(Q) Q(囚)

FRESHMNA	28.910 456 28

for SPECIALIZED FILTERS

Decades of experience in the design and production of specialized filters have resulted in UTC being a first source for difficult filters. fifteen years ago UTC was already the largest user of permalloy dust toroids in the world (exclusive of the telephone system). Present designs include a wide variety of core materials, structures, and winding methods to provide maximum performance jn electrical requirements and stability. Illustrated below are a few of the thousands of special filter designs in present production.

These low frequency band pass filters are held to 1 DB tolerance at the 3 DB crossover... 600 ohm ... 4 filters per $712^{\prime \prime}$ rack panel.

This 600 ohm miniaturized 1 KC band pass filter is housed in a case only $1^{\prime \prime} \times 13 / 4^{\prime \prime} \times 21 / 2^{\prime \prime}$.

This power line filter provides correct output voltages from sources of 50 to 400 cycles... noise attenuation is from 14 KC to $400 \mathrm{MC} . .29$ cubic inches.

This ultra low frequency filter has a band pass range af one cycle to 10 cycles. . . 50,000 ohms ... 700 cubic inches.

This 600 ohm miniaturized low pass filter is housed in a case only $1^{\prime \prime} \times 13 / 4^{\prime \prime} \times 21 / 2^{\prime \prime}$.

This band pass filter is designed for sharp cut-off at be-h ends of the range... 10,000 ohms...case dimensions $159^{\prime \prime} \times 28^{\prime \prime}=314^{\prime \prime}$.

FOUL DETECTOR AND AUTOMATIC PINSPOTTER_Action views of American Machine and Foundry's electronically controlled equipment. Photos by Syd Karsen at Farragut Pool Bowling Center, Brooklyn, N. Y. For details see p 748
FIGURES OF THE MONTH 4
Includes Electronic Output Index, a business barometer for management
INDUSTRY REPORT5
Top-level news, trends and market interpretations
APPROACH TO AUTOMATION: Mechanized Dip Soldering of Television Receivers, by K. M. Lord 130
Machine solders 424 joints in one operation by dipping inverted chassis into pool of molten solder
BROADCAST TRANSMITTER REMOTE CONTROL SYSTEM, by Gerald W. Lee 138 138Telemetering method used in Canada now approved by FCC
MICROSECOND PHOTOGRAPHY OF ROCKETS IN FLIGHT, by E. Barkofsky, R. Hopkins and S. Dorsey 142 Electronically controlled flash lamps take silhouette images of missile during 500 -foot flight to sandbag stop
AUTOMATIC PINBOY FOR BOWLING ALLEYS, by Fred K. Powell, Jr. 148Automatic pinspotter handles everything from strikes to fouls
DETERMINING PROPERTIES OF BULK SEMICONDUCTORS, by R. B. McQuistan 150
Resistance-temperature characteristics are derived by pulse technique and displayed oscillographically
BRITISH TV RELAY USES TRAVELING-WAVE TUBES, by D. C. Rogers and P. F. C. Burke 156British engineers put traveling-wave tube to work
MAGNETIC AMPLIFIER WITH RESET CONTROL, by George M. Attura 161New circuit improves performance and simplifies design
NOISE LIMITER FOR MOBILE VHF, by Nathaniel Bishop 164
Maintains signal intelligibility in heavy ignition-noise areas
TRANSISTOR ACTION IN GERMANIUM AND SILICON, by Abraham Coblenz and Harry L. Owens 166Part IV of the series, "TRANSISTORS: Theory and Application"
AUDIO IMPEDANCE AND PHASE-ANGLE METER, by Julian E. Hansen. 172 Simple bridge technique measures complex quantities directly without inductance or capacitance standards
ANALOG COMPUTER SOLVES GEOPHYSICAL PROBLEMS, by S. Kaufman 174
Specially-designed electronic brain aids modern prospectors
DIELECTRIC HEATING CUTS WOODWOKING COSTS, by R. E. Nelson 178 178
Case histories of applications where electronic glue-curing boosts production, improves quality and cuts costs
REDUCING DISTORTION IN MICROWAVE SYSTEMS, by W. L. Firestone and J. F. Byrne. 184Intermodulation problems in frequency-division multiplex systems
PULSED LIGHT MEASURES FLICKER PERCEPTION, by Fred H. Ireland. 189
Timing circuit controls light for measuring flicker perception
GRAPHICAL DESIGN OF TUNING ELEMENTS, by Bernard H. Baldridge 192Procedure for preparing simple chart from which tuned circuit volues can be found quickly

W. W. MacDONALD, Editor; VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzie, James Fahnestock, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, William E. Pettit, David A. Findlay, Assistant Editors; Ann Mastropolo, Marilyn Wood, Mary J. Johnson, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Editorial Director

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotion \& Research Assistant; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Robert H. Sidur, Atlanta
(1) Jine, 1953 ELECTBONICS \quad Member ABC and ABP 26, No. 6

Published monthly with an additional lssue in June by McGraw-Hill Publishing Company, Inc., James H. McGraw (1860-1948). Founder. Publication Office, 99-129 Exacutive, Editorial and Alvertising Officos: McGraw-Hill Building, 330 W. 42 St., New York 36, N. Y. Curtis W. McGraw, President: Willard Chevalier, Executive Fice-President, Joseph A Gerardi, Vice-President and Treasurer; John J. Cooke, Secretary; Paul Montgomery, Senior Vice-President, Publication Division, Ralph B. Smitlo. Vice-President and Editorial Director; Nelson Bond, Vice-President and Director of Advertising; J. E. Blackburn, Jr., Vice-President and Director of Circulation.

Suhscriptions: Address correspondence to Electrontos-Subscription Service, 99-129 N. Broadway, Albany 1, N. Y., or 330 W. $42 n d$ St., New York $36, N$. Y. Allow one mith for change of address. Suhscriptions are solicited only from persons engaged in theory, pesearch, design, production, maintenance and use of electronic and industrial control components, barts and end products. Position and company connection must be indicated on subscription orders.

Single copies 75% for United States and possessions, and Canada; $\$ 1.50$ for , atin America; $\$ 2,00$ for all other foreign countries. Busers' Guide $\$ 2.00$, Subseription rates for two years. All other coinntries $\$ 20.00$ a year; $\$ 9.00$ for two years. Canada, $\$ 30.00$ for two years. Entered as second class matter Augnst 29 , 1936 , at the Post office at Albany, N. Y., under act of
 III, 68 Post Street, San Francisco 4: McGraw-Hill House. London, E.C. 4; Washington, D. C. 4: Philadelphia 3; Cleveland 15; Detroit 26 ; St. Louls 8: Roston 16 ; 1321 Index

Better Meters Made Easier To Use. Recent years have seen major advancements in the performance characteristics of electrical indicating instruments. These advancements include Marion's pioneer work in the fields of hermetic sealing and ruggedization. They have made the electrical indicating instrument of today an extremely reliable device.

However, very little attention has been paid to the bio-mechanical problems associated with the proper use and interpretation of the intelligence presented by the instrument. As the complexity of application, particularly in the multi-scale type has grown, it has become increasingly nécessary to attack and solve these human error problems.

The Marion Multi-Dialer was developed to provide a multi-scale instrument which exposes only one scale to view at a time. At the same time, it automatically switches the appropriate internal or external circuitry associated with that scale.

The Multi-Dialer may be used as a panel instrument (mounts to standard JAN-3 $1 / 2^{\prime \prime}$ dimensions). It is also practical as a com-
 plete, self-contained, portable instrument for field or laboratory use. Its ingenious combination handle and stand makes it convenient to use on or above the bench.
Marion Electrical Instrument Company 401 Canal St., Manchester, New Hampshire

Where every detail matters ...

At the high speeds encountered with turbo-jet engines, unsuspected blade resonances can cause serious damage. For this reason exhaustive vibration tests must be made, and the source of each vibration located.
Leading British Aircraft manufacturers rely on the MuirheadPametrada Wave Analyser it gives them the frequency and amplitude of ferch vibration component/quickly and accurately; anep pitude measurements 20, Horeoyer, be made substantially independent of speed flypations. Location of the soure of viltration thenbecomes simply a matter of exrelating the measured frequency with known engine data.

SEND TODAY

for this
ILLUSTRATED BROCHURE On
VIBRATION MEASUREMENT AND WAVEFORM ANALYSIS

FREE on request
MUIRHEAD \& CO., LTD., BECKENHAM,

PRECISION ELECTRICAL INSTRUMENT

KENT,
ENGLAND
MAKERS

FIGURES OF THE MONTH

FILURES OF THE YEAR

Television set production
Radio set production
Television set sales
Radio set sales (except auto)
Receiving tube sales
Cathode-ray tube sales

1952 Total
$6,096,279$
$10,934,872-r$
$6,144,990$
$6,878,547$
$368,519,243$
$6,120,292$

First Quarter Totals

1952	1953	Percent Change
$1,324,831$	$2,259,943$	$+70.58 \%$
$2,367,800$	$3,834,784$	+61.96
$1,279,783$	$1,780,899$	+39.16
$1,505,883$	$1,438,871$	-4.45
$85,934,322$	$122,058,756$	+42.04
$1,040,829$	$2,798,921$	+168.91

electronics—JUNE • 1953

International Hookup Televises Coronation

BBC marshals resources, picks up $\$ 171,500$ tab to telecast ceremony

An international television network will bring scenes of the June 2 coronation of Queen Elizabeth II to viewers in Great Britain, France, Holland, Belgium and Germany. The British Broadcasting Corporation will use 20 cameras manned by 101 engineers and eight commentators to give complete coverage of the ceremonies.

Cameras will be installed at several locations within Westminster Abbey and at four vantage points along the route of the procession. The complete program will last seven hours. Extra cost involved in televising the coronation will be $\$ 171,500$.

- Network-Besides feeding the British television network, the signal will be transmitted by microwave to Paris where it will be used to feed the French 441 and 819-line transmitters after conversion from the British 405-line signal.

The French will also provide a microwave link from Cassel, on the London-Paris route to Lille. Here a Belgium-Dutch relay will carry the signal to Lopik in Holland via Breda. Conversion to the 625 -line standard will taker place at Breda and Dutch transmitters at Lopik and Eindhoven will broadcast the program to Belgian and Dutch viewers.

From Breda the 625 -line signal will also go via microwave to Cologne where it will feed the NWDR television network linking seven German cities.

HYDROGEN THYRATRONS ranging from a few kilowatts to 40 megawatts produced from emergency development program led by Signal Corps engineers. Ropid expansion on M-Day is possible because ...

Keyer Tube Resources Are Pooled

In a crash program, new tubes and machines to build and test them were evolved together

To meet an extreme emergency military demand, normal development and production procedures were short-circuited to get keyer tubes for vital defense equipment.

Late in 1950 a review of production against requirements showed hydrogen thyratrons, needed chiefly to pulse magnetrons in radars, were in short supply. The problem was presented to the Signal Corps, and a round-the-clock program was initiated at the Signal Corps Procurement Agency, Philadelphia.

- Authority-Anticipating future needs, the Signal Corps group decided to establish multiple sources for the production of hydrogen thyratrons in the shortest possible time. To cover possible anti-trust violation suits, authority was ob-
tained from the Attorney General to allow pooling engineering knowhow among competitive companies.

At integration committee meetings, representatives from all branches of the armed forces met with engineers from all the companies involved. According to B. D. Aaron, Signal Corps project engineer, "the most difficult problem at first was to get them to ask the right questions. Once we got past that, production and testing information and advice were freely swapped." Engineers from some companies toured other companies' plants, to learn how to make the equipment and tubes that grew as the program went along.

- Ad Lib-There were few specifications to guide the program and practically no prototypes. Small tubes were scaled up to big ones; interim types were made and finalized. Samples were flown to

Signal Corps Engineering Laboratories for aging and engineering evaluation. Heavy equipment to heat, treat and test the tubes was built from whatever parts could be found. Components were flown to a plant in the middle west where 35 kva aging units were designed, rushed into production and shipped to tube producers. Other units were built in California and air-shipped to reduce hazards of transportation damage and attendent delays.

- Cooperation-When a company worked the bugs out of its production problems, complete engineering specifications were made of findings, and copies were sent to every other company in the program. Engineering time for the crash program, and for future production programs, was thereby cut from several years to several months.
Pilot plant production runs were established and contracts were written specifying that companies involved maintain production knowhow and tooling for a minimum of six years. "In case M-day comes," Aaron said, "production can be expanded immediately, without wait-
ing for contracts to be negotiated, bids to be given and orders placed. The machinery is all there, all ready and working."

Thousands of type-approved thyratrons now roll off the lines, for use in the services' Skysweeper AA gun, among other things, and a precedent for similar future problems has been established.

- Companies-Among those manufacturers involved in the hydrogen thyratron program were, for equipment production: American Television Mfg. Corp., Kip Electronics, Chatham Electronics, Douglas Laboratories, General Electric, Girdler Corp., Manson Laboratories, Marchant Research, Westinghouse.

For tube production: Amer. Television Mfg. Corp., Amperex Electronics, Bomac Laboratories, Chatham Electronics, General Electric, Kuthe Laboratories, Machlett Laboratories, Penta Laboratories, Radio Corp. of America, Sylvania Electric, Westinghouse.

The companies included stretch cross country from New England to California.

Business Briefs

Controls-Last of price controls have been dropped in accord with Eisenhower's 'orderly decontrol of prices'. OPS plans June 30 exit.

Depreciation - Treasury is giving more liberal treatment of regulations on how fast plant and equipment can be written off for tax purposes.

Labor-End of price and wage controls brought some price rises, rumbles of reopening wage contract negotiations. Unemployment is about 1.8 million, near last year's 1.7 million, but employment is 1.8 million higher, which makes the labor market tight. Mid-
summer record of 63 million employed is expected.

Buy American-Enacted in 1933 under outgoing Hoover, the Buy American Act was upheld by Defense Secretary Wilson who turned down British low bid on Army contract. President Eisenhower backed Wilson, bucked Dulles and Stassen. The law's ' 25 -percent under' interpretation, broken last June, is holding again.

Copper-Price is down to 30 cents per pound. It's a buyer's market now; National Production Authority has stopped allocating the metal because of 'favorable developments in the overall supply.' Imports and scrap production are up.

DEFENSE volume shows as

Electronic Companies Size Up Military Sales

As defense spending cuts loom ahead, manufacturers look at military sales percentages

Electronic manufacturers, both large and small, will do well to prepare for an increase in their commercial business and a decline in their military production, Glen McDaniel, RTMA general counsel, told west coast electronic manufacturers recently. He declared it appears likely that military expenditures will be reduced or stretched out, "but how fast I don't know. Of one thing we can be sure, electronics and aircraft will remain paramount in whatever armament program is decided upon for the years ahead."

- Ratios-A survey of 15 manufacturers in the field reveals that defense sales in 1952 (black columns) ranged from 10 to 90 percent of total net sales, with an average for the companies of 45 percent. This is lower than an estimate made last year by the Defense Department who set military sales at 53.3 percent of total sales in 1952. (Electronics, p 6, Aug. 1952) The percentage was expected to be lower as the defense delivery schedule "stretch out" went into effect last year.
- Companies—In 1951, smaller electronic companies reported proportionately more military business than did large firms. But major electronic manufacturers indicate they increased their defense business substantially in 1952.
Shipments of electronic apparatus

At a glance it tells you about power rating and frequency, and shows which tubes are band-pass and which are tunable. Color code ide vifies power rating quickly and accurately. Folds to compact, wallet size.
If your Sylvania Representative can't supply you, mail the coupon for a copy NOW!

-SVIVANIA
 In Canada: Sylvanio Electric (Canada) Lid.

University Tower Bldg., St. Catherine St., Montreal, P. Q.

Sylvania Electric Products Inc.
Dept. 3E-1006, 1740 Broadway,
New York 19, N. Y.
Please send me a copy of the new handy guide to TR and ATR Tubes.

Name
Street

for the armed forces by RCA were approximately double those of 1951. Sylvania estimates that 28.5 percent of its net sales in 1952 were accounted for by defense products, nearly double 1951's volume. Zenith also reported that production and shipment of material for the military services, at a low level in 1951,
increased materially in 1952 and amounted to approximately 10 percent of the company's net sales.

- Future-Although electronic manufacturers are concerned about the effect of a military cut-off on the industry, many would welcome the return to full civilian produc-
tion. Profits are higher and the commercial sales outlook for 1953 is very promising. Already most companies have experienced record first quarters. But even without top civilian sales the present electronic defense backlog, which is at a peak, could carry the industry's big volume well into 1954.

ELECTRONIGRAPH—Natural Quartz Crystals

Status of Quartz Crystal Growing Plants in U.S.

Industry changeover to small crystals, in plentiful supply from Brazil, eases needs

Production plants for growing synthetically the wartime needs of radio-grade quartz crystals could be built and equipped within a year if necessary. It may be assumed that military stockpiling of natural crystals has been geared to this time figure, hence there should be no shortages even if the Brazilian supply were cut off today.

Brazilian domination of the quartz market has been a bugaboo for a nation geared to the philosophy of always having a second source of supply. Most critical years were 1942 and 1943, when U-boats were sinking supply ships in the

Caribbean. An air lift solved this problem. Tension eased further, after the war, with the announcement that Signal Corps sponsored research on quartz crystal growing had paid off.

- Change in Demand-Crystals under 200 grams, considered as scrap early in World War II, now serve because the industry has become adapted to use of finished plates approximately $\frac{1}{2}$ inch square or round. Small natural crystals cost only $\$ 1.25$ to $\$ 4$ a pound, as contrasted to $\$ 15$ and up for the pound-size and larger crystals considered necessary heretofore.

Small crystals usually have much less twinning, hence give an even greater yield per pound despite increased geometric losses. With
larger crystals, only 30 to 40 percent of the weight ordinarily is usable because of defects.

- Growing Costs-Under developmental conditions at Bell Telephone Laboratories and at Brush Laboratories, costs have approximated $\$ 50$ per pound for synthetic crystals. With organized mechanized handling of the heavy autoclaves for loading and unloading, this cost may be better than halved in full production.

A further reduction in net cost per finished plate is possible because synthetic crystals are relatively free from flaws and hence may approach 100 -percent usability except for geometric losses in cutting. By varying growing time and
(Continued on page 10)

Button cerrmic

CAPACITORS

for

 VHF \& UIF circuits

Unique design possibilities . . . better VHF and UHF performance . . . simplified equipment constructionthese are but a few of the advantages of Sprague Button Ceramic Capacitors. In coupling, bypass, and feed-thru filter applications, these wafer-dielectric units have higher self-resonant frequencies than capacitors using a conventional dielectric tube.
Button stand-off types, for example, minimize ground inductance and hold it at a fixed value while providing a short and radially uniform bypass to ground. The dielectric button is housed in the top of a hex head machine screw, or in a metal shell for ferrule clip mounting. Lug terminals are located at tube socket height for short, uniform lead lengths.
All Sprague button capacitors are sealed against moisture by a high temperature plastic resin . . . are rated at 500 volts dc . . . and are available in Characteristic SL and GA bodies. A letterhead request for Engineering Bulletin 605 brings complete details. Write Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.

Batch of 11 perfect 160 -gram quartz crystals being unlooded by A. C. Walker after growing 48 days in 4 -foot autoclave at Bell Telephone Labs in Murray Hill, N. J. Threaded cap is removed with huge wrench and chain hoist, after which welded-steel inner liner is sawed open. Project is sponsored by Signal Corps Engineering Labs of Fort Monmouth
choosing the right angle for the quartz seed plate, the synthetics can be made almost exactly the optimum size and orientation for cutting a particular type of plate with minimum cutting waste. Despite all this, the present cost of the synthetic product is way more than the current rate for radio-grade Brazilian quartz. However, it is reasonable to believe that large-scale commercial production eventually will be feasible because of a greater potential yield from synthetic quartz.
In the military picture, cost of raw quartz is secondary to availability. This is partly why the Signal Corps sponsors crystal-growing research at both BTL and Brush

- Process Details-Both labs grow the crystals by suspending seed plates in an alkaline solution between 350 C and 400 C and high pressure, with scrap natural quartz at the bottom. BTL uses a welded autoclave at $15,000 \mathrm{lb}$ per sq inch (ElecTRONICS, p 96, April 1951), and gets about 5 lb of quartz per month per cu ft of autoclave space.

Brush uses a continuously-rocked double-chamber autoclave at 5,000 lb per sq inch (Electronics, p 238, April 1953), and gets about the same output per cu ft.

Broadcasters Made Money ln '52

Station revenues for 1952 are 5 percent higher than total dollar take in 1951

Total revenue of the radio-broadcasting industry in 1952 amounted to $\$ 473.1$ million, 5 percent above the previous year. Figures are from a preliminary FCC report. While 7 networks, including owned stations, estimated total revenues of $\$ 101.0$ million or 2.9 percent below 1951, more than 2,300 radio stations estimated total revenues of $\$ 372.1$ million, an increase of 7.4 percent above 1951. Thus radio income for networks and individual stations followed the same pattern as did tv income for networks and individual stations in 1952. (Electronics, p 22, May, 1953)

Added to the estimated $\$ 336.3$ million total revenues of tv broadcasters, the combined industry revenues in 1952 reached $\$ 809.4$ million showing a marked increase of 18 percent above 1951.

- Income vs Revenue-Radio industry income before federal income taxes rose to $\$ 62.6$ million in 1952 after having dropped to $\$ 57.5$ million in 1951 from a peak of $\$ 68.2$
million in 1950. Networks, including owned and operated stations, estimated 1952 income at $\$ 11.2$ million or 11 percent above 1951 . Total income of 2,300 radio stations was estimated at $\$ 51.4$ million or 8.4 percent above 1951. The $814 \mathrm{a}-\mathrm{m}$ stations licensed in 1941 and prior years, comprising slightly more that $\frac{1}{3}$ of all a-m stations, accounted for almost $\frac{2}{3}$ of the total revenues and $\frac{3}{4}$ of the total income of all a-m stations.
- TV vs Radio-A total of $470 \mathrm{a}-\mathrm{m}$ stations in tv markets estimated their 1952 revenues at $\$ 171.5$ million or 2 percent above 1951. In non-tv markets, $1,629 \mathrm{a}-\mathrm{m}$ stations estimated their total revenues at $\$ 199.6$ million, almost 11 percent above 1951. Increased total revenues in 1952 were reported by about three out of five a-m stations in the tv markets and by four out of five a-m stations in the non-tv markets. Overall, 74 percent of the total stations reported increased revenues in 1952.

Losses were reported by 15.9 percent of the $2,276 \mathrm{a}-\mathrm{m}$ stations. This is the smallest number since 1946 when 11 percent of the 1,015 then operating were unprofitable.

U.S. Surveys Labor Picture

Number of stoppages has declined sharply since 1950 but total man-days idle have risen

Trend in work stoppages involving six or more workers and lasting for a full shift or longer shows up in a report by the Labor Department. Last year there were 30 such stoppages in the communications equipment field, radio, tv, equipment and parts manufacturers. This was the lowest number of disputes to be recorded since 1949. However, mandays idle as a result of the 30 stoppages totalled 327,000 , the largest number since 1950 when total reached 368,000 .

Although the number of disputes
was lower, the stoppages evidently affected larger companies for longer periods of time. In 1952, two companies in the electronics field had strikes involving 10,000 or more workers, while in 1951 there was only one such stoppage.

- Pattern-According to the Labor Department, the largest number of work stoppages have been caused by disputes over wages and shorter hours. Other prevalent reasons are: union organization, working conditions, interunion and intraunion matters.

Fluctuation, as seen in total mandays idle, seems to follow the sales pattern of the radio-tv industry. In
(Continued on page 14)

BHRCCHONIC BNGINEBRS

Check to bring your design file up to date ... and be first with the newest

If you're one of the thousands of electronic engincers specifying Centralab electronic components-you'll want these 14 new bulletins ... just off the press. Each contains essential, exact specifications for radio TV, UHF and VHF applications.

PRINTED ELECTRONIC CIRCUITS

1. AUDET, PC-150 and PC-151. Centralab's audio detector plate for a-c, d-c receiver output stages. Bulletin 42-129.
2. PENDET, PC-160. Remarkably small PEC consisting of 4 resistors and 5 capacitors requiring only 9 connections, instead of the usual 18. Bulletin 42-149.
3. Model 2 AMPEC, PC-200 and PC-201. A threc-stage speech amplifier smaller than the cover of ordinary book matches. Bulletin 42-117R.
4. Model 3 AMPEC, PC-202 and PC-204. Post-are-stamp size three-stage speech amplifier for sub-miniatures. Bulletin 42-130R.
5. pentode couplates, PC-90 and PC-91. Even smaller than before. A complete pentode inter-stage coupling circuit. Bulletin 42-128R.
6. TRIODE COUPLATES, PC-70, PC-71. PC-80, PC-81, for inter-stage audio coupling citcuits. New space-saving design. Bulletin 42-127R.
7. SMALL PLATE COMPONENTS. Tiny resistorcapacitor combinations. Seven plates, including famous "Filpec." fit scores of miniature applications. Bulletin 42-132.

VARIABLE RESISTORS

8. Model I RADIOHMS ${ }^{(6)}$. Smallest variable resistor on the market (only $5 / 8^{\prime \prime}$ dia.). Includes data on new Hi -Torque model. Bulletin 42-158.
9. Model 2 EXPRESS RADIOHM. Quick-delivery, switch-type variable resistor. Shafts staked directly to radiohm on your order. Bulletin 42-163.

CAPACITORS

10. TYPE 950 HIGH-ACCURACY. For exacting electronic applications in t.f. circuits. Bul. letin 42-123.
11. BUTTON-TYPE CERAMIC CAPACITORS. Five different types, solder-sealed for HF, UHF VHF applications. Bulletin 42-122R.

write for these 14 new pictorial technical bulletins on important Centralab electronic developments

You can depend on Centralab electronic components to maintain the high perfection and performance expected of modern electronic gear. By having full information at your fingertips, you can be stire of keeping abreast of the fast-changing electronics field. For your convenience, we've included a handy coupon.

Centralab

A Division of Globe-Union Inc.
Milwaukee 1, Wis.
In Canada, 635 Queen Street East, Toranto, Ontario

1950, big sales year for manufacturers, man-days idle were highest. Then as business slumped in 1951 and regained in 1952, man-days idle followed the same course.

- 1953-There have been a number of work stoppages in the electronics industry so far this year but only one of any severity. It involves more than 10,000 workers and several weeks duration. But there are rumblings of more wage disputes in the steel industry that could affect electronics.

Television Highlights NARTB Show

Broadcasters see 3-D telecast; remote control and low-budget operation also discussed

Theme of the recent NARTB convention seemed to be "What else can you do with television?" The 1,500 conventioneers who crowded Los Angeles' Biltmore Hotel heard reports on three-dimensional tv, color tv, intercontinental tv and tv in a can. Low-budget operation of small-city television stations and remote control of a-m and f-m broadcast transmitters were discussed in several papers. Fifty-odd suppliers of broadcast equipment and services exhibited.

- Three-D-An experimental telecast over KECA-TV ABC-Paramount's L. A. outlet showed delegates how the illusion of depth may be achieved in television. Special receivers at the Biltmore using two picture tubes resolved their images on a 3 by 4 -ft viewing screen.

Three-Dimensional Television Lens

Wide-angle lens giving 142-degree field of view, as used et the Navy's Special Devices Center, Sands Point, N. Y. in a gunnery trainer. A televisian system using this wide-angle lens and a spherical-screen projection receiver to provide three-dimensional television is presently under development at RCA

Viewers needed Polaroid glasses.
The emphasis was also on 3-D at the Statler where 1,000 SMPTA members concurrently held their annual confab.

- Color-Discussing the future of color television, RCA's General Sarnoff prognosticated that once the FCC authorizes color it will take industry nine to 12 months to tool up and produce. Sarnoff also predicted the failure of subscription television on a national scale.

Features of the NTSC color television system were discussed in a paper by Dr. W. R. G. Baker of GE.

- Around the World-Intercontinental television may be just over the horizon according to Neal McNaughten, NARTB's engineering manager. High-powered microwave relays and submarine cables with transistor amplifiers would do the trick.
- Low Budgets-Reflecting television's post-freeze trek to the hinterland, low-budget operation of a small-city station was the subject of a panel discussion. In the same vein, Federal engineers presented a paper on how to set up a television station with two technicians while GE demonstrated a packaged tv station designed for one-man operation.

Low-budget operations, it developed, are still not low enough for stations serving markets under 100,000 population. Tab for essential equipment comes to $\$ 300,000$ with yearly operating cost running between $\$ 175,000$ and $\$ 300,000$.

- Canned TV-Importance of canned entertainment in post-freeze television was attested to by at least six equipment makers. General Precision, Standard Electronics, Federal and RCA exhibited small cameras especially suited for film reproduction. Philco and DuMont both introduced continuous-motion film scanners.

Reporting on his company's sys-
(Continued on page 16)

SHOCK ${ }^{[}$VIBRATION
 NEWS

Simplify Your Packing and Protect Your Product with Barrymounts

The problem of protecting delicate equipment in transit is enormously simplified by properly designed shock mounts built right into the packaging. Barry shock mounts, designed for protection against the severest shocks of military service, have demonstrated their value in this industrial application.

> Philco Corporation has made Barrymounts standard in packaging design for the entire Philco Microwave Program, and has shipped thousands of microwave equipments all over the world without the slightest damage. Philco microwave equipment is shipped pre-assembled, with all the tubes, glass dessicators, and crystals in place. On arrival, the only work required is powering the equipment.

Barrymounts are the modern method of shock protection. Let them simplify your packaging problems. Write today for more detailed information.

707 PLEASANT ST., WATERTOWN 72, MASSACHUSETTS

SALES REPRESENTATIVES IN

AHanta Boltimore Chicaga Cleveland Dallas Dayton Detroit Los Angeles Mianeapolls New York
Philadolphia Phoeniz Rochester St. Louis San Francisca Seattle Toronto Washington
tem for recording tv programs on tape, John T. Mullin of Bing Crosby Enterprises claimed the tape would record both sound and picture with the quality of a live telecast.

Movies Triple Audio Facilities

Newcomer in the 3 D field is CinemaScope, which uses a 65 -foot wide screen, a single projector and no glasses. Behind the screen are three speakers, each with its separate amplifying system and sound track, to produce a stereophonic sound effect.

Installation costs big theaters about $\$ 10,000$, little theaters less, according to Twentieth CenturyFox. The company expects 12,000 installations to be made by the end of next year.

Expansion Plans for Puerto Rico Plants

Subassembly and parts plants plow back tax-exempt profits; many new plants are under way

Practically all of the electronic plants established in Puerto Rico in the last two years are actively expanding. Business is good down there, because most of this expansion money comes from profits inflated by tax-exemption.

Figures tell the story; present total square-footage of operating plants is about 115,000 and goes to an estimated 350,000 by year-end for expanded and new plants combined. Total present employment of 875 correspondingly jumps to about 3,500 . The accompanying tabulation gives the present picture in detail, as derived by combining latest figures of Puerto Rico's Economic Development Administration (New York City office: 600 Fifth Ave.) with observations made during editorial visits to operating plants.

- Profits-There are two methods of showing a high profit on electronic operations in Puerto Rico:

ELECTRONIC PLANTS IN PUERTO RICO

Name of Firm	Location	Started	Sq Ft	Empl	Chiel Products
Ben Ida Electronics	Hato Rey	Jan. '52	3,500	-	Amplifiers \& record
Borinquen Radio Components Corp.	Rio Piedras	Future	-	-	players Radio hardware \& structural parts
Caribe Aircraft Radio Corp. (Related to Lavoie Labs)	Coamo	May '52	10,800	80	Radar subassemblies, coils \& filters
Coradel Mfg. Co.	Caguas	June '52	5,000	-	Lightning arresters \& lead-ins
Diversified Products Corp.	Carolina	May '53	-	-	Ceramic insulators
Empire Industries Inc. John Hackes \& Siegler	Bayamon Hato Rey	Future Future			Transformers Quartz crystals
Hemisphere Corp. (Related to National Moldite Co.)	Rio Piedras	July '53	11,000	30	Molded coil forms \& ferrite cores
Hermetic Seal Products Co. of Puerto Rico Inc.	Hato Rey	Aug. '51	10,000	110	Feed-through insulators
Hycor Co., Inc.	Vega Baja	Nov. '52	1,500	35	Precision resistors \& toroids
Interamerica Electronics Corp.	Santurce	Future	-	-	Hearing aids \& components
Pamcor Inc.	Rio Piedras	May '53	11,500	-	Terminals \& connectors
Phillips Control Corp.	San Juan	June '52	8,000	50	Aircraft relays, coils \& solenoids
Port Electric Corp. Radell Corp.	Catano San Juan	Future Jan. '52	3,250	70	Radio tuning devices Deposited carbon resistors \& vhf coils
Rectifier Corp. of Puerto Rico	Fajardo	May '53		-	Components
Rico Electronics Inc. (Related to National Video Corp.)	Vega Alta	Jan. '53	11,500	-	TV picture-tube guns
Statham Instruments Inc.	Hato Rey	Future	-	-	Scientific instruments
Sylvania Electric of P. R. Inc.	Rio Piedras	Oct. '51	37,000	400	Mica punchings, tube parts \& com. ponents
Triplett Electric Co. of P. R. Inc.	Bayamon	Apr. '52	8,000	65	Meters and multimeters
Weller Mfg. Co.	Bayamon	Dec ' 50	8,000	60	Soldering guns

Method 1. Produce a product having high labor content and low transportation cost (practically everything in electronics field), placing emphasis on a topnotch labor training program, on good management and on an incentive program that rewards labor for extra effort. This method takes maximum advantage of the island's 45 -cent labor rate.

Method 2. Operate as a small, new firm which has a low base for U. S. excess profits tax but is expanding rapidly because of good management or because of a secret process
or successful new product. Such a firm can take maximum advantage of tax exemption.

- Wages-Minimum wages for labor in electronic plants are set by a committee of nine representing management, labor and the public interest equally. Applicable U.S. laws are ambiguous in specifying that wages on the island must not be so low as to constitute unfair competition with U.S. labor, yet not so high as to diminish employment in Puerto Rico. The commit-
(Continued on page 18)

for Increased Performance

and Even Longer Life

wiit Duratrak consurution

The new DURATEAK brush-track construction is the most important improvement in the autotransformer since its origisa.

IIIIII

Variacs with Duratrak have these Important Advantages-

* Longer Life - essentially that of any fixed-ratio power transformer
* High Initial Surge Currents all VARIACs with DURATRAK will withstand initial surges ten times their rated current
* Overloads - safe allowable overload is considerably in excess of that possible with old-style VA RIACs
* Less Maintenance - under normal conditions maintenance of these new VARIACs is neyligible - the new DURATRAK is subjecied to no deterioration when VARIACs are operated within their rated load

The new Duratrak type of construction is found exclusively in VARIACs. These units set a new standard in reliability, greatly improved performance, long life and minimum of maintenance.

Fill in Coupon Below for Your Copy of the NEW VARIAC BULLETIN

tee meets about every two years, and it takes another year to put a wage change into effect.

For the electronics industry, the present minimum is 45ϕ an hour. In well-established plants, merit raises may bring this as high as 58ϕ an hour for assembly-line workers, with group leaders (supervising about 12 workers) making $\$ 150$ to $\$ 325$ a month. Machine-shop and maintenance electrician rates are 75ϕ to 80ϕ an hour.

- Taxes-Present laws provide complete exemption from insular taxes until 1959. A new law now under consideration will give each new plant 10 full years of exemption. To show maximum untaxed profit, business transactions must be completed in Puerto Rico. Most firms achieve this by pricing their products FOB San Juan.
- Productivity - A government survey of five electronic plants in-
dicated that after an average of $8 \frac{1}{2}$ months of operation, worker productivity was 95 percent of that in mainland plants and quality of output was 88 percent of U.S. standards. Most of the workers involved had not worked in a factory before, but had high manual dexterity. Individual firms have achieved as high as 120 percent of mainland productivity on repetitive high-speed manual operations. Temperature and humidity are more comfortable than around New York City even in summer, hence do not affect production.

Productivity of native workers is a function of training, management and choice of human material, just as anywhere else. One firm uses with excellent success a modified piecework incentive program based on three-month output rather than daily output. If a worker attains the norm at the end of three months, he gets a raise ; if not, he gets fired.

World Radio Output Increases

Radio receivers are still the number one electronic product throughout the world despite substantial gains made by tv abroad. The statistics from the United Nations show that more than 181 million radio sets are in use today, a probable retail value of over 9 billion dollars. By continents, as indicated in the chart, North America has more radio sets in use than the rest of the world combined.

In terms of receeivers per 1,000 inhabitants, the U. S. again leads with 620, followed by Sweden with 301 and the Falkland Islands in South America with 300. Two countries where set saturation is of no concern are French Equatorial Africa and Tanganyika, each with 0.2 radios per 1,000 inhabitants.

- Production-Although 17 countries in the world produced radios in the past 4 years only 11 reported complete production figures to the UN. Excluding the U. S., the rest

of the world produced 4.5 million radios in 1949, 5.7 million in 1950 and 6.3 million in 1951 , the latest reported year. U. S. production of radios during these years was nearly double the rest of the world's output in each year.

Germany was second biggest producer in 1951 with 2.2 million re-

Germany gets set to tap the European bicycle market with this \$11.40 bike radio. Loudspeaker is built into the lamp housing. Two dry cells fit under the saddle
ceivers that year, almost double its production of 1.1 million in 1949.
The United Kingdom followed Germany with an output of 2.1 million sets in 1951 compared to 1.3 million in 1950 when she was the world's second place producer.

Of 11 countries reporting, only Canada, Japan, Norway and Yugoslavia experienced a decline in set production between 1949 and 1951. India, Austria, Denmark, Germany, Iceland, United Kingdom and Australia were all on the upswing.

Loudspeaker Business Follows New Trends

Volume this year is expected to reach 22.5 million units, a 3.2 million gain over 1952

Rtma recently estimated in a report to NPA that 1953 loudspeaker production would total 22.5 million units compared with 18.8 produced in 1952. The average weight of an Alnico 5 magnet per speaker is $1 \frac{1}{2}$ oz , so this year the industry will need approximately 2.1 million pounds of Alnico 5 material.

The increase over 1952 production is believed due to the opening
(Continued on page 20)

Now FOR THE FIRST TIME

25 KW

AT 220 MC!

SUPER-POWER! 25 kw output at sync. peak level.

LOW DRIVE! 10-to-1 tube gain.
ALL V-H-F TV BANDS! $\mathbf{2 2 0 - m c}$ frequency at max ratings.

ULTRA-MODERN! Ring-seal design; ceramic construction.

COMPACT! Approx. $14^{\text {n }}$ high.

Makes SUPER-POWER available to TV Iransmitter Designers!

Two GL-6251's in your new v-h-f cir - cuit will boost E. R. P. to the full au. thorized 316 kw ?

Here's a plus: only 5 kw is needed to drive a pair of these high-gain tetrodes! Low-power TV transmitters now on the air-by adding an amplifier stage with two GL-6251's-can increase signcl strength to top levels at moderate cost.

Manufacture and sale of these amplifier
cirzuits t.) TV stations, is a prefit opporturity fo: you second only to that from apzlying GL-6251's in new h:gh-power v-t-f transmitters, where your customers require maximum E. R. P. from the start.
GL-6251 is the big new tube for your big jobs! Get complete information about th s SUPER-POWER tetrode from Tube Dipartrient, General Electric Company, Schenectady 5, New York.
of new tv areas and a lack of finished set inventory in the hands of the industry.

- Market-Approximately 7 million units will go to tv set producers and about 8 million to radio manufacturers, if predictions hold true. Remaining sales will be split up among hi-fi, industrial, military and replacement markets.
- Product-Some manufacturers see an increasing trend in radio and tv set design toward smaller sets, fewer combinations, more table models. This means smaller loud speakers and smaller dollar volume per unit for companies.

However, other loudspeaker manufacturers are optimistic because of the accelerating hi-fi trend which has made the public more fidelity conscious and has resulted in a noticeable increase in sales of heavier and larger units. It had also caused some set manufacturers to equip combination sets with larger cones, the 12 inch instead of the 10 inch, despite higher cost.

Manufacturers are now using larger loundspeakers in their portable lines. Motorola, with its new design that incorporates the magnet and associated components within the cone, now is able to use a 7 -inch loud speaker in place of a 4 inch (Electronics, p 8, May, 1953).

Meters Fluid Flow

Flowability of a fluid is measured instantly and continuously with this new instrument for industry and the medical profession. A small ultrasonic sensing probe is applied to a blood sample while an electronic computer and recorder chart how fast a clot is formed

PLOT of output indexes shows electronics out in front. On page 4 of each issue

New 'Figures' Show Business Trends

Cumulative totals on page 4 of each issue compare current and previous year's output

Recently added to the regular 'Figures of the Month' page of Electronics is a new subdepartment called 'Figures of the Year'. The statistics printed each month under this heading show at a glance cumulative monthly conditions in the electronics business as compared to the same time last year.

This month's totals show a significant increase in general production and sales for the first quarter of '53 as compared to '52. Cathoderay tube production almost tripled, with an increase of 168.91 percent over last year. Radio and television set production remained high.

- Output Index-The 'Electronics Output Index' (also on page 4) continues to reflect a healthy situation in the industry. As shown in the accompanying chart comparing the electronics index with similarly compiled statistics on industry in general, output of electronics goods has increased about 100 percent since 1947, while increase in general industry amounts to around 25 percent.

Computed largely from Bureau of Labor Statistics, the Output Index shows activity in both military and commercial electronics. A slight drop-off may be expected during summer months as the American public turns to trout lines.

Financial Roundup

OUtstanding gains for the first 3 months of 1953 compared to the same period last year were registered by companies in the electronics field. National City Bank of New York reports that total net income in the first quarter for 23 companies was $\$ 78.3$ million compared to $\$ 54.4$ million in 1952, a 44 -percent increase. Profit reports by individual companies in the first 3 months of this year are as follows:

Company	Net Profit 1953	$\left(3 \operatorname{mos}_{1952}\right)$
Admiral	\$3,056,878	\$1,515.506
CBS	2,404.935	1.520.79\%
Hoffman	476.646	491.675
IBM	7,520.105	6.397 .876
Magnavox	1,782,000	558.1410
Minn. Honey	- , 332, 770	1.294 .583
Motorolit	3,174,208	$\underline{-238.135}$
RCA	9,293,141	7.076 .520
liaytheon	1.355,(0)0	1188.000
Sylvania	3,679.243	1,403.\%1
TelAutograph	44.854	47.443
Tune Sol ...	55:318	492.241
Zenith	2,109,461	1,083.242

- Securities-Computer Manufacturing Corp. filed with SEC cover(Continued on page 22)

The Collins 51R-3 Navigation Receiver is typical of the

Is the Heart of the Famous Collins Navigation System outstanding developments of the Collins Radio Company for aviation, navigation, and communication. It is in wide use among airlines, private, and military planes. With accessories, it is the heart of the Collins navigation system to which is entrusted the efficient and safe operation of every type aircraft.
Midaland crystalsplay viritiRole

Midland Crystals are entrusted with the exacting job of frequency control in the Collins 51R-3. Thirty-four crystals provide complete 280 -channel coverage. In such critical service, there can be no compromise with quality, precision, and undeviating performance under every operating stress.
Midland Crystals measure up to Collins' strict standards because every
one of the millions of Midland Crystals in use today is a product of Midland Quality Control. This is the system by which every crystal is constantly checked and tested at every step in processing. Midland employs the highest technical skill and finest production facilities known to the industry. It is your assurance of completely dependable crystal performance.

Whatwer your Cuy tal med, comentitional or specialigel

MANUFACTURING COMPANY, INC.
3155 Fiberglas Road - Kansas City, Kansas

ing 150,000 shares of common stock par 10 cents to be offered at $\$ 1$ per share. Net proceeds will be used for working capital and for general corporate purposes.

General Electric proposed a stock option plan for key employees. Participants selected will be given the right to purchase GE common stock of no par value at 100 percent of the fair market value on the date the option is granted.

Restricted stock options may be granted by GE to from 700 to 1,200 employees for the purchase of not more in grand total of 1.4 million shares of common stock. The stocks would be taken from unissued common stock of which there are 6,154,073 shares. Proceeds of the sales will go into general funds.

RCA placed privately with a group of institutional investors $\$ 10$ million in $3{ }_{4}^{3}$-percent promissory notes due May 1, 1977, bringing to $\$ 40$ million the amount borrowed under a $\$ 50$ million credit set up in February, 1952. Proceeds are to be used for working capital and to take care of increased volume of defense business.

Weston Electrical Instrument Corp. registered with SEC covering 107,055 shares of its capital stock, $\$ 12.50$ par, to be offered for subscription by stockholders at the rate of one new share for each 3 shares held on the record date. The company will use $\$ 2$ million of the proceeds to reduce bank loans. The balance will be added to general funds of the company.

Hedging Plan Bolsters Lean Years

Electronic manufacturers evaluate selling costs and plans to increase sales effectiveness

Analysis of the selling, general and administrative expenses of 13 electronic manufacturers for the past ten years indicates that companies are spending more for total sales, the expenditure last year reaching the highest point since 1943. But in 1952, as a percentage of net sales, which also reached record highs, sales expenses declined.

- Strategy-Selling costs have followed a fairly stable path since World War II because many electronic manufacturers allocate sales budgets by a set percentage of sales and spend more for sales when they are at a peak.

With defense cuts and tougher competition just ahead, electronic manufacturers are taling another look at this concept of tying expenditures to sales, in an effort to get more effective use out of their funds.

- New Approach-One plan for better sales spending was recently advanced by Gwilym A. Price, presi-

dent of Westinghouse. He proposes a tax law that will permit companies to set up funded promotional reserves as tax-exempt costs in good years, for spending in lean years.
- Price Plan-"The tax deductionreserve plan would overcome this normal tendency to reduce sales budgets when sales were low. Under such a plan, the Treasury would allow a company with a past history of spending on sales and market development to deduct tax-free a certain percentage of its gross. The company would spend this money for defined objectives, under approved conditions within a certain period."

Station Power Gains Extend TV Markets

Important to televison receiver sales are existing tv markets in which stations have upped their power and increased coverage. Since June 1, 1951, over 60 tv stations have improved their facilities affecting over half the country's markets. NBC alone reports that 41 of its tv affiliates have boosted power since then.

- Markets-Although extension of coverage in terms of homes and audience is difficult to ascertain, set manufacturers agree that in old markets improved transmission by tv stations has provided a stimulant to business and has increased fringe sales just as improved to receivers did in the past. It is estimated coverage increased 5 to 10 miles in many markets.
- Future-A number of tv stations plan power increases in the near future and have FCC okays. Applications by 19 other stations are pending approval. Markets expected to get power boosts in the near future are: Boston, WNAC-TV; Cincinnati, WLWT; Columbus, WLWC; Buffalo, WBEN-TV; Austin, Texas, KTBC-TV.

Transistor Improvement Promises Bright Future

Hermetic sealing and use of new materials may eliminate moisture and temperature bugs

Steady progress is being made toward solving the moisture problem and other troublesome factors in transistors. In an announcement by Zenith it was revealed that that company had been unable to make transistors stand up under hearingaid conditions. It was reported that the transistors they tried failed rapidly in service, evidently due to high moisture conditions prevalent near the body where hearing aids are normally worn.

Hermetic sealing promises to be a virtual cure-all for the moisture problem. One company, CBS-Hy-

FULL RANGE OF FINEST QUALITY LAMINATE . . .

With phenolic, melamine and silicone resins. Includes insulation for radio, TV and other electronic purposes. In sheets, rods, tubes, molded specialities, fabricated parts.

OTHER PANELYTE PRODUCTS

1. DECORATIVE, for table-tops, work surfaces, wall covering, etc., in sizes up to $4^{\prime} \times 10^{\prime}$.
2. MOLDED LAMINATED PARTS-refrigerator inner-door panels, breaker strips, specialty molded items, breaker frames.
3. INJECTION MOLDINGS-32, 48, 60, 200 oz . capacity. Television masks, refrigerator parts, industrial items, etc.
4. REINFORCED PLASTICS-sheets, fabricated parts.

DIVISION
ST. REGIS PAPER COMPANY
230 Park A venue, New York 17, New York Offices in Principal Cities

1. HICHEST STRENGTH
 2. DIMENSIONAL STABILITY
 3. GOOD ELECTRICAL PROPERTIES

For the tuning drive shafts in the ARN/6 Radio CompassFused in military and commercial aircraft-Bendix made a wise choice.
Bendix selected Panelyte-12" shafts made of Grade 170 Continuous Glass Cloth. This phenolic laminate withstands high torque loads-is stable under varying changes of temperature and humidity. Moisture absorption is only 0.1%. Electrical properties are excellent.
Two Panelyte shafts are used. One passes through and tunes the five intermediate frequency circuits. The other passes through and tunes all of the r-f circuits.

Other Panelyte Glass Base grades include the following:
GRADE 120, Staple glass cloth, phenolic resin, heat resistance.
GRADE 130, Continuous glass cloth, silicone resin, high heat resistance.
GRADE 135, Staple glass cloth, silicone resin, high heat resistance.
GRADE 140, Continuous glass cloth, melamine resin, arc resistance, high strength.
GRADE 601, Glass mat, polyester resin (reinforced plastic)
Let us send you a free sample of Panelyte. Or a free copy of the Panelyte Industrial Catalog. Or, perhaps, you would like to talk with a Panelyte Engineer. Let us send you any, or all threewithout obligation, of course.

Simply Send in Coupon Today

tron, has already announced her-metically-sealed transistors, and several of the larger transistor makers indicate plans to do likewise in the very near future. The sealing process involves potting the transistor in a tiny (but so far costly) can equipped with a glass seal.

- Other Developments-Better and less expensive transistor materials appear to be the goal of numerous research programs, some of which are bearing fruit. Battelle Memorial Institute announced successful tests on a compound of aluminum and antimony for transistors. Preliminary tests show possibility of characteristics superior to germanium and silicon where operation at high temperatures is contemplated. A further advantage lies in the low cost of AlSb-a half ton costs about as much as a pound of germanium.

Transistor-pure silicon may also become cheaper and available in greater quantities as a result of a new manufacturing process developed by du Pont. This new source will also help raise power and temperature limits for transistors, because silicon functions as a semiconductor as high as 400 F .

Defense Contract Rules Revised

Administration jettisons broadbase procurement policy; electronics may be exception

Future defense contracts will be awarded to the companies that can handle them best and cheapest and not necessarily to the firms or areas that need them most. Thus Deputy Secretary Roger M. Kyes announced a reversal of the Defense Department policy of spreading the work thin. Concurrently, the department announced that procurement would be placed in the hands of management men from industry. Presumably the Small Defense Plants Administration will expire quietly

- Loophole-Electronics manufacturers will probably not be affected greatly by the new policy. Kyes stated that marginal producers may still get contracts when the item manufactured is hard to get, in short supply or where the Defense Department wishes to keep the line open. Electronic equipment generally falls into these categories.

More significant is that the former broad-base policy had little effect on the electronics industry. Much lip service was paid to aiding small business but a small business was defined as one employing 500 workers or less, scarcely called small in the electronics industry.

- Broad Base-Figures supplied by the New York office of the Signal Corps Supply Agency show that from August 1952 until March 1953 this office let $\$ 780,903.17$ worth of contracts, each under $\$ 1,000$. Small business received a little more than half the work.

During the same period, the small business specialist at the Signal Corps' New York office serviced 8,947 firms and assisted small business in obtaining $\$ 6,372,855$ worth of contracts over $\$ 1,000$.

Radio Networks Continue to Expand

Webs are bigger than ever despite inroads of television; local sponsorship a boon

A glance at the chart (next page) proves network radio is bigger than ever and apparently still growing. Latest figures give total outlets as follows: NBC, 206 ; CBS, 217 ; ABC, 355 and MBS, 562.

One reason advanced for the growth of network radio in the face of television's inroads against the listening audience is that the networks are acquiring a-m outlets primarily for television CP's. Independent a-m stations in new tv areas have found network affiliation essential. Another powerful inducement to independents is network policy of making national shows available for local sponsorship. Mutual has expanded heavily in non-tv areas and has found bigleague baseball especially worldseries coverage an attractive feature.
Radiomen in general seem con-
(Continued on page 26)

Cain trese adranitapes ALSIM ${ }^{\circ}{ }^{\circ}$ Pressed ceramigs

Volume Production

Fast Production

Widest
Choice of Materials

Precision...
Uniformity

52 ND

AMERICAN LAVA CORPORATION

$\binom{\square}{\square} \square \square \square \square \square$

A M, CR A W-HILL P UBLICA TION MONDER

FRESHMAN\&	28910 456 28

for SPECIALIZED FILTERS

Decades of experience in the design and production of specialized filters have resulted in UTC being a first source for difficult filters. Fiffeen years ago UTC was already the largest user of permalloy dust toroids in the world (exclusive of the telephone system). Present designs include a wide variety of core materials, structures, and winding methods to provide maximum performance in electrical requirements and stability. Illustrated below are a few of the thousands of special filter designs in present production.

These low frequency band pass filters are held to 1 DB tolerance at the 3 DB crossover... 600 ohm ... 4 filters per $71 / 2^{2 \prime}$ rack panel.

This 600 ohm miniaturized 1 KC band pass filter is housed in a case only $1^{\prime \prime} \times 13 / 4^{\prime \prime} \times 2 \frac{1}{2} 2^{\prime \prime}$.

This power line filter provides correct output voltages from sources of 50 to 400 cycles ... noise attenuation is from 14 KC to $400 \mathrm{MC} \ldots 29$ cubic inches.

This ultra low frequency filter has a band pass range af one cycle to 10 cycles. . . 50,000 ohms . . 700 cubic inches.

This 600 ohm miniaturized low pass filter is housed in a case only $1^{\prime \prime} \times 13 / 4^{\prime \prime} \times 21 / 2^{\prime \prime}$.

This band pass filter is designed for sharp cut-off at bc-h ends of the range...10,000 ohms... case dimensions $15 / 9^{\prime \prime} \times 22^{\prime \prime}=314^{\prime \prime}$.

150 VARICK 5 TREET EXPORT DIVISIQN: 13 EAST 4Oth STREET, NEW YORK $16_{2,} N$. Y..
FOUL DETECTOR AND AUTOMATIC PINSPOTTER-Action views of American Machine and Foundry's electronically controlled equipment. Photos by Syd Karsen at Farragut Pool Bowling Center, Brooklyn, N. Y. For details see p 748
FIGURES OF THE MONTH 4
Includes Electronic Output Index, a business barometer for management
INDUSTRY REPORT5
30
APPROACH TO AUTOMATION: Mechanized Dip Soldering of Television Receivers, by K. M. Lord 130Machine solders 424 joints in one operation by dipping inverted chassis into pool of molten solder
BROADCAST TRANSMITTER REMOTE CONTROL SYSTEM, by Gerald W. Lee. 138
Telemetering method used in Canada now approved by FCC
MICROSECOND PHOTOGRAPHY OF ROCKETS IN FLIGHT, by E. Barkofsky, R. Hopkins and S. Dorsey 142
Electronically controlled flash lamps take silhouette images of missile during 500 -foot flight to sandbag stop 148AUTOMATIC PINBOY FOR BOWLING ALLEYS, by Fred K. Powell, Jr.Automatic pinspotter handles everything from strikes to fouls
DETERMINING PROPERTIES OF BULK SEMICONDUCTORS, by R. B. McQuistan 150
Resistance-temperature characteristics are derived by pulse technique and displayed oscillographically
BRITISH TV RELAY USES TRAVELING-WAVE TUBES, by D. C. Rogers and P. F. C. Burke 156
British engineers put traveling-wave tube to work
MAGNETIC AMPLIFIER WITH RESET CONTROL, by George M. Attura 161New circuit improves performance and simplifies design
NOISE LIMITER FOR MOBILE VHF, by Nathaniel Bishop 164
Maintains signal intelligibility in heavy ignifion-noise areas
TRANSISTOR ACTION IN GERMANIUM AND SILICON, by Abraham Coblenz and Harry L. Owens. 166Part IV of the series, "TRANSISTORS: Theory and Application"
AUDIO IMPEDANCE AND PHASE-ANGLE METER, by Julian E. Hansen 172Simple bridge technique measures complex quantities directly without inductance or capacitance standards
ANALOG COMPUTER SOLVES GEOPHYSICAL PROBLEMS, by S. Kaufman 174
Specially-designed electronic brain oids modern prospectors
DIELECTRIC HEATING CUTS WOODWOKING COSTS, by R. E. Nelson 178
Case histories of applications where electronic glue-curing boosts production, improves quality and cuts costs
REDUCING DISTORTION IN MICROWAVE SYSTEMS, by W. L. Firestone and J. F. Byrne 184Intermodulation problems in frequency-division multiplex systems
PULSED LIGHT MEASURES FLICKER PERCEPTION, by Fred H. Ireland 189
Timing circuit controls light for measuring flicker perception
GRAPHICAL DESIGN OF TUNING ELEMENTS, by Bernard H. Baldridge 192
Procedure for preparing simple chart from which tuned circuit values can be found quickly

W. W. MacDONALD, Editor; VIN ZelUfF, Managing Editor; John Markus, A. A. McKenzie, James Fahnestock, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, William E. Pettit, David A. Findlay, Assistant Editors; Ann Mastropolo, Marilyn Wood, Mary J. Johnson, Editorial Ássistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Editorial Director

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotion \& Research Assistant; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Robert H. Sidur, Atlanta
(1i) June, 1953 ELECTBONICS Vol. 26, No. 6

Published monthls with an additional issue in June by McGraw-Ell Publishing Company, Inc., James H. McGraw (1860-1948). Founder. Publication Office, $99-129$ Executive, Editorial and Advertising Offices: McGraw-Hill Building, 330 W. 42 St., New York 36, N. Y. Curtis W. MeGraw, Presldent; Willard Chevaller, Executive Vice-President; Joseph A Gerardi, Vice-President and Treasurer; John J. Cooke, Secretary; Paul Montgomery, Senior Vice-President, Publication Division; Ralph B. Smith, Fice-President and Editorial Director; Nelson Bond, Vice-President and Director of Advertisling; J. E, Blacliburn, Jr., Vice-President and Director of Circulation.

Subscriptions: Address correspondence to Electronles-Subscription Service, 99-129 N. Broadway, Albany I, N. Y., or 330 W. $42 n d$ St., New York 36 , N. Y. Allow one month for change of address. Subscriptions are solicited only from persons engaged in theory, research, design, protuction, maintenance and use of electronic and industrial control components, barts and end products. Position and company connection must be indicated on subscription orders.

Single conies $75 d$ for United States and possessions, and Canada; $\$ 1.50$ for Jatin America; $\$ 2.00$ for all other foreign countries. Buyers' Guide $\$ 2.00$. Subseription rates for two years. All other countries $\$ 20.00$ a year; $\$ 30.00$ for two years. Entered as second class matter Augist 29 , 1936 , at the Post Office at Albany, N. Y., under act op for two years. All other countries $\$ 20.00$ a vear. $\$ 30.00$ for two vears. Entered as second class matter Augist 29, 1936, at the Post Office at Albany, N. Y., under act of Ill. 68 Post Street, San Francisco 4; McGraw-Hill House. London, E.C. 4; Wamhington, D. C. 4: Philadelphfa 3; Cleveland 15: Detroit 26; St. Louls 8: Roston 16: 1321 Rhodes

Better Meters Made Easier To Use. Recent years have seen major advancements in the performance characteristics of electrical indicating instruments. These advancements include Marion's pioneer work in the fields of hermetic sealing and ruggedization. They have made the electrical indicating instrument of today an extremely reliable device.

However, very little attention has been paid to the bio-mechanical problems associated with the proper use and interpretation of the intelligence presented by the instrument. As the complexity of application, particularly in the multi-scale type has grown, it has become increasingly nécessary to attack and solve these human error problems.

The Marion Multi-Dialer was developed to provide a multi-scale instrument which exposes only one scale to view at a time. At the same time, it automatically switches the appropriate internal or external circuitry associated with that scale.

The Multi-Dialer may be used as a panel instrument (mounts to standard JAN- $31 / 2^{\prime \prime}$ dimensions). It is also practical as a com-
 plete, self-contained, portable instrument for field or laboratory use. Its ingenious combination handle and stand makes it convenient to use on or above the bench.
Marion Electrical Instrument Company
401 Canal St., Manchester, New Hampshire
*Trade Mark Copyright 1953 Marion Elec. Instr. Co.

Where every detail matters ...

At the high speeds encountered with turbo-jet engines, unsuspected blade resonances can cause serious damage. For this reason exhaustive vibration tests must be made, and the source of each vibration located.
Leading British Aircraft manufacturers rely on the MuirheadPametrada Wave Analyser it gives them the frequency and amplitude of forch vibration component/quickly and accurately; anp pitude measurements 407, Horeoyer, be made substantially indecpendent of speed flypations. Location of the souse of vitration thenbecomes simply a matter of correlating the measured frequency with known engine data.

SEND TODAY

for this
ILLUSTRATED BROCHURE
VIBRATION MEASUREMENT AND WAVEFORM ANALYSIS

FREE on request
MUIRHEAD \& CO., LTD., BECKENHAM, KENT, ENGLAND
precision electrical instrument
MAKERS

FIGURES OF THE MONTH

	Year Ago	Previous Month	Latest Month		Year Ago	Previous Month	Latest Month		
RECEIVER PRODUCTION				TV AUDIENCE					
				(Source: NBC Research Dept.)	Apr. '52	Mar. '53	Apr. '53		
(Source: RTMA)	Mar. '52	Feb. '53	Mar. '53	Sets in Use-total	16,939,100	22,551,500	23,256,000		
Television sets	510,561	730,597	810,112						
Home sets	357,689	402,742	442,101	BROADCAST STAT					
Clock Radios	175,169	210,924	275,079	BROADCAST STAT					
Portable sets	99,720	87,711	177,656	(Source: RTMA)	Apr. '52	Mar. '53	Apr. '53		
Auto sets	343,314	491,062	654,367	TV Stations on Air	108	164-r	179		
RECEIVER SALES				TV Stns CPs -not on air	0	255	264		
				TV Stns-Applications	536	639-r	612		
(Source: RTMA)		Feb. '53	Mar. '53	AM Stations on Air. .	2,347	2,424	2,430		
Television sets, units Radio sets (except auto)		$\begin{aligned} & 537,122 \\ & 507,527 \end{aligned}$	603,704	AM Stns CPs-not on air	68	133	135		
		516,618	AM Stns-Applications	324	250	249			
			FM Stations on Air ...	632	607	600			
RECEIVING TUBE SALES				FM Stns CPs-not on air	1	21	9		
(Source: RTMA)	Mar. '52	Feb. '53	Mar. '53	FM Stns-Applications		7			
Receiv. tubes, total units	30,935,220	40,024,475-r	44,691,200	COMMUNICATION AUTHORIZATIONS					
Receiving tubes, new sets	19,513,454	27,730,235	31,367,831						
Rec. tubes, replacement	7,231,186	9,217,982-r	9,949,321	(Source: FCC)	Mar. '52	Feb. '53	Mar. '53		
Receiving tubes, gov't.	2,776,796	1,393,962-r	1,449,857	Aeronautical					
Receiving tubes, export Picture tubes, to mfrs.	$1,413,784$ 370,206	1,682,296	$1,924,191$ 974,154	Aeronautical Marine	32,176 34,843	37,825 39,001	38,822		
Picture tubes, to mfrs.	370,206	699,411	974,154	Police, fire, etc.	34,843 10,592	12,482	12,682		
SEMICONDUCTOR SALES				Industrial	12,475	16,002	16,232		
(Source: RTMA)		Feb. '53	Mar. '53	Land Transportation	4,847 106,832	5,636 116,697	16,660 112,666		
Germanium Diodes		1,466,421	1,172,475	Citizens Radio	878	1,924	1,980		
				Disaster	29	101	189		
		Quarterly Fi	es	Experimental	458	529	415		
INDUSTRIAL EQUIPMENT ORDERS		Previous	Latest	Common carrier	922	1,070	1,094		
		Quarter	Quarter						
		3rd'52	4th '52	EMPLOYMENT AND PAYROLLS					
Dielectric Heating	\$620,000	\$320,000	\$440,000	(Source: Bur. Labor Statistics)) Feb. 52	Jan. '53	Feb. '53		
Induction Heating	\$3,400,000	\$1,760,000	\$2,420,000	Prod. workers, comm. equip.Av. wkly. earnings, comm.	273,100	410,900-r	418,700-p		
Welding Control	\$1,430,000	\$1,810,000	\$1,390,000		\$65.14	\$67.23-r	\$65.93-p		
Other Electronic Control	\$860,000	\$920,000	\$970,000	Av. wkly. earnings, radio	\$61.28	\$63.74-r	\$64.40-p		
				Av. weekly hours, comm. Av. weekly hours, radio	41.2	41.5-r	40.7-p		
INDUSTRIAL TUBE SALES					Av. weekly hours, radio 40.8	40.6-r	40.5-p		
(Source: NEMA)	4th'51	3rd'52	4th '52						
Vacuum (non-receiving)	\$14,300,000	\$10,580,000	\$12,790,000	STOCK PRICE AVERAGES					
Gas or vapor	\$3,170,000	\$2,950,000	\$3,480,000	(Source: Standard and Poor's)	Apr. '52	Mar. '53	Apr. '53		
Magnetrons and velocity	\$390,000	\$570,000	\$760,000	Radio-TV \& Electronics	Apr. 292.5	310.7			
	\$6,670,000	\$8,500,000	\$10,510,000		292.5	310.7 294.3	298.9 290.7		
Gaps and T/R boxes...	\$2,120,000	\$1,700,000	\$2,090,000	p -provisional; r -revised					

FIGURES OF THE YEAR

Television set production
Radio set production
Television set sales
Radio set sales (except auto)
Receiving tube sales
Cathode-ray tube sales

1952 Total
$6,096,279$
$10,934,872-r$
$6,144,990$
$6,878,547$
$368,519,243$
$6,120,292$

First Quarter Totals

1952	1953	Percent Change
$1,324,831$	$2,259,943$	$+70.58 \%$
$2,367,800$	$3,834,784$	+61.96
$1,279,783$	$1,780,899$	+39.16
$1,505,883$	$1,438,871$	-4.45
$85,934,322$	$122,058,756$	+42.04
$1,040,829$	$2,798,921$	+168.91

```
electronics_JUNE • 1953
```


International Hookup Televises Coronation

BBC marshals resources, picks up $\$ 171,500$ tab to telecast ceremony

An international television network will bring scenes of the June 2 coronation of Queen Elizabeth II to viewers in Great Britain, France, Holland, Belgium and Germany. The British Broadcasting Corporation will use 20 cameras manned by 101 engineers and eight commentators to give complete coverage of the ceremonies.

Cameras will be installed at several locations within Westminster Abbey and at four vantage points along the route of the procession. The complete program will last seven hours. Extra cost involved in televising the coronation will be $\$ 171,500$.

- Network-Besides feeding the British television network, the signal will be transmitted by microwave to Paris where it will be used to feed the French 441 and 819-line transmitters after conversion from the British 405-line signal.

The French will also provide a microwave link from Cassel, on the London-Paris route to Lille. Here a Belgium-Dutch relay will carry the signal to Lopik in Holland via Breda. Conversion to the 625 -line standard will take place at Breda and Dutch transmitters at Lopik and Eindhoven will broadcast the program to Belgian and Dutch viewers.

From Breda the 625 -line signal will also go via microwave to Cologne where it will feed the NWDR television network linking seven German cities.

HYDROGEN THYRATRONS ranging from a few kilowatts to 40 megawatts produced from emergency development program led by Signal Corps engineers. Ropid expansion on M-Day is possible because ...

Keyer Tube Resources Are Pooled

In a crash program, new tubes and machines to build and test them were evolved together

To meet an extreme emergency military demand, normal development and production procedures were short-circuited to get keyer tubes for vital defense equipment.

Late in 1950 a review of production against requirements showed hydrogen thyratrons, needed chiefly to pulse magnetrons in radars, were in short supply. The problem was presented to the Signal Corps, and a round-the-clock program was initiated at the Signal Corps Procurement Agency, Philadelphia,

- Authority-Anticipating future needs, the Signal Corps group decided to establish multiple sources for the production of hydrogen thyratrons in the shortest possible time. To cover possible anti-trust violation suits, authority was ob-
tained from the Attorney General to allow pooling engineering knowhow among competitive companies.

At integration committee meetings, representatives from all branches of the armed forces met with engineers from all the companies involved. According to B. D. Aaron, Signal Corps project engineer, "the most difficult problem at first was to get them to ask the right questions. Once we got past that, production and testing information and advice were freely swapped." Engineers from some companies toured other companies' plants, to learn how to make the equipment and tubes that grew as the program went along.

- Ad Lib-There were few specifications to guide the program and practically no prototypes. Small tubes were scaled up to big ones; interim types were made and finalized. Samples were flown to

Signal Corps Engineering Laboratories for aging and engineering evaluation. Heavy equipment to heat, treat and test the tubes was built from whatever parts could be found. Components were flown to a plant in the middle west where 35 kva aging units were designed, rushed into production and shipped to tube producers. Other units were built in California and air-shipped to reduce hazards of transportation damage and attendent delays.

- Cooperation-When a company worked the bugs out of its production problems, complete engineering specifications were made of findings, and copies were sent to every other company in the program. Engineering time for the crash program, and for future production programs, was thereby cut from several years to several months.
Pilot plant production runs were established and contracts were written specifying that companies involved maintain production knowhow and tooling for a minimum of six years. "In case M-day comes," Aaron said, "production can be expanded immediately, without wait-
ing for contracts to be negotiated, bids to be given and orders placed. The machinery is all there, all ready and working."

Thousands of type-approved thyratrons now roll off the lines, for use in the services' Skysweeper AA gun, among other things, and a precedent for similar future problems has been established.

- Companies-Among those manufacturers involved in the hydrogen thyratron program were, for equipment production: American Television Mfg. Corp., Kip Electronics, Chatham Electronics, Douglas Laboratories, General Electric, Girdler Corp., Manson Laboratories, Marchant Research, Westinghouse.

For tube production: Amer. Television Mfg. Corp., Amperex Electronics, Bomac Laboratories, Chatham Electronics, General Electric, Kuthe Laboratories, Machlett Laboratories, Penta Laboratories, Radio Corp. of America, Sylvania Electric, Westinghouse.

The companies included stretch cross country from New England to California.

Business Briefs

Controls-Last of price controls have been dropped in accord with Eisenhower's 'orderly decontrol of prices'. OPS plans June 30 exit.

Depreciation - Treasury is giving more liberal treatment of regulations on how fast plant and equipment can be written off for tax purposes.

Labor-End of price and wage controls brought some price rises, rumbles of reopening wage contract negotiations. Unemployment is about 1.8 million, near last year's 1.7 million, but employment is 1.8 million higher, which makes the labor market tight. Mid-
summer record of 63 million employed is expected.

Buy American-Enacted in 1933 under outgoing Hoover, the Buy American Act was upheld by Defense Secretary Wilson who turned down British low bid on Army contract. President Eisenhower backed Wilson, bucked Dulles and Stassen. The law's ' 25 -percent under' interpretation, broken last June, is holding again.

Copper-Price is down to 30 cents per pound. It's a buyer's market now; National Production Authority has stopped allocating the metal because of 'favorable developments in the overall supply.' Imports and scrap production are up.

DEFENSE volume shows as

Electronic Companies Size Up Military Sales

As defense spending cuts loom ahead, manufacturers look at military sales percentages

Electronic manufacturers, both large and small, will do well to prepare for an increase in their commercial business and a decline in their military production, Glen McDaniel, RTMA general counsel, told west coast electronic manufacturers recently. He declared it appears likely that military expenditures will be reduced or stretched out, "but how fast I don't know. Of one thing we can be sure, electronics and aircraft will remain paramount in whatever armament program is decided upon for the years ahead."

- Ratios-A survey of 15 manufacturers in the field reveals that defense sales in 1952 (black columns) ranged from 10 to 90 percent of total net sales, with an average for the companies of 45 percent. This is lower than an estimate made last year by the Defense Department who set military sales at 53.3 percent of total sales in 1952 . (Electronics, p 6, Aug. 1952) The percentage was expected to be lower as the defense delivery schedule "stretch out" went into effect last year.
- Companies-In 1951, smaller electronic companies reported proportionately more military business than did large firms. But major electronic manufacturers indicate they increased their defense business substantially in 1952.

Shipments of electronic apparatus

At a glance it tells you about power rating and frequency, and shows which tubes are band-pass and which rare tunable. Color code ide vifies power rating quickly and accurately. Folds to compact, wallet size.
If your Sylvania Representative can't supply you, mail the coupon for a copy NOW!

-SIIVINIT
 In Canada: Sylvanio Electric (Canada) Lid.
 University Tower Bldg., St. Catherine St., Montreal, Pi Q.

LIGHTING • RADIO • ELECTRONICS • TELEVISION

Sylvania Electric Products Inc.
Dept. 3E-1006, 1740 Broadway,
New York 19, N. Y.
Please send me a copy of the new handy guide to TR and ATR Tubes.

Name
Street

City _____________ Stane ____ \qquad
for the armed forces by RCA were approximately double those of 1951. Sylvania estimates that 28.5 percent of its net sales in 1952 were accounted for by defense products, nearly double 1951's volume. Zenith also reported that production and shipment of material for the military services, at a low level in 1951,
increased materially in 1952 and amounted to approximately 10 percent of the company's net sales.

- Future-Although electronic manufacturers are concerned about the effect of a military cut-off on the industry, many would welcome the return to full civilian produc-
tion. Profits are higher and the commercial sales outlook for 1953 is very promising. Already most companies have experienced record first quarters. But even without top civilian sales the present electronic defense backlog, which is at a peak, could carry the industry's big volume well into 1954.

ELECTRONIGRAPH—Natural Quartz Crystals

Status of Quartz Crystal Growing Plants in U.S.

Industry changeover to small crystals, in plentiful supply from Brazil, eases needs

Production plants for growing synthetically the wartime needs of radio-grade quartz crystals could be built and equipped within a year if necessary. It may be assumed that military stockpiling of natural crystals has been geared to this time figure, hence there should be no shortages even if the Brazilian supply were cut off today.

Brazilian domination of the quartz market has been a bugaboo for a nation geared to the philosophy of always having a second source of supply. Most critical years were 1942 and 1943, when U-boats were sinking supply ships in the

Caribbean. An air lift solved this problem. Tension eased further, after the war, with the announcement that Signal Corps sponsored research on quartz crystal growing had paid off.

- Change in Demand-Crystals under 200 grams, considered as scrap early in World War II, now serve because the industry has become adapted to use of finished plates approximately $\frac{1}{2}$ inch square or round. Small natural crystals cost only $\$ 1.25$ to $\$ 4$ a pound, as contrasted to $\$ 15$ and up for the pound-size and larger crystals considered necessary heretofore.

Small crystals usually have much less twinning, hence give an even greater yield per pound despite increased geometric losses. With
larger crystals, only 30 to 40 percent of the weight ordinarily is usable because of defects.

- Growing Costs--Under developmental conditions at Bell Telephone Laboratories and at Brush Laboratories, costs have approximated $\$ 50$ per pound for synthetic crystals. With organized mechanized handling of the heavy autoclaves for loading and unloading, this cost may be better than halved in full production.

A further reduction in net cost per finished plate is possible because synthetic crystals are relatively free from flaws and hence may approach 100 -percent usability except for geometric losses in cutting. By varying growing time and
(Continued on page 10)

Bution cernimic

CAPACITORS

for

 VHF \& UHIF circuits

Unique design possibilities . . . better VHF and UHF performance . . . simplified equipment constructionthese are but a few of the advantages of Sprague Button Ceramic Capacitors. In coupling, bypass, and feed-thru filter applications, these wafer-dielectric units have higher self-resonant frequencies than capacitors using a conventional dielectric tube.
Button stand-off types, for example, minimize ground inductance and hold it at a fixed value while providing a short and radially uniform bypass to ground. The dielectric button is housed in the top of a hex head machine screw, or in a metal shell for ferrule clip mounting. Lug terminals are located at tube socket height for short, uniform lead lengths.
All Sprague button capacitors are sealed against moisture by a high temperature plastic resin . . . are rated at 500 volts dc . . . and are available in Characteristic SL and GA bodies. A letterhead request for Engineering Bulletin 605 brings complete details. Write Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.

Batch of 11 perfect 160 -grom quartz crystals being unlooded by A. C. Walker after growing 48 days in 4 -foot autoclave at Bell Telephone Labs in Murray Hill, N. J. Threaded cap is removed with huge wrench and chain hoist, after which welded-steel inner liner is sawed open. Project is sponsored by Signal Corps Engineering Labs of Fort Monmouth
choosing the right angle for the quartz seed plate, the synthetics can be made almost exactly the optimum size and orientation for cutting a particular type of plate with minimum cutting waste. Despite all this, the present cost of the synthetic product is way more than the current rate for radio-grade Brazilian quartz. However, it is reasonable to believe that large-scale commercial production eventually will be feasible because of a greater potential yield from synthetic quartz.

In the military picture, cost of raw quartz is secondary to availability. This is partly why the Signal Corps sponsors crystal-growing research at both BTL and Brush

- Process Details-Both labs grow the crystals by suspending seed plates in an alkaline solution between 350 C and 400 C and high pressure, with scrap natural quartz at the bottom. BTL uses a welded autoclave at $15,000 \mathrm{lb}$ per sq inch (ElecTronics, p 96, April 1951), and gets about 5 lb of quartz per month per cu ft of autoclave space.

Brush uses a continuously-rocked double-chamber autoclave at 5,000 lb per sq inch (Electronics, p 238, April 1953), and gets about the same output per cu ft.

Broadcasters Made Money ln '52

Station revenues for 1952 are 5 percent higher than total dollar take in 1951

Total revenue of the radio-broadcasting industry in 1952 amounted to $\$ 473.1$ million, 5 percent above the previous year. Figures are from a preliminary FCC report. While 7 networks, including owned stations, estimated total revenues of $\$ 101.0$ million or 2.9 percent below 1951, more than 2,300 radio stations estimated total revenues of $\$ 372.1$ million, an increase of 7.4 percent above 1951. Thus radio income for networks and individual stations followed the same pattern as did tv income for networks and individual stations in 1952. (Electronics, p 22, May, 1953)

Added to the estimated $\$ 336.3$ million total revenues of tv broadcasters, the combined industry revenues in 1952 reached $\$ 809.4$ million showing a marked increase of 18 percent above 1951.

- Income vs Revenue-Radio industry income before federal income taxes rose to $\$ 62.6$ million in 1952 after having dropped to $\$ 57.5$ million in 1951 from a peak of $\$ 68.2$
million in 1950. Networks, including owned and operated stations, estimated 1952 income at $\$ 11.2$ million or 11 percent above 1951 . Total income of 2,300 radio stations was estimated at $\$ 51.4$ million or 8.4 percent above 1951. The $814 \mathrm{a}-\mathrm{m}$ stations licensed in 1941 and prior years, comprising slightly more that $\frac{1}{3}$ of all a-m stations, accounted for almost $\frac{2}{3}$ of the total revenues and $\frac{3}{4}$ of the total income of all a-m stations.
- TV vs Radio-A total of $470 \mathrm{a}-\mathrm{m}$ stations in tv markets estimated their 1952 revenues at $\$ 171.5$ million or 2 percent above 1951 . In non-tv markets, $1,629 \mathrm{a}-\mathrm{m}$ stations estimated their total revenues at $\$ 199.6$ million, almost 11 percent above 1951. Increased total revenues in 1952 were reported by about three out of five a-m stations in the tv markets and by four out of five a-m stations in the non-tv markets. Overall, 74 percent of the total stations reported increased revenues in 1952.

Losses were reported by 15.9 percent of the $2,276 \mathrm{a}-\mathrm{m}$ stations. This is the smallest number since 1946 when 11 percent of the 1,015 then operating were unprofitable.

U.S. Surveys Labor Picture

Number of stoppages has declined sharply since 1950 but total man-days idle have risen

Trend in work stoppages involving six or more workers and lasting for a full shift or longer shows up in a report by the Labor Department. Last year there were 30 such stoppages in the communications equipment field, radio, tv, equipment and parts manufacturers. This was the lowest number of disputes to be recorded since 1949. However, mandays idle as a result of the 30 stoppages totalled 327,000 , the largest number since 1950 when total reached 368,000 .

Although the number of disputes
was lower, the stoppages evidently affected larger companies for longer periods of time. In 1952, two companies in the electronics field had strikes involving 10,000 or more workers, while in 1951 there was only one such stoppage.

- Pattern-According to the Labor Department, the largest number of work stoppages have been caused by disputes over wages and shorter hours. Other prevalent reasons are: union organization, working conditions, interunion and intraunion matters.

Fluctuation, as seen in total mandays idle, seems to follow the sales pattern of the radio-tv industry. In
(Continued on page 14)

BHRCHRONIC ENCINEBRIS

Check to bring your design file up to date ... and be first with the newest

If you're one of the thousands of electronic engincers specifying Centralab electronic components-you'll want these 14 new bulletins ... just off the press. Each contains essential, exact specifications for radio TV, UHF and VHF applications.

PRINTED ELECTRONIC CIRCUITS

1. AUDET, PC-150 and PC-151. Centralab's audio detector plate for a-c, d-c receiver output stages. Bulletin 42-129.
2. PENDET, PC-160. Remarkably small PEC consisting of 4 resistors and 5 capacitors requiring only 9 connections, instead of the usual 18. Bulletin 42-149.
3. Model 2 AMPEC, PC.200 and PC-201. A threc-stage speech amplifier smaller than the cover of ordinary book matches. Bulletin 42-117R.
4. Model 3 AMPEC, PC-202 and PC-204. Post-age-stamp size three-stage speech amplifier for sub-miniatures. Bulletin 42-130R.
5. PENTODE COUPLATES, PC-90 and PC-91. Even smaller than before. A complete pentode inter-stage coupling circuit. Bulletin 42-128R.
6. triode couplates, PC-70, PC-71. PC-80, PC-81, for inter-stage audio coupling circuits. New space-saving design. Bulletin 42-127R.
7. SMALL PLATE COMPONENTS. Tiny resistorcapacitor combinations. Seven plates, including famous "Filpec." fit scores of miniature applications. Bulletin 42-132.

VARIABLE RESISTORS

8. Model 1 RADIOHMS ${ }^{\left({ }^{(2)}\right.}$. Sinallest variable resistor on the market (only $5 / 8^{\prime \prime}$ dia.). Includes data on new Hi-Torque model. Bulletin 42-158.
9. Model 2 EXPRESS RADIOHM. Quick-delivery, switch-type variable resistor. Shafts staked directly to radiohm on your order. Bulletin 42-163.

CAPACITORS

10. TYPE 950 HIGH-ACCURACY. For exacting electronic applications in t.f. circuits. Bulletin 42-123.
11. BUTTON-TYPE CERAMIC CAPACITORS. Five different types, solder-sealed for HF , UHF, VHF applications. Bulletin 42-122R.

. write for these 14 new pictorial technical bulletins on important Centralab electronic developments

1950, big sales year for manufacturers, man-days idle were highest. Then as business slumped in 1951 and regained in 1952, man-days idle followed the same course.

- 1953-There have been a number of work stoppages in the electronics industry so far this year but only one of any severity. It involves more than 10,000 workers and several weeks duration. But there are rumblings of more wage disputes in the steel industry that could affect electronics.

Television Highlights NARTB Show

Broadcasters see 3-D telecast; remote control and low-budget operation also discussed

Theme of the recent NARTB convention seemed to be "What else can you do with television?" The 1,500 conventioneers who crowded Los Angeles' Biltmore Hotel heard reports on three-dimensional tv, color tv, intercontinental tv and tv in a can. Low-budget operation of small-city television stations and remote control of $a-m$ and $f-m$ broadcast transmitters were discussed in several papers. Fifty-odd suppliers of broadcast equipment and services exhibited.

- Three-D-An experimental telecast over KECA-TV ABC-Paramount's L. A. outlet showed delegates how the illusion of depth may be achieved in television. Special receivers at the Biltmore using two picture tubes resolved their images on a 3 by 4 -ft viewing screen.

Three-Dimensional Television Lens

Wide-angle lens giving 142-degree field of view, as used et the Navy's Special Devices Center, Sands Point, N. Y. in a gunnery trainer. A television system using this wide-angle lens and a spherical-screen projection receiver to provide three-dimensional television is presently under development at RCA

Viewers needed Polaroid glasses.
The emphasis was also on 3-D at the Statler where 1,000 SMPTA members concurrently held their annual confab.

- Color-Discussing the future of color television, RCA's General Sarnoff prognosticated that once the FCC authorizes color it will take industry nine to 12 months to tool up and produce. Sarnoff also predicted the failure of subscription television on a national scale.

Features of the NTSC color television system were discussed in a paper by Dr. W. R. G. Baker of GE.

- Around the World-Intercontinental television may be just over the horizon according to Neal McNaughten, NARTB's engineering manager. High-powered microwave relays and submarine cables with transistor amplifiers would do the trick.
- Low Budgets-Reflecting television's post-freeze trek to the hinterland, low-budget operation of a small-city station was the subject of a panel discussion. In the same vein, Federal engineers presented a paper on how to set up a television station with two technicians while GE demonstrated a packaged tv station designed frr one-man operation.

Low-budget operations, it developed, are still not low enough for stations serving markets under 100,000 population. Tab for essential equipment comes to $\$ 300,000$ with yearly operating cost running between $\$ 175,000$ and $\$ 300,000$.

- Canned TV-Importance of canned entertainment in post-freeze television was attested to by at least six equipment makers. General Precision, Standard Electronics, Federal and RCA exhibited small cameras especially suited for film reproduction. Philco and DuMont both introduced continuous-motion film scanners.

Reporting on his company's sys-
(Continued on page 16)

SHOCK ${ }^{[}$VIBRATION
 NEWS

Simplify Your Packing and Protect Your Product with Barrymounts

The problem of protecting delicate equipment in transit is enormously simplified by properly designed shock mounts built right into the packaging. Barry shock mounts, designed for protection against the severest shocks of military service, have demonstrated their value in this industrial application.

> Philco Corporation has made Barrymounts standard in packaging design for the entire Philco Microwave Program, and has shipped thousands of microwave equipments all over the world without the slightest damage. Philco microwave equipment is shipped pre-assembled, with all the tubes, glass dessicators, and crystals in place. On arrival, the only work required is powering the equipment.

Barrymounts are the modern method of shock protection. Let them simplify your packaging problems. Write today for more detailed information.

707 PLEASANT ST., WATERTOWN 72, MASSACHUSETTS
tem for recording tv programs on tape, John T. Mullin of Bing Crosby Enterprises claimed the tape would record both sound and picture with the quality of a live telecast.

Movies Triple Audio Facilities

Newcomer in the 3 D field is CinemaScope, which uses a 65 -foot wide screen, a single projector and no glasses. Behind the screen are three speakers, each with its separate amplifying system and sound track, to produce a stereophonic sound effect.

Installation costs big theaters about $\$ 10,000$, little theaters less, according to Twentieth CenturyFox. The company expects 12,000 installations to be made by the end of next year.

Expansion Plans for Puerto Rico Plants

Subassembly and parts plants plow back tax-exempt profits; many new plants are under way

Practically all of the electronic plants established in Puerto Rico in the last two years are actively expanding. Business is good down there, because most of this expansion money comes from profits inflated by tax-exemption.

Figures tell the story; present total square-footage of operating plants is about 115,000 and goes to an estimated 350,000 by year-end for expanded and new plants combined. Total present employment of 875 correspondingly jumps to about 3,500 . The accompanying tabulation gives the present picture in detail, as derived by combining latest figures of Puerto Rico's Economic Development Administration (New York City office: 600 Fifth Ave.) with observations made during editorial visits to operating plants.

- Profits-There are two methods of showing a high profit on electronic operations in Puerto Rico:

ELECTRONIC PLANTS IN PUERTO RICO

Name of Firm	Location	Started	Sq Ft	Empl	Chief Products
Ben Ida Electronics	Hato Rey	Jan. '52	3,500	-	Amplifiers \& record
Borinquen Radio Components Corp.	Rio Piedras	Future	-	-	players Radio hardware \& structural parts
Caribe Aircraft Radio Corp. (Related to Lavoie Labs)	Coamo	May '52	10,800	80	Radar subassemblies, coils \& filters
Coradel Mig. Co.	Caguas	June '52	5,000	-	Lightning arresters \& lead-ins
Diversified Products Corp.	Carolina	May '53		-	Ceramic insulators
Empire Industries Inc. John Hackes \& Siegler	Bayamon Hato Rey	Future Future	\square	-	Transformers Quartz crystals
Hemisphere Corp. (Related to National Moldite Co.)		July '53	11,000	30	Molded coil forms \& ferrite cores
Hermetic Seal Products Co. of Puerto Rico Inc.	Hato Rey	Aug, '51	10,000	110	Feed-through insulators
Hycor Co., Inc.	Vega Baja	Nov. '52	1,500	35	Precision resistors \& toroids
Interamerica Electronics Corp.	Santurce	Future	-	-	Hearing aids \& components
Pamcor Inc.	Rio Piedras	May '53	11,500	-	Terminals \& connectors
Phillips Control Corp.	San Juan	June '52	8,000	50	Aircraft relays, coils \& solenoids
Port Electric Corp. Radell Corp.	Catano San Juan	Future Jan. '52	3,250	70	Radio tuning devices Deposited carbon resistors \& vhf coils
Rectifier Corp, of Puerto Rico	Fajardo	May '53		-	Components
Rico Electronics Inc. (Related to National Video Corp.)	Vega Alta	Jan. '53	11,500	-	TV picture-tube guns
Statham Instruments Inc.	Hato Rey	Future	- -	-	Scientific instruments
Sylvania Electric of P. R. Inc.	Rio Piedras	Oct. '51	37,000	400	Mica punchings, tube parts \& components
Triplett Electric Co. of P. R. Inc.	Bayamon	Apr. '52	8,000	65	Meters and multimeters
Weller Mfg. Co.	Bayamon	Dec. '50	8,000	60	Soldering guns

Method 1. Produce a product having high labor content and low transportation cost (practically everything in electronics field), placing emphasis on a topnotch labor training program, on good management and on an incentive program that rewards labor for extra effort. This method takes maximum advantage of the island's 45-cent labor rate.

Method 2. Operate as a small, new firm which has a low base for U.S. excess profits tax but is expanding rapidly because of good management or because of a secret process
or successful new product. Such a firm can take maximum advantage of tax exemption.

- Wages-Minimum wages for labor in electronic plants are set by a committee of nine representing management, labor and the public interest equally. Applicable U.S. laws are ambiguous in specifying that wages on the island must not be so low as to constitute unfair competition with U.S. labor, yet not so high as to diminish employment in Puerto Rico. The commit-
(Continued on page 18)

tee meets about every two years, and it takes another year to put a wage change into effect.

For the electronics industry, the present minimum is 45ϕ an hour. In well-established plants, merit raises may bring this as high as 58ϕ an hour for assembly-line workers, with group leaders (supervising about 12 workers) making $\$ 150$ to $\$ 325$ a month. Machine-shop and maintenance electrician rates are 75ϕ to 80ϕ an hour.

- Taxes-Present laws provide complete exemption from insular taxes until 1959. A new law now under consideration will give each new plant 10 full years of exemption. To show maximum untaxed profit, business transactions must be completed in Puerto Rico. Most firms achieve this by pricing their products FOB San Juan.
- Productivity - A government survey of five electronic plants in-
dicated that after an average of $8 \frac{1}{2}$ months of operation, worker productivity was 95 percent of that in mainland plants and quality of output was 88 percent of U.S. standards. Most of the workers involved had not worked in a factory before, but had high manual dexterity. Individual firms have achieved as high as 120 percent of mainland productivity on repetitive high-speed manual operations. Temperature and humidity are more comfortable than around New York City even in summer, hence do not affect production.

Productivity of native workers is a function of training, management and choice of human material, just as anywhere else. One firm uses with excellent success a modified piecework incentive program based on three-month output rather than daily output. If a worker attains the norm at the end of three months, he gets a raise; if not, he gets fired.

World Radio Output Increases

Radio receivers are still the number one electronic product throughout the world despite substantial gains made by tv abroad. The statistics from the United Nations show that more than 181 million radio sets are in use today, a probable retail value of over 9 billion dollars. By continents, as indicated in the chart, North America has more radio sets in use than the rest of the world combined.

In terms of receivers per 1,000 inhabitants, the U. S. again leads with 620, followed by Sweden with 301 and the Falkland Islands in South America with 300. Two countries where set saturation is of no concern are French Equatorial Africa and Tanganyika, each with 0.2 radios per 1,000 inhabitants.

- Production—Although 17 countries in the world produced radios in the past 4 years only 11 reported complete production figures to the UN. Excluding the U. S., the rest

of the world produced 4.5 million radios in 1949, 5.7 million in 1950 and 6.3 million in 1951, the latest reported year. U. S. production of radios during these years was nearly double the rest of the world's output in each year.

Germany was second biggest producer in 1951 with 2.2 million re-

Germany gets set to tap the European bicycle market with this \$11.40 bike radio. Loudspeaker is built into the lamp housing. Two dry cells fit under the saddle
ceivers that year, almost double its production of 1.1 million in 1949.
The United Kingdom followed Germany with an output of 2.1 million sets in 1951 compared to 1.3 million in 1950 when she was the world's second place producer.

Of 11 countries reporting, only Canada, Japan, Norway and Yugoslavia experienced a decline in set production between 1949 and 1951. India, Austria, Denmark, Germany, Iceland, United Kingdom and Australia were all on the upswing.

Loudspeaker Business Follows New Trends

Volume this year is expected to reach 22.5 million units, a 3.2 million gain over 1952

Rtma recently estimated in a report to NPA that 1953 loudspeaker production would total 22.5 million units compared with 18.8 produced in 1952. The average weight of an Alnico 5 magnet per speaker is $1^{\frac{1}{2}}$ oz, so this year the industry will need approximately 2.1 million pounds of Alnico 5 material.

The increase over 1952 production is believed due to the opening
(Continued on page 20) 25 KW

AT 220 MC!

SUPER-POWER! 25 kw output at sync. peak level.

LOW DRIVE! 10-to-1 tube gain.
ALL V-H-F TV BANDS! $\mathbf{2 2 0 - m c}$ frequency at max ratings.

ULTRA-MODERN! Ring-seal design; ceramic construction.

COMPACT: Approx. $14^{\prime \prime}$ high.

NEW GL-6251 POWER TETRODE

Makes SUPER-POWER available to TV Transmitter Designers!

Two GL-6251's in your new v-h-f cir - cuit will boost E. R. P. to the full authorized 316 kw !
Here's a plus: only 5 kw is needed to drive a pair of these high-gain tetrodes! Low-power TV transmitters now on the air-by adding an amplifier stage with two GL-6251's-can increase signcl strength to top levels at moderate cost.

Manufacture and sale of the se amplifier
(irzuits t.) TV stations, is a profit opportucity fo: you second only to that from ap zlying GL-6251's in new h-gh-power v-f.f transmitters, where your customers require maximum E. R. P. from the start.

GL-6251 is the big new tube for your big jobs! Get complete information about th s SUPER-POWER tetrode from Tube D spartrient, General Electric Company, Schenectady 5, New York.
of new tv areas and a lack of finished set inventory in the hands of the industry.

- Market—Approximately 7 million units will go to tv set producers and about 8 million to radio manufacturers, if predictions hold true. Remaining sales will be split up among hi-fi, industrial, military and replacement markets.
- Product-Some manufacturers see an increasing trend in radio and ty set design toward smaller sets, fewer combinations, more table models. This means smaller loud speakers and smaller dollar volume per unit for companies.

However, other loudspeaker manufacturers are optimistic because of the accelerating hi-fi trend which has made the public more fidelity conscious and has resulted in a noticeable increase in sales of heavier and larger units. It had also caused some set manufacturers to equip combination sets with larger cones, the 12 inch instead of the 10 inch, despite higher cost.

Manufacturers are now using larger loundspeakers in their portable lines. Motorola, with its new design that incorporates the magnet and associated components within the cone, now is able to use a 7 -inch loud speaker in place of a 4 inch (Electronics, p 8, May, 1953).

Meters Fluid Flow

Flowability of a fluid is measured instantly and continuously with this new instrument for industry and the medical profession. A small ultrasonic sensing probe is applied to a blood sample while an electronic computer and recorder chart how fast a clot is formed

PLOT of output indexes shows electronics out in front. On page 4 of each issue

New 'Figures' Show Business Trends

Cumulative totals on page 4 of each issue compare current and previous year's output

Recently added to the regular 'Figures of the Month' page of Electronics is a new subdepartment called 'Figures of the Year'. The statistics printed each month under this heading show at a glance cumulative monthly conditions in the electronics business as compared to the same time last year.

This month's totals show a significant increase in general production and sales for the first quarter of '53 as compared to '52. Cathoderay tube production almost tripled, with an increase of 168.91 percent over last year. Radio and television set production remained high.

- Output Index-The 'Electronics Output Index' (also on page 4) continues to reflect a healthy situation in the industry. As shown in the accompanying chart comparing the electronics index with similarly compiled statistics on industry in general, output of electronics goods has increased about 100 percent since 1947, while increase in general industry amounts to around 25 percent.

Computed largely from Bureau of Labor Statistics, the Output Index shows activity in both military and commercial electronics. A slight drop-off may be expected during summer months as the American public turns to trout lines.

Financial Roundup

Outstanding gains for the first 3 months of 1953 compared to the same period last year were registered by companies in the electronics field. National City Bank of New York reports that total net income in the first quarter for 23 companies was $\$ 78.3$ million compared to $\$ 54.4$ million in 1952, a 44-percent increase. Profit reports by individual companies in the first 3 months of this year are as follows:

Company	$\text { Net } \underset{\mathbf{1 9 5 3}}{\text { Profit }}$	$\left(3 \operatorname{mos}_{1952}\right)$
Admiral	\$3,056,878	\$1,515.50f
CBS	-,404.935	1.520.79\%
Hoffman	476,646	401.575
IBM	7.5 ± 0.105	$6.79 \% \times 76$
Magnavox	1,782,000	558.1410
Minn. Honevwell	- ,332,770	1.294 .583
Motorola	3,174,208	ㄴ..23. 1.35
RCA	9,293.141	7.076 .520
liaytlieon	1.355.(0)0	4188.000
Sylvania	3,679.243	1.938, 01
Telautograph	44.854	47.443
Tung Sol.	552.318	492.241.
Zenith	2,109.461	1.083 .242

- Securities-Computer Manufacturing Corp. filed with SEC cover(Continued on page 22)

The Collins 51R-3 Navigation Receiver is typical of the

Is the Heart of the Famous Collins Navigation System outstanding developments of the Collins Radio Company for aviation, navigation, and communication. It is in wide use among airlines, private, and military planes. With accessories, it is the heart of the Collins navigation system to which is entrusted the efficient and safe operation of every type aircraft.
Mpidland CressalsPlay viritiRole

Midland Crystals are entrusted with the exacting job of frequency control in the Collins 51R-3. Thirty-four crystals provide complete 280 -channel coverage. In such critical service, there can be no compromise with quality, precision, and undeviating performance under every operating stress.
Midland Crystals measure up to ColJins' strict standards because every
one of the millions of Midland Crystals in use today is a product of Midland Quality Control. This is the system by which every crystal is constantly checked and tested at every step in processing. Midland employs the highest technical skill and finest production facilities known to the industry. It is your assurance of completely dependable crystal performance.

Whatwer y you Sut tal med, comentitional or specialijel

MANUFACTURING COMPANY, INC.
3155 Fiberglas Road - Kansas City, Kansas

ing 150,000 shares of common stock par 10 cents to be offered at $\$ 1$ per share. Net proceeds will be used for working capital and for general corporate purposes.

General Electric proposed a stock option plan for key employees. Participants selected will be given the right to purchase GE common stock of no par value at 100 percent of the fair market value on the date the option is granted.

Restricted stock options may be granted by GE to from 700 to 1,200 employees for the purchase of not more in grand total of 1.4 million shares of common stock. The stocks would be taken from unissued common stock of which there are 6,154,073 shares. Proceeds of the sales will go into general funds.

RCA placed privately with a group of institutional investors $\$ 10$ million in 3^{3}-percent promissory notes due May 1, 1977, bringing to $\$ 40$ million the amount borrowed under a $\$ 50$ million credit set up in February, 1952. Proceeds are to be used for working capital and to take care of increased volume of defense business.

Weston Electrical Instrument Corp. registered with SEC covering 107,055 shares of its capital stock, $\$ 12.50$ par, to be offered for subscription by stockholders at the rate of one new share for each 3 shares held on the record date. The company will use $\$ 2$ million of the proceeds to reduce bank loans. The balance will be added to general funds of the company.

Hedging Plan Bolsters Lean Years

Electronic manufacturers evaluate selling costs and plans to increase sales effectiveness

ANALYSIS of the selling, general and administrative expenses of 13 electronic manufacturers for the past ten years indicates that companies are spending more for total sales, the expenditure last year reaching the highest point since 1943. But in 1952, as a percentage of net sales, which also reached record highs, sales expenses declined.

- Strategy - Selling costs have followed a fairly stable path since World War II because many electronic manufacturers allocate sales budgets by a set percentage of sales and spend more for sales when they are at a peak.

With defense cuts and tougher competition just ahead, electronic manufacturers are taking another look at this concept of tying expenditures to sales, in an effort to get more effective use out of their funds.

- New Approach-One plan for better sales spending was recently advanced by Gwilym A. Price, presi-

dent of Westinghouse. He proposes a tax law that will permit companies to set up funded promotional reserves as tax-exempt costs in good years, for spending in lean years.
- Price Plan-"The tax deductionreserve plan would overcome this normal tendency to reduce sales budgets when sales were low. Under such a plan, the Treasury would allow a company with a past history of spending on sales and market development to deduct tax-free a certain percentage of its gross. The company would spend this money for defined objectives, under approved conditions within a certain period."

Station Power Gains Extend TV Markets

Important to televison receiver sales are existing tv markets in which stations have upped their power and increased coverage. Since June 1, 1951, over 60 tv stations have improved their facilities affecting over half the country's markets. NBC alone reports that 41 of its tv affiliates have boosted power since then.

- Markets-Although extension of coverage in terms of homes and audience is difficult to ascertain, set manufacturers agree that in old markets improved transmission by tv stations has provided a stimulant to business and has increased fringe sales just as improved tv receivers did in the past. It is estimated coverage increased 5 to 10 miles in many markets.
- Future-A number of tv stations plan power increases in the near future and have FCC okays. Applications by 19 other stations are pending approval. Markets expected to get power boosts in the near future are: Boston, WNAC-TV; Cincinnati, WLWT; Columbus, WLWC; Buffalo, WBEN-TV; Austin, Texas, KTBC-TV.

Transistor Improvement Promises Bright Future

Hermetic sealing and use of new materials may eliminate moisture and temperature bugs

Steady progress is being made toward solving the moisture problem and other troublesome factors in transistors. In an announcement by Zenith it was revealed that that company had been unable to make transistors stand up under hearingaid conditions. It was reported that the transistors they tried failed rapidly in service, evidently due to high moisture conditions prevalent near the body where hearing aids are normally worn.

Hermetic sealing promises to be a virtual cure-all for the moisture problem. One company, CBS-Hy-

FULL RANGE OF FINEST QUALITY LAMINATE . . .

With phenolic, melamine and silicone resins. Includes insulation for radio, TV and other electronic purposes. In sheets, rods, tubes, molded specialities, fabricated parts.

OTHER PANELYTE PRODUCTS

1. DECORATIVE, for table-tops, work surfaces, wall covering, etc., in sizes up to $4^{\prime} \times 10^{\prime}$.
2. MOLDED LAMINATED PARTS-refrigerator inner-door panels, breaker strips, specialty molded items, breaker frames.
3. INJECTION MOLDINGS-32, 48, 60, 200 oz . capacity. Television masks, refrigerator parts, industrial items, etc.
4. REINFORCED PLASTICS-sheets, fabricated parts.

DIVISION
ST. REGIS PAPER COMPANY
230 Park Avenue, New York 17, New York
Offices in Principal Cities

1. HICHEST STRENGTH
 2. DIMENSIONAL STABILITY
 3. GOOD ELECTRICAL PROPERTIES

For the tuning drive shafts in the ARN/6 Radio CompassFused in military and commercial aircraft-Bendix made a wise choice.
Bendix selected Panelyte-12" shafts made of Grade 170 Continuous Glass Cloth. This phenolic laminate withstands high torque loads-is stable under varying changes of temperature and humidity. Moisture absorption is only 0.1%. Electrical properties are excellent.
Two Panelyte shafts are used. One passes through and tunes the five intermediate frequency circuits. The other passes through and tunes all of the r-f circuits.

Other Panelyte Glass Base grades include the following:
GRADE 120, Staple glass cloth, phenolic resin, heat resistance.
GRADE 130, Continuous glass cloth, silicone resin, high heat resistance.
GRADE 135, Staple glass cloth, silicone resin, high heat resistance.
GRADE 140, Continuous glass cloth, melamine resin, arc resistance, high strength.
GRADE 601, Glass mat, polyester resin (reinforced plastic)
Let us send you a free sample of Panelyte. Or a free copy of the Panelyte Industrial Catalog. Or, perhaps, you would like to talk with a Panelyte Engineer. Let us send you any, or all threewithout obligation, of course.

Simply Send in Coupon Today

PANELYTE DIVISION • ST. REGIS PAPER CO. 230 Park Avenue, New York 17, New York	E-6
\square Please send me sample of Grade . . . Panelyte.	
\square Please send me Panelyte Industrial Catalog.	
\square Please have a Panelyte Engineer contact me,	
Nome.	
Firm Name.	
Address.	
City . Zone State .	

tron, has already announced her-metically-sealed transistors, and several of the larger transistor makers indicate plans to do likewise in the very near future. The sealing process involves potting the transistor in a tiny (but so far costly) can equipped with a glass seal.

- Other Developments-Better and less expensive transistor materials appear to be the goal of numerous research programs, some of which are bearing fruit. Battelle Memorial Institute announced successful tests on a compound of aluminum and antimony for transistors. Preliminary tests show possibility of characteristics superior to germanium and silicon where operation at high temperatures is contemplated. A further advantage lies in the low cost of AlSb-a half ton costs about as much as a pound of germanium.

Transistor-pure silicon may also become cheaper and available in greater quantities as a result of a new manufacturing process developed by du Pont. This new source will also help raise power and temperature limits for transistors, because silicon functions as a semiconductor as high as 400 F .

Defense Contract Rules Revised

Administration jettisons broadbase procurement policy; electronics may be exception

Future defense contracts will be awarded to the companies that can handle them best and cheapest and not necessarily to the firms or areas that need them most. Thus Deputy Secretary Roger M. Kyes announced a reversal of the Defense Depart ment policy of spreading the work thin. Concurrently, the department announced that procurement would be placed in the hands of management men from industry. Presumably the Small Defense Plants Administration will expire quietly

- Loophole-Electronics manufacturers will probably not be affected greatly by the new policy. Kyes stated that marginal producers may still get contracts when the item manufactured is hard to get, in short supply or where the Defense Department wishes to keep the line open. Electronic equipment generally falls into these categories.

Aviation Weather Broadcasts Save Talk

Forecaster at La Guardia Field reads latest information onto magnetic tape (right) which repeats five-sector forecasts endlessly via relay transmitter (left) until next hourly forecast is recorded. Main transmitter in Manhattan broadcasts data on 162.55 mc from 6 am to 6 pm , KW035

More significant is that the former broad-base policy had little effect on the electronics industry. Much lip service was paid to aiding small business but a small business was defined as one employing 500 workers or less, scarcely called small in the electronics industry.

- Broad Base-Figures supplied by the New York office of the Signal Corps Supply Agency show that from August 1952 until March 1953 this office let $\$ 780,903.17$ worth of contracts, each under $\$ 1,000$. Small business received a little more than half the work.

During the same period, the small business specialist at the Signal Corps' New York office serviced 8,947 firms and assisted small business in obtaining $\$ 6,372,855$ worth of contracts over $\$ 1,000$.

Radio Networks Continue to Expand

Webs are bigger than ever despite inroads of television; local sponsorship a boon

A GLANCE at the chart (next page) proves network radio is bigger than ever and apparently still growing. Latest figures give total outlets as follows: NBC, 206 ; CBS, 217 ; ABC, 355 and MBS, 562.

One reason advanced for the growth of network radio in the face of television's inroads against the listening audience is that the networks are acquiring a-m outlets primarily for television CP's. Independent a-m stations in new tv areas have found network affiliation essential. Another powerful inducement to independents is network policy of making national shows available for local sponsorship. Mutual has expanded heavily in non-tv areas and has found bigleague baseball especially worldseries coverage an attractive feature.

Radiomen in general seem con-
(Continued on page 26)

Gain these advanitapes ABSIM ${ }^{2}$ Pressed ceramics

Volume Production

Fast Production

Widest
Choice of Materials

Precision... Uniformity

You can choose the AlSiMag ceramic composition with the physical characteristics best suited for your requirements. Property chart, free on request, gives characteristics of the many compositions available.
Engineering advice is available on request.

AlSiMag die pressed ceramics are uniform physically and dimensionally. This speeds assembly, assures dependable performance. Where exceptional dimensional accuracy is required, grinding facilities are available at commensurate cost.
Your parts can be run on the equipment that produces the desired volume at lowest cost. We have the most complete automatic press facilities in the industry.

Press equipment ranges from small tabletting presses to 100 ton hydraulics and includes several high speed rotaries. Any one of these rotaries can produce up to $1,800,000$ a day of small, simple parts.

JUNE 15-19, 1953, HEW YoRK
B०OTH NO. 71

fident that radio and television can coexist. They point to sold-out daytime radio, increased away-fromhome listening and continued popularity of several night-time shows.

Electron Art Advances Abroad

Electronics as an industry is global in its scope. No one country has a monopoly on research talent or engineering ingenuity.

- International-In a test of facilities for covering Queen Elizabeth's coronation, the British Broadcasting Company beamed a London tv show simultaneously to four European countries. Good reception was reported in West Germany, Belgium, Holland and France.

France uses both 441- and 819line pictures, Belgium uses 819 and 625 lines while Holland and West Germany both use 625 lines.

- England-Pluggable packaged circuits are building blocks for the model-401 electronic digital computer built by Elliott Brothers, London, for the National Research and Development Corp. Packaged circuits are mass produced and computers built to order from stock.
- Czechoslovakia-Communist Czechoslovakia's first television transmitter will soon be erected near Prague. Authorities stress that the Tesla-built transmitter uses only Czech-made components. Concurrently a plant in Strasnice has announced the first line of Czech television receivers.

MEETINGS

May 6-June 1: International Telecommunications Union Conference, Palais Wilson, Geneva, Switzerland.
June 9-11: International Aviation Trade Show, Hotel Statler, New York, N. Y.
June 10-20:Automation, Servomechanism and Instrumentation Exhibition, Oslo, Norway.
June 11-12: IRE Professional Group On Communications Systems Symposium, AT\&T Long Line Auditorium, New York, N. Y. on June 11 and Overseas Transmitting and Receiving Stations of AT\&T, Lawrenceville and Netcong, N. J. on June 12.

June 15-19: Exposition of Basic Materials for Industry, Grand Central Palace, N. Y. C.
June 16-24: International Elec-tro-Acoustics Congress, The Netherlands.
June 20-Oct. 11: German Communication and Transport Exhibition, Munich, Germany.

June 29-July 3: ASTM Annual Meeting, Atlantic City, N. J. Aug. 19-21: WESCON (Western Electronic Show \& Convention), IRE (7th Region) and WCEMA (West Coast Electronic Manufacturers' Association cosponsors, Municipal Auditorium, San Francisco, Calif.
Aug. 29-Sept. 6: West German Radio and Television Exhibition, Duesseldorf, Germany.
SEPT. 1-3: International Sight and Sound Exposition, Palmer House, Chicago. Ill.
Sept. 1-12: British 20th National Radio \& Television Exhibition 1953, Earlscourt, London, England.
SEpt. 21-25: Eighth National Instrument Exhibit, Sherman Hotel, Chicago, IIl.
Sept. 28-30: Ninth annual National Electronics Conference, Sherman Hotel, Chicago, Ill.
Nov. 9-12: Conference on Radio Meteorology, Austin, Texas.

Industry Shorts

- More than 1,000 stations now operate on CONELRAD according to FCC Commissioner Sterling.
- Yakima to Spokane microwave relay system advanced another step as Pacific Telephone Co. awarded construction contracts for buildings at 4 of the 6 relay points on the $\$ 3$ million route. The system is slated for completion in December.
- Radio telescope built at Cambridge University, England, can penetrate to a distance of 6 billion light years into space, 3 times further than the 200 -inch Hale telescope of the Mount Palomar Observatory in California.
- Yugoslavia is buying underwater tv equipment, for dock and harbor inspection in its Adriatic ports, from Marconi's of England.
- Antenna masts of glass-fiber reinforced plastic are under study at the Signal Corps as possible replacement for metal and plywood towers.
- Digital computer that was ordered by Armour Research

Foundation of Illinois Institute of Technology from International Business Machines to supplement other computers at the Foundation's computer center has been installed and is now in operation there.

- All-channel 17 -inch tv table model recently introduced by Emerson, will retail for $\$ 199.95$, lowest price so far.
- India's first electronics plant is to be built by the government with the cooperation of French Compagnie Generale de Telegraphic Sans Fil.
- Spain's first television station, operated by Government-owned Ra-dio-Nacional de Espana in Madrid, starts experimental telecasts. The tests are being transmitted to 65 receiving sets, of which 15 are owned by official government agencies. Regular daily broadcasts will begin as soon as technical problems are ironed out. Plans are for a second station in Barcelona and a third in Bilbao.

GUARANTEES

CONFORMANGE TO RADIO INTERFERENGE SPEGIFICATION

(0.15 TO 1000 MEGACYCLES)

FILTRON'S Engineering division, with its completely equipped screen room facilities, is always available to measure and recommend RF Interference Filters for your equipment, to meet and exceed the Radio Interference requirements of MIL-I-6181.

FILTRON'S production facilities are suppying more RF Interference Filters for use in military electronic equipment than ever before, to meet the nation's requirements.

FILTRON...the LEADER IN RF INTERFERENCE FILTERS... has pioneered:

Sub-miniature Filters
High-temperature Filters
RF Filters to withstand Shock and Vibration

Wide band Multi-section Units RF Filters "Custom Designed"
to meet YOUR requirements

filter fa 1130
7. AMP -130 VAC/500 VDC, $0.1700 \sim$ $2^{\prime \prime} \times 2^{\prime \prime} \times 11 / \mathrm{a}^{\prime \prime}$ OEEP BULKHEAD MOUNTED

THE 1130 SERIES IS AVAILABLE UP TO 20 AMPERES, 130 VAC $/ 500$ VDC, $0-1700 \sim$ IN STANOARD OR BULKHEAD O-1700~ ING SIN
MOUNTING, WITH SCREW OR SOLDER TYPE TERMINALS. UNITS ARE HERmetically sealed and are availABLE FOR $85^{\circ} \mathrm{C}$ OR $125^{\circ} \mathrm{C}$ OPERATION. THESE FILTERS HAVE MINIMUM VOLTagE drop, and meet military ReGUIREMENTS.

An inquiry on your Company letferfead will receive prompt attention

THE FHERON COMPANY INC., FLUSHING, LONG ISLAND, NEW YORK LARGEST EXGLUSIVE MANUFAGTURERS OF RF INTERFERENGE FILTERS

Before you specify that

CHEEK THE WIDE RANGE OF

Fist for Lasting Quality PHEIPS DODEE COPPEF PROOUCTS CORPORATION

"Special" Magnet Wire PHELPS DODEE "STANDARUS"

worked for many different products, including television and radio coils, motors, aircraft generators, relay coils, distribution transformers, hearing aids and many others.

Any time magnet uive is your problem, consull Plelps Dodge for the quickest, easiest answer!

Low-Build Formvar Glass Wire Improved space factor for aircraft generators and starters

- from Mineto Market!

INCA MANUFACTURING DIVISION

FORT WAYNE, INDIANA

Western Electric installer in an aircraft plant connecting telephone equipment with a G-E soldering iron.

Western Electric Uses G-E Soldering Irons to Speed Vital Telephone Installations

For efficient soldering of millions of connections during the installation of telephone equipment, Western Electric uses G-E industrial soldering irons. Repeat orders testify to this company's satisfaction with G-E irons.

No matter what your soldering operation-intermittent or high-speed repetitive work-General Electric has the iron to meet your particular requirements. You'll find that G-E irons, equipped with the famous long-life Calrod* heating element, give you lower maintenance costs. You can choose durable, interchangeable calorized copper tips or, for even longer mainte-nance-free tip life, sturdy Ironclad copper tips. Ratings range from 25 to 1250 watts, tip sizes from $1 / 8$-inch to two inches.

Give G-E industrial soldering irons a chance to prove their lower over-all costs to you. Buy a few through your nearest G-E Sales Office or Apparatus Distributor, and keep cost comparison records on their performance. You will see for yourself that these irons will save you money. General Electric Company, Schenectady 5, N. Y.
*Reg. Trade-mark of General Electric Company $\begin{array}{r}720-101\end{array}$

GENERAL ELECTRIC

You can often replace heavy irons with this 120 -volt, 60 -watt lightweight iron for communications soldering.

ONLY THE LFE 401 OSCILLOSCOPE

Offers all these Important Features

HIGH SENSITIVITY AND WIDE FREQUENCY RESPONSE OF Y-AXIS AMPLIFIER

The vertical amplifier of the 401 provides uniform frequency response and high sensitivity from D-C. Coupled with a sensitivity of 15 Mv./cm peak to peak at both D-C and A-C is a response characteristic which is 3 db . down at 10 Mc . and 12 db . at 20 Mc . Alignment of the amplifier is for best transient response, resulting in no overshoot for pulses of short duration and fast rise time. An example of the wide band response of the amplifier is shown in the accompanying photographs.

TRIGGER GENERATOR with variable repetition rate from 500 to 5000 cps .
POSITIVE \& NEGATIVE UNDELAYED TRIGGERS and a POSITIVE DELAYED TRIGGER are externallyavailable.

LABORATORY for ELECTRONIGS, ING.
 75 PITTS STREET - BOSTON 14, MASS.

PRECISION ELECTRONIC EQUIPIMENT OSCILLOSCOPES - MAGNETOMETERS - COMPUTERS - MICROWAVE OSCILLATORS

ANN○UNGING...

Shown opproximately full size.

C.T.C.'s new CST-5O capacitor

 with greatly increased range, greater stability

Exploded view of the CST-50 capacitor shows: (1) ring terminal with two soldering spaces; (2) metallized ceramic form; (3) spring-type S -shaped tuning sleeve*; (4) split mounting stud; (5) locking nut.

- Patent Applied for

Surpasses the range of capacitors many times larger in physical size.
The new CST-50 variable ceramic capacitor embodies a tunable* element of such unusual design it practically eliminates losses due to air dielectric. As a result, a larse minimum to maximum capacity range (1.5 to 12 MMFD) is realized - despite the small physical size of the capacitor. This tunable* element is a spring-type, S -shaped tuning sleeve* which maintains constant maximum pressure against the inside wall of the ceramic form.

Other Design Features

The CST-50 stands only 19/32" high when mounted, is less than $1 / 4^{\prime \prime}$ in diameter and has an 8-32 threaded
mounting stud. The mounting stud is split so that the tuning sleere* can be securely locked without causing an unwanted change in capacity. The tuning sleeve* is at ground potential. The CST- 50 is provided with a ring terminal which has two soldering spaces.

All C.T.C. materials, methods and processes meet applicable government specifications. For further information on C.T.C. components and C.T.C."s consulting service (available without extra charge) write us direct. Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast manufacturers contact: E. V. Roberts, 5068 West Washington Blvd., Los Angeles and 988 Market St., San Francisco, California.

CAMBRIDGETHERMIONIC CORPORATION

custom or standard. . the guaranteed components

Write for Free Catalog \#400 containing complete data on the entire CTC line.

DESIGN and PRODUCTION NEWS

FOR ELECTRICAL AND ELECTRONIC ENGINEERS
Published by TECHNICAL SERVICE, Chemical Manufacturing Division, The M. W. KELLOGG Company
JUNE 1953

Corrosion, Moisture Interference Eliminated in Immersion Gauge

The difference between dependable "laboratory" accuracy or complete breakdown for a rugged immersiontype electronic fuel gauge may be attributed in part to its 59 machined Kel-F polymer parts, samples of which are shown here. Used primarily as dielectric insulators to isolate each of the three "probe" tubes which act as capacitor surfaces, the plastic parts are also subjected to constant vibration, corrosion from aircraft sludges and fuels, wear, and random concentrations of moisture.

The three-tube probe of the instrument which senses the weight of fuel in an aircraft tank may be completely or partially immersed at all times in volatile aircraft or jet fuel at temperatures ranging from minus 60° to $200^{\circ} \mathrm{F}$. The unusual chemical inertness of the Kel-F-resisting corrosion or erosion of machined surfaces by the fuel or sludge-prevents any change in the critical spacing of $1^{\prime \prime}$ between the capacitor tubes essential to accuracy in the instrument readings. Electrical isolation of each capacitor tube surface is complete due to the excellent dielectric strength of Kel-F plastic. Dependable insulation, free from surface shorting or grounding caused by moisture or residues found in the fuel, is assured by the zero water absorption and non-stick characteristics of Kel-F.

The precision insulating parts required for this electronic instrument are produced by the Tri Point Manufacturing Company of Brooklyn, N.Y. Tri Point uses rod and tubing extruded from Kel-F polymer and then machines the necessary parts on standard automatic screw machines. The ready machinability of Kel-F permits this company to maintain tolerances within .001" on all parts supplied to the Aviation Engineering Corporation of Woodside, N.Y., manufacturers of this aircraft instrument.

KEL-F ${ }^{\circledR}$ in UHF Pulse Cavity Insulates Against 3500 V, Under High Shock and Vibration Loads... 100% Humidity

The UHF pulse cavity assembly, shown above, utilizes insulating parts and circuit supports of Kel-F polymer to increase cavity efficiency in radar and other communications equipment. The excellent dielectric strength of Kel-F at low and high frequencies prevents both leakage of 3500 V pulses and radiation of $R F$ signals from the unit. Efficiency is further boosted by the high are resistance of the polymer.

Both ultimate operation and assembly phases of this cavity benefited because of the unusual mechanical properties of Kel-F trifluorochloroethylene polymer. The toughness-resiliency and high compressive strength -of the plastic allowed standard mounting methods to be used without danger of the plastic cracking or chipping. The exceptionally low "cold flow" of Kel-F assures that mounted parts will remain firmly in position, preventing misalignment. During operation, at temperatures from minus 60° to $200^{\circ} \mathrm{F}$., molded parts effectively withstand shock loads of 1200 foot pounds without failure. Additional stress from sustained vibration of 10 G 's, encountered in certain services, is taken in stride by the plastic without development of brittleness or loosening of mounts.

Shelley Products Limited, custom molders of Huntington Station, N.Y., supplied the Kel-F polymer parts illustrated to the Radio Receptor Company, Inc. of New York, N.Y. the firm which manufactures this cavity unit for the Armed Services. Using Kel-F trifluorochloroethylene polymer molding powders, Shelley Products readily injection-molded the required parts to specified tolerances. The use of Kel-F polymer for these parts resulted in a lower unit cost, as compared to similar materials, due to the ease with which Kel-F could be fabricated.

In addition to the excellent dielectric and mechanical properties of Kel-F, this polymer's unusual zero water absorption and "non-stick" properties serve to extend the application of this unit. The zero water absorption of Kel-F precludes efficiency loss through surface shorting, leaks or "tracking" caused by moisture. This property, combined with the "non-stick" characteristic of the polymer, prevents the accumulation of conductive residues or fungus growths, cause of shorting in tropic climates.

Switch Rotor of KEL-F Takes Rough Handling, 75 Amp Current Surges, Ignores Oils and Greases!

This injection-molded Kel-F polymer switch rotor with copper pole pieces withstands the impact of 75 amp . starting currents needed to propel electri-cally-powered heavy duty plant trucks. Because of the high dielectric strength of Kel-F, insulation is complete, and full power is transmitted to the drivemotor. Even after count less starts and stops during the course of a working day positive switching action is assured. At the elevated temperatures generated, the excellent dimensional stability of Kel-F prevents the rotor from softening and allowing the pole pieces to loosen or part from the switch shaft . . . and the polymer's high heat

Get the Whole Kel-F Story at the Basic Materials Show!

The largest and most complete exhibit of Kel-F polymers and finished products ever displayed-that's Kellogg's Booth 56 at the Basic Materials For Industry Exposition, June 15 through 19 in New York City. At the new exhibit you will be able, in a few moments, to acquaint yourself with the extremely wide scope of application of Kel-F molding powders, waxes, greases, oils and dispersion coatings. And, you'll be able to obtain the latest technical data on Kel-F as well as examine more than 125 Kel-F polymer products on display.
Make a point to visit the Kel-F polymer exhibit . . June 15-19.
resistance eliminates any chance of plastic breakdown or carbonization which cause arcing

The high impact resistance and compressive strength of Kel-F are responsible for the rotor's ability to withstand the heavy pounding given by overzealous operators . . . without chipping, cracking or embrittlement of the plastic. Leakage of lubricating oils and grease also caused by rough handling las no visible effect on the chemically inert plastic. Shorting of the 75 amp . current across the insulation, common with other materials during periods of high humidity, can not occur with Kel-F because of the zero water absorption of the polymer. This latter property also precludes the formation of fouling fungus growths when trucks are stored in damp locations.

Electronic Mechanics, Inc., of Clifton, N.J. injection molds the rotor, with its two copper poles, in a single operation on a standard molding machine, supplying the complete switch rotors to a major producer of materials handling equipment. Maximum bonding surface between the copper pole pieces and the plastic rotor body is provided by grooving the inner surface of each metal part. Provisions are made in the mold for the shaft hole and key way, so that the only finishing required prior to use is removal of the sprue.

Molders of the Month

LLeading molders and extruders specialize in fabrication of materials and parts made of Kel-F. . earh monh this column will spotlight several of these companies with
primipal semires and product.

American Molding Company

San Francisco, Calif.
Injection Molding
Electronic Components
Federal Telecommunication Laboratories, Inc. Nutley, N. J.
Insulated Wire, Tubing

Garlock Packing Company

 Palmyra, N. Y.Gaskets, Packings, "O" Rings Injection, Compression Molding

H. \& R. Industries Nazareth, Pa.

Extruded Rod, Tubes, Shapes Injection Molding

Kurz-Kasch, Incorporated Dayton, Ohio

Compression Molding
Plunger Molding
W. S. Shamban \& Company Culver City, Calif.

Extrusions, Rods
Injection Molding
Compression Molding,
" O " Rings
RF Sealing of Film

For complete information regarding ony item mentioned in DESIGN AND PRODUCTION NEWS, ask for defailed APPLICATION REPORTS, write

Technical Service CHEMIGAL MANUFACTURING DIVISON THE M. W. KELLOGE COMPANY

P.O. Box 469, Jersey City 3, N. J.
or offices in New York, Chicago, Los Angeles,

- three tubes cover ALL UHF-TV CHANNELS

3K50,000LA - channels 14-32 3K50,000LF - channels $33-55$ $3 \mathrm{~K} 50,000 \mathrm{LK}$ - channels $56-83$

EITEL-McCULLOUGH, INC.

SAN BRUNO, CALIFORNIA Export Agents: Frazar \& Hansen, 301 Clay St., San Francisco. California

PLASTIC TAPE ends breakdowns on this vital nervous system!

Men's lives may depend on it - that's why "Scotch" Plastic Electrical Tape No. 33 harnesses this wiring for precision Naval equipment. And the contractors for the job, Belock Instrument Corp., College Point, N. Y., find the tape gives them more than dependable results-more than complete protection against moisture, fungus and abrasion.

They find "Scotch" 33 easier and faster to apply. Personnel can be quickly trained. Harnessing time is cut one third.

Try it yourself and see! See how it sticks tight right off the roll, how it conforms smoothly to odd shaped joints and fittings, how so little goes so far. In several standard widths and lengths. Order "Scotch" 33 from your supplier today!

FREE! POCKET TAPE CALCULATOR quickly figures total quantity of "Scotch" Electrical Tape needed for production operations. Includes data on 23 "Scotch" Brand tapes. Write Minnesota Mining \& Mfg. Co., Dept.ES-63,St. Paul 6, Minnesota.

[^0]

BN Connectors are small, lightweight connectors designed for use with small cables such as RG-55/U, RG58/U and RG-62/U. They are widely used for Video, I. F., Trigger Pulse and Low-Power R. F. applications.

