for MINIATURIZED COMPONENTS

from STOCK

The constant miniaturization of military and portable civilian gear has required audio componentis of smaller and smaller dimension. This is,pparticularly exaggerated in the case of transformens for use in transistor circuits. The " H " series of-minitiature and sub-miniaturemulits described below are hermetic military types to cover' virtually all audio applicatiegns: for even smaller structures bur ultrà-mihiciture typés are available pgainst quantity ordęrs.

MINIATURE AUDIO UNITS...RCOF CASE

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	$\underset{\text { Type }}{\text { MIL }}$	Pri. Imp. Ohms	Sec. Imp. Ohms	$\underset{\text { Pri., MA }}{\text { UC in }}$	$\begin{gathered} \text { Response } \\ \pm 2 \mathrm{db} . \text { (Cyc.) } \end{gathered}$	Max. Ievel dbm	List Price
H-1	Mike, pickup, line to grid	TFIA10YY	50,200 CT, 500 CT*	50,000	0	50-10,000	+ 5	\$16.50
H-2	Mike to grid	TFIAllyY	82	135,000	50	250.8,000	+21	16.00
H-3	Single plate to single grid	TFIAL5YY	15,000	60,000	0	50-10,000	+ 6	13.50
H-4	Single plate to single grid, DC in Pri.	TF1A15YY	15,000	60,000	4	200-10,000	+14	13.50
H.5	Single plate to P.P. grids	TF1A15YY	15,000	95,000 CT	0	50-10,000	$+5$	15.50
H-6	Single plate to P.P. grids, DC in Pri.	TF1A15YY	15,000	95.000 sp /it	4	200-10,000	+11	16.00
H-7	Single or P.P. plates to line	TF1A13YY	20,000 CT	150/600	4	200-10,000	+21	16.50
H-8	Mixing and matching	TFIAIGYY	150/600	600 CT	0	50-10,000	+ 8	15.50
H.9	82/41:1 input to grid	TF1AIOYY	150/600	1 meg .	0	200-3,000 (4db.)	+10	16.50
H. 10	10:1 single plate to single grid	TFIAL5YY	10,000	1 meg .	0	200-3,000 (4db.)	$+10$	15.00
H. 11	Reactor	TFIA2OYY	300 Henries-0 D	50 Henries-3	Ma, DC	, 6,000 Ohms.		12.00

RCOF CASE
Length $125 / 64$ Width61/64 Height 1 13/32 Mounting $11 / 8$ Screws4-40 FIL. Cutout7/8 Dia. Unit Weight 1.502.

SM CASE
Length11/16
Width1/2
Height29/32
Screw4-40 FIL.
Unit Weight 802.

SUBMINIATURE AUDIO UNITS...SM CASE

Type No.	Application	MIL Type	Pri. Imp. Ohms	Sec. Imp. Ohms	$\begin{aligned} & \text { DC in } \\ & \text { Pri, MA } \end{aligned}$	$\begin{gathered} \text { Response } \\ \pm 2 \mathrm{db} \text {. (Cyc.) } \end{gathered}$	Max. level dbm	List Price
H-30	Input to grid	TF1A10YY	50**	62,500	0	150-10,000	+13	\$13.00
H-31	Single plate to single grid, 3:1	TF1A15YY	10,000	90,000	0	300-10,000	$+13$	$\underline{13.00}$
H-32	Single plate to line	TF1A13YY	10,000***	200	3	300-10,000	$+13$	13.00
H-33	Single plate to low impedance	TF1A13YY	30,000	50	1	300-10,000	+15	13.00
H-34	Single plate to low impedance	TF1A13YY	100,000	60	. 5	300-10,000	+ 6	13.00
H-35	Reactor	TF1A20YY	100 Hen	50 Henries	Ma. DC,	4,400 ohms.		11.00

ULTRA-MINIATURE UNITS TO SPECIFICATIONS ONLY

UTC ultra-miniature units are uncased types of extremely small size. They are made to customers' specifications only, and represent the smallest production transformers in the world. The overall dimensions are $1 / 2 \times 1 / 2 \times 1 / 16^{\prime \prime}$...Weight approximately. 2 ounces. Typical special units of this size are noted below:

> Type K. $16949 \quad 100,000$ ohms to 100 ohms ... 6 MW... 100 to 5,000 cycles. Type M-14878 20,000 ohms ($1 \mathrm{Ma} . \mathrm{DC}$) to 35 ohms ... $6 \mathrm{MW} \ldots 300$ to 5,000 cycles. Type M-14879 6 ohms to 10,000 ohms ...6 MW ... 300 to 5,000 cycles.
> Type M-14880 30,000 ohms (1 Ma. DC) to 3,000 ohms ... $6 \mathrm{MW} \ldots 300$ to 5,000 cycles. Type M-14881 25,000 ohms (5 Ma . DC) to 1,000 ohms ... $6 \mathrm{MW} \ldots 300$ to 5,000 cycles.

* 200 ohm termination can be used for 150 ohms or 250 ohms, 500 ohm termination can be used for 600 ohms.
** can be used with higher source impedances, with corresponding reduction In frequency range, with 200 ohm source, secondary impedance becomes 250,000 ohms... Ioaded response is -4 db . at 300 cycles.
***can be used for 500 ohm load. . 25,000 ohm primary impedance . . . 1.5 Ma . DC.

APRIL • 1953

Abstract

MAGNETIC-CORE ME ORY-New coincident-current memory, developed in Digital Computer Laboratory at MIT uses 256 Ferramic toro s made by General Ceramics \& Steatite Corp. For details, see p $146 \ldots . .$. COVER

FIGURES OF THE MONTH 4Includes Electronics Output Index, a business barometer for managementINDUSTRY REPORT5
Top-level news, trends and market interpretations
SPIRAL-BEAM TUBE MODULATES 1 KW AT UHF, by C. L. Cuccia 130Improved electron coupler may find use in uhf television
PUNCHED TAPE GUIDES MILLING MACHINE CUTTERS, by J. O. McDonough 135Costly setup chores are eliminated electrorically
ENERGY LEVELS IN TRANSISTOR ELECTRONICS, by Abraham Coblenz and Harry L. Owens 138Second in a series of articles on transistor theory and applicationX-RAY ABSORPTION GAGE CHECKS ARTILLERY SHELLS, by George M. Ettinger142
Used to find voids in projectile filler, instrwment is fast and automatic
FERRITES SPEED DIGITAL COMPUTERS, by David R. Brown and Ernest Albers-Shoenberg 146New material increases computer speed and reliabilityVIDEO INSET SYSTEM, by J. L. Hathaway and F. L. Hatke150
Scenery costs can be cut by using miniatures with human actors electronically superimposed 154TRANSISTORIZED HEARING AIDS, by James D. Fahnestock
Discusses typical circuits from standpoint of performance and econom
TESTING UFH-TV MIXER CRYSTALS, by Nicholas DeWolf 156
Laboratory and factory production test methods use standard equipment
R-F IRRADIATION OF SEEDS, by Herbert Jonos 161
Higher percentage of seeds germinate when properly treated using high-power oscillato HOW TO DESIGN BISTABLE MULTIVIBRATORS, by Ralph Pressman 164
Flip-flops that work despite voltage and resistance variations
CATHODE-INTERFACE EFFECTS IN TV RECEIVER DESIGN, by F. M. Dukat and I. E. Levy 169Careful design con stretch tube life
BIOELECTRIC INTEGRATOR GAGES STRAIN AND EFFORT, by Adelbert Ford 172
R-C circuit sums complex potential waveforms from human tissue
UHF GRID-DIP METER, by A. E. Hylas and W. V. Tyminski 175
Unit uses 6F4 mounted on movable carriage to cover band between 390 and 1,000 mc PRODUCTION-LINE GAS TEST FOR PICTURE TUBES, by R. E. Ostrowski 178
Semiautomatic circuit checks degree of vacuum while finished tubes move on conveyor line
MINIATURIZATION OF AIRBORNE FILTER CHOKES, by Walter E. Tanner 180
New calculation chart gives optimum design, reducing space and weight 30 percent NUCLEAR RESONANCE SPECTROMETER, by Leonard Malling 184
Permits identification of elements in free or combined form
HIGH-IMPEDANCE ARTIFICIAL DELAY LINES, by William S. Carley and Edward F. Seymour 188 Distributed-constant delay lines have characteristic impedances as high as 10,000 ohms
CROSSTALK........ 129 ELECTRONS AT WORK....... 196 PRODUCTION TECHNIQUES........ 260 NEW PRODUCTS........ 312
PLANTS AND PEOPLE...... 384 NEW BOOKS........410 BACKTALK....... 420 INDEX TO ADVERTISERS........ 481
W. W. MacDONALD, Editor; VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzie, James Fahnestock, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, William E. Pettit,' David A. Findlay, Assistant Editors; Ann Mastropolo, Marilyn Wood, Mary J. Johnson, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Editorial Director

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotion \& Research Assistant; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphio; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta

Published monthly with an additional issue in June by McGraw-Mrill Publishing Company, Inc., Janes M. McGraw (1860-19a8), Founder. Publication Offee, 99-129 Ph Broadway, Alhany I, N. Y

Executive, Eflotial and Advertising 0ffices: McGraw. Hill Building. 330 W. 42 St. Now York 36. N. Y. Curtis W McGraw, President: Willard Chevalier, Executlve
 Fice-President; Ioseph A. Gerardi, Vice-President and Treasurer: John Dident Editorial Director; Nelson Bond, Vice-President and Director of Advertising: J. E. Diackhurn, Jr., Vice-President and Director of Circulation.

Suliscriptions: Address correspondence to Electronics-Subscription Service, 99-129 N. Broadway, Alliany I, N. Y., or 330 W. 42nd St., New York 36, N. Y. Aliow one Suliscriptions. Addess cor subscriptions are solicited only fram persons engaged in theory, research, design, production, malntenance and use of electronic and industrial control components, parts and end products. Position and company connection must be indicated on subscription orders.

Single corles T5d for United States and possessions, and Canada: $\$ 1.50$ for Latin America; $\$ 2.00$ for all other foreign countries. Buyers' Guide $\$ 2.00$ Subscription rates U:ited states and possessions, $\$ 6.00$ y year; $\$ 9.00$ for two years. Canada, $\$ 10.00$ a year; $\$ 16.00$ por two years. Other western hemisphere countries. $\$ 15.00$ a year: $\$ 25.00$ nr tuo years. All other countries $\$ 20.00$ a year: $\$ 30.00$ for two Yors. Entered as second class matter August 29 , 1436 at the Post Office at Albany, N. Y., under act of

 Index.

easy to read - standard size counter

SPECIFICATIONS

Registers: $1 / 10$ hour steps to $9999.9 \quad$ Registers: 1 hour steps to 99999 Drawn steel case - magnefically shielded
Self-starting Synchronous Motor $110-125$ or 220.250 volt 50 or 60 cycle A.C.

Write for further information

Marion Electrical Instrument Company, 401 Canal St., Manchester, N. H., U.S.A.

[^0]The D-649 18" Mufax Chart Recorder offers the most convenient method yet devised of receiving facsimile weather maps tranismitted by radio or landline. It can be used side by side with American equipment on existing systems; alternatively, a private network can be set up by using it in conjunction with the D-658 18" Mufax Chart Transmitter.

Recording is on inexpensive Mufax paper supplied in roo-foot rolls, which enables the recorder to operate unattended for days at a time. The transmitted map, measuring $18^{\prime \prime} \times 22^{\prime \prime}$, is received full size, and can be examined while recording is still taking place.

The record, which is black on white, is instantly
visible and requires no processing. Picture quality is better than that obtainable by any other direct recording system, even when using the double speed facility which is exclusive to Mufax equipment. No cther system can offer these advantages -write now for full

MUIRHEAD \& CO. LTD. BECKENHAM • KENT • ENGLAND

FIGURES OF THE MONTH

electronics—APRIL • 1953

Congress Starts Probe Of Color TV

Senator cries 'holdup', industry says 'not true', as investigation starts

Charging that "powerful interests have used every legal maneuver and technical roadblock" to delay the development of color tv until the monochrome market has been exhausted, Senator Johnson of Colorado has asked for a full Congressional investigation.

Senator Tobey, chairman of the Senate Committee on Interstate and Foreign Commerce, has promised a thorough probing.
(The House Commerce Committee under its chairman Rep. Wolverton, R., N. J., began its own tv color hearings March 24.)

- First Step-In a letter to W. R. G. Baker, chairman of the National Television Systems Committee, Tobey says, in part, "As a preliminary step before embarking on a full study of this problem, the following information is requested:
(a) Does any member of your group plan to manufacture any receiver sets capable of receiving the color signals under the Commission's present standards? If not, why not?
(b) Does any member of your group propose to manufacture receivers capable of receiving color signals under any other standards? For example, under the signals specifically approved by NTSC. If so, when do they expect to start production? If not, why not?
(c) Do you know if anyone is going to request the Commission to adopt new standards for color broadcasts? If so, when and who?"
- Industry's Answer-In reply to Tobey's request, Baker lists experimental compatible NTSC receiver
availability reported at a January, 1953 meeting of his Committee and announces he is sending Tobey complete minutes of NTSC meetings. Baker then says that "Our Committee has concerned itself solely with a significant and highly challenging technical problem: how best to achieve the optimum in terms of a color television system. The only persons on the Committee and associated with its work are scientists and engineers of special technical qualifications. This has been the only limiting factor with respect to participation, since any interested scientist or engineer has been welcome. The Committee has not concerned itself with any phase of production equipment, nor with considerations involving the proprietary interests of members or companies in the industry."
- Prime Objective-Baker further states that "a primary objective of this Committee was to attempt to create a practical color transmission which would utilize as a foundation the existing monochrome transmission standards. . . Then this important improvement in this service can be realized without reducing the value of a single one of the millions of television receivers owned by the American public."

Reviewing the tv background, Baker says the NTSC monochrome standards established in 1941, adopted by the FCC, have proved to be "soundly engineered" and he intimates that the government freeze on color set construction has been mostly responsible for slowing up market development.

A compatible color system is now practicable, Baker feels, and "the completion of extensive field tests scheduled to begin within the next month, should permit a definitive judgment."

- RCA-David Sarnoff announced, in the midst of all this, that RCA has spent $\$ 20$ million for research and development of color television, $\$ 5$ million of it in 1952 and that "these large expenditures are continuing during the present year."

Germanium Diode Sales To Double Again

UHF-TV mixers and video detectors will account for half of expected 20 million in 1953

Germanium diode sales doubled in 1952, and present indications are that they will double again in 1953.

RTMA statistics show that sales in 1952 totaled 9.5 million, as compared to 4.5 million in 1951 and

about 3.7 million in 1950. Sales in 1953 are expected to approach 20 million, with half of this figure being divided between uhf-tv mixers (5 million) and video detectors (5 million) in thf and vhf-uhf combination sets.

Most impressive jump in sales came in latter part of 1952 when uhf tv became a reality and manufacturers rushed to meet demands of new areas. As shown in accompanying plot of sales by months, figures rose from 350,000 in July to cver 1.5 million in December.

- New Service-Beginning in this issue, monthly germanium diode sales will be reported in the Figures of the Month department of Electronics appearing on page 4. These statistics show combined sales figures for General Electric, Raytheon, Sylvania and Hytron.

Setmakers Watchful As UHF Gains

Sales battle shapes up over r-f tuning methods; consumer reaction awaited

With 15 stations on the air and a score or more rapidly approaching completion, uhf television has receiver manufacturers watchful. Biggest question mark is front-end design.

Sets currently available generally feature either of two r-f tuming methods: One uses uhf-converter strips with from 13 to 16 positions. (An 82-channel detenttype tuner was recently announced.) The other method requires a separate tuner or converter that tunes continuously through all 70 uhf channels.

- Enter the Viewer-Big question is whether the average consumer will readily shell out the extra dollars that all-channel uhf reception might cost.

Manufacturers are divided in their answer. Some have come out four square for strip tuning. Others, particularly those whose vhf sets do not use turret tuners, offer continuous tuning. Still
others are riding both ends of the goat and supply both. For the most part, a wait-and-see attitude pervades the industry. Even the staunchest partisans are not producing sets in overwhelming quantity.

- A Look at the Field--Twentyfour receiver manufacturers were asked about their plans: 11 said they were making uhf sets, 5 said sets would soon be forthcoming, 6 gave no information and 2 disclaimed interest in uhf.

All 24 had something to say about converting their late-model sets already in the field for uhf. Three offered conversion only by adding a continuous tuner, 15 said strips would be available and six offered both.

Of the new sets discussed, six models are continuously tuned, two are strip tuned and three come both ways. Only five set manufacturers responding announced a line of external uhf/vhf converters; two firms said that external converters were under development.

Business Machine Firms Active

Top manufacturers prepare to hasten computers' move from laboratory to office

Building electronic brains for business is the most recent goal of the nation's leading business-machine firms.

Electronic computing techniques, developed during the latter part of World War II, were first applied largely to warlike chores like compiling ballistics tables and meteorological data. The big brains were built chiefly for government labs and universities. Electronic computing captured the popular imagination and names like SEAC, ENIAC, UNIVAC and even MANIAC began to enrich the language.

- Out of the Lab-After the war, several small firms, long on hair but short on capital, attempted to exploit the new devices commercially. Their machines were still, however, intended for use in laboratories. But, the big brains' aptitude for solving other problems was not lost to canny busi-ness-machine company executives. They foresaw use of electronic business machines to keep ledger accounts, make up payrolls, keep running sales records, compute and mail bills and premiums, control industrial production and maintain perpetual inventories.
- Engineers Wanted-You don't
throw an electronic computer together solely by the model-shop pilot-plant approach; high-powered research is prerequisite. Competent engineers are rare birds, however, and how to acquire redhot electronic research staffs plagued the business-machine people not a little.

Following P. T. Barnums' advice, "If you can't beat them, make 'em part of your act," businessmachine firms with sales and application experience and smaller firms with technical know-how began to make sweet music together.
-Many Mergers-Remington Rand recently acquired Engineering Research Associates of St. Paul, Minn. and Arlington, Va., a wellseasoned electronics firm whose stock in trade heretofore has been custom-building super-secret computing equipment for government labs. ERA joins Eckert-Mauchly, makers of UNIVAC, as a division of Remington Rand.

Underwood has taken over the Electronic Computer Corp. of New York; National Cash Register has teamed up with Computer Research Corp. of Hawthorne, Calif., and Physical Research Co. has said "I do" to Marchand Calculating Machine.

Burroughs Adding Machine is in the electronics business via both their rapidly-expanding Philadelphia research lab and their Brooklyn subsidiary, Control Instrument
(Continued on page 8)

Here's how to get GOOD USABLE POWER AT UHF

Sylvania Rocket Tube Type 2C37 supplies 450 Mw at 3300 Mc .

Because of their high power throughout the UHF spectrum, Sylvania rocket tubes are especially recommended for service as pulsed oscillators, ew oscillators, rf amplifiers and frequency multipliers... this is one more reason why it will pay you to specify SYLVANIA.

Compare Sylvania Rocket Tube's Performance

electronic devices; radio tubes; television picture tubes; electronic test
EQUIPMENT; FLUORESCENT TUBES, FIXTURES, SIGN TUBING, WIRIMG DEVICES; LIGHT BULBS; PHOTOLAMPS; TELEVISION SETS

SYLVANIA ROCKET TUBE TYPE 2 C37

Sylvania Electric Froducts Inc.
Dept, 3E-1004, 1740 Broadway, N. Y. 19, N. Y.
Please send me latest data sheets concerning Sylvania Rocket Tubes
\qquad

Co. Friden has bought the rights to the Benson-Lehner Computyper and is planning to market a lowcost printing calculator. Victor Adding Machine is energetically casting about for electronics engineers.
-Self-Made Staffs-In the electronic computer business since 1944, IBM will soon supplant their SSEC in the big-brain bracket with their new model 701. Production is scheduled to be one a month. The 604 printing calculator will remain IBM's entry in the medium price range.

Monroe has been building up its staff since the last war and recently launched the MONROBOT, a medium-priced businesstype calculator. No mass production plans have been announced.

New Process Cuts Cost of Germanium

Rare transistor material is extracted from waste coal-gas liquid at half of present costs

Addition of processing facilities to the Omori plant of Tokyo Gas Co. will make possible the production of 100 grams of pure germanium a day from waste liquid, at about half the cost of present U.S. production methods. This and other Japanese pilot-plant installations now under way are expected to produce over 200 pounds of the precious metal this year. Present world output is only about 3 tons a year.

- Process Details—Black sediments are filtered out of the waste liquid, heated and burned with tar to get a reddish powder. Chloric acid is added and the powder is distilled to get germanium tetrachloride vapor at 85 deg C . Running this through water gives white germanium oxide which, when mixed with hydrogen gas at 900 deg C , gives 99.99 percent pure germanium.

The rare metal gallium, also essential to the electronics industry,
can be obtained by extracting gallium tetrachloride from the sediments of germanium tetrachloride vapor with a solvent and electrolizing the extract.

Patents on the process have been applied for in 12 countries, including U.S., by inventor

Masaru Inagaki, who is an engineer with the Coal Research Institute in Tokyo. The new process eliminates the problems of removing impurities such as arsenic and antimony, encountered in the present method which uses coal soot or coal ash.

BUILT-IN radar and target computer provide . . .

New Eye and Brain for AA Guns

Biggest peacetime military contract ever received by Sperry Gyroscope is for 'Skysweeper', the Army's largest-caliber automatic antiaircraft gun with radar, target computer and weapon on a single mount.

The weapon spots and tracks an enemy plane flying at near-sonic speed, aims and fires at a rate of 45 rounds per minute. It finds and tracks at 15 miles and provides effective shoot-down range of 4 miles.

- Dollars per Gun-Cost of the fire-control system is about 75 -percent of the gun unit which costs $\$ 240,000$. Spares, tools and test equipment cost $\$ 60,000$, and the prime mover, a cargo tractor, $\$ 85$,000 , to a total of $\$ 385,000$.

A complete Skysweeper has 317 electron tubes, 12,000 parts and

4,500 items in tools, test equipment and spare parts. A total of 18 harnesses connect the chassis. One of these contains 600 wires and three have 400 .

Feasibility of an automatic onmount radar fire control combined with a rapid fire antiaircraft gun was studied by Army Ordnance and Sperry in 1943.

Development work on the gun during the next few years resulted in the first complete experimental weapon being delivered to Ordnance in 1948.

This and the second system delivered one month later were given extensive evaluation tests at Aberdeen Proving Ground, Md. and Fort Bliss, Texas.

- Speed Up-A closely coordinated package subcontracting plan was
(Continued on page 10)

PROKAR miniature molded CAPACITORS

NEW processing developments now make it possible for every Prokar miniature molded capacitor to be used at temperatures up to $125^{\circ} \mathrm{C}$ without voltage derating! An exclusive Sprague solid dielectric and a mineral-filled phenolic jacket assure stable performance from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Ten mold sizes-ranging upwards from the $.175^{\prime \prime}$ dia. $x^{5 / 811}$ long unit pictured actual size at left-give you maximum space economy in miniaturized equipments. Originally developed for militaty uses, the moderate prices of these miniaqure capacitors make them well worth your investigation also for use in dependable commercial electronic equipment. Write today for Engineering Bulletin 205F to the \$prague Electric Company, 35 Marshall St., North Adams, Massachusetts.

Production lineup of radar trackers for the Skysweeper
evolved, whereby other manufacturers could produce complete subassemblies of the system. This spreading of the work reduced lead time by one year and utilized surplus capacity of other manufacturing facilities.

Army Ordnance awarded Sperry a multi-million dollar contract to produce the fire-control systems at a high rate in December 1949. By February 1950, more than 20 sub-
contractors had started work on package units, while numerous parts designs were released to hundreds of small businesses.

A second-source prime contract was awarded to AC Spark Plug Division of General Motors, for additional production of Skysweeper fire control systems. Under an assistance agreement, Sperry provided AC Spark Plug with technical aid.

Radio-TV Industry Holds Price Line

Full price decontrol has not yet brought general price increases on parts or receivers

Many industry observers thought that radio-tv parts and receiver manufacturers would take quick advantage of the recent decontrol of prices in the industry to up profits via price hikes. But so far, the industry in general has pretty well held price lines.

- Parts Manufacturers-Component makers themselves were of the opinion that most parts companies would raise prices as much as 10 percent as soon as the lid came off and that in a short time the industry as a whole would
climb to a higher price structure. No such concerted movement has yet taken place. As a result of rising copper costs some parts manufacturers have upped prices on yokes, transformers and hookup wire but the number of companies doing so is still small.

Parts makers and buyers generally laud an announcement by Motorola. Even before full decontrol had taken place, Paul V. Galvin, president of the company, announced a 2-point policy: "(1) No increases will be allowed on any of our radio and television prices this year. Our basic policy will be to lower prices, if possible. (2) Because of the criticalness of our own cost-price relationship, all
requests for price increases from our suppliers during the next few months will be examined by a committee of top management, including myself. This committee intends to follow the materials market in detail and to know whether companies among our suppliers look upon their relationship with Motorola with the long view in mind or only for the immediate gain."

- Set Manufacturers-Before the first of the decontrol actions had been taken, the beginning of an upward trend in tv receiver prices had begun. Admiral had raised prices on 8 tv models from $\$ 10$ to $\$ 60$ each. Emerson followed with an increase in list prices on 4 tv models of from $\$ 20$ to $\$ 30$ due to increased cost of cabinets and components. CBS-Columbia also raised prices on some models. However, none of these increases were made as a result of decontrol.

Guided-Missile Plans Make Progress Slowly

Three-billion dollars buys much research but little production

When a rocket blasts off, it rises slowly in a cloud of dust and flame. Then it hovers precariously and for a sickening, dizzy second seems about to topple over. However, it begins to rise, gather speed and disappear from view, only to reappear seconds later as a wispy, silver trail spiraling in the stratosphere.
The entire guided-missile program seems to be at the second crucial point.

- Cost-Since June 1950, the guided-missile program has cost about 4 billion. The level of spending is rising steadily. The Air Force will spend $\$ 300$ million this year as against $\$ 130$ million in 1952 and $\$ 150$ million in 1951. The
(Continued on page 14)

This/Zam Gentralat Printed Electronic Aireuit

Centralab Printed Electronic

3
Fewer connections minimize wir-
ing errors - speeds production

Another Centralab first!

New Pendet

- a complete pentode detector and audio
coupler circuit that replaces 9 parts . . . eliminates 9 soldered connections

Talk about compactness - this new Pender has it! You get 4 resistors and 5 capacitors screened and fired to a single Ceramic-X plate. It replaces 9 conventional components. Only 9 connections are required instead of the usual 18.
Think what this terrific PEC "package" can do in simplifying installation and cutting manufacturing costs of ac, de and portable receivers. Get complete information on this new PC-160 Pendet NOW. Check No. 42-149 in coupon.

Pendet couples the combination detector and first audio pentode tube to the audio oulput tube. Plate is only 1-5/16" x $7 / 8^{\prime \prime} \times 11 / 64^{\prime \prime}$
thick. Leads are $2-1 / 2^{\prime \prime}$ Capacitors are 450 vdcw 800 vapacitors test. Resistors are $1 / 5$

For scores of electronic applications Centralab PECs give you 6 tremendous SAVINGS

AY way you look at them, Centralab Printed Electronic Circuits mean more money in your pockets. No other modern electronic development offers you six such tremendous time and cost-saving advantages for low-power applications.

Pioneered and completely developed by Centralab, these resistor-capacitor combinations in complete or partial circuits are extremely economical to use. Many times, the first cost of $P E C$'s is less than the components they replace.
As for versatility-there are more than 30 standard

CENTRALAB TRIODE COUPLATES replace 5 components normally used in audio circuits. Triode Couplates are complete assemblies of 3 capacitors and 2 resistors bonded to a dielectric ceramic plate. Available in a variety of resistor and capacitor values. Technical Bulletin 42-127.

Circuits simplify design, improve performance

Lower installation cost - compared with separate components

5 Less weight, less space - "opens-
up" tight chassis up" tight chassis

6
Improved circuit stability due to uniformity of PEC plates
circuits already tooled for you. Those illustrated here can only suggest the wide range of sizes and capacities available.

If you have a special circuit problem, we'll even design custom plates at nominal cost where volume warrants. No wonder 25,000,000 PECs are in use today! No wonder scores of manufacturers say it's good business to specify and use Centralab Printed Electronic Circuits. Send coupon for full details.

Centralab

A DIVISION OF GLOBE-UNION INC. - Milwaukee 1, Wisconsin In Canada, 635 Queen Street, East, Toronto, Ontario

PLATE CAPACITORS AND RESISTOR-CAPACITORS. Excellent for miniature use. Actual size photograph. Because of extremely small size, they readily fit all types of miniature and portable clectronic equipment - overcome crowded conditions in TV, AM, FM and record player chassis. Technical Bulletin 42-132.

[^1]CENTRALAB, A Division of Globe-Union Inc.
914-D East Keefe Avenue, Milwuakee 1, Wisconsin
I'd like to know more about Centralab Printed Electronic Circuits. Please send the bulletins as checked below:
\square 42-117
\square 42-132
\square 42-127
\square 42.149
\square PEC Guide No. 2 (A complete and comprehensive reference on PEC's)

Name
\qquad
Tittle.....
Address.

City.

Navy will shell out about $\$ 242$ million. About half the money will go for electronic equipment for missile guidance and control. Other expenditures, not included in the guided-missile figures, will be made for vital ground equipment such as radar.

- What Did It Buy?--The money has been spread thinly. Research projects have ranged from developing new rocket fuels to compiling exhaustive meteorological statistics. Engineering staffs have had to be hired and trained. Aircraft manufacturers like Hughes and Martin found themselves in the electronics business while firms like Sperry and Raytheon have had to tackle problems of airframe design.

A list of companies in the field reads like a Who's Who of Industry and includes such firms as: Aerojet, Bell Aircraft, Bell Telephone Labs, Boeing, Consolidated Vultee, Douglas, Fairchild, General Electric, Northrup, Reaction Motors, Ryan Aeronautical and Western Electric.

Much of the money has gone for real estate. The armed services are operating 51 major facilities connected with the guided missile program.

- Progress-Two new Army missiles near the production stage are the Corporal E and the Niki. The Corporal E is a long-range missile for use against ground targets that the Army hopes will take over some of the chores heretofore done by big guns.

Already in use training Army GM battalions is the Niki, supersonic ground-to-air missile that the Army hopes will supply the antidote to swift high-flying bombers.

The Corporal E will be produced by the Firestone Tire and Rubber Co. The Niki is a joint development of Douglas and Western Electric.

The Navy will soon get its guided missiles ships, the Boston and the Canberra. Four other ships are already listed as part of the program. These include the battleship Mississippi, the sea-
plane tender Norton Sound and the submarines Cusk and Carbonero.
-Components-Battling the twin enemies of missile electronics, heat and size, engineers have worked up a host of new components. These include carbon and boron-carbon film resistors, tanta-lum-foil and barium-titanate capacitors, tiny magnetic amplifiers and silicon transistors.

The ceramic vacuum tube may provide an answer to operation of tubes at high ambient temperatures. New tubes, using ceramics bases instead of glass are said to operate at several hundred degrees centigrade.

TV Station Status

Total of 385 television station authorizations granted by the FCC to March 1953 show Texas, New York and Pennsylvania in the lead. Only two states (New Hampshire and Vermont) and two territories (Alaska and the Virgin Islands) do not yet have tv authoriza tions

Railroad Telephones Employ Transistors

Widespread use of transistors in the railroad field may result from an improved telephone subset developed by Baltimore and Ohio engineers. Used on heavily-loaded train-dispatching circuits, the device employs a single $p m p$ junction transistor connected in a base-input amplifier circuit.

- Power-Direct-current supply is no problem since, in railroad practice, a local $4 \frac{1}{3}$-volt battery is normally used to power the telephone's carbon microphone. The subset provides 20 db gain, which exceeds that normally obtained from a telephone repeater on a dispatching line.

Fifteen transistor-amplifier subsets are in use in the B\&O's fireline plant.

'Time Compressor' Does An Hour In 45 Minutes

Invention speeds up words or music without changing tone or ease of understanding

Invented by Grant Fairbanks, W. L. Everitt and R. P. Jaeger at the University of Illinois, an interesting new machine trades time against frequency, eliminates 'temporal redundancies' and proves that the ear is quicker than the tongue.

Speech and music compressions up to 10 percent go unnoticed by listeners, and more than 50 percent of the time can be thrown away without destroying understandability. This allows programs, for example, to be fitted exactly to allotted time.

- How?-Heart of the device is a revolving drum carrying four mag-netic-tape pickup heads. An endless loop of tape passes around the drum and over erasing and record-
(Continued on page 16)

HERE'S THE SECRET

... of a NEW wire-mesh isolator that won't change on the job!

The new Type 7630 and Type 7640 ALL-METL Barrymounts have been specifically designed to eliminate loss of efficiency due to damper packing. Previous wire-mesh unit vibration isolators exhibited a definite loss of damping efficiency after a period in actual service, because the wire-mesh damper tended to pack. These new unit Barrymounts have eliminated this difficulty, because load-bearing spring returns damper to normal position on every cycle.

- Very light weight - helps you reduce the weight of mounted equipment.
- Hex top - - simplifies your installation problems.
- High isolation efficiency - meets latest government specifications (JAN-C-172A, etc.) - gives your equipment maximum protection.
- Ruggedized - to meet the shock-test requirements of military specifications.
- Operates over a wide range of temperatures - ideal for guided-missile or jet installations.
Compare these unit isolators with any others - by making your own tests, or on the basis of full details contained in Barry Product Bulletin 531. Your free copy will be mailed on request.

Free samples for your prototypes are available through your nearest Barry representative.

тне $\mathbf{B A R R X}$ сов.

707 PLEASANT ST., WATERTOWN 72, MASSACHUSETTS

SALES REPRESENTATIVES IN

Atanta Baltimare Chicago Cleveland Dallas Dayton Detroit Los Angeles Minneapolis New York Philadelphia Phoenix Rochester St. Louis San Francisco Seattle Toronto Washington
ing heads. The speed of drum and tape can be adjusted independently to vary the amount of time compression.

Based on physical sound research, the electro-mechanical tape scanner samples the recording so as to eliminate redundant parts of the sound, without altering the original pitch, allowing the recording to be tailored to a desired length. Used on popular recordings, the device plays songs
compressed 30 percent, which some listeners insist sound better than the original.

- It Stretches, Too-Time can be expanded by maintaining sounds longer than originally recorded. Also, by holding time constant, the frequencies can be compressed to a narrow band, so that more signals can be sent on a wire or radio channel. At the receiving end, the sound can be reshaped to its original pitch.

Flying Lab Services Radar Sights

Jet fighters are readied for action at front-line airfields by electronic test trailer

Combat zone maintenance and repair of complicated radar-controlled gun sights is routine work for the flying repair shop shown in the photograph. The seven-ton van and its crew of specialists can be loaded aboard a plane in 30 minutes and flown to advanced airfields for service jobs that once required shipment of equipment back to the United States.

This new approach to servicing will permit a saving of about $\$ 18,000$ for every hundred items
repaired. It also reduces the total number of gun sights needed by the Air Force.

- The Works-The van carries a complete line of electronic test equipment including provisions for accurate calibration work. Also included are all necessary tools, spare parts, modification kits, work benches, cabinets, and complete air conditioning and power plants.

The first fully-equipped van was outfitted and ready to go just 30 days after the empty van was acquired. Parts were flown from all parts of the country to the assembly point at Gentile Air Force Depot at Dayton, Ohio.

[^2]
Broadcasters' Remote Operations On-Off

Engineer unions file objections to relaxation of rules on operator requirements

With tv operations requiring skilled technicians, and facing decreasing a-m broadcast income, station owners, through NARTB, petitioned FCC for help. They requested relaxation of operator requirements and permission for remote control of certain a-m, as well as f-m stations (Electronics, p 8, July 1952).

Effective March 6, 1953, FCC ordered into force its proposal of last June. Under these revised rules persons holding restricted radio-telephone operator permits or higher are permitted to stand required regular transmitter watches at $a-m$ and $f-m$ broadcast stations employing nondirectional antennas and operating with 10 kw or less power. Remote control of such stations is also permitted.

- The Switcheroo-As of mid-January there were $17 \mathrm{f}-\mathrm{m}$ stations using remote control under special grants, 5 more with permits and a couple of a-m stations with permits but not yet remotely operated. More broadcasters were undoubtedly planning to get going under the blanket rule revision. One day before the effective date, FCC gave notice it was staying the revision.

Reason for the delay was a request by the International Brotherhood of Electrical Workers, asserting it was about to file a petition for reconsideration. It is expected that the union will base its objection on grounds of national security, having contended before that unskilled operators may be unable to shift transmitter frequencies properly for implementation of the 'Conelrad' plan.

- Other Beefs-Last-minute action by FCC may have resulted partly from other pressures. The National Association of Broadcast Engineers and Technicians, too, has addressed
(Continued on page 18)

《4） TV monitor

Channels 2 to 83

This instrument－the first UHF Monitor－is another example of the pioneer－ ing in engineering，design and workmanship which has characterized G－R monitoring equipment since the beginning of broadcasting．

FEATURES

＊Continuous indication of percentage moăulation and frequency deviation of a ural and visual trans－ mitters－large illuminated meter scales permit reading at a glance
＊High Stability
Visua：＇Monitor－± 500 cycles
Aural Monitor－± 1000 cycles
On all VHF channels，the above accuracy is guar－ anteed for at least thirty days－at the lower UHIF frequencies（chcnnel 14），the period is over sixteen days－on chainel 83，the period is ten days or more
＊High－fidelity audio cutput for distorion and noise－level measurements，and for audio moxitoring －residual noise level is down 65 db or better for 25 $k c$ deviation
＊Overmodulation alarm for aural transwitter－ lamp flashes when modulation exceeds predetermined level sel by dial
＊Sensitivity for both Aural and Visual inputs High Impedance Input（VHF）－ 1 voll ar belter Low Impedance（UHF）－ 500 mw or less
＊Excellent sigral－to－noise ratio through channel 83
＊Separate heater inputs allow direct connection of crystal oven to station standby power
\star Pilot lamp indicates adequate r－f input level
\star Terminals cre provided for connecting remote center－frequency and modulation meters and over－ modulation indicators
＊Counier－type discriminator linear to better than 0.1% for $\pm 100 \mathrm{kc}$ range，permitting accurale dis－ tortion measurements and center－frequency indica－ tions reliable even with heavy modulation
＊New cabine！arranged for maximum heat dissi－ pation and easy installation or removal for servicing

The G－R Type 1183－T T－V Monitor meets all requirements of the FCC，in－ cludirg those established for offset opera－ion．It not only provides com－ plete monitoring facilities for VHF and UHF stations in accordance with FCC specifcations，it assures the quality of everyday transmissions as well．Moni－ toring of distortion，noise，modulation level，and video and audio carrier fre－ quencies，with the aid of this instru－ ment，results in the rapid detection of substandard operation．

Conveniences for operating person－ nel are a major feature．The relatively high stability of the VHF Monitor makes frequency checks necessary only once c month．Stability，accuracy，ease of maintenance and operation，depend－ ability and long life are optimum．The G－R trademark guarantees trouble free operation with a minimum of mainte－ nance．

Type 1183－T T－V Station Mónitor from $\$ 2830.00$ to $\$ 2905.00$ depending on frequency bands

Visual transmitter frequency devia－ tion is continuously indicated by this large scale meter，in terms of the same master crystal

Large－scale illuminated meter continuously indicates frequency deviation of aural trans－ mitter in terms of highly stable crystal oscil－ lator．Zero correction for crystal oscillator easily accessible from panel，to compensate for long－time drift．

Mumbto

Admittance Meters \＆Coaxial Elements मे Drcade Capacitors Decade Inductors \＆Decade Resistors 胡Distortion Meters Frequency Meters 号Frequency Standards 出Geiger Counters Impedance Bridges is Medulation Meters ar Oscillators Variacs \＆े Light Meters 古Megohmmeters in Molor Controls Noise Meters \＆Null Detectors ar Precision Capaciots
a strong protest, to Senator Charles W. Tobey, chairman of the potent Senate Interstate Commerce Committee.

Strong pitch by the unions may be the fact that FCC held no oral hearing to discuss the problem. Government action was based upon a consideration of 2,000 written comments from individuals (most of them operators), unions and trade schools as well as station managers, networks and associations of broadcasters.

Radio Controlled Light May Save Half Million

Awaiting FCC approval is a plan for turning New York City's street lights on or off at will by means of a coded signal superimposed upon the program from the city's municipally owned broadeast station WNYC.

Developed by Broadway Maintenance Corp.. the control unit comprises a radio receiver complete with a short whip antenna. This receiver, the size of a soup can, is fastened directly above the lighting fixture. From the electronic circuit imbedded within, four wires lead from the base of the can. Two wires are attached to the lighting power line. The other two are connected in series with the lamp bulb.

- Remote Control-Each tiny receiver is designed to actuate the

Technician installs radio control unit atop street light. Instant blackout of New York City will be possible by signal from station WNYC
light switch when it receives a coded break in the carrier signal from station WNYC. In addition, the power of the broadcast station would be increased momentarily during this coded period. A listener would presumably be unable to detect this very momentary signal but, since a-m stations are not licensed for such purposes, a special grant is necessary from Federal Communications Commission.

- The Dollar Angle-At present, some street lighting is controlled by so-called astronomical time clocks that automatically take into account the changing seasons. It has been estimated that eventual replacement of 180,000 of these clocks and elimination of their attendant maintenance could save New York City $\$ 500,000$ a year.
- How Soon?-Those familiar with the workings of FCC predict that New York City will not get a quick decision. Still pending is Chicago's petition for radio control of 3,000 traffic signals, althourh use of a broadcast transmitter is not contemplated there. Greeley, Coloradc, is currently operating a similar network under a developmental grant, but uses a frequency 500 times higher than that proposed for New York.

Electronic Eye Invades Kitchen

Surface heating unit of one model Westinghouse electric range cooks food without burning, even if all water is boiled away. Secret is the 'Electronic Eye' shown in illustration, a thermistor which senses excessive temperature and unbalances a bridge circuit feeding an amplifier and relay in the power line.

Front of range has dial marked in three cooking zones and additional intermediate points. Boiling of potatoes calls for setting at low boil for 25 minutes. Even if the cook neglects them for 50

Thermistor at center of range surfaceheater coil senses pot heat
minutes or longer there is no danger of food scorching because of the controlled surface unit, which was ten years in development.

Financial Roundup

Year-end profit reports, stock filings and registrations and security transactions were made on the financial front of the electronic industry during the past month:

Net profits for 1952 of 5 important companies were up compared to 1951 profits:

- Stocks Filed-Audio and Video Products filed with SEC covering 138,000 shares of common stock (par 1 cent) to be offered at market (about 35 cents a share) for the account of certain selling stcckholders.

Radar-Electronics filed with SEC covering $5,996,000$ shares of common stock (par 1 cent) to be offered at 5 cents per share. Proceeds are to be used for working capital.

Western Electric filed with SEC covering 2,007 shares of common stock (no par) at $\$ 40$ per share on the basis of one new share for each 10 shares held. Proceeds will be
(Continued on page 20)

Actual

INDUSTRY REPORT-Continued

used for expansion and general corporate purposes.

- Registrations-Cinerama registered with SEC covering $\$ 2$ million of 4 percent convertible debentures due 1958 to be offered as a speculation at 100 percent of their principal amount. Proceeds to be used for assembly and supply of equipment for use in producing and exhibiting Cinerama productions.
P. R. Mallory registered with SEC covering 150,000 shares of cumulative convertible preferred stock, $\$ 50$ par. Proceeds to be used for general funds and general corporate purposes.

Westinghouse registered with SEC covering (1) 200,000 shares of common stock, $\$ 12.50$ par, to be offered under employee Stock Plan; (2) 598,735 shares of common stock, $\$ 12.50$ par to be offered under Restricted Stock Option Plan to executive employees.

- Other Actions-Avco sold all holdings of New York Shipbuilding Corp. It marks the final step in the transition of the organization from a holding company into a integrated manufacturing corporation.

Cornell-Dubilier increased its authorized common shares from 0.5 million to 1 million shares to have them available for further acquisitions and possible stock dividends.

Color Selector for Paint Reduces Obsolesence

Automatic color "carousel" developed by Standard-Toch Chemicals takes less than 90 seconds to squirt a desired color paste into an open can containing only the vehicle. A selective mechanical and electronic control system measures out the kind and amount necessary to attain the shade previously chosen from a code-numbered color chip.
The can is magnetically held against the dispenser and the size of the can is automatically indi-

Carousel contains basic colors that are mixed according to the setting of controls. Using this electronic device, the merchant can avoid large inventories of seldomused colors
cated by a vertical row of snap switches.

Color controls and operating pushbuttons are easily manipulated by salespeople. The control box is
located to the right of the colortank turntable. If the receiving can is jostled out of position, all power in the color selector is immediately shut off.

Educational TV Goes Grass-Roots

June deadline for reserved channels will produce many applicants below state level

Minimum Costs of plant at $\$ 300,000$ and yearly operations at $\$ 200,000$ (Joint Committee on Educational Television figures) make the average taxpayer snort at the idea of educational tv. But educators never seem to tire of patient explanations that school video isn't merely a matter of multiplying the little red schoolhouse by the number of receiving antennas. They speak persuasively of "increased productivity" in education and try to show that in a complex world, education must, of necessity, become more complex and efficient.

- Kick in the Teeth-Because television finances are big business, it was natural that New York State's Board of Regents should obtain construction permits for seven stations, plan for three more and then go to the legislature for money to build them.

A special commission appointed by Gov. Dewey voted 10-to-5 to
turn down the plan. Nothing daunted, smaller groups in New York City and Rochester are working locally to obtain educational stations for their cities. In this regard, they are like other groups in other parts of the country operating below the state level.

Outstanding as a pattern of local activity is that of Detroit. Here, seventeen educational and cultural institutions in three counties are working out plans for a joint educational-tv venture. Emphasis, so far, has been upon studio locations (three scattered throughout the city) and programming. Application for a transmitter construction permit will come later.

- Coming Deadline-FCC will hold reserved channels until June 2. After this date, the earmarked bands may be thrown open for commercial use. By mid-March only 20 applications had been filed for the 242 educational channels. Of these, 14 construction permits have been granted (including those requested by the New York
(Continued on page 22)

State Regents). In addition, educational institutions have filed for 8 non-reserved (commercial) frequencies and 4 CP 's have been awarded.

Along with Detroit, some 20 or 30 more schools and colleges are expected to make application before deadline.

British TV Sales Spurred by Coronation

TV set production rises to new high despite tax as 1952 radio sales show sharp drop-off

Expected purchase-tax reduction has caused some British subjects to postpone buying new tv setsbut not many. Last year's U. K. tv production topped 800,000 , an increase of more than 90,000 over 1951. Radio sales dropped 44 percent in the same two-year period.

Pre-coronation sales are expected to set new high for to purchases regardless of tax. Retailers with large inventories are anxiously awaiting Parliament committee report that will clarify position of traders holding unsold goods on which customs and excise duties have already been paid at hirher rates.

FCC Cracks Down On Diathermy

By lowering the boom on inter-ference-radiating medical diathermy equipment, Federal Communications Commission may create a market for new machines that conform to modern specifications. Chief objection to older equipment is that it has no control of frequency and sends out strong signals that wander among television, aircraft and other bands as the patient moves during treatment.

- Crackdown-Last June, FCC realized that a hardship would be worked on doctors and hospitals if
new rules were clamped down too hard too fast. It agreed to consider individual requests for continued temporary use of old equipment until it became possible to obtain better machines.

But reports of interference keep coming in. With few exceptions the troubles are traced to equipment manufactured prior to July 1947. Information available to the Commission indicates that typeapproved, nonradiating machines are now available for early delivery. Accordingly, says FCC, there is no present intention to hold off full enforcement of modern standards beyond June 30 , 1953.

Electronic Fuel Gage Extends Flight Range

OPERATING RANGE or load carried by planes on long flights can be increased by the use of a new electronic system for accurately measuring the weight of fuel being consumed. The increase is gained by a reduction in the fuel-supply safety factor required in flight calculations.
In the usual method of measurement, by a flowmeter indicating consumption in gallons per hour, variations in fuel volume caused by temperature and altitude changes make a large safety factor necessary. The new system uses a weight-measuring device to continuously measure the density of the fuel and correct the output of the flowmeter for any variations. Consumption is indicated in pounds per hour with an accuracy of 1 per cent.

- Other Applications-The measuring system, made by Gavco Division of General Aviation Corp., can also be applied to guided missile research, where the density and flowmeter outputs can be used for frequency modulation in a telemetering system.
For industrial use, particularly in the chemical industry, the weight-corrected output on the flowmeter can be used to control the flow of liquid ingredients.

Heating Equipment Orders Rising

Total induction and dielectric heating equipment orders for 1952 were lower than the 1951 high of $\$ 1 /$ million but the trend for the industry is moving upward, as shown in the chort. Rototing induction equipment still constitutes the bulk of the business but the proportion of both rodio-frequency induction and dielectric equipment is increosing

Resistor Industry Helps Its Own

Smoke had hardly cleared away from the $\$ 300,000$ fire at Shallcross Manufacturing's plant in Collingdale, Pa. before competing resistor manufacturers were offering a helping hand. Several nearby companies, such as International Resistance and Mepco, offered use of their facilities and even supplied needed materials. Vendors wasted no time in replacing damaged supplies and equipment and customers cooperated in readjusting delivery schedules.

In expressing the company's appreciation for these neighborly actions, president John Shallcross said: "It makes me proud to be associated with an industry where folks are willing to go so far out of their way to help a fellow mem-
(Continucd on page 24)

ber of the trade over a rough spot."

The fire occurred on Sunday, March 8. Less than a week later the company had resumed resistor
production on a limited scale and expected to be back in full operation in the factory within a month to six weeks from the date of the fire.

U. S. Electronics Firms Enter Japan

Indication of activity of U.S. manufacturers in Japan's electronic industry is given in the recently released official Japanese record of foreign entry into the industry of the country since 1950 .

A total of 6 U . S. companies have entered into Japanese electronic manufacturing through a total of 13 technical assistance contracts with Japanese companies. The six firms and the number of contracts each have is as follows: Bendix Aviation, 1 contract; Hogen Laboratories and Faximile, 1 contract; International Standard Electric, 2 contracts; RCA, 5 contracts; Sperry, 2 contracts and Westinghouse, 2 contracts.

Three U.S. manufacturers acquired stocks in Japanese electronic companies. Westinghouse acquired a 4 -percent interest in the Mitsubishi Electric Co.; International Standard Electric acquired a 6-percent interest in Sumitomo Electric Ind., Ltd. and

Sperry acquired a 25 -percent interest in Tokyo Keiki Seizosho., Ltd.

- Contracts-The number of technical assistance contracts for electronics entered into by U.S. firms has grown steadily since 1950 . In that year only one such contract was signed but in 19515 were set and last year 8 agreements were made.

The type of equipment on which technical assistance was given by U. S. companies broke down as follows: 4 contracts were for electron tube manufacture, and transistors; 4 were for radar and marine electronic equipment; 3 for radio and communications equipment; 1 for tv receivers and 1 contract for facsimile equipment.

The Siemens und Halske A. G. company from Germany was the only other outside firm to enter Japanese electronics since 1950, according to the report.

CAA Uses Radar Simulator

[^3]
Transparent Airframes May Baffle Radar

At the recent annual session of the Society of Plastics Industry in New York, Wm. E. Braham of Zenith Plastic announced it is possible to produce complete airframes made of a plastic that is not only strong, easily molded and temperature stable, but is also nearly electronically transparent.

Carrying this development into the aircraft power plant, Braham said it might also be possible to produce engines which use plastic for all but the hot working sur-faces-turbine blades, combustion chambers, and so on.

- Small Target-The problem for some electronics men is to figure out radar's potential limits. How much can transmitter power be increased to compensate for reduced target size? What is the smallest target an ideal radar can recognize? How well could an enemy missile whose only electronically reflecting surfaces were the bomb warheads be spotted high in the sky?

Canadian TV Expansion Sought

Private broadcasters in Canada (as contrasted with governmentcontrolled Canadian Broadcasting Corporation) have complained long and loud about their lot in Canadian radio. Now that many of them are losing listeners to the television programs from south of the border, they have set up a clamor for their own television stations.

But CBC was anxious to get its own television network going before allowing competition from private initiative. So far, it is transmitting programs from Montreal and Toronto, plans an Ottawa outlet for May. It has also blueprinted stations for Vancouver, Winnipeg and Halifax.

- What's Left-Canada's equivalent of FCC is the Department of

[^4]

Transport, but broadcasters must have their applications approved by CBC in addition. For the present, at least, CBC will accept tv applications only for cities in which it has no stations planned.

First applications with a ghost of a chance are: Hamilton, London, Sudbury and Windsor, Ont.; Quebec City, Que.; Saint John, New Brunswick; and Sydney, Nova Scotia.

Next Year's IRE Show Location?

When the Government Tax Bureau announced it was taking over Grand Central Palace in 1954, IRE made arrangements to hold next year's show in the Kingsbridge Armory in the Bronx (New York City). Then the newspapers announced that the Tax Bureau had changed its mind and now considers the Palace 'not desirable'.

- Who Says?-Tracking the story to the General Service Administration, the agency that hires office space for all Uncle Sam's agencies, Electronics learned from Walter T. Downey, Regional Director, that the policy reversal was not yet official. Yes, the Treasury Department had changed its mind, but they are still awaiting permission from Washington to stop Palace negotiations.

Meanwhile, IRE says "No comment".

Business Briefs

- Bathtubs and home telephones are outnumbered by tv sets in Chicago, according to Admiral Corp. There are $1,360,000$ tv sets in use while bathtubs number $1,260,000$ and home telephones 1,320,000.
- Costing more than $\$ 600,000$, New York Fire Department's new twoway f-m communications system uses 8 adjacent radio channels. Over 500 pieces of fire apparatus are now equipped; there are 10 marine installations and a batch

MEETINGS

April 8-10: AMA Spring Manufacturing Conference, Hotel Statler, New York, N. Y.
April 11: New England Radio Engineering Meeting (NEREM) of IRE, University of Connecticut, Storrs, Conn.
APRIL 18: Seventh Annual Spring Technical Conference, Cincinnati IRE, Cincinnati, Ohio.
April 20-May 2: IATA Technical Conference, Caribe Hilton Hotel. San Juan, Puerto Rico.
April 21: Symposium on Ceram-ic-To-Metal Seals sponsored bv the Panel on Electron Tubes of the Research and Rescarch and Development Board, Rutgers University School of Ceramics, New Brunswick. N. J.
April 23-24: International Symposium on Non-Linear Circuit Anlaysis sponsored by BrookIvn Polytechnic Institute, IRE, Office of Naval Research, Air' Research and Signal Corps. Engincering Societies Bldg. Auditorium, New York, N. Y.

April 23, 30, May 7, 14 : Lecture Series on the general theory of semiconductors by H . K. Henisch of the University of Reading, England, Brooklyn Polytechnic Institute, Brooklyn, N. Y.
APRIL 27-30: Spring Meeting of USA National Committee of URSI-IRE professional Group on Antennas and Pronagation, Nat'onal Bureau Of Standards, Washington, D. C.
April 27-May 8: British Industries Fair, Birmingham \& London, England.
April 28-May 1: Seventh Annual NARTB Broadcast Engineering Conference, Bur-
dette Hall, Philharmonic Auditorium, Los Angeles.
APril 29-MAy 1: 1953 IREAIEE Electronic Components Symposium, Shakespeare Club, Pasadena, Calif.
MAY 11-13: IRE National Conference on Airborne Electronics, Dayton, Ohio.
MaY 18-21: 1953 Electronic Parts Show, Conrad Hilton Hotel, Chicago, Ill.
May 18-23: Third International Congress On Electroheat, Paris, France.
MAY 24-29: NAED, 45th Annual Convention, Conrad Hilton Hotel. Chicago, Ill.
MAY 24-28: Scientific Apparatus Makers Association Annual Meeting. The Greenbrier, White Sulphur Springs, W. Va.
June 9-11: International Aviation Trade Show, Hotel Statler, New York, N. Y.
June 15-19: Exposition of Basic Materials for Industry, Grand Central Palace, New York, N. Y.

JuNE 16-24: International Elec-tro-acoustics Congress, The Netherlands.
June 20-Oct. 11: German Communication and Transport Exhibition, Munich, Germany.
Aug. 19-21: IRE Western Electronic Show \& Convention, Municipal Auditorium, San Francisco, Calif.
Aug. 29-Sept. 6: West German Radio and Television Exhibition, Duesseldorf, Germany.
Sept. 1-3: International Sight and Sound Exposition, Palmer House, Chicago, Ill.
Sept. 21-25: Eighth National Instrument Exhibit, Sherman Hotel, Chicago, Ill.
of walkie-talkies. Motorola's share of the contract came to $\$ 586,000$.

- India plans to spend $\$ 2.1$ million on an expanded network of radio transmitters including three highpower shortwave transmitters, seven high-power medium-wave, five medium-power medium-wave and five low-power medium-wave transmitters.
- Nuisance Tax of $\$ 2.50$ yearly on Canadian broadcast receivers has been abolished. Henceforth government-controlled Canadian Broadcasting Corp. operations will be supported by 15 -percent excise
tax on radio and tv sets, tubes and components. Yield of $\$ 12$ million yearly is expected.
- Ship-to-shore tv trials in England resulted in clear tv reception from a point 16 miles distant and 100 feet under the sea. Experimental Pye transmitter used had an output of 250 watts.
- Experimental radar station will be constructed at Rensselaer Polytechnic Institute in Troy, N. Y. Three airborne units may be in operation by June for the study of the effects of weather conditions on range and clarity of image.

VARIAN X-BAND RADAR KLYSTRONS
 Now in full production...

guaranteed specifications - quantity prices — assured delivery

Rugged local oscillator for mobile radar.
 Highly non-microphonic. Shaft tuner; no chatter or backlash; excellent for motortuned systems. Reflex, 8.5-10.0 kmc, replacing Varian V-50.

For radar, beacen or low-power transmitter operation under severe mechanical punishment. Lock-nut tuner holds the tube on frequency even under shocks of several hundred g. Reflex, 8.5-10.0 kmc, replacing Varian V-51.

For high altitude or high humidity applica-

Reflex tube for test and measurement work at x-band. Intecral tuner covers the full frequency range, 8.2-12.4 kmc. Typical power output is 150 mw over the band, 500 mw at center frequency.

Why PHELPS DODGE ROUND THE YARDSTICK FOR

Up-to-the-Minute Research

Quality Controlled

for Maximum Performance
Leader in Application Engineering
Experience Over Complete Range\#4 to \#44, AWG - All Grades and Colors
"It takes the

bestPHEIPS DODEE COPPEF PROUUCTS CORPORATION

FORMVAR has become FILM WIRE QUALITY!

$\mathbf{D}^{\text {helps }}$ dodgr, recognizing the advantages of round Formar magnet wire, became the leader in replacing cna nel, fabric and papercovered wires. Today, ro and Formvar is used extensively in mozors, tran formers and coils, with resultant overal cost recuctions and quality improvements in the insulacion system.

Where greaner spacirg or additional safety factors are ind cased, fajrics such as cotton or
paper can be added. For higher temperature operation Phelps Dodge Formar, with a watap of fiberglass, has been widely used.

For some applications a thin sheath of Vylon has been applied over the Formvar and ideatified as Phelps Dodge Nyform magnet wire.

Any time magnet uire is your problem, monsult Phelps Dodge for the quichest, easiest ansuer!

to make the

INCA MANUFACTURING DIVISION

FORT WAYNE. INDIANA

Facts behind the S-1 TIMER'S extraordinary

Formula S-1: Expensive high torque, ball bearing motor, low inertia of moving parts, high proportion of precision and ground parts, no thrust bearings as found in ordinary clutches.

- High torque (2 inch-ounce at 100 RPM) industrial grade motor (\#1) with no internal gear train so small changes in load due to binds or hand acceleration cause no phase shift between rotor and rotating field...runs continuously to eliminate starting error.
- Precision cut gears (\#2, \#3). Any eccentricity or inaccuracies in gearing reflect directly in timer reading.
- Slip clutch composed of hardened steel spring (\#4) riding a V-grooved graphited (for long wear) collet, applies. 6 inch-ounces of torque to aluminum (for low inertia) control disc (\#5) with over 314 tiny teeth in its periphery.
- To hold control disc (\#5) at rest, 2 hardened steel brake shoes (\#6), ground to square knife edges, grip periphery of control disc in 4 places... control disc position to under $1 / 2$ of a degree (1/720 second).
- Electro magnet (\#8) pulls brake shoes away from control disc through armatures (\#7). Air gaps kept to minimum for speed. Precision made fulcrums prevent stickiness or unequal movement of armatures.
- Adjusting screw (\#11) adjusts tension of armature spring (\#10) so that time between energizing magnet coil and starting of control disc is same as time between de-energizing magnet coil and stopping of control disc. This compensates for starting and stopping errors.
- Second friction clutch (\#2) transfers control disc motion to center staff (\#13); allows hands to be reset when control disc is held stationary.

To Split the Split Second with ACCURACY, Take a Minute Now and Write Us for Engineering Data
"Gentlemen. . . Let me give you the formula for our astounding final accuracy of .005 sec. obtained with our D-C clutch S-1 Timer."

SINCE 1884

It's VERSATILITY that sells SANBORN in the field of Industrial Recording

As indicated by references at the right, you may have a choice of five different instruments (A) for quick and convenient standard rack mounting in the system at A_{1}, PLUS a choice of up to four of any of the three different type amplifiers (B) or any combination of these amplifiers with the

SANBORN

FOUR-CHANNEL OSGILLOGRAPH REGORDING SYSTEM

(MODEL 67)

A^{s} shown in the diagram, removing or interchanging any of the amA plifiers or other instruments is simply a matter of sliding the unit in or out of the mounting rack where contact is made automatically by plug-in connectors. Screws at the four concrs of the panel hold the instrument in place.

Other features of this system which add to Sankorn VERSATILITY are the choice of eight paper speeds $-50,25,10,5,2.5,1.0,0.5$ and 0.25 $\mathrm{mm} / \mathrm{sec}$, and the use of either $4-, 2$, or l-channel secording paper.
And, of course there are these popular Sanborn advantages: a high torque movement (200,000 dyne cms per cu deflection), direct inhless recording in true rectangular coordinates, and provision for code and time markings.
Sanborn Recording Systems may be used to record any one or more of a wide variety of phenomena whose characteristics range from static to 100 cycles per second. If your recording problem is not one which can le solved by standard Sanborn equipment, our engineers will be glad to suggest ways in which modifications of it may suit your requirements.

[^5]

DC PREAMPLIFIER

aC Preamplifier

DC CONVERTER - for low level DC record. ing such as thermocouple output.

TRIPLEXER - when coupled to a DC amplifier permits the recording of three events in one channel.

THRESHOLD MONITOR provides means for the control of voltage levels or rate of change.

DC (Gemeral Purpose) AMPLIFIER

STRAIN GAGE (Carrier) AMPLIFIER

SERVO MONITOR AMPLIFIER-a phase discriminating $A C$ amplifier used in servo design and testing.

One channel Model 128/141 above and twochannel Model 60 a: right both incorporate Sunbora recording advautages which in. clude interchangesbility of amplifiera and (with Model 60)preamplificre.

G.E. ANNOUNCES a new line of subminiature metal-clad capacitors

with silicone end seals and a solid dielectric for operation from -55 C to +125 C without derating

This new line of General Electric subminiature metalclad capacitors offers the designer and user of electronic equipment the utmost reliability under the severe operating conditions required of military equipment. G-E metal-clad capacitors are rugged units that provide the essential advantages of small size, no liquid leakage, and high insulation resistance. They also will withstand extreme temperature and humidity conditions.

While these capacitors have been designed for applica tion in the temperature range from -55 C to +125 C without derating, they can, with proper derating, be operated up to +150 C .

G-E subminiature metal-clad capacitors offer two important, exclusive features that insure outstanding performance:

- Solid dielectric-G.E.s Permafil - to provide excellent electrical characteristics and to eliminate the possibility of leakage.
- Silicone end seal for high shock resistance both thermal and physical.
G-E subminiature metal-clad capacitors meet all requirements of JAN-C-25 and the proposed MIL-C-25. They can be supplied in both tab and exposed foil designs depending upon your application requirements.

Need Wax Replacement? If you are caught in the squeeze because of the recent elimination of characteristic J (wax) from the proposed MIL-C-25 specifications, you need not go to a larger capacitor (or continue to use an unacceptable product). See back page of this advertisement for information about a new line of G-E liquid-filled metal-clad capacitors. They're as small as the wax units, yet have superior life characteristics which make them a "natural" for military equipment.

GENERAL

New G-E Pyranol* Metal-clad Capacitor averages 20% smaller in size than a comparable oil-filled unit. It is as small as the subminiature wax unit, yet has superior life characteristics.

PYRANOL

OIL

ANNOUNCING also . . . a new line of G-E Pyranol liquid-filled metal-clad capacitors

 subminiature in size-inexpensive-for operation to +85 CThis new line of G-E subminiature metal-clad capacitors with Pyranol dielectric equals its 125 C Permafil cousin for reliability and ruggedness. It is designed for operation from- -55 C to $+85^{\mathrm{C}}$ without derating.

Pyranol, long noted for its high dielectric strength and exceptional stability, has been used in G-E capacitors for more than 20 years with excellent success. Now recently improved, Pyranol makes possible a small-size capacitor with extremely good life characteristics.

This G-E metal-clad line also incorporates the silicone end seal for maximum resistance to shocks both thermal and physical and thus permits soldering right up to the bushing without danger of damaging the seal

G-E Pyranol metal-clad capacitors can be supplied in either tab or exposed foil designs in ratings from . 001 to 1.0 muff in voltages of $100,200,400$, and 600 volts dec working.
Delivery of G-E Subminiature Capacitors. While many sizes and voltage ratings of both the 125 C Permafil and the 85 C Pyranol metal-clad capacitors are available for immediate shipment, not all mut and voltage ratings are
in stock. However, the full line of each type of $G-E$ metal-clad capacitor will be in "stock shipment" shortly. If your requirements demand the highest performance standards for subminiature capacitors, check with your nearest G-E Apparatus Sales Office for exact delivery information. Or write to Section 442-4, General Electric Company, Schenectady 5, New York:

Capacitance vs. Temperature is shown by this typical curve. G-E Pyranal subminiature metal-clad capacitors hove only a small capacitance change through the entire range from -55 C to +85 C .

POWERSTAT

. . . with a rheostat or other resistance type controls. You will find POWERSTAT type 10 the ideal source of variable a-c voltage control of $50-100-150$ watt loads.

TYPE

- EFFICIENCY of type 10 is high ... does not control by dissipating power in the wasteful form of heat as does a resistance type control.
- SPACE REQUIREMENT of ty 10 is only $21 / 1$ by $31 / 8$ inches. Not only is it compact $2 u t$ since it does not produce heat there is no ventilation problem.
- CONSTRUCTION of type 10 s rugged for long life and dependable service.
- ADAPTABILITY of type 10 to any load within its rating is possible without tailor $1 g$ as is necessary with a resistance type control.
- RATING of type 10 is conservative with the rated output current available at any, brush setting.
- MOUNTING of type 10 is simple by means of a single hole in the panel. It is lacked in position by a keying arrangement.
- OPERATION of type 10 is smooth, stepless and silent.
- PRICE of type 10 is low . . comparable to any other type of a-c voltag \div control apparatus of equal capacity and characteristics.

A comparison of POWERSTAT type 10 with a rheostat or otter resistance type controls reveals that it is the logical answer to any variable a-c voltage control problem involving loads up to 150 watts.

POWERSTAT type 10 is a small, comfact autotransformer of toroidal core design with a movable brush-tap. Rotction of the tep de. livers any output voltase from ze o to, or above, line voltage. It is tapped is allow compensation for a 10 fer cent drop in line voltage.

Additional information on POWER. STAT type 10 is cuailable by writing 204 Mae Avenue, Bristol, Conn.

GIVES YOU UP TO 5 TIMES THE TORQUE

This "mighty midget" SX motor provides the power for a wide variety of timing devices, recording instruments, signal systems, traffic controls, and other similar control devices that require dependable performance at constant speed. Available in many output speeds ranging from one revolution per second to one revolution per day, the SX provides up to five times the power of most hysteresis clock motors of equivalent size.

Write for Cramer Timing Device Catalog or specify Bulletin No. 10A for complete information on the Model SX Motor.

30-Inch Ounces Torque at 1 R.P.M. . extra margin of power for adverse operating conditions.

Instantanecus Response . . . to synchrorious speed within 2 cycles of applied voltage; dead stop within 1 cycle.

Runs Only at Synchronous Speed no slip or sub-synchronous speed possible.

Runs Equally. Well in Any Position.

Controlled Rotation . . clockwise or counterclockwise, as desired

Dual Rotation
oscillating motion also possible an motors 4 R.P.M. of faster by limiting travel of output member with positive stops.

Replaceable Coils . . . simplify servicing or shanging voltages in the field.

One or Two-Way Friction permits output shaft to be turned manually, independent of gear train and motor.

S P E C I A L I S T S I N T I M E C O N T R O L

18,000 VOLTS

OF

ELECTROSTATICALLY FOCUSED

PICTURE
 BRIGHTNESS

electrostatically focused Picture Tubes take the full design center max. rating of 18,000 volts with adequate "high line" reserve.
Tested At 22,000 Volts
No Voltage Breakdown

Long Life Guns
 Long Life Screens

Superior $\mathbf{1 0 0 \%}$ Area Focusing

BAYTHEON MANUFAGTURING COMPANY

 are used to make this universal coil form. It is expandable to conform to cores of various sizes.

corimibutes an

improved product-in universal coil forms for Cutler-Hammer, Inc.

This practical use of National Vulcanized Fibre by CutlerHammer, Inc. in their wire spools is typical of the countless contributions National Vulcanized Fibre-the material of a million u.ses - makes to business and industry.

In the electrical field National Vucanized Fibre has been the standard insclation for years. It has high dielectric strength and, when subjected to hot electrical arcing, it evolves neutral gas which extinguishes are without "tracking." Many electric appliances find Nctional Vulcanized Fibre to be the one best material for one or more of their parts.

National Vulcanized Fibre applications, both mechanical and electrical, are varied and extensive. In mechanical applications it is desicable because it possesses exceptional tensile and crushing strength, toughness, density and sesistance to wear-coupled with ease of fabrication. It act ually improves with age; for many mechanical furposes it is better, more durable than metal.

Available in various grades and colors; and in sheets, rods, tubes and special shapes. Write for detailed literature and engineering service information-

Delaware
National Laminared Plastics
nationally known-nationally accepted

Here is Plug-in Unit Construction

Everything you need to mount, house, fasten, connect, monitor your equipment.

1 st start with ALDEN MINIATURE TERMINALS

Here's a beautifu new little Terminal that really puts soldering on a production basis; taking a minimum of space and material. Ratchet holds leads firmly for soldering, no wrap-around or pliering necessary. Linique punch press configuration gives rapid heat transfer, taking less time and solder. Designed for Govt. Miniaturization contracts. Staked in Alden Prepunched Terminal Cards, allow patterns for any circuit.

Ratchet holds leads firmly

Snip off loops desired to by-pass
\square
JUMPER STRIP

Stake under Terminals for common circuits. Loops match prepunched holes in Terminal Cards. Snip off loops desired to by-pass.

FOR YOUR SMALLER UNITS

2 nd ${ }^{\text {Takc Pre-punched Terminal Mount- }}$ ing Card ready-cut to size you require. Stake in Alden Miniature Terminals to mount your circuitry.

Prepunched Terminal Mounting Cards come in all sizes needed for I'ackages: miniature 7 -pin and 9 -pin units, 7 -pin and 9-pin units,
or 11 -pin and 20 -pin or 11-pin and 20-pin
plug-in units. Card is natural phenolic $1 / 11_{10}{ }^{\prime \prime}$ thick prepunched on $1 / 4$ " centers with $101^{\prime \prime}$ holes for taking the Miniature Terminals.

3rdAttach Miniature Terminals, Alden Card-mounting Tube Sockets and Mounting Brackets, which mount in the prepunched holes.
Alden Card - mounting
Tube Sockets for mini-
ature 7, miniature 9
and octal tubes, are
complete with studs
and eyelets for easy
mounting on Pre
punched Cards.

TO OBTAINCOMPLETE
DETAILS

Tiny Sensing Elements specifically designed to spot trouble instantly in any unit.
Here are tiny components to isolate trouble instantly by providing visual tell-tales for each unit.

"PAN-i-LITE" MIN. INDICATOR LIGHT

So compact you can use it in places never before possible. Glows like a red-hot poker. Push-mounts in $.348^{\prime \prime}$ dríll hole. Bulbs replace from front. Tiny spares are unbreakable, easily kept available, taped in recess of equipment. Alden $\# 86 \mathrm{~L}$, ruby, sapphire, pearl, emerald.

MINIATURE TEST POINT JACK

Here are tiny insulated Test Point Jacks that make possible checking critical plate or circuit voltages from the front of your equipment panel-without pulling out equipment or digging into the chassis. Takes a minimum of space, has low capacitance to ground, long life beryllium copper contacts. Available in black, red, blue, green, tan and brown phenolic conforming in black, red,
to MLIL-P $1+B-C G F$; also nylon in black, red, orange, blue, yellow, white, green. Alden \#llobCS.

ALDEN "FUSE-LITE"

Fuse Blows - Lite Glows.
Signals immediately blown fuse. Lite visible from any angle. To replace fuse simply unscrew the $1-\mathrm{pc}$. Lite-lens unit. Mounts easily by standard production techniques, in absolute minimum of space. 110 V Alden $\# 440-4 \mathrm{FH}$. 28 V \#440-6FH.
Free Samples Sent Upon Request

Get one point of check of all incoming and outgoing leads thru ALDEN BACK CONNECTORS

SINGLE CHECK POINT

Here for the first time is a slide-in connector that brings all incoming and outgoing leads to a central check point in orderly rows, every lead equally accessible and color coded.
Avoid conventional
rats nest wiring

Permit direct efficient wiring STRAIGHT-THROUGH CIRCUITRY Wiring is kept in orderly planes, avoiding rat's nest of comentional back plate wiring. Connections between Terminal Mounting Cards are through Back Connectors so that all circuitry is controlled at this central point. Incompatible volt * ages safely isolated and separated.

Attach Miniature Terminals, Card-mounting Tube Sockets and Mounting Brackets, which fit any of the prepunched holes.

Ready-made Alden Back C slide-in chassis replaceable iil 30 seconds with spare.

READY-MADE for your Electronic Equipment

All designed - all tooled - production immediately available - no procurement problems. Apply ALDEN Standards wholly or in part.

ALDEN

4thAfter mounting your circuits on Terminal Cards, use Alden Standard Plug-in Bases, Housings, Bails for paçkaging.
Min. 7 \& 9-pin BASES avail. able, also 11 . pin \& 20-pin. $\begin{array}{lll}\text { pin } \& & 20-p i n . \\ \text { B A I L S \& }\end{array}$ BOUSINGS or LIDS to match.

ALDEN
 PLUG-IN PACKAGES

Using standard Alden Plug-in Packaging Components you can mount a tremendous variety of circuits on chassis or in racks.

SLIDE-IN BACK CONNECTORS

ALDEN BASIC GHASSIS

 Fit Prepunched Cards carrying completed circuitry into Standard Alden Basic

Prepunched to your specs. Easy accessibility at sides,
front for completing wiring

SERV-A-UNIT LOCK pulls in or ejects chassis.

See description See description
on opposite page.
 front for completing wiring.

Your design and production men have always wanted these advantages:

SEND FOR FREE "ALDEN HANDBOOK"

HOUSE PLUG-IN UNITS IN ALDEN BASIC UNI-RACKS

STACKED

Mounting all equipment in Alden Uni-Racks provides a uniform system easy to handle and ship. Can be installed and interconnected as fast as unloaded.

UNIT CABLE
interconnects between Uniracks or other major circuitry divisions. Quick, sure, coded means of iso, sure, coded means of isolating and restoring (with spare) inter-division circuits.

1. Experimental circuitry can be set up with production components, cutting down debugging time.
2. Allows technicians, rather than engineer, to debug, by taking out unit.
3. Given the circuitry, nothing further to design-make up from standard Alden components.
4. Optimum circuit layout using standard terminal card.
5. Absolute minimum requirements of labor, materials, space.
6. The various sub-assemblies can be built concurrently on separate assembly lines.
7. No tooling costs-no delays-no procurement headaches.
8. Fewer prints-smaller parts inventory.
9. Can subcontract assemblies.

Your customers and sales force will welcome these advantages:

The big objection to electronic equipment-from the user's point of view-is that if it goes out of order he feels helpless. But you have a perfect answer when your equipment is made to Alden Standards of Plug-in Unit Construction because they assure DEPENDABLE OPERATION, as follows-
30-SECOND REPLACEMENT OF INOPERATIVE LNITS by plugging in available coded spares.
TROUBLE INSTANTLY INDICATED AND LOCATED by monitoring elements assigned to each functional unit.
TECHNICAL PERSONNEL NOT REQUIRED to maintain in operation, due to obvious color coding and fool-proof non-interchangeability of mating components. TOOLESS MAINTENANCE made possible by patented Alden fasteners and plug* in locking and ejecting devices.
AIRMAIL SERVICE-
Compact functional units practical to send airmail to factory for needed overhaul. UNI-RACK FIELD HANDLING UNIT-groups functional units into stacking cabinets not exceeding one- or two-man handling capacity-go easily through windows, doors,
CONNECT AS FAST AS UNLOADED, by coded non-interchangeable unit cables plugged in between Uni-racks.

SEND FOR FREE 226-PACE HANDBOOK

This 226-page Handbook describes fully the Alden System of Plug-in Unit Construction and the hundreds of components ready-made and completely tooled to meet your every requirement. It's a gold-mine for those designing electronic control equipment that is practical in manufacture; dependable in operation.

COMPLETE CIVILIAN LINE

Exceptionally good delivery cycle on civilian orders due to tremendous mass production facilities.

NEW HIGH QUALITY MINIATUEAZED "DIME-SIZE" CIVILIAN CONTHOLPefformanco Fully Equals learger Trues
TYPE M, 3/4" diameter vartoble comperition resistor. Wattoge rating. 3 watt for reslstances throught 10,000 ohms, 2 watt with 350 volts maximum across end terminals for reststonces over 10,00\% ohms. Also available in concertric shaft tondem construction C $\$ 5.70$ as shown above.

TYPE C2-45

TYPE GC-45, 15/16" diameter veriable compesition resistor. Wattage rating: $1 / 2$ watt for resistances through 10,000 ohms, $1 / 3$ watt for resisfances over 10,000 ohms through 100,000 ohms, $1 / 4$ wott with 500 volts haximum across end terminals for resistances over 100,000 ohms. Ava lable with or without illustrated atteched 3 witch and in concentric shaft tandem construction C2.45 as shown above.

TYPE GC-35, $11 / 8^{\prime \prime}$ diamoter variable composition resistor. Wottage rating: 3/4 watt for resistances through 10,000 ohms, $2 / 3$ wott for resistances over 10,000 ohms through 25,000 ohms, $1 / 2$ wott with 500 volts maximum across end terminals for resistonces over 25,000 ohms. Available with or withous illustrated atrached switch and in concentric shaft tandem construction C2-35 as shown above.

TYPE GC-252, 2 w=t1, 1 17/64" diam. eter variable wirnwound resistor. Available with or without illustrated affached swisch and in concentric shaft landem corstruction C2-252 as shown above.

TYPE GC-25, 4 wath, $117 / 32^{\prime \prime}$ diomefer variable wiecweund resisfor. A vailable with or withous illustraled affached switch and in cencentric shafi fandem construction C2-25 as shown above.

Iypical concentric shaff landem with panel and rear sections operating separately from eneentric shofts (TYPE C45-70 IILUSTRATED). Similar construction available for all nilitary resistors.

[^6]
IN CANADA ${ }^{\text {C }} \mathrm{C}_{\text {m meserith }}$ \& Co.

 sobith americia Josell ois PonteBurcmos nites
 Ris of lanelvo Brazi
 OTHER EXPORT Sylvä Ginsbuy
8 Weit foin streel 8 Wes 10ih Streel
New York 18, N. Y.

TYPE C45-70

Immediare delivery from stock on 189 types including JAN-R-94 and JAN-R-19 types of variable resistors.

NEW 36-PACE ILLUSTRATED CATALOC -
Describes Electrical and Mechonical characteristicsr Special Features and Constrections of a complete line of voriable sesistors for nititory and civilian use. Includes dimonsionol srawings of eoch rasislor. Writo fodor for your copy.

TYPE 45, (JAN-R-44, Type MV2' 1/4 wall, $15 / 16^{\prime \prime}$ diamefer vorioble composilion resistor. Also avcilable with other special millitary fealures no covered by JAN-R-94 including concentric shaft tonden construction. Altoched switch can be supplied.

TVPE 3S, UAN-N-१4, Type RV3) $1 / 2$ wall, $11 / 8^{\prime \prime}$ diamefer varioble composilion resisfor. Also ovpilable with other special milifary features net covered sy JAN-R.94 including concentric shaft tonder construct on. Attached 3 witct con be supplied.

TYPE 252, (JAN-是-19, Type R A 20) 2 wotl, $117 / 64^{\prime \prime}$ diamefer varioble wirewound resistor: Also available with othe: speciof military feafures ncl covered by JAN-R- 19 incluc. ing concentric shaft tondem construction. Attoched switch con be supplied.

TYPE 25, JAN-R-19, ITpe RASO) (Moy alse be used as Trpe DAS5) 4 wott. 1 17/32" diamefer variable wirewound resisfer. Also available with other special military fectures nat covered by JAN-R-19 includ. ing concentric shaft tondem constrution. Attached switch can be supplied.

TYPE 65, (Miniaturized)
$1 / 2$ watt $70^{\circ} \mathrm{C}, 3 / 4^{\prime \prime}$ diameler minioturized varioble composition resistor.

IYPE 90
1 watt $70^{\circ} \mathrm{C}, 15 / 16^{\prime \prime}$ diameler varioble composition resistor. Attached switch can be supplied. Also avallable in concentric shoft tandem construction.

TYPE 95, (JAN-R-94, Type RVA) 2 watt $70^{\circ} \mathrm{C}, 11 / 8^{\prime \prime}$ diametor variable composition resisfor. Also available with othor special milliary foatures not covered by JAN-R-94 including concentric shaft tondem construction. Attached switch can be supplied.

USPRECEDENTED

PERFORMANCE CHARACTERISTICS
Spocially designed for millisary communications equipment subject to extrome temperature and humidify sanges. $-55^{\circ} \mathrm{C}$ io $+150^{\circ} \mathrm{C}$...aridity to saturation.

MEPCO'S NEW SEALED Precision Resistors STOP Humidity Failures

MIL - R -93A
WATTAGE \& RESISTANCE TOLERANCE

TOLERANCE SYMBOL	RESISTANCE TOLERANCE	PERCENT OF NOMINAL WATTAGE
B	0.10%	50%
C	0.25%	50%
D	0.50%	75%
F	1.00%	100%

MIL - R . 93A
TEMPERATURE COEFFICIENT
(referred ro $25^{\circ} \mathrm{C}$)

Symbol	EXPRESSED in Percent Per degree C.	
	NEGATIVE, MAX.	POSITIVE, MAX.
E	0.0022	0.0022
J	0.0040	0.0155
K	0.0050	0.0255

SPECIAL REQUIREMENTS

Variations of the above ratings, tolerances, temperature coefficient, etc. can be supplied to special order.

INC. ann mis nopososo
MEPCO M52
MORRISTOWN, NEW JERSEY

United States Patent Office.

M. C. STONE.
artificial straw. Patented Jan. 3, 1888.
No. 375,962 .

Allest.
Qfivm Parelingworts
\& M Mapuwaue.

Kawin bo Sfones
By his acty
Ohie D. Wodqe
iNo. 3 of a series)
The Historical Bockground of SIONE PAPER TUBE CO

1HESE vords by Marvin C. Stone were contained in this artificial drinking straw patent granted him January 3, 1888, a patent which marked the entry of Stone into the spiral wound paper tube field

During the next forty years, the use of Stone's Drinking Straws became worldwide and the products of the Tube Division of Stome Straw Corporation were finding an important place in industry.
To better serve the expanding needs of the electrical and electronics industries, the Stone Paper Tube Company was organized early in 1928 and since that time has become one of the largest manufacturers of small diameter paper tubes in the country.
Today, millions of Stone custom-made items pour from batteries of Stone designed and manufactured machines machines whose unique construction features are a closely guarded trade secret.
Magnetic switch insulation for automotive accessories, armature shaft insulation
for fractional HP electric motors, coil winding hoblins for time control motors, and Stonized spiral phenolic coil forms for radio and television are just a few of the many uses hundreds of America's leading manufacturers make of our product.

Made-to-order quality items can be furnished in diameters as small as $3 / 64^{\prime \prime}$ ID, various wall thicknesses and lengths, and of many materials including high-dielectric kraft, fish paper, and plastic film. They are, of course, made to extremely close tolerances . . are low in cost . . . and your order is handled with unsurpassed service.

Chances are there are many applications in which you could put Stone products to profitable and practical use in your business. Write us for a more complete story of what we have to offer you.

Sales representatives are located in principal cities for your convenience.
STONE PAPER TUBE CO.
Washinglorpration D, C.

You know he'll never lose you ...

YOUR GUIDE . . . you know he'll take you where you want to go, by the quickest, easiest route. That's exactly what Bristol Brass aims to do... to get your order to you the same way. And that takes experience and character ... both in the company and in its product.

Matter of fact, that's why so many people keep standing orders with Bristol Brass . . . because they know those orders will never get lost.

They'll be where they're supposed to be, right on time, and right according to specifications . . . be it sheet, rod or wire.

The Bristol Brass Corporation, makers of Brass since 1850 in Bristol, Conn. Offices or warehouses in Boston, Chicago, Cleveland, Dayton, Detroit, Los Angeles, Milwaukee, New York, Philadelphia, Pittsburgh, Providence, Rochester.

"Bubtoc-Fahion" menens Brass at its Best

SORINSEN

SORENSEN'S EXPANDED LINE OF B-SUPPLYS NOW INCLUDES THIS NEW MULTI-RANGE DUAL SUPPLY.

MODEL 350-B SPECIFICATIONS

INPUT	105-125 VAC, 50-60~, 10 .
OUTPUT	1. 175-350 VDC @ 0.60 Ma simultaneously from two independently adjustable outlets. 2. 175-350 VDC@ 0-120 Ma from one outlet. 3. 0-175 VDC @ 0.60 Ma from one outlet. 4.6.3VAC@3.5 omps., C.T., unregulated.
OUTPUT REGULATION	$\pm 1.0 \%$
RIPPLE	10 mv
SIZE	$13^{\prime \prime} \times 712^{\prime \prime} \times 8^{\prime \prime}$

*Reg. U.S. Pot. Off. by Sorensen \& Co., Inc. purpose loboratory instruments. All of them provide voltage and current well in excess of the specifications given below (these "plus values" are shown graphically in the new Sorensen DC catalog).

You owe it to yourself to get acquainted with these Sorensen B-NOBATRONS. You'll find they are reasonably priced - surprisingly so $-y \in t$ in all ways live up to the Sorensen eputation for sound engineering, quality construction, dependable operation. Write for information.
Many users of Sorensen Nobatrons* and AC Regulators are unaware that the standard Sorensen line includes a wide range of "B-Nobatrons" - high voltage, low-current DC sources.

Are you familiar with the number of units in the line? Two of them - models 360BB and 520BB - are low-cost units for those not requiring outputs adjustable down to zero, but which can be paralleled for higher current requirements. The other models are highly flexible, all-- - .

REGULATES
AND CONTROLS

AUTOMATIC BUTTON STEM MACHINE

- Kahle Engineering Company has added ene more outstanding piece of equipment to their constantly growing list of - procuction equipment
- A new 24 head Button Stem Machine No. 2179 for making ore inch button stems with 3 wires and tubulation for T. 3 tube sires.
- Mashine incurpovates automatic lead wire feed, automatic tubuation feed, automatic glass bead feed, automatic unload. These, combined with automatic rejection and head cleanout in case any component fails to feed, make this machine unique.
- Such a machine is ideal for other similar stems such as cathode ray stems with 6,8 or 10 wires.

This is not just another stem machine. It is a completely automatic stem machine with 24 heads and precision high speed index. The machine illustrated embodies all the improved techniques and mechanisms that Kahle engineers could find from their own and their customers' experience.

This problem involved glass tubulated stems for radio tubes. However, Kahle has solved many other problems neither associated with glass or connected with electronics.

If your problem requires special techniques or processes; if you need custom machinery; or, if you need relief from expansion projects, Kahle engineers will work with you to achieve "customer satisfaction" from "Built-ln Know-How."

For multiple contact connectors, Ucinite offers its molded miniaturized connector in low-loss material and banana plugs and jacks for adaptability to special requirements.
Molded assemblies are available in standard 12 and 14 pin connectors. Banana plugs and jacks can readily be made in assemblies for specific application.
Ucinite banana pins have one-piece beryllium
copper springs to insure proper alignment and firm contact under the most adverse conditions. Mounting ends can be made up in practically unlimited variety for staked or threaded mounting. Springs and mating jacks are available in several sizes.

Ucinite engineers are ready to design and manufacture single and multiple contact connectors to solve your special problems.

Specialists in

ERECTRICAL ASSEMDIIES,

RADIO AND AOTOMOTIVE

Turn your special fastening problems over to United-Carr and free your own design staff for full-time work on finishedproduct engineering.

United-Carr's engineering department is constantly at work, improving current DOT fasteners and designing entirely new fasteners to meet the changing needs of inclustry.

Experience gained through working with the leading manufacturers of
 automobiles, aircraft, appliances and furniture as well as electronic apparatus... enables us to bring an unusually wide variety of abilities and techniques to bear on your particular fastening problems. And, with complete facilities for volume production of metal fasteners and the assembly of metal to plastic and ceramic components, we are in a position to supply practically any fastening need.
The fasteners and assemblies illustrated here are typical of thousands
 of special devices designed and manufactured by United-Carr and its subsidiaries.
We urge you to call in your nearest United-Carr field engineer before your new designs crystallize. It is at this all-important planning stage that you can make most effective use of our special services.

AMP Trateomark Reg. U. S. Pet, Oh,

- Trade-Maik

AIRCRAFT-MARINE PRODUCTS, INC. CHEMICALS AND DIELECTRICS DIVISION 2100 Paxton Street, Harrisburg, Pa.

sure ways to improve equipment-

all spelled $\mathbf{F} \cdot \boldsymbol{I} \cdot \mathbf{B} \cdot \mathbf{E} \cdot \mathbf{R} \cdot \mathbf{G} \cdot \mathrm{L} \cdot \mathrm{A} \cdot \mathrm{S}^{*}$!

There's no substitute for proven performance -and for more than 15 years Owens-Corning Fiberglas materials have been helping to make good electrical equipment perform even better. Five such materials are shown below and on the facing page. All are proven ... all are universally available . . . most are priced no
higher than ordinary organic products. and all are spelled F-I-B-E-R-G-L-A-S . . . as in Owens-Corning Fiberglas, originators of glass in fiber form! For further details on any of these five sure ways to improve equipment -and names of suppliers nearest you-be sure to send in the coupon today.
*Fiberglas is the trade mark
(Reg. U. S. Pat. Off.) of
Owens-Corning Fiberglas Corporation
for a variety of products made of
or with fibers of glass.

"if it's Fiberglas, it's Owens-Corning!"

OWENS-CORNING FIBERGLAS CORPORATION - TEXTILE PRODUCTS DIVISION • 16 EAST 56TH STREET, NEW YORK 22, NEW YORK

electrical laminates

Fiberglas yarns absorb energy without permanent set-give Fiberglas glass-base laminates maximum impact resistance. Retain their shape-can't shrink or swell-and punch clean, handle well. Available impregnated with phenolic, polyester, melamine, silicone resins.

sleeving and tubing
Sleeving and tubing made with Fiberglas yarns offer unsurpassed strength, flexibility and resistance to moisture, oils, most acids. Won't burn during soldering work and is easier to slip over conductors because it is round and smooth inside.

varnished cloth

G ass can't burn; cloth: woven of Fiberglas varns thus offer unparalleled fire safety. $P=r m i t$ operation of equipment at higher ambient temperatures for longer time with Fewer breakdowns. Dissipate heat faster, tos-provide greater overload insurance.

electrical tapes

Exceptional tensile strength and smaller diameter of Fiberglas yarns means thinner, stronger tapes-less bulky wrappings, savings in space. Fewer equipment breakdowns, too, because Fiberglas yarns cannot stretch or shrink . . . won't burn . . . and are resistant to moisture and most acids.

magnet wire

Fiberglas yarns used in magnet wire are thinner than organic textiles, yet withstand higher temperatures. Makes possible the d\#sign of smaller, lighter, higher-rated equipment-with corresponding savings in metals and other expensive materials.

Owens-Corning Fiberglas Corporation
Electrical Sales Division, Dept. 860 16 E. 56th Street, New York 22, N. Y.

Please send me the following booklets:Sleeving \& TubingMagnet Wire
\square Electrical Laminates
Electrical TapeVarnished Cloth

NAME.
TITLE
COMPANY
ADDRESS.
CITY . ZONE STATE

WORKMANSHIP

Workmanship is of a quality with the highest existing production standards and best instrument electronic practices consistent with the intended use of the item as a confinuous duty voltage regulated power supply. Oil filled paper condensers ond re-sistor-board construction are included in the design.

MANUFACTURERS OF ELECTRONIC EQUIPMENT • RESEARCH • DEVELOPMENT

No ordinary relay...This! New CLARE Type T High Frequency Impulse Relay will follow 2500 cycles per second with life measured in billions of operations!

specifications

MECHANICAL

SIZE:
1-15/16 in. diameter $\times 2.3 / 16 \mathrm{in}$. overall.
WEIGHT:
5 ounces.
MOUNTING: Equipped with mica-fled bakelise plug, to fit o standard 8-pin octal socket.
COVER: Removable dust-tight cover.
CONTACTS:
Typer: Form A (s.p.s.t., normally open)
Material: Platinum-iridium
Gap $\quad 0.0005$ inch
Pressure: 30 grams, min. (Coil energized with 50 ampere-furns)
COIL:
Type: Single winding, bobbin-wound
Wire: Heavy formex

ELECTRICAL

COIL DISSIPATION: 0.5 watt (estimated mox.) CONTACT RATING: 0.05 amp., mox. 50 volts ac, non-inductive. (estimated)
CONTACT BOUNCE: None
OPERATION:
Pull-in - 15 amfere-turns
Drop-out - 12 ompere-furns
Pull-in time - 120 microseconds Drop-out time - 100 microseconds
RATE: Will follow 2500 cycles per second; operiodic to 1000 cycles per second.
LIFE EXPECTANCY: $5 \times 10^{\circ}$ operations with zero contact current.
DIELECTRIC STRENGTH: 500 volts. rms.

TYPICAL APPUCATIONS

Coil inductonce - 0.3 try (contocts open) Coil inductance - 0.35 hy (contacts closed) Coil resistance - 135 shms
Pull-in current - 10 tc 12 mo
Drop-out current - 8 to 10 ma .
Normal coil current - 40 ma.
Contact current - 0.075 ma .

View of Clare
Type T
High Frequency Impulse Relay with dust cover removed

Originally designed for use in an analog computer, the new Clare Type T High Frequency Impulse Relay is now available for other applications which require a highly sensitive relay completely free from contact bounce and capable of a prodigious number of operations at extremely high speeds.

Its pull-in time of 120 microseconds and drop-out time of 100 microseconds enable this relay to follow up to 2500 cycles per second; aperiodic to 1000 cycles per second.

In a typical application, it has a life expectancy, following a run-in period of 1×10^{6} operations, of 5×10^{9} operations with a 0.75 ma contact load over a $6 \cdot$ month period without readjustment.

To achieve its high-speed, no-bounce, and other unusual characteristics, this relay is built to extremely close tolerances, with a high degree of precision, under conditions of utmost cleanliness. This necessitated the development of techniques never before employed in the manufacture of relays.
Even before this first public announcement of the availability of this truly remarkable relay, its fame has spread. Already dozens of inquiries and sample orders have been received from laboratories and development organizations which had learned of its existence through the manufacturer who first applied it in a well-known computer. It may provide the answer to one of your problems.
For full information on this new relay or for consultation on any relay problem, we invite you to contact your nearest Clane sales engineer or write to C. P. Clare \& Co., 4719 West Sunnyside Avenue, Chicago 30, Illinois. In Canada: Canadian Line Materials Ltd., Toronto 13, Ontario. Cable address: Clarelay.

WRITE FOR BULLETIN 117
To meet the strictest requirements of both Government and Industry, specify

1N69
IN70
IN81

TYPICAL USES

COMPITOR CIRCUITS	MODULATORS
CLAMPING CIRCUITS	NOISE ELIMINATORS
RF DETECTORS	CLIPPERS
CONTROL CIRCUITS	LEVEL SETERS
DISCRIMINATORS	RESTORER CIRCUITS

	JAN TYPES - ALL VALUES MEASURED AT $25^{\circ} \mathrm{C}$.					
	CODE NO.	Min. Forward Current at 1 Volt (MA)	$\begin{aligned} & \text { Max. Reverse } \\ & \text { Current } \\ & \text { (Micro-Amperes) } \end{aligned}$	*Average Rectified Current (MA Max.)	\dagger Minimum Reverse Volts	Max. Cont. Reverse Operating Volts
	1N69	5.0 Rectification	$\begin{gathered} 50 @-10 \mathrm{~V} \\ 850 @-50 \mathrm{~V} \\ \text { iency: } 35 \% \text { minim } \end{gathered}$	$\begin{gathered} 40 \\ \text { in } 100 \mathrm{MC} \end{gathered}$	75 circuit.	60
CLAMPING CIRCUIT	1N70	3.0	$\begin{array}{r} 25 @-10 V \\ 300 @-50 v \end{array}$	30	125	100
	1 N 1	3.0	10@-10V	30	50	40

COUNTING RATE CIRCUIT
*Average half wave rectified current at 60 CPS and $25^{\circ} \mathrm{C}$. Consult us for ratings at other condifions.
\dagger For zero dynamic resistance.

Radio Receptor Germanium Diodes may hold the answer to many of your problems. Our engineers will be glad to study your requirements and submit their recommendations. Many other types, both standard and special, are available . . . Write us!

Seletron and Germanium Division

HADIO IRECEPTOR COMPANY, INC.

QR Since 1922 in Radio and Electronics बR

SALES DEPT: 251 West 19th Street, New York 11, N. Y. FACTORY: 84 North 9th Street, Brooklyn 11. N. Y.

Du Pont "TEFLON" provides high-temperature insulation

Terminals made by
Sealectro Corp., New Rochelle, N. Y.

Dielectric properties remain constant over wide temperature range

Standoff and feed-thru insulator terminals often fail in service due to high-temperature breakdown. Cracking frequently occurs during degreasing operations. And breakage may occur during manufacture. Today's equipment and operating conditions require terminals that eliminate these failures and provide improved, lasting performance.

In designing such improved terminals, Sealectro Corporation sought an insulating material that had good dielectric properties, resistance to high operating temperatures and chemical attack, and the toughness and resiliency to eliminate breakage and cracking. And it had to provide for simple, positive installations.

They chose Du Pont "Teflon"* tetrafluoroethylene resin. "Teflon" is an excellent insulator. Its dielectric constant (2.0) and loss factor (0.0005) are unaffected in temperatures from $-80^{\circ} \mathrm{F}$. to $400^{\circ} \mathrm{F}$. Du Pont "Teflon" is inert to all chemicals except molten alkali metals and fluorine. It is tough, durable . . . will not crack or arc. And the one-piece terminals assure simple, tight, lasting installations.

Du Pont "Teflon" serves many uses in electrical equipment-coaxial spacers, insulation for wire, cables and motor windings, and other parts where high temperatures, service, diclectric strength and durability are required. Perhaps it can help you improve or develop a product. For full information, write E. I. du Pont de Nemours \& Co. (Inc.), Polychemicals Department, Room 224T, Du Pont Bldg., Wilmington 98, Dclaware.

Over open area a tank pitches and heares like a rocking chair ... but regardless of the bumps . . . ditches... liills, the guns heep pointing at the target while the tank is moving. Fond Instroment Company plaved a vital role in designing and manufacturing a stabilizer unit for the tank: gun fire control system.

This is typical of the problems that Ford has solved since 1915. For from the vast engincering and production facilities of the Ford Jistrument Compars, come the mechanicul. hydraulic electro-mechanical, inagnetic and electronic instruments that bring us our "tomonow" today. Control problens of both Industry and the Military are Ford specialties

You can see why a job with Ford Instrument Company offers a challenge to young engineers. If you qualify, there may be a spot for you in automatic control development at Ford. Write for brochure about products or job opportunities. State your preference

FORD INSTRUMENT COMPANY
DIVISION OF THE SPERRY CORPORATION 31-10 Thomson Avenue, Long Island Cify 1, N. Y.

A NEW IRVINGTON CLASS "B" INSULATION...

By bonding a range of thicknesses of Quinterra asbestos to various thicknesses of Mylar-a tough, strong polyester film with the highest dielectric strength known-Irvington now brings you a line of Class " B " insulation that balanees cost and properties to mect your needs. The Mylar gives IRV-O-BESTOS its high tensile, tear and dielectric strength. The Quinterra makes for ease of gripping-gives added heat stability and added thickness at moderate cost.?

Look to
IRYINGTON
for Insulation Leadership insulating varnishes varnished cambric varnished paper varnished fieerglas insulating tubing Class "K" Insulation Quinterra or the Mylar on the outside. Whether your requirements are for high dielectric strength, or for added thickness at low cost, IRV-O-BESTOS will fill your needs.
Mail the coupon for technical data and samples of this outstanding new Class " B " insulation.

- "du Pont Hademork
- Johns-Manville Corp. Irademark

Send this convenient coupon now Irvington VARNISH \& INSULATOR COMPANY 10 Argyle Terrace, Irvington 11, New Jersey Plants: Irvington, N. J.; Monrovia, Calif.; Hamilton, Ontario, Canada

BOGART

 MANUFACTURING CORPORATION

 MANUFACTURING CORPORATION}

Producersof Microwave Equipmentsince 1942

The illustrated S-Band Rotary Joint is a waveguide to coaxial to waveguide structure employing doorknob transitions.

The use of choke terminations for the inner conductor of the coaxial section, as well as doorknob transitions, ensures satisfactory operation at high powers without breakdown. This joint is characterized by a low VSWR (less than 1.04 over a 2% bandwidth) and freedom from resonances throughout its rotation of 360°. Similar rotary joints for elevation and cross-level purposes are
 available in various sizes of waveguide.

Bradley Rectifiers are doing many different types of jobs

CHECK THIS LIST to see if you might be overlooking a simplified way to solve a circuit problem or better circuit operation. New developments have widened rectifier application. Bradley engineers can help you realize these new possibilities for your product.

In either conventional or special applications, Bradley rectifiers offer maximum stability and long life under usual or unusual temperature conditions. Laboratory conditions of manufacture, engineer inspection, and our exclusive vacuum process assure top quality, prompt delivery and lowest unit cost. out of order as in mechanical modulator much longer life than

Write or call us for further information.

Bradley copper oxide madulator for this very low voltage threshhold application features low noise level, good temperature characteristics, and lang-term stability. No moving parts to get

COPPER OXIDE MODULATOR

vacuum tube.

The complete selenium rectifier line - from microamperes to thousands of amperes

bradley laboratories, inc., 168 Columbus Avenue, New Haven 11, Conn.

Have you heard the latest...
 IN BACKGROUND MUSIC?

An atmosphere to relax and enjoy - or the stimulation to work, to think, to play or buy - these are the benefits of background music. And background music is now practical anywhere, even beyond the reach of present wired services.
With the announcement of the new AMPEX 450, magnetic tape, musical wonder of a coming era, has become the ideal medium for background music. Hourly cost drops to a new low; quality rises to an all-time high. A wide variety of music for every purpose is now available on pre-recorded tape (see your Ampex distributor). Tape recordings eliminate needle scratch and their fidelity is permanent. They last for any conceivable number of plays.
On the AMPEX 450, up to eight hours of unrepeated music is available from one 14 -inch reel of tape, and fully automatic repetition is available. The troubles and complexities of record changers are eliminated. And the AMPEX requires no standby attention from an operator.

AMFEX background music has a place in your business.

For further information, vrite to Dept. E

MAGNETIC RECORDERS

THE NEW AMPEX 450

- 8 hours of uninterrupted music (rest periods as desired)
- Usable on land, sea or air
- No standby operator required
- Lowest cost per hour

the JK FD- 12

FREQUENCY AND

 MONITOR MODULATIONMonitars any tour frequancies any where betwees: 25 mc and $175 \mathrm{~ms}_{3}$ checking boft frequency deviation ond anowit of nadulation. Keeps the "Beam" on sllocation: guarantes mbre solid col erog z_{2} tool

JK STABILIZED H-IA CRYSTAL

CRYSTALS FOR THE CRITICAL

The ${ }^{\mathrm{K}} \mathrm{H}$-17 ${ }^{\text {arystal meets rigid airline re- }}$ quirenents for compacness, light weight, rugged dependabilitya Military type, it is bermetivally sealed-dust and moisture proof -plated, quartz plame is shock mounted. One of many JK Crystals rade to serve every need.

Miniature Tube Socket Eliminates Ambient Temperature Interference

This new socket, overcomes two important obstacles to dependable tube performance-interference from high and low ambient temperatures, and erratic output at high frequencies due to insulation leaks-through the use of Kel-F trifluorochloroethylene polymers as the insulation. The precision molded insulation resists buckling, cracking or chipping due to sudden rises in temperature. The unique properties of the plastic allows the injection molded part to remain tough but resilient at temperatures of from below zero to well above $300^{\circ} \mathrm{F}$. The high dielectric strength and low dissipation factor of Kel-F assures consistent, reproducible output even at high frequencies.
United States Gasket Company of Camden, N. J. produces this injoerion molded tube socket for a major electronic: component manufacturer. Designating it as the "Chemelec"** series sucket, 1.S. Gasket is currently producing 7 - and 9 -pin types for a variety of military and industrial applications.

The resistance of Kol-F to embratlement under constant vibration, or mechanical failure due to physical abuse, make it particularly suited to military uses. Its broad range of application also includes installations where high humidity is encountered-the zero water absorption, non-wetting characturistics of Kel-F allow it to maintain a higla level of dielectricity through elimination of surface leakage due to moisture or fungus films. Additional flexibility in specifying this tube socket is possible because Kel-F is also resistant to attack or degradation by chemicals, oils and most organic solvents.
**Trade mark of the United States Gaskei Co.
Hefer to Heport E-107

Terminals with KEL-F* Plastic Insulation Feature 10^{6} Megohm Insulation Resistance... and Minus $94^{\circ} \mathrm{F}$. to $390^{\circ} \mathrm{F}$. Range!

With true hermetic seal characleristies these terminals will bear rough production handling and still pass a 7 pound terminat pull test and a 10 inch ounce torgue test on the central conductor. Combine this with the high insulation resistance, broad temperature utility: and mechanical strength of Kel-F in the body, and you lave a solder-seal type terminal that stands out among all others.

Manufactured by the International Resistance Compans of Plifadelphia, Pa., this "Type HS-1" terminal (pictured at right) achieves its high rating throngh the use of insulation injection molded of Kel-F and a special process developed by this company to obtain a plastic-to-metal bond of remarkable strength. Employing highly diclectric and inert kel-F polymers as the insulation in this terminal, International has overcome limitations associated with similar type terminals: low corona breakdown voltage, electrolysis under high DC voltage, failure under thermal shock.

The molded Kel-F is inert to acids. alkalis. vils, vapors and most organie solvents-thereby extending its usefilness to many processes and industries. Consistent, dependable, per-
furmance is assured in humid installations - insulation molded of Kel-f has rewo water ahsorption, wheds water, precludesformation of fungus.

International Resistance Company molds and extrudes Kel-F polymer in many forms to serve many phases of the electrical and clectronic industry: The main illustration includes several of the current applications, as well as others in the testing stage, among them press-fit insulated terminals. resistors with bodies molded of Kiel-F...similar items in which the KM-F is loaded with mica and silica
miniature insulated feed-through terminals . . injection molded multiple healer for hermetic seal use . . . selenium rectifier employing parts of Kel-F. Work is also continuing on development of musual types of electrical materials which take advantage of the unique electrical and physical properties of Kel-F alone, or in combination with other materials.

FLUORO
CHIORE
CARBON
PLASTIC

FLUORO CHLORO CARBON PLASTIC

> "Spaghetti", Flexible in Sub-sub-zero Temp., Protects Against Oils, Chemicals and Moisture!

This smooth extruded "spaghetti" sleeving for aircraft wiring made of Kel-F polymer, is in a class by itself. Not only does it have a high dielectric strength of from 8500 to 5000 volts per mil, and excellent are resistance, but it will stay pliable and resist cracking and splitting even after prolonged use at temperatures from minus 90° to $300^{\circ} \mathrm{F}$. The unique physical and chemical properties of this fluoro-chloro-carbon plastic permits the lightweight but tough sleeving to remain unaffected under constant exposure to chemicals. oils, or aircraft fuels. Having a zero water absorption rating, it will shed water and prevent accumulations of troublesome fungus.

New Technical Bulletin on Properties Issued..

Kel-F' 'Pechnical Bulletin \#1-12-49, has just been revised and reissued as \#1-3-53. The new edition of the bulletin contains expanded data on physical propert ies including a table of Chemical Ressistance to more than 100 specific chemical substances... two new tables on Permeability also new data on Light Transmission in both the visible and ultra-violet spectrums.

If you have not received your copy, just drop a card or note to Technical Service.

Significant advantages are gained in using this sleeving to protect aircraft wiring. The high heat resistance of Kel-F and its non-flammability make it particularly valuable in enclosed or tight installations-also lighter sleering can be used while still maintaining superior protection. The overall result is a significant reduction in the weight and bulk of an assembly.

Preliminary investigations also show that sleeving, made from unplasticized grades of Kel-F polymers withstands nuclear radiations without significant effects on its electrical or mechanical properties.

Resistoflex Corporation of Belleville, N. J., manufactures several grades of "spaghetti" and rigid sleeving, made from Kel-F polymers, under the name Fhoroflex "C"**. Flexible spaghetti, ranging in size from $\# 22$ wire up to $3 / 4^{\prime \prime}$ I.D. is extruded in continuous lengths from Kel-F polymer. Larger sizes, up to $11 / 4^{\prime \prime}$ I.D., are available in 12^{\prime} lengths.

The activities of this company in applying Kel-F to corrosion. temperature and electrical problems are widespread. It has developed extruded (reinforced steel braid) aircraft hose for handling corrosive oxidants, sheets for gaskets and pump diaphragms, precision machined fittings and instrument parts of Kel-F to close tolerances.
** Trade mark of Resistoflex Corporation
Refer to Report E-10s

Molders of the Month
-Leading molders and extruders specialize in fatry ication of materials and parts made of Kel-F. . . earh mouth this column will spotlight several of these companies with their principal servires and products.

