & ......... 10.95 \\
\hline 349 A & . . . . . . . . . 6.75 & 418A & . . . . . . . . 9.75 \\
\hline 350 B & ..... 6.75 & 421 A & .... 8.80 \\
\hline \(\sim 51 \mathrm{~A}\) & ...... 7.75 & 422 A & ...... 6.59 \\
\hline
\end{tabular} \\ Calvert Electronics \\ I NCORPORATED \\ 59 FOURTH AVE. NEW YORK 3, N. Y. OREGON 4-3027}

- Keceiving tube listingsupon request
- Usuol terms apply

\title{
western engineers
}

ELK GROVE, CALIFORNIA
george whiting, owner
Unconditional guarantee extended Subject to prior disposition

\section*{CARRIER EQUIPMENT}

Western Electric CF.IA 4-channel carrier tolephone terminals.
EE-101-A 2-channel 1000/20 cycle carrier ringers. CFD-B A-channel carrier pilot regulated telephone erminals complete with four channels \(1000 / 20\) CFD-B 4 -cbannel pilot regulated telephone repeat\(\stackrel{\text { ert. }}{\text { C. }} \mathrm{H}\)-A \(V\). \(F\). telegraph in from 2. to \(\mathbf{1 2 - c h a n n e l ~}\) terminals.
Fnicin or 2 automatic regulation, duplex signaling each channel. Carrier frequencies anove " C ". Complete engineering and instaliation services offered.

RAILWAY COMMUNICATIONS, INC
Raytown, Missouri
Relephone: FLemlng 212

IN STOCK FOR IMMEDIATE DELIVERY SIGMA 4F 8000 OHM RELAYS All New, Contract Termination Material-Production Quantities Available 5pecial Low Price-3 for \(\$ 10.25\) - 10 for \(\$ 32.50-100\) for \(\$ 300.00\) Super-Sensitive BK-35 Type Relays, \(\mathbf{1 0 , 0 0 0}\) ohm at \(1 / 2 \mathrm{ma}\), 5PDT \(\$ 4.95\)

HERE IS ANOTHER GOOD NUMBER
Type DYR-6011, Dual . 1 mfd 600 VDC, 3 Side Terminals Bathtub Capacitar 100,000 Clean New Units Available-Priced at \(171 / 2 ¢\) for Quick Sale Note: at this price you can use them as is, tie both sections together for approx. . 25 mfd capacity or use ELIGENT FRIENDLY SERVICE ON ELECTRONIC ITEMS "CALL ON ESSCO" ELECTRONIC SPECIALTY SUPPLY CO.
58 WALKER STREET NEW YORK CITY 13, N. Y.
WALKER 5-8187

ow
Prices
\begin{tabular}{|c|c|c|c|c|}
\hline Our Price & \begin{tabular}{l}
Type \\
12SR7
\end{tabular} & Our Price .69 & \[
\begin{aligned}
& \text { Type } \\
& 805 .
\end{aligned}
\] & \[
\begin{array}{r}
\text { Our Price } \\
\quad 3.00
\end{array}
\] \\
\hline . 80 & 12SQ7 & . 56 & 808 & 1.75 \\
\hline . 60 & 35Z4GT & . 59 & 830B. & 2.40 \\
\hline . 58 & 35Z5GT & . 40 & 864. & 20 \\
\hline . 60 & 50L6GT & . 50 & 866A & 1.10 \\
\hline . 55 & 42. & . 60 & 9002. & 80 \\
\hline . 60 & 2 E 22 & 1.90 & 9004. & . 38 \\
\hline . 80 & 5CP1 & 5.00 & 9006 & . 35 \\
\hline . 50 & 5BP1 & 4.00 & 2050. & 1.50 \\
\hline . 60 & 100TH. & 6.00 & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\[
\begin{gathered}
\text { SPEC1AL } \\
\text { 100th List } \$ 18.50 \\
\text { Our Price } \$ 6.00
\end{gathered}
\]}} \\
\hline . 65 & 357 A & 7.00
2.50 & & \\
\hline . 50 & 803 & 2.50 & & \\
\hline
\end{tabular} 12SK7 Met
Type
6K6GT .....
6K8G....
6SG7
6SK7 Met...
6SH7
6SK7GT....
6SN7GT . .
6SS7.
6X5GT ...
7Q7
12AU7...
12SK7 Met

Purbaing A
 today tor detailed price list.


VHF CONTROL TOWER COMPLETE TRANSMITTER-RECEIVER, FREQUENCY METER, POWER SUPPLY.
 G6 MC. \(110 / 220 V_{\text {WR }}\) G0 CPS. LIKE NEW.
GUARANTEED. WRITE. FOR COM. PLETE LITERATURE ................

TRANSMITTER
TA-2J-24
High powered crystal controlled, long-range transmitKo . Frequency range: \(2000-600\) separate channels are provid
2.8-15 MC. Fidd
and ed. New. Send for complete

\section*{Badar}
\(\begin{array}{ll}\text { APR-4 New, APT-3 } & \text { RC-224 } \\ \text { Complete } \\ \text { APT-4 } & \\ \text { RC- }\end{array}\)


 APT-1 APT-2 RC-214


ARROW TO GET TS. 159 TPX \(\underset{\substack{\text { Can be bued as } \\ \text { frequency meter. }}}{\text { as }}\) irequency meter.
\(150-200 \mathrm{MC}\). Sep-
arate arate 30 MC . out-
put. Unit is crys-
 meter
scales:
\(0-50\) and
0
 plete, new, with achematic. \(\mathbf{\$ 6 9 . 5 0}\)
Only

\section*{- Tear Equifment}

Complete Line
DuM ont 224-A Oscillosecope. TS127/U
1-77 Hickolk Tuhe Checker. TS131 1-208 FM Signal Ginerator HPC Model 644 Multimetor TS-173/UP 1-198 Packard 200-C
 \({ }^{\text {CWI-60ABJ }}\) TS \(27 / \mathrm{TSM}\) \({ }_{1}^{1 \mathrm{E}-36}\)

\section*{\begin{tabular}{c}
\(\substack{1.95 \\
1.96-\mathrm{A} \\
1-122}\) \\
\hline
\end{tabular} \\ }
 \begin{tabular}{ll} 
1-212 & TS5M AP \\
1-22 & TS61/AP \\
\hline
\end{tabular} TS-3A/AP TS99 TS10A/APN TS100/AP LAD Sig. Gen TSI \(1 /\) AP TS Partikit TS-118/AP 600 Mc .
TS16/APN TS

HEWLETT-PACKARD \(205{ }^{1-100 A}\) Sot
RECEIVERS-TRANSMITTERS \(\begin{array}{lll}\text { ARC-1 } \\ \text { ARC-34 } & \text { IPE-125AX } \\ \text { R-9/APN-4 } & \text { RTAA/IB } \\ \text { SCR }\end{array}\)


 RM-26 SCR-561 Equid. Installation SCR-536 Motorola Model Fstr-250 EE 89 phono amplifier GOVERNMENTS, AIRLINES \(\left\{\begin{array}{l}\text { GOVERNMENTS, AIRLINES } \\ \text { AND INDUSTRIALS! }\end{array}\right.\) Send for FREE Catalogue No. tory, Industrial and Aviation Electronies. WE HAVE THE LARGEST INVENTORY THE SUCH EQUIPMENT IN THE
UNITED STATES.

ARROW SALES INC.
 Poplar 5-1810 - STanley 7-6005 - Cabic Address: ArRowsales

\section*{CHECK AND COMPARE OUR COMPLETE STOCKS}

The following is just a portial list of the current electronic and aircraft equipment now in our warehouse. Write for complete informaplies to all inquiries

RC-103 \& AN/ARN-5 ILS New in original carfons. Complete. Consists of all accessories, plus AS-
27 R89B/ARN-5 and BC-733D Modified to flag alarm.

TBS 4 \& 5, NEW, COMPLETE IE-17 TEST SET
AN/ARN-7 COMPLETE
SCR-269 COMPLETE
AN/ARC-1 BHF EQUIPMENT

\section*{BC-611 \& BC-721 HANDIE \\ TALKIES, Plus SPARE PARTS.} Quantity available.
AN/ART-13 EQUIPMENT ATC XMTR T-47A/ART-13 XMTR T-47/ART-13 XMTR CU-24 ANT. LOAD CU-25 ANT. LOAD DY-11 \& 12 Dynam't'r MT-283 MOUNT MT-284 MOUNT 0-16 LFO SA-22 ANT. LOAD

ATC DYNAM'T'R

AN/APG-13A RADAR
Absolutely complete, brand new

AN/APN-2
SCR-729 New
TA2J-24
RTA-1B
BC-1016
APA-6 INDICATOR
APA-11 INDICATOR
APA-17 RADAR
HS-33 HEAD SETS,
NEW
MG-149F \& H
MG-153
APS-2, 3, \& 15 Components AN/ARC-5 VHF SCR-274 \& ARC-5, Command Equipm' R-4/ARR-2 Receivers BC-640 VHF XMTR SCR-510
SCR-522
SPARE PARTS
SCR-720
SO-7
AN/ARN-7
SCR-269
SCR-522
AN/ART-13
AN/ARC-1
BC-611
SCR-718 A, AM, B \& C
Altimeter equipment-complete
To insure the finest of service and quality of merchandise, we have just recently put into operation our own reconditioning and function-testing plant, complete with all facilities.


EXPORT INQUIRIES INVITED We carry an unusually large stock of Airline Eqitq fort, Teur low equipment, Radar Sets, etc. inquiries. Write furnish immediato answers to all inquiries. Write today!


ELECTRONIC INDUSTRIES INC.
2033 West Venice Blyd.—Dept. E-23 Los Angeles 6, California Phone: REpublic 3-1127

SELENIUM RECTIFIERS


FULL WAVE BRIDGE TYPES A.C. \(0-26\) VAC. \(0-52\) VAC \(0-130\) VAC \(0-156\) VAC

\begin{tabular}{|c|c|c|c|c|}
\hline .
1.0 & \(\$ 2.75\)
3.65 & \(\$ 5.10\)
6.85 & 59.85
15.50 & \$11.40 \\
\hline 1.5
2.5 & 3.90
5.55 & \[
\begin{array}{r}
7.35 \\
10.10
\end{array}
\] & \[
\begin{aligned}
& 16.20 \\
& 20.50
\end{aligned}
\] & 18.90
23.95 \\
\hline \[
\begin{aligned}
& 4.0 \\
& 6.0 \\
& 8.0
\end{aligned}
\] & 7.45
8.00
9.65 & 13.95
14.65
18.20 & 29.65
30.40
42.00 & 36.00
37.00
49.60 \\
\hline \[
\begin{aligned}
& 12.0 \\
& 15.0 \\
& 22.5
\end{aligned}
\] & \[
\begin{aligned}
& 10.25 \\
& 17.40 \\
& 18.20
\end{aligned}
\] & \[
\begin{aligned}
& 19.05 \\
& 32.80 \\
& 34.30
\end{aligned}
\] & 43.85 & 51.80 \\
\hline
\end{tabular}

All Primaries Tapped
110.125 Vac 60 Cycles
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { SEC. } \\
& \text { voLTS. }
\end{aligned}
\] & AMPS & Price \\
\hline \[
\begin{gathered}
18 V A C \\
\text { tappedatgy }
\end{gathered}
\] & \[
\begin{aligned}
& 10 \\
& 35 \\
& 79
\end{aligned}
\] & \[
\begin{aligned}
& \$ 9.95 \\
& \mathbf{3 5 . 0 0} \\
& \mathbf{6 0 . 0 0}
\end{aligned}
\] \\
\hline 36 VaC & \[
\begin{array}{r}
2 \\
5 \\
10 \\
10 \\
\frac{20}{30} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \$ 5.95 \\
& 7.86 \\
& 12.85 \\
& 28.50 \\
& 45.00
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{HI-AMP CHOKES} \\
\hline - 5 AMPS & .03 HY & . 2 olrm & \$7.95 \\
\hline 20 AMPS & . 015 HY & .06 OHM
.03 OHM & 13.95
\(\mathbf{2 8 . 5 0}\) \\
\hline
\end{tabular}