During its many years of collaboration with our Armed Forces, Kings has developed engineering skills and production know-how that have won them "top-priority" with radio and electronic engineers everywhere. Constant research and rigid quality control are responsible for the increasing demand for Connectors by Kings.

Our fully-staffed engineering department is ready to serve you promptly and skillfully. You'll be glad you called on Kings first.

000

40 MARBLEDALE ROAD, TUCKAHOE, N. Y.
IN CANADA: ATLAS RADIO CORP., LTD., TORONTO

These instruments and components can speed your research

Listed here are some of the many special types of ElectroniK instruments and Honeywell components which are helping research men to measure, record and control in thousands of research projects. For information on how they can be utilized in your own work, write to Minneapolis-Honeywell Regulator Co., Industrial Division, 4428 Wayne Ave., Philadelphia 44, Pa.

Special Electronik recording instruments of interest to research men:

FUNCTION PLOTTER-automatically plots the relationship, $\mathbf{y}=\mathbf{f}(\mathbf{x})$, between any two variables that can be converted to electrical signals.

TWO-PEN RECORDER: simultaneously records two variables on a single chart . . . both pens can traverse full width of 11 -inch chart.

CAPACITANCE LIQUID LEVEL GAUGE: accurately measures volume of liquefied gases in pressurized vessels . . . no moving parts or seals.

ADJUSTABLE SPAN RECORDER: span can be adjusted over a 50/1 range ... zero can be suppressed as much as 100% of maximum span.

1/2-SECOND RECORDER: for recording rapidly-changing variables; full 11-inch scale pen movement in only $1 / 2$ second. Chart speeds from 1 inch to 14,400 inches per hour available.

NARROW SPAN RECORDER: measures spans as narrow as 100 microvolts without external pre-amplifier . . . completely self-contained.

Electronic components for laboratory use:

BROWN CONVERTERS: transform low-level d-c signals into 60 or 400cycle alternating voltages . . . Unaffected by atmospheric pressure.

BROWN SERVO AMPLIFIER SYSTEMS: consist of converter, amplifier and servo motor . . Sensitivities of $2,0,0.5$, and 0.05 microvolts are available, wis with corresponding voltage gains of $10^{6}, 4 \times 10^{6}$ and 40×10^{6}.

BROWN 60-CYCLE 2-PHASE SERVO MOTORS: Provide positive positioning . . . totally enclosed, self lubricated. Maximum torque: 27 RPM motor- 85 in.-oz., 54 RPM motor- 43 in..oz.; 162 RPM motor-19 in.-oz.; 333 RPM motor-4 in.-oz.

Honeầo well
EROWN INSTRUMENTS

flexible leads

 built into
multiple headers by Sealtion

NOW-eliminate difficult soldering in "close quarters"-save space

\qquad

Sealtron welds flexible lead wires right into multiplepin "Header" connectors to eliminate the "closequarters" soldering operation formerly needed to connect leads. Now all you do is slip "spaghetti" sleeving over the flexible lead and comect directly into your electronic assembly.
Sealtron "built-in" leads meet AN specifications eliminate space-taking mechanical attachments required with soft-soldered connections. This means the flexible leads take up as little as $3 / 32^{\prime \prime}$ on the back of the panel (sce drawing), save valuable space where miniaturization is essential.
Sealtron Multiple Headers can be incorporated into any panel or chassis requiring multiple connections, fit standard receptacles. Supplied cadmium, tin or silver-plated; available with any number of pins. If required, Sealtron engineers will design and build special multiple headers to suit your needs. Write today for full information.

THE SEALTRON COMPANY

9707 READING ROAD CINCINMATI I5. OHIO

For maximum tube life and performance, include G-E Inductrols as "original equipment"

Automatic voltage regulation provides an effective and economical means of avoiding losses in power capacity

The life and efficiency of the electronic equipment you manufacture depends, to a large extent, on the performance of the electronic tubes. Tube life is adversely affected hy over- or under-voltage conditions that can easily be prevented.
G-E dry-type induction voltage regulators, called Inductrols, offer you an effective and economical means of maintaining correct operating voltage. Two types are availatle for indoor service on circuits 600 volis and below, single-phase 3 to 240 kva ; three-phase 9 to 520 kva .

1. Automatic Inductrols maintain a closely regulated output voltage from a varying supply voltage with a bandwidth of $\pm 1 \%$. The standard range of regulation is plus and minus 10%.
2. Hand-operated or manually controlled motoroperated Inductrols provide a variable output voltage from a relatively constant supply voltage. They supply 100% raise and 100% lower regulation.

Qou can put your confuidence ingeneral
electric

Typical applications for G-E Inductrols that have proved highly effective include: radar equipment, induction heating equipment, medical and industrial x-ray equipment, TV and radio transmitters.

For further information, contact your nearest G-E sales office, agent or distributor...or return the attached coupon.

HERE'S HELPFUL G-E DATA ON INDUCTROLS

For full details on dry-type induction voltage regulators, return this coupon... today!
Single-phase INDUCTROLS, indoor service
600 volts and below on circuits 3 to 240 kva -GEC-795A \square
Three-phase iNDUCTROLS, indoor service
600 volts and below on circuits 9 to 520 kva GEA. 5824
Application bulletin,
Inductrols and electronic equipment-GEA-5936
General Electric Company
Section A423-201, Schenectady 5, N. Y.

Name

Company

Address
City

2 Mesh .063"
76.4\% Open Area

3 Mesh . $04{ }^{1 "}$
76.7% Open Area

3 Mesh .054"
70.1\% Open Area

4 Mesh .063"
56.0\% Open Area

CALL CHASE

5 Mesh . $041^{\prime \prime}$
63.2\% Open Area

8 Mesh .028"
60.2\% Open Area

12 Mesh .023"
51.8% Open Area

FOR INDUSTRIAL WIRE CLOTH

14 Mesh .020"
51.0\% Open Area

18 Mesh . $017^{\prime \prime}$
48.3\% Open Area

24 Mesh . $0135^{\prime \prime}$
45.8\% Open Area

50×40 Mesh .009"
35.7% Open Area

IN BRASS AND COPPER

From coarse wire cloth for window or door grilles... right down to extro-fine mesh for food preparation, call Chase.

Double crimped wires of Chase Wire Cloth keep openings square and true . . . mesh uniform. It is woven in a mill which specializes in weaving brass, copper and copper-alloy wire cloth. The result is quality.

For information on the size and type wire cloth you need, send for free book or call your nearest Chase warehouse.

WATERBURY 20, CONNECTICUT - SUBSIDIARY OF KENNECOTT COPPER CORPORATION The Nation's Headquarters for Brass \& Copper

Albanyt	Chicago	Denvert	Kansas City, Mo.	Newark	Pittsturgh	San Francisco
Atlanta	Cincinnati	Detroit	Los Angeles	New Orleans	Providence	Seattie
Baltimora	Cleveland	Houston	Milwaukbe	New York	Rochastert	Waterbury
Boston	Dallas	Indianapolis	Minneapolis	Philadalphia	St. Louis	(tsales office only)

 mmf . at $500 \mathrm{vDCw} . .$. measure only $9 / 32^{\prime \prime} \times 1 / 2^{\prime \prime}$ x $3 / 16^{\prime \prime}$. . . but they're

PRETESTED at 1000V!

WRITE FOR FREE SAMPLES AND CATALOG ON YOUR FIRM'S LETTERHEAD

ALL fixed mica El Menco Capacitors are factory-tested at double their working voltage. So, you can be sure they'll stand up. They also meet all significant JAN-C -5 specifications. This means that you can specify them with confidence for all military or civilian electronic applications.

Our Type CM- 15 silvered mica capacitors reach 525 mmf . at 300 vDCw. Our other types - silvered and regular - provide capacities up to $10,000 \mathrm{mmf}$. Want samples for testing? The Electro Motive Manufacturing Co., Inc., Willimantic, Conn.

Jobbers and distributors are requested to write for information to Arco Electronics, Inc., 103 Lafayette St., New York, N. Y. - Sole Agent for Jobbers and Distributars in U. S. and Canada.

Cl-Menco
MICA TRIMMER CAPACITORS
Foreign and Electronic Manufacturers Get Information Direct from our Export Dept. at Willimantic, Conn.
THE ELECTRO MOTIVE MFG. CO.,INC.

Blinding rain! Darkest night! Obscuring clouds! One of these conditions . . . or all three combined . . . deter planes from seeking out and destroying enemy strong points in support of friendly front line troops. That's why the Ford Instrument Company was called in by the Navy to design and build compact, airborne equipment to do this job.

This is typical of the problems that Ford has been given
by the Armed Forces since 1915. For from the vast engineering and production facilities of the Ford Instrument Company, come the mechanical, hydraulic, electro-mechanical, magnetic and electronic instruments that bring us our "tomorrows" today. Control problems of both Industry and the Military are Ford specialties.

You can see why a job with Ford Instrument offers young engineers a challenge. If you can qualify, there may be a spot for you in automatic control development at Ford. Write for brochure about products or job opportunities. State your preference.

DIVISION OF THE SPERRY CORPORATION 31-10 Thomson Avenue, Long Island City 1, N. Y.

free book on specialty transformers

This fully illustrated book on Westinghouse Specialty Transformers contains full details on design, construction and operation of each type in entire line.

Find the answer to your problems in these types!
"Off-The-Shelf" Standard Models . . . includes electrical and electronic designs for both commercial and military applications.
"Built-To-Order" Special Designs . . . reviews wide range of custom-built types. Shows how Westinghouse adapts basic transformer components to meet your exact specifications economically.

SEND FOR YOUR COPY TODAY! Write on your letterhead for Booklet B-5806, or use coupon below. Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Penna.
J.70689-A

you can be SURE...IF It's Westinghouse

They're starting to make a TV set

You're looking at a picture of a Malayan open-pit tin mine--one of the world's largest.
Next time you look at the picture on your TV screen, remember it wouldn't be there without tin from mines like this.

Without tin for solder, most electrical and electronic equipment would be useless tangles of disconnected wires.
Without tin for cans and closures, much of the nation's food supply for our rapidly growing population would be lost.

Without in for bearing metals, the wheels of industry could not turn so smoothly and efficiently.

And in new alloys and chemical
compounds tin is becoming continually more valuable as an industrial material.

Over a third of the world's tin is mined in Malaya. No end is in sight, geologists say, to Malaya's important reserves. And now that U.S. Government controls on tin have ended, this time-tested metal is again freely available in this country to any user, in any quantity, for any purpose, and an adequate supply for the future is assured.

A free and stable market for tin is important to the economy and security of the United States, Malaya and, in fact, the entire Free World. And by steadily winning its war against Communist guerrillas, Malaya has materially strengthened its position as the
world's most important supplier of tin for the needs of the United States.

Remember, no other metal combines all the properties of tin. Tin is inert, nontoxic, friction and corrosion resistant. Tin is highly malleable, second only to gold. Above all, tin is economical to use. A little tin can do a lot of work.

This is the time to investigate thoroughly the ways it can work for you.

TIN NEWS, issued monthly, covers noteworthy eurrent developments in the production, marketing and use of tin. Write for fres copy.

Radical new instrument makes precise, direct attenuation measurements, 0 to 50 db , between 8,200 and $12,400 \mathrm{mc}$

Model X382A is a broad band precision instrument of a completely new type, providing measuring accuracy never before offered in commercial attenuators. Attenuation from 0 to 50 db is completely independent of frequency, phase shift is independent of attenuation setting, and accuracy is within $\pm 2 \%$ of db reading. The instrument is directly set and read, and no time-consuming interpolation or work with charts are required. The equipment has broad usefulness for all types of attenuation studies-particularly for precision laboratory calibration, direct comparison measurements, and study of phase sensitive systems such as antennas.

Mathematical law operation

The attenuator is a true, reliable standard completely free of disadvantages found in waveguide-beyond-cutoff or conventional resistive-film instruments. Attenuation depends on the angular position of the attenuating film rather than specific resistivity. Model X382A employs three resistive films - two mounted in line (within the waveguide extensions) and a third rotatable axially in the center section.

With all three films in line there is zero attenuation. Rotating the center film increases attenuation proportional to the

Figure 1. Cutaway showing relation of fixed and rotating films.

NEW DESICN: -hp-xs32A WAVEGUIDE ATtenuator

cosine squared of the angle of rotation. (See Figure 1) Attenuation is independent of frequency and other external factors.
The instrument is carefully designed and ruggedly manufactured to retain exact calibration through years of service. VSWR is less than 1.15 and power may be fed to either end.

SPECIFICATIONS

Frequency Range: 8,200 to $12,400 \mathrm{mc}$
Waveguide Size: $1^{\prime \prime} x^{1 / 22^{\prime \prime}}$. RG-52/U, UG-39/U flanges
Calibrated Range: 0 to 50 db
Attenuation (Zero Setting): Less than 1 db
VSWR: Less than 1.15 throughout attenuation and frequency range
Accuracy: $\pm 2 \%$ of db reading. (Includes calibration and frequency errors)
Size: $16^{\prime \prime}$ long, $6^{\prime \prime}$ high, $41 / 2^{\prime \prime}$ deep. Wt. 5 lbs . Shipping wt. 10 lbs .
Price: $\$ 250.00$ f.o.b. factory
Data subject to change without notice.

HEWLETT-PACKARD COMPANY

2708 A PAGEMILLROAD - PALO ALTO, CALIFORNIA, U.S.A. SALES AND ENGINEERING REPRESENTATIVES IN PRINCIPAL CITIES

You know he's always on the job

Come hell or high water, there are some people who simply won't be denied the privilege of doing their duty. It's just a matter of basic character, disciplined by daily diligence . . . and, as much as anything else, a pride in maintaining a record that has been so painstakingly built.

This is the kind of duty that Bristol Brass men understand so well. They, too, have a name for "always being on the job"... and they won't stand for the smallest nick in that name . . if determination, brains and resourcefulness
can help it. And they have plenty of all three. Try Bristol Brass service on your own sheet, rod and wire needs. You may encounter two new experiences ... in quality, as well as in service.

The Bristol Brass Corporation, makers of Brass since 1850 in Bristol, Conn. Offices or warehouses in Boston, Chicago, Cleveland, Dayton, Detroit, Los Angeles, Milwaukee, New York, Philadelphia, Pittsburgh, Providence, Rochester.

"Brubto-Faphain" nueurs Brassatits Best

NOW 3 CBS-HYTRON TEST ADAPTERS. By popular demand. Three sizes now available at these net prices: 7 -Pin Miniature, $\$ 1.45 ; 8$-Pin Octal, $\$ 2.25$; 9-Pin Miniature, $\$ 1.75$. Take advantage of e-a-s-y "topside" testing. Order your Test Adapters today from your CBS-Hytron jobber.

CBS - HYTRON Main Office: Danvers, Massachusetts
A Division of Columbia Broadcasting System, Inc.

RECEIVING... TRANSMITTING... SPECIAL-PURPOSE AND TV PICTURE TUBES • GERMANIUM DIODES AND TRANSISTORS

New line of G-E voltage stabilizers features flexibility

G-E STABILIZER LINE has output ratings from 15- to 5000-va.

Now, to help you iron out voltage ups and downs, General Electric offers a new line of standard automatic voltage stabilizers that offers greater design flexibility at no extra cost. These compact, lightweight units can be a key feature in your design of sensitive electronic equipment where precision per formance depends on accurate voltage stabilization.

Output ratings of $1000,2000,3000$ and 5000 volt-amperes are available, with 115 and 230 volts on both input and output, to give you a wide variety of operating combinations. Fluctuations between 95 and 130 , or 190 and 260 volts are corrected to a stable 115 or 230 volts within ± 1 per cent - in less than two cycles. Single-core construction completely isolates input circuit from output circuit. For more information see Bulletin GEA-5754.

Miniature selenium rectifiers resist severe operating conditions

Two types of totally enclosed casings are available: Textolite* tubes for normal operating conditions; hermetically sealed, metalclad casings to meet severe government specifications.
These small-size selenium cell assemblies have long life, high reverse resistance, good regulation and low heat rise. Their ambient temperature range is broad-from -55 C to +100 C . Lead mounting is standard, but they may also be bracketmounted.

This new G-E line of rectifiers may be used for blocking, electronic computer, signal, magnetic amplifier, communication or control circuits; for operating small relays, solenoids, precipitators. Cell sizes range from $3 / 32 \mathrm{in}$. to $15 / 32 \mathrm{in}$. diameter, d-c current ratings 0.050 milliamperes to 25 milliamperes. For further information, write for Bulletin GEA-5935.

FOR COMPACTNESS, washers between cells have been eliminated

DIGEST
 TIMELY HIGHLIGHTS ON G-E COMPONENTS

Switchettes are versatile, have high current rating

A wide range of design problems can be solved by G-E general-purpose switchettes. They are corrosion-proof, vibration-resistant, small, lightweight. Efficient at sea level or at 50,000 feet, in ambient temperatures from 200 F to -70 F . Ratings up to 230 volts, 25 amp . a-c; 250 volts, 25 amp . d-c. See Bulletin GEC-796.

Inductrols-for automatic or manual voltage regulation

Compact design of G-E inductrols lets you fit them into any location. They offer micrometer-fine control, autotransformer efficiency. Handoperated and automatically operated models are available for indoor service 600 v and below on circuits 3 to 520 kva. Bulletin GEC-795 covers single-phase inductrols; GEA-5824, 3 -phase models.

New iron weighs only $81 / 2 \mathrm{oz}$.

The new $120-\mathrm{v}, 60-\mathrm{w}$ G-E lightweight iron is designed for high-speed, pro-duction-line soldering on electronic, instrument, and communications equipment. Thin, $5 / 16$-inch diameter shank gets the $1 / 4$-inch tip into places a regular iron can't reach. Balanced design allows the soldering of more joints per minute. Long-lasting Ironclad tip needs no filing or dressing. See Bulletin GED-1583.

©OMPLETE LINE includes 11 sizes

G-E cast-permafi* transformers designed to meet MIL-T-27 specs

The small, light design of General Electric's new line of cast-permafil transformers makes possible greater flexibility in many electronic designs. Sealing these solventless-resin-type transformers for life has eliminated the need for metal enclosures and fungus-proof coatings. Construction is simple-terminals are anchored directly in the tough, solid, shatter-resistant permafil mixture to cut size and weight by 20 per cent. Machined and punched parts have been kept at a minimum for lower cost.
Cast-permafil transformers have an expected life of 1000 hours or more at 130 C ultimate. The complete line of 11 sizes is available in various terminal arrangements, and is designed to meet MIL-T-27 (Grade 1) performance requirements. For more information, write General Electric Co., Sect. C667-25, Schenectady 5, N. Y.

Components	Fractional-hp motors Rectifiers
Meters, Instruments	Timers
Dynamotors	indicoting lights
Capacitors	Control switches
Transformers	Senerators
Pulse-forming networks	Selsyns
Delay lines	Relays
Reactors	Amplidynes
Thyrite*	Anplistats
Motor-generator sets	Terminal boards
Inductrols	Push buttons
Resistors	Photovoltaic cells
Voltage stabilizers	Glass bushings
*Rog. Trade mark of Genercl Electric Co.	

Development and Production Equipment

Soldering irons
Resistance-welding control
Current-limited highpotential tester
Insulction testers
Vacuum-tube voltmator Photoelectric recorders. Demagnetizers

EQUIPMENT FOR ELECTRONICS MANUFACTURERS

General Electric Company, Section C667-25

Schenectady 5, Now York

Please send me the following bulletins: \checkmark for reference \times for immediate project
\square GEA-5824 Three-phase Inductrols \square GEA- 5935 Miniature Rectifiers
 \square GEC-796 Switchettes
\square GEA-5754 Voltage Stabilizers \square GED-1583 Soldering Iron

Name
Company
City
State

FOR PRODUCTS OF...

PURE RAW OR COMPOUNDED

uncut, cut, ground, compressed

MOULDING PLATE	
SEGMENT PLATE	_. sheets, tubes,
rings, discs,	

AND COMBINATIONS OF MICA WITH
. . papers, cloths, fiberglas, tapes, asbestos
hi-dielectric, tough, hard, elastic, flexible, resonant; resists puncture, moisture . . . is infusible and easy to fabricate

- For MICA, as for everything in the line of electrical insulation, MITCHELL-RAND IS HEADQUARTERS . . . here you will find the product best suited to the particular insulation purpose . . . and at $M-R$ you'll also find the service and counsel to make certain that the optimum electrical insulation is built into the equipment and components you manufacture.

For MICA as for anything else in the line of electrical insulation, call on MITCHELL-RAND, THE ELECTRICAL INSULATION HEADQUARTERS.

Write to MITCHELL-RAND for free samples and descriptive data.

INSULATION COMPANY, INCORPORATED
miraglas varnished tapes, cloths and sleevings - miraglas tapes, braided sleevings AND TYING CORDS - MIRAGLAS SILICONE TREATED CLOTHS, TAPES AND TUBINGS - MICA TAPES, CLOTHS AND MICA-FIBERGLAS COMBINATIONS - FIBRE, PHENOL FIBRE AND. MIRALITE POLYESTER RESIN SHEET INSULATING PAPERS-DURO, FISH, PRESSBOARD, ETC. . VARNISHED CAMBRIC TAPES, CLOTH AND SLOT INSULATIONS - COTTON TAPES AND SLEEVINGS. TWINES AND TIE TAPES - ASBESTOS TAPES, SLEEVINGS AND CLOTH, TRANSITE \& ASBESTOS EBONY. ARMATURE WEDGES AND banding wire . VARNISHED TUBINGS, HYGRADE, MIRAGLAS, HYGRADE VF, MIRAGLAS SILICONE - THERMOFLEX AND FLEXITE EXTRUDED PLASTIC TUBING - PERMACEL MASKING TAPES AND ELECTRICAL TAPES - BI-SEAL, BI-PRENE; FRICTION TAPES AND RUBBER SPLICE. compounds-transformer, cable filling, pothead, etc. - insulating varnishes of all types.

51 MURRAY ST. COrtlandt 7-9264 - NEW YORK 7, N.Y.

Here's your guide to Jeffers Electronics

It covers the complete standard line of Jeffers Electronics Division products:
R.F. CHOKE COILS

CAPACITORS
ELECTRONIC COMPONENTS
It tells everything you'll want to know about these products-their specifications, their characteristics, their applications.

To get your copy immediately, simply mail the coupon below.

JEFFERS ELECTRONICS DIVISION SPEER CARBON COMPANY Du Bois, Pennsylvania

Other Divisions:
Speer Resistor
International Graphite \& Electrode

OTHER JEFFERS PRODUCTS

ceramic capacitors - disc capacitors
high voltage condensers - capristors OTHER SPEER PRODUCTS FOR ELECTRONICS INDUSTRY anodes - contacts - resistors - iron cores discs - brushes • molded notehed* coil forms battery carbon - graphite plates and rods *Patented

PERMANENT MAGNETS

ETEWHATI

Sill Stewart-wanner
DIARIER

permanent magnet assembly

IND\|ANA

PERMANENT MAGNETS
tailored
†o meet
your
specifications

- Top engineering
- 35,000 Permanent magnet applications
- Magnets from all types of material

These are the assets at your disposal which permit INDIANA to tailor their permanent magnets to your design specifications.

Just as Stewart-Warner did, so you, too, can place your confidence in INDIANA for quality permanent magnets . . . for skill in manufacture for cost-cutting engineering aid. Rigorous quality control in every step of production is your assurance of exact magnetic and physical characteristics. For help with your problem, write INDIANA, today.

PERMANENT MAGNETS MAY DO IT BETTER

DESIGN SUMMARY

Equipment-Electric Tachometer, manufactured by Stewart-Warner Corp., Chicago.
Application-Permanent magnet assembly.
Problem-To design a permanent magnet which would produce sufficient torque and give added stability to this instrument.
Solution - By varying the analysis and heat treat ment, INDIANA engineers developed a special Cunife permanent magnet which provided the necessary torque and improved stability. Furthermore, this special Cunife magnet lent itself better to the limited space resulting from the new design.
WRITE FOR DESIGN MANUAL NO. 4-A6

to match its precision

 insideIBM business machines are known the world over for their precision. And they look the part, too.

But the modern lines which make these machines so attractive make their fabrication a challenge to Karp Metal Producls Co., Inc., one of IBM's sheet metal fabricators.

For only with its creative stalf of sheet metal craftsmen...its ability to tool complex jobs...its 88,000 squäre feet of most modern plant facilities is Karp able to match IBM's precision inside with flawless fabrication outside.

These same facilities can solve your cabinet, housing or enclosure problems, too. Karp engineers can often show you the way to design modifications which cut initial costs and speed assembly; they can also show you how to take advantage of Karp's vast assortment of available dies.

Whether your needs are as large as IBM's or more moderate, you'll find it profitable to do business with Karp.

KARP METAL PRODUCTS CO., 215 63rd ST., BROOKLYN 20, N.Y., Division of $\mathrm{H} \& B$ American Machine Company

MOST COMPLETE FACILITIES FOR LARGE AND SMALL RUNS OF

GENERAL ELECTAIC

SANGAMO ELECTRIC COMPANY Mestern Eleciric Vestinghouse

MELPAR, INC.

Moisture Proof
PLASTIC COATED TOROIDS

In addition to standard windings, we offer toroids encased in tough thermosetting plastic. Plastic encasement provides extra protection from humidity, mechanical shock. Available in all sizes of coils.

Steel Cased

TOROIDS AND FILTERS

Existing designs cover a wide range of types and frequencies. Filters meet military specifications and can be offered in miniaturized versions. A typical filter is shown. C. A. C. filter design engineers will convert your specifications to production deliveries with minimum delay

Why is itt?...
From a modest beginning five years ago, Communication Accessories Company has grown to one of the largest exclusive toroid coil winding producers in the U. S. today. Why? We like to think that this growth is due to the thorough, careful handling we apply to each coil . . . and because of the particular skill of our people. Whatever the reason, we'll continue-doing the best we know how-thankful for the trust that important companies have placed in us.

SORBNSIN

retquincy

AND CONTROLS
 REGULATES

WIDER OUTPUT VOLTAGE RANGE MODELS

Nobatron-RANGERS* are designed to meet the demand for power supplies similar to the Nobatron but with wider output voltage ranges.

Nobatron-RANGERS are continuously adjustable over extended output ranges, yet provide regulation accuracies of $\pm 0.25 \%$ against line and/or load. Other specifications are identical to those of the standard Nobatrons.

Three models are available, the SR-30, SR100, SR-2. Capacities, respectively, are 3-30 VDC at 3-30 amperes, 3-135 VDC at $1-10$ amperes, and $100-300$ VDC at $1-10$ amperes.

Investigate NOW the cost of a NOBATRON installation versus the overall cost of less salisfactory DC sources.

OTHER SORENSEN ISOTRONIC PRODUCTS INCLUDE:

B-NOBATRONS (high-voltage, law-current DC Supplies) FREQUENCY CHANGERS VARIABLE AUTO TRANSFORMERS saturable core reactors ac line regulators

FLARED

to fit the neck!

New I-T-E 90° deflection yoke offers outstanding advantages in television reception

Here's an outstanding electronic component development of vital interest to all television tube and receiver manufacturers. I-T-E now offers the television industry a new, high-sensitivity, "flared" deflection yoke, expertly designed to produce large pictures with excellent resolution.

LOOK AT THESE OUTSTANDING ADVANTAGES:

Up to 90° deflection without neck shadow. Yoke design allows $1 / 8^{\prime \prime}$ pullback on neck of tube.

2 High sensitivity. Because of advanced design and highquality ferrite core material, yoke deflects full picture on screen at low line voltages.

Full focusing. Image can be focused sharply-horizontally and vertically-over entire face of screen. Excellent side and corner resolution.

4 Shrink-proof. Insulation shield between horizontal and vertical coils enables yoke to withstand normal operating voltages and temperatures-without shrinking.

Minimum "pin cushion" distortion. Advanced I-T-E coil design reduces bowing effect to a minimum.

6 Close quality control-maintained through all phases of manufacture-assures deflection yokes of the highest quality.

Mounted I-T-E 90° deflection yoke. New flare design lets yoke ride well up on kinescope neckallows $1 / \mathrm{s}^{\prime \prime}$ pullback for fine adjustment without causing neck shadow.

Thorough electrical pretesting.
Before shipment, all yokes are-
a. Tested for shorted turns.
b. Tested to assure meeting of customers' inductance and resistance specifications. (Tolerances as low as $\pm 5 \%$.)
c. Tested for induced voltage.
d. Tested for insulation breakdown between horizontal and vertical coils, between horizontal coils and core, and between vertical coils and core.
e. Tested and adjusted for minimum cross-talk.
f. Visual-tested to meet customers' requirements.

70 DEFLECTION YOKES

are also produced in quantity to I-T-E highquality standards. Form-wound, they are precision-built to provide the same advantages as the 90° yokes - but with narrower deflecting angle.

All I-T-E deflection yokes are designed for clearest image reproduction. Modern manufacturing techniques, advanced design, and critical standards enable I-T-E to produce high-quality deflection yokes-at competitive prices.

I-TEE quality focus coils-small, compact, lightweight-precision-built to commercial or government specifications

Hermetically-sealed electromagnet focus coil
for government use, to meet Govt. Spec. MIL-T-27. A precision focus coil, uniformly wound of finest copper wire. Coil sealed in nitrogen to assure minimum temperature rise.

I-T-E quality focus coils are designed for use with tubes up to 90° deflection. Hermeticallysealed and non-hermeticallysealed types are available with either permanent magnet, permanent magnet and electromagnet, or electromagnet construction. Finest magnets are used; uniform magnetic field assures minimum spot distortion. Coils retain proper focusing over a wide range of line voltage variations.

Permanent magnet focus coil
for government use, to meet Govt. Spec. MIL-T-27. Finest uniform magnets and locked controls guarantee uniform focus even after severe shock and vibration. Outer coating of special-type varnish guards against fungus growth.
Extensive production facilities and broad engineering background enable $1-\mathrm{T}-\mathrm{E}$ to manufacture quality focus coils to meet any specification-government or commercial.

FOR DETAILS about any of these products-or about any special types of precision wire-wound components-write to Resistor Division, I-T-E Circuit Breaker Co., 1924 Hamilton St., Philadelphia 30, Pa.

Fabricated by Micro-Matic Screw Co., Inc., Linden, N.J..

IT'S MADE OF

BERYLCO

BERYLLIUM COPPER

This critical connector, used in new, improved radar devices, is made of Berylco beryllium copper for its many recognized advantages. Beryllium copper offers the designer desirable combinations of properties such as strength, spring action and formability in high degree.
As in all radar and electronic equipment, the material used for connectors, plugs, adapters, etc., musthave currentcarrying capacity. Berylco certainly has that. It must also retoin firm contact pressure for a long time; it must be noncorrosive; it must be indifferent to wide temperature variations; it must not be subject to fatigue.

Berylco offers all these qualities to a superlative degree. For this particular part, which must be turned and threaded to close rolerance, machinability is important. In this respect beryllium copper offers special advantages through its age-hardening feature. This means that parts can be readily machined in a relatively soft condition and then hardened to give the desired combination of final properties.
You will undoubtedly want to include Berylco beryllium copper in your plans for the future if you have not already done so. Take advantage of the know-how of the world's largest
producer. Call or write any of the offices bellow for sample material or engineering help.

VALUAELI ENGINEERING INFORMATION

 on Berylco beryllium copper is contained in a series of technical bulletins, published monthly. Ta receive your copy regularly, write on your business letterhead.> TOMORROW'S PRODUCTS ARE
> PLANNED TODAY - WITH
> BERYLCO BERYLLIUM COPPER

New York - Springfield, Mass. - Rochester, N. Y. - Philadelphia - Cleveland • Dayton • Detroit - Chicago - Minneapolis • Seattle • San Francisco • Los Angeles

Representatives in principal world-frade cenfers

Potiter \& brumilil leans (i) IN RELAY DEVELOPMENT \& PRODUCTION

Extra Rugged, Compact $400-$ Cycle AC Relay Offered in New AF Series

New AF Series, recently developed by Potter \& Brumfield, will operate on any frequency in the general vicinity of 400 cycles with 15 grams or higher contact pressure at approximately 2 VA input per movable pole. Advanced construction withstands better than $10-\mathrm{G}$ vibration with any contact arrangement up to 2 Form C (DPDT) contacts.

New unit is available open as illustrated or hermetically sealed with 3-stud mounting and plug-in or solder-terminal glassinsulated header. Coils wound on molded bakelite bobbins with breakdown of 500 V . RMS minimum between all current carrying elements and to ground. Contacts rated 5 amps, 115 volts, 60 -cycle, noninductive load.

Ultra-Sensitive SS Series Feature Dual Coils; 10-G Vibration Resistance

Brand new SS Series, DC Super-Sensitive Relays, provide operation with $10-\mathrm{G}$ vibration resistance on less than 10 MW . New unit utilizes dual coils normaliy con-
nected in series. Balanced nected in series. Balanced armature with point bearings pivoted in adjustable mounts reduce friction to a minimum. Pure silver contacts rated 2 A at $115-\mathrm{V}$. AC or $28-\mathrm{V}$. DC, non-inductive load. Contact arrange-
ment is 1 Form C (SPDT) ment is 1 Form C (SPDT). Available with total coil resistance up to 60,000 ohms and sensitivity range from 1 MW to 2 W . Supplied open as illustrated or hermetically sealed with glass-insulated plug-in or
solder-terminal header.

Design Engineer Gets More Help to Meet Tough Relay Requirements

 Shown on this page are some of Potter \& Brumfield's recent relay developments. Constant creation of new relay structures offers today's design engineer more help in his search forminiaturization, ruggedization, acclimatization, comoinations, greater sensitivity and longer life.

MH Series Offers Maximum Conversion Efficiency; Many Contact Combinations, DC or AC

Smallest and most versatile of the telephone type relays, MH Series offers maximum coil power, a wide selection of contact combinations and high contact capacity. Available open or hermetically sealed with maximum of 12 contact springs for
either DC or 60 cycle AC either DC or 60 cycle AC operation.

MJ Series Feature Longer, More Flexible Contact Arms; Lower Spring Load Rate, DC or AC

Newly developed MJ miniature telephone type relay features longer and more flexible contact arms which result in a lower spring load rate. This structure permits wider contact gap, more overtravel, improvement in sensitivity, faster action and longer life. MJ supplied open or hermetically sealed, with maximum of 12 contact springs, for either
DC or 60 cycle AC operation.

Coils for both relays furnished up to a maximum resistance of 22,000 ohms for either current or volt-
age actlation. Insulation resistance better than 1000 megohms and breakewn

$$
\text { ___ } 500 \text { V. RMS. }
$$

Hermetic Sealing or Dust Covering Available for All Individual Relays or Multiple Groups; Keep Out Dust, Fumes, Moisture, Etc.

- New "L" Type deep-drawn steel enclosure accommodates six MH relays or one standard LT telephone type relay, not shown on this page. Mounting is by 4 studs. Available with max mum of 24 soider terminals. Dim. $23 / 16^{\prime \prime} \times 411 / 16^{\prime \prime} \times 3 \frac{5}{32^{\prime \prime}}$ high.
- New "D" Type deepdrawn steel enclosure is designed for sealing the AF Series 400 -Cycle AC
 modate the MH or MJ relays shown above. Supplied with standard octal 7,9 or 14 pin miniature plug or up to 14 hot-tinned solder terminals. Dim. $15 / 16^{\prime \prime} \times 129 / 32^{\prime \prime}$

[^1]

design

Years of experience and close contact with the military and the electrical and electronic industries enables P\&B to design and develop relays and similar assemblies to exact requirements. Current MIL specifications are maintained in complete files. All necessary laboratory and testing instruments at your service any time. Certified test reports on request.

production

Three large plants, including over 50,000 square feet of floor spaee, fully equipped with complete tooling, coil winding, plastic molding, heat treating, glass metalizing, welding, hermetic sealing and machine tools for every operation. Orderly, efficient plant layouts assure steady, precise assembly line production ... single-shift capacity 10,000 relays per day!

engineering
Extensive research, laboratory and model shop facilities always available. Laboratory equipment includes all types necessary for design, development and type-testing of industrial control and electronic components. Altitude, heat and cold, salt-spray, shock, vibration and other tests completed quickly at reasonable cost.

Potter \& Brumficid will solve your relay

write
Potter \& Brumfield TODAY
about your problems or requirements on relays or similar electro-mechanical assemblies. P\&B competent, well-trained personnel and modern plant facilities offer you the finest service in the relay industry. Samples, recommendations and quotations promply forwarded on request.

Potter \& Prumficld

PRINCETON, INDIANA

Export: 13 E. 40th St., New York, N. Y.
Sales Offices in Principal U. S. and Canadian Cities

P\&B CATALOGUED RELAYS AVAILABLE AT
YOUR LOCAL ELECTRONICS PARTS DISTRIBUTOR

The RCA WO-88A 5 -inch and Wi-56a 7 -inch oscilloscopes have the facilities you need for precise qualitative analysis and accurate quantitative mecasurem ents ... thanks to advanced engineering design
For instance, one of the cutstanding ₹eatures of these instruments is their remarkally true square wave response ... obtained by adequate band wdta, negligible phase shift, fast rise tine, frequercy-compensited attenuators, and a complete zbsence of peaking circuis.
Equally important are the peak-to-peak voltage-measure-mentfeatures-ottained through the uee of voltage-calibrated attenuators, front-panel calibrating-woltage terminals, calibrated graph screens, and good amplifier linearity.
Other quality features common to botb designs include . . push-pull direct-coupled amplifie:s . . extra fast retrace ... shielded CRT gun . . p us anc minas sync . . . line. frequency sweep with phasing . . . and \& set of matched probes and cables including a high :mpecance probe having an input resistance of 0 mezohms and an input capacitance of less than 10 uu?!
Before selecting a 'scope for your special needs, be sure to get the full detaits on the WO.88A and WO-56A from your RCA Test Equipment Distributor . . . or write RCA, Commercial Engineering, Section 42FX. Harrison, Mew Jersey.

GATES RADIO COMPANY, QUINCY, ILLINOIS, U.S. A. MANUFACTURING ENGINEERS SINCE 1922
2700 Polk Avenue, Houston, Texas Warner Building, Washington, D. C. O International Division, 13 E. 40 , St., New York City Canacian Marconi Company, Montreal, Quebec

... so states INSTRUMENT RESISTORS COMPANY, of Union, New Jersey, manufacturers of IN-RES-CO quality-built resistors for every electrical and electronic application

IN-RES-CO resistors are wound to meet the most critical requirements without excessive cost; standard inductive and noninductive units are available in resistance ranges from 0.01 ohm to several megohms - with power ratings from a fraction of a watt to 10 watts. Included, are types especially suited to counter excessive humidity, fungus, space limitations, and temperature rise.

Says Instrument Resistors Company: "For 23 years, we have devoted our facilities exclusively to the development and manufacture of quality resistance components. The fact that today, with such a wealth of experience to our credit, we specify Nichrome, Karma, and D-H Manganin wire for wind-
ings, constitutes the strongest endorsement we can offer of these Driver-Harris products."

Nichrome*, Karma*, and D.H Manganin deliver top-level performance-their characteristic electrical and phrysical properties remaining unchanged even under exceptionally exacting operating conditions. They are ready to go to work for you, too-as are more than $\mathbf{8 0}$ other Driver-Harris alloys. Profit by consulting with us. We shall be glad to make recommendations based on your particular needs . . . and are confident we can meet your resistance requirements with $\mathrm{D}-\mathrm{H}$ alloys that will assure the best possible results.

Driver-Harris Company

HARRISON, NEW JERSEY

BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco
In Canada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, Ontario.

TO MEET YOUR

Service

NEEDS PROMPTLY

SUPERIOR ELECTRIC VOLTAGE CONTROL EQUIPMENT IS AVAILABLE THROUGH AN ELECTRICAL DISTRIBUTOR CONVENIENTLY LOCATED NEAR YOU

There is an Electrical Distributor in your territory who carries comprehensive stocks of SUPERIOR ELECTRIC Voltage Control Equipment. He is a specialist carefully selected for his knowledge of your requirements and his ability to give you prompt, courteous service. He is as near as your telephone. Call him for your voltage control requirements.

TO MEET YOUR
 Voltage Control NEEDS BETTER

SUPERIOR ELECTRIC VOLTAGE CONTROL EQUIPMENT IS AVAILABLE IN A COMPLETE LINE FOR THE MAJORITY OF APPLICATIONS

SUPERIOR ELECTRIC designs, engineers and manufactures Voltage Control Equipment specifically to meet today's demands. A wide range of standard types in numerous capacities and ratings are offered. In addition, The Superior Electric Company - thoroughly experienced in the field of voltage control - offers to work with you in developing special equipment to meet your special needs exactly.

REGULARLY

 BY OVER 1,600 LEADING DISTRIBUTORS THROUGHOUT THE COUNTRY

TME SUPERIOR ELECTRIC co. BRISTOL, CONMECTICut

THE PRODUCTION UNIT
IS LIKE THE SAMPLE . . . AND EACH PRODUGTION UNIT IS LIKE THE OTHER . . . ELECTRIGALLY AND

MECHANICALLY!

Electronic Components Division, STACKPOLE CARBON COMPANY, St. Marys, Pa.

For Increased Tube Reliability Try VAGUUM-GAST METALS

NEW HIGH VACUUM ROTARY PUMP

... Ends Water Vapor Trouble Maintains Fast Pump Down Time

- Eliminates oil reclaiming units
- Provides greater capacity under $1 \mathbf{m m ~ H g}$
- Requires up to $\mathbf{8 0 \%}$ less oil charge
- Capacities from $11 / 4 \mathrm{cfm}$ to 400 cfm
- Pressures down to $\mathbf{1 0 - 4} \mathbf{~ m m ~ H g}$

For the first time, a high vacuum rotary pump that can pump condensable vapors is available to U.S. A. industry.
In the new NRC Rotary Gas Ballast Pump water vapor is prevented from condensing and contaminating the oil... so, unlike other type pumps, fast pump down time is maintained. There is a full line of NRC pumps - vane, piston-type and 2 -stage.

Send today for the new bulletin that gives a full explanation of the Gas Ballast principle and complete data on the construction and operation of the NRC Rotary Gas Ballast Pump

National Research Corporation EQUIPMENT DIVISION

Spectrivm

NEW AND LIPRROVED DESIGN

Specifications

Attenuation (Spectrum Amplitude): $3-70 \mathrm{db}$ uncal.
Frequency range: $8430 \mathrm{Mcs}-9660 \mathrm{Mcs}$.
Frequency sweep: $10-30 \mathrm{cps}$ continuous.
Frequency swing (FM sawtooth) of analyzer r-f oscillator: 40 - 50 Mcs .
Maximum error: ± 4 Mcs.
Maximum dispersion of spectrum: 1.5 Mcs per inch.
Overall inf bandwidth at half power point: 50 Kcs .
Sensitivity to CW:
a. Spectrum amplified position: 80 db below 1 W per inch deflection on oscilloscope screen.
b. Spectrum position: 55 db below 1 W per inch deflection on oscilloscope screen.
Weight: 86 pounds (complete in armored case with all accessories).

Partial list of satisfied users of the G \& M TS.148/UP include:
Bell Aircraft Corp. (Lab.)
California Instifute of Technology (Lab.)
Consolidated Vultee Aircraft Corp. (Lab.)
Douglas Aircraft, Inc. (Lab.)
Fairchild Engine \& Airplane Corp, (Guided Missiles Div.)
French Naval Base (Toulon)
Gilfillan Bros. (Electronics)
Royal Canadian Air Force (Lab.)
Westinghouse Electric Corp. (Lab.)

We also manufacture...

1-96-A VHF Bench Test Equipment. IE-17-A SCR-536 Test Equipment. IE-19-A VHF Portable Test Equipment. MB-2 Marker Beacon Test Equipment, Portable.
TS-E6 slide Back Voltmeter for E-3, E-4, E-5, etc. Firing Syspems).
TS-E7 Moving Target SImulator (for E-3, E-4, E-5, etc. Firing 5ystems).
TS-170-C ILS Poriable Test Equipment.

TS-173-C ILS Portable Test Equipment. TS-239/UP Wide Band Ostilloscope. UPM-1 Radar Test Set.
Special items to order, such as:
1 KW Transmitters and Jamming Equipment.
5 KW Transmitters and Jamming Equipment.
Direction Finders.
Communication Receivers, efc.

OUTSTANDIMG PERFORMANCE
mORE RUCGED CONSTRUCIION

SHIPPING AND CARRYING CASE
Armared foot locker with foam rubber cusbions inserted.

WRITE OR WIRE FOR PRICES AND DELIVERY SCHEDULES

"Where Hi-Quality is Fundamental"

G \& M EQUIPMENT CO., INC.
7309-7327 VARNA AVENUE NORTH HOLLYWOOD, CALIFORNIA

Phanes-
POplar 5-4185 STanley 7-1624
STanley 7-2212
STanley 7-1086

TELETYPE: N.H. 7063 WESTERN UNION: ZDV CABLE: GMEINC

He Has The Answers

 To ALL Your Electrical Insulation Problems!
abe Your Reptreser
 [ISIIIIIJ $\underset{\text { incorporated }}{ }$

READY FOR SHIPMENT
... COMPLETE STOCKS OF ALL THESE PRODUCTS:

Varnished Cambric Products
Insulating Paper
Varnished Tubing
Saturated Sleeving
Insulating Varnish
Vulcanized Fibre
Phonolite
Fibre Wedges
Wood Wedges
Built-up Mica Products
Asbestos Insulation
Woven Glass Insulation
Pressure Sensitive Tape
Cotton Tape
Cotton Sieving
Commutators Built To Specifications
Teflon
Silicone Resins
Silicone Insulation

No matter what your question, if it concerns the selection and application of electrical insulating materials, an IWI Representative is ready to help you. Backed by the experience of many years acquired in helping electrical manufacturers choose and use the right product in the right way, your IWI Representative offers you a single source from whom you can get the dependable technical help you want.

There's no need to ask, or wait for, help from the many different suppliers of every type of insulating materials you use -just ask your IWI Representative -he has the answers for you-NOW!

Remember IWI For Everything In Electrical Insulation
IMMEDIATE DELIVERY from a fully stocked warehouse near you
QUALITY PRODUCTS, nationally advertised and used by leading electrical manufacturers everywhere.

Get What You Want
When You Want Vt From
a national NeTwork of warehouses serving electrical manufacturers
INSULATION AND MIRES INCORPORATED
3435 Chouteau Avenue - St. Louis 3, Missouri
Write For The Address Of The Warehouse Nearest Your Plant

for Laboratory and Production Line Service

Bulletin 609
Manual A.C Starters Button operated. Overload protection for mo tors up to $5 \mathrm{hp}, 220 \vee \&$ $71 / 2 \mathrm{hp}, 440-550$ volts.

Bulletin 709 Magnetic Starters 8 Sizes up to 300 hp , 220 v \& $600 \mathrm{hp}, 440.550 \mathrm{v}$.

Bulletin 848 Dashpot Timers
Adjustable from 2 to 30 seconds.

Hum-free Latch Relays For quiet applications.

Oiltight Push Buttons

Oiltight Pilot Lights

Bul. 849 Pneumatic Timers Adi. $1 / 6$ sec to 3 minules

Oiltight Selector 5 witches

Oiltight Key-type Buttons

Send for ILLUSTRATED BULLETINS
electronic and plant engineers who design testing and automatic produc.
tion equipment. Write for bulletins. Allen Bradley Co., 110 W . Greenfield Ave., Milwaukee 4, Wis.

ALLEN-BRADLEY

 RADIO \& TELEVISION COMPONENTS

IRVINGTON extra-flexible Silicone Rubber-Coated Fiberglas* Tubing

The extreme flexibility of Irvington's Silicone Rubber-Coated Fiber-glas-at both high and low temperatures-was an important factor in its acceptance by the electrical industry when this new Class " H " insulation was introduced almost two years ago.
Originally, Irvington Silicone Rubber-Coated Fiberglas Tubing was supplied only in white. Because of its rapidly growing use, Irvington has now taken steps to supply this tubing in a range of colors also-

Look to

IRVINGTON

for Insulation Leadership insulating varnishes VARNISHED CAMBRIC VARNISHED PAPER VARNISHED FIBERGLAS insulating tubing Class "H" insulation

Immediate delivery can be made on white tubing for wire sizes from \#24 to \#0-prices and deliveries will be quoted on request on colored tubing.
For preliminary technical data, just mail the coupon below.
*T. M. Reg U. S. Pat. Off. by Owens-Corning Fiberglas Corp.

Send this convenient coupon now

Hrwingtorn

11 Argyle Terrace, Irvington 11, New Jersey
Plants: Irvington, N. J.; Monrovia, Calif.; Hamilton, Ontario, Canada

Irvington Varnish \& Insulator Company 11 Argyle Terrace, Irvington 11, New Jersey
Gentlemen:
Please send me technical data sheet on Silicone Rubber Coated Fiberglas Tubing.
Name. Title
Company.
Street.
City

Zone State..................
 EL 6 /53

tronger signals at greater distances are BUILT-IN this new narrow-angle
antenna. Ideal for serving long stretches of highway, rail or pipe lines, it is equally effective for point-to-point communications, or back-to-back with other services. Gains up to 12 DB can be achieved by stacking. Vertically work for youl, Andrew Corner reflector antennas are available in all mobile communications bands. Put them to work for you to INCREASE and IMPROVE your radio coverage. For more information, write us today.

VITROHM

Ward Leonard manufactures its own ceramic cores, Vitrohm enamel and terminals. Even the resistance wire is drawn to our own specifications. Every operation required to build a Vitrohm resistor is carefully and constantly checked and controlled by our Standards Department. That's why Vitrohm resistors assure you complete uniformity, accuracy and reliability, even under the most adverse service conditions.

Ward Leonard has the largest selection of stock

stock resistors

Vitrohm stock resistors range from 5 to 200 watts with resistance values from 1 to 250,000 ohms. Made-to-order Vitrohm's are available from 5 to 550 watts with values from 0.04 to $1,750,000$ ohms.

FIXED VITROHM

Used for voltage dropping and current limiting.

ADJUSTOHM

Gives circuit adjustability for voltage dividing or regulating purposes.

STRIPOHM

For compact aviation, communication and navigation equipment.

AXIOнм

Used in electronic equipment requiring miniature power resistors.

NON-INDUCTIVE

For low inductance and distributed capacitance in high frequency circuits.

PLAQOHM

Used in compact, high frequency electronic equipment.

DISCOHM

A miniature resistor for low inductance values and distributed capacitance.

RESISTORS

best buy

resistor types and sizes ever offered by any manu－ facturer．Also available to meet customer＇s exact specification is a complete stock of components ready for immediate assembly into made－to－order resistors．Our controlled component manufacture and inspection，plus a wider selection of types， make Ward Leonard your best buy in resistors．

For full information on Vitrohm resistors，write for Catalog No． 15 to Ward Leonard Electric Co．， 31 South Street，Mount Vernon，N．Y．

nadevionorder resis⿳⺈⿴囗十一日寸胃ors
（these plus all the stock resistor types）

RIBFLEX

Used in circuits where high wattage must be dis－ sipated in small space．

FERRULE TERMINAL

For rapid interchange－ ability of resistance values or resistor replacement．

SCREW BASE

With an Edison screw base for mounting to pro－ vide rapid means of changing resistance．

BRACKET TERMINAL

Has leads silver brazed to brackets for easy inter－ change or renewal of unit．

Special form resistors to meet unusual requirements

18.3 .4

are
 IN
 PRODUCTION at Hermaseal

Let Hermaseal help you with your transistor mounting and protection problems. Our pioncering in the development and mass production of bases and sealed containers for solid state devices has reached the point where we are now able to supply them in quantity to additional customers. We have solved many of the problems connected with mounting and heat and humidity protection of germanium diodes, point-contact transistors, and
junction transistors for a wide variety of applications.

Hermaseal production and development include smaller, closer tolerance hermetic seals with vastly improved performance characteristics. In addition we are working with new glasses and metal alloys.

Our development and production experience are at your service. Send specifications and sketches of your transistor applications to Hermaseal.

The greatly increased protection made possible by the development of our high-temperature gray enamel is the most important improvement of these resistors, but it is not all. True, this enamel is thermo-shock-proof and crazeless; but in addition

THESE RESISTORS OFFER . . .

- Stronger core with higher resistance to vibration and shock.
- Finer resistance wirc-made to H-H specifications, especially adapted to these resistors. More uniformly wound, so that failures under stress are eliminated.
- Special alloy terminals more securely fastened to the ceramic body by spot-welding-highly resistant to corrosion.
- All wire connections are protected by a positive non-corrosive bonding.
The fixed, the ferrule and the flat types are especially designed for and manufacturd in accordance with JAN-R-26A specifications.

HARDWICK, HINDLE, INC.

Rheostats and Resistors
Subsidiary of
THE NATIONAL LOCK WASHER COMPANY Fstablished 1886

U. S. A.
of quality

> for more than a quarter of a century

Hardwick, Hindle, Inc.
40 Hermon St., Ncwark 5, N. J.
Please send additional information about your new resistors and rheostats.

Name
Title
Company
Address \qquad

Composite Contacts Reduce Fabrication Costs . . . Provide Better Performance

General Plate Composite Contacts are an economical solution to your contact problems.

General Plate Composite Contact Materials make it possible to manufacture complete contact assemblies to close tolerances by single blanking and forming operations as compared to other methods whereby the contacts and supporting members are fabricated separately and then assembled by brazing, welding or staking methods.

The junction between the precious metal and the base metal is homogeneous and free of voids resulting in a high rate of heat transfer. The rapid dissipation of heat away from the contact surface materially reduces electrical erosion. In many applications, General Plate Composite Contact Materials provide increased contact life even with a reduction in the thickness of the precious metal as compared to the thickness of the precious metal used in separate contacts.

By letting General Plate fabricate your complete contact assemblies, you will save money, time and trouble . . . needless equipment cost and problems of scrap disposal are eliminated . . . contacts
and/or contact assemblies made to your exact spec. ifications are shipped to you ready for installation.

If you fabricate your own parts, General Plate Composite Contact Materials will still save you money and allow you to make contact assemblies superior to those produced by other methods.

The long experience, diverse facilities and manufacturing skill of General Plate will benefit you in the form of service, quality and savings.

Write for complete information and Catalog PR700.

You can profit by using General Plate Composite Mefals!

METALS \& CONTROLS CORPORATION GENERAL PLATE DIVISION
 36 forest street, attleboro, mass.

ANNOUNCING

THE AMPEX 350 TAPE RECORDER

- A NEW MODEL by the leader in tape recording
Ever since the first AMPEX (the Model 200) set a milestone in progress by making recorded sound "come to life," the broadcasting and recording industries have rightly expected new AMPEX models to set the pace.
- A NEW SLANT
on operating convenience
With introduction of the AMPEX 350, a new 30° slant on the top plate puts the reels, editing knobs and all controls within easier reach of any operator - tall or short, standing or sitting. Tape editing is faster and less tedious. Servicing is simplified by pivoting of the top plate and sliding out of the internal assemblies.
- A NEW STANDARD of reliability
In precision of timing, response to controls and freedom from breakdowns and repairs, AMPEX Tape Recorders have consistently led the industry. For utmost reliability, this new Model 350 has a three motor tape transport mechanism (previously used in the AMPEX 300, but now available in this lower priced machine).

- A NEW REASON

to change to the best
Ultra high fidelity recording is now priced within reach of discriminating users in every field radio stations, home high fidelity systems, schools, industry and professional music. And because the AMPEX 350 is built to last, it will cost the least per hour, per week and per year.

AMPEX MODEL 350

Tape speeds $-7 \frac{1}{2} \& 15 \mathrm{in} / \mathrm{sec}$. or $33 / 4 \& 71 / 2$ in/sec.
Frequency response
$15 \mathrm{in} / \mathrm{sec}$. 一 $\pm 2 \mathrm{db}$ from 30 to 15,000 cycles
$71 / 2 \mathrm{in} / \mathrm{sec}$. $\pm 2 \mathrm{db}$ from 30 to 10,000 cycles
$\pm 4 \mathrm{db}$ from 30 to 15,000 cycles
$33 / 4 \mathrm{in} / \mathrm{sec} . - \pm 2 \mathrm{db}$ from 50 to 7,500 cycles

If you plan for fomorrow, buy AMPEX today
For further details write today to Dept. 1228 A

Surpass all requirements of JAN-R-29

HERMETICALLY

 SEALED:Insures dependable operation under most severe moisture conditions.
-

STEATITE
PROTECTIVE
CASING:
Glazed surface prevents high voltage leakage.

WINDINGS:
"Certified"' low temperature coefficient resistance alloys properly "aged" to provide long term stability.

REPLACEABLE
INTERNAL
SECTIONS:
Eliminate complete loss of unit if damaged.
-

ferrule

TERMINALS:
Heavy nickel plated brass. Corrosive resistant. Fit standard fuse clips.

Stone's Coil Bobbins are strong, light-weight forms, made to accurate tolerances for winding coils used in :

TIMER MOTORS RELAYS SIGNAL SYSTEMS TV SPEAKERS ELECTRICAL NOVELTIES SOLENOIDS ELECTRICAL TOYS

Stonized spiral phenolic coil forms, lug collars, bushings, and printed covers are used as component parts of many products of the electronics and electrical industries, among them being:

> R. F., I. F., AND OSCILLATOR, AND OTHER COILS FOR RADIO AND TV PERMEABILITY TUNERS TUBULAR CONDENSERS TRANSFORMER COILS ELECTRIC MOTORS SELENIUM RECTIFIERS RELAYS
> TIME CONTROL ASSEMBLIES

SALES OFFICES
BRIDGEPORT 3-2575 O. E. Pfannkuch \& Co., 952 Main Street
CHICAGO........ Tuxedo 9.6920 Joseph L. Pits, 1643 N. Nagle Avenue
\section*{CLEVELAND}
...... Main 1-8410
C. E. White \& Company,
Bulkley Building
LOS ANGELES . . Pleasant 2.0791 E. H. Southwell Co.,
5957 So. Western Avenue
NEWARK Humboldt $5-9000$ L. K. Detwiler, 443 Broad St., Room 205
PHILADELPHIA. . . Walnut 2-1182 I. R. Blair, 401 N. Broad St., Room 740
ST. LOUIS. Parkview 3274 E. B. Henderson Co., 8147 Delmar Blvd.
TORONTO Murry 1106 Electric Insulation \& Fibre Co., Ltd., Mendota Road, Etobicoke

Stone's Electrical Insulating tubes dire used as core or shaft insulating, rivet and screw
insulators, spacer bushings, or liner and protector sleeves, in the manufacture of:
frac. h. P. M日tors - relays - SOLENOID SWITCHES © TRANSFORMERS fluorescent lamp starters - commutators electric blankets ELECTRIC cord sets - indicator lights voltage regulators e electric measuring equipment - incandescent lamps electrictrain sets

You CAN Save Money and STILL Get Quality!

ANY OF the hundreds of America's leading manufacturers who are Stone's customers know this to be true.

They have found that Stone's 126-year-old heritage has paid off for them. This rich industrial background has enabled Stone to perfect more accurate methods of manufacture and to improve its mass-production techniques with the result that genuinely superior products are produced at low cost.

Stone specializes in smalldiameter, spiral-wound insulating tubing from $3 / 64^{\prime \prime}$ to $1^{\prime \prime}$ ID. Larger sizes are available, of course. All Stone tubes are cus-
tom made, yet mass produced, and can be furnished in hidielectric kraft, fish paper, and plastic films in various walli thicknesses and lengths. They can also be formed, notched, punched, printed, dipped or impregnated with a variety of waxes and resins.

We suggest that you get in touch with our nearest representative or write directly to us. In either case, you will find an organization ready and able to serve you with unsurpassed service ... the kind that has made us one of the world's largest small-diameter paper tube manufacturers.

STONE PAPER TUBE COMPANY
 INCORPORATED

900-922 Franklin Street, N. E., Washington 17. D. C.

Announcing the STANDARD ELECTRONIC TACHOMETER

for $\mathrm{P} \cdot \mathrm{R} \cdot \mathrm{E} \cdot \mathrm{C} \cdot \mathrm{I} \cdot \mathrm{S} \cdot \mathrm{E} \cdot \mathrm{L} \cdot \mathrm{Y}$

 measuring speed and frequency

EASIER TO READ ... MORE RELIABLE ... UNIT PLUG-IN CONSTRUCTION

OUTSTANDING FEATURES

- ACCURATE . . . Repeat accuracy $1 / 2$ of 1% of full scale reading. Overall accuracy (inclusive of setting), 2%.

High accuracy timer, designed to provide an adjustable time delay between the closing of a control circuit and the subsequent closing or opening of a load circuit.

- EASY TO SET . . . Micrometer adjusting knob insures extremely precise setting, yet can be set rapidly. Separate progress pointer indicates unexpired time.
- EASY MOUNTING . . . Convenient one-hole, metertype mounting. Designed to blend well with your machine.
- POSITIVE CLUTCH . . . Serrated face-plate clutch insures positive engagement. No friction element to slip or wear.
- TOTALLY ENCLOSED SWITCH . . . Quick-make, quickbreak, snap-type. Handles 10 amps. non-inductive at 110 volts A.C.
- EXTRA STRENGTH MOTOR . . . High torque Cramer motor provides extra reserve strength for adverse operating conditions.

the R.W. CRAMER CO., Inc. Box 3, Centerbrook, Conn.

SPECIALISTS IN TIME CONTROL

Interval Timers - Time Delay Relays - Time Totalizers - Cycle Timers - Running Time Meters - Pulse Timers - Hermetically Sealed Military Timers - Synchronous Timing Motors - Reset Timers Duplex Cycle Timers - Percentage Timers - Clutch Type Motors -Multi-Contact Timers - Chart Drive Motors - Intervalometers

SEND FOR COMPIETE INFORMATION ABOUT CRAMER TIME DELAY RELAYS

R. W. CRAMER CO., BOX 3، CENTERBROOK, CONN.

\square Please send complete information about your Time Delay Relays.
\square I am also interested in your bulletin on Synchronous Timing Motors.
Name:
Title:
Company:
Address:
City \& State:

ROTOR SO LIGHT

...it floats on water!

Telechron Synchronous Timing Motors

Rotor unit of $\mathrm{H}-3$ motor with cover removed

Model H-3-for radio timers, process timers, and time switches

Hard, special-formula steel. Yet the rotor floats. It's so light, mere surface tension holds it up. Imagine what an advantage like this can mean to you when you specify Telechron Synchronous Timing Motors for your equipment.

There's little inertia to overcome. So Telechron motors start almost instantly-reach full speed in less than 3 cycles ($1 / 20$ th sec.). Low-weight rotor virtually floats in the magnetic field. Rotor shaft rides on a film of oil-no metal-to-metal contact-giving longer life, and assuring true synchronous operation.
These advantages are yours in all models of Telechron Synchronous Timing Motors-no matter what the application. Let us help you select the mudel that will best give you the performance you are looking for. Write for complete catalog and information on our Application Engineering Service. Telechron Department, General Electric Company, 46 Homer Ave., Ashland, Mass.

Telechron

MARKOF TIMING LEADERSHIP

HIGH TEMPERATURE magnet wires

If your problem is the design of reliable miniaturized electrical equipment, investigate the size and weight savings possible with Ceroc Magnet Wires.

Ceroc Magnet Wires operate at temperatures well above the $180^{\circ} \mathrm{C}$ limit for Class H insulation, because they have a base insulation of a thin, flexible ceramic material. No other wire uses this patented construction!

For operation at $250^{\circ} \mathrm{C}$, Ceroc ST (Single Teflon) and Ceroc T (Double Teflon) have a tetrafluoroethylene overlay. Both have been used successfully up to $350^{\circ} \mathrm{C}$ in short-time military applications. Ceroc 200 for $200^{\circ} \mathrm{C}$ application has a silicone coating on the ceramic to facilitate winding.

Not only does the construction of Ceroc Magnet Wires permit very high current densities, but it also results in better cross-over characteristics in windings than those obtainable with all-plastic insulated wires.

For engineering data on Ceroc Magnet Wires, write on your business letterhead to the Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.
vide you with complete application engineering service and assistance for optimum results in the design and manufacture of components using Ceroc High-Temperafure Magnet Wires.

AMP is also nationally recognized leader in the field of solderless terminals, simplified wiring devices and, automatic wire termination.
Write for our "Quality Control' brochure.

PERMANENT MAGNETS and ASSEMBLIES for Magnetrons and Traveling Wave Tubes

The group of magnets illustrated above, weighing from a fraction of a pound up to 75 pounds, are indicative of the wide range of Arnold production in this field. We can supply these permanent magnets in any size or shape jou may need, with die-cast or sand-cast aluminum jackets, Celastic covers, etc. Complete assemblies may be supplied with Permendur, steel or aluminum bases, inserts and keepers as specified magnetized and stabilized as desired. Let Arnold bandle your magnetron and traveling wave tube permanent magnet requirements.

Made to your Specifications
. . ANY SIZE, SHAPE

OR COATING REQUIRED

* Weill welcome your inquiries

makes Adlake Mercury Relays more dependable than conventional types?

DEPENDABILITY is the sum of many things... and adlake's dependability is built on engineering skill, exhaustive testing, and quality construction features like these:
Positive leak-proof sealing-assured by the use of properly selected metals and glass components with properly matched thermal expansion characteristics.
Arc-resisting ceramics-ceramics with great temperature-resistance are used to reduce any destructive effect caused by the arc.
Liquid, mercury-to-mercury contacts-completely eliminates failures caused by low contact pressure, contact burning, pitting and sticking-and the inherent high surface tension of mercury imparts an ideal snap action to the contacts.
Yes-as thousands of enthusiastic users in every branch of industry know-adlake means dependability every way! Write for your free copy of the adLake Relay Catalog today... The Adams \& Westlake Company, 1171 N . Michigan, Elkhart, Indiana. In Canada write: Powerlite Devices, Limited, of Toronto.

Every ADLAKE Relay is tested and guaranteed-to meet

specifications!

ru Adams \& Westlake couranr
 Established 1857 - ELKHART, JNDIANA - New York • Chicago
 Manufacturers of ADLAKE Hermetically Sealed Mercury Relays

DEPRECIATION

And Its Crucial Economic Role

The sixth annual McGraw-Hill survey of Business' Plans for New Plants and Equipment, just completed, reveals some remarkable facts about the role of depreciation in our economy. To most people, depreciation is a technical term, used by accountants to discuss a dull subject. But it really is a simple matter: It is the amount of money set aside each year by a company to replace plant and equipment that is wearing out. And here are some facts from this survey* which show how depreciation can make the difference between prosperity and recession in the United States:

1. In 1953, about half of all the money spent on new manufacturing plants and equipment will come from depreciation reserves. For the future, manufacturing companies are relying even more heavily on this source of money. In the years 1954-56, they count on using their depreciation funds to pay for almost twothirds of the new plants and equipment now planned.
2. The amounts of money made available by depreciation allowances vary greatly from

[^2]industry to industry. Some industries, such as those producing steel, chemicals and petroleum products, will have relatively large amounts of cash available from their depreciation reserves. In considerable measure, this is because the government is allowing them to accumulate such reserves at an accelerated rate as an encouragement to build facilities required for national defense. But most of the companies engaged in the production of textiles, processed foods and many kinds of machinery have had little chance to benefit by this provision for accelerated depreciation. Hence, they have much less money available from depreciation reserves.
3. There is a definite shortage of investment funds in the industries that have relatively low depreciation allowances. Taken together, the coal mining, textile, food processing, machinery and other metal-fabricating industries plan to spend about $\$ 4.7$ billion for new plant and equipment this year. But they report that they would spend $\$ 1.5$ billion more per year during the period 1954-56 if sufficient funds were available.
4. Eighty-five per cent of the manufacturing companies covered by the survey reported that they plan to invest all their depreciation funds to keep equipment up-to-date and to provide capacity for new products and new markets. These companies could let their depreciation funds pile up as idle cash. But the intention is to spend most of them for capital equipment.

Hence, there is a direct relationship between the amount of depreciation funds available and the level of capital investment. And it is upon the latter that the level of general prosperity decisively depends. One-third of all industrial workers are engaged in producing or installing such equipment.

This fact that the level of depreciation allowances has a major bearing on the level of capital investment should not surprise anyone. In several foreign countries where these allowances have been increased, investment has boomed. The two nations with the highest ratios of investment to national income are Canada and Norway. Both countries adopted flexible depreciation policies after World War II. In Sweden and The Netherlands also, flexible depreciation allowances have contributed to rapid industrial expansion. Finally, the tremendous investment brought about by our own rapid amortization program shows dramatically the importance of depreciation in stimulating capital expenditures.

Obsolete Tax Laws

In spite of this record, the fact remains that our laws and the business procedures that govern depreciation allowances - in particular the laws and rulings that govern the deduction of depreciation from taxable corporate income -are still based on antique and obsolete accounting concepts which take no account of depreciation's dynamic role in our economy. The internal revenue code still requires most companies to depreciate their equipment over a long period, even though these small annual allowances cannot possibly pay for the investment that is necessary to keep a plant up-todate under today's rapidly changing technology, with its production of new and improved machinery.

The only allowance made by the government for rapid depreciation is that which is authorized for certain types of plants during the defense emergency. Under this policy most companies are unable to use accelerated depreciation for tax purposes. And as defense projects are completed, the number of new authorizations is dropping. We may lose the chance to utilize fully this powerful tool for sustaining investment because, under our
ramshackle emergency tax structure, accelerated depreciation is available only to a minority of firms on a temporary basis.

New Policy Needed

A sensible, up-to-date depreciation policy for tax purposes is long overdue. Either the Treasury must modernize the internal revenue code on its own initiative, or Congress must take the lead by writing into permanent law a flexible depreciation policy applicable to all companies.

Treasury experts now have before them a number of proposals to allow faster depreciation for the average firm. The U.S. Chamber of Commerce has suggested that companies be allowed to deduct from taxable income 25 per cent of the cost of new equipment in the first year, with the remaining cost to be deductible over the life of the facilities. The Machinery and Allied Products Institute has long sponsored a formula that would allow full deduction in two-thirds of the estimated life of the property. In Congress, Chairman Reed of the Joint Committee on Internal Revenue Taxation has stated that we need a more flexible depreciation policy. Senator Frear of Delaware has introduced a bill that would let a business make its own choice on how fast to depreciate its equipment.

It will take time and study to determine which of these various proposals best fits the needs of the economy without sacrificing unduly the revenue needs of the government. If we are to have a new depreciation policy, designed for a long period ahead, it must be carefully worked out. But this much is clear right now: The development of a flexible depreciation policy on the part of the federal tax authorities is one of the most important steps that can be taken to sustain prosperity. When we talk about depreciation, we are talking about the money that pays for almost twothirds of the new manufacturing facilities now scheduled for construction. We are talking about the new investment and the new jobs on which our continued prosperity depends.

McGraw-Hill Publishing Company, Inc.

Elevator Mileage Recorders give accurate figures on vertical miles . . . so that it can be plainly seen ... in advance...when it's time to replace cables, overhaul cars, motors, and what have you . . . including your life.

Yes, the V-R wheelmark monogram protects millions of people daily, from the depths of the sea to the stratosphere. Of course, not all V-R Products and services are available nowadays
... but if your work counts importantly in defense, then you can count on VeederRoot to help you, as soon as rush commitments permit.

VEEDER-ROOT INCORPORATED
"The Name That Counts" HARTFORD 2, CONM.

Chicago 6, Ill. . New York 19 • Greenville, S. C.
Montreal 2, Canada • Dundee, Scotland Offices and agents in principal cities
"Cunts Everything on Earth"

A New Approach in Economical Side-Hared Filters

The use no the 25 KC carier is a major adrance in the design of side band fillers. Primarilh it establishes a better ratio belwent lee carries frequency ard ine cis off trequences which, together with the aid of lagnenious circuily and minidatrized molyDdenemm permalloy loroidal co es, obvidites the necessily for quarti cystals. The end result is a tremendous saving in size and weight, anducing fillers which are a fraction of the size of the former caystal filters. Typical dimensions are $1 \mathrm{t}^{\prime \prime}$: $5^{\prime \prime} \times 2 \mathrm{~g}^{\prime \prime}$ and weight libs.
In offerirg these adrantages BURMELL \& COMFAMY has taken not one jut five steps forward by offering single sidet band filters which art: 1) LESS EXPEWSIVE
2) RUCH SMALLER
3) MUCH LIGHTER
4) MORE RUGGED
5) MORE AYALLABLE

YDNKERS 2 , NEW YORK
chic sporiss munill

Tr ETPED Communemo Burnall is somvication

It addition to the carrier, laver side taad and upper side band fiters illustrated for 3.5 KC pass bands, there is arailable a low pass filtei for the demodu'alion ciresit. There is also arailable for wilder band oparalion side band fillers havine, a 6 KE pass band, with the same dimensicass and weight.

By addine this group of filters to our requrdar series of multiplex illiers we can, with prise, -siate that BURNELL \& COMFANY has gone a long war toward assisting to commurica-- tions industry to develop high speed com anynications resulting from mure efficient operation asd greater freedom from Interference,

If you are an engineer in 'communicatizns', you will be interested in our brosture describing the SURNEL single side band fillers in greaier defail.

> Tape Width
> *No. of tracks
> Reel Size
> Reel Capacity
> Tape Speed
> Start \& Stop Time
> Control function can be accomplished easily.

New photo-electric proportional servo tension controls assure uniform tape tension over the recording head at all speeds. Independent reel drives, controlled by the servos, assure freedom from tape breakage or spilling.

Do you have a problem in efficient and economical data handling? Check the performance specifications in the column at the left and, for complete information on how to fit the Potter Magnetic-Tape Handler into your program, write, now, to Dept6C.

ASSOCIATED DATA HANDLING COMPONENTS

Complete Data Handling Systems or individual plug-in components are available. Recording and playback amplifiers, electronic counters with transfer gates, shift registers, and other associated data reduction components can be supplied for special data handling problems. datanding

SPECIFICATIONS

Here is a new high-speed Magnetic Tape Handler for every data recording application. Exclusive for every data recording application. Exclusive
features provide maximum versatiliy, complete dependability, ease of operation, and simplicity of maintenance, and do it at a price thousands of dollars below anything now available.

Unique in every respect, this outstanding Potter precision instrument provides 5 millisecond start and stop, forward or reverse, from external signals. Record, playback, or compare-every desirable

THE
DIGITAL
MAGNETIC-TAPE HANDLER
A PRECISION RECORDER
at a reasonable price!
SPECIFY IT FOR:
START-STOP RECORDING DATA REDUCTION TELEMETERING SORTING COLLATING LIST PROCESSING NAB Standard, $10 \frac{1}{2} 2^{\prime \prime}$ 2400 ft .
Dual-speed, 15 and 30 inches $/ \mathrm{sec}$. 5 millisecond, either direction.
Manual, or remote pulses, 15 volts positive.
*Greater number of tracks available on special order.

POTTER INSTRUMENT COMPANY

New Waldes Truarc GRIP Ring requires no groove, holds fast by friction, can be used over and over again

WALDES KOHINOOR, INC., LONG ISLAND CITY 1. NEW YORK

Waldes Kohinoor, Inc.,
E 065 47-16 Austel Place, L.I.C. I, N. Y.
\square Please send me sample Grip-Rings (please specify shaft size
\square Please send me the complete Waldes Truarc catalog.
(PLEASE PRINT)
Name
Title
Company
Business Address
City \qquad

CLARE RELAYS will meet most exacting small-space requirements

CLARE TYPE K RELAY

First small size, lightweight telephone type relay. Famous for operating speed and resistance to vibration.

- Clare pioneered the small-relay field with the Type K relay. Since that time it has heen the mainstey of design engineers who must have a superior relay to operate in extremely small space.

The Clare Type K not only has the advantages of small size and light weight but it is capable of exceedingly fast opcration, gives adequate contact pressure and is highly resistant to shock and vibration. Its long life and all-around dependability have enabled this relay to meet many complex engineering requirements.

In order to meet eustomers' speeifications which the Type K would not quite fill, Clare engineers have developed three other small, light weight relays. All retain the basic operating and physical characteristies of the Type K. Two of them, the Type KX and the Type R, have the famous Clare reed armature suspension of special alloy. This has long been recognized as one of the subtler reasons for the superior performance of the Clare 'Type K relay.

The Type KX adds greater operating range and sensitivity by use of a slightly longer coil which can be safely wound to 8000 ohms resistance. The Type R adds still greater operating range and sensitivity by use of a coil not only longer but of greater diameter. The Type \mathbf{N} relay is designed for operation on very low power. It employs a close-coupled magnetic circuit, gencrous use of magnetic iron and highly efficient coil design. This permits high sensitivity while retaining high contact pressure (minimun 30 grams) and adequate contact gap (minimum $0.0015^{\prime \prime}$).

TYPE KX—Adds greater operating range and sensitivity with slightly longer coil.

TYPE N-Operates on less than 50 milliwatis with 10,000 Ohm coil, 1 form C contact and standard adjustment.

HERMETICALIY

SEALED RELAYS
Type N Relay hermetically sealed in steeled container... o fecture available with all Clare relays.

All these relays are available enclosed in hermetically sealed gas-filled containers which increase their life, reliability and usefulness under extreme conditions of altitude, temperature, moisture, fungi, dust and dirt.

Clare sales engineers are located near you. For complete information call the nearest Clare office or contact: C. P. Clare \& Co., 4719 West Sunnyside Avenue, Chicago 30, Illinois. In Canada: Canadian Line Materials Ltd., Toronto 13. Cable Address: clarelay.

Carboloy permanent magnets help eliminate parts, simplify

Latest television advance is G.E.'s new I-M-F pre-focused picture tube. It employs tiny, powerful Carboloy permanent magnets to help eliminate focusing dials and external assembly units . . . to cut costs, keep image in sharper focus always.
Here's how the tube is designed: A drastically smaller and simplified magnetic ion trap and magnetic focusing unit are now built inside the tube . . . replacing old-style external ion trap, focus coil and mechanical supports.

One Carboloy magnet - half the size of a pea, one-tenth the size of the magnet formerly used - now supplies ample, lasting field
energy for the new ion trap. Three slightly larger Carboloy magnets furnish the strong magnetic energy needed in the new focusing unit - a job that once required a bulky focus coil plus a complicated mounting device.

Thus, thanks to the magnets, the new tube is more simple in design, more compact. Three costly exterior units are done away with. The tube takes up less space, saves material, assembly expense and adjustment time . . . the set weighs less. Viewers get sharper pictures \ldots won't have to bother with a focusing dial. A typical case of product improvement with Carboloy permanent magnets.

vital to new TV tube design assembly and improve quality

RADIO, TV SPEAKERS use Carboloy permanent magnets to replace complex electromagnets. The powerful, never-failing energy of the magnets helps produce truer tone more dependably.

RADAR - The giant "seeing eyes" of America lean heavily on Carboloy permanent magnets - for magnetic energy that will never fail, for improved radar performance. This performance may be stepped up still more in the future. The new I-M-F Tube principle and Carboloy magnets promise to help identify "blips" more accurately.

16 OUTSTANDING ADVANTAGES OF CARBOLOY PERMANENT MAGNETS

- Cool - generate no heat
- Require no electrical energy
- Cost nothing to operate
- Eliminate coils, windings, wiring, etc.
- Need no mainfenance-no coils to burn out, no slip rings to clean or replace, etc.
- Simplify mechanical assemblies - exert strong tractive force for holding, lifting and separating devices that eliminates component parts, makes product design and fabrication simple
- Save space - great magnetic strength in small sizes
- Powerful - and power is constant
- Combine electrical and mechanical features - transform electrical energy into mechanical motion; mechanical motion into electrical energy
- No power failures
- Resist moisture - no coils io collect dampness
- Give uninterrupted operation
- Create savings - offen eliminate costly, power-supplying parts
- Simple - no operating parts
- Reduce weight, product size
- Supply a permanent source of energy

SEND COUPON FOR FREE MAGNET MANUAL AND CATALOG

"Carboloy" is the registered trademark of the Carboloy Department of General Electric Company
Carboloy Department of General Electric Company 11139 E. 8 Mile Ave., Detroit 32, Michigan
\square Rush me, at no cost, copies of Permanent Magnet Design Manual PM-101 and Standard Stock Catalog PM-100.
\square Have your magnet representative call on me.
NAME
POSITION
COMPANY
ADDRESS
ZONE
STATE \qquad

WESTON
 Ruggedized

have EXCIUSIVE

 zero correctorsConnection terminals molded into internal rubber increase current carrying eapacity.

Tough, flat plastic windows redüce glare and are really shock resistant.

No desirable instrument features were sacrificed in order to produce these truly ruggedized and effectively sealed instruments. With typical weston thoroughness, every feature has been retained including even the zero corrector. And true ruggedness has been achieved by new but thoroughly proved design concepts, such as shock-resistant spring backed jewels ... flat windows of tough, anti-static, and glare reducing plastic ... new high-strength tubular pointers, and a method of shock mounting and sealing that assures accurate indications under extremes of shock, vibration, temperatures, humidity, and downright abuse. Available in $21 / 2^{\prime \prime}$ and $31 / 2^{\prime \prime}$ D-C, R-F, A-C movable iron and rectifier types. WESTON Electrical Instrument Corporation, 614 Frelinghuysen Avenue, Newark 5, New Jersey.

Your bost Compression Type Headers
 A new series of super-rugged, practically

 indestructible headers made by an exclusive E-I process. Feature non-flexing solid metal blanks - no stampings. Many standord types ovoilable. Silicone treated and tin-dipped.for detoils, request

E-I Hermetically Sealed Terminals

A complete line of standard terminais that fill practically any need with mas: production economy. Strain-free glass for highest thermal and mechanical shock resistance.
for details, request
BULLETIN 949-A

Color Coded Terminals

Supplied whit glass inserts cotored in RMA code colors. Coloring is in the glass. No surface impoir insulating qualities.
for details, reques!

E-I Tubular End Seals

The ideal end closures for re sistors capacitors and othe ubular components. All com monly used sizes and types ar available as standard sfock tems for moximum econoty.

For details, request BULLETIN 952

Precision Pays

Precision has alwavs been a watchword at Ucinite . . precision in design and precision in manufacture. It pays off in the high quality and dependable performance of Ucinite-designed, Ucinite-made electrical components.
Connectors, switches, sockets . . . shock mounts, tube caps, stampings and moldings of many kinds can be manufactured in volume, assembled and wired to your specifications.

Our design staff has had wide experience in catering to the special needs, both civilian and military, of the electronics industry. Our plant is equipped both for large scale production of metal parts and for the assembly of metal to plastic and ceramic components.
Call your nearest Ucinite or United-Carr representative for full information, or write directly to us.

Specialisrs in

The point is:

In the huge Texas plant of Jefferson Chemical Company, Inc., at Port Neches, Texas, approximately 50,000 complex control analyses of hydrocarbon mixtures have been made on a single Consolidated Analytical Mass Spectrometer since 1947. These figures indicate the speed, accuracy, and trouble-free service that can be built into a sensitive analytical instrument. For year-in, year-
out operation this versatile control instrument offers decided advantages: the cost-per-analysis is only a fraction of the cost by any other method and the results are available in permanent graphic form in a fraction of time otherwise required. One operator and a Consolidated Mass Spectrometer will accomplish complete control over the most complicated chemical processes-in minutes.

Consolidated Engineering

300 North Sierra Madre Villa, Pasadena 15, California
Sales and Service through CEC INSTRUMENTS, INC.,
a subsidiary with offices in: Pasadena, Philadelphia,
New York, Chicago, Dallas

Mass Spectrometer

analytical
instruments
for science
and industry

The Consolidated Analytical Mass Spectrometer shown above is used extensively by leading refineries throughout the world for analytical research as well as process control. For complete information on this instrument, write for Bulletin CEC 1800-X10

...wth GLOBAR Ceamicic Resstors

What combination of resistor properties will help you solve your electrical or electronic resistance problem? Low temperature coefficient... or high? Low voltage coefficient... or extremely high? Normal dissipation capability.... or exceptional? Or should one or more of these properties be in between the extremes?

GLOBAR Brand Ceramic Resistors

are engineered to your specifications to give you the most favorable combination of properties to satisfy your circuit requirements. The combinations
possible cover a very wide range, as these typical uses indicate: Resistance where needed as a circuit element in television and radio receiver circuits, in hearing aids, printed circuits, radio transmitters, etc.; suppressing parasitic oscillations in electron tubes; compensating for temperatures in measuring instruments and coils; stabilizing voltages or speeds in machinery; arresting surges in electrical circuits; providing time delays; and many others.
Other advantages you gain in using globar Brand Ceramic Resistors

- For useful engineering data on globar Brand Ceramic Resistors, send for your copy of Bulletin R. Write Dept. E 87-36.
include: rugged ceramic body, long life, mechanical and chemical stability.
Whatever your requirements in resistors, whether for normal or difflcult circuits, it will pay you to investigate globar Brand Ceramic Resistors. Our engineers are ready to assist you without obligation. Just send complete circuit information, and tell us what you expect from the resistors you need.

GLOBAR

Ceramic Resistors by CARBORUNDUM

[^3]The Carborundum Company, Niagara Falls, New York

With linearities of $\pm 0.1 \%, \pm 0.05 \%$ and $\pm 0.025 \%$ (both independent and zero based ratings) and rotational tolerances of $+1^{\circ},-0^{\circ}$, new precision grades of Spiralpot Potentiometers are now available to fill high precision requirements. Designed specifically for high resolution and exceptional linearity applications such as servo control and computers, the Spiralpot can be obtained with shaft rotation up to 7200°. The inherent advantages of a true slide wire action, such as smootli operation, minimum noise and infinite resolution, are increased by design extras such as stainless steel shaft, ball bearings, positive mechanical stops, and a starting torque of less than .6 oz --in. to give a unit which has extremely long life of over one million cycles (20 mil lion revolutions in a ten-turn unit) and operational shaft speeds up to 500 rpm . These advantages add up to make the Spiralpot one of the biggest advances in precision potentiometer design.

Write for Bulletin 101 A

SPECIFICATIONS

RESISTANCE: 2 ohms $/ 360^{\circ}$, and from 50 ohms $/ 360^{\circ}$ shaft rotation to 250 ohms $/ 360^{\circ}$ shaft rotation. Standard resistance ranges for 3600° (10 -shaft turns) units: $500,1000,1500,2000,2500$ ohms.
POWER RAYING: 5.0 watts at ambient $=+25^{\circ} \mathrm{C}$.
LINEARITIES AVAILABLE: (Based on percent of terminal voltage)
$\pm 0.1 \%$ Normal (Independent) $\pm 0.05 \%$ Normal (Independent) $\pm 0.025 \%$ Normal (Independent)
$\pm 0.1 \%$ Zero Base $\pm 0.5 \%$ Zero Base ESOLUYION: Infinite.
MECHANICAL SHAFT ROTATION: For Standard Units ($=0.1 \%$ linea rity). $3600^{\circ}+3^{\circ},-0^{\circ}$.
For Precision Grade Units: $3600^{\circ}+1^{\circ}-0^{\circ}$ (Other linearities) TORQUE: Starting: less than 0.602 .-In. Running: less than 0.3 oz.-in.

LIFE: Will operate within specifications after one million cycles (20 million revolutions for a 10 -turn unit).
TEMPERATURE RAYING: Operating range from $-55^{\circ} \mathrm{C}$. to $+71^{\circ} \mathrm{C}$.
vOLTAGE BREAKDOWN: Will withstand 1000 v 60 cycle (rms) for 5 minutes. (At sea level).
WEIONTB 4.0 oz .

OTHER GIANNINI POTENTIOMETERS

$21 / 2^{\prime \prime}$ dia; $1 / 4$ " shaft; 1 to 6 sections, Aluminum Case; 360 rotation; $\pm 0.3 \%$ lin. 4 watts/sec; 2 K to 300 K ohms Vernier Screwdriver Phasing. Ball bearings.

$11 / \mathbf{s}^{\prime \prime}$ dia; $1 / 4^{\text {an }}$ shaft; 1106 sections, Aluminum Case; 360° rotation; $\pm 0.5 \%$ lin. 2 watis/sec; 5001070,000 ohms Ball bearings.

Straight line motion along axis Linear or functional output. 200 to 60,000 ohms. 5 sizes, $1^{\prime \prime}$ dio. from $2.33^{\prime \prime}$ to $6.54^{\prime \prime}$ long. Stroke $1 / 5^{\prime \prime}$ 10 $5^{\prime \prime}$.

$1.74^{\prime \prime}$ dia; $1 / 4^{\prime \prime}$ shaft; 360° rototion; $\pm 0.3 \%$ lin; 4 wotts; 2 K to 200 K ohms, Aluminum Case. Ball Bearings, 40 and 50 db log functions 20 K ohms.

Gicnnini

INSTRUMENT QUALITY

 POTENTIOMETERSG. M. GIANNINI \& CO. INC., PASADENA 1, CALIFORNIA-EAST ORANGE, NEW JERSEY

mell !
 COMPLETE
 miniature FREQUENCY STANDARD

A compact, complete, hermetically sealed frequency standard, pre-

ACTUAL SIZE
 senting these features:-

1. JAN-ized construction throughout.
2. SPACE-SAVING, $11 / 2^{\prime \prime}$ dia. $\times 41 / 2^{\prime \prime}$ high.
3. WEIGHT, approximately 10 ounces.
4. AVAILABLE in 400 and 500 cycles.
5. ACCURACY-.002\% (15° to $35^{\circ} \mathrm{C}$).
6. SHOCK-MOUNTED on Silicone rubber.
7. POWER REQUIRED, 6 V . at 300 ma . 70 to 200 V . at 1 to 5 ma .

WRITE FOR DESCRIPTIVE LITERATURE, SPECIFYING "TYPE 2007"

Also, manufacturers of frequency standards, multifrequency standards, chart-recording chronographs, firing-cycle timers, the Watch-Master Watch Rate Recorder and other high-precision frequency and timing instruments, controlled by our tuning-fork oscillators.

American Time Products, Inc. 580 Fifth Avenue

are Rated at 1000 Working Volts

Modern Engineering Requires This
 "HEAVY DUTY" CERAMIC CAPACITOR

The heavier ceramic dielectric element made by an entirely new process provides the necessary safety factor required for line to ground applications or any application where a steady high voltage condition may occur. Designed to withstand constant 1000 V.A.C. service.

It is wise to specify RMC "HEAVY DUTY" by-pass DISCAPS throughout the entire chassis because they cost no more than ordinary lighter constructed units.

Specify them too, for your own peace of mind, with the knowledge that they can "take it." And if you want proof - request samples.

A New Development from the RMC Technical Ceramic Laboratories

RADIO MATERIALS CORPORATION
GENERAL OFFICE: 3325 N. California Ave., Chicago 18, ill.
FACTORIES AT CHICAGO, ILL. AND ATTICA, IND. DISTRIBUTORS: Contact Jobber Sales C0.. 146 Broadway, Paterson I, N. J.

TAYIOR Insulation (Fish Paper)

is extremely tough . . . has high dielectric strength and excellent bending qualities . . . its hard surface resists abrasion from contact with rough spots in slots.

Want to make something of it?

Make it into armature slot insulation, armature end laminations, field coil insulation, metal box liners, washers, arc shields, formed slot wedges, formed specialties . . . or any other applications requiring excellent electrical characteristics. Color: gray.

Make it from sheets and rolls . . . or ribbon rolls for automatic machines.

Make it easy for yourself the next time you are buying insulation. Call your Taylor Engineer . . . he will be glad to help you select the Taylor Insulation that will best fit your needs. Also ask him for samples of our other grades of vulcanized fibre-Commercial, Bone, Super White, Abrasive and Built-Up -as well as Taylor Phenol, Silicone and Melamine Laminated' Plastics . . . see where they can fit into your design plans.

Taylor Fibre Co., Norristown, Pennsylvania-La Verne, California

portrait of an engineer...

Engineers are a happy lot, until faced with a moment like this:

A recording is completed. The disc is put on the playback table ... but it's full of "pops," "ticks" and "hisses".

This can easily happen in the life of any engineer, if he has not been discriminating in his selection of recording discs.

If this picture fits you . . . you are ready for a change in brand. And the wisest change is to Presto Green Label discs . . . because this label is your assurance of the smoothest lacquer surface available and top performance every time.

ENGINEERING BRAINS TEAM

WITH ELECTRONIC BRAINS

AT NORTH AMERICAN AVIATION

The combination of North American's imaginative scientists and engineers working with lightning-fast electronic "thinking" machines is an unbeatable one . . . for together they've set advanced standards for guided missile research, development, and design.

Computers like the one being checked above are used to predetermine the flight pattern of a given missile design by simulating its flight conditions, and to solve related problems. North American Aviation engineers also develop and use other electromechanical computers which become the brains of automatic guidance systems for missiles and for fire and flight control equipment.

Development of guidance systems for long-range missiles is just one example of the challenging elec-
tronic and electro-mechanical work being pioneered in North American's Missile and Control Equipment Operations. If you like theory, you will find an exciting career at North American in specialties such as operations analysis, advanced dynamics, kinematics, noise, error and information theory, systems engineering, statistical quality control, servo analysis, and other advanced fields.

If research, development, or design is your specialty, you'll find attractive opportunities in automatic guidance systems, fire and flight control systems, radar and airborne communications systems and other system developments.

Write today for complete information, giving us your education and experience.

NORTH AMERICAN AVIATION, INC.

COMPOUND Vacuum pumps

ONE pump casing . . . ONE motor and drive shaft . . . TWO pumping chambers connected in series - this is the basic design of the Kinney Compound Vacuum Pump. Built in four sizes - with 2, 5,15 , and 46 cu . ft. per min. displacements - the Kinney Compound Vacuum Pump fills an important place in high vacuum systems. Because the Compound Pump pulls to 0.2 micron or better, it often handles the complete vacuum job without diffusion pumps or mercury vapor pumps. Each pump retains better than 50% of its theoretical pumping speed right into the less-than-one-micron zone . . . assures fast pump down for most efficient utilization of processing time. Each pump provides the lowmaintenance, high-efficiency operating advantages that have made Kinney Vacuum Pumps the first
choice of Industry. They are easy to service . . . no special tools are required.

Experienced vacuum engineers, here in Boston and in our branch offices, will be glad to discuss the application of vacuum in your plant. KINNEY MANUFACTURING CO.- manufacturers of vacuum and liquid pumps. Boston, New York, Chicago, Detroit, Cleveland, Atlanta, Philadelphia, Pittsburgh, Los Angeles, Charleston (W. Va.), Houston, New Orleans, San Francisco, Seattle, and foreign countries.

KINNEY MANUFACTURING COMPANY
3565 Washington Street, Boston 30, Mass.
Send Bulletin V-51B describing complete line of Kinney Vacuum Pumps.

Name

Company
Street
City

each grip length serves a wide range of thicknesses - to speed assembly and simplify stock requirements

I_{n} In many ways, you save timie and money with Southco Screw Fasteners. In countless applications, the wide grip range is but one of many advantages. Tension is always uniform, never too tight or too loose. A turn of the screw locks or unlocks, instantly. Installation is easy, without special equipment. Tapped holes are eliminated, along with screws, bolts, lock nuts, lock washers, etc. Alignment is not critical because fasteners "float" in the outer panel. Skilled help is not required. Even if access plates or doors or frames become warped, Southco Fasteners continue to perform, easily and efficiently, for the life of the assembly.
You get all these advantages and more, when you use Southco Fasteners. For complete information write Southco Div., South Chester Corp., 1417 Finance Bldg., Philadelphia 2, Pa.
Important for military contractors! Prompt deliveries now possible because of recently expanded plant facilities.

WHEREVER TWO OR MORE PARTS ARE FASTENED TOGETHER; STANDARD AND SPECIAL DESIGNS FOR IMPROVED PERFORMANCE AND LOWER PRODUCTION COSTS

Whenever you turn on television you are using a little-seen, but essential, material called Synthane.

Synthane is a laminated plastic of multiple virtues, which recommend it for many jobs in television.
Synthane is an excellent insulator, laminable with metal, hence, a good base for space-reducing "printed" circuits. Synthane is notable for low power factor, low moisture absorption, and ease of fabrication, three properties desirable for radio and television insulation. Synthane
plays a supporting part in many behind-the-screen and behind-the-camera applications.
Synthane is also light in weight. strong. vibration absorbing, chemically resistant. high in dielectric strength, dimensionally stable, heat resistant to about $300^{\circ} \mathrm{F}$

There may be a place for Synthane in your product. To find out more about the possibilities of Synthane for your purpose, write for the complete Synthane Catalog. Synthane Corporation, 17 River Road, Oaks, Pennsylvania.

Synthane laminated plastics are pro. duced under heat and pressure from laminations of resin-impregnated mo. terials such as paper, fabric, glass cloth, astestos, etc. Synthane plastici are available in sheets, rads, tubes, and fabricaled or molded parts, Eacb of the many Synthane grades has a combination of useful properties.

Synthane-one of industry' unseen essentials

giant Supermagnets

Quinorgo Electrical linsulations are high dielec tric, heat-cesistant sheet materials made of purified asbestos for use on equipment up to $1 \cong 0 \mathrm{C}$ Available in tape and roll forms.

wit @uwiorgo dextricl insultion

Protecting coils in giant C-H Supermagnets is difficult because of the heat generated by the tightly packed pancake coils. This problem is complicated by the need to utilize every bit of space to gain maximum lifting power. After experimenting with many insulating materials, including coatings, Cutler-Hammer chose Quinorgo No. 3000 for Supermagnet strap insulation.
Quinorgo fully meets the exacting requirements of Cutler-Hammer - as well as those of other wellknown electrical manufacturers. Quinorgo is a moderate priced, high-temperature insulation, for
use alone or in "composites." Available in two types with slightly different impregnation characteristics. Both types combine high dielectric and mechanical strengths, with uniform texture and caliper. They maintain these properties under operating temperatures up to 130 C .

Quinorgo Electrical Insulations may lower your production costs and improve product performance. For more information write for the 32 -page booklet "Pyrolysis Protection Pays Well" (EL-40A) Johns-Manville, Box 60, New York 16, N. Y. In Canada, 199 Bay Street, Toronto 1, Ontario.

Cutler-Hammerts success with Quinorgo No. 3000 on giant Sapermagnets led the company to use this insulation as a component of the series wound Type " $M^{\text {" }}$ magnetic brakes which are so widely known throughout the industry.

The following styles of proven VAC-TITE compression seals are available:

1. Individual terminals and feedthroughs with a full range of hooked, hattened and pierced, furret and lug-type terminations for every application.
2. All-glass construction multiterminal headers featuring larger leakage paths and an absence of moisture pockets.
3. Individually glassed plates available in a multiplicity of standard designs and easily adapiable to special designs in a variety of shapes and sizes for every requirement.
-. Plugs for standard sockets in several mounting types . . . such as octal, 7 -pin miniature, noval as well as rectangular shapes.

Write for complete information on how HERMETIC engineers can apply "All-Glass" Compression Seals to your regular or special applications. Available, too, is HERMETIC's Brochure CS on Compression Seals, as well as a 32-page catalog on its standard line.

II $\left.\begin{aligned} & 1 \\ & 5\end{aligned} \right\rvert\,$ vacuum fightness is a requisite, HERMETIC's proven compression seals are guaranteed to be vacuum fight, as evidenced by Mass Spectrometer Test.
 for application under adverse design conditions, the massive compression construction resists destructive defection and permits direct mounting of components on the metal body.

 Jas A (Mae) lab USs r rear 1612 Virgin Lee C (Sally B) hlpı Lois L Mrs h3320 1 Luther (Myine) lab Major (D,C) lab U Mary r 17 Br zan Bu Patk $h \gg \mathrm{ds}$

-R. L. Polk, President, R. L. Polk E Co., publishers

He has your name and address!

"We have the names and addresses of forty million people who own automobiles," says R. L. Polk, "-and that's only one of the ways we might have you listed!
"We release up to $21 / 2$ million advertising mailings a day to these lists. But kits, catalogs and displays-always subject to last-minute changes-must reach the dealers first.
"That's when we call on Air Express!
"For one auto manufacturer, we recensly made Air Express shipments to 3,000 dealers, not once but three times, just before the new model announce-
ment date. Every one of those shipments had to be on time-and every one was!
"Only Air Express could have done it. Yet their rates are not only reasonable - in many weights and distances they are lower than other air carriers.
"We have made upwards of 35,000 Air Express shipments over the past four years, ranging in weight from a few pounds to more than a thousand. This top-speed, dependable low-cost service helps us give maximum service to our advertisers. Our use of Air Express will increase another 27% this year."

It pays to express yourself clearly. Say Air Express! Division of Railway Express Agency.

GETS THERE FIRST
riad U. S. Scbeduled Airlines

Do you have any of these problems?

1. Looking for thin, flexible insulating material that will not break down under extremely high temperatures \$SOMICA * Flexible Plate, Class B and Class H , built-up from continuous mica sheets, gives superior electrical and thermal insulation for coil wrappings and similar applications.

2. Need accurately punched mica stampings for filament, grid and plate supports? MICO produces mica stampings to extremely fine tolerances. Whenever you need precision-fabricated mica of the highest quality, call on MICO. We have 60 years of experience in this field.

3. Need a material with special mechanical, thermal and insulating properties? lAMICOID $^{(8)}-$ a laminated plastic made with various fillers-gives you the properties you need for antenna parts, coil forms, tube sockets, switch gear and relay parts, panels, motor and transformer parts, and dozens of other uses.

4. Looking for precision-made fabricafed parts? Let us solve your problems with parts fabricated from LAMICOID ${ }^{\circledR}$ - a thermosetting plastic-strong as metal, lighter than wood. We are fully equipped with the latest machinery and can provide you with the best possible service.

Whatever electrical insulation material you need-Class A to Class H - MIC() makes it best. We manulacture it, cut it to size, or fabricate it to your specification. Send us your blueprints or problems today.
*Yrade-mark

Schenectady 1, New York

Offices in Principal Cities

[^4]

Whatever the system label - teleprinter, telegraph, facsimile, felephoto, radio-telephone, voice-carrier telegraph, or multiplexing of any of these - dependability is today's most vital communications requisite.

And, no matter what the form of message-handling intelligence, the proof is that Frequency Shift is the most dependable method of transmission.
design and construction of Frecuency Shift equipment of the types lised below. Their dependable performance for U.S: and Allied Commerce, Governments and Armed Forces all over the world has earned for Nothern Radio a reputation for unquestioned leadership in communica*ions engineering and precision manufacture.

Frequency Shift Keyers Master Oscillators Diversity Receivers Frequency Shift Converters Multi-Channel Tone Systems
Tone Keyers
Demodulators
Radio Multiplex Systems
Monitors
Tone Filters
Line Amplifiers

NORTYEAERN RADHO COMPANY, inc 147 WEST 22 nd ST., NEW YORK 11, NEW YORK

Keep TABS on

Tested and Approved Beyond Specification

with-

CHETHR

Chester ENGINEERED plastic insulation, laboratory and field tested to more than meet specifications provides both easier working qualities and longer service life. These rugged plastic coatings offer maximum immunity to abrasion, weather, oil and most chemicals. Smooth and pliable, they pull through channels and conduit

easily and offer excellent appearance in open wiring. Chester single or multiconductor wires and cables are available for electrical, electronic, TV, radio, telephone and many other industries. Call or write for illustrated bulletins, today!

SHIELDED WIRES \& CABLES

INSTRUMENT WIRES

SPECIAL WIRES \& CABLES
TO SPECIFICATIONS
 tian to untom buill to specificalions in standord construe. fian to unusual insulated wiring proble a proctical salu.
CHESTER CABLE CORP
C H E S T E R

Need a DULAL Regulated Power Supply?

Get the G-E ST-9A with twin outputs and featuring . . . ELECTRONIC OVERLOAD PROTECTION plus BUILT-IN MODULATOR

NTo power supply on the market today can match this new G-E unit for generall laboratory purposes. Routine bench casualties are no problem for the ST-9A: the instruments cannot be harmed by short circuits on the regulated outputs. And-with the built-in modulator you can now observe hum and noise tolerances by actually duplicating them on the equipment. This saves you time by establishing final power supply design specifications quickly.

G-E POWER SUPPLY YPD-2
excellent for many laboratory applications. DC Voltage Output: $250-450$ volts, (positive or negative may be grounded to chassis). DC Current Output: $0-300$ milliamperes. AC Output: 6.3 volts 10 am peres unregulated. Regulation: Less than 1% of output voltage from minimum to maximum current. Ripple: Less than 5 mv peak to peak. Output mpedance: Approximately 2 ohms al 30 cycles, decreases with increasing frequency. Power Requirements. 105-125 volts, $50 / 60$ cycle, 350 watts maximum.

NAME. .

CITY

TYPE ST-9A ELECTRICAL SPECIFICATIONS

OUTPUT VOLTAGES

\#1 Regulated-Contínuously variable, $0-500$ volts, maximum current 100 ma
\#2 Regulated-Same as \#1
Parallel 1 and 2 -Continuously variable, $0-500$
volts, maximum current 150 ma
Unregulated-Approximately 650 volts no load, maximum current 200 ma
-75 Volts-VR tube regulation, $0-2 \mathrm{ma}$

- 150 Volts-VR tube regulation, 0.4 ma

Filament Supply -6.3 volts $a-c$ of 10 amps

GULATION

Better than $1 / 2 \%+1 / 2$ volt

RIPPLE AND NOISE

Less than 3.5 mv (10 mv peak-to-peak) on all regulated outputs

INSTRUMENTS

Milliameter $0-300 \mathrm{ma} \mathrm{d}-\mathrm{c}$; voltmeter $0-500$ volts $\mathrm{d}-\mathrm{c}$; voltage and current can be metered at \#1 and " 2 Regulated and Unregulated outputs; total current drawn from all outputs can be metered and it should not exceed 200 ma

OVERLOAD PROTECTION

3 amp fuse in the a-c line; $3 / 8$ amp fuse in the $d-c$ line; overload of any degree on the requlated outputs will harm neither the supply itself nor the instruments.

General Electric Company, Section 463
Electronics Park, Syracuse, N. Y.
Please send me a copy of your G-E POWER SUPPLY CATALOG (ECB-6A)

COMPANY.
ADDRESS.

For use in military electronic equipment, Mallory paper dielectric capacitors conform to Characteristic E of Specification JAN-C-25. The following types are included in the Mallory line.

$$
\begin{aligned}
& \text { CP-25, CP-26, CP-27, CP- } 28, \text { CP- } 29 \\
& \text { CP-53, CP-54, CP-55, CP-67, CP-69 }
\end{aligned}
$$

Into these military-type capacitors go the same engineering knowhow and production craftsmanship which have made Mallory capacitors the standard of quality in industrial and electronic fields. They are now in quantity production and your inquiry will receive prompt attention.
Look to Mallory for all your capacitor needs . . . whether for military or civilian application.

New Folder Describes

JAN-C-62 Capacitor Types
In addition to paper dielectric capacitors, Mallory proluces a full line of electrolytic capacitors conforming to JAN-C-62. Write for your copy of our new Technical Bulletin. It is an ideal reference for everyone who uses or specifies electrolytic capacitors.

Expect more... Get more from MAllior

Parts distributors in all major cities stock Mallory standard components for your convenience

CROSS
 TALK

- COLOR . . . Several manufacturers have publicly demonstrated experimental compatible-color-television receivers and, in the main, the results have been good. There will, no doubt, be more such showings prior to official NTSC recommendations to the FCC, political and competitive pressures being what they are.

Gun-jumping is understandable, and in some instances unavoidable. The important thing is to be sure that demonstrations are carefully planned and executed, and that the public gets a realistic picture of what lies ahead, and how far ahead it lies.

- TRANSISTORS . . . Industry circles were fascinated by statements recently released by two hearing-aid makers. One said transistors don't stand up. The other said they do.

Since both manufacturers are reputable, one conclusion is that transistors do or don't stand up, depending upon what kind you use and how they are hooked up and packaged. This conclusion is by no means novel, because no one claims that transistors are perfect. It will be a long time before they are, if indeed perfection is possible in any manmade thing.

Meanwhile, transistors will continue to find their way into products for which they are suitable at this stage of the art, with refinements that broaden their applica-
tion coming along at a rate likely to be considered rapid even in the electronics industry.

- NEW MARKET . . . Materials-handling-equipment manufacturers find themselves in a fast-growing business these days; industry in general is committed to a more or less fixed labor rate, is increasing the efficiency of production machinery as fast as it can and now looks elsewhere for further savings.

There is business in this movement for makers of radio transmitters and receivers. Just the other day we saw five two-way-radioequipped fork lift trucks in a Standard Pressed Steel plant just north of Philadelphia. Here was an industrial communications system rendering much the same kind of service that has effected operating economies for taxicab companies.

Industrial Truck Association figures indicate that 29,668 fork trucks were sold in 1952, so the market is well worth anybody's while.

- MECHANIZATION . . . Beginning on page 130 of this issue is a production-technique story considered particularly interesting. Dip soldering has been known for many years. Never, however, has it been applied to such complex electronic equipment in precisely this way and on such a scale.

Perhaps even more important is the fact that printed circuits, plugin components and other allied techniques are everywhere at long last becoming major factors in the production of one type of electronic equipment or another. It is the simultaneous adoption of such things, rather than any one of them alone, that determines the shape of things to come in the field of electronics.

This may be the first commercially significant year for circuit mechanization.

- EXPORTS . . . International standardization work on electron tubes has just been upgraded. It used to be handled by the International Electrotechnical Commission on a subcommittee basis. Now it is handled by a full-fledged technical committee.

IEC meets in Opatija, Yugoslavia the end of June. Why is this important to us? Because you can't sell tubes in export markets if they won't fit the sockets.

- CHOICE . . . Two competitive receivers recently underwent a test. One operated beautifully but failed to survive a 30 -foot drop. The other had poor sensitivity, but was unaffected by the fall.
It is suggested that the prospective customer buy both sets, one for communications and the other to drop.

Rotary riveter, nicknamed the pipe organ, uses 40 -ton press to fasten 93 rivets in one operation after workers drop into each chassis the special sockets and pin plates needed for dip soldering. Rotary table indexes to next operator every 12 seconds, making capacity of machine 300 completed units per hour. Captive rivets are already on each piece loaded in

Mechanized Dip Soldering

First published details of revolutionary new electronic production technique built around a machine that solders 424 joints at once by dipping the inverted television chassis in a pool of molten solder. Similar dip-solder machines are used for radios

By K, M. LORD

Plant Manager, Radio and Television Dept.
General Electric Co., Electronics Park. Syracuse, N. Y.

Two Plants of the General Electric Company have been using a mechanized dip-solder process in the manufacture of radio and television receivers since 1949. Radios are being dip-soldered at the Utica, N. Y. plant and television sets at Electronics Park in Syracuse. The new technique was developed to replace the slower and less efficient process of assembling hundreds of parts in television and radio receivers with needle-nose pliers and a hand soldering iron.

The primary benefits from dip-
soldering as a production technique have been increased efficiency in the factory and better performance of radio and tv sets in the home.
In outward appearance, the dipsolder television chassis resembles to a large extent a conventional chassis. Actually, it is so constructed as to make possible the application of further automatic mechanized processes as they are developed and perfected.
The dip-solder chassis, with its excellent performance characteristics, represents the beginning of
a new era in receiver manufacture -the age of mechanization.

Many of the basic principles of the dip-solder process have long been used in radio tube production. Here, leads from the internal tube elements are connected to the pins in the base of the tube by dipping the pins of the assembled tube in molten solder.

Four years ago, the mechanized soldering method was first applied in the final assembly of components on television terminal boards. Since then, the method has been mastered

Loading chassis onto conveyor of dip-soldering machine for television assembly line. Hood with Lucite draws off rosin fumes, keeping them entirely away from workers

Appearance of top of television receiver chassis after dipsoldering of the 424 pin-type terminals having over 1,000 individual leads. Socket adapters are added after soldering

of Television Receivers

to the point where the entire main chassis of both television and radio receivers, as well as terminal boards, are produced in this way.

Application of dip-soldering to moving-conveyor assembly of receivers involved almost 100-percent revision in subassembly lines, in component fabrication methods and in the main assembly lines. Each operation had to be changed and streamlined to serve more quickly and efficiently the highly mechanized system of final assembly.

Ground Pin Riveter

In the metal parts section of the television plant, the basic tv chassis plate is first punched and formed. This plate, which forms the main deck of the chassis, moves to a section where one of the first steps is taken in preparing for the ultimate dip-soldering. Here the chassis plate is placed on a conveyor to pass through one of a
battery of ground riveters.
The ground riveter is a semiautomatic machine which assembles ground pins and spring washers and secures them to the ty chassis. An air-operated oscillating hopper orients and feeds the ground pins. Another mechanism feeds springsteel concave washers in strip form from a reel to a position directly beneath the machine's ram. A staking punch picks up a pin from the hopper, threads the pin through the washer, cuts the washer from the strip and stakes the assembly of pin and washer to the chassis. Sharp edges of the washer bite into the chassis to insure a good permanent ground connection.

Each television main deck has a punched hole at each location where ground connections to the chassis are needed. An operator removes the chassis from the conveyor and places it in the ground pin machine in such a way that a
vertical anvil projects through each of these holes in succession. A foot pedal is pressed to activate the air cylinder of the machine when the chassis is properly positioned.

Each ground pin machine operation leaves a hollow pin, like that of a radio tube, firmly secured to the chassis plate and ready for insertion of leads that are to be grounded. At present 41 ground pins are assembled to each chassis. Production per machine runs as high as 1,200 pins and washers per hour, which is five times as fast as the former method of positioning pins and washers by hand.

Rotary Riveter

After insertion of ground pins, the television chassis travels by belt conveyor to a rotary riveter built around a 40 -ton Niagara press. This performs the equivalent of 93 individual rivet machine operations on 29 pin plates and terminal strips

APPROACH TO AUTOMATION

in one stroke. The capacity of the rotary riveter is 300 completed units an hour.

Individual pin plates and strips are purchased with captive eyelets at the ends of each. Two types of terminal pins are used on these plates. The bead chain type, used only in television, is a straight tubular pin slightly rounded at the top, with the same circumference at the bottom and the top. The second type, the split pin, is larger at the bottom than the bead chain type. The split pin is tapered to the top, and this tapered section is slit at four points. When the terminal lead wires are inserted in the pin, the split end grips and holds the component in position until the dipsolder machine completes the connection. The split pin is used exclusively in radio receivers and on television terminal boards. It is being used to a lesser extent in the television chassis.

Rising above the bed of the rotary riveter are 25 round vertical pipes in groups of five. These are kept filled with the different types of pin plates, pin-type tube sockets and pin terminal strips required, all having captive mounting rivets. At the five operating stations around the machine, operators pick the plates out of the pipe ends and position them in the empty chassis units as the table is indexed past them automatically at a preset production rate by a motor-driven Geneva drive. The general appearance of these pipes has earned the machine the nickname pipe organ.

For the last stop in its trip around the rotary riveter, the chassis passes under the riveting press. When in position, a camoperated limit switch and contactors operate the press to clinch all 93 rivets in one stroke.

Use of this machine saves considerable direct labor. In addition, it has completely eliminated the usual tripping of foot pedals and the resulting fatigue which accompanied the older individual-riveter method.

After manual removal from the
rotary riveter, the chassis is equipped with front and rear aprons on which operating controls have previously been mounted in subassembly operations. The chassis is then conveyed overhead to the start of one of the many main assembly lines.

Ferris Wheels

Simultaneously with preliminary work on the main deck of the television chassis, the leads of hundreds of different components are being cut and formed in another section of the plant preparatory to insertion in the chassis. The automatic machines that have been developed for this purpose, known as ferris wheels, cut and form the ends of resistors and capacitors at a maximum rate of 2,200 pieces per hour. The ferris wheels are two circular tool holders which are mounted on the machine base in parallel and rotate continuously. One tool holder plate is adjustable along the horizontal axis by means of a screw thread and knob to fit the different lengths of components.

Mounted on the holders are eight sets of die blocks, evenly spaced around the circumference. The sides of these blocks are recessed so that forming of the component wire leads is completed in the recess and cutoff is performed against the bottom edge of the recess. Mounted rigidly on the machine are two cut-and-form blocks against which the die blocks rotate to cut and form the component leads.

In operation, the part is placed in two notches of the moving die blocks by hand. It is carried automatically through the cutting and forming stage and ejected by means of a rotating knockout to a chute at the rear. Under this chute is a corrugated cardboard box that serves for parts storage and fits directly into the parts dispensers on the main assembly line. This eliminates handling of the formed parts until they are actually inserted in the chassis.

Beginning operators use template with ground riveter, but soon memorize locations of holes for ground pins

Loading hoppers of rotary riveter

Two brushes under each machine rotate continuously to clean the cutting edges of the die blocks.

Each main television assembly line is laid out in the shape of an elongated U . The chassis units travel around on a moving conveyor in front of operators who work from a sitting position. In front of each operator are up to ten boxes and trays holding the components or wires for which she is responsible. Each component or length of wire is inserted in the chassis by placing its leads into two of the tubular terminals provided.

To take care of components which will be placed in the receiver after the chassis has passed through the

Bear of ground riveter, shawing spring-sieel washers in strip form and oscillating hopper for aligning terminal pins and feeding them down slide to chassis hole

After ground riveter pushes tubular pin through cupped washer, upper anvil retracts and pin is pushed through chassis onto pointed anvil

Biveter dies do work of 93 individual riveting machines in one stroke. Phototube af left stops press it chassis is missing

Loading molded paper capacitor on one of the eight pairs of die blocks of the ferris-wheel lead former and cutter

Rotating arm at rear, geared to main drive of ferris wheel pushes processed components out of die blocks to chute below

Parts boxes like these are placed under lead-forming machines for loading, and fit directly into metal dispensing bins on main assembly line. Elimination of handling operations insures that leads will be correctly bent for dropping into chassis pin holes

Television chassis in solder pool of machine, with rosin fumes rising in clouds. Air cylinder at top counteracts bellying of chassis with heat by lowering rods that hold chassis firmly down on bars projecting slightly above surface of solder pool

APPROACH TO AUTOMATION

dip-soldering process special loopwire terminals are inserted in some of the terminal pins.

Other special connections are provided for by key-shaped punched copper terminals inserted in the ground pins. Even shields in a dipsolder chassis are specially
designed. With a comb-shaped lower ealge, the shields are securely fastened by inserting the teeth into grounded terminal pins.

Dip-Solder Machines

Finally, after its 424 terminal pins have received the components

Method of inserting shielded wiring in pin strip. Braided shield has already been pushed into a ground pin

Tube socket shields have comb-like teeth that fit into ground pin holes for anchoring simultaneously with leads
designed for them, the chassis reaches the dip-solder machine. Although this has a potential capacity of 350 chassis units an hour, actual production varies with the schedule of the assembly line which feeds it. On television lines, the machines are being used to flux and dip-solder a chassis measuring $13 \frac{1}{2}$ inches square and containing 424 terminal pins each having from one

Inserting punched copper strip in pin to which a lead of an above-chassis component must be soldered later

Inserting lead of molded paper capacitor in pin that already has three leads. Four leads are limit for easy insertion
to four leads. Similar machines are being used to solder 51 pins simultaneously in a terminal board and to solder 40 pins at once in a radio chassis.

A dip-solder machine consists of a flux tank, a solder tank, a sprocket-driven endless-chain conveyor which travels over the tanks, and auxiliary equipment.

Rods of cold solder, some of
which have been recovered from the machine, are dropped into a pot at the rear of the machine. Here the solder is raised to the carefully regulated temperature needed and automatically fed into the solder pot at a rate designed to maintain a constant level.

Each television chassis in turn is removed from its assembly line and fitted into a rack on an endless conveyor which carries it through the automatic solder operation. The chassis is lowered first into the flux and then into the solder tanks by four air cylinders. The conveyor stops, cylinder stroke and return, and dwell time in the flux and solder tanks are controlled by a series of snap-action switches and time-delay relays. An automatic timing unit is used to preheat the elements in the solder tank before the start of a work shift and to turn off the heat at the close of the shift. A solder temperature of 600 F is maintained by a thermostatic control.

Dross must be skimmed off the hot solder surface each time a chassis is dipped. Chrome-plated hinged wiper blades are built into the rear of each chassis-holding fixture to accomplish this as the fixtures pass over the solder tank.

Fumes from the operation are carried off by a hooded exhaust system installed over the machine.

As each chassis is lowered into its solder bath, capillary action draws the solder up into the tubular terminal pins. This provides uniform and complete solder connections at each terminal and little or no chance for excess solder to cause shorts.

After being removed from the dip-solder machine, the chassis is subjected to a violent vibration on a shake table. Imperfections in the dip-soldering job quickly show up under this unusual stress, as loose parts will come out. This rarely occurs in practice, but the shake table serves also to clear out scraps that fall into the chassis during assembly.

After the shake table operation, the television chassis is lifted back onto the main conveyor line. Here it passes through a series of stages during which it is prepared for installation of tubes, transformers
and other above-chassis parts.
The tube socket pin plates and transformer pin plates which were secured to the chassis by the rotary riveter require adaptation before the tubes and transformers can be mounted. Separate tube socket adapters are used, while r-f and i-f transformers are mounted right on their adapters. These adapters fit over the male pins on the chassis and receive the male pins of the parts. The tube socket adapters are placed on the tube socket pin plates by using a tool called the wobble gun.

Before adapters are fitted on terminal pins, dip-soldered leads which may project through the tops of the pins must be cut off. If this were not done, the protruding leads would prevent the adapters from being properly inserted over the pins. This clipping job is performed by special air-driven cutters.

The wobble gun is a special adaptation of a standard electric drill in which the drill chuck is replaced by a rounded plate. Behind this plate is a single ball bearing. When the tool is applied to the socket adapter it agitates in such a manner as to vibrate the adapter down on the connecting pins.

Before tubes are inserted in the television chassis, a final visual check is made to determine whether all connections have been made and all components are in proper position. So efficient has dip solder proved that only one repair station is operated for each television assembly line. At this repair station, any necessary adjustments are made by an operator using a conventional hand soldering iron, before the chassis passes on for completion of assembly.

Other Dip-Solder Machines

Mechanized dip soldering was first used in the assembly of television receiver terminal boards and is still being used for that purpose. In addition, dip soldering is used on all GE table model radio receivers made at the Utica, N. Y. plant, including clock radios. A more recent adaptation is in connection with mechanized fabrication of individual components.

A slight variation in the method occurs when it is applied to smaller

Shake table clears chassis of loose solder and scraps, and also shows up imperfect joints

Method of using motor-driven wobble gun to push tube socket adapters onto socket pin plates

APPROACH TO AUTOMATION

subassemblies. Here, resistors, capacitors and wiring are handpositioned in the same manner as is done on the television lines, but it is not necessary to remove the terminal boards or radio chassis units from the assembly line. Instead, the dip-solder machine is so installed as to form an integral part of the assembly line itself. The terminal board or chassis continues traveling in its assembly rack directly through the flux bath. The length of the tank and the speed of the conveyor determine the time the part is immersed in the bath. When the part is ready for its solder bath, the solder tank is raised and lowered to perform the dip-solder operation.

In redesigning for dip-soldering, the television chassis had to be increased in size by 20 percent over the former conventional handsoldered model. No increase was necessary in radio chassis size.

Because the television receiver is
equipped with an interlock which automatically cuts off power when the back is removed from the cabinet, no protection is needed for those terminals which might be exposed. However, the radio receiver has no such interlock and some method of covering exposed terminals around tube sockets had to be found. The problem was solved by installing a steel. dough-nut-shaped shield around the base of each tube. This was later changed to a molded plastic cover fitting over almost the entire chassis.

A special tube socket is used in the dip-soldered radio chassis which eliminates the necessity of any adaptation to seat the tubes. Because the television receiver involves up to five times as many tubes as the radio recaiver, these special more-expensive and bulkie: sockets were found to be impractical. For that reason, adapter sockets are used in television sets.

Many important advantages and benefits have been realized since the dip-solder method of assembly was begun. Perhaps the most important of these is the increased reliability of the finished products. The hundreds of connections involved in a modern television receiver are made with absolute uniformity in respect to the amount of solder used and the degree of temperature applied. This means a consistent, reliable chassis and superior performance. Because the possibility of damaging components by overheating is eliminated, component failure in finished receivers is sharply reduced.

Less wiring is required in a dip-solder chassis as compared to a conventional chassis. This minimizes problems of establishing and maintaining lead-dress and spacing in the closely packed and complex interior of the receiver.

Training Time

Dip soldering has meant a marked reduction in the time needed for training operators. The
time required to train personnel on an assembly line has been cut by one week where that line involves dip soldering.

No tools are required in the manual positioning of components, in contrast to the need for using crimping pliers, soldering irons and other tools in assembling the conventional chassis. Because this mechanization reduces the degree of skill required for final assembly work, the labor force is now more flexible and its distribution within the over-all production pattern is simplified to a great extent.

Breadboard mockups are mounted in front of each operator to show the wiring and component positioning assigned to her station on the television assembly line. Even a nowice operator can quickly compare the work before her with that on the breadboard. These training devices consist of actual components mounted on a full-size pictorial layout diagram of the pertinent portion of the chassis.

Another example of simplified training techniques is operation of the ground riveters. By supplying the untrained operators with a metal template which indicates the exact positions for the terminal pins, it is possible for the trainee to reach a satisfactory point of

Dip-soldering position on moving-conveyor line for a television subassembly terminal board. Here the solder tank is raised by air cylinders to come up to the panel
efficiency and production almost at once.

Since the installation of dipsolder machines on the television and radio assembly lines, a definite improvement in employee morale has been noted. This has been credited to several factors. With elimination of the hand soldering iron, the work is cleaner and much less tiring. Irritation from flux fumes which accompany hand soldering is completely absent because the entire dip-solder mechanism is enclosed and ventilated.

Those employees formerly engaged in the task of selecting, trimming, shaping, crimping and soldering each component are released from this work to be more efficiently used in the manufacture of component parts. This tends to

One of the molded adapters developed for use with special dip-soldered tube sockets. Projecting leads are sheared off before adapter is pushed on

This i-f transformer has a builtin adapter and spring-type mounting clips that make mounfing and connecting α single quick operation
streamline the entire assembly operation, shortens the assembly line and frees floor space for other manufacturing activities.

Manufacturing costs have been reduced through the lessening of the possibility of damage to components, and the margin of error in the assembly operation has been cut.

The reduction in the amount of wiring means an increase in the space available for components and aids immeasurably in parts standardization. This is of the greatest importance from a manufacturing standpoint but is, perhaps, of an even greater importance from a servicing standpoint. As an example, capacitors of equal value, supplied by different vendors, may show considerable variation in size. In a conventional chassis, oversize parts from one vendor might have to be wired outside the engineered pattern of the chassis. In the dipsoldered chassis, however, sufficient room is available to accommodate components of a different size than specified in the original design of the product.

Still another important advantage of the dip-solder technique is reduced service cost to the consumer. To break one connection in a handsoldered television or radio receiver, the serviceman might find it necessary to remove three or more individually soldered connections with several applications of heat. In a dip-soldered chassis, the service operation can be accomplished with a single touch of the soldering iron. This, too, reduces the possibility of damage by heat to delicate components, speeds up the repair job, results in less repair cost to the owner and causes less disturbance to the basic balance of the circuit.

Broadcast Transmitter

Studio engineer dials control impulses in sequence then selects desired monitor function to check remote transmitter

IN 1948, the Canadian Department of Transport amended its broadcast regulations to allow transmitter operation by remote control. The amendment specifically allowed two control systems, that of telemetering and marginal alarm relays, while provisionally allowing any other acceptable means. Telemetering is sending by telephone lines various voltage levels that are read on a meter at the studio to indicate the state of the transmitter circuits at any time. The marginal-alarm-relay system is a collection of relays at the studio that are actuated by sample voltages carried over telephone lines from the transmitter circuits.

It was felt by Canadian General Electric that telemetering would be superior operationally to the marginal relay system because in addition to indicating voltage levels of pertinent circuits, telemetering gives the amount of voltage drift should any circuit begin to fail. The marginal relay system can indicate only if circuit voltage levels have varied beyond certain preset levels. The alarm signal tells the studio operator only that the circuit volt-
age has varied but not how much.
In December 1949, the first remote control system was put into operation at CFAR, Flin Flon, Manitoba. The success of this venture resulted in equipping many other stations with remote facilities, 250 and 1,000 -watt omnidirectional antenna stations as well as 1,000-watt stations employing two and three-tower directional antenna arrays.

In operation, the studio engineer starts the broadcasting day by first energizing the studio equipment. Then using the dial-and-control unit, he actuates the power-on switch to turn power on at the transmitting site as indicated in Fig. 1. After the equipment is sufficiently warmed up he presses the transmitter-on lever, placing the carrier on the air. With all the equipment operating the various telemetered circuits are checked. This is done by dialing one number after another and marking on the station log the meter reading corresponding to each number dialed. The operation usually takes less than a minute.