American Phenolic Corporation

 Chicago, III.```
Kel-F Coated Wire, Cable
```

Injection Molding

Crane Equipment \& Supply Company, Inc.
Waterbury, Conn.
Kel-F Dispersion Coatings
Flek Corporation
Los Angeles, Cal.
Injection, Compression and Extrusion Molding
Electronic Seoling of Film Dispersion Coating
Insulating Fabricators of New England, Inc.
Watertown, Mass.
Fabrication of Parts From Sheet, Rod Tubing
Mochining, Engraving, Stamping, Punching, Polishing of Parts

## Linear, Incorporated

Philadelphia, Pa.
Compression Molding " $O$ " Rings, " $U$ " and " $V$ " Packings, Goskets, etc.
The Polymer Corporation of Pennsylvania

## Reading, Pa .

Extruded Tape, Strip
Molded Rods, Beading
Extruded Rods

For complete information regarding any item mentioned in DESIGN AND PRODUCTION NEWS, ask for detailed APPLICATION REPORTS, write



- Zero Maintenance
- No warm-up time
- Absolute reliability
- Fast response
- Miniaturized and

Hermetically Sealed.
Illustrated at the left is the 434-B Servo Amplifier, designed to drive the MKlt, MKT and MK8 BuOrd Servo Motors from synchro data. No power supply or stabilization tachometers are required. There are only six connections to the unit: 2 inputs, 2 outputs, and 2 for 117 volts, 400 cps .

## TRASSISTOR - IIGAETIC

## SERVO AMPLIFIERS

The Engineering Staff of the Industrial Control Company is continually engaged in long range development, designed to bring to our customers a variety of new techniques and equipments in this field.

With the transitor as a preamplifier, there results a combination with the power output capacity of the magnetic amplifier and the sensitivity and speed of response of the transistor. Hermetic sealing is feasible because of the practically unlimited life and the low internal temperature rise. This radically new amplifier, developed and manufactured by the Industrial Control Company, will revolutionize the application of automatic control systems and servomechanisms in :. .

## - Industrial Controls

- Military Equipment
- Atomic Energy Installations.


TRANSISTOR AMPLIFIER in LUCITE equipped with Bradleyunit Fixed Resistors


Courtesy of Bell Telephone Laboratories, Inc.

Bradleyunit Fixed Resistors $-1 / 2,1$, and 2 watt units

## CERAMIC CAPACITORS

from 0.00047 to 0.01 mf

After long research Allen-Bradley has de veloped a high qual ity line of ceramic capacitors. Every step, from making the ceramic discs to the final impregnation and testing of the fin ished capacitor, is done in the AllenBradiey piant.

A-B capacitors are approved by the larg. est manufacturers and research laboratories. Samples for testing furnished on request.

# BUILD SUPERIOR PERFORMANCE 

## INTO YOUR ELECTRONIC EQUIPMENT WITH ALLEN-BRADLEY QUALITY COMPONENTS

If you want to be sure of getting consistently fine and dependable performance from your electronic circuits over a long period of time, just follow the example of leading laboratories... and use Allen-Bradley solid molded resistors.

Bradleyunit resistors have permanent characteristics, because they are rated to operate continuously at 70C ambient temperature . . . not 40 C .

Bradleyunits withstand extremes of temperature, pressure, and humidity without deterioration. They are solidmolded with high mechanical strength.

The A-B honeycomb carton prevents tangling of leads and saves time in production, Leads are differentially tempered to prevent sharp bends near the resistor body.

Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee 4, Wis.


# 3 Waldes Truarc Rings Replace 19 Parts Save $\$ 6.75$ Per Unit...Cut Weight by Nearly 16\% 



OLD WAY 2 Threaded nuts locked bearings in place. 8 screws and washers positioned bearing and shaft assemblies. This fastening method required expensive tapping and threading. Assembly was slow and costly.

TRUARC WAY Two Truarc inverted rings (Series 5008) provide uniform shoulder to lock bearings in place, position bearing and shaft assemblies. Additional Truarc Ring (Series 5100 ) locates ball bearing ...eliminates 1 sleeve type spacer.

Airborne Accessories Corporation, Hillside, New Jersey, uses Waldes Truarc Retaining Rings to take all thrust load from right angle bevel gears in their ANGLgear*. Truarc Rings make ANGLgear* more compact-save approximately $1 / 4^{\prime \prime}$ at each end of housing. By providing a choice of 3 mounting possibilities - instead of 1 - Truarc Rings make ANGLgear* adaptable to many different assemblies. New design increases load capacity . . . eliminates machining of threads.

Redesign with Truarc Rings and you, too, will
cut costs. Wherever you use machined shoulders, bolts, snap rings, cotter pins, there's a Waldes Truarc Retaining Ring designed to do a better job of holding parts together.

Waldes Truarc Rings are precision-engineered ... quick and easy to assemble and disassemble. Always circular to give a never-failing grip. They can be used over and over again.

Find out what Truarc Rings can do for you. Send your blueprints to Waldes Truarc engineers for individual attention, without obligation.

[^7]ALL MATERIALS - ALL SIZES - ALL SHAPES INDIANA-World's largest exclusico, Indalloy, of permanent magnets-CASD: Alnico, Indalloy, Cunico, Cobatitile: Cunico, Cunte. Vectolite, DUCTHLE, Cobalt, Tungsten. FORMED: Chrome, FOR ALL APPLICATIONS - LoudTypical ones: Radar Naynetrons Instruments speakers - Phonogray. Generators TV Focus Coils - Coin Selectors


Permanent magnets last forever . . . a reliable source of permanent potential energy. Indiana Permanent Magnets supply a constant, uniform magnetic field, indefinitely.

Research Leadership - Conslant research at INDIANA has produced new and better permanent magnets. In countless different products, this versalile "packaged energy" improves performance, permits new uses or applications, saves space and money. INDIANA engineers, backed by years of experience gained in the development of over 30,000 magnet applications, are exceptionally well qualified to help you. They will properly design the magnet and select the best permanent magnet material for your product.

Qualify in Mass-produced MagnetsLook to INDIANA for quality permanent magnets-for unsurpassed skill in manufac-ture-for cost-cutting engineering aid. Rigid supervision in every step of production is your guarantee of magnets with precise elec. trical characteristics and exact physical
 dimensions.

To meet your mass production needs, INDI-
 ANA gives you the advantages of the largest facilities in the world for the manufacture of permanent magnets and complete permanent magnet subassemblies. Futhermore, INDIANA makes no end products, has no subsidiaries; therefore, you can discuss your confidential problems freely with us. Take advantage of this wealth of extensive experience; "know-how"; top engineering; and prompt, reliable delivery of magnets on a regular production schedule. To help you in your design and production problems, consult The Indiana Steel Products Company, today.

The Indiana Steel Products Co.

VALPARAISO

INDIANA
Woclds Largeest
MANUFACTURER

# PERMANENT MAGNETS 

CUNICO - CHROME, COBALT OUd, TUNGSTEN STEEL

50) 

Write for This Permanent Magnet Design Handbook
Complete, authoritative reference manual on theory of magnetism, pei manet magnet design principles, energy curves, formulae, design steps and constructive data Write for Manual No. 4-14, today


SB
$\pi$
(4)



# (v) Molided Tuhe Sockets for High Production Applications 

Recent addition to METHODE line of TUBE SOCKET ReCCESSOFIES is this new "Twist-On" type of tube shield and base, mounted . Projecting lugs on molded sockets, as illus ground to chassis under shields provide direct grou shock and vibration screw pressur proof mount.

- Laminated wofer tube sockets
- Military Iube ond crystal sockets

Other METHODE PAODUCTS include: • Ponel Connector:

- Printed circuit sockets
- Tube shields


## METHODE Manufacturing Corp.

2021 West Churchill Street • Chicago 47, Itinois
Geared to produce Plastic and Metal Electronic Components


## PYRAMID

subraimiature "GLASSEA." CAPACITORS

For the most demanding applications, where top-quality and minimum-size considerations are the most vital factors, Pyramid "Glasseal" capacitors are the popular choice.

Power Factor vs. Temperature Cưrve

This attractive new catalog PG-3, incorporating complere engineering data, styles, sizes, and capacitance and voltage ranges is now available.


These graphs show typical performance characteristics of the Pyramid "Glasseal X" type, which is designed for $125^{\circ} \mathrm{C}$. operation. Full information on all "Glasseal" capacitors is provided in new catalog. PG-3.

Visit Booth 2-310 I.R.E. Convention

Fer your free copy, please address letterhead request to Department T1

## NEW

AUDIO

## New! Completely redesigned! Highest quality throughout Lighter weight, smaller size New wider frequency range Time-tested RC circuits No zero set. High stability Constant output, low distortion

COMPACT, EASY TO USE BASIC INSTRUMENTS FOR LABORATORY OR PRODUCTION TESTS

Hewlett-Packard RC oscillators have long been basic tools for making electrical and electronic measurements of precise accuracy. Now these world-famous test instruments are redesigned to give you the most compact, dependable, accurate and easy-to-use commercial oscillators available.
New - $b p$. 200 series oscillators have highest stability and precisely accurate, easily resettable tuning circuits. Low impedance operating levels together with superior insulation guarantee peak performance throughout years of trouble-free service. New models have wider $f_{\text {fre }}$ quency range. Operation is simplified-just three front panel controls. Size is different, too-the instruments are more compact, lighter in weight and enclosed in ari easy-tohandle aluminum case with carrying strap. Miniraum bench space is required. (Rack mounting available ron request.)

## Complete Coverage! HEWLETT-PACKARD

# OSCILLATORS 

The total coverage of just two of the new -hp- oscillators is materially greater than that offered by four previous -hp-instruments. For example, new Model 200 AB , for general audio tests, offers a wider frequency range of 20 cps to 40 kc and a full watt output. New -hp-200CD, for wide-range measurements at lower power, provides constant voltage output from 5 cps to 600 kc .
In addition to these new instruments, $-b p$ - continues to offer Model 200 H for carrier current work up to 600 kc , and Model 202D for low frequency and vibration studies down to 2 cps . These instruments retain their time-tested design. Components, insulation and other electrical and mechanical features are of the highest possible quality. The instruments are carefully adjusted and calibrated to meet exact frequency and performance specifications. An output amplifier provides complete isolation of the load, and changes in the output load cannot change the performance of the oscillator. Frequency stability is better than $\pm 2 \%$ including warmup, and hum voltage is less than $0.1 \%$ of rated output.

## -hp-202A

## Low Frequency

 Function GeneratorThis instrument is a compact, convenient and versatile source
 of transient-free test voltages between 1,000 and 0.01 cps . It provides virtually distortion-free signals for vibration studies, servo application, medical and geophysical work and other subsonic and audio problems. The equipment generates 3 wave forms-sine, square and triangular. Output is 30 volts peak-to-peak for all wave forms. The output system is fully floating with respect to ground and may be used balanced or single-ended. The instrument will deliver 10 volts RMS to a 2,500 ohm load; internal impedance, however, is only 40 ohms. There are no coupling capacitors in the output system, and a high degree of dc balance is achieved by a special circuit. Price, $\$ 450$.

BRIEF SPECIFICATIONS - 200 SERIES OSCILLATORS

| -hp. <br> MODEL | FREQUENCY RANGE | BANDS | FREQUENCY RESPONSE | POWER OUTPUT | $\begin{aligned} & \text { IOAD } \\ & \text { IMPEDANCE } \end{aligned}$ | DISTORTION | POWER CONSUMPIION | PRINCIPAL APPLICAIIONS | PRICE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200AB | $\begin{aligned} & 20 \mathrm{cps} \text { to } \\ & 40 \mathrm{kc} \end{aligned}$ | $\stackrel{4}{\text { ranges }}$ | $+1 \mathrm{db}$ $\text { Ref. } 1 \mathrm{kc}$ | $\begin{aligned} & 1 \text { wort or } \\ & 24.5 \mathrm{v} \end{aligned}$ | $\begin{gathered} 600 \\ \text { ohms } \end{gathered}$ | 1\% | $\begin{gathered} 60 \\ \text { wotts } \end{gathered}$ | Audio <br> Tests | \$120.00 |
| 200CD | $\begin{gathered} 5 \mathrm{cps} \\ 10 \\ 600 \mathrm{kc} \end{gathered}$ | $\begin{gathered} 5 \\ \text { tanges } \end{gathered}$ | $\pm 1 \mathrm{db}$ <br> Ref. 1 kc | 160 niw - 600 ohms <br> 아 20 valts open circuit ${ }^{\text {- }}$ |  | 1\% | $\begin{gathered} 75 \\ \text { watts } \end{gathered}$ | Audio, Ulira sonic, lests | \$150.00 |
| 200 H | $\begin{aligned} & 60 \mathrm{cps} \\ & \text { to } \\ & 600 \mathrm{kc} \end{aligned}$ | $\stackrel{4}{\text { decades }}$ | $\begin{aligned} & \pm 1 \mathrm{db} \\ & \text { Ref. } 1 \mathrm{kc} \end{aligned}$ | $\begin{aligned} & 10 \mathrm{mw} \\ & \text { or } \\ & \text { Iv } \end{aligned}$ | $\begin{gathered} 100 \\ \text { ohms } \end{gathered}$ | $\begin{gathered} 1 \%, 100 \\ 100,000 \mathrm{cps} \\ 3 \%, 60 \\ 600,000 \mathrm{cps} \end{gathered}$ | $\begin{gathered} 115 \\ \text { watrs } \end{gathered}$ | Carrier Cutrent \& Telephone Tests | \$350.00 |
| 202D | $\begin{aligned} & 2 \mathrm{cps} \\ & 10 \\ & 70 \mathrm{kc} \end{aligned}$ | $\begin{gathered} 5 \\ \text { ranges } \end{gathered}$ | $\pm 1 \mathrm{db}$ <br> Ref I kc | $\begin{gathered} 100 \mathrm{mw} \\ \text { or } \\ 10 \mathrm{v} \\ \hline \end{gathered}$ | $\begin{aligned} & 1.000 \\ & \text { ohms } \end{aligned}$ | 1\% | $\begin{gathered} 80 \\ \text { wat/s } \end{gathered}$ | Low Frequency Measurement | \$275.00 |
| 2001 | $\begin{gathered} \delta \mathrm{cps} \\ \text { to } \\ 6 \mathrm{kc} \end{gathered}$ | $\stackrel{6}{\text { ranges }}$ | $\begin{aligned} & =1 \mathrm{db} \\ & \text { Ref } \\ & 400 \mathrm{cps} \end{aligned}$ | $\begin{gathered} 100 \mathrm{mw} \\ \text { or } \\ 10 \mathrm{v} \end{gathered}$ | $\begin{aligned} & 1.000 \\ & \text { ohms } \end{aligned}$ | $\begin{gathered} 1 \% \\ 10.6,000 \mathrm{cps} \end{gathered}$ | $\begin{aligned} & 115 \\ & \text { watts } \end{aligned}$ | Interpolation and <br> Frequency <br> Measurement | \$225.00 |



Western Electric installer in an aircralt plant connecting telephone equipment with a G.E soldering iron.

# Western Electric Uses G.E Soldering Irons to Speed Vital Telephone Installations 

For efficient soldering of millions of connections during the installation of telephone equipment, Western Electric uses G-E industrial soldering irons. Repeat orders testify to this company's satisfaction with G-E irons.

No matter what your soldering operation-intermittent or high-speed repetitive work-General Electric has the iron to meet your particular requirements. You'll find that G-E irons, equipped with the famous long-life Calrod* heating element, give you lower maintenance costs. You can choose durable, interchangeable calorized copper tips or, for even longer mainte-nance-free tip life, sturdy Ironclad copper tips. Ratings range from 25 to 1250 watts, tip sizes from $1 / 8$-inch to two inches.

Give G-E industrial soldering irons a chance to prove their lower over-all costs to you. Buy a few through your nearest G-E Sales Office or Apparatus Distributor, and keep cost comparison records on their performance. You will see for yourself that these irons will save you money. General Electric Company, Schenectady 5, N. Y.
*Reg. Trade-mark of General Electric Campony 720-101


You can often replace heavy irons with this 120 -volt, 60 -watt lightweight iron for communications soldering.


## Obtain higher electrical conductivity without increasing the cross-sectional area of spring blades

## SOLUTION:

## General Plate provided the solution with BRONCO . . .

a composite metal

Increased conductivity of spring blades in a time switch was recently required by a manufacturer of demand meters. Operating requisites were high conductivity, excellent spring properties and small cross-sectional area.

General Plate provided the solution with BRONCO, phosphor bronze double-clad on copper. The phosphor bronze makes an excellent spring member; the copper gives increased conductivity. BRONCO $25 / 50 / 25$ provides an electrical conductivity of $55 \%$ compared with solid copper.

BRONCO permits miniaturization. It permits you to make smaller units because you can reduce spring size without sacrificing conductivity.

No matter what your problem, it will pay you to consult with General Plate. Their vast experience in bonding any combination of malleable metals can overcome your problems . . . often reduce costs.

General Plate products include ... precious metals clad to base metals, base metals clad to base metals, thin gauge rolling, composite contacts, buttons and rivets, Truflex ${ }^{(8)}$ thermostat metals, Alcuplate ${ }^{(8)}$, platinum fabrication and refining, \#720 manganese age-hardenable alloy. Write for complete information and Catalog PR700 today.
You can profit by using
General Plate Composite Metals!

## METALS \& CONTROLS CORPORATION general plate division 34 forest street, attlesorec, mass.




REPORTER AT LARGE . . . that's what you might call this new VeederRoot Reset Magnetic Counter . . . adaptable to remote counting from machines or processes to central boards or instru-ment-clusters, wherever you want to put them. NOW . . . what can
your imagination do with these few facts? For the fulf facts, write:

VEEDER-ROOT INCORPORATED
"The Name That Counts" HARTFORD 2, CONNECTICUT

Chicago 6, III. - New York 19, N. Y. - Greenville, S. C. Montreal 2, Conada - Dundee, Scotland Offices and Ageats in Principal Cities
Counts Everythingon Earth

## $\ldots$ IRHEOSTATS <br> 

## Annowncing $\boldsymbol{B}$ new sizes now in production

We have added to our new H-50 rheostat, announced a few months ago-the new H-75, H-100 and $\mathrm{H}-150$ models. These higher wattage rheostats incorporate all the new improved features that have made the $\mathrm{H}-50$ so successful.

- Unequalled perfection in brush control, which automatically adjusts tension to complete, continuous contact.
- Positive, smoothly-controlled spring action which eliminates all strains tending to bind shaft in the bushing.
- Greater flexibility-no risk of backlash.

All models are of course completely bonded with our new high-temperature-enamel;-thermo-shock-proof; more resistant to heat; increased safety factor; higher terminal strength.

And all are designed to comply with current standards of:
(a) Military Specifications JAN-R-22.
(b) Underwriters' Laboratories.
(c) R.T.M.A.
(d) N.E.M.A.

Send today for our new bulletin, containing additional information.

## HARIDWICK, HINIDLE, INC.

Rheostats and Resistors
Subsidiary of

## THE NATIONAL LOCK WASHER COMPANY

Established 1886
Newark 5, N. J., U. S. A.
The mark of quality for more
than a quarter of a century
roo warts


## New line of G-E voltage stabilizers features flexibility



G-E STABILIZER LINE has output ratings from 15- to 5000-va.

Now, to help you iron out voltage ups and downs, General Electric offers a new line of standard automatic voltage stabilizers that offers greater design flexibility at no extra cost. These compact, lightweight units can be a key feature in your design of sensitive electronic equipment where precision performance depends on accurate voltage stabilization.

Output ratings of $1000,2000,3000$ and 5000 volt-amperes are available, with 115 and 230 volts on both input and output, to give you a wide variety of operating combinations. Fluctuations between 95 and 130, or 190 and 260 volts are corrected to a stable 115 or 230 volts within $\pm 1$ per cent - in less than two cycles. Single-core construction completely isolates input circuit from output circuit. For more information see Bulletin GEA-5754.

## Miniałure selenium rectifiers resist severe operating conditions

Two types of totally enclosed casings are available: Textolite* tubes for normal oper ating conditions; hermetically sealed, metalclad casings to meet severe government specifications.
These small-size selenium cell assemblies have long life, high zeverse resistance, good regulation and low heat rise. Their ambient temperature range is broad-from -55 C to +100 C . Lead mounting is standard, but they may also be bracket mounted.

This new G-E line of rectifiers may be used for blocking, electronic computer, signal, magnetic amplifier, communication or control circuits; for operating small relays, solenoids, precipitators. Cell sizes range from $3 / 32 \mathrm{in}$. to $15 / 32 \mathrm{in}$. diameter, $\mathrm{d}-\mathrm{c}$ current ratings 0.050 milliamperes to 25 milliamperes. For further information, write for Bulletin GEA-5935.


FOR COMPACTNESS, washers between cells have been eliminated

## DIGEST

## TIMELY HIGHLLGHTS ON G-E COMPONENTS

## Switchettes are versatile, have high current rating

A wide range of design problems can be solved by G-E general-purpose switchettes. They are corrosion-proof, vibration-resistant, small, lightweight. Efficient at sea level or at 50,000 feet, in ambient temperatures from 200 F to -70 F . Ratings up to 230 volts, 25 amp a-c; 250 volts, 25 amp . d-c. See Bulletin GEC-796.


Inductrols-for automatic or manual voltage regulation
Compact design of G-E inductrols lets you fit them into any location. They offer micrometer-fine control, autotransformer efficiency. Handoperated and automatically operated models are available for indoor service 600 v and below on circuits 3 to 520 kva. Bulletin GEC-795 covers single-phase inductrols; GEA-5824, 3 -phase models.


## New iron weighs only $81 / 202$.

The new $120-\mathrm{v}$, $60-\mathrm{w}$ G-E lightweight iron is designed for high-speed, pro-duction-line soldering on electronic, instrument, and communications equipment. Thin, $5 / 16$-inch diameter shank gets the $1 / 4$-inch tip into places a regular iron can't reach. Balanced design allows the soldering of more joints per minute. Long-lasting Ironclad tip needs no filing or dressing. See Bulletin GED-1583.


COMPLETE LINE includes 11 sizes

## G-E cast-permafil* transformers designed to meet MIL-T-27 specs

The small, light design of General Electric's new line of cast-permafil transformers makes possible greater flexibility in many electronic designs. Sealing these solventless-resin-type transformers for life has eliminated the need for metal enclosures and fungus-proof coatings. Construction is simple-terminals are anchored directly in the tough, solid, shatter-resistant permafil mixture to cut size and weight by 20 per cent. Machined and punched parts have been kept at a minimum for lower cost.

Cast-permafil transformers have an expected life of 1000 hours or more at 130 C ultimate. The complete line of 11 sizes is available in various terminal arrangements, and is designed to meet MIL-T-27 (Grade 1) performance requirements. For more information, write General Electric Co., Sect. 667-25, Schenectady 5, N. Y.


## EQUIPMENT FOR

 ELECTRONICS MANUFACTURERS| Components | Fractional-hp motors <br> Rectifiers |
| :--- | :--- |
| Meters, Instruments | Timers |
| Dynamoto-s | Indicating lights |
| Capacitor | Contral switches |
| Transformers | Generators |
| Pulse-forring networks | Selsyns |
| Delay lines | Relays |
| Reactors | Amplidynes |
| Thyrite* | Amplistats |
| Motar-generator sets | Terminat boards |
| Inductrals | Push buttons |
| Resistors | Photovoltaic cells |
| Volfoge stabilizers | Glass bushings |
| *Reg. Trade-mark of General Electric Co. |  |

Development and Production Equipment

Soldering irons
Resistance-welding control
Current-limited highpotential tester
Insulation testers
Vacuum-tube voltmeter
Photoelectric recorders Demagnetizers
*Reg. Trade-mark of General Electric Co.

# ONLY THE LFE 401 OSCILLOSCOPE 

## Offers all these Important Features

## HIGH SENSITIVITY AND WIDE FREQUENCY RESPONSE OF Y-AXIS AMPLIFIER

The vertical amplifier of the 401 has been designed to provide uniform response and high sensitivity from D.C. The accompanying amplifier response curve shows the output down 3 db . at 10 Mc . and 12 db . at 20 Mc . Alignment of the amplifier is for best transient response, resulting in no overshoot for pulses of short duration and fast rise time. Coupled with this wide band characteristic is a high deflection sensitivity of 15 $\mathrm{Mv} . / \mathrm{cm}$. peak to peak at both $D-C$ and A-C.


## Linearity of vertical

DEFLECTION The vertical amplifier provides up to 2.5 inches positive or negative uni-polar deflection without serious compression; at 3 inches, the compression is approximately $15 \%$. The accompanying photographs illustrate transient response and linearity of deflection.

SWEEP DELAY The accurately calibrated delay of the 401 provides means for measuring pulse widths, time intervals between pulses, accurately calibrating sweeps and other useful applications wherein accurate time measurements are required.
The absolute value of delay is accurate to within $1 \%$ of the full scale calibration.The incremental accuracy is good to within $0.1 \%$ of full scale calibration.

## Additional Features:



An INPUT TERMINATION SWITCH for terminat. ing transmission lines at the oscilloscope. A FOLDING STAND for convenient viewing.
FUNCTIONALLY COLORED KNOBS for easier location of controls.

Designed and built for electronic engineers, the 401 with its high gain and wide band characteristics, and its versatility, satisfies the ever-increasing require. ments of the rapidly growing electronics industry for the ideal medium priced oscilloscope.

## Write for Complete Information

# SHADE...the PRESTO RC-II 

PRESTO introduces a precision-engineered tape recorder with a radical new type of construction!

Featuring a self-contained capstan drive unit, the PRESTO RC-11 provides durability, flexibility and rapid maintenance heretofore unheard of in tape equipment. Motor, fly wheel, capstan shaft, pressure pulley and solenoid are all pre-mounted on a cast aluminum sub-assembly . . . a complete working unit quickly removable for service or replacement.

A heavy, ribbed, cast aluminum panel designed for rack or case mounting supports all

## The "unitized" construction of the Presto RC-11

allows a complete flexibility in the manufacture of various types of instruments. By the simple recirangement of components the RC-1i becomes a high fidelity recorder, a dual track, bi-directional recorder or reproducer or a longplaying reproducer with automatic tape reversal. other components. Overall durable construction gives additional reinforcement and protection during shipping and adds years to the life of the machine.

In terms of performance and operational ease, the RC-11 also steps out front. This new recorder, with complete push button operation, automatic microswitch in case of tape breakage and a reel capacity of $101 / 2$ inches, is an engineer's delight.

The combination of advanced design and engineering in the RC-11 puts ordinary tape recorders in the shade . . makes this instrument an investment, not an expenditure. Ask your PRESTO distributor for full information on this important development in tape recorder design . . . the all new RC-11.



## SPECIFICATIONS - MODEL ST-13A

Measures both carrier frequency displacement and square wave modulation with direct reading on 2 -range $31 / 2^{11}$ meter

Here is a quality FM Communications instrument with features that are unmatched in the industry! The ST-13A is engincered to give you hairline accuracy . . . lowest possithle cost . . plus full provision with oven accessories for future split-channel adjustments. This unit meets today's demand for accuracy and economy and provides for tomorrow's more stringent needs. Two RF outputs for receiver testing and alignment. New case design is durable and good looking.

G-E OSCILLOSCOPE-MODELST-2A
Here's the ideal scope for shop and general laboratory use. Size and weight have been beld to a minimum yet you are assured of quality G-E construction and materials. Features high sensitivity ... exceptional stability. Special features include a DC vertical amplitier to adapt the equion pattern a wide range of applican tube diameter.
expands to sever

## FREQUENCY RANGES

One or two specified frequencies in the following ranges
25 MC to 50 MC .72 MC to 76 MC 148 MC to 174 MC Quartz crystal operating range: 4 MC to 6 MC

## REFERENCE OSCILLATOR ACCURACY

$001 \%$ from $32^{\circ} \mathrm{F}$ to $122^{\circ}$ F
Greater accuracy will be obtained over a more limited temperature range External connection, internal wiring and a socket ate provided for 6 V oven operation where wider temperature range with greater accuracy is available

## MODULATION ACCURACY

$\pm(5 \%+200$ cycles $)$
On sinusoidal or square wave modulation (complete limiting)

## METER RANGES

0 to 10 KC and 0 to 20 KC . These scales are calitiated in termis of carriet fre quency displacement from the internal reference osciliator and deviation due to square wave modulation. Simusoidal modulation is 1.57 times this value. A conversion curve appears in the cover

## NPUTS

Eighteen-inch collapsible whip antenna
Fifty-ohm BNC connector. This input can handle only limited power as it is followed by a molded carbon potentiometer attenuator
OUTPUTS
Low RF output-adjustable around 1 microvolt.
Low RF output-adjustable around abicrovolt
High RF output--adjusta
depending on frequency.
Both outputs come out on $50-\mathrm{hm}$ BNC connectors
POWER-INTERNAL BATTERIES
$2-45$ volt batteries; $2-1.5$ volt flash light cells; $2-1.5$ volt pen light cells
TUBE COMPLEMENT
2-1L4, 2-IU4


General Electric Compans, Section 443
Electronics Park. Syracuse. N. Y
Please send me a cops of the followine bulletins: Please send mea copy of the followne but
$\square$ ST-13A (ECL-15) $\square$ ST.2A (ECL-9)
NAME.
COMPANY
ADDRESS.
CITY
GENERAL
 capacitance values. soldered to silver electrodes.

ERIE Disc Ceramicons have proven to be an ideal adaptation for high voltage application. Inherent construction simplicity means greatest economy yet for comparable voltage and

They are amazingly easy to install in small spaces . . . they simplify soldering and wiring operations, and speed up the assembly line. Erie Disc Ceramicons consist of round flat dielectrics with fired on silver plates and leads of No. 22 tinned copper wire firmly

The Ceramicons are phenolic dipped and vacuum wax impregnated for moisture seal. They are identified by the Erie trademark and

## SPECIFICATIONS

Capacitance . . Within stated tolerance at $1 \mathrm{KC}, 1$ to 5 volts RMS, and $25^{\circ} \mathrm{C}$.
Standard Capacitance Tolerances . . $\pm 5 \%, \pm 10 \%$, $\pm 20 \%$, guaranteed minimum value. $( \pm 5 \%$, and in some cases $\pm 10 \%$, not available on Hi-K items.)
Standard Voltage Ratings, D. C. Working . . . 1000 1500, 2000, 3000, 5000, 6000.
Dielectric Strength Test . . . Two times rated working voltage, with megohm series resistance.
Life Test . . . 1.5 times rated working voltage at $85^{\circ} \mathrm{C}$. for 1000 hours.
Insulation Resistance . . . 10,000 megohms minimum.
Temperature Characteristic and Power Factor . . . One of four, depending on capacitance value and rating.

| Characteristic | Maximum |  |
| :---: | :---: | :---: |
| P100 thru NI400 |  | Exact conformance per Erie GP1 Ceramicons, Bulletin 312. |
| $\begin{aligned} & \mathrm{Hi}-\mathrm{K}-12 \mathrm{~A} \\ & \mathrm{Hi}-\mathrm{K}-35 \\ & \mathrm{Hi}-\mathrm{K}-70 \end{aligned}$ | $\left.\begin{array}{l} 2 \% \\ 2 \% \\ 2 \% \end{array}\right\}$ | Exact conformance per Erie Disc Ceramicons, Bulletin 438. |

ERIE components are stocked by leading electronic distributors everywhere.
are marked with nominal capacitance and rated voltage.

| Rated D.C. Voltage | Capacitance Range, M |
| :---: | ---: |
| 1000 | $6-10,000$ |
| 1500 | $5-6,400$ |
| 2000 | $3.5-5,100$ |
| 3000 | $6-3,250$ |
| 5000 | $6-520$ |
| 6000 | $5-340$ |

Write for Bulletin 440. Erie Standard 500 volt By-pass and Coupling Disc Ceramicons are described in Bulletin 438. For Temperature Compensating Disc Ceramicons see Erie Bulletin 439.

|  |
| :---: |
|  |
|  |
|  |

## Case History: Hastings needed accessibility



Mobile relay stations are a part of this nation's
 defense network. Hastings Instrument Co., Inc., manufactures much of the equipment installed in these rugged trailers.


Grant Industrial Slides were used. With them, units may be withdrawn and locked in a fully extended position in a matter of seconds, with no more effort than opening a filing cabinet.


Grant No. 363 Slide is just one of an unlimited variety available. Load requirements from 25 to 500 lbs. Locking in closed, open or pivoted positions, angles up to $180^{\circ}$.


A lot of equipment has to go into a very small space. Yet the very nature of the problem requires that the operating components he accessible for maintenance and servicing.


A full $90^{\circ}$ tilt brings the wiring under the chassis into full view for repair. Unit locks at this and other angles, and may continue to operate in any of these positions.

Grant Industrial Slides provide built-in accessibility, without effort, without costly loss of operating time. Bring your equipment mechanically up to your high electronics standards. Whatever the problem, call upon Grant, the foremost name in sliding devices.

## grant industrial slides

a product of the engineering design department of Grant Pulley and Hardware Company 31.75 Whitestone Parkway, Flushing, New York. Write for informalion... consult on any problem

## LAPP GASFIILIED CONDENSERS



For duty at high voltage and high currer:- Lapp Gas-filled Condensers offer the advantages oî extreme compactness . . . low loss . . . hig: safety factors . . . puncture-proof desiga . . . constar: capacitance under temperature variztion . . grounded tuning shaft . . . complete reliability-ele atrically and mechanically. Models for capacitance up to $60,000 \mathrm{mmf}$; current ratings tc 525 amps ar 1 mc ; voltages to 100 kv peak.

Write for descriftion and specifications.
Radio Special:ís Division, Lapp? Insulator Co., Inc., Ie Roy, N. 'V

## but

## this is your "trademark"

Hour customers see the oulside of your product a lot -more than they sce its inner mechanisms. Does it have the appearance of a precision instrument? Does it look the part?

In other words, do you get the same perfection in your cabinets that your engineers build inside? Smooth flawless welded seams? Perfectly fitted doors and panels...exactly the finish you specily....and, above all, absolute uniformity between all cabinets?

Karp customers do-and they know that this painstaking sheet metal fabrication doesn't mean high prices.

They know that our vast assortment of available dies


ENGINEERING TOOLING, PRODUCTION FINISHING -
eliminates the need for much costly tooling. They know that our plant-the length of three city blocks-with its modern facilities, offers custom production at prices that are surprisingly low.

You'll find, as others have, that we can produce to exacting tolerances precisely the type of cabinet you require.

In large quantity or small. Steel or aluminum. Any type of welding. Painstaking hand finishing. Prompt shipment.

Visit our plant and see these things for yourself if you wish. We welcome your visit. Write for our bulletin.
KARP METAL $P R O D U C T S$ CO., INC. 215 63rd ST., BROOKLYN 20 , N. Y.

MOST COMPLETE FACILITIES FOR LARGE AND SMALL RUNS OF ENGINEERED SHEET METALFABRICATION

## Motorola usses

## Eimac 2c39a's

In the First 460 Mc<br>Type-Approved Equipment

For Operation in the
Class-A, "Citizen's Band"

FOR INFORMATICN ABOUT THE 2C39A WRITE EIMAC'S APPLICATION engineering department


Motorola's new 460 mc equipment—the first 460 mc equipment type-approved for operation in the Class-A, "Citizen's Band" employs Eimac 2C39A's as triplerdrivers and power amplifiers in its mobile and base station transmitters. In the Eimac 2C39A, Motorola utilizes a highly efficient, domestically available tube that has been JAN accepted and proved in rugged and exacting military service. Motorola, through the use of Eimac 2C39A's and other late electronic developments, makes available a UHF two-way radio system designed to meet the demands of individuals, industry and emergency services.

EITEL-McCULLOUGH, INC. SAN BRUNO, CALIFORNIA

Export Agents: Frazar \& Hansen, 301 Clay St., San Francisco, Colifornia


## free book on specialty transformers

This fully illustrated book on Westinghouse Specialty Transformers contains full details on design, construction and operation of each type in entire line.

Find the answer to your problems in these types!
"Off-The-Shelf" Standard Models . . . includes electrical and electronic designs for both commercial and military applications.
"Built-To-Order" Special Designs . . . reviews wide range of custom-built types. Shows how Westinghouse adapts basic transformer components to meet your exact specifications economically.

SEND FOR YOUR COPY TODAY! Write on your letterhead for Booklet B-5806, or use coupon below. Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Penna.
J. 70689 -A

## you can be SURE...IF its Westinghouse




Now you can get rid of troublesome, costly sealassembly operations. Sealticn will solder seals into your assemblies, will guarantee hermetic Derfection. Not "standardized" designs, these assemblies are built to your specifications by our specialists - delivered to you on time, at low cost.

Take the seal assembly shown above, for ezample. We produced the mounting inserts and tuning device, installed them in our stamped lid, and soldered in the seals. Result? Reduced costs, elimination of solcering-in troubles for our customer - and a unit that's guaranteed free of hermetic "leaks."


Let our specialists take over your seal assembly problers. Write us today - you can depend on our prompt service.

## Here's how you'll save:

- You use every seal you purchase.
- Eliminate throw-aways, "shrinkage" of seal supplies.
- No more losses due to oxidation of seals in storage.
- Stop costly salvaging of de ective issembles. Sealtron guarantees its work, will pressuratest assemblies, if requested.
- Eliminate specialized operations, cut down overhead, relecesa key personnel for other work.
- End delays due to short seal supply or limited selection-Sealtron over 1600 types of seals always available.

THESEALTRON<br>9705 FEACING ROAD - CINCINNATI 15, OHIO• TELEPHONE VALLEY 8500

## SEALRON



Selected stock. Always free from defects and surface blemishes.

Moisture and fungus proof coatings, varnish or lacquer smoothly applied. No wrinkles or unsightly heavy deposits.
C.T.C. standard terminals. Types for alf applications. Silverplated, cadmium plated, electro tinned, hot tinned or gold plated as required.
recisely located, clearly defined imprinting: rubber stamped, silk-screened, engraved or hot stamped.

## MMEDIATE SERVICE

## NVENTORY PROBLEMS

##  MSULITIDIANRES <br> INCORPORATED

## A COMPLETE LINE OF ELECTRICAL INSULATING MATERIALS... READY FOR DELIVERY!

Varnished Cambric Products
Insulating Paper
Varnished Tubing
Satura ed Sleeving
Insulat ng Varnish
Vulcan zed Fibre
Phenulte
Fibre Wedges
Wood Wedges
Built up Mica Products
Asbestas Insulation
Woven Glass Insulation
Pressure Sensitive Tape
Cotton Tape
Cotton Sleeving
Commatators Built To Specifications
Teflon
Siliccre Resins
Silicore Insulations

- Guard Against Production Slowdowns caused by delayed factory shipments of insulation materials. IWI gives you fast delivery from ample stocks
- Keep Inventories At A Minimum by getting seldom-used items and small production lots of essential materials quickly from your nearest IWI Warehouse.
- Oniy Nationally Advertised Quality Products are sold by IWI. All are approved and used by leading electrical manufacturers.
- Expert Technical Assistance on any problem involving electrical insulating materials is offered without obligation by IWI's staff of experienced Field Service Representatives.



## A HATIOMAL HETWORK OF WAREHOUSES SERVING ELECTRICAL MANUFACTURERS

 INSULATION AND WIRES INCORPORATED3435 Chouteau Avenue - St. Louis 3, Missouri
Write Zar The Adaress Of The Warehouse Nearest Your Plant
 ELECTRONIC CORES

## PERMIT SUPERIOR PERFORMANCE

## IN MANY ELECTRONIC PRODUCTS

The superior performance of Moloney HiperCore Electronic Cores is immediately discernable when incorporated in various electronic products. This is the result of rigid quality control during manufacture.
To begin with ... every mill shipment of cold-rolled, oriented grain, high permeability steel for HiperCore Cores must pass rigid Epstein Tests. Then, during manufacture...care and precision in the winding on Moloney's patented winding mandrels... absolute control of tension . . exact overall dimensions. Care... in annealing to relieve stresses by maintaining accurate temperature and atmospheric control. Care . . in cutting, to obtain a minimum gap followed by an etching process to insure interlaminar insulation.

Production, in quantity, is available to you if you need superior performance, smaller size, less weight in your electronic cores.


Write today for Bulletin SR. 205 containing specifications, performance data and prices on over 300 standard sizes. Over 1000 sizes available for special applications.


## MOLONEY ELECTRICCO.

Manufacturers of Pouer Transformers - Distribution Transformers • Load Ratio Control Transformers Step Voltage Regulators - Unit Substations<br>\section*{sales offices in all principal cities}<br>factories at st. LOUIS, MO. AND TORONTO, ONT., CANADA,

# PROSPERITY IN THE USA: How Deeply in Debt Are We? 

How prosperous are the people of the United States? Previous messages in this special series have answered this question in part by recording the progress - relatively slow progress - we have made in increasing both the income and the wealth per person in the USA.

This fourth and concluding piece of the special series deals with the extent to which our prosperity should be discounted because it has been accompanied by an increasing volume of debt. Many correspondents have suggested to us that an individual or a nation can temporarily increase prosperity by borrowing, but in so doing lives on both borrowed goods and borrowed time. Our purpose here is solely to throw light on the question of whether or not we are now in that unenviable position.

On January 1, 1953, the total debt of the United States government and of its citizens was $\$ 627$ billion, as shown in the table below. On its face, a debt of this magnitude, which represents about $\$ 3,900$ of debt for each person, suggests that we are heavily debt-ridden.

## TOTAL DEB'T - PUBLIC AND PRIVATE

| Federal government debt | $\$ 267$ billion |  |
| :---: | :---: | :---: |
| State and local debt. |  | " |
| Private debt |  |  |
| Corporations |  | " |
| Individuals | 135 | " |
| \$627 billion |  |  |

The burden of our debts, however, does not depend simply on their size. It depends in much more decisive degree on our capacity to carry the load successfully. This capacity, in turn, is partly a matter of attitude, and attitudes defy objective measurement. A community that gets very jittery about its debts has less capacity to carry its burden successfully than one that does not. But the accurate measurement of jitters, present or prospective, still remains to be mastered.

## Capacity to Carry the Debt Laad

Nonetheless, it is possible to throw some light on our capacity to carry the debt burden by studying key economic elements that can be measured with some degree of accuracy. The following paragraphs indicate how some of these key economic elements stand.

Compared with our national income, the total volume of our debts, public and private, is still well below the level of 1929, when it proved to be too big for the good of the country. Our total debt is now $113 \%$ greater than the national income whereas in 1929 it was $146 \%$ greater.

There are several other cheering facts about our debts. One is a sharp decline in interest rates which makes the cost of carrying our debts relatively much less than it was in 1929. It took $8 \%$ of our total national income to carry our debts in 1929; it takes only about $5 \%$ of the income today.

## More Cheering Facts

We also have much more ready cash now than in 1929. Today individuals and corporations hold a total of $\$ 269$ billion in cash or its equivalent which is almost twice as much as the portion of private short-term debt (about $\$ 140$ billion) that is subject to sudden demand for payment.

Many students of the subject cite the relatively low cost of carrying our debts and the large volume of cash on hand, and reach the comfortable conclusion that our debt burden is nothing to worry about. In further support of this view they emphasize the fact that no important part of our debt is owed abroad. Hence, they reason there is not the danger, so conspicuous in Britain since the end of World War II, that our economy will be upset by the necessity of making heavy debt payments to other countries.

## Some Dangers of Present Debt

However, the nature of our debts presents dangers that it would be foolish to ignore. This is true of both the debt of $\$ 267$ billion owed by the federal government to its citizens and the $\$ 330$ billion in private debts owed by some citizens and corporations to others.

Public debt can be a dangerous kind of debt because government has the power to print money or to create its equivalent by expanding bank credit. Of the $\$ 215$ billion that the federal government borrowed during World War II, over $\$ 90$ billion was borrowed from banks. This was the largest single contributor to the inflation of prices that since the war has robbed the dollar of about half of its purchasing power, and thereby robbed the buyers of government bonds of about half the purchasing power these bonds were supposed to represent.

If, as is quite possible, a new emergency should again require the federal government to borrow heavily while its debt remains so high, it is doubtful that the public would be avid to buy its bonds. Hence, the government might again be forced to resort to the inflationary process of relying on bank credit.

Private debts can be dangerous if the people
take on new debts more rapidly than is justified by the growth of business or by their ability to repay. Last year bank loans were increased by the imposing sum of about $\$ 61 / 2$ billion, which represents an increase of about $11 \%$ in total loans outstanding. This is almost twice as much as the increase in the volume of business over the same period. Installment credit for consumers increased by $\$ 3$ billion last year, again an increase in debt about twice as great as the increase in business volume in the fields where the credit was used. It is also the fastest rate of such growth in our history.

## Constructive Use of Credil

So long as the expansion of credit does no more than keep pace with expansion in the volume of business, the expansion is constructive. Also, when credit is expanded to acquire resources and equipment that will enlarge the volume of business a little later, that use is clearly constructive. But when private credit expansion begins to run ahead of business growth, it is time for us to be heads up. Such credit expansion courts price inflation. It also creates a forced draft under business so that, if credit is cut off, there may be a painful drop.

To give a summary answer to the question: Is the level of debt in the United States a danger to our prosperity? - the answer seems to be, "Not at the moment." We owe nothing abroad. The interest burden on present debt is relatively small, and we appear to have the resources to handle the short-term debt. Yet both the total amount of debt and the recent rapid increase in total private debt, especially the latter, are enough to signal for caution. We need restraint on the part of business and consumers to avoid expanding private borrowing at an excessive rate. The federal debt needs to be reduced and put in more manageable form. If these things are done, we can proceed to build a sound prosperity.

[^8]GUARANTEES


## CONFORMANGE TO RADIO INTERFERENGE SPECIFICATION

(0.15 TO $1000{ }^{\circ} \mathrm{MEGACYCLES}$ )

YOCKHEED F.94

- Built into every Speedomax recorder and controller is a high degree of indifference to stray electrical fields. And this is one of its most useful characteristics in almost any job. It means that you can install a Speedomax near a big motor, power line or X-Ray machine-any electrical equipment in fact-and you'll probably see no effect at all from surrounding electronic noise and "junk".

The reason for this indifference to stray fields goes back through the adjustment, building and design of the instrument, to its basic engineering. Speedomax has an electronically-clean measuring circuit, as well as clean signal and amplifier circuits.

This clean design includes a bifilar-effect slidewire, to eliminate any objectionable inductance at that point. It includes our "no-moving parts" trolley con-
tact on the slidewire, which eliminates pigtails and their variable inductances. It includes use of a Mumetal slidewire shield where desirable, instead of less expensive but lower-permeability aluminum. And it includes a lot of just downright meticulous detailing, such as carefully engineered wiring and input filtering, plus ingenious shielding where required.

These and other precautions eliminate out-of-phase components in the supply to the amplifier. The latter therefore doesn't "load"; hence sends the correct amount of correct-phase power to the balancing motor. With ample power, the motor's recording and control action is snappy and accurate.

Our Catalog ND46(1) and Technical Publication ND46(1) tell the story. Write our nearest office or 4979 Stenton Avenue, Philadelphia 44, Pa.

Scientists find that Speedomax instrument operation is not affected by the stray fields created by motors,



C-D probably has the answer to your electrolytic problem! Is it for $\alpha$ motor? TV circuit? Photoflash? Micro-wave communications? If anybody has the answer to your electrolytic problem, it's likely to be Cornell-Dubilier, the greatest name in capacitors. Write for the complete catalog to: Dept. K43. Cornell-Dubilier Electric Corp., General Offices, South Plainfield, New Jersey.

## CORNELI-DUBILIER



world's largest manufacturers of capacitors


roiatórs

capacitors

vibrators

CONVERTERS

-E. J. (Epb) Davis, Manager of Traffic and Order Dept., with new Caterpillar DW20 Tractor

## "This Cat will never be an orphan!"

Construction men work against deadlines. If machinery can't be serviced -regardless of age-with genuine manufacturer's parts, they don't want it. It's an 'orphan'
"This can't happen when it's Cater-pillar-built.
"If the Caterpillar dealer is temporarily out of stock, he can get any part practically overnight-by Air Express! Air Express speed, closely coordinated with our Special Order department, gives all domestic Caterpillar dealers-over 375 stores-com-
plete parts service for every model ever built. It gives them an 'inventory' of some 80,000 different parts!
' 'Down time' is cur to the minimum machine life extended to the maximum . . . with the help of Air Express speed and dependability.
"That's why Caterpillar dealers frequently tell us 'Ship it Air Express'averaging more than 18 times a day!'

Air Express gets there first-and often saves money, too! In many weights and distances, rates are lowest of all commercial air carriers !

It pays to express yourself clearly. Say Air Express! Division of Railway Express Agency.


## $\Rightarrow$ AIR EXPRESS GETS THERE FIRST

via U. S. Scheduled Airlines

## This is MINATURIILATION!

## TRANSSTOR MOUNTS

Actual Size of Single and Triple Transistor Mounts
Fused Metal to Glass Vacuum Seal, Nickel-Silver Covers, Any Pin Configuration Furnished

Now for the first timge trensistor mounts you can depend upon. The knowledge and skill of the foremost manufacturer of arystal holders went inte the engineering of these units. By drawing on this great amount of experience gained in overcoming similar problems, transistor mgunts have been designed allowing the germanium block to be permenently sealod in aither a vacuum or inort gas atmosphere. This gives you the assurance against variations due to moisture, dirt, changing atmospheric or light condifions.

Constantin transisfor mounts, as wall as other Constantin component parts are manufactured to wihstand heavy usage while maintaining complete effectiveness.

By submitting your requirements . . . you, ecen see for yourself how our special design engineers can really holp in planning your product.

## L.L. Gonstantion \& bo.

## MANUFACTURING ENYINEERS

 RT. 6 AND FRANKLIN AVENUE : LODI, NEW JERSEYalse manufacturers of

- Crystal Holders
- Multi-Pin Headers
- Single Torminals
- Single End Seals
- Multi-Pin Con Plugs
- Vacuum Coating Equipment


Model 622 - Ultra-Sensitive Instruments Portable d-c and a-c thermo instru. ments for precision measurement of potentials and minute currents in electronics or laboratory research.
 IISTRUNETTS for - RESEARCH

- PRODUCTION
- MAINTENANCE

For complex, or just routine measurement jobs, these and other specialized WESTON Instruments save time and assure dependable measurements. For information on the complete line, see your local Weston representative, or write . . . WESTON Electrical Instrument Corp., 614 Frelinghuysen Ave., Newark 5, N. J.


Industrial Circuit Tester-Model 785
A multi-range, multi-purpose, ultrasensitive analyzer, for laboratory and industrial checking of electrical and electronic circuits. Has 28 practical scale ranges; measures d-c and a-c voltage, $d-c$ and a-c current, and resistance. Accessories available to extend ranges. Compact and portable; furnished in either oak or steèl case.


Model 901 Portable Test Instruments Available in d.c, Model 901 -and a-c. Model 904, single and multiple ranges of wide coverage. Excellent scale readability and shielding. Accuracy within $1 / 2$ of $1 \%$.

A.C Clamp Volt-Ammeter
(Model 633, Type VA-1) For convenient and rapid measurement of a-c voltage and current without breaking. the circuit. Jaws take insulated or noninsulated conductors up to $2^{\prime \prime}$ diameter. Safe, rugged, versatile. Also available as a-c clamp ammeter, without voltage ranges.


Sensitive Relays
A line of sensitive relays including the Model 705 which provides positive operation at levels as low as $1 / 2$ nicroampere. Non-chattering magnetic contacts handle up to 10 watts at 120 volts.


Panel and Switchboard Instruments A complete line of instruments in all cypes, sizes and ranges required for switchboard and panel needs . . . including d-c, a-c power frequencies and radio frequency, rectifier types and D.B. meters.


Model 697 Volt-Ohm-Milliammeter One of a line of pocket-size meters, Model 697 combines a selection of a-c and d-c current, and resistance ranges. Ideal for maintenance testing and many inspection requirements.


Model 686
Electronic Tube Analyzer
Tests tubes under exact operating potentials. Accurately determines true mutual conductance of all tubes, in accordance with manufacturers' rated operating conditions, or under special operating conditions.


High Frequency Electronic Analyzer Model 769
A three-in-one instrument providing a self-contained Volt-Ohm-Milliammeter, a high impedance electronic D-C Volt-Ohmmeter, and a probe type Vacuum Tube Voltmeter for use to 300 megacycles. Exceptionally stable and accurate. Has specially designed extremely small RF and D.C probes.


Leagues Ahead in Lug Seals HERMETIC SEALS with Attached Lugo ...embodying the newest, most advanced features for every application


HERMETIC has designed a complete series of hermetic seals with attached lugs as an associated line of the self-lug tubing seals. This series is characterized by innovations of particular interest to design engineers:

- Lugs are affixed by HERMETIC's new positive method and are guaranteed to be secure.
- Lugs are available for every tubular seal and bathtub condenser seal currently used in industry.
- Lugs are available flat or bent through any angle desired; with pierced holes, or notshed for wrap around connection.
- Solder-Lug feed-Throughs, parts 1503-04-05-06, are also available in this series.


## WRITE defailing your

 problem for immediate aftention, and ask for FREE copy of HERMETIC's informative 32-page brochure, the most complete presentation ever offered on hermetic seals.
## Hermetic seal products co.

31 South Sixth Strect • Newark 7, New Jerses
FIRST AND FOREMOST IN MINIATURIZATION


## IT'S MADE OF

## BERYLCO

## BERYLLIUM COPPER

The safety of a plane, the effectiveness of a battalion, or the success of a bombing mission may depend on this tiny beryllium copper part, which measures only $9 / 16$ inch in length - one-twelfth the size shown here.

Contacts like this are used in miniature tube sockets for radar, communications and other electronics equipment. Every day thousands of these contacts are stamped out at high speeds on progressive dies.*
The men who design our military equipment are well aware of the old saying 'For want of a nail, the shise was lost"... and consequently the battle. The specifications, the load and test requirements,
are exacting. Contacts must excel in spring properties, in resistance to both corrosion and relaxation, in electrical conductivity. They must not be subject to vibrational fatigue and must withstand wide variations in temperature. There is one metal which possesses all these essential characteristics to a high degreeBerylco beryllium copper.
Unique properties, such as combination of great strength and electrical conductivity, make this versatile alloy as important in the manufacture of peacetime products as of those for defense. We invite you to take advantage, in your plans for the future, of the technical knowledge
acquired by the world's largest producer of beryllium copper. Write or telephone any of the offices listed below.

## VALUABLE ENGINEERING INFORMATION on Berylco beryllium copper is contained in a series of technical bulletins, published monfhly. To receive your copy regularly, write on your business letterhead.

> TOMORROW'S PRODUCTS ARE PLANNED TODAY WITH BERYLCO BERYLLIUM COPPER

Sample material available for testing purposes

[^9]

## Saves parts, circuitry, labor in set manufacture!

Gives needle-sharp over-all image!
Permanently pre-focussed for best viewing!

COMPARE (left) the bulky parts needed for a standard tube with (right) the clean simplicity of an $i-m$ - $f$ tube ready to install!


The external ion-trap magnet on this standard tube, is an extra cost item for the TV manufacturer and requires special adjustment. The focus coil and complicated mounting also mean extra cost. They take up space, add weight, consume assembly and adjustment time. Get rid of all three parts with G. E.'s new $i$ - $m-f$ tube!

ON this 75th anniversary year, General Electric takes pride in announcing its $i$ - $m$ - $f$ picture tube as the latest in a long series of significant G-E "firsts". To the many advantages given by internal, factoryadjusted ion-trap and focus magnets, can be added radically improved design in important tube details. One example of this is the new, precision-made metal "lens" that greatly narrows the electron beam,


Now, no hard-to-adjust external ion-trap magnet! No focus coil, or external focus magnet, with cumbersome bracket! Instead, an i-m-f tube calls for just two parts when installed, both of them compact: (1) a closefitting steel shunt band that is easily slipped on and (2) a small centering device to position the picture.


| APPLICATION | RESULT |
| :---: | :---: |
| Oil burner ignition transformer | High voltage feed back into line is prevented. |
| Small motors | Arcing of governor contact points is greatly decreased. |
| Rectifier circuits | Peak voltages are limited thus stabilizing circuits. |
| Electronic devices | Successful use in voltage control circuits. |
| DC Circuits | Solenoid valve coils are protected. |



Our Bulletin GR-2 contains detailed engineering data which may well suggest applications in your own products. It will give you facts that will help you decide how these ceramic resistors can be of value to you. Let us send you a copy. Write Dept. E L 87-101,
The unusual characteristics of GLOBAR type BNR ceramic resistors make them practical for a diverse number of advantageous uses. Charted here are five typical applications where these resistors are being used to advantage at present.

## MANUFACTURER'S

GAGING
PROBLEM


## Are you using this "Servo" principle?

## This Avien "feedback" system has important advantages for planemakers and engineers.

Avien was among the first to use the servo principle in the design of aircraft gages.

But there's another servo principle that Avien offers to every aircraft manufacturer.

It's a "feedback" system that has provided a lot of effective answers to aviation's most complex problems.

This scheme is basically simple. Once handed the problem, Avien tailor-makes gages for the aircraft. Avien engineers follow through all the way, from drawing board inspiration to instrument panel installation.

But after installation is completed, Avien's job continues. Avien field engineers constantly check and test the gages in service-and feed back information to design headquarters.

This "closed-loop" operation has aided Avien in the perfection of some remarkable products.

We've designed Cylinder Head Temperature Indicators and Jet Tailpipe Thermometers that use the servo principle. Result: longer scale gages, unaffected by lead =haracteristics.

We've designed a Jet Engine Thrustmeter that computes gross thrust from measurement of tailpipe pressures and ambient pressures.

We've made over fifty fuel gages that measure fuel quantity by weight, eliminating moving parts in the fuel tank.

Every month, Avien produces over 10,000 major instrument components for the aviation industry.

Right now, we have two goals.
First, we're going to keep on solving the toughest instrumentation problems in the industry. If you think you've got them, call us.

Second, we're going to keep on adding the best engineers in the business. If you think you're one of them, send your detailed resume to Department E .


[^10]
## WHEN THEY DESIGN

WHEN THEY SPECIFY
WHEN THEY BUY...

## they look for

## PRODucts

FIRGT in the

## GUIDE

Engineers, designers, specifiers, purchasing agents - everyone who has anyihing to do with the design or use of electronic gear, components or allied products have, for years, learned to use the ELECTRONICS BUYERS' GUIDE for essential product data and sources. The reason? Because they have found it thoroughly up-fo-date, the most accurate and the only complete source available. Tailored as it is to the critical needs of the electronic industry, it is the only book upon which the industry's technicians rely.

# electronics BUYERS' GUIDE 

PUBLISHED MID-JUNE 1953


1. ACCURACY

2. NEW PRODUCTS

3. COMPLETENESS

## 1. ACCURACY...

The year-'round staff of the ELECTRONICS BUYERS' GUIDE has had years of experience in compiling and verifying products. Fully aware of the rapid changes that are taking place in the electronic field, the staff starts from scratch each year. Questionnaires are sent to every manufacturer. When they are returned, they are checked - and double checked. Nothing is taken for granted in relation to products, terminologies and new classifications. A manufacturer's product will not be included in the "GUIDE" until evidence is supplied that they are manufactured and available. It is this careful research in which no detail is overlooked, that provides users with a GUIDE that is the only accurate and reliable product source available in the electronic field.
2. NEW PRODUCTS...

Electronics is a fast moving science-industry. The experiments of yesterday become the realities of today. Thus it becomes vitally important that all new products are included to keep listings . . . not only up-to-date, but up-to-the-minute. A continuing search is made of all sources for new products and new terminologies. This search is a year round job. Every possible method is employed, including direct contact with industry through our sales and field representatives. The result of this painstaking search makes the "GUIDE" the only book that provides com. plete up-to-the-minute information.
3. COMPLETENESS...

These 3 essential features of the Electronic Buyers' Guide serve the industry in the exacting manner that it requires. It is these three essentials that have earned for the "Guide" its wide reputation, its increased usage, its universal acceptance. They are the reasons why...

By completeness is meant that $A L L$ essential product information is provided. This includes: Complete listing of all manufacturers and their products - not just a token listing. Correctness and completeness of addresses. Sufficient cross indexing to locate any product regardless of terminology. And, most important, the format of the "GUIDE" provides, in one complete listing, a simple method of locating products. In addition to these important details, the "GUIDE" has trade name and distributor listings. These are the factors of completeness - these are the essential things that have made the "GUIDE" the "breadboard blue book" for every technician or purchaser in the field.

## THE "GUIDE" IS THE ADVERTISERS BEST BUY!



Main tuning condenser of the R-366/TRR5 radio receiver with front dial and dial lock in place. receiver with front dial and dial

## Precision Tuning Accomplished by Using Bronze and Brass Parts

An important feature which receives careful consideration when designing a communications receiver is the mechanical tuning system. A military receiver must be able to accurately separate and hold the signal it is receiving even under adverse conditions when the receiver may be constantly jolted or vibrated.

## Mechanical Bandspread

The $\mathrm{R}-366 /$ TRR5 radio receiver specially designed for the United States Marine Corps as a communications and morale receiver is equipped with a geared tuning drive and special dial locking device. By using a series of accurately machined brass gears (alloy 63, 66\% copper, $1.1 \%$ lead, remainder zinc), a reduction ratio of

10:1 is obtained, assuring smooth tuning and easy separation of signals. Spring loading the split gear sections eliminates back lash when tuning. The gear mechanism also drives the main tuning condenser shaft (free-machining brass rod) which in turn rotates the four gang set of rotor plates. An automatic stop at each end of the dial travel protects the condenser plates from damage. These plates are blanked from high brass (approx. $66 \%$ copper, balance zinc) annealed and then silverplated to increase resistance to corrosion.

## Dial Lock Assembly

When the desired station is located, the condenser can be held in place with a special dial lock.

Many different types of dial locks
have been designed but most all have one fault in common. As they are tightened, they exert pressure against one side of the dial or knob, causing a slight movement and consequent detuning of the receiver.


Dial Lock disassembled to show bronze and brass parts. Courtesy Espey Mfg. Co., New York

The illustrated dial lock prevents this movement by simultaneously exerting pressure on four sides of the tuning knob. When the dial lock knob is rotated, four heat treated beryllium copper springs mounted on a brass plate tighten against the edges of a braking plate fastened to the main tuning knob.

The disassembled illustration of the dial lock shows the various brass and bronze parts used in the assembly. All high brass parts are nickel plated to increase resistance to corrosion. The dial lock knob is a machined bronze casting. The beryllium copper springs insure high resistance to fatigue and a strong grip to prevent slipping.

## Bridgeport Service

The use of the correct alloy and temper is most important in precision fabrication. For help on your metal problems, contact the nearest Bridgeport office.
(9:20)
 go much deeper than these qualifications.

Here in Burnell \& Co. we concern ourselves with all the phases in the design of a filter of superior quality. To maintain our high standard we manufacture our toroids with the most modern facilities and quality controlled methods. The capacitor eomponents employed are either the finest silver mica type or are wound with plastic dielectric material employing no impregnants that may affect the life or long term stability. All other components are just as carefully selected and controlled.

This policy of incorporating only the best ingredients coupled with our advanced design method insure our customers that not only will our filters meet the basic requirements but that they will also maintain all of their characteristics under all the service conditions of equipment in which they are used.


EXCLUSIVE MANUFACTURERS OF COMMUNICATIONS NETWORK COMPONENTS

## and know-how

 goes intoyour purchase of a Cinema resistor........ . . .


Accurate wire wound resistors in the new Cinema CE type are hermetically sealed to surpass the requirements of MIL R-93A. Investigate the use of the new CE resistor in your applicafions. Contact your local Cinema Engineering Company factory representative, or write direct today for literature.



40-VOLT-AMPERE IMDUSTRIAL AMPLISTAT operates directly from 115 -volt, 60 -cycle power supply.


400-CYCLE PLUG-IN AMPLISTAT is a push-pull output DC linear amplifier with three separate input windings. Tube-type base simplifies mounting.

# New line of G-E Amplistats now available for high-gain DC amplification circuits 



ONE-VOLT-AMPERE A.MPLISTAT is compact (twoinch cube), mounts in standard octal socket for convemient connection and easy circuit testing.


EDUCATIONAL-LABORATORY AMPLISTAT (10-volt-amperes) has multiple input for Hexibility. Diagram molded into pane allows easy demonstration.

The Amplistats (self-saturaling magnelic amplifiers) illustrated here are typical of the units General Electric is now producing. Ten ratings have been designed to extend application to a wide variety of circuits. There are two models in the 1 -volt-ampere range, one model in the 40 -volt-ampere range, and two models for use with 400 -cycle input current.

An Elucational-Laboratory unit (40-volt-ampere) and a 400 -cycle hermetically sealed unit are also available. New ralings of 25 -voltamperes, 125 -volt-imperes, and 600 -volt-amperes will go into production in the near future.

General Electric's expanded line of Amplistats offers you many adrantages in the design of control and instrumentation systems which require high-gain DC amplification of small signal sources. Combining amplifying and rectifying elements in a packaged unit, G-E Amplistals give you instant starting, low power consumption, long life, electrical signal isolation, and rugged durability where moderate shock or vibration might occur. They are simple and convenient to mount, and are often lighter in weight than other types of amplifiers.

G-E engineers are ready to assist you in developing complete amplification systems around these units or in designing units for specific applications. Mail coupon helow for more information on G.E.'s new Amplistat line. General Electric Co., Schenectady 5, N. Y.

```
General Electric Company
Section 4ll-110
Schenectady 5, N. Y.
Please send without charge bulletin GEA-5950 on G.E.'s new Amplistat line. \(\square\) For immediate project. \(\square\) For reference only.
```

$\qquad$