FILTER CAPACITORS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{(3)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { W.V. } \\
& \text { D.c. } \\
& 12 \\
& 15 \\
& 15
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Cap. } \\
& 3001 \\
& \text { Mo00 } \\
& 1000
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Price } \\
\text { S1.50 } \\
1.75 \\
1.25
\end{gathered}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{W.v. Capd}} & \multirow[t]{2}{*}{} \\
\hline & & & & & & \\
\hline & & & & 50 & 1000 & 1.9 \\
\hline \multirow{5}{*}{} & & & & & & \\
\hline & 18 & 4000 & 2.50 & 150 & \({ }^{200}\) & \({ }_{3}^{1.7}\) \\
\hline & 18 & 2000 & 1.45 & 2(1) & 1200 & 6.50 \\
\hline & & & & & & \\
\hline & \(\begin{array}{r}35 \\ \hline\end{array}\) & 2000
3000 & 2.00
2.25 & & & \\
\hline
\end{tabular}

MOTOR SPECIAL

\(2 \times .15\) MFD 8000 V.D.C. Us both section in parallel for 3 MFD of in series for . 075 MFD. Ca Lots of six in orig. carton........ 95

\section*{MISCELLANEOUS}

Grain-O-Wheat bulbs, type 319A, 3volts Doz \(\$ 1.00\) Selenium Rect, Bridge, \(36 \mathrm{VAC-28}\) VDC
Circuit Brikr, 10 Amp. \(\$ 1.00\)
Amp, thermal. pus h.t.
 Thordarson Choke 10 Hys. 55 M t. Fully Cased.. Oil Capacitor, \(8 \mathrm{MFD} 660 \mathrm{VAC} \mathrm{K} \mathbf{G} \mathbf{M} \mathbf{6 0 8 0}\) Doa. Phase Inverter, FTR MC-413-A W/Lubes Oil Capacitor, 5 MFD 400 VDC , fibct. C

\section*{FHITER CHOKE}

50 Hys. 40 ma 1780v. HMS Test. Ray theon Type U7402. Dimen. \(31^{\prime \prime} \times 316^{\circ}\) x \(31{ }^{1 / 4}\). Shps; weight 6 lba........... \(\$ 1.5\)

Minimum order 55.00 . All prices are FOB ship pling point. Send check or Mo. We will shlp send P.O. Term charges coflect. Rated concern send P.O., Terms Not 10 days

\section*{GATES ELECTRIC}

63 WEST BROADWAY
New York, N. Y. Phone WO 2-7587

\section*{MARINE TRANSMITTERS}

TCS radiotelephone 1.5 to 12 Mc for mar－ ine or moble use．Operates from 12 VDC ． Complete with all accessories．Excellent TBA 1 K W Professionally converted for \(110 / 22060\) cy operation and modulated． Write for complete description．．．．\(\$ 3800.00\) SO－1 \＆SO－2 Radar pully reconditioned，
like new overseas packed．．．．．．．．\(\$ 250.00\)

\section*{HIGH VOLTAGE CONDENSERS}
\begin{tabular}{|c|c|c|c|}
\hline Cat． & MFD & WVDC？ & \\
\hline G．E． 26 F 44 & － 8 & \(2 . \mathrm{KV}\) & 9.95 \\
\hline G．E．23F47 & & \(4{ }^{\mathbf{K}} \mathrm{K}\) & 9.95 \\
\hline G．E．25F509 & 1 & 6 KV & I 7.50 \\
\hline G．E．25F774 & ． 1 X ． 1 & 17 KV & 8.00 \\
\hline G．E．25F450 & ． 1 & 7.5 KV & 7.50 \\
\hline G．E．25F36 & ． 1 & 12 KV & 9.50 \\
\hline C．D & ． 65 & 12.5 KV & 17.50 \\
\hline Intereon & ． 25 & 15 KV & 19.95 \\
\hline G．E． \(14 F\) & 1.0 & 15 KV & 39.50 \\
\hline Intereen & ． 5 & 25 KV & 49.50 \\
\hline Intereen & 1.0 & 25 KV & 69.50 \\
\hline Fast A6734 & 1.0 & 25 KV & 89.50 \\
\hline G．E． 14 F 71 & ． 25 & 32.5 K & 60.00 \\
\hline \multicolumn{4}{|l|}{HIGH CURRENT MICA CONDENSERS} \\
\hline \multicolumn{4}{|l|}{Ceramic cased，Sangamo type G1 or similar} \\
\hline \(\mathrm{Mfd}^{\text {M }}\) &  & Amp \({ }_{25} 1 \mathrm{~m}\) & 7.50 \\
\hline ． 08 & 1.5 KV & 35 & 12.50 \\
\hline ． 09 & 1.5 KV & 40 & 15.00 \\
\hline ． 02 & 3 KV & 21 （ 600 Kc ） & 15.00 \\
\hline ． 00035 & 6 KV & 5 & 12.50 \\
\hline ． 00075 & 6 KV & 7 & 14.50 \\
\hline ． 0005 & 6 KV & 5 & 14.00 \\
\hline \multicolumn{4}{|c|}{Type G－2 or Similar} \\
\hline ． 0012 & 5 KV & 8 & 17.50 \\
\hline ． 003 & 7 KV & 15 & 19.00 \\
\hline ． 0002 & 10 KV & & 19.50 \\
\hline ． 00025 & 10 KV & 3 & 19.50 \\
\hline ． 0003 & 10 KV & & 19.50 \\
\hline ． 0000 & 10 KV & 6 & 19.50 \\
\hline ． 00057 & 10 KV & 8 & 19.50 \\
\hline ． 00065 & 10 KV & 6 & 19.50 \\
\hline \multicolumn{4}{|c|}{Type G－3 or Similar} \\
\hline ． 05 & 3 KV & 50 & 45.00 \\
\hline ． 005 & 5.5 KV & 25 & 45.00 \\
\hline ． 00015 & 20 KV & 5 & 36．00 \\
\hline 0012 & 20 KV & 15 & 36.10 \\
\hline
\end{tabular}

400 V TRANSFORMERS All primaries 115 V 400 cy
 UX8485A \(\mathbf{6 5 0 0} / \mathbf{0 5 5 A}\)
UX8301C \(600 \mathrm{~V} / \mathrm{i} / \mathrm{I}_{5 \mathrm{~A}}\)
UX7812B \(1000 \mathrm{~V} / .0025 \mathrm{~A} / 3 \mathrm{KVB}\)
U5A／1780 VRMS．
UX7779E 800V 085A／390V／．100A； \(5 \mathrm{~V} / 3 \mathrm{~A}\) ：
UX8352A \(55 \mathrm{~V} / 01 \mathrm{~A}, 110 \mathrm{~V}, 01 \mathrm{~A} ; 6.3 \mathrm{~V}\) ；
 VRMS

WX4298E Pulse transformer，pri 4 K 1Mu sec Sec 16 KV © 16 A ．
WX \(\mathbf{4 2 4 8 D}\) Prigker Transformer +40 V － 40 V （pule Inversion） UX7307 Blocking Transformer．

PULSE NETWORKS
15A－1－400－50． 15 KV ＂A＇＂Circuit 1 Mu


PIONEER TORQUE UNITS 12604－3－A Contains CK5 motor \＆AY43D autosyn Gear ratio motor to shaft Autosyn 15－1．as bove except Gear \(\$ 70.00\) ratio shaft to follow－up autosyn \(30: 1 / 70.00\) \(12602-1\)－A Same as \(12606-1\)－A except has
base mounting cover for motor
gears．mounting cover for motor \＆
12077－1－A Ploneer Amplifier \(\quad 35,00\)
PIONEER AUTOSYNS


All prices FOB Oakland，Calif．，subject to change without notice．Terms \(25 \%\) cash
EMMONS RADIO SUPPLY CO．
405 10th St．，Oakland，Calif． Phone TWinoaks 3－7411

GRAIN OF WHEAT LAMPS \＃322 \(3 \mathrm{~V} . \quad .19 \mathrm{amp}\). \＃328 6 V ． 2 amp ．
100 for \(\$ 25.00 \quad 10\) for \(\$ 3.00\)


MARKTIME 5 HOUR SWITCH
Pointer amp，timing mores hack to zerice． Pomer time elapsses．Ideal for
arter
stutting oft radios shutting off radios and TV
sets when you go to bed．
Iimited supoly at this

Also available in 15 min ．， \(30 \mathrm{~min} ., 1 \mathrm{hr}\) ．at \(\$ 5.90\)
10 Seconds to 24 Minutes Timer A land wound electric＇rIMING SWITCH，Pointer Electric Mixer－Photographic Devices－Time Delay etc．Fhurnished with Calibration Chart an lointer Knob．Biggest \(\$ \mathbf{7 2 5}\) bargain we ever had
\(3^{3 \prime}\) Round Elapsed \(\$ 1 \mathbf{2}^{50}\)
Time Met
General Electric ．．．．．．．．\(\$ 15.50\)
Westinghouse Square ．．．．\(\$ 16.00\)
－\(\rightarrow\) Genuine
 TELECHRON Motors 2 RPM．．．\(\$ 2.90\) \(\begin{array}{lll}3 & \text { RPM．．．．} & 3.90 \\ 4 & \text { RPM．．．} & 3.90\end{array}\) 3.6 RPM．． 3.15 1 RPM．．．． 3.95 60 RPM．．\(\quad 4.30\)
 New Sound Powered HAND SET TELEPHONES，
S0＇Flex．liubber corered cable FREE．\(\$ 19.00\)
Pair ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．


REDMOND Powerful \(5^{\prime \prime}\) Blower or Ventitator 115 volts AC 60 ogcles 18 watts．For Kitchen－Laboratory． Heat or Cold or Chemicals．．．．\(\$ 7.50\)

Hand Cranked A．C．Generators
Removed from Ancient Telephones Polarized Bell or Buzzer
Complet Magneto or 115 volt A．C
Complete 2 Station Magmeto linger
Telephones．Incl．Batteries－wife．
\(\left\{\begin{array}{l}2 \mathrm{har} . ~ \$ 4.50 \\ 3 \mathrm{bar}\end{array}\right.\)
3 bar．\(\$ 5.50\)
150
\(\$ 1750\)
\(\$ 1750\)
 Clamps to hold motor：\(\$ 1.50\) ea
\＃ 5069600
\(\$ 18^{50}\)



NE－48 \({ }^{1 / 4}\) Watt NEON lamD D．C．\(\$ \mathbf{2 0 0}^{\mathbf{0}}\)
NE－30 \(\quad \begin{gathered}\text { Watt NeON lamp Med．} \$ 250 \\ \text { Screw Base．} 10 \text { for．．．．．．．．．}\end{gathered} \mathbf{2}^{50}\)
NE－29 桨 Watt NEON lamp D．C．\(\$ 3^{50}\)
NE－30 \({ }^{1}\) Watt NEON lamp D．C．\(\$ 3^{50}\)
AR－1 \(\quad 2\) Watt ARGON lamp Med．\(\$ \mathbf{3 0 0}\)

 HAYDON SYNCHRONOUS TIMING MOTOR 110 ェ． 80 cycle 30 RPM．．．．\(\$ 2.60\) 110 r． 60 cycle \(1 / 10\) IPPM．．\(\$ 2.35\) 110 ะ． 60 cycle 1 RPM．．．．．．\(\$ 2.85\) 220 ․ 60 oycle 2 RPM．．．．．．\(\$ 1.65\)

ZENITH Motorized Remote control made for T．V but ideal for opening doors－windows－Turntable former 16 ft ．cable and reversing button．\(\$ \mathbf{8 月}^{95}\) \(A\) few more left

\section*{\(\underset{\substack{\text { EST．} \\ 1923}}{\text { E．}}\)}

64－0 Dey St．
New York 7，N．Y


\section*{AN／APR－4 LABORATORY RECEVEERS}

Complete with all five Tuning Units，covering the range 38 to \(4,000 \mathrm{Mc} . ;\) wideband discone and other antennas，wavetraps mobile accessaries， 100 page technical manual，etc．Versatile accurate，compact－the aristocrat of lab receivers in this range．Write for data sheet and quatations．
We have a large variety of other hard－to－get equipment，in cluding microwave，aircraft，communications，radar；and lab oratory electronics of all kinds．Quality standards maintained Get our quotations！
We will buy ary Electronic Material at top prices．SCHOOLS－ unload your dusty surplus for cash or credit．