If a reading is slightly off normal

By Gerald w. Lee
Systems Engineer.
Canadian General Electric Co.. I.ta
Industrial Products Division

the station engineer can assess the significance of the variation and investigate the cause. A simple alarm system, on the other hand, can only advise of trouble that has already taken place, and cannot help in assessing the seriousness of the fault. Nearly all circuit failures give unmistakable warning signs before actually occurring. Orer-age tubes give less emission and therefore less r-f output; a failing transformer delivers less voltage to the high voltage circuits; a defective capacitor may intermittently bypass a circuit to ground. All these signs are revealed in the meter readings at the studio.

System Elements

Besides on-off control, indication at the studio of all important transmitter circuits, frequency deviation, percentage modulation and r-f output, the control system makes provision for operating from the transmitter site during emergency conditions. In addition to the alarm system, an electronic lockout prevents energizing the transmitter from the studio during normal and emergency service periods.

Control of input power, while useful for placing power on and off under normal conditions, becomes of utmost importance during extreme circumstances, such as air-raid warnings or natural disasters. As broadcast signals serve as an effective beacon for aircraft receivers, it is imperative that a station be completely shut down within seconds of an air-raid warning. On the other hand, a station may be required to broadcast information to outlying areas during times of fire, flood or earthquake.

Remote Control System

Abstract

Telemetering system used since 1948 to control 1-kw Canadian a-m/f-m broadcast stations with omnidirectional or three-tower antenna arrays. Two pairs of telephone wires permit studio operator to start and stop transmitter at will or monitor various functions to avoid equipment breakdown

If the transmitter site is isolated at such times, remote control becomes vital to place the transmitter on the air during normal shut-down.

Another safety measure, is the automatic safe-failure feature. This instantly removes all input power from the transmitting facilities in the event power fails at the studio or the telephone control lines open up for more than 3 seconds. If ever commercial power, which may not be from the same source energizing the transmitter, should fail, or if the control lines are damaged due to wind, ice or snow storms, the station owner is safe in the knowledge that power is removed from the transmitter.

On-Off Control

When power switch S_{1} is closed, line 1 is energized with 48 volts d-c and thereafter is never de-energized for more than 0.25 second while the equipment is operating. The 48 volts from rectifier $C R^{3}$ operates repeater relay K_{1} energizing con-tactor-holding relay K_{2}, which in turn operates the main power contactor K_{3}. This contactor applies power to the transmitter and equipment in the station audio rack.

Because it is essential that the transmitter be under complete control when on the air, the equipment is designed to remove input power in the event of power failure at the studio, or the opening of control lines for more than 3 seconds. This safe-failure function results if the 48 volts is removed from K_{1}. In order that transmitter shut down shall not be caused by brief power interruptions from the studio, K_{2} will maintain the coil circuit of K_{3} for three seconds after its own coil
circuit has been de-energized.
To place the transmitter on the air, transmitter-on key S_{2} is operated and a reset impulse lasting 0.25 second is sent out over line 1. At the end of this impulse a voltage is applied to line 2 (line $2-2$ positive) energizing the on relay $K_{\text {, }}$, which in turn operates the on circuits of the transmitter. The reset impulse is necessary to insure that line 2 is connected through stepping relay K_{5} to relays K_{4} and K_{8}. It is obtained as follows:

Transmitter-on key S_{3} contacts 1 and 2 ground the coil of K_{7}. This relay then operates, opening the circuit of line 1 , and at the same time de-energizing the coil of K_{8}. After the 0.25 second the armature of K_{3} is released, completing the circuit of line 1 through its contacts 1 and 2 , while contacts 3 and 4 apply voltage to line 2 via contacts 7 and 8 of S_{2}.

The transmitter-off control also utilizes reset impulses. When trans-mitter-off key S_{3} is operated, a reset impulse is sent on line 1. At the end of this impulse a voltage is applied to line 2 (line 2-2 negative) from contacts 7 and 8 of S_{3}. This voltage energizes the off relay K_{8}, which removes the carrier from the air but leaves the filament and control circuits on.

Transmitter Indication

The status of the transmitter is indicated by three readings on the studio meter M_{1}. The first reading is obtained by applying input power to the transmitter. Rectifier $C R 2$ becomes energized and its current produces a 30 -percent reading on M_{1}, informing the studio operator the transmitter filaments are on.

The filament time-delay relay then starts to operate. When it has completed its cycle and the transmitter is ready for power, rectifier $C R_{3}$ produces current for a second reading of 70 percent on M_{1}. High voltage may now be applied to the transmitter, which in addition to placing the carrier on the air, energizes meter-multiplier resistors R_{3} and R_{4}. These energized resistors supply current to produce the third reading on M_{1} of approximately 95 percent. These percentages are adjustable by potentiometers R_{1}, R_{2} and R_{4}. Status indications can only be realized when circuit selector relay $K_{\bar{\sigma}}$ is in the reset position. It is in this position when the equipment is first turned on and after each operation of the transmitter-on and off switches.

Telemetering Of Circuits

In addition to status indications, meter M_{1} provides up to nine telemetered indications of transmitter and monitor equipments. Each circuit is automatically chosen by the selector dial on the panel of the dial and control unit.

When the dial is pulled away from normal at-rest position, its contacts 1 and 2 close and ground the coil of K_{7}. This opens line 1 and de-energizes the coil of K_{8}. After 0.25 second, contacts 1 and 2 of K_{8} close to complete the circuit of line 1 through the impulsing contacts 1 and 2 of the selector dial. When the dial is released, contacts 1 and 2 are operated by the dial mechanism, producing stepping impulses that are 0.03 -second-long interruptions of line 1 . These impulses are produced at the rate of 10 per second, the number of impulses for one

FIG. 1-Schematic diagram of Canadian GE remotecontrol equipment employing two telephone pairs and stepping switch for operating and monitoring 1-kw α-m broadcast transmitter
dialing cycle corresponding to the number dialed.

For each stepping impulse, repeater relay K_{1} releases for 0.03 second and its contacts 3 and 5 close
to energize the stepping coil of K_{5}. Each time this coil is energized, the armature of K_{5} moves its wiper arms to the next contact until the ones corresponding to the number
dialed at the studio are reached. The first and second set of wiper arms connect both sides of line 2 to the signal to be measured after it has been amplified by the Autopot
or self-balancing potentiometer.
The third set of wiper arms picks off a sample voltage from the circuit to be telemetered. After each impulse the stepping coil of K_{5} is released and its armature moves to the next notch in the wiper arms, ready for the next step. At the completion of the dialing cycle, dial contacts 4 and 5 open, releasing K_{3} whose contacts 1 and 2 close and maintain the circuit of line 1 . The control circuits remain as outlined above while the studio operator enters the desired reading in the station log.

When the next number is dialed the wiper arms first return to the reset position before connecting the circuit to be measured to the Autopot and thence to line 2 . This is accomplished as follows:

Moving the dial interrupts the circuit of line 1 . Repeater relay K_{1} is then released, its contacts 3 and 5 close, energizing the step coil of K_{5}. At the same time K_{1} contacts 3 and 4 are opened, de-energizing the coil of step-holding relay K_{8}. After 0.1 second, K_{8} contacts 1 and 2 open, releasing the step coil of K_{5} and deenergizing the coil of reset holding relay K_{10}. Simultaneously, K_{8} contacts 3 and 4 are closed, operating the reset coil of K_{5}, which returns the contacts of this relay to reset position. Since the reset impulse is automatically timed by K_{8} to last 0.03 second, this operation will be correctly performed even if stepholding relay K_{8} or reset timing relay K_{8} are not in precise adjustment. It is noted that at the start of the reset impulse, relay K_{5} will step up one before the reset function is performed. This is of no operational significance and could be avoided only by adding another
relay that would contributed little to the operation of the equipment.

The Autopot is a self-balancing potentiometer and amplifier used to amplify and partially isolate the quantities to be measured from the line. Since some of the quantities are of negative polarity, and since the input and output circuits of the Autopot have a common connection that must be grounded, it is necessary to provide automatic switching of polarity in the output circuit in order that M_{1} will read in the same direction. This is done by wiper arms $K_{5 A}$ and $K_{5 B}$ and the Autopot, which accepts voltages of either polarity, reverses the negative voltages, and amplifies each separately. The step and reset buttons permit the telemetering function to be carried out manually at the transmitter site.

Meter Zeroing

Because meter M_{3} is very sensitive, it is necessary to compensate for stray leakage currents that may occur in the metering line. This is accomplished by zero potentiometer $R_{\overline{5}}$ in the dial-and-control unit, and it is adjusted so that with zero input to the Autopot, meter M_{1} reads zero. There are two ways in which to do this, by dialing p-a plate current when the transmitter is off the air, then adjusting R_{5}; or if there is a spare position on the stepping switch, the spare would be dialed before adjusting R_{5}.

Telemetered indications extra to the transmitter proper are frequency deviation and r-f output level. In order to read the former, potentiometer R_{0} must be adjusted so that M_{1} is brought to center scale. This is done by operating fre-quency-monitor key S_{4}, dialing 9

WHO CAN USE REMOTE CONTROL

\author{

- Equipment described in this orticle fulfills requirements of the Department of Transport for Canadian a-m and f-m broadcast transmitters when they are operated by remote control.
}
- Effective April 15, 1953, the Federal Communications Commission liberalized its rules to allow somewhat similar remote operation for United States transmitters of 10 kw or less power employing nondirectional antennas.

[^5]then adjusting \boldsymbol{R}_{6} until M_{1} is centered. This permits reading frequency drift in either direction, and also compensates for any drift in the monitor operating circuits and variation in line-leakage currents. Radio-frequency output is preset by adjusting R_{7} after dialing 5 at the studio. Variations in reading on M_{1} indicate variations in transmitter r-f output level. The remaining monitor indication, percentage modulation, is not telemetered, but warning is given of overmodulation through use of alarm circuits.

Alarm Circuit

The alarm circuit is normally used only for extending the overmodulation circuit of the modulation monitor, but other circuits can be connected to it. When over 100percent modulation occurs, K_{11} is operated, disconnecting line 2 from the telemeter circuit and applying 48 volts d-c across the line. This operates relay K_{12} in the dial and control unit, whose contacts 4 and 5 energize the alarm indicator light. At this time M_{1} is protected from the initial application of the 48 volts by capacitor C_{1} and resistors R_{8} and $R_{\text {p }}$. Further protection is provided by contacts 1,2 and 3 of alarm relay K_{12}, which disconnect the meter from the line and short circuit the meter movement when an alarm occurs.

In case of emergency such as a failure of the studio lines, the transmitter equipment is immediately shut down as outlined in safe-failure procedure, but it can be re-energized and operated from the transmitter site. Emergency operation switch S_{5} permits operating the transmitter completely independent of studio control. Two studio signals are provided to show the switch is in use. A light indicates S_{5} is in emergency position, and the alarm relay is operated at the studio when conditions are returned to normal. For matters of personnel safety, lockout switch S_{8} prevents operating transmitter control relays K_{4} and K_{0} from the studio while an engineer is working on the equipment. It, however, does not prevent shutting down the entire equipment by means of the power switch at the studio.

NOTS Aeroballistics Laboratory at Inyokern. Gun platform for firing rockets is at right end along with control room; missile stop is at left end of building

Microsecond Photography

Electronically controlled flash lamps used in connection with 46 precision ballistics cameras provide up to 138 pairs of silhouette images of a rocket fired at sandbags in 500 -foot indoor range, for determining aerodynamic and ballistic characteristics during flight

Interior of rocket test laboratory, as viewed downrange from station 3. White reflective strips on ceiling are required for silhouette photography. Sandbag missile stop is at far end. Camera takes six images in sequence, as at top of page

Instrumentation, lamp setup and ballistic camera at one station. Opposite position for station has only one vertical rack as photoelectric ungating equipment serves for both sets of flash lamps. Tubes to detect missile are set into floor of building

FI $\{$. Orientation used for cameras so each obtains six images of rocket

FIG. 2-Cross-section of range, rhewing one pair of cameras with lamp banks

of Rocket in Flight

By E, BARKOFSKY, R. HOPKINS* and S. DORSEY
U. S. Naval Oranance Test Station, Inyokern, California
* Now Electronics Engineer. MIT
Digital Computer Laboratory, Cambridge, Mass.

ELlectrical-discharge photoflash lamps used as the sources of microsecond-duration illumination for photography of rocket models in flight demand the design and development of electronic instrumentation to meet specific performance and control requirements. The special requirements are imposed by the high accuracy desired in the experimental data and the physical size of the available laboratory.

The desired accuracy in the determination of the aerodynamic and ballistic coefficients of the freeflight rocket models requires that the transverse components of the center of gravity of the model at each instant of flash photography be determined to within 0.001 ft and the longitudinal component to within 0.01 ft . Each corresponding time coordinate must be known to
within 1 usec, hence the time of each light flash must be measurable with an accuracy of $10^{-8} \mathrm{sec}$.

Most of the electronic instrumentation directly associated with the flash lamps is located at intervals along each side of a 500 -foot-long enclosed range which serves as an aeroballistics laboratory. This physical distribution of the instrumentation introduced problems in the control and monitoring of the equipment. Centralization of all instrumentation to provide remote control and monitoring from a single location was decided upon and governed the design of the necessary equipment.

Aeroballistics Laboratory

For experimental determination of the aerodynamic and ballistic characteristics of rocket models,
inert models are launched from $40-$ mm and 3 -inch guns. The rockets pass in free flight through the 500 -foot-long range building and are photographed at 4 -foot intervals during their flight. Photographic coverage is provided by 23 pairs of precision ballistics cameras arranged so that the fields of view of adjacent cameras are overlapping. This arrangement, shown schematically in Fig. 1, provides continuous coverage of the rocket model during its flight through the laboratory. Every camera photographs the model six times to give a total of 138 pairs of images.

Figure 2 shows the orientation of the pair of cameras at each of the 23 stations. Adjacent to each camera is an array of three elec-trical-discharge flash lamps, the sources of microsecond-duration
illumination of the rocket models in transonic and supersonic flight. Each lamp is operated at 18,000 volts with a $0.02-\mu$.f or $0.04-\mathrm{f}$ f discharge capacitor. Each bank of flash-tubes provides a series of accurately timed light flashes during the interval that the rocket model is in the field of view of the two related cameras.

The circle of 3 -foot radius shown in Fig. 2 is the circle of maximum anticipated dispersion of the model; flash illumination is provided throughout the corresponding cylindrical volume, with reflex reflective sheeting serving as the background for silhouette photography of the rockets in flight.

Master Timing System

The master timing system in Fig. 3 continuously provides accurate timing signals to each of the stations of the laboratory. These signals are then gated in synchronism with the passage of the rocket model to produce the precisely timed light flashes. These expose negatives to give 138 pairs of photographic images of each rocket model, from which determinations of the corresponding position coordinates must be made.

A secondary time standard which provides a $120-\mathrm{kc}$ signal is followed by a series of binary counters. This array of counters serves as a frequency divider to provide a selection of 96 frequencies in the range from 29.3 to $15,000 \mathrm{cps}$. Parallel outputs provide 1 -microsecond pulses of 10 volts across 100 ohms.

Each of the binary counters may be switched from the frequencydivider circuit. The first four counters provide division by $1,2,4$, 8 or 16 , depending upon the number of active counters. Four of the remaining five counters in the chain are connected to feedback circuits. The possible combinations provide a selection of 32 integral division factors of 1 through 32 , inclusive.

To obtain the desired accuracy of $1 \mu \mathrm{sec}$ in determination of the time coordinates, it was necessary to take account of the time of transmission of the signal from the master timing system to the most distant station. A 500 -foot-length of RG-22A/U Twinax cable carries

FIG. 3-Master timing system used to insure that time of each flash will be determinable to within 1 microsecond
the timing signal to station 23 ; the time delay over this distance is ${ }^{\frac{3}{4}}$ usec. Compensation for this time delay is provided by using the same length of cable to each of the stations.

Station Triggering System

The electronic instrumentation associated with the electrical-discharge flash lamps at each station is shown in Fig. 4. The light screen and two photoelectric units constitute the triggering system which initiates the flashing of the elec-trical-discharge flash lamps. Two photoelectric units are needed to cover the circle of dispersion, as shown in Fig. 2. The light screen is a 9 -foot-long linear array of six 60 watt GE Lumiline incandescent lamps. To provide a continuousline light source, light from a 25 watt showcase lamp is reflected by a prism at each of the five gaps between the lumiline lamps. The light screen is operated with d-c voltage; flicker with a 60-cycle power source was found to be about 7 percent, far too great since the triggering system must respond to a modulation of 1 percent by a rocket model passing through.

The photoelectric unit utilizes a 1P21 photomultiplier tube followed by a 2-stage amplifier and a 2050 thyratron, connected as in Fig. 5. The 1P21 is operated with a total dynode voltage of only 408 volts
(giving an amplification of 8,000) in order to obtain a good signal-to-noise ratio ($10: 1$) with 1-percent modulation. The amplifier has a maximum gain of 300 and has halfpower points at 30 and $10,000 \mathrm{cps}$.

This photomultiplier-amplifier combination was found to give a more favorable signal-to-noise ratio than was possible with greater gain in the photomultiplier tube and less in the amplifier. The thyratron is biased at -6 volts and when fired will deliver a 5 -microsecond pulse of 60 volts across 100 ohms. This signal initiates action in the gating unit.

Gating Unit

The purpose of the gating unit is to pass six timing pulses of a preset frequency; this will result in the flashing of the electrical-discharge lamps in synchronism with the passage of the rocket model. A block diagram to illustrate the action of the gating unit is given in Fig. 6. The triggering signal from either or both of the photoelectric units trips the start thyration of the gating unit. The thyratron signal in turn starts a cycle of the one-shot gate-forming multivibrator. The multivibrator pulse carries six of the timing pulses over the voltage barrier of the diode gate. The timing signals passed by the gate drive the blocking oscillator; the negative output of the latter is fed

FIG. 4-Photoelectric system used for ungating precision timing signals at each station in sequence as rocket flies down the range
through parallel outputs to driver units of each station. The open gate is closed by the phantastron gatewidth timing circuit. ${ }^{1}$

The phantastron action is started by the first of the six timing signals coming through the system; the period of the phantastron cycle is determined by the preset control voltage. The voltage-control dial is calibrated to read directly the gate widths equal to the time required for the rocket model to travel the photographic length of each station. It is expected that the velocity of the model can be predicted to within 1 percent; in fact, it is planned to fire identical models on an outdoor range to check their velocity and stability before launch-
ing them through the Aeroballistics Laboratory.

The range of velocities of the rocket models will be from 800 to $6,000 \mathrm{ft}$ per sec. The corresponding gate widths are set somewhat greater than would be expected (25-3.3 milliseconds) for a station length of 20 feet, since the photographic fields of view are overlapping and hence longer than 20 feet. The gate widths are set for the time of travel of the model over 26 feet. In the event of a failure in the phantastron gate-width circuit, the gate-forming multivibrator will close the gate when it returns to its initial state in a natural period of 40 milliseconds.

The phase relation between the
single triggering pulse of the photoelectric unit and the continuous timing signal is entirely arbitrary. Depending upon this phase relation, the start of the flashing of the lamps may occur immediately after the photoelectric signal or may be delayed as much as the period of the timing signals. The timing signal frequency is chosen to give one flash at each 4 feet of travel of the model, hence the first flash may occur with the missile anywhere between the plane of the triggering system and 4 feet farther down-range. This randomness is a small cost to pay for the gains from the use of the master timing system.

The schematic diagram of the gating unit is given in Fig. 7. When start thyratron V_{1} is fired, it remains in a conducting state until it is reset by an external circuit which momentarily removes the plate voltage. This makes it impossible for the gate to be re-opened by the sabot which will sometimes follow the rocket model.

The negative pulse from the start thyratron is applied to the normally cut-off plate of gate-forming multivibrator V_{3}. Half of dual-diode V_{2} isolates the multivibrator and prevents its being triggered except on firing of the start thyratron.
The positive pulse from the multivibrator opens gate diode V_{4}, thus permitting the timing pulses from transformer T_{1} to pass. These pulses are amplified by V_{5} to drive blocking oscillator V_{0}. The output pulses of this oscillator, of 1-usec duration

FIG. 5-Multiplier phototube and amplifier circuit arrangement

FIG. 6-Gating unit, showing timing signals on square-waves

FIG. 7-Circuit of gating unit used to pass timing signals only when rockel is in camera range
with a negative peak level of 25 volts, are conducted to the driver units through output plugs. These negative pulses are also amplified and inverted by V_{0}, and the first of them starts the phantastron action of V_{8}.

The pulse output of the phantastron is differentiated by an R-C network. The trailing-edge pulse is passed by the lower half of diode V_{2} and cuts short the action of the gateforming multivibrator, thus preventing further timing pulses from passing through the diode gate. If it is desired to close the gate by means of the signal from the photoelectric triggering system of the next station, that signal is amplified and inverted by V, to cut off the gate-forming multivibrator.
Local or remote operation of the relay at $V_{\&}$ results in a single flash of the lamps at the station. This gives a simple check of the per-
formance of most of the circuitry of the station system.

Driver Unit

The driver unit serves to raise the level of the timing pulses from the gating unit and provide highvoltage, low-impedance outputs to drive the hydrogen thyratrons of the flash units. A circuit diagram of the driver unit is given in Fig. 8. The burst of six timing pulses from the gating unit is amplified by V_{1} which in turn drives cathode follower V_{2}. The output of the latter drives buffer amplifier V_{3}, followed by three 807 cathode followers. The signals from these are $1-\ldots$ sec pulses with a level of 400 volts across 500 ohms. These signals are passed by a coaxial cable to the flash units. The driver unit also provides a regulated negative bias of 150 volts for the flash-unit thyratrons.

Each flash unit contains the
resonant-charge ${ }^{2}$ and thyratron-discharge ${ }^{3.4}$ for the capacitor of its associated flash lamp, as shown in Fig. 9. The 1.25 -henry charging reactor is in series resonance at 1,000 cps with a $0.04-\mu \mathrm{f}$ flash capacitor (used for the two outer lamps of each three-lamp array) and at $1,414 \mathrm{cps}$ with a $0.02-\mathrm{\mu}$ f capacitor (for the center lamp). A 5 C 22 hydrogen thyratron serves as the switch in the discharge circuit of each flash unit.

Flash Unit

The flash lamp is operated at the end of a 25 -foot length of the 52 ohm RG-8/U cable and appears quite well matched. Tests were made with a rotating-mirror camera to measure the simultaneity of the flashing of the three lamps in each array; the flashes were found to occur within 0.25 usec of each other.

FIG. 8-Driver unit used to amplify fiming-signal output of gate

FIG. 9-Flash unit arrangement used for individual flash lamps

FIG. 10-Disconnect unit serving as safety system

FIG. 11-Circuit of high-voltage power source for flash lamps

The flash units are connected to the high-voltage power supply through disconnect units, as in Fig. 10. An antenna transfer relay in the disconnect unit serves as the series switch between the highvoltage power source and the flash units at each station. The coil of this switch is so interlocked with other circuits that it is energized only when the filaments of the hydrogen thyratrons of the three associated flash units are turned on and the door of the rack housing these units is closed.

High-Voltage Power Source

The source of power for the flash lamps is a $500-\mathrm{\mu f}$ energy-storage capacitor bank. Design studies proved it to be more economical to operate the lamps from a capacitor bank than to design and construct a high-voltage rectifier which would deliver the peak power required
upon instantaneous demand. The reason for this is that even though the power demand for the fraction of a second required by the rocket model to pass through the laboratory is high, the total energy required is very small. The power requirement for six lamps flashing at any one time at the maximum planned rate of 1,500 times per sec is approximately 50 kw . The total energy for the six flashes at any one station is about 200 watt-seconds, and the total energy required by the flash lamps of 23 stations is 4,600 w-sec. The energy stored in the 500-uf capacitor bank at 10,000 volts is $25,000 \mathrm{w}$-sec. The efficiency of the resonant-charging cycle is 90 percent, hence the total energy drawn from the source is 5,100 w-sec or approximately 20 percent of the total available energy. This means that the last flash (the 138th) will be only 80 percent as
bright as the first. This difference is hardly noticeable, however, in the logarithmic response of photographic emulsions.

The $500-\mu \mathrm{f}$ capacitor bank is charged by a surplus radar power supply (RA-38 of the SCR-268), shown in Fig. 11. This supply can deliver one-half ampere at 10,000 volts and hence charges the $500-\mu \mathrm{f}$ bank in a few seconds.

References

[^6]
Automatic Pinboy for

Major components of the automatic pinspotter. Electrical control unit determines proper opercting cycles for sweep and table

T1 He aUTOMATIC PINSPOTTER is an electromechanical device that will perform the bowling functions usually performed by the pinboy. This includes setting up the bowling pins, clearing the alley of downed pins, returning the ball to the bowler and rearranging the pins for the next bowling cycle. The present unit uses electronic circuits for sensing and controlling the mechanical functions of the machine.

Operating Cycles

The functions of the automatic pinspotter are categorized into the following cycles: first ball, second ball, strike and foul. Two sets of standard ten-pins are employed. In a normal first-ball cycle, where some pins are left standing, a timedelay is provided to allow wobbling
pins to either fall or stand. A table then descends, grips the standing pins, and raises them to allow a sweep to remove the dead wood. Standing pins are then replaced on the exact spot from which they were lifted.

After a second ball is bowled the sweep clears all pins from the alley. The table descends, spotting a new set of ten-pins and the machine is again ready for a first-ball cycle.

If the table descends in a firstball cycle and finds no pins standing, this information is transmitted to the electrical control which changes the machine function to a strike cycle. The sweep clears the deck and a new set of ten-pins is set ap.

If a bowler gets a spare in the tenth frame, he is allowed a third ball. If pins are left stauding, the

By FRED K. POWELL, JR,
Vice-President in charge of Engineering
American Machine and Foundry Co. New York, N. Y.

alley must be cleared and the machine returned to a first-ball cycle for the next bowler. A reset button, accessible to the bowler, cycles the machine to the start of a first-ball cycle.

The major components of the pinspotter are placed on the main frame mounted over the pin setting area. The sweep pushes fallen pins from the alley into the pit. As the pins and ball fall into the pit, they are conveyed by a continually operating conveyor belt toward the rear of the machine. A cushion allows the pins to pass under to the rear of the pit and guides the ball to one side of the pit where the ball is lifted by a vertical belt to a track which returns it to the bowler.

A large wheel, at the rear of the pit elevates the pins to a distributor belt.

The distributor is an extendable, movable conveyor which indexes from one pin location to the next placing the pins in the unoccupied pockets of the table. The bowling pins are held till the machine reaches its spotting cycle, at which time they are brought into a vertical position and place on the alley.

Offspot pins are replaced by freefloating clamping pads which adjust themselves to the pin position. They are then locked, holding the pin firmly during the up and down movement of the table

Control Chassis

The electrical devices associated with the pinspotter include drive motors, switches and solenoids which are interconnected, synchronized and controlled by the electrical control chassis. Operation at the correct time during the cycle is controlled by a bank of cams and miniature switches, relays and starters.

Bowling Alleys

Four distinct operating cycles allow the automatic pinspotter to handle all possible bowling situations including replacement of offspot pins. Electronic circuits are used as foul detector and to provide time delay to allow pins to settle.

Latch type relays perform the memory functions. These relays control the start of the machine cycle and determine whether a first or second-ball cycle is being performed. They also control the table and decide whether pins should be placed on their spots or whether the respot mechanisms should be brought into play. In addition, the memory unit controls the table cycle, regulates the number of pins being delivered by the distributor and overrides other machine functions in the case of a foul as determined by a photoelectric foul detector.

The memory relays are actuated by switches located in various components of the machine. Over-travel switches on the table connecting rods, turn the machine off if a pin jams under the table.

Time Delay

An electronic time delay functions on the first-ball cycle to delay the lowering of the table and on the second-ball cycle to delay the start of the sweep. A parallel-connected 6SN7 dual-triode is used. When
the starting contact in the cathode circuit closes, the tube begins to pass current as the timing capacitor charge is dissipated. As tube current increases, a sensitive relay coil is energized, making circuits in the appropriate control centers. Principal design considerations in selecting an electronic timer centered around the simplicity, reliability and low cost as compared to mechanical, thermal, pneumatic or hydraulic delay systems.

Foul Detector

The foul detector automatically cycles the machine when a foul is committed by the bowler.

Both plates of a 6SN7 (see accompanying circuit diagram) are connected to the relay coil and both grids are normally negatively biased to approximately -40 volts $\mathrm{d}-\mathrm{c}$, preventing the tube from drawing plate current. The type 927 phototubes have low resistance when exposed to light and pass sufficient current to keep the grid negative. When the light beam is interrupted, the phototube resistance increases

Circuit of the foul-detecting unit. Cam-operated switches control foul bell and light
to a high value, practically stopping the current flow through the grid resistor. The grid then loses its bias through the $10-\mathrm{meg}$ ohm resistor to ground and allows half the tube to conduct energizing the relay. The upper contact on the relay then opens the ground connection which normally keeps positive plate bias off the other 6SN7 grid, thereby making this half of the tube draw plate current also through the relay which then becomes locked in the energized position.

The relay contacts in the energized position ring the foul bell and apply power to a motor operating a double cam. The cam closes a switch which lights the foul light and applies power to its own field coil. It then closes a second switch which unlocks the relay, stopping the bell in two seconds. The cam shaft turns exactly one revolution, near the end of which the grid control switch opens. At the end of the revolution, the motor switch opens, shutting off motor and foul light.

An unusual feature of the foul detector is the use of a high sensitivity amplifier operating 10 megohms above ground, controlled by a phototube some 60 feet away, without the need of shielded wiring when run alongside the 6 volt a-c light source line. Actually, the a-c line serves as a shield to the grid lead such that undesirable pickup in the grid lead is cancelled or eliminated by proper phasing and balancing of the a-c lines with respect to the grid lead.

A variable time delay provides adjustment for the phototube response time so that the unit can be set to discriminate between the short interruption of the bowling ball and the longer interruption caused by a bowler's foot.

Determining Properties

Abstract

Resistance-temperature characteristics of bulk germanium and other semiconductors are determined oscillographically by pulse-heating method. Measurement from temperature of liquid hydrogen to 650 K takes less than a second to achieve

ELeCTRICAL PROPERTIES of semiconductors are determined by the density of the carriers which transport the electric charges, the temperature dependence of the carrier concentration, and the mobility of the carriers. To determine these quantities, Hall and resistivity curves must be taken as functions of temperature.

Measurement Techniques

If the conventional method of obtaining resistivity-temperature curves is employed, a stable temperature is established within the semiconductor and the resistivity measurement is then made at that

[^7]particular temperature. Successive temperature and resistivity measurements give the characteristics of the specimen under observation. The fact that thermal equilibrium must be established before each resistivity reading means that the process of obtaining this data may take many hours.

During the extended execution of these measurements, processes may take place within the semiconductor (such as oxidation, healing out of defects, and so on) which would substantially alter its resistancetemperature characteristics. This is tantamount to completing the experiment with a specimen different from the one with which the experiment commenced.
To overcome this difficulty one may employ a method ${ }^{1.2}$ for the
simultaneous ascertainment of the temperature and resistivity that is very rapid as compared with the processes which might cause changes in the electrical properties of the sample. Such a dynamic method was worked out by Ehrenberg and Hirsch ${ }^{3.4}$ who applied it to the study of the electrical properties of thin films of such materials as lead sulphide.

Apparatus

The apparatus (Fig. 1) consists essentially of a circuit to measure the resistance of the specimen, a circuit to provide power to heat the specimen and a circuit to measure the temperature of the specimen as its temperature is increased.

A small, constant, nonheating, measuring current i_{a} of between

FIG. 1-Block diagram of equipment used in determining resistance-temperature characteristics of bulk semiconductors

of Bulk Semiconductors

By R: B. McQUISTAN

Purdue University
West Lafayette, Indiana
0.05 ua and 25 ma is passed through the specimen. This range of current provides a voltage across the specimen which, when amplified, will be sufficient to produce a measurable deflection on the oscilloscope. This current develops potentials with respect to ground. A subtracting unit (Fig. 2) determines the voltage difference between the probes applied to the specimen. The resulting difference signal is amplified (in the A amplifier, Fig. 2) and applied to a switching arrangement (V_{s} and V_{T}, Fig. 3). This switch applies the signal for one half of the switch cycle (switching frequency 60 or 120 cps) to the final amplifier (Fig. 3) from which the signal then goes to the vertical deflection plates of the cathode-ray oscilloscope.

Since the measuring current i_{a} is constant, the voltage developed across the voltage probes on the specimen manifests itself in a deflection of the crt beam proportional to the instantaneous resistance of the specimen.

Heating Circuit

Mercury vapor rectifiers, the power input to which is controlled by a continuously variable transformer, provide a rectified but unfiltered alternating current (60 cps) to heat the sample. To make the heating time shorter or longer, depending on the rate of the disrupting process taking place within the semiconductor, the length of time that the heating current passes through the specimen may be varied from 0.060 to 0.75 second by means

FIG. 2-Circuit determines voltage drop across probes on surface of semiconductor and provides amplified version for oscilloscope presentation

FIG. 3-Switching circuit alternately samples specimen resistance signal produced by circuit of Fig. 2 and signal from gold film resistance thermometer circuit (Fig. 5)
of the pulse width control P_{1} (shown in the timer section of Fig. 4).

During the half cycle when there is heating current passing through the specimen, another electronic switch grounds the terminals of the A amplifier. If not grounded, the voltage developed across the specimen by the relatively large heating current might be sufficient to overload the A amplifier.

Gold Thermometer

The gold film resistance thermometer receives a constant current of 2 to 10 ma . The voltage drop across the thermometer is proportional to the thermometer resistance. The voltage necessary to return the temperature or B trace to fiducial zero can be read from the calibrated potentiometers P_{3} or $P_{\text {s }}$ (Fig. 5). The change in voltage across the thermometer can be ascertained from the deflection of the B trace above the fiducial zero on the face of the oscilloscope. Referring to a thermometer calibration chart it is possible to obtain temperature as a function of relative change in resistance of the thermometer. Thus deflections of the B trace may be interpreted in terms of the temperature of the specimen.

The thermometer signal is applied through the same electronic switch as the resistance signal. During the half cycle when it does not apply the specimen resistance signal to the cathode-ray tube, the switch permits the temperature signal to be passed to the vertical deflection plates of the oscilloscope. In effect, the switch alternates every $1 / 120$ or $1 / 240$ second (depending on the switching frequency) the signal to be applied to the vertical deflection plates of the cathode-ray tube. The instantaneous temperature and resistance of the specimen may be ascertained because curves representing each appear as two discontinuous traces on the face of the oscilloscope.

A time base provides linear sawtooth sweep voltage for horizontal deflection plates.

Specimen Holder

Figure 6 shows a diagram of the essential parts of the specimen holder. The platinum potential probes and piano-wire springs are
sheathed in pyrex glass and all are incorporated in a single unit. The pyrex glass extends down below the end of the piano wire for about 3 inch. A small tip of the platinum wire extends through the bottom of the tip of the pyrex glass, and the other end of the platinum wire extends out the side of the pyrex, whence it goes to the appropriate terminal on the base of specimen holder. This arrangement is used to reduce the amount of heat conducted away from the specimen by the potential probes.

A wooden support is provided as a support for the thermometer against which it is pressed. Wood was chosen because its thermal conductivity is several orders of magnitude less than asbestos. The piano-wire springs that serve to press the potential probes against the specimen also serve to press the specimen against the thermometer that is backed by the wooden support.

The heating and measuring current electrodes consist of platinum foil interposed between the plated ends of the specimen and the mica supports.

The bakelite base of the specimen holder is circular in shape and fits a sealed container designed to hold the specimen and specimen holder for resistivity measurements starting at low temperatures. Brass is used for the container because it has a high thermal conductivity. Circular rings provide a seal for the top of the container, Electrical contact is made from the terminals on the base of the specimen holder through Sperti seals to the outside of the container.

To make measurements starting at the temperature of liquid nitrogen, the container with the specimen holder in it is submerged in the coolant bath.

To diminish the time lag between the actual temperature of the specimen and the response of the thermometer, the mica backing on which the gold film is painted was made as thin as possible by splitting the mica sheets under water with a steel needle. It was possible to obtain mica about 2.5μ to 2μ thick. From these thin mica sheets the thermometer blanks are cut, roughly in the shape of a T. The blanks are
then painted with three layers of gold bright. After the first two layers, the thermometers are baked at 200 C ; after the third they are baked for 3 hours at 400 C to insure that all the vehicle is driven off.

The resulting gold film is then scratched with a sharp stylus to provide a narrow, high-resistance electrical path. The room temperature resistance of a thermometer should be about 180 to 200 ohms.

The gold film resistance thermometer is calibrated in percent change in the resistance as a function of the absolute temperature. The average sensitivity of these thermometers is about a 10 -percent change in the resistance for a change of 100 C in temperature.

Specimen Preparation

The semiconductor specimens used in these experiments were usually 3 or 4 millimeters wide, 12 to 14 millimeters in length, and less than 0.5 millimeter thick. A thicker specimen would bring about a time lag between the response of the thermometer and the transient temperature of the specimen, as the specimen will tend to be hotter in the middle. If the sample is thin and if the thermal conductivity is relatively high, the entire specimen will be at an almost uniform temperature.

The specimen is ground to the desired thickness with carborundum powder and then etched. The specimen is plated on each end to facilitate better electrical contact to the heating and measuring current electrodes. If the contacts here are not good, there may be sufficient power dissipation in the contact resistance to burn holes in the platinum foil of which the electrodes are made. This danger is particularly evident when the specimen is heated to higher tempera-
tures by a large current density.
Calibration and adjustment procedures are as follows: Assume that a semiconductor crystal has been placed in the specimen holder, the resistance channel or A circuit is connected and the gold film resistance thermometer is connected to the input terminal. Let the initial temperature of the specimen be room temperature. To heat the specimen to 500 C in 0.5 second, the procedure would be as follows:

With S_{7} (Fig. 2) in position 2

FIG. 6-Specimen holder design is largely responsible for versatility of bulk semiconductor resistance-temperature characteristic equipment

FIG. 5-Circuit permits scope presentation of specimen temperature by producing signal proportional to resistance of gold film thermometer

determines length of current pulse that is passed through semiconductor specimen to heat it to the desired temperature

FIG. 7-Calibrator circuit. Precision resistors are selected by S_{1}
and S_{5} (Fig. 5) closed, S_{10} (Fig. 5) should be in position 2 which is the zero position for the thermometer channel.

Resistance selector switches S_{s} (Fig. 2) and S_{14} (Fig. 5) are set to the lowest gain position, and P_{s} (Fig. 3) is adjusted to shift the A and B traces together to a fiducial zero (the horizontal line drawn at an arbitrary position on the face of the cathode-ray oscilloscope) after these traces have been brought into coincidence by means of P_{6} (Fig. 5).

Switch S_{8} (Fig. 2) is then set to maximum gain. If the A trace shifts substantially P_{1} (Fig. 2) is readjusted to make the d-c level independent of the gain. Switching S_{8} back to the minimum gain, and resetting the zero by means of P_{8} and P_{8}, the procedure is repeated until there is no shift in the A trace as the gain is varied.

This procedure is repeated for the B trace using S_{14}, P_{7} (Fig. 5), P_{8} and S_{8} for resetting the zero.

Either P_{s} or P_{5} (Fig. 5), depending on which channel is used, is then adjusted to reset the zero of the temperature trace. Current selector S_{11} (Fig. 5) is set so that when the B signal has been compensated for, P_{3}, which is a calibrated potentiometer, reads between 300 and 500 millivolts. Switch S_{0} is closed and S_{10} set to position 2 to check the zero. If it is necessary to reset the zero by means of P_{8} and P_{a} one must first make sure
that the specimen has returned to the original temperature.

Typical Values

As an example assume that P_{3} (Fig. 5) reads 400 millivolts. The thermometer calibration chart shows that a temperature of 300 C , corresponding to 30 percent increase in the resistance of the gold film thermometer, is equivalent to an increase of 120 millivolts. Switch S_{10} is then set to the calibration position. Selecting 100 millivolts on the calibrator (S_{0} Fig. 7), S_{14} is adjusted so that an increase of 120 mv from the thermometer produces a full-scale deflection of the B trace. If a round number correspondence is desired between the temperature of the specimen and the B deflection (for example $300 \mathrm{C} \approx 60 \mathrm{~mm}$) to facilitate calculations. P_{7} (Fig. 3) is used as a fine control; otherwise P_{7} is on zero gain.

Next switch S_{8} is closed and S_{10} set to ground. It is always advisable to keep S_{8} and S_{7} in the normal position when not actually making a measurement. In this way it is easier to see if the traces have drifted from the fiducial zero on the scope. With S_{7} in position 4, and S_{8} in position 6 (maximum gain), the calibrator (and S_{0}, Fig. 7) is adjusted to give 5 volts. The A trace should not change its position by more than a few millimeters. If the shift is substantial one can adjust P_{10} (Fig. 2). The adjustment should not be necessary more than once
every few months or so.
Switch $S_{\text {; }}$ is then moved into position 3 and S_{8} in the position of minimum gain. The A deflection is now calibrated in terms of millivolts per millimeter of deflection of the A trace. Turning switch S_{7} to position 1 and selecting the A current by means of S_{1} and S_{2} (Fig. 7), a convenient deflection of the A trace at room temperature may be chosen.

If the specimen resistance is small it is better to increase the A gain by means of S_{s} (Fig. 2) than to increase the A current to give a larger deflection. In this way a larger resistance is kept in series with the A current source, thus insuring a constant current for the specimen, even though the resistance of the specimen may change. Continuing with the procedure, S_{7} is returned to position 2 which grounds the A channel. The horizontal sweep frequency is adjusted so that one complete sweep takes 0.7 second.

With S_{4} (Fig. 4) closed the length of the timing pulse is set to 0.5 second by counting the $60-\mathrm{cps}$ switch pulses between the beginning of the trace and the position of the timing pip until they run up to 0.5 second. With the heating current switch (not shown) open and the pulse switch S_{2} (Fig. 4) on the automatic position, depress the key for a trial pulse. When S_{7} is moved to the measure position there should be no change in the deflection of the A trace. If there is, the polarity of the d-c heating unit input should be reversed. This will change the phase of the shorting signal with regard to the electronic switch of the vertical amplifier.
If trial heating pulses are permissable, S_{8} (Fig. 5) is opened (turned to 0 N) and a heating pulse is passed through the specimen.

As much resistance as possible should be left in series with the specimen to insure a constant measuring current. The heating current is adjusted to give appropriate temperature rise. Length of the heating pulse is selected by P_{1}.

If trial heating pulses are not permissable the proper setting of heating current must be estimated from previous experience.

Between observations S_{7} is returned to position 2 and S_{8} OFF
(closed) to check for any drift of the traces from the fiducial zero. Before making another pulse measurement the specimen must be returned to the temperature from which it is supposed to start by checking the fiducial zero.

Figure 9 shows a typical oscillogram resulting from the pulse heating measurement of germanium. The points of the traces of the oscillogram are not straight lines because, the voltage activating the electronic switch which alternates the signal to the oscilloscope is not exactly square. This explains a slight hook at the start of each line. The reason the lines are not all of the same length is that the horizontal sweep voltage is not linear. Since there is slight cooling during that half of the cycle when there is no heating current passing through the specimen, each new line of the temperature trace starts at a little lower position (lower temperature) than the previous line.

Calculation

To interpret the oscillogram in terms of resistivity versus temperature, various adjustments must be recorded at the time the measurement is performed. Knowing the sensitivity of the A amplifiers and the sample measuring current, the resistivity may be obtained for each point of the curve. Knowing the compensating voltage in the thermometer circuit and the sensitivity of the B amplifier, the percentage change in resistivity of the thermometer may be obtained. From the
initial temperature of the thermomter and the thermometer calibration, the temperature may be calculated for any time.

A plot of the logarithm of the resistivity of various germanium samples as a function of $1 / T$ gives the typical curve observed with conventional methods. The following is a table of the energy gaps for germanium calculated from the slope of such curves in the intrinsic range obtained by the pulse heating method.

0.12	ohm cm	0.73 ev
1.2	ohm cm	0.76 ev
4.3	ohm cm	0.75 ev
5.7	ohm cm	0.73 ev
13.0	ohm cm	0.74 ev
21.0	ohm cm	0.75 ev

These values are in agreement with those obtained by the conventional method.

If it is assumed that the number of carriers is constant, and if the scattering is due to lattice vibration, in this temperature range the resistivity should follow the $T^{3 / 2}$ law.

In the temperature range between 110 K and 230 K the curve for the higher resistance sample follows the $T^{3 / 2}$ law. Below this temperature range the resistivity is higher than predicted by the $T^{3 / 2}$ law. This is to be expected because the resistivity resulting from impurity scattering can no longer be considered as negligible. Above this temperature the resistivity is lower than expected. In this range the intrinsic electrons and holes begin to make their contribution to the con-

FIG. 8-Schematic diagram of display unit
duction process. Because the number of carriers increases, the observed resistivity is lower than predicted by the $T^{3 / 2}$ law. In agreement with this discussion, the traces for the lower resistivity sample show a narrower temperature range in which the $T^{3 / 2}$ law is fulflled ${ }^{8, ~} b, 7$,

Similar results were obtained by pulse heating of silicon. Since, in general, silicon does not go into the intrinsic range until a much higher

FIG. 9-Tracing of typical oscillogram of resistance-temperature characteristic for germanium sample
temperature than germanium, one must increase the heating current. Calculation of the width of the forbidden energy gap yields a value of 1.09 ev .

The results of the pulse heating of tellurium were as follows: the energy gap is 0.33 ev and two high temperature slopes are observed; the second slope gives a value of 0.58 ev and corresponds to an increasing number of defects at high temperature. ${ }^{8}$

The author is indebted to K . Lark-Horovitz of Purdue University for suggesting the pulse-heating method described in this article. The program that led to its development was supported by a Signal Corps contract. The mica sheets used in the gold thermometer were prepared by K. W. Meissner and the single crystal germanium specimens were prepared by Louise Roth.

References

(1) R. B. McQuistan, M. S. Thesis, Purdue, 1959.
(2) J. Hirsch, and R. McQuistan, "The Pulse Heating of Bulk Semiconductors", Sig. Corp. Report, (Dec. 1950).
(3) W. Ehrenberg and J. Hirsch, Proc. Phys. Soc. London B. 64, p 700 (1951) (4) J. Hirsch, Ph. D. Thesis, London, (1950).
(5) K. Lark-Horovitz, N.D.R.C. Final Report (14-585)
(6) K. Lark-Horovitz, V. Johnson, Phy. Rev. 82, p 977 (1951).
(7) E. Conwell and V. Weisskopf, Plys. Rev. 69 p 258 (1946).
(8) H. Fritzsche, P.R.F. 489, 12 th Quarterly Report, Purdue University.

British TV Relay Uses

Antenna tower and repeater station on Britain's microwave television relay

FIG. 1-Output stages of microwave repeater showing function of twt amplifier

By D. C. ROGERS
and
P. F. C. BURKE
Stantard Telephones and Cables Lid, London. Eugland

© Panning 250 miles from Manchester, England to Edinburgh, Scotland, Great Britain's new $4,000-\mathrm{mc}$ television relay links the Kirk O'Shotts transmitter with the rest of the BBC network.

The relay, which includes seven repeater stations, is unique in that it marks the first use of travelingwave amplifier tubes in regular service. Each repeater station uses four of the tubes, type CV-2188, one in each of the microwave transmitters and two on standby.

A $37-\mathrm{mc}$ frequency difference is established at each repeater between incoming and outgoing carriers. The incoming $4,000-\mathrm{mc}$ signal is converted to 60 mc by a silicondiode mixer and amplified in a conventional wide-band amplifier. As shown in Fig. 1, the microwave carrier is restored in a germaniumdiode mixer. The unwanted carrier and image frequency are removed by a waveguide filter and the mixer output, about 25 milliwatts, is increased by the traveling-wave amplifier to about 1.5 watts. The amplified microwave output is fed by waveguide to the parabolic antenna located on top of a tower, which may be from 20 to 200 ft high. One of the towers is illustrated, with its repeater station.

Traveling-Wave Tube

The CV-2188 operates at 3,000 volts and a current of 16 milliamperes. This provides a maximum power output of 2 watts as compared with the 100 -milliwatt output of earlier tubes ${ }^{1,2}$. Ordinary manufacturing techniques have been used in production of the new tube, thus it can readily be made in quantity.

[^8]
Traveling-Wave Tubes

Traveling-wave amplifiers, designed for mass production, prove satisfactory in 4,000-mc television relay from Manchester to Edinburgh. Tubes deliver 2 watts maximum power output; gain is 20 db over 80 -me passband. Average tube life exceeds 3,000 hours

Principal features of traveling-wave tube, type CV-2188

The photograph and accompanying sketch of the tube show its essential features such as electron gun, helix and collector. The base connections are to heater and cathode, heater, and first anode. The helix lead is brought out to a side cap so that the full helix voltage is not applied between the base pins.

The tube fits into a waveguide circuit as shown in Fig. 2; the cooler mates with the tapered collector and is attached by a nut after putting the tube in the circuit. An air flow of 4 cubic feet per minute through the cooler dissipates 40 watts of beam power.

One illustration shows part of a repeater bay with the travelingwave tube connected in its circuit. The tube is mounted vertically in the left-hand rack. The relative size of the unit may be judged from the
waveguide dimensions: 2 in . \times 0.667 in . The apparent bulk of the unit is due to the focus coils, as shown in Fig. 2.

Size of the focus coils is determined by the distance between them. A large gap requires larger diameter coils than a small gap in order that the drop in field remain unchanged. The relatively small narrow dimension of the waveguide is advantageous in that it allows the weight of the focus coils to be kept down. The magnetic field has an average value of 300 oersted.

Operation

The cathode is operated 3,000 volts negative, the helix at ground potential and the collector at 50 volts positive, to prevent secondary electrons returning to the helix. The exact voltage required for maxi-
mum gain and output varies from tube to tube, but lies between 2,800 and 3,200 volts.

The gun has two anodes, a first, whose voltage is adjusted to give a collector current of 14 milliamperes, and a second operated at helix potential. The first anode works at about 1,100 volts and draws less than 250 microamperes. Helix current is usually less than 1 milliampere but can be as high as 4 milliamperes without damaging the helix. A typical tube operating under these conditions will give a gain of 20 db at low power levels and 16 db at maximum power output of two watts. Figure 3 shows the variation of gain and power output with frequency, helix voltage and input power.

The large bandwidth of this type of tube can be seen from the curves:

FIG. 2-Cutaway sketch showing traveling-wave tube connected in its circuit

Part of repeater bay with traveling-wave tube mounted in its circuit
it is more than 800 mc between points 3 db below the maximum value of gain. Operation at a current higher than 14 milliamperes is not recommended as the life may be reduced. The maximum variation in gain between tubes operated at optimum voltage and 14 -ma collector current is about $\pm 2 \mathrm{db}$. The variation in power output is somewhat less.

Construction

The electron gun is designed to produce a parallel beam of electrons of the same diameter as the cathode, 0.090 in . The magnetic field insures that there is only a small increase in beam diameter upon entering the uniform potential region following the gun anodes.

The cathode is mounted on a mica insulator, sandwiched between two ceramics to prevent buckling, and surrounded by a focusing-cup held at cathode potential. The two anodes are also mounted on mica insulators, and the whole gun assembly is held together by support rods passing through the insulators as shown in Fig. 4.

It is essential to construct the tube with helix and gun in line if satisfactory focusing is to be obtained. This is achieved by centering all parts from the bulb, which is made by joining a piece of preci-sion-bore hard glass, 0.394 in . $\pm 0.001 \mathrm{in}$. diameter, to tubing just over an inch in diameter.

This tubing is then shrunk on to a mandrel to an accurately known diameter collinear with the precisionbore glass. The copper collector is also sealed on centrally, using a conventional feather-edge seal. The helix is wound of $0.028-\mathrm{in}$. wire on a $0.131-\mathrm{in}$. mandrel at 19 turns per inch. When inserted in the preci-sion-bore tubing it is held tightly by three glass rods centerless ground to an accuracy of 0.0002 in.

A connecting-tube from the helix slides into the second anode of the gun. The gun elements are mounted centrally on their micas, which are a good fit in the lower part of the bulb. The gun, mounted on a stem, needs only to be inserted and dropsealed to be aligned with the helix.

After pumping and basing, an alignment ring is cemented to the
base on the center line of the bulb. Thus when the tube is in its circuit, it is held centrally by the ring and a pin supporting the cooler nut. No movement of the tube is necessary to focus it.

A system of deflector coils mounted around the gun provides a transverse field of a few gauss to correct residual errors in tube construction and in winding and assembly of the circuit coils.

Tube Life

The high current density at which the oxide-coated cathode works and the high anode voltage mean that any gas in the tube would quickly destroy emission. Every precaution must be taken to remove gas. For example, the helix is vacuum-annealed before assembly. The processing time has been kept reasonably short. It takes only about two and a half hours to pump a tube, including glass-baking. The tube has a continuously-operating zirconium getter in parallel with the heater. The getter consists of a tungsten spiral coated with zirconium that absorbs any gas evolved during life. To prevent its emitting electrons, there is a shield surrounding the getter.

In unattended operation, as in microwave relay use, the circuit of Fig. 5 is used to keep the cathode current constant, correcting any fall in cathode activity by increasing the first anode voltage. The anode voltage is allowed to rise from about 1,100 to 2,000 volts during life. If any sudden failure occurs, the repeater is switched over to standby. Any tubes having a high anode voltage, which indicates that they are soon to fail, are replaced on regular maintenance visits. An average tube life of over 3,000 hours is obtained.

Matching

Figure 6 shows a typical coupling arrangement. The probe extending across the waveguide picks up the wave and excites the helix. The cup, flush with the internal waveguide face, is a choke roughly a quarter wavelength long. The susceptance of the junction is cancelled by the adjustable piston. It is possible to get a voltage-standing-wave ratio of less than 2:1 from 6.5 cm to 8.5

(A$)$

(B)

(C)

FIG. 3-Electrical characteristics of traveling-wave tube showing variation in gain

FIG. 4-Details of electron gun used in the traveling-wave tube

FIG. 5-Circuit used to stabilize twt cathode current
cm with the piston set in one position.

It is necessary to have a better match than this in radio-relay use because of the long length of waveguide between the traveling-wave amplifier and the antenna. Fre-quency-modulated signals suffer harmonic distortion in such a long line if it is not well matched at both ends, as a reflection from the output end will travel down the line and be reflected at the input before being transmitted. Such signals will have a time lag behind the original signal ${ }^{3}$. The distortion will be proportional to the length of line and the product of the reflection coefficients at the two ends. The possible height of the antenna tower and the match at the antenna are such that the vswr, looking into the traveling-wave tube, must be less than 1.1:1.

It was considered impossible to design the tube to meet this requirement everywhere between 3,600 and

FIG. 6-Method for coupling waveguide to twt helix
$4,200 \mathrm{mc}$. Therefore the admittance has been given wide limits, to eliminate the need of a precise test in manufacture. A tuning device has been incorporated in the circuit to give as good a match as required. This gives a bandwidth of approximately 80 mc , which is quite sufficient for one-channel use. The tuning is simple; only one control is necessary.

Attenuation

It is essential that the tube shall not oscillate under normal conditions, and this requires that the loss backward along the helix, which is equal to the cold attenuation, shall be greater than the forward gain at every frequency where considerable reflection occurs at output and input. In fact, the attenuation needs to be greater than this to provide adequate buffering between crystal-mixer and antenna. The time-delay between mixer and an-
tenna is large, since it includes the electrically-long waveguide filter, the traveling-wave tube, and the waveguide feeding the antenna. The delay distortion mentioned previously can occur if there is appreciable reflection at the mixer and the antenna. This distortion is reduced by having a net loss in the mixer-antenna-mixer path. Such a loss is contributed by the difference between the attenuation and the gain of the traveling-wave tube. The CV type-2188 tube has a minimum attenuation of 32 db and thus gives a net loss greater than 12 db .

Part of this attenuation is provided by the resistive wire used for the helix, but most is due to a region of lumped attenuation placed about a third of the way along the helix from the gun end. This lossy material must be in intimate contact with the helix, as the short wavelength associated with the low wave velocity causes the electric field to fall sharply with distance from the helix. Nickel coating evaporated on the inside of the bulb for about 7 in. prevents propagation outside the helix, which could otherwise give rise to feedback. Nickel is preferred to Aquadag, as it is less readily scraped off on inserting the helix assembly.

Conclusion

The tube described utilizes conventional techniques and several hundreds have been made with a shrinkage as small as that encountered with ordinary tubes. The tube has been found to meet the requirements of unattended operation and has shown the practicability of traveling-wave tubes in microwave relays. Since this tube was designed, the art has progressed rapidly towards providing greater power at a lower voltage, and there seems every likelihood that, with its inherently wide passband, the traveling-wave tube will prove preferable to the klystron or the triode as the output amplifier in microwave relay stations.

References

[^9]
Magnetic Amplifier With Reset Control

Simplified explanation of revolutionary circuit developed by Ramey is presented. Permits design of miniature magnetic amplifiers with very high gain and speeds of response of the order of one-half cycle at the operating frequency

PRIOR to the introduction of the reset circuit to be discussed, the magnetic amplifier was considered by many engineers to be a complex device heavily based upon empirical data. Since the announcement of the reset circuit several years ago ${ }^{1}$, the correspondence between theory and experiment has been greatly strengthened, and the design problem simplified considerably.

The new circuit offers a further advantage in greatly improved performance. Time delay, an inherent disadvantage in magnetic amplifiers, has been reduced to a negligible minimum for many applications, including moderately high-speed servo systems. Using the new circuit intrinsic time delay is reduced to a half cycle at the operating frequency, and since $400-c \mathrm{~s}$ s power is commonly used in servo systems, the response of the amplifier is ordinarily faster than that of the mechanical elements of the system.

To set the stage for the simplified explanation of the new circuit that follows, a brief review of previous magnetic amplifier concepts will be presented.

M-A Progress

The simplest magnetic amplifier is the saturable reactor. Though very useful in many applications, it suffers from limited gain and slow response. To improve its performance, the self-saturation feature has been developed ${ }^{2}$. This consists

By Geprge m. Attura Chief Engineer
 Industrial Control Company Wyandanch, New York

basically in placing rectifiers in series with the load windings. Load current can flow in only one direction and the core is no longer demagnetized by the negative load currents. In both circuits, output power is varied by a d-c current in a control winding which establishes a level of control mmf that in turn sets the flux at the start of each cycle and determines the conduction angles and hence the load power.

FIG. 1-Simple saturable reactor and self-saturating magnetic amplifier circuits

The self-saturating circuit has greatly improved performance, yet it is not nearly adequate for many automatic control systems. Its shortcomings stem directly from the use of the same control scheme as that of the saturable reactor. In both cases, a d-c current level must be established in a control winding of appreciable inductance. There is the usual L / R time constant associated with this current when the control voltage is changed, and this becomes the major constituent of the magnetic amplifier's delay.

The second difficulty concerns the voltages induced in the control winding from the load circuit. The control-circuit impedance to these voltages must be high, or circulating currents will flow and reduce the load-circuit impedance before firing. Special core structures will, in some instances, buck out these voltages, but the problem is always present with the more common toroids. It is especially serious in half-wave circuits, some of which are very useful for reversible control amplifiers.
To reduce these circulating currents, the control coil must often be padded with a series resistance or mismatched to the driving source. Control power is dissipated in the resistor, and the power gain of the amplifier reduced.

The twin problems of slow response and control circuit induced voltages present in both the saturable reactor and its self-saturating
improvement appear because of the method of control: current or mmf is the independent variable. Figure 1 A is the simple saturable reactor, and Fig. 1B the self-saturating circuit. Identical cores are used for both circuits each with a control winding and a load winding. The load is R_{L} and R_{v} is the padding resistor. The a-c line voltage is symbolized by E_{L}.

Ramey's Circuit

The new magnetic amplifier to be discussed has an intrinsic time delay of one-half cycle of line frequency, no analogous induced voltage problem and very high gain. The chief virtue is its simplicity, and the remarkable characteristics that follow from the adoption of a realistic control scheme.

Optimum core materials for these circuits are nickel-iron alloys with rectangular flux-current loops. Because of their high retentivity, the core can store a flux level nearly equal to the saturation value. This flux storage with no applied mmf is a necessary feature of the amplifier with reset control.

The basic theoretical relationship pertinent here is that between the flux in a coil and the voltage across it. Magnetic theory states that the flux linkages in a coil at any instant are exactly equal to the value of the integral of the voltage across the coil at that time. For the application under consideration, with sinusoidal line voltages, this can be restated in simpler form: the flux change in the coil at the end of a half cycle is proportional to the volt-time integral, or the area under the voltage waveshape across the coil during that half cycle.

The fundamental difference between the new circuit and the saturable reactor and self-saturating scheme can be stated as follows: here voltage integral, flux and flux density are the independent variables in the control scheme, as compared to current, magnetomotive force and magnetizing force in the earlier circuits.

A half-wave, nonreversible reset circuit is shown in Fig. 2. The load current flows thru path abce while control action is established through abde. A single winding on a rec-tangular-loop core is active for both
the load and reset half cycles. Current can flow in the load R_{L} only during the positive half cycle of line voltage because of the polarity of the rectifier in the load path. Similarly, control current can flow only during the negative half cycle. The resistance R_{c} adjusts the duration of current flow in R_{L} and hence is the control element for the amplifier.

The circuit reduces to simpler configurations with extreme values of R_{0}. When it is very large, the control path disappears, leaving the self-saturating circuit of Fig. 1B with no control mmf. This is the condition of maximum output.

When R_{G} is very small, the resistances in series with the coil during both half-cycles are very small in comparison to the self impedance of the winding. Hence, for all practical purposes, the coil is connected directly across the line, and only a small magnetizing current can flow. This is the condition for minimum output. Varying R_{c} between these two limits controls the load power in the manner described below.

Control Action

Just before the start of the negative half cycle of line voltage, load current has been flowing, and the core completely saturated. Operation is along path 3,4 on the fluxcurrent loop of Fig. 3A. At the voltage reversal at 1 load current ceases, but the high retentivity of the core material maintains the flux just slightly below the saturation value at 1 . In the following negative alternation of line voltage, current flows only in the reset or control

FIG. 2-Magnetic amplifier with reset control. The core is reset by current flowing through R_{O} during each half cycle when load current is blocked by rectifier in series with load
path, abde (Fig. 2). The drop across the rectifier is very small, so that the line voltage divides between the coil and the control resistance, the actual voltage waveshapes depending on the magnetic characteristics of the core and the value of R_{c}. This reset current is very small compared to the load current, and its peak value equals the maximum horizontal coordinate of the left flank of the flux-current loop.

The flux in the core must change by an amount proportional to the area under the coil-voltage curve during this reset half cycle. It moves from point 1 to point 2 (Fig. 3A), a change equal to ϕ_{c}. The value of R_{c} determines the division of reset line voltage between itself and the coil, and hence the flux change ϕ_{c}. Thus its function is to set the flux in the core at the end of reset and the start of the load half cycle.

At 2 , the line voltage reverses, the reset rectifier blocks, and conduction starts in the load path with the current at first limited to a small value by the width of the flux-current loop and the magnetic characteristics of the core. All the line voltage appears across the coil, since its instantaneous unsaturated impedance has been chosen very much greater than R_{L}. The voltsecond area of the coil voltage from 2 onward grows, and the flux rises proportionately with it.

At some instant, point 3, enough area has accumulated to bring the flux back to the saturated level. Since no further flux change is possible, the coil impedance drops abruptly, and all of the line voltage appears across R_{r}. Load current flows during the rest of the positive half cycle, and the average load power depends on the conduction angle θ_{L}. At point 4 the line voltage again reverses, load current is blocked by the rectifier, and the action repeats itself.

Conduction angle σ_{L} depends on the degree of reset, and the initial value of flux at the start of the load alternation. If ϕ_{G} decreases, point 3 will be closer to 2 , the coil will fire sooner, and the load power is increased. Thus an increase in R_{θ} brings about a corresponding, though not proportional, increase in the load power. Figure 3 B shows
the conditions for a higher value of R_{c}. The flux-current loop for this case is similar to Fig. 3A, but with a smaller value of flux change $\phi_{c}{ }^{\prime}$.

Another comparison can be made between mmf and reset-control amplifiers. In both, load rectifiers permit output current to flow during one half cycle only. Also, the conduction angle θ_{L} is determined by the flux in the core at the start of the load half cycle. The two differ only in the method by which this initial flux level is established.

With mmf control, ampere-turns is the independent variable which sets the initial value of flux at a point just to the left of point 2 on the flux-current loop of Fig. 3A. In reset control, voltage-integral is the independent variable, and the initial flux is set by controlling the coilvoltage area during the reset. Thus the load circuit action is the same in both schemes, and the load conduction angle θ_{L} is controlled by the initial flux level at the start of the load cycle, regardless of its derivation.

Since the flux changes during load and reset periods are exactly equal, the equivalent coil-voltage areas must also be identical. The positive and negative half-cycle areas of line voltage are the same; hence the area of the voltage across R_{C} must equal that across the load R_{L}. This establishes a basic identity; for this circuit, the average (d-c) control voltage equals the average load voltage. Therefore, if the control voltage is known, the load current, voltage and power can be predicted (shaded areas, Fig. $3)$.

Control Resistance

The characteristics of R_{C} can be established fairly simply. Its value can be specified for chosen maximum and minimum conduction angles in terms of the unsaturated coil impedance. As an example, current practice with Deltamax and Orthonol cores, for a range of conduction angles from 30 to 170 degrees, requires a variation of R_{c} between 0.02 and 2.5 times the coil impedance. The latter is obtained by dividing the peak line voltage by the peak coil current flowing with the reactor connected simply across the line. This, however, is an em-

FIG. 3-Voltage waveforms and flux-current curves show effect of variation in control resistance on output
pirical relationship. Its analytical confirmation requires data on the volt-ampere and flux-current characteristics of wound cores not presently available. The resistance R_{C} must be able to withstand the peak line voltage (full output) and the peak coil magnetizing current (full reset). It must absorb a varying amount of power from the circuit, which maximizes at approximately half output.

Although a variable resistance is required as the control parameter, this amplifier can be controlled by practically any form of waveshape of voltage. It was shown that the average control voltage must equal the load voltage. This must hold whether the control voltage is externally derived, or merely the voltase drop of a magnetizing current across a control resistance. The one requirement for voltage control is that the internal impedance of the control source be low, otherwise, with no control voltage full reset and minimum output will be impossible.

Using the figures cited above, the control-source resistance would have to be 0.02 times the coil impedance or less, if a minimum conduction angle of at least 30 degrees were required. This may require a mismatch between control source and amplifier. It should be noted that the source will always absorb, rather than deliver, power from the amplifier, because of the direction of flow of the reset current.

This discussion has purposely assumed ideal circuit elements. This will not be the case in practice. Rectifier leakage may prevent full output if the sum of the leakage and the control circuit current has peaks exceeding a value established by the d-c coercive force of the core material. The saturated inductance of the coil delays reset and load current commutation. With wrappedcore toroids, typical values are 10 to 15 degrees. Stacked laminations give larger delays. Available core materials only approach the rectangular loop, and load-current voltage drops in the rectifier and coil must be considered.

The load circuits of these amplifiers can be connected in the same configurations previously developed for the self-saturating or mmf-control amplifiers. The reset circuits must be determined by the nature of the control impedances or voltages available. It is expected that study of available active impedances will result in composite control amplifiers far superior to presently available cascaded magnetic amplifiers with mmf control.

The author wishes to express his thanks to W. J. Dornhoefer and Harold G. Eicher, Jr. for their help in this work.

References

 (1) R. A. Ramey, On the Mechanics ofMagnetic Amplifier Operation, AIDE Magnetic Amplifier Operation, AIEE (2) W. J. Dornhoefer, Self-Saturation in Magnetic Amplifiers, ALEE Trans. 68, p $835,1949$.

FIG. 1-Shunt-type diode limiter with self-rectified bias is connected across last i-f plate circuit

USE OF amplitude modulation for mobile vhf services such as civil and military aircraft, civil defense and civil air patrol imposes intelligibility limitations in the presence of strong impulse interference. Such receiving conditions occur when stations are located in areas where automobile traffic is heavy and relatively close to the receiving antenna.

Amplitude-limiting devices of many types ${ }^{1}$ have been designed into vhf receivers to minimize the effects of impulse interference; and many of them do a creditable job if the noise voltages appearing at the receiver input are not excessive. When the impulse noise increases, however, many noise limiters fail to maintain intelligibility of the incoming signal.

Although noise-reduction circuits have been suggested that do not depend upon amplitude limiting for their operation, amplitude limiting is the noise-limiting technique having widest application. Only amplitude limiting will be considered in this article.

Interference

Impulse noise, as generated by an ignition system, is a train of highly-damped oscillations, the repetition rate of which varies with the rpm of the motor. The waveform of each impulse and the amount of radiated energy depend upon the electrical characteristics of the ignition system. In general, the duration of each impulse is extremely short and its energy is spread over a wide range of frequencies. If a receiver of limited bandwidth is subject to such impulse noise, the duration of each

By NATHANIEL BISHOP

Time, Inc.
Springdale, Conn.
noise wave train is progressively increased as it passes through each succeeding tuned circuit on its way to the final detector. After detection, the pulse is further integrated by the i-f filter and the audio system.

I-F Limiters

Since ali intelligence carried by an incoming a-m signal is lost during the limiting of a noise pulse, the shorter the duration of the limited pulse, the lower the loss of intelligence. Optimum impulse-noise reduction is obtained by limiting the amplitude of the noise pulse at a point in the receiver where bandwidth is maximum commensurate with selectivity requirements.

The desirability of limiting impulse noise before excessive integration by receiver selectivity has been pointed out. ${ }^{2}$ Nevertheless, many vhf receivers in use do not take full advantage of their overall bandwidth when they use noise limiters following the final detector. Integration by the i-f filter is largely responsible. In addition, such limiters do not prevent the avc system from responding to a train of noise pulses, thereby desensitizing the receiver.

What is needed is an effective i-f limiter requiring a minimum of parts and capable of effective noise limiting prior to the final detector. Such a limiter, if it is to be used in mobile receivers, must be capable of adjusting itself to variations in the received signal and must allow the designer to choose the degree of limiting desired. If such a limiter can automatically adjust itself to the degree of modulation of the incoming signal at a
roughly syllabic rate, its effectiveness can be increased. The limiter to be described is designed to improve intelligibility of $a-m$ speech signals in the presence of strong impulse interference, when retention of speech quality is of less importance than intelligibility. Effective noise limiting under such conditions requires some degree of flattening of the positive modulation peaks by the limiter and such distortion is not conducive to maintenance of speech quality. The designer, however, may make his own compromise between the degree of noise limiting desired and the distortion produced by limiting.

Circuit Details

The i-f limiter illustrated in Fig. 1 is a conventional full-wave shunttype diode limiter with the added provision of self-rectified bias. Each diode assumes a bias roughly equal to the peak value of the applied i-f voltage. The time constant of the bias circuit is largely determined by C_{3} and the shunt resistance consisting of R_{1} and R_{0} in series. The R_{p} of the last i-f amplifier and the value of C_{s} determine the charging rate. Limiter bias rises with positive modulation of the incoming signal and tends to follow the modulation level at a syllabic rate; i-f voltage variations not ironed out by the avc are accommodated in a like manner.

Opening S_{1} allows the bias to rise to the peak value of the applied i-f voltage and stay there, thus in effect removing the limiting action. Crystal diodes have been used in place of the 6AL5, but their comparatively low back resistance acts as a finite shunt across C_{3}, limiting

For Mobile VHF

Shunt-type diode limiter in last i-f plate circuit reduces impulse noise in mobile vhf receivers. Circuit is applicable in civil defense, aircraft, airport-control-tower and other vhf a-m equipment operating in heavy ignition-noise areas

the flexibility of control over the degree of limiting.

The limiter circuit is used across the primary circuit of the last i-f transformer as circuit parameters are more favorable for effective limiting at this point. A shunt limiter of finite forward resistance performs best when working out of a high-impedance source into a high-impedance load, and such conditions are best met by the indicated circuit. Impulse-noise pulses are limited to a level determined by the limiter bias which in turn is determined by the average peak level of the applied i-f voltage.

For effective limiting, the receiver must have sufficient gain up to the limiter to assure proper lim-
iter action on weak signals. The requirements in this respect are quite similar to an f-m receiver equipped with a limiter. Unfortunately, diodes do not look like a low resistance until the input voltage is measured in volts.

Receiver Application

This limiting circuit has been incorporated into two vhf receivers with excellent results. The first receiver, designed for civil-defense operation in the 144 to $148-\mathrm{mc}$ range consists of a cascode r-f stage, triode mixer and three stages of 4 -mc i-f having a bandwidth of approximately 60 kc . A block diagram is shown in Fig. 2A. In this receiver, R_{1} and R_{2} are replaced by a 2 -meg-

FIG. 2-Limiting circuit has been successfully used in civil defense receivers using both single and double conversion arrangements
ohm variable resistor to allow adjustment of the limiting level. This provision for adjustment of the limiting action is not necessary once the designer has chosen the desired degree of limiting.

Switch S_{1}, indicated in Fig. 1, may be eliminated if limiting is desired at all times, and the two fixed resistors R_{1} and R_{2} may be combined into one. Delayed ave is used in this receiver to allow maximum gain on weak signals for better limiting.

The second receiver is a doubleconversion unit with a similar r-f and mixer arrangement. Figure 2B shows its block diagram. One stage of 10.7 -me amplification is used between the first and second mixer with two stages of $455-\mathrm{kc}$ i-f following the second mixer. The gain up to the limiters in both receivers is comparable, but the bandwidth of the second set is approximately 6 kc as opposed to 60 kc for the single-conversion unit.

The noise-limiting performance of this circuit arrangement, in both mobile and fixed operation, has provided a degree of performance not obtainable with the conventional type of noise limiter. While the narrow-band receiver provides better intelligibility in the reception of very weak signals in the absence of heavy impulse noise, the wide-band receiver is more effective in preserving intelligibility under conditions of heavy impulse interference.

References

(1) E. Toth, Noise and Output Limiters, Electronics, p 114, Nov. 1946 and $p 120$ Dec. 1946 .
(2) J. Lamb, Interference and Noise Reduction in Communications Receivers, Proc Radio Club of Amer, Nov. 1936.

TRANSISTORS: Theory and Application

Transistor Action

Part IV

By ABRAHAM COBLENZ and HARRY L, OWENS
Signal Corps Engineering Laboratories
Fort Monmouth, New Jersey

IN THE FIRST three articles of this series concepts particularly appropriate to transistor theory and not normally encountered in the study of vacuum tubes have been discussed. A superficial view of transistor operation was given ${ }^{1}$, and some simplified principles of quantum mechanics were considered which will assist in a deeper understanding of transistor action ${ }^{2}$. In addition, special aspects regarding the nature of the electron have been reviewed ${ }^{3}$ for use in the analysis of the microscopic structure of the solid materials used in transistors.
In this article the application of these very general theorems is made to the study of germanium and silicon to provide better insight into the nature and structure of semiconductors.

Atom Structure

This section concerns primarily the Ge and Si atoms. Mention has been made that the present theory of the structure of matter envisions a nucleus containing protons (+) about which are distributed electrons (-) in sufficient quantity so that the total charge of the atom is zero. It is essential to bear in mind that the normal atom, if not disturbed or ionized, is neutral or has zero charge.

The electrons outside the nucleus are arranged in shells or rings as indicated diagrammatically in Fig. 1. The atomic number of german-

FIG. I-Schematic representation of germanium and silicon atoms shows electron rings surrounding nucleus. Note the 2-8-18-4 arrangement for $G e$ and $2.8-4$ arrangement for Si . First three rings for Ge and first two for Si are complete rings.
ium is 32 ; this means that there are 32 electrons rotating around the nucleus as indicated. From previous discussion, ${ }^{3}$ it is not to be inferred that these electrons are at any time physically distributed as shownthe positions of the electron shown may, for convenience in thinking, be regarded as the most probable locations.

An electron shown in the sketch as being in the outer ring of 4 has a fairly large probability at various times of being just outside the nucleus and even closer to it than the two electrons of the inner ring. Similar remarks apply to all the

[^10]other electrons. For electrons we always speak of probability with regard to their position and only for convenience in discussion do we draw ultrasimplified sketches like Fig. 1. More correctly, we should show a smeared-out picture as in Fig. 2 where the shaded portions show areas of high probability.

For discussion, consider that an atom consists of a nucleus surrounded by one or more concentric rings of electrons. A ring is regarded as complete if it has a particular number of electrons associated with it. The ring nearest the nucleus, or ring No. 1, requires two electrons to be complete. The next outer ring, ring No. 2, has eight electrons, and ring No. 3 has eighteen electrons (eight for argon) when complete. Both the position of the ring and the number of electrons in it must be known to de-

In Germanium and Silicon

Study of physical properties of common transistor semiconductor materials and impurities. Conduction by holes and electrons is explained to provide working knowledge of principles for following articles on transistor electronics

termine whether a particular ring is complete.

Energy Levels

It is possible to knock out one or more electrons from any of the rings about the nucleus. In the case of the incomplete rings such as the outer rings of four electrons shown for the two elements in Fig. 1, it is possible to cause an additional electron or more to become attached to the atom in the incomplete ring. In either case, whether the atom gains an electron (or more), or loses an electron (or more), the atom is said to be ionized.

To knock out electrons from the various rings of the atom requires energy. This energy may be obtained, for example, from heat in the form of thermal agitation, by bardment by some other particle, or particle, or by subjecting the atom to electric fields.

One of the ways of determining in which ring of an atom a given electron exists is by measurement of the amount of energy required to ionize the atom with respect to an electron in that particular ring. The study of ionization of atoms is quite complex and actually is of little concern here. It is essential, however, to bear in mind: (1) The ionization energy for an electron in an inner ring is greater than that for an electron in an outer ring. (2) For a given position of a ring with respect to the nucleus, say the second ring, more energy is required to remove an electron from a complete or full ring than from an incomplete or unfilled ring.

In general when an electron is at a given energy level there is a greater probability that it may
move or jump to a lower level than to a higher level because, to jump to a higher level, energy from some outside source must be supplied. On the other hand, due to random processes, there is a finite probability that an electron will jump to a lower level.

The point of interest here is that in consequence of this oversimplified picture, electrons in the states of higher energy have a greater probability of change or transition to new levels than electrons in the lower energy levels. If an electron changes its energy level frequently, or the probability of such change
of energy is large, we say that the electron is in an unstable state, and contrariwise, if the probability for an energy transition is small, the electron is in a stable state.

Stable Electrons

The fact that electrons in completed rings are more stable than those in the incompleted rings is actually the crux of the matter of interest to us. If a certain state of a system is more stable than another, the probability will always be greater of finding this system in the stable state. Because the stable condition is the one of high-

FIG. 2-Artist's conception of germanium and silicon atoms showing smeared-out region about nucleus which represents probability of finding an electron in this region. Lighter regions both near the nucleus and at outer edges indicate regions where probability is small
est probability in certain substances, some natural and some artificial, the atoms tend to adjust themselves and their electrons into a state of stability.

Whereas the atoms of the elements are frequently found in an ionized condition, ionization is restricted to the incomplete rings, normally-full rings seldom, if ever, being found in an ionized condition. As a result, simple chemical compounds involve interactions among the electrons in the incomplete rings only, and for this reason these electrons are called the valence electrons. (Latin: valeo, to be worth, or to be strong.) Because only the valence electrons enter into chemical combinations under normal circumstances, diagrammatically only the valence electrons are usually shown and the complete rings are understood and omitted. Subsequent diagrams for the germanium and silicon atoms show only the four valence electrons.
In Fig. 3 are shown several atoms of carbon. Carbon is tetravalent (four valence electrons), atomic number 6 , and the two electrons of the inner ring are not shown, as per the convention mentioned. Note that for the inner or first ring two electrons constitute a completed ring. In the particular substance whose atomic structure is shown by this crude sketch, the valence electrons of atom 1 are shared, as it were, with the valence electrons of atoms 2, 3, 4 and 5. With this arrangement atom 1 behaves as though its second or outer ring were now complete and had 8 electrons in it.

Admittedly this is over-simplified, but the observed fact is that an electron in an incomplete ring, and having an energy level E_{1}, is actually found to occupy a lower energy level E_{2} when it is part of an electron-sharing arrangement, such as shown in Fig. 3.

Whatever is said about a single atom and its electrons in reality applies to the countless myriads of such atoms and electrons which constitute the semiconductor material. Each electron of an atom such as No. 1 is shared with a suitable nearby valence electron such as from atom 2, and this pair of electrons thus may be said to form a bond which, because it involves valence electrons, is called a valence bond. This term is part of the basic terminology in semiconductor theory and is frequently encountered in the analysis of transistor action.

The four valence bonds shown for the carbon atoms give rise to a type of substance which the reader knows as diamond. Of particular significance in transistor work is the fact that the atomic structure for pure germanium and silicon is exactly as shown for diamond in Fig. 3 One need merely write Ge or Si in the place of the C in the figure to have the correct picture.

Semiconductors

Interesting and useful information about silicon and germanium can be deduced from the simple picture of the valence bond structure. First, to have electric current there must be carriers of electric current. Except for special cases when the carriers may be holes ${ }^{1}$ the carriers
are negatively-charged electrons.
As a corollary, if large numbers of electron carriers are available, the current may be large and other things being equal, we say the circuit involved has low resistance or high conductivity. Contrariwise, if the number of available or free electrons is small, the circuit has high resistance or low conductivity.

A free electron is one that is not in the sphere of influence of the nucleus or that is not in a circumnuclear ring. When an electron is in a valence bond it is in a stable state of low energy and is considered to be bound in the valence bond, and not free to take part in conduction.

From the preceding we may reason as follows: (1) Most of the electrons in a material whose structure involves valence bonds are bound. (2) Hence very few electrons are free to take part in the conduction process. (3) Since the number of electrons free to take part in conduction is small, the material is not a good conductor. Since the three preceding statements are applicable to germanium and silicon, these materials fall into the category of part conductors, or semiconductors.

Forbidden Band

Because energy must be imparted to the electron to get it out of its orbit about the nucleus, it is fairly clear that free electrons have, in general, a higher energy level than electrons in a ring whether the ring be completed or not. As has already been defined in Part II a series or ensemble of adjacent energy levels is called an energy band.

In Fig. 4 A is shown a sketch indicating a conduction band or the levels of energy of free electrons. The ensemble of energy levels for the electrons in the valence bonds, or covalent bonds as these are sometimes called, forms a band of energy levels which is called the valence bond band. As indicated in Fig. 4A the energy levels in the valence bond band are lower than the energy levels in the conduction band.

The interesting point about this picture of the structure of germanium or silicon is that between these two bands is a series of energy levels which, for a given material,
is never observed to exist. These form an energy gap which is also called the forbidden band.

An insight into the importance of this concept of forbidden bands, conduction bands and valence bond bands is obtained from the consideration that it is feasible to classify the conductors, the semiconductors and the insulators by this means. In the case of conductors (Fig. 4C) there is no forbidden band or energy gap at ordinary temperatures. There is an overlapping of

FIG. 3-Covalent bond structure in a tetravalent atom lattice. Such valence bonds may involve atoms of carbon (diamond), germanium and silicon, among others. Note how each electron is bound by valence bond and not free to take part in conduction process
the conduction and valence bands, and valence bonds may or may not exist.

This implies that very large numbers of electrons whose energy falls in the conduction band are always present. If this situation exists in a given material, the material is a conductor by definition.

In the case of insulators the energy gap is very large, perhaps of the order of twenty electron volts. ${ }^{2}$ The number of electrons which at room temperatures will acquire sufficient energy by thermal agitation alone to jump the gap and make the transition from the valence band to the conduction band will be small (Fig. 4B).

Bearing in mind from previous discussions that the most probable state of the electron is in the lower energy levels or in the valence band, it may be seen that if the energy gap is large the number of electrons which will be found in the conduction band is small, and by definition the material is an insulator.

Semiconductors have a conductivity in the range between conductors and insulators, and have an energy gap of the order of one electron volt. For the semiconductors germanium and silicon, the width of the forbidden band is 0.7 and 1.11 electron volt respectively, and by comparison the energy to remove an electron when covalent bonds are not involved is of the order of 0.05 electron volt. Thus a useful criterion for classifying conductors, semiconductors and insulators is on the basis of the width of the energy gap.

Because the energy gap for germanium and silicon is small, even at room temperatures some electrons are available for conduction, having broken from their valence bonds. While the number of electrons raised to the conduction level by thermal agitation is sufficient to place these two substances in the category of the semiconductors, it is insufficient to support a satisfactory degree of transistor action. Impurities such as arsenic (As), antimony (Sb) and boron (B) are frequently present in germanium and provide additional carriers to alter the conductivity. These and other impurities, gallium (Ga) and indium (In), for example, may be added in controlled amounts to produce a desired value of conductivity. Even the purest germanium now available contains sufficient impurities to provide free electrons or holes which materially increase the conductivity. In Fig. 5 is shown a basic arrangement consisting of an impurity atom, such as arsenic, in a matrix of germanium atoms. Arsenic is a pentavalent element which
means that its outermost and incomplete ring has five electrons. The closed rings of arsenic are three in number, consisting of two, eight, and eighteen electrons respectively, and do not enter into the picture, as mentioned earlier in this article, but their presence must be understood.

The atoms in a solid are arranged in a definite order or pattern and this specific arrangement of atoms is called a lattice (Fig. 7). The positions of the atoms are called the lattice sites, and when one atom displaces another from its normal lattice site, it is said to enter the lattice structure substitutionally. On the other hand if an atom assumes a position within the volume generally enclosed by the lattice structure without being located at a lattice site, it is said to enter interstitially.

The important characteristic of certain types of pentavalent impurities, such as arsenic or antimony, is that they exhibit a greater affinity for certain lattice sites within the structure of the germanium than the germanium atoms normally at those sites. Arsenic may be added when the germanium is in a molten state and upon solidification it is observed that arsenic atoms have entered the germanium lattice structure substitutionally. The electrons in the outer ring of the arsenic atom then form their own covalent bonds with adjacent neighbors, as the figure shows, and thereby form a stable structure for the electrons of both arsenic and germanium which are involved in the valence bonds. But arsenic is pentavalent and there is one electron

FIG. 4-Energy level diagrams show differentiation of semiconductors, insulators and conductors by presence and width of various bands

FIG. 5-Germanium crystal structure, showing an atom of arsenic replacing one of germanium to form its own valence bonds with adiacent atoms and leaving one electron to add to the possible current carries. The fifth valence electron of the arsenic does not enter into a valence bond. A small amount of energy will bring it up to the conduction band of energy levels where it can act as a carrier of current
left over. There are no adjacent electrons for this excess electron to form convalent bonds with and in accordance with the stability picture described this electron is very easily ionized from the sphere of influence of the arsenic nucleus. It readily enters the conduction band to act as a free electron and a carrier.

To remove such an electron from its ring, only about 0.05 electron volt is required and this energy is readily available from thermal agitation at room temperature. By comparison, 0.72 volt would be required to remove this electron if it were in a covalent bond.

Donors

Thus the impurities provide additional carriers for this semiconductor at room temperature. Because these impurity atoms contribute an electron they are called donors, and it is a convenient mnemonic to italicize the n to show that donors give rise to n-type semiconductor material.
This is an important concept: n-type germanium is due to a donor impurity and the majority carriers of electric current are negative particles or electrons.
The discussion here refers to a typical or prototype reorientation in the material, and in the germanium pellet used in the transistor there are myriads of such impurity
atoms contributing corresponding numbers of electrons. In a sample of high-purity germanium, one impurity atom per $100,000,000$ germanium atoms is a typical ratio. Controlled amounts of impurities are added in the manufacture of transistors to obtain an optimum impurity concentration. In such purposely contaminated germanium samples a comparable figure is one impurity atom per $10,000,000$ germanium atoms, or roughly ten times that of the high-purity germanium.

A trivalent impurity such as boron may be added to germanium when in the molten state and upon solidification the atoms of boron replace atoms of germanium in their lattice sites. Each boron atom robs an electron from a neighboring valence bond, bringing to four the number of electrons in its valence ring. Having robbed this electron, as shown in Fig. 6, the boron atom forms its own covalent bonds with adjacent germanium atoms and thereby enters into a stable arrangement in the lattice structure. But the valence bond from which an electron has been taken now has a deficiency of one negative charge.

Holes Redefined

At this point it is suggested that the reader review the introductory definition of a hole given in the first article of this series. ${ }^{\text {. }}$ It was stated
that when an electron is removed from a neutral atom a positive charge is created and this is of the nature of a hole. However, this is a preliminary definition.

In an accurate definition, the particular net positive charge remaining when an electron is removed from a covalent bond is a hole. Strictly speaking, holes are an attribute of atoms whose electrons enter into valence bonds; merely removing electrons from a neutral atom does not create a hole in the semiconductor sense of the word.

In this respect we are not talking about two tiny balls of fire spinning about the nuclei of which one has been removed to the boron atom. We are speaking of wave packets whose descriptive wave functions define the probability of finding these wave packets in the region of the germanium nucleus and whose quantum states are described by different quantum numbers when in a valence bond, compared to the quantum numbers when not in a valence bond.

The redistribution of the quantum states of the electrons in the system when one has been removed from a valence bond is for physicomathematical purposes conveniently described in terms of the positive net charge remaining and this convenient abstraction is called a hole.

FIG. 6-Germanium crystal structure showing an atom of boron replacing one of germanium, adding an electron to its valence ring of 3 and forming covalent bonds with nearest neighbors. A hole is created in the valence bond where the "robbed" electron had been

When so regarded the hole is endowed with a true positive mass, a true positive charge, a real velocity, and a real energy, and the system acts as if such a positive particle exists.

The ball of fire picture is inadequate for such an analysis and if heedlessly applied on a microscopic level within the atomic structure of the solid will give inconsistent and inadequate explanations of observed phenomena.

Acceptors

Returning to the action of the trivalent impurities, because the boron atom has taken on an additional electron it is called an acceptor and the impurity which acts in this manner is called an acceptor impurity. The word acceptor is written with an italicized p as a mnemonic for the fact that the material thus created is said to be a p-type material because the majority carriers of current are the positive charges or holes.

Holes are regarded as true carriers of electric current because observed conduction phenomena in semiconductors can be explained only by the assumption that holes may play the same role in the conduction process as do electrons. Normally both electrons and holes are present in a semiconductor material and both may act as current carriers in the conduction process.

In n-type germanium, electrons greatly outnumber the holes, and are therefore referred to as the majority carriers; the holes are then called the minority carriers. In p-type material where the holes outnumber the electrons, holes are the majority carriers and the electrons are the minority carriers.

Normally n-type germanium is used in point-contact transistors. Both n and p types are used in junction transistors. These types of germanium are the only two that are known and used in transistors at present.

Lattice Structure

In Fig. 7 is shown the lattice structure or array for the germanium and silicon crystals. A crystal may be regarded as the fundamental building block or iterative unit of

FIG. 7- A three-dimensional representation of the crystal lattice of germanium. Note the hexagonal arrangement of the atoms. Corner atoms are considered as shared by eight similar cubic crystals with a common vertex, and the total contribution of all the corner atoms to a unit crystal is one atom. Crystal refers to the entire cubical structure; lattice refers to the arrangement of atoms within the crystal volume
which certain materials such as germanium and silicon are made. When silicon and germanium freeze from their molten state they invariably freeze as a series of small repeated units called crystals.

In Fig. 7 the lines that outline a cube show the fundamental unit to be a cubical solid or volume. It is not necessary for all the atoms which form the crystal to be entirely within this cubical volume. For instance, each of the corner atoms is shared by the eight crystals which have a common corner at that lattice site. The eight atoms which actually compose the crystal are arranged in a regular geometric pattern of three dimensions which is called the lattice. It is not necessary that for every such cubical unit or crystal all the atoms be at their lattice sites nor that the arrangement always be as regular as the figure implies. The existence of interstitial atoms has already been mentioned, but in addition irregularities in the form of dislocations of various kinds are the rule rather than the exception. References to order and disorder in the literature refer to the irregularities in the crystal structure.

In speaking about crystals, it is particularly important to distinguish between the word crystal as used by the physicist and as used by the metallurgist. When the
physicist says single crystals he means the microscopic iterative units each consisting of atoms arranged as discussed previously. Regular and regularly-arranged crystals as defined by the physicist which are formed without creating boundary planes or so-called grain boundaries compose a single crystal in the sense of the metallurgist.

The crystal of the metallurgist is a large single piece of metal which may, in some cases, weigh several pounds. In examining a crystal, the polycrystalline structure is recognized by the presence of lines on the surface of the material. The single crystal is recognized by the complete absence of such boundary lines or grain lines on its surface. The use of single-crystal germanium has contributed materially to the development of uniform and reproducible transistors.

Summary

(1) The fundamental structure of germanium is crystalline and the crystal is cubical in shape.
(2) The electrons belonging to these atoms in the crystal enter into stable configurations known as valence bonds. The breaking of a valence bond produces a free electron and a hole.
(3) Pentavalent impurities such as arsenic displace atoms of germanium in the lattice structure to form four covalent bonds with the nearest neighbors allowing the fifth valence electron to be readily removed. In this way the arsenic impurities act as donors giving rise to n-type material.
(4) Trivalent impurities such as boron enter substitutionally into the lattice structure of germanium, acquire an additional electron into the valence ring and form four covalent bonds with the nearest neighbors. In this way the boron impurity atoms act as acceptors giving rise to p-type material.

Reffrences

(1) Ahraham Cohlenz and Harry L. Owens, TRANSISTORS: Theory and Application, Part I, Electronics, p 98, March 1953.
(2) Abraham Coblenz and Harry L. Owens, Energy Levels in Transistor Elec tronics, Part II of TRAN゙SISTORS: Theory and Application, Electrontcs, p 38, Apr. 1953.
(3) Abraham Coblenz and Harry L. Owens, Physical Properties of Electrons in Solids, Part III of TRANSISTORS: heory and Application, Electronics, 162, May 1953.

Audio Impedance and

Abstract

Modified bridge technique permits measurement of a-c circuit values with minimum of components. Impedance and phase angle are read off directly, eliminating calculations, from this simple meter that requires no standard of inductance or capacitance

ALTERNATING-CURRENT circuit parameters can be measured over a range of 0 to 100,000 ohms impedance at frequencies between 30 and 15,000 cycles using the circuit shown in Fig. 1. The value of the measured impedance is given as a complex impedance in polar form. A null method of indication is used for both the magnitude impedance and phase-angle indications. Calibration is independent of frequency and magnitude of the applied signal voltage.

The operating principle involves a comparison of a voltage across a calibrated resistance with respect to a voltage across an unknown impedance where the resistance and impedance are in series. When the voltages are equal the impedance of the unknown will equal the value of the calibrated resistance. If two equal arms are added to form the bridge circuit shown in Fig. 2, the sum of the unbalance voltage E_{d} as it is related to the voltage across the calibrated resistance will be proportional to the phase angle of the measured impedance. The result is given in terms of magnitude impedance and phase angle.

By means of a system of balanced rectifiers and a switching arrangement, the voltages are converted to direct current and compared by a null indication method.

Operation

When the voltage across the calibrated resistance is equal to the voltage across the unknown impedance then equal voltages will be applied to the grids of the cathode followers.

For equal input voltage from the cathode followers the output of the balanced diode rectifiers

By JULIAN E. HANSEN

Transmitter Engineer
Radio Station KSL
Salt Lake City, Utan
is zero. Thus, a null is obtained when the value of the calibrated resistance is equal to the value of the unknown impedance.

After the magnitude impedance has been determined, the ganged switches shown in Fig. 1 transfer one side of the balanced rectifier from the output of V_{2} to the output of the cathode follower V_{3}, the grid of which is driven by voltage that may be present at the junction of the right-hand arms of the circuit. The voltage at the cathode of this tube is proportional to the function of the phase angle of the measured impedance and is compared with part of the voltage appearing across the calibrated resistance.
The voltage across the calibrated resistance is impressed on the grid of V_{1} and appears across the potentiometer R_{2} forming part of the load in the cathode circuit of V_{1}.

The other side of the balanced rectifier is now connected to the arm of the potentiometer rather than directly to the cathode of V_{1}. By this means a part of the voltage across the calibrated resistance is made available for comparison with the unbalance voltage. The resistance R_{1} connected between the cathode of V_{1} and the potentiometer is necessary to drop the voltage across the potentiometer to a value equal to that appearing at the cathode of V_{3} when the phase angle of the unknown is 90 deg.

The relative value of these voltages and the ratio of the resistance of the potentiometer to resistance of R_{1} is explained by reference to
the vector in Fig. 3, where

$$
E_{d}=\frac{E}{2} \tan \frac{\theta}{2} \text { and } E_{R}=\frac{E}{2 \cos \frac{g}{2}}
$$

If the unknown is a resistance, the junction of the A and B (Fig. 2) will be at zero voltage; therefore the arm of potentiometer R_{2} will be at zero voltage and at a position corresponding to zero phase angle. Conversely, if the unknown is reactive, the arm of the potentiometer will be at a position determined by the value of the unbalance voltage E_{d}. The potentiometer can thus be calibrated in terms of phase angle. The dial graduation in degrees is nearly linear. It should be noted that a balance for magnitude impedance is made before the phase angle is measured. Except for this requirement there is no interaction between the controls used for magnitude impedance and the phase-angle measurement.

The sign of the phase angle can be determined by changing the frequency of the signal source slightly in a known direction and observing its effect on the impedance. Since a variable frequency oscillator is usually available as a signal source this method has been used. However, the sign of the phase angle could also be determined by connecting suitable values of capacitance across the standard or unknown arms of the bridge circuit, thereby adding to or subtracting from the value of the reactance of the unknown with its resultant effect on impedance.

The high input impedance of the cathode followers reduces the loading effect on the bridge circuit, which is the principle source of error. The low output impedance of

Phase-Angle Meter

FIG. I-Circuit of the bridge, balanced rectifier and indicator. To save space in actual equipment, phase and calibrated resistance are mounted coaxially
the cathode followers reduces the loading effect of the stray wiring capacitance as well as loading caused by the diodes. This also permits the use of a low-resistance wire-wound phase-angle control.

Potentiometer R_{3} connected as part of the load resistance on the diodes is used to balance the diode rectifiers. It will also compensate for slight gain differences in V_{1} and V_{2}.

Zero Check

In addition to the switch positions necessary for the impedance and phase-angle measurement, a third position checks zero setting of the vacuum-tube voltmeter. This is accomplished by disconnecting the calibrated resistance and unknown arms from the circuit and at the same time grounding the junction of the A and B arms. Since these arms are of equal value they can function as an accurate voltage divider to provide identical voltages to each of the cathode followers. While the primary function of the check is to eliminate error owing to drift of the vacuum-tube voltmeter used for null indication it also checks the electrical symmetry of the cathode followers V_{1} and V_{2} and the balanced diodes.

The voltmeter used for null indication is a series-balanced d-c amplifier ${ }^{1}$ with a microammeter for a load. Its stability is good and a regulated power supply is not required. Zero adjustment is by means of the $1,000-0 h m$ variable resistance in the lower half of the 6SL7, in Fig. 1.

The value of the calibrated resistance that determines the range of the instrument is 0 to 100,000 ohms, made up of a combination of decade steps and a continuously variable control of 0 to $1,000 \mathrm{ohms}$. The reactance of the resistance should be held to a low value. The control calibrated in phase angle has a value of 1,000 ohms.

It is necessary to give the bridge transformer special consideration. The capacitance between the secondary and ground should be held to a low value. If this is not done the accuracy of the instrument will be affected at the higher frequencies. It is also necessary that the primary have a d-c resistance of such a value as to provide proper bias for the 6AQ5 input tube.

The impedance ratio of the transformer is a compromise value because the load impedance is variable. Load impedance is fixed by the value of the unknown impedance

FIG. 2-Simple bridge circuit shows derivation of voltage E_{l}

FIG. 3-Relationship of voltages shown above is described in text
being measured. The compromise ratio decided upon was approximately 200 to 1 . The transformer is driven by a cathode follower to minimize the effect of this variable load impedance and to reduce waveform distortion.

The transformer was constructed from an audio driver type with a turns ratio of approximately 1 to 1 of which the inside winding has a d-c resistance of about 500 ohms. The outside winding of the transformer was removed and an electrostatic shield placed over the inside winding. Wood spacers support the secondary with an air space between it and primary and between secondary and core, minimizing capacitance to ground.

Suitable combinations of resistance and capacitance were used to calibrate the phase-angle dial. With a variable-frequency source a minimum of such combinations is necessary to complete the calibration.

The author is indebted to Duane E. Beecher, formerly with radio station KSL and now with Hughes Aircraft Co, for his helpful suggestion leading to improved linearity of the phase-angle dial.

Reference

(1) M. Artzt, Survey of D-C Amplifiers, Electronics, p'112, Aug. 1945

Analog Computer Solves

FIG. 1-Stepping switch in control unit governs analog multiplication of initial data values by proper coefficients. Free-running multivibrator is basic timing unit

Geophysical Problems

Subsurface features can be studied from measurements made on earth's surface but interpretation of data is laborious and time consuming. Specially designed analog computer saves time and effort. Digital read-out enhances accuracy and stability

By S. KAUFMAN
Exploration and Production Research Laboratory
Shell Oil Company
Houston, Texas

GEOPHYSICAL EXPLORATION is often carried on by making magnetometric or gravimetric measurements on the surface of the earth and interpreting them in terms of subsurface features. The analog computer to be described was devised to perform rapidly the arithmetic operations required to interpret potential-field data.
The need for rapid computation of geophysical data arises from the large number of calculations required. A typical region of interest may be 1,000 square miles, which for half-mile grid spacing contains 4,000 values of initial data. For every value of initial data a separate computation is required that consists of summing as many as 43 terms, each term being a product of one of the initial values by one of a set of predetermined coefficients. Since, as many as five different sets of coefficients may have to be applied separately, analysis of a typical area may require more than 20,000 lengthy calculations.

Other Applications

The computer, however, is not restricted to geophysical problems since the operations performed are of a more general type where, given a large set of values of initial data and a smaller set of coefficients, it is desired to pair each coefficient with a selected member of the large set of numbers, multiply each pair of terms, and sum the products. The coefficients are then repeatedly paired with different groups of numbers from the large set, and

[^11]

Computer operator reads answers on counter-chronograph (center), initial values are set up on data boards, left and right
multiplication of pairs and summation of products continues.

General Description

Initial data is stored on a large jack board arranged in the desired grid pattern. An array of voltages, is presented, each voltage proportional to the measured value of the field at the corresponding field grid point. A movable plug board whose plugs are arranged to select a desired set of grid voltages engages the jack board.

Selected voltages from the plug board are fed separately to the fixed contacts of a stepping switch whose rotating arm samples each contact in succession. The arm is connected to a precision resistive divider whose output taps are arranged so the included resistance is proportional to the coefficients required in the computation. Several sets of coefficient dividers are in-
corporated in the computer and are readily chosen by a selector switch.

The taps of the voltage divider connect to a second bank of fixed contacts of the stepping switch. Sampling the jack-board voltages in synchronism with the proper tap of the voltage divider makes available a succession of voltages, each proportional to the product of a measured field value by a predetermined coefficient.

Read-out is initiated by feeding the voltages to a voltage comparator, which produces a pair of pulses for each voltage input, whose time spacing is determined by the magnitude of the voltage. These pulse pairs activate one of two electronic counter-chronographs, the choice depending upon the algebraic sign of the coefficient. Here successive time-interval measurements are accumulated. Subtraction of negative-term accumulation from
positive-term accumulation occurs at the end of each sampling cycle, and the final answer is read out directly.

This type of read-out is accurate because it does not require appreciable power from the voltage source nor does it upset any voltage relations. Its circuits can be designed to make it relatively independent of variations, with resultant long-time stability.
Fundamental timing of the system, which controls the rate of operation of the stepping switch, and hence the rate of accumulation of partial products, is adjusted for about five operations per second. Once data are set into the jack board, the process of 43 multiplications and final summation is accomplished in about 10 seconds.

Layout

A front view of the apparatus is shown in the photograph. The panels at either side contain inputdata controls to adjust the voltages at the jack board located at desk level in front of the operator.

The computer has a storage capacity of 900 values, corresponding to a grid region of 60 columns by 15 rows. The jack board contains 1,740 jacks, so interwired that the computation of each row of points, after the first, requires resetting only 60 input-data values per row. One series of 3,300 computations made twice for checking purposes, was performed at an average rate
of slightly less than one minute per computation.

The plug board is shown inserted in the upper portion of the jack board. Two counter-chronographs are located above the jack board. The answer is obtained from directreading neon-light indicators on the lower counter-chronograph. All operations are controlled from the control panel in the operator's left hand.

Data-Input Circuit

The data board, jack board and plug board comprise the data-input section shown schematically in the upper left portion of Fig. 1. One 100,000 -ohm shunt potentiometer and one $5,000-\mathrm{ohm}$ series potentiometer on the data board are connected to each jack of the jack board making any voltage from zero to V independently available at each jack. Jacks are arranged in a two-dimensional hexagonal array. The plug board, with plugs also arranged in a hexagonal pattern, engages the jack board. Each fixed contact of $S_{1, s}$ connects through a correspondingly numbered plug to a selected jack.

The arm of S_{14} is always loaded by a resistive voltage divider. One of several dividers may be selected. Total resistance of each divider is 100,000 ohms but the amount of resistance across each tap is preset in accordance with the desired calculation. The arm of $S_{1 B}$ selects in succession each voltage

FIG. 2-Voltage comparator converts voltage product from analog unit to corresponding time intervals that are summed by counter-chronographs
presented to $S_{\text {is }}$ by the plug board, multiplied by one of the factors determined by the voltage divider. This succession of voltages is led to the voltage comparator through S_{2}, the calibrate-operate switch located on the control panel.

Inserting Input Data

Each input-data control is set by a comparison scheme using only one precision element. Data insertion consists of adjusting the voltages at the jacks of the jack board so that when the jacks are loaded by a 100,000 -ohm resistor, the voltages present are proportional to the initial input data.

Use is made of R_{1}, a 10 -turn potentiometer, with better than 0.1 percent linearity, and a direct-reading dial. It is connected, in series with R_{4}, between the primary voltage source V and ground. If all the initial input data in the region of interest are in such units that the numerical values lie between zero and 1,000 , then the voltage appearing at the arm of the R_{1} which is proportional to the dial reading, can readily be adjusted to be proportional to any initial input value.

Control Unit

The control unit governs the motion of the rotating arms of the stepping switch. Relay $R E_{1}$ controls the motion of the rotating arms of $S_{1 S, b, G \text { and } d}$ and the makebreak contactor $S_{I F}$. The switch is so designed that each interruption of current through $R E_{1}$ causes the switch to move one step.

Power from T_{1} is rectified, passed through $S_{3}, R E_{1}$, and the normally closed contacts of $R E_{2}$. Dual-triode V_{1} is a free-running multivibrator, with a period of about 0.2 second; $V_{2 A}$ is a cathode follower; $V_{2 B}$ is diode-connected and is used as a damper.

Rise in voltage at the plate of $V_{1 \Delta}$ causes increased conduction in V_{24}; the resulting rise across R_{2} activates the relay $R E_{2}$, opening its normally closed contacts. Opening the contacts of $R E_{2}$ interrupts current flow through $R E_{1}$ causing arms A, B, C and D of S_{1} to move one step. This motion causes $S_{1 F}$ to close momentarily, shorting out R_{3} and a negative-going trigger synchronized with the stepping of the
rotating arms of S_{1} is fed to the delay multivibrator in the voltage comparator.

Scale Factor

Since voltage source V is common to the data board and the potentiometer (R_{1}) used for data insertion, the reference voltage obtained at the arm of $S_{1 B}$ is always proportional to the desired computation, independent of the value of V. However, it is advantageous to set voltage V so that the time interval determined by the voltage comparator for voltage V input is a round number, such as 10,000 microseconds.

Voltage Comparator

Conversion from voltage to time is accomplished in the voltage comparator. For a given voltage input, the output is a pair of pulses whose time separation is a linear function of the magnitude of the reference voltage. Since the reference voltage is obtained from a series of switching operations, sufficient time delay is incorporated in the voltage comparator to allow transient voltages to disappear.

A linearly rising voltage waveform synchronized with the insertion of a reference voltage is produced. The start of this rising voltage is coincident with the first, or start, pulse. When the rising voltage is equal in magnitude to the reference voltage, a second pulse is produced. This pulse pair is fed to a counter-chronograph and the time interval accurately measured.

The circuit diagram of the comparator is shown in Fig. 2. The trigger input is obtained from $S_{1 /}$, hence is synchronized with the motion of the stepping switch S_{1}. Dual triode V_{1} is a biased multivibrator, with $V_{1 B}$ normally conducting. The negative-going trigger changes the state of V_{1}, but recovery is automatic. The time between triggering signal and recovery is determined by the values of R_{1}, R_{2} and C_{1}.

Pertinent waveforms are illustrated in Fig. 3. Figure 3A is the waveform seen at the second plate of V_{1} (Fig. 1). The waveform at the first plate of V_{1} (Fig. 1) is exactly synchronized with this waveform, but is positive-going instead of negativengoing. Thus, at zero
time, $R E_{\mathrm{g}}$ is opened and the stepping switch moves. Because of mechanical linkages between the motion of the stepping switch and the activation of $S_{1 k}$, the negative-going trigger to the comparator does not start until time A. Its waveform is shown in Fig. 3B. This trigger activates V_{1} whose output is seen in Fig. 3C. The negative-going recovery at time B becomes the delayed input signal to V_{2}, the sweepgate multivibrator.
The sweep-gate multivibrator is a biased multivibrator. Its output waveform, shown in Fig. 3D, has a duration of about 12,000 microseconds, so chosen to be slightly longer than the maximum single count. It is differentiated by C_{2} and R_{3}, and amplified by the biased amplifier $V_{3 A} ; V_{3 B}$ is a direct-coupled cathode follower whose output is the start pulse. This pulse is about +75 volts in amplitude, with a rise time of 0.2 microsecond. Its occurrence in time is coincident with the leading edge of the sweep-gate waveform. The sweep gate is also used as a gating pulse for switch tube V_{44} that initiates the linearly rising waveform from which the stop pulse is derived.

Counter-Chronographs

The counter units are commercial electronic counter-chronographs. Each counter chronograph consists of an oscillator, a switch and a counter. The oscillator is crystalcontrolled at 1 mc and operates continuously. The switch can be opened by a start pulse and closed by a stop pulse. Only while the switch section is open does the oscillator signal enter the counter and the reading of the counter, therefore, indicates the number of cycles of the crystal oscillator produced during the interval between the start and stop pulses.

For present purposes, several modifications have been made: (1) The lock-out circuits of both counters have been removed. Thus, the elapsed times between the start and stop pulses of successive pairs of pulses can be accumulated. (2) Either counter can be made inactive by application of a disabling voltage. While in a disabled condition no count is indicated, even though start and stop pulses are applied.

FIG. 2-Waveforms from voltage comparato:
(3) The counters have a storage capacity of 10^{6} counts, or 6 decades, before the final decade delivers an output pulse. A self-stop circuit has been added so that the output pulse of the sixth decade of the second counter furnishes a stop pulse to both counters.

Test Circuit

The purpose of the test circuit is to check the electronic portions of the system by introducing an artificial problem whose answer is know and observing the machinecalculated answer. The circuit, shown in Fig. 1, is similar to one of the data-input units. With the plug board removed from the data board and the test switch in on position, a constant voltage is applied to the arm of S_{14}. The test problem, therefore, is the artificial problem of a uniform field distribution. The magnitude of the test voltage, hence the magnitude of the uniform field, can be adjusted to any desired value between zero and maximum. Because the coefficients for the computation are known, the correct answer is easily calculated and the overall performance of the computer can be checked.

VENEER EDGE GLUER-Conveyor brings small sheets of veneer sto:k into machine at right, where rollers apply glue to edges and hold edges together during passage between electrodes of electronic generator. Continuous glued sheet emerging at 45 feet per minute is cut automatically into large sheets by air-operated cliper at left in this Northwest Syndicate. Inc. installation

FIG. l-Three basic production techniques employed by woodworking industry for elecironic curing of glue lines

Dielectric Heating Cuts

Case histories of successful applications in which electronic glue-curing improves quality and speeds production of wood products as well as cuts costs. Included are continuous edge-gluing of veneer and core stock, curing all glued joints simultaneously in television cabinets, forming veneers into curves, and gluing entire freight car walls

DIElectric heating is the quickest way to get uniform nondestructive heat into electrically and thermally nonconducting wood. It makes possible a complete gluecuring cycle in wood-bonding of less than one minute, compared to the conventional 30 minutes of oven glue-heating and nine or more hours of glue-drying in woodworking
applications. The speed and uniformity of heating provide as further advantages a greatly improved quality of product, economy of operation, minimized space requirements and an efficient produc-tion-line setup.

In general, dielectric heating gives a glue-curing production rate of 100 to 250 square inches of glue-
line per kilowatt-minute for wood bonding, with power in terms of heater output.

Methods Employed

Electronic wood-gluing is generally performed by one of three basic methods-through heating, edge-gluing or stray-field heating, as shown in Fig. 1.

PANEL EDGE GLUING-One-man edge-gluing machine setup developed by Elecironic Heating Corp. for producing large panels and core stock used in furniture. Glue is applied to edges of pieces by conveyor-type applicator at right, after which operator places them on bed of machine to start sequence of moving into press, applying pressure, heating for about 40 seconds, opening press and ejecting

FIG. 2-Examples of electrode shapes and locations used for some of the commonest types of joints in wood materials

Woodworking Costs

The electrodes are parallel to the glue lines in through heating, this method being used where laminated sections are glued together to make plywood sheets or curved panels; it is also used in many assembly operations.

In edge-gluing the dielectric heater electrodes are perpendicular to the glue lines. This method is used for core stock and panelgluing, veneer splicing and some assembly work. Since the electrical conductivity of glue is greater than that of wood, the glue line absorbs most of the radio-frequency energy available, making this method somewhat faster than through heating for the curing of equivalent

By R. E. NELSON

Field Engineer
Machlett Laboratories, Inc. Springdale, Conu.
glue-line area of wood products. Stray field heating makes use of fringing fields between adjacent electrodes to cure glue lines accessible from only one end of the object. It is used to attach structural members to the inner and under sides of cabinet panels.

Veener Production

One of the more recent unique applications is continuous edge-
gluing of veneer stock ranging in thickness from $1 / 28$ inch to $\frac{1}{4}$ inch. ${ }^{1}$ By dielectric heating, narrow selected clear stock, sliced or rotary cut, may be glued edge to edge, the stock flowing at right angles to the run of the grain and at a continuous speed up to 45 feet per minute. These veneers may vary from four feet to eight feet in length measured parallel to the grain. As the continuous glued sheet emerges from the off-bearing end, a clipper automatically cuts the stock into any desired widths, usually producing sheets of stock for plywood faces 4 feet by 8 feet in size. This device replaces methods of holding the veneers edge to edge with
gummed tape or much slower methods of joining the wood edge to edge with glue set by contact with heated platens.

One of the earliest and outstanding uses of dielectric heating is the setting of glue in laminated sheets or plywood. ${ }^{2}$ After the gluing and lay-up operation, several plywood sheets are stacked within a hydraulic press and heated electrically, as shown in Fig. 2, to 250 F for complete glue setting, in less than 10 minutes for 24 -inch stacks, after which finishing operations on the plywood can be immediately carried out. This method contributes to in-line production and eliminates storage space and drying-room needs ($10-15$ hours for complete glue-setting) associated with the older oven-heating process.

Lumber Edge-Bonding

The principles involved in the continuous electronic edge-gluing of veneers have also been applied with excellent success to lumber in continuous forward movement. ${ }^{1}$ Units are being built for the continuous edge-gluing of lumber in stock lengths or submultiples thereof up to 75 inches in length,
$\frac{1}{4}$ inch to $1 \frac{1}{2}$ inches thick in softwoods, and random widths moving through the electronic press at 15 lineal feet per minute. Submultiples of 75 inches, such as three rows of panel stock 24 inches long or four rows of 18 -inch long stock, may be run simultaneously. As the continuously glued strip or strips emerge from the off-bearing end of the press, a flying-saw mechanism traveling with the moving stock cuts it off into given panel widths.

Electronic edge-bonding of narrow boards to form large panels and core stock is applied in the manufacture of desks, tables and other types of furniture. ${ }^{3}$ One 5kilowatt one-man edge-gluing panelmaking unit operates at a frequency of approximately 5 mc and will glue panels up to 37 inches by 50 inches, with thickness from $\frac{1}{2}$ inch to 2 inches. The heating time is usually 30 to 50 seconds. The entire operation, handled by one man, is automatic; one pushbutton starts the sequence of applying top and edge pressure, heating, opening press, and ejecting panels. Production is continuous at the rate of a panel in less than a minute, with finishing
operations following immediately.
Rway Furniture Co. makes use of electronic edge bonding equipment to glue and cure 10,000 square feet of panels in a two-shift, 18hour day. The operation is fully automatic, with the operator's only duty being to load boards on the feed belt and remove completed panels. Time cycles vary with the type of wood stock being gluedsuch as poplar, birch, ash or elm, but are always below 40 seconds.

For core stock or edge-gluing applications, where narrow relatively inexpensive boards are glued edge to edge to form large panels, the basic installation consists of the r-f generator, an air or hydraulic-operated press for application of edge pressure to the core panel, and a layupinfeed táble with glue spreader.* A typical installation of a Westinghouse $10-\mathrm{kw}$ r-f generator and Earle Hart Co. core press turns out one-inch-thick panels approximately 36 inches by 84 inches with heat cycles of 35 seconds. Based on increased production and labor savings, press-generator combinations costing about $\$ 15,000$ pay for themselves in less than a year.

Production from these edge-glu-

CABINET WALL GLUING-Glue used to join mounting blocks and other wood members to panels of television cabinet subassemblies are cured in about 15 seconds in this Westinghouse 10 -kw installation. Man at right places blocks and strips in pallet-type positioning jig; outer panel is set over this after glue is applied
ing presses runs up to 10,000 board feet per eight-hour day; the production figure depends on the type of wood being glued and the average number of glue lines in the panels, and assumes that room-temperature-setting urea glues are used. For estimating purposes, hardwood core panels can be cured at a rate of 150 square inches of glue line per kilowatt-minute of heater output; for soft woods, the production rate is about 250 square inches of glue-line per kilowattminute.

Production rate by edge-gluing has been a controversial subject. In edge-gluing a tennis racket, for example, it is possible to get production rates ranging up to 750 square inches of glue line per kilo-watt-minute: in this anplication the volume of wood is very small relative to the volume of glue line and little power is lost to the wood. The rates of 100 to 250 square inches of glue-line per kilowattminute apply in general to core stock and panel production.

Subassembly of Wood Products

Butter tubs from wood scraps is another achievement of dielectric
heating. Wisconsin Butter Tub Company's plant in Marshfield, Wisconsin uses a Bell Machine electronic edge-gluing press and special machines designed by the user to do this job. ${ }^{5}$ Scrap pieces, too short to be used in the sash and door industry, are electronically glued in a press. A conveyor-type glue spreader applies urea resin glue to one edge of the boards and delivers them to the operator who assembles a press load of eight 16 by 16 by 1_{4} inch panels on a press layup table. The gluing operation is fully automatic, with the charge being pushed at the touch of a foot pedal into the press, which in turn applies pressure to the panels; a complete set is obtained in a gluecuring cycle of less than a minute.

From the glued panel, four slightly tapered pieces with beveled edges are cut on a circular saw. These pieces then go to a bandsaw where they are clamped in a special rotating fixture and are split in two pieces, each having one curved surface. From the bandsaw they go to special planers where the one flat surface is planed to a curve paralleling that of the sawed face, giving the final shape of the tub or bucket
staves. Bottoms and covers are also turned from electronically glued panels. Electronic gluing, in use here for over two years, has stepped up production to 2,000 per day, these being used as containers for butter, shortening, oleomargarine, jams, jellies, mincemeat, sauerkraut and fish, and as hand-painted wastebaskets for the novelty trade.

TV Cabinet Assembly

Probably one of the most competitive markets in the woodworking industry is that encountered in the manufacture of tv cabinets. Here the elimination of a few screws on each cabinet can represent thousands of dollars in annual savings, and r-f heating has been able to do just that. An air-operated press for gluing the several sides of a console tv cabinet together in one operation has eliminated driving screws or clamping for a prolonged glue cure period. ${ }^{4}$ This air-operated installation turns out 500 cabinets per 16 -hour day. Based only on labor saved in not having to drill and drive screws as was previously done in assembling cabinets, it has been possible to cut production time by 20 percent,

BOXCAR WALL GLUING—Entire wall subassembly for plywood freightcar is here being prepared for moving into electronically heated press to cure glue joints between reinforcing strips and plywood faces. Equipment was developed by Thermex Division of The Girdler Corp. Resulting cars are stronger than conventional steel cars
with a corresponding reduction in labor cost. In addition, elimination of the screws saves 3.9 cents per cabinet, or about $\$ 4,300$ in a 222 work-day year. This manufacturer has about 30 r-f generators performing practically all types of gluing jobs.

Stromberg-Carlson has gained increased output of television cabinets per assembly fixture, reduced production costs, and improved cabinet quality through the use of dielectric heating. Further, rejects for repairs dropped from as high as 15 percent in humid weather with older gluing methods to $\frac{1}{2}$ percent under the same conditions but with electronic glue-curing. Production loss due to high humidity and slow-drying is no longer a factor. Production savings due to the installation of r-f heating for assembly gluing paid for the electronic equipment in nine months.

In the manufacture of television and other types of cabinets, strayfield heating has proved particularly useful for the quick curing of glues joining mounting blocks and other wood members to the inside of panels. The electrodes consist of straps at alternating positive and ground potential. The wood pieces are jigged on the wood members on the conveyor; glue is next applied, and cabinet panels are placed on top of the pieces just before the subassemblies are pushed through the press for setting of the glue. This setup is suited to in-line production and an endless conveyor belt system. The heat cycle of one installation with a 10 -kilowatt output electronic heater is about 15 seconds, the actual total 8 -hour production being in excess of 1,000 panel sides. Labor costs at a plant having six electronic installations of this type average 9 cents per panel less than with older methods involving clamps, for an annual saving of about $\$ 20,000$ a year.

Progressive Hoosier Cabinet Co. is another woodworking manufacturer who has experienced manpower, floor area and material cost savings in the glaing and curing of panel-to-frame television cabinet assemblies with electronic bonding equipment. One girl simply applies glue to frame members, loads the
machine with two panels at a time and pushes a button. After the 50second heating cycle another girl removes bonded cabinet subassemblies completely cured, ready for machining. Output averages 80 panels per hour.

Boxcar Walls

Massive subassembly work is also being done with dielectric heating as a production tool. A plywood freight car, stronger and lighter than conventional cars, has been made possible by electronic curing of glued joints. Pressed Steel Car Company preassembles the boxcar sides, and top and floor panels, as complete units. Each assembly is then moved into an r-f heating press which cures the glued joints. This new technique permits fast production of freight cars built sturdily for rough railroad service.

Forming Curved Surfaces

Glue-curing and forming operations for laminated clock cases, chair seats and backs, piano sections, sporting goods and other wood products are being done by through heating with 13.6 -me r-f energy. Units with outputs of 2 kw and 10 kw are in operation at The Seth Thomas Clock Co. and The American Furniture Co., resnectively. Generally a pair of dies existing from previously used methods is faced with sheet brass electrodes, these dies and installed electronic equipment being capable of handling production requirements. Considerable cost savings over previous slow glue-curing methods requiring a large number of dies are achieved by these more advanced production systems.

Imorovement in Quality

With ele tronic glue-curing, radical changes in moisture content of the lumber and pockets of resin must be watched, because arcing and open glue lines will result. An electronic edge-gluing machine is considered not only an instrument for more efficient production but also an electromechanical inspector for controlling quality. ${ }^{6}$ With an electronic edge gluer, lumber that has more than 4 or 5 percent moisture differential to the panel itself will be rejected, because the gen-
erator will refuse to glue it, the machine having been set for a certain cycle for properly dried stock. Lumber of mixed species, mixed densities, low temperature, excessive thickness variations and poor jointing will be revealed by unglued joints.

High-frequency heating provides increased production and lower labor costs, particularly where production volume justifies the setting up of special jigs to glue specific joints or formed plywood. The production cost of fabricating waterfall bends on beds (shown in Fig. 2) was cut 40 percent by using r-f to set the glue in a routed joint after the bend was formed with pressure. A table-model television cabinet is being assembled in a jig and completely bonded in $2 \frac{1}{2} \mathrm{~min}$ utes, where the old method required 4 hours drying in clamps while piled in a heated room.

With r-f, the production of plywood drum-type gasoline tanks for the armed services jumped 25 percent, the labor cost dropped 20 percent, the quality was improved and the tooling cost was only 50 percent of the cost estimated for the old method. Mass production of bent plywood furniture has been made possible with the use of high-frequency heating. In one quick operation the veneers are formed into simple or compound curves and the adhesive set to hold the form required.

In the mounting of plywood onto frames for the manufacture of case tops and furniture, r-f stray-field heating of glued joints has eliminated nailing and filling the nail holes, with 50 peicent reduction in the labor costs involved. These few examples indicate the contribution of r-f heating toward quality and reduced costs of many wood products.

R-F Drying of Lumber

Another advance by the woodworking industry has been its application of dielectric heating to the drying of hardwood lumber to a desired moisture content.' The 65 -year-old plant of G. F. Mooney and Son, Inc. cures green-state white birch to be used in the handles of household and industrial tools in 12 to 15 hours by dielec-

CURVES-Forming and glue-curing laminated cases for clocks wih Westinghouse equipment. Glue is automatically applied to individual laminations by roller of machine in foreground

JOINTS-Air-operated press and Westinghouse high-frequency generator equipment for setting glue in joints of entire television receiver console cabinet in one two-minute operation
tric heating, compared to 12 to 36 days in conventional dry kilns or four to six months by the open-air drying process. This new system has made possible year-round cutting and drying of lumber and has enabled the company to reduce its lumber inventory by 60 to 70 percent and still meet customer reqnirements. Further, quality is maintained, the dried wood being completely free of warping and checking.

Modernization of Factories

Dielectric heating equipments are not necessarily used only by those industrials whose equipments are all 100-percent up-to-date. There are plants in which the only modern production unit is an electronic heater. In one such plant, nearly all work is done by hand; piles of lumber, cabinets and materials are carried from one department to another on the heads of laborers. ${ }^{8}$ Skilled craftsmen handfit all joints. Hand-carvings, handsanding and hand-rubbed finishes are the rule. Child labor is em-
ployed on jobs where much elbowgrease and little else is required. The apprentice system is in effect, and the foreman is not known as the foreman but is called the teacher. This factory is known as Industria Mueblera, S. A., in Mexico City.

Every gluing operation in this factory-from attaching the finest carved overlays to laminating large sheets of curved plywood-is done with industrial high-frequency dielectric heating equipment. Small subassemblies are glued together in a matter of seconds with a small portable unit containing a set of electrodes in a hand gun. Complete cabinet assemblies are placed in hydraulically operated box clamps where electrodes are arranged to assemble the whole cabinet in a one-shot operation.

This case may be somewhat extreme, but is an example of the acceptance of electronic equipment for heating dielectric materials, even where associated production techniques are obsolete by present standards.

These successful applications of
dielectric heating are made possible by the cooperation among users, glue manufacturers, woodworking equipment makers, electronic equipment companies and industrial electron tube manufacturers. All deserve credit for analyzing the potential applications of dielectric heating as an industrial tool and developing materials, components and units to meet specific requirements. Particularly is this so in the electron-tube industry. Only with high-frequency tubes in the neesed power levels, developed to give long life for economical service, could this advanced heating method have been made reliable and cost-saving for the woodworking industry.

References

(1) Julius W. Mann, Northwest Syndicate, Inc. (Mann-Russell Electronics). The Wirdi T. Owens, Thermex Division, (3)
(3) B. K. Heick, Electronic Heating Corp. D. G. Hatchard, Electronics and X-Ray Division, Westinghouse Electric Corp.
(5) H. B. Reed, The Bell Machine Co. (6) P. C. Yankauskas, Pico Nachinery Corp. F. R. Mooney, G. F. Mooney and Son, Inc. (8). Preston, Preston-Edison Electronics Co

Reducing Distortion

By W, L. FIRESTONE and J. S. BYRNE
Motorola Inc.
Chicago, Illinois

FRequency-division multiplex is widely used in point-to-point communications to provide several independent voice channels on a single vhf or uhf carrier.

The simplest kind of frequencydivision multiplex starts with a single voice channel that modulates an r-f oscillator called a subcarrier. The subcarrier in turn modulates the vhf or uhf transmitter. If another voice channel is desired, it is added by modulating a second subcarrier frequency. The subcarrier outputs are then combined to modulate the transmitter. More voice channels may be added as long as each modulates a different subcarrier frequency.