```
COMPANY
ADDRESS CITY STATE
```




# I-T-E precision wire-wound resistors can be specially engineered to your requirements 

New electronic equipment designs often require special types of precision wirewound resistors. A wide range of special types and ratings, built to exact customer specifications, is being produced by I-T-E in quantity.

Expanded I-T-E design and engineering facilities, and advanced production and testing techniques, are all combined to provide individually tested units guaranteed to perform within narrowly defined limits.

## Here's what I-T-E offers you:

## sIzE

Resistance values up to 500,000 ohms can be produced in a body as small as $11 / 8^{\prime \prime}$ long $\mathrm{x} 3{ }^{3}{ }^{\prime \prime}{ }^{\prime \prime}$ OD-with emphasis on close accuracy, low temperature-coefficient, and high stability.

I-T-E also produces multiple-tapped units in cylindrical and card forms-or in any required special form. Number and spacing of taps are available to specification.

## RESISTANCE

Special resistors are obtainable in tolerances down to $\pm 0.05 \%$. I-T-E units surpass MIL-R-93A specifications.

Tiny plastic bobbins are used to obtain higher resistance values than ceramic-core resistors in the same size body.

Matched pairs can be supplied in any ratio-with ratio tolerance to within $\pm 0.05 \%$. (Unity ratio to within $\pm 0.005 \%$.)

## FREQUENCY

Proper selection of wire and balanced winding techniques limit reactance within narrow ranges.

## TEMPERATURE COEFFICIENT

I-T-E selects low temperature-coefficient resistance wire. Test procedures determine temperature coefficient of a precision wirewound resistor to within $\pm 2$ parts/ million/degree C . In matched pairs, TC of one resistor can be matched to TC of the other within $\pm 5$ parts/million/degree C .

Rigid testing of each resistor makes it possible to guarantee TC of an entire lot.

## StABILITY

Accelerated aging of finished resistors obtains stability as low as $0.005 \%$. Hermetic sealing protects against the destructive effects of salt water immersion and high humidity.

## WHAT ARE YOUR REQUIREMENTS?

I-T-E engineering and production facilities offer you much more than a standard line of precision wirewound resistors and other wire-wound components. If your problem is special, write us outlining your requirements. Resistor Division, I-T-E Circuit Breaker Co., 1924 Hamilton St., Philadelphia 30, Pa.

# How Carboloy permanent magnets 

## Products work better, weigh less, cost less to build

Throw away that electro-magnetic source of energy! Replace it with a Carkoloy permanent magnet!
Hundreds of manufacturers in thee field of communications equipment have taken this sound advice ... and make better kerforming products for less money as a =esult
Here's why: A Carboloy permanent magnet is a simple package of stored energy that will never fail. When it replaces a wound coil in a circuit, it is usually a smaller assembly, with current losses eliminated. For unlike a coil, a magnet generates no current-wasting heat; its field strength always remains steady.
Fabrication costs go down because the magnet eliminates the coil, wires and operating
parts. Even ir small sizes, it is powerful. That means product design is simplified... size and weight substantially reduced. A Carboloy permanent rajaznet costs nothing to operate, never needs maintenance. Result? More savings, more product deperdability.

Why not call a Carboloy magnet engineer soon? Fird out just where and how a magnet assembly can help you . . . and get an expert, he pful assist in magnet design and application.
High-quality, low cost Carboloy Permanent magne:s are available in all sizes, all shapes - cast or sintered to your specifications. Mail coupon for free Magnet Design Manual and Standard Stock Cata_og.


## improve communication devices



WALKIE-TALKIES - Size and weight are highly vital here. Carboloy permanent magnets in these speakers help to reduce both considerably.

transmitter receivers - Huge communication links like these rely on Carboloy permanent magnets for trouble-free performance.

## 16 OUTSTANDING ADVANTAGES OF CARBOLOY PERMANENT MAGNETS

- Cool - generate no heat
- Require no electrical energy
- Cost nothing to operate
- Eliminate coils, windings, wiring, etc.
- Need no maintenance-no coils to burn out, no slip rings to clean or replace, etc.
- Simplify mechanical assemblies - exeri strong tractive force for holding, lifting and separating devices that eliminates component parts, makes product design and fabrication simple
- Save space - great magnetic strength in small sizes
- Powerful - and power is constant
- Combine electrical and mechanical features - transform electrical energy into mechanical motion; mechanical motion into electrical energy
- No power failures
- Resist moisture - no coils to collect dampness
- Give uninterrupted operation
- Create savings - often eliminate costly, power-supplying parts
- Simple - no operating parts
- Reduce weight, product size
- Supply a permanent source of energy


FIELD TELEPHONES - In receivers, Carboloy magnets help step up clarity, cut down size and weight, and reduce power requirements.


RADIO, TV SPEAKERS - In these speakers, current passes through the voice coil which is the magnetic field set up by the Carboloy permanent magnets. The uniformity and strength of the magnets help produce truer tone. 11139 E. 8 Mile Street, Detroit 32, Michigan

Plants at Detroit, Michigan; Edmore, Michigan; and Schenectady, New York
"Carboloy" is the registered trademark of the Carboloy Department of General Electric Company

## FREE CATALOG AND MANUAL

Carboloy Department of General Electric Company 11139 E. 8 Mile Street, Detroit 32, Michigan
Send me, at no cost or obligation, copies of Permanent Magnet Design Manual PM-101 and Standard Stock Catalog PM-100.

NAME POSITION

COMPANY $\qquad$
ADDRESS $\qquad$


## Flaw finder switches to AXIOHM RESISTORS



The Sperry ultrasonic Reflectoscope, a compact, portable unit designed for on-the-job inspection, "listens" for defects through as much as thirty solid feet of aluminum and even greater thicknesses in steel and other materials.

Many of the circuits in this highly sensitive electronic instrument now include Ward Leonard Axiohm Resistors. Sperry's design engineers gave three reasons for specifying this ruggedly built, self-mounting, miniature resistor.

- stronger anchorage of the axial lead
- smaller size
- full watt rating at high resistance values

Sperr ReflectJscope.
made by Sperry Products, Inc. Danzury. Conn.

AXIOHM RESISTORS of the vitreous enamel wire-wound power type are designed for use by the electronic and allied industries. These newly developed miniature resistors are self-supporting by their own wire leads which are hot tin-dipped for ease of soldering. They are available in conservatively rated 5 and 10 watt sizes. Write for Axiohm resistor bulletin.


WARD LEONARD ELEGTRIC company MOUNT VERNON, NEW YORK

# WARD LEONARD makes 19 distinct inspections and tests on every Vitrohm resistor 

Measurement of outer diameter and concentricity of ceramic cores are but two of the 19 checks made on every Axiohm resistor.


In the Axiohm, as in every stock and made-to-order resistor, Ward Leonard gives this same careful attention to the details that result in long-life service even under the most adverse conditions.

Every resistor component is matched with respect to thermal expansion. Ward Leonard resistor cores, Vitrohm enamel, terminals, junctions, even resistance wire, are resultengineered for accuracy and uniformity.

Whether your product is a delicate electronic device like the Reflectoscope or a heavy-duty industrial machine, you need an electrical control you can count on. Ward Leonard has the productive facilities and the technical know-how to meet your every resistor need. Let Ward Leonard's engineering department help you select the right one. Ward Leonard Electric Company, ${ }^{31}$ South Street, Mt. Vernon, New York.


Ward Leanordes complete engineertig text. bock, "Handbook of Power Resistors," \$3. per ccpy.


for atight fif
regardless of irregularities

Manufacturers are assured of tightly-closed doors and panels, with gaskets tightly compressed, by using Southco Adjustable Pawl Fasteners. Variations in thickness at point of fastener contact, whether in heavy castings or light metal frames, do not affect either the fit or the simple fastener installation procedure.

Adjustment is made automatically every time the knob of a Southco Fastener is turned. Only one size is stocked for use on various panel thicknesses, but every fastener fits.

For complete data on Southco Adjustable Pawl Fasteners, write to Southco Div., South Chester Corp., 1417 Finance Bldg., Phila. 2, Pa.

Important for military contractors! Prompt deliveries
 now possible.


# Increase Tube Reliability with VAGUUM-GAST METALS 



Vacuum-melting removes gases and oxide inclusions from metals . . . makes them less porous, so they won't absorb or emit gases.

Used in tubes, vacuum-cast metals won't leak or continue to out-gas to spoil vacuums. They are being used to reduce pump-down time . . increase tube reliability ... and shelf life.

Commercial quantities of ferrous and non-ferrous metals and alloys are now being vacuum-cast at pressures as low as one millionth part of atmospheric by Vacuum Metals Corporation. Available in either billet or fabricated forms. Write for more information.

## vacuum-melted metals

 AVAILABLE FROM VMC:Cuprovac ${ }^{\circledR}$ (Electronicgrade Copper)
Nivac Series ${ }^{\left({ }^{8}\right)}$ (Nickel and Alloys)
Ferrovac(8) 52100
Ferrovac ${ }^{\circledR} 4340$
Other metals or alloys vacuum-cast to customer specifications.

GF (Gas Free) mETAIS
VACUUM METALS CORPORATION
Subsidiary of National Research Corporation
70 memorial drive, cambridge 42, massachusetts

## A High VACUUM FURNACE for the <br> ELECTRONIC INDUSTRY

## For Producing:

## Germanium • Silicon Degassed Tube Parts Vacuum melted tube materials A versatile and valuable production tool.

For Research

## and Development:

 Complete flexibility for almost any purpose.There is now available a single furnace that does away with the need to purchase equipment for each phase of your high-vacuum, high-temperature work. Because of its modest price, it will fall within the budget of most laboratories.

With this new furnace you can melt and solidify - melt and pour-add to the melt - stir - look into the hot zone - measure hot zone temperatures - introduce controlled atmospheres - degas - heat treat. It's a complete, versatile unit, capable of handling the widest variety of metallurgical research work. Write today.


[^11]

extra protection from ical shock. Ayailable ir

## Steel Cased

## TOROIDS AND FILTERS

Existing designs cover a wide range of types and frequencies. Filters meet military specifications and can be offered in miniaturized versions. A typical filter is shown. C. A. C. filter design engineers will convert your specifications to production deliveries with minimum delay

## Why is it?...

From a modest beginning five years ago, Communication Accessories Company has grown to one of the largest exclusive toroid coil winding producers in the U. S. today. Why? We like to think that this growth is due to the thorough, careful handling we apply to each coil . . . and because of the particular skill of our people. Whatever the reason, we'll continue-doing the best we know how-thankful for the trust that important companies have placed in us.


COMMUNICATION ACCESSORIES Comporry

HICKMAN MILLS, MISSOURI

## Want to make something of it?

Make it into insulating plates, upset washers, arc barriers, terminal blocks, switch and appliance insulation, cases, face plates for golf clubs . . . or any other electrical or mechanical component that can benefit from the unique properties of this versatile material.
Make it in red, gray, black, or special colors.
Make it from sheets or rolls with these specifications:


SPECIFICATIONS

| Thickness <br> Range: .005" | .005" to $1^{\prime \prime}$ |
| :---: | :---: |
| Finish: Pres | Pressed and calendered |
| Punching: To 3 | To 3/16" thick |
| Sheet Size: 56" ${ }^{\prime \prime}$ | 56" $\times 90^{\prime \prime}$ |
| Roll Width: 56" .005 Coils ness .090 | $56^{\prime \prime}$ for thicknesses of .005" through . $060^{\prime \prime}$. Coils to $\mathbf{3} / 16^{\prime \prime}$ for thicknesses of .005" through $.090^{\prime \prime}$. |
|  | ROPERTIES |
| Mechanical |  |
| Flexural Strength (Lengthwise) (Crosswise) | ngth <br> 14000 psi min. <br> e) $\mathbf{1 2 0 0 0}$ psi min. |
| Tensile Strength (Lengthwise) (Crosswise) | ise) 7500 psi min. <br> e) 5500 psi min . |
| Compressive Stre (Flatwise) | e Strength 20000 psi min. |
| lzod Impact Stren (Lengthwise) (Crosswise) | Strength <br> ise) 3.5 Ft.-Lbs./inch <br> 2.9 Fl.-Lbs./inch |
| Electrical |  |
| Dielectric Strengt (1/32" thick) | rength <br> ick) 250 min . |
| Short Time Test ( $1 / 8^{\prime \prime}$ thick) | Test 175 min . |
| Arc resistance, seconds | ce, 100 |

Make it from turned rods. Diameters from $1 / 8^{\prime \prime}$ to $1^{\prime \prime}$ with ground or buffed finish.
Make it easy for yourself when you're buying vulcanized fibre.
Call your Taylor engineer . . . he will be glad to work with you . . .
help select the correct grades to fit your needs
-Commercial, Bone, Super White, Abrasive and Built-up.
Also ask him for samples of Taylor Laminated Plastics . . .
Phenol, Silicone and Melamine Laminates . . .
suited for a variety of your product requirements.
Taylor Fibre Company, Norristown, Pennsylvania - La Verne, Calif.


# the lid's off! 



## New Folder Outlines JAN Capacitor Types

A new folder, available on request, condenses the information on type designations of all electrolytic caparitors covered by JAN C.62, to convenient, easy-to-read chart form. It's an ideal reference for everyane who specifies or uses electrolytic capatitors. Write to Mallory for your copy today.

For use in military electronic equipment, Mallory manufactures a line of electrolytic capactors which will meet the requirements of Specification JAD C-62. Included in the Mallory line is the full selection of standard case stylen, ratings and characteristics required under the specification.

Into these military-type capacitors go the same engineering know-how and production craftsmanship which have made Mallory capacitors the standard of quality in the radio and television industry.
Look to Mallory for all your capacitor needs . . . whether for military or for civilian applications.

## SERVING INDUSTRY WITH THESE PRODUCTS:

Eleciromechanical-Resistors - Switches - Television Tuners - Vibrators Electrochemical-Capacitars - Rectifiers - Mercury Dry Bałteries Metallurgical-Contacts•SpeciạlMetals and Ceramics - Welding Materials

## cROSS <br> TALK

- TRIO . . . Long-range prospects for electronics are excellent. We are living in an age of almost unlimited power (atomic energy), and unlimited speed (jets). To utilize these two things we need unlimited control, and control is where electronics shines.
- SPACE . . . There are two schools of thought among reputable scientists relative to space travel. One believes that man will contrive practical space stations, eventually reaching distant celestial bodies, and the other does not.

One thing, at least, is certain. If and when man does leave his natural habitat the vehicle he uses will depend heavily upon the science of electronics for navigation, communication and many other things not yet fully visible. Man may, in effect, ride electronics to the moon.

- TIMETABLE ... . Several experimental television receivers of different makes have just been tested on NTSC color signals at a Long Island laboratory. The results were good.

Early in April these same receivers, augmented by several more obtained from still other manufacturers, are scheduled to be put through their paces in Syracuse. Then they will be tried out again, in Philadelphia.

The timetable is subject to change without notice but it does seem that the system could be ready for demonstration before the FCC this summer, and perhaps as early as June.

- WORKMANSHIP . . . Modern design plus mass production can provide low-cost electronic equipment capable of giving good service. Much still depends, however, upon personal care during assembly and, particularly, the conscience of inspectors at the end of the line.

Somehow, we've gotten the impression that an unusual number of casually-put-together items are currently being sold. Two ceramic trimmer capacitors were picked up at retail; one entirely lacked threads for the adjustment screw. Of three simultaneously purchased toggle switches one was defective. Two trips were necessary to buy one good transformer. A microphone fresh from the shipping carton proved intermittent due to soldering flux under riveted lugs.

Maybe we're just unlucky. Or maybe pride in good workmanship has momentarily declined to a point where not even the fanciest test procedures can catch all the bugs.

- DETROIT . . . Car manufacturers tell us it is only a question of time when most American automobiles will be equipped with 12 -volt
electrical systems; increasing load is almost more than 6 -volt batteries of reasonable size can stand despite numerous improvements.

It may take several years, but the market for 12 -volt mobile electronic equipment and accessories is destined for expansion. Use of raised voltage and lowered amperage has many virtues. Smaller, lighter high-voltage power supplies handle a given load faster and easier, are much less critical with respect to input-circuit wire size. There could be some new troubles with regulation, but car makers say that they are aware of this and are working on it.
-SHOPTALK . . . Since 1944, all Electronics' feature articles have been published on sequential full pages. There is no "turnover", no "continued" line, no interleaved extraneous material to complicate reference to illustrations.

We wonder how many of our readers realize that this policy, which involves considerable editing trouble and substantial cost, is by no means common in commercial publications.

- CONSERVATION . . . It is said that one manufacturer of envelopes for television picture tubes has contributed substantially to the defense program by taking the lead out of its glass.


Electron coupler is 18 in . long by $51 / 2 \mathrm{in}$. in diameter. Details shown in cutaway include the two coupling-beam electron guns and three of the five modulating beams. Coupling loops are not shown

## Spiral-Beam Tube

Multibeam electron coupler may be useful in ultrahigh-frequency television transmitters. Tube has excellent linearity, $5-\mathrm{mc}$ bandwidth and 50 -percent transfer efficiency. Five parasitic electron beams in output circuit control power transfer to load

By C. L, CUCCIA
Radio Corporation of America RCA Laboratories Division Princeton. N. J.

DESIGNED to operate at the 1-kw level in the $800-\mathrm{mc}$ range, the multibeam electron coupler is an improved spiral-beam modulation tube suitable for use in uhf television. When placed between gen-
erator and load, the electron coupler presents a constant impedance while permitting control of power to the load. The tube uses coaxial-line cavities and has five modulating electron beams in the output circuit. It possesses excellent linearity characteristics, a bandwidth in excess of 5 mc and a 50 -percent transfer efficiency.

Use of auxiliary electron beams
in the output cavity of the tube provides a modulation method whereby a 50 -volt modulator grid swing can control power output over a range of 98 percent of maximum. This is seen as a great improvement over the performance of single-beam electron couplers ${ }^{1,2}$. A single-beam tube operated at 775 me with a beam current of 50 milliamperes and an input-cavity po-


FIG. 1-Rotating coupling beam in coaxial cavity has milk-bottle shape (A). Transverse electric field is uniform in beam region due to specially-shaped center conductor (B) and varies sinusoidally along axis of cavity

## Modulates 1 KW at UHF

tential of 650 volts, using transittime control, required a voltage swing of nearly 1,000 volts to achieve the same depth of modulation.

In the multibeam electron coupler, the auxiliary beams work both to absorb power and to create a mismatch between the tube and its output load, thereby making the amount of power transferred to the load a function of the auxiliary beam current.

## Coaxial Cavity

Auxiliary-beam modulation is capable of producing high-level amplitude modulation. This can be accomplished in the tube to be
described only by auxiliary-beam currents of from one-half to one ampere. To accommodate these currents, it is convenient to utilize resonant coaxial cavities. The use of coaxial cavities in an electron coupler also yields advantages in header construction and suitability for use with electromagnets.

Consider the case of an electron beam sent through a coaxial cavity whose center conductor (Fig. 1B) is shaped to produce a transverse, alternating, electric field of suitable rectilinearity in the path of the electron beam. Such a cavity is illustrated in Fig. 1A. In this cavity the transverse electric field varies sinusoidally along the path
of the electron beam.
Let a magnetic field be placed parallel to the path of the electron beam and let the operating frequency be adjusted to the cyclotron frequency

$$
\begin{equation*}
f_{0}=2.794 \mathrm{H} \times 10^{6} \tag{1}
\end{equation*}
$$

where $H$ is magnetic field intensity in gausses and $f_{0}$ is frequency in cycles per second.

If the length of the cavity is $L / 2$, then the deflection, $X$, of the directrix beam at some distance $l$ through the cavity is

$$
\begin{align*}
& X=\frac{2.36}{\pi} \frac{E}{V_{b^{1 / 2} f_{b}}} \frac{L}{2}(1-\cos 2 \pi \\
& \quad \times 10^{\circ} \tag{2}
\end{align*}
$$

where $E$ is the peak value of the transverse electric field in volts per
centimeter, $V_{b}$ is the beam voltage in volts, $f_{c}$ is frequency in cycles and $l$ and $L$ are in centimeters.

## Coupling-Beam Shape

Because the cyclotron frequency is used as the operating frequency, the electrons all have the same azimuthal angle at any instant, thereby causing the electrons to form a directrix beam. However, unlike the cone-directrix beam formed in vane-cavity electron couplers, the directrix beam in a coaxial cavity will have a milkbottle shape as shown in Fig. 1A. This shape is described mathematically by Eq. 2.

The reason for the milk-bottle shape is readily understood. As the electrons enter the coaxial cavity, the transverse field intensity is initially zero. As the electrons pass through the cavity, encountering the sinusoidally varying field, the greatest contribution to the spiral radii is obtained near the center of the cavity where the peak transverse electric field is maximum. This causes the rapid increase in $X$ in this region as illustrated in Fig. 1C.

Power into a rotating directrix
beam in a coaxial cavity of length $L / 2$ is expressible in either of two forms ${ }^{1}$

$$
\begin{equation*}
P=\frac{1}{8 \pi} \frac{I_{0}}{V_{b}} E^{2}\left(\frac{L}{2}\right)^{2} \tag{3A}
\end{equation*}
$$

$P=1.768 \times 10^{-2} \times \int_{e^{2}}^{2} \times I_{o} \times X^{2} \quad(3 \mathrm{~B})$
where $I_{0}$ is the beam current in amperes and $V_{0}$ is the d-c beam voltage. Equation 3 shows that if peak alternating electric field strengths are equal, the power absorbed by a directrix beam in a coaxial cavity is $2 / \pi$ times that absorbed in a cavity with an axially uniform field. The resistance in ohms presented by such a beam in a coaxial cavity is

$$
\begin{equation*}
R=d_{1}{ }^{2} E_{1}^{2} / 2 P=16 \pi V_{o} / I_{o}\left(d_{1} / L\right)^{2} \tag{4}
\end{equation*}
$$ where $d_{1}$ is separation between pole faces in centimeters.

Once the power given by Eq. 3 has been absorbed by the rotating beam, it can be utilized for electron coupling. Were the cavity to be closed as shown in Fig. 1A, this power would be dissipated at the end of the cavity in the form of heat. However, if the rotating beam is passed into a second cavity, the rotational energy contained in the beam can be used to excite the second cavity.


FIG. 2-Voltage output is function of optimum coupling-beam current. modulating beam current and operating parameters of tube

This principle is used in the spiral-beam tube. Two coaxial cavities, each with a suitably shaped center conductor, are placed end to end. Two round apertures are installed between the cavities to allow two electron beams to enter and pass through the second or output cavity after traversing the input cavity.

## Secondary-Cavity Modulation

As the electrons pass through the intercavity space after emerging from the input cavity, no energy is imparted to or extracted from them since no transverse electric fields are present. Each electron pursues a helical path through the intercavity space at a transit velocity prescribed by the beam potential. Therefore, the electrons enter the output cavity with the same spiral radius with which they emerged from the input cavity.

As the rotating electron beam passes through the output cavity, a current ${ }^{1}$ is induced in the load of the output system because the electrons represent an oscillating space charge with periodicity, $f_{c}$, between the pole faces. The product of this induced current and the load resistance will yield the r-f voltage across the pole faces.

If the load, $R_{o}$, exists across the output cavity boundaries, it can be shown that all of the rotational power in the beam can be extracted when

$$
\begin{equation*}
R_{o}=16 \pi V_{b} / I_{o}\left(d_{o} / L_{o}\right)^{2} \tag{5}
\end{equation*}
$$

$I_{0}$ is the optimum value of couplingbeam current that will accomplish the matching suitable for complete transfer of input power to the output load; $V_{b}$ is the beam voltage in the output cavity and $d_{o}$ and $L_{o} / 2$ are respectively the pole-face width and length in the output cavity. For this particular value of coupling beam load and current, the beam-configuration in the output cavity will be an exact image of the beam-configuration in the input cavity, that is, the milk-bottle directrix having maximum radius at the entrance to the cavity and zero radius at the exit or collector.

When an auxiliary beam of magnitude $I_{u}$ is injected only through the output cavity, the beam will present the resistance

$$
\begin{equation*}
R_{M}=16 \pi V_{b M} / I_{M}\left(d_{o} / L_{o}\right)^{2} \tag{6}
\end{equation*}
$$

where $V_{b, M}$ is the difference in potential between the output cavity and the auxiliary-beam cathode. Resistance $R_{m}$ will be in shunt with load resistance $R_{o}$ forming a combined load $R_{c}$ where

$$
\begin{equation*}
R_{C}=R_{M} R_{o} / R_{M}+R_{o} \tag{7}
\end{equation*}
$$

Consider now the power transfer efficiency, $\tau_{i}$, where

$$
\eta=\frac{r-\mathrm{f} \text { power into } R_{c}}{r-\mathrm{f} \text { power into input cavity }} \times 100
$$

If the coupling beam is matched to the output cavity when the auxil-iary-beam current is zero, ${ }^{1}$

$$
\begin{equation*}
\eta=4 \gamma /(1+\gamma)^{2} \times 100 \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=R_{C} / R_{o} \tag{9}
\end{equation*}
$$

## Mismatch

As the auxiliary beam current is turned on and increased in value from zero, the output cavity experiences a mismatch between the coupling beam and the combined load presented by the combination of the output load and the shunting resistance due to the auxiliary beam. This mismatch results in a decrease in transfer efficiency. The power goes to three sinks ${ }^{2}$-output load, auxiliary beam and collector, rather than to the output load alone. To illustrate load mismatch and output cavity-auxiliary beam modulation, consider the following cases that follow from Eq. 8:

Case A-When the auxiliary beam is off, $R_{s}=\infty, \eta=100$ percent.

Case B-When the auxiliary beam is turned on such that $R_{x}=R_{o}$, the transfer efficiency is reduced to 88 percent leaving 44 percent of the power available to the output load.

Twelve percent goes to the collector and 44 percent to the auxiliary beam.

Case C-When the auxiliary beam is adjusted such that $R_{u}=$ $1 / 10 R_{o}$, transfer efficiency is 30 percent. Seventy percent of the total power goes to the collector; 27.28 percent goes to the auxiliary beam and only 2.72 percent reaches the output load. This corresponds to 97.18 percent power modulation and demonstrates the capabilities of the output cavity-auxiliary beam


FIG. 3-Input cavity presents match to 50 -ohm line over wide range of coupling-beam current and voltage
modulation method.
The preceding discussion presupposes the coupling-beam current at optimum value, $I_{a}$, which is related to the load $R_{\text {o }}$, by Eq. 5. However, it is expedient to increase the depth of modulation for certain ranges of performance by operating with a coupling-beam current differing in value from $I_{0}$. This is illustrated in the general case when some arbitrary value of couplingbeam current, $I_{c}$, is related to the optimum coupling-beam current by

$$
\begin{equation*}
I_{c} / I_{o}=\alpha \tag{10}
\end{equation*}
$$

Using Eq. 5 and 6 the ratio $R_{o} / R_{M}$ can be expressed in terms of the optimum coupling-beam current and the auxiliary-beam current as

$$
\begin{equation*}
R_{o} / R_{M}=I_{M} / I_{\theta} \cdot V_{b} / V_{b M} \tag{11}
\end{equation*}
$$

It follows ${ }^{1}$ that the relationship between percent voltage output $\sqrt{\gamma_{i}}, \alpha, I_{M}$ and $I_{o}$ is that shown in Fig. 2. The ratio $V_{b} / V_{b M}$ will be a constant depending upon the operating parameters of the tube.

## Depth of Modulation

Modern practice in commercial transmission requires a depth of voltage-modulation of 85 percent, which corresponds to 97.75 percent power modulation. With a source of auxiliary-beam current capable of yielding twelve times the magnitude of the optimum coupling-beam current, this depth of modulation can be achieved for $\alpha=1$. However, as seen from Fig. 2, if values of $\alpha$ down to 0.5 are chosen, it is possible to achieve this depth of modulation with less auxiliarybeam current without too great a
sacrifice of power-transfer efficiency at the peak power. However, the auxiliary-beam voltage must be sufficient to yield the required modulating current.

## Mechanical Design

The developmental multibeam electron coupler operates at 800 mc . It is a seven electron-beam tube using output cavity-auxiliary beam modulation and coaxial cavity construction.

Two of the seven beams are coupling beams passing the entire length of the tube. Each couplingbeam gun is capable of 200 milliamperes, produces a cylindrical beam $\frac{3}{8}$ in. in diameter and traverses an electric field region having boundaries $1 \frac{1}{2}$ in. apart. The powerhandling capabilities of such a tube at $800 \mathrm{mc} u \operatorname{sing}$ all 400 milliamperes of coupling-beam current, with a practical grazing limit set at 1.25 centimeters, may be calculated using Eq. 3

$$
\begin{align*}
P & =1.768 \times 10^{-2} \times 800^{2} \times 0.400 \times 1.25^{2} \\
& =7,00^{2} 2 \text { wat.ts } \tag{12}
\end{align*}
$$

Actually, considerations arising from the method of modulation place severe restrictions on this magnitude.

## Auxiliary-Beam Guns

Five electron-beam guns are installed in such a way that the electrons from these guns traverse only the output cavity. Each gun is a screen-grid-beam type similar in cathode and grid construction to the design used in the 6L6. Each out-put-cavity gun yields a rectangular beam, $3^{5} 5 \times 3^{\frac{\pi}{2}}$ in., capable of producing, at several hundred volts effective plate potential, a beam current of 120 ma at zero grid bias. Beam current can be reduced to zero by approximately minus 50 volts on the control grid. All five auxiliary beam guns acting simultaneously are capable of yielding up to 650 ma.

The multibeam electron coupler based on the coaxial design is pictured in the photograph. The tube is cylindrical, using header construction which leaves the sides of the tube free of protuberances. Design is such that the tube is suitable for use with solenoidal magnets and water-cool-


FIG. 4-Power and voltage outputs versus control-grid voltage for peak power output of 300 watts, corresponding to 750 volts beam voltage
ing rings. Only the output cavity is tuned, the input cavity frequency being fixed at 800 mc . The tube is approximately 18 in . long and $5 \frac{1}{2}$ in. in diameter. The main body of the tube is copper, with monel end rings atomic-hydrogen welded to monel rings on the headers.

## Experimental Performance

The input cavity should present a matched or mismatched load to the driving magnetron depending upon what operating point is desired. It is important that this match or mismatch be constant. The match will be a function of four system parameters provided that the frequency involved is the cyclotron frequency. These parameters are:
(1) The coefficient of coupling of the coupling loop and the associated parameters that transform the impedance of the beam in the beam space to that of the termination of the transmission line to the electron coupler.
(2) The coupling-beam current.
(3) The coupling-beam voltage in the input cavity.
(4) The peak-power input, which should be substantially under the value that would cause electrons to graze on the pole faces and be lost to the output cavity.
By making suitable choices of parameters, the input-cavity system presented a match to the driving transmission line during operation over the ranges of coupling-beam currerts and voltages described in Fig. 3. Match was obtained over
a wide range of usable current values up to 200 milliamperes at 1,250 volts. Included in Fig. 3 are calculated values of maximum power that can be handled by the coupling beam having the values of $I_{0}$ and $V_{b}$ prescribed by the experimentally observed curve.

The transfer efficiency of the multibeam electron coupler was found to be about 50 percent, as contrasted with the transfer efficiency of 70 percent obtained with the single-beam electron coupler ${ }^{2}$. This decrease in transfer efficiency is attributable to the length of the beam path and to the lack of exact parallelity of magnetic field lines over the entire beam path as a result of the use of solenoidal magnets rather than an electromagnet.

## Input

The tube was operated with a top power input of one kilowatt. Up to 650 milliamperes was available from the five auxiliary beam guns with $V_{b u}=750$ volts and a grid swing of $0<e_{0}<-50$ was required to swing the auxiliary beam current from maximum to zero. In a typical $d$-c operating run, the multibeam electron coupler was first adjusted to $I_{0}=165$ milliamperes and $V_{b}=1,150$ volts, corresponding to a maximum power of 3,410 watts, achieving thereby a match for the 50 -ohm line (Fig. 3 ). Since this would have required a total auxiliary beam current of almost two amperes for 85 percent depth of voltage modulation it was
found expedient to mismatch the coupling beam and the output load.
The coupling-beam current was reduced to 60 milliamperes, corresponding to a maximum power into the beam of

$$
\begin{align*}
P & =1.768 \times 10^{-2} \times 800^{2} \times 0.060 \times 1.25^{2} \\
& =1,062 \text { watts } \tag{13}
\end{align*}
$$

The parameters yielding the depth of modulation are

$$
\begin{gather*}
\alpha=\frac{60}{165}=0.364  \tag{14}\\
V_{b} / V_{b . M}=1,150 / 750=1.532  \tag{15}\\
I_{M} / I_{o}=650 / 165=3.94  \tag{16}\\
I_{M} / I_{o}=V_{b} / V_{\iota M}=1.532 \times 3.94=6.04 \tag{17}
\end{gather*}
$$

These values substituted into the curves of Fig. 2 give 15.5 percent. In the actual experimental test, this depth of voltage modulation was almost exactly corroborated.

## Output

The actual power output and voltage runs for a peak output of 300 watts are shown in Fig. 4. This power corresponds to a beam voltage of 750 volts. It is evident from Fig. 4B that the linearity of the output voltage as a function of modulating-grid voltage is excellent.

The bandwidth of the modulation system was examined by impressing on the control grids of the auxil-iary-beam guns a signal of known amplitude whose frequency was continuously variable from 100 kc to 5 mc . The output of a diode detector inserted into the transmission line at the output load was detected and viewed on an oscilloscope. The response of the system was found to be substantially independent of frequency up to and beyond 5 mc . This result was independent of the depth of modulation of the auxiliary-beam modulation system.

## References

(1) C. L. Cuccia, The Electron Coupler $\overrightarrow{\text { Mod }}$ A Developmental Tube for Amplitude Modulation and Power Control at UltraHigh Frequencies, Part I, RCA Review, 10, No. 2, p 270, June 1949. (Part II in press).
(2) C. L. Cuccia and J. S. Donal, Jr., The Electron Coupler-A Spiral-Beam UHF Modulator, Electionics, p 80, March 1950.


Cincinnati Hydro-Tel, automatic 28 -inch vertical milling machine, is controlled by 250 -tube electronic director

## Punched Tape Guides <br> Milling Machine Cutters

Modern information handling and feedback control techniques may eliminate costly and time-consuming setup procedures in metal-trades industry. Automatic vertical milling machine cuts out each piece in response to instructions punched in paper tape

IN CERTAIN metal-trades indus-国 tries, notably aircraft manufacturing, automatic production of machined parts may be relatively costly and inefficient Many different parts are required and production runs are characteristically short. A skilled machinist is needed to set up the machine each time a new part is manufactured. Often expensive jigs and fixtures and spe-cially-designed cutting tools are re-

By J, O. MCDONOUGH

Servomechanisms Laboratory Massachusetts Instimute of Technology Cambridge, Mass.
quired for a particular part.
Numerical control can eliminate these costly change-overs by providing prearranged machine setups that can be changed much as a
phonograph record is changed. Machining information is reduced to a series of numerical specifications appropriate to the machine tool. Milling machine work is described as a series of cuts in Cartesian coordinates; lathe work is specified in cylindrical coordinates. The numerical specifications are then tabulated and transferred to some permanent information-storage medium such as punched cards,
punched tape or magnetic tape. A machine tool equipped to read and act upon the stored information may then machine the piece. All that is required for a different part is a new tape.

## Control System

Operation of the numericallycontrolled milling machine shown in the photograph may be explained with the aid of the functional block diagram in Fig. 1. The data input system reads the punched paper tape containing the machining information and arranges the information appropriately in storage. The input system consists of a tape reader, stepping-switch data distributors, a set of relay storage registers, and appropriate control systems.

The data-interpreting system interpolates between the points on the work that are specified explicitly on the tape. It comprises a pulse generator and an electronic pulse distributor.

The decoding servomechanisms convert the numerical information to an equivalent analog form, while the power servomechanisms control the motions of the machine tool itself.

There are three power servomechanisms to control the motions of the head, table and cross slide. The power servomechanism controlling the table is shown schematically in Fig. 2. The system consists of a hydraulic rotary transmission driving a lead screw and controlled by syncho signals. Identi-
cal units drive the head and cross slide. The power servomechanisms are designed for high stiffness of output and as low a bandwidth as possible to prevent chattering under machining loads. Approximately $\frac{3}{4}$ horsepower is required.

## Interpolation

Choice of an interpolation function determines in great measure the cost, complexity and convenience of the machine. The simpler the machine's interpolation function, the more input data is required for any job. In the extreme case, if the machine has no systematic interpolation function, data must be provided for every point on the finished work. For a machine capable of handling workpieces 60 inches long and 30 inches wide, some form of interpolation appeared to be highly desirable. While curvilinear interpolation might have allowed a great saving on input data, it could be built into the machine only at the cost of highly complex special circuitry. A linear interpolation function was adopted as a compromise.

Operation of the interpolator in response to each command on the tape results in a constant feed rate at the milling machine in each machine axis. The vector summation of the three constant feed rates causes the tool to move over the work in a straight line. To achieve this result, the interpolator transmits to each axis a counted number of pulses at a repetition rate proportional to the desired feed rate.

Each pulse indicates that the machine should move 0.0005 inch. The number of pulses thereby controls the distance through which the machine should move, while the repetition rate controls the feed rate.

The interpolator also synchronizes the three pulse trains so that the three machine axes start and stop together. Thus the output of the interpolator is a series of sets of three pulse trains, each set directing the machine tool along some straight line in space. The number of pulses in each train and the time interval during which each set of trains should run are determined by the information in storage.

## Digital-to-Analog Converter

Since the power servomechanisms use a synchro data system, the converter must be capable of driving a synchro; it must have an output in the form of a shaft rotation. The interpolator produces a series of pulses each representing a unit of desired motion. The converter must accept as its input a pulse train on either of two lines. Since the machine tool must always be accurately located in space and the pulses form the only converter input, the converter itself must maintain an accurate count of the total number of pulses received and insure that its output shaft position, except for transient disturbances, always indicates the correct total number, regardless of how long the run is.

A schematic block diagram of the digital-to-analog converter is shown


FIG. 1-Tape reader and digital-to-analog converter supply synch:o data to power servomechanisms. Orthegonal motions of pable, head and cross slide can produce any desired cut
in Fig. 3. It contains an instrument servomechanism whose output shaft, driven conventionally by a 60 -cycle, two-phase induction motor, carries a commutator-type coder wheel upon which three brushes ride. These brushes allow an electronic unit with which they are associated to generate and transmit a pulse whenever the wheel rotates through an angle of one degree. The pulse is transmitted on one line whenever the rotation is clockwise and on another whenever the rotation is counterclockwise. Exactly 360 pulses are generated for every complete revolution of the wheel. Thus the total rotation of the wheel is always given by the total number of pulses. The system is designed so that these feedback pulses are never coincident with possible output pulses from the interpolator. Hence it is possible to feed both sets of pulses into a reversible counter that will then maintain a running count of the total number of interpolator pulses, less the total number of feedback pulses. This count, which measures the degree to which the converter output differs from its total input, is used to generate the error voltage for the servomechanism. The polarities and connections are such that the servomechanism always tries to rotate the coder wheel in whichever direction will bring the error count to zero.

Use of this type of servomechanism for numerical-to-analog conversion provides several features of importance. In the first place, it permits the actual direct decoding of a numerical signal into an analog signal to take place in the error channel of a servomechanism where the magnitude of the signal is always a small fraction of the total signal handled by the servomechanism. In the second place, inaccuracies in this conversion affect only the gain, not the positional accuracy of the servomechanism. Lastly, the dynamic characteristics of a servomechanism may easily be adjusted to provide whatever smoothing or filtering may be required in the interpolator output.

## Operation

A summary of the components of the entire machine indicates the


FIG. 2-Power servomechanism controlling table motion consists of synchrocontrolled hydraulic rotary transmission driving lead serew. Identical units control head and cross slide


FIG. 3-Digital-to-analog converter changes input pulse data to equivalent shaft rotation. Commutator-type coder wheel generates feedback pulses for checking
nature of the input information required for the operation of the machine. Each of the three motions of the machine is driven by an independent hydraulic power servomechanism in response to rotations of a control synchro. Any machine motion in space may be achieved by simultaneously rotating a combination of the three control synchros. Each of the three synchros is rotated by a decoding servomechanism in response to a pulse train from the interpolator. The desired combination of three rotations is achieved by separately controlling the pulse repetition rate of each pulse train so that the desired total number of pulses is transmitted to each axis in the specified time interval. Eight different time intervals from 2 seconds to $4 \frac{1}{4}$ minutes are available. Thus, during each time interval the machine's cutting tool moves in some straight line with respect to the work. The interpolator receives from the data system numbers spefying the time interval and the three distances, which are, there-
fore, merely the three orthogonal components of the straight line along which the tool is to pass. These numbers come from the tape.
To prepare the tape, the programmer need merely describe numerically the desired tool path over the work in a series of straightline increments, and punch the three components of each straight line in order on the tape. Preliminary operation on actual machined pieces indicates that in some cases the production of a single piece by numerical control shows savings when compared to previous toolroom methods. In almost all of the cases studied to date, the cost of tape preparation is recovered after fewer than five pieces have been run.

## Acknowledgment

This article reports the results of a group effort made possible through the support extended the Servomechanisms Laboratory of the Massachusetts Institute of Technology by the Air Materiel Command, USAF under contract No. AF 33 (038)-24007.

## TRANSISTORS: Theory and Application

# Energy Levels in 

Part II

By ABRAHAM COBLENZ and HARRY L. OWENS<br>Signal Corps Engineering Laboratories<br>Fort Monmouth, New Jersey



FIG. 1-Black-body radiation curves, showing variation of energy with wavelength. Energy increases with absolute temperature, and the peaks shift toward the shorter wavelengths

IN THE FIRST article of this series an approximate explanation of transistor action was given. This introductory treatment of transistor theory demonstrated that the field of transistors is intimately connected with the study of solid materials in general, and with semiconductors in particular. The principles governing the behavior of solid materials are collectively referred to as solid-state theory.

## Semiconductors

Like any other specialized branch of the sciences, the field of semiconductors uses its own terms and definitions. This nomenclature cannot be explained in all cases by using the concepts normally encountered in electronics. New and very general concepts which describe the basic behavior of matter and energy must be introduced to aid in explaining clearly the terms commonly used in semiconductor and transistor work.

As an illustration, in the study of transistors it is difficult to avoid the use of such terms as energy levels, forbidden bands and quantum states. The explanation of these terms may be more readily understood if the reader is first introduced to the fundamental principles of quantum mechanics.

## Black Bodies

Consider an air-tight box whose inside walls are lined with a thick layer of felt. Over the felt has been deposited a heavy, uniform layer of lampblack to provide a smooth, flat inside surface. Such an enclosure absorbs all the frequencies in the light or visible range and reflects none and is called a black body. It is significant in the field of physics because of all the absorbers known, a black body is the most perfect.

If energy in the form of radiation (heat or light) were introduced into this box through a tiny hole in one end, it would bounce back and forth from wall to wall ultimately being almost totally absorbed. The energy would merely raise the temperature of the black body. It can be shown that this simple structure is an ideal absorber and an ideal radiator.

Physicists have found that the behavior of the black body can be described in relatively simple mathematical terms.

By means of bolometers, physicists are able to measure minute amounts of heat or radiant energy. With single-color or single-frequency filters it is possible with the aid of the bolometer to determine the amount of energy contained in each frequency component of the
radiation being studied.
The black body is the most perfect radiator known. Of all possible radiators, not only will the black body give off the maximum amount of radiant energy, but that radiant energy will contain the widest range of frequencies. A bolometer inserted in a tiny hole in the black body, for a given temperature of the black body, will show a variation or distribution of the energy with frequency as shown in Fig. 1.

Much can be said about these curves but it is actually not important for future applications in the study of transistors. The reader need merely note that these curves are obtained by a straightforward process from a simple and fundamental experiment.

The bolometer is capable of measuring temperature very accurately. The experiment described above can be made under careful control and with almost no special equipment. The distribution of black-body radiation was known to physicists as far back as the 1890's. The data was so accurate and fundamental that it was felt that if the physicists could explain the curves obtained, whatever theory of matter was proposed as a basis for the explanation stood an excellent chance of being the ultimately correct theory of the structure of matter.

Some of the outstanding physicists who lived about the year 1900 tried their hand at proposing a theory of matter on the basis of which an equation could be obtained involving the energies, the wavelength and the temperature which when plotted would give a curve

# Transistor Electronics 

Fundamental principles of quantum mechanics, as they apply to transistors, are described in easy-to-read language for electronics engineers and technicians with limited backgrounds in physics. Pertinent theories of Planck and Einsteín are discussed

that would fit Fig. 1. These efforts were to no avail.

## Planck's Theory

One of the physicists interested in this mathematical and physical problem was an obscure professor of thermodynamics named Max Planck. He came to the conclusion that one or more of the fundamental assumptions being made by these eminent physicists must be inadequate or entirely incorrect. Planck asked himself what assumption must be made, regardless of whether it was reasonable or not, in order that the theory of matter based on this assumption would lead to a mathematical expression to fit the curve.

Generally speaking, this kind of thinking is both unscientific and unwise. It is called an ad hoc theory, that is, it is a theory compounded to fit a specific set of facts and these facts only. While an ad hoc theory usually fits the facts, it is frowned upon by the scientific world. In nearly all such cases, it is not long before additional data are uncovered which the ad hoc theory, made to fit only a specific set of facts, fails to explain. For this reason, the physicists of the day paid little
attention to Planck's hypothesis.
Planck found that he could write a mathematical expression to fit the curve of black-body radiation if he assumed that the moelcules of the material of which the black body was made, namely the molecules of the lampblack, would oscillate or vibrate under the action of the heat energy supplied. Each molecule thus became a generator of highfrequency energy or an oscillator.

Thus far his assumption was not different from that made by the other physicists. But Planck broke sharply from the assumptions made by the others when he said that these microscopic oscillators can generate energy only in integral multiples of a unit amount of energy which we shall call simply $E$ (the least amount of energy that any oscillator could have would be $E$ ergs or joules or any other unit of energy). Oscillators may generate $2 E, 3 E, 10 E, 72 E$, and so on, but never, say, $2.5312 E$ ergs or units of energy, or $3.5 E$ units, or 7.7E units. In short, the basic unit of energy $E$ can be multiplied by an integer, or a whole number only. When describing the energy of any other oscillator, all intermediate values of energy were arbitrarily
omitted from further consideration in Planck's theory. This hypothesis received little immediate attention.

## Photoelectricity

When light strikes certain surfaces, such as zinc, electrons are knocked out from the metal surface. If a metal plate is then placed near the metal surface in a vacuum and made positive with respect to the zinc plate, electrons will flow to the positive plate and an electric current can be detected. Phototubes are made that employ this principle.
It might seem perfectly reasonable that if the intensity of the light shining on the zinc plate is increased, the energy with which the light strikes the zinc atoms would be increased and the electrons knocked out from the zinc plate would have greater energy. This is entirely wrong.

The intensity of the light has no effect on the energy of electrons knocked out-it determines only the number of the electrons liberated from the zinc plate. To get higherenergy electrons out, the frequency of the light must be increased.
The fact that the higher energy electrons are freed by the higher frequencies of light was well known

## TRANSISTOR QUANTUM MECHANICS

[^12]around 1905. As in the case of black-body radiation, physicists were unable to establish the mathematical relationship between energy and frequency. When quite a young man, Einstein tried to find this mathematical relationship. He found that if he applied Planck's idea aboút the energy imparted to the zinc plate by the light occurring only in integral multiples of a fixed unit of energy $E$, there was a possibility that he could supply a suitable equation. Planck, for this basic unit of energy, had written simply $E$ is proportional to $f$, the frequency, or $E=$ constant $\times f$.

This constant, which is now known as Planck's constant, is given by $6.6 \times 10^{-27} \mathrm{erg} \mathrm{sec}$, and is usually designated by the letter $h$. So the equation that Planck wrote for this basic unit of energy is

$$
\begin{equation*}
E=h f \tag{1}
\end{equation*}
$$

The unit of Planck's constant is erg seconds and that of $f$ is cycles per second. In physics "cycle" is not a bona-fide unit and the units of frequency will usually be found to be given by "per second" or time ${ }^{-1}$. Dimensionally

$$
\begin{array}{rl}
h & f \\
\operatorname{erg} \operatorname{secs} \times \frac{1}{\operatorname{secs}} & =\mathrm{ergs}
\end{array}
$$

Starting with Planck's assumption and applying it to the photoelectric effect described above, Einstein wrote an equation which stated that the kinetic energy of an electron emitted from the photosensitive surface, $\frac{1}{2} m v^{2}$, is this Planck energy hf minus a constant $w_{0}$ which depends on the nature of the photosensitive metal and is called a work function. Thus Einstein wrote

$$
\begin{equation*}
\frac{1}{2} m v^{2}-h f-w_{0} \tag{2}
\end{equation*}
$$

This equation has been experimentally established as correct and accurate and provides a quantitative formula to explain adequately the photoelectric effect. However, a single application like this one does not prove a theory and the physicists of the time were not greatly impressed by an isolated success of so radical a theory.

## Application of Theory

The reader is probably acquainted with the dispersion of light by a glass prism. White light


FIG. 2-Energy of a quantized particle. such as an electron. Only the ordinate is to scale. Figure shows how energy, according to quantum mechanics, can change in discrete amounts only, and often in large jumps
focused as a beam on a prism is broken up into its component colors or frequencies, violet, indigo, blue, green, yellow, orange and red.

Consider two vertical carbon electrodes with the lower one scooped out to form a hollow in the top of it where it faces the upper one. Pour a small quantity of fine chips of some element like copper or aluminum into this hollow. Near the space between the two carbon electrodes place a suitable prism. When an electric arc is struck between the carbon electrodes, the characteristics of the arc are affected by the element placed in the hollow. The element vaporized by the heat of the arc radiates a large number of frequencies and these are dispersed or separated by the prism. Focusing the radiation on a suitable photographic plate constitutes an exposure. When the plate is developed, regularly spaced lines are observed on the negative.

This negative is called a spectrogram. The lines in the spectrogram are unique for each element and correspond to the frequencies into which the radiation is dispersed by the prism. For a long time scientists tried to understand why the frequencies were related in specific ways and to predict new lines in certain elements. As they did not understand the fundamental laws which produced the spectrograms, they were mostly content to derive empirical laws on the basis of which they could account for the
observed lines. They could not derive these formulas from considerations of the structure of matter.

A number of series, or groups of lines, were known for the element hydrogen. From chemical findings it was known that hydrogen had only one electron associated with its nucleus. To explain the observed series, a physicist named Bohr tried to apply the Planck concepts about the energy occurring in discrete jumps to the orbit of the hydrogen electron. Not only did Bohr's theory fit the observed facts about the hydrogen atom and electron, but also he was able to propose a simple formula which explained the frequencies of the lines in the hydrogen and helium atom spectrograms.

His formula went further-it predicted where to look for new lines beyond the range of equipment then available. When improved apparatus had been developed the lines were found as Bohr had predicted. Thus, by application of Planck's rather radical innovation, Bohr was able to provide a satisfactory formula for the frequencies of the lines in the hydrogen series. Previous attempts to provide a formula based on classical concepts had failed.

## Energy Levels

To the physicist, mechanics means the body of laws, all the mathematics and formulas, all the theorems and axioms, in short, all the rules that govern the description and explanation of a given science.

Quantum mechanics is the body of rules and laws and mathematics which determines our description of the phenomena of nature in terms of quanta, or discrete amounts of something, such as energy or momentum. The ideas about the laws of nature as conceived prior to the advent of the quantum hypothesis are known as classical mechanics.

Consider a molecule $d$ inches above the ground. The reader can imagine an experiment in which he raises the molecule an infinitesimally small amount, $\Delta d$. Potential energy may be defined as the weight of a body times the distance through which it is raised. If the change in height of the molecule is given by
$\Delta d$, the change in its potential energy is given by $W \Delta d$. If we can make $\Delta d$ extremely small, we can also make $W \Delta d$ quite small and thus change the energy by as small an amount as we please. But Planck's hypothesis says we cannot do this---the least amount by which energy may be changed is given by $E=h f$, where $h$ is Planck's constant, and $f$ is a frequency associated with the molecule.

The concept of energy varying in jumps or quanta does not appeal to the common sense as much as energy varying smoothly or having a continuous distribution. As we will see later many of our ideas on logic are rudely disturbed by the mandates of quantum mechanics. The success of quantum mechanics lies in its ability to explain experimental data and to indicate new avenues of experimental investigations.

The discreteness in the distribution of energy of electrons when within the field of influence of the nucleus makes it necessary to consider energy levels. An energy level means a specific value of energy which is some whole number multiplied by $h f_{\uparrow}$ By speaking of an energy level, we imply that the adjacent energy value is another level not less than $h f$ units of energy above or below the first.

## Energy Bands

For many reasons energy levels frequently occur in groups, and such a series of energy levels is called an energy band. There are some series of energy levels that are never observed experimentally. In other words, electrons have never been found that have energy levels in these series.

Such groups of energy levels are called forbidden bands or energy gaps. The concept of energy bands and forbidden energy levels is of particular importance in the study of semiconductors and transistor theory.


The abscissa on Fig. 2 has no scale; a vertical series of points would do just as well. The ordinate is energy in suitable units. At the top of Fig. 2 is shown a series of energy levels marked with possible, though not necessarily realizable, energy values, and this set of energy levels constitutes a band. It is called conduction band to indicate that in our discussion of germanium, electrons with energy levels that fall within this band are the ones that are taking part in the conduction process or are carriers of electric current.

Below this conduction band other energy levels are theoretically possible. In the case of germanium, at room temperature electrons which have energy values that fall in this range are never observed. These energy levels that are not observed experimentally constitute a forbidden band or energy gap.

An electron volt is a unit of energy used by physicists in the quantitative description of electrical phenomena. It is the energy acquired by an electron in falling through a potential difference of one volt. In terms of this measure of energy, the energy gap or forbidden band width for the semiconductor germanium is about 0.7 electron volt (ev), and for silicon, another semiconductor used in transistors, it is about 1.1 ev .

Below the forbidden band shown in Fig. 2 is a series of possible energy levels which collectively form a band called a valence-bond band. For the present it is sufficient to say that these electrons are bound or fixed in their energy levels. These electrons cannot readily change their energy level or wander about under the influence of electric fields. Within the va-lence-bond band a single electron may be found at each of the possible energy levels. As the electrons cannot readily change their energy level, the entire band ordinarily remains filled and therefore is called a filled band.

For an insulator such as diamond the energy gap is 7.0 ev (compare Ge 0.7 ev , Si 1.1 ev ). For a conductor, the conduction and valence bonds overlap and an energy gap does not exist. It is thus seen that the energy gap may be used to
classify insulators, semiconductors, and conductors.

It is important to observe that the levels in the valence-bond band are below the levels in the conduction band. If sufficient energy is imparted to electrons in the valencebond band, they may acquire sufficient energy to jump across the energy gap. In verification of the quantum hypothesis, the electrons never land within the forbidden band. They will either acquire enough energy to suddenly appear at levels in the conduction band or they will stay in the valence-bond band.

## Quantum State

The reader is now familiar with the fact that electrons may have different energy levels. This difference, as well as other differences between electrons, may be completely described by a set of numbers peculiar to quantum mechanics called the quantum numbers. These quantum numbers which completely specify the condition or state of an electron define its quantum state. It is sufficient to remember that surface states and quantum states of particles such as electrons or atoms may be described by these quantum numbers.

## Summary

The following points should be retained from this article.
(1) An electron, when in the sphere of influence of the nucleus, has certain possible, discrete values of energy, or energy levels, which are integer multiples of $h f$. No intermediate values of energy are permitted.
(2) Groups or ensembles of energy levels are called bands.
(3) For a semiconductor, there is a conduction band, a forbidden band or energy gap, and a valence-bond band.
(4) One electron can be distinguished from another by specification of its quantum state.

## Bibliography

Linus Pauling and E. Bright Wilson, Jr;; "Introduction to Quantum Mechanles," McGraw-Hill Book Co., Inc., New York,
Robert Pruce Lindsay and Henry Margenau, "Foundations of Phrsics," John Viley \& Sons, Inc., New York. 1936.
F. K. Richtmyer and E. H Kennard, "Introduction to Modern Physics." Mc-Graw-Hill Book Co., Inc., New York, 1942.

# X-Ray Absorption Gage 

Detects and records voids as small as $10^{-4}$ cubic inches in artillery projectile filling. System is insensitive to x-ray voltage fluctuations, reduces limiting noise from multiplier phototubes by novel negative feedback arrangement

By GEORGE M. ETTINGER<br>Standard Electronics Research Corp. New York, N. $Y$.

SUPERSEDING the slower x-ray photography method of detecting voids in artillery shell fillers, the instrument described here meets the problem of adequate signal-to-noise ratio without bandwidth reduction. Noise is caused by statistical fluctuation of phototube sensitivity and by x-ray fluctuation due to line voltage variation.

## General Description

A photoelectronic method is employed where x-rays, after passing through the part under test, strike a pair of potassium iodide scintillation crystals which emit visible

From a paper presented at
Eighth National Electronics Conference
Chicago, Ill.
light approximately proportional to x-ray intensity. The light from the crystals is brought to the cathodes of secondary emission phototubes whose output is amplified and applied to a d-c meter and a chart recorder.

In common with recent industrial x-ray systems ${ }^{1}$, the generator employed is of the self-rectifying type and produces short pulses of $x$-rays at 60 cps repetition rate. It is therefore possible to employ a-c couplings in the various amplifiers, so drifts due to phototube and amplifier warm-up and aging are very much reduced.

To eliminate variations due to line voltage changes, the whole system is operated as a self-bal-


FIG. l-Block diagram shows self-balancing bridge arrangement of differential $x$-ray gauge whose output is independent of line voltage variations


FIG. 2-Dynode feedback reduces unbalance between the two phototubes by varying their dynode potentials
ancing bridge where output is substantially independent of excitation voltage and varies only when unbalance between the bridge elements is present (Fig. 1).
When equal x-ray absorption takes place along the paths from the x-ray generator to the two scintillation crystals, the outputs from the two preamplifiers ( 60 cps repetition rate pulses) will be equal, and no voltage is induced in the secondary of the differential transformer shown. If the thickness of material facing one scintillation counter is reduced due to a void, the output of that preamplifier will become greater than that of the other preamplifier; therefore a difference signal appears across the transformer secondary, providing

# Checks Artillery Shells 



Artillery projectiles are tested by x-ray gauge to detect filler irregularities and voids inside shell


FIG. 3-Pulses with regeneration (A) and negative feedback (B)
input to a vacuum-tube amplifier which drives a phase-sensitive detector whose output polarity changes if the unbalance between the two x-ray absorption paths reverses. The signal is further amplified in a push-pull stage and fed back to the dynodes of the photomultipliers so as to reduce the unbalance between the two signals, by varying the dynode potentials of the two phototubes (Fig. 2).

The cathode voltage is constant and the potential of the positive end of the bleeder chain is changed as required to vary photomultiplier gain. The total accelerating voltage, distributed over nine or ten stages, is therefore controlled. Since the photomultiplier is essentially a constant current device, with anode current almost independent of anode-to-last-dynode voltage, this arrangement is satisfactory for accelerating voltage changes of the order of 100 volts.

The dynode feedback system gives self-balancing bridge operation where the input to the metering and recording instruments is the voltage necessary to restore balance. In addition, the feedback system reduces those components of the phototube noise which are of a modulation nature (shot effect) since an increase of emission from one multiplier phototube
causes reduced accelerating voltage to be applied to that tube, as well as increased voltage to the other tube. These tend to reduce the effects of changes of phototube characteristics. The system may be analyzed by the well-known techniques of envelope feedback, and stability conditions determined. Figure 3 shows pulses due to a small change of $x$-ray absorption in one channel, when the system is connected for positive feedback or regeneration (Fig. 3A) and for negative feedback or self-balancing action (Fig. 3B).

## Mechanical Considerations

Projectiles of 3.5 -inch diameter, having a $\frac{1}{8}$-inch steel casing, were to be inspected for the presence of cavities in their filling. To scan the complete volume, it was found desirable to employ a helical scanning method, with two fixed scintillation crystals a small distance apart (Fig. 4). A scanning pitch of $\frac{3}{16}$-inch was chosen, and the speed of rotation adjusted so that faults ${ }_{18}^{3} 8$-inch apart would produce signal pulses separated by 0.2 second, which could be handled by an electronic system having a bandwidth greater than 5 cycles per second. Where signal-to-noise ratio is not so important, as when inspecting a component for larger
faults, the mechanical scanning speed may be increased and the amplifier bandwidth extended by switching capacitors out of the lowpass filter structures.

The end view of Fig. 4 shows a


FIG. 4-Details of balanced x-ray detector system with two scintillation crystals fixed a small distance apart to allow scanning complete volume


FIG. 5-Output of absorption gauge for 0.002 -inch change in 0.5 -inch steel equivalent, obtained with 180 -kvp x-rays, 4-ma beam current


FIG. 6-Typical projectile test record with pulses corresponding to varied depths in filler. Reducing phototube voltage improves signal-to-noise ratio


FIG. 7-Effect of x-ray voltage variation on gage output with projectile in position and stationary shows voltage change from 120 to 170 kvp produced output change no greater than change in steel thickness of 0.005 in 0.025 inch
projectile, an x-ray generator, and two multiplier phototubes. Type 5819 tubes are preferred to the type 1P21 in this application, because of their higher sensitivity and their flat window. To keep the two potassium iodide crystals in close proximity and yet allow for the diameter of the phototubes, curved light guides of clear Lucite were employed. The crystals were cemented to one end of the guides whose other ends were cemented to the phototube windows.

One of the x-ray beams passes through the center of the projectile; the other beam is some distance off center. This arrangement is necessary to avoid a blind spot which exists with synmmetrical beams where a small cylindrical volume around the center line is never inspected.

The x-ray beams were each ${ }_{16}^{3}$-inch diameter; the potassium iodide crystals themselves were only $\frac{1}{8}$-inch square, so that further collimation between the projectile and the crystals was unnecessary.

Figure 5 shows the system output, as displayed on a chart recorder, when a steel shim 0.002 inch thick was placed between the projectile and one of the scintillation crystals. The projectile, at an x-ray voltage of 160 peak kilovolts, had an x-ray absorption equal to approximately 0.5 inch of steel. The signal-to-noise ratio under these conditions is approximately six to one, indicating unity signal-tonoise ratio would be obtained for a thickness change of less than 0.0005 inch in 0.5 inch of steel. This signal-to-noise ratio can be controlled by variation of amplifier bandwidth; the bandwidth of 5 cycles per second is adequate in this application.

## Typical Results

A typical record obtained when testing a projectile is shown in Fig. 6. The pulses correspond to artificial defects in the filling, $\frac{1}{8}$ and $\frac{1}{4}$-inch diameter, and one inch, $\frac{1}{2}$ inch and $\frac{1}{4}$ inch deep. Signal-tonoise ratio of three to one is main-
tained for the smallest void, whose volume is approximately 0.0008 cubic inch.

Figure 6 also shows the improvement of signal-to-noise ratio obtained by reducing photomultiplier voltage from 750 volts to 500 volts. The increase of amplifier gain or x-ray voltage necessary to compensate for the relatively low phototube sensitivity at these accelerating voltages can be achieved easily. In the present case, the x-ray voltage was increased from 120 peak kilovolts to 160 peak kilovolts.

The effect of x-ray voltage variations is shown in Fig. 7. A change of voltage from 120 to 170 peak kilovolts, at constant beam current, produced a change of output no greater than that due to a steel thickness change of 0.005 inch in 0.25 inch.

## Circuit Details

Figure 8 shows the preamplifier and photomultiplier circuits employed in each pickup head. The amplifiers employ miniature pentodes, type 6AK5, operated in a starved pentode circuit. ${ }^{2}$

Figure 9 is the circuit of the differential amplifier and phasesensitive detector. Signals from the two preamplifiers are fed by a pair of cathode followers to the differential transformer, wound on a Permalloy toroidal core. The cathode resistances are taken to a negative supply of 150 volts, to ensure that no overloading takes place in the system before the difference-taking process is carried out in the transformer.
The phase-sensitive detector, deriving its input from a 6 SK 7 pentode, consists of a 6SN7 double triode whose plates are connected to a center-tapped $60-\mathrm{cps}$ trans-


FIG. 8-Preamplifier and phototube circuits used in each pickup head. Miniature 6AK5 tubes operate in starved pentode circuit


FIG. 9-Differential amplifier and phase sensitive detector circuits. Signals from preamplifiers feed differential transformer with toroidal core
former. Push-pull rectified output is obtained from the two cathodes. The last voltage amplifier stage is again a 6SN7 double triode, and provides signal for a push-pull power amplifier to feed a chart recorder, a center-zero milliammeter for direct indication, and phototube dynode feedback.

## Phototube Performance

In the balanced x-ray detecting system, signal-to-noise ratio is largely determined by phototube noise. To be considered are thermionic emission from the photocathode and secondary emitter surfaces, and shot effect, which produces a noise modulation of the carrier and cannot be removed by means of tuned circuits.
To study these effects, the electrical output from several types of multiplier phototubes was displayed on a recording spectrum analyzer, to yield the spectra reproduced in Fig. 10. These were taken with the phototube excited by short light pulses at $1,400 \mathrm{cps}$ repetition rate. The noise level is small while there is no signal; however the noise level is only a few decibels below signal level when signal is present, showing the noise is of a modulation nature. Analysis ${ }^{3}$ shows that phototube voltage signal-to-noise ratio due to shot effect alone is approximately proportional to the square root of the signal applitade.

The records of Fig. 10 indicate the desirability of reducing dynode voltage to obtain high signal-to-
noise ratio. The noise is concentrated in a band extending approximately 30 cycles per second on either side of the modulation frequency, so signal-to-noise ratio will be approximately inversely proportional to bandwidth for pass bands less than about 15 cps wide.

Further tests have indicated the desirability of reducing the voltage between photocathode and first dynode, as well as the voltage between last dynode and anode, to a lower value than the accelerating voltages between the secondary emission dynodes. In recent published work ${ }^{4,5}$ on scintillation counters, it has been suggested that sig-nal-to-noise ratio can be improved


FIG. 10 - Output spectra of 1P21 tube at various accelerating voltages indicate better signal-to-noise ratio at lower dynode voltages
by operating with very large potential differences between photocathode and first dynode. Measurements made on a number of 5819 and 1P21 tubes, however, have indicated that better signal-to-noise ratio may be obtained with low cathode-first dynode voltage (Fig. 10). These measurements were made with a bandwidth of only a few hundred cycles per second so that the shift of the maximum of the phototube noise power spectrum due to change of cathode-first dynode voltage had little effect.

Some improvement was obtained by using the 10 -stage 5819 tube rather than the 9 -stage 1P21. Sig-nal-to-noise ratio for a 5311 (British) photomultiplier tube was higher than for the other tubes. Most of the noise in the 5311 tubes was due to thermionic or field emission, rather than due to shot effect.

This instrument may be employed quite generally in thickness gaging as well as in fault detection. For thickness gaging, one of the crystals is irradiated by x-rays passing through a reference piece of the same material as the part or parts to be tested; a discrimination of 0.0005 inch of steel in 0.25 inch, or one part in 500 thickness change, can be obtained. For the detection of small faults or irregularities a method where the part under inspection acts as its own reference piece is preferred, as in the present application where two identical pickup heads are employed.

## Acknowledgments

Thanks are due to F. Fua, Standard Electronics Research Corp. for much helpful advice and criticism. Facilities for the multiplier phototube investigation were provided by Paul Onkley, Department of Electrical Engineering, Columbia University. This work was done under contract DA 30-069-ORD-116, Ordnance Department, Department of the Army.

## References

1. F. Fua and R. C. Woods. Irou Age, Nov. 1945
2. W. K. Yolkers, Direct-Coupled Amplifier Starvation Circuits, Elfectronics, $p$ 126. March 1951.
3. K. Spangenberg, "Vacuum Tubes." p 697, McGraw-Hill Book Co., N. Y., 1948. 4. Oak Ridge National Laboratory, Quarterly Report on Instrument Research
and Development, July 1951 . G. A. Moiton, Nucleonics, Aug. 1952.

# Ferrites Speed 



Test equipment for examining pulse characteristics of individual toroids under typical circuit conditions


An experimental coincident-current memory containing two 16 -by-16 arrays. This unit is driven by a magnetic matrix switch

## By DAVID R, BROWN

Digital Computer Laboratory
Massachusetts Institute of Technology Cambridge, Mass.
and
ERNST ALbERS-SHOENBERG
General Ceramios and Steatite Corp. Keasbey, N. J.

REliability is the paramount factor in the design of large systems such as electronic digital computers. Present operating machines are so large that the limit imposed by the frequency of failures prohibits further expansion. Pulse circuits in these machines have been pushed to the upper limit of operating speed. Yet the need for larger-capacity higher-speed systems is urgent.

A new material for increasing reliability is a ferrite (ferromagnetic ceramic) having a nearly rectangular hysteresis loop. The most important application for this material is a high-speed arbitraryaccess memory in which tiny ferrite toroids are used to store binary information. Many other pulse-circuit applications are significant, some depending on the hysteresis of the material for memory and others using its non-linear characteristic for switching applications.

## Coincident-Current Memory

Magnetic drum and acoustic delay line storage units are inherently serial devices and use time as one selection coordinate, resulting in a great loss in computing speed or flexibility. The electrostatic storage tube, now the most widely used high-speed arbitrary-access memory, is a complex device requiring considerable maintenance and lacking satisfactory reliability for many applications. The coincident-current memory, using ferrite toroids for storage of binary information, is an inexpensive, simple, highspeed, arbitrary-access memory

# Digital Computers 

Memory units and matrix switches using new square-loop ferrite material increase speed and reliability of digital computers. Storage units with arbitrary-access and read-out time of five microseconds or less makes stored information rapidly available without scanning
time required by other systems
which promises to provide the degree of stability and reliability required.

## Operation

A flux-current ( $\Phi-I$ ) characteristic of a ferrite toroid is shown in Fig. 1A. The positive and negative remanent magnetizations are defined as the one and zero states respectively. In the 4 -by- 4 memory array illustrated in Fig. 2, information is read out of the array by applying coincident current pulses of amplitude $-I_{m} / 2$ to one vertical and one horizontal element, causing a large change in the flux of the selected core if it holds a one and a very small change if it holds a zero.

A flux change in any core in the array will induce a voltage on the
output winding which threads every core. Voltages obtained by reading a one or a zero from a single


FIG. l-Characteristic curve (A) of ferrite toroid. Voltages produced (B) by a one or zero stored in a toroid
core are shown in Fig. 1B. Since reading out always leaves the selected core in the zero state, rewriting is necessary if information is to be retained. This is accomplished by applying coincident-current pulses, of amplitude $+I_{m} / 2$, to one horizontal and one vertical element. Writing new information is accomplished during a normal read-rewrite cycle by disregarding the old information read out and writing the new information by the same mechanism used for rewrite.

A possible arrangement for a parallel computer memory is shown in Fig. 2B. An array is placed in each column and only one $x$-coordinate switch and one $y$-coordinate switch are used to provide the coin-cident-current pulses for the entire memory. If $n$ is the number of $x$ or


FIG. 2-A 4-by-4 memory array (A) with current pulses - $I_{m} / 2$ reading out the selected core. Arrangement in (B) permits selecting from a number of arrays


FIG. 3-A four-position magnetic matrix switch using ferrite toroids
$y$ elements, each switch can be set by a binary number containing $\log _{2}{ }^{n}$ digits, and $n^{2}$ binary digits are stored in each column of the memory. When the two switches are pulsed for read, the information is read out of the selected $x-y$ location in all columns simultaneously into the memory register.

For rewrite, the switches write into the same $x-y$ location in all columns. However, in each column in which the memory-register flipflop holds a zero, a coincident current pulse of amplitude $+I_{m} / 2$ is applied to every toroid in the array. The $z$-coordinate switch provides this inhibiting current pulse for each column in which a zero is to be written, to limit the magnitude

of the current through any toroid in that column to $I_{m} / 2$.

## Squareness

Squareness ratio for coincidentcurrent memory cores may be determined from the hysteresis loop

$$
R_{s}=\frac{\Phi\left(-\frac{I_{m}}{2}\right)}{\Phi\left(I_{m}\right)}
$$

Note that $R_{s}$ is a function of $I_{m}$. Any given ferrite toroid, however, will have a single maximum $R$, which occurs at the optimum value of $I_{m}$.

## Magnetic-Matrix Switch

A $2^{n}$-position matrix switch employing $2^{n}$ non-linear magnetic cores is rery similar to the familiar di-ode-matrix switch. An $n$-digit bin-
ary number sets the flip-flops which bias the cores so that all but one are biased into the saturation region. This selected core is then the only one which is switched when the current pulse from the driver is applied.

A driving pulse of opposite polarity must be applied to reset the switch before it is again ready for operation. Two 16 -position switches have been used to drive a 16 -by- 16 coincident-current memory array during the last year at MIT. These switches employ the same rectangu-lar-hysteresis-loop material as that used for the memory array.

Slightly different characteristics are desired for switch cores, however. Instead of a high squareness ratio as defined for the coincidentcurrent memory, a high ratio of remanent magnetization to saturation magnetization is desired together with a low coercivity.

## Other Applications

Ferrite toroids possessing rectangular hysteresis loops may be used for high-speed storage of binary information in other ways than the coincident-current memory. If the total number of digits to be stored is small, so that direct selection is practical, a single-coordinate selection scheme may be used. In this case, the current pulses used for reading and writing may vary between rather wide limits provided they exceed a certain miniumum amplitude.

Where time selection may be used, rectangular loop ferrites may be employed in a static-magnetic delay line of the type developed by the Computation Laboratory of Harvard University.

Magnetic cores possessing nonlinear characteristics can be used for other switching or logical operations besides the magnetic-matrix switch, particularly for operations similar to those performed by crys-tal-diode and or gates

## Testing

A high squareness ratio is a necessary but not sufficient condition for a satisfactory toroid. To properly evaluate ferrite toroids for the memory application, a pulse test has been designed which subjects a
single toroid to the conditions that might be encountered in an operatin array. Actually, two tests are performed, one to determine the smallest possible voltage from a selected toroid holding a one and another to determine the largest possible voltage from a selected toroid holding a zero.

Figure 4 shows a pulse pattern which writes a one into a toroid, followed by a number of half-selecting read pulses which disturb the one and tend to decrease its magnitude, as shown on the hysteresis loop. The disturbed one is finally read out by a full-amplitude read pulse. In the case of a satisfactory toroid, the voltage from the disturbed one is not a function of the number of half-selecting pulses, provided that the number of halfselecting pulses is greater than some small number, usually two or three.

A test which determines the largest zero is shown in Fig. 5. In this case, the zero is disturbed by a number of half-selecting write pulses. A large ratio of disturbedone voltage to disturbed-zero voltage is necessary for a satisfactory toroid. This ratio may be calculated on a peak-amplitude basis or on the basis of instantaneous voltages sampled at the time that the ratio is a maximum.

To prevent the voltage from halfselected toroids in a large array from adding so that the total voltage from all half-selected toroids might swamp the voltage from the selected toroid, the output winding is arranged so that the polarity of the voltage induced on it will alternate with each toroid along any element of the array. This, incidentally, means that the voltage from the selected toroid may be positive or negative.

The total voltage observed on the output winding is

$$
\begin{gathered}
V_{T}= \pm\left[V_{s}-2 V_{n s}+(n-2)\right. \\
\left.V_{s}\right]+V_{1}
\end{gathered}
$$

where $V$, is the magnitude of the voltage from the selected toroid, $V_{h}$, is the magnitude of the voltage from a half-selected toroid, $V_{\delta}$ is the uncancelled voltage from a pair of half-selected toroids of opposite polarity, and $V_{l}$ is the voltage induced in the output winding due to leakage flux or flux not con-


FIG. 4-Results of a pulse test used to determine smallest possible voltage from a toroid holding a one


FIG. 5-Results of pulse test used to determine largest possible voltage from a toroid holding a zero
fined to the toroids.
The voltage $V_{\delta}$ may be positive or negative; in the ideal case it would be zero. Since it appears in the expression for the total voltage with a coefficient ( $n-2$ ) it establishes an upper limit on the size of the array. Perhaps the most important factor behind $V_{\delta}$ is the uniformity of the magnetic characteristics of the toroids. The requirement for small $V_{0}$ makes a high degree of uniformity essential. Another contribution to $V_{\delta}$ may come because $V_{n}$, will be different for a given toroid depending on whether it contains a one, a zero, a once-disturbed one, a twice-disturbed one and so on. However, although the difference between the voltage from a half-selected undisturbed one and a half-selected undisturbed zero may be significant the number of such pairs is limited to two. The large number of $V_{B}$ 's will be from halfselected cores containing disturbed ones or disturbed zeros, where the difference will be much less.

## Ferrite Characteristics

The rectangular-loop ferrite now used at MIT was developed by the General Ceramics and Steatite Cor-
poration from a magnesium ferrite. The saturation flux density of this body, MF-1118, is approximately 2,000 gausses and the coercivity is 1.5 oersteds. A family of hysteresis loops is shown in the photograph, and other characteristics are listed in Table I.
The toroids for coincident-cur-rent-memory application have an outside diameter of 0.090 inch. The small size is necessary to reduce the power requirements for driving the arrays. The $I_{m}$ for this toroid is 1.0 ampere and the maximum squareness ratio is 0.7 . The disturbed one voltage has a peak amplitude of 0.1 volt and a duration of 1 microsecond. The ratio of disturbed one to disturbed zero is 10

Table I-Properties of the Rectangular-Loop Body MF-1118

$$
\begin{array}{ll}
\mu_{o} & 40 \\
\mu_{m a x} & 515 \text { at } 1,040 \text { gausses } \\
B, ~ & 1,780 \text { gausses at } 25 \text { oersteds } \\
B_{r} & 1,590 \text { gausses } \\
B_{r} / B_{s} & 0.9 \text { approx. } \\
H_{c} & 1.5 \text { oersteds } \\
\text { Volume Resistivity } 2 \times 10^{7} \text { ohm-cm } \\
\text { Curie Temperature } 300 \text { deg C }
\end{array}
$$



Family of hysteresis loops for General Ceramics MF-1118 ferrite
on a peak-amplitude basis and greater than 200 on the basis of sampled instantaneous voltages.

The process by which a rectangular hysteresis loop is obtained in a polycrystalline ferrite is not understood, nor are the factors which determine the switching time or waveshape of the output voltage. Rec-

For some polycrystalline ferrites
with large magnetostrictive coefficients, notably nickel-zinc ferrite, rectangular hysteresis loops have been obtained by compressing a toroid by means of a clamp around the outside diameter. In this case, the stresses set up an easy direction of magnetization which accounts for the rectangularity of the hysteresis loop. Residual mechanical strains in MF-1118 may be responsible for its rectangularity.

The same rectangularity and performance has been observed in toroids ranging in diameter from 0.060 inch to 2 inches.

Recent experiments to reduce the coercivity of the body MF-1118 have produced rectangular-loop bodies with coercivities as low as 0.5 oersted. However, this switching time increases from 1 microsecond to approximately 5 microseconds.

The high degree of uniformity required for the coincident-currentmemory application necessitates careful control in the production process. The uniformity of the toroids produced must be considered an integral factor in the evaluation and development of satisfactory toroids.

## Bibliography

Jay W. Forrester, Digital Information Storage in Three Dimensions Using Magnetic Cores, Jour App Plys, 22, p 44, Jan., 1951.

William N. Papian, A Coincident-Current Magnetic Memory Cell for the Storage of Digital Information, Proc $I R E, 40, p$ 475, Apr., 1952 .
Jan A. Rajchman, Static Magnetic Matrix Memory and Switching Circuits, RCA Rev., 13, p 183, June, 1952.
An Wang and Way Dong Woo, Static Magnetic Storage and Delay Line, Jour App Phys, 21, p 49, Jan., 1950.
Ephriam Gelbard, Magnetic Properties of Ferrite Materials, Tele-Tech, 11, p 50, May, 1952.

## Video Inset System


#### Abstract

Television camera scanning foreground subject against plain background is used to switch a second camera, focused on inexpensive background. Resulting composite is economical, particularly for trick effects. Circuits are given both for the novel keying separator and commercially available effects amplifier




FIG. 1-Elements of the video inset system show a simplified camera relay

TElevision broadcasters are beginning to make increased use of a technique whereby the scene from one camera may be used as a background into which the picture from another may be inset as a foreground. Background scenery is automatically cut out over the area silhouetted by the foreground subject to avoid the double exposure effect of ordinary superimpositions. Highlights do not bleed through the foreground, and the composite picture may be in true or fantastic perspective as desired.

The so-called matte process employed in the film industry achieves these results through meticulous photography together with special processing and combining. In television, the video inset system combines the scenes by instantaneous and automatic camera switching. Many novel effects are practical in both media and in motion pictures, production costs are sometimes drastically reduced by miniaturization of large background sets. This same cost saving may be feasible
for television in the near future.
The video inset system permits using any properly synchronized camera as a source of background scenery or action. The camera may be located in the studio originating the foreground picture or in a different one. The background may be derived from a small flip card, a transparency, a motion picture film or a live action scene in the same or a different studio.

Basically, the present system is merely a method of switching from the background camera to the foreground camera whenever the latter scans anything other than black. Essential elements, functions and results are shown in Fig. 1. Here, the foreground camera pictures only a man, strumming a ukelele; the background camera pictures a tropical scene, while the composite as viewed on the monitor, shows the man still strumming, but now standing in front of the tropical scene.
First known experimental development in the use of electronic

By J. L. HATHAWAY<br>and F. L. HATKE

Development Group
National Broadcasting Co.
New York, N. Y.
backgrounds was conducted several years prior to the war by NBC. Fundamental ideas were proved successful, although difficulty was encountered in properly switching cameras. By 1940 various patents had been issued on the basic system ${ }^{1,2,3}$, one of which included both a foreground-background combination and a middleground as well. Experimentation was resumed at NBC in 1948, with materially improved results. A method of pulse shortening, applied to electronic background systems, has been described in the literature. ${ }^{4}$

During the past year it is understood that at least three broadcasters have tested and used electronic systems similar to the present video inset, with varying degrees of success. All known sys-


FIG. 2-Special interconnections, including delay cables, are used to insure proper register of composite video signal


FIG. 3-Circuit diagram of the NBC keying separator amplifier
tems are subject to certain inherent limitations and are capable of proper performance only under carefully controlled conditions.

The apparatus required, in addition to the usual camera equipment, consists basically of a double-throw selector switch that can be actuated as a function of foreground picture content. While foreground camera A scans the black back-drop, the switch conducts video from the background camera B. Then, as the foreground scanning leaves the black area, the switch throws so that camera A becomes active, replacing the background camera signals. Reverse action occurs as scanning returns to the black area. Practically, the selection could not conceivably be accomplished by the mechanical switch indicated in Fig. 1.

Actually, switching must occur in considerably less than 1 microsecond and can best be achieved at the required rate electronically. Actuation as a function of foreground camera video output requires reshaping this camera's video output. Signals corresponding to shades other than black operate the switch or gate to the foreground camera signals whereas on blacks it reverts to the background.

A block diagram of the video inset equipment, including the necessary video delays and interunit
connections, is shown in Fig. 2. This comprises two major components: the keying separator, which develops keying pulses from the foreground camera output; and special effects amplifier type TA-15A, which further shapes and amplifies the keying pulses and also switches cameras as a function of these pulses.

## Keyer Equipment

The first component is essentially a clipper capable of making squaretopped pulses from any and all video signals that depart from black level. Camera equipment contains some irregularity in the black level base line, caused by miscellaneous noise voltage, burns, improper shading, and redistribution effects.

The clipping level is therefore adjusted to avoid these spurious voltages by operating somewhat above theoretical black level.

A complete schematic of the separator unit is shown in Fig. 3. Video signals are first amplified and then clamped to preserve a constant black level. All stages are shunt peaked for minimum delay time and optimum transient characteristics. Frequency response is flat to 7 mc and no compression is evident with as much as 45 volts peak-to-peak at the clamped grid. The clamping diodes are each driven
by horizontal pulses, amplified to approximately 80 volts. The clamped stage, a cathode follower, feeds two series-connected biased diodes that function as clippers.

Capacitance neutralization from the cathode-follower plate provides cancellation of the capacitance coupled video components, which would otherwise pass through in an unclipped state. Both white and black portions of the signals are eliminated by the diodes, leaving approximately a 2 percent segment. This is normally derived from the near-black portion of the video wave. The segment can be clipped from any desired portion of the amplitude range, by adjustment of a black level control potentiometer in the clamp diode circuit. Clipper output is amplified and then fed from a cathode follower as the keying signal, into the special effects amplifier.

Circuits of the separator unit are designed for stable operation since the separating process is inherently critical.

The high levels employed in clamping and clipping reduce variations that would be caused at lower levels by tube and temperature changes. The avoidance of video wave compression prior to clipping is essential, to accommodate axis shifts with typical television pictures. Otherwise, after


FIG. 4-Block diagram of the special effects amplifier showing tube designaions is explained in text with reference to Fig. 5
initial adjustment, clipping would not fall within the same limits for all video signals. Total delay time in the video channel of the separator unit approximates 0.15 microsecond. A length of properly terminated coaxial cable delays clamp-driving pulses by at least an equal amount to permit clamping during blanking time.
A block diagram of the special effects amplifier is shown in Fig. 4, and a complete schematic is in Fig. 5. Tube numbers correspond in these diagrams, although certain portions unnecessary for an understanding of the operation are omitted from the block diagram. The signal from the separator unit consists essentially of flat topped pulses of white and black in accordance with the signals clipped from the foreground camera video information.

These pulses are amplified by tubes $V_{24}$ and $V_{25}$ and are then shaped in the regenerative clipper stage $V_{28}$, which removes any possible remaining noise or gray components. The signal then passes through the phase splitter $V_{87}$ and the push-pull cathode follower stage $V_{2 t}$ to key on and off the switch or gate tubes $V_{14}$ and $V_{15}$.
The foreground video signal is applied to $V_{17}$, a gain-controlled amplifier and then to the clamped grid of gate tube $V_{15}$. The back-
ground video signal is amplified in a gain-controlled amplifier stage $V_{10}$ and then is applied to the clamped blanking mixer stage $V_{32}$. Blanking pulses are added here to obtain setup and to facilitate switching of the video signals. The gate tube associated with this background channel is always keyed on during the blanking period as well as during the scanning of black areas of the foreground picture. Thus it is necessary to add blanking only in the background channel.

Video signals applied to the gate tubes are transmitted through them in accordance with the keying pulses impressed on their suppressor grids. If at the gate tubes the keying pulses are correctly timed to the foreground video signal, they cause background scene to be cut out over an area exactly matching the outline of the object to be introduced. Since the keying signal passes through a greater number of stages than the video and each introduces some delay, it is necessary to increase the video delay in order to attain correct timing at the gate tubes.

Four high-level and three lowlevel clamps are utilized in the special effects amplifier. It is the purpose of each of these to maintain a fixed black setting at the various grids, under conditions of changing duty cycle. The selected video from
the gate tubes is clipped in $V_{8}$ to remove excessive blanking and is then amplified in $V_{7}, V_{2}, V_{3}$ and $V_{4}$.

## Operation

At present, the system does not function properly if a foreground person has dead-black hair. In addition, some back-drop materials develop high light reflections along folds and so cause incorrect camera selection.

The system may be operated in reverse, employing a white backdrop or a back-lighted translucent screen. Difficulties are encountered here from white areas in the foreground, such as shirts, teeth and eye whites. Less critical keying can be obtained, however, provided the camera is irised down to the stop where the back-drop light level is just sufficient to operate the camera pickup tube over the knee of the saturation curve.

The video inset technique at the present state of the art is valuable in producing special novel effects, such as headless men, bodyless heads and feats of magic. When camera pickup tubes are produced that accommodate greater ranges of light levels, tremendous savings, through use of less large-scale scenery, may be possible.

## References

(1) Bedford, U.S. patent $2,164,297$.
(2) Goldsmith, U. S. patent 2,172,936.
(3) Goldsmith, U. S. patent $2,193,869$.
(4) Johnson, Jour. SMPTE, July 1950 .


FIG. 5-Schematic diagram of the RCA type TA-15A special effects amplifier used as an integral part of the video inset


Typical of all-transistor instruments is Meyers" "Radioear" using three pnp's

# Transistorized Hearing Aids 

# Hard-of-hearing public expected to accept higher initial cost of junction transistor hearing aids to take advantage of operating economy. Manufacturers divide on question of all-transistor versus combination tube and transistor instruments 

By JAMES D. FAHNESTOCK<br>Associate Ealitor, Electronics

FIRST LARGE-SCALE commercial application of transistors was announced by several hearing-aid manufacturers at the end of last year.

Immediately after the first announcements of hearing aids using transistors, it became apparent that there were two schools of thought as to the best way to employ transistors in hearing-aid instruments.

On one side, designers decided that the poor noise characteristics of even the junction transistors made them unsuitable for use in the low-level stages of high-gain units, since noise introduced in the first stages would be amplified by succeeding stages. To keep noise levels down, the designers chose to use subsubminiature vacuum tubes in preamplifier and driver stages and a transistor to replace the usual power-output tube.

On the other side, many manu-
facturers decided that the noise level of the all-transistor circuit was sufficiently low for most purposes. The impressive reduction in battery cost made possible by the elimination of the need for $B$ voltage tipped the scale in favor of the transistors for all stages.

## Combination Circuit

An example of a hearing aid using a combination of tubes and transistors (Sonotone " 1010 ") is shown in block diagram form in Fig. 1. For the tubes, this instrument uses a 15 -volt B battery with a life estimated at 2,000 hours at a drain of 60 microamperes. A $1.25-$ volt A battery powers the transistor and heats the tube filaments. Life of the A battery is 63 hours at an average current drain of 13 milliamperes.

In this unit a special transformer

Table I—Battery Data for "Radioear" All Transistor Hearing Aid

| Battery Type | Estimated Life in Hours | Estimated Battery Cost | Estimated Cost Рer Hour |
| :---: | :---: | :---: | :---: |
| 1-1RM-12 or equal. | 2,000 | \$0.65 | 1/31 cent |
| 1-1015E or equal. . . | 500 | 0.15 | 1/33 cent |
| 2-1KM-1 or equal.... | 250 | 0.60 | 1/4 cent |
| 3-RM-1 or equal. . . | 150 | 0.90 | 2/3 cent |
| Typical Drains: 1.5 ma at $1.25 \mathrm{v} ; 3.5$ ma at $2.5 \mathrm{v} ; 6$ ma at 3.75 v |  |  |  |

was required to match the high plate impedance of the driver tube to the low base-input impedance of the transistor. A primary impedance of over a half megohm is achieved by winding 10,000 turns of No. 48 wire ( 657 feet, at $1.3-$ thousandth-inch diameter) on a core built up of subminiature mumetal laminations. Special techniques are, of course, required to form this winding without breaking the fine wire used. The 250 -ohm secondary consists of 200 turns of No. 45 wire.

A tantalytic capacitor is used in the circuit of the brute-force filter in the constant-current source for the base circuit of the transistor.

Avaliable power output of this tube-transistor instrument is $1 \frac{1}{2}$ mw, which provides 124 db of sound pressure in the ear. The acoustic gain is 65 db , and residual noise level is at least 50 db below maximum output at full-gain setting.

The transistor used is an $n p n$ junction unit manufactured by Germanium Products Corp. of Jersey City, N. J.

## All-Transistor Units

The circuit diagram of one of the all-transistor hearing aids is shown in Fig. 2. This circuit


Sonotone "1010" uses two tubes and one npn junction transitor


FIG. 1-Block diagram of tube-transistor hearing aid using two subminiature tubes and one npn junction transistor


FIG. 2-Circuit diagram of Zenith hearing aid using transistors exclusively. Battery cost is $1 / 25$ that of comparable all-tube instrument
(Zenith "Royal") operates on a single penlight battery with a drain of 4.5 ma , to give a battery life of 400 hours. Compensation for changes in transistor characteristics due to temperature variations is automatic. Sound-power output of the unit is 135 db with an overall gain of 62 db .

Transformer coupling is used in this circuit between three groundedemitter transistor amplifier stages. Constant base current for the first two stages is provided by a divider arrangement across the single-cell battery supply; a large series resistance provides constant current for the output stage.

One type of all-transistor instrument (Edward A. Meyers' "Radioear") gives the user a choice of battery supplies. This unit can be powered by one, two or three 1.25 volt cells, as indicated in Table I. With three cells, saturation soundpressure output available will run as high as 135 db or more (re 0.0002 d.s.c.) at $1,000 \mathrm{cps}$. With a highly-damped receiver and two cells ( 2.5 volts), the saturation output is slightly under 130 db . Elec-trical-power output is approximately 10 mw (with 3.75 volts) and total power gain is between 80 and 90 db .

A test on this all-transistor unit showed the distortion to be about 17 percent at saturation output and 4.4 percent with the output set at one decibel. Distortion decreases with output level.

Raytheon CK718 pnp junction units are used in both all-transistor circuits discussed.

## Noise

The tube-transistor hearing aid has a residual noise level of at least 50 db below maximum output at full gain. The all-transistor units have a somewhat higher noise level at the output, but advocates of this type of circuit claim that noise is not a problem for persons with hearing deficiencies and that a noise level 40 to 50 db below signal level is negligible for all practical purposes. One manufacturer reports a lower noise level in an all-transistor unit (Gem Ear Phone Co. "V-70-T") than in vacuum-tube hearing aids.

## Accessories

The usual variety of accessories are made available with transistorized hearing aids. No evidence of all-transistor hearing aids with automatic volume control has been reported. Several designers have
provided sockets and switches for attachment of telephone pickup coils. By this means, the user is able to hear telephone conversations without the distortion introduced by the telephone ear piece and the hearing-aid microphone.

To date, only junction transistors have appeared in hearing aids, and grounded-emitter circuits are universally used. Packaging continues to show subminiaturization; thickness of the instruments varies between $\frac{5}{8}$ inch and 1 inch, with heights from $2^{\frac{1}{3}}$ to 3 inches and widths of from $1 \frac{1}{2}$ to 2 inches.

Low operating voltages permit use of smaller lower-voltage capacitors. Virtually no heat is generated by the transistor units.

Costwise, all-transistor hearing aids compare reasonably well with all-tube and tube-transistor instruments. Special circuits such as response-shaping networks and volume compression circuits are refinements found in the more expensive units.

One manufacturer gives battery-cost-reduction figure of $1 / 25$ that for typical tube units. These remarkable savings have become strong inducements for users to pay the somewhat higher initial cost for transistorized units.

## Testing UHF-TV


#### Abstract

Characteristics of germanium mixer crystals for uhf television and other receivers can be measured with laboratory setup in five minutes using fuse bolometer and standard test equipment. Alternative production testing method for untrained personnel measures admittance at audio frequencies


Conversion loss $L$ of a crystal mixer is the ratio of the available input signal power to the available output signal power. It is a measure of the efficiency of conversion from r-f signal to i-f output.

Noise temperature $t$, also called output noise ratio, is the ratio of the available noise power output from the crystal mixer to that of a resistor. It differs from unity for semiconductor mixers because of noise generated by the biased crystal in excess of thermal or Johnson noise and is akin to the excess noise in a carbon microphone.

By including the effect of the i-f amplifier noise figure, $F_{i-f}$, a useful relationship can be drawn for determining the r-f noise figure $F_{r-\psi}$. $F_{r-f}=L\left(F_{i-f}+t-1\right)$
The value of $F_{t-1}$ will generally be a function of the mixer's i-f admittance compared to the admittance for which the i-f amplifier noise figure is optimized.

## Measurement Theory

To evaluate the effect of the mixer crystal upon overall noise figure, $L$ and $t$ must be known at the desired operating point. Noise temperature may be measured by determining the ratio of the noise output from an i-f amplifier whose input terminals are loaded by the mixer under test to the noise output when that amplifier is loaded by an ohmic resistor with the same value as the crystal resistance. This ratio is denoted as $Y$ factor.

Mixer noise temperature can be determined from $Y$ factor and the i-f noise figure of the amplifier when resistively loaded

$$
t=F_{i-f}(Y-1)+1
$$

Conversion loss can be calculated


Laboratory setup of equipment used to measure characteristics of $1 N 72$ mixer crystals
from $F_{r-t}, F_{1-1}$ and $t$

$$
\begin{aligned}
L & =F_{r-t} /\left(t-1+F_{i-1}\right) \\
& =F_{r-1} /(Y)\left(F_{i-1}\right)
\end{aligned}
$$

If the i-f noise figure is measured with the amplifier terminated at the input by the mixer, a correlation check may be made against $Y$ factor

$$
F_{i-1 \text { mixer }} / F_{i-1 \text { meivtur }}=Y
$$

This measurement method assumes that the crystal has been biased at the desired operating point in local oscillator power injection and $d-c$ bias, and that the mixer is terminated through lossless transformers by the desired impedances. The bias conditions will affect all the crystal parameters, including the crystal impedances.

The terminating impedances of the crystal mixer at input, image, local oscillator, local oscillator harmonic and output signal frequencies will have an effect on the measured effective conversion loss. These
terminations at other than input and output signal frequencies are important because of undesired parasitic responses that occur in the mixing process.

The input signal will heterodyne with the local oscillator power to generate both sum and differencefrequency energy. The differencefrequency power is normally the desired i-f output signal. The energy at sum frequency can be partially recovered by a direct beat with the local oscillator second harmonic that is generated by the nonlinear crystal characteristic.

Image power is generated in the mixer by the beat between the input frequency and the local oscillator second harmonic, as well as by a beat between the output signal voltage and the local oscillator. It may be partially recovered by reflection back to the mixer and a beat with the local oscillator, or it may be absorbed by the source impedance

# Mixer Crystals 

By NICHOLAS DeWOLF

General Electric Co.
Schenectady, N. Y.


FIG. 1-Mieasuring equipment for uhf germanium mixer crystals is used in the laboratory to obtain parameters
that is driving the mixer.
Several special definitions for conversion loss have been derived ${ }^{2}$. To achieve a result typifying the average application and to simplify the measurement, the conversion loss that is commonly measured is $L_{o}$, the broad-band conversion loss. It is measured with the signal and image terminated in the same impedance, and the mixer matched to the local oscillator wave. The conversion loss in a given application may vary by 1.5 db above or below the broad-band loss, but $L_{0}$ will equal the average result.

## Measuring Equipment

A block diagram of the laboratory equipment for measuring mixer crystal parameters is shown in Fig. 1. It is essentially a uhf receiver, arranged for the measurement of $F_{,-f}, F_{t-f}, Y$, i-f mixer admittance and r-f mixer admittance. In addition, the biases on the crys-
tal can be varied and monitored, and the r-f match may be adjusted. From this data, the conversion loss, noise temperature and crystal impedances may be measured as functions of the operating conditions.

The local oscillator frequency is 900 mc , selected to observe the crystal characteristics at the upper end of the uhf band, where variations in r-f reactance have a maximum effect. The intermediate frequency must be chosen as a compromise between $F_{i-f}$ which increases and $t$ which decreases with increasing frequency. A mean value of 30 mc was selected because the noise figure of crystal-mixer receivers optimizes, equipment is easily available at this frequency and noise temperature can be accurately measured.

The crystal under test is clipped into the mixer test board, which consists of a flat-strip transmissionline circuit ${ }^{3}$ shown in Fig. 2 and
the photograph. The mixer circuit is intended to tune out the capacitance of the average crystal, match its resistance to 50 ohms and prevent loss of either signal input to the crystal or output signal from the crystal.

In addition, second-harmonic energy generated by the crystal is reflected to the crystal by harmonic shorting terminations at either end. Two sheets of $\frac{1}{1}$-in. Tefion-impregnated glass fiber board are sandwiched together about a $0.003-\mathrm{in}$. flat-strip photographically etched circuit, with copper sheeting on the top and bottom of the sandwich. A General Radio 874C connector is used at the r-f input, and advantage is taken of its tapered configuration to provide a smooth transition between the strip line and coaxial elements.

Insertion loss of this mixer circuit, measured by determination of the swr with the load terminals shorted and opened, is less than 0.05 db . When loaded with a passive resistor and matched to 50 ohms at the local-oscillator frequency, the swr at 30 mc either side of the local-oscillator frequency (signal and image frequencies) is 1.25. This will cause a mismatch error of less than 0.05 db .

The shorted tuning stub is cut to resonate the average crystal capacitance of $1.1 \mu \mathrm{f}$ and the quarterwave transformer, adjusted by varying the width of the transmission line strip, is centered to match the mean 1N72 crystal resistance of 150 ohms to the line. Of all 1N72 crystals tested at the design bias conditions, 90 percent fall within a swr of 2.5 in the mixer. These bias conditions are set at 0.7 mw local-oscillator injection, and forward d-c bias from a 250 -ohm $0.25-$ volt source.

## Dielectric Slug Transformer

At other bias conditions and with other mixer crystal types, the mismatch may increase. The dielectricslug matching transformer preceding the test mixer is used to match out these variations. It consists of a GR 874LB coaxial slotted line
with $\frac{1}{4}$ wavelength polystyrene sections that can be moved along the line by polystyrene rods extending through the slot. This device, commonly called a slug tuner, requires a line $1 \pm$ wavelengths long, and will match out any swr up to $e^{2}$, where $e$ is the effective dielectric constant.

The position of the slugs determines the mixer impedance presented to the local oscillator wave when they are used to match the mixer to the line. At 900 mo the tuner used will match a swr of any phase and amplitude up to 5.2 and has a maximum insertion loss of less than 0.1 db for all settings.

The tuner and mixer are driven from the noise generator through a Hewlett-Packard 805A parallelplate slotted line, used for measuring the swr of the mixer. The local oscillator power is injected into the line by a capacitive-tuned probe, illustrated in Fig. 3. The probe is driven from a uhf oscillator, isolated by a $10-\mathrm{db}$ pad to prevent spurious responses. Power injected to the transmission line is 12 db down from the power available to the probe. At the local oscillator frequency, the probe introduces a swr of 1.15 on the line, causing a mismatch error of less than 0.05 db . The injection method has a bandwidth of 12 mc at 900 mc reducing the noise sidebands of the local oscillator at signal and image frequencies by approximately 15 db . This reduction assists in preventing the oscillator noise sidebands from increasing the effective noise temperature. The mismatch introduced on the line by the probe at the signal and image frequencies is less than 1.02 .

An untuned detector probe is con-


Erched transmisaion line circuit used for mixer crystal test


FIG. 2-Equivalent circuit of mixer test board


FIG. 3-Local oscillator injection and monitor probes
structed near the main injection probe, and serves to monitor the local-oscillator injection power. It is located near the end of the injection probe, but well out of the fields in the main transmission line. Calibrated against the available power in the line, it has been found to have a frequency dependence over an $80-\mathrm{mc}$ bandwidth of only 0.03 db per megacycle, with an almost linear decrease in sensitivity with frequency.

## Noise Generator

The r-f noise figure of the mixer is measured with a Polytechnic Research and Delevopment type 904 uhf noise generator, to which an external precision meter has been added to improve the accuracy of the noise diode current measurement. A value of 3 db must be added to the measured noise figure to allow for the noise signal injected into the unwanted image channel. If a narrow-band tuned circuit were inserted in the line to reject the image power input this correction would not be necessary, but the conditions for broad-band loss measurement would be violated. The i-f
noise output from the uhf noise generator is prevented from being injected into the mixer by the shorted tuning stub. An additional correction is necessary for the noise diode's transit time.

The $Y$-factor box, shown in Fig. 4 terminates the i-f amplifier input and provides an adjustable admittance that duplicates the mixer i-f admittance. It can be exchanged with the mixer for the measurement of $Y$ factor. A temperaturelimited noise diode is included for the measurement of i-f noise figure and is arranged so that noise figure can be measured with either the mixer or the duplicating admittance terminating the amplifier.

Because of the extreme sensitivity of the noise diode plate current to filament current changes and therefore to line-voltage change, a storage battery is used in the filament supply. In addition, the d-c bias on the mixer crystal is injected at the $Y$-factor box. Good filtering is necessary for all the supply voltages. The use of ceramic disk bypass capacitors soldered directly to the chassis is recommended. If the input and output leads to the bypass disk are soldered on opposite sides, the mutual coupling impedance between filter sections may be kept at a lower value than possible with button mica bypass capacitors.

To adjust the comparison admittance to the same value as the mixer i-f admittance at the noise diode an admittance bridge is provided. For convenience and accuracy the bridge is located at the end of a cable half the i-f wavelength as measured from the noise diode. The cable will present the same admittance to the bridge as its terminating impendance, and may be easily measured for electrical length by measuring its susceptance when terminated in an open circuit. The circuit capacitance is tuned out, and the bridge admittance reading used in the noise-figure calculation.

The admittance bridge, a Wayne Kerr B701, is driven by a buffered 1-kc square-wave modulated i-f electron-coupled oscillator. The amplitude of this signal at the mixer must be kept at a low level to prevent upsetting the nonlinear crystal impedance and may be checked by observing that it does
not alter the d-c crystal bias. Since this level is generally below 25 millivolts, a sensitive null detector must be used. A single-stage broadband i-f amplifier, followed by a crystal detector and a high-gain audio amplifier tuned to 1 kc is used. This method permits fixedtuned measurements for changes in the oscillator frequency as large as 4 mc .

Once the crystal mixer i-f admittance has been measured and a duplicate ohmic termination has been substituted, the $Y$-factor box output is switched from the admittance bridge to the i-f amplifier and the bridge oscillator is tarned off to prevent spurious coupling of i-f power to the amplifier.

The i-f amplifier has a gain of 120 db and a bandwidth of one megacycle. The input is a Wallman ${ }^{4}$ cascode circuit and in the complete circuit used has a noise figure of 1.8. It is preceded by an $L$ match-


FIG. 4-Contents of Y-factor box used in noise temperature test
ing section adjusted for the best noise figure when driven from the average mixer crystal, an impedance of approximately 250 ohms. The line from the amplifier to the switch is made identical in length to the line from the bridge to the switch. The impedance presented to the amplifer is then the same as the impedance presented to the bridge.

In measuring the relative noise output from the amplifier, it was desired to avoid the use of a diode video detector. A rectifier requires linearization for successful use in noise-figure measurements employing the noise diode method ${ }^{\text {a }}$ and still has a limited range over which accurate measurements can be made. ${ }^{8}$ The most satisfactory method for power measurements is the bolometric, or thermal measurement,
and it yields results that are truly proportional to power output.

A biased Wollaston wire bolometer consisting of a $1 / 100$ ampere Littelfuse is used and its resistance charge caused by output power heating is measured. The incremental change in resistance is proportional to the input power, provided that the input power is a small fraction of the d-c biasing power. Another limitation on the amount of output power that can be linearly measured is imposed by the possibility of overload in the last i-f amplifier stage that drives the bolometer.

It is desirable for the noise peaks to be at least 15 db below the overload power output of the amplifier. An additional 15 db should be allowed for the ratio of peak-to-rms noise power. This generally limits the maximum usable output power to below 0.1 milliwatt, which makes stability in bolometer bridge measurements extremely difficult to maintain, particularly in light of the zero drift caused by thermal charges and variations in the boloneter bias.

## Bolometer Driver

To avoid the instability of the bridge method the i-f amplifier stage preceding the bolometer driver stage is gated with a $1-\mathrm{kc}$ square wave, as illustrated in Fig. 5. The control grid is driven to cutoff by a square wave derived from a multivibrator and buffer amplifier. The buffer is a triode stage with the plate load grounded, and a negative d-c supply. This references the square wave to groind, and flattens the top of the output pulse thereby improving the i-f cutput pulse shape.

The i-f pulses are injected to the bolometer fuse by the driver stage. The bolometer has a thermal time constant of approximately $1 / 3$ millisecond, which allows it to vary in resistance at a 1 -kc rate. The bolometer is biased by a direct current passing through a transformer coupled to a high-gain tuned Hewlett-Packard 415A swr indicator. The scale of the meter is calibrated in db based on a square-law detector and is therefore a direct measure of relative output noise power. This method is usable at an
input level of 2 microwatts, but is normally used at a level of 50 microwatts and gives a more stable noise output reading than any other method observed.

It is possible, when familiar with the equipment, to make a complete crystal measurement in five minutes, including adjustment of the d-c and local-oscillator bias, a measurement of the mixer r-f and i-f impedance and a calculation of the broadband conversion loss and the noise temperature. Rapid and simple measurements are necessary because a number of operating conditions must be investigated to determine optimum biases and the distribution of parameters of a representative group of crystals. In addition, the results can be transposed to a given uhf converter design, enabling calculation of its noise figure.

## Production Testing

In production testing 1N72 uhftv mixer crystals, the laboratory method outlined is too complex for rapid testing.

Variation in noise temperature is relatively unimportant in uhf-tv mixers because the high intermediate frequencies and the high i-f noise figure make the contribution of excess noise temperature negligible for normal crystals, particularly if biased by a well-filtered local oscillator.

Variation in i-f mixer admittance will affect the i-f noise figure and the bandwidth of the input circuits. It is desirable then, to measure this admittance and reject those units that seriously deviate from the mean value. This measurement may be accomplished at audio frequencies, for the i-f impedance is


FIG. 5-Measurement of relative output noise power is obtained with this circuit


FIG. 6-Production test equipment arrangement
relatively independent of frequency.
The uhf noise figure of a receiver employing a given mixer crystal depends directly on the conversion loss of the crystal.

The conversion loss may be conveniently measured for production testing by the amplitude modulation method used in the production testing of microwave silicon crystals. A block diagram of the method used is shown in Fig. 6.

The crystal under test is mounted in the printed-circuit test mixer illustrated and a $900-\mathrm{mc}$ signal is injected from a source that is matched to the mean crystal impedance. This signal is at local oscillator level, $P_{o}$, and is modulated by a 1 -ke sine wave to a modulation depth $m$ below 5 percent. The mixer output is terminated in a $1-\mathrm{kc}$ load $R$ e that is matched to the mean i-f crystal resistance of 250 ohms, and the audio output voltage $e_{0}$ is measured by a millivoltmeter. The conversion loss is then determined by

$$
L_{0}=m^{2} P_{0} R_{1} / e_{0}{ }^{2}
$$

This measurement is based on the loss in converting the available sideband input power $m^{2} P_{0}$ to output audio power, the sidebands of the modulated input representing signal power that heterodynes with the carrier or local oscillator power to produce a 1 -kc i-f output.

The measurement will be in error by any mismatch at r-f or i-f, but this will tend to reject those crystals that are not typical in impedances. A 2 -to- 1 mismatch will cause a $0.5-\mathrm{db}$ error and occurs in less than 10 percent of the crystals used.

## Modulator

It was desired to modulate the oscillator from a low source im-


FIG. 7-Small-percentage modulation circuit
pedance and a regulated supply. The circuit used, shown in Fig. 7, consists of a commercially designed regulated power supply with a means for modulating the grid of the amplifier stage without upsetting the normal a-c or d-c feedback. Feedback is sufficient to make the gain essentially independent of tube variations, and lowers the output impedance. The supply used had an a-c gain of 2 , an a-c and d-c impedance of less than 10 ohms and a maximum modulation capability of 20 percent.
The modulation depth is fixed by a careful measurement of the oscillator output power versus input supply voltage characteristic, and a calculation of the modulating voltage required.

The crystal mixer $1-\mathrm{kc}$ resistance is measured with the bridge and bias circuit illustrated in Fig. 8. It is desirable to have the bridge output read equally for values of mixer resistance above or below the design value of 250 ohms by the same ratio. This is accomplished if the mixer is shunted by the design value and balances against a resistor of half the design value. In addition, the desired d-c bias source impedance is equal to the design value, and this same value is the desired terminating impedance for the conversion-loss measurement.

All these conditions are satisfied by the circuit illustrated, which is also designed to permit grounding of both the mixer and the millivoltmeter. In addition, only the 1 -kc input needs switching in changing from the conversion loss to the resistance measurement.
The voltage output from the mixer when $L_{0}$ is measured and the voltage level at the mixer when the


FIG. 8-Production testing uses resistance bridge and bias supply


FIG. 9-One kilocycle millivoltmeter for production testing
i-f resistance is measured must both be kept at a low level.

The millivoltmeter used shown in Fig. 9 is a two-stage amplifier and bridge rectifier with sufficient degeneration effectively to stabilize the instrument from the effect of tube variations. The gain is controlled by adjustment of the feedback to take advantage of the maximum usable degeneration. Additional low-frequency negative feedback is supplied to reduce the sensitivity to hum voltage input without impairing the 1 -ke characteristics. This circuit is normally adjusted to 4 millivolts full scale.

The production test equipment has proven extremely stable and will maintain its calibration within 0.1 db for a day's operation.

The author wishes to acknowledge the suggestions and assistance of C. J. Goodman and E. J. Jarrold in the measuring equipment.

## References

(1) H. C. Torrey and C. A. Whitmer. Crystal Rectifiers, Radiation Laboratory series, 15, McGraw-Hill Book Co., New York, p $2 \overline{5}$.
(2) Same as Reference 1, p 128.
(3) R. M. Barrett, Etched Sheets Serve as Microwave Components, Electronics 25, 1, 114, June 1952 .
C. (4) H. Wadsen, A Low Noise Ame, and C. P. Gadsen, A Low Noise Amplifier, roc IRE, $36, p$ p 700 , June 1948.
(5) E. G. Fubini and D. C. Johnson, Signal to Noise Ratio in AM Receivers.
Proc IRE 36 . p
1,461 Dec. 1948 . roc IRE, 36. p 1,461 Dec. 1948 .
(6) B. Harris and - . T. Brennan, Noise Factor Considerations and Measurement Techniques at UHF, RCA Industry Serv-
ice Laboratory Bulletin $L B \quad 86$.

# R-F Irradiation of Seeds 


#### Abstract

Dry seeds of carrots, onions and celery irradiated for short periods at 44.5 mc show higher percentage of germination than those untreated. Theory, optimum exposure and equipment for controlled experiments are described with a view towards possible conveyor-belt method of mass irradiation


IMPERFECT GERMINATION is a problem for farmer and horticulturist. Various procedures for increasing percentage germination of seeds have been developed. Some of these use hot-bath or radiant heating techniques. Seeds have also been irradiated with selected radio frequencies for internal heating.

Preliminary experiments with a resonant-line, push-pull oscillator using two type $5-250 \mathrm{~A}$ tetrodes feeding r-f power to a Pyrex beaker containing carrot, onion and celery seeds indicated that the rate of germination is a function of power input, d-c voltage gradient across the seed mass, frequency, time of exposure and state of the seed.

The period of exposure had to be limited to a few seconds. Experiments with the apparatus described below showed that the maximum germination rate was obtained when 103 cc of seed in a $17 \times$ $88-\mathrm{mm}$ Petri dish were irradiated from 10 to 11 seconds; 37.5 cal of $r$-f energy were introduced per cc of seed at a rate of 14 w per cc across an rms r-f gradient of 340 to 360 v per $\mathrm{cm} .{ }^{1}$

These parameters produced external post-irradiation temperatures of between 42 and 50 deg C

[^13]in various seeds. Higher temperatures were detrimental or even lethal. They may have caused internal temperatures of more than 70 deg C , which can inhibit biochemical systems. The distribution of some sugars in irradiated seeds exhibited a complete reversal from the controls. About 11 to 14 cal per cc were required to double the sugars subject to invertase action at the expense of a proportionate decrease of keto-sugars.

The r-f oscillator used for seed


Preliminary experiments were carried on with oscillator using two 5.250A tetrodes
irradiations utilizes a grid-controlled type $3 \times 2500 \mathrm{~A} 3$ medium- $\mu$ triode at 44.5 mc . The seeds can be considered as aggregates of colloids of high viscosity with low $r$-f skin effects. Therefore, the r-f current passing through the seed is largely composed of the two vectors: $I_{c}=2 \pi f C_{o} K E$ and $I_{r}=$ $I_{c} \tan \delta \approx I_{c} \cos \theta$.

## R-F Currents

The in-phase current $I_{r}$ is a function of the bulk capacitive leakage resistances, such as occur in vacuolar fluids with high $K$ values. The reactive current $I_{c}$ is a function of capacitances across membranes of living cells and between woody cells and large macromolecular complexes of proteins, fats and carbohydrates.

A mass of seeds is a uniform population of units of equal electrical characteristics arranged at random in the electrical field. The potential across this mass is a function of the interelectrode potential, dielectric constant, integrated ellipticity of all seeds and orientation of these ellipsoids in the r-f field. Thus, as shown in Fig. 1, a carrot seed parallel to the field will absorb more energy than one normal to it ${ }^{\text {² }}$.

An evaluation of r-f effects on seed germination required quanti-


FIG. 1-Course of r-f lines of force longitudinally through a carrot seed
tative methods of administering prescribed dosages of high-frequency radiation. Prerequisites were: a stable frequency, a simple and quick-acting timing control, and sufficient power. The main circuit diagram indicates the cavity oscillator built around the Eimac 3X2500A3 triode operated at maximum anode potential of $6,000 \mathrm{v}$.

The grid is keyed through a bank of VR150's so that the blocking bias of -750 v can be reduced to -150 v for periods from 0.4 to 60 sec. Plate potential can be controlled manually or by a timer.
The oscillator is used in a singleended circuit with a high ratio of tank to tube capacitance, which is important for biological work ${ }^{3-8}$. The cavity, a modification of designs ${ }^{7,8}$, is shown in greater detail in Fig. 2.

A thin copper cylinder $19 \frac{1}{4} \mathrm{in}$. high and 31 in . in diameter serves as the anode tank circuit. Its frequency is determined by a vertically sliding tuning cylinder and disk in electrical contact with the grid tank cylinder. The tube anode cylinder is set flush with the cover of the cavity and forms a plate-blocking capacitance of $0.01 \mu \mathrm{f}$. The grid ring of the tube is fitted into a copper ring flared out to serve as one side of the $5,800-\mu \mathrm{f}$ grid-leak capacitance.

The ungrounded side of the filament supply enters the cavity through a winged copper tube that
serves as a cathode-voltage shield and as the cathode r-f coupling. The filament socket is air cooled with a supply pressure of 13 lb per $s q$ in. Load coupling is at the edge of the plate-tuning disk opposite a slot in the cavity wall. The adjustable $\mathrm{h}-\mathrm{v}$ electrode is supported by two inverted Pyrex U's.

Interelectrode potential and r-f power absorption in the sample were determined indirectly by calculation from the d-c plate and grid potentials ${ }^{8}$. It was assumed that
the angle 20 of the r-f current conduction in each cycle remains constant at any d-c plate potential higher than cutoff. This angle was calculated from the d-c plate and grid potentials. Then the rms voltage during the conduction period of each cycle can be found. This rms value was selected in preference to the rms value of the total cycle because the conducting fraction of each cycle determines the power input into the load.

Then the conducting negative


FIG. 2-Cross section of eavity oscillator (A) tuning cylinder at level of upper loading plate and (B) vertical section details
r-f swing has a potential $E=E_{0}$
$E_{\text {.. }}(41.28 / \theta) \quad \sin (0.0345 \quad \theta)$, where $E_{0}=$ r-f volts, $E_{b}=\mathrm{d}-\mathrm{c}$ plate volts, $E=\mathrm{rms}$ volts across the electrodes, and $\theta=\frac{1}{2}$ angle of current flow. The power input into the sample $P_{g}=5.58 \times 10^{-5}$ $f\left(E_{s} / d_{s}\right)^{2} K_{s} \cos \phi(1 / s)$, or $P_{m l}=$ $16.417 P_{q} s$; and the energy input $W=P(t / 4.183)$, where $P_{g}$ and $P_{m i}=$ r-f power in watts per gram or watts per cc of load, $E_{3}=$ rms potential across the sample, d. $=0.9 \mathrm{~cm}$ of sample thickness, $K_{s}=$ dielectric constant 3.20 of sample, $\cos \theta=$ load power factor of $0.090, s=$ relative density of sample, and $f=$ frequency.

Seed temperatures were determined at the exact instant of the end of irradiation by an immersion thermocouple built into a number 26 hypodermic needle by John E. Gullberg of the University of California.

These experiments help to explain inconsistent results of earlier investigators who used frequencies anywhere between 20 and $225 \mathrm{mc}^{1.10}$. This range covers energy absorption bands of those macromolecules most common in seeds, as proteins and saccharide polymers. Whenever the period of exposure was less than 15 seconds some increase of the rate of germination occurred, especially when the external seed tem-


Seed germination as a function of energy input for carrot and onion seeds


Variation of r-f power with potential gradient across the sample
perature did not rise more than 30 deg C and not above 60 deg C . Prerequisites for this were anode potentials of more than one kilovolt and consequent high r-f potentials across the load.

Most earlier experiments failed because requisite equipment was unavailable. Further work may concentrate on reducing the ex-
posure period even more and on finding means to increase the rms r-f potential gradient across the seed mass without arcing. For this purpose centimeter waves may be of value. Then the energy input could be raised. There is still the question whether the enhancement of germination rates is part of a universal phenomenon applicable also to other well known biological r-f stimulations particularly in r-f therapy. It would also be interesting to know if the biological reaction results solely from the dielectric heating effect or also from some undefined molecular resonance.

## References

(1) H. Jonas, Some Effects of Radlo Frequency Irradiations on Small Oilbearing Seeds, 'hysiol. Plant. 5, p 41,1952 .
(2) J. C. McLennan \& A. C. Burton. The Heating of Electrolytes in High Fre
(3) C. K. Gieringer, Frequency Stabiliation of Diathermy Units, Electeonics 21, p 7S, 1948 .
(4) A. N. Goubareff, "The High Frequency Oscillator," MS thesis. Univ. Cal., 1938.
(5) E. E. Spitzer, Grounded Grid Power Amplifiers, Electronics 19. p 138.1946.
(6) C. E. Strong, The Inverted Amplifier, Electronics 13, p 14, 1940.
(i) A. M. Gurewitch, Cavity Oscillator Circuits, Electronics 19, p $135,1946$.
(8) Wm. Baker and L. Deckard, private information, Univ. Calif., 1947.
(9) R. S. Glasgow, "Principles of Radio Engineering," McGraw-Hill Book Co., New lork, 1936 .
(10) H. Jonas, "Some Effects of Very High Radio Frequency Ir adiations on the Germination and Metabolism of Certain Small Seeds," PhD thesis, Univ. Cal., 1950.


Circuit diagram of the radiation equipment includes timer for accurate dosage and safety controls for nontechnical personnel


FIG. 2-Rudimentary circuit for steady-state design (A) and tube characteristic (B) showing operating point


FIG. 3-Circuit showing conditions under which d-c stability is most difficult

# How To Design 



FIG. 1-Basic bistable multivibrator circuit (A) is modified for switching (B) by adding triggering network

BISTABLE multivibrators, such as the one shown in Fig. 1A, can remain quiescent indefinitely with either tube conducting and its opposite cutoff. This characteristic gives the circuit widespread usefulness in digital computers, counters and other pulse circuits.

If the basic circuit is modified as shown in Fig. 1B by addition of a triggering network, it may be switched from one stable state to the other. The transition between stable states is not treated in detail here, but certain factors that are related to the dynamic behavior of a complete circuit, such as minimum time between successive triggers, plate and grid waveforms and coupling capacitors, will be examined later.

* Now with The W. L. Maxson Corp., New Yow with Th $\mathbf{N}$.

The rudimentary circuit shown in Fig. 2A may be designed to insure stability of the stable states under adverse combinations of resistor deviations, supply voltage regulation and vacuum-tube emission deterioration. Since the circuit is symmetrical, it demands nominal symmetry of resistance values for proper operation. The design procedure described yields nominal values of resistance having a specified percentage tolerance, in conjunction with supply voltages $E_{00}, E_{\text {oc }}$ having specified regulation.

## D-C Stability

The circuit of Fig. 1A will have two stable states if the conducting tube causes the voltage on the opposite grid to fall to cutoff or below, and if the cutoff tube causes the voltage on the opposite grid to rise

By RaLPH PRESSMAN*<br>Advanced Development RCA Victor Division<br>Radio Corporation of America Camder, N.J.

to some point above cutoff. These two conditions are the basis of the design equations, with the second condition modified to read "the cutoff tube causes the voltage on the opposite grid to rise to zero." Zero is a more-or-less arbitrarily chosen point which, for all tubes, will insure conduction. It should be noted that although the coupling capacitors are essential for triggering the circuit they have no bearing on the d-c stability.

For a given tube, given resistors $R_{1}, R_{2}, R_{3}$ and given supply voltages $E_{b b}$ and $E_{c c}$, plate voltages, grid voltages and all currents can be determined. If allowable resistance variation is specified as $x$ percent and the supply variation as $y$ percent, the conditions for d-c stability can be imposed in the form of two equations. One states that under the most adverse combinations of resistance and supply voltages the high grid is at cathode potential, which is assumed to be zero. The other states that under the opposite extremes the low grid is not above cutoff. Since the two conditions prevail in a common circuit, a third


FIG. 4-Effect of coupling capacitor on switch-over


FIG. 5-Equivalent circuit showing the effect that the coupling capacitor has on the triggering rate

# Bistable Multivibrators 


#### Abstract

Arrangement of flip-flop circuits for reliable operation despite adverse combinations of resistor deviations, supply voltage regulation and loss of tube emission. Guides are given for selecting the proper coupling capacitor and triggering network


independent equation can be written. There are then three equations with five unknowns (the two supply voltages and the three resistors), and it should be possible to solve for $R_{1}, R_{2}$ and $R_{3}$ in terms of $E_{b b}$ and $E_{c c}$.

An arbitrary point $E_{b}, I_{b}$ in the shaded region of the plate characteristics, Fig. 2B, is selected. This point is associated with the extreme values of voltage and resistance indicated in Fig. 3. Under those conditions, an equation is written stating that the grid voltage of the on tube is zero
$\frac{\left[E_{b b}(1-c)-E_{c c}(1+c)\right]\left[R_{3}(1-d)\right\rfloor}{R_{1}(1+d)+R_{2}(1+d)+R_{3}(1-d)}+$

$$
\begin{equation*}
E_{c c}(1+c)=0 \tag{1}
\end{equation*}
$$

Another equation states that the assumed $E_{0}$ keeps the opposite grid at a specified negative voltage, $E_{\text {, }}$ equal to or slightly beyond cutoff

$$
\begin{align*}
& \frac{\left[E_{b}-E_{c c}(1-c)\right]\left[R_{3}(1+d)\right]}{R_{2}(1-d)+R_{3}(1+d)}+ \\
& E_{c c}(1-c)=E_{g} \tag{2}
\end{align*}
$$

A third equation can be written that states that the current through $R_{1}$ is equal to the assumed plate current $I_{b}$ plus the current through resistor $R_{2}$
$\frac{E_{b b}(1+c)-E_{b}}{R_{1}(1-d)}=I_{b}+\frac{E_{b}-E_{a}}{R_{2}(1-d)}$
These equations can be solved for nominal resistances $R_{1}, R_{2}$ and $R_{3}$. Results are expressed in terms of $E_{b b}, E_{c c}$ the arbitrary values $E_{o}$ and $I_{b}$, the specified negative grid voltage $E_{g}$, the resistor tolerance $d$, and the voltage tolerance $c$

$$
\begin{aligned}
R_{1}= & \frac{1}{(1-d) I_{b}}\left[(1+c) E_{b b}-E_{d}+\right. \\
& \left(\frac{1-d}{1+d}\right)^{2}\left(\frac{1-c}{1+c}\right) \frac{E_{b b} E_{a}}{E_{c c}}- \\
& \left.\left(\frac{1-d}{1+d}\right)^{2} \frac{(1-c)^{2}}{(1+c)} E_{b b}\right] \\
R_{2}= & \frac{E_{b}-E_{G}}{(1-d) I_{b}}\left[(1+c) E_{b b}-E_{a}+\right. \\
& \left(\frac{1-d}{1+d}\right)^{2}\left(\frac{1-c}{1+c}\right) \frac{E_{b b} E_{c}}{E_{d c}}- \\
& \frac{\left.\left(\frac{1-d}{1+d}\right)^{2} \frac{(1-c)^{2}}{(1+c)} E_{b b}\right]}{} \\
& \frac{\left[E_{g}-E_{b}-\left(\frac{1-d}{1+d}\right)^{2}\left(\frac{1-c}{1+c}\right)\right.}{E_{b b} E_{a}}+\left(\frac{1-d}{1+d}\right)^{2} \frac{(1-c)^{2}}{(1+c)} \\
& \left.E_{b b}\right] \\
R_{3}= & {\left[\frac{E_{g}-(1-c) E_{c c}}{(1+d) I_{b}}\right] }
\end{aligned}
$$

$$
\begin{align*}
& {\left[\begin{array}{l}
(1+c) E_{b b}-E_{g}+\left(\frac{1-d}{1+d}\right)^{2} \\
\left(\frac{1-c}{1+c}\right) \frac{E_{b b} E_{q}}{E_{c c}}-\left(\frac{1-d}{1+d}\right)^{2} \\
\left.\frac{(1-c)^{2}}{(1+c)} E_{b b}\right] \\
{\left[E_{g}-E_{b}-\left(\frac{1-d}{1+d}\right)^{2}\left(\frac{1-c}{1+c}\right)\right.}
\end{array}\right.} \\
& \frac{E_{b b} E_{q}}{E_{c c}}+\left(\frac{1-d}{1+d}\right)^{2} \frac{(1-c)^{2}}{(1+c)} \\
& \left.E_{b b}\right]
\end{align*}
$$

In order that positive values of resistance for $R_{1}, R_{2}$ and $R_{z}$ are insured, $E_{b o}$ must be greater than a certain lower limit, and $E_{c c}$ must be algebraically less than a certain upper limit. These restrictions on $E_{b b}$ and $E_{c c}$ may be written

$$
\begin{align*}
E_{b b}> & \frac{E_{b}-E_{g}}{\left(\frac{1-d}{1+d}\right)^{2} \frac{(1-c)^{2}}{(1+c)}}  \tag{7}\\
E_{c a}< & \frac{\left(\frac{1-d}{1+d}\right)^{2}\left(\frac{1-c}{1+c}\right) E_{b b} E_{g}}{E_{g}-E_{b}+\left(\frac{1-d}{1+d}\right)^{2}-(1-c)^{2}}(1+c) \tag{8}
\end{align*} E_{b b} \quad . \quad .
$$

Three equations are thus derived which, when used to select values for $R_{1}, R_{2}$ and $R_{3}$, will insure that the circuit of Fig. 3 is bistable even
under the extreme deviations of the resistances and voltages from their nominal values, and even when the tube emission becomes so low that the arbitrarily selected point $E_{b}, I_{b}$ corresponds to zero bias. By choosing the point $E_{b}, I_{b}$ deeper in the shaded portion of Fig. 2A, that is, by lowering the ratio of $I_{b}$ to $E_{b}$, the design can be made even more conservative, insuring bistability for a long life. This, however, results in larger values for $R_{1}, R_{2}$ and $R_{3}$, since all resistors are inversely proportional to $I_{b}$, and therefore it results also in a lower permissable trigger rate.

The actual operating point of a nominal tube is not at $E_{b}, I_{b}$ but at the intersection of its load line with the nominal zero-bias plate characteristic. Therefore, $I_{n}$ in the actual circuit is always greater than the arbitrarily chosen value; thus, the point $E_{b}, I_{\nu}$ should never be taken at or near the maximum allowable plate current.

## Coupling Capacitor

The coupling capacitor allows switching between stable states. If it were not present, the reversing impulse would bring both halves to identical conducting states and the final state would be independent of the initial state. A practical way to obtain the proper size of this capacitor is the empirical approach guided by some basic facts.

In order to convey most efficiently the leading edge of the rising plate waveform to the grid of the cutoff tube, the coupling capacitor should be larger than the interelectrode capacitance between grid and cathode of the cutoff tube.

The rate-of-change of the rising plate waveform will affect the size of the coupling capacitor, since a slowly rising plate waveform, due either to high stray capacitance or slowly falling trigger, requires a higher coupling capacitance to pass the rising wavefront to the grid of the cutoff tube. The falling plate always drops faster than the ascending plate rises; therefore, it is only necessary to insure that the rising waveform be satisfactorily conveyed to the grid of the cutoff tube.

The first two criteria tend to increase the size of the coupling ca-


## DESIGN PROCEDURE

In the following expressions resistor tolerance is assumed to be $\boldsymbol{d}= \pm 10$ percelt and the voltage tolerance $c= \pm 5$ percent. With $d=\ddagger 10$ percent. this means that ; percent resistors must be used in the circnit, and that the remaining percentage accounts for the necessity of choosing RMA values different from the calculated values.

STEP 1- Select point $E_{b}, I_{b}$, somewhere below the zero-bias line, keeping in mind that small ratios of $I_{b}$ to $E_{b}$ will mean larger resistors (therefore slow triggering rates), and that plate dissipation must not be exceeded by the actual $I_{b}$, which will always be larger than the chosen value of $I_{b}$, except when tube emission deteriorates to the extent where $E_{b,} I_{b}$ is actually the operating point.

STEP 2- If the tube being used is a pentode, for a given screen grid voltage obtain the cutolf hias $E_{g}$. This will he a negative number. If the tube being used is a triode, the cutofl bias varies with plate voltage, and may be approximated by $E_{a} \approx-K E_{b}$. This equation may be plobad using published tube characteristics, and the constant $K$ in obtained as the slope of the line.

STEP 3- The lower limit for $E_{b s}$ can now be calculated. For a pentode, $L_{b, b}>$ $E_{b}-E_{0} / 0.576$, and, for a triode, $E_{b,}>E_{b} / 0.576-K$.

STEP 4- Select a vahu for Ébb greater than the lower limit. The desireal mate voltage swing will be a factor in determining this, for it is approximathety equal to $E_{b b}-E_{b}$.

STEP 5- The upper limit for $E_{c c}$ may be calculated. For a pentorle

$$
E_{c c}<\frac{0.605 E_{b b} E_{g}}{E_{g}-E_{b}+0.576 E_{b b}}
$$

and, for a triode

$$
E_{c c}<-\frac{0.605 K E_{b b}^{2}}{E_{b b}^{2}(0.576-K)-E_{b}}
$$

If the pentode equation is used, the magnitude of the bomblary vathe always decreases for increasing $E_{b, b}$ and, if the triode equation is meal. the magnibude of the boundary value decreases with increasing babmat $E_{b, b}$ is twice the value of its lower limit. Then it increases wilh increasing $E_{b b}$.

STEP 6- Select a value for $b_{c c}$ less than the upper bommary. Notice that the boundary is a megative number and that a value most be tathen mome negative.

STEP 7- Calcutate the resistance $R_{1}, R_{2}$ and $R_{3}$ from Eq. 1,5 amd 6. TMey ame with $c=0.0 .5$ and $d=0.1$ substituled

$$
\begin{aligned}
& R_{1}=\frac{1}{I_{b}}\left[0.527 E_{b b}-1.11 E_{b}+0.672 \frac{E_{b b}^{\prime} E_{g}}{E_{c c}^{\prime}}\right] \\
& R_{2}=\frac{L_{b b}^{\prime}-E_{b}^{\prime}}{I_{b}}\left[\frac{0.527 E_{b b}-1.11 E_{b}+0.672 \frac{E_{b b} L_{b 0}^{\prime}}{E_{c c}}}{E_{b}^{\prime}-E_{b}-0.606 \frac{E_{b b} E_{b}}{E_{c c}}+0.576 E_{b b}}\right] \\
& R_{3}=\frac{\left|E_{b}^{\prime}-0.95 E_{c c}\right|}{I_{b}}\left[\frac{0.431 E_{b b}-0.91 E_{0}+0.552 \frac{L_{b b}^{\prime} E_{b}^{\prime}}{E_{c c}}}{E_{q}-E_{b}-0.606 \frac{E_{b b} E_{b g}}{E_{c c}}+0.576 E_{b b b}}\right] .
\end{aligned}
$$

These equations maty also be used in cases where triodes are duphoyed, simply by substituting the equation $E_{g}=-K E_{b b}$. From these equations, it can be seen that $R_{1}$ is independent of $E_{b}$. Iloweres. $R_{2}$ and $R_{3}$ increase as $E_{b}$ increases.

pacitor. However, although higher capacity increases the certainty of switch-over, it also increases the time required for the rising plate voltage to reach its quiescent value.

Figure 4A is an equivalent cilcuit of one half of Fig. 1A during the time that the opposite grid is conducting and $R_{e}$ and the coupling capacitor $C_{c}$ are essentially clamped

## Pentode

Tube-6AN5 ( $E_{g 2}=40$ volts)
$c= \pm 10$ percent
$d= \pm 20$ percent (This permits 10 percent resistors)
STEP 1- The point $E_{b}=10$ volts, $I_{b}=8$ ma was chosen. Since the point is below the knee of the zero-gridhias characteristic, the plate voltage will be relatively insensitive to the plate load resistor.

STEP 2- $E_{\theta}=-15$ volts $\left(E_{v^{2}}=40\right.$ volts $)$

STEP 3- $\quad E_{b b}>76.5$ volts (see Eq. 7)

STEP 4- $\quad E_{b b}$ was chosen to be 120 volts to give a plate swing of approximately $120-10=110$ volts.

STEP 5- $\quad E_{c c}<-45.8$ volts (sce Eq. 8)

STEP6- $\quad E_{e c}$ Mas chosen to be -80 volts.

STEP 7-

## From Eq. 4, 5 and 6

$R_{1}=18,150$ ohms
$R_{2}=75,200$ ohms
$R_{3}=114,200$ ohms
The RMA standard values chosen were

$$
\begin{aligned}
& R_{1}=18,000 \text { ohms } \\
& R_{2}=7,000 \text { ohms } \\
& R_{3}=110,000 \text { ohms }
\end{aligned}
$$

The d-c messurements on this circuit were:

|  | Tube | Tube 2 |
| :---: | :---: | :---: |
| High plate voltage | 96.5 | 97 |
| Low plate vollage. | 8.6 | 8.3 |
| High grid vollage (tube removed) | 27.8 | 25 |
| Low grid vollage. | $-28.6$ | $-27.7$ |
| Plale swing vollage. | 87.9 | 87.9 |

## Triode

Tube-12AU7 (cutoff constant $K=0.1$ )
$c= \pm 5$ percent
$d= \pm 10$ percent (This permits 5 percent resistors)
STEP 1- From the limit inequality for $E_{c c}$ given by Eq. 8, solve for $E_{b}$

$$
E_{b}<\frac{0.605 K E_{b b^{2}}}{E_{c c}}+E_{b b}(0.576-K)
$$

and by substituting for $E_{b b}$ and $E_{c c}$ $E_{b}<53.2$ volts.

STEP 2- On the 12AU7 plate characteristic curves, choose a point such that $E_{b}<53.2$ volts and which will lie below the zero bias line. The point chosen was $E_{b}=40$ volts, $J_{b}=2$ milliamperes.

STEP 3- Calculate the three resistors $R_{1}, R_{2}$ and $R_{3}$ from Eq. 4,5 and 6
$R_{1}=58,000$ ohms
$R_{2}=241,000$ ohms
$R_{3}=202,500$ ohms

The RMA standard values chosen were
$R_{1}=56,000$ ohms
$R_{2}=210,000$ ohms
$R_{3}=200,000$ ohms
With these resistance values, the nominal value of the high grid voltage (with the tube ont) was calculated to be

$$
E_{g \mathrm{ligh}}=\frac{R_{3}\left(E_{b b}-E_{c c}\right)}{R_{1}+R_{2}+R_{3}}+E_{c c}=15.6 \text { volts. }
$$

The low grid voltage, for nominal voltages and resistances and the tube operating point at $E_{b}$ $=40$ volts, was calculated to be, approximately

$$
E_{g \mathrm{low}} \approx \frac{R_{3}\left(E_{b}-E_{c c}\right)}{R_{2}+R_{3}}+E_{c c}=-22.7 \text { volts }
$$

For comparison, the measured values on this circuit were as follows:

Tube 1 Tube 2
High plate vollage
Low plate voltage.

| 105 | 110 |
| :---: | :---: |
| 23.6 | 28 |
| 16.5 | 16.2 |
| -30 | -28 |
| 81.4 | 82 |

Low trid vollage.
Plate voltage swing.
$81.4 \quad 82$
In circuits of this type, it is often desirable to know how far off the nominal values the supply voltages can go and still have stable operation. Measurements with this 12AUT triode llip-flop showed that the unclamped grid voltage (that is, the potential at the junction of $R_{2}$ and $R_{3}$ when the tube is removed) could the brought to zero by lowering the hias supply from -75 volts to -96 volts, a change of 23 percent, or by lowering the $B+$ supply from 150 volts to 125 volts, a change of 17 percent. Conversely, it was found that to thrin on the cutofl tube the bias supply would have to rise to -36 volts, a change of 52 percent, or the $\mathrm{B}+$ supply would have to rise to 190 volts, a change of 27 percent. These results indicate that the design is quite conservative, and stable operation would probably be obtained over wider variations of the supply voltages than those tolerances used in establishing the size of $R_{1}, R_{2}$ and $R_{3}$.
to ground. Capacitor $C$ s of Figure 4 A is stray capacitance between plate and cathode. From Thevenin's theorem another equivalent circuit, Fig. 4B, can be derived, where

$$
\begin{aligned}
& E_{b k e q} \approx \frac{R_{2}}{R_{1}+R_{2}} E_{b b} \\
& R_{\mathrm{oq}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

$$
C_{\mathrm{eq}}=C_{c}+C_{\mathrm{s}}
$$

Thus, the rising plate waveform may be approximated by a rising exponential, Fig. 4C, representing
the charging of the coupling and stray capacitances toward the quiescent value of the high plate voltage. The initial sharp rise of the curve is essentially the amplified version of the negative trigger signal on the grid. A break or discontinuity occurs when the opposite grid is driven to conduction, and the coupling capacitor is clamped to ground and effectively shunted across the plate-to-cathode capacitance.

## Triggering Rate

Minimum time between reversals is affected by the size of the coupling capacitor by virtue of the fact that it is related to the time needed by the coupling capacitor connected to the high plate to discharge to its quiescent low voltage. During this transient, the discharge current passing through $R_{\mathrm{s}}$ temporarily lowers the voltage on the cutoff grid beyond its steady-state bias. Consequently, if it is desired to reverse the circuit before it completely relaxes, a greater trigger amplitude is needed. To obtain the time constant of the discharge, the equivalent circuit of Fig. 5 is developed, from which it may be written

$$
T=R_{\mathbf{o q}} C_{c}
$$

where $T$ is the time constant, and

$$
R_{\mathrm{oq}}=\frac{R_{2}\left[R_{3}+\frac{R_{1} R_{T}}{R_{1}+R_{T}}\right]}{R_{2}+R_{3}+\frac{R_{1} R_{T}}{R_{1}+R_{T}}}
$$

As a check on the size of the coupling capacitors, connect a trigger circuit to the multivibrator grids. Connect all appendages to
the circuit such as cathode-follower grids and resistance voltage dividers. Reduce the trigger amplitude until the multivibrator just fails to flip over. This can be verified by a scope probe on the low plate. If the coupling capacitor is large enough, the trigger amplitude at this critical point should not drive the grid much more than half-way toward cutoff. Should pulses larger than this be needed for triggering, reliable operation will be uncertain when using tubes with reduced $G_{m}$.

## Trigger Networks

The trigger network connects to the rudimentary circuit in a symmetrical way and steers the trigger pulse to the proper tube to cause reversal. The trigger is either positive or negative. Positive pulses effect switching by turning on the off tube. Negative pulses turn off the on tube.

Generally, the negative pulse can be smaller than the positive pulse because the on tube amplifies the trigger pulse.

The circuit of Fig. 6A uses large-amplitude negative pulses or steps. If a negative trigger is applied to the capacitor, it will appear attenuated at both plates, but the attenuation is greater at the plate of the conducting tube. Therefore, only a small negative pip passes through the coupling network to the negative grid. The cutoff tube does not attenuate the signal as much and a large negative pulse is applied to the conducting grid. The coup-ling-circuit time constant is not critical since differentiation of a
step wave occurs in the cross-coupling network.

## Smaller Pulses

The circuit of Fig. 6B takes negative triggers or steps of smaller amplitude. The diodes steer the negative wave to the high plate and thence to the high grid; they also isolate the trigger source from the plate as soon as regeneration starts.

If the coupling circuit does not have a sufficiently small time constant compared to the turn-over time, the rising plate will be depressed slightly near the top of its excursion by the negative input waveform.

The input time constant should be small enough compared to the repetition period of the triggers to prevent biasing of the coupling diodes.

Since the high plate is somewhat below $E_{\iota u}$, the input wave must overcome the differences between the high plate voltage and $E_{00}$ before passing through the diode.

If thermionic diodes are used, the relation of $R_{1}$ to $R_{k}$ is unimportant. But germanium diodes may have a back resistance, $R_{b}$, comparable to the plate resistor so that the effective plate resistor is $R_{1}$ in shunt with $R_{\delta}$ and $R_{k}$ in series.

The circuit of Fig. 6C takes directly on the grid negative pulses whose duration is short with respect to turnover time. This circuit requires the smallest-amplitude pulses.

If $R_{3}$ is not small compared to $R_{b}$ of a germanium diode, the negative grid will be raised.


(B)


FIG. 6-Flip-flop with triggering network designed for large-amplitude negative pulses or sfeps (A); for smaller negative pulses (B): and for still smaller negative pulses of short duration (C)

# Cathode-Interface Effects 

 In TV Receiver DesignBy F, M, DUKAT and I, E, LEVY<br>Raytheon Manufacturing Co.<br>Newton. Mass.

Judicious choice of tube types by television receiver designers can forestall development of cathode interface resistance thereby extending useful life of tubes. Principles apply also to design of mobile radio equipment and electronic computers

SIEEPING SICKNESS, the popular term for cathode interface resistance, has long been a bugbear to computer engineers. This article analyzes its effects in typical television receiver applications

Interface resistance acts circuitwise like an inadequately bypassed cathode resistor. It affects pri-
marily high $g_{\text {.. }}$ tubes with small cathode areas. In television and i-f stages, interface resistance causes loss of gain; in video amplifiers it causes loss of low-frequency response as well. Interface resistance can also produce malfunctioning in multivibrators and blocking oscillators.

Interface impedance builds up to some degree in all cathodes but reaches rather high values in active cathodes. The resistance compound is barium-ortho-silicate, a semiconductor. The higher the percentage of silicon in the cathode, the greater will be the formation of interface resistance. Interface resistance

Table I-Simulated Typical Values of Cathode Interface Resistance Illustrate Effect on Television Receiver Tube Characteristics

| TYPE | Cathode Area in Cmín | Predicted <br> Interface <br> Resistance in Ohms |  |  | Loss of $t_{b}$ in Percent |  |  | Loss of $g_{m}$ in Percent (vlf) |  |  | $\begin{aligned} & \text { Loss of } g_{m} \\ & \text { in Percent }(11-f) \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | A | B | C | A | B | C | A | B | C |
| 12AT 7 | 0.270 | 93 | 279 | 165 | 20 | 40 | 50 | 40 | 70 | 7.5 | 15 | 30 | 10 |
| 6 BK 7 A . | 0335 | 75 | 225 | 37.5 | 40 | 55 | 65 | 50 | 75 | 85 | 25 | 50 | 55 |
| 6 AF 4 | 0.215 | 116 | 318 | 580 | 30 | 50 | 60 | 50 | 75 | 85 | 20 | 35 | 50 |
| 6 AL 6. | 0740 | 33 | 100 | 16.7 | 15 | 30 | 50 | 25 | 50 | 80 | 10 | 25 | 30 |
| 6CB6. | 0.199 | 50 | 150 | 250 | 15 | 25 | 45 | 35 | 65 | 75 | 15 | 25 | 35 |
| 6 BH 6 | 0.443 | 56 | 168 | 280 | 25 | . 0 | 60 | 40 | 65 | 75 | 20 | 40 | 45 |
| 6АH6. | 0.925 | 27 | 81 | 135 | 10 | 25 | 35 | 2.5 | 55 | $\kappa 5$ | 10 | 20 | 25 |
| 6SN7GT. | 084.5 | 33 | 99 | 165 | 5 | 15 | 25 | 10 | 25 | 35 | 5 | 10 | 20 |
| 124U7...... | $040 \overline{5}$ | 62 | 186 | 310 | 10 | 2.5 | 10 | 20 | 10 | 55 | 10 | 20 | 25 |
|  | $\begin{gathered} \text { Column } \\ \text { A } \\ \text { B } \\ \text { C } \end{gathered}$ |  |  | Normalized Resistance in $\mathrm{Ohm}^{25} \mathrm{Cm}^{2}$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Note-Regular bias by means of bypassed cathode resistor in every case except 6SN7GT and 12AU7 |  |  |  |  |  |  |  |  |  |  |  |  |  |

varies inversely with cathode area.
Operation with no space current develops higher interface resistance than if space current is drawn ${ }^{1}$. Higher-than-normal operating temperature accelerates formation of interface resistance. However, Fig. 1 shows that, consistent with the negative temperature characteristic of semiconductors, measured interface resistance varies inversely with cathode temperature ${ }^{2}$.

A barrier capacitance is associated with interface resistance ${ }^{8}$. For our purposes, interface impedance will be treated as a parallel R-C circuit with time constant of 0.2 to 0.5 microsecond.

## What It Does

Since operational effects are exactly the same as for an inadequately bypassed cathode resistor, low-frequency sine waves show the effect of added bias and cathode degeneration, while high-frequency sine waves exhibit only the effect of added bias. Waveforms with steep wavefronts have overshoots, a typical result of poor low-frequency response.

It is easy to reach the false conclusion that tube emission is the cause of low transconductance when interface resistance is the actual culprit. Assume we find a 6BK7A with $g_{m} 30$ percent low and emission is suspected. According to curve $C$, Fig. 2, 30-percent-low $\mathrm{g}_{\mathrm{m}}$ indicates a possible interface resistance of 29 ohms. Referring to Fig. 1 , if the heater voltage is lowered $\frac{1}{2}$ volt or 8 percent, the interface resistance increases to 75 ohms and the apparent $g_{m}$ is now 55 percent low. On the other hand, if heater voltage is increased to 6.8 volts, 8 percent high, the interface resistance will drop to 10 ohms and the apparent $\mathrm{g}_{\mathrm{m}}$ becomes almost normal. With a transconductance variation of this sort with heater voltage, it is certainly easy to convict the tube of having low emission.

At high frequencies the interface resistance is bypassed and the loss in transconductance is not nearly as severe as Fig. 2 shows. Only d-c degeneration is present. Thus the loss of gain in the presence of interface is actually less than low-frequency transconductance measure-
ments imply.
In the case of waveforms containing steep wavefronts there will be, in addition to the loss of gain, overshoots proportional to the amount the plate current has fallen off as the result of interface development. The percentage decrease in plate current as a function of $R_{\mathrm{k}}$ was also determined for the same tubes. The plate current drop, of course, is not as great as the transconductance drop.

For example, a 6BK7A with 50 ohms of interface resistance would show an overshoot of 25 percent if a square wave were applied to its grid, and the input signal appropriately increased to give the original output voltage.

Figure 3 shows the plate waveform of a 6AH6 having an interface


FIG. l-Measured values of cathode interface resistance plotted as a function of heater voltage


FIG. 2-Loss of transconductance with increasing cathode resistance illustrates effect of cathode interface. Curve $A$ shows low $-\mu$, low $\mathbf{g}_{\mathrm{m}}$ 6F6, triode connected; $B$ shows medium $-\mu$ medium $g_{m}$ 6AU6, triode connected; and C, high $-\mu$. high-g ${ }_{m}$ 6BK7A
impedance of 17 ohms and 0.02 microfarad when measured at 6.3 volts heater voltage. The three waveforms are for operation with heater voltages of $5.5,6.3$ and 7 volts and demonstrate the extreme sensitivity of interface resistance to cathode operating temperature.

## Application

To obtain actual values of interface resistance, a group of 12 SN 7GT's, half of which had moderate silicon in the cathode sleeves and half of which had relatively high silicon in the cathode were run for 2,000 hours under various operating conditions, 2,000 hours being representative of a year's operating life for a television set. The results varied so widely that only broad average conclusions could be drawn. When operated at rated heater voltage and a range of space current of from one to ten milliamperes, both normal and active cathodes developed about the same interface resistance, its normalized value ranging from zero to over 100 ohm$\mathrm{cm}^{2}$. With high-heater-voltage operation, 12 percent high, normal cathodes had about the same range, but the active cathodes were substantially higher, averaging about 125 ohm- $\mathrm{cm}^{2}$. There was some indication that interface resistance developed higher values in multivibrator operation.

Using values obtained in this life test we can consider what may happen if such interface resistance values develop in service. Table I shows several common television tubes with assumed normalized interface resistance values of 25,75 and $125 \mathrm{ohm}-\mathrm{cm}^{2}$. Tubes with small cathode areas and high $\mathrm{g}_{m}$ and/or high $\mu$ such as the 6AF4 and 6BK7A are particularly vulnerable to interface effects. In low-frequency circuits these tubes may lose 80 pecent of their $g_{m}$. Even in the usual h-f or vhf applications, it is entirely possible in 2,000 hours to have the transconductance decreased almost 50 percent by interface effects.

Both the 6SN76T and the 12AU7 have similar ratings and both have been used in the same type of service, but the 12AU7, because of its smaller cathode area, can develop almost twice as much interface


FIG. 3-Plate-voltage waveform for 6AH6 with 50 -kc square-wave excitation. Overshoots due to cathode interface resistance are noted as heater voltage is reduced
resistance as the 6 SN 7 GT in the same length of time. In i-f amplifiers also, the tubes with the larger cathodes are the best from a life standpoint.

In 2,000 hours, three 6AU6 i-f amplifiers would be down about 30 pereent in gain if $25 \mathrm{ohm}-\mathrm{cm}^{2}$ of interface resistance is present. On the other hand, 6BH6's with the same normalized interface would be down 50 percent. Power output tubes and deflection amplifiers generally have large cathodes and low $\mu$, and ordinarily are little affected in usual service by interface resistance.

## Video Amplifiers

In video amplifiers, the poor lowfrequency response which is the result of interface predicts that black areas turning sharply to grey would have a white trailing edge, while white areas turning to grey would have a black edge. This can be demonstrated by the addition of external capacitance and resistance to simulate interface impedance. However, with typical television signals it was found necessary to use rather high impedance values before such edge effects occurred. Apparently, in the usual television system the high-frequency response is none too good and low values of interface impedance only add a form of high-frequency peaking.

However, with values of 200 ohms
in a single-stage video amplifier pentode, it was possible to get edge effects. Also, overshoot on the leading edge of the blanking pulse caused sync to occur sometimes on the blanking rather than the synchronizing pulse, with the result that the picture moved to the left and showed a tendency to vertical instability. However, it is not likely that 200 ohms interface resistance can be developed in 2,000 hours in tubes of this description because of their large cathode areas.

## Other Effects

In the usual ringing-coil horizontal multivibrator it was found that when a simulated impedance having a resistance of 300 ohms was used, it was no longer possible to hold sync by the usual front panel controls, and with 400 ohms it was impossible to hold sync with any control. The same 300 -ohm figure gave similar results in the usual syncro-guide circuit. In neither case was it found that the time constant of the impedance was of any importance.

Values of 300 ohms are entirely possible in some tubes used in multivibrator and syncro-guide service, particularly if the set runs a great deal on high line voltage and is occasionally called upon to operate at low line. Vertical blocking oscillators were found to be quite unaffected by cathode impedance. For
low values of simulated resistance the vertical size actually increased, and it was necessary to get up to values of 800 to $1,000 \mathrm{ohms}$ before performance suffered.

Real difficulty with interface resistance is most likely to occur when the tubes operate at high heater voltage during most of their life but are called upon occasionally to operate at low voltage. The classic case of this is the automobile receiver where the source voltage with the generator charging may be 7 volts with perhaps 6.8 volts at the tube heaters. However, operation is also expected without the battery charging and with tube heaters working at 5.5 volts, where any interface resistance which may have been developed is increased about three times.

Fortunately, long tube life is not expected in auto sets; 500 hours at full 6.8 -volt represents many thousand miles of normal use. However, there are other mobile applications such as police and taxicab sets where 2,000 hours can be run up in a short time.

## References

(1) J. R. Waymouth, Jr., Deterioration of Oxide-Coated Cathodes Under Low Duty Factor Operation, Jour. Applied Phys. 22, p 80, 1951
(2) C. G. Eaglesfield, Life of Valves With Oxide-Coated Cathodes, Electrical Comm, June 1951.
(3) H. Bonnel Frost, The Use of a ment of Cathode Interface Impedance Project Whirlwind, Report No, R207.


Electrodes take bioelectric potentials from arm muscle and frontal lobe of brain to measure strain and effort of subject exercising on isometric dynamometer

# Bioelectric Integrator 

Circuit quantifies bioelectric potential from muscles to measure strain and effort of human subjects performing various tasks. Data obtained may aid engineers in reducing operator fatigue and inefficiency through proper design of instrument controls

ELECTRONIC measuring instruments are widely used in experimental psychology. Work, fatigue, effort, sensory-motor control and even mental attitude can be better understood from measurement of bioelectric potentials taken from human subjects.

Importance of measuring strain and effort was suggested by an Air Force research assignment the goal of which was to design machines and instruments better adapted to the characteristics of human operators.

Although the Air Force project was restricted to measurement of speed and error when instrument controls were changed in various experimental ways, it was felt that
measurement of strain and effort would be a valuable addition to speed and error data. A direct index of strain and effort can be obtained by recording the bioelectric effects of the muscles used.s. "

## Amplification

Electrical output of warmblooded tissue taken from the surface of the skin varies, after conduction losses, from 10 to 500 microvolts depending upon the size of the pickup electrode. This output is a summation of the activity of millions of body cells acting generally in unsynchronized bursts of volley impulses. Frequency analysis show that frequencies from ? to $5,000 \mathrm{cps}$ are involved.

Three similar instruments are commonly used for amplification of bioelectric potentials: the electrocardiograph for making tracings of heart action; the electroencephalograph for making tracings generally called brain waves; and the electromyograph for making tracings from the bioelectric output of muscles. A commercial instrument is now available that can be used for all three functions merely by adjusting calibrated filter networks to pass the characteristic clominant frequencies found in each.

Most commercial instruments have been built to yield paper tracings that discriminate severly against higher frequencies, and


FIG. 1-Arrangement of instruments used to study human strain and effort by meas. uring bioelectric potentials

## EASIER KNOB-TWISTING

Design of controls can be as important to the performance of electronic equipment as design of circuits.

Poorly designed controls create operator fatigue that can lead to inefficient operation and substandard performance of the manmachine team.

Atier World War II, the Air Force began to study radar operator's speed versus error with a view to improving the design of knobs used for linear scale settings." The operator ranged on targets displayed on an A-scope simulator. His speed and errors were recorded and correlated with changes made in range-dial diameter, dial friction and ratio of range-step travel to dial rotation.

Results suggested that a direct measure of strain and effort would be a valuable addition to speed versus error data

It now appears that both physical and mental strain and effort may be quantified. Such data may soon enable equipment designers to tailor instruments to fit best the characteristics of the average operator

# Gages Strain and Effort 

By ADELBERT FORD<br>Department of Psychology<br>Lehigh University<br>Bethlehem, Pa.

from such data only qualitative interpretations are generally possible. On the basis of such recordings the alpha and beta brain waves were discovered. However, custom-made assemblies have included cathoderay tube photography and these have produced tracings of the higher frequencies complicated only by the problem of noise. Amplification to a million times is often needed.

## Integration

Bioelectric output may be quantified by securing the integral of the complex potential waveform. Earlier instrumentation for summing the area under the amplified bioelectric output curve provided a


Bioelectric integrator outside shielded room quantifies potentials taken from subject. Electroencephalograph at right makes continuous paper tracing


FIG. 2-Schematic shows one channel of four-channel bioelectric integrator. Addifional R-C amplifier may be switched in when dealing with low potentials
series of $\frac{1}{10}$-second integrations registered on photographs of a crt face.

The instrument described is capable of summating a record three minutes or longer in duration or any fraction of this time. Output is measured directly by a vacuumtube voltmeter.

To record accurately the smallest electrical effects from subjects in a completely resting state, the assembly is housed in a double-shielded laboratory.

Figure 1 is a block diagram of the instrumentation used with the bioelectric integrator. The eeg, ekg and emg are combined in a standard instrument for making tracings on paper.

The integrator is a four-channel system such that the output from four pairs of electrodes can be integrated simultaneously in four parallel channels. Push-pull amplification and integration are used.

The outer shield of the subject's room is of sheet steel; the inner shield is a copper net. Windows and lamp openings are covered with two layers of electrically conductive glass, continuous with the shielding. The shielding properties of this glass are such that a subject's electrode, held a foot away from a tungsten lamp will not gather appreciable radiation.

## Operation

A given channel, beginning with the human subject, is divided at junction $J$, one line running by shielded cable through the wall to the eeg, ekg or emg, where paper tracings are made with a signal marker superimposed to show the
exact time duration for which the integrator computes its answer. If an unusual curve should appear, the paper tracing can often show the reason for the unexpected answer.

The other branch from $J$ goes to a battery-operated preamplifier equipped with filter controls that can provide either broad-band amplification or selective amplification of selected frequency components. The output goes then by shielded cable to the integrator and a double-gun crt whose face can be photographed on continuously moving film.

## Timing

Intervals over which bioelectric potential is integrated are governed by a timer consisting of a synchronous motor geared to a cam and microswitch system. The relays in the integrator can be opened and closed for a large number of different time intervals selected by changing the gears and cams.

Marks are placed on both the paper tracing and the crt film to show the portion of the curve integrated. The timing control also controls a camera that photographs the vacuum-tube voltmeter dial to record on $16-\mathrm{mm}$ microfilm the result of each integration.

For example, in present experiments, a subject lying flat on his back with no voluntary body movement begins his task of mental computation. A series of 9 -second samples accurate to $\pm 0.002$ second is taken during a three-minute period without the subject's knowledge. During a rest period of comparable time, the subject's basal
electrical potential is taken for comparison.

## Circuit Details

Amplified bioelectric potentials run through a full wave rectifier into the R-C integrator. The input from the bioelectric amplifiers is applied to $R$ by closing the switch. The rate of charging of the capacitor is determined, for a given voltage, by the value of $R$ and is relatively linear if the charge at $C$ is held well below maximum value. Provision is made for increasing the value of $R$ to allow integrations to be made over longer periods. The value of $C$ must be large, 50.0 microfarads for this instrument.

The value of the capacitor charge is given by $Q=C v$ where $Q$ is in microcoulombs, $C$ is in microfarads and $V$ in microvolts. Since the capacitors in the integrator are fixed, charge can be measured with a vacuum-tube voltmeter. The capacitor plates are shorted after each integration.

Figure 2 shows one of the four integrator channels schematically. Input is from the preamplifier in the subject's room. While this diagram shows one stage of R-C amplification preceding the full-wave rectifier, provision is made for switching in an additional stage of amplification when dealing with unusually low bioelectric output.

Output switches are relay controlled by the synchronous timer. The step-resistance is varied by a dial calibrated in approximate time intervals during which integration is expected to be carried on. Charge on the capacitor is measured by a vtvm having an input resistance of approximately six megohms. Although the capacitor is an oil-filled, low-loss type, dielectric losses are such that the meter must be photographed within the first two seconds to avoid drift.

## References

(1) A. Ford, Types of Errors in Location Judgments on Scaled Surfaces I, Errors of Configuration, Jour. Applied Psychology, p 373, Aug. 1949.
(2) A. Ford, Types of Errors in Location Judgments on Scaled Surfaces II, Rlied Psycholog and Systematic Errors, Jour. Applied Psychology, p 383, Aug. 1949.
(3) R. C. Davis, An Integrator and Accotentials, Amer. Jour Pecording Action Jan. 1948 .
(4) R. C. Davis and D. W. Van Liere, Adaptation of the Muscular Tension ReSponse to Gunfire, Jour. Experimental Psychology, p 114, Feb. 1949.

# UHF Grid-Dip Meter 

# Permits determining the approximate tuning of filters and amplifiers, frequency of spurious resonance, values of circuit components and approximate value of Q at 

 frequencies between 390 and 1,000 megacyclesBy A. E. HYLAS and W. V. TYMINSKI

ATUNABLE OSCILLATOR, coupled inductively or capacitively to circuits under test, comprises the usual grid-dip meter. Loose coupling between the meter and the circuits under test is desirable for accuracy, and implicit in the procedure is that the distance between them be a small fraction of a wavelength.

The conventional circuit used for this application is a modified Colpitts oscillator employing capacitance tuning between plate and grid. As operation at higher frequencies is attempted, the required external inductance becomes so small, both physically and electrically, that it is difficult to couple the oscillator to circuits under test.

The upper frequency limit of most commercial meters employing shunt capacitance tuning is approximately 400 mc . With the allocation of ty broadcasting service in the band between 470 and 890 mc , extension of the grid-dip meter technique to this region is found to be desirable.

Extension of this range requires operation of tubes above their selfresonant frequency. Another design consideration is that the coupling point remain at a fixed position as the frequency is varied, and also that this coupling point be readily available.

Figure 1 shows several possible schemes for tuning a uhf oscillator. The inductive tuning shown in Fig. 1B limits operation to frequencies below the self-resonant frequency of the oscillator.

Pettit ${ }^{1}$ has shown that series capacitance tuning, as indicated in Fig. 1C, extends the range of oscillators above their self-resonant frequency. In this particular circuit,
variation of the maximum-current position with frequency does not lend itself easily to grid-dip-meter applications. A re-arrangement of the series capacitance into a balanced circuit, as shown in Fig. 1D, provides a maximum current point, the location of which remains fixed with tuning. Figure 1E has similar characteristics and will be considered later. Both balanced circuits satisfy the essential requirements mentioned, operation of available oscillator tubes above their selfresonant frequency and a fixed coupling point with frequency.

## Circuit Analysis

To determine the feasibility of balanced series tuning using reasonable values of capacitance, an
analysis was made to determine the length and number of probes necessary to cover the range of approximately 400 to $1,000 \mathrm{mc}$. Figure 2 shows the equivalent circuit of an oscillator employing balanced series capacitance tuning. The tube is represented by a capacitance-loaded transmission line with $b b^{\prime}$ being the plate and grid terminals of the tube and the length of line between $b b^{\prime}$ and $a a^{\prime}$ is the necessary connection between the tube and the tuned circuit. The equivalent capacitance of the tube is $C_{0}$ and the length of the external probe is $l$. A condition for resonance at $a a^{\prime}$ is

$$
\begin{equation*}
X_{T}+X_{P}=0 \tag{1}
\end{equation*}
$$

By substituting the reactances as determined by transmission line


FIG. 1-Several methods of tuning a uhf oscillator


FIG. 2-Equivalent circuit for series capacitance tuning


FIG. 3-Variation of $k_{1}$ with frequency for grid-dip meter using series tuning
theory where

$$
\begin{aligned}
& X_{r}=\frac{\frac{1}{j \omega C_{0}}+j Z_{2} \tan \beta_{2} S}{Z_{2}+\frac{1}{\omega C_{0}} \tan \beta_{2} S} \\
& X_{P}=\frac{1}{j \omega C_{0}}+j Z_{1} \tan \beta_{l} l
\end{aligned}
$$

and letting $C=\hat{l}_{1} C_{0}, \omega_{0}=\frac{1}{Z_{2} C_{0}}, x=\frac{\omega}{\omega_{0}}$, $\beta_{1} l=a x=\left(\frac{\omega_{0} l}{v_{1}}\right) x$ and $\beta_{2} S=b x=\left(\frac{\omega_{0} S}{v_{2}}\right) x$.
Eq. 1 may be solved for the reciprocal of $k_{1}$
$\frac{1}{l_{1}}=\left(\frac{Z_{1}}{Z_{2}}\right) x \tan a x+\frac{x \tan b x-1}{\frac{1}{x} \tan b x+1}$


FIG. 4-Variation of grid current with frequency for developmental uhf griddip meter


Experimental model using ceramic capacitors covers the frequency range from 430 to 975 mc continuously

When a particular tube is employed, the constants of Eq. 2 may be determined and a plot of $k_{1}=f(x)$ may be plotted. For an oscillator employing balanced series tuning and a 6AF4, the constants are $C_{0}=$ $2.27 \mu \mathrm{f} f_{\mathrm{o}}=\frac{\omega_{\mathrm{o}}}{2 \pi}=452 \times 10^{6}$ cycles and $b=0.296$.

By setting an upper frequency limit and a minimum capacitance, the probe length $l$ can be determined. For a maximum frequency of $975 \mathrm{mc}(x=2.16)$ and a minimum capacitance of $1.2 \mu \mu \mathrm{f}$ ( $k_{1}=$ 0.265 ), a probe length $l$ of 1.9 in . ( $a=0.462$ ) is obtained.

For an upper frequency limit of $700 \mathrm{mc}(x=1.55)$, a probe length of 3.2 in . is required. A plot of Eq. 3 showing the variation of $k_{1}$ with frequency for the two probes is shown in Fig. 3. As the tuning capacitance becomes very large, the frequency changes slowly. If the capacitance were infinite, probe 2 would tune to 465 mc and probe 1 to 372 mc .

Although a frequency range from approximately 390 to $1,000 \mathrm{mc}$ would be preferred, several practical considerations dictated 425 and $975-\mathrm{mc}$ limits for this partic-
ular arrangement. High-frequency operation was limited to 975 mc because previous experience with the 6AF4 showed that operation above this frequency is marginal if the maximum plate dissipation is not to be exceeded. The lower limit of 425 me was used because the longer probes necessary for operation at lower frequencies were subject to multiple-mode operation.

An experimental model of a griddip meter employing balanced series capacitors and the probe lengths calculated is shown in one photograph. The two series capacitors are ceramic trimmers with a nominal range of 2 to $12 \mu \mu f$ and a measured variation of 1.2 to $16 \mu \mu \mathrm{f}$. The lead length of these capacitors was considered as part of the transmission line.

A plot of the variation of grid current with frequency for this arrangement is shown in Fig. 4. The 430 to $700-\mathrm{mc}$ range for probe 1 and the 510 to $975-\mathrm{mc}$ range for probe 2 are in close agreement with the calculated values. The variation of grid current is greater than would be desired, but is still within useful limits.

Since a special capacitor would


Final version uses 6F4. Tube and circuits are mounted on movable carriage
have to be built for the grid-dip meter, an anlysis was made to determine the feasibility of using both shunt and series tuning to cover a wider range of frequencies with a single probe. The resonant condition for this circuit at $a a^{\prime}$ as shown in Fig. 5 is

$$
\begin{equation*}
X_{T}^{\prime}+X_{P}=0 \tag{3}
\end{equation*}
$$

where

$$
X^{\prime}{ }_{T}=\frac{1}{\frac{1}{X_{T}}+\frac{1}{X_{c a}}}
$$

and

$$
X_{c a}=\frac{1}{j \omega C_{a}}
$$

Using the same relationship as indicated for Eq. 1, Eq. 3 may be solved for the reciprocal of $k_{1}$ and

$$
\begin{aligned}
\frac{1}{k_{1}}= & \left(\frac{Z_{1}}{Z_{0}}\right) x \tan a x+ \\
& \frac{1}{-\frac{1}{x} \tan b x+1} \\
& -k_{2} \tan b x-1
\end{aligned}
$$

where

$$
k_{z}=\frac{C_{a}}{C_{\mathrm{t}}}
$$

The variation of $k_{1}$ with frequency for series tuning ( $k_{2}=0$ ),
is shown as the dotted line in Fig. 6. The solid curve shows a desired variation of $k_{1}$ as a function of frequency and the curve in the lower left-hand corner indicates the necessary value of shunt capacitance in the form of $k_{2}$ versus frequency. In the shunt-series tuning illustrated, no parallel capacitance is added until a frequency of 700 mc is reached so as not to affect operation at the upper end of the band.

A simple air-dielectric shunt and series capacitor was built for the grid-dip meter shown in the second photograph. While this capacitor arrangement is simple to fabricate, it has the disadvantage that the effective transmission-line length is increased as the series capacitance decreases, thus reducing the probe length and frequency range. Series variation is from approximately $\frac{1}{2}$ to $20 \mu \mu \mathrm{f}$, and the shunt variation from $0-2 \mu \mathrm{f}$. This unit uses the 6 F 4 to provide more output power at the high end of the band, and the tube and its associated circuits are mounted on a movable carriage which may be translated in motion to vary the series capacitance.
The complete, enclosed unit can be used with commercial


FIG. 5-Equivalent circuit for series. shunt capacitance tuning


FIG. 6-Variations of $k_{1}$ with frequency for grid-dip meter using shunt and series tuning
grid-dip-meter power supplies and extends grid-dip-meter techniques to over $1,000 \mathrm{mc}$. As in conventional grid-dip-meter technique, the stationary maximum current point of the probe should be coupled to maximum current points in circuits under test. For coupling into highimpedance points, voltage probes consisting of open lines may be used.

Coupling to cavities may present some difficulties if the maximum current point is not readily accessible. In measurements of this type, it is necessary to provide a hole at the maximum current point so that the probe can be coupled to the H field of the cavity. Here the small width of the probe is a definite advantage.

The meter described has been found useful in uhf development work and appears to provide a solution for the extension of the grid-dip-meter technique to over 1,000 mc. The assistance of Herbert Colomy in devising the mechanical arrangements and building the developmental models is gratefully acknowledged.

## Reference

(1) J. M. Pettit, UHF Triode Oscillator Using a Series.Tuned Circuit, Proo. $I R E$, p 633, June 1950 .

# Production-Line Gas Test for Picture Tubes 


#### Abstract

Electrical method of measuring gas ratio, proportional to degree of vacuum, permits testing for residual gas while finished tubes move past on conveyor line. Ionization-gage checks show that dividing gas ratio by 10 gives approximate gas pressure in microns


By R. E. OSTROWSKI

Tube Department
Syracuse

AS a check of quality, manufacturers of cathode-ray tubes use JAN specifications based on the gas ratio, designated as $\left(I_{s}-I_{L}\right) /$ $I_{P}$, where $I_{P}$ is grid No. 2 current in ma, $I_{N}$ is gas current in $\mu$ a and $I_{L}$ is leakage current in $\mu \mathrm{a}$. For $I_{P}$, $E_{b}=+25 \mathrm{v}$ and $E_{\mathrm{c1}}=0 \mathrm{v}$; for $I_{s}$, $E_{b}=-25 \mathrm{v}$ and $E_{c 1}=0 \mathrm{v}$; for $I_{L}$, $E_{b}=-25 \mathrm{v}$ and $E_{c 1}=-70 \mathrm{v}$. For all three, $E_{c 2}=250 \mathrm{v} . \quad I_{y}$ is read within 10 seconds of reversal of $E_{b}$.

A circuit typical of that used for measuring gas ratio is shown in Fig. 1. When operated to read ion current, this circuit resembles that of an ionization gage, with the picture tube replacing the gage tube. With this circuit more sensitive metering is required than is used in the ionization-gage circuit. The cathode current is in the order of 1 ma instead of 10 ma , and ion currents may be as low as $0.01 \mu$ a or less for a good tube instead of 0.1 $\mu$ a. Leakages in the cathode-ray tube are even more critical than in the ionization gage and must be taken into consideration.

Using zero-bias emission, gas currents will vary according to gas pressure and beam current. By dividing the numerator of the gas ratio formula by the grid No. 2 current the resultant ratio is in microamperes of ion current to milli-
amperes of electron current. Since at pressures of less than one micron the ion current is proportional to


FIG. 1-Circuit used for laboratory ver. sion of gas ratio test unit


Method of installing ionization gage on picture tube for correlating gas ratio measurements with gas pressure in
the gas pressure and the number of ions formed by collisions is proportional to the electron beam current, the gas ratio is a constant regardless of the emission current ranges available in present-day cathoderay picture tubes. This fact is brought out by the curves in Fig. 2. Tube $A$ is an excellent tube with respect to gas content, having a gas ratio of 0.016 . The maximum limit for an acceptable tube is in the order of 0.25 . Tube $B$ is not quite so good as $A$ but is still satisfactory, with a gas ratio of 0.074 . Tube $C$, however, has a gas ratio of about 2.2 and is well outside the satisfactory limit, even though the linearity still exists. This tube, while exhibiting poor gas-ratio readings, has within it a vacuum of about 0.2 micron. This indicates how important it is to maintain high vacua in picture tubes.

To determine sources of gas molecules and ions. the tube may be checked for gas by means of an attached ionization gage before it is operated with a raster upon the screen, checked again with a pattern on the middle of the screen, then checked with the raster overscanning the screen so the electron beam is striking the walls of the glass bulb. The electron beam bombarding these various surfaces results


Gas-buggy test unit used at Electronics Park plant to check for gas in tube and leakage between elements, at rate of one tube per minute. Four tubes are connected at a time so that three are being preheated while the fourth is checked. Tubes are aged for several days in storage before this final checkup


FIG. 2-Gas ratio for any given tube is a constant regardless of emission when gas current in $\mu \alpha$ is plotted vertically against cathode current in $\mu a$


FIG. 3-Production-type gas ratio test
in gas and ion emission which affects tube operation adversely.

With this arrangement a number of gas-ratio readings were compared to those of the ionization gage. It was found that the gas pressure in microns was equal to the gas ratio divided by a factor of approximately 10 . The significance of this comparison is clouded by the fact that there may be ions derived from sources other than residual gases when measuring gas ratio. Since any ions could be detrimental to the satisfactory performance of the tube, it appears that the gas-ratio method is a test indicative of tube quality.

## Production Gas Testing

Figure 3 is a circuit diagram of a semiautomatic means of measuring gas ratio which is particularly applicable to production testing. Regulator tube $V_{2}$ controls the voltage on grid No. 1 of cathode-ray tube $V_{1}$. The regulator tube derives its signal from a voltage divider whose output is proportional to the cathode current of the picture tube under test. The level of this signal may be varied by $R_{1}$.

By proper adjustment of $R_{1}$ and $R_{n}$, the electron current in the ca-


Front panel of semiautomatic gas ratio indieator
thode-ray tube may be arbitrarily selected and other tubes of the same type will automatically be set at this value of current. If the tube to be tested delivers more than the pre-set amount of current, the control grid of $V_{2}$ becomes more positive, causing the plate voltage to decrease. This lowers the grid voltage on the cathode-ray tube and tends to reduce the electron current to the proper value.

Ions attracted to the negative second anode result in a current which develops a voltage across the 1 -meg precision resistor and causes a deflection of the vacuum-tube voilmeter. The meter may be calibrated in terms of gas ratio where $I_{P}$ is the figure for electron current as set up by $R_{1}$ and $R_{2}$. The vacuumtube voltmeter circuit compensates for leakage currents.

# Miniaturization of 

Use of smaller window than usual in laminations reduces space and weight 30 percent and cuts power losses about 20 percent for same temperature rise. New calculation chart speeds design of optimum chokes using standard cores, and applies also to singleended audio transformers

POWER SUPPLIES for airborne equipment frequently become excessively large and weighty when designed by standard methods. To maintain well-engineered designs and concurrently minimize weight and space, the problem of miniaturization of power supplies and their associated components has been investigated. To incorporate questions of weight into the design of power supplies, it was necessary to conduct a survey encompassing the functions of inductivity, resistance, size and temperature rise of filter chokes. The information presented herein is a preliminary synopsis of this miniaturization program.

## Filter Choke Heating

The problem of miniaturizing any electronic equipment ultimately leads to an investigation of the equipment's heat dissipation. For filter chokes, this starts with the basic iron-core inductor formula

$$
\begin{align*}
L & =1.256 \times 10^{-8} N^{2} K  \tag{1}\\
K & =a_{i} \mu /\left(l_{i}+l_{a} \mu\right)
\end{align*}
$$

where $N$ is the number of turns, $a_{3}$ is iron-core cross-section in sq $\mathrm{cm}, l_{4}$ is length of magnetic path in $\mathrm{cm}, l$ is length of airgap in cm and $\mu$ is initial relative permeability. One part of the formula is governed by the coil ( $N^{2}$ ) and one depends on the shape of the iron core ( $K$ ). However, the two terms are not independent. The number of turns $N$ depends on the window space of the iron core, and $K$ is a function of ampere-turns $A T$.

Assuming now a certain shape of iron core (standard lamination with square core), $K$ becomes only a function of $\mu$ and $l_{\alpha}$. As $\mu$ is a
function of $l_{a}$ and $A T, K$ can be expressed in terms of $l_{a}$ and $A T$; $K$ goes through a maximum when $l_{a}$ is varied and $A T$ is kept constant. These maxima of optimum values of $K$ are the only points which are of interest for further calculations, hence $K_{\text {ont }}$ can be expressed in terms of $A T$ only. At the same time, the optimum value of $l_{a}$ has a direct relation to $A T$.

Consider now the power losses $P_{\mathrm{cu}}$ which determine the temperature rise of a certain size of choke.

$$
\begin{equation*}
P_{\mathrm{cu}}=I^{2} R=I^{2} N^{2} l_{\mathrm{av}} \zeta / \Sigma \mathrm{W} \tag{2}
\end{equation*}
$$

where $I$ is direct current, $l_{\mathrm{av}}$ is average length of one turn in cm , $\zeta$ is specific resistance in $\mathrm{ohm}-\mathrm{cm}$, $W$ is window area of iron core in sq cm and $\xi$ is filling factor (copper area $\div$ window area).

Replacing $N$ in Eq. 1 by its equivalent in Eq. 2 and rearranging to put all variable quantities to the left and the core constants to the right side gives

$$
\begin{equation*}
I^{2} L=1.256 \times 10^{-8} \frac{P_{\mathrm{cu}} W \xi}{l_{\mathrm{av}} \zeta} K P_{\mathrm{cu}} \tag{3}
\end{equation*}
$$

It has been shown earlier that $K$ is a function of $A T$ only. Equation 2, however, gives a direct relation


FIG. I-Lamination shape and dimensions for standard square-stack core
between $P_{\mathrm{cu}}$ and ( $\left.I N\right)^{2}$ which allows the expression of $K$ in terms of $P_{\mathrm{cu}}$.

The term on the left side has the dimension of an energy, hence the problem of filter chokes is a problem of storing energy. The amount of energy which can be stored depends mainly on the permissible losses $P_{c u}$ and on some technological properties of the iron core ( $K$ ) and the coil ( $\xi$ ).

## Miniaturization Procedures

Equation 3 represents the key to miniaturization. It is apparent that an increase of $P_{\mathrm{cu}}$, although resulting in higher coil temperatures, is most beneficial. However, the problem arises whether to remove the additionally produced heat by means of forced cooling, or to run the coils at higher temperatures. The temperature limit is imposed today by the insulating material, which in the case of silicone compounds can resist temperatures up to $250^{\circ} \mathrm{C}$. There is not much reason for trying to pass this limit because of a rapid drop in the permeability of the iron core above $300^{\circ} \mathrm{C}$ (Curie point $770^{\circ} \mathrm{C}$ ) and an appreciable increase in the copper resistance. For iron alloys and ferrites, the Curie point is generally much lower and the situation is even worse.

Another angle of attack is the filling factor, which is as low as 15 percent in conservative coils. By using random-wound coils, it seems possible to obtain a filling factor close to 50 percent.

The factor $K$ depends on the core material and on the shape of the core. Since most of the energy stored in a choke is located in the

# Airborne Filter Chokes 

airgap in the form of a magnetic field, the inductivity of the choke becomes higher as the saturation becomes greater and the cross-section of the airgap becomes larger.

The only function of the iron core is to provide the airgap with a maximum flux for a given number of ampere turns on the coil. This is done best with a core material which combines a high magnetic induction with a reasonable initial permeability (about 50 and over.). Silicon steel is one of the best materials in this respect, hence the calculation chart refers to such cores.

## Core Lamination Shape

The following comparison of different core shapes is done with the assumption that the coil diameter, which determines the permissible heat dissipation, is kept constant and the heat produced in the coil is taken as a parameter.

Substituting $A T$ for $I N$ in Eq. 2, then substituting for window area $W$ and airgap $l_{a r}$ the expressions of Fig. 1 give an equation for $A T$ as the first step in expressing $I^{2} L$ as a function of $a / d$ and the copper losses:

$$
\begin{align*}
& (A T)^{2}=\frac{P_{\mathrm{cu}} \xi b}{\zeta} \underbrace{(8-\pi)(a / d)+\pi}_{A^{2}} \\
& A T=\sqrt{\frac{(1-a / d)}{P_{\mathrm{cu}} \xi b} \times A^{3}}
\end{align*}
$$

The calculation chart in this article gives the relation between $A T$ and $I^{2} L$ for one ratio of $a / d$, namely $a / d=0.45$ for EI- 21 cores. Comparing two arbitrarily chosen core shapes with the same magnetic path length, which is approximately the case for the choke under investigation, gives

$$
\begin{equation*}
I^{2} L=I_{1}{ }^{2} L_{0} \frac{a^{2}}{u_{0}^{2}} \tag{5}
\end{equation*}
$$

With constant magnetic path length, the thickness of the airgap remains the same, and the energy content $I^{s} L$ of the derived core represents again an optimum value.

by Walter e. tanner<br>Bell Aircraft Corp.<br>Buffalo, N. Y.



FIG. 2-Curves for silicon steel, showing that optimum core shape is obtained at a dimension ratio $a / d$ of about 0.65

Equations 4 and 5 permit plotting $I^{2} L=f(a / d)$ as shown for silicone steel in Fig. 2.

The parameter $\beta$ is proportional to $P_{\text {cu }}$. As will be seen later, $\beta=1$ means a temperature rise of $24^{\circ} \mathrm{C}$ for average coil construction.
Figure 2 shows that an optimum core shape is reached at about $a / d$ $=0.65$; this value is not critical, and it does not depend on $\beta$, or in other words, on the power losses $P_{\mathrm{cu}}$. The inductivity at $a=0.65 d$ is up to 50 percent higher than with the standard $a_{o}=0.45 \mathrm{~d}$. This means that for a given inductivity the size of the choke can be reduced by 33 percent.

## Stack Thickness

An investigation made to find a favorable stack thickness showed that the ratio of $I^{2} L$ to weight is practically independent of the stack thickness. This permits the selection of core dimensions to give square cores, which are most suitable from the point of view of winding technique.

## Calculation Chart

The principles outlined have been used to develop the calculation chart in Fig. 3 for chokes with standard iron cores. Starting with the three fundamental quantities: inductivity $L$, direct current $I$ and the permissible temperature rise $\Delta t$, the optimum size and airgap, the resistance $R$ and all specifications of the coil
are easily determined with this method.

The chart makes use of Eq. 3 which shows that maximum $I^{2} L$ depends only on $P_{\text {cu }}$ or, in other words, on the number of ampere-turns. This relation has been empirically evaluated for EI-21 standard core of 3.75-percent silicon steel, and the resulting curve has been expanded to include other core sizes in common use also.

As noted previously, there is for each core a direct relation between airgap and $A T$. It is therefore possible to plot a scale for the airgap along the curve $I \sqrt{L}=f$ (AT).

Introducing a temperature-rise factor, another group of curves (dotted lines) can be plotted which connect the points of equal temperature rise for different sizes of chokes. This factor is defined as

$$
\begin{equation*}
\beta=\frac{(A T)^{2} l_{\mathrm{av}}}{O W \times 10^{4}} \tag{6}
\end{equation*}
$$

where $O$ is the surface of the coil; $\beta$ depends on the core size, but not on the type of winding used.

The actual hotpoint temperature rise $\Delta t$ is found from

$$
\begin{equation*}
\Delta t=\beta \frac{\zeta}{\xi \alpha} \times 10^{4} \tag{7}
\end{equation*}
$$

where $x$ is the heat transfer coefficient in ( $W_{c m^{-2}}$ ) ( ${ }^{\circ} \mathrm{C}^{-1}$ ) between the hotpoint and the surrounding medium. Heat measurements on ran-dom-wound coils with natural convection cooling lead to

$$
\frac{\zeta}{\xi \alpha} \times 10^{4}=2 t^{\circ} \mathrm{C}
$$

The filling factor $\xi$ is in average practice about 0.3 to 0.35 , and $\alpha$ ranges from 2.4 to $2.1 \times 10^{-3}$. The first value is valid for small sizes, the second for large ones. The product $\xi \boldsymbol{x}$ stays fairly constant.
The calculation of the coil specifications is simplified by introducing two quantities, $S$ and $T$, which are characteristic constants for each core dimension:

$$
\begin{equation*}
T=F \sqrt{\frac{4}{\pi} \xi W} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
S=l_{\mathrm{av}} \zeta / \xi W \tag{9}
\end{equation*}
$$

## FILTER CHOKE DESIGN CHART



FIG. 3-Calculation chart for chokes using 7-mil laminations of 4-percent silicon steel with square stack. Dash-dotied lines show solution worked out for Example 1, and long dashed lines apply to Example 2
where $F$ is the ratio of diameter $\phi$ for insulated wire to $\phi$ for bare wire.

## Use of Calculation Chart

Step 1. To calculate size and coil data of a choke, assume first the permissible hotpoint temperature rise $\Delta t$ by subtracting the ambient temperature from the maximum permissible temperature $\left(90^{\circ} \mathrm{C}\right.$ to $110^{\circ} \mathrm{C}$ for average construction). The temperature rise factor $\beta$ is obtained from Eq. 7 as $\beta=\Delta t /$ $\left(10^{4} \zeta / \alpha \xi\right)$, where $10^{4} \zeta / \alpha \xi \cong 24^{\circ} \mathrm{C}$ for average construction (randomwound heavy enameled wire).

Step 2. Find $I \sqrt{L}$, where $I=$ direct current in amperes and $L$ $=$ wanted inductivity in henrys. Now find on Fig. 3 for a given $I \sqrt{L}$ and temperature rise factor $\beta$ the core size and the required am-pere-turns ( $A T$ ) as well as the airgap dimensions.

Step 3. Determine the number of turns from $N=A T / I_{\mathrm{dc}}$.

Step 4. Determine the approximate coil resistance from $R=S N^{2}$ where $S$ is a constant depending on choke size, as follows:


Value of $S^{*}$
Core
EE $24-2$
EE 24-25
$\begin{array}{ll}\text { EI } & 26 \\ \text { EI } & 75\end{array}$
$\begin{array}{ll}\text { EI } & 75 \\ \text { EI } & 100 \\ \text { EI } & 125\end{array}$
$0.33 \times 10^{-4}$
$0.31 \times 10^{-4}$
$0.27 \times 10^{-4}$
$0.27 \times 10^{-4}$
$0.23 \times 10^{-4}$
$0.23 \times 10^{-4}$
$0.17 \times 10^{-4}$
$0.17 \times 10^{-4}$
$014 \times 10^{-4}$

* Based on $S=1.75 \times 10^{-8} \mathrm{ohm}-\mathrm{cm}$

If necessary, choose a larger size of choke for lower resistance.

Step 5. Calculate wire diameter from $\phi=T / \sqrt{N}$, where $\phi$ is the diameter in mils with insulation and $T$ is a core constant, as follows:

Value oflT
256 mils
300 mils
366 mils
472 mils
626 mils
780 mils

Choose the next smaller wire size from a standard wire chart (Table I).

Step 6. Calculate coil resistance from $R=N l_{\mathrm{av}} R_{\mathrm{o}} / 1,000$, where $R_{\mathrm{o}}=$ resistance of 1,000 feet of wire and $l_{\mathrm{av}}=$ average length of one turn in feet, as follows:


This calculation chart is suitable only for alternating currents $I_{\mathrm{a}-\mathrm{c}}$ lower than 1 percent of the direct
current $I_{\mathrm{d}-\mathrm{c}}$. For $I_{\mathrm{a}-\mathrm{c}} / I_{\mathrm{d}-\mathrm{c}}>1$ percent, the resulting $L$ is up to 100 percent higher and special charts are needed. The nomogram on the bottom of the chart serves to determine $N$ and $R$. Run a straight-edge from $A T$ through $I_{d-c}$ to get $N$, then run the straight-edge from $N$ through $S$ to get $R$.

EE24-25, EI-21 and similar designations are standardized core shapes. A square stack is always considered.

Example 1: Ratings of a filament filter choke are $0.2 \mathrm{~h}, 1 \mathrm{amp}$., $R<2.5$ ohms, ambient temperature $20^{\circ} \mathrm{C}$, temperature rise $<60^{\circ} \mathrm{C}$. For this conservative design, use $10^{4} \zeta / \alpha$ $\xi=24^{\circ} \mathrm{C}$ as given in Step 1 and calculate the maximum $\beta$ as $60^{\circ} \mathrm{C} /$ $24^{\circ} \mathrm{C}=2.5$. With $I \sqrt{L}=1 \sqrt{0.2}$ $=0.45$, the chart in Fig. 3 shows that core sizes $100-E I$ and $125-E I$ will give a lower temperature rise than $60^{\circ} \mathrm{C}(\beta<2.5)$.
Take first the smallest possible core and read along the dash-dotted line the following data for EI-100: $\beta=1.2 \rightarrow \Delta t=29^{\circ} \mathrm{C}$; airgap $=$ 18 mils; ampere-turns $=520$; turns $N=520$; approximate resistance $R=4.8$ ohms. The latter value exceeds the required $2.5-\mathrm{ohm}$ limit, hence a larger core size must be tried. For EI-125, $\beta=0.4 \rightarrow \Delta t$ $=10^{\circ} \mathrm{C}$; airgap $=14$ mils; ampereturns $=400$; turns $N=400$; approximate resistance $R=2.2$ ohms.

According to Step 5, wire size $\phi=T / \sqrt{N}=780 / 20=39 \mathrm{mils}$. From a wire chart, No. 19 single Formvar wire has the next smaller diameter of 37.4 mils. For this wire, resistance $R=N l_{\mathrm{Av}} R_{o} / 1,000$ $=400 \times 0.58 \times 8.051 / 1,000=1.87$ ohm.

Example 2: Ratings of a highvoltage filter choke are $20 \mathrm{~h}, 50 \mathrm{ma}$, ambient temperature $100^{\circ} \mathrm{C}$ and maximum coil temperature $200^{\circ} \mathrm{C}$. Calculate first the value of $\beta$. Considering that the specific resistance $\zeta$ at $200^{\circ} \mathrm{C}$ is just about twice the value for copper at room temperature, use $12^{\circ} \mathrm{C}$ for $10^{4} \zeta / \alpha \xi$. Then $\beta$ $=100 / 12=8.3$. With $I \sqrt{L}=0.05$ $\sqrt{20}=0.244$, the dashed line on the chart gives: Core size $=$ EI-50 (EI-21 is equivalent) ; airgap $l_{a}=$ 18 mils; ampere-turns $=460$; turns $N=9,200$ (for 50 ma ) ; $R+=$ 2,200 ohms (for EI-50 core) but this value has to be doubled due to the elevated operating temperature, hence $R=4,400 \mathrm{ohms}$; wire size $\phi=366 / 9,200=3.8$ mils. Single Formvar wire No. $40=3.6$ mils. Resistance at room temperature $=9,200 \times 0.25 \times 1,049 / 1,000$ $=2,390$ ohms. Resistance at $200^{\circ} \mathrm{C}$ $=2 \times 2,390=4,780 \mathrm{ohms}$.

The author wishes to thank $T$. Field for reviewing the manuscript and W. Sutton for conducting the necessary measurements in the laboratory.

Table I. Wire Table for Choke Design

| AWG B\&S Gage | Diameter in Inches |  |  | Turns per Inch (Formvar) | $\begin{aligned} & \text { Ohms per } \\ & 1,000 \mathrm{ft} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bare | Single Formvar | Double Formvar |  |  |
| 16 | 0.0508 | 0.0524 | 0.0538 | 17 | 4.016 |
| 17 | 0.0453 | 0.0469 | 0.0482 | 19 | 5.064 |
| 18 | 0.0403 | 0.0418 | 0.0431 | 21 | 6.385 |
| 19 | 0.0359 | 0.0374 | 0.0386 | 23 | 8.051 |
| 20 | 0.0320 | 0.0334 | 0.0346 | 26 | 10.15 |
| 21 | 0.0285 | 0.0299 | 0.0310 | 30 | 12.80 |
| 22 | 0.0253 | 0.0266 | 0.0277 | 33 | 16.14 |
| 23 | 0.0226 | 0.0239 | 0.0249 | 37 | 20.36 |
| 24 | 0.0201 | 0.0213 | 0.0223 | 42 | 25.67 |
| 25 | 0.0179 | 0.0190 | 0.0200 | 47 | 32.37 |
| 26 | 0.0159 | 0.0169 | 0.0179 | 52 | 40.81 |
| 27 | 0.0142 | 0.0152 | 0.0161 | 57 | 51.47 |
| 28 | 0.0126 | 0.0135 | 0.0145 | 64 | 64.90 |
| 29 | 0.0113 | 0.0122 | 0.0131 | 71 | 81.83 |
| 30 | 0.0100 | 0.0109 | 0.0116 | 80 | 103.2 |
| 31 | 0.0089 | 0.0097 | 0.0104 | 88 | 130.1 |
| 32 | 0.0080 | 0.0088 | 0.0094 | 98 | 164.1 |
| 33 | 0.0071 | 0.0079 | 0.0084 | 110 | 206.9 |
| 34 | 0.0063 | 0.0070 | 0.0075 | 124 | 260.9 |
| 35 | 0.0056 | 0.0062 | 0.0067 | 140 | 329.0 |
| 36 | 0.0050 | 0.0056 | 0.0060 | 155 | 414.8 |
| 37 | 0.0045 | 0.0050 | 0.0054 | 170 | 523.1 |
| 38 | 0.0040 | 0.0045 | 0.0048 | 193 | 659.6 |
| 39 | 0.0035 | 0.0040 | 0.0012 | 215 | 831.8 |
| 40 | 0.0031 | 0.0036 | 0.0038 | 239 | 1049.0 |

# Nuclear Resonance 

Qualitative and quantitative analysis of materials is provided by measuring effect on nuclei of innidirectional magnetic and r-f fields. Test specimen may be in any form, though liquid is most convenient. Continuous measurement is possible

PHySICISTS of the leading research laboratories have been giving increased attention to nuclear resonance during the past few years. ${ }^{2}$
The art has now advanced to the point where it has been possible to construct engineering instruments having designs based on the new principles evolved. Such instruments are already in use by commercial companies and others engaged in chemical and nuclear research.

## Nuclear Resonance

The nuclear resonance field being of comparatively recent origin, many engineers may not be familiar with the phenomenon involved. Nuclear resonance is in reality quite complex, particularly in view of the fact that the exact nature of the nucleus is even now not fully understood and much is still to be learned of its various properties. However; a general idea of the theory of operation may be obtained by taking a simplified viewpoint.

Considering particles at the
atomic level, we find that they are composed of a central, relatively heavy, charged nucleus and a number of circulating or orbital electrons. As the nucleus rotates or spins, it creates a magnetic field which may be regarded as being similar to that of a small magnet. In other words, the nucleus has a magnetic moment.

If the nuclei are subjected to a strong external unidirectional magnetic field, for instance that produced between the pole faces of a large electromagnet, the magnetic moments of the nuclei will tend to line up with this field in the same way that a small magnet will orient itself in a strong magnetic field. If these nuclear particles are, in addition, then excited by a radio frequency field that may be created by $r$-f current in a coil-then, at a certain well-defined frequency, precession of the nuclei will occur. This precession may be compared to the precession of a gyroscope which will precess in a certain direction when an external force couple is applied. The external


FiG. 1-Block diagram shows use of r-f transmitter, receiver and associated equipment
force couple, in the case of the nuclei, is the r-f field. When the frequency of the field is at nuclear resonance, that is, equal to the precession frequency, a large number of the nuclei will precess in phase. The rotating nuclear magnetic field so produced can then be detected by the voltage that it induces in a small coil placed with its axis perpendicular to the polarizing field.

## Precession Frequency

From the foregoing discussion it may be appreciated that the frequency of precession, or the frequency of nuclear resonance will be related to the magnetic moment and spin of the nucleus and the constant magnetic field. Fortunately, the various elements and their isotopes have widely separated resonance frequencies. With a controllable electromagnet, covering a sufficiently wide field range, say 500 to 10,000 gausses, the nuclear precession frequencies may be concentrated in the 2 to 16 megacycle band and thus cover the majority of detectable isotopes.

There is a fundamental equation that relates precession frequency with the isotope and the strength of the polarizing field.

$$
\omega=\gamma H
$$

where $\omega=2 \pi f ; f$ is the precession frequency; $\gamma$ is a constant which is related to the magnetic moment and spin of the isotope, or the gyromagnetic ratio; and $H$ is the strength of the polarizing field.

If any two factors of this expression are know the third can be determined. With a known isotope and a measurable frequency, the field can be found. If the field and frequency are known, the isotope can be identified.

# Spectrometer 

## By LEONARD MALLING

Varian Associates
San Carlos, California

It should be mentioned that there are a few isotopes which do not respond to nuclear resonance techniques, because of the particle arrangement of their nuclei. However, most elements have at least one isotope which has spin and magnetic moment and is susceptible to nuclear resonance excitation. The manner in which the various fields are applied to obtain precession will be discussed later in the article.

## Sensitivity

Presently constructed instruments can readily detect the deuterium which is present in natural water in an abundance of 0.02 percent in a one or two cubic centimeter sample of water. Sensitivity depends to a considerable extent on the volume of the test sample. A larger sample, other factors being equal, would give a greater signal, as there are more nuclei present. Possibly the only limitation to using really large test samples for greater signals would be in the construction of a sufficiently large magnet for the required polarization of the nuclei in the sample.

Another factor affecting sensitivity is the strength of the polarizing field. By using strong fields and a higher radio-frequency excitation, stronger signals may be picked up by the receiver coil. Large signals are readily obtained from protons and thus large clear signals may be observed when a natural water sample is used due to the high percentage of hydrogen present.

The special advantage of the nuclear resonance technique from a chemical point of view is that samples may under proper circum-


Sample of material being tested (usually liquid) is placed in test tube and inserted between jaws of large magnet where analysis process is accomplished
stances be in various chemical and physical forms and that an analysis can be made without changing in any form the properties of the sample. In particular, the method is well adapted to continuous flow observations of chemical processes.

## Apparatus Used

With this brief discussion of the general principles of nuclear induction, we can proceed to the description of some of the apparatus that goes to make up a radio-frequency nuclear-resonance spectrometer. Such an instrument, for example, may be used to detect and measure the abundance of isotopes that are present in various substances. The instrument is particularly applicable to measurements and investigations of liquid samples.

The photograph shows a typical laboratory setup for making measurements on liquid samples. The electromagnet used for polarizing the nuclei is in the center of the picture. The sample in the test tube is about to be placed in the sample probe, which for convenience of insertion may be withdrawn from the magnetic pole pieces. During the measurement, the sample is slid to the center of
the large circular pole faces
The electromagnet is controlled by the unit to the right which has all the necessary control features required for producing the required strength of fields. It is necessary to hold the field to a very constant value during nuclear tests as the precession frequency is directly dependent on the value of the magnetic field. While the techniques of obtaining very constant radio frequencies are well established, techniques for establishing corresponding magnetic fields of the same order of stability have only recently been established. Highly regulated electronic stabilizers are used to provide the necessary stability of the electromagnetic field for making measurements to the desired accuracy.

## Stabilization

Complete stabilization of the magnetic field to any desired degree can be achieved by use of special nuclear resonance methods; in particular, by the use of a nuclear resonance fluxmeter which will hold the magnetic field to the same tolerance as it is possible to hold a given radio frequency, where such an accuracy of field is required for a


FIG, 2-Probe contains three sets of coils
particular measurement. Such an instrument is contained in the rack to the immediate left of the electromagnet. This rack also contains the necessary electronic equipment for the transmitters and receivers that go to form the completed nuclear induction instrument. The second rack contains the recording equipment on which the signal can be transcribed and oscilloscopes for visual observation. This particular set-up can be regarded as typical of the nuclear art at the present time.

The block diagram (Fig. 1) shows the units that make up the nuclear-resonance spectrometer. The sample, which is usually in liquid form and is contained in a test tube, is placed in a special probe which is inserted between the pole faces of the electromagnet.

## Sample Probe

The sample probe, which if of very solid construction to ensure complete stability of the received signal, contains three sets of coils surrounding the sample, as shown in Fig. 2. The first set provides the r-f excitation field through the sample. The current for these coils is supplied from the transmitter contained in the rack through a coaxial cable. The second coil, placed at right angles to the transmitter coil, picks up the minute precession signals from the sample and transmits these signals, via coaxial cable, to a sensitive radio receiver, which is also contained in the rack.

The third set of coils is positioned in such a way that the electromag. netic polarizing field is amplitude modulated by an audio frequency. As the field is swept sinusoidally through the nuclear resonant frequency, the precession of the nuclei
will be greater or less, depending on the magnitude of the sweep field. Thus an effectively amplitude-modulated r-f signal is picked up by the receiver coil.

After r-f amplification and detection, an audio signal is obtained that can be readily amplified and used for observation and recording. The type of signal observed may be very similar to the typical symmetrical resonance curve of a receiver as shown in Fig. 3. Other types of signals are obtained of various shapes, depending on the sample nuclei and the adjustment of the various controls. Their complexity will not be discussed in this article.

## R-F Equipment

A 10-watt r-f transmitter is used, and since it is coupled directly to the receiver coil, complete blocking of the sensitive radio receiver would occur unless special precautions were taken in the probe. To prevent this, the cross-coil arrangement of transmitter and receiver coils is used. Special techniques have been developed in the building of sample probes for insuring that only an extremely small transmitter signal is picked up by the receiver coil even when a powerful transmitter is used. This insures that a large percentage of the signal at the receiver coil is the signal received from the precessing nuclei of the sample. A small signal from the transmitter is desirable at the receiver input terminals as the principle of reception is similar to that of the homodyne used in radio receivers.
The radio receiver should receive no signals whatever from the transmitter directly, so shielding of each is required to avoid direct pickup. The requirements for the r-f transmitter are rather stringent. It must be continuously tunable, stable, well-shielded, and have a variable output, as it is necessary in certain nuclear experiments to use very small r-f excitation fields. When searching for very weak nuclear signals, the transmitter in particular should be free from undesirable modulation components. Such expedients as running the heaters from a d-c source have been found desirable in transmitters used for
nuclear resonance measurements.
The major requirement for the radio receiver used is extreme sensitivity. The receivers are possibly the most sensitive receivers that have been developed for any purpose. For this reason, it is only to be expected that the input circuits use the low signal-to-noise ratio devices outlined by Wallman and others. The theory of the signal-tonoise ratio of the nuclear resonance phenomenon is fairly well-established and experiments indicate that it agrees quite closely with practice.

Extreme sensitivity for a favorable signal-to-noise ratio may be obtained in the nuclear resonance field by continual reduction of bandwidth in a way that would not be possible with communication systems required for transmission of instantaneous complex intelligence. Generally speaking, the rate of obtaining data is not a major consideration in the design of a nuclear receiver. In extreme cases, several minutes may be taken to obtain data. This can lead to bandwidth reductions completely beyond the scope of the normal communication receiver design; bandwidths may be measured in seconds rather than in cycles. Therefore receivers with sensitivities of the order of a few hundredths of a microvolt are realizable, and such sensitivities are in demand for work of this type.

Techniques of direct receiver measurements of sensitivities of this order have not as yet been developed by radio engineers. Noise diodes cannot be used because the diode current required is often too small for satisfactory diode operation. Almost the only reliable checks are those obtained by nuclear sample, and it has been


FIG. 3-Proton signal symmetrically
found in practice that a relatively good check of the operating sensitivity of the receiver by this method is one of the best methods of determining the absolute sensitivity of the receiver. It is particularly advantageous in this connection that the natural abundance of isotopes in certain substances appears to be remarkably uniform. The main disadvantage of testing the receiver in this way is that a fairly complex nuclear laboratory setup is required.

## Band Reduction

Some of the means used to reduce bandwidth and to record and observe the nuclear signal may be of interest. The signal from the probe, which is in reality a vector addition of a small signal from the transmitter and the nuclear signal picked up from the sample, is amplified with a wide-band r-f amplifier and applied to a detector that extracts the audio signal produced by sweeping the static magnetic field. After further audio amplification, the nuclear signal may be readily observed on a conventional oscilloscope which obtains a sweep voltage from the same generator that supplies the sweep field to the sample. A somewhat different signal is obtained by using a linear sweep; the sine wave sweep gives a more coherent picture.

The signal observed on the oscilloscope would, of course, have a bandwidth which may be several hundred cycles, depending on the sweep frequency. Thus, an observed signal on the oscilloscope will be limited on a signal-to-noise basis in accordance with the bandwidth of the system used for observing the signal. A 60-cycle sweep, such as is commonly used, requires a system response of the order of 1 kc . In many cases, the corresponding sensitivity is inadequate. With the 60 -cycle sweep full advantage is not taken in such a simple system of observation of the fact that it is permissible to run a test for several minutes in order to record a signal, and rapid observation is not necessarily required.

To take full advantage of a long recording time, the audio signal is fed to a mixer tube of the phase discriminator type which has its quad-
rature signal supplied from the sweep generator. By this means, it is possible to extract from the discriminator an extremely low frequency signal that corresponds to the oscilloscope signal, and to reduce its bandwidth to mere fractions of a cycle. Thus, good signal-to-noise ratios are obtained with extreme sensitivity. These signals may be observed either on a d-c meter or a graphic recorder that will draw out the signal on paper at any desired speed in accordance with the requirements of the particular nuclear test. The sensitivity obtained by this method may be some hundreds of times greater than that of direct observation on an oscilloscope.

The particular nature of the graphic recording process necessitates that some other parameter besides the sweep field be changed in order to record a signal of a time interval of the duration discussed. In the spectrometer shown in the photograph, two methods are made available. The radio frequency may be very slowly changed by means of an electric motor which can be seen just below one of the radio frequency units, or alternatively, a small potentiometer may be slowly rotated to change the field of the magnet. As the frequency is slowly swept through resonance, a curve of the familiar discriminator type will be obtained on the recorder. That is, the signal will slowly climb to a maximum, pass through the center zero and pass to an oppositely poled maximum (see Fig. 4). The amplitude of the signals obtained will be directly determined by the abundance of that particular isotope in the sample.

## Frequencies

A brief discussion of the nuclear resonant frequencies of isotopes corresponding to a given magnetic field and the observed sensitivities should be of interest. The greatest sensitivity for nuclear resonance equipment of the type discussed is obtained with the hydrogen 1 isotope or proton. Thus natural water, $\mathrm{H}_{2} \mathrm{O}$, which has an abundance of this isotope will give a large clear nuclear resonance signal. Theoretical considerations indicate that with a magnetic field of 5,000
gausses and a system bandwidth of 1 cps , the signal-to-noise amplitude ratio should be approximately a million to one. Observed sensitivities correspond to theoretical values within a factor of 2 or 3 . The sig-nal-to-noise ratio is approximately proportional to both the square of the magnetic field and the volume of the sample; thus greater sensitivities are obtainable with higher frequencies and greater volumes, other factors remaining equal. With a 10,000 -gauss polarizing field, the proton resonance is 42.5 mc ; deuterium resonance, 6.52 mc and oxygen 17 resonance, 5.76 mc . The proton resonance may be observed at 4.25 mc with a corresponding reduction in the polarizing field, that is, a field of 1,000 gausses.

The above brief discussion gives


FIG. 4-Record of blip showing abundance of oxygen 17 in water. Nuclear resonance is at point where curve crosses centerline
some idea of current engineering practice concerning one particular form of nuclear resonance instrument and some of its uses. Many pieces of equipment are under development in the nuclear laboratories and more new and interesting arrangements are constantly being devised in this field. It is not possible to discuss all the applications of these instruments, electronically or otherwise. To those interested, it can only be suggested that the reference given below be reviewed and current work in the field be studied by reading the many articles now appearing in the physics and other journals.

## Reference

(1) F. Bloch, Nuclear Induction, Phys. Rev., \%0. Oct. 1946 .

# High-Impedance 

## By WILLIAM S. GARLEY and EDWARD F. SEYMOUR

U. S. Naval Ordnance Laboratory

White Oal;, Silver Spring, Maryland

INCREASING use is being made of distributed-constant electromagnetic delay lines as circuit elements in present-day electronic equipment. The characteristic impedance of these lines has been limited to values between 400 and 3,000 ohms. ${ }^{1,2}$ Applications exist for lines with higher characteristic impedance. A brief discussion of the factors that determine the delay time and characteristic impedance will first be given, then ways of increasing the characteristic impedance will be discussed in detail.

The delay time, phase velocity, and characteristic impedance of a distributed-constant delay line can be derived from the simplified equivalent circuit of Fig. 1 where all losses have been neglected. These are

$$
\begin{align*}
t_{d} & =\sqrt{L C}  \tag{1}\\
\beta & =\omega \sqrt{L C}  \tag{2}\\
Z_{o} & =\sqrt{\frac{L}{C}} \tag{3}
\end{align*}
$$

where $L=$ inductance per unit length and $C=$ capacitance per unit length. If $R$ and $G$, the resistance and conductance per unit length, are present but $R \ll \omega L$ and $G \ll \omega C$ the following more general equations applys

$$
\begin{align*}
T_{d}= & \sqrt{L C} \\
& {\left[1+\frac{1}{2}\left(\frac{R}{2 \omega L}-\frac{G}{2 \omega C}\right)^{2}\right] }  \tag{4}\\
\beta= & \omega \sqrt{L C} \\
& {\left[1+\frac{1}{2}\left(\frac{R}{2 \omega L}-\frac{G}{2 \omega C}\right)^{2}\right] } \tag{5}
\end{align*}
$$

[^14]

Enlarged view of end of wound delay line shows core details, dielectric and winding

$$
\begin{align*}
Z_{0}= & \sqrt{\frac{L}{C}}\left[1+\frac{1}{2}\left(\frac{R^{2}}{4 \omega^{2} L^{2}}+\right.\right. \\
& \left.\frac{R G}{2 \omega^{2} L C}-\frac{3 G^{2}}{4 \omega^{2} C^{2}}\right)+  \tag{6}\\
& \left.j\left(\frac{G}{2 \omega C}-\frac{R}{2 \omega L}\right)\right]
\end{align*}
$$

It has been found that the attenuation of delay lines increases very rapidly with frequency above several megacycles." The largest part of this increase was attributed to insulation loss. Experimental evidence in the form of lines wound with low-loss hand-coated wires substantiates this fact. At high frequencies $R$ is proportional to $\sqrt{f}$. From reference 4 it is estimated that $G$ is proportional to $f^{2}$ for For-
mex insulated wire.
It has been observed that the inductance of a delay line decreases at higher frequencies. ${ }^{\text {. }, ~ 6,7 ~}$ This is caused by phase shift per turn increasing so that although the turns are still magnetically linked as the frequency increases they add less and less to each other's magnetic field. A plot ${ }^{7}$ of normalized inductance $L / L$ 。 and time delay $T / T$. vs

$$
\frac{d T_{0}}{l} f
$$

appears in Fig. 2 where $d=$ diameter of line, $T_{0}=$ time delay for low frequencies, $l=$ length of line and $f=$ frequency.
The effect of turn-to-turn capacitance has been studied. ${ }^{6}$. At low

## Artificial Delay Lines


#### Abstract

Distributed-constant delay lines for short pulses may be designed with characteristic impedances as high as 10,000 ohms. Typical line is 10 in . long, 0.2 in . in diameter. weighs less than 10 grams and provides delay of 3.7 microseconds


frequencies the effect of this capacitance is negligible as the phase of the voltage in each turn of the coil is the same. As the frequency increases the phase of the voltage in each turn changes. Thus the effect of the turn-to-turn capacitance increases with frequency until the phase shift per turn equals 360 degrees. This turn-to-turn capacitance has the effect of increasing $C$ to the value

$$
\begin{equation*}
C=\frac{C_{0}}{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}} \tag{7}
\end{equation*}
$$

where $\omega$ is the angular frequency of the input signal

$$
\omega_{0}{ }^{2}=\frac{1}{L^{\prime} C^{\prime}}
$$

where $L^{\prime}=L / N=$ effective inductance per turn, $C^{\prime}$ is the self capacitance between two adjacent complete turns and $C_{0}$ is the capacitance per unit length from winding to core at low frequencies.

The inductance thus decreases with frequency and the capacitance increases with frequency. If the magnitude of these two effects were the same, delay time would be constant with respect to frequency. If $\frac{2 \lambda}{d}>13$ ( $\lambda=$ wavelength $)$ a fair equalization of delay time could be obtained. ${ }^{8}$ This would require

$$
\frac{C^{\prime}}{C}=\frac{25 d^{2} \lambda}{4(2 \pi)^{2}}
$$

but $C^{\prime}=$

where $K_{0}=$ dielectric constant of wire insulation, $x=$ diameter of wire, $S=$ wire separation and $d=$ diameter of coils.
Substituting $N=1 / x$ (for a close wound coil) and Eq. 9 in Eq. 8 we obtain

$$
\begin{equation*}
K_{e}{ }^{2} x^{3} \doteq \frac{S C^{2} d^{2}}{15} \tag{10}
\end{equation*}
$$

where $C$ is in micromicrofarads per axial centimeter.

The equalization of delay time by this procedure is done at the expense of decreasing characteristic impedance.

Another method of equalization of the delay time, likewise at the expense of characteristic impedance, is the use of patches. ${ }^{4,}{ }^{9}$ Patches are bridging capacitors over a number of turns, effectively increasing $C$ as the frequency increases. Lumped-constant phase correcting networks have also been studied. ${ }^{20}$


FIG. 1-Simplified equivalent circuit of a distributed-constant delay line of helix parameters


FIG. 2-Curves show effect on line inductance and delay

Equations 1 through 6 are derived on the assumption that the parameters $R, L, G$ and $C$ remain constant. Above a certain frequency we now see that $R$ is proportional to $\sqrt{f}, G$ is proportional to $f^{2}, L$ decreases with increasing frequency and $C$ increases with increasing frequency.
The resistance effect may be minimized by using small wire sizes


FIG. 3--Simplified block diagram of setup for testing distributed-constant lines
such as $B$ \& $S$ gauge numbers 41 , 44,46 and 48 . Little can be done about the conductance except to use low-loss insulation. Teflon-insulated magnet wire is now available which should have much lower insulation loss. The effects on both $L$ and $C$ may be reduced appreciably by winding the lines on a small diameter form such that the phase difference per turn is reduced. As shown by Eq. 3 one could increase the characteristic impedance by increasing $L$ or decreasing $C$. If $C$ were decreased, the time delay would decrease.

## High-Z Lines

The purpose of the investigation, reported in this paper, was to produce lines having relatively large delays and high characteristic impedances. To achieve these goals both $L$ and $C$ were increased, but $L$ was increased by a considerably larger factor than $C$.

To obtain as large a delay as possible it was decided to use the complete core as a ground. The capacitance per unit length can be varied by controlling the thickness and dielectric constant of the insulation material placed between the core and the winding. This large capacitance per unit length would necessitate a correspondingly large inductance per unit length to secure a high characteristic impedance.

The secret of success for the high characteristic impedance line is the method of obtaining the high inductance. First, a small wire size was chosen. As B \& S gauge No. 48 copper magnet wire had a large attenuation and was too easily broken most of the work was done with No. 46 wire. With this wire a
bank winding with approximately 3 layers was found necessary to obtain the necessary inductance.

The theoretical discussion of the compensation of a multilayer line will not be taken up at this time. The problem is quite complex with self capacitance from one turn to several neighboring turns and has not been completely solved. The discussion of the variation of time delay with frequency in the previous section is directly applicable only to single layer lines. A comparison of the calculations for single layer lines with the experimental results of multilayer lines appears later in this paper.

## Line Construction

The lines were wound on $\mathrm{i}^{\frac{3}{6}}$-inch diameter polystyrene cores 12 inches long. These cores were given several coats of silver conducting paint to form the ground strip. After an overnight drying period, the cores were axially slotted forming 36 thin strips, each strip being about 0.015 inch wide between 0.003 -inch slots. A one-inch length of the core was left unslotted to facilitate the connection of the external ground lead.

The core was covered with a layer of insulating material to serve the dual purpose of insulating and controlling the winding-to-core capacitance. A $0.85 \times 11.5$ inch piece of Teflon tape 0.003 inch thick was wound around the core. This made 1.4 turns around the core. A number of small pieces of cellophane tape held the Teflon on the core until the line was wound. The tape was removed piece by piece as the line was wound.

The winding was done on a lathe.

To provide uniform wire tension, both to secure a good winding and to prevent breakage, the wire feeding device shown in the photograph was used. The wire tension is adjustable over a range of about 10 to 70 grams and is continuously indicated by a pointer.

A wire guide attached to the longitudinal feed of the lathe was placed about $\frac{1}{10}$ inch from the core, which was chucked in the lathe. The longitudinal travel of the wire guide was 0.00066 inch per turn. As this distance is a fraction of the wire diameter, the result was a multiple layer coil approximately bank wound. The far end of the core was attached to a counter chucked in the tailstock. A steel drill rod was inserted through a hole in the core for rigidity. A 10 inch long winding was wound on


FIG. 4-Video amplifier circuit diagram
the core. Lines have been wound with speeds varying from about 200 to 500 rpm .

A piece of No. 26 wire was soldered to the ends of the winding and secured to the winding with polystyrene dope.

The method for determining the characteristic impedance of these delay lines is based upon the fact that no reflections occur in an ideal-

Table I-Summary of High-Impedance Distributed-Constant Delay Line Characteristics

|  | $\stackrel{\mathrm{L}}{(\mathrm{mh})}$ | $\begin{gathered} C \\ (\mu \mu \mathrm{f}) \end{gathered}$ | $\begin{gathered} Z_{2} \\ (\mathrm{ohms}) \end{gathered}$ |  | $\begin{gathered} \mathbf{t}_{\mathrm{d}} \\ (\mu \mathrm{sec}) \end{gathered}$ |  | rise times ( $\mu \mathrm{sec}$ ) |  |  | attennation (db/ $\mu \mathrm{sec}$ delay) | winding <br> length <br> (inches) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | meas (real part) | calc | meas | calc | $\mathrm{t}_{\mathrm{r}} \mathrm{i}$ | $\mathrm{t}_{\mathrm{F}}$ | $\mathrm{t}_{\mathbf{r}}{ }^{1}$ |  |  |
| No. 11 line | 24.0 | 518 | 5,600 | 6,600 | 3.5 | 3.6 | 0.1 | 0.14 | 0.1 | 0.3 | 10 |
| No. 46 line. | 22.1 | 652 | 5,600 | 5, 330 | 3.75 | 3.8 | 0.1 | 0.15 | 0.12 | 0.4 | 10 |
| No. 1.8 line . . . . | 21.70 | 161 | 5,600 | 6,800 | 3.4 | 3.2 | 0.1 | 0.18 | 0.15 | 1.3 | 10 |
| High lmpedance. | 40.7 | 1.50 | 9.000 | 9,500 | 4.5 | 4.3 | 0.08 | 0.2 | 0.18 | 0.4 | 9.3 |
| No. 44 line. . . . | 40.7 | 450 | 10,000 | 9,500 | 4.5 | 4.3 | 0.08 | 0.24 | 0.22 | 0.2 | 9.3 |



Slotting device for preparing delay line cores. Indexing head is shown in foreground


Constant tension wire feeder permits use of wire as small as No. 48 in delay lines
ized delay line terminated in its characteristic impedance. The characteristic impedance of a line whose parameters are a function of frequency would most certainly be a function of frequency. The value of the characteristic impedance in a practical case involving complex waves must therefore be compromised for minimum reflections over the band of frequencies for which the line is designed to operate.

## Measurements

In making measurements, the lines are terminated at the input as well as the output to minimize any possible secondary reflections at the input. A suitable means of determining the effective characteristic impedance when the line is used to delay rectangular pulses is to feed the pulse itself into the delay line and to adjust the terminating impedances for minimum reflections.

A block diagram illustrating the experimental method for determining the characteristic impedance of these delay lines and for recording the response of the delay lines to rectangular pulses appears in Fig. 3.

The oscilloscope sweep is triggered by the input pulse. A camera, mounted on the oscilloscope, records
the input and output wave shapes of the delay line. The load impedance of the video amplifier was made equal to the characteristic impedance of the line. A diagram of the video amplifier appears in Fig. 4.

The pulse distortion and attenuation were also measured with the equipment connected as shown in Fig. 3, using the oscilloscope camera. The delay time as well as the rise and fall time was likewise measured on the oscilloscope. The delay time was defined as the time between the midpoint of the leading edge of the input and output wave forms. The rise and fall times were defined as the time duration between the 10 and 90 -percent values of the pulse amplitude. The pulse duration was defined as the time between the 10 -percent values. The attenuation was measured by comparing the amplitudes of the input and output pulses.

## Results

The data on a particular line, typical of those wound follows:

Core diameter is 0.188 inch, with 36 slots.

Dielectric is Teflon $0.003 \times 0.85$ $\times 11.5$ inches.

Length of winding is 10 inches with 1,520 turns per inch ( 0.00066
inch per turn) of No. 46 HF wire 0,0019 inch in diameter.

The electrical characteristics of the line measured at $1,000 \mathrm{cps}$ were, $R=3,660$ ohms, $L=22.1 \mathrm{mh}$, $G=0$ and $C=652.1 \mu \mu \mathrm{f}$.

Impedance and time delay calculated from these measurements, are $Z_{o}=5,830$ ohms and $t_{d}=3.8$ microseconds. The experimental data obtained on this line were $Z_{0}=$ 5,600 ohms resistance in series with a parallel network of a hundredmicrohenry choke and a 2,200 -ohm resistance (determined for minimum reflection with 0.3 -microsecond pulse).

Time delay was 3.75 microseconds and $t_{r i}=$ rise time of $1-u s e c$ input pulse $=0.1$ microsecond; $t_{r}=$ rise time of $1-\mu \mathrm{sec}$ output pulse $=0.14$ microsecond as

$$
\begin{equation*}
t_{r}=\sqrt{t_{r i}^{2}+t_{r l}^{2}} \tag{11}
\end{equation*}
$$

where $t_{r t}=$ rise time output pulse if a perfect input pulse were applied to the line. Thus $t_{r i}=0.1 \mu \mathrm{sec}$.

Photographs of the input and output waveforms appear in Fig. 5 for pulse durations of $0.30,0.37$, 0.62 and 1.0. Input and output waveforms superimposed to a larger scale are also included. The reflections appearing between the input and output pulses no doubt occur at points where the spill over from true bank winding was particu-


FIG. 5-Pulse response of 5,600 -ohm line wound with No. 46 wire


FIG. 6 -Pulse response of 5,600 ohm line wound with No. 44 wire
larly bad. All photographs were taken with the same value of terminating impedance which was the value obtained as the best impedance match with a $0.3-\mu \mathrm{sec}$ pulse applied. In the case of the longer pulse durations, slightly better waveforms can be secured by reterminating the line. An example will be shown later.

Substituting in Eq. 10, on the supposition that this equation holds for a bank winding, we find the
winding-to-core capacitance should be 0.29 upf per centimeter for proper equalization. This value was obtained using 3.6 for the dielectric constant of Formex and 0.0002 inch as the thickness of the dielectric. From the measurements, the capacitance to core was 25.7 u.f per centimeter. The effect of the stray capacitance is therefore much higher for the multilayer line. Equations are being derived which give very good agreement.

The value of $\omega_{0}$ may be calculated from Eq. $7^{\prime}$. If $L^{\prime}=1.46 \mu \mathrm{~h}$ and $C^{\prime}=2.2$ u $\mu$ from Eq. 9, $\omega_{0}=$ $0.56 \times 10^{6}$. The resonant frequency thus is 89 mc .

## Resonant Frequencies

Resonant frequencies of 124,165 , $215,235,332$ and 375 mc were obtained experimentally. The $235-\mathrm{mc}$ reading had a considerably higher $Q$ than the others and was probably the resonant frequency of a single turn. The $124-\mathrm{mc}$ frequency had a very low Q . No readings were observed from 60 to 124 mc .

The thickness of the dielectric used in calculating the resonant frequency was determined by measuring the overall diameter of the insulated wire with $1 / 10,000$-inch micrometers. The wire was coated with X-Var which chemically attacks the Formex. After the wire was wiped clean the diameter was measured again. This method does not give extreme accuracy.

The resonant frequency of the inductance of one turn and the core capacitance of that turn is calculated to be 368 mc . This value checks the $375-\mathrm{mc}$ value very closely. If one assumes that we have a fictitious single layer winding and each turn has an inductance 3 times that of the former single turn ( $L^{\prime}=4.38 \mu \mathrm{~h}$ ). We have effectively lumped up the inductance of three layers into one.

If the equivalent single-layer winding outlined above is assumed, the resonant frequency of the inductance of one turn and the capacitance to core of one turn is 212 mc . This checks the 215 megacycle value very closely.

No explanation is apparent for the 124 and the 332 megacycle readings. The fact that there were two layers of insulation over 40 percent of the core and one layer over 60 percent of the core might account for some of these resonances.

## Waveforms

Photographs of the waveforms of a line of similar dimensions except 1.5 layers of Teflon and wire size changed to No. 44 with 55 grams tension appear in Fig. 6. The winding was approximately 4 layers. The termination was the same

OVEREIGN•SYMN-WARNER•SYLVF KING. TELEGU. STARRETT. STEWART-WARNE TAYBERN TELEXING TRAD TRANS-NUE TRAN WESTINGHO CEDER STROMBERGCARLSON* TELEVISTA TRAD VRADCRAF - VIDE DELCO RADIO TELETONE U. S. TELEVIS - MEITNER HAZELTINE. WEBSTER-
by THE COMPANY CINCH KEEPS, IT IS KNOWN
it is known that Cinch Components are available for of a century of solving With a reputation of a quarter of a cengency, Cinch is toelectronic component problems in enters for sockets, shields, day recognized as source headquarters, Consult Cinch! MUNTZ TV - CENTRALAB AIR KING. ANDREA ANGLE AUTOMATIC RADIO " MES MULTIPLE TELEVISION • NAT SIMPLEX-BLUDWORTH - NI INDUSTRIES OLYMPIC RA BELL - CONRAC - GRO plugs, jacks, terminals, connectors, EEDERAL TELEVISI motorola. atonalON - PACKARD-

GREM. HALLICRAFTERS. BASORTH CASCADE. CERIA. MAGNAVOX - PHILO. PLOT RADIO. TONAL TELEVISION. JACKSON HTTISON. PEERLESS TELEVISION MEN GOT ME MI TELEVISION gal electronics NEW

CINCH ELECTRONIC COM. PONENTS ARE STANDARD AVAILABLE AT ELECTRONIC JOBBERS EVERYWHERE CONSULT CINCH!


# Cinch Manufacturing Corporation 

1026 South Roman Ave., Chicago 24, Illinois

except the series inductance was raised to $250 \mu \mathrm{~h}$. A comparison of Fig. 5 and 6 shows the delay and attenuation to be slightly less for the No. 44 line although the phase distortion and small reflections along the line are slightly greater. This is probably due to the spill over being greater with the four layer winding.

A line was wound using 1.8 layers (1.1 inch wide strip) of Teflon and wire size changed to No. 48 with 20 grams weight tension with an average of 2.2 layers on this winding. The terminating impedance used was the same as in the previous case except the series inductance was changed to $200 \mu \mathrm{~h}$. The line was terminated for minimum reflection using a 0.3 -usec pulse input. The waveforms of this line appear in Fig. 7. It will be noted that the attenuation has increased appreciably. There is more ringing on the top of this wave. The line was reterminated with a $1-u s e c$ pulse applied. The terminating impedance turned out to be a 5,600 -ohm resistor.

Lines with higher characteristic impedances than 5,600 ohms have been obtained using a $\frac{1}{4}$-inch diameter core and $2{ }^{3}$ layers of Teflon tape. The characteristic impedance, when terminated with a $0.3-\mu \mathrm{sec}$ pulse applied, was increased to 9,000 ohms in series with a $400-\mu$ h choke. The input impedance (shunt impedance in output of video amplifier) was $7,400 \mathrm{ohms}$ in series with an inductance of $400 \mu \mathrm{~h}$. Photographs of the waveforms of this line appear in Fig. 8.

This particular line had only 14,165 turns and the winding was 9.3 inches long. It had a time delay of $4.5 \mu \mathrm{sec}$, or a time delay of almost $0.5 u$ sec per inch. When the line was reterminated using a 1 -usec pulse, the terminating impedance turned out to be a 10,200 -ohm resistor. The output impedance of the video amplifier was increased to 11,000 ohms. The waveforms of this termination also appear in Fig. 8. This line was wound with No. 44 wire.

The characteristics of these lines are compared in Table 1. The real part of the terminating impedance (the best value for $0.3-\mu \mathrm{sec}$ pulses) is listed in all cases. In the case of
the high characteristic impedance line, the characteristics for the best one-microsecond pulse termination also appear. The attenuations listed were measured values with a onemicrosecond pulse applied to the line. From Fig. 5 and 6 it will be noted that the attenuation is greater for shorter pulse durations.

From the data presented, delay lines with impedances of 5,600 ohms and reasonable attenuations for pulse widths less than $1-\mu$ sec can be obtained. It appears likely that lower attenuations can be obtained if better winding techniques can be developed for the No. 44 gauge wire. The availability of Tefloninsulated magnet wire in small wire sizes should aid in the reduction of attenuation and improvement of phase response.

The authors are indebted to J. F.

Peoples for his assistance and to M. F. Davis for his encouragement.

## References

(1) Britton Chance et al., "Waveforms," p 746, 240, McGraw-Hill Book Co. Inc. New York, 1949 .
(2) John F. Blackburn, "Components Handbook," Ch. 6, McGraw-Hill Book Co., New York, 1949.
(3) George L. Ragan, "Microwave Transmission Circuits," p 20, McGraw-Hill Book Co. Inc., New York, 1949.
(4) Heinz E. Kalman, Equalized Delay Lines, Proc. IRE, 34, p 646, 1946 , (similar to report No. $550, \mathrm{M} . I . T ., 1944$ ):
(5) L. N. Brillouin, Electromagnetic Delay Lines, Proceedings of a Symposium on Large Scale Digital Calculating Machinery, Harvard Press, Cambridge, Mass., 1948.
(6) I. A. D. Lewis, Notes on the Variation of Phase Velocity in Continuouslywound Delay Lines at High Frequencies, Proc. Must. of Elec. Engr. 98, Part III, p. 312,1951 .
(7) T. P. Blewett et al., "Delay Lines," General Electric Co. Report, May 31, 1943.
(8) T. P. Blewett and J. H. Rubel, Video Delay Lines, Proc. IRE, 35, p 1,580, 1947. S. D. Harper, "Sholt Electrical Delay Lines," Post Oilice Engineering Department Research Report No. 12,890, ${ }^{1947.7}$ (10) D. F. Weeks, "A Video Delay Line," Rad. Lab. Report 61-20, MIT Cambridge, Mass., Apr. 24, 1943.


FIG. 7-Oscillograms show 5,600 ohm line wound with No. 48 wire terminated for a $0.3 \mu \mathrm{sec}$ pulse (top and middle) and $1.0-\mu \mathrm{sec}$ pulse (bottom)


FIG. 8-Oscillograms show effect of different terminating impedances on 9,000ohm line wound with No. 44 wire. Top is terminated for $0.3 \mu \mathrm{sec}$ pulse. Bottom is terminated with 10,000 -ohm resistor

## For Transistor



# Mallory Mercury Batteries provide a constant voltage power supply 

Mallory Mereury Batteries are especially well suited for transistor power requirements. They deliver constant voltage and constant current... an absolute necessity for the best performance of transistor circuits. In addition, they will not deteriorate or lose their energy during long periods of storage . . . even under the most adverse climatic conditions. Their high ratio of energy to size and weight permits miniaturization of electronic equipment.

New transistor hearing aids are a good example of the substantial size reduction and operating economy that can be accomplished by using Mallory Mercury Batteries and tiny new Mallory Capacitors.

If you are designing equipinent around transistor circuits, our engincers will be glad to work with you in
selecting a power supply to meet your requirements. Multi-cell packs and stacks are available for applications requiring greater capacity or higher voltages than provided by a single cell. Various combinations can be built for virtually any capacity or space requirement. $W$ rite us today for more information.

## Use Mallory Mercury Batteries for applications where:

- Constant voltage or current is reguired
- Size and weight are important
- Long storage periods are involved
- Battery leakare cannot be tolerated
- Wide temperature and pressure ranges are encountered
- Severc impact and shock are expected


## ELECTRONS AT WORK

Including INDUSTRIAL CONTROLL
Edited by ALEXANDER A. McKENZIE

## Demonstration Equipment for Electronic Courses

Ever increasing complexity of military electronic equipment places a burden on military personnel charged with operating and maintaining the gear. With training time and personnel both at a premium, much of the work at the Navy's Special Devices Center, Sands Point, N. Y. concerns design of demonstration devices, technical training aids and fullscale working models of operational electronic equipment.

One piece of equipment used for classroom demonstration, has components mounted on boards that show the circuit schematically. One such board is shown in the photograph. Nine basic circuits are available. These circuits are: (1) simple a-c circuits that can be arranged to demonstrate series and parallel resonance, differentiation, integration, and phase shift;
(2) diode characteristics and diode circuits such as shunt and


FIG. 1-Classroom demonstration board allows nine different circuits to be demonstrated to a large group. Projection oscilloscope at right makes it possible to show what is happening at various points in the circuit

OTHER DEPARTMENTS
featured in this issue:
Page
Production Teshniçues... 260
New Products ........... 312
Plants and People ....... 384
New Books ............. 410
Backtalk ................. 420
series limiters; (3) triode characteristics; (4) full and half-wave rectifiers with various filter combinations; (5) cathode-coupled multivibrators both free-running and driven; (6) shock-excited oscillator; (7) hard-tube, nonrecurrent sweep generator; (8) blocking oscillator; and (9) cascade amplifiers with various coupling arrangements. The last board can also be used to show pentode and tetrode static characteristics.
Two variable $B+$ supplies deliver 0 to 350 volts to the circuits. A variable C-supply delivers -50 to +50 volts while the alternating filament voltage is adjustable from 0 to 13 volts.

Sine-wave, square-wave, positive or negative pulse and sawtooth inputs may be applied to the demonstration circuits. The sine wave can be varied in frequency from 20 cps to 150 kc ; rms value is 10 volts. The square wave retains its shape up to $4,000 \mathrm{cps}$ while the sawtooth seems linear to between 6,000 and $7,000 \mathrm{cps}$.

An electronic switch permits display of waveshapes at various points in the circuit both on the built-in oscilloscope and on the projection oscilloscope. A vacuumtube voltmeter may be switched to show voltage and currents throughout the circuit under study. Meter readings can be projected on a screen by the projector shown in the photograph.

Another training device devel-

## ANAMEG

# Telemetering Performance Quickly and Accurately 

## SIGNAL GENERATOR <br> Type 202-D <br> Frequency Range 175-250 mc.

With the type 202-D Signal Generator, you can quickly and accurately test, analyze and evaluate the performance of telemetering receivers and associated equipment. Note that the frequency coverage of the instrument is provided in a single range between 175-250 mc.

## SPECIFICATIONS:

RF RANGE: 175-250 megacycles in one range, accurate to $\pm \mathbf{0 . 5 \%}$. Main frequency dial also calibrated in 24 equal divisions for use with vernier frequency dial.
VERNIER FREQUENCY DIAL: This dial is divided into approximately 100 equal scale divisions and is coupled to the main frequency dial by a 24:1 gear train. The approximate frequency change per vernier division is 35 kc .
FREQUENCY MODULATION (DEVIATION): The FM deviation is continuously variable from zero to 240 kc . The modulation meter is calibrated in three FM ranges (1) $0-24 \mathrm{kc}$. (2) $0-80 \mathrm{kc}$., and (3) $0-240 \mathrm{kc}$. deviation.
AMPLITUDE MODULATION: Utilizing the internal audio oscillator amplitude modulation may be obtained over the range of $0-50 \%$ with meter calibration points of $30 \%$ and $50 \%$. By means of an external audio oscillator the RF carrier may be amplitude modulated to substantially $100 \%$. A frant panel jack is provided which permits direct connection of an external modulating voltage source to the final stage for pulse and square wave modulation. Under these conditions the rise time of the modulated carrier is less than 0.25 microseconds and the decay time less than 0.8 microseconds.
MODULATION CONTROLS: Separate potentiometers are provided for continuous control of FM and AM levels.

MODULATING OSCILLATOR: The internal AF oscillator may be switched to provide either frequency or amplitude modulation. It may also be switched off. Eight fixed frequencies between 50 cycles and 15 kilocycles are available, any one of which may be selected by a rotary type switch.
RF OUTPUT VOLTAGE: The RF output voltage is continuously variable over a range from 0.1 microvolt to 0.2 volts at the terminals of the output cable. The impedance of the RF output jack, looking into the instrument, is $\mathbf{5 3}$ ohms resistive.
DISTORTION: FM: The overall FM distortion at 75 ks . is less than $2 \%$ and at 240 kc . less than $10 \%$.
AM: The distortion present at the RF output for $\mathbf{3 0 \%}$ amplitude

modulation is less than $\mathbf{3 \%}$ and for $\mathbf{5 0 \%}$ AM less than 6.5. At $100 \%$ the distortion is $12 \%$ to $15 \%$ depending upon the modulating frequency.
SPURIOUS RF OUTPUT: All spurious RF output voltages are at least 25 db . below the desired fundamental. Total RMS spurious FM from the 60 cycles power source is down more than 50 db . with 75 kc . deviation as a reference level.

## EXTERNAL MODULATION REQUIREMENTS:

Frequency Modulation: The deviation sensitivity is 50 kc . per volt. For external FM the input impedance is 1500 ohms.
Amplitude Modulation: Approximately 45 volts are required for $50 \%$ modulation and 100 volts for $100 \%$ modulation. For external AM the input impedance is $\mathbf{7 5 0 0}$ ohms.
Audio Voltage for External Use: There is available at the FM external oscillator binding posts about 5 volts a.c. maximum and of the AM external oscillator binding posts, 50 volts maximum.
DIMENSIONS AND WEIGHT: Outside cabinet dimersions: 17" high ${ }_{n} 13 \frac{1}{2}{ }^{\prime \prime}$ wide, $11 / 2^{\prime \prime}$ deep. Weight: 35 pounds.

Price : $\$ 980.00$ F.O.B. Boonton, N. J.
oped at Sands Point is an ultrasonic radar simulator to aid crews of intercontinental bombers. To provide a radarscope view of the terrain an ultrasonic transmitter bounces $15-\mathrm{mc}$ pulses on a basrelief map immersed in water. The return signals are heterodyned up to 3 mc and used to feed a standard radar video device.

## Sorting Eggs by Shell Color

Because New Englanders prefer brown eggs and denizens of New York, Philadelphia and Cleveland like them white, an electronic sorter has been designed to discriminate among six or more shades.

Two photocells make up two arms of a self-balancing bridge with spanadjusting resistors and a balancing rheostat forming the other two arms, as shown in Fig. 1. The amplifier detects any unbalance in the bridge and amplifies this voltage differential to drive a synchro motor until a new balance is obtained.

When differences of shell color cause a change in the ratio of the light received by the two photocells, the motor assumes a new position.


FIG. 1-Shell-color determinator utilizes light reflected from egg shell through red and blue filters to photocells

For this reason, the cam angle becomes an indication of color. Auxillary mechanical devices can be arranged to load the eggs into the machine and distribute them into proper bins. For example, the hold-
ing switch can be used to lock the motor in place while the color information is transferred to the loading mechanism.

In the $A$ position, the range switch accommodates eggs of all colors. In the $B$ and $W$ positions, eggs from light to dark brown and those from white to light brown, respectively, are graded.
The circuit was developed by the U. S. Department of Agriculture at Beltsville, Md., but no complete machinery is available for purchase there.

## Magnesium Waveguide Characteristics

Replacement of conventional waveguides, particularly in aircraft, by those of lighter weight, may be possible according to the Air Force.

Magnesium waveguides can be produced in substantially all the sizes and shapes in which brass and aluminum guides are made. Their use makes possible a weight reduction of about 80 percent over brass waveguides. There is a 35 -percent weight saving over those fabricated from aluminum. Development work now going on may effect a further

## VIDEO WEATHER BRIEFING SPEEDS AIR FORCE



Jet pilots in alert hangar ready room receive hourly information from central point via closed-circuit television, saving half hour over old method. System can be expanded over wide area for other instructions


Air Force Video Production Squadron recently provided equipment for a 15-day test of visual briefing for pilots. Camera above is trained on map while forecaster explains meteorological developments

# mans. so.....memelipot 

## to meet your requirements

## 0001000

With the development of the original HELIPOTthe first multi-turn potentiometer-an entirely new principle of potentiometer design was introduced to the electronic industry. It made possible variable resistors combining high resolution and high precision in panel space no greater than that required for conventional single-turn potentiometers.

The Helipot Principle... , is possible to gain desired resolution and precision without wasting panel space. This principle is applied in various Helipot models with slide wires ranging from 3 to 40 helical turns.
Advantages are immediately apparent. In the case of the widely-used 10 -turn Model A Helipot, for example, a $45^{\prime \prime}$, long slide wire-coiled into ten helical turns-is fitted into a case $13 / 4$ " in diameter, and $2^{\prime \prime}$ in length. Another advantage of the 10 -turn pot is that, when equipped with a turns-indicating RA Precision Duodial, slider position can be read directly as a decimal, or percentage, of total coil length traversed.

| 10.TVRN HELIPOT MODELS-CONDENSED SPECIFICATIONS |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Model A | Model AN | Model AJ |
| No. of turns | 10 | 10 | 10 |
| Resistance Range | $\begin{gathered} 10 \text { ohms to } \\ 300,000 \mathrm{ohms} \end{gathered}$ | $\begin{aligned} & 100 \text { ohms to } \\ & 250,000 \text { ohms } \end{aligned}$ | 100 ohms to 50,000 ohms |
| Resistance Tolerance Standard Best | $\begin{aligned} & \pm 5 \% \\ & \pm 1 \% \end{aligned}$ | $\begin{aligned} & \pm 5 \% \\ & \pm 1 \% \end{aligned}$ | $\begin{aligned} & \pm 5 \% \\ & \pm 3 \% \end{aligned}$ |
| *Linearity Tolerance: Standard Best | $\begin{gathered} \pm 0.5 \% \\ \pm 0.05 \% \\ \text { (1K ohms } \\ \text { and above) } \end{gathered}$ | $\begin{gathered} \pm 0.5 \% \\ \pm 0.025 \% \\ \text { (5K ohms } \\ \text { and above) } \end{gathered}$ | $\begin{gathered} \pm 0.5 \% \\ \pm 0.1 \% \\ \text { (above } 5 \mathrm{~K} \text { ohms) } \end{gathered}$ |
| Power rating @ $40^{\circ} \mathrm{C}$ | 5 watts | 5 watts | 2 watts |
| Mechanica! Rotation | $3600^{\circ}+4^{\circ}$ $-0^{\circ}$ | $3600^{\circ}+1^{\circ}$ $-0^{\circ}$ | $3600^{\circ}+12^{\circ}$ $-0^{\circ}$ |
| Electrical Rotation | $3600^{\circ}+4^{\circ}$ $-0^{\circ}$ | $3600^{\circ}+1^{\circ}$ $-0^{\circ}$ | $3600^{\circ}+12^{\circ}$ $-0^{\circ}$ |
| Starting Torque | $202 . \mathrm{in}$. | $1.0 \pm .307 \mathrm{in}$. | . 75 0z. in. |
| Running Torque | 1.50 oz in. | $0.6 \pm .302 . \mathrm{in}$. | . 60 0z. in. |
| Net Weight | 407. | 407. | 107. |

*i.e. INDEPENDENT LINEARITY. The above linearity tolerances are based on the following definition recently proposed to clarity and standardize nomenclature related to lowing definition recently proposed to clarity and standardize nomenclature related to precision variable resistors. ... Independent linearity is the maximum deviation in per-
cent of the total electrical output of the actual electrical output at any point from the cent of the total electrical output of the actual electrical output at any point from the
 best straight line drawn through the output versus rotation curve. This line shall be measured through the
extent of the effective extent of the effective
electrical angle.) The electrical angle.) The
slope and position of the straight line from which the linearity deviations are measured must be so adjusted as to minimize these deviations."

THE

10-Turn Helipot Highlights
From the basic Helipot principle, model variations have been developed to meet new requirements:


## Model A Helipot

the original lo-turn Helipotprovides a resolution from 12 to 14 times that of conventional single-turn potentiometers of same diameter ( $13 / 4^{\prime \prime}$ ), linearilies as close as $\pm 0.05 \%$ in resistances as low as 1 K ohms.
The same multi-turn principle is also available in 3 turn units (Model C), and larger-diameter units of 15 turns (Model B), 25 turns (Model D), and 40 turns (Model E)-a type for every application from 5 ohms to I megohm.


## Model AN Helipot

an ultra-precision version of the basic 10 -turn Helipot. Produced in volume to extremely close ances, this unit features preciances, this unit features preciservo mounting lid plus linear:servo mounting lid, plus linear-
ity tolerance as close as $+0.025 \%$ ity tolerance as close as $\pm 0.025 \%$ as low as 5 K . A 3-turn unit

Models AN and CN are particularly recommended for precise servo-mechanism applications and represent the most advanced design and highest qualiry available today in the field of precision potentiometers.


## Model AJ Helipot

a 10-turn miniature Helipot only $3 / 4$ " in diameter, weighs 1 oz., has
slide wire $18^{\prime \prime}$ long. Also available with servo mounting (Model AJS) and servo mounting with hall bearings (Model AJSP). Lincarities as close as $\pm 0.1 \%$ as low as 5 K .
Designed for long life under severe operating conditions, the AJ Series is widely used where small size and weight are vital.


Design detalls on above units are subject to change without notice. Certified drawings arailable unon request.

Only Helipot is able to supply-in volume-multi-turn helical potentiometers with special features to meet your particular potentiometers with special features
needs... Special Shafts, Extra Spot Welded Taps at any position, Ganged Assemblies (except AJ), Special Temperature Coefficients, etc. Send us your requirements!

For complefe details contact your nearby Helipot representative. Or write direct.
reduction to about 50 or 55 percent the weight of aluminum guides.

Attenuation in magnesium guides is about 20 percent higher than in brass, but this figure can be improved by silver plating. Although it is difficult to plate magnesium with a nobler metal, preplating techniques have made it possible to silver-plate sections two feet long,

Magnesium is silver white in color and has a specific gravity of 1.74. In its pure state it weighs 108.6 pounds per cubic foot. By alloying zinc, aluminum and magganese with magnesium, a combined strength-weight ratio is obtained that is the highest and lightest ratio available from any common metals,

Dust and filings ignite easily and attachment of flanges by welding requires special techniques.

The full report, PB 107,675 , may be obtained in photostat or microfilm from the Library of Congress.

## German Brewers Use Ultrasonics

Savings up to 40 PERCENT in hops is claimed by a 96 -year-old brewery at Weissenthurm, near Koblenz, Germany, through the use of ultrasonic vibrations at one stage of their operations.

Water and malt are cooked at 75 C four to six hours. The mixture is drawn off, clarified and hops are added. The resultant mixture is

## Hand Transmitter Eliminates Mike Cable



This 25 -milliwatt f-m transmitter was designed by Motorola engineers to extend the range of the microphone used with a loudspeaker system in railroad yards. It operates in the 152 -to- 174 mc band, produces a 15 kc deviation and measures approximately $2 \times 3 \times 7$ inches


Brewer lowers copper-sheathed ultrasonic transducer into beer vat while assistant prepares to switch on l-me generator
boiled an additional two hours. During this time, the ultrasonic transducer is lowered into the vat and some 300 watts of $1-\mathrm{mc}$ power applied. It is believed that the bitter substances from the hops are more
effectively extracted by this means.
The equipment is essentially a 1-me crystal oscillator followed by a buffer and a final amplifier. The transducer employs six quartzcrystal capsules.

## PERTINENT PATENTS

An UnUSUAL application of electronic techniques is involved in patent 2,617,852 for an "Electrical Well Logging System" issued to H. C. Waters and assigned to Perforating Guns Atlas Corp., of Houston, Texas.

In the electrical logging of oil wells, resistivity values and the natural d-c potential of the earth formations in an oil borehole are made at various penetrations and between and across the varying formations traversed by the borehole.

This invention provides a method and apparatus as illustrated in Fig. 1, for obtaining and indicating the resistivity values and/or potential from a combination of three points or two different distances and any one point in the borehole. For example, electrical resistivity at two different distances of penetration may be measured and are transmitted to the surface in the form of slowly varying direct-current values simultaneously with natural d-c potential of the earth as it exists


FIG. l-Well-logging system uses combination of $\alpha-c$ and ground potential
between a moving electrode in the borehole and a fixed reference electrode at the surface.

Resistivity measurements are made by generating a 400 -cycle field into the earth between a pair of terminals near the bottom of the borehole. Probe electrode pairs selectively pick up the a-c field at various levels in the borehole. Natural d-c potential is picked up at one probe terminal capacitively iso-


lated from the a-c line and filtered to remove the a-c componert. The a-c picked up in the probe electrodes is amplified and rectified. The resultant d-c component is carried to the surface where galvanometers (possibly recording instruments) indicate the potentials derived. Probe terminals are selected by a step relay controlled from the surface by pushbuttons.

The potentials indicated on the galvanometers show the resistivity between points separated by some predetermined distance in the borehole contacted by the electrodes. Natural d-c potential on resistivity potential is carried to one of the galvanometers upon appropriate setting of selector switches.

No details are provided in the patent description as to what specific use is made of the information collected through the application of the equipment of this invention beyond that substantially disclosed above.

In patent $2,617,926$ issued to the late Louis Cohen, entitled "Interference Reducing Radio Receiving System', many variations of a principle to be employed for radio interference reduction are shown applied to antenna coils of radio receivers.
The simplest embodiment of the invention is shown in Fig. 2A. An antenna coil is so constructed in conjunction with a metal plate that the metal plate is adjustable and may be brought closer to or further from the coil to vary its effective electrical length by varying the distributed capacitance. A second antenna coupled to the metal plate collects energy just as the regular antenna. The degree of transfer of the energy from the second antenna


FIG. 2-Two methods of coupling opposing interference signals

April, 1953 - ELECTRONICS


FIG. 3-Interference eliminator coupled to receiver input
is varied by the position of the metal plate with respect to the coil.

In Fig. 2B is shown how the technique of the invention is applied to employ only one antenna through the use of a split stator capacitor.

Figure 3 illustrates a further refinement of the technique of this invention with its connection to the radio receiver input transformer, Adjustable metal strips capacitively couple the interference reducing coil and plate arrangement to the antenna and the primary and secondary of the antenna input transformer of the radio receiver.

In accordance with this invention the inventor shows that the phase and amplitude relationships of an electrical disturbance which sets up oscillatory currents in a wave conductor and associated circuits may be represented by the formula.

$$
I=E \psi(f)
$$

where $E$ is the applied voltage and $\psi(f)$ is a function of the frequency determined by the circuit parameters. If the energy is applied to the circuit components in such a relationship that a current $E_{1} \psi_{1}(f)$ is generated of equal amplitude and opposite polarity to a current $E_{2} \psi_{2}(f)$ produced by applying the disturbance to some point on the


FIG. 4-Spiral traveling-wave tube elements


The over 9,000 cataloged items manufactured by Amphenol are meant to answer every type of application problem. If your problem is so new or unusual that none of the general types listed below meet your requirements, then consult with Amphenol's engineers for the special component you need.

## RACK \& PANEL TYPE CONNECTORS

AN TYPE CONNECTORS
RF TYPE CONNECTORS
AUDIO CONNECTORS
pOWER PLUGS
blue ribbon connectors
INDUSTRIAL SOCKEIS
miniature sockets
TUBE SOCKETS \&
RADIO COMPONENTS
MICROPHONE CONNECTORS
RG COAXIAL CABLES,
TEFLON \& POLYETHYLENE
CABLE \& WIRE ASSEMBLIES
PLASTICS-EXTRUDED \& INJECTION MOLDED


Write today for your copy of General Catalog B-2

## AMERICAN PHENOLIC CORPORATION




## r-b-m 22300 series Hermetically Sealed Relays

The R-B-M 22300 hermetically sealed telephone type relay is the electrical and mechanical equivalent of AN 3304-1, except for smaller size and mounting dimensions.

An improved armature design, plus high temperature molded nylon coil bobbin, provides greatly improved magnetic efficiency and enables $R-B-M$ to reduce the overall size of the relay. The R-B-M 22300 design still retains palladium cross-bar contacts identical to those used in the larger size.
Maximum contacts-6 Form $A$ and 4 Form C-3 ampere 28 Volts. D. C. coil construction only. Maximum coil resistance 5000 ohms. Minimum power .75 watts. Also available in AN 3304 can for dynamotor or low capacitance application.


Optional Mounting Arrangements


FIG. 5-Radial electric field between successive turns of same spiral
conductor, then the resultant transmission of the disturbance is zero $E_{1} \psi_{1}(f)-E_{2} \psi_{2} E(f)=0$
It is known that traveling-wave tubes as conventionally constructed are elongated structures in order to accommodate the various tube components incorporated within the traveling wave tube envelope. In patent $2,617,961$ granted to Lothar Brueck of Paris and assigned to Compagnie General de T.S.F. of France, a structure for travelingwave tubes is disclosed that proposes to reduce the length requirements thereof, among other advantages.

The Brueck invention is shown in Fig. 4, 5, and 6. Figure 4 shows plane spirals in elevation and plan views as employed in the traveling wave tube of this invention. Figure 5 indicates the radial electric field that exists between successive turns of the spiral. Figure 6 is a cutaway view of the structure of a traveling-wave tube incorporating the plane spiral of the invention in the form of a spiral waveguide.

The inventor claims that in conventional traveling-wave tubes, because of the small pitch of the helix along which the traveling wave is propagated, short-wave amplification cannot be obtained at will. When the diameter of the helix is smaller than a quarter wavelength the field within the helix becomes too weak, because the field lines produced along the axis of the helix by the various parts of one single turn are in opposition, and are partially destroyed.

In Fig. 4, the input chammel may be a coaxial cable. The imer conductor $C_{1}$ may be one of the spirals ( $S_{2}$ ). Outer conductor $R_{1}$ is connected to the envelope. The output channel is a second coaxial cable connected to the two spirals and the outer conductor $R_{2}$ is also connected


Tung-Sol makes All-Glass Seaked Beam Lamps, Minature-Lamps Signal Flashets, Picture Tube:, Rado, TV and Special Purpose Electron Tubes.

TUNG-SOL ELECTRIC INC.

## N $\in$ wark 4, N. J.

Sales Offices: Atlanta, Zhicago, Culver City (Los Ange es), Dollas, Denver, Detroit, Newark, Seattle

# BALLANTINE STILL THE FINEST IN ELECTRONIC VOLTMETERS 



- Measures 1 millivolt to 100 volts over a frequency range from 10 to 150,000 cycles on a single logarithmic scale by means of a five decade range selector switch.
- Accuracy: $2 \%$ at any point on the scale over the ENTIRE RANGE.
- Input Impedance: $1 / 2$ megohm shunted by 30 mmfds .
- Generous use of negative feedback assures customary Ballantine stability.
- Output jack and output control permit voltmeter to be used as a flat high gain (70DB) amplifier.
- Available accessories permit range to be extendel up to 10,000 volts and down to 20 microvolts.
- Available Precision Shunt Resistors convert voltmeter to microammeter covering range from 1 to 1000 microamperes.

For additional information on this Voltmeter and Baltantine Battery Operated Voltmeters, Wide-Band Voltmeters,'Peak to Peak Voltmeters, Decade Amplifiers, Inverters, Multipliers and Precision Shunt Resistors, write for cotalog.

## BALLANTIE LABORATORIES, INC. (B)



FIG. 6-Sector division by means of bars as explained in text
to the envelope. Field coils $N_{1}$ and $N_{2}$ are similar to loudspeaker field coils and provide a constant magnetic field. The lines of this field follow the radial direction. Its purpose is to trap electrons within the walls of the waveguide or turns of the spiral. The cathode is of the tube indicated at $K ; G$ is the control electrode.

In Fig. 6 the waveguide input is shown at $A$ and the output at $E ; P$ represents the walls of the waveguide spiral that is split along the line $L$.

Microwave energy applied to the waveguide input travels through the split waveguide spiral while electron beams move radially through the split from the cathode that is axially disposed in the spiral. The envelope is maintained at a positive potential with respect to the cathode.

Bars at $B$ are maintained at cathode potential so that radial electron beam sectors are generated for specific control of the beams. Variable potentials applied to the bars would, in effect, modulate the electron stream and, accordingly, the output of the traveling wave tube.

In the patent description, various techniques are disclosed by which the fields may be directed and concentrated within the waveguide spirals to effect differences in electron speed within the guide and the phase relationship of the waves propagated within the guide.

The inventor also claims that by connecting reactive coupling means in appropriate places in the circuit the traveling-wave tube can be made into an oscillator at very high frequencies.

Patent $2,600,961$ on a very similar device that does not show waveguide structures was issued some five months earlier to one Diemer, and is assigned to Hartford Na -



GAMEWELL LINEAR AND NON-LINEAR Precision Potentiometers

To solve your specific precision potentiometer problem, send your specs and sample orders to Camewell. With over 98 years of experience in manufacturing precision electrical products, Gamewell can provide the answer promptly.

Linear and non-linear units are described in the Gamewell Precision Potentiometer booklet. The booklet also contains a convenient glossary of terms used in conjunction with precision potentiometers. Write for your copy.

THE GAMEWELL COMPANY Newton Upper Falls 64, Massachusetts


## PRECISION POTENTIOMETERS


tional Bank and Trust Co. The bank is the American Trustee for the N. V. Philips Gloeilampenfabriken of Eindhoven, Netherlands.

The very simplicity of the arrangement of the circuit of the patent $2,617,927$ issued to the late Louis Cohen of Bethesda, Md. for an "Interference Eliminating System" makes it particularly interesting. The circuit is shown in Fig. 7.

Two parallel open end antennas are coupled to an antenna input transformer of a radio receiver. Essentially, one is capacitively coupled and the other is inductively coupled to the receiver input amplifier stage. The former connects to the secondary and the latter connects to the primary.


FIG. 7-Simple system claimed to eliminate static and interference

The inventor points out that every disturbance voltage is characterized by its own frequency, generally of a lower order than the desired frequency received by the radio receiver. When the system of the invention is properly adjusted for minimum interference, voltages of interfering energy are of the same character in both antennas and equal in magnitude but opposite in polarity, thus, balancing out. The desired signal voltages will not balance out. A lengthy mathematical justification is incorporated in the patent to which the reader is referred for further study.

Recent patent 2,617,854 issued to H. E. Van Valkenburg for an "Induced Voltage Flaw Detector", describes a technique for detecting flaws in the surface of magnetic metals. The patent is assigned to the General Electric Co.

The arrangement of apparatus is shown in Fig. 8. Horizontal sweep voltages are generated for a cath-vede-ray oscilloscope indicating sys-


## STANDARD TYPE "CV" UNITS: 15 VA to 10,000 VA

Most voltage regulating requirements can be met from these "stock" voltage regulating transformers. Regulation is $\pm 1 \%$ or less with a total primary voltage variation as great as $30 \%$. This is the static-magnetic voltage regulator that has become the "Standard of the World."

CUSTOM DESIGNED UNITS: 1 VA to 25,000 VA
The wide flexibility of the Sola Constant Voltage principle makes possible special designs to meet your specific requirements. Often, time and money can be saved by direct use or modification of a regulator from the several hundred special designs on file. Custom designs can include: Special Voltage Ratios, Special Frequencies, Compensation for Frequency Variation, Multiple Output Voltages, Three-Phase Service, and Military Specifications.


STANDARD SPECIALIZED TYPES:
Available from regular production stock:


## PLATE AND

 FILAMENT ... $\pm 3 \%$ regulation or less ... single, compact voltage source.Write on your letterhead for our new Constant Voltage Catalog. It gives complete specifications, and operating data on SOLA Constant Voltage Transformers, including special units. Request Bulletin D.CV-142

[^15]
## VICTOREEN'S

## VOLTAGE REGULATOR TUBES

## Replace expensive electronic regulating circuits.

- RELIABLE
- LONG LIFE
- SPACE SAVING

For applications requiring reliable voltage regulation in low current circuits... Consider the advantages of a single tube to perform one of these vital functions:


## DISTRIBUTORS

Plan to visit our booths, 4103 and 4104, at the 1953 IRE show, New York City.

Voltage regulation of power supplies.
Voltage reference for control of higher currents. Voltage limiting to prevent circuit overloading. Write for additional specifications.

Maximum Current 800 ua Regulation
$200-800 \mu \mathrm{a}$ is $3.0 \%$

Maximum Current 100 ua Regulation
$5.55 \mu \mathrm{a}$ is $1.5 \%$

Maximum Current 250 ya Regulation
5.55 ua is $1.5 \%$

Maximum Current 100 ua Regulation
$10.60 \mu \mathrm{a}$ is $1.5 \%$

Maximum Current 55 ua Regulation
$5-55 \mu$ a is $3 \%$

Allied Radio Corp., Chicago
Gifford-Brown, Des Moines
Harrison Equipment Co., Houston
Radio Shack Corp., Boston
Terminal Radio Corp., New York City

W and W Distributing Co., Memphis
WEST COAST REPRESENTATIVE
Carlton Engineering Co., Los Angeles
better components make better instruments

## The Victoreen Instrument Co.

3800 PERKINS AVE.
CLEVELAND 14, OHIO


FIG. 8-Induced-voltage flaw detector
tem by the action of a motor-driven slider and crank-link mechanism driving a potentiometer back and forth across a source of voltage. A permanent horseshoe magnet coupled to the slider crank link is oscillated across the surface area of the magnetic material under examination. A pickup coil is wound about one leg of the magnet. The pickup coil is coupled to an amplifier. The amplifier output is applied to the vertical plates of the oscilloscope.

The system operates similarly to the sweep analysis of a radio or audio-frequency spectrum. Horizontal sweep voltages are synchronized with the scanning of the metal under analysis. During the sweep as the magnet oscillates over the surface of the metal, which is moved at a slow uniform rate beneath the magnet, any discontinuity in the granular structure of the metal or any mechanical flaws or cracks will result in a difference in the magnetic flux induced within the metal by the magnet. The flux changes induce a voltage in the pickup coil. The variable voltage resulting therefrom is amplified and displayed on the scope. Fig. 9A, 9 B and 9 C show, respectively, the waveform produced by a crack in a homogenous portion of the metal, a crack in a welded portion and an unbroken, welded portion of metal under test.
A variation of the system is shown in Fig. 10. Here, a high-


FIG. 9-Typical patterns for (A) cracked, (B) cracked and welded, (C) welded metal


Torkrite Tubing in foreground, enlarged to show detail.

## TORKRITE clevelite EE Interally Threaded and Embossed Tubing ELIMINATES TORQUE AND STRIPPING PROBLEMS



TORKRITE'S re-cycling ability is unmatched.
After a maximum diameter core has been re-cycled in a given form a reasonable number of times, a minimum diameter core can be inserted and measured at $1^{\prime \prime} \mathrm{oz}$. approximately.
TORKRITE has no hole nor perforations through the tube wall. This eliminates possibility of cement leakage locking the cores.
TORKRITE allows use of lower torque as it is completely independent of stripping pressure.
With TORKRITE torque does not increase after winding, as the heavier wall will not tend to collapse and bind the core.

Available in lengths $3 / 4^{\prime \prime}$ to $31 / 8^{\prime \prime}$ to fit a $1 / 4-28$ core.

Electronic engineers find that TORKRITE, this newly designed and constructed Coil Form, has definite advantages over all other types requiring the use of threaded cores.

TORKRITE is one of the many items of CLEVELITE . . . a complete line of tubing for coil forms, collars, bushings, spacers, tubes and other items.
CLEVELITE has long been giving continuous satisfaction because of its dependable performance, uniformity and close tolerances.

Consult our Research and Engineering Laboratory. It is at your service.

WHY PAY MORE? FOR THE BEST . . .CALL CLEVELAND!



## Meet the Redheads... fops for tape recording

See how the latest additions to the Brush family of magnetic recording components can improve your tape recorders!
The BK-1090 record-reproduce head has the standard track width designed for dual track recording on $1 / 4$ inch tape. It provides unusually high resolution and uniformity over an extended frequency range. Cast resin construction assures dimensional stability, minimizes moisture absorption, and affords freedom from microphonics. Its balanced magnetic construction, precision lapped gap, Mu-metal housing, and single-hole mounting provide important design advantages.
The BK-1110 erase head has the same basic construction as the companion record-reproduce unit. Its outstanding feature is its efficient erasing at low power consumption-less than $1 / 2$ voltampere.
Investigate these new "Redheads" for your magnetic recording. Your inquiries will receive the attention of capable engineers. Write Brush Electronics Company, Department K-3,3405 Perkins Avenue, Cleveland 14, Ohio.


FIG. 10-Alternative technique using electronic sweep for flaw detection
frequency oscillator excites a winding about the center leg of a laminated E-shaped core and induces a voltage in a second winding. The latter winding is coupled to a detector and amplifier, the output of which in turn is applied to the vertical plates of the scope. Horizontal sweep is applied internally to the scope.

So long as the metal is moving beneath the laminated E-shaped induction coil, the coupling between the oscillator winding and the pickup winding is constant. Any variation in the metal structure owing to flaws in the granular structure, or cracks, will result in a difference in the coupling and a change in the amplitude of the resultant signal displayed on the scope.

An invention of Heinz E. Kallman of New York, N. Y., entitled "Electron Multiplying Device" was awarded patent $2,617,948$. The inventor claims that the novel features of his invention are applicable to all types of electron multiplier devices whether photocathode or grid controlled.

It is well known that there is a residual current (termed by the inventor, standing current) in the conventional electron multplier. The amplification of the electron multiplier applies as well to the residual direct current as it does to the modulation component. Since some of the input signals to such a tube are relatively weak, the ratio of the signal level to the residual d-c remains in the output. This limits the usable magnification range of the electron-multiplier devices within which the residual current is manageable.

It is the inventor's object to make

## Here's a completely new rotary exhaust machine

for higher speeds, higher vacuums


On a continuous, non-indexing basis, CVC's new rotary exhaust machine provides automatic base sealing, tube exhaust, and final tip-off at rates 25 to $30 \%$ above normal. And it produces a pressure of I micron or lower at each tube port as compared with the usual 10 to 100 microns.

Designed for miniature electronic tubes, this new machine can be converted for use on larger or smaller tubes if necessary. An indexing feature is easily added if required for such an operation as precise forming.

To reduce down time and maintenance to a minimum, each of the 16 pumping units is a readily removable package containing mechanical pump, diffusion pump, cycling valve and tube port-the entire head can be removed and replaced in a matter of minutes. One electric motor operates all the mechanical pumps, another drives the turret.

A simpler version of the machine is now being employed to pump vacuum bottles and can be adapted to other continuous vacuum pumping and sealing tasks.

To find out more about how this new exhaust machine can speed tube production, reduce costs and improve tübe quality, write to Consolidated Vacuum Corporation, Rochester 3, N. Y. (A subsidiary of Consolidated Engineering Corporation, Pasadena, Calif.) Sales offices: Menlo Park, Calif. - Chicago, Ill. - Camden, N. J. • New York, N. Y.


Consolidafed Vacuum Corporation
Rochester 3, N. Y.
high vacuum research and engineering


5915 AVALON BOULEVARD - IOS ANGELES 3. CALIFORNIA
Representatives in Principal Cities of the U.S. and Canada
much greater magnifications possible in a single-stage electron-multiplier circuit by constructing the multiplier to include an extra control grid, interposed either between a pair of dynodes in the electron stream, or between the final dynode and anode, and an external circuit for coupling a modulation component derived from an early dynode such as No. 1 in Fig. 11 to the control grid following a subsequent dynode closer to the anode.

By this technique, the originally low depth of modulation may be increased by amounts approaching 100 percent.

The technique may be termed remodulation of the electron multiplier and has been described in the literature: H. E. Kallman, Remodu-


FIG. 11--Electron multiplying device applicable to television

Iation in Electron Multiplier Cascades, Proc. IRE P 282 Feb. 1953. An invention relating to a method for analyzing combustible gases has been awarded U.S. Patent 2,617,716. The inventor, Ralph E. Hartline, of Tulsa, Oklahoma, has assigned the patent to Stanolind Oil and Gas Co., of Tulsa.

In the previously used combustible gas analyzing systems one of the problems encountered has been zero drift of the indicating apparatus employed and also in local heating filamentary sampling chambers result in ambient temperature changes that unset the accuracy of such instruments.

Combustible gats analysis is accomplished by permitting a gas sample under analysis to pass through a chamber containing a filament that acts as a load acrose a sonnce ol a-c potential. The heating of this filament in the gas

## LITTON INDUSTRIES NEWS



# ANOTHER ADDITION TO LITTON PLANT TO HELP meet your tube development and production needs 

Litton is now building a new addition to its vacuum tube plant at San Carlos, California. This expansion will approximately double tube development and manufacturing facilities and will allow expansion of our affiliate, Litton Engineering Laboratories, which has taken over the manufacture of glassworking lathes and other machine products. Like the plant completed last year, the new building has been designed specifically for vacuum tube manufacture; it has similar reinforced concrete block walls with large glass-block panels for diffused daytime illumination.

Included is complete environmental control of temperature, sound, light and air for optimum manufacturing conditions.

Increasing demand for Litton products has brought about this expansion, and we expect that the added capacity will provide greater volume and service to our friends in industry.


## LITTON MGGNETRONS

Concurrent with plant expansion is a marked increase in the variety of pulse and CW magnetrons for radar, beacon and countermeasure equipment. It is quite possible that Litton Industries now has in production or development the specific tube to meet your needs.

Application of Litton design and processing criteria to all our tube types permits manufacture of tubes that require no aging racks in the plant or in the field and have long shelf life with snap-on operation to full rated power output immediately after completion of the cathode warm-up period.

## Manufacturers

 of Vacuum Tubes andAccessory Equipment

chamber causes resistance variation of the filament, a load variation and consequent current variation. The changes are impressed on a bridge circuit balanced against a voltage twice the frequency of the primary source of a-c potential. The variation of some parameter (in this case combustibility) of the gas sample is indicated by the rectified component of the harmonic output voltage.

The circuit of the combustible gas analyzer is shown in Fig. 12. An alternating voltage at frequency $f$ is applied to the gas detector filament superimposed on a direct-current. The output of the gas detector is applied to a balanced modulator through $C_{1}$ and $C_{2}$ at a frequency $f$ having a low-frequency


FIG. 12-Analyzer for combustible gases
modulation component determined by the variations in the filament resistance with combustion variations.

The d-c potential applied to the low-pass filter will vary as the amplitude of $f$ applied to the balanced modulator. A voltage at a frequency $2 f$ is also applied to the balanced modulator as a balanced bias voltage. A direct voltage will appear at the output of the balanced modulator proportional to the second harmonic voltage drop across the gas-chamber filament. The lowpass filter rejects all but the d-c component of the output of the balanced modulator and the output voltage is applied to an indicator such as a meter or oscilloscope.

The cyclic variation of the gas chamber filament brings it periodically through a range at a rate far in excess of any temperature variation and produces an output in the system with a negligible zero drift.

This invention is employed in


Transport radar for tesrain mapping anc weather avoidance has taken a bold step forward. The AN/APS-42 A is an arlvanced redesign by Pacific Division for the Services. It has been selec:ed as the standard design.

This Bendix-Pacific development provides simplicity of operation, maximum reliability and minimum maintenance ...all with a substantal saving in weight

The advanced design of the Bendiz-Pacific

APS-42A is typical of what this Divisions e ectronic eng neers are accomp ishing in lesigning new equipment for pract cal 1 ise. In azcit or to airborne radar gystems, our engircers hate catalis hed leadership in the fields $0^{\prime}$ sonar, tele netering. missile guidence system; arc radio cortrol. Our engineering achievements are backed $u$ with manufacturing capacity anc know-hav it the form of three large, moderr p ants. We are interestec in developing new, practicai cesigns in thes? fields for you.


## Pacific Divisian <br> Bendix Awesion Corpouption?



## A QUALITY CONTROL THAT MEANS MORE UNIFORM, DEPENDABLE PERFORMANCE FOR YOU!

Selenium rectifier performance depends upon the purity of selenium used. Vickers Electric Division establishes complete quality control at the very beginning . . . with its own refining plant and testing laboratories. Producing uniformly pure selenium for Vickers rectifiers is an important step in assuring more consistent performance characteristics, and stable, long-life rectifiers.
fmore reasons why VICKERS makes a better rectifier:

- 255 separate tests and irspections.
- Automatic electroforming "pre-stresses" cells.
- Precision-matched cells prevent overload-overheating.
- Hydraulic assembly assures mechanical strength and dimension.
- Rectifiers shock and vibration tested to military specifications.


Write for Bulletin 3000 . Vickers engineering service is ovailable without obligation.

## ICKERS ELECTRIC DIVISION

$-\sqrt{\text { ICKERS The }}$
A UNIT OF THE SPERRY CORPORATION 1801 LOCUST STREET • SAINT LOUIS, MISSOURI

## ELECTRONS AT WORK

geochemical analysis in oil wells. It is one of many examples of the increasing employment of the electron tube arts in the oil and other geophysical industries.

## X-Ray Image Amplifier

Fluorfscent screens used by physicians in examining patients by x-ray have an efficiency of about 5 percent. To see the fluoroscopic image, the radiologist must darkadapt his eyes for at least 20 minutes. A newly developed image amplifier reduces this time to about four minutes.

Increased brightness of the x-ray image has been attained by converting x-ray energy into light with a fluorescent screen and thence to electrons by means of an adjacent photoelectric surface. Electrons are accelerated by a high potential placed across the vacuum tube to give a brightness gain of 10 or more. Further gain is attained by electrostatic focusing of the electron stream to reduce the image to approximately a fifth its original size.

The reduced image, made up of high-speed electrons, impinges on a phosphor output layer that converts the electron stream back to a visible image, brightened 200 times. As a final step, the intensified image is magnified by means of an optical system without loss of brightness.

The intensification achieved by reducing the image size in the elec-tron-optical system is possible becaluse the brightness is increased in inverse proportion to the area. This results from all the electrons being utilized in forming the image. When the area is reduced, the total energy therefore remains constant. Thus the energy per unit area, which is


FIG. 1-Developmental model of the Westinghouse image amplifier tube

## must begin with

## ARCO

## TRANSFORMERS



The Arco Transformer and Electric CorporationDivision of the National Mill Supply Corporationof Fort Wayne, Indiana, uses Heldor transformer cans and compression-type terminals as a practical production practice that saves time, money and worry in meeting MIL-T-27 and commercial specifications.

You, too, can effect substantial savings in your transformer (and other electronic equipment) assemblies when you STANDARDIZE ON THE CONSISTENTLY UNIFORM, HIGH QUALITY HELDOR COMPONENTS. Better still, you'll effect even GREATER SAVINGS when you use Heldor's complete "package" . . . cans with Heldor's compressiontype bushings ASSEMBLED in can covers.

It will pay you to secure quotations from HELDOR on your requirements. Just send prints or specifications on your needs . . . and you'll receive FACTS that prove what other manufacturers already know . . . HELDOR is QUALITY you can count on . . . at money-saving prices.

Send for that quotation today!
WRITE FOR HELDOR'S NEW CAN CATALOG!


HELDOR DRAWN CANS Now Available? Several sizes and types. Write for Details!

lllustrated: Model BP, single-sole, double-throw,
15 A, . 125 V . A. C. Overoli length, $15 / \mathrm{s}^{\mathrm{m}}$.

The most practical and economical solution to difficult switching problems ever devised . . . TYNISWITCH.

Like no other snap switeh made, this compact, low cost, snap-action unit permits high load switehing in a minimum amount of space. It eliminates the need for costly, non-functional bulk in new or redesigned products. Its high force-to-inertiaratio spring blade inhibits mechanical resonance . . . assures smooth, high-speed operation with positive, bounceless closure. And as for dependability-conclusive laboratory tests have proven that TYNISWITCH is consistently reliable at high operating speeds . . . for over millions of cycles!

Consider these important design and production advantages now. New TYNISWITCII models can be developed to fit vour exact switching speeds and specifications- or you can select conventional circuit arrangements from a variety of standard units. Write for complete details. TYNISWITCH Division, The Sessions Clock Company, 104 Last Main St., Forestville, Conn.

mroportional to brightness, must go up.

Limitations of the optical magnification that can be obtained without loss of brightness make it unprofitable to reduce the electron image to less than one fifth the size of the x-ray image. The reduced image seen through an ordinary optical magnifier appears normal size.

Radiation hazard to radiologist and patient is basically the same as with conventional fluoroscopy, but there are two ways in which significant reductions of the hazard are possible. First, the radiologist may reduce the intensity of the x-ray beam, for example to one fourth the usual amount. Under these conditions he will still have an image 50 times brighter than the conventional. Second, because he learns what he wants to know so much quicker, the examination time and hence the radiation exposure is greatly reduced.

In addition to shorter examinations, such techniques as stereofluoroscopy and even the televising of fluoroscopic images may become practical. These possibilities are in addition to the advantage that the physician is able to perceive objects presently indiscernible.

## Replenisher for HydrogenFilled Tubes

By J. H. Jupe Midalesex, England

A DEvice for automatically replenishing hydrogen removed from tubes by clean-up consists of an evacuated nickel capsule that contains a small amount of zirconium hydride. When the capsule is heated to a temperature exceeding 400 deg $C$, hydrogen evolved from the hydride can diffuse through the walls. When cold, the nickel container prevents the return of the hydrogen to the hydride where it would be reabsorbed.

Automatic operation is obtained by attaching the capsule to the plate of a hydrogen-filled tube. As pressure within the tube falls owing to the clean-up process the voltage drop across it rises increasing the power dissipated at the plate. The increased dissipation raises the

## miniaturization through critically precise components

 and/or manufacture of custom-made, high precision components for electrical, mechanical and electronic devices.

Component reliability is the sole aim . . . the result, a perfect reproduction of the design. Made-to order parts meet your most exacting tolerances and diverse requirements.

Production schedules assured
A brochure is yours for the asking. WRITE.
RESEARCH DEVELOPMENT MANUFACTURE
I NCORPORATED
425 EAST COLLOM STREET, PHILADELPHIA 44, PA.


Yes, we are busy as beavers. But we take the time to gnaw on your component problems, because we do give a "dam" about the people who build electronic devices.

If you are sure of what you want and want to be sure you will get it, call MILO.

If uncertain a component will do exactly what you want, or fit exactly as it must, call MILO. We may know more than the book says about it. Or know of a part that will do it better.

We have many lines and many numbers. And men who know our stock from origin to end use.

MILO sells components. We gladly give of our experience. Gained from busy years as industrial distributing specialists for the leading brands of electronic components and test instruments.

| CHECK LIST (A-C) of LEADING BRANDS IN STOCK |  |  |
| :---: | :---: | :---: |
| Acro-Switch | A TR | Cetron |
| Advance Electric | Barker \& Williamson | Chatham Electronics |
| Aerovox | Belden | Chicago Telephone |
| Aircraft Marine Products | Birnbach | Supply Co. |
| Allen-Bradley | Blitey | Chicogo Transformer Co. |
| Allied Control | Bogen | Cinch-Jones |
| Alpha Wire | Bud | Clarostat |
| American Beauty | Burgess | Conant labs |
| Amperite | Bussman | Consolidated Wire Cos. |
| Amphenol | Cannon | Continental Carbon (Nobeloy) |
| Arco | Cardwell | Cornell-Dubilier |
| Arrow-Hart \& Hegeman | Corter | Crest Labs. |

## JAN-APPROVED COMPONENTS

## 

ELECTRONICS FOR INDUSTRY 200 GREENWICH STREET, NEW YORK 7, N. Y. • Phone BEekman 3-2980 Teletype NY1-1839 • Wire MILO-WUX-N.Y. © Cable MILOLECTRO-N.Y.
temperature of the plate and causes the capsule to operate. When sullicient hydrogen has been evolved to restore the correct pressure, plate heating is reduced and the evolution of hydrogen ceases.

## Remote Control

Caps TV Camera Lens
By C. J. Auditore

Facilitirs Engineer<br>New Yorl:, N. I

It is sometimes desired to operate a television camera in a fixed position, focused on a predetermined scene without the benefit of a camera operator in attendance. To avoid retention of a scene, called burning-in, the image orthicon camera tube should never be allowed to remain focused on a stationary bright scene for more than a few minutes at a time. Therefore, it is necessary effectively to cap the lens by some other than physical means.

An electronic lens capping method has been tested at WOR-TV and has proved to be satisfactory. To understand it, it is necessary to examine the operation of the image section of the tube.

The image section contains a semitransparent photocathode on the inside of the face plate, a grid to provide an electrostatic accelerating field, and a target that consists of a thin glass disk with a fine mesh screen very closely spaced to it on the photocathode side. Focusing is accomplished by means of a magnetic field produced by an external coil, and by varying the photocathode voltage.

Light from the scene being televised is picked up by an optical lens


FIG. 1-Effective lens capping for $\alpha$ camera in the TK-10A chain is accomplished by insertion of a toggle switch as shown


## "Designed for Application"

## Delay Lines and Networks

The James Millen Mfg. Co., Inc. has been producing continuous delay lines and lump constant delay networks since the origination of the demand for these components in pulse formation and other circuits requiring time delay. The most modern of these is the distributed constant delay line designed to comply with the most stringent electrical and mechanical requirements for military, commercial and laboratory equipment.

Millen distributed constant line is available as bulk line for laboratory use and in either flexible or metallic hermetically sealed units adjusted to exact time delay for use in production equipment. Lump constant delay networks may be preferred for some specialized applications and can be furnished in open or hermetically sealed construction. The above illustrates several typical lines of both types. Our engineers are available to assist you in your delay line problems.

$$
\begin{aligned}
& \text { JaMES MILLEN }\left\{\frac{n \pi}{\underline{M}}\right\} \text { MFG. CO., INC. } \\
& \text { MAIN OFPICE } \operatorname{cnN}^{5} \\
& \text { AND FACTOIY } \\
& \text { MALDEN, MASSACHUSET'JS, U.S. A. }
\end{aligned}
$$

> Highest Accuracy. . . Minimum Size for Field, Lab, and Production Use

There's a Shallcross Bridge for measuring resistance to any desired precision-indoors or out. Field models have aluminum cases with controls easily adjustable even with a gloved hand. Models for lab, production, and school use feature high readability and simple operation-even for unskilled users.
Accuracy, Stability, and Ruggedness-unsurpassed in any instrument of comparable price.
Selections from the complete Shallcross line are described below. Additional specifications on these, and many other types, are available from SHALLCROSS MFG. CO., 522 Pusey Ave., Collingdale, Pa .
WHEATSTONE-FAULT LOCATION BRIDGE No. 6100: 5-dial field model. Locates grounds, crosses, opens, and shorts by Murray, Varley, Hilborn, or Fisher Loop and Capacitance tests. Range: 1 to $1,011,000$ ohms. Accuracy: $\pm 0.1 \%,+0.01$ ohm. $87 / 8^{\prime \prime} \times 73 / 8^{\prime \prime} \times 53 / 4^{11} .8$ lbs. Price: $\$ 175$.
system and focused on the photocathode, which emits electrons from each illuminated area in proportion to the intensity of the light striking the area. This stream of photoelectrons is focused on the target by the magnetic and accelerating fields.

On striking the target, the photoelectrons cause secondary electrons to be emitted by the glass. The secondaries thus emitted are collected by the adjacent mesh screen. Emission of the secondaries leaves on the photocathode side of the glass a pattern of positive charges corresponding to the pattern of light from the scene being televised, Because of the thinness of the glass target the pattern will burn-in if it is stationary and prolonged in duration.

This pattern will be completely discharged by the scanning beam on the opposite side of the glass if the flow of photoelectrons from the photocathode is interrupted either by capping the lens or by removing the electrostatic accelerating potential between the photocathode and the target.

The photocathode is normally operated at approximately -425 volts while the target voltage is somewhere within the range of $\pm 3$ volts. The photoelectron stream can be cut off, therefore, simply by grounding the photocathode and its associated accelerating grid 6. This voltage is controlled by a potentiometer in the remotely located camera control unit of the RCA TK-10A camera chain. The addition of a toggle switch is all that is required effectively to cap the lens as shown in Fig. 1. It is necessary only to remove dashed wiring between points $X-X$ and install a single-pole double-throw toggle switch.

## Ultrasonic Method of Tire Inspection

ULTRASONIC EQUIPMENT can be used to detect internal flaws in tires, but because of the geometric shape of a tire, the tread pattern and the need for inspecting a relatively large area in a short time, special problems are introduced.

In the device described a circuit


[^16]

## MILLION-DOLLAR DIALS

## ...for <br> pennies:

Self-luminous, fluorescent, phosphorescent, or nonluminescentetched, lithographed, or screened -whatever type of dial you need, U. S. Radium Corporation can produce it . . . with "milliondollar" accuracy and finish, at mass-production cost.

Yes, even though they cost less than you'd think, U. S. Radium dials look like a million dollars. That's because, in producing millions of dials for instruments and timepieces, we've learned how to apply precise markings with big-volume methods that are a boon to the budget. We also make high-accuracy dials, in as small quantity as desired, for scientific requirements.

To find out how our dial experience can benefit your instruments

- with better dial design, or lower cost, or both -write Dept. E-4, U. S. Radium Corp., 535 Pearl Street, New York 7, N. Y.


## Other Products of U. S. Radium

## RADIOACTIVE FOILS

(alpha-ray ionization sources)

# IONOTRON STATIC ELIMINATORS 

## RADIUM LOCATORS:

pendants, lenses, buttons, screws, markers

## LUMINOUS RETICles

 and other specialties POWDERS:cathoderay tube and television fube SILHOUETTE ILLUMINATION of clocks, watches and instruments

UNITED STATES RADIUM CORPORATION
providing a frequency-modulated signal sweeping from 34 to 46 kc is used. To allow moving the tire while in contact with the microphone and transmitting unit a liquid bath is used as a sound transmitting agent. The tire is placed in the liquid bath and a transducer and a microphone are placed opposite each other in the liquid with the portion of the tire under examination between the two. Rotating the tire allows inspection of the entire surface.

Inspection in this manner will detect separations in the tire structure, internal breaks, and porosity or loosness around the cords. Cuts


FIG. 1-Diagram of ultrasonic oscillator used in tire inspection unit
and external breaks will give an indication if there is a film or pocket of air trapped in or around the break. Most small clean cuts will give little or no indication. If, however, there is a rotted or separated area around the cut where the liquid does not penetrate the fault will be indicated.

## Electronic Equipment

The ultrasonic driver unit is shown in Fig. 1. A Colpitts oscillator circuit is used, the frequency of which is continuously varied by a motor-driven capacitor. The motor operates at $1,200 \mathrm{rpm}$ sweeping the frequency range forty times a second. Trimmer capacitors are used to set the sweep range to the desired values. A 6 N 7 resistancecoupled amplifier provides about two watts of power to drive the crystal transmitter. The crystal is


# For maximum tube life and performance, include G-E Inductrols as "original equipment" 

## Automatic voltage regulation provides an effective and

 economical means of avoiding losses in power capacityThe life and efficiency of the electronic equipment yon manulacture depends, to a large extent, on the performanef of the electronic tubes. Tube life is adversely affected by over- or under-voltage conditions that can casily be pretented.

G-E dry-type induction voltage regulators, called Inductrols, offer you an effective and economical means of maintaining conrect operating volage. Two types are available for indoor service on circuits 600 volts and below, single-plase 3 to 240 kva ; three-phase 9 to 520 kva .

1. Automatic Imluctrols maintain a clonely regulated output voltage from a varying supply molage with a hamdwidh of $\pm 1 \%$. The standard range of regulation is phus and mitus $10 \%$.
2. Hand-operated or manually controlled motoroperated Inductrols provide a variable output voltage from a relatively constant suiply vollage. Theysupply $100 \%$ raise aml $100 \%$ lower regulation.

## 3N..

GENERAL ELECTRIC

Typical applications for C.E. Inductrols that have proved highly effective include: radar equipment, induction licating equipment, medical and industrial $x$-ray equipment, TV and radio transmitters.
For further information, contart your marest G-E sales office, agent or distributor...or return the attached coupon.

## HERE'S HELPFUL G-E DATA ON INDUCTROLS

[^17]Address

Cily $\qquad$ Zone $\qquad$ Siate

# ARTAX ... the most revolutionary miniature chopper! 



## "MDDEET"

Small size and big performance have won wide acclaim for the C747 MIDGET cropper in the short time since production was released. Available with SPDT contacts, a 6.3 volt drive for 400 cycle operctizn, usually a 380 to 420 cyde frequency range. Phase angle meesured from a driving sine wave to midpoint of contact dwell is a nominal $65^{\circ}$, with a dwell of approximately $135^{\circ}$. Units operate successfully over a very wide temperature range, are fully hermetically sealed and may be exposed to high alfitudes, humidity, vibration and shock without damage. Write for bulfetin C747.



FIG. 2-Receiver circuit for ultrasonic tire inspector
surrounded by castor oil and enclosed in a waterproof rubber housing.
The microphone pickup (Fig. 2) is in contact with a thin metal diaphragm in the end of a watertight cylindrical metal container. To make the response of the microphone directional the metal container is surrounded by a metal wall with an air space between.
The amplifier contains two highgain resistance-coupled stages, the output being rectified and observed on a microammeter. A portion of the rectified output voltage is filtered and applied to the grid of a thyratron as a negative bias. When the amplifier output drops below a predetermined value, the thyratron fires, actuating a relay that turns off a green pilot lamp and turns on a red one indicating a defect in the tire. Since the plate supply of the thyratron is from the high voltage a-c winding of the power transformer the tube will be extinguished as soon as the negative bias is resumed.

In use the input potentiometer is adjusted to give about 80-percent full-scale reading when a tire without defects is placed on the test stand. The bias of the thyratron is then adjusted so that it will be triggered when the reading drops to about 50 percent of full scale.

Gearing permits the transducer and microphone to be moved together across the tire from shoulder to shoulder. This movement together with rotation of the tire allows the inspection of any portion

# Thecision munnaramus. Seviriess by the HAMILTON WATCH COMPANY 

America's Leading Irecision Manufinctrrer

THE Hamilton Watch Company's Precision Services Division can produce small quantities of precision rolled strip or precision drawn wire in special alloys to your exact specification.
Special equipment and highly trained personnel enable us to offer a complete service, from melting and pouring the ingot to producing the finished strip or wirc.

We can cast 3 to 25 -pound ingots to extremely exacting specifications. Our Sendzimir Mill can roll strip in widths of $\mathbf{2}$ to $\mathbf{4}$ inches, down to thicknesses as fine as $\mathbf{. 0 0 1}$, with tolerances of plus or minus $\mathbf{0 0 0 1}$. We can draw wire to even finer tolerances.

Hamilton's Precision Services are set up to accurately melt, cast, forge, roll, and finish special alloys. We can do these jobs for you:

- Precision Sendzimir mill rolling
- Precision slitting of wide strip
- Hot and cold rolling of strip to standard mill specifications
- Re-rolling of strip to accurate dimensions
- Accurate wire drawing to closer than commercial tolerances
- Wire straightening
- Polishing

For complete information about Precision Services available at the Hamilton Watch Company, call or write-


## Lancaster © Pennsylaniat




Supplying the right answers to pilots and navigators by means of accurate, reliable instruments has been our work for more than twenty-four years.