\section*{ENGINEERING ASSOCIATES}

\section*{WE BUY AND SELL GOVERNMENT SURPLUS}
electronc components，units，wire，stc． Your Inquiries Invited LAPIROW BROS． I649 Hoffiner SL．Kirby 1285 CInolnnati 23．Ohio

T47A／ART－13 TRANSMITTERS
BC－610－E TRANSMITTERS
BC－312，BC－342，BC－348 RECVRS．
BC－221 \＆LM FREQUENCY METERS ALLTRONICS
BOX 19，BOSTON I，MASSACHUSETT8 Rlchmond 2－0916，LYnn 8．3100

\section*{VARIACS}
\begin{tabular}{|c|c|c|c|}
\hline \[
50-\mathrm{A}
\] & 45 & A & 88.50 \\
\hline \[
\begin{array}{r}
100-Q \\
0-115
\end{array}
\] & 18 & A & 34.50 \\
\hline \[
\underset{0-115}{200-C U}
\] & 7.5 & A & 13.50 \\
\hline \[
\underset{0-230 \mathrm{~V}}{200-\mathrm{CUH}}
\] & 2.5 & & 17.50 \\
\hline
\end{tabular}
western engineers
ELK GROVE，CALIFORNIA


Tolephone
SEeley 8-4146

833 W. CHICAGO AVE.
DEPT. 4, CHICAGO 22, ILL.

POWER RHEOSTATS (1003


\section*{HIGH POWER TR. MICA}


\section*{TYPE "J" POTENTIOMETERS}

TYPE "J" TYPE "JL" TYPE "JJ"
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\$1.25} & \multicolumn{2}{|r|}{\$1.50} & \$2.95 \\
\hline ohms & -hms & shm & hms & hms \\
\hline 150* & 4000 \(\dagger\) & 80K \(\dagger\) & 500-500*+ & 130K-130K* \\
\hline \(200 \dagger\) & \(5000{ }^{\circ}+\) & 100K** & 600-600+ & 150K-150K + \\
\hline 200* & 6500* \(\dagger\) & 125K* & 1500-1500* & 100K-200K \(\dagger\) \\
\hline \(300+\) & \(9000 \dagger\) & 150K \(\dagger\) & 2000-2000* \(\dagger\) & 250K-250 \(\dagger\) \\
\hline 400* \(\dagger\) & 10K* \(\dagger\) & 165K + & 2000-50K* & 300K-300K \(\dagger\) \\
\hline 500* \(\dagger\) & 12K \(\dagger\) & 250K* & 2200-25K & 350K-350K* \\
\hline \(600 \dagger\) & 15K* & 300K \(\dagger\) & 5000-35K \(\dagger\) & \(2 \mathrm{meg}-2 \mathrm{meg} \dagger\) \\
\hline 650* \(\dagger\) & 20 K & 400K* & 25K-10K+sw & 25K-25K* \\
\hline \(750 \dagger\) & 25K* & 1meg* & 2000-20K \(\dagger\) & 10K-10K* \(\dagger\) \\
\hline 1000** & 30K* & \(1 \mathrm{meg}{ }^{+}\) & 25K-10K \(\dagger\) & 1meg-1meg \(\dagger\) \\
\hline \(1400 \dagger\) & 50K* \(\dagger\) & 2meg* \(\dagger\) & 7K-1meg \(\dagger\) & 5K-5K. \\
\hline 1500*+ & 60K* & 3meg* & 300K-5K \(\dagger\) & 400K-400K \({ }^{+}\) \\
\hline 2000* \(\dagger\) & 75K+ & & 25K-400K \(\dagger\) & 500K-500K \(\dagger\) \\
\hline & & & \(1 \mathrm{mag}-500 \mathrm{~K}\) + & 50K-50K* \(\dagger\) \\
\hline
\end{tabular}
 45K-27K-2.5K \(1 / 4\)
\(700 \mathrm{~K}-700 \mathrm{~K}-700 \mathrm{~K} \dagger\)\(\quad \begin{aligned} & \text { 800K-800K-800K } \dagger \\ & \text { 1meg-1meg-1meg } \dagger\end{aligned}\) (*) \(1 / /^{*} \begin{aligned} & \text { screwdriver slotted shaft } \\ & \text { shaft. } \\ & \left({ }^{( } \dagger\right) \text { Both types. }\end{aligned}\) ( \(\dagger\) K Kol typo
Many other Hard-To-Get items available for Immediate delivery from our large inventory Nend MICA listing now ready.

\section*{A. MOGULL CO.}

17 Warren St., N. Y. 7, N. Y. Phone: WORTH 4-0865-6431


\section*{SPECIAL OFFER}


\section*{CAPACITOR SPECIALS}

Cat. \#29F-391 1 MFD. 600 V DC. . 75 ea . Cat. \#23F-154 1 MFD. 500 V DC. . 45 ea. Channels Oil Filled
Cat. \#TJU-10010 1 MFD, 1,000 V DC Cat. \(\pm 21 \mathrm{~F}-1425 \mathrm{MFD} .330 \mathrm{~V} \mathrm{AC}\) or 800
Cat. \(426 \mathrm{~F}-38210 \mathrm{MED} .600 \mathrm{~V} \mathrm{DC} \mathrm{C} .2 .80 \mathrm{ea}\) Brackets-C'eramic-Screw ''erm Full Line of Capacitors in Stock.

\section*{MOTOR SPECIALS}

DIEHE PILOT KLOTOR \#802077 24 V BODINE \(=\) NSHC- 1227 V DC Governor Controlled Constant Speed 3600 RPN 1) \(\mathrm{HP}^{6}\) HUGHES BOOSTER MOTOR


2J1G1
2J1F3
3.50 ea.
7.50 ea
7.50 ea

RELAYS - SWITCHES - SWITCHETTES All Merchandise Guoranteed New, With Us On Your Present and Future Requirements

Excess Inventories Purchased
NEW YORK EIECTRONICS
218 FULTON STREET NEW YORK 7, N. Y. RECTOR 2-4137


3 Pole DT 24 VDC........
Sigma 4F 8000 Ohm Coil
Sigma 4F 8000 Ohm Coil...
6.81

RAOIO DEVELOPMENT \& SALES CO. 323 ATLANTIC AVE.-ULSTERS-D488-BKLYN. I,N.Y.

SPECIAL
6FS METAL \(\$ .55\)
Crystal Diodes
Standard Brands Only

EMELTONE ELECTRONICS CO.
71 W. Broadway - N. Y. 7, N. Y. Phone REctor 2-1696 SPECIAL PURPOSE TUBES

SPECIAL VT \(98 \underset{\text { TYPE }}{\text { ENGLISH }} \$ 15.00\)

Receiving Tubes Klystrons, Magnetrons
\begin{tabular}{|c|c|c|c|c|}
\hline CRYSTAL & cIODES & 1822 & 2.50 & 2151 \\
\hline 1N21A & 1.75 & 1823 & 7.00 & 2155 \\
\hline 1 N 21 B & 2.00 & 1824 & 12.00 & 2 L 22 \\
\hline 1 N 22 C & 20.00 & 1826 & 13.50 & \(2 \mathrm{2k} 23\) \\
\hline 1 N 22 & 1.70 & \({ }_{1829} 18\). & 13.00 & \({ }_{2}^{2 K 25}\) \\
\hline 1N23 & 2.25 & 1832 & 2.75
3.25 & \({ }_{2}^{2 K 26}\) \\
\hline 1 N 23 & 2.85 & 1835 & 9.00 & 2 K 29 \\
\hline 1N25 & 5.25 & 1B42 & 9.00 & 2 L 39 \\
\hline 1 N 26 & 8.00 & 1863 A & 60.00 & 2 L 41 \\
\hline \({ }_{1} 1 \mathrm{~N} 27\) & 8.00 & \({ }_{18}{ }^{\text {c18 }}\) & 8.00 & 2K45 \\
\hline 1N28. & 4.25
6.90 & \({ }_{18}{ }_{18}{ }^{21}\) & - 10.00 & \({ }_{3} \times 2\) \\
\hline 1 N 34. & . 71 & 2B22 & 1.90 & 3B22 \\
\hline \(1 \mathrm{~N}^{1} 4 \mathrm{~A}\). & . 71 & \({ }_{2}{ }^{\text {C }} 26\) 2 & . 60 & 3824 \\
\hline \(1{ }^{1} 35\) & 2.20 & \({ }_{2}{ }_{2}\) & 60 & \({ }_{3824}^{38}\) \\
\hline 1 N 3 B & 1.10 & 2 C 39 & 20.00 & 3825 \\
\hline 1 NaO & 11.50 & \({ }_{2}^{2} \mathbf{C} 394\) & 21.00 & \({ }_{3}^{3826}\) \\
\hline 1N41. & 12.00 & \({ }_{2}^{2} \mathbf{C 4 3}\) & 10.00
17.50 & 3827
3828 \\
\hline 1 N 44 & 1.50 & \({ }_{2}{ }^{2} 44\) & 1.50 & \({ }_{3}{ }^{\text {c }} 21\) \\
\hline 1 N 48. & . 62 & \({ }_{2}{ }^{\text {C46 }}\) & 30.00 & \({ }^{3} \mathrm{C} 24\) \\
\hline IN51 & 50 & 2 C 50 & 9.00 & \({ }^{3} \mathbf{C} 31\) \\
\hline \(1 \mathrm{NS}^{2}\) & 1.37 & \({ }_{2} \mathbf{C} 51\) & 5.00 & \({ }^{3 C 33}\) \\
\hline \(1{ }^{1} 54\) & . 90 & \({ }_{2}^{2}{ }_{2}{ }_{2}\) & 13.00 & \({ }^{3} \mathrm{C} 45\) \\
\hline \(1 \mathrm{NS8}\)
1 N 60 & \(\begin{array}{r}1.25 \\ \hline .61\end{array}\) & \({ }_{2}^{2021}\) & 1.50
2.50 & \({ }^{3 E 29} \times 100 \mathrm{~A}\) \\
\hline & & 2 E 24 & 3.00 & \({ }_{4-125 A}\) \\
\hline 2AP1. & 10.00 & 2 L 26 & 3.40 & 4-150 A \\
\hline 3AP1.: & 10.00
12.00 & \({ }_{2}^{2} 286\) & 3.50
3.50
3.5 & \(4-250 \mathrm{~A}\)
\(4-500 \mathrm{~A}\) \\
\hline \({ }_{3}^{3} \mathrm{APP1}\) A & 12.00
6.00 &  & - \(\begin{array}{r}3.50 \\ 10.50 \\ \hline\end{array}\) & \({ }^{4}-500 \mathrm{~A}\) \\
\hline \({ }_{3}{ }^{\text {CPP1-sio. }}\) & 6.00
2.00 & \({ }_{2}^{2122} \times\) & 10.50 & 4824. \\
\hline 3 GPI & 5.50 & \({ }_{2}{ }^{26}\) & 15.00 & 4825 \\
\hline \(5 \mathrm{BP1}\) & 5.00 & \(2{ }^{2} 27\) & 20.00 & 4826 \\
\hline \({ }_{5}{ }^{5} \mathrm{CPP} 1\) & 6.00
2.90 & \({ }_{2 J 31}^{2 J 32}\) & 30.00
26.00 & 4828
\(4{ }^{4} \mathbf{C} 27\) \\
\hline SGP1 & 5.20 & 2733 & 25.00 & \({ }_{4}{ }_{4}{ }^{\text {c }} 35\) \\
\hline SEPP7.... & 20.00
8.00 & \(2 J 34\)
\(2 J 36\) & - \(\begin{array}{r}25.20 \\ 110.00\end{array}\) & \({ }_{4}^{4 E 27} 4\) \\
\hline & & 2137 & 15.00 & \({ }_{4}{ }^{5} 52\) \\
\hline & 1.00 & 2138
2139 & 24.00
15.00 & \({ }_{5}^{5 \mathrm{SC22}}\) \\
\hline  & 1.10
.90 & 2139
2340
230 & 15.00
38.00 & \begin{tabular}{l} 
SD21 \\
5J26 \\
\hline
\end{tabular} \\
\hline O83-Ypgo. & . 95 & \(2{ }^{2} 42\) & 125.00 & \({ }_{5}^{5} 532\) \\
\hline OC3-VR150 & 2.50 & \({ }_{2}^{2348}\) & 45.00
63.00 & 6AKSW \\
\hline
\end{tabular}

ALL ITEMS SUBJECT TO PRIOR SALE


35.00
4.50
2.50

 Above bisting is anly
partial. inquire if your items are not
histed ATT. EXPORTERS \& FOREIG
AGENCIES Special prices for
quantities. quantities.
Cash yorid
SURPLLE
SUBES

\section*{\(\mathbb{K} \cdot \mathbb{R} \mathbb{K} \cdot \mathbb{A} \mathbb{R C} \cdot U G \cdot / P / L \cdot A / \mathbb{N}\)}

\section*{CONNECTORS}

In Stock for Immediate Delivery
Ronnector Rorporation
137 Hamilton St., New Haven 11, Conn. Phone: Spruce 7-2513 New York Phone: LExington 2-6254

\section*{MARITIME INTERNATIONAL COVIPANY}

11 STATE STREET NEW YORK 4, N. Y.
Cable Address: Foxcroft Telephone: Digby 4.3192
Your Reliable Source of Supply For

\section*{SPFCLAL PUIRPDSE \& TRANSWITIING TUBES}

This Month's Special:
Westinghouse 8013A @ 3.95 ea.