Intermodulation

If either the mixing network or the transmitter's f-m characteristic is nonlinear, certain intermodulation products are generated. The products generally produce beats and signal distortion. The beats may fall anywhere within the r-f spectrum including the receiver passband. If the beats falling within the passband are of sufficient amplitude, they may override or distort the desired signal information and render the entire subcar-

FIG. 1-Signal-to-noise ratio vs r-f volt age input. Dashed line shows noise increase with all channels operating
rier communications system unusable.

In one present-day system, all subcarriers fall within the 160 to 960 -kc spectrum. If 12 channels are used, it is possible to space the channels so that no harmonics of any one carrier fall on top of another carrier. This arrangement does not, however, eliminate all possible beats that occur within the spectrum. The system also requires a wide spectrum for its 12 channels.

This paper discusses a method for analyzing beats or distortion terms in a frequency-division multiplex system with a view toward decreasing distortion while using the smallest possible spectrum. Expressions are derived for the second, third and fourth-order distortion terms and for the distortion due to these terms.

It is found that by limiting the applied peak-to-peak voltage regardless of the number of channels used, keeping individual channel voltages equal in magnitude and restricting the frequency spectrum to one octave, significant reductions occur in percentile distortion.

An operational 24-channel system appears in the photograph. Each of the cabinets contains six com-

FIG. 2-Signal-to-intermodulation ratio versus r-f voltage input illustrates agreement of calculated and measured results
plete channels. At the top of each cabinet are stacked six terminal equipments with the six subcarrier receivers and transmitters below. Each cabinet's power supply is located at the bottom.

Experimental Results

Actual measurements made on this system indicate close agreement with theoretical calculations based upon the equations to be derived. The chart in Fig. 1 was plotted from actual measurements. The solid line represents the signal-to-noise output of a single channel operating alone. The dashed line represents the signal-to-noise output of the same channel when the 23 other subcarriers are turned on. The signal-to-noise ratio is reduced because of increased noise arising from intermodulation products or beats that fall within the passband of the receiver under observation.

The r-f input is merely the combined output of the subcarrier transmitters. It is applied to a video amplifier that modulates the uhf carrier.
The difference between the two curves in Fig. 1 measures the increase in noise due to beats. Taking this difference, the signal-to-intermodulation ratio may be obtained. This is plotted as the dashed line in Fig. 2. Close agreement between theory and practice may be seen by comparing this dashed line showing actual results with the solid line indicating the theoretical signal-tointermodulation ratio derived using the equations to be discussed.
There will be no increase in intermodulation if all the subcarrier transmitters are now modulated by the voice-channel outputs. This is because a modulated f-m signal is a single vector that merely changes

In Microwave Systems

Limiting applied peak-to-peak voltage, regardless of number of channels, and restricting frequency spectrum to one octave reduces percentile distortion in frequency-division multiplex systems. Expressions are derived for second, third and fourth-order terms and resulting distortion
phase with modulation. There is no variation in amplitude and no new carriers are introduced. However, it is possible for sideband splatter to occur if the subcarrier receivers are not selective enough to reject adjacent-channel signals.

Theoretical Analysis

The analysis is based upon computations of spurious frequencies and their magnitudes when multiple sinusoidal voltages are applied to the input of a nonlinear network. The nonlinear response may be expressed as a power series

$$
\begin{equation*}
i=a_{1} e+a_{2} e^{2}+a_{2} e^{3}+ \tag{1}
\end{equation*}
$$

where i is the instantaneous network response, and e is the instantaneous value of the applied voltage. The coefficients a_{1}, a_{2}, a_{3}, etc are determined by the nature of the nonlinear network. We may define the percent distortion

$$
\% D=\frac{\begin{array}{c}
\text { sum of the squares of a } 1 \mathrm{ll} \\
\text { spurious responses }
\end{array}}{\begin{array}{c}
\text { sum of the squares of all } \\
\text { desired responses }
\end{array}} \times 100
$$

To simplify the computation, the desired responses will be assumed to be represented in the linear power-series term only, although it is appreciated that the odd-order terms of Eq. 1 will also yield an onfrequency response.

Since we are dealing with multiple sinusoidal voltages, the applied voltage may be represented as a summation of sine waves

$$
\begin{equation*}
e=\underset{j=1}{\sum_{1}^{n} E_{1} \sin \left(\omega_{2} t\right)=E_{1} \sin \left(\omega_{1} t\right)+} \tag{3}
\end{equation*}
$$

Furthermore, it is considered desirable from the point of view of distortion to keep the maximum possible peak-to-peak applied voltage constant and independent of the number of channels n, as well as

Complete 24 -channel system. From top to bottom, each cabinet contains: six voicechannel terminal equipments, six subcarrier receivers and transmitters, and power supply
keeping the peak amplitudes of all the individual sine waves equal. These conditions are easily achieved in practice and are represented mathematically by

$$
\begin{align*}
& \sum_{j=1}^{n} \boldsymbol{E}_{j}=E_{1}+E_{2}+E_{3}+\cdots(\text { a constant }) \tag{4~A}\\
& E_{j}=E / n
\end{align*}
$$

All terms other than the linear term in Eq. 1 yield distortion products that may fall in our band of interest. Hence, we may break our problem into parts by investigating the effects of the second-, third- and fourth-order terms separately. For each order term it is necessary to determine if it falls within our receiver band and if it does we must find out how much distortion it will cause.

We may start the analysis by evaluating the second-order distortion. The evaluation of the effects of the second-, third- and fourthorder distorting network will be made in terms of the a coefficients
of Eq. 1. How to evaluate these coefficients for any system will be shown later.

Second-Order Distortion

By limiting this analysis to the first two terms on the right-hand side of Eq. 1, we may write

$$
\begin{align*}
i= & a_{1}\left(\sum_{j=1}^{n} \frac{E}{n} \sin \left(\omega_{j} t\right)\right)+ \\
& a_{2}\left(\sum_{j=1}^{n} \frac{E}{n} \sin \left(\omega_{i} t\right)\right)^{2} \tag{5}
\end{align*}
$$

If the indicated operations are performed and all d-c terms are neglected, we obtain

$$
\begin{aligned}
& i=a_{1}\left(\frac{E}{n}\right) \sum_{j=1}^{n} S_{i}+a_{2}\left(\frac{E}{n}\right)^{2} \\
& \left(\frac{1}{2} \sum_{j=1}^{n} S_{2 j}+\sum_{j, k=1}^{n} S_{i-k}+\sum_{j, k=1}^{n} S_{j+k}\right)
\end{aligned}
$$

where j does not equal k and the $\sin (\omega, t)$ terms have been replaced by the symbol S_{j}. Therefore, S_{3} represents sinusoidal waves of unit amplitude having a frequency $\omega_{j} / 2 \pi$. Furthermore, the $\sin \left(\omega_{j} \pm \omega_{k}\right) t$ terms here have been replaced by $S_{3} \pm_{k}$ respectively.
In the determination of the percent power distortion we only need to substitute the proper terms of Eq. 6 into Eq. 2. This operation will yield the following expression for the percent distortion D_{2} due to a second-order distorting network

$$
\begin{gathered}
\% D_{2}= \\
a_{2}^{2_{2}}\left(\frac{E}{n}\right)^{4}\left(\frac{1}{4} \sum S_{2_{2 j}}+\right. \\
\left.\quad \sum_{S_{j-k}}+\sum S^{2} S_{i+k}\right) \\
a^{a_{1}^{2}}\left(\frac{E}{n}\right) \sum S^{2} S_{j}
\end{gathered}
$$

The limits on the summation signs have been dropped for convenience.

Table I-Number of Terms In Each Summation as a function of Number of Channels

Type of Term	$\begin{gathered} \text { Number of Such } \\ \text { Terms as a } \\ \text { Function of } n \end{gathered}$
$S_{j}, S_{2 i}, S_{3 j}$ etc	n
S_{j-k}, S_{j+k}	$\frac{n(n-1)}{2}$
$S_{2 j-k}, S_{2 i+k}$	$n(n-1)$
S_{j+k+l}, S_{j-k-l}	$\frac{n(n-1)(n-2)}{6}$
S_{j-k+l}	$(n-1)(n-2)$
	3
$S_{3 i-k}$	$n(n-1)$
$S_{2(j-k)}$	$\frac{n(n-1)}{\mathscr{Z}}$
$S_{2 j-k-l}$	$n(n-1)(n-2)$
	2
$S_{2 j+k-l}$	$n(n-1)(n-2)$
$S_{i+k+i-m}$	$\begin{gathered} n(n-1)(n-2) \\ (n-3) \end{gathered}$
$S_{j+k-l-m}$	8
$S_{j-k-l-m}$	$\begin{gathered} n(n-1)(n-2) \\ (n-3) \end{gathered}$
	24

FIG. 3-Relative distortion versus number of channels for second-order terms

Because we are concerned with a steady-state analysis we will consider the time average over many cycles of the $S_{j}{ }^{2}$ terms. The time average of all such terms is the numerical value $\frac{1}{2}$ and this factor occurs in all terms of the numerator and denominator in the same manner. It is, therefore, possible to factor this $\frac{1}{2}$ term and cancel it out of the equation. The problem, therefore, reduces to finding the number of terms in each summation as a function of the number of channels n.

It is readily found from Table I that the number of S_{j} and $S_{z j}$ terms is n while the number of $S_{J_{-k}}$ and S_{j+k} terms are equal in number and equal to $n(n-1) / 2$.

Using these relationships we may write the following equation for the percent of second-order distortion

$$
\begin{align*}
\% D_{2}= & \left(\frac{a_{2} E}{a_{1}}\right)^{2}\left(\frac{1}{n^{2}}\right) \\
& {\left[\frac{1}{4}+(n-1)\right] \times 100 } \tag{8}
\end{align*}
$$

A plot of $\% \mathrm{D}_{2} /\left(\frac{a_{2} E}{a_{1}}\right)^{2}$ is shown in Fig. 3. We see that when the peak-to-peak voltage is held constant, the total distortion decreases steadily as n increases beyond 3 , and in fact, for large n the distortion is inversely proportional to n. This distortion results in d-c terms not computed, in double-frequency terms, and in sum-and-difference terms. If the multiplex system is contained within an octave, none of these terms is contained within

FIG. 4-Relative distortion versus number of channels for third-order terms
the frequency range of interest.
Now that we have evaluated the effect of the second-order term, we may proceed by determining the effectiveness of the third-order term in causing distortion products within our receiver band.

Third-Order Distortion

Even though the multiplex system is contained within an octave, spurious components will lie within the band of interest if third-order distortion is present.

By use of Eq. 1, 3 and 4 we see that the current due to the cube term alone may be expressed as

$$
\begin{equation*}
i_{3}=\frac{a_{3} E^{3}}{n^{3}}\left(\sum S_{i}\right)^{3} \tag{9}
\end{equation*}
$$

By trigonometric relationships i_{3} may be expanded into

$$
\begin{align*}
& i_{3}=\frac{a_{3} E^{3}}{n^{3}}\left\{\frac{9}{4} \sum S_{j}+\frac{1}{4}\right. \\
& \sum S_{3 j}+\frac{3}{4} \sum S_{2 i+k}+\frac{3}{4} \sum S_{2 j-k}+\frac{3}{2} \\
& \left.\left[\sum S_{j+k+i}+\sum S_{j-k-l}+\sum S_{j+k-l}\right]\right\} \tag{10}
\end{align*}
$$

If as before we divide the sum of the squares of the distortion terms of Eq. 10 by the sum of the squares of all the desired responses, take the time average of all of these terms and determine the number of the various terms, we obtain for the percent power distortion

$$
\begin{gather*}
\% D_{3}=\left(\frac{a_{3}}{a_{1}}\right)^{2}\left(\frac{E}{n}\right)^{4} \\
{\left[\frac{9}{16}(n-1)(2 n-3)\right] \times 100} \tag{10}
\end{gather*}
$$

FIG. 5-Relative distortion versus number of channels for fourth-order terms

Evaluation of this distortion term was facilitated by the use of Table I which shows the number of individual terms that may be expected from a given type of sinewave signal as a function of the total number of channels n.

$$
\text { A plot of } \% D_{3}\left(\frac{a_{3}}{a_{1}}\right)^{2} E^{\dagger} \text { as a }
$$

function of n is given in Fig. 4.
In the foregoing analysis for $\% D_{3}$, all terms such as $S_{2 j-k}, S_{j-k-I}$ and S_{l-k+l} were included as causing distortion since they might fall within the receiver band. Considering an octave band we see that if the channels are all spaced equal distances apart and if the distance between channels is twice the distance from the extreme channels to the edge of the octave, then some of these terms will fall outside of the band of interest. In order to determine the relative number of such frequency components that do fall within an octave it is necessary to make a probability evaluation. This evaluation will be discussed in a later section.

To help understand why the relative $C_{c} D_{3}$ drops off as fast as is evidenced in Fig. 4, the following table has been prepared for large n

	VoltagePower Per Channel	Total Power	
Funda- mental Signal	$1 / n$	$1 / n^{2}$	$1 / n$
$C_{0} D_{3}$	$1 / n^{2}$	$1 / n^{4}$	$1 / n^{3}$

If a completely analogous procedure is followed for the fourthorder distorting term, the expression for $\% D_{4}$ is

$$
\% D_{4}=\left(\frac{a_{4}}{a_{1}}\right)^{2}\left(\frac{E}{n}\right)\left(\frac{n-1}{8}\right)
$$

$$
\begin{equation*}
\left(21 n^{2}-78 n+76.25\right) \times 100 \tag{12}
\end{equation*}
$$

Evaluation of this term involves the relations indicated in Table I.

A plot of $\% D_{4} /\left(\frac{a_{4}}{a_{1}}\right)^{2} E^{\circ}$ versus n is given in Fig. 5.

From a practical viewpoint we can readily see why distortion decreases with increasing n. From Eq. 4A we see that the total peak-to-peak voltage is constant. If one frequency is used, this maximum will be reached on every cycle, yielding distortion terms. If two frequencies are used, the probability that their maximum values will add in phase to yield this same maximum is much reduced. If n frequencies are used, the probability that they will ever add in phase to the maximum allowable value is very small. This means that the center portion, which is more linear, will be utilized more and more. The result is to decrease the distortion substantially because the nonlinear portion of the network is reached less and less.

The price of this decreasing distortion as channels are added is that each channel puts out less voltage or power; there will be some lower limit for the minimum usable carrier power per channel, based on a signal-to-noise analysis.

Furthermore, by containing the frequency range within one octave, we see that many frequency terms fall outside the band of interest, reducing the distortion. Figures 3,4 and 5 show that the greatest reduction of distortion is realized when a large number of channels is utilized.

The table above shows that for large n the total distortion power decreases more rapidly than the total fundamental power by a factor of $1 / n^{2}$, which explains in a qualitative way the reason for the reduction in the percentile distortion.

The above results would therefore indicate that for any nonlinear network, it is desirable to limit the
maximum possible peak-to-peak applied voltage, to keep all the individual voltages equal in magnitude, and to limit the frequency spectrum to one octave if possible. Although Eq. 8, 11 and 12 yield the expected percent distortion due to the second-, third- and fourth-order terms respectively, they are of little value unless their various coefficients can be evaluated. The following section is therefore devoted to determining these coefficients. Due to the obvious importance of the third-order term, its coefficient will be evaluated first.

Evaluation of the Coefficients

The coefficients of any of our distorting networks may be evaluated

FIG. 6-Total distortion due to thirdorder terms

FIG. 7-Distortion falling within an octave and due to third-order terms
in a practical situation by putting a single sine-wave signal into the system and then analyzing the resultant output waveform. If we have a third-order distorting network and limit our band of interest to an octave it follows that an input of the form $E(\sin \omega t)$ will yield

$$
\begin{equation*}
\text { Output }=a_{1} E \sin \omega l+a_{3} E^{3} \sin ^{3} \omega t \tag{13}
\end{equation*}
$$

If this term is expanded and the distortion terms selected, we may write
Percent Third-Order Voltage Distortion $=$ $\frac{a_{3} E^{3}(1 / 4) \sin (3 \omega t)(100)}{a_{1} E \sin (\omega t)}$

If this distortion is measured as 10 percent, it follows that

$$
\begin{equation*}
\left(\frac{a_{3}}{a_{1}} E^{2}\right)^{2}=0.16 \tag{15}
\end{equation*}
$$

Equation 11 may therefore be written

$$
\begin{align*}
& \% D_{3}=\frac{0.16}{n^{4}} \\
& {\left[\frac{9}{16}(n-1)(2 n-3)\right] \times 100} \tag{16}
\end{align*}
$$

This evaluation permits the existing curve shown on Fig. 4 to be evaluated directly in decibels. Figure 6 shows a plot of Eq. 16. We have, therefore, reduced the mathematics to a practical situation. The coefficients could have been evaluated for any percentage of system distortion.

Comparison of Networks

It has been shown that a single second-order distorting network has no distortion products that fall into an octave. However, if all of the output products of one second-order distorting network are fed into another second-order distorting network, the output of this second network will have distortion products that do fall into an octave. Insofar as one third-order distorting network produces products that do fall within the octave, the question arises, which produces more distortion components within the band of interest: two second-order distorting networks in cascade or one third-order distorting network, assuming that each network has the same percentage distortion.

The expression for the percent

FIG. 8-Average crosstalk per channel versus third-harmonic voltage distortion
power distortion due to 10 -percent third- order voltage distorting network that may lie within one octave has already been given by Eq. 16.

A similar derivation for two $10-$ percent second-harmonic voltage distorting networks in cascade yields

$$
\begin{align*}
& \% D_{22}= \frac{0.0064}{n^{4}}\left[\frac{9}{16}(n-1)(2 n-3)\right]+ \\
& \frac{0.000064}{n^{6}} \tag{17}\\
& {\left[\frac{(n-1)\left(21 n^{2}-78 n+76.25\right)}{8}\right] \quad }
\end{align*}
$$

The first term of Eq. 17 is seen to be identical to the right hand side of Eq. 16 except that it has a smaller coefficient. These coefficients are found to differ by 14 decibels.

The last term of Eq. 17 has a coefficient that is 40 db smaller than the right-hand term of Eq. 16. Also by inspection it can be seen that the last term of Eq. 17 decreases faster, with increasing n, than does Eq. 16. Hence this last term of Eq. 17 may be disregarded completely. For the conditions chosen, then, Eq. 17 is always substantially smaller than Eq. 16. This may be represented mathematically as $D_{22} \ll D_{3}$.

The conclusion therefore is that two second-order distorting networks in cascade, each having 10 percent voltage distortion, produce less on-frequency power distortion in one octave than one third-order distorting network having 10 percent voltage distortion. It can be shown that this is generally the case.
If only second-order distortion is known to exist in a system, then if one-octave filters are inserted after
each second-order distorting network it should become impossible for any on-frequency distortion components to appear at the output of the system.

Probability

Equations 11 and 16 include all the terms having frequency terms of the kind $S_{8 j-k}, S_{j+k-l}$, and S_{j-k-l}. The probability that all of the terms of the kind $S_{2 j-k}$ fall within an octave is $\frac{1}{2}$, while the probability that all the terms of the kind S_{9+k-i} and S_{j-k-l} fall within an octave is ${ }^{2}$. Using this information Eq. 16 becomes

$$
\begin{gather*}
D_{3}=\frac{0.16}{n^{4}} \\
\{(n-1)[0.281+0.75(n-2)]\} \tag{18}
\end{gather*}
$$

Equation 18 therefore represents a more accurate evaluation of the total power distortion that would be expected to fall within an octave if one were given a third-order distorting network with a 10 -percent voltage distortion characteristic.

If Eq. 18 is written for any amount of third-order harmonic distortion it becomes

$$
\begin{aligned}
& D_{3}=\left(\frac{a_{3}}{a_{3}} \frac{E^{2}}{n^{2}}\right)^{2} \\
& \{(n-1)[0.281+0.75(n-2)]\}
\end{aligned}
$$

A plot of Eq. 18 expressed in decibels is shown in Fig. 7. A plot of Eq. 18 A versus percent thirdharmonic voltage distortion is given in Fig. 8.

The theoretical signal-to-intermodulation ratio is obtained using Eq. 16 or Fig. 8. Taking the subcarrier bandwidth into account, these yield directly the theoretical signal-to-intermodulation ratio at the subcarrier receiver input. For comparison with experimental findings, this information is then converted to signal-to-intermodulation ratio at the subcarrier receiver output by use of standard formulas and is plotted in Fig. 2.

Bibliography

[^12]

FIG. l-Block diagram of binocular stimulator showing pulse lengths and phase relationships of signals in two separate output channeis. Ring counter gives single negative pulses on successive output taps

Pulsed Light Measures Flicker Perception

Medical apparatus for diagnosis flashes light at rate of 4 to 60 pps and has variable on-off period ratio. Ring counter used to control frequency division, phase shift and pulse length is adaptable to other pulsing circuits

AN InTERMITTENT LIGHT stimulus with a repetition rate of 10 or 15 pulses per second is generally perceived as flickering. If the repetition rate is gradually increased beyond the critical flicker frequency (cff), the flicker will suddenly vanish and the light will appear completely steady.
Critical flicker frequencies may range from about 5 to 60 cycles depending in part on light characteristics such as color, brightness and on-off ratio. However, for given stimulus conditions the cff will vary from one individual to the next. Physicians, physiologists and psychologists are interested in discovering the reasons for these individual differences in the perception of intermittent light.

Electronic Modulation

In earlier studies intermittent light was produced by mechanically chopping light rays with sector disks or perforated cylinders. Flicker rate was changed by means of variable speed driving motors. Mechanical devices are generally cumbersome with relatively poor frequency stability. For this reason

By FRED H. IRELAND
Fordham University
New York, N. Y.

completely electronic instruments for producing the modulated light are becoming more popular.

The electronic device described here incorporates various improvements over previous instruments ${ }^{1,2,3}$ of this type. A larger frequency range, a linearized calibration curve and the possibility of varying the on-off ratios and phase relationship of two separate high-intensity light sources make this a versatile and useful laboratory instrument. Although the apparatus was designed for a specialized application certain circuit features, especially the use of a ring-counter for phase shift and pulse-length control as well as frequency division, are of general interest.

The instrument has a precision dial covering a frequency range from 4 to 60 pps with vernier frequency adjustment. During calibration a tuning eye indicates synchronism of the internal oscillator with 60 -cycle current.

For binocular stimulation two
high-intensity glow-modulator tubes supply rectangular light pulses. A milliammeter is used for balancing the tube currents.

A control for varying the phase relationship between the two trains of light pulses makes it possible to change the phasing in 36 -deg steps over a range of 360 deg . Two other switches control the relative lengths of the light pulses. On-off ratios such as 1 -to- 9,2 -to-8, 3-to-7 may be selected as desired. Both the phase relationships and the on-off ratios are maintained with a high degree of accuracy and are completely independent of frequency.

Basic Design

A block diagram of the apparatus is shown in Fig. 1. A master oscillator, with a frequency range of 40 to 600 cps , keys a thyratron pulse generator giving short positive pulses for triggering the decade ring counter. At the counter, the frequency of the master oscillator is divided by a factor of ten yielding a flicker frequency range of 4 to 60 pps .

Negative output pulses from any of the ten counter tubes may be
chosen by means of three ten-position switches connected in parallel. The selected impulses trigger two separate flip-flop circuits used as rectangular wave generators. One triggering input of flip-flop 1 is permanently connected to the output terminal of the first counter tube. A negative pulse appearing on that terminal will flip the circuit on and a second impulse selected with switch A will turn it off. The block diagram shows switch A set to the third counter output position. In this case the on period of flip-flop 1 will be two counts ($2 / 10$ cycle) and the off period eight counts ($8 / 10$ cycle).

Flip-flop 2 is turned on with a negative impulse from switch B. 'The switch thus controls the phase relationship between the outputs of the two flip-flop circuits in 36degree steps. With the switch set as shown in the block diagram, flip-flop 2 will be turned on five counts after flip-flop 1, and the two circuits will operate exactly 180 deg out of phase. The on-off ratio of flip-flop 2 is controlled by switch C. The same ring counter thus determines the relative pulse lengths and phase relationships of two separate wave trains.

The flip-flop circuits drive the power amplifiers that supply the

FIG. 2-Circuit diagram of visual testing apparatus. Only one output channel is shown
necessary currents for the glow modulator tubes.

The circuit of the oscillator, buffer, and pulse generator is shown in Fig. 2. The oscillator consists of a Wien bridge type R-L coupled circuit. The R-L coupling is used in place of the usual R-C combination to achieve a linear relationship between frequency and shaft rotation of a linear potentiometer.

Greatly increased feedback at higher frequencies was not completely compensated for by the variable resistance characteristic of the Mazda lamp in the cathode

Binocular stimulator with light source shown at right
circuit and higher frequencies are slightly compressed on the dial.

Special high-Q, low-frequency inductors are used in the tuned circuit. Even then, 40 cps represents about the lowest practical frequency for sustained oscillation. This is reduced by the decade ring counter to a lower limit of 4 cps .

The frequency control consists of two 5 -inch, 100,000 -ohm potentiometers mounted on a common shaft. A smaller potentiometer is placed in series with each of the larger units for vernier calibration.

A buffer amplifier boosts and isolates the oscillator output and supplies the push-pull voltages for driving the thyratron pulse generator.

The pulse generator consists of two 844 thyratrons in a platecoupled parallel switching circuit. This circuit provides a simple method of obtaining steep triggering pulses for the ring counter. Positive pulses appear across the cathode load of one thyratron and are differentiated by the grid circuits of the counter. The repetition rate of the pulse generator is determined by the frequency of the master oscillator.

Ring Counter

The ring counter is used for frequency division as well as for pulse length and phase control. Thyratrons can handle the relatively low pulse repetition rates of this instrument but a vacuum tube ring counter would be necessary for high frequencies. The thyra-

Second channel is similar to first except that calibration indicator is left out
tron circuit ${ }^{5}$ has the advantage of requiring somewhat fewer parts than a comparable v-t circuit.

Positive triggering pulses are applied simultaneously to the grids of all counter tubes. With none of the thyratrons conducting, the trigger pulses are of insufficient amplitude to override the high negative bias on all grids and the circuit remains at rest.

A motor-driven timer is used momentarily to ground the grid of tube V_{1} about 20 seconds after the set is turned on. The positive voltage now on the cathode of V_{1} will reduce the negative bias of the second tube V_{2} to a point just slightly below firing level. The next positive trigger on the grids will fire V_{2}. Through the coupling capacitor the cathode voltage of V is momentarily added to the cathode voltage of the first tube driving it positive with respect to the plate and extinguishing the tube. The cathode voltage of V_{n}, now in a conducting state, also reduces the negative bias on V_{3}. The third tube is cocked and is ready to be fired by a subsequent triggering pulse.

Negative output pulses are obtained across the plate loads of successive counter tubes. Impulses to trigger the flip-flops at any count from 1 to 10 may be selected with the ten-position switches.

Flip-Flop Circuit

The negative triggering pulses selected by the ten-position switches on the ring counter are supplied to two separate output channels.

Each channel consists of a flip-flop circuit, an output amplifier and a glow-modulator light source. One channel also incorporates a tuning eye calibration indicator.

To preserve the rectangular wave shape at frequencies as low as 4 cps the output of the flip-flop is direct-coupled to the 6L6 amplifier. Use of the ring counter made direct coupling in previous stages unnecessary, since the lowest frequency for the master oscillator, pulse generator and ring counter is 40 cps .

The 6L6 output tube has a variable cathode resistor for adjusting the current through the glow modulator. The unbypassed cathode resistor also provides negative feedback to the tube improving its response.

With the exception of the tuning eve circuit, the second output channel is identical with the first. It is supplied with negative triggers from two separate ten-position switches in the ring counter for phase shift and pulse-length control. A selector switch is provided in the cathode circuits of the 6L6's to energize either or both stimulus lights. Another switch in the common ground lead of the two 6L6 cathode circuits serves as stimulus key. To prevent interaction, the two output tubes have separate high voltage supplies.

The glow modulator tubes are mounted in two separate 2 by 2 -inch slide files. The subject looks at the light through a hole drilled in the front. Wires for the tube pass
through a second hole in the rear of the box. A lengthwise slot in the bottom of the container permits adjustment of the light. The grooved sidewalls hold a metal iris, ground-glass diffusing plates and neutral tint filters for intensity control. The containers are painted a flat black both inside and out. For binocular stimulation both light sources are inserted in a larger viewing box, while for monocular experiments a single light source is clamped to a laboratory stand.

Preliminary calibration tests indicate that frequency stability of the instrument is on the order of $\pm 0.1 \mathrm{cps}$. The output waveforms viewed on an oscilloscope appear perfectly rectangular for all frequencies, current values, on-off ratios and phase relationships.

The instrument described was designed for a study directed by Henry Misiak of Fordham University, and supported by a research grant (G-3704) from the National Institute of Neurological Disease and Blindness, of the National Institutes of Health, Public Health Service.

References

(1) F. Henry, An Electronic Apparatus for Testing Fatigue by the Visual Flicker Method, Journal of Experimental Psychol ogy. 31, $\mathrm{p} 538,1942$.
(2) F. H. Hrelana, An Electronic Flicker Apparatus for Monocular and Binocular Stimulation, Journal of Psychology, 29, p 183, 1950.
(3) C. Fritze and E. Simonson, A New Electronic Apparatus for the Measurement of the Fusion Frequency of Flicker, Science, 113, p 547 , May 1951. Oscillator Has Linear Tuning, ElectronOscillator Has Linear 1352.
ICS, ${ }^{25}$ (5) "W Waveforms." MIT Radiation Lab. Series, McGraw-Hill Book Company, 19, Chap. 17.

Graphical Design of

Tuning Elements

Procedure for preparing simple design chart from which combinations of coil turns and capacitance range can be found for tuning a given frequency range. Applies also to tuned lines. Simple measurements give required data for a family of curves, eliminating cut-and-try or calculation methods

FOR parallel resonant circuits, the resonant frequencies of coils plotted against tuning capacitance on $\log -\log$ paper are, within limits, parallel straight lines. A scale perpendicular to a family of such curves is proportional to the logarithm of the number of turns for any given winding length and diameter of coil. These simple relations form the basis for the graphical tuned-circuit design procedure presented here.

Transmission lines used as tuning elements may be plotted in the same manner as coils. The scale perpendicular to a family of coaxial or open-line curves is proportional

By BERNARD H. BALDRIDGE
Engineering Supervisor Electronics Research, Inc. Evansville, Indiana
to the logarithm of the line length for lines of the same impedance and proportional to the logarithm of the impedance for lines of the same length. As the slopes of both the coil and transmission line families of curves are the same, it is possible to determine accurately the transmission line or coil parameters for use together or separately as tuning elements when solving superheterodyne tracking and similar tuning problems.

An infinite number of special or

FIG. 1-Example of graphical design procedure for α coil 1 inch in diameter and $11 / 2$ inches long, with various numbers of turns spaced to fill entire length. Accuracy is excellent up to approximately 200 me as method takes into account distributed capacitance and other sources of error usually neglected because of calculation difficulty. Charts for other coils can be prepared after a few simple measurements
general charts may be prepared from a relatively few measurements with simple equipment. A Q meter, a calibrated grid-dip meter or any other device capable of determining the resonant frequency of a tuned circuit may be used.

Coil Examples

Figure 1 illustrates a typical family of curves for coils 1 inch in diameter and $1 \frac{1}{2}$ inches long. Graphs for each individual coil of a given number of turns are constructed by drawing a straight line through two or more corresponding points on the graph. These points are located by determining the resonant frequencies of parallel circuits using the desired coils with known values of capacitance, as shown on the graph. The spacing between the graphs for individual coils is approximately proportional to the logarithm of the number of coil turns.

The information recorded in Fig. 1 is sufficient to determine the coil or capacitor requirements for any application requiring a coil with the dimensions given. For example, a 20 -turn coil will tune from 4.7 to 11.5 mc with a total capacitance variation of 200 to $30 \mu \mu \mathrm{f}$. To tune an oscillator above this frequency in a superheterodyne receiver having $0.5-\mathrm{mc}$ i-f (requiring oscillator tuning from 5.2 to 12 mc), the same coil could be used with a total capacitance variation of 165 to 27.5 wuf. The exact oscillator tuning

FIG. 2-Chart for National XR-50 coil form. Dotted lines indicate change obtained when using XR-50 iron slug. Copper slug gives shift in opposite direction from the solid lines

FIG. 3-Chart for shorted quarter-wave tuned parallel line having a characteristic impedance of 157 ohms. Diagonal overlay scale shows logarithmic spacing of curves
from data taken with coils of a few turns. This effect is illustrated in Fig. 1 by the compression of the scale for coils of less than 10 turns where the above-mentioned factors are of appreciable comparative magnitude. The log scale from the graph paper is a convenient scale for use as an overlay on the chart.

Figure 2 shows a similar family of curves for a commonly used commercial coil form. The inductance variation made possible by positioning the slug is illustrated by the dashed lines.

Transmission-Line Examples

Figure 3 illustrates a typical family of curves for different lengths of a shorted quarter-wave tuned parallel line of 157 ohms characteristic impedance. This chart was prepared in the same manner as Fig. 1 and 2. The spacing between individual graphs is proportional to the logarithm of the line length. The stray and lead effects are more pronounced on this graph as they are a proportionally greater amount of the total inductance and capacitance for a practical tuner of this type, particularly as the frequency approaches the natural resonant frequency of the tuning element and the distributed capacitance approaches the tuning capacitance.

Figure 4 illustrates a typical family of curves for transmission lines 10 inches long with various impedances. The spacing between individual graphs is proportional to the logarithm of the characteristic impedance of the line. Connections and normally neglected factors be-

FIG. 4-Chart for 10 -inch length of transmission line used as tuning element. Solid curves are for parallel lines: dotted curves are for coaxial lines of same length
come appreciable for extremely lowimpedance lines, as evidenced by the apparent shrinking of the log scale for graphs of low impedances.

Coaxial lines (dotted lines on Fig. 4) may be plotted together with open lines (solid lines on Fig. 4). With a given capacitance variation available for tuning a line of given physical length, the tuning range (but not tuning ratio) varies considerably with impedance. With the selection of a low-impedance line the highest maximum frequency for a given minimum capacitance can be obtained.

Applications

Other similar charts may be rapidly prepared. From two or more experimentally plotted graphs of individual elements approximately within the desired range, a family of curves may be drawn to permit accurate selection of the desired tuning elements. Frequency doublers or power amplifiers may be accurately ganged by this system. As charts for progressively larger power coils or doubler coils all have the same slope, the choice of capacitors and inductors to gang and track becomes relatively elementary. This technique also applies to open or coaxial lines and permits the same techniques to be used on higher frequencies. Figure 3, for example, illustrates the tuning ranges of several lengths of 157ohm line. From Fig. 4 the line impedance and loading capacitance may be determined for tuning a desired frequency with a 10 -inch long line.

Why the Mallory

Abstract

The Mallory UllF Tuner can be the complete answer to your UHF tuning problems... whether you build converters, all-channel receivers, or both. It consists of three sections of variable inductance. It covers the range between 470 and 890 megacycles with approximately 2 mmf of shunt capacity. Selectivity is excellent over the entire band. No matter how you decide to handle the problem of UHF reception, it will pay you to investigate the various possibilities offered by the Mallory UHF Tuner. One of the following combinations is the answer to your requirements...

FOR RECEIVERS...

UHF Tuners, for use in combination with VHF tuners, are available in 3 different designs . . each in 3 different stages of assembly: (1) To convert UHF signals to 82 megacycles on channels 5 or 6 . (2) T'o convert UHF signals to 130 megacycles. (3) For operation into a 41 megacycle IF amplifier.

- Mallory UHF tuning element.
- Mallory RF assemblies. This includes the tuner, oscillator, tube, crystal and associated circuitry.
- Mallory RF assemblies with an IF amplifier operating at conversion frequency.

Get in touch with us regarding the Mallory UHF Tuner. We will be glad to work with you . . . see how these various possibilities can be fitted into your plans for UHF television. Write today.

Television Tuners, Special Switches, Controls and Resistors

ELECTRONS AT WORK

Including INDUSTRIAL CONTROL
Edited by ALEXANDER A. McKENZIE

Transistor Oscillator Circuit 196	d Garage Door. 22
Mobile Pickup Speeds Telefax........ 196	Frequency Economy in Mobile Radio . . 228
New UHF Transmitting T	Liquid Polting of Electronic Components 236
New Magnet Materials. 19	
Broadcast Remote Control 200	Tuners
Transistor Broadcast Regenerator . : . . . 200	
Power Requirements for Transistor Circuits 204	Oscillator for Comparison Measurement of Power Frequencies. 252
Noise Reduction in Intercom Systems . . 214	VHF Conversion Amplifier 258

Transistor Oscillator Circuit

By L. Fleming
Falls Church, Va

FIG. 1-Transistor oscillator suitable for fixed-frequency audio source, using twoterminal inductance

Transistor oscillators engineered for special applications have appeared in the literature, ${ }^{1}$ but as yet few have been reported that require no specially-constructed components and give stability comparable to that of conventional tube circuits. In this early stage of the art, specific transistor circuits are of value in clarifying the concepts learned in higher-level texts and papers. The circuit of Fig. 1 is presented with this in mind. In addition, it provides a fixed-frequency audio source of value in laboratory and testing instruments having waveform, stability, and tolerance to component and voltage changes as good as is found in similar simple tube circuits.

Figure 1 shows constants for a frequency of 1,000 cycles. Output is 3 volts with a high-Q inductor, internal impedance around 20,000 ohms. Battery drain is less than 50 microamperes. The transistor is the readily available CK722. Inductor L need have only two termi-nals-no taps or multiple windings. The oscillator is class C. In-phase feedback from collector to emitter is effected by two capacitors C_{1}, C_{2}, connected in a kind of Colpitts circuit. Optimum feedback ratio

OTHER DEPARTMENTS
featured in this issue:
Page
Production Techniques . 260

New Products 298

Plants and People....... 342

New Books 368

Backtalk 391
C_{2} / C_{1} varies from 10 to 50 , depending on the impedance and Q of the tuned circuit.

The effect of changing the ratio is evidenced principally in the waveform. Emitter resistor R_{1} determines mainly the angle of conduction, hence the battery drain and the internal impedance; any value from 5,000 to 100,000 ohms will work. The purpose of resistor R_{2} is to limit reverse collector-current flow during that part of the halfcycle when the collector is positive. Its value depends on the Q of the tuned circuit. With zero resistance at R_{n}, the positive peaks of the voltage wave have flat tops. Waveform improves rapidly as R_{z} is increased

MOBILE PICKUP SPEEDS TELEFAX

Facsimile equipment connected to two-way radio circuit produces a telegram while the driver proceeds to point of delivery. Six cars being tested in Baltimore, Md. use special radio and conversion equipment shown at left. Facsimile machine to right of driver reproduces telegram transmitted from office

NEW RX METER....

TYPE 250-A

FREQUENCY RANGE: 0.5 mc to $\mathbf{2 5 0} \mathbf{~ m c}$

The 250-A RX Meter is a completely self-centained instrumont for use in measuring the equivalent parallel resistance and capacitance or inductance of two terminal networks over a wide frequency range. It includes an accurate continuously tuned oscillator, high frequency bridge, "unbalance" detector and null indicator.

All variable components of the bridge are high quality capacitors, which are driven by carefully designed antibacklash gear trains. The Capacitance indicating dial can be read to 0.05 mmf , and the Resistance indicating scale is expanded to cover 28 inches in length. No corrections are required over the frequency range for the Resistance readings.

USES

The 250-A RX Meter can be used to measure the equivalent parallel resistance and capacitance of resistors at high frequency. If the reactance is inductive the value can be determined. By very simple formulas the equivalent series parameters can be deduced. The instrument will also measure components which are primarily inductive or capacitive. The characteristic impedance, attenuation and velocity of propagation of transmission lines can be determined.

Specifications

FREQUENCY: 0.5 mc to $\mathbf{2 5 0 ~ m c}$ in eight ranges. Rp RESISTANCE RANGE: 15 to $100,000 \mathrm{ohms}$. Cp CAPACITANCE RANGE: +20 $\boldsymbol{\mu} \boldsymbol{y}$ f to -100 $\boldsymbol{\mu} \boldsymbol{\mu} \mathrm{f}^{*}$.
*Capacitance range may be increased to ± 120 m pf by use of external coils or condensers.

Price: $\$ 1250.00$ F.O.B. Boonton, N. J.

FEATURES

Measures equivaler $=$ parallel resistance and capacitance or induclance of two terminal networks.
Operates over a Nice Frequency Range.
Includes self-conkained oscillator, bridge, detector ere null indicator.
Null Indicating Meter hes automatic gain control which meint.ai ss on scale readings under all conditions to avoid meter damage and pert rit indication of proper direction of adjustment for reaching bridge balance.
Wide spread resistance dial scale covering total cf 28 inches.
Power Supply internally regulated.
to a thousand ohms or so, then more slowly. Oscillation stops at around 40,000 ohms.

A germanium diode can be substituted for the resistor R_{z}, its cathode poled toward the tuned-circuit terminal, to remove this reverse collector current. It was found however that the output wave contained small discontinuities at the points where the diode stopped conducting, an effect absent with the resistor. Since the resistor value is not critical, it seems the preferable element to use.

With laminated silicon-steel-core inductances, such as ordinary chokes, which typically have a Q of 6 at $1 \mathrm{kc}, R_{2}$ may not be necessary.

The upper frequency limit for this transistor in the circuit of Fig. 1 is generally about 50 kc (although there are instances of oscillation at 2 mc) and in multivibrator and similar circuits 20 to 30 kc . In the
class-C circuit, the collector current rises as the upper frequency limit is approached, indicating an increase in the angle of flow.

While the oscillator will operate with ary supply voltages over 1.5 v within the ratings of the transistor (lower voltages than 1.5 were not tried), the only advantage in increasing them is to raise the voltage or power output. A collector-toemitter supply voltage ratio in the order of 3 to 1 appears to give the best waveform. In general, higher collector voltages will increase the voltage level but the angle of current flow will decrease. To obtain greater power output the current must be increased by raising the emitter source voltage or decreasing R_{1}.

Reference

(1) D. E. Thomas Low-Drain Transistor Audio Oscillator, Proc $I R E, 40, \mathrm{p} 1,385$, Nov. 1952.

New UHF Transmitting Tubes

A 250-WATT POWER tetrode driver and a 5 -kw power output tube for uhf transmitting applications have been announced by GE. Both tubes are designed for use as broadband amplifiers in class-B television service and as class-C amplifiers or oscillators in grounded-grid circuits with both grids at r-f ground potential.

The GL-6283 has a continuous rating of 150 watts at frequencies up to 900 mc , with a synchronized peak power gain of seven. Up to 900 mc the GL-6283 may be operated in a quarter-wave-output cavity. Above 900 mc , operation is in a three-quarter-wave mode.
As an r-f amplifier in class-B tv service, typical operating conditions with a six-me bandwidth are: plate $1,500 \mathrm{v}$; screen, 300 v ; plate current, 0.325 amp ; driving power at tube, 35 watts; power output, 250 watts.

For typical operation as a class-C r-f power amplifier and oscillator in a grounded-grid circuit the plate voltage would be $1,400 \mathrm{v}$; screen voltage, 250 v ; and plate current 0.230 amp . Driving power of 15 watts gives a power output of 150 watts.

The GL-6182 power tetrode is a water-cooled tube rated at 5 kw up to 900 mc , using quarter-wave cavity. Three-quarter-wave mode operation is possible at frequencies above 900 mc with reduced power output.

As a class-B r-f amplifier with a plate voltage of $8,000 \mathrm{v}$ and screen

FIG. 1-Cut-away view of GL-6283، 250 . watt uhf driver

FIG. 2-Five-kw power output tetrode GL-6182
voltage of 600 v , plate current is 1.3 amp , grid current 0.30 amp . Driven by 300 watts, power output is 5,000 watts with a six-mc bandwidth at 900 mc .

New Magnet Materials

BISMANOL is the name applied to a manganese-bismuth alloy devised by U.S. Naval Ordnance Laboratories. The material is not new, having been described by F. Heusler in 1904 and again described in 1939 in British patent 596,966 . It is again described in U.S. patent 2,576,679.

The material is manufactured by a reaction between molten bismuth and manganese produced in a slowly rotating stainless steel vessel covered by an inert atmosphere and maintained at a temperature of $1,300 \mathrm{~F}$. When the reaction has been completed, the material is cooled and the excess bismuth squeezed out of the melt at approximately 25 tons per sq in.

The resulting mass of crystals of MnBi are then pulverized to under 325 mesh and compacted under a pressure of 6,000 to 10,000 pounds per sq in. together with a very strong magnetic field in the order of 10,000 oersteds or more.

In its present state of development, Bismanol has a residual flux

MODEL J

Here are three models of single turn, continuous rotation Helipots . . . each available from slock in a wide range of resistance values. All three feature the rugged dependability . . . the high degree of precision ... the proven design characteristics . . . that you expect of every Helipot. Among their many features are the copper mandrel which effectively dissipates heat . . . the spot-welded connections (no pressure-type connections are used in any Helipot model) . . . the provision for easy, accurate phasing on the job . . . the wide choice of mounting styles, number of ganged sections, number of additional tap connections, etc. And like all Helipot models, they are available in variations to meet your exact specifications.

The versatility of these three scrics of single turn, continuous rotation Helipots makes them ideal for such uses as servo systems . . . analog computers . . pH indication and control . . . Ievel indication and control . . . telemetering circuits . . color analysis and control navigation aids . . . radar indicators... laboratory instruments, and many more. Your particular requirements will determine the model . . . the number of ganged sections . . .the number and placement of tap connections . . . the style of mounting . . . and other characteristics best suited to your nceds.

[^13]Below is a Quick-Reference-Guide to the J, L, and Y Series Helipots. For complete information, write for Data File 602.

	Model Y Series	Model J Series -	Wodel L Series
Diam. Resist. Range	(a) $13 / 4^{\prime \prime}$ $50-50,000$ ohms (b)	50-50,000 ohms (b)	50-100,000 ohms (b)
Power Rating	2.5 watts	4 watts	5 watts
Active Elec. Rotation	$356^{\circ} \pm 1^{\circ}$	$357^{\circ} \pm 1^{\circ}$	$358^{\circ} \pm 1^{\circ}$
Coil Length	$4.6^{\prime \prime}$	$5^{\prime \prime}$	$8^{\prime \prime}$
Mounting	Y-Threaded Bushing. YS-Servo Flange, Sleeve Bearing. YSP-Servo Flange, Ball Bearing. YF-Two-hole Servo, Sleeve Bearing. YFP-Two-hole Servo, Ball Bearing.	Threaded Bushing (Spec.). Servo Flange, Ball Bearing (Std.).	1.-Threaded Bushing. LS-Servo Flange, Sleeve Bearing. LSP-Servo Flange, Ball Bearing
Max. No Ganged Sections IC)	14	8	8
Max. No. Tap Connections per Section (c)	17	21	33

(a) Model Y Series Helipots are available in both linear and non-linear versions.
(b) Higher or lower resistance values can be furnished on special order.
(c) Sections can be ganged and tap connections added, during manufacture

Helipot
 DIVISION

BECKMANINSTRUMENTS. INC SOUTH PASADENA. CALIFORNIA

[^14]density of about 4,800 gauss, a coercive force of some 3,650 oersteds and a maximum energy product of 5.30×10^{8} gauss-oersteds. This latter figure compares favorably with Alnico V, but the coercive force is much higher and the residual flux density is much lower than that of Alnico V. A shorter and fatter Bismanol magnet is therefore required to supplant an Alnico V magnet in any given design. The amount of magnet material utilized in both cases is about the same.

Pure crystals of MnBi contain 20.8 percent manganese and 79.2 percent bismuth. Besides a current market price of $\$ 2.25$ a pound, in ton lots, the greatest obstacle to mass development of Bismanol is the fact that the entire world's annual production of bismuth is insufficient to supply even the total requirements of loudspeaker manufacturers in this alloy.

Another permanent magnet material with promise of immediate
adoption is Ferroxdure. This ferrite, in the form $\mathrm{BaO} 6 \mathrm{Fe}_{2} 0_{3}$ may find immediate use for focusing television cathode-ray tubes.

Although it has a residual flux density of only 2,000 gauss, a coercive force of 1,500 oersteds and a maximum energy product of 0.80 gauss-oersteds, the availability and low cost of its constituents combined with the high coercive force of the material makes it almost ideally suited to this television application.
The material is manufactured by intimately mixing fine powders of ferrous and barium oxide, presintering at a temperature about $1,800 \mathrm{~F}$, pulverization and mixing with a binder and finally sintering at about $2,300 \mathrm{~F}$. The material is developed by North American Philips Co., patent holders.

This information is contained in a private communication from Earl M. Underhill, Crucible Steel Co. of America, Harrison, N. J.

Broadcast Remote Control

Unattended operation of a-m and f-m broadcast transmitters of ten kilowatts and less power into nondirective antennas became legally possible by change of FCC rules effective April 15, 1953. System
details of two manufacturers' equipment are shown below. Circuit details of another telemetering system are given on page 138 of this issue of Electronics.

Equipment available from the

Shawinigan Falls, P. Q. radio station CKSM is remotely controlled by this CGE equipment. Dial is located at studio. Transmitter engineer tests selector with pushbutton

Transistor Broadcast Regenerator

By Peter G. Sulzer Kensington, Md.

The circuit of the receiver shown above is self-explanatory. It should be noted, however, that not all of the available type 2517 transistors will oscillate up to the top of the broadcast band.

Bias resistor R is subject to considerable variation and should be adjusted to produce about 0.5 ma collector current.

With a 7.5 v supply and the proper coil, the receiver will work up to 4 mc .

In the broadcast band, the sensitivity is such that about 0.5 microvolt 30 -percent modulated will produce a readable output.

Rust Industrial Co., Inc. comprises two units, one at the broadcast studio and one at the transmitter. Two pairs of telephone wires are required for control and metering. These facilities are additional to audio lines.

Figure 1 indicates the system interconnections. Switch S initiates operation by supplying $12 \mathrm{v} \mathrm{d}-\mathrm{c}$ to the control line. The LOWER switch in unit B increases the voltage to 25 v and the raise switch increases it to 50 v . Telephone dial C interrupts the control-line voltage by the number of impulses dialed and steps D to show the number by means of indicating lights.

Relays F, G and H bridged across the control line are voltage-selective. Relay F follows dial pulses on 12 volts and in turn operates N, which does not release during dial impulses. However, if control voltage fails for two seconds, relay N

NEW!

COMPONENTS -PRODUCTS

for INDUSTRIAL use in ELECTRONICS

- Constant research and development
- Rigid inspection and production control
- Five modern plants

These are some of the advantages of Amphenol that are offered to American industry These qualities, the result of over twenty years experience in the young electronics field, go into the design and manufacture of each Amphenol part. Accustomed to solving tough problems, Amphenol is constantly working with the Armed Forces and with industry to design and produce quality electronic components That we have succeeded is attested to by the constant and heavy demand for Amphenol parts. With over 9,000 separate cataloged items to draw from, the modern American manufacturer is finding that it makes common sense to depend on Amphenol.
CATALOGS
Users of quality electronic components will find the Amphenol catalogs shown below excellent sources for their buying needs. Besides the $\mathrm{C}-3$ methods manual, illustrated are the B-2 general catalog; A-2, AN connectors, and the $\mathrm{D}-2, \mathrm{RF}$ cables and connectors.

AMERICAN PHENOLIC CORPORATION 1830 SOUTH 54TH AVENUE. Chicago 50, illinois

FIG. 1-Remote control provides for raising and lowering functions, as in tuning final stage
takes the transmitter off the air. Relay G operates on 25 volts but falls out above 12 v . Similarly H picks up at 50 v and falls out above 25 v .

Relay F operates stepping system I, which gives visual indication of the particular function chosen. Reversible motors and contactors connected into the individual channels are operated according to the studio engineer's instructions by means of the LOWER and raise switches. The stepping switch also connects to the metering line any one of nine different metering elements (of which three are indicated). All potentials or currents are converted to a low direct voltage proportional to the parameter being measured.

In stepping position 0 a standard voltage source M at the transmitter
is connected to the metering line. Standardizing control L at the studio is then adjusted for a standard deflection in order to correct all readings for variation in line resistance owing to temperature changes.

Tone-Dial System

In a remote control system designed by Gates Radio Co., audible tones are used for switching and a dial-impulse stepping switch for selection of the function to be monitored.
This system shown in Fig. 2 requires two telephone pairs between studio and transmitter. One pair carries a voltage proportional to

FIG. 2-Step control uses tones with stepping switch for monitoring

Meet the Redheads... fops for tape recording

See how the latest additions to the Brush family of magnetic recording components can improve your tape recorders!

The BK-1090 record-reproduce head has the standard track width designed for dual track recording on $1 / 4$ inch tape. It provides unusually high resolution and uniformity over an extended frequency range. Cast resin construction assures dimensional stability, minimizes moisture absorption, and affords freedom from microphonics. Its balanced magnetic construction, precision lapped gap, Mu-metal housing, and single-hole mounting provide important design advantages.

The BK-1110 erase head has the same basic construction as the companion record-reproduce unit. Its outstanding feature is its efficient erasing at low power consumption - less than $1 / 2$ voltampere.

Investigate these new "Redheads" for your magnetic recording. Your inquiries will receive the attention of capable engineers. Write Brush Electronics Company, Department K-6,3405 Perkins Avenue, Cleveland 14, Ohio.

BRUSH ELECTRONICS
 INDUSTRIAL AND RESEARCH INSTRUMENTS PIEZOELECTRIC MATERIALS - ACOUSTIC DEVICES MAGNETIC RECORDING EQUIPMENT ULTRASONIC EQUIPMENT

COMPANY

formerly

The Brush Development Co. Brush Electronics Company
is an operating unit of Clevite Corporation.

FIG. 3-Monitoring voltages are obtained in several ways
the voltage or current being monitored and this is shown on a meter at the studio. The other pair is bridged with a center-tapped hybrid coil. Audio tones are sent over the pair but dial impulses use, in effect, two sides of this line against ground.

Various suggested means of obtaining monitoring voltages are shown in Fig. 3.-A. A. Mck.

Power Requirements for Transistor Circuits

By J. Dalfonso

Cluief Engineer

> Battery Division R. Mallory \& Co Inc. North Tarrytown, $\overline{\text { Now }}$.

TWO EASIC QUESTIONS relative to transistor power-sources concern present-day and future power requirements. The fact that transistor characteristics are essentially ideal implies that in class-A and class-B operation the theoretical limit of 50 percent in power efficiency may be realized in practice, and perhaps 100 percent efficiency can be approached in class-C amplification. Hence, in power applications these rule-of-thumb efficiency figures can be used to calculated the magnitude of the power required from the primary-power source. Further, because of the ideal shape of the characteristics, the rule may be applied in any power range from the micropower levels of presentday transistors to the probable large power-level operation of power

This
 vacuum gauge
 covers a range of $5,000,000: 1$ on one mefer

It's the CVC Philips Gauge, Type PHG-09, a remarkable instrument developed by CVG's high vacuum research department. Here are the basic facts:

- A single meter covers the entire range from 0.50 mm to $10^{-7} \mathrm{~mm} \mathrm{Hg}$.
- A single all-metal pickup tube handles this range. It works on the glow discharge principle. Permanent magnets provide a field which lengthens the clectron paths into tight spirals that give high ionization per electton, with a cascade effect.
- No filament to burn out The tube can be operated ar full atmosphere without damage, and the circuit is insensitive to fluctuations in the line voltage.
- No outgassing problem. The magnet is external to the ionization chamber.
- Self-cleaning. The tube at the higher pressures in the low sensitivity range automatically rids itself of deposited film because polarity is reversed.

This CVC gauge is another example of our constant effort towards simplifying the use of high vacuum. For information on this or any phase of high vacuum creation, measarement, and use, write to Consolidated Vacuum Corporation, Rochester 3, N.Y. (A subsidiary of Consolidated Enginecring Corporation, Pasadena, Calif.) Sales offices: Menlo Park, Calif. • Chicago, Ill. • Camden, N. J. • New York, N. Y.

Consolidafed Vacuum Corporation

Oscilloscope

TO SUCCEED THE POPULAR TYPE 514-D the Type 514-AD

FIG. 1-RM cell load voltage vs time at constant load at 70 F . Inset, typical voltage regulation
transistors to be produced in the future.

In addition to the actual quantity of primary power to be supplied by the power-supply source, there are three other important characteristics. Of primary interest is a requirement for uniformity of electrical characteristics: that is, constancy of voltage, or constancy of current, with respect to time. In a transistor, the collector sensitivity in respect to changes in emitter voltage is quite high, as has been mentioned by Wallace and Pietenpol and others. For this reason it is necessary frequently to provide the emitter-bias from a constant-current source, such as a high resistance in series with a constantpotential source.

Second and third items of importance in the power-supply are long life and small size, to match corresponding characteristics of transistors themselves.

If battery-powered, portable equipment is to become popular, it is necessary that the batteries have long operating life. It is necessary also that they be compact, lightweight, and of uniform electrical characteristics during their life, and that the dependence of voltage upon temperature be a practicable minimum. The shelf life should be lengthy, because there will be days and even months during which such equipment is not in use. The RM mercury-oxide cell fulfills these requirements.

The characteristics of transistors are such that in order to increase the power output (within the maximum rating) it is necessary only to increase the collector potential by providing additional source-

SPECIFICATIONS FOR MODEL GM49P-1
400 Cyele Capacifor Run Induction Gear Motor
115 Volts - 100 Cycles - 1 Phase - 0.5 Amps.
Full Load Torque: 100 Oz .1 In .
Starting Torque: Over $100 \mathrm{Oz} . \operatorname{In}$.
Gear Head Lubricated per Mil-G-3278
22 R.P.M. - 314 to 1 Gear Ratio - Reversible Rotation Intermiftent Duty: 15 Minutes on, 15 Minutes off
Ambient Temperature: -55° to $+74^{\circ} \mathrm{C}$
Alfitude: to $50,000 \mathrm{Ft}$.

TYPICAL APPLICATIONS

- Military and Aircraft
- Follow Up Devices
- Instrument Controls
- Automatic Controls
- Automatic Pilot

Radar Equipment

- Electronic Control
- Actuators
- Timers

A precision gear head combined with a miniature motor gives you the answer to high torque at low speed. The motor can be 60 cycle, 400 cycle or variable frequency - in single, two or three phase with non-cooled or self-cooled frame types. The gear head is arranged to provide the output speed you require, with standard timing ratios of 60,3600 or 8000 to 1 possible. High output torques, to drive, actuate or control, in confined areas, make this line of tiny gear motors ideal for a wide variety of applications on the ground and in the air.

SOLVING SPECIAL PROBLEMS IS ROUTINE AT EAD

If your problem involves rotating electrical equipment, bring it to EAD. Our completely staffed organization will modify one of our standard units or design and produce a special unit to meet your most exacting requirements.

New Ballantine SENSITIVE NVVERTER

for the precise measurement of small DC potentials

from

$10 \mathrm{fv}-100 \mathrm{v}$

Threshold Sensitivity $1 \mathrm{\mu v}$

FOR USE WITH
Vacuum Tube Volimete
Oscilloscopes
Voltage Amplifiers
Multimeters
Servo-Amplifiers

MODEL 700

FEATURES

- Built-in Calibrator

- High Sensitivity
- High Input Resistance
- Distortion-free Output

- Low Noise Level
- Accurate for 50-70 cps Line Frequencies

- Polarity Sensing

- Immune to 60 cps Stray Magnetic Fields

SPECIFICATIONS_MODEL 700

voltage; and to increase the collector current, by adjustment of the emitter bias. Thus, normally, the transistor is biased and powered for the output desired, within its rating, using low values of collector current and collector voltage for lowpower applications. The mercuryoxide cell has a constancy of voltage such that it may be used as a secondary standard for voltage. Thus many cells can be added in parallel and/or series to increase the power output for equipment to any desired level.
Transistor applications usually

FIG. 2-Variation of potential with 20 ma drain of RM-1 cell
require a different arrangement of potentials on transistor control elements than those required by vacuum-tube elements. The baseemitter circuit of a transistor, which corresponds to the gridcathode circuit of a vacuum tube, is usually low in impedance. Power is consumed in this circuit. The supply must be capable of supplying a bias current rather than a bias potential, as is usually supplied for a vacuum tube. This bias current may be opposite to, or in the same direction as, the collector current, depending on the type of transistor and the circuit connections.

Junction transistors belong to two major classes: the npn, in which conduction is primarily by diffusion of negative charges through the junction; and the pnp, in which conduction is primarily by diffusion of positive charges. This situation is similar to a hypothetical one that might exist in the vacuum-tube industry if we should discover a thermionic emitter of positrons. The obvious requirement in this situation is to establish the collector potential for the npn as positive

This new plant was designed and built for the production of alloy strip of the highest accuracy. It is equipped with the finest machinery available for the task. Sendzimir Mills assure FREEDOM FROM CROWN. Skilled operators, with years of experience, roll to close tolerances and produce finishes to highest STANDARDS.

A group of experienced engineers is available to select the correct alloy for your application.

ANTENNA TOWER INSULATORS

- Insulation of antenna structures is a field pioneered by Lapp. The first insulated broadcasting tower, erected more than 30 years ago, was on Lapp insulators. Today, most of the world's radio towers are supported by Lapp insulatorsincluding the tallest guyed mast ever built, more than 1200 feet high.
Through the Lapp "compression cone," immense loads can be carried by electrical porcelain-single Lapp base insulator units of the type shown here having been design-tested to strengths in excess of $3,500,000^{\circ} \mathrm{lbs}$.
Write for description and specification data on units for any antenna structure insulating requirement. Lapp Insulator Co., Inc., Radio Specialties Division, 102 Sumner St., Le Roy, N. Y.

FIG. 3-EMF vs storage time at two temperatures
(normal in relation to vacuum tube practice), but that for the pnp as negative.

Figure 1 (inset) shows the general characteristics of the RMcell system. The equilibrium period T_{2} represents practically 97 percent of the cell life when the current drain is relatively low, as shown for a type RM-1 cell in Fig. 1. In the equilibrium period, the potential is constant (at 98 percent of no-load potential) within less than $\pm \frac{1}{2}$ percent at low levels of drain. At high levels of drain, the potential will vary by ± 2 percent from 90 percent of the no-load level, as shown in Fig. 2. The equilibrium period at this increased drain would be approximately 67 percent of the cell life.

Larger cells or groups of smaller cells in parallel, of course, show better equilibrium-period characteristics for equivalent rates of drain. Since current-drain per unit of electrode area determines the equilibrium period, potential may be kept as constant as desired for any predetermined equilibrium period by proper design.

Mercury batteries provide as much as three to four times the energy of other types of batteries. The type RM-625 cell, occuping only

FIG. 4-Percent total capacity vs storage time al 70 F

MOLON思Y HOOPMGOME ELECTRONIC CORES

... for Any Electronic Application

Moloney HiperCore Electronic Cores assure better transformer performance because of their advanced wound core design. These wound cores have greater flux carrying capacity and lower losses than other types of cores of comparable sizes. In addition to better performance, a smaller, lighter core is obtained. In electronic applications, where size and weight are critical, Moloney HiperCore Electronic Cores are particularly desireable. Because they are wound cores, savings in assembly time can be favorably reflected in accelerated production. Rigid production control assures cores that test well within industry standards. More than 1000 standard sizes are available and special sizes can be made for specific applications, if desired.

Moloney HiperCore Electronic Cores are wound with grain oriented silicon steel of I, 2, 4 or 12 mil thicknesses.

Write today for bulletin SR-205 contailning specifications, performance data and prices on over 300 stack sizes.

MOLONEY ELECTRIC COMPANY

Manufacturers of Power Transfarmers. Distribution Transformers - Load Ratio Control Transformers Step Voltage Regulators - Unit Substations

Illustrated: Model $B P$, single-pole, double-throw,
15 A., 125 V. A. C. Overall length, $15 / \mathrm{s}^{*}$.

The most practical and economical solution to difficult switching problems ever devised . . . TYNISWITCH.

Like no other snap switeh made, this compact, low cost, snap-action unit permits high load switching in a minimum amount of space. It eliminates the need for costly, non-functional bulk in new or redesigned products. Its high force-to-inertiaratio spring blade inhibits mechanical resonance . . . assures smooth, high-speed operation with positive, bounceless closure. And as for dependability-conclusive laboratory tests have proven that TYNISWITCH is consistently reliable at high operating speeds . . . for over millions of cycles!

Consider these important design and production advantages now. New TYNISWITCII models can be developed to fit your exact switching speeds and specifications-or you can select conventional circuit arrangements from a variety of standard units. Write for complete details. TYNISWITCII Division, The Sessions Clock Company, 104 East Main St., Forestville, Conn.

0.07 cubic inch and weighing only 0.14 ounce, will provide approximately 250 hours of service life in a 1-ma transistor application.
The average transistor collectorvoltage, in the majority of applications, will be below 10 volts and may be as low as 0.1 volt. Collector currents will be in the range of a few milliamperes down to several microamperes.

Type RMI mercury batteries do not deteriorate or lose their energy appreciably during long

FIG. 5-EMF vs temperature at light loads
storage periods, as shown in Fig. 3 and 4. Field reports indicate such batteries perform satisfactorily even after two or more years of shelf life.

Mercury batteries maintain their dependable characteristics over a wide temperature range. Some subsurface survey instruments are operated at temperatures above 250 deg F. At the other extreme, dependable performance can be expected as low as 32 deg F in low current-drain applications as shown in Fig. 5.

Bibliography

Wallace and Pietenpol, Some Circuit Properties and Applications of npn Transistors, The Transistor, Bell Telephone istors, The
B. N. Slade, Survey of Transistor Development, Radio and Television News, Oct. 1952.
Maurice Friedman and Charles E. McCauley, The Ruben Cell, A New Alkaline Dry Cell Battery, Trans. Electrochem. Soc., 92, 1947
Samuel Ruben, Balanced Alkaline Dry Cells, Trans, Electrochem. Soc., 92,1947 . George Wood Vinal, "Primary Batter-

Cable lasher appears to right of workman. As the cable and supporting strand feed through, the machine rotates, binding them fogether with steel lashing wire. Meanwhile, a winch hauls the lashed cable into position.
$\mathbf{I}_{\mathrm{T} \text { is a job your telephone company faces every day. Thou- }}$ sands of miles of cable go up each year-all secured to steel strand ruming from pole to pole. The best way to secure cable is to lush it to the strand with a spiral binding of wire.

One way to do this is to raise cable and strand separately, then lash them together by a rotating machine pulled along by workmen on the ground. This produces a strong, tight support for the cable. But each pole has to be climbed as many as four times. So Bell Laboratories engineers devised an easier way.

Now, lashing can be done on the ground so that cable, strand and lashing wire may be pulled into position as a complete assembly. Usually workmen need make only two trips up each pole.

For telephone users, the new way means that cable can be installed faster, while costs are kept down. It shows again how work at Bell Telephone Laboratorics improves each part of your telephone system.

...by the
 mile?

Bell Telephone Laboratories

Improving telephone service for
america provides careers for creative
men in mechanical engineering

ies", John Wiley and Sons, Inc., New York
Cell. M. Booe, The Alkaline Mercuric-Oxide 14.2. Journ. Electrochem. Soc., August

Noise Reduction in Intercom Systems

By Robert J. Stahl
Color Television Inc. San Carlos. Calif. and
Glenn A. Walters Dalmo Victor Co. San Carlos. Calif.

Of first importance in the elimination of noise in intercommunication systems is the design of the amplifiers. Circuit arrangements that allow audio signals to the speaker only when the system is in actual use will overcome many noise objections. Power supply and other circuits that are inherent sources of noise must be constructed in accordance with good engineering practices. However, from an economic standpoint, it is necessary that a minimum number of components be used.

Fortunately, the voice frequencies that must be transmitted over the intercom system are higher than the line frequency, so filter requirements of the supply are quite nominal. Amplifier components should be so chosen that a relatively large attenuation is presented at frequencies below 200 cps .

Assuming that the aforementioned principles are followed, there are still several considerations necessary to obtain satisfactory noise rejection. Transmission level will directly control the signal-tonoise ratio. All other factors being equal, a system that transmits the signal at a relatively high level is desirable as this keeps amplification required at the receiving end to a minimum, and amplification of line noises is kept to a minimum.

One means of obtaining a high transmission level is the use of a split-amplifier circuit, one section of which is shown in Fig. 1. Two identical circuits are used, one located at the control position and the other at the remote position of the system. In use, the function of each of these circuits is switched from preamplifier to power ampli-

ScinfleX assures

LOW MAINTENANCE BECAUSE

IT PERMITS SIMPLICITY

When operating conditions demand an electrical connector that will stand up under the most rugged requirements, always choose Bendix Scinflex Electrical Connectors. The insert material, an exclusive Bendix development, is one of our contributions to the electrical connector industry. The dielectric strength remains well above requirements within the temperature range of $-67^{\circ} \mathrm{F}$ to $+275^{\circ} \mathrm{F}$. It makes possible a design increasing resistance to flashover and creepage. It withstands maximum conditions of current and voltage without breakdown. But that is only part of the story. It's also the reason why they are vibration-proof and moisture-proof. So, naturally, it pays to specify Bendix Scinflex Connectors and get this extra protection. Our sales department will be glad to furnish complete information on request.

- Moisture-Proof - Radio Quief - Single Piece Inserls • Vibration-Proof - Light Weight • High Insulation Resistance - High Resistance to Fuels and Oils. Fungus Resistant Easy Assembly and Disassembly - Fewer Parts than any other Connector - No additional solder required.

SCINTILLA MAGNETO DIVISION of

 SIDNEY, NEW YORK

[^15]factory branch offices: 118 E. Providencia Ave, Burbank, Call. Stephenson Bldg., 6560 Cass Ave., Delroit 2, Michigan Brouwer Bidg., 176 W. Wiscensin Avenue, Milwaukee, Wisconsin - 582 Markel Street, San Francisco 4, Calllornio

OVER 200 BASIC TYPES TO CHOOSE FROM

Do audio attenuator problems cost you money? Chances are Shallcross has a model to match your specifications exactly-and at moderate cost.

Shallcross attenuators are made in over 200 basic types. Each type can be supplied with a choice of attenuation characteristics . . . with a positive detent mechanism . . and in numerous input and output impedances. Where calibration must be extfemely accurate, Shallcross precision wire-wound resistors are used. For less critical applications, models with high grade composition resistors can be supplied-often at lower cost.
A complete description of all Shallcross attenuators - mountings, characteristics, and circuits is yours for the asking in Bulletin L.4A.

Terminals made by
Sealectro Corp., New Rochelle, N. Y.

Dielectric properties

 remain constant over wide temperature rangeStandoff and feed-thru insulator terminals often fail in service due to high-temperature breakdown. Cracking frequently occurs during degreasing operations. And breakage may occur during manufacture. Today's equipment and operating conditions require terminals that eliminate these failures and provide improved, lasting performance.

In designing such improved terminals, Sealectro Corporation sought an insulating material that had good dielectric properties, resistance to high operating temperatures and chemical attack, and the toughness and resiliency to eliminate breakage and cracking. And it had to provide for simple, positive installations.

They chose Du Pont "Teflon"* tetrafluoroethylene resin. "Teflon" is an excellent insulator. Its dielectric constant (2.0) and loss factor (0.0005) are unaffected in temperatures from -80° F. to $400^{\circ} \mathrm{F}$. Du Pont "Teflon" is inert to all chemicals except molten alkali metals and fluorine. It is tough, durable . . . will not crack or arc. And the one-piece terminals assure simple, tight, lasting installations.

Du Pont "Teflon" serves many uses in electrical equipment-coaxial spacers, insulation for wire, cables and motor windings, and other parts where high temperatures, service, dielectric strength and durability are required. Perhaps it can help you improve or develop a product. For full information, write E. I. du Pont de Nemours \& Co. (Inc.), Polychemicals Department, Room 226T, Du Pont Bldg., Wilmington 98, Delaware.
*reo u.s. pat. off.

Takes less than one cubic yard of space. 10KW model requires only half the space of ordinary 10,000-watt plants. Easier to install. Connection box provided for quick hook up.

Cooling air is drawn by vacuum through generator and over engine. All heoted air expelled through one small vent which also discharges engine exhcust. Quiet operating

BUIL FOR HEAVY DUTY

Smooth running twin-cylinder, horizontallyopposed, 4 -cycle air-cooled engines deliver rated horsepower at moderate speed. Unusually large bearing surfaces for long life

Nothing extra to buy. Impulse-coupled, hightension magneto, radio shielded. Oil-bath air cleaner, fuel filter, oil pressure gauge, fuel tank, muffler and exhaust tubing.

COSTS LESS THAN ANY OTHER COMPLETE ELECTRIC PLANT!

 The Onan "CW" combines exclusive design advantages with all the time-proved Onan features such as UNIT-BUILT CONSTRUCTION, yet it costs less. Get the complete story of this sensational, all-new electric plant.Write for detailed specifications!
D. W. ONAN \& SONS INC.
(5) Fin
etectaje plants

ELECTRONS AT WORK
noise. From a practical standpoint, however, it will be found that ohmic losses fix the low-impedance limit. A good compromise appears to be about 45 ohms.

Noises introduced through ground routes will be less severe if a transformer type power supply is used but the increased cost is not justified in the average installation.

Ground Coupling Noises

The type of wiring used for the audio link between stations has a profound effect upon noise pick-up. The most common, and perhaps the most frequently misunderstood, noise source is introduced into the intercom system by means of ground coupling. The most prevalent cause for such noise is the voltage drop in building wiring caused by varying load currents.

Depending upon the character of the load devices and wiring adequacy, the voltage between ground and the low side of the line may contain high harmonics of the line frequency and miscellaneous noise potentials amounting to 10 volts or more peak amplitude. This voltage is applied directly to the B lead of intercom a-c/d-c plate supplies. Since the earth ground connection does not have zero impedance, it is possible to have ground coupling to noise sources located in nearby buildings using a separate service and ground connection.

Referring to the input circuits shown in Fig. 2, it can be seen that the negative return of the plate supply is coupled to the audio line

FIG. 2-Three input circuits for intercom systems

The ceramics with the "million dollar" body! Even the body is made by C-D, in the newest, most modern ceramic body plant in the world. You'll be as thoroughly "sold" on C-D ceramics as you are on C-D Dykanols*, micas and electrolytics. Write for Engineering Bulletins to: Dept. K-63, General Offices, Cornell-Dubilier Electric Corp., South Plainfield, New Jersey.

CORNELT-DUBITIER
 world's largest manufacturers of capacitors

vibrators

converters

A great aid to your miniaturization program
MOUNT IN 15/32" HOLE
ALL LENS COLORS
Easy lamp replacement with any midget flanged base lamp types

Complete blackout or semi-blackout dimmer types

THESE ASSEMBLIES LOGICALLY REPLACE LAMPS NO. 319, 320, and 321

PLASTIC PLATE (EDGE) LIGHT ASSEMBLIES

actuat she

NON-DIMMING No. 8.1930-621
through the bypass capacitor and/or the interwinding capacitance of the input transformer. Voltage is developed across these capacitances by virtue of the current flowing through stray line-toground capacitance C_{G}. This cable-to-ground capacitance is in the vicinity of 5 to 10 u.f per foot.

Electrostatic coupling between the audio line and the various master stations in the system contributes stray voltage, depending upon the design of the stations and individual ground couplings. Assigning the symbol C_{N} to the capacitance between the audio line and B-

$$
E_{N}=E_{M} \frac{C_{G}}{C_{G}+C_{N}}
$$

The noise actually reaching the grid of the first amplifier stage depends upon details of the input circuit. For the three circuits of Fig. 2, assume the following typical values: $E_{14}=10$ volts between ground and low side of line, $C_{G}=1,000$ u.f line to ground capacitance, $C_{P}=0.1 \mu \mathrm{f}$ bypass, $C_{T}=100$ uuf input transformer total primary capacitance and $x_{r}=10^{4}$ input transformer attenuation of electrostatic signal.

Calculations are based on the use of unshielded audio line. In Fig. 2A; $C_{n} \cong C_{P}$, therefore $E_{N} \cong 0.1$ and the electrostatically coupled input to the grid is $\alpha_{T} E_{y}=10^{-5}$ volts, a negligible amount. However, due to the unbalanced configuration, currents from C_{G} will flow through the primary and induce an additional noise potential.

With primary and secondary impedances of 50 and 50,000 ohms respectively, about 10 millivolts on the grid can be expected at 200 cps under the assumed conditions. If the primary is allowed to float, as in Fig. 2B, this unbalanced current can be largely eliminated at the expense of raising E_{N} to 9 volts because of the reduction in C_{y}. The grid input due to electrostatic coupling then becomes $\alpha_{T} E_{N}=0.9$ millivolts. When added to the induced signal originating from stray unbalances, this still represents a worthwhile total improvement over circuit 2A. Connecting the grid to the winding end most distant from the primary is important in this

Here is what BH " 1151 " Silicone Rubber coated Fiberglas Slecving has accomplished for the makers of an aircraft-type relay which is hermetically sealed in an enclosure qualified for the armed service miniaturization program:

1) Positive protection at 2500 volts RMS, despite rough handling in assembly - bending around sharp metal corners, pressing tight against metal parts.
2) Practically stopped lead breakage under prolonged frequency vibration.
3) Greatly retarded component failure due to vibration and shock.
4) Unaffected by soldering temperatures of $475^{\circ} \mathrm{F}$.
5) Does not crack, melt, deform or outgas under application temperatures from minus $70^{\circ} \mathrm{F}$. to plus $450^{\circ} \mathrm{F}$.

Send Bentley, Harris your requirements - voltages and temperatures - get free production samples of recommended BH Tubing and Sleeving for your particular insulation problem.

Address Dept. E-6
Bentley, Harris Manufacturing Co. Conshohocken, Pa.

SLEEVINGS

arrangement of the circuit.
The balanced and bypassed arrangement of Fig. 2C similarly reduces induced noise while maintaining electrostatically coupled noise at 10^{-5} volts. The disadvantage of this circuit lies in complication of the talk-listen and channel selector switches since neither line terminal can be made common.

Aside from the choice of input circuit and plate supply, ground noise susceptibility can be controlled by proper installation. Shielding the audio line is eftective in troublesome situations. The shield should not be grounded but returned to the station common, otherwise the noise is aggravated. Twisting of leads does not help prevent this type of noise unless the primary is balanced.

In all cases, locating signal leads away from ground or grounded objects (such as pipe or steel beams) reduces giound-coupled noises. Isolating transformers assist in eliminating coupled noise if the undesired signal is not connected to the secondary, the secondary is effectively earth grounded, and mag. netic coupling to the isolating transformer is avoided.

Acknowlederment is made for the assistance of Gordon Babcock and other members of the engineering staffs of Dalmo Victor Company and Color Television, Incorporated.

Tramsistor-Controlled

Garage Door

By A. H. Fonbes and Ropert L. Rimdle Staff Members
Department of Electrical Engineering
?ennsylvania state College
State College, Pa.
The remotely controlled garagedoor opener employs a point-contact transistor-amplifier circuit that requires low standby power. The block diagram, shown in Fig 1, outlines the operation of the circuit in functional form. Block A is located in

FIG. 1-Block diagram of remote-control door opener

Designed for Application

Grid Dip Meters

Millea Grid Dip Meters are available to meet all various laboratory and servicing requirements.
The 90662 Indugtrial Grid Dip Meter completely calibrated for laboratory use with a range from 225 he. to 300 me. incorporates features desired for both industrial and laboratory application, inchading three wire grounding type power cord and suitable carrying case.
The 90661 Industrial Grid Dip Meter is similar to the 90662 except for a reduced range of 1.7 to 300 mc . It likewise incorporates the three wire grounding type cord and metal carrying case.
The 90651 Standard Grid Dip Meter is a somewhat less expensive version of the grid dip meter. The calibration while aderquate for general usage is not as complete as in the case of the industrial model. It is supplied without grounding lead and without carrying case. The range is 1.7 to 300 me. Extra inductors available extends range to 220 kc .
The Millen Grid Dip Meter is a calibrated stable RF oscillator unit with a meter to read grid current. The frequency determining coil is plugged into the unit so that it may be used as a probe.
These instruments are complete with a built-in transformer type A.C. power supply and interminal terminal hoard to provide connections for battery operation where it is desirable to use the unit on antenna measurements and other usages where A.C. power is not available. Compactness
has been achieved without loss of nerformance or convenience of uss ge The incorporation of the power supply, oscillator and probe into a single unit provides a convenient device for checking all types of circuits. The indicating instrument is a standard 2 inch General Flectric instrument with an easy to read scale. The calibrated dial is a large 270° drum dial which provides seven direct reading scales, plus an additional universal scale, all with the same length and readability. Each range has its individual plur-in probe completelv enctosed in a contour fittung polystyren vase for assurance of permanerice of calitration as well as to prevent any possibility of mechanical damase or of unintentional contact with the components of the circuit being tested.
The Grid Dip Meters may be used as:

1. A Grid Dip Oscillator
2. An Oscillating Detector
3. A Signal Generator
4. An Indicating Absorption Wavemeter

The most common usage of the Grid Dip Meter is as an oscillating frequency meter to determine the resonant frefuencies of de-energized tuned circuits.
Size of Grid Dip Meter only (less probe): 7 in . $3^{3} / 6 \mathrm{in}$. $\times 3 \frac{5}{8} \mathrm{in}$.

CRYSTAL CAN HEADERS

1500 V (RMS)

No. 5-302

No. 5-303

Fusite's design of Crystal Can Headers combines the ruggedness of a metal base with large size glass areas surrounding the electrodes, assuring a safe rating of 1500 V (RMS). Several of the terminals shown are available with attached crystal springs to your specification. They fit standard crystal cans. As an optional feature these terminals can be furnished with adjusting hole for thermostat applications.

Write for FREE samples to Dept. A-2
the automobile and serves to initiate the circuit operation. This portion of the circuit contains a vibrator connected to the six-volt car battery. The output of the vibrator is connected to a coil mounted under the car radiator. This coil is wound center-tapped with 200 turns around a core of transformer lamimations $1 \times 1 \times 18 \mathrm{in}$.
Block B contains the coil L_{*} located flush with the surface of the driveway to serve as pick-up. This element is a 5,000 -turn coil manufactured by the Horni Signal Company. The coil is provided with a laminated core to insure low loss and good coupling with the movable primary coil mounted on the car.

The transistor amplifier circuit, block C, is controlled by the pick-up coil and in turn controls the intermediate relay K_{z} circuit that activates the garage motor drive mechanism.
Block D contains the motor-drive mechanism and motor relay K_{8}.

Circuit Operation

The circuits included in the various blocks of the functional block diagram are shown in Fig. 2.

The function of the initiator and pick-up is to provide a means of coupling between the car and the transistor amplifier circuit. When switch S_{1} is closed, the resulting current flowing in coil L_{1} sets up an alternating magnetic field that induces a voltage in coil L_{2}. This voltage is then used to drive the transistor amplifier.
The amplifier circuit is biased with approximately thirty volts collector voltage and zero emitter current. The thirty volts for the collector is obtained from a 115 -to-30 v transformer. The collector circuit is connected in series with a germanium diode and relay K_{1} to the output of the transformer. The germanium diode prevents current flow in the forward direction through the transistor collector circuit, thus biasing it in the reverse direction. Capacitor C_{2}, in parallel with the relay coil K_{1}, filters the current flow through this element.
Capacitor C_{1} in the emitter side of the transistor resonates with the pick-up coil L_{2}, which improves the

3 new RCA 5" oscillograph tubes feature very high sensitivity and fine trace detail

You are looking at three new RCA tubes designed specifically for work with wide-band amplifiers. High ver-tical-deflection sensitivity offsets the inherently low-signal output of such amplifiers. - Low-capacitance verticaldeflection electrodes offer the type of load into which wide-band amplifiers work best. - High horizontal-deflection sensitivity, plus full-screen scan. - New high-brilliance pin-point spot produces
finer trace detail. And note this: The flat faceplate makes it easier to "handtrace" waveforms ACCURATELY!

RCA-5ABP1 (medium-persistence) is ideal for wide-band vertical amplifier measurements-and for general oscillographic work requiring high-intensity tracing. $\mathrm{FCA}-5 \mathrm{ABP7}$ (long-persistence) is suited to applications where No. 1 grid is pulse-modulated at low fre-quency-as in radar indicator services.

RCA-5ABP11 (short-persistence) is especially designed for photographic recording without blurring.

For improved oscillograph tube performance, consider the advantages of the 5 AB -types. These tubes generally can be substituted for the corresponding 5C-type. For technical data write RCA Commercial Enginecring, Dept. 42FR. Harrison, N. J. Or write your nearest Field Officc:
(East) Humboldt 5-3900, 415 S . 5th St., Harrison, N. J.
(Nidlwest) Whitchall 4-2000, 589 E. Illinois St., Chicago, Ill.
(West) Madison 9.3671, 420 S . San Pedro St., Los Angeles, Cal:

RADIO CORPORATION OF AMERICA
ELECTRON TUBES
MARRISON, N.J.

COMPONENTS are missing from the circuit in the box on the pole.
(The maker didn't know about MILO).
The gallant though foolhardy swain will attain his objective (a flower) for the lovely lass, for which we are glad.

But it makes us very unhappy to realize that any Electronic Device is failing to perform its function because of lack of regular or special components that we can readily supply - from stock - in a choice of Leading Brands. And we have test instruments with which to check them.

Keep MILO in mind, where comprehensive inventories, industrial experience and cooperative spirit work to help your electronic programs.

Remember, too, that MILO overcones worse obstacles than an electrified fence to furnish vital components for customers.

Check List, ($\mathrm{N}-\mathrm{Z}$), of Leading Brands in Stock.

National Company
Ohmite
Par Metal
Pioneer Tool Co.
Potter \& Brumfield Precision Apparatus Pyromid Electric Co. RCA
Radio Receptor
Roytheon
Sangamo
Sarkes-Tarzian Shollcross

Shure Brothers Simpson Electric H. H. Smith, Inc S N C Sola Electric Sprague Standard Transformer Struthers-Dunn Superior Electric Switcheroft
Sylvania
Thordarson-Meissner Triplett

Tung-Sol
Ungar Electric
Unimax
United Transformer Co Useco
Vector
Walsco Ward-Leonard Weller Westinghouse
Weston Xcelite (others)

JAN-APPROVED COMPONENTS

FREE INDUSTRIAL TUBE BOOKLET
Chief Engineers, Purchasing Agents, Purchasing Executives! Write now if you haven't received our Industrial Electronic Tube Booklet \#EB. Use company letterhead and state your title. Address Dept. E-6.
the ONE source for ALL your electronic needs

FIG. 2-Transistor-controlled automatic garage door mechanism
sensitivity of the circuit.
Quiescent collector current is approximately 1 milliampere. When L_{2} is energized with a minimum input power of 0.5 milliwatt a current of 7 milliamperes will flow in the collector lead. This is sufficient to operate relay K_{1}. This circuit could be made much more sensitive by using a relay that requires less driving current.

Motor Driving Mechanism

Many different drive mechanisms could be used to complete the operation of this door opener. The particular installation illustrated in this article is one that has been in operation for twenty years.

Prior to the installation of the present pick-up system, it had been activated by means of a weatherproof pressure switch operated by driving over the switch.

The momentary contact intermediate relay is used in order to facilitate the installation of manual pushbuttons at convenient points, and interconnection between C and D. These circuits operate at 6 volts and are run with bell wire.

Relay K_{3} is provided with a holding circuit to operate the drive motor during the cycle. A light is installed in parallel with the operating motor to provide illumination in the garage while the doors are in operation. The signal light I_{1} is also in

Plus
a complete line of fuse clips, blocks and holders

SEND FOR THIS HELPFUL INFORMATION

DO YOU HAVE A PROTECTION PROBLEM?

BUSS fuse engineers are at your service. They will be glad to help you select the fuse that will do the job best... if possible, a fuse that is available from local wholesalers' stocks.

[^16]
for Television • Radio • Radar Instruments • Controls • Avionics

You'll save time and trouble when all your fuse needs are supplied by one, dependable source. The complete BUSS line makes it easy for you to select the fuse to do the job right.

Behind every BUSS fuse is the world's largest fuse research laboratory and fuse production capacity. To assure and maintain top quality, each individual BUSS fuse is tested in a highly sensitive electronic device. Any fuse that is not correctly calibrated, properly soldered or the right dimensions, is automatically rejected.

Start now to simplify your fuse selection and save by standardizing on the complete BUSS line.

BUSSMANN Mfg. Co. (Division of McGraw Electric Co.) BUSSMANN Mfg. Co. (Division of Mc
University at Jefferson, St. Louis 7, Mo.
Please send me bulletin SFB containing facts on
BUSS small dimension fuses and fuse holders.
\square \qquad
Title
Company
Address
Cily E Zone
State \qquad ELRC-653

Rack \& panel comectiors
 -

Meet requirements for SIZE . . TYPE . . CAPACITY!

HHB is proud of its many assignments. during past years to design and manufacture hundreds of types and sizes of rack and panel connectors for specific applications in electronics.

We invite you to become acquainted with HHB skill and craftsmanship! Ask for the new catalog that has many illustrations of HHB products.

CONNECTORS-CABLE ASSEMBILES \& COMPDNENTS for America's electronics industry . . .

parallel with the motor. This indicates definite operation of the circuit to the driver as the car passes the coil in the driveway.

The door mechanism consists of a reducing gear and a reversing gear. The reversing gear, upon reaching the end of a cycle, either opening or closing the door, is interlocked with a stop button as shown in Fig. 2. As the gear is moving to the reverse position it presses the stop button. The inertia of the motor is sufficient to complete the movement, thereby setting up the mechanism for its next activation.

Operating Characteristics

The power necessary for standby operation in this circuit is very small; the transistor itself requires one kilowatt-hour every four years. This is less than the exciting energy required by the various transformers in the circuit.
The coil coupling, between L_{1} and L_{2} required in this application is low enough with a 12 -watt input to coil L_{i} to permit operation with a coil spacing of twenty inches. This permits the automobile a 17 -in. leeway to the right or left of the center of the driveway. The speed of operation of the circuit is sufficient to give reliable operation when passing over the buried coil at 12 miles an hour.

Frequency Economy in Mobile Radio

By K. Bullington Bell Telephone Laboratories

The number of usable channels that can be obtained in the vhf and uhf mobile bands depends not only on the width of the individual channels, but also on how and where each channel is to be used. Cutting channel spacing in half doubles the number of potential assignments, but it does not automatically increase the number of usable channels.

When two channels are being operated on different frequencies in the same general area, the coverage area of each is limited by signal-tonoise considerations. In addition each channel may affect the other because of spurious radiation from

GP Cermanium Transistors and Diodes

FOR EVERY PURPOSE!

PNP JUNCTION TRANSISTORS

PNP JUNCTION TRANSISTORS				
(Typical Characteristics				
at	$25^{\circ} \mathrm{C}$-Grounded Emitter)			
TYPE NO.	RR14 \ddagger	RR20 \ddagger	RR21 \ddagger	
Collector Voltage-volts	-1.5	-1.5	-15.0	
Clllector Current-ma	-0.5	-0.5	-3.0	
Ico-Microamp.*	10	10	30	
Current Amplification	25	40	25	
Power Gain-db	30	40	-	
Noise. Factor-db (1 Kc)	22	22	-	
Power out-mw (10\% Dist.)	-	-	20.0	

* $\mathrm{e}=0, \mathrm{Vc}=-1.5$ volts.

With 1000 ohm driving impedance and 5000 ohm load.
\ddagger RR14H: RR2OH and RR21H are hermetically sealed tvpes

POINT CONTACT TRANSISTORS

Available in a variety of stable controlled types suitable for both fast and medium speed switching circuits and high frequency amplifiers. Advanced mechanical design for economical production . . . Heat conducting metal case; standard basing, choice of solder-in or plug-in.

Our engineers will be glad to offer suggestions regarding your Germanium Transistor and Diode applications without obligation . . . Write to Section E.

Tiny, stable high gain units, most economical of power, may be soldered in place or socketed in a recommended RTMA transistor socket. They are suitable for audio amplifiers, servo amplifiers and transformer coupled carrier amplifiers. Available in plastic or hermetically sealed in metal and glass.

SELETRON \& GERMANIUM DIVISION

RADIO RECEPTOR COMPANY, INC.

\square Since 1822 in Radio and Electronics QP
SALES DEPT: 251 W. 19th St., New York 11, N. Y. - FACTORY: 84 N. 9th St., Brooklyn 11, N. Y.

PHOTO TRANSISTORS
To operate power relay with one junction transistor as DC amplifier.

ELECTRO insulating materials combine these important qualities: high dielectric and tensile strength, minimum bulk, excellent thermal conductivity and flexibility, marked resistance to heat, oil, acid and moisture. That's why these insulating materials are used effectively in the design and production of high temperature electrical equipment that is smaller, safer and lighter.

ELECTRO HI-TEMPERATURE FIBERGLAS* INSULA-

 TION has helped numerous manufacturers of motors, transformers and electronic equipment to do a better and safer insulating job. We would like the opportunity to help you. Send us your insulation problem or write to our Department E-1 for technical data and samples.T. M. REG. U. S. PAT. OFF, by Owens Corning Fiberglas Corp.

ELECTRO-TECANICAL PRODUCTS

 DIVISION OF SUN CHEMICAL CORPORATION I13. Eost Centre. Street, Nutley 10, N. J.transmitters, insufficient receiver selectivity, frequency drift and receiver oscillator radiation. Even infinite i-f selectivity cannot solve many present interference problems.

When three or more channels are operating in the same area, interference occurs because of intermodulation in transmitters and receivers. Sufficient radio-frequency selectivity to separate the working channels could remove this interference. In practice, this is not feasible, and it is necessary to consider possible modulation products from channels falling within a frequency band several percent wide. The number of possible interfer-

FIG. 1-Estimated intensity of unwanted signals at 150 mc for 100 watts radiated power
ence conditions that result from third-order intermodulation alone rises from 9 for 3 working channels to 50 for 5 channels, to 450 for 10 channels, and to 495,000 for 100 working channels. Some of these interference combinations overlap and fall on the same channel; but even considering all possible duplication, intermodulation interference rapidly becomes controlling as the number of closely spaced channels working in the same area is increased.

The interference levels to be expected at various distances from an unwanted 100 -watt transmitter are estimated on Fig. 1. For example, at a distance of 5 miles the unwanted signal is likely to be 25 to 60 db above the set noise in a typical mobile receiver. If the receiver has at least this much i-f selectivity against the unwanted signal, no interference can occur. On the other hand at a distance of only 500 feet the total selectivity required is about 115 db . It is not sufficient to provide all of this selectivity in the i-f stage. The required suppression

theNEN A.W.Haydon Co.

400 CYCLE MOTOR has improved performance for aircraft use.

HIGH SPEED STOP CLOCK
Features:

1. Precision Timing which Measures

Hundredths of Seconds to Ore Minute
2. Automatic Reset
3. Hermetically Sealed in Standard A-N Housing
4. 50,60 or $4 C 0$ cycles and 20 to 30 V D.C.

REPEAT CYCLE TIMER ISeries 244001 custom-designed to fit your timing program. New intercam reduction feature (optional) lets you combine two or more different timing cycles in one unit.

TIME DFLAY RELAY (Series 24300) with unique clutch operation, can be designed to control as many as 6 switches. Belay intervals are adjustable over a six hundred percent range from minimum to maximum.

TH\|S CATALOG

 gives you pertinent information on the functional design of Specialized Timers for the solution of your timing problems.NAME
cITY.

LIGHT IN WEIGHT-

 SMALL COMPACT SIZE NOW . .YOU CAN RUN TIMING SYSTEMS DIRECTLY FROM 400 CYCLE POWER FEATURES FAST START AND STOP AS WELL AS HIGH TORQUE AND REVERSIBILITY.GET ALL THE FACTS IN THE
A. W. HAYDON CO. CATALOG DESCRIBED BELOW. CATALOG

MOTOR SPECIFICATIONS

 Voltage: 115 volts $\pm 10 \%$ Frequency: 400 CPS synch Current: 55 Milliamperes Power Input: 6 Watts inclu shift network Torque: up to 75 inch ounc Output Speeds: 3000 RPM tos at 1 RPM. Weight: 8 ozRotation: Reversible

MAIL THE
 COUPON TODAY!

The A. W. HAYDON COMPANY 235 North Elm St. Waterbury, Connecticut
PLEASE send my copy of the A. W. HAYDON Timing Catalog

COMPANY.. TITLE................................
ADDRESS

Pencil Sharpener Designer

A pencil sharpener manufacturer required a small switch to automatically start and stop the motor of his sharpener when the pencil is inserted and removed.

A Honeywell Mercury Switch met his requirements that such a switch must be unaffected by the presence of shavings or dust.

Because the elements of Honeywell Mercury Switches are permanently sealed in glass there is no danger of the switch contacts becoming fouled by foreign materials. Where the electrodes are attached to lead wires, a heavy layer of cement prevents dielectric breakdown from conductive dust.

There are over 125 types of Honeywell Mercury Switches to meet specific application requirements. micro field engineers will be glad to help you choose the type best suited to your needs. We invite you to call or write the nearest micro branch office.

A DIVISION OF
minneapolis-honeywell regulator company
shown above the dotted line (about 40 db at 500 feet) must be provided by r -f selectivity if desensitization and intermodulation effects are to be avoided.

The importance of the division between i-f and r-f selectivity is shown in Fig. 2. Two strong unwanted signals intermodulate and produce in the receiver itself a third unwanted frequency whose approximate magnitude (in the absence of r-f selectivity) is shown on the ordinate. The abscissa is the distance from the receiver to one of two unwanted transmitters while the parameter on the curves is the distance from the receiver to the second unwanted transmitter. Since the magnitude of this intermodulation product can be 40 db or more above set noise, it is evident that serious interference results whenever it falls on the desired frequency of the receiver.

It is not technically feasible to achieve enough radio-frequency selectivity to permit unrestricted and unco-ordinated use of many channels in a given area, unless the channels are, on the average, separated by about $\frac{1}{2}$ to 1 percent of the operating frequency. This means that in the 152 -to- 162 mc band only about a dozen interference-free channels can be obtained in the same area.

Lacking adequate r-f selectivity, operating frequencies might be chosen with sufficient care so that the more serious intermodulation products are avoided. However, the number of possible interference products increases by at least the cube of the number of channels and the usefulness of this method is also limited to about a dozen interfer-ence-free channels in a given area.

Still another way to reduce the intermodulation interference is to space the transmitters far apart, but Fig. 2 indicates that appreciable interference can occur near an unwanted transmitter even when the transmitters are separated by as much as 5 miles. If a separation of several miles were required between base stations the selection of transmitter sites would be difficult and the number of channels that could be assigned to a given city would be severely limited.

If more than 1 or 2 dozen
 TRANSISTOR MOUNT Production

Constantin Glass to Metal Vacuum Sealed Transistor Mounts are Now Available for Volume Production.

These mounts are designed so that the germanium block can be permanently sealed in eitt.or a vacuum or inert gas. This allows complete protection against variations caused by moisture, dirt, changing atmospheric conditions.
The rugged construction and diminutive size of the mount make the finished transistor ideal for use in most military or other equipment that is subjected to conditions of heavy vibr :fion and extreme temperature changes.
Our design engineers are available to help soive your produc-
 tion problems or needs.

Also manufacturers ol Glass to Metal Vacuum Seals

MANUFACTURING ENGINEERS
Rt. 46 arid Franklin Avenue Lodi, N. J.

FIG. 2-Estimated intermodulation in terference generated in mobile receiver at 150 mc for 100 watts radiated power
channels are needed in a given area, it does not seem possible to avoid intermodulation interference unless the level differences are reduced by geographical and operational co-ordination. This means that the level of the potential interference can be permitted to be many db above set noise as long as it is always at least 10 to 20 db below the desired signal at all possible locations.

The first step is to use the twofrequency method of operation with adequate separation between the frequencies used for the opposite directions of transmission.

Another important feature is to locate all base transmitters at or near a common point so the level differences between the desired and undesired signals will never be excessive.

Under these conditions r-f selectivity or intermodulation problem in the mobile receiver can be eliminated by the use of automatic gain control in the r-f stage of the mobile receiver. In regions where the desired and undesired signals are weak the receiver has full sensitivity, while at locations near the transmitters both the desired and undesired signals are reduced in level before reaching the first converter. In order that the agc circuit be fully effective it is necessary that the transmitters be grouped together and that the desired carrier be transmitted to control the gain of the receiver.

Grouping base transmitters at or near a common point and using age greatly reduces the requirements on the mobile receiver, but these measures complicate the design of the base transmitter. Intermodulation products generated in closely associated transmitters result in

MAGNET WIRE coils COMMUNICATIORS EQUIPMENT IRANSFORMERS

 Division of The Sperry Corp. - 1101 EAST AURORA ST., WATERBury 20, CONN.
Corning

More rugged! More stable!

If you're looking for a resistor with unusually high electrical stability, here's your answer-Corning Resistors.

The film material is entirely new for resistors. Fired in at red heat, it makes an integral contact with the heat-resistant base to form a tough bond. The result is a rugged unit with exceptional stability, and capable of withstanding high ambient, high operating temperatures.

The resistive element of Corning Resistors is so stable it can be cycled from near absolute zero to red heat without impairing its electrical properties. Fired-in silver bands afford low resistance, low noise terminations.

The mechanical strength of Corning Resistors makes usual handling precautions unnecessary, lowers assembly costs. Mass-produced on automatic machinery, prices are practical. If you use resistors, you can't afford to overlook this important new development. The coupon will bring the information you need. Mail it today!

Corning Load Resistors

These RF and high frequency load resistors combine high power dissipation with exceptional stability and low inductance. For dummy loads, they can be used with forced air or water cooling. Corning Load Resistors can be furnished with resistive coatings either inside or outside the heat-resistant glass tubing.

For maximum precision-Corning Type N Resistors-Where accuracy is important, Corning Type N Resistors have a resistance tolerance of 1%-are ideal for use in critical, low tolerance circuits and high frequency applications. Can be operated at ambient temperatures up to $140^{\circ} \mathrm{C}$.

Specifications-Corning Type N Resistors				
Power Rating	SIzE		resistance	
	Length	Diameter	$\begin{gathered} \operatorname{Min.} \\ \text { (ohms) } \end{gathered}$	Max. (ohms)
1/2 Watt	19/3: ${ }^{\text {a }}$	${ }^{11 / 44}{ }^{\prime \prime}$	10	10,000
1	15/19 ${ }^{\prime \prime}$	194"	10	40,000
2	$21 / 16{ }^{\prime \prime}$	19\% ${ }^{\prime \prime}$	20	100,000

For high temperature operation-Corning Type S Resistors Capable of operating at ambient temperatures up to $200^{\circ} \mathrm{C}$., Corning Type S Resistors have an unusually low temperature coefficient of resistance. They operate at higher power levels-afford important space savings. Thin filn construction and inherent stability provide excellent high frequency characteristics. Normal resistance tolerance is 2%.

Specifications-Corning Type S Resistors				
Power Rating	SIzE		resistance	
	Length	Diameter	Min. (ohms)	$\begin{gathered} \text { Max. } \\ \text { (ohms) } \end{gathered}$
1 Watt	$19 / 32^{\prime \prime}$	${ }^{11} 14{ }^{\text {\% }}$ "	10	10,000
2	$15 / 10^{\prime \prime}$	10% "	10	40,000
4	$21 / 16^{\prime \prime}$	10\%"	20	100,000

KLEIN Quality Pliers siplecialiny

FOR THE ELECTRONICS INDUSTRY

Now, Klein quality pliers are available in new compact patternsfor precision wiring and cutting in confined space. Note, too, the replaceable leaf spring that keeps the plier in open position,
ready for work. All are hammer forgedfromhigh-gradetoolsteel, individually fitted, tempered, adjusted and tested-made by plier specialists with a reputation for quality "since 1857."

LONG NOSE PLIER
307-5-1/2L-Exiremely slim pattern ideal for the really tight spots. Jows ore knurled to insure a positive grip. available without knurl.

TRANSVERSE END CUTTING PLIER
204-6-Useful in precision work where ordinary oblique or end cutters ore too bulky. Gives a clean, flush cut

317.5L-A full inch smaller than standard pattern. Has a very fine knurl that will not damoge sofl wire. Also

DUCK BILL PLIER

 306-5.1/2-This compact plier has jows of sufficient width to hold small springs, yet small enough to form wire in confined ploces.
potential interference both within and outside the desired transmitting band. The intermodulation that falls on the mobile receiver frequencies within the co-ordinated system can be neglected because the desired signal is always sufficiently stronger. The intermodulation that appears as extra-band radiation outside the frequency range of the co-ordinated system must be suppressed by r-f filters. The guard band needed to prevent mutual interference between the co-ordinated system and its neighbors is small compared with the frequency space that is saved in the co-ordinated system by the close spacing of inter-ference-free channels.

In the direction of transmission from the mobile transmitters to the base receivers, the above coordinating methods cannot be used, but equally effective ones are available. The r-f selectivity requirements can be reduced substantially by radiating only 1 or 2 watts from the mobile transmitters. In order to regain the full coverage area, multiple base receivers at different locations are needed and this use of space diversity techniques provides an opportunity to pick the receiver having the best signal-tonoise ratio. Moreover, the effects of the low power in the mobile transmitter and the better r-f filters that are possible in fixed locations together with the diversity provided by the multiple base receivers reduces the possibility of intermodulation interference to negligible degree.

Editor's note: The conclusions presented herein have been condensed from the author's paper. "Frequency Economy in Mobile Radio Bands', BSTJ, Jan. 1953.

Liquid Potting of Electronic
 Components

By Eugene J. Hebert
National Bureau of Standards
Washington, D. C.

Decreasing the size of components and increasing the compactness of electronic equipment without decreasing the power dissipation has made heat transfer a major problem of electronic design. In addition, present day specifications require certain electronic assemblies to function properly at ambient

New G-E subminiature metal-clad capacitor line features solid dielectric and silicone end seals

FOR OPERATION FROM - 55 C TO +125 C WITHOUT DERATING

Solder right up to the bushing with G-E Silicone end seal-no danger of craexing gllass.

At +125 C- 100% capacitance
At -55 C -less than 7% loss

Designed specifically for electronic equipment, this new line of General Electric subminiature capacitors provides the utmost reliability under the most severe operating conditions combined with small size, no liquid leakage, and high insulation resistance. They will operate from -55 C to +125 C without derating and up to +150 C with proper derating.
These G-E subminiature metal-clad capacitors meet all test requirements of JAN-C-25 and the proposed MIL-$\mathrm{C}-25 \mathrm{~A}$ and can be supplied in both tab and exposed foil designs.
Excellent electrical characteristics are assured by the use of Permafil solid dielectric. Capacitance varies only 1 percent over the temperature range from 0 C to +125 C and only 7 percent over the entire range from -55 C to +125 C .
Exceptional shock resistance provided by exclusive G-E silicone end seals. This seal meets the moisture resistance tests of JAN-C-25 with d-c potential applied.
Muf ratings of these new G-E subminiature capacitors range from . 001 *Rogistrod trado-mark of Gmoral Eluctric Company.
to 1.0 muf in voltage ratings of 100 , 200, 400 and 600 volts d-c working. They can be operated at full voltage up to altitudes of 50,000 feet.
Case sizes range from .235 inches in diameter and $\frac{11}{16}$ in length to 1 inch diameter and $25 / 8$ inches in length.
Liquid-filled metal-clad line also available with G-E Pyranol* dielectric for operation from -55 C to +85 C without derating. These subminiature capacitors also incorporate the silicone end seal for maximum shock resistance and can be supplied in either tab or foil designs in ratings from .001 to 1.0 muf in voltages of $100,200,400$, and 600 volts d-c working.
If your requirements demand the highest performance standards for subminiature capacitors, check with your nearest G-E Apparatus Sales Office for exact delivery information . . . or write to General Electric Company, Section 442-8, Schenectady $5, \mathrm{~N} . \mathrm{Y}$.

Speeding Electronic Progress through

research

The new JK G-9 is a medium priced, high precision, 100 kc frequency standard crystal available for use with or without oven, depending on tolerances desired. Supplied for operation at series resonance or into specified load capacities. Hermetically sealed, evacuated glass holder provides thermal insulation, protection against contamination. Consult us on specific applications.

JK STABILIZED G-9 CRYSTAL

Did you know?

So accurately processed are JK Crystals that dimensions must be checked electrically and even the touch of a hand will change their characteristics. Yet, in a protective, 'stabilized"' JK mounting they maintain precise frequency with unfailing accuracy. Creative research combined with precision production methods brings you JK "Crystals for the Critical.'"
THE JAMES KNIGHTS
COMPANY SANDWICH, ILLINOIS

temperatures up to 125 C .
In order to maintain equipment reliability under these conditions, the National Bureau of Standards Radar Miniaturization Laboratory has been engaged in a study of heat transfer in airborne electronic equipment.

The primary source of heat in electronic equipment is the electron tube. The power dissipated by the heater (or filaments) and the plate and screen produces the major portion of the heat in the typical re-ceiving-type electron tube. The heater may produce up to 50 or 60 percent of this heat.

If the tube envelope becomes too hot, electrolysis will cause a decrease in the insulating properties of the glass, which may result in a complete insulation break-down. High envelope temperatures also increase the possibility of the tube becoming gassy either by releasing absorbed gases or by injuring the glass-to-metal lead seals. Detrimental shifts of tube characteristics, short-life cathode emission current and grid emission current are also caused by high temperature. To prevent these types of failures, there must be sufficient transfer of heat to maintain the temperature of the tube parts at a safe value.

When large electron tubes are replaced with electrically equivalent smaller types, there is a tremendous reduction in the conducting and radiating area without a corresponding reduction in dissipated power. Many small electron tubes are required to dissipate as much, and sometimes more,, heat than their larger prototypes. Hot spots may occur on the tube envelopes

FIG. 1-Schematic diagram of subas. sembly used in potting tests

WJR-Detroit, Michigan, uses 200 kw . GM Diesel generator set as stand-by pawer for 50,000 -watt transmitter. Compactness of unit permitted installation in garage adjoining transmitter building-eliminating cost of a specially designed building.

WKTV-UTICA, N. Y., uses a 100 kw. General Motors Diesel generator set for stand-by power. Set can be started remotely from the control room. Low vibration characteristic of engine permitted installation in room adjacent to transmitter and within 30 feet of studio.

If you are planning stand-by power, be sure to check the advantages of General Motors Diesel generator sets, listed briefly below. GM Diesel generators are meeting the exacting requirements of military service in all parts of the world. They supply emergency power for more than 1100 telephone and telegraph exchanges-for microwave relay stations, for hos. pitals, government buildings, banks, airports. There is a GM Diesel distributor near you who will analyze your power requirements and make his recommendations without obligation. Look in the yellow pages of your phone book for his listing, or write direct to us.

[^17]
DETROIT DIESEL ENGINE DIVISION

GENERAL MOTORS - DETROIT 28, MICHIGAN
SINGLE ENGINES . . 1610275 H.P. MULTIPLE UNITS ... UD TO 840 H.P.
It pays to Standardize on
Write for Generator Set Catalog 6 SA 20.

FIG. 2-Cross-section of potted unit with tubes in place
despite design efforts to prevent this. In compact miniature equipment, tubes are often placed close together, which causes the envelope temperature to rise still higher, because of reradiation and radiation from other tubes.

Several methods of maintaining the envelope temperatures of miniaturized electron tubes within rated values and distributing the heat such that hot spots are no longer a problem, were investigated. These objectives were to be obtained while maintaining tubes and circuitry in as compact an arrangement as possible.

For experimental purposes, the rectifier-regulator circuit shown in Fig. 1 was built to supply 160 ma at 120 volts. This unit approximates a subassembly of a developmental radar set and temperature requirements were set accordingly. The maximum allowable tube envelope temperature was 250 C , when the minimum-sized unit assembly was placed in still air at 125 C ambient temperature.

The tubes, all subminiatures, were placed in two parallel rows and spaced about 0.15 in. apart. The temperatures were measured with chromel-alumel thermocouples of the ring type (as recommended by several tube manufacturers), while the liquid temperature was measured with simple welded thermocouples. Thermocouple wire only 0.003 in . in diameter was used to minimize conduction through the thermocouple leads. Temperatures were measured at the base and at the top of the tubes, these being the hottest and coolest points, respec-

Sola has

stock answers to your

 voltage regulation problems- $\$ 1 \%$ curomotic regulation
- no rubes or moting pengs
- reaponse 105 atces or lase
- $10 \pi 0$ to 10 hua depochies
o oreh boronvedel desionsum fle
- prond coprery

All 43 stock Csnstant Voltage Transformers are described in a four page folder with complete electrical and mechanical specifications. Write on your letterhead for Bulletin D-CV17C.

unicensal Counter \& Timer

for laboratory or production line,

the versatile, direct-reading Model 5500 provides, in one compact instrument, facilities

applications:

Relay and Switch Timing Viscosity Measurements Timing of Photographic Components
Ballistic Measurements Elasticity Measurements Accurate Low Frequency Measurements Tachometry
Frequency Characteristic Measurements
Frequency Ratio Measurements
Secondary Frequency Standard
Telemetering
-and many more. Our engineering staff will gladly assist in adapting this versatile instrument to your special needs.
for faster, easier and more accurate:

1. time interval measurement, with a range of 40 microseconds to $100,000 \mathrm{sec}$ onds, with a possible accuracy of ± 10 microseconds.
2. EVENTS-PER-UNIT-TIME DETERMINation with selectable time base of $.0001, .001, .01$, $.1,1$ and 10 seconds. Counting range is 20 to $100,000 \mathrm{cps}$; accuracy ± 1 count.
3. StRaightrorward counting at rates to $100,000 \mathrm{cps}$ with absolute accuracy.

features:

direct-reading decimal presentation of information reduces operator fatigue, minimizes error. No interpolation required.
aUTOMATIC OPERATIONAL CHECK can be made in two seconds.
printed readout available for permanently recording data on standard adding machine tape.

BRIEF SPECIFICATIONS

4.11
tively, for the tubes used.
When the unit was placed directly in still air at 125 C , the envelope temperatures at the bases of the type 5639 and 5995 tubes were over 250 C with only heater power applied. When the plate voltage was also applied, the temperature of the bases of these tubes rose slightly over 320 C . The 5995 and 5639 have maximum bulb temperature ratings of 250 C .

Metallic fin structures about the tubes were tried, but had little effect in still air at 125 C ambient. Poor contact between the bulb surface and the metal as well as reradiation between the fins probably account for there being no significant cooling by this method.

The unit was next enclosed in a container to evaluate the effect of liquid potting. Figure 2 is a cross: section of the container showing the tube arrangement. The temperature of the liquid, when the unit was potted, was measured half way down the container near one end, and about half way between the end tube and the container. The fins shown are insulated from the case and are used to provide electrical connections to the tubes and to transfer heat from the tube leads to the potting fluid. The tubes are held in position by small, thin ceramic spacers held tightly in place by the tube lead connections to the fins

FIG. 3-Temperature chart for type 5639 tube in potted unit. Liquid temperature with heaters on (\bar{A}). liquid temperature with heaters and plate power on (B), temperatures of tube base with heater on (C) and with heater and plate on (D)

TUNG-SOL rakes All-Glass Sezled Beam Lam?s, Ninijure-Lamps, Sị̧nal Flzhers, Ficture Twoes, Radi, TV and Special Purpose Electron Tutes and Semiconductor 3roducts

TUNG-SOL ELECTRIC INC.

Newark 4, N.J.

Sales Of-i:es: Aranta, Chicagc, Culver Cit- ILes Angeless, Dallas, Lenver, Cetroit, Newart, Stattle

hot . . . or cold

Over frozen ice fields or scorching deserts, the delicate mechanisms of Kollsman products must function with accuracy and rugged dependability.

M AIRCRAFT INSTRUMENTS AND CONTROLS
© OPTICAL PARTS AND DEVICES
M MINIATURE AC MOTORS

- RADIO COMMUNICATIONS AND

NAVIGATION EQUIPMENT
Current production is largely destined for our defense forces; but our research facilities, our skills and talents, are available to scientists seeking solutions to instrumentation and control problems.

KO|SMan instrument corp.

elmhurst, mew york - clendale, california - subsidiary of Standard coil products co., inc.

FIG. 4-Comparison of potting in two different fluids and in still air
and by the spring mounting at the tube tops. This mounting does not interfere with the circulation of the potting fluid. Use of expansion devices, such as bellows, to limit pressure rise caused by expansion of the fluid was found unnecessary. The only requirement is the provision of sufficient space within the container for expansion of the liquid. The pressure developed in the unit described at 125 C ambient was 14.3 pounds per square inch gage.

Temperature measurements were taken with the unit oriented so that the tube bases were on top. Thermally, this is the worst possible position, since the hottest portion of the tubes used are at their bases in contact with the upper (and hence hottest) layers of the liquid. When the unit was oriented differently, the temperatures of the tube surfaces were slightly lower.

The potting liquid used was DowCorning Silicone DC-200 fluid of 100 centistokes viscosity. Lower viscosities of this fluid were not used because of the tendency to thicken at high temperatures over extended periods of time.

Results of operating tests made with the potted components are summarized graphically in Fig. 3 and 4. These tests indicate that liquid potting is useful where it is necessary to keep the temperatures of electrical components at safe operating values while maintaining

For Electronics:

Faster Assembly... Better Design

Why do leading electronic manufacturers order and re-order Simmons' QUICK-LOCKS in quantity? For good dollar-wise reasons:
in assembir-

- No special tools are needed for installation.
- Flexible mounting takes care of curved sheets and misalignment.
- Various material thichnesses can be handled.
in design-
- Initial loads taken by helical spring. Increased loads carried on solid supports.
-90-deg. rolation locks and unlocks fastener.
- Stud is self-ejecting when unlocked.
- Stud is self-aligning. Makes mounting and demounting det achable panels simple.
QulC-Lock can help reduce your assembly costs and can add umusual advantages to your designs. Send for data and samples today.

SIMMO\S FASTENER CORPORATION 1750 No. Bruadway, Albany 1, New York

Simmons

QUICK-LOCK LINK-LOCK SPRING-LOCK ROTO-LOCK

Fasteners that improve products and reduce assembly costs.
the maximum unloaded Q for a given conductor size. For a cylindrical coaxial structure, R of approximately 77 ohms is indicated. The frequency limits $F_{\operatorname{mnx}}, F_{\text {min }}$ and the maximum angle of rotation are the remaining parameters.

From the knowledge of $F_{\text {max }}, R_{\text {。 }}$ and $C_{m \mid n}$ the length of line and $F_{\text {。 }}$ the frequency at which the line is $\lambda / 4$ in length can be determined.

$$
F_{\mathrm{o}}=\frac{\frac{\pi}{2} F_{\max }}{\tan ^{-1} \frac{1}{2 \pi F_{\max } C_{\min } R_{\mathrm{o}}}}
$$

Having determined the parameter F_{n}, C can be expressed as

$$
C=\frac{1}{2 \pi F R_{\mathrm{o}} \tan \frac{\pi}{2} \frac{F}{F_{\mathrm{o}}}}
$$

where C is the value of capacitance corresponding to a frequency F.

The Approximate Method

The approximate method is based on the assumption that the capacitor is divided into a large enough number of segments to permit the approximation

$$
\Delta C=\frac{0.112 \times 10^{-12}}{D} \rho^{2} \Delta \theta
$$

\circ and θ are polar co-ordinates in inches and radians respectively and D is the spacing in inches.

Let the maximum angle of rotation be divided into a large number of equal parts and let ρ_{n}, C_{n} and F_{n} represent the radius, capacitance and frequency at the $n^{t h}$ segment respectively.
To a first degree of approximation then ρ_{n} in a small interval between C_{n-1} and C_{n} is
$\rho_{14}=3 \times 106 \sqrt{D \frac{C_{n-1}-C_{n}}{\Delta \theta}}=\left(1.2 \times 10^{6}\right) \times$
$\sqrt{\frac{D\left(F_{n} \tan \frac{\pi}{2} \frac{F_{n}}{F_{0}}-F_{n-1} \tan \frac{\pi}{2} \frac{F_{n-1}}{F_{0}}\right)}{R_{0} \Delta \theta F_{n} F_{n-1} \tan \left(\frac{\pi}{2} \frac{F_{n}}{F_{0}}\right) \tan \left(\frac{\pi}{2} \frac{F_{n-1}}{F_{0}}\right)}}$

Analytical Solution

The requirement that frequency should vary linearly with angular

TRANSISTORS

must be hermetically sealed in glass and evacuafed

for complete assurance of long life and reliability

Recent developments have demonstrated that transistors must be sealed hermetically in glass and evacuated to protect them from the effects of heat, humidity, contamination, corrosion.

Only KAHLE Equipment provides automatic means for producing dependable Transistors hermetically sealed in glass and evacuated. at high production... at low cost ... and in sub-minıature dimensions.

MODEL 1991
The sub-miniature bulb, flattened, formed, con. stricted and tubulated is produced on this Kable machine.

MODEL 1384
The sub-miniature button stem is produced on this Kable machine.

Kahle also produces the automatic Sealing and Exhaust Equipment as well as the automatic Welding Equipment for producing the transistor components.

W'ite Kable
today
for full
information.
ENGINEERING COMPANY 1310 SEVENTH STREET NORTH BERGEN N.J

order's mailed within 24 hours from time received

On all crystal orders of less than five units of any one frequency in the range 1500 KC to 15000 KC .

All units in standard type HC-6 hermetically sealed holder. Pin spacing .486 inches. Pin diameter .050 inches. Either .095 or .125 pin diameters supplied on request. All Crystals calibrated to $.0025 \%$ or better of specified frequency into a 32 mmf load unless otherwise ordered.

QUALITY • SPEED

for complete details and prices write . . . wire . . . or phone . . .

International Crystal Mfg. Co.
18 North Lee, Oklahoma City, Okla.
Phone F05-1165

rotation can be expressed by the simple equation

$$
\begin{aligned}
& F=F_{\max }-k \theta \quad \text { where } k=\frac{F_{\max }-F_{\min }}{\theta_{\max }} \\
& C=\frac{0.112 \times 10^{-12}}{D} \int^{\theta} \rho^{2} d \theta+C_{\min } \\
& \rho=3 \times 10^{6} \sqrt{\frac{d C}{d \theta} D} \\
& C_{\min }=0.5 \times 10^{-12} \\
& \frac{d C}{d \theta}=\frac{1}{2 \pi R_{\mathrm{o}}} \times
\end{aligned}
$$

$$
\left[\frac{k}{\left(F_{\max }-k\right)^{2} \tan \frac{\pi}{2 F_{0}}\left(F_{\max }-k \theta\right)}+\right.
$$

$$
\left.\frac{\frac{\pi}{2} \frac{k}{F_{0}} \sec ^{2} \frac{\pi}{2 F_{\mathrm{o}}}\left(F_{\operatorname{tax}}-k \theta\right)}{\left(F_{\max }-k \theta\right) \tan ^{2} \frac{\pi}{2 F_{\mathrm{o}}}\left(F_{\max }-k \theta\right)}\right]
$$

$$
\rho=\frac{1.2 \times 10^{\mathrm{j}} \sqrt{\frac{k, d}{R_{0}}}}{\left(F_{\max }-k \theta\right) \tan \frac{\pi}{2 F_{0}}\left(F_{\max }-k \theta\right)}>
$$

$$
\tan \frac{\pi}{2 F_{0}}\left(F_{\max }-k \theta\right)+\frac{\pi}{2 F_{0}} \times
$$

$$
1\left(F_{\max }-k \theta\right) \sec ^{2} \frac{\pi}{2 F_{0}}\left(F_{\max }-k \theta\right)
$$

The expression of ρ versus θ thus derived applies to a set of two capacitor plates. Of course, as the number of plates is increased, the required geometry is not changed. It is only necessary to multiply p by an appropriate constant.

As a specific example let it be required to design a capacitor for the uhf band $480-890$ me using the following constants: $R_{0}=77$ ohms, $D=3 \times 10^{-2}, \theta_{\text {max }}=\pi, C_{\text {mio }}$ $=0.5 \times 10^{-12}$ farads

$$
\begin{aligned}
F_{\mathrm{o}} & =\frac{\frac{\pi}{2} \times 8.9 \times 10^{8}}{\tan ^{-1} \frac{10^{4}}{2 \pi \times 8.9 \times 0.5 \times 77}} \\
& =\frac{1.33 \times 10^{9}}{0.91}=1.48 \times 10^{8}
\end{aligned}
$$

The length of the line is approximately 2 inches

$$
\begin{aligned}
& k=1.3 \times 10^{8} \\
& \rho=\frac{2.7 \times 10^{8}}{(9-1.3 \theta) 10^{8} \tan 0.1(9-1.3 \theta)} \times
\end{aligned}
$$

$\sqrt{\tan 0.1(9-1.3 \theta)+0.1(9-1.3 \theta) \sec ^{2} 0.1(9-1.3 \theta)}$
The maximum radius for ρ_{x}

Save Money, Maintenance and Man-hours!

GET YOUR DG from AC

with dependable, long-life

> Federal SELENIUM RECTIFIER Power-Converting EQUIPMENTS

NOcostly, bulky, moving equipment to buy ... no expendable parts to replace frequently . . . virtually no maintenance! No wonder Federal's compact, rugged, always-dependable Selenium Rectifier Equipments are the growing answer to DC output requirements ... for industrial power, battery charging and hundreds of other DC applications.

Federal Equipments are ready to connect to your AC source . . . ready to deliver uninterrupted DC power wherever you need it and whenever you need it!

Powered by Federal's completely inert selenium rectifiers, the life of Federal Equipments is practically unlimited. All are conservatively rated... with a wide margin of safety to withstand momentary heavy overloads.

SELENIUM-INTELIN DIVISION, 100 KINGSIAND ROAD, CLIFTON, N. J.

In Canada: Federal Electric Manufacturing Company, Ltd, Montreal, P. Q.
Export Distributors: International Standard Electric Corp., 60 Broad St., N. Y.

POWER SUPPLIES -

Industrial, Military, Laborafory

Chucks, brakes, clutches, screens, separators, drums, pulleys, lifting magnets, relays, circuit-breakers, solenoids, DC motors - these are only a few of the wide variety of applications now being successfully served by Federal Power Supplies.

Federal's FTR-3152-AS

Typical of the many standard types ready for shipment

Rated:

$115 / 230$ volts, $4.4 / 2.2 \mathrm{amps}$.
AC Input: 220/440 volts 3 -phase, 50/60 cycles

BATTERY CHARGERS -
 General Purpose

Battery Charging Equipments using Federal Selenium Rectifiers have received wide acclaim from all fields for their high efficiency, long life and minimum maintenance. Federal-engineered equipments are designed to give maximum battery life.

Federal's FTR-1339-AS

Typical of the many standard types ready for shipment Rated: 3.12 cells, 15 amps . AC Inpur: $115 / 230$ volts 1-phase, 50/60 cycles

MACNETIC AMPLIFIERS

Powered by Federal Selenium Rectifiers

Presently used in a wide range of successful applications for industry and the Armed Forces, such as:

- Voltage Control - Temperature Control
- Current Control - Photoelectric Control
- Speed Control
- Counting
- Position Control - Auromatic Regulation

Federal Selenium Rectifiers, in parmership with the right magnetic components, provide Magnetic Amplifiers outstanding for:
Stability • Accuracy • Long Life

High Gain • Fast Response • Low-cost Operation

Quick way to measure low currents

Here's a simple way to measure currents down to $10^{.14}$ ampere. A Keithley Electro. meter and Shunt give fast results, accurate to within 3%.

The Keithley Vacuum Tube Electrometer is a compact vacuum tube voltmeter with an input impedance greater than $10^{16} \mathrm{ohms}$. It is quickly converted to a highly sensitive direct reading micromicroammeter by clipping an accessory shunt over the high terminal. When an ammeter drop of 0.5 volt is available, the Electrometer outperforms wall galvanometers in speed and sensitivity.

Seven standard shunts provide a measurement range from 10^{-5} to $10^{.14}$ ampere. Uses include measuring capacitor and insulation leakages, currents in photocells, ion chambers, and vacuum-tube grids.

Volfage, Resistance, Copacitonce and Storic chorges are also easily measured by the Keithley Electrometer and accessory equip. ment. For complete literature, write-

KEITHLEY INSTRUMENTS

3868 Cornegie Avenve Cleveland 15 , Ohio

[^18] 252
\[

$$
\begin{aligned}
\rho_{\pi} & =0.56 \frac{\sqrt{0.57}+(0.53 \times 1.34)}{0.57} \\
& =1.1 \text { inches }
\end{aligned}
$$
\]

Since the results obtained are inconsistent with the original assumption of small dimensions relative to λ, it becomes necessary to revise the design. It is impractical to reduce the spacing significantly. So the number of capacitor segments may be increased to obtain the desired dimensions. Increasing the number of segments by a factor n, ρ is reduced by a factor $\frac{1}{\sqrt{n}}$

It will be found in practice that after having arrived at a certain design it is frequently impossible to realize the postulated $C_{\mathrm{m} 1 n}$. It is then necessary to base the new design on the value of $C_{\mathrm{m} \text { !n }}$ measured on the first model. A succession of such steps may be required before a final design is evolved.