```
AIRCRAFT INSTRUMENTS AND CONTROLS
OPTICAL PARTS AND DEVICES
MINIATURE AC MOTORS
RADIO COMMUNICATIONS AND
NAVIGATION EQUIPMENT
```

Current production is largely destined for our defense forces; but our research facilities, our skills and talents. are available to scientists seeking solutions to
elmhurst, new york - glendale, california - subsidiary of Standard coil products co., inc. 230

Want more information? Use post card on last page.


Laboratories ergineer examines Transistor oscillator. It is used in Englewood, New Jersey, where 10,000 subscribers can personally dial distant cities. Transistors generate the signals which carry the dialed numbers to other towns and cities. Other uses are in prospect.

When you keep down the power needed to send voices by telephone you keep down the special equipment needed to supply that power. A great new power saver for telephony is the Transistor, invented at Bell Telephone Laboratories, and now entering telephone service for the first time.

Tiny, simple and rugged, the Transistor can do many of the things the vacuum tube can do, but it is not a vacuum tube. It works on an entirely new principle and uses much less power than even the smallest tubes. This will mean smaller and cheaper power equipment, and the use of Transistors at many points in the telephone system where other equipment has not been able to do the job as economically.

I's another example of how Bell Telephone Laboratories makes basic discoveries, then applies them to improve telephone service while helping to keep its cost down.

## TRANSISTOR FACTS

Created by Bell scientists. First annomed in 1948.

Has no glass bull, requires no filament current or warm-up period. Operates instantly when called upon. Uses no energy when idle.

## ACCURATE PLATING

## IN ELECTRONICS!



Since 1946, M-W LABORATORIES has electroplated precious metal for suppliers to the U. S. Army, U. S. Navy, Atomic Energy Commission and to leading manufacturers in the electronics industry.


Controlled thickness, smoothness, color, hardness and adhesion of plating is assured through constant testing by our own chemists and engineers, in our chemical and metallographic laboratory.

Contact us for a no-cost-to-you consultation on your plating problems.

## GUARANTEES

M.W LABORATORIES, featuring their Mayhill Plating Process, are equipped to plate these precious metals: gold, silver, rhodium, palladium, albaloy and indium.

the range of 30 to 15,000 cycles, but for many purposes a much narrower band suffices. The bias frequency is four or more times the highest recorded frequency. For 5,000 cycles, the bias frequency would be $20,000 \mathrm{cps}$ or more. This separation makes possible a simple filter circuit that will pass one frequency and reject the other to a degree sufficient for a practical measuring device.

In the particular application for which this instrument was designed the actual voltage readings were not important, so the resistors were chosen to give a midrange reading. The current from the recording head is first passed through a series resistor $R_{1}$, which should be high enough to make the current drawn by the instrument small compared to that of the recorder. The load resistors $R_{2}, R_{3}$ are given a value that provides the correct filter termination impedance. The bias voltage is usually higher than the signal voltage so an additional res sistor $R_{4}$ is connected to the junction point of $R_{2}-R_{3}$, providing a meter deflection for bias that is similar to that for correct signal level.

The two filters $L_{1}-C_{1}$ and $L_{2}-C_{2}$ are series and parallel-resonant filters both tuned for the a-c bias frequency, in this case $20,000 \mathrm{cps}$ for a recording range of 200 to $5,000 \mathrm{cps}$. When the dpdt toggle switch is in the bias position, the series-resonant filter is in series with the meter and presents a very low impedance to the bias curvent, allowing it to pass through to the meter. The parallel-tuned filter bridged across the meter presents a very low impedance to all frequencies except the bias frequency


[^18]
## TEFLON is

 a trademark of E. I. DuPont Co. for polytetraflooroethylene. It is supplied by C-D-F in tapes and sheets, both plain and fibre glass cloth supported.

HEAT RESISTANT
Teflon may be used continuously of $200^{\circ} \mathrm{C}$. $\left(392^{\circ} \mathrm{F}\right.$.) or for short periods of $250^{\circ} \mathrm{C}$. $\left(482^{\circ} \mathrm{F}\right.$.). Meets A.I.E.E. Standard's for Class $H$ electrical insulation.

MOISTURE RESISTANT
Teflon products hove practically zero water absorption and are unoffected by fungus, humidity and temperature changes. It remains pliable of $-87.5^{\circ} \mathrm{C}$. $\left(-100^{\circ} \mathrm{F}\right.$.).


## ARC RESISTANT

Teflon will not carbonize, bul rather will vaporize. When the are is extinguished, full insulation is restored.


Chemical resistant
Teflon is the most inert of all commercial thermoplastics and is not boffected by any known solvent.

## that's why (-D-F TEFLON TAPES AND SHEETS CAN OFFER THESE BIG ADVANTAGES



FOR LINING SLOTS C-D-F sheets of fibre glass cloth supported Teflon can be cold-formed into easily loaded slot liners. Teflon is naturally slippery smooth, with plenty of "snap back." High in dielectric strength, liners are rated Class $H$ insulation.


FOR WRAPPING CABLES C-D-F Teflon tapes are lough, strong, and stretchable. Tefion can be supplied unsupported, or combined with fibre glass fabrics in a variety of widths and thicknesses. It is suitable for winding around sharp bends or odd shapes.


FOR CHEMICAL AND MECHANICAL USES
Remember, Teflon is non-adhesive and chemically inert. Bakers, food packagers, and pump manufacturers use if. For applications requiring extreme electrical insulation stability, high temperature or resistance to corrosion, C-D-F unsupported and fibre glass cloth supported products can do a job for you.
C-D-F's work with Teflon is really rolling! New applications are being developed daily in our laboratories by specialists who are devoting their entire time to improving and developing new Teflon products. Start talking Teflon with the man from C.D.F (sales offices in principal cities)-he's a good man to know:

## NEWARK 16, DELAWARE

## STANDARD <br> Todirin Inder ference 1 qield Intensity Complete Frequency Coverage -14kc to 1000 mc !



14kc to 250kc
Commercial Equivalent of AN/URM-6B.
Very low frequencies.


## 150 kc to 25 mc

Commercial Equivalent of AN/PRM-1A Self-contained batteries. A.C. supply optional. Includes standard broadcast band, radio range, WWV, and communications frequencies. Has B.F.O.

## NWASA



15 mc to 400 mc
Commercial Equivalent of TS.587/U.
Frequency range includes FM and TV Bands.


## 375 mc to 1000 mc

Commercial Equivalent of AN/URM-17.
Frequency range includes Citizens Band and UHF color TV Band.

These instruments comply with test equipment requirements of such radio interference specifications as MIL-I-6181, MIL-I-16910, PRO-MIL-STD-225, ASA C63.2, 16E4, AN-I-24a, AN-I-42, AN-I-27a, MIL-I-6722 and others.

## STODDART AIRCRAFT RADIO Co., Inc.

6644-A Santa Monica Boulevard, Hollywood 38, California • Hillside 9294


FIG. 1-Circuit of bias and audio level meter shown connected to the recorder head
allowing these frequencies to bypass the meter.

In the audio position, the paralleltuned filter is in series with the meter presenting a maximum impedance to the bias frequency but allowing the lower audio frequencies to pass through. The series resonant filter now bridges the meter presenting a very low impedance to any residual bias current that may have passed through the parallel-resonant filter so that essentially only audio current is passing through the meter.

Figure 1 shows the meter and its filter circuit bridging the recorder. The voltage drop across a resistance of about 5 ohms in series with the recorder coil could be used as a source of potential but some amplification would then be necessary. The output from the amplifier would be fed to the filter network. This arrangement was not used in this case because portability was important. The amplifier and its battery power supply would have made the unit bulky and much heavier.

This circuit has worked satisfactorily in a multiple-channel recording system where signals from a variety of sources are all recorded simultaneously on a single tape. The measuring device provides a quick and accurate method of occasionally checking the various amplifier and bias oscillator control settings for optimum operating values.

## Repairable Plug-in Circuit

> By Robert H. Harwood U. S. Navy Electronics Laboratory San Diego, Oalifornia

A NEW REPAIRABLE plug-in package unit that simplifies mantenance and reduced replacement parts inventory, has been developed by the U. S. Navy Electronics Laboratory. Made

## mitchellorand



It takes Class " H " insulation to withstand the relentless severity of extreme operating conditions ... physical, chemical, dielectric,
very high or very low temperatures . . . to remove the danger of breakdown under overload . . . to minimize fire hazards . . . to permit the design of longer life electrical components and equipment of minimum weight and size, without sacrifice of rated output.

You can depend upon MITCHELL-RAND for a full line of Class " H " insulation to meet every extremely severe electrical insulation requirement.

MITCHELL-RAND ELECTRICAL INSULATION HEADQUARTERS • MITCHELL-RAND ELECTRICAL INSULATION HEADQUARTERS

SILICONE VARNISHED FIBERGLAS CLOTHS, TAPES, TUBINGS, SLEEVINGS sIllcone saturated or coated asbestos sheets
\& SILICONE COATED NOVABESTOS Sheets SILICONE RUBBER COATED FIBERGLAS SHEETS SIIICONE GLASS MICA
X Sllastic rubber coated fiberglas tape
Teflon coated fiberglas sheets


Write to MITCHELL-RAND for free samples and descriptive data. MTGCHELL-RAND INSULATION COMPANY, INC.
31 murray strety coritónde $7-9264$ NEw YORK 7, N. Y.
 A PARTIAL LIST OF M-R PRODUCTS: FIBERGLAS VARNISHED TUBING, TAPE AND CLOTH *
INSULATING PAPERS AND TWINES CABLE FILLING AND POTHEAD COMPOUNDS - FRICTION INSULATING PAPERS AND TWINES - CABLE FILLING AND POTHEAD COMPOUNDS • FRICIION
TAPE AND SPLICE. TRANSFORMER COMPOUNDS. FIBERGLAS SATURATED SLEEVING : ASBESTOS TAPE AND SPLICE P TRANSFORMER COMPOUNDS • FIBERGLAS SATURATED SLEEVING • ASBESTOS
SLEEVING AND TAPE. VARNISHED CAMBRIC CLOTH AND TAPE MICA PLATE, TAPE, PAPER, CLOTH, SLEEVING AND TAPE - VARNISHED CAMBRIC CLOTH AND TAPE - MICA PLATE, TAPE, PAPER, CLOTH,
TUBING FIBERGLAS BRAIDED SLEEVING - COTION TAPES, WEBBINGS AND SLEEVINGS - IMPREG: NATED VARNISH TUBING - INSULATING VARNISHES OF ALL TYPES • EXTRUDED PLASTIC TUBING

## "Skew" Anemur"

## for VHF and UHF



The ANDREW "Skew" Antenna is the only antenna which provides a circular radiation pattern from antenna elements placed around a supporting structure which is larger than a half wave-length on a side! With the "Skew" Antenna, it is possible to mount a multiplicity of TV antennas on the sides of tall buildings, on the sides of existing towers even towers which also support a standard antenna on top. The economy offered by a joint operation of this type is obvious.

At present, the "Skew" Antenna is custom built for each installation and consequently general performance specifications cannot be delineated. However, ANDREW engineers will be glad to discuss its application to specific situations.

ANDREW four element "Skew" Antenna on the conical end of the mooring mast of the Empire State building, used as auxiliary by WJZ-TV. Lower on the mooring mast, artist's sketch shows the 48 element ANDREW "Skew"
Antenna to be installed for WATV.

*Patents applied for
ANTENNA SPECIALISTS
CORPORATION - 363 EAST 75TH STREET, CHICAGO 19
transmission lines for am-fm-tv-microwave - antennas - directional antenna equipment * antenna tuning units a tower lighting equipment


FIG. 1-Navy Electronics Laboratory packaged repiacement unit with section cut away to show placement of components
in one, two, three and four-tube sizes the units are all of the same width and height although length varies with the number of tubes. All circuit connections are brought out to an eleven-pin plug on the base of the unit. The plug is recessed to permit the body of the unit to come in contact with the mounting panel for maximum heat transfer.
The units shown in photographs are constructed on a fiber mounting board with holes punched and marked for all probable combinations of terminals required. The parts board slides into a pair of slots at the base of the package and another set in the cap. These slots provide a snug fit for the board, holding it firmly in place when the


FIG. 2-Plug-in package unit removed from housing. Standardization of base plug wiring reduces possibility of damage by plugging in wrong type of unit

# Mininaturized DCRelay 

## for military aircraft applications

## IMPORTANT FEATURES

- Designed to meet U. S. Air Force Reley Specification MIL-R-5757
- Palladium Contacts . . . Six-pole, double-throw design
- Moisture-free-gas-filled... Hermeticaliy sealed


RCA-203W1 DC RELAY
. . Specifically produced for military requirements by the Electronic Components activity of the RCA Tube Department.

Immediately available to prime suppliers and sub-contractors of military aircraft equipment, the new RCA203W 1 DC Relay is designed for general use throughout the electrical systems of military aircraft.

Built to operate under severe service conditions, and in any mounting position, the RCA-203W 1 will provide longevity of service under extremes of temperature, humidity, shock, vibration and voltage variations. Be-
cause it is hermetically sealed in a steel envelope which is evacuated and filled with moisture-free gas, the coil and contacts are impervious to dust, moisture, and corrosion.
Its 6-pole, double-throw construction features palladium contacts rated to handle 2 amperes with a resistive load at 26.5 volts dc and 1 ampere with an inductive load at the same voltage. Contacts are arranged in a break-before-make sequence.

A technical bulletin covering ratings, dimensions, terminal connections, operating information, and descriptive data on shock, vibration, and life tests, is yours for the asking. Just write RCA, Commercial Engineering, Section 42DR, Harrison, N. J. . . . or contact the nearest RCA field office.

FIELD Offices: (East) Humboldt 5-3900, 415 S. 5th Strect, Harrison, N. J. (Midwest) Whitehall $4-2900,589 \mathrm{E}$ Illinois St., Chicago, Illinois. (West) Madison 9-3671, 420 S. San Pedro St., Los Angeles, California.

## Thase a pood look dit hhis 保 Puwechowe!



Designed to fit every application better . . . standby, portable, mobile and stationary. Whatever your need for electric power, the new Onan CW-5 and 10 give you top performance and value!

Here for the first time are 5 and 10 KW electric plants powered by revolutionary, new air-cooled gasoline engines, designed and built by Onan exclusively for electric plant use!

Both engines are 1800 R.P.M. The 13HP Onan engine which powers the CW-5 and the 20HP Onan engine used for the CW-10 weigh much less than general-purpose engines, and are amazingly compact. Built to deliver dependable, trouble-free service in heavy-duty use. Two-cylinder, alternate-firing design assures smooth, vibration-free power. New, quiet, highly-efficient vacuum air cooling drives out all heated air through one side duct. The same duct carries exhaust gases, simplifying installation.

Impulse-coupled, high-tension magneto ignition for quick starting under all conditions. Both models in all standard voltages 60 -cycle A.C., single or three phase.

## Far-Out-Front in design and engineering

> Twin-cylinder, horizontally-opposed, air-cooled, alternate-firing engines Aluminum-alloy cylinder heads Extra-large, replaceable bearings Fullpressure lubrication, 6 -quart oil capacity, oil filter Impulse-coupled, high-fension magneto ignition, radio suppressed Quiet, vacuum air-cooling of generator and engine Excellent accessibility; snap-off air housings . High-performance generators Completely equipped with controls and instruments.

## Write for folder and specifications



FIG. 3-Mounting board and tube chas. sis. Terminals are placed on board depending on type of circuit being wired
cap has been secured.
Tubes are mounted on chassis that are bolted to the mounting board. Tube wells in the aluminum housing are designed to fit any miniature tube as are the springs that hold the tube in place.

A gasket placed between the base and cap make the unit drip-proof when assembled. By using a special type of 11 -pin socket and sealing the base and cap joint with waterproof cement the unit can be made waterproof and gasproof.

Circuits developed so far include a complete audio amplifier from preamplifier to power output, servo amplifiers and gating circuits.

## Quartz Crystal Growing Technique

IN THE MANUFACTURING of quartz crystals the dissolving of quartz requires one temperature and its deposition requires a lower temperature. This fact led to the development of the two chamber vessels shown in Fig. 1, in which the two processes could be separated. Because of the elevated pressure required, the process employs a specially designed and fabricated autoclave of heavy alloy steel tubes capable of withstanding up to at least $6,000 \mathrm{psi}$ at 400 deg C. The two chambers are joined near each end by small diameter tubes to provide a continuous circuit. The autoclave is mounted with the chambers substantially horizontal and is mechanically driven to rock at about three times per minute.

Bach chamber is provided with


Underwriters' Laboratories specify that a ceramic capacitor used in AC line by-pass applications must withstand a 1500 volt AC 60 cycle one minute test. RMC has developed Yype UL DISCAPS for this or any application where a steady or intermittent higher voltage may occur. Capacities between . 001 MFD and . 02 MFD are now in production.

The use of Type UL Discaps will effect considerable cost savings over any other type of capacitor acceptable to the Underwriters' Laboratories.


SEND FOR SAMPLES AND TECHNICAL DATA

RADIO MATERIALS CORPORATION GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.

## FACTORIES ATCHICAGO, ILL: AND ATTICA, IND.

DISTRIBUTORS: Confact Jobber Sales Co., 146 Broadway, Paterson 1, N. J.


## A COMPLETE LINE OF VIBRATORS

Designed for Use in Standard Vibrator-Operated
 Auto Radio Receivers. Built with Precision Construction, featuring Ceramic Stack Spacers for longer Lasting life. Backed by more than 22 years of experience in Vibrator Design, Development, and Manufacturing.
$\sqrt{ }$ NEW MODELS $\sqrt{ }$ NEW DESIGNS $\sqrt{ }$ NEW LITERATURE
"A" Battery Eliminators, DC-AC Inverters, Auto Radio Vibrators
See your jobler ar curite factory
American Televisona Radoco.

SAINT PAUL I, MINNESOTA-U. S. A.
its own heating devices and temperature control. Chunks of quartz are placed in the dissolving chamber and an array of quartz seed plates is supported in the other. The remainder of the autoclave space is filled to approximately 70 percent with sodium carbonate solution. The chambers are then sealed with high-pressure closures and the autoclave heated. The mean temperature is brought up to about 350 deg C , the dissolving chamber being maintained about 10 deg higher than the other during the operation.

The degree of filling and the temperature mentioned above re-


FIG. 1-Autoclave method of growing quartz crystals requires rocked chambers under heavy pressure
sult in the liquid phase expanding to fill the autoclave. The fact that circulation occurs under such conditions was shown by the actual transfer of quartz from the raw material to the seed plates, and has been demonstrated and studied in a small glass model. The solution in the dissolving chamber is at the higher temperature and less dense than the solution in a crystallizing chamber.

When the autoclave is tipped in one direction during the rocking cycle, the less dense solution rises and the heavy solution falls causing a flow of solution that reverses its direction when the autoclave tips in the opposite direction in the next half of the rocking cycle. The reciprocating flow of solution causes a slow, regular exchange of solutions between the two chambers, one at higher temperature and unsaturated with respect to silica, and the other cooler and super-



PERFORATED METAL IN BRASS, BRONZE and COPPER

bearing bronze bars

Call us for anything from Bearing Bronze Bars to Brass or Bronze Bolts . . . or any other brass or copper item for maintenance, repair, operating or production.

Twenty-three Chase warehouses are located in major industrial centers from coast to coast. Phone the one nearest you. We can usually fill your orders from stock.

## Chase BRASS \& COPPER

WATERBURY 20, CONNECTICUT - SUBSIOIARY OF KENNECOTI COPPER CORPORATION
The Nation's Headquarters for Brass \& Copper

| Albanyt | Chicago | Denver $\dagger$ | Kansas City, Mo. | Newark | Pittsburgh | San Francisco |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Atianta | Cincinati | Detroit | Los Angeles | Nww Orleans | Providence | Seattle |
| Baltimors | Cleveland | Houston $\dagger$ | Milwaukee | New York | Rochester $\dagger$ | Waterbury |
| Boston | Dallas | Indianapolis | Minneapolis | Philadelphia | St. Louis | ( $\dagger$ sales office only) |



Working closely with Underwriters' Laboratories, Inc. and with leading fuse manufacturers, Markem has developed a method which makes possible for the first time the printing of label information directly on cartridge enclosed fuses, at production rates. Markem's direct ink imprints cannot "fall off" and are unaffected by moisture or ordinary chemical atmospheres. Paper label inventory and wastage problems are eliminated. Print is larger and color coding and identification are simplified. Fuse manufacturers anticipate better labeling at higher production rates and with lower costs. The Markem Method -Markem Machine, Markem type and ink and the special recording die roll for use when UL Manifest is required-as well as the imprint itself meet with UL approval.


CAN MARKEM Printing labels directly on cartridge enclosed fuses is but an example of how Markem solves industry's HELP YOU? marking problems. Markem has been providing ment to identify, decorate or designate its products, parts and packages since 1911. Markem also provides technically trained men who are a vailable in your area to assure continued satisfaction with Markem methods and equipment.
When you have a marking problem, tell us about it and send a sample of the item to be marked. Pcrhaps a complete Markem method has already been developed to solve your problem. If not, Markem will work out a practical solution.

Markem Machine Company, Keene 5, N. H., U.S.A,

saturated with respect to silica. The amount of flow is only estimated, and it is difficult to obtain actual measurement, yet practice has shown it to be large enough to transfer quartz satisfactorily.

A powerful tool for research on quartz has been the gamma radiation from Cobalt-60, which permits photographing the growing crystals within the high-pressure autoclave to observe the progress of their growth. The visible detail does not extend to quality of the deposited quartz, but the approximate dimensions and weights can be obtained readily from the gammagraph. An experiment using new conditions is now inspected as the run proceeds, and if the seeds were to show signs of thinning down or disappearing, conditions would be altered or the experiment terminated. Previously it was not known whether an experimental run would yield crystals until the run was ended and the autoclave opened.

## Comparison of Quartz

Quartz crystals to be useful must have a high degree of freedom from defects, which includes and goes beyond the obvious virtue of clarity. A modern oscillator circuit cannot tolerate a quartz plate containing many or large inclusions. The oscillating plate depends on a uniform mechanical elasticity to give its vibration an accurate and constant period. It is obvious that it can be disturbed by flaws such as cracks and included bubbles or solid particles.

The oscillator plate receives its impulse to vibrate from the alternating electrical signal brought to the faces of the plate through the metal coatings applied thereto. Thus another purity of the crystal is required in addition to the absence of flaws visible under the microscope. The plate must consist of one crystal and not be twinned.
Quartz shows two types of interpenetration twinning-known as optical and electrical-and the presence of either on opposite sides of a boundary in a quartz plate means that the two portions will not move in unison and in the same direction in the electromechanical vibration process. Such a plate has


## Electrical Characteristics

## sensitivity

$0.14 \%$ of span or 4 microvolts, whichever is greater.

## ACCURACY

$\pm 1 / 4 \%$ of scale span or 45 microvolts.

## MINIMUM SPAN

1 millivolt.

## PEN SPEED

1/2 second, full scale.

## CHART SPEED

1,2,3, or 4 inches per serondor optionally, $2,4,6$, or 8 inches per minute.

## INPUT SIGNAL

any d-c millivoltage.

If your research program calls for recording variables that change with split-second speed-investigate the new ElectroniK High-Speed recorder. Its pen can streak across the full width of the I I-ind charl in only ome-half serond!
This exceptional speed across a wide chart assures faithfully detailed recording of swiftly changing conditions . . . shows every significant "wiggle" that other instruments have to overlook.
To achieve high pen speed without overshoot, the instrument embodies an improved velocity damping circuit that brings the pen to a fast, smooth stop at its balance position. Chart speeds as fast as 4 inches per second spread out the vertical time base for maximum readability. Power reroll of paper is available at the high chart speeds.
Like all ElectroniK instruments, this model records any d-c millivoltage signal ... operates with thermocouples, strain gauges, and a host of other transducers. It can be supplied for full scale spans as small as one millivolt.
Your local Honeywell engineering representative will be glad to discuss how this new instrument can help you in your laboratory. Call him today . . . he is as near as your phone.
Minneapolis-Honeywell Regulator Co., Industrial Division, 4428 Wayne Ave., Philadelphia 44, Pa.

- reference data: Write for Data Sheet No. 10.0.13

Honeỹvell
BROWN INSTRUMENTS
First in Contrals

## L(R) D) MOUNTINGS PROTECT INSTRUMENTS and ELECTRONIC EQUIPMENT from VIBRATION and SHOCK DAMAGE • . -

 equipment and precision instruments . . . To control the damage which these enemies can do, Lord Vibration Control Mountings and Bonded Rubber Parts are used to very profitable advantage. More than a quarter century's experience in dealing with vibration and shock is yours when you take advantage of Lord engineering assistance. The result of such consultation is full protection for electronic units and sensitive instruments by correctly designed and precisely manufactured Lord Mountings and Bonded-Rubber parts.

BURBANK, CALIFORNIA
233 South Third Street

DALLAS, TEXAS PHILADELPHIA 7, PENNSYLVANIA DAYTON 2, OHIO 413 Fidelity Union 725 Widener Building 410 West First Street Life Building
DETROIT 2, MICHIGAN NEW YORK 16, NEW YORK CHICAGO 11, ILLINOIS CLEVELAND 15, OHIO 7310 Woodward Ave. 280 Madison Avenue 520 N. Michigan Âve. Room 811 Hanna Building LORD MANUFACTURING COMPANY • ERIE, PA.

Headquarters for Vibration Control
a reduced activity and is likely to be worthless as an oscillator.
'This material has been abstracted irom "The Properties of Synthetic Quartz Crystals and Their Growing Technique", by Dr. D. R. Hale, Brush Strokes, Dec. 1952.

## Two Synchronized Clock Circuits

By D. Sachs

Los Angcles, Calif.
USING AN OSCILLOSCOPE as a remote indicator for a master clock can be accomplished with the circuit shown in Fig. 1A. A 60-cycle voltage is applied through the tube and $90-$ deg phase shifting network to the plates of the c-r tube, producing a circular sweep.

At the master clock a 60-cycle synchronous motor drives a set of contacts mounted 90 deg apart. The contacts are arranged so that each time they pass one of the clock hands a circuit will be closed pulsing an $r$-f transmitter. The contact for the minute hand is outside the radius of the hour hand so that it will contact only the longer hand. The minute-hand contact also produces a larger pulse voltage making a larger trace on the oscilloscope screen.

An r-f amplifier and detector at the oscilloscope receives the pulses from the master station, and since the circular sweep of the $c-r$ tube is in synchronism with the 60 -cycle motor driving the contactors, traces will be produced on the screen at a position corresponding to the posi-


FIG. 1 - Circuit for oscilloscope repeater clock ( $A$ ) and circuit for synchronizing clock to line current (B)

## HUGHES

## SETS NEW STANDARDS OF

DIODE CONDUCTANCE


| HUGHES GERMANIUM DIODE ELECTRICAL SPECIFICATIONS AT $25^{\circ} \mathrm{C}$ ． |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description | RTMA Type | Test <br> Peak <br> Inverse <br> Voltage <br> （volts） | Maximum Inverse Working Voltage （volts） | Minimum Forward Current （a）+1 v （ma） | Maximum Inverse Current （ma） |
| High Peak | 1 N 55 B | 190 | 150 | 5.0 | 0．500＠${ }^{\text {a }}$－150 |
|  | $1 \mathrm{~N} 6 \overline{8} \bar{A}$ | 130 | 1 c 0 | 3.0 | 0.625 （a） 100 v |
| HighBackResistance | 1 N67A | 100 | 80 | 4.0 | 0．005（a）$-5 \vee 10.050$＠－50v |
|  | INO2 | 100 | 80 | 10.0 | 0.005 （a） 55 v ； 0.050 （a）-50 v |
|  | 1N100 | 100 | 80 | 20.0 |  |
| HighBackResistance | 1 N89 | 100 | 80 | 3.5 | 0.008 ＠， |
|  | 18 NO | 100 | 80 | 10.0 |  |
|  | 1 NO | 100 | 80 | 20.0 |  |
| HighBackResistance | 18115 | 75 | 60 | 5.0 | 0.100 ＠， 505 |
|  | 1 N 17 | 75 | 60 | 10.0 | －100＠ニ50ワーーーーーーーーー |
|  | ］N18 | 75 | 65 | 20.0 | 0．100＠二50－ |
| General <br> Purpose | 1 N90 | 75 | 60 | 5.0 | 0．800＠${ }^{\text {（9）}} 50$ |
|  | 1 N | 75 | 69 | 10.0 | 0.800 ＠ 050 |
|  | IN | 75 | 60 | 20.0 | 0．800＠ $0^{-1} 50$ |
| JANTypes | 1N126＊＊ | 75 | 60 | 5.0 | 0．050＠（3） 10 v ，0．850＠－50v |
|  | 1N127¢ | 125 | 100 | 3.0 |  |
|  | 1N128 | 50 | 40 | 3.0 | 0.010 （1）$=10 \mathrm{~V}$ |
| ＊That voltage at which dynamic resistance is zero under specified conditions．Each Hughes Diode is subjected to a voltage rising linearly at 90 volts per second |  |  |  |  |  |
| ＊＊Formerly 1 NE9A． |  | Formerly | 1 N 70 A ． | $\ddagger$ for | merly INSIA．New types in red． |



## new miniaturized tuning fork resonator...

(Hodel J)



IRE • MINIATURE • MINIATURE • MINIATURE - MIN MINIATURE. MINIATURE • MINIATURE MINIATURE

# ILLUSTRATED ACTUAL SIZE <br> DIMENSIONS $1^{\prime \prime} \times 23 / 16 \times 211 / 6$ MAXIMUM WEIGHT- 8 OUNCES 

## accuracies..

1 part in $10,000(.01 \%)$ or 1 part in $2,000(.05 \%)$, from $-40^{\circ}$ to $+85^{\circ}$ Centigrade.

## frequencies...

From 400 to 2,000 cycles in either accuracy rating.

## construction...

Thermally compensated, solder-sealed and evac. wated, completely interchangeable, internally mounted using shock retarding silicone rubber, externally designed for fastening to chassis through silicone rubber grommets thus providing excellent vibration and shock isolation.

For complete information write for Folder No. 102 or telephone HYacinth 2-4800
tion of the hands on the master clock.

A clock circuit kept in synchronism by one second pulses from a $110-\mathrm{v} 60$-cycle line is illustrated in Fig. 1B. A clipper and differentiating circuit produces 60 sharp pulses per second. Three step-down counters of the diode-blocking-oscillator type reduce this to one pulse per second, which will energize the relay operating a clock mechanism at the rate of one pulse per second.

## Grid Current Synchronization System

AdVantages of simplicity obtained by using a Miller transitron in a sweep circuit are often offset by limitations this circuit imposes on scan-to-flyback ratio and synchronization. The usual method used to overcome this effect is to inject a synchronizing signal on the suppressor of the tube. This method presents the problem of preventing the synchronizing signal from modulating the sweep velocity.

To eliminate these difficulties the circuit described here was developed. The transitron tube $V_{3}$ is used in a cathode-follower circuit with $V_{0}$ as the follower. In operation tube $V_{1}$, grid bias is adjusted to the point where it begins to conduct at the end of each sweep, reducing the gain of $V_{a}$. This in turn reduces the negative feedback due to $\mathrm{C}_{\mathrm{i}}$ allowing the positive feedback between the screen and suppressor of $V_{3}$ to initiate the flyback. Thus, the grid potential of $V_{1}$ determines the sweep length and can be used as a control, eliminating the need for injecting a signal on the suppressor.

In the circuit shown, potentiometers $R_{1}$ and $R_{2}$ provide amplitude and synchronization control and $R_{3}$


FIG. 1-The modified Miller transitron circuit


## Eraikes Larían

## "Centre-Kooled"

 PATENTS NO. $2619692 \& 2620364$
## SELENIUM RECTIFIERS



Power Type
Available over a range that includes a few volts and milliamperes of current to hundreds of volts and thousands of amperes. Fourteen cell sizes provide widest available range of selection.

## 

## Radio Type

Versatile low-cost rectifiers that have found application in all types of electronic equip. ment as well as radio and television receivers. A complets line is available.


## - APLMBAELEPONEN



## Embedments

A recent "first" in the industry, Sarkes Tarzian embedments offer the advantages of hermetically sealed rectifiers at a fraction of the size, weight and cost.

## Diodes

$\square$
Currently available in two sizes, ( $1 / 8^{\prime \prime}$ and $5 / 16^{\prime \prime}$ housings) Sarkes Tarzian diodes are designed for use as limiters, bias voltage, low current relay voltage and many other very low current applications.

## CEFENDABE ZUNTS

## High Voltage

This popular line of tubular rectifiers offers the design engineer a compactlong lived high voltage-low current source of DC power.

Please writc, wire or phone for complete information on all types of Sarkes Tarzian Seleniam Recififers.

# Sarkes Tarzian, Inc. RECTIFIER DIVISION 

Dept. E-2 415 N. College Ave., Bloomington, Indiana
controls the sweep velocity. Diode $V_{4}$ prevents the suppressor from becoming positive and $V_{5}$ prevents grid current in $V_{2}$.

Amplitude of the sweep is determined by $V_{5}$ and the amplitude control, and is independent of the sweep velocity.

This article has been abstracted from "The Miller Transitron" by O. C. Wells appearing in the September 1952 issue of Electronic Engineer.

## Neon Lamp Flip-Flop and Binary Counter

By H. A. Vuylsteke Technische Laboratoria University of Ghent $G$ hent, Belgium
NEON GLOW LAMPS in place of the usual triodes or thyratrons in flipflop and binary counter circuits have many advantages including low current consumption, low cost and stable operation when bulbs having the same operating characteristics are used. The circuits described here use NE-2 lamps.

The basic circuit is shown in Fig. 1A. Two glowlamps are connected in series with a resistance $R$. The midpoint voltage $V / 2$ is chosen between the firing and extinction voltage of the lamps being used.
A triggering pulse applied through capacitor $C$ to the midpoint will cause one of the lamps to ignite;


FIG. 1-Basic circuit (A) used in flip. flop and binary counter. Flip.flop (B) uses NE-2 neon lamps


## CORDITIS-FREE CORDS BY...


this ignition will increase the potential difference across the other lamp causing it to fire. A positive pulse will cause $L_{\text {: }}$ to fire first, followed immediately by $L_{1}$. A negative pulse will fire $L_{1}$ first.
The flip-flop circuit shown in Fig. 1 B is made by doubling the original cireuit and adding a commutation capacitor A. A trigger pulse of about 20 volts, either positive or negative, will cause the circuit to function. A positive pulse will trigger one of the two left-hand lamps $L_{\text {i }}$ or $L$. This will be followed immediately by iqnition of the opposite right-hand lamp $L_{2}$ or $L_{4}$. Assuming $L_{1}$ to fire followed by $L_{2}$ the potential at point $B$ will be lowered depending on the current drain, while the potential of point $B^{\prime}$ remains at full voltage.

A subsequent pulse, either positive or negative, will fire the other pair of glowlamps, $L_{8}$ and $L_{4}$. This will cause a voltage drop at point $B^{\prime}$, which will be applied through the commutation capacitor to point $B$ lowering the voltage at $B$ below the extinction voltage of lamps $L_{\text {, }}$ and $L_{\text {. }}$. These lamps will go to the nonconducting state and $L_{*}$ and $L_{\text {. }}$ will continue to glow. Each successive pulse will cause the alternate pair to glow.

This circuit can be used as a binary counter by repeating the same circuit $n$ times for counting $2^{n}$. The pulses can be applied to successive stages by connecting point $B^{\prime}$ to the input of the next flip-flop through a suitable capacitor and clipper to suppress the negative pulse.

Glow lamps used in these circuits have the added advantage of indicating the state of equilibrium without supplementary equipment. Due to their exceptionally small current drain they are well suited to portable use with batteries.

## Tulbe Envelope Temperature

By Walter R. Jones Pranel on Blection Tubes 3 3G Bronthay. sith Floor Now York $1 \approx, ~ N . Y$.

Operiting temperature of tube envelopes becomes increasingly important as the size of electronic equipment is reduced. If the same

# Are any of these problems yours? 



1. Need rubber-like properties for long periods of time under extreme temperatures? EMPIRE $\left.{ }^{\circledR}\right)$ Silicone Rubber Coated Glass Cloth (Class H insulation) is suitable for use over a temperature range of $-70^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F} \ldots$ is resistant to thermal shock ... will not crack, become brittle or deteriorate at high or low temperatures... offers good resistance to lubricating oils and most chemicals . . . has good dielectric strength and low power factor.

2. Looking for a versatile material with special mechanical, electrical and structurall properties? LAMICOIDB a laminated plastic made with various fillers - is available in standard NEMA grades and others, with characteristics such as punching adaptability, heat and moisture resistance, tensile strength, impact strength, low loss factor, high dielectric strength, and properties "custommade" to your specifications.

3. Looking for molding plate for Class H installations? Silicone molding plate for Class H applications which could not be produced successfully with regular built-up mica splittings can now be manufactured from ISOMICA* (built-up continuous mica sheets). ISOMICA silicone bonded molding plate has excellent moldability...excellent retention of shape... and an extremely high degree of homogeneity.
*Trade-mark
4. Want your signs, instrument panels, nameplates and dials to look better, last longer, be easier to install and maintain? DECORATIVE LAMICOID lends itself readily to marking by engraving, sandblasting, silk screen and rubber-plate printing, painting, filling or use of printed matter. Resists wear, aging, weathering, oils, corrosive vapors, moisture and temperature extremes. Wipes clean with a damp cloth.

Whatever electrical insulating materials you need, MIC() makes them best. We manulacture all standard types and many special materials, or tabricate parts to your specifications. Send us your blueprints or problems today.


Schenectady 1, New York

Offices in Principal Cities
LAMICOID® (Laminated Plastic) - MICANITEO (Built-up Mica) • EMPIRE (Varnished Fabrics and Paper) • FABRICATED MICA • ISOMICA*

# Century MODEL 1809 BRIDGE CONTROL UNIT 

## FOR VIBRATION AND STRESS ANALYSIS



Designed as a companion unit to Century's famous Model 409 Oscillograph, the Model 1809 Bridge Control Unit is the latest addition to Century's line of industry-standard vibration and stress analyzing equipment. Packaged in a small, compact space, the unit contains all of the facilities necessary for use with 12 channels of resistance strain gages or bridge-type transducers. Where used with the Model 409 Oscillograph, it is necessary only ta connect strain gages and power source to have a complete stress-strain measuring and recording system, small and rugged enough to be placed in an aircraft wing tip or guided missile warhead.

## FEATURES:

Size: $41 / 2^{\prime \prime} \times 7^{\prime \prime} \times 11^{\prime \prime}$.
Weight: $101 / 2$ pounds.
Aluminum case.
Up to 12 channels.

For any resistance strain gage or bridge-type transducer
May be used with direct indicating instrument.
Power: Control unit, 22-28 Volt D.C.
Strain gage, 6.28 Volt D.C.

Write for Bulletin CGC-307


The Century Model 409 Oscillograph has been designed for recording data where space and weight requirements are limited. The Oscillograph has been tested to record faithfully while subjected to accelerations up to 20 G s.

FEATURES:
Size: $5^{\prime \prime} \times 615 / 16^{\prime \prime} \times 1115 / 6^{\prime \prime}$ 。
Weight: 13 pounds.
Cast aluminum case.
Paper speeds variable $1 / 2^{\prime \prime}$ to $6^{\prime \prime}$ and $2^{\prime \prime}$ to $24^{\prime \prime}$ per second.

Detachable daylight loading magazine with a capacity of $35 / 8^{\prime \prime} \times 100^{\prime}$ paper.

2 to 14 individual channels.
Trace identification.
Trace viewing.

Write for Bulletin CGC-303

## Centrory

GEOPHYSIGAL CORPORATIOK TULSA, OXLAHOMA

[^19]
# The Dimensional Stability of pells Perfect Product Performance 

## Schematic dia-

gram shows
how useful
movement of
Nivar rod corresponds faith. fully to the dimensional changes of the copper tube.


Robertshaw-Grayson Unitrol" fuliy automatic temperafure control for gas water heaters


# How Robertshaw-Fulton built a better Water Heater Control with Driver-Harris NILVAR 

The new "Unitrol" Robertshaw-Grayson gas water heater control streamlines three essential controls into one valve body: a snap action thermostat, a snap action pilot, and a large-capacity gas cock. This reduces inventory for the water heater manufacturer and simplifies part stocking for the dealer.

The "Unitrol" provides a thermostat capable of delivering maximum amount of useful movement, by employing a copper tube enclosing a Nilvar alloy rod. The tube expands and contracts very appreciably in response to immersion temperatures. But the Nilvar rod, because it is dimensionally stable, does not vary in length. Since the free end of the Nilvar rod actuates the working gas valve, the slightest movement of the temperature-
sensitive copper tube is fully utilized to control flow of gas to the burner.

Says Robertshaw-Fulton: "The outstanding dimensional stability of Nilvar actually permits minute changes in water temperature to regulate the heat supplied by the burner, thus assuring extremely accurate operation."

Nilvar has a temperature coefficient of expansion as low as . 000001 per degree C., lowest of any alloy; comparable to that of quartz. Somewhere in your engineering operations such extraordinary dimensional stability may solve a problem-help to perfect product performance. We shall be glad to make recommendations based on your particular needs.
*T.M. Rog U.S Pat. OR.)


## Driver-Harris Company

## HARRISON, NEW JERSEY

BRANCHES: Chirago, Detroit, Cleveland, Los Angeles, San Francisco In Conada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, Ontario.

MORE WAYSTO
SQUEEZE PENNIES

## OUT OF

UPSET SPECIALS COSTS
Specially designed upset products are solving thousands of problems. Dozens of design pointers on them are yours for the asking. Send us your sketches, prints, finished products for suggestions.

machine screws and special fasteners are our business


WRITE FOR OUR CATALOG
tw PROGRESSIVE MANUFACTURING COMPANY 50 NORWOOD ST., TORRINGTON, CONN.
perature of the envelone or the parts themselves exceeds the temperatures reached while the tubes were being pumped during production, it is likely that varying amounts of gases will adversely aflect tube life.

Normally, the function of the getter that produces the silver-like deposit or the black deposit on some of the newer tubes is to provide a means for removing any gases that may subsequently be set free during the operation of the tube. There is a limited amount of gas that this getter material can safe-

TABLE II-Bulb Temperatures $23^{\circ}$ C Ambient at Sea Level

| Type | Percent Maximum Plate Dissipation |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bulb | 20 | 40 | 60 | 80 | 100 |
| $12 \mathrm{AU7}$ | T6 $1 / 2$ | 77 C | $100 C$ | 118 C | $133 C$ | 146 C |
| 6 C 4 | T5 ${ }^{16}$ | 64 | 82 | 98 | 113 | 125 |
| SAH6 | T51/2 | 88 | 103 | 116 | 126 | 132 |
| 5U4G | ST16 | 105 | 116 | 127 | 138 | 149 |
| 5687 | T61/2 | 123 | 140 | 155 | 155 | 183 |

ly pick up. Amounts beyond this will result in the tube's gas content being materially increased. In addition, if the glass bulb should be heated sufficientiy the getter patch may be caused to migrate or leave the bulb.

It may redeposit itself on some cooler part of the tube so that a considerable amount of gas trapped by the getter will now be released and may not recombine when the getter condenses on the cooler portions of the tube. In this instance, then, the gas content would also be materially increased. Should the getter condense on the mica supports of the tube there is a possibility that leakage between elements supported in the mica may be increased. This leakage may affect performance materially.

As seen from Table I, a tendency to decrease the size of electronic gear aggravates the bulb-temperature condition. Tube life, in general, can be extended by maintaining low temperatures for the glass envelope. This is especially important in high-power output tubes because of their higher plate and cathode dissipations. The tempera-

## FREQUENCY CONTROL FOR MILITARY APPLICATION

|  | bLILEY CRYSTAL HOLDER | FREQUENCY RANGE MEGRCYOUES |  | frequency tolerance over OPERATING RANGE |
| :---: | :---: | :---: | :---: | :---: |
| CR-15 | AR2 ${ }^{\text {a }}$ | 0.080-0.19999 | $-40^{\circ}$ to $+70^{\circ}$ | $\pm .01 \%$ |
| CR-16 | AR23W | 0.080-0.19999 | $-40^{\circ}$ to 10 | $\pm .01 \%$ |
| CR-18 | BH6A | 0.8-15.0 | $58.790^{\circ}$ | $\pm .005 \%$ |
| CR-19 | BH6A |  | $-55^{\circ}$ to $+90^{\circ}$ | $\pm .005 \%$ |
| CR-23 | H6A | 10.0-75.0 | $-55^{\circ}$ to $+90^{\circ}$ | $\pm .005 \%$ |
| CR-24 | BH7A | 15.0-50.0 | $-55^{\circ}$ to + +98 | $\pm .005 \%$ |
| CR-27 | BH6A | 0.8-15.0 | D $3.40+80^{\circ}$ | $\pm .002 \%$ |
| CR-28 | BH6A | $0.1-200$ | + $70^{\circ}$ to $+80^{\circ}$ | $\pm .002 \%$ |
| CR-29 | AR2al | 0.080-0.19999 | $+70^{\circ}$ to $+80^{\circ}$ | (egars) |
| CR-30 | AR23W | 0.080-0.19999 | $+70^{\circ}$ to +80 | $\pm .002 \%$ |
| CR-32 | BH6A | 10.0-75.0 | Etar $0^{\circ}+80^{\circ}$ | $\pm .002 \%$ |
| CR-33 | BH6A |  | $-55^{\circ}$ to $+90^{\circ}$ | $\pm .005 \%$ |
| CR-35 | BH6A | 0.800-20.0 | $+80^{\circ}$ to $+90^{\circ}$ | $\pm .002 \%$ |
| CR-36 | BH6A | 0.800-15.0 | $80^{\circ}$ to $+90^{\circ}$ | FAdoz\% |
| CR-37 | BH9A | 0.090-0.250 | $0^{\circ}$ | $\pm .02 \%$ |
| CR-42 | BH9A | $0.090 / 8.250$ | $70^{\circ}$ to $480^{\circ}$ | $\pm .003 \%$ |
| CR-44 | BH6A | $15.0-20.0$ | $+80^{\circ}$ 10 $+90^{\circ}$ | $\pm .002 \%$ |
| CR-45 | BH6A | 0.455 | $-40^{\circ}$ to $+70^{\circ}$ | $\pm .02 \%$ |
| CR-46 | BH6A | 0.2-0.500 | $-40^{\circ}$ to $+70^{\circ}$ | $\pm .01 \%$ |
| CR-47 | BH6A | 0.2-0.500 | $+70^{\circ}$ to $+80^{\circ}$ | $\pm .002 \%$ |

> BULLETIN NO. 43 CONTAINS A QUICK REFERENCE INDEXFOR MILITARY TYPE CRYSTALUNITS---SENTUPONREQUEST

## Eliley carsmats

## BLILEY ELECTRIC COMPANY UNION STATION BUILDING, ERIE, PA.

## IIDEX ROTARY SOLANODSS ... give positive, powerful snap action!


he magnetic pull moves the armature along the Solenoid axis. This action is efficiently converted into a rotary motion by means of ball bearings on inclined races. The inclined ball races are made to compensate for the mognetic pull increase as the Solenoid air gap closes, theieby providing substantially constant torque throughout the Solenoid stroke. The rotary snap-action power of the Ledex can be efficiently harnessed with a minimum of linkages, through the use of one or more standard features available on all models.

## here's why LEDEX ROTARY SOLENOID's ore dependoble!



As can be seen from the exploded view, Ledex Rotary Solenoids cre simply constructed with few moving parts. All parts are manufactured to exacting tolerances and are carefully inspected and assembled.

The cofper wire coil, the heart of the Solenoid, was developed especially for this product. It is wound by a precision winding process that puts a maximum amount of magnet wire into available space . . . giving tremendous power to compact Ledex Rotary Solenoids.
six basic LeDEX ROTARY SOLENODS to choose from!

| Model Number | 2 | 3 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter | $11 / 8^{\prime \prime}$ | $136^{\prime \prime}$ | $19 / 8^{\prime \prime}$ | $21 / 4^{\prime \prime}$ | $23 / 4^{\prime \prime}$ | $33 / 8^{\prime \prime}$ |
| Torque lb.-in. | $1 / 4$ | 1 | 5 | 10 | 25 | 50 |
| Weight lbs. | $1 / 8$ | $1 / 4$ | $1 / 2$ | 1 | $21 / 4$ | $41 / 4$ |

- $45^{\circ}$ stroke intermillent duly.

Engineering data is available upon request. Write for descriptive literature today!


I NC

123 WEBSTER STREET, DAYTON 2. OHIO
ture rise in the envelope may be limited by: reduction of total tube dissipation; provision for improved ventilation; maintenance of low ambient temperatures.

In general, the envelope temperature of small receiving-type power tubes should be kept below 175 dey centigrade for increased reliability. The chief effect of high temperature on vacuum tubes is not a sudden change in operating characteristics but a gradual deterioration of characteristics. Table II indicates the operating bulb temperatures for five types of tubes, having various sized envelopes for plate dissipations ranging from 20 percent up to maximum rated dissipations. This gives an idea of the extent to which it is possible to reduce bulb temperatures by decreasing the total tube plate dissipation.

TABLE III—Sea Level Bulb Temperatures vs Dissipations and Ambient Temperature Variations

|  | Watts per Sq In |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ambient | 1 | 2 | 3 | 4 | 5 |  |
|  | Bulb | Temp $\operatorname{deg} C$ at | HoHest | Spot |  |  |
| $23 C$ | 100 | 170 | 230 | 280 | 310 |  |
| 160 | 220 | 260 | 300 | 340 | 370 |  |
| 250 | 310 | 350 | 390 | 420 | 450 |  |

The ultimate bulb temperature depends not only upon the dissipation within the tube itself but also upon the temperature of the surrounding air immediately adjacent to the tube envelope. Table III shows how these ambient temperatures affect the bulb temperature for various watts per square inch dissipation. From these data it is apparent that precautions must be taken to keep the ventilation around the tubes such that the temperature will be as low as possible.

The importance of bulb temperatures on tube life can be noted in recent information published by various tube manufacturers showing the life which may be expected for subminiature tubes. Most of these tubes are rated for maximum bulb temperatures of 200 deg with a few having a rating of 250 deg C. A reduction of bulb temperature on the order of 20 percent when

$\mathbb{W}$ hatever your protection requirements, you'll find the right fuse faster when you look first to BUSS. All types and sizes, from $1 / 500$ ampere up, are included in the complete BUSS line. This can simplify your purchasing and stock handling.

To assure protection to both the product and your good name, every BUSS fuse is tested on a sensitive, electronic device for correct construction, calibration and physical dimensions.

TO HELP YOU GET STARTED THE RIGHT WAY
BUSS Fuse Engineers will gladly assist you in selecting the fuse to suit your needs best... a fuse that if possible will be available in local wholesalers stocks.

BUSSMANN Mfg. CO., Division of McGraw Electric Co. University at Jefferson, St. Louis 7, Missouri

BUSSMANN Mfg. Co. (Division of McGraw Electric Co.) Universiry ar Jefferson. St. Louis 7, Mo.
flease send me bullerin SFB containing facts on BUSS small dimension fuses and fuse holders. Name
Tille
Company
Address
City \& Zone $\qquad$ Sitte $\qquad$ ELRC-453


## 17 mills and factories - 40 Sales offices

Ow 65 e Yeac
operating in the region of 200 deg C bulb temperatures will result in a substantial increase in the life expectancy of the tubes. The cooling of the tube envelope is the most important consideration in mounting the tube.

A loose-fitting shield such as is commonly employed with miniature tubes may increase the temperature appreciably. The situation arises because the shield is not tight fitting but instead provides a blanket of hot air around the tube. Thus the shield does not provide a good thermal contact with bulb of the tube or to the chassis and cannot effectively cool the bulb.

If shields are employed, and they are tight fitting and can be fastened directly to the chassis, a considerable amount of heat can usually be removed in this manner. To obtain maximum heat radiation, the shield should not be plated and should not be polished.

So far, sea-level altitudes have been assumed. Many tubes operate at high altitudes some or all of the time. This environment aggravates the cooling problem still more since the density of the air decreases with altitude. The decreased effective cooling of a tube at higher altitudes requires that the total tube dissipation be derated in order not to exceed critical bulb temperatures. This derating depends upon the altitude and may amount to as much as 40 or 50 percent.

To obtain maximum reliability from vacuum tubes and equipment, it is important that pains be taken to keep the operating temperature of the bulb at its hottest spot within the limit specified by data sheets.

## Bibliography

M. L. Miller, The Design of Electronic Equipment Using Subminiature Components, Proc $I R E$, Feb. 1950.
B. O. Buckland, Flectron Tube Heat Transfer Data, Elec. Eng., Nov. 1951.
R. J. Bibberow, Electron Tube Ratings at Very High Altitudes, Tele-Tech, May 1951.
P. T. Werks, Reliability in Miniature and Subminiatue Tubes, Proc $I R F$, May D. G. Koch, Increasing Tube Reliability in Industrial Circuits, Prod. Eng., Juue 1952 .
"Data on Subminiature 'rubes," Sylvania Electric Products, Emporium, Pennsylvania.
Data on Subminiature Tubes," Raytheon Manufacturing Company, Newton, Massachusetts.
R.J. E. Whittier, Mechanical Consideratfons Afferting Vacium Tube Reliablity, Part 1, Tcle-Tech, Feh. 1952.

# Shrimp boats are a'comin'... 

Shrimp boats cncounter rough seas. Their safe return can depend upon the reliable electrical power supply, provided by Onan generators.

To insure performance for these and all AC and DC, military and commercial regulated power units they manufacture, D. W. Onan \& Sons lne., has standardized on Regohm voltage regulators. Whether on sea, land or air applications, this low cost, compact, electro-mechanical controller den-


Powered by Onan Electric Generators

## Controlled by

 Regohm
## Voltage Regulators


onstrates rugged ability to withstand severe vibration, shock or ambient temperature conditions. And you can't beat the band of Regolm's voltage regulation. Standard models provide constant voltage output within less than $\pm 2 \%$.

Onan Engineers like these additional advantages of Regohm Voltage Regulators:

1. Size-Regohm is small in size, light in weight, but big in performance. It is a natural where economy of space and weight are major considerations.
2. Low Cost-Regohm costs less, does more, than the complex equipment that once was the only avaitable solution to control problems.
3. System Stabilizing - With its high speed averaging effect and a built-in, thoroughly reliable dashpot, Regohm will stabilize control systems with widely varying characteristics.
4. Low Operating Power-Low signal power requirement of one watt for solenoid bias makes Regohm easily applicable to special units.
5. Long Life-In properly engineered installations, Regohm's life is measured in years. Shelf life is substantially unlimited.
6. Simplified Maintenance-Regohm's plug-in feature simplifies replacement and maintenance-there are no parts to renew or lubricate.

Call on our engincering and research facilities to belp you devclop optimun design for your equipment and system. Leam bow Regobnn can belp you zith your regulation problem. Write for Bulletin 505.00. Address Dept. E, Electric Regulator Corp., Norwalk, Connecticut.

## Production Techniques

Edited by JOHN MARKUS
Keyed Mandrels and Dereelers Speed
Winding of Coils...................260
Radar Antenna Lens Made from Square Tubing
Production Testing of Rectifier Plates. 262
Holding Fixtures for Controls. ....... 266
Twisting Filament Leads............. 268
Trimming Metal Shells................. 272
Capacitor Winding Techniques........ 274

Sponge Rubber Malle1................. 290
Spring Rack Holds Parts............. . 292
Making Concrete Dust-Free . . . . . . . . . . 294
Blower Speeds Cooling of Induction Soldering . ........................... . 296
Soldering Iron Stakes Plastic Pegs.... 296
Tweezer-Type Soldering Iron . . . . . . . . 298
Production-Testing Filters .............. 300
Testing Employee Vision............... . . 310

OTHER DEPARTMENTS
featured in this issue:

Page
Electrons At Work..... 196
New Products 312

Plants and People....... 384
New Books . . . . . . ...... . 410
Backtalk . . . . . . . . . . . . . 420

## Keyed Mandrels and Dereelers Speed Winding of Coils

Horizontal flyback coils are wound four at a time by a single operator with practically no machine off-time for loading and unloading, through use of multiple mandrels designed especially for the purpose by Crosley Division oî Avco Mfg. Corp. The operator disassembles a filled mandrel and reassembles it with empty coil forms during the winding cycle time.

Each flyback transformer has four coils, one of which is tapped, giving a total of nine leads. These must be brought out at identical
positions on each unit, to insure positive identification during subsequent assembly operations. Keying of the coil forms and all parts of the mandrel achieves this by insuring that the mandrel can be assembled only one way. Appropriately spaced metal pins on keyed spacers are used between the coil forms; as each coil lead is brought out, it is wrapped around the correct pin. The lead is then anchored in position on the coil with a tab of paper, to insure correct positioning of leads after they have been


Construction of dereeler. Mounting bolt has drilled hole; dereeler bolt fits loosely in this and has two lock nuts at its bottom end so it can turn freely against slight spring friction without getting loose. Dereelers reduce wire tension and make it more constant, since heavy spool does not turn
anwound from the metal pegs during disassembly of the mandrel.

On this and other winding machines in Crosley's television receiver plant, simple dereelers are used to maintain essentially constant wire tension with stationary spools of wire. A free-spinning wire eyelet is mounted on top of each spool in such a way that it rotates at a speed directly related to that at which wire is being wound on the coils,
When a spool is empty, the mounting bolt of the dereeler is loosened with a wrench so that the entire assembly can be spun ont with the fingers for changing

Winding flyback coils in multiples of four on keyed mandrel. Dereelers are on tops of wire spools at lower right. Tape for anchoring leads is in heavy dispenser, with ond of tape anchored over tailstock so pieces can be cut easily with scissors that are always in operator's right hand. While winding is in progress, operator cuts the adhesive tape into strips and sticks them on her left hand, ready for instant use


spools. The mounting bolt applies pressure to the spool when tightened.

A shaft for the spool is set into a steel strap that is part of the coil-
winding machine. A small spring applies enough drag to the Hying eyelet arm to prevent overshooting and backlash of fine wire when the machine is stopped.

Radar Antenna Lens Made From Square 'Tubing



Experimental radar lens made of square Monel tubing, as it appeared after furnace brazing and removal of solder

USE of thin-wall seamless square Monel tubing solved a fabricating problem in connection with the production of an experimental eggcrate radar screen lens for the U. S. Signal Corps. The requirement was a small compact parabolic antenna lens having 988 precisely dimensioned square tubular openings with comparatively thin walls. The overall size of the lens was 30 inches by 20 inches.

The standard method of making this type of lens, involving assembly of metal strips much in the fashion of the cardboard strips for egg crates and then soldering, was found to be unsatisfactory for this clesign. The chief problem was making openings which were absolutely square while maintaining thin walls and sharp corners.

The next technique tried by the contractor, I-T-E Circuit Breaker Co., Philadelphia, Pa ., was assembling square brass tubing cut to exact length, then furnace-brazing in a jig. Although the softest available silver solder was used, the tubing failed to braze properly and serious cracks developed at the sharp corners.

Investigation then revealed that one grade of hard-drawn seamless Monel tubing made by Superior Tube Co. of Norristown, Pa., would provide the desired strength, cor-
rosion resistance, electrical properties and ease of brazing. The pieces were ordered already cut to their exact lengths, then were flash nickel-plated, tin-plated, coated with soft silver solder, assembled in an adjustable jig and furnace-brazed.

## Production Testing of Rectifier Plates

By Jack Bradshaw
Quality Control Engineer
Bradley Laboratories
New Haren, Conn.
HUMAN error in reading meters, formerly a bottleneck in testing daily production of copper-oxide and selenium rectifier plates, has been eliminated by the development of a new and entirely automatic tester that makes the required reverse leakage test on approximately 25,000 plates a day. Time required per test is only a fraction of that for the former manual operation.

Plates to be tested are loaded into the hopper at the top of the machine in batches of about 10,000 , hence loading iş required only two or three times a day. The machine then runs unattended, passing acceptable units down the slides to a waiting tote box and dropping rejects through the slide to a pan underneath. Fingers in the slowlyrotating motor-driven hopper push the plates one at a time out onto the start of the plastic chute, down which they slide by gravity to a solenoid-actuated gate. This opens


Automatic tester for tiny rectifier plates. Parts are loaded into circular rotating hopper at upper left, sorted according to polarity at $V$ junction in chute, and tested for reverse leakage at bottom. Test rack is at right

## "We had a high voltage power supply problem ...

"Our problem was to find a 30,000 volt power supply to be used as a source of voltage for kinescopes. It also had to be suitable for experimental work and in airborne equipment. The main considerations were small size and light weight, but also we needed a design that would conform to military specifications.
"We consulted 'CP' and told them
what we needed. . ."



The "CP" Engineering Department designed a power supply with the following characteristics:

Input voltage: 115 V AC
Frequency: 320 to 1000 CPS
Output voltage: 0.30 KV continuously variable -.3 ma rated current.
Ripple voltage: Less than . 1 peak-to-peak at maximum rated current of .3 ma
Temperature: To operate over a range of $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ and $95 \%$ relative humidity.
General: To operate effectively in any position.
Taking advantage of hermetic sealing and oil-filled construction in addition to new techniques and use of plastic film for high voltage capacitors, Condenser Products' Engineers developed type PS30-3C400 to comply with all requirements. Size of unit is $51 / 2 \mathrm{x}$ $5 \frac{1}{2} \times 61 / 4$ ". Total weight: 11 lbs .
"CP" is now filling orders for HiVolt Power Supplies
in the following ranges: $2,000 \mathrm{~V}, 5,000 \mathrm{~V}, 12,000 \mathrm{~V}, 15,000 \mathrm{~V}, 30,000 \mathrm{~V}$, and $50,000 \mathrm{~V}$, at frequencies of 60 cycles and 400 to 1,000 cycles. HiVolt Power Supplies are engineered for various applications. Because of their small size, light weight, flexibility, and ease of operation "CP" HiVolt Power Supplies are ideal for operation of display tubes, radiation counters, photoflash devices, dust and electrostatic precipitators, oscilloscopes, insulation

## - Your engineering problem will receive the immediate attention of our design and specification engineers.

testers, spectographic analyzers and other equipment.


MicROPOTAN
BORG MICROPOT TEN-TURN POTENTIOM-
ETER: Built to fit the specifications of control system engineers and designers . . . constructed with Micro accuracy for precise voltage adjustments . . . featuring an assembly scientifically designed, machined, assembled and automatically machine tested for linearity of $\pm 0.1 \%$ and $0.05 \%$, zerobased. MICROPOTS ARE AVAILABLE IN 1.15 to 3 OHM and 30 to $250,000 \mathrm{OHM}$ RANGES FOR IMMEDIATE SHIPMENT.

BORG MICRODIAL: Two concentrically mounted dials: one for counting increments of each turn and the other for counting turns
delivered completely assembled with dials synchronized. Outstanding features include smooth, uniform action... no backlash between incremental dial and potentiometer contact . . . less wear, only one moving part aside from the two dials . . . contact position indicated to an indexed accuracy of 1 part in 1,000.

> MICROPOT-MICRODIAL CATALOG SENT PROMPTLY ON REQUEST
at regular intervals under control of a motor-driven sequence timer to let the plates through with adequate spacing so they do not pile up and touch each other at the test stations below. The tiny plates, only ${ }^{3}{ }^{3}$ inch in diameter, ride flat down the chute.

As each plate emerges from the first gate in the chute, a contact arm is pressed down on it by a motor-driven linkage and the resistance of the plate is measured. Since forward and reverse resistance values vary greatly, the resistance reading serves to tell which side of the plate is up. An electrical circuit responds to this resistance and actuates either of two gate solenoids, one controlling the entrance to each of the two slides at the fork in the chute. Plates with positive side up go down the lefthand chute. All other plates go down the righthand chute to a gate and second polarity-checking station. This applies a d-c voltage across each plate and measures resulting current to verify that the plate is upside-down, then actuates a motor-driven linkage that inverts the plate and lets it go down the chute.

A second check is necessary because some correctly-positioned plates can get into this chute also; these are passed without being inverted.

Since plates are positive-side-up in both chutes when approaching the bottom, the test stations here are identical. Solenoid-operated gates again stop the plates and let them through at spaced intervals, and motor-operated linkages again push contacts against each plate in turn for the reverse-leakage test. A conventional multistage amplifier in the associated test rack amplifies this leakage current. If the resulting value is too high, one relay operates to actuate a rejecting mechanism that drops the plate through a hole in the slide into a scrap bin. If the leakage value is within tolerance, another relay operates to actuate the lowest solenoid-operated gate in that chute, allowing the plate to slide out into the tote box below the end of the chute.

The test rack contains controls and meters that permit setting up



For more than 18 years, Eclipse-Pioneer has been a leader in the development and production of high precision synchros for use in automatic control circuits of aiceraft, marine and other industrial applications. Today, thanks to this long experience and specialization, Eclipse-Pioneer has available a complete line of standard (1.431" dia. X $1.631^{\prime \prime} \mathrm{Ig}$.) and Pygmy ( $0.937^{\prime \prime}$ dia. X $1.278^{\prime \prime}$ Ig.) Autosyn synchros of unmatched precision. Furthermore, current production quantities and techniques have reduced cost to a new low. For either present or future requirements, it will pay you to investigate Eclipse-Pioneer high precision at the new low cost.
*reg. trade mark bendix ayiation corporation
AVERAGE ELECTRICAL CHARACTERISTICS-AY-200 SERIES**

|  | $\begin{gathered} \text { Type } \\ \text { Number } \end{gathered}$ | Input Voltage Neminal Excltation | Input <br> Currant <br> Milliampores | $\begin{aligned} & \begin{array}{l} \text { Input } \\ \text { Powor } \\ \text { Watt: } \end{array} \end{aligned}$ | Input Impedence Ohms | Stater Output Voltapes Line to Line | Retor <br> Rasistanee <br> (DC) <br> 0 hms | Stater Rentitance (DC) 0 hms | Meximum Error Sprasd Minutes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmitters | AY201.1 | 26v, 409m, 1 ph . | 225 | 1.25 | $25+1115$ | 11.8 | 9.5 | 3.5 | 15 |
|  | AY201-4 | 26V, 400~. 1 ph. | 100 | 0.45 | $45+\mathrm{j} 225$ | 11.8 | 16.0 | 6.7 | 20 |
| Receivers | AY201-2 | $26 \mathrm{~V}, 400 \sim .1 \mathrm{ph}$. | 100 | 0.45 | $45+\mathrm{j} 225$ | 11.8 | 16.0 | 6.7 | 45 |
| Control | AY201-3 | From Tians. Autcsyn | Dependent Upon Circuit Design |  |  |  | 42.0 | 10.8 | 15 |
| Trans- | AY201-5 | From Trans. Autosyn | Dependent Upon Circuit Design |  |  |  | 250.0 | 63.0 | 15 |
| Resolvers | AY221-3 | $26 \mathrm{~V}, 400 \sim, 1 \mathrm{ph}$. | 60 | 0.35 | $108+\mathrm{j} 425$ | 11.8 | 53.0 | 12.5 | 20 |
|  | AY241-5 | $\mathrm{lV}, 30 \sim, 1 \mathrm{ph}$. | 3.7 | - | $240+\mathrm{j} 130$ | 0.34 | 239.0 | 180.0 | 40 |
| Differentials | AY231-3 | Fiom Trans. Autosyn | Dependent Upon Circuit Design |  |  |  | 14.0 | 10.8 | 20 |
| **Also includes High Frequency Resolvers designed for use up to 100KC (AY251-24)AY-500 (PYGMY) SERIES |  |  |  |  |  |  |  |  |  |
| Transmitters | AY503-4 | 26V. $400 \sim, 1 \mathrm{ph}$. | 235 | 2.2 | $45+1100$ | 11.8 | 25.0 | 10.5 | 24 |
| Roceivers | AY503-2 | 26V, 400~, 1 ph. | 235 | 2.2 | $45+1100$ | 11.8 | 23.0 | 10.5 | 90 |
| Control Transformers | AY503-3 | From Trans. Attesyn | Dependent Upon Circuit Design |  |  |  | 170.0 | 45.0 | 24 |
|  | AY503-5 | From Trans. Alitosyn | Dependent Upon Circuit Design |  |  |  | 550.0 | 188.0 | 30 |
| Resolvers | AY523-3 | $26 \mathrm{~V}, 40 \mathrm{\sim} \sim, 1 \mathrm{ph}$. | 45 | 0.5 | $290+\mathrm{j} 490$ | 11.8 | 210.0 | 42.0 | 30 |
|  | AY543.5 | $26 \mathrm{~V}, 400 \sim 11 \mathrm{ph}$. | 9 | 0.1 | $900+\mathrm{j} 2200$ | 11.8 | 560.0 | 165.0 | 30 |
| Differentials | AY533-3 | From Irans. Autisyn | Dependent Upon Circuit Design |  |  |  | 45.0 | 93.0 | 30 |

For detailed information, write to Dept. H.

# ECLIPSE-PIONEER DIVISION of 

TETERBORO, NEW JERSEY


Export Sales: Bendix International Division, 72 fifth Avenue, New York 11, N. Y.
the tester for many different voltage ratings and permissible leakage values for plates. The meters also permit monitorirg of tester operation at any time merely by pressing a button under each meter in turn. The machine was built to Bradley specifications by Talco Engineering Co., New Haven, Conn.

## Holding Fixtures



Six-unit holding fixture speeds subassembly work on television receiver controls by providing best work angle

A special Crosley-designed fixture holds six potentiometer units at the optimum angle for soldering leads and small components to their terminals at a subassembly position in the Cincinnati radio and television plant of this firm.

Each fixture has threaded jaws that fit over the soft brass threads of the control without damaging the threads. The threaded jaws


Method of opening threaded jaws of Crosley-designed fixture for loading and unloading


STRONG THERMOSETTING ADHESIVE, tough backing and thin caliper make "Scotch" Yellow Flat-back Paper Tape No. 39 ideal for outside wraps on primary windings.


TOUGHNESS AND CONFORMABILITY of "Scotch" Yellow Crepe Paper Tape No. 38 with Thermosetting Adhesive means dependable, compact TV deflection coils.

## "Sootch"paper tapes speed coil winding!

Here are the real workhorses of the coil construction industry-"Scotch" Electrical Tapes with unified paper backings! They're easy to use and strong, have superior electrical properties. And they work equally well in hand or machine application. Most important: these tapes are tailored for specific needs.

For example, the toughness and conform-
ability of "Scotch" No. 38 Yellow Crepe Paper Tape, and the holding and protecting properties of "Scotch" No. 39 Yellow Flatback Paper Tape have made them favorites. Their thermosetting adhesives, pioneered and perfected by us, cure thoroughly-leave no wet spots to cause trouble.

See what "Scotch" Electrical Paper Tapes can do for you! Call your supplier today!

## FREE! POCKET TAPE CALCULATOR

quiskly gives you exact amount of tape needed for production coil winding operations. Includes "Scotch" Electrical Paper Tapes plus 17 others with a wide range of specialized backings in the famous "Scotch" Brand Electrical Tape family. Write Minnesota Mining \& Mfg. Co., Dept. E-43, St. Paul 6, Minn.



DuMont fixture for holding single control. Shaft rather than bushing is locked in position
also prevent pulling: out the entire control accidentally when working with pliers on the joints. One jaw is rigidly mounted on the base plate of the fixture, and the other is on a spring-loaded arm. Pressing the back end of this arm separates the jaws for unloading and loading.

Another type of holding fisture for controls is used at subassembly positions in DuMont's television receiver plant in East Paterson, N. J. This is an individual fixture having a setscrew for fastening it to the front edge oif the workbench. The hole in the fixture is a loose fit for the shaft of the control. A knurled knob is provided for locking the shaft in the fixture. The multicontact switch can be rotated as required for soldering work, but the switch has sufficient detent action so it cannot spin around during the work.

## Twisting Filament Leads

The problem of twisting together two four-foot lengths of insulated wire to serve as filament leads in a chassis was solved through use of


Method of using air gun to twist filament leads together after they have been cut and stripped on an Artos machine

# GREATER LOWELL, MASSACHUSETTS 

## Offers Your Company

## BIG-CITY LOCATION Country Style

 at the LOWELL INDUSTRIAL PARKa part of a New Industrial Frontier


## $\sqrt{ }$ Check these Features!



A PREPARED LOCATION at interscction of 2 major highways. Only 2 miles from center of Lowell. Country setting valuable as morale factor and with ample room for exponsion and parking. Easily accessible to personnel.


TRANSPORTATION-Site is bisected by New York, New Haven and Hortford Roilroad, Superb service clso furnished by Boston and offer service to all points 24 miles to Boston's offer ser seeport alitios. 24 miles to Boston air and seaport racilities

3
LABOR SUPPLY-Workers of diverse basic skills earn over $\$ 10$. less than the U.S. average weekly wage and are deeply attached to the community.

4
LOW COST AREA. In a survey Lowell was $38 t h$ in 38 cities surveyed for cost of housing and 25 th of 38 cities surveyed for food costs.

5
TECHNICAL RESOURCES. Facilities of Lowell Technological Institute available for your industrial research. Close proximity to M. I. T. the greatest electronics research center in the
world.

6
UTILITIES-All on premises. Abundant water electric power and low cost notural gas.

OTHER INDUSTRIAL SITES-Choice of 35 irdustrial sites selected and approved by experts in the Greater Lowell Area. 5 acres to 400 acres.

The Executive Director of the Lowell Development and Industrial Commission is available to meet with you or your representatives and furnish information of the type you require in confidence.

WRITE, WIRE, OR PHONE

LOWELL, MASSACHUSETTS, the big-city industrial center of a cluster of small New England towns, offers every metropolitan advantage together with low production costs made possible by country living. Here, only 2 miles from the center of Lowell, but with ample room for parking and expansion, local capital has selected a 110 acre park and built a modern 42,000 square foot plant as the first step in intensive industrial development. This plant (illustrated) is ideally suited to horizontal electronics manufacturing, and is ready for you now. It has concrete floor, $14^{\prime}$ stud and $35^{\prime} \times 40^{\prime}$ bays, steel roof, trucking facilities at floor level, railroad siding, sprinklers throughout, fluorescent lighting throughout, handsome modern design and quick occessibility to metropolitan Lowell.
Any portion of the 110 acre park will be conveyed almost at cost, provided a new industrial building is promptly built.
Long an industrial center, Lowell possesses well developed technical resources and a reservoir of skilled artisans whose deep ottachment to the community makes them hard to lure elsewhere.

"Nice looking hair you're pulling out," said the G. M. of Station $X Y Z$, "but when do we get lighting clearance on the new tower?"
"See that!" groaned the engi-
neer. "That's a whoozit. It takes 5 whoozits to light our towerabout $\$ 4$ worth of metal. But there just aren't any whoozits right now. No whoozits, no lights."

"Then let's do it the easy way," counselled the G.M. "Get in touch with our nearest Hughey \& Phillips distributor and order a complete, packaged tower lighting
kit. Just give 'em the tower specs. They'll ship pronto and include every item to light our towerdown to the last nut, bolt, and whoozit. And you'll save wear and tear on your hair."

The G. M. is right-but he told only half the story. Through years of experience in buying, designing, testing and packaging, Hughey \& Phillips have gained world leadership in the field of tower lighting. And because of this specialized "know-how" H \& P tower lighting kits cost less to buy, less to install, less to maintain. Drop us a line for the name of your nearest $\mathrm{H} \& \mathrm{P}$ distributor.
an air gun in Sylvania's Buffalo plant. The gun is clamped into a simple stand that is fastened to the workbench. A machined metal disc having two drilled holes is inserted in the chuck of the gun in place of the conventional screwdriver bit or nut-driving socket.

In using the setup, the operator pushes the ends of the wires into the diametrically opposite holes and bends the wires outward just enough so they stay in position. Now, while holding the wires near their other ends at an angle of about 30 degrees apart, she operates a foot valve to turn on the air gun. This twists the wires together uniformly at high speed.


Method of using modified tapping machine for twisting leads together

Twisting of long leads after their ends had been soldered to the pins of a plug was solved at Olympic Radio \& Television by modifying an old tapping machine. In place of the tapping chuck, a hook was mounted on the drive shaft. The hook passes through an extra pulley that is used with a leather strap and $11 / 2-\mathrm{lb}$ weight to obtain braking after declutching.
The operator places the plug end of a pair of wires in the hook, grasps the other ends of the wires and spreads them apart, then pulls to actuate the clutch and start the twisting. When the desired amount of twisting has been obtained, releasing the tension stops the twisting chuck, and a flip of the twisted wire unhooks the plug end.
The tapping machine used for the purpose employs a simple clutch;


## in TAPE-WOUND CORES JUST NAME YOUR REQUIREMENTS!

## RANGE OF MATERIALS

Depending upon the specific properties required by the application, Arnold Tape-Wound Cores are available made of DELTAMAX ... 4-79 MO-PERMALLOY . SUPERMALLOY . . . MUMETAL . . 4750 ELECTRICAL METAL . . . or SILECTRON (grain-oriented silicon steel).
cores-are manufactured to meet your individual requirements.

## RANGE OF TYPES

In each of the magnetic materials named, Arnold Tape-Wound Cores are produced in the following standard tape thicknesses: . $012^{\prime \prime}$, $.008^{\prime \prime}, .004^{\prime \prime}, .002^{\prime \prime}, .001^{\prime \prime}, .0005^{\prime \prime}$, or $.00025^{\prime \prime}$, as required.

## Applications

Let us help with your problems of cores for Magnetic Amplifiers, Puise Transformers, Current Transformers, Wide-Band Transformers, Non-Linear Retard Coils, Peaking Strips. Reactors, etc.

Address: ENG. DEPT. E

## RANGE OF SIZES

Practically any size Tape-Wound Core can be supplied, from a fraction of a gram to several hundred pounds in weight. Toroidal cores are made in twenty-two standard sizes with protective nylon cases. Special sizes of toroidal cores-and all cut cores, square or rectangular


## A long established symbol ..in electronics



AN Types


MF Types


Rack and Panal


Cable Assemblies

FOR THE PAST 20 years we've been applying our skills to problems in research, design, engineering, and manufacture of connectors and component parts for many of America's best known companies in the electronics and communications industries.

OUR CRAFTSMEN have been and are now producing parts that exceed the most exacting requirements. Our task is to make the H. H. Buggie And Company symbol even more important to you through manufacture of products equal to the importance you attach to them.

IN ADDITION to the products illustrated at left, H. H. Buggie And Company designs, engineers, and manufactures many special parts and assemblies. We invite your inquiries.


Method of maunting hook and brakinq pulley in place of tapping chuck
pulling on the twisting hook moves a steel disc against a motor-driven leather-faced wheel, giving speed reduction along with transmission of torque.

## Trimming Metal Shells

A MACHINE for quickly trimming edges of shells after drawing or welding corners is used at Karp Metal Products Co., Brooklyn, N. Y.

The cutting arrangement consists of two motor-driven circular rotating heads. The one on the outside of the chassis has a knife edge,


Trimming excess metal from edge of lormed shell for electronic equipment housing. Rollers on bottom of pressure arm permit sidewise movement while maintaining downward pressure

## ROTOR SO LIGHT

## ...it floats on water!



## Telechron Synchronous Timing Motors

Rotor unit of H-3 motor with cover romoved


Model H-3-for radio timers, process timers, and time switches

Hard, special-formula steel. Yet the rotor floats. It's so light, mere surface tension holds it up. Imagine what an advantage like this can mean to you when you specify Telechron Synchronous Timing Motors for your equipment.
There's little inertia to overcome. So Telechron motors start almost instantly—reach full speed in less than 3 cycles (1/20th sec.). Low-weight rotor virtually floats in the magnetic field. Rotor shaft rides on a film of oil-no metal-to-metal contact-giving longer life, and assuring true synchronous operation.
These advantages are yours in all models of Telechron Synchronous Timing Motors-no matter what the application. Let us help you select the model that will best give you the performance you are looking for.
Write for complete catalog and information on our Application Engineering Service. Telechron Department, General Electric Company, 44 Homer Ave., Ashland, Mass.

## Selechron

MARKOF TIMJNG LEADERSHIP

and the one on the inside has a mating groove to accept the knife. In use, the shell is placed over the grooved head. An air-operated plunger with freely-rotating pressure wheels is brought down on top of the shell to prevent it from riding up during the cutting operation. The rotating knife-edged cutting head is then brought against the outside of the shell. Excess metal is removed as the shell is moved between the wheels, to give a quick trimming job.

## Capacitor Winding Techniques

ACCURATE winding of both conventional and metallized paper capacitors to pre-determined capacitance values is achieved in the North Bergen, N. J., plant of Pyramid Electric Co. through use of three different types of winding machines, each best suited for a particular type of production.

The simplest machine winds one capacitor at a time. The operator rotates the mandrel so its lengthwise groove is up, holds the strips of paper and foil over this groove, then inserts the arbor pin to lock the start of the winding onto the arbor. The pointed end of the arbor pin fits into a hole in an enlarged portion of the arbor near the headstock. The metal disc on the other end of the pin has a center hole to fit over the free end of the arbor. The pin is sufficiently springy and tight to stay in position when in-


Inserting arbor pin to lock start of wind. ing on single-capacitor machine

# Why Motorola uses Corning Metallized Glass Inductances in new UHF converter. <br> <br> ter 

 <br> <br> ter}

UHF converters present a tough design problem. Not only must they tune an unusually broad band, stability is extremely important.

Motorola solved their problem with a specially designed Corning metallized glass inductance. As can be seen from the illustration, the tuning elements are a combination of distributed capacitance and inductance. The variable pitch winding tailors the unit to the desired tracking curve. One end of the turns is broadened to provide termination surface. The accuracy and rigidity of the glass assure stable, noiseless tuning.

The exceptionally high electrical stability and low temperature coefficient of Corning metallized glass inductances are a result of the integral contact of the fired-on metallizing with the dimensionally stable glass coil forms. Drift is negligible, even under unusually variable ambient temperatures. High $Q$ is inherent.

Corning metallized glass inductances may well be the answer to your problem. All it takes to find out is a letter to us. Our engineers are ready to go to work for you.
$\qquad$
$\qquad$



The basis of these frequency standards is an electronically actuated high-precision fork, temperature-compensated and hermetically sealed against harometric changes. The partial list of uses at the right not only suggests the broad range of applications but also proven dependability where there can be no compromise with accuracy. Please request details by Type No. Our engineers are available for advice or cooperation on related problems.

GUARANTEED ACCURACY 1 PART IN 100,000 (.001\%) except where otherwise noted

American Time Products, Inc.


Cutting foil and paper layers of finished capacitor with knife made from hacksaw blade
serted. All of the winding machines employ variations of this basic arbor pin design for anchoring the start of a winding.

A small piece of kraft paper is inserted between layers to protect against shorts at the start of the winding. Operation of a foot pedal now actuates a clutch to start the actual winding operation.

When the correct number of turns is indicated on an attached mechanical counter, the operator stops the machine and cuts the foil and paper layers with a sharp knife. A gummed tab is then applied to anchor the ends on the roll. These tabs are provided in various colors and have different colors of printed dots to serve as a coded indication of the type of impregnation to be given the capacitor.

Guide bars and rollers prevent the paper and foil strips from dropping back into the machine when a cut is made. One roller is free-floating and gravity-loaded to provide the necessary friction for this.

The cutoff knife was made from a hacksaw blade, ground, sharpened and honed to the razor edge required for cutting the thin paper and foil without tearing it. Tape is wound around one end of the blade to serve as a handle.

Dual Semiautomatic Machine
For higher production rates on small as well as large capacitors, another type of machine is used. This saves time by winding one section while the operator is gluing and unloading the other section. The operation can be described by starting at the instant when the



When TV manufacturers discovered that higher voltages of the new 27 and 21 -inch television receivers rendered existing wax corona ring sweep transformers inadequate, they brought the problem to Guthman.

In a cooperative program with these TV engineers, a flyback transformer with a cast resin corona ring was developed-the perfect answer to this difficulty.

Your problems in the development of coils and transformers are welcome at Edwin I. Guthman \& Company, Inc., 15 South Throop St., Chicago Telephone: CH 3-1600, also Attica, Indiana.

## THEY HAD A PROBLEM...



Applying gummed label to finished capacitor unit on dual semi-automatic machine while second unit is being wound on arbor at rear
machine has just finished winding a capacitor and has stopped automatically. The operator at this time has finished applying the gummed locking label to the previously finished unit. She flips out of the way the hinged righthand support end for the arbor closest to her, pulls out the pin on this arbor, slips off the finished unit, then rotates the entire geared head of the winding machine half a turn so that the newly completed capacitor is now in front of her and the empty arbor is under the strips of paper and foil.
The arbor pin is now inserted in the empty arbor to lock the start


Inserting arbor pin to lock staxt of next winding after indexing head to bring newly-finished capacitor forward

## Ques: <br> When is Steatite Better Than Steatite?

Ans:
When it is "Cowitfe" steatite!


1. Any material that is kept under perpetual research and redevelopment, as "Lavite" Steatite has always been, is naturally superior to like material produced to conventional standards.
2. Your parts (trimmer bases, coil forms, strain reliefs, tube base sockets and hundreds of others), produced in "Lavite" Steatite may be extruded or pressed, and in either case machined to close tolerances.
3. Being a product of private research, you are assured laboratory control in every step of production.
4. Selection of specific properties is no problem.
5. Unusual shapes and mechanical oddities are accepred as routine.
6. Perhaps metallizing of your parts will help you cut assembly time-a Steward Specialty.
Remember-Steward's Engineers are Your Engineers. Use them often. Our recommendations are a service to you-no obligations.

- Ask for booklet giving characteristics of all"Lavite" Ceramics ("Lavite" Steatite, "Lavite" Titanates, "Lavite" Ferrites and others).


## D. M. STEWARD MANUFACTURING CO.

3604 Jerome Avenue, Chattanooga, Tenn.
Sales Offices in Principal Cities

# Now A vailable in $\mathbf{6 0}$ and $\mathbf{4 0 0}$ Cycle Designs 

A CONVERTER WITH HIGH SHOCK AND VIBRATION RESISTANCE AND PRACTICALLY UNLIMITED LIFE OPERATION IN AMBIENT TEMPERATURES FROM - $55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$


INPUT INFORMATION
OUTPUT INFORMATION


STRAINGAUGE


## ACTUAL SIZE

$T$he IMM 182 Magnetic Modulator is designed to convert low level dual polarity DC signals into 400 cycle signals of corresponding amplitude and phase sense.

## 400 CYCLE UNIT SPECIFICATIONS

Size- $1.3 / 32 \times 1.3 / 32 \times 2.1 / 8 \mathrm{in}$.
Weight-4 oz.
Temp. rise-negligible
Life-unlimited
Input res.- 2,000 ohms.
Output impedance- $5,000 \mathrm{ohms}$.

Nominal input signal $\pm 40$ microamps.
Nominal output volts- 0.9 volts RMS@400 cycles
Outputatnull- 10 mv .rms.max.
Output phase-0or $180 \pm 5 \mathrm{deg}$. Harmonic Distortion-Less than $10 \%$, above O.IV output
The same precision engineering which has made our Magnetic Modulators outstanding in the field of electronics is applied in the production of our magnetic converters, computers, magnetic amplifiers, and thermocouple converters.

On request, we will be pleased to furnish complete details. Our Engineering Department will give prompt attention to your specific magnetic modulator and amplifier specifications.

We specialize in control systems and components for automatic flight, fire control, analog computers, guided missiles, nuclear applications, antennas and gun turrets, commercial power amplifiers, and control systems.
$C 3 \mathrm{SOP} \rightarrow$ For further details write Dept. E.
135 Bloomfield Ave., Bloomfield, N. J.


Headstock end of dual semi-automatic machine with protective hoasing removed to show cam and quick-change gears that shut off machine when correct number of turns is wound. Push rod under cam goes down through table to actuate motor clutch
of the next winding, and the righthand arbor support is flipped back into position. The strips are cut between the arbors with a knife, about two inches of foil are pulled out from between the layers of paper at the start of the new winding to avoid direct shorts, and the operator then steps on a foot pedal to start the winding operation. She now returns to the other arbor, tears out a similar amount of foil from between each layer to avoid end-of-winding shorts, turns this arbor manually with her fingers to finish the winding, then applies the anchoring sticker to complete the cycle of operation.

The geared head is arranged so that only one arbor is driven at a time. Diametrically opposite notches on the head mate with a detent spring underneath to give precise positioning of the arbors.

The machine is autornatically stopped, after winding the desired number of turns, by a cam-andgear arrangement. The cam is driven by the powered arbor through a train of gears. When starting a new winding, the operator holds down the foot pedal long enough for the cam to rotate out of its depressed part and hold the clutch closed. The cam then holds the clutch open for a predetermined fraction of its revolution. As the end of the winding is reached, the roller on the clutch-locking lever
 Designjd for simplifying and miniaturizing short-pulse circuits, these new Triad subminiature transformers meet the continuing def and for higher performance in smallor packages. In many cases they meet axisting circuit requirements-saving eng ineering time. In every case they save space and weight. Prices on types shown here on request. For special de. signs, submili butline o contemplated
circuit. type \#20284 Two or three winding types. Size: .40" Dia, X. $56^{\prime \prime}$ L- Positive Hermetic Sealing Ambients up to $135^{\circ} \mathrm{C}$ - Pulse widths .15 to. 65 micreseconds -Rise time . 05 microseconds - Duty cycle .05 maximum.
type \#20285 Two, three or four winding types. Size: $.50^{\prime \prime}$ Di2. X.68" L. Positive Hermetic Sealing - Ambients up to $135^{\circ} \mathrm{C}$-Puls widths .35 to 1.2 microsec onds-Rise time 06 microseconds minimum-Duty cycle
.05 maximum. type $\# 20086$ For severe mechanical problems, this Hermetic Sealed, Miniature 3-winding pulse transformer is designed for under. chassis mounting, using a single $8 / 32$ meunting stud and a
Triad Multiple Terminal. Same electrically as
type $=20284$.
Class H
For severe heat problems, these Sub-Miniature Pulse transformers are censtructed entirely of innorganic material and impregnated with Sllicone varnish for duties in ambients up is $200^{\circ}$ Centigrade. Same electrically
as type \#20285. as type \#20285.

## for Iifformation on other Triad

trassfermers, write for Catalog IR-529


Want more informotion? U5e post cord on last page.


Tandem high.speed machine for winding paper capacitors two at a time. Operation is almost completely automatic
moves up into the recessed part of the cam, releasing the clutch and stopping the winding.

The number of turns is changed in two ways, by changing the easily removed gears and by adding or removing cam inserts. These inserts are fastened to the cam with machine screws.

## Tandem Winding Machine

A still more automatic two-arbor machine winds two capacitors simultaneously on each arbor and automatically glues the ends of the finished units. Here, however, the arbor is split into two equal sections along a diameter and the paper and foil strips are locked between the two halves of the arbor to hold the start of each winding. An operating cycle is as follows, starting at the instant when winding has been completed:
(1) Index the machine by giving crank lever half a turn with left hand, to transpose position of arbors. The empty arbor head is now farthest away from the operator and ready for loading, with both halves of its arbor retracted to the left.
(2) Push in first half of empty arbor. This is mounted on a slide along with the pointed rod that later serves for flipping the cut ends onto glue pads. This first half

## PANELS, LIDS, DOORS MADE RF-TIGHT BY LOW COST METHOD

Electronic Weatherstripping, made of knitted wire mesh compressed to required sizes and shapes, effectively "shields" these openings against RF leakage just as weatherstrips seal doors and windows.

Openings such as these are necessary for operating and servicing the electronic equipment housed in the metal cabinet. Yet these same openings destroy the full shielding efficiency which an "unbroken" metal container would otherwise provide. Careful machining of mating surfaces at

"Thermatron built by Radio Receptor Co., Inc."
these openings is an obvious answer. But such work is expensive, and the initial close fit is often destroyed by repeated openings and closings, by warping of the lid or door and by corrosion of the mating surfaces. Numerous latches, screws, bolts and other fasteners, closely spaced, will help keep these joints RF tight, but they are a time consuming nuisance whenever the cabinet must be opened and closed, and they are expensive to purchase and install.
Metex Electronic strips and gaskets eliminate these objections. Being made of metal, they are conductive; and being knitted they are resilient and conform to normal surface irregularities. They actually "block" the otherwise leaky openings with a gasket of flexible metal, and make the cabinet as effective a conductive shield as if the openings had never been made.

Metex electronic strips and gaskets are easy to install. Not only are they inexpensive, but their use may well save more than their cost by eliminating many operations that would otherwise be necessary. They are available in different shapes, dimensions and resiliencies to meet the varied requirements of specific electronic applications and can be made of metals or alloys selected to meet actual or anticipated corrosive conditions.

A bulletin giving detailed information is available on request from the manufacturer, Metal Textile Corporation, 641 East First Avenue, Roselle, N. J.
Want more information? Use post card on last page.


TDAF


TDAB


TDAB (in cose)

# TWO IMPROVED TYPES of Synchronous Motor Driven 

 TIME DELAY TIMERS for Industrial ApplicationsTime Delay Timers are designed for application on circuit controls where a time delay is required between the closing of one circuit and the predetermined closing or opening of another.

Series TDAF and Series TDAB Time Delay Timers are built to stand abuse, and afford the dependable, consistent operation which modern industrial applications demand.
These timers are designed to handle time cycles up to 3 hours. They employ an external, magnetically-operated clutch that not only assures exceptional accuracy but permits instantaneous, automatic reset. Thus these timers are ideal for use where rapid recycling is necessary.

## OUTSTANDING FEATURES

Automatic, Instant Reset-As soon as the clutch is disengaged, an internal spring brings the actuating arm back to its reset position in a fraction of a second.
Time Setting Adjustment-Adjustment is accomplished by simply moving the black-button pointer to the time cycle required. Quick, easy, accurate.
Diel-Dials of both series have large, easily read numerals.

## SERIES TDAF TIMERS

for panel mounting. Terminal strip for electrical connections located at back. 115 volt and 220 volt, A.C.- 25,50 , and 60 cycles. (For time ranges, see chart.)

## SERIES TDAB TIMERS

for surface mounting. Terminal strip for electrical connections located at front, below dial. If required, can be supplied in steel housing, as illustrated-eight knockouts for easy hook-up. 115 volt and 220 volt, A.C.-25, 50 and 60 cycles. (For time ranges, see chart.)

TIME RANGES-Series TDAF ond Series TDAB Timers

| DIAL <br> CALIBRATION | MAXIMUM <br> TIME CYCLE |
| :---: | :---: |
| $1 / 10$ Second | 5 Seconds |
| $1 / 4$ Second | 15 Seconds. |
| $1 / 2$ Second | 30 Seconds |
| 1 Second | 60 Seconds |
| 2 Seconds | 3 Minutes |
| 5 Seconds | 5 Minutes |
| 15 Seconds | 15 Minutes |
| 30 Seconds | 30 Minutes |
| 60 Seconds | 60 Minutes |
| 2 Minutes | 3 Hours |

For complete technical data request bulletin 39
MANUFACTURERS OF THESE AND OTHER TIMERS AND CONTROLS for industry-Cam Timers - Manual Set Timers - Tandem Automatic Recycling Timers - Instantancous Reset Timers - Running Time Meters



Inserting first half of split arbor along with pointed rod by pushing slide with left hand, preparatory to anchoring start of next winding so that strips can be cut
of the split arbor goes under the strips as it passes through center and right-end bearing supports. The arbor thus has three points of support while winding its two units.
(3) With right hand, push guillotine-blade slide to left and depress slightly. This causes a compression bar, also on the slide, to push the strips of foil and paper against the flat surface of the arbor half that is in position.
(4) Insert second half of arbor over top of strips, flat face down, by pushing it in with left hand. This locks the start of the next winding.
(5) Push guillotine blades all the way down to cut strips, then release and retract blades to right out of way. The cut ends of the finished units now flip over glue pads on the table in front of the machine.
(6) Press handle at right of machine to start winding operations. This drives both arbors, hence also


Method of depressing guillotine blades to cut strips of paper for both sections simultaneously


## NE-11-20-S SPECTRUM ANALYZER

## Description

The Spectrum Analyzer is test equipment designed primarily for use with aircraft radar and beacon equipment operating over a frequency range of 8470 to $9630 \mathrm{mc} / \mathrm{s}$. Housed in a compact portable carrying case, the whole assembly weighs approximately 90 pounds.
In operation, the Spectrum Analyzer displays on an oscilloscope a pattern representative of the distribution of energy among the various frequencies in the output of a pulsed oscillator. This equipment is equal to our government models TS-148/UP.

## Applications

This very sensitive micro-wave receiver will provide accurate measurement of the spectra of radio frequency oscillations in radar and beacon equipment. It will also measure, within its own range, frequencies of echo boxes, magnetrons, test sets, local oscillators and a variety of resonant cavities. It can also be used to check magnetron pulling and AFC circuits, and as a frequency-modulated oscillator to tune $\mathrm{T} / \mathrm{R}$ Boxes and $\mathrm{R} / \mathrm{T}$ Boxes in transmitter-converters.
The Analyzer is so sensitive that the magnetron signal can usually be picked up at some distance from the source, thus making the equipment easy to use in any convenient location.

## Specifications

Power Supply
Frequency-meter Range
Sweep Frequencies
Attentuation (Spectrum Amplitude)
Operating Temperature Range
Frequency swing of analyzer r-f oscillator (sawtooth FM)
50-1200 Cps; 105-125 Volts; 125 Watts
$\qquad$
Calibrated directly from $8470 \mathrm{mc} / \mathrm{s}$ to $9630 \mathrm{mc} / \mathrm{s}$

Overall i-f bandwidth at half power points
Sensitivity to CW - Spectrum Amp........................................ $\mathrm{kc} / \mathrm{s}$ Oscilloscope Screen.

- Spectrum Position - 55 db . below 1 watt for 1 inch of deflection of Oscilloscope Screen.
Maximum dispersion of spectra
Maximum error
We will gladly furnish all details regarding specifications, prices, and delivery.
$1.5 \mathrm{mc} / \mathrm{s}$ per inch
$1.5 \mathrm{mc} / \mathrm{s}$ per inch
$\pm 5$ megacycles



After cutting, ends of papers flip over glue-saturated felt pads on top of glue pump. In another fraction of a second, when machine starts, these strips will have been pulled over the pads to complete the winding of two capacitors
completes the winding of the finished unit; its loose ends are dragged over the glue pads as they are pulled in, and the loose ends are thus automatically glued at the instant that the rolling is completed. The arbor with the finished units continues spinning, as this does not interfere with unloading.
(7) Pull out one half of arbor for finished unit by slipping forked tool under sleeve on left end of this arbor half and pushing it to left.
(8) Strip second half of arbor by moving to left the cross bar on which are mounted the pointed paper-flipping rod and the freeturning half arbor. This releases the finished capacitor sections, allowing them to drop down the chute and into a tote tray. By now the winding on the other arbor has been completed and both arbors have been stopped by the predetermined electrical counter mounted on the right of the machine. This acts through solenoids and snapaction switches to stop the machine


Left hand of operator is holding forked tool used to push out first half of split arbor preparatory to releasing finished units. Winding is already under way here on the next two units

## GRAMER TRANSFORMERS MEET MIL-T-27 GRADE 1 CLASS A SPECIFICATIONS WITH IN-PLANT TESTING FACILITIES

TEMPERATURE and IMMERSION CYCLING FIVE (5) CONTROLLED CYCLES
OF 15 MINUTES EACH STEP

Step 1. Oven $185^{\circ} \mathrm{F}$.
Step 2. Room Temperature

Step 3. Cold Chamber $-67^{\circ} \mathrm{F}$.
Step 4. Room Temperature
Step 5. Saturated Salt Bath Total Immersion



MOISTURE RESISTANCE
Transformers withstand 10 humidity cycles shown at left and are subjected to a 15 minute vibration test, 10 to 55 cycles per second. Some specifications require DC polarizing voltage applied from terminals to case during the entire lime unils are in humidity cabinet.
GRAMER TRANSFORMERS CAN TAKE IT!


VIBRATION MACHINE


We Invite You-Send Your Specifications c/o Dept. E.
transformer corporation



Closeup of glue pump, with pad removed to show hole through which glue is squirted up thrcugh pad each time round bar strikes lever, as shown here, during indexing of head
at the precise instant when the desired number of turns is achieved. One type of unit suitable for this purpose is the Microflex Counter made by Eagle Signal Corp., Moline, Ill.
(9) Index the head of the machine 180 degrees to start next cycle of operation.

## Automatic Glue Pump

The pointed paper-flipping rods on the outer circumference of the indexing head serve the added purpose of actuating a pump lever that forces glue up into the felt pads each time the head is indexed. An ordinary automotive-type oiler serves as the pump. The long nozzle of the oiler is replaced with


Details of glue pump, along with standard oiler (at left) from which it is made


Write to TRANSISTOR PRODUCTS
Now for Detailed Information

# TRANSISTOR PRODUCTS INC. <br> 55 UNION ST. <br> BRIGHTON 35, MASS. 

An operating unit of the CLEVITE Corp.


## POWER SUPPLY AND CHARGING CABLE

Really rugged ... but unusually easy to handle . . . Carol Charging Cable is designed to carry heavy currents for rectifiers, battery chargers, large motors and other equipment needing portable power cable.
Soft copper wires are rope lay stranded for extra flexibility. They are either tinned, or bare and served, then enclosed in high dielectric, long-wearing rubber compound. For most severe service, the jacket is made of Carol Neoprene . . . a specially compounded material which resists acids, alkalis, sunlight, corona, oil and grease; withstands extremes of weather and temperatures.
Carol Charging Cable is supplied in sizes from No. 4/0 to 10 AWG, with either rubber or neoprene jacket.
Write or call today for full information on our complete line of cable for electronic applications.


Want more information? Use post card on last page

PRODUCTION TECHNIQUES
a casting that in effect provides a T-shaped nozzle for squirting two pads at once. The T-shaped channels in the brass casting were obtained by drilling through the casting from three directions mutually at right angles, then plugging the ends of the holes appropriately with Allen screws. A lever was then mounted on the casting in such a way that its lower end pushed in the pump-actuating piston each time the pointed rod passed over the upper end during the indexing operation.

A polyvinyl acetate glue is used. This remains sufficiently fluid for continuous use in the oiler even without a cover on the oiler, and provides adequate adherence for the kraft capacitor tissue.

## Sponge Rubber Mallet

Intermittent connections and microphonic tubes are safely detected without risk of damaging other parts by using a mallet made from three pieces of half-inch sponge rubber. Each piece is approximately 2 inches wide and 4 inches long. The pieces are fastened together with rubber cement, a hole is drilled through them and a wood handle made from dowel rod is glued into this hole.

If handle and strips tend to


Mothod of using improvised rubber mallet to check for intermittents


# G-E Electronic Timer Has High Repetitive Accuracy 



General Electric Electronic Timers assure precise timing of repetitive operations. One manufacturer reports the use of G-E timers on bearing grinding machines where they control cutting time and drift time. Here, G-E timers perform over 500 repetitive time cycles per hour. Where you require a uniform product turned out at high speed, put the accuracy of the General Electric Electronic Timer to work for you.

## Controls F-hp Motor Directly

Here, a G-E Electronic Timer controls directly the small motor of a box conveyor. The timer tells the motor when enough boxes have been delivered to the gravity conveyor. A limit switch, actuated by the first box, tells the timer when to start. You can get a G-E Electronic Timer to start frac-tional-horsepower motors directly or handle motor starters up to NEMA Size 3.

## Can Be Remotely Adjusted

Here a steel company, through a furnace control desk, controls the time cycle of high-speed rolls even though the timer is inaccessible. A limit switch actuated by the steel slab starts the electronic timer. Your G-E Electronic Timer can be located wherever necessary and remotely adjusted from a convenient location.


## SPECIFICATIONS

excellent repetitive accuracy
High-quality capacitors permit errors no greater than $\pm 2 \%$ of dial setting, independent of normal temperature changes.
three time ranges available
$.06-1.2, .6-12,6-120$ seconds, each continuously adjustable through a 20:1 range.

## TWO TYPES OF OPERATION

Can be set for immediate or delayed start.

## HIGH CONTACT RATING

One million operations at full-load, up to ten million at less load. Handles motor starters to NEMA Size 3, starts f-hp motors directly.

## REMOTE CONTROL

Timing potentiometer and dial assembly may be located where most convenient.

## CONSTRUCTION

High quality components, conserva tively rated for top performance and long life.

PHOTOELECTRIC RELAY CR7505-K100
Send to Section B 785-1, General Electric Company, Schenectady 5, New York
Please send me the following bulletins:
$\square$ Electronic Timer, GEA-5255B
$\square$ Photoelectric Relay, GEA-3533D
One of a complete line of devices for all photoelectric applications. This model is inexpensive, has broad application. Bulletin GEA-3533D.

NAME
COMPANY
ADDRESS
CITY

ELECTRONIC DEVICES
GENERAL (3) ELECTRIC


## "Most consistent

## 'chopper' on the market"

That's what a lot of people who use vibrators say about the Honeywell Synchroncus Vibrator WG-178.

They know from experience that performance is consistent from one unit to the next-a most important consideration. This high consistency in the performance of the WG-178 is a direct result of the quality of design and workmanship that is a distinctive feature of all products manufactured by the Honeywell Aero Division.

Here are some of the other characteristics of the little "chopper":

1. It's versatile, can be used as a DCAC modulator, or as a rectifier.
2. It's longer-lived, operating for an average of 500 hours.
3. It's adiustable. Open and closed times can be varied.
4. It's tough. When shock mounted (in any position) it exceeds rigid Air Force environmental specs.
5. It's a precision instrument. Quality design guarantecs exceptionally clean signals.
If you'd like to know more about the WG-178 Synchronous Vibrator, we'd be pleased to send details. The address is Honeywell Aero Division, Dept. 401 (E), Minneapolis 13, Minnesota.

## Honeywéll

loosen after a period of continuous use, vinyl plastic adhesive tape is wrapped around as reinforcement. This improvised tool is used in the test section of Olympic's television plant in Long Island City.

## Spring Rack Holds Parts

IN SMALL-QUANTITY subassembly work where one operator completes the entire job at DuMont, a simple coil spring rack is used to hold the parts needed for a run of perhaps three units. Before starting, the operator places on this rack the required number of each part, taking them from paper bags alongside her.

The rack consists of a plywood stand on which are mounted prestretched coil springs. Each spring is bolted to its own metal strip to


Stand made from springs, metal strips and plywood here holds parts needed for three terminal board subassemblies. Operator keeps original sample in front of her to serve as guide, supplementing prints mounted above sample

2

## Unexcelled for Accuracy and Dependability



Your inquiries will receive prompt attention

## The COLLINS 51J <br> Communications Receiver

The Collins 51J Communications Receiver in addition to its outstanding performance in the communications field, is being widely used in industrial laboratories as a sensitive and accurate measuring instrument. Write today for complete details and specifications.

## Condensed Specifications

frequency range: . 54 to 30.5 megacycles.
cIrcuit: Double Conversion Superheterodyne.
CALIBRATION: Direct reading in megacycles and kilocycles. One turn of main tuning dial covers 100 kilocycles on all bands.
TUNING: Linear, divided into 30 one-megacycle bands. Each dial division represents one kc .
frequency stability: Overall stability within
1 kc under normal operating conditions.
SElectivity: 5.5 to 6.5 kilocycles at 6 db down. 17 to 20 kilocycles at 60 db down.
AUDIO OUTPUT: 4 and 600 ohms impedance. $11 / 2$ watts at 1000 cps with less than $15 \%$ distortion overall. " S " meter may be switched to read audio output.
RF Input: High impedance single-ended. Breakin relay mounted internally. Antenna trimmer will resonate input circuit when used with any normal antenna.
POWER REQUIREMENTS: 85 watts $45 / 70 \mathrm{cps}, 115$ volts or 230 volts.
dimensions: Panel - $101 / 2$ inches high, 19 inches wide, notched for rack mounting. Optional metal cabinet - $21.1 / 8$ inches wide, $12 \cdot 1 / 4$ inches high and 13-1/8 inches deep. Speaker available in metal cabinet 15 inches wide, 10 $5 / 8$ inches high and $9-1 / 8$ inches deep.



EXTRUDED TEFLON (Tetrafluoroethylene) hook-up wire is organically capable of sustained operation from $+210^{\circ} \mathrm{C}$ to $-90^{\circ} \mathrm{C}$ with no appreciable decomposition. This wide range of operating efficiency continually opens new applications for EXTRUDED TEFLON - especially where constant stability under exceptional temperature conditions is required for long periods. EXTRUDED TEFLON $+210^{\circ} \mathrm{C}$ to $-90^{\circ} \mathrm{C}$ is non-inflammable . . is resistant to most chemicals . . . has no known solvent.

Because of low electrical losses, EXTRUDED TEFLON is adaptable for high frequency use. It has very high volume and surface resistivity. EXTRUDED TEFLON is available in thin wall and specified hook-up wire sizes, with shield or jacket, also as coaxial cable.

NOW AVAILABLE in 10 colors-black, brown, red, orange, yellow, green, blue, violet, gray, white. Samples available.

199 Washington St. Boston 8, Mass. Plant-Clinton, Mass.
Engineered Wire and Cable for the Electronic and Aircraft Industries
obtain uniform tension just sufficient to grip the leads that are inserted between turns. The strips rather than the springs are fastened to the plywood stand.

Making Concrete Dust-Free


Methed of using coated concrete blocks at Brookheren

To citain a dust-free atmosphere for the cosmotron at Brookhaven National Laboratory, a thin coating of Vibrin polyester resin was sprayed on each of the 10 -ton concrete radiation shield blocks that are stacked four tiers high for more than 100 feet around the circumference of the equipment.

To prevent the blocks from causing dust when they are occasionally moved, a $1 / 32$-inch eoating of the resin was sprayed on with standard compressor equipment. This sealed the cement with a hard glass-like surface that resists flaking even under a weight of 40 tons. The material is quick-drying, permitting


Spraying concreto blocks for cosmotron with dust-preventing rein. Prellminary tests indicate the solution also has waterproofing value

## Sensational Advancements In Science \& Industry

 Created the Need for the NEW Stahelex "D" CAPACITORS
## YOUR FREE

INDUSTRIAL CONDENSER CORPDRATION Stabelex "D" Capacitor Catalog may prove to be the most important new single piece of literature for you this year!

The unusually high insulation resistance at $20^{\circ} \mathrm{C}$. in turn insures unusually high resistance at temperatures up to $75^{\circ} \mathrm{C}$. The insulation resistance of these capacitors at $75^{\circ}$ C. is approximately ten times that of commercial oil capacitors at $20^{\circ} \mathrm{C}$. This is well illustrated in Curve \#1109.

Performance curves illustrating various characteristics of the Stabelex "D" Capacitor will appear in this magazine each month.

## OUTSTANDING FEATURES

INSULATION RESISTANCE AT $20^{\circ}$ C. AFTER THREE MINUTES CHARGE- 900,000 megohm microfarads
INSULATION RESISTANCE AT $75^{\circ}$ C.- 78,000 megohm microfarads
INSULATION RESISTANCE AT -75 ${ }^{\circ}$-In excess of 5 million megohm microfarads
CHANGE IN CAPACITANCE FROM $25^{\circ}$ C. TO $-80^{\circ} \mathrm{C}$; $+0.76 \%$
SELF TIME CONSTANT OF 10 MFD CAPACI-TOR-4800 hours
Q AT 50 KILOCYCLES- 10,000
POWER FACTOR AT $1 \mathrm{KC}-0.00025$

## SEND FOR CATALOG 1117 TODAY

After a long period of research, Industrial Condenser Corporation now offers to industry for the first time the first of their family of Stabelex capacitors, stabelex "D", which has been produced for special applications for some time.
Complete information performance curves, characteristics, and suggested applications of the various types now available will be found in this catalog.

## INDUSTRIAL CONDENSER CORPORATION

Mfrs. of OIL, WAX, ELECTROLYTIC, PLASTIC CAPACITORS and RADIO INTERFERENCE FILTERS Dimensioned Cavity Prevents Contact Distortion


Recessed Head


Annular Rings for Sealing


Completely insulated with integral head and body molded of tough, low-loss Nylon. High breakdown voltage, low capacity to panel are characteristics of these completely new JOHNSON tip jacks.

JOHNSON Nylon Tip Jacks are furnished in eleven bright, uniform colors adapting them to coded applications. Contact is securely anchored in the jack body, recessed to avoid accidental contact. Standard contact materials are phosphor bronze and beryllium copper, both silver plated. Solder terminal is hot tin dipped. Mating plug is firmly engaged with virtually all its surface area in contact with the jack. Thus, low, stable contact resistance is assured. Jack body threaded $1 / 4^{\prime \prime}$-32, mounted by single nickel plated brass nut.

For complete information on the JOHNSON line of tip jacks and other JOHNSON electronic components, write for your copy of General Products Catalog 973 today!


Facilitates Insertion
application of two coats within a few hours. Calcium carbonate was used to extend the resin, and a pigment was added to give the coated blocks an attractive gray color. Cost is competitive with paint.

The Vibrin resin is a product of the Naugatuck Chemical Division, U. S. Rubber Co., Naugatuck, Conn.

## Blower Speeds Cooling of Induction Soldering

A small blower aimed directly at the work coil of an induction soldering setup for hermetic soldering cools the solder much faster after completion of the heating cycle, thereby boosting the production rate appreciably. On short heating cycles the blower does not affect the temperature of the work, nor does it affect the work coil because that is already water-cooled internally. A successful application of this technique at Utility Electronics used an induction heater made by Marion Instrument Co.

## Soldering Iron Stakes Plastic Pegs

LOOP antennas are rapidly mounted on the back covers of portable radio receivers through use of a simple lever-operated holding jig and a modified soldering iron. The plastic cover, resting on a newspaper pad to protect it from scratches, is set in position under the holding jig. A


Flattening plastic peg by applying heat and pressure with electric soldering iron, while clamping iig holds antenna flat against inside of cover for three. way radio

## CANADIAN BROADCASTING CORPORATION NOW AT...


$T_{\text {HIS }}$ is the life story of 3 of numerous Federal power triodes used by the Canadian Broadcasting Corporation at station CBX, Lacombe, Alberta: Since October, 1948 , to recent date, these tubes have served for 69,000 hours. Both F-9C31's appear to have full emission and capability of many more hours. The F-9C29-used in modulator unit - is on standby after 21,015 hours.

Behind the long performance of these 3 tubes is Federal's pioneering in the multi-strand thoriated tungsten filament, which permits hairpins to expand individually
... eliminates stresses which might be conducive to filament warping

Cathodes of this type provide lower operating temperatures . . . keep components cooler, more durable. Because less filament power is consumed, tube life is longer . . . operating costs are lower. The power saved per-tube-per-year equals the price of a new tube!

For full information on Federal's F-9C31 and F-9C29, or Federal quality-controlled tubes of any power output, write Dept. $k_{-113}$

## FM/AM SIGNAL GENERATOR TF 995

A crystal standardized generator either frequency or ampliude modulated. Frequency range: 13.5 to 216 megacycles. Output range 0.1 microvolts to 100 millivolts. Internal or external modulation gives f.m. deviations to 600 kilocycles and a.m. depths to 50 per cent.


## $||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||\mid$



## UNIVERSAL BRIDGE TF 868

Measures inductance and capacitance at 1,000 cycles, resistance at d.c.; direct reading I microhenry to 100 henries, I micro-microfarad to 100 microfarads, and 0.1 ohms to 10 megohms. Q range 0.1 to $1.000, \tan \delta 0.001$ to 10.

## FM DEVIATION METER TF 934

With crystal-standardized deviation ranges of 5, 25 and 75 kilocycles, alternative high- and low-level buffered inlets, visual checking for optimum tuning and level, together with a separately buffered audio outlet, this ruggedized deviation meter is ideal for carriers in the range 2.5 to 200 megacycles.

$|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||\mid ~$


## STANDARD SIGNAL GENERATOR TF 867

For precision receiver measurements: Covers on an expanded full-vision scale 15 kilocycles (or less) to 30 megacycles, crystal standardized, with an output continuously variable from 4 volts to 0.4 microvolts. Up to 100 per cent. a.m., with unmeasurablef.m., monitored by dual rectification.

## MARCONI instruments

VACUUM TUBE VOLTMETERS • FREQUENCY STANDARDS • OUTPUT METERS WAVE METERS - WAVE ANALYSERS - Q METERS - BEAT FREQUENCY OSCILLATORS

## 23-25 BEAVER STREET.NEWYORK 4

CANADA: CANADIAN MARCONI CO., MARCONI BUILDING, 2442 TRENTON AVENUE, MONTREAL ENGLAND: Head Office: MARCONI INSTRUMENTS LIMITED, ST. ALBANS, HERTFORDSHIRE

## Managing Agents in Export:

Marconis Wireless Telegraph Company Limited, Marconi House, Strand. London, W.C. 2
loop antenna is now dropped over the pegs molded into the thermoplastic cover, and the handle of the jig is pulled forward. A combination of cam and lever action moves the pressure block down on the antenna and holds it there for the remainder of the operation. The operator now applies the flattened end of the soldering iron to each plastic peg in turn. This softens and flattens the peg, much as if peening a red-hot rivet.

A backward push on the lever handle releases pressure, so that the finished unit can be taken out to complete the work cycle. This procedure is used in Emerson's Jersey City plant.

## Tweezer-Type Soldering Iron

In soldering deflection yoke leads to special terminal lugs that are to fit inside the female connector for the deflection yoke of Olympic's television receiver, surplus solder would prevent insertion of the lugs in the connector. To offset this, a Pres-ToHeat soldering tool made by Triton Manufacturing Co, East Haddam, Conn. is used to heat the joint. This is a resistance type tool operating from a step-down transformer. Pressing a button on the tool closes the tweezer-type jaws against opposite sides of the joint. Current flows through the joint, heating it in a few seconds. The operator then


Using soldering tweezers to get heat exactly where it is needed on a joint

6 Why should you give blood? Ask me-I ought to know. I fought in Korea. But since then I've been through the biggest battle of all-the battle for life inself. And it was blood-and blood alone-that saved me. Don't hnow when I'll be in a position to start repaying my debt by giving some blood of my own. But I will--some day. You can count on it!"

All kinds of people give blood-for all kinds of reasons. But every reason for giving blood is a special reason . . . just as every American life that can be saved at any time and at any place . . . is special. So whatever your reason for giving blood, this you can be sure of: Whether it goes to a combat area, a local hospital, or for Civil Defense needs-this priceless, painless gift will some day save an American life!

## Business Executives! Vheck These Questions!

If you can answer "yes" to most of them, you-and your com. pany-are doing a needed job for the National Blood Program.Have you given your em. ployees time off to make blood donations?Has your company given any recognition to donors?
Do you have a Blood Do. nor Honor Roll in your company?Have you arranged to have a Bloodmobile make regular visits?Has your management en. dorsed the local Blood Donor Program?Have you informed em. ployees of your company's plan of co-operation?Was this information given through Plant Bul. letin or House Magazine?
$\square$ Have you conducted a Donor Pledge Campaign in your company?


Have you set up a list of volunteers so that efficient plans can be made for scheduling donors?
Remember, as long as a single pint of blood may mean the dif. ference between life and death for any American . . . the need for blood is urgent!

## SCREWS • NUTS. BOLTS in a hurry?

 need large quantities? from$$
\begin{aligned}
& \text { give us } \\
& \text { a call! }
\end{aligned}
$$

Do you have production, purchasing, stocking or delivery problems on threaded fasteners? Pheoll...the COMPLETE source ... has all the answers! And here they are:
STOCKS? Pheoll has 'em . . . largest in the industry... kept up to level by perpetual inventory controls !
TYPES AND SIZES? Pheoll has 'em . . . the industry's mast complete line .. . by types, head styles, finishes and sizes !

LARGE ORDERS? Pheoll can generally ship immediately on most standard types and sizes!
STOCK INFORMATION? Always available for immediate reply to phone calls, telegrams or letters!
QUALITY? Tops for 50 years . . . kept that way by constant production line and laboratory inspection!
FAST SHIPMENT? Yes! Efficient mechanized order-handling procedures minimize errors and hustle orders along to fast, sure completion!
In every way, you get better service at Pheoll! That means less work for you . . . fewer orders, reduced paper work, less followup, simplified stocking. Test Pheoll on your next threaded fastener requirement and see how headaches vanish!

## PHEOLL <br> MANUFACTURING COMPANY



## SCREWS BOLTS NUTS


applies a small amount of solder to complete the joint.

A simple wood fixture is used for this operation to permit handling seven leads at a time. The connecting lugs are pushed over headless nails driven into the wood, so that they are in the optimum position for attaching and soldering the wire.

## Production-Testing Filters

By Wallace Rianda
Applications Engineer
Berkeley Scientific Division of Beckman Instruments, Inc. Richmond, Calif.
New test methods employing Berkely digital-reading frequency meters are used at Lenkurt Electric Co. to provide frequency determinations to an accuracy of $\pm 1$ cycle. The training period for test operators is materially decreased, and frequency checking time is cut to 30 seconds as contrasted to several minutes for older methods.

A major problem encountered in the development of increased production of carrier telephone and telegraph equipment is that of adapting former laboratory test techniques to production line requirements. Typical is the precise determination of characteristics of filters and meshes, critical components in carrier equipment. Es-


Production selup for checking large quantities of filters at Lenkurt plant, using new equipment and technique for checking any test frequency up to 500 kc to accuracy of 1 cycle per second in measuring time of only 30 seconds

## No. 108 machine makes coil winding more profitable

Quick set-up and greater accuracy LOWER COSTS


Leesona ${ }^{(1)}$ No. 108 Coil Winder for high accuracy, top production and lowest costs in shops where change-overs are frequent. Takes long or short runs; easy to set up; no cams or gears to remove when making setup changes; all controls are within easy reach of the operator even when seated.

# Prize-Winning Deaigh 

So simple, the operator can make set-up changes in a matter of minutes. So moderate in price you can easily replace older, less satisfactory equipment and soon see savings write off your investment.
This is the manual paper feed machine which won the "Electrical Manufacturing" magazine's design prize. Set-up time is reduced to a minimum by external controls and change-over from job to job is quick and easy. It winds wires
from \#20 to \#44 (A.W.G). Coil lengtins may be from $1 / 4{ }^{18}$ to $35 / 8^{\prime \prime}$, with outside diameters up to $5^{\prime \prime}$ round or square.

ACCURACY CONTROLLED, because leadscrew traverse and quick-reversing clatch give positive control of wire layer. Indicators help operator time paper feeding accurately even at high speed.

Send for Bulletin 108A and read all the good news about this flexible high production, low cost coil winder.

## UNIVERSAL WINDING COMPANY



P. O. Box 1605, Providence 1, R. I. Chicago office and Demonstration Room, 9 So. Clinton St., Chicago 6, III.

For winding coils in quantity accurately... automatically use Universal Winding Machines

## Winchester Electronics

## To an established and

 proven record of original Connector designs we add$\qquad$


## CONNECTOR RECEPTACLES FOR PRINTED CIRCUITS



Use the K2S and K3S individually... or together... or in multiple groups to suit your farticular requirements.
(Receptacles with 6, 10, 18 and 22 contacts available soon. Other sizes can be supplied on special request.)1

DESIGN...An original Winchester creation developed expressly for printed circuits.

SUPPLY...A complete line of receptacles for ALL printed circuit requirements.

QUALITY...Again, as always, electronic components of precision manufacture embodying the quality features that distinguish Winchester Electronics' Connectors from all others.

## SPECIAL FEATURES

POLARIZING pin permits engagement in correct position only.
WIPING ACTION of contacts insures positive contact at all times.
MONOBLOC* CONSTRUCTION eliminates unnecessary creepage paths and reduces the number of moisture and dust pockets.
MOLDED MELAMINE bodies (in accordance with MIL-P-14) mineral filled ... are fungus-proof and provide mechanical strength as well as high are and dielectric resistance.
CONTACTS are spring temper phosphor bronze (QQ-B746a), gold plated over silver for low contact resistance, prevention of corrosion and ease of soldering.
Raised barriers between contacts increase surface creepage. Solder cups are $.043^{\prime \prime}$ dia. for \#20 A.W.G.

## MINGHESTER ELEGTRPNICS <br> incorporated

${ }^{*}$ Trade Mark
Patents Pending

+ Our Sales Department invites your inquiries. Wire or write for catalog of other pypes or advise us of your special requirements.

WEST COAST BRANCH:

GLENBROOK, CONN., U.S.A.
sentially a matter of determining db versus frequency, the actual checking involves determination of frequency up to an accuracy of 1 cycle, precise measurement of the output voltage of an audio oscillator and of a filter, and determination of the effective a-c resistance of a mesh.

## Old Method

The method previously used to determine frequency is shown in Fig. 1. The Lissajous pattern on the oscilloscope was used to determine the frequency of the interpolation oscillator against a multiple of one of the selectable basic standards. The output of the interpolation oscillator was then beat against a signal generator in a varistor-type modulator. The dif-


FIG. 1-Block diagram illustrating method formerly used for measuring frequency during testing of filters for carrier telephone and telegraph equipment
ference frequency was passed by the low-pass filter and applied to the amplifier. The frequency meter then read the difference frequency.

As an example of this operation, assume that the operator wished 3,535 cycles. The interpolation oscillator would then be adjusted until a 3.5 to 1 pattern was obtained on the oscilloscope using the $1-\mathrm{kc}$ standard. The signal generator would then be adjusted until a frequency of 35 cycles was obtained on the frequency meter. One of the important limitations of this particular system was that the operator might not know if the actual frequency was 35 cycles above 3,500 cycles, or 35 cycles be-


When Struthers-Dunn, Inc., Philadelphia relay manufacturers developed their " $181 \mathrm{CXC100}$ " Frame Relay for military and industrial applications they made exhaustive tests to find the "right" insulation for never-fail protection . . . it was BH " 649 " Fiberglas Tubing . . . and here's why . . .
"We selected BH Tubing because of the Hi-temperatures encountered in hermetically sealing our relays, and its ability to withstand flexing and still pass the hi-potential test.'
The $181 \mathrm{CXC1} 00$ uses 14 two-inch lengths of tubing . . . a small part of the manufacturing cost, but big insurance against failure.
BH 649, a vinyl-coated, braided Fiberglas tubing, is made flexible and stays
flexible in continuous operation at temperatures ranging from minus $50^{\circ} \mathrm{F}$. to $266^{\circ} \mathrm{F}$. Superior flow-resistant characteristics permit exposure to processing temperatures of $325^{\circ} \mathrm{F}$. plus, for eight hours or more - hot spot temperatures to $500^{\circ} \mathrm{F}$., too. It is rated up to 7000 volts, has excellent chemical and oil resistance, and is available with inhibitors for fungus protection.
You can easily get full information on BH "649" - and the other superior BH Fiberglas Tubings and Sleevings. Send us facts on your requirements, voltages and temperatures encountered. We'll make recommendations and send you free production testing samples.

Address Dept. E-4
Bentley, Harris Manufacturing Co. Conshohocken, Pa.

## Sangamo HUMIDITITE* Mica Capacifors

When you use Sangamo HUMIDITITE molded Mica Capacitors, you gain all the advantages of an amazing moisture seal that offers previously unheard-of moisture resistance characteristics for compression molded plastic-encased mica capacitor components.


## *what is HUMIDITITE?

Humiditite is a remarkable new plastic molding compound, developed by Sangamo, that gives Sangamo Mica Capacitors moisture resistance properties far superior to any others on the market.

HERE'S THE PROOF. . . The standard moisture resistance test described in MIL-C-5A (proposed) Specification requires mica capacitors to offer at least 100 megohms of insulation resistance
 after ten 24 hour cycles in a humidity chamber at $90 \%$ to $95 \%$ relative humidity. The best competitive micas barely meet this requirement . . . but Sangamo HUMIDITITE Micas, under the same conditions, all tested in excess of 50,000 megohms! Continued tests, over and above requirements, with the same HUMIDITITE Micas, proved them capable of withstanding from 21 to 52 cycles (from the smallest sizes to the largest) before failure.
Humiditite is just another example of the advanced engineering that enables Sangamo to meet the existing and future needs of the electronic industry. For additional information about HUMIDITITE, write for Engineering Bulletin No. TS-111.

choose Sangamo SANGAMO ELECTRIC COMPANY MARION, ILLINOIS


FIG. 2-Filter test station using new method
low 3,500 cycles. In other words, when the frequency meter read 35 cycles, the actual frequency could be either 3,535 or 3,465 .

Other disadvantages of the old method included the time required (often several minutes for each check) and the necessity of using relatively skilled technicians at each test stand.

## New Method

The method now used employs a direct-reading digital events-per-unit-time meter as the frequencydetermining device. The setup of the typical present filter test station is shown in Fig. 2, and the block diagram is shown in Fig. 3. Components include a 20 to 200,000cycle signal generator, a phaseshift panel, a resistance decade, a vacuum-tube voltmeter, a capacitance padder, an oscilloscope for measuring phase shift, an oscilloscope for monitoring the output of


FIG. 3-Block diagram illustrating new method employing an Eput (events-per. unit-time) meter to indicate frequency


Just suppose all the nuts, bolts and screws were suddenly removed from a sparkling new range. A great deal more than a cake would fall-as the illustration above dramatically shows.
Yes, fasteners are important-and worth all the time and care you take in selecting those that are "just right" for your product. Lamson \& Sessions is currently supplying most of the appliance manufacturers with bolts, nuts and screws-each type engineered to meet individual zequirements.

Regardless of the product you manufacture; it will pay to take a critical look at the fasteners you are now using and ask yourself these questions:
Can I save money by replacing a "special" with a "standard"? Or will the use of a "special" simplify production, thereby, saving time and perhaps materials?

Remember, whatever your problem, to check with Lamson \& Sessions-one of the few manufacturers offering a complete line of fasteners teamed with expert engineering service.

The LAMSON \& SESSIONS Co.
1971 West 85th St. - Cleveland 2, Ohio
Plants at Cleveland and Kent, Ohio-Birmingham - Chicago
FOR PROMPT DELIVERY AND HELPFUL SERVICE, ORDER FROM YOUR LAMSON DISTRIBUTOR


## KLENS Quefitionestroneto-television-amplifier work

 and stay sharp. Available in 5 or 6 inch sizes.

- There is a Klein Plier made for every job in wiring radios, television or sound system amplifiers. Long nose pliers that assure a tight grip even in confined spaces. Keen edged cutters that stay sharp even after continued service. Flat nose pliers, duck bill pliers, curved nose pliers-many types and sizes to meet every wiring need. By having a full selection of these quality tools, you will save valuable time tools, you will save valuable time
in any wiring work.

Tbis Klein Pockel Tool Guide gives full information on all types and sizes of Klein Pliers. A copy will be sent without obligation.


## ASK YOUR SUPPLIER

Foreign Distributor International Standard

Electric Corp.

the oscillators, an events-per-unittime meter and an events-per-unittime meter modulator.

The signal generator employs an oscillator circuit which uses feedback with resultant high-frequency stability. The oscillator has three controls-a range selector switch for frequency, a calibrated frequency dial and an amplitude control dial. The frecuency dial calibration is held to $\pm \frac{1}{9}$ or a dial division.


FIG. 4-Method of using resistance decade box to determine effective a-c resistance of a mesh

The phase-shift panel is used in conjunction with the phase-shift oscilloscope to determine the characteristics of meshes (portions of filters consisting of a single series inductance and capacitance). The input frequency is applied to the mesh which is connected to the phase-shift panel and then to the phase shift oscilloscope. The Lissajous pattern on the oscilloscope shows the phase shift of the mesh. Zero phase shift is obtained by padding the mesh capacitor with the precision capacitance padder.

The resistance decade box is used as in Fig. 4 to determine the effective a-c resistance of a mesh. The input is fed through a transformer and through divider networks to the horizontal and vertical deflection plates on the oscilloscope. Precision resistors $R_{1}$ and $R_{3}$ give a fixed distance $A$. After this distance is noted, the mesh is inserted

## with High-precision

## Stuparkolil

## CERAMIC ASSCMBLIES

## for Electrical

## and Electronic Applications

To combine ceramic and metal parts into one permanent unit, Stupakoff draws upon extensive experience with both materials. Methods of asscmbly employed by Stupakoff include: metallizing, soldering, pressing, spinning and others. Among the metals assembled to ceramics are silver, copper, brass, stainless steel and monel.

The rotor shafts shown above consist of metal bands attached securely to ceramic rods, and exemplify Stupakoff precision manufacture. On a mass produc-
tion basis, concentricity of components, for example, are held ta less than $\pm 0.001 \mathrm{in}$. Likewise, the strains and spreaders, stand-ofls and trimmers shown below meet the exacting requirements of the service for which they are made.

Stupakof high-precision ceramic assemblies offer many opportunities to reduce costs, increase production and improve electrical and electronic equipment.
We will be glad to discuss your requirements with you and to submit samples for your inspection.


STUPAKOFF
CERAMIC \& MANUTACTURIXG CO.

## LATROBE, PENNSYLVANIA



In the ELECTRONICS industry, buyers have learned to depend on Anti-Corrosive for fast, dependable service on all types of stainless steel fastenings. Draw on our In Stock inventory of more than 7,000 items and sizes and a production capacity geared to produce precision fastenings in large or small quantities, from huge $7 / 8^{\prime \prime}$ hexagon head bolts to tiny \#0-80 machine screw nuts.

Write for Catalog 53F today.
in place of $R_{1}$ and the decade box in place of $R_{2}$. The decade box is then varied until the distance $A$ returns to its original condition. The effective a-c resistance of the mesh can be read off the decade box.

The vacuum-tube voltmeter is used to read the input and output voltages of the filter. Accuracy of this instrument is $\pm 2$ percent of full scale. In the testing of filters the frequency is varied until the desired db point is obtained. The Eput is then used to read the frequency accurately.

The capacitance padder is used in conjunction with the phase-shift panel to determine the characteristics of a particular mesh, or to determine the inductance of a coil.

The two oscilloscopes are used for measuring phase shift and observing the Lissajous pattern of the basic frequency standard and of the audio oscillator. The second oscilloscope is used primarily to adjust rapidly to a multiple of the standard. It is also used to check the drift of the audio oscillator during a test period.

The events-per-unit-time meter used is capable of measuring frequency in digital form from 20 cps to $100,000 \mathrm{cps}$.

## Eput Modulator

The instrument shop at Lenkurt has designed and constructed a unit to extend the frequency response of the Eput meter from 100 kc to 500 kc. This unit is the Eput modulator, shown in block diagram form on Fig. 5. The unknown frequency and a 100 kc standard frequency from the Eput are connected to the two front-panel jacks. If the unknown


FIG. 5-Block diagram of Eput modulator

## Opening a Rew Chapter

## 5

 COMPRESSION TYPEMULTIPLE HEADERS


Exporf Agents: PHILIPS EXPORT CORF. 100 Eabl 42 nd Sireel Now Yark $17 . \mathrm{N}_{\mathrm{i}} \mathrm{Y}$.

Super dopandable... 56 stond ard fypes duvilabed

Anothet sexample of EI advanced engineering, these mulfiple teaders are phcduced under an excheser E-I process. By a raadically new procesf the giass, sealed under trẹmerious =ompréselon, is extremely strong and iiffealt to put under stress. This rebults: ngy 答 new, far grealer resistance to shock and vitration. E-I Compression seals are Esicore treated for maximum immusity $=5$ humidity, fin dipped for easy sold zring aind guaranieed vacuum tight. New Butletin: 960 coms plitély descrites E-L Corfpressioh Type Multiple Headers. Cal. or write for yơal copy, now!

E-1... your
reflable source for all hermetically stecaled remminals.
zzửdreds of sfandard tÿpes of multiple headerts, ortal ptug ins terminals, colcr-coded terminals, and end seals for electitopic and eiectrgical requirements

ELEGTRIGAL INDUSTRIES

CIUSION OF AMPEREY GENTONE COEF

# TRANSIENT ANALYSIS 

## Type 513-D-High Writing Rate Oscilloscope

TWELVE KV accelerating potential

provides the light intensity necessary for photographic recording of single highspeed sweeps, or visual observation of pulses of low duty cycle. Increased brightness and removal of residual charge from previous sweeps result from use of metallized CRT screen.
TRIGGERED SWEEPS. Signals producing 0.5 cm or greater deflection will trigger the sweep. Trigger pulses may be as short as $0.05 \mu \mathrm{sec}$. Sweep easily made recurrent when desired.
WIDE BAND. Factory adjusted for optimum transient response, the Type 513-D distributed vertical amplifier has a risetime of $0.025 \mu \mathrm{sec}$ with no appreciable ringing or overshoot.

VERTICAL AMPLIFIER
Sensitivity
$0.3 \mathrm{v} / \mathrm{cm}$ to $100 \mathrm{v} / \mathrm{cm} \mathrm{dc}$ $0.03 \mathrm{v} / \mathrm{cm}$ to $100 \mathrm{~V} / \mathrm{cm}$ as
Transient response $0.025 \mu_{\mathrm{sec}}$ risetime
Signal delay $0.25 \mu \mathrm{sec}$

Calibrating voltage
Square wave, approximately 1 kc
Seven ranges, 0.05 v to 50 v
Accurate within $3 \%$ of full scale
TIME BASE
$0.1 \mu_{\mathrm{sec}} / \mathrm{cm}$ to $0.01 \mathrm{sec} / \mathrm{cm}$
Continuously variable
Accurate within $5 \%$ of full scale

## REGULATION

WAVEFORMS AVAILABLE
Calibrating voltage
Gate
Delayed gate
Delayed trigger
Sweep sawtooth
Trigger rate generator (200 to 5000 cps )
SELF-CONTAINED
Weight 79 lbs.

TEKTRONIX Type 5.13-D Cathode-Ray Oscilloscope, $\$ 1650$ f.o.b. Portland, Oregon


# TEKTRONIX, Inc. 

P. O. Box 831 A, Portland 7, Oregon • Cable: TEKTRONIX


Type
524-D

## Television Scope

Designed especially for TV Broadcasters, the Type 524-D permits observation of a field one line at a time with push-button shift to corresponding line in opposite field. New magnifier, $3 x$ or $10 x$, expands sweep to right and left of center. Time markers for accurate sync pulse timing.
TIME BASES - $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $0.01 \mathrm{sec} / \mathrm{cm}$ continuously variable, accurate within $5 \%$.

## VERTICAL SENSITIVITY

dc to $10 \mathrm{mc}-0.15 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$
2 cps to $10 \mathrm{mc}-0.015 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$
TRANSIENT RESPONSE - $0.04 \mu \mathrm{sec}$ risetime SIGNAL DELAY - $0.25 \mu_{\mathrm{sec}}$
5" CRT - flat-faced, 4 kv accel. potential Type 524-D - $\$ 1180$


Type
315-D

## Wide Time Base Range

Read time and amplitude directly from the screen. 24 accurately calibrated time bases... 12 accurately calibrated vertical sensitivity positions.
TIME BASES - $0.1 \mu \mathrm{sec} / \mathrm{div}$ to $5 \mathrm{sec} / \mathrm{div}$ VERTICAL SENSITIVITY
dc to $5 \mathrm{mc}-0.1 \mathrm{v} / \mathrm{div}$ to $50 \mathrm{v} / \mathrm{div}$
5 cps to $5 \mathrm{mc} 0.01 \mathrm{v} / \mathrm{div}$ to $50 \mathrm{v} / \mathrm{div}$
TRANSIENT RESPONSE - $0.07 \mu_{\mathrm{sec}}$ risetime $3^{\prime \prime}$ CRT — high definition, flat-faced
Type 315-D -
for use on $50-60$ cycle line. ......... $\$ 770$
Type 315-D -
for use on 50.800 cycle line......... . $\$ 785$

Prices f.o.b. Portiand, Oregon
These three and other oscitloscopes fully described in the 1953 Tektronix Catalog. Write to the above address.
frequency is between 100 kc and 500 kc , the selector is placed in the appropriate position. The unknown is then amplified and mixed in a varistor-type mixer, with the sum and difference frequencies being applied at the low-pass filter. The difference is then passed through the amplitude control to the output monitoring meter. This output is then applied directly to the input to the 100 kc frequency meter. When placed in the direct position, the frequency read on the Eput meter is the actual frequency. When placed in the modulator position, the frequency read on the Eput meter must be increased by a multiple of 100,000 .

Assume that the operator wished to set an input frequency of 35,152 cps. Since the dial calibration on the signal generator is held to $\pm \frac{1}{4}$ of a dial division, the operator can rapidly swing the dial controlling the frequency up to 35 kc . By monitoring the Lissajous pattern on the oscilloscope, the operator can rapidly and momentarily set his oscillator to exactly 35 kc . He then makes the slight frequency adjustment on the oscillator while reading the frequency directly on the Eput. When the Eput meter reads 35,152 his test generator frequency is established for the test. During the test a glance at the scope shows, without waiting for the Eput to recycle, if his oscillator has drifted.

In frequency response tests of filters the operator runs his test oscillator out on each side of the mid-band point until the vacuumtube voltmeter reads a predetermined attenuation $\pm 0.2 \mathrm{db}$. He then reads the frequency of the signal generator required to obtain this attenuation. The tolerance specifications are tabulated in frequency versus $3-\mathrm{db}, 20-\mathrm{db}, 40-\mathrm{db}$ points, etc.

## Testing Employee Vision

Inauguration of a system of testing employee vision eliminated almost 75 percent of the defective units that formerly got past the inspection department at Motorola. Since most inspection work is done at a distance of about 13 inches, good short-range vision is highly essential.

##  , <br>  <br> YOUR

The art of cutting jewels is a thing of consummate skill and delicate touch.
Gem cutting requires great accuracy.
But even gem cutting is not so precise or exacting as crystal processing by Midland's methods. As a result, you get the finest quality and highest accuracy scientific skill can produce in a frequency control crystal.

Midland Crystal Processing operations in many respects exceed the requirements of gem-cutting. Raw quartz is selected with regard to high electrical quality . . . proceeds through slicing, lapping, etching; and the final plating and sealing corresponds to setting a jewel. And at every step Midland's critical inspection and test procedures are applied, including precise angular control by X-ray.

Your Midland crystal is a gem of stability, accuracy, high output, long life. Whatever may be your requirements for better crystal performance, you'll get them in fullest measure from Midland.
Whatwer your Costal med. conventional or specialigal When it has to be erectly right, contact


MANUFACTURING COMPANY, INC.
3155 Fiberglas Road - Kansas City, Kansas
WORLDS LARGEST PRODUCER OF QUARTZ CRYSTALS

## NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered . . . Twenty-Three Trade Bulletins Reviewed



Clipper Diode and Rectifier Tube

Amperex Electronics Corp., 230 Duffy Ave., Hicksville, L. I., N. Y., announces the type 6269, a new, high-vacuum clipper diode and rectifier tube that is only 2 in . long (without leads) and $\frac{3}{4} \mathrm{in}$. in diameter. It is cooled by liquid-immersion (silicone oil). Although developed primarily for military radar applications, it shows possibilities for use in the high-voltage electronic field where space requirements are critical. Maximum peak voltage is 16 kv and peak current. is 250 ma .


## UHF-VHF Crossover Network

Hugh H. Eby, 4712 Stenton Ave., Philadelphia 44, Pa., has available a new crossover network that com-
bines uhf and vhf into a single antenna system. Only one line to the receiver is required, without the use of switches. The crossover network is an electronic filter that employs a high and low-pass resonant circuit, designed to isolate the vhf antenna and to eliminate interference. It is installed easily on the mast or crossarm of the antenna by a clamp that is supplied. All elements and metal parts are corrosion resisting.


## DPDT Relay

Phaostron Co., 151 Pasadena Ave., South Pasadena, Calif., is now manufacturing a miniature, herme-tically-sealed, dpdt relay, weighing only $3 \frac{1}{2} \mathrm{oz}$ and designed to operate through a wide range of environment. Due to its perfectly counterbalanced features this relay will withstand high acceleration, vibration, shock and tumbling. It meets the shock requirements of MIL-E5400 and will withstand continuous acceleration of 50 g without malfunctioning. Certain contact combinations can be furnished with a required coil power as low as 20 mw and any relay in this series can be obtalined with a coil resistance as high as $\mathbf{1 5 , 0 0 0}$ ohms.

OTHER DEPARTMENTS featured in this issue:

Electrons At Work Page
Production Techniques. . . 260
Plants and People...... 384
New Books .............. 410
Backtalk
420


## H-V Capacitors

Erie Resistor Corp., Erie, Pa., announces a line of high-voltage disk Ceramicon capacitors. Exhaustive tests for life and other qualities have been carried on over a period of years to establish required dielectric thicknesses for safe ratings. Standard sizes in the new line are $\frac{3}{3} \mathrm{in}$., $19 / 32 \mathrm{in}$. and $\frac{3}{4} \mathrm{in}$. maximum diameter. They have phenolic dipped, vacuum-wax-impregnated case insulation. Leads are No. 22 tinned copper wire. Standard d-c working voltage ratings are 1,000 , $1,500,2,000,3,000,5,000$ and 6,000 , with a dielectric strength test of twice the rated working voltage.


## Regulated Power Supply

Lawn Electronics Co., East Freehold Road, Freehold, N. J., is now

# RADUCZ SFA:BULDING COSIS.。 



## 

producing the model 603-A regulated d-c power supply. The unit features 0.1 -percent regulation, less than 1 -mv ripple, and less than 0.5ohm output impedance. Output voltage is continuously variable from 0 to 600 v with either the positive or negative terminal grounded, and the unit will supply up to 300 ma at any voltage setting. The power supply also features a bias supply variable from 0 to -250 v stabilized to 0.1 v and a $6.3 \mathrm{v}, 6$ ampere center tapped filament supply. Dimensions of the unit are 19 in. wide $\times 8 \frac{3}{4} \mathrm{in}$. high $\times 10 \frac{1}{2} \mathrm{in}$. deep.


## H-F Oscilloscope

International Electronics Corp., 137 Hudson St., New York 13, N. Y. The Mullard type E. 7581 oscilloscope is intended to cover a wide field, particularly in connection with tv development, radar and nuclear research. The instrument is built around a c-r tube with a useful screen diameter of 13 cm , and a blue-white trace suitable for visual or photographic work. Final anode voltage of the tube is adequate for normal use with recurrent phenomena. The X and Y amplifiers are as far as possible identical, thus enabling quantitative measurements of phase relationships to be made. Each amplifier has a bandwidth extending from d-c to 15 mc . Provision is made for beam modulation with a special amplifier of $5-\mathrm{mc}$ bandwidth and of sufficient sensitivity to give reasonable modulation from an r-f signal generator.


## Multipurpose Signal Generator

Hewlett-Packard Co., 395 Page Mill Road, Palo Alto, Calif. Receiver and amplifier gain, selectivity, sensitivity and image rejection are just a few of the uhf-tv measurements made quickly and easily with the model 612A master-oscillator power-amplifier generator. It offers continuous coverage between 450 and $1,200 \mathrm{mc}$. Frequency and output are directly set and read on large dials. No charts or interpolation are necessary. Maximum output is 0.5 $v$ into 50 ohms throughout frequency range. The instrument offers broad band modulation up to 5 mc , and has low incidental f-m.


## Wire-Wound Resistors

Resistance Products Co., 714 Race St., Harrisburg, Pa., has announced new midget precision wire-wound resistors. Their small size and light weight make them self-supporting. This is especially useful in aircraft applications. They are made in the following sizes: $\frac{1}{2}$ in. long $\times \frac{9}{3}$ in. in diameter; ${ }^{3} \mathrm{in}$. long $\times{ }^{\frac{9}{3} \mathrm{in}} \mathrm{in}$. in diameter; and $\frac{3}{4} \mathrm{in}$. long $\times \frac{3}{3} \mathrm{in}$. in diameter. These type C resistors are completely insulated and enclosed in rugged plastic jacket. Steatite winding forms have high insulation with low coefficient of expansion. Windings are impreg-
nated in special compound with protection against dust, salt spray, humidity and mechanical damage.


## Air-Cooled Ignitron

National Electronics, Inc., Geneva, III., has developed a 56-ampere ignitron that does not require water cooling and is electrically similar to the 5551 size B ignitron tube. The NL-1005 tube is designed for forced air cooling but may be used at reduced ratings with free ventilation. In the welding control application it is the approximate equivalent of a 300 -ampere magnetic contactor. The tube is capable of controlling maximum rms demand current of 2,400 amperes at 250 v a-c or 1,200 amperes at 500 v a-c. Maximum average anode current rating is 56 amperes d-c.


## D.C Train Power Supply

Federal Telephone and Radio Corp,. Clifton, N. J., has developed a $12-\mathrm{v}$ d-c train power supply that eliminates the need for an a-c converter and incorporates a plug-in vibrator cartridge capable of operating both transmitter and receiver. Type M322-1 power supply

## Electronic <br> 

Drives by WESTERN GEAR WORKS

1. 21

Do you have a problem involving the design of gears or gear drives for electronic application? For operation of servc-mechanisms, computors, adjustment of radar or other antenna systems, for auto-tune transmitters? Do you require "just ord nary" gearirg or extremely accurate "precision class" zears?
Whatever your need, whatever the type gear or gear train, you will find the engineering assistance and complete facilities available at Western Gear Works. Specialists who know and understand your problems are ready to go to work for you Your inquiries are invited; write, wire or telephone us now, at Western Gear Works Executive Offices
Post Office Box 182, Ly wood (Los Angeles County), California, Telephone NEvada 6-2151.

Good Gecrs Since 1888 - 5 Plants to Servo You


Recently one of our admirers (yes, we have one) wrote saying he enjoyed our advertising even though he was not a customer for our "realys*." Our alvertising agency (which we consult on rare occasions) picked up this apparent typographical error and gave us this defmition:

* Kealy" - a Sigma Sensitive Relay that, at long last, has really been delivered to the customer.

Although this jest comes dangerously close to the truth, some unknown force compels us to pass it on to you. our public. Those of you who are our customers (bless you) know of these problems of ours and will perhaps gain hope in thot knowleque that our spirits. at least, are high. And you non-users of senstive relays - why do you read these advertisments anvway?

SIGMA INSTRUMENTS IN C.
62 PEARLST. SU. BRAINTREF, BOSTUN 85. MASS.


## geared to



## AT NORTH AMERICAN AVIATION

One of the big reasons for the success of North American Aviation's Electromechanical Department is its painstaking atteation to small details-like the millionth of an inch on a gear or the hairline accuracy of the tiny part shown on the contour projector. These small details are some of the factors contributing to the complex missile guidance and autcomatic control systems which are being designed and developed by this department for projects which stagger the imagination.

North American's fine reputation for pioneering in far-reaching technical fields is part of the answer to the question: "Why do so many talented engineers choose North American as a place to work?" Another is the extremely advanced equipment - much of it
invented and built by North Arrerican itself - evailable to the engineers who war: kere

In addition to North American's popularity as a place to work, there are alway, finc career openings for imaginative scientific mir.ds. If vou like theary, you will discove- an exciting ard secure future in te fields of operaticns analysis, adral zed dynamics, кi eematics, noise, error or informetion theory, systems $2 n-$ gineering, statistical quality cortricl or servo analysis.
If research, divelopment, or ceris s your specia ty, youll find attractive opportunitits in radar and $z \mathrm{em}$ munications systems, analogue and digital computers, automatic guida nce systems or or-ics
Why not write for complete irformation, giving us your education and experience?

## NORTHI AMERICAN ATIATION. INC.

# maintenance and replacement are simplified with Fairchild 



## plug－in potentiometers

These plug－in type ganged potentiometers are another excellent example of Fairchild＇s service in meeting the special requirements of customers． The problem was to provide ganged precision potentiometers that would simplify maintenance of airborne fire control equipment through quick and easy replacement．A series of packaged plug－in units like that shown was the answer．

An entire gang can be replaced in a few minutes because only the end mounting plates are fastened down．There are no wires to disconnect or solder．Test points are provided on the top of each potentiometer so it can be checked quickly．

Maximum rigidity of the gang is assured by mounting the individual units on a single shaft．These plug－in potentiometers have the same mechanical and electrical tolerances and performance characteristics that have made the Model 746 unit the first choice for many critical applications．

Use the coupon below to get full information．

THIS COUPON MAY HELP SOLVE YOUR POTENTIOMETER PROBLEMS！
Pーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
Potentiometer Division，Department 140－34A1
Fairchild Camera and Instrument Corporation
Hicksville，Long Island，New York
Gentlemen：
Please send me complete information about Fairchild Precision Potentiometers
and tell me how you might solve my potentiometer problems．
Name
Position
Company
Address
｜
voice circuits can be economically divided into a number of telegraph channels with the type 24 C ampli－ tude－modulated carrier telegraph equipment．Up to 18 duplex tele－ graph channels can be derived from a single 4 －wire circuit，or up to 9 duplex channels can be derived from a single 2 －wire circuit with this equipment．The derived chan－ nels can be used for teleprinter service，remote control and other telegraphic indication．Frequency allocations and levels are compatible with other widely used carrier tele－ graph systems．The channel ter－ minal panel includes transmitter， receiver and relays．Jacks and con－ trols for adjusting bias and loop current are easily accessible on the front of the panel．


Small Pneumatic Transmitter
The Bristol Co．，Waterbury 20 ， Conm．，has announced a miniature pneumatic transmitter for measur－ ing and transmitting readings of temperature，pressure，vacuum，dif－ ferential pressure and liquid level to recording，indicating，and con－ trolling receivers，including minia－ ture type receivers．Transmission is by means of air pressures of be－ tween 3 and 15 psi that have a direct relation to the measured quantity．The series 650 trans－ mitter uses standard Bristol meas－ uring elements and a simple trans－ mitting mechanism with only one pivot and no flexures．It is sensitive to extremely small changes in the

## ELECTRONIC TRANSFORMERS

Built to Customer Specifications and Requirements

PULSE \& FILTER NETWORKS<br>with FERRITE CORES

AUDIO, POWER<br>CHOKE<br>MODULATION

DEPENDABILITY -------------------- and ACCURACY

Inquiries Invited on Sample or Production Quantities

## EXCELLENT DELIVERY ON BOTH MILITARY \& COMMERCIAL UNITS

## A RELIABLE SOURCE SINCE 1941



# CANNON PLUGS 

## get good reception

- SERIES



## X SERIES



XK SERIES


D SERIES


K SERIES

U SERIES


## UA SERIES



GB SERIES

XKW-B 1 SERIES


K SERIES


TELEVISION

$$
N
$$

XL SERIES

measured value, as little as 0.03 percent of range, including reversal. It weighs $7 \frac{1}{2} \mathrm{lb}$, is weatherproof, can be installed in any location and will operate in any position.


## Modulator

Bradley Laboratories, Inc., New Haven, Conn. A copper-oxide rectifier with a low threshold voltage rating is being used as a modulator in an electronic unit used in aircraft. The hermetically sealed modulator is relatively unaffected by subzero temperatures, high altitudes or unequal atmospheric pressures. The modulator, approximately $1 \mathrm{in} . \times 1^{7} \mathrm{in} . \times \frac{3}{8} \mathrm{in}$., has no moving parts. Current and temperature characteristics are balanced to better than 1 percent. The modulator operates over a range of -65 to +85 C and at the audio frequencies.

## Film Multiplexer and Shadow Box <br> Shadow Box Box

Federal Telecommunication Laboratories, Inc., Nutley, N. J.; has developed a new film multiplexer and shadow box designed for use with image orthicon camera use with image orthicon camera
chains. The FTL-263A consists of a light-tight wooden shadow box
 Laboratories, Inc., Nutley, N. J.,

## CANNON ELECTRIC



The high quality audio connectors shown above are available from all Cannon Franchised Distributors. In their great variety of sizes, shapes and contact arrangements there is no problem or technical requirement in the radio, sound, TV or related fields that cannot be met. Cannon plugs are standard on leading makes of audio equipment and microphones.

MI SERIES


## WRITE FOR PRICE FOLDER CPL-6




## Melamine Laminate

Synthane Corp., Oaks, Pa., is producing a new glass-mat melamine laminate that combines high fire and arc resistance with good mechanical and chemical properties. Designated as G-8, the new laminate is available to suppliers of electrical and power equipment at a considerable saving under the cost of the continuous filament glass base materia (INEMA-grade G-5) whose electrical properties it matches. The new material is laminated in thicknesses from $\frac{1}{16}$ in. upward. Sheet sizes are standard 36 in. $\times 36$ in.


Lumped Constant Delay Lines
The May Engineering Co., 6055 Lankershim Blvd., North Hollywood, Calif., offers low-cost labo-ratory-built lumped-constant delay


Eclipse:Pioneer
AUTOSYN ${ }^{\circledR}$ SYNCHRO STATORS ARE INSULATED WITH

## NATVAR V.C.

Eclipse-Pioneer Division of Bendix Aviation, Teterboro, N. J., through development and manufacture of instruments and accessories, has been a major factor in the rapid expansion of the Aviation Industry. Although their production is now more than 5 times its pre-Korea level, this growth has been accomplished without sacrifice in the quality of its precision products.
To insulate stators of Autosyn Synchros, Eclipse-Pioneer specifies and uses Natvar varnished cambric because of its consistently good electrical and physical properties.
All Natvar flexible insulations are dependably uniform, no matter when or where purchased. They are immediately available either from your wholesaler's stock or direct from our own.


MIGHTY MITES! In spite of their size, Autosyn Synchros must operate with extreme reliability over a wide temperalure range. Stators are being assembled in approximately 150 varicties at Eclipse-Pioneer, and strict adherence to engineering specifications is a must. They are insulated with strips of Natvar bias cut varnished cambric because of its uniformly high dielectric strength and flexibility.


## Natvar Products

- Varnished cambric-straight cut and bias
- Varnished cable tape
- Varnished canvas
- Varnished duck
- Varnished silk
- Varnished special rayon
- Varnished Fiberglas cloth
- Silicone coated Fiberglas
- Varnished papers
- Slot insulation
- Varnished tubing and sleeving
- Varnished identification markers
- Lacquered tubing and sleeving
- Extruded plastic tubing and tape
- Extruded plastic identification markers

Ask for Catalog No. 22

## 



## HERMETICALLY SEALED TO MIL-T-27 SPECIFICATIONS

NYT offers a wide variety of transformer types to meet military and civilian specifications, designed and manufactured by specialists in transformer development.
Latest NYT service for customers is a complete test laboratory equipped and approved for on-the-spot MIL-T-27 testing and faster approvals.

# NEM YORK TRANGFORMER CO. ING。 ALPHA, NEW JERSEY 

lines built to close tolerances in open frame construction. Circuit designers can test these lines in their experimental equipment and determine final specifications requirements before quantities of delay lines are ordered. Accessibility permits great flexibility in choice of delay by tapping the line. Illustrated is a typical line with $0.05-\mu \mathrm{sec}$ rise time, 300 ohms characteristic impedance and $1.0-\mu \mathrm{sec}$ delay. Individual sections are constructed to permit adjustment of the filter network parameter. Low attenuation, low rise time and other features are realizable in these delay lines.


## Decade Amplifier

hermon Hosmer Scott, Inc., 385 Putnam Ave., Cambridge 39, Mass. The new type $140-\mathrm{A}$ decade amplifier is a miniaturized laboratory voltage amplifier with 1 -mc frequency response and stabilized voltage gains of 10 and 100 . Typical applications are to extend sensitivities of oscilloscopes, vtvm's and other indicating or recording devices. A low-flux-density transformer permits the amplifier to be used without effect on nearby equipment operating at low signal levels. The amplifier is entirely resistance coupled, and no peaking coils or compensating networks are used that might cause undesirable transient effects. Frequency response is flat from 2 cps to 1 mc , $\pm 0.1 \mathrm{db}$. Equivalent input noise is less than $8 \mu \mathrm{v}$ in the X100 position. Maximum undistorted output voltage is 40 v . Maximum ouput current

## outsell all other VTVM'S

> RCA WV-97A SENIOR Volrohmyst $\$ 6750 \begin{aligned} & \text { Sugecsted } \\ & \text { User frice }\end{aligned}$


Because the $\because$ 're factory-calibrated under laboratory conditions... incorporate more features . . have unusual accuracy and stability . . . in short, offer you more for your money-RCA VoltOhmysts outsell all other makes of vacuum-tube voltmeters.

All RCA VoltOhmysts employ a degenerative bridge circuit to compensate for line-voltage changes . . . a sturdy 200 microampere meter movement electronically protected against burn-out...large,
easy-to-read sciles
 against external fields... and have an inpu resistance of 11 megohms on all ds ranges.

Before you buy a vazuum-tube vcltmeter, be sure to get the ful. details on the RCA VoltOhmyst best suited to your needs. See your RCA Test Equifment Distributor today... or write RCA, Commercial Engineering, Section 42DX, Harrison, N. J. *Tmk (®)

is 1 ma. Input impedance is 1 megohm shunted by $10 \mu \mu \mathrm{f}$.


## Electric Timer

Vocaline Co., of America, Inc., Bristol Motor Division, 24 Coulter St., Old Saybrook, Conn., has developed a sturdy, reliable electric timer with an extra high rating ( $1,650 \mathrm{w}$ ) for use as an automatic time control attachment for electric heating pots, tumbling machines, air conditioning and humidifiers, or for controlling the break-in period for motors and electronic equipment. The unit called Two-Timer model 2T-20 can be preset to turn on or off a properly rated device plugged into it at any time up to 20 full hours (or fraction thereof) ahead. It is designed for use with $105-120 \mathrm{v}, 50-60$ cycle current, rated load 15 amperes at 110 v . Powered by the model 200 Bristol Circle B synchronous timing motor, the complete unit weighs 1 lb and measures $2 \mathrm{in} . \times 2 \mathrm{in} . \times 4 \mathrm{in}$.


## Isotope Comparator

The Victoreen Instrument Co., 5806 Hough Ave., Cleveland 3, Ohio. The isotope comparator is a highefficiency radiation indicator designed primarily for medical radio-

## MORE AND MORE ENGINEERS ARE SPECIFYING


for
High Temperature fastering up to


## . . . particularly where

 high frequency vibration, tensile strength and re-usability are factors!

0


Reasons are maxy why Klincher is getting first call on more and more of the really tough fastaning jobs in the Electronics industry For instance, on critically vital thermocouples Klincher L.ocknut permit; use of desired torques without causing stıd failure or ınnecessary wear of stud threads.
In rectifiers, tos; in chassis connections and terminal posts .. wherever bolts studs or axle shafts must be preserved, Klincher Locknuts excel.

Inquiries invited regarding specialized locknut problems. Write for data and experimental samples, giving size and application


KLINCHER ADVANTAGES:
Spin freely down to work. Stays positively locked.

After breakaway, nut spins off freely, ready for reuse, without impairment of locking efficiency.

Only one piece to stock and handle . . . saves time installing and removing.
Ideal for standard and power wrenches.
Manufactured in stainless steel and other materials.


## A Great New

## Engineering Research Laboratory



Model of new IBM Research Laboratory now under construction at Poughkeepsic, N. Y.

In this building, ideas will be born, developed, and become part of America's future. Here, engineers and scientists will have facilities for creative work such as were undreamed of yesterday.

In IBM's other fine engineering laboratories in Poughkeepsie and Endicott, N. Y., and San Jose, Cal., engineers and scientists are working on exciting projects for the future. These include electronic digital computers, electronic and electric business machines and time systems, and electric typewriters.

IBM's continuous program of research, development, and manufacture has created a constant flow of new services for business, industry, scicnce, and the nation.

Today there are opportunities in IBM for development engineers, physicists, and design engineers. You are cordially invited to investigate these opportmities. Inguiries should be directed to Mr. W. W. MeDowell, Dircetor of Fngineering, Jnemational Business Machines, Room 164, 590 Madison Avenuc, New York 22, N. Y.

NEW PRODUCTS
active tracer work and useful in other applications. Ten Geiger tubes banked in parallel on the rear panel give high counting efficiency over six ranges of sensitivity necessary for making many rapid comparisons of samples with a control standard, directly in percentage of the stronger source. The unit may be carried about the laboratory for quick surveys. A sliding shield is provided for beta discrimination.

## Ignition Cable

General Electric Co., Bridgeport 2, Conn., has announced Bureau of Ordnance approval for its insulated, high-tension ignition cable under specification MIL-C-3162 as type 1 grade C, class 2. This cable, which is used for ignition systems of internal combustion engines in aircraft, automotive vehicles and marine service, has a temperature range of 250 to -65 F , and must remain flexible even under the severe cold conditions encountered by modern, high-altitude flying ships. The new cable has a stainless steel conductor with a synthetic rubber insulation. Over the insulation is a glass-reinforcing braid and an overall low-temperature sheath. The cable is available in $5-\mathrm{mm}$ size.


## Hermetically-Sealed Connectors

Cannon Electric Co., 3209 Humboldt St., Los Angeles 31, Calif,, has added the KH and RKH connector
 always specify eVErlock washers for dependability and fast service.

WRITE FOR LATEST CATALOG AND PRICES

THOMPSON-BREMER \& COMPANY. 1642 W. HUBDARD STREET, CHICAGO 2R, ILIINOIS SUBSIDIARY OF AMERICAN MACHINE AND FOUNDRY COMPANY - NEW YORK, N, Y

## TOROIDS and COILS by lenkurt Specialists



## DECADE INDUCTORS

Guaranteed to an accuracy within one per cent of inductance value, this new Lenkurt tool far laboratory or field use provides required inductance values in 1 -mh steps up to a total of 11.11 h . Write for your copy of new bulletin DE-P2 for complete information.

## LENKURT ELECTRIC SALES CO.

SANCARLOS 1 CALJFORNIA

Lenkurt components are produced from the rich engineering background of Lenkurt Electric Co. world's largest independent monufacturer of lelephone and telegraph corrier equipment.
series to its hermetically-sealed lines. The new plugs and receptacles are made for relays, position indicators, direction finders, tachometers and the instrument industry in general. Chief feature of their steel shell is the heavy-duty special Acme thread. The KH receptacles mate with standard K plugs, and RKH plugs with standard RK receptacles. The hermetic seal is achieved by the special vitreous insulation around the steel contacts and fused to the shell. The KH connectors will withstand 200 to 900 psi , depending on size and contact complement. Temperature operating range varies from -320 F to +600 F ., emergencies to 1,000 $F$ if mating fitting and finish are expendable. All MIL-C-5015 vibration and thermal shock tests are met.


## Comparison Bridge

General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Accurate and simple production tests are possible on the new gen-eral-purpose type 1604-A comparison bridge. With a basic accuracy of 0.1 percent, the bridge can be used for direct comparison of resistors, capacitors and inductors over the wide impedance range of about 2 ohms to 20 megohms. Two impedance-deviation ranges, $\pm 5$ and $\pm 20$ percent, are provided. Dis-sipation-factor differences are also indicated. The bridge is completely self-contained with a cathode-ray visual detector and an oscillator operating at either 1 kc or 5 kc . Operation is from the a-c line. The point at which the bridge is grounded can be switched, so that measurements can be made with the


## New Way



## SHERMAN SPOT-SEAL MAKES A FAST, ECONOMICAL WRAP FOR ELECTRONIC PARTS AND ASSEMBLIES!

Goes on more easily than any other wrap, too. That's because Spot-Seal is a specially coated wrap that sticks only to itself. Wrap it around the part, press it together . . . the package is sealed! Spot-Seal makes a quick, economical wrap for parts that need dust and dirt protection. And because Spot-Seal sticks only to itself, it will not mar finishes, requires no fastenings. A perfect way to store or ship sub-assemblies and replacement kits without loss of parts.
Switch to labor-saving Spot-Seal for convenient protective packaging of electronic units. Write for free samples today, Dept. U. See for yourself the protection and quick-wrapping Spot-Seal gives.
unknown either grounded or ungrounded.


## Voltage-Regulated Power Supply

Kepco Laboratories, Inc., 131-38 Sanford Ave., Flushing 55, New York. Model 1520 features a regulated h-v d-c power supply with excellent regulation, low ripple content and low output impedance. The h-v supply is continuously variable from 0 to $1,500 \mathrm{v}$ and delivers from 0 to 200 ma . In the 30 to $1,500-\mathrm{v}$ range the output voltage variation is less than 0.5 percent for both line fluctuation from 105 to 125 v and load variation from minimum to maximum current. Ripple voltage is less than 30 mv peak to peak.


## EPUT Meter

Berkeley Scientific Division of Beckman Instruments, Inc., 2200 Wright Ave., Richmond, Calif. Model 5558 events-per-unit-time meter is a high-speed electronic counter combined with an accurate time base to provide an instrument that will automatically count and display the number of events that occur during a precise time interval. The EPUT will count events occurring either regularly or with ran-

## New Plant Locates in Telecasting



Things are humming in Wapakoneta, Ohio. There, about 10 miles west of the Dayton-Toledo coaxial cable is the new plant of Superior Tube Company. This plant complements the production capabilities of the Superior main plant, takes care of your ever-increasing demands for television and military purposes.

Superior nickel cathodes are made in a wide range of types, O.D.'s, wall thicknesses and lengths - with or without bead-and in active, normal and passive alloys, depending upon the application and the degree of emission required.

Superior produces both Seamless and Lockseam $\dagger$ nickel cathodes. For many electron tubes Lockseam
-made by a patented process from strip stock-has an economic advantage. Superior Seamless shows great advantages in uniformity, close tolerances, and small O.D. for sub-miniature tubes.

Superior equipment is more than matched by the care taken in production. Each melt of alloys is laboratory-checked for emission and performance. Many extraordinary precautions are taken in manufacture to avoid contamination.

Before you order cathodes, first see what Superior engineering, quality, and delivery can do for you.

Many other types of nickel cathodes-made in Lockseam $\dagger$ from nickel strip, disc cathodes, and a wide variety of anodes, grid cups and other tubular fabricated parts are available from Superior. For information and Free Bulletin, address Superior Tube Company, Electronics Division, 2500 Germantown Avenue, Norristown, Pa.
*Main Superior Tube plant at Narristown, Pa,
*NEW Superiar Tube plant at Wopakaneta, Ohio



This new Bendix-Pacific TAV-2 Amplifier will extend the range of low power transmitters, such as the Bendix-Pacific TXV-13, by increasing the output power. It nominally provides 100 watts of RF output 'power to a 50 hm load through a type N coaxial fitting. The unit requires two watts drive at 50 ohms. The power connection is a multicontact, quick disconnect plug.

The amplifier is unusually compact and is rigidly constructed to withstand extremes of vibration and shock. Provision is made for mounting the BendixPacific TXV-13 Transmitter directly to the amplifier, as shown in the photo, making a complete 100 watt transmitter of very small size.

## TYPICAL OPERATION-215.235 mc.

Final Plate Voltage: 775 volts DC
Final Plate Current: 220 milliamperes
Driver Plate Voltage: 500 volts $D C$
Driver Plate Current: 100 milliamperes
Sereen Voltage: 250 volts DC
Screen Current: $30-40$ milliamperes
Power Output: 100 watts

I
Heater Voltage: 6 or 24 volts $A C$ or $D C$
Blower Voltage :
6, 24 volts DC or 115 volts 400 cycles
Size: $41 / 2$ inches high, $2 \frac{1}{8}$ inches wide, and $85 / 8$ inches long not including the transmitter
Weight: 5 lb .6 oz
Assembly Number: 557731

Write for complete information.

dom distribution at rates from 20 to $1,000,000$ events per second with an accuracy of one count. The result is displayed on the illuminated number panels of 6 decimal counting units and read directly in digital form. Because of its direct readout feature with no lights to add or interpolate it is ideally suited for production line operation by relatively unskilled personnel.


## Subminiature Tube Sockets

Hugh H. Eby, Inc., 4722 Stenton Ave., Philadelphia 44, Pa. A new line of standard subminiature tube sockets is available in two styles. The rectangular socket is made in $5,6,7$ and 8 pin with contacts in two lengths for conventional and printed circuit application. The round style is available with or without saddle. Both sockets are produced to recognized industry standards and dimensions. Contacts are beryllium copper silver plated, tin dipped, or gold flash over silver. Bodies are of low-loss micafilled phenolic, and the saddle is nickel-plated brass.

## TV Picture Tubes

The Rauland Corp., 4245 N. Knox, Chicago, Ill., has announced two new 21 -in. rectangular tv picture tubes with spherical faceplates. The 21YP4 has electrostatic focus and magnetic deflection requiring a focusing voltage from -0.4 to -2.2 percent of the anode voltage. The 21ZP4A has magnetic focus and magnetic deflection. Both tubes have gray filter faceplates that improve picture contrast. Each type tube has external conductive coating that acts as filter capacitance. Each also uses the company's indicator ion

## GPL Sutraces STATICON INDUSTRIAL TELEVISION

Standard or portable type cameras designed with New "STATICON" TUBE ... GPL Remote Control opticnal

## A SPECIAL SERVICE <br> For Users of INDUSTRIAL TV

GPL announces a special engineering service for firms studying industrial TV. You are invited to submit your problems to GPL engineers for a survey of camera type needed, lenses, monitors, remote control, and complete installation for maximum economy and efficiency.

## STANDARD STATICON

A very compact camera, designed for fixed installation and continuous duty under minimum light conditions. Separate control monitor and sync generator at master control point. Standard TV receivers can be used as optional monitors. Available with remote control of pan and tilt, lens change, focus and iris adjustment.

## PORTABLE STATICON

For field use, multiple setups . . . hand-held or tripodmounted. Packaged as one unit with built-in sync generator, monitor and transmitter in camera housing. Standard TV receivers as added monitors. Rugged but compact for reliability in portable uses.

Specifications for both cameras available on request

Write, wire or phone


[^20]
# Norden 

## NEW PRODUCTS

(continued)
trap gun that provides outstanding picture quality with a minimum of installation servicing time.

## began with-bombsights . . .

# Nase 

## continues with-highly advanced instruments and systems . .



## for all branches of the Military Services and many segments of Industry.



Skilled instrument makers and engineers
find a challenge here.


Fine Wire Bobbin Winder
Geo. Stevens Mfg. Co., Inc., Chicago 30, Ill., has announced the model 111-A miniaturized highspeed fine-wire bobbin winder. An automatic counter permits instant resetting of the winding cycle by merely touching a lever. Dimensions of the unit are $21^{\frac{3}{4}} \mathrm{in}$. long $\times$ 8 in. wide $\times 12 \mathrm{in}$. high. Net weight is 42 lb . A slow-start feature avoids possibility of wire breakage. Top winding speed is $7,000 \mathrm{rpm}$. The model $111-\mathrm{A}$ winds all types of random-wound bobbin coils, solenoids, repeater coils and precision, noninductive resistors.


## Inductance Bridge

Clough-Brengle Co., 6014 Broadway, Chicago 40, Ill. Model 712 capacitance - resistance - inductance bridge is used to measure the capacitance of paper, mica, electrolytic, ceramic and air capacitors; the stray capacitance of bushings, switches and wiring; the dissipation factor of capacitances; the leakage current of electrolytic capacitors; the resistance of composition and wire-wound resistors; the inductances of coils and transformers; the storage fac-

## 0 sMALI. MITAL StAMipings Patton-/| acGuyer

For over 33 years P-M has been a dependable source for small metal stampings. An extensive modern plant, complete equipment, specialized engineering experience and toolmaking skill combine at P-M to produce stamped metal parts accurately, economically, promptly. Moderate die charges. Modern facilities for large volume production. Special stamping problems are gladly accepted; recommendations for the most efficient and economical solutions are made promptly. Send prints for your next stamping job to P-M.

## TERMINALS FOR ELECTRIC WIRES

Being long experienced specialists in the terminal field, we have dies to produce over 400 different kinds of separate terminals, and every modern facility to meet your standard or special requirements. We also provide terminals in continuous form, supplied on reels, with machine for attaching and soldering fandem terminals to wires in one continuous operation. Send for folder.

## PATTON-Mac GUYER COMPANY

201 CHAPMAN STREET, PROVIDENCE 5, R. I.



HOLD THEM TIGHT with a

## BIRTCHER CLAMP

There is a Birtcher Clamp... or one can be designed... for every tube you use or intend to use.

Regardless of the type tube or plug-in component your operation requires... and regardless of the vibration and impact to which it will be subjected... a Birtcher Tube Clamp will hold it securely and rigidly in place.

Catalog and samples sent by return mail.


Attention of
iddress
City
$\qquad$
$\qquad$
sure $\qquad$

tor (Q) of inductances; the turns ratio of transformers; the insulation resistance of capacitors, bushings and barriers; and the quality of capacitors already wired into a circuit.


## Dot Generator

Research Electronics, Roslyn, Pa. Model 102 pin-point dot generator is a new type burst pulse generator for laboratory or production testing. The $65-\mathrm{v}, 0.05-\mu \mathrm{sec}$ output pulse width is determined by a plug-in pulse transformer, and is controllable in burst duration from approximately 10 to $150 \mu \mathrm{sec}$ at an adjustable $315,000-\mathrm{pps}$ rate. This new tool is of special interest in the development and manufacture of tv receivers, deflection yokes, focus devices, ion traps and picture tubes.


## Plug-In Audio Amplifiers

Gates Radio Co., Quincy, Ill., has announced a new line of versatile plug-in audio amplifiers. An idea of the compactness of the plug-in units may be had from the fact that eight of the new preamplifier units occupy only 7 in. $\times 19$ in. panel space. The same space will hold two program amplifier units and two :regulated power-supply units. Other features of the new assemblies include self-aligning plugs and receptacles; simplified rear wiring, since cable harness clamps and troughs are all a part of the panel and shelf assembly; a new low in noise and distortion char-
acteristics; better shielding; and greater flexibility.


## CRT Test Set

Research Electronics, Roslyn, Pa., has perfected a portable crt test set for all tv picture tubes and magnetically deflected radar tubes, which measures all characteristics including emission, cutoff, gas ratio, heater-cathode leakage positive and negative, grid-cathode leakage, $A$ leakage and $\mathrm{G}_{2}$ leakage. It features electronically controlled and regulated circuits of high accuracy and sensitivity, but is simple and rugged enough for warehouse and portable use. It operates from standard 115 v a-c lines.


## Precision Phasemeter

Deltron Inc., P.O. Box 192, Glenside, Pa. Model 100A phasemeter is a 2 -cycle to $200-\mathrm{kc}$ unit designed for use in the audio, ultrasonic, servomechanism, industrial control and acoustical fields for determination of phase characteristics and time relationships. It is applicable to the power field and general laboratory use for power factor measurements and electronic component testing. Error is less than 4 deg from 20 cycles to 20 kc ; increasing gradually to 8 deg above


Because Aerovox engineers have all climates at their finger tips, thanks to lab equipment second to none, they know precisely the meaning of sub-sub-zero temperatures . . flying at 75,000 feet . . elevated temperatures above the melting point of solder . . . extreme humidity . . . fungus problems.

That is why Aerovox capacitors are


Export: 41 E. 4ind 5t., Now York 17. N. Y. - Coble: AEROCAP. N. Y.

- In Conade: aftovox Canada tid., Mamilion, Ont, JOBAER ADDRESS: 740 Celloville Ave., New Bedford, Mace.


## Dependable

CAPACITORS sized


Resin Impregnated Sub-miniature Metallized Paper Capacitors.

- High insulation resistance
- Excellent capacity retrace
- Rectangular -Saves space
- Variety of sizes and values

Dissipation factor less than $1 \%$ at $25^{\circ} \mathrm{C} 1000$ cycles. Operation range $-40^{\circ} \mathrm{C}$ to 100 C . Capacitance temperature coefficient plus $.07 \%$ per ${ }^{\circ} \mathrm{C}$.

Write or phone, TODAY

## HØРКINS

Unqineering 0 FACTORY: 2082 Lincoln Ave. Altadena, Calif, SYcamore 8-1185 Offices in WASHINGTON, D. C. DETROIT


NEW PRODUCTS
20 kc and below 20 cycles. Input impedance is approximately 20 megohms shunted by 10 puf. Input voltage is 1 to 50 v sine wave; to 500 v with accessory input dividers.

## Program Equalizer

Cinfma Engineering Co., 1510 West Verdugo Ave., Burbank, Calif., has announced the type 4031-B program equalizer that has wide applications in the sound and electronic laboratories for research and control. The broadcasting, recording and motion picture industries are using it as a practical, high-quality program equalizer that provides corrections for frequency response in audio equipment, sound pickup and transmission lines. Easy operation of two control knobs allows wide range of over 395 available curve combinations. Controls provide for independent adjustment of the high and low frequencies in 2 -db steps. Minimum input level is -70 dbm ; maximum, +20 dbm .


## D-C Power Supply

Neutronic Associates, 83-56 Vietor Ave., Elmhurst 73, N. Y., announce the availability of model $33 \mathrm{HRR}, 1$ to 30 kv , regulated, reversible, 5 -ma rating, r-f d-c power supply. This equipment was


## Direct Coupled Wide Bänd Amplifier



A unique instrument to amplify small $D C$ and high frequency potentials found in research in such fields as physiology, geophysics, strain measurements and analog computing.
Response Frequency response, flat $\pm 2 \%$ to $20,000 \mathrm{cps}$, is usable to at least 100 kc . Gain Differential voltage gain of 100 , 000 stabilized by negative feed back to $\pm 1 \%$. Noise Less than 10 microvolts of noise at widest bandwidth with input shorted.

## Drift is less than 5 microvolts

 per minute with the AEL 351 Power Supply.
## Input

 Input impedance is 100 meg. with less than 0.1 microamp. grid currentOutput $\square$ Low output impedance directly drives oscillographs, recording instruments.
Write for detailed specifications and catalog.

## American tectronic laboratories 641 Arch Street, Philodelphia 6, Pa.

Want more information? Use post card on last page.
developed to provide a tool for serious research beyond the usual current limitations of $\mathrm{r}-\mathrm{f} \mathrm{h}-\mathrm{v}$ power supplies. Output is from below 1 kv to 30 kv at 5 ma in three ranges. Regulation is 0.1 percent at all voltages. Line voltage stabilization is 0.1 percent from 105 to 130 v a-c. Ripple roltage is less than 0.05 percent of d-c output voltage.


Coaxial Terminal Triode
Machlett Laboratories, inc., Springdale, Conn., announces the ML-6257, a water-cooled ring-seal triode incorporating an integral mode water jacket. Designed specifically for $\mathrm{r}-\mathrm{f}$ heating application in the 2 -to- 3 kw range, but well adapted to $a-m, f-m$ and tv transmission, the ML-6257 has plate input and dissipation ratings of 7 kw and 5 kw , respectively; stress-free thoriated tungsten filament operates at $12.6 \mathrm{v}, 27$ amperes. Maximum ratings apply to 110 mc . The tube is also available in a forced-air cooled model and in a version designed for use with the company's quick-change automatic seal water jacket.


Magnetic Recording Tape
Minnesota Mining and Mifg. Co., 900 Faluquier St., St. Paul, Minn,


FEATURES . . SNAP ACTION. Single Pole Double Throw. Lightweight. Low operating temperature. Operates in any position. High contact rating. Gas filled. Low heater current. Durability and long life.

## EUREKA PRESENTS POSITIVE

 gimpactodThe ELIMINATION of CHATTERING is accomplished with the incorporation of "POSITIVE SNAP ACTION" in the EUREKA "SNAPPER". . . LEADING ELECTRONIC MANUFACTURERS have acknowledged the new EUREKA "SNAPPER" as a major advancement in this field, and have already accepted this relay as a standard component of their latest equipment.

Voltage . . $6.3,26.5,115$ volts (A.C. or D.C.) or as required.
Ambient Temperature Range . . . $-60^{\circ} \mathrm{C}$. to $+80^{\circ} \mathrm{C}$.
Envelope . . Miniature (7 and 9 pin), or octal (8 pin) metal.
Time Delay Periods... Preset from 5 seconds up.
Vacuum . . Evacuated, inert gas filled. Height... $13 / 4^{\prime \prime}$ maximum seated.


Inquiries are invited ...send for our "Bulletin Number Snapper"

Manufacturers of Cathode-Ray Tubes and Electronic Products 69 FIFTH AVE., HAWTHORNE, N. J. - TEL. HAWTHORNE 7-5800


You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.

Williams Ferric Oxides analyze better than $99 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric 0xides to the manufacture of Ferrites is our specialty.
Tell us your requirements... we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

## MITA A M N <br> COLORS \& PIGMENTS

C. K. WILLIAMS \& CO.

Easton, Pa. - Easp St. Lovis, III. Emeryville, Cal.
> P. S. We also produce IRN Magnetic Iron powders for the Electronic Core Industry, the Magnetic Tape Recording Industry and others. Write for complete technical Information.


Nem LOW COST-PRECLIION Direct Reading PHASEMETER

Model 100A Phasemeter

- $0^{\circ}$ to $180^{\circ}$ lead or lag in $90^{\circ}$ expanded scale ranges.
- 2 cycles to 200 kilocycles.
- Error less than $4^{\circ}$ from 20 cycles to 20 kilocycles; above 20 kilocycles and below 20 cycles increasing gradually to $8^{\circ}$.
- Input impedance approximately 20 megohms shunted by 10 mmf .
- Input voltage 1 to 50 volts sine wave; to 500 volts with accessory input dividers.
- Invaluable in the audio, ultrasonic, servomechanism, industrial control and acoustical fields for determination of phase characteristics and time relationships.
- Applicable to the power field and general laboratory use for power factor measurements and electronic component testing.
Literature on request.
Price: $\$ 145$.

take no chances with VHTAL EQUIPMENT... Specify SERIES 6978 or 6924 RACKS by PAR-METAL
$181 / 2^{\prime \prime}$ or $24^{\prime \prime}$ DEEP, for $19^{\prime \prime}$ WIDE PANELS
- Panel Spaces: $61 \frac{114^{\prime \prime}, 70^{\prime \prime} \text {, or } 77^{\prime \prime} \text { high. }}{\text { - }}$
- Finished in Prime Coat, Black Wrinkle, Grey Lacquer, Grey Wrinkle.
- Series 6918 or 6924 Racks may be used in "rows" or "gangs," as corner trims are re. movable from front of cabinet.
- Standard shelves and roller trucks are manu. factured by us for use with these Racks.
THESE RACKS ARE MODERATELY PRICED and AVAILABLE FOR SHIPMENT FROM STOCK
Planning an electronic product? Consult Par Metal for
RACKS • CABINETS CHASSIS•PANELS
Remember, Par-Metal equipment is made by electronic specialists, not just a sheet metal shop.

Made by Electranic Specialists!

## WRITE FOR CATALOG!

Our P.6924 Rack as used by
Gai-Tronics, Inc., Reading, Pa.


## Phir-nlevil

PRODUCTS CORPORATION 32.62 - 49th ST., LONG ISLAND CITY 3, N. Y. Tel.: AStoria 8.8905
Export Dept.: Rocke International Corp. 13 East 40 Street. New York 16, N. Y.
has announced the Scotch No. 120 High Output magnetic recording tape that is designed especially for use in radio, tv and recording studios, in computer work and in other critical applications. With the new tape at least 8 db greater signal-to-noise ratio is obtainable on conventional professional magnetic recorders. In the pulse recording field it will enable manufacturers of electronic computing equipment to get improved pulse definition and to keep signals high enough above noise level for more accurate work. The new tape has a strong and flexible coating, dry lubricated by a special process to prevent squealing on critical machines. Output uniformity at 1 kc is guaranteed not to exceed $\pm \frac{1}{4} \mathrm{db}$ within a reel and $\pm \frac{1}{2} \mathrm{db}$ from reel to reel. The No. 120 tape is available in lengths of $2,400 \mathrm{ft}$ on the NARTB reel or hub, and in $1,200 \mathrm{ft}$ lengths on the 7 -in plastic reel with the $2_{4}^{3}$-in. hub. All lengths are guaranteed splice-free.


## Double-Shield Screen Room

Erik A. Lindgren \& Associates, 4515 North Ravenswood Ave., Chicago 40, Ill., is manufacturing a screen room that uses a double screen design in which the outer and inner screens are physically and electrically insulated from each other to assure minimum interference for testing and evaluating many types of electronic equipment. The lightweight prefabricated panels are $31 \mathrm{in} . \times 91 \mathrm{in}$., easily assembled to various dimensions, and the screening is heavy copper, securely attached to the panel frames. Construction is entirely portable, easily dismantled and moved to any desired location. Six power line entrances are provided as well as a special copper-covered power-line

## 'DIAMOND H' RELAYS



Rating for rating, "Diamond II" Series R hermetically sealed, miniature aircraft type 4 PD ) T relays are smallest ( 1.6 cubic inches), lightest ( 3.76 ounces), have widest temperature range $\left(-65^{\circ}\right.$ to $+200^{\circ} \mathrm{C}$.), greatest operating shock resistance (to 50 " $G$ " and higher) and excel all others in their field in ability to break high currents and high voltages.

Ideal for high frequency switching, their inter-electrode capacitance is less than 5 micro-microfarads contacts to case less than $21 / 2 \mathrm{mmf}$ between contacts, even with plug-in type relay and socket. Vibration range is from 0 to 500 cycles per second and upward at 15 " G " without chatter. Coil resistances up to 50,000 ohms are available, with contact loading through 10 A . resistive for 100,000 cycles $(30 \mathrm{~A}$. resistive for 100 cycles ) at 30 V., D.C., or 115 V., A.C. Sevsitivity approaches 100 milhiwatts at 30 " G " operational shock resistance. They meet all requirements of USAF Spec. MIL-12-5757 . . . and far surpass many. Various standard mounting arrangements available.
"Diamond H" engineers are prepared to work with you to develop variations for guided missiles, jet aircraft, fire control, radar, communications, geophysical and computer apparatus . . . any application where peak performance is vital under critical conditions.

Illustrated Bulletin R-150 gives detailed performance data under varying conditions. Write for a copy today.

## THE HART MANUFACTURING COMPANY

202 Bartholomew Avenue, Hartford, Connecticut $\bullet$
THE HART MANUFACTURING COMPANY, 202 Bartholomew Ave., Hartford, Conn.
Please send me Bulletin $R$-1,50 with detalled perjormance data on Series R Relays

NAME
TITLE

COMPANY
ADDRESS
CITY
STATE


## GET THE EYE-OPENING STORY OF FLEXIBLE SHAFT ECONOMY

The 256-page flexible shaft handbook has full details on flexible shaft selection and application. Get your free copy by writing for it direct on your business letterhead.

The "spot" is a variable element which has to be controlled from some point outside the circuit. In most cases, you can make substantial savings by controlling it with an S.S. White Remote Flexible Shaft.

Here's why. You only need a single S.S. White flexible shaft to provide smooth, accurate control between the element and its control knob. This allows you to dispense with the extra parts that might otherwise be needed for this purpose.

An S.S. White flexible shaft needs no alignment. This means big savings in assembly time and the elimination of close tolerance machining of control panels and parts.
A flexible shaft can be quickly and easily installed - just couple one end to the element and the other end to the control knob-and the coupling is complete.
Added to this, an S.S.White flexible shaft gives you added freedom in mounting controls and circuit elements to meet wiring, circuit and assembly requirements.
Yes, every step of the way - in design - in production - in assembly - you'll be able to make imporfant savings in equipment costs. And to save your own valuable time, S.S.White engineers will be glad to cooperate with you in working out application details.

Western District Office - Times Building, Long Beach, California

filter section on which entrance filters are mounted.


## Metal-Cased Paper Capacitors

Cornell-Dubilier Electric Corp., South Plainfield, N. J., has expanded to twelve types the Demicon series of miniaturized, tubular metal-cased paper capacitors. The Demicons are hermetically sealed in metal cases, with glass-to-metal seal terminals, and are available in seven mounting and container styles. Impregnants, tolerances and internal constructions are provided to meet the most popular applications encountered in present-day engineering practice. All Demicons will comply with applicable parts of specifications JAN C-25 and Mil-C-25A.


## Damping Diodes

Sylvania Electric Products Inc., Emporium, Pa., has announced two new diodes for use in tv horizontal frequency damper circuits. Types 6 AX 4 GT and 12 AX 4 GT are halfwave, indirectly heated diodes contained in T-9 envelopes. They are designed to withstand the extremely high voltage pulses of line frequency between cathode and both heater and plate elements, normally encountered in direct drive circuits. The tubes are identical except for heater characteristics. The 6AX-

4 GT requires 6.3 v at 1.2 anperes. The heater of the 12 AX 4 GT requires 12.6 v at 600 ma .


## Tiny Electrolytics

Micamold Radio Corp., 1087 Flushing Ave., Brooklyn 37, N. Y. is now producing the Microlytic capacitors in a range of sizes and ratings. The smallest unit is only 0.175 outside diameter and $\frac{1}{3} \frac{1}{2} \mathrm{in}$. long. These tiny electrolytic capacitors were intended to serve in the circuits of such units as very small amplifiers, hearing aids and transistor devices. Maximum temperature rating is 65 C. Complete ratings and mechanical variations can be supplied to the customer's specification.


## Power Supplies

Jersey City Technical Laboratory, 880 Bergen Ave., Jersey City 6, N. J., has added to its line two Mini-Pack power supplies. The Mini-Pack is a small selenium rectifier source of instant power. Model $R$ gives 108 v regulated low-ripple $d-c$ with an OB2 voltage-regulator tube. It will maintain constant voltage output with load variations up to 15 ma , or lightly loaded with input variations from 100 to 130 v a-c. Model P is a voltage doubler,


## Ideal for high precision cutting, surface film removal,etching and light deburring



Automatic set-up on a lathe for cutting spiral bands on a deposited carban resistor.


Cutting a piece of hard, brittle metal manually by means of the "Airbrasive" process.

This remarkably versatile machine can be used for a wide variety of high precision operations from cutting hard, brittle materials to producing fine matte surface finishes.

Using a high speed jet of gas-propelled abrasive particles, it can produce cuts as fine as $.018^{\prime \prime}$ diameter. Its basic advantages are that it cuts cool and without shock or vibration - its accuracy is unaffected by surface irregularities of the work-and it can be accurately regulated for depth and type of cut.

Many manufacturers are now using the Unit to remove surface coatings on deposited carbon resistors and on printed circuits - for light deburring on inside surfaces of tubular parts - drilling fine holes through glass - cutting germanium.
We will be glad to make tests to determine the suitability of the "Airbrasive" Unit to your production requirements. Send us a sample of the part or material as well as details of the job you have in mind. There's no obligation.

## WRITE FOR BULLETIN 5212

It has full facts and data on the Airbrasive Unit. It tells you how the "Airbrasite" Unit works and provides information on where, when and how it can be used.


Dept. EB 10 East 40th St.
Western District Office - Times Building, Long Beach, California


Compact . . . Dust-Proof TIME DELAY RELAYS solenoid actuated - pneumatically timed Introduces time delays into a-c or d-c circuits. Easily adjusted to provide delays ranging from 0.1 second to five or more minutes.
The AGASTAT is small, light, and operates in any position. Dust-proof timing chamber assures long operating life with a minimum of maintenance.

## Write for Bulletin.

Dept. A1-44,

## A'G'A

Division of Elastic Stop Nut Corporation of America 1027 Newark Avenue, Elizabeth 3, New Jersey


34 KW 17,000 V.D.C.

AIR . . . OIL . . . ASKAREL
Plate Transformers. Filament Transformers. Filter Reactors. Modulation Transformers. Distribution Transformets. Pulse Transformers. Testing Transformers. Precipitation Transformers. General Purpose Transformers. Hi-Voltoge Tronsfomers.

WRITE FOR DETAILED INFORMATION

Askarel
Immersed Filter Reactor 50,000 Volt Test

MEETS STANDARDS of AIEE-NEMA


## 5EE

 New Praducts! Mew Ideas!

INDUSTRIESFAIR APRIL 26-MAY 5

Plan now to visit West Germany's Hannover Fair! See over 4,000 exhibits that include Materials \& Equipment for these industries:

- Mining, Milling, Metalworking Machinery - Motors \& Engines
- Electrical Manufacturing \& Construction
- Tools
- Chemical \& Other Processing
- Electronics
- Textile Machinery
- Automotive
- Office Supplies... and products for every industry!
Get full FREE facts. Call or write:
GERMAN-AMERICAN TRADE PROMOTION 350 Fifth Avenue, New York 1, N. Y. WIsconsin 7.0727


10 w power source of low-ripple d-c. The no-load voltage output is 330 v . At 50 ma, the maximum constantduty current, the output is 200 v . For intermittent use, the current may go as high as 65 ma .


## Amplifier Bridge

Robinson Aviation, Inc., Teterboro, N. J. In the new Simmonds amplifier bridge for the Pacitron fuel gage system, new standards of lightness and compactness have been achieved by a unique system of Met-L-Flex (all-metal) internal vibration and shock mounts. Need for external mounting is eliminated and the sensitive tubes are fully isolated from vibration and shock. The entire unit is so small it fits in the palm of one's hand and weighs only 1 lb 3 oz . An effective center of gravity type of mounting permits the unit to be mounted also in the inverted position.


## Retaining Rings

Industrial Retaining Ring Co., 8 West Sidne Ave., Mt. Vernon, N. Y. Open-type retaining rings measuring ${ }^{\frac{3}{16}} \mathrm{in}$. and applicable to a ${ }^{3}$-in. diameter shaft are being stacked for manufacturers. Stack-

## Westinghouse makes SURE. with BOWSER test equipment

$\$$Electronic equipment manufactured by the Electronics Division of Westinghouse Electric in Baltimore must meet rigid performance specifications. To evaluate this equipment under controlled atmos. pheric conditions, Westinghouse uses a Bowser Walk-In Room which will simulate temperatures from $-85^{\circ} \mathrm{F}$. to $+176^{\circ} \mathrm{F}$., and relative humidity from $20 \%$ to $95 \%$. In addition, pressures found at altitudes up to 80,000 feet can be created. The entire test facility is operated and controlled from a remote control station.

The complete room was designed, built and installed by Bowser.
This unit is an example of what Bowser can do to help anyone whose products require testing, processing, or stabilized storage. Environmental



- Any pulse width from 0.1 to 40 microseconds
- Any impedance from 5 to 500 ohms
© Any voltage rating from 1000 to 25000 volts*
Tobe pulse forming networks have an excellent record of performance, both in radar sets and in seasoning equipment for magnetrons and hydrogen thyratrons. Our design experience and production facilities assure deliveries to your schedule requirements. Widely used networks are tabulated below. Many others are available - write for data sheet.
*Over 25 KV , pulsetype capacitors with external coils are usually rec ommended; write for data sheet.


TOBE DEUTSCHMANN
ing of the No. $1000-9$ rings to fit shaft diameters of 0.094 in. marks the smallest size rings yet to be stacked in a wide range of sizes that includes open-type retaining rings measuring as much as $1 \frac{1}{2} \mathrm{in}$. and applicable to a $1-\mathrm{in}$. diameter shat ft With the company's modern dispensing method the rings are shipped stacked on metal rods that become part of an assembly that includes a specially designed cast-iron base and an application tool. The retaining rings are made from carbon spring steel and provide shoulders on grooved circular shafts. They replace many fastening devices that require costly machining and assembling. Radially applied, the rings are quickly and easily snapped into position. A brochure illustrating the ring stacks with the one-at-a-time dispensing and application feature is available


## Scintillation Count Rate Meter

Nuclear Resfarch and Devflopment, Inc., 6425 Etzel Ave., St. Louis 14, Mo., has developed the CRM-500 scintillation count rate meter that may also be used for Geiger and proportional counting. It incorporates three basic features: (1) A fast pulse amplifier with a rise time of $0.25 \mu \mathrm{sec}$ and a variable amplification up to 1,500 . (2) A true electronic discriminator that accepts pulses from -100 to +50 v , (3) A well-regulated $\mathrm{h}-\mathrm{v}$ supply that is variable from 500 to $1,800 \mathrm{r}$ and is regulated to 0.00 5 percent per $1-\mathrm{v}$ change in line voltage between 95 and 100 v . The count-rate circuit is normally supplied with counting rate multiples of $1,000,5,000,10,000,20,000$ and 50,000 counts per minute, but can
also be supplied with scales up to 500,000 counts per minute. A switch on the front panel allows the selection of percent error over the range of $1,2,5,10$ and 20 percent.

## Rectangular CRT

Waterman Products Co., Inc., Philadelphia 25, Pa. Model 3XP Rayonic rectangular cathode-ray tube provides unusually brilliant and sharply defined trace and high deflection sensitivity at medium anode potentials. The tube provides a light output four times greater and a vertical sensitivity twice as great as comparable crt's operating at similar anode potentials. All this has been accomplished without sacrificing low interelectroce capacitances. These characteristics make it ideal for h-f video work as well as low repetitive operation. Because of its unique shape and size, the $3 X P$ lends itself readily to multitube oscilloscopy. The tube is available in P1, P2. P7 and P11 phosphors.


## Microwave Receivers

Polarad Electronics Corp., 100 Metropolitan Ave., Brooklyn 11, N. Y., announces a series of four wideband microwave receivers covering the frequency range from 1,000 to $10,750 \mathrm{mc}$. These receivers include such desirable features as linear db indication, single dial tuning, low noise figure, a-m and $f-m$ reception and afc. The video bandwidth is such that a $1-\mu \mathrm{sec}$ undistorted pulse of 10 v will appear across an output impedance of 100 ohms. Model RL covers the frequency range from 1,000 to 2,100

## Broad-band General-purpose

 INTEREDRTME

## $11 \begin{aligned} & 1 \text { FILTERETTE No. } 1338\end{aligned}$

The \#1338 series of broad-band radio-interference filters simplifies design and production by giving you one standard size and shape for filters that meet a variety of service and installation requirements. Electrical ratings, attenuation characteristics, and terminal arrange. ments suit your needs. The chart below lists typical filters in this series; write us for specific recommendations.

| CAT. NO. | YOLTS DC | AMPERES | FREQUENCY <br> (Mc) | ATTENUATION <br> $(\mathbf{a f} .15 \mathrm{Mc})$ | TERMINALS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1338 | 50 | 1.5 | $0.15-400$ | 65 db. | Screw |
| $1338-1$ | 50 | 2.0 | $0.15-400$ | 65 db. | Screw |
| $1338-2$ | 400 | 2.0 | $0.15-400$ | 45 db. | Screw |
| $1338-3$ | 50 | 2.0 | $0.15-400$ | 65 db. | Solder lug |
| $1338-4$ | 50 | 1.5 | $0.15-400$ | 65 db. | Solder lug |
| $1338-5$ | 50 | 2.0 | $0.15-400$ | 70 db. | Solder lug |
| $1338-5 \mathrm{~A}$ | 50 | 2.0 | $0.15-400$ | 72 db. | Solder lug |
| $1338-6$ | 50 | 2.0 | $0.15-400$ | 65 db. | Shld. lead |
| $1338-7$ | 50 | 1.0 | $0.15-400$ | 65 db. | Solderlug |



[^21] 5


For a Heavenly Soldering Job, Insist on

Write for Catalog E-1

Ungar electric rools, me..

1. O boX 31:, verice, Calif


M I N I A T URE
THERMOSTATS
from the extensive line of

ULANETHERMAL CONTROLS Whether you need miniature or standard built-in units. . . call us for the Thermostat that will exactly meet your requirement. GEORGE ULANET COMPANY, 417 Market St., Newark 5, N. J.



THE ULANET ORGANIZATION SPECIALIZES IN THE DESIGN AND MANUFACTURE OF THERMAL UNITS FOR ALL TYPES OF TIMING \& THERMOSTATIC CONTROLS
It will pay you to compare our units - contact us and you'll save time \& money by using engineered Ulanet Controls.
$\star \star \star \star \star$


Made of ETHYL CELLULOSE...
A TOUGH, DURABLE PLASTIC


NOW . . .
For Extra Strength
"D" WASHERS TO FIT OUR CABLE CLIPS

5267 N. AVONDALE AVE. • CHICAGO 30, ILL. West Coast Representative
5777 West Pico Bivd. - Ios Angeles 19, Colif
mc ; model RS, 2,000 to $4,500 \mathrm{mc}$; model RM, 4,400 to $8,400 \mathrm{mc}$; and model RX, 7,000 to $10,750 \mathrm{mc}$.


## Potentiometer Element

Markite Corp., 155 Waverly Place, New York 14, N. Y., has available the type 2028 potentiometer element. This is a rectilinear model of 20,000 ohms resistance having an active length of 10 in . and a linearity of $\pm 1$ percent. These elements are of particular interest in applications where the advantages of extreme wear resistance and substantially infinite resolution are important. They feature outstanding operational reliability when used in conjunction with the input-output tables of analog computers such as the $10-101 \mathrm{~A}$ inputoutput table of the REAC computer.


## Variable Speed Drive

The Arrow-Hart \& Hegeman Electric Co., 103 Hawthorn St., Hartford 6, Conn., has a new development in motor-control equipment, the electronic variable speed drive for fractional h-p motors. With the optional Dual Fange feature, speeds from 100 to 3,500 rpm are available. The series motor used can be started, stopped or dynamically braked and can be rapidly accelerated to preset speeds. The series motor makes use


## POTIER

IUSTRUMENT COMPANY, INC.

Every known need in frequency and pulse measurement is now satisfied by four completely new designs of Potter frequency-time counting equipment.

The simplified Potter 100 KC Frequency Time Counters, Models 820 and 830 , are suitable for rapid and precise production line applications. The versatile Potter 100 KC and 1 MC FrequencyTime Counters, Models 840 and 850, include all gating, switching, timing and counting circuitry required for any conceivable count-ing-type measurement

All models feature the convenience of smaller size, lighter weight, and functional panel layout. And, optional readout in-dication-either the dependable Potter 12-4-8 decimal readout or the conventional 0-9 lamp panels -is available.


For further data or engineering assistance write Dept. 4-C.

## 115 CUTTER MILL ROAD GREAT NECK, N. Y.


ara

## HAYDON <br> AT TORRINGTON <br> hEADGUARTERS FOR <br> timing

## A.C. and D.C. TIMING MOTORS - TIMING DEVICES TIME DELAY RELAYS. SPECIAL TIMING DEVICES TIMING ENGINEERING SERVICES



HAYDON* specializes in a varied line of standard timing components and custom engineered devices for volume application.
Our research and engineering staffs are constantly seeking to develop new and better ways to harness time for industrial, commercial and military applications.

In the field, HAYDON maintains a staff of engineers whose training, backed up by years of experience, enables them to help manufacturers insure, insofar as timing components can, the satisfactory performance of their products. The entire staff and rapidly expanding plant facilities of HAYDON are devoted solely to the
 production of timing motors, timing devices and clock movements.

## AT YOUR SERVICE

The knowledge and skill of our field engineers and our research and engineering facilities are available to help you solve timing problems. Write us in detail or ask that we send a field engineer to talk things over.

> "trademark reg. u.s. pat. off

## HAYDON Mig. Co., Inc.

Subsidiary of GENERAL TIME CORP.
2428 ELM STREET
TORRINGTON, CONNECTICUT
of both the a-c and d-c output from a single thyratron tube. Inherent compensation is 10 percent of line voltage and 5 percent of speed, but full voltage compensation is also available as an extra feature.


Laboratory Monitor
Berkeley Scientific Division of Beckman Instruments, Inc., 2200 Wright Ave., Richmond, Calif. Model 1800 laboratory monitor is a general-purpose count rate meter with provision for a visual and/or aural indication. A front panel control permits selection of five different meter ranges: 300, $1,000,3,000,10,000$ and 30,000 counts per minute. Aural volume control is also provided. The instrument may be obtained with a G-M tube and probe. Accuracy is approximately $\pm 5$ percent. Dimensions are approximately $6 \frac{3}{2} \mathrm{in}$. $\times 6 \frac{3}{2} \mathrm{in}$. $\times 10 \frac{1}{4} \mathrm{in}$. Net weight is approximately 8 lb .


## Constant-Frequency Control

General Electric Co., Schenectady 5 , N. Y., has announced a new con-
stant-frequency control designed to hold alternator frequency within 0.001 percent on motor-generator sets supplying up to 10 kw of power. It is available in 50,60 and 400 cps standard in single or three phase, and nonstandard frequencies are available on special order. Specific applications include the prevention of undesired hysteresis and eddy current effects in testing due to frequency variation; a standby source of emergency power for automatic and synchronous equipment; and as a plant frequency standard where one $60 / 400$ cycle source supplies power to many parts of a plant and eliminates the need for a number of smaller sources. The electronic control consists basically of a tuning fork and a phase comparator enclosed in a case approximately $6 \times 24 \times 36 \mathrm{im}$.


## Tiny Pressure Transducer

Consolidated Engineering Corp., 300 N. Sierra Madre Villa, Pasadena 8, Calif. Pressure measurements ranging from theoretical investigations of aircraft turbu-lence-distribution patterns to practical surveys of hydraulic-system and pipeline pulsations are simplified by a miniature pressure transducer recently announced. The type 4-310 Star pickup measures only $\frac{1}{2}$ in. in diameter and less than $\frac{3}{4} \mathrm{in}$. in length, and weighs only 20 oz . Its flush diaphragm is designed for insertion directly into a process vessel or stream of either liquid or gas for test and monitoring purposes. The unit may be used with recorders for permanent test records or with visual indicators and meters for on-the-spot measurements. For detailed specifications, electrical characteristics and pres-
HAYDON*ManufacturingCo., Inc. subsidiary of general time corp.
2428 ELM STREET, TORRINGTON, CONNECTICUT
Please send your latest engineering data on TIMING DEVICES to:
NAME
COMPANY
CITY
ZONE $\qquad$ STATE


Timers and timing components are the only products manufactured by HAYDON*. Our whole effort, concentrated on time and timing, makes it possible for users of timing devices to obtain standard devices that have many advantages.
The basic element in all HAYDON timers is the rugged, industrial-type HAYDON motor. It offers slow motor speed so that various shaft output speeds may be obtained with a minimum of gearing and fast moving wheels - this makes for quiet operation. The motor is unusually compact and takes up very little space, it is totally enclosed and operates in any position. These and many other equally fine features make HAYDON timers ideal for many applications. Send in that coupon today.

* trademark reg. u.s. pat. off.


## HAYDON

AT TORRINGTON
HEADQUARTERS FOR tIMING

HAYDON Mfg. Co., Inc.
Subsidiary of GENERAL TIME CORP.
2428 ELM STREET TORRINGTON, CONNECTICUT


POWER WITH GENERAL INDUSTRIES'

## Smooth Power PHONOMOTORS

Assure the purchasers of your record players, portables, and combinations that they will get all that the recording artists put into the recordings . . . faithful tones and shadings, free from wow, rumble, and waver . . . make General Industries' Smooth Power Phonomotors standard equipment for your line.
Write for bulletin describing the full line of Smooth Power Phonomotors, with specifications and design data.


THE GENERAL INDUSTRIES CO. DEPARTMENT MA • ELYRIA, OHIO
sure ranges available see bulletin CEC No. 1534.


## Soldering Unit

Sunrise Products Co., P. O. Box 173, Hawthorne, N. J. Model L-72 Glo-Point soldering unit features a metal ground plate on which jigs could be mounted in addition to the adjustable heat control that allows the electrodes to heat up instantly to $1,250 \mathrm{~F}$. The unit is desirable for soldering capacitors, capacitor cans, lugs, terminal boards and electronic parts. A descriptive pamphlet is available on request.


## Rack Mounting Adapter

Allen B. DuMont Laboratories, INC., 1500 Main Ave., Clifton, N. J. Type 2598 rack mounting adapter was designed for use with types $303,303-\mathrm{A}, 303-\mathrm{AH}$ and $322 \mathrm{c}-\mathrm{r}$ oscillographs. The adapter was intended to provide a rigid mount for the instrument and to present a neat, yet completely accessible unit in standard $19-\mathrm{in}$. relay racks. It bolts to the rack frame and provides a sufficiently large front opening to permit all but the front panel of the c-r oscillograph to pass through. The adapter is shipped disassembled with simple instructions on its
assembly and the insertion of the instrument.


## Special-Purpose Screwdriver

Xcelite, Inc., Orchard Park, N. Y., has introduced to the electronic industry a special-purpose screwdriver for adjusting focalizer coils. It has a $10-\mathrm{in}$. shank to reach into the tr chassis, and its $\frac{1}{4}$-in. blade is flared at the tip and tapered to fit snugly in the focus adjustment screw. Advantages of this tool are that it is nonmagnetic, fatigue-resistant and does not need frequent regrinding, as do fibre or plastic blades.


## Miniature Relay

Automatic Electric Sales Corp., 1033 West Van Buren St., Chicago 7, III. Bantam-sized class $S$ relays are now available in a new small hermetically-sealed enclosure. The entire unit measures $2 \frac{3}{32} \times \frac{31}{3 \frac{1}{2}} \times 1 \frac{1}{2}$ in. and weighs only 18 oz. Mounting studs may be arranged on base or narrow side of housing. This minature relay was designed for minimum inductance and maximum make-and-break speeds. It is tamper-proof and atmosphere-protected and meets or betters all provisions of MIL-R6106. It is recommended for applications wherever


MODEL 228
Induction Drive Motor


MODEL 300
Reluctance Type Synchronous Drive Motor


MODEL 182 A Axial Flow fon


4811 Telegraph Road,
Los Angeles 22,
Callfornia


Miniature and Sub-Miniature

## SLIP RING ASSEMBLIES

 BRUSH BLOCK ASSEMBLIES COMMUTATORSand other Electro-Mechanical Components PRECISION MADE TO YOUR OWN SPECIFICATIONS

Precision molded products with exacting tolerances in precious and non-precious solid metals of all alloys. All types of Thermo-Plastic and Thermo-Setting materials.

> Slip Ring Assemblies fabricated or one-piece precision molded to your specifications in Nylon, Kel-F, Mineral filled Mellamine, Phenolic, and other materials. Rings and leads spot welded or brazed together for positive electrical circuit.

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

## COLLECTRON CORPORATION

MUrray Hill 2-8473 • 216 East 45th Street • New York 17, N. Y.


* Saturable REACTORS
* ELECTRONIC DEVICES

Specialists in SMALL quantities of custom built transformers
from milliwatts to 50 KVA , single or polyphase designed and manufactured to best meet your exact requirements.



extremes of shock, temperature and vibration require exceptional performance.

## Magnetic Amplifiers

Keystone Products Co., 904 Twenty-Third St., Union City, N. J., announces a series of five packaged magnetic amplifiers. In place of the conventional output transformer and power amplifier tubes, the Moto-Mag KP10-400 utilizes a phase-sensitive vacuum tube, demodulator and magnetic amplifier output stage that eliminates the need for rectifiers and assures greater reliability. It operates from an input voltage of $115 \mathrm{v}, 400$ cycles single phase; output is 10 w reversible phase. The KP10-400 operates from -55 to +70 C with minimum variation. The unit measures 4 in . high, $3 \frac{1}{2}$ in. wide and $2 \frac{1}{2}$ in. deep.


## Accelerometer

G. M. Giannini \& Co., INC., 117 E. Colorado St., Pasadena 1, Calif., announces a new, long-life accelerometer designated as the 24132. Smallness and compactness are noteworthy features of this instrument that utilizes a potentiometer resistance and is hermetically sealed in an inert gas. It also features a low, natural frequency and a large output requiring no amplifying unit in most cases. The 24132 is obtainable in resistance ranges from 1,000 to $20,000 \mathrm{ohms}$ and for any accelerometer measurement up to 30 g with special adaptations possible. The potentiometer element safely carries current up to 10 ma . Opti-


- Electric protection services of the American District Telegraph Company include the use of a Honeywell Mercury Switch as part of the burglar alarm protection applied to horizontally pivoted windows of the fenestra or projected type.

When the window is closed, the switch is in its normal or protected position. Opening of the window activates the mercury switch and causes the alarm to be transmitted to the ADT Central Station.

This use of the Honeywell Mercury Switches by ADT engineers is typical of the many uses for these versatile switches where tilt motion and low operating force are provided. Often the proper tilt motion can be developed and MICRO field engineers, experienced in switch application problems, are at your service to review your requirements as to mounting, actuating linkages, lead supports, terminal blocks and enclosures.

There are more than 125 designs of Honeywell Mercury Switches from which to select the exact characteristics your application may require. Write for a catalog or contact your nearest MICRO branch office for complete information and engineering assistance.

A DIVISION OF
MINNEAPOLIS-HONEYWELL REGULATOR COMPANY FREEPORT, ILLINOIS



We MAKE both Tungsten and Molybdenumfrom raw ore to finished ingot, bar, rod or sheet. You can expect us to know more about these metals-about forming them, about stamping, bending, deep drawing, machining, lorging, brazing or welding them.

## LET

## Fansteel

## INSURE YOUR COST CONTROL of TUNGSTEN and MOLYBDENUM COMPONENTS

You can expect us to arrive at the best way of making your component, to produce it at the least cost-to guarantee you, when we do your fabrication, against the vagaries of rejects, scrap loss, equipment and personnel tie-up.

Blundy, you can expect us to be experts. For, in all modesty, that's just what we are. And our experience is yours for the asking.


FANSTEEL
WORLD'S IARGEST PRODUCER OF REFRACTORY METALS
metals

- $\mathrm{F}^{\prime}$

Write for Free Booklet! "FANSTEEL TUNGSTEN AND MOLYBDENUM"
mum operation between -54 and +71 C is obtained. Damping is 0.5 $\pm 0.075$ of critical for a 7.5 g instrument as a typical case.

## Heavy-Duty Line Switch

Stackpole Carbon Co., St. Marys, Pa. Designed primarily for handling high currents at low voltages as in auto radio, tv and similar uses, the type A-12 dpst line switch is rated 12 amperes at 12 v d-c. Only $\frac{7}{8} \mathrm{in}$. in diameter and $\frac{9}{32} \mathrm{in}$. deep exclusive of terminals, it is designed for attachment to types LR and LP and other standard volume controls. Terminals are hot tin dipped for easy soldering. They are doubly locked in position by means of both ears and rivets. Heavy wires can thus be attached to the terminals without danger of loosening them. The design of the switch avoids the possibility of solder and flux flowing to the contact and impairing performance.


## I-F Transformer

The Plessey Co. Ltd., Ilford, Essex, England. The new E/19 i-f transformer is an all-purpose unit developed to meet the requirements of modern miniature tubes and receivers. Permeability tuned in the normal manner, this transformer has a $Q$ factor of 85 and an overall bandwidth for two stages of 7.7 kc at 6 db , and 15.4 kc at 20 db . An improved method of core positioning, which utilizes a new high viscosity, chemically stable, packing compound between core threads and bobbin, allows the core to be ad-
justed over a substantially wider temperature range than hitherto.


## Special Purpose Motors

Bill Jack Scientific Instrument Co., Solana Beach, Calif. This new series of special purpose $d-c$ and a-c motors for velocity servo, position servo and actuator applications is based upon improved lamination design. The motors are available in ratings from $1 / 100$ to 1 horsepower with clutch, brakes and control tachometer.


## High-Speed Capacitor

Hammarlund Mfg. Co., Inc., 460 W. 34th St., New York 1, N. Y., has announced a butterfly-type variable capacitor capable of continuous operation at speeds as high as 3,200 rpm. The capacitor, designed for sweep circuits and other applications requiring alternating capacitance values, eliminates rotor contact springs and uses commercial ball bearings in addition to a novel alignment and end-thrust take-up device. Soldered brass rotor and stator assemblies, nickel or cadmium plated are used. Units are available with series effective capacitance values ranging from 5.4 to 17.0 , f nominal. Air gap between


* is applicable to both AC carrier and DC servo systems.
* has a built-in low frequency sine wave generator for obtaining frequency response of DC servo systems
* has a built-in electronic sweep with no sweep potentiometer to wear out and require replacement.
* has a dynamic frequency control range of 200 to 1 .

MORE and MORE aircraft companies, universities, process control manufacturers, government laboratories and others are adding the Servoscope to their list of required laboratory equipment. If you are designing, developing or producing servomechanisms or process controls, the Servoscope will save many hours of design and engineering time.


The Servoscope is available in two standard models - 1100 A
(.1 to 20 cps ), $1100 \mathrm{~B}(.15$ to 30 cps.$)$ Custom modifications
quoted on request.
For bulletin giving complete specifications: write Dept. E-4.

SERVO CORPORATION OF AMERICA
2020 Jericho Turnpike, New Hyde Park, N. Y.
Fieldstone 7-2810


PERFECTLY COUNTER-BALANCED

Contact arrangements up to and including DP DT 3 Amp at 28 volts D.C., or 100 Milliamperes at 150 volts D.C. resistive load.

Hermetically Sealed.

Required coil power as low as 20 milliwatts.

Coil resistance up to 15,000 ohms.

Weight, maximum 3.5 oz.

DUE TO ITS PERFECTLY COUNTER-BALANCED FEATURES THIS RELAY WILL WITHSTAND HIGH ACCELERATION, VIBRATION, SHOCK AND TUMBLING

Mass Production Requirements Invited
Detailed information on request.


Phaostron Company - 151 Pasadena Ave. - South Pasadena, Calif.


IICREASED HSOLATION BETTER cownections JONES BARRIER



## COMMUNICATIONS ENGINEERS

## - Design

- Project

A limited number of experienced engineers required for responsible positions in engineering departments. Specific projects include commercial carrier and radio systems as well as military equipment

These are permanent positions with on expanding company offering good working conditions and liberal pension and insurance plans. Salaries are commensurate with training and experience.

Ideal location 20 miles south of San Francisco.

LENKURT ELECTRIC CO., Inc. SAN CARLOS, CALIF.


## NEW PRODUCTS

plates is 0.030 in . nominal. Outside dimensions of each silicone-treated steatite base is $1 \frac{8}{8} \times 1 \frac{3}{8} \mathrm{~m}$.


## Selectivity Converter

J. L. A. McLaughlin, P. O. Box 529, La Jolla, Calif., announces the development of a continuously variable straight-sided selectivity converter. The type MCL-50 SignalSplitter is designed to provide jamfree bandwidths for every c-w or speech receiving condition. Its continuously variable filters provide bandwidths from 0.4 kc to 6.0 kc with $60-\mathrm{db}$ cutoffs of from 500 to 600 cps . It can be used with any standard a-m receiver and requires a rack-panel space of only $3 \frac{1}{2} \mathrm{in}$. It has self-contained power supply and audio amplifier with an output of 18 dbm across 600 ohms.


## Picture Tube Brightener

C-B-C Electronics Co., Inc., 1310 Callowhill St., Philadelphia, Pa. The Picboost Pacemaker illustrated will restore brilliance to any size or type picture tube for periods up to several years. It can be installed within a few minutes, just by plugging in. No soldering is necessary, no 110-v a-c lines are used, and no adjustments are needed. Four models are available in this series. Models 1 F and 2 F restore new tube brightness to dim picture tubes in parallel and series circuits respec-


Acid etching inks, used for permanent stamping on metal and all non-porous surfaces will eat away of rubber. Vinylite resists this action - gives longer life by far!

## ENGRAVED VINYLITE STAMPING GIVES RAZOR-SHARP IMPRESSIONS EVERY TIME

Heavy base inks will clog shallow rubber stamp faces rapidly. Our deep. molded engraved VINYLITE stamp faces have more than three times the depth of ordinary rubber stamps. Markings always remain super sharp . . . an important advantage since this mark is a permanent record of your inspector's approval.

## of vinyuite <br> HAS CUSHION-LIKE RESILIENCE

Our VINYLITE molding process includes a timed curing that imparts to this versatile plastic all the elasticity of rubber. Resilient VINYLITE resists abrasive action, conforms to irregular surfaces . . . and lasts much longer!



## You'll save with ARTMRTGTI

Arkwright Tracing Cloths aremade to help you do your best work more easily. Arkwright cloth saves time. There's never a pinhole, uneven yarn or other imperfection to slow you down.
Arkwright cloth saves trouble. You can draw over erasures time and again and not have an ink line "feather".
Arkwright cloth saves money. If needed, you can get clean, ghost-free reproduction from a drawing years after you make it-years after paper or inferior cloth would have turned brittle and opaque with age. Wouldn't you like to see for yourself why Arkwright Tracing Cloth is best? Write for samples to Arkwright Finishing Co., Industrial Trust Bldg., Providence, R. I

## ARKWRIGHT Tracing Clobks

## AMERICA'S STANDARD FOR

tively. Models 3 F and 4 F relieve heater to cathode shorts only, in parallel and series circuits respectively.


## Connector Guide Pin and Socket

DeJur-Amsco Corp., 45-01 Northern Blyd., Long Islard City, N. Y. The polarizing guide pin and guide socket can now be provided on the series 20 miniature rectangular connector from 7 to 104 contacts. This screw-lock type of guide pin provides positive means of locking the plug and receptacle against vibration or accidental disconnection. It also provides a mechanical means of disconnecting the plug from the receptacle without prying or forcing, thus preventing unnecessary damage and providing a very positive connection.


## Single Ear-Phone Unit

The Canadian Benaudi Co. Ltd., P. O. Box 1255 Ottawa, Ontario,

Canada, has developed a new single earphone unit that offers important advantages in all cases where headsets are not required. It may instantaneously be placed about the ear where it hangs freely therefrom, its very light weight bringing no discomfort to the user. The unit's receiver is interchangeable and various impedances up to 15,000 ohms, frequency ranges and sensitivities can be provided as may be required. The sound is carried through a specially designed tube provided with a flexible mushroomshaped tip that automatically closes the ear channel to any extermal noise and outside interference. Other advantages include abolition of the head band, only one hand being required to place the unit on the ear, ease of interchangeability of the unit between users and robustness against rough handling.


## Timing Motor

A. W. Haydon Co., Waterbury, Conn., has developed a practical 400 cycle synchronous a-c timing motor for use where light weight, accuracy and dependability are required. It was developed as a result of increased use of 400 -cycle power in the expanding field of guided missiles, as well as the aircraft industry. The motor features almost instantaneous starting and stopping. Use of an spdt switch accomplishes effective reversing. One winding 90 deg out of phase assures rapid starting, smooth operating and absolute ease of reversal. The timing motor operates on 115 v $\pm 10.0$ percent with frequency of $400 \mathrm{cps} \pm 20.0$ percent. The torque


## QUALITY • QUANTITY • QUICKLY

## ALWAYS SPECIFY

 DAGE
## RADIO FREQUENCY CONNECTORS

To be sure your RF connectors are right, specify DAGE.

Dage RF connectors are expertly designed, carefully made. Each part and each completed connector is thoroughly checked, carefully shipped-further assurance that your order placed with Dage receives the atten-

tion it deserves. Dage offers versatility to your demands for superior RF connectors; any standard or special connector can be quickly produced at Dage.

When you write your next specification, remember Dage-makers of the finest Radio Frequency Connectors.


## for aircraft, industrial and lajoratory applications <br> 

$\neq$ One surface operation, control and loading

* Rack or table mounting
* Direct monitoring of galvanometer light spots

HEILAND Series " 700 " Oscillograph Recorders have been designed and developed to enable the testing engineer and scientist to solve the wide variety of industrial and laboratory problems involving the measurement of physical phenomena such as strains, stresses, vibrations, pressures, temperatures, accelera. tions, impact, etc. Accurate and dependable oscillograph records permit the study of various recorded data consparatively, individually and collectively making for better product design and performance.

HEILAND Series " 700 " Oscillograph Recorders are being widely used today for the analysis of static and dynamic strains. vibrations. etc. in aircraft and guided missile flight testing; structural tests; performance tests; riding quality evaluation; voltage and current measurements; medical research; general industrial problem analysis.

is 0.025 oz-in. at $3,000 \mathrm{rpm}$ starting and running. The motor operates with a power input of 6 w , including the phase shift network (4.5 w motor winding). It meets the temperature, altitude and vibration requirements of MIL-E-5272.

## High-Temperature Insulation

Sun Chemical Corp., ElectroTechnical Products Div., Nutley 10, N. J., has announced two new products that meet all class H requirements and offer design economies at higher temperatures. The Sil-Thin-Glas 0.002 and 0.003 and Sil-Thin-Bestos 0.003 to 0.0035 possess exceptional dielectric and tensile strength. Their thinness, flexibility and light weight permit compact construction, and size and weight reduction of electronic and electrical equipment. Available in rolls, sheet or tape form, they are especially recommended for coil and relay insulation, layer and barrier insulation for transformers, and coil wrappings for fields and stators.


## Molded Coil

Deluxe Coils, Inc., First and Webster Sts., Wabash, Ind, has developed a molded waterproof type of electrical coil winding for intense moisture conditions, and explosion proof applications. The coils are enclosed in Luxolene Green molding resin which allows operating temperatures continuously of 90 to 250 F . The core tube is made of the same resin or exterior casting making the complete coating one homogeneous mass. Lead wires are of the 105 C UL approved poly-vinyl-chloride type and a bond is achieved between the resin and lead

## Use WEST - CAP

 minicture CAPACITORSfo meet exacting requirements

sealed in metal case
Check these important features:

- Pcsitive hermetic sealing
- Small physical size
- Tab or ext. foil construction
- Grounded or insulated sections
- Designed and built to meet most exacting requirements for:

1. Mechanical 3. Temperature
2. Electrical
3. Humidity

Send for complete catalog and specifications
SAN FERNANDO
ELECRIN MFG. CO.
Box 952
12900 Foothill Blvd., San Fernando, Calif. Phone EMpire 1-8681 offices: WASHINGTON, D.C.. CHICAGO, DETROIT, N. Y.

## CEARED FOR FAST DELIVERY

ELECTRONICALLY REGULATED
LABORATORY power supplies


LAMBDA ELECTRONICS COORR P O R A ' NEW' YORN

## U. G. CONNECTORS

## Our Coaxial Cable

 Connectors Meet All Government Specifications* ALL ORDERS DELIVERED PROMPTLY $\star$

Manufacturers of Highest Quality Connectors
alled indusries, INC. 1023 S. 21 st STREET LOUISVILLE 10, KY.

Phone Arlington 4640

MIL-B-233A
JOINT ARMY-NAVY SPECIFICATIONS

## SPARE AND REPAIR PARTS BOXES

Manufactured to meet material, workmanship and finish requirements of Army-Navy specifications.
Accessories: Internal framing, partitions, trays and wood chucks as required.

Complete Facilities under one roof for quality mass production, including Heliarc welding, baking and finishing. Whistler and Wiedermann equipment for short runs. Tool and die engineering and designing. Completely conveyerized finishing facilities. Large assortment of slock and special dies for radio and television and electronic field.

## ART-LLOYD

 Metal Products Corp.

Hidden in the heart of your product is the little component that means the big difference between robust, responsive performance and mere adequacy . . . between long life expectancy and premature failure. Give your product the core it needs to deliver its full performance potential. Specify a Moldite core specifically designed and precision-made for your equipment.

MAGNETIC IRON CORES - FILTER CORES MOLDED COIL FORMS - THREADED CORES SLEEVE CORES • CUP CORES

## full performance potential for your equipment WITH CORES BY

> Samples promptly submitted upon request for design, pre-production, and test puposes
> SEND FOR CATALOG 110


1410 Chestnut AVE., hillside s, N. J.

| Robert T. Murray | Jerry Gelten Co. | Maxtin P. Andrews |  | Jose Luis Ponten |
| :---: | :---: | :---: | :---: | :---: |
| 614 Central Ave. | 2750 W. North Ave. | Mott Road | 1335 South Flower | Cardoba 1472 |
| East Orage, $\mathrm{N} . \mathrm{J}$. | Chicago 22, III. | Fayetterille, N. Y. | Los Angeles, Cal. | Buenos Aires |

614 Central Ave 2750 w Worth East Orage, N. J. Chicago 22, III.

Molt Road Fayetteville, N. Y.

Perimuth-Coleman \& Assoc. 1335 South Flower Los Angeles, Cal.
wire. Production shipments of coils are all tested in water for 24 hours. Each shipment is certified that after 24 -hour immersion with 500 vd d c applied, the leakage resistance through water to ground has been found in excess of 200 megohms.

## Relay Rack

Insuline Corp. of America, 36-02 35th Ave., Long Island City 1, N. Y., has brought out an open-face relay rack designed to take standard $19-\mathrm{in}$. panels. Sturdily made of $\frac{1}{8}-\mathrm{in}$. steel, it measures $38 \frac{1}{4} \mathrm{in}$. high, 20 in . wide and $18 \frac{3}{8} \mathrm{in}$. deep, weighs 39 lb and has $36 \frac{3}{4} \mathrm{in}$. of vertical panel space. Catalog No. 3913 rack is intended for radio transmitters and transmitter-receiver combinations, $p$-a amplifiers and distribution systems, tape or wire recorders, laboratory or service shop test equipment, and similar electronic applications.


## Voltage-Regulated Power Supplies

Kepco Laboratories, 131-38 Sanford Ave., Flushing, N. Y. Model 750 voltage-regulated power supply features one regulated d-c voltage supply with excellent regulation, low ripple content and low output impedance. The h-v supply is continuously variable from 0 to 600 v and delivers from 0 to 750 ma . In the 30 to $600-\mathrm{v}$ range the output voltage variation is less than 0.5 percent for both line fluctuations from 105 to 125 v and load variation from minimum to maximum current. The ripple voltage is less than 10 mv peak to peak. Cabinet height is 28 in ., width, $21 \frac{1}{2} \mathrm{in}$., and depth, 16 in. Also available are the
 and thread-forming screws-all types of threaded fasteners; threaded parts and threaded connections.

## FOR MANUFACTURERS

DESIGNERS INSPECTORS TOOL ENGINEERS

Capac-
ities:
(0-200 in,
lbs.) or
lbs.) or $0-150 \mathrm{f}$ lbs.)


Moidit th6 transmitter operates on + crystal. controlled frequenctes pplus 2 closely spuced frequencies) in the band 2.5-24.0 Mcs (1.6.2.5 Mes atailable). Operates on one frequmey at a
time: channeling time 2 seconds. Carrier poner 350 uatts, A1 ir . 43 AM. Stability. $003 \%$ usins $\mathrm{Ch}-\mathrm{-}^{-}$(or $\mathrm{HC}-6 \mathrm{C}$ ) crrstals. Operates in a $\mathrm{CH}-\mathrm{-}$ (or HC -6 () crystals. Operates in ambient 00 to $+45^{\circ} \mathrm{C}$ using mercury rectithers: $-35^{\circ}$ to $+15^{\circ} \mathrm{C}$ using gas-filled rectiters. Tmuer supply.
200.250 volts. $50 / 60$ cycles. single phas. $200 \cdot 250$ volts. $50 / 60$ cycles. single phase. Consertatively rated. sturdily constructed. Com plete technical data on request.

Here's the ideal general-purpose high-frequency transmitter! Model 446, , 4-channel, 6-frequency. medium power, high stability. Suitable for point-to-point or ground-to-air communication. Can be remotely located from operating position. Co-axial fitting to accept frequency shift signals.

Consultanta, designers and manufacturers of standard or special
electronic, meteorological and communications equipment.

## in assembly.

Write for Bulletin TTF



SIGMUND COHN CORP, 121 so Columbus Avenue - Mount Vernon, N.Y.


Everything that goes into the making of DYNAPRENE Flexible Cord is checked and tested for quality. Whitney Blake is proud of the reputation for long life and hard service that DYNAPRENE has earned. You can be sure that this good reputation will be carefully safeguarded.
Only by using flexible cord of the finest quality can a manufacturer be sure that his electrical products will give completely satisfactory performance. It was to meet manufacturers' demands for a better flexible cord that the rugged neoprene compound used for DYNAPRENE jackets was developed. DYNAPRENE is tough and long lasting, it is extra flexible and unusually resistant to those substances and conditions that play havoc with rubber-jacketed cords. Safeguard your product's performance by specifying Whitney Blake DYNAPRENE SO, SJO and SV-neoprene-jacketed rype on your next requisition.

## WELL BUILT WIRES SINCE 1899

## 《人) WHITNEY BLAKE CO.

## NEW HAVEN 14; CONNECTICUT

model 760, delivering 1.5 amperes; model 770, 2.25 amperes ; and model 780, 3 amperes.


## Gear Train Kit

Bowman Instrument Corp., Smith Municipal Airport, Fort Wayne, Ind., has added to its product line a new universal precision gear train kit. The new kit features standard ratios from 20 to 1 to 1,250 to 1 , with special ratios up to 15,000 to 1 available where required. All ratios are obtained in the same basic gear housing simply by changing gear clusters according to instructions provided. The unit is designed for servo breadboarding and general laboratory use. Combination data are printed on the inside of the box cover for easy reference.


## Flexible Coil Forms

Precision Paper Tube Co., 2035 W. Charleston St., Chicago 47, Ill., has announced the Flexiform coil forms with special flexible flanges that completely eliminate taping operations on motor-field coils. This is a highly important factor in speeding up assembly lines, especially where mass production techniques are desirable. Since automatic equipment is used in the


Rinc Heaters
The sane standard construction as Vulcan cartridg, and strip heaters. Coil is of highest grade resistance wire and is supported in and insulated from sheath by quality. Easily installed by clamping against the surface of hot plates, pots, defrosters, vulcan ter heaters, etc.
ust-resisting sheath for temperatures io $750^{\circ}$ F. Stainless steel sheath $1200^{\circ} \mathrm{F}$.


6 stand ard sizes. Speeial sizes available.

## vulcal

 ELECTRIC COMPANYDANVERS 10. MASS


Measurements Corporation MODEL 58

## UHF RADIO NOISE \& FIELD STRENGTH METER

Frequency Range 15 Mc . to 150 Mc .

FREQUENCY ACCURACY: $\pm 2 \%$. Individually calibrated dial.

SENSITIVITY RANGE: 1 to 100,000 microvolits. Direct reading dial.

POWER SUPPLY: Built-in supply, 117 volts $A C, 6$ volts DC.

## MEASUREMENTS CORPORATIQN

New Jersey


Augat two-tension loop clamps are the long-sought answer for uses where socket tolerances vary up to .040. The bands of these sturdy clamps are made of Beryllium copper, heat treated to retain original tension and nickel plated to withstand a 96 hour salt spray test with no adverse effect.

The remaining parts of Augat's two-tension loop clamps are made of $18 \%$ nickel silver. Write today for catalog and samples.

## AUGAT BROS. INC.

31 PERRY AVENUE • ATTLEBORO, MASS.

## PRIMARY BATTERIES for your Specialized Needs

DRY TYPES
78 Standard Industrial, Laboratory and Gov. ernment Types


LAB-BILT BATTERIES
Our engıneers will design and create to your requirements. Send us your specifications.


Precision-built, low-cost, battery-operated available for delivery now.

## RESERVE TYPES

Water activated "One Shot" Batteries.

Send for FREE Catalogs

## SPEGIALTY BATHRY GOMPANY A Subsidiary of the ©AIO:DS Ray-O-Vac Compony MADISON 10, WISCONSIN



## description

Model 5570 is a single, compact instrument for rapid, precise mea surement of frequencies from 0 cps to 42 mc . Basic sections are (1) a high-speed events-per-unit-time meter (EPUT), and (2) a heterodyne unit. Frequencies of 2 mc and below are applied directly to the EPUT and are read on the last six decade panels. From 2 to 42 mc , frequencies are applied to heterodyne unit and selector knob turned until output meter indicates the proper harmonic has been selected. External adjustment of crystal control unit to WWV is provided, to obtain an accuracy of 1 part in $10^{7}, \pm 1$ count

## applications

Rapid, accurate transmitter monitoring, crystal checking, general lab oratory and production line frequency determination. Addition of a Berkeley Digital Recorder will provide an automatic printed record of the last 6 digits; ideal for plotting frequency drift or indicating stability.

## specifications

10 cycle to 42 megocycles
RANGE: 10 cycle to 42 megocycles (short term: 1 part in 107)
ACCURACY: $\left\{\begin{array}{l} \pm 1 \text { count, } \pm \text { crystal accuracy (short t } \\ 117 \text { volts, } \pm 10 \%, 80 \mathrm{cps}, 260 \text { watts }\end{array}\right.$
POWER REQUIREMENTS:
INPUT REQUIREMENTS: |
DISPLAY TIME:
TIME BASE:
DIMENSIONS:
ACCESSORIES: Available F.O.B. Richmand, California
PRICE:
Approximately 1 volt rms. ( 50 ohm impedance)
1 to 5 seconds continuously variable
$0.00002,0.0002,0.002,0.02,0.2$ and 2 seconds
Approximately $32^{\prime \prime}$ high $\times 21^{\prime \prime}$ wide $\times 16^{\prime \prime}$ deep
making of Flexiform bobbins, they can be readily supplied in shapes and sizes as specified at an economical price. Flanges are flexible rope paper and are fastened to the core by an exclusive process that eliminates swaging. Dielectric kraft paper is used for the core.


## Microwave Equipment

Westinghouse Electric Corp., P. O. Box 2099, Pittsburgh 30, Pa. A new $2,000-\mathrm{mc}$ microwave system that utilizes microwave radio (type FR) and frequency-division multiplex equipment (type FJ) is available. The microwave carrier is divided into 30 voice channels or equivalent telegraphic functions (15 per voice channel) by the type FJ multiplexing equipment. The multiplexing equipment was designed specifically for use with the microwave equipment and provides maximum flexibility of arranging various combinations of services on the channels. The basic units of the type FR microwave radio equipment are the same for both terminal and repeater station assemblies. Either type of assembly requires a single fixed rack or cabinet, and each is readily changeable from one type of operation to the other to facilitate system expansion.

## Insulated Test Clips

Industrial Devices, Inc., Edgewater, N. J. Model 1410A test clips feature a plastic insulation that covers the entire clip, including the nose, without the bulkiness of rubber boots or insulating tape. They can be used in pairs as a

drawn cases


(a) ? Ma ?P. O. BOX 71A

HERMES Plastics, Inc.
13-19 University PI. • N. Y. 3, N. Y.




MISSION: To eliminate the needless waste of manpower, machines, and technical skill in the modification of servo components.

In applying servo systems to their operations, many engineers are restricted by "stock" components. They either sacrifice efficiency by building systems around the components available, or waste manpower, machines, and skill in modifying units to make them useable.

It is the mission of the Transicoil Corporation to provide precision components for each particular servo application . . . ready for immediate application . . . with all the accuracy and efficiency for which they are designed.

Reference: Technical catalog "Precision Components" available upon request.


CORPORATION
107 GRAND STREET NEW YORK 13, N.Y.


Miniature Control Motors


Motor and Gear Train Assemblies
 Gear Train
Combinations


Servo
Amplifiers
source of power for equipment under test without the danger of a short circuit due to the clips touching each other or other components. In use on test equipment leads, the clips may be changed from one connection to another without cutting off the power in the equipment. A highly-efficient nylon insulation conforms to the shape of the metal clips thus allowing the same degree of flexibility and easy handling as bare metal clips. A nylon sleeve is threaded to the clip for easy connection to leads. Terminals are provided for either a soldered or screw terminal connection. Strain relief is provided by means of usual wire clamps.

## Literature

Product Catalog. Phalo Plastics Corp., 25 Foster St., Worcester 8, Mass., has available a 46 -page booklet that features easy reference indexing of all the company's major product groups. It shows the cor. pany's important strides in the manufacture of insulated wire and cables and cord set assemblies for electronics, electrical manufacturing, radio, television, communications and industrial applications.

Photoelectric Densitometer. Photovolt Corp., 95 Madison Ave., New York 16, N. Y. Bulletin No. 800 announces the model 525 photoelectric densitometer for chromatography. The instrument described and illustrated is designed for the evaluation of filter paper strips and sheets as obtained by partition chromatography and paper electrophoresis. Included are a reference list and a page showing prices for the complete line.

Paste Solder. Fusion Engineering, 4504 Superior Ave., Cleveland 3, Ohio. Bulletin TE-400 describes Electro-Tin, a new material designed to cut out costs, save time and increase production wherever soldering and dip tinning are used. Electro-Tin finds wide application in all fields of assembly and wiring where soft solders are used. The material described is a combination


S178A

## ANTENNA MULTICOUPLER

Operates 10 Receivers from One Antenna

- Antenma Impedance 50-1000 ohms
- Frequency Range 2-20 Mc
- Rack Mounting
- Used and Approved by many Goverament Agencies
- \$308.00 FOB Washington, D. C.

SCHUTTIG and CO. INCORPORATED 9th and Kearny St., N.E. Washingran 17, D. C.


- High purity . . . free of all impurities such as Iron, Titania, Alkali group elements.
- Made to various formulations with Alumina content from $94 \%$ to a pure sintered Alumina with $99.85 \%$ minimum $\mathrm{Al}_{2} \mathrm{O}_{3}$.
- Available in porosities ranging from $20 \%$ to an impervious, vacuum tight body.
- Formed to dimensional tolerances of plus or minus $1 / 2 \%$, minimum of plus or minus. 001 ".
- Complefely homogeneous structure.

WESTERN GOLD \& PLATINUM WORKS

Ceramic Division
589 BRYANT ST., SAN FRANCISCO, CALIF.

## DX Announces

 aNEW $90^{\circ}$ YOKE for $27^{\prime \prime}$ TUBES

## It's Engineered for TOP PERFORMANCE ... in Production NOW!

This new DX $90^{\circ}$ Deflection Yoke has everything a television receiver manufacturer wants . . a sharp full-screen focus, a minimum of pincushioning, the ultimate in compactness and a price that's downright attractive. Because this yoke has been brilliantly designed for mass production on DX's specialized equipment, it warrants immediate consideration in your $27^{\prime \prime}$ receiver plans. Write us today.
deflection yokes... TOROID COILS... CRYSTALS I. F. TRANSFORMERS . . . R. F. COILS . . DISCRIMINATORS SPEAKERS . . . TV tuners . . . ION traps . . . transformers

## DX RADIO PRODUCIS CO.





## Hammarlund Separate Transmitters and Receivers Offer Maximum Design Flexibility!

Two independent operations for signaling, dialing, slow speed telemetering, or supervisory control may be transmitted in one direction by one Dual Transmitter Unit (DTU-1) and one Dual Receiver Unit (DRU-1) now available.

These units were engineered for operation over wire lines, telephone or power line carrier and radio or microwave communications circuits, and incorporate the same proven basic features as the Hammarlund Duplex Signaling Unit, except that operations may be carried on in one direction only. Each unit includes its own power supply.

The DTU-1 incorporates a pair of transmitters consisting of a stable tone generator and an amplifier designed to bridge across a 600 -ohm circuit, all mounted on a $31 / 2$ inch standard relay rack panel. Harmonic distortion is negligible, frequency stability is excellent and a total of 36 frequency channels are available between 2000 and 6475 cycles.

The DRU-1 incorporates a pair of receivers consisting of two stages of amplification, a signal rectifier, relay tube and relay, and a sharply selective band pass filter unit, all mounted on a $51 / 4$ inch standard relay rack panel.

Either a continuous or a keyed tone may be used. The units may be installed in multiple and with Hammarlund 2-way signaling units (DSU-2's) as individual installations require.

Write for Bulletin 113 for detailed information.

## H) HAMMABLUMD

## HAMMARLUND MANUFACTURING CO., INC.

460 WEST 34th ST. CEW YORK 1, N. Y.
of newly developed organic, fastacting fluxing agents in which is dispersed finely divided metal tinning agents. The combination of the two makes possible soldering under difficult conditions, using nonacid, neutral materials superior to ordinary rosin, and yet possessing characteristics of strongly active acid fluxes.

Potentiometers. Helipot Corp., South Pasadena, Calif. Bulletin No. 128 on the new AJ series potentiometers was recently issued. It contains general features of the AJ, AJS and AJSP models, as well as drawings, specifications and special features of all three models.

Demineralizer. Penfield Mfg. Co., Inc., 19 High School Ave., Meriden, Conn. The purity of the water used in compounding coating solutions and preparing tv tubes, infrared and fluorescent lamps often is a real problem to manufacturers of such products. The demineralizers described and illustrated in technical bulletin 023 offer a completely automatic method of producing the extremely high purity water required for both washing molded glass and preparing coating solutions-at a fraction of the cost of distilled water.

Magnetic Tape for Instrumentation. Audio \& Video Products Corp., 730 Fifth Ave., New York, N. Y. A single-sheet bulletin announces the type 109 Scotch brand data recording tape developed by the Minnesota Mining and Mfg. Co., for data recording, telemetering, shock and vibration measurements, geophysical applications, computer work and industrial research. The tape described, factory tested and preselected for minimum count of nodule or surface imperfections, is shipped in hermetically-sealed containers and comes in $\frac{1}{4}$-in. $\frac{1}{2}$-in., $\frac{3}{4}-\mathrm{in}$. and 1 -in. Widths up to $4,800 \mathrm{ft}$ in length.

New Reproducer. Jensen Mfg. Co., 6601 Laramie, Chicago, III. Technical bulletin No. 4 describes fourchannel high-fidelity system. It gives constructional information for the Transflex bass reflex trans-

## flEXIBLE <br> DELAY LINES

to meet military
specifications
Delay . 1 to 2 usec.
Tol. $\pm .05$ usec.
$Z_{0} 1200$ ohms $\pm 15 \%$ Delay lines are hermetically sealed and


RICHARD D. BREW and CO., INC. 106 CONCORD AVE., BELMONT 78, MASS.

## ELECTRON

## TUBE

TECHNICIANS

We now have
several openings for
technicians
to work in the
fabrication and
processing of advanced type electron tube research models.

To qualify for one of these openings you should be experienced in experimental work for research and development in vacuum tubes, which includes the fields of mechanics, electronics, chemistry and high-vacuum techniques


## HALF KILOWATT

## REGULATED

 POWER SUPPLY
## Continuously Adiustable

These Furst Power Supplies are designed for laboratory, production line test stations and other applications requiring 500 watts of closely regulated power.

Electronic regulation provides a constant DC voltage independent of line and load variations within wide limits.

Two models are available with continuously adjustable outputs without switching:


Model 1110 Up to 1000 Volts at 500 milliamperes Model 1110 A Up to 1500 Volts at 330 milliamperes


Write for complete specifications of thee and other Furst Regulated Power Supplies. We will also desijn power supplies to fit your exact requirements.

## FURSTELECTRONICS

3322 W. Lawrence Ave., Chicago 25, Illinois

For evaluating the dynamic characteristics of rate gyros and angular accelerometers

## DOELCAM

## FREQUENCY RESPONSE ANALYZER



Type BA-100 shown here includes
Servo-controlled mechanical oscillator operating at frequencies from 1 to 80 cps . Electronic analyzer providing direct readings of input frequency, amplification and phase shift.
The type ba-100 friquency response analyzer is one of the many specia! types of laboratory test equipment developed by Docleam for evaluating the characteristies of instruments and control sysrems. Your inquiry is invited.

## DOELCAM CORPORATION

SOLDIERS FIELD ROAD, BOSTON 35, MASS. Instruments for Measurement and Control Gyroscopic Instrumentation. Synchros Servomechanisms. Microsyns. Electronic Inverters



Electronis Analyzer


## Free "New Equipment" Casalog

You'l want the full details on CHICAGO'S New Equipment line, covering the complete range of "Sealed-in-Stee" fransformers for every modern circuit application. Write for your Free copy of Catalog CT- 153 today, or get if from your elestronic parts distributor.

## CHICAGO TRANSFORMER <br> dIVISION OF ESSEX WRE CORPORATION

 $350^{-}$ADDISON STREET, CHICACO 18, ILL.mission line unit and associated 45 -cycle crossover network for the frequency range adjacent to the lower limits of audibility. The unit described is a unique arrangement quite compact in terms of the wavelengths involved.

Coax Components and Test Equipment. Microlab, 301 S. Ridgewood Rd., South Orange, N. J. Catalog No. 4 gives an 8-page treatment of a line of coaxial components and test equipment. Included among the items illustrated and technically described are fixed pad attenuators, low-pass filters, coaxial terminations, power-line filters and frequency multipliers. A price list has been inserted.

Miniature Snap Switch. Tyniswitch Division, The Sessions Clock Co., Forestville, Conn. A 6page bulletin on the construction and operational characteristics of Tyniswitch has just been published. A low-cost, high-rating miniature switch, the specifications and standard adaptations of Tyniswitch are fully described and detailed.

Screw Locking Insert. Brush Nail Expansion Bolt Co., Greenwich, Conn. A recent four-page folder describes and illustrates the knurled insert, a screw locking insert that is distinguished by a large band of diamond knurling on its grip area. Its three-stage principle of operation is shown. Recommended hole sizes and ordering information are included.

Silicone Rubber O-Rings. Bacon Industries, Inc., 192 Pleasant St., Watertown, Mass. Technical data sheet No. 103 provides detailed specifications of silicone rubber 0 rings. A feature of the O-rings, as pointed out in the literature, is the special manufacturing method used which makes allowance for the shrinkage factor encountered with silicone rubber and therefore assures 0 -rings which have the exact dimensions specified. The full information contained in the data sheet on the dimensions of both regular and special sizes and a detailed table of tensile strength, hardness, compressibility and other features, provide the reader with a

## High Sensitivity . . Logarithmic AC VOLTMETER

 50 MICRO VOLTS TO 500 VOLTSMODEL 47 VOLTMETER

SELF-CONTAINED ALL AC OPERATED UNIT An extremely sensitive amplifier type instrument that serves simultaneously as a voltmeter and high gain amplifier.

- Accuracy $\pm 2 \%$ from 15 cycles to 30 kc .
- Input impedance 1 megohm plus 15 uuf. shunt capacity.
- Amplifier Gain 23000
Also MODEL 45
WIDE BAND
VOLTMETER
.0005 to 500 Volts!
5 Cycles 1600 kc


Output indicator for microphones of all types.

- Low level phonograph pickups.
- Acceleration and other vibration measuring
pickups.
pickups
Sound level meosurements.


## ELECTRONICS SALES AND APPLICATION ENGINEERS

High-Frequency Heating, Microwave Communication, V.H.F. Communication, Power-Line Carrier and Military Communication and Radar Equipment

The expanding Electronics Division of Westinghouse has a number of desirable sales and application engineering positions open for men well qualified in one or more of the above fields. These openings require technical graduates with good personalities and business sense, men who like to meet people and work with them on a broad range of equipment application problems rather than specializing in a narrow field of design. Previous technical sales experience is desirable but not necessary.

Permanent positions are arailable at Headquarters (Baltimore) as well as in various sales offices throughout the country. The latter positions generally require training at Headquarters for a period depending on previous experience.
All these positions offer top pay, commensurate with ability and experience with excellent opportumity for advancement on merit. They carry the usual generous employe berefits offered by Westinghouse-low-cost group life and hospitalization insurance, an excellent retirement plan, graduate study oppor tunities and paid vacations. Re-location allowances will be made by the Company.
Send resume of qualifications to:
Manager, Industrial Relations, Dept. CK
Westinghouse Electric Corporation
109 West Lombard St.
Baltimore 1, Md.

## CUSTOM

## Clolded

## POWDERS

FOR

## HERMETIC SEALS

IRON SEALING and KOVAR SEALING GLASS
Close tolerance maintained . . . the highest precision to satisfy your specifications.


## NAME YOUR

 REQUIREMENTS

We'll be glad to meet your specifications. Our laboratories welcome working with you on new powders and designs for pressing. Let us quote on your requirements.


## SHARP PERMANENT MARKING



For legible permanent marking of metal components use (G1D) engraved lettering tools. Precision engraved dies and inserts for indenting or embossing identification on your parts will

1. Improve appearance.
2. Advertise throughout life of part.
3. Facilitate reordering.

W/ rite for free catalog on Production Marking Equipment.

## GEO. T. SCHMIDT, INC.

MARKING MACHINES - MARKING TOOLS 1804 Belle Plaine Ave., Chicago 13, III.

COMPLETE MACHINE FACILITIES TO PRODUCE

- Hand Stamps
- Engraved Inserts for Dies
- Shank Style Stamping Dies
- Embossing Dies
- Code Stamps
- Steel Type
- Numbering Heads
- Marking Machines
- Nameplate Marking Equipment


## RAWSON METERS



MULTIMETERS and REGULAR METERS $A C$ and DC types, high accuracy, 2 multiple ranges.
2 microcmperes to 1 ampere DC .
ELECTROSTATIC VOLTMETERS
Ranges $100-\mathrm{v}$. to $35,000-\mathrm{v}$. AC or DC Resistance exceeas million meqohms. Can measure static electricity.

## FLUXMETERS

Laboratory and production measurements on magnets and magnetic circuits. Single push butten return-to zero.
ROTATING COIL GAUSSMETER
Our most recent development measuring magnetic field streng for Measures from a few gausses to 120 kilogausses.

Special apparatus built to order Write for details and estimates

RAWSON ELECTRICAL INSTRUMENT COMFANY 1] Potter St. Cablaridge, Mass. CHICAGO REPRESENTATIVES LOS ANGELES

## The S.S. WHITE 80X HIGH VOLTAGE RESISTOR

( $1 / 2$ Actual Size)<br>4 watts • 100 to 100,000 megohms

Developed for use as potential dividers in high voltage electrostatic generators, S.S.White 80X Resistors have many characteris-tics-particularly negative temperature and valtage coefficients -which make them suitable for other high voltage applications. They are constructed of a mixture of conducting material and
binder made by a process which assures adequate mechanical strengh and durability. This material is non-hygroscopic and, therefore, moisture - resistant. The resistors are also coated with General I:lectric Dri-film which further protects them against humidity and also stabilizes the resistors.

## WRITE FOR BULLETIN 4906

It gives complete information on S.S.White resistors. A free copy and price list will be sent on request. Send for a copy.


## WANT THE BEST IN CAPACITORS?



Many, many notable advazces in the art of capacitor design and manufacture have been made by the ILIINOIS CON-
DENSER COMPANY. As an example, DENSER COMPANY. As an example,
ILLINOIS CONDENSER COMPANY has ILLINOIS CONDENSER a patent on their recently been awarded a patent on their
unique and exclusive molded capacitor construction as featured in the UMP types.

For almost two decades. ILLINOIS CONDENSER COMPANY has been building quality capacitors and regular users include most all of the largest manufacliterally compose the "blue book" of electronics.

To meet the ever increasing demand for ILLINOIS electrolytic capacitors, ILLINOIS CONDENSER COMPANY has built new plants and greatly increased production. Why don't you, tco, discover why ILLINOIS capacitors are "first choice" of so many!

Write For Catalog!


ILLINOIS GONDENSER CO. 1616 NORTH THROOP STREET • CWICAGO 22, 1 LL.


> National high-grade ceramic coil forms have been designed for a wide variety of communication and industrial applications. Types XR-13, XR-13A and XR-1OA are primarily for use in transmitters, diathermy equipment, etc. The XR-60 and XR-70 series are permeability-tuned coil forms, conforming to JAN specifications, with either brass or iron slugs. Write for drawings and specifications. XR-13 XR-13A XR-10A


## COMPLETE LINE OF SOCKETS

There is a National socket for every popular tube type and every circuit application. All feature low-loss electrical characteristics, firm tube support and easy, secure mounting. They are recommended wherever the highest quality is required. Write for drawings and specifications.
weight table to assist in ordering. The company's magnetic shield fabricating facilities are also described.

Coil Winding Machine. Universal Windling Co., P. O. Box 1605, Providence, R. I. A four-page bulletin covers the No. 108 quick-set-up coil winder for hand-feed paper-insulated coils in stick form. It contains a very well illustrated description of the unit, an outline of special design features, and complete technical specifications.

Audio-Radio-TV Equipment. David Bogen Co., Inc., 29 Ninth Ave., New York 14, N. Y. "Electronics for Audio-Radio-Television," a 24-page, illustrated, three-color booklet, reveals the design features, specifications and prices of the company's extensive line of amplifiers, $p-a$ systems, ty boosters and allied equipment. Associated lines described in the new bulletin are transcription players, baffles. reproducers, highficlelity amplifiers, tuners and speakers, trumpets, line-matching transformers, microphones and accessories.

TV Tube Complement List. Mullard Ltd., Century House, Shaftesbury Ave.. London WC2, England, has available a wall chart giving the tube complements of all the company-equipped tv receivers marketed since 1950. Covering 24 different makes and nearly 150 different types of receivers, it serves as a much-needed guide to ty tubestocking as well as being an invaluable reference for service engineers. The chart is printed on a single sheet and has been specially designed so that the receiver type and tube type numbers can be easily correlated. It is in three colors.

Thermocouple Gage Control Circuit. Scientific Specialties Corp., Snow and Union Sts., Brighton Station, Boston 35, Mass. Model V-32 thermocouple gage control circuit that is designed to operate with the RCA type 1946 thermocouple gage tube or equivalent, and measures pressures in the range 0.001 to 1 mm Hg is described and illustrated in a single-page bulletin. The unit discussed in the bulletin is op-

Research • Development • Engineering • Manufacturing

## CUSTOM BULLT EIECTRONCS!

CDC are designers and engineers of Electronic Devices to fit your requirements.

| - Digital and Analogue | - Product Engineering and Design |
| :--- | :--- |
| Computers | - Parts Machining and Assembly |
| - Test and Measuring Equipment | - Instrument and Electronic |
| Equipment Overhaul |  |
| - Servo Systems | - Field Maintenance of Electronic |
| - Instrumentation | Computers |
| - Engineering Consulting Service | - Developments for Armed Forces |

YOUP ENQUIRIES WILL RECEIVE
prompt and efficient attention
COMPUTING DEVICES of CANADA LIMITED
General Offices-338 Queen Street Laboratories-475 Cambridge Street, Ottawa, Ontario, Canada

## MANUEACTURERS IREIPESENTATIVE <br> (Metropolitan N. Y. C. Area) <br> SEEKS <br> AN ADDITIONAL LINE <br> (PREFERABLY COMPONENTS)

Presently covering both the radio-TV and military electronic industries in N. Y. C., Northern N. J. and Long Island.

RA-7248, Electronics
330 W. 42 St. - New York 36, N. Y.


The SW-12 Standing Wave Indicator is designed to measure the standing wave ratio within a waveguide or coaxial system used to transmit pulses of R.F. power. It can also be used as a null detector in bridge measurements. SW-12 can be used with both square law crystal detector or bolometer probes. The meter is calibrated directly in VSWR.

INPUTS: Input 1-R.F. probe with crystal rectifier
Input 2-R.F. probe with bolometer FREQUENCY RESPONSE: Flat within 3db from 500 to 2000 cps . Can be used down to 200 cps .
SENSITIVITY: $400-500 \mathrm{cps}-20$ microvolts full scale
$500-2000$ cps -15 microvolts full scale
$2000-3500 \mathrm{cps}-20$ microvolts full scale
INPUT IMPEDANCE: 250 ohms nominal OUTPUT METER CALIBRATION:

SWR scale from 1:1 to 4:1 Linear scale from 0 to 10
LINEARITY: $5 \%$ variation in linearity from $15 \%$ of full scale to full scale meter reading POWER REQUIREMENTS: 115 VAC single phase, 35 watts, $50-800 \mathrm{cps}$ TUBE COMPLEMENT: 2-6SJ7 1-6H6

1-6V6GT 1-6X5GT SPECIAL FEATURES: Shock resistant nonmicrophonic construction. DIMENSIONS: Height $87 / 8^{\prime \prime}$

Width 8 " $1 / 6^{\prime \prime}$ " Length $16 \%{ }^{\prime \prime}$ WEIGHT: 20 lbs.
CASE: Cabinet with side handles
FINISH: Hammertone
grey case and satin alumi-
num panel. CORPORATION
1001 FIRST AVENUE ASEURY PARK. N.J.

ELECTRICAL INSULATION THAT WILL TAKE $2000^{\circ}$ F. wes BRIEF PERIODS!

Aircraft fire detection apparatus needs that. Here is the Mycalex glass-bonded mica part that has it.

Mycalex 410 molded with steel ring inserts for thermocoupling device produced by Thomas A. Edison, Inc.

- For permanent endurance Mycalex can take $650^{\circ} \mathrm{F}$. continuously without heat distortion or any other injury.


ACTUAL SIZE

Mycalex is superior for high voltage, high frequency components that must operate in small spaces.

For example, tube sockets like these - now used in over $60 \%$ of all television receiver tuners. - Manufactured and sold by Mycalex Tube Socket Corporation, Clifton, N. J.
If your insulation must take heat or get rid of heat, investigate Mycalex!

WRITE FOR ENGINEERING DATA BOOK


MYCalex corporation of america World's Largest Manutacturer of Class-bonded Mica Products Execulive Otfices: 30 Rocketeller Plaza, New Yorik 20, N.Y. géneral dffices and plant
114 CLIFTON BOULEVARD, CLIFTON, N. J.

## OIL DIFFUSION PUMPS

are only two members from our COMPLETE LINE

SEE the latest one in action at Booth 4-216—IRE SHOW March 23-26

See also our SC-3 High Vacuum Evaporator, evaporated films, vacuum accessories, etc.


OPTICAL FILM ENGINEERING CO.
2731-37 North 6th St
Philadelphia 33, Pa

## PTX WIRE FORMING SPECIALISTS

Precision Parts to meet your Production and Engineering needs. From . $002^{\prime \prime}$ dia. to $.125^{\prime \prime}$ dia. Radio tube parts-Stampings-Drawings Modern facilities, high-production equipment.

Metal Crystal Holder Parts Send sketch or print for quotation. PIX MANUFACTURING CO., Inc. 24A Bedford St., Newark 3, N. J.



OUTPUT IMPEDANCE
0.005 OHMS

NOISE-RIPPLE UNDER
100 MICROVOLTS
STANDARD CELL
STABILITY AVAILABLE


AFay/L=. $\begin{aligned} & \text { PRECISION } \\ & \text { ELECTRONIC } \\ & \text { INSTRUMENTS }\end{aligned}$
KALBFELL LABORATORIES, INC.
1090 MORENA BLVD. P. O. BOX 1578
SAN DIEGO 10, CALIFORNIA

## DOUble barrel ADVERTISING

Advertiaing men agree-to do complete edvertiaing job you need the double efiret of both Diaplay Advertising and Direct Mal.

Diaplay Advertising keeps your name before the public and builds prestige

Direct Mail supplements your Display Advertising. It pin-points your messege fight to the executive you want to rearh -the person who buys or influences the purchases.
In view of present day difficultice in mmintaining your own mailing lists, our etsicient personalized service is particuleriy fmportant in securing the comprehersave morket coverage you need and want.

Alk for more detailed information today. You'll be surprised at the low overall coat and the tested effectiveneas of thee hand-picked selections.


WeGraw-Hill Publishing Co., Inc.


## ELECTRICAL INSULATION

## THAT CAN BE MADE 10 THE

 SAME TOLERANCES AS STEELYES, we do mean any tolerances that can be produced in steel.
For example:


Two of these $14^{\prime \prime}$ Mycalex 400 discs revolve with only $.004^{\prime \prime}$ clearance. Dimensionally stable, too. Mycalex stays accurate.


Mycalex glass-bonded mica is found in HIGH PRECISION electrical components.

WRITE FOR ENGINEERING DATA BOOK


MYCALEX CORPORATION of AMERICA
World's Largest Marulacturer of Class-bonded Mica Products Executive Offices: 30 Rockefeller Plaza, New York 20, N.Y. general offices and plant
114 CLIFTON BOULEVARD, CLIFTON, N. J. Want more information? Usc post card on last page. ELECTRONICS - April, 1953

NEW PRODUCTS
(continued)
erated on $110 \mathrm{v}, 60$ cycle a-c and consumes approximately 10 w . Prices are included.

Miniature Clutch. High Precision Inc., 375 Morse St., Hamden, Conn., has prepared a folder suggesting possible uses and giving specifications for a line of miniature overrunning clutches, known as Miniclutch. Typical applications of the units described are recording instruments and business machines, motion-picture projectors, ratchetfeeds, servomechanisms and control devices such as are used in gunpointing equipment.

Terminal Boards. Aircraft Radio Corp., Boonton, N. J. A new 4-page brochure deals with ceramic insulated terminal boards developed for use in airborne receivers and transmitters and in signal generators and other industrial electronics equipment where reliable, long operation under extremes in temperature and moisture is important. The boards described are fungus proof and arc resistant. Comprehensive diagrams and photographs of the boards are featured as well as illustrations of typical applications.

Transistor Test Equipment. Transistor Products, Inc., Snow and Union Sts., Brighton Station, Boston 35, Mass. A single-sheet bulletin illustrates and describes the model T-61, a device designed to test the small signal behavior of all point contact and junction transistors. The theory of operation outlined shows the emitter current, collector current, emitter voltage, collector voltage and characteristics measurement ranges. The unit's accuracy is described and price is included.

Regulated H-V Power Supply. Scientific Specialties Corp., Snow and Union Sts., Brighton Station, Boston 35, Mass. A single-page bulletin illustrates and describes the PS-22 electronically regulated supply that is designed for use with photomultiplier tubes, counters, and other devices requiring a closely regulated well stabilized voltage. Output, regulation, input power and mounting information are given. Prices are included.

## IS THERE ANYTHING WRONG wn MTCALEX?

## YES

It's inelastic

- But inserts won't shake loose. It has high density
- But permits reduction of overall size and weight.

It has no color appeal

- But has certain surface finish interest.


## MYCALEX glass-bonded mica

 IS THE ONLY CERAMOPLASTICThe only material combining most of the best properties of ceramics and plastics, plus some of its own.

GET THE FULL, FRANK STORY


WRITE FOR ENGINEERING DATA BOOK


MYCALEX CORPORATION of AMERICA
World's Largest Manufacturer of Glass-bonded Mica Products Exccutive Dffices: 30 Rockefeller Plaza, New York 20, N.Y. general offices and plant
114 CLIFTON BOULEVARD, CLIFTON, N. J. Want more information? Use post card on last page.

## PLANTS AND PEOPLE

Edited by WILLIAM G. ARNOLD

Expansion of RTMA Proposed At Board Meeting

The RTMA board of directors accepted in principle the recommendations of a special committee of the technical products division calling for expansion and reorganization of the Radio-Television Manufacturers Association to provide greater recognition for manufacturers in the advanced electronics field. The action climaxed a recent 3-day industry conference.

President A. D. Plamondon, Jr., referred to an expanded organization committee a report presented by director E. K. Forster and C. B. Thornton, of Hughes Aircraft Co.

The major recommendations of the committee were that RTMA change its name to the Electronics Manufacturers Association, or some
similar name, a division for manufacturers of advanced electronics products be established within the association, and the engineering department be expanded and technical standards and contract specifications be developed for advanced electronics products in the military and commercial sales areas.

Mr. Thornton, in presenting the report prepared by Mr. Foster and himself, pointed out that the electronics industry has expanded greatly since World War II and that for the last three years the dollar volume of sales of electronics equipment to the Armed Services has exceeded that in the commercial equipment field, including radio and tv sets.

MULLICAN WINS EDISON RADIO AMATEUR AWARD


Don L. Mullican of Searcy, Ark., who helped rally emergency aid to tornadostricken Arkansas in March of 1952, received congratulatory handshakes from stricken Arkansas in March of 1952, received congratulatory handshakes from
W. R. G. Baker, GE vice-president, and J. Milton Lang, general manager of the GE tube department, after he received the Edison Radio Amateur Award for outstanding public service by a radio amateur during 1952. Don, a 20 -year-old Bible student at Harding College in Searcy, stuck to his radio amateur rig almost student at Harding College in Searcy, stuck to his radio amateur rig almosi
without relief for more than five days to bring emergency help to Searcy and the nearby towns of Judsonia and Bald Knob

OTHER DEPARTMENTS
featured for this issue:

|  | Page |
| :---: | :---: |
| Electrons At Work. | 196 |
| Production Techniques. | 260 |
| New Products | 312 |
| New Books | 410 |
| Backtalk | 42 |


L. W. Teegarden

## Teegarden Elected Executive Vice-President Of RCA

Election of L, W. Teegarden as executive vice-president of the Radio Corporation of America was announced by Frank M. Folsom, president.

Mr. Teegarden, a pioneer merchandiser, has been active in the electronics industry for many years. Prior to assuming his new post, Mr. Teegarden was vice-president in charge of technical products of the RCA Victor division. In this position, he supervised the activities of both the engineering products department and of the tube department.
"Under Mr. Teegarden's leadership, the activities over which he has had responsibility have attained new high levels of success," said Mr. Folsom. "His election to the post of executive vice-president of RCA is fitting recognition of his administrative achievements over


Birningham Sound Reproducers Ltd., Old Hill, Staffs. England. Grams: 'Electronic Old Hill, Cradley Meath:
the many years he has been with RCA."

Since joining RCA in 1930 as a district sales manager, Mr. Teegarden has held increasingly responsible positions on behalf of RCA Victor activities. In 1936, he became the first to serve as regional manager with responsibility for the merchandising of all RCA Victor products. His success in establishing this position led to the formation of a regional organization on a nation-wide basis.

Six years later Mr. Teegarden was named assistant general sales manager of all RCA Victor product activities. He was appointed general manager of the tube department in 1944, and a year later was named vice-president in charge of this department.

Under his direction, the tube department achieved mass production of television picture tubes for home receivers.

Mr. Teegarden's responsibilities were increased in 1949 to include supervision of RCA Victor's engineering products department, which has since established new sales records under his direction.

## PACKARD-BELL BREAKS GROUND



Company executives at Packard-Bell ground-breaking ceremonies for the $\$ 750,000$ addition to its tv and radio plant were, left to right: Robert S. Bell, executive vice-president; Herbert $\boldsymbol{A}$. Bell, president and founder, and Joe M. Spain, vice-president. The new 95.000 sq ft building will contain two units: a division for milling and assembling tv cabinets, and an electronics section for government contracts

## Beckman Begins Construction On $\$ 2$ Million Plant



Arnold O. Beckman, president and founder of Beckman Instruments, Inc., officially broke ground recently for the new $\$ 2$ million, $200,000 \mathrm{sq} \mathrm{ft}$ instrument factory and administra-
tive offices to be erected on a 40 -acre site in the La Habra-Fullerton area of California. First occupancy of the plant is scheduled for midsummer.

## Westinghouse To Buy Phileo's TV Station WPTZ

E. V. Huggins, president of Westinghouse Radio Stations, Inc., and James H. Carmine, executive vicepresident of Philco Corp., announced jointly that Westinghouse had arranged to purchase to station WPTZ in Philadelphia from Philco. Approval of the FCC is being sought. Acquisition of the station will involve approximately $\$ 8.5$ million.

In commenting on the proposed transfer of ownership, Mr. Carmine said, "Sale of station WPTZ, at this time, will enable Philco to concentrate its activities in its principal fields of research, development and production of tv receiving sets, radios, and major appliances which are merchandised through its distributors and dealers, and the manufacture of electronic equipment for government and industry."

Mr. Higgins said, "This is another step toward completion of our plans to bring additional service to the millions of people living in areas served by Westinghouse."

After approval of the purchase by the FCC, WPTZ will become the second tv station to be operated by Westinghouse. The first is WBZTV in Boston.

## Federal Elects Maginnis V-P And Chief Engineer

The election of William P. Maginnis as vice-president and chief engineer of Federal Telephone and Radio Corp. was announced by Henry C. Roemer, president of Federal.

Mr. Maginnis, who will direct telephone, radio and vacuum tube engineering for Federal, joined the company in 1951. He was with RCA for 21 years and headed components engineering at the RCA Camden plant prior to joining Federal. Previous to his Camden assignment, Mr. Maginnis was chief engineer at the RCA manufacturing plant in Bloomington, Ind.

Graduating from the University of Pennsylvania in 1929, Mr. Maginnis started his career in com-


# SUPER REGULATED VOLTAGE \& CURRENT STANDARD 

TYPE M-DC-2

For Accurate Calibration of D. C. Voltage and Current Instruments

THE SUPER REGULATED VOLTAGE \& CURRENT STANDARD provides simple, accurate calibration of D. C. Voltmeters and Milliameters. It is an accurate voltage or current source for Analog Computer instrumentation. The instrument is a rugged, dependable secondary standard for general laboratory and production use, which replaces the Potentiometer and its accessories, i.e., Galvanometers, Standard Cells, Power Supplies, and Precision Resistors.

The instrument is a super regulated power supply with an internal reference standard cell, precision resistance decade and precision load. It is required wherever accurate D. C. current and voltage standards are maintained.

## SPECIFICATIONS

## OUTPUT:

0 to 109.99 Volts D. C.
(in 0.01 volt steps)
0 to 109.99 mAD . C
(in 0.01 mA steps)

## ACCURACY:

Voltage, $0.05 \%$ of indicated voltage.
Current, $0.05 \%$ of indicated current.

## RIPPLE:

Less than 0.08 millivolts at full voltage output.
LOAD IMPEDANCE:
Full scale voltage,
Load may be as low as 1000 ohms.
Full scale current,
Load may be as high as 1000 ohms.

## LOAD DEPENDENCE:

Within the range specified, the load dependence is included in the accuracy of the calibrator and automatically compensated for.

## INPUT POWER:

105-125 Volts, 60 cycle, 150 Watts maximum.

MOUNTING:
Aluminum cabinet or relay rack.
Panel size, $19^{\prime \prime} \times 83 / 4^{\prime \prime}$, depth $16^{\prime \prime}$
Net weight 40 pounds
Shipping weight 65 pounds.
(Data subject to change without notice.)


4

The Beckman Mode! V Micro-Microammeter-for the precise measurement of extremely small electrical currents. Beckman Instruments, Inc., South Pasadena, Califarnia

TO MEASURE ELECTRICAL CURRENTS as small as three-tenths of a trillionth ampere within $5 \%$, the Beckman Model V Micro-Microammeter depends on precision ambient compensation by an EDISON sealed-in-glass thermostat.

IN OPERATION, the Micro-Microammeter conducts the current to be measured through a very high input resistance - from $3 \times 10^{7}$ to $10^{11}$ ohms. The voltage produced across this resistance charges a vibrating reed capacity modulator, oscillating at 120 cycles per second, which converts the voltage to an alternating signal. After passing through a four-stage amplifier, the signal is converted back to direct current for measurement.

WITHOUT THE PROTECTION of an EDISON thermostat to control the temperature of the input compartment, the precise, $1 \%$ reproducibility could be destroyed through variation of the temperature with input resistance or contact potential of the vibrating reed.

EDISON THERMOSTATS feature stability measured in years, control within $\pm 0.1^{\circ} \mathrm{F}$ and capacity to 115 volts, 8 am peres d.c. or 1000 watts. EDISON temperature control engineers will be glad to work with you on the solution of your ambient protection problems. Just call or write to:


I NCORPORATED

TIME has no opparent effect on Edison Sealed-In.Glass Thermostats.


YOU CAN
ALWAYS RELY

William P. Maginnis
munications engineering at the Bell Telephone Laboratories, Inc., in New York. In 1930 he left Bell to begin his long association with RCA.

## Clevite Acquires <br> Transistor Products

Clevite Corp. announced recently that it is acquiring a majority stock interest in Transistor Products, Inc., of Boston, Mass.

Transistor Products, Inc. was formed in March, 1952 to engage in the development and manufacture of transistors and diodes. Roland B. Holt, formerly director of the Nuclear Research Laboratory of Harvard University, is president. The company has a license from Western Electric Co. and is producing transistors on a small scale.

Development work in the transistor field has been going on in the Clevite group for several months. Brush Electronics Co., a Clevite subsidiary, is also licensed by Western Electric. This development program will be consolidated with that of Transistor Products, Inc., it was stated.

## CBS-Hytron Plans New TV Tube Plant

Plans for the construction of an ultra-modern tv picture tube plant and warehouse in Kalamazoo, Mich., were announced by Bruce A. Coffin,

## $\frac{\text { III }}{\frac{11}{11} \text { ng }}$ FOR <br> TELEVISION Grumand lals

Low cost drawn steel Ground Rods, heavily copper plated to insure perfect electrical contact-and pointed for easy driving. In $4{ }^{\prime} 6^{\prime}$ and $8^{\prime}$ lengths, $3 / 8$ to $5 / 8^{\prime \prime}$ diameter. Send for Bulletin and prices, and use Premax in your TV installations.

5301 Highland Ave., Niagara Falls, N. Y.


## BRING US YOUR HEADER PROBLEMS!

## alin

## SIMPLE OR COMPLEX

-We make them all, ranging from 2. and 3-electrode crystal holder bases and standard octal headers, to 14 - and 18 -terminal headers for sealed Transformer and Relay applications - with a wide selection of styles and sizes in our series of basic designs

## SPECIAL DESIGNS

- We also manufacture Sealed Headers and Terminals to meet special requirements, and will be glad to quote upon receiving your specifications.


## COMPLETE ASSEMBLIES

- We have facilities for handling the complete assembly of mans: units - including wiring, evacuating and pressure-filling enclosures.


## NEW CATALOG

-- Just off the press, a new Hermaseal catalog, with descriptions and specifications of some of our standard Sealed Headers and Terminals. Write for your copy today!

##  <br> Measurements Corporation MODEL 31 <br> INTERMODULATION METER

- Completely Self-Contained
- Direct Reading For Rapid,

Accurate Measurements
To insure peak performance from all audio systems; for correct adjustment and maintenance of $A M$ and $F M$ receivers and transmitters; checking linearity of film and dise recordings and reproductions; checking phonograph pickups and recording styli; adjusting bias in tape recordings, etc.

The generator section produces the mixed low and high frequency signal required for intermodulation testing. A direct-reading meter measures the input to the analyzer section and indicates the percentage of intermodulation.

MEASUREMENTS CORPORATION

BOONTON


NEW JERSEY

# Ar opos getang IEFLON with no porosity 

president of Hytron Radio and Electronics Co. The new manufacturing facilities form part of the company's expansion plans to answer the growing demands of the tv industry.

The new Kalamazoo plant is scheduled for occupancy in June 1954, when production will start. It is expected that the full operating rate of production will be reached by the fall of 1954 . The 235,000 sq ft plant has been designed for production of the new large-screen tv picture tubes under the direction of Charles F. Stromeyer, CBSHytron's vice-president in charge of engineering and manufacturing. The manufacturing equipment will incorporate the latest automatic techniques in the manufacture of the large 21 -inch to 30 -inch picture tubes.

## Raytheon Forms Special Products Division

The formation of a Special Products Division of the Raytheon Television and Radio Corp. was announced recently by H. C. Mattes, executive vice-president.

Raul H. Frye, formerly director


Raul H. Frye
of research and engineering for the company, was named general manager of the new division. His duties include complete supervision of all planning, research and production for the division, reporting to W. L.
At its optimum electrical values, Teflon is virtually the perfect dielectric material for UHF use. If, during extrusion or molding, however, a high degree of porosity results, dielectric strength, power factor and dielectric constant are bound to be affected. That's because porous insulation means absorbent insulators.

As the above photographs show, Fluoroflex-'T is non-porous. This is achieved in two ways. (1) By processing on equipment especially designed to compact Teflon powder to the critical density.
(2) By not bleaching out Teflon's natural spotting at the expense of optimum density.
Fluoroflex-T products are also stress relieved. Result: Non-porous rods, tubes, and sheets that not only give greater electrical stability but also dimensional stability and fewer rejects in machining. Write for Bulletin FT-18.
*DuPont trade mark for its tetrafluoroethylene resin.
${ }^{6}$ Resistoflex trade mark for products from fuorocarbon resins.

## RESISTOFLEX corporation

Belleville 9, N. J.

## Advertisers:

## How about the NUCLEAR field?

There are a good many advertisers using ELECTRONICS who should also be advertising in NUCLEONICS.

Particularly in instrumentation and laboratory equipment, there is a cross-over of use in the electronic and in the nuclear field.

But, there is very little crossover in the subscriber lists of the two publications - a matter of a few percentage points.

It is quite possible that you are doing an effective presentation of your products and abilities in this excellent issue, but are missing such presentation before one of the fastest growing fields in the country's history - the field of atomic energy.

The sales representatives of ELECTRONICS are also the sales representatives of NUCLEONICS. They have much evidence pointing to the opportunities in this great NEIW field. Ask them to show you what your potentials can be.

## NUCLEONICS

 ABC ABPA McGraw-Hill Publication 330 West 42nd St. New York 36, N. Y.

MEASURE TIME PRECISION
From 10 Microseconds to 3 Seconds


The time interval between any two components in electrical, mechanical or electromechanical systems can now be measured, simply and accurately, with Madel 110 American Chronoscope and Model 211 Input Adapter.

For complete description on these and other Chronoscopes and Adapters, write for Bulletin 200 A .

## AMERICAN CHRONOSCOPE CORPORATION

316 West first St. Mount Vernor, N. Y.
in MINIATUREI
520-A
Voltmeter


1 Millivolt Full Scale to 300 Volts 10 Cycles to 2 Megacycles
Only $6^{\prime \prime}$ high
\$180
ALSO - MATCHING

## 510-B OSCILLATOR

18 Cycles to 1.2 Megacycles
Distortion Less Than 0.2\%
Constant Output $\pm 0.5 \mathrm{db}$
$\$ 150$ Literature on Request



RACK MOUNTING MODELS
105-125 V, 60c Infut DUTPUT CURRENT MAY bE SET AT ANY VALUE BETWEEN 0.2 AND 50 M.A. D.C. INCLUSIVE.
as load voltage varies between O-150V. MODEL IA-R IS CONSTANT WITHIN $1 \%$, MODEL IB-R WITHIN $0.1 \%$.

ELECTRONICALLY REGULATED

## D.C. CONSTANT CURRENT POWER SUPPLIES

OUTPUT CURRENT IS HELD constant as load varies

## OTHER MODELS AVAILABLE Write Dept. 102 for literature <br> ASSOCIATED SPECIALTIES CO. 1751 MAIN STREET OREFIELD, PENNSYIVANIA

## DOUBLE BARREL ADVERTISING



Aclvartiaing man agreo - to do a complate advertiatog jol you need the double elfect of both Diaplay Advertinng and Direct Mail.
Dinplay Advertising keop your name before the public and builds prestige.
Direct Mail supplementi your Display Advortising. It pin-points your message right to the executive you want to reach - the person who buys or influences the purchases.
Ask for more delail information today. You'll be ansprised at the low overall cost and the tested it fectiveness of those hand-picked selections.

## McGraw-Hill Publishing Co.,Inc.

330 West 42nd Street
New York 36, New York

# the most economical way to FOCUS a TV tube 

## the original Focomag



## CUTS RECEIVER COSTS BY ELIMINATING

 CENTERING AND FOCUSING RHEOSTATS. Also lowers cost of power transformer. Perfectly focuses $27^{\prime \prime}, 21^{\prime \prime}$ and all smaller tubes having magne tic deflection. Highly efficient ring magnet uses only / oz. Alnico P. M.

NO HARMFUL EXTERNAL FIELD. Ring magnet is completely enclosed by the external shunt (an original Heppner design). This prevents the leakage field from having any magnetic effect on other components. Uniform field produced by ring magnet.

FLEXIBLE NYLON adJUSTING SHAFT ELIMINATES breakage.
Picture-positioning lever. You specify mounting arrangemept.


Write today for information on lowering your set costs with this FOCOMAG.

# HEPPNER 

MANUFACTURING COMPANY
Round Lake, illinols ( 50 Miles Nortinwest of Chicago) Phone: 6-2161
SPECIALISTS IN ELECTRO-MAGNETIC DEVICES

Representatives: John J. Kopple
60 E. 42nd St., New York 17, N, Y. James C. Muggleworth 506 Richey Ave., W. Collingswood, N. J.
Ralph Haffey
R. R. 1, U. S. 27, Coldwater Rd.

Ive M Cochrane
Trv. M. Cochrane Co.
408 So. Alvarado St., Los Angeles, Calif,

Dunn, vice-president.
Shortly after his appointment, Frye named Robertson Gannaway, formerly chief technical engineer,


Roberison Gannaway
director of research and engineering for the Special Products Division.

## Sylvania To Erect Lab Building

The radio tube division of Sylvania Electric Products, Inc. today announced plans to construct a 120,000 sq ft facility in Williamsport, Pa., to house a group of divisional engineering laboratories.

The new laboratories, according to M. J. Burns, general manager of the radio tube division, will be devoted, among other things, to development work and pilot plant operation in radio receiving tubes for military uses; new product development work; fundamental chemical research; and application engineering, including a rating laboratory in which tubes will be evaluated for performance under abnormal conditions. Other research and developmental activities in various fields of electronics also will be undertaken at the new laboratories. Actual construction is not expected to begin until May or early June. The labs will be in full operation soon after the first of next year. Approximately 400 persons will be employed. Ralph P. Clausen, chief engineer of
the radio tube division's general engineering department, will have executive direction of the operations of the new laboratories.

## Bentley Named Chief Engineer At DuMont

Alfred Y. Bentley has been named chief engineer of the receiver division of Allen B. DuMont Laboratories, Inc., it was announced yesterday by Irving Rosenberg, director of operations of DuMont's receiver and cathode-ray tube divisions.

Mr. Bentley had been chief engineer of the DuMont cathode-ray tube division since 1947. Prior to that time, he was assistant head of the cathode-ray tube engineering department, the position to which he was assigned when he joined the DuMont organization in December, 1945.

Mr. Bentley replaces Robert J. Cavanagh in his new post. Because of the pressure of DuMont's research and development activities, Mr. Cavanagh will return to his original engineering and research post with DuMont's research division.

## Consolidated Engineering Makes New Moves

Plans for the development of "Instrument Park," a landscaped and architecturally controlled industrial community with a "university campus atmosphere," were revealed by Philip S. Fogg, president of Consolidated Engineering Corp. The firm has filed an application with the Pasadena Planning Commission requesting a zone change to permit light manufacturing use of a 20 acre site north of the company's existing plant.

Mr. Fogg also announced the promotion of Hugh F. Colvin, 35-yearold engineer-executive, to the position of vice-president and treasurer of the company,

Election of Kneeland Nunan as executive vice-president and member of the board of directors of Consolidated Vacuum Corp. of Rochester, New York, newly acquired

## FHETAGKS <br> Something new in Precision Potentiometers . . .

... the standardization of a Non-Linear Precision Potentiometer, the type RVP3-S59 Sine-Cosine potentiometer, one of the many types standard with the Technology Instrument Corporation, performs two operations in a single potentiometer assembly ... two wipers spaced 90 degrees apart yield both sine and cosine outputs.

1. Total resistance: $\mathbf{2 0 , 0 0 0}$ ohms plus or minus 5 per cent between terminals 1 and 3.
2. Accuracy: Plus or minus .5 per cent of the peak to peak amplitude.
3. Maximum voltage: Conservatively rated as 80 volts between terminal 1 and 3.
4. Life: Guaranteed for at least 500,000 complete cycles in either direction at 30 rpm .
5. Potentiometer base: Precision machined aluminum (originated by TIC) finished with corrosion resistant black Alumilite.
6. All fixed connections are soldered.
7. Wipers: Paliney spring wiper with double contact, for positive electrical connection, long wear and light torque.
8. Resistance Element: Karma wire with temperature coefficient of .00002 parts per degree centigrade.
9. Slip Rings: Inlaid coin silver slip rings. Paliney contacts on dual brushes for positive connection and low contact resistance.
10. Full humidity protection with type 76-S fungus resistant varnish.
11. Units may be ganged, using TIC's patented "Constrict-OGrip' clamp rings which permit precise phasing with amazing ease.


TIC standard potentiometers have the same built-in precision and craftsmanship normally found only in custom-built products. Research,engineering and design facilities for special constructions and non-linear or linear functions are an integral part of TIC services. Submit your potentiometer problem, whether the need is for standard or custom design.

Engineering Representatives

Cleveland, Ohio - PRospect 1-6171 Chicago, Ill. - UPtown 8-1141 Rochester, N. Y. Monroe 3143 Canaun, Conn. Canaan 649 Baltimore, Md. - Plaza 7694

Arnprior, Ont., Can. - Arnprior 400
Arnprior, Ont., Can. Menprior 400
New York, N. Y. MUray Hill 8.5858 New York, N. Y. - Murray Hill Cambridge, Mass. - ELillywood, Cal. - HOllyood 9-6305 Hollywood, Cal. - HOllyw
Dallas, Texas - Dixon 9918 Binghamton, N. Y. - Binghamton 3-1511

Technology Instrument Corp.


## ACME ELECTRIC CORPORATION

314 WATER STREET • CUBA, NEW YORK IN CANADA: ACME ELECTRIC CORPORATION LTD
50 NORTH LINE ROAD - TORONTO, CANADA

designers and manufacturers of high frequency and high voltage equipment since 1921



Kneeland Nunan
subsidiary of Consolidated, followed Mr. Colvin's promotion. Mr. Nunan, former vice-president in charge of sales, will replace Mr. Colvin at the Rochester operation.

## Aerovox Plans West

## Coast Expansions

AErovox Corp. recently announced through its president, W. Myron Owen, the construction of a modern, completely-equipped $50,000 \mathrm{sq} \mathrm{ft}$ plant in South Monrovia, California for manufacturing most of the Aerovox line of capacitors. Appointment of George M. Ellis as chief application engineer for all Aerovox divisions in the west was also made known.

The new plant is being made available to west coast manufacturers and distributors as a source of electronic components. Thus, Aerovox becomes the first large eastern capacitor manufacturer to establish west coast manufacturing facilities. Construction of the new plant is expected to get under way very shortly and it is estimated that the facility will be in operation early this summer.
Mr. Ellis was formerly vice-president and chief engineer of Acme Electronics, Inc., a subsidiary of Aerovox Corp. In addition to his new duties, Ellis will continue as vice-president of Acme, according to Hugh P. Moore, president of the division.

Mr. Moore has appointed D. A.

Gehlke as Acme's new chief engineer to succeed Mr. Ellis. Mr. Gehlke formerly was associated with Bendix, Lear and Western Electric.

## Bloser Named V-P Of Transicoil

DWight W. Bloser, formerly chief engineer of the Transicoil Corp, was named vice-president of the company, it was announced by William M. Henderson, president. Mr. Bloser's new position involves supervision of the design, engineering and production of control motors, gear trains, induction generators,


Dwight W. Bloser
servo amplifiers and synchros. Prior to joining the company in 1952, he was senior engineer of Kearfott's Motor and Synchro Lab, and served in an engineering capacity with Sperry Gyroscope, Signal Engineering \& Mfg. Co., American District Telegraph Co., and the Bendix Aviation Corp. He is a 1933 graduate of Pennsylvania State College.

## FCC Appoints Miller

Commissioner Robert T. Bartley announced appointment of Kenneth W. Miller to be his engineering assistant. A member of the FCC's engineering staff since 1940 , Mr. Miller has recently been serving as assistant U.S. supervisor for CONELRAD in the office of the chief engineer.

Mr. Miller was an engineer in the


## Measure PHASE Difference Directly $\mathbf{0}^{\circ}-\mathbf{3 6 0}^{\circ}$. . .



Type 320AB PHASEMETER

- . . . In 4 full scale ranges, $0^{\circ}-36^{\circ}, 0^{\circ}-90^{\circ}, 0^{\circ}-180^{\circ}, 0^{\circ}-360^{\circ}$, without ambiguity
- ... Independent of voltage amplitude from 1 to 170 volts peak
- . . . Independent of voltage wave form
- ... Independent of frequency from 2 cps . to 100 kc . (accuracy: 20cps$20 \mathrm{kc}, 1 \%$ of full scale $+3^{\circ}$; error increases slightly above 20 kc .)
- Large, easily read, mirrored scale panel meter
- Ease of operation - ideal for production testing or laboratory use
- Eliminates tedious and inaccurate oscilloscope techniques
- Terminals for recorder . . . instantaneous response of output voltage to phase changes
- Incremental accuracy better than $1 \%$ of full scale
- Proven performance and quality workmanship

In audio facilities, ultrasonics, servomechanisms, geophysics, vibration, acoustics, aerial navigation, electric power transformation or signalling, . . . in mechanical applications such as printing register, torque measurement, dynamic balancing, textile and packaging machinery and other uses where an accurate measure of the relative position of moving parts is required . . . the type 320 AB Phase Meter has achieved widespread approval as a unique and versatile measuring instrument.

For further information on measuring phase, send for specification bulletin and TIC Laboratory Reports


535 Main Street, Acton, Massachusetts, Tel. ACton 3-7711


## TERMALINE DIRECT READING

 R. F. WATTMETERS(DUAL RANGE) MODEL 611-0.15 and 0.60 Watts MODEL 612-0.20 and 0-80 Watts

Models 611 and 612 are popular instruments in research and design laboratories, vacuum tube plants, transmitter manufacturing plants, and in fixed and mobile communication services.
They are ruggedly built for portable use, and are as simple to use as a D.C. voltmeter. The power absorbing load resistor is non-radiating, thus preventing transmission of unwanted signals which interfere with message traffic in communication services.

Frequency range: 30 to 500 MC ( 30 to 1,000 MC by special calibration)
Impedance: 51.5 OHMS-VSWR less than 1.1
Accuracy: Within 5\% of full scale
Input connector: Female "N" which mates with UG.21 or UG-21B. Adapter UG.I46/U is supplied to mate with VHF plug, PL259.
Special Scale Model " 61 s " are available as low as $1 / 2$ watt full scale, and other models as high as 5 KW full scale.
IMPEDANCE-5 $51 / 2$ Ohms
Catalog Furnished on Request


## DEVELOPMENT and PRODUCTION METALLURGISTS

Fine wire and ribbon in base, rare, and precious metals, and alloys for new and highly engineered applications. In small units and sizes, and to close tolerances.

## SECON METALS CORPORATION

228 East 45th Street, N. Y. 17, N. Y., MU 7-1594


## PLANTS AND PEOPLE

common carrier branch of the International Division in 1946, subsequently serving as a branch chief on tv broadcast engineering matters and with the office of the chief engineer on international broadcasting and soecial problems.

## Stromberg-Carlson Appoints Engineers

Malcolm P. Herrick has been appointed chief engineer and Rudolph G. Miller assistant chief engineer of the Stromberg-Carlson Company's Radio-Television Division, according to C. J. Hunt, general manager of the division. John H. Craft, Jr. has been appointed national service manager of the division.

Mr. Herrick has been with Stromberg-Carlson as a staff engineer, engaged in radio and television design and production engineering, since his graduation in electrical engineering from the University of Maine in 1944.

Mr. Miller has been assistant chief engineer with both Colonial Radio and Detrola Corp. From 1945 until the present he has been chief mechanical engineer in StrombergCarlson's Radio-Television Division, a post he continues to hold.

Mr. Craft joined Stromberg-Carlson in 1946 as a staff engineer. He was transferred to the company's service department in 1949, to hold training clinics for tv service men throughout the U.S.

## Little Plans Second Research Building

Immediately adjacent to its recently constructed Mechanical-Division building, Arthur D. Little, Inc.

will build a $60,000 \mathrm{sq} \mathrm{ft}$ research laboratory, pictured above. Experi-
mental work in chemistry, chemical engineering, physics, new products and production methods will probably be housed in the building by Jan. 1, 1954. Ground will be broken in April for the two-story E-shaped brick and stone structure, to be located near the Concord Turnpike in Cambridge, Mass. A large auditorium will be incorporated in the building and will be used for seminars and meetings.

## Ashman Named President Of Air Associates

Election of J. E. Ashman as president and director of Air Associates, Inc. was announced by the firm's board of directors. His duties include administration of the company's program of product diversification and broadening of markets.

Previously Mr. Ashman was executive vice-president of Rockwell Manufacturing Co., maker of Delta power tools, Nordstrom valves and other products. He also was formerly associated with U. S. Steel and Burroughs Adding Machine.

## IRC Founder Is Honored

Dr. Harold Pender, educator, inventor and founder of the International Resistance Co., was admitted as Eminent Member into Eta Kappa Nu Association in recognition of his technical attainments and contributions to society through outstanding leadership in the profession of electrical engineering.

## Huggins and Baudino Advance At Westinghouse

E. V. Huggins has been elected vice-president of corporate affairs for Westinghouse Electric Corp. by the board of directors. This is a newly created position with the company.

Mr. Huggins was also elected president of Westinghouse Radio Stations, Inc. At the same meeting, J. E. Baudino was elected executive vice-president in charge of all operations. Mr. Baudino was formerly general manager of all operations.

Since November of 1951 Mr . Hug-


1902 West Minnehaha Avenue, Dept. E-10, Ŝt. Paul W4, Minnesota
DIGITAL COMPUTERS . . . DATA-HANDIING SYSTEMS . . . MAGNETIC STORAGE SYSTEMS .
INSTRUMENTS .. ANALOG MAGNETIC RECORDING SYSTEMS . . . COMPUTING SERVICE

## LOW COST

 for accurate measurements on many $A N S M E$ channels, of frequency and narrow-band FM deviation

Primarily useful in maintenance of mobile-radio equipment, to FCC

specifications, these LAMPKIN instruments, singly or in combination, offer many possibilities in development, production and communication testing.

TYPE 105-B MICROMETER FREQUENCY METER.
A heterodyne-type, AC-operated instrument of timeproved design, plus many new features.
type 205 FM MODULATION METER
A mixer-limiter-discriminator type instrument with metering circuits inherently stable. AGE -

- COVERAGE -
0.1 to 175 MC ., on local CW , AM, or FM transmitters. Cantinuous 25 to 200 MC ., on nearby transmitters. - CALIBRATION -

General-purpose table, plus percentage-deviatian Indicates up to 25 KC . peak deviation, either side of


- ACCURACY -
$0.005 \%$ and better; with spot check for WWV. $10 \%$ of full scale, can be field-checked;
- FEATURES -

Checks ony number of frequencies. Simulates Rugged and troublefree. Warm-up time two VHF transmitters for precise receiver alignment. minutes, tune-up time 60 seconds. A fwo-finger Weighs 12.5 lbs., $12^{\prime \prime}$ wide, price $\$ 220.00$. load, weighs 13 lbs., $12^{\prime \prime}$ wide, price $\$ 240.00$.

LAMPKIN LABORATORIES, INC. INSTRUMENTS DIVISION BRADENTON, FLORIDA
Gentlemen: Please send more data on the 105 -B and 205.
Name
Address
gins has been assistant secretary of the United States Air Force with general supervision over the Air Force's world-wide installations, its overseas and off-shore procurement program, and relationships with civil aviation. Mr. Huggins had resigned as executive vice-president of the Westinghouse Electric International Company to accept the Air Force assignment.
Mr. Baudino joined Westinghouse in 1927 after graduation from the University of Illinois. He has been associated with Westinghouse broadcast activities since that time, serving in engineering, business and management capacities in Pittsburgh, Boston, Philadelphia and Washington.

## New Clare Relay Plant Completed

The New relay manufacturing plant of C. P. Clare \& Co., just completed on Chicago's northwest side,

covers $50,000 \mathrm{sq} \mathrm{ft}$. As shown above, it is of one-story windowless design, with the exception of a large glass area for the reception room in the front of the building. Production facilities are being moved to the new plant as rapidly as possible.

## Williford Elected President Of Link Aviation

E. Allan Williford has been elected president of Link Aviation, Inc. by the firm's board of directors. He succeeds Edwin A. Link, founder of the company, who continues as chairman of the board and director of research.

Mr. Williford has been vice-president and general manager of the Link firm since he joined the company in 1950. A graduate of the University of Illinois, Williford was previously associated with Union

Carbide and Carbon Co. for 24 years, during which he rose from salesman to general sales manager of the carbon products division of National Carbon Co.

In 1945 he became vice-president of General Analine and Film Corp. and general manager of its Ansco division in Binghamton, N. Y., resigning this position in 1949. Soon after he became associated with Link.

## Kleinschmidt Honored

Edward E. Kleinschmidt, founder and president of Kleinschmidt Laboratories and inventor of teletype and the new portable teletypewriter, was awarded a special cita-


Edward E. Kleinschmidt
tion by the Chicago chapter of the Armed Forces Communications Association, for "his distinguished contributions to the progress of civilian and military communications particularly in the field of printed, electrically transmitted messages."

## Collins To Expand Dallas Plant

Collins Radio Co. is adding 35,500 sq ft to its $50,000 \mathrm{sq} \mathrm{ft}$ building in Dallas, Texas, it was announced by James G. Flynn, Jr., general manager of the Texas division.

The firm began its operations in


IF YOU USE MICROWAVES . .
This self-contained, compact, versatile WAVEMETER TEST SET*
can help you
Now, with one easy-to-carry instrument, you can determine the frequency of both pulsed and c-w microwave systems . . . you can make accurate measurements by both transmission and reaction methods. Because the new Wavemeter Test Set needs no external power source, it is ideal for field workequally good for laboratory work! Its applicable range is from 2400 to 3400 megacycles. A low cost instrument-now in production, and used by U. S. Signal Corps as \#TS-117/GP.
Write us today for bulletin giving complete technical data on the Wavemeter Test Set!