CONDENSERS (Match Stick)
.01, 001, . \(002 \& .004\) MFD. Large Quantity
\$8 per M. Quantity discounts. SAMUEL KASS, INC.
46 Cooper Sq. NY 3
GR 7.9881

FOR SALE
Teletype Terminal Equip. AN/FGC-1 Gen. Radio Type \(1105 A\) Freq. Measuring Equip. Measurements \(=78\) E Signal Generator

FS-9179, Electronics
330 W, 42 St. New York 36, N. Y.


\section*{Syuchros}

C-79331-TRANSMITTER - II5V 60Cy. Delco,New, LimitedQuantity Order Now. Wt. 11 lbs \$11.95 5B Motor - \(115 / 90 \mathrm{~V}\) - 60 Cy........ 525.00 5DG Cont. Tr. - \(90 / 55 \mathrm{~V}\) - 60 CY. 45.00 5F Motor - 115 . \(90 / 90 \mathrm{~V}\) - 60 Cy. 40.00 5G Gen. - \(115 / 90 \mathrm{~V}\) - 60 CY.......... 45.00 5 N Mtr. - \(115 / 90 \mathrm{~V}\) - \(60 \mathrm{Cy} . . . . . . .25 .00\) \({ }_{6 \mathrm{G}} \mathbf{6 C T}\) Cont. Tr. - \(90 / 55 \mathrm{~V}\) - 60 Cy .60 .00 6SG Gen. - 115 /gov - 60 CY........ 55.00 7DG Dif. Gen. \(-80 / 90 \mathrm{~V}\). 60 Cy. 65.00 CG Gen. - \(115 / 90 \mathrm{~V}\) - 60 Cy........ 75.00 C-56701 Repeater - 115 V 60 CY . 22.50 C.69406, Repeater - 115 SV 60 CY .22 .50
\(\mathrm{C}-78248\) Trans. - 115 V - 60 CY .2500 C-78249 Dif. Gen. . \(115 \mathrm{~V}=60 \mathrm{CY} 25.00\) C-78386 Trans. 115 V - CY . 7250 C-E 81E-123-2 G.E. MIF. 15 V 6 Type A Bendix 115V Type Aa Henche 115 Cy Type M Bendix Mitr. 115 V 60 Type M Bendix Mir. 115 V 60 C ICT Cont. Trans. \(90 / 55 \mathrm{~V} 60 \mathrm{CY}\) IN Mir. \(115 / 90 \mathrm{~V}-60 \mathrm{CY}\)........ 45.0 2JIF1 Gen. \(115 / 57.5 V-400 \mathrm{Cy} .10 .00\) \begin{tabular}{l} 
2JIHI Dif. Gen. 57.5 - 400 CY. 12.50 \\
\hline
\end{tabular} 2JD5J1 Mir. - 220 V - 60 CY CY. 50.00 2JSA-2 Gen. - \(115 / 105 \mathrm{~V}\) - 60 Cy .25 .00 2J-5F1 Cont. Tr. \(105 / 55 \mathrm{~V}-60\) Cy. 45.00 2JSLAI Gen. 115/105V - 60 CY... 25.00
2J-151 Selsyn Generator G. E.

\section*{Inwerters}

MG-149F Holtzer Cabot
In: 28 V DC 36A
Out: 26 V 400 Cy. 500 VA SP.
MG-149H In: 2 V DCzer Cabol
Out: 26 V 400 Cy .250 VA SP MG-153F Holtzer Cabot
In: 28 V DC 52 A
Out: 26 V . 400 Cy .250 VA SP
10285115 V 400 CY .750 VA ThP. \(\$ 125.00\) 10285 - Leland
In: 27 V DC 60 A
Out: 26 V 400 Cy . 50VA SP 104685 115V 400 Cy. 750VA. ThP..s 90.00 104685-Leland
Out: 115 V AC 400 Cyt. Duty 11702 or 10563 -Leland In: \(281 / 2 \mathrm{~V}\) DC 12 A Out: 115V 400 Cy. 115 VA ThP..s 75.00 PE - 109 - In: 12 V DC 29 A Out: 115 V AC 200VA
PE - Leland In: 28 V DC \(38 \mathrm{C} . \mathrm{S} 65.00\) PE - Leland -In: 28V DC 38A Out: 500 V 800 Cy . 500VA SP

80 V 800 Cy .500 VA SP.... 40.00 PU-7 Wincharger - In: 28V DC 160 A Outt 115 V 400 Cy . 2500 VA SP... 90.00 PU-16 Wincharger - In: 28V DC 60A
Out: 115 V 400 Cy. 6.5 A SP..... 590.00 Out: 115 V 400 CY. 6.5A SP....... 590.00 PE-218. Leland - Wincharger - G.E. In: 28V DC 92A. Out: 115 V
\(380 / 500 \mathrm{CY} .1500 \mathrm{VA}\) SP.... \(\$ 40.00\) 778-B Bendix In: 24 V DC 250 VA Out: 26 V 400 CY. 60VA \(S P\) 800.1 Bendix. In: 24 V DC 75 S 65.00 Out: 115 V AC 800 Cy .
10.5A SP \(\quad 540.00\) 12116-2A Pioneer-In: 24V DC 5A
Out: 115 V 400 Cy . 45 W SP...... \(\$ 65.00\) 12117-2A Pioneer - In: 24 V DC 1 A Out: 26 V . 400 Cy 6VA SP...... \({ }^{2} 27.50\)
12117-6B Pioneer - In:28V DC 0.8 A Out: 26V AC 6VA 400 Cy, SP..S 27.50 12126-2A Pioneer -In: 27.5V DC 1.25 A Out: 26 V 400 Cy. 10VA ThP... \(\$ 35.00\)
\(12130-4 \mathrm{~B}\) Pioneer - In: 28 V DC 12.18 A . 12130-4B Pioneer - In: 28V DC 12.18 A
Out: 125 V 400 Cy 141VA S Ph. \(\$ 75.00\)
We maintain an extensive stock of RADAR, ELECTRONIC, and PRECISION TEST EQUIPMENT. Your inquiries given immediate attention. All equipment is unconditionally guaranteed.

\author{
Arnâd A. Semien, Inc. \\ 6855 TUJUNGA AVENUE \\ NORTH HOLIYWOOD, CALIF.
}

\section*{HERE'S YOUR GUIDE TO SATISFACTION}

\section*{TRIPOLI from new Headquarters gives} you Immediate delivery on all stock items


CAPACTTORS, Ceramic: 120 MMFD 1500V, Durez Coated N750 Temp. Cof. \(5 \%\) CAPACITORS, Ceramic: \(100 \mathrm{MMFD}, \mathrm{CC} 30\). 500 V , N750 Temp. Cof. \(10 \%\) tol. . \(\$ 31.00 / \mathrm{M}\) CAPACITORS, Ceramic: 20 MMFD, CC20. 500 V , NPO Temp. Cof. \(10 \%\) tol. . \(\$ 35.00 / \mathrm{MI}\) CAPACITORS: 2.2 MMFD, Discap. general purpose (G.M.C.), 500V, . 25 MMFD PADDERS, High Capacity, Compression type: \(1000-3000\) MMFD
\(\$ 32.00 / \mathrm{M}\)
\(4 \times 150 \mathrm{~A}\) Eimac Tubes. \(\$ 28.00\) ea.
\(\pm\) m m m m m m m mem m m m


ELECTRONICS COMPANY
CHICAGO 24, ILLINOIS Telephone - VAn Buren 6-0232

Your Best Source of Supply in Jan Type Special Purpose \& Receiving OC3/VR105
OD3/VR150
\(\mathrm{OC}^{2} / \mathrm{VR1}\)
\(\mathrm{OD} 3 \mathrm{VR15}\)
1822.
1822.
1824.
1829

832/532A
\begin{tabular}{l}
1 B 23 \\
\(\mathrm{IP}_{2} \mathrm{C} 39 \mathrm{~A}\). \\
\hline
\end{tabular}

\({ }^{1}{ }^{1} \mathbf{N} 23 \mathrm{~A} 2 \mathrm{~A}\)
1N26



ALLIED ELECTRONIC SALES
74 Cortlondt Street New York 7, N. Y
Phone-Barclay 7-5839-5840

\section*{FOR SALE—VERICON}

Industrial television system. Almost new, used only 230 hours. Camera, monitor, and power back. Original cost \(\$ 8500.00\) but will sell at sacrifice.

\section*{AUDICON TELEVISION CORPORATION}

7 Whitney Avenue New Haven, Conn.
Phone: LOcust 2-3836

\section*{FOR SALE}

RCA RADIO FREQUENCY GENERATOR
Model 15 BH with or without aluminum heating oven. Good as new. Immediate delivery.

520 N. Michigan Ave. Chictits II II

\section*{CONNECTORS AN-UG}

LARGE INVENTORY
Rose Electronics, Inc.: 76 VESEY ST,
Nesw York 7, N. Y. \& (M i.6)

\section*{"SEARCHLIGHT" IS \\ Opportunity Advertising \\ -to help you get what you want. -to help you sell what you no longer need. \\ Take Advantage Of It \\ For Every Business Want \\ "Think Searchlight First"}


High Frequency A.C. Voltmeter Portable Laborafory Standard
Frequency Range from 25 to 2400 Cycles, for 0-150 Volts; Manmactired by Weston to an accuracy of \(3 /\) of \(1 \%\) from 25 to 1000 crcles, and within \(11 / 4 \%\)
up to 2400 cycles. up to 2400 cycles.
The most commonly used ranges are 60 and 400 cycles and we have tested each one against Primary
Standards and guarantee that these ranges are acStandards and guarantee that these ranges are ac
curate within 3 of \(1 \%\). Tule
Knife edge pointer; hand calihrated mirror scale: 2800 ohms; scale length \(4.04^{\prime \prime}\) in case \(5^{\prime \prime}\) approx. \(0^{\prime \prime}\). 31/2". (Sim. to illust.)
BRAND NEW-SURPLUS-GUARANTEED Only 59 In Stock
List Price Approx. \(\$ 70.00\)
YOUR NET COST FOB NYC \(\$ 45.00\)
MARITIME SWITCHBOARD Instrument \& Accessories
336 CANAL STREET, NEW YORK 13, N. Y. WOrth 4-8276 (7)

\section*{IN STOCK}

FOR IMMEDIATE DELIVERY
BRAND NEW JAN-C-25 CAPACITORS

CP53-CP54-CP55
CP61-CP63-CP65 CP67-CP69
Every "E" \& "F" Characteristics Item Listed In Jan-C-25 ALSO
CP70 CAPACITORS
"E" \& "F" Characteristics 600 and 1000 Volts " \(B\) " and " \(E\) " Terminals

\section*{O'DEL ELECTRONICS CORPORATION}

293 WEST BROADWAY NEW YORK 13, N. Y. CANAL 6.4700

\section*{IMMEDIATE DELIVERY}

NEW - AN/APR4 - USED RECEIVERS

With following TUNING UNITS in stock-TN16-17-18-54

Write for prices
APS3 components TS184/APS13

BCI 306
PE237
BC433G
MC153
BC1033
APS13
SCR269F \& G
APR2
SCR625
SCR 508 crystal
350 ft . RG 54 U
cable
TS10
TS16
TS59
TS69
TS 100/AP
TSI27
TSI59/TPX
AN/CPN3

\section*{We buy any electronic material at top prices!}

Write for our new 1953 Catalog!
Shipments FOB warehouse. 20\% Deposit on orders. Minimum order \(\$ 5.00\). Illinois reside. Prices subact to sange without notice

\section*{R W ELEGTRONICS \\ Dcpt, EL, 1712-14 S. Michigan Ave. Chicago 16, III. PHONE: HArrison 7.9374}

\section*{COILS}

RF-IF Sub-assemblies
Production \& Special Test Equipment AN/APR-4 Receivers \& Parts
JERRELL ELECTRONIC, INC. 1970 Neva Dr.