The assistance of Samuel Hopfer and Samuel Rubin of the Polytechnic Research and Development Co. in proofreading the manuscript is gratefully acknowledged.

Oscillator for Comparison Measnrement of Power Frequencies

By Attie L. Betts

Associate Professor of Electrical Engineering
Oklahoma Institute of Technology Stillwater, Okela.

To eliminate some of the disadvantages found in other methods of measuring frequency variation, a typical audio-frequency oscillator circuit has been modified especially for the purpose of determining the frequency of the

FIG. 1-Circuit of comparison oscillator

most advanced most precise easiest to read

Preset the gauge to the required tension, in grams. Press the operating strip against the point at which tension or opposing force is to be tested. Simultaneous movement of both the strip and the resisting element indicates that the opposing force equals the gauge tension. Attention is concentrated on one point only movement at the point of contact.

- Tensions from 4 to 2500 grams, in six ranges.
- Precision calibration, with adjustable zero correction.
- Easiest to use - simple, reliable, and convenient.
Made by The General Electric Company Limited of England, these are the most advanced gauges of their kind in the world.

WRITE TODAY FOR FREE ILLUSTRATED
CATALOG AND COMPLETE PRICE LIST

IMTRA CORPORATION

58 Charles Street, Cambridge, Mass.

 - sole agents in U.S.A.Want more information? Use post card on last page.
June, 1953 - ELECTRONICS

IN LABORATORIES throughout the electronic field, the Varian X-13 Klystron is widely used as a general-purpose x-band signal source. In the typical setup above (checking load reflection), note the compactness, the convenience of connection, and the way the tube bolts directly to the waveguide.

OUTPUT POWER typically reaches half a watt at center frequency and exceeds 150 milliwatts over the full frequency range 8.2 to 12.4 kmc . The X-13 exhibits extremely low microphonic levels and operates directly into matched waveguide. Tuning is done with a single control. The tube is air cooled and has clearance dimensions of $41 / 2$ by $21 / 2$ by $21 / 2$ in., weight of only 6 oz .

Typical Power Output - Varian X-13 Klystron
(Beam Voltage, 500 v)

OTHER VARIAN KLYSTRONS extend and expand the functions of the $\mathrm{X}-13$. An extensive line of tubes with designs based on that of the X-13 offers a wide selection of output powers, types of tuning devices and terminations, as well as capabilities for withstanding vibration and shock ranging far beyond 30 times gravity.

SEND FOR DATA on these or other klystrons from the extensive Varian line, many of which are necessarily unpublicized. You are invited to submit your microwave problems to the Varian applica-tion-engineering group for recommendations.
$8.2 \cdot 12.4 \mathrm{kmc}$ 150.500 mw

* Trade Mark

FIELD ENGINEERING REPRESENTATIVES
IN PRINCIPAL CITIES

Advancements in the
fields of wave
propagaion,
translation of
information,
connmunication theory.
circuit techniques and equipment miniaturization have crested a mumber of new openings for qualified engineers in the Hughes Advanced Electronics
Lahoratory.

THE COMPANY

Hughes Research and Development Laboratories, located in Southern California, form one of the nation's leading electronics organizations. The personnel are presently engaged in the development and production of advanced electronics systems and devices.

areas of work

The communication group is concerned with the design and development of unique radio communication systems and with exploiting new radio communication techniques. Specialists in propagation phenomena, antenna sys-
tems, network theory, magnetic recording, wideband amplification, and intricate electromechanical devices are active in this program.

the future

Engineers who enjoy a variety of problems requiring originality and ingenuity find the proper environment for personal advancement in these activity areas. Widespread future application of advanced communication lechniques will enable the Hughes engineer to take full advantage of his experience as the Company expands commercially.

Write today, giving details of chalifications and experience. Assurance is required that relocation of the applicant will not cause disruption of an ursent military project.

RESEARCH AND DEVELOPMENT LABORATORIES
power source by comparison techniques. The oscillator is of simple construction, easy to use, economical in cost and yet capable of measuring the frequency to $1 / 1,000$ cycle per second. The schematic diagram of the oscillator circuit is shown in Fig. 1. This is a modification of the resistance-capacitance oscillator circuit. ${ }^{1}$ The frequency controlling elements are R_{1}, C_{1}, R_{2}, and C_{2} and the operating frequency is

$$
f=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}
$$

The theory of operation of the conventional resistance-capacitance oscillator is given by many texts in the electronic field, ${ }^{2,3,4,5}$ and Sulzer ${ }^{6}$ has listed several variations of the oscillator. However, the circuit shown in Fig. 1 deviates from the conventional sufficiently to warrant an explanation. The oscillator is composed of a double-triode 6SN7 connected so that half the tube functions as a cathode follower in the feed-back loop to drive the other half as a cathode-driven amplifier. The output of the amplifying half of the 6SN7 is applied to the re-sistance-capacitance network composed of R_{1}, R_{2}, C_{1} and C_{2}, and the feedback voltage obtained from across the parallel branch $R_{2} C_{2}$ is used to drive the cathode follower half of the 6SN7.

The frequency of the oscillator is determined by the phase shifting action of the R-C network. The components of this network were chosen so that the temperature coefficients were as low as could be readly obtained. Accuracy of frequency adjustment was obtained by using components of fixed value except for a small portion of C_{1} and

FIG. 2-Arrangement for calibrating oscillator

SCHOOLROOMS OF THE SKY ...DOWN-TO-EARTH!

The world-famous "Link Trainer" of years ago simulated the very simple flight conditions of early aircraft. Yet it established the essential principle of a down-to-earth schoolroom where actual flight conditions are exactly duplicated . . . a principle that slashed the cost of training, in time and money.

Today's Link Electronic Equipment improves upon the early Link Trainers in this principle ... much as a postgraduate lecture room has advanced from the Little Red Schoolhouse. This complex equipment simulates the infinitely complex conditions of near-sonic and supersonic jet aircraft . . all conditions and all factors influencing them, from take-off to flight to refueling, navigation and landing, and it does all this electronically.

All Electronic Trainers of today utilize Link basic patents on flight simulators. These complex "schoolrooms" enable the pilot to solve on the ground the innumerable problems he will later face in the sky.

LINK invites employment applications from engineers and draftsmen.
C_{2}. This portion of the capacitors was chosen to give the oscillator a frequency range of from 59 to 61 cycles per second for the limits of the variable components. The variable components of the capacitors are tuned by means of a $2,500-\mathrm{di}$ vision antibacklash vernier dial thus making each dial division change the operating frequency approximately $2 / 2,500$ cycle per second.

The common cathode resistor, R_{K}, is composed of two tungsten-filament lamps and acts as an automatic degeneration control in the feedback loop. This degeneration is accomplished by the resistancetemperature characteristic of the tungsten. The plate load resistor of the amplifying half of the 6SN7 was kept small to minimize the effect of the load and to decrease the harmonic content of the output. The effects of loading on the oscillator was further minimized by the cathode follower 6C5.
The output signal is obtained from the cathode pin of the 6 C 5 . The input impedance of the 6 C 5 is given by Ryder ${ }^{7}$ as $Z_{\text {in }}=1 / j \omega C_{\text {1n }}$ where $C_{t n}=C_{g p}+C_{g k}(1-A)$. This shows that regardless of the load placed on the 6C5 the effect reflected back to the oscillator is minimized.

The oscillator was calibrated by using the output signal to drive a synchronous clock through an amplifier and the clock was checked against the time signals of the Bureau of Standards at one hour intervals. Reasonable care allowed the elapsed indicated time of the clock to be checked to the nearest second. Since this would represent an accuracy of one part in 3,600 , the accuracy of the calibration was $1 / 3,600 \times 100$ or 0.0278 per cent.

If the time interval used in the calibration had been extended, the accuracy would have increased accordingly. It was possible to repeat the calibration readings to the nearest second even after considerable time had elapsed. The short-time accuracy of the oscillator was checked by operating against a Western Electric 6010B oscillator. When the two instruments were compared with an oscilloscope, a maximum drift of one-half cycle

Your inquiries

are invited... by

THE NEW SOURCE OF TRANSISTORS

If you are planning or producing products in
the electronic field, which require the use of vacuum tubes, there is great promise that production costs and unit size can be materially
reduced by the utilization of the new
Germanium transistors. Hydro-Aire will soon
be producing the new contact type transistors in large quantities ready for immediate delivery

Features of these new transistors include a
hermetically sealed case and a unique arrangement of the contact wires. Hydro-Aire's Electronic Research and Development Section
is also working on transistor applications for the aircraft industry as well as the commercial
field... and would appreciate the opportunity of working with you in adapting transistors
to your particular products.
Write today for complete information.
DEPT.-E-6

ELECTRONIC ENGINEERS

Designed with your needs in mind . . . a professional portable recorder and amplifier in a single case. Easier to handle, lightweight, ruggedly constructed to take the most difficult remotes, the Voyoger insures perfect recording in field or engineering laboratory.

Professional Quality-Frequency response up to $\pm 2 \mathrm{db}$ from 50 to 15,000 cycles per sec. at 15 in. per sec, tape speed. The amplifier has bridging input and one low impedance mike input with 600 ohm bal. anced output. Switch for 2-speed equalization $\left(71 / 2^{\prime \prime}\right.$ and $15^{\prime \prime}$) and headphone monitcr jack on front.
For demonstration see your Classified Telephone Lirecfory under "Recorder," or wrife Mognecord, Inc.

New! The first automatic continuous recorder . . . up ta 4 channels on a standard $1 / 4$ inch tape. For commercial and industrial monitoring of communications. Precision engineered and JaNized for CAA. Magnecorders also available sor one and 2 channel monitoring.

Write for complefe details Blaquecord w. Depl. E-6 - 225 W. Ohio 5treet Chicogo 10, Illinais

The famous Magnecorders -
Standard of Broadcasters
over a five-minute period was observed. A block diagram of the connections used for calibration is shown in Fig. 2.

To use the instrument to measure frequency, the output of the oscillator is connected to the vertical amplifier of an oscilloscope and the power source is connected to the horizontal amplifier. The dial of the oscillator is adjusted until the trace on the screen of the oscilloscope is stationary. The calibration curve will then give the frequency corresponding to the dial reading.

If the signal is adjusted so that the trace on the oscilloscope is a straight line, the visual accuracy of the measurement will depend on the focus limitations of the oscilloscope. When a sharp image on the oscilloscope is used, a drift of one degree becomes apparent in the thickening of the trace with the straight line adjustment.

References

(1) F " ${ }^{\text {H. Terman, "Radio Engineers }}$ andbook, $p 505$.
(2) J. D. Ryder, "Electronic Funda(3) F. E. Terman, "Radio Engineering," P 436 . Cruft Laboratory Staff, "Electroni Circuits and Tubes," p 513. (5) A. L. Albert, 'Fundamental Electronics and Vacuum Tubes," p 374. (6) P. G. Sulzer, Single-band Audio Generator, Electronics, p 95, Jan. 1952 (7) J. D. Ryder, same as Ref. 2, p 446.

VHF CONVERSION AMPLIFIER

Power outpul of any current 5-kw vhi transmitter can be stepped up to either 25 or 20 kw , depending on the channel, with this RCA vhf conversion amplifier. The equipment consists of aural and visual power amplifier and blower units, aural and visual power supply and filter units, aural and visual control units, vestigial side-band filter and other accessories

Stability-Long Life-Uniform Characteristics in TRANSISTORS and DIODES

SNOW and UNION STREETS, BOSTON 35. MASSACHUSETTS

Production Techniques

Edited by JOHN MARKUS

Assembly of RCA Victor single-channel uhi selector. Operator is inserting resistor lead in tiny punched slot for grounding to chassis. Simple wood jig supports chassis during assembly work

UHF Chassis Slots

Punched slots in the chassis side walls of a new one-channel uhf television selector serve a number of different purposes in connection with production-line assembly. Two of the slots are precisely dimensioned to serve as exits for two 300 -ohm transmission lines. A larger slot serves as a mechanical support for a printed input filter strip; this strip also contains a slot, and the two slots mesh at right angles when the strip is in place.

Smaller slots, just large enough for leads, serve as a quick and simple means of grounding resistors and other components to the chassis.

V-Notched Soldering Jig for Capacit Pigtails	Capacitor
Tape Cutting Techniques	279
Iron-Clad Soldering Tips	1
Brazing Exhaust Tubes.	282
Aging Television Sets on Cabinet Line.	net Line . 283
Tube Tester Adapter	283
Extension Drill Rod	285
Deflection Yoke Production Techniques	chniques 286
Rectifier Assembly Kit	90
Arbor Press Mounts Subminiatur	
Carbon Tet Dispense	
Pick-Up Tweezers	293
Soldering Resistors	294
Dual-Head Tapping Machine	297

OTHER DEPARTMENTS featured in this issue:

Page

Electrons At Work..... 196
New Products 298
Plants and People...... 342
New Books 368
Backtalk 391

Drawing Integral Eyelets on Tube Sockets

A newly developed die having twelve working stations draws eyelets on metal saddles for tube sockets, eliminating the need for separate individual mounting rivets and punched holes. The die is used in a 35 -ton press operating at 120 strokes per minute, hence can turn out 7,200 saddles an hour.

The first two operations are trimming and blanking of the 0.014 -inch cadmium-plated cold-rolled steel
strip that is automatically fed into the machine. The cup for the plastic socket is drawn next, and wings are bent up to gather material for the eyelets. Three draws are then made on the eyelets, followed by a piercing operation, a final draw, and sizing of the eyelets. The center of the cup is then pierced out and the finished saddle is blanked from the strip.

When crimped to its plastic

Top and bottom dies for producing integral-eyelet saddles for tube sockets. Aligning pins on upper die, surrounded by ball bearings, slide up and down in mating cylinders of lower die. Blank strip stock enters at right, and finished saddles are ejected at left, as indicated by strip shown below

S OLDER
 C OMPANY

4204 WRIGHTWOOD AVENUE, CHICAGO 39, ILLINOIS
NEWARK 5, NEW JERSEY - BRANTFORD, CANADA
socket at another work position, a socket is obtained that can be securely fastened to a chassis without rivet feed problems. Overall cost is appreciably less than for a comparable assembly having captive rivets, hence the integral eyelet technique offers promise for new mechanized production techniques.

Dimensions of finished saddle having integral eyelets

Interchangeable die sections and open stations make the die flexible for production of different types of similar saddles for tube sockets. Spring-loaded pads keep the strip flat as it passes through the press, preventing damage to drawn eyelets. This new machine tool technique is speeding up press work on tube parts at Sylvania's Emporium, Pa. plant.

Using Refrigerator as Oven

Installation of appropriate heating units in an ordinary electric refrigerator converts it into a handy low-cost oven for baking out electronic components. The refrigerator can be an inexpensive secondhand unit in which the cooling mcehanism has failed. The cooling coils can be removed to get additional space inside.

Climbing Flux

The extra-active noncorrosive liquid flux used in connection with some dip-soldering operations will not stay in an open container, hence stoppers or corks should always be replaced after removing part of the contents. If not done, the liquid will at times climb right up the inside of the bottle and creep out over the top.

Producing Circuits with Molten Metal Spray

Examples of the three major steps in producing circuit wiring by metallizing. Leftadhesive mask applied to dielectric panel after insertion of eyelets. Center-appear. ance of masked panel after metallizing. Right-completed amplifier unit after stripping of mask, assembly of components and mounting

A MASS-PRODUCTION process for forming electrical circuits involves spraying molten copper, aluminum or silver on the parts through special masks. As developed by Spraywire Laboratories, Inc., Minneapolis, Minn., the process starts with cutting a stencil coinciding with the wiring design to be produced. This stencil is applied to a dielectric panel and sandblasted to form grooves along the desired wiring location. Molten metal is sprayed through the stencil into these grooves with a standard Metco metallizing gun, and the stencil is removed to complete the process.

The stencils are made from a special masking tape developed for the Spraywiring process by Minnesota Mining \& Mfg. Co. The tape is adhesive on one side, and has a sufficiently hard surface to withstand the effects of sandblasting and
metallizing. Each stencil is used only once, but cost can be held down in production by die-cutting the stencils in continuous strips.

If feed-through eyelets are applied to the panel beforehand, components can be assembled before the sandblasting operation. The leads exposed on the wiring side will then be sandblasted along with the eyelets and grooves, and the metallizing operation will produce permanent joints. This eliminates the need for soldering.

In a somewhat different application of metallizing for conduction at the Friez Instrument Division of Bendix Aviation Corp., the ends of ceramic resistors for temperature control units are copper-coated with a metallizing gun so that leads may be soldered on. Here it is necessary to hold the preliminary sandblasting and the metallizing to close tolerances in order not to disturb

Setup for spraying molien copper on ends of rotating resistors. Gear drives for the resistors are under the metal housing

The first all plastic tubular copocitor for use in Rodio and TV sets. All plastic case. Mylar dielectric good to 125°. Epoxy resin seal. Competitivaly priced with previous types of plostic jubulors. "D. Pons srade magk

GLASSMIKE Jr
Junior version of CP's famous glassmike, for filter and by-pass use, in Radio and TV sets. Glass case, plastic dielectric, good to $100^{\circ} \mathrm{C}$. Competitively priced to paper and plastic cased fubulars.

As a result of increased manufacturing facilities Condenser Products Company now offers for the first time PLASTIMIKE and GLASSMIKE Jr.
CAPACITORS

DESIGNED AND PRICED FOR THE QUANTITY PRODUCTION RADIO AND TV CAPACITOR MARKETS

```
PLASTIMIKE SPECIFICATIONS
    VOLTAGE CAPACITANCE
        400 V. . Ol f to l.0f
        600 V. .001f to 1.0f
    1500 V. . 001 f to.05 f
```

CP's industry-recognized design and production skills, gained in war and defense production, plus a large increase in manufacturing facilities, enable "CP" for the first time in twelve years to offer quality capacitors to the commercial market at competitive prices. CP's reputation guarantees that for Radio and TV purposes the Plastimike and Glassmike Jr. are the highest quality in the market.

Divisian of New Haven Clock \& Watch Company

122-211-14

Engineered for longer life Designed for top performance
JOHNSON electrical components include a complete line of special sockets for virtually every electronic application. Engineering skill, the result of years of specialized experience, and the most modern manufacturing facilities assure you of stock or customfabricated sockets that are both durable and dependable.
The special sockets shown here, variations of JOHNSON stondard types, were designed to meet the punishing requirements of the 100 hour salt spray test. Construction successfully resists salt water corrosion, moisture condensation, and fungus growth; all contacts and contact springs are heavily silver plated to insure low loss and a positive electrical connection. Terminals are hot tin dipped, bases are of grade L-4 Steatite insulation with glazed top and sides. To provide added protection, all other surfaces are DC-200 impregnated.

Abstract

122-101-14 - Designed for Septar base tubes such as the $826,829,832$, etc., this special socket has an anodized aluminum shell and provision for mounting mica button capacitors directly to the socket base. Five nickel plated, phosphor bronze retaining springs hold tubes securely in place and permit trouble-free operation in any position. A recessed base, solidly mounted on fungus resistant, phenolic washers, positively eliminates any contact movement. 122-217-8 thru 122-228-8-A series of ceramic wafer sockets designed to accommodate standard receiving tubes. Locating grooves speed tube insertion ... beryllium copper retaining springs hold tubes firmly in place. Recessed phosphor bronze contacts

the essential characteristics of the resistors. Since installing metallizing equipment, production of these resistors has been stepped up 400 percent. Two guns are used in alternate 24 -hour shifts.

The gun in use is rigidly held in a horizontal position at the edge of the bench by means of a steel stand bolted to the bench. Resistors to be sprayed are inserted 14 at a time in a fixture employing motor-driven gears for rotating the units during spraying. Two large gears mesh together. Equally spaced around each large gear are seven meshing small gears, each rotating one of the resistor holders.

New Electric Are Torch Cuts Ceramics and Concrete

An electric arc that can be used on nonconductive materials and without a ground connection of any kind is now available from the ChemoTec Division of Eutectic Welding Alloys Corp., Flushing, N. Y. under the tradename DynaTrode. The welding rod has two conductors embedded in a hard cement-like material in such a way that a flame-type electric are about 8 inches long is created in air between the ends of the conductors when the rod is inserted in its special holder and energized. Each rod lasts about 45 seconds and costs about 30 cents. The power source can be any conventional d-c arc welding machine capable of generating 400 amperes or more. Newest development is a smaller rod that will work with a 200 -ampere machine.

The 8,000-F temperature of the arc torch is sufficient for piercing just about any refractory material,

Burning through refractory material with new electric arc forch operating from standard welding generator

ANNOUNCING ..New LINDBERG Dual Filament Transformers!

> Two-in-one!. . they supply filament power for two rectifier tubes simultaneously. Furnished complete with sockets .. no wiring necessary. Contained in one case .. conserves space.

Lindberg Dual Filament Transformers have been developed specifically for industrial electronic applications. Each transformer supplies filament power for two tubes . . tubes of the type used in large induction heating units, dielectric heating units, radio and TV transmitting equipment, light X -ray equipment, and high voltage testing equipment.

Contained in a single enclosure, Lindberg Dual Filament Transformers do the work of two
separate conventional-type filament transformers . . and they save space, improve appearance, simplify mounting, wiring and handling.

SPECIFICATIONS . . Lindberg Dual Filament Transformers are available in two sizes . . 100 V.A. and 200 V.A., 115 volt primary, dual 5 volt filament supply. Each secondary circuit center tapped at 2.5 volts. The 100 V.A. size is equipped with tube sockets for use with 575A type tube . . the 200 V.A. with sockets for tube type 869B.

LINDBERG transfoaners

Transformer Division, Lindberg Engineering Co., 2450 West Hubbard, Chicago 12, Illinois

Example of hole made in ceramic bushing with arc torch
including solid stone. For mounting production machinery, holes can be cut in concrete at a penetration rate of 1 to 3 inches per minute, depending on the material. Heavy wire netting or screen can be sliced easily since no contact is needed.

Sleeve-Forming Machine

Tiny rectangular pieces of Kovar metal are tweezer-fed into an ingenious yet simple machine constructed by production engineers at RCA's Harrison, N. J. tube plant, for rolling into sleeves that are approximately $\frac{1}{4}$ inch long and $\frac{1}{3}$ inch in diameter. The completed cylinder serves as a heat insulator, preventing heat from being conducted away from the sprayed portion of the cathode in uhf pencil triodes.

The flat pieces of Kovar are

Dropping flat piece into sleeve-rolling machine. Finished sleeves drop into tray at lower left

New Plant Locates in Telecasting

Things are humming in Wapakoneta, Ohio. There, about 10 miles west of the Dayton-Toledo coaxial cable is the new plant of Superior Tube Company. This plant complements the production capabilities of the Superior main plant, takes care of your ever-increasing demands for television and military purposes.

Superior nickel cathodes are made in a wide range of types, O.D.'s, wall thicknesses and lengths-with or without bead-and in active, normal and passive alloys, depending upon the application and the degree of emission required.

Superior produces both Seamless and Lockseam \dagger nickel cathodes. For many electron tubes Lockseam
*Main Superior Tube plant at Noristown, Pa.
**NEW Superior Tube plant at Wapakoneta, Ohio
-made by a patented process from strip stock - has an economic advantage. Superior Seamless shows great advantages in uniformity, close tolerances, and small O.D. for sub-miniature tubes.

Superior equipment is more than matched by the care taken in production. Each melt of alloys is laboratory-checked for emission and performance. Many extraordinary precautions are taken in manufacture to avoid contamination.

Before you order cathodes, first see what Superior engineering, quality, and delivery can do for you.

Many other types of nickel cathodes -made in Lockseam \dagger
from nickel strip, disc cathodes, and a wide variety of anodes, grid cups and other fubular fabricated parts are available from Superior. For information and Free Bulletin, address Superior Tube Company, Electronics Division, 2500 Germantown Avenue, Norristown, Pa.

Ledex rotary
 ...ARE PROVIDING SNAP-ACION-POWER IN REMOTE CONTROLIED APPICAIIONS!

Manufacturers of appliances, radios, business machines, instruments, industrial equipment, automotive equipment, and aircraft have used over a million LEDEX Rotary Solenoids to provide dependable snap-action-power in their products. New applications are being developed every day, using LEDEX Rotary Solenoids as the source for torque.

Most basic sizes can be obtained with left hand or right hand rotary strokes of $25^{\circ}, 35^{\circ}, 45^{\circ}, 671 / 2^{\circ}$, or 95°.
typical torque values are shown in the table

Model Number	2	3	5	6	7	8
Diameter	$11 / 8^{\prime \prime}$	$15 / 18^{\prime \prime}$	$1 \frac{1 / 8^{\prime \prime}}{}$	$21 / 4^{\prime \prime}$	$23 / 4^{\prime \prime}$	$33 / 8^{\prime \prime}$
Torque $\mathrm{lb} .-\mathrm{in} . *$	$1 / 4$	1	5	10	25	50
Weight lbs.	$1 / 8$	$1 / 4$	$1 / 2$	1	$21 / 4$	$41 / 4$

* 45° stroke intermittent duty.

You are invited to explore the possibility of using LEDEX Rotary Solenoids to improve, simplify and cut costs in your products.

123 WEBSTER STREET, DAYTON 2, OHIO
inserted between a steel mandrel and a rubber-faced motor-driven wheel. The mandrel puts an initial curve in the entering Kovar piece. As the wheel continues to rotate, the Kovar is carried downward between the wheel and a concentric fixed rubber block. This block is spaced from the wheel a distance equal to the outside diameter of the finished sleeve. As the Kovar travels down the block, it forms the desired cylinder.

Chassis-Holding Fixtures

FOUR different types of fixtures for supporting a chassis on a ball-andsocket holding tool are illustrated here. The first three, used by Du-

Type of holder used for gripping side of chassis. A screwdriver is required for inserting and removing a chassis. This setup is sufficiently rigid for heavy soldering and assembly work

Closeup of chassis-holding fixture, showing also how C-clamp is used to fasten holding tool to bench

SPECIFICATIONS

highly sensitive

Even a wet thread will provide enough signal to operate this relay.

TWO TYPES OF OPERATION

Relay can be set for either "normal" operation (relay "drops-out" when external resistance is decreased to a value between zero and four megohms*) or "reversed" operation (relay "picks-up" when external resistance is decreased to a value between zero and two megohms*).
*Depending on dial setting.

DIAL ADJUSTMENT

Sensitivity level set by adjusting dial, which can be locked in place Relay may be remote controlled from as far away as 500 feet.

CONSTRUCTION

Enclosure is weather-resistant and dust-tight (NEMA Type III and V).

New G-E Electronic Relay: Highly Sensitive to Resistance Changes

Can Be Used for Liquid-Level Control

This new electronic resistance-sensitive relay can control liquids between two predetermined levels. Relay will start a pump when liquidlevel reaches probe A, will continue pumping until liquid falls below probe \mathbf{B}. Then it shuts itself off until liquid again reaches probe A. This operation can be reversed to keep the tank full.

Can Be Used for Sorting Small Parts

Oversize parts touch contact "A," closing electronic relay input circuit. This relay energizes solenoid which directs part into a container for oversize parts. Point of contact " B " is set at standard height less tolerance. Parts touching this contact point are acceptable and are "shot" down another chute. Undersize assemblies do not touch either point and slide to a third tray.

Can Operafe from
 Contact-Making Instruments

The G-E electronic resistance-sensitive relay is able to amplify even the minute currents carried by the delicate contacts of contact-making instruments. For instance, the relay can be arranged so that it will start or stop a f-hp motor directly when an ammeter, voltmeter, or wattmeter reaches the required meter reading.

PHOTOELECTRIC RELAY CR7505-K 100

One of a complete line of devices for all photoelectric applications. Inexpensive, has broad application. Bulletin GEA-3533D.

ELECTRONIC TIMER CR7504-A142

Handles timing over three ranges, 06 $1.2, .6-12,6-120$ seconds. Highly accurate, versatile. Bulletin GEA. 5255B.

FOR MORE INFORMATION, contact your nearest G-E Apparatus Sales Office or authorized G.E distributor, or write General Electric Company, Section E785-4, Schenectady 5, New York, for the following bulletins:
$\square E l e c t r o n i c$ Resistance-Sensitive Relay, GEA-5893
\square Photoelectric Relay, GEA-3533D
\square Electronic Timer, GEA-5255B

NAME
COMPANY
ADDRESS
CITY
STATE

ELECTRONIC DEVICES

 GENERALWant more information? Use post card on last page

. . . and nothing specializes on your business like your business paper

Here's a profit-wise peddler; he picks his corner, not for crowds but for customers. His business is specialized. Like yours.

One thing about specializing is the time it saves. Take your business reading. Where else could you find, fast, the vast flood of specific facts, the up-to-the-minute information about new products, materials and methods to keep you posted on your particular field? Much of what you want isn't published anywhere else except in this business paper of yours. Its business is to specialize in your business . . . to gather, sort out, report and interpret the facts you need.

What's more . . . look at the ads. It may be news to you, but advertisers are spending over $\$ 300,000,000$ this
year to report on their products and services in specialized business papers. Your share of that investment is here, in the pages of this paper of yours. Nowhere else can you find such a complete and factful source of everything you need. Time saver? It can be a job saver, a profit saver, a life saver! Read it thoroughly - cover to cover . . . and put it to work!

[^19]

A copy of this quick-reading, 8-page booklet is yours for the asking. It contains many facts on the benefits derived from your business paper and tips on how to read more profitably. Write for the "WHY and HOW booklet." Room 2710.

McGRAW-HILL PUBLISHING COMPANY
330 West 42 nd St., New York 36, N. Y.

the most economical way to FOCUS a TV tube

the original Focomag

CUTS RECEIVER COSTS BY ELIMINATING CENTERING AND FOCUSING RHEOSTATS.

 Also lowers cost of power transformer. Perfectly focuses $27^{\prime \prime}, 21^{\prime \prime}$ and all smaller tubes having magretic deflection. Highly efficient ring magnet uses only 4 az. Alnico P. M.

NO HARMFUL EXTERNAL FIELD. Ring magnet is completely enclosed by the extorial shunt (an original Heppner design). This prevents the leakage field from having any magnetic effec on other components. Uniform field produced by ring magnet.

FLEXIBLE NYLON ADJUSTING SHAFT ELIMINATES BREAKAEE.
Picture-positioning lever, You specify mounting arrangemert.

Write today for information on lowering your set costs with this FOCOMAG.

HEPPNER

MANUFACTURING COMPANY
Round Lake, Illlinois (50 Miles Northwest of Chicago) Phone: 6-2161
SPECIALISTS IN ELECTRO.MAGNETIC DEVICES

Representatives: John J. Kopple
60 E. 42nd St., New York 17, N, Y James C. Mugaleworth 506 Richey Ave., W. Collingswood, N, J. Ralph Haffey
R. R. 1, U. S. 27. Coldwater Rd.. t. Wayne 3, Indiana

Irv. M. Cochrane Co 408 So, Alvarado St., Los Angeles, Calit
rarily with a special C-clamp going over the edge of the bench. The smaller Reypo unit with a locking lever is heavy enough by itself to support a subminiature chassis.

New Wiring Tools Make Solderless Connections

AN AIR or electrically operated wire-wrapping tool, developed by Bell Telephone Laboratories for connecting wire leads to relay terminals, is giving better, more uniform and less costly connections at a much higher production rate than was possible with previous wiring methods. Solderless wrapped connections can be used with a wide variety of materials, including aluminum.

The new tool is now being used extensively in commercial practice by Western Electric Co. for wiring to flat spring relay terminals. Although it was originally expected that tinned terminals and wire would have to be used, with subsequent soldering to give a stable lowresistance junction, it has recently been shown that soldering is not required if certain dimensional conditions are satisfied by the terminal and the wrapping tool.

The tool consists essentially of a

Using air-operated commercial version of wrapping tool for making solderless connections to plain rectangular ter minals on a relay rack

Equipment pictured are samples of the various types

of transformers manufactured by Aircraft Transformer

Corporation, originators of the famed FORM FLEX

AIRCRAFT TRANSFORMER CORPORATION

MANUFACTURERS OF INDUCTIVE EQUPMENT - LONG BRANCH, NEW JERSEY. LONG BRANCH 6-6250

Representatives now located in principal cities throughout the country. Write for address of the one nearest you.

Right on the button! And they stay on the button, regardless of adverse operating condifions and long service life. Made under Western Electric
license, Carbofilm (deposited-carbon) resistors provide the dependability of wire-wounds with the compactness of carbons. In two types:

Coated (special resin film) units for economy as well as accuracy and stability.

Hermetically-sealed (metal-case glass-to-metal sealed) units. Extraordinarily protected - mechanically, electrically, climatically. Both types in $1 / 2,1$ and 2 watt sizes.

* function-fitted...

Carbofilm Precision Resisfors are backed by outstanding application-engineering experience. Our specialists will gladly collaborate in working ouf your precision resisfance problems. Literature on request.

Closeup view of relay base, showing appearance of solderless wrapped connections. The wrapping tool starts its winding at the bottom of the terminal and works outward until it runs out of wire
rotatable spindle housed in a stationary sleeve. To make a connection, the bare end of the connecting wire is inserted in the outer groove of the spindle up to the insulation, then bent upward and back along the spindle so that the insulated portion of the wire is anchored in one of the notches in the outer housing of the tool.

The operator holds the insulated wire against the housing with his left hand, then applies the tool to the terminal so that the terminal enters the round hole in the spindle. The trigger-type electric switch or air valve on the tool is then operated, causing the spindle to rotate. This wraps the bare connecting wire around the terminal under tension.

Since the wire is anchored at the

Commercial versions of wrapping tool, with air-operated model below. Both have trigger-type control for starting and stopping the rotation of the inner spindle

End of wrapping tool, with wire in position ready for wrapping. Wire is inserted in outer slot of spindle as shown, and terminal goes in round hole of spindle
notch, it is free to move only at the bare end. The wire is thus drawn out of the slot to form a helix on the terminal. The number of turns in the helix is determined by the length of the bare wire inserted in the slot of the spindle.

When the end of the bare wire emerges from the slot, the tip extends outward from the helix as a tail. By careful design of the tool, this tail is kept short enough to avoid contact with adjacent terminals in congested areas. The length of the tail is determined by the distance between the slot and the terminal hole in the spindle and, in the case of a rectangular terminal, by the position of the slot at the moment that the end of the wire emerges from it.

Although initial models of the wrapping tool were hand-operated, using a rack and gear to obtain the required rotary motion, the commercial versions make use of either electrical or air power to eliminate operator fatigue and to promote

Muzzle of wiring tool, showing appearance of connection at the instant when two turns have been wrapped around terminal by rotation of the inner spindle in the direction shown by the curved arrow

A new HIGH in operating temperatures A new Low in size

Smallest size - highest operating temperature! These Aerovox metallizedpaper capacitors are different because of the exclusive thermo-setting impregnant-Aerolene. The solidly imbedded section is proof against vibration and displacement. And the exceptionally good characteristics remain good throughout longest service life.
Which accounts for widespread preference for Aerovox metallized-paper capacitors in telephone switchboard equipment, guided missiles, airborne receivers, interference filters, electronic calculators and ofher assemblies requiring maximum temperature rating, minimum space factor, and superlative reliability.
Available in hermefically-sealed metal-case tubulars, "bathtubs," cardboard fubulars, and other case styles, function-fitted* to your needs.

* Let our metaillized-paper capacitor specialists with their outstanding application-engineering background, function-fit such units to your circuitry, associated components, operating conditions. Literature, quotations, delivery schedules, on request.

 Expert: 11 E. 42nd 51., Now York 17, N. Y. © Coble: AEnOCAP, N. Y.

Demonstration model of one of the first commercially successful radios utilizing a prefabricated wiring board furnished by METHODE. Courtesy Hallicrafters Co.

Many of the early leaders (names on request) in the utilization of prefabricated wiring have employed the fortunate combination of equipment and know-how of fered by METHODE's established position in the wiring device field. As with other wiring devices utilized in electronics, specialization by a component manufacturer offers producers advantage in quality and economy while permitting concentration on the applications of this new and basic component product.
Write for our new "Printed Circuit Handbook - UTILIZATION OF PREFABRICATED WIRING"

PRIMARY BATTERIES for your Specialized Needs

DRY TYPES

78 Standard Industrial, Laboratory and Government Types.

LAB-BILT

 BATTERIESOur engineers will design and create to your requirements. Send us your specifications.

HI-DRIVE
 MINIATURE MOTOR

Precision-built, low-cost, battery-operated available for delivery now.

RESERVE TYPES

Water activated "One Shot" Batteries.

SPEGIALTY BATTERY COMPANY A division of the ©AYOVRO Ray-O-Vac Compony
 MADISON 10, WISCONSIN

CORRUGATED MALLNG BOXES
 for SMALL UNIT PACKAGING

PERFECT PRODUCT PROTECTION

Your merchandise arrives at its destination in A-1 condition. Corrugated construction Your merchandise arrives at its destination in A-1 condition. Corrugated construction
provides stronger, more rigid boxes with greater shock protection than ordinary cardboard boxes.
Order "RELIABLE MAILERS'" made by Corrugated Paper Products, Inc. The lower cost, ease of assembly, speed of packing and light weight will bring your shipping costs way down.

OUR BOXES ALL CONFORM TO:
Federal Specification LLL-B.631c
68 SIZES IN STOCK FOR IMMEDIATE DELIVERY . ANYWHERE 68 SIZES IN SO YOUR SPECIFICATIONS AT NO INCREASE IN PRICE. for catalog, price list and free sample write:

AUDIOTONE CONTINUITY and LEAMAGE TESTER

- WIDE RANGE-0 to 100 Megohms - SAFE Current under 1. Ma. - TESTS BY SOUND Frequency changes with resistance - SHELFLIFE BATTERY - NO TUBÉS © NO VIBRATOR - SELF CONTAINED

USES - CONTINUITY TESTER -
LEAKAGE INDICATOR (1 micro-amp.) -
PRECISION CONTACT INOICATOR -
AUDIBLE ALARM - TONE SOURCE -
VOLTAGE \& POLARITY INDICATOR,
PESCHEL ELECTRONICS,INC.
13 GARDEN STREET, NEW ROCHELLE. N. Y.. NEW ROCHELLE 6-3342

Example of finished solderless wrapped connection on rectangular terminal
uniformity and speed. Licenses for manufacture of the tool are now being issued by Western Electric Co.

Anti-Stick Coating for Electronic Sealing Electrodes

Polytetrafluoroethylene, marketed under the trade name Teflon, is being used successfully as a coating material where its anti-stick property is needed. In electronic equipment for sealing cellophane, polyctheylene or other shicet thermoplastics, a liner of Teflon on the electrode shoes which contact the material will prevent its sticking to the shoe at the high sealing temperature.

V.Notched Soldering Jig for Capacitor Pigtails

Soldering of leads to bodies of paper capacitors is done efficiently at Pyramid Electric Co. with the aid of two production devices.

Aluminum-foil capacitors are pre-

A quick brush across the face of a drum rotating in molten aluminum-alloy solder is sufficient to compress and tin the exposed foil ends of a rolled alu-minum-foil capacitor unit

Mere it is! The answer to the electrical engineer's increasing demand for a copper sheet enclosure to suppress radio interference.

Developed by RFI, it was later subjected to comprehensive tests by an independent laboratory, the Hopkins Engineering Co. of Washington, D.C. This firm transported a typical unit to six different high-power transmitting stations. At each station, the Uniform Field Method of testing was employed. Results are shown conservatively plotted above. In actual use, even greater attenuation may be expected.

Standard RFI enclosures are now available in eight easilyinstalled sizes ranging from $6 \times 8 \times 8$ to $15 \times 10 \times 8$. Various services such as light, water, power, gas, and transmission lines can be brought into the room. Full details are available in our free bulletin. Write for your copy today.

SHIELDED ENCLOSURES, Inc.
3634 N. Lawrence Street Philadelphia 40, Pa.

midget • metal-cased • hermetically-sealed

For miniaturized apparatus and where the self-healing characteristic is desirable, specify Tobe metallized-paper glass-terminal tubulars. Capacitance ratings from 0.01 to 10 mfd . Voltage ratings from 150 to 600 volts d.c. Mineral-wax or mineral-oil impregnation for temperatures -55 to +85 C ; silicone-fluid impregnation for -55 to +105 C range.
For the "hot spots" where space is limited, specify Tobe silicone-fluid-impregnated glass-terminal tubulars. These units are built to work over a range of -55 to +125 C . Capacitances 0.001 to 1.0 mfd . Working voltages 200 to 1000 volts d-c.
For cramped space in circuits whose surge characteristics prevent use of metallized-paper units, specify Tobe foil-paper capacitors with stabilized-Halowax impregnation. Capacitances 0.001 to 1.0 $m f d$. Voltage ratings 200 to 400 volts d-c. Temperature range -40 to +85 C .
For general service specify Tobe glass-terminal tubulars with min. eral-oil impregnation. Capacitances 0.001 to 1.0 mfd . Working voltages 200 to 1000 volts d-c. Temperature range -55 to +85 C .
All types available with windings insulated from or grounded to case. Extended-foil windings for low-voltage high-frequency service; tabbed windings for minimum size. Standard capacitance tolerance $\pm 20 \%$; can be furnished $\pm 5 \%$. Write for catalog giving complete list of sizes and ratings.

TO:E DEVISGIMANT CORPORATION
 NORWOOD,
 MASSACHUSETTS

Pigtail is dipped through solder pot with a sweeping motion to minimize pickup of dross on surface. Body of capacitor is in left hand, ready for quick application to lead
pared for pigtail soldering by tinning with aluminum solder. A motor-driven metal drum revolves in a pot of molten solder. Holding each end of the capacitor roll in turn against the face of the cylinder removes oxidation from the exposed foil ends and applies solder before the oxide can re-form. A gearbox under the bench reduces speed to about 100 rpm at the drum.
The duct for drawing off fumes has a hinged door on a sliding hood; when the hood is pushed back, the dcor swings down over the opening to close it, reducing the load on the vacuum system when the tinning operation is shut down.

Pigtail leads are soldered to the tinned ends of both lead-foil and

Method af pressing capacitor against pigtail held in iig
aluminum-foil capacitors with the aid of a V-notched jig. The spiral end of a pigtail is dipped into a pot of molten solder and quickly placed in the slot of the holding jig. The tinned end of a capacitor body is then pressed against the spiral of the lead until the solder solidifies. Two V-shaped notches on the jig serve to position the body of the capacitor and the lead so they are centered with respect to each other. The notched piece for the lead can be adjusted in height as required for any diameter of capacitor body.

Tape Cutting Techniques

The problem of cutting adhesive tape into the various lengths required in the manufacture of television receivers is solved in two different ways at Olympic. Both use tools originally made for other purposes, one being a wire cutter and the other an ordinary single-edge razor blade.

Adhesive-backed cork strips that go under the steel clamping band of a picture tube are cut to length with a bench setup built around a model C20 Simplex wire cutter made by Wenco Manufacturing Co., Chicago. The guillotine-type blade of this cutter is operated by a foot pedal. Attached to the bench at the right of the cutter is a yardstick,

Setup for cutting picture-tube cushioning bands

MININTURE TOBE NHERFB:INGE FILTER

- Covers 0.15 to 1000 megacycles
- Handles up to 20 amperes 500 v.d.c./130 v.a.c., 0-1700 cps

In a spaze ofly $2^{\prime \prime \prime}=2^{\prime \prime} \times 1-3 / 16^{\prime \prime}$, you can get beter than 86 dh atienustice throughout most of the useful range up to 10.10 mezacycles by using any one of the \#1547 series of Tobe interference filies. With their extremely low series resistance, these effective filtere have neglis jle voltage drop and enly slight tempera ture r.se. Hernetically sealed, Series 1547 filters mee military sjecificetons for use from 55 C to +105 C
ATTENUATIOU vS. FREQUENCY IN A 50-OHM LINE

TOBE DEUTSCHMANN COREORATION
NORWOOD, MASSACHUSETTS

AGASTAT

Compact....Dust-Proof TIME DELAY RELAYS

 solenoid actuated - pneumatically timedIntroduces time delays into a-c or d-c circuits. Easily adjusted to provide delays ranging from 0.1 second to five or more minutes.

The AGASTAT is small, light, and operates in any position. Dust-proof timing chamber assures long oper ating life with a minimum of maintenance.
Write for Bulletin.
Dept. A1-64,

A'G'A

Division of Elastic Stop Nut Corporation of America 1027 Newark Avenue, Elizabeth 3, New Jersey

Years of laboratory experimentation and field testing have enabled Stand. ard Piezo to produce crystals that perform dependably . . . accurately under the most extreme operating conditions to be found anywhere. Send for our completely illustrated catalog, or outline your own particular crystal problem. Our engineering department will be glad to assist you.

Using razor blade to cut one-inch vinyl plastic tape into short tabs after placing the long strips on a 1×10-inch pine board
with a grooved strip of wood alongside it for an adjustable stop. The groove is undercut to resemble a mortise, and the wood stop is cut like a tenon. A locking nut on the stop permits anchoring at the position corresponding to a desired length of tape.

A pipe mounted in a bench vise provides a holder for the spool of tape to be cut. This arrangement is admittedly temporary, and was used only because the vise happened to be there already. The operator merely pulls the tape through the cutter to the stop and operates the foot pedal. The adhesive coating on this tape is protected with strippable cloth, hence cut pieces can be stacked without danger of sticking together.

To cut plastic adhesive tape into strips for fastening deflection yoke leads together, the operator unrolls the tape onto a piece of plywood, cutting each length off the roll with a razor blade. When the board has been covered with these long strips, a few quick cross cuts with the blade divide them all into the desired shorter lengths. The individual pieces are then lifted off the board with fingers as needed. Quantities required here were small enough to justify this unmechanized procedure.

Iron-Clad Soldering Tips

An improved process for iron-plating industrial soldering-iron tips increases tip life up to 100 hours in production-line use. A 2 -inch-long coating of commercially pure electrolytic iron is electroplated on the tip. Further treatment obviates

17 MILLS AND FACTORIES - 40 SALES OFFICES
Ow 65 yen yeur
... for aircraft

... for gunfire control

For prompt service on prototypes that meet your specifications, get in touch with Gamewell.

Linear and non-linear Gamewell Precision Potentiometers can be made to meet your exact requirements. And they are made by a firm with over 98 years of experience in the manufacture of precision electrical products.

Write today for a copy of the Gamewell Precision Potentiometer booklet. It contains a convenient glossary of terms used in working with precision potentiometers.

THE GAMEWELL COMPANY

Manufacturers of precision electrical equipment since 1855
oxidation and corrosion and in addition prevents amalgamation of the solder and copper.

Another saving with iron-clad tips is reflected in reduced manhours required for reservicing and replacement of soldering tips. The process has been perfected by American Electrical Heater Co. of Detroit and has been successfully tested for over two years under difficult industrial soldering conditions.

Brazing Exhaust Tubes

Soft copper exhaust tubes for RCA pencil triodes are brazed into the anode sleeves by using an automatically timed induction heater having two heating positions. The operator inserts the exhaust tube in the anode, slips two ring-shaped silver solder preforms over the tube, then pushes the assembly into a water-cooled spring chuck just under the work coil.

The exhaust tube and anode extend beyond the chuck and into a glass sleeve. Hydrogen is pumped through this sleeve to provide a nonoxidizing atmosphere for the silver

Electronic heating setup for silver-brazing exhaust tube to pencil triodes on wood rack at right. Metal box with viewing window provides operator protection. At upper right is hydrogen flow meter
brazing operation. The r-f work coil is outside the glass sleeve. A metal cover encloses the entire working chamber. One tube is assembled and loaded while the other is going through its heating cycle at the RCA tube plant in Harrison, N. J.

Aging Television Sets on Cabinet Line

By providing power facilities on the final roller conveyor line in the Olympic Radio \& Television plant, highly valuable extra minutes of arging are obtained while knobs are being installed and other finishing operations carried out.

Plugging television set into connector that slides in power trough mounted alongside conveyor line

As soon as the chassis and picture tube are installed, the operator plugs the line cord of the set into a Universal Trol-E-Duct, made by Bulldog Electric Products Co., Detroit. The set then tows this connector down the line.

Tube Tester Adapter

When large groups of tubes require testing prior to installation in pro-duction-line equipment, use of a special adapter devised by W. M. Savage and K. R. Edinger of the U. S. Naval Air Station in Norfolk

Polypenco ${ }^{\circ}$ 2-part service... to help designers gain the full benefits of TEFLON*

Polypenco controlled-quality Teflon resulted from Polymer's pioneering in the field of extruded industrial plastics. And ever since, Polymer engineers have more than kept pace with the newest ideas and methods to make the application and fabrication of POLYPENCO Teflon easier, more economical. The benefits of technical data, application and field experience and field engineering service are yours for the asking.

7 , mom SHOCK PREOF MOISTURE PROOF MOLISTR TEMPERATURE PROOF

Gain Up To 8DB

 With the Premax Center-Loaded F ANTENNA

The NEW Hycor Type "p" toroid coils are hermetically molded in a special tough plastic compound. They will withstand:

- Ambient temperatures from -40 C to 135 C .
- 95% humidity ... boiling salt water.
- Amazing degree of mechanical shock.

Space saving: Dimensions of Type EM-3P coils shown in illustration are 1-1/16" O.D. by $1 / 2^{\prime \prime}$ thick. (Inductance up to 7 henries.) Clearance hole for a $6-32$ mounting screw is provided.

REPRESENTATIVES: Jack Beebe,
5707 W. Lake Street, Chicago, Illinois George E. Harris \& Co., Box 3005, Municipal Airport, Wichita, Kansas Marvin E. Nulsen, 5376 E. Washington St., Indianapolis 19, Indiana Burlingame Associates, 103 Lafayette Street, New York City

Send for Bulletin TP
HYCOR
Company. 4/re.
11423 VANOWEN STREET
NORTH HOLLYWOOD, CALIFORNIA SUnset $3-3860$
These retainers are used to secure Vacuum Tubes and to resist side motion of Vacuum Tubes used in radio equipment which is subject to shock and vibrations. These retainers meet the requirement of all JAN specifications. The insulated portion is made of a melamine base Fibre Glass Phenol which provides 300 volts insulation to ground and withstands a temperature of 350 F . The insulated plate can readily be fastened or released by hand.
Available for envelope types T7, T8, MT8, T9, T12, ST12, T122DI, ST14, S14, ST16, T51/2. I6 $1 / 2$, MT-IC, ST19, T14, ST128CT-9.
Manufacturers of Electronic Components

$$
\begin{aligned}
& \text { JA M E S I P POL I TO \& CO., I NC. } \\
& \text { tol CONCORD AVENUE. }
\end{aligned}
$$

An essential for mobile installations in the 2 to 8 mc . band when positive transmission and reception is desired or you want greater range. Consists of 6^{\prime} tapered whip mounted above the loading coil and a 2^{\prime} base rod. Fits any Premax or $1 / 4^{\prime \prime}$ mounting. Available for

1, 374	,
2,374	kc.... C A P band
3,105	kc.... Airport band
3,800	kc.... 75 meters
4,325	kc. . . C A P ban
4,585	ke....CA P band
2000-3	000 ke Marin

Send for Bulletin

PRHMAX PRODUCHS
 DIVISION CHISHOLM-RYDER CO., INC

5301 Highland Ave.
Niagara Falls, N. Y.
 Industrial Soldering Irons

Method of connecting adapter to standard tube tester with cable and plug. This unit has three each of three different types of sockets (4-pin, octal and 7 -pin miniature), to permit warming up two tubes while one is being tested
cuts tube testing time in half. This saving in time is achieved by providing additional sockets in which tubes can be warmed up. A switch is used to place any one of the sockets into the test circuit while tubes in the other sockets are warmed up.

An additional feature simulates normal aircraft vibration during the test. This is achieved by mounting inside the adapter chassis a small electric motor having a few drops of solder on one side of its shaft. The adapter is mounted on four two-pound rubber shock mounts, so that the tubes are given a vibration check when the motor is turned on.

Extension Drill Rod

Need for costly special-length drills for hard-to-get-at drilling locations is reduced through use of a new drill extension rod and a series of 52 small-diameter extension chucks. These chucks permit use of stanci-ard-length small drills in the extension rod without time-consuming brazing or soldering operations.

Chuck sizes correspond to standard drill sizes from No. 52 to No. 10 and to fractional drill sizes from 18 inch to $\mathbb{1}_{8}^{3}$ inch by 64ths. The anti-slip chucks can be inter-

Sealed Relays

The most advanced hermetifally sealed relays can best be designed and produced by a firm like Leach which pioneered this field from the begitning.
Aere at Leach you will find complete engineering, testing and production facilities to help you solve your relay problems in the electrical and electro iic fields.
The unsurpassed dependability of Leach Relays has been proved by nearly four decades of Ceadership in providing all types of relays for maximum performance under competitive operating conditions.

FOR BETTER CONTROLS through bemtr relays -Spedify Leash

Performance characteristics for the Relays illustrated above are as follows:

- Contacts rated: 10 Amps. Resistive and inductive at 29 VDC.
- 6 Amps. Motor load at 29 VDC.
- 10 Amps. Resistive at 115 VAC, 400 cycles. Coil 24-28 VDC.

[EACA

Using drill extension rod with ordinary electric drill. Individual chucks are available for each drill size, as at lower right
changed in a few seconds. The extension rod fits any quarter-inch electric drill or lathe chuck. Manufacturer of the new tool accessory is Beaver Tool Co., Box 298, Huntington, L. I., New York.

Deflection Yoke Production Techniques

Production of 70-degree and 90 degree deflection yokes in DuMont's E. Paterson, N. J. plant involves

Pressing 90-degree yoke coils to shape

Placing yoke coil assembly in insula-tion-wrapping fixture, after placing tape on slide, adhesive side up, and placing end of varnished cambric strip on tape
many special techniques developed to maintain quality despite increasingly stringent design requirements for use on large picture tubes.

Yokes for 90 -degree picture tubes are wound automatically on special machines in DuMont's plant, tied loosely with tape, dipped in varnish, baked in an oven for about 20 minutes, then quickly transferred one by one to a forming press while still hot. The press squeezes the coil to its precise final shape. Each coil is left in the press about 12 seconds, which is sufficient to cool and set the varnish because the mass of metal in the press conducts heat away rapidly.

Assembly of coils comes next, with Saran sheets between the horizontal and vertical pairs for insulation. Additional Saran insulating sheets are wrapped loosely around the four-coil assembly and anchored with tape. The yoke is then held in the jaws of a special foot-operated roller fixture and the foot pedal

Rotating yoke by hand to wrap insulation around it under pressure. Tape sticks to Saran and pulls the cambric around as the yoke is turned

Now! Below surface permanent brand markings legibly imprinted on vinyl tubing with the ease of typewriting. The Coxhead Branding Machine is a specialized development of the famous Vari-Typer principle to give you the tremendous savings in time and costs made possible by swift, accurate markings . . . indelibly printed. . . by simply typing on the standard keyboard.

Swift, Accurate Marking...Indelibly Branded... by simply TYP|NG!

The power stroke is uniformly controlled. The heat, which indelibly brands and colors the letters, is thermostatically controlled. The imprint is absolutely permanent... will not rub off or wear off.

Instantly changeable type permits lettering in sizes from $1 / 6^{\prime \prime}$ to $1 / 12^{\prime \prime}$ in height. Typewriter keyboard can be operated by 'bunt-and-peck' or 'touch' system, with perfect copy through uniformly controlled impression. The machine handles tubing from $1 / 8^{\prime \prime}$ to $1 / 2^{\prime \prime}$ in diameter, in continuous strip s. Automatic spacing and changeable type permit use of small type, closely spaced for small sleeves, and large type, expanded. Coxhead Branding Machines are in use in U.S. Naval Shipyards, Aircraft Companies, Precision Parts Manufacturers and other industries where quick, frequent changes in identification on vinyl tubing are required.

Send for free literature and actual specimens of wark on vinyl tubing.

Text for this ad set on Coxhead DSJ Composing Machine. Headines set on the Coxhead HEADLINER.
720 Frelinghuysen Ave., Newark 5, N. J.
Please send me Vari-Typer Booklet 167
\qquad
\qquad
\qquad
\qquad

SMALL

 METAL STAMPINGSSend your prints for regular or special stamping jobs to Patton-MacGuyer where specialized engineering experience and toolmaking skill combine to produce stamped metal parts accurately, economically, promptly. A dependable source for over 35 years, P-M is completely equipped in an extensive modern plant for large volume production to meet the most exacting requirements. Moderate die charges; precision work; prompt service.

P-M welcomes the opportunity of working with your engineers in the initial stages of their special stamping designs when the accumulated specialized knowledge of our Technical Staff will aid them in obtaining the most efficient stamping at the lowest cost.

TERMINALS for ELECTRIC WIRES

Specializing in terminals, P-M has dies to produce aver 400 different kinds of terminals. We also provide pre-soldered tandem terminals supplied on reels, with machine that attaches and solders at rates up to 1200 perfect terminations per hour. Send for catalog.

PATION-MacGUYER COMPANY

201 Chapman Street, Providence, R. I.

* SATURABLE REACTORS
* ELECTRONIC DEVICES

Specialists in SMALL quantities of custom built transformers from milliwatts to 50 KVA , single or polyphasedesigned and manufactured to best meet your exact requirements.

The recently developed and improved LIND GREN DOUBLE SHIELDED SCREEN ROOMSdesigned, engineered and constructed to incorporate True, Insulated double shielding--FOR MAXIMUM shielding efficiency and the highest possible attenuation. (An insulated double shielded type screen room has a higher attenution than a cell type.) TWO close mesh copper screens are each physically separated and electrically insulated from each other. Each screen is independently grounded. No soldered connections. A true laboratory screen room made in sections-easily assembled. Can be supplied in Special Sizes. Built to be a permanent investment.
QUICK FACTS by return mail, with construc tion diagrams and engineering test reports. Write us today.

ERIK A. LINDGREN \& ASSOCIATES Established 1939
4515-17 N. Ravenswood Avenue Chicago 40, Illinois Phone Sunnyside 4-0710
Sales Engineering Representatives Throughout
The United States

137, Hudson Street, N.Y. 13, N.Y.

Sole distributors in the U.S.A. for
Mullard Overseas Ltd

Use of modified banding machine to fasten Ferrite cores around 70-degree deflection yoke
is operated to close the jaws. The rollers bear against the insulation and force it down into the groove of the coils. Rotating the yoke by hand now wraps a previously applied narrow strip of varnished cambric insulation around the yoke down in the groove, to form a smooth bearing surface for the core. Another tab of adhesive tape locks the cambric in position to complete the insulation job.

The two half-sections of the Ferrite core are set into the groove of the yoke and locked in position with a banding machine. This is an adaption of a standard banding machine, in which the operator operates a ratchet lever to tighten the band, then pushes a foot pedal to cut the band after it has been locked.

To adjust finished yokes for minimum cross coupling, a filament transformer is used to energize one

Rotating yoke by hand to wrap insulation around it under pressure. Tape sticks to Saran and pulls the cambric around as the yoke is turned

WHEN YOU ADD HAMMARLUND

 Selective Calling Equipment to Mobile 2-Way Radio Systems - ...AND it means
PRIVACY...QUIETNESS...CONVENIENCE

Privacy, speed, quietness and convenience become an accepted part of day-in-day-out operations of 2-way radio systems used to control large fleets of emergency service or commercial vehicles, or distant fixed stations, when Hammarlund Selective Calling Equipment is added.

By the push of a button the dispatcher selects within 0.8 seconds the vehicle, remote station, or group of receivers which he wants to contact. Only the selected operator or group of operators can receive the call.
If a radio operator is away from
his station when a call comes in, an indicator light will be turned on to show he was called while absent. For police and other emergency vehicles the horn or other alarm can be remotely activated to summon drivers whose work has taken them from the immediate vicinity of their cars.

Write today to the Hammarlund Manufacturing Company for descriptive information about this selective calling equipment that was engineered to produce new benefits for you from your 2-way radio system.

[^20]

Technology Instrument Corp. Presents a Compactly-Built Wide-Band Decade Amplifier

Featured by its wide band response, high input impedance, low output impedance, and compact dimensions, TIC's Type 500 -A wide band decade amplifier is excellent as a general purpose laboratory instrument. Here is an instrument for special applications requiring a zero phase shift and high stability of gain. TIC increases the general utility of this amplifier by including a self-contained power supply and cabinet or rack mounting.

SPECIFICATIONS:
Amplification: 10, 100 and 1000 times, selected by 3 -position rotary switch.
Frequency Response: Flat to $\pm .5 \mathrm{db}$ from 5 cycles to 2 mc on gain of 10 ; Flat to $\pm .5 \mathrm{db}$ from 5 cycles to 1.5 mc on gain of 100 ; Flat to $\pm .8 \mathrm{db}$ from 5 cycles to 1 mc on gain of 1000 .

Amplification Accuracy: $\pm 2 \%$ of nominal - dependent on precision resistors only; Unaffected by normal tube characteristics or line variations.
Phase Shift on All Ranges: 0 to $\pm 2^{\circ}$ from 20 cycles through 100 kc
Gain Stability on All Ronges: Constant with line voltages of 105 to 124 volts. Noise and Hum: 60 db below maximum output voltage with input shorted. Input Impedance: Approximately 160 megohms shunted by $7 \mu \mu f$.
Output Impedance: Approximately 200 ohms.
Output Voltoge on All Ranges: 20 volts maximum output across a load of $20 \mathrm{k} \Omega$ or greater.
Power Supply: $105-125$ volts, $50-60$ cycles self-contained power supply requiring approx. 30 watts. (230 volt, $50-60$ cycles models available).
Mounting Dimensions: Single, in cabinet: $131 / 4^{\prime \prime}$ wide $\times 5^{\prime \prime \prime}$ high $\times 93 / 8^{\prime \prime}$, deep. ($111 / 4^{\prime \prime}$ x $31 / 2^{\prime \prime}$ panel) Single, for rack: $19^{\prime \prime}$ wide x $31 / 2^{\prime \prime}$ high $\times 81 / 2^{\prime \prime}$ deep.
The low distortion is a feature much desired in amplifiers of this type.
Further information and details gladly sent upon request.
Engineering Representatives
$\begin{array}{ll}\text { Chicago, Ill. - UPrown 8-1141 } & \text { Arnprior, Ont, Can, } \\ \text { Cleveland, Ohio Arnprior } 400\end{array}$ Waltham, Mass. - WAltham 5-6900 Boonton, N. J. - Boonton 8-3097 Dayton, Ohio - Michigan-8721

Dallas, Texas - DIxon 9918
Roseland, New Jersey-Caldwell 6-4545
Wyncote, Pa, - Ogontz
Wyncote, Pa.-Ogontz 8805
Wyncote, Pa. -0.
Md. - Silgo 7.550

Wood rod used to keep dirt out of completed yoke assembly during testing of individual coils
pair of deflecting coils, and the other pair is connected to a cathoderay oscilloscope. The two pairs of coils are then rotated with respect to each other until the pattern seen on the scope is between masking tape lines indicating acceptable cross coupling. Usually the coils can be turned sufficiently without loosening the clamping band.

After cross coupling has been checked the coils are cemented to keep them in position.

In RCA's Camden plant, a wood rod resembling a potato masher is used to keep the deflection yoke in its correct shape during assembly and to keep out steel particles and dirt that might otherwise get in during testing and damage the enamel insulation on the coil wire. The rod is in two sections, of different diameters, for use on two different sizes of yokes. The wood is turned to give a loose fit, so as not to scratch the coil.

Rectifier Assembly Kit for Pilot Runs

Selenium rectifiers needed for experimental work or very small production runs can be assembled to order in a few minutes from component parts available as a kit from

Selenium rectifier kit

Federal Telephone \& Radio Corp. Each kit contains sufficient hardware and parts for assembling any one of four different rectifiers-half-wave, full-wave center tap, full-wave bridge-type and full-wave battery charger.

Accompanying instructions, diagrams and tables give assembly procedures and operating ratings for 24 different assemblies. Rectifiers can be taken apart and reassembled to meet madified conditions, thereby permitting equipment design changes without loss of time in reordering and without delays associated with filling of small special orders.

Arbor Press Mounts Subminiature Sockets

Seven subminiature tube sockets are simultaneously forced into selflocking holes in a chassis for the Signal Corps model PRC-6 transceiver, by using a modified Royersford Excelsior No. 0 Arbor press;

Arbor press modification for inserting subminiature sockets in chassis, as used at Utility Electronics PRECISION POTENTIOMETERS of optimum accuracy meeting your space requirements

Type RVP3 tapped hole and

Technology Instrument Corporation potentiometers are designed for application in computing devices, instrumentation, electronic control and servo mechanisms - wherever extreme electrical and mechanical precision is an essential requirement.

As a result of years of custom manufacturing a complete line of standard sizes is available ranging from 7 inches in diameter to the sub-miniature $7 / 8^{\prime \prime}$ in diameter.

Custom design both mechanical and electrical is a featured TIC service. Precision non-linear pots may be designed to meet customer's requirements from either empirical data or implicit functions. Taps and special winding angles anywhere up to 360° continuous winding can be incorporated into both linear and non-linear precision potentiometers. Greatly expanded facilities plus mass production techniques meet customer volume needs yet maintain precision tolerances in both linear and non-linear potentiometers.

TYPE	DIAM.	RESISTANCE	ELECTRICAL ANGLE	LINEARITY	POWER RATING	MOUNTING	IEXAMPLE OF VON-LINEAR FUNCTION aVailatie as standard
R/P-7	$7{ }^{\prime \prime}$	1-500,000 5	320°	As		Servo	Type RVP7-52 function:
R.8. 7		tol. to $\pm 1 \%$	tol. to $.5{ }^{\circ}$	as .05\%	${ }^{4}+25^{\circ} \mathrm{C}$.		
R/P-3	3"	Ste. values to 200,000 s tol to $\pm 1 \%$	$\begin{aligned} & 320^{\circ} \\ & \text { tot. }{ }^{\circ}{ }^{\circ} \end{aligned}$	$\begin{gathered} \text { As } 10 \% \text { os } \end{gathered}$	$\begin{aligned} & \text { cwaths } \\ & \text { at } 25 \mathrm{C} \text {. } \end{aligned}$	Servo-itapped hole and precision pilot or threaded bushing	Type RVP3-St function: 50 ab logarithmic; conformity: $\pm 2 \%$ constant fractional aceirasy
R*-3	$3^{\prime \prime}$	Std. values to 203,000 2 to. to $\pm 1 \%$	$\begin{aligned} & 315^{\circ} \\ & \text { tol. to } \\ & \pm 1^{\circ} \end{aligned}$	$\begin{gathered} \text { As low as } \\ \pm .25 \% \end{gathered}$	$.82^{8} \text { or }$	3 lapped hole	Available for non-linear functions Noif: Phenolic bure precision po tentiometier, sealiniess stiel or bakelite shaff
R/2	$2^{\prime \prime}$	Std. values to 60,000 3 tol. to $\pm 1 \%$	$\begin{gathered} 320^{\circ} \\ 401^{\circ}+0 \\ \pm .5^{\circ} \end{gathered}$	As low $\mathrm{as} \pm .2 \%$	4 walts	Servo-arg procision pilot or threaded bushing	Type RV2-SHIE function: $\mathbf{R}=\mathbf{K}$ 〇: conformity: $\pm .5 \%$ over \boldsymbol{H}° to 320°
$8 \mathrm{D} 1 . \%$		Std. values to $100,000 \Omega$ $t=1$. to $\pm 1 \%$	$\begin{aligned} & 320^{\circ} \\ & \text { tol to } \\ & \pm 1^{\circ} \end{aligned}$	As low ${ }^{45} .25 \stackrel{1}{\%}$	3 wott ${ }^{2}+25^{\circ} \mathrm{C}$	Servompapped hole and precision pilot or threaded bushing	Type RVI St-5104 function: $\frac{E^{\circ} \text { out }}{E T n}=\sin \in \pm 4 \%$ peak amplitude pet quadrant
	1/16"	Std. values to $50,000 \Omega$ tol. to $\pm 1 \%$	$\begin{aligned} & 320^{\circ} \\ & \text { tol to } \\ & \pm 2^{\circ} \end{aligned}$	As low $3 s \pm .3 \%$	$\begin{aligned} & 2 \text { watts } \\ & a^{2} 25^{\circ} \mathrm{C} . \end{aligned}$	Servo or threaded bushing	Type RVI-S7 function: $\frac{E}{2} \frac{\text { out }}{1 n}=\sin \mathrm{E} / 1.78 \pm 4 \%$ of poat omplitude
UNEAR TYPES CNLY:							
RV-\%	\%"	Std. values to $40,000 \Omega$ tol. to $\pm 1 \%$	$\begin{gathered} 320^{\circ} \\ \text { tol }+{ }^{\circ} \mathrm{O} \\ \pm 3^{\circ} \end{gathered}$	As low ds $\pm .5 \%$	1 watt	Servo or threaded bushing	
FYT	ranslalor $1 / 1^{\circ \prime}$	$\begin{gathered} 10, p 00 s t \\ +15 \% \end{gathered}$	$\frac{\text { Stroko: }}{1 / 2^{2}}$	$\pm 1 \%$ total resistance	1 watt	Provides output placemont rathe	proportional to a linear dis- r than a rotary motion of a shaft
- Speciel resistance values and stroke-longths from. 5 inches to 15 inches can be provided on a custom besis.							

Iechlulocer Insirkurer Cure.

535 Main Street, Acton, Massachusetts, Phone Actom 3-7711

HOLD

 THEM
TIGHT

BIRTCHER CLAMP

There is a Birtcher Clamp ... or one can be designed... for every tube you use or intend to use.

Regardless of the type tube or plug-in component your operation requires... and regardless of the vibration and impact to which it will be subjected... a Birtcher Tube Clamp will hold it securely and rigidly in place.
Catalog and samples sent by return mail,

CORPORATION
4371 Valley Blvd. Los Angeles 32, Calif.

Please send catalog and samples by return mail.
Company
Atrention of:
iddress
City \qquad

State

18" Deep, 22" Wide
offer you the greatest dollar-for-dollar value in the industry today!
Because only in the ER-225 will you find these unique features:

- New ribbed design corner trims, with new quick F RONT delacinable fastenings.
- The door is stamped from one piece of steel and reinforsed - with formed, clean, smooth, double thick edges.
"Multiracks" available with closed or open intermediate sides for rack-fo-rack wiring. - Streamlined modern design; beautiful finish. Planning an electronic product? Consult Par-Metal for RACKS • CABINETS CHASSIS • PANELS

"MULTIRACKS"
These Racks maybo assembled.in multiple units as shown above.. SHELVES available. Also ROLLER TRUCKS available for single racks or "Multiracks".
NO INCREASE IN COST! The ER-225 is priced to compere with racks not having the equivalent feafures. Beyond doubt - it's the industry's greatest the ind
value. \qquad
The ER-225 Rack as used by the American Communications Corp., N. Y. C. 13.
Remember, Par-Metal equipment is made by electronic specialists, not iust a sheet metal shop.

mate Q $_{4}$

 Electranic Specialists!
WRITE FOR CATALOG!

DX Announces

 aNEW 90° YOKE for $27^{\prime \prime}$ TUBES

It's Engineered for TOP PERFORMANCE ... in Production NOW!

This new DX 90° Deflection Yoke has everything a television receiver manufacturer wants . . . a sharp full-screen focus, a minimum of pincushioning, the ultimate in compactness and a price that's downright attractive. Because this yoke has been brilliantly designed for mass production on DX's specialized equipment, it warrants immediate consideration in your $27^{\prime \prime}$ receiver plans. Write us today.

DEFLECTION YOKES . . . TOROID COILS . . CRYSTALS I. F. TRANSFORMERS . . . R.F. COILS . . . DISCRIMINATORS SPEAKERS . . . TV TUNERS . . . ION TRAPS . . . TRANSFORMERS

DX RADIO PRODUCTS CO.
 GENERAL OFFICFS: $\mathbf{2 3 0 0}$ W. ARMITAGE AVĖ., Chicago 47, HL,

the bottom jig on the press holds and locks the sockets upside down precisely in final positions. The blank chassis is held in the top part of the press by springs. Operation of the press handle then forces the chassis down over the sockets.

Carbon Tet Dispenser

Where carbon tetrachloride is occasionally needed for cleaning metal parts at incoming or outgoing inspection positions, it can be kept in an ordinary window cleaner spraydispenser bottle ready for convenient use.

Pick-Up Tweezers

Handling of small objects is made easier by new automatic pick-up tweezers about the size of a fountain pen. Depressing the top plunger of the tool causes three hooked spring-steel fingers to extend from the tip and flare out. When the plunger is released any object within the grasp of the fingers is firmly held. Maximum spread for gripping is over one inch.

The new tool, available from Win Sales Co., Forest Hills, N. Y., is ex-

Depressing top plunger spreads pick-up
fingers of stainless steel tool

ELECTRICAL CHARACTERISTICS . . . TYPICAL TYPES

Type No.	Voltage (V)	Currents (Amps)
CR80-20	$20-60$.080
CR140-20	$20-35$.140
CR200-20	$20-40$.200
CR350-5	CR600-4	$4-12$
CR800-4	$4-10$.600
CR900-4	$4-10$.800
CRM900-5	$4-11$.900
CR950-4	$5-9$.900
CR1635-5	$4-11$	1.650
CR1700-2	$5-9$	1.700
CRM1700-2	$2-4$	1.700
CR3500-3	$2-4$	3.500
CR4200-3	$3-6$	4.200

Write for further details - include specificalions for your applicalion
better Components make better instiuments
The Victoceen Instrument Co.
3800 PERKINS AVENUE
CLEVELAND 14, OHIO

Releasing plunger of tool retracts fingers for gripping screw or other small object
cellent for picking up oddly shaped objects, hot objects, pieces that are difficult to grip or adjust because of their size or shape, and highly polished pieces that must not be handled. It can hold or adjust parts in spaces too cramped for a hand.

Soldering Resistors

The problem of connecting eight matched carbon resistors in parallel with practically zero lead length while holding the combined final resistance within 0.6 ohm of the

Inserting resistors in brass jig as first step in obtaining a parallel connection with practically zero lead lengths

Cutting resistor leads to different temporary lengths to facilitate insertion of leads in holes of end plate
required 51.26 -ohm value was solved through use of a unique assembly and soldering procedure in the Clifton, N. J. plant of Allen B. Du Mont Labs, Inc.
The required short leads precluded use of heat-absorbing clips during soldering. To prevent heat from changing resistor values, heatabsorbing blocks are used as assembly jigs. The first block is clamped in a vise and the eight resistors are inserted in drilled holes arranged in a circle, going partly through the block. The bottom leads project down through the bottom of the block through smaller holes.

As the next step, the operator cuts the upper leads each to a different length with side-cutting pliers, to facilitate placing the final end plate over the leads. After the leads have been inserted in the eight holes of this plate, the leads are all cut off flush with the top of the plate and then soldered to the plate. Care is taken to solder as quickly as possible, to minimize heat rise. The copper jig quickly absorbs any heat that does get to

Soldering leads to end plate

At the Hathaway Instrument Company, tiny galvamometer coils are wound with wire so fine that it is almost invisible to the unaided eye. Ingenious tooling and use of an $A O$ Stereoscopic Microscope assure fast, precise workmanship.

These unique AO Microscopes provide two
complete optical systems (one for each eye) to enhance the perception of depth and to provide three-dimensional reality plus an exceptionally wide field of view. Unlike ordinary microscopes, objects and movements are not inverted. Instead they appear in their natural directions. Because AO Stereoscopic Microscopes are unequalled for fabrication, assembly, inspection of minute precision parts, they are widely used in electronics, metal working, food and many other industries.
Let AO Stereoscopic Microscopes help you achieve high precision at low cost. Mail coupon below.

American Optical

(D) instrument division

Stereoscopic
 Microscopes
 You NEED

-

HERMETICALLY SEALED TO MIL-T-27 SPECIFICATIONS

NYT offers a wide variety of transformer types to meet military and civilian specifications, designed and manufactured by specialists in transformer development.
Latest NYT service for customers is a complete test laboratory equipped and approved for on-the-spot MIL-T-27 testing and faster approvals.

NEW YORK TRANSFORMER CO., INC. ALPHA, NEW JERSEY

Use of spacer sheet as quide for cutting leads at other end of group to final length. Heat-absorbing brass block is divided into two parts so it can be removed after soldering is completed. Finished end plate rests in hole in wood jig clamped in vise
the resistors. After each lead is soldered, carbon tetrachloride is applied to speed cooling; this is done by shaking a brush filled with the fluid over the joint while the solder is still molten, then applying the brush directly.

Next, the group of eight resistors is lifted out of the block and placed upside-down in a wood jig held in another vise. Two brass blocks are now set against the sides of the resistor group. The upward-projecting resistor leads are cut to different lengths as before, a copper spacer sheet is fitted over them to serve as a guide for cutting to the final counter-sunk depth, and the guide sheet is removed. A permanent heat-absorbing core is now placed in the center of the resistor group, the other permanent end plate is dropped over the short leads, and the joints are carefully

Final soldering operation
soldered one by one just as for the other end. The holes in this plate are countersunk, and solder must be applied carefully so it does not project above the surface. For the intended application, filing of surplus solder was not permissible.

This elaborate assembly technique was necessary because space limitations in the final equipment prevented use of longer leads.

Dual-Head Tapping Machine

TAPPIng holes on both sides of Uchannels for transmitter cabinets has been speeded up at the Brooklyn, N. Y. plant of Karp Metal Products Co. by the use of two automatic tapping heads mounted facing each other. The pre-drilled channel is placed between the two heads and the holes aligned with the taps. A

Dual-head tapping machine uses singlelever control to speed tapping of holes in U-channels. The W -shaped linkage is in foreground. Dual-outlet coolant pipe is directly over taps
single control lever is then operated to move both heads toward the channel simultaneously.

Control of both heads from one lever is accomplished through a Wshaped linkage. Coolant for both taps is brought through a flexible tube to a dual outlet head positioned over the work.

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered . . . Fifty Trade Bulletins Reviewed

H-F IMPULSE RELAY features high sensitivity

C. P. Clare \& Co., 4719 W. Sunnyside Ave., Chicago 30, III. Type T high-frequency impulse relay was developed for use in applications that require a highly sensitive relay completely free from contact bounce and capable of a prodigious number of operations at extremely high speed. This relay has a pull-in time of $120 \mu \mathrm{sec}$ and a drop-out time of 100 usec that enable it to follow $2,500 \mathrm{cps}$; aperiodic to $1,000 \mathrm{cps}$. In a typical application it has a life expectancy, following a run-in period of 1×10^{8} operations, of $5 \times$ 10^{9} operations with a $0.75-\mathrm{ma}$ contact load over a 6 -month period without readjustment.

SIGNAL GENERATOR displays characters

Wang Laboratories, 296 Columbus Ave., Boston 16, Mass. Model DS157 character display signal generator supplies all the necessary sig-
nals to display any character on the screen of a c-r tube. Every character is formed by properly intensifying the beam when it scans across an area of the screen. Hundreds of different characters can be made available at the same time. Characters are displayed at a rate of 10 ,000 per second. No control or adjustment is necessary. No special c-r tube is required.

CONVERTER BOOSTER

 is handy in fringe areasBlonder-Tongue Laboratories, Inc., 526 North Ave., Westfield, N. J., announces the model BTU-1 Ampliverter, a single-channel uhf converter with more than $17-\mathrm{db}$ gain and a very low noise factor. The unit will produce clear, sharp, snow-free pictures in locations where ordinary converters fail to do so. The new model features three tubes (6AF4, 6BK7A and 6 CB 6), a germanium mixer and a self-contained power supply. All three sections are fully shielded to minimize oscillator radiation. Double-tuned r-f circuits reject spurious signals and provide correct band-pass and flat response. The Ampliverter has input terminals for both uhf and vhf antennas.

OTHER DEPARTMENTS
featured for this issue:
Paqe
Electrons At Work...... 196
Production Techniques . . 260
Plants and People...... 342
New Books 368
Backtalk 391

POWER AMPLIFIER

is rated at $1,000 \mathrm{w}$

John Fluke Engineering Co., 1111 W. Nickerson St., Seattle 99, Wash. Model 200A power amplifier is specifically designed to furnish a source of variable frequency alternating current for component and equipment testing at the frequencies specified for Army and Navy equipment, and at those encountered in foreign power systems. It is rated at a full 1,000 w at 75-percent power factor with distortion of not more than 1.5 percent at unity power factor, and not more than 3 percent at 75 -percent power

Ulitrar High Quality Sockets FOR UHF APPLICATIONS

In Canada: Sylvania Electric (Canada) Led.
University Tower Building, St. Catherine Street, Montreal, P. Q.
factor, over a 40 to 4,000 -cps frequency range. Regulation at unity power factor is 7 percent and output voltage is substantially unaffected for $a \pm 10$-percent line voltage change. Output voltage is adjustable from 0 to 115 v . An ammeter and voltmeter are provided for monitoring the output.

FLEXIBLE COUPLING has new type insulation

The James Millen Mfg. Co., Inc., Malden, Mass., has developed an entirely new type of insulated flexible coupling. Instead of the conventional riveted strap assembly, the new coupling is injection molded as a single unit. This method of assembly eliminates back lash, materially shortens the overall length, increases the electrical leakage path and very substantially increases the voltage breakdown rating over couplings of the conventional riveted construction, while maintaining an equally high degree of flexibility and a greater accuracy of hub alignment.

NULL DETECTOR designed for a-c bridges

General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Type 1212-A unit null detector has been designed primarily as a balance indicator for a-c bridges. However, it is useful as a sensitive wide-frequency-range voltage indicator. Its frequency characteristic is flat
within about 1 db from 50 cycles to 500 kc and it is satisfactory as an indicator at frequencies from 20 cycles to 5 mc . An approximately logarithmic relationship between meter reading and input voltage gives an on-scale range of about 120 db . The full-scale deflection is about 100 v while a signal of less than $40 \mu \mathrm{v}$ deflects the meter by one percent of full scale.

NEW THYRATRONS are interchangeable

Amperex Electronics Corp., 230 Duffy Ave., Hicksville, L. I., N. Y., announces two improved versions of standard hydrogen thyratrons, types 4 C 35 and 5 C 22 . The new Amperex types are 6268 and 6279 respectively. Incorporating self-contained and self-regulating sources of hydrogen, these new tubes exhibit a minimum life expectancy of over $1,000 \mathrm{hrs}$, which is at least twice that of standard types. Both tubes are completely interchangeable with the tubes replaced.

ANTENNA ADAPTOR is designed for uhf use

Channel Master Corp., Ellenville, N. Y. Model 415 Econo-Dapter is a high gain, all-channel, uhf triangular dipole specifically designed to add uhf to the millions of vhf Super Fan installations now in existence. The precise distance is prefixed, and the uhf dipole is veed forward so that it is always parallel to the vhf fan elements that function as a highly efficient sheet reflector. The Econo-Dapter features "free space" terminals that prevent
the accumulation of dirt, ice or rainwater between the feed points, which can short out the picture. Its ultrarigid construction prevents vibration that can cause picture flicker.

TUBE TESTER

contains 3μ mho ranges

The Hickok Electrical InstruMEnt Co., 10527 Dupont Ave., Cleveland 8, Ohio. Model 533AP tube tester is now available as a radio-tv and communication technician's portable for on-location or shop bench servicing. It is built with patented dynamic mutual conductance circuits to permit tube tests under simulated operating condition for better matching of tubes in tv or other electronic equipments. The unit contains three micromho ranges of 0 to $3,000,6,000$ and 15,000 . It includes a new built-in bias fuse to prevent accidental damage to bias potentiometer. Measurements are $16 \frac{3}{4} \mathrm{in}$. wide, $18 \frac{3}{8} \mathrm{in}$. long and $7 \frac{1}{2} \mathrm{in}$. deep, and net weight is 24 lb .

D-C VTVM
 has 3-percent accuracy

Scientific Specialties Corp., Snow and Union Sts., Boston 35, Mass. Model VM-81 d-c electronic volt-

Reliability is built into many types of electrical and mechanical spring paris with Bridgeport Phosphor Bronze.

Product improvement tnrough . . .

What do you look for in a spring material?

1. Resilience.
2. High fatigue resistance to withstand millions of flexing cycles.
3. High yield strength to withstand considerable deflection without taking a set.
4. Good corrosion resistance.
5. Sufficient ductility for stamping and forming.
6. Good electrical conductivity (if spring carries current).

BRIDGEPORT PHOSPHOR BRONZE

These properties are engineered into Bridgeport's Phosphor Bronze through proper melting practice, special casting techniques and controlled mill processing. The superior quality of Bridgeport's Phosphor Bronze means superior performance - in electrical applications such as switches, relays, capacitors and controls... in mechanical applications such as bellows, diaphragms and lock washers.

Call on Bridgeport's Metallurgical Laboratory for help with your metal specification problems. Contact your nearest Bridgeport office for service.

Mills at Bridgeport, Conn., and Indianapolis, Ind.
In Canada: Noranda Copper and Brass Limited, Montreal

BRIDGEPORT BRASS COMPANY

30 GRAND STREET, BRIDGEPORT 2, CONNECTICUT

IN THE PULSE RACKET

It is gratifying to note that within a month of our attack on relays for the pulse market, a favorite competitor has done the impossible and brought out an impulse relay. It is improbable that our implications impelled him to such an important step, but the impression, though implausible, adds impetus to our plans.

The purpose of a pulse (or impulse) relay is either to make round pulses square, or, to make little square pulses big. Relays are not usually used to make narrow pulses wide or wide pulses narrow, although some do, willy nilly.

Relays like our Type 7, which eat a couple of milliseconds off a pulse and then bite out a nick in the form of a half-millisecond bounce,

are no better than rumor-mongers as repeaters of information. That new impulse relay certainly beats it all hollow because it operates twenty times as fast, and doesn't bounce.

If our new relay could do that, as well as what it already does, we wouldn't have to advertise for long. To be specific, it is SPDT, and it will operate in about .0006 seconds, transfer taking
as little as .00025 seconds off your pulse. It never bounces, of course, and will handle substantial contact loads such as a teleprinter for over $100,000,000$ operations. It looks like this:

Both these wonderful relays are pretty hard to get. You can have one of ours right away, if you convince us that you need something a lot better than our " 7 " (if not, that's what you'll get). Furthermore, you'll have to answer a lot of questions about your gadget and its purpose (how else can we learn about "new frontiers"?). Finally, you'll have to settle for commercial quality and finish; no leak proof, salt proof, fire proof, fungus proof; so far all we've tried is to make it goof proof.
features of the new pulse relays

	SIGMA	COMPETITOR
Operating choracseristics	Two coil polarized	Single coil neutral
Contact Arrangement	SPDT	SPST
Contact load and life rating	10^{8} @ 60 mc icantacts eastly replaced	$\begin{gathered} 5 \times 10^{9} @ \\ .075 \mathrm{ma} \end{gathered}$
Contoct separation	$.004^{\prime \prime}$. $0005^{\prime \prime}$
Max. Aperiodic pulse rate	400 cps	1000 cps
Max. Following pulse rate	1200 cps	2500 cps
Signal for good operation	$\begin{aligned} & +20,-20 \\ & +20 \mathrm{mo} \end{aligned}$	40, 0, 40 ma
Coll resistance	150Ω each	135Ω
Helght and diameter obove octal plug	$\begin{gathered} 21 / 2^{\prime \prime} \times \\ 19 / 32^{\prime \prime} \end{gathered}$	$\begin{gathered} 121 / 32^{\prime \prime} x \\ 115 / 16^{\prime \prime} \end{gathered}$

SIGMA INSTRUMENTS, INC.
102 Pearl Street, So. Braintree, Boston 85, Mass.

meter is a wide range instrument with excellent stability and high sensitivity. Range is 50 mv full scale to 500 v full scale, d-c; 11 ranges. Input impedance is 50 megohms on all ranges. Accuracy is 3 percent of full scale on all ranges. Power input is $115 \mathrm{v}, 60$ cycles a-c ; approximately 25 w .

TRIODE HEPTODE

is a frequency changer
Mullard Ltd., London, England. A new frequency changer, which should prove of great interest to designers of communications and industrial electronics equipment has been introduced. It is the ECH81 triode heptode on the B9A (noval) base. Featuring high conversion conductance and low noise, it is particularly suitable for use as a frequency changer in a-m or $\mathrm{a}-\mathrm{m} /$ f-m receivers where its h-f performance is considerably in excess of the company's earlier tubes. The small size also recommends it to designers of modern compact equipment where space is limited.

LAB COIL KIT contains 10 type C coils

Cambridge Thermionic Corp., 457 Concord Ave., Cambridge 38, Mass., has made available a new coil kit to aid design engineers, lab technicians and others engaged in developing prototypes and pilot models. The kit contains 10 coils of the LS6 size, type C, with silicone Fiberglas collars. The coils cover a range of from $2 \mu \mathrm{~h}$ to $800 \mu \mathrm{~h}$, the range of each slightly overlapping
the next coil in the scale. The kit comes complete with mounting hardware and also contains a chart on the inside top cover listing all data of interest to the designer-information such as inductance range, wire size, number of turns and Q value.

ELECTRICAL TAPE

is only 3 mils thick
Minnesota Mining and Mfg. Co. 900 Fauquier St., St. Paul 6, Minn., has announced a new transparent electrical tape only 3 mils thick that combines high tear strength with a high dielectric and excellent noncorrosive properties. Designated Scotch electrical tape No. 5, it has a polyester film backing made from Mylar and a pressure-sensitive, heat-resistant, electrical grade adhesive. Stable under temperatures up to 125 C , the tape is designed for use in fine wire coils, transformers, and in minature electric components. It has an insulation resistance of 100,000 megohms, a dielectric strength of $5,500 \mathrm{v}$ and an electrolytic corrosion factor of 1.0 .

BRIDGE INDICATOR balances measuring bridges

Hermon Hosmer Scott, Inc., 385 Putnam Ave., Cambridge 39, Mass. Type 615-A bridge indicator permits more rapid, accurate and convenient balancing of measuring

maintenance and replacement are simplified with Fairchild

These plug-in type ganged potentiometers are another excellent example of Fairchild's service in meeting the special requirements of customers. The problem was to provide ganged precision potentiometers that would simplify maintenance of airborne fire control equipment through quick and easy replacement. A series of packaged plug-in units like that shown was the answer.

An entire gang can be replaced in a few minutes because only the end mounting plates are fastened down. There are no wires to disconnect or solder. Test points are provided on the top of each potentiometer so it can be checked quickly.

Maximum rigidity of the gang is assured by mounting the individual units on a single shaft. These plug-in potentiometers have the same mechanical and electrical tolerances and performance characteristics that have made the Model 746 unit the first choice for many critical applications.

Use the coupon below to get full information.

this coupon may help solve your potentiometer problems!

American Beauty

 makes perfect soldered connections for
SYLVANIA RADIO and TELEVISION SETS

There are over 2,000 soldered connections in a good television receiver. Sylvania calls on American Beauty to help produce top quality products, maintain its reputation as a maker of ex. pertly crafted receivers.

Pride of Brides for Three Generations, the famous American Beauty Electric Iron, made by the same specialists in electrical heating devices.

> Build better with Solder... Solder better with American Beauty

Electric Soldering Frons-Since 1894

IN CHOOSING SOLDERING IRONS, look to the oldest, largest manufacturer in America. Look to AMERICAN BEAUTY, the Standard of Perfection on the world's production lines, and to these features that make AMERICAN BEAUTY the largest-selling of all soldering irons . . .

- Nickel-coated, corrosion-resistant tips, easily and quickly replaced
- Super-flexible cord, American Beauty-made, reduces worker fatigue
- Heating element of chrome-nickel ribbon resistance wire
- Insulated with pure mica
- Built-in connection for ground wire
- Six models . . . from 50 to 550 wafts

AMERICAN ELECTRICAL HEATER COMPANY
 DETROIT 2, MICHIGAN

bridges. An approximately logarithmic response allows balancing from coarse to extremely sensitive fine without the frequent range changes normally required with bridges. Since the output is virtually logarithmic with respect to input over a range of 10,000 to 1 (80 db), very precise aural null-detection is possible without extreme concentration or strain on the part of the operator even in noisy surroundings. Frequency response is flat from 60 cps to 20 kc . Input voltage ranges of 0 to 1 v and 0 to 100 v are provided. Maximum output is 1 v . Weight is $7 \mathrm{lb}, 11 \mathrm{oz}$.

STAKING MACHINE reduces operator fatigue
Black and Webster, Inc., 445 Watertown St., Newton 58, Massachusetts, has developed a new, improved all-electric staking machine called Electrostake. The machine is powered by a solenoid rather than the spring-loaded trip hammer used on most conventional stakers. The fast, effortless solenoid operation, plus other features, reduces operator fatigue to a minimum makes possible 25 to 50 -percent increase in production and provides complete safety for the operator. A portable machine, the Electrostake is ideal for any assembly-line operation where two or more assembled parts must be pressed firmly together and then staked or riveted with a sharp blow. Typical applications include assembly and subassembly work involved in manufacturing instruments, electrical
components, cameras and many other small products.

TINY TRANSFORMER

 weighs only 1.3 ozStandard Transformer Corp., 3580 Elston Ave., Chicago 18, Ill., has announced a line of miniature audio transformers made with nickel steel laminations, with a frequency response of $\pm 1 \mathrm{db}, 30$ to $15,000 \mathrm{cps}$, maximum level 0 db . The Tinytrans are sealed and potted in $\frac{7}{8}$ in. square, anodized aluminum cases with phenolic terminal boards. Total height, including terminals, is only $1 \frac{1}{4} \mathrm{in}$. The case has two 2-56 threaded inserts, $\frac{11}{6}$ in. centers, for easy chassis mounting. The entire transformer weighs only 1.3 oz .

CRYSTAL DETECTOR

 for 8,500 to $9,500-\mathrm{mc}$ usegeneral Precision Laboratory Inc., 63 Bedford Rd., Pleasantville, N. Y., announces availability of a novel tunable crystal detector in RG-52/U or RG-6S/U waveguide. This addition to the company's specialized microwave components is designed for the 8,500 to $9,500-$ me range and utilizes two screws for adjusting to optimum vswr. Its simplicity of design and ease of operation represent an advance

Three-Speed Phonomotors by General Industries

 shaft. Moving shift lever to "OFF" position automatically disengages idler wheel from motor shaft during non-operating periods.
Features include ribbed mounting plate, oilless bearing and dynam-ically-balanced motor. Turntable shaft revolves with turntable and is grooved for turntable clip. Furnished with $8^{\prime \prime}$ turntable.
Dimensions: Length: $5^{\prime \prime}$; Width: $4^{23 / 52}{ }^{\prime \prime}$;
Depth: $2^{15} / 3{ }^{\prime \prime}$ below mounting plate.

For applications in which compactness is secondary to need for absolute minimum of stray field radiation. Ideally suited for magnetic pickups.
Speed change is accomplished by vertical movement of idler wheel to appropriate diameter of motor shaft for desired turntable speed. Moving shift lever to "OFF" position automatically disengages idler wheel from motor shaft, and cuts off the current to the motor.
Features include precision construction throughout, oilless motor and turntable bearings, dy namically-balanced rotor. Furnished with 10" turntable.
Dimensions: Length: 65/8"; Width: 61/6";
Depth: $2^{21} \frac{\zeta_{32} "}{}$ below mounting plate.
Both models available for immediate delivery. Write for quantity price quotations on these and other G.I. phonomotors.

the general industries co.
department ma - elyria, Ohio

FIRST IN STAINLESS STEEL

FASTENINGS

ELECTRONIC EQUIPMENT

manufacturers count on Anti-Corrosive for fast, dependable service on all types of precision stainless stecl fastenings. They know that our IN STOCK inventory of more than 8,000 items and sizes is the largest, most complete, in the industry. In addition, our production capacity is geared to produce large or small guantitics of stainless fastenings, from large hex head bolts to tiny \#0-80 machine screw nuts, faster and more cconomically!
Write for Catalog 53F today.

ANTI-CORROSIVE METAL PRODUCTS CO., INC.

CABLE HANGER

 for mike floor standsAtlas Sound Corp., 1451-39th St., Brooklyn 18, N. Y. Model CH-1 cable hanger is expressly designed to be used with all types and styles of mike floor stands. It enables the mike cable to be quickly coiled and looped over the hook when moving, storing or transporting the mike and stand. The CH-1 is easily and securely clamped to any diameter tubing.

SHUNT BOX
 for a-c instrumentation

Millivac Instrument Corp., 444 Second St., Schenectady 6, N. Y. Type MV-121 shunt box, when plugged into the MV-12A voltmeter, converts it into a highly-sensative a-c ammeter, covering a very wide frequency range. The shunt box is particularly useful if an oscilloscope is plugged into the output terminal
of the a-c voltmeter as this makes it very simple and easy to observe waveshapes of currents.

FAST-ACTION RELAY

 features long core designComar Electric Co., 3349 W. Addison St., Chicago 18, Ill., has announced the T-J relay, a fast-action telephone type featuring a long core design that gives it greater sensitivity and makes it ideal for use in the more complex circuits involving pull-in and drop-out time delay. The relays are available with coils for all standard voltages up to $110 \mathrm{v} \mathrm{d}-\mathrm{c}$; contact combinations up to 4-pole double throw, or 6-pole single throw. Standard contacts are of fine silver rated at $150 \mathrm{w}, 3 \mathrm{am}-$ peres maximum noninductive load. They are thoroughly insulated to withstand $1,000 \mathrm{va-c}$.

TELEVISION PROBE

is pocket-size voltmeter
American Research Corp., 150411th St., Santa Monica, Calif. A voltmeter small enough for a tv service man to carry in his pocket is now on the market. The TV Voltprobe is $10-\mathrm{in}$. long, needs no outside current to operate, and measures accelerating d-c voltages on a tv tube from 4,000 to $25,000 \mathrm{v}$. An alligator clip is connected to the chassis of the tv set, and the probe end of the Voltprobe is connected to the second anode by piercing

ATRAX

 the smallest... lightest power supply available!

Model Al 220 vibrator power supply is designed to deliver 15 watts, 150 volts. DC, 100 ma at 1% peak ripple, and 70% efiiciency. Very small size and weight are possible because of the high frequency (450 cycle) vibrator. Vibrator and power supply are hermetically sealed. Vibrator is replaceable, using Dzus snap fasteners for easy removal. Supply obtainable for 6, 12 or 26.5 VDC input, maximum output of 20 watts and 300 volts on special order. Will operate with a 20% input voltage variation, under severe vibration and shock, may be exposed to high altitude without damage.
c

TO CONTROL A DUAL HYDRAULIC POWER SYSTEM

An equipment manufacturer using the hydraulic system pictured below had to provide a means of controlling the system from a centralized point. The original design, which called for a network of 17 universal rods with their bearings and 18 bevelgeared elbows, was both costly and troublesome and failed to provide the sensitivity required by the application. As a result, the manufacturer chose -

THE LOW-COST SOLUTION-an s.s.white REMOTE CONTROL FLEXIBLE SHAFT

In fact, only 4 standard S.S.White flexible shafts were needed to replace the 35 parts that were formerly used. The flexible shaft system cost 90\% less, reduced assembly time and labor, eliminated alignment problems and provided $\mathbf{1 0 0 \%}$ improved performance. It's savings like these that make it well worth your while to investigate the economies of using S.S.White flexible shafts on your own remote control applications.

Up-fo-date Flexible Shaff Information This 256-page flexible shaft bandbook will be sent free if you request it on your business letterbead. It contains full facts and data on flexible shaft selection and application.

THE COX GCite INDUSTRIAL DIVISION DENTAL MFG. go. \qquad NEW YORK 16, N. Y.

[^21]through the rubber protective cap. To get the voltage measurement, the knob on the Voltprobe is turned down until the lamp inside lights. The voltage is then read off a calibrated dial. The measurement can be made without removing the tube or chassis from the cabinet.

ROSIN CORE SOLDER is active yet noncorrosive

Federated Metals Division, American Smelting and Refining Co., New York, N. Y., has developed RTS 200, an active yet noncorrosive rosin core solder. Oxide films and corrosion products on the parts being soldered need not slow down operations, because this solder pierces such retarding agents four times faster than ordinary solders. The chemicals used in this new solder are commonly used in industry and have no toxicity factor whatsoever. RTS 200 is available in a wide variety of wire sizes, compositions and quantities.

TRANSMITTER RACKS are rigidly constructed

Premier Metal Products Co., 3160 Webster Ave., Bronx, N. Y., announces the manufacture of a line of transmitter racks rigidly constructed of 16 -gage steel. Panel mounting angles are ${ }_{18}^{3}$ thick and are tapped $12 / 24$ on universal spacings. Rear doors are hung on loosejointed hinges and have flush snap catches. The racks are available in two sizes- $67 \frac{3}{8} \times 22 \times 18 \mathrm{in}$. with
panel space of $61 \frac{1}{4} \times 19 \mathrm{in}$. and $83 \frac{1}{8}$ $\times 22 \times 18$ in. with panel space of $77 \times 19 \mathrm{in}$. A complete catalog of the company's products for the electronic and electrical industries is available.

CIRCUIT TRACER

weighs only $21 / 2$ oz
Delta Electrical Specialty Co., 1456 E. Walnut St., Pasadena, Calif. Versatile in its use, the new Circuitracer is a compact, 3 -in-one convertible, quick-change tester. It is used to quickly locate grounds, opens, or shorts in dead or live circuits. The unit has been designed to trace virtually all types of circuits for continuity and the presence of either d-c or a-c voltage. Live circuits as low as 2 v or as high as 600 v can be tested, as can dead circuits and devices. This pocket-size test laboratory will withstand rugged industrial use, yet weighs only $2 \frac{1}{2} \mathrm{oz}$. The location of the signal light in the tip at point of contact makes circuit tracing fast and accurate.

RESONATOR

is tiny and weighs $80 z$
Philamon Laboratories Inc., 5717 Third Ave., Brooklyn 20, N. Y., an-
 and germanium.

- Controlled removal of surface coatings on printed circuits and deposited carbon resistors.
- Drilling holes in thin sections.
- Cutting small holes, cavities and slits.
- Light etching and finishing operations.

The S.S.White "Airbrasive" Unit produces a cutting action by means of a high-velocity stream of abrasive particles which are directed at the work through an $.018^{\prime \prime}$ diameter nozzle. The cutting action is cool and eliminates the vibration and pressure ordinarily associated with other cutting methods, Furthermore, the accuracy of the cut is not affected by surface irregularities of the work or by wear, as might be the case with a standard cutting tool. The Unit is ideal for laboratory work and can be readily adapted to any production set-up.

Write for Bulletin 5212. It gives full details about the S.S.W bite Industrial "Airbrasive" Unil, including specificarions, prices and operating and performance data.
 THE Cof White INDUSTRIAL DIVISION DENTAL MFG. CO.

Dept. EB 10 East 40th St.
NEW YORK 16, N. Y.
Western District Office - Times Building, Long Beach, California

Got an Antenna Tower Lighting Problem?

Be SURE your plans comply with the new FCC regulationswrite today for your free copy of the
 H. \& P. TOWER LIGHTING KIT CHART

FCC has decreed radical changes in lighting requirements for all new antenna towers and supporting structures.

For your guidance, Hughey \& Phillips engineers have prepared a comprehensive chart, based on the new regulations, which illustrates the exact kinds of lights, the number of lights, and the spacing of lights required for every antenna type and height.

In other words, you can see at a glance the new lighting requirements for your particular tower!

Best of all, Hughey \& Phillips now have available packaged Tower Lighting Kits to meet FCC specifica-tions-and to fit every need. Lighting kits complete to the last nut and screw - cost less and save time in engineering, purchasing, erecting.

FREE! Write Dept. L. for your Tower Lighting Kit Chart and a copy of the new FCC specifications.

HUGHEY \& PHILLIPS tower lighting division

LEADERSHIP IN THE FIELD OF TOWER LIGHTING EQUIPMENT

[^22]nounces the model J miniaturized tuning fork resonator having a maximum weight of 8 oz and case dimensions of $1 \mathrm{in} . \times 2 \frac{3}{18} \mathrm{in} . \times 21 \frac{1}{6}$ in. high. It is available in any frequency from 400 to $2,000 \mathrm{cps}$ and in an accuracy rating of either 1 part in 10,000 or 1 part in 2,000 for operation from -40 C to +85 C . The units are completely temperature compensated and are solder-sealed and evacuated. Their internal silicone rubber mounting plus their external provision for mounting to a chassis via silicone rubber grommets provide excellent shock and vibration isolation. Due to their high effective working Q of approximately 10,000 , these resonators provide an excellent means for generating accurate fixed audio frequencies.

COMMUNICATIONS PLUG

is a 3-conductor type

SWitcheraft, Inc., 1328 N. Halsted St., Chicago 22, Ill. The No. 480 Littel-Plug, most commonly used in military communication and industrial equipment, features a one-piece tip rod which together with the sleeve, dead ring and ring sleeve are assembled into the mold as inserts; providing a finished plug with complete continuity of thermoplastic insulation between all the metal parts of the plug. Design and material are strictly in accoordance with specification JAN-P-642. This Littel-Plug is a 3 -conductor type, $0.2065-\mathrm{in}$. diameter sleeve, and mates with such jacks as the JAN type JJ-033. It is furnished with 3

June, 1953 - ELECTRONICS

the Type H-12 ||F signal generator

900-2100 Megacycles

This compact, self-contained unit, weighing only 43 lbs ., provides an accu. rate source of CW or pulse amplitudemodulated RF. A well-established design, the Type 12 has been in production since 1948. The power level is 0 to -120 dbm , continuously adjustable by a directly calibrated control accurate to $\pm 2 \mathrm{dbm}$. The frequency range is controlled by a single dial directly calibrated to $\pm 1 \%$. Pulse modulation is provided by a self-contained pulse generator with controls for width, delay, and rate; or by synchronization with an external sine wave or pulse generator; or by direct amplification of externally supplied pulses.
Gold Plating of the oscillator cavity and tuning plunger assures smooth action and reliable performance over long periods. Generous use of siliconetreated ceramic insulation, including resistor and capacitor terminal boards, and the use of sealed capacitors, transformers, and chokes, insures operation under conditions of high humidity for long periods.

Built to Navy specifications for research and production testing, the unit is equal to military TS-419/U. It is in production and available for delivery.

Price: $\$ 1,950$ net, f.o.b. Boonton, N. J.

Type H-14 Signal Generator

(108 to 132 megacycles) for testing OMNI receivers on bench or ramp. Checks on: 24 OMNI courses, left-center-right on $90 / 150 \mathrm{cps}$ localizer, left. center-right on phase localizer, Omni course sensitivity, operation of TO. FROM meter, operation of flag alarms.

Price: $\$ 942.00$ net, f.o.b. Boonton, N. J.
WRITE TODAY for descriptive liferalure on A.R.C. Signal Generators or airborne LF and VHF communication and navigation equipments, CAA

Dependable
Electronic Equipment
Since 1928

Aircraft Radio Corporation
 Boonton, New Jersey

Want more information? Use post card on last page. ELECTRONICS - June, 1953
tinned terminals fastened by screws.

COLD CHAMBER

simulates high altitudes
Bowser Technical Refrigeration, Terryville, Conn., is now manufacturing a walk-in chamber that is capable of simulating altitudes from sea level to $80,000 \mathrm{ft}$ and can produce a climb rate of $5,000 \mathrm{ft}$ per minute. It can be used for testing radar antennas. With an interior free working space of $9 \mathrm{ft} \times 9 \mathrm{ft}$ $\times 7 \mathrm{ft}$ high, the chamber can be cooled from 140 F to -76 F in two hours and heated from -76 F to 140 F in one hour with a temperature control of ± 2 deg. Humidity range is up to 95 percent. Illustrated is one of the chambers being loaded for delivery.

LOCKING COLLAR

 designed for small shaftsWaldes Kohinoor, Inc., 47-16 Austel Place, Long Island City 1, N. Y., has added to its line of retaining rings a low-cost fastener that provides a positive shoulder, secure against thrust and vibration. Designated as the series 5555 Truarc grip ring, the retainer can be assembled and disassembled in either direction on a straight ungrooved shaft with Truarc pliers. The basic design principle of complete circularity around the pe-

TWO SPEEOS - SINGLE CONTROL FREE OF BACKLASH

Atcuracy of scale reading 100% Coarsé searching speed plus fine setting contriol:
Single centrol knob displaced axially to select the speed ratio. Spring-loaded gearsmwith autov matic take-up of ary wear or play betwien primary and secondiary driyes.

- Pointers geared directly to centre spindle.
- Securdity in operationt: friction clutch obxiates averdriving.

TXPENo.	NUMEER OF DIAL MARKiNG:	Effective SCALE Eengith	Speed ratios	
			Corrase	FINE
52	noon	3.3 feet	1.8	1.120
63	10×0	3.3 teer	8	1:120
5	20	6.6 feet	1 is	1:200
56	$2 \times$	4, fete	1.15	1200
33	28×8	6al let	113	1. 200

We are specially organized to handle direct enquiries and orders from U.S.A.
Billed in dollars. Settlement by your check. CABLE OR AIRMAIL TO-DAY
FRANSRADIO LTD CONERACTORS iO HM GOVERNMENT 13月 CRRMWELI AEAD COROOZ, S.W.7., ENGLAHE CABLES = TRANSRAD, LONDON

fridin cidres

PYROFERRIC IRON CORES are

 scientifically manufactured, under strictest quality controls to close electrical and mechanical tolerances.PYROFERRIC services are available for the engineering of your core production requirements . . . your letterhead request will bring you M.P.A. Data Sheets and tables which give complete information including recommended sizes and tolerances, as well as a cross-referenced index of manufacturers' material designation.

riphery of the shaft, and the ring's unusually large radial width combine to exert considerable frictional hold against axial displacement. Sample rings for shaft diameters of $\frac{1}{8} \mathrm{in}$., $3 / 6 \mathrm{in}$., $\frac{1}{4} \mathrm{in}$., 偪 in. and $\frac{3}{8} \mathrm{in}$. are available upon request.

TV ATTENUATOR handles excessive signals

Vidaire Electronics MFg. Co., Lynbrook, N. Y., is manufacturing a new tv attenuator that eliminates overloading due to strong signals. Known as Tel-Atten, the new unit was designed to reduce buzz in intercarrier sets, and most cross-modulation effects. It also features 1,000-to-1 change in signal reaching antenna posts and vernier adjustment for all signal areas. The instrument was designed for all tv sets troubled with excessive signals such as poor synchronization, multiple images, buzz in sound and beats in picture. Installation is simple for it connects with only three leads and is mounted with just two screws. Model A-2 measures only $3{ }^{5}$ in. $\times 2 \frac{3}{8}$ in. $x 14 \mathrm{in}$.

CAPACITOR

 has new tunable elementCambridge Thermionic Corp., 457 Concord Ave., Cambridge 38, Mass.,
has announced a new tubular, variable ceramic capacitor, CST-50, that incorporates a tunable element of new and unusual design. Because of this feature which practically eliminates losses due to air dielectric, a large minimum-to-maximum capacitance range (1.5 to $12 \mu \mu \mathrm{f}$) is realized-surpassing that of capacitors many times larger in physical size. The CST-50 stands only 19/32 in. high when mounted, is less than $\frac{1}{4} \mathrm{in}$. in diameter and has an 8-32 threaded mounting stud. The mounting stud is split so that the tuning sleeve can be securely locked without causing an unwanted change in capacitance. The CST-50 is provided with a ring terminal that has two soldering spaces.

TAPE HANDLER records and plays back

Potter Instrument Co., Inc., 115 Cutter Mill Rd., Great Neck, N. Y., has announced a new high-speed, low cost magnetic tape handler for digital data handling and general computer recording and playback. One unique feature of the device is its ability to start and stop intermittently within 5 milliseconds from external signals thus making it possible to record, play back or compare blocks of information. Fully reversible drive at speeds of 15 and 30 inches per second is provided. New photoelectric proportional servo tension controls provide uniform tape tension over the recording head at all speeds. Independent reel drives, controlled by the servo systems, assure freedom

'DIAMOND H' RELAYS

 -pack more

performance

into less space

Rating for rating, "Diamond H" Series R hermetically sealed, miniature aircraft type 4PDT relays are smallest (1.6 cubic inches), lightest (3.76 ounces), have widest temperature range (-65° to $+200^{\circ} \mathrm{C}$.), greatest operating shock resistance (to 50 " G " and higher) and excel all others in their field in ability to break high currents and high voltages.

Ideal for high frequency switching, their inter-electrode capacitance is less than 5 micro-microfarads contacts to case, less than $21 / 2 \mathrm{mmf}$ between contacts, even with plug-in type relay and socket. Vibration range is from 0 to 500 cycles per second and upward at 15 " G " without chatter. Coil resistances up to 50,000 ohms are available, with contact loading through 10 A . resistive for 100,000 cycles (30 A . resistive for 100 cycles) at 30 V., D.C., or 115 V., A.C. SEnsitivity approaches 100 milliwatts at 30 " G " operational shock resistance. They meet all requirements of USAF Spec. MIL-R-5757 . . . and far surpass many. Various standard mounting arrangements available.
"Diamond H" engineers are prepared to work with you to develop variations for guided missiles, jet aircraft, fire control, radar, communications, geophysical and computer apparatus... any application where peak performance is vital under critical conditions.

Illustrated Bulletin R-150 gives detailed performance data under varying conditions. Write for a copy today.

THE HART MANUFACTURING COMPANY

202 Bartholomew Avenue, Hartford, Connecticut

Please aend me Bulletin $R-150$ with detailed performance data on Series R Relays
NAME TITLE
COMPANY
ADDRESS
CITY

$\sqrt{\text { ICKERS }}$ REFINES ITS OWN SELENIUM!

A QUALITY CONTROL THAT MEANS MORE UNIFORM, DEPENDABLE PERFORMANCE FOR YOU!

Selenium rectifier performance depends upon the purity of selenium used. Vickers Electric Division establishes complete quality control at the very beginning . . . with its own refining plant and testing laboratories. Producing uniformly pure selenium for Vickers rectifiers is an important step in assuring more consistent performance character* istics, and stable, long-life rectifiers.

more reasons why VICKERS

 makes a better rectifier:
- 255 separate tests and inspections.

- Automatic electroforming "pre-stresses" cells.
- Precision-matched cells prevent overload-overheating.
- Hydraulic assembly assures mechanical strength and dimension.
- Rectifiers shock and vibration tested to milltary specifications.

Write for Bulletin 3000. Vickers engineering service is available without obligation.

ICKERS ELECTRIC DIVISION

$\sqrt{\text { ICKERS }}$
from tape breakage or spilling on quick reverses.

COMPACT PLIER

for printed-circuit use

Mathias Klein \& Sons, 3200 Belmont Ave., Chicago 18, Ill., offers a compact new plier that meets the specialized needs of printed circuit wiring. The plier is designed with special fitted knives that shear and crimp the wire in one operation. The crimped wire holds the loose parts in position, permitting fast and efficient dip soldering of the exposed wire ends in the circuit. In use, the plier is conveniently heid with the handles in an upright position. The 45 -deg working angle of the knives against the printed circuit permits visual inspection of the shearing-crimping operation.

POWER RHEOSTATS have deep ceramic cores

 Tru-Ohm Products, 2800 Milwaukee Ave., Chicago 18, Ill., has added three new power rheostats to its line. Sizes available now are 50,75 , 100 and 150 w. Each of the models incorporates an extra deep ceramic core on which the resistance wire is toroidally wound and bonded in place with vitreous enamel. This construction results in better heat dissipation and a more conservative power rating. Positive and constant brush pressure is provided with an exclusive torsion spring assembly. Other features include rugged mechanical design for long rotational life, minimum backlash, low contact resistance and smooth, uni-form windings for practically stepless resistance control.

D-C POWER SUPPLY has 0.1 -percent regulation

Lawn Electronics Co., East Freehold Rd., Freehold, N. J., is now in production on the model 630-A regulated d-c power supply. The unit features 0.1-percent regulation, less than 1 mv ripple and less than 0.5 -ohm output impedance. The output voltage is continuously variable from 0 to 600 v with either the positive or negative terminal grounded, and the unit will supply up to 300 ma at any voltage setting. The unit also features a bias supply variable from 0 to -250 v stabilized to 0.1 v and a 6.3 -v 6 -ampere center-tapped filament supply. Dimensions of the unit are 19 in . wide $\times 8{ }^{3} \mathrm{in}$. high $\times 10 \frac{1}{2} \mathrm{in}$. deep.

RING SEAL TRIODE has ratings to 110 mc
Machlett Laboratories, Inc., Springdale, Conn., announces the ML-6258, a forced-air-cooled ring seal triode incorporating a highefficiency radiator. Designed specifically for r-f heating application in the 2 to 3 -kw range, but well adapted to a-m, f-m and to transmission, it has plate input and dissipation ratings of 7 kw and 3 kw

RESISTANCE, CAPAC1TANCE, INDUCTANCE and power factor are measured quickly and accurately on this Marconi engineered instrument.

THREE

IN ONE
1
1
1
1
1
1
1
1
1
1
UNIVERSAL BRIDGE
TF 868

Three basic bridges are used with a $1,000 \mathrm{cps}$ oscillator and 3 tube logarithmic amplifier with wide range automatic gain control. Simple to use, the main dial is direct reading, without arithmetic, on all ranges ($0.1 \Omega-10 \mathrm{M} \Omega, 1 \mu_{\mu} \mathrm{f}$ $100 \mu \mathrm{f}, 1 \mu \mathrm{H}-100 \mathrm{H}$) to an accuracy of one per cent. Its industrialdesigned appearance fits well in modern surroundings and partners its outstanding electrical performance. Let us mail you full particulars.

MARCONI instruments

Specialists in Communication Test Equipment
23-25 BEAVER STREET • NEW YORK 4
CANADA: CANADIAN MARCONI CO., MARCONI BUILDING, 2442 TRENTON AVENUE, MONTREAL ENGLAND: Head Office: MARCONI INSTRUMENTS LIMITED. ST. ALBANS HERTS
Managing Agents in Export: MARCONI'S WIRELESS TELEGRAPH COMPANY LIMITED
MARCONI HOUSE, STRAND. LONDON.W.C. 2

- standard MIL cases
- hermetically sealed
- magnetically shielded

Triad offers Transistor Transformers, both cased and uncased, for all applications in connection with both NPN and PNP type of transistors. Cased types are listed below. Dimensions, $3 / 4 /{ }^{\prime \prime} \times 3 / 4$ " $\times 11 / 8^{\prime \prime}$

Want more information? Use post card on last page.
respectively. Its stress-free thoriated tungsten filament operates at $12.6 \mathrm{v}, 27$ amperes. Maximum ratings apply to 110 mc . The tube is also available in an integral anode water jacket, water-cooled model and in a version designed for use with the company's quick-change automatic seal water jacket.

DEFLECTION YOKES

 that feature five leadsHalldorson Transformer Co., 4500 No. Ravenswood Ave., Chicago 40, Ill., has available two new deflection yokes featuring R -C network flexibility. A fifth lead (four are conventional) is interconnected with components in the yoke to provide external rearrangement of the network to suit different tv set requirements. With the DF601 and DF602, all network variations are easily accomplished without digging into the yoke-the lead ends merely being properly combined during the yoke installation.

POTENTIOMETER
 features self-balancing

Gray \& Huleguard, Inc., 930 North Hancock Ave., Los Angeles 46, Calif. A group of electronic units,

Measurements Corporation

MODEL 59
 MEGACYCLE METER

The only grid-dip meler covering the wide range of 2.2 Mc. 10 400 Mc .

FREQUENCY CALIBRATION: $\pm \mathbf{2 \%}$
For determining the resonant frequency of tuned circuits, antennas, transmission lines, bypass condensers, chokes, etc. For measuring inductance and capacitance. May also be used as an auxiliary signal generator; for signal tracing and many other applications.

Complete data on request.
MEASUREMENTS CORPORATION
BOONTON
NEW JERSEY

$\underset{\text { fror Quality }}{\substack{\text { preciston } \\ \text { Poducts }}}$
The consistent quality standard of Runzel wire, cord and cable offers manufacturers complete assurance of performance. Runzel products undergo such thorough inspections in the process of their manufacture that flaws are reduced to an absolute minimum.
Your wire needs in hook-up, lead-in, shielded wire speaker cords and all types of insulated wire are available from this sentrally located source. We maintain a complete engineering service. Your wiring problems are solicited. For their scientific solution, the Runzel Laboratory provides research assistance.

suitable for flight tests and laboratory use, are available for high speed measuring and indicating of test signals. A basic assembly of these units includes one of three types of comparators, an amplifier and a master indicator. Interchangeable comparator units accommodate commonly used elements for sensing temperature, pressure, strain, resistance and acceleration. Suitably calibrated dial faces are available for the indicator. For remote observation a repeat indicator unit is added to the assembly. Separation of the components of this self-balancing potentiometer into interchangeable units permits economical multipurpose setups for measurement and indication of a wide variety of input signals.

INDICATORS

show elapsed time
Vocaline Co. of America, Inc., Bristol Motor Div., 90 Coulter St., Old Saybrook, Conn. A new line of running time indicator series ET-1 for industrial or laboratory application is being made available in the following two models: ET-1A counts to 99,999 hours by hours; ET-1B counts to $9,999.9$ by tenths of hours. Utilizing the Circle B motor, this low-cost series features compact, extremely small size2 -in. diameter $\times 2 \frac{1}{8}$-in. depth-that can be readily adapted for panel or unit mounting. This standard series operates on 115 v 60 cycles but can be easily altered for use with other voltages. Among uses for the series are determining equipment operating time for guarantee purposes and indicating hours of oper-

- Temperature range from $-100^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}$.
- Altitude simulation up to 85,000 feet.
- Evacuation rate of 5000 F.P.M.

With outside dimensions of $13^{\prime} 2^{\prime \prime}$ wide $\times 11^{\prime} 2^{\prime \prime}$ high $\times 16^{\prime} 6^{\prime \prime}$ long, this standard model chamber has an interior working area of $10^{\prime} \times 10^{\prime} \times 8^{\prime}$ high. Door is 5^{\prime} wide $\times 8^{\prime}$ high, its window $30^{\prime \prime} \times 30^{\prime \prime}$, and wall window $36^{\prime \prime} \times 36^{\prime \prime}$.

NESA GLASS

Nesa Coated Glass used in Bowser Low Temperature Chambers has an electrically conductive surface that can be heated . . . preventing icing, frosting or fogging of observation windows.

Sensitive Galvanometer Used in Guided Missile Research...

.. Protected byan EDISON Time Delay Relay

Malfunction or failure of recording equipment when a guided missile is fired can result in the loss of invaluable research data. The requirement of complete reliability of components used in conjunction with this equipment resulted in the selection of an EdISON Time Delay Relay as a vital part of the Model 46 A Sub-Carrier Discriminator manufactured by Electro-Mechanical Research, Inc., Ridgefield, Conn.

The Edison Time Delay Relay is used to protect the sensitive galvanometer in the associated oscillographic recording unit, by allowing the power tube filaments to reach proper operating temperature before the application of high voltage. The thermal action is independent of line voltage variations since the delay characteristics vary in the same proportions as the heating of the filaments. Because of their cooling rate, EDISON relays prevent loss of equipment operating time due to momentary power interruptions.

I NCORPORATED Instrument Division
Dept. 54, West Orange, New Jersey

ation facilitating periodic lubrication and maintenance.

DECADE ATTENUATOR
 for audio and video

The Daven Co., 191 Central Ave., Newark 4, N. J., has available the series 790 attenuation network. This type decade attenuator is particularly useful in gain and loss measurements on filters, transformers, amplifiers and associated transmission equipment, for both the audio and video range. This decade is a direct-reading precision noninductively wound attenuation network designed for operation over the 0 to 1 -mc range. Use of precision noninductive resistors and a specially designed circuit reduces frequency discrimination to a minimum. Networks are available for various impedance requirements.

POWER SUPPLY

has twin regulation
Universal Electronics Co., 2012 Sepulveda Blvd., Los Angeles 25, Calif., has available a new twinregulated power supply, model 520 AT. The unit features two entirely separate regulated power supplies in one housing, each supply giving 0 to 500 v d-c at 0 to 200 ma at any setting. Two $4 \frac{1}{2}-\mathrm{in}$. meters may be switched to monitor either supply. Supplies are each floating above their chassis, hence may be used in a variety of ways to give positive or negative outputs or connected in series to give 0 to $1,000 \mathrm{v}$ at 0 to

200 ma . Also furnished are two 6.3 va a-c outputs at 8 amperes each.

H-V POWER SUPPLY has 500 to $1,500-\mathrm{v}$ output

Scientific Specialties Corp., Snow and Union Sts., Boston 35, Mass. The PS-22 electronically regulated supply is designed for use with photomultiplier tubes, counters and other devices requiring a closely regulated, well stabilized voltage. Output is 500 to $\mathbf{1 , 5 0 0} \mathrm{v}$, conservatively rated for 1 -ma load. The output voltage changes less than 0.05 percent from zero to full load. Input power is 115 v ; single phase, 60 cycle a-c; approximately 50 w .

MINIATURE BLOWER weighs only 26 oz

Induction Motors Corp., 55-15 37th Ave., Woodside 77, N. Y., has announced the type BC1615B-12 miniature blower for cooling various types of electronic equipment. The blower is built to deliver 22 cfm free air at $115 \mathrm{v}, 60$ cycles, single-phase power supply. It weighs only 26 oz and operates in temperature range from -65 to +85 deg. Designed to rigid Air Force specifications, it can be used in cooling radar equipment, amplifier units, transmitters, oscillators and other electronic equipment The motor is built to close toler-

The new Bendix-Pacific TOR-6 Oscillator gives improved performance with resistance type strain gages and variable resistance type temperature pickups. The unit operates with unusual stability under extreme conditions of environment.
Unbalance of the resistance bridge provides a voltage which is used to change the frequency of the oscillator. The magnitude and direction of the frequency change is proportional to the magnitude and phase of the bridge output.

SPECIFICATIONS

Bridge Impedance: 120 ohm*
Sensitivity: $\pm 7.5 \%$ change of f_{0} for 0.125% change in resistance in each of four active arms*. (This is RDB specified subcarrier bandwidth) from DC to 10% of bandwidth
Linearity: Within 1.0% of best straight line.
Stability: Orift less than 05% of band. width $\left(0.07 \%\right.$ of $\left.f_{u}\right)$ for 8 hours at $25^{\circ} \mathrm{C}$. after 15 minute warmup.
Temperature Effect: fo changes less than 0.08% of bandwidth per degree centigrade. Vibration Effect: 1.0\% maximum noise at $10 \mathrm{~g}, 20$ to 1000 cps .
Supply voltage Effect
Plate Supply: Drift does not exceed 1.0% of bandwidth for $\pm 10 \%$ change of plate supply voltage.
Heater Supply: Drift does not exceed 1.0%
of bandwidth for $\pm 10 \%$ change of heater voltage.
Output: 1.5 volts rms into 100 kilohms resistive load. Generator impedance 750 kilohms.
Harmonic Distortion: 2.0\% maximum. Power Requirements:
0.015 A at 108 volts $D C$
0.800 A at 6.0 volts DC or rms AC

Bands of Operation: Standard ROB bands 1.7 through $14.5 \mathrm{kc}{ }^{*}$

Size: $4.5^{\prime \prime}$ long $\times 1.45^{\prime \prime}$ wide $\times 1.35^{\prime \prime}$ high; occupies 2 sections of Bendix ils Com. ponent Mounting Assembly. Weight: 0.4 pounds.
*Available for other bridge impedances, sensitivities, and bands of operation on special order. For temperatupe measure
ment, $+0.5 \%$ change of resistance in one arm produces $\pm 7.5 \%$ change of f.

Write for complete information.

EAST COAST OFFICE: 475 FIFTH AVE, NEW YORK 17..N.Y
EXPORT DIVISION: BENDIXINTERNATIONAL, 72 FIFIHAVE, NEW YORK 11 N.Y.

Yes, I want more information on -COLE] Meters.

[^23] title

COMPANY
STREET ADDRESS, OR BOX NUMBER
CITY \qquad ZONE \qquad STATE 3-16
boots while providing a greater degree of insulation since even the nose of the clip is fully covered with insulating material.

RECORD PLAYER

combined with p-a system
Audio-Master Corp., 341 Madison Ave., New York, N. Y., has available the A-M 54 high-powered record and transcription player combined with a p -a system. It features an a-c push-pull high-gain amplifier with approximately 10 -w output and is equipped with a $12-\mathrm{in}$. loudspeaker. The player has a 3 speed motor for $33 \frac{1}{3}, 45$ and 78 -rpm records, a twist crystal cartridge fitted with two permanent needles for all records and transcriptions from 7 to $17 \frac{1}{2} \mathrm{in}$, an input for microphone, variable volume and tone control, and a special mixer that permits simultaneous use of record and microphone.