```
*Licensed under Sperry Patents.
```


## ELECTRONICS DIVISION

American Encaustic Tiling Co., Inc
904 Kenilworth Ave., Lansdale, Pa.
Gentlemen:
Please send your Technical Data Bulletin on the Wavemeter Test Set. No obligation, of course

Name . . . . . . . . . . . . . . . . . . . . . . . Title. . . . . . . . . . . . . . . . . . .
Address.
City . . . . . . . . . . . . . . . . . . . . . . . . . . . Zone . . . . . . . . State

## ELECTRONICS DIVISION AMERICAN ENCAUSTIC TILING COMPANY 904 Kenilworth Ave. Lansdale, Pa.



The NEW Hycor Type "p" toroid coils are hermetically molded in a special tough plastic compound. They will withstand:
$\rightarrow$ Ambient temperatures from -40 C to 135 C .

- $95 \%$ humidity . . . boiling salt water.
- Amazing degree of mechanical shock.

Space saving: Dimensions of Type EM-3P coils shown in illustration are 1-1/16"O.D. by $1 / 2^{\prime \prime}$ thick. (Inductance up to 7 henries.) Clearance hole for a $6-32$ mounting screw is provided.
representatives: Jack Beebe
5707 W. Lake Street, Chicago, Illinois
George E. Harris \& Co.,
Box 3005 , Municipal Airport, Wichita, Kansas Marvin E. Nulsen,
5376 E. Washington St., Indianapolis 19, Indiana Burlingame Associates,
103 Lafayette Street, New York City
Send for Bulletin TP

## HYCOR <br> Compony. Une.

## SHOCK PROOF

 MOISTURE PROOF TEMPERATURE PROOFDallas about $1 \frac{1}{2}$ years ago with a $25,000 \mathrm{sq} \mathrm{ft}$ building, and a few months later moved into an additional plant. The new addition will bring total square footage in the area to $110,500 \mathrm{sq} \mathrm{ft}$.
The new wing includes a 4,000 sq ft cafeteria for employees and $4,000 \mathrm{sq} \mathrm{ft}$ of additional office space, with the remaining area being used for manufacturing. The company expects to have more than $1,000 \mathrm{em}-$ ployees on the payroll by early spring.

## General Porter Joins Ultrasonic Board

Election of General William N. Porter as a director of Ultrasonic Corp. was announced by Harold W. Danser, Jr., president. General Porter is president of Chemical Construction Corp., a wholly owned


General William N. Porte:
subsidiary of American Cyanamid Company which is engaged in engineering and construction of chemical and metallurgical processing plants throughout the world. A graduate of the U.S. Naval Academy in 1909, General Porter was chief of the Chemical Warfare Service from 1941 through 1945.

## Bendix Names Walz

Appointment of Richard F. Walz, former sales engineer for Audio Products Corp., to Bendix Computer's administrative staff was announced by Palmer Nicholls, vicepresident. He will serve as sales and engineering aide to Maurice W. Horrell, assistant general manager

PLANTS AND PEOPLE
(continued) of the division.

Walz directed the initial installation of instrument landing equipment at Los Angeles International Airport in 1942 as project engineer for International Telephone Development Corp. In 1946 he was named chief radio engineer for AirAssociates, Inc., and in 1948 established the Walkirt Co. as co-owner. At Walkirt he developed the circuitry and packaging techniques for which the company is known. He sold his interest in 1950 and joined the staff of Audio Products.

## GE Modernizes Plant

A $\$ 400,000$ modernization program has been launched by the General Electric Co. at its Bleeker Street plant in New York City, according to an announcement by plant manager Frank Greene, Jr.

The program will involve the installation of machinery to be used in the manufacture of polystyrene cabinets for clock radios and table model radios.

About $8,000 \mathrm{sq} \mathrm{ft}$ of floor space will be added in the form of a mezzanine constructed in a two-story bay of the plant. This mezzanine will be used for storage of raw materials. Under it will be the moulding equipmen $\ddagger$. Machines have been ordered and production of cabinets is scheduled in about 9 months.

## Krygier Advances At CBS

The appointment of George Krygier to the position of administrative engineer was announced by Leopold M. Kay, vice-president of engineering for CBS-Columbia.

Mr. Krygier joined CBS-Columbia in 1950, serving as liaison engineer with Underwriter's Laboratories. In his new position, Mr. Krygier will handle engineering administrative functions and coordinate the activities between the engineering department and other divisions of the company.

## Tetrad And Triad Merge

ALl of the operations of Tetrad Co., Inc., specialists in the production of miniaturized electronic components, have been consolidated with the operations of Triad Transformer Manufacturing Co., according to an

# DIESEL 

 Standby GENERATOR SETS

WJR-Detroit, Michigan, uses 200 kw . GM Diesel generator set as stand-by power for 50,000-watt transmitter. Compactness of unit permitted installation in garage adjoining transmitter building-eliminating cost of a specislly designed building.


WKTV_UTICA, N. Y., uses a 100 kw . General Motors Diesel generator set for stand-by power. Set can be started remotely from the control room. Low vibration characteristic of engine permitted installation in room adiacent to transmitter and within 30 feet of studio.

If you are planning stand-by power, be sure to check the advantages of General Motors Diesel generator sets, listed briefly below. GM Diesel generators are meeting the exacting requirements of military service in all parts of the world. They supply emergency power for more than 1100 telephone and telegraph exchanges-for microwave relay stations, for hospitals, government buildings, banks, airports. There is a GM Diesel distributor near you who will analyze your power requirements and make his recommendations without obligation. Look in the yellow pages of your phone book for his listing, or write direct to us.

- Wide range of models- $121 / 2$ to 200 kw ., 220 or 440 volts, single or three. phase current.
- Excellent frequency and voltage regulation for the most exacting requirements.
- Powered by General Motors Diesel en-gines-dependable, smooth 2 -cycle operation-low cost maintenance easy to service.
- Built by one manufacturer-one warranty, one responsibility for both engine and power generator.
- Instant push-button power starting on sofe Diesel fuel-or fully outomatic starting. Immediate power, no "warmup" period.
- Dependable starting-no sparkignition system to fail because of dampness or corrosion-always ready to start.
- Easy to install-compact-lightweight -requires no special building, no special base. Complete instrumentation provided.
- Distributors and Dealers throughout the country.


## DETROIT DIESEL ENGINE DIVISION

## GENERAL MOTORS - DETROIT 28, MICHIGAN

SINGLE ENGINES ... 16 to 275 H.P. MULTIPLE UNITS ... UP to $840 \mathrm{H} . \mathrm{P}$.
$\frac{\text { It pays to Standardize on }}{\text { Write for Generator Set Catalog } 6 \text { SA } 20 .}$



## SQUARE PULSE GENERATORS

 MILLIMICROSECOND MICROSECOND RANGEMODEL 100
SQUARE PULSE GENERATOR
Price: \$395. FOB New York for rack mounting


For nuclear pulse work, radar; TV, wide band amplifiers and in the design, calibration, and servicing of jast electronic sustems:

NOW-A NEW square pulse generator with a rise time of one millimicrosecond ( $10^{-8}$ seconds) and a pulse width which can be varied from one millimicrosecond to several microseconds provides the ideal test instrument for fast electronic circuits. Both positive and negative pulses of a 100 volts maximum amplitude into low impedance cable, such as 50 ohms, are generated, the pulse amplitude can be varied from 100 volts to .006 volts in 1 decibel steps by means of selector switches on the front panel. One, two, or more pulse outputs, each, of which, can be individually attenuated and delayed are available in various models.

FOR FURTHER DETAILS, write for Bul-
letin " $P-4 A$ ", or contact our engineering division.

## Electrical and Physical Instrument Corporation

Sales and Business Office 25 West 43rd Street New York 36, New York Telephone: Longacre 4-8510

PLANTS AND PEOPLE
announcement by the latter company. No changes in personnel aro contemplated.

## Astron Expands Plant

Astron Corporation recently expanded their plant capacity and manufacturing facilities in East Newark, N. J. The additional space will enable Astron to more than double productive capacity on its :ine of quality dry electrolytic capacitors and \&reatly increase production on many other types of capacitors and filters for both military and commercial use.

## Honeywell Named Chief Engineer of Servo-Tek

C. Clinton Honeywell of Bergenfield, N. J. has been named chief engineer of Servo-Tek Products Company, according to an announcement by Floyd V. Wilkins, president of the firm.

## Dalmo Victor Plans Plant Addition

CONSTRUCTION plans for a plant addition to house a military equip. ment test laboratory were announced by Dalmo Victor Company, San Carlos electronics firm.

Preliminary approval has been given by the San Carlos planning commission for the 75 by 100 ft onestory, tilt-up concrete structure to be erected alongside Dalmo Victor's main plant.

Tomlinson I. Moseley, president of the company, said the laboratory facilities are being provided by the U.S. Navy and will be used to test various equipment under operational conditions.

## WESCON Appoints Four

Four project-committee chairmen for the 1953 WESCON (Western Electronic Show \& Convention) have been announced by the board of directors.

Coming under the supervision of Walter Noller of Remler Co., the WESCON vice-president representing IRE, two of the appointments are: Bernard M. Oliver, papers committee; Wilson Pritchett, arrange-
ments committee
The other two appointmen come under the supervision of Richard Huggins, Huggins Laboratories, the WESCON vice-president rerresenting WCEMA. These are: Les Logan, hotels committee; David H. Ross. visitors service committee.

## Radio Club Re-elects <br> Officers

Officers of the Radio Club of America have been re-elected and will serve the club during 1953 . They are: president, John H. Bose; vice-president, Ralph R. Batcher; treasurer, Joseph Stantley; corresponding secretary, Frayk H. Shepard, Jr.; recording secretary, Frank A. Gunther. Electec to the board of directors were: Ernest V. Amy, Edwin H. Armstrong, George E. Burghard, Alan Hzzeltine, Harry W. Houck, Jerry Minter and Harry Sadenwater.

## Airborne Advances <br> Lebenbaum

Airborne Instruments -aboraTORY, Inc., has announced the appointment of Matthew T. Lebenbaum as supervisor of a newly formed applied electronics section


Matthew T. Lebenbaum
in its research and engineering division. Mr. Lebenbaum was formerly an assistant supervising engineer in the radar section. Peter D. Strum has been appointed assistant supervising engineer of the new section.

From June, 1942 until he joined Airborne in 1945, Mr. Lebenbaum


65BAI - GENERAL PURPOSE CON TROLIABLE INDUCTORS PROVIDE REMOTE, IMMEDIATE CONTROL IN ALL THESE APPIICATIONS.


TUNED AMPLIFIERS


OSCILLATORS


AUTOMATIC GAIN CONTRCL

## NEEDS

NO MOVING PARTS
THIS FEATURE COMBINED WITH RUGGED, SHOCK RESISTANT, COMPACT AND LIGHT WEIGHT CONSTRUCTION PROVIDES THE IDEAL UNIT FOR ADVANCED CIRCUITRY. WHEN IN ACCORDANCE WITH SPECIFICATIONS, INCREDUCTOR UNITS WILL LAST INDEFINITELY.

SOME OF THE OUTSTANDING AND VALUABLE FEATURES OF THE INCREDUCTOR UNITS ARE:

## WIDE RANGE <br> FAST RESPONSE

## REMOTE CONTROL

 HIGH SENSITIVITY EXTREME FLEXIBILITYWrite on your company letterhead for engl. neering data and technical bulletins covering standard tyfes. We will be glad to give you our recommendations regarding your specific PROBLEMS.

## C.G.S. <br> labobatonies INGOIBPORATEII

 any shape . . . length . .ID or OD . to meet
your specific requirements
SEND FOR ARBOR LIST any shape . . . length . .
ID or OD . to meet
your specific requirements
SEND FOR ARBOR LIST any shape . . . length . .
ID or OD . to meet
your specific requirements
SEND FOR ARBOR LIST any shape . . . length. ..
ID or OD . to meet
your specific requirements
SEND FOR ARBOR LIST

Free to you upon request . . . lists over 1500 sizes . . all promptly available. 1500 sizes ... all promptly available.
A free sample is also yours for the asking . . . just send your specifications.

Precision Paper Tubes are spiralwound of finest dielectric kraft, fish paper, cellulose ocetate, or combinations.

Write us today!

# PAPER TUBES 

## PRECISION PAPER TUBE CO.

2041 W. Charleston St.
Plant No. 2: 79 Chapel St., Hartford, Conn. Also Mfrs. of Precision Bobbins

## If THE WIRING FAILS

## FOR DEPENDABLE PRODUCT WIRING USE

 Пiuectrel Wirue SistemsYear after year - for over ten years - UNILECTRIC has produced millions of wiring systems, for more than 150 leading manufacturers of electric and electronic products. From controls to complex armed forces equipment, these wiring systems have consistently met the most exacting requirements and provided substantial savings to each customer.
To assure utmost dependability plus cost saving engineering assistance, low cost production and "on-schedule delivery" investigate UNILECTRIC today.

##  <br> Manufactured by <br> UNITED MANUFACTURING \& SERVICE COMPANY

 $40 S$ SOUTH 6ih STREET • MILWAUKEE 4, WISCONSINwa:s a research associate with the Radio Research Laboratory at Harvard University.

## LaPointe Plascomold Changes Its Name

The company name of the LaPointe Plascomold Corp has been changed to La Pointe Electronics, Inc., it was announced by company president Jerome E. Respess, after authorization by the stockholders of the company at the annual meeting. The name change was desirable, according to Mr. Respess, because the major products of the company are in the electronics field.

Two top-level promotions were also recently made at LaPointe. William A. Damerel was appointed vice-president of LaPointe Electronics and Milby M. Hancock, formerly general manager, was elevated to the position of assistant to the president.

## Tuerck Appointed Research Head of Patterson, Moos

William Tuerck, Jr. has been appointed director of electronic research of Patterson, Moos \& Company, Inc., of New York, it was announced by E. M. Patterson, president of the research and development firm. In addition to his new position in charge of one of the six research laboratories of the company, Mr. Tuerck will continue as chief engineer of Magnex Corp., the production affiliate of Patterson, Moos.

## Douglas Forms <br> Microwave Co.

R. Harry Douglas announced the formation of the Douglas Microwave Co. Inc. of New York City, which he heads as president and chief engineer. Mr. Douglas has been in the microwave field since 1943 and was formerly president and chief engineer of the Kings Microwave Co., chief electronics engineer of Bernard Rice's Sons, and an engineer-officer of the Signal Corps Engineering Labs., Ft. Monmouth, N. J. Microwave and radar
components and test equipment units are currently being manufactured to customer specifications as well as to company designs.

## Gertsch Appoints Rorden

Robert J. Rorden has been appointed chief engineer for Gertsch Products, Inc., Los Angeles, according to Len Cutler, vice-president and chief engineer. He had previously been with the Point Mugu government projects several years and more recently with Dalmo Victor Co.

## Industrial Tubes Expands

Industrial Tubes, Inc. now occupies a new one-story modern factory building constructed especially for the production of industrial electronic tubes. The corporation, which was formed a year ago, now regularly manufactures industrial rectifier and thyratron tubes. According to John H. Hutchings, president, production has risen steadily during the past seven months and promises to double again by this summer.

## OTHER NEWS

## Raytheon Sizes Up <br> Its Defense Orders

Results of a recent survey by Raytheon Manufacturing Company indicate that "small business" is doing all right for itself in government defense orders.
E. F. Leathem, assistant to the president of Raytheon, states that small firms are getting 52 percent of all Raytheon orders, and 81 percent of those which these concerns can handle. Raytheon ranks 42 nd among the 100 leading government prime contractors and placed orders totaling $\$ 57$ million during the first three-quarters of 1952.

In a report submitted to the Air Force Small Business Subcontracting Program Committee, Mr . Leathem stated that "Raytheon's normal purchasing practices, which generally are followed by most large concerns, require that we place as many orders as possible with small

CUSTOM DESIGNED PROTECTION for SUB-MINIATURE TUBES

## ${ }_{\text {тне }}$ NEW STAVER SUB-MINI-SHIELD

Here is a combination Shield. Clip and Mount to meet your T3 Sub-Miniature Tube holding and shielding requirements.
Wrap-around shield (A) assures close tube to shield contact for maximum heat dissination. Firm clamping action of phosphor bronze shield mount (B) secures tubes under the most severe conditions of vibration and shock. Easy-to-get-at rivet holes in base of mount facilitate easy riveting of mount to chassis.
 available for tube yypes T3-1. T3-2, T3-3, and T3-4: Diameter $.366^{\prime \prime}$ to $.400^{\prime \prime}$. Manufacturers of the famous: MINI-SHIELDS \& MINI-SPRINGS Bay Shore, Long Island, N. Y. Bay Shore 7-3620
Our Engineering Department welcomes your special Subminiature Shielding problems!

## BRRIBAOT Electranic WIRE \& CABLE

For ALL Your Wiring Needs! GOVT. SPEC. HOOKUP WIRE

- JAN-C-76 SRIR-SRHV PLASTIC
Solid Colors or Spiral Markings
- WL-EXTRUDED NYLON JACKET
Solid Colors or Spiral Markiogs
- AIRCRAFT WIRE-NYLON JACKET
MIL-W-508 MIL-W-5086
AN-J-C-48a) (Supersedes

COMPLETE W


- $105^{\circ}$ C. U.L. APPROVED Thermoplastic Hookup Wire
- JAN-G-76 WL-GLASS BRAID Solid or Tracer Colors
- MULTIGONDUCTOR, SHIELDED CABLES To Meet Govt. Spec. $\$ 71-4945$
AREHOUSE STOCKS


Quality Products for the Electronics Industries since 1923


WRITE FOR CATALOG 53-E

# "Complete Radar Test Facility" 

Multi-Purpose X Band Test Equipment

Spectrum Analyzer
$\{$ Displays supplied spectra from 8.5 to 10. KMC on a $3^{\prime \prime}$ CRT

Signal Generator
Delivers CW, square wave, FM , or pulse (1, 5 or
Power Monitor $10 \mu \mathrm{~s}$ ) modulated RF, 8.5 to 10 KMC up to 25 MW
Measures average power of CW or pulsed RF , external or internal, from $8.5-10.5 \mathrm{KMC}$
Frequency Meter $\left\{\begin{array}{l}\text { Measures applied } \mathrm{RF} \text { from } 8.5-10.5 \mathrm{KMC} \\ \text { to } 1 \% \text { accuracy }\end{array}\right.$
All major units plug in, $17^{\prime \prime} \times 101 / 2^{\prime \prime} \times 13^{\prime \prime} .45 \mathrm{lbs}$.

## 팓TRONIC DIVISION



Century Metalcraft Corporation box 2098-14806 oxnard street van NUYS, CALIFORNIA

business, not only because this procedure is in line with government requirements but also because we have found that it is good business to do so. Improved liaison, better quality and quantity control, closer personal attention to our requirements and competitive prices are among the advantages resulting."

Raytheon does business with almost 4,000 vendors, of which over 3,000 employ less than 500 people, Mr. Leathem stated. Of those orders given to big business, 76 percent of the purchases were for items which small business cannot manufacture. Small firms are not equipped to supply such items as glass bulbs for vacuum tubes, specially treated metal in the form of oxygen-free copper, vacuum-cast molybdenum, steel alloys, brass, tungsten and aluminum. These materials and others can be purchased only from big business.

## CELEBRATE EDISON'S BIRTHDAY



The 106th birthday of Thomas Alva Edison was celebrated at the 36 th annual luncheon of the Edison Pioneers. Pictured at the luncheon are Charles Edison, left, honorary president, and GE president Charles E. Wilson, new president of the Pioneers. The luncheon heard principal speaker James A. Farley discuss the topic "Thomas Edison, the man, the inventor and the philosopher"

## Penn State Schedules Transistor Short Course

A TRANSISTOR short course, designed especially for practicing engineers in the industrial field and for engineering faculty members of
colleges and universities, will bo conducted by the department ot electrical engineering and general extension services of Pennsylvania State College on June 8-19 at State College, Pa.

The course will be run on a lecture-discussion-laboratory basis. Lectures will be provided by such companies as Bell Labs, GE, IBM, Philco, RCA, Sylvania and by Wright Air Development Center and the university.

## RCA To Develop New Airborne Radar

Development of a new type of airborne weather-detection radar unit will be undertaken by RCA Victor in cooperation with United Air Lines, Inc.

This is the first program RCA has undertaken with the goal of providing commercial air lines with a radar system designed exclusively for weather-mapping use.

This radar unit will operate at new frequencies to "map" weather obstacles on a wide front. It is expected to provide pictures that will give a pilot information on the depth as well as the breath and height of storm fronts.

RCA expects to deliver experimental equipment early next summer so that tests can be conducted during the period of greatest storm activity.

## Michigan Offers Courses In Automatic Control

The University of Michigan College of Engineering has announced two intensive courses in automatic control. The first is scheduled for June 15 to 20 and the second for June 22 to 25, 1953. The courses are intended for engineers who want a basic understanding of the field but who cannot spare more than a few days for the purpose.

The purpose of the course is to make it easier to learn by a coherent presentation the fundamentals of modern automatic control and by providing a comprehensive set of notes to serve as a framework for further study.

Extensive use will be made of computing, instrumentation and

> if you're looking for SOMETHNG SPECIAL in STEATITE call on......STan
 precision-made to your needs... BENDIX-FRIEZ

## thermistors

Maybe your need for these temperature responsive resistors can be satisfied by a type we carry in stock. Maybe you require a specially-developed type. In either case you can depend on BendixFriez to provide precision-made thermistors to serve you with maximum efficieney. High standards of quality control in manufacture make Bendix-Friez Thermistors pre-eminem in their field . . . assure yon of unmost satisfaction.

STANDARD TYPES FOR IMMEDIATE DELIVERY

| Size (inches) | @ $+30^{\circ} \mathrm{C}$. | $@ 0^{\circ} \mathrm{C}$ | @ $-30^{\circ} \mathrm{C}$. |
| :---: | :---: | :---: | :---: |
| $.140 \times .75$ | 45.0 ohms | 86 ohms | 194 ohms |
| $.040 \times 1.5$ | $12,250 \mathrm{ohms}$ | $26,200 \mathrm{ohms}$ | $65,340 \mathrm{ohms}$ |
| $.018 \times 1.5$ | $35,000 \mathrm{ohms}$ | $82,290 \mathrm{ohms}$ | $229,600 \mathrm{ohms}$ |

## Write for details.

## FRIEZ INSTRUMENT DIVISION of

## 1454 Taylor Avenue, BALTIMORE 4, MARYLAND

Export Sales: Bendix Internalional Division
72 Fifth Avenue, New York 11, N. Y.



## A GRIES SPECIALTY

Endless new design possibilities with GRC'S Nylon small parts. Greater job adaptability, precision, economy. GRC's unique facilities produce tiniest Nylon parts in one high-speed operation; delivered automotically trimmed, ready for use. Single cavity molds provide more precise tolerances.
LOW MOLD COSTS!
GET ALL THESE NYLON ADVANTAGES:

- unusual toughness - good bearing qualities
- wide temperature range abrasion resistance
- high strength light weight moldable in complex shapes and thin sections.

Tiny parts also available in other thermoplastics, specializing in AUTOMATIC INSERT MOLDING.

Write today for Bulletin and Demonstration Samples
GRIES REPRODUCER CORP.
100 WILLOW AVE., NEW YORK 54
Phone: MOtt Haven 5-7400

## Tox the Fixst Time Anyuhere

 POWER SUPPILESREGUULATION
STABBILITY MEASURED IN - D NA*

## - PARTS PER MILLION

- Regulation within 20 PPM* for line voltages of 105 to 130 V .
- Load regulation befter than 40 PPM* from xero to 500 ma .
Stability within 100 PPM* per day under average conditions.
- MORE STABLE THAN BATTERIES.
- Short warmup period of 20 minutes.

MODEL 301A. - Voltage: 7.5 to 750 volts. Current: 0 to 500 ma. Ripple: less than 10 millivolts. Auxiliary voltages of -350 and -700 vdc . at $10 \mathrm{ma} .-1 / 2 \%$ regulation, less than 4 millivolts ripple: and 6.3 volts centertapped at 10 amperes.
POODEL 300 N . - Performance same as 301A but voltage range 750 to 3000 vdc . at 0 to 30 ma . No auxiliary outputs.
OODEL 300E. - Performance same as 301A but voltage range -1000 to -1500 vdc . at 0 to 100 ma . Auxiliary output of 6.3 vac. at 1.5 amp . SPECIAL MODELS. - Special models are avaiable with ouppur voltages from megatively rounded and at currents from milliamperes to amperes.


ALSO
SERIES 400 PREGISION POWER SUPPLIES
for nuclear work

- High stability - cfose regulation.
- Electronically regulated.
- High voliage - low current.

MODEL 400B. - Output: 1000 to 5000 vdc . Current: 0 to 1 ma. Regulation against line voltage 105 to 130 v is within $.01 \%$. Regulation against load is $.01 \%$. Short term stability is $.01 \%$ - long term stability is $.1 \%$. Ripple less than $01 \%$.
MODEL 400 C . - Same as 400 B except output: 500 to 1500 vdc .

These models available with positive side grounded.
servo laboratories on the campus. The role of analog computing methods will be emphasized.

## Electronic Firepower

ONE of the largest World War II manufacturers of antiaircraft guns is again tooled up to mass-produce the more powerful electronicallycontrolled gun mounts needed by the U. S. Navy. First three-inch, twinfifty gun mount, weighing 17 tons, to be produced by the Firestone Tire

\& Rubber Company is pictured above as it is inspected by Harvey $S$. Firestone, Jr., (left) chairman of the company, J. E. Trainer (center), and Raymond C. Firestone (right), vice-presidents.

Equipped with automatic loading devices and intricate radar firecontrol systems, the guns will hurl three-inch shells at low or highflying aircraft. The value of the initial Navy contract with Firestone for these new gun mounts has been announced as $\$ 62$ million.

## Components Symposium Set

SIX general sessions have been scheduled for the 1953 Electronic Components Symposium to be held April 29 to May 1 at the Shakespear Club in Pasadena.
R. Simon Ramo, vice-president in charge of operations at Hughes Aircraft, will be chairman of the opening session. The subject to be covered will be "Critical Problems Being Faced by the Electronics Industry in Meeting Industrial and Military Demands".

The afternoon session of the opening day will be led by Dr. A. W. Rogers, chief of the components branch, Signal Corps Electronic

Laboratory. Six papers will be presented on subjects relating to the session topic "Environmental Packaging Problems".
"Electronic Tubes and Tube Reliability" will be the topic of the morning session of April 30.

Mr. M. Barry Carlton of the Research and Development Board will lead the afternoon session on "Reliability Problems".

Dr. Louis Kahn, director of research of the Aerovox Corp., will be chairman of the morning session May 1 which will cover "Resistors, Capacitors and Dielectrics".

The closing session will be led by Reuben Lee of Westinghouse Electric Corp. The subject will be "New Devices and Materials".

Dr. A. M. Zarem of the Stanford Research Institute is general chairman of the symposium.

## Conference Examines The Engincer Shortage

The training and use of skilled assistants is one way to beat the engineer shortage, according to engineering executives at the Fifth College-Industry Conference at Northwestern University.

Titus G. LeClair, manager of engineering for Commonwealth Edison and Public Service Company of Illinois, said that requiring an engineer to handle all the details of his job is "our greatest source of wasted engineering talent."
"The obvious answer to this problem is to relieve the engineer of his paper work and other non-technical activities by giving him the help of a technical assistant, draftsman, clerk or perhaps all three," LeClair said.

He told the engineers and educators that "the technical assistant might be a technical institute graduate or have one or two years of college. With this type of skilled assistant, the engineer is able to do the engineering without going on to do the "red tape."
"Not only can the engineers work more effectively," LeClair pointed out, "but they are better satisfied when they feel their technical skills are being usefully employed and that the opportunities for advancement are better."

Try Remler for Service-Tested "Hard-fo-Get" Components


## sllastic rubber SHOCK MOUNTS

(1) Ideal for sub-panel mounting. Isolates tubes from slock and vibration. Mount retains compliance from minus $70^{\circ}$ to plus $480^{\circ} \mathrm{F}$. Invaluable for mil tary and airborne equipment.

## Comstom <br> Metial-plastic components

 designed and manufactured to order. Write for quotations specifying electrical and mechanical characteristics. Describe application. No obligation.

## MINIATURE TUBE CLAMP

(2) Corrosion resistant. Holds miniatures in sockets under severe conditions of shock and vibration without restricting air circulation. Easy to insert and withdraw tubes. Three sizes.

Remler Company Lid.
2101 Bryant 5t. San Froncisco Io, Calif.

## R. F. WATTMETER ME-82/U Nodel MM-625 Series 50 to more than 1000 MCS.



This series of instruments was designed to measure RF power up to 400 watts, and serve as an excellent dummy antenna load over the frequency range 50 to more than
1000 MCS in 52 onm

00 MCS in 52 ohm coaxial line circuits.
Some of the outstanding features are:

1. Directional coupler pick-up probe
which eliminates high frequency reso-
Which eliminates high frequency reso-
deviations in the load impedance.
2. Rugged construction for field and laboratory use.
3. Hermetically sealed and ruggedized indicating instrument in accordance with specification MIL-M-10304.
4. Two spare crystal rectifiers supplied with each instrument.
5. Model MM-625 has recently been as. signed the Armed Forces nomenclature ME-82/U.

## SPECIFICATIONS

| Impedance Frequency Range | 52 Ohms <br> 50 to over 1000 MCS |
| :---: | :---: |
| Maxamum VSWR RF Fower Scale | 1.2 |
| Midel MM-625 | 120 watts |
| Model MM-626 | 40 watts |
| Model MM-627 | 400 watts |
| Accaracy RF Connector | $\pm 5 \%$ of full scale Type C (Adaoters |
|  | available for other types) |
| Size | $6 \times 71 / 8 \times 13.9 / 16$ |
| Weight | $91 / 2 \mathrm{lbs}$. |




## DC-AC CONVERTER

These latest of all Carter DC to AC Converters are specially engineered for professional and commercial applications requiring a high capacity source of 60 cycle AC from a DC power supply. Operates from storage batteries, or from DC line voltage. Three "Custom" models, delivering 300, 400 , or 500 watts 115 or 220 V. AC. Wide range of input voltage, 12, 24, 32, 64, 110 or 230 V. DC. Unequalled capacity for operating professional recording, sound movie equipment and large screen TV receivers. Available with or without manual frequency control feature.


MAIL COUPON FOR CATALOG
Carter Rotary Power Supplies are made in a wide variety of types and capacities for communications, laboratory and industrial applications. Used in aircraft, marine, and mobile radio, geophysical instruments, ignition, timing, etc. MAIL COUPON NOW for complete Dynamotor and Converter Catalogs, with specifications and performance charts on the complete line.


Wont more information? Use post card on last page.

## NEW BOOKS

## UHF Practices and Principles

By Allan Lytel. John F. Rider Publisher, Inc., New York, 1952, 390 pages, $\$ 6.60$.
Here is broad, fundamental background theory and practical data on transmitting and receiving equipment for the entire uhf range from 300 mc to $3,000 \mathrm{mc}$. This includes police, fire department, taxicab, truck and other mobile communication services, television and even radar. Although some mathematical equations are included, the book is not intended for reference use by design engineers; rather, it appears best suited for students in trade and vocational schools, as well as for television and radio servicemen who seek only a general knowl-


FIG. 7-36-Electrodes in a klystron tube (from Lytel-'UHF Practices and Principles")
edge of what is going on in this fast-opening new territory of the radio spectrum. End-of-chapter questions facilitate classroom and self study use.

Illustrations are particularly deserving of mention, being carefully selected to show technical details of equipment; there are very few front-panel-of-transmitter or rear-view-of-housing shots. Examples of some of these illustrations are shown here.

Chapter organization might be called conventionally tutorial. The first three chapters bring the reader up to date on theory by reviewing the history and use of the uhf spectrum, pointing out the differing behavior of components at these higher frequencies, and covering the differing propagation characteristics of electromagnetic radio waves. Five of the remaining chapters then take up new types of com-ponents-receiving antennas, trans-


# the Type -12 UHF SIGNAL generator 

$900-2100$ Megacyles
This compact, self-contained unit, weighing only 43 lbs., provides an accurate source of CW or pulse amplitudemodulated RF. A well-established design, the Type 12 has been in production since 1948. The power level is 0 to -120 dbm , continuously adjustable by a directly calibrated control accurate to $\pm 2 \mathrm{dbm}$. The frequency range is controlled by a single dial directly calibrated to $\pm 1 \%$. Pulse modulation is provided by a self-contained pulse generator with controls for width, delay, and rate; or by synchronization with an external sine wave or pulse generator; or by direct amplification of externally supplied pulses.

Gold Plating of the oscillator cavity and tuning plunger assures smooth action and reliable performance over long periods. Generous use of siliconetreated ceramic insulation, including resistor and capacitor terminal boards, and the use of sealed capacitors, transformers, and chokes, insures operation under conditions of high humidity for long periods.

Built to Navy specifications for research and production testing, the unit is equal to military TS-419/U. It is in production and available for delivery.

Price: $\$ 1,950$ net, f.o.b. Boonton, N. J.

## Type H-14 Signal Generator

(108 to 132 megacycles) for testing OMNI receivers on bench or ramp. Checks on: 24 OMNI courses, left-center-right on $90 / 150 \mathrm{cps}$ localizer, left-center-right on phase localizer, Omni course sensitivity, operation of TO. FROM meter, operation of flag alarms.

Price: $\$ 942.00$ net, f.o.b. Boonton, N. J.
WRITE TODAY for descriptive literature on A.R.C. Signal Generators or airborne LF and VHF communication and navigation equipments, CAA Type Certificated for fransport or private use. Dept.


## Dependable

Electronic Equipment
Since 1928

## Aircraft Radie Corporation <br> Boonton, New Jersey

Want more information? Use post card on last page. April, 1953 - ELECTRONICS


FIG. 8-14-Side view of cylindrical tuner (from Lytel-"UHF Practices and Principles")
mission linés and wave guides, new types of tuned circuits, oscillators and developmental tubes. One chapter deals with receivers and converters, another with transmitters, and the last with test equipment and techniques to round out the picture of uhf at work today.-J.M.

## Electronic Engineering <br> Principles

By John D. Ryder, University of Illinois. Prentice-Hall, Inc., New York, 1952, second edition, 505 pages, $\$ 9.00$.

The prime theme of this book is well stated in the preface to the first (1947) edition: "The author has been convinced for a considerable time that electronics has outgrown its position as a subordinate field of communications or radio engineering and should be treated independently as electronic engineering. So considered, it becomes applicable to all electrical engineering, involving as it does theories of conduction, simple atomic structure and generalized circuit analysis with linear and nonlinear elements. Thus, electronic engineering is fundamental to all power or radio applications of electron tubes, but is not necessarily a part of either field."

It is in such thought that the author, now head of the Department of Electrical Engineering at the University of Illinois, distilled the knowledge and varied experience gained over some fifteen years in both the teaching and the industrial practice of communication engineering and applied electronics to produce a book that was

## For SPECIFIED PERFORMANCE Specify JELLIFF RESISTANCE WIRE

COMPLETE CONTROL OF MANUFACTURE . . .
A WIDE RANGE OF EXPERIENCE . . .
A WIDE RANGE OF ALLOYS . . .
make JELLIFF the ideal source of Resistance Wire to assure your Product's

## Performance According to Specs.

Precision resistors—rheostats-relays-thermocouples-ohmmeters —bridges—high-temperature furnaces can all benefit from the PLUS-PERFORMANCE of JEI.LIFF RESISTANCE WIRE


Detailed Enquiries Welcomed. Address Dept. 17.



Surface mounting, open typı:, Series 80 Relay size: $115 / 32^{\prime \prime}$ l. x $5 / 8^{\prime \prime} \mathrm{w}$. $x$ $1^{25} / 64^{\prime \prime} \mathrm{h}$.

Compact, multiple contact with vibration and shock-proof characteristics. Designed to meet various operating requirements typical of Armed Services applications.
Unique pile-up arrangement reduces width below the conventional relay, thereby reducing over-all space volume.
Coils are varnish-impregnated to resist high humidity conditions. All ferrous parts are treated to pass salt-spray tests.

Engineering Representatives in Principal Cities

WRITE FOR
BULLETIN MTR-6


## NOTHELFER "NWL" Special TRANSFORMERS



## Proven by <br> Past Performance

Over 28 years' experience in the man ufacture of special transformers to meet individual require ments. Built in qual ity proved by years of actual use.


From 10 VA to 300 KVA Dry-Type only. Both Open and Encased. 1, 2, and 3 Phase. 15 to 400 cycles.


WINDING LABORATORIES

9 ALBEMARLE AVE., TRENTON 3, N. J.


Standard Pieza Ca.
CARLISLE, PENNSYLVANIA
subsequently adopted as a textbook in a preponderance of the leading departments of electrical engineering. In the reviewer's opinion, a yet more extended use will accrue to the second edition.

The essential structure and major content are epitomized in the fifteen chapter headings: 1. The Fundamental Particles of Electronics; 2. The Movement of Charged Particles in Fields; 3. The CathodeRay Tube; 4. Emission of Electrons; 5. Space Charge in Vacuum Tubes; 6. Vacuum Diode Rectifiers; 7. The Vacuum Triode; 8. MultiElement Tubes; 9. Small-Signal Amplifiers; Feedback; 10. LargeSignal Amplifiers-Class A and B; 11. Gaseous Conduction; 12. Gas Diodes; 13. Gaseous Control Tubes and Circuits; 14. Photoelectric Cells; 15. Solid-State Electronics.

Comparison of the contents of the old and new editions indicates many improvements and additions. Thus, the context has been rendered easier to use: in the large, by an overall consideration and revision of content; in particular, by consolidation of the material on electron emission encompassed in Chapters 4, 11, and 15 of the first edition into Chapter 4 of the present edition. The treatment of the vacuum triode, of amplifiers and -in connection with the latter-of feed-back is extended in scope. The rapidly burgeoning use of transistors and the attendant need for an introduction to the basic theory underlying the functioning of solidstate electronic devices is recognized by inclusion of a new chapter thereon. The table of physical constants encompasses certain improved values effected since publication of the first edition. The number of student exercises and problems has been increased; new line drawings and cuts added; and the list of references at the end of each chapter enlarged to include particularly-apposite latelypublished papers.

The physical qualities of the text maintain the publisher's usual standards of excellence. The binding is sturdy, attractive and such that the book lies open at any page; the typography enables easy reading under artificial light-no small

offer a unique combination of


FOR ANY OF YOUR STANDARD OR SPECIAL APPLICATIONS

A few of the very low capacitance types are :

| Type No. | Capacitance <br> $\mu \mu$ F/ft | Impedance <br> ohms | O.D. |
| :--- | :---: | :---: | :---: |
| C.44 | 4.1 | 252 | $1.03^{\prime \prime}$ |
| C.4 | 4.6 | 229 | $1.03^{\prime \prime}$ |
| C.33 | 4.8 | 220 | $0.64^{\prime \prime}$ |
| C.3 | 5.4 | 197 | $0.64^{\prime \prime}$ |
| C.22 | 5.5 | 184 | $0.44^{\prime \prime}$ |
| C.2 | 6.3 | 17 I | $0.44^{\prime \prime}$ |
| C.1I | 6.3 | 173 | $0.36^{\prime \prime}$ |
| C.1 | 7.3 | 150 | $0.36^{\prime \prime}$ |

We are specially organized to handle direct ORDERS OR ENQUIRIES FROM OVERSEAS

SPOT DELIVERIES FOR U.S.
billed in dollars - settlement by your check CABLE OR AIRMAIL TODAY

## TRANSRADIO contractors to <br> h.M. GOVERNMENT

138a CROMWELL RD., LONDON, S.W. 7 ENGLAND
CABLES: TRANSRAD LONDON
Want more information? Use post card on last page.
ELECTRONICS — April, 1953

NEW BOOKS
boon to the student; the line drawings are uniform of weight and well-lettered; the illustrations of electronic apparatus and devices are excellently delineated; the numerous equations are well-set and amply displayed; and the boldface type distinguishing vector quantities is easily marked from the ordinary type used for scalar quantities. The general quality of presswork and proofreading is evidenced in the fact that in a carefuil reading of the text, with attention to factual detail, the reviewer noted only several trivial misprints in this first press run of the new second edition.

In recapitulation, the reviewer is of a mind that the author and his publishers have collaborated to produce a most excellent textbook, and one that well fulfills the author's proposed "fundamental and thorough treatment of basic electronics." In such thought, it is to be remarked that, as well as for formal classroom use in an organized electrical engineering curriculum, it is admirably suited to use by the practicing engineer who-possessing the indicated desirable prerequisites of a knowledge of the elements of "calculus and a-c circuit analysis"-seeks a text for initial self-study, or for revitalization of once-studied content, or merely as a general reference which will bring him abreast of the current status of electronic engineer-ing.-Thomas J. Higgins, Professor of Electrical Engineering, University of Wisconsin.

## Theoretical Nuclear Physics

By John M. Blatt and Victor F. Weisskopf. John Wiley \& Sons, Inc., New York, 1952, 864 pages, $\$ 12.50$.
Here is a comprehensive, almost encyclopedic, yet extremely lucid and readable account of the theoretical concepts and methods underlying contemporary nuclear physics. Written by two outstanding nuclear physicists, the book should prove invaluable to graduate students and research workers in physics. To use this volume effectively, the reader must possess at least an introductory knowledge of quantum mechanics and the related mathe-
 the transformation of spectrum content into visual spectographic displays . . . known as the "Panoramic / Method" by the entire electronic field.
PANORAMIC LEADS the industry in producing instruments unexcelled for every application requiring high speed spectrum or waveform analysis. Whatever your problem, a Panoramic Analyzer solves it quickly, accurately.

PANORAMIC leads again with


Panalyzor-Model SB-12 Type T-100 Designed specifically for applications requiring extreme resolutions or demanding measurement of levels of signals spaced rery closely in frequency or widely divergent in amplitude.

- Maximum Sweepwidth-100KC - Maximum Resolution-10CPS Sweep Rates- 30 cps, 5 cps,
1 cps and 1 sean in 10 seconds

Inquiries inuited on Special Pano.
Iamic Spectrum Analyzers

write today FOR complete SpECIFICATIONS and Prices

[^22] MOunt Vernon 4-3970


NEW BOOKS

## matical disciplines.

While physicists will undoubtedly be delighted by the publication of this excellent textbook and general reference, electronic engineers will find the book of limited interest. Emphasis is placed upon the development of theoretical models and semi-empirical viewpoints and upon the interpretation of experimental material with the aid of these tools. The design of piles and other topics forming the subject of nuclear engineering are explicitly excluded from consideration, as are, for the most part, nuclear phenomena involving energies greater than 50 Mev .

Beginning with a review of the general properties of nuclei, the book goes on to develop the theory of nuclear forces. Scattering experiments involving protons and neutrons are discussed in the light of present ideas on the nature of the forces between them. This leads to the theory of the deuteron and to the study of three- and four-body problems. The systematics of stable nuclei are presented next, followed by a description of special models of the nucleus such as the liquid drop model.

The theory of nuclear reactions is then presented in an introductory manner. In the central chapter of the book, a vast amount of experimental information is interpreted in the light of the Breit-Wigner theory of nuclear resonance phenomena. The detailed analysis will probably overwhelm the student but should gratify the active research worker. The authors then treat the theory of nuclear reactions in a more formal manner and succeed in revealing the staggering complexity of the problem at hand.

To the subject the authors bring imagination and considerable expository ability. The use of waveguide and electric circuit analogies of nuclear reactions is particularly noteworthy. Unfortunately, the electronic engineer must run a strenuous gauntlet before he can appreciate these analogies in full.

The latter portion of the book deals with spontaneous decay of the nucleus, beta decay, radiative phenomena and nuclear shell structure. It is unfortunate that the authors have not included such topics as neutron diffraction by

## COMPLETE <br> SHEET METAL FACILITIES

\author{

* DESIGN » DEVELOPMENT <br> * PRODUCTION
}

Typical products we engineer and build to specifications include

- TRANSFORMER CANS
- CHASSIS
- HOUSINGS
- CABINETS
- electronic enclosures
- BRACKETS
- RACKS
- metal specialties


## Our work is of the kind you will be proud to use Specialists in:

- metal cutting
- FORMING
- BENDING
- PIERCING
- Embossing
- DRAWING
- WELDING

Spot * Arc * Heliare

- PAINTING \& BAKING

Write or telephone us today TMP engineers will be glad to supply quotations without obligation!

> TRANSORMER METAL PRODUCTS CORPORATION 343 West 26th St., New York 1, N. Y. Telephone: W/sconsin 7-6472
crystals and nuclear magnetic resonance phenomena, but even without them the book is quite lengthy.

As a comprehensive, authoritative, and highly readable introduction to theoretical nuclear physics, this volume is strongly recommended. - Frank Herman, Research Physicist, RCA Laboratories, Princeton, New Jersey.

## Fundamentals of Engineering Electronics

By W. G. Dow, University of Michigan. John Wiley \& Sons, Inc., New York, 1952, second edition, 627 pages, $\$ 8.50$.
Fifteen years have elapsed since the appearance of Professor Dow's "Fundamentals Of Engineering Electronics." During this interim, not only did the text gain tremendous popularity since it encompassed physical phenomena with engineering understanding but, also, noteworthy advances were made in the rational comprehension of matter and the physics of electron tubes. Consequently, it was a natural step for the author to modernize his original text into a second edition and to expand his thoughts into two additional books to be published in the near future under the titles of "Fundamentals Of Physical Electronics" and "Microwave Electron Tubes."

The present version has retained its original usefulness as a treatise on engineering concepts. Each chapter is profusely documented. In all, there are over 340 periodical references with approximately 85 per cent dated between the years of 1937-1952. In addition, appropriate books have been separately listed. These references are tabulated under chapter numbers in a section of 24 pages entitled Bibliography, located adjacent to the Index.

Since the first few chapters of the original edition contained topics which were rather involved, the author has rearranged and diffused the subject matter into an orderly sequence which seems to be less formidable. However, a strong mathematical background is still needed to truly appreciate the


523 Hillgrove Avenue, La Grange, Illinois Phone: La Grange 8000


PARAMOUNT Paper Tubes facilitate coil wind-ing-insure coil accuracy and stability. Proved by use, they have become standard with leading manufacturers of electrical, radio and electronic products. Here you are sure to obtain the exact size and shape you need for coil forms and other uses... from stock arbors, or specially engineered to your specifications. Hi-Dielectric. HiStrength. Kraft, Fish Paper, Red Rope, or any combination, wound on automatic machines. Tolerances plus or minus .002" • Also Shellac Bonded Kraft Paper Tubes for absolute moisture resistance,

## PARAMOUNT PAPER TUBE CORP.

616 LAFAYETTE ST., FORT WAYNE, IND.
Mfrs. of Paper Tubing for the Electrical Industry Since 1931


A model for every use.
10 - 500 cycles
Single pole
60 cycles
Single pole and double pole
Make-before-break contacts


These Choppest convert low level
DC inte pulsating $D C$ or $A C$ so that servo-mechanism error voltages and the output of thermocouples and strain gauges, may be amplified by means of an AC rather than a C amplifier.
They ore hermetically sealed, precision vibrators having special feafures which contribute to long life and low noise level.


INCORPORATED

## 22 EIKINS STREET <br> SOUTH BOSTON 27, MASS.

SA-5
Want more information? Use post card on last page. 416
wealth of details and interpretations which are clearly presented. It is definitely a text aimed toward either the senior year of undergraduate studies or the first year of graduate studies.

As explained in the Preface, the important changes include the use of the meter-kilogram-second system throughout. In the study of space-charge-control tubes, conformal analysis has been preserved and the equivalent grid sheet potential concepts have been added as well as analytical discussions on microphonics in filamentary-cathode triodes, the upper limit to transconductance per ampere, secondary emission in any tube, pentagrid tube principles, the dependence of interelectrode and input-output capacitances on tube geometry, and the uhf figure of merit.

An introduction is given to principles related to the design of microwave electron tubes with stress on the effects of electron transit time, input loading and in-put-to-output phase angles. The induced current concept is discussed as well as klystrons, magnetron oscillators and travel-ling-wave amplifiers.

The energy-level concepts in metals have been extended to cover semiconductors and to explain the basic behavior of semiconductor electron devices including transistors. The Fermi distribution function and the Fermi energy level are introduced and considered. The internal behavior of gaseousconducting devices as influenced by mean free paths and drift velocities of electrons and ions has been elaborated upon. Paschen's Law and Townsend's Alpha are quantitatively treated. The Maxwell-Boltzmann velocity distribution equation is derived.

Principles of amplifier circuits have been extended to include Thevenin's and Norton's theorems, negative feedback, the cathode follower, class $C$ operation and the grid separation amplifier circuit.

The main omissions relative to the first edition are radiation of electromagnetic waves, the mechanism of propagation, polarized light, light interference, reflection phenomena, design of power supply

## Meter-Relays in Microwave

Remote transmitters use Simplytrol Contact Meter-Relays (CMR) for continuous monitoring. The CMR may be in the oscillator, the final amplifier or, it may be coupled directly to the antenna circuit as it is in the RCA CW20 Microwave Relay.


In this equipment the meter in conjunction with a germanium diode suitably coupled, monitors the r-f output and serves as a tuning indicator. The low limit contact is set at some predetermined scale point. If the power fails the CMR contacts close circuits sending alarms or energizing standby equip. ment.

A Model 261-C low limit CMR, range 0.200 DC microamperes is used. Simplytrols are made in ranges starting at 0.20 microamperes.

## Why Locking Contacts?

When an armature relay operates, the contact pressure increases due to the shorten. ing magnetic gap. With a moving coil relay the pressure decreases as the contacts close unless some extra force is introduced. If the point of contact coincides with the indication there is no contact pressure.

Because the coil torque balances the springs the contacts may flutter or 'fry'. An electrostatic charge may cause oscillation with alternate closing and opening which may weld the contacts.

In the Simplytrol this is overcome by the 'contact locking coil'. When the contacts close, current flows through the locking coil producing additional torque to build up pressure. When the contacts get close, the locking coil 'grabs' on the first oscillation and forces them together. In fact, the static charge may pull them together before they touch. Simplytrol locking contacts are discussed in Bulletin CMR-79. Write for a copy to Bradley Thompson, Assembly Products, Inc., Chagrin Falls 16, Ohio. Phone 7374.
Want more information? Use post card on last page.

NEW BOOKS
filters and inversion from direct to alternating current and associated circuits.-Anthony B. Giordano, Polytechnic Institute Of Brooklyn.

## High-Energy Particles

By Bruno Rossi. Prentice-Hall Inc., New York, 1952, 569 pages, $\$ 12.50$.
Prof. Rossi has given us an outstanding book on the phenomenological aspects of the high-energy particle field. Although the book is written primarily for the specialist in high-energy particle research, it will be of interest to all serious students of nuclear or cosmic ray physics. In it the reader will find a discussion of the developments leading up to the identification of the high-energy particles known at present together with a detailed account of many of the more important experiments of the last decade dealing with both cosmic ray and artificially generated high-energy particles.

One of the main purposes of the book is to develop the methods by which the experimentalist can interpret the result of observations in terms of particle type, mass, charge and energy. Theoretical derivations are given of all of the principal relationships required. These derivations are concisely presented, frequently using classical methods as a means of explaining the fundamental ideas back of the derivations. When this artifice is used, the corrections introduced by the more exact quantum mechanical treatment are pointed out and the exact formulas given. Where necessary, tables and graphs accompany the analytic relationships. Mathematics is used freely throughout the test, but is of such a form that it should present no serious obstacle to the reader.

The first portion of the book treats the general problems of the interaction between moving particles and electro-magnetic fields, electrons or matter. This section provides a general background of the absorption, ionization, scattering and energy conversion which occurs when particles pass through matter.

The second part of the book deals with experimental methods. A very


JAN-C-172A
SPECIFICATIONS
. . but are actually made to exceed AN-E-19 Drop Test requirements RUGGED PROTECTION for VITAL EQUIPMENT: Finnflex Mounts isolate vibration and shock from Electronic. Communication, and Control Equipment. They offer unimpaired efficiency from $-80^{\circ}$ to $+250^{\circ} \mathrm{F}$., "Selective Action" friction dampening, Action friction dampening. non-linear steel springs. and other features wide range of sizes and load ratings available.
SHOCK MOUNTS for Signal Corps Mobile Equipment and for Naval Fire Control Units.
SPECIAL PROBLEMS: Complete facilities for designing and fabricating Shock and Vibration Mounts to order - regardless of size or weight of equipment mounted.
Specify FINNFLEX—for Ruggedness. Efficiency, and Economy
Write for Catalog MB- 110



BRAIDED NYLON LACING TAPE*

## A New and Revolutionary Type of Lacing

- Saves time, saves money, greatly reduces the number of rejects
- Won't "bite through" insulation
- Won't cut wiremen's fingers or cause dermatitis
- Ties easier, ties tighter and cuts down on slipping of knots

Let GUDELACE answer your lacing problems.

Write for FREE samples and prices.
*Patert Pending

GUDEBROD BROS. SILK CO., INC. Electronics Division, Dept A

Main Office: 12 South 12th Street, Philadelphia 7, Pa. 225 West 34th Street, New York 1, N.Y.

## encapsulated <br> PULSE TRANSFORMERS

## wound to your requirements




## SMALL IN PRICE

As low as $\$ 5.00$ each in quantity lots. One to three- $\$ 7.50$ each.

tives are: "First, to give a comprehensive account of our present knowledge concerning high energy phenomena - - - ; second, to provide the active investigator with a report on current problems in highenergy physics and present him with a collection of formulas, tables and graphs useful to his work." In these aims, the author has been eminently successful and has created a book which may be destined to become a classic in the field.G. A. Morton, RCA Laboratories, Princeton, New Jersey.

THUMBNAIL REVIEWS
RADIO \& TV HINTS. Edited by Martin Clifford. Gernsback Publications, Inc., New York, 1952, 112 pages, paper-covered, $\$ 1.00$. A gimmick book for those who work in labs or shops, presenting practical short-cut techniques, circuit tricks, tools and salvage ideas useful in circuit development and actual production of electronic


FIG. 518-Unusual three-speaker baffle (from Clifford-Radio \& TV Hints)
equipment. Fxamples: Small steel springs are useful for making temporary connections between wires; placing a metal plate across the open bottom of an a-f chassis will often get rid of the last bit of hum; to remove solder quickly from components to be salvaged, heat the joint and then brush off the solder quickly with a cheap one-inch paint brush.

THERMIONIC VACUUM TUBES By W. H. Aldous and Sir Edward Appleton. Methuen \& Co. Ltd., London, and John Wiley \& Sons, New York. 160 pages, $\$ 2.00,1952$. A completely revised and rewritten Sisth Edition of a popular member of the Methuen family of monographs on physical subjects. Material on travel-ing-wave tubes and similar subjects indicates its up-to-date character.
 of hydrogen, nitrogen or other gases.

## STEWART-SPELLER ASSOGIATES soquel, california - phone santa cruz 93w3



TYPE R RESISTORS employ noble metal film deposits on specially selected heat resistant glass.
FILM THICKNESS offers negligible skin effect, at microwave frequencies. POWER CAPACITY of $1 / 4$ watt prevides high power handling ability.
PHYSICAL STRUCTURE is ideally suited to impedance matching in standard coayial line and waveguides.
FINISH. こoated with a special silicone varnish to protect the film.

TYPICAL APPLICATIONS

- Power measurement at any
- frequency
- Matched terminations for waveguides or coaxial lines
- Resistive power pickup loops - RF pads or attenuatois - Dummy loads
- Temperature measurement
- Impedance matching


## SPECIFICATIONS

Resistance: 50 ohms standard, ofher values on request. Tolerance: $5 \%$ or $10 \%$
Wattage: $1 / 4$ watt continuous duty Size: $1 / 16$ inch diam. $\times 3 / 16$ inch tong Terminals: Tinned sections $1 / 16$ inch film length: Type R-063 - $1 / 16$ inch Type R-093-3/32 inch Temperature Coefficient: approx. 0.0019 ohms/ohm $/{ }^{\circ} \mathrm{C}$. Power Sensitivity: Approx. 10 ohms/
watt

## BACKTALK

## Electronic Organs

## precision

IN MINIATURE SIZE

Electro-Mec Laboratory specializes in potentiometers of extreme accuracy, low torque $*$, and small size, engineered for each individual application. Close coordination between engineering and manufacturing provides laboratory quality and performance in production quantities, one or a thousand.

The "know-how" and facilities are also available for the solution of non-standard potentiometer design problems. For more information please write or telephone the Engineering
Department. HAnover 2-3155

* Torque in the range of . 003 to . 100 oz. in., Resolution to 1300 turns of wire per inch, Linearity to . $1 \%$.


Type 1395
" $G$ " stability and Minimum Torque. High resolution and Linearity. Resistances 20 to 200,000 ohms.


Type 1396
Servo Mounting. Ultra-low torque. Maximum accuracy in Minimum size.


Type 1418

Computer accu. racy and Highest Resolution Low torque of .025 oz. in.

## ELECTRO-MEC LABORATORY

19 MURRAY STREET NEW YORK 7, N. Y.

Wide interest in electronic organs has been exhibited by our readers. In the editorial offices of ElectronICS, we often receive letters from readers suggesting new and different ideas for generating tones for electronic musical instruments. Since it is, in general, contrary to our policy to publish proposals in the feature section, these ideas cannot be called to the readers' attention unless they are submitted as letters to appear in the Backtalk department of Electronics.

The following correspondence illustrates the chain of events that often follows the conception of an idea by a private individual. The first letter was written to a large manufacturer of electronic organs by J. B. Winther with the technical description of his idea for a new tone generating scheme. Following this description is a reply from the Patent Counsel of that company reprinted here for the benefit of those who may have conceived similar schemes, but who have not taken the time to call their ideas to the attention of a manufacturer as Mr. Winther has done.

## Dear Sirs:

I AM pleased that you are interested in appraising my scheme.

Actually the idea originated over 10 years ago, and I have waited to ses it commercialized by someone. I felt that such an idea being basically simple would be apparent to anyone versed in electronics, and might appear on the market at any time.

After reading the article in the January 1951 issue of Electronics "Gas-Diode Electronic Organ" by R. M. Strassner, I felt convinced that if my method had ever been common knowledge, no one would go to the extent that the author did in designing an electronic organ.

My method achieves all the requirements which Strassner outlines as his objective. These I have outlined below:
"One of the greatest complaints against electronic instruments is that they are generally too perfect,


TN kecping with its tradition of constant research for new and improved prod ucts, the General Electric Co. has devoted special effort to the field of etched circuit boards. In recent months the Components Department has been producing solderplated etched circuit boards for specialized military use and forward looking commercial products. High acceptance accorded this product clearly indicates the possibility of much broader applications.
The Components Department would appreciate the opportunity of discussing your bigh quality requirements for all types of circuit boards. Make full use of this new electronic component that:
$\star$ Minimizes wiring labor costs
$\star$ Assures uniformity

* Improves component accessibility
* Assures solderability
$\star$ Reduces inspection time
$\star$ Speeds assembly Simplifies servicing
¿ Requires minimum space . . . aids in sub-miniaturization
^ Improves reliability. Short circuits are practically eliminated

Our engineers are prepared to discuss ways in which G-E "PRINT-WIRE" circuit boards can solve your problems. Write or wire us today! General Electric Company, Components Department Section 443, Electronics Park, Syracuse, N. Y.

## - RADIO \& TV CABINETS and

 MATCHING BASE CABINET5- PRECISION METAL PARTS
- "PRINT-WIRE" CIRCUIT BOARDS
and therefore unnatural.
"Too many controls confuse or discourage the performer." I believe this is true for the average musician seeking a low priced instrument.
"It was required to develop an organ-like electronic instrument that would retail for $\$ 800$." Because of low labor costs, I believe my method could easily equal or possibly better this figure.

Following is a description of my scheme along with a diagram. I have not attempted to secure a patent on this method, but have chosen a less tedious. and not nearly so drawn out method, by providing a signed document establishing the date of conception. Although this method does not provide the legal pretection of a patent, it does provide a lever for the original inventor, thus he may work with experts in the field to provide mutual benefit to all concerned.

After you review this material, I would appreciate your reaction, and if favorable, please advise what course you propose to follow. I have been in engineering development for many years and fully realize the time, money, and engineering knowhow which must yet be put into this new idea to make it productive.

> J. B. Winther Kenosha, Wisconsin

## Organ Description

For many years electric keyboard instruments have been manufactured, their primary objective being to duplicate the results obtained with the mighty pipe organ. Various and ingenious methods have been devised, ranging from elaborate electronic circuits to modified reed organs in an effort to create an instrument which sounds just like a real pipe organ. The tone of a single organ pipe has been studied in great detail to obtain data on wave shape of fundamental, harmonics, percent of harmonic content and other characteristics. An electronic circuit is then developed which will duplicate these same tone patterns, or even attempt to improve on them.
The method outlined below seems to be the natural way to accomplish
push-BuTTON

NE W
ACCURATE
STABLE
FOR CHECKING

## FM/FM TELEMETERING

 SUB-CARRIER EQUIPMENT- 20 accurate, fixed centre-frequencies
- Calibrated control for $\pm 10 \%$ adjustment
- Indicator for beating external signal
- Low distortion and excellent stability
- Constant voltage low impedance output
- Continuously variable calibrated level
- Standard FM/FM frequencies furnished
- Other frequencies available to order


## FOR RAPID PRODUCTION CONTROL TESTS

## TELETRONICS LABORATORY ${ }_{i n c}$. westbury, l.I., N. y

MANUFACTURERS OF ELECTRONIC INSTRUMENTS AND PRODUCTION TEST EQUIPMENT


## WARREN WIRE CO. <br> POWNAL <br> VERMONT

Producers of Nyfon, Plain Enamel and Served Magnet Wire, Tinned and Bare Copper Wire.
*Du Pont trademark for Polytetrafluoroethylene Enamel

## SHAGGY AUDIO AMPLIFIER STORY

You've heard of the shaggy dog stories, well here's a tale that beats 'em all.

Into the Westinghouse Electronic Division offices one day came a man with a strange request. It was for an audio amplifier of extromely high power, powerful enough to build a whisper of sound to a crescendo capable of shattoring windows in the next county. ('This, however, would not be its function.)

It just so happened we could supply a job to answer the descriptiona new design that delicers 5 or 10 kilowats output power. It can dutually take a signal of about 10 milliwatis from any cumentional 30 to 20.000 cps source and huild it up to 5 or 10 KW with uniform response (plus or minus 1.5 db ).

But the odd part of the story is that we never were able to learn what the man planned to do with this extromely high power amplifier. And to arld confucion to mytary, since then many olfor gus have wandereal in with the same strange haggy dog request. We know of course. that applications are cunceivahle it producing supersonic vibration. exploring variable. frequency vibration phenomena. and producing supply power at any audio frequency (e.g-400 cycle aviation equipment or 100,000 RPM grinding motor.)

We decided there must be a market for it. Hence this adverlisement. So-if you know of anyone whod be intrested in a variable frequency andio amplitire of exarmely high power-capable of shathring windowe in the nost connty-have then get in tom with Wratinghonse Electric (imporation. Flectronics Division. Industrial Electronic Devices Section, 2519 Wilkens Avenue, Baltimore 3, Maryland.

YOU CAN BE SURE...IFIT'S
J. 02256
Westinghouse

our objective. The sound emitted from an individual pipe of a pipe organ is recorded. The method of recording may be an adaptation of sound-on-film or wire recording. A suggested method is outlined below:

After each note is recorded (assume 61 in all) then there will be 61 separate individual patterns on record, each one ready to exactly imitate the original parent note. These 61 recordings or sound tracks are placed on a common conveyor, and set in motion. There will be 61 unit pick-ups involved, each ready to reproduce the recorded note, but not until the circuit is completed at the instrument keyboard by the


Suggested electronic organ scheme
selected key, during a rendition. Since any individual note is a continuous pattern of successive wave shapes, it is not necessary to extend the recording any longer than would be required to establish the wave pattern. This could be done in several cycles of the fundamental wave.

In a practical way this could be accomplished by recording around the circumference of a cylinder. Thus, the note could be continuous by duplicating itself for each revolution. There are problems which could be overcome, for example, overlap at the start and finish of the recorded note as the second revolution was started. This might be overcome by using two reproducers on one sound track 180 degrees apart and using less than a full revolution of recording, thus there is always one reproducer unit active at any one time.

As pointed out in the drawing a drum of ferrous magnetic material (possibly even Alinico material) of the type used in the wire of wire recorders could be


FREE CAMERAi Lens catalog


CAMERAS- of all types! Spec al purpose, Photomicrography, Laborato y, NEW POLAROID LAND BACK, etc.
LENSES-World's largest stock from 3/8" to 72'". - All speeds, and types, special Mounts, Lenskoting, etc.
LABORATORY EOUIPMENT Stainless Steel Equipment, Dryers, etc. Write TODAY to
Burke a James, Inc. FINE PHOTOGRAPHIC FQUIPMENT SINCE 1897 321 S. Wabosh Ave., Chicago 4, Illimeis, U.S. A.

## ENGRAVING•PROFILING

## for heavy production

with the<br>



GUIDED FOR UNSKILLED CABOR


Write for literature describing:

1. Heavy Duty model (as illustrated) - Catalog H 29
2. Portable models - Catalog IM 29

NEW HERMES, Ince 13-19 University Place, N.Y. 3, N.Y. In Canada: 359 St. James St., Montreal World's Largest Manufacturer of Portable Engraving Machines


High Current Regulated Power Supplies


Standard Sizes, 350 Series
$0-350 \mathrm{~V}$ @ 750.ma.
$0-350$ V@1.Amp. $0-350 \vee$ @ 2. Amp. 0-350 V@3.Amp.

Featuring: Very low output impedance at high power levels;
$1 / 2 \%$ regulation; 5 MV ripple.
Continuous duty components; short delivery.
Other units available: any voltage and capacity, regulated or unregulated, fixed or adjustable output voltage. We invite Inquirles.

PESCHEL ELECTRONICS, INC.
13 garden street, new rochelle, n. y. - new rochelle 6-3342

## Now! Royal brings you

> storage shelving in standard package units


- Now Royal simplifies your planning and purchasing of open or closed type shelving-standard sectional units are adaptable to your exact needs!
- No tools required for installation or adjustment-Royal shelving has $80 \%$ fewer bolts, erects quickly, easily, economically!
- Each shelf adjustable without disturbing others! Patented shelf brackets simple to insert into frame, are self-locking and selfsupporting, provide better shelf stability than equal amount of bolts.
metal furniture since '97


Royal Metal Manufacturing Co.
175 N. Michigan Ave., Dept. 2104, Chisago 1
Factories: Los Angeles., Michigan Ciry, Ind. Warren, Po. . Walden, N.Y. . Galt, Ontario
Showrooms: Chicago t Los Angeles
San Francisco - New York City
Authorized Dealers Everywhere

Royal Metal Mfg. Co., 175 N. Michigan Ave.,
| Dept. 2104, Chicago 1, III.
| Please send your new Royal catalog showing sectional storage shelving.
Neme
Firm Name
Address


Want more information? Use post card on last page.
formed into a seamless tube.
The 61 notes could probably be recorded in 61 pattern rings in about 24 inches of linear length of roll and probably a 1 -ft diameter roll may be used. At $1,800 \mathrm{rpm}$ it would be possible to record 60 complete cycles of a 1,800 cycle note or two complete cycles from a 60 cycle base note.

With the above arrangement it appears possible to build all the components into a small space. It seems that organ notes would be the most practical to reproduce as it appears to be a continuous note right from the start while a piano note would lack the hammer onstring effect. In fact, notes from a more expensive electronic organ could be reproduced this way by using the instrument for recording the parent note.

Also it would appear that a reedless piano accordian with this arrangement could produce unparalleled effects. An electromagnetic air-pressure sensing device in its bellows chamber could be used to modify the notes for expression in the music, to duplicate present playing techniques.

The method as illustrated does appear to have unusual possibilities. It has promise of opening a field of low-priced instruments.

## Company Reply

Dear Mr. Winther:
WE THANK YOU very much for your letter and your very lucid explanation of your improved electrical musical instrument.

We have naturally given consideration to various types of signal generators involving recordings of sound produced by pipes and various other instruments. This has likewise been given consideration by a large number of other people as is evidenced by a number of patents which have issued disclosing various schemes for using recorded tones as a basis for the production of tones in an electrical musical instrument. For example, the following patents disclose rotating devices in which the sound is photographically recorded and picked up photoelectrically: 2,199,948, 2,223,489, 1,980,-


At your service, for all small bearing problems, the Bird Company engineering staff designs accurate sapphire and
 glass jewel bearings used in the world's most famous aircraft, electrical and timing instruments; weather and all types of recorders; and fine
 indicating apparatus.

Close tolerances, accuracy, and long life qualify Bird Jewel Bearings to insure quality in your
 finest instruments. Quotations on request for jewels made to specifications for your individual requirements.


The enginecring staff of the Bird Company is at your service for all small-bearing problems.


Sapphire and glass jevels - Precision glass grinding Ferrite precision products - Sapphire stylit
7 Spruce Street, Waltham 54, Mass. Want more information? Use post card on last page. April, 1953 - ELECTRONICS

Electronic glass working eaupment for radio, television tubes, INCANDESCENT LAMPS, GLASS LLTHES for TELEVISION TUBES
We make Transformers, Spot and Wire Butt Welders, Wire Cutting Machines and 500 other items, indispensable in your production. Eisler Engineers are constantly developing New Equipment. If you prefer your own designs, let us build them for you. Write to Chorles Eisler who has served you prefer your own designs,

Machines for small Radio Tubes of all kinds:

## High Temperature Hydrogen Electric Furnaces

Hydrogen atmosphere heating chamber, hydrogen drying tower, water cooled unloading chamber, heat control with air cooled transformer with 11 position tap switch. Automatic temperature control (optional) standard furnaces from $1^{\prime \prime}$ bore $1800^{\circ} \mathrm{C}$. to $8^{\prime \prime}$ bore $1100^{\circ} \mathrm{C}$. Molybdenum wound heating units, loading and unloading chambers equipped with safety doors. Supplied with hydrogen flow gauges. Made to order in mony sizes.


## 

There is Atways One Leader in Every Field
BODNAR INDUSTRIES, Inc.
leads in the field of
TRANSILLUMINATED PLASTIC LIGHTING PLATES
BECAUSE OF Quality - Uniformity - Performance
Design \& Layout "Know-How Service"
Quantity Production Promptly
NEW YORK - 19 Railroad Ave., New Rochelle (Home Office)
TEXAS -Jefferson Tower Building, Dallas
CALIFORNIA- 11056 Cumpston St., N. Hollywood
CANADA - 313 Montreal Trust Bldg., 67 Yonge St., Toronto
DEMONSTRATION PANEL MIL-P-7788 (AN-P-89) Sent on Letterhead Request



## Accurately, Easily, Quickly with a DI-ACRO* BENDER

Simple and complex bends can be formed and duplicated in many ductile materials with a versatile Di-Acro Bender. Bending capacity of the five hand operated models ranges from $1 /$ ir $^{\prime \prime}$ wire to 1 " round mild steel bar. Many accessories are available for bending various materials and shapes. The DiAcro Bender can be delivered completely tooled for most forming requirements in solid materials and tubing.


## MODEL 503 Zast-Rise Pulse Generator

The -SKL- Model 503 Fast-Rise Pulse Generator has been designed to meet the growing need for a convenient source of extremely fast and short rectangular pulses. In radar, nuclear physics, high speed oscillography, and in the determination of network characteristics, the fast rise time and short pulse capabilities of the Model 503 find many uses. The variable repetition rate of 50 to 150 pps , pulse amplitude of .1 to 150 volts, and impedance of 50 ohms meet the great majority of needs encountered in this type of work. Convenience in the practical situation is enhanced by providing either positive or negative pulses, controlled by a switch, and an external trigger input which allows control of the repetition rate from an outside source. It is housed in a lightweight aluminum cabinet with convenient grouping of controls. The -SKL- Model 503 will be found indispensable for high speed, fast rise time research, development and testing.
$292,1,967,258,1,747,936,1,678,872$.
The idea of marnetic recording and pickup of tones is disclosed in a number of patents including patent No. 1,991,727 and has also. been suggested to us by a number. of other inventors. A fairly good disclosure of this idea is also found in the French patent No. 541,656.. You may obtain copies of the U.S. patents from the Commissioner of Patents at twenty-five cents each.

You have apparently studied the problem sufficiently to realize one of the difficulties, namely, that of overlap. We question somewhat whether your proposal, by which this overlap problem could be overcome, would work out unless you could start and stop recording the wave at the exact instant that it "crossed the zero axis." Another difficulty to which you have apparently given much thought is that the organist likes to have available a large number of different tone qualities. In your proposed instrument this could, of course, be accomplished by having several of the drumis you described, with their associated pickups, and to, a limited extent might be accomrplished by various filter meshes in the output system of the organ.

We wish to thank you for the clear manner in which you have presented your ideas but regret that in our opinion you hrve not made any norel suggestions. We are therefore not interesited in pursuing the mat. ter further.
(Name of Patent Counsel and Company withheld by request.)

## Complenientary Symmetry

DEAR SIRS:
I HAVE read with much interest the article entitled "Experiments Illustrate Transistor Applications" in the March issue of Electronics. There is one point on which I should like to comment concerning the "complementary-symmetry" amplifier. Figure 1 A of the article shows two grounded-emitter transistors, one an $n p n$ and the other a pnp, with a common base input terminal. A statement in the article referring to this arrangement says, "Due to the opposite

## ELECTRIC INSTRUMENT \& CONTROL HEADQUARTERS

YES, OFF-THESHELF SERVICE
 over 250 top lines. Pyrometers - Thermocouples - Rectifiers.

Electro-Tech maintains one of the largest and most complete stocks in the country of electrical meters, instruments and industrial control equipment-representing

Yes, our warehouse is bulging with standard slocks of

| Counters | Solenoids | Toggle Switches |
| :--- | :--- | :--- |
| Panel Meters | Tachometers | Shunts (Electrical) |
| Transformers | Thermometers | Meggers |
| Switchboard Meters | Thermostals | Solenoid Valves |
| Micro Switches | Rectifiers | Pyrometers |
| Photo Electric Equipment | Rheostats | Multimeters |
| Relays | Timers | Oscilloscopes |

## and Laboratory Standard Instruments

In addition, we manufacture and stock Special Test Equipment - Electric Heating Units - Current Transformers -

CONSULT US ABOUT YOUR REQUIREMENTS
Our laboratory is available for repair work, rescaling, recalibration and special calibration of your electrical and industrial instruments. Often months are saved by rescaling and calibrating stock instruments to your specifications.


## ELECTRO-TECH EqUIPMENT co.

55 LISPENARD ST., NEW YORK 13, N. Y.

- No matter how you figure: If you need custom-made coils tailored to your own special requirements, Dano is your answer. Furthermore, if you require these coils specially treated, Dano is your answer. If you insist on coils that will be perfect in performance and free from any possible defection, Dano, long experienced in the manufacture of a wide variety of coils, is your answer.
- Form Wound
- Paper Sectien
- Acetate Bobbin
- Molded Coils
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Temperature
Applications

Also, Transformers Made to Order

 ENGRAVES $V$ ROUTS $V$ PROFILES $V$ and MODELS



The input circuit is a type N connector (UG-58/U) .. The output is monitored by a 1 N21B crystal and microammeter circuit with adjustable sensitivity control for varying input power levels. The output of the crystal may be obtained from pin jacks provided on the panel of the instrument. A switch is provided to change the output from the microammeter to the pin jacks.

## ACCURACY

Better than $.05 \%$ from $20^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$
SENSITIVITY
Usable indication with 1 milliwatt input
Adjustable for higher levels
INDICATOR 50 Microammeter
INPUT
50 Ohm Type N Connector
EXTERNAL DC OUTPUT
Pin Jacks
EXCURSION OF MICROMETER One-half inch
MICROMETER SCALE
at $1000 \mathrm{Mc}-1$ Division equals 290 KC
at $1400 \mathrm{Mc}-1$ Division equals 350 KC at $2000 \mathrm{Mc}-1$ Division equals 450 KC at $2600 \mathrm{Mc}-1$ Division equals 555 KC
EXTERNAL SIZE $61 / 2 \times 93 / 4 \times 7^{\prime \prime}$
WEIGHT Four pounds

## CAVITY UNITS AVAILABLE

Units consist of cavity body, micrometer control, crystal, suitable connectors and calibration chart. Write for specifications and prices.


## frequency standards <br> P. 0. Box 504,

 Asbury Park, New Jersey

## NOW! Immediate Delivery

No fastening problem with NYLOK Self-Locking Clinch Nuts. Simply press in nut... clinch, insert screw and run it down. Resilient nylon insert assures positive lock. Assemble either end, speed up assembly. No damage to nut in removing. Can be used again and again, with no loss of locking feature. Available in steel and aluminum, standard sizes \#4 to \#10, or others to specifications. Write for complete information today.

Dan'f Design AROUND Your Fastening Problem-Design With NYLOK



Circuit (top) and output waveforms for pnp-npn transistor amplifier
signs of the transfer characteristics of these two types of transistors, the output signals will be 180 deg out of phase, one having been shifted 180 deg the other going straight through".

The writer wonders if it would not be better to call this action a "polarity discrimination" or a "phase splitting" rather than a "phase shifting". It would seem well worthwhile to provide as unambiguous an explanation as possible for transistor circuits.

To completely satisfy the writer's thoughts, the above circuit was constructed and tested as indicated. The oscillograms show the actual output voltage waveform for a small input signal and then for a large input signal.

The capacitors and biasing currents of the circuit could be removed with no loss, but an improvement in curcuit efficiency; they were included only to allow each transistor to amplify small signals linearly.
R. H. Spencer

Massachusetts Institute of Technology Dept of Electrical Engineering Sevvomechanisms Laboratory Cumbridge, Massachusetts


For Long Life - Dependability!


Unconditionally guar. anteed for 6 months. Temperatures to 1 .$200^{\circ} \mathrm{F}$. Adjustable long . life thermostat. Ceramic embedded heating element.

Standard Models to Meet Most Needs

## Write for

oulletin or
send details

DEE ELECTRIC COMPANY
MELTING POTS
1105 N. Paulina St. Chicago 22, 111 .


BRAZNG \& WELDING

6751 Bryn Mawr Ave.


WAL KIE-RECORDALL B BECOBDER:P BAYTERY Continuous, permanent, Indexed recording, ud to hrs., only 3 c hr . Instantaneous, permanent playback Plcks up sound up to 60 ft. Records confarences, lecwalking, riding or flying, Records in closed briercase
with "hidden mike" MILES BEPRODNCER CO. INC.
siz sROADWAY Dept E-4 NEW YORK 3, N. Y.

## SUBCONTRACTING

MILITARY and COMMERCIAL.
Power supplies, controls, lest equipment, ub-assemblies, cable and harness work.

PESCHEL ELECTRONICS, INC. 3 GARDEN ST. NEW ROCHELLE, N. Y NEw Rocheile 6.3342

FM MODULATION METER
Meosures moximum modulation deviation quencies, 25 to 200 MC . Price $\$ 240.00$.

LAMPKIN LABORATORIES, INC. bradenton, florida

For certification of Induction and Dielectric Heating Equipment In occordance with F.C.C. rulings
NEW ROCHELLE TOOL CORP 320 Main St. New Rochelle, New York Hozile Unit, Phone NE 2.5555 Quotations on request

## WAVEGUIDE <br> WAVEGUIDE Assemblies <br> WAVEGUIDE Components

- Low Cost - Quantity Production Light-weight "One-piece constructions" - Dimensions to $\pm .0005$ - Internal finishes, 10 micro-inch Excellent V.S.W.R
- Copper, Nickel, Silver - Some items shipped from stock. Others, produced to your specifications, on short notice

Write now for additional information.

## ALLIED RESEARCH \& ENGINEERING INC. 104) MORTM LAS PALMAS - HOLIYWOOD 38, CALIFORNIA



EISLER MANUFACTURES COMPLETE EQUIPMENT WELDERS FOR SPOT \& WIRE BUTT RADIO. TV TUBE EQUIPMENT \& REPAIR UNITS NCANDESCENT, FLUORESCENT MFG EQUIPMENT NEON SIGN MAKERS EQUIPMENT, GLASS LATHES ELECTRONIC EQUIPMENT, VACUUM PUMPS, Etc. Wet Glass SLICING \& CUTTING MACHINES for Lab Use EISLER ENGINEERING CO., INC.
751 So. 13th St.


ELECTRO PLATING


EYEREAOY
PLATING CO
1790 FIRST AV. N.Y.C EM 0.1222


Shorted Turn Indicator
Sensitive,rugged, non-shocking MRNARTRON MRNARTRON

## SUB-CONTRACTING

MILITARY and COMMERCIAL receivers-test equipment transmitters-contr
sub-assemblies
TELETRONICS LABORATORY, INC. Westbury, L. I., N. Y. Westbury 7-1028
USE DECALS
for
NAME PLATES
INSTRUCTION PLATES SERIALNUMBERS, TRADEMARKS etc.
Cheaper-Easier to apply Cheaper-Easiti-Colored Durable-Mur specifications Made to your spemple for Send sketch or sumptation

Dedt. E NORSTD
21 atherton street, yonkers i, N. Y.

## We invite inquiries on



## ANNIS ELECTRIC RESEARCH LABORATORY, INC.

CONSLITING - IEESEARCII - DEVELOIMENY
AND DESIGN OF RADIO ANH FLECTIRONIC
Military liadio Dirertion Finding


## CROSBY LABORATORIES, INC.

Murray G. Crosby \& SLaff Radio - Flectronic
Reseatch Development and Manufacturing Communications. FM \& TV Roblins Lane, Hickstille, N. Y.

## EDGERTON, GERMESHAUSEN

 \& GRIER, INC.Consulting Engineers
Resparch, Development and Manufacture
Specialists in High-Speed Photography
160 Brookline Arene, Boston 15, Mass.

Eldico of New York, Inc.
Pioneers of Television Interference Elimination from Transmitters, Induction Featers, Diathermy and

Donald J. S.
S. Merten \& E Barside 9-8680

ERCO RADIO LABORATORIES, INC.<br>Radio Communications Equipment<br>Engineering - Design - Derelopment - Production Pioncers in frequency Shit Telegradh Garden City • Long Island • New York

## HARRIS GALLAY

## Consultant

MICROWAVE AND
PLLSE THCIINIQUES
Plymouth 0-423: 60 Perry St., Belleville 9, N. J.

## GENERAL LABORATORY ASSOCIATES,

 INC.Specialists in Glass to Metal Sealing Mamatacturing and development facilities now a ailable covering special vacuum and gas tube Development and Fabrication. We invite your
Norwich
r
Telephone Norwich 4-3264

## HANSON-GORRILL-BRIAN INC.

Products \& Mfg. Development klfactiaical - ELECTRONiC hydriulic - mechayicad,
One Continental Hill Glen Core, N. Y. Glen Cove 4-1922

## HIGHLAND ENGINEERING CO.

William R. Spittal E Staff
DESIGN DEVELOPMENT AND MANUFACTURE OF HiANSFORMERS. CHOKLS, HTC.
ELECTRONIC. INDUSTRIAL \& ALJIED FIELDS Nain \& Urban, Westbury, L. I., N. Y.

## R. W. HODGSON

RESEARCH \& DEVELOPMENT ENGINEERS ONICS, INSTRINENTATION SETVOMECHA NISMS \& CYBERETICS
Oftce-6600 Ioxington Ave., Hollywood 38. Calif. GLadstone 9680

## Professional Services

R. W. HODGSON<br>I'ATENT AGENT SPECIALIZING Resistered to Practice Before the U. S. \& Office-6G00 Lexington Ate. Hollrwood 38 , Calif All Mat to Box 87 t, Sherman Oaks, Calif. GLadstone 9680

## HOGAN LABORATORIES, INC.

John V. L. Hogan. Pres.
Applicd Research, Development, Engineering
Est. 1929. Electronics, Optics, Mechanisms, Fac-Electro-sensitive recording media. Instrumentation. 155 Perry Stwet, New York 14 CHelsea 2-7855

## the kuljian corporation

Consultants • Engineers - Constructors
ILectonic Control Spechalists
Utifity - Industrial - Chemical
12ju N. Broad St..
Phila. 21, Pa.

## MEASUREMENTS CORPORATION

Research \& Manufacturing Engineers
Hary W. Houck
Jery B. Minter
John M. van Beuren
Specialists in the Design and
Developinent of Electronic Test Instruments Boonton, N. J.

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer $\varepsilon$ Pbysicist
High Frequenc: Heating-Industrial Electronics Applied Physies and Mathematics
549 W. Washitgton Blvd. Chicago 6, III. State 2-8021

NIAGARA ELECTRON LABORATORIES
CONSUlIGTION- DESIGN-CONSTRUCTION
Specializing in solution of problems of electronic and electro-physical instrunentation for the reproblems also invitud laboratory. Industria Andover, New York Cable Address: NIATRONLAB

## MAURICE I. PARISIER \& CO.

Communications Experis International Engineering Consulting RADIO BROADCASTING \& COMMUNICATIONS Planning \& Instaluation Supervision
Conmmunication Equipment for Armed Forces
1475 Broadway New York 36, N. Y. LOngacre 4-543
Offices: Paris-Buenos Aires-San Paulo-Bombay

## PHYSICS RESEARCH LABORATORIES, INC.

Applied Mechanics. Thermodynamics. Heat Transfer, Optics, Magnetic and Electrical Devices. Llec onics, Nuclear Physics.

50: Hempstead Turnpike.
West Hempstead, L. I., N. Y.

PICKARD AND BURNS, INC.
Consulting Electronic Engineers Analysis and Eraluation of Radio Systems of Special Electronic Equipment
240 Highland Ave.
Ncedham 94, Mass

## ALBERT PREISMAN

Consulting Engineer
Telesision, Pulse Techniques, Video
Indust rial Apoliances Affliated with MANACIMETT-TRAINING ASSOCIATES
Washington 10. D. C

## JOSEPH RACKER COMPANY

Radar Consultants \& Editors
Technical Manuals
Research and Development
140 Nassan Stret. New York 33, N. Y.
Worth 4-1463

## W. C. ROBINETTE CO.

MOTHON DEADREAT HIGH GALN SERVOS Speed control of any Prime Mover $1 / 2 \%$ to $.001 \%$ average. Electric Transmassions $1 / 2$ to 50 HP plus 802 Fai: Ouks Ave.

South Pasadena, Calif. I'y 11594

SKINNER, HARLAN AND IRELAND, INC,
Consulting Engineers
Specializing in Magnetic Materials and
Their Application
1122 E. 23rd St., Indianapolis 7, Indtana

## THE TECHNICAL <br> MATERIEL CORPORATION <br> Communications Consultants

 Sustems EnrincerinaGenerai Offices and Laboratory
121 Spencer Place, Mamaroneck, N. Y.

## TELECHROME, INC.

Electronic Design Epecialist
COLOR TELEVISION EQUIPMENT Flying spot Scanners, Color Smhesizers, Keyers

J R Popkin-Clurman. Pres. \& Ch. Engr
Merrick Rd. Amitrville, L. J., N. Y

## WHEELER LABORATORIES, INC.

Radio and Electronics
Consulting-Research-Development R-F Circuits-Lines-Antennas
Microwave Components- Test Equipment
Harold A. Wheeler and Engineering Staft
Great Neck, N. Y.
Great Neck 2-:806

## WIHTOL LABORATORIES

Consulting - Research - Development Electron tubes-Vacuum and gas tube manufacturing techniques-Glass techniques-Special purpose tubes
2333 Grey Evanston, Iil. Un. $4-\mathrm{T} 96$

ELECTRICAL SALES \& ENGINEERING REPRESENTATIVE Nationally known California Corporation desires with sound background in general electrical insulation fleld, to promote sale of new line of yarns and textile materials for high temperature application. expenses. RW-fone Fectrons 1111 Wilshire Blvd., Los Angeles 17, Callf.

## RADIO and TV ENGINEER

interesting. permanent job, testing and analyzing $V$ sets. FM-AM receivers. high fidelity sound equipment, etc, in NYC lab. Degree and $\begin{gathered}\text { experience in ind } \\ \text { enstry. Familiar with IRE test }\end{gathered}$ methods. Salary commensurate with ability and
experience. Send resume.

320 W. $\begin{gathered}\text { P.7212, Flectronics } \\ \text { 4t.. New York } \\ 36 \text {, N. Y. }\end{gathered}$

## RADIO ELECTRONICS

Prominent New England manafacturer seeks qLaliELECTRONICS MINIATURIZATION field utilizing printed circuits, transistors, etc. Permanent employment assured. Indicate past experience and date available in resume to

33n W. 42 P. 7252 , Flectronics $\begin{gathered}\text { Ner York } 36 . ~ N . ~ Y, ~\end{gathered}$

REPLIES (Box No.): Address to office nearest you HEW YOKh: $\$ .90$ W. f2nd $\$ 1$. (SG)

SAN FRANCISCO: 68 Post St. (1)

## POSITIONS VACANT

ASSISTANT CHIFF Engineer: Ohio company manufacturing electronic equipment has $27-31$ years of anp in capacity of administratlve assistant to the Chief Engineer. Tuties will include enginerring office work, supervision of laboratory projects and occasional traveling. Must have at least 5 years professional experience in circuit design and project supervision. moying expense. Replies held in confidence. Submit resume to P-6785, Electronics.
EXPANDING ORGANIZATION of established manuiacturers' technical representative has opportunity for competent electrical englneer able to work on own initiative in Los Angeles area. Salary and pront sharing will produce must be able to plan his own schedule and assume engineering responsibility for a group of products. Experience in swilchgear, unit substations, and resistance welding equipment valuable. Please send complete details about yourself, necessary starting salary, etc. Communications will be kept confidential if deoaks Blvd., Burbank, California.

## POSITIONS WANTED

CHIEF ENG. or Dept. Head, 13 yrs. res and dev, reg. prof. eng., Plifa. area. PW-7221

FNGINETRRING/SALES Representative east ern area with oilice Washington, D. C., part or full time. Registered Professional Engineer
with excellent electronic background. PVV-7i71, with excelle
SALES ENGINEER age 33 currently selling electronic mfg. industry in east past 6 years Will travel or relocate west coast for right
ENGINEER, ELECTRICAL, 26 , married, B. E.E. 2 years exp. field service engineer o year exp. lab. and sales applications enginee on electro-mechanical devices. Desires position with future as Sales Fngineer in Melropolitan New York. PW-6975, Electronics.
ELECTRONIC ENGINEER, 28, three years experience in the design of electromedical equipment for research including AC\&DC low level amplifiers, stimulators, transducers and

## SELLING OPPORTUNITY WANTED

MTITTARY \& Industry Sales manufacturer's representative selling USAF, Signal Corps, ton, Rome. N. Y.) seeks additional lines and nlants. IRA-6821, Electronics.

## ELECTRONICS ENGINEER

\$12,200—NO FEE
To solve as a specialist complex electronic design and develo
netics, etc.

CONTACT RAY EDWARDS
O'SHEA EMPLOYMENT SYSTEM
64 E. Jackson, Chicaqo, III. Tel-WAbash 2-188-

## DEPARTMENT HEAD

## MISSLLE ELECTRONICS

Prominent well-established aircraft and missile manufacturer offers an out. standing opportunity to a person qualified to head an expanding electronics organization. Salary commensurate with responsibility. Must have at least ten years experience in airborne electronics. five of which should be in missile or radar design and development. Advanced degree preferred. Position reports to chief engineer. Send detailed resume of background. Recent photograph optional.

P-6690, Electronics
520 N. Michigan Ave., Chicago 11, Ill.

## ELECTRONIC ENGINEERS

for design a development work in RADAR

COMPUTERS
DIGITAL TECHNIQUES
with a young progressive company, send resumé of experience and education, with salary requirements,

Electronic Engineering Company


## ELECTRONIC ENGINEER

Here is THE outstanding challengeformer President of successiul electronic instrument manufacturer needs a man to head up new research and development laboratory in San Francisco Bay Area. Well financed and directed. If interested please send detailed resume to

P-7059, Electronics
68 Post St., San Francisco 4, Calif

## BUILD IN WORLD ELECTRONICS CENTER

Metropolitan Oakland Area (MOA) home of the
University of California and close to Stanford University of Calivernia and close to Stanford tation facilities and personnel source for manufacturers, fabricators and marketers in electronics feld. Bestdes its ideal location in shadow of two world-renowned research centers, MOA provides Industry: proximity to users in great electrontcs center: geographic hub of multi-billion dollur West market; sizeable savings in shipping time and cost: major terminus for rail, truck, air, sea acres of level plant sites: phenomenal. continuing G-R-O-W-T-H. For a free FACTBOOK and/or

Alameda County
New Industries Committee Suite 601, 427-13th St. Oakland, Calif.

## 

You gain MORE with W. L. MAXSON. Top salaries . . greater opportunities ... more responsibilities. Advance with W. L. Maxson.

BACKGROUND: Practical and research experience in advanced Electronic Circuits and Systems Engineering DESIGN \& ANAL YSIS, related to: Instrumentation, Fire


National Research Council requires

## COMHUNCAIONS ENCINEF

To study and report on new and existing communications systems and on develop ments in ancillary euipment; to act as liaison officer on radio propagation mat ters. Honours degree in engineering physics or electrical engineering with specializa ion in communications engineering and knowipment oquired Post graduate train ing or experience desirable.

## HILCTRONICS ENGINFR

To carry out research on electronic telecommunications equipment; to design and develop specialized electronic equipmen duties. Honours decree in physics, engineering physics or electrical engineering with specialized training in electronics required. Must have interest and ability in circuit design; must have interest in or experience with electronic computers. Research experience in circuit work would be useful.
Initial salary up to $\$ 5200$ per annum depending on experience and qualifications reference will be given to Canadian applicants.

Apply by mail, giving full details of audincal Branch cil, Ottawa, Ontario, Canada

# ENGINEERS 

## FOR ATOMIC WEAPONS INSTALLATION


#### Abstract

Mechanical Engineers, Electronics and Electrical Engineers, Physicists, Aerodynamicists, and Mathematicians. A variety of positions in research and development open for men with Bachelors or advanced degrees with or without applicable experience.


These are permanent positions with Sandia Corporation, a subsidiary of the Western Electric Company, which operates the Laboratory under contract with the Atomic Energy Commission. The Laboratory offers excellent working conditions and liberal employee benefits, including paid vacations, sickness benefits, group life insurance and a contributory retirement plan.

$$
\text { IOCATE } I N / H E
$$



Albuquerque, center of a metropolitan area of 150,000, is located in the Rio Grande Valley, one mile above sea level. Albuquerque lies at the foot of the Sandia Mountains which rise to 11,000 feef. Cosmopolitan shopping centers, scenic beauty, historic interest, year 'round sports, and sunny, mild, dry climate make Albuquerque an ideal home. New residents experience little difficulty in obtaining adequate housing in the Albuquerque area.

## APPLICATIONS NOW BEING ACCEPTED FOR TECHNICAL WRITERS <br> These are not Civil Service Appointments

Make Application to the
PROFESSIONAL EMPLOYMENT DIVISION


Gorporation
SANDIA BASE ALBUQUERQUE,N.M.


RCA, pioneer and leader in every important branch of radio-electronics, has a permanent position for you if you are an experienced Electronic, Computer, Electrical, Mechanical or Communications Eng!neer . . . Physicist . . . Metallurgist . . . Physical Chemist . . . Ceramist... Glass Technologist.

You may choose to specialize in research, development, design and application. Both commercial and defense projects.

# POSITIONS OPEN IN RESEARCH— DEVELOPMENT—DESIGN—APPLICATION in any of the following fields: 