\section*{X-RAY}

All types for industrial and experimental application. Tubes, cables and components.

MEDICAL SALVAGE CO., INC.
217 E. 23 rd St., New York 10, N. Y. Murray Hill 4-4267

\section*{POWER TUBES REBUILT}

UNIVERSAL VACUUM TUBE CORP.
137 Alexander Ave., Yonkers 2, N. Y.

\section*{WHEN YOU ORDER \\ WIELS \\ COMPONENIS \\ here's what \\ YOU GET \\ - IMMEDIATE DELIVERY FROM STOCK \\ (in any quantity) \\ a FINEST QUALITY OF FAMOUS BRANDS \\ 3 generally lower prices \\ GRETURN PRIVILEGE FOR FULL CREDIT IF NOT SUITED TO YOUR REQUIREMENTS}

The valuable service Wells provides to the industry is being used by many of our greatest manufacturers as a matter of course.

Our vast stock (the world's largest) may contain just the components you need to fill urgent orders - at a substan. tial savings in time and cost.

ADEL CLAMPS - ANTENNAS, Insulators, Mast Sections BINDING POSTS BLOWERS CABLE ASSEMBIIES CHOKES COILS CONDENSERS Oil Filled, Bathtub, Hearing Aid, Transmitting Mieas, Silver Micas, Ceramic, Variable, Trimmer * CRYSTALS FILTERS FUSES \& MOUNTINGS * GENERATORS GROUND RODS * HEADSETS • I.F, COILS * JACKS *JACK BOXES KEYS. Telegroph KNOBS \& LAMPS : LORD MOUNTS
MOTORS \& BRUSHES : PLUGS LUGS MOTORS \& BRUSHES - PLUGS * RECTIFIERS SelenJum, Copper Oxide, Mefer, Diode * RESISTORS-All
Types SELSYNS Types © SELSYNS © SOCKETS SWITCHES Aircraft, Micro, Switchettes, Toggle . TIMERS • TUB.
ING-Flexible. TUNING SHAFTS. TRANSFORMERS All Types : VIBRATORS - WALKIE TALKIES


DM 32A-DM 53A - PE 86 - PE 101 C DM 33A - D 101 - PE 94, efc.
Large quantities of brushes for all types of dynamotors and motors.

Write us for quotations, Advise us your requirements.

A complete Signal Corps stock number listIng of items in our stock. Write for listing No. SG-200. (For government agencies and contractors only.)
Manufacturers and distributors-write for new Condenser Catalog C-10 now available.
Wrife, Wire, Phone Your Requirements all phones: SEeley 8-4143


833 W. CHICAGO AVE., DEPT. SL, CHICAGO 22, ILL.

\section*{EXCELLENT OPPORTUNITIES FOR GRADUATE ENGINEERS}

Electronic \& Mechanical
Fxperience in Design and Development of Kadar and Sonar necossary.
Senior Engineers with Degree or equivalent and at least 5 years experience in niyone of following fields: Microwave, cirulit design, filter network design, precision omponents (capacitors - resistors), and -
Broad knowledge of Search and Fire ConTrol Systenis; Servo Mechanisms. Special Weapons, Microwave. Antennas and Antenna Mounts, etc. Mechanical Engineershould also have experience in packaging cations including design of complex enbinets, shock mounts and sway brace structures.

\section*{Field Engineers}

Qualified to instruct in the operation and supervise installation, maintenance and repair of Radar, Sonar and allied electronic equipments in the Field

Senior engineers wilh degree or erpuivalent of at least 5 years experience in flight simulators, radar and sonar trainers.

A chance to grow with a young and progressive company; salary and advancement commensurate with ability; llberal vacation, sick leave, 9 paid holidays group life, sickness and accident insurance plinns, and a worthwhile pension system.

\section*{STAVID ENGINEERING, INC.}

\section*{ELECTRONCC ENGINEER OR PHYSICIST}

MS in electrical engineering or physics with wide general electronic experience and particular skill in digital computation for rrsponsible position in Research and Development Department.

Duties will involve the research and development of special electronic apparatus, servomechonism, control devices and other special instrumentation necessary for the conduct of chemical and engineering operations. In addition, will exercise general operating and maintenance supervision over a digital computer of advanced design and other major electronic equipment.

Permonent position with good promotional possibilities. Salary commensurate with experience and demonstrated ability.

Please give details of education, experience, and salary desired.

The ATLANTIC REFINING COMPANY
Salaried and Technical Section Plant Personnel Division 3144 Passyunk Avenue
Philadelphia 1, Pennsylvania

\section*{STAFF EDITOR}

Must be graduate engineer (electronics). Industry experience essential. Aptitude for technical reporting desirable. Mail resume, requirements to
W. W. MacDonald, Editor ELECTRONICS 330 W. 42nd St. New York 36, N. Y.

\section*{WANTED}
1. Commercial receiver, Hammerlund SP600 LX or similar
2. Power amplifier, General Radio 1233A
3. Coax Kit, General Radio 874-EX
4. Precision oudio oscillator, Hewlett Packard
5. Vacuum tube voltmeter, RCA Voltohmyst
6. Regulated power supply, Packard D type 710A

Items may be used but must be in excellent condition. Other makes and similar equipment acceptable.
In reply, state exact model, serial numbers and age.

W-8880, Filectronics
111 Wilshire Blvd.,.,Los Angeles 17, Calif

\section*{ELECTRONIC TUBES URGENTLY NEEDED}

\section*{CASH PAID FOR:}

Radio, TV, Special Purpose, all types, small and large quantities. State types, quantities, prices.

WRITE NOW to
W-916t, Electronics
330 W. 42 St., New York 36, N. Y.

\footnotetext{
WILL BUY
 T-47. \(\$ 150.00 ;\) BC-348 unmodified \(\$ 65.00\), BC-348 modified \(\$ 50.00 ;\) APN- \(\$ 200.00\); ARC-3 complete
 Shld via Express C.O.D., subjec H. FINNEGAN

49 Washington Ave. Little Ferry, N. J.
}

\section*{HIGH VACUUM EQUPT.}

FORE PUMPS—DIFFUSION PUMPS VACUUM COATERS—MISC. EQUPT.
Some new REASONABLE. Write for list
ZENITH OPTICAL LABORATORY 1940 Great Neek Rd. Copiague, L. I., N. Y.



EXPORTERS - GOVERNMENT AGENCIES • LABORATORIES • SCHOOLSI! Consult us. Come to the source. Warehouses of our own stock. We will buy, sell or swap in any quantity. Space limits complete listings. Write for our catalog
RADIO HAM SHACK, INC.
Cable: "Hamshack N. Y."
CAnal 6-8446-7-8-9

\section*{TUBES: \\ Industrial. \\ Receiving Transmitting}

Standard Brands Only
\begin{tabular}{|c|c|c|c|c|}
\hline \(0 A_{2}\) & 5.90 & 3B25 & 3.95 & \\
\hline \(\mathrm{O}^{\text {a }}\) & 1.20 & 3826 & 3.50 &  \\
\hline \({ }^{\circ} \mathrm{AL4}\) & - \(\begin{array}{r}1.00 \\ 1.00 \\ \hline\end{array}\) & 3 B 28
3829 & \begin{tabular}{l}
5.95 \\
8.50 \\
\hline
\end{tabular} & \({ }^{359 \mathrm{~A}}\) - : ...... 7.00 \\
\hline \({ }_{\substack{0 \\ 0832 \\ 082}}\) & \begin{tabular}{|c}
1.00 \\
1.00 \\
1.00
\end{tabular} & \({ }_{38 \mathrm{P} 1}\) & - 4.95 & \({ }_{394 \mathrm{~A}}^{388} \ldots{ }^{2}\) \\
\hline (1) & \({ }_{1.00}^{1.00}\) & \({ }_{3}{ }^{3} 21\) & 5.00 & GL414 \\
\hline \(00^{0}\) & . 95 & 3 C 24 & 1.15 & \({ }_{\text {GL434 }}\) \\
\hline 1822 & 1.85 & \(3 \mathrm{C45}\) & 10.00 & 703A A .... 4.95 \\
\hline 1823 & 6.50 & \({ }^{30181}\) & 3.95 &  \\
\hline 1824 & 9.00 & 3E29 & - 1.95 & \({ }_{707 \mathrm{~A}}^{75 \mathrm{~A}}\)........ 7.75 \\
\hline 11826 & [2.25 & \({ }_{3 G P 1}\) & \({ }_{3.00}^{1.05}\) & \\
\hline 1832 & 2.50 & \({ }_{4}^{4822}\) & \(\begin{array}{r}7.75 \\ 8.00 \\ \hline\end{array}\) & \\
\hline 1842 & 9.50 & \(4{ }^{4} 25\) & 8.00 & Receiving \\
\hline \({ }_{1823}\) & \begin{tabular}{|c}
49.50 \\
3.75 \\
\hline 1
\end{tabular} & 4332
4336 & (20.00 & Tubes \\
\hline 1 P 28 & 11.50 & \({ }_{58 P 1}\) & 5 & \\
\hline \({ }_{1 P 41}^{1 P 40}\) & \begin{tabular}{l}
1.75 \\
2.80 \\
\hline
\end{tabular} &  & 5.00
15.00 & 6AOS... \$.48 \\
\hline \({ }_{1 P 42}\) & 5.00 & \({ }_{5} 5\) FP7 & 1.75 & 6SN7GT. . 69 \\
\hline 2822 & 2.95 & \({ }^{5129 .}\) & 15.00
17.00 & 6V6GT. . . 50 \\
\hline \(2 \mathrm{C44}\) & 1.85 & 5RAWG & 4.00 & 12AU7... . 60 \\
\hline \({ }_{2021}^{2051}\) & 3.75 & \({ }_{\text {GAK S (WE }}^{\text {bac }}\) & 1.25 & 12SL7... . 60 \\
\hline 2021 w & 2.35 & \({ }_{6}^{64 R 6}\) & - 2.75 & 12SN7... . 69 \\
\hline 2126.
2131 & \({ }^{20.00} \mathbf{2 5 . 0 0}\) &  & \({ }_{3.50}^{1.90}\) & 25L6GT. . . 60 \\
\hline 21337
2140
210 & \begin{tabular}{l}
12.00 \\
22.50 \\
\hline
\end{tabular} &  & - \(\begin{array}{r}14.50 \\ 40.50 \\ \hline\end{array}\) & \\
\hline 2140
2150 & 22.50 &  & 边 \(\begin{gathered}40.00 \\ 3.50 \\ \text { S }\end{gathered}\) & All Other Types
in Stock. Write \\
\hline \({ }_{2}^{2 J 50 .}\) & 36.75
62.95
125 &  & ¢ & in Stock. Write \\
\hline 2 J 54 B . & 125.00 & \({ }_{6}^{6 K 4}\) & & \\
\hline \({ }_{2} 2161\). & +39.95 & \({ }^{6 L} 6 \mathrm{FWGA}\) & \({ }_{8}^{8.45}\) & \\
\hline \({ }_{2 \mathrm{~K} 23}\) & 11.50
12.50 &  &  &  \\
\hline 2K25 & 24.00
27.75 &  & 300.00
1190 & \({ }^{7}\) \\
\hline \({ }_{2}^{2 \mathrm{~K} 28}\) & \({ }_{25.00}^{21.75}\) & \({ }_{\text {FG32 }}^{\text {F }}\) & - \(\begin{array}{r}14.00 \\ 23.00 \\ \hline\end{array}\) &  \\
\hline \(2 \times 30\) & 325.00
25000 & 2807 & - \(\begin{aligned} & 1.40 \\ & 3.00 \\ & 3\end{aligned}\) &  \\
\hline \({ }_{2 K 33}^{2 K 33}\) & 250.00
250.00 & \({ }_{\text {FGIT105 }}\) &  &  \\
\hline \({ }^{2 \times 18} 38\) & \({ }^{175.00} 5\) & 2507H & 16.50
16.50
16.50 &  \\
\hline \({ }_{3 \text { B24 }}\) & 9.00 & \({ }_{274}\) & \({ }_{2}^{6.75}\) & 838.........: \({ }^{\text {ane } 25}\) \\
\hline
\end{tabular}

Specialists in JAN Tube Types

Fully Guaranteed


\section*{ELECTRIC TRADING CO.}

Offers a Well-Rounded Selection of Continuous Duty-110 V.-A.C.
- 60 Cycles

\section*{BLOWERS}

Brand New-Top Quality-Fully Guaranteed
80 C.F.M.-3" DIAMETER ROTOR General Electric Capacitor Motor-Sheet Steet Housing
\(3^{\prime \prime}\) Inlet. \(2^{\prime \prime}\) Outlet. Base Mounted
\(\mathbf{N} \boldsymbol{1}\) \(3^{\prime \prime}\) Inlet, \(2^{\prime \prime}\)
No. BL 80 .