SNAP-ACTION RELAY is mechanically stable

Thermo Instruments Co., 1175 El Camino Real, Belmont, Calif. Positive, chatter-free circuit opening you use equipment which emits radio frequency energy directly upon a work load, you may find yourself in trouble with the FCC. And, if you're a manufacturer of offending equipment, you may also find yourself in trouble with your customers.
This seems to be the gist of the current FCC announcement. Beginning June 30th, 1953, the Commission has expressed its intention to seek out all offenders. Exceptions, so it is said, will be few, and these only for "reasonable" extension. In the Commission's own words:
"Part 18-The operation in the industrial, scientific, and medical service, of medical diathermy equipment, industrial heating equipment and miscellaneous equipment of a type which emits radio frequency energy upon frequencies within The radio spectrum constitutes a serious source of interference to authorized radio communication services operating upon the channels of interstate and foreign communication unless precautions are taken which will prevent the creation of any substantial amount of such interference."
"FCC Public Notice 85968 - Accordingly, all interested persons are advised that the commission has no present intenfion of adopting any further general extension of the terms for compliance with the applicable portions of Part 18 of the rules beyond June 30th, 1953."

The FCC"Crack-down" ... and you!

This would seem to leave only two alternatives: (1) shut down offending equipment for good, or (2) stop the interference. In this latter connection, the FCC states:
"A well designed shielded space or room may be expected to reduce substantially or eliminate such interference."
An inexpensive shielded enclosure designed for this specific purpose has just been developed by Ace Engineering $\&$ Machine Co. It enables violators to comply with the FCC requirements at minimum cost. Actually, it is the most inexpensive enclosure ever produced commercially. Its effectiveness in eliminating interference is proved by the thorough tests of an independent laboratory. And, behind it, stands the guarantee of a company that has long provided shielding far beyond FCC requirements for America's largest electric-electronic manufacturers ... better and cheaper than they could make in their own plants.

Look over your equipment now-especially for induction heating, dielectric sealing, electric welding, and diathermy apparatus. If there's a unit that may invite a call from the FCC, write, wire or phone us without delay. We'll send you (1) An official copy of the complete Part 18 of Federal Communications Commission Rules and Regulations, and (2) A bulletin describing the Ace lowcost solution. But do it today for, if you're an offender, the FCC promises to visit you sooner or later.

ACE ENGINEERING \& MACHINE CO.

 3644 North Lawrence StreetPhiladelphia 40, Pennsylvania
REgent 9-1019

for
ELECTRONIC COMPUTERS

PECO Regulated Rectifiers PEC 615 Series
and closing under slowly increasing or decreasing currents are features in the new type C snap-action relay. It employs a type BA2R snapacting switch having characteristics particularly suitable for inductive loads and those involving high inrush current. This construction makes the relay practically immune to shock, vibration or tilting. Singlepole contacts, which can be wired for either normally-open or nor-mally-closed conditions, are rated for 20 -ampere steady state currents and 75 -ampere inrush currents on voltages up to 460 v a-c. Physical construction is such as to provide a combination of extreme mechanical stability and a large-cross-section magnetic path that makes the relay relatively insensitive to variations in operating voltage.

OSCILLATOR

is packaged blocking unit

American Machine \& Foundry Co., 1085 Commonwealth Ave., Boston, Mass., has available the packaged blocking oscillator, a cased, plug-in unit that includes a transformer and other circuit compounds, with a socket for the miniature tube mounted on top of the case. Small core loss resulting from use of a ferrite core in the transformer permits high peak currents, and the high permeability permits the required inductance to be achieved with fewer turns, minimizing interwinding capacitance to allow faster pulse rise time. Currently available are: type $\mathrm{PBO}-1$ for $0 .-1$-sec pulses with 0.01 -sec rise time, and type PBO-2 for $2.0-\mathrm{sec}$ pulses with $0.04-\mathrm{sec}$ rise time. Dimensions of oscillator unit are $1 \frac{3}{8}-\mathrm{in}$. diameter by $4 \frac{5}{18}-\mathrm{in}$. over-

peco Custam Built REGULATED RECTIFIERS

To meet the requirements of closely regulated and filtered rectifier type power supplies, where the total amount of power is too great to be assembled into a single cabinet, Power Equipment Company is prepared to build equipments arranged for mounting on racks, and designed to generally conform with the customer's existing or proposed apparatus. For complete specifications, write for Bulletin No. 108.

- Fuses are provided in each thyratron tube plate lead for maximum protection.

POWER EQUIPMENT

5740 NEVADA, EAST
all seated height, including tube and shield.

COAX SWITCH is manually actuated

Thompson Products, Inc., 2196 Clarkwood Rd., Cleveland 3, Ohio, has developed a manually actuated coaxial switch for $3 \frac{1}{8}-\mathrm{in}$., rigid line tv station application. At frequencies to 320 me the switch has a maximum vswr of 1.1 and crosstalk in excess of 60 db . Its characteristic impedance is 51.5 ohms. It weighs approximately 27 lb and has a minimum life of $100,000 \mathrm{ac}=$ tuations.

POWER SUPPLY has low ripple voltage

Kepco Laboratories, Inc., 131 Sanford Ave., Flushing 55, N. Y. Model 3200 voltage-regulated power supply is continuously variable from 1 to 13 v and delivers from 0 to 10 amperes continuous duty. In the 1 to $13-v$ range the output voltage variation is less than 0.5 percent for both line fluctuation from 105 to 125 v and load variation from minimum to maximum current. Ripple

Marke Mí solved this marking problem

Working closely with Underwriters' Laboratories, Inc. and with leading fuse manufacturers, Markem has developed a method which makes possible for the first time the printing of label information directly on cartridge enclosed fuses at production rates. Markem's direct ink imprints cannot "fall off" and are unaffected by moisture or ordinary chemical atmospheres. Paper label inventory and wastage problems are eliminated. Print is larger and color coding and identification are simplified. Fuse manufacturers anticipate better labeling at higher production rates and with lower costs. The Markem Method -Markem Machine, Markem type and ink and the special recording die roll for use when UL Manifest is required-as well as the imprint itself meet with UL approval.

CAN MARKEM HELP YOU?

Printing labels directly on cartridge enclosed fuses is but an example of how Markem solves industry's marking problems. Markem has been providing industry with production techniques and equipment to identify, decorate or designate its products, parts and packages since 1911. Markem also provides technically trained men who are available in your area to assure continued satisfaction with Markem methods and equipment.
When you have a marking problem, tell us about it and send a sample of the item to be marked. Perhaps a complete Markem method has already been developed to solve your problem. If not, Markem will work out a practical solution.

Markem Machine Company, Keene 5, N. H., U.S.A.

you'll get better results with ARKWRIGHI

First, the drawing and second, the reproduction will be cleaner, clearer, sharper when you use Arkwright Tracing Cloths.

In the drawing you'll work more smoothly, easily-without pinholes, uneven yarns or other imperfections to slow you. You'll get clean, "feather-free" lines even over an erasure.

In the reproduction you'll always have clear, "contrasty" results because Arkwright Cloth is permanently transparent-won't discolor or turn brittle and opaque with age Jike inferior products.
Are you interested in results like these? Specify Arkwright Tracing Cloths. Write for samples to Arkwright Finishing Co., Industrial Trust BIdg., Providence, R. I.

ARKWRIGHT

 Tracing Cloithsvoltage is less than 10 mv . Cabinet height is $22 \frac{3}{4} \mathrm{in}$., width $21 \frac{3}{4} \mathrm{in}$. and depth, 151 in .

SMALL CAPACITORS are rated at 3 and 5 kr

Jennings Radio Mfg. Corp., P. O. Box 1278, 970 McLaughlin Ave., San Jose 8, Calif. A full line of miniature vacuum capacitors in fixed and variable types, rated at 3 kv and 5 kv , are characterized by their small physical size, negligible power factor and extremely wide capacitance ranges. The unit illustrated has a 4 to $250-\mu_{\mu} \mathrm{f}$ range.

MINIATURE RESISTOR has l-percent tolerance

Dale Products, Inc., Columbus, Neb. High power resistance in a minimum of space is offered by the new 250 -w miniature resistor. It is sealed against moisture with a special silicone treatment, and then finished in a die-cast black anodized radiator-finned housing for maximum heat dissipation. The resistance element is completely welded from bolt terminal to bolt terminal. Standard tolerance is 1 percent, but
tolerances as high as 0.5 percent can be furnished if necessary. Temperature coefficient is substantially flat. Resistance shift is less than 0.00002 per $\operatorname{deg} C$.

PICTURE MONITOR

 for universal studio useAllen B. DuMont Laboratories, Inc., Clifton, N. J. Type 5281-B, a 17 -in. picture monitor that features compactness, excellent performance and versatility, may be operated on either the composite picture signal or separate sync signal. It is designed for use in announcing booths, film rooms, client's rooms or as a cueing monitor. Due to the automatic frequency control of the unit, it will detect sync generator faults not noticed on monitors of the triggered sweep design. The unit is entirely self-contained and mounts in a standard RTMA rack, requiring only $15{ }_{4}^{3} \mathrm{in}$. of vertical space.

NOISE METER

has 8 frequency ranges
Empire Devices, Inc., 38-25 Bell Blvd., Bayside 61, N. Y., is now producing the model NF-114 noise meter. It has a frequency range of 0.15 mc to 80 mc in 8 bands, and frequency ranges are switched by means of a turret. Two tuned r-f amplifier stages are employed throughout for high sensitivity and optimum rejection of spurious responses. Three i-f frequencies are used- $0.125 \mathrm{mc}, 0.455 \mathrm{mc}$ and 6 mc . A built-in impulse generator produces flat output to 100 mc . A vtvm

By actual stop-watch test, G-E fire-resistant laminates re-
sist flame and are self-extinguishing in less than one minute.

G-E 11542 and 11537 retain characteristics even when subjected to high heat and flame

The new G-E Textolite* 11542, for electronics applications, and 11537, for switchgear applications, are paper-base industrial laminates. They have a low dielectric loss and offer you all of these remarkable characteristics:
fire resistance. They withstand extreme heat, and are self-extinguishing within one minute or less when subjected to actual flame.
excellent electrical properties. G-E 11542 and 11537 retain their electrical properties at temperatures as high as 125 centigrade.
high resistance to moisture. They have a low moisture absorbing factor, and do not break down under extremely humid conditions.
desirable mechanical properties. G-E 11542 and 11537 have great strength, yet are easy to machine with ordinary tools, and have good punchability in sheets up to $1 / 8$-inch thick.
You can count on G-E 11542 and 11537 for durability and long wearto help keep maintenance costs low. Available in sheets from .015 to 2.0 inches thick, as well as in tubes and rods.

FOR FURTHER INFORMATION,

write: General Electric Company, Section 327-2B, Chemical Division, Pittsfield, Mass.

GENERAL ELECTRIC

NEW PRODUCTS
indicates carrier or true peak voltage. As an alternate means of measurement, aural slide-back operation is provided. The meter will operate on dry batteries or a-c. It measures $13 \frac{1}{2} \mathrm{in}$. $\times 8 \frac{1}{2} \mathrm{in}$. $\times 12 \frac{1}{2} \mathrm{in}$.

COIL WRAP

is strong and flexible

The Electro-Technical Products Div. of Sun Chemical Corp., Nutley 10 , N. J., has announced a new product that has already demonstrated its acceptability by manufacturers of rotating equipment when used as a coil wrap. Electro Flexoglas has high dielectric and mechanical strength plus exceptional flexibility that is not lost at elevated temperatures. These features broaden its scope of usage as layer and phase insulation as well as barrier insulation for motors and transformers. It is available in 0.010 in . and 0.012 in.

STEP OSCILLATOR

has 17 fixed frequencies
Pulse Techniques, Inc., 1411 Palisade Ave., West Englewood, N. J., announces a new step oscillator providing 17 fixed frequencies at the turn of a single knob. Weighing only 7 lb , the instrument is extremely portable for field maintenance, while its accuracy, stability and low distortion make it equally valuable in the lab and for production line testing of amplifiers, filters and recorders. A new gain stabilizing circuit holds amplitude variations over the entire frequency range to less than $\pm 0.2 \mathrm{db}$. Use of toroid coils helps assure an overall frequency stability of better

An Improved Orientation Head for the Precision Processing of Quartz Crystals

MASTERCRAFT MODEL 600 B-2

This model is fitted with compound dovetail slides and with an all angle table top capable of being inclined $31 / 2$ degrees on two planes, which adapts itself to laboratory, production or research work or where a particular technique requires orientation of the X axis in two directions from horizontal. The Z axis may be rotated throughout 360 degrees with orientation within one minute precision.

Write for Complete Catalogue of Mastercraft Tools.

F \& M SALES, INC.

1054 Cahuenga Blvd., Hollywood 38, Calif.

and Pilot Regulated CARRIER

 REPEATERS (for use in conjunction with the CFD-B Terminals on long haul circuits.)COMPLETELY AUTOMATIC PILOT REGULATION OVER A 20 db RANGE. Built-in "SLOPE CON TROL" includes an extra 10 db equalization for non-conforming telephone pairs.
RYCOM'S CFD-B is assembled from Western Electric componen parts, and is mounted COMPLETE with ringing, terminating and power supply equipment in ONE STANDARD AAR 8-FOOT RACK. Standard commercial performance is guaranteed. Basic line equal. ization of 15 db by manual controls. The range of operation is through a maximum of 30 db over an operating range of 3 to 32.3 kilocycles. Two-way pilotregulated repeaters are available for circuits having more than the Cycw Voice Frequency Ringers 20 ycle Voice Frequency Ringers are
available for one-, two-, three available for one-, two-, three-: LINE OF ACCESSORIES is offered including: - Voice Frequency Repeater Balancing Nets, Cable Matching Transformers, Universal Way Station Filters, and : Mounted Subcycle Ringing Power Supplies.
RYCOM'S CFD-B provides FOUR DUPLEX VOICE CHANNELS AND RINGERS of a LOWER COST to you than most three-channel carriers now an the market! And WE CAN MAKE IMMEDIATE DELIVERYI

RALWUY ${ }^{\text {communications }}$ I N C O R P O R A T:E D
 Want more information? Use post card on last page.

than ± 1 percent. Signal-to-hum ratio is more than 60 db .

RELAY

is compact and sensitive
Phillips Control Corp., Joliet, III. The 62 A relay is finding wide acceptance in a variety of products because of its compactness, capacity and exceptional sensitivity. It measures $2{ }_{16}^{9} \mathrm{in}$. in length, $1 \frac{1}{8} \mathrm{in}$. width and overall height will vary. The relay is available with 18 -ga palladium contacts rated at 3 amp eres, but can be provided with other types of contact for rating up to 6 amperes, noninductive. The 6QA is also available with a plug-in adaptation for use in panel and annunciator racks. Complete data may be had for the writing.

TINY GYROSCOPE

is hermetically sealed
Sanders Associates Inc., 137 Canal St., Nashua, N. H. Model 7 subminiature rate gyroscope is less than 1 in . in diameter, 2 in . long and weighs only 3 oz . It is hermetically sealed for use in aircraft, guided missiles, radar antenna stabilization and similar applications. The rotor spins at $24,000 \mathrm{rpm}$ on

HAYDON, in addition to its own extensive development, engineering and production facilities has the backing of the basic research facilities of the General Time Corporation. The wide experience of associated companies, Westclox, Seth Thomas, Stromberg Time and Western Clock are also available.
These wide resources have resulted in HAYDON's unquestioned leadership in the field of timing.
Write for Catalog No. 322, Electric Timing Motors

Other literature available on request on Timing Devices, Clock Movements, 400 cycle Elapsed Time Indicators, 400 cycle Time Delay Relay, 400 cycle Motors, D.C. Motors.
*TRADEMARK Reg. U. S. Pat. Off.

HAYDON

AT TORRINGTON
headeuarters for TIMING

Subsidiary of GENERAL TIME CORP.

2430 ELM STREET TORRINGTON, CONNECTICUT

Dependable

CAPACITORS siged

Resin Impregnuted Sub-miniature Metallized Paper Capacitors.

- High insulation resistance - Excellent capacity retrace - Rectangular - Saves space - Variety of sizes and values

Dissipation factor less than 1% at $25^{\circ} \mathrm{C} 1000$ cycles. Operation range $-40^{\circ} \mathrm{C}$ to 100 C . Capaci tance temperature coefficient plus
Heteo

$$
\% \text { per }
$$

Write or phone, TODAY

HØPKINS
 Zngineering ?

FACTORY: 2082 Lincoln Ave., Altadena, Calif. SYcamore 8-1185

Offices in Washington. D. C. DETROIT

[^24]NEW PRODUCTS
(continued)
6.3 v at 400 cycles. The a-c pickoff provides an output of 14 mv per deg per second input. Maximum output occurs at an input of 420 deg per sec . The gyro resonates at 85 cps with a 0.5 damping factor.

Literature

Junction Transistor. Federated Semi-Conductor Co., 66 Dey St., New York 7, N. Y. A single-page bulletin covers the RD2525 n-p-n junction transistor. Characteristics of the unit described, which include a collector dissipation of 50 mw and a minimum alpha of 0.99 , are particularly suitable for grounded emitter operation. The bulletin data give ratings, typical operation, a collector voltage and current chart, dimensions and price.

Filter Reactor Tube. Hytron Radio \& Electronics Co., Danvers, Mass. Bulletin E-199 gives mechanical and electrical data and characteristics charts for the type 6216 filter reactor tube, an electron tube of beam power design that has miniature 9 -pin construction. When used in appropriate circuits, the tube described replaces the iron-core filter choke, particularly in airborne and vehicular electronic equipments, thus materially reducing the weight and space normally required by the iron-core choke.

Printed Circuits. Methode Mfg. Corp., 2021 W. Churchill St., Chicago 47, Ill., has published a new printed circuit handbook entitled "Utilization of Prefabricated Wiring." The 32 -page booklet provides comprehensive and detailed engineering information to those interested in applying printed wiring techniques to electronic equipment. Among the subjects dealt with are present applications of printed circuitry, layout of wiring schematics, selection of materials and components, Underwriters' re-

EIECTRIC HEATING UNITS

DESIGNED TO COMMERCIAL AND MILITARY SPECIFICATIONS (MIL-T-27 and AN-E-19)

Want more information? Use post card on last page. June, 1953 - ELECTRONICS
quirements, drafting of conductor patterns, tooling and fabricating considerations, service techniques, production and test equipment, and multiple assembly and soldering methods.

Liquid-Level Control. Therm Instruments Co., 1166 El Camino Real, Belmont, Calif. A singlethyratron electronic liquid-level control operating without radio frequency from a single capacitive type probe is described in a folder, Form LL4-453. The publication illustrates the single-unit control, the probe, and alternative sochematic arrangements for installtion. Specifications are included.

Instrumentation. Tektronix, Inc., P. O. Box 831, Portland 7, Oregon. Short Form catalog No. 5302 gives illustrated descriptions of a wide variety of instruments. Included are seven different types of oscilloscopes, two square wave generators, an amplifier, two preamplifliers, a time mark generator and a series of waveform generators. Prices for all are listed.

Tube Booklet. Radio Corp. of America, Harrison, N. J. An up-to-date catalog of electron tubes describes 495 different receiving types and kinescopes that have their chief application in radio and tv receivers. Entitled "RCA Receiling Tubes for A-M, F-M and Television Broadcast" (Form No. 1275-F), the booklet contains characteristics of each type, together with socket connection diagrams arranged for quick and easy referpence. Information on ty picture tubes is presented in a special chart that lists and describes 45 types. Each tube type is listed in numerical-alphabetical sequence, according to its type designation.

Plastics for Engineering. Dixon Saddle Co., P. O. Drawer 7, Bristol, R. I. A recent brochure is descripfive of Rulon bearing material that is slippery throughout, from outer skin to inner core, (containing no oil, graphite or other substances usually referred to as lubricants); Teflon extrusions and moldings supplied in a variety of forms for a variety of applications; and

"We made $\$ 1.00$ do the work of $\$ 2.00 / "$ a with SEAMLESS MOLVDGELILR and Fansteel Fabrication

A
1350
B
$\$ 149$
"Here's how. Look closely at the two cathodes at the left. They look alike. They are alike - yet one costs 57.4% less. Our old method was to drill a solid molybdenum rod and machine the outside diameters. This involved a high percentage of scrap waste. Fansteel suggested we use Seamless Molybdenim Tubing as the base material with cut to finish lengths of the desired dimensional tolerances, and with the necessary smooth finish inside. Now Fansted does all the fabricating for us - even grinding the minor outside diameter and cutting a small chamfer in one end. The net result is a big cost saving !"

Users of molybdenum are invited to consult Fanstecl for assistance in design and the most economical fabrication. To the user, Fansteel fabrication eliminates the scrap and reject problem, minimizes inspection costs, and releases equipment

and personnel for other work.
Write for the informative booklet: "FANSTEEL TUNGSTEN AND MOLYBDENUM"
Fansteel Molybdenum
Fansteel Metallurgical Corporation north chicago, minors, u.s.a.
 equipment and precision instruments . . . To control the damage which these enemies can do, Lord Vibration Control Mountings and Bonded Rubber Parts are used to very profitable advantage. More than a quarter century's experience in dealing with vibration and shock is yours when you take advantage of Lord engineering assistance. The result of such consultation is full protection for electronic units and sensitive instruments by correctly designed and precisely manufactured Lord Mountings and Bonded-Rubber parts.

BURBANK, CALIFORNIA 233 South Third Street

DALLAS, TEXAS PHILADELPHIA 7, PENNSYIVANIA DAYTON 2, OHIO 413 Fidelity Union 725 Widener Building 410 West First Street Life Building CHICAGO 11 , ILLINOI

CLEVELAND 15, OHIO 7310 Woodward Ave. 280 Madison Avenue 520 N . Michigan Ave. Room Bll Hanax Building LORD MANUFACTURING COMPANY • ERIE, PA.

Headquarters for vibration Control

Tefion DL-1, a development of pure Teflon to meet low cost requirements. Applications, typical properties and availabilities are included.

Carrier Terms. Lenkurt Electric Co., 1113 County Rd., San Carlos, Calif., has issued a character study of carrier equipment and dictionary of carrier terms in bulletin EB-101. Definitions of 150 terms commonly found in telephone and telegraph carrier equipment literature are given. The 16 -page booklet also includes a general discussion of carrier equipment theory.

VHF Receiver. Collins Radio Co., Cedar Rapids, Iowa. A 4-page folder illustrates and fully describes the 51M-6, a vhf communications receiver that has a single preset crystal-controlled channel and is designed for unattended, continuous aeronautical ground station reception of a-m radiotelephone signals. Technical specifications are included.

Picture Tube Substitutes. Transvision, Inc., New Rochelle, N. Y., has released a newly revised picture tube interchangeability replacement guide. The list shows popular types of picture tubes that may be used to replace hard-to-get types, noting such modifications (if any) that should be made when direct replacement is difficult.

X-Ray Analysis. North American Philips Co., Inc., 750 South Fulton Ave., Mt. Vernon, N. Y., has available a new folder containing two reprint articles entitled: "How X-ray Diffraction Gets Answers to Difficult Questions" and "Catalysts: The Inside Story." Illustrated with photos and charts, the new folder discusses x-ray diffraction work with clays, rubber, plastic polymers, boiler scales and catalysts. In the case of catalysts, fourteen approaches for x-ray studies are listed.

Engineered Mounting Systems. Robinson Aviation Inc., Teterboro, N. J. The 16 -page Visualizer bulletin No. 750 illustrates the development of all-metal engineered mounting systems for the maxi-
mum vibration isolation and shock protection of electronic equipment. By visual means, the bulletin defines vibration and shock, shows the effect of vibration on equipment, what can be done about vibration, and the application of MET-L-FLEX (knitted stainless steel wire) as the resilient and damping element. It explains vibration control from theory to practice and shows the development of the single and dual-stage systems from the classical example of an equivalent mechanical system.

Telemetering Booklet. The Bristol Co., Waterbury 20, Conn. Bulletin M1710 contains information on the use of the company's Metameter telemetering instruments for remote recording, indicating, and totalizing of electric variables over distances ranging from a few feet to many miles. Timely information and engineering data are included on the subject of modern telemetering methods. The company's new electronic Dynamaster transmitters and receivers are described and information is given on various methods of transmission, including carrier current, microwave, vhf and uhf radio and multiplexing. A number of typical installations of Metameter telemeters are illustrated and described.

Sound Recording Tape. Minnesota Mining ānd Mfg. Co., 900 Fauquier St., St. Paul 6, Minn. Output versus bias current curves for Scotch brand magnetic recording tapes are discussed in "Sound Talk" bulletin No. 21 recently announced. Graphs are included on which the curves of 12 different Scotch brand magnetic tapes are shown, representing four basic tape constructions. The bulletin is available upon request.

Components Catalog. The Victoreen Instrument Co., 3800 Perkins Ave., Cleveland 14, Ohio. A new 8 -page catalog of components is now being distributed. It contains detailed specifications, illustrations, typical circuits and applications for the company's components including: vibrators.

Come to the RADIO SHOW this Royal Year

Planned, in its unique way, to be a brilliant part of the pattern of Britain's "Royal Year", the 1953 Radio Show will be the finest yet. On display will be the newest developments in Radio, Television, Telecommunications and Electronics. During the period of the Radio Show, the Society of British Aireraft Constructors - to whose work the British Radio Industry makes so vital a contribution -will be staging their annual Flying Display at Farnborough. Make your arrangements now for your visit to hoth of these important events.

telegrams: oldarion, westcent, London

CANNON

PLUGS

get good reception

- SERIES

D SERIES

U SERIES

K SERIES

telephone recorder

WRITE FOR PRICE FOLDER CPL- 6

The high quality audio connectors shown above are available from all Cannon Franchised Distributors. In their great variety of sizes, shapes and contact arrangements there is no problem or technical requirement in the radio, sound, TV or related fields that cannot be met. Cannon plugs are standard on leading makes of audio equipment and microphones.

CANNON ELECTRIC

Since 1915

Factories in Los Angeles, Toronto, New Haven, Benton Harbor. Representatives in orincipal cities. Address inquiries to Cannon Electric Company, Dpt. F-110,P.O. Box 75, Lincoln Heights Station, Los Angeles 31, California.
vibrator power supplies, subminiature tubes (electrometers, corona regulators and special-purpose tubes), voltage regulators, current regulator tubes and resistors.

Electronic Facilities. AiResearch Mfg. Co., Los Angeles, Calif. Booklet $4-0-1$ covers the available electronic facilities and activities of the company. Newly compiled, the booklet gives a detailed account of the company's electronics group in the laboratory and on the production line. More than 60 pictures complete the 16 -page booklet.

Electronic Wattmeter. Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. A new 2-page bulletin describes the model 110 electronic wattmeter. It includes complete specifications and full description of features, which include a range of 0.3 to 9,000 watts, 20 to $3,000-\mathrm{cps}$ response, unusual convenience and accuracy in measuring low impedance devices.

Radiotelephone Equipment. Kaar Engineering Corp., Middlefield Road, Palo Alto, Calif., has completed a comprehensive summary catalog covering all its mobile radiotelephone equipment. The equipment presented in easy-reference form is designed for use in the 152 to $174-\mathrm{mc}$ band, the 25 to $50-\mathrm{mc}$ band and the 1,600 to $6,000-\mathrm{kc}$ band. The company's complete line of accessories is included in the catalog.

Recording Potentiometers. Minne-apolis-Honeywell Regulator Co., Brown Instruments Division, Wayne and Windrim Aves., Philadelphia 44, Pa. Three new 4-page specification sheets describe and illustrate ElectroniK recording potentiometers. Specification sheet 160 covers circular chart recorders; sheets 164 and 165 cover single and multiple record strip chart recorders. Construction and engineering details are included.

Hermetically-Sealed Relays. General Electric Co., Schenectady 5, N. Y. General purpose hermet-ically-sealed relays for electronic
applications are described in bulletin GEA-5729A. The two-color publication uses photographs, specification charts, and dimensional diagrams in discussing the application, performance and features of the relays, which are designed to meet or better all provisions of MIL-R-6106, Joint Military Service specifications for relays, and to meet performance requirements of MIL-R-5757B.

Teflon Catalog. The Polymer Corp. of Pennsylvania, Reading, Pa. The latest technical data on Teflon for the chemical, electrical and electronic industries is available in an 8 -page catalog. Applications and possibilities for the material are described in detail along with Teflon's outstanding properties and characteristics. The booklet is illustrated with a complete set of tables, charts and sketches. A special summary deals with design considerations in using Teflon while extra help is offered through a technical service section on the cover. The booklet catalogs Polypenco Teflon in the forms of rod, tubing, slab and tape with specifications on size, shape and tolerance.

V-T Electrometers. Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. Vacuum-tube electrometers are the subject of a new 8 -page bulletin. Nineteen application diagrams are included, plus a full description of accessories, which permit measuring a wide range of d-c voltages, currents as low as 10^{-14} ampere resistance to $10^{10} \mathrm{ohms}$.

Facility Brochure. The Victoreen Instrument Co., 3800 Perkins Ave., Cleveland 14, Ohio, announces the availability of a new 16-page booklet entitled "Creative Engineering and Production Facilities." This is a pictorial presentation of the development, engineering and production facilities in the company's four divisions.

Inverter-Amplifier. Allegany Instrument Co., 1000 Oldtown Rd., Cumberland, Md. A single-page bulletin illustrates and gives tech-

QUAKER CITY

 GEAR... podeting geas of every description for the Electronic Industry . . . including ground thread worms and spiral bevel gears.

...when the Milford Method may save you thousands of dollars in costly fasteners and assembly!

This scientific approach to product and parts assembly is a fastener-engineering consulting service which analyzes your needs at the blueprint stage... before you invest in expensive tools and dies! It projects for you the right fastener. Look into the economies of the "MILFORD

METHOD" now. Send your blueprints and samples for analysis and planning by the "MILFORD

METHOD", or write for the
"Milford Method" brochure

MILFORD, the name to rivet in your memory for fasteners.

> 855 Bridgeport Ave., Milford, Conn. 806 Illinois Ave.., Aurora, Ill. 1106 W. River St., Elyria, Ohio 26 Platt Street, Hatboro, Penn. 715 So. Palm Ave., Alhambra, Calif.
nical specifications of the model 305 inverter-amplifier. The lowdrift d-c amplifier described may be used with wire strain gages, load and pressure pickups, accelerometers and thermocouples. Size of the unit discussed is $6 \frac{2}{2} \mathrm{in}$. \times $6 \frac{1}{2} \mathrm{in} . \times 9 \mathrm{in}$. deep, and weight is 7 lb.

Universal Bridge. The Clough Brengle Co., 6014 Broadway, Chicago, Ill. A single-sheet bulletin illustrates and describes the model 712 capacitance-resistance-inductance bridge, a general-purpose miniaturized instrument having a basic 2-percent accuracy. Weighing 14 lb and occupying the cubic space of a vtvm, the unit discussed is designed for field maintenance applications, or for use in the lab where bench space is at a premium.

R-F and Pulse Connectors. Diamond Mfg. Corp., 7 North Ave., Wakefield, Mass. The recent 48 page catalog 53 is intended to be used as a guide for the procurement of r-f and pulse connectors by personnel of development laboratories, equipment manufacturers, procurement agencies and field installations. Engineering and electrical data are supplied for each connector of a particular type, and each is accurately described and cross-referenced with the tabulated data required to facilitate the selection of compatible cables and connectors.

Spectrophotometers. Beckman Instruments, Inc., South Pasadena 1, Calif., has released bulletin 303-59, a 28-page catalog of ultraviolet and visible spectrophotometers, picturing all sample cells and other accessories. The two-color brochure contains detailed descriptions and illustrations of the model B and DU spectrophotome-ters-precision instruments that measure and identify substances by passing light through them. Such auxiliary units as the flame, reflectance and fluorescence attachments also are described. The catalog features an extensive section treating the complete line of the company's spectrophotometer cells, interchangeable sample com-
partments and cell adapters. A composite price list-index is also furnished.

Magnetic Amplifiers. Magnetic Amplifiers, Inc., 632 Tinton Ave., New York 55, N. Y., has available a booklet on its line of magnetic servo amplifiers that are adjustable and permit the user to stabilize his servo loop over wide ranges of performance requirements, load conditions and gear ratios. Also given is information on a standard line of high-gain push-pull magnetic amplifiers, saturable transformers, and 400 or $60-\mathrm{cps}$ servo systems.

Connectors. Coaxial Connector Co., 35 No. 2nd Ave., Mt. Vernon, N. Y. A 4-page catalog contains an illustrated technical description of the company's line of UHF and BNC series connectors, as well as its 12 types of waveguide flanges. The UHF series described are for small and medium-sized cables and are generally satisfactory at frequencies up to 200 mc with some voltage reflections. The BNC series covered are for use where the peak voltage does not exceed 500 v , and where frequency applications do not exceed $3,000 \mathrm{mc}$. Also listed are what the individual waveguide flanges mate with.

Vidicon Components. Radio Corporation of America, Harrison, N. J. A new 16-page booklet supplies technical information on de-flection-circuit components for the type 6198 Vidicon, the new small camera tube for industrial tv applications. Used in the recommended circuits shown in the booklet, these components feature characteristics that provide good sweep linearity, high deflection sensitivity, efficient coupling between circuits, proper focusing and accurate alignment of the electron beam. A copy of Form No. CTV-1016 may be obtained on request.

Transistor Solders and Fluxes. Division Lead Co., 836 W. Kinzie St., Chicago 22, Ill. A 2-page bulletin describes a number of transistor solders and fluxes that are already

NEW, UNIQUE SERVOCALCUIATOR included in the kit

Calculating values of shunt resistors and effective potentiometer resistance accomplished in a matter of seconds with direct readings from the disc scales. Eliminates timeconsuming computations.

360° Sine Function

A sine function potentio. meter with a complete 360° function angle of rotation is provided to broaden the range of experimentation with the Pot-kit. enables you to translate your ideas to conclusions without delay.

The extreme versatility of Servotrol's Pot-kit B simplifies breadboarding and speeds decision as to the needed potentiometer or assembly for your prototype systems.
Immediate deliveries: Write, wire or phone - For Bulletin \#E-1
ENGINEERING REPRESENTATIVES
Cleveland, Ohio - Prospect i-6171 Arnprior, Ontario, Can. - Arnprior 400 Chicago, Ill. - UPtown 8-1141 New York, N. Y. - MUrray Hill 8-5858 Rochester, N. Y. - Monroe 3143 Cambridge, Mass. - ELiot 4-1751 $\begin{array}{ll}\text { Canaan, Conn. - Canaan } 649 & \text { Hollywood, Cal. Dlan } \\ \text { Dayton, Ohio - Michigan } 8721 & \text { Dallas, Texas - Dixan } 9918\end{array}$
Dayton, Ohio - Michigan $8721 \underset{\text { Baltimore, Md. }}{\substack{\text { Dallas, Tlazas } 7694 \\ \hline}}$

The complete line of Automatic Relays are available to meet military specifications. The facilifies of our engineering department are at your disposal. Write, wire or phone. All inquiries will receive prompt aftention.
in use by a number of manufacturers. Outstanding in the line discussed is the No. 335 that can be used to solder copper-plated, unplated etched, or unplated unetched germanium-and which contains no ammonium compounds to hasten stress cracking of delicate copper, brass or phosphorbronze parts.

Locknuts. Industrial Fasteners Institute, 3648 Euclid Ave., Cleveland 15, Ohio, has published a 24 -page bulletin sponsored by 21 manufacturers of locknuts. A study of the descriptions and illustrations included will provide useful information leading to successful application. Names of the companies manufacturing each individual type of locknut are given.

Carbon Monoxide Detector. Taller \& Cooper, Inc., 75 Front St., Brooklyn 1, N. Y. A 12-page booklet tells about the company's advanced carbon monoxide detector. Included are special features such as automatic operation, unitized construction and quality instrumentation; a functional description that gives illustrations and operation data; component and panel information; specifications, and suggested and notable installations.

Hermetic Sealing. General Hermetic Sealing Corp., 99 East Hawthorne Ave., Valley Stream; L. I., N. Y., has just prepared a new 4page folder on "The Why and the How of Hermetic Sealing" for electrical and electronic components and assemblies. Typical applications as well as facilities are described. Copies are available on request.

Permanent Magnets. Thomas \& Skinner Steel Products Co., Inc., 1122 E .23 rd St., Indianapolis 5, Ind., has released a catalog listing its complete line of standard permanent magnets. Available in Alnico 2, 3 and 5 for use in a wide range of industrial applications, the standard magnets listed may be ordered from stock to aid designers and engineers who want magnets quickly to produce working models for experimental purposes, to fulfill moderate production requirements,
or to adapt to a standard application without tooling delays. Ask for catalog No. 1252.

Sound Recording Tape Coatings. Minnesota Mining and Mfg. Co., 900 Fauquier St., St. Paul 6, Minn. The magnetic properties of Scotch brand sound recording tape coatings is the subject of "Sound Talk" technical bulletin No. 22 now available. The bulletin discusses the properties of four basic types of magnetic coatings manufactured by the company, including 14 different magnetic tape constructions and two sprayable dispersion magnetic coatings. It is intended especially to provide design engineers and experimenters with data to determine field intensities necessary to magnetize the various tape coatings, as well as the resulting magnetic flux. Four graphs are included in the bulletin showing typical hysteresis loops and magnetization curves for the four basic types of magnetic coatings.

Printed Circuit Guide. Centralab Division of Globe-Union Inc., 900 E. Keefe Ave., Milwaukee 1, Wisc. Printed Electronic Circuit Guide No. 2, revising and up-dating the original guide, has been announced. In the guide listing section over 100 users of printed electronic circuits are listed with 445 different manufacturers' part numbers. Complete testing data are given so that the units covered can be checked to make sure they are in good operating condition. Also included is a guide showing the number of each type of unit now in use.

Control Instruments. MinneapolisHoneywell Regulator Co., Brown Instruments Div., Wayne and Windrim Aves., Philadelphia 44, Pa. Catalog 1530, "ElectroniK Controllers," comprises 56 fact-filled pages describing all types of the company's control instruments that are used to measure and control a multiplicity of process variables. Included are detailed specification and control action descriptions and ratings for both electric and pneumatic type controllers. The literature also presents

ACTUAL SIZE

Another special design added to our extensive line of miniature connectors. The JF-4 has four miniature contacts in a mineral filled phenolic insert body and provides, on both the plug and receptacle, two transverse mounting holes for right angle panel or chassis mounting. It is ideal for limited space and weight requirements in portable or airborne equipment.

Number of contacts	4
Maximum wire size.	\#20 A.W.G.
Weight:	
Plug	. 02 oz .
Receptacle	. 02 oz.
Breakdown voltage between contacts:	
Sea Level.	3500 VDC
60,000 ft. altitude..	1000 VDC

MONOBLOC* CONSTRUCTION eliminates unnecessary creepage paths and reduces the number of moisture and dust pockets.
MOLDED PHENOLIC BODIES (in accordance with MIL-P-14, rype MFE) mineral filled-provide mechanical strength as well as high arc and dielectric resistance.

PRECISION MACHINED CONTACTS: Pins from brass bar (QQ-B611) and sockets from spring temper phosphor bronze bar (QQ-B746a). They are gold plated over silver for consistent low contact resistance, reduction of corrosion and ease of soldering.
RACK AND PANEL MOUNTING: Either plug or receptacle may be mounted on a chassis or panel with two \#2 machine screws.

Wire or write for catalog of other types or advise your special requirements.
Winchester Praducts \& Winchester Designs Are Available Only
From Winchester Electranics, Inc.

West Coast Branch: 1729 Wilshire Blvd., Santa Monica, California

* Trademark

GLENBROOK, CONN., U.S.A.

GALVANOMETERS for special applications

Super Sensitive

SINGLE UNITS FOR PRECISE LABORATORY MEASUREMENTS

Specifications:

Size : Height $5^{\prime \prime}$, Base $4^{\prime \prime}$ square, Weight 1 pound, 8 ounces.

Sensitivity: 15" Deflection per microampere at distance of one meter.

Frequency: One cycle per second natural frequency. Other frequencies and sensitivities available.

Resistance: 4000 ohms.
Price: $\$ 100.00$ complete.

High Quality

MULTIPLE-ELEMENT
 GALVANOMETERS
 AT LOW COST

Size: Height $3^{\prime \prime}$, Width $2^{\prime \prime}$.
Length: Dependent upon number of element positions which are on . 140" centers and in quantities of 4 to 50 per housing.
Frequency: Standard 140 cps . Other frequencies available on special order.
Sensitivity: Standard 15 ohm 140 cycle suspension gives a $7^{\prime \prime}$ deflection per milliampere at a distance of 12".
Mirrors: Standard 10" radius of curvatnre. Spherical. First surface .040" wide $\mathrm{x} .115^{\prime \prime}$ long. Other focal lengths civailable.

Price: 25 Elements in 25 position housing without vertical adjustment $\$ 1,000.00$. Other models with vertical adjustment and isolated circuits at slight extra cost.

Write us for quotation on your special galvanometer needs

TECHNICAL INSTRUMENT CO., INC.

3732 WESTHEIMER RD.
engineering data on the Electr-O-Line and Electr-O-Pulse electric control relays.

Speech Equipment. Collins Radio Co., Cedar Rapids, Iowa. Catalog 111 is a 48 page booklet covering the company's line of speech input consoles, remote equipment, rack mounted equipment, test and monitoring equipment, antenna accessories, racks and panels, custom equipment and turntables and transducers. The units described are illustrated and indexed.

Small Bobbin Winder. Geo. Stevens Mfg. Co., Inc., Pulaski Rd. at Peterson, Chicago 30, Ill., has available a catalog sheet illustrating and describing the new model 38-A miniaturized bobbin winder. Of special interest are the slowstart feature that avoids possibility of wire breakage, and the instant resetting automatic counter that saves time by permitting instant resetting of the winding cycle by merely touching a lever.

Metal Pretreatment. Specialty Coatings, Inc., Division of Thompson \& Co., 1085 Allegheny Ave., Oakmont, Pa. A new six-page folder describes Vinsynite pretreatment for all types of metals. It includes details of the manner in which Vinsynite is used in finishing six different types of metal products for good paint adhesion and corrosion resistance. It also gives test data to show that Vinsynite is unaffected by severe distortion and exposure to standard ASTM salt spray test.

Tape-Wire Recorder Replacements. Standard Transformer Corp., 3580 Elston Ave., Chicago 18, Ill., has prepared a tape-wire recorder replacement guide, listing 63 models of 22 companies manufacturing tape and wire recorders. The guide is published to fill a need for authoritative information on power transformer, filter choke and audio output transformer replacements. Manufacturer and model number, manufacturer's part number and Stancor part
numbers are listed for all models included in the guide.

Coaxial Fittings. Coaxial Connector Co., 35 No. 2nd St., Mt. Vernon, N. Y., is offering a cross index of Army-Navy coaxial fittings in a handy 22 in. $x 14$ in. wall chart. This useful quick-reference guide lists designations from government part numbers to equivalent manufacturers' part numbers.

Circuit Selectors and Stepping Relays. G. H. Leland, Inc., 123 Webster St., Dayton 2, Ohio. Bulletin 353 CSR contains engineering data on Ledex circuit selectors and stepping relays. A complete description of the product, its method of operation, mechanics of control, both selective and stepping, Cascade Master-Slave homing circuit diagram, spark suppression, types of mountings, rectifiers and remote Selsyn circuit are just a few of the many subjects discussed and illustrated in this informative bulletin.

Electron Tube Interchangeability. Lewis and Kaufman Ltd., 50 El Rancho Ave., Los Gatos, Calif. Leaflet Form 253 provides interchangeability data on a series of Los Gatos electron tube types. Each tube in the series is covered with a brief type description and list-price information as well as a tabulation of the existing tube types with which it is directly interchangeable.

Printed-Circuit Components. Radio Corp. of America, Harrison, N. J., has available an 8-page booklet covering printed-circuit components designed for use in tv receivers utilizing intercarriersound systems and having picture i-f and sound i-f carriers of 45.75 mc and 41.25 mc , respectively. The components illustrated and described feature high gain, full bandpass response and excellent skirt selectivity. Dimensional diagrams and response characteristics are shown.

Dynamic Tape Tester. Taller \& Cooper, Inc., 75 Front St., Brooklyn 1, N. Y., recently published a

${ }^{4}$ mesess a check TEFLON

 for non-porosity

Assure dielectric stability in parts
 by using non-porous FLUOROFLEX ${ }^{\ominus}$-T

Porosity detracts from any insulating material - even from a virtually perfect UHF dielectric such as Teflon. How can you tell whether Teflon has porosity? By a penetrating colored dye test. Clean the part, apply dye, wipe off. When magnified, absorbed spots of dye can be plainly seen.

Put Fluoroflex-T products to the test and you won't find any penetration in either rod, tube, or sheet. For two reasons: (1) Teflon powder is extruded or molded on equipment especially designed to compact it to the critical density. This not only prevents porosity but also provides highest tensile strength. (2) Normal discolorations in Teflon are left unbleached to retain this optimum density

That's why you can always count on Fluoroflex-T for electrical stability in severest use. Stress relieved, it is also dimensionally stable and machines properly with minimum rejects. Write for Bulletin FT-1.

* DuPont trade mark for its tetrafuoroethylene resin.
© Resistoflex trade mark for products from fluorocarbon resins.

RESISTOFLEX

corporation

Belleville 9, N. J.

SPECIALLY ENGINEERED FLEXIBLE RESISTANT PRODUCTS FOR INDUSTRY

For Dependable

 Electronic WiringLeading Manufacturers Choose UNILECTRIC Wiring Systems

Year after year for over ten years ... UNILECTRIC has produced millions of wiring systems for over 150 leading manufacturers of electric and electronic products. If you still fabricate your own electronic wiring it will pay you to investigate UNILECTRIC.

There is Only ONE Standard of Quality at UNHLEGTRIC

This intricate wir. ing horness for o iet auto pilot must meet the most rigid specifica. life and perhaps a major battle a pend on it.

The same worke manship. . the same standards of qualify protect
your product wiro your product wir: ing and your pro for dependability.

To assure utmost dependability plus coss saving engilow.cost praduction and "onschedule deliv. ery', investigate UNILECTRIC today.

UNILECTRIC QUALITY Protects Your Products

Investigare UNILECTRIC Today! Whate fatins Manufactured by UNITED MANUFACTURING \& SERVICE CO. 409 South 6th Street - Milwaukee, Wisconsin

Aeme

ACME ELECTRIC CORPORATION

316 WATER STREET CUBA, NEW YORK IN CANADA: ACME ELECTRIC CORPORATION LTD. 50 NORTH LINE ROAD - TORONTO, CANADA

bulletin illustrating and describing its dynamic tape tester, a precise, coordinated function generator that is applicable to the computer and control field. The unit described consists of six plugin type function plate assemblies driven from a common synchronous motor shaft through a gear train; and a reversing clutch is provided for rewinding the tape at the conclusion of a run. The equipment discussed is designed for $115-\mathrm{v}$, 60 -cycle operation.

Transformer Catalog. Ferranti Electric, Inc., 30 Rockefeller Plaza, New York, N. Y., has available a 4-page catalog illustrating and describing a line of hermeticallysealed transformers designed to MIL-T-27 specifications. In the line described are military standard filament transformers, military standard plate and filament types and military standard audio types; also filter reactors. Detailed specifications and prices on all types are given.

Component Developments. Aerovox Corp., New Bedford, Mass. A recent bulletin deals with electronic component developments, particularly high-temperature metallizedpaper capacitors, Aerofilm capacitors, electrolytics operating above the present 85 C range, and new micas for working temperatures up to 125 C . Also included is information on duct-type noise-suppression capacitors, subminiature bypass capacitors, miniature bathtubs, Borofilm resistors with temperature coefficient of 100 ppm or less, hermetically-sealed ceramiccase Carbofilm resistors, high-voltage plate assemblies and ceramic capacitors, and printed-wiring development.

Sound Analyzer. Hermon Hosmer Scott, Inc., 385 Putnam Ave., Cambridge 39, Mass. A single-page bulletin gives an illustrated description of the type $420-\mathrm{A}$ sound analyzer. The unit discussed features filters that are adjustable separately in half octaves, portability, small size, light weight and versatility. Technical specifications, response curves and prices are included.

mett the exacting demands of tiansistor tuensior
 cirellis iivy
 ACTUAL SIZE
 1
 SANGAMO TYPE EHT TANTALUM CAPACITORS

Abstract

The Sangeime Type EHT tantalum foll eloctrolytic capacitor has been designed for use in audio-frequency translstor circuirs, such as hearing alds ahd advanced equipment for defonse.

Since the Type EHT is much smaller and lighter in weight than oil or wax impregnated paper coupling capacitors, it is a valuable tool that helps the electronic designer realize the inherent fransistor advantages of miniaturization.
The Sangamo EHT capacitor uses electrodes of high purity tantalum foil. These electrodes provide greater capacitance per unit volume than aluminum efectrode
units of similar construction. Both the cathode and anode lead wires are securely welded to the foils for maximum electrical confact dependency.
Greater life expectancy is inherent in the Sangamo EHT because of the more stable oxide film and the extremely inert characteristic of tantalum.
Write for Engineering Data Sheet EHT for full information.

PLANTS AND PEOPLE

Edited by WILLIAM G. ARNOLD

IRE Takes Part In Study Of Bureau Of Standards

The Institute of Radio Engineers has nominated William L. Everitt, radio authority and Dean of the College of Engineering, University of Illinois, to serve on a committee of scientists formed, at the request of Secretary of Commerce Sinclair Weeks, to evaluate the present functions and operations of the National Bureau of Standards in relation to the present national needs.

The nomination came as a result of telegrams sent by Secretary Weeks to leading scientific and engineering societies requesting each to select one of their members to serve on the committee. M. J. Kelly, president of Bell Telephone Laboratories, will serve as chairman.

Dr. Everitt's nomination was made only after assurance had been received from Secretary Weeks that the committee will operate under the National Academy of Sciences, that it will not be concerned with personnel relationships between the National Bureau of Standards and the Department of Commerce, and that the report of the committee will be made public.

Dr. William L. Everitt has had a distinguished career as engineer, educator, consultant and author of text books and scientific articles in the radio field, and has held teaching posts at Cornell University, University of Michigan and Ohio State University.

ELECTRONICS AND PLASTICS SHARE HONORS

Two industries whose interests are closely allied, electronics and plastics, shared honors at an awards luncheon in Hollywood, Calif., sponsored by the Plaskon Division of Libbey-Owens-Ford Glass Company. Awards of merit were presented to Glen E. Swanson, president of Standard Coil, and Mr. Wilcox. founder and president of Wilcox Plastics. Inc., on the occasion of the production of the 100 millionth Standard Coil television tuner board using alkyd plastic segments molded by Wilcox. Left to right are Mr. Swanson, Dr. Lee de Forest, inventor of the electronic tube, who presented the awards; Henry W. DeVore, Plaskon sales executive and Mr. Wilcox

OTHER DEPARTMENTS
featured for this issue:

Page
Electrons At Work...... 196
Production Techniques . . 260
New Products 298
New Books 368
Backtalk 391

RTMA Adds New Members

The RTMA board of directors approved the membership applications of nine new companies as follows:

Adler Communications Laboratories, Continental Electronics Corp., Dale Products Co., Microwave Associates, Inc., MorganRhein, Inc., Square Root Manufacturing Corp., Tempo T-V Products Co., Translite Electronics Corp., and Varian Associates.

Overseas Businessmen Survey U.S. Electronics

In A 5 week, 4,000 -mile tour of 20 U. S. manufacturers in 18 cities, from Massachusetts to Iowa, a group of 9 visiting business men from 7 foreign countries covered a cross-section of the U. S. electronics industry. The international group, all foreign representatives of Ad. Auriema, Inc., independent exporter and sponsor of the "Observatour", observed the latest developments in the U. S. electronics industry, and obtained information on U. S. merchandising techniques.

One of the plants visited was the Stevens Paper Mills, Inc., which makes capacitor paper. The group also attended the IRE Show during its run in New York and expressed amazement at the size of the industry as represented by the hundreds of exhibits.

Philco Plans Canadian TV-Radio Plant

Philco Corp. announced plans for a new plant to manufacture television and radio receiving sets in the

suburbs of Toronto, Canada
According to an announcement by Syclney L. Chapell, president of Philco International Corp., the manufacturing facility will be erected this year within the planned community of Don Mills. All pro-
duction and administrative activities now conducted in the plant in Toronto will be transferred to the new site early in 1954.

Ground will be broken immediately. When complete, it will have $81,000 \mathrm{sq} \mathrm{ft}$ of floor space.

Screen-settling machine begins to roll as . . .

Westinghouse Expands In The Tube Field

In two new plants Westinghouse has undertaken the manufacture of an extensive line of electronic tubes. At Bath, New York, 145,000 square feet of working surface will produce the receiver tube line; at Elmira, New York, 40 miles away, 365,000 square feet of plant will produce tv picture tubes and industrial, broadcast and x-ray tubes. Also, at Elmira, a pilot operation is set up for semiconductor production.

Not yet in full swing, the Elmira plant is turning out 2,000 picture tubes a day, with three shifts of about 130 workers total. The assembly line consists of an efficient conveyor belt layout, leading from nearly automatic machines that seal in the faceplates and necks. In other nearly automatic machines, the phosphor screen is added (above). Finally, in long automatic furnaces the tubes, each on a separate vacuum stand, are heated, evacuated and sealed off.

Appointment of two Westinghouse executives to newly created
posts has been announced by E . W. Ritter, vice-president in charge of the Electronic Tube Division.

John G. Thompson fills the position of product manager at the Bath plant, and Franklin P. Hinman is assigned to duties of product manager at the Elmira plant.
A. George Rogers has been appointed manager of operations for the Westinghouse Television Radio Division, Metuchen, N. J.

Mr. Thompson, in his new position, is responsible for coordinating all engineering, manufacturing and sales activities of the receiving tube section of the division. Mr. Hinman is responsible for coordinating power tube engineering, manufacturing and sales at the Elmira plant. His duties also include direct management of power tube manufacturing.

Mr. Rogers, a veteran of 26 years in the electronics industry, has had extensive experience in engineering positions which included design, test and quality control assignments. In administrative posts, he
has directed plant organization, production planning and standardization of inspection and manufacturing techniques.

RCA May Establish Service Lab In Japan

An electronic industry service laboratory for the assistance of RCA licensees may be set up in Japan, according to B. E. Shackelford, director of the license department of RCA International, who is in Japan to study the question of establishing the lab and also the possibility of a manufacturing investment by RCA in the country.

It is reported that RCA has, at present, license agreements with 17 Japanese firms.

Baker To Receive RTMA Medal Of Honor

W. R. G. Baker, chairman of the National Television System Committee and director of the RTMA Engineering Department since 1934, was unanimously chosen by the RTMA Board of directors as recipient of the second annual RTMA Medal of Honor for outstanding contribution to the radiotv and electronics industry.

He was nominated for the award by the annual awards committee headed by Leslie F. Muter, and will receive the medal at the RTMA convention in Chicago, June 15-18.

The award was established last year to provide industry recognition of the person, company or organization which has made an outstanding contribution to the advancement of the industry. The first Medal of Honor was awarded to Brig. Gen. David Sarnoff, chairman of the board of Radio Corp. of America.

Dr. Baker also was chairman of the first National Television System Committee which in 1941 proposed to the FCC the present transmission standards for black and white television. The present National Television System Committee is engaged in conducting field tests of a compatible color television system developed by the committee following the pooling of technical infor-

MAGNETIC AMPLIFIERS•INC

 announces
M. Automatic Universal TRANSISTOR CURVE

 The NewTRANSISTOR TYPES: NPN-PNP Junctions - Point Contacts TRANSISTOR CONNEC Emitter base or grounded 00 volts SWEEP VOLTAGE: $0-100$ plus eight BIAS CURRENT: Zero plop autoequal incremenanually.
matically or manvally increments: FIXED BIAS CURRENT 200,500 . $10,20,50,100,20$ 1000 microamperes BIAS CURcontinuously varable 0-1 milliRENT INCREMENTS D ampere RASGE: 0.8 millimanderes

0-100, 200 sias 1000 microamperes full 500, 1000 microamperamperes scale
full scale

USES: Designing transistor circuits comparing, matching and selectects of detecting anomalies normal usage, overtemperature, age, normal and cause loading-detecting NPN, PNP Junction, FEATURES: Tests NPN, PNP, Junction, Point Contact Transistors - flexible to accommodate new types. Dynamically plots entire fard laboratory DC simultaneously on stand oscilloscope. selets: output or transfer Function switch selects: base or grounded curve in grounded
emitter connection. Calibrating axis generated in always in integral part of
correct quadrant. Automatic or manu
of stepping relay. any quadrant-origin Curves displayed in any quadrant-origi always indicated.

Retrace not blanked ant seen.

$$
\begin{aligned}
& \text { Reen. } \\
& \text { securacy independent of scope drift } \\
& 3 \% \text { accur }
\end{aligned}
$$

Measures current gain. trouble free cir. Simple in operation, cuitry-compact in size. horiz volts
100 vol 100 volis , II III, IV quadrants: I, II, III, IV ohms accessoris
masistor curves: Output $V_{c} \mathrm{vs}$ ITransfer (Ve vs. Ic $\left.\right|_{\text {e }}$) ${ }_{\text {cherical callibator: }}$ 0-1,10. 100 yertical calibraton.0.1. 10 volts
calbrator: 0-1, 10.

$$
\begin{aligned}
& 3 \% \text { accuration. } \\
& \text { and calibras curren }
\end{aligned}
$$ load resistance: 100-10.000 hms FURMISHED: Transistor Transistor forming attachment available.

CALL OR

WRITE FOR
COMPLETE INFORMATION AND lITERATURE TODAY
The M. TRANSI-MAG - A Aew standard

Tor TheSE CDUSTABLE MAGNETIC SERVO AMPLIFIERS Specity NA ADJUSTABLE MAGNETIC SERVO AMPSYSTEMS -MAGNETIC AMPLMAGNETIC AMPLIFIERS - MAGNETIC VOLTANSFORMERS - SATURABLE RELAYS - MAGMEDULATORS

Afiliate of GENERAL CERAMICS 8 STEATITE CORP.

mation by all tv manufacturers.
Dr. Baker, who recently testified before the House Interstate and Foreign Commerce Committee, was highly lauded by chairman Charles Wolverton (R.,N.J.) for his great service to the industry and to the government in directing the NTSC's recent activities in color television.

Raytheon Appoints New Radio-TV Head

Henry F. Argento
THE appointment of Henry F. Argento as vice-president and general manager of Raytheon Television and Radio Corp., was announced recently by C. F. Adams, Jr., president of Raytheon.
Mr. Argento has been with Raytheon since 1932, and has most recently served as assistant vice-president and assistant manager of Raytheon's power tube division.
Graduating from Harvard with a degree in physics, he entered business as a research engineer at the Radio Frequency Laboratory, Boonton, N. J., in 1931. A year later he joined the Raytheon organization.

General Maude Heads USAF Research Center

Maj. Gen. Raymond C. Maude, formerly director of Air Force Communications at Headquarters, U. S. Air Force, has assumed command of the Air Force Cambridge Research Center at Cambridge, Mass., according to an announcement by Lt. Gen. Earle E. Partridge, com-
manding general of the Air Research and Development Command in Baltimore.

Recently appointed deputy commanding general of the Air Force Cambridge Research Center, General Maude succeeded Maj. Gen. James F. Phillips as commanding general of the Center. General Phillips is retiring from active duty after 30 years of continuous service with the Army and Air Force.

Appointed director of Air Force Communications in the summer of 1951, Gen. Maude has guided U. S. Air Force communication-electronics activities through a period of intensive expansion.

During World War II, Gen. Maude served in Europe as communications officer of the Ninth Bomber Command and later as director of communications for the 29th Tactical Air Command. In August, 1945, he was named communications officer of the U. S. Air Forces in Europe.

Fairchild Appoints Missile Director

Francis J. Gaffney
The appointment of Francis J. Gaffney to the post of director of engineering for the Guided Missiles Division of the Fairchild Engine and Airplane Corp. was announced by Edwin A. Speakman, general manager. Mr. Gaffney, who was general manager of the Polytechnic Research and Development Company, is widely known for his work in the field of microwave measurement and pulse circuit techniques. During World War II he headed the

G-E Print-Wire circuit designed for radio turret tuning.

A DEPENDABLE SOLUTION TO ELECTRONIC DESIGN PROBLEMS

(2)- Here is a new electronic component that quickly solves many of your design and manufacturing problems! The complete value of G-E "Print-Wire" Circuit Boards has been well established in successful military and commercial applications. A product of concentrated General Electric research over several years, its high acceptance today clearly indicates a much broader scope of applied use.

Take advantage now of this opportunity to discuss your specialized requirements for all types of quality circuit boards. G-E engineers are prepared to furnish complete details for including solder-plated General Electric "Print-Wire" Circuit Boards in your design plans.

PHONE OR WIRE US TODAY! General Electric Company, Section 463, Components Department, Electronics Park, Syracuse, New York.

G-E Components Department Products Include:

- Radio and TV cabinets añd matching base cabinets
- Precision Metal Parts
- "Print-Wire" Circuit Boards Qou can pret your confidence in-
GENERAL (7) ELECTRIC

The complete MS (Military Standard) line of Hermetically-Sealed Power \& Filament Transformers

Chicago transformer now offers all units in the Military Standard (MS) line, as established jointly by the three armed forces (Army Signal Corps, Navy Bureau of Ships, and Air Force) working through ASESA (Armed Services Electronic Standards Agency) and in cooperation with the transformer industry. The complete line is housed in chicago's one-piece drawn-steel cases. Outside case dimensions and mounting dimensions are within the tolerances of the Military Standard specification. Terminal arrangements and markings are also in accordance with the same specification. Tests conducted in the chicago transformer laboratories indicate that all units will meet the requirements of Grade 1, mil-T-27 specifications for Class A operation. The Military Standard line should find wide usage in military airborne, marine, and ground communication equipment, and particularly for research and development applications, pilot runs and pre-production models.

POWER TRANSFORMERS - INPUT REACTOR SYSTEMS (PRIMARY - 105/115/125 V.-Frequency 54.66 cycles)

CATALOG NUMBER	$\begin{aligned} & \text { MIL-T-27 } \\ & \text { PART NO. } \end{aligned}$	HIGH VOLTAGE SECONDARY A-C Volts D-C MA.		D.C V OUTPUT	$\begin{aligned} & \text { REC1 } \\ & \text { Volts } \end{aligned}$	FIL. Amps.		$\text { NO. } 2$ Amps.	$\begin{aligned} & \text { WT. } \\ & \text { LBS. } \end{aligned}$
PMS-70	MS-90026	200-100-0-100-200	- 70	385	6.3/5	2	6.3	3	4
PMS-70A	MS-90027	325-0-325	70	260	6.3/5	2	6.3	4	5
PMS. 150	MS-90028	325-0.325	150	245	6.3	5	5	3	71/4
PMS-175	MS-90029	400-0-400	175	318	5	3	6.3	8	10
PMS. 250	MS -90030	450.0 .450	250	345	5	3	6.3	8	13
PMS 350	MS-90031	350-0-350	250	255					$71 / 2$
PMS. 550	MS-90032	550-0.550	250	419					11
PMS. 800	MS-90036	800-0-800	250	640					161/2

CATALOG NUMBER	$\begin{aligned} & \text { MIL-T-27 } \\ & \text { PART NO. } \end{aligned}$	$\begin{aligned} & \text { SECONDARY } \\ & \text { Volts Amps } \end{aligned}$		INSULATION VOLTS RMS	WT. LBS.
FMS-23	MS-90016	2.5	3.0	2500	$11 / 2$
FMS-210	MS-90017	2.5	10	2500	$21 / 2$
FMS-53	MS.90018	5.0	3.0	2500	$13 / 4$
FMS.510	MS.90019	5.0	10	2500	4
FMS-62	MS-90020	6.3	2.0	2500	$13 / 4$
FMS-65	MS.90021	6.3	5.0	2500	$23 / 4$
FMS 610	MS-90022	6.3 CT	10	2500	5
FMS 620	MS-90023	6.3	20	2500	8
FMS-210H	MS-90024	2.5	10	10000	$43 / 4$
FMS-510H	MS-90025	5.0	10	10000	7

Free "New Equipment" Catalog

You'll also want the full details on CHICAGOS
New Equipment Line of famous "Sealed-in-Steel" Transformers.
Write for Free Catalog CT-153 today, or get it from your
electronic parts distributor
CHICACO TRANSFORMER
3501 ADDISON STREET, CHICAGO 18, ILL.

Test Equipment Group in the MIT Radiation Labs from which came many wartime advances in radar and microwave equipment.

After the war, Mr. Gaffney joined the Polytechnic Research and Development Company as chief engineer. He became general manager in 1950.

Pioneer Constructs New TV Picture Tube Plant

Construction of a new plant for manufacturing tv picture tubes will be started for Pioneer Electronics Corp. of Santa Monica, it was announced by L. M. Parrish, president.

Located in West Los Angeles, the new plant will have $30,000 \mathrm{sq} \mathrm{ft}$ of enclosed space and $20,000 \mathrm{sq} \mathrm{ft}$ of paved ground for parking, loading and for potential expansion.

Proposed Pioneer Plant
It is expected that the new plant will add a 500 -percent increase to the company's production of 1,500 picture tubes a week.

The building will cost an estimated $\$ 200,000$ to build. Pioneer will invest an additional $\$ 250,000$ in new equipment. Special-purpose vacuum tubes for aircraft manufacturers, now made in a separate building, will also be produced in the new plant.

Hobbs Elected V.P Of Harvey-Wells

Marvin Hobbs, who recently joined Harvey-Wells Electronics as director of engineering, has been elected vice-president and a member of the board of directors.

From 1950 to 1952 Mr. Hobbs was on the staff of the Office of the Secretary of Defense, as director of the Electronics Division of the Munitions Board and the Defense Department member of the Electronies Production Board. Prior to that period, he spent 20 years in the
industry in engineering positions with RCA, Scott, General Motors and Zenith. During World War II he was chief of the Electronics Branch, Radio and Radar Division, War Production Board, and operations analyst on the staff of the Far East Air Forces.

Marconi Opens Tube Plant In Italy

A NEW factory for making electronic tubes has begun production at Aquila, Italy. Belonging to the "Marconi Italiana" company, the plant makes transmitting tubes and receiving tubes. Two hundred workers are now employed and the number will be gradually raised to 300 in the course of a year.

Hoffman Names Whitney Assistant To President

Marvin G. Whitney
Marvin G. Whitney has been appointed as assistant to president of Hoffman Radio Corp. with current assignment on television engineering, quality control and product design, according to an announcement by H. Leslie Hoffman, president.

A graduate of Rensselaer Polytechnic Institute, he was with RCA in various product and plant manager capacities for the period of 13 years. This included broadcasting and industrial equipment manufacturing at the Camden, N. J. plant and later government equipment manufacturing in the same factory

DC-AC CHOPPERS

New 1953 Models for Military Use -0-500 CPS

Tops in Performance - Tops in Dependability

Stevens-Arnold choppers are electro-mechanical precision vibrators that are used as modulators or demodulators. Designed specifically for airborne applications, and 1000 hours operation.

- Gold contacts used exclusively. Gold is the only material that assures superior chopper-performance in the critical $0-11 / 2$ volt DC range.
- Multiple testing guarantees uniformity. Before shipment, each unit must pass two complete operating tests at 3 different temperatures -$-55^{\circ} \mathrm{C}$. $+25^{\circ} \mathrm{C}$. and $+85^{\circ} \mathrm{C}$.
- Not only are all military specifications met, but liberal safety factors have been provided to meet emergency conditions of voltage and frequency. Example: - frequency tolerance 0.500 cps , coil voltage tolerance $+30 \%-20 \%$.

Also Available 60-CYCLE TYPES

A complete line of single and double-pole types.

SEND COUPON TODAY FOR COMPLETE INFORMATION

STEVENS:ARNOLD

INCORPORATED
22 Elkins Street South Boston 27, Mass.

STEVENS-ARNOLD, Inc.
22 Elkins St., South Boston 27, Mass.
Please send me the following catalog (s)
\square Catalog $208 \mathrm{~B}-(0-500 \mathrm{cps})$
Catalog 246 D - (60 cps)
NAME
COMPANY
STREET
CITY
\qquad
ZONE
STATE

"700" RECORDERS

RACK MOUNTED 712.E ($12^{\prime \prime}$) RECORDER... Operation, control, lood. ing and adjustments from Front Surface.
...the only oscillograph recorder using $12^{\prime \prime}$ recording media that can be conveniently mounted in a $19^{\prime \prime}$ relay rack. All operating controls are on one surface. Loading and unloading can be accomplished easily and quickly from this same surface. Input connectors can be supplied as shown or installed on the top end of the recorder, leaving the operating panel free of cabling. " 700 " recorders can be supplied in 115 Volt, 60 cycle and $23.5-28.5$ Volt D.C. Models.

Exclusive Heiland Features Designed for rack or toble mounting - Operation, control, loading and mointenance from one surface - Direct monitoring of galvanometer light spots while recording - Domping resistor ponel - Autamotic light adjustment with record speed chonge.

Additional HEILAND FEATURES

- Simultaneous monitoring, scanning and recarding
- Rapid, simple daylight loading
- Magazine capacity; paper 200', film 150'
- Adjustable record widths
- Adjustable automatic record length
- Automatic record numbering
- Footage counter
- Selectable recarding speeds
- Precision time lines
- Event timer
- Static reference frace
- Trace identification
- Remote operation
- Multiple operation
- Lamp failure indicatars
- Record travel indicator
- Compact... lightweight...rugged

Write for catalog giving complete information on the Heiland "yoo" recorders and other multi-channel recorders, accessories and galvanometers...
and more recently in the new RCA engineering plant at Moorestown, N. J.

Olympic Buys Electrona

R. Bowling Barnes, president of Olympic Development Company, subsidiary of Olympic Radio and Television, Inc., announced the acquisition of the Electrona Corp. of Irvington, N. J.

The Electrona Corp. will continue operations at its Irvington laboratories under the direction of Carl Bosch, who becomes vice-president and director of research of Electrona. It will be directly affiliated with the Olympic Development Company.

Carl Bosch, who received his doctorate from the University of Berlin, and his staff are currently engaged in both civilian and military research work with particular emphasis on radiation detection.

Crawford Elected Radiart President

Harry C. Crawford

Octave Blake, president of the Cornell-Dubilier Electric Corp. and chairman of the board of its subsidiary, the Radiart Corp., announced the election of Harry C. Crawford as president of the Radiart Corp., replacing L. K. Wildberg.

Mr. Crawford has been associated with Cornell-Dubilier and Radiart for the past 8 years as works manager as well as comptroller and assistant treasurer. He
was industrial engineer for 2 years with Douglas Aircraft and spent 5 years as vice-president and sales manager with International Piston Ring Co., coming there from Thompson products where he served 20 years as business manager of their automotive parts replacement division.

Iron Fireman
 Goes Electronic

What has been known as the Heat ing Control Division of Iron Fireman Manufacturing Co. will now be designated the Electronics Division, Frank S. Hecox, company vicepresident and treasurer recently announced.

The division will continue to manufacture electrical controls and other items of Iron Fireman equipment, Hecox stated. The new name was selected to eliminate local confusion with other Iron Fireman operations and to reflect an expansion into components for electronics systems and other types of electrical instruments. "Our plan for the next five years will lead us more and more into the electronics field in addition to our continuing research and development on electrical motors and automatic controls," Hecox declared.

Mitchell Elected President Of RCA Communications

Election of Thomas H. Mitchell as president of RCA Communication, Inc. was announced recently by Brig. General David Sarnoff, chairman of the board of RCA.

Mr. Mitchell, executive vice-president of RCA Communications since 1944, succeeds H. C. Ingles who retired at the age of 65 . Mr. Ingles has served as president for 6 years, having joined RCA Communications soon after his retirement in 1947 as a Major General and Chief Signal Officer, U. S. Army.

A graduate of the U. S. Naval Academy at Annapolis, Mr. Mitchell entered the communications field in 1927. He worked for two years in the Pacific sales division and engineering department of RCA Communications, and in 1929 became district manager for the Radio-

Pressed Steatite Parts offer these advantages

- Steward's interest in your parts starts with the material. That's why "Lavite" Steatite-a product of private research and development - can claim and prove individually superior qualities.
- "Lavite" Steatite, featuring low loss at high frequency, is kept under close laboratory control from raw ingredients to finished parts-therefore, a superior product at lowest cost.
- Parts of "Lavite" Pressed Steatite, made only by Steward, are closely controlled throughout manufacture to completely satisfy the dimensions for average requirements. For those applications demanding unusually close tolerances, the "Lavite" Steatite parts may be precision machined.
Send your specifi. cations for recom. mendationsSteward Engineers are your Engineers - no obligation.
- You have a wide selection of specific properties from which to choose.
- Quartity? Just tell me how many and how soon.

D. M. STEWARD MANUFACTURING CO.

\$604 Jerome Avenue
Chattanooga, Tennessee Sales Offices in Principal Cities

SHARP PERMANENT MARKING

For legible permanent marking of metal components use (415) engraved lettering tools. Precision engraved dies and inserts for indenting or cmbossing identification on your parts will

1. Improve appearance.
2. Advertise throughout life of part.
3. Facilitate reordering.
'W' rite for free catalog on Production Marking Equipment.

Geo. T. SCHMIDT, INC.

MARKING MACHINES • MARKING TOOLS
180) Belle Plaine Ave. Chicago 13. 111.

COMPLETE MACHINE FACILITIES TO PRODUCE

- Hand Stamps
- Engraved Inserts for Dies
- Shank Style Stamping Dics
- Embossing Dies
- Code Stamps

\author{

- Stcel Type
}
- Numbering Heads
- Marking Machines
- Nameplate Marking Equipment
marine Corp. of America in Los Angeles. In 1930 he transferred back to RCA Communications where he held increasingly important posts.

After service as a Colonel in the Army Communications Service during World War II, Mr. Mitchell rejoined RCA Communications as General manager and soon after was elected executive vice-president.

European Firm Expands

Isofil S. A., connected with Aismalibar S. A. of Switzerland and Spain, will produce filaments for lamps, radio tubes, x-ray tubes and other products in San Paulo, Brazil. Swiss capital will be 50 percent, represented by machinery and eauipment.

Production Starts In New IRC Plant

Production is already underway in the $\$ 200,000$ plant of the International Resistance Co., located on a 66 -acre site in Asheville, N. C. Operating at full strength, the plant

New IRC plant
will employ approximately 500 persons of which the majority will be women. H. J. McCaully, formerly assistant to IRC's executive vicepresident, will manage the Asheville plant.

Raytheon To Merge
 Radio-TV Subsidiary

Raytheon Television and Radio Corp. will be merged into the Raytheon Manufacturing Corp., the parent company, as of the close of business on May 31, 1953, it was recently announced. The merger will
coincide with the beginning of the new fiscal year on June 1, 1953.

In announcing the planned merger, C. F. Adams, Jr., president of Raytheon, said, "this action will complete the integration of all the company's operations into a single corporate structure. The television, radio and government business now being carried on by Raytheon Television and Radio Corp. will be continued as a divisional operation of the parent company, comparable to its other operating divisions with its headquarters continuing to be in Chicago. The merger will not affect the internal management structure of the new division, its policies or any of its personnel or distributor-dealer arrangements."

DuMont Named Microwave Distributor For Motorola

The Television Transmitter Division of Allen B. DuMont Laboratories, Inc., has been named as sole distributor for Motorola microwave equipment for the tv broadcast industry, it was announced recently by James B. Tharpe, national sales manager of the DuMont division.

Dumbar Joins
 Dalmo Victor

Allen S. Dunbar
Allen S. Dunbar, for the past 3 years senior research engineer for the Stanford Research Institute, has joined Dalmo Victor Company as assistant director of research, the San Carlos electronics firm an-

WILEY books

Just published . . . first book in a field of vast possibilities . . .

MICROWAVE SPECTROSCOPY

By WALTER GORDY, Duke University, WILLIAM V. SMITH, University of Delau'are, and RALPH TRAMBARULO, Pennsylvania Stale College
This important new book describes the use of an instrument more than 100,000 times as sensitive as the best optical spectroscope with infra-red gratings. It brings you up to date on the theory, experimental techniques, and applications of the most powerful method yet developed for evaluating molecular structure and for investigating nuclear effects on molecular spectra. Formulas and tables are included to facilitate the work of analyzing and interpreting microwave data.
1953
446 pages illus.
$\$ 8.00$
Revolutionary new procedures slash drafting time up to 50%
SIMPLIFIED DRAFTING PRACTICE
By WILLIAM L. HEALY and ARTHUR H. RAU both of General Electric Company
Clearly explains the revolutionary new tested and proien procedures which can slash drafting costs and time up to 50%. This important new book tells how useless artistic frills can be eliminated from engineering drawings to make them easier to draft, read, and interpret ... with no sacrifice in clarity or accuracy.
1953

156 pages
 illus.

$\$ 5.00$

"A notable contribution" Radio \& Television News

ESSENTIALS OF MICROWAVES

By ROBERT B. MUCHMORE, Hughes Aircraft Company
Fundamental empirical laws that govern wave propagation and reflection; wave guides; resonators, etc., and applications of microwave equipment. All interpreted, described and judged on the basis of measurements that can be made.

$$
1952 \quad 236 \text { pages illus. }
$$

$\$ 4.50$
Now . . . do away with wasteful "cut-and-try" methods. Read . . .
VACUUM TUBE OSCILLATORS
By WILliAM A. EDSON, Stanford University
Here is the volume engineers and designers have been waiting for ... the very first comprehensive work on oscillator design and operation. It covers the many factors affecting the behavior of oscillators, shows you how to predict this behavior, and how to design circuits to meet your specific needs.

This one handy source gives all the facts you need on electronics, circuit theory, and dynamics-for the clearest possible picture of oscillator operation.
1952
476 pages
illus.
$\$ 7.50$
Look at control in terms of the work it is designed to do
ELECTRIC CONTROL SYSTEMS, 3rd Edition
By RICHARD W. JONES, Northuestern Technological Institule
Control components are covered in terms of the functions to be performed in this practical new book. It integrates the knowledge of electrical machinery, electronics. circuits, and transients needed for a sound understanding of the functioning of control systems.

1953

511 pages
illus.
$\$ 7.75$
The first comprehensive treatment

FUNDAMENTALS OF ENGINEERING ELECTRONICS

 2nd EditionBy WILLIAM G. DOW, University of Michigan
A realistic and quantitatively usable conception of the principles that govern the internal behavior of electronic devices. Completely revised and up to date, with MKS system of units employed throughout.
1952
627 pages
illus.
$\$ 8.50$

JOHN WILEY \& SONS, Inc. 440 Fourth Ave., New York 16, N. Y.
Please ship book(s) checked below for FREE examination. Within 10 days I will remit
price plus postage for any I wish to kecp, and return any I do not wish to keep.
\square MICROWAVE SPECTROSCOPY
SIMPLIFIED DRAFTING PRACTICE
\square ESSENTIALS OF MICROWAVES
\square VACUUM TUBE OSCILLATORS
ELECTRIC CONTROL SYSTEMS
FUNDAMENTALS OF
ENGINEERING ELECTRONICS NAME

ADDRESS

SAVE POSTAGE. Enclos
on thy tholes you reman!.
CITY
ZONE
STATF

Kenyon SPECIAL Transformers Have Many Applications

"Ken-Seal" Molded Units

There are many transformer applications in which hermetic sealing can be achieved more desirably than with metal casings. This is especially true where weight, space and cost are important factors. To satisfy this demand Kenyon has introduced "Ken-Seal" molded transformers which meet all government specifications. The molded process was chosen in preference to dipping or encapsulation because it produces a finished product of controllable, definite dimensions, with a uniform amount of sealing thickness.
An easily mixed casting resin is used, with cast separable molds for large production or small strippable molds for smaller quantities. This simple process insures uniformity and efficient sealing at low cost, "Ken-Seal" molded units may be the answer to some of your transformer problems. Send us your inquiries. We're in production now.

No matter what your transformer requirements may be contact Kenyon first. Our engineers will endeavor to show you how you can increase efficiency at low cost by choosing a transformer from the complete Kenyon line.

KENYON TRANSFORMER CO., Inc.

840 Barry Street, New York 59, N. Y.

handle radio-frequency and tube problems connected with the 1,000 ,000,000 -volt linear accelerator in the laboratory.

John Ruze Heads Gabriel Labs

John Ruze

APpointment of John Ruze as director in full charge of the Gabriel Laboratories was recently announced by John H. Briggs, president.

The new director became head of the antenna design section at Signal Corps Engineering Laboratories during World War II. In this position he directed the development and design of many radar and IFF antenna systems.

In 1946 he joined the Air Force Cambridge Research Center where he served as assistant chief of the antenna laboratory. Here he specialized in microwave optics, especially wide-angle metal-plate lenses and high-gain steerable antenna arrays.

John K. West Elected A Director Of NBC

Election of John K. West as a member of the board of directors of the National Broadcasting Company was announced recently by Brig. General David Sarnoff, chairman of the board of RCA and NBC.

West is vice-president in charge of the western division of NBC

MOLDED FITTINGS

FROM

WHITNEY BLAKE

Whitney Blake Company is equipped to mold rubber and plastic fittings onto flexible cord, shielded communications wires and mulfiple conductor cables - in addition to making the cordage itself.
Whitney Blake has wide experience in designing and manufacturing shielded multiple conductor cables and assembling intricate connectors for electronic applications. Skilled workers, modern equipment, efficient production methods and careful quality control assure dependable, first quality cord sets.
Where standard molds are unsuitable, Whitney Blake will design and make special plugs, connectors, strain reliefs and junction box blocks that provide the water- and impact-resistance, small size, light weight and protection from tampering required for many new applications.
For help with your special cord set problems, contact us for the address of your nearest Whitney Blake representative. He will be glad to work with you. If your product is in the design stage, information on its intended use may enable him to suggest a cord set construction using conventional parts at savings to you.

WELL BUILT WIRES SINCE 1899

NEW HAVEN 14, CONNECTICUT

For more than 18 years, Eclipse-Pioneer has been a leader in the development and production of high precision synchros for use in automatic control circuits of aircraft, marine and other industrial applications. Today, thanks to this long experience and specialization, Eclipse-Pioneer has available a complete line of standard ($1.431^{\prime \prime}$ dia. X $1.631^{\prime \prime} \mathrm{lg}$.) and Pygmy ($0.937^{\prime \prime}$ dia. X $1.278^{\prime \prime}$ Ig.) Autosyn synchros of unmatched precision. Furthermore, current production quantities and techniques have reduced cost to a new low. For either present or future requirements, it will pay you to investigate Eclipse-Pioneer high precision at the new low cost.
*reg. trade mark bendix aviation corporation
AVERAGE ELECTRICAL CHARACTERISTICS-AY-200 SERIES**

	$\begin{gathered} \text { Type } \\ \text { Numbar } \end{gathered}$	Input Voltage Nominat Exclation	$\underbrace{}_{\substack{\text { Input } \\ \text { Curront } \\ \text { Milila mpar es }}}$	Input Power Wstt	$\begin{array}{\|c} \begin{array}{c} \text { Input } \\ \text { Imped danee } \\ \text { Ohims } \end{array} \\ \hline \end{array}$	8tater Output Voltagas Line to Lina	$\begin{gathered} \text { Rotor } \\ \text { Resistance } \\ \text { (DC) } \\ \text { Ohmis } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { stator } \\ \text { Resizisnce } \\ \text { SOC) } \\ \text { Ohms } \end{array}$	Maximum Etrar Sprasad Minutos
Transmitters	Ar201-1	26V, 400~, 1 ph.	225	1.25	$25+\mathrm{j} 115$	11.8	9.5	3.5	15
	AY201-4	26V, 400~, 1 ph.	100	0.45	$45+1225$	11.8	16.0	6.7	20
Receivers	AY201-2	26V, 400~, 1 ph .	100	0.45	$45+\mathrm{i} 225$	11.8	16.0	6.7	45
$\begin{aligned} & \text { Control } \\ & \text { Trans. } \\ & \text { formers } \end{aligned}$	AY201-3	$\begin{aligned} & \text { From Trans. } \\ & \text { Autosyn } \end{aligned}$	Dependent Upon Circuit Design				42.0	10.8	15
	AY201-5	$\begin{aligned} & \text { From Trans. } \\ & \text { Autosyn } \end{aligned}$	Dependent Upon Circuit Design				250.0	63.0	15
Resolvers	AY221-3	26v, 400~. 1 ph.	60	0.35	108+j425	11.8	53.0	12.5	20
	AY241-5	1V. $30 \sim .1 \mathrm{ph}$.	3.7	-	240+j130	0.34	239.0	180.0	40
Differentials	AY231-3	From Trans. Autosyn	Dependent Upon Circuit Design				14.0	10.8	20
**Also includes High Frequency Resolvers designed for use up to 100KC (AY251-24)AY-500 (PYGMY) SERIES									
Transmitters	AY503-4	26V, 400~. 1 ph.	235	2.2	$45+i 100$	11.8	25.0	10.5	24
Receivers	AY503-2	26V, 400~. 1 ph.	235	2.2	$45+1100$	11.8	23.0	10.5	90
Control formers	AY503-3	$\begin{gathered} \text { From Trans. } \\ \text { Autosyn. } \end{gathered}$	Dependent Upon Circuit Design				170.0	45.0	24
	AY503-5	$\begin{aligned} & \text { From Trans. } \\ & \text { Autosyn } \end{aligned}$	Dependent Upon Circuit Design				550.0	188.0	30
Resolvers	AY523-3	26V, 400~,1 ph.	45	0.5	$290+i 490$	11.8	210.0	42.0	30
	AY543-5	26v, 400~, 1 ph.	9	0.1	$900+\mathrm{i} 2200$	11.8	560.0	165.0	30
Differentials	AY533-3	From Irans. Autosyn	Dependent Upon Circuit Design				45.0	93.0	30

For detailed information, write to Dept. H.

ECLIPSE-PIONEER DIVISION of TETERBORO, NEW JERSEY

Export Soles: Bendix Internotional Division, 72 Fifth Avenue, New York 11, N. Y.
with headquarters in Hollywood, a post he has held since 1950. General Sarnoff said that Mr. West's election to the NBC board of directors was not only in recognition of fine performance of his duties but also of the growing importance of the West Coast in radio and television broadcasting.
Mr. West has long been associated with RCA, having been engaged in sales, advertising and public relations for the RCA Victor division beginning in 1930. He was named vice-president in charge of public relations for the RCA Victor division in 1947.

Quam-Nichols Plant
 Ready In July

The Quam-Nichols Company's new factory and executive offices on Chicago's South Side will be fully occupied by mid-July, according to Matt Little, president.

A feature of the new plant is the experimental and development laboratory designed by J. P. Quam, board chairman of the company and inventor of many of its products.

Quam-Nichols factory
The new building will have more than twice the productive capacity of the old plant. Moving from the present plant will begin in late May, with full production in the new plant scheduled for July 20, at the end of the summer vacation periods.

Corning Appoints Five To New Division

Five major appointments in Corning Glass Works and the establishment of a new operating division in the company were announced recently.

Three new officers, John L. Hanigan, Frederick H. Knight and Henry H. Sayles were elected vicepresident, secretary and assistant secretary respectively. Thomas

Waaland was appointed director of industrial relations and John F. G. Hicks was made general manager of the newly formed International Division of Corning Glass Works. The International Division will consolidate under one head all foreign activities of the company, including export sales, foreign licenses, exploration of new overseas markets and relations with Corning's foreign subsidiaries and associates.

TelAutograph Buys
 Electrotechnic Corp.

Louis R. Kurtin, chairman of the board of TelAutograph Corp., announced that the firm has completed negotiations for the complete purchase of Electrotechnic Corp. of Azusa, California.

Purchase of the facilities of Electrotechnic will augment the research and manufacturing capacities of TelAutograph and supplement the electronic manufacturing operations of the concern.

Electrotechnic will operate as a wholly owned subsidiary of TelAutograph Corp.

General Dry Batteries Appoints Byrom

James L. Byrom
General Dry Batteries, Inc., Cleveland, has appointed James L. Byrom to the new position of director of engineering, it was announced recently by president Walter A. Onorato.

The position was created, Mr. Onorato said, as part of a broad

Hidden in the heart of your product is the little component that means the big difference between robust, responsive performance and mere adequacy ... between long life expectancy and premature failure. Give your product the core it needs to deliver its full performance potential. Specify a Moldite core specifically designed and precision-made for your equipment.

MAGNETIC IRON CORES - FILTER CORES MOLDED COIL FORMS - THREADED CORES sleeve cores • CUP CORES

full performance potential for your equipment WITH CORES BY

Samples promptly submitted upon request for design, pre-production, and test puposes
SEND FOR CATALOG 110
NITIONAL

C(MPANY
1410 ChESTNUT AVE., HILLSIDE 5, N. J.

150kc to 25 mc

Commercial Equivalent of AN/PRM-IA. Self-contained batteries. A.C. supply optional. Includes standard broadcast band, radio range, WWV, and communications frequencies. Has B.F.O.

${ }^{48}$

program to strengthen the company's functional organizations and to expand all phases of engineering activities in producing its full line of dry-cell batteries.

For the past 5 years Mr. Byrom has been vice-president and general manager of the Chandler-Evans Division of Niles-Bement-Pond Co. at West Hartford, Conn. Before that, he served 4 years with Underwood Corp. as chief engineer and 14 years with National Carbon Co. in Cleveland as head of the machine development department.

New Heppner Plant

A SECOND plant has been opened by Heppner Manufacturing Co., Round Lake, Ill. Located in Mendota, Ill., the new plant is devoted exclusively to manufacturing ferrite rod antennas and flyback transformers.

Becker Joins Ampex

Carl H. Becker
Carl H. Becker, German physicist and audio engineer, has joined the staff of the Ampex Electric Corp., the firm recently announced.

From 1930 to 1943 he was chief sound engineer and physicist for UFA, German motion picture producer. While with UFA he developed stereophonic film-recording.

When the German government banned the production of civilian films in 1943, he organized Stereophone Ltd. in Bavaria. He was president of the organization until
he came to the U. S. last fall.
At Stereophone, a research, development and manufacturing organization, he was directly connected with such activities as the analysis of explosive sound pressures with stereophonic equipment, bombsight and release equipment, magnetron transmitters and power supplies for magnetrons and klystrons and the acoustical control of torpedoes and guided missiles. The company also manufactured complete film studio equipment and was engaged in the development of magnetic video recording.

Allemang Made V.P Of Planning For Philco

Herbert J. Allemang, management consultant who joined Philco as a corporate officer in 1951, has been appointed vice-president in charge of planning for Philco Corporation, it was announced by William Balderston, president.

In his new capacity, Mr. Allemang will be responsible for the long-range planning of manufacturing facilities, organization and operations of Philco.

Cardwell Appoints
Engineering Director

John A. Doremus
Ralph H. Soby, president of the Allen D. Cardwell Mfg. Corp., recently announced the appointment of John A. Doremus IV as director of engineering.

Mr. Doremus, formerly chief engineer, Carrier and Control Divi-

For years, National dials have been the dials have been th amateurs, experimenters and commercial users because of their smooth, velvety action, easily-read scales, and quality construction. Many dials, like the N and $A C N$ Many dials, like the N and A
dials shown, can be specially calibrated or supplied with blank scales for commercial application. Write for drawings and prices.
POPULAR NATIONAL DIALS

POPULAR NATIONAL KNOBS

Clear, functional, chrome-andplastic styling and sturdy construction make these the most popular knobs of their type ever produced. All fit $1 / 4^{\prime \prime}$ shafts. For commercial applications, they can be supplied in special colors and with special calibrations. Write for
> drawings and prices.

Write for drawings

precision connectors by Continental

Hermetic Seal

Connector Plugs Series H-20

for use in sealed or pressurized equipment . . . avail. able in 14,18 , and 20 contacts for $\$ 20$ AWG wire .5 amp. continuous current rating... submit your special hermetic seal connector problems to our engineering department.

Continentall Connectors

[^25]sion, Motorola, Inc., will be responsible for the company's engineering research as well as engineering supervision of government projects.

Aircraft Engineering
 Gets Electronic Division

AN electronics division has been established at the Oakland, California Airport plant of Aircraft Engineering and Maintenance Co.
According to Douglas F. Johnson, president, the unit will produce component parts of electronic devices and communication equipment. The company will handle final assembly of parts and do research.

Grand Elected Chairman Of Granco Products

Jack Grand

Jack Grand has been elected chairman of the board of directors of Granco Products, Inc. The company was recently organized for the design, manufacture and distribution of converters for uhf television reception and uhf measuring instruments.

Mr. Grand has been associated with the electronics industry for 30 years in merchandising and manufacturing.

General Electrosonics
 And Segalock Merge

General Electrosonics, Inc. has merged with Segal Lock and Hardware Co., Inc. according to a joint announcement by G. Emerson Pray, president of General Electrosonics,
and Meade Johnson, president of Seal Lock. The merger is expected to provide the electronic industry with an immediately large new resource.

Under the plan of the merger, Mr. Pray and Capt. L. B. Blaylock, vicepresident of the company, who was formerly in charge of the research and design section of the radio division of the Bureau of Ships, will continue in the active management of General Electrosonics. However, the factory will be consolidated at the plant of the Norwalk Lock Commany, major producing subsidiary of Segalock.

According to Mr. Pray, the merger was undertaken to provide the organization with the enlarged manufacturing facilities needed for rapid expansion. The Norwalk Lock Company was interested in expanding into the electronics field. The merger offered a means to acquire an organization of engineers with special knowledge of current electtronic developments plus fully equipped laboratories and test equipment which could not be duplicated in less than a year of assembling and purchase.

Svihel Heads Kuljian
Electronics Department

Bernard T. Svihel
A NEW electronics division has been established by the Kuljian Corp. with Bernard T. Svihel in charge. He comes to the company with over 15 years experience in the radio and electronics industry, having

Norden designers, engineers, researchers are never satisfied. Yesterday's product must be made better today. The design, development and production of instruments and systems for today's high speed aircraft and mossites - and for even faster ones tomorrow - must incorporate accuracy approaching absolute perfection.

This is where Norden plays its role as a leader. One example: the Norden true air speed system, already in serveice, which incorporates a mach meter computer of remarkable accuracy. It, with other Norden developments, gives meaning to Norden's reputation - instruments and systems of highest precision.

been responsible for extensive design and research work in analog computers, differential analyzers and servo-mechanisms.

A graduate of the University of Minnesota, Mr. Svihel was for 6 years a member of the electrical engineering staff at MIT, where he served for a time as a project engineer in charge of the MIT Rockefeller differential analyzer. For 4 years he was with the Franklin Institute in charge of electronic computation and simulation.

Perkin Moves Into New Plant

The Perkin Engineering Corp. has announced its move into a new $10,000 \mathrm{sq} \mathrm{ft}$ plant in El Segundo, California.

New Perkin plant
The plant is fully equipped with modern machinery and facilities for the production of the company's line of electronic equipment.

Boonton Names Gilman Chief Engineer

The appointment of Samuel Gilman as chief engineer of Boonton Radio Corporation has been announced by G. A. Downsbrough, president and general manager. Mr. Gilman was formerly associated with American Machine and Foundry and with Westinghouse Electric.

Leeds \& Northrup And S.A. Integra Merge

The formation of Integra-Leeds \& Northrup Ltd., Birmingham, England, is jointly announced by Charles S. Redding, president of Leeds \& Northrup and Maurice Bouffart, managing director of S. A. Integra, Liege, Belgium.

The new firm succeeds to the
business formerly conducted in Birmingham under the name of the Integra Co., Ltd., which was a branch of the Liege firm and for some years has been the English agent for L\&N products. That business will be expanded to include the manufacture of the products of both Leeds \& Northrup and S. A. Integra. Ownership of IntegraLeeds \& Northrup Ltd. is shared by Leeds \& Northrup and the owners of the former Integra Co., Ltd. Managing director will be Jean Register, previously manager of the Birmingham firm. Mr. Redding will be a member of the new company's board of directors.
"Creation of the English company," say its spokesman, "will strengthen the long-standing and cordial relationships of S. A. Integra and Leeds \& Northrup. S. A. Integra will act as agents for both the American firm's and the new English firm's products in Belgium."

Hallock Advances At Bardwell \& McAlister

Robert D. Hallock

Robert D. Hallock has been advanced from the position of chief engineer to plant manager of Bardwell \& McAlister, Inc., according to John N. Valianos, executive vicepresident. In this new capacity Hallock will be in charge of both engineering and production.

Prior to joining Bardwell \& McAlister, Mr. Hallock was associated with Solar Mfg. Co., Standard Coil

Panoramic's simple "add 30 MC " formula illustrated in the diagrams above provides econony through versatility. This important advantage meets the need for a single low cost, highgrade spectrum analyzer usable on many bands . . . UHF, VHF,
and nicrowave. First cost economy is achieved since the SB-8a is a basic foundation spectrum analyzer which simply requires a signal generator to convert the test signal to the input frequency of the Panalyzor! Conversion is effected within the equipment. External mixers are recommended for microwave conversions. APPLICATIONS: The Panalyzor is designed for application of research level yet it is so simple to operate that it is used extensively for production testing . . analysis of pulsed $R F$ signals, output of magnetrons, klysirons, and other radar gear, FM signals and noise modulated carriers . . . detection of spurious oscillations and modulations . . frefuency measurement . . . radar gear adjustment.

RADIO PRODUCTS, INC. Unique SB-8a Features Assure

Peak Efficiency

- variable bandwidth IF section accommodates a range of pulse widths, prevents masking of nulls in spectrum distribution - 10 mc . scanning width continuously reducible to approximately 0 me - selectable scanning rates $1 \mathrm{cps}, 5 \mathrm{cps}, 30 \mathrm{cps}, 25-35 \mathrm{cps}$ variable - $5^{\prime \prime}$ long persistance C -R tube.
Write today for complete information, prices and delivery.
10 South Second Ave., Mount Vernon, N. Y. MOunt Vernon 4-3970 COAXIAL SELECTOR SWITCH

50 Ohms Type N Connectors-Manually Controlled Low VSWR-4 Models

The COAXWITCH is an RF swirch for use in coaxial circuics where it is important chat the 50 OHM impedance of the cables be maintained. In a circuir sense, this switch consists of two pairs of " N " connectors spaced $43 / 2^{\prime \prime}$ apart using RG.8/U as the con. aecting link. The COAXWITCH itself fatroduces no VSWR other than that of connectors. Characteristic impedance is maintained thru all switch details. Cut-a-

way view shows that shield as well as center conductor is switched. Beryllium copper contaces, on the gooseneck. mate directly with mate "N" (Type UG. $21 B / U$) connectors, which connect directly to back plare of switch. Since all connectors come out in line with axis of switch, right angle conaectors are usually unnecessary.

Literature Gladly Sent

:3円~ ELECTRONIC CORP
 1800 EAST 38TH ST, CLEVELAND 14, OHIO IERMAMN: Caxixal Ini listuments

1. ACCURACY

Better than 05% from $20^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$
2. SENSITIVITY

Usable indication with 1 milliwatt input
Adjustable for higher levels
3. INDICATOR

50 Microammeter
4. INPUT

50 Ohm Type N Connector
5. EXTERNAL DC OUTPUT Pin lacks
6. EXCURSION OF MICROMETER One-half inch
7. MICROMETER SCALE
at 1000 Mc -
1 Division equals 290 KC at $1400 \mathrm{Mc}-$
1 Division equals 350 KC at 2000 Mc -
1 Division equals 450 KC at $2600 \mathrm{Mc}-$ 1 Division equals 555 KC
8. EXTERNAL SIZE
$61 / 2 \times 93 / 4 \times 7$ "
9. WEIGHT

Four pounds

(Cavity units are also avail-

 able for custom housing)

frequency standards

P. O. Box 504 Asbury Park, New Jersey

PLANTS AND PEOPLE

Products Co. and Airesearch MIfg. Co. as a design engineer in the electronic divisions of these companies.

Transformer Engineers Acquire Miller Corp.

THE business of William Miller Corp., has been acquired by the Transformer Engineers group, also of Pasadena. The new company, William Miller Instruments, Inc., will continue to manufacture the Miller line of recording oscillographs and related equipment as well as specialty transformers manufactured by Transformer Engineers. E. E. Hoskins is president of the new company. He has been president of Transformer Engineers since 1945, and prior to that was vice-president and chief engineer of Consolidated Engineering Corp. George W. Downs, formerly vice-president and chief engineer of William Miller Corp., is vicepresident and E. M. Graham, former treasurer of Transformer Engineers, is treasurer of the new company.

William Miller plans to devote his time to his other interests which include Applied Physics Corp. and Research Engineering Corp. of Pasadena.

JFD Opens New Plant

The newest addition to the JFD Manufacturing Co. was recently opened in Brooklyn, N. Y. The new all-brick building provides 140,000 sq ft of additional space for the expanding firm.

OTHER NEWS

Clendenin Ryan Of IT\&T Enters Governorship Race At a meeting of the board of directors of the International Telephone and Telegraph Corp., Clendenin J. Ryan resigned as a director of the corporation in order to enter the race for the governorship of New Jersey as a candidate of the Independent Voters Party.
Mr. Ryan, who has served on the board since December 1948, has taken an active interest in the cor-
poration's affairs. In offering his resignation, he said that his tenure had afforded him a great deal of satisfaction and further stated:
"It is with a feeling of profound regret and reluctance that I offer my resignation from the board of directors of IT\&T, but I see no other course."

Garco Joins Garrett

Garco
Garca, a $5 \frac{1}{2}$-foot, 250 -pound robot created by Harvey Chapman, a Garrett Corp. engineer, has joined the company to demonstrate its products. His brain is a modified temperature regulator which operates his right arm through an electronically controlled servo-mechanism. He has solenoids to move his jaw and lip, step motors to rotate his eyes and a two-way transmitter to give him a human voice. His electronic brain is a basic servo-system multiplied 6 times. Six channels include subminiature potted twostage amplification units, one for each channel.

MIT Offers Courses On

Computers, Transistors
THE potentialities of modern electronic processing systems will be emphasized during a two-week special summer program on digital computers and their applications from August 24 to September 4 at MIT.

The program is especially de-

Try Remler for Service-Tested

Custom

REMLER TUBE SOCKETS

- Standard for 30 years...

THE BEST IN THE INDUSTRY
Heavy duty phenolic sockets with high current wiping action contacts . . . for industrial, transmitter and test applications. Rugged. Years of tube insertions and withdrawals do not impair contact effectiveness. Black phenolic, low loss phenolic or alkyd.

Remler Company Ltd. 2101 Bryant Si. San Francisco 10, Calif.

Since $19 / 8$ pioners in electronics and plastics

New concept in photography

Motorized For Sequence and Remote Control Photos

Set the Robot-Star just once, and yoc're all set for as many as 24 (or 48) exposures, made singly or in rapid-fire sequence, as fast as 8 p \because r second! Robot-Star automatica ly moves film and resets shutter after each exposure. Surpasses human efficiency because of its built-in clock-work motor. Remote control release and other accessories bring new camera applications never before thought possible in science and industry as well as for personal use.
Takes any standard film-color, too Gets 50% more pictures, with 55 exposures instead of 36 per loading. Choice of Schneider lenses, wide angle to telephoto. For new camera thrills-get Rotot-Star-from $\$ 217.50$.

Write for authoritative treatise ENew Techniques in Photography for Industry and Sciènce"-Sent without chorge.
 cartridges.

251 Fourth Avenue - New York 10, M. 1.

Gets the action every time hecause thestigel Mataiged

Augat two-tension loop clamps are the long-sought answer for uses where socket tolerances vary up to .040. The bands of these sturdy clamps are made of Beryllium copper, heat treated to retain original tension and nickel plated to withstand a 96 hour salt spray test with no adverse effect.

The remaining parts of Augat's two-tension loop clamps are made of 18% nickel silver.

Write today for catalog and samples.

AUGAT BROS. INC.

31 PERRY AVENUE • ATTLEBORO, MASS.

IN-RES.CO SM-30 wise wound RESISTORS

 TYPESS Sm-15 \& SUB - MININATURE weathereteder midgets Type SM-15 and SM-30 Resistors offer three vital advantages - subminiature size, weather resistant construction and high resistance. The elimination of center hole mounting and the inclusion of axial leads increases winding area and results in 25% greater resistance value than resistors of standard design. Special coating is moisture and fungus proof and designed to meet: JAN-R-93 specifications, Sealed in Bakelite construction affords additional climatic protectection. As ratings are conservative, types SM-15 and SM-30 can be specified with confidence for service under rigorous conditions. resistors for every purpose and their recommended applications. Please pony lotierheod.

TYPE SM-15 5/16" DIA. $\times 3 / 8$ " LG.

TYPE SM 30 5/16" DIA. x 3/4"LG.

signed, according to Ernest H. Huntress, director of the MIT summer session, for those unfamiliar with digital computers who must determine how newly-available computing systems can be applied to their problems and the advantages that might accrue.
To bring industrial engineers current information in the rapidly expanding field of transistors, MIT will also offer a special summer program in transistors and their applications from July 20 to 31.
The aim of the program will be to define those areas in which the transistor may have immediate application and to make some prediction of its future. Approximately one-fourth of the MIT summer program will be devoted to a development of the theory of the operation of transistors, starting from familiar physical principles.
A third course, presenting a formalized theory for the analysis and synthesis of feedback control systems, will be given at MIT from June 22 to July 3.

GE Surveys TV

Service Work
Seventy percent of radie and television setowners responding in a market research survey completed recently by General Electric's Tube Department reported that the quality of the service work done on their sets has been either good or excellent, John T. Thompson, manager of replacement sales for the department, said recently.
Seventy-eight percent of the setowners felt that the charges for parts and labor were reasonable, Mr Thompson said.

While comparative figures are not available, Mr. Thompson said that in his opinion the new figures represent a considerable improvement over past years. He attributed the improvement to a concerted effort by the service industry to improve the quality of its work and increased public awareness of the tremendous problems that the rapid growth of television has posed for the service industry.

The survey covered setowners in cities and towns of all sizes in all television areas, and only setowners
who had had service work done on their sets in the last six months were contacted.

The following figures representing the overall results of the GE survey: Quality of service: 78 percent, reasonable; 22 percent, high. Speed of service: 44 percent, fast; 43 percent, average; 13 percent, slow.

The survey also showed that 90 percent of the setowners contacted had their repairs done by a service dealer or service department of an appliance store, and that only 7 percent had repairs done under a service contract.

VOA Needs Engineers

THE Voice of America has vacancies for unmarried radio engineers to operate its new 1,000 -kilowatt standard-band stations on Okinawa and the Philippines. A shortage of family-type housing precludes consideration of additional applications from married engineers at this time.

Salaries range from $\$ 4,323$ to $\$ 5,907$ per year, depending on education and experience, plus allowances and transportation.

Applicants must be single, between 25 and 35 years of age, holders of first class radio telephone licenses and must have had at least 3 years experience with stand-ard-band or short-wave broadcasting transmitters.

Applications should be addressed to: Office of Facilities Manager, International Broadcasting Service, Department of State, 251 West 57th Street, New York, N. Y.

ICS Offers Course In Industrial Electronics

A NEW COURSE in industrial electronics has been announced by the International Correspondence Schools of Scranton, Pa.

The course is designed to meet the needs of engineers and technicians, electrical, mechanical, civil and chemical, who wish to take advantage of the applications of electron tubes in their own fields. Estimated average study time required for the completion of the zourse is 800 hours.

GRC

ZINC ALLOY

 FASTENIHCS
GRC CAP NUTS

Die cast, not turned! Free of tool marks and cut-off burrs; class 2 threads tapped-square with face of nut. to assemble, disassemble; brightly finished, clean threads

NEW! GRC WING SCREWS
A steel screw combined with GRC's attractive finger-grip wing-nut.

- RUSTPROOF

- DEPENDABLE
- DURABLE

GRC SMALL TUBULAR RIVETS

Die cast, not headed! Closer tolerances, more uniform heads for greater riveting efficiency. Dia. up to $9 / 64^{\prime \prime}$; lengths to $5 / 16^{\prime \prime}$.

Gries die cast zinc alloy fastenings are duradie, rustoroof economical, too! All Gries fasten. ings may be used without protective finishes in ings may be used without protective finishes in finishes when desired. Prompt delivery on standard sizes-specials to order.

Write Today for Samples and Prices

Simple...Easy to Operafe... Economical Standardization of Unit Makes This New Low Price Possible.
Maximum economies can be obtained only by use of correct frequency and power combinations when applying the techniques of induction heating to monufacturing processes.
It is significant that only Scientific Electric in the present market, con offer you o selection of frequencies depending on power required, in wide power ronge. 2-3 $1 / 2-5-6-71 / 2-10-121 / 2-15-18-25-40-60 \mathrm{KW}$ foll units above 60 KW are considered custom built). This meons that electronic heating equipment produced by Scientific Electric is tailored to your needs... fitted perfectly to the task entrusted to it, enabling you to keep your initial investment in equipment to a minimum while affording you oll the proven advantages of electronic heating.
Write now for complete information or send samples of work to be processed. Specify time cycle for your particular iob. We will quote on proper size unit for your requirements.
hgh frequency and high voltage equipment since 1921
DESIGNERS AND MANUFACTURERS OF HIGH FREQUENCY AND HIGH VOLTAGE

DC-AC CONVERTER

These latest of all Carter DC to AC Converters are specially engineered for professional and commercial ap. plications requiring a high capacity source of 60 cycle AC from a DC power supply. Operates from storage batteries, or from DC line voltage. Three "Custom" models, delivering 300, 400 , or 500 watts 115 or 220 V . AC. Wide range of input voltage, 12, 24, 32, 64, 110 or 230 V. DC. Unequalled capacity for operating professional recording, sound movie equipment and large screen TV receivers. Available with or without manual frequency control feature.

MAIL COUPON FOR CATALOG
Carter Rotary Power Supplies are made in a wide variety of types and capacities for communications, laboratory and industrial applications. Used in aircraft, marine, and mobile radio, geophysical instruments, ignition, timing, etc. MAIL COUPON NOW for complete Dynamotor and Converter Catalogs, with specifications and performance charts on the complete line.
 Chicago 47

Corter Motor Co.

2646 N. Maplewood Ave., Chicago 47

Please send new catalogs containing complete information on Corter "Custom" Converters ond other Rotary Power Supplies.

Address
City
Want more information? Use post card on last page.

NEW BOOKS

A Machine Wiser Than its Maker

By Norbert Wiener*
THE last ten years have seen the emergence of a new point of view on communication as well as a new point of view on automata as communicative mechanisms. The work in these fields may already be divided into two stages. The earlier stage was that in which my own work figured, and in which Claude Shannon, who has been one of the most original contributors, was devoted to the elucidation of the notion of communication itself, to the theory and practice of the measure of communication, to the study of control as a phenomenon of an essentially communicative nature, and in general to the grammar of the new science which I have called cybernetics.

Dr. Ashby's work represents a chapter of cybernetics, the inception of which dates back to the earliest days of the science, and which is devoted not so much to the first questions of definition and vocabulary of ideas, but to those questions of the philosophy of the subject which involve the specific properties of cybernetic systems and which, although they go back to the definitions, represent questions of fact and of logic which go considerably beyond the definitions.

Among the questions with which he concerns himself are: What is learning? In order for a machine to be able to learn, does the capacity for learning have to be put into the machine by a highly specific organization, or can machines with a large measure of random organization show the phenomena of learning? Can a machine be wiser than its maker?

All of these questions may be asked at two different levels. On the purely biological level, they represent considerations which have haunted the biologist ever since his science passed beyond the level of a purely theological justification; in particular, they concern the very

[^26]

Transformers for Television
... Radar... Aircraft... Geopbysics. . . Radio

You will find Thermador ready, willing and fully qualified to handle your trans. former requirements. Engineering experience and manufacturing know. how, developed over a period of 35 years, form the hard core that makes Thermador today's largest West Coast manufacturer of electrical appliances and transformers. We would like to work with you on your next project involving the design and production of transformers for specific requirements ...including joint Army-Navy specifications.

transformers:

Audio Auto Geophysical
Driver Filament High-Fidelity Audio
Input-Output Midget Plug-In
Plate Power Television
Tube to Line
,..also Chokes and Reactors
thermador electrical MANUFACTURING CO.
vital core of the problems of evolution and more particularly of Darwinian evolution by natural selection. On the mechanical level, these problems arise in connection with the much more limited man-made machines, and concern the restrictions to which man must submit himself when he deliberately usurps the functions of the demiurge.

Man-made vs Nature-made Machines
Giving all possible weight to the greater capacity and adaptivity of structure and function which nature's machines show in comparison with those of human manufacture, the man-made machines have added a new weapon of natural experiment and conceptual experiment to the armory of science. Just as the fruit fly seems to have been made explicitly for the purpose of changing genetics from the science of secular observation, which it would necessarily be if it were confined to man and the larger domestic animals, into a science compatible with the space and time limitations of the small biological laboratory, so the machines bid fair to reduce our study of biological processes of learning and adaptation, of individual development and evolution, to a scale on which we can handle these elusive concepts with something of the certainty and precision of the physical and engineering laboratory. Among the scientists who are not merely talking in these terms but actually doing something about it, Dr. Ashby is well to the forefront.

The main concept of natural selection as applied by Darwin to the theory of evolution is that the flora and fauna of the earth represent a pattern which has been arrived at as a residual pattern rather than by any direct process of striving for perfection. They do not represent a block of marble emerging into the shape of perfect sculpture under the hands of the creative artist, but rather one of those wind-sculptured pillars of sandstone which adorn the canyons of Utah. The fortuitous vicissitudes of erosion have added up to make these pillars of stone over into the guise of castles and monuments, and even of human and animal figures. Yet their

ELECTRIC INSTRUMENT \& CONTROL HEADQUARTERS

 YES, OFF-THESHELF SERVICE

Electro-Tech maintains one of the largest and most com plete stocks in the country of electrical meters, instruments and industrial control equipment-representing over 250 top lines.

Yes, our warehouse is bulging with standard sfocks of

Counters	Solenoids	Toggle Swilches
Panel Meters	Tachometers	Shunts (Electricall
Transformers	Thermometers	Meggers
Switchboard Meters	Thermostats	Solenoid Valves
Micro Switches	Rectifiers	Pyrometers
Photo Electric Equipment	Rheostals	Multimeters
Relays	Timers	Oscllloscopes

FOR SPEED
Wire - Code RDL Wire - Code 1-290 Toletype-NY 1-290
Phone-BArclay 7-420*

CONSULT US ABOUT YOUR REQUIREMENTS
In addition, we manufacture and stock Special Test Equlpment - Electric Heating Units - Current Transformers Pyrometers - Thermocouples - Rectifiers.

Our laboratory is available for repair work, rescaling, recalibration and special calibration of your electrical and industrial instruments. Often months are saved by rescaling and calibrating stock instruments to your specifications.

Conform to
JAN-C-172A

SPECIFICATIONS

 ... but are actually made to exceed AN-E-19 Drop Test requirements RUGGED PROTECTION for VITAL EQUIPMENT: Finnflex Mounts isolate vibration and shock from Electronic. Communication, and Control Equipment. They offer trol Equipment. They offer unimpaired efficiency from-80° to $+250^{\circ}$ F. "Selective Action" friction dampening. non-linear steel springs, and other features. Wide range of sizes and load ratings available. Fire Control Units. size or weight of equipment mounted.

T. A. FINN \& COMPANY, Inc.
 Specialists in Vibration Control
 383 JACKSON AVENUE, NEW YORK 54, N. Y.

Phone: CYpress 2-4192-3-4

SHOCK MOUNTS for Signal Corps Mobile Equipment and for Naval
SPECIAL PROBLEMS: Complete facilities for designing and fabricating Shock and Vibration Mounts to order - regardless of

Specify FINNFLEX—for Ruggedness. Effciency, and Economy.
Write for Catalog MB-110

> AIRBORNE MOUNTING

TYPE TPM YIBRATION ISOLAIOR

> ZOPHAR MILLS, INC. 112-130 26th Street, Brooklyn 32, N. Y.

VIBRATION ISOLATORS and SHOCK MOUNTS
To JAN-C-172A SPECIFICATIONS and TO ORDER
which we find in the biological series because of their incapacity to survive in the struggle for existence, appears in radio-active evolution because the unstable forms are run through so quickly that we do not notice them to the same extent as we notice the more stable forms.

One of the results of this statistical preponderance of stability in the universe is our very small knowledge of what happens in the critical periods of instability. For example, we have a well known effect, discovered by Arthur Compton, that when a photon hits an electron, the electron and the photon both jump off in directions which are only statistically determinable. There is at least a suspicion that what really happens is that the uncoupled electron and photon enter into a coupling over a period too short for us to determine what is really happening, and are then dropped from this coupling through weaker and weaker couplings, each taking its own course. Physicists like Bohm have suggested that what in fact happens is not so indeterminate as this, but that we have a very complicated succession of events occurring during that minute period of time when the particles are near together which determines the way they are to go later. If this is true, then a large part of our most essential physics is unknown because we run through it so quickly and we have no record of that.

As to these two sorts of natural selection, namely natural selection by the destruction of the unfit, and natural selection by the extremely rapid manner in which we run through the unstable, the latter is the one indicated when we have phenomena of conservation which prevent the mere removal of the unstable. Ashby considers highly complicated machines where the different elements are coupled to one another in something of a random manner so that we know something about the statistics of coupling and very little about the detail. These machines would in general be explosively self-destructive if we did not introduce into them safety elements similar to what we call amplitude limiters in

523 Hillgrove Avenue, La Grange, Illinois
Phone: La Grange 8000

TOPS! AEROCOM'S DUAL AUTOMATIC PACKAGE-TYPE RADIO BEACON!

 remperature range $-35^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ usingThis aerophare, for unattended service, consists of two 100 watt (or 50 watt) transmitters with keyer, automatic transfer and antenna tuner.
Frequency range $200-415 \mathrm{kcs}$., crystal controlled (self-excited oscillator coils available). High-level plate modulation
of final amplifier is used, giving 40\% tone modulation in 100 watt transmitter and 60% in 50 watt model. Microphone P-T switch interrupts tone, permitting voice operation.

This unit can be operated in air 3 B25 rectifiers; humidity up to 95%
The "stand-by" transmitter is selected when main transmitter suffers loss (or low level) of carrier power or modulation. Audible indication in monitoring receiver
 tells which transmitter is in operation.

interested in
 H-E ?

*HIGH EFFICIENCY

In ressigarte NTTHELFER "NWL" SIECIAL TIEANSEDHMERS
For ELIECTIBGNICS. IBESEIIBCH tind SPECIMLINDISTIEIAL FIELDS

Over 28 years' experience in the manufacture of special transformers to meet individual requirements. Built in quality proved by years of actual use.

From 10 VA to 300 KVA Dry-Type only. Both Open and Encased. 1, 2, and 3 Phase. 15 to 400
 cycles.

9 ALBEMARLE AVE., TRENTON 3, N. J.

electric circuits. These limiters have the effect of causing the system to show a certain sort and measure of conservation. Therefore the Ashby machines tend to spend a large part of their existence in time in relatively stable states, whereas their instabilities, although they do exist, are so restricted in time as to show very little in a statistical study of the system.

It should be remembered that it is the relatively stable states which interest us in the phenomena of life and behavior rather than the absolutely stable ones. Absolute stability is only to be attained at very large values of the entropy, and is essentially the heat death. However when a system is excluded from this heat death by some of the conditions to which it is subject, it will spend most of its existence in states which, while not states of pure equilibrium, are equi-librium-like. That is, the entropy is not an absolute maximum but is either a relative maximum or at any rate changes very slowly in the neighborhood of these states. It is such equilibrium-like states rather than true equilibria which are associated with life and thought and all of the other organic processes.

Machines with Eyes and Ears?

I think I am thoroughly in the spirit of Dr. Ashby when I say that these equilibrium-like states are in general states in which there is a relatively small transfer of energy between the system itself and its environment, but nevertheless a relatively large coupling of information. The systems of which he is thinking have eyes and ears and thus obtain the wherewithal to adapt themselves to the outer environment. They approach automata in their internal energy balance, but are very far from automata in their external entropy or information balance. Thus the type of equilibrium to which they approach may be an equilibrium in which they are well adjusted to changes in the outer environment and to a certain extent insensitized to such changes. They exist in a state of partial homeostasis.
In his homeostat, Dr. Ashby de-
signs an instrument with this sort of coupling to the external environment, and with a certain degree of randomness in its internal structure. Such a machine can learn to a limited degree: that is, it can adjust itself by its mode of behavior to a stable balance with its environment. Nevertheless, the actual homeostats so far designed in detail by Dr. Ashby, although they have an ability to absorb information from the environment, contain in their own structures a degree of information and a mass of decision relatively large when compared with that which flows in through what we may call their sense organs. In short, these machines can learn but are not in fact wiser than their makers, or indeed nearly so wise. Nevertheless, Dr. Ashby is of the opinion that machines can indeed be made which are wiser than their makers; and in this I fully concur with him. There is no a priori restriction of the amount of information which an instrument can observe through its sense organs to that not involving a larger number of decisions than have already been built into its structure. In general the ability of a system to absorb information from outside starts growing rather slowly compared with the amount of built-in information. And it is not until the built-in information has passed a certain point that the capacity of the machine for absorbing further information begins to catch up with what is intrinsic in its structure. But in a certain degree of complexity, the acquired information not only can equal that which has been originally placed in the machine but can vastly exceed it; and from that stage of complexity on the machine begins to particibate in some of the important characteristics of a living being.

Complexity - a Necessity

The situation has a curious parallel with the atmoic bomb or the atomic pile, or with the similar situation of a fire in a fireplace. If you try to build your atomic pile or bomb too small, or if you try to light a single solid oak \log with a match, you will find that any chemical or atomie reaction which

MANUFACTURERS OF ELECTRONIC INSTRUMENTS AND PRODUCTION TEST EQUIPMENT

DEVELOPMENT and PRODUCTIOM METALLURGISTS

Fine wire and ribbon in base, rare, and precious metals, and alloys for new and highly engineered applications In small units and sizes, and to close tolerances. further details on request.

For SPECIFIED PERFORMANCE Specify JELLIFF RESISTANCE WIRE
 COMPLETE CONTROL OF MANUFACTURE . . . A WIDE RANGE OF EXPERIENCE . . . A WIDE RANGE OF ALLOYS . . .

make JELLIFF the ideal source of
Resistance Wire to assure your Product's

Performance According to Specs.

Precision resistors-rheostats-relays-thermocouples-ohmmeters —bridges—high-temperature furnaces can all benefit from the PLUS-PERFORMANCE of JELLIFF RESISTANCE WIRE

Detailed Enquiries Welcomed. Address Dept. 25

you start will die down the moment its stimulus is removed, and will never keep constant or build up. It is only when the fire lighter reaches a certain size or when a certain number of molecules accumulate together in the atomic pile, or when the mass of uranium isotope reaches a certain explosive size that new things begin to happen, and that we see more than fugitive and incomplete processes. Similarly, the really imposing and active phenomena of life and learning only begin after an organism has reached a certain critical degree of complexity, and although this complexity is probably attainable by purely mechanical means of not excessive difficulty, nevertheless it strains such means to their very limit.

It will be seen from this discussion of only some of the items and ideas contained in it, that Dr. Ashby's book gives us an inspiring insight into new vistas of thought. Dr. Ashby, indeed, though he has a highly mathematical imagination, is not in the full sense a trained mathematician and it remains for trained mathematicians to carry out many of the ideas which he has sketched. He does not claim to be a trained mathematician but he is obviously a man of insight and genius, and his book must be read as one of the first fruits in a field deserving of much further cultivation.

Electronic Digital Computers

American Institute of Electrical Engineers, 33 W. 39th St., New York 18, N. Y'. 1952, 114 pages, $\$ 3.50$.

THE publication of the papers and discussions presented at the Joint AIEE-IRE Computer Conference, Philadelphia, Pennsylvania, December 10-12, 1951, forms an excellent summary of the proceedings. It brings together into one wellwritten book the detailed facts about various large and small computing systems as well as operational experience with these systems.

In most cases the proceedings reports extend the detail and information content of the original oral paper, especially as to machine organization and processes.

The fact that some of the sys-

Research - Development - Engineering - Manufacturing

CUSTOM BULLT EEECTRONCS!

CDC are designers and engineers of Electronic Devices to fit your requirements.

- Digital and Analogue

Computers

- Test and Measuring Equipment
- Servo Systems
- Instrumentation
- Engineering Consulting Service
- Product Engineering and Design
- Parts Machining and Assembly
- Instrument and Electronic Equipment Overhaul
- Fielld Maintenance of Electronic Computers
- Developments for Armed Forces

YOUR ENQUIRIES WILL RECEIVE PROMPT AND EFFICIENT ATTENTION

COMPUTING DEVICES of CANADA LIMITED
General Offices-338 Queen Street Laboratories-475 Cambridge Street, Otrawa, Ontario, Canada

NEW "PARAFORMED" spouAd PAPER TUBES

SMALL ROUNDED

 OUTSIDE CORNERSDO YOU HAVEA SPACE PROBLEM?
Eliminates squeezing operation of finished coil and possibility of shorts due to fractured enamel insulation.

WRITE ON COMPANY
WRITE ON COT FOR
LETTEREAD FOR STOCK ARBOR LIST STOCK AR 2000 SIZES

For the first time, a paper tube like this-developed and perfected by PARAMOUNT after years of research! No artificial heat or pressure is used in its manufacture"PARAFORAING" takes place at the time of actual winding. No sharp outside edges to cut the wire during winding of coils. Has great rigidity and physical strength. Permits coil manufacturers to hold much closer tolerances. No need for wedges to tighten the winding on the laminated core. Coils can be automatically stacked much faster, too. The new "PARAFORMED" tubes are approved and used by leading manufacturers. And they cost no more?

-0 0 0 A O D A 0 PAPERTUBE CORP.

616 LAFAYETTE ST., FORT WAYNE 2, IND.
Standard of the Coil Winding Industry for Over 20 Years

60-DAY FREE TRIAL

of America's most popular bench assembly stool

A tired worker costs MUCH more than a good chair

- 4-way adjustable backrest
- Scroll shaped posture seat
- Tamper-proof tubular all-welded construction
- Adjustable height ranges from $17^{\prime \prime}$ to $25^{\prime \prime}$ or $24^{\prime \prime}$ to $32^{\prime \prime}$

Now test Royal's famous No. 515 stool in your own plant without cost or obligation. See why the country's top firms choose it for superior versatility and durability. Write for free trial stool today!
metal furniture since ' 97

Royal Metal Manufacturing Co.
175 North Michigan Avenue, Dept. 2106, Chicagol
Factories: Los Angeles - Michigan City, Indiana
Warren, Pa. - Walden, N. Y. - Gall, Ontario
Showfooms: Chicago - Los Angeles - San Francisco
New York City - Authorized Dealers Everywhere

BETTER, FASTER, GHEAPER TESTING

 for insulation and winding faults

Westinghouse Surge Comparison Tester reduces production test time, permits positive results, fewer rejects-bringing substantial savings. This electronic device is designed to detect and locate insulation faults and winding dissymmetries in motors, generators, some types of transformers and coils. It operates quickly, simply, with fingertip control. Highly mobile and portable, it fits easily into production line techniques as well as repair shop. For more complete information, write Westinghouse Electric Corporation, I. E. Devices Section, 2519 Wilkens Avenue, Baltimore 3, Maryland.

YOU GAN BE SURE...IFIT'S

Westinghouse

STERLING
 A DEPENDABLE SOURCE FOR

 TRANSFORMERS

- Pulse
- Audio
- Power
- Filter Choke
- Filament
- RF Coils

Custom Built to your Specifications

tems have been improved and that much more operational data is now available on these systems, as well as some important new ones not considered in the proceedings, does not detract from the worth of the manuscript. Though not complete in respect to all computers and systems, of the time of the conference, nevertheless it is definitive with respect to most of the systems discussed.

As an indication of the continuing esteem that some computing engineers and mathematicians have for the book, one may cite their use of it in courses on computers as a text and a reference book.

The systems discussed at the conference include machines with magnetic drum storage for main memory, acoustic delay line machines, electronic tube storage, electrostatic tube storage and relay memory. Some operating experience with each type of machine, though not with each system, appears in the papers. There are some misleading remarks in several of these operational discussions. However, we in the computer field have faith that we will eventually live up to the claims! The operational discussions are quite well founded in fact, considering the generalities that one is forced into to discuss this facet of computers.

At the conference, papers by several English authorities were given on two of the English computing systems. Each of the machines discussed sprang from a University, the Ferranti machine from the University of Manchester and the EDSAC from Cambridge.