```
RADAR-
 Circuitry-Antenna Design-Servo
 Systems Information Display Systems
 Stable Elements-
 Intricate Mechanisms
COMPUTERS-
 Digital and Analog-Systems Planning
 -Storage Technique-Circuitry
 Servo Mechanisms - Assembly Design-
 High Speed Intricate Mechanisms
COMMUNICATIONS-
 Microwave-Aviation-Mobile--Spe-
 cialized Military Systems
MISSILE GUIDANCE-
 Systems Planning and Design-Radar
 and Fire Control-Servo Mechanisms-
 and Fire Control-Servo Meche
```

NAVIGATIONAL AIDS-
Loran-Shoran-Altimeters-Airborne Loran
Radar
TELEVISION DEVELOPMENT-
Receivers-'l'ransmitters and Studio Receivers-
COMPONENT PARTS-
Transformer-Coil-Relay_Capacitor -Switch-Motor-Resistor
ELECTRONIC TUBE DEVELOPMENT-
Receiving-Transmitting-Cathode-
Ray-Phototubes and Magnetrons

## ELECTRONIC EQUIPMENT

## FIELD ENGINEERS-

Specialists for domestic and overseas
assignment on military electronic com-
munications and cletection gear.

There's not a temporary job among them. War or depression, IRCA has continued to grow... growth in which you'll share when you launch your lifetime RCA career.
For many other reasons, too, RCA is a good place for you to work. RCA affords unexcelled facilities in pleasant surroundings . . . every chance for advancement in rank and income... enjoyable suburban or country living conditions . . . professional recognition for achievement... modern retirement program. Many Company-paid benefits for you and the family. PLUS modern tuition-refund plan for advanced st udy

Personal interviews arranged in your city.
If you qualify for any of the positions listed above, please send us a complete resume of your education and experience Please state your specialized field preference. Send resume to:

MR. ROBERT E. MCQUISTON, Manager Specialized Employment Division, Depl. 200D, Radio Corporation of America, 30 Rockefeller Plaza, New York 20, N. Y.


## Men of Visian <br> SCIENTISTS ENGINEERS DESICNERS <br> apply CREATIVE engineering to research, development, and design... the KEY to SOLID SUCCESS at GOODYEAR AIRCRAFT

If you are seeking a position where ingenuity personal initiative, and ability count most. investigate the various opportunities ffered by Goodyear Aircraft. We have openings for able, experienced personnel in the following fields:

```
WElectrical Systems
Circuil Analysis
W Analog Computers
~Servomechonisms
Test Equipment
 Applied Mathematics
Elestronics
```

Aerodynamics
P Physics
$\checkmark$ Flight Test
Stress Analysis
Dynomics
Dynamics
$\checkmark$ Structures
Designing in All Fields
$\checkmark$ rool Design
$\checkmark$ rool Planning
$\checkmark$ Tool Processing
$\checkmark$ Industrial Engineerina
Estimation


Openings also exist for welding, civil, and mechanical engineers with experi. ence in metals fabrication. Needed too are personnel with ability and exprivence in technical editing, copywriting, illustration, and photography

Positions are available at several levels; inquiries ace also invited from recent graduates. Liberal salaries are based on eduration, ability, and experience. Paid vacations and holidays, sick leave, insurance, and retirement plans are added benefits.

Goodyear Aircraft is centrally located in the Great Lakes region... in the heart of northeastern Ohio Akron, a community of 350.000 . is a clean and friendly home town to thousands of Goodyear employees and their families who enjoy metropolitan living and fine cultural and educational advantages. Excellent parks, golf coprses, and inland lakes give active, year round enjoyment. The Aircraft diyision is a full-fledged member of the Goodyear family a name famous the world over.
If you are interepted in a secure future, write and give full details to
Mr. C. G. Jones. Salary Personnel Department

## ENGFEERS

# OPPORTUNITIES 

WITH

## SYLVANIA

## Where Product Development

Is The Key To Continuing Growth


#### Abstract

Product development has always played a major role in Sylvania's operations and is largely responsible for the company's growth to 40 plants throughout the nation. Similarly, Sylvania's Electronics Division is continuing its expansion program to accommodate increased development enginecering and manufacturing activities. To engineers this means increasing opportunity with this 51 year old leader in the important field of elec tronics. At the Electronics plants in Woburn, Newton and Ipswich, Massachusetts you will enjoy the unique advantages of small plant operations in suburban areas minutes from the cultural and social activities of Boston. And - with Sylvania's assistance, you may continue your graduate studies at near-by worldfamous universitics.


Positions available for engineers with the following backgrounds

MICROWAVE - with graduate work or experience in microwave theory. Positions will involve applications, measurements, or design of electronic test equipment for semi-conductor devices.

MECHANICAL - with experience in the following fields: 1. Design of small parts, tools, and jigs and fixtures. 2. Design of automatic production equipment.

SOLID STATE PHYSICISTS - Ph.D. or equivalent in experi. ence in physics with a specialty in solid states work preferred. Will study electrical and optical behavior of semi-conducting materials.

METALLURGISTS - advanced degree or experience required Will work on metallurgical preparations of semi-conducting devices.

ELECTRONIC - with graduate work or experience in product or circuit design and development.

Send complefe resume to:
Mr. Robert L. Koller
SYLDANIA $\quad$ ELECTRIC
Electronics Division WOBURN, MASS.

## ELECTRONIC SYSTEMS <br> ENGINEERS <br> Experienced in: <br> Development and Design of Electronic Systems including experience in SERVO DRIVES RADAR MICRO WAVE TECHNIQUES PRECISION TIME <br> MEASUREIMENTS <br> COMPUTERS GYROS SYNCHROS UHF CIRCUITORY

MECHANICAL ENGINEERS
Experienced in:
Design and Development of Mechanical Systems including experience in MACHINE DESIGN
STRESS ANALYSIS MECHANISMS CAM DESIGN GEAR AND GEAR TRAINS


## You can aim high at

 DAYSTROM INSTRUMENTa great new division of an old established company...offers challenging assignments and splendid facilities in a magnificent new plant.

Enjoy ideal working and living conditions within 30 minutes drivirg distance of
world-famous winter and summer resorts ... only three hours from New York or Philadelphia.

Salary in line with ability. Modern benefits program. Interview and moving expenses paid.

Contact

A DIVISION OF DAYSTROM, INCORPORATED ARCHBALD, PENNSYLVANIA

## DAYSTROM <br> Instrument Division



Write, Wire or phone
MR. E. O. COLE, DEPT. J. BendiX Todio DIVISION OF BENDIX AVIATION CORPORATION BALTIMORE-4, MD. Phone: TOWSON 2200 Hakres of the WVild's Jinest Electicnic Equikment

## ENGINEERS DESIGNERS

# SR. TECHNLCIANS 

in radio and electronic system development

## STAVID <br> ENGINEERING, INC.

has openings for GRADUATE ELECTRONIC and MECHANICAL ENGINEERS

Experience in Design and Development of Radar and Sonar necessary.
Broad knowledge of Search and Fire Control Systems; Servo Mechanisms, Special Weapons, Microwave, Antennas and Antenna Mounts, etc. Mechanical Engineer should atso have experience in packaging of Electronic Equipment to Gov't specifications including design of complex cabinets, shock mounts and sway brace structures.

## FIELD ENGINEERS

Qualified to instruct in the operation and supervise installation, maintenance and repair of Radar, Sonar and allied eiectronic equipments in the Field.
A chance to grow with a young and progressive company; salary and advancement commensurate with ability; liberal vacation, sick leave, 9 paid halidays, group life, sickness and accident insurance plans, and a worthwhile pension system.
Personnel Office, 200 W. Seventh St. Plainfield, N. J. - Tel. PI. 6-4806

## Applications ENGINEER

An engineer is needed to study circuitry problems involving the use of small electron tubes and semi-conductor devices: in the applications laboratory of major radio tube manufacturer. A degree in electrical engineering, electronic engineering or physics is required. Salary commensurate with experience and ability. Applicants without experience will be considered. We offer good pay and many employee benefits. Send resume to or apply at

TUNG-SOL ELECTRIC INC.
200 Bloomfield Avenue, Bloomfield, N. J.

## TV DEFLECTION YOKE ENGINEER

An established manufacturer of TV Deflection Yokes and other electronic products offers an exceltent
opportunity for an engineer with experience In manufacturing and supervision of production personnel. Background in design of yokes and winding machinery desiratile.
Manufacturer located in Michigan. Attractive salary arrangement and congenial associates. Please ence to

P-i132, Electronics
520 N. Michigan Ave., Chicago 11, Ill.

# PERMANENT ENGINEERING POSITIONS OPEN WITH WHIRIPOOL CORPORATION 

World's Largest Manufacturer of home laundry equipment ST. JOSEPH, MICHIGAN

## Creative engineering in design and development requiring men of vision and individual ingenuity.

Engineurs, Engineering \& Experimental Department personnel, at all levels of experience needed now and for future consideration. Open positions are in development, design, research. Constantly expanding firm, with strong \& growing emphosis on engineering functions, offers unusual opportunity, incentive, many supplementary benefits, and ideal living conditions in nationally known resort area.

If you are considering a change or qualified to start an engineering career write:

MR. J. M. RANUM, Director of Personnel WHIRLPOOL CORPORATION St. Joseph, Mich.

All inquiries confidential and all will be acknowledged.

## ELECTRONIC

## ENGINEERS

We are expanding our permanent staff of engineers and scientists working in research and development on such problems as:
ELECTRONIC INSTRUMENTATION, MISSILE GUIDANCE, MICROWAVE
APPLICATIONS, DESIGN OF
SPECIAL PURPOSE ELECTRONIC COMPUTERS, TELEMETERING AND COMPLEX CONTROL SYSTEMS

While experience is important, general knowledge and breadth are more important than particular specialties.
If you would like to work in "he stimulating atmosphere of an applied research and development laboratory where ideas are important, initiative is encouraged and associates are competent, we would be pleased to discuss employment with you. Descriptive material available upon request.

> CORNELL AERONAUTICAL LABORATORY, INC. BUFFALO 21 NEW YORK

## STAFF ENGINEERS

## Design and Development

Leading Chicago Electronics firm is seeking the services of qualified men to fill several staff openings in its Electronic Design and Development Division. Persons selected will be given intermediate and advanced level assignments in our Television, Radio and Government Equipment Laboratories.
Experience in monochrome receivers, deflection and high voltage circuits, radiation interference, NTSC color receivers, color generating equipment or UHF systems essential.
These are permanent positions and offer excellent opportunities for advancement. Company has well planned, long range program of design and development.
Please write Mr. Walter Wecker, Personnel Division, giving related experience and educational qualifications.-Or telephone SPaulding 2-0100.

Interviews arranged at your convenience.

## Admiral Corporation

3800 W. Cortland St.

Chicago 47, Illinois

## ELECTRONIC ENGINEERS * PHYSICISTS

## OUR STEADILY EXPANDING LABORATORY OPERATIONS ASSURE PERMANENT POSITIONS AND UNEXCELLED OPPORTUNITY FOR PROFESSIONAL GROWTH IN

## RESEARCH \& DEVELOPMENT

GUIDED MISSILES
TELEVISION
ELECTRONIC NAVIGATION SOLID STATE PHYSICS VACUUM TUBES RADAR

THE EMPLOYMENT DEPT.

ADDRESS<br>ineuiries to CAPEHART FARNSWORTH CORP.<br>FORT WAYNE, IND.

## SALES ENGINEER

- ELECTRONIC COUNTERS
- AUTOMATIC CLERICAL SYSTEM
- DATA HANDLING EQUIPMENT
- DIGITAL CCMPUTERS
- PRECISION TIMING INSTRUMENTS
- automatic machine control
- FIYING TYPEWRITER

Excellent opportunity for a man with electronic background, mechanical aptitude, and IMAGINATION.

Well-established and expanding company.

Please send resume of education and experience to Sales Manager.

## POTIER INSTRUMENT COMPANY

115 Cutter Mill Road, Great Neck, N. Y.

## ELECTRONICS ENGINEERS

 WANTEDSOUTHERN CALIFORNIA

Attractive opportunities offered to Engineers experienced in and qualified to design aircraft flush antennas and radomes.

Complete modern facilities for laboratory testing and evaluation available.

Salary dependent upon experience and ability.

Contact Mr. J. C. Buckwalter, Chiel Engineer

douglas aircraft company, Inc. LONG BEACH, CALIFORNIA

## A NEW Bendix Division! A NEW Electronic Product! NEW JOB OPPORTUNITIES

In our modern plant at York, Pennsylrania, this new division of Bendix Arlation Corporation is producing a new eleetronic product. This division has a big future; and this is your opportunity possibilities for rapid advancement. We id advancement. W need the following:

## - ELECTRONICS ENG.

- MECHANICAL ENG.
 qualified by education or experi-
ence in all phases of electronics.


## YOU BENEFIT

With the Bendix York Division, you will benefit from high wages, paid vacations and holidays and ideal living conditions in beautiful suburban area

Write, Wire or Phone,
Department Y .1


AVIATION CORPORATION YORK DIVISION

Prone: York 5521
York, Pemas.

## YOUNG ENGINEERS WANTED

Recent graduates from engineering colleges in Aeronautical, Mechanical or Electrical Engineering. After a training course at our factory we will locate men in Dallas, Texas, and Los Angeles, California. Prefer men 25 to 30 years of age.

If you are interested in making connections with a company which is geared to war or peace conditions and which has plans for a long-range program independent of Government defense appropriations, we can offer qualified men an excellent future

$$
\mathbf{P}-6742 \text {, Electronics }
$$

330 W. 42 St., New York 36, N. Y.

## TRANSFOMMER ENGINER

We can offer autstanding opportunity to a man with two or more ycors experience in transformer design and development. Position requires initiative and ingeńuity. Excellent future
B.S. in E.E. or equivalent required.

Frec life-accident ond health insurance. Paid holidays and vacation.
Replies kept contidentiol. Contoct F. J.
Kenhedy-
PERMOFLUX CORPORATION
4900 W . Grand Ave. Chicago 39, Illinois

## MOTOROLA INC. NEEDS ELECTRONIC ENGINEERS

Experienced engineers for television receiver and circuit design. Experienced men also needed in U.H.F. and V.H.F. tuner design.

## MECHANICAL ENGINEERS

Experienced mechanical engincers with a degree in M.E. or equivalent. Must have at least five years of actual design experience on electro-mechanical products.

## RADIO ENGINEERS

Experienced in the design of broadcast and shortwave receivers for export use.

## ELECTROCHEMISTS

Experienced electro-chemists needed in our fast growing plated circuit diviston.

Salaries commensurate with ability and experience. Excellent opportumities for advancement. More than the usual em. ployee benefits.

Your reply will be kept in strivtest con fidence. Include a summary of four edu cation, background and experience when you write 10

PERSONNEL DEPARTMENT CONSUMER PRODUCTS DIVISION MOTOROLA INC.
4545 W. AUGUSTA BLVD CHICAGO 51, ILLINOIS.

## ELECTRICAL and ELECTRONIC ENGINEERS

Excellent opportunities in the field of
AUDIO AMPIIIFER DESILN SERVO AMPIIFIER DESILN COMPONENT DEFLOPMENT faUIPMENT DESIGN Senior and Junior Engineers

Write, giving full details to:
Personnel Director, Dept. A, GIBBS MANUFACTURINa AND RESEARCH CORPORATION

Janesville, Wisconsia

We desire personnel of the highest caliber-experienced in the field of airborne automatic electro-mechanical control equipment.

## ENGINEERS <br> mechanical design <br> ELECTRONIC SERVO

This work deals with the manufacture and development of highly complex equipment of the most advanced type in a new and expanding division of an established firm with 20 years of successful experience in the precision instrument field.

We cite a few of the good reasons why you might like to join our organization...

SALARY increases are based on merit and initiative-two weeks VACATION, HOSPITALIZATION BENEFITS, GM's Own INSURANCE PLAN-POSITIONS ARE PERMANENT due to long range manufacturing and doveloping pro grams-EXPENSES incident to interviews and moving all absorbed by company-HOUSING and LIVING CONDITIONS among the best and lin est of any along Lake Michigan.

## DESIGNESS-LAYOUT MEN <br> ELEGTRONIC mechanical

- We have a Junior Engineering Training Program of one year for inexperienced ongineering graduates. Opportunity to be come acquainted with all phases of
- For the convenience and direct use of engineers in our Engineering Department we have our own model shop where high. est skilled mechanics are employed.
- Educational opportunities for advanced degrees available at $U$. of W., Marquette. Technical engineering offered at Milwaukee Vocational School.


## General Motors Corpopation

1925 E. KENILWORTH PL.
MILWAUKEE 2, WIS.

## An invitation to

## Engineers \& Physicists

Investigate the outstanding recard of achievement and future plans of

## melpar, inc.

The Research Laboratory of Westinghouse Air Brake Co. and its subsidiaries


## ELECTRONIC ENGINEERS

EE or ME degree, minimum 3 years' experience in research and development work involving circuit development, servo-mechanisms, analogue computers or related equipment.
FIELD REPRESENTATIVES
A few openings for graduate engineers only with backgrounds similar to above. Continental U.S.A.

## What You Can Expect at

General Precision Laboratory
A young company of young, successful men, firmly established as designers and namufacturers of electronic equipment . $:$ a medium sized staff in which you receive individual recognition a policy of promotion-from-within that helps qualified men move ahead swiftly a modern laboratory lociterl in a pleasint suburban community ideal for family living.

Expenses will be paid for qualified appli-
cants who come for interviews. Please sub-
GENERAL PRECISION LABORATORY
incorporated
a Subsidiary of general precision equipment corporation 63 BEDFORD ROAD, PLEASANTVILLE, NEW YORK

## ENGINEERS

Real ability and originality can find new challenge and opportunity in Southern California with a leading west-coast electronic development and manufacturing organization.

## Electronic Engineers

Experienced in design-development of electronic devies.
Radio Receiver Specialists
Engineer standard and display types-V.H.F.-
U.H.F. areas.

## Mechanical Engineers

To design electro-mechanical equipment items.
Solid State Physicists
To work in field of transistors and semi-conductor devices.

Relocation expense allowed accepted candidates.
Excellent conditions including reguiar advance review. health and disability insurance. to hour week, standard oaid holidays and annual vacations. Relocation
should not disturb urgent military oroiects.
"Send complete resume with invoice history \& requirements to engineering employment mgr."

# Hofflman hatoraroens. hec 

3761 SO. HILL ST.
LOS ANGELES 7, CALIF.
(A Subsidiary of Hoffman Radio Corp.)

## TRANSFORMER ENGINEER

With experience in design and development of transformers for electronic applications, and capable of assuming the position as head of a design section on this type of equipment. All replies will be held confidential and should include details of educa. tion, experience and salary de. sired.

## MOLONEY ELECTRIC COMPANY <br> ST'. LOUIS, 20 MISSOURI

WILCOX ELECTRIC COMPANY, INC. KANSAS CITY, MISSOURI ENGINEERS!
with Experience in

- HF and VHF systems
- Aeronautical Equipment
- Application of Advanced Circuit Technique
- Ability to combine associated engineering skills in electronic systems also needed

PROJECT ENGINEERS (2)
who can accept responsibility for successful completion of a system design These positions are available in a company which supplies equipment to the major airways of the world.

Write stating Education \&
A. E. HARRISON, Director of Engineering WILCOX
ELECTRIC COMPANY, INC.
1400 Chestnut Street
Kansas City 27 , Missouri

## UHF and MICROWAVE ENGINEERS

This rapidly growing Organization in south central Wisconsin, approximately 100 miles from Chicago, has several openings for Junior and Senior Engineers in the U.H.F. and Microwave fields.

## UNUSUAL SALARY OPPORTUNITIES

exist under ideal working conditions in large, well-equipped laboratories. Personnel benefits such as sickness, accident, and life insurance in addition to a very liberal pension system are offered.

For more information concerning the positions that are open we invite you to write to Personnel Director, Department $A$.
GIBBS MANUFACTURING \& RESEARCH CORPORATION Janesville, Wisconsin

## Engineers

## Research \& Development Electronic Organs

Well rated company also has government prime contracts.
Reasonable rental housing available. Write giving full details-education and experience.
CENTRAL COMMERCIAL INDUSTRIES
1215 W. Washington Blvd. Chicago 7, III.

## HOUSTON, TEXAS

Precision equipment manufacturer needs qualified experienced engineer for audio and sub-audio transformer design and development. Experience with high permeability alloys desirable. Knowledge of magnetic circuitry must be sufficient for development work on magnetic amplifiers. Salary commensurate with ability.

SOUTHWESTERN
industrial electronics co.
P.O. BOX 13058 HOUSTON 19, TEXAS

## ENGINEERS

## AND

## PHYSICISTS

BS-MS-Ph.D:

Responsible positions in mechanical, electrical or electronic engineering, physics or engineering physics for advanced development and design of special equipment and instruments. Prefer men with minimum of two years' experience in experimental research design and development of equipment, instruments, intricate mechanisms, electronic apparotus, optical equipment, servomechanisms, control devices and allied subjects. Positions are of immediate and permanent importance to our operations. Southwestern location in medium sized community. Excellent employee benefits. Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential.

## Ind. Rel. Manager <br> Research \& Development Dept. <br> PHILLIPS <br> PETROLEUM COMPANY

Bartlesville - Oklahoma

## WANTED

ENGINEER WITH
EXPERIENCEIN VHF or UHF

Interesting creative work with the most resourceful and progressive firm in the field of television equipment.

This position is permanent. It will offer every opportunity for unlimited advance. ment and for developing a successful career. The plant is now housed in a newly-arquired larger building, only 22 miles from downtown New York Cify. The surroundings and atmosphere are stimulating ond congenial.

## Attractive Salary

Write stating qualifications.
BLONDER-TONGUE LABORATORIES
526-536 NORTH AVENUE WESTFIELD, NEW JERSEY

## CAREER OPPORTUNITIES

## Evfineens and PHYSICISTS

Desiring the challenge of interesting, diversified, important projects Wishing to work with congenial associates and modern equipment and facilities Seeking permanence of offiliation with a leading company and steady advancement Will find these in a career here of GENERAL MOTORS.

Positions now are open in ADVANCED DEVELOPMENT and PRODUCT DESIGN, INDUSTRIAL ENGINEERING, TEST and TEST EQUIPMENT DEVELOPMENT.

## COMMERCIAL AUTOMOBILE RADIO

MILITARY RADIO, RADAR AND ELECTRONIC EQUIPMENT
ELECTRONIC COMPONENTS
TRANSISTORS AND TRANSISTOR AND VACUUM TUBE APPLICATIONS INTRICATE MECHANISMS such as tuners, telemetering, mechanical linkage, controls, etc.

ACOUSTICS-loud speakers, etc.
Inquiries invited from recent and prospective graduates as well as experienced men with bachelors or advanced degrees in physics, electrical or mechanical engineering, chemistry, metallurgy.
Salary increases based on merit and initiative.
Vacations with pay, complete insurance and retirement programs.
Location is in a low living cost center.
Relocation expenses paid for those hired.

DELCO RADIO DIVISION
GENERAL MOTORS CORPORATION Kokomo, Indiana

## GENERAL MAGNETICS INC.

has openings for

## ELECTRICAL ENGINEERS

With at least three years experience in design and development of MAGNETIC SERVO AMPLIFIERS.
A chance to grow with a young and progressive company. Salary and advancement commensurate with ability. State education, experience and salary requirements.
Address all inquiries to:
GENERAL MAGNETICS INC.
135 Bloomfield Ave.
Bloomfield, N. J.

# ELECTRONIC ENGINEERS 

Wide range of experience including design of wide band receivers, radar display systems, analogue computers, servo systems \& CR oscillographs ...thorough knowledge of RF circuits, wave shaping, pulse forming, triggers \& gates (microwave techniques unnecessary)
A FEW KEY POSITIONS ...
Opening of our own manufacturing facilites creates permanent positions Opening of our own manumacturng vial. long-range products.
CONSIDER THESE ADVANTAGES . .
Gracious country tiring fiee from big-ctty pressures, prorldes a relaxing atmosphere in which you can do your best work. ... set within relaxing atmosphere in which you can do your best city. easy reach of the cultural advantages or sew for ch. Association with an established yet growing organization with few
coinpetitors in the fleld where your merit and ability are glven full competitors in the fleld, where your merit and
consideration. premium orertime. . . moring expenses paid.
TAKE ADVANTAGE OF THIS OPPORTUNITY NOW!
Address all inquiries to J. H. McCann


DANBURY CONNECTICUT

SEARCHLIGHT SECTION



## IMMEDIATE

DELIVERY FROM STOCK
GENERAL ELECTRIC ARMA CONTROL INSTRUMENT BENDIX FORD INSTRUMENT KETAY HENSCHEL DIEHL

## men




#### Abstract

  


## SYNCHROS

ARMY ORDNANCE-NAVY ORDNANCE-COMMERCIAL

| A Y-101D | 5D | 6DG | X | 2JD5E1 | C-78248 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ICT | 5DG | 6G | ${ }_{2}{ }^{\text {J1F1 }}$ | C-44968-6 | C-78249 |
| IDG | 5 F | 7DG | $2 \mathrm{~J} 1 \mathrm{Cl}^{\text {d }}$ | C-56701 | C-78254 |
| $1 F$ | 5G | 7G | $2 \mathrm{~J} 1 \mathrm{H1}$ | C-56776-1 | C-78410 |
| $1 G$ | 5 N | A | $2 \mathrm{~J} 1 \mathrm{M1}$ | C-69405-2 | C-78411 |
| IHG | 5SF | B | $2{ }^{2} 5 \mathrm{AA}_{2}$ | C-69406 | C-78414 |
| 15 F | 5SG | M | $2 J 5 D 1$ | C-69406-1 | C-78415 |
| 5 B | 6CT | N | $2{ }^{2} 5 \mathrm{HA1}$ | C-77610 | C-78670 |
| SCT |  |  | 2 JD5A2 |  | C-79331 |
| SYNC | SYNCHRO CAPACITORS | HRO | SYNCHR <br> OAD IND | OWN FUSE RS | ICATORS |

TYPE "J" POTENTIOMETERS \$1.25 ea.


| DUAL "J' POTS-\$2.95 |  |  |  |
| :---: | :---: | :---: | :---: |
| 50 SS | 330 BS | 2500 SS | 2.5 |
| 100 SS | 500 SB | 10 K SS |  |
| 250 SS | 1 K SS | 1 meg ss | 1 K |
| TRIPLE "JJJ' |  | POTS-\$3.95 ea. |  |
| 00K/1 | /100K | 20K/ | K/15 |

ANTENNAS


AN G6A/AP/O(SCR-521)
ASB Yaoi-5 element 450 to 560 MC .
ASB Yagi二Double stacked 6 element
TACHOMETER GENERATOR
Elinco type PM-1.M-2.0 VDC output per 100 RPM
Brand New
AIRBORNE TV EQUIPT.—mfd. by RCA Conversion Unit-CRV-59AAE-Complete with Lens
and plete; Dynamotor-28VDC 25 Amp. Excellent for instruction or Demonstration Purposes.

## $2 \phi$ LOW INERTIA SERVO MOTORS

 DiehI FPE-25-11-75V 60 cy. . 11 Amid 4 Watts. KOLLSMAN-45 Volt 60 cycle 4 watts 1500 RPM newPIONEER-10047-2.A 26 volt 400 cycle with $\$ 22.50$
reduction gear


## RELAYS

Sigma type $4 A H-2000 \Omega 4$ ma DC coil-SPOT con.
tacts-hermetically sealed
5 Stevens Arnold type 171 Millisec relay- 900 ohm coil SPST NO contacts................................ Cutler Hammer and Square D type B-7A contactor-
24 VDC coil-SPST NO 200 Amp contacts. $\$ 4.75$
Prise
 NO doublo bk 30 A contacts
G.E. CR5181-1A 30 A 15 V 60 cy . AC contactor 4 PST tacts
BM-lis $\quad 60$ cy. AC coil-DPDT 3 amp tacts type 5 F-Coil 3500 ohms-pulls in $@ 25 \mathrm{M}^{2}$ Sigma type 5 F - Coil 3500 ohms-pulis in $@ 2.5 \mathrm{MA}$
out @ $.5 \mathrm{MA}-\mathrm{copper}$ slug for slioht time delay.
 Sigma type 5RLP-Dual coii 60 ohms each, puils in
@ 12 MA out @ 10 MA . Contacts-SPDT 2 Leact tyDe i521-Coil i15 VAC 60 cy-Contacts
SPST
Double Break 15 Amp- Mycalex Insul. Modei ic2H-ilov 60 cy motor interval Cramer model ic2H-ilov 60 cy. motor. interval
timer-two SPST $15 A$ contacts (on 1 hr. off 1 hr.) can be adjusted.... contacts (on hr. off $\mathbf{~} \mathrm{lr}$. ${ }^{\text {) }}$ Weston Moddei 813-MR-5-Instrument type-Coil 1000
ohm 350 micro amp-contacts SPDT $35 \mathrm{ma} . \$ 16.50$ TRANSFORMER
Wostinghoune-Hupersil-Pr-115V $60 \mathrm{cy}-3 / \mathrm{KVA}$




## GENERATORS AND INVERTERS

 Output. AC 115 V 10.4A 800 to 1400 cy . ID: $\quad \$ 38.50$
Volts 60 Amos. Brand new. Eclipse-Pioneer tyoe $1235-\mathrm{AA}$. Output- 30 Volts DC 15 Amps. Brand New-Original Packing... \$15.50
PE-109 inverter- 13.5 VOC to 115 VAC 400 cy 175 VE-218 Inverters 28 VDC to in VAC 400 cy 1500 VAer Tow inverter-28VDC to 120 V 800 cy 7 ama AC (used)
$\qquad$ ATR inverter 6 VOC to 110 VAC 60 cy $75 \mathrm{~W} . \$ 32.50$
 Eclipse. Pioneer type $1212 i-i A$ inverter-Voitage and
 Eclipse-Pioneer type 12116 inverter-28 VDC $\$ 225.00$ VAC 400 cy 1 os 50 VA
 Leland 10563 inverter- 28 VDC to iis VAC 400 cy
3 . 115 VA ............................. $\$ 75.00$

## VARIABLE TRANSFORMERS

Amertran-Type RH-Input 115 V 400 cycles. Output




## CERAMIC-CASED TYPE G

 MICA CONDENSERS.09 MFD 1500 VDC GI
02 MFD 3000 VDC GI

Terms $20 \%$ cash with order, balance C. O. D. unless roted. All prices net $F$. O. B. our warehouse, Phila., Penno., subject to change with

CABLE ADDRESS - "LECTRONIC PHILADELPHIA"


| PRICE <br> 1.95 | TYPE <br> 450 Tl | PRICE |
| :---: | :---: | :---: |
| 9.95 | 450 TL . | 45.00 |
| 24.95 | 464A. | 9.95 |
| 19.00 | 471 A | 2.75 |
| 8.95 | 527 | 15.00 |
| . 95 | WL530. | 3.50 |
| 18.00 | WL531. | 22.50 |
| 10.00 | WL533. | 17.50 |
| 12.95 | 700^/D. | 25.00 |
| 4.95 | 701A | 7.50 |
| 22.50 | 703 A | 6.95 |
| 19.95 | 705A. | 3.95 |
| 3.00 | 707A. | 17.95 |
| 3.00 | 707B.. |  |
| 10.00 | 714AY | 17.95 |
| 10.00 | 715A. | 7.95 |
| 4.95 | 715B.. | 12.00 |
| 5.95 | 715 C | 25.00 |
| 6.95 | 717 A | 1.95 |
| 3.95 | 718AY/EY. | 48.50 |
| 15.00 | 719A. | 29.50 |
| 3.95 | 721 A . | 3.95 |
| 6.95 | 722 A . | 3.95 |
| 6.95 | 723A/B | 24.95 |
| 5.95 | 724 A . . | 4.95 |
| 20.00 | 724B.. | 6.95 |
| 6.95 | 725 A . | 9.95 |
| 2.95 | 726A | 24.00 |
| 4.95 | 726 B . | 56.00 |
| 2.95 | 726 C | 69.00 |
| 7.95 | 728 AY | 27.00 |
|  | 730 A . | 24.00 |
| 17.95 | 801 A | 1.00 |
| 19.95 | 802. | 4.25 |
| 1.95 | 803. | 7.95 |
| 5.40 | 805. | 5.95 |


| TYPE | PRICE | TYPE | PRICE |
| :---: | :---: | :---: | :---: |
| 806. | 27.50 | 955 | . 55 |
| 807 | 1.69 | 956. | . 69 |
| 808 | 3.50 | 957 | . 29 |
| 810 | 11.00 | 958 A . | . 69 |
| 811 A | 3.95 | 991 | . 65 |
| 813. | 9.95 | F1148. | . 35 |
| 814. | 3.95 | 1280. | 1.25 |
| 815. | 3.50 | 1611 | 1.95 |
| 816 | 1.45 | 1613. | 1.38 |
| 829 | 12.95 | 1616. | 2.95 |
| 829 A | 13.95 | 1619 | . 89 |
| 829 B . | 15.95 | 1622. | 2.75 |
| 830 B | 2.50 | 1624. | 2.00 |
| 832. | 7.95 | 1625. | . 45 |
| 832 A | 9.95 | 1851 | 1.85 |
| 833 A | 49.95 | 2050. | 1.85 |
| 834. | 7.95 | 2051 | 1.80 |
| 836 | 4.95 | 8012. | 4.25 |
| 837 | 2.95 | 8013 | 2.95 |
| 838 | 6.95 | 8013 A . | 5.95 |
| 845 | 5.59 | 8019. | 1.75 |
| 849 | 52.50 | 8020 | 3.50 |
| 851 | 80.50 | 8025 | 6.95 |
| 860 | 4.95 | PD8365 | 89.00 |
| 861 | 29.50 | 9001 | 1.75 |
| 866A. | 1.79 | 9002 | . 95 |
| 869 B | 57.50 | 9003 | 1.75 |
| 869 BX | 35.00 | 9004. | 1.75 |
| 872 A . | 3.95 | 9005 | 1.90 |
| 878. | 1.95 | 9006 | . 35 |
| 884 | 1.95 |  |  |
| 885 | 1.75 | Minimum Order |  |
| 88913 | 199.50 |  |  |
| 914. | 75.00 5.00 |  |  |
| 954. | . 35 |  |  |

## MICROWAVE TEST EQUIPMENT TS148/UP SPECTRUM ANALYZER

Field type $X$ Band Spectrum Analyzer, Band 8430 9580 Megacycles.

Will check Frequency and Operation of various $X$ Band equipment such as Radar Magnetrons, Klystrons, TR Boxes. It will also measure pulse width, c-w spectrum width and $Q$ or resonant cavities. Will also check frequency of signal generators in the $X$ band. Can also be used as frequency modulated Signal Generator etc. Available new complete with all accessories, in carrying case.

Also arailable of new production TS239A Synchroscope.

## Other test equipment, used checked out, surplus.

TSK1/SE K Band Spectrum Analyzer
TS3A/AP Frequency and power meter $S$ Band RF4A/AP Phantom Target $S$ Band
TS10/APN Altimeter Test Set TS12/AP VSWR Test Set for X Band TS13/AP X Band Signal Generator TS14/AP Signal Generator TS15/AP Flux Meter
TS16/AP Altimeter Test Set
TS19/APQ 5 Calibrator
TS33/AP X Band Power and Frequency Meter TS/34AP Western El Synchroscope
TS34A/AP Western El. Synchroscope

T35/AP X Band Signal Generator TS36/AP X Band Power Meter TS47/APR 40-400 MC Signal Generator TS69/AP Frequency Meter 400-1000 MC TS100 Scope
TS102A/AP Range Calibrator TS108 Power Load TSllo/AP S Band Echo Box TS125/AP X Band Power Meter TS126/AP Synchroscope TSi47 X Band Signal Generator TS251 Range Calibrator APN9 TS270 S Band Echo Box

TS174/AP Signal Generator TS175 Signal Generator TS226 Power Meter
TS239A Synchroscope

## SURPLUS EQUIPMENT

APA10 Oscilloscope and panoramic receiver APA38 Panoramic Receiver APS 3 and APS 4 Radar APR5A Microwave Receiver APT2 Radar Jamming Transmitter APT5 Radar Jamming Transmitter

```
MINIMUM ORDER
25 Dollars
```


## YOU CAN REACH US ON TWX NY1-3235

```
Cables: TELSERSUP
```


## SPECIAL

Wide Band 5 Band Signal Generator $2700 / 3400 \mathrm{MC}$ using 2 K 41 or PD 8365 Klystron, Internal Cavity Attenuator, Krecision, individually calibrated Frequency measuring Cavity. CW or Pulse Modulated, externally or internally.

Large quantities of quartz crystals mounted and unmounted.
Crystal Holders: FT243, FT171B others.
Quartz Crystal Comparators.
North American Philips Fluoroscopes Type 80. Large quantity of Polystyrene beaded coaxial Cable.



## SYNCHROS

 D. C MOTORS A.C MOTORS INVERTERS SERVO MOTORS actuators geAR MOTORS generators WanulacturersSpeeifications gu to Weet Oniginal Wancuis

- A-C AIRCRAFT MOTOR - G-E \#5K3IGJll. 200 volts. 3
phase 400 cycle @ 20 omps. 9800 rpm . @ 40 ounce feet.
- A-C AIRCRAFT MOTOR - G-E \#5K3IGJll. 200 volts. 3
phase 400 cycle @ 20 amps. 9800 rpm . @ 40 ounce feet. (Approx. 3/4 hp.) Thermol protected. $9^{\prime \prime} \times 51 / 2^{\prime \prime}$ diam. Weighs 17 lbs. SA. 402
- SELF-EXCITED 400 CYCLE GENERA TOR - G-E \#5ASB31JJ3. Output 115 volts 400 cycle, @ 7.2 amp . Designed for pulley drive@8000 rpm. 6" long $\times 6^{\prime \prime}$ diam. Only small qty. available. $x$ o diam. Only small qty. available.
SA-292 .............................. ea. $\$ 129.50$
- REVERSIBLE DUAL SPEED D-C MOTOR - John Oster Type, DESTU-2-IR Western Electric \#KS-15170-LOI. 26 volts @ 1.3/2.3 amps. 4500/10,000 rpm. @ 2 oz.-in. torque. $4^{\prime \prime}$ long $x$ $21 / 4^{\prime \prime}$ diam. 3/16" shaft extends $3 / 8^{\prime \prime}$ Weighs 2 lb . SA- 228
- AIRESEARCH LINEAR ACTUA. TORS - 4 types available; AR-42 AR-46, AR-4017, and AR-63 volts, 400 cycle single phase. Compression and tension 25-50 ib. static 200 lbs. Approx. $4^{\prime \prime}$ travel. Wt. 1.5 lb \#SA-326........ $\$ 19.50$
- TEMPERATURE INDICATOR - Edi son \#P109-C127A. FSSC \#88-1-2815 Minus 10 plus 120 deg. C. 24.28 volts d-c. Wheatstane-bridge type of instrument. Used with resistive type sensitive element. Weighs 1 lb . SA. 410 .
. $\$ 3.75$
- PIONEER 12120-4-A INVERTER Input 115 volts d.c @ 1.0 amp. Output 115 volts 400 cycle single phase (a) 45 amp . Shown with magnetic amplifier. SA. 406
589.50
- AIRCRAFT GENERATOR - Eclipse \#716-3A, Navy \#NEA.3. Dual output, 115 volts @ 10.4 amps., 800 cycles and 30 volts d-c@ 60 amps. Driving speed 2400 rpm. Weighs 44 lbs. SA-306


- G-E AMPLIDYNES

549.50
139.50
139.50
169.50
169.50
169.50
169.50
43.50
- AMPLIDYNE MOTORS

27 volts d-c field, 60 volts $d$-c armature
SA. 345 5BA50LJ22
SA-318 5BA 501 J67
SA- 173 5BA50LJ2A
SA-2986 5BA25DJ300
SA-298d 5BA55JJ3
SA-394 5BA50LJ29
SA-395 5BA50LJI
SA-396 5BA50GJ1
SA.298C 5BA55EJ8
nature.
$\$ 29.50$
49.50
49.50
49.50 49.50
49.50 49.50
49.50
49 49.50 $\begin{array}{r}49.50 \\ \hline 9.50\end{array}$ 49.50
49.50 49.50

- NAVY SYNCHRO CAPACITORS - Delta connected. Sec. tions motched to $1 \%$. Improves accuracy of synchre sys. tems when used with each control transformer and dif. ferential.
SA. 127 Type 1 C 1.8 mfd. ea. ......................................... $\$ 2.75$

| SA-155 Type $3 C$ | 30 mfd ea. ........................................ |
| :--- | :--- | A-205 Type of 60 mfd . SA-205 Type oC 60 mfd . ea. $\qquad$ SA-346 G-E \#25F879.9 mfd. ea. .................................... 4.75 Weighs 17 lbs. SA. 402 \$8......................................... $\$ 8$

- BALL BEARING D-C MOTOR Manuf. Russell Electric. Navy \#211221. 24 volts d-c@8.8 amps. 3/16 hp. @ 3550 rpm .40 deg. C. temp. rise, continuous duty. Compound wound, $8^{\prime \prime}$ long $\times 5^{\prime \prime}$ diam. $1 / 2^{\prime \prime}$ shaft extends $11 / 2^{\prime \prime}$. Ball bearing construc. tion. Weighs 21 lbs. SA. 397 .... 59.75
- DUAL D-C OUTPUT GENERATORS Manuf. Fractional Motors \& Russell Electric, Navy \#211219. Input 3/16 hp. @ 3450 rpm. Output \#1, 240 volts (a) . 1 amp. Ouptut \#2, 12.5 volts @ 4.0 amps. Ball bearing construction. $9^{\prime \prime}$ long $\times 5^{\prime \prime}$ diam. $1 / 2^{\prime \prime}$ shaft extends $11 / 2^{\prime \prime}$. Weighs 21 jbs. SA. 398 .... $\$ 9.75$
- D.C GENERATOR - Manuf. Russell Electric. Navy \#211220 - Input 3/16 hp. @ 3450 rpm. Output 86 watts @ 430 volts. Ball bearing construction. $9^{\prime \prime}$ long $\times 5^{\prime \prime}$ diam. $1 / 2^{\prime \prime}$ shaft extends $11 / 2^{\prime \prime}$. Weighs 21 lbs. SA-399 ... $\$ 9.75$
- REMOTE POSITION TRANSMITTER - GE 8TJ9. 360 degrees (Continuously rotatable) patentiometer Tops @ 120 deg. Two contacts 180 deg. apart. 24 volts d-c. Weighs 4 oz. SA-13 .. 53.75

- alrcraft a-c rotary actuator
- Ritter \#D.2163. 208 volts, 3 phase, 400 cycle. Gear ratio 5580: 1. 1 rpm. output (a) 500 in-lb torque. Thermoprotected. Built-in potentiometer fol. low-up and limit switches. Used on Northrop Flying Wing. $11^{\prime \prime}$ long $x$ $41 / 2^{\prime \prime}$ diam. $1 / 2^{\prime \prime}$ shaft extends $2^{\prime \prime}$. $41 / 2$ diam. ${ }^{1 / 2}$ shaft extends 2.
Weighs 10 lbs. SA. 400
- 400 CYCLE BRAKE MOTOR - AiResearch \#27770. 115 volts single phase. 03 hp . @ 6500 rpm .4 .6 oz -in torque. Used with 2.5 mfd . capacitor. $23 / 4^{\prime \prime}$ long $\times 15 / 8^{\prime \prime}$ diam. $3 / 16^{\prime \prime}$ shaft extends $3 / 4^{\prime \prime}$. Weighs 1 lb . SA. 392 a ....... $\$ 8.75$
- AIRESEARCH \#277B0 - Similar to SA-392a above except .025 hp . and shaft detail. SA-392b ................................ $\$ 8.75$
- AIRESEARCH \#27652 - Similar to SA-392a except it does not have brake and 5500 rpm . speed. SA-392c ........ $\$ 8.75$
- AIRCRAFT A.C ROTARY ACTUATOR - Ritrer \#D2162. 208 volts 3 phase 400 cycle. 1280 watts. With potentiometer follow-up. 600: 1 gear reduction. 20 rpm. output @ 1800 in-lb. torque. Used on Northrop Flying Wing. SA-404 $\$ 165$.
- AIRCRAFT A-C ROTARY ACTUATOR - AiResearch \#291. 80. 200 volts 3 phase 400 cycle. 10,000 in lb. torque, with clutch overload rated @ 11, 250 in-lb. Static 27,000 in-lb. Output speed 7 rpm . Thermal protected motor rated @ 2 hp. Weighs 22 lbs. SA-509 .............................................. $\$ 165$
- MURRAY 2 KVA ALTERNATOR - 115 volts 400 cycle, self-excited single phose generator. 3450 rpm . Mounted on base ready for a motor of your choice. Only 3 available.



Prices F.O.B. Hawthorne
Telephone: HAwthorne 7-3100

1086 GOFFLE ROAD
hawthorne, new jersey
Cable Address: SERVOTEK


## A LEADING SUPPLIER <br> A. C. <br> SYNCHRONOUS MOTORS <br> 110 Vt. 60 Cycle <br> HAYDON TYPE 1600, $1 / 240$ RPM HAYDON TYPE 1600, $1 / 60$ RPM HAYDON TYPE 1600, 4/5 RPM HAYDON TYPE 1600, 1 RPM HAYDON TYPE 1600, 1 1/5 RPM TELECHRON TYPE B3, 2 RPM TELECHRON TYPE BC, 60 RPM HOLTZER CABOT, TYPE RBC 2505, 2 RPM, 60 oz .1 in . torque.

## SERVO MOTORS

PIONEER TYPE CK1, $2 \boldsymbol{\phi} 400 \mathrm{CYCLE}$ PIONEER TYPE 10047-2-A, $2 \phi, 400$ CYCLE, with 40:1 reduction gear.

## D. C. MOTORS

BODINE NFHG-12, 27 VTS., governor controlled, constant speed 3600 RPM, $1 / 30$ H.P.

DELCO TYP 5068750, 27 VTS., 160 RPM, built in brake.
DUMORE, TYPE EIY2PB, 24 VTS., 5 AMP., . 05 H.P., 200 RPM.
general electric, type 5BAIOAJIBD, 27 VTS., 110 RPM, 1 oz .1 ft . torque.
GENERAL ELECTRIC, TYPE 5BA10AJ37C, 27 VTS., 250 RPM, 8 oz., 1 in. torque.
BARBER COLMAN ACTUATOR TYPE AYLC 5091, 27 VTS., . 7 amp., 1 RPM, 500 in. lbs. torque.
WHITE ROGER ACTUATOR TYPE 6905, 12 VT., 1.3 amp., $11 / 2$ RPM, 75 in . bs. torque.

## AMPLIDYNE AND MOTOR

AMPLIDYNE, GEN, ELEC. 5AM31NJ18A input 27 vts., of 44 amp. output 60 vts. at 8.8 amp., 530 watts.

MOTOR, GEN. ELEC. 5BA50LJ22; armature 60 vts. at 8.3 amp., field 27 vts, of 2.9 omp. $1 / 2$ H.P., 4000 RPM.

## PIONEER AUTOSYNS 400 CYCLE

TYPE AY1, AY5, AY14G, AY14D, AY20, AY27D, AY38D, AY54D.
PIONEER AUTOSYN POSITION.
INDICATORS \& TRANSMITTERS.
TYPE 5907-17, single, ind. dial graduated 0 to $360^{\circ}, 26$ vis., 400 cycle.
TYPE 6007-39, dual Ind., dial graduated 0 to $360^{\circ}, 26$ vts., 400 cycle.
TYPE 4550-2-A, Transmitter, 2:1 gear ratlo 26 vts., 400 cycle.

## INVERTERS

WINCHARGER CORP. PU 16/AP, MG750. input 24 vts. 60 amps. outputs 115 vts., 400 cycle, 6.5 amp., 1 phase.
HOLTZER CABOT, TYPE 149F, input 24 vts. at 36 amps., output 26 vts. at 250 V.A. and 115 vits. at 500 V.A., both 400 cycle, 1 phase.
PIONEER TYPE 12117 , input 12 vts., output 26 vts. at 6 V.A., 400 eycle.
PIONEER TYPE 12117 , input 24 vts., output 26 vis. at 6 V.A., 400 cycle.
WINCHARGER CORP., PU/T, MG2500 input 24 vts, at 160 amp., output 115 vts. af 21.6 amp., 400 cycle, 1 phase.
GENERAL ELECTRIC, TYPE 5D2INJ3A, Input 24 vts. at 35 amps., output 115 vts. at 485 V.A., 400 cycle, 1 phase.
LELAND, PE 218 , input 24 vts . at 90 amps. onitput 115 vts. at 1.5 K.V.A., 400 cycle, 1 phase.
LELAND, TYPE D.A. input 28 vts., af 12 amp. output 115 vis, at 115 V.A., 400 cycle, 3 phase.

## ENGINE HOUR METER

JOHN W. HOBBS, MODEL MI-277 records time up to 1000 hours, and repeats, operates from 20 to $\mathbf{3 0}$ volts.

## VOLTAGE REGULATOR

LELAND ELEC. CO. TYPE B, CARBON PILE. Input 21 to 30 volts D.C. reguiated output 18.25 vts. at 5 amp .
WESTERN ELEC. TYPE BC937B, input 110 to 120 volts 400 cycle. Output variation 0 to 7.2 ohms at 5 to 2.75 amps.
WESTERN ELEC, TRANSTAT, input 115 vts., 400 cycle output adjustable from 92 to 115 vis., rating . 5 K.V.A.
AMERICAN TRANS. CO., Transtat input 115 vts., 400 eyele output 75 to 120 vts. or 0 to 45 volts, rating .72 K.V.A.

## SYNCHROS

1 F SPECIAL REPEATER 115 vt. 400 cycle. 2JIF1 GENERATOR, 115 rt. 400 cycle.
2JIF3 GENERATOR, 115 vt. 400 eycle.
$2 J 1 G 1$ CONTROL TRANSFORMER 57.5 vt. 400 cycle.
2J1HI DIFFERENTIAL GEN. $57.5 / 57.5 \mathrm{vt}$. 400 cycle.
5G GENERATOR, 115 vf .60 cycle.
5DG DIFFERENTIAL GEN. $90 / 90$ vts. 60 cycle.
5HCT CONTROL TRAN. 90/55 vts. 60 cycle. 5 CT CONTROL TRAN. $90 / 55$ vis. 60 cycle. 5SDG DIFFERENTIAL GEN. $90 / 90$ vts. 400 cycle.

ALL PRICES
F. O. B.

GREAT NECK
N. Y.

## TMNEDATE - FILL DELVER <br> TACHOMETER GENERATOR \& INDICATOR

GENERAL ELECTRIC, GEN. TYPE AN5531-1, Pad mounting 3 phase variable frequency output.
GENERAL ELECTRIC, GEN. TYPE AN5531-2, Screw mounting 3 phase variable frequency output.
GENERAL ELECTRIC, IND. SDJI3AAA, works in conjunction with above generators, range 0 to 3500 RPM.

## D. C. ALNICO FIELD MOTOR

DIEHL TYPE FD6-23, 27 vts. 10,000 RPM.

## GENERAL ELECTRIC D. C. SELSYNS

8TJ9-PAB TRANSMITTER 24 VTS.
8TJII- INDICATOR, dial 0 to $360^{\circ}, 24$ vts.

## RECTIFIER POWER SUPPLY

HAMMETT ELECTRIC MFG. CO. MODEL SPS-130. Input voltage 208 or 230 volts, 60 cycle, 3 phase, 21 amps. Output 28 volts at 130 amps. continuous duty, 8 point tap switch, voltmeter ammeter, thermo reset all on front panel.

## MISCELLANEOUS

PIONEER MAGNETIC AMPLIFIER ASSEMBLY Saturable reactor type, designed to supply variable voltage to a servo motor such as CK1, CK2, CK5 or 10047.
SPERRY A5 CONTROL UNIT, part No. 644836.

SPERRY A5 AZIMUTH FOLLOW-UP AMPLIFIER, part No. 656030.
SPERRY A5 DIRECTIONAL GYRO, part No. 656029,115 vt. 400 cycle, 3 phase.
SPERRY A5 PILOT DIRECTION INDICATOR, part No. 645262 contains AY 20.
ALLEN CALCULATOR, TYPE C1, TURN \& BANK IND., part No. 21500, 28 vts. D. C. TYPE C1, AUTO-PILOT FORMATION STICK, part No. G1080A3.
PIONEER GYRO FLUX GATE AMPLIFIER, type 12076-1-A, 115 vt. 400 cycle.
ALNICO FIELD MOTORS
(Approx. size overall
33,1
and
diameter)
$33 / " x 11 /{ }^{2}$ " diameter)
Drlco-Type 5069230
-
DELCO TYPE \# $0069600: 27.5$ volts DC PM MPM, Delco Type \#5069370: 27.5 volt DC Alnico Field; 10,000 r.p.m.; dimensions
 PM Motor, Dithilige SS FOG-21: 27.5 volt DC Alnico Field; 10.000 r.p.m.; dimensions cter $0.125^{\prime \prime}$ "................................50

AC CONTROL MOTOR
 A. C. SVXCikONOUS NoTOB Type RBC HOLTZER CABOT EYCles 60: RPM
 PIONEER: TYPE CLI EASTERN IIR DEVICES TYPE J19 F; 0.1.t; 7000 r.p.m. Single phase 400 AHRNSEVBCI: $115 \mathrm{v}: 40$ CPS; Single oz. 1 EISTERS AIS DEvicES TYPE JMGB: $200 \mathrm{VAC}: 1$ amp; 3 phase: 400 cycles, EASTVRX IR DEVICES, TYIE J31B: 115 Y. 400-1200 Cycle. Single Phase AIRICSEARCH: AC Induction, 200 y, amps Phase. 400 Cycle, 12 H.P., 6500 RPM Electric Motor: pit-1400-A1-ia Seria No. 207 , 208 V., 400 cycles, 3 phase Kearfott SERVO MOTOR 10047-2-A; 2 Phase; 400 Cycle. with 40-1 Reduction Gear
 TriECHRON SYNCHISO OLS THING MOTORS: 110 VAC: 6 cyele: 2 RPM and 4 overall "pprox. $21 / 4^{\prime \prime}$ spuare $\$ 2.95$ ea. SMALL DC MOTORS
DELCO \#. 066850 : constant speed; 27 VDC 160 RPM; built-in reduction gears and
governo: Sovernow: selies reversible motor; 1/50th

 DC: 5 amps 8 oz inches torgue 250 volts shunt wound 4 leads; reversible $\$ 15.00$ ea.
General Eretrie. Mod. 5 BAloFJ 3 ; 12 oz. inches torque, $12 \mathrm{~V} \mathrm{DC}, 56 \mathrm{RPM}, 1.02 \mathrm{amp}$. General Eleetric-Type 5BA10A $\$ 52 \mathrm{C}$; $\quad 27$ 145 RPM ; shunt wound; 4 leads; reversible GENERAL EIECTIRIC IC MOTOR $\$ 15.00$ eat 5BA10AJ64. $160 \mathrm{r} \mathrm{m} . \mathrm{p}$.; 65 amp ; 12 Moz torque: 27 V DC

WESTiNGIOUSE OVERCURIRNTT RELAY: Type MiN, adiustable from .04-..16 amp. (1210991). External in glass case ..hand calibrated. NEW Low PRICE

## BLOWER


 400-1200 cycle; single
phase; variable fre-


BLOWER ASSEMBLY
115 Volt, 400 Cycle, Westinghouse Type

## SENSITIVE ALTIMETERS

Pioneer Sensitise altimeters, $0-35,000 \mathrm{ft}$ range
brated in 100 's of feet. Baromecric setting adjustment. No hook-up requilred... $\$ 12.95$ ea.

## INVERTERS

10563 LELAND ELECTRIC

## Output: 115 VAC; 400 cycle; 3 -phase:

 115 VA; 75 PF. Input: 28.5 VDC; 12PE 218 LELAND ELECTRIC Output: 115 VAC; Single Phase; PF 90 ; $380 / 500$ cycle 1500 VA, 1nput: 25.28 VDC; DREAND NEW
$\$ 39.95$ ea.
MG 153 HOLTZER-CABOT
Input: 24 V, DC. 52 ampsi Output: 115 volts- 400 cycles, 3 -phase, 750 YA . and 26 quency regulated...... ..........s 95.00 eat. PIONEER 12130-3-B
Output: 125.5 VAC; 1.15 amps, 400 cycle single phase, 141 VA. Input: $20-30$ VDC, 18-12 amps. Voltage and lrequency regu-12116-2-A PIONEER
Output: 115 VAC; 400 cyc; single phase;
45 amp. Input: 24 VDC $5 \mathrm{amp} . . . \$ 90.00$ ea.
10285 LELAND ELECTRIC
Ontput: 115 Volts AC. 750 V. A., 3 phase, single phase, 400 cycle, 40 Pre. Input: 5.5 VDC, 60 amps. cont. duty, 6000 RPM.
Voltage and Frequency regulated..$\$ 195.00$

## 10486 LELAND ELECTRIC

Ontput: $115 \mathrm{YAC}, 400$ Cycle; 3 -phase: 175 VA, SOPF. Input:


94-32270-A LELAND ELECTRIC Output: 115 Tolts; 190 VA; Single Phase;
400 Cycle; 90 Fr. and 26 Volts; 60 VA 400 Cycle; 40 PF . Input: 27.5 volis DC 18 amps; cont. duty, voltage and frea.

115 VOLT GENERATORS


Brand new Eclipse generators: 115 VAC ;
$94 \mathrm{amp} ; 1000$ watts; single phase: 800
cracles, $2400-4200$ rpm. crcles, $2400-4200$ rpin.
DC output is 30 volts at 25 amp. Unit has spline drive shaft and
is self-excited........................ $\$ 29.95$


## TRANSFORMERS



HLLAMENT, Gen Elec. $\# 7455321$ : Primary $110 / 125$ Volis, Secondary 11 Volts 65 Amps, FII ATE NT AMERTRAN -29018 . $\$ 24.93$ 115 Volts, $50 / 60$ cycle. Secondary 5 volts, 190 amp. Shipping weight approx. 75 Jbs. VAKIAILE, AMEIRTRAN \#29114: 250 VA , $103-156$ commutator range, fixed windings
115 volts, max. 2.17 amps.......... $\$ 19.95$

[^23]
## $\mathbf{C}-{ }^{-1} \mathrm{I}$ dade Company

BOX 356 -X EAST PASADENA STATION
PASADENA 8, CALIFORNIA

## Buy TOP Radio-Electronic Valuest

## SIGNAL CORPS COMPONENTS

OVER 250,000 SISNAL CORPS AND NAVY COMPONENTS IN STOCK. MOSTLY NEW ORIGINAL PACKING. PRODUCTION QUANTITIES IN MANY TYPES. CALL OR WRITE FOR QUANTITIES AND PRICES.

| SIG. CORPS STOCK NO. | ITEM | USED IV SIGNAL. CORPS EQUIP. | SIG. CORPS STOCK NO. | ITEM | USED IN SIGNAL CORPS EQUIP. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2A275-109A | Antenr a | RC-226 |  |  |  |
| 2A2352/1 | Clamp |  | 279635.8 | Trans. |  |
| 2CK2537-13 | Mod. Lnit | AN/APQ-13 | 229636.16 | Transf. | $\begin{aligned} & \text { T-67/ARC-3 } \\ & \text { BC-642. } \end{aligned}$ |
| 2C4197C/F2 | Chake Filter | BC-603A-BC6:3A | 2ZK9638.6 | Trans. | Radio Compass, SCR-269G |
| 2C4512/66 | Trans. | UTC-52804 | 2Z9538-14 | Trans. | RC-148 |
| ${ }_{2}^{2 C 4528.3 / 44.1}$ | Trans. | Hamm. Super Pro | 229638-16 | Trans. | BC-1160A of RC-150B.C.D. |
| $2 \mathrm{C} 4528 / 12$ | Filter | BC-779B and ${ }^{\text {Hamm Super Pro }}$ | 229638-19 | Trans, | AN/AN4 |
| 2C6191A/3 | Trans. | BC-191A and 3 | 2299638-27 | Transf. | AN/APS-13 |
| 2C6191/K1 | Choke | BC-AA-191 | 279639.7 | Trans. | PA-6-A Public Address |
| 2C6191F/T2 | Trans. | BC-AA-191 BC-375, BC-1 | 279643.42 | Trans. | RC-150 B. C. D. |
| 2C6230/123 | Trans. | BC-AE- 230 C-19 ${ }^{\text {B }}$ | 279647.11 | Trans. | CF-1A and Repeater CF-3A |
| 2C6230.3/124 | Trans. | BC-AE-230 and BC-AG-230 | 279702-2 | Trans. | Speaker LS-3 |
| 2C6307AK1 | Choke | AFC-1. BC-30.A, and E | 2297159 | Trans. | Used in Diversity Equip. |
| 2C6386A/T14 | Trans. | BC-446-A and C | $2 \mathrm{Z9760}$ | Trans. | BC- 312 , $\mathrm{BC}-314, \mathrm{BC}-342$ |
| 2C6494A/C11 | Choke | BC-604A | 279823 | Transf. | BC-223, |
| 2C6494A/R4 | Relay | BC-604A-B-C-D | 2Z9805 | Trans. | BC-312, 314, 342, BC-344 |
| 2C6530-653A/C10 | Choke | BC-653A-B-C-D | 279808 | Trans. | BC-212A of BC-212B |
| 2C6530-653A/T5 | Trans, | BC-653A | 2Z98551 | Trans. | Interphone Amp., BC-347 |
| 2Z9613.304 | Trans. | BC-129A | 2Z98554 | Trans. | ${ }_{\text {InC-367 }}$ Interphone Amp., BC-367 |
| $\begin{aligned} & 2 Z 303-3 \\ & 2 Z 3020-6 \end{aligned}$ | Adapter Recept. | AN/FMQ-1 | 279855 | Trans. | Interphone Amp.., BC-367 |
| 2Z3265-66 | Recept. |  | 2Z9876-2 | Trans. | Modulator Unit RA-18 |
| $223400-108$ | Bag | SCR-508-528 | 279878-1 | Trans. | Rectifier Unit RA-57A |
| 275731-337 | Imp. KIL | UW/SCR-508-5 28 | 279878-11 | Trans. | BC-941A of SCR-547A |
| 226721-487 | FT-487 ntg. | U/W SCR-511 | 229878-13 | Trans. | BC-957A of SCR-547A |
| 227267-25 | Type J.f.B.Pot | APS-13 | 2298879 | Trans. | RC-103A and AZ |
| 277585-18 | Relay | 33 A and 34A Xmitter | 2Z98799-2 | Trans. | BC-1094 of SCR-547A |
| 227617A | Relay | PE-55 | 279900-5 | Trans. | Test Unit 1-176 |
| $278673-42$ | Relay Socket | RA-10DA and DB | $2 \mathrm{2Z9944}$ | Trans. | BC-191 and BC-375 |
| 2Z9010A | Socket | MSS/AA ${ }^{\text {BC-148, GN-35 CS-38 }}$ | 279947-3.1 | Trans. | BC-456-B of SCR-274-N |
| $2 Z 9476$ | Strip | BC-148. GN-35 CS-38 | 279954 | Trans. | BC-438 of SCR-258 |
| 279601.44 | Transf. | BC-401B ${ }^{\text {S }}$ | ${ }_{279979}$ | Trans. | BC-441-B of SCR-281A |
| $\begin{aligned} & 2 Z 9601.51 \\ & 2 Z 9608.36 \end{aligned}$ | Trans. | AN-MD-1FRC | 2ZK9982-3 | Trans. | P/O Radio Set-SCR-593A |
| $\begin{aligned} & 229608.36 \\ & 2 Z 9611.11 \end{aligned}$ | Trans. | RA-61-A | 229984 | Trans. | Collins 32RA Xmitter |
| $2 Z 9611.39$ | Transf. | P/O Projector PH-398 | 3 C 279 | Choke | BC-367 |
| 279611.65 | Trans. | PC-138A of SCE-527A | ${ }_{3 C 307-1}$ | Choke | SCR-211 Freq. Meter |
| 279611.115 | Trans. | PE-138A of SCE-527A | $3 C 307-46$ $3 C 315-51$ | Choke | PP-87/APT4 |
| $\begin{aligned} & 2 Z 9611.209 \\ & 2 Z 9611.289 \end{aligned}$ | Transf. | TCS-5-8-9 and 10 | $3 C 315-51$ $3 \mathrm{C} 16-15$ | Choke | Xmitter BC-339K |
| 2279611.307 | Trans. | SCR-584-B | C317-14 | Choke | Public Address PA-1-C |
| 2Z9612.10 | Trans. | T-50/CPN-8 of AN/CPN-8 | $3 \mathrm{C} 317-15$ | Choke | Dumont Oscillagraph \$208 |
| 279612.52 | Trans. | P/O Projector PH-398 ${ }_{\text {P }}$ | $3 \mathrm{3C317.33}$ | Choke | Power Unit PE-120A |
| 2Z9612.98 | Trans. | AN/FRC-1 ${ }^{\text {BC-150 }}$ ( ${ }^{\text {a }}$, D) | $3 \mathrm{3C317-43}$ | Choke | SCR-536 |
| 279612-105 | Transf. | TCS-5-8-9-11 | ${ }_{3 C 317-44}$ | Choke | Coder Unit R-56/CPN-8 |
| $\begin{aligned} & 2 Z 9612.111 \\ & 2 Z 9613.14 \end{aligned}$ | Transf. | Xmitter. TZO | 3C323-14A | Choke | Test Set 1-61-B |
| 2ZK9613.30 | Trans. | SCR-296A | 3C323-24E | Choke | MDI/FRC |
| 229613.67 | Trans. | BC-800-A, SCR-729A | $3 \mathrm{C} 323-29 \mathrm{E}$ | Choke | T-28/APR-1 |
| 229613.128 | Trans. | SCR-588B ${ }^{\text {S }}$ S-642 | ${ }^{3} \mathrm{C} 323-54 \mathrm{~B}$ | Choke | BC-1006-A |
| 279613.276 | Trans. | Scope, BC-1060-A | ${ }^{3 C} \mathbf{C} 323-1228$ | Choke | Power Unit PP-127/TPS-10 |
| $\begin{aligned} & 2 Z 9614-34 \\ & 2 Z 9614-87 \end{aligned}$ | Trans. | RT-5/APS-4, AN/APS-4 | ${ }_{3 C 324-4}$ | Choke |  |
| 2Z9614-94 | Trans. | AN/APS-13 | 3C 324-40 | Choke | BC-1090-B |
| 2791615.1 | Trans. | Scope 1D-75, CPS-1 | $3 \mathrm{3C} 324.86$ | Choke | AN PP-144/CPS-4 |
| 2ZK9617-22 | Trans. |  | ${ }^{3} \mathrm{3C} 325-2$ | Choke | BC-1016 Recorder |
| 2Z9618-9 | Trans. | T-28/APT-1, AM/APT-1 | $3 C 325-3$ 3 C $328-28$ | Choke | BC-1016 Recorder |
| $\begin{aligned} & 2 Z 9618-42 \\ & 2 Z 9618-54 \end{aligned}$ | Trans. | A/N-MD-30/APT-4 | $3 C 328-28$ $3 C 32-820$ | $\xrightarrow{\text { Choke }}$ | RC-192A - BC-800-B |
| 229619-42 | Transt. | TS-121/CPN-8 | 3C335-11 | Reactor | RA-34-4 |
| 279619-43 | Transf. | AN/TPS-2 | $3 \mathrm{3C} 337-2$ | Choke | PE-104A of SCR-284A |
| 279619-63 | Trans. | R59/TPS-3, AN-PS-3 | ${ }^{3 C} 3$ 343-2 | Choke | BC-357-M |
| 279619-99 | Trans. | AM-61/APG ${ }^{\text {AN }}$ PS-3 | 3C344 3C344-9 | Choke | GN-45-B of SCR-284A |
|  | Trans. | AN Rec R-58/ARQ-8 | 3C344-9 3 | Choke | SCR-808A ${ }_{\text {BC-728A of }}$ SCR-593A |
| $\begin{aligned} & 279621-43 \\ & 2 \geq 9621-112 \end{aligned}$ | Trans. | BC-922 | ${ }^{3 C} 362-14$ | Choke | BC-728A of SCR-593A |
| 2Z9625-1 | Trans. | SCR-268A and SCR-296A | ${ }^{3 C} \mathbf{C} 262-23$ | Choke | BC-7456 of SCR-511 |
| 279625-8 | Trans. | PA-5-A Pr Pric Address | ${ }^{3 C} 362-24$ | Choke | CH2 for PE-157A |
| 279625-29 | Trans. | TS-25-3 | $3 C 362-39$ $3 \mathrm{C} 75-15$ | Choke | APG-5 U/W AN-APG-13 |
| ${ }_{279626}$ | Trans. | Switchboard 102-B | $3 C 375-15$ $3 C 549$ | $\underset{\text { Choke }}{\text { choke }}$ | Rec. BC-787A of SCR-607 BC-620A |
| 2799627-35 | Trans. | SCR-629 A and C | ${ }_{3} \mathbf{C} 570-6$ | Choke | BC-620A |
| 229628-2 | Trans. | Rec. Coder, R-56/CPN-8 | 3 C 573 | Choke | RM-13-C |
| 229628-5 | Trans. | EL-157 A and B of SCR-511 | 3C575G-1-3C375G-1 | Choke | AN Radar APG-13 |
| 229631.7 | Trans. | PO/AN/TTO-1 | 3C1987-14 | Choke | RA-57-A of SCR-547-A |
| 229631.94 | Transf. | T-14/TRC-1 | $3 C 1987-28$ $3 C 1987-29$ | Coil | BC-957A of SCR-547A |
| 2296631.187 | Trans. | Prolector PH-405 | 3C1987-39B | Coil | RC-103A, RC-103-AZ |
| 2279632.8 | Trans. | BC-329G and RM-60-G | ${ }_{3} \mathbf{3 C 4 0 7 5}$ | Choke | SC-R284A |
| 229632.14 | Trans. | 8C-654 of SCR-284A SCR-511A | 30308 30328 | Capacitor] | BC-212A and BC-667 |
| 229632.39 | Trans. | SCR-517A | ${ }^{3} \mathbf{3 D 3 2 8}$ | Condenser |  |
| 279632.125 | Trans. | PA-6A Public Address | 3DB2-21 3DB1A25-2 | Capacitor | C-204 Freg. Rec. and Ampl. 509 AN |
| $\begin{aligned} & \text { 2Z9632.159 } \\ & \mathbf{2 Z 9 6 3 2 . 1 7 0} \end{aligned}$ | Trans. | P/o BCSLOOB Ad | 3E1133B ${ }^{\text {S }}$ | Cord | Power Supply Unit PE-237 |
| 279632.171 | Trans. | Xmitter and Rec., BC-659A | 3 3E1441 | Cord | BC-223A and PE-55 |
| 229632.180 | Trans. | BC-1005A of SCR-555A | 3E1604 | Cord | CD-604 |
| 279632.197 | Trans. | RA-70 Rectifier of SCR-584 | ${ }_{3 F 5061 ~ B / C 1}$ | Ammeter | BC-148-151 and 156 |
| 279632.206 | Trans. | R-58 ARQ-8 | ${ }_{371891-1.2}^{\text {3F4061 }}$ | Coil | Test Set 1-61B |
| $\begin{array}{r} 2 Z 9632.213 \\ 2 Z 9632.248 \end{array}$ | Trans. | TCS-5-8-9 and 11is, | 321893-5 | Filter | R/19A TRC-1 |
| 2Z9632.362 | Trans. | HT ${ }^{\text {HR }}$ ( 72 UPN-1 | 321893-8 | Choke | --. |
| 2Z9632.365 | Trans. | ANRT-72, UPN-1 | 323275-11 | Fuse Molder | -- |
| 279632.366 , | Trans. | PA-6-A Public Aidress | 373405 323438 | ${ }^{5} 5 \mathrm{Key}$ |  |
| 279634.4 | Trans: | BC-745A, SCR-5.1 | 323438 $\mathbf{3 7} 7990-26$ | ${ }_{\text {J }}$ | $\square$ |
| $\begin{aligned} & 279634.5 \\ & 27963435 \end{aligned}$ | Trans. | BC-654 of SCR-294A | 329587-1 | Switch | - |
| 229634.39 | Trans. |  | 481109A. 13 | Handset |  |
| 2Z9634.46 | Trans. | Hallicrafters HT-12 | 4G1668C/C5 | Coll Assy. |  |
| 229634.49 | Trans. | Sig. Gen. 1-198A. RC-148 | $\begin{aligned} & 6 C 8 / F 1 \\ & 6 Z 7564 \mathrm{M} \end{aligned}$ | Coil Plug | PA Set PA-6-A |

##  Phone: HArrison 7-5923

## Headquarters for MICROWAVE TEST EQUIPMENT

- the widest assortment, the strongest depih and the most immediate availability of any source on test equipment.

Cone of the most popular pieces of war-borne equipment still in everyday use is the X-Band 3 cm Signal Generator, TS-13. We at Weston have modernized this inst=ument slightly and are now producing them in larger quantities than ever belore. Attractively priced, this instrument may be obtained in less than two wヨeks from receipt of your order. May we send a leaflet of specifications on it to you? Besides the TS-13 Weston Laboratories, Incorporated makes arvailabee a still larger inventory on military electronic test equipment.

| Ald-APA-10 | 1.49 |
| :---: | :---: |
| AP-APR-] | 1-56 |
| Ard-APR-1 | 1.618 |
| A ${ }^{\text {deTSM- }}$ | 1.83A |
| AFd-UPM-13 | 1.86 A |
| AS-83 | 1.95A |
| A1-67 | 1.96 A |
| Al-68 | 1.97A |
| A1-39 | 1-98A |
| AL-48 | 1.106A |
| BE-67 | 1.114 |
| BC. 291 * | d.115 |
| BC 376 | 1.117 |
| BC 438 | 1.122 |
| BC 439 | 1.126 |
| BC 638 | b-130A |
| BC 639 | -134B |
| BC.906D | 1.135 \ |
| BC 918B | I-137A |
| BC.923A | l-139A |
| BC-936A | I-140A |
| BC.949/A | -145 |
| BC.959.TL | I-147 |
| BC-1060 A | I-153A |
| BC-1066A | I-157A |
| BC1201A | 1-167 |
| BC-1903 | 1.168 |
| BC-1236/A | 1-177 |
| BC-1255/d | 1.178 |
| BC-1977 | 1-186 |
| BC-1987A | 1.196A |
| 1-488 | J-198A |



| TS-11/APN-1 | TS-69A | TS-173/UR |
| :---: | :---: | :---: |
| TS-11/AP* | TS-76-APM-3 | TS-174/U |
| TS-12/AP | TS-78/U | TS-175/U* |
| TS-13/AP * | TS-87/AP | TS-182/UP |
| TS-14/AP | TS-89/AP * | TS-184/AP |
| TS-15B/AP | TS-90 * | TS-189/U |
| TS-16/APN | TS-92/AP | TS-192/CPM-4 |
| TS-18 | TS-96/TPS-1 | TS-194/CPM-4 |
| TS-19 | TS-98/AP | TS-195/CPM.4 |
| TS-23/AP | TS-100/AP | TS-197/CPM-4 |
| TS-24/APM-3 | TS-101/AP | TS-198/CPM-4 |
| IS-24/ARR-2 | IS-102/AP * | TS-903/AP |
| TS-26/TSM-1 * | IS-108/AP * | TS-204/AP |
| TS-27/TSM | TS-110/AP | TS-205/ AP |
| TS-32A/TRC-1 | TS-111/CP | TS-207 |
| TS-33/AP | TS-117/GP * | TS-210/MPM |
| TS-34/AP | TS-118/AP | TS-218/UP |
| TS-35/AP | TS-125/AP * | TS-220/TSM |
| TS-36/AP | TS-127/U | TS-296A |
| TS-39/TSM | TS-131/AP | TS-230B |
| TS-45/APM-3 | TS-138 | TS-232/TPN-2 |
| TS-46/AP | TS-1 42APG | TS-2398 |
| TS-47/APR | TS-143/CPM-1 | TS-250/APN |
| TS-51/APG. 4 | TS-144/TRC-6 | TS-251 |
| TS-55/AP | TS-146 | TS-257/AWR |
| TS-56/AP | TS-147/AP * | TS-263 |
| TS-59 | TS-148/UP * | TS-2688* |
| TS-60/U | TS-153 | TS-970 A |
| TS-51/AP | TS-155 | TS-981/TRC-7 |
| TS-62/AP | TS-159.TPK | TS-285/GP |
| TS.63/AP | TS-164/AR | TS. 293 |
| TS-65A/FM2-1 | TS-170/ARN-5 | TS-297* |

TS-301/U
TS-303/AG
TS-311/FSM-1
TS-323
TS.324/U
TS-328
TS-338
TS-359A/U
TS-363/U
TS-375
TS-377/U
TS-389/U
TS-418
TS-419
TS-481/U
TS-433/U
TS-455/U
TS-480/U
TS-505
TS-589/U
TS-615/U
TS-616/U
TS-617/U
TS-680/U
TSX-4SE
TSS-4SE
TVN-8SE
TUN-8HU
TTX-10RH

## before seling your idle test equipment.

 please get our offer
# WESTON LABORRTORIIES 

 ImCORPORATEDHARVARD, MASS.
Cable: WESLAB Tel: Boston: WE 5-4500

## Reliamce Specials

GEAR ASSORTMENT


## HAYDON TIMING MOTOR

1 R.P.M., 115 V., 60 C)cle . . $\$ 1.95$
TIMING MOTOR
8 RPM 115 V 60 cy
E. Ingraham Co.

400 CYCLE INVERTERS
Leland Electric Co.

 | Amp. AG | FUSES |  |  |
| :--- | :--- | :--- | :--- | :--- |



| BALL BEARINGS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Mfg. No. | ID | OD | Thick | Prlce |
| MRC5028-1 | $51 / 2$ | $61 / 2$ |  | \$3.75 |
| MRC7026-1 | 5 5/64 | ${ }^{6} 15 / 64$ | $9 / 18$ | 3.50 |
| MRC106M2 | $117 / 64$ | 2 7/16 | 25/64 | 1.75 |
| Federal LS11 | ${ }_{1}^{1} 11 / 8$ | ${ }_{2} 1 / 1 / 2$ | 5/8 ${ }^{25}$ | 1.60 |
| Norma S11R | $11 / 8$ | $21 / 8$ | 5/8 | 1.70 |
| Federal AS41 | $11 / 16$ | $11 / 2$ | 9/32 | 1.50 |
| Schatz | 3/4 | $13 / 4$ | 9/16 | 1.00 |
| Norma 203 S | 5/8 | $19 / 16$ | 7/16 | 90 |
| ND 5202 -C13M | $1 / 2$ | $13 / 8$ | $13 / 8$ | 1.00 |
| ND 3200 | 25/64 | 15/32 | 11/32 | . 60 |
| ND R6 ${ }_{\text {MRC39R1 }}$ | 3/8 | 7/8 | 7/32 | 40 |
| MRC39R1 | 11/32 | $11 / 32$ | $5 / 16$ | 45 |
| MRC38R3 | $\mathrm{S} / 16$ | 155/64 | 13/32 | 45 |

Brand New Meters-Guaranteed


SELENIUM RECTIFIERS
Full Wave 200 MA 115 V.
Half Wave 100 MA 115 V.


SOUND POWER HANDSET eries or external Dowes no bat$\begin{array}{r}\text { \$18.50 Ir } \\ \hline\end{array}$
Sound Powered Chest Set RCA-
With 24 Ft . Cord
Per Pair
USED $\$ 17.60$


POSTAGE STAMP MICAS

| mmp | mmf | inmi | mm? | mmf | mmt | mmp | m.td | mfd |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 40 | 70 | 125 | 240 | 400 | 680 | . 0016 | . 004 |
|  | 47 | 75 | 135 | 250 | 430 | 800 |  |  |
| 22 | 50 | 80 | 150 | 270 | 470 | 820 | . 0027 | . 005 |
| 23 | 51 | 82 | 160 | 300 | 500 | 910 | . 0033 | . 006 |
| 24 | 56 | 90 | 175 | 330 | 510 | . 001 | . 0036 | . 0065 |
|  | 60 | 100 | 180 | 360 | 580 | . 0012 |  | . 0068 |
| 33 | 62 | 110 | 200 | 370 | 600 | . 0013 |  | . 0082 |
| 39 |  | 120 | 220 | 390 | 650 | . 0015 |  | . 01 |
|  |  |  |  | rice S | ched | ule |  |  |
| 10 mm | mt to | 820 m | mint |  |  |  |  | 56 |
| .001 m | mmt to | 0.001 |  |  |  |  |  | 8 8 |
| .002 m | midd to | . 0082 |  |  |  |  |  | $15 \%$ |
| . 01 m | aid | .....- |  | , |  |  |  | 284 |
|  |  |  |  | LVER | MIC | CAS |  |  |
| mmf | mmi | mmi | mmf | mmt | mmi | mind | mtd | mid |
|  | 50 | 100 | 170 | 360 | 510 | . 001 | . 0024 | . 0047 |
|  | 51 | 110 | 180 | 370 | 525 | . 0011 | . 0025 | . 005 |
|  |  | 115 | 208 | 390 | 560 | . 0013 | . 0027 | . 0051 |
|  | ${ }_{62}$ | 125 | 225 | 400 | 570 | . 0015 | . 0028 | . 00056 |
|  | -68 | 130 | 2.5 | 430 | 700 | . 0018 | -0,33 | . 00088 |
|  | 68 | 135 | 255 | 470 | 800 | .0022 | . 0039 | . 0082 |
|  | 75 | 150 | 260 | 488 | 900 | . 0023 | . 004 | . 01 |
| 40 | 82 | 155 | 270 | 500 |  |  |  |  |
|  |  |  |  | rice $\mathbf{S}$ | ched | ule |  |  |
| 10 mm | mf to | 700 m | id. |  |  |  |  | 10¢ |
| . 0011 | mid ${ }^{\text {t }}$ | to . 002 | 2 mfd |  |  |  |  | . 20 d |
| . 0022 | mfd | 0. 008 | 82 mtd |  |  |  |  |  |
| . 01 m | mf | . . . . |  |  |  |  |  | . 954 |

## PULSE TRANSFORMERS

$\begin{array}{lllll}\text { UTAR-9262 } & \\ \text { WESTERN ELECTRIC }\end{array}$ KS8696, KS9800, KS9862, KS13161
JEFFERSON ELECTRIC-C-12A-1318
DINION COIL ${ }^{2}$

| AN CONNECTORS |
| :---: |
| See Our Ad February, 1953 Electronics |
| PHONE! WIRE! WRITE! YOUR NEEDS |

GET ON OUR MAILING LIST

COAXIAL CABLE CONNECTORS -


NEW COAXIAL CABLES


TYPE "J"' POTENTIOMETERS

*Split Locking Bushing $\$ 1.25$ EACH

|  | TYPE | JJ"' POTENTIO | ETERS |  |
| :---: | :---: | :---: | :---: | :---: |
| ${ }_{\text {Ohms }}$ | Shaft | Ohms Shaft | Ohms | Shaft |
|  | $5 / 16{ }^{\text {\% }}$ | ${ }_{30 \mathrm{~K}-90 \mathrm{~K}} \mathrm{l}^{3 / 44^{+}}$ | ${ }^{1} \mathrm{Meg}$. | S. ${ }^{1 / 2}$. |
|  |  |  | 1 M |  |
| SD-Se | Driver |  | L Loo | Bushing |
|  |  | ICE- $\$ 2.50$ EA |  |  |
|  | JONE | S BARRIER | RIPS |  |
| 3 | 50.17 | ${ }^{3-141 W}$ - $\mathbf{0}$. 27 | 8 8-1413 | W \$0.64 |
| 8-140 |  | $4-141$ $5-141$ | ${ }_{9}^{9}-141$ | . 71 |
| 10-140 | . 59 | 5-141\% W ${ }^{\text {: } 41}$ | 3-142 |  |
| 10-140 |  | 7-141\%W . 56 | 2-150 | 43 |
| 3-141 | W . 27 | 8-141 | 3-150 | 60 |
|  |  |  |  |  |
|  |  | Raytheon CP |  |  |
|  |  | Delay. 11 | . 60 |  |
|  | ${ }_{\text {21/ }}^{21}$ | cond recycling tim | spring | ${ }_{\text {N }}$ |
|  |  |  |  |  |
|  | $\begin{aligned} & 10 \mathrm{ng} \\ & \text { ON } \end{aligned}$ | power is applled | - Fully | Cased $\$ 6.50$ |

RADIO FREQUENCY GENERATOR RCA I KW 400 KC: Input: 220 V 60 cycle Needs minor repairs to water circulatlng
system. Otherwlse in good condition $\mathbf{2 9 5 . 0 0}$

## RELLARNCE meicraikurzace co.

## SEARCHLIGHT SECTION

## COMMUNICATIONSECUIPMENTCO.



UNIVERSAL SUPPLY KIT
Delivers 230 V @ 40 MA DC. From $110 / 220 \mathrm{VAC} 60 \mathrm{Cr}$. Choke
$1.6 \times 5$ Tube. MFD A
great buy at only

INTERPHONE TRANSFORMER SET
Rig your own inter phone. Kit consists of 1 I-Input
Transtormer (Matches 4 or 6 OHM SPKR to Grif)


## 12-14V SUPPLY KIT

| Delivers 12.14 VDC at 3.5 A from ${ }^{115 \mathrm{~V} .}$. 60 cy.. Kit |
| :--- |
| contains | I-Selenium Rectifier, $F$. W. Wrilles.

## 24 VOLT TRANSFORMERS

For operating surplus gear. toy trains, gad plies 24 VAC at 1.2 Amp.. herm. sealed
and cased...... Areat Buy at Only
$\mathbf{A}$

## RECTIFIER TRANSFORMERS

 Pri: $210 / 215 / 220 / 225 / 230 / 235 / 240 \mathrm{~V} .60 \mathrm{Cy} . . \mathrm{I}$ Phase
Sce: $1 / / 10 / 7.5 / 5 \mathrm{~V} \mathrm{CT} @ 35 \mathrm{~A} . \mathrm{S} 9.50$ $\begin{array}{ll}\text { Pri: } 115 \mathrm{~V} 60 \mathrm{Cy}: & \text { Sec: } 8.1 \mathrm{~V} @ 1.5 \mathrm{~A} \ldots . . . . . . \$ 1.39 \\ \text { Pri: } 115 \mathrm{~V} 60 \mathrm{Cy}: & \text { Sec: } 18.5 \mathrm{~V} @ 5 \mathrm{~A} \ldots . . . . .84 .25\end{array}$

## FLEXIBLE COUPLING SHAFTS

34
135
23



## 

| SELENIUM | RECTIFIERS $\qquad$ Types |  | Full-Wave | Bridge |
| :---: | :---: | :---: | :---: | :---: |
| Current (Continuous) | 18/14 Volts | $3 E / 28$ Volts | $\begin{aligned} & 54 / 42 \\ & \text { valts } \end{aligned}$ | $\begin{gathered} 130 / 100 \\ \text { Volts } \end{gathered}$ |
| 1 Amp . | \$1.25 | \$2.10 | \$3.60 | \$7.50 |
| 2 Amps. | 2.20 | 3.60 | 6.50 | 10.50 |
| 2遃Amps. | ..... | $\ldots$ | $\cdots$ | 13.00 |
| 4 Amps. | 3.75 | $\ldots$ | 8.75 | - ... |
| 5 Amps. | 4.95 | 7.95 | 12.95 | 27.00 |
| 6 Amps. | 5.50 | 9.00 | 14.00 | 33.00 |
| 10 Amps . | 6.75 | 12.00 | 20.00 | 40.00 |
| 12 Amps . | 8.50 | 16.00 | 25.50 | \$0.00 |
| 20 Amps. | 13.25 | 24.00 | 36.00 | 90.00 |
| 24 Amps. | 16.00 | 31.00 | 39.50 | 98.00 |
| 30 Amps . | 18.50 | 36.00 | $\cdots$ | . |
| 36 Amps. | 25.50 | 45.00 | ..... | ..... |:

$\begin{array}{lll}\text { AM 1614-100: } 28 V D C \\ \text { KJ- } 100 \text { AMP } & \\ 51.59 \\ 51.69\end{array}$

51.59
51.69KJ-GOOV, 115 AMPS, UP TO 1000 OVERLOAD
RATING. TRIPADJ. 10 MIN. INST S21.95

|  | DYNAMOTORS |  |  |  | |
|---|---|---|---|---|---|
|  |  |  |  |  |
|  |  | c. 12.6 12.6 |  |  |
|  | ${ }^{28}$ |  |  | APN-1 |
|  | ${ }_{1}^{12}$ | ${ }_{9.4}^{\text {d/ }}$ | ${ }_{\text {cose }}$ | mark 11 |
| D. 104 | 12 |  | cois |  |
| da-3A |  | 10 | 为 | scr 522 |
|  |  |  |  |  |
|  | ( $\begin{aligned} & 28 \\ & 26 \\ & 28\end{aligned}$ | 6.3 |  |  |
|  |  |  |  | Scr 522 |
|  | NVERTERS |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |  |

POWER TRANSFORMERS

FILTER CHOKES
Stock
$\mathrm{CH}-36$ 
$6.3 \mathrm{~V} / 3 \mathrm{~A} / 7$
$4.5 \mathrm{~V} / .5 \mathrm{~A}$
FT FT-608
FT-873
FT-899
CTJ5-2mb. Tranisformers-1


## AM 1614-80:28VD BREAKERS <br> IRCUIT BREAKERS

${ }^{59}$


## COMMUNICATIONS EOUIPMENTCQ.

## PULSE ERUIPMENT


$\qquad$ Pulse Bulkhead $\xrightarrow{\text { Fred }}$ APQ. 13 PULSE MODULATOR TWr out 35 kW Energy 0.018 Joules. PS-3 PULSE MODULATOR. Plk, nower 50 amp. 2



PULSE TRANSFORMERS


PULSE NETWORKS



7.5E3-1-200-67P

 KS8865 Charging Cloke: ${ }^{115-15011}$ (a).02A. $32-101 \mathrm{~F}$ G.E. 25E5.1-350.50 P2T. "D"' CK"l

TEST EQUIPMENT

| - Signal Gen. | RCA 710A, 370-560 MC . . . 350.00 |
| :---: | :---: |
| - Signal Gen. | 20A Microvolter .............. 175.00 |
| - TS 10A | Altimeter Test Set . . . . . . . 32.50 |
| - TS 16/AP | Altimeter Test Set |
| - TS 36 | Power Meter, 3 CM. |
| - TS 47/APR | Test Osc. 50-3000 MC ......325.00 |
| - TS 56/AP | Slotred Line, 500 MC . . . . . 325.00 |
| - TS 127/UP | Wavemeter, $\mathbf{3 0 0 - 7 0 0 ~ M C ~ . . . . ~} 72.50$ |
| - TS 69/AP | Wavemeter, 340-1000 MC ... 72.50 |
| - TS 70/AP | Pwr. Meter, 200-800 MC |
| - TS 110/AP | Echo Box, 2400-2700 Mc |

THERMISTORS VARISTORS

| D167018.. | \$1.50 | D171812 |  | \$1.50 |
| :---: | :---: | :---: | :---: | :---: |
| D167332 | 1.50 | D172155 |  | 1.50 |
| D167613 | 1.50 | D167176 |  | 1.50 |
| D166228 | 1.50 | D168687 |  | 1.50 |
| D164699 | 2.50 | D167208E, | Di71858 | 1.50 |
| D163903 | 1.95 | 308A. 27-B | 8 | 1.50 |
| D166792 | 2.15 | D168403 |  | 2.15 |

.

EICROWAVE COMPCNENIS
S BAND—3"x11/2" W.G. 10 CM . Dibectional coupler rimalamen 2n in Cout
 REACTION WAVEMETER. MfL. (i. F Mmi-ginill LHTR IIGHTHOUSE ASSEMBLY
 MAGNETRON TO WAVEGUIDE Cunder with 521

 MCNALLY KLYSTRON CAVITIES for TOFH F-29/SPR-2 FILTERS, tupe infut and output WAVEGUIDE TO " RICID COAX "DOORKNOI:" Adiduter fork liange Silver plated lurad hand \$32.50 OAJ ECHO BOX, 10 CM TUNABLE........... $\$ 22.50$ HOMEDELL-TO-TYPE … Tale Idiapters. If F. AMP STRIP: WC 120 n bain 2 ITC POL YROD ANTENNA $\$ 2+5 n$ ANTENNA NDH NITR: Broarband Conical.
"E" or "H" PLANE BENDS
COXIAL FILTER.


MAGNETRONS

| MAGNETRONS |  |  |  |
| :---: | :---: | :---: | :---: |
| Tube | Tube | Tube | (5) |
| 2127 | 2149 | 720BY |  |
| 2J31 | $2 J 61$ | 725-A | 8 |
| 2.21 | 700 | 730-A | 6 |
| 2.292 | 706 | OK 62 | A |
| 2126 | 2162 | OK 61 | $\theta$ |
| 2132 | $3 J 31$ | QK 60 |  |
| 2137 | 5130 | $2 J 56$ | S 12 |
| 2.338 | 7180 Y | $2 J 32$ | - |
| 2139 |  |  |  |

## 400 CYCLE TRANSFORMERE

All Primaries $115 \mathrm{~V}, 400$ Cycles

## Stock

 352-7039 702724 12033125584

52595 $K 55584$
$52 J 652$ KS99607
$\mathbf{3 5 2 - 7 2 7 3}$

## 352-7070

## 352

## RA5400

901692
901699-501
$901698-501$
UX8855C
RA6405-1
352-7098
KS 9336
M-7474319
KS 8984
KS 8984
$52 \mathrm{COB0}$
32332
52C080
32322
68631
68G631
$80 \mathrm{G198}$
302433 A
KS 9445
KS 9685
70G30G1 M-7474318
$95-\mathrm{G}-45$
$3 \mathrm{~V} / 22.5 \mathrm{~A} . \quad 6.3 \mathrm{~V} / 1.8 \mathrm{~A}, \quad 5 \mathrm{~V} 9 \mathrm{~A}$
M-7467886 OUT: $75.120 \mathrm{~V}, 6.0$ Amps 1200 VRMS $\begin{array}{ll}\text { Test, P/O MX-B/APG-2 } & 4.95 \\ \mathbf{1 . 4 5}\end{array}$
$\begin{array}{ll}\text { M-7472426 } & \text { 1450V/1MA, } 2.5 V, 1.75 A . ~ 6 . i V ~ 3.9 A . ~\end{array}$ $5 \mathrm{~V} / 2 \mathrm{~A} .6 .5 \mathrm{~V} / .3 \mathrm{~A}$ P O ID-39 APG

## MICROWAVE ANTENNA EQUIPMENT




AS-31/APN-7: 10 mm Polyrod in lucita


$$
\begin{aligned}
& \text { Dipole } \\
& \text { Radar }
\end{aligned}
$$

100.00
512.00

TOY $\left.{ }^{*}\right\lrcorner A A M$ Radar rotating untenina, 10 cm . 30 deg.

 ASIUA/AP, 10 rat pick "is dipole asey complet f w/length of coax and " $N$ " contectors........ $\$ 3.50$
AS 76 A/APG. 4 Yagi Antenna, 5 element arrap. . $\$ 22.50$ $30^{\circ "}$ Parabolic Meflector Sulu Aluminum dish ... 54.85

## RADAR ANTENNAS

AS-12/APS-3 AC-125/APR
AS-17/APS-2 AS-217/APG-15

AS-13/APG-2 AT49/APR
AS69/APT
AS-14/AP

## 30' SIGNAL CORPS RADIO MASTS

Complete set for eraction of a full flat toy antrina. of



# DEPENDABLE Ninlury EHECFR•N/C EQUIPMENT the leading suppliers of precision test equipment to the aircraft industry. Semler is a recognized and approved source <br> <br> RADAR LABORATORY EQUIPMENT <br> <br> RADAR LABORATORY EQUIPMENT <br> <br> Multi-Purpose Test Set for 

 <br> <br> Multi-Purpose Test Set for}

## APS-3, APS-4, APS-6, APS-15, APQ-13 and SCR-720

Originally designed for the U. S. Navy by the J. P. Seeburg Company for the primary purpose of testing and calibrating APS-4 Radar. This precision test equipment provides an artificial signal for calibrating the Radar indicator, and indicator amplifier. Although the markers now indicate 4, 20, 50, and 100 miles and Beacon, they may be adjusted for other ranges according to the particular requirement of the Radar set that is to be aligned. Because of the unusual and versatile power facilities of this equipment it is readily adaptable for testing other AIRBORNE RADAR equipment, namely, APS-3, APS-6, APS-15, APQ-13 and SCR-120
This equipment consists of two panel-mounted cabinets with componets as follows:

- Rack No. 1 contains:
- Range and Alarm Calibration Unit.
- Antenna Scanning Simulating Unit-Provides antenna ele vation and azimuth confrol.
- Noise and Echo Generator-Gives noise and echo amplifude and echo position.
- Trigger Generator-For variation of timing pulses to radar units.
- Regulated Dual Power Supply.
- Universal Power Supply. Dimensions: $203 / 4^{\prime \prime} \times 16^{3 / 4} \times 72^{\prime \prime}$. Weight: 382 lbs .


## Rack No. 2 contains:

- High Voltage Safety Panel.
- 800.Cycle, 500-Watt Power Supply \& Power Ampllfier.
- Universal Power Supply.
- 800/2400-Cycle, 500-Watt Power Supply and High Voltage Power Unit.
- 800/2400-Cycle Power Supply and High Voltage D. C. Section
- 800/2400-Cycle Power Supply and Amplifier. Dimensions: $203 / 4^{\prime \prime} \times 163 / 4^{\prime \prime} \times 72^{\prime \prime}$. Weight: 581 lbs.



## INVERTERS

This search-type radar equipment operates at $9,375 \pm 55 \mathrm{mc}$. Designed primarily for the detection of surface vessels and aircraft. Operates over six ranges-2, 7, 20, 50, 100 and 180 nautical miles. Antenna scans $150^{\circ}$ in azimuth; reference tilt adjustable vertically $10^{\circ}$ above and $30^{\circ}$ below the longitudinal axis of aircraft. - Originally designed for mounting beneath wing of the aircraft, and because of its compactness, it is highly desireable for use on lighter aircraft. Many adaptations have been made for marine and other radar installations. Complete set includes transmitter, receiver, control unit, indicator amplifier, junction box, indicator and necessary connecting cables. Dimen.: $16^{\prime \prime} \times 1621 / 2^{\prime \prime}$. Wt.: 160 lbs .


## L-96A TXT STM FOR SCR-522

VHF Signal Generator-Frequency: 100 to 156 mc. Master oscillator tunable or may be crystal controlled. IF Frequency, 12 mc . $110-\mathrm{V}, 60$-cy. AC power supply or battery operated. A complete test set for SCR-522, BC-639, BC-625, BC-624, or other airborne equipment covering this frequency.

All merchandise carries our unconditional guarantee. Quota-
tions are on new surplus or completely overhauled equipment

MG-149F-Holtzer Cabot
Irput: $28 \mathrm{~V}-\mathrm{DC}-36$ Amp.

- 115 V -400Cy-750VA-Single Phase... $\$ 65.00$

MG-149H-Holtzer Cabot
Input: $28 \mathrm{~V}-\mathrm{DC}-44 \mathrm{Amp}$.
115V-400Cy 500VA-Single Phase $\$ 125.00$
MG-153F.Holtzer Cabot
Input: 28 V -DC-52 Amp.
115V-400Cy-750VA-Three Phase... $\$ 125.00$
10285-Leland
Input:
Output:
$26 \mathrm{~V}-400 \mathrm{CY}-50 \mathrm{VA}$-Single Phase.
Output. 115V-400Cy-750VA-Three Phase... $\$ 90.00$
104685-Leland
Input: 27.5DC.12.5Amp-Cont. Duty $\quad$ Output: $115 \mathrm{~V}-\mathrm{AC}-400 \mathrm{Cy}$-175VA-80pF-ThPh $\$ 90.00$ 11702 or 10563-Leland
11702 or $11 / \mathrm{V}$-Deland
Input:
Output: 115 V . 400 Cy -115VA-Three Phase...... $\$ 75.00$ PE-109
Input. 12v-DC-29 Amp
Onput: 12 V-DC-29 Amp. $115 \mathrm{~V}-\mathrm{AC}-200 \mathrm{VA}$ - 400 Cy -Single $\mathrm{Ph} . \$ 65.00$ PE-206-Leland
Input: $28 \mathrm{~V}-\mathrm{DC}-38 \mathrm{Amp}$. A Single Phase
Output: $50 \mathrm{~V}-800 \mathrm{Cy}$-500VA-Single Phase ... $\$ 40.00$
PU-7-Wincharger
Input: 28 V -DC-160 Amp. PU-16-Wincharger
PU-16-Wincharger
Input: $28 \mathrm{~V}-\mathrm{DC}-60 \mathrm{Amp}$.
Input: $28 \mathrm{~V}-\mathrm{DC}-60 \mathrm{Amp}$. .

PE-218-Leland-Wincharger-Gen. Electric
Input: 28V.DC. 92 Amp .
Output: 115V380/500Cy-1500VA.Single Ph. $\$ 40.00$ 778-B-Bendix
Input: $24 \mathrm{~V}-\mathrm{DC}-250 \mathrm{~V}$ Amp
Output: 26V-400Cv-60VA.Single Phase.
800-1-Bendix
Input: 24 V.DC 75 Amp .
Output: 115V-AC-800Cy-10.5A-Single Ph....\$ 40.00 12116-2A-Pioneer
Input: $24 \mathrm{~V}-\mathrm{DC}-5 \mathrm{Amp}$
Output: 115V-400Cy-45W-Single Phase ......\$ 75.00 12117-2A-Pioneer
Input: 24 V -DC-1 Amp. 12117-6B-Pioneer
Input: $28 \mathrm{~V}-\mathrm{DC}-0.8$ Amp-DC. 12119-1-B-Pioneer
Onput: $12 \mathrm{~V}-\mathrm{DC}-2$ Amp. $\quad$. 12126-2A-Pioneer
nout: $27.5 \mathrm{~V} \cdot \mathrm{DC}-1.25 \mathrm{Amp}$
Output: 26 V 400Cy-10VA-Three Phase........ \$ 35.00

Convert your surplus electronic equipment into cash. Send us listing of what you have and bonded offer will follow immediately.

## Qeilgreen Onndustries <br> 99 MURRAY ST., NEW YORK 7, N. Y. WOrth 4-2490-1-2 <br> 48 Hour Delivery on AN PROMPT Service on UG

We carry a complete and diversified stock of "AN" connectors at all times and are in a position to make deliveries within 48 hours, thereby eliminating all unnecessary stoppages due to the lack of "AN" connectors.

Many manufacturers have come to depend upon our prompt deliveries of AN \& UG connectors from stock, without delay.


AN 3100 A/B


AN 3101 A/B

| TYPE | TYPE | TYPE | TYPE | TYPE |
| :---: | :---: | :---: | :---: | :---: |
| UG 9/U | UG 46/U | UG 115/U | UG 234/U | UG 348/U |
| UGG $10 / \mathbf{U}$ | UG 49/U | UG 119 U/P | UG 235/U | UG 349/U |
| UG $12 / \mathrm{U}$ | UG 57/U | UG 131/U | UG 237/U | M 358 |
| UG 13/U | UG 57 B/U | UG 146/U | SO 239 | M 359A |
| UG 14/U | UG 58/U | UG 1489 A/U | UG 241/U | U6T 412 |
| UG 15/U | UG 58 A/U | UG 149 A/U | UG 242/U | UG $419 / \mathrm{U}$ |
| UG $16 / \mathbf{1 7}$ | UG 59/U/U | CW 155/U | UG 243/U | UG 421/U |
| UG 18/U | UG 60/U | UG 155/U | UG 245/U | UG 422/U |
| UG 18 A/U | UG $60 \mathrm{~A} / \mathrm{U}$ | UG 156/U | UG 246/U | UG 423/U |
| UG 18 B/U | UG 61/U | UG 157/U | UG 249/U | UG 478/U |
| UG 19/U | UG 61/U | UG 158/U | UG 250/U | UG 479/U |
| UG 19 A/U | UG 83/U | CW 159/U | UG 251/U | UG 483/U |
| UG 20/U | UG 86/U | UG 160 A/U | UG 253/U | UG 484/U |
| UG $20 \mathrm{~A} / \mathrm{U}$ | UG 87/ | UG 160 B/U | UG 254 A/U | UG 486/U |
| UG $20 \mathrm{~B} / \mathrm{U}$ | UG 88/U | UG 166/U | UG 255/U | UG 487/U |
| UG $21 / \mathrm{U}$ ( ${ }^{\text {U }}$ | UG 88 B/U | UG 167/U | UG 257/U | UG 492/U |
| UG $21 \mathrm{~B} / \mathrm{U}$ | UG 90/U | UG 173/U | PL 258 | UG 493/U |
| UG $21 \mathrm{C} / \mathrm{U}$ | UG 91/U | UG 174/U | PL 259 | UG 494/U |
| UG 21 D/U | UG 91/ A/U | UG 175/U | PL 259 A | UG 495/U |
| UG 22 A/U | UG 92 A/U | UG 180 A/U | UG $260 / \mathrm{U}$ | UG 499/U |
| UG 22 B/U | UG 93/U | UG 181 A/U | UG 260 A/U | UG 503/U |
| UG $22 \mathrm{C} / \mathrm{U}$ | UG 93 A/U | UG 182 A U | UG 261/U | MX 504 |
| UG $23 / \mathrm{U}$ | UG 94/U | UG 185/U | UG 262/U | UG 505/U |
| UG 23 A/U | UG 94 A/U | UG ${ }_{\text {MX }} 188 / \mathrm{U}$ | UG 266/U | UG 506/U |
| UG $23 \mathrm{C} / \mathrm{U}$ | UG 95 A/U | UG 197/U | UG 270/U | UG 526/U |
| UG 27 A/U | UG 96/U | UG 201/U | UG 271/U | UG 530/U |
| UG $27 \mathrm{~B} / \mathrm{U}$ | UG 96 A/U | UG 202/U | UG 272/U | UG 531/U |
| UG 28/U | UG 97/U | UG 203/U | UG 273/U | UG 532/U |
| UG 288 A/U | UG 97 A/U | UG 204/U/U | UG 274/U | UG 533/U |
| UG 288 B/U | UG 98/U | UG 206/U | PLG 274/U | UG 536/U |
| UG 29 A/U | UG 100/U | UG 208/U | UG 276/U | UG 541/U |
| UG 29 B/U | UG 100 A/U | UG $212 \mathrm{~A} / \mathrm{U}$ | UG 279/U | MX 554/U |
| UG $30 / \mathbf{U}$ | UG 101/U | UG 213 A/U | UG 286/U | UG 557/U |
| UG 33/U | UG 102/U | UG 216/U | UG 290/U | UG 568/U |
| UG 34/U | UG 106/U | UG 217/U | UG 291/U | UG 571/U |
| UG 35 A/U | UG 107 A/U | UG 218/U | UG $294 / \mathbf{U}$ | UG 572/U |
| UG 36/U | UG 108/U | UG 220/U | UG 306/U | UG 625/U |
| UG $37 \mathrm{~A} / \mathrm{U}$ | UG 108 A/U | UG 222/U | UG 309/U | UG 627/U |
| UG $38 \mathrm{~A} / \mathrm{U}$ | UG 109/U | UG 223/U | UG 333/U | UG 628/U |
| UG 39/U | UG 109 A/U | UG 224/U | UG 334/U | UG 634/U |
| UG 49/U UG 45/U | UG $110 / \mathrm{U}$ | UG 231/U | $\begin{aligned} & \text { UG } \\ & \text { UG } \\ & 345 / \mathrm{U} \end{aligned}$ | M $\times 913 / \mathbf{U}$ |

"AN" CONNECTORS "AN"

| 8SIP | 16S-6P | 18-18P | 20-15P | 22-12P |
| :---: | :---: | :---: | :---: | :---: |
| 8 SIS | 165-65 | 18-18S | 20-15S | 22-125 |
| $105-2 P$ | 16-7P | 18-19P | 20-16P | 22-13P |
| 10S-2S | 16-75 | 18-19S | 20-16S | 22-135 |
| 10 L-3P | 16S-8P | 18-20P | 20-17P | 22-14P |
| 10 SL -3S | 16S-85 | 18-20S | 20-17S | 22-14S |
| 10SL-4P | 16-9P | 18-21P | 20-18P | 22-15P |
| 10SL-4S | 16-9 ${ }^{\text {S }}$ | 18-21S | 20-185 | 22-15S |
| 10 SL-656. | 16-10P | 18-22P | 20-19P | 22-16P |
| 10SL-656S | $16-105$ | 18-22S | 20-19S | 22-16S |
| 12S-1P | 16-11P | 18-23P | 20-20P | 22-17P |
| 12S-1S | 16-115 | 18-23S | 20-20S | 22-17S |
| 12S-2P | 16-12P | 18-24P | 20-21P | 22-18P |
| 12S-2S | 16-12S | 18-24S | 20-21S | 22-185 |
| 12S-3P | 16-13P | 18-25P | 20-22P | 22-19P |
| 12S-3S | 16-13S | 18-25S | 20-22S | 22-19S |
| 125-4P | 16S-14P | 18-26P | 20-23P | 22-20P |
| 12S-4 S | 16S-14S | 18-26S | 20-23S | 22-20S |
| 12-5P | 16-15P | 18-27P | 20-24P | 22-21P |
| 12-5S | 16-15S | 18-27S | 20-24S | 22-21S |
| 12S-6P | 16-16P | 18-28P | 20-25P | 22-22P |
| 12S-6S | 16-16S | 18-28S | 20-25S | 22-22S |
| $14 \mathrm{~S}-1 \mathrm{P}$ | 16S-17P | 18-29P | 20-26P | 22-23P |
| $145-15$ | 16S-17S | 18-29S | 20-26S | 22-23S |
| 14S-2P | 18-1P | 18-30P | 20-27P | 22-24P |
| 14S-2S | 18-15 | 18-30S | 20-27S | 22-245 |
| 14-3P | 18-2P | 18-31P | 20-28S | 22-25P |
| 14-3S | 18-2S | 18-31S | 20-28P | 22-25S |
| $14 \mathrm{~S}=4 \mathrm{P}$ | 18-3P | 18-404P | 20-29P | 22-27P |
| $14 \mathrm{~S}-4 \mathrm{~S}$ | 18-35 | 18-404S | 20-29S | 22-275 |
| $14 \mathrm{~S}-5 \mathrm{P}$ | 18-4P | 20-1P | 20-30P | 22-28P |
| $14 \mathrm{~S}-5 \mathrm{~S}$ | 18-4 5 | 20-1S | 20-30S | 22-28S |
| 14 S-6P | 18-5P | 20-2P | 20-31P | 22-29P |
| $14 \mathrm{~S}-6 \mathrm{~S}$ | 18-5S | 20-2S | 20-31S | 22-295 |
| $145-7 P$ | 18-6P | 20-3P | 20-32P | 22-30P |
| $14 \mathrm{~S}-7 \mathrm{~S}$ | 18-6S | 20-35 | 20-32S | 22-30S |
| 14S-9P | 18-7P | 20-4P | 20-33P $20-335$ | 22-31P |
| $14 \mathrm{~S}-9 \mathrm{~S}$ $14 \mathrm{~S}-10 \mathrm{P}$ | $18-7 \mathrm{~S}$ $18-8 \mathrm{P}$ | 20-4S | 20-33S | 22-315 |
| $14 \mathrm{ST-10P}$ | 18-85 | 20-5S | 22-15 | 22-32S |
| 14S-11P | 18-9P | 20-6P | 22-2P | 22-33P |
| 14S-115 | 18-9 ${ }^{\text {, }}$ | 20-6S | 22-2S | 22-335 |
| 14S-12P | 18-10P | 20-7P | 22-3P | 22-34P |
| 14S-12S | 18-10S | 20-7S | 22-3S | 22-34S |
| 14S-13P | 18-11P | 20-8P | 22-4P | 22-35P |
| 14S-13S | 18-115 | $20-8 \mathrm{~S}$ | 22-4S | 22-35S |
| 14S-14P | 18-12P | 20-9P | ${ }_{\text {22-5P }}^{\text {22-5S }}$ | 22-36P |
| $14 \mathrm{~S}-14 \mathrm{~S}$ $16 \mathrm{~S}-1 \mathrm{P}$ | 18-12S | 20-9 ${ }_{\text {20-10P }}$ | ${ }_{\text {22-5P }}^{22-5 \mathrm{P}}$ | 22-36S |
| $16 \mathrm{~S}-1 \mathrm{~S}$ | 18-13S | 20-105 | 22-6S | 22.375 |
| ${ }_{16-2 P}$ | 18-14P | 20-11P | 22-8P | 22-404P |
| 16-2S | 18-14S | $2 \mathrm{Cl-115}$ | 22-85 | 22-404S |
| 16S-3P | 18-15P | $2 \mathrm{Co-12P}$ | 22-9P | 24-1P |
| 16S-3S | 18-15S | ${ }_{20}^{20-125}$ | $\xrightarrow{22-95}$ | 24-1S $24-2 P$ |
| $16 S-4 P$ $16 S-4 S$ | 18-16P | 20-13P | 22-10S | 24-2P |
| 16S-5P | 18-17P | 20-14P | 22-11P | 24-3P |
| 16S-5S | 18-17S | 20-14S | 22-115 | 24-3S |


| 28-2P | 28-840P | 36-2P |
| :---: | :---: | :---: |
| 28-25 | 28-840S | 36-25 |
| 28-3P | 28-852P | 36-3P |
| 28-35 | 28-8525 | 36-35 |
| 28-4P | 28.880P | 36-4P |
| 28-45 | 28-880S | 36-4S |
| 28-5P |  | 36-5P |
| 28-5S | 32-1P | 36-5S |
| 28-6P | 32-15 | 36-6P |
| 28-6S | 32-2P | 36-6S |
| 28-7P | 32-2S | 36-7P |
| 28-75 | 32-3P | 36-75 |
| 28-8P | 32-35 | 36-8P |
| 28-85 | 32-4P | 36-8S |
| 28-9P | 32-4S | 36-9P |
| 28-9S | 32-5P | 36-9S |
| 28-10P | 32-5S | 36-10P |
| 28-105 | 32-6P | 30-10S |
| 28-11P | 32-6S | 32-11P |
| 28-115 | 32-7P | 36-11A |
| 28-12P | 32-7S | 36-12P |
| 28-12S | 32-8P | 36-12S |
| 28-13P | 32-8S | 36-13P |
| 28-135 | 32-9P | 36-13S |
| 28-14P | 32-9S | 36-14P |
| 28-14S | 32-10P | 36-14S |
| 28-15P | 32-10S | 36-15P |
| 28-15S | 32-12P | 36-15S |
| 28-16P | 32-12S | 36-16P |
| 28-16S | 32-13P | 36-16S |
| 28-17P | 32-13S | 36-17P |
| 28-17S | 32-14P | 36-17S |
| 28-18P | 32-14S | 36-18P |
| 28-18S | 32-15P | 36-185 |
| 28-19P | 32-15S | 36-19P |
| 28-19 ${ }^{\text {S }}$ | 32-16P | 36-19S |
| 20-20P | 32-16S | 36-20P |
| 28-20S | 32-17P | 36-20S |
| 28-21P | 32-17S | 36-21P |
| 28-215 | 32-18P | 36-21S |
| 28-22P | 32-18S | 36-646P |
| 28-22S | 32-19P | 36-646S |
| 28-410P | 32-19S | 36-697P |
| 28-410S | 32-20P | 36-6975 |
| 28-684P | 32-20S | 36-795P |
| 28-684S | ${ }^{32-101 P}$ | 36-795S |
| 28-693P | 32-101S | 36-799P |
| 28-693S | 32-102P | 36-799S |
| 28-695P | 32-102S | 36-853P |
| 28-695S | 32-722P | 36-853S |
| 28-702P | 32-722S | 40-1P |
| 28-702S | 32-810P | 40-15 |
| 28-745P | 32-810S | 40-2P |
| 28-745S | 32-811P | 40-2S |
| 28-766P | 32-811S | 40-3P |
| $28-7665$ |  | 40-3S |
| $28-833 \mathrm{P}$ $\mathbf{2 8 - 8 3 3 S}$ | ${ }_{\text {36-1P }}^{\text {36-1P }}$ | 40-4P |



## WIRE-CABLE

## CORDAGE

CO. 1223 conductor each \#22 AWG neoprene jacket $550^{\circ}$ lengths
CO-127 single \#14 AWG braided and tinned copper braid shield

## MULTI-CONDUCTOR

2 conductor AWG $12 \quad 7$ conductor AWG 16
7 conductor AWG 1419 conductor AWG 16
14 conductor AWG $16 \quad 6$ conductor AWG 20
1 conductor shielded 10 conductor AWG 16
2 conductor AWG 1822 conductor AWG 16
2 conductor shielded AWG 10

## AMOUR

DRIA-23 DHFA-100 FRIA-4
SINGLE CONDUCTOR AWG 10 shielded cable with terminal lug each end $100^{\prime}$ and $150^{\prime}$ lengths

## WIRE

AWG 18 copperweld
AWG 29 tinned coppe
Resistance wire AWG 32
AWG 22 with nylon core plastic insulation
LINEAR WIRE WOUND POTENTIOMETERS


80-86 Crystal in Holder $\$ 2.50$
Bailoon with Hydrogen Generator $\$ 2.50$ 300 Feet Aerial Wire $\$ 2.00$

MICROWAVE TEST EQUIPMENT 10 CM echo box CABV 14ABA-1 of OBU-3, frequency range $2890 \mathrm{MC}-3170 \mathrm{MCS}$. Direct reading micrometer head. Ring prediction, scale plus $9 \%$ to minus $9 \%$ Type 'N" input. Resonance indicator meter. With accessories, spares and 10
CM directional coupler. Brand New.

## TUBES

| 2034979 | 5.45 | 801 | . 25 | 9006 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | . 5.55 | 88 |  |  |  |
| 3 C | 1.60 | 864 | 25 |  |  |
| 7C4/1203A | . 70 | 931 A | 4.45 |  | 20 |
|  | . 35 | ${ }^{955}$ | . 35 | R | 45 |
| ${ }_{30}$ | - 65 |  | $\begin{array}{r}35 \\ 45 \\ \hline\end{array}$ |  | 25 |
| 39/44 |  | CK | . 90 | 16 | . 70 |
|  | . 35 | 1626 | 35 | 183 | . 80 |
| 31 | 6.75 | 1629 | . 25 |  |  |
| WL | 4.95 | ${ }_{7193}^{2051}$ | ${ }^{1.10}$ |  | . 67 |
| 713 A | . 90 | 8011 | 15 | 3718. |  |

HI VOLTAGE FILTER CHOKES
. 4 HY 4.5 Amp DC 3 ohms 1230 RMS to
ground. New.
1 HY 3.2 Amp DC 3.5 ohm GE69G459.
1.7-3 HY 2 AMP DC 34,000 VDC GEY346A.

NAVY ENTERING TYPE INSULATOR
Porcelain flanged bowl with brass rod, fittings and aluminum shield. Dimensions 43/8" high, $6-5 / 16^{\prime \prime}$ OD at base. Brand new
$\$ 4.50$.

10 CM ROTATING ANTENNA
24"' Parabola in turret $360^{\circ}$ span at 12 RPM

TIME DELAY SWITCHES
1 Minute 115 VAC 60 cycle Enc. in Wator. Mroof Metal Case. New $\$ 5.25$. in Water*
Time Delay 110 VAC Motor New $\$ 4.50$ Thermo Switch $50^{\circ}$ to $300^{\circ}$ F 115 VAC @ 6 A
230 VAC @ 5A
Breaks Contact with increase in Temperature. New \$1.35

CONTACTORS
DPST 115 VAC 60 cycle 15 Amp De-Ion Line Starter Westinghouse $\$ 6.95$
DPST 115 VAC "AB" \#700 $\$ 5.95$
RELAYS
12 VDC DPST Allied Control Box 32... $\$ 1.25$ 24 VDC DPDT Allied Control BID36.... $\$ 1.45$ 24 VDC 3PDT 8 Amp.................... $\$ 1.50$ 110 VAC DPST 1 Amp Contacts Struthers 11 Dunn CKA 1970....................... $\$ 3.65$
15 VAC DPST Struthers Dunio CXA
 230 V 50 cycle DPDT G.E. 12HGA11A2. . $\$ 4.00$

$$
\begin{aligned}
& \text { OIL FILLED CONDENSERS } \\
& \text { FD VDC Each Ten MFD VDC Each }
\end{aligned}
$$

|  | VDC | FI | Ten | MF |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 600 | . 85 | . 80 | . 5 | 2000 | 2.00 | 90 |
| 2 | 600 | . 95 | . 95 | . 25 | 3000 | 2.85 | 2.80 |
| 4 | 600 | 1.40 | 1.40 | . 5 | 3000 | 2.95 | 2.90 |
| 5 | 600 | 1.65 | 1.60 | . 2 | 5000 | 4.50 | 4.25 |
| 1-8 | 600 | 2.50 | 2.35 | . 1 | 7500 | 3.95 | 3.95 |

Portable 0-25 Amps AC Weston \#433 Brand
Portable 0-25 Amps AC Weston \#433 Brand
New $\$ 37.50$.
New \$37.50
$\pm 269$ with Panel 0-100 Amps DC Weston \#24.95 with 100 Amp Shunt Brand New EQUIPMENT
Walkie-Talkies 2.3-4.6 MC
MN-26Y Bendix Compass Receiver
BC-733 Glide Path Receiver
DAB 3-Direction Finder
RDF Receiver Equipment 200-500 KC Fixed

# RESISTORS A hass, the Best 

## from legri S company since 1945 Resistors is our business

## ANY RESISTORS

ANY CONTROLS

Fixed or variable (EB $+\mathrm{GB}+\mathrm{HB}$ and others) Carbon or wirewound $1 / 8$ Watt up to 300 Watt
Precision of $1 / 4$ of $1 \%$ or $20 \%$
Any, Yes . . . any makes-any types-any values One piece or one million

Potentiometers, type J, JJ, JJJ Rheostats, Attenuators
For development, research or production
Guaranteed aged resistors.

## LEGRI S COMPANY

Owner: G. Grinn
158 West 99 Street
New York 25, N. Y.

## ELECTRONIC VALUES FROM TALLEN

## FOR QUANTITY USERS ONLY



## SPARK PLUGS

Type LS 465 A for
Wright Engines R2600 and R182D
Pratt and Whitney Engines 1830
individually bozed .04 ea.
Tuning Units TU 10 New............ 2.00
Telephone A and B line. Statior for ship. board use with dial and handset. New . . 10.00


Anienna AS 61 Complete New...... 1.00 Antenna AS 62 Complete New...... 2.00 TS 245/TRT-1.......................... 100.00 TS 125................................. 125.00

BC 966 Complete 1FF with Cables, Mounts -Pluqs
35.00

Pilot baloon targets ML 350/AP...... . 25
CRYSTALS
25,000 Pieces in FT. 241 Holders
New@ $\$ .10$ each

Oxygen Gas Masks...............New . 25
Control Boxes BC434.............New 3.50
Antennas 37-50 MC 72 inch........ 1.50
AS97/ART-Antenna with coax.... 1.50
Vinyl tubing $5 / 16^{\prime \prime}$ I.D. $x$ 7/64" Wall 40 ft lgths
00
Neoprene tubing $5 / 16^{\prime \prime}$ I.D. x 7/64" Wall
80 ft lgths ....................... 2.00
RL42 Antenna motors......... Lousy 1.50
BC357 Receivers............... Used 3.50
Recorder for underwater sound equip-
ment .............................. 60.00
Transmitter-Aircraft T9/APQ-2, 115v. 400
cy. 26VDC NEW . . . . . . . . . . . . . . . $\$ 20.00$
Radar Transmitter T-26/APT-2, 115v. 400 cy. 200 Watts. NEW . . . . . . . . . . . . $\$ 30.00$
Corner Radar Reflector NEW . . . . . . . $\$ 5.00$
R5/ARN-7 Type Certificated...... $\$ 250.00$
TS125 Test Set, complete. NEW . . $\$ 125.00$ ea.
TS10 Test Set, NEW .............. $\$ 20.00$ ea.
TS 16 Test Set, NEW . . . . . . . . . . $\$ 20.00$ ea.
Tuning Units TU-10 NEW ........... $\$ 2.50$
Tuning Units for BC-610 NEW....... $\$ 12.50$


This is only a partial listing. We have a quantity inventory on our shelves. consisting of Coils-Relays-Condensers-Transformers-Radio and Radio Receivers and Transmitters-Handsets-Headsets-Microphones etc. etc. All are ready for IMMEDIATE DELIVERY.
TERMS: Open A/C net 10 days. All prices F.O.B. our warehouse.

## ELECTRONICS

IN ALL ITS<br>BRANCHES



## 159 CARLTON AVENUE BROOKLYN 5, N. Y. <br> TRIANGLE 5-8241

## SAVE ON TUBES BRAND NEW TUBES gUARANTEED TUBES




ALL EQUIPMENT TESTED IN OUR SHOPS AND GUARANTEED READY FOR INSTALLATION IN AIRCRAFT "Specializing in installations of the highest quality".

- ARC-1 - 50 channel VHF Transceiver installation
- ARC-1 - 20 channel VHF Transceiver installation
- ARC-1 - 10 channel VHF Transceiver installation
- ARC-3 - 8 channel VHF Transmitter-Receiver installation
- ARC-3 - 24 channel VHF Transmitter-Receiver installation
- SCR-522- 4 channel VHF Transceiver installation
- ART-13 --HF Transmitter installation
- R89B-ILS equipment
- BC 733D-ILS equipment
- MN 53-Marker Beacon
- SCR-269G—Radio Compass
- ARN-7-Radio Compass
- BC 640-VHF Ground Station
- Dynamotors-all types


## LET US HAVE YOUR INQUIRY—PROMPT ANSWER—QUICK DELIVERIES <br> Buyers of Surplus Aviation Electronic Materials, send us your list!!

## COMING IN JUNE

Yes, coming up in June is the great Annual BUYERS' GUIDE issue of ELECTRONICS-the 13th issue of the year.
And it is just that-the buying guide for those in the electronics industry. They find the GUIDE indispensable to them in their work and turn to it whenever they seek sources of supply for
equipment or component parts
Or that reason advertising in the SEARCHLIGHT SECTION is a irtual MUSI for the alert dealer in surplus new or used elec. ronic components or parts
Closing date is May 25.



POWER UNITS


OIL CAPACITORS

| 4.600 | 1.25 |
| :---: | :---: |
| 10-600 | 2.50 |
| 4-1000 | 1.50 |
| 4-2000 | 3.00 |
| 2-2500 | 2.50 |
| 4-2500 | 4.00 |
| 1-3000 | 2.50 |
| 5-10,000 | 50.00 |

TUBES

| 814 | 2.50 |
| :---: | :---: |
| 803 | 3.00 |
| 304TL | 5.00 |
| 204A | 10.00 |
| WL-218 | 25.00 |

METERS

|  | WESTON $430 \ldots \ldots \ldots \ldots$ | 25.00 |
| :--- | :--- | ---: |
| $30 \vee D C$ |  |  |
| SIMPSON $6130 \ldots \ldots \ldots$ | 4.00 |  |
| $\pm 115 \vee$ AC |  |  |

HEADSETS

| P-20 | 3.00 |
| :---: | :---: |
| 24,000 Ohm |  |
| HS-30 | 2.00 |
| 600 Ohm |  |
| HS-18 | 1.50 |
| 8000 Ohm |  |

TRANSFORMERS

| $\begin{aligned} & \text { SOLA } 500 \text { VA } \\ & 95-125 / 115 \end{aligned}$ | 50.00 |
| :---: | :---: |
| G.E. 1.5 KVA | 25.00 |
| 480-240/240-1 20 |  |
| PENN. 75 KVA | 500.00 |
| 480-240/240-1 20 |  |
| TRANSTAT 1 KVA | 25.00 |
| 230/0-230 |  |
| POWERSTAT 2 KVA | 35.00 |
| 115/0-115 |  |

MICA CAPACITORS CERAMIC CASED

| 08-1500 | 10.00 |
| :---: | :---: |
| .0015-5000 | 7.50 |
| .002-15,000 | 25.00 |
| .01-15,000 | 40.00 |
| .00015-20,000. | 20.00 |
| .00082-30,000 | 50.00 |
| .001-30,000 | 75.00 |

# western engineers 

ELK GROVE, CALIFORNIA<br>GEORGE WHITING, OWNER

We have one of the largest stocks of special purpose tubes in the United States for immediate shipment. We sell tubes only and consequently each order receives individual attention from tube specialists. We sell only new tubes, standard brands, either JAN or commercial specifications depending on stocks on hand.

| OA 2 | . 98 | 3E29 | 14.95 | 329A | 7.95 | 837 | 1.95 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OA3/VR75 | 1.04 | 3FP | 1.95 | 331 A | 6.95 | 841 | 59 |
| $\mathrm{OB2} 2$ | 1.25 | 3 O 4 | . 59 | 350 B | 3.95 | 843 | 39 |
| OB3/VR90 | 1.05 | 4APi0 | 3.95 | 353A | 4.25 | 846 | 75.00 |
| OC3/VR105. | . 99 | 4B28. | 2.95 | 357A | 14.95 | 860 | 4.50 |
| OD3/VR150 | . 85 | 4J42/700A. | 24.50 | 371 B | 1.95 | 861 | 32.50 |
| 1822 | 2.25 | 5AP1. | 3.49 | 388A | 1.49 | 864 | 75 |
| 1 L 26 | 2.25 | 5C30/C5B | 3.75 | 394A | 4.75 | 865. | 1.25 |
| 1827 | 13.95 | 5 FP 7 | 1.95 | WL4i7i | 14.95 | 866A | 1.49 |
| 1829 | 2.45 | C5B. | 3.75 | 450 TH | 44.00 | 869 BX | 49.50 |
| 1836 | 6.95 | 5 R 4 C | 1.49 | 530 | 16.95 | 8721 | 3.95 |
| 1856. | 34.50 | C6A | 5.75 | 531. | 16.75 | 874. | 1.19 |
| ELIC | 2.49 | $\mathrm{CAR}^{6}$ | . 79 | 533. | 16.95 | 876 | 95 |
| 1 DBGT | . 89 | 6B8 | 85 | 559 | 1.00 | 879. | . 49 |
| 114 | . 59 | 6 K 7 | 49 | HY615 | 39 | ${ }^{931 \wedge}$ | 4.95 |
| 1 N 21 B | 2.75 | $7 \mathrm{BP5}$ | 14.95 | 700 | 22.50 | 954. | . 35 |
| 1N23A | 2.50 | ${ }_{7} 7 \mathrm{C} 4$ | . 59 | 701 A | 4.50 | 955 | 55 |
| 1 N 23 B | 3.50 | 7E5/1201 | . 59 | ${ }^{702} \mathrm{~A}$ | 2.49 | 956 |  |
| 1N34A | 1.19 | $10 Y$ | 75 | 703A | 4.75 | 957. | 35 |
| 1 N 38 A | 1.19 | 12A6 | . 59 | 704 A | . 89 | 958A. | . 65 |
| 1 N54A | 1.19 | ${ }^{246}$ | 1.39 | 705A | 1.49 | E1148 |  |
| 1N58A. | 1.19 | 30 Spec | . 69 | 706AY-DY | 39.50 | EF50 | 1.09 |
| 1R4/1294 | . 89 | RK34 | 59 | 706EY-GY | 39.50 | CK1005 | 75 |
| 1 T 4 | . 69 | 45 Spec | 33 | 707A | 7.49 | 1291. | . 59 |
| $2 \mathrm{C} 21 / 1642$ | . 59 | FG81A | 3.49 | 708A | 3.75 | 1294 | . 89 |
| 2C22/7193 | . 30 | RK72 | 1.25 | 710/8011. | 89 | 1299 |  |
| 2 C 26 | 19 | RK73 | 1.25 | 713 A | 95 | 1608. | 3.95 |
| 2 C 26. | 45 | RK75 | 5.75 | 714AY | 9.95 | 1616 | 1.95 |
| $2 \mathrm{C34} / \mathrm{RK} 34$. | . 59 | REL5 | 16.95 | 715A. | 6.95 | 1619 | . 75 |
| 2 C 40 | 8.95 | VT90 | . 89 | 715 B | 14.95 | 1025 | 40 |
| 2 C 43 | 14.95 | VT98. | 16.95 | ${ }_{715}{ }^{\text {715 }}$ | 22.50 | 1626. | 40 |
| 2 C 44 | 1.15 | 100TH | 7.75 | 717 A | 1.25 | 1629 | . 39 |
| 2321 | 16.95 | HY114B | 95 | 7214 | 2.95 | 1636 | 2.95 |
| 2 J 22 | 16.95 | VT127. | 1.75 | 722A | 2.95 | 1642 |  |
| $2 J 26$ | 24.95 | VT127A | 2.95 | 724 B | 4.95 | 2051 | 1.09 |
| 2327 | 24.95 | F128A. | 89.50 | 725A | 8.95 | 7193. | 49 |
| 2 J 39 | 29.95 | $205 B$ | 1.45 | 800 | 1.75 | 8011. | .89 3.95 |
| $2 \mathrm{2J40}$ | 29.95 | 211 | 1.75 | ${ }_{801}^{801}$ | . 75 | 88012 A | 3.95 3.95 |
| $2 J 62$ | 39.95 39.95 | 217C | 1.75 6.95 | 805. | 4.95 3.90 | 88020. | 3.95 2.95 |
| 2 K 25. | 27.50 | 250 TH | 18.75 | 807. | 1.65 | 8021. | 2.95 |
| $2 V 3 G$ | . 89 | 250TL. | 16.95 | 808. | 2.50 | 9001. | 1.50 |
| 2 X 2 | . 55 | 285A | 8.95 | 811 | 2.90 | 9002 | 95 |
| 3B7/1291 | . 59 | 2864 | 5.75 | 812. | 2.70 | 9003 | 1.75 |
| 3B22\%144 | 2.49 1.39 | 304TH | 9.95 13.95 | 813 C 815 | 11.95 3.25 | 9004. | 1.95 |
| 3 C 28. | 4.95 | 307A. | 13.75 | 830 B | 3.45 | 9006 | . 33 |
| $3 \mathrm{CP} 1 / \mathrm{S1}$ | 1.49 | 316A | 1.25 | 832A | 9.50 | 6 Amp T |  |
| 3D6/1299. | . 39 | 328A. | 6.95 | 836 | 4.95 | Bulbs . | 2.95 |

MARITIME INTERNATIONAL COMPANY

11 STATE STREET
Phone: Dilgby 4-3192

NEW YORK 4, N. Y.
Cable Address: FOXCROFT

## IN STOCK

FOR IMMEDIATE DELIVERY BRAND NEW JAN-C-25 CAPACITORS
CP53-CP54-CP55
CP61-CP63-CP65 CP67-CP69
Every " $E$ ' Characteristic
Item Listed In Jan-C-25 Also Every "F" Characteristic
Where The Size Is Smaller Than "E" ALSO
CP70 CAPACITORS
"E" Characteristic 600 and 1000 Volts " $B$ " and " $E$ " Terminals

## O'DEL ELECTRONICS CORPORATION

293 WEST BROADWAY NEW YORK 13, N. Y. WORTH 4-2176 WORTH 4-2177


## WHAT DO TOU NIEDR Pieres aun inwentart...

OUR NORMAL INVENTORY INCLUDES OVER 80.000 DIFFERENT ITEMS IN THE ELECTRONIC, RADAR AND RADIO FIELDS.

RELAYS—Approximately 300,000 in over 1100 types
CAPACITORS-Approximately 450,000
OIL - TUBULAR - MICA - FIXED and ADJUSTABLE CERAMIC FEED-THRU - stand-off. apc trimmers - variables - silver mica

RESISTORS-Over a million
carbon - wire wound - ferrule - potentiometers \& rheostats
DYNAMOTOR BRUSHES—Approximately 400,000
FUSES--Approximately 800,000 in stock
WIRE and CABLE-Millions of feet
SWITCHES - Approximately 200,000
CHOKES and TRANSFORMERS—Approximately 120,000
COILS—RF and AF CHOKES—Approximately 350,000
TIMERS and DELAY RELAYS-Both clock and thermal types
BATTERY CLIPS-Approximately 50,000
BUSHINGS and SPACERS-Thousands of pounds
CHASSIS-Dozens of sizes
COAXIAL CABLE-Many sizes in stock
SPRINGS-Over 5000 pounds-Hundreds of types
JONES CONNECTORS-Many types in stock
INVERTERS-
From 1100 C to 60 cycle $A C$
From 20 to
Also some 400 cycle units
RECTIFIERS_Made to your specifications
NU-METAL LAMINATIONS-Thousands of pounds in a dozen sizes
KOVAR GLASS SEALS—Approximately 400,000 in stock in several dozens of types
CERAMIC and HI-FREQUENCY STAND-OFFS—Approximately 300,000 in stock
TAPE—Celluose, Textile, Masking and Electrical—All sizes
GUY WIRE_Both Light and Heavy
INTERCOM SYSTEMS—Best Buys
SOLENOIDS—Approximately 75,000 in stock
TELEPHONE RELAYS, RETARDATION COILS and CAPACITORS
GROMMETS—Approximately 20,000 pounds
TUBES - Most receiving types and many special types in stock IRON CORE SLUGS-Over a million in stock

WE ALSO HAVE A LIMITED ASSORTMENT OF THE FOLLOWING ITEMS IN STOCK:
dial light assemblies
DIAL PULLEYS
DIAL PLATES
PILOT LAMPS
EYELETS AND RIVETS
BOLTS, NUTS, SCREWS and WASHERS
SPEAKERS
SOCKETS
HEADPHONES
telegraph keys
VARNISHED and VINYL TUBING
ALNICO MAGNETS
JACKSON PLUGS
SOLDER
LINE CORDS
LUGS-Terminal, Soldering, Stakon POWER RHEOSTATS
ROTARY SWITCHES

SEND US YOUR SPECIFIC REQUIREMENTS FOR OUR QUOTES
324 CANAL ST., N.Y.C., I3, N.Y. WAlker 5-9642 nimersal sencral coln?

TRANSFORMERS-100V. 60 Cycle Pri.

 ${ }_{24}^{\text {ings }_{2}-\text { sives }} 4$
Sec. 24 Volt $1 / 2$ Amp. sec. 24 Volt 1 Amp Sec. 24 Volt 6 Amp. Sec. $6-24$
8 Anp.

RADIO FREQUENCY AMPLIFIERS: RADIO FREQUENCY AMPLIFIER AM-I4/APT 100 W . Used to increase outivit Transmitting Jiquil. ment. AN/APT-1. Indut 80 or 115 V . AC 400 to RADIO FREQUENCY AMPLIFIER AM-18/APT

 RADIO FREQUENCY AMPLIFIER AM-33/ART Freq. lange 35 to $105 \mathrm{MC}$. Land width $3.5 \pm 0.5$
MC. Usea to inerense jower output AN/AMO-8 to


## MOTOR-GENERATOR

Navy type CCl- $211014,115$.
KPMC-
Generator 27


## SELSYN

2JIGI CONTROL TRANSFORMER WITH CAPS. NEW; $\$ 5.95$ Ea.

BATTERY CHARGING RESISTOR PANEL

 MPg. by Ward Leonard-NETV........I'rice: $\$ 29.95$

## SELENIUM RECTIFIER UNITS

HEAVY DUTY- 30 VOLT DC OUTPUT:



## DYNAMOTORS

DYNAMOTOR and BLOWER: 9 Volts DC input: out-





## BLOWERS

115 Volt 60 cycle BLOWTR (pictured), approx. 100 CFMM
Dis. $24^{1 / 2}$ intake: $2^{20}$ outlet. Dis. ${ }^{2 / 4}$ intake
Ruine
$24 n^{\prime \prime} \times 34^{\prime \prime}$. NEW Moto
surplus.
Order No. 1 c939
$\mathbf{S 8 . 9 5}$
OUAL BLLOWER-Same as RN-520 above, excent
Dus blower assembly iu each sile of motor. Order has blower assembly in each sile of motor. Orier
No. 1C880 ............................ 13.95 COMPACT TYPE-108 CFM, motor built insticle

 FLANGE TYPE-140 CFMH, 3-1/" intake: $2-1 / 2^{\prime \prime} \mathrm{Dis}$ Complete sy
FLANGE TWIN-2i5 CFMr, $4-1 / 2^{\prime \prime}$ Intake: $3-14^{\prime \prime} \times 3^{\prime \prime}$ D. No. 2C069

AIRCRAFT CONTROL CABLE $-3 / 32^{\prime \prime}-7 \times 7$
Strand. Weatherproofed, Galvanized, Preformed Strand. Weatherproofed, Galvanized, Preformed.
920 ib. test.
dieal for
Television Giying
anid many other uses. Prices:

AERIAL WIRE-Plosinhorous Rronze \#16 Stranded
 With clins

## DC SMALL MOTORS 24 VDC REVERSIBLE


 $21 / 3^{\prime \prime}{ }^{\prime \prime} \mathrm{xaC}^{5 / 16^{\prime \prime} \text { Al Also onerates }}$ 1008 AC, M............. 85.95

 Motor Size: $2-1 / 2^{\prime \prime}$ v $1-1 / /^{\prime \prime}$. No.
$5606-967$
 80 VOC- $1 / 50$ TII- 3000 RPM, Shaft Size: $3 / 86.95$


 ANTENNA EQUIPMENT MAST BASES-INSULATED:
MP-132 BASE-(As inlustrated at left) $1^{\prime \prime}$
 Price MP.S.33 BASE-Insulated type with


MAST SECTIONS For ABOVE BASES Tubular steel, copper coated. mainted, in ${ }^{3} \mathrm{ft}$. sec-
tions, screw-in the. MStions, screw-in thie MS-58 can be used to make
any length with MS-52-51-50-49 for taper. Any sec-
 AN-104P Antenna- $100-150 \mathrm{MC}$ - Steel.


Secons to 24 Minues Iimer
A hand wound electric TIMING SWITCH
Pointer moves back to ZERO and shuts off RADIO-TV-Electric Mixer-Photographic Devices-Time Delay etc. Furnished with Calibration Chart and Pointer $\$ \mathbf{1} 25$
Knob. Biggest bargain we ever had.

HAYDON SYNCHRONOUS TIMING MOTOR
110 г. 60 cycle 30 пРM.
$\$ 2.60$
110 г. 60 cycle $1 / 10$ RPM.
110 v. 60 cycle 1 RPM.
110 จ. 60 cycle 2 RPM.
220 5. 60 cycle 2 RPM.
$\$ 2.00$

ISOLATION TRANSFORMER
Step-Up
230 volts to 115 volts
 115 polts to 230 volts

## MARKTIME 5 HOUR SWITCH

 A 10 amp. timing derce.Pointer mores back to zero after time elapses. Ideal for shutting off radios and TVY
sets when you go to bed. sets When you go to bed
Limited supply at this spe-
clal PR1CE clal PRICE $\$ 4.90$


Westinghouse Elapsed Time Meters. . $\$ 15.50$ ALL PRICES F.O.B. N. Y. ${ }_{1923}^{E S T}$ O
64 Dey St.
New York 7, N. Y.

## CARRIER EQUIPMENT

Western Electric CF-IA 4-channel carrier telephone terminals.
EE-101-A
-channel $1000 / 20$ cycle carrier ringers. EE-D. 4 channel carrier pilot regulated telophore
torminals complete with four channels $1000 / 20$ torninals complete with four channels $1000 / 20$
cycle ringing. CFD-B $\begin{gathered}\text { cyinging. } \\ 4 \text {-channe }\end{gathered}$
C-42-A ${ }^{\text {peaters. }} \mathbf{V}$. telegraph in from 2- to 12 -channel FMC I or 2 channels carrier telephone terminals. channel. Carrier frequencies above 35 KC . Ideal for adting channels ahove type "C"" KC. Ideal Complete engineering and installation services
offered.

RAILWAY COMMUNICATIONS, INC. Raytown. Missouri Telephone: FLeming 2121


## RELAYS

Our stock of more than a million relays - in over a thousand different types - is the world's largest. Don't delay your production for want of large or small quantities of relays of any type.
Telephone, wire or write for quotations.


NEW AND MORE Comprehensive 1953 relay sales CATALOG now ready Be sure to send for your copy


DIRECTRON SELENIUM RECTIFIERS
Buy Direct From


| Full-Wave |  | Bridge Types |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Current (Continuous) | $\begin{aligned} & 18 / 14 \\ & \text { Volts } \end{aligned}$ | $\begin{aligned} & 36 / 28 \\ & \text { Volts } \end{aligned}$ | $\begin{aligned} & 54 / 42 \\ & \text { Volts } \end{aligned}$ | 130/100 Volts |
| 1 Amp. | \$1.35 | \$2.15 | \$3.70 | 57.50 |
| 2 Amps. | 2.20 | 3.60 | 5.40 | 10.50 |
| 2 近 Amps. |  |  | 6.00 | 13.00 |
| 4 Amps. | 4.25 | 7.95 | 12.95 | 25.25 |
| 6 Amps. | 4.75 | 9.00 | 13.50 | 33.00 |
| 10 Amps. | 6.75 | 12.75 | 20.00 | 40.00 |
| 12 Amps. | 8.50 | 16.25 | 25.50 | 45.00 |
| 20 Amps. | 13.25 | 25.50 | 39.00 | 79.50 |
| 24 Amps. | 16.25 | 32.50 | 45.00 | 90.00 |
| 30 Amps. | 20.00 | 38.50 |  |  |
| 36 Amps. | 25.00 | 48.50 |  |  |

We can manufacture other Selenium Re
Hectifier Supphies. XFMMS. \& Chokes.

- New Selenium Rectifier Transformers



JOBBERS . . LARGE QUANTITIES
OF W.E. COMPONENTS, XFMRS, CAPACITORS, ETC. WRITE.


| FILTER CAPACITORS |  |  |  |
| :---: | :---: | :---: | :---: |
| Capa | acity | w. Voltage | Ea. |
| 500 M | MFD. | 50 V | . 98 |
| 500 m | MFD. | 200 V . | 2.50 |
| 1000 M | MFD. | 12 V . | . 50 |
| 3000 M | MFD. | 20 V . | 2.25 |
| 5000 M | MFD. | 50 V . | 3.75 |

## SELENIUM POWER SUPPLY

0 to $12 \mathrm{VDC} / 2$ Amp. Variable DC supply, uncasen


- RADIO TELEPHONE SETS

Western Electrio 4. Channel Ship-to-Shore Sets. Brand new. Made for U. S. C. G., deluxe, compact,
includes transmitter, receiver and bullt-in porer supply for 12 -volt $D$. C. operation. Operates from
2 through 3.5 mcs . 5 Watts output. our price $\$ 149.50$

- W.E. Push-to-Talk F3 Hand sets-Brand nev 20 or more. . . . . . . . . . . . . . . . . . . . . . . . . . $\$ 9.50$ ea.
- Western Filectrle $1 / \mathbf{R}^{\prime \prime}$ Steel Comm'l Grey Panels-
$101 / 2^{\prime \prime} \times 19^{\prime \prime}$. Brand new................ $\$ 1.00$ each Trimm. Model 100 "Featherweight" Headsets \& Band.
New, in orlg. mfr.'s carton 4.000 ohns......... $\$ \rightarrow .95$

Bliley-Type SMCl00- $\quad$ Crystal Standards
New-100 KC and $1,000 \mathrm{KC}$ RAR.......... $\$ 8.50$

- LM FREQUENCY METER-INT. MODULATION

Supply
$\$ 115.00$
Top Dollar Paid for SURPLUS TUBES \& EQUIPMENT - Send List With Details


130 LIBERTY STREET - NEW YORK 6, N. Y

CONDENSERS - RELAYS - TUBES - METERS ALL NEW MERCHANDISE-EVERY ITEM GUARANTEED


SYNCHRO- $10.10 .10 \cdot \mathrm{M}-90 \mathrm{~V}$ 60 c.

30 MFD - $90 \mathrm{~V}-3$-PHASE - 60 Type J—150 ohm 50 watt 25M Ty The K— 25 ohm 100 watt VITAMIN ${ }^{0}$. $3 \mathrm{x} .25,25 \mathrm{M}-2500$
VITAMIN Q $15 \mathrm{M}-150 \mathrm{VACC}$ 800cy-
S $35-5860-\mathrm{Pl}$.
ELIM-O-STAT-EN.10I-3AMPS
115vde. EN-.......... 53.75
MFD VOLT TYPE PRICE




2500VDC S35-5904-P1 4000VDC $\begin{gathered}\text { Vitamin } 26 \\ 26568\end{gathered}$ 600 VOC CP65BIEF405V
1500 VDC
 4000 VDC
600 VOC
4009 AER.


## 2000 VDC TJU20010G $\quad 1.85$

 4000 VDC CP70D1FM105 7.56 6000VDC 42K INTEREEN*
 1000 VOC 1006 AER.
2000 VDC T 1 U 20020
$2000 \mathrm{VDC} \quad 22 \mathrm{~F} 194 \mathrm{C}$


| 4000 VDC |
| :--- | :--- |
| 5000 VDC |
| $\$ 23 \mathrm{~F} 50$ |
| 235 |



600 VDC CP ERLMRW6-4
600VDC EC-MK
$1000 \mathrm{VDC} \mathrm{CO}_{10}$
GOOVDC CP70E1EF40SV ${ }_{1.6}$
4. 600 VDC CP70B1FF405V ${ }^{1.69}$

## LEONARD GREENE

## 381 Tremont St.—HA 6-4794

BOSTON, MASS.

## $\mathbb{K} \cdot \mathbb{R} K-A R C \cdot U G \cdot P L / A N$ CONNECTORS In Stock for Immediate Delivery Lonnector Porporation-

137 Hamilton St., New Haven 11, Conn. Phone: Spruce 7-2513 New York Phone: LExington 2-6254

## COMPETITORS

team up to bring you one GREAT ELECTRONICS FIRM geared to serve you with HARD-TO-FIND PARTS \& EQUIP.

Just a partial list of our present stock

- BC-348 - BC-342 - ART-13
- ARC-3 - APN-9 - LM
- BC-221 - BC-611
- VARIOUS TEST EQUIPMENT NEW EXPORT DIVISION FOR ALL FOREIGN ORDERS Prompt attention to all inquiries-all languages!


## ttn: Schools, Labs, Hams

 WE PAY MORE FOR RADIO PARTS \& EQUIPMENT Cash in on your surplus equipmentor we'll trade for something you really need. Write today!HARJO SALES CO

* Formerly CANDEE-AlRCO combined with Alvaradio
4109 BURBANK BLVD. P. O. Box 1187 Magnolia Park Station BURBANK, CALIFORNIA
CHarleston 0-1486 • ROckwell 9-1070