100 C.F.M.—3' DIAMETER ROTOR


Powered by choice of Fasco or Heinze shaded pole, two pole, enctosed motors 3ousing. No. BLiluo
housing. \(\$ 895\)

200 C.F.M.—41/2" DIAMETER ROTOR


Powered by Bodine split phase. 1725 rom \(40^{\circ} \mathrm{C}\). Ball bearing motor. \(4 / 2\) nlet and \(51 / 2^{\prime \prime} \times 3^{\prime \prime}\) outlet No. BL200B

230 C.F.M.-41/2" DIAMETER ROTOR


Powered by Fasco shaded pole two pole motor. \(4^{\prime \prime}\) inlet. \(21 / 2^{\prime \prime} \times \$ 1295\)
\(21 / 2^{\prime \prime}\) outlet. No. BL230F \(\$ 12\).

600 C.F.M.-6" DIAMETER KOTOR


Powered by General Electric \(1 / 4\) H.P. 1725 rpm motor. \(51 / 2^{\prime \prime}\) inlet and \(i^{\prime \prime} x\) No. BL. 600

900 C.F.M. \(71 / 2\) " DIAMETER ROTOR


American Blower Co, powerell by General Electric \(1 / 3\) H.P. 1725 rdm motor. \(71 / 2^{*}\) inlet and \(8^{\prime \prime} x\) \(6^{\prime \prime}\) outlet. Base mounted \(\$ 5500\)
No. BL900ABC No. BL900ABC

TWIN BLOWER-200 C.F.M.-3" DIA. ROTORS

 TWIN BLOWER-400 C.F.M.-41/2" DIA. ROTORS


Redmond sladed pole two pole motor. \(4^{\prime \prime}\) inlets and \(21 / 2^{\prime \prime}\) liy \(21 / 2^{\prime \prime}\) out- \(\$ 1750\)
Iets. No. BL 400 R. HIGH PRESSURE-STURTEVANT-WESTINGHOUSE

313-315 Canal St., New York 13, N. Y.
Air Equipment Experience Since 1906

\section*{SEARCHLIGHT SECTION}
THE Electra INDEX
 TRANSFORMERS
GE /GE3- \(-2000-P 2 T\).
Sprague \(17.5 E 3-3-200-\)
Sprague \(77.554-16-60-67 P\)
Sprague
Sprague \(110 E 3-0.5-2000-50 \mathrm{P}\)
Sprague Sprague \(115 \mathrm{SE} 4-0.91-400-50 \mathrm{P}\)
Fast

\(\qquad\) Raytheon \(\mathbf{W} \times 5782 \mathrm{~A}, 1.2\) Microsec, WEfD163329 Network Assy... GE 80G13 Pulse Trans. \(\$ 14.5\)
12.5
14.5
22.5
34.5
27.50
24.50
29.50
9.50
14.50
29.50
14.50
8.50 HIGH VOLTAGE CAPACITOR Cat. No.
\(2 L \times P 30\).
\(22 F 985\)
\(22 F 221\)
PFD \(22 F 985\)
PFD 2102 22F225. \(14 F 2\)
195210 A7548
TK00020
\(26 F 513\) 26F51
7520
145338 \(14 F 338\)
CC21B 3DA20-1
Inerteen Inerte
\(14 F 13\).
\(26 F 68\). 26F68.
TK120.
15020. 15020.
14 F 17. 14 F
14 F
14 F
2002
14 F 265855.
\(\times 5 w 2\) XSW200
\(20005 .\). \(14 F 22\).
\(14 F 139\) Inerte
25020
\(14 \mathrm{~F}^{24}\) 14F24
\(14 F 83\)
inert
A6734 Inerteen
A6734
\(\mathbf{S 1 2 5 8 4 4 i}\) \(14 F 112\).
\(14 F 98\).
\(14 F 127\).
\(14 F 126\). 14F97
Mfd.
\({ }^{120} \ldots \ldots\)
2
\(4 \ldots \ldots\)
VARIABLE TRANSFORMERS
Line
\begin{tabular}{|c|c|c|c|c|}
\hline Volts & Output & V.-Amps & KVA & Price \\
\hline 115 & 0-135 & 3.0 & 0.4 & \$11.25 \\
\hline 115 & 0.135 & 7.5 & 0.86 & 16.50 \\
\hline *115 & \(0-135\) & 7.5 & 0.86 & 20.50 \\
\hline 115 & 0-135 & 15.0 & 2.0 & 41.50 \\
\hline *115 & 0-135 & 15.0 & 2.0 & 51.00 \\
\hline 115 & 0-135 & 30.0 & 4.0 & 51.00 \\
\hline 115 & 0-135 & 45.0 & 5.0 & 110.00 \\
\hline 115 & 0-115 & 45.0 & 6.1 & 110.00 \\
\hline 115 & 0-57.5 & 45.0 & 5.2 & 76.00 \\
\hline \(4115 / 230\) & 0-230 & 25.0 & 5.7 & 55.00 \\
\hline \$115/230 & 0-270 & 31.0 & 7.0 & 90.00 \\
\hline w/tase, & dine cor & plug, & put & ptacle \\
\hline
\end{tabular}
ELECTRONIC TUBES
OA2

\section*{} If your requirements are not listed, write and allow us to quote you accordingly subject to change without notice. Terms: Rated firms net 10 days, Non-rated \(25 \%\) with order balance COD. FOB Boston. Minimum order \$10. Merchandise Fully Guaranteed.

ELECTRONIC TUBES
 BUSINESS OPPORTUNITIES

EQUIPMENT
(Used or Surplus New)
For Sale..

WANTED
Equipment

\section*{ADVERTISERS INDEX}
\begin{tabular}{|c|c|}
\hline Admiral Corporation & 2 \\
\hline Allied Electronics Sales. & 492 \\
\hline Alltronics & 489 \\
\hline Arrow Sales, Inc & 488 \\
\hline Associated Industrie & 492 \\
\hline Atlantic Refining Co & 494 \\
\hline Audicon Television Corp & 492 \\
\hline Barry Electronics & \\
\hline Bell Telephone Laboratories & 467 \\
\hline Bendix Pacific Division. & 459 \\
\hline Blan & 489 \\
\hline Blonder-Tongue Laboratories & 466 \\
\hline
\end{tabular}


Fair Radio Sales............................ 483



\section*{TO THE}

\section*{ADVERTISERS}

OCTOBER, 1953

SEARCHLIGHT SECTION
(Classified Advertising)
H. E. Hitty, Mgr.

Industrial Research Laboratories. Industrial Test Equipment Co. Instrument Associates.

Jerrell Electronics Inc . . . . . . . . . . . . . . . . . . 493 JSH Sales Co.

Kass Inc., Samuel
Kollsman Instrument Corp

Lapirow Bros....................... Los Alamos Scientific Laboratory.
Los Alamos Scientific Laboratory........... 466

Maritime International Co.
Maritime Switchboard Co
Maxson Corp, W.
Medical Salvage Co., Inc
Melpar, Inc.
Metropolitan Overseas Supply Corp
Milgray Electronics, Inc.
Minneapolis Honeywell.
Mogull Co., Inc., Alexander
Monmouth Radio Laboratories

National Cash Register Co., The.
New York Electronics.

O'Del Electronics Corp.


Radalab Corporation of Anierica.
Radio Development \& Sales Co
Radio Electronic Surplus
Radio Surplus Corp.
Railway Communications Inc
Relay Sales.
Reliance Merchandising Co..
R. W. Electronics....

Southwestern Industrial Electronics Co.
Standard Coil Products Co., Inc
Stavid Engineering Inc
Stromberg-Carlson Co.
"TAB"
Tallen Co., İnc.
Telemarine Communications Co
Telepbone Engineering Co.
Tripoli Electronics Co.

Universal General Corp.
Universal Vacuum Tube Corp.

\author{
V. \& H. Electronic Industries.
}

\section*{Wells Sales Inc.}

Western Engineers
Weston Laboratories Inc
Wilcox Electric Inc.....
493
487,
476
476
460
Zenith Optical Lab

\section*{THE Electra INDEX}


\section*{SEARCHLIGHT SECTION}


\section*{INDEX TO ADVERTISERS}

I'k E biv. of Elastic Stop Nut Corp. of America
Ieme Electric Corp . . . . . . . . . . . . . . . . . 401
Acme Electronics Inc.. Div. of Ierovox 369
larne Wire Co.............................. 266
Adams \& Westlake Company . . . . . . . . . .
Seronautical Communicutions Entip- 44
tirborne Instruments Laboratory, lne... 45
lircraft Radio Corporation. .............. 425
Lireraft-Marine Produots, Huc..........30, 31
Airdesign, Inc. 389

Air-Mite 387
lirpax Heroducts Cu 336
Ilden Products Company................ 123
Nllen-Isradley Co.
Nlen Co., Inc., L. H
Hllied Control Co., Inc. ........................5.
Nllied Industries, Ine
Nohat Metals. Inc
American Flectrical Ifeater Cu 236

American Electric Motor-

Amerisa Lava Corporation

Anerican Phenolic Corporation.......210, 211
American Television A Ratio Co.
American Time I'roducts, Ine 304

Impex Corp. . . . . . . . . . . . . . . . . . . . . . . . 32.
Indrew Corporation \(\quad\) t
Intara Chemicals, Div. of Gell+ral Dye- 10 :
Inti-Corrosive Metal LPoAlucts Co. Ine.. 378
Inti-Corrosite Metnl Proitur Co. Yin...
(co Electronics, In
Arkwright Finishing ('o

\section*{Astren Corporation}

Mlas Fingineering Co., luc
Aurat IBros., Inc
Automatie Electric Mig. Co

Ballanatine Laboratories. Ifor
Parco Chemical l'rodeteta
farker \& Williamson. lur216

1 sarnstead Still \& Sterilizer cod
 411

13arry Corporation15

Belden Manufacturins (onmpaly

3.4

Itell Aireraft Corporation. ............... 39
Hell Telephone Lathoratorios . . . . . . . . . . en
Bandix Aviation Corporation.
Ediphe-Pioncer Division
Pracitia Division
Fed Bank Division
Bentley, Harris Mrik. Co
Berkeleg Div., IEeckman Instrmments, Inc........

Lserviliam Corporation
Lsird Electronte Corporation
birminghatm Noumd lkeproalnere Itt
Birnbach Radio Co.. Ithe
Ifirteher Corporation
Horench Manufacturing Co., Ius
Boonton Ratio (orperation
Howser, Ire.
Bradiey Imdustries
Bradley Laboratories. Inc
Ibridgeport IBrass Co
Uristol Brass Corporalion
Bristol Motor bivision, Vocaline fom
pany of America, In
Browning Laboratories, In

Brush Elextronics Co
Buggie and Compans, I1. It
zurgess Ikattery Company
Burnell A Co.
tsurronglis Raseareh Center, Fheretrontio
Instrumente Dis.
Bugsnamm Mfs. Co

Calidyme Company
23
Cambridge Thermienic Corb
Canatian Aviation Eledronics, LAA
30.7

Carboloy Dept, of demeral Clectric: Co.
108. 10!