The Ferranti machine grew out of research on the storage of radar data and was initiated by the Telecommunications Research EstabIishment at Great Malvern in 1946. The project moved to the University in 1947. EDSAC can trace its history back to the Moore School of Electrical Engineering where Dr. Wilkes took a summer course in computers in 1946.

The ability of each of these machines to grow with the times is true of most of the American systems discussed. Indeed some growth of the systems is indicated in the papers.

American machines that are dis-

ELECTRON TUBE TECHNICIANS

We now : To qualify for one have of these openings several openings you should be for
technicians to work in the fabrication and processing of advanced type electron tube research models. experienced in experimental work for research and development in vacuum tubes, which includes the fields of mechanics electronics, chemistry and high-vacuum techniques.

```
ADDRESS RESUME OF TRAINING AND EXPERIENCE TO
```


HUGHES

```
RESEARCH AND DEVELOPMENT LLABORATORIES
```

```
    Technical | culver City,
    Personnel los angeles county,
Department CALIFORNIA
```


ELECTRONICALLY REGULATED

 LABORATORY power supplies

S.S. White resismeors

ARCREathet Resistors

Of particular interest to all who need

 resistors with inherent low noise level and good stability in all climates

STANDARD RANGE 1000 OHMS TO 9 MEGOHMS
Used extensively in commercial equipment including radio, telephone, telegraph, sound pictures, television, etc. Also in a variety of U. S. Navy equipment.

HIGH VALUE RANGE 10 to $10,000,000$ MEGOHMS

This unusual range of high value resistors was developed to meet the needs of scientific and industrial control, measuring and laboratory equipment - and of high voltage applications.

SEND FOR BULLETIN 4906 It gives details of both the Standard and High Value tion characterstics, dimensions. etc. Copy with Price List mailed on request.

industrial divisiom

 Depf. R, 10 East 40th St. \qquad NEW YORK 16, N. Y.Western District Office - Times Building, Long Beach, California

> It's "TREATMENT" that makes DANO your Best Bet for Coils

DANO's battery of vacuum impregnating tanks and heat controlled ovens for curing varnish impregnations is always at your service. Yes, Dano coils and Dano customers are always treated in the manner that makes your production pay dividends.

- Form Wound
- Paper Section
- Acetate Bobbin
- Molded Coils
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Application

THE DAMO ELECTRIC CO.
MAIN ST., WINSTED, CONN.

23 MILLION IN STOCK!

why EthoLoc cable clips?

1. Made of tough, durable Ethyl Cellulose plastic-no danger of shorts or grounds
2. Flexible and easy to apply-no sharp edges 3. Light in weight
3. Low in cos

- reduction in prices on many popular sizes - ume that made price reductions possible

Write for Sample and Full Information
WECKESSER CO.
5267 N. Avondale Ave. Chicago 30, III

CUSTOM DESIGNED PROTECTION for sub-miniature tubes
 ww NEW STAVER SUB-MINI-SHIELD

Here is a combination Shield, Clip and Mount to meet your T3 Sub-Miniature Tube holding and shielding requirements.
Wrap-around shield (A) assures close tube to shield contact for maximum heat dissipation. Firm clamping action of phosphor bronze shicld mount (B) secures tubes under the most severe conditions of vibration and shock. Easy-to-get-at rivet holes in base of mount facilitate easy riveting of mount to chassis.

Sub-Mini-Shields are now available for tube types T3-1, T3-2, T3-3, and T3-4; Diameter $366^{\prime \prime}$ to $.400^{\prime \prime}$ '

Manufacturers of the famous: MINI-SHIELDS \& MINI-SPRINGS
Bay Shore, Long Island, N. Y. Bay Shore 7-3620

Our Engineering Department welcomes your special Subminialure Shielding problems!
cussed include the Univac, the Burroughs Laboratory Computer, the IBM-CPC, the ORDVAC, the ERA 1101, the Bell Relay machines, the Mark III, the SEAC and the Whirlwind I.

With the exception of some of the Bell Relay machines these are general-purpose machines. The special-purpose machines such as the digital differential analyzers and algebraic linear equation-solving machines were not discussed at this meeting. One must go elsewhere to learn about them.

In addition to the papers mentioned there are three general papers and one on transistors. One of the general papers, Jay W. Forresters' concluding remarks, "Digital Computers: Present and Future Trends", presents some evaluation of the other papers and some opinions about the future trends. It might be worth while for the reader to read this first before plunging into the details of the other papers.

Mr. C. R. Strang of Douglas Aircraft Co., Inc. discussed their experiences in the use of electronic computers in the past and present, and future expectations. His graphs of their needs in personnel, floor space, power, and cost to man these machines are powerful proof of the fact that these machines are here to stay-and that it will be necessary in the future to make even better ones.-R. C. Douthitt, Computer Research Corp., Hawthorne, Calif.

Photoconductivity in the Elements

By T. S. Moss. Academic Press Inc., New York, and Butterworths Scientific Publications, London, 1952, 263 pages, $\$ 7.00$.
Physics, like any other human endeavor, has its fashions. Twenty or thirty years ago, no physics laboratory aspiring to be called modern could afford to be without active research in spectroscopy. Today's "fashions" include nuclear physics first, with solid-state physics a close second.

A book on photoconductivity covers an important branch of solid-state physics and, surprisingly enough, not a new branch either. In the eighty years since the dis-

Use WEST - CAP
 miniature CAPACITORS

to meet exacting requirements

sealed in metal case
Check these important features:

- Positive hermetic sealing
- Small physical size
- Tab or ext. foil construction
- Grounded or insulated sections
- Designed and built to meet most exacting requirements for:

1. Mechanical 3. Temperature
2. Electrical 4. Humidity Send for complete catalog and specifications
SAN FERNANDO

Box 952

12900 Foothill Blvd., San Fernando, Calif. Phone EMpire 1.8681
Offices: WASHINGTON, D.C.,
CHICAGO, DETROIT, N. Y.
GEAREDFOR FAST DELIVEMY

TEMPER-SAVING TIP
Use This "Borrow"-Proof XCELITE
Nut Driver Set

- Color-coded handics
- Lockable wall holder
Each of the 7 husky, man-sized handles telling you the size instantly. Deep sochets handle two nuts.
Precision-formed for rrecision-formed for

Of buy XCELITE
Or buy XCELITE nut drivers separately-stubby
The handiest tools in your shopl
See your XCELITE DFILFR TODAY!
XCELITE. Inc.
(Formerly Park Metalware Co., Inc.)
Dept. C
Orchard Park, N. Y.
Look to XCELITE

U. G. CONNECTORS

Our Coaxial Cable

 Connectors Meet All Government Specifications\star ALL ORDERS DELIVERED PROMPILY \star
Manufacturers of Higbest Quality Connectors

ALLIED INDUSTRIES, INC.
 1023 S. 21st STREET LOUISVILLE 10, KY.
 Phone Arlington 4640

Designers of original equipment now specify silicone rubber parts if they must undergo extreme temperature changes or if they require constant dielectric properties. Insulators, bushings, grommets and other small units are in continuous mass-production in our plants. Prompt quotations on receipt of your sample or blueprint.

MINNESOTA SILICONE RUBBER CO.

 5724 West 36th Street - MINNEAPOLIS 16, MINNESOTAAfiliated with Minnesota Rubber \& Gasket Co. OFFICES IN PRINCIPAL CITIES

covery of photoconductivity there have been several periods of intense activity in the field. We could say that the subject has gone through several periods of being "fashionable" and that at present we are in the middle of another revival.

What distinguishes a physical research subject from, let us say, hoop skirts, is that the changes from one revival to another are very profound. In that sense alone are we dealing with a new subject, and a modern presentation, representing new viewpoints and new information, becomes more than necessary. Indeed, the last specialized book partially covering this field is, to this reviewer's knowledge, more than 20 years old, and the number of scientific publications which appeared since then make the earlier book completely obsolete.

Without a doubt the publication of a new book on this subject is very timely and definitely overdue. In that sense the book written by Dr. Moss, an expansion of his doctorate thesis, fills a very acute need. However, there is a slight reservation in the preceding statement because it is this reviewer's wish to see the subject covered a little more thoroughly. Several restrictions present themselves. The first is indicated in the title. It deals with photoconductive elements and excludes all compounds. From the point of view of pure physics, a study of the chemical elements may offer the possibility of sticking to fundamentals and may permit greater simplicity in the treatment. In view, however, of the greater practical importance of photoconductive compounds, we will still have to wait for an authoritative and more embracing treatment of the subject.

A second restriction is the somewhat summary treatment of the theoretical aspects. The book is divided in two parts-Part I: Theory; Part II: Experimental Methods and Results. The theories are discussed for more than one-third of the book. However, this is not a purely theoretical treatment of the subject. There are several short chapters which give the necessary experimental background to theory;

Made of the finest dielectric kraft, fish paper, acetate, or combinations, PRECISION Paper Tubes are die-formed under heat and pressure. Uniformity, strength, and light weight are assured. High manufacturing standards and rigid testing result in maximum insulation, heat dissipation, and moisture resistant characteristics.
Available in any shape, length, I.D. or O.D. Finished to your exact specifications.

Send today for free sample and request new Arbor List of over 1500 sizes.

PRECISION PAPER TUBE CO.

2041 W. Charleston St.
Plant No. Two, 79 Chapel St., Hartford, Conn
Also Mrrs. of Precision Coil Bobhins.

Just right for your job!
 high-precision thermistors by BENDIX-FRIEZ

As temperature measuring elements and liquid level sensors, these temperature responsive resistors are the best you can huy. In standard or special types, their high-precision mamufacture mahes them precisely right for vour jol, when it comes to resistance values, size, temperature roefficient, mountings and quality. Ask us about applications.

STANDARD TYPES FOR IMMEDIATE DELIVERY

Size (inches)	$\left(a+30^{\circ} \mathrm{C}\right.$	$\left(a 0^{\circ} \mathrm{C}\right.$	$\left.(a)-30^{\circ} \mathrm{C}\right)$
$.140 \times .75$	45.0 ohms	86 ohms	194 ohms
$.040 \times 1.5$	12,250 ohms	26,200 ohms	65,340 ohms
$.018 \times 1.5$	35,000 ohms	82,290 ohms	229,600 ohms

Write for details.
FRIEZ INSTRUMENT DIVISION Of 1454 Taylor Avenue, BALTIMORE 4, MARYLAND Export Sales: Bendix International Division 72 Fith A venue, New York 11, N. Y.

PRECISION RF STEP ATTENUATOR

Model AT-120 0 to 1000 MC

Small, rugged ladder attenuator achieves attenuation accuracy and low vswr from dc to uhf. Suitable for all signal and sweep generators in this frequency range.
Care in design assures maximum flexibility in mounting, drive, and types of input and output connections.
Easily adaptable for inclusion in different types of test equipment and in laboratory and production test applications.

SPECIFICATIONS

MAXIMUM STEPS

Ten (eleven contact positions)

ATTENUATION RANGE

Up to 120 db total
Attenuation per step optional
OUTPUT IMPEDANCE
50 or 75 ohms nominal
INPUT IMPEDANCE
100 or 150 ohms nominal
50 or 75 ohms optional
INPUT AND OUTPUT VSWR
1.1 to 1000 mc at 50 ohms
aCCURACY
$\pm .3 \mathrm{db}$ per 20 db step from its dc value up to 1000 mc
\qquad

SERVOBOARD

CONTROL

THERMISTOR BOLOMETERS PRE-AMPLIFIERS POWER SUPPLIES
SELECTIVE AMPLIFIERS

Write today for

 complete information
SERVO

CORPORATION
OF AMERICA
NEW HYDEPARK, N. Y.
Want more information? Use post card on last page.
the result is that the theory is condensed to a degree where extensive study of other books is needed for enjoying the contents of the present one. This review must compliment Dr. Moss on the thoroughness of his list of references.
Many readers will profit greatly from this lucid presentation of a very timely topic, especially from the experimental section. Others will find something lacking. The author very obviously has complete mastery of his subject and succeeded in giving a really fine introduction into the photoconductivity of the elements. Let us hope he will soon follow up with a treatment of the compounds. The publishers and printers have to be commended, too, for an excellent job.-L. Marton, National Bureau of Standards.

Direct Current Machines

for Control Systems
Arnord Tustin, Electrical Engineering Department, Birmingham University. The Macmillan Co., New York, 1952, 306 pages, $\$ 10$.

Specisl direct-current machines have been developed for use in control systems. With the growing use of such machines it is natural that a special text should be written about them. On the other hand, we see a subject-d-c machines-that was once considered a beginning course for engineers, emerging now as an advanced course.

Topics common to a beginning course on d-c machines, such as static characteristics and winding inductance, are presented. The unique contribution of the book is, however, the extension of these topics to such details as dynamic characteristics and the effect of inductance on time constant. The material is developed as a foundation for machine design and serves also to give the user of such machines an appreciation of the characteristics he can reasonably expect from them. The development of input-output transfer functions and response-vector loci for basic combinations of control generators is especially helpful in analysing the charactertistics to be expected from servos that include rotating power amplifiers.

Properties of specialized machines are described in the same

WANT THE BEST IN CAPACITORS?

Many, many notable advances in the art of capacitor design and manufacture have been made by the ILLINOIS CONDENSER COMPANY. As an example, ILLINOIS CONDENSER COMPANY has recently been awarded a patent on their
unique and exclusive molded capacitor construction as featured in the UMP types.
For almost two decades, ILLINOIS CONDENSER COMPANY has been build ing quality capacitors and regular users include most all of the largest manufac turers of TV and radio sets. Their names literally compose the "blue book" of electronics.
To meet the ever increasing demand for ILLINOIS electrolytic capacitors, built new plants and greatly increased production. Why don't you, too, discover why ILLINOIS capacitors are , fits choice" of so many!

Write For Catalog!

ILLINOIS GONDENSER CO.
1616 NORTH THROOP STREET - CHICACO 22, IIL

NONINDICATING METER-RELAY

1% accuracy - 0.2 microampere sensitivity - 100 watts load contact rating. These are some of the features you get in a nonindicating meter-relay like the one in the photo. It is a moving coil relay and it will do things you never expected without vacuum tubes.

Accuracy

Factory adjustment is within 2% of the specified current or voltage for most units. It can be adiusted at installation to better than 1%. In lact, one customer (name on request) reports $1 / 4 \%$ on a battery charger shutoff.

Sensitivity

Any setting between 0.2 microamperes and 50 amperes, or from .05 millivalts to 500 volts can be furnished. Higher ranges can be made with external multipliers. The sensitivity is adjustable at installation over a wide range to meet specific needs.

Contacts

S.P.S.T. or S.P.D.T. in several ratings. Normal contacts have ratings up to 100 DC milliamperes for "make" only. Heavy duty contacts
 are rated 1 ampere at 115 V . AC or 32 V . DC for "make" or "break." The diagram shows the internal arrangement and auxiliary equipment needed for the heavy duty contacts.

Speed

Design variations allow for a range of response time from 1 millisecond to 10 seconds on most sensitivities.

Case Style

The clear plastic case shown is in production. It is approximately $2 \frac{1 / 2 "}{}$ cube, including terminals. This relay is adaptable to other mountings, including hermetically sealed plug-in cans.

Shock \& Vibration

Samples have withstood roll and pitch tests required for shipboard use. Internal shock mounting might be used to make it stand most shock and vibration tests. For further specifications, write or call Bradley Thompson at Assembly Products, Inc., Chagrin Falls 11. Ohio: phone CH 7-7374.

Names of 643 suppliers of electronic parts and equipment. Included are 266 firms who give sales managers name, products offered and names and addresses of their sales agents.
The remaining 377 firms give name, address and sales managers name. Exactly 265 separate classifications of products sold through electronic parts and equipment distributors.
Names of 491 manufacturers agents shown geographically and alphabetically, giving address, lines handled and territory covered.
Roster of 1345 accredited electronic parts and equipment distributors arranged by state and city. Each listing shows a number of sales personnel, trading area and classifies type of equipment handled.
Cost of this comprehensive volume is only $\$ 4.50$ post paid. The supply is limited. To get a copy you will have to act soon.
Send your order and check fo:
WHO'S WHO IN ELECTRONIC DISTRIBUTION,
848 LEADER BLDG. CLEVELAND 14, 0.

VAWMETERS

MODEL 101 SUPERSONIC FREQUENCY RANGE 20 cps to $200,000 \mathrm{cps}$

MODEL 102
LOW FOWER FACTOR RANGE 20 cps to $20,000 \mathrm{cps}$

for measurement of Volts • Amps - Watts

MODEL 101

- POWER RANGE: 100 "W 109 Kw .
- input impedance: I megohm.
- VOLTAGE RANGE: FULL SCALE 0.1V to 300 V
- curremt range: full scale . 001 to 30 a .

MODEL 102

- reads watts at full scale at both 10% and unity power factors.
- INPut IMPEDANCE: 1 MEGOHM.
- POWER RANGE: FULL SCALE, 225 , w W to 18 kW .
- voltage range: full scale, 1.5v lo boov
- current range: full scale, . 0015 A to 30A.

WRITE
WHONE
PHONE

FOR POWER and LOSS MEASUREMENTS in Cables - in Iron Cores - in Transformers Copper, Core and Impedances - in Classes A. B, C Amplifier Inputs and Outputs - at Aircraft Upper Power Frequencies - in Underwater Sound Equipment - in Loud Speakers - in Synchro, Motor, and General Servo Circuitry - in Carrier Current Equipment - in Complex Waveforms - in Circuit Analymis, both Linear and Non-linear - in Sound and sis, both linear and Non-linear in Sound and
Noise Analysis. These are but a few of the nearly Noise Analysis. These are but a few of the n
unlimited applications of the VAW meters.
Our Engineers will be happy io discuss the application of the VAW Meter to solve your particular problem. Write Dept. E-6. Literature available on request.

JOHN FLUKE ENGINEERING COMPANY

lll। WEST NICKERSON STREET, SEATTLE 99, WASHINGTON ;
Represented by ... BURLINGAME ASSOC., New York, Boston, Wash. M. Ci: HUGH MARSLAND, Chicago: GERALD B. MILLER CO. Hollywood. San Francisco. Albuquerrue, Seatile: M. P. ODELL, Cleveland, Dayton; EARL LIPSCOMB ASSOC., Dallas, Houston;
H . M. RICHARDSON \& CO.. Minneapolis, Minn.

BRRTBACH slectranic WIRE \& CABLE

For ALL Your Wiring Needs! GOVT. SPEC. HOOKUP WIRE

- JAN-C-76 SRIR-SRHY PLASTIC Solid Colors or Spiral Maridnce
- WL-EXTRUDED NYLON JACKET
Solld Colors or Spiral Markdngs
- alrcraft WIre-nylon JACKET MIL-W-5086 (Supersedes AN-J-C-48a)
- 105° C. U.L. APPROVED Thermoplastic Hookup Wire
- JAN-C-76 WL-GLASS BRAID Solid or Tracer Colors
- MULTICONDUCTOR, SHIELD. ED CABLES To Meet Gort. Spec

COMPLETE WAREHOUSE STOCKS

basic manner, including the Rosenberg generator, the Amplidyne, the Metadyne and the Magnicon. These machines are placed in their environment by introductory and concluding chapters on the basic features of control and feedback A chapter on torque motors and linear-stroke motors is a new contribution to the literature. A bibliography guides readers to more specialized literature on the subjects treated in the book.

The level of presentation of the book assumes an under-class command of mathematics and a grounding in the basic concepts of electricity. The essential points are clearly made and the explanations presented with the mature command of the language characteristic of many British books and frequently lacking in domestic technical texts.-F. H. Rockett, Airborne Instruments Laboratory, Mineola, New York.

Theory of Electric
 Polarisation

By C. J. F. Bottcher. Elsevier Press, 402 Lovett Blvd., Houston, Texas, 1952, 492 pages, $\$ 10$.
IT IS EASY, from reading many electricity ond magnetism text-books, to get the impression that the wellknown Clausius-Mosotti equation

$$
\frac{\epsilon-1}{\epsilon+2}=\frac{4 \pi}{3} \sum N_{i} a_{i}
$$

gives a rigorous account of dielectric properties of all substances, for its shortcomings and the many efforts to improve it are seldom mentioned. Actually, the problem is an extremely complicated one which is still far from a satisfactory solution; the dielectric constant of even so simple a substance as a sodium chloride crystal has never been quantitatively explained by physical theory. The problem of accounting for macroscopic dielectric properties of a material in terms of molecular properties is fundamentally one of quantum statistics, and any really correct treatment must take into account quantum effects, such as overlapping of electronic wave functions of adjacent molecules, and statistical factors such as correlations between in-

BREW dELAY LINES

Flexible type delay from .1 to 2 usec．

Here at Brew，complete design and manufacturing facilities plus real cooperation ．．．gives you the flexible delay lines you want ．．．delivered on schedule．
SPECIFICATIONS：To military specifications．Delay ． 1 to 2 usec ． Tol．$\pm .05$ usec．Z 1200 ohms $\pm 15 \%$ ．Hermetically sealed，non－ nutrient construction．Available in cans．

BREW

RICHARD D．BREW and Company，Inc．

COMCD

Communications Systems with Custamized quality
Proven thru the daily operation of thou－ sands of COMCO transmitters and receivers giving reliable service under all operating conditions．

VHF－FM MOBILE PACKAGE A COMPLETE LINE OF two－way radio equipment
－VHF－FM mobile and base stations －Remote control equipment \＆relay stations －VHF－FM two－way aircraft equipment －Acronautical ground station equipment －VHF－AM mobile unit for airport vehicles －VHF antennas and other accessories for details contact your nearest COMCO dealer

的相小相

AIR OR SPRING RETURN
Completely Flexible

A
IR－MITE now supplies solid steel upright columns in any lengths required to give you these impor－ tant flexibility features

Normal ram clearance of $0^{\prime \prime}$ to $6^{\prime \prime}$ may be in－ creased to any clearance required for special application．

Supplementary or replacement cylinders with any ram stroke required are available for quick，easy mounting on same brackets．

3
Rapid socket wrench adjustment cylinder bracket swivels for perfect alignment with work．

Presses are arailable in $1 / 4,1 / 2,3 / 4$ and 1 ton capaci－ ties－for staking，riveting，marking，punching and similar operations．

Write for complete catalog of Air－Arbor Presses and single and double acting Air Cylinders．

AIR－MITE

4417－B West Carroll Ave．，
Chicago 24，III．

STAR low-loss STEATITE has proved an ideal insulation for electranic applications. It is a strong, dense material with excellent dic!ectric and mechanical strength.

Every STAR STEATITE part is engineered for your specific job and precision made to meet demands for dimensional accuracy. And STAR'S facilities for volume output assure you a steady flow of material to maintain your production schedules.

PORCELAIN COMPANY

49 Muirhead Avenue . Trenton 9, N. J.

R. F. WATTMETER ME-82/U Model MM-625 Series 50 to more than 1000 MCS.

This series of instruments was desiqned to measure RF power up to 400 watts, and serve as an excellent dummy antenna load over the frequency range 50 to more than 1000 MCS in 52 ohm coaxial line circuits.

Some of the outstanding features are:

1. Directional coupler pick-up probe which eliminates high frequency resonant responses and errors due to slight
deviations in the load impedance.
2. Ruqged construction for field and laboratory use.
3. Hermetically sealed and ruggedized indicating instrument in accordance with specifications MIL-M-10304.
4. Two spare crystal rectifier suplied with each instrument.
5. Model MM-625 has recently been as signed the Armed Forces nomenclature ME-82/U,

Impedance Frequency Range
Maximum VSWR
RF Power Scale Model MM-625
Model MM-626
Model MM-627 Accuracy
RF Connector

Size
Weight

52 Ohms
50 to over 1000 MCS. 1.2

120 watts 40 watts

 400 watts $\pm 5 \%$ of full scale Type C (Adapters available for other types) $6 \times 71 / 8 \times 13-9 / 16$ $91 / 2 \mathrm{lbs}$.stantaneous orientations of neighboring molecules as they carry out their more or less random thermal motions. However, there is a large body of "classical" literature dealing with a drastically simplified model in which the behavior of an assembly of classical polarizable objects is sought, with or without consideration of some of the statistical factors. This is the work of many investigators, prominent among whom are Onsager, Kirkwood, and Frohlich, and it has not been collected into a coherent and easily digested form until now.

Bottcher's book is truly an introduction to the subject, for roughly the first quarter of the book is devoted to a careful exposition of the electromagnetic theory starting with elementary considerations and leading up to solutions of various boundary-value problems concerned with dipoles and multipoles, and thermodynamic treatments, which are useful for later applications. Most physicists would probably prefer to see this part of the book condensed rather drastically, since it takes so long to get to the real subject, but to a much larger group of readers this feature will be greatly appreciated. It makes the book quite suitable, for example, as a textbook for a course in physical chemistry or as a source of background for an electrical engineer who wishes to understand more about dielectrics than is provided by the tables in handbooks. In this connection the last two chapters, dealing with loss and relaxation in dielectrics and polarization of solids, including ferroelectricity, should be very helpful in giving at least a partial understanding of variation of dielectric properties from zero frequency up through the microwave region.

The middle part of the book is devoted to exposition of the "classical" theoretical work and to the problem, of great interest to chemists, of determination of dipole moments of various molecules from dielectric measurements. If a very general (and therefore not completely accurate) characterization of this theoretical work were to be made, one might say that the basic point of view remains that of Clausius-Mosotti in which the

All too often, farsighted engineering ideas and aims are held in check by everyday job requirements. Engineers made of the right "stuff" hold a secret yearning to break the shackles of today - to think in terms of the possibilities of tomorrow.
Sylvania thinks that way, toohas thought so for years. As a result, Sylvania encourages its engineers to pioneer, develop, follow through on their ideas, write and speak on their chosen subject to gain professional recognition.
If you are looking for a stimulating challenge that will last a lifetime - investigate the splendid career opportunities with fastgrowing Sylvania.
Send your resume to:
JOHN C. WELD
Supervisor of Employment
254 Rano Street, Buffalo 7, New York

RADIO AND TELEVISION DIVISION 254 RANO STREET BUFFALO 7, NEW YORK

ENGRAVING•PROFILING

for heavy production

Write for literature describing:

1. Heavy Duty model (as illustrated) - Catalog H 29
2. Portable models - Catalog IM 29

NEW HERMES, Inc. $13-19$ University Place, N.Y. 3, N.Y. In Canada: 359 St. James St., Montreal
World's Largest Manufocturer of Partable Engraving Machines

DOUBLE BARREL ADVERTISING

Advertiaing men agree - to do a complete advertiatre job you need the double offect of both Display Adver Bising and Direct Mail.
Display Advortising keeps your name before the public and builds prostige
Direct Mail zupplements your Display Advertising. It pin-points your message right to the expecutive you want to reach - the person who buys or influences the
purchasos.
rest more dotail information today. You'u be low overal cost and the Yested al fectiveness of those hand-picked selections.

McGraw-Hill Publishing Co.,Inc.

330 West 42nd Street

Now York 36: New Yock

Accurately, Easily, Quickly with a DI-ACRO* BENDER

Simple and complex bends can be formed and duplicated in many ductile materials with a versatile Di-Acro Bender. Bending capacity of the five hand operated models ranges from $1 / 16$ wire to I" round mild steel bar. Many accessories are available for bending various materials and shapes. The Di Acro Bender can be delivered completely tooled for most forming requirements in solid materials and tubing.

A universal hydraulically operated bending machine that is equally as flexible as hand operated machine. Di-Acro HydraPower Benders are especially designed for those long runs and heavy bending operations which are impractical for manually operated equipment.

Want more information? Use post card on lost page.

NEW BOOKS (continued)
notions of internal field and local polarizability are the central things, and that one tries to patch up these concepts by various elaborations intended to take into account more of the actual physical situation. However, few of these attempts lead to any impressive improvement in the agreement between theory and experiment (except that of Onsager, which removes the " $4 \pi / 3$ catastrophe"), or to an appreciably deeper understanding of physical processes in dielectrics. Rigorously, one would have to adopt from the start a more global point of view and recognize that in condensed phases the internal field and local polarizability are really not precise concepts and it is necessary to think in other terms. The catch is, of course, that the resulting theory is so complicated that little progress has yet been made in it.

These remarks should not convey too great a feeling of pessimism; for all its shortcomings, the existing theory is close enough to the truth to be of great use to scientists in many fields, and it will always have a place in science, because it is so much simpler than any rigorous theory. The less ambitious an undertaking is, the more likely it is to be successful, and it is fortunate that the author, by restricting his attention to the "classical" theory, has succeeded in producing a comprehensive but very readable account of one phase of the theory of dielectrics.-E. T, Jaynes, Stanford University

THUMBNAIL REVIEWS

TV Servicing Short-Cuts. By Milton S. Kiver. Howard W. Sams \& Co., Inc., Indianapolis, Ind., 1953, 97 pages, $\$ 1.50$. This book gives 62 case histories describing unusual troubles in tv receivers and steps taken to correct them. It will give the active serviceman direct answers to a large number of troubles that might be difficult to pin down, and in addition, it provides a series of stimulating mental exercises that should help any serviceman approach his problems-of any typemore intelligently. The $5 \frac{1}{2} \times 8 \frac{1}{2}$ inch paper-cover book is a handy size for carrying in a suit-coat pocket for spare-time reading.

Final Approach and Landing. Published by the Technical Secretariat, International Air Transport Association, Montreal, Canada, 80 pages $8 \frac{1}{2} \times$ 11 inch, paper cover. A condensed
 MISSILE
Engineers and Technicians

For Field Test Positions in NEW MEXICO "The Land of Enchantment" ON

Guidance Flight Testing Servomechanisms Telemetering Test Equipment Airborne Electronics Equipment IDEAL WORKING CONDITIONS WRITE: FIELD TEST DIRECTOR P. O. BOX 391 HOLLOMAN AIR DEVELOPMENT CENTER NEW MEXICO

Want more information? Use post card on last page.

ELECTRONIC GLASS WORKING EQUIPMENT

For Radio, Television Tubes, Incandescent Lamps, Glass Lathes for Television Tubes

We make over 100 types of turntables; tilting models and positioners.

More Eisler Stem and Sealing Machines are in use in the Electronics industry than all other makes combined. There well-built, compact, last long, have good production, and are constantly being improved to qive more production.

We make Transformers, Spot and Wire Butt Welders, Wire Cutting Machines and 500 other items, indispensable in your production. Eisler Engineers are constantly developing New years.

Equipment. If you prefer your own designs, let us build thern for you. Write to Charles Eisler who has served The Industry over 33

Dr. Charles Eisler, President
EISLER ENGINEERING CD., INC.
751 South 13 th St., Newark 3, N. J. Near Avon Avenue

Wherever extreme dimensional precision, accurate concentricity, and high dielectric qualities are required the electro-deposition method is recommended... the production of which is licensed under an exclusive arrangement with the Electro Tec Corporation. This well-known process is most satisfactory for miniatures and sub-miniatures down to $.035^{\prime \prime}$ diameters.
UITRA-MODERN, COST REDUCING, NEW PRODUC. TION FACIIITIES-The lost word in plont, equipment and skilled personnel are grouped here to QUOTATIONS ON YOUR REQUIREMENTS

INSTRUMENT

corp. OF AMERICA blacksburg, virginia

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.
Williams Ferric Oxides analyze better than $99 \% \quad \mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.
| Tell us your requirements... we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

let WILLIAMS help you apply

ferric oxides

to the manufacture of your Emeryvills, Cal.
P. We also produce IRN Magnetic Iron dusery, phewders for the Electronic Coro dustry, the Magnetic Tape Recording Indus-
try and others. Write for complete technical information.

NEWI NYION ${ }_{\text {lacing cord and }}^{\text {fralded tape }}$
 FUNGUS-PROOF

Meets Army, Navy and Civilian "specs"

This sensational new development has proved to be a boon to electronic equipment. The special synthetic resin coating on Heminway \& Bartlett's Nylon Lacing Cord and Flat Braided Tape resists the growth of mold and micro-organisms - factors most often responsible for the deterioration of linen and cotton lacing cords and tapes. They have high abrasion resistance and low moisture absorption. The finish has the desirable malleability of wax and is non-toxic to humans.

We'll be glad to send you full information and samples. Why not write us today.

The Heminway \& Bartlett Mfg. Co., 500 Fifth Avenue, New York 36, Sales Offices: Chicago, Boston, St. Louis, Philadelphia, Cincinnati, San Francisco, Charlotte, N.C., Gloversville, N. Y.

TYPE R RESISTORS employ noble metal film deposits on specially selected heat resistant glass.
FILM THICKNESS offers negligible skin effect. at microwave frequencies.
POWER CAPACITY of $1 / 4$ watt provides high power handling ability.
PHYSICAL STRUCTURE is ideally suited to impedance matching in standard coaxial line and waveguides.
FINISH. Coated with a special silicone varnish to protect the film.

TYPICAL APPLICATIONS

- Power measurement at any
frequency
- Matched terminations for wave quides or coaxial lines
- Resistive power pickup loops
- RF pads or attenuatois
- Dummy loads
- Temperature measurements - Impodance matching

SPECIFICATIONS

Resistance: 50 ohms standard, other values on request.
Tolerance: 5% or 10%
Wattage: $1 / 4$ watt continuous dutt at 2516
Size: $1 / 16$ inch diam. $\times 3 / 16$ inch long ferminals: Tinned sections $1 / 16$ inch Film length: Type R.063-1/16 inch Type R.093 - $3 / 32$ inch Temperature Coefficient:
approx. 0.0019 ohms/ohm $/{ }^{\circ} \mathrm{C}$.
$\underset{\text { power Sensitivity: Approx. } 10 \text { ohms/ }}{\substack{\text { wat }}}$ watt

THLEWAVE LABORATORIES, INC.
100 Metropolitan Ave. - Brooklyn 11; New York
record of discussions of factors affecting final approach and landing of aircraft at Fifth IATA Technical Conference at Copenhagen in May, 1952. Included are discussions of electronic aids from standjoint of existing equipment and possible future developments. General coverage of pertinent aircraft performance is presented, along with allied factors, such as other instrumentation, visual aids, meteorological requirements, accuracy, reliability and a section describing results of tests of different systems under various conditions.

UHF Converters. Published by Howard W. Sams \& Co., Inc., Indianapolis, Ind., 1953, 42 pages, 8 준 11 inch, paper cover, $\$ 1.00$. With uhf television spreading across the country. this book promises to be a useful addition to the serviceman's library. Included are detailed descriptions of virtually all commercially-available tuners designed to be attached to vhf sets for receiving the new bands. Complete circuits and excellent detailed photographs give all information necessary to understand operation and maintenance.

Principles of Alternating Current Machinery, 4th Edition. By Ralph R. Lawrence and Henry E. Richards. McGraw-Hill Book Co., 1953, 622 pages, $\$ 7.50$. A text for senior students, strongly analytical in treatment, dealing with generators, motors, converters and rectifiers. Brought up to date by rather thorough revision.

Consulting Services, 14th Edition. Association of Consulting Chemists and Chemical Engineers. Inc., 50 East 41 St., New York. N. Y., 140 pages, $8 \frac{1}{2} \times 11, \$ 1.00,1953$. A listing of over 100 consultants and laboratories working in the field of chemical engineering. A number indicate they are experienced in electronics.

TV Test Instruments. By Milton S. Kiver. Howard W. Sams \& Co., Inc. Indiananolis. Ind., 1953, 147 pages, $8 \frac{3}{2}$ x 11 inch, paper cover. $\$ 3.00$. Successful servicing, according to present-day standards, is dependent to a large extent on the equipment available to the serviceman and his ability to use it. This book tells how to use virtually all test instruments usually employed in ty receiver repair. Included are sections on vtvm's, a-m signal generators, sweep signal generators, oscilloscopes, tv and f-m alignment instruments and special instruments. Commercial instruments are used as examples, thus giving the book a highly practical value. The book should also be extremely valuable to a serviceman just getting started in business and faced with the problem of deciding what equipment he should buy.

Pulse Techniques. By Sidney Moskowitz and Joseph Racker. PrenticeHall, Inc, New York, N. Y., 1953, 300 pages, \$6.65. Partial contents: pulse generation, linear pulse amplifiers, pulse measurement, pulse shaping and clamp circuits, design of pulse network, pulse communication systems, and response of linear networks.

"INOUSTRAL"

 forELECTRONIC COMPONENTS

Precision engineered electronic components and connecting devices for all your needs.

- LAMINATED TUBE SOCKETS
- TERMINAL STRIPS
- WIRED ASSEMBLIES
- METAL OF BAKELITE STAMPINGS
- TERMINAL BOARD ASSEMBLIES
- SCREW MACHINE PARTS
-NEW ITEMS
- TUNER STRIPS, SOCKETS and BRACKETS for UHF

Our extensive deslgn and production acilities are available for developino your special requirements and applications. Representatives in principal cities throughout U.S.A. Call or Write for samp
ORegon 7.1881.

INDUSTRIAL HARDWARE Mfg. Co, Imc. 109 Prince strait - new york 12, N. y

STANDARD SIGNAL

 GENERATOR20 Cycles to 50 Mc .
FREQUENCY RANGE: $\mathbf{2 0}$ cycles to 200 Kc . in four ranges. 80 Kc . to 50 Mc . in seven ranges.
OUTPUT VOLTAGE: 0 to 50 volts across 7500 ohms from 20 cycles to 200 Kc. 0.1 microvolt to 1 volt across 50 ohms over most of range from 80 Kc . to 50 Mc .
MODULATION: Continuously variable 0 to 50% from 20 cycles to 20 Kc . POWER SUPPLY: 117 volts, 50/60 cycles. 75 watts.
DIMENSIONS: $15^{\prime \prime} \times 19^{\prime \prime} \times 12^{\prime \prime}$. Weight, 50 lbs

MEASUREMENTS CORPORATION

BOONTON

NEW JERSEY

Vibration Isolators

Dfar Sirs:
REFERENCE is made to the excellent article in Electronics for December 1952, p 126 by R. I. Dickie entitled, "How to Apply Vibration Isolators".

Since I intend to recommend this article for special study to the students in $m y$ vibration course, I wonder whether you would consider sending me a complimentary cops of this paper.

Thanking you in advance for any courtesy in this matter, I remain
R. K. Bernhard
lrofessor of Engineering Mechanics Rurger's Unversity New Brunswick, New Jersey
(Editor's Note: We were quite pleased to find that this article, which represents somewhat of a departure from our usual run of articles, was so well received. More articles on the mechanical and other allied aspects of the electronics industry will be forthcoming in future issues.)

Holes in Horns

Dear Sirs:
SOME TIME ago I read an article on an experiment in which a signal was bounced off the surface of the moon. The rather plaintive comment was made that the horn antenna did not perform as expected, but was much more "leaky" than anticipated. A photograph of the horn, set up outside the Collins Radio plant, makes the cause rather fantastically obvious, to my mind; the horn walls were constructed of ordinary hexagonal chicken wire

I have always considered, and correctly I believe, that a perforated sheet reflector should be considered as a series of close-spaced reflectors of dipole-plus length, like a venetian blind, accurately oriented in the plane of antenna polarization. The chicken wire resolves to a series of subdipole-length reflectors strung together with resistors (subdipole length at the frequency used). That this horn would be said to be leaky, and rather ineffective, would seem to be an understatement

I have repeatedly observed reflectors in use which have a similar aspect, and this use of anything

Precisely fabricated
 to the most
 Critical Tolerances

 or electronic devicesMiniature and Subminiature Radio Tubes-Television Tubes Hearing Aid Tubes

Our technical skill will improve the performance of condensers, neon elec trodes, soldering irons, electrical ap pliances, gauge glasses diaphragms stoves, mica washers, and for all other mica applications.

We guarantee that the quality of our mica will reduce your shrinkage costs!

Send for our "HANDBOOK on FABRICATED NATURAL
MICA

MICA CORPORATION 225 So. Van Brunt St. Englewood, New Jersey

with holes in it as a substitute for a solid reflector seems to be a very common practice, which deserves some comment. A great deal of effort and time is devoted to improving the performance of receivers and transmitters, and then the gains are blithely lost in the antenna system. In the case of the comparatively low-frequency Collins horn, a fence-wire of rectangular, welded design is available which would have been much more suitable for the purpose.

The ultimate aim of minimum weight and wind resistance and maximum reflectivity would be attained with a flat punched sheet, in venetian blind design. The woven-mesh and perforated-plate designs often seen in microwave link and military and civil radar antennas often are quite inferior, particularly the woven mesh (even when properly polarized) because of the lack of a continuous surface current path.

The perforated sheet with round holes in straight lines is a good reflector but contains unnecessary material with increased weight and wind resistance. The perforatedsheet with the holes in a zig-zag pattern (in an attempt to eliminate more material) is bad; this may be regarded as a hexagonal chickenwire design with gussetted corners, lacking the continuous current path in the plane of polarization.

Charles C. Littell, Jr. Engineering Associates Dayton, Ohio

Gunshots

Dear Sirs:

I was rery interested to read in the February edition of Electronics, an article by J. L. Hathaway and R. E. Lafferty entitled "Gunshot Generator for Television Studios" (p 140). I was actively engaged during the last war in designing and developing synthetic sound effects generators for use in the training of the various branches of the Armed Forces.

Referring back to the January 1946 edition of Electronics you will find that an article was published describing one of these

[^27]
PRECISION in MINIATURE!

520-A Voltmeter

1 Millivolt Full Scale to 300 Volts 10 Cycles to 2 Megacycles Only 6" high
$\$ 180$

ALSO - MATCHING

510-B OSCILLATOR

18 Cycles to 1.2 Megacycles Distortion Less Than 0.2\%
Constant Output $\pm 0.5 \mathrm{db}$
$\$ 150$
Literature on Request

SHIELDED TYPE PLUGS \& SOCKETS

LOW LOSS PLUOS AND SOCKETS FOE HIOH Prequency connictions. SUPPLIED IN 1 AND 2 CONTACT TYPIS:
101 Series can be furnished with $1 / 4^{\circ} .290^{\prime \prime}$. $5 / 16^{\prime \prime}$. $3 / 8^{\prime \prime}$ or $1 / 2^{\prime \prime}$ ferrule for coble entrance. Knurled nut securaly fastens unif fogether. Plugs have ceramic insulation and sockefs have bakelite. Quality construction. Fine finish. Assembly meets Navy speciflcations.
For full details and en= gineering data ask for Jones Catalog

No. CS-18
JONES MEANS
Soman
Howard B. Jones Division
W Jones

Want more information? Use post card on last page June, 1953 - ELECTRONICS
generator produced independently or together, a total of eight battle noises including tanks, aircraft, motor cycles etc.

Development of these effects was not continued after the war, as there did not appear to be sufficient peace time application.
P. D. Shaw

Aren Radio \& Television Ltd. Guildford, England

Filter Chokes

Dear Sirs:
GoIng through the lines of my article on filter chokes (Miniaturization of Airborne Filter Chokes, Electronics, p 180, Apr. 1953) I was pleased by the perfect editing job you did. Less pleasant for me however was an error I spotted a few minutes later, and which goes back to the manuscript. Under Example 2, the third sentence should naturally read:
"Considering that the specific resistance ζ at $200^{\circ} \mathrm{C}$ is just about twice the value for copper at room temperature, use $48^{\circ} \mathrm{C}$ for $10^{4} \zeta / \alpha \xi$. Then $\beta=100 / 48=2.1$."

The following calculations have to be changed correspondingly. In the part of the text identifying the terms of Eq. 1 on page 180, l_{n} is the length of the airgap. In Fig. 1, b is constant and on page 183, in Step 4 under subtitle "Use of Calculation Chart", the note bearing the asterisk should read "Based on $\zeta=1.75 \times 10^{-8}$ ohm-cm."

Walter E. Tanner Bell Aircraft Corp.

How Many Ohms?

Dear Sirs:
THE schematic drawing of the amplifier described in the March 1953 issue of Electronics by Howard T. Sterling and Alan Sobel in their article entitled, "ConstantCurrent Audio Power Amplifier", p 122, fails to specify the plate coupling resistor values for the first 6AK6 stage.

I think there was another draft-

New! All-Nylon! Fungus-Proof! GUDE-NYLACE Flat Rraided Lacing Tape

\author{

- EASY ON HANDS - SAVES TIME - Flame resistant
}

Flat braided lacing tape for all electrical harnesses with either continuous or interrupted ties.
Guaranteed free of all wax and foreign materials -only 100% pure Dupont Nylon is used in the construction of Gude-Nylace-excellent for
 strength, durability.
Slip-proof knots, easy to tie, easy on operator's hands even without gloves.
Complies with fungus resistant requirements of Gov. Spec. Jan-T-713.
Write for samples, complete information

GUDEBROD BROS. SILK CO., INC.
Electronic Division: 225 West 34th Street, New York 1, N. Y. Executive Offices: 12 South 12th Street, Philadelphia 7, Pa.

MIDGET TELEPHONE TYPE RELAYS in hermetically sealed containers

Surface mounting, open type, Series 80 Relay size: $115 / 32^{\prime \prime} 1 . \times 5 / 8^{\prime \prime}$ w. x $1^{25 / 04 " ~} \mathrm{~h}$.

Compact, multiple contact with vibration and shock-proof characteristics. Designed to meet various operating requirements typical of Armed Services applications. Unique pile-up arrangement reduces width below the conventional relay, thereby reducing over-all space volume.

Coils are varnish-impregnated to resist high humidity conditions. All ferrous parts are treated to pass salt-spray tests.

Engineering Representatives in Principal Cities

WRITE FOR BULLETIN MTR. 6

- Frequency Marker with an accuracy independent of Sweep Width. Inserted after external detection, it eliminates erroneous interpretation-eliminates possibility of undesirable transient distortion or limiting actions. The Marker is adjustable in amplitude and, after adjastment, remairs independeri of other controls.
- An attenuator whose performance is free of Frequency, ossuring you that the Output

SWEEPMASTER

Swep feyulury Eenerators give you liese oustanding advantages . . .

Envelope is the same as that indicated by the Internal Monitor.

- A simple switching operation to permif examination of either Envelope of the Swept Frequency Signal.
- Durable, compact, lightweight Output and Detector Probes, either of which can be detached easily and replaced by cables having standard connectors.
tions

HORIZONTAL DEFLECTION: A 60 eps sine wave tinuously or blanked out for $1 / 2$ of cach 60 cycle for application to horizontal imput ot oscilloscope period
Period. volt breakdown capacity.
*75 ohm available when specified

MANUFACTURERS ENGINEERING \& EQUIPMENT CORP. 15 Mill Road - Hatboro, Pa.

ing omission also, but not having the issue in front of me I fail to remember what it was. If you have a corrected diagram available you might send me a copy.

Arther J. Maus Evanston, Illinois
(Editor's Note: According to the authors of the article mentioned above, the missing values on the plate load resistors should be 39,000 ohms. They suggest that the drafting omission cited by Mr. Maus might be the use of the word maximum where it should be minimum in the note regarding the feedback phasing capacitors.)

Workmanship

Dear Sirs:
On page 129 of the April 1953 issue of Electronics, the item, "workmanship" under Mr. MacDonald's Crosstalk has struck a responsive chord in our organization. It so accurately expresses our own feelings that we are hereby requesting permission to reproduce it in part or in its entirety.

Again, expressing our appreciation for the apt wording and thought of this article we are
R. P. Grant

Sales Manager
Fru-Comector Corporation
Lymu, Massachusetts
(Editor's Note: As a convenience to the reader the item mentioned above is reproduced herewith. It is gratifying to know that our thinking corresponds with that of our readers in such instances.
"Modern design plus mass production can provide low-cost electronic equipment capable of giving good service. Much still depends, however, upon personal care during assembly and, particularly, the conscience of inspectors at the end of the line.
Somehow, we've gotten the impression that an unusual number of casually-put-together items are currently being sold. Two ceramic trimmer capacitors were picked up at retail; one entirely lacked threads for the adjustment screw. Of three simultaneously purchased toggle switches one was defective;

Professional Services

ANNIS ELECTRIC RESEARCH LABORATORY, INC.
 CONSULTING - RESEAICH - DEVELOPMENT AND DESIGY OF RADIO AND ELECTRONIC EQUIPNENT.
 Military Radio Direction Finding
 Equipment and Directional Antennas.

CROSBY LABORATORIES, INC.
Murray G. Crosby \& Staff Radio - Electronic
IResearch Develomment \& Manufacturing Communications. FM \& TV Tobbins lane, Hiclisvilue, N. Y. Hicksville $3-3191$

EDGERTON, GERMESHAUSEN

 \& GRIER, INC.Consulting Engineers
Rewarch, Development and Manufacture
of Electronic and Stroboscopic liquipment
60 Prookline Avenue Boston 15, Mass

Eldico of New York, Inc.
Pioneers of Television Interference Elimination from Transmitters, Induction Heaters, Diathermy and etc.

Donald J. S. Merten \& Engineering Staff 44-31 Douglaston Pkwy Douglaston, N. Y. Bayside 9-8686

ERCO RADIO LABORATORIES, INC.

Radio Communications Equipment Lngineering - Design - Development - Production Pioneers in Frequency Shirt Telegraph
Garden City • Long Island - New York

HARRIS GALLAY

Consultant
Electronic Project Development for Industry Day, Week and Duration of Project Services Our Laboratory Facilities Onfional Plymouth 9-4237 60 Perry St. Belleville 8, N. J.

GENERAL LABORATORY ASSOCIATES, INC.
Specialists in Glass to Metal Sealing Manuftecturing and developpuent facilities now arailabie covering specific vacuun and gas tube
Development and Falricat iont. we invite your inquiries.
Norwich, N, Y
Telephone Norwich 4-3264

GORDON ASSOCIATES, INC.

Government Contract Liaison and Consulting Svecializing in Signal Corps Electronic Require ments, Technical Manuals, Tabular List of Parts
L. Gordon, Pres. P. Treston, Ch. Engr. 157 Broad Street Telephone
Bank $6-2743$

HANSON-GORRILL-BRIAN INC.

Products \& Mfg. Development ELECTRICAL - ILLECTIRONIC HYDRAULIC - MECILANICAL
One Continental Hill
Glen Cove, N. \mathbf{Y}. Glen Cove 4-7300

HIGHLAND ENGINEERING CO.

William R. Spittal \& Staff
desige, jhevelormar and mavercture OF TRMSLOMAERS, CHORES, ETC. meabtronic, minusthind allifed fields Main \& Urban, Westburw, L.I., N'. Y

R. W. HODGSON

masemeh developyevt evainers SPECALIYNG IN BLEMRONGE XUCLE ONICS, INSTRUMETATIOS SER SORECHAS
Office-6;00 Lexington Ave., IIollswood 38. Calif
All Mail to Lox GLadstone 9680

R. W. HODGSON

PATENT AGEN' SIPCLALIZING
Segistered to Pactice Before the U. S. \&
Offe-6600 Lexington Ave., Holywood 38. Calif. All Mail to Box 8it, Sherman Oaks. Calif. GLadstone 9680

HOGAN LABORATORIES, INC.

Joln V. L. Hogan, Pres.
Applied Researoh, Development. Engineering
Est. 1029. Flectronics. Optics. Mechanisms, Fac-Electro-sensitive recording media, instrumentation,
155 Perry Street, New York 14. CHelsea 2-7855

THE KULJIAN CORPORATION
 Consultants Engineers Consiructors Electronic Control Specialists
 Utility - Industrial - Chemical
 1200 N . Broad St.,
 Prhila. 21, 1'a.

MEASURMENTS CORPORATION

Research \& Manufacturing Engineers Harry W. Houck Sery 13. Minter Joh N. van Beuren Suecialists in the Design and Development of Electronic Test Instruments Moonton, New Jersey

Eugene Mittelmann, E.E. Ph.D.
Consulting Engineer \& Pbysicist
High Frequency Heating-Industrial Flectionics inplied Physics and Mathenatics
549 W. Washington Mlvd. Chicago 6, M11. State 2-8021

NIAGARA ELECTRON LABORATORIES

CONSULTATION-DESIGN-CONSTRUCTION of electronic and electro-physical instrmmentation for the research of allalytical lavoratory. Industrial plant problems also invited
Andover, New York Cable Address: NiATRONLAD

PICKARD AND BURNS, INC.

Consulting Electronic Engineers
Analysim and Evaluation
Research, levelopment and Production
Research,
of Special Electronic Equipment
240 Jlighland Ave.
Needham 94, Mass.

ALBERT PREISMAN

Consuling Engineer
Television, lulse Termigute, Video
Anpliflers, Phasiny Networ
Ludustivitl Applinuces
Ludustiliat Applinthe
JLANJGEMENT-TVANXING ASSOCIATES
3308-14th st., N. W. Wastington 10, D. C.

JOSEPH RACKER COMPANY
 Radar Consultants E Editors
 Texhnical Manuals
 Liesearch and Development
 140 Nassau Street, Ner \quad Wor:h $4-1463$

SKINNER, HARLAN AND IRELAND, INC.

Consulting Engineers
Svecializing in Maxnetic Materials and Their Application
1122 E. 23 rd Nt. Indianapolis 7, Indiana

THE TECHNICAL MATERIEL CORPORATION

Communications Consultants Avstems Engineering
General Offices and Laiooratory
121 Spencer Ilace, Mamaroneck, N. Y.

TELECHROME, INC.

Electronic Design Specialist COLOI TELEVISION EQUIPMENT Flying Spot scanners. Color Synthesizers, Koyers, Monitors, Oscilloscopes and Related Apvaratus 8 J. It, Popkin-Clurman, Pres. \& Ch, Engr.

WHEELER LABORATORIES, INC.

Radio and Electronics
Consulting-Research-Develomment R-F Circuits-Lines-Antennas
Microwave Components-Test Equipment
Great Neck, N. Y. Great Neck 2-7806

WIHTOL LABORATORIES

Consulting - Research - Development
Election tubes-Vacuum and gas tube manufacturing techniques-Glass techmiques-Suectial purpose tubes 2333 Grey, Fivanston, Ill. Un. 4-7896

YARDNEY LABORATORIES, INC.
 Research - Design - Development Electro-Chentical Generators of Energy 105 Chambers Street WOrth 2-3534, 35, 36
 Sew York 7, N. Y.

Miniature and Sub-Miniature
SLIP RING ASSEMBLIES BRUSH BLOCK ASSEMBLIES COMMUTATORS

and other
Electro-Mechanical Components

PRECISION MADE TO YOUR OWN SPECIFICATIONS
Precision molded products with exacting tolerances in precious and non-precious solid metals of all alloys. All types of Thermo-Plastic and Thermo-Setting materials.

Slip Ring Assemblies fabricated or one-piece precision molded to your specifications in Nylon, Kel-F, Mineral filled Mellamine, Phenolic, and other materials. Rings and leads spot welded or brazed together for positive electrical circuit.

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

COLLECTRON CORPORATION

MUrray Hill 2-8473 • 216 East 45th Street • New York 17, N. Y.

BACKTALK
two trips were necessary to buy one good transformer. A microphone fresh from the shipping carton proved intermittent due to soldering flux under riveted lugs.

Maybe we're just unlucky. Or maybe pride in good workmanship has momentarily declined to a point where not even the fanciest test procedures can catch all the bugs.")

Distortion

Dear Sirs:
We have noted a statement in your very interesting article entitled, "Transistorized Hearing Aids", which appeared in the April 1953 issue of Electronics (p 154), that we feel should be corrected. This statement is in connection with the distortion characteristics of the Radioear hearing aid manufactured by E. A. Myers and Sons, Inc.

The statement is made that the transistor hearing aid in question had a distortion of " 4.4 percent with the output set at one decibel".

With an output of one decibel, no one cares what the distortion is, because this output would (a) be unmeasurable, (b) be below the threshold of audibility for even a normal ear.

The article should have said that with the output sound-pressure level only one decibel lower than the maximum obtainable, the distortion has dropped to the relatively small figure of 4.4 percent. As the output level is decreased from this, the distortion continues to drop. Distortion is usually 2 percent or less for the output sound-pressure levels ordinarily used.

Typical values of distortion for two-cell operation as measured on a random-selected Radioear Model 820 are :

Output Sound
Harmonic
Sound-Pressure
Distortion

Level	600	800	$1,000 \mathrm{cps}$
100^{*}	1.1	0.7	0.3%
110	2.3	1.0	0.5
120	7.2	2.8	1.5

[^28]S. F. Lybarger

Chief Engineer
E. A. Myers if Sons, Inc.

Pittsuurgh, Penn.

Have you problems in Metal to Glass Seals? NAME IT . . . WE'LL MAKE IT! TERMNALS HEADERS
END SEALS . . SPECIAL ITEMS
QUALITY PRODUCTS CO. 387 Charles St., Providence, R. I.

SCREEN PRINTING

- PRINTED CIRCUITS, plates made printed on all materials
DECALS for trademarks, nameplates, etc. Extremely durable, easy to apply. Sketches, quotations submitted

PROCESS DESIGNS CO
226 W. 42 St., New York, N. Y., Lo-3-1793

One

inexpensive

modern

device...

can frequently help speed up operation and maintenance or production.
One product advertised in the "Contacts" Section may be the answer to your problem a real money-saver.
To be informed-and re-minded-on modern aids to economical operation, maintenance and production, check "Contacts" advertising regularly . . . every issue.

EISLER MANUFACTURES COMPLETE EQUIPMENT RADIO, WELDERSFOR TUBE EQUIPMENT \& REPAIRTUNITS
 NEON SIGN MAKERS EQUIPMENT, GLASS LATHES ELECTRONIC EQUIPMENT. VACUUM PUMPS, ETE. Wet GIass SLICING \& CUTTNG MACHINES for Lab Use EISLER ENGINEERING CO., INC.
īl So. 1311 St S.

BRAZING \& WELDING
A. Allen co. Inc. Chicago 31, Ill.

6751 Bryn Mawr Ave.

SUBCONTRACTING

MILITARY and COMMERCIAL Power supplies, controls, test equipment, sub-assemblies, cable and harness work.

PESCHEL ELECTRONICS, INC.
I3 GARDEN ST. NEW ROCHELLE, N. Y.

wide range $] f 6 f D E$ resistor
Especially designed for use in development and production laboratorres where standardized RTMA resistor values are to be

OCTAL SOCKET ADAPTERS
with or without cables
Built to your specifications.
American Radio \& Television, Inc.
Box 328
No. Little Rock, Ark.

WALKIE-RECORDALL $\begin{gathered}\text { N ID Miniann. BATTERY } \\ \text { RECOBDER-PLAYBACK }\end{gathered}$

Continuous, permanent, indexed recording, up to 4 hrs., only 3e hr. Instantaneous, petmanent piayback. tures, dictation, 2 -way phone $\&$ sales tallis; while walking, riding or flying. Records in closed briefcase with "hidden mlke"! Write for Detailed Literature. MILES REPRODUCER CO., INC.

312 aROADWAY Dept. E-6 NEW YORK 3, N. Y.

SUB-CONTRACTING

MILITARY and COMMERCIAL
reccivers-test equipment
transmitters-controls
sub-assemblies
TELETRONICS LABORATORY, INC. Westbury, L. I., N. Y. Westbury 7-1028

ELECTRO PLATING

SPECIALISTS IN

- Silver, Cadmium \& Zinc Barrel Plating Iridite and Cronak Processes
To Government Specifications Government Certified

CVER[A]V $\underset{\substack{\text { PLATING } \\ 1790 \text { FIRSTAV.N.Y.C } \\ \text { EN } 9-1222}}{ }$

For certification of Induction and Dielectric Heating Equipment in accordance with f.c.c. rulings NEW ROCHELLE TOOL CORP. 320 Main St. New Rochelle, New York
uotations on request
\qquad

determined easily and quickly.
 For descriptive literature write or wire.

Rochester Electronics Co., Inc. DEPT S-4 BOX 227 PENFIELD, NEW YORK
A PRIVATE TECHNICAL
PLATING SERVICE
offering.... PALLADIUM RHODIUM, in
flash, intermediate ond heovy electrodeposits.
Information regarding electroplated thicknesses
upon request.
DANIEL D. ZIELIK
Brown's Lane
'Fairfield, Connecticut

We invite inquiries on

EEECTRICAL and ELECTRONIC

 ENGINEERSExcellent opportunities in the field of

AUDIO AMPIIFIFR DESICN

 SERVO AMPIIFIR DESILIN cOMPONENT DELLIOPMENI faUPMENT DESIGY> Senior and Junior Engineers

Write, giving full details to:
Personnel Director, Dept. A, GIBBS MANUFACTURING AND RESEARCH CORPORATION

Janesville, Wisconsin

[^29]
Sear chlight Section 'Classified Advertising)

Emplorment "OPPORTUNITIES
:EQUIPMENT :USED OR RESALE

RCA, pioneer and leader in every important branch of radio-electronics, has a permanent position for you if you are an experienced Electronic, Computer, Electrical, Mechanical or Communications Engineer . . . Physicist . . . Metallurgist . . Physical Chemist . . . Ceramist . . Glass Technologist.

You may choose to specialize in research, development, design and application. Both commercial and defense projects.

POSITIONS OPEN IN RESEARCH DEVELOPMENT—DESIGN—APPLICATION
 in any of the following fields:

RADAR一
Circuitry-Antenna Design-Servo Circuitry-Antenna Design-Servo
Systems-Information Display Systems - Gear Trains-Stable ElementsIntricate Mechanisms

COMPUTERS—
Digital and Analog-Systems Planning -Storage Technique-CircuitryServo Mechanisms-Assembly DesignHigh Speed Intricate Mechanisms

COMMUNICATIONS

Microwave--Aviation-Mobile--Specialized Military Systems

MISSILE GUIDANCE-
Systems Planning and Design-Radar and Fire Control - Servo MechanismsVibration and Shock I'roblems

NAVIGATIONAL AIDS-
Loran-Shoran-Altimeters-Airborne Radar
TELEVISION DEVELOPMENT-
Receivers-Transmitters and Studio Equipment
COMPONENT PARTS -
Transformer-Coil-Relay -Capacitor -Switch-Motor-Resistor

ELECTRONIC TUBE DEVELOPMENT-
Receiving-Transmitting - Cathode-
Ray-Phototubes and Magnetrons

ELECTRONIC EQUIPMENT

FIELD ENGINEERS-
Specialists for domestic and overseas assignment on military electronic communications and detection gear

There's not a temporary job among them War or depression, RCA has continued to grow growth in which you'll share when you launch your lifetime RCA carcer

For many other reasons, too, RCA is a good place for you to work. RCA affords unexcelled facilities in pleasant surround ings. . every chance for advancement in rank and income... enjoyable suburban or country living conditions. . . professiona recognition for achievement.... modern retire ment program. Many Company-paid bene fits for you and uition-refund piversities anced stud at recognized universities.

Personal interviews arranged in your city.
If you qualify for any of the positions isted above, mease send us a complete resume of your education and experience. Please state your specialized field preference. Send resume to:

MR. ROBERT E. McQUISTON, Manager Specialized Employment Division
Dept. 200f

Radio Corporation of America, 30 Rockefeller Plaza, New York 20, N. Y

ENGINEERS

Unusual Opportunities for Men with Long-Range Plans

- We are one of the leading Electronics firms in the Chicago area and require Design and Development Engineers with from 3 to 5 years' experience. Positions also available at Project Engineer, Engineer and Junior Engineer levels.

We will consider men with the necessary experience and ability who are ready to take on the responsibilities of these openings. The men selected will be given intermediate and advanced level assignments in our well- equipped Television, Radio, and Government Equipment Laboratories.

We are located in the northwest section of Chicago where living and working facilities are sec-
ond to none. We are within easy access of all shopping centers with convenient city transportation. Close by are many suburbs where one can live and commute back and forth in a short time-adjacent to all great centers of learning.
Our company has a long-range program of design and development in which you may participate . . . all positions are permanent.

We suggest you write Mr. Walter Wecker, Personnel Division, giving educational qualifications and related experience. Interviews will be arranged at your convenience.

Admiral Corporation

3800 W. Cortland St. Chicage 47, Illinois

Pleasant Working Conditions

So we're exaggerating a little! If you want to get technical about it (and you probably do) your life at our company won't be quite this cushy. We can promise this though-even the sky's not the limit for future opportunity. You work with a congenial group of engineers. People will listen to your ideas. The boss's door is always open. Who you are-You're an Electronic or Mechanical Engineer. You're experienced in air communication and navigation circuitry and development. You have worked with low or high frequency circuits, instrumentation, component utilization or associated problems.
What you do now - Simple! Just contact:

> Arthur E. Harrison, Vice President, Engineering
> wilcox Electric Company, Inc.
> Fourteenth \& Chestnut, Kansas City 27, Mo.

We have several positions of technical leadership available in our growing Guided Missile Division. Applicants must have over four years experience and/or advanced degrees in either missile guidance systems, radar, servomechanisms, fire control computers, or U. H. F. techniques.
Our plant is located in beautiful suburban St. Louis, where you can enjoy the comforts of "county" living with easy access to "big city" shopping, entertaining, medical and educational facilities. Moving allowance for qualified applicants. Our Housing Representative will assist you in relocating.

Address replies to:
Technical Placement Supervisor Box 516, St. Louis 3, Mo.

DESIGN RESEARCH DEVELOPMENT

key words to your employment opportunities at GOODYEAR AIRCRAFT . . . pioneer and leader in lighter-than-air craft . . . an established and growing company building an outstanding technical reputation

DESIGN ENGINEERING opportunities exist in the fields of airships, airplanes, and components, airframes, power-plant installations, controls, hydraulics, electronics systems, fuel cells, canopies, and wheels and brakes

DEVELOPMENT of missiles, jet aircraft, and helicopters, electric and electronics system, servomechanisms, fiber resin laminates, and many other projects present an urgent need for capable engineers

WELDING ENGINEERS, civil engineers, mechanical engineers with ability
in metals fabrication, and industrial engineers experienced in time study are needed. Job opportunities also exist for technical editors and illustrators

POSITIONS are open at several levels, and inquiries are also invited from recent graduates. Salaries are based on education, ability, and experience

PAID VACATIONS, free group life insurance, a good hospitalization plan, paid sick leave, company-sponsored pension plan, planned recreation, and free parking are among the facilities at the plant
A FRIENDLY CITY, Akron, Ohio, is located in the center of the midwestern industrial region

IF YOU ARE INTERESTED in a secure future, write, giving details, or request an application from

C. G. Jones, Salary Personnel Department

UHF-VHF SENIOR ENGINEERS

WE ARE LOOKING FOR ENGINEERS FOR OUR NEW ELECTRONIC RESEARCH AND DEVELOPMENT DIVISION.

THESE ARE THE REOUIREMENTS:
3 to 5 years genuine design and developUHF experience, specializing in VHF and uner measurements, and component and tuner engineering projecls.
Good theoreticians, but with solid pracical experience and excellent records of achievement. Prefer graduate Electrical Engineers.

THESE ARE THE ADVANTAGES:
A ground floor connection in the new research and development division of one of the oldest and most highly regarded manufacturers of radio and television com-

The opportunity to work in a fully equipped, completely modern research laboratory on permanent long range commercial projects.

To work directly with prominent electronic research director, who will encourage and give full consideration to your ideas.

To locate in one of the many desirable suburban residenial communities adjacent to Philadelphia and within easy driving dis tance of the seashore.

ADDRESS REPLIES TO:

RADIO CONDENSER COMPANY

Davis \& Copewood Sts. Camden 3, N. J.

Physicists, Senior

Unusual opportunities in fundamental research and development for men with thorough experimental and theoretical background in one or more of the following fields: Electronic physics, electronic optics, physical and geometrical optics, solid state physics, electronic tube development, ultrasonics. Excellent compensation com mensurate with experience and ability; work is in Manhattan laboratories of old established electronic organization.

Submit resume indicating salary requirements to Director of Research
FREED ELECTRONICS AND CONTROLS CORPORATION 200 Hudson Street

New York 13, N. Y.

ELECTRONIC ENGINEERS

EE or ME degree, minimum 3 years' experience in research and devélopment work involving circuit development, servo-mechanisms, analogue computers or telated equipment
FIELD REPRESENTATIVES
A few openings for graduate engineers only with
backiounds similar to above. Continental U.S.A.
What You Can Expect at
General Precision Laboratory
A progressive group of young, successful men, firmly established as designers and manufacturers of electronic equipment . . a medium-sized staff in which you receive individual recognition ... a policy of promotion-from-within that helps qualified men move ahead swiftly . . a modern laboratory located in a pleasant suburban community ideal for family living.

Expenses will be paid for qualified applicants who come for interviews. Please submit complete resume to: Mr. H. F. WARE

GENERAL PRECISION LABORATORY
 NCORPORATED

A Subsidiary of GENERAL PRECISION CORPORATION 63 BEDFORD ROAD, PLEASANTVILLE, NEW YORK

Design, development engineers

> INTERESTED IN A POSITION THAT GIVES YOU REAL SATISFACTION?

A lot of us are. But it's the kind that often isn't easy to come by

At Honeywell engineers perform a number of task-from designing controls for defense (like special gyros for the F-89 above), to developing new consumer items. There's a lot of satisfaction in work like this.

And right now we have several especially good openings for experienced engineers in the following areas:

- Servomechanisms • Vacuum tubes
$\begin{array}{ll}\text { - Gyros } & \text { - Electromechanics } \\ \text { - Relays } & \text { - Aircraft Control Systems }\end{array}$
Duties of the jobs. Take on complex design work requiring analysis and decision to bring into design form the requirements for a new or modified instrument, device or control system
Requirements. B.S. or M.S. in Elec trical, Mechanical or Aeronautical Engineering.
Atmosphere. A company that understands engineering - where one out of every ten employees is actively engaged in engineering or research.
Openings. In Minneapolis, Philadelphia and Freeport, Illinois.
For details on really satisfying jobs, write J. A. Johnson, Engineering Placement Director, Dept. EL-6-128, Honeywell, Minneapolis 8, Minn. Ask for our book. "Emplasis on Research."

Honeywell
 H Finst in Contrals

ENGINEERS

FOR ATOMIC
WEAPONS INSTALLATION

Mechanical Engineers, Electronics and Electrical Engineers, Physicists, Aerodynamicists, and Mathematicians. A variety of positions in research and development open for men with Bachelors or advanced degrees with or without applicable experience.

These are permanent positions with Sandia Corporation, a subsidiary of the Western Electric Company, which operates the Laboratory under contract with the Atomic Energy Commission. The Laboratory offers excellent working conditions and liberal employee benefits, including paid vacations, sickness benefits, group life insurance and a contributory retirement plan.

NOCATE IN THE

Albuquerque, center of a metropolitan area of 150,000, is located in the Rio Grande Valley, one mile above sea level. Albuquerque lies at the foot of the Sandia Mountains which rise to 11,000 feet. Cosmopolitan shopping centers, scenic beauty, historic interest, year 'round sports, and sunny, mild, dry climate make Albuquerque an ideal home. New residents experience little difficulty in obtaining adequate housing in the Albuquerque area.

APPLICATIONS NOW BEING ACCEPTED FOR TECHNICAL WRITERS

These ore not Civil Service Appointments
Make Application to the

 wages, a modern, air-conditioned plant, paid vacations and holidays, group insurance and a good chance
for advancement.
Housing immediately available in the beautiful suburban and county areas thal surround the Bendix Radio plant.

Bendix Radio

DIVISION OF BENDIX AVIATION CORPORATION Baltimore-4, Md. Phone: VAlley 3-2200

Makers of the World's Finest
Electranic Equipment

UHF and MICROWAVE ENGINEERS

This rapidly growing Organization in south central Wisconsin, approximately 100 miles from Chicago, has several openings for Junior and Senior Engineers in the U.H.F. and Microwave fields.

UNUSUAL

 SALARY OPPORTUNITIESexist under ideal working conditions in large, well-equipped laboratories. Personnel benefits such as sickness, accident, and life insurance in addition to a very liberal pension system are offered.

For more information concerning the positions that are open we invite you to write to Personnel Director, Department A.

GIBBS MANUFACTURING \& RESEARCH CORPORATION

Janesville, Wisconsin

ENGINEERS

AND

PHYSICISTS
BS - MS - Ph.D:

Responsible positions in mechanical, electrical or electronic engineering, physics or engineering physics for advanced development and design of special equipment and instruments. Prefer men with minimum of two years' experience in experimental research design and development of equipment, instruments, intricate mechanisms, electronic apparatus, optical equipment, servomechanisms, control devices and allied subjects. Positions are of immediate and permanent importance to our operotions. Southwestern location in medium sized community. Excellent employee benefits. Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential.

Ind. Rel. Manager
Research \& Development Dept.

PHILLIPS

PETROLEUM COMPANY
Bartlesville Oklahoma

PATENT ATTORNEYS

Major electronics manufacturer in Central New York State offers excellent opportunities in rapidly expanding patent section to qualified member of Bar with degree in electronics or equivalent and sufficient experience to handle patent prosecution and trade-mark activities with minimum of supervision.

If you are interested in a position requiring highest professional standards and offering corresponding opportunities for responsibility and advancement, write stating background, education, and experience fully.

SPECIAL OPPORTUNITIES FOR SENIOR ENGINEERS

Convair in beautiful, sunshiny San Diego invites you to join an "engineers" engineering department. Interesting, challenging, essential long-range projects in commercial aircraft, militory aircraft; missiles, engineering research and electronics development, Positions open in these specialized fields:

Electrical Design
Mechanical Design
Struclural Design
Structures
Weights
Servo-mechanisms Aerodynamies Thermodynamics Operation Analysis System Analysis
Generous travel allowances to those accepted. For free brochure, write Mr. H. T. Brooks, Engineering Dept. 900

IN BEAUTIFUL

3302 PACIFIC HIWAY
SAN DIEGO 12, CALIFORNIA

P-786. 1
ELECTRONICS
330 W. 42nd St.
New York 36, N. Y.

We desire personnel of the highest caliber--experienced in the field of airborne automatic electro-mechanical control equipment.

ENGINEERS

MECHANICAL DESIGN ELECTRONIC SERVO

This work deals with the manufacture and development of highly complex equipment of the most advanced type in α new and expanding division of an established firm with 20 years of successful experience in the precision instrument field.

We cite a lew of the good reasons why you might like to join our organization . . .

SALARY increases are based on meri and initiative - two weeks VACATION HOSPITALIZATION BENEFITS, GM's own INSURANCE PLAN - POSITIONS ARE PERMANENT due to long range manufacturing and developing pro grams - EXPENSES incident to interviews and moving all absorbed by company - HOUSING and LIVING CONDITIONS among the best and finest of any along Lake Michigan.

DESIGNERSS-LAYOUT MEN ELECTRONIC MECHANICAL

- We have a Junior Engineering Training Program of one year for inexperienced engineering graduates. Opportunity to beindustry.
- For the convenience and direct use of engineers in our Engineering Department, we have our own model shop where highest skilled mechanics are employed.
- Educational opportunities for advanced degrees available at U. of W., Marquette. Technical engineering offered at Milwau-
kee Vocational School.
.. all inquiries answered-write or apply . . .
\star AC SPARK PLUG DIVISION

General Motors Corpopation

STAVID
 ENGINEERING, INC.

has openings for GRADUATE
ELECTRONIC and MECHANICAL ENGINEERS

Experience in Design and Development of Radar and Sonar necessary
Broad knowledge of Search and Fire Control Systems; Servo Mechonisms, Special Weapons Microwave, Antennas and Antenna Mounts, etc. Mechanical Engineer should also have experience in packaging of Electronic Equipment to Gov't specifications including design of complex cabinets, shock mounts and sway brace structures.

FIELD ENGINEERS

Qualified to instruct in the operation and supervise installation, maintenance and repair of Radar, Sonar and allied electronic equipments in the Field.
A chance to grow with a young and progressive company; salary and advancement commensurate with ability; liberal vacation, sick leave, 9 paid holidays, group life, sickness and accident insurance plans, and a worthwhile pension system.

Personnel Office, 200 W. Seventh St. Plainfield, N. J. - Tel. Pl. 6-4806

SYSTEMS ENGINEERS

- Radio Communications
- Antenna Design
- Microwave
- Terminal Equipment
- Teletype
- Radar

ELECTRONIC SPECIALISTS

- Propagation
- Test Equipment
- Technical Writers

Responsible positions with α well established progressive organization. You benefit from high wages, paid vacations, and holidays, travel allowance. group insurance, and a good chance for advancement.

Applicants musf have diversified training and experience. All positions subject to travel. Personal interviews will be arranged for applicants meeting employment requirements. Write full resume of education, experience and employment to:

George W. Sarbacher, Jr.

NATIONAL SCIENTIFIC

 LABORATORIES, INC.2010 Massachusetts Avenue, N. W Washington 6, D. C.

LEWIS AND KAUFMAN LTD.
LOS GATOS, CALIFORNIA
TO HELP US
COMPLETE NEW TUBE LINE
WE NEED ONE OR TWO
JUNIOR
ELEGTRONIG ENGINEERS

WITH
TUBE BACKGROUND

\author{

- ——
 Write direct to
 N. V. BRAMLEY
 Chief Engineer
}

ATTENTION!

Former Field Engineers
We urgently need men with electronic background, and preferably radar or computer experience, to supervise, instruct and assist in installation-maintenance of electronic equipment.
Excellent starting salary during factory training, plus overtime premium in field. Substantial insurance program. Overseas duty not mandatory. Salary will be commensurate with experience.

Please forward your personal experience record to:

> L. H. Bailey Field Eng. Div.

Reeves Instrument Corp.

Roosevelt Field Mineola, L. I., N. Y. Garden City 7-3720

Engineers, physicists, designers, technicians-

Investigate the challenging

 new opportunities in the guided missile industry
BENDIX OFFERS EXCELLENT POSITIONS IN ITS WELL-ESTABLISHED GUIDED MISSILE PROGRAM

To men interested in the rapidly growing guided missile industry, an association with Bendix offers unusual advantages. For here at Bendix, guided missile work is not a side line, but a well-established program with over seven years of successful development and research backing up today's operations.
No finer engineering and production facilities are found anywhere in the industry, and the men responsible for the Bendix guided missile program are recognized leaders in their field. Job opportunities range from theoretical systems analysis, through product and test equipment design and development, to field test and flight evaluation.

OPENINGS IN:

Aerodynamics	Hydraulics
Electronics	Mechanics
Microwaves	Servo Mechanisms
Dynamics	Structures

LET'S DISCUSS OUR MUTUAL INTERESTS
Write:
Employment Dept. Bendix Products Division
Bendix Aviation Corporation, 401 Bendix Drive
South Bend 20, Indiana

notes of interest to
 electronic engineers

- An opportunity to do highly creative work with on exponding organization in on important, longrange field.

Excellent working conditions in a new and modern plant.

- Enjoy the advantages of living in Donbury, Connecticut, a comfortable, scenic New England community.

Independent research projects in which imagination and initiative are encouraged.

- You can expect prompt recognition of abilities and accomplishments.
- Moving expenses paid. 40 hour week with pay for overtime measurement equipment used to test any of the foregoing.

Address all inquiries to J. H. McCann

SPERRY PRODUCTS, Inc.

ENGINEERS

Join a leader in electronic development and manufacturing in Southern California. Real opportunity for expressing creative ability and accepting professional challenge.
Electronic Engineers
Mechanical Engineers
Qualified and experienced in development of
To design electro-mechanical equipment items functional circuitry and product design

Radio Receiver Specialists
Develop new standard and display types, V.H.F.-U.H.F. range
Advanced concepts of receiver principles. Interesting long term projects.

Relocation expense allowed accepted candidates
Excellent conditions including regular advance review, health and disability insur. ance, to hour week, standard paid holidays and annual vacations. Central location. Relocation should not disturl urgent military projects.
Send complete resume with income history \& requirements to engineering employment mgr. ofinali laboratories, Inc.

DEVELOPMENT ENGINEERS PRODUCTION ENGINEERS TECHNICIANS DRAFTSMEN

Career Opportunities With Old Established Central Connecticut Firm Interesting Projects Top Salaries Suburban Living
We Need Men Experienced In Servo Mechanisms UHF, VHF, Miarowave, Receivers, Transmitters Variable Capacitors
Replies Held In Strict Confidence Write Or Phone Collect Personnel Mgr:-Sherwood 7-2741

THE

ALLEN D. CARDWELL MFG. CORP.
Plainville, Connecticut

HOUSTON, TEXAS

> Precision equipment manufocturer needs qualified experienced engineer for audio and sub-audio transformer design and development. Experience with high permeability alloys desirable. Knowledge of magnetic circuitry must be sufficient for development work on magnetic amplifiers. Salary commensurate with ability.

SOUTHWESTERN INDUSTRIAL ELECTRONICS CO. P.O. BOX 13058 HOUSTON 19, TEXAS

A NEW Bendix Division! A NEW Electronic Product! NEW JOB OPPORTUNITIES

In our modern plant of York, Pennsyl vania, this new division of Bendix Aviation Corporation is producing a new elec tronic product. This division has a big future; and this is your opportunity to get in on the ground floor, with excellen possibilities for rapid advancement. We need the following:

- ELECTRONICS ENG.

- MECHANICAL ENG.

Also We hoore many ooenings. Tor men qualified by education or experi-
ence in all phases of electronics.

YOU BENEFIT
With the Bendix York Division, you will benefit from high wages, paid vacations and holidays and ideal living conditions in a beautiful suburban area.

Write, Wire or Phone,
Deportment $\mathrm{Y}-1$

AVIATION CORPORATION YORK DIVISION
Phone: York 5521
York, Penna

WANTED

ENGINEER WITH EXPERIENCE IN VHF or UHF

Interesting creative work with the mast resourceful and pragressive firm in the field of television equipment.
This position is permanent. If will affer every opporfunity for unlimited advancement and for developing a successful coreer. The plant is now housed in a newly-acquired larger building, only 22 miles from downown New York City. The surroundings and atmosphere are stimulaling ond congenial.

Attractive Salary
 Write stating qualifications.

BLONDER-TONGUE LABORATORIES

526-536 NORTH AVENUE
WESTFIELD, NEW JERSEY

Electronics enainers
 WANTED SOUTHERN CALIFORNIA

Attractive opportunities offered to Engineers experienced in and qualified to design aircraft flush anternas and radomes.

Complete modern facilities for laboratory testing and evaluation available.

Salary dependent upon experience and ability.

Contact Mr. J. C. Buckwalter, Chief Engineer

DOUGLAS AIRCRAFT COMPANY, Inc. LONG BEACH, CALIFORNIA

ELECTRONIC ENGINEER WANTED

Progressive and expanding Southern California Electronic Design and Manufacturing Company needs experienced electronic engineer.
Excellent opportunity for advancement.

Send detailed resume of experience and qualifications to:

CAL-TRONICS CORP. 12956 West Washington Blvd. Venice, California

Today, the great ideas that benefit mankind come... not from a struggling young genius in a garret ... but from men who work in an environment rich with incentives, facilities and resources, enabling them to put their ideas into practical application.

This is the kind of working environment that Magnavox has always provided its engineers. It is not surprising, then, that Magnavox engineers have developed many of the "firsts" in radio and television and are today among the leaders in the electronics industry.

More than ever before, Magnavox engineers work under conditions conducive to creative thought.

They constitute a completely
self-contained, closely-knit organization
devoted to engincering exclusively
with all other services available to them.
Needless to say,
job satisfaction at Magnavox is unusually high.

OPPORTUNITIES ARE GROUND FLOOR IN THE FIELDS OF:	
Radar	Synchros - Servo Systems
Radio - Commercial and Military	Magnetic Devices
Television - Monochrome and Color	Electro-Mechanical Devices
Magnetic Amplifiers	Navigational Aids - Fire Control
DESIGN - DEVELOPMENT - CIRCUITRY	
Electrical Engineers - Mechanical Engineers - Physicists	

Please forward complete resume to:
MR. BYRON D. SITES

the MAGNAVOX company

FORT WAYNE, INDIANA

Type No. Pr
OOA.
0.1
024
0.
143
145 GT
146
1 A7GT
$183 G T$
184 P
1135.

$1 \mathrm{C5GT}$
1 C 6

1076
1057
1075
$\underset{\substack{108 G T \\ 155 G P}}{155}$
${ }_{\substack{1 F 5 G \\ 1 F 6}}$
1 G 4 GT
1 G 5 G
$1 G 6 G T$
$1 H 4 G$
$1 H 56 T$
146 G
1 H6GT
1156 G
1 L.
1 L
1 1LA4
1LA6

1LB4. | 11 CK |
| :--- |
| 11 C |
| 1 LE, |
| 1 L | 1N55: 1 P5GT.

1 Q5GT 105G
1R4
1R5. $1 R 5$
112.
IS4...
$1 \$ 54$. 1T4
$1 U 4$.
105.
1V5.
Price T
 \qquad

 CM EQUIPMENT
K Band RF Head RT-99/APS-32; (incl 3131 Mag.
 10 CM Crystal Mixer-Pound Type-type N fitting AN/APR-4 Broall Band Receiver and Tuning \$19.50 TN. 16 (38.95 MC) TN. 17 (76.300 MC). YN. 18 ($300-1000$
Request.
Reques. CM TEST EQUIPMENT
$3 C \mathrm{M}$ Pickup Horn Antenna AT-48/UP
10 CM Signal Generator $1-138 \mathrm{AA}$
10 GM Freq. Meter CW 60 ABM
9.95
8.00

3CM RF Load-150 W. Avg. PWr. TS-108A/AP $\$ 32.50$ PULSE TRANSFORMERS
In Stock-Immediate Delivery

FILAMENT TRANSFORMERS

UTC 5 V. (1A.-Merm. Sealed. 1 $\$ 1.20$
 3.85
1.45
.89

 INPUT-208/230 V ., 50/60 CYCLES

 GE INPUT 190.5V., 50/60 CYCLES; Sec.- 7.95 | (3) 7.5A., Insul.-5KV-Open Frame.... 4.60 |
| :--- |
| Terms 25\% cash with order, balance C. O. D. | unless roted. All prices net F. O. B our ware house, Phila., Penna., subject to change with-

out notice.

CABLE ADDRESS - "LECTRONIC PHILADELPHIA"

Type No. Price	Type No.
$5 \mathrm{C} 22 \ldots . .47 .75$	FG-41
5CP1.... 4.95	RK-47
5CP7. .. 9.50	EF-50.
5D21 19.50	VT-52
5FP7. . . 1.95	53A
5HP1 . . . 5.50	RK59
5HP4.... 5.75	SK-60
5J29.... 18.50	VT-62 B
5JP1 26.50	RK-63
5JP2 26.50	FG-67
5J14.... 26.50	VT-67
5LP1 . . . 21.75	RK-69
5LP5 . . 19.75	
5MP1 . . . 10.50	
6-813.... . 85	RK-75
C6A 6.75	${ }^{75 T}$
6AN5 ... 3.30	VR-75
6AR6... 3.25	VR-78
6C21 ... 27.50	FG-81A
6C24 52.50	VR-90
6F4..... 5.95	91
C6J..... . 9.95	FG-95
6J4 ${ }^{\text {a }}$. 6.85	5560
7-7-11... 1.19	VT-98/
7BP1 8.65	Br
731'7.... 6.50	C100.
7BP12... 14.95	C100E
7BP14... 14.95	100R
7CP1 . . . 14.95	100 TH
9GP7... 11.75	WE-101F.
9LP7 . . . 4.50	WE-102F
10BP4 . . 17.95	FG-104/
10FP4... 22.50	5561
$10 \mathrm{~T}^{\circ} 1 . . .{ }^{\text {c }}$. 88	FG-105
10Y..... . 39	VR-105
12DP7... 14.50	WE-113A
12GP7... 18.50	HY-1143.
121117... 14.75	WE-117A
13-4.... . KH^{1}	F-123A
13 T 85	WE-124A.
15E..... 1.95	F-127A
15R.... . 65	T-127A.
FG-17/	AB-150
$5557 \ldots 4.95$	VR-150
REL-21 . 1.95	FG-166
23104.... 1.15	FG-172
24G 1.85	FG-178
HK-24... 4.95	FG-190
RK-25 . . 3.82	HF200.
FG-27A. 8.25	L-20013
FG32/5558 6.75	203A
FG33 . . 17.50	20313
RK34... . 49	204A
35T 4.95	CE-20
35 T ION	211
gauge.. 5.95	WE-2111)
35TG... 4.95	WE-211E.
REL 36 . . 45	212 E
T-40.... 3.75	WE-215A.

	- 8088inine	
	A noximining	

$\left.\begin{array}{l}\text { Type } \\ 715 \mathrm{~A} \\ 715 \mathrm{~B} \\ 715 \mathrm{C} \\ 717 \mathrm{~A} \\ 718 \mathrm{~A} \\ 718 \mathrm{Y} \\ 7201 \mathrm{Y} \\ 721 \mathrm{~A} \\ 722 \mathrm{~A} \\ 723 \mathrm{~A} \\ 723 \mathrm{~A} \\ 724 \mathrm{~A} \\ 724 \mathrm{~B} \\ 725 \mathrm{~A} \\ 726 \mathrm{~A} \\ 72613 \\ 726 \mathrm{C} \\ 730 \mathrm{~A} \\ 731 \mathrm{~A} \\ 788 \mathrm{Y} \\ 800 \\ 801 \mathrm{~A} \\ 803 \\ 805 \\ 806 \\ 807 \\ 808 \\ 809\end{array}\right]$.

 \qquad

VARIABLE TRANSFORMERS
 Amertran-29144-1nnuit 115 V 60 cy 1 . 0 . 0 utput 103.126V 2.17 Amp

TRANSFORMERS

Westinuhouse-Hipersil-Pri-115V $60 \mathrm{cy} .-\mathrm{B}^{3 / 4} \mathrm{KVA}$
 G. E0 MA. 12.5 KV Insulation 60 cy -........... $\$ 18.50$ Constant Volt Transformer-Thordarson T-41193AInput $95-135 / 190-270$ VAC 60 cy. Output- 115
VAC $350 V A 525$ Constant Volt. Transiorniel-Sola 30807 -Input $95-1$
125 VAC 60 cy . Dutput 115 VAC 250 VA.... $\$ 49.00$ TYPE "J" POTENTIOMETERS $\$ 1.25$ ea.

Resis.	Shaft	Resis.	Shaft	Resis.	Shaft
60			1/4"	50 K	
60	9/16"	5 K	3/8 ${ }^{\prime \prime}$	50 K	1/2*
100	SS	5 K	1/2*	100 K	SS
200	SS	10 K	SS	150 K	1/2*
250	1/8*	10 K	3/8*	250 K	SS
500	SS	10 K	1/2 ${ }^{\prime \prime}$	250 K	$3 / 4^{*}$
500	1/2"	15 K	SS	250 K	3/8*
500	5/8*	15 K	1/2*	500 K	SS
650	1/2"	20 K	SS	500 K	1/4"
1 K	SS	25 K	SS	500 K	7/16"
1 K	1/2*	30K	$1{ }^{1 / 8}$	1 Meg	SS
2 K	3/8*	40 K	SS	2.5 Me	SS
2500	SS	50 K		5 Meg	SS
4 K	SS	50 K	1/4		
5 K	UAL		S	.95	

SYNCHROS
ARMY ORDNANCE-NAVY ORDNANCE-COMMERCIAL

X	2JD5E1	C-78248
2J1F1	C-44988-6	C-78249
2J1G1	C-56701	C-78254
2J1H1	C-56776-1	C-78410
2J1M1	C-69405-2	C-78411
2J5A2	C-69406	C-78414
2J5D1	C-69406-1	C-78415
2J5HA1	C-77610	C-78670
2JD5A2		C-79331
SYNCHRO BLOWN FUSE	INDICATORS	
OAD INDICATORS		
When Requested, With Each Synchro Order		

GENERATORS AND INVERTERS

 Oitput-AC 115 V 10.4 A 800 to 1400 cy . I $\phi ; \mathrm{DC} 30$
Volts 60 Amps Brand new. Eclipse-Pioner type $1235-3 A$. output-30 Volts DC
15 Anins. Brand New-Original Packing... $\$ 15.50$
PE-109D Inverter-I 13.5 VDC to 115 VAC too cy. 175 PE-109D Inverter-13.5 VDC to 115 VAC to0 cy. 175
 Pioneer Type $800-1 \mathrm{~B}$ Inverter- 28 VDOC to 120 V 800
 ATR inverter $6 \vee$ D to 110 VAC 60 cy 75 w. $\$ 32.95$ PU.7/AP Inverter-28 VDC to 115 VAC 400 cy 2500 VA (New)
Eclipse-Pioneer typa i212l-iA Inverter-voltage and requency regulated- 24 VDC 18 Amp input-AC - 225.00

 $3 \phi 115 \mathrm{VA} . . .$.

CERAMIC-CASED TYPE G

 MICA CONDENSERS$.09 \mathrm{MFD} 1500 \vee \mathrm{VC}$ GI
.02 MFD 3000 VDCG
ea. $\$ 9.25$
.02 MFD 3000 VDG G1
.004 MFD 6000 VDC G
.004 MFD 6000 VDC GI
.00015 MFD 20000 VDC G3
$\begin{array}{lr}\text { ea. } & 9.25 \\ \text { ea. } & 18.10 \\ \text { e.ea. } 24.50\end{array}$

GAMMA RADIATION SURVEY METER Victoreen Model 247A-Range -.25/25/250/2500 imilli-roentgens Per hour-Lab. only
Instrument $\mathbf{\$ 1 7 9 . 5 0}$

A.C. MOTORS

HAYDON SYNCHRONOUS TIMING MOTOR -IIOV 60 cy. - 2.2 W - 4 RPM........................ $\$ 2.29$ AC/DC BRUSH TYPE SERIES MOTOR $-110 V$
AC/DC -0.3 Amp. $/ 20 \mathrm{HP}$ - SDeed 5000 RPM Rated, suitable for sewing machine. hi sneel
prinder, etc. Dim. $23 / 4^{\prime \prime}$ dia. $\times 31 / 4^{*}$ Ig. Shaft

SIGNAL ELECTRIC TYPE V5I2 BI.....EA. $\$ 2.95$
 EAD EAD TYPE J7I-1I CAPACITOR INDUCTION
 MFD Capacitor - Dim. $31 / 4^{* \prime}$ dia. X EA. $\$ 28.50$ EAD TYPE LH7II NCJ-2 SYNCHRONOUS HYSTERESIS MOTOR - 115 V - 1 ph. © 60 cy
1.0 Amp. 1800 RPM $-1 / 50$ HP Cont. Duty
 BARBER-COLMAN PYAZ 4278 SPEED REDUCER MOTOR- 115 V - 60 cy - 31 W - Gear Ratio G.E.-MODEL 5 SMY54HI6 SYNCHRONOUS IN. DUCTOR MOTOR - 110 V - 60 cy . 36 Amp .
 HOLTZER-CABOT RBT-2505 AC Induction Motor DIEHL C78291-FP-83-3.1 or DIEHL C783I8.FP. 83-12 AC MOTOR - 115 V - 60 cy - 3450 RPM .22 Amp ; 50 V - 50 cy - $2850 \mathrm{RPM}=.48 \mathrm{Amp}$. I/40 HP' 3 oh. - cont. duty - Dim. ${ }^{4^{* \prime}}$ dia. ${ }^{x}$

A. C.
 SYNCHRONOUS MOTORS
 110 Vt. 60 Cycle

A LEADING SUPPLIER OF ELECTRONIC \& AIRCRAFT EQUIPMENT

HAYDON TYPE 1600, $1 / 240$ RPM HAYDON TYPE 1600, 1/60 RPM HAYDON TYPE 1600, 4/5 RPM HAYDON TYPE 1600, 1 RPM HAYDON TYPE 1600, 1 1/5 RPM TELECHRON TYPE B3, 2 RPM TELECHRON TYPE BC, 60 RPM
HOLTER CABOT, TYPE RBC 2505, 2 RPM, 60 oz . 1 in. torque.

SERVO MOTORS

PIONEER TYPE CKI, $2 \phi 400 \mathrm{CYCLE}$
PIONEER TYPE 10047-2-A, $2 \phi .400$ CYCLE, with $40: 1$ reduction gear.

D. C. MOTORS

BODINE NFHG-12, 27 VTS., governor controlled, constant speed 3600 RPM, 1/30 HP.
DELCO TYPE 5068750, 27 VTS., 160 RPM, built in brake.
DUMORE, TYPE EIY2PB, 24 VTS., 5 AMP., .05 H.P., 200 RPM.
GENERAL ELECTRIC, TYPE 5BA10AJ18D, 27 VTS., 110 RPM, $1 \mathrm{oz}, 1 \mathrm{ft}$. torque
GENERAL ELECTRIC, TYPE 5BA10AJ37C, 27 VTS., 250 RPM, 8 oz. 1 in. torque.

BARBER COLMAN ACTUATOR TYPE AYLC 5091, 27 VTS., 7 amp., 1 RPM, 500 in. lbs. torque.
WHITE ROGER ACTUATOR TYPE 6905, 12 VT., $1.3 \mathrm{amp} ., 11 / 2$ RPM, 75 in. lbs. torque.

AMPLIDYNE AND MOTOR

AMPLIDYNE, GEN. ELEC. 5AM31NJ18A input 27 vts., at 44 amp, output 60 vts. at $8.8 \mathrm{cmp} ., 530$ watts.

MOTOR, GEN. ELEC. 5BA50LJ22, armoture 60 vts. at 8.3 amp., field 27 vts. at 2.9 amp. $1 / 2$ H.P., 4000 RPM.

PIONEER AUTOSYNS 400 CYCLE

TYPE AY1, AY5, AY14G, AY14D, AY20, AY27D, AY38D, AY54D.
PIONEER AUTOSYN POSITION
INDICATORS \& TRANSMITTERS
TYPE 5907-17, single, Ind. dial graduated 0 to $360^{\circ}, 26$ vts., 400 cycle.
TYPE 6007-39, dual Ind., dial graduated 0 to $360^{\circ}, 26$ vts., 400 cycle.
TYPE 4550-2-A, Transmitter, 2:1 gear ratio

INVERTERS

WINCHARGER CORP. PU $16 / A P, M G 750$, input 24 vts. 60 amps. outputs 115 vts., 400 cycle, $6.5 \mathrm{amp} ., 1$ phase
holtzer CAbot, type 149f, input 24 vts. at 36 amps., output 26 vts. at 250 V.A. and 115 vts . at $500 \mathrm{~V} . \mathrm{A}$., both 400 cycle 1 phase.
PIONEER TYPE 12117, input 12 vts., output 26 vts. at 6 V.A., 400 cycle.
PIONEER TYPE 12117, input 24 vts., output 26 vts. at 6 V.A., 400 cycle.
WINCHARGER CORP., PU/7, MG2500 input 24 vts. at 160 amp., output 115 vts. at $21.6 \mathrm{amp} ., 400$ cycle, 1 phase.
GENERAL ELECTRIC, TYPE 5D2INJ3A, input 24 vts , at 35 amps., output 115 vts . at 485 V.A., 400 cycle, 1 phase.
LELAND, PE 218, input 24 vts . of 90 amps. output 115 vts. at 1.5 K.V.A., 400 cycle, 1 phase.
LELAND, TYPE D.A. input 28 vts., of 12 amp, output 115 vts. of 115 V.A., 400 cyele, 3 phase.

ENGINE HOUR METER

JOHN W. HOBBS, MODEL MI-277 records time up to 1000 hours, and repeats, operates from 20 to 30 volts.

VOLTAGE REGULATOR

LELAND ELEC. CO. TYPE b, CARBON PILE. Input 21 to 30 volts D.C. regulated output 18.25 vts . of 5 amp .
WESTERN ELEC. TYPE BC937B, input 110 to 120 volts, 400 cycle. Output variation 0 to 7.2 ohms at 5 to 2.75 mps
WESTERN ELEC. TRANSTAT, input 115 vts., 400 cycle output adjustable from 92 to 115 vts., rating . 5 K.V.A.
AMERICAN TRANS. CO., Transtat input 115 vts., 400 cycle output 75 to 120 vts. or 0 to 45 volts, rating .72 K.V.A.

SYNCHROS

1 F SPECIAL REPEATER 115 vts. 400 cycle. 2J1F1 GENERATOR, 115 vt .400 cycle. 2J1F3 GENERATOR, 115 vt. 400 cycle.
2J1G1 CONTROL TRANSFORMER 57.5 vt. 400 cycle.
2J1H1 DIFFERENTIAL GEN. $57.5 / 57.5 \mathrm{vt}$. 400 cycle.
5G GENERATOR, 115 vt. 60 cycle
5DG DIFFERENTIAL GEN. $90 / 90$ vts. 60 cycle.
5HCT CONTROL TRAN, $90 / 55$ vts. 60 cycle. 5CT CONTROL TRAN. $90 / 55$ vts. 60 cycle. 5SDG DIFFERENTIAL GEN. $90 / 90$ vts. 400 cycle.

26 vts., 400 cycle.

ALL PRICES
ALL PRICES GREAT NECK N. Y .

TACHOMETER GENERATOR \& INDICATOR

GENERAL ELECTRIC, GEN. TYPE AN5531-1, Pad mounting 3 phase variable frequency output.
GENERAL ELECTRIC, GEN. TYPE AN5531-2, Screw mounting 3 phase variable frequency output.
GENERAL ELECTRIC, IND. 8DJI3AAA, works in conjunction with above generators, range 0 to 3500 RPM

D. C. ALNICO FIELD MOTOR
 DIEHL TYPE FDG-23, 27 vts. 10,000 RPM.

GENERAL ELECTRIC D. C. SELSYNS

8TJ9-PAB TRANSMITTER 24 VTS.
8TJll- INDICATOR, dial 0 to $360^{\circ}, 24$ vts.

RECTIFIER POWER SUPPLY

HAMMETT ELECTRIC MFG. CO. MODEL SPS-130. Input voltage 208 or 230 volts 60 cycle, 3 phase, 21 amps. Output 28 volts at 130 amps. continuous duty, 8 point tap switch, voltmeter ammeter, thermo reset all on front panel.

MISCELLANEOUS

PIONEER MAGNETIC AMPLIFIER ASSEM BLY Saturable reactor type, designed to supply variable voltage to a servo motor such as CK1, CK2, CK5 or 10047.

SPERRY A5 CONTROL UNIT, part No 644836.

SPERRY A5 AZIMUTH FOLLOW-UP AMPLIFIER, part No. 656030.
SPERRY AS DIRECTIONAL GYRO, part No 656029,115 vt. 400 cycle, 3 phase.
SPERRY A5 PILOT DIRECTION INDICA TOR, part No. 645262 contains AY 20. ALLEN CALCULATOR, TYPE C1, TURN \& BANK IND., part No. 21500,28 rts. D. C. TYPE CI, AUTO-PILOT FORMATION STICK, part No. G1080A3.
PIONEER GYRO FLUX GATE AMPLIFIER, Type 12076-1-A, 115 vt .400 cycle.

363 Great neck road, great neck. n. y Telephone GReat Neck 4-1147

SEARCHLIGHT SECTION

UN

P. M. MOTOR AND RATE GENERATOR

These units are wound with two separate windings on a common skewed lamination stack, with connections brought out to two silver commutators. A husky Alnico field is cast into the motor housing and serves for both the motor and generator. Overall size is approximately $31 / 4^{\prime \prime} \times 13 / 4^{\prime \prime} \times 13 / 8^{\prime \prime}$ with a $3 / 16^{\prime \prime}$ diam. shaft extending $7 / 16^{i \prime}$. Six types are available with different winding combinations, including motors for $d-c$ voltages as high as 115 volts and d-c rate signals as high as 9 volts per 1000 rpm . Please state your operating conditions and we will select the type closest to your requirements. SA-427
\$39.50 each

SPLIT FIELD D-C SERIES
 \section*{MOTOR}

G-E Model 5PS58LA7. 60 volts at 3.4 amp. $1 / 7 \mathrm{hp}$ at $5000 \mathrm{rpm} .5-3 / 4$ " long $\times 3-1 / 4^{\prime \prime}$ diam. $1 / 4^{\prime \prime}$ shaft extends $1^{\prime \prime}$ Ideal for servo applications. SA-513 $\$ 14.50$ each

SPLIT FIELD SERIES
 D-C BRAKE MOTOR

Grayson \#25120. 24 volts at 6 amps. $1 / 10 \mathrm{hp}$ at 7500 rpm . Incorporates internal brake for rapid stopping. $5-7 / 8^{\prime \prime}$ long $\times 2^{\prime \prime}$ diam. $1 / 4^{\prime \prime}$ diam. splined shaft extends $11 / 16^{\prime \prime}$. SA 426 $\$ 17.50$ each

TEMPERATURE INDICATOR

Edison P109-C127A. - 10 to- 120 degrees C. 24-28 volts $\mathrm{d}-\mathrm{c}$. Wheatstone bridge type of instrument. Used with resistive type sensitive element. Special at
$\$ 3.75$ each

AIRCRAFT RDF RECEIVER

Bendix Type RA-10DB Input 28 volts d-c. 4 bands, 150 to 1100 KC and 2000 to $10,000 \mathrm{KC}$. Weight 32.5 lbs. Special at only. . . $\$ 39.50$ each

gyro flux Gate compass

 AMPLIFIERPioneer \#12076-1-A. AN-5753-1A 5 tube amplifier in shock mounted case. Adjustable sensitivity. Operates from either 26 or 115 volts, 400 cycle. Case size $9-1 / 4^{\prime \prime}$ w. $\times 7-1 / 2 \mathrm{~d} . \times$ 6-1/2 h. Without tubes. Special
$\$ 49.50$ each
write for listing Prices F.O.B. Hawthorne
Telephone: HAwthorne 7-3100

1086 GOFFLE ROAD
hawthorne, N. J. Cable Address: SERVOTEK wUX Hawthorne, N. J.

SELSYN-SPECIALS

General Electric 2J1F1-2JIGI-2JIF3 115 volt 400 cycle SELSYNS in small size. Will operate from 30 volts 60 cycle. Army Type VII (C-78248) 115 volt, 60 cycle Synchro GeneratorSimilar to size 5G. Army Type IX (C-78410) 115 volt, 60 cycle. Synchro Repeater-Similar to size 5 F . Send for special prices.

ISF NAVY SYNCHRO

115 volts 400 cycle. May be used as transmitter or receiver. Will operate from 30 volts 60 cycle SA- 29
$\$ 49.50$ each

AIRCRAFT INVERTER

Leland 10486 . Input 27.5 volts d-c at 12.5 amp .8000 rpm . Output 175 VA at 115 volts, 3 phase, 400 cycle
$\$ 129.50$ each

EAD SYNCHRONOUS MOTOR TYPE J-33
115 volts, 400 cycle, 3 phase. 8000 rpm of $1 / 200 \mathrm{hp}$. SA-59
$\$ 16.50$ each

D-C SHUNT MOTOR

Western Electric KS-5603-L02. 27 volts d-c. $1 / 100 \mathrm{hp}$ at 6500 rpm .4 leads permit reversing SA-233
$\$ 9.75$ each

400 CYCLE BLOWER
Westinghouse Type FL. 115 volts, 400 cycle single phase. 17 cfm . at 6700 rpm. includes capacitor. SA-144
$\$ 14.50$ each

LEAR D-C SHUNT MOTOR \& BLOWER WHEEL
27.5 volts d-c. 4 in.-oz torque at 5400 rpm. Double shaft. SA-352
$\$ 12.50$ each

DIEHL D-C SHUNT MOTOR
Type FD52-2. 27.5 volts d-c, 3000 rpm. Used by Sperry as "Follow-up Motor". Sperry \#803010. 4 leads. SA-363 $\$ 4.75$ each

GEARHEAD SHUNT MOTOR

John Oster Type B9-1. 27.5 volts $\mathrm{d}-\mathrm{c}$. Motor speed 5600 rpm . Gearhead has dual output shafts upon which cams actuate roller lever arms. Reduction ratios 930:1 and 230:1. SA-335
$\$ 8.75$ each

I RPM TIMING MOTÖR
115 volt, 60 cycle. Ideal for many timing applications. SA-278
\$2.75 each

8uiy TOP Radio-Electronic Values!

SENSITIVE RELAYS

midget type relays
Nomatic Electric Type R-45, 6500 ohm Colls.
Normally open contacts except as moted.

Stock No.	Contacts	M. A.	Price Each
102152	S.P.S.T.	2.0	$\$ 1.25$
102249	2.P.S.T.	4.5	1.50
102264	3.P.S.T.	6.0	2.00

1 Norm. open-1 Norm. closed.
Same typa and style as above, but has 24 V.A.C. coll ntermittent duty, Will opirazo on ${ }^{6}$ V.D.C. Con.
innuous duty. Contacts: s.P.S.T.-N.O. and S.P.D.T.

> Stoek Price
Each
and $\mathbf{\$ 1 . 2 5}$

ONAN GAS-DRIVEN GENERATOR 14 V-2500 WATT D.C. $\$ 225.00$

TCS. GENERATORS

High voltage continuous duty fully enclosed D.C. Generator. Delivers 440 volts at 200 M.A. Motor driven by 3450 RPM motor (not fur. nished). Made to Navy Specs. for Collins Radio TCS. Transmitters.

Stock
No. 6147 A
$\underset{\substack{\text { Price } \\ \text { Each }}}{\$ 15.00}$

. 01 MFD.-600 VOLT MICA CONDENSERS

Large quantities available in both CM-35 and CM-40 case sizes. TOLERANCE

PRICE PER
1000

5%	$\$ 150.00$
10%	125.00
20%	100.00

350 OHM 22 WATT 5\% WIRE. Wound Power Re. Flat-wound type com. Meets JAN-R-26A Specs. Brackets allow stacking. $2^{\prime \prime} \mathrm{L} \times 1^{\prime \prime} \mathrm{W} \times 3 / \mathrm{R}^{\prime \prime}$ thick. $\$ 12.00$ per 100
No. 6288 A
Prich
$\$.15$

TYPE "J" POTENTIOMETERS
50c Ohm-2 Watt Type J Pot. $8 / \omega^{\prime \prime}$ Long Shaft. $1 / 4^{n}$ $\begin{array}{rcc}\text { Stock } & \text { Complete with Knob. } \\ \text { No.A6123 } & \text { Price } & \text { Each }\end{array}$
$\begin{array}{lll}\text { IC0 ohm Type } 1 \text { with } 3 / \mathrm{s}^{\prime \prime} \text { bushing and locking nut. } \\ \text { Screw-driver slot. } \\ \text { Stock } & & \\ \text { No. } 6270 \mathrm{~A} & \text { Price } & \mathbf{\$. 4 9}\end{array}$

LAB. POTENTIOMETERS

MODEL 260. 6 Watt 20,000 OHM Laboratory, Po. tentiometer. Resistance tolerance plus or minus Diam. x $11 / 44^{\text {L L Long. }}$
Stock
vo. 6277 A
Price
Each
E.

MIL-T- 27

FILAMENT TRANSFORMER
PRIMARY: $\begin{aligned} 107.5 ; 112.5 ; ~ 117.5 ; ~ 122.5 ; \\ 215 ; 225 ; 235 \text { and } 245 \text { Volts } 50 / 60 \text { cycle. }\end{aligned}$ SECONDARY: 6.3 Volts @ 5.3 AMPS and 6.3 lug terminals. Rated for continuous duty under Mil-T-27, Class " A " Grade 1 specs. Hermetically sealed case, $23 / 4^{\prime \prime} \times 31 / 2^{\prime \prime} \times 31 / 6^{\prime \prime}$ high.
\qquad Price
Each $\mathbf{\$ 3 . 5 0}$

MICA CONDENSERS

Type 9 and A2 5000 Volt Test Mica Condensers

Stock	Cap.	Price
No.	Mfd.	Each
$6274 A$.002	$\$.60$
$6275 A$.01	$\$ 1.00$

SWEEP CAPACITOR

5.10 MMFD. Sweep Generator Capacitor. Has cylindrical silver plated rotor, concentric to silver
plated stator plates. Rotor has high speed ball bearings. Completely enclosed in moulded bakelite housig. Ideal for motor driven sweed generators.

$$
\begin{array}{lll}
\substack{\text { Stock } \\
\text { Ne. } 6276 \mathrm{AA}} & \begin{array}{c}
\text { Price } \\
\text { Each }
\end{array} & \$ 2.00
\end{array}
$$

8 MFD-220 V.A.C.		
Capacitor. $2^{\prime \prime \prime}$ Oiam. $\times 4^{\prime \prime}$ high can. Bakelite insulated solder lug terminals. Stock		
2×4 MFD-600 VOLT		
Capac tor made for "TCS" equipment, Mounted in 		
	${ }_{\text {Price }}^{\text {Prech }}$	\$2.00
25MFD-1000 VOLT		
$\mathrm{No}^{\text {Stock }}$ 6282A	Price Each	\$.30

6.3 VOLT FILAMEMT TRANSFORMERS

Primary 115 Volt 60 Cycle 1600 Insulation Thnee 6.4 Volt Secondaries
6.3 Volts @ 4.9 Anpps. 6.3 Volts @ 4.5 Amps.
6.3 Volts @ 1.1 Amps. Stock No.
5254 A

HEAVY DUTY SWITCH

H\&H 4 P. D. O. T. Toggle Switch. 5 AMP. @ 250 Volt. 10 Amp. @ 125 Volt. Single $3 / 4^{\text {" }}$ hole mount. Ball handle.

$$
\begin{gathered}
\text { Stock } \\
\text { No. } 6203 \mathrm{~A}
\end{gathered}
$$

Price
Each $\$ 1.95$

RECTIFIERS

A precision balanced copper oxide double bridge rectifier. Housed in a sealed metal container $1^{\prime \prime} X$ Discs have vaporized golel contact surfaces. Made by Bradley Labs, to W. E. spec. D 220005. Nominal input volts 10.5 V.A.C. 5 MA.

> Stock
> No. 6283 A

BRADLEY INSTRUMENT RECTIFIER BRADLEY \#CX2E4E-69 Copper Oxide Rectiffer, 3 color coded insulated wire leads.

Stock
No. 6184 A
Price
$50 \not \subset$

RECTIFIER POWER UNIT

PP35/ART, Sig. Cords No. 3H 4698.35 input 115 Volts 400.5500 Cycles Note: P/O AN/ ART5 to AN/ARTII complete with 2.836 H.V.

Stack
Stack
No. 6248 A
Price
Each $\quad \$ 7.50$

SPECIAL PURPOSE AND TRANSMITTING TUBES

Tubes listed below are "Jan"' types in original boxes and are new. Some in limited quantities. All are standard brands such as quantities. All are standard brands such as Machlet, Étc.

Type	Price Each	Type	Price Each
OB3/VR90	\$ 85	826	\$.85
OC3/VR150	. 85	836	3.00
1 B29	2.00	837	1.00
1 B 23	7.50	860	4.50
2C22/7193	25	864	. 35
$2 J 36$	75.00	955	25
204A	75.00	956	35
3B7/1291	. 50	10Y	35
3D6/1299	. 50	12GP7	14.95
3B24	5.00	CK1090	1.00
3E29/829B	12.95	1616	. 75
3BP1	5.95	1619	. 25
316A	1.25	1625	. 35
371 B	. 75	1626	. 35
450TL	45.00	1832/532A	5.00
5FP7	5.00	GL-8002R	95.00
705A	2.00	8020	1.95
71889	40.00	8025	4.00
7248	3.00	9001	1.50
801	. 45	9003	1.25
807	1.75	9006	. 30
814	2.75		

SIGNAL CORPS \& NAVY TRANSFORMER Over 200,000 transformers. chokes etc. For Signal Cords and Navy Equioment. Send us your require ments, or ask for our catalog listing, by Signal
Corps Numbers. OON'T DELAY!

COMMUNICATIONSEQUIPMENTCO.

IN STOCK

- APN-3* - APS-4 - SN
- APN-4* ${ }^{*}$ APS. G * - SO
- APN-7 - APS-10* - SO
- APN-9* - APS.15* - TAJ
- APS-2 - SE - TBK - APS-3* - SG - BG (iff)
* Major Components and/or Spare Parts

APN-1 TEST GEAR

TS-10/APN

This unit is self contained with all components It is used in conjunction with test set TS-IG/APN. On the top panel are four outlet receptacles which are terminals of two delay lines. Suritable connectors and indicators are provided. TS-10/APN, which does not require an external power source,
provides a highly accurate delay and is used with the altimeter for the following purposes
(1) Measures power output of the transmitter.
(2) Permits adjustment of the limit lights on low
(3) Measures overall sensitivity.
(4) Permits tuning the detcctor to the trans-
(5) Permits delay line calibration of the low

Price range
$\$ 32.50$

TS-16/APN

This is a portable cquipment used in conjunction
with $T S \cdot 10 / A P N$ for locating trouble and alion ing and calibrating the altimeter. It covers the frequency lange from 410 to 470 me and operates
from an ingut of 27 to 28 volts do froman input of 27 to 28 volts de, ohtained through The unit provides an artificial delay line for: high range, a waventeter, anct an audio output of six different frequencies. When used with
TS-10/APN it is limited to the high range. TS-10/APN it is limited to the high range,
although it may be used with less accurate results on the low range. The uses of TS-IG/APN with the altimeter are listed below:
(1) Galibrates 500 -foot and 3000 -foot marks.
(3) Measures the modulator frequency.
(4) Permits tuning the detector to the trans. - mitter frequency.

Price
$\$ 125.00$
BAND PASS FILTERS

W. E. PRECISION RESISTORS

1% TOL. 1 WATT
DYNAMOTORS

POWER TRANSFORMERS
Comb. Transtormers- $115 \mathrm{~V} / 50-60$ eps Inpw CTJ5-2-600VCT/.2A, 5V/6A. CT-164 4200V.002A/12KV Test, 5 VCT/3A/12KV 2.
 $2 \times 2.5 \mathrm{~V} / 3 \mathrm{~A}, 6.3 \mathrm{~V}$ @ 3 A 16.95
 $\begin{array}{lllll}C T-626 & 1500 \mathrm{~V} & .160 \mathrm{~A} & \mathbf{2 . 5 / 1 2}, 30 / 100 \ldots & 9.95 \\ \mathrm{CT}-071 & 110 \mathrm{~V} & .200 \mathrm{~A} & 33 / .200,5 \mathrm{~V} / 10\end{array}$
 CT-720 550-0-550V/250 MA $\mathbf{6 . 3} \mathbf{5 0 V} / 1.8 A$ CT-43A $600-0-600 \mathrm{~V} / 08 \mathrm{~A}, 2.5 \mathrm{VCT} / 6 \mathrm{~A}, 6.3 \mathrm{VCT} / 1 \mathrm{~A}$

H.V. FILAMENT XFMR

 FILTER CHOKES

Stock	「Description Pric
$\begin{aligned} & \mathrm{CH}-3661 \\ & \mathbf{C H}-322 \\ & \mathbf{C H}-141 \end{aligned}$	20H/.3A
	. $35 \mathrm{H} / 350 \mathrm{MA}-10$ Ohms DCR
	Dual 7H/75 MA, 11H/60 MA SKV D
	Test . 4.69
CH-119	8.5H/125 MA 2.79
CH-69-1	Dual; 120H/17 MA 2.35
CH-8-35	2/5H/380 MA/25 Ohms 1.79
STOCK	Description
CH-776	1.28H/130 MA/75 ohms $\$ 2.2$
CH-344	1.5H/145MA/1200V Test 2.35
CM43A	10HY/15MA - 850 ohms DCR. 1.75
CH-366	20H/300MA 6.95
CH-999	15HY/15MA 400 ohms DCR 1.95
CH-511	6H/80MA-310 ohms DCR 2.45
CH3-501	$2 \times .54 / 400 \mathrm{MA}$. 2.79
CH-188M	5HY 200MA . 1.79
CH-488	10HY .0304 1.19
CH-791	Dual 1.75-.125 HY 100 MA 1.27
CH-981	15HY .110A 1.59
CH-22-1	1 HY .100A 1.17
CH-779	.6 HY.4904.
CH-25A	SW .09/.018 HY 3/.3A 8.95
CH-922	10000 HY OMA 2.75
CH-043	2.2 HY 80 MA ${ }^{\text {. }} 98$
CH-89A	$\mathbf{2 \times 1 . 5 2 H @ . 1 6 7 A ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~} 1.39$
CH-69A	Mult. Choke
	SECT. 1. Swing 3-12H/.52-.05A
	SECT. 2. Smooth 5H/.52A
	SECT. 3. Swing 3.25-18H/.138-014A
	SECT. 4. Smooth 3.4H/.138A
CH-445	$0.5 \mathrm{HY} / 200 \mathrm{MA}, 32.2$ OHMS, 3000 V .T. 1.39
CH. 170	$2 \times 0.5 \mathrm{H} / 380 \mathrm{MA}, 25$ OHMS 2.79
CH-533	13.5H, 1.0 AMP DC, 13.5KV INS 39.95

SUPERSONICS

of 3 crystals encased in olltilled disk approx. 4 "mosaic

 4^{*} diam. in which is enciosed a lattice of 8 t rystals

aLL MERCHANDISE IN NEW CONDITION AND FULLY GUARANTEED, EXCEPT WHERE NOTED OTHERWISE.
MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D
PARCEIS P.O. ALL MDSE. SUBJECT TO PRIOR SALE, AND PRICES SUBJECT TO CHANGE WITHOUT NOTICE.
PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED VIA CHEAPEST TRUCK OR RAILEX.

131 Liberty Sto, New York 7, N. Y. Depf E-6 Chas. Rosen Phone: Digby 9-4124

GOMMUNICATIONSEOUIPMENTGO.

MICROWAVE COMPONENTS

S BAND—RG 48/U W.G. 10 CM.
OWER SPLITTER Por use with
Type 726 or any 10 CM Shepherd Klystron. Fnergy is fed from Klystron Antenna thru dus
pick-up system to ${ }^{2}$ Type ${ }^{\prime}$ " connectors as shown. DIRECTIONAL COUPLER, Broadhand, 20 db . CoupNavy \# CABY-47AAN-2.........37. 37.50 LHTR LIGHTHOUSE ASSEMBLY. Part of certi W/assoc. Tr. Cavity and Type N CPLG. To Reor. MCS Silver Plated BEACON LIGHTHOUSE carity 10 cm . Mfg. Bermard MAGNETREN TO WAVEGUID
RT-39/APG-5 10 cavity, gold Dlated.................. \$45.00 lecert.-TR carity. compl. recor \& \& 30 MC IF strip 721A TR BOX complete with tube and tuning plungMeNALLY' KLYSTRON CAVITIES for 078 B or F 29/SPR-2 FILTERS, type "N input and output WAVEGUIDE TO $7 / 8^{\prime \prime}$ RIGID COAX "DOORKNOB" adapter choke flange. Slurer plated broad band $\$ 32.50$ OAJ ECHO BOX, 10 CM TUNABLE HOMEDELL-TO-TYPE 'N" Male \#D167 284 …... 1. F. AMP STRiP: $30 \mathrm{MC} 120 \mathrm{~d}, \mathrm{~b}$ gan, 2 vic
width, uses $6 A C z$ s-with video detector.
 ANTEN "NA" ATEd ATA AMR: Broadband Conical. $\$ 22.50$ "E" or "H" TYpLANE BENDS. 90 Deg. less flanges $\$ 7.50$ COAXIAL FILTER, F3/AJR-2, LO-PISS, BELNW
400 MC
M. 7/8" RIGID COAX- $3 / 8^{\prime \prime}$ 1, C. ROTARY JOINT, Stub-supported, UG 46/UG 45 fit10 ting STABiLizer Cavity, tunable, standard UG4 RG 44/U RIGID

PULSE TRANSFORMERS

UTAH X-151T-1: Dual Transformer, 2 Wdgs, per seeDCR UTAH X-150T-1: Two sections, 3 Wigs. per section,
$\perp: 1: 1$ Ratis. 3 MHU, 6 ohms DCR perW'dg...... $\$ 7.50$ 6BG711: Ratio, $4: 1$. 6.7 Ohms, Pri: 0.230 bms sec. $\$ 4.50$ TF1049: Ratio: $2: 1$. Pri. $220 \mathrm{MH}, 50 \mathrm{hms}$, sec. 0.75 H, DCR 100 Ohms
K-901695-501: Ratio $1: 1$ Pri. Imp. 40 Ohm. Sec. Imp.
 D-166173: Video. Ratio $=50: 900$ Ohms 10KC2MC $\$ 12.50$
$\$ 39.50$
G.E.K. 2745

KV Low
G.E.K. $2744 \cdot \mathrm{~A} .11 .5 \mathrm{KV}$ High voltage. 3.2 KV Low
yoltage a 200 KW opar. (270 KW max.) 1 microsec . voltage a 200 KW oder. ${ }^{\text {or } 1 \text { microsec. @ } 600 \text { PPS.................... } \$ 39.50 ~}$
W.E. Di6927I Hi Valt indut pulse Transformer. . $\$ 27.50$ G. E. K2450A. Will receive $13 \mathrm{KV}, 4$ micro-second pulse on pri. secondary delivers 14KV. Peak power out 100
Ray UX 7896-Pulse Outbut Pri. 5r, sec. 41 Ray UX 8442-Pulse inversion- $40 \mathrm{v}+48 \mathrm{t}$. RAY UX7361
PHILCO 352.7250, 352.7251. 352-7287
UTAH 9332, 9278, 934
RAYTHEON: UX8693. UX5986
W.E.: D-166310. D-16638, KS 9800 , KS9948. UTAH \# 9262. With Cracked Beads, but will operate

WANTED

ANY AND ALL

- Radar Eqpt. Test Sets
- Microware Telephone Eqpt.
- Electron Tubes Comm. Eqpt

Etc. Etc. Etc.
Quote Lowest Prices in First Letter

400 CYCLE TRANSFORMERE
RIGID COAX to flex coar connector.
FLEXIBLE SECTION. 15 Malo to fomale $\$ 3.50$ $1 / \mathrm{s}^{\prime \prime}$ RIGID COAX. BULKHEAD FEED-THRU. . $\$ 14.00$
X BAND-RG 52/U W.G. 3 CM.
PCoss buve coupler main

$\overline{\text { stack }}$

(All Primaries 115 V .400 Cycles)
Stack
 ${ }_{\substack{\text { M } \\ \text { M-7472426 }}}$ 6.3VMS TE

MA, $2.5 \mathrm{~V} / 75 \mathrm{~A}, 6.4 \mathrm{~V} / 3.9 \mathrm{~A}$, $\begin{array}{llll}5 \mathrm{~V} / 2 \mathrm{~A} & 6.5 \mathrm{~V} & \mathrm{~Pa} / \mathrm{O} & \text { (D. } 39 \text {) }\end{array}$
352-7039
702724 9800/8600@32MA
K59584 $5000 \mathrm{~V} / 290 \mathrm{MA}, 5 \mathrm{~V} / 10 \mathrm{~A}$
$\begin{array}{ll}\text { K595607 } & 734 \mathrm{VCT} / 1777 \mathrm{~A}, 1710 \mathrm{VCT} / 177 \mathrm{~A}\end{array}$
352-7070 $\quad \mathbf{6 . 3 V} / \mathbf{0 6 A}, 5 \mathrm{SV} / \mathrm{CA}$.