```
INVENTORY LIQUIDATION
```

    - MPM.
    - Same type motors rectified for 110 V or 220 V
    - Air difiven directional gyro compasses.
    - Rodend bearings
    - Motor driven vacuum numps.
    Hermetically sealed sensitive relays.
    Write for complete list and
Write for complete list and specifications
LLOYD PRODUCTS CO. PROVIDENCE 5. R. I.

## PANORAMIC

## SONIC ANALYZER

EXCELLENT CONDITION
Immediate delivery
WARREN PLASTICS CORPORATION WARREN, PA.

## CONDENSERS MICHE A TADG. SWS. - IRELAYS - "J." PATS

| OIL CONDENSER SPECIALS |
| :---: | :---: | :---: | :---: | :---: |

DIESEL GEN.
\{ 25 KW 3 phase 60 cy . Hill\} \{diesel, G.E. gen. Complete with \{ control panel \& starting batteries. Ready for immediate operation. Guoranteed. P.U.R.

## - TRANSTAT -

115 V. 1 phase, 100 amps., Kva. 115, Range 0-115 V. Amertran - 29145 . Specially priced.

|  | HI-VOLTAGE |
| :---: | :---: |
| Mfd | Volts |
| -112 | ${ }_{2}^{25 \mathrm{k}} \mathrm{V}$ |
| $2 \times .025$ | 50 KV |
| -25 | 16\%k |
| ! | 120kV |

Price
$\mathbf{\$ 2 2 . 5 0}$
$\mathbf{1 7 . 5 0}$
55.00
85.00
49.50
69.50
89.50
CHANNEL CONDS.


AIRCRAFT TOG. SWS.

$$
\begin{aligned}
& \text { Airegrt type-20a2 } 4 \text { VDC-10A © } 125 \text { VAC-C-H } \\
& \text { CHircuit }
\end{aligned}
$$

$\qquad$
$\qquad$
OTHER AIRCRAFT TYPES ${ }_{88}^{\mathrm{CH}} \mathrm{CH}_{\mathrm{B}}$ $8905 \mathrm{~K}-514 \mathrm{SP}$
$8905 \mathrm{~K}-526 \mathrm{SP}$
8905 K
 $\$ 202 \mathrm{~K}-7$ 5A Pruht Hut. On:

TOGGLES SWITCHES


## LOW TEMPERATURE TEST EQUIPMENT

KOLD-IOOLD test unit 100 in long. 34 in vidual test chambers 18 in. in diameter Vidual test chambers 18 in. in dametel;
34 in. deep. Chambers equipped with fans and heating elements for humidity control. Control panel 34 in. wide by 6 ft high. With recorders for temperature Timers for automatic control. Complete a vacuum pump for alitude conditions. fiquipment practically new. JiRICE \$6500.00 TEST EQCIPMENT I-135-Fi for testing 11 KVA Hoskins Mydrogen Furnace, with MAZDA lamps 319-A, amber lens, large


## ELECTRONIC PRODUCTS CO.

ST. CHARLES, ILLINOIS

## GLASS TUBING

PYREX - NONEX - URANIUM BULBS \& CYLINDERS WRITE FOR FREE MONTHLY LIST HOUDE SUPPLY COMPANY M. R. $\# 1$ Box 86X Keyport, N.J


## SURPLUS SPECIALS

Ammeter-Westinghouse Type AX-Bu. Aero. Type C-240, 0-240 amperes D.C. With matching shunt. boxes. Stock \#A-J10............ Price $\$ 7.50$ each.
Volt-Ammeter-General Electric Type DW-Model 53BMAL. $\quad 0-60$ amperes D.C. and $0-30$ volts D.C. $2^{\prime \prime}$ black face with luminescent scale. Meter reads current with depress switch to read volts. Basio meter movement is 3 ma. Bu. Aero. Tyne A-60.

Volt-Ammeter-Weston Model 606, Type 221-P This meter is identical to E-59, excent cours comblete with matehed shunt for 60 amperes. New-
original hoxes. Stock $\$ \mathrm{~A}-59 \mathrm{~A}$.... Price $\$ 9.50$ each.
Volt-Ammeter-General Electric Type DW Madel 53MAAMmeter-General Electric Type DW Model $2^{*}$ black face with luminescent scale. Meter reads current with depress switch to read volts. Bu. Aero. Type $A-30$. Shunt not stupplied. New-original boxes. Stnek $\# 1-284 . . . . . . . .$. . Price $\$ 6.50$ each.
Liquid Level Transmitter-General Electric Type \#BTJI7AEM-Inserts 51/8" and has a. $0^{\prime \prime}$ arm volts D.C. Designed for use with Types DJ-20 and DJ-21 Indicators. New-orignal boxes. Stock _ Liquid Level Transmitter-General Electric Type Electric 24 rolts D. able. New-original boxis. Stocls \#A-205.

8TJ13-LBF-inserts $41 / 4^{\prime \prime}$-arm Price $\$ 4.75$ each. b. 8TJ13-JAK-inserts $71 / 2^{\prime \prime}$-arm length $634 \mathrm{~m}^{7}$ o. BTII 13 -LDZ-inserts $71 / 2^{\prime \prime}$-arm length $1014^{\prime \prime}$

Tuning Meter ("S" Meter)-Weston Model 606 Type 234L-Reverse action 2.5 man, hasic movement. ", black face , with luminescent scale, marked Tune for Max. Signal Corps Type I-70-R. New -original boxes. Stock $=\Lambda-66$.... Price $\$ 3.50$ each. Generator Voltage Regulator-General Electric \#3GBDIM13- 28 volts, 150 amperes. Heary cast aluminum case and double shockmounted. Potentiometer pernjits accurate voltage adjustment. Fine $12^{\circ}$ long $\mathrm{x} 8^{\prime \prime}$ high. Only a small quantity available New-rood condition. Stock \#A-269.
Edison Time Price $\$ 12.50$ each. closed Delay 7 seconds. 30 volt coil. Thermptically ealed in glass tube New-good condition. Stock \#\#-49 ......................... Price-3 for $\$ 1.50$ Turbo Supercharger Requiator Amplifier-Type B-3 design. Spec 284724 Al. Minneapolís-Itonerwell design. Spec. 28472 A .115 voits, 400 cycles. Brand
 Polarity Sensitive Relay-Large D'Arsonval movement in a hermetic sealed can. 17 ohm coll S.P.D.T. Sensitivity of .020 amperes in each polarity. The moving contact mores to either one side or the other clepending upon the applied polarity. Can size $31 / 4^{\prime \prime}$ long x $299^{\prime \prime}$ diameter. Ideal for servo work. New-perfect andition. Stock
\#A-278.................................... $\$ 4.95$ each. Telephone Type Relay-C.P. Clare \#A.7409-3300 ohm coll. S.P.S.T. contacts. Clases on 12 volts. 3 ampere contacts. New-original boxes. Stock. Telephone Type Relay (Slow Break) C.P Claro \#B-6487-200 ohm coil. S.P S. T ampere contacts. Larke copper slug Approximate 2 opening after removal of power. New-original boxes. Stock \# A-296............. Price $\$ 1.50$ each. G. M, Lah Relay-Type 12942 -Make one, hreak ne. 10 ampere contacts. Closes on 12 volts D.C New-original boxes. Stack \#A-14.

Price $\$ 0.95$ each.
Pesco Pump \& Motor-\#IE-398.BDA-The motor equires 24 volts at 95 amperes and develons $21 / 2$ H.P. at 4000 rom. The pump is a rear type and elivers 172 gallons der minute at 1000 pounds ner square inch. New-original cartons. Stock \#A-185. Hydraulic Cylinder Servo-Sperry $=644180$-This servo unit is a part of the Army A-4 and Navy stroke. FSSC \#88-S-260. A.E. Teference \#60 8329. New-original cartons. Stock \#A-52.

Price $\$ 8.95$ each.
Dil Pressure Limiting Valve-Type 6808 -Manupac tured hy Manning, Maxwell \& Moore. This valve is used on aircraft to protect oil pressure gatuges ronl excessive pressure encountered during engine starting at low temperature. FSSC \#88-V-350. ew-original cartons Stock \#A-98.

Price $\$ 4.00$ each.
Check our previous Electronics adds. to round out your order. Write for catalogue or call
ARmory 4-8989

# REMOVAL SALE! 

PRIOR TO OUR MOVING TO NEW QUARTERS WE ARE OFFERING OUR COMPLETE
OIL

## CAPACITOR

 INVENTORY $65 \%$ " $80 \%$off LIST PRICES

## (Limited Time Only)

- BATHTUB TYPES (CP-53 CP-54 CP-55)
- CHANNEL TYPES • (CP-61 CP-63 CP-65 CP-67 CP-69) - RECTANGULARS • (CP-70)
- TUBULAR TYPES • (CP-25 to CP-29 CP-40 CP-41) NOTE:

At time of going to press ample stocks on hand but at these low prices we suggest your early inquiries.

## FOR SALE!

ENTIRE LOT ONLY!
8280—Pieces of W.E.—FT. 241-A Crystal Holders with Crystals. Assorted Sizes-All New. (Com- $2 \boldsymbol{2} \not \subset \mathbf{R 2}$.
plete List on Request)

MANY OTHER GOOD BUYS. (Send for Bulletin.)
A. MOGULL CO.

50 West Broadway N. Y. 7, N. Y. Phone: Worth 4-0865


## Excellent

"RW" Values!
WRITE FOR PRICES

APR4 with tuning units
APS4 components APS3 components BC1306
PE237
BC433G
TS51
MG153
TN16, TN17, TN18,
TN19 BC1033
APS13
ARN269F\&G
SCR619
BOONTON SIG.
GEN. I. 26 B 1
TS $100 /$ AP
Write for our new 1953 catalog! TS159/TPX
COMBINATION SIGNAL GENERATOR AND FREQUENCY METER
Freq. range: $150-200 \mathrm{MC}$., crystal cali brated. Has separate 30MC signal output crystal cal: 3-stage, AF amplifier. Power measurements by built-in VTVM circuit $0-1$ MA. meter as 2 -range voltmeter. Builtin 400 cps . voltage regulated power sup. ply. New . . . . . . . . . . . . . . . . . . . . . $\$ 69.95$ WOBULATOR
BUILD TV-FM-AM SWEEP GENERATOR You can build "Versatile Sweep Frequency Generator" with APN-I magnetic units..

RM 29 with the TS- 13 handset
2 for $\$ 27.50$
\$14.95 ea.
2 for $\$ 27.50$
RL-42 Reversible Motor with antenna reel and clutch, used. . . . . . . . . . . . . . . . $\$ 2.95$ TS10 TEST UNIT
Complete with attenuator, indicators and 350 ft . of coaxial cable, Originally cost $\$ 300.00$. . new condition . ONLY $\$ 14.95$ Plugs...large quantity available...write for prices!

| 166 | 171 | MC277 |
| :--- | :--- | :--- |
| 167 | 172 | ART13-U6U |
| 169 | 170 | U10U |

## WANTED!

All TS, APR, APS, ARC, ARN, ART, SCR, R89 and BC equipment . . . write today!
Quote lowest prices in your first letter

Shipments FOB warehouse. 20\% Deposit on orders. Minimum order $\$ 5.00$. Illinois residents, add regular sales tax to remit tance.

Prices subject to change without notice.

## R W ELECTRONICS <br> Dept. EL, 1712.14 S. Michigan Ave. Chicago 16, III. PHONE: HArrison 7.9374

## RADIO SHACKS 30TH ANJIVERSARY tUBE PRICES ARE WAY, WAY dOWN!



## AIRCRAFT BLECIRONICS

ARC-l's, ART-l3's, RTA 1B's, BC348's AND COMPONENT PARTS FOR ABOVE

WRITE OR CALL FOR BULLETIN
MERRICK ELECTRONICS
166-08 DOUGLAS AVE.
JAMAICA, N. Y.
RE 9-5960


COMPASS
Communications Company 393 GREENWICH STREET
NEW YORK 13, N. Y.
CABLE ADDRESS: COMPRADIO, N. Y ALL PHONES: BEEKMAN 3-6509

WE MAINTAIN OUR OWN FULLY EQUIPPED TESTING LABORATORY TO TEST AND GUARANTEE ANYTHING WE SELL

TCS-Collins mfd. Navy radiotelephones for shipboard and mobile use, complete with all accessories for operation from 12, 24, 110, 230 volts d.c. and 110 or 220 volts a.c.

TDE-Navy or commercial marine transmitters, complete 110 \& 220 volts d.c. and a.c.
TBK--Navy high frequency transmitter, $2-20 \mathrm{mcs} ; 500$ watts output. Supplied complete with $\mathrm{m} / \mathrm{g}$ and starter for d.c. or a.c. operation.
TBM-same transmitter but with speech input equipment to give 350 watts phone.
TBL—Navy all-wave transmitter; 350 watts output: CW and phone. Supplied complete with $\mathrm{m} / \mathrm{g}$ and starter for d.c. or a.c. operation.
TAJ--Navy intermediate freq. transmitter, $175-550 \mathrm{kcs}$; 500 watts output. Supplied complete with $\mathrm{m} / \mathrm{g}$ and starter for a.c. or d.c. operation.
TBN-200-3,000 kes, complete with $220 / 440$ volt, 3 ph. $50-60 \mathrm{c}$ power supply-conservatively roted at 1 kw . output
SCR-284-The famous mobile and ground equipment station for field use,
complete with all accessories. Range $3.8-5.8$ mcs; 20 watts $\mathrm{cw}, 5$ watts phone.
SCR-510-Mobile, portable FM radio station. Operates from 6, 12, or 24 volt de supply. Frequency range: 20.0 to 27.9 mcs .
SCR-610-Same as SCR-510, but with built-in speaker and ronge of 27.0 38.9 mes.

SCR-528 Mobile $F M$ radio station, operates from 12 or 24 volt dc. Frequency range: $20.0-27.9 \mathrm{mcs}$.
SCR-628-Same as SCR-528, but with range: 27.0 to 38.9 mcs.
MAG - 10 cm . PORTABLE LINK RADAR transmitter receivers, 6 -volt operation.

## RADAR BEACONS

AN/CPN-6 ............. 3 cm. AN/CPN-8 10 cm . YJ and YG ...... for shipboard use AN/CPN-6 .............. 3 cm AN/CPN-8 ......... 10 cm . AN/APS 2, -APS-3, -APS-4, and -APS-15
SA, SF, SG, SD, SJ, SK, SN, SQ-both equipment and spare parts

## FOR SALE!

39 UNITS BC957A RADAR INDICATOR
UNUSED


COMMERCIAL SURPLUS SALES CO.
4101 Curtis Avenue, Baltimore 26, Maryland
Telephone Curtis 3300



CLARE, TYPES C D \& E
COOKE, AUTOMATIC ELECTRIC
ALL TYPES of COILS and PILE.UPS send Uf Your Specs. for Our Qunts
CLARE TYPE C STANDARD SIZE SENSITIVE TELEPHONE RELAYS 6500 ohms
$\begin{array}{ll}6500 \mathrm{ohms} & 1 \mathrm{~A} \\ 650 \mathrm{ohms} & 1 \mathrm{C}\end{array}$
$\begin{array}{ll}6500 \text { ohms } & \text { 1C } \\ 6500 \text { ohms } & 2 A-1 B\end{array}$
6500 ohms 2A-1B
6500 ohms 3 A
6500 ohms $3 A-1 B$
CELARE TYPE G HALF SIZE
Coll

1) 6500 ohms 2
$\begin{array}{lll}\text { 2) } 5800 \text { ohms } & \text { 3A } \\ \text { 3) } & 5800 \text { ohms } & 28-1 \mathrm{C}\end{array}$
2) 4850 ohms
3) 3600 ohms
4) 4850 ohms
7 T) 83300 ohms (None)
All

| ONE | RELA | Price |
| :---: | :---: | :---: |
|  | MA | \$225 ea |
| 2 | MA | 3.00 an |
| 3.5 | MA | 2.75 -am |
| 4 | MA | 3.00 em |
| 4 | MA | 3.00 |
| 4 | MA | 3.00 ea |
|  | MA | 3.25 ea |

All above lielays may b
operation on 110 V . D.C
eration on 110 V . D.C. used for continuoue duty
1300 ohms
2) $\begin{array}{lll}1300 \text { ohms] } \\ 400 \text { ohms } \\ 1 \mathrm{~A}-1 \mathrm{C} & 24 \text { or } 48 \mathrm{~V}, & \$ 2.50 \text { ea. } \\ 12 \text { or } 24 \mathrm{~V} \text {. } & 1.65\end{array}$
$A=$ Norm, Open $C O N T A C T$ SYMBOLS
G.E. Relays \#Cicizyl-R1091*36 Coil-10.000 ohums
 Contacts-1A, 1J, 1C Operates at $9 \mathrm{MA} .$. Leach Relays Trpe $1025-\mathrm{SN}$ BF Price- $\$ 2.75 \mathrm{ca}$. ohms. Coniacts-D.P.S.T. Norm. colosed. Rated Five Pron CR. 2791 ......Price- $\$ 1.50$ ea 1) C-103C25 2200 ohms SjDT 4.5 MA Relays. 2) C-1041:28 700 ohms SPDT $6 \mathrm{MA} . .53 .00$ ea. Slow Release (For SCR-522-A) Telephone Relays. Part No. A18258
Relays. Coil- 30 ohms 6 volts Contacts-DPDOT Price- $\$ 4.00$ ea.

## CHECK AND COMPARE OUR COMPLETE STOCKS

The following is just a partial list of the current electronic and aircraft equipment now in our worehouse. Write for complete information. Prompt replies to all inquiries.

RC-103 \& AN/ARN-5 ILS
New in original cartons. Complete.
consists of all aceessories, plus AS-
27A, R89B/ARN-5 and $\mathrm{BC}-733 \mathrm{D}$.
Moditied to flag alarm, Modified to flag alarm.
IE-17 TEST SET
AN/ARN-7 COMPLETE
SCR-269 COMPLETE
TBS 4 \& 5, NEW, COMPLETE
AN/ARC-1 VHF EQUIPMENT
BC-611 \& BC-721 HANDIE
TALKIES, Plus SPARE PARTS. Quantity available.

AN/ART-13 EQUIPMENT ATC XMTR T-47A/ART-13 XMTR T-47/ART-13 XMTR CU-24 ANT. LOAD CU- 25 ANT. LOAD MT-283 MOUNT MT-284 MOUNT DY-11 \& 12Dynam't'r 0-16 LFO

SA-22 ANT. LOAD
ATC DYNAM'T'R C-87 CONTROL BOX
AN/APG-13A RADAR
Absolutely complete, brand new

AN/APN-2
SCR-729 New TA2J-24 RTA-1B BC-1016 APA-G INDICATOR APA-11 INDICATOR APA-17 RADAR HS-33 HEAD SETS, NEW MG-149F \& H

MG-153
APS-2, 3, \& 15
Components AN/ARC-5 VHF SCR-274 \& ARC-5 Command Equipm't R-4/ARR-2 Receivers BC-640 VHF XMTR
SCR-510
SCR-522
MG-153
SPARE PARTS
SCR-720
SO-7
AN/ARN. 7
SCR-269

SCR-522
AN/ART-13
AN/ARC-1 BC-611

SCR-718 A, AM, B \& C
Ta insure the finest of service and quality of merchandise, we have just recently put into aperation our own reconditioning and function facilities.

| WANTED |  |  |
| :---: | :---: | :---: |
| CFI | $\begin{aligned} & \text { UNITS } \\ & 1 \text {-152 } \\ & \text { TOP } \end{aligned}$ | ART-13 \& \& ${ }^{\text {BC-788 }}$ BC-348 $\mathrm{R}^{2}$ DOLLAR PAID |

## EXPORT INQUIRIES INVITED

 We carry an unusually large stock of AirlineEquipment, Test Equipment, Radar Sets, etc Euipment, Test Equipment, Radar Sets, etc,
Write for our low prices and complete informa tion. We furnish immediate answers to all
inquiries. Write today! inquiries. Write today!

## V H <br> ELECTRONIC INDUSTRIES INC.

2033 West Venice Blvd.——Dept. E-22 Los Angeles 6, Calfornia Phone: REpublic 3-1127


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 9 92. \& . 90 \& 3824w \& \& \& \& \& \& \& \& \& \& \& \\
\hline \({ }^{2} \mathrm{OB2}\) \& 1.00 \&  \& \begin{tabular}{l}
7.75 \\
3 \\
\hline
\end{tabular} \& \& \& \& \& \(E\) \& \& 5763 \& 1.50
4.50 \& GL691. \& 1.75
2.50 \\
\hline O0, \({ }^{\text {ond......... }}\) \& 1.00 \& \({ }^{3828}{ }^{381}\) \& 5.75
4.75 \& \& \& \& \& \& \& 5832 \& 2.25 \& HY114B. \& - 50 \\
\hline 1AEI \& 1.25 \& \({ }_{3}{ }^{\text {CP1 }} 1\) \& 1.75 \& 6SL7 \& . 75 \& 313C \& . 75 \& \& 20.00 \& \({ }_{6005}^{6035}\) \& 50.00
3 \& \({ }_{\text {HY64 }}\) \& . 25 \\
\hline \({ }_{181}^{1822}\) \& \(\begin{array}{r}\text { 2.50 } \\ \hline 200\end{array}\) \&  \& 1.50
4.50 \& 6SN7
\(\mathbf{6 V 6 G T}\) \& . 75 \& 3127A. \& 1.25 \& \(8664 . \ldots . .\). \& 20.00
1.25 \& 6097 \& 3.50 \& \({ }_{\text {KCli-3 }}\) \& \begin{tabular}{l}
47.50 \\
\hline 5.00
\end{tabular} \\
\hline 1824. \& 9.50 \& \({ }^{3}{ }^{\text {d }}\) \& 3.75 \& \({ }^{6} \mathbf{6 6 G G T Y}\) \& . 85 \& 327A. \& 4.25 \& 866/R \(\ldots . .\). \& \({ }_{3}^{1.10}\) \& 6099
6100 \& 4.00
3.75
3.75 \& KY21a \& - \(\begin{array}{r}8.75 \\ 3.50 \\ \hline\end{array}\) \\
\hline 1826. \& \({ }^{25.00}\) \& \({ }^{\text {3E2 }}\) 3 29 \& \(\begin{array}{r}14.50 \\ 4.50 \\ \hline\end{array}\) \& \({ }^{6 \times 5 G T}\) \& . 75 \& 3888. \& 1.25 \& \({ }_{874}^{874 .}\) \& 3.90 \& 6101 \& 3.75
3.75 \& QK117 \& 3.50
50.00 \\
\hline \(1{ }^{23} 2\). \& 2.75 \& \(4 \mathrm{B26}\) \& 5.75 \& \({ }_{7}{ }^{\text {chat. }}\) \& 95.00 \& 129A WE \& 3.75
1.25 \& 9345 \& 1.50 \& \({ }_{7050}^{613}\) \& \({ }^{3} \mathbf{3}\) \& \({ }_{\text {QK117A }}\) \& 65.00 \\
\hline \({ }_{20}^{122} 2\). \& \(\begin{array}{r}3.75 \\ \hline 25 \\ \hline 25\end{array}\) \&  \& 25.00 \& \({ }_{12 \mathrm{Y}}^{12 \mathrm{Y}} \mathrm{C}\) \& . 3.30 \& 417A .... \& 15.00 \& \({ }^{956} 9\) \& . 25 \& 8005 \& Writio \& RK47. \& 4.50 \\
\hline 2 C 26. \& . 25 \& \({ }_{5}{ }^{5} 29\) \& 11.50 \& \({ }_{12} 125 \mathrm{GT}\). \& 1.60 \&  \& 3.50
35.00 \& \({ }^{955} 16\). \& . 35 \& \({ }^{8013}\). \& 2.50 \& RK60 \& 1.75 \\
\hline \({ }_{2}^{2 \mathrm{C} 254}\) \& - 60 \& \({ }_{6-4}^{6-4}\) \& . 70 \& \({ }^{1212587}\) \& . 68 \& 471A. \& \(\begin{array}{r}35.25 \\ \hline 2500 \\ \hline\end{array}\) \& \(1625 . . . . . . . .\). \& .85 \& 8013A \& 5.75
1.25 \& RK72 \& 1.00 \\
\hline \({ }_{2 C 40}\) C........ \& 10.00 \& \({ }_{6}\) 6AJ5 \& 1.35 \& 125127. \& \(\begin{array}{r}2.85 \\ \hline 75\end{array}\) \& 700-A/B/C \& \& 1628. \& . 35 \& 9006 \& . 35 \& \({ }_{\text {RX }}\) R12. \& 15.00 \\
\hline \({ }_{20}^{20} 51 .(\) W.E. \() \ldots\) \& \begin{tabular}{l}
5.75 \\
1.35 \\
\hline
\end{tabular} \& 6AK5. \& +65 \& \({ }_{\text {125N7 }}\) \& .75 \& 704A. \& 3.75 \& \({ }_{1632}^{163 .}\) \& . 85
.70 \& \({ }^{\text {A C12 }}\) \& 12.50
1.50 \& S0828A \& 7.50
12.50 \\
\hline 2 E 25. \& 5.00 \& 6AK5W \& 1.50
2.00 \& \(12 \mathrm{SR7} 7\).
21525. \& \({ }^{27.50}\) \& \({ }^{708 \mathrm{~A}} \mathrm{~A}\) \& 7.50 \& 1633
1644 \& . 75 \& CE2A \& 3.50 \& \({ }^{\text {VT31 }}\) \& \({ }^{50.00}\) \\
\hline \(2{ }_{2} 2126\) \& 6.50
15.00 \& 6AK6 \& 1.00 \& \({ }_{28077}^{264} \mathbf{T}\) \& 5.00 \& \({ }^{715-A}\) \& 4.50 \& \(2024 \ldots . . .\). . \& .75 \& CE2B \& 3.50
2.50 \& WL481. \& 1.50 \\
\hline \(2{ }^{2} 26\). \& 15.00
15.00 \& \({ }^{\text {6AL5 }}\) \& . 50 \& \({ }^{28015}\) WE \& 1.50
1.00 \&  \& \(\begin{array}{r}1.25 \\ 35.00 \\ \hline\end{array}\) \& 2050.......... \& 1.25 \& CE2T \& 1.50 \& WL532A \& 3.00 \\
\hline 2131 \& \({ }^{2250} 5\) \& GAR6. \({ }_{\text {GAP }}\) \& 2.75 \& \({ }^{2012}\) c. \& 75.00 \& \({ }_{724} 71\). \& \(\begin{array}{r}35.00 \\ 3.75 \\ \hline\end{array}\) \& \({ }_{552 / \mathrm{FG}}^{2035}\) \& 1.00 \& CE25 \({ }^{\text {c/ }}\) /927 \& 1.25 \& WL670A \& 12.50 \\
\hline \({ }_{234}^{2132 . . . . . . . . . . . ~}\) \& 25.00 \& 6AMP-Tungar \& 4.00 \& \({ }_{227}^{2037}\) \& 4.50 \& \({ }_{8014}^{7284}\)-GY... \& \& \({ }_{\text {slxeec }}^{563}\) \& 75.00 \& ELC1A.... \& 8.50 \& \({ }^{45 \times 674}\) \& 10.00 \\
\hline 2340
2151 \& 35.00
3500 \& \({ }_{6}^{6} 66\) \& . 75 \& 247A \& \({ }^{8.50}\) \& \({ }_{802}^{801 .}\) \& 3.75 \& \({ }_{5}^{5643}\) \& 7.50
2.00 \& ELC1B. \& 3.25
2.50 \& \({ }_{\text {5AP1 }}\) 5BP4. \& 3.75
3.75 \\
\hline \({ }_{2} 2161\) \& 35.00
45.00 \& \({ }_{6}^{6} 6{ }^{\text {6/G. }}\) \& 1.00
1.50 \& \({ }_{253}^{252}\) \& \({ }^{7500}\) \& 807.
826. \& 1.25 \& \({ }_{5685}^{568}\) \& 1.50
3 \& ELC6A \& 2.50
3.50 \& \({ }^{\text {5RP1 }}\) 5 \({ }^{\text {S }}\) \& 3.75
4.75 \\
\hline \({ }^{21} 22\) \& \({ }^{45.00}\) \& \& . 8.85 \& 2864 \& 7.50 \& \({ }_{827 \mathrm{R}}\) \& 125.00 \& \({ }_{5687}^{5686}\) \& \begin{tabular}{l}
3.75 \\
4.00 \\
\hline 1
\end{tabular} \& ELC6S \& 7.50 \& \({ }^{\text {5SP7 }}\) \& 7.50 \\
\hline 2123
2128. \& \({ }^{37.50}\) \& \({ }_{6 S 5}^{65}\) \& 3.75 \& \({ }_{304 \mathrm{taL}}^{304}\) \& \(\underset{7}{6.75}\) \& \({ }_{835}^{8293}\) \& 12500 \& 5780
5703. \& 3.00 \& ELC657. \& 14.50
17.50 \& \& 7.50 \\
\hline \(2 \times 2\). \& 2.50 \& 65 \& 3.75 \& \({ }_{3}^{3074}{ }^{301 .}\) \& 7.50

4.50 \& 8835 \& 17.50
1.25 \& 5703. \& 1.50 \& ${ }_{\text {FG67 }}$ \& 17.50
22.50 \& 9 LP7. \& 4.50 <br>
\hline 1843... \& 2.25
4.50 \& 6SJ7Y \& . 85 \& 310A \& \& \& . 35 \& 5744. \& \& FG105.... \& 17.50 \& \& <br>
\hline \multicolumn{3}{|l|}{102 WARREN STREET} \& \multicolumn{8}{|c|}{ROSE PRODUCTS COMPANY} \& \multicolumn{3}{|l|}{NEW YORK 7, N. Y.} <br>
\hline
\end{tabular}

## (AGM OF THESMRPLUS 空

BC-375 AIRBORNE 100 W . TRANSMITTER
Complete installation. New cond.......... $\$ 125.00$
Used. fair condition.
75.00
 GO EXCEL COVY AIRBORNE TRANSMITTER Complete, original pack. Set of 3 comGASOLINE ENG INE GENERATOB: TyDe CDO73004 A . ${ }^{4} \mathrm{lip}{ }^{2666}$ r.p.m., ${ }^{4}$ ceccle. 2 cylinders
Output: $120 / 1 / 800,9.8$ amps, 1.18 KVA and 14 $Y \mathrm{VDC}$ at 20 amps . Ratings are continuous duts. Controllable Output. Fully metered. Brand new.

## FIELD PHONES

TP-3 SOUND POWERED EE-8 FIELD
PHONES: New Cond. I'er pair .... $\$ 95.00$ operating. New cond. Per Pr..... $\$ 49.50$ Operating. New cond.
Used cond.
Per Pr
New leather cer fere for above

$$
\begin{aligned}
& \text { New canas case for abo er } \\
& \text { APR-5 UHFT TUNEABLE RECEIVER: } \\
& \text { Che }
\end{aligned}
$$

out, like new. TUNEABLE RECEIVER: Checker
RECTIFIER SPECIALS!
RA-34 RECTIFIER: For RC-191 Transmitter.
 Checked out RA. 62 RECTIFIER: For SCli-522. ${ }^{\text {EEXCeL }}$
cond.

MG-149 INVERTER
For SCR-269 or ARN-7 1kadio Compass. Excel cond. MN-26 H \& LB: 14 V . RADIO COMPASS ${ }^{\text {S3PE. }}$. TYPEA CONVERSION KIT FOR TELEPHONE: Mfg. by Automatic Electric Sales Corp. New. $\$ 1.95$

$$
\begin{array}{cccccc}
\text { TEST EQUIPMENT Price On } & \text { Request } \\
\text { BC-221 } & \text { TS-16 } & \text { T6.47 } \\
\text { TS. } & \text { TS. } 34 & 1 E-19 \\
\text { TS-127 } & \text { LM } & 1 \mathrm{E}-36
\end{array}
$$

BC-376-H TEST OSCILLATOR: Excel. cond $\$ 75.00$ FEDERAL WALL TYPE TELEPHONE: New cond. COMPLETE APN-4 RADAR INSTALLATION: EXCR-522 TRANSCEIVER:Excel. Cond. With tubes

18 amp .
110 V. VARIACS
60 amp
$\$ 42.50$

IF YOU NEED IT-WE GOT IT:
WE STOCK COMPLETE LINE: Inverters, Motors, Metors, Dynamotors, Power Supplizes, Padar, Test
Equitment. Receivers, Transmiters. Prices upon Request. wriene for ousneley Disepunts.

FOR THE BEST BUYS IN ELECTRONIC MATERIALS TOPS IN QUALITY AT DOWN TO EARTH PRICES

SENSITIVE RELAYS


 G.E. MINIATURE, 10000 ohm 1.5 ma SpNo. 1.65 30 maCT ELTRON VIBRATOR PACK, OV In. oivj,
 AFSCO AMPLIFIER EQUALITER, InDUL, $22 / 600 \mathrm{Z}$ $h_{1} \& 10$ freq switch varies from -15 Db to 15 cyb
19.95

For Fast Intelligent Friendly Service
"CALL ON ESSCO"

## Portable Instruments

Molded Bakelite case 7" $\times 41 / 2^{\prime \prime} \times 3^{\prime \prime}$ D.C. MICROAMMETERS

THEPMOCOUPLE 5 . $10 . .50$ microamperes THERMOCOUPLE MILLIAMMETERS 1, 5..5. . 10 milliampares THERMOCOUPLE VOLTMETERS

5 to 500 volts
Available in multiple range combinctions
Precision Electrical Instrument Co.
146 Grand Street
New York 13, N. Y.

## WE BUY AND SELL GOVERNMENT SURPLUS

electronic components, units, wire, etc. Your Inquiries Invited LAPIROW BROS.
(649 Heffner St.
Kirly 1285
Cincinnati 23, Dhio


SIX-POLE DOUBLE THROW ALLIED \#BN-18D-39 has 10 AMPERE CON-
TACTS 2800 ohm coil operates on 30
Mills DC 0 . RADIG OEVELOPMENT \& SALES CD.

SPECIAL SYNCRO CAPACITORS $3 \times .6 \mathrm{mf} / \mathrm{g}_{\mathrm{o}} \mathrm{VAC}$. MARK 12 MOD 2 TYPE $3 \times 3 \mathrm{mt} 90$ VAC, MARK 14 MOD 2 TYPE $3 \times 10 \mathrm{mP} / 90 \mathrm{VAC}, \mathrm{MARK} 1 \mathrm{MOD} 2 \mathrm{Type}$ $3 \times 50 \mathrm{mf} / 90 \mathrm{VAC}, \mathrm{MARK} 4 \mathrm{MOD} 2 \mathrm{TYPE}$ 10 mi/600 VDC/220 VAC round case...
20

NOISE SUPPRESSOR CAPACITOR

 JAN. $\mathrm{C}-25$ CAPACITORS STOCKED ELECTRONIC SPECIALTY SUPPLY CO. 58 Walker St. WA 5-8187 NYC 13 N.Y.

## WHOLESALE ONLY

ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT HYDRAULICS

RADIO \& ELECTRONIC SURPLUS 13933-9 BRUSH STREET
Dofroit 3, Mich. TO 9-3403

| FOR SALE |
| :---: |
| TWW-251 |
| CRYSTALS |
| CR-11/UKC 1.81818 <br> LOW ELECTRONICS <br> 44 Fulton St. N. Y. City, N. Y. |

IF THERE IS
Anything you want
that other readers of this paper can supply
OR-
Something you don't want
that other readers can use, advertise it in the
Searchlight Section

## SPECIAL PURPOSE TUBES An These bised baloy sef stly! ! DRASTIC REDUCTIONS!

| Type | Pric | Type | Pric |
| :---: | :---: | :---: | :---: |
| OA2 Jan | \$0.89 | 1N31 | 3.0 |
| OA3/VR-75. | . 99 | 1N32 Syi | 21.75 |
| OB2 Jan | 1.29 | 1N34 |  |
| OC3/VR-90. | . 98 | 1N35. | 1.59 |
| OD3/VR-150. | . 85 | 1N38-A |  |
| 1B21/471-A. | 2.49 | 1N40. |  |
| 1822. | 2.19 | 1N41 | 9.50 |
| 1824 Syiv. | 9.95 | 1N42 | 16.95 |
| 1827. | 12.49 | 1N45/400 | 1.25 |
| 1836 | 4.95 | 1N46 | . 5 |
| 1838. | 28.50 | 1 P 21 | 29.95 |
| 1841 | 45.00 | 1 1026 (G. E) | 68.95 |
| 1842 | 14.95 | 1R4/1294 | . 79 |
| $1 \mathrm{B60}$ | 64.95 | 2 C 39 | 19.95 |
| 1021/631P1. | 2.75 | 2C39-A | 29.95 |
| 1N21. | . 89 | $2 \mathrm{C40}$ Jan | 9.95 |
| 1 N 214 | 1.49 | 2 C 42 | 24.95 |
| 1N21B | 2.49 | 2 C 43 | 13.95 |
| $1{ }^{\text {N }} 12 \mathrm{C}$ | 18.90 | 2 C 51 (W.E.) | 5.95 |
| 1 N 23. | 1.25 | 2D21 RCA | 1.19 |
| 1N23A | 2.15 | 2 E 24 Ja | 3.9 |
| 1N23B | 3.40 | 2E25/HY65. | 4.95 |
| 1N25. | 4.75 | 2E26. | 2.75 |
| IN26 (W. E. | $7.49$ | $2 E 30$ |  |


| Pric | Type | Price | Ty | Pri |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3.00 | $2 J 32$ | 34.95 | 3C22 (G. Ev). | 74.95 | 6AS7G |
| 21.75 | 2134 | 24.95 | 3 C 23 | 9.50 | 6 C 21 |
| . 59 | $2 J 56$ | 145.00 | $3 C 33$ | 13.95 | $6 \mathrm{F4}$. |
| 1.59 | 2K22 | 48.50 | 3 C 45 | 14.95 | 6 J 4 |
| . 85 | 2 K 23 | 28.95 | 3D21-A Hy | 4.75 | 6 6 4. |
| 7.50 | 2 K 25 | 29.95 | 3 E 29 | 12.95 | 6L6-M RCA |
| 9.50 | 2K25/723A/B | 24.95 | 3K22 Sperry | 295.00 | 6L.6-G |
| 16.95 | Sid. ctns. |  | 3K23 Sperry | 349.50 | 6L6-G |
| 1.25 | 2K28. | 29.95 | 4-125-A | 24.95 | 6SN7- |
| . 59 | 2K29 | 27.95 | 4C28 | 19.95 | 6SU7-GT |
| . 95 | 2 K 33 | 269.00 | 4 C 33 | 54.95 | 6V6-M |
| 68.95 | 2K34 Sper | 225.00 | 4 C 35 | 19.75 | 12K8Y |
| . 79 | 2K35 Sperry | 375.00 | 4 C 36 | 12.95 | 12SJ-M-JAN |
| 19.95 | 2 K 39 Sperry | 119.50 | ${ }^{4} 152 \mathrm{Ja}$ | 195.00 | FG-17 |
| 27.95 | 2 K 41. | 139.50 | 5C22 | 48.95 | FG-32/5 |
| 9.95 | 2 K 42 S | 129.95 | 5D21 | 19.95 | FG-104 |
| 24.95 | 2K43 Sperry | 129.5 | 5R4GY-RCA | 1.39 | FG-105 |
| 13.95 | 2K44 Sperry | 115.05 | 5T4 | 1.99 | FG-172 |
| 5.95 | 2K45 Sperry | 129.50 | C6J/5C21 | 6.75 | 300-B |
| 1.19 | 2K46 Sperry | 335.95 | 6AH6 | . 99 | 307-A |
| 3.99 | 2K47 Sperry | 469.95 | 6AK5 (W.E.) | 1.15 | 350-A |
| 4.95 | 3B24 | 4.95 | 6AK5-W | 2.49 | 350-B |
| 2.75 | 3B24-W | 7.51 | 6AN5 | 2.40 | 355-A |
| 1.89 | 3B25 | 3.99 | GAR6 | 2.69 | 393-A |
| 1.35 | 3B | 6.95 | 6A | 2.3 | 394-A |

 E.) 12

| Price | Type | Price | Type |
| :---: | :---: | :---: | :---: |
| 7.95 | 719-A | 24.95 | 5654 |
| 12.50 | 721-A | 1.99 | 5670 |
| . 65 | 723A/B (W. |  | JRP-5676 |
| 1.65 |  | 17.50 | 5687 |
| 1.15 | 724-A | 3.25 | 5691 |
| 1.35 | 724-B | 2.95 | 5692 |
| 1.52 | 726-B | 44.75 | 5693 |
| 1.85 | 726-C | 59.28 | CK5697 |
| 1.85 | 804 | 11.50 | CK5702 |
| 1.15 | 807 | 1.49 | CK5703 |
| 1.00 | 814 | 2.75 | CK5704 |
| 3.15 | 815 | 2.69 | CK5744 |
| 1.15 | 829-B | 11.85 | CK5814 |
| 1.05 | 832-A | 8.75 | CK5829 |
| 1.10 | 833-A | 34.95 | CK5875 |
| 1.05 | 845 | 5.65 | 5949/1907 |
| 2.17 | 864 JAN | . 29 | 8005 RCA |
| 2.15 | 930 | . 99 | 8008 |
| 13.75 | 931-A RCA | 4.95 | 8014-A |
| 2.75 | 1614 RCA | 1.99 | 9002. |
| 3.95 | 1620 | 4.50 | 9004 SAN. |
| 1.69 | 1622 | 1.75 | 9006 JAN. |
| 11.95 | 2050 RCA | 1.35 |  | Price

2.45
3.99
.999
4.95
6.95
6.95
6.25
2.99
2.99
1.99
1.49
1.24
2.99
3.99
1.45
Writt
6.50
5.99
24.95
.79
.39
.31

Above Listing is only partial.
TERMS: NET 15 days to rated firms.
ALL TUBES ARE NEW, MOST WITH JAN MARKINGS AND IN ORIGINAL CARTONS
Write or Phone if your requirements are not listed. "All Prices subject to change without notice."

## - TELEMARINE -

The Best in Electronic Surplus
PARTIAL LISTING OF OUTSTAND. ING SURPLUS COMMUNICATIONS EQPT.

## MARINE

TCS X-mittr-Receivers for Ship or Shore TAS 500 Whatts Output, $175-550 \mathrm{KC}$. New Fquipapailahle) Stirter, Tules, Complete.
TBK, Starter, G0.9 $100 / 125 \mathrm{~W}$. IF TIF Ship or Aircraft Trans mitter, Al or A 2 kimission, All New with Spares $150 . A \mathrm{H}$ Maclayy 1 F Ship $X^{\text {en intrs. }}$
8707 IRMC. Ship Radio Compass.

## MISCELLANEOUS

DZ-2 Direction Finders.
SCR-283 RCYG and X'minting Eqpt. Complete. RADIOSONDES ANTAMO-1A to D. New. $250 \& 500$ WATT SOUND SYSTEMS for Airports, Etc. Write 1or Prices and Literature.

SCR-508, 608, 510 and 610 Crystals, Complete Sets. Tested. Write for Prices.

## EXTRA!

PE-104 POWER SUPPLIES for Receiver of SCR-284, NEW, with Spare Vibrator, Export-Packed. Large Quantity Available. WRITE FOR PRICES.

## GROUND \& AIR COMMUNICATIONS

TDQ VHF $100-156 \mathrm{MC} 50 \mathrm{~W}$. AM X'mttr for 110 BC-797 VHF AC. $110-126 \mathrm{MC}$. 50 W . Ais Output for SCR-284 Groum Portable AM, Trans-Recr Eqpt. SCR-522 VHe, 4-Channel, $100-156 \mathrm{MC}$ Trans-Rer Eapt. for Plane or Ground Communications.
SCR-5i, Walky-Tally, $3-6$ MC, Crystal Controlled Trans-IRecr. with3 Piug-In Units for 1 Freq. Chang-Link-1498. VIIF Trans-Revg Equt. $70-100 \mathrm{MC}$, 50 Watts outphit Tr. Avaibabe in 14 VDC © 10
 Cabinets: RF Unit. Modulator, Rectifer; A1, A2
 (separate unit). New EqDt. For increasing power FM and Television stations. Writs for descrip.
tive sheets and prices. tive sheets and prices.

## TELEMARINE-

COMMUNICATIONS CO.
3040 W. 21 st Street, Brooklyn 24,N.Y. Phone: ES 2-4300

## NOW! CUT COSTS! INCREASE PROFITS! Save on POTS • TUBES • RESISTORS



Carbon Potentiometers TYPE JU——RATED AT 2 WATTS Shafts up to 2' long

1 to $5 \ldots \ldots . . . .1 .10$
6 to $11 \ldots \ldots . .1 .05$
12 to $24 \ldots . . .1 .00$
$\left.\begin{array}{l}25 \\ \text { and } \\ \text { over }\end{array}\right\}$ S


## AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to 4,000 Me.; wideband discone and other antennas, wavetraps mobile accessories, 100 page technical manual, etc. Versatile ccurate compact-the aristocrat of lab receivers in this ange. Write for data sheet and quotations
We have a large variety of other hard-to-get equipment, in cluding microwave, aircraft, communications, radar; and labor tory electronics of all kinds. Quality standards maintained Get our quotations!
We will buy any Electronic Material at top prices. SCHOOLSunload your dusty surplus for cash or credit.

434 PATTERSON ROAD
DAYTON 9, OHIO

## TUBE CLOSE OUTS

FIRST COME
FIRST SERVED

|  |  |  |  |
| :--- | ---: | :--- | ---: |
| IB63A | $\$ 45.00$ | 421AWE 17.95 |  |
| 1 N21B | 2.25 | 422AWE | 10.95 |
| 1N23B | 2.95 | 703A | 1.50 |
| 2C39 | 17.95 | $724 B$ | 1.50 |
| 2C40 | 7.00 | 717 A | .49 |
| 2C43 | 13.95 | 837 | 1.25 |
| 2J34 | 19.95 | 956 | .29 |
| 2J49 | 34.95 | 1626 | .10 |
| 2J50 | 29.95 | L6090 | .75 |
| 367AWE | 8.95 |  |  |

IMMEDIATE DELIVERY
Write for quotitions, many other trucs a a iable.
$20 \%$ Depmsit with order, balance C.O.D. All tubes suliject th prior sale. Prices subject to change with out notice.

WRITE, WIRE, CALL-TODAY!
We Buy Anything in Electronicslarge or small Quantities!
NAT ADELMAN
168 WASHINGTON ST. N. Y. 6, N. Y.

## Bargain! <br> Bargain! <br> ALTERNATORS!

Brand New! Navy Aircraft Type NEA-2 AC OUT: $120 \mathrm{~V}, 800 \mathrm{cy}, 1080 \mathrm{VA}$ DC OUT: 28 V at 25 amps .
Will give rated AC output at reduced speed for 12V DC out. Factory instructions furnished free. Quan. $\mathbf{\$ 2 4 . 9 5}$
disc. upon request ........

## DYNAMOTOR BARGAINS!

New, Late Model, Factory Surplus.
INPUT OUTPUT SIZE PRICE 11 V DC $500 \mathrm{~V}, 250 \mathrm{ma}$ 4Dx61/2$\$ 24.95$ 14V DC 400V. 225ma 31/2Dx6 16.95 12 V DC $230 \mathrm{~V}, 100 \mathrm{ma}$ 31/2Dx5 9.95 24 V DC 503 V .250 ma 4Dx63/4 19.95 $25 \%$ dep. on C.0.D. Prices f.o.b. Los Angeles.

POSSNER COMPANY 1223 Venice Blyd Tel. DUnkirk 80508 Los Angeles 6, Calif.

## HICH VOLTAGE POWER SUPPLY

Many models available in ranges from 2500 to 25,000 volts D.C with or without built-in meters. Send for free catolog E-4 PRECISE MEASUREMENTS CO. 942 KINGS HIGHWAY BROOKLYN 23. N. Y.

## CONNECTORS IS OUR BUSINESS

WORLD'S MOST COMPLETE STOCK
Types in stock: $A F, A N, A P, A R C, B N, B N C$, C, CLT, CN, CUF, D, DPB, DPD, E, F, FK, FM, FT, FW, GK, HN, $10 \mathrm{LK}, \mathrm{IK}, \mathrm{JJ}, \mathrm{JK}, \mathrm{LC}$, PYE, RF, RFK, RGK, RNK, RTC, RWK, S, SF, SK, SKL, SO, U, UG, UHF, WK, XL, ZÁ,

HAROLD H. POWELL \& CO. 2104 Market St. LOcust 7.5285 Philadelphia 3, Pa.

## W A N TED

|  | WANTED |
| :--- | :---: |
| Precision test equipment | Military communications equipment |
| Special Purpose tubes | Job lots of oil condensers |
| Control transformers | Pulse transformers |
| Selsyns, Synchros | Meters, Relays, Autosyns |
| THE OVERBROOK COMPANY | Overbrook, Massachusetts |

Overbrook, Massachusetts

```
WANTED
BDIIO Teleghone Switchboards, BDt00 Telegraph
SWwltchboards. BD90 Power Boards., EEIO\ V-F
M1ngers. BE72 Cabinets, F M19 Frames,' RA43,
REC33. KS5988, RAAB, RA37, RA91 Rectifors,
CF1A, CF3A. CF2B Carrier Equinmonti. AMB
condition and quantity.
330 W .42 St., New York 36. N. Y.
```

| WANTED <br> Federal type <br> 10:B Voice-frequency Ringers <br> Signal Corps type TA-3/FT. <br> W-4814, Electronica <br> 330 W. 42 St., New York 36. N. Y |
| :---: |
| WANTED <br> - AN/TRC-1 Equipments. <br> - T14 Transmitters. <br> - R19 Receivers. <br> - TS32 Test Oscillators. <br> Any condition or quantity <br> 330 W. 42 nd $\mathbf{S t}$ St Electronics <br> 330 W. 42nd St. New York 36 N |


| Will buy "ALL" |  |
| :---: | :---: |
| ART - 13/type T-47A. $\$ 200.00$. | BC. 348 modinad, 555.0 APN-9, $\$ 200.00$ |
| ${ }_{\text {ART }}$ - 13 / type T-47. | ${ }_{\text {R }}$ |
|  |  |
| -348 |  |
|  |  |
|  |  |

## Prompt ANSWERS <br> to your business problems...

MISCELLANEOUS business problems are daily being solved, quickly and easily, by the use of the Searchlight Section of this and other McGraw-Hill publications.
The Searchlight Section is classified advertising; you can use it at small cost, to announce all kinds of business wants of interest to other men in the fields served by these publications. It has long been the accepted meeting place of men with business needs and the men who can fill those needs.
When you want additional employees or a position, want to buy or sell used or surplus new equipment, want products to manufacture, seek new capital or factory sites or have other business wants-advertise them in the Searchlight Section for quick, profitable results!

Classified Advertising Division
McGRAW-HILL PUBLISHING CO., Inc.

330 West 42nd Street - New York 36, N. Y.

## SEARCHLIGHT SECTIONS

 are found in these
## McGRAW-HILL

## Publications:

(Classified Advertising)
American Machinist
Aviation Week
Business Week
Bus Transportation Chemical Engineering Chemical Week
Coal Age
Construction Method \& Equipment
Electrical Construction \& Maintenance
Electrical Merchandising
Electrical World
Electronics
Engineering \& Mining lournal
Engineering News Record
E. M. J. Metal Mineral

Markets
Factory Man. \& Maint
Fleet Owner
Food Engineering
Nucleonics
Power
Product| Engineering
Textile World
Welding Engineer

## ADDITIONAL <br> EQUIPMENT WANTED ADVERTISING <br> On the opposite page

## W A N T E D



## !! WANTED!!

IN ORDER TO SUPPLY GOVERNMENT AND INDUSTRIAL REQUIREMENTS, WE ARE PAYING TOP DOLLAR FOR ALL TYPES OF RADIO AND ELECTRONIC SURPLUS. WE SPECIALIZE IN TEST EQUIPMENT AND COMPLETE RADIOS, SUCH AS:

APA, APN, APQ, APR, APS, APT, ARB, ARC, ARN, ART, ATC, BC, DY, I, IE, LM. MG, PE, PU, SCR, TCS, TN, TS, and many others.
WE ESPECIALLY NEED: APA10, APN9, APR4, APS4, ARC1, ARC3, ART13, ATC BC221, BC342, BC348, BC611, BC721, DY12, DY17, I100, LM10 to LM18, MG149F, MG149H, PU14, R5/ARN7, R5A/ARN7, SCR718C, TCS, TN16, TN17, TN18, TN19, TN54, TS3, TS13/AP, TS33, TS35, TS45, TS75, TS76, TS102, TS147/UP, TS148/UP, TS173, TS174, TS175, TS250, TS251, TS323, (1CT, 1F, 1G, 5CT, 5DG, 5F, 5G, 6DG, 6G 115V. 60 с.p.s. Selsyns), and all types of Hewlett Packard, General Radio Co., Measurements Corp., Boonton Radio, Ferris, Leeds \& Northrup, and other test equipment.

Please state accurte description, condition, and your lowest price. Explain modifications, if any. We pay freight charges. PURCHASING AGENTS, ENGINEERS, EX PORTERS, INDUSTRIAL BUYERS, DEALERS, AND INDIVIDUALS, Please send us your requirements.

## WRITE FOR OUR

latest surplus catalog

## PHOTOCON SALES

417 N . Foothill Blyd. SYcamore 2-4131
Pasadena 8, California RYon 1-6751

## ! ! ! WANTED ! ! ! Purpose $\underset{\text { TUBES }}{\text { RADAR }}$ Special

ATTENTION MANUFACTURERS, LAB's. SCHOOL'S, HAM'S!!: We will pay you immediate and highest cash prices for special purpose tubes and X'TAL Diodes in any quantity.

HERE IS A PARTIAL LIST
OF WHAT WE ARE LOOKING FOR
" $1 B^{\prime \prime}$ series, including 1835 \& $1863(A)$. 1 N25 \& $1 N 32$, IS21. ALL KLYSTRONS INCLUDING: $\begin{array}{llll}2 K 33,35,41 & \& & 47 \text {. also } 723 A / B, & 726-B \\ 3 K 30,3 C 22 & \text { \& C } \\ \text { C }\end{array}$ \& 3K30,3C22, 4C35, 393-A. \& MANY OTHER
THYRATRONS \& IGNITRONS. 6AST-G, 6F4 $6 J 4,804,845 \& 5691-2$ \& 3. ALSO MANY MAGNETRONS.

For a prompt quotation write to

## MICROWAVE

425 Riverside Drive, New York City 25, N.Y Dept. 6B-4
Or for immediate action Phone
Monument 2-1480 and ask for Miss Rainbow


## SEARCHLIGHT SECTION

## Electro's Galaxy of Star Values!

ELECTRONIC TUBES



FRACTIONAL HP MOTORS EAD ${ }^{5} 31,115 \mathrm{VACACAOCy} 1 / 50 \mathrm{HP}$
$\$ 9.95$

 LELSPREC.





 PACKARD. 6 VDC, $1 / 100$ HP S00RPM.
 LEAR COOA, ZUVDC, 15A 8W 7500RPM ERORRMM WESTINGHOUSE $171391 \mathrm{~B}, 27 \mathrm{VDC} 6.5 \mathrm{~A}$ H1TZER-CABBOT RBD-220 24VDC 18A

 H 2.25HP 4000RPM ${ }^{2} 4347$. 24 VOC 90A $2 H P$


 BARBER-COLMAN DYAB-2912-1 WE $28944,45 / 52 \mathrm{~V}, 3.5 \mathrm{HA}, 1765 \mathrm{BP}$ M
 RODGERSSSWPMCHING MOTOR, type




## GEAR REDUCTION MOTORS

 1 A,
Emer
met
mer


## 

 These listings represent only a small postion of our tremendous Electronic Component in Prices subject to change without notice. Terms: Rated firms net 10 days, Non-rated $25 \%$ with order balance COD. Prices FOB Boston. Mirimum order on items other than tubes $\$ 10$
# INDEX SEARCHLIGHT 

APRIL, 1953

This index is published as a convenience to the readers. Care is taken to make it accurate but ELECTRONICS assumes no responsibility for errors or amissions.

EMPLOYMENT

| MPLOYMENT <br> Positions Vacant | 1-4.43 |
| :---: | :---: |
| Selling Opportunities Offered | , 440 |
| Positions Wanted | 431 |
| Selling Opportunities Wanted | 431 |
| Employment Agencies | 431 |
| Employment Services. | 431 |
| BUSINESS OPPORTUNITIES <br> Ofered | . 431 |
| EQUIPMENT |  |
| (Used or Surplus New) |  |
| For Sale. . . . . . . . . . . | . 444-480 |
| WANTED |  |
| Equipment | 47t, 475 |

## ADVERTISERS INDEX

Aclelman, Nat........
Admiral Corporation ..... 474
Allied Electronic Sales ..... 466
Barry Electronics Corp ..... 465
Bendix Aviation Corp., York Div. ..... $4+0$
438
Blan ..... 464
443
Capehart Farnsworth Corp ..... 440
Central Commercial Industries ..... 442
Chase Electronics Supply Co Columbia Electronics Sales. Commercial Surplus Sales Co Commercial Surplus Sales Co
Communications Devices Co. ..... $\because 468$
Compass Communications Co ..... 455
470
466
Comell-Aeronautical Laboratory Inc. ..... $\begin{array}{r}439 \\ \hline\end{array}$
Daystrom Inst. Co......
Douglas Aircraft Co., Inc ..... 437
440
Flectro Devices Inc. ..... 468
Electro Sales Co, Inc ..... 431
470
Electronic Expediters
Flectronic Products Co.....
Electronic Specialty Supply Co. ..... 467Electronic Specialty SupplyFlectronic Surplus Brokers
Flectronicraft Inc
V:lectronics Inc... ..... 447,475
Empire Electronics Co ..... 478
Fngineering Associates. ..... 466
473
Fair Radio Sales. ..... 474
General Magnetics Inc ..... 443
General Motors Corp,, Delco Radio Div.General Precision Laboratory Inc...........Gibhs Manufacturing \& Research Corp. 441, 442
Goodyear Aircraft Corn
Goodyear Aircraft Corp ..... 435
466
Greene, Leonard.
Harjo Sales Co ..... 466
Hatry \& Young ..... 442
Instrument Associates ..... 449
J. S. H. Sales Co ..... 460

## TO THE ADVERTISERS

APRIL, 1953

SEARCHLIGHT SECTION Classificd Advertising) H. E. Hilty, Mgr.

Klein Co., Manuel
Rollsman Instrument Corp
Lapirow Bros
Lectronic Research Labioratories ...................... 472 Legri S Company............................... 458 Loyd Products Conc Low Electronics.

Maritime International Co. Maritime Switchlioard Co.. Maxson Corp., W. L...............
McNeal Melpar Inc
Merrick Electronics
Metropolitan Oakland Area Metropolitan Supply Co Microwave Equipment Supply Co.
Minnearolis Honeywell Regulator Co Mogult Co.. Inc., Alexander. Moloney Electric Co. Monmouth Radio Laboratories

National Research Council.
National Union Radio Corp.
O'Del Electronines Corp. Olson Radio Warehouse Inc Overbrook Co., The........

## Permoflux Corporation

 Phillips Petroleum CoPhotocon Sales
Possner Co.
Potter Instrument Co
Powell, Harold
Precision Electrical Inst
Precise Measurements Co
Radio Corp of America
Radio Corp of America Co.. Ltd
Radio \& Electronics Surplus.
Radio Shack Corp
Railway Communications Inc
Reisco Corp
Relay Sales.
Reliance Merchandising Co
R W Wroducts. Co

## Sandia Corp

Semler Associated Industries Inc.
Servo Tek Products Co., Inc
Southwestern Industrial Electronics Co
Sperry Products Inc
Stavid Encineering Inc
Sylvania Electric, Electronics ${ }_{D}$
"TAB"
Tallen Co.. Inc
Telemarine Communications Co
Tung-Sol Electric Inc.

Universal General Copp
V \& H Electronics Industries Tnc.

## Warren Plastics Corporation

Wells Sales Inc
Western Enginee
Wheston Laboratories Inc
Whirlpool Corporation
Wincox Electric Co.
Wilgreen Industries

## We Grew to Help You ! !

## SELSYNS—SYNCHROS

mmediate Delivery-Fully Guaranteed
1F Synchro Motor $\mathbf{1 1 5 / 9 0 V} 60 \mathrm{cy}$....... 574.50 1CT Control Trans. $90 / 55 \mathrm{~V} 60 \mathrm{cy}$ 1 HCT Control Trans. $90 / 55 \mathrm{~V} 60 \mathrm{cy}$ 1HG Generator $115 / 90 \mathrm{~V}$ 60cy 1G Generator 115/90V 60 cy 1N Synchro Motor 115/90V 60 cy 15F Motor $115 / 90 \mathrm{~V} 400 \mathrm{cy}$ 2.1F1 Generator 115 V 400 c $2 \mathrm{~J} 1 \mathrm{G1}$ Control Trans. 57.5 V 400 cy 211 HI Differential Gen, 57.5 V 400 cy $2 \Omega 1 \mathrm{D} 1$ Differentlal Motor 57.5 V 400 cy ${ }^{2} \boldsymbol{W} 1 F 3$ Synchro Motor 115 V 400 cy . $2 \pm 5 H A 1$ GE Generator $115 / 105 \mathrm{~V} 60 \mathrm{cy}$. 21 D 512 GE Motor 115/90V 60cy.: 21532 GE Generator $115 / 90 \mathrm{~V}$ 60cy $2: 5 \mathrm{~K} 3 \mathrm{GE}$ Control Trans. $90 / 55 \mathrm{~V}$ 60cy 5D Differentlal Motor 115/90V 60cy DG:Differential Gen 90/90V 60 cy 5 G Generator $115 / 90 \mathrm{~V}$ 50 SCT Control Trame 90 cy 6CT Control Trans. $90 / 55 \mathrm{~V} 60 \mathrm{cy}$ 6DG Differentiai Gen. 90/90V 60 cy 60G Differentiai Gen. 90/90V 60c 7G Generator $115 / 90 \mathrm{~V} 60 \mathrm{cy}$ C 78248 Transmitter 115 V 60 cs C 78249 Differential 115 V 60cy 2لA39BB2 GE Motor 110/55V 60Cy TYPE M Motor $115 \mathrm{~V} \mathbf{6 0 c y}$ TYPE A Generator 115 V 60cy. C59405-2 Trunsmitter 115 V 60 c C44968-6 Repeater 115 V 60 cy . KS5950L2 Generator 115/90V 400cy $2 ل 5 R 1$ Generator $115 / 90 \mathrm{~V} 400 \mathrm{cy}$ SSG Generator $115 / 90 \mathrm{~V} 400 \mathrm{c}$ SSF Motar 115/90V 400cy c901 MOD3

### 574.50 79.95 79.95 84.50 84.50 84.50 82.50 82.50 69.95 69.95 17.50 17.50 9.50 $\begin{array}{r}9.50 \\ 9.50 \\ \hline 12.50\end{array}$ 12.50 12.50 12.50 9.50 9.50 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 69.50 69.50 57.50 79.95 24.50 4.95 4.95 69.50 69.50 19.50 19.50 22.50 22.50 19.50 15.00 29.50 | 19.50 |
| :--- |
| 32.50 | 32.50 32.50 32.50 17.50

 MK1 MOD3 Bendix Step by Step mtr. $\quad 9.50$ DIEHL AC CONTROL MOTORS

```
PM MINIATURE MOTORS DELCO 5068571 , 27VDC. 10000 PPM
DEECO 5068750 27VDC. 160 RPM (S18.50
```




``` \(G\) in torque (used) ,
```



``` 12.50
12.50
16.00 \begin{tabular}{ll}
24 VDCC 5000 RPM & 16.00 \\
& \\
\hline
\end{tabular}
```



- 30.000 sa. it. of floor space in our own
 North and South Stations at the bunction
of Atlantic and Commercial Avenues.
Customers automobile
adjacent to our buildia
Complete stocks of electronic components and specialized items as syrichros, Tubes,
Relays, Capacitors. Inverters, ets. Relays, Capacitors, lnverters, et
- Separate shinping rooms for ease and delivery is assured. Graduate Electranic Engineers to hel

Our oreatly increased capacity now per-
mits us to stock more items-in much arder पuantities.
Every item sold carries our geiarantee to
meete your approval and be exactly as
represented.

RESOLVERS \& AUTOSYNS
ARMA RESOLVER TYPE 18400, Ord
ARWA INEASEUCTION POUENTIOME: 547.50
 IONEER AUTOSYN TYPEAY-1 9.50
9.50
9.50


DYNAMOTORS \& INVERTERS



We have in stock over 10.000 Motors of al
types and descriptions. Also a fill line oo
We have and descriptions. Also a full line of
types ans. inverters or motorgenerators. Let
sels cuoce on your requirements.

Prices subject to change without notice. TERMS: Rated firms net 10 days, non-rated $25 \%$ with order balance COD. Prices FOB Boston. Minimum order $\$ 10.00$.

SEARCHLIGHT SECTION


0TRANSFORMERS















 A






 AUDIO AMPLIFIERS READY TO GO














 |  |
| :---: | :---: | :---: |













Dept. 4E 111 Liberty Street, New York 6, N. Y., U. S. A.

## INDEX TO ADVERTISERS

	394
Adams a Westlake cos	21
Aeronatutical Communications	
Equipment, linc.	36
Aerovox Corporation . . . . . . . . . . . 338,	339
$\mathbf{A}^{\prime} \mathbf{g}^{\prime} A$ Div. of Elastie ston Nut Corporation of America	346
Nireraft-Marine Products, Inc. . . . . . . 50.	51
Aireraft Radio Cor	110
Airdesign, Inc.	319
Airpax I'roducts Company	228
Alden Prombets Company . . . . . . . . . . . 38 ,	39
Allen-13radiey Co.	66
Allen Co., Inc., I.	429
Allied Industries, Inf	365
Allied Kesearch $\mathbb{S}^{\text {Engineuring, }}$	129
American Chronoscope Co	391
American Electric Motors	355
American Electrical Ileater Company	326
American Electronic Laboratories, lne	340
American Encaustic Tiling Co	399
American Lava Corporation	5
Anteritan Phenolic Corporation .... 202.	203
American Television \& Radio Con	210
American Time lroducts, Ine	276
Ampex Electric Cory	63
Andrew Corporation	236
Anti-Corrosive Metal Irodncts Co., Ine	308
Arkwrisht Finishing Company	36:
Arnold Engineering (on	271
Art-Liogd Metal Products Corp	365
Assembly Products. Inc	416
Associaterl Spreialties Co	391
Augat IBrothers, Ine	369
Automatic Electric Mig. Co.	$2 \times 1$
Aviation Enginerring Corp	

Ballantine Laboratories, Inc............. . 200 Barry Corp., The . . . . . . . . . . . . . . . . . . . . . 15
Belden Manuliaturing Company . . 219
Bell Telephone Laboratories...............231
Bendix Aviation Corporation
Eclipse-Pioneer Div.
Friez Instrument Div.
407
Bentley, Havris Manufacturing Co...217, 33+
.... 303
Berkeley Scientific, Division of
lieckmin linstruments, Ine..
Beryllium Corporation
Bird \& Co., Inc., Richard H.
Bird Electronic Corp.
424
Birmingham Sound Reprodncert Ltd
Birnbach Ladio Co., Ine
Birtcher Corporation
Bliley Electric Company,
Bodnar Industries, Inc.
Bogart Manufacturing Corp
Boonton Riulio Corp
Borg Corporation, George $\mathbf{W}$.
Bowser, Ine.
Bradiey Laboratories, Inc.
Brew \& Co., Inc., Richard D...................... 61
Bridgeport IBrass Company . 110
Bristol lisass Curporation. 44
Brush Electronics Company ............................ 212
Buggie d Company, H. If. ............... . . 272
Burke \& dames, Inc....................... 423
Burnell \& Company
Bussmann Mfg. Co.
C.G.S. Laboratories, Inc. ..... 403
Cambridge Thermionic Corp ..... 94
Cannon Electric Company. . ..... 117
Carboloy Dept., General ..... 106
Carborundum Company
Carborundum Company ..... 410
Centralab, A Div. of Globe-Union,$11,12,13$
Century Geophysical Corporation ..... 252
Century Metalcraft Corp. Electronic Div. ..... 406
Chase Brass \& Copper Co. ..... 241

Chester Cithe Corp . . . . . . . . . . . . . . . . . . 25
Chicago Telephone Supply Corp...... 40, 41
Chicaso Transtormer, Div, of Essex Wire 376
Corı. ...................................
Cinch Manafactnring Corn . . . . . . . . . . . . 193
Cinema Engineering Company . . . . . . . . 112
Clare \& Co., C. $\mathbb{I}^{\prime}$. . . . . . . . . . . . . . . . . . . . . 55
Cleveland Container Co.................... 211
Cohn Mfg. Co., Inc., Sigmmad. .......... . . 367
Collectron Carporation ................. 357
Collins Radio Company . . . . . . . . . . . . . . . . 293
Commonncation Accessories Company . . 124
Compating Devices of Canadar. Ltd...... 381
Condunser Products Company, Div. of 263
Convolidated Fincinetrine Corb. ...... 91
Consolidated Vacuum Corp................. . . 213
Constantin \& Co., L. L. .................. 101
Continental-Diamond libre Company . . 233
Cormell-Dubilier Fltetric Corp. . . . . . . . . . 99
Corring Glass Worlis....................... . . 275
Coto-Coil Company . . . . . . . . . . ... . . . . . . 398
Cramer Co., Inc., $\mathbf{R}$. W . . . . . . . . . . . . . . . . 34
Cresernt Company, lne . . . . . . . . . . . . . 200
Cross Co., 11. ................................. . . 346

Dage Electric Co., Inc................... 363
Dano Llectric Co............................. 427
Daven Co., The. . . . . . . . . . . . . . . Third Cover
Dee Electric Co. . . . . . . . . . . . . . . . . . . . . . 429
Deltron Inc. ........... . . . . . . . . . . . . . . . 342
bialight Corporation .................... 36
Areollam Corporation ...................... . . . 3 35
Inow Corning Cerporation . . . . . . . . . . . . . . 127
Driver-Marris Company . . . . . . . . . . . . . . 253
IniPont DeNemours \& Co., (Inc.) F. L. . . $5 \%$
DX Radio Produets Co..................... 373

Eatstern Air Devices. Ine................. . . 207
Edison Incorporated. Thomas A........ 388
Eisler Enkineering Co., Ine...........425, 429
Eitel-McCullough, Inc. . . . . . . . . . . . . . . 90
Electran Nig. Co.......................... 350
Electric Regulator Corp. . . . . . . . . . . . . . . 259
Eloctrical Industries Division,
Amperex Llectronic Corp...............
402
Hectro-Nec Laboratory . . . . . . . . . . . . . . . 420
Elcetro-Tech Equipment Co . . . . . . . . . . . 42
EJect ronic Instrument Co., Inc.a
$(\mathbb{E}$. I. $\mathbb{C}$. 0. . ............................ 414
Electronic Transformer Company....... . 265
Electrons, Inc. 28
Engituering Kesearch Associates, Inc. . . 397 Entlich, Ted 429
Epco I'rodncts, Inc ............................. 423
Eureka Television \& Tube Corp. ........ 341
Eveready Piating Co.................... . . 420

Fairelitd Camera \& Instrument Corp.... 318 Finsteel Metallurgical Corpr. . . . . . . . . . . . 358
Federal Telephone \& Radio Corp........ 297
Filtron Co., Inc.
T R ..........
Fluke linginecring Company, John. ... . 408
Ford Inst rument Company . . . . . . . . . . . . . 58
Frced Transformer Co., Inc. . . . . . . . . . . . 247
Frequeney Standards . . . . . . . . . . . . . . . . . 427
Furst Elect ronies . . . . . . . . . . . . . . . . . . . . 375

Gamewell Company . . . . . . . . . . . . . . . . . 208
General Ceramic d Steatite Corp........ 321
General Electric Company
Apparatus Dept. . .32A, 32B, 32C, 32D, 74
80, 81, 113, 227, 291
Electronics Bept . . . . . . . . . . . . . . . 31, 85, 420
Tube Dept. . . . . . . . . . . . . . . . . . . . . . 19, 105
General Industries Co. . . ... . . . . . . . . . . . . 354
General Magnetics, Inc....................... . . . . 280


## wide-range wattmeter

Here's a brand new instrument that simplifies many power measurements-the Keithley Model 110 Electronic Wattmeter. An amplifier drives the potential coil of a dynamometer wattmeter; features include wide response, sensitivity to low voltages, very little current drain by the potential circuit.


SIX SCALE RANGES
Precise readings from 0.3 to 300 watts. In addition, plug-in shunts for 3,10 , and 30 ampere circuits extend the upper limit to 900,3000 , and 9000 watts. Overall accuracy is within $2 \%$ of full scale.

20 TO 3000

## CPS RESPONSE



Wide frequency response, with no need for wave form corrections. Input impedance to the potential circuit is 500,000 ohms, eliminating errors caused by potential coil current, as voltage drops in ballasts when measuring the power to fluorescent lamps. Current coil, 0.5 ohm .


Quick, foolproof test setups. Terminals connect to the power source and to the load. Excellent sensitivity enables measurement of low-voltage circuits, such as power to fuses, small motors and, as here, to transformers in measuring core loss.

For complete literalure on the Model
110 Watlmeter, write -
110 Watlmeter, write -

## KEITHLEY INSTRUMENTS



General Precision Laboratory, Iac Gipmeral Ratio Compans

## 335

German-Amerisan Trable Promotion
Gianuini d Cu., Inc., (G. M
Gramer Transformer Corb.
firant liblley \& Hardware Co
Grayhill
Gradn lustrmmant ('o., Ince
(iries Rtyroducer (orp.
Gudebrod bros. Silk ('o.. Ine
Guthmant deo. Ine.. Edwin 1


Hllinois Condenser Co.................. 3 \%
Indiana Strei Ironluets Co...............6s, 69
Industerial Condenser Corp............................ 2900
Industrial Control Compana 295
65
Industriad Harduare mfan. (a. lac........ $3 \% 1$
1udastrial Timer Corporation 283
Instrmment Corp. of America .......... 3 . 3
Instrmment Eleetronis's Corp. .......... 377
Instrument Resintors Co. ................... 426
Insulation d Wires Inc.................. 05
Intercontinentad Darketing Curp ..... 406
International business Machines .... 328
International Kertitier Corp. . . . . . . . . . 285
Ippolito d. Co., Ine., James . . . . . . . . . . . 360
Irvington Varnish A Insulator $(\mathfrak{y} \quad . \quad 59$
I-T-F: Kesistor Division of the
I-T-E Cireuit Brealier ('o............ 115.

Jelliff Manufacturing Corp.. C. ()
...... 411
Johnson Company, E. F. . . . . . . . . . . . . . 296
Jones Div., Howard B. Cinch Mit. (o... 360
Jones Flect ronics (ompany, M, C

Kahle Engineering Compang Kalbell Taboratories. Inc
Karp Metal Products Co., Ins kartron
Keithley linstriments
. 481
Kelloge company, M. W.............f4A. 64B
Kepco Laboratories, Ine. .
Kester Solder Company
lings Electronics Co.. Ine
Klein © Sons, Mathias.
klimeher Locknut Corb. .
Knights Company, Jumes
collsman Instrument Corpornt
collsman Instrument Corporation . ..... 230
lirengel Manufarturing Co., Ibu...... 361
linkil Flectrie Mff. Co., Inc.
340

[^24]1122 EAST 23RD STREET, INDIANAPOLIS 7, INDIANA

Lamson $x$ Nexsions Co
Lap，Insulator compatisy，Inc．
Loath Krlay Co
Lemene a Korthrup（＇o． 5
Letand luc．，G．H
Lenkurt Wilestric salm Co
Lawis \＆kitutman lid．
Litton Indmatrios

 Comminsion

Magnatrint，lace．．
Hallory of（o．．Ime．I＇，化
Mansal Ceramics
Marconi Inadroment．Itai
Harion Thedrical llatramenl（m
Markem Machime（ommans
Veasuraments Corporationt Mapeo，Itre．
Metal Taxtile Cor）
Motals E Controla Corlo．
（iencral Plate bis
Matrote Manmfactaring（＇otil
Miat Insulator（ompathy
Hicro，I Jivision of Minna：apelis Iloneywell R＋\＆いlator（a）
Midland Manotitcloring（o．．In
Miles Keprodncor Co
Villen Mfz．Co．Jum．．．bimots．
Milo Radid N Etectrontics Corp
Minseatpolis－HoHeswoll Regrlater（on Aro Viv．
Industrial Jin
Mimenotia Mining \＆Mtir．（ 0 ．
Mitchedr－1kand Insubation Cond Inc

Muirbead di Co．，I．ta．
M－W Labomatarics．Ins
National Company．Inc．．．．．．．．．．．．．． 380
National Moblite Company 380
366
National Restareh corp．
Cational Vulcanised Fibre Co
Natiar Corporation
Nとか－sil Corp．．．．．． 1：3
Niw Hermes．Ine
1 （orr）
New Rochelle Toul Corl
Sew Vork Tramstormer Co．，Inc．
Corden lamboratories Corp
Nordell lanboratories
Norsid Mfg．Co．，Ine．
Norsial vifg．Ca．，Ine．．．
Vorth Dmericall Aviation．Ims
North American Aviation，Ins
Vorthastern Lingincerins，Jur

Nothellar Winding Jaboratorice．
Sylok Curporation

I＇illoramic Radio lroducta．Inc
P：ar－Melal l＇roducts Corll．
Pamamonat Paper T＇ube（＇ 0 ． Patton－Matcuarr Company penta Laboratorims，Im
Pexrlem Efectronius，Iuc．
Phalo Plastice Corporation Phaostron Company
Phesps Ihodex Copper Iroducts Corb
lnca Mammfanturing biviniort． Platoly Hamefactaring（io Philamon laboratories，Inc． lix Manufacturing Co．．Inc． Iobarad Ebetronics Corboration lonter Instroment Compans．Ine Drerision Apharatus［＇O．．Jow
Prerision Pamer Tube Co
Premax Prodmets．Jiv．（hishodm－

## Quality ？．．．．plus $\sqrt{ }$ Prices？．．compeililive $\sqrt{ }$



## Spesify Chemelec Electronic Components <br> 



Chemelec High Performance Electronic Components include a complete line of Teflon－insulated 7 and 9 －pin Miniature Tube Sockets，9－pin Connectors，Crystal Sockets，Stand－off Insulators，Feed Through Insulators and Terminals．

All provide the same high performance which this superior insulating material assures．Surface resistivity $3.5 \times 10^{13} \mathrm{ohms}$ ． Loss factor less than 0.0005 ．Dielectric constant 2.0 （ 60 cycles to 30,000 megacycles）．Serviceable at $-110^{\circ} \mathrm{F}$ ．to $500^{\circ} \mathrm{F}$ ． Won＇t carbonize under arcing．Zero water absorption by ASTM Test．Unaffected by extreme humidity．Won＇t DC plate．Chemically inert，non－gassing，immune to corrosive at－ mospheres，fungus，oil，solvents．Non－flammable，tough，resili－ ent，withstands and absorbs mechanical shock and vibration．

Write for Catalogs：Miniature Tube Sockets，No．SO－428； 9 －pin Connectors，No．CN－409－M；Crystal Sockets，No． CS－441；Stand－off Insulators，No．TE－401；Feed Through Insulators and Terminals，No．CF－400．

> UNHTED STATES GASKEY company


## Range Specilications

* SIX ALL-2ERO CENTER VTVM RANGES:
$131 / 3$ Megs Constant Input Resistance.
$\pm 3, \pm 12, \pm 30, \pm 120, \pm 300, \pm 1200$ volts Direct Reading to $\pm 60,000$ volts when used with Series TV. 4 Super. High Voltage Safety Test Probe.
* SIX SELF-CONTAINED OHMMETER-MEGOHMMETER RANGES: 0-2000-200,000 ohms.

0-2-20-200
$\star$ four direct peak reading high frequency VIVM RANGES: $0-3 \cdot 12-30-120$ volts. (When used with RF-10A High Frequency Vacuun Tube Protic. Net Irice
SIX AC-DC AND OUTPUT VOLTAGE ohms/volt. 0.3-12-30-120-300-1200 volts

* EIGHT D. C. CURRENT RANGES: $0-300$ microamps. 0-1.2.3-12-30-120-1200 milliamps. $0-12$ Amperes.
* SIX DECIBEL RANGES from -20 to +63 DB. Calibrated for $500 \mathrm{ohm}, 1 \mathrm{mw}$., zero DB reference.


## Important Peatures

$\star$ voltage regulated - bridge type circuit
$\star$ dIRECT READING, ALL ZERO-CENTER VTVM eliminates frequent and inefficient shifting of test leads.
$\star$ high frea. voltage scales-direct reading. dual-balanced electronic bridge ohmmeter. MEGOHMNETER.
$\star 1000$ OHMS/V. MULTI-RANGE FUNCTIONS permit simple AC-DC voltage, DB and current measurements free of power line.

* $45 /{ }^{\prime \prime}$ " REETANGULAR METER-200 microamperes, $\pm 2 \%$. Double-jewel, D'Arsonval construction.
* $1 \%$ Film type, Metallized and Wire-Wound resistors Heavy gauge, louvred steel case with plastic hande. Etched, anodized, aluminum panel.


## Net Selling Price $\$ 69.75$

Complete with coaxial Circuit Isolating Test Probe, Shielded Ohmmeter Test Cable. Standard Test Leads, ohmmeter battery. Case dimensions-10 $0^{\prime \prime} \times 6^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime \prime}$.
Alsa ask ta dee the "Precision", Series EV-10a DeLuxe VTVM—Megohmmeter with extra-large 7" meter, on display at leading radio parts distributors.

Write for latest catalogue.

## Precision Apparatus Co., Inc. <br> 92.27 horace harong blvo. $\bullet$ amhurst id. n.r.

Export: 458 E'way, N.Y.C., U.S.A. Cables: MORHANEX n Canada: Atlas Radio Corb. Ltd., Toronto 2 B , Ontari Want more information? Use post card on last page.

Prentice-Hall, Ine
Lresto Recording Corporation 389

Progressive Manufacturing Company...... $\begin{array}{r}854 \\ \hline\end{array}$
Pyramid Electric Company
I'yroferric Co., Inc 11

Quaker City Gear Work
Quality Products Co 429
Radiation, Inc ..... 387
Radio Cores, Inc ..... $2 \pi 1$
Radio Corporation of America ..... 325
Radio Materials Corporation ..... 239
Radio Recrpior Combany, Ine ..... 56
Railway lxpress
Dir Express Div.100
Rawson Electrical Insi rument Co. ..... 3\%9
Raytheon Manufacturiner Company ..... 35
-is-h Mvision. Eissex Wire Corp. ..... 204
Remler Conupany, Idd ..... 409
Reon Resistor Corporation ..... 402
Resistoflex Corporation ..... 390
Rex Rheosiat Co ..... 390
429
Roanwell Corporation ..... 367
Robinson Inc., Edward F ..... 350
Rochester Electronics ..... 429
Royal Metal Mig. Co ..... 3.10
Trad Television Corp
381
Transformer Metal P ..... 414
Transicoil Corporation ..... 372
Transistor Products, Ine ..... 289
Tritnsradio, Ltd ..... 282
Tru-Ohm Products. Div ..... 282
Morlel Fingineering © Mfg., Inc ..... 120
Tung-Sol Electric Inc ..... 205
Ucinite Co., The
48
48
Ulanet Company, Georre ..... 350
Ungar Clectric Tools, Ine ..... 350
United-Carr Fastener Corp ..... 49
Conipany
404
404
United States Gasket Company. ..... 483
United Stales Radium Corp ..... 226Universal Winding Company.................... Cover
Vacuum Metals Corporation,
sub. of National Researeh Corp ..... 122
Varflex Corporation ..... 331
Veeder-I ..... 78
Vickers Electric Division, Vickers. Inc. ..... 218
Vulcan Electric Companv ..... 369
Sin Fernando Flectric Mifg. Co365
Sanborn Company32
Sangamo Electric Compaum ..... 304
Sarkes Tarzian. Ince, Rectidier Div ..... 218Schmidt. Inc. Gee.378
Ghuttig © Co., Incorporated ..... 373
Corrurated (tannched Gap Co ..... 394
Sealiron Company ..... 93 ..... 3
Cecon Metals Corporation
Servo Corporation of America ..... 359
Sessiong Clork Co., Tyni Switch Div ..... 22077
Shalleross Manuficturing Co ..... 224Sherman Paper Products Corp.
Sigma Instrument Ine ..... 332
Signal Enginceriug it Mig. Co. ..... 411
Simpon Electric Company ..... 277, 281
sola Eleetric Company ..... 209
Southeo $\mathbf{D}$ Company. Mes Corp ..... 45
Southco Div., South Chester Corp
Specialty Battery Company. . . . . ..... 369
Spencer-Kennedy Laboratories, Inc. ..... 426
Sprague Electric Company ..... 9
84
Standard Eleetric Time Co ..... 30
Standard Piezo Co. ..... 412
Star Porcelain Company ..... $40 \%$
mpany, lnc ..... 371
Stevens-A rnold Incorporated ..... 416
Steward Mannfacturing Co, D ..... 279
Stevart-Speller Associates ..... 410
todart Nircrait Radio Co ..... 234
43
Stupakoff Cermmic \& Manutacturing ..... 307
Sturtevant Co., P. A. ..... 367, 373
Superior Electric Co. ..... 33
33
Superior Tube Co. ..... 333
Sylvania Electric Products, Inc. ..... 313
Taylor Fibre Company ..... 125
Technitrol Engineering Co ..... 418
Technology Instrument Corp. ..... 393, 395
Tektronix, Ine. ..... 310
Teletronics Laboratory, Inc. . ..... 421, 420
Telewave Itaboratories, Inc ..... 419
Thomas \& Skinner Steel Produc ..... 482
Thompson-Bremer \& Company ..... 320
Tinker \& Rasor. ..... 48, 349
Waldes Kohinoor, Inc ..... 67
Ward Leonard Nlectric
Ward Leonard Nlectric ..... 119
421
Waterman Products Co.. Inc ..... 250
Waveforms. Ine. ..... 391
Weckesser Company ..... 350
Westeril Gear Works ..... 315Western Gold \& Llatinum Works....... 373
Westinghouse Llectric Corp......92, 377,422Westinghouse Llectric Corp......92, 377, 422
Weston Electrical Instrument Corp..... 102Weston Electrical Instrument Corp....... 102White Dental Mig. Co., S. S.....344, 345, 379Whitehead Stamping Company. ........ 425
Whitney Blake Co.425
Williams $\mathcal{A}$ Co., C. K.......
342
342
Winchester Electronics, Inc. ..... 302
Xcelite, Incorporated ..... 389
Zophar Mills, Ine ..... 428
PROFESSIONAL SERVICES.. ..... 429
SEARCHLIGHT SECTION(Classified Advertising)
H. E. HILTY, Mgr.
SEARCHLIGHT ADVERTISERS INDEX476, 477
This Index is published as a convenience to the
ELECTRONICS assumes
ELECTRONICS assumes no responsibility for errors


## Now you see if....now you don't!

This is how it's done ...
The etched surface on the faceplate of the metal-shell picture tube (right) diffuses the reflection from the lighted match-while the untreated faceplate of the other tube "mirrors" it.

Here is the answer to an awkward problem . . . and RCA metal-shell kinescopes solve it simply. They suppress bothersome reflections from room lights and other bright objects. And they reproduce clear, graphic pictures over the entire faceplate area.

Give your TV line a powerful new sales lift. Make your sets "reflection-free"with RCA metal-shell kinescopes.

For technical data or design help, write RCA, Commercial Engineering, Section 42 DR. Or just call your nearest RCA Field Office:
(EAST) Humboldt 5-3900, 415 S . 5th St., Harrison, N. J.
(MIDWEST) Whitehall 4-2900, 589 E. Illinois St., Chicago, Ill.
(WEST) Madison $9.3671,420$ S. San Pedro St., Los Angeles ${ }_{2}$ Cal.


RCA Metal-Shell Kinescopes
RCA-21AP4
(magnetic-
focus type)
RCA-21MP4
-the picture tubes with the faceplates that suppress annoying room reflections


[^0]:    MANUFACTURERS OF RUGGEDIZED AND "REGULAR" METERS AND RELATED PRODUCTS

[^1]:    AMPEC - A full 3 -stage speech amplifier. Provides highly efficient performance. Size $11 / 4^{\prime \prime} \times 11 / 8^{\prime \prime} \times 3 / 8^{\prime \prime}$ over tube sockets! Used in bearing aids, mike preamps and other applications where small size and outstanding performance count. Technical Bulletin 42-117.

[^2]:    Radar gun sights are repaired in field by flying electronics laboratory shown being loaded into C-124 Globemaster for transport to Korea.

[^3]:    Pilots seated at a multiple console fly in accordance with troffic controller's telephoned instructions from desk at center rear. White dots on chart at right represent the craft. Simulated radar presentation on common screen is electronically controlled and viewed in mirrors obove each position

[^4]:    (Continued on page 26)

[^5]:    A complete catalog of Sanborn Industrial Recording Equipment will be sent gladly on your request.

[^6]:    REPRESENTATIVES Hemy E. Sanders Mectachy Bede. 69th $\&$ Mather Sin
    Upper Darby. Penna. Phone: Flanders 2.44z3
    
    
     Dallas 9. Textes

[^7]:    - Trade Mark of Airborne Accessories Corp.
    

    WALDES KOHINOOR, INC., LONG ISLAND CITY 1, NEW YORK
    

[^8]:    McGraw-Hill Publishing Company, Inc.

[^9]:    New York • Springtield, Mass • Rochester, N.Y • Philadelphia - Cleveland • Dayton • Detroit • Chicago • Minneapolis • Seattle • San Francisco • Los Angeles Representatives in principal world-trade centers

[^10]:    AVIATION ENGINEERING CORPORATION 34-56 58th STREET, WOODSIDE, L, I., NEW YORK

[^11]:    Seventy Memorial Drive, Cambridge, Massachusetts

[^12]:    An acquaintance with quantum mechanics is prerequisite to thorough understanding of transistor electronics.
    In this article the concepts of energy levels, energy bands, forbidden bands and quanta in general are discussed in basic language designed to be understood by electronics engineers and technicians whose knowledge of solid-state physical principles has been neglected because of long association with tube technology.
    These principles, along with those of hole formation and transistor action presented in the first article of this series, are presented as groundwork for the more advanced theory and practical applications of transistors to be covered in subsequent article.

[^13]:    * Work done while author was a member of Department of Botany, University of California, Berkeley, Calif.'

[^14]:    *This article is based on a paper presented at the 1952 National Electronics Conference. The conference paper will appear in the N.E.C. Proceedings.

[^15]:    Yrongformors for: Consrant Volhage * Fluorozcont Lighting - Cold Cothode Lighting - Airport Lighting * Series Lighting - Luminous Tube Signs
    

[^16]:    General Offices: 1521 E. Grand Ave., El Segundo, Calif. P Phones El Segundo 1890 chicagosranch office: 205 west wacker Drive © Phone:franklin $2-3889$ New York Bronch office: 12 west 32 nd street, N. Y. 1 . Phone: chickering $4-0017$

[^17]:    For full details on dry-type induction voltage regulators, return this coupon . . .today!
    Single-phase INDUCTROLS, indoor service
    600 volts and below on circuits 3 to $240 \mathrm{kva-GEC}$-795A $\square$
    Three-phase INDUCTROLS, indoor service
    600 volts and below on circuits 9 to 520 kva GEA-5824 $\square$
    Application bulletin,
    Inductrols and electronic equipment-GEA-5936
    General Electric Company
    Section 423-201, Schenectady 5, N. Y.
    Name
    Company

[^18]:    Compact test meter for audio signal level and recorder bias. A $100 \mu \mathrm{a}$ movement is used

[^19]:    4447 No. Bodinte

[^20]:    IV Camera Chains - IV Film Chains - IV Field and Studio Equipment - Theatre TV Equipment

[^21]:    

[^22]:    10 South Second Avenue, Mount Vernon, N. Y.

[^23]:    Immediate Delivery all equipment fully guarantedd

    All prices net FOB Pasadena, Calif.

[^24]:    Laboratories R. Derveaux
    Taboratory for Electronics. Ins
    Iambala blectronics Corporation
    Lampkin lahoratorias. Ine
    23