Carborundum Compatay ..................... 297
Caribe Mireratt Liadio ('ory). . . . . . . . . . . 430
Carter Motor Co.................................. ※ll
Centralab Division of ditobe-thion.
Ine. Ine.

Chester Cithlt Corb ........ 58
Chicumb Telephome Nubly Corporation
20. 121

Chiraro Transtormer, Div. of Emsex Wire Corp.
Cinch Mannfacturing (orp............... 195
Clare \& Co., Inc., C. P ............ . 110 , 111
levelond Container C'o................... 217

Cohn Corp., Sigmund ................. . . . 415
Collectron Corporation ................... 401
Collins Radio Company. ............... 62, (i3
Commomication Aeressorits ('s........ \%
Conrad \& Mosrr . .......................... . 40 \%
Gonmolidated Enginerring (Gary.......... 23
Consolidated Vacuam Corp ............... 20 .
Conntintine \& Co.. L. L................... 69
Constmatime Engineerine liaboratories
Co.
503
Continental Connectora Tile etronic sales
Ibiv. 1hedar Inrseo Corll
300
Continental-1bimmal Fibre Co......... 29
Cornelf-IDubiliar Electric Corp.......... . 315
Corning Glass Works................... \(2: 1\)
Coto-Coil Company . .................... 453
Cramor Co.. Inc.., K. W . . . . . . . . . . . . . . . 21̃
Crescent Co., Inc., The. . . . . . . . . . . . . . 326
Cross Co., H ........................... 435
Jinmo Electric Co ..... 437
avelle Iaboratoriats, 1he ..... 393
Daven Co., The. ..... 'hird Cover
DeJur Antseo Corporation ..... 388, 390
tors Corp. ..... 406
Dialight Cormoration ..... 968
Doelcam Corporation ..... 235
bow Corning Corporation ..... 50, \(1,80 \mathrm{~B}\)
Driver-Hitrris Coblpathy ..... 243

Thrant Mamutiacturinse (o ..... \(41 \%\)
bonamic Air Engrinerrine Inc ..... 306
Fastern Dir Devices. Inc ..... \(27 \%\)
Eastern Precision Resistor Corp ..... 409
Edison, lncorporated, Thomas A ..... 332

\section*{are You in}
the KNOW too


\section*{Exclusive Features}
- guarantees against rosin voids or skips
- eliminates cold joints and rejects
- available in eight core sizes
- solders to plated or oxidized parts
- simultaneous "wetting flow" and take
- surpasses federal specifications for non corrosiveness and purity
for further information write...


ALPHA METALS, INC.
59 Water St., Jersey City 4, N. J.
Specialists IN SOLDER For Over 50 Years Want more information? Use post card on last page
Ganewell Company ..... 410
Garlock Packing Co ..... 246
Gates Radio Company ..... 237
\& Dye Comporation ., Alied Chemica ..... 289
General Electric Company
Electronics Dept. . . . . . . . . .... \(19,40,41,59\)
General Industries Co ..... 212
General Radio Company ..... 17
Good-all Electric Mig. Co ..... 402
Goodmans Industries Ltd ..... 124
Gramer Transformer Corp. ..... 287
Grant I'ulley \& Hardware Co ..... 412
Graphite Metallizing Corp ..... 454
Grayhill ..... 445
Green Instrament Co., Inc ..... 43
Gries Reprolucer Corn ..... 425
Gudebrod Bros. Silk Co., Inc ..... 421
Gyromechanisms, Inc ..... 399
ohsler Engineering Co., In8
Elco Corp ..... 48
Clectran Mfg. Co ..... 47
Electric Regulator Corp ..... 28
Electronic Corp. ..... 319
Meciro Motive Mfg. Co., ..... 255
Electro-Technical Products, Div. of Sun Chemical Corporation ..... 252
Electronic Associates, Inc. . ..... 238
Corp. . . Computer, Div. of Underwood ..... 502
Electronic Instrument Co, Inc. ..... 401
Engineering Research Associates, Div. ofRemington Kand, Ine254
Epeo Iroducts, Inc. ..... 445
Firchild Camera \& Instrument Corp ..... 316
Fairchild Engine \& Alpilane Corp. . ..... 342
Fansteel Metallurgical Corp ..... 426Ferroxcube Corporation of America.61
Finn \& Company, Inc., T. R ..... 280
453Gord Instrument Company
Freed Transformer Con102
Frequency Standards ..... 413
Fusite Corporation ..... 284

Kester
Kings Electronics
Krauter
Lectrohm
Littelfuse
James Mille
Minnesota Mining \& Mfg.
Mueller
Multicore
National Company
Ohmite

\author{
Guardian Electric \\ Gudeman Company \\ Halldorson \\ Hammarlund \\ Hardwick Hindle \\ Hickok \\ I C A (Insuline) \\ Industrial Instruments \\ J B T \\ Jay Specialities \\ E. F. Johnson
}

\section*{MLL-SPEC COMPONENTS AVAILABLE}

FREE CATALOG! Chief Engineers, Qualified Executives! Write now on your company letterhead for MILO'S edition of theMILORADIO \& ELECTRONICS CORP.ELECTRONICS FOR INDUSTRY200 GREENWICH STREET, NEW YORK 7, N. Y. • Phone BEekman 3-2980Teletype NY 1-1839 - Wire MILO-WUX-N.Y. • Cable MILOLECTRO-N.Y.

1954 Master. Please address Dept. E-10.
Hallett Manufacturing Company ..... 321
Hallicrafters ..... 90
Hammarlund Manufacturing Co., Inc ..... 414
Hanovia Chemical \& Mfg. Co ..... 405
Hardwick, Hindle, Inc ..... 125
Hart Manafacturing Co ..... 264
Haydon Company, A. W. ..... 409
Haydon Mfg. Co., Inc ..... 228
Leath Company ..... 393
Heiland Research Corp. ..... 292
Heldor Manufacturing Corb. ..... 263

Heligot Corporation, a Div, of lbeckman Instruments. Inc.
Hermetic Seal Products Co 83
Hewlett-Packard Company ..... 71, 73
Hichok Electrical Instrument Co ..... 445
Hinde \& Deuch ..... \(2 \geq 6\)
Hi-Q Division, Aerovox Corp. ..... 368
Hoplins Engineering Co ..... 266. 431
Hudson IRadio \& Television Corp ..... 224
Hughes Alreraft Company ..... 233
Hughes Research \& Development Labs ..... 415
Hycor Company, Ine ..... 413Ilinols Condenser Co
- Condens46, 47
Induction Motors Corp ..... 432
Industrial LIardware IIf. Co., Ine ..... 440
Industrial Test Equipment Co ..... 431
Industrial Timer Corporation ..... 88
INFRA Electronic Corp ..... 403
Institute of Radio Engineers, The ..... 234
Instrument Electronics Corp. ..... 395
Ingtrument Resistors Co ..... 391
Insulation \& Wires Inc ..... 122
Intermetall ..... 419
. . . . . . . . . . . .
288
nternational Resistance Co. ..... 28, 29
ppolito \& Co., Inc., Jrme ..... 407
Iron Fireman, Electronics Div ..... 67
Irvington Varish \& Insulator Co ..... 127
James Vibrapowr ........................ 381
JAN Hardware Manufacturing Co., Inc ..... 44
Jelliff Mfg. Corp., C. O ..... 295
Jolungon Co., E. F ..... 344
Jones Eleetronlcs Co., M. C ..... 421
Kahle Engineering Co ..... 227
Kalbfell Laboratories, Inc ..... 320
Kartron ..... 458
Kapp and Sons, C. 13 ..... 215
Kearfott Company; Ine ..... 418
Kelloge Company, M. W ..... 64A, 641 B
Kellogg Switchborrd \& Supp ..... 411
Kepco Laboratories, Inc ..... 68
Kester Solder Company ..... 259
Keytions ciectronics Company. ..... 442
Kinner Manufacturing Co ..... 343
265
Knights Company, James. ..... 302
Kollaman Instriment Corp ..... 214
Laboracory for Elictronics, Ine ..... 225
Lambia Electronics Corp ..... 39:
Lampkin Laboratories Inc. ..... 427
Lamson \& Sewsions Co ..... 92
Lapp Insulator Co., Inc ..... 242
Lavoie Laboratories, Inc ..... 313
Leach Relay Co ..... 201


\section*{Specify Chemelec}

\section*{Electronic Components}

Chemelec High Performance Electronic Components include a complete line of Tefion-insulated 7 and 9 -pin Miniature Tube Sockets, 9 -pin Connectors, Crystal Sockets, Stand-off Insulators, Feed Through Insulators and Terminals.

All provide the same high performance which this superior insulating material assures. Surface resistivity \(3.5 \times 10^{13} \mathrm{ohms}\). Loss factor less than 0.0005 . Dielectric constant 2.0 ( 60 cycles to 30,000 megacycles). Serviceable at \(-110^{\circ} \mathrm{F}\). to \(500^{\circ} \mathrm{F}\). Won't carbonize under arcing. Zero water absorption by ASTM Test. Unaffected by extreme humidity. Won't DC plate. Chemically inert, non-gassing, immune to corrosive atmospheres, fungus, oil, sốlvents. Non-flammable, tough, resilient, withstands and absorbs mechanical shock and vibration.

Write for Catalogs: Miniature Tube Sockets, No. SO-428; 9 -pin Connectors, No. CN-409-M; Crystal Sockets, No. CS-441; Stand-off Insulators, No. TE-401; Feed Through Insulators and Terminals, No. CF-400.

FLUOROCARBON PRODUCTS DIVISION CAMDEN 1,

NEW JERSEY

\section*{Representatives in Principol} Cities Throughout the World
Leeds \& Northrup Company ..... ค
Leland, Inc., G. H ..... 330
Lenkurt Electric Sales Co ..... 372. 3\%:
Lewis \& Kaufman, Ltd. ..... 203
Lintgren \& Assoc. (Mfrs.) Erik \(A\) ..... 405
Link Aviation, Inc ..... 208
Lorl Mfg. Co ..... 268
Maginatran Incorborateal ..... 395
Magnecord, Inc. ..... 331
Masneties Inc. ..... 455
Madtory \& Co.. Inc., I'. K. ..... 128, 19
Mansol Ceramies ..... 430
Marconi Instruments ..... \(32-1\)
Marion Electrical Instrument Company ..... 243
Markem Machine Company ..... 300
McLatughlin Corp., J. L. A ..... 353
Measurements Corporation ..... 44
Mepco, Inc. ..... 91
Metal Textile Corporation. ..... 356
Metals \& Controls Corp., General Plate Div. ..... 50
Methode Manufacturing Corp ..... 424
Mica Insulator Co. ..... 44
Micro, A Division of Minneapolls-Honey ..... 374
Microlab ..... 439
Midland Mrg. Co., lue ..... 43
Miles Reproducer Co., Inc ..... 158
Milford Rivet \& Machine Co ..... 306
Millen Mfg. Co., Inc., James. ..... \(\$ 36\)
Millivac Instrument Corp. ..... 241
Milo Radio \& Electronics Corp. ..... 500
Minneapolis-Honeywell Regulator Co ..... 97
Industrial Division ..... 98. 90
Minnesota Silicone Rubber Co.. ..... 448
Mitchell-Rand Insulation Co., Inc ..... \%8
Molorrey Electric Company ..... 281
Motordyne Ine. ..... :391
Muirhead \& Co., Limited395
N. K. K. Mfg. A Eugrineering Co ..... 456
National City Bank of New York ..... 961
National Muldite Co. ..... 96
National Research Corp. ..... 347
National Union Radio Corp ..... 339
National Vulcanized Fibre Co ..... 95
New IIermes, Inc ..... 423
New London Instrument Co ..... 450
New York Transformer Co., Inc ..... 420
Nielsen Hardware Corp ..... 439
Mortheastern Engineering Inc. ..... 327
Northern Radio Company, Inc ..... 85
Nothelfer Winding Laboratories ..... 156
Gnan \& Sons Inc., D. W ..... 318
O'Neil-Irwin Mfg. Co ..... 129
ELECTRONIC COMPUTER DIVISION UNDERWOOD CORPORATION

Originator's of ELECOM, Underwood's low-cost, high-speed electronic computers for practical research, engineering, and business applications.