$352.7196 \quad 1140 \mathrm{~V} / 1.25 \mathrm{MA}, 2.5 \mathrm{~V} / 1.75 \mathrm{~A}, 2.5 \mathrm{~V} / 1.75 \mathrm{~A}$
$352-7176 \quad 320 \mathrm{VCT} / 50 \mathrm{MA}, 4.5 \mathrm{~V} / 3 \mathrm{BA}, 6.3 \mathrm{VCT} / 20 \mathrm{~A}$,
RA5400-1 $\quad 2.5 \mathrm{~V} / 2.75 \mathrm{~A}, 6.3 \mathrm{~V} / 2 \mathrm{~A}$ SKV Test
${ }_{901692} 9$
901599-501
$901698-501$

$901698-501$
$\mathbf{U P 8 8 5 5 C}$

RA8405-1
${ }^{\text {RA8405-1 }}$
$\mathbf{3}-42852$
$\mathbf{K S} \mathbf{9 3 3 6}$
KS 9336
$M-7474319$
KS 8984
$\mathrm{KSC080}$
K
32332
$68 G 631$
68G631
80G198
80G198
302433A
KS 9445
KS 9685
70G30G1
M1- 7474318
$352-7069$
352-7069
352-7096
352-7099
$2.77 \mathrm{~V} @ 4.25 \mathrm{~A}$
$900 \mathrm{~V} / 75 \mathrm{MA}, 100 \mathrm{~V} / .04 \mathrm{~A}$
$900 \mathrm{VCT} / .067 \mathrm{~A}, 5 \mathrm{~V}$
$800 \mathrm{VCT} / 65 \mathrm{MA}, 5 \mathrm{VCT} / 3 \mathrm{~A}$
700 VCT
$700 \mathrm{VCT} / / 80 \mathrm{MA}, 5 \mathrm{~V} / 3 \mathrm{BA}, 6 \mathrm{~V} / 1.75$
$2500 \mathrm{~V} / 6 \mathrm{MA} .300 \mathrm{VCT} 135 \mathrm{MA}$
$2500 \mathrm{~V} / 6 \mathrm{MA} .300 \mathrm{VCT}, 135 \mathrm{MA}$.
$1100 \mathrm{~V} / 50 \mathrm{MA}$ TAPPED $625 \mathrm{~V} 2.5 \mathrm{~V} / 5 \mathrm{~A}$
$6.3 \mathrm{~V} / 2.7 \mathrm{~A}, 6.3 \mathrm{~V} / .66 \mathrm{~A}, 6.3 \mathrm{VCT} / 21 \mathrm{~A}$
$27 \mathrm{~V} / 4.3 \mathrm{~A}, 6.3 / 2.9 \mathrm{~A}$
$650 \mathrm{VCT} / 50 \mathrm{MA}, 6.3 \mathrm{VCT} / 2 \mathrm{CA}, 5 \mathrm{VCTT} / 2 \mathrm{~V}$
$400 \mathrm{VCT} / 35 \mathrm{MA}, 6.4 \mathrm{~V} / 2.5 \mathrm{~S}, 4 \mathrm{~V} / .15 \mathrm{~A}$
400VCT/35MA, $6.4 \mathrm{~V} / 2.5 \mathrm{~A}, 6.4 \mathrm{~V} / .15 \mathrm{~A}$
6VCT/ .00006 KVA
6.3 V
2.5V/3.5A.3VCT/6.5A, $2.5 \mathrm{~V} / 3.5 \mathrm{~A}$
$592 \mathrm{VCT} / 118 \mathrm{MA}, 6.3 \mathrm{~V} / 8.1 \mathrm{~A}, 5 \mathrm{~V} / 2 \mathrm{~A}$
$6.4 / 7.5 \mathrm{~A}, 6.4 \mathrm{~V} / 3.8 \mathrm{~A}, 6.4 \mathrm{~V} / 2.5 \mathrm{~A}$
$6.4 / 7.5 A, 6.4 \mathrm{~V} / 3.8 \mathrm{~A}$
$600 \mathrm{VCT} / 36 \mathrm{ML}$
2100V/.027A
2-2.5V Wdgs. at 2.5A, Each Lo-Cap

1.2 VA P/O BC800
$360 \mathrm{VCT} / 20 \mathrm{MA} .1500 \mathrm{~V} / 1 \mathrm{MA} .2 \mathrm{SV}$
$1.75 \mathrm{~A}, 6.3 \mathrm{~V} / 2.5 \mathrm{~A}, 6.3 \mathrm{~V} / .6 \mathrm{~A}, \mathrm{P} / \mathrm{O}$
$\mathrm{BC}-929.3 \mathrm{~A}, 2.5 \mathrm{~V} / 5 \mathrm{~A}$
$\begin{array}{ll}\text { D-163253 } & 5200 \mathrm{~V} / .002 \mathrm{~A}, 2.5 \mathrm{~V} / 5 \mathrm{~A} \\ 2.5 \mathrm{~V} / 20 \mathrm{~A}, 12 \mathrm{KV} \text { Test }\end{array}$
$\underset{\substack{\text { M1-7471957 } \\ 352-7179}}{ }$

MAGNETRONS

PULSE NETWORKS

15A-1-400-50: 15 KV , "A" CKT. 1 microse0. 400

 G.E. \# 3 E (3-84-810) (8-2-24-405) 50P4T; 3KV "E' | CKT Dusl Unit; Unit 1, |
| :--- |
| 810 PPS. 50 ohms imp; Unit 2,8 sections. 2.24 |
| 1050 |

 200 PPS. 67 ohms impedance 3 sections. PrS. ${ }^{6}$ ohms imp. 3 sections. 50 ohms imp...... $\$ 27.50$

 KS9628 CHARGING CHOKE:
OHMS DCR, 9000 VAC THST.

DELAY LINES

D-168184: 0.5 microsec. up to 2000 PPS 1800 ohm D-170499: $25 / 50 / .55$ microsec.

MICROWAVE ANTENNA EQUIPMENT

AT49A/APR-Broadband Conical, $300-$
3300 MC. TyD N Feed. (AS SHIOWN) 3300 MC. $\$ 12.50$ AS-31/APN-7: 10 cm Folvtod in Lueite Ball. Type N Fitting Coax Feed. \$22.50

 Parabolio Peel. Radiation pattorn approx. 25 def. in Cone Antenna. AS 125 , APRA $1000-3200$ me. $\begin{aligned} & \text { Stub }\end{aligned}$ ASIPDorted with type pick connector...... dipole ass. eomplete W/Iength of coax and "N"' connectors A'S
$30^{\prime \prime}$ Parabolic Reflector Spun Aluninum dish.... $\$ 4.85$ RADAR ANTENNAS

AS. $12 /$ APS -3	AS-125/APR
AS.17/APS-2	AS-217/APG-15
AS-13/APG-2	AT49/APR
AS69/APT	AS-14/AP

30' SIGNAL CORPS RADIO MASTS

Complete set for erection of a full fat tod antenna. or rugged plymold construction telescoping into foot sections for easy storage and transportation,
perfect set-up for gettink out. Supylied complete: perfect set -upsts, hardware
complete
miopping crate. Shlping wt. adprox. 300 lhs. Sík. Corps No. ${ }^{2 A 12 A 8-223-A .}$

THERMISTORS

D-164699

Bead Type DCR: 1525-2550 0 hms
Mancinc

- 167332

D-167613
D-166228
Per Deg. Fahr. Max. Current 25
MA AC/DC
Bead Type. DCR is $1525-2550$ Ohms
Bead Type. DCR is 1525-2550 Ohms.
Disk Type DCR: 355 Ohms (a) 75
Disk Type 7120 Ohms ((4) Watt, 60° F, 4220
$\mathrm{Ohms}_{100^{\circ} \mathrm{F}} 1640 \mathrm{OH}^{\circ} \mathrm{F} 2590$ Ohm's @

RADAR TRAINER

Bench set designed for training personnel in use of lates convoy, ship, land, sea return with adjustalile anplitude, range and azimuth. Brand new. in original cases. complete with all cables and instruction book

MAIL ORDERS PROMPTLY FILLED, ALL PRICES F.O.B. NEW YO RK CITY, SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D.
RATED CONCERNS SEND P. O. ALL MDSE, SUBJECT TO PRIOR SALE, AND PRICES SUBJECT TO CHANGE WIT
PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED VIA CHEAPEST TRUCK OR RAILEX.

Headquarters for MICROWAVE TEST EQUIPMENT

- the widest assortment, the strongest depth and the most immediate availabiliiy of any source on test equipment.

ANNOUNCING THE AVAILABILITY OF NEW

TS-125 S BAND POWER METERS

Tis precision instrument, now being produced by Weston Laboratories, Ircorporzted provides for quick visual measurement of CW , modulated or pilsed cverage power output from 0-2 MW to more than four watts. Call-b-zted la two scales (MW of power and DB above and below one milliwatt). Tsmpercture compensated thermistor construction with $1 / 4$ wave matching stab RF element. Supplied with complete accessories and instruction book

- N-APA-10	1.49	$1-20 \pm A$				
$A N-A P F-1$	1.56	I-20E	TS-11/AP*	TS-76-APM-3	TS-173/UR	IS-301/U
AN-APF-4	1-61 B	1-215	TS-12/AP*	TS-78/U	$-174 / \mathrm{L}$	TS-303/AG TS-311/FSM
AN-TSM-4	1.83A	I-29E, A	TS-13/AP*	TS-87/AP	$\begin{aligned} & \text { TS-175/U* } \\ & \text { TS-189/UP } \end{aligned}$	TS-311/FSM-1
MN-UPM-13	1-86A	$1.22=A$	TS-14/AP	TS.89/AP*		TS. 3 I 3 TS $394 / \mathrm{U}$
-5-23	1.95A	1-22	TS-15B/AP	$\begin{aligned} & \text { TS.89// } \\ & \text { TS-90* } \end{aligned}$	TS-184/AP	TS-324/U
MT-67	1.96A	$1-23 \pm$	TS-16/APN	IS-92/AP		TS-328
AT-68	1.97A	1-24	TS-18 ${ }^{\text {APN }}$			TS-338
M-39	I-98 A	IE-21A	TS-19	$\begin{aligned} & \text { TS-96/TPS-1 } \\ & \text { TS-98/AP } \end{aligned}$	IS-194/CPM-4 TS-195/CPM	TS-359A/U
A-48	l-106A	IE-3C	TS-93/AP	TS-100/AP		TS-363/U TS-375
E-67	[-114	IF-1EC	TS-24/APM-3	TS-100/AP		TS-375 TS-377/U
E-291*	1-115	IS-15	TS-24/ARR-2			TS-377/U
EK-376	\|-117	IS-189	TS-26/TSM-1*			TS-389/U
BC-438	1-122	LAL	TS-27/TSM		IS-204/ AP	TS-418
BC-439	l-126	LAE-2	TS-32A/TRC-1		TS-205AP TS-207	TS-419
E -638	I-130A	LAF	TS-33/AP ${ }^{\text {T }}$		TS-207	TS-491/U
EC-639	l .1348	LM*	TS-34/AP		TS-210/APM	TS-433/U
BC-906D	$1-135$	LU-S	TS-35/AP	TS-125/AP*	TS.990/TSM	TS-485/
BC.918B	l-137A	LU.E	TS-36/AP	$T S-127 / U$		
EC-923A	I-139A	LZ	TS-39/TSM		TS-296A	TS-505
EC-936A	l.140A	ME- ${ }^{\text {a/U }}$	TS-45/APM-3		TS-2308	TS-589/U
EC-949/M	1.145	OA	TS.46/AP	TS-148APG	TS-232/T TN-2 TS.939B	TS-615/U
E[-959-T]	l-147	OAA-2	TS-47/APR	TS-143/CPM-1	TS-239B TS-950/APN	TS-616/U
EC-1060A	l-153A	OAS	TS-51/APG-4	TS-144/TRC-6	TS-250/APN TS-251	$\text { TS-61 } 7 / \mathrm{U}$
EC-1066A	1-157A	OAX	IS-55/AP	$\mathrm{TS}-146$	$\begin{aligned} & \text { TS-251 } \\ & \text { TS }=257 / A W R \end{aligned}$	TS-620/U
EC-1201A	-167	P4	TS-56/AP	$\begin{aligned} & \text { TS-146 } \\ & \text { IS-147/AP* } \end{aligned}$	$\begin{aligned} & \text { TS } 257 / A W R \\ & \text { TS-963 } \end{aligned}$	TSX-HSE
EC-1203	\|-168	P4E	TS-59		$\begin{aligned} & \text { TS-263 } \\ & \text { TS-2688* } \end{aligned}$	TSS-4SE
EC-1236, A	1.177	SG-E U	TS-60/U	TS-153	TS-20888*	TVN-8SE
EC-1255, A	1.178	TAA-16WL	TS.61/AP	$\begin{aligned} & \text { TS-153 } \\ & \text { TS-155 } \end{aligned}$	$\begin{aligned} & \text { TS-270A } \\ & \text { TS-281/TRC. } 7 \end{aligned}$	TUN-8HU
EC. 1877	l-186	TS-1 ARR	TS-62/AP	TS-159.TPK	TS-285/GP	TTX-IORH
EC-1987A	1-196A	TS.34/AP	TS-63/AP	TS-164/AR	TS-293	
1.488	1-198A	TS-84/U	TS-65A/FM2-1			

BEFORE SELLING YOUR IDLE TEST EQUIPMENT. please get our offer

WESTON LABORATORIES INCORPORATED

EARVARD, MASS.
Cable: WESLAB Tel: Boston: WE 5-4500

Uníversalgeneral corp.

Over 300,000 RELAYS in our Vast Stook-

YOUR RELAY HEADQUARTERS

See Our Previous Electronics Ads for Listings or Write for Circulars

TELEPHONE TYPE RELAYS

These relays have been standardized so that coils and frames of most manufacturers can be interchanged without affecting adjustments. A wide variety of applicable combinations are thus possible from a comparatively small number of relays

Listed below are frames and coils from our stack. They may be purchased separately, However, a complete relay consists of coil and frame. In ordering complete relays specify which coil with which frame, i.e.: F101 with K117
Representative completed relays are also listed with voltage and current ratings. Values are indicative of sensitivity that may be expected from similar combinations.

CLARE, 8500 ohm, 8maDC, 3 makes (3As) $\$ 4.25$ $5035 A 7$ AUTOMATIC, 1300 ohm. 8maDC, 1.75 CLARE KI01, (5500 ohm, SPDT. 2 ma DC. 4.25

(For of Fr	FRAMES Cost of Relay ame to Price	Add P of C			
Stock No.	Contacts	Price each	Stock No.	Contacts	Price each
F101	1.4	1.25	F106	1B, 1A	1.50
F102	2.4	1.50	F111	1B. 2.4	1.75
F103	3 A	1.75	F114	1B, 3A	2.00
F104	4 A	2.00	F108	113, 1A, 1C	2.00
F105	8 A	2.25	F107	2B, 1.	1.75
Flug	1A, 1B	1.50	F112	2B, 2A, 2C	3.00
F10\%	$1 \mathrm{~A}, 2 \mathrm{~B}$	1.75	F 113	51, 2A	2.75
Fl08	1A, 113. 1C	2.00	F121	5B, 1C	2.75
F109	1.A, 1C	1.75	F122	1 C	1.50
F110	$1 \mathrm{~A}, 2 \mathrm{C}$	2.25	F123	2 C	2.00
F111	2A, 1 B	1.75	F109	$1 \mathrm{C}, 1 \mathrm{~A}$	1.75
F112	2A, 2B, 2C	3.00	F117	1C, 5.4	2.75
F113	2A, 5B	2.75	F121	1C, 5 B	2.75
F114	3A, 1B	2.00	F110	2C. 1/	2.25
F115	$3 \mathrm{~A}, 2 \mathrm{C}$	2.75	F115	2C, 3A	2.75
F117	5A, 1C	2.75	F108	1C, 1A, 1B	2.00
F120	1B	1.25	F112	$2 \mathrm{C}, 2 \mathrm{~A}, 2 \mathrm{~B}$	3.00
DUAL COILS					
Stock No.	Ohms	Price each	Stock No.	Orms	Price each
K141	50/2000	2.25	K145	$1000 \% 1000$	2.25
K142	125/1300	2.25	K106	1100.500	2.00
K143	200/1000	2.00	K142	1300,125	2.25
K106	$500 / 1100$	2.00	K144	1800/ 500	2.50
K144	$500 / 1800$	2.50	K141	2000.50	2.25
K143	1000/200	2.00			

A18258 BENDIX (Cook 102) 8-12 VDC, Copper Slus. Slow Release. SPDT, 200 ohm, 2 R5229AI AUTOMATIC GVIDC, 3IST no. (3As), ${ }^{75}$ olmns. Slow Release. $\# 412 \ldots$...... 2.50
 COILS (For Cost of Relay Add Price
of Coil to Price of Frame)

Stock No.	Ohms	Price each	Stock No.	Ohms	Price each
K101	0.75	1.25	K109	1000	1.75
K131	5.0	1.25	K136	1200	2.00
K102	12	1.25	K111	1300	1.75
K132	175	1.25	K137	1425	2.25
K103	250	1.25	K138	1500	2.25
K104	450	T. 50	K139	1600	2.25
K105	500	1.50	K112	2010	2.25
K133	600	1.50	K140	2300	2.50
K134	700	1.50	K113	3000	2.50
K10 ${ }^{-}$	750	1.50	K116	6500	2.75
K135	800	1.75	K118	40,000	3.25
K108	900	1.75			
SLOW-ACTION COILS					
SLOW-MAKE			SLOW-RELEASE		
Stock		Price	Stock		Price
No.	Ohms	each	No.	Ohms	each
K122	33	1.50	K149	3.13	1.50
K146	125/1300	2.50	K123	75	1.50
K125	300	1.75	K124	200	1.50
K147	500/1500	2.50	K150	800	2.00
K148	1300	2.00	K151	1000	2.00
K146	1300/125	2.50	K152	1300	2.25
K147	1500/500	2.50	K12 ${ }^{\text {i }}$	2500	2.50
K126	2000	2.00			
A-C COILS					

Stock		Price
No.	Voltage	each
K119	6VAC	1.75
K12i	110VAC	2.60
Double Throw.		

ALLIED TYPE BO \& BOY RELAYS
Contacts are silver and have a non-inductive rating of 15 amperes, or 30 amperes for double break (d.b.) Contacts are silver and have a non-inductive rating or 18.5 millisec ands; release time $8.0 \mathrm{milliseconds}$.
at 24 V DC and 110 VAC . O perate time to make 18.5 .

Contacts*	1.5-3,2vDC, 4 Ohm		6 9VDC,	37 ohm	2VDC,	70 Ohm	24 VDC	230 Ohm
	Cat. ${ }^{\text {H }}$	Price	Cat. ${ }^{\text {l }}$	Price	Cat. ${ }^{\text {d }}$	Price	Cat. ${ }^{\text {P }}$	Price
Sl'ST (1A)	R506	2.00	R467	2.00	R176	2.00	R48.	2.00
SPST (1A)d.	11507	2.25	R1468	2.25	R06	2.25	R485	2.25 2.00
SPST (1B).	11508	2.00	R1469	2.30		2.00	18486	2.00 2.25
SPST (1b)d.b	115509	2.25 2.50	$\mathrm{PH492}^{\mathrm{R}}$	2.50	R493	2.50	+494	2.50
${ }_{1}{ }^{\text {1 PSST, }}$ 2A	11510	2.75	1 1499	2.75	1 1500	2.75	14501	2.75
1PST, 2 B	1351%	2.75	R518	2.75	R519	2.75	R520	2.75
Spdr (1C)	13512	2.50	R471	2.50	R. 479	2.50	13488	2.50
SfDT (1C) d.b	12513	3.00	11.472	3.00	1480)	3.00	11238	3.00
1C, 1A.	11514	3.25	11473	3.25	148181 1482	3.25 3.25	R 489 R 490	3.25 3.25
1C.13	11515	3.25 3.50	R1474	3.25 3.50	R482 R 483	3.25 3.50	R490 R 491	
DPDT (2C)	R516	3.50	12475	3.50	Nis3	3.50		

BOY TYPE DC RELAYS
 OTHER ALLIED TYPES AR: 12 VDC: SPST (1A) 75 Ohm 18429 AN 13D33: 24 VDC: SPST (AA) d.b. 175 Ohm 7. ampa continuous duty (Electrical and
Chanical equivalent to CNi3D33)
R436

ALLIED BJ TYPE RELAYS

Contacts are silver and are rated at 5 amperes, at 24 VDC and 115 VAC .
BJ6D36: 24VDC: DPDT: 255 Ohm; $\mathrm{R} 420 \ldots 1.75$ ea. BJx42; 12 or 24 VDC ; SPST (1B) d.b.; 240 Ohm BJU (Electrical Latching) ; 6VDC; 4PDT (1c) plug base; H 435 . RJ6A115: 115VAC: DPDT: $\# 1502 \ldots \ldots . .2 .25$........... BJ5A115: 115VAC; 1C, IA: fR503............ 2.50 ea

LARGE STOCKS OF

AN Connectors	Controls	Relays
APC's	Cryatais	Resiators
Binding Posta	Fitters	Servo Ximits.
Cable	Fuses	Shack. Mounts
Gapacitors	Hardwate	Sockets
Ceramicons	fron Coro Slugs	Spaghetti
Ceramies	Knobs	Switches
Chokes	Potentiometers	Transformers
Circuit Breakers	($\sin 0$-eosine)	Tabes
Colls	Pulso Ximrs.	And Others

TERMS:-All Prices F.O.B. Our Plant. Rated Firms Net 10 pays. Ail others Remittance with Order Orders Under sto Remittance With Order be returned.)
 AMPERITE THERMOSTATIC DELAY RELAY

40
Anperite Thermostatic Delay Kelays are actuated by a heater AC, DC, or pulsating current Amperite hermetically sealed, affected by altitude, moisture, or other atmospheric condiSPST is available - normally or normally closed.
NET Available in voltage ratings of $2.40 \quad 2.5,5,6.3 .12,26$ and 115 volts each as follows: $2,3,5,10,15,20,30$, Most types from stock. When ordering siveciry: Voltage-Delay in SecondsOpen of Closed
HAYDON 5901-2: 220 V 60 cye. Adjustable

LORD SHOCKMOUNTS

Stock		Center			
No.	Series	Hole	LB	Other Data	ach
SMIl	100	1/8 ${ }^{7}$	1	Motiel	. 12
S12	100	$1 / 8^{\prime \prime}$	2	Steel	. 10
S1312	100	Stud	2	Steel Base	12
S14	100	1/8"	4	Steel	. 12
St8	100	$3 / 16^{\prime \prime}$	8	Steol	. 15
ST51	150	1/4"	4	Stainless	. 20
SM54	150	1/4"	4	Monel	. 25
S60	150	1/1"	10	Steel	. 20
S83	150	1/4"	33	Steel	. 30
Sllo	200	$3 / 8^{\prime \prime}$	10	Steel	. 28
SM120	209	$3 / \mathrm{B}^{\prime \prime}$	20	Monel	. 35
SM145	200	$3 / 8$ "	45	Monel	. 45
S279	279	$3 / 87$	250	Steel	1.00
PD53	100 PH	1/8"	3	Dural	. 20
P54	150PH	$1 / 8^{\prime \prime}$	4	Steel	. 25
P56	$150 \mathrm{P}^{\text {H }}$	$1 / 4^{\prime \prime}$	6	Steel	. 20
PS106	200 PH	1/4*	6	Steel	. 20
PL106*	200 PH	1/4"	6	Steel	. 25
PT10,	200 P1I	1/4"	6	Staiuless	. 35
PT120	250 PH	$3 / 8^{\prime \prime}$	20	Stainless	. 40
*with gr	and lug				

OTHER MOUNTS

$\begin{array}{llll}\text { ST75 } & 150 & \text { Goodyear } 1 / 4^{\prime \prime} & 25 \\ \text { Plotainless } \\ \text { Plo } & 200 \text { PLI } & \text { U.S. Rubler with (apered rubber }\end{array}$
 S2335 Co335 Barry $3 / 8^{\prime \prime} \quad 35$ Steel Fr. $\begin{aligned} & 1.00\end{aligned}$ S912 Lord 2 hole Mtg Centers $11 / 2^{\prime \prime}$ leel Fr^{\prime} 1,0 S908 Lord Slotied 4 hole $\mathrm{M}_{\mathrm{tg}}^{1 / 4^{\prime \prime}} \mathrm{Centers}^{12} 11 / 2^{\prime \prime} \times 21 / 4^{\prime \prime}$ S904 Lord 2 Hole Mtg Centers $11 / 2^{\prime \prime}$ Steel S800 Cylindrical Rubher $1^{\prime \prime}$ Dia $3^{4} 3^{\prime \prime}$ Sthigh two $\quad 1 / 4-20 \times 1 / 2^{\prime \prime}$ steel screws vulcanized in S801 Cyliadrical Rubler $1 / 2^{n} \times 11 / 2^{2}$ high vulcanized in center. U. S. Rubber..... 19 S803 Lord $1 / 8^{*}{ }_{2}$ Steel 1 1101200 Pll U.S. Rubber $1 / 4^{* \prime} \quad 2$ Steel 5150 C Steel $\quad .25$ General Description of Series Numbers

$150-2^{n}$ Mounting Centers
2001 - $2^{1 / 2}$ Mounting Centers
$250-21 / 2^{\text {a }}$ Mounting Centers
111- Cup type shock mount

SEARCHLIGHT SECTION

> FOR THE BEST IN ELECTRONICS!

TELEMARINE COMMUNICATIONS CO.

MARINE

THS M MF 500 Wecejvers for ship or Shore. TAG Stabler, and Spares. W . Output, $175-650 \mathrm{kc}$ with M.G. TH1 350 or OOperation. A 3, I.F. \& H.F for AC or DC operation. APN-4 Receivers and 1D-6A-\& bis lidicators, with tubes, crystal, err reconditioned to like-new.
(6)-9 $100 / 125 \mathrm{~W}, 1 F / \mathrm{HF}$ ship or Aircraft Transmitter, A1 and A2 Emission. All 1f0-AY Mackay I ${ }_{8707}$ RMCA Ship Radio Compass.

EXTRA!

PE-104 POWER SUPPLIES for Receiver of SCR-284, NEW, with Spare Vibrator, Export-Packed. Large Quantity Avail-
able. WRITE FOR PRICES.

MISCELLANEOUS

ATD

GP-7 Aircraft 9.05 MC. NEW
GP-3 Arcra ranomiters
SCR-28:3 Revg 8
RT-3/ARNevg k. ${ }^{\prime}$ mittng Eqpt. Complete RADIONONDES AN/AMQ-1A to D. New PE-J5U Gas Engine Generators. NEW. T-21/6-1R-3-C Sound Ranging Microphones for locating Artilery Fire.
N1A Underwater Beacon quipment
YF-2 Tape Reels
HS-23, 33 Headphones
AN-CRT-1A Sonobuoys
DZ-2
DZ-2 DIREOT1ON-FINDERS, Aircraft or Marine, 15 to 1750 KC in 6 bands, for $24 / 28$ V.D.C. operation. With 34" or 55^{*} Loop Extension Shaft. Complete, NEW eqpt. With Dynamotor, Loop, Extension Shaft and Control. Cables, Instruction Manual, etc.

SCR-296-A SHORE RADAR

Designed to determine accurately range and asimuth of surface craft and to battery) control purposes. It is a fixed radar installation with following Specs:
Range- 1000000 yards max., Min. 500 Aceuracy range) , min or mis 20 yards (min AKimuth-369 degrees. Peak Power 40 Indicat $3^{\prime \prime}$ for Azimutlass A scope for Range Frequency- 700 MC (43 centimeters). Oprration- 120 V. 60 eycles A.C Excellent, like new material, complete Win antric transmission servos, synchros,
concend plumbing, tubes, spaye baris. etc. in 29 cases
per set. WRITE FOR PRICES, or

3040 W. 21ST STREET B'KLYN 24, NEW YORK PHONE: ESPLANADE 2-4300 CABLE: TELEMARINE, N. Y. 600 W. W. E. AUDIO OR SUPERSONIC POWER AMP.

NEW, Western Electric Audio Power Ampllfiers in wooden transportable case, 600 modulators, or use as 400 to 1200 cycle power modulators, or use as mource to test servos, radar, tent eqpopt. ete. source to test servos, radar, teat eqpt., etc.
requiring 110 V., 400 to 1200 rycles AC up to 600 watts. Requires 40 wratts max. to drive to full outpul. Jess than 10% total harmonics in output. Input imped. $250 / 500$ ohms; Output imped 15 to 18 ohms. Uses 4- 805's (supplied) in push-pull parallel. H.V. Power Supply uses selenium rectiflers cooling. 4 -wire (3-phase) 60 cycles AC. Rugged design and construction. Freq. response 200-600n cycles (amplifler only) substanlially linear. Easily converted to Supersonic Drives \& Amplifiar for testing. operating magueto-striction units, by changing input \& output transformers (20) to en KC availHe AC miditiond rost) Dim.: 21
 Driver lmplitiar, we, for above, with
tubes Speaker, 10 units pil horn type in 2 sec tions, shock and blast proof, with 6 lb . $=5$ wo-35KC (Tumable) Input $\&$ Output Transformers. for conversion of above, for
600w. Output, PNIR......... $\$ 120.04$

GROUND, SHIP \& AIR COMMUNICATIONS

RECEIVERS

RC-969-T1 Receivers 15 to 150 KO BC-974-Tz Receivers 100 KC to 20.0 MC RAK Navy low and int. Freq. Recedvers I3C-284 1.5 to 18.0 MC , similar to BC-348 13C-312, 342 1.5 to 18.0 MCRReceivers HC-10ti6-A 155-200 MC Recelvers

TEST EQUIPMENT

	ce
TS-48AP Echo Bo	
BC-1236 Signal Generator, 15-40	
$90-230 \mathrm{MC}$	
I-138.A Signal	
Output variable to 5 milliwatts Provisio	
for external $4,100 \mathrm{cps}$ modulation for pulsed	
AC. PRICE	
CRV-60028 Frequencs Meter, 236 to 256 MC .	
I-148-A Test Set	
I-222-A Signal Generator...........	
LU-3 Radar Test Equipment (Frea Meter \& 'Test Oscillator) 465-475 \& 488.5-498.5 МС.	
CRO-3A GE $3^{\prime \prime}$ Oscilloscope	
160-B RCA $5^{\prime \prime}$ Oscilloscope....	… 80.01
804-B General Radio VHF Signal	

TRANSMITTERS_-RECEIVERS ETC.

TDQ VHF 100-156 MC. 50W. AM K-mttr HC-79, VHF $110-126$ MC. 50 W , AM Output SCR-6i4, Vibrator or Transportable Trans-R'cvng Fqpt., 3.8 to 6.6 MC, 20 all accessori SCR-j尺s VHF. 4-Channel, 100-156 MC Trans-Revg. Eqpt. for Plane or Ground SCR-511. Walky-Talky, 3-6 MC, Crystal Controlled Trans-Revg. with Plug-In m-20N. $2 \mathrm{~K} W \mathrm{~W}$ Wifox X'mitr. $125-525 \mathrm{KC}$ 3 Cabinets: RF Unit, $50-\mathrm{A}$ Modulator, $36-\mathrm{A}$ o KW (iF FMREAmplifiers, Type BE-3-A 88-108 MC with separate Power Supply: separate Power Supply. Excellent for increasing power of FM, \& Television stations.
 Abports. Shipsirds, Amusement Parks Civilian Detense Etc. Write for Prices and literature

SPECIAL!!

I'E-9181) Inverters, 25-28 V.DC Input: 115 V.. $380-500$ cycles output at 1500 VA.

$\mathbb{K} \cdot \mathbf{R K} \cdot A R C \cdot U G \cdot P L-A W$

CONNECTORS In Stock for Immediate Delivery Ronnector Rorporation

137 Hamilton St., New Haven 11, Conn. Phone: Spruce 7-25 13 New York Phone: LExington 2-6254

CONNECTORS IS OUR BUSINESS

WORLD'S MOST COMPLETE STOCK
Types in stock: $A F, A N, A P, A R C, B N, B N C$, 'M ${ }^{\text {TH }}$, CN, CUF, D, DPB, DPD, E, F FK,

 SK, 'SKL,' SO, U, UG, UHF, WK,'XL, ZA.
HAROLD H. POWELL CO.
2104 Market St.
LOcust 7-5285
Philadelphia 3, Pa.

GLASS TUBING

PYREX - NONEX - URANIUM BULBS \& CYLINDERS WRITE FOR FREE MONTHLY LIST HOUDE SUPPLY COMPANY M. R. \#1 Box 86X KYORT 7-1286

TOM ALLEN SELLS

TO QUANTITY USERS ONLY

MELAMINE BLOCKS
in $1 / 8^{\prime \prime}-3 / 16^{\prime \prime}-1 / 4^{\prime \prime}-5 / 16^{\prime \prime}$ Thicknesses
4000 pounds
Available at 50 c per pound

TUBES

250 TH	Boxed	6.00
3 B 29		6.00
3 E 29		6.00
100 TS	,	2.50
1642	"	. 15
10 Y (VT25)	"	. 15
1B32/532A	,	. 50
3 CP 1	\%	. 35
211 Spec		. 35
10 Spec		. 25
5 BP 1		3.50

PLUGS

PLP 170	\$2.50
PLQ 169	1.00
PLQ 171	1.00
PLQ 172	1.00
PL 172	1.00
Bias Meters 1-97A	6.50
P 4 Computers	150.00
E 78 Signal Generator.	60.00
Antenna AT5/ARR-1.	. 50
Tuning Units for BC-610	12.50

WANTED
 Factory Close Outs \& Terminations

ARC-1 or Components Parts ARC-3 or Components Parts ART-13 or Component Parts BC348 or Component Parts AN/TRC-1
or Component Parts
SCR 720 Materal all type
SCR 508 Material all type
SCR 608 Materal all type SCR 609 Material all type Crystals all types
Test Sets
PE 104 and 98 BD 77
DM 40, 41, 42 and 43
SCR 508 and SCR 608
We buy all types of electronic materials

We pay cash in odvance.
What do you have to sell?

CRYSTALS

25,000 Pieces in FT. 241 Holders New@ \$. 10 each

Recorder for underwater sound equipment $\$ 60.00$
Transmitter-Aircraft T9/APQ-2, 115v. 400 cy. 26 VDC NEW $\$ 20.00$ Radar Transmitter T.26/APT-2, 115V. 400 cy. 200 Watts NEW $\$ 30.00$ Corner Radar Reflector NEW $\$ 5.00$ R5 / ARN-7 Type Certificated S250.00 TS125 Test Set, complete. NEW . . $\$ 125.00$ ea. TS10 Test Set, NEW $\$ 20.00$ ea. TS16 Test Set. NEW $\$ 20.00$ ea.

CONTACTOR
 BC 608 A NEW 7.50

A5 pilot director indicator New 5.50	
Spare parts for SCR 595	with Antenna-
Plugs,	3.00
MG 149 Filters	New 5.00
Micro Switch WZ7RTC	. 20
Vibrators for EE 101 A	New 75
BC929 Oscilloscopes	New 20.00
Loops LP 21	Lousy 5.00
oop MN 20 E	New 2.50
Motors PE73	ecked 5.00
DM33	2.50
ntennas AN 104	Iron . 75
Atennas AN 104	Copper 2.00
PE 218	Checked 9.50
EE65 Telephone Test Set	New 20.00
ibrators VB8	New . 35
Vibrators 6V. for Auto	New . 25
C125 Remote Tun	New . 50
MCl24 Cable	New 1.50
C215 Cable	New

60,000 Used Headsets
on sale 1.00 each
HS $18-$ HS $30-H S ~ 33-H S ~ 38 ~$

SCR 270 RADAR WITH BC1232A, BC988A, BC 886B, M 337, BD 117 A, PE 138 Brand NEW. $\$ 150.00$ per Set

BENDIX SALE

TA-2G Transmitters 12V HF 75.00 RA-2 Receivers 12V HF ... 75.00 MP10E Power Supply for above 30.00

MR44A Shock Mount for RA-2
10.00

MT56B Shock Mount for TA2
10.00

BC 456	New 2.50
BC 455	Used 5.00
BC 453	Used 5.00
Antenna AS 61	Complete New...... 1.00
Antenna AS 62	Complete New 2.00
TS 245/TRT.1	100.00
TS 125	125.00
BC 966 Comple -Plugs	1FF with Cables, Mounts 35.00
ilat balioan	is ML 350/AP

ARC-1 SALE

10 Channel Checked Out $\$ 850.00$ 20 Channel Checked Out 1050.00 50 Channel Checked Out 1250.00

Pressurizing Kit-Hand Pump-Dehydrator Cyl, 30 lbs pressure, Gauge and Hose Brand NEW . . . $\$ 7.50$

> MOTORS—DELCO AND DIEHL $1 / 40$ HP with shaft and flange mtg taken out of new equipment. $115 \mathrm{~V} 60 \mathrm{cy} 3450 \mathrm{RPM} \quad \$ 2.50$ ea, $50 \mathrm{~V} 50 \mathrm{cy} 2850 \mathrm{RPM} \quad \$ 2$

This is only a partial listing. We have a quantity inventory on our shelves consisting of Coils-Relays-Condensers-Transformers-Radio Receivers and Transmitters-Handsets-Headsets-Microphones etc. etc. All are ready for IMMEDIATE DELIVERY.

MOTORS:
24 VOLT DC $1 / 10$ H P

 GEAR HEAD for above motor. Ball Bearing Geared Shaft. 10 COMBINATION: Motor and lieduction (rear
24 VAC UPEN FRAME-20 RIPM Double Shaft Rac! Gear Motor with Disengage Clutch. Shaft size: $1-1 / 2 /$ 24 VAC OPEN FRAME-3 RPM Back Gear Motor Shat 24 VDC REVERSIBLE- 5000 RPPM with Magnetic
 F51BA25AJB2A 24 VDC A1RWAY MOTOR-Model \#Z-350. AD-
 26 VOLT 60 CYCLE-60 RPM Synch onous Cramer

80 VDC- $1 / 50 \mathrm{HP}-3000 \mathrm{RPM}$, Shaft SIze: $3 / 3^{\prime \prime} \times 1 / 6^{\prime \prime}$. $28.5 \mathrm{VDC} 1 / 35 \mathrm{HP}-2200 \mathrm{RPM}$. Shart Size: $1-1 / h^{-1}$ K $14{ }^{\prime \prime}$. Motor Size: $4-1 / 2=$ I $3-\%{ }^{n}$. Electrolux No.

DYNAMOTORS

OYNAMOTOR and BLOWER: 9 Volts DC input: output 450 volts 60 MA .4500 RIM. At 6 Volts DC inInput Output Stock No. Price $14 \mathrm{~V} . \mathrm{DC} \quad 600 \mathrm{~V} .300 \mathrm{MA} . \quad$ BD- $36 \quad \$ 9.95$ 12 V. DC $220 \mathrm{~V}, 70 \mathrm{MA}$. 440 V. 200 MA. \& 220 V. 100 MA. 375 V. 150 MA D-101

14 V. DC | | 14.95 |
| :--- | :--- | 14.V.DC $\quad 330$ V. 135 MA DM-330 7.95 14 V. DC 500 V 500 MA PE-59 14.95 ALSO-PE-73: PE-86; DM-53; DM-33; 5055; DM-416:

MOTOR—GENERATOR

Navy type CCL-211014, 115 VDC-\% HP- 1750 RPM. Generator 27 V́DC, 9.3 Amp. Direct Drive

DUAL BLOWER-Same as RN-520 above excent has blower assembly in each slde of motor. Order

AIRCRAFT CONTROL CABLE-3/32"-7 $\times 7$ 920 ib . test. Ideal for Television Guying and many other ises. Prices: $41 / 2 \mathrm{c}$ per Ft.- 1000 Ft .

ANTENNA EQUIPMENT

 MAST BASES-INSULATED:MP-132 BASE-(As illustrated at lett) 1^{-} heary coil spring. $2^{\prime \prime}$ insulator. Overall
 MP-S. 33 BASE-Insulated type with heary coil spring and $5^{\prime \prime}$ dia. Insulator
Requires $2^{\prime \prime}$ hole for mounting. Weight 9 lbs. $\$ 5.95$
MAST SECTIONS For ABOVE BASES Tubular stee, copper coated, painted, in 3 tt. sec-
tions, screw-in type. MS-53 can be used to make tions, screw-in thpe M-51-50-49 for taper. Any fee tion ...each Larger Diameter Section: MS-54.........
AN-104B Antenna-100-156 MC.-siteel. AN-104B Antenna-100-156 MC.-Coppe AN-117 Whip Steel-6 Ft. Length......
AN-109A Whip Steel-5 Ft. w/Base.

\section*{| TELEPHONE WIRE-3 Conductor, cop- |
| :---: |
| per and steel. 525 feet.......... $\$ 4.75$ |}

TRANSFORMERS-100V. 60 Cycle Pri.
 Sec. Two 12
ings-gives
it
4 ${ }_{24}$ V. Vives 4 A........... $\$ 5.95$ Sec. 24 Volt $1 / 2 \mathrm{Amp}$. Sec. 24 Volt 1 Amp Sec. 24 Volt 6 Amp

BATTERY CHARGING RESISTOR PANEL 115 VDC-6. 67 olims 30 Amps. Max. Swltching High-Low \& Off. Charging rate: $6-2$ Volt Cells:
High 30 A. Low 15 A.-12.2 Volt Cells: 25.8 High; $\begin{array}{ll}\text { Low } 12.7-15.2 \text { Volt Cells; Hot } \\ \text { Complete with Cable. Panel size: } 231^{*} 7 & \text { Low } 11.62^{\circ} \times 10^{\circ}\end{array}$

SELENIUM RECTIFIER UNITS

> HEAVY DUTY-30 VOLT DC OUTPUT:

115/200 V. Three Phase 400 Cycle input:
TYPE 143 W/Transformer \& VR 100 Amp...
TYPE $3 F S 15$ w/Trans. VR, \& Blower- 200
PAIR RADIO SALTS • Br soum noms LIMA, OHIO

$\|$
We own and specialize in

Transmitters, Receivers, Communication Accessories and spare parts . . from Walkie Talkies to Hi Power Transmitters, performance tested.

Inquiries solicited. Prompt quotation.
Export packing facilities an premises
Export packing facilities on premises

COMMUNICATION DEVICES CO.

 2331 Twelfth Avenue New York, 27, N. Y.Cable-Communidev, N. Y. TWX NY 1-223. Telephone ADirondack 4-6174

CONDENSERS
 New JAN-C-25 Capacitors CP53-54-55-61-63-65-67-69 \& CP7O. Quotations uponin request.

GUARANTEED-OIL CONDENSER SPECIALS—GUARANTEED		
4 mfd - 1000 v..... \$ $\$ 1.50$		16 mfd - 600 V . $\$ 1.75$
. 2 mfd . -1000 マ...... $\$.21$		bealed and packied. Tolve type 1 T-SC-11
	Three term. hal, mity, channel type.	mensuring ${ }^{\text {centas }}$
	for 600 V oneratian un to to do dens. ${ }^{\text {s.c. }} \mathrm{C}^{\prime}$, ldeal for filter or power factor applica- tion. Repeat sales	
mfd. -600 v \$. 63	hiot	
Claanel ('ond. Rot. Mtr. Qua. Disce,	lis. Large nua available... $\$.89$	8 mfd -600 r $\$ 1.69$

SILVER MICA CONDENSERS

Special S. Mica Kit-100@\$6.50
MICRO SWITCHES Number

\qquad
CHOKES \& FIL. TRANS

DIESEL GEN.

25 KW 3 phase 60 cy. Hill diesel; G.E. gen. Complete with control panel \& starting batteries. Ready $\left\{\begin{array}{l}\text { for immediate operation. Guar- } \\ \text { anteed. P.U.R. }\end{array}\right.$

Standard Brand Pots.... \$.89

_TRANSTAT _

115 V, 1 phase, 100 amps., Kva. 115, Range $0-115 \mathrm{~V}$. Amertran \#29145. Specially priced.

CARRIER EQUIPMENT

Western Electric CF-IA 4-channel carrier telephone terminals. EFED-B A-channel carrier' pilot regulated telephone terminals complete with four channels 1000/20 CFD-B 4-channel pilot regulated telephone re. C-42-A ${ }^{\text {neaters. }} \mathbf{V}$. F. telegraph in from 2- to 12 -channel termioais. MMC 1 or 2 channels carrier telephone terminals, automatic regutation, duplex signaling each for addinger frequencies above, 35 KC . Ideal complete engineering and installation services offered.
RAILWAY COMMUNICATIONS, INC. Raytown, Missouri Telephone: FLeming 2121

4PDT RELAY

 LINK MOBIle XMtrs \#25UTFM $30-40$ MC. 59.50 CHRKEBLE 3-15 mmf Hammar, HF $11 / 2$, hhft. 99 C

EMPIRE ELECTRONICS COMPANY
409 Avenue L., Brooklyn 30, N. Y. Cloverdale 2-241।

We Grew to Help You ! !

- 30,000 sq. ft. of floor space in our own modernized building in Boston's downtown industrial area. Directly between North and South Stations at the junction of Atlantic and Commercial Avenues
- Customers automobile parking facilities adjacent to our building
- Complete stocks of electronic components and specialized items as Synchros, Tubes, Relays, Capacitors, Inverters, etc.
- Spacious display showroom.
- Separate shipping rooms for ease and promptness in filling orders. Immediate delivery is assured.
- Graduate Electronic Engineers to help you with your electronic problems.
- Our greatly increased capacity now permits us to stock more items-in much larger quantities.
- Every item sold carries our guarantee to meet your approval and be exactly as represented

See our listings on pages 438 and 439

50 EASTERN AVE., BOSTON 13,MASS. CAPITOL 7-3456

ARROW SALES INC.
Mailing Address: P. O. 80X 3878-E. N. hollywood, CALIF.

WHES YOU ORDER WELS COMPONENTS.
 here's what YOU GET
 \square IMMEDIATE DELIVERY FROM STOCK 2 FINEST QUALITY OF FAMOUS BRANDS
 3 GENERALLY LOWER PRICES
 ©RETURN PRIVILEGE FOR FULL CREDIT IF NOT SUITED TO YOUR REQUIREMENTS

The valuable service Wells provides to the industry is being used by many of our greatest manufacturers as a matter of course.

Our vast stock (the world's largest) may contain just the components you need to fill urgent orders - at a substantial savings in time and cost.

ADEL CLAMPS ANTENNAS, Insulators, Mast Sections - BINDING POSTS - BLOWERS CABLE ASSEMBLIES. CHOKES. COILS. CONDENSERS Oil filled, Bathrub, Hearing Aid, Transmitting Micas,
Silver Micas, Ceramic, Variable, Trimmer
CRYS, TALS. FILTERS EUSES \& MOUNTINGS. GEN ERATORS GROUND RODS MEADSETS - IF COILS - JACKS . JACK BOXES - KEYS, Teleqraph KNOBS - LAMPS. IORD MOUNTS' LUGS MOTORS \& BRUSHES - PLUGS - RECTIFIERS Selenium, Copper Oxide, Meter Diode RESISTORS-All
Types SELSYNS ${ }^{\text {DOCKETS REI SWITHES }}$ Aircraft, Micro Switchettes, Toggle . TIMERS. TUB ING-Flexible - TUNING SHAFIS TRANSFORMERS All Types - VIBRATORS - WALKIE TALKIES

DYNAMOTORS
 OVER 100,000
 NEW DYNAMOTORS IN STOCK!

DM 32A - DM 53A - PE 86 - PE 101 C DM 33A - D 101 - PE 94, et
Large quantifies of brushes for all types of dynamotors and motors.
Write us for quotations. Advise us your requirements.

A complete Signal Corps stock number listing of items in our stock. Write for listing No. SG-200. (For government agencies and contractors only.)
Manufacturers and distributors-write for new Condenser Catalog C-10 now available. Write, Wire, Phone Your Requirements all phones: SEeley 8-4143

833 W. CHICAGO AVE., DEPT. SL, CHICAGO 22, ILL.

POWER RHEOSTATS

		Ea.	ohms		Ea.	ohms W	
. 1	150	4.89	50	50	2.10	500. 100	3.60
. 5	25	1.98	60	25	1.86	$500 \mid 150$	4.63
. 5	50	2.34	75	25	1.86	500300	6.93
. 5	150	4.89	75	50	2.10	750: 25	1.86
1	50	2.34	75	75	3.25	750	4.90
2	50	2.34	80	50	2.10	100025	2.10
2	100	3.86	100	25	1.86	100050	2.22
2	300	6.93	100	50	2.10	1200225	6.41
3	100	3.86	100	100	3.60	1200800	6.93
3	225	6.41	125	25	1.86	125050	2.22
5	25	1.86	150	50	2.10	1250150	4.90
5	50	2.10	175	25	1.86	150025	2.10
5	100	3.86	185	25	1.85	150050	2.22
5	150	4.63	200	25	1.86	160050	2.22
6	25	1.86	200	100	3.60	1800150	5.15
6	50	2.10	200	150	4.63	200025	2.10
6	75	3.25	225	50	2.10	200050	2.22
7	25	1.86	250	25	1.86	2250150	5.15
7.5	75	3.25	250	50	2.10	250050	2.22
7.5	225	6.41	300	50	2.10	2500100	3.71
8	50	2.10	300	75	3.25	2500150	5.15
10	25	1.86	300	100	3.60	300025	2.22
10	50	2.10	350	25	1.86	3000100	3.71
10	100	3.60	350	100	3.60	500025	2.22
12	25	1.86	350	150	4.63	500050	2.34
12	50	2.10	370	25	1.86	750050	2.34
15	25	1.86	378	150	4.63	7500100	4.40
15	75	3.25	400	25	1.86	1000050	2.50
15	100	3.68	400	75	3.25	10000100	4.75
20	50 50	2.10 2.10	500	25	1.86	1500025	2.75
25	25	1.86	500	50	2.10	2000015	6.98
50	25	1.86	500	75	3.25		

Specify Type Shaft Required- $/{ }^{\prime \prime}$ " S5 or Knob Type (Special Prices to Quantity Users)

Announcing

OUR NEW ADDRESS

ALEXANDER MOGULL COMPANY

Now Occupies the Entire 7-Story Building Located at 17 WARREN ST. (opp. City Hall Park) N. Y. CITY 7, N. Y.
SAME PHONE NUMBERS
WOrth 4-0865-0866

BARGAIN CATALOG Now Available

MICA CAPACITORS

(of every description)

CHECK AND COMPARE OUR COMPLETE STOCKS
The following is just a partial llst of the current electronic and aircraft equipment now in our warehouse. Write for complete information. Prompt replies to all inquiries.

RC-103 \& AN/ARN-5 ILS
New in original cartons. Complete.
Consists of all accessories, plus AS.
$27 A$, R89B/ARN-5 and BC-733D.
Modified to flag alarm.
TBS 4 \& 5, NEW, COMPLETE IE-17 TEST SET
AN/ARN-7 COMPLETE
SCR-269 COMPLETE
AN/ARC-1 VHF EQUIPMENT

> BC-611 \& BC- 721 HANDIE TALKIES, Plus SPARE PARTS. Quantity available.

AN/ART-13 EQUIPMENT ATC XMTR

T-47A/ART-13 XMTR T-47/ART-13 XMTR CU-24 ANT. LOAD CU- 25 ANT, LOAD DY-11\&12Dynam't'r MT-283 MOUNT 0.16 LFO MT-284 MOUNT ATC DYNAM'T'R SA-22 ANT. LOAD C-87 CONTROL BOX

AN/APG-13A RADAR
 Absolutely complete, brond new

AN/APN-2	MG-153
SCR-729 New	APS-2, 3, \& 15
TA2J-24	Components
RTA-1B	AN/ARC-5 VHF
BC-1016	SCR-274 \& ARC-5
APA-6 INDICATOR	Command Equipm'
APA-11 INDICATOR	R-4/ARR-2 Receivers
APA-17 RADAR	BC-640 VHF XMTR
HS-33 HEAD SETS,	SCR-510
NEW	SCR-522
MG-149F \& H	MG-153
SPARE	PARTS
SCR-720	SCR-522
SO-7	AN/ART-13
AN/ARN-7	AN/ARC-1
SCR-269	BC-611
SCR-718 A, AM, B \& C Altimeter equipment-complete	

To insure the finest of service and
quality of merchandise, we have just

$$
\begin{aligned}
& \text { recently put into operation our own } \\
& \text { function-testing }
\end{aligned}
$$

$$
\begin{aligned}
& \text { reconditioning and function-testing } \\
& \text { nlant. comolete with all facilities. }
\end{aligned}
$$

plont, complete with all facilities.

ART-13 CFI UN 1-152 BC-348 Q \& R TOP DOLLAR PAID

> EXPORT INQUIRIES INVITED Wo carry an unusually largo stock of Airline Equitment, Test Equipment, Radar Sets, ete. Write for our low prices and complete informa Inquirlos. Write today!

V\&
 ELECTRONIC INDUSTRIES INC.

2033 West Venice Blyd.—Dept. E-24 Los Angeles 6, California Phone: REpublic 3-1127

RADIO SHACK'S 30TH ANNIVERSARY TUBE PRICES ARE WAY, WAY DOWN!

AMERTRANTRANSTAT VOLTAGE REGULATOR Pri. 103-126 V; Sec. $115 /$ $1 / 60$ @ 250 VA. Order No. RF-4162 No. RE-4162	DELCO DUAL BLOWERS! Brand New Delco blowers. 2800 rpm cfm $115 / 1 / 60$. Ship 11 1bs. Order No 5403.	$\begin{aligned} & \text { BELOW COST! } \\ & \$ 14^{85} \\ & \hline \end{aligned}$
	RAD 167 Washing	TION Borton 8, Mass.

AIRCRAFT EIECHRONICS

ARC-I's, ART-13's, RTA IB's, BC348's
AND COMPONENT PARTS FOR ABOVE
WRITE OR CALL FOR BULLETIN
MERRICK ELECTRONICS
166-08 DOUGLAS AVE.
JAMAICA, N. Y.
RE 9-5960

all equipment tested in our shops and guaranteed ready for installation in aircraft "Specializing in installations of the highest quality".

- ARC-1 - 50 channel VHF Transceiver installation
- ARC-1 - 20 channel VHF Transceiver installation
- ARC-1 - 10 channel VHF Transceiver installation
- ARC-3 - 8 channel VHF Transmitter-Receiver installation
- ARC-3 - 24 channel VHF Transmitter-Receiver installation
- SCR-522- 4 channel VHF Transceiver installation
- ART-13 - HF Transmitter installation
- R89B-ILS equipment
- BC 733D-ILS equipment
- MN 53-Marker Beacon
- SCR-269G-Radio Compass
- ARN-7-Radio Compass
- BC 640-VHF Ground Station
- Dynamotors-all types

LET US HAVE YOUR INQUIRY—PROMPT ANSWER—QUICK DELIVERIES
 Buyers of Surplus Aviation Electronic Materials, send us your list!!

AADYO Surplus Buys

FOLLOWING CRYSTALS AVAILABLE IN
FT 243 HOLDERS $1 / 2^{\prime \prime}$ PIN SPACING

4165	5127.5	
4240	5205	6975
4280	5285	7350
4310 4330	5435 5485	7450 7750
4335	5587	7750
4350	5660	7875
4370	5730	7950
4440	5852.5	8850
4445	5875	8450
4540	6073.3	
4635	6140	\$700
4710 4880	6350 6525	00
4980	6550	
4995	6700	10.00, Post
5035	6825	0.00, Posi

PLEASE ENCLOSE FULL AMOUNT WITH ORDER QUANTITIES AVAILABLE
WRITE FOR YOUR REQUIREMENTS

C \& H SALES CO.

box 356-me east pasadena sta. - pasadena 8, calif.

FOR THE BEST BUYS IN ELECTRONIC MATERIALS

 TOPS IN QUALITY AT DOWN TO EARTH PRICESSpecialists in Sigma and Other Types of Sensitive Relays TYPES 4.41 F
 $\begin{array}{llllllllllllll}10000 & 165 & 10000 & 1.15 & & 15000 & 5 & 95 & 5000 & 5 & 45 & 3000 & 6.45 & 3000 \\ & 10000 \text { units in stock } & 10000 & 6 & 45 & 10000 & 5 & 95 & 3000 & 4.95\end{array}$ $\begin{array}{lllllllllllll} & 10000 \text { units in stock } & 10000 & 6.45 & 10000 & 5 & 95 & 5000 & 6.95 & 5000 & 6.95 & 5000 & 6.95 \\ \text { COIL IMPEDANCES AVAILABLE -SHOWN IN THIS LISTING } & 8000 & 6.95 & 8000 & 7.45 & 8000 & 7.45\end{array}$ $\begin{array}{lllllllll}* & \text { These } 2 \text { types suitable for AC operation also. } & 10000 & 6.95 & 10000 & \mathbf{7 . 4 5} & 10000 & \mathbf{7 . 4 5}\end{array}$

KURMAN BK-24, $4500 \mathrm{ohm} 1 \mathrm{ma} . . .$. $\$ 4.45$ KUPMAN BK-35. 10000 nhm 5 ma G. E. Minature, $10000 \mathrm{ohm} / 2 \mathrm{ma}$ SPNO PHILTROL TYPE, 4PDT 10 amp cont. dual coils 4.95 G. E. Compact Unit. $6000 \mathrm{ohm} / 7 \mathrm{ma} 3$ PNO PHILTROL TYPE, 4PDT 10 amp cont. dual coils
operates on $6,12.24$ VDC.............

BRAND NEW DYNAMOTORS 6 VOLT INPUT. $180 \mathrm{~V} / 225$ ma out. 6 VOLT INPUT. $350 \mathrm{~V} \quad 150 \mathrm{ma}$ out. 12/24 VOLT INPUT. $350 \mathrm{~V} / 225 \mathrm{ma}$ out. 12/24 VOLT INPUT. 625V 175 ma out

ALSO IN STOCK FOR IMMEDIATE DELIVEPY
CAPACITORS..OILS, MICAS. CERAMICS ETC CHOKES-TRANSFORMERS, AUDIO, POWER SPECIALS. CONNECTORS' WVIRE \because COILS TIONS, MARDWARE TRANSFORMER LAMINA. PRICES NAMEIT, WE HAVEIT AT SENSIBLE PRICES... YOUR INQUIRIES ARE INVITED.

ALLIED Hermetically Sealed, 300 ohm DPDT $\quad 2.95$
BEST TV BUY YOU HAVE EVER SEEN Das Sq. In. Proiection (Schmidt) System manufactured by world famous
North American Philips. Housed in neat mahogany cabinet. 24 tube cirsuit strain free big big picture Original list price. . $\$ 399.95$, our price... $\$ 169.95$ For Fast, Intelligent, Friendly Service "CALL ON ESSCO"
ELECTRONIC SPECIALTY SUPPIY CO. 58 Walker St. WA 5-8187 NYC 13, N. Y.

BRAND NEW—_FULLY GUARANTEED MICROAMMETERS
 WESTON 301

MANUFACTURERS QUANTITY AVAILABLE spot delivery \bullet

ORIGINAL WESTON BOXES $0-20$ MICROAMPS DC -
3 1/2" ROUND FLUSH MOUNT BAKELITE MFD. FOR TEST SET TS62... No. KS9490

FOBNY
Rated Accounts 10 Days
Others 25% with order Balance COD

WIRE-CABLE

CORDAGE
CO-122 3 conductor, each \#22A WG neoprene
jacket 55^{\prime} lengths
CO.-127 single \#14 AWG braided and tinned copper brcid shield

> ARMOR

DRIA-23 DHFA-100
SINGLE CONDUCTOR AWG 10 shielded cable with terminal lug each end 100^{\prime} and 150^{\prime} lengths WIRE
AWG 18 copperweld
AWG 29 tinned copper
AWG 22 with nylon core plastic insulation MFD VDANSMITTING MICAS VDC

	VDG		MFD VDC		
000075	3000	\$1.30	. 005	3500 3500	1.70 2.20
0005	3000	1.10		-	45
${ }^{0004}$	2000 3000	1.30 1.50	.$_{000335}$	5000	2.65
003	3000	1.50	. 0003	5000	. 65

TWIN CHART GRAPH RECORDER
Esterline Angus Twin Ghart Recorder Model AWT.N Scale; 2.5-0-2.5 MA DC

LINEAR WIRE WOUND POTENTIOMETERS

80-86 Crystal in Holder $\$ 2.50$
Balloon with Hydrogen Generator $\$ 2.50$
Balloon with Hydrogen
300 Feet Aerial Wire S 2.00

MICROWAVE TEST EQUIPMENT 10 CM echo box CAV 14ABA-1 of OBU-3, frequency ranqe $2890 \mathrm{MC}-3170 \mathrm{MCS}$ Direct reading micrometer head. Ring prediction scale plus 9% to minus 9% Type Wit input. Resonance indicalor CM di-
With accessories, spares and
rectional coupler. Brand New.

TUBES

		801A		
${ }_{2 \times 2}^{2 C 34} 879$	${ }^{5.45}$	${ }_{803}^{8014}$	3.65	${ }_{\text {C }}$
3 B 24	4.95	826	5	CK
3 C 24	1.60	${ }_{9314}^{864}$	45	${ }_{\text {E114 }}{ }_{615}$
$7 \mathrm{C4}$ -	. 75		30	RK 73
15 P	. 65	957.	35	,
30 Sp	. 40	ck	45	'5FP7.
	. 25	ck	90	1166
${ }^{45}$ Spec.	6.75		.35 .25	
316A		2051	1.10	${ }_{6}{ }^{\text {SU4GGT }}$
${ }_{713}{ }^{\text {WL }}$.	$\begin{array}{r}4.95 \\ \hline 90\end{array}$	81719	1.50	${ }_{3718}$

HI VOLTAGE FILTER CHOKES

. 4 HY 4.5 Amp DC 3 ohms 1230 RMS to
1 ground. New. H . 3.2 Amp 3.5 ohm GE69G459.
NeW. 1.7 -3 HY 2 AMP DC 34,000 VDC GEY346A. New.

NAVY ENTERING TYPE INSULATOR

Porcelain flanged bowl with brass rod, fitlings and aluminum shield. Dimensions $43 / 8$

10 CM ROTATING ANTENNA

24"' Parabola in turret 360° span at 12 RPM 24"' Parabola in turret 360° span at 12 RPM

TIME DELAY SWITCHES
1 Minute 115 VAC 60 cycle Enc. in Waterproof Metal Case. New $\$ 5.25$
Mroof Metal Case. New $\$$ at 40-41-42 Second
Micro SWitches Contact at
Time Delay 110 VAC Motor New $\$ 4.50$
Thermo Switch 50° to 300° F 115 VAC @ 6A
230 VAC @ 5A
Breaks Contact with increase in Temperature. New $\$ 1.35$

CONTACTORS
DPST 115 VAC 60 cycle 15 Amp De-Ion Line Starter Westinghouse $\$ 6.95$
SPST 115 VAC "AB's $\# 700 \$ 5.95$
RELAYS
12 VDC DPST Allied Control Box $32 \ldots \$ 1.25$ 24 VDC DPID Allied Control BID 36 $\$ 1.45$ 24 VDC DPDD Allied Control BID 36 110 VAC DPST 1 Amp Contacts Struthers Dunn CKA 1970. 15 VAC DPST Struthers Dunn CXA 220 VDC DPDT Struthers Dunn CK. 2122. S4.50 230 V 50 cycle DPDT G.E. 12HGA11A2

MFD			Ten	MFD		Each	Ten
1	60	85	. 85	. 5	2000	285	
	600	$\stackrel{.}{40}$	1.40	. 5	3000		2.90
		1.65	1.60	. 2	5000	4.50	
1-8	609	2.50	2.35		7500	3.95	3.95

Portable 0-25 Amps AC Weston \#433 Brand New $\$ 37.50$
Switch Board Panel 0-100 Amps DC Weston $\$ 269$ with 100 Amp Shunt Brand New \$24.95 EQUIPMENT
Walkie-Talkie 2.3-4.6 MC
MN-26Y Bendix Compass Receiver
BC-733 Glide Path Receiver
DAB 3-Direction Finder
RDF Receiver Equipment 200-300 KC Fixed
Tuned Tuned

SWITCHES-BATHTUB-OIL FILLED-MICA CONDENSERS-POTENTIOMETERS. SEND FOR CATALOG

WANTED: ARC-1, 3, ART-13, BC342, 348, APS-10, 15, TS-13, 35, 146, 147, 148, 174, 175, 263 etc. All SCR, BC, AN. TS. ALL TUBES.

RADALAB
1964 Webster Ave., Bronx 57, N. Y. TEL: CYPRESS 8-4791

RADAR

AN/AL'S-3 3CM search and navigational
 Radar $\$ 1175.00$ AN/APS-10 3CM very light weight search and navigational Radar $5^{\prime \prime}$ P.P.I. Com-
plete sets avail. MT/APS-15 sua
tional Radar using $5^{n \prime}$ P.P.I. $3^{\prime \prime}$ A scope. Complete sets ivail
AN/APR-1 $38-1000 \mathrm{MC}$ Receiver.
AN/APR-1 $38-4000 \mathrm{MC}$ Receiver, 110 V 60 AN/APA-17. $38-4000 \mathrm{MC}$ Automatic Direction Finder for use with APR-1, 4, 5 type receivers.
AN/APR-5 $1000-6000 \mathrm{MC}$ tunable Receiver, 110V60 Cyc Input.
ra compact long range Radar Beacon
MN/IPT-5 $300-1300 \mathrm{MC}$ Trans. 30 Watts
wis9.50 AV/ARC-1 $100-156$ MC Radio Telephone AX/ART-13 Airbourne rrans. Aubotune. HC-348 1.5-18 MC Receiver 28 V D.C. Input.
BC-312 $1.5-18$ MC Receiver 110 V 60 Cyc. BC-312 1.5-18 hC Receiver
Input.
SCI-7is himh altitude Airbourne AltiMeter. CAA Approved. SCR-522 100-156 MC Trans.-rec. 12 and 28 V
SCR-536 Handie Talkies.
SCR-291 Airport Long Range Autonatic Direction linder. Frinder.
Many other airbourne, ground and marine military equipment available. "WRITE"

TUBES GLL FULLY

TERMS-Minimum order $\$ 25.00$ all prices FOB New York City. 25% deposit with order, balance COD. Rated firms open account. Prices subject to change without notice.

TEST SETS

TS-3/APS band power, freq. mete ${ }^{\circ}$. $\$ \mathbf{1 5} 50$ TS-13/A1'3 CM sig. gen. power meter, frec. TS-1/ $\mathbf{M P}^{2} 10$ CMy sig. gen. power meter, f1eq. meter. 110 v 60 cycle....... $\$ 954.00$
TS-34/. poitable syncroscope.... $\$ 90.00$
 meter 110 v 60 eycle. TN-61/IP 10 CM erho box.
TS-62 IP 3 CM echo box. power meter.
 1-100 radio compass test set.

 TSX-4SE spectrum analyzer.

SPECIAL

K-band $23,000,24,000 \mathrm{MC}$ RF heads using 2K50 klystrons and 3J21 packaged magnetron and magic TEE AFC mixer very late type. Also K-band complete dual-scanner antenna system. TS-259A/ AF K-band sig. gen. power meter, freq. meter also available. WRITE

X and K-band Wave Guide Components

Slotted lines, term. gdapt., crys, mounts, etc. in stock. SEND YÓUR REQUIREetc. in
MENTS.

SAVE ON TUBES BRAND NEW TUBES gUARANTEED TUBES

IN STOCK

FOR IMMEDIATE DELIVERY

BRAND NEW JAN-C-25 CAPACITORS

CP53-CP54-CP55
CP61-CP63-CP65 CP67-CP69
Every " E " \& " F " Characteristic Item Listed In Jan-C-25 ALSO CP70 CAPACITORS
" E " \& "F" Characteristic 600 and 1000 Volts " B " and " E " Terminals

O'DEL ELECTRONICS CORPORATION

293 WEST BROADWAY NEW YORK 13, N. Y. WORTH 4-2176 WORTH 4-2177

PANEL METERS

R.F. MILLIAMMETER, 0-120, Weston $425,31 / \mathrm{m}^{\prime \prime}$ W120RFMA case, self-contained, AWS M $\$ 17.50$ R.F. MILLIAMMETER, 0-150, Weston 743, and $^{\text {sin }}$ C.F. MILLIAMMETER, 0-150, Weston @ $\$ 22.00$ m-3 (hlush case, w ext. heater, scale cal. R.F. AMMETER. $0-1$, Weston $743,4^{\prime \prime}$ square flush R.F.AMMETER. $0-2$, Weston $743.4^{\prime \prime}$ square $\$ 22.00$ case, W ext hmater, scale cal. $0-2 \ldots \ldots$ @ $\$ 22.00$
R.F. AMMETER, 0-16, Weston $640,442^{\prime \prime}$ round RECTIFIER TYPE VOLTMETER, 0 -1.5, $\$ 22.000$ ohms per voit, Westinghouse NC-35, 3y
case
rd
fi LINE FREQUENCY METER, Mual Iange, vibrat-
 All items are surplus, new, in original © $\$ 14.95$ and are fully muaranteed. We specialize in meters and Instruments. Let us
linow sour requirements! All makes, anl types, all

OVER 75,000 METERS IN STOCK MARITIME SWITCHBOARD

Instruments \& Accessories 336 Canal St. New York, 13, N. Y WOrth 4-8216 (7)

WHOLESALE ONLY

ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT HYDRAULICS

RADIO \& ELECTRONIC SURPLUS 13933-9 BRUSH STREET
Detroit 3, Mich. TO 9-3403

T47A/ART-13 TRANSMITTERS
BC-610-E TRANSMITTERS
BC-312, BC-342, BC-348 RECVRS.
BC-221 \& LM FREQUENCY METERS ALLTRONICS
BOX 19. RIchmond 2.0916 , LYMn 8 M 3100

FOR SALE
Salt Fog corrosion test cabinet
Brand new Type CAS Industrial Filter and Pump
Mfg . Co. Size $30^{\prime \prime} \times 18^{\prime \prime} \times 30^{\prime \prime}$ (less Mff. Co. Size $30^{\prime \prime} \times 18^{\prime \prime} \times 30^{\prime \prime}$ (Iess compressor)
with air control valve, filter, Ilov 60 cycle SP Heaters. Cost now- $\$ 911.00$. Price- $\$ 710.00$. 330 w .42 FS. 7780 . New Yoctronics

"SEARCHLIGHT"

IS

Opportunity Advertising
-to help you get what you want. -to help you sell what you no longer need.

Take Advantage Of It
For Every Business W ant
"Think Searchlight First"

\footnotetext{
RELAY SPECIALISTS AUTHORIZEO FACTORY OISTRIBUTORE STRUTMERS-DUNN POTTER \& BRUMFIELO

Public Auction Sale

FRANK D. HOLMES, Auctioneer

Will sell on Tuesday, June 16, 1953, 11 A.M. at 17 Lewis Street, Eatontown, New Jersey, 3 miles from Red Bank, N. J. by order of Marc Manufacturing Corporation.

HLECTRONIC TEST EQUPMENT, ETC.

GENERAL RADIO FREQUENCY STANDARD

W/Power supply, multivibrator, standard oscillator and interpolation oscillator.

SIGNAL GENERATORS

Measurements models 80, 75, 65B, 78, 84, (2) federal 605-CS, Boonton 150 A, TS 13 APa TS 155, I122, ferris microvolters model 10B, 18B and 18C, Hewlett Packard 205-A, S Band Signal Generator, Hickok 199, etc.

* MICRO WAVE EQUIPMENT

X Band Spectrum Analyzer, X Band and S Band terminations, Sperry Klystron signal source MKSX 12 (3), General radio type 874LB coaxial slotted line, wave guide slotted lines X Band and S Band, X Band frequency power meters, TS 33/AP, TS 36/AP, Lavoie frequency meter model l10S. TGP 6SE pulse generator, measurements 79 B pulse generators, $410 \mathrm{R} \mathrm{Klystron} \mathrm{W} /$ power supply, Hewlet1 Packard Spectrum Analyzer R.R.L. model 1230, etc.

Q METERS

2 Boonton 160A Q meters, Boonton 170A Q meter, Boonton 110 A QX checker.

SCOPES

P4 synchroscope, TS 100 AP. Reiner model 556, DuMont 248 W/power supply. RCA 160B (2), RCA 155, several panoranic adaptors, RCA 9 inch consolescope, etc.

MISCELLANEOUS

Hewlett Packard Wave Analyzer, GR 650A impedance bridge, (3) Clough.Brengle 230A condenser bridge, Lavoie type $0-200$ harmonic frequency generator, Hewlett Packard \#325 B noise distortion analyzer, TBN-3EV W Bridge, TS 12 VSWR amplifier, ferris $34 A$ VHF Xtal calibrator, Knight frequency standard, Exterline angus recording meters, AN/APR 4 receivers and tuning units; AN/APR 1 receivers and tuning units, T-85/APT-5 transmitters, G-R output power meters, Measurements model 62-AC VTVM, Ballentine AC voltmeter, GR 726-A VTVM, GR reactance meter, Kay megasweep, Measurements model 59 TS 19. Power supplies, miscel laneous waveguide and components. Field intensity meter RCA TMV-75-B, GR 1611 A capacitance test bridge, Measurements 58 field strength meter. Sylvania power supply- 3000 volt $2 \mathrm{amp}, 417 \mathrm{R} \mathrm{Klystron} \mathrm{W} /$ power supply, Electrostatic voltmeter $0-10,000$ volts, sheet metal brakes, vacuum pumps, plue print developer, oven, desk, "filing cabinet, adding machine, typewriter, teletype writer, etc.

INSPECTION: June 15, 1953

Terms: 25\% cash or certified check-Phone: Eatontown 3-0993

AN/APR-4 LABORATORY RECEIVERS
 Complete with all five Tuning Units, covering the range 38 to

 4.000 Mc .; wideband discone and other antennas, wovetraps mobile accessories, 100 page technical manual, etc. Versatile, me range. Write for data sheet and quotations.We have a large variety of other hard-to-get equipment, in luding microwave, aircraft, communications, radar; and lubor lory electronics of all kinds. Quality standards' maintained Get our quotations!
We will buy any Electronic Material at top prices. SCHOOLS unload your dusty surplus for cash or credft.
ENGINEERING ASSOCIATES
434 PATTERSON ROAD
DAYTON 9, OHIO

SOLA
CONSTANT VOLTAGE TRANSFORMERS

FILAMENT
TRANSFORMERS
5 WE ${ }^{2}$ D- 122886
5 KENYA S S-13377
5 KENYON S14940
KENYON S14940
$5 \mathrm{~V} 6.5 \mathrm{~A}(35 \mathrm{KV})$
5 VHOR. A (385 KY
5 V 10 A $(35 \mathrm{KV}) \ldots . .10 .00$ WE KS-8867

VARIABLE VOLTAGE

 TRANSFORMERS115/0-115 V. 35.00
POWERSTAT 2 KVA $\quad 35.00$
POWERSTAT 2 KVA
230/O $230 V$
TRANSTAT 1 KVA
25.00

TUBES

204A	10.00
304TL	5.00
803	3.00
808	2.00
814	2.50
838	3.00
849	10.00
860	3.00
86	10.00

SWITCHES
SPST TOGGLE15.00/C C-H 8803 K 5
30 A BREAKER
HEINEMANN 0711-30
5 A BREAKER
HEINEMANN 0711-5
RHEOSTATS
100 Ohm 100 W

OIL CAPACITORS

4600	25
$8-600$	1.50
10.600	2.50
20600	5.00
41000	1.50
8-1000	2.50
.5-2000	1.25
1-2000	1.50
2-2000	2.00
4-2000	3.00
1-2500	1.75
2-2500	2.50
4-2500	4.00
1-3000	2.50
2-3000	3.50
2-4000	5.00
3-4000	7.50
1-5000	4.00
2-5000	10.00
1-6000	6.00
26000	15.00
3-8000	35.00
1-10 KV	18.00
.1-13 KV	10.00
$1-15 \mathrm{KV}$	30.00
25-20 KV	15.00
.5-25 KV	35.00
$1-25 \mathrm{KV}$	50.00
.125-27 KV	15.00

western engineers

ELK GROVE, CALIFORNIA george whiting, owner

Looking for

ELECTRONICS VALUES? Hario Has 'Em!

CERAMIC CONDENSERS!
$\$ 10$ val.
Kit of 50 asstd. Brand new, standard brands.

METER SPECIAL, 0-I MA Meter, $2^{\prime \prime}$ round, new, BRXED NEW G7 $1 / 2$ V. BATTERY-Standard Type, counters. Test equipmt. Deale's write for
quantity prices. $\$ 2.65$ value.......only $98 \mathbb{8}$
TEST EQUIPMENT
DRASTICALLY REDUCE

$\begin{array}{lll}\text { IN STOCK RIGHT } & \text { NOW! } \\ \text { BC-348 } & \text { SC-342 } & \text { BC-611 } \\ \text { ARC-3 } & \text { ARC-1 } & \text { ART-13 } \\ \text { BC-221 } & \text { APN-9 } & \text { LM }\end{array}$

SPECIAL VALUE!
Acorn Tubes 954 \& Sockets
Brand New 29% per set-4 sets $\$ 1$

Attn: Schools, Labs, Hams! WE PAY in surplus-or trade. Write now.
HARJO SALES CO. Dept. E-2
Write for FREE Surplus Catalog 4109 Burbank Blvd. Burbank, Calif. P. O. Box 1187-Magnolia Pk. Sta. CABLE: HARJO PHONE: ROckwell 9-2411

We have one of the largest stocks of special purpose tubes in the United States for immediaie shipment. We sell tubes only and consequently each order receives individual attention from tube specialists. We sell only new tubes, standard brands, either JAN or commercial specifications depending on slocks on hand.

[^30]
THIS MONTH'S HERSHEL SPECIALS

BK 22 K Relcry....................... 3.95 G.E. Sensitive Relay K 2718532000 ohm SPDT	
G.E. HV Relay DPDT 30 ohm 12 V DC	Output TFR 6V6 to VC. ${ }^{\text {Output } \mathrm{Tfr} 6 \mathrm{~F} \text { to } 500 \text { or } 250 \text { ohm..... }}$. 69
(ideal for Ant. Changeaver)..... 2.95	Output Tfr 50L6 to VC............ . 49
Advance Relay \#RC 110524 V DC 270 ohm	Swinging Choke 2 to $7 \mathrm{H} 550 \mathrm{MA} . . .6 .95$
Con. 20 armps 1.95	Swinging Choke 6H 200 MA....... 2.45
Cook Relay \#811 telephone type SPDT7000 ohms	Choke 5.9 H 450 MA.............. 4.95
Cook Relay \#796 SPST 200 ohm. . . . 1.49	814 New … 2.95
Guardion Magnetic Contactor \#NAF-1204-3	8020 New 2.95
28 V. DC 1.95	VT 141 4.95
Hart "Diamond H. Magnetic Relay SPST	2131 9.95
type B4 24V DC \#694R10B....... 2.95	304 TL 7.95
Butterfly Condensor Type A 76 to 300	703 A 4.95
MC … . . 4.95	832 4.95
Type B 300 to $1000 \mathrm{MC}4 .95$	Lip Mike W.E. Nary type \#CW 51071 . 95
. 01 Mid 8000 V. Mica Cond. 4.95	Redmond Model 3565 Blowers 110 V. 60
. 1 Mid 7000 V . can type paper...... 1.95	cycle 2 " opening 7.95
.002 Mfd. 3000 V Mica Cond....... 69	Westinghouse type FL 115V 400 cycle
Sangamo type HS Mica Cond. 0005-2500 V	Blowers 4.95
DCWV 49	Interphone amplifier BC-212-G with
Sangamo type HS Mica Cond. .02-600 DCWY	
2 Mfd. 7500	G.E. $21 / 2 \mathrm{~W}$ Argon Glow lamps...... . 29
1 Mfd. 5000 DCWV oil filled. 4.95	Phosphor Bronze Ant. Wire 300 ft Spool
1 Mid. 6000 DCWV oil filled....... 6.95	\#SC W147 1.95
Dual Padders 3 to 12 MMfd (ideal for Wave traps)	A-5 Automatic Pilot directional GYro. 29.95
Mallore fraps finf Filter Unit 25 amp 35 Volt	10 MC lst and 2nd IF (FM) Transformers
(ideal for Mobile Gen. interference) . 95	456 KC lst and 2nd IF (AM) transformers
R. L. Drake filter Fl5 U (Stop your TVI	(standard) 69
with this High pass filter) 3.95	30 MC I.F. 95
Low pass filter 500 ohm line 3000 CPS cut	T-107 lst Lim. 5 MC-IF 1.49
ofi ${ }^{\text {a }}$. 1.95	T-109 5 MC Disc. 1.49
Modulation transformer PPP 6L6 to 3000	T-104 35-110 MC-IF 95
ohms 2.95	T-105 35-110 MC-IF 95
6SN7 to 815 Grids................ 1.95	T-110 35-110 MC-IF 95
815 Class AB2 3.95	Sperry Bombsight type S-1 Part No.
Scope Tfr. Pri. 110 V. Sec. 4000 V at 10 MA	644830 Brush kit for all types of Dynamotors. 25 e...................... 49.9
Modulation Tfr for BC375 or 211 Tubes 3.95	Willard 2V-20 AH \#8-452 Battery... 3.95
20\% Deposit with order. Balance C.O.D.	Michigan Residents add 3\% Sales Tax.

HERSHEL RADIO COMPANY
 \#5245 Grand River Ave.
 Detroit 8, Michigan

COMPARE THESE PRICES

33-2K22
JAN RAYTHEON
IND. PACKAGED
91-2K23 N ELECTRIC
6219 URI STIVERSAL ELECTRONICS
ST. N.W. WAL WASH., D.C.
PHONE TUCKERMAN 2-3711
\square
PROOF
POSITIVE

2C40 TUBES
 bRAND NEW BOXED AND SEALED $\$ 5.90$ EACH
 ATLAS DISTRIBUTORS
 1165 Moorlands Drive St. Louis 17, Mo.

SYNC GENERATOR FOR SALE
 RCA Type TGIA
 Immediate Delivery

TELEPHONE RELAYS

Large Stock of

CLARE, TYPES C D \&

COOKE. AUTOMATICELECTRIC
ALL TYPES Of COILS and PILE.UPS Send Us Your Specs. for Our Qupto
CLARE TYPE C STANDARD SIZE
 OTHER TYPE G TELEPHONE RELAYS

CONTACT SYMBOLS
$\mathrm{A}=$ Norm. Open $\mathrm{B}=$ Norm. Closed $\mathrm{C}=\mathrm{S} . \mathrm{P} . \mathrm{D} . \mathrm{T}$.
G.E. Relays \#CR2701-B109P36 Coil-10,000 ohms
Contacts 1A 1B Operates on 8 MA. Price $\$ 1.65$ Contacts 1A 1B Operates on 8 MA. Price $\$ 1.65$ Signal Wheelock Relays \#KS 9665 Coll- 2,000 ohms $\begin{array}{ll}\text { Contacts-1A. } 1 \mathrm{~B}, 1 \mathrm{C} \text { Oper. at } 9 \mathrm{Ma} \text { Price- } 22.75 \text { on } \\ \text { Leach Relays Type 1025-SN-BF. } & \text { Coll- } 24 \mathrm{~V}, 425\end{array}$ ohms. Contacts-D.P.S.T. Norm. closed Pisted
 1) C-103C25 2200 ohms SPDT 4.5 MA... $\$ 4.00$ ea.

Slow Release (For SCR-522-A) Telephono Relajs. Part \#A18258. Signal \#2Z7650.3.... Price \$2.00 ea. Clare SK-5032 (Hermetically Sealed) Plug-In Relays. Coil- 30 ohms 6 volts Contacts-DPDT.

Sigma Type 5F Sensitive Relays Coil Re-sistance- 70 ohms each, contacts-S.P.D.T. Price
TYPE H TRANSMITTING MICA CONDENSERS 2) . $003 \mathrm{MFD} \quad 2500 \mathrm{v}$. DCW
DCW
 Electronic Supply Co WYork $7, \mathrm{~N} . \mathrm{Y}$ New York 7, N. Y.
Digby 4-3088

HOllis 4-5033

[^31][^32]SEARCHLIGHT SECTION

SPECIAL VALUES!
 WRITE FOR PRICES

APR4 with tuning units	AS38
BC639 with RA52	

TS159/TPX

COMBINATION SIGNAL GENERATOR AND FREQUENCY METER
Freq. range: $150-200 \mathrm{MC}$., crystal calibrated. Has separate 30 MC signal output, crystal cal: 3-stage, AF amplifier. Power measurements by built-in VTVM circuit 0-1 MA. meter as 2 -range voltmeter. Built-in 400 cps . voltage regulated power supply. New

RM 29 with the TS- 13 handset
\$14.95 ea.
2 for $\$ 27.50$
RL-42 Reversible Motor with antenna reel and clutch, used . $\$ 2.95$
TS10 TEST UNIT
Complete with attenuator, indicators and 350 ft . of coaxial cable. Originally cost $\$ 300.00$. . new condition . ONLY $\$ 14.95$ Plugs . . . large quantity available . . . write for prices!
$166 \quad 171$ MC277 U10U
$170 \quad 172$ ART-13-U6U
Write for our new 1953 catalog!
Shipments FOB warehouse. 20\% Deposit on orders. Minimum order $\$ 5.00$. Illinois residents, add regular sales tax to remittance. Prices subject to change without notice.

R W ELECTRONICS
 Dcpt. EL, 1712-14 S. Michigan Ave. Chicago 16, III. PHONE: HArrison 7-9374

HIGH FREQUENCY EQUIPMENT

Holtzer-Cabot MG set. $6 \mathrm{~K} V$ A, 1-ph., $400 \mathrm{cy} ., 220 \mathrm{~V}$ alternator, separately excited. belt-driven
NHW 10 H1. $3-$ ph., $60-$ cr. motor. With
G.E. voltage regulator and exciter unit\$\$1175.00 Leland MG set. 3 KVA , self-excited, 3450 RI M , $400-\mathrm{cy}, 3$-ph., $120 / 208 \mathrm{~V}$, 4 -wire alternator, direct driven by NEW 5 HI'. 2205, 3-ph., 60-cy motor
With GE voltage regilator, $\$ 995.00$ Newton Bros. MG set. $21 / 2$ KW. I-ph., $400-c y$., 2400 RPM alternater. belt-driven by NEW 5 HP H20V, 3-ph.. 60 cs. motor. Self-pxcited. $\$ 595.00$ Holtzer-Cabot MG set. IKVA, 3-phi: $400-\mathrm{cy}$. 115 V 3 -ph. 60-cy. motar. With variable speed sheave Ballantine regulator..... $\$ 495.00$ Bantio set. NEW. TKVA. 1-oh., 400-cy alternator, $115 v$. self-excited bereariven hi voltage regulator \& variable speed sheave. $\$ 300.00$ G.E. MG set. $2.5 \mathrm{KVA}, 360-c y ., 115 \mathrm{~V}$. I-ph.. di rect-driven by NFW 5H1P 1750 RIM, 220 V

EDWARD WOLF COMPANY

P. O. Box 82 Mattapan, 26, Mass BLuehills 8-1254

COMPASS

Communications Company 393 GREENWICH STREET

CABLE ADDRESS: COMPRADIO, N, Y ALL PHONES: BEEKMAN 3-6509
WE MAINTAIN OUR OWN FULLY EQUIPPED TESTING LABORATORY
to test and guarantee ANYTHING WE SELL

TCS-Collins mfd. Navy rodiotelephones for shipboard and mobile use, complete with all occessories for operation from 12, 24, 110, 230 volts d.c. and 110 or 220 volts a.c.

TDE-Navy or commercial marine transmitters, complete 110 \& 220 volts d.c. and a.c.
TBK-Navy high frequency transmitter, $2-20 \mathrm{mcs} ; 500$ watts output. Supplied complete with m / g and starter for d.c. or a.c. operation.
TBM-same transmitter but with speech input equipment to give 350 watts phone
TBL-Navy all-wave transmitter; 350 watts output: CW and phone. Supplied complete with m / g and starter for d.c. or a.c. operation.
TAJ-_Navy intermediate freq. transmitter, $175-550 \mathrm{kcs} ; 500$ watts output. Supplied complete with m / g and starter for a.c. or d.c. operation.
TBN-200-3,000 kcs, complete with $220 / 440$ volt, 3 ph. 50-60c power supply-conservatively roted of 1 kw . output
SCR-284-The famous mobile and ground equipment station for field use, complete with all occessories. Range $3.8-5.8$ mcs; 20 watts $\mathrm{cw}, 5$ watts phone.
SCR-510-Mobile, portable FM radio station. Operotes from 6, 12, or 24 volt de supply. Frequency range: 20.0 to 27.9 mcs.
SCR-610-Same as SCR-510, but with built-in speoker and range of 27.0 38 : mcs
SCR-528-Mobile FM radia station, operates from 12 or 24 volt dc. Fre cuency range: $20.0-27.9 \mathrm{mcs}$
SCR-628-Same as SCR-528, but with range: 27.0 to 38.9 mcs
MAG - 10 cm . PORTABLE LINK RADAR transmitter receivers, 6 -volt operation.

> RADAR BEACONS

AN/CPN-6 3 cm. AN/CPN-8 10 cm . YJ and YGfor shipboard use AN/CPN-6 3 cm. AN/CPN- 8 10 cm
AN/APS 2, -APS-3, -APS-4, and -APS-15
SA, SF, SG, SD, SJ, SK, SN, SQ——both equipment and spare parts

and TUBES-

SPECIAL PURPOSE and TRANSMITTING TYPES WRITE FOR OTHER ITEMS \& UNLISTED PRICES

24 HOUR DELIVERY FROM STOCK!

RELAYS

Our stock of more than a million relays - in over a thousand different types - is the world's largest. Don't delay your production for want of large or small quantities of relays of any type.

Telephone, wire or write for quotations.

NEW AND MORE COMPREHENSIVE

1953 RELAY SALES CATALOG now ready Be sure to send for your copy

Telephone SEeley 8-4146 833 W. CHICAGO AVE. DEPT. 4, CHICAGO 22, ILL.

WANTED

!! WANTED!!

IN ORDER TO SUPPL.Y GOVERNMENT AND INDUSTRIAL REQUIREMENTS, WE ARE PAYING TOP DOLLAR FOR ALL TYPES OF RADIO AND ELECTRONIC SURPLUS. WE SPECIALIZE IN TEST EQUIPMENT AND COMPLETE RADIOS, SUCH AS:
APA, APN, APQ, APR, APS, APT, ARB, ARC, ARN, ART, ATC, BC, DY, I, IE, LM MG, PE, PU, SCR, TCS, TN, TS, and many others.
WE ESPECIALLY NEED: APA10, APN9, APR4, APS4, ARC1, ARC3, ART13, ATC, BC221, BC342, BC348, BC611, BC721, DY12, DY17, I100, LM10 to LM18, MG149F, MG149H, PUl4, R5/ARN7, R5A/ARN7, SCR718C, TCS, TN16, TN17, TN18, TN19, TNS4, TS3, TS13/AP, TS33, 'TS35, TS45, TS75, TS76, TS 102, TS147/UP, TS148/UP, TS173, TS174, TS102, TS147/UP, TS148/UP, TS173, TS174,
TS175, TS250, TS251, TS323, (ICT, $1 F, 1 G$, TS175, TS250, TS251, TS323, (1CT, 1F, 1G,
SCT, 5DG, 5F, 5G, 6DG, 6G 115V. 60 c.p.s. 5CT, 5DG, 5F, 5G, 6DG, 6 G 115V. 60 c.p.s.
Selsyns), and all types of Hewlett Packard. Selsyns), and all types of Hewlett Packard,
General Radio Co., Measurements Corp, General Radio Co., Measurements Corp.,
Boonton Radio, Ferris, Leeds \& Northrup, Boonton Radio, Ferris, Leeds \& Norlhrup, and other iest equipment.
Please state accurate description, condition, and your lowest price. Explain modification, if any. We pay freight charges. PURCHASING AGENTS, ENGINEERS, EX. PORTERS, INDUSTRIAL BUYERS, DEALERS, AND INDIVIDUALS, Please send us your requirements.

NEW CATALOG NOW AVAILABLE.

PHOTOCON SALES

417 N. Foothill Blyd. SYcamore 2-4131

Pasadena 8, California RYan 1-6751

'WANTED!

CASH REWARD

for

ART-13 XTAL CALIBRATORS

Also need ART-13 Transmitters and spare parts, plus $B C-348 Q$ and $R, B C-788 \mathrm{~A}, \mathrm{AM}$, B, C and I-152 A, AM, B, C-plus ony other gear you have for sale!

IF IN YOUR POSSESSION,
PLEASE NOTIFY US IMMEDIATELY!

V \& H RADIO \& ELECTRONICS

2033 W. Venice Blyd., Los Angeles 6, Calif. Phone Collect: REpublic 3-112

WANTED

Precision test equipment
Special Purpose tubes Control transformers
Selsyns, Synchros
THE OVERBROOK COMPANY

Military communications equipment
Job lots of oil condensers
Pulse transformers
Meters, Relays, Autosyns
Orerbrook, Massachusetts

WANTED

BDIIO Telephone Switchboards. BDI00 Telegraph

 BD101 Test Boards, SB6 Switchboards. Type CFIA, CF3A, CF2B Carrier Equipments. Any condition and auantity.

330 w . 42 -6t., New York 30. N. Y.

WANTED

ART-13, ATC, DY-12. DY-17, APR-4, APR-5, BC-342, SCR-694, BC-1306, GN-58, PE-237, TEST Equipment, Signal Corps \& USF Supply Catalogs. Technical Manuals.

ARROW APPLIANCE COMPANY BOX 19, BOSTON 1, MASS.
LYnn 8.3100. RIchmond 2-0916

WE BUY
 All kinds of surplus electronit -quipment and components. ELECTRONICRAFT, Inc.
 27 Milburn St. $\begin{gathered}\text { Sronxville } 8, \text { N.Y. }\end{gathered}$

At Your Service . . .

The Searchlight Section is at your service for bringing business needs or "opportunities" to the attention of men associated in executive, management, sales and responsible technical, engineering and operating capacities with the industry served by this McGraw-Hill publication.

These listings represent only a small portion of our tremendous Electronic inventories. subject requirements are not ifsted, write and allow us to quote you accordingly. Prices order balance order balance COD. FOB Boston. Minimum order $\$ 10$. Merchandise Fully Guaranteed.

ELECTRO Sala Campany Tou: (IV)

50 EASTERN AVE., BOSTON 13,MASS. CAPITOL 7-3456

INDEX SEARCHLIGHT

JUNE, 1953

This index is published as a convenience to the readers. Care is taken to make it accurate but ELECTRONICS assumes no responsibility for errors or omissions.

EMPLOYMENT	
Positions Vacant	398-409
Positions Wanted	... 398
BUSINESS OPPORTUNITIES	
Offered	.. 398
NOTICES	
Auction	.. 431
EQUIPMENT	
(Used or Surplus New)	
For Sale 410.440
WANTED	
Equipment	.. 436

ADVERTISERS INDEX

Admiral Corporation	400
Allied Electronic Sales	431
Alltronics	430
Arrow Appliance Co.	436
Arrow Sales Inc.	426
Atlas Distributor	434

Barry Electronics Corp. 433 Bendix Aviation Corp., Bendix Products Div. 40 Bendix Radio, Div. of Bendix Avia. Corp. 404 Bendix Aviation Corp., York Division 408 Blonder-Tongue Laboratories, Inc................ . . . 408

Douglas Aircraft Co., Inc. 409

```
Electro Sales Co., Inc. ...........425, 438, 439 Electronic Engineering Co. of California .. 398 Electronic Expediters
Electronic Specialty Supply Co. . . . . . . . . . 428
Electronicraft lnc. . . . . . . . . . . . . . . . . 415, 436
Empire Electronics Co. . . . . . . . . . . . . . . . . 425
Engineering Associates
```

Fair Radio Sales . 424
Freed Electronics \& Controls Corp. 402

General Motors Corp.. A.C. Spark Plig Div. 406 $\begin{array}{lll}\text { General Precision Laboratory Inc. } \\ \text { Gibbs Manufacturing \& Research Corp. } & 402 \\ 404\end{array}$ Gibbs Manufacturing \& Research Corp. . 398, 404
Goodyear Aircraft Corp. Goodyear Aircraft Corp.
Greenwich Sales Co. .

Harjo Sales Co.
Hoffman Radio Co.
Hofman Laboratories Inc
Horman Laboratories Inc
Houde Supply Co.

TO THE

 ADVERTISERSJUNE, 1953

SEARCHLIGHT SECTION
(Classified Advertising)
H. E. Hilty, Mgr.

Instrument Associates
J. S. H. Sales Co,

Kollsman Instrument Corp.
Lapirow Bros.
Lectronic Research Laboratories Lewis \& Kaufman Ltd.
 Monmouth Radio Laboratories

National Scientific Laboratories Inc
O'Del Electronics Corp
Orerbrook Co., The

Phillips Petroleum Co
Photocon Sales
Powell Co., Harold
Precise Measurements Co

Radalab

Radio Condenser Co.
Radio Corporation of America
Radio Development \& Sales Co
Radio Engineering Co.
Radio Shack Corp.
Radio Surplus Corp.
Radio \& Electronics Surplus
Railway Communications, Inc
Reeves Instrument Corp.
Relay Sales
Reliance Merchandizing Co.
Resisco Corporation
R \ddagger Flectronics

Sandia Corp. Pervo Tek Products Co., Inc
Southwestern Industrial Electronics Co
Sperry Products Co.
Stavid Engineering Inc
'TAB"
Tallen Co., Inc.
Telemarine Communications Co
Telephone Engineering Co

Universal Electronics
Universal General Corp
University of Arkansas
Vectron, Inc.
\& H Radio \& Electronics

Weils Sales Inc.
Western Engineers
Weston Laboratories Inc.
Wilcox Electric Co., Inc.
Wolf Co., Ed 7

Smashing Panel Instrument Values

SEARCHLIGHT SECTION

MICROWAVE
KIystron Mts Assy (723AB)
Coupling to 2 Type "N"

 PULSEOULSE TRANSFORMERS

 TRANSFORMERS

 THA**S 家U

INFRARED SNOOPERSCOPE SEE in dark rube	
1800VDC/35MA Using Doublor Crkt. Trane Iormer, Rectifiera. Bocketa, Resis cors, Capas	

TUBES

BANDPASS FILTER
 CIRCUIT BREAKER
FUSES
PUSH TORESET

$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$			

"TAB"; TESTED

THAT'S
A

$\begin{array}{lll}\text { THAT'S IIE } \\ \text { BUY } & & A \\ \text { BU }\end{array}$

Dept. 6E 111 Liberty Street, New York 6, N. Y., U. S. A.
PH. RECTOR 2-6245

Money Back Guarantee Cost of Mdse Only) $\begin{aligned} & \text { On } \\ & \text { Min. Order FOB NYC. }\end{aligned}$. Min. Order FOB NYC.
Add
Shr. Charges 25% Den. Tubs Gtd, Subjicet to Change With-
out Notice

INDEX TO ADVERTISERS

Ace Engineering \boldsymbol{A} Machine Co Arme Electric Corporation
Adams \& Westlake Co.
Aeronautical Communications Equipment, Ins

Aerovox Corporation

A'G'A Ibiv of Elastic Ntob Nut Corporation of Ameriata. Air- Vite
Aircraft-Marine Produrts, Ind Aircraft Radio Corp.
Aireraft Transformer Co
Airpas l'roducts Compana:
Alden I'roducts Company
Allen- Bradley Co.
Allen Co., Inc., L. \mathbf{B}
Allied Industries. Ine
American Electric Motors
American Electrical Heater Commany
American Lava Corporation
American Optical Company
American Phenolie Corporation
American Ratio \& Television, Inc
American Trlevision \mathfrak{A} Kadio Co. American Time l'roducts. lnc
Ampex Electric Corp.
Andrew Corporation
Anti-Currosive Metal I'roulucts Co.. Inc.
Arkwright Finisling Company
Arnold Engineering ('o
Assembly I'roducts, Inc
Augat 13rothers, Inc.
Automatic Electrie Mrs. Co

IBallantine Laboratories, lne
IB:arry Corp., The.

A phase sensitive null detector wherein noise and harmonic voltages are effectively eliminated. - For use in conjunction with bridge and poentiometer circuits.

- Simplified and precise zeroing of synchro devices.
- Allows separate adiustment of phase and megnitude in null circuits.
- Eliminates the necessity for filters. SPECIFICATIONS
Input Impedance
High Gain... 2 megohms shunted by 30 mmifd . Low Gain 2.5 megohms shunted by 15 mmfd Sensitivity $\quad 6$ millivolts off-scale deflection Frequency Range-
$30-10,000 \mathrm{cps}$ (higher ranges available)
Selectivity 40 db . down Selectivity 40 db . down on all noise $\&$ harmonics Reference Input Power $\quad 10$ milliwatts Maximum Input Voltage $\quad . \quad 125$ volts RMS Peak input Valtage $\quad 400$ volts Power Supply $105 \cdot 125$ volts, 60 cps, 25 watts Dimensions-Hgł. 9 in.. Width $15 \mathrm{in} .$. Depth 8 in.
Belden Manufarturing Company 123
ell Aireraft Corporation 213
ell Telephone Laboratories 213
Bendix
356
356
Eclipse-rionere Div.
381
319
Preific Div.
19
Bentley, Harris Manufacturing Co. 221
Serkeley Scientific. Division of 242
seryllium Corporation 64
Sird Electronic Corp 364
3.4
Birnbach Kadio Co In384
Birtcher Corporation 292
Bodnar Industries, Inc 280
aonton Radio Corp 197
Sowser, Inc. 385
ridpeport Brans Compair 301
Sristol Brias Coruoration 5
Brush Electronices Company 20 +
Bugqie \mathbb{A} Company, H. 11.99
sussmann Mrg Co 227
ClBS Hytron. Division of Columbia Ibroadeasting System 53
Cambridge Thermionic Corp 32
332
Carboloy Dept., General Electric Co.. 104, 105

"Thermatron built by Radio Receptor Co., Inc.'Carborundum Company110
Carter Motor Co 368
Inc 11, 12, 13Chase Brass Copper, Sub. of
Kennecott Copper Corporation 44
Chester Cable Corp126
Chicago Telephone Supply Corp 40. 41
Chicago Transformer, 348
Cinch Manufacturing Corp 103
Cinema Engineering Company 72
103
Chare a co., C. P 4%
Cohn Mfg. Co., Inc., Sigmund 394
Cole Instrument Company. 320
Communication Company, Iac. 396
Communication Accessories Company 60
Computing Devices of Canada, Ltd 375
Condenser Products Company, Div, of 263
New Haven clock watch C Consolidated Eingineering Corp. 109
Consolidated Vacumm Corp 205
233
Contimental Connectors, DeJur Amsco Corp. 360
Corneli-Dubilier Electric Corp 219
Corning Glass Works. 235
Cornish Wire Co. 380
orragated Paper roducts, Inc $36!$
287Coxhead Cormoration, Ralph
Cramer Co., Inc., R. W 89
Crescent Company, Inc 326
382
I?:no Electric Co 37
Davem Co., The. 360
Detroit Diesel Engine, 240
Dialight Corporation 220
I river Co., Wilbur Is. 209
Dupont DeNemours \& 217
ID Kadio Products Co 292

PANELS, LIDS, DOORS
 MADE RF-TIGHT BY LOW COST METHOD

Electronic Weatherstripping, made of knitted wire mesh compressed to required sizes and shapes, effectively "shields" these openings against RF leakage just as weatherstrips seal doors and windows.

Openings such as these are necessary for operating and servicing the electronic equipment housed in the metal cabinet. Yet these same openings destroy the full shielding efficiency which an "unbroken" metal container would otherwise provide. Careful machining of mating surfaces at

these openings is an obvious answer. But such work is expensive, and the initial close fit is often destroyed by repeated openings and closings, by warping of the lid or door and by corrosion of the mating surfaces. Numerous latches, screws, bolts and other fasteners, closely spaced, will help keep these joints RF tight, but they are a time consuming nuisance whenever the cabinet must be opened and closed, and they are also expensive to purchase and install.

Metex Electronic strips and gaskets eliminate these objections. Being made of metal, they are conductive; and being knitted they are resilient and conform to normal surface irregularities. They actually "block" the otherwise leaky openings with a gasket of flexible metal, and make the cabinet as effective a conductive shield as if the openings had never been made.

Metex electronic strips and gaskets are easy to install. Not only are they inexpensive, but their use may well save more than their cost by eliminating many operations that would otherwise be necessary. They are available in different shapes, dimensions and resiliencies to meet the varied requirements of specific electronic applications and can be made of metals or alloys selected to meet actual or anticipated corrosive conditions.

A bulletin giving detailed information is available on request from the manufacturer, Metal Textile Corporation, 641 East First Avenue, Roselle, N. J. Want more information? Use post card on last page.

the schematic above illustrates the use of an increductor controllable in DUCTOR TO AFC LOCAL OSCILLATOR OF A RECEIVER. A SAMPLE OF THE INTERMEDIARY FREQUENCY SIGNAL IS FED INTO A DISCRIMINATOR. THE RECTIFIED OUTPUT CURRENTS FROM THE DISCRIMINATOR ARE FED TO THE BALANCED CONTROLLED WINDINGS L. 2 AND L. 3 OF THE CONTROLLABLE INDUCTOR. A SMALL DC CURRENT IS FED THROUGH CONTROL WINDING L_{C}] TO SET THE CONTROLLABLE INDUCTOR AT ITS MOST SENSITIVE POINT. THE SIGNAL WINDING Ls FORMS PART OR ALL OF THE LOCAL OSCILLATOR TANK INDUCTANCE

INCREDUCTOR CONTROLLABLE INDUCTORS, WHEN USED IN THIS MANNER PROVIDE FAR GREATER RELIABILITY AND RANGE OF CONTROL THAN REACTANCE TUBES. THE CONTROL CURRENT SENSITIVITY IS SO GREAT THAT AN AMPLIFIER IS HARDLY EVER REQUIRED BETWEEN THE DISCRIMINATOR OUTPUT AND THE CONTROL WINDING. BECAUSE OF THE ENORMOUS RANGE OF INCREDUCTOR UNITS AS COMPARED TO REACTANCE TUBES THE CIRCUIT AS SHOWN ABOVE MAY BE USED BETWEEN -55 AND $+80^{\circ} \mathrm{C}$.

FOR FREQUENCIES BETWEEN 2 AND 15 MC WE RECOMMEND OUR TYPE 65BA2. THE 65BAI, WITH A SINGLE CONTROL WINDING IS AVAILABLE FOR OSCILLATOR AND GENERAL PURPOSE USE IN THIS RANGE. DATA SHEETS ON THESE AND ON UNITS FOR OTHER RANGES WILL be sent on request.

THE 65BA SERIES OF THE INCREDUCTOR CONTROLLABLE INDUCTORS IS RUGGED, SHOCK RESISTANT, COMPACT AND OF LIGHT WEIGHT CONSTRUCTION PROVIDING

ZERO REPLACEMENT FACTOR onemalf size.
C. G. S. LABORATORIES systems engineering specialists have successfully used INCREDUCTOR techniques in modern commercial equipments and industrial electronic applications.

WRITE ON YOUR COMPANY LETTERHEAD FOR ENGINEERING DATA AND TECHNICAL bulletins covering standard types. We will be glad to give you our recomMENDATIONS REGARDING YOUR SPECIFIC PROBLEMS.

391 LUDLOW ST. STAMFORD, CONN.

Hisler Engineering Co., Inc. 389, 39\% Eitel-McCullough, Inc. 33,383
Electran Mfg. Co 288
Glectrical Industrios Division,
Amperex Electronic Corp
10%
Wlectro Motive Mifg. Co., Inc. 45
Electro-Tech Eluipment Co................ . . . 36 !
Electro-Technical Products, DV. of Sun Chemical Corp 230 Co., Inc., (EICO) . . 392 Fingineering Research Associates, Div. of Remington Rand................ 214

Epco Promlucts, Inc . 328
Erie Resistor Corporation. 96
Eveready Plating (o 39 it

F\& M Sales, In
326
Fairchild Camera \& Instrument Cory 303
Fansteel Metallurgical Corp 390
Federal Telephone \& Ridio Corp. 251
Filtron Co., Inc. 27
Finn \& Compans. Inc.. T. R................... 370 Fluke Engineering Company, John...... 384 Ford Instrument Company 46
Frequency Standards 364
Fusite Corporation, The...................... 224

G \& M Equipment Co.. Inc............... $i 4$ Gamewell Company 282 Gates Kadio Company 66
General Ceramics \& Stentite Corp....... 38
General Electric Company
Apparatus Ibept........30, 43, 54, 55, 237, 2
Cremponent- Dent.
Electronics Ieept.
Tube Dept.
General Industries Co.
Inrustries Co 305
General Kadio Company 17
Giannini $\mathbb{\&}$ Co.. Inc., G. M...................... 111
Grayhill . 271
Green Instrument Co., Inc 340
Gries Reprodurar Corp 36
Gudehrod Bros. Silk Co., Inc. 393

Hammarlund Manufacturing Co., Inc... 289
Hardwiek. llindle. Ine. 83
Hart Manufaet uring Companiy 313
Haydon Co., N. W. .
Haydon Manufacturing Co., Ine 327
Haydon Switch (o. 388
Heath Company 362
Heiland Research Corporation. 350
Heldor Mannfacturing Corp.............. 239
Helipot Div., Ifeckman Instruments, Inc. 199
Heminway \& linrtlett Mfg. Co........... 390
Heppner Manufacturing Co............... $27 z$
Hermaseal Co., Inc. 82
Hermetic Seal Promucts Co............... 121
Hewlett-Packard Company 51
Himle Duuch . 281
Hopkins Engineering Co.................. 328
Hugles Aircraft Company 255
Hughes Research \& Development
Laboratories204, 87%
Hughey \& Phillips 310
Hycor Company, Inc . 284
Hydro-Aire, Inc. 257

Illinois Condenser Co. 382
Imtra Corporation 252
Indiana Steel Products Co. 58
Industrial. Hardware Mfg. Co., Inc. 391
Industrial Miea Corporation 391
Industrial Test Equipment Co............. . . 441
Indust rial Timer Corporation 102
Instrument Corp. of America. 389
Instrument Resistors Co. 366
Insulation \& Wires, Ine
Intercontinental Marketing Corp........ . 365
Intermational Crystal Mig. Co............ 250
Ippolito \& Co.. Inc.. James. 284
Irvington Varnish \& Insulator Co......... $\%$
I-T-E Resistor Division of the
I-T-E Circuit Breaker Co........... 62, 63

Jeffers Electronics Division,
sper Carbon Company.
Jelliff Manufacturing Corp., C. O...... $3^{\text {\% }}$

Johns-Mranville
Johnwon Company, E. F
Jones Div., Howard H. Cinch Mfg. Co Jones Electronics Company, M. C.

Kahle Lingineqring Company Karp Metal Products Co., Inc Kiartron
Kaupp \& Sons. C. Is.
Keithley Instruments
Kellogg Compans, M. W.
Kenyon Trandformer Co., Inc. Kaster solder Company
Kings Electronies Co., Ine
Kimney Manofacturing Co.
Klein \& Sons, Mathias.
Kinigits Company, James
Kollsman Instrument Corporation

Laboratory for Electronics, Inc Lamblat Eletetronit's Corporation. Lampkin Laborat ories, Inc Lapp Insulator Company. Inc Leach Relay Co. Leland, Inc., G. H
Lenk Mfg. Company. Lenkurt Lifectric Sales Co Lewis \& Kaurman, Idd. Lindberg Dengineering Co.,

Transformer Division
Linderen \& Associates, Erik A
Link Aviation, Inc.
Lotd Manufactnring Company

National Company, Inc. National Moldite Company National Research Corp.
New Hermes, Inc.
New Rochelle Tool Corp
Norden Laboratories Corp
North American Aviation, Inc
Vorthern Radio Company, Inc
Vothelfer Winding Laboratories

Olympic Metal Products Co., Inc
Onan \& Sons, Inc., D. W
O'Nril-Irwin Manufacturing Co Optical Film Engineering Co.

Panoramio Radio Products. Inc
Par-Metal Products Corp
Paramount Paper Tube Co

CRYSTAL SOCKETS

STAND-OFF INSULATORS

FEED THROUGH INSULATORS
"TEFLON INSULATED" means higher performance, greater dependability, no danger of breakage in assembly or service.

Chemelec Electronic Components offer all the advantages of this outstanding insulating material. Surface resistivity 3.5×10^{13} ohms. Loss factor less than 0.0005 . Dielectric constant 2.0 (60 cycles to 30,000 megacycles). Serviceable at $-110^{\circ} \mathrm{F}$. to $500^{\circ} \mathrm{F}$. Won't carbonize under arcing. Zero water absorption by ASTM Test. Unaffected by extreme humidity. Won't DC plate. Chemically inert, non-gassing, immune to corrosive atmospheres, fungus, oil, solvents. Non-flammable, tough, resilient, withstands and absorbs mechanical and thermal shock and vibration.

Write for Catalogs: Miniature Tube Sockets-No. SO-428; 9-pin Connectors, No. CN-409-M; Crystal Sockets, No. CS-441; Stand-off Insulators, No. TE-401; Feed Through Insulators and Terminals, No. CF-400.

AND TERMINALS

> UNITED STATES GASKET COMPANY

You Get OVERALL Test Performance With

(-IPRTECHISHONTSERIES 10-12 Electronannic TUBE PERFORMANCE TESTER

with 12 ELEMENT free-point Master Lever Selector System

To test modern tubes for only one characteristic capabilities. Tube circuits overall performance just Mutual Conductance or other single factor.

In the Precision Electronamic Circuit, the tube PERFORMS under appropriately phased and tube PERFORMS under appropriately phased and selected indvidual element potentials, encompassing a wide range of plate family characterintic curves. This complete Path of operation is PERFORMANCE terms of Replace-Weak-Good.

MODEL 10-12-P: In sloplng, portable hardwood case with tool compartmont and hinged removable cover. Size $133 / 4 \times 171 / 4 \times 63 / 4 \% \ldots \$ 104.50$ Also in counter or rack-panel mounts.

* Facilities to 12 element prongs.

- Filament voltages from $3 / 4$ to 117 volts.
* Tests Noval g pins; 5 and 7 pin acorns; double-capped H.F. amplifiers; low power trans-
mitting tubes; otc. REGARDLESS OF FILAMENT OR ANY OTHER EEEMEMT PIN POSITIONS.

ISOLATES EACH TUBE ELEMENT REGARDLES

 OF MULTIPLE PIN POSITIONSDUAL short check sensitivity for special purpose tube selection.

* Battery Tests under dynamic loat conditions. * Built-in Dual-Window, brass-geared roller chart. * $41 / 2^{\prime \prime}$ Full Vision Meter.

SEE the "Preciston" Electronamite Tube Tester at leading radio equipment distributors. Write for new 1952 catalog describing Precision Test Equipment for all phases of modern electrontes.

Precision Apparatus Co., Inc. $92-21$ horace haralic aivo. - imalurs ide n. .y.

-Heg. Uis. Patent Onfe
Export: 458 B'why, N.Y.C., U.S.A. Cables: MORHANEX
Ia Cenada: Atiat Radlo Corp. Ltd., Torento, Ontario Want more information? Use post card on last page.

Patton-MacGuyer Company $\mathbf{2 8 8}$
I'eschel Electronice, Inc.276, 397
Phalo Plastics Corporation. 346
Phelps Dodge Copper Products Corp., 28,29
Inca Manufacturing Division.
$28, \quad 29$
Pix Manufacturing Co., Inc..... 79
Polarad Electronies Corporation
Polymer Corporation 283
64A, 64B
Potter Instriment Company, Inc. 100
Power Equipment Company 322
Precision Apparatus Co., Inc. 444
Precision Paner Tube Co 381
Premax P'rodncts, Div. Chisholm-
Ryder Co.. Ine.
Ryder Co., Inc. 28115
Presto Recording Corporation.
Process Designs Co 39
Py ramid Electric Company 73
Prroferric Co., Inc 312

Quaker City Gear Works 333
Quality I'roducts Co. 397
R.I'I. Shielded Enclosures. Inc........... . 27%

Radio Cores, Inc 977
270

Radio Corporation of America
65, 225. Fourth Cover
Liadio Industry Council
Radio Materials Corporation 113
Ratio Ikeeptor Company, Inc............ 229
Railway Communications. Iu4 326
Railway Express Ayency,
Raytheon Manufacturing Company. 12:

Remler Company, Ltd
Resistoflex Corporation
35

Kex Rheostat Co.
Rochester Electronis's
Royal Metal Mfg. Co
Rimzel Cord \& Wire Co.
Rord \& Wire Co........................... 316

Nan Femando Electria Mifg. Co 379
Sangamo Electric Company 341
Schmidt, Ine.. Geo. T. 352
Scientilic Electric Div. of " S "
Corrugated (Quenched Gap Co. 36
Scintilla Magneto Div., Bendix \quad.........
Sealtron Company
Secon Metals Corporation 42
Secon Metals Corporation................. 383
Sensitive Research Instrument Corp. . . . 396
Servo Corporation of America. 38
Servot rol Company 33 .
Sessions Clork Co., Tyni Switeh Div. 212
Shakeproof, Inc
912
Shallcross Manufacturing Co............. 216
Sigma Instrument. Inc. 302
Signal Engineering \& Mfg. Co 393
Simmons Fastener Cory 245
Simpson Eiectric Company 293, 29\%
Sola Electric Company 93, 295
Sorensen a
Sontheo Div., Sonth Chester Corp
118
Sperialty Battery Company 276
Spencer-Kennedy Laboratorles, Inc. 374
Spragie Electric Company 9,91
St, Regis Paper Co.
91
Stackpole Carbon Co
69
Stundard Electric Time Co 88
Standard Piezo Co 280
Stur Porcelain Company 386
Staver Company, Inc 378
Sterling Transformer Corp 376
Stevens-Arnold Incorporated 349
Steward Manufacturing Co., D. M....... 351
Stoddart Alrcraft Radio Co............. . . 358
Stone Paper Tube Compans, Inc....... . 87
Sturtevant Co., P. A..................... 328
Superior Electric Co.
68
Superior Tube Co 38
Sylvania Electric Products, Ine...7, 299, 387 Synthane Corporation

Taylor Fibre Company
114
Technical Instrument Co., Ine
338
Technology Instrument Corp.290, 29
Tektronix Inc.

Telechron ibept.,
General Electri. Co
Teletronieg Laboratory, Inc. 373, 397
Telewave Laboratories, Inc. 390
Tensolite Iusulated Wire Co., Inc.......... 378
Thermador Electrioni Manufacturing Co. 368 Tobe Deutschmann Corporation.....278, 279 Trad Television Corp. 381
Transistor Proxluets, Ine 25 .
Transradio, 1.tıl. 311
Trind Transformer Mfg. Co. 316
Tru-Ghm Iroducts. Div. of Model
Ensineering $\$$ Mif., Ine............... 49
Tung-sol Efectric, Inc 243

Ucinite Co.. The 10
United Mamofacturing d Service Company 340
United States Giakket Company 443
United Transformer Co......... Second Cover

Vincumm Metals Corporati National Kesearch Cort	
Varian Issociates	25
Veeder-IRoct, Inc.	98
Vickers Electric Division, Vickers, Inc.	314
Victoreen Insirument Co	294
Vulcan Wlectric Company	328

Waldes Kohinoor, Inc Ward Leonard Eledtric Co. 80	101 81
Waterman Products Co., Inc.	266
Waveforms, Inc.	39\%
Weckesser Company	37%
Western Gold \& Platinum Works	362
Westlield Metal Problucts Co., Ine	385
Westinghomse Electric Corp 48,	376
Weston Electrical Instrument Corp	106
Whepler Insulated Wire Compming, Inc.	234
White Dental Mify. Co., S. S. . . . 308, 309.	37
Whitney Iklake Co	355
Who's Who in Electronic Distribution	38:3
Wiley \& Sons, Inc., John.	353
Wilkor Div., Aerovox Corp	274
Williams \& Co., C. K	389
Winchester Elactronies. Inc	337

Xcelite, Incorporated 379
Zielik, Daniel IV........................... . . . 39 i
Kophar Mills, Inc. 37

PROFESSIONAL SERVICES............ 95

SEARCHLIGHT SECTION
(Classified Advertising) H. E. HILTY, Mgr.

SEARCHLTGHT ADVERTISERS INDEX
438, 439

This index is published as a convenience to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibility for errors or amissions.

Since Daven originated the first pie-type wire wound resistor more than a generation ago, it has pioneered many innovations in the production of resistors.

Today, only Daven uses a stranded lead wire to connect the resistance wire to the solder terminal of the Super Davohm Precision Wire Wound Resistor.

As a result, no matter how much strain, stress, heat or pressure is applied to the solder terminal, no accompanying shock is put upon the fine resistance wire itself, but is absorbed by the heavy lead wire without adversely affecting the resistor in any way.

Therefore, Super Davohm Resistors are substantially more rugged than conventional resistors and are able to withstand unusual vibration, rough treatment and abnormal shocks.

This exclusive Daven feature, plus the many other quality aspects of Super Davohm Precision Wire Wound Resistors, makes Daven the leader in the resistor field.

The Super Davohm line includes resistors made in accordance with MILR-93A specifications, as well as sub-miniature units to give you the most complete selection of resistors available anywhere. Deliveries can be made to meet your requirements.

Write for assistance with your problems, and ask for a copy of Daven's complete, new brochure on Super Davohm Precision Wire Wound Resistors.

"m(D)DEN

191 CENTRAL AVENUE, NEWARK 4, N. J.

RCA " $50 / 50$ " faceplate exhibit at N. Y. IRE Convention shows the advantage of "reflection-free" faceplates.

ENGINEERS SEE FOR THEM ... how room reflections vanish!

Remember this? It's the "reflection-free" demonstration that thousands saw at the RCA exhibit during the IRE Convention in New York. The right half of the kinescope faceplate was lightly frosted to "kill" room reilections, but the left half of the faceplate was left untreated. The miniature room provided the source of reflections as it moved back and forth in front of the faceplate.

This photograph shows conclusively how the "reflection-free" surface eliminates the annoyance of room reflections
If you are using the "reflection-free" feature to fullest advantage, YOU know
what this potent sales aid can do for your TV line. For it goes almost without saying; you get greatest boost in sales power - with RCA metal-shell kinescopes. Highquality frosted faceplates offer the combined advantages of reflection suppression with fine picture detail.
For technical data or design help, write RCA Commercial Engineering, Section 42FR, Harrison, N. J. Or just call your nearest RCA Field Office:
(EAST) Humboldt 5-390\%, 415 S . 5 th St.,

- Harrison, N. J.
(MIDWEST) Whitehall 4 2900, 589 E. Illinais St., Chicago, Ill.
(WEST) Madison $9-3671$, 420 S. San Pedro St., Los Angeles, Cal.

RCA Metal-Shell Kinescopes
RCA-21AP4 RCA-21MPA (magnetic- (electrostaticfocus type) focus type) All RCA Metal-Shell Kinescopes feature "reflection-free" faceplates which suppress annoying room reflections.

[^0]: The term "Scotch" and the plaid design are registered trademarks for the more than 200 pressure-gensitive adhesive tapes made in U.S.A. by Minnesota Mining \& Mfg. Co., St. Paul 6, Minn. - also makers of "Scotch" Sound Recording Tape "Underseal" Rubberized Coating, "Scotchlite" Reflective Sheeting, 3 N Safety-Walk" Non-slip Surfacing, '3M"' Abrasives, " 3 M " Adhesives. General Export: 122 E. 42nd St. New York 17, N.Y. In Canada: London, Ont., Can.

[^1]: Write Us or Phone Your Local P\&B Sales Office for New Master Catalog Illustrating and Describing Our Wide Line of Basic Relay Structures,
 Housings and Enclosures.
 Relays for Every Electrical and Electronic Application.
 See other side for mailing address

[^2]: *The sixth annual McGraw-Hill survey of Business' Plans for New Plants and Equipment included companies that provide 25 per cent of all industrial employment and 60 per cent of employment in those industries where capital investment is highest. These companies are mostly the larger companies in their respective industries. A copy of the full report of this survey can be obtained by addressing: Department of Economics, McGraw-Hill Publishing Company, Inc., 330 West 42nd St., New York 36, N. Y.

[^3]: "Carborundum" and "Globar" are regisfered
 trademarks which indicate manufacture by

[^4]: LAMICOIO (laminaled Plastic) - MICANITE ${ }^{\circ}$ (Built-up Mica) - EMPIRE ${ }^{(1)}$ (Varnished Fabrics and Paper) - FABRICATED MICA - ISOMICA*

[^5]: - Broadcast station operators in Canada or the United States should check DOT or FCC regulations before putting into operation ony remote control equipment to insure that it satisfies technical and legal requirements of the respective licensing authorities

[^6]: (1) Britton Chance et al, editors, "Vareforms," Vol. 19, MIT Radiation aboratory Series, McGraw-Hill Book Co. New York, 1949, p 195-200.
 (2) G. N. Glasoe and J, V. Lebacaz, editors, "Pulse Generators," Vol. 5, MIT Radiation Laboratory Series, McGraw-Hil Book Co., New York, 1948, p 356-372
 (3) Kenneth J. Germeshausen, New High-speed Stroboscope for High-Speed Motion Pictures, Jrl. Soc. Motion Picture Eugr., 52, P 24, March 1949 , Part II.
 (4) William T. Whelan, High-Speed Photographic System Using Electronic Flash Lighting, Jrl. Soc. Motion Picture Engr., p 116, March 1949, Part II.

[^7]: This article is based on a paper delivered at the 1952 National Electronics Conference. The conference paper appears in the NEC Proceedings

[^8]: This paper is published with the approval of the Lords Commissioners of the Admiralty, but the responsibility for any statements of fact or opinions expressed rests solely with the authors.

[^9]: (1) Traveling-Wave Amplifier Tube Demonstrated, ELECTRONICs, p 132, Jan Demonstrated, ELectronics, 13132 , Jan.
 1949, ifier tor 6-8 Cm, Electrical Communica ion June 1948 . Electrical communica
 (3) L. Lewin, J. J. Muller and R. Basard, Phase Distortion in Feeders, Wireless Ensimeer, May 1950.

[^10]: -

 This is the fourth in a series of articles on transistor electronics written for engineers and technicians with limited experience in solid-state physics. A list of previous articles in this series appears at the end of this article in the references

[^11]: This article is based on a paper presented at the 1952 National Instrument Conference. The complete paper will ap pear in the conference proceedings.

[^12]: W. F. Bennett, "Cross Modulation in Multichannel Amplifiers," B.S.T.J., Oct. 1940.
 R. A. Brockbank et a..." "Nonlinear Distortion in Transmission Systems,"J.I.E.E., $194 \overline{5}$.
 J. E. Snmith, "Theoretical Signal-to-Noise Ratios," Electronics, p 150, June 1946 .

[^13]: Every Helipot series is available very Helipot series is available specifications. Our engineering despec:ifications. Our engineering department will gladly give you every assistance. in adapting standard Helipots to your particular requirements... in building entirely

[^14]: PLANTS IN SO. PASADENA, CALIF. AND MOUNTAINSIDE, N. J. REPRESENTATIVES IN PRINGIPAL CITIES

[^15]: Exporit Sales: Bendix International Division, 72 Fitth Avenng, Now York 11, N. Y.

[^16]: BUSSMANN Mfg. CO., Division of McGraw Electric Co
 University at Jefferson, Sr. Louis 7, Missouri

[^17]: - Wide range of models - $12 \frac{1}{2}$ to 200 kw., 220 or 440 volts, single or three. phase current.
 - Excellent frequency and voltage regulation for the most exacting require. ments.
 - Powered by General Motors Diesel en-gines-dependable, smooth 2-cycle operation-low cost maintenance easy to service.
 - Built by one manufacturer - one warranty, one responsibility for both engine and power generator.
 - Instont push-button power starting on safe Diesel fuel-or fully autamatic starting. Immediate power, no "warmup" period.
 - Dependable starting - no sparkignition system to fail because of dampness or corrosion-always ready to start.
 - Easy to install-compact-lightweight -requires no special building, no special base. Complete instrumentation provided.
 - Distributors and Dealers throughout the country.

[^18]: Want more information? Use post card on last page.

[^19]: This business paper in your hand has a plus for you, because it's a member of the Associated Business Publications. It's a paid circulation paper that must earn its readership by its quality... And it's one of a leadership group of business papers that work together to add new values, new usefulness, new ways to make the time you give to your business paper still more profitable time.

[^20]: HAMMARLUND MANUFACTURING CO., INC. 460 WEST 34th ST. • NEW YORK 1, N. Y.

[^21]: Western District Office - Times Building, Long Beach, California

[^22]: Want more information? Use post card on last page.

[^23]: NAME

[^24]: Want more information? Use post card on last page.

[^25]: Write Dept. E-6. DeJUR AMSCO CORPORATION, 45-01 Northern Blvd., Long Island City 1, N. Y West Coast: 405 North Maple Drive, Beverly Hills, California

[^26]: * Editor's Note. This essay by Dr. Wiener is the result of his reading W. Ross, Ashbys new book "Design for a Brain," pubInc. New York, 260 pages, $\$ 6.00$.

[^27]: Q1952 INSTRUMENTS \& KITS ELECTRONIC INSTRUMENT CO., Inc. 84 Withers Street, Brooklyn 11, N. Y.
 Want more information? Use post card en last page.

[^28]: * db re 0.0002 dsc

[^29]: MICROWAVE ENGINEER
 For production design and development of waveguide systems, klystron oscillators, attenuators, and echo boxes. Send resume to Personnel Manager.

 VECTRON, INC.
 400 Mcin Street
 Waltham, Mass.

[^30]: MARITIME INTERNATIONAL COMPANY
 11 STATE STREET
 Phone: Dlgby 4-3192
 NEW YORK 4, N. Y.
 Cable Address: FOXCROFT

[^31]: New "SEARCHLIGHT" Advertisements
 received by June 2nd will appear in the July issue subject to limitations of space
 available.

 Claspified Δ duertising Division
 ELECTRONICS
 330 West 42nd St, New York 36, N. Y.

[^32]: Yes here is positive proof that advertising in the SEARCHLIGHT SECTION of ELECTRONICS produces results! Following are a few lines from some letters that were sent to us voluntarily:
 "Very satisfactory response to our previous insertions"
 "Continue the advertising. We have had a great many replies"
 "Our two inch ad sold $\$ 2,630$ worth of equipment in one week"
 "Ran a single 4 " ad and sold all equipment advertised. Thanks"
 "The results were very, very good"
 Such enthusiasm proves what we have been saying all along: when you want to sell surplus new or used electronic components and equipment, you con do it best through the