Guaker City Gear Works. ..... 250
Quality lroducts Co. ..... 458


Singamo Electric Company ..... 256
Saratoga Industries. Inc. .....  320, 443
Sarkes Tarzian, Inc., Rectifier Div ..... 270
Scientific Fiectric, Div. "S" Corrugated Quenched Gap Co ..... 417
Scientifle Electronic Labs, Ine ..... 420
Sealtron Corporation ..... 329
Secon Metals Corporation ..... 431
Servo Corporation of America ..... 4 क. 4
Servornechanisms, Inc. ..... 396
Shakeproof Div. of
Illtnols 'Tool Work97
Shallcross Manufacturing Co ..... 11:

\section*{OUr experience produces}

\section*{ANOTHER HIGH PRECISION PRODUCT!}


\section*{New}

radar deflection yokes


OTHER CELCO SPECIALTIES
TRANSFORMERS
MAGNETIC AMPlifiers
Stator windings
variable reactors
rotor castings

Send drawings of your designs for quotation and take advantage of the Celco production experience in this specialized field.
Celco is at present supplying the country's leading manufacturers of radar equipment with the latest type deflection yokes made to precise specifications. Units are now being manufactured using high nickel alloy steels punched to close tolerances with complex winding distributions and high voltage insulations

\section*{Constantine Engineering Laboratories Co.}

\author{
70 ISLAND AVENUE,
}

MAHWAH, NEW JERSEY


\section*{PUSH-PULL ' \(\mathbf{V}^{\prime}\) and ' \(\mathbf{H}^{\prime}\) AMPLIFIERS \\ 20 mv . per inch ' \(V\) ' Sensifivity \\ 1 Volt P-P Internal Callbrator}
\(\star\) Regulated, Push-Pull Vertical Ampllifier: 02 v . per inch sensitivity. 10 cycles to 02 v . per inch sensitivity. 10 cycles to 1.
MC response. 2 Megs. and 22 mmf . input.
\(\star\) I Volt Peak to Peak, Regulated, Bullt-In Voltage Calibrator.
\(\star\) Compensated Vert. Input Step Attenuator. \(\star\) 'V' Phase-Reversing Switch.
\(\star\) Push-Pull Horizontal Amplifier: .15 v . per Inch deflection sensitivity. 10 cycles to 1 MC response at full gain. \(1 / 2\) Meg. and 20 mmf. input
* Internal Linear Sweep: 10 cyc . to 30 KC
\(\star\) Controlled, 4-Way Synch. Selection: Internal Pos., Internal Neg., External and Line.
\(\star\) 'z' Axis Modulation Input.
\(\star\) Internal, Phasable 60 Cyc . Beam Blanking.
\(\star\) Sinusoidal Sweep Phasing Control.
\(\star\) All 4 Horizontal and Vertical Plate Connec. tions Directly Accessible at Rear.
\(\star\) Four-Way Lab-Type Input Terminals.
\(\star\) Light Shield and Mask, removable and rotatable.
* Fully Licensed under W.E. Co. patents.

SERIES ES-500A: In louvered, black ripple, heavy gauge steel case. \(81 / 4^{\prime \prime \prime} \times 141^{\prime \prime \prime} \times 18^{\prime \prime}\)

Net Price \(\$ 173.70^{\circ}\)

\section*{SERIES SP-5 \\ Oscilloscope Test Probe Set for \\ WAVEFORM ANALYSIS, TROUBLE-SHOOTIMG, SIGNAL TRACING AND ALIGNMENT (with Series ES-500 ond ES.500A) \\ Set includes shielded Master Cable and four different, detachable probe heads: \\ 1. High Impedance-Low Capacity Probe \\ 2. Signal-Tracing-Crystal Prob \\ 3. Resistive-Isolating Prob \\ * In vinyl-plastic carrying case. Net Price \(\mathbf{\$ 2 3 . 5 0}\)}

PRECISION APPARATUS COMPANY, INC.
\$2-27 HORACE HARDING BLVD.; tLmHURST 13, N. Y.


\footnotetext{
Want more information? Use post card on last page
}

Shaw Insulator Co413
Shure Brothers, Inc ..... 334
Sickles, F. W. Div. o
General Instrument Cory. ..... 231
Sigma Instruments, Inc ..... 311
Signal Engineering \& Mfg. Co.. ..... 429
Simmons Fastener Corp ..... \(33!\)
Simpson Electric Compan ..... 361
Sola Rlectric Co ..... 351
Sorensen \& Company ..... :
South Chester Corp. ..... 32
Southern Electronics Company ..... 44
Spencer-Kennedy Laboratories, Inc ..... 435
Sperry Gyrofcope Company ..... 293
Sprague Electric Co. ..... 9, 107. 379
Stackpole Carbon Compans ..... 33
Standard Cabinet Compains ..... 403
Standard Piezo Company ..... 423
Star Porcelain Company ..... 147
Sterling Transformer Corp ..... 425
Stevens-Arnold Inc ..... 308
Steward Manufacturing Co., D. M ..... 376
Stoddart Aircraft Radio Co ..... 394
Stone Puper Tube Co ..... 93
Stupakoff Ceramic \& Manufacturiam Co ..... 221
Sun Parts Distributors Ltd ..... 458
Superior Electric Company ..... 35
Superior Tube Company ..... 66
Switeheraft, Inc. ..... 411
Sylvania Electric Products, Inc. ..... \(7,311,397\)
Synthane Corporation ..... 115
Taylor Fibre Co ..... 103
Technitrol Engineering Co ..... \(40 \%, 433\)
Tektronix, Inc. ..... 62, 363
Telechron Dept. ..... 333
Telechrome, Inc. ..... 419
Teletronics Laboratory, Inc ..... 116, 458
Tensolite Insulated Wire Co., Inc ..... 380
Texas Instruments, lnc. ..... 113
Thermador Electrical Mfg. Co ..... 451
Thomas \& Skinner Steel Products Co., ..... 416
Titeflex, Inc. ..... 341
Tobe Deutschmann Corporition ..... 386
Trad Television Corp ..... 455
Transicoil Corporation ..... 367
Transistor Products Ine ..... 423
Triad Transformer Corp ..... 365
Triplett Electrical Instrument Co ..... 301
Tru-Ohm Products Di
neering Mfg. Inc. ..... 269
Tung-Sol Electric, Inc. ..... 229
Ucinite Company, Div. of United Carr Fastener Corp. ..... 70
Union Switch \& Signal, Div. of
Westlnghouse Air Brake Co ..... 48, 49
United Electronics ..... 51
United Manufacturing \& Service Co ..... 346
U. S. Components, Inc ..... 419
United States Gasket Co. ..... 501
United States Motor Cor ..... 91
Unirersal Manufacturing Co ..... 403, 458

Universal Wlnding Co.....32A, 32B, 320, 32D Vector Electronic Co.................... 433
Vectron, Inc. ..... 422
Veeder-Root Incorporated ..... 106
Vickers Electric Div., Vickers Inc ..... 278
Victoreen Instrument Co. ..... 375
Victory Engineering Corp ..... 248
Vulcan Electric Gompany ..... 435
Waldes Kohinoor, Inc ..... 37
Ward Leonard Electric Compans". . . 100, 10
Waters Manufacturine Ine ..... 359
Waveline, Inc. ..... 240
Veckesser Co. ..... 437
Vestfield Metal Products Co., Inc....... ..... 411
Weston Electrical Instrument Corp ..... 80
Wheeler Insulated Wire Co., Inc ..... 292
Whitney Blake Co. ..... 354
Wilmal Glase Co Inc. ..... 365
Winchester Electronics Ine ..... 898
Zielik, Daniel D ..... 458
Cophar Mills, Ine ..... \(3!2\)
PROFESSIONAL SERVICES. ..... 457
SEARCHLIGHT SECTIOAH. E. HILTY, Mg
©EARCHIIGHT ADVERTISERS INIGEX406, 497

This index is published as a convenience to the readers. Every care is taken to make it accurate, but ELECTRONICS asstimes no responsibility for errors or omissions.

\section*{Shocking News About Super Davohm Resistors}

\section*{(D)}

Since Daven originated the first pie-type wire wound resistor more than a generation ago, it has pioneered many innovations in the production of resistors.

Today, only Daven uses a stranded lead wire to connect the resistance wire to the solder terminal of the Super Davohm Precision Wire Wound Resistor.

As a result, no matter how much strain, stress, heat or pressure is applied to the solder terminal, no accompanying shock is put upon the fine resistance wire itself, but is absorbed by the heavy lead wire without adversely affecting the resistor in any way.

Therefore, Super Davohm Resistors are sub. stantially more rugged than conventional resis. tors and are able to withstand unusual vibration, rough treatment and abnormal shocks.

This exclusive Daven feature, plus the many other quality aspects of Super Davohm Precision Wire Wound Resistors, makes Daven the leader in the resistor field.

The Super Davohm line includes resistors made in accordance with MIL-R-93A specifications, as well as sub-miniature units to give you the most complete selection of resistors available anywhere. Deliveries can be made to meet your requirements.

Write for assistance with your problems, and ask for a copy of Daven's complete, new brochure on Super Davohm Precision Wire Wound Resistors.

\section*{" (DAVEN \({ }^{\text {co }}\)}

191 CENTRAL AVENUE, NEWARK 4, N. J.


RCA is engaged in a program to provide the industry with transistors to meet equipment designers' needs now, and equipment manufacturing requirements in the future.
To achieve this goal, RCA is gearing transistor production to the progress being made in developing new manufacturing techniques and improved methods of production control.
As production volume grows with increasing demands, you can count on RCA to provide transistors of the highest quality consistent
with the best engineering practice known.
For technical data, or help on specific design problems using RCA transistors, write RCA, Commercial Engineering, Section 42-JR, Harrison, New Jersey. Or call your nearest RCA Field Office:
(EAST) Humbaldi 5-3900, 415 S. 5th St., Harrison, N. J.
(MIDWEST) Whitehall 4-2900
589 E. Illinois St., Chisago, III.
(WEST) Madison 9-3671
420 S. San Pedro St.
S. San Pedro St.,
Los Angeles, Cal

FREE technical bulletin on RCA Transistors; includes circuits, characteristics, typical operating conditions, curves, connections. Write: RCA, Commercial Engineering, Section 42-JR, Harrison, N. J.


APPLICATION GUIDE FOR RCA TRANSISTORS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{RCA Type} & \multicolumn{2}{|l|}{Max. Ratings-Absolute Values} & \multicolumn{4}{|c|}{Characteristics at Ambient Temp. of \(25^{\circ} \mathrm{C}\)} \\
\hline & Collector Dissipation (mw) & \[
\begin{gathered}
\text { Ambient } \\
\text { Temperature } \\
\left.{ }^{\circ} \mathrm{C}\right) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Power } \\
& \text { Gain } \\
& \text { [db] }
\end{aligned}
\] & Frequency for Alphn Cutoff (Mc) & Approx. Useful Power Output of \(50 \mathrm{Mc}(\mathrm{mw})\) & \[
\begin{gathered}
\text { Current } \\
\text { Amp. } \\
\text { Factor (approx.) }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
RCA-2N32 \\
Point-contact type-for pulse or switching applications
\end{tabular} & 50 & 40 & 21* & 2.7 \# & - & \(2.2{ }^{+}\) \\
\hline \begin{tabular}{l}
RCA-2N33 \\
Point-contact type-for ascillator applications up to 50 Mc
\end{tabular} & 30 & 40 & - & - & 1.0 & - \\
\hline \begin{tabular}{l}
RCA-2N34 \\
dunction p-n-p fype - for low power, af amplifier applications
\end{tabular} & 50 & 50 & 40** & - & - & \(40^{\dagger \dagger}\) \\
\hline \begin{tabular}{l}
RCA-2N35 \\
Junction n-p-n type - for low power, af amplifier applications
\end{tabular} & 50 & 50 & 40** & - & - & \(40^{\dagger} \dagger\) \\
\hline
\end{tabular}
* With collector load resistance of 10000 ohms, signalsource impedance of 500 ohms and signal frequency 5000 cps.
\(\dagger \dagger\) Between Base Connection and Collector.
\# Measured at a point 3db down from its low-frequency value ( 100 KC ). Cutoff trequency is defined as the frequency at which the currerit amplification factor has dropped to 0.7 of its low-frequency value
** With collector load resistance of 30000 ohms, signal soutce impedance of 500 ohms, and signal frequertcy of 5000 cDS .
+ Betweeñ Emitter and Collector```


[^0]:    (Continued on page 24)

